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PREFACE TO FIRST EDITION

IN the following work I have endeavoured to give an

account of the fundamental principles of the Mathematical

theory of Electricity and Magnetism and their more

important applications, using only simple mathematics.

With the exception of a few paragraphs no more advanced

mathematical knowledge is required from the reader than

an acquaintance with the Elementary principles of the

Differential Calculus.

It is not at all necessary to make use of advanced

analysis to establish the existence of some of the most

important electromagnetic phenomena. There are always
some cases which will yield to very simple mathematical

treatment and yet which establish and illustrate the

physical phenomena as well as the solution by the most

elaborate analysis of the most general cases which could

be given.

The study of these simple cases would, I think, often

be of advantage even to students whose mathematical

attainments are sufficient to enable them to follow the

solution of the more general cases. For in these simple
cases the absence of analytical difficulties allows attention

to be more easily concentrated on the physical aspects

of the question, and thus gives the student a more vivid
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VI PREFACE

idea and a more manageable grasp of the subject than he

would be likely to attain if he merely regarded electrical

phenomena through a cloud of analytical symbols.
I have received many valuable suggestions and much

help in the preparation of this book from my friends

Mr H. F. Newall of Trinity College and Mr G. F. C. Searle

of Peterhouse who have been kind enough to read the

proofs. I have also to thank Mr W. Hayles of the

Cavendish Laboratory who has prepared many of the

illustrations.

J. J. THOMSON.

CAVENDISH LABORATORY,
CAMBRIDGE.

September 3, 1895.

PREFACE TO THE SECOND EDITION

IN this Edition I have through the kindness of several

correspondents been able to correct a considerable number

of misprints. I have also made a few verbal alterations

in the hope of making the argument clearer in places

where experience has shown that students found unusual

difficulties.

J. J. THOMSON.

CAVENDISH LABORATORY,
CAMBRIDGE.

November, 1897.



PREFACE TO THE THIRD EDITION

THE most important of the alterations made in this

Edition is a new chapter on the properties of moving
electrified bodies

; many of these properties may be proved

in a simple way, and the important part played by moving

charges in Modern Physics seems to warrant a discussion

of their properties in even an Elementary Treatise.

I have much pleasure in thanking Mr G. F. C. Searle

of Peterhouse for many valuable suggestions, and for his

kindness in reading the proof sheets of the first five

chapters; to Mr P. V. Bevan of Trinity College I am
indebted for similar assistance with the subsequent

chapters.

J. J. THOMSON.

CAVENDISH LABORATORY,
CAMBRIDGE.

October 4, 1904.

PREFACE TO THE FOURTH EDITION

IN this Edition a few additions and corrections have

been made.

J. J. THOMSON.

CAVENDISH LABORATORY,
CAMBRIDGE.

April 26, 1909.
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ELEMENTS OF THE MATHEMATICAL

THEOEY OF

ELECTEICITY AND MAGNETISM

CHAPTER I

GENERAL PRINCIPLES OF ELECTROSTATICS

1. Example of Electric Phenomena. Electri

fication. Electric Field. A stick of sealing-wax after

being rubbed with a well dried piece of flannel attracts

light bodies such as small pieces of paper or pith balls

covered with gold leaf. If such a ball be suspended by
a silk thread, it will be attracted towards the sealing-wax,

and, if the silk thread is long enough, the ball will move
towards the wax until it strikes against it. When it has

done this, however, it immediately flies away from the

wax
;
and the pith ball is now repelled from the wax

instead of being attracted towards it as it was before the

two had been in contact. The piece of flannel used to rub

the sealing-wax also exhibits similar attractions for the

pith balls, and these attractions are also changed into

repulsions after the balls have been in contact with the

flannel.

The effects we have described are called electric

phenomena, a title which as we shall see includes an

T. E. 1



2 GENERAL PRINCIPLES OF ELECTROSTATICS [CH. I

enormous number of effects of the most varied kinds. The

example we have selected, where electrical effects are pro
duced by rubbing two dissimilar bodies against each other,

is the oldest electrical experiment known to science.

The sealing-wax and the flannel are said to be electri

fied, or to be in a state of electrification, or to be charged
with electricity ;

and the region in which the attractions

and repulsions are observed is called the electric field.

2. Positive and Negative Electrification. If we

take two pith balls A and B, coated with gold leaf and

suspended by silk threads, and let them strike against the

stick of sealing-wax which has been rubbed with a piece

of flannel, they will be found to be repelled, not merely
from the sealing-wax but also from each other. To

observe this most conveniently remove the pith balls to

such a distance from the sealing-wax and the flannel

that the effects due to these are inappreciable. Now
take another pair of similar balls, G and D, and let them

strike against the flannel; G and D will be found to

be repelled from each other when they are placed close

together. Now take the ball A and place it near C;

A and G will be found to be attracted towards each other.

Thus, a ball which has touched the sealing-wax is repelled

from another ball which has been similarly treated, but is

attracted towards a ball which has been in contact with

the flannel. The electricity on the balls A and E is thus

of a kind different from that on the balls G and D,

for while the ball A is repelled from B it is attracted

towards D, while the ball C is attracted towards B and

repelled from D
;
thus when the ball A is attracted the

ball G is repelled and vice versd.
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The state of the ball which has touched the flannel

is said to be one of positive electrification, or the ball is

said to be positively electrified ;
the state of the ball which

has touched the sealing-wax is said to be one of negative

electrification, or the ball is said to be negatively electri

fied.

We may for the present regard
l

positive and nega
tive as conventional terms, which when applied to electric

phenomena denote nothing more than the two states of

electrification described above. As we proceed in the

subject, however, we shall see that the choice of these

terms is justified, since the properties of positive and

negative electrification are, over a wide range of pheno

mena, contrasted like the properties of the signs plus and

minus in Algebra.
The two balls A and B must be in similar states of

electrification since they have been similarly treated;

the two balls C and D will also for the same reason be

in similar states of electrification. Now A and B are

repelled from each other, as are also C and D
;
hence we

see that two bodies in similar states of electrification are

repelled from each other : while, since one of the pair A, B
is attracted towards either of the pair C, D, we see that

two bodies, one in a positive state of electrification, the other

in a negative state, are attracted towards each other.

In whatever way a state of electrification is produced
on a body, it is found to be one or other of the preceding

kinds
;

i.e. the ball A is either repelled from the electrified

body or attracted towards it. In the former case the

electrification is negative, in the latter positive.

A method, which is sometimes convenient, of detecting

whether the electrification of a body is positive or negative

12



4 GENERAL PRINCIPLES OF ELECTROSTATICS [CH. I

is to dust it with a mixture of powdered red lead and

yellow sulphur which has been well shaken
;
the friction of

the one powder against the other electrifies both powders,

the sulphur becoming negatively, the red lead positively

electrified. If now we dust a negatively electrified surface

with this mixture, the positively electrified red lead will

stick to the surface, while the negatively electrified sulphur

will be easily detached, so that if we blow on the powdered

surface the sulphur will come off while the red lead will

remain, and thus the surface will be coloured red : if a posi

tively electrified surface is treated in this way it will be

come yellow in consequence of the sulphur sticking to it.

3. Electrification by Induction. If the negatively

electrified stick of sealing-wax used in the preceding ex

periments is held near to, but not touching, one end of an

elongated piece of metal supported entirely on glass or

ebonite stems, and if the metal is dusted over with the

mixture of red lead and sulphur, it will be found, after

blowing off the loose powder, that the end of the metal

nearest to the sealing-wax is covered with the yellow

sulphur, while the end furthest away is covered with red

lead, showing that the end of the metal nearest the

negatively electrified stick of sealing-wax is positively,

the end remote from it negatively, electrified. In this

experiment the metal, which has neither been rubbed

nor been in contact with an electrified body, is said to

be electrified by induction; the electrification on the

metal is said to be induced by the electrification on the

stick of sealing-wax. The electrification on the part of

the metal nearest the wax is of the kind opposite to that

on the wax, while the electrification on the more remote
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parts of the metal is of the same kind as that on the

wax. The electrification on the metal disappears as soon

as the stick of sealing-wax is removed.

4. Electroscope. An instrument by which the

presence of electrification can be detected is called an

electroscope. All electroscopes give some indication of the

amount of the electrification, but if accurate measure

ments are required a special form of electroscope or a more

elaborate instrument, called an electrometer (Art. 60), is

generally used.

A simple form of electroscope, called the gold leaf

electroscope, is represented in Fig. 1. It consists of a

Fig. 1.

glass vessel fitting into a stand; a metal rod, with a

disc of metal at the top and terminating below in two

strips of gold leaf, passes through the neck of the vessel

the rod passing through a glass tube covered inside and

out with sealing-wax or shellac varnish and fitting tightly

into a plug in the mouth of the vessel.
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When the gold leaves are electrified they are repelled
from each other and diverge, the amount of the divergence

giving some indication of the degree of electrification. It

is desirable to protect the gold leaves from the influence

of electrified bodies which may happen to be near the

electroscope, and from any electrification there may be on

the surface of the glass. To do this we take advantage of

the property of electrical action (proved in Art. 33), that a

closed metallic vessel completely protects bodies inside it

from the electrical action of bodies outside. Thus if the

gold leaves could be completely surrounded by a metal

vessel, they would be perfectly shielded from extraneous

electrical influence : this however is not practicable, as

the metal case would hide the gold leaves from obser

vation. In practice, sufficient protection is afforded by
a cylinder of metal gauze connected to earth, such as is

shown in Fig. 1, care being taken that the top of the

gauze cylinder reaches above the gold leaves.

If the disc of the electroscope is touched by an electri

fied body, part of the electrification will go to the gold

leaves; these will be electrified in the same way, and

therefore will be repelled from each other. In this case

the electrification on the gold leaves is of the same sign

as that on the electrified body. When the electrified

body does not touch the disc but is held near to it, the

metal parts of the electroscope will be electrified by induc

tion
;
the disc, being the part nearest the electrified body,

will have electrification opposite to that of the body, while

the gold leaves, being the parts furthest from the elec

trified body, will have the same kind of electrification

as the body, and will repel each other. This repulsion

will cease as soon as the electrified body is removed.
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If, when the electrified body is near the electroscope,

the disc is connected to the ground by a metal wire, then

the metal of the electroscope, the wire and the ground,

will correspond to the elongated piece of metal in the

experiment described in Art. 3. Thus, supposing the body

to be negatively electrified, the positive electrification will

be on the disc, while the negative will go to the most

remote part of the system consisting of the metal of the

electroscope, the wire and the ground, i.e. the negative

electrification will go to the ground and the gold leaves will

be free from electrification. They cease then to repel each

other and remain closed. If the wire is removed from

the disc while the electrified body remains in the neigh

bourhood, the gold leaves will remain closed as long as the

electrified body remains stationary, but if this is removed

far away from the electroscope the gold leaves diverge.

The positive electrification, which, when the electrified

body was close to the electroscope, concentrated itself on

the disc so as to be as near the electrified body as possible,

when this body is removed spreads to the gold leaves and

causes them to diverge.

If, when the electroscope is charged, we wish to deter

mine whether the charge is positive or negative, all we

have to do is to bring near to the disc of the electroscope

a stick of sealing-wax, which has been negatively electrified

by friction with flannel
;
the proximity of the negatively

electrified wax, in consequence of the induction (Art. 3),

increases the negative electrification on the gold leaves.

Hence, if the presence of the sealing-wax increases the

divergence of the leaves, the original electrification was

negative, but if it diminishes the divergence the original

electrification was positive.
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5. Charge on an electrified body. Definition

of equal charges. Place on the disc of the electro

scope a metal vessel as nearly closed as possible, the

opening being only just wide enough to allow electrified

Fig. 2.

bodies to be placed inside. Then introduce into this vessel

a charged body suspended by a silk thread, and let it sink

well below the opening. The gold leaves of the electro

scope will diverge, since they will be electrified by in

duction (see Art. 3), but the divergence will remain the

same however the body is moved about in the vessel. If

two or more electrified bodies are placed in the vessel the

divergence of the gold leaves is the same however the

electrified bodies are moved about relatively to each other

or to the vessel. The divergence of the gold leaves thus

measures some property of the electrified body which re

mains constant however the body is moved about within

the vessel. This property is called the charge on the body,
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and two bodies, A and B, have equal charges when the

divergence of the gold leaves is the same when A is inside

the vessel placed on the disc of the electroscope and B far

away, as when B is inside and A far away. A and B are

each supposed to be suspended by dry silk threads, for such

threads do not allow the electricity to escape along them
;

see Art. 6. Again, the charge on a body C is twice that

on A if, when C is introduced into the vessel, it produces

the same effect on the electroscope as that produced by
A and B when introduced together. B is a body whose

charge has been proved equal to that on A in the way

just described. Proceeding in this way we can test what

multiple the charge on any given electrified body is of

the charge on another body, so that if we take the latter

charge as the unit charge we can express any charge in

terms of this unit.

Two bodies have equal and opposite charges if when

introduced simultaneously into the metal vessel they pro

duce no effect on the divergence of the gold leaves.

6. Insulators and Conductors. Introduce into

the vessel described in the preceding experiment an elec

trified pith ball coated with gold leaf and suspended by a

dry silk thread : this will cause the gold leaves to diverge.

If now the electrified pith ball is touched with a stick of

sealing-wax, an ebonite rod or a dry piece of glass tube, no

effect is produced on the electroscope, the divergence of

the gold leaves is the same after the pith ball has been

touched as it was before. If, however, the pith ball is

touched with a metal wire held in the hand or by the

hand itself, the gold leaves of the electroscope immediately
fall together and remain closed after the wire has been
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withdrawn from the ball. Thus the pith ball loses its

charge when touched with a metal wire, though not when
touched with a piece of sealing-wax. We may thus divide

bodies into two classes, (1) those which, when placed in

contact with a charged body, can discharge the electrifica

tion, these are called conductors
; (2) those which can not

discharge the electrification of a charged body with which

they are in contact, these are called insulators. The

metals, the human body, solutions of salts or acids are

examples of conductors, while the air, dry silk threads,

dry glass, ebonite, sulphur, paraffin wax, sealing-wax,
shellac are examples of insulators.

When a body is entirely surrounded by insulators it is

said to be insulated.

7. When electrification is excited by friction or by

any other process, equal charges of positive and negative

electricity are always produced. To show this, when the

electrification is excited by friction, take a piece of sealing-

wax and electrify it by friction with a piece of flannel
;

then, though both the wax and the flannel are charged
with electricity, they will, if introduced together into the

metal vessel on the disc of the electroscope (Art. 5), pro
duce no effect on the electroscope, thus showing that the

charge of negative electricity on the wax is equal to the

charge of positive electricity on the flannel. This can

be shown in a more striking way by working a frictional

electrical machine, insulated and placed inside a large

insulated metal vessel in metallic connexion with the

disc of an electroscope ; then, although the most vigorous
electrical effects can be observed near the machine inside

the vessel, the leaves of the electroscope remain unaffected.
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showing that the total charge inside the vessel connected

with the disc has not been altered though the machine

has been in action.

To show that, when a body is electrified by induction,

equal charges of positive and negative electrification are

produced, take an electrified body suspended by a silk

thread, lower it into the metal vessel on the top of the

electroscope and observe the divergence of the gold leaves ;

then take a piece of metal suspended by a silk thread

and lower it into the vessel near to but not in con

tact with the electrified body ;
no alteration in the diver

gence of the gold leaves will take place, showing that the

total charge on the piece of metal introduced into the

vessel is zero. This piece of metal is, however, electrified

by induction, so that its charge of positive electrification

excited by this process is equal to its charge of negative

electrification.

Again, when two charged bodies are connected by a

conductor, the sum of the charges on the bodies is unaltered,

i.e. the amount of positive electrification gained by one is

equal to the amount of positive electrification lost by the

other. To show this, take two electrified metallic bodies,

A and B, suspended from silk threads, and introduce A into

the metal vessel, noting the divergence of the gold leaves
;

then introduce B into the vessel and observe the diver

gence when the two bodies are in the vessel together : now

take a piece of wire wound round one end of a dry glass

rod and, holding the rod by the other end, place the wire

so that it is in contact with A and B simultaneously ;
no

alteration in the divergence of the gold leaves will be pro

duced by this process, showing that the sum of the charges

on A and B is unaltered. Take away the wire and remove
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B from the vessel, and now again observe the divergence

of the gold leaves
;

it will not (except in very special cases)

be the same as it was before B was put into the vessel,

thus proving that, though a transference of electrification

between A and B has taken place, the sum of the charges
on A and B has not changed.

8. Force between bodies charged with elec

tricity. When two charged bodies are at a distance r

apart, r being very large compared with the greatest linear

dimension of either of the bodies, the repulsion between

them is proportional to the product of their charges and

inversely proportional to the square of the distance between

them.

This law was first proved by Coulomb by direct mea

surement of the force between electrified bodies; there

are, however, other methods by which the law can be

much more rigorously established
;
as these can be most

conveniently considered when we have investigated the

properties of this law of force, we shall begin by assuming

the truth of this law and proceed to investigate some of

its consequences.

9. Unit charge. We have seen in Art. 5 how the

charges on electrified bodies can be compared with each

other; in order, however, to express the numerical value

of any charge it is necessary to have a definite unit of

charge with which the charge can be compared.

The unit charge of electricity is defined to be such

that when two bodies each have this charge, and are

separated by unit distance in air they are repelled from

each other with unit force. The dimensions of the charged



9] GENERAL PRINCIPLES OF ELECTROSTATICS 13

bodies are assumed to be very small compared with the

unit distance.

It follows from this definition and the law of force

previously enunciated that the repulsion between two

small bodies with charges e and e placed in air at a

distance r apart is equal to

The expression ee/r* will express the force between

two charged bodies, whatever the signs of their electrifi

cations, if we agree that, when the expression is positive,

it indicates that the force between the bodies is a re

pulsion, and that, when this expression is negative, it

indicates that the force is an attraction. When the

charges on the bodies are of the same kind ee is positive,

the force is then repulsive; when the charges are of

opposite sign ee is negative, the force between the bodies

is then attractive.

Electric Intensity. The electric intensity at any

point is the force acting on a small body charged with

unit positive charge when placed at the point, the electri

fication of the rest of the system being supposed to be

undisturbed by the presence of this unit charge.

Total Normal Electric Induction over a Surface.

Imagine a surface drawn anywhere in the electric field,

and let this surface be completely divided up as in the

figure, into a network of meshes, each mesh being so small

that the electric intensity at any point in a mesh may be

regarded as constant over the mesh. Take a point in

each of these meshes and find the component of the

electric intensity at that point in the direction of the
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normal drawn from the outside of the surface at that

point, and multiply this normal component by the area

Fig. 3.

of the mesh
;
the sum of these products for all the meshes

on the surface is denned to be the total normal electric

induction over the surface. This is algebraically expressed

by the relation

where / is the total normal electric induction, N the com

ponent of the electric intensity resolved along the normal

drawn from the outside of the surface at a point in a

mesh, and w is the area of the mesh : the symbol S denotes

that the sum of the products Nco is to be taken for all the

meshes drawn on the surface.

With the notation of the integral calculus

I-JffdS,

where dS is an element of the surface, the integration

extending all over the surface.

10. Gauss s Theorem. We can prove all the pro

positions about the forces between electrified bodies, which

we shall require in the following discussion of Electro

statics, by the aid of a theorem due to Gauss. This

theorem may be stated thus: the total normal electric

induction over any closed surface drawn in the electric
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field is equal to 4?r times the total charge of electricity

inside the closed surface.

We shall first prove this theorem when the electric

field is that due to a single charged body.
Let (Fig. 4) be the charged body, whose dimensions

are supposed to be so small, compared with its distances

Fig. 4.

from the points at which the electric intensity is measured,
that it may be regarded as a point. Let e be the charge
on this body.

Let PQRS be one of the small meshes drawn on the

surface, the area being so small that PQRS may be regarded
as plane : join to P, Q, R, S, and let a plane through
R at right angles to OR cut OS, OQ, OP respectively in

u,v,w: with centre describe a sphere of unit radius, and

let the lines OP, OQ, OR, OS cut the surface of this sphere
in the points p, q, r, s respectively. The area PQRS is

assumed to be so small that the electric intensity may be
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i regarded as constant over it
;
we may take as the value

of the electric intensity e/OR
2
,
which is the value it

I
has at R.

The contribution of this mesh to the total normal

induction is, by definition, equal to

area PQRS x JV,

where N is the normal component of the electric intensity

at.R

where 6 is the angle between the outward normal to the

surface at R, and OR the direction of the electric intensity.

The normal to the surface is at right angles to PQRS,
and OR is at right angles to the area Ruvw, and hence

the angle between the normal to the surface and OR is

equal to the angles between the planes PQRS and Ruvw.

Hence

area PQRS x cos 6 the area of the projection of the

area PQRS on the plane Ruvw

= area Ruvw..................... (1).

Consider the figures Ruwv and rspq. Ru is parallel

to rs since they are in the same plane and both at right

angles to OR, and for similar reasons Rv is parallel to rqt

vw to pq, uw to sp. The figure Ruwv is thus similar

to rspq : and the areas of similar figures are proportional

to the squares of their homologous sides. Hence

area Ruwv : area rspq
= Ru2

: rs2
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,
, area Ruwv area pars

80 that -W -$-
= area pqrs ............... (2),

since Or is equal to unity by construction.

The contribution of the mesh PQRS to the total

normal induction is equal to

p
area PQRS x - x cos 9

area Ruvw ,
,

. ,., .

bJ equation (1)

= e x area _pgrs by equation (2).

Thus the contribution of the mesh to the total normal

induction is equal to e times the area cut off a sphere of

unit radius with its centre at by a cone having the

mesh for a base and its vertex at 0.

By dividing up any finite portion of the surface into

meshes and taking the sum of the contributions of each

mesh, we see that the total normal induction over the

surface is equal to e times the area cut off a sphere of

unit radius with its centre at by a cone having the

boundary of the surface as base and its vertex at 0.

Let us now apply the results we have obtained to the

case of a closed surface.

First take the case where is inside the surface.

The total normal induction over the surface is equal to

e times the sum of the areas cut off the unit sphere by
cones with their bases on the meshes and their vertices

at 0, and since the meshes completely fill up the closed

surface the sum of the areas cut off the unit sphere by
the cones will be the area of the sphere, which is equal

T. E. 2
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to 4?r, since its radius is unity. Thus the total normal

induction over the closed surface is 4?r0.

Next consider the case when is outside the closed

surface.

Draw a cone with its vertex at cutting the closed

surface in the areas PQRS, P QR S . Then the magni

tude of the total normal induction over the area PQRS

Fig. 5.

is equal to that over the area P Q R S
,
since they are

each equal to e times the area cut off by this cone from a

sphere whose radius is unity and centre at 0. But over

the surface PQRS the electric intensity points along the

outward drawn normal so that the sign of the component

resolved along the outward drawn normal is positive ;

while over the surface P Q R S the electric intensity is in

the direction of the inward drawn normal so that the sign

of its component along the outward drawn normal is

negative. Thus the total normal induction over PQRS is

of opposite sign to that over P Q R S
,
and since they are

equal in magnitude they will annul each other as far as

the total normal induction is concerned. Since the whole

of the closed surface can be divided up in this way by

cones with their vertices at 0, and since the two sections of

each of these cones neutralize each other, the total normal

induction over the closed surface will be zero.
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We thus see that when the electric field is due to a

small body with a charge e, the total normal induction

over any closed surface enclosing the charge is 4t7re, while

it is equal to zero over any closed surface not enclosing

the charge. We have therefore proved Gauss s theorem

when the field is due to a single small electrified body.

We can easily extend it to the general case when the

field is due to any distribution of electrification. For we

may regard this as arising from a number of small bodies

having charges el , e^, es ... &c. Let N be the component

along the outward drawn normal to the surface of the

resultant electric intensity, N! the component in the same

direction due to el} N2 that due to e2 and so on
;
then

If o&amp;gt; is the area of the mesh at which the normal

electric intensity is N, the total normal induction over the

surface is

that is, the total normal electric induction over the surface

due to the electrical system is equal to the sum of the

normal inductions due to the small charged bodies of which

the system is supposed to be built up. But we have just

seen that the total normal induction over a closed surface

due to any one of these is equal to 4?r times its charge if

the body is inside the surface, and is zero if the body is

outside the surface. Hence the sum of the total normal

inductions due to the several charged bodies, i.e. that due

to the actual field, is 4?r times the charge of electricity

inside the closed surface over which the normal induction

is taken.

22
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11. Electric intensity at a point outside a

uniformly charged sphere. Let us now apply the

theorem to find the electric intensity at any point in

the region outside a sphere uniformly charged with elec

tricity.

Let be the centre of the sphere, P a point outside

the sphere at which the electric intensity is required.

Through P draw a spherical surface with its centre

at 0. Let R be the electric intensity at P. Since

the charged sphere is uniformly electrified, the direction

of the intensity will be OP, and it will have the same

value R at any point on the spherical surface through P.

Hence since at each point on this surface the normal

electric intensity is equal to R, the total normal induc

tion over the sphere through P is equal to R x (surface of

the sphere), i.e. R x 4?r . OP2
. By Gauss s theorem this is

equal to 4?r times the charge enclosed by the spherical

surface, that is to 4?r times the charge on the inner

sphere. If e is this charge we have therefore

R x 4-TrOP2 - 47re,

7?
e

=
OP*

Hence the intensity at a point outside a uniformly
electrified sphere is the same as if the charge on the

sphere were concentrated at the centre.

12. Electric intensity at a point inside a uni

formly electrified spherical shell. Let Q be a point
inside the shell, R the electric intensity at that point.

Through Q draw a spherical surface, centre 0; then as

before, the normal electric intensity will be constant all
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over this surface. The total normal induction over this

sphere is therefore R x area of sphere, i.e.

R x 4vr . OQ2
.

By Gauss s theorem this is equal to 4?r times the

charge of electricity inside the spherical surface passing

through Q ;
hence as there is no charge inside this surface,

.

Hence the electric intensity vanishes at any point inside

a uniformly electrified spherical shell.

13. Infinite Cylinder uniformly electrified. We
shall next consider the case of an infinitely long circular

cylinder uniformly electrified. Let P be a point out

side the cylinder at which we wish to find the electric

intensity. Through P describe a circular cylinder coaxial

with the electrified one, draw two planes at right

angles to the axis of the cylinder at unit distance

apart, and consider the total normal induction over the

closed surface formed by the curved surface of the

cylinder through P and the two plane ends. Since the

electrified cylinder is infinitely long and is symmetrical

about its axis, the electric intensity at all points at the

same distance from the axis of the cylinder will be the

same, and the electric intensity at P will by symmetry
be along a radius drawn through P at right angles to the

axis of the cylinder.

Thus the electric intensity at any point on either plane

end of the cylinder will be in the plane of that end,

and will therefore have no component at right angles

to it; the plane ends will therefore contribute nothing
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to the total normal induction over the surface. At each

point of the cylindrical surface the electric intensity is

at right angles to the curved surface and is equal to R.

The total normal induction over the surface is therefore

R x (area of the curved surface of the cylinder).

But since the length of the curved surface is unity
its area is equal to 2-Trr, where r is the distance of P
from the axis of the cylinder. If E is the charge per
unit length on the electrified cylinder, then by Gauss s

theorem the total normal induction over the surface is

equal to 4urE. The total normal induction is however

equal to R x 2?rr, hence

R X

*-
r

Thus, in the case of the cylinder, the electric intensity

varies inversely as the distance from the axis of the

cylinder.

We can prove in the same way as for the uniformly elec

trified spherical shell that the electric intensity vanishes

at any point inside a uniformly electrified cylindrical

shell.

14. Uniformly electrified infinite plane. In this

case we see by symmetry (1) that the electric intensity

will be normal to the plane, (2) that the electric intensity

will be constant at all points in a plane parallel to the

electrified one. Draw a cylinder PQRS, Fig. 6, the

axis of the cylinder being at right angles to the plane,

the ends of the cylinder being planes at right angles to
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the axis. Since this cylinder encloses no electrification the

total normal induction over its surface is zero by Gauss s

Fig. 6.

theorem. But since the electric intensity is parallel to

the axis of the cylinder the normal intensity vanishes

over the curved surface of the cylinder. Let F be the

electric intensity at a point on the face PQ this is

along the outward drawn normal if the electrification

on the plane is positive F the electric intensity at a

point on the face RS, o&amp;gt; the area of either of the faces

PQ or RS, then the total normal induction over the

surface PQRS is equal to

Fu-F a)
,

and since this vanishes by Gauss s theorem

F=F
,

or the electric intensity at any point, due to the infinite

uniformly charged plane, is independent of the distance

of the point from the plane. It is, therefore, constant in

magnitude at all points in the field, acting upwards in the

region above the plane, downwards in the region below it.

To find the magnitude of the intensity at P. Draw

through P (Fig. 7) a line at right angles to the plane and

prolong it to Q, so that Q is as far below the plane as P
is above it. With PQ as axis describe a right circular

cylinder bounded by planes through P and Q parallel to

the electrified plane. Consider now the total normal

induction over the surface of this cylinder. The electric
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intensity is everywhere parallel to the axis of the cylinder,
and has, therefore, no normal component over the curved

Q

Fig. 7.

surface of the cylinder, the total normal induction over

the surface thus arises entirely from the flat ends. Let R
be the magnitude of the electric intensity at any point
in the field, CD the area of either of the flat ends of the

cylindrical surface. Then the part of the total normal

induction over the surface PQRS due to the flat end

through P is Rw. The part due to the flat end through

Q will also be equal to this and will be of the same sign,

since the intensity at Q is along the outward drawn

normal. Thus since the normal intensity vanishes over

the curved surface of PQRS the total normal induction

over the closed surface is 2Ra). If a is the quantity of

electricity per unit area of the plane the charge of elec

tricity inside the closed surface is aco
;
hence by Gauss s

theorem

SRa) = 4:7T(7a),

or R = 27TO-.

By comparing this with the results given in Arts. 11 and

13 the student may easily prove that the intensity due

to the charged plane surface is half that just outside a

charged spherical or cylindrical surface having the same

charge of electricity per unit area.
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15. Lines of Force. A line of force is a curve

drawn in the electric field, such that its tangent at any

point is parallel to the electric intensity at that point.

16. Electric Potential. This is defined as follows:

the electric potential at a point P exceeds that at Q by
the work done by the electric field on a body charged with

unit of electricity when the latter passes from P to Q. The

path by which the unit of electricity travels from P to Q
is immaterial, as the work done will be the same whatever

the nature of the path. To prove this suppose that the

work done on the unit charge when it travels along the

path PAQ is greater than when it travels along the path

Fig. 8.

PBQ. Since the work done by the field on the unit of

electricity when it goes from P to Q along the path PBQ
is equal to the work which must be done by applied

mechanical forces to bring the unit from QtoP along QBP,
we see that if we make the unit travel round the closed

curve PAQBP the work done by the field on the unit

when it travels along PAQ is greater than the work

spent by the applied forces in bringing it back from

Q to P along the path QBP. Thus though the unit of

electricity is back at the point from which it started,

and if the field is entirely due to charges of electricity,

everything is the same as when it started, we have, if our
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hypothesis is correct, gained work. This is not in ac

cordance with the principle of the Conservation of Energy,
and we therefore conclude that the hypothesis on which

it is founded, i.e. that the work done on unit electric

charge when it travels from P to Q depends on the path

by which it travels, is incorrect.

Since electric phenomena only depend upon differences

of potential it is immaterial what point we take as the

one at which we call the potential zero. In mathematical

investigations it simplifies the expression for the potential

to assume as the point of zero potential one at an infinite

distance from all the electrified bodies.

If P and Q are two points so near together that the

electric intensity may be regarded as constant over the

distance PQ, then the work done by the field on unit

charge when it travels from P to Q is F x PQ, if F is the

electric intensity resolved in the direction PQ. If VP ,

VQ denote the potentials at P and Q respectively, then

since by definition VP VQ is the work done by the field

on unit charge when it goes from P to Q we have

VP -VQ =FxPQ,

hence

thus the electric intensity in any direction is equal to the

rate of diminution of the potential in that direction.

Hence if we draw a surface such that the potential is

constant over the surface (a surface of this kind is called

an equipotential surface) the electric intensity at any

point on the surface must be along the normal. For since

the potential does not vary as we move along the surface,
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we see by equation (1) that the component of the electric

intensity tangential to the surface vanishes.

Conversely a surface over which the tangential com

ponent of the intensity is everywhere zero will be an

equipotential surface, for since there is no tangential in

tensity no work is done when the unit charge moves along
the surface from one point to another

;
that is, there is no

difference of potential between points on the surface.

The surface of a conductor placed in an electric field

must be an equipotential surface when the field is in

equilibrium, for there can be no tangential electric in

tensity, otherwise the electricity on the surface would

move along the surface and there could not be equili

brium. It is this fact that makes the conception of the

potential so important in electrostatics, for the surfaces of

all bodies made of metal are equipotential surfaces.

17. Potential due to a uniformly charged sphere.

The potential at P is the work done by the electric field

when unit charge is taken from P to an infinite distance.

Let us suppose that the unit charge travels from P to an

infinite distance along a straight line passing through the

centre of the sphere. Let QRST be a series of points

ttt

Fig. 9.

very near together along this line. If e is the charge on

the sphere, its centre, the electric intensity at Q is e/OQ
2
,

while that at R is e/OR
2

;
as Q and R are very near together

these quantities are very nearly equal, and we may take
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the average electric intensity between Q and R as equal

to e/OQ . OR, the geometric mean of the intensities at Q
and R. Hence the work done by the field as the unit

charge goes from Q to -R is equal to

~OQ OR

Similarly the work done by the field as the charge goes

from R to 8 is

e _e_
OR OS

as it goes from S to T
e

and so on. The work done by the field as the charge goes

from Q to T is the sum of these expressions, and this

sum is equal to

e _e_

OQ~W
and we see, by dividing up the distance between the points

into a number of small intervals and repeating the above

process that this expression will be true when Q and T are

a finite distance apart, and that it always represents the

work done by the field on the unit charge as long as

Q and T are two points on a radius of the sphere. The

potential at P is the work done by the field when the
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unit charge goes from P to an infinite distance, and is

therefore by the preceding result equal to

This is also evidently the potential at P of a charge e

placed on a small body enclosing if the dimensions of

the body over which the charge is spread are infinitesimal

in comparison with OP.

18. The electric intensity vanishes at any
point inside a closed equipotential surface which
does not enclose any electric charge. We shall first

prove that the potential is constant throughout the

volume enclosed by the surface; then it will follow by

equation (1), Art. 16, that the electric intensity vanishes

throughout this volume.

For if the potential is not constant it will be possible

to draw a series of equipotential surfaces inside the given

one; let us consider the equipotential surface for which

the potential is very nearly, but not quite, the same as for

the given surface. As the difference of potential between

this and the outer surface is very small the two surfaces

will be close together, and they cannot cut each other, for

if they did, any point in their intersection would have two

different potentials.

Suppose for a moment that the potential at the inner

surface is greater than that at the outer.

Let P be a point on the inner surface, Q the point
where the normal at P drawn outwards to the inner

surface cuts the outer surface. Then, since the electric

intensity from P to Q is equal to (VP VQ)/PQ and since

by hypothesis VP VQ is positive, we see that the normal
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electric intensity over the second surface is everywhere in

the direction of the outward drawn normal to the surface,

and therefore that the total normal electric induction over

the surface will be positive. Hence there must be a positive

charge inside the surface, as the total normal induction

over the surface is, by Gauss s theorem, proportional to the

charge enclosed by the surface. Hence, as by hypothesis
there is no charge inside the surface, we see that the

potential over the inner surface cannot be greater than

that at the outer surface. If the potential at the inner

surface were less than that at the outer, then the normal

electric intensity would be everywhere in the direction of

the inward normal, and, as before, we can show by Gauss s

theorem that this would require a negative charge inside

the surface. Hence, as there is no charge either positive

or negative the potential at the inner surface can neither

be greater nor less than at the outer surface, and must

therefore be equal to it. In this way we see that the

potential at all points inside the surface must have the

same value as at the surface, and since the potential is con

stant the electric intensity will vanish inside the surface.

19. It follows from this that if we have a closed

hollow conductor there will be no electrification on its

inner surface unless there are electrified bodies inside

the hollow. Let Fig. 10 represent the conductor with

a cavity inside it. To prove that there is no electrifica

tion at P a point on the inner surface, take any closed

surface enclosing a small portion a of the inner surface

near P; by Gauss s theorem the charge on a is pro

portional to the total normal electric induction over the

surface surrounding a. The electric intensity is however

zero everywhere over this surface. It is zero over the part
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of the closed surface which is in the material of the shell

because this part of the surface is in a conductor, and

when there is equilibrium the electric intensity is zero

Fig. 10.

at any point in a conductor. The electric intensity is zero

over the part of the closed surface which is inside the cavity

because the surface of the cavity being the surface of a

conductor is an equipotential surface, and as we have just

seen the electric intensity inside such a surface is zero

unless it encloses electric charges. Thus since the electric

intensity vanishes at each point on the closed surface

surrounding a, the charge at a must vanish
;
in this way

we can see that there is no electrification at any point

on the inner cavity. The electrification is all on the

outer surface of the conductor.

20. Cavendish Experiment. The result proved in

Art. 18 that when the force between two charged bodies

varies inversely as the square of the distance between

them the electric intensity vanishes throughout the in

terior of an electrified conductor enclosing no charge,

leads to the most rigorous experimental proof of the

truth of this law.
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Let us for simplicity confine our attention to the

case when the electrified conductor is a sphere posi

tively electrified.

Fig. 11.

Consider the state of things at a point P inside a

sphere whose centre is 0, Fig. 11 : through P draw a

plane at right angles to OP. The electrification on the

portion of the sphere above this plane produces an electric

intensity in the direction PO, while the electrification on

the portion of the sphere below the plane produces an

electric intensity in the direction OP. When the law of

force is that of the inverse square these two intensities

balance each other, the greater distance from P of the

electrification below the plane being compensated by the

larger electrified area.

Now suppose that intensity varies as r~p
,
then if p is

greater than 2 the intensity diminishes more quickly as

the distance increases than when the law of force is that of

the inverse square, so that if the larger area below the plane

was just sufficient to compensate for the greater distance

when the law of force was that of the inverse square it will

not be sufficient to do so when p is greater than 2
;
thus

the electrification on the portion of the sphere above the

plane will gain the upper hand and the resultant electric

intensity will be in the direction PO. Again, if p is less
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than 2 the intensity will not diminish so rapidly when

the distance increases, as it does when p is equal to 2,

so that, if the greater area below the plane is sufficient

to compensate for the increased distance when the law of

force is that of the inverse square, it will be more than

sufficient to do so when p is less than 2
;
in this case the

electrification below the plane will gain the upper hand, and

the electric intensity at P will be in the direction OP.

Now suppose we have two concentric metal spheres

connected by a wire, and that we electrify the outer sphere

positively, then if p = 2 there will be no electric intensity

inside the outer sphere, and therefore no movement of

electricity to the inner sphere which will therefore remain

unelectrified. Ifp is greater than 2 we have seen that the

electric intensity due to the positive charge on the outer

sphere will be towards the centre of the sphere, i.e. the

force on a negative charge will be from the inner sphere
towards the outer. Negative electricity will therefore flow

from the inner sphere, which will be left with a positive

charge.

If however p is less than 2, the electric intensity due

to the charge on the outer sphere will be from the centre

of the sphere, and the direction of the force acting on a

positive charge will be from the inner sphere to the outer.

Positive electricity will therefore flow from the inner

sphere to the outer, so that the inner sphere will be left

with a negative charge.

Thus, according as p is greater than, equal to or less

than 2, the charge on the inner sphere will be positive,

zero or negative. By testing the state of electrification on

the inner sphere we can therefore test the law of force.

This is what was done by Cavendish in an experiment

T. E. 3

V
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made by him, and which goes by his name*. The following
is a description of a slight modification, due to Maxwell,
of Cavendish s original experiment.

The apparatus for the experiment is represented in

Fig. 12.

B

Fig. 12.

The outer sphere A, made up of two tightly fitting

hemispheres, is fixed on an insulating stand, and the

inner sphere is fixed concentrically with the outer one by
means of an ebonite ring. Connection between the inner

and outer spheres is made by a wire fastened to a small

metal disc B which acts as a lid to a small hole in the

outer sphere. When the wire and the disc are lifted

up by a silk thread the electrical condition of the inner

sphere can be tested by pushing an insulated wire con

nected to an electroscope (or preferably to a quadrant

electrometer, see Art. 60) through the hole until it is in

* Mr Woodward (Nature, March 4, 1909) has pointed out that

Priestley (History of Electricity, 2nd Edition, 1769, p. 711) anticipated

Cavendish in this proof of the law of the inverse square.
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contact with the inner sphere. The experiment is made
as follows : when the two spheres are in connection a

charge of electricity is communicated to the outer sphere,

fche connection between the spheres is then broken by

lifting the disc by means of the silk thread; the outer

sphere is then discharged and kept connected to earth
;

the testing wire is then introduced through the hole and

put into contact with the inner sphere. Not the slightest
effect on the electroscope can be detected, showing that

if there is any charge on the inner sphere it is too small

to affect the electroscope. To determine the sensitiveness

of the electroscope or electrometer, a small brass ball

suspended by a silk thread, is placed at a considerable

distance from the two spheres. After the outer sphere is

charged (suppose positively) the brass ball is touched and

then left insulated
;
in this way the ball gets by induction

a negative charge amounting to a calculable fraction, say a,

of the original charge communicated to the outer sphere.
Now when the outer sphere is connected to earth this

negative charge on the ball will induce a positive charge
on the outer sphere which is a calculable fraction, say ft, of

the charge on the ball. If we disconnect the outer sphere
from the earth and discharge the ball this positive charge
on the outer sphere will be free to go to the electroscope
if this is connected to the sphere. When the ball is not

too far away from the sphere this charge is sufficient to

deflect the electroscope, i.e. a fraction aft of the original

charge on the sphere is sufficient to deflect the electro

scope, showing that the charge on the inner sphere in

the Cavendish experiment could not have amounted to

aft of the charge communicated to the outer sphere*. If

* Since the electroscope is connected with the inner sphere in the
first part of the Cavendish experiment and with the outer sphere in the

32
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the force between two charges is assumed to vary as r~p
,
we

can calculate the charge on the inner sphere and express

it in terms of p, and then, knowing from the Cavendish

experiment that this charge is less than a/3 of the original

charge, we can calculate that p must differ from 2 by less

than a certain quantity. In this way it has been shown

that p differs from 2 by less than 1/20,000.

21. Definition of surface density. When the elec

trification is confined to the surface of a body, the charge

per unit area is called the surface density of the electricity.

22. Coulomb s Law. The electric intensity at a

point P close to the surface of a conductor surrounded

by air is at right angles to the surface and is equal to 4?ra-

where or is the surface density of the electrification.

The first part of this law follows from Art. 16, since

the surface of a conductor is an equipotential surface.

Fig. 13.

To prove the second part take on the surface a small area

around P (Fig. 13) and through the boundary of this

second part, the capacity of the electroscope and its connections will not

be the same in the two cases ;
in estimating the sensitiveness of the

method a correction must be made on this account, this is easily

done by the method of Art. 61.
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area draw the cylinder whose generating lines are parallel

to the normal at P. Let this cylinder be truncated at T
and S by planes parallel to the tangent plane at P.

The total normal electric induction over this cylinder is

Rw, where R is the normal electric intensity and co the area

of the cross section. For Ra&amp;gt; is the part of the total normal

induction due to the end T of the cylinder, and this is the

only part of the surface of the cylinder which contributes

anything to the total normal induction. For the intensity

along that part of the curved surface of the cylinder which

is in air is tangential to the surface and therefore has

no component along the normal, while since the electric

intensity vanishes inside the conductor the part of the

surface which is inside the conductor will not contribute

anything to the total induction. If cr is the surface density

of the electricity at P the charge inside the cylinder is

coo-
;
hence by Gauss s theorem

Ra) = 4&amp;lt;7ra)(r

or R = 4-7TO-.

The result expressed by this equation is known as

Coulomb s Law. It requires modification when the con

ductor is not surrounded by air, but by some other in

sulator. See Art. 71.

23. Energy of an electrified system. If a number

of conductors are placed in an electric field, and if El is

the charge on the first conductor, Vi its potential, E2 the

charge on the second conductor, V2 its potential, and so

on, then we can show that the potential energy of this

system of conductors is equal to

To prove this we notice that the potentials of the
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conductors will depend upon the charges of electricity on

the conductors, in such a way that if the charge on every

part of the system is increased m times, the potential at

every point in the system will also be increased m times.

To find the energy of the system of conductors we

shall suppose that each conductor is originally uncharged,
and at potential zero, and that we bring a charge E^n
from an infinite distance to the first conductor, a charge
Ez/n from an infinite distance to the second conductor,

a charge Es/n to the third conductor, and so on. After

this has been done, the potential of the first conductor

will be VJn, that of the second Vz/n, and so on. Let

us call this the first stage of the operation. Then

bring from an infinite distance charges E-Jn to the first

conductor, Ez/n to the second, and so on. When this

has been done the potentials of the conductors will be

2Fi/n, 2F2/n, .... Call this the second stage of the

operation. Repeat this process until the first conductor

has the charge El and the potential F1? the second con

ductor the charge E2 and the potential F2 ,
and so on.

Then in the first stage the potential of the first con

ductor is zero at the beginning, and V-i/n at the end
;
the

work done in bringing up to it the charge EJn is therefore

77* V
greater than but less than .

; similarly the work

spent in bringing up the charge Ez/n to the second con-

E V
ductor is greater than zero but less than . .

n n

If !$! be the work spent in the first stage of the

operations in charging the first conductor we have
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In the second stage of the operations the potential of

the first conductor is V^n at the beginning, and 2 V^n at

the end, so that the work spent in bringing up the charge
Tf V~

Ei/n to the first conductor is greater than . but less
11 n n

P %V
than .

*

; similarly the work spent in bringing up
n n

the charge E2 /n to the second conductor is greater than

-2 2
but less than ^.^Z?. Thus if Q is the work

n n n n

spent in this stage in charging the first conductor we have

Similarly if & is the work spent in the third stage in

charging the first conductor we have

,ft&amp;gt;!^,, &&amp;lt;^E,

and nQlt the work spent in the last stage, is

and
&amp;lt;-,

fv

Now Q! the total amount of work spent in charging the

first conductor is equal to& + 2Qi + . . . nQi ,
and is therefore

l + 2 + 8 + ...(-l) EV l + Z + 9+...n
2

or &amp;gt;sll
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If however we make n exceedingly great the two limits

coincide, and we see that Q, the total work spent in

charging the first conductor is equal to ^E^V^ and Q
the work done in charging the whole system is given by
the equation

The work done in charging the conductors is stored

up in the system as electrical energy, the potential

energy of the system being equal to the work done in

charging up the system ;
the energy only depends on the

final state of the system and is independent of the way
that state is arrived at. Hence we see from the above

result that the energy of a system of conductors is one

half the sum of the products obtained by multiplying the

charge of each conductor by its potential.

24. Relation between the potentials and charges
on the conductors. Superposition of electrical

effects. Let V be the potential at any point P when
the first conductor has a charge E and all the other

conductors are without charge, and V&quot; the potential at P
when the second conductor has the charge E2 and all

the other conductors are without charge ;
then when the

first conductor has the charge Elt the second the charge
E2 ,

and all the other conductors are without charge, the

potential at P will be V + V&quot;.

The conditions to be satisfied in this case are that the

charges on the conductors should have the given values

and that the surfaces of the conductors should be equi-

potential surfaces.
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Now consider the distribution of electrification when

the first conductor has the charge E1 and the rest are

without charge; this satisfies the conditions that the

conductors are equipotential surfaces, that the charge on

the first conductor is E^ and that the charges on the

other conductors are zero. The distribution of electri

fication when the second conductor is charged and the

rest uncharged satisfies the conditions that the conductors

are equipotential surfaces, that the charge on the first

conductor is zero, that the charge on the second con

ductor is E2 ,
and that the charges on the other conductors

are zero. If we take a new distribution formed by super

posing the last two distributions, it will satisfy the con

ditions that the conductors are equipotential surfaces, that

the charge on each conductor is the sum of the charges

corresponding to the two solutions, i.e. that the charge on

the first conductor is E l} that on the second conductor E2 ,

and that on each of the other conductors zero. In other

words, the new distribution will be that which occurs in

the case when the first conductor has the charge Elt the

second the charge E
z&amp;gt;

while the rest of the conductors

are uncharged. But when two systems of electrification

are superposed, the potential at P is the sum of the

potentials due to the two systems separately, i.e. the

potential at P is V + V&quot;,
and hence the theorem is true.

25. We can extend this reasoning to the general case

in which V is the potential at P when the first conductor

has the charge Elf the other conductors being uncharged,

V&quot; the potential at P when the second conductor has the

charge EZt the other conductors being uncharged, V&quot; the

potential at P when the charge on the third conductor is
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Es , the other conductors being uncharged, and so on;
and we then see that when the first conductor has the

charge Ely the second the charge E2 ,
the third the charge

E3 , and so on, the potential at P is

26. When the first conductor has the charge Elt the

other conductors being uncharged and insulated, the

potentials of the conductors will be proportional to Elt

that is, the potentials of the first, second, third, &c. con

ductors will be respectively

where p n&amp;gt; pl2 , pl3 are quantities which do not depend upon
the charges of the conductors or their potentials, but only

upon their shapes and sizes and their positions with

reference to each other. The quantities pn ,pi2, PIS, &c.

are called coefficients of potential ;
their properties are

further considered in Arts. 27 31. When the second

conductor has the charge E2) the other conductors being

uncharged and insulated, the potentials of the conductors

will be proportional to E2) and the potentials of the first,

second, third, &c. conductors will be

p2lE2 , p22E2 , p^E^, ....

When the third conductor has the charge E2 ,
the other

conductors being uncharged and insulated, the potentials

of the first, second, third conductors will be

Hence by Art. 25, we see that when the first con

ductor has the charge Elt the second the charge E2 , the
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third the charge E3 ,
and so on, Vl the potential of the

first conductor will be given by the equation

Vl =p11El +p2lE2 +p3lEs +...,

Vz the potential of the second conductor by the equation

if F3 is the potential of the third conductor

If we solve these equations we get

where the q s are functions of the ps and only depend

upon the configuration of the system of conductors. The

qs are called coefficients of capacity when the two suffixes

are the same and coefficients of induction when the suffixes

are different.

27. We shall now show that the coefficients which

occur in these equations are not all independent, but that

To prove this let us suppose that only the first and

second conductors have any charges, the others being

without charge and insulated. Then we may imagine the

system charged, by first bringing up the charge El from

an infinite distance to the first conductor and leaving all

the other conductors uncharged, and then when this has

been done, bringing up the charge E2 from an infinite

distance to the second conductor. The work done in

bringing the charge El up to the first conductor will be
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the energy of the system, when the first conductor has the

charge El and the other conductors are without charge ;

the potential of the first conductor is in this case pnE ,
so

that by Art. 23 the work done is ^E1 .pnEl or ^p^Ef.
To find the work done in bringing up the charge E2 to

the second conductor let us suppose that this charge is

brought up in instalments each equal to E2 /n. Then
the potential of the second conductor before the first in

stalment is brought up is, by Art. 26, equal to pl2E1} and

-p
after the first instalment has arrived it is p^El +p^ .

Hence the work done in bringing up the first instalment

will be between

Similarly the work done in bringing up the second

instalment E2 /n will be between

E2\E2 ,2
and

and the work done in bringing up the last instalment of

the charge will be between

E2 . / nE,\E2-2 .- and

Thus the total amount of work done in bringing up the

charge E2 will be between

, ,
1 +2 + 3 ...+w-l

and P12E,E2 +
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that is, between

puE.E, + 1 (l

-
i) p22E2

* and &JB& + i
(1
+

1)
pJE* t

but if n is very great these two expressions become equal

to pnEJEi + ^p&E2
2

,
which is therefore the work done in

bringing up the charge E% to the second conductor when

the first conductor has already received the charge Elf

Hence the work done in bringing up first the charge E1

and then E2 is

It follows in the same way that the work done when

the charge Ez is first brought to the second conductor and

then the charge El to the first is

but since the final state is the same in the two cases, the

work required to charge the conductors must be the same
;

hence

i.e. P2i=pu-

It follows from the way in which the
&amp;lt;?

s can be ex

pressed in terms of the ps, that g2i
=

^2-

28. Now pl2 is the potential of the second conductor

when unit charge is given to the first, the other con

ductors being insulated and without charge, and p.2l is the

potential of the first conductor when unit charge is given
to the second. But we have just seen that p2l =pl2,

hence

the potential of the second conductor when insulated and

without charge due to unit charge on the first is equal to

the potential of the first when insulated and without

charge due to unit charge on the second, the remaining
conductors being in each case insulated and without charge.
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29. Let us consider some examples of this theorem.

Let us suppose that the first conductor is a sphere with

its centre at 0, and that the second conductor is very

small and placed at P, then if P is outside the sphere we

know by Art. 17 that if unit charge is given to the sphere

the potential at P is increased by I/OP. It follows from

the preceding article that if unit charge be placed at P
the potential of the sphere when insulated is increased

by I/OP.

If P is inside the sphere then when unit charge is

given to the sphere the potential at P is increased by 1 /a

where a is the radius of the sphere. Hence if the sphere

is insulated and a unit charge placed at P the potential of

the sphere is increased by I/a. Thus the increase in the

potential of the sphere is independent of the position of P
as long as it is inside the sphere.

Since the potential inside any closed conductor which

does not include any charged bodies is constant, by
Art. 18, we see by taking as our first conductor a closed

surface, and as our second conductor a small body placed

at a point P anywhere inside this surface, that since the

potential at P due to unit charge on the conductor is

independent of the position of P, the potential of the

conductor when insulated due to a charge at P is inde

pendent of the position of P. Thus however a charged

body is moved about inside a closed insulated conductor

the potential of the conductor will remain constant. An

example of this is afforded by the experiment described in

Art. 5
;
the deflection of the electroscope is independent

of the position of the charged bodies inside the insulated

closed conductor.
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30. Again, take the case when the first conductor is

charged, the others insulated and uncharged ;
then

so that j-f
=

.

r 2 PIZ

Now suppose that the first conductor is connected to

earth while a charge E2 is given to the second conductor,

all the other conductors being uncharged; then since

V1
= we have

*_ Pn_
E- p12 ~~F2

by the preceding equation.

Hence if a charge be given to the first conductor, all

the others being insulated, the ratio of the potential of

the second conductor to that of the first will be equal in

magnitude but opposite in sign to the charge induced on

the first conductor, when connected to earth, by unit

charge on the second conductor.

As an example of this result, suppose that the first

conductor is a sphere with its centre at 0, and that the

second conductor is a small body at a point P outside the

sphere ;
then if unit charge be given to the sphere, the

potential of the body at P is a/OP times the potential of

the sphere, where a is the radius of the sphere ; hence, by
the theorem of this article, when unit charge is placed at

P, and the sphere is connected to the earth, there will be

a negative charge on the sphere equal to a/OP.

Another example of this result is when the first
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conductor completely surrounds the second
;
then since

the potential inside the first conductor is constant when all

the conductors inside are free from charge, the potential
of the second conductor when a charge is given to the first

conductor will be the same as that of the first. Hence
from the above result it follows that when the first con

ductor is connected to earth, and a charge given to the

second, the charge induced on the first conductor will be

equal and opposite to that given to the second.

Another consequence of this result is that if S be an

equipotential surface when the first conductor is charged,
all the others being insulated, then if the first conductor

be connected to earth the charge induced on it by a

charge on a small body P remains the same however P
may be moved about, provided that P always keeps on

the surface 8.

31. As an example in the calculation of coefficients

of capacity and induction, we shall take the case when the

conductors are two concentric spherical shells. Let a

be the radius of the inner shell, which we shall call the

first conductor, 6 the radius of the outer shell, which

we shall call the second conductor. Let E^ t
E2 be the

charges of electricity on the inner and outer shells re

spectively, V1} V2 the corresponding potentials of these

shells.

Then if there were no charge on the outer shell the

charge El on the inner would produce a potential EJa on

its own surface, and a potential EJb on the surface of the

outer shell
; hence, Art. 26,

1 1

Pn = ~; P =
I

.



32] GENERAL PRINCIPLES OF ELECTROSTATICS 49

The charge E2 on the outer shell would, if there were

no charge on the inner shell, make the potential inside

the outer shell constant and equal to the potential at

the surface of the outer shell. This potential is equal
to Ez/b, so that the potential of the first conductor due

to the charge E2 on the second is E2/b, which is also

equal to the potential of the second conductor due to

the charge E2 ; hence, by Art. 26,

_ I _1

We have therefore

Solving these equations, we get

*- &amp;lt;-

Hence

ab ab

We notice that qlz is negative ; this, as we shall prove

later, is always true whatever the shape and position of

the two conductors.

32. Another case we shall consider is that of two

spheres the distance between whose centres is very large

compared with the radius of either. Let a be the radius

of the first sphere, b that of the second, R the distance

T. E. 4
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between their centres, El ,
E2 the charges, Vlt F2 the

potentials of the two spheres. Then if there were no

charge on the second sphere, the potential at the surface

of the first sphere would, if the distance between the

spheres were very great, be approximately El/a, while the

potential of the second sphere would be approximately

E,/R; hence

_1 JLP*- a &amp;gt; Pi*-&amp;gt;

approximately.

Similarly, if there were no charge on the first sphere,

but a charge E% on the second, the potential of the first

sphere would be E2/R, that of the second Ez/b, approxi

mately ;
hence we have approximately

So that approximately

*-+*
Solving these equations we get

abR

-ab l R*-ab 2

abR bR*

hence when R is large compared with either a or b

aR* abR bR2

approximately.
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We see that as before q l2 is negative. We also notice

that qn and ql2 become larger the nearer the spheres are

together.

33. Electric Screens. As an example of the use

of coefficients of capacity we shall consider the case of

three conductors, A, B, 0, and shall suppose that the first

of these conductors A is, as in Fig. 14, inside the third

Fig. 14.

conductor 0, which is supposed to be a closed surface,

while the second conductor B is outside C. Then if

El} V1 ;
E3 ,

F2 ;
E

3&amp;gt;

F3 denote the charges and potentials
of the conductors A, B, G respectively, qu , q^,... ql2 ... the

coefficients of capacity and induction, we have

E^quVi + qnVt + quV, (1).

Z^q^ + q^ + q^ (2).

E* = quVi + qnV* + q*V* (3).

Now let us suppose that the conductor C is connected

to earth so that F3 is zero
; then, since the potential

inside a closed conductor is constant if it contains no

charge, we see that if El is zero, Vl must vanish whatever

42



52 GENERAL PRINCIPLES OF ELECTROSTATICS [CH. I

may be the value of V2 . Hence it follows from equation

(1) that ql2 must vanish
; putting qlz and Vs both zero we

see from (1) that

Bi^toK,
and from (2) E2

= q^V2 .

Thus, in this case, the charge on A if its potential is

given, or the potential if its charge is given, is entirely

independent of E2 and F2 ,
that is a charge on B produces

no electrical effect on A, while a charge on A produces
no electrical effect at B. Thus the interaction between A
and B is entirely cut off by the interposition of the closed

conductor at potential zero.

C is called an electric screen since it screens off from

A all the effects that might be produced by B. This

property of a closed metallic surface at zero potential has

very important applications, as it enables us by sur

rounding our instruments by a metal covering connected

with earth to get rid entirely of any electrical effects arising
from charged bodies not under our control. Thus, in the

experiment described in Art. 4, the gold leaves of the

electroscope were protected from the action of external

electrified bodies by enclosing them in a surface made of

wire-gauze and connected with the earth.

34. Expression for the change in the energy of

the system. The energy of the system Q is, by Art. 23,

equal to y^EV\ hence we have, by Art. 27

Q = Ip^E* + fauEf + . . . p^E, +....

If the charges are increased to EI, Ez &c. the energy Q
corresponding to these charges is given by the equation

Q
f = fa,E* + \p^ + . . . pvEiEJ + . . . .
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The work done in increasing the charges is equal to

Q Q. By the preceding equations

+ (Ea
- E2) i {Pl2 (E, + #/) +pn (E, + E, )

4- ......

where F/ ,
F2 . . . are the potentials of the first, second, . . .

conductors when their charges are E-{, Ecf....

Thus the work required to increase the charges is

equal to the sum of the products of the increase in the

charge on each conductor into the mean of the potentials

of the conductor before and after the charges are in

creased.

If we express Q and Q by Art. 26 in terms of the

potentials instead of the charge, we have

Q = !?!!?? + iftaF, + q^V.V, + . ..
,

Q = fen F/
2+ i?22F2

2+ ?12F/F2 + . . .
,

and we see that

So that the work required is equal to the sum of the pro

ducts of the increase of potential of each conductor into the

mean of the initial and final charges of that conductor.

35. Force tending to produce any displacement

of the system. When the conductors are not connected

with any external source of energy, i.e. when they are

insulated, then by the principle of the Conservation of

Energy, the work done by the system during any dis

placement will be equal to the electrical energy lost by
the system in consequence of the displacement; and in
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this case the conductors will tend to move so as to make
the electric energy diminish.

When, however, the potentials of the conductors are

kept constant, as may be done by connecting them with

galvanic batteries, we shall show that the system moves
so that the electric energy increases. There is thus not

merely work done by the system when it is displaced,
but along with this expenditure of work there is an in

crease in the electric energy, and the batteries to which

the conductors are attached are drained of a quantity of

energy equal to the sum of the mechanical work done and
the increase in the electric energy.

36. We shall now prove that if any small displace
ment of the system takes place the diminution in the

electrical energy, when the charges are kept constant, is

equal to the increase in the potential energy when the

same displacement takes place and the potentials are

kept constant.

Let Elt Vi, E2 ,
F2 , ... be the charges and potentials

of the conductors before the displacement takes place,

El} F/, E2 ,
F2 ,

... the charges and potentials of the

conductors after the displacement has taken place when
the charges are constant,

EI, Fj, E2 ,
F2 ,

... the charges and potentials of the

conductors after the displacement when the potentials are

constant.

Then since the electric energy is one half the sum of

the product of the charges and the potentials, the loss in

electric energy by the displacement when the charges are

constant is

iUW -
F/) + JS, (V,

-
TV) + ...}.
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The gain in electric energy when the potentials are

constant is

The difference between the loss when the charges are

constant and the gain when the potentials are constant is

thus equal to

i K^-JZ/) (F-FO+...1 + iP^i-^i Fi ) + ...}.

Now for the displaced positions of the system Elt F/,

E2 , V^ ... are one set of corresponding values of the

charges and the potentials, while EI ,
Vlt E2 ,

F2 ... are

another set of corresponding values. Hence if pn
f

, pl2 ,
. . .

denote the values of the coefficients of induction for the

displaced position of the system

and

Thus

and

+ E. E,) + ...,

hence EM + E,V,+ ... -(El

f V1 + ...)
= 0.

Thus the difference between the loss in electric energy

when the charges are kept constant and the gain when

the potentials are kept constant is equal to
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Now when the displacements are very small E E and

V V will each be proportional to the first power of the

displacements, and hence the preceding expression is pro

portional to the square of the displacements, and may be

neglected when the displacements are very small. Hence

we see that the loss in electric energy for any small dis

placement when the charges are kept constant, is equal

to the gain in potential energy for the same displacement,
when the potentials are kept constant. When the poten
tials are kept constant, the batteries which maintain the

potentials of the conductors at their constant value, will

be called upon to furnish twice the amount of mechanical

work done by the electric forces. For they will have to

furnish energy equal to the sum of the mechanical work

done and the increase in the electric energy of the system ;

the latter is, as we have just seen, equal to the decrease

in the electric energy of the system while the charges are

kept constant, and this is equal by the principle of the

Conservation of Energy to the mechanical work done.

37. Mechanical Force on each unit of area of

a charged conductor. The electric intensity is at right

angles to the surface of the conductor, so that the force

on any small portion of the surface surrounding a point P
will be along the normal to the surface at P.

To find the magnitude of this force let us consider a

small electrified area round P. Then the electric intensity

in the neighbourhood of P may conveniently be regarded

as arising from two causes, (1) the electrification on the

small area round P, and (2) the electrification on the rest

of the surface of the conductor and on any other surfaces

there may be in the electric field. To find the force on
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the small area we must find the value of the second part

of the electric intensity, for the electric intensity due to

the electrification on the small area will evidently not

have any tendency to move this area one way or another.

Let R be the total electric intensity along the out

ward drawn normal just outside the surface at P, RI that

part of it due to the electrification on the small area round

P, R2 the part due to the electrification of the rest of the

system. Then R^R^R^
Compare now the electric intensities at two points Q,

S (Fig. 15) close together and near to P, but so placed

Fig. 15.

that Q is just outside and 8 just inside the surface of

which the small area forms a part. Then the part of the

electric intensity at S in the direction of the outward

normal at P, which is due to the electrification on the

conductors other than the small area, will be equal to R2

its value at Q since these points are close together. The

part of the electric intensity due to the small area will

have at 8 the same magnitude as at Q, but will be in the

opposite direction, since Q is on one side of the small area,

while 8 is on the other. Thus the electric intensity at S
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due to this area in the direction of the outward drawn
normal will be R1} that due to the rest of the electri

fication Rz . The total intensity at S will therefore be

R!+ Rz . But this must be zero, since the intensity
inside a closed equipotential surface enclosing no charge
is zero. Thus R2

= R1} and therefore since

R RI + R-2)

R, = ^R.

Now the force on the area o&amp;gt; in the direction of the

outward normal is R2o)cr if or is the surface density at P
;

thus if F is the mechanical force per unit area in the

direction of the outward normal

or F=\Ro- ........................ (1).

Since by Coulomb s Law, Art. 22,

R =
4-7TO-,

we have the following expressions for the force per unit

area

- ........................
&amp;lt;*&amp;gt;

..................... (3).

Since Coulomb s Law requires modification when the

medium surrounding the conductor is not air, the expres

sions (2) and (3) are only true for air: the equation (1) is

always true whatever be the insulator surrounding the

conductor.

When the electric intensity at the surface of a con

ductor exceeds a certain value the air ceases to insulate

and the electrification of the conductor is discharged.

The value of the electric intensity when the electrification
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begins to escape from the conductor, depends upon a great

number of circumstances, such as the pressure of the air

and the proximity of other conductors. When the pres

sure of the air is about 760 mm. of mercury and the

temperature about 15 C., the greatest value of R is about

100, unless the conductor is within a fraction of a milli

metre of other conductors
;

hence the greatest value of

F in dynes per square centimetre is

104
/87T.

The pressure of the atmosphere is about 106
dynes

per square centimetre, hence the greatest tension along

the normal to an electrified surface in air is about

1/800-7T of the atmospheric pressure. That is, a pressure

due to about 3 of a millimetre of mercury would equal
in magnitude the greatest tension on a conductor placed

in air at ordinary pressure.



CHAPTER II

LINES OF FORCE

38. Expression of the properties of the Electric

Field in terms of Faraday Tubes. The results we

have hitherto obtained only depend upon the fact that

two charged bodies are attracted towards or repelled from

each other with a force varying inversely as the square

of the distance between them
;
we have made no assump

tion as to how this force is produced, whether, for example,

it is due to the action at a distance of the charged bodies

upon each other or to some action taking place in the

medium between the bodies.

Great advances have been made in our knowledge of

electricity through the introduction by Faraday of the

view that electrical effects are due to the medium between

the charged bodies being in a special state, and do not

arise from any action at a distance exerted by one charged

body on another.

We shall now proceed to consider Faraday s method

of regarding the electric field a method which enables

us to form a vivid mental picture of the processes going

on in such a field, and to connect together with great ease

many of the most important theorems in Electrostatics.
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We have seen in Art. 15 that a line of force is a curve

such that its tangent at any point is in the direction of

the electric intensity at that point. As these lines of

force are fundamental in the method employed in this

and subsequent chapters for considering the properties

of the electric field, we give below some carefully drawn

diagrams of the lines of force in some typical cases.

Figure 16 represents the lines of force due to two

equal and opposite charges. In this case all the lines of

force start from the positive charge and end on the

Fig. 16.

negative. Fig. 17 represents the lines of force due to

two equal positive charges; in this case the lines of

force do not pass between the charged bodies, but lines

start from each of the bodies and travel off to an infinite

distance.
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Figure 18 represents the lines of force due to a

positive charge equal to 4 at A, and a negative charge

Fig. 17.

Fig. 18.
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equal to 1 at B. In this case all the lines of force

which fall on B start from A, but since the charge at

A is numerically greater than that at B, lines of force

will start from A which do not fall on B but travel off

to an infinite distance.

The lines of force which pass between A and B are

separated from those which proceed from A and go off

to an infinite distance by the line of force which passes

through C, the point of equilibrium, where

Fig. 19.

Figure 19 represents the lines of force due to a

charge 1 at A and 4 at B.

Figure 20 represents the lines of force due to a

charged conductor formed by two spheres intersecting at

right angles. The electric intensity vanishes along the

intersection of the spheres.
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Figure 21 represents the lines of force between two

finite parallel places ; between the plates but away from

Fig. 20.

the edges of the plates the lines of force are straight

lines at right angles to the planes, but nearer the

Fig. 21.
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edges of the plates they curve out
;
some lines also pass

from the back of one plate to the back of the other.

39. Tubes of Force. If we take any small closed

curve in the electric field and draw the lines of force,

which pass through each point of the curve, these lines

will form a tubular surface which is called a tube of

force. These tubes possess the property that the electric

intensities at any two points on a tube are inversely

proportional to the cross sections of the tube, made by
planes cutting the tube at right angles at these points,

provided that the cross sections are so small that the

electric intensity may be regarded as constant over each

section. For let Fig. 22 represent a closed surface formed

Fig. 22.

by the tube and its normal sections. Let w^ be the area of

the cross section of the tube at P, &&amp;gt; 2 its cross section at Q;

R!, R2 the electric intensities at P and Q respectively.
Now consider the total normal electric induction over

the surface. The only parts of the surface which con

tribute anything to this are the flat ends, as the sides

of the tube are by hypothesis parallel to the electric

intensity, so that this has no normal component over the

T. E. 5
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sides. Thus the total normal induction over the closed

surface PQ is equal to

the minus sign being given to the second term because, as

drawn in the figure, the electric intensity at P is in the

direction of the inward-drawn normal. Now, by Gauss s

theorem, the total normal electric induction over any
closed surface is equal to 4?r times the charge inside

the surface; hence if the surface does not include any

charge, we have
R2o).2 Rlw1

= 0,

or the electric intensity at P is to that at Q inversely

as the cross section of the tube of force at P is to

that at Q.

The tubes of force will start from positive electrifica

tion and go on until they end on a negative electrified

body. If the points P and Q are on the surfaces of

positively and negatively electrified conductors, then if

crp is the surface density at P, O-Q that at Q,

thus the equation

is equivalent to

Now crpWi is the charge enclosed by the tube where

it leaves the positively electrified conductor, and -
&amp;lt;7Q&&amp;gt;

2

the charge enclosed by the tube where it arrives at the

negatively electrified conductor, hence we see that the

positive charge at the beginning of the tube is equal in

magnitude to the negative charge at the end. We may
draw these tubes so that they each enclose one unit of

electricity at their origin, each of these tubes will
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therefore include unit negative charge at its end. Such

tubes are sometimes called unit tubes of force, we
shall for brevity, call them Faraday tubes. Each unit of

positive charge will be the origin, each unit of negative

charge the end of a Faraday tube. The total charge on

a conductor will be the excess of the number of tubes

which leave the conductor over the number which arrive

at the conductor.

Since the Faraday tubes run in the direction of the

electric intensity in air, they begin at places of high and

travel to places of low potential. No Faraday tube can

have its ends at the same potential, that is no Faraday
tube can pass from one surface to another if the two

surfaces are at the same potential.

40. The electric intensity at any point in the field

is proportional to the number of Faraday tubes which

pass through unit area of a plane drawn at right angles
to the direction of the electric intensity at the point

or, what is the same thing, through unit area of the

equipotential surface passing through the point.

For let A be a small area drawn at right angles to the

electric intensity, and let the tubes which pass through this

area be prolonged until they arrive at the positively elec

trified surface from which they start
;
let B be the portion

of this surface over which these tubes are spread, R the

electric intensity at any point on B, co the area at B.

Let F be the electric intensity, and co the area enclosed

by the tubes, at A. Then applying Gauss s theorem

(Art. 10) to the tubular surface formed by the prolonga
tions backwards of the tubes through A, we get

Fco - Rw = 0.

52
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But as a is the surface density of the electrification

at B, we have, by Coulomb s law (Art. 22), when the

medium surrounding B is air,

E =
47TO-,

and hence Fco = 47r&amp;lt;7o/.

But since era/ is the charge of electricity on B, it is

equal to N the number of Faraday tubes which start

from B, and which pass through A, hence

Fa = 4,7rN,

or if a) is unity F=4nrN.

Thus the electric intensity at any point in air is 4?r

times the number of Faraday tubes passing through unit

area of a plane drawn through the point at right angles

to the electric intensity.

41. The properties of the Faraday tubes enable us

to prove with ease many important theorems relating to

the electric field.

Thus, for example, we see that on the conductor

at the highest potential in the field the electrification

must be entirely positive. Any negative electrification

would imply that Faraday tubes arrived at the conductor
;

these tubes must however arrive at a place which is at

a lower potential than the place from which they start.

Thus, if the potential of the conductor we are considering

is the highest in the field it is impossible for a Faraday

tube to arrive at it, for this would imply that there was

some other conductor at a still higher potential from

which the tube could start.

Similar reasoning shews that the electrification on

the conductor or conductors at the lowest potential in the

field must be entirely negative.
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When one conductor has a positive charge while all the

other conductors are connected to earth, we see from the

last result that the charges on the uninsulated conductors

must be all negative, and since the potentials of these

conductors are all equal and the same as that of the earth,

no Faraday tubes can pass from one of these conductors

to another, or from one of these to the earth. Hence

all the tubes which fall on these conductors must have

started from the conductor at highest potential. Thus

the sum of the number of tubes which fall on the un

insulated conductors cannot exceed the number which

leave the positively charged conductor, that is, the sum

of the negative charges induced on the conductors con

nected to earth cannot exceed the positive charge on

the insulated conductor.

42. These results give us important information as

to the coefficients of capacity and of induction defined

in Art. 26.

For let us take the first conductor as the insulated

one with the positive charge; then since F2 ,
F3 ... are all

zero we have, using the notation of that Article,

Since El and Vl are positive, while E2) Es ,
&c. are all

negative, we see that qn is positive, while g12 , q^, &c. are

all negative. Again, since the positive charge on the first

conductor is numerically not less than the sum of the

negative charges on the other conductors,

El is numerically not less than E2 + E3 + . . .,

i.e. qn is numerically not less than g12 + q + ^H +
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If one of the conductors, say the second, completely

surrounds the first, and if there is no conductor other

than the first inside the second, and if all the conductors

except the first are at zero potential, then all the tubes

which start from the first must fall on the second. Thus

the negative charge on the second must be numerically

equal to the positive charge on the first (see Art. 30).

There can be no charges on any of the other conductors,

for all the tubes which might fall on these conductors must

come from the first conductor, and all the tubes from this

conductor are completely intercepted by the second surface.

Thus if the second conductor encloses the first conductor,

and if there are no other conductors between the first

and the second, then qu
=

-qi-2&amp;gt;
and qw , qu , ql5 ... are

all zero.

43. Expression for the Energy in the Field.

When we regard the Faraday tubes as the agents by which

the phenomena in the electric field are produced we are

naturally led to suppose that the energy in the electric

field is in that part of the field through which the tubes

pass, i.e. in the dielectric between the conductors. We
shall now proceed to find how much energy there must

be in each unit of volume if we regard the energy as

distributed throughout the electric field. We have seen in

Art. 23, that the electric energy is one half the sum of the

products got by multiplying the charge on each conductor

by the potential of that conductor. We may regard each

unit charge as having associated with it a Faraday tube,

which commences at the charge if that is positive and

ends there if the charge is negative. Let us now see how

the energy in the field can be expressed in terms of these
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tubes. Each tube will contribute twice to the expression

for the electric energy ^EV, the first time correspond

ing to the positive charge at its origin, the second time

corresponding to the negative charge at its end. Thus,

since there is unit charge at each end of the tube, the

contribution of each tube to the expression for the

energy will be
J- (the difference of potential between its

beginning and end). The difference of potential between

the beginning and end of the tube is equal to %R . PQ,

where PQ is a small portion of the length of the tube

so small that along it R, the electric intensity, may be

regarded as constant : the sign 2 denotes that the tube

between A and B, A being a unit of positive and B a unit

of negative charge, is to be divided up into small pieces

similar to PQ, and that the sum of the products of the

length of each piece into the electric intensity along it

is to be taken. Thus the whole tube AB contributes

^R . PQ to the electric energy, so that we may suppose

that each unit length of the tube contributes an amount

of energy equal to one half the electric intensity. Any
finite portion CD of the tube will therefore contribute

an amount of energy numerically equal to one half the

difference of potential between C and D. We may there

fore regard the electrical energy as distributed throughout

the field and that each of the Faraday tubes has associated

with it an amount of energy per unit length numerically

equal to one half the electric intensity.

Let us now consider the amount of energy per unit

volume. Take a small cylinder surrounding any point P
in the field with its axis parallel to the electric intensity

at P, its ends being at right angles to the axis. Then

if R is the electric intensity at P and I the length of the
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cylinder, the amount of energy due to each tube passing

through the cylinder is ^Rl. If w is the area of the

cross section of the cylinder, N the number of tubes passing

through unit area, the number of tubes passing through
the cylinder is Nw. Thus the energy in the cylinder is

but in air, by Art. 40,

so that the energy in the cylinder is

^-RHoy.
STT

But Ico is the volume of the cylinder, hence the energy

per unit volume is equal to

Thus we may regard the energy as distributed through
out the field in such a way that the energy per unit of

volume is equal to R^/STT.

44. If we divide the field up by a series of equi-

Fig. 23.

potential surfaces, the potentials of successive surfaces

decreasing in arithmetical progression, and if we then
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draw a series of tubular surfaces cutting these equi-

potential surfaces at right angles, such that the number

of Faraday tubes passing through the cross section of

each of the tubular surfaces is the same for all the

tubes, the electric field will be divided up into a

number of cells which will all contain the same amount

of energy. For the potential difference between the

places where a Faraday tube enters and leaves a cell is

the same for all the cells, and thus the energy of the

portion of each Faraday tube passing through a cell will

be constant for all the cells, and since the same number

of Faraday tubes pass through each cell, the energy in

each cell will be constant.

45. Force on a conductor regarded as arising

from the Faraday Tubes being in a state of ten

sion. We have seen, Art. 37, that on each unit of area of

a charged conductor there is a pull equal to ^Rcr, where

a is the surface density of the electricity, and R the electric

intensity. Now a is equal to the number of Faraday
tubes which fall on unit area of the surface, and hence

the force on the surface is the same as if each of the

tubes exerted a pull equal to ^R. Thus the mechanical

forces on the conductors in the electric field are the same

as they would be if the Faraday tubes were in a state

of tension, the tension at any point being equal to one

half the electric intensity at that point. Thus the tension

at any point of a Faraday tube is numerically equal to

the energy per unit length of the tube at that point.

If we have a small area to, at right angles to the

electric intensity, the tension over this area is equal to
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where N is the number of Faraday tubes passing through
unit area, and R is the electric intensity. By Art 40

Hence the tension parallel to the electric intensity is

The tension across unit area is therefore equal to

46. This state of tension will not however leave the

dielectric in equilibrium unless the electric field is uni

form, that is unless the tubes are straight and parallel to

each other. If however there is in addition to this tension

along the lines of force a pressure acting at right angles to

them and equal to E^/STT per unit area the dielectric will

be in equilibrium, and since this pressure is at right angles
to the electric intensity it will not affect the normal force

acting on a conductor. To show that this pressure is in

equilibrium with the tensions along the Faraday tubes,

consider a small volume whose ends are portions of equi-

potential surfaces and whose sides are lines of force.

D

Fig. 24.

Let us now consider the forces acting on this small

volume parallel to the electric intensity at A. The forces

are the tensions in the Faraday tubes and the pressures at
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right angles to the sides. Resolve these parallel to the

outward-drawn normal at A. The number ri of Faraday
tubes which pass through A is the same as the number

which pass through B. If R, R are the electric intensities

at A and B respectively, then the force exerted on the

volume in the direction of the outward-drawn normal at

A by the Faraday tubes at A will be n R/2, while the

force in the opposite direction exerted by the Faraday

tubes at B is nR cose/2, where e is the small angle

between the directions of the Faraday tubes at A and B.

Since e is a very small angle we may replace cos e by

unity; thus the resultant force on the volume in the

direction of the outward-drawn normal at A due to the

tension in the Faraday tubes is

nf

(R-K)/2.
Let N be the number of tubes passing through unit

area, &&amp;gt;,

the areas of the ends A and B respectively ;

then, Art. 40,

/T\T R R
f

n =iVft) = -7 co = - co
,

47T 47T

so that the resultant in the direction of the outward-

drawn normal at A is

~&amp;lt;o(R

since R a&amp;gt;

Ru&amp;gt;,

we may write this as

RR
f i \

g-V-o.),

or approximately, since R is very nearly equal to R
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Let us now consider the effect of the pressure p
at right angles to the lines of force

;
this has a com

ponent in the direction of the outward-drawn normal

at A as in consequence of the curvature of the tube

the normals to its surface are not everywhere at right

angles to the outward-drawn normal at A
;
the angle

between the pressure and the normal at A will always

however be nearly a right angle. If this angle is ~
2t

at a point where the pressure is p ,
the component of the

pressure along the normal at A will be proportional to

p
f

sin 9. But since p only differs from p, the value of the

pressure at A, by a small quantity, and 6 is small, the

component of the pressure will be equal to p sin 0, if we

neglect the squares of small quantities ;
that is, the effect

along the normal at A of the pressure over the surface

will be approximately the same as if that pressure were

uniform. To find the effect of the pressure over the sides

we remember that a uniform hydrostatic pressure over any
closed surface is in equilibrium; hence the force due to the

pressures over the sides C, D will be equal and opposite to

the force due to the pressures over the ends A and B. But

the force due to the pressure over these ends is pco pw ;

hence the resultant effect in the direction of the outward-

drawn normal at A of the pressure over the sides is

p(o) ft&amp;gt; ). Combining this with the effect due to the

tension in the tubes we see that the total force on the

element parallel to the outward-drawn normal at A is

R*
(o)

-
(*) +p (w

-
ft) ) ;

E2 NR
this vanishes if p = ^ = -^- .

O7T ^
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Thus the introduction of this pressure will maintain equi

librium as far as the forces parallel to the electric intensity

are concerned.

Now consider the force at right angles to the electric

intensity. Let PQRS, Fig. 25, be the section of the surface

in Fig. 24 by the plane of the paper, PS, QR being sections

Fig. 25.

of equipotential surfaces, and PQ, SR lines of force. Let

t be the depth of the volume at right angles to the plane of

the paper. We shall assume that the section of the figure

by the plane through PQ at right angles to the plane of

the paper is a rectangle. Let R be the electric intensity

along PQ, R that along SR, s the length PQ, s that of

SR. Since the difference of potential between P and Q
is the same as that between S and R,

Rs = R s .

Consider the forces parallel to PS. First take the

tensions along the Faraday tubes
;
the force due to those

at PS will have no component along PS : in each tube at

Q there is a tension R/ 2, the component of which along

PS is (RsmO)l2, where 6 is the angle between PS and

QR. Since 9 is very small this component is equal to R0/2.

Let PS and QR meet in 0,

RS PQ PQ-SR s-s

~OR~OQ OQ-OR RQ
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Thus the component along PS due to the tension at Q is

R 8-8
2 RQ

The number of tubes which pass through the end of

the figure through RQ at right angles to the plane of

the paper is N . QR . t, where N is the number of tubes

which pass through unit area.

The total component along PS due to the tensions

in these tubes is thus

R2 R 2--
5*

Now the component along PS due to the pressures at

right angles to the electric intensity is equal to

psi p s t,

where p and p are the pressures over PQ, RS respectively.

T , R2
,
R 2

P =
8^&amp;gt; P-tor -

\

)

- t)t, (since Rs = R s
),

07T

or approximately, since R is very nearly equal to R,

--&amp;lt;&amp;gt;&amp;lt;

Thus the component in the direction of PS due to the

tensions is equal and opposite to the component due to

the pressures ;
thus the two are in equilibrium as far as

the component in the plane of the diagram at right angles
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to the electric intensity is concerned
;
we easily see that

the same is true for the component at right angles to the

plane of the paper. We have already proved that the

tensions and pressures balance as far as the component

along the direction of the electric intensity is concerned
;

thus the system of pressures and tensions constitutes

a system in equilibrium.

47. This system of tensions along the tubes of force

and pressures at right angles to them is thus in equilibrium

at any part of the dielectric where there is no charge, and

gives rise to the forces which act on electrified bodies

when placed in the electric field. Faraday introduced this

method of regarding the forces in the electric field; he

expressed the system of tensions and pressures which we

have just found, by saying that the tubes tended to con

tract and that they repelled each other. This conception

enabled him to follow the processes of the electric field

without the aid of mathematical analysis.

Since Rs = It s,

s OQ RQ= =

R-K R
we have

Now OR is the radius of curvature of the line of force
;

denoting this by p we have
dR

I__dv_
p~

~
R

where dv is an element of length at right angles to the

electric force
;
we see from this equation that the lines of

force are concave to the stronger parts of the field.
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The lines of force arrange themselves as a system of

elastic strings would do if acted on by forces whose

potential for unit length of string was jR/2.

48. The student will find much light thrown on the

effects produced in the electric field by the careful study
from this point of view of the diagrams of the lines of

force given in Art. 38. Thus, take as an example the

diagram given in Fig. 18, which represents the lines of

force due to two charges A and B of opposite signs, the

ratio of the charges being 4:1. We see from the diagram
that though more tubes of force start from the larger

charge A ,
and the tension in each of these is greater than

in a tube near the smaller charge 5, the tubes are much

more symmetrically distributed round A than round B.

The approximately symmetrical distribution of the tubes

round A makes the pulls exerted on A by the taut Faraday
tubes so nearly counterbalance each other that the resultant

pull of these tubes on A is only the same as that exerted

on B by the tubes starting from it; since these, though
few in number, are less symmetrically distributed, and

so do not tend to counterbalance each other to nearly

the same extent. The tubes of force in the neighbour

hood of the point of equilibrium are especially interesting.

Since the charge on A is four times that on B, only J of

the tubes which start from A can end on B, the remaining

| must go off to other bodies, which in the case given in

the diagram are supposed to be at an infinite distance.

The point of equilibrium corresponds as it were to the

parting of the ways between the tubes of force which

go from A to B and those which go off from A to an

infinite distance.
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When the charges A and B are of the same sign, as

in Fig. 19, we see how the repulsion between similar tubes

causes the tubes to congregate on the side of A remote

from B, and on the side of B remote from A.

We see again how much more symmetrically the

tubes are distributed round A than round B] this more

symmetrical distribution of the tubes round A makes
the total pull on A the same as that on B.

We see too from this example that the repulsion
between the charges of the same sign and the attraction

between charges of opposite signs are both produced by
the same mechanism, i.e. a system of pulls ;

the difference

between the cases being that the pulls are so distributed

that when the charges are of the same sign the pulls tend

to pull the bodies apart, while when the charges are of

opposite signs the pulls tend to pull the bodies together.
The diagram of the lines of force for the two finite

plates (Fig. 21) shows how the Faraday tubes near the

edges of the plates get pushed out from the strong parts of

the field and are bent in consequence of the repulsion
exerted on each other by the Faraday tubes.

49. As an additional example of the interpretation of

the processes in the electric field in terms of the Faraday
tubes, let us consider the effect of introducing an insulated

conductor into an electric field.

Let us take the field due to a single positively charged

body at A
;
before the introduction of the conductor the

Faraday tubes were radial, but when the conductor is

introduced the tubes, which previously existed in the

region occupied by the conductor, are annulled
;
thus the

repulsion previously exerted by these tubes on the sur-

T. E. 6
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rounding ones ceases, and a tube such as AB, which was

previously straight, is now, since the pressure below it is

diminished, bent down towards the conductor
;
the tubes

near the conductor are bent down so much that they strike

against it, they then divide and form two tubes, with

negative electrification at the end C, positive at the end D.

Fig. 26.

50. Force on an uncharged conductor placed in

an electric field. If a small conductor is placed in the

field at P, the Faraday tubes inside the conductor dis

appear, and, if the introduction of the conductor did not

alter the tubes outside it, the diminution of energy due

to the annihilation of the tubes in the conductor would

be proportional to R^/Str per unit volume, where R is the

electric intensity in the field at P before the conductor

was introduced. If the conductor is moved to a place

where the electric intensity is R
,
the diminution in the

electric energy in the field is R^j^ir per unit volume. Now

it is a general principle in mechanics that a system always
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tends to move from rest in such a way as to diminish the

potential energy as much as possible, and the force tending
to assist a displacement in any direction is equal to the

rate of diminution of the potential energy in that direction.

The conductor will thus tend to move so as to produce the

greatest possible diminution in the electric energy, that is,

it will tend to get into the parts of the field where the

electric intensity is as large as possible ;
it will thus move

from the weak to the strong parts of the field.

The presence of the conductor will however disturb the

electric field in its neighbourhood; thus R, the actual

electric intensity, will differ from R, the electric intensity
at the same point before the conductor was introduced.

By differentiating It2

/Sir we shall get an inferior limit to

the force acting on the conductor per unit volume. For

suppose we introduce a conductor into the electric field,

then R^/STT would be the diminution in electric energy

per unit volume due to the disappearance of the Faraday
tubes from the inside of the conductor, the tubes outside

being supposed to retain their original position. In reality
however the tubes outside will have to adjust themselves
so as to be normal to the conductor, and this adjustment
will involve a further diminution in the energy, thus the

actual change in the energy is greater than that in R2

/87r
and the force acting per unit volume will therefore be

greater than the rate of diminution of this quantity. If

we take the case when the force is due to a charge e at a

point, the rate of diminution of R2

/87r is e2

/2-7rr
5

,
and thus

the force on a small conducting sphere of radius a will be

greater than (47ra
3

/3)
2

/27rr
5

), that is greater than 2e2a3

/3r
5

.

The actual value (see Art. 87) is 2e2

a*/r
5
.

62



CHAPTER III

CAPACITY OF CONDUCTORS. CONDENSERS

51. The capacity of a conductor is defined to be the

numerical value of the charge on the conductor when its

potential is unity, all the other conductors in the field

being at zero potential.

Two conductors insulated from each other and placed

near together form what is called a condenser; in this

case the charge on either conductor may be large, though
the difference between their potentials is small.

In many instruments the two conductors are so

arranged that their charges are equal in magnitude and

opposite in sign; in such cases the magnitude of the

charge on either conductor when the potential difference

between the conductors is unity is called the capacity of

the condenser.

If the difference of potential between two conductors,

produced by giving a charge + q to one conductor and -
q

to the other, is V, then q/ V is defined to be the capacity

between the conductors.

52. Capacity of a Sphere placed at an infinite

distance from other conductors. Let a be the radius

of the sphere, V its potential, e its charge, the corre

sponding charge of opposite sign being at an infinite

distance. Then (Art. 17), the potential due to the charge

on the sphere at a distance r from the centre is e/r;

therefore the potential at the surface of the sphere is e/a.
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Hence we have

V=-
a

When V is unity, e is numerically equal to a : hence,
Art. 51, the capacity of the sphere is numerically equal to

its radius.

53. Capacity of two concentric spheres. Let

us first take the case when the outer sphere and any con

ductors which may be outside it are connected to earth,

while the inner sphere is maintained at potential V.

Then, since the outer sphere and all the conductors out

side are connected to earth, no Faraday tubes can start

from or arrive at the outer surface of the outer sphere,
for Faraday tabes only pass between places at different

potentials, and the potentials of all places outside the

sphere are the same, being all zero. Again, all tubes which

start from the inner sphere will arrive at the internal

surface of the outer shell, so that the charge on the inner

surface of this shell will be equal and opposite to the charge
on the inner sphere. Let a be the radius of the inner

sphere, b the radius of the internal surface of the outer

sphere, e the charge on the inner sphere, then e will be

the charge on the interior of the outer sphere.

Consider the work done in moving a unit of electricity

from the surface of the inner sphere to the inner surface

of the outer sphere ;
the charge on the outer sphere pro

duces no electric intensity at a point inside, so that the

electric intensity, which produces the work done on the

unit of electricity, arises entirely from the charge on the

inner sphere. The electric intensity due to the charge on

this sphere is, by Art. 11, the same as that which would be
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due to the charge e collected at the centre 0. The work

done on unit of electricity when it moves from the inner

sphere to the outer one is thus the same as the work done

on a unit charge when it moves from a distance a to a

distance b from a small charged body placed at the centre

of the spheres; this, by Art. 17, is equal to

e _e
a b

and is by definition equal to V, the potential difference

between the two spheres ;
hence we have

V- 6-- 6

~a b

ab
or e = T -

.

b a

Thus, when b a is very small, that is, when the radii of

the two spheres are very nearly equal, the charge is very

large. When 7=1, the charge is

6-a
so that this is, by Art. 51, the capacity of the two spheres.

The value of this quantity when the radii of the two spheres

are very nearly equal is worthy of notice. In this case,

writing t for b a, the distance between the spheres, the

capacity is equal to

ab a(a + t)

~i

~~

t

this, since t is very small compared with a, is approxi

mately
a2 4-Tra

2

T
=

surface of the sphere
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Thus the capacity in this case is equal per unit area of

surface to l/4rr times the distance between the con

ductors. The case of two spheres whose distance apart is

very small compared with their radii is however approxi

mately the case of two parallel planes ;
hence the capacity

of such planes per unit area of surface is equal to 1/4-7T

times the distance between the planes. This is proved

directly in Art. 56.

If, after the spheres are charged, the inner one is insu

lated, and the outer one removed to an infinite distance (to

enable this to be done we may suppose that the outer sphere

consists of two hemispheres fitted together, and that these

are separated and removed), the charge on the sphere will

remain equal to e, i.e.
j

-
V, but the potential of the

o a

sphere will rise
;
when it is alone in the field the potential

will be e/a, i.e.

Thus by removing the outer sphere the potential

difference between the sphere and the earth has been

increased in the proportion of b to b a. By making 6 - a

very small compared with 6, we can in this way increase

the potential difference enormously and make it capable

of detection by means which would not have been suffi

ciently sensitive before the increase in the potential took

place.

It was by the use of this principle that Volta suc

ceeded in demonstrating by means of the gold-leaf electro

scope and two metal plates, the difference of potential

between the terminals of a galvanic cell
;
this difference is
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so small that the electroscope is not deflected when the

cell is directly connected to it; by connecting the ter

minals of the cell to two plates placed very close together,
and then removing one of the plates after severing the

connections between the plates and the cells, Volta was
able to increase the potential of the other plate to such

an extent that it produced an appreciable deflection of an

electroscope with which it was connected.

Work has to be done in separating the two con

ductors; this work appears as increased electric energy.

Thus, to take the case of the two spheres, when both

spheres were in position the electric energy, which, by
Art. 23 is equal to ^EV, is

1 ^L 7226-a
When the outer sphere which is at zero potential is

removed the potential of the sphere is e/a, so that the

electric energy is

1 e2

2 a

and has thus been increased in the proportion of b to

b a.

54. Let us now take the case when the inner sphere
is connected to earth while the outer sphere is at the

potential V. In this case we can prove exactly as before

that the charge on the inner sphere is equal and opposite

to the charge on the internal surface of the outer sphere,

and that, if e is the charge on the inner sphere,

ej^-V.b-a
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In this case, in addition to the positive charge on the

internal surface of the outer sphere, there will be a positive

charge on the external surface, since this surface is at a

higher potential than the surrounding conductors. If c

is the radius of the external surface of the outer sphere,

the sum of the charges on the two spheres must be Vc.

Since the charge on the inner surface of the outer sphere

is equal and opposite to the charge on the inner sphere,

the charge on the external surface of the outer sphere

must be equal to Vc. Thus the total charge on the outer

sphere is equal to

a

55. The charge on the outside of the outer sphere

will be affected by the presence of other conductors. Let

us suppose that outside the external sphere there is a

small sphere connected to earth; let r be the radius of

this sphere, R the distance of its centre from the centre

of the concentric spheres. Let e be the total charge on

the two concentric spheres, e&quot; the charge on the small

sphere. The potential due to e at a great distance R
from is e /R, similarly the potential due to e&quot; is at a

distance R equal to
e&quot;jR.

Since the surface of the outer sphere is at the po
tential F, we have

F-^ 5,c R

and, since the potential of the small sphere is zero, we

have
e e&quot;
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hence

that is, the presence of the small sphere increases the

charge on the outer sphere in the proportion of

1 to l-rc/R2
.

It is only the charge on the external surface of the

outer sphere which is affected. The charges on the inner

sphere and on the internal surface of the outer sphere are

not altered by the presence of conductors outside the

latter sphere.

56. Parallel Plate Condensers. Condensers are

frequently constructed of two parallel metallic plates;

the theory of the case, when the plates are so large in

comparison with their distance apart that they may be

regarded as infinite in area, is very simple.

In this case the Faraday tubes passing between the

plates will be straight and at right angles to the plates,

and the electric intensity between the plates is constant

since in passing from one plate to the other each Faraday

tube has a constant cross section
;
let R be its value, then

if d is the distance between the plates, the work done

on unit charge of electricity as it passes from the plate

where the potential is high to the one where the potential

is low is ltd, and this by definition is equal to V, the

difference of potential between the plates. Hence

V=Rd.
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If a is the surface-density of the charge on the plate

at high potential, that on the plate of low potential will

be cr, and by Coulomb s law, Art. 22,

R =
47T&amp;lt;7.

Hence V =
4&amp;gt;Trcrd,

and if V is equal to unity, a is equal to

1

The charge on an area A of one of the plates when

the potential difference is unity is thus
A/4&amp;lt;7rd,

this by
definition is the capacity of the area A. We arrived at

the same result in Art. 53 from the consideration of

two concentric spheres. The electrical energy of the

condenser is, by Art. 23, equal to

which in this case is equal to

Swd

or, if E is the charge on one of the plates, to

57. Guard Ring. In practice it is of course im

possible to have infinite plates, and when the plates are

finite, then, as the diagram, Fig. 21, Art. 38, shows, the

Faraday tubes near the edges of the plates are no longer

straight, and the electrification ceases to be uniform, and

is no longer given by the expression (1), Art. 56. Thus to

express the quantity of electricity on the finite plate, we
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should have to add to the expression a correction for the

inequality of the distribution over the ends of the plates.

This correction can be calculated, but the necessity for it

may be avoided in practice by making use of a device due
to Lord Kelvin, and called a guard ring.

Fig. 27.

Suppose one of the plates, say the upper one, is divided

into three portions flush with each other and separated

by the narrow gaps E, F. Then if, in charging the

condenser the portions A, B, C are connected metallically
with each other, the places where the electrification

is not uniform will be on A and C, so that apart from the

effects of the narrow gaps E, F, the electrification on B
will, if we neglect the effect of the gaps, be uniform and

the total charge on B will be equal to
SV/4&amp;gt;7rd,

where S is

the area of the plate B. The capacity of B is thus equal
to Sj^ird.

If, as ought to be the case, the widths of the gaps
at E and F are very small compared with the distance

between the plates, we can easily calculate the effect

of the gaps. For if the gaps are very narrow the

electrification of the lower plate will be approximately
uniform. The Faraday tubes in the neighbourhood of

the gaps will be distributed as in Fig. 28. We see
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from this, if we consider the gap E, that all the Faraday
tubes which would have fallen on a plate whose breadth

Fig. 28.

was E, if there had been no gap, will fall on one

or other of the plates A and B, Fig. 28, and from the

symmetry of the arrangement half of these tubes will

fall on B, the other half on A
;
thus the actual amount

of electricity on B will be the same as if we supposed B
to extend halfway across the gap, and to be uniformly

charged with electricity whose surface density is V/4nrd.

We see then that, allowing for the effects of the gaps,
the capacity of B will be equal to S f

/4&amp;gt;7rd,
where

S = area of plate B
-f \ (the sum of the areas of the gaps E and F).

If the plate B is not at zero potential, there will be

some electrification on the back of the plate arising from

Faraday tubes which go from the back of B to other

conductors in its neighbourhood and to earth. The elec

trification of the back of B may be obviated by covering
this side of A, B, C with a metal cover connected with

A and G. It can also be obviated by making B the low

potential plate (i.e. the one connected to earth), care being
taken that the other conductors in the neighbourhood are

also connected to earth.

58. Capacity of two coaxial cylinders. Let us

take the case of two coaxial cylinders, the inner one being
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at potential V, the outer one being at potential zero.

Then if E is the charge per unit length on the inner

cylinder, E will be the charge per unit length on the

inner surface of the outer one, since all the Faraday tubes

which start from the inner cylinder end on the outer

one.

The electric intensity at a distance r from the axis of

the cylinders is, by Art. 13, equal to

2E
r

Thus the work done on unit charge, when it goes from

the outer surface of the inner cylinder to the inner surface

of the outer cylinder, is equal to

2E ,

-dr,
i:

where a is the radius of the inner cylinder, b the radius

of the inner surface of the outer cylinder.

This work is, however, by definition equal to V, the

difference of potential between the cylinders, and hence

=
1 dr
a

b

When V is unity, E, the charge per unit length, is

equal to

and this, by definition, is the capacity of the condenser

per unit length.
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If the radii of the cylinders are nearly equal, and if

b a = t,t will be small compared with a
;
in this case the

capacity per unit length

1

a + t
2 log

=- approximately
2-
a

la
2t

~
4nrt

Since 2?ra is the area of unit length of the inner

cylinder, the capacity per unit area is
l/4&amp;lt;7r;

we might have

deduced this result from the case of two parallel planes.

When the two cylinders are coaxial, there is no

force tending to move the inner cylinder; thus since

the system is in equilibrium, the potential energy, if the

charges are given, must be either a maximum or a mini

mum. The equilibrium is, however, evidently unstable,

for, if the inner cylinder is displaced, the force due to

the electric field tends to make the cylinders come into

contact with each other and thus increase the displace

ment. Since the equilibrium is unstable the potential

energy is a maximum when the cylinders are coaxial.

The potential energy, however, is, by Art. 23, equal to
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where C is the capacity of the condenser. Thus if the

potential energy is a maximum the capacity must be a

minimum. Thus any displacement of the inner cylinder

will produce an increase in the capacity, but since the

capacity is a minimum when the cylinders are coaxial,

the increase in the capacity will be proportional to square

and higher powers of the distance between the axes of the

cylinders.

59. Condensers whose capacities can be varied.

For some experimental purposes it is convenient to use a

condenser whose capacity can be altered continuously, and

in such a way that the alteration in the capacity can be

easily measured. For this purpose a condenser made of

two parallel plates, one of which is fixed, while the other

can be moved by means of a screw, through known dis

tances, always remaining parallel to the fixed plate, is

useful. In this case the capacity is inversely proportional

to the distance between the plates, provided that this

distance is never greater than a small fraction of the

radius of the plates.

Another arrangement which has been used for this

purpose is shown in Fig. 29. It consists of three
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that these two are always at the same potential, and the

cylinder AB is at a different potential, then when the

cylinder EF is moved about so as to expose different

amounts of surface to AB the capacity of the condenser

formed by AB and EF will alter, and the increase in the

capacity will be proportional to the increase in the area of

the surface of EF brought within AB.

60. Electrometers.

Consider the case of two parallel conducting plates;
let V be the potential difference between the plates, d
their distance apart. The force on a conductor per unit

area is, by Art. 37, equal to J Ra, where R is the electric

intensity at the conductor and a- the surface density ; but
V 1R =
-j ,

while &amp;lt;r
= - R by Coulomb s law

; we see there
of 4)7T

fore that the attraction of one plate on the other is per
1 F2

unit area equal to
-^

. Hence the force on an area A

of one of the plates is equal to

A F2

Thus, if we measure the mechanical force between the

plates, we can deduce the value of F, the potential differ

ence between them. This is the principle of Lord Kelvin s

attracted disc electrometer. This instrument measures
the force necessary to keep a moveable disc surrounded

by a fixed guard ring in a definite position; when this

force is known the value of the potential difference is

given by the expression (1).

Quadrant Electrometer. The effect measured by
the instrument just described varies as the square of the

T. E.
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potential difference; thus when the potential difference

is diminished the attraction between the plates diminishes

with great rapidity. For this reason the instrument is

not suited for the measurement of very small potential

differences. To measure these another electrometer, also

due to Lord Kelvin, called the quadrant electrometer, is

frequently employed.
This instrument is represented in Fig. 30 : it consists

of a cage, made by the four quadrants A, B, C, D; each

quadrant is supported by an insulating stem, while the

opposite quadrants A and C are connected by a metal wire,

as are also B and D
;
thus A and C are always at the same

potential and so also are B and D. Each pair of quadrants
is in connection with an electrode, E or F, by means of

which it can easily be put in metallic connection with any

body outside the case of the instrument. Inside the quad
rants and insulated from them is a flat piece of aluminium

shaped like a figure of eight. This is suspended by a

silk fibre and can rotate, with its plane horizontal, about

a vertical axis. A fine metal wire hangs from the lower

surface of this aluminium needle and dips into some

sulphuric acid contained in a glass vessel, the outside

of which is coated with tin-foil and connected with earth.

This vessel, with the conductors inside and outside, forms

a condenser of considerable capacity ;
it requires therefore

a large charge to alter appreciably the potential of this jar,

and therefore of the needle. To use the instrument the jar

is charged to a high potential C; the needle will then also

be at the potential C. Now if the two pairs of quadrants

are at the same potential, the needle is inside a conductor

symmetrical about the axis of rotation of the needle, and

at one potential. There will evidently be no couple on
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the needle arising from the electric field, and the needle

will take up a position in which the couple arising from

the torsion of the thread supporting the needle vanishes.

If, however, the two pairs of quadrants are not at the same

potential the needle will swing round until, if there is

nothing to stop it, the whole of its area will be inside the

Fig. 30.

pair of quadrants whose potential differs most widely
from its own. As it swings round, however, the torsion of

the thread produces a couple tending to bring the needle

back to the position from which it started. The needle

finally takes up a position in which the couple due to the

torsion in the thread balances that due to the electric

72
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field. The angle through which the needle is deflected

gives us the means of estimating the potential difference

between the quadrants.

The way in which the couple acting on the needle

depends upon the potentials of the quadrants and the

needle can be illustrated by considering a case in which

the electric principles involved are the same as in the

quadrant electrometer, but where the geometry is simpler.

Let E, F (Fig. 31) be two large co-planar surfaces in

sulated from each other by a small air gap. Let G be

another plane surface, parallel to E and F, and free to

move in its own plane. Let t be the distance between G
and the planes E and F. Let A,B,C be the potentials of

the planes F, E, G respectively. Let I be the width of

Fig. 31.

the planes at right angles to the plane of the paper. If

XI is the force tending to move the plane G in the

direction of the arrow, then, if this plane be moved through
a short distance x in this direction, the work done by the

electric forces is Xlx. If the electric system is left to

itself, i.e. if it is not connected to any batteries, etc., so

that the charges remain constant, this work must have

been gained at the expense of the electric energy; we

have therefore, by the principle of the Conservation of

Energy,
Xlx = decrease in the electric energy of the system, the

charges remaining constant, when the plane G is

displaced through the distance x
;
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or by Art. 36,

Xlx = increase in the electric energy of the system, the

potentials remaining constant, when the plane G is

displaced through the same distance x ......... (1).

Consider the change in the electric energy when the

plane G is moved through a distance an. The area of G

opposite to F will be increased by loc, and in consequence
the energy will be increased by the energy in a parallel

plate condenser, whose area is Ix, the potentials of whose

plates are A and C respectively, and the distance be

tween the plates is t ; this, by Art. 56, is equal to

At the same time as the area of G opposite to F is in

creased by lx, that opposite to E is decreased by the same

amount, so that the electric energy will be decreased by
the energy in a parallel plate condenser whose area is lx

t

the potentials of the plates B and G and their distance

apart t
; this, by Art. 56, is equal to

Thus the total increase in the electric energy when G
is displaced through x, the potentials being constant,

is equal to

Thus, by equation (1),
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If (C - A}2
is greater than (C - BY, X is positive, that

is, the plate G tends to bring as much of its surface as it

can over the plate from which it differs most in potential.

In the quadrant electrometer the electrical arrange
ments are similar to the simple case just discussed, and

hence the force will vary with the potential differences in

a similar way. Hence we conclude that if the needle in

the quadrant electrometer be at potential C, the couple

tending to twist it from the quadrant whose potential is B
to that whose potential is A, will be proportional to

we may put it equal to

where n is some constant.

When the needle is in equilibrium, this couple will

be balanced by the couple due to the torsion in the

suspension of the needle.

The torsional couple is proportional to the angle 6

through which the needle is deflected. Let the couple

equal md. Hence we have when the needle is in equi

librium

m0=n(B-A){O-z(A + B)

...(2).

If, as is generally the case when small differences of

potential are measured, the jar containing the sulphuric

acid is charged up so that its potential is very high com-
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pared with that of either pair of quadrants, C will be very

large compared with A or B, and therefore with

\ (^ +B),

so that the expression (2) is very approximately

e = -(B-A)C.m^

Hence, in this case, the difference of potential is pro

portional to the deflection of the needle. This furnishes

a very convenient method of comparing differences of

potential, and though it does not give at once the ab

solute measure of the potential, this may be deduced

by measuring the deflection produced by a standard po

tential difference of known absolute value such as that

between the electrodes of a Clark s cell.

The quadrant electrometer may also be used to

measure large differences of potential ;
to do this, instead

of charging the jar independently, connect the jar and

therefore the needle to one pair of quadrants, say the pair

whose potential is A. Then, since C=A, the expression

(2) becomes

thus the needle is deflected towards the pair of quadrants

whose potential is B, and the deflection of the needle is, in

this case, proportional to the square of the potential differ

ence between the quadrants. Thus, if the quadrants are

connected respectively to the inside and outside coatings

of a condenser, the deflection of the electrometer will be

proportional to the energy in the condenser.
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61. Use of the Electrometer to measure a charge
of electricity. Let a and ft denote the two pairs of

quadrants. If to begin with a and ft are both connected

with the earth, there will be a charge Q on the quadrants
a induced by the charge on the needle

;
let a now be

disconnected from ft and from the earth, insulated, and

given a charge Q
f

of electricity, the needle will be deflected;

let 6 be the angle of deflection, A the potential of the

quadrants a, then if C is the potential of the needle, we

have, by Art. 26, since the charge on a. is QQ + Q
f

Qo+Q = qnA+qvC.................. (1),

where qu , qls are the coefficients of capacity and induction

for the displaced position of the needle. Since Q is the

charge on a when A is zero

where (g13 ) is the value of q 13 when 6 =
;
hence by (1)

Q = quA + (qls
-

(qu\) C.

Let ql3
-

(q13\ = -
p0,

6 being taken as positive when measured in the direction

of deflection due to a positive value of A, then if the

charge on the needle is negative Q the positive charge on

a induced by the needle will evidently increase with 6 so

that as C is negative p is a positive quantity; we have also

by equation (2), page 103, when C is large compared with A,

m

hence Q = -e
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It is interesting to notice that when the potential of

the needle is increased beyond a certain point the deflec

tion of the needle due to a given charge on the quadrants

diminishes as the potential of the needle increases, hence

to obtain the greatest sensitiveness when measuring elec

trical charges we must be careful not to charge the needle

too highly. We see from (2) that the greatest deflection

6 due to the charge Q is given by the equation

when the deflection is greatest the potential of the needle

To get from the readings of the electrometer the value

of the charge in absolute measure, connect one plate of

a condenser whose capacity is F with the quadrants a, and

connect the other plate with the earth
;
the coefficient qn

will now be increased by T and, if Oi is the deflection of

the electrometer for the same charge, then by (2)

Q nC ,

&quot;1

-~(&amp;lt;?11 + r)m + ^G&quot;

Hence from (2) and (3)

If the deflection of the electrometer when the poten

tial of a is V is then

m
hence, from (4),

*
/3 /3

*

C7 C7-i

61 a. A gold leaf electroscope is for some purposes pre

ferable to an electrometer, on account of its much smaller
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capacity, its portability and the ease with which it can be

shielded from external disturbances. With suitably designed

electroscopes it is possible to obtain with ease a deflection

of the gold leaf of 70 or 80 scale divisions for a change of

1 volt in the potential of the gold leaf, these divisions are

those of a micrometer eye-piece in a reading microscope

through which the gold leaf is observed. The behaviour

of these sensitive electroscopes may be illustrated by the

consideration of a very simple case. Suppose that we have

two parallel plates D and E maintained at potentials
A and - A respectively, let us represent the gold leaf by
another parallel plate which can move backwards and

forwards and is pulled to a position midway between D and
E by a spring, which when C is displaced a distance x from

the mid-position pulls it back again with a force equal per
unit area of C to px.

If V is the potential of C, 2d the distance between D
and E, x the displacement of C towards the negative plate,

then for the equilibrium of the plate we must have

1 (A+ V)
2 I (A- V)*_

STT (d
- xf STT (d + x)*

~^
or if V=yA, x = %d,

(1 + yy (l-
(I-?)

2

(1 +

if

If y and f are small, this equation becomes

&quot; A
or x
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The equilibrium will be unstable unless

greater than 1, when this quantity exceeds unity by a

small fraction the denominator in the expression for x is

small so that x itself tends to become large, i.e. a small

potential difference Fwill produce a large displacement of

the plate. In addition to the value of x given above there

is a second value corresponding to another position of

equilibrium, the equilibrium in this case is unstable and if

C were in this position it would move up to D. When
V= the two positions of equilibrium are given by x =

and

f-
2

= l-A
d* V/

Thus when the instrument is very sensitive, i.e. when // is

nearly unity, the second value of x is very small, thus the

unstable position of equilibrium is close to the stable one,

so that a slight deflection from the latter will make the

gold leaf unstable, and it will fly up to one of the plates.

As V increases the value of x for the stable position

increases while that for the unstable one diminishes, so

that the two get nearer together, for a certain value of F

they coincide, while for greater values there is no position

of equilibrium.

In practice the office of the spring in the preceding

example is performed by the weight of the gold leaf; the

leaf is hung so as to be vertical when midway between the

plates, when it is disturbed from this position gravity tends

to bring it back. The successful use of instruments of this

type depends upon having means to keep the potential of

the fixed plates accurately constant. Except for very small

values of F, the deflection is not directly proportional to V,
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so that it is necessary to calibrate the instrument by
charging the gold leaf to known potentials and observing
the deflection.

The sensitiveness of the instrument can be adjusted by
altering V or d. In a type of instrument invented by
Mr C. T. R. Wilson and called the tilted electroscope

(Fig. 31 a), where the instrument can be tilted by means

Fig. 31 a.

of foot-screws, the adjustment is effected by altering the

tilt. The plate P is charged to a high potential, the case

of the instrument to earth, and initially the gold leaf is

to earth, it takes up a position of equilibrium from which

it is displaced as soon as its potential is altered.

62. Test for the equality of the capacities of

two condensers. The test can easily be made in the
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following way. Suppose A and B, Fig. 32, are the plates

of one condenser, C and D those of the other. First

connect A to (7, and B to D, and charge the condensers by

connecting A and B with the terminals of a battery or

some other suitable means. Then disconnect A and B

from the battery. Disconnect A from C and B from D.

Then, if the capacities of the two condensers are equal,

their charges will be equal since they have been charged

to equal potentials. The charge on A will be equal and

opposite to that on D, while that on B will be equal and

opposite to that on C. Thus, if A be connected with D
and C with B, the positive charge on the one plate will

counterbalance the negative on the other, so that if after

Fig. 32.

this connection has been made A and B are connected

with the electrodes of an electrometer, no deflection will

occur.

63. Comparison of two condensers. If a con

denser whose capacity can be varied is available, the

capacity of a condenser can be compared with known

capacities by the following method.

Let A and B (Fig. 33) be the plates of the condenser

whose capacity is required, C and D, E and F, G and H,

the plates of three condensers whose capacities are known.

Connect the plates B and C together and to one electrode

of an electrometer, also connect F and G together and to

the other electrode of the electrometer. Connect D and
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E together and to one pole of a battery, induction coil or

other apparatus for producing a difference of potential,
and connect A and H together and to the other pole of

this battery. In general this will cause a deflection of

the electrometer; if there is a deflection, then we must
alter the capacity of the condenser whose capacity is

variable until the vanishing of this deflection shows that

the plates BO, FG are at the same potential. When
this is the case a simple relation exists between the

capacities.

Fig. 33.

Let Clf C2 ,
Cs ,

C4 be the capacities of the condensers

AB, CD, EF, GH respectively, let VQ be the potential of

A and H, x the potential of B and G and y that of F and

G, V the potential of D and E. To fix our ideas, let us

suppose that V is greater than F
,
then there will be a

negative charge on A, a positive one on B, a negative

charge on (7, and a positive one on D
;
then since B and

C form an insulated system which was initially without

charge, the positive charge on B must be numerically

equal to the negative charge on C.

The positive charge on B

;-ft(ft-_FA
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while the negative one on C is numerically equal to

which is a positive quantity ; hence, since these are equal,

we have
Cl (*-V.) = Ct (V-x) ............... (1).

Again, since F and G are insulated the positive charge
on G must be numerically equal to the negative charge
oiiF.

The positive charge on G is equal to

while the negative charge on F is numerically equal to

C,(V-y);
since these are equal

Ot (y-V.)=0,(V-y) ............... (2).

When there is no deflection of the electrometer the

potential of F and G is equal to that of B and G,

i.e. y x. When this is the case we see by comparing

equations (1) and (2), that

C,_C2

Ct ~G,

n CzCj
or *

ZE&quot;

Hence, if we know the capacities of the other condensers,

we know Q.

Thus, if we have standard condensers whose capacities

are known, we can measure the capacity of other con-

densers.
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There is a close analogy between the methods of

measuring capacity and those of measuring electrical

resistance. It is convenient to indicate that analogy
here, although the methods of measuring electrical re

sistance have not yet been discussed.

The arrangement of the condensers in the last method
can also be represented by the diagram (Fig. 34). In

this diagram C is the coil and G the electrometer. This

arrangement is analogous to that of resistances in a

Wheatstone s Bridge, see Art. 191, and the condition for

Fig. 34.

the balance of the condensers is the same as that of re

sistances in a Wheatstone bridge if each condenser were re

placed by a resistance inversely proportional to its capacity.

63 a. De Sauty s method. If two of the condensers

C3 and C4 in the last method are replaced by resist

ances R3 and R4 ,
the electrometer by a galvanometer

and the induction coil by a battery with a key for making
and breaking the circuit, we get the arrangement known

as De Sauty s method, Fig. 35. In this method the re-
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sistances Rs and R4 are adjusted so that there is no kick

of the galvanometer on making the battery circuit. If i3

and {4, are the transient currents flowing through R3 and

RI at some short interval after making the circuit, then

neglecting self-induction, the potential difference at this

time between the terminals of the galvanometer will, by
Ohm s law, be R3i3

- R^, and this will be proportional to

the current through the galvanometer at this time. The

quantity of electricity flowing through the galvanometer

during charging will thus be proportional to f(R3i3 R^)dt.

when the integration extends over the time of charging.

Fig. 35.

If no current flows through the galvanometer, the current

i3 goes into the condenser (1) and i4 into condenser (2), so

that

where Ql and Q2 are the final charges in condensers (1)

and (2) respectively. Thus

i,
- R4i4) dt =

T. E.
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since there is no kick of the galvanometer this vanishes,

so that

fl8Ql=^4&.
But when the condensers are charged there is the same

potential difference between the plates of (1) as between

those of (2), hence

Q:fe-4:4,
where Clt Ca are the capacities of the condensers, hence

when there is no kick of the galvanometer

thus the ratio G-JG^ is found as the ratio of two resistances.

We see that again the condition is the same as for the

balance in a Wheatstone bridge in which the condensers

have been replaced by resistances inversely proportional

to their capacity.

Other methods of determining capacity which require

for their explanation a knowledge of the principles of

electro-magnetism, will be described in the part of the

book dealing with that subject.

64. Leyden jar. A convenient form of condenser

called a Leyden jar is represented in Fig. 36. The

o

Fig. 36.
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condenser consists of a vessel made of thin glass; the

inside and outside surfaces of this vessel are coated with

tin-foil. An electrode is connected to the inside of the

jar in order that electrical connection can easily be made

with it. If A is the area of each coat of tin-foil, t the

thickness of the glass, i.e. the distance between the surfaces

of tin-foil, then, if the interval between these surfaces was

filled with air, the capacity would be approximately

A

since this case is approximately that of two parallel

planes provided the thickness of the glass is very small

compared with the dimensions of the vessel. The effect of

having glass within the tin-foil surfaces will, as we shall

see in the next chapter, have the effect of increasing the

capacity so that the capacity of the Leyden jar will be

where K is a quantity which depends on the kind of

glass of which the vessel is made. K varies in value

from 4 to 10 for different specimens of glass.

SYSTEMS OF CONDENSERS.

65. If we have a number of condensers we can con

nect them up so as to make a condenser whose capacity

is either greater or less than that of the individual

condensers.

Thus suppose we have a number of condensers which

in the figures are represented as Leyden jars, and suppose

we connect them up as in Fig. 37, that is, connect all the

82
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insides of the jars together and likewise all the outsides ;

this is called connecting the condensers in parallel. We
thus get a new condenser, one plate of which consists of

all the insides, and the other plate of all the outsides of

the jars. If C is the capacity of the compound condenser,

Q the total charge in this condenser, V the difference of

potential between the plates, then by definition

Fig. 37.

If
Qi&amp;gt; Qz&amp;gt; Qs&amp;gt;

are ^e charges in the first, second,

third, etc. condensers, Clt C2 ,
C3 ,

... the capacities of these

condensers

but Q = Q, + Q, + Q, + ... = (C, + C, + C3 + ...) F,

hence C= C, + (72 + C3 + ...
,

or the capacity of a system of condensers connected in

this way, is the sum of the capacities of its components.

Thus the capacity of the compound system is greater

than that of any of its components.

Next, let the condensers be connected up as in Fig. 38,

where the condensers are insulated, and where the outside

of the first is connected to the inside of the second, the

outside of the second to the inside of the third, and so on.
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This is called connecting the condensers up in cascade

or in series. One plate of the compound system thus

formed is the inside of the first condenser, the other plate

is the outside of the last.

Fig. 38.

Let C be the capacity of the system, Cl} Gz ,
C8) ... the

capacities of the individual condensers; then, since the

condensers are insulated, the charge on the outside of

the first is equal in magnitude and opposite in sign to

the charge on the inside of the second, the charge on the

outside of the second is equal in magnitude and opposite

in sign to the charge on the inside of the third, and so on.

Since the charge on the inside of any jar is equal and

opposite to the charge on the outside, we see that the

charges of the jars are all equal. Let Q be the charge
of any jar, Vlt V2 ... the differences of potential between

the inside and outside of the first, second, . . . jars. Then

F- V = V-1
(V

2

cv
3 ~c3

&quot;

If V is the difference of potential between the outside of

the last jar and the inside of the first, then

F=F1 +F2+F3 ...
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y
so that Q = .

Cl
C2 C3

But, since C is the capacity of the compound condenser of

which Q is the charge, and V the potential difference,

Q = GV,

hence = + ++....
w L^j 1^2 ^3

Thus the reciprocal of the capacity of the system made

by connecting up in cascade the series of condensers, is

equal to the sum of the reciprocals of the capacities of

the condensers so connected up.

We see that the capacity of the compound condenser

is less than that of any of its constituents.

66. If we connect a condenser of small capacity in

cascade with a condenser of large capacity, the capacity of

the compound condenser will be slightly less than that of

the small condenser
;
while if we connect them in parallel,

the capacity of the compound condenser is slightly greater

than that of the large condenser.

67. As another example on the theory of condensers,

let us take the case when two condensers are connected in

parallel, the first having before connection the charge Qlt

the second the charge Q2 . Let (7X and C2 be the capacities

of these condensers respectively. When they are put in

connection they form a condenser whose capacity is Gl + CZt

and whose charge is & + Q2 .

Now the electric energy of a charged condenser is

one half the product of the charge into the potential

difference, while the potential difference is equal to
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the charge divided by the capacity. Thus if Q is the

charge, C the capacity, the energy is

1Q 2

20

Thus the total electric energy of the two jars before

they are connected is

i&! i&2

.

2 C,
+

2 C,

after they are connected it is

Now

1 /Q. Q. \_ 1 (ft + &
;

+
cU 2(4 + ,

an essentially positive quantity which only vanishes if

ft/ft.- ft/ft,

that is, when the potentials of the jars before connection

are equal. In this case the energy after connection is

the same as before the connections are made. If the

potentials
are equal before connection, connecting the

jars will evidently make no difference, as all that con

nection does is to make the potentials equal. In every

other case electric energy is lost when the connection

is made ;
this energy is accounted for by the work done

by the spark which passes when the jars are connected.



CHAPTEE IV

SPECIFIC INDUCTIVE CAPACITY

68. Specific Inductive Capacity. Faraday found

that the charge in a condenser between whose surfaces a

constant difference of potential was maintained depended

upon the nature of the dielectric between the surfaces,

the charge being greater when the interval between the

surfaces was filled with glass or sulphur than when it was

filled with air.

Thus the capacity of a condenser (see Art. 51) de

pends upon the dielectric between the plates. Faraday s

original experiment by which this result was established

was as follows : he took two equal and similar condensers,

A and B, of the kind shown in Fig. 39, made of concentric

spheres ;
in one of these, B, there was an opening by which

melted wax or sulphur could be run into the interval be

tween the spheres. The insides of these condensers were

connected together, as were also the outsides, so that the

potential difference between the plates of the condenser

was the same for A as for B. When air was the dielectric

between the spheres Faraday found, as might have been

expected from the equality of the condensers, that any

charge given to the condensers was equally distributed

between A and B. When however the interval in B was
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filled with sulphur and the condensers again charged he
found that the charge in B was three or four times that

in A, proving that the capacity of B had been in

creased three or four times by the substitution of sulphur
for air.

Fig. 39.

This property of the dielectric is called its specific

inductive capacity. The measure of the specific induc

tive capacity of a dielectric is defined as the ratio of the

capacity of a condenser when the region between its plates

is entirely filled by this dielectric, to the capacity of the

same condenser, when the region between its plates is

entirely filled with air. As far as we know at present,
the specific inductive capacity of a dielectric in a con

denser does not depend upon the difference of potential
established between the plates of that condenser, that is,

upon the electric intensity acting on the dielectric. We
may therefore conclude that, at any rate for a wide range
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of electric intensities, the specific inductive capacity is

independent of the electric intensity.

The following table contains the values of the specific
inductive capacities of some substances which are fre

quently used in a physical laboratory:

Solid paraffin 2 29.

Paraffin oil T92.

Ebonite 315.

Sulphur 3 97.

Mica 6-64.

Dense flint-glass 7 37.

Light flint-glass 6 72.

Turpentine 2 23.

Distilled water 76.

Alcohol 26.

The specific inductive capacity of gases depends upon
the pressure, the difference between K, the specific in

ductive capacity, and unity being directly proportional to

the pressure.

The specific inductive capacity of some gases at

atmospheric pressure is given in the following table
;
the

specific inductive capacity of air at atmospheric pressure
is taken as unity:

Hydrogen 999674.

Carbonic acid 1 000356.

Carbonic oxide I OOOl.

Olefiant gas 1-000722.

69. It was the discovery of this property of the di

electric which led Faraday to the view we have explained,

in Art. 38, that the effects observed in the electric field
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are not due to the action at a distance of one electrified

body on another, but are due to effects in the dielectric

filling the space between the electrified bodies.

The results obtained in Chapters II and ill were

deduced on the supposition that there was only one

dielectric, air, in the field
;
these require modification in

the general case when we have any number of dielectrics

in the field. We shall now go on to consider the theory

of this general case.

We assume that each unit of positive electricity, what

ever be the medium by which it is surrounded, is the

origin of a Faraday tube, each unit of negative electricity

the termination of one. Let us consider from this point

of view the case of two parallel plate condensers A and B,

the plates ofA and ofB being at the same distance apart,

but while the plates of A are separated by air, those

of B are separated by a medium whose specific inductive

capacity is K. Let us suppose that the charge per unit

area on the plates of the condensers A and B is the same.

Then, since the capacity of the condenser B is K times

that of A and since the charges are equal, the potential

difference between the plates of B is only I/K of that

between the plates of A.

Now if VP is the potential at P, VQ that at Q, R the

electric intensity along PQ, then, whatever be the nature

of the dielectric, when PQ is small enough to allow of

the intensity along it being regarded as constant,

VP-VQ
.................. (1),

for by definition R is the force on unit charge, hence the

left-hand side of this expression is the work done on unit
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charge as it moves from P to Q, and is thus by definition,

(Art. 16), equal to the right-hand side of (1).

The electric intensity between the plates both of A
and of B is uniform, and is equal to the difference of

potential between the plates divided by the distance

between the plates; this distance is the same for the

plates A and B, so that the electric intensity between

the plates of A is to that between the plates of B as the

potential difference between the plates of A is to that

between the plates of B. That is, the electric intensity
in A is K times that in B.

Consider now these two condensers. Since the charges
on unit area of the plates are equal the number of

Faraday tubes passing through the dielectric between

the plates is the same, while the electric intensity in B
is only l/K that in air. Hence we conclude that when
the number of Faraday tubes which pass through unit

area of a dielectric whose specific inductive capacity is K
is the same as the number which pass through unit area

in air, the electric intensity in the dielectric is l/K of the

electric intensity in air.

By Art. 40, we see that ifN is the number of Faraday
tubes passing through unit area in air, and R is the

electric intensity in air,

R = 4&amp;gt;7rN.

Hence, when N tubes pass through unit area in a medium
whose specific inductive capacity is K, the electric in

tensity, R, in this dielectric is given by the equation
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70. Polarization in a dielectric. We define the

polarization in the direction PQ where P and Q are two

points close together as the excess of number of Faraday

tubes which pass from the side P to the side Q over the

number which pass from the side Q to the side P of a

plane of unit area drawn between P and Q at right

angles to PQ. We may express the result in Art. 68 in

the form

(electric intensity in any direction at P)

=
-JJT (polarization

in the dielectric in that direction at P).

The polarization in a dielectric is mathematically

identical with the quantity called by Maxwell the electric

displacement in the dielectric.

71. Thus the polarization along the outward-drawn

normal at P to a surface is the excess of the number

of Faraday tubes which leave the surface through unit

area at P over the number entering it. If we divide any
closed surface up as in Art. 9 into a number of small

meshes, each of these meshes being so small that the

polarization over the area of any mesh may be regarded

as constant, then if we multiply the area of each of the

meshes by the normal polarization at this mesh measured

outwards, the sum. of the products taken for all the

meshes which cover the surface is defined to be the total

normal polarization outwards from the surface. We see

that it is equal to the excess of the number of Faraday tubes

which leave the surface over the number which enter it.

Now consider any tube which does not begin or end

inside the closed surface, then if it meets the surface at

all it will do so at two places, P and Q ;
at one of these
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it will be going from the inside to the outside of the

surface, at the other from the outside to the inside. Such

a tube will not contribute anything to the total normal

polarization outwards from the surface, for at the place

where it leaves the surface it contributes + 1 to this

quantity, which is neutralized by the 1 which it contri

butes at the place where it enters the surface.

Now consider a tube starting inside the surface
;
this

tube will leave the surface but not enter it, or if the surface

is bent so that the tube cuts the surface more than once,

it will leave the surface once oftener than it enters it.

This tube will therefore contribute -f 1 to the total out

ward normal polarization: similarly we may show that each

tube which ends inside the surface contributes 1 to the

total outward normal polarization. Thus if there are N
tubes which begin, and M tubes which end inside the

surface, the total normal polarization is equal to N M.

But each tube which begins inside the surface corresponds

to a unit positive charge, each tube which ends in the

surface to a unit negative one, so that N M is the differ

ence between the positive and negative charges inside the

surface, that is, it is the total charge inside the surface.

Thus we see that the total normal polarization over

a closed surface is equal to the charge inside the surface.

Since the normal polarization is equal to Kj^ir times

the normal intensity where K is the specific inductive

capacity, which is equal to unity for air, we see that when

the dielectric is air the preceding theorem is identical

with Gauss s theorem, Art. 10. In the form stated above

it is applicable whatever dielectrics may be in the field,

when in general Gauss s theorem as stated in Art. 10

ceases to be true.
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72. Modification of Coulomb s equation. If a

is the surface density of the electricity on a conductor,

then cr Faraday tubes pass through unit area of a plane
drawn in the dielectric just above the conductor at right

angles to the normal. Hence a is the polarization in

the dielectric in the direction of the normal to the con

ductor. Hence, by Art. 69, if R is the normal electric

intensity

This is Coulomb s equation generalized so as to apply
to the case when the conductor is in contact with any
dielectric.

73. Expression for the Energy. The student

will see that the process of Art. 23 by which the expression

^(EV) was proved to represent the electric energy
of the system will apply whatever the nature of the

dielectric may be, as will also the immediate deduction

from it in Art. 43 that the energy is the same as it would

be if each Faraday tube possessed an amount of energy

equal per unit length to one-half the electric intensity.

The expression for the energy per unit volume how

ever requires modification. Consider, as in Art. 43, a

cylinder whose axis is parallel to the electric intensity

and whose flat ends are at right angles to it, let I be the

length of the cylinder, w the area of one of the ends,

P the polarization, R the electric intensity. Then the

portion of each Faraday tube inside the cylinder has an

amount of energy equal to
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Now the number of such tubes inside the cylinder is equal
to Pa, hence the energy inside the cylinder is equal to

Since lw is the volume of the cylinder, the energy per
unit volume is equal to

but by Art. 69 P = -R,
4i7T

so that the energy per unit volume is equal to

Thus, for the same electric intensity the energy per
unit volume of the dielectric is K times as great as it

is in air. Another expression for the energy per unit

volume is

so that for same polarization the energy per unit volume

in the dielectric is only l/Kih part of what it is in air.

We see, as in Art. 45, that the pull along each Faraday
tube will still equal one-half the electric intensity R\
the tension across unit area in the dielectric will therefore

KR*
be -Q ,

the lateral pressure will also be equal to KR2

/87r.

74. Conditions to be satisfied at the boundary
between two media of different specific inductive

capacities. Suppose that the line AB represents the
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section by the plane of the paper of the plane of separa
tion between two different dielectrics

;
let the specific

inductive capacities of the upper and lower media re

spectively be Kl) K2 .

Let us consider the conditions which must hold at

the surface. In the first place we see that the electric

intensities parallel to the surface must be equal in the

two media
;
for if they were not equal, and that in the

medium Kt were the greater, we could get an infinite

amount of work by making unit charge travel round

the closed circuit PQRS, PQ being just above, and RS
just below the surface of separation. For, if PQ is the

direction of ^ the tangential component of the electric

intensity in the upper medium, the work done on unit

s R

Fig. 40.

charge as its goes from P to Q is ^ . PQ ;
as QR is ex

ceedingly small compared with PQ the work done on or

by the charge as it goes from Q to R may be neglected
if the normal intensity is not infinite

;
the work required

to take the unit charge back from R to S is T2 . RS,
if T2 is the tangential component of the electric intensity
in the lower dielectric, and the work done or spent in

going from S to P will be equal to that spent or done in

going from Q to R and may be neglected. Thus since the

system is brought back to the state from which it started,

the work done must vanish, and hence 2\ . PQ Tz . RS
must be zero. But since PQ = RS this requires that

Tl
= T2 or the tangential components of the electric

intensity must be the same in the two media.

T. E. 9
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Next suppose that a is the surface density of the

free electricity on the surface separating the two media.

Draw a very flat circular cylinder shown in section at

PQRS, the axis of this cylinder being parallel to the

normal to the surface of separation, the top face of this

cylinder being just above, the lower face just below this

surface. As the length of this cylinder is very small com

pared with its breadth, the area of the curved surface

of the cylinder will be very small compared with the

area of its ends, and by making the cylinder sufficiently

short we can make the ratio of the area of the curved

surface to that of the ends as small as we please. Hence

in considering the total outward normal polarization over

the very short cylinder, we may leave out the effect of

the curved surface and consider only the flat ends of the

cylinder. But since the cylinder encloses the charge aw,

if o&amp;gt; is the area of one end of the cylinder, the total normal

polarization over its surface must be equal to crco. If Nl

is the normal polarization in the first medium measured

upwards the total normal polarization over the top of the

cylinder is N^; if N2 is the normal polarization measured

upwards in the second medium, the total normal polariza

tion over the lower face of the cylinder is N2 co ;
hence

the total outward normal polarization over the cylinder is

Since, by Art. 71, this is equal to o-co, we have

N.-N^a.
When there is no charge on the surface separating

the two dielectrics, these conditions become (1) that the

tangential electric intensities, and (2) the normal polariza

tions, must be equal in the two media.
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75. Refraction of the lines of force. Suppose
that R2 is the resultant electric intensity in the upper

medium, Rz that in the lower; and 1} 2 the angles these

make with the normal to the surface of separation. The

tangential intensity in the first medium is Rl sin01 ,
that

in the second is R^ sin 2 ,
and since these are equal

The normal intensity in the upper medium is R1 cos lt

hence the normal polarization in the upper medium is

cos

that in the second is K^RZ cos #2/4&amp;lt;7r,
and since, if there

is no charge on the surface, these are equal, we have

(2);

dividing (1) by (2), we get

-JT
tan &i = -fr

tan #2 -K l /i 3

Hence, if Kl &amp;gt; K2 , 1 is &amp;gt; #2 ,
and thus when a Faraday

tube enters a medium of greater specific inductive capacity
from one of less, it is bent away from the normal.

This is shown in the diagram Fig. 41 (from Lord

Kelvin s Reprint of Papers on Electrostatics and Mag
netism), which represents the Faraday tubes when a sphere,
made of paraffin or some material whose specific inductive

capacity is greater than unity, is placed in a field of uni

form force such as that between two infinite parallel plates.

An inspection of the diagram shows the tendency of

the tubes to run as much as possible through the sphere ;

this is an example of the principle that when a system
is in stable equilibrium the potential energy is as small

9-2
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as possible. We saw, Art. 73, that when the polarization

is P the energy per unit volume is 27rP2

/K, thus for the

same value of P, this quantity is less in paraffin than it

is in air. Hence when the same number of tubes pass

through the paraffin they have less energy in unit volume

than when they pass through air, and there is therefore

a tendency for the tubes to flock into the paraffin. The

reason why all the tubes do not run into the sphere is

that those which are some distance away from it would

have to bend considerably in order to reach the paraffin,

Fig. 41.

they would therefore have to greatly lengthen their path

in the air, and the increase in the energy consequent

upon this would not be compensated for in the case of the

tubes some distance originally from the sphere by the

diminution in the energy when they got in the sphere.

In Fig. 42 (from Lord Kelvin s Reprint of Papers on

Electrostatics and Magnetism) the effect produced on a

field of uniform force by a conducting sphere is given for

comparison with the effects produced by the paraffin
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sphere. It will be noticed that the paraffin sphere pro

duces effects similar in kind though not so great in

degree as those due to the conducting sphere. This obser

vation is true for all electrostatic phenomena, for we find

that bodies having a greater specific inductive capacity

than the surrounding dielectric behave in a similar way to

conductors. Thus, they deflect the Faraday tubes in the

same way though not to the same extent; again, as a con

ductor tends to move from the weak to the strong parts of

Fig. 42.

the field, so likewise does a dielectric surrounded by one

of smaller specific inductive capacity. Again, the electric

intensity inside a conductor vanishes, and just inside a

dielectric of greater specific inductive capacity than the

surrounding medium the electric intensity is less than that

just outside. As far as electrostatic phenomena are con

cerned an insulated conductor behaves like a dielectric

of infinitely great specific inductive capacity.
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76. Force between two small charged bodies

immersed in any dielectric. If we have a small body
with a charge e immersed in a medium whose specific

inductive capacity is K, then the polarization at a dis

tance r from the body is
e/4&amp;gt;7rr-.

To prove this, describe

a sphere radius r, with its centre at the small body, then

the polarization P will be uniform over the surface of

the sphere and radial
;
hence the total normal polarization

over the surface of the sphere will equal P x (surface

of the sphere), i.e. P x 4-Trr
2

;
but this, by Art. 71, is equal

to e, hence
P x 4?rr2 =

e,

But, if R is the electric intensity, then, by Art. 70

7?
4-7T pR =
g.P.

Hence, by (1), R =
j^\

the repulsion on a charge e is Re
,
or ee /Kr~ ;

hence the

repulsion between the charges, when separated by a dis

tance r in a dielectric whose specific inductive capacity

is K, is only l/Kth part of the repulsion between the

charges when they are separated by the same distance in

air. Thus, when the charges are given, the mechanical

forces on the bodies in the field are diminished when the

charges are imbedded in a medium with a large specific

inductive capacity. We can easily show that the inter

position between the charges of a spherical shell of the

dielectric with its centre at either of the charges would

not affect the force between these charges.
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77. Two parallel plates separated by a di

electric. Let us first take the case of two parallel

plates completely immersed in an insulating medium

whose specific inductive capacity is K. Let V be the

potential difference between the plates, cr the surface

density of the electrification on the positive plate, and

- a that on the negative. Let R be the electric intensity

between the plates, and d the distance by which they

are separated ; then, by Art. 72,

47TO- = KR

_KV
d

The force on one of the plates per unit area is, by Art. 37,

-27TQ-

K
Hence if the charges are given the force between the

plates is inversely proportional to the specific inductive

capacity of the medium in which they are immersed.

Again, since

we see that, if the potentials of the plates be given, the

attraction between them is directly proportional to the

specific inductive capacity. This result is an example of

the following more general one which we leave to the

reader to work out
;

if in a system of conductors main

tained at given potentials and originally separated from

each other by air we replace the air by a dielectric whose

specific inductive capacity is K, keeping the positions of
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the conductors and their potentials the same as before, the

forces between the conductors will be increased K times.

Thus, for example, if we fill the space between the

needles and the quadrants of an electrometer with a

fluid whose specific inductive capacity is K, keeping the

potentials of the needles and quadrants constant, the

couple on the needle will be increased K times by the

introduction of the fluid. Thus, if we measure the couples

before and after the introduction of the fluid, the ratio

of the two will give us the specific inductive capacity

of the fluid. This method has been applied to measure

the specific inductive capacity of those liquids, such as

water or alcohol, which are not sufficiently good insulators

to allow the method described in Art. 82 to be applied.

VllllllllllllllllllllllllllllllllllllllllllllllllJft

c

D

Fig. 43.

78. We shall next consider the case in which a

slab of dielectric is placed between two infinite parallel

conducting planes, the faces of the slab being parallel to

the planes.

Let d be the distance between the planes, t the

thickness of the slab, h the distance between the upper
face of the slab and the upper plane. The Faraday tubes

will go straight across from plane to plane, so that the

polarization will be everywhere normal to the conducting
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planes and to the planes separating the slab of dielectric

from the air.

We saw in Art. 74 that the normal polarization does

not change as we pass from one medium to another, and

as the tubes are straight the polarization will not change
as long as we remain in one medium. Thus the polariza

tion which we shall denote by P is constant between the

planes. In air the electric intensity is 4-TrP; in the dielectric

of specific inductive capacity K, the electric intensity is

equal to 47rP/^T.

Thus between A and B the electric intensity is 4-TrP,

4&amp;lt;7rP

B and C ~-
,K

(7andD 4-rrP.

The difference of potential between the plates is the

work done on unit charge when it is taken from one plate

to the other. Now, when unit charge is taken across the

space AB, the work done on it is

4-TrP x h
;

when it is taken across the plate of dielectric the work

done is

4?rP

K Xt
&amp;gt;

when it is taken across CD the work done is

4nrP{d-(h+t)}.
Hence V, the excess of the potential of the plate A

above that of D, is equal to

{d
-

(h + 1)}
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If o- is the surface density of the electricity on the

positive plate, a = P, so that

(1).

Hence the capacity per unit area of the plate, i.e. the

value of o- when V = 1, is

J.

4&amp;lt;7rld- t + ^

i.e. it is the same as if the plate of dielectric were re

placed by a plate of air whose thickness was t/K. The

presence of the dielectric increases the capacity of the

condenser. The alteration in the capacity does not depend

upon the position of the slab of dielectric between the

parallel plates.

Let us now consider the force between the plates;
the force per unit area

where R is the electric intensity at the surface of the

plate ; but, since the surface of the plate is in contact

with air, R =
47rcr, and thus the force per unit area on

either plate
= 27TO-

2
.

Hence if the charges on the plates are given, the attraction

between them is not affected by the interposition of the

plate of dielectric.

Next, let the potentials be given ;
we see from equa

tion (1) that

V
O- = , _;
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hence 27ro-
2
,
the force per unit area, is equal to

F2

The force between the plates when there is nothing

but air between them, is

V_^

bird*

Now since K is greater than 1, dt + t/K is less

than d, so that l/(d
- 1 + t/K)*- is greater than l/d

2
. Thus,

when the potentials are given, the force between the plates

is increased by the interposition of the dielectric.

If K be very great, tjK is very small, thus d 1 4- t/K
is very nearly equal to d t, and the effect of the inter

position of the slab of dielectric both on the capacity

and on the force between the plates is approximately
the same as if the plates had been pushed towards

each other through a distance equal to the thickness

of the slab, the dielectric between the plates being now

supposed to be air. This result, which is approximately
true whenever the specific inductive capacity of the slab

is very large, is rigorously true when the slab is made of

a conducting material.

Effect of the slab of dielectric on the potential

energy for given charges. The potential energy is, by
Art. 23, equal to

and thus the energy corresponding to the charge on each

unit of area of the plates is equal to
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by equation (1) this is equal to

and it is thus when K &amp;gt; 1 less than 27r&amp;lt;r

2

rf, the value of

the energy for the same charges when no slab of dielectric

is interposed. The interposition of the slab thus lowers

the potential energy. We can easily see why this is the

case. When the charges are given the number of Faraday
tubes is given : and, when the plate of dielectric is in

terposed, the Faraday tubes in part of their journey
between the plates are in the dielectric instead of in air,

and we know from Art. 73 that when the Faraday tubes

are in the dielectric their energy is less than when they
are in air. Since the potential energy of a system always
tends to become as small as possible, there will be a

tendency to drag as much as possible of the slab of

dielectric between the plates of the condenser. Thus,

if the slab of dielectric projected on one side beyond the

plates it would be drawn between the plates until as

much of its area as possible was within the region between

the plates.

Effect of the slab on the potential energy for a

given difference of potential. The energy per unit

area of the plates is as we have seen equal to

this by equation (1) is equal to

1 F2

K
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If the potential difference is given the energy when no

slab is interposed is

so that when the potential difference is kept constant the

electric energy is increased by the interposition of the slab.

79. Capacity of two concentric spheres with a

shell of dielectric interposed between them. If we

have two concentric conducting spheres with a concentric

shell of dielectric between them, and if e be the charge

on the inner sphere, a the radius of this sphere and b, c

the radii of the inner and outer surfaces of the dielectric

shell, and d the inner radius of the outer&quot; conducting

sphere, then if V be the difference of potential between

the conducting spheres, and K the specific inductive

capacity of the shell, we may easily prove that

-
a bK\b c

Thus the capacity of the system is equal to

1

a d \ Kl\b

80. Two coaxial cylinders. As another example,
we shall take the case of two coaxial cylinders with a

coaxial cylindric shell of a dielectric, specific inductive

capacity K, placed between them. If V be the difference

of potential between the two conducting cylinders, E the

charge per unit length on the inner cylinder, a the radius

of this inner cylinder, b and c the radii of the inner and

outer surfaces of the dielectric shell and d the inner radius
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of the outer cylinder, we easily find by the aid of Art. 58
that

1 C ,

so that the capacity per unit length of this system is

1

b 1 c .d}

81. Force on a piece of dielectric placed in an
electric field. If a piece of a dielectric such as sulphur or

glass is placed in the electric field, then, when the Faraday
tubes traverse the dielectric there is, Art. 73, less energy

per unit volume than when the same number of Faraday
tubes pass through air. Thus, as we see in Fig. 39, the

Faraday tubes tend to run through the dielectric, because

by so doing the potential energy is decreased. If the

dielectric is free to move, it can still further decrease

the energy by moving from its original position to one

where the tubes are more thickly congregated, because the

more tubes which get through the dielectric the greater
the decrease in the potential energy. The body will tend

to move so as to make the decrease in the energy as great
as possible, thus it will tend to move so as to be traversed

by as great a number of Faraday tubes as possible. It

will therefore be urged towards the part of the field where

the Faraday tubes are densest, i.e. to the strongest parts

of the field. There will thus be a force on a piece of

dielectric tending to make it move from the weak to the

strong parts of the field. The dielectric will not move

except in a variable field where it can get more Faraday
tubes by its change of position. In a uniform field such
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as that between two parallel infinite plates the dielectric

would have no tendency to move.

The force acting upon the dielectric differs in another

respect from that acting on a charged body, inasmuch

as it would not be altered if the direction of the electric

intensity at each point in the field were reversed without

altering its magnitude.

82. Measurement of specific inductive capacity.

The specific inductive capacity of a slab of dielectric can

be measured in the following way, provided we have a

parallel plate condenser one plate of which can be moved

by means of a screw through a distance which can be

accurately measured. To avoid the disturbance due to the

irregular distribution of the charge near the edges of the

plates (see Art. 57) care must be taken that the distance

between the plates never exceeds a small fraction of the

diameter of the plates. Let us call this parallel plate con

denser A
;
to use the method described in Art. 63, first take

the condenser A and before inserting the slab of dielectric

adjust the other variable condenser used in that method

until there is no deflection of the electrometer. If the slab

of dielectric be now inserted between the plates of A the

capacity will be increased, A will no longer be balanced by
the other condensers and the electrometer will be deflected.

The capacity of A can be diminished by screwing the plates

further apart, and when the plates have been moved

through a certain distance, the diminution in the capacity
due to the increase in the distance between the plates

will balance the increase due to the insertion of the slab

of dielectric
;
the stage when this occurs will be indicated

by there being again no deflection of the electrometer.
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Suppose that when the deflection of the electrometer is

zero before the slab is inserted, the distance between the

plates of the condenser is d, while the distance after the

slab is inserted, when the electrometer is again in equili

brium, is d . Then the capacity of A in these two cases

is the same. But if A is the area of the plate of A the

capacity before the slab is inserted is

A

If t is the thickness of the slab and K its specific inductive

capacity, the capacity after the insertion of the slab is (see

Art. 78) equal to

4?r (d! - t + g
but since the capacities are equal

so that d -d =

But d - d is the distance through which the plate has

been moved, so that if we know this distance and t we can

determine K the specific inductive capacity of the slab.

It should be noticed that this method does not require

a knowledge of the initial or final distances between

the plates, but only the difference of these quantities,

and this can be measured with great accuracy by the

screw attached to the moveable plate.



CHAPTER V.

ELECTRICAL IMAGES AND INVERSION.

83. We shall now proceed to discuss some geometrical
methods by which we can find the distribution of electricity

in several very important cases. We shall illustrate the

first method by considering a very simple example ;
that

of a very small charged body placed in front of an infinite

conducting plane maintained at potential zero. Let P,

Fig. 44, be the charged body, AB the conducting plane.

Fig. 44.

Any solution of the problem must satisfy the following

conditions in the region to the right of the plane AB ;

(a) it must make the potential zero over the plane AB,
and (fi) it must make the total outward normal induction

taken over any closed surface enclosing P equal to
4&amp;gt;7re,

where e is the charge at P, while if the closed surface does

T. E. 10
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not enclose P the total normal induction over it must

vanish. We shall now prove that there is only one solution

which satisfies these conditions. Suppose there were two

different solutions, which we shall call (1) and (2). Take
the solution corresponding to (2) and reverse the sign of

all the charges of electricity in the field, including that at

P
;
this new solution, which we shall denote by (- 2), will

correspond to a field in which the electric intensity at any

point is equal and opposite to that due to the solution (2)

at the same point. The solution ( 2) corresponds to a

field in which the electric potential is zero over AB and

at any point at an infinite distance from P
;

it also makes

the total normal induction over any closed surface enclos

ing P equal to 4?re, that is equal and opposite to the

total induction over the same surface due to the solution

(1) ;
and the total induction over any other closed surface

in the region to the right of AB zero. Now consider the

field got by superposing the solutions (1) and ( 2): it will

have the following properties ;
the potential over AB will

be zero and the total normal induction over any closed

surface in the region to the right of AB will vanish.

Since the normal induction vanishes over all closed

surfaces in this region, there will in the field correspond

ing to this solution be no charge of electricity. We may
regard the region as the inside of a closed surface at zero

potential (bounded by the plane AB and an equipotential

surface at an infinite distance) : by Art. 18, however, the

electric intensity must vanish throughout this region as

there is no charge inside it. Thus, the electric intensity

in the field corresponding to the superposition of the

solutions (1) and ( 2) is zero : that is, the electric

intensity in the solution (1) is equal and opposite to that
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in ( 2). But the electric intensity in ( 2) is equal and

opposite to that in (2). Hence the electric intensity in

(1) is at all points the same as (2), in other words, the

solutions give identical electric fields. Hence, if we get in

any way a solution satisfying the conditions (a) and
(/:?),

it

must be the only solution of the problem.

84. Let P be a point on the prolongation of the

perpendicular PN let fall from P on the plane, such that

PN = PN, and let a charge equal to e be placed at P .

Consider the properties, in the region to the right of AB,
of the field due to the charge e at P and the charge e

atP .

The potential due to e at P and 4- e at P at a point

Q on the plane AB is equal to

But since AB bisects PP at right angles PQ = P Q, thus

the potential at Q vanishes. Again, any closed surface

drawn in the region to the right of the plane AB does not

enclose P
,
and thus the charge at P is without effect

upon the total induction over any such surface. The total

induction over such a surface is zero or 4nre according as

the closed surface does not or does include P. In the

region to the right of AB the electric field due to e at P
and e Sit P thus satisfies the conditions (a) and (ft) and

therefore represents the state of the electric field. Thus

the electrical effect of the electricity induced on the

conducting plane AB will be the same as that of the

charge e at P at all points to the right of AB. This

charge at P is called the electrical image of the charge P
in the plane.

102
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The attraction on P towards the plane will be the

same as the attraction between the charges e at P, and

-e at P
,
that is

(2P)2
~
4

Thus the attraction on the charged body varies inversely

as the square of its distance from the plane.

To find the surface density of the electricity induced

on the plane AB we require the electric intensity at right

angles to the plane. The electric intensity at right angles

to the plane AB at a point Q on the plane due to the

charge e at P is equal to

_e_ PjV

P&amp;lt;2

2
P&amp;lt;2

and acts from right to left. The electric intensity at Q

due to - e at P in the same direction is

e P N
P Q* P Q

Hence since PQ = P Q and PN = PN the resultant normal

electric intensity at Q is

PQ*

This, by Coulomb s law, is equal to 4?ro-, if a is the

surface density of the electricity at Q, and hence

or the surface density varies inversely as the cube of the

distance from P.

The total charge of electricity on the plane is - e, as

all the tubes which start from P end on the plane.
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The electrical energy is equal to ^EV, so that if

the small body at P is a sphere of radius a, the energy
in the field is equal to

le* 1 e
2

The dielectric in this case is supposed to be air. The

electric intensity vanishes in the region to the left of AB

85. Electrical images for spherical conductors

In applying the method of images to spherical conductors

we make great use of the following theorem due to Apol-
lonius. If S, Fig. 45, is a point on a sphere whose centre

is and radius a, and P and Q are two fixed points on

a straight line passing through 0, such that OP . OQ = a2
,

then QS/PS is constant wherever S may be on the sphere.

Fig. 45.

Consider the triangles QOS, POS. Since

OQ.OP-OS;
&amp;lt;g-&amp;lt;g,

hence these triangles have the angle at common and the

sides about this angle proportional. They are therefore

similar triangles, so that

QS _PS
OQ

&quot;

08
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QS__OQ_OS
PS~OS OP

Hence QS/PS is constant whatever may be the position

of S on the sphere.

86. Now suppose that we have a spherical shell (Fig.

45) at potential zero whose centre is at and that a small

body with a charge e of electricity is placed at P and that

we wish to find the electric field outside the sphere.

There is no field inside the sphere, as the sphere is an

equipotential surface with no charge inside it.

Let OP =/, 08 = a. Consider the field due to a charge

e at P, and e at Q where OQ.OP = a?. The potential at

a point 8 on the sphere due to the two charges is

But by Art. 85,

a

Thus the potential at $ =
j
e + e -

Hence, if e = -
ea/f, the potential is zero over the

surface. Thus, under these circumstances the field satisfies

condition (a) of Art. 83, and it obviously satisfies the

condition that the total normal induction over any closed

surface not enclosing the sphere is zero or 4-Tre according

as the surface does not or does enclose P, so that, by
Art. 83 this is the actual field due to the sphere and the

charged body. Hence, at a point outside the sphere, the

effect of the electricity induced on the sphere by the
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charge at P is the same as that of a charge ea/f at Q.

This charge at Q is called the electrical image of P in the

sphere. Since this charge produces the same effect as

the electrification on the sphere, the total charge on the

sphere must equal the charge at Q, i.e. it must be equal to

ea/f (compare Art. 30). Thus of the Faraday tubes

which start from P the fraction a/f fall on the sphere.

The force on P is an attraction towards the sphere and

is equal to

a e
z a e2 _ a e

2

e^fa

fPQ*
=
f(OP-OQ)*

=
/ ( f

o?

(
f~f

We see from this result that, when the distance of P
from the centre of the sphere is large compared with the

radius, the force varies inversely as the cube of the

distance from the centre of the sphere : while when P
is close to the surface of the sphere the force varies

inversely as the square of the distance from the nearest

point on the surface of the sphere. When P is very

near to the surface of the sphere, the problem becomes

practically identical with that of a charge placed in front

of a plane at potential zero. We shall leave it as an

exercise for the student to deduce the solution for the

plane as the limit of that of the sphere.

If the body at P is a small sphere of radius b, then

since the electric energy is equal to yEV, it is in this case

ea 1

or
1

&amp;lt;1_

a )

\ / /
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87. To find the surface density at a point S on the

surface of the sphere, we must find the electric intensity

along the normal.

The electric intensity at 8 due to the charge e at P
can by the triangle of forces be resolved into the two com

ponents

/ x
e OS

i no() -
2 along OS,

parallel to PO,

while the electric intensity at S due to the charge ea/f
at Q can be resolved into the components

, . ea I OS .

(7)
~

oiag08

Hence the components of the resultant intensity are a 4- 7

along the normal OS, and ft + 8 parallel to PO.

Now the resultant intensity is along the normal, so

that the component /3 + S must vanish, and the resultant

intensity along the normal is equal to a + 7, i.e. to

r,of
1 a_I_)e - 08

lFS&amp;gt;-fQ&\

Since PS/QS is constant, the quantity inside the brackets

is constant.
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If a- is the surface density of the electrification at 8,

then, by Coulomb s law,

eOS

f \Q8J j
P&

so that the surface density of the electrification varies

inversely as the cube of the distance from P, and is, since

/ is greater than a, everywhere negative.

88. If the sphere is insulated instead of being at zero

potential, the conditions are that the potential over the

sphere should be constant and that the charge on the

sphere should be zero. The charge on the sphere in

the last case was ea/f. Hence if we superpose on the

last solution the field due to a quantity of electricity

equal to ea/f placed at the centre of the sphere, which

will give rise to a uniform potential over the sphere, the

resulting field at points outside the sphere will have the

following properties; (1) the potential over the sphere is

constant, (2) the total charge on the sphere is zero,

(3) the total normal induction over any closed surface is

equal to 4?re if the surface encloses P and is zero if it

does not. Hence it is the solution in the region outside

the sphere when a charge e is placed at P in front of an

insulated conducting sphere. Thus, outside the insulated

sphere the electric field is the same as that due to the

three charges, e at P, ea/f at Q, ea/f at 0. Let us

consider the potential of the sphere: the charges at P
and Q together produce zero potential over the sphere,

so that the potential will be that due to the charge ea/f,

at
;
this charge produces at any point on the sphere a

potential equal to e/f, so that by the presence of e at
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P the potential of the sphere is raised by e/f. This

result was proved by a different method in Art. 29.

The force on P in this case is an attraction equal to

e
2 a e2a

/

so that in this case, when/ is very large compared with a

the force varies inversely as the fifth power of the distance.

When the point is very close to the surface of the sphere

the force is the same as if the sphere were at zero

potential.

The potential energy, ^%EV is, if the body at P is a

small sphere of radius 6, equal to

ea ea

To find the surface density at $, we must superpose on

the value given in Art. 87, the uniform density

ea

Thus

4&quot;7T&amp;lt;7= PS 3

At R the point on the sphere nearest to l\

PR=f-a,



88] ELECTRICAL IMAGES AND INVERSION 155

so that the surface density at R is equal to

JL *_ \
f+a II

47ra((/-a)
2

f]

_

47T/(/-a)
2

At R the point on the sphere most remote from P,

PR =f+a,

and the surface density at R is equal to

Since the total charge on the sphere is zero, the surface

density of the electricity must be negative on one part of

the sphere, positive on another part. The two parts will

be separated by a line on the sphere along which there is

no electrification. To find the position of this line put a

equal to zero in equation (1), we get if S is a point on

this line

= OP-xPQ,

hence the points at which the electrification vanishes will

be at a distance (OP
2 x PQ)4 from P.

The parts of the surface of the sphere whose distances

from P are less than this value are charged with electricity

of the opposite sign to that at P, the other parts of the

sphere are charged with electricity of the same sign as

that at P.
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89. If the sphere instead of being insulated and with

out charge is insulated and has a charge E, we can deduce

the solution by superposing on the field discussed in Art.

88 that due to a charge E uniformly distributed over the

surface of the sphere ;
this at a point outside the sphere

is the same as that due to a charge E at 0. Thus the

field outside the sphere is in this case the same as that

due to charges
ecu r ea nE + y at 0, -

-j
at Q, e at P.

The repulsive force acting on P is equal to

ea\ e e2a
+7)f*~T^

When the point is very near the sphere we may put

/= + #, where x is small, arid then the repulsion is

approximately equal to

Ee e
2

a* ~4oT2

and this is negative, i.e. the force is attractive unless

Thus, when the charges are given, and when P gets
within a certain distance of the sphere, P will be attracted

towards the sphere even though the sphere is charged with

electricity of the same sign as that on P. When we
recede from the sphere we reach a place where the attrac

tion changes to repulsion, and at this point there is no

force on P. Thus ifP is placed at this point, it will be in
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equilibrium. The equilibrium will, however, be unstable,

for if we displace P towards the sphere the force on it

becomes attractive and so tends to bring P still nearer to

the sphere, that is to increase its displacement, while if we

displace P away from the sphere the force on it becomes

repulsive and tends to push P still further away from the

sphere, thus again increasing the displacement. This is an

example of a more general theorem due to Earnshaw that

no charged body (whether charged by induction or other

wise) can be in stable equilibrium in the electrostatic field

under the influence of electric forces alone.

90. If the potential of the sphere is given instead of

the charge, we can still use a similar method to find the

field round the sphere. Thus if the potential of the sphere

is F, then the field outside the sphere is the same as

that due to a charge Va at 0, ea/f at Q, and e at P.

91. Sphere placed in a uniform field. As the

point P moves further and further away from the

Faraday tubes due to the charge at P get to be in the

neighbourhood of the sphere more and more nearly parallel

to OP, thus when P is at a very great distance from the

sphere the problems we have just considered become in the

limit problems relating to the distribution of electricity on

a sphere placed in a uniform electric field.

Suppose that, as the charged body P travels away from

the sphere, the charge e increases in such a way that the

electric intensity at the centre of the sphere due to this

charge remains finite and equal to F, we have thus
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Now consider the problem of an insulated sphere

without charge placed in this uniform field. We see by
Art. 88 that the electrification on the sphere produces the

same effect at points outside the sphere as would be pro

duced by two charges, one equal to ea/f placed at the

centre 0, the other equal to ea/f at Q the image of P. If

we express these charges in terms of F we see that they are

equal respectively to + Fa/,
when /is infinite they are also

infinite. Since OQ= az

/fthe distance between these charges

diminishes indefinitely as/ increases, and we see that the

product of either of the charges into the distance between

them is equal to Fa3 and is finite. The electrification

over the surface of the sphere when placed in a uniform

field produces the same effect therefore as an electrical

system consisting of two oppositely charged bodies, placed

at a very short distance apart, the charges on the bodies

being equal in magnitude and so large that the product of

either of the charges into the distance between them is

finite. Such a system is called an electrical doublet and

the product of either of the charges into the distance

between them is called the moment of the doublet.

92. Electric field due to a doublet. Let A, B
be the two charged bodies, let e be the charge at A

,
e
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that at B- let be the middle point of AB, M the

moment of the doublet. Let C be a point at which the

electric intensity is required, and let the angle A 00 = 6.

The intensity at right angles to 00 is equal to

AC 2 BO 2

_ M sin

~00^

approximately, since AO is very small compared with 00.

The intensity in the direction 00 is equal to

6 coaACO-~9 coaBCO,AC* BO 2

but we have approximately

AG=OC-AOcos0,
BC=00+ BO cos 6.

Hence putting cos ACO = 1, cos BOO = 1 and using the

Binomial Theorem we find that the electric intensity

along 00 is approximately

2A ^\ _ _e_ ( _ 2BOcos
00* \ 00

_2eABcos0
00 s

_ 2M cos

00s
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93. Let us now return to the case of the sphere

placed in the uniform field: the moment of the doublet

which represents the effect of the electrification over the

sphere is Fa?. Hence, when the sphere is placed in a

uniform field F parallel to PO, the intensity at a point C
is the resultant of electric intensities, F parallel to PO,

Fa*sin0/OC
3 at right angles to OC, and 2.Fa3 cos 0/0(7

3

along CO; 6 denotes the angle POO.

At the surface of the sphere where OG= a, the result

ant intensity along the outward drawn normal is

or -3Fcos0;

but by Coulomb s law, if &amp;lt;r is the surface density of the

electrification on the sphere,

o

or & = -r-F cos 6.
4?r

Hence we see, that when an insulated conducting

sphere is placed in a uniform field, the surface density at

any point on the sphere is proportional to the distance of

that point from a plane through the centre of the sphere

at right angles to the electric intensity in the uniform

field.

On account of the concentration of the Faraday tubes

on the sphere the maximum intensity in the field is three

times the intensity in the uniform field.

94. We have hitherto supposed the electrified body

to be outside the sphere, but we can apply the same

method when it is inside. Thus, if we have a charge e
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at a point Q inside a spherical surface maintained at

zero potential, then the effect, inside the sphere, of the

electricity induced on the sphere will be the same as

that due to a charge e . a/OQ at P where OP . OQ = a2
.

The charge on the sphere is e, since all the tubes which

start from Q end on the sphere.

Fig. 47.

If the sphere is insulated, then the charge on the

inside of the sphere and the force inside are the same

as when it is at potential zero; the only difference is

that on the outside of the sphere there is a charge equal

to e uniformly distributed over the sphere, and the field

outside is the same as that due to a charge e at the

centre.

Again, if there is a charge E on the sphere, the effect

inside is the same as in the two previous cases, only now

there is a charge E + e uniformly distributed over the

surface of the sphere raising its potential to (E + e)/a.

In all these cases the surface density of the electri

fication at any point on the inner surface of the sphere

varies inversely as the cube of the distance of that point

from P.

T. E. 11
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95. Case of two spheres intersecting at right

angles and maintained at unit potential. Let the

figure represent the section of the spheres, A and B being
their centres, and C a point on the circle in which they

Fig. 48.

intersect, CD a part of the chord common to the two

circles; then, since the spheres intersect at right angles

ACB is a right angle and CD is the perpendicular let fall

from C on AB.

Then we have by Geometry

Thus D and B are inverse points with regard to the

sphere with centre A, and A and D are inverse points

with regard to the sphere whose centre is B.

Let AC=a, BC = b, then CD.AB = AC.BC, so that

ab
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Consider the effect of putting a positive charge at A
numerically equal to the radius AC, a positive charge
at B equal to BC, and a negative charge at D equal
to CD.

The charges at A and D will together, by Art. 86,

produce zero potential over the sphere with centre B.

For A and D are inverse points with respect to this

sphere, and the charge at D is to the charge at A as
- CD is to AC, i.e. as - BC is to AB, so that the ratio

of the charges is the same as that of those on a point
and its image, which together produce zero potential at

the sphere. Thus the value of the potential over the

surface of this sphere is that due to the charge at B, but

the charge is equal to the radius of the sphere, so that

the potential at the surface, being equal to the charge
divided by the radius, is equal to unity. Thus these

three charges produce unit potential over the sphere with

centre B; we can in a similar way show that they give
unit potential over the sphere with cerrtre A. The two

spheres then are an equipotential surface for the three

charges, and the electric effect of the conductor formed

by the two spheres, when maintained at unit potential, is

at a point outside the sphere the same as that due to the

three charges.

Capacity of the system. The charge on the system
is equal to the sum of the charges on the points inside it

which produce the same effect. Thus the capacity of the

system which, since the potential is unity, is equal to the

charge is equal to

, aJb

112
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96. If b is very small compared with a, the system
becomes a small hemispherical boss on a large sphere as

shown in Fig. 49. The capacity is equal to

ab
a + b

or to

Fig. 49.

and, as in this case b/a is very small, the capacity is

approximately equal to

But
volume of boss

2 a3 volume of big sphere
*

Thus we have, since a is the capacity of the large

sphere without the boss,

increase in capacity due to boss volume of boss

capacity of sphere volume of sphere
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97. To compare the charges on the surface of

the two spheres. The charge on the spherical cap EFG

(Fig. 48) is, by Coulomb s law, equal to l/4nr of the total

normal induction over EFG. Now the total normal induc

tion is the sum of the total normal inductions due to the

charges at A, B, D. Since B is the centre of the cap

CFE the total normal induction due to B over CFE bears

the same ratio to 4?r6 (the total normal intensity over the

whole sphere) as the area of the cap CFE does to the

area of the sphere. But the area of the surface of a sphere

included between two parallel planes is proportional to

the distance between the planes, thus

area of EFC _b + BD
area of sphere 26

Hence the total normal induction over CFE due to the

charge at B

The total normal induction due to the charge A over

the closed surface CFEL is zero, therefore the total normal

induction due to A over CFE is equal in magnitude and

opposite in sign to the total normal induction over CLE,
that is, it is equal to the total normal induction over CLE
reckoned outwards from the side A. But CLE is a portion

of a sphere of which A is the centre, therefore the induction

over CLE is to 4?ra (the induction over the whole sphere

with centre A) as the area of CLE is to the area of the

sphere, that is as DL : 2a. Thus the induction due to A
over CFE is equal to

Next consider the total normal induction over CFE
due to the charge at D. Now of the tubes starting
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from D as many would go to the right as to the left if it

were alone in the field, so that the induction over OFE
will be half that due to D over a closed surface entirely

surrounding it
;
the latter induction is equal to 4?r times

the charge at D, i.e. to - 4?r . CD, hence the induction

due to D over the surface CFE is

-tor. CD.

Thus the total induction over CFE due to the three

charges is

DL-CD),

and the charge on CFE is therefore equal to

I/, fr
2 a2 ab

4 -

The charge on CGE can be got by interchanging a and
b in this expression, and is thus equal to

98. In the case of a hemispherical boss on a large

sphere, b is very small compared with a
;
in this case the

expression (1) becomes approximately

+--HS- }
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This is equal to the charge on the boss. The mean

density on the boss is this expression divided by 2?r6
2
,
the

area of the surface of the boss, and is therefore

When b/a is very small the expression (2) is approxi

mately equal to a, thus the charge on the sphere is a and

the mean density is got by dividing a by 47ra2 the area of

the sphere. Thus the mean density on the sphere is

Hence the mean density on the boss is to the mean density

on the sphere as 3 : 2.

99. Since a plane may be regarded as a sphere of

infinite radius, this applies to a hemispherical boss of any
radius on a plane surface. It thus applies to the case

shown in Fig. 50. Since the mean density over the boss

is 3/2 of that over the plane, and since the area of the boss

is twice the area of its base
;
there is three times as much

electricity on the surface occupied by the boss as there is,

on the average, on an area of the plane equal to the base

of the boss.
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100. When b is very small compared with a, the points
B and D, Fig. 48, are close together, the distance between

them being approximately b*/a, which is small compared
with b

;
the charge at B is 6, that at D is

ab

and, when b is very small compared with a, this is

approximately equal to b. Thus the charges at B and

D form a doublet whose moment is b3

/a. The point A is

very far away and the force at B or D due to its charge
is I/a. Thus the moment of the doublet is b3 times this

force. This as far as the sphere is concerned is exactly
the case considered in Art. 93. Hence if F is the force at

the boss due to the charge A alone, the surface density at
o rr

a point P, Fig. 50, on the boss is cos 6, where 9 is the

angle OP makes with the axis of the doublet. Now if &amp;lt;7

is the surface density on the plane at some distance from

the boss F = 47r&amp;lt;7 . Hence, the surface density at P, a

point on the boss, is equal to

3o- cos 6,

where 6 is the angle OP makes with the normal to the plane.

The electric intensity due to the doublet at Q, a point
on the plane, is (Art. 92) equal to the moment of the

doublet divided by OQ 3 and is at right angles to the

plane, thus the normal electric intensity at Q is

and cr, the surface density at Q, is given by the equation
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We have thus found the distribution of electricity on

a charged infinite plane with a hemispherical boss on it.

101. In the general case when the two spheres are of

any sizes the surface density on the conductor can be got

by calculating the normal electric intensity due to the

three charges. We shall leave this as an example for the

student, remarking that, since the potential of the con

ductor is the highest in the field, there can be no negative

electrification over the surface and that the electrification

vanishes along the intersection of the two spheres.

102. Effect of dielectrics. We have hitherto only

considered the case when the field due to the charge at

P was disturbed by the presence of conductors, but by

applying the principle that a solution which satisfies the

electric conditions is the only solution, we can find the

electric field in some simple cases when dielectrics are

present.

103. The first case we shall consider is that of a small

charged body placed in front of an infinite mass of uniform

dielectric bounded by a plane face. Let P be the charged

body, AB the plane separating the dielectric from air, the

medium to the right of AB being air, that to the left a
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dielectric whose specific inductive capacity is K. From P
drawPN perpendicular to AB

; produce PN to P
,
so that

PN = P N. Then we shall show that the field to the right
of AB can be regarded as due to e at P and a charge e

at P
,
and that to the left of AB as due to e&quot; at P; these

charges being supposed to produce the same field as if

there was nothing but air in the field.

In the first place this field satisfies the conditions that

the potential at an infinite distance is zero, also that the

induction over any closed surface surrounding P is 4-Tre,

while the induction over any closed surface not enclosing
P is zero. This is obvious if the surface is drawn entirely

to the left or entirely to the right of AB. If it crosses

this plane it can be regarded as two surfaces, one entirely

to the left bounded by the portion of the surface to the

left and the portion of the plane AB intersected by the

surface, the other entirely to the right bounded by the

same portion of the plane and the part of the surface to

the right.

The only other conditions we have to satisfy are that

along the plane AB the electric intensity parallel to the

surface is the same in the air as in the dielectric, and that

over this plane the normal polarization is the same in the

air as in the dielectric.

At a point Q in AB the electric intensity parallel to

AB is in the air

e QN

This, since PQ = P Q, is equal to
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The electric intensity at Q parallel to AB in the

dielectric is

this is equal to that in air if

e + e = e&quot; ..................... (1).

Again, the polarization at Q at right angles to AB
reckoned from right to left is in air

and that in the dielectric is

K. PN
4&amp;gt;7r

e

PQ3

these are equal if

e-e = Ke&quot; ..................... (2).

Hence both the boundary conditions are satisfied if e

and e&quot; satisfy (1) and (2), i.e. if

e,l+K

K+L
The attraction of P towards the plane is equal to that

between e and e and is thus

ee K-l e*

(2PNY
~ K + 1

If K is infinite this equals

e*

which is the same as when the dielectric to the left of AB
is replaced by a conductor.
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Thus ifK = 10, as is the case for some kinds of heavy

glass, the force on P when placed in front of the glass

would be about 9/11 of the attraction when P is placed
in front of a conducting plate. Inside the mass of

dielectric the tubes are straight and pass through P ;
the

effect of the dielectric is, while not affecting the direction

of the electric intensity, to reduce its magnitude to 2/(l +K)
of its value in air when the dielectric is removed. The

lines of force when K=\ l are shown in Fig. 52.

Fig. 52.

104. Case of a dielectric sphere placed in a

uniform field. We have seen that, when a conducting

sphere is placed in a uniform field, the effect of the

electricity induced on the surface of the sphere can be

represented at points outside the sphere by a doublet

(see Art. 92) placed at the centre of the sphere. Since
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we have seen that the effects of a dielectric are similar

in kind though different in degree to those due to a

conductor, we are led to try if the disturbance produced

by the presence of the sphere cannot be represented at

a point outside the sphere by a doublet placed at its

centre. With regard to the field inside the sphere we

have as a guide the result obtained in the last article, that

in the case when the radius of the sphere is infinitely

large the field inside the dielectric is not altered in

direction but only in magnitude by the dielectric.

We therefore try if we can satisfy the conditions

which must hold when a sphere is placed in a uniform

electric field by supposing the field inside the sphere to

be uniform.

Let the uniform field before the insertion of the

sphere be one where the electric intensity is horizontal

and equal to H.

After the insertion of the sphere let the field outside

consist of this uniform field plus the field due to a

doublet whose moment is M placed at the centre of the

sphere, the dielectric being removed.

Inside the sphere let the intensity be horizontal and

equal to H .

We shall see that it is possible to satisfy the con

ditions of the problem by a proper choice ofM and H .

The field at P due to the doublet is, by Art. 92, equiva-
2M

lent to an intensity jjp^
cos 6 along OP, and an intensity

M
-syp-z

sin at right angles to it, where 6 is the angle OP



174 ELECTRICAL IMAGES AND INVERSION [CH. V

makes with the direction of the uniform electric intensity.
Thus at a point Q just outside the sphere the intensity

tangential to the sphere is equal to

H sin 6
^ sin Q.

a?

where a is the radius of the sphere.

The intensity in the same direction at a point close

to Qlout just inside the sphere is

H smQ.

The normal intensity at Q outside the sphere is

Hcos6 + cos 0,
a3

and at a point just inside the sphere it is H! cos 6.

The first boundary condition is that the tangential

intensity at the surface of the sphere must be the same

in the air as in the dielectric
;
this will be true if

MHsm6 --
, sin 6 = H sin 0,a3

or H--
3
= H ..................... (1).a3

The second boundary condition is that the normal

polarization at the surface of the sphere must be the

same in the air as in the dielectric, thus

m-H cos e,
4?r

H + =KH ..................... (2).
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Equations (1) and (2) will be satisfied, if

3HE

and if

Thus, since, if H and M have these values the con

ditions are satisfied, this will be the solution of the

problem. We see that the intensity inside the sphere

is %j(K + 2) of that in the original field, so that the in

tensity of the field is less inside the sphere than outside
;

on the other hand the number of Faraday tubes which

pass through unit area inside the sphere is 3K/(K +2)
times the number passing through unit area in the

original uniform field. When K is very great 3K/(K + 2)

is approximately equal to 3, so that the Faraday tubes

in this case will be 3 times as dense inside the sphere
as they are at a great distance away from it. This illus

trates the crowding of the Faraday tubes to the sphere.

The diagram of the lines of force for this case was

given in Fig. 41.

Method of Inversion.

105. This is a method by which, when we have

obtained the solution of any problem in electrostatics,

we can by a geometrical process obtain the solution of

another.

Definition of inverse points. If is a fixed point,

P a variable one, and if we take P on OP, so that
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where & is a constant, then P is defined to be the inverse

point of P with regard to 0, while is called the centre

of inversion, and k the radius of inversion.

If the point P moves about so as to trace out a surface,

then P will trace out another surface which is called the

surface inverse to that traced out by P.

We shall now proceed to prove some geometrical pro

positions about inversion.

106. The inverse surface of a sphere is another

sphere. Let be the centre of inversion, P a point

on the sphere to be inverted, C the centre of this sphere.

Fig. 53.

Let the chord OP cut the sphere again in P, let Q be

the point inverse to P, Q the point inverse to P
,
R the

radius of the sphere to be inverted, then

OP.OQ = k\

But

and thus

2

OG*-Ri
OP

;

similarly
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Thus OQ . OQ -
(QG^_ Rif

OP . OP

Thus OQ bears a constant ratio to OP
;
hence the

locus of Q is similar to the locus of P
,
and is therefore a

sphere. Thus a sphere inverts into a sphere. If

k* = OC2 - .ft
2

the sphere inverts into itself.

To find the centre of the inverse sphere, let the dia

meter OC cut the sphere to be inverted in A and B. Let

A
,
Bf

be the points inverse to A and B respectively

and the centre of the inverted sphere ;
then

2 \OC -11 00 +

-* OC*-W
If D is the point where the chord of contact of tangents

from to the sphere cuts OC, then

Hence D inverts into the centre of the sphere.

The radius of the inverse sphere

T. E. 12
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107. Since a plane is a particular case of a sphere
a plane will invert into a sphere ;

this can be proved

independently in the following way :

Fig. 54.

Let AB be the plane to be inverted, P a point on that

plane, N the foot of the perpendicular let fall from on

the plane and Q and N the points inverse to P and N
respectively. Then since

OQ.OP^ON .ON

OQ ON
m

ON
~
OP

thus the two triangles QON, PON have the angle at

common and the sides about this angle proportional, they

are therefore similar, and the angle OQN is equal to the

angle ONP. Hence OQN is a right angle and therefore

the locus of Q is a sphere on ON as diameter.



108] ELECTRICAL IMAGES AND INVERSION 179

108. Let be the centre of inversion, PQ two points
and P Q the corresponding inverse points.

Then
OP _OQ.-

thus the triangles POQ, Q OP are similar, so that

PQ_P Q
OP~ OQ&quot;

Fig. 55.

If we have a charge e at Q, and a charge e at Q
f

,

then if VP is the potential at P due to the charge at Q,

and F P the potential at P due to the charge at Q ,

P f&amp;gt; P PV Vr* ----- - _! _V *
PQ PQ ~OP OQ

Take e:e =OQ:k (1),

k
then V f Vp j^p,

.

If we have any number of charges at different points
and take the inverse of these points and place there

charges given by the expression (1), then, if VP be the

potential at a point P due to the original assemblage of

charges, VP &amp;gt; the potential at P (the point inverse to P)
due to the charges on the inverted system,

V -Vr A.VP ~- V P
Qp&quot;

122
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Thus, if the original assemblage of charges produces a

constant potential V over a surface S, the inverted system
Vk

will produce a potential -r-p?
at a point P on the inverse

of S. Hence, if we add to the inverted system a charge
kV at the centre of inversion, the potential over the

inverse of S will be zero.

If the charges on the original system are distributed

over a surface instead of being concentrated at points the

charges on the inverted system will also be distributed over

a surface. Let cr be the surface density at Q, a place on

the original system, cr the surface density at Q ,
the corre

sponding point on the inverted system, a. a small area at Q,

a the area into which it inverts
;
then by (1)

ffa : a a! =OQ:k
and, since a and of are similar figures,

a : a = OQ 2
: OQ\

Hence a- : a = OQ 2
: WQ

kOQ k*
and thus a ~*

0^~*(vyi W-

This expression gives the surface density of the inverted

figure in terms of that at the corresponding point of the

original figure.

109. As an example of the use of the method of

inversion let us invert the system consisting of a sphere

with a uniform distribution of electricity over it, the

surface density being F/4?ra; where a is the radius of

the sphere. We know in this case that the potential is

constant over the sphere and equal to V. Take the

centre of inversion outside the sphere and choose the

radius of inversion so that the sphere inverts into itself.
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Then, if to the inverted system we add a charge
- kV

at the centre of inversion the inverse sphere will be at

potential zero. By equation (2) a- the surface density in

the inverted system at Q is given by the equation

If we put e = kV, this equals

where C is the centre of the sphere.

Thus a charge e at induces on the sphere at zero

potential a distribution of electricity such that the surface

density varies inversely as the cube of the distance from

0. In this way we get by inversion the solution of the

problem which we solved in Art. 87 by the method of

images.

110. As an example illustrating the uses of the

method of inversion as well as that of images, let us

consider the solution, by the method of images, of a

charged body placed between two infinite conducting

planes maintained at potential zero.

Let P be the charged point, AB and CD the two planes

at potential zero, e the charge at P. Then if we place

a charge e at P where P is the image of P in AB the

potential over AB will be zero, it will not however be

zero over CD
,

to make the potential over CD zero we

must place a charge e at Q, the image of P in CD, and a

charge e at Qlf the image of P in CD. These two charges

will however disturb the potential of AB; to restore zero

potential to AB we must introduce a charge +e at Plt

the image of Q in AB, and a charge
- e at P&quot;,

the image
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of Qj in AB. The charges at Pl and P&quot; will disturb the

potential over the plane CD ;
to restore it to zero we must

place a charge e at Q
f

,
the image of Pl in CD, and a

charge +e at Q2 &amp;gt;

the image of P&quot; in CD, and so on
;
we get

in this way two infinite series of images to the right of

AB and to the left of CD.

The images to the right of AB are (1) charges e, at

P
, P&quot;,

P&quot;. . .
;
and (2) charges + e, at Plt P2 ,

P3 . . . .

Now P&quot; is the image of Ql in ^15, which is the image

of P in CD and hence

PP&quot; = FQ, = FE + EP = 2FE + PP ;

thus FP&quot;-FP = P P&quot; = 2FE = 2c, if c is the distance

between the plates.

A

Q P&quot;

Fig. 56.

Similarly P P&quot;
= P&quot;P

&quot; =
. . .
= 2c and we can show in a

similar way that PP1=P1
P2=P2P3

=
. . .
= 2c. Thus on the

right of AB we have an infinite series of charges equal to

e at the distance 2c apart, beginning at P the image of
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P in AB, and a series of positive images at the same dis

tance 2c apart, beginning at Pl} a point distant 2c from P.

Similarly to the left of CD we have an infinite series

of images with the charge
- e at the distance 2c apart,

beginning at Q, the image of P in CD, and an infinite series

of images each with the charge + e, at points at a distance

2c apart, beginning at Qlt a point distant 2c from P.

Now invert this system with respect to P. The two

planes invert into two spheres touching each other at P,

and maintained at a potential e/k, the images to the

right of AB invert into a series of charged points inside

the sphere to the right of P and the images to the left of

CD invert into a system of charged points inside the

sphere to the left of P.

The system of charged points inside the spheres will

produce a constant potential
-

e/k over the surface of the

spheres, and therefore at a point outside the spheres the

electric field due to the two spheres in contact will be the

same as that due to the system of the electrified points.

If a, b are the radii of the spheres into which the

planes AB, CD invert, and if PF=d, then

26=-
-,

c d

Consider now the series of images to the right of AB.

The series of positive charges at the distance 2c apart

invert into a series of charges inside the sphere, whose

radius is a, of magnitudes

ek ek ek

2c 4c 60
&quot;&quot;
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since

charge at inverted point

charge at original point

=_k_
distance of original point from centre of inversion

The series of negative images at the distance 2c apart

invert into a series of negative charges

ek ek ek

Similarly, inside the sphere into which the plane CD
inverts, we have a series of positive charges

ek ek ek

2c 4c 6c
&quot;

and a series of negative ones

ek ek ek
&quot;

2 (c
-

d)

~
4c-2d ~6c-2d

&quot;&quot;

Thus El} the sum of the charges on the points inside

the first sphere, is given by the equation

.

4c 6c

fl. J_ J^ V m
\2d

+
2c+2rf

+
4c + 2rf^

&quot;)}&quot;

while EZ, the sum of the charges inside the second sphere,

is given by the equation

2c 4c 6c
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Rearranging the terms, we may write

d d d
)_ _

l
~~

2 d

+ ...

Expanding the expressions for E1
and E9 in powers

of d/c we get
1 , /I d d* d* \ .-

?*+ ? *-y* &amp;gt;;-

--i*!te+4+*&+?ft+

where fn = ^ 4- ^ +
3^
+ ^ +

The values of 8n are given in De Morgan s Differential

and Integral Calculus, p. 554,

&= = 1-645, &
b

5, = 1-202, $

^4
= ^= 1*082, &amp;gt;Sf7

= 1-008.

Since El can be got from E2 by writing c-cZ for d, we get

(4).

Now, the total charge spread over the surface of the

first sphere is equal to the sum of the charges at the

points inside the sphere as these produce the same effect

at external points as the electrification over the surface

of the sphere : thus, El will be the charge on the first
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sphere, Ez that on the second. If V is the potential of

the spheres

= Va(l
\ a + ba + 2b 2(a

b

E.-Vbll-

E,= Va\l-

and also

3(a + 6)3a + 46
&quot;)

a a a a
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The charge on the second sphere is also E^\ thus the total

charge on the two spheres is

1-386 Fa.

When F*= 1 the charge on the two spheres is equal to

the capacity of the system; hence the capacity of two

equal spheres in contact is 2a log 2 or l 386a.

If the spheres had been an infinite distance apart, the

capacity of the two would have been 2a; if there had

only been one sphere the capacity would have been a.

We can find from this the work done on an uncharged

sphere when it moves under the attraction of a charged

sphere of equal radius from an infinite distance into con

tact with the charged sphere. Let a be the radius of each

sphere and e the charge on the charged sphere ; then,

when the spheres are at an infinite distance apart, the

potential energy is e*/2a and when the spheres are in

contact the potential energy is e2

/2 x l&quot;386a. Hence the

work done by the electric field while the uncharged

sphere falls from an infinite distance into contact with

the charged sphere is

le2
f 1

]
.#

2 a
( 1-386] a

If one sphere has a charge E, the other the charge e,

then, when they are at an infinite distance apart, the

potential energy is [E
2 + e

2

}.

When the spheres are in contact the potential energy
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Hence the potential energy is greater in the second

case than in the first by

If E =
e, this is equal to

This is the work required to push the spheres together

against the repulsions exerted by their like charges.

The expression (9) vanishes when E/e is approximately
5 or 1/5 ;

in this case the potential energy is the same
when the spheres are in contact as when they are an

infinite distance apart; thus no work is spent or gained
in bringing them together. The attraction due to the

induced electrification on the average balances the re

pulsion due to the like charges.

The next case we shall consider is where one sphere is

very large compared with the other. Let 6 be very large

compared with a. Now by (8) we have

or approximately, when b/a is large,

Va?

6 6

= 1-646



110] ELECTRICAL IMAGES AND INVERSION 189

Interchanging a and b in (7) we get

or approximately, when b/a is large,

The mean surface density over the small sphere is

= 1-645.
6

The mean surface density over the large sphere is

approximately

47T&2 47T&

and hence the mean surface density on the small sphere is

7r
2
/6 or 1 645 times that on the large sphere. We saw in

Art. 98 that, when a small hemisphere was placed on a

large sphere, the mean density on the hemisphere was

1-5 times that on the sphere.

Since a plane may be regarded as a sphere of infinite

radius, we see that if a sphere of any size is placed on a

conducting plane the mean surface density of the elec

tricity on the sphere is 7r
2

/6 of that on the plane.

We have

Vb jl + 2-404 5LJ approximately.
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Thus, the capacity of the system of two spheres is

approximately

2-404-

We have thus

Increase ofcapacity due to small sphere

Capacity of large sphere

_ 9.404
v lume f small sphere
volume of large sphere

Thus in this case, as in that discussed in Art. 96, the

increase of capacity due to the small body is proportional
to the volume of the small body.

From this result we can deduce the work done on a
small uncharged sphere of radius a when it moves from
an infinite distance up to a large sphere of radius b with
a charge E.

For, when they are at an infinite distance apart, the

potential energy is equal to

l&
2 6

when the spheres are in contact the potential energy is

1 E*

2 ( n 3

b 1+2-404?-

The work done on the small sphere by the electrical

forces is the difference between these expressions, or ap
proximately,

1-202
J.



CHAPTER VI

MAGNETISM

111. A mineral called lodestone or magnetic oxide

of iron, which is a compound of iron and oxygen, is often

found in a state in which it possesses the power of at

tracting small pieces of iron such as iron filings; if the

lodestone is dipped into a mass of iron filings and then

withdrawn, some of the iron filings will cling to the lode-

stone, collecting in tufts over its surface. The behaviour

of the lodestone is thus in some respects analogous to that

of the rubbed sealing-wax in the experiment described in

Art. 1. There are however many well-marked differences

between the two cases; thus the rubbed sealing-wax attracts

all light bodies indifferently, while the lodestone does not

show any appreciable attraction for anything except iron

and, to a much smaller extent, nickel and cobalt.

If a long steel needle is stroked with a piece of lode-

stone, it will acquire the power possessed by the lodestone

of attracting iron filings; in this case the iron filings

will congregate chiefly at two places, one at each end of

the needle, which are called the poles of the needle.

The piece of lodestone and the needle are said to be

magnetized ;
the attraction of the iron filings is an example

of a large class of phenomena known as magnetic. Bodies

which exhibit the properties of the lodestone or the needle
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are called magnets, and the region around them is called

the magnetic field.

The property of the lodestone was known to the

ancients, and is frequently referred to by Pliny and

Lucretius. The science of Magnetism is indeed one of the

oldest of the sciences and attained considerable develop
ment long before the closely allied science of Electricity ;

this was chiefly due to Gilbert of Colchester, who in his

work De Magnete published in 1600 laid down in an

admirable manner the cardinal principles of the science.

112. Forces between Magnets. If we take a

needle which has been stroked by a lodestone and suspend
it by a thread attached to its centre it will set itself so as

to point in a direction which is not very far from north

and south. Let us call the end of the needle which

points to the north, the north end, that which points to

the south, the south end, and let us when the needle is

suspended mark the end which is to the north; let us

take another needle, rub it with the lodestone, suspend it

by its centre and again mark the end which goes to the

north. Now bring the needles together; they will be

found to exert forces on each other, and the two ends

of a needle will be found to possess sharply contrasted

properties. Thus if we place the magnets so that the two

marked ends are close together while their unmarked ends

are at a much greater distance apart, the marked ends will

be repelled from each other
; again, if we place the magnets

so that the two unmarked ends are close together while

the marked ends are at a much greater distance apart,

the unmarked ends will be found to be repelled from

each other
;
while if we place the two magnets so that the
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marked end of one is close to the unmarked end of the

other, while the other ends are much further apart, the

two ends which are near each other will be found to be

attracted towards each other. We see then that poles of

the same kind are repelled from each other, while poles

of opposite kinds are attracted towards each other. Thus

the two ends of a magnet possess properties analogous to

those shown by the two kinds of electricity.

113. We shall find it conduces to brevity in the

statement of the laws of magnetism to introduce the term

charge of magnetism, and to express the property possessed

by the ends of the needles in the preceding experiment

by saying that they are charged with magnetism, one end

of the needle being charged with positive magnetism, the

other end with negative. We regard the end of the needle

which points to the north as having a charge of positive

magnetism, the end which points to the south as having
a charge of negative magnetism. It will be seen from the

preceding experiment that two charges of magnetism are

repelled from or attracted towards each other according as

the two charges are of the same or opposite signs. It must

be distinctly understood that this method of regarding
the magnets and the magnetic field is only introduced

as affording a convenient method of describing briefly

the phenomena in that field and not as having any

significance with respect to the constitution of magnets
or the mechanism by which the forces are produced : we
saw for example that the same terminology afforded a

convenient method of describing the electric field, though
we ascribe the action in that field to effects taking place
in the dielectric between the charged bodies rather than

in the charged bodies themselves.

T. E. 13
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114. Unit Charge of Magnetism, often called pole

of unit strength. Take two very long, thin, uniformly

magnetized needles, equal to each other in every respect

(we can test the equality of their magnetic properties

by observing the forces they exert on a third magnet),
let A be one end of one of the magnets, B the like end

of the other magnet, place A and B at unit distance

apart in air, the other ends of the magnets being so far

away that they exert no appreciable effect in the region

about A and B : then each of the ends A and B is said

to have a unit charge of magnetism or to be a pole of

unit strength when A is repelled from B with the unit

force. If the units of length, mass and time are re

spectively the centimetre, gramme and second the force

between the unit poles is one dyne.

A charge of magnetism equal to 2, or a pole of

strength 2, is one which would be repelled with the force

of two dynes from unit charge placed at unit distance in

air.

If m and m! are the charges on two ends of two

magnets (or the strengths of the two poles), the distance

between the charges being the unit distance, the repulsion

between the charges is mm dynes. If the charges are of

opposite signs mm is negative : we interpret a negative

repulsion to mean an attraction.

115. Coulomb by means of the torsion balance suc

ceeded in proving that the repulsion between like charges
of magnetism varies inversely as the square of the dis

tance between them. We shall discuss in Art. 132 a more

delicate and convenient method of proving this result.

Since the forces . between charges of magnetism obey



118] MAGNETISM 195

the same laws as those between electric charges we can

apply to the magnetic field the theorems which we proved
in Chap. n. for the electric field.

116. The Magnetic Force at any point is the

force which would act on unit charge if placed at this

point, the introduction of this charge being supposed not

to influence the magnets in the field.

117. Magnetic Potential. The magnetic potential

at a point P is the work which would be done on unit

charge by the magnetic forces if it were taken from P to

an infinite distance. We can prove as in Art. 17 that the

magnetic potential due to a charge m at a distance r from

the charge is equal to m/r.

118. The total charge of Magnetism on any
magnet is zero. This is proved by the fact that if a

magnet is placed in a uniform field the resultant force upon
it vanishes. The earth itself is a magnet and produces
a magnetic field which may be regarded as uniform over

a space enclosed by the room in which the experiments
are made. To show the absence of any horizontal resultant

force on a magnet, we may mount the magnet on a piece
of wood and let this float on a basin of water, then though
the magnet will set so as to point in a definite direction,

there will be no tendency for the magnet to move towards

one side of the basin. There is a couple acting on the

magnet tending to twist it so that the magnet sets in

the direction of the magnetic force in the field, but there

is no resultant horizontal force on the magnet. The
absence of any vertical force is shown by the fact that

the process of magnetization has no influence upon the

13-2
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weight of a body. Either of these results shows that the

total charge on the body is zero. For let ml) m2) m3 ,
&c.

be the magnetic charges on the body, F the external

magnetic force, then the total force acting on the body in

the direction of F is

This, since the field is uniform, is equal to

As this vanishes 2m = 0, i.e. the total charge on the

body is zero. Hence on any magnet the positive charge
is always equal to the negative one.

When considering electric phenomena we saw that it

was impossible to get a charge of positive electricity with

out at the same time getting an equal charge of negative

electricity. It is also impossible to get a charge of posi

tive magnetism without at the same time getting an

equal charge of negative magnetism ;
but whereas in the

electrical case all the positive electricity might be on one

body and all the negative on another, in the magnetic
case if a charge of positive magnetism appears on a body
an equal charge of negative magnetism must appear on the

same body. This difference between the two cases would

disappear if we regarded the dielectric in the electrical

case as analogous to the magnets; the various charged

bodies in the electrical field being regarded as portions of

the surface of the dielectric.

119. Poles of a Magnet. In the case of very long

and thin uniformly magnetized pieces of iron and steel

we approximate to a state of things in which the magnetic

charges can be regarded as concentrated at the ends of

the magnet, which are then called its poles ;
the positive
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magnetism being concentrated at the end which points to

the north, which is called the positive pole, the negative

charge at the other end, called the negative pole.

In general however the magnetic charges are not

localized to such an extent as in the previous case, they

exist more or less over the whole surface of the magnet ;

to meet these cases we require a more extended definition

of the pole of a magnet.

Suppose the magnet placed in a uniform field, then

the forces acting on the positive charges will be a series

of parallel forces all acting in the same direction, these

by statics may be replaced by a single force acting at a

point P called the centre of parallel forces for this system

of forces. This point P is called the positive pole of

the magnet. Similarly the forces acting on the negative

charges may be replaced by a single force acting at a

point Q. This point Q is then called the negative pole

of the magnet. The resultant force acting at P is by
statics the same as if the whole positive charge were

concentrated at P
;
this resultant is equal and opposite to

that acting at Q.

120. Axis of a Magnet. The axis of a magnet is

the line joining its poles, the line being drawn from the

negative to the positive pole.

121. Magnetic Moment of a Magnet is the pro

duct of the charge of positive magnetism multiplied by
the distance

.
between the poles. It is thus equal to the

couple acting on the magnet when placed in a uniform

magnetic field where the intensity of the magnetic force

is unity, the axis of the magnet being at right angles to

the direction of the magnetic force in the uniform field.
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122. The Intensity of Magnetization is the mag
netic moment of a magnet per unit volume. It is to be

regarded as having direction as well as magnitude, its

direction being that of the axis of the magnet.

123. Magnetic Potential due to a Small Mag
net. Let A and B, Fig. 57, represent the poles of a

small magnet, m the charge of magnetism at B, m that

Fig. 57.

at A. Let be the middle point of AB. Consider the

magnetic potential at P due to the magnet AB. The
(YV\

magnetic potential at P due to m at B is -^- ,
that due

to m at A is j-^ ,
hence the magnetic potential at

AJr

P due to the magnet is

m m
T$P~~AP

From A and B let fall perpendiculars AM and BN
on OP : since the angles BPO, APO are very small and

the angles at M and N are right angles, the angles
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PEN and PAM will be very nearly right angles, so that

approximately
= PO-ON,

m m
Then r=r=r

BP AP PO-ON PO + ON
2m. ON

&quot;OP
2 - ON*

and this, since ON is very small compared with OP, is

approximately equal to

2m. ON
OP2

_ mAB cos 6

OP2

where 6 is the angle PO-B.

If M is the magnetic moment of the magnet

M=mAB,
hence the potential due to the magnet is equal to

M cos d

OP2

124. Resolution of Small Magnets.

We shall first prove that the moment of a small

magnet may be resolved like a force, i.e. if the moment

of the magnet is M, and if a force M acting along the

axis of the magnet be resolved into forces M^ M^, Ms ,
&c.

acting in directions OLlf OL2 ,
OL3 , &c., where is the

point midway between the poles, then the magnetic

action of the original magnet at a distant point is the

same as the combined effects of the magnets whose

moments are Ml} Mz ,
M

s&amp;gt; &c., and whose axes are along

OLlt OL2 , OL,, &c.
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Now suppose a force M in the direction AB, Fig. 57, is

the resultant of the forces Mlf M9 ,
M3 in the directions

OB1} OB2) OB3&amp;gt; &c., let OBlt OB2 ,
OB3 make angles lt

9 , 3 with OP, then

M cos = M1 cos l + M2 cos 2 + . . .
,

M cos 6 _ M, cos l cos,

O OP2

Now Ml cos #!/OP
2

is the magnetic potential at P
due to the magnet whose moment is Ml and whose axis

is along OBl} Jf2 cos02/OP2
is the potential due to the

magnet whose moment is M2 and whose axis is OB2 ,
and

so on;, hence we see that the original magnet may be

replaced by a series of magnets, the original moment being
the resultant of the moments of the magnets by which

the magnet is replaced. In other words, the moment
of a small magnet may be resolved like a force.

By the aid of this theorem the problem of finding
the force due to a small magnet at any point may be

reduced to that of finding the force due to a magnet at

a point on its axis produced, and at a point on a line

through its centre at right angles to its axis.

125. To find the magnetic force at a point on
the axis produced. Let AB, Fig. 58, be the magnet,
P the point at which the force is required. The magnetic
force at P due to the charge m at B is equal to

m
(OP -OB)*

The magnetic force due to m at A is equal to

m~
(OP+OBf
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The resultant magnetic force at P is equal to

m m lm.OB.OP
(OP - OB)*

~
(OP + OB)*

~
(OP* -

_ 4&amp;lt;mOB . OP
OP*

approximately, since OB is small compared with OP.

Q

Fig. 58.

If M is the moment of the magnet M = 2mOB, thus

the magnetic force at P is equal to

OP3

The direction of this force is along OP.

126. To find the magnetic force at a point Q
on the line through O at right angles to AB. Since

Q is equidistant from A and B, Fig. 58, the forces due

to A and B are equal in magnitude; the one being



202 MAGNETISM [CH. VI

a repulsion, the other an attraction. The resultant of

these forces is equal to

2m OB M
_

BQ* ~BQ~
M

since BQ is approximately equal to OQ.

The direction of this force is parallel to BA and at

right angles to OQ.

If Q, a point on the line through at right angles
to AB, is the same distance from as P, a point on AB
produced, we see from these results that the force at P is

twice that at Q. This is the foundation of Gauss s method

(see Art. 132) of proving that the force between two poles

varies inversely as the square of the distance between them.

127. Magnetic force due to a small magnet at

any point. Let AB, Fig. 59, represent the small magnet,

Fig. 59.

let M be its moment, its centre, P the point at which

the force is required, let OP make an angle 6 with AB,
the axis of the magnet. By Art. 124 the effect of M is



127] MAGNETISM 203

equivalent to that of two magnets, one having its axis

along OP and its moment equal to M cos 6, the other

having its axis at right angles to OP and its moment

equal to M sin 0. Let OP = r.

The force at P due to the first is, by Art. 125, along
OP and equal to 2M cos #/r

3

,
the force at P due to the

second magnet is at right angles to OP and equal to

Msm0/rs
,
hence the force due to the magnet AB at

P is equivalent to the forces

2Jfcos&amp;lt;9 . nD
along OP,

T M sin 6 . ,
,

, ^ -r,and at right angles to OP.

Let the resultant magnetic force at P make an angle

&amp;lt;f&amp;gt;

with OP, then
Msm0

^3
tan 6 = 2777 ^ = i tan 6.r 2M cos 6 2

Let the direction of the resultant force at P cut AB
produced in T, draw TN at right angles to OP, then

TN
PN

and since tan &amp;lt;

= \ tan 0, P^ = 20N. Thus ON= JOP.

Thus, to find the direction of the magnetic force at P,

trisect OP at N, draw NT at right angles to OP to cut

AB produced in T, then PT will be the direction of the

force at P.



204 MAGNETISM [CH. VI

The magnitude of the resulting force is

- V4cos2 + sin2
&amp;lt;9

= ~ Vl + 3 cos2
;

for a given value of r it is greatest when 6 or TT, i.e. at

a point along the axis, and least when 6 = Tr/2 or 3-7T/2,

i.e. at a point on the line at right angles to the axis.

The maximum value is twice the minimum one.

The curves of constant magnetic potential are repre
sented by equations of the form

cos 6 ~
-&amp;gt;

the lines of force which cut the equipotential curves at

right angles are given by the equations

where C is a variable parameter.
The radius of curvature of the line of force at a point

P can easily be proved to equal

2r

3sin&amp;lt; (l + sin2

&amp;lt;/&amp;gt;)

where &amp;lt; is the angle the line of force makes with OP.

Thus the radius of curvature at points on the line bisecting

the magnet at right angles is one-third of the distance of

the point from the magnet.

128. Couple on a Magnet in a Uniform Mag
netic Field. If a magnet is placed in a uniform field

the couple acting on the magnet, and tending to twist

it about a line at right angles both to the axis of the

magnet and the force in the external field, is

MHsiu0,

where M is the moment of the magnet, H the force in
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the uniform field, and the angle between the axis of

the magnet and the direction of the force.

Let AB be the magnet, the negative pole being at A,

the positive one at B. Then if ra is the strength of

the pole at B, the forces on the magnet are a force mH
at B in the direction of the external field and an equal

and opposite force at A. These two forces are equivalent

to a couple whose moment is HmNM, where NM is the

distance between the lines of action of the two forces.

But NM = AB sin 0, if is the angle between AB and

H\ hence the couple on the magnet is

HmAB sin = HM sin 0.

129. Couples between two Small Magnets.

Let AB, CD, Fig. 60, represent the two magnets; M,

Mf

their moments ;
r the distance between their centres

0, . Let AB, CD make respectively the angles 0,

with 00 .

Fig. 60.

Consider first the couple on the magnet OD.

The magnetic forces due to AB are

2Mcos0 ,-
along

at right angles to 00 .
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These may be regarded as constant over the space

occupied by the small magnet CD.

The couple on CD tending to produce rotation in

the direction of the hands of a watch, due to the first

component, is

2Jfcos&amp;lt;9 .M sin 9
,

r3

that due to the second is

M sin- M cos 9 \

r3

hence the total couple on CD is

MM
(2 cos 9 sin & + sin 9 cos 9

).

This vanishes if tan & \ tan 0, i.e. if CD is along
the line of force due to AB, see Art. 127.

We may show in a similar way that the couple on AB
due to CD tending to produce rotation in the direction of

the hands of a watch is

(2 cos ff sin 9 + sin & cos 9).

For both these couples to vanish, = or TT,
=

or TT, or = + 9 = ^ ,
so that the axes of the

- 2

magnets must be parallel to each other, and either

parallel or perpendicular to the line joining the centres

of the two magnets.

We shall find it convenient to consider four special

positions of the two magnets as standard cases.
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CASE I.

Fig. 61.

Q = 0, & 0, couples vanish, equilibrium stable.

CASE II.

Ji D

Fig. 62.

6 =
,

=
, couples vanish, equilibrium unstable.

CASE III.

D

A B

Fig. 63.

i

= 0, 6 =^ , couple on (7D = -r- , couple on ^15 =
^-

.

When the magnets are arranged as in this case, AB
is said to be end on to CD, while CD is broadside on

CASE IV.

C D

Fig. 64.

=
, =0, couple on CD=~ , couple
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In this case AB is broadside on to CD. We see that

the couple exerted on CD by AB is twice as great when
the latter is end on as when it is broadside on.

It will be noticed that the couples on AB and CD
are not in general equal and opposite; at first sight it

might appear that this result would lead to the absurd

conclusion that if two magnets were firmly fastened to

a board, and the board floated on a vessel of water, the

board would be set in rotation and would spin round

with gradually increasing velocity. The paradox will

however be explained if we consider the forces exerted

by one magnet on the other.

130. Forces between two Small Magnets. Let

AB, CD (Fig. 60) represent the two magnets, 0, the

middle points of AB, CD respectively, 9, 6 the angles
which AB, CD respectively make with 00 . Let c be

the angle DOO ,
r= 00

] m, me

the strengths of the poles

of AB and CD.

The force due to the magnet AB on the pole at D
consists of the component

cos (6
-

(/&amp;gt;),

along OD, and

Mm .
/zl , N

sin (0
-

&amp;lt;/&amp;gt;),

at right angles to OD.

These are equivalent to a force equal to

2Mm cos (6
-

&amp;lt;)
cos $ Mm sin (6

-
&amp;lt;ft)

sin
eft

OD* OD8
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along 00
,
and a force equal to

2Mm cos (0 &amp;lt;f&amp;gt;)

sin
&amp;lt;f&amp;gt;

Mm sin (6 (/&amp;gt;)

cos $
OD3 OD*

acting upwards at right angles to 00 .

Neglecting squares and higher powers of CD/00 we
have

CD
cos

(/&amp;gt;=!,
sin

cj)
= sin

,

Substituting these values we see that the force exerted

by AB on D is approximately equivalent to a component

2Mm cos _ SMm CD cos 6 cos 3 Ifm CD sin (9 sin

v* r4
^2&quot; r4

along 00 ,
and a component

7

sin d 3 Mm CD sin cos 3 Mm CDcos0sm0
r3 2 r4

~

2~ r4

acting upwards at right angles to 00 .

We may show in a similar way that the force exerted

by AB on C is equivalent to a component

_ 23/w cos _ 3Mm CDcos0cos0 3 Mm CD sin&amp;lt;9 sintf
7

r3
&quot;T

4

&quot;&quot; + 2~ ^~
along 00 , and a component

Mm sin ^ 3 Mm CD sin cos 6&amp;gt;

x

3 Mm7 CD cos (9 sin 6&amp;gt;

7

r3 2 r4
&quot;*&quot;

2
&quot;

r4

acting upwards at right angles to 00 .

Hence the force on the magnet CD, which is the

T. E. 14
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resultant of the forces acting on the poles C, D, is equi
valent to a component

^7 (2 cos cos 6 - sin sin
),

along 00
,
and a component

-
(sin 6 cos + cos sin

),

acting upwards at right angles to 00 .

The force on the magnet AB is equal in magnitude
and opposite in direction to that on CD.

If we consider the two magnets as forming one system,
the two forces at right angles to 00 are equivalent to a

couple whose moment is

-
(cos sin + sin cos ),

this couple is equal in magnitude and opposite in direction

to the algebraical sum of the couples on the magnets AB,
CD found in Art. 129 : this result explains the paradox
alluded to at the end of that article.

131. Force between the Magnets in the four

standard positions. In the positions described in Art.

129, the forces between the magnets have the following

values.

CASE I. Fig. 61.

0=0, 6 = 0. Force between magnets is an attraction

along the line joining their centres equal to
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CASE II. Fig. 62.

6 = ^ ,
6 =

^ . Force is a repulsion along the line

joining the centres equal to

BMM
r*

CASE III. Fig. 63.

= 0, # = J. Force is at right angles to the line

joining the centres and equal to

3MM

CASE IV. Fig. 64.

0=, & = 0. Force is at right angles to the line

joining the centres and equal to

ZMM
r*

The forces between the magnets vary inversely as

the fourth power of the distance between their centres,

while the couples vary inversely as only the cube of this

distance. The directive influence which the magnets
exert on each other thus diminishes less quickly with the

distance than the translatory forces, so that when the

magnets are far apart the directive influence is much the

more important of the two.

132. Gauss s proof that the force between two

magnetic poles varies inversely as the square of the

distance between them. We saw, Art. 129, that, the

distance between the magnets remaining the same, the

142
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couple exerted by the first magnet on the second was

twice as great when the first magnet was end on to

the second as when it was broadside on. This is equi

valent to the result proved in Art. 127, that when P and

Q are two points at the same distance from the centre of

the magnet, P being on the axis of the magnet and Q
on the line through the centre at right angles to the axis,

the magnetic force at P is twice that at Q. This result

only holds when the force varies inversely as the square

of the distance ;
we shall proceed to show that if the force

varied inversely as the pih power of the distance the

magnetic force at P would be p times that at Q.

If the magnetic force varies inversely as the pih power

of the distance, then if ra is the strength of one of the

poles of the magnet, the magnetic force at P, Fig. 58, due

to the magnet AB is equal to

ra ra

ra ra

&quot;(OP +05)*

2mp . OB

approximately, if OB is very small compared with OP
;

if

M is the moment of AB this is equal to

pM

ra OB
,

ra OA
The force at Q =

BQJ BQ
+
AQ* AQ

M
88

OP*4* 1

approximately.
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Thus the magnetic force at P is p times that at Q.

We see from this that if we have two small magnets the

couple on the second when the first magnet is end on to

it is p times the couple when the first magnet is broadside

on. Hence by comparing the value of the couples in

these positions we can determine the value of p.

This can be done by an arrangement of the following

kind. Suspend the small magnet which is to be deflected so

that it can turn freely about a vertical axis : a convenient

way of doing this and one which enables the angular motion

of the magnet to be accurately determined, is to place the

magnet at the back of a very light mirror and suspend the

mirror by a silk fibre. When the deflecting magnet is far

away the suspended magnet will under the influence of

the earth s magnetic field point magnetic north and south.

When this magnet is at rest bring the deflecting magnet
into the field and place it so that its centre is due east

or west of the centre of the deflected magnet, the axis of

the deflecting magnet passing through the centre of this

magnet. The couple due to the deflecting magnet will

make the suspended magnet swing from the north and

south position until the couple with which the earth s

magnetic force tends to bring the magnet back to its

original position just balances the deflecting couple.

Let H be the magnetic force in the horizontal plane
due to the earth s magnetic field. Then when the deflected

magnet has twisted through an angle the couple due to

the earth s magnetic field is, see Art. 128, equal to

HM sin 0,

where M f

is the moment of the deflected magnet.
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The other magnet may be regarded as producing a

field such that the magnetic force at the centre of the

deflected magnet is east and west and equal to

Mp

where M is the moment of the deflecting magnet, r the

distance between the centres of the deflected and deflect

ing magnets. Thus the couple on the deflected magnet
due to this magnet is

MM pcosO
rp+i

The suspended magnet will take up the position in which

the two couples balance : when this is the case

Now place the deflecting magnet so that its centre is

north or south of that of the suspended magnet, and at the

same distance from it as in the last experiment, the axis

of the deflecting magnet being again east and west. Let

the suspended magnet be in equilibrium when it has

twisted through an angle . The couple due to the earth s

magnetic field is

EM sin!? .

The couple due to the deflecting magnet is

MM cos
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Since the suspended magnet is in equilibrium these

couples must be equal, hence

., MM cos0HM sin 6 = ^ ,

hence tan = TT ^ (2).

tan 6
Thus

Hence if we measure and 6 we can determine p.

By experiments of this kind Gauss showed that p - 2,

i.e. that the force between two poles varies inversely as

the square of the distance between them.

If we place the deflecting magnet at different dis

tances from the deflected we find that tan 6 and tan &

vary as 1/r
3

,
and thus obtain another proof that p = 2.

133. Determination of the Moment of a Small

Magnet and of the horizontal component of the

Earth s Magnetic Force. Suspend a small auxiliary

magnet in the same way as the deflected magnet in the

experiment just described, and place the magnet A whose

moment is to be determined, so that its centre is due east

or west of the centre of the auxiliary magnet, and its axis

passes through the centre of the suspended magnet. Let

6 be the deflection of the suspended magnet, H the

horizontal component of the earth s magnetic force, M the

moment of A: we have, by equation (1), Art. 132, putting

hence if we measure r and 6 we can determine M/H.
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To determine MH suspend the magnet A so that it

can rotate freely about a vertical axis, passing through its

centre, taking care that the magnetic axis of A is hori

zontal. When the magnet makes an angle 6 with the

direction in which H acts, i.e. with the north and south

line, the couple tending to bring it back to its position of

equilibrium is equal to

Hence if K is the moment of inertia of the magnet
about the vertical axis the equation of motion of the

magnet is

or if 6 is small

Hence T, the time of a small oscillation, is given by the

equation

,

MH

hence if we know K and T we can determine MH; and

knowing M/H from the preceding experiment we can

find both M and H. The value of H at Cambridge is

about 18 C.G.S. units.

134. Magnetic Shell of Uniform Strength. A
magnetic shell is a thin sheet of magnetizable substance

magnetized at each point in the direction of the normal
to the sheet at that point.
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The strength of the shell at any point is the product
of the intensity of magnetization into the thickness of

the shell measured along the normal at that point, it is

thus equal to the magnetic moment of unit area of the

shell at the point.

To find the potential of a shell of uniform strength.

Consider a small area a of the shell round the point Q,

Fig. 65, let / be the intensity of magnetization of the shell

Fig. 65.

at Q, t the thickness of the shell at the same point. The

moment of the small magnet whose area is a is lat, hence

if 6 is the angle which the direction of magnetization
makes with PQ, the potential of the small magnet at P
is by Art. 123 equal to

lat cos

PQ*

If
(/&amp;gt;

is the strength of the magnetic shell

hence the potential at P is

cos 6

PQ*

This, by Art. 10, is numerically equal to the normal

induction over a due to a charge of electricity equal to
&amp;lt;f&amp;gt;
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at P. Hence if
c/&amp;gt;

is constant over the shell the potential

of the whole shell at P is numerically equal to the total

normal electric induction over it due to a charge (/&amp;gt;

at P.

This, by Art. 10, is equal to
&amp;lt;o&amp;gt;,

where w is the area

cut off from the surface of a sphere of unit radius with

its centre at P by lines drawn from P to the boundary of

the shell; o&amp;gt; is called the solid angle subtended by the

shell at P
;

it only depends on the shape of the boundary

of the shell.

If the shell is closed, then if P is outside the shell

the potential at P is zero, since the total normal electric

induction over a closed surface due to a charge at a point

outside the surface is zero
;

if the point P is inside the

surface and the negative side of the shell is on the out

side, then since the total normal electric induction over

the shell due to a charge at P is
47r&amp;lt;/&amp;gt;,

the magnetic

potential at P is
4?r(/&amp;gt;;

as this is constant throughout

the shell, the magnetic force vanishes inside the space

bounded by the shell.

The signs to be ascribed to the solid angle bounded by

the shell at various points are determined in the following

way. Take a fixed point and with it as centre describe

a sphere of unit radius. Let P be a point at which

the magnetic potential of the shell is required. The

contribution to the magnetic potential by any small area

round a point Q on the shell, is the area cut off from the

surface of the sphere of unit radius by the radii drawn

from parallel to the radii drawn from P to the boundary

of the area round Q. The area enclosed by the lines from

is to be taken as positive or negative according as the

lines drawn from P to Q strike first against the positive or

negative side of the shell. By the positive side of the shell
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we mean the side charged with positive magnetism, by the

negative side the side charged with negative magnetism.

With this convention with regard to the signs of the

solid angle, let us consider the relation between the

potentials due to a shell at two points P and P
;
P being

close to the shell on the positive side, P close to P but

Fig. 66.

on the negative side of the shell. Consider the areas

traced out on the unit sphere by radii from parallel to

those drawn from P and P . The area corresponding to

those drawn from P will be the shaded part of the sphere,

let this area be w, the potential at P is
tpco.

The area

corresponding to the radii drawn from P will be the

unshaded portion of the sphere whose area is 4-Tr
,

but inasmuch as the radii from P strike first against the

negative side of the shell the solid angle subtended at P
will be minus this area, i.e. o&amp;gt; 4?r

;
hence the magnetic

potential due to the shell at P is
&amp;lt;/&amp;gt;
(w 4?r). The

potential at P thus exceeds that at P by 47r&amp;lt;.

In spite of this finite increment in the potential in

passing from P to the adjacent point P, there will be

continuity of potential in passing through the shell if we

regard the potential as given in the shell by the same

laws as outside.

Consider the potential at a point Q in the shell, and
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divide the original shell into two, one on each side of Q.

Then as the whole shell is uniformly magnetized the

strength of the shells will be proportional to their thick

nesses. Thus if
(/&amp;gt;

is the strength of the original shell the

PQ
strength of the shell between P and Q will be

&amp;lt;/&amp;gt;

QP
and that of the shell between Q and P will be

The potential at Q due to the shell next to P is

OP OP
,
that due to the shell next to P is

(G&amp;gt; 4?r) (/&amp;gt;
-&amp;gt; &amp;gt;

the potential at Q is the sum of these, i.e.

this changes continuously as we pass through the shell from

(a)
-

4-Tr) at P ,

to
0ft&amp;gt;

at P.

135. Mutual Potential Energy of the Shell and

an external Magnetic System. Let / be the intensity

of magnetization at a point Q on the shell
;

consider a

small portion of the shell round Q, a being the area of

this portion. Let P, P be two points on its axis of mag
netization, P being on the positive surface of the shell,

P on the negative. Then we have a charge of positive

magnetism equal to /a at P, a negative charge
- /a at



135] MAGNETISM 221

P . If Vp , Vp&amp;gt;
are the potentials at P and P respectively

due to the external magnetic system, then the mutual

potential energy of the external system and the small

magnet at Q is equal to

Vpla-Vyla .................. (1).

If
cf)

is the strength of the shell

hence the expression (1) is equal to

PP
But ( Vp Vp&amp;gt;)/PP

is the magnetic force due to the

external system along PP ,
the normal to the shell. Let

this force be denoted by Hn ,
the force being taken as

positive when it is in the direction of magnetization of

the shell, i.e. when the magnetic force passes from the

negative to the positive side through the shell, then

the mutual potential energy of the external system and

the small magnet at Q is equal to

Since the strength of the shell is uniform the mutual

potential energy of the external system and the whole

shell is equal to

na. being the sum of the products got by dividing the

surface of the shell up into small areas, arid multiplying
each area by the component along its normal of the

magnetic force due to the external system, this com

ponent being positive when it is in the direction of

magnetization of the shell. This quantity is often called

the number of lines of magnetic force due to the external

system which pass through the shell.
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It is analogous to the total normal electric induction

over a surface in Electrostatics, see Art. 9.

136. Force acting on the shell when placed in

a magnetic field. If X is the force acting on the shell

in the direction x, and if the shell is displaced in this

direction through a distance Sx, then XSx is the work

done on the shell by the magnetic forces during the

displacement ;
hence by the principle of the Conservation

of Energy, XSx must equal the diminution in the energy

due to the displacement. Suppose that A, Fig. 68, re

presents the position of the edge of the shell before,

\ \
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the closed surface having as ends the shell in its two

positions A and B, the sides of the surface being formed

by the lines PP f

&c. which join the original position

of a point P to its displaced position. We see, as in

Art. 10, that unless the closed surface contains an excess

of magnetism of one sign ^Hna. taken over its surface

must vanish, Hn denoting the magnetic force along the

normal to the surface drawn outwards.

But ^Hna over the whole surface

=N N + ^LHna taken over the sides,

hence N -N=-^Hn* .................. (2);

the summation on the right-hand side of this equation

being taken over the sides. Consider a portion of the

sides bounded by PQ, P Q ;
P

, Q being the displaced

positions of P and Q respectively. Since

the area PQP Q is equal to

Sac x PQ x sin 0,

where 6 is the angle between PQ and PP . If H is

the magnetic force at P due to the external system, the

value of Hna. for the element PQQ P is equal to

&c x PQ x sin 6 x H cos %,

where % is the angle which the outward-drawn normal

to PQQ P makes with H. Hence since Z&c =
&amp;lt;j&amp;gt;(N

f - N)
we have by equation (2)

XSx = - 02 {&& x PQ x sin x H cos % },

or since 8x is the same for all points on the shell

X = -
&amp;lt;/&amp;gt;2 {PQ x sin 6 x H cos %} .
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Thus the force on the shell parallel to x is the same

as it would be if a force parallel to x acted on the

boundary of the shell, equal per unit length to

Since x is arbitrary this gives the force acting on

each element of the boundary in any direction
;
to find

the resultant force on the element, we notice that the com

ponent along x vanishes if x is parallel to PQ, for in this

case = 0, the resultant force is thus at right angles to

the element of the boundary. Again, if x is parallel to H,

% = ?r/2, and the force again vanishes, thus the resultant

force is at right angles to H. Hence the resultant force

on PQ is at right angles both to PQ and H. In order

to find the magnitude of this force we have only to

suppose that x is parallel to this normal, in this case

# = 7r/2 and %=~- ^, where ty is the angle between

PQ and H\ the resultant force is therefore

(f)H sin
T/T.

Thus the force on the shell may be regarded as equiva
lent to a system of forces acting over the edge of the shell,

the force acting on each element of the edge being at

right angles to the element and to the external magnetic
force at the element, and equal per unit length to the

product of the strength of the shell into the component
of the magnetic force at right angles to the element of

the edge.

The preceding rule gives the line along which the

force acts
;
the direction of the force is, in any particular

case, most easily got from the principle that since the

mutual potential energy of the shell and the external
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magnetic system is equal to
&amp;lt;j)N,

where N is the number
of lines of magnetic force due to the external system
which pass through the shell in the direction in which

it is magnetized, i.e. which enter the shell on the side

with the negative magnetic charge and leave it on the

side with the positive charge : the shell will tend to move

so as to make N as large as possible, for by so doing
it makes the potential energy as small as possible. The

force on each element of the boundary will therefore be

in such a direction as to tend to move the element of

the boundary so as to enclose a greater number of lines

of magnetic force passing through the shell in the positive

direction.

Thus if the direction of the magnetic force at the

element PQ is in the direction PT in Fig. 69, the force

on PQ will be outwards along PS as in the figure, for

Fig. 69.

if PQ were to move in this direction the shell would

catch more lines of force passing through it in the positive

direction.

Since XZx = &amp;lt; (N - N)

Y A.
dN

we get X =
4&amp;gt;-dx

This expression is often very useful for finding the

total force on the shell in any direction.

T. E. 15
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137. Magnetic force due to the shell. Suppose
that the external field is that due to a single unit pole
at a point A, the result of the preceding article will give
the force on the shell due to the pole, this must how
ever be equal and opposite to the force exerted by the

shell on the pole. If however the field is due to a unit

pole at A, H the magnetic force due to the external

system at an element PQ of the shell is equal to 1/J.P
2

and acts along AP : hence by the last article the mag
netic force at A due to the shell is the same as if we

supposed each unit of length of the boundary of the shell

to exert a force equal to

where 6 is the angle between AP and the tangent to

the boundary at P, $ is the strength of the shell. This

force acts along the line which is at right angles both

to AP and the tangent to the boundary at P. The
direction in which the force acts along this line may be

found by the rule that it is opposite to the force acting
on the element of the boundary at P arising from unit

magnetic pole at A
;
this latter force may be found by the

method given at the end of the preceding article.

138. If the external magnetic field in Art. 135 is

due to a second magnetic shell, then the mutual potential

energy of the two shells is equal to

where $ is the strength of the first shell, and N the

number of lines of force which pass through the first

shell, and are produced by the second. It is also equal to
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where &amp;lt; is the strength of the second shell, and N the

number of lines of force which pass through the second

shell and are produced by the first. Hence by making
&amp;lt;

=
&amp;lt; we see that, if we have two shells a and /3 of

equal strengths, the number of lines of force which pass

through a. and are due to /3 is equal to the number of

lines of force which pass through /3 and are due to a.

139. Magnetic Field due to a uniformly mag
netized sphere. Let the sphere be magnetized parallel

to as, and let / be the intensity of magnetization. We
may regard the sphere as made up, as in Fig. 70, of a

great number of uniformly magnetized bar magnets of

uniform cross section a, the axes of these magnets being

parallel to the axis of x. On the ends of each of these

magnets we have charges of magnetism equal to + la.

Now consider a sphere whose radius is equal to that of

the magnetized sphere and built up of bars in the same

way, each of these bars being however wholly filled with

positive magnetism whose volume density is p: consider

/\ r\

X
Fig. 70.

also another equal sphere divided up into bars in the

same way, each of these bars being however filled with

152



228 MAGNETISM [CH. VI

negative magnetism whose volume density is p ; suppose

that these spheres have their centres at and 0, Fig. 71,

two points very close together, 00 being parallel to the

axis of x. Consider now the result of superposing these

two spheres : take two corresponding bars
;
the parts of

the bars which coincide will neutralize each other s effects,

but the negative bar will project a distance 00 to the

left, and on this part of the bar there will be a charge of

negative magnetism equal to 00 x a. x p : the positive bar

will project a distance 00 to the right, and on this part

of the bar there will be a charge of positive magnetism

equal to 00 x a x p. If 00 is very small we may regard

these charges as concentrated at the ends of the bars, so

that if 00 x p
= I the case will coincide with that of the

uniformly magnetized sphere.

We can easily find the effects of the positive and

negative spheres at any point either inside or outside.

Let us first consider the effect at an external point P.

The potential due to the positive sphere is equal to

4 7ra3

p
zWF

if a is the radius of the sphere.

Fig. 71.
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The potential due to the negative sphere is equal to

4

Hence the potential due to the combination of the

spheres is equal to

4 -

1-
1- -4

(O P OP]

00 cose

approximately, if 00 is very small, and 6 is the angle
which OP makes with 00 .

Now we have seen that this case coincides with that

of the uniformly magnetized sphere if p x 00 =
/, where

/ is the intensity of magnetization of the sphere ;
hence

the potential due to the uniformly magnetized sphere
at an external point P is

4 , cos 6***-
where r = OP.

Comparing this result with that given in Art. 123 we
see that the uniformly magnetized sphere produces the

same effect outside the sphere as a very small magnet
placed at its centre, the axis of the small magnet being

parallel to the direction of magnetization of the sphere,
while the moment of the magnet is equal to the in

tensity of magnetization multiplied by the volume of

the sphere.

The magnetic force inside the sphere is indefinite

without further definition, since to measure the force on

the unit pole, we have to make a hole to receive the
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pole and the force on the pole depends on the shape of

the hole so made : this point is discussed at length in

Chapter vm.

For the sake of completing the solution of this case,

we shall anticipate the results of that chapter and assume

that the quantity which is denned as the magnetic
force inside the sphere is the force which would be

exerted on the unit pole if the sphere were regarded
as a spherical air cavity over the surface of which

there is spread the same distribution of magnetic charge

as actually exists over the surface of the magnetized

sphere. We may thus in calculating the effect of the

charges on the surface suppose that they exert the same

magnetic forces as they would in air.

To find the magnetic force at an internal point Q,

Fig. 71, we return to the case of the two uniformly charged

spheres.

The force due to the uniformly positively charged

sphere at Q is equal to

and acts along O Q; the force due to the negatively

charged sphere is equal to

and acts along QO.

By the triangle of forces the resultant of the forces

exerted by the positive and negative spheres is equal to

f 7T/&amp;gt;

. 00 ,

and is parallel to 00 . We have seen that the case of the

positive and negative spheres coincides with that of the
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uniformly magnetized sphere if O0 xp = l. Hence the

force inside the uniformly magnetized sphere is uniform

and parallel to the direction of magnetization of the sphere

and equal to

The lines of force inside and outside the sphere are

given in Fig. 72.

Fig. 72.



CHAPTER VII

TERRESTRIAL MAGNETISM

140. The pointing of the compass in a definite direc

tion was at first ascribed to the special attraction for iron

possessed by the pole star. Gilbert, however, in his work

De Magnete, published in 1600, pointed out that it showed

that the earth was itself a magnet. Since Gilbert s time

the study of Terrestrial Magnetism, i.e. the state of the

earth s magnetic field, has received a great deal of attention

and forms one of the most important, and undoubtedly
one of the most mysterious departments of Physical

Science.

141. To fix the state of the earth s magnetic field

we require to know the magnetic force over the whole

of the surface of the earth
;
the observations made at a

number of magnetic observatories, scattered unfortunately

somewhat irregularly at very wide intervals over the earth,

give us an approximation to this.

To determine the magnitude and direction of the

earth s magnetic force we require to know three things :

the three usually taken are (1) the magnitude of the

horizontal component of the earth s magnetic force, usually

called the earth s horizontal force; (2) the angle which

the direction of the horizontal force makes with the

geographical meridian, this angle is called the declination
;
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the vertical plane through the direction of the earth s

horizontal force is called the magnetic meridian ; (3) the

dip, that is the complement of the angle which the axis of

a magnet, suspended so as to be able to turn freely about

an axle through its centre of gravity at right angles to the

magnetic meridian, makes with the vertical. The fact that

a compass needle when free to turn about a horizontal

axis would not settle in a horizontal position, but dipped,

so that the north end pointed downwards, was discovered

by Norman in 1576.

For a full description of the methods and precautions

which must be taken to determine accurately the values

of the magnetic elements the student is referred to the

article on Terrestrial Magnetism in the Encyclopaedia

Britannica : we shall in what follows merely give a general

account of these methods without entering into the details

which must be attended to if the most accurate results are

to be obtained.

The method of determining the horizontal force has

been described in Art. 133.

142. Declination. To determine the declination an

instrument called a declinometer may be employed ;
this

instrument is represented in Fig. 73. The magnet
which is a hollow tube with a piece of plane glass with a

scale engraved on it at the north end and a lens at the

south end is suspended by a single long silk thread from

which the torsion has been removed by suspending from

it a plummet of the same weight as the magnet: the

suspension and the reading telescope can rotate about a

vertical axis and the azimuth of the system determined

by means of a scale engraved on the fixed horizontal base.
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The observer looks through the telescope and observes the

division on the scale at the end of the magnet with which

a cross wire in the telescope coincides; the magnet is

then turned upside down and resuspended and the division

of the scale with which the cross wire coincides again
noted

;
this is done to correct for the error that would

Fig. 73.

otherwise ensue if the magnetic axis of the cylinder did

not coincide with the geometrical axis. The mean of the

readings gives the position of the magnetic axis. If now

we take the reading on the graduated circle and add to

this the known value in terms of the graduations on this

circle of the scale divisions seen through the telescope, we

shall find the circle reading which corresponds to the

magnetic meridian. Now remove the magnet and turn

the telescope round until some distant object, whose
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azimuth is known, is in the field of view; take the reading
on the graduated circle, the difference between this and

the previous reading will give us the angular distance of

the magnetic meridian from a plane whose azimuth is

known : in other words, it gives us the magnetic declina

tion.

143. Dip. The dip is determined by means of an

instrument called the dip-circle, represented in Fig. 74. It

Fig. 74.

consists of a thin magnet with an axle of hard steel whose

axis is at right angles to the plane of the magnet, and

ought to pass through the centre of gravity of the needle
;

this axle rests in a horizontal position on two agate
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edges, and the angle the needle makes with the vertical

is read off by means of the vertical circle. The needle

and the vertical circle can turn about a vertical axis.

To set the plane of motion of the needle in the magnetic

meridian, the plane of the needle is turned about the

vertical axis until the magnet stands exactly vertical;

when in this position the plane of the needle must be

at right angles to the magnetic meridian. The instrument

is then twisted through 90 (measured on the horizontal

circle) and the magnet is then in the magnetic meridian
;

the angle it makes with the horizontal in this position is

the dip. To avoid the error arising from the axle of the

needle not being coincident with the centre of the vertical

circle, the positions of the two ends of the needle are read
;

to avoid the error due to the magnetic axis not being
coincident with the line joining the ends of the needle,

the needle is reversed so that the face which originally

was to the east is now to the west and a fresh set of

readings taken
;
and to avoid the errors which would arise

if the centre of gravity were not on the axle, the needle

is remagnetized so that the end which was previously
north is now south and a fresh set of readings taken.

The mean of these readings gives the dip.

144. We can embody in the form of charts the deter

minations of these elements made at the various magnetic
observatories : thus, for example, we can draw a series of

lines over the map of the world such that all points on one

of these lines have the same declination, these are called

isogonic lines : we may also draw another set of lines so

that all the places on a line have the same dip, these are

called isoclinic lines. The lines however which give the
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best general idea of the distribution of magnetic force over

the earth s surface are the lines of horizontal magnetic

Fig. 75.

ld20East Variation

Fig. 76.
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force on the earth s surface, i.e. the lines which would be

traced out by a traveller starting from any point and

always travelling in the direction in which the compass

pointed; they were first used by Duperrey in 1836.

The isoclinic lines, the isogonic lines and Duperrey s

lines for the Northern and Southern Hemispheres for 1876

are shown in Figs. 75, 76, 77, and 78 respectively.

145. The points to which Duperrey s lines of force

converge are called poles/ they are places where the

horizontal force vanishes, that is where the needle if freely

suspended would place itself in a vertical position.

Fig. 77.

Gauss by a very thorough and laborious reduction of

magnetic observations gave as the position in 1836, of

the pole in the Northern Hemisphere, latitude 70 35
,
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longitude 262 1 E., and of the pole in the Southern

Hemisphere, latitude 78 35
, longitude 150 10 E. The

Fig. 78.

poles are thus not nearly at opposite ends of a diameter

of the earth.

146. An approximation, though only a very rough one,

to the state of the earth s magnetic field, may be got by

regarding the earth as a uniformly magnetized sphere.

On this supposition, we have by Art. 139, if 6 is the

dip at any place, i.e. the complement of the angle between

the magnetic force and the line joining the place to the

centre of the earth, I the magnetic latitude, i.e. the com

plement of the angle this line makes with the direction of

magnetization of the sphere,

tan 6 = 2 tan I,

while the resultant magnetic force would vary as

[1 + 3 sin2

qi.
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These are only very rough approximations to the truth

but are sometimes useful when more accurate knowledge
of the magnetic elements is not available.

If M is the moment of the uniformly magnetized

sphere which most nearly represents the earth s magnetic

field, then in c.G.s. units

M= 323 (earth s radius)
3

.

147. Variations in the Magnetic Elements.

During the time within which observations of the mag
netic elements have been carried on the declination at

London has changed from being 11 15 to the East of

North as in 1580 to 24 38 25&quot; to the West of North as

in 1818. It is now going back again to the East, but

is still pointing between 16 and 17 to the West. The

variations in the declination and dip in London are

shown in the following table.

Date
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Date
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place to another, it is exceedingly small at Trevandrum,

a place near the equator.

In the Southern Hemisphere the diurnal variation is

of the opposite kind to that in the Northern, i.e. the

easterly limit in the Southern Hemisphere is reached in

the afternoon, the westerly in the morning.

In the following diagram, due to Prof. Lloyd, the

radius vector represents the disturbing force acting on

the magnet at different times of the day in Dublin, the

AM 10

Fig. 79.

forces at any hour are the average of those at that hour

for the year. The curve would be different for different

seasons of the year.

There is also a diurnal variation in the vertical
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component of the earth s magnetic force. In England the

vertical force is least between 10 and 11 a.m., greatest at

about 6 p.m.

The extent of the diurnal variation depends upon the

condition of the sun s surface, being greater when there

are many sun spots. As the state of the sun with regard
to sun spots is periodic, going through a cycle in about

eleven years, there is an eleven-yearly period in the

magnitude of the diurnal variation.

149. Effect of the Moon. The magnetic declina

tion shows a variation depending on the position of the

moon with respect to the meridian, the nature of this

variation varies very much in different localities.

150. Magnetic Disturbances. In addition to the

periodic and regular disturbances previously described,

rapid and irregular changes in the earth s magnetic field,

called magnetic storms, frequently take place ;
these often

occur simultaneously over a large portion of the earth s

surface.

Aurorse are mostly accompanied by magnetic storms,

and there is very strong evidence that a magnetic storm

accompanies the sudden formation of a sun spot.

151. Very important evidence as to the locality of

the origin of the earth s magnetic field, or of its variations,

is afforded by a method due to Gauss which enables us to

determine whether the earth s magnetic field arises from

a magnetic system above or below the surface of the earth.

The complete discussion of this method requires the use of

Spherical Harmonic Analyses. The principle underlying

162
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it however can be illustrated by considering a simple case,

that of a uniformly magnetized sphere.

Let PQ be two points on a spherical surface concentric

with the sphere, then by observation of the horizontal

force at a series of stations between P and Q, we can

determine the difference between the magnetic potential
at P and Q. If 1P and HQ are the magnetic potentials
at P and Q respectively these observations will give us

HP - HQ. By Art. 139 if
l9 2 are the angles OP and OQ

make with the direction of magnetization of the sphere

M
tip -nQ

= - (cos 0!
- cos &amp;lt;92) ............ (1),

where M is the magnetic moment of the sphere and

where is the centre of the sphere.

If ZP) Zq are the vertical components of the earth s

magnetic force, i.e. the forces in the direction OP and

OQ respectively, then

&amp;lt;2

=
7T

cos

Zp and Zq can of course be determined by observations

made at P and Q. By equations (1) and (2), we have

ClP -nQ
= 1t(ZP -ZQ)r ............... (3),

hence if the field over the surface of the sphere through

P and Q were due to an internal uniformly magnetized

sphere, the relation (3) would exist between the horizontal

and vertical components of the earth s magnetic force.
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Now suppose that P and Q are points inside a uniformly

magnetized sphere, the force inside the sphere is uniform

and parallel to the direction of magnetization, let H be

the value of this force, then in this case

HP HQ = Hr (cos 2 cos #j),

Zq =H COS 62 ,

hence in this case

nP -nq
= -r(ZP -ZQ) ............... (4).

Thus if the magnetic system were above the places at

which the elements of the magnetic field were determined,

the relation (4) would exist between the horizontal and

vertical components of the earth s magnetic force. Con

versely if we found that relation (3) existed between these

components we should conclude that the magnets pro

ducing the field were below the surface of the earth, while

if relation (4) existed we should conclude the magnets
were above the surface of the earth; if neither of these

relations was true we should conclude that the magnets
were partly above and partly below the surface of the

earth.

Gauss showed that no appreciable part of the mean

values of the magnetic elements was due to causes above

the surface of the earth. Schuster has however recently

shown by the application of the same method that the

diurnal variation must be largely due to such causes.

Balfour Stewart had previously suggested the magnetic

action of electric currents flowing through rarefied air in

the upper regions of the earth s atmosphere as the

probable cause of this variation.



CHAPTER VIII

MAGNETIC INDUCTION

152. When a piece of unmagnetized iron is placed
in a magnetic field it becomes a magnet, and is able to

attract iron filings; it is then said to be magnetized by
induction. Thus if a piece of soft iron (a common nail for

example) is placed against a magnet, it becomes mag
netized by induction, and is able to support another nail,

while this nail can support another one, and so on until a

long string of nails may be supported by the magnet.

If the positive pole of a bar magnet be brought near

to one end of a piece of soft iron, that end will become

charged with negative magnetism, while the remote end of

the piece of iron will be charged with positive magnetism.
Thus the opposite poles of these two magnets are nearest

each other, and there will therefore be an attraction be

tween them, so that the piece of iron, if free to move, will

move towards the inducing magnet, i.e. it will move from

the weak to the strong parts of the magnetic field due to

this magnet. If, instead of iron, pieces of nickel or cobalt

are used they will tend to move in the same way as the

iron, though not to so great an extent. If however we use

bismuth instead of iron, we shall find that the bismuth

is repelled from the magnet, instead of being attracted

towards it
;
the bismuth tending to move from the strong
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to the weak parts of the field; the effect is however

very small compared with that exhibited by iron
;
and to

make the repulsion evident it is necessary to use a strong

electromagnet. When the positive pole of a magnet is

brought near a bar of bismuth the end of the bar next

the positive pole becomes itself a positive pole, while the

further end of the bar becomes a negative pole.

Substances which behave like iron, i.e. which move

from the weak to the strong parts of the magnetic field,

are called paramagnetic substances; while those which

behave like bismuth, and tend to move from the strong

to the weak parts of the field, are called diamagnetic

substances.

When tested in very strong fields all substances are

found to be para- or dia-magnetic to some degree, though
the extent to which iron transcends all other substances

is very remarkable.

153. Magnetic Force and Magnetic Induction.

The magnetic force at any point in air is defined to be

the force on unit pole placed at that point, or what is

equivalent to this the couple on a magnet of unit

moment placed with its axis at right angles to the

magnetic force. When however we wish to measure the

magnetic force inside a magnetizable substance, we have

to make a cavity in the substance in which to place the

magnet used in measuring the force. The walls of the

cavity will however become magnetized by induction, and

this magnetization will affect the force inside the cavity.

The magnetic force thus depends upon the shape of the

cavity, and this shape must be specified if the expression

magnetic force is to have a definite meaning.
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Let P be a point in a piece of iron or other mag
netizable substance, and let us form about P a cylindrical

cavity, the axis of the cylinder being parallel to the

direction of magnetization at P. Let us first take the case

when the cylinder is a very long and narrow one. Then
in consequence of the magnetization at P, there will be
a distribution of positive magnetism over one end of the

cylinder, and a distribution of negative magnetism over

the other. Let / be the intensity of the magnetization
at P, reckoned positive when the axis of the magnet is

drawn from left to right, then when the cylindrical cavity
has been formed round P there will be, if a. is the cross

section of the cavity, a charge la. of magnetism on the

end to the left, and a charge la on the end to the right.
If 21, the length of the cylinder, is very great compared
with the diameter, then the force on unit pole at the

middle of the cylinder due to the magnetism at the ends

of the cylinder will be 2/a/Z
2
,
and will be indefinitely

small if the breadth of the cylinder is indefinitely small

compared with its length. In this case the force on unit

pole in the cavity is independent of the intensity of

magnetization at P. The force in this cavity is defined

to be *

the magnetic force at P! Let us denote it by H.
Let us now take another co-axial cylindrical cavity,

but in this case make the length of the cylinder very
small compared with its diameter, so that the shape of

the cavity is that of a narrow crevasse. On the left end

of this crevasse there is a charge of magnetism of surface

density /, and on the right end of the crevasse a charge
of magnetism of surface density /. If a unit pole be

placed inside the crevasse the force on it due to this

distribution of magnetism will be the same as the force
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on unit charge of electricity placed between two infinite

plates charged with electricity of surface density + / and

/ respectively, i.e. by Art. 14, the force on the unit

pole in this case will be 4?r/. Thus in a crevasse the

total force on the unit pole at P will be the resultant of

the magnetic force at P and a magnetic force 47rJ in the

direction of the magnetization at P. The force on the

unit pole in the crevasse is defined to be the magnetic

induction at P, we shall denote it by B. If we had taken

a cavity of any other shape the force due to the magnetiza
tion at P, would have been intermediate in value between

zero for the long cylinder and 4?r/ for the crevasse
;
thus

if the cavity had been spherical the force due to the

magnetization would (Art. 139) have been 4?r//3.

The magnetic induction is not necessarily in the same

direction as the magnetic force, it will only be so when

the magnetization at P is parallel to the magnetic force.

154. Tubes of Magnetic Induction. A curve

drawn such that its tangent at any point is parallel to

the magnetic induction at that point is called a line

of magnetic induction : in non-magnetizable substances

the lines of magnetic induction coincide with the lines

of magnetic force. We can also draw tubes of magnetic
induction just as we draw tubes of magnetic force.

We shall choose the unit tube so that the magnetic
induction at any place whether in the air or iron is equal
to the number of tubes of induction which cross a unit

area at right angles to the induction.

Let us consider the case of a small bar magnet, the

magnetism being entirely at its ends. Suppose A and B
are the ends of the magnet, A being the negative, B the
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positive end, then in the air the lines of magnetic in

duction coincide with those of magnetic force and go
from B to A. To find the lines of magnetic induction

at a point P inside the magnet, imagine the magnet cut

by a plane at right angles to the axis and the two portions

separated by a short distance, the lines of magnetic force

in this short air space will be the lines of magnetic in

duction in the section through P. If the magnet is cut

as in the figure then the end G will be a positive pole of

the same strength as A, the end D a negative pole of the

same strength as B. Thus through the short air space

between C and D tubes of induction will pass running in

the direction AB. Draw a closed surface passing through
the gap between C and D and enclosing AC or DB. The

magnetic force at any point on this surface is equal to the

magnetic induction at the same point due to the undivided

magnet. Since this surface encloses as much positive as

negative magnetism, we see as in Art. 10 that the total

magnetic force over its surface vanishes. Hence we see

that the tubes of induction inside the magnet are equal

in number at each cross-section and this number is the
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same as the number of those which leave the pole B and

enter A. In fact the lines of magnetic induction due

to the magnet form a series of closed curves all passing

through the magnet and then spreading out in the air,

the lines running from B to A in the air and from A to B
in the magnet.

Thus we may regard any small magnet, whose in

tensity is / and area of cross-section a, as the origin of

a bundle of closed tubes of induction, the number of

tubes being 4?r/a; every tube in this bundle passes

through the magnet, running through the magnet in

the direction of the magnetization.

It is instructive to compare the differences between

the properties of the tubes of electric polarization in

electrostatics and those of magnetic induction in mag
netism : the most striking difference is that whereas in

electrostatics the tubes are not closed but begin at posi

tive electrification and end on negative, in magnetism the

tubes of induction always form closed curves and have

neither beginning nor end.

A surface charged with electricity of surface density a

is the origin of a tubes of electric polarization per unit

area. A small magnet whose intensity of magnetization

is / is the origin of 4?rJ tubes of magnetic induction per

unit area of cross-section of the magnet, all these tubes

passing through the magnet which acts as a kind of girdle

to them.

The properties of these tubes are well summed up

by Faraday in the following passage (Experimental Re

searches, 3117): &quot;there exist lines of force within the

magnet, of the same nature as those without. What is

more, they are exactly equal in amount to those without.
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They have a relation in direction to those without and

in fact are continuations of them, absolutely unchanged
in their nature so far as the experimental test can be

applied to them. Every line of force, therefore, at what

ever distance it may be taken from the magnet, must be

considered as a closed circuit passing in some part of its

course through the magnet, and having an equal amount
of force in every part of its course.&quot; Faraday s lines of

force are what we have called tubes of induction.

155. We shall now proceed to consider the special

case, including that of iron and all non-crystalline sub

stances when magnetized entirely by induction, in which

the direction of the magnetization and consequently of

the magnetic induction is parallel to the magnetic force.

Let H be the magnetic force, B the magnetic induction,

and I the intensity of magnetization, then we have by
Art. 153,

The ratio of I to H when the magnetization is entirely
induced is called the magnetic susceptibility and is usually
denoted by the letter k. The ratio of B to H under the

same circumstances is called the magnetic permeability
and is denoted by the letter

//,.

We thus have

and since B =H + 4?r/,

we have
//,
= / + 4&amp;gt;7rk.

The quantity //,
which occurs in magnetism is analogous

to the specific inductive capacity in electrostatics; but
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while as far as our knowledge at present goes, the specific

inductive capacity at any time does not depend much, if at

all, upon the value of the electric intensity at that time,

nor on the electric intensity to which the dielectric has
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the iron. The variations in the magnetic permeability
are most conveniently represented by curves in which the

ordinate represents the magnetic induction, the abscissa

the corresponding magnetic force. If P be a point on

such a curve, PN the ordinate, ON the abscissa, then

the magnetic permeability is PN/ON.
Such a curve is shown in Fig. 81, in which the

ordinates represent for a particular specimen of iron

the values of B, the magnetic induction, the abscissae

the values of H, the magnetic force. For small values

of H the curve is straight, indicating that the per

meability is independent of the magnetic force. When
however the magnetic force increases beyond about

-fa

of the earth s horizontal force, or about 018 in C.G.S.

units, the curve begins to rise rapidly, and the value

of
fjb

is greater than it was for small magnetic forces.

The curve rises rapidly for some time, the maximum
value of p occurring when the magnetic force is about

5 C.G.S. units, then it begins to get flatter and there

are indications that for very great values of the mag
netic force the curve again becomes a straight line

making an angle of 45 with the axis along which the

magnetic force is measured. The relation between B and

H along this part of the curve is

B =H + constant :

comparing this with the relation

we see that it indicates that the intensity of magnetization
has become constant. In other words, the intensity of

magnetization does not increase as the magnetic force

increases. When this is the case the iron or other
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magnetizable substance is said to be saturated. Thus

iron seems not to be able to be magnetized beyond a

certain intensity. In a specimen of soft iron examined by
Prof. Ewing, saturation was practically reached when the

magnetic force was about 2000 in c.G.s. units. For steel

the magnetic force required for saturation is very much

greater than for soft iron, and in some specimens of steel

examined by Prof. Ewing saturation was not attained

even when the magnetizing force was as great as 10000.

Induction B.

Fig. 82.

For a particular kind of steel called Hadfield s manganese
steel the value of

/JL
was practically constant even in

the strongest magnetic fields, this steel however is only

slightly magnetic, the value of
/u, being about 1 4. The
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greatest value of p which has been observed is 20000 for

soft iron, in this case however the iron was tapped when
under the influence of the magnetic force. Fig. 82 re

presents the results of Ewing s experiments on the relation

between magnetic permeability and magnetic induction in

very intense magnetic fields.

156. Effect of Temperature on the Magnetic
Permeability. The permeability of iron depends very
much upon the temperature. Dr J. Hopkinson found that

as the temperature increases, starting from about 15 C.,

the magnetic permeability at first slowly increases; this

slow rate of increase is however exchanged for an exceed

ingly rapid one when the temperature approaches a critical

temperature which for different samples of iron and steel

ranges from 690 C. to 870 C., at this temperature the

value of the permeability is many times greater than

that at 15C.: after passing this value the permeability
falls even more rapidly than it previously rose. Indeed

so fast is the fall that at a few degrees above the critical

temperature iron practically ceases to be magnetic. Just

below this temperature iron is an intensely magnetic sub

stance, while above that temperature it is not magnetic
at all. There are other indications that iron changes its

character in passing through this temperature, for here

its thermo-electric properties as well as its electrical

resistance suffer abrupt changes. This temperature is

often called the temperature of recalescence from the fact

that a piece of iron wire heated above this temperature
to redness and then allowed to cool, will get dull before

reaching this temperature and will glow out brightly

again when it passes through it.
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Though the value of ^ at higher temperatures (lower

however than that of recalescence) is for small magnetic
forces greater than at lower temperatures, still as it is

found that at the higher temperatures iron is much more

easily saturated than at lower ones, the value of ^ for

the hot iron might be smaller than for the cold if the

magnetic forces were large.

Hopkinson found that some alloys of nickel and iron

after being rendered non-magnetic by being raised above

the temperature of recalescence remained non-magnetic
when cooled below this temperature ;

it was not until

the temperature had fallen far below the temperature of

recalescence that they regained their magnetic properties.

Thus these alloys can at one and the same temperature
exist in both the magnetic and non-magnetic states.

157. Magnet Retentiveness. Hysteresis. When
a piece of iron or steel is magnetized in a strong magnetic
field it will retain a considerable proportion of its mag
netization even after the applied field has been removed

and the iron is no longer under the influence of any ap

plied magnetic force. This power of remaining magne
tized after the magnetic force has been removed, is called

magnetic retentiveness; permanent magnets are a familiar

instance of this property. This effect of the previous

magnetic history of a substance on its behaviour when

exposed to given magnetic conditions has been studied in

great detail by Prof. Ewing, who has given to this property

the name of hysteresis. To illustrate this properly, let us

consider the curve (Fig. 83) which is taken from Prof.

Ewing s paper on the magnetic properties of iron (Phil.

Trans. Part II., 1885), and which represents the relation for

T. E. 17
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a sample of soft iron between the intensity of magnetization

(the ordinate) and the magnetizing force (the abscissa),

when the magnetic force increases from zero up to ON,
then diminishes from ON through zero to OM

,
and then

increases again up to its original value. When the force

is first applied we have the state represented by the por
tion OP of the curve, which begins by being straight, then

increases more rapidly, bends round and finally reaches P,

the point corresponding to the greatest magnetic force

Fig. 83.

applied to the iron. If now the force is diminished it

will be found that the magnetization for a given force is

greater than it was- when the magnet was initially under

the action of the same force, i.e. the magnet has retained

some of its previous magnetization, thus the curve PE&amp;gt;

when the force is diminishing, will not correspond to the

curve OP but will be above it. OE is the magnetization
retained by the magnet when free from magnetic force

;
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in some cases it amounts to more than 90 per cent.

of the greatest magnetization attained by the magnet.
When the magnetizing force is reversed the magnet
rapidly loses its magnetization and the negative force

represented by OK is sufficient to deprive it of all

magnetization. When the negative magnetic force is in

creased beyond this value, the magnetization is negative.
After the magnetic force is again reversed it requires a

positive force equal to OL to deprive the iron of its

negative magnetization. When the force is again in

creased to its original value the relation between the

force and induction is represented by the portion LGP
of the curve. If after attaining this value the force is

again diminished to - ON and back again, the corre

sponding curve is the curve PEK.
From the fact that this curve encloses a finite area it

follows that a certain amount of energy must be dissipated
and converted into heat when the magnetic force goes

through a complete cycle. To show this let us suppose
that we have a small magnet whose intensity is /, cross-

section a, and length I, and that it is moved from a place
where the magnetic force is H to one where it is H + 8H.
We shall show that the work done on the magnet is

ISHal.

H is considered positive when it acts in the direction of

magnetization of the iron. For if Oj is the magnetic

potential at A, the negative pole; O2 that at B, the

positive pole, then the potential energy of the magnet
is equal to

172
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When the magnetic force is H + &H the potential energy
is equal to

Thus the diminution in the potential energy when

the magnet moves into the stronger field is lal&H, this is

equal to the work done by the magnet. If the intensity of

magnetization changes from / to /+/ during the motion

of the magnet, the work done is intermediate between

lalSH and (/ + /) alSH ;
hence neglecting the small

terms depending upon SlSff, we may still take lal&H

as the expression for the work done. Since la is the

volume of the magnet the work done by the magnet

per unit volume is IBH.

If in Fig. 84 OS = H, OT=H + SH and SP = I, then

is represented on the diagram by the area SPQT.

Thus the total work done by the magnet when it

moves from a place where the force is OK to one where it

is OL is represented by the area CKLDE. Let the magnet
now be pulled back from the place where the force is OL
to the place from which it started where the force is OK,
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work has to be done on the magnet and this work is re

presented by the area DFGKL. Thus the excess of the

work done on the magnet over that done by the magnet,

when the magnetic force goes through a complete cycle,

is represented by the area of the loop CEDFC. The

area of the loop thus represents the excess of the work

spent over that obtained : but since the magnetic force

and magnetization at the end of the cycle are the same

as at the beginning, this work must have been dissipated

and converted into heat. The mechanical equivalent of

the amount of heat produced in each unit volume of the

iron is represented by the area of the loop.

Another proof of this is given in Chapter xi.

If instead of a curve showing the relation between

/ and H we use one showing the relation between B and

H, there will be similar loops in this second curve and

the area of these loops will be 4?r times the area of the

corresponding loops on the / and H curve.

For the area of a loop on the first curve is

-fldH,
this is equal to

47J-J&quot;

since jHdH = 0, as the initial and final values of H are

equal. The area of a loop on the B and H curve is

however equal to

-jBdH.

Hence we see that this area is 4?r times the area of the

corresponding loop on the / and H curve.
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158. Conditions which must hold at the bound

ary of two substances.

At the surface separating two media the magnetic
field must satisfy the following conditions.

1. The magnetic force parallel to the surface must be

the same in the two media.

2. The magnetic induction at right angles to the

surface must be the same in the two media.

To prove the first condition, let P and Q be two points

close to the surface of separation, Q being in the first,

P in the second medium. Now the magnetic force at a

point is by definition (see Art. 153) the force on a unit

pole placed in a cavity round the point, when the mag
netism on the walls of the cavity can be neglected : hence

since this magnetism is to be disregarded the difference

between the magnetic forces at P and Q must arise from

the magnetism on the surface between P and Q: but

though the forces at right angles to this portion of the

surface due to its magnetism are different at P and Q,

the forces parallel to the surface are the same. Hence

we see that the tangential magnetic forces will be the

same at P as at Q.

We shall now show that the normal magnetic induction

is continuous. All the tubes of magnetic induction form

closed curves. Hence any tube must cut a closed surface

an even number of times
;

half these times it will be

entering the surface, half leaving it. The contributions of

each tube to the total normal magnetic induction will be

the same in amount but opposite in sign when it enters

and when it leaves the surface. Hence the total con

tribution of each tube is zero, and thus the total normal
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magnetic induction over any closed surface vanishes.

Consider the surface of a very short cylinder whose sides

are parallel to the normal at P, one end being in the

medium (1), the other in (2). The total normal induction

over this surface is zero, but as the area of the sides is

negligible compared with that of the ends, this implies

that the total normal induction across the end in (1) is

equal to that across the end in (2), or that, since the

areas of these ends are equal, the induction parallel to the

normal in (1) is the same as that in the same direction

in (2). This is always true whether the magnet is per

manently magnetized or only magnetized by induction.

In Art. 74 we proved that the conditions satisfied at

the boundary of two dielectrics are

1. The tangential electric intensity must be the same

in both media.

2. When there is no free electricity on the surface

the normal electric polarization must be the same in

both. That is, if F, F are the normal electric intensities

in the media whose specific inductive capacities are re

spectively K and K
,

= K F .

If we compare these conditions with those satisfied at

the boundary of two media in the magnetic field and

remember that when the magnetization is induced, the

magnetic induction is equal to p times the magnetic

force, we see that we have complete analogy between the

disturbance of an electric field produced by the presence

of uncharged dielectrics and the disturbance in a magnetic

field produced by para- or dia-magnetic bodies in which

the magnetism is entirely induced.
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Hence from the solution of any electrical problem
we can deduce that of the corresponding magnetic one

by writing magnetic force for electric intensity, and
JJL

for K.

We can prove, as in Art. 75, that if 0, is the angle
which the direction of the magnetic force in air makes

with the normal at a point P on a surface, #2 the angle
which the magnetic force in the magnetizable substance

makes with the normal at the same point, then

//,
tan 6l

= tan 0.2 .

Thus when the lines of force go from air to a para

magnetic substance they are bent away from the normal

in the substance, since in this case
//-

is greater than 1
;

when they go from air to a diamagnetic substance they
are bent towards the normal, since in this case

//,
is less

than 1.

The effects produced when paramagnetic and diamag
netic spheres are placed in a uniform field of force are

shown in Figs. 39 and 85.
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159. If
fjb

is infinite tan 1 vanishes, and then the lines

of force in air are at right angles to the surface, so that

the surface of a substance of infinite permeability is a

surface of equi-magnetic potential. The surface of such

a substance corresponds to the surface of an insulated

conductor without charge in electrostatics, and any pro

blem relating to such conductors can be at once applied

to the corresponding case in magnetism. In particular

we can apply the principle of images (Chap. V.) to find

the effect produced by any distribution of magnetic poles

in presence of a sphere of infinite magnetic permeability.

160. Sphere in uniform field. We showed in Art.

104 that if a sphere, whose radius is a, and whose specific

inductive capacity is K, is placed in a uniform electric

field, and if H is the electric intensity before the intro

duction of the sphere, then the field when the sphere is

present will at a point P outside the sphere, consist of H
and an electric intensity whose component along PO is

equal to

and whose component at right angles to PO in the direc

tion tending to increase 6 is

_
3

in these expressions OP = r, is the angle OP makes

with the direction of H, is the centre of the sphere.

Inside the sphere the electric intensity is constant,

parallel to H and equal to

3 Ha -
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If we write
//,

for K the preceding expressions will give us

the magnetic force when a sphere of magnetic permea
bility yu,

is placed in a uniform magnetic field where the

magnetic force is H.

A very important special case is when
fj,

is very large

compared with unity. In this case the magnetic forces

due to the sphere are approximately

ct

along PO, and H sin 6
r*

at right angles to it.

Inside the sphere the magnetic force is

and is very small compared with that outside. The mag
netic induction inside the sphere is 3H. Thus through

any area in the sphere at right angles to the magnetic

force, three times as many tubes of induction pass as

through an equal and parallel area at an infinite distance

from the sphere.

The resultant magnetic force in air vanishes round the

equator of the sphere.

161. Magnetic Shielding. Just as a conductor

is able to shield off the electric disturbance which one

electrical system would produce on another, so masses of

magnetizable material, for which
JJL

has a large value, will

shield off from one system magnetic forces due to another.
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Inasmuch however as
//,

has a finite value for all sub

stances the magnetic shielding will not be so complete
as the electrical.

162. Iron Shell. We shall consider the protection

afforded by a spherical iron shell against a uniform mag
netic field. We saw in Art. 160 tha,t, when a solid iron

sphere is placed in a uniform magnetic field, the magnetism
induced on the sphere produces outside it a radial mag
netic force proportional to 2 cos 6/r

s
,
and a tangential force

proportional to sin $/r
3
,
and a constant force inside the

sphere. We shall now proceed to show that we can

satisfy the conditions of the problem of the spherical iron

shell by supposing each of the distributions of magnetism
induced on the two surfaces of the shell to give rise to

forces of this character.

Let a be the radius of the inner surface of the shell,

b that of the outer surface. Let H be the force in the

uniform field before the shell was introduced. Let the

magnetic forces due to the magnetism on the outer surface

of the shell consist, at a point P outside the sphere, of a

radial force

l cos 6

a tangential force

M-L sin 6

where r = OP and 6 is the angle OP makes with the

direction of H. The magnetic force due to this distribu

tion of magnetism will be uniform inside the sphere
whose radius is 6, it will act in the direction of H and

be equal to
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Let the magnetization on the inner surface of the

shell give rise to magnetic forces given by similar ex

pressions with Mz written for M1 and a for b.

This system of forces, whatever be the values of

Mi and M^, satisfies the condition that as we cross the

surfaces of the shell the tangential components of the

magnetic force are continuous. We must now see if we

can choose Mlt M*. so as to make the normal magnetic
induction continuous.

The normal magnetic induction (reckoned positive

along the outward drawn normal) in the air just outside

the outer shell is equal to

# cos +
2-~* cos 9 + -^cos 6,
O3

0*

the normal magnetic induction in the iron just inside the

outer surface of the shell is equal to

fj, (NCOS e-^ cos e +^ cos e\ .

These are equal if

_ 2JT, 2Jf, / M, ZMt\H+ + ~ = + ~

or, if

The normal magnetic induction in the iron just

outside the inner surface of the shell is

/ M ^M
a H cos -rf cos 6 + - cos

V b3 a3
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the normal magnetic induction in bhe air just inside the

shell is equal to

HCOS&-
y-

1

cos ---2 cos 6
;

these are equal if

l=0*-l)tf ...... (2).

Equations (1) and (2) are satisfied if

M i
&quot;&quot;

i
= 0*

- U-ff -

The magnetic force in the hollow cavity is equal to

Substituting the values of M1 and M2 we see that this

is equal to

If
fjb

is very large compared with unity this is approxi

mately equal to

The denominator may be written in the form

2
volume of shell

7 volume of outer sphere
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Hence the force inside the shell will not be greatly
less than the force outside unless ^ is greater than the

ratio of the volume of the outer sphere to that of the

shell.

In the cases where
/JL
= 1000 and //,= 100, the ratio

ofH
,
the force inside the sphere, to H for different values

of a/b is given in the following table.

a/6
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substances magnetized by induction. If the distribution

of the permanent magnets is given, the magnetic field

will be quite determinate. The forces between magnetic

charges follow the same laws as those between electrical

ones. Hence the energy due to any system of magnetized

bodies will, if the magnetization due to induction is

proportional to the magnetic force, i.e. if
JJL

is constant,

be equal to the sum of one half the product of the

strength of each permanent pole into the magnetic

potential at that pole. Thus if Q is the potential energy

of the magnetic field,

where m is the strength of the permanent pole and II the

magnetic potential at that pole. Let us divide each of

the permanent magnets up into little magnets and con

sider the contribution of one of these to the energy. Let

/ be the intensity of the permanent magnetization, and a

the area of the cross section : then the magnet has a pole

of permanent magnetism of strength 7 a at A, another

pole of strength 7 a at B. If fl^, H# are the values of

the magnetic potentials at A and B, the contribution of

this magnet to the energy is therefore equal to

Now the magnet may be regarded as the origin of 47r/ a

tubes of magnetic induction forming closed curves running

through the magnet, leaving it at A and entering it at B
;

if ds is an element of one of these tubes, and R the

resultant magnetic force which acts along this element,

then

Rds,
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the integration being extended over the part of the tube

outside the magnet. Hence the contribution of this

magnet to the energy is the same as it would be if each

tube of which it is the origin had per unit length at P
an amount of energy equal to l/8?r of the resultant

magnetic force at P. The portion of the tube inside the

little magnet in which it has its origin, must not be taken

into account.

Now let us consider any small element of volume in

the magnetic field, let us take it as cylindrical in shape,
the axis of the cylinder being parallel to the resultant

magnetic force R at the element. Let / be the length of

this cylinder, co the area of its cross section. Now each

of the tubes of magnetic induction which pass through
the element and have not their origin within it, con

tributes R/STT units of energy for each unit of length of

the tube. Let J be the intensity of the permanent

magnetization of the element, / the induced magnetiza

tion, then the number of tubes of induction which pass

through unit area of the base of the cylinder is equal to

the value of the magnetic induction, i.e. it is equal to

but of these, 47r/ have their origin in the element, and

hence the number of tubes per unit area which contribute

to the energy is equal to

and since / = kE and
yu,
= 1 + 4-7T&, this is equal to

fj,R,

therefore the number passing through the base of the

cylinder is equal to
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The energy of the portion of each of the tubes within the

element is equal to 7?//87r, hence the energy contributed

by the element is

thus the energy per unit volume is equal to ^R^/S-rr. We
may then regard the energy of the magnetized system as

distributed throughout the magnetic field, there being
fjiR

2

/87r units of energy in each unit volume of the field.

164. When a tube of induction enters a paramag
netic substance from air the resultant magnetic force is

when the magnetization is entirely induced less in

the paramagnetic substance than in air, the energy per
unit length will be less in the magnetic substance than

in the air since the energy per unit length of a tube of

induction is proportional to the resultant magnetic force

along it. Thus in accordance with the principle that

when a system is in equilibrium the potential energy is a

minimum, the tubes of induction will tend to leave the air

and crowd into the magnet, when this act does not involve

so great an increase in their length in the air as to

neutralize the diminution of the energy due to the parts

passing through the magnet.

Again, when a tube of induction enters a diamagnetic
substance the magnetic force inside this substance is

greater than it is in the air just outside, the tubes of

induction will therefore tend to avoid the diamagnetic
substance. Examples of this and the previous effect are

seen in Figs. 83 and 39.

A small piece of iron placed in a magnetic field where

the force is not uniform will tend to move from the weak

T. E. 18
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to the strong parts of the field, since by doing so it

encloses a greater number of tubes of induction and thus

produces a greater decrease in the energy. The direction

of the force tending to move the iron is in the direction

along which the rate of increase of R 2
is greatest. This

is not in general the direction of the magnetic force.

Thus in the case of a bar magnet AB, the greatest

rate of increase in R* at C a point equidistant from A
and B is along the perpendicular let fall from C on A B,

and this is the direction in which a small sphere placed

at C will tend to move
;

it is however at right angles to

the direction of the magnetic force at C.

There will be no force tending to move a piece of soft

iron placed in a uniform magnetic field.

A diamagnetic substance will tend to move from the

strong to the weak parts of the field, since by so doing

it will diminish the number of tubes of magnetic induc

tion enclosed by it and hence also the energy, for the tubes

of induction have more energy per unit length when they

are in the diamagnetic substance than when they are

in air.

165. Ellipsoids. We have hitherto only considered

the case of spheres placed in a uniform field. Bodies

which are much longer in one direction than another

have very interesting properties which are conveniently

studied by investigating the behaviour of ellipsoids placed

in a uniform magnetic field.

We saw in Art. 139 that the magnetic field, due to a

sphere uniformly magnetized in the direction of the axis

of a), might be regarded as due to two spheres, one of

uniform density p with its centre at
,
the other of
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uniform density p with its centre at 0, the points

and being very close together and 00 parallel to the

axis of x\ the distance 00 is given by the condition

that pOO is equal to the intensity of magnetization of

the sphere. An exactly similar proof will show that if

we have a body of any shape uniformly magnetized, the

magnetic potential due to it is the same as that due to

two bodies of the shape and size of the magnet, one

having the density p, the other the density p, and so

placed that if the negative body is displaced through the

distance f in the direction of magnetization, it will coincide

with the positive body if pg = A, A being the intensity of

magnetization of the body.

Let us suppose that the body is uniformly magnetized
with intensity A in the direction of the axis of x, and let

pfl be the potential of the positive body at the point P,
then the potential of the negative body at P will be equal
to pl ,

where pl is the potential of the positive body
at P

,
if PP is parallel to the axis of x and equal to f.

But since PP is small,

The potential of the negative body is therefore

dfl

Thus the potential of the positive and negative bodies

together, and therefore of the magnetized body, will be

da

snce pg = A.

182
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If the body instead of being magnetized parallel to x

is uniformly magnetized so that the components of the

intensity parallel to x, y, z are respectively A, B, C, the

magnetic potential is

We shall now show that if an ellipsoid is placed in

a uniform magnetic field it will be uniformly magnetized

by induction. To prove this it will be sufficient to show

that if we superpose on to the uniform field, the field

due to a uniformly magnetized ellipsoid, it is possible to

choose the intensity of magnetization so as to satisfy

the two conditions, (1) that the tangential magnetic force

and (2) that the normal magnetic induction, are con

tinuous at the surface of the ellipsoid. The first of these

conditions is evidently satisfied whatever the intensity of

magnetization may be : we proceed to discuss the second

condition. The forces parallel to the axes of as, y, z (these

are taken along the axes of the ellipsoid) due to the

attraction of an ellipsoid of uniform unit density, are, see

Routh s Analytical Statics, vol. n. p. 112, equal to

Lx, My, Nz

respectively, where L, M, N are constant as long as the

point whose coordinates are x, y, z is inside the ellipsoid.

Hence by (1) since

cm T ,
-j

= - Lx, &c.,dx

the magnetic potential inside the ellipsoid due to its

magnetization will be

BMy+CNz),
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so that the magnetic forces parallel to the axes of #, y, z

due to the magnetization of the ellipsoid will be

- AL, - BM, - ON
respectively.

Hence if N-^ is the component of these forces along the

outward drawn normal to the surface of the ellipsoid,

N, = - (ALl + BMm + CNn\
where I, m, n are the direction cosines of the outward

drawn normal. If N2 is the force due to the magnetiza
tion on the ellipsoid in the same direction just outside the

ellipsoid, then

#=#! + 4ir(lA + MB + nC)

= IA (47r
- L) + mB (4nr-M) + nC(4iir

-
N).

Let X
} Y, Z be the components of the force due to

the uniform field. Then NI, the total force inside the

ellipsoid along the outward drawn normal, will be given

by the equation

and if N? is the total force just outside the ellipsoid along
the outward drawn normal

If
jju

is the magnetic permeability of the ellipsoid, the

normal magnetic induction will be continuous if

that is if

-
t*AL) + m (^Y-nBM) + n (^Z-

n{Z+C(4ar-N)
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But this condition will be satisfied if

XL ~~

These equations give the intensity of magnetization of

an ellipsoid placed in a uniform magnetic field.

The force inside the ellipsoid due to its magnetization
has - AL, BM, - CN for components parallel to the

axes of x, y, z respectively ;
these components act in the

opposite direction to the external field and the force of

which these are the components is called the demagne
tizing force. We see from equations (2) that the

components of the demagnetizing force are

We shall now consider some special cases in detail.

Let us take the case of an infinitely long elliptic clyinder,

let the infinite axis be parallel to z, let 2, 26 be the axes

in the direction of x and y ;
then (Routh s Analytical

Statics, vol. n. p. 112)

L = 4,7r-^, M=4nr-^, N = 0.

a+b a+b
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Thus A- .

C*- 1)*
. - **

,

where A; is the magnetic susceptibility.

We see from this equation that A/X is approximately

equal to k when
(JJL 1) 6/(a + 6) is very small, but only

then. A very common way of measuring k is to measure

A/X in the case of an elongated solid, magnetized along

the long axis; but we see that in the case of an elongated

cylinder this will to equal to k only when
(//,

-
!)&/( + b)

is very small. Now for some kinds of iron ^ is as great as

1000, hence if this method were to give in this case results

correct to one per cent., the long axis would have to be

100,000 times as long as the short one. This extreme

case will show the importance of using very elongated

figures when experimenting with substances of great

permeability. Unless this precaution is taken the ex

periments really determine the value of a/b and not any

magnetic property of the body.

When the body is an elongated ellipsoid of revolution

the ratio of the long to the short axis need not be so

enormous as in the case of the cylinder, but it must still

be very considerable. If the axis of x is the axis of revo

lution, then (Routh s Analytical Statics, vol. n. p. 112) we

have approximately
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Thus =-_-_
Thus if fi were 1000, the ratio of a to b would have to

be about 900 to 1 in order that the assumption A/X = k
should be correct to one per cent.

166. Couple acting on the Ellipsoid. The mo
ment of the couple tending to twist the ellipsoid round
the axis of z, in the direction from x to y, is equal to

(volume of ellipsoid) ( YA - XB)

(47T + 0* - 1) L\ (47T + (fl
-

1) M\
If the magnetic force in the external field is parallel

to the plane xy and is equal to H and makes an angle 6

with the axis of x,

and the couple is equal to

47rff2 abc sin cos 6
(//,

- 1 ) (M - L)
3 (47T + (fj,

-
1) L} (47T + (/A

-
1) M\

If a &amp;gt; b, M is greater than L. Thus the couple tends to

make the long axis coincide in direction with the external

force, so that the ellipsoid, if free to turn, will set with its

long axis in the direction of the external force. This will

be the case whether /JL is greater or less than unity, i.e.

whether the substance is paramagnetic or diamagnetic,
so that in a uniform field both paramagnetic and dia

magnetic needles point along the lines of force. It

generally happens that a diamagnetic substance places

itself athwart the lines of magnetic force, this is due to

the want of uniformity in the field, in consequence of



167] MAGNETIC INDUCTION 281

which the diamagnetic substance tries to get as much of

itself as possible in the weakest part of the field. This

tendency varies as
(/J, 1); the couple we are investigating

in this article varies as
(//, I)

2
,
and as

(//, 1) is exceed

ingly small for bismuth, this couple will be overpowered

unless the field is exceptionally uniform.

167. Ellipsoid in Electric Field. The investiga

tion of Art. 165 enables us to find the distribution of

electrification induced on a conducting ellipsoid when

placed in a uniform electric field. To do this we must

make
//-

infinite in the expressions of Art. 165. The

quantity IA + mB + nC which occurs in the magnetic

problem corresponds to cr, the surface density of the elec

trification. Putting /u,
=00 in equations (2) we find

(IX mY nZ}

If the force in the electric field is parallel to the axis of x

IX
(7 =T

Thus when the electric field is parallel to one of the axes

of the ellipsoid, the density of the electrification is, as in

the case of a sphere, proportional to the cosine of the

angle which the normal to the surface makes with the

direction of the electric intensity in the undisturbed field.

By Coulomb s law the normal electric intensity at the

surface of the ellipsoid is equal to 4?rcr, i.e. to

L

Thus the electric intensity at the surface of the ellipsoid

is 4s7r/L times the electric intensity in the same direction

in the undistributed field.
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If the ellipsoid is a very elongated one with its longer
axis in the direction of the electric force, then by Art. 165

4-7T a2

Thus, when a/b is large, 4?r/Z is a large quantity, and

the electric intensity at the end of the ellipsoid is very

large compared with the intensity in the undisturbed

field. Thus if a/b
= 100, the electric intensity at the

end is about 2500 times that in the undisturbed field.

This result explains the power of sharply pointed con

ductors in discharging an electric field, for when these are

placed in even a moderate field the electric intensity at

the surface of the conductor is great enough to overcome

the insulating power of the air, see Art. 37, and the

electrification escapes.

If an ellipsoidal conductor is placed in a uniform field

of force, at right angles to the axis c and making an angle
with the axis a, we see from 166 that the couple round

the axis of c tending to make the axis of a move towards

the external force is equal to

when F is the external electric force.

When the ellipsoid is one of revolution round the axis

of a, and a is large compared with b, the couple is ap

proximately
1 a3^2 sin 20



CHAPTER IX.

ELECTRIC CURRENTS.

168. Let two conductors A and B be at different

potentials, A being at the higher potential and having

a charge of positive electricity, while .B is at a lower

potential and has a charge of negative electricity ;
then

if A is connected to B by a metallic wire the potential

of A will begin to diminish and A will lose some of its

positive charge, the potential of B will increase and B will

lose some of its negative charge, so that in a short time

the potentials of A and B will be equalized. During the

time in which the potentials of A and B are changing the

following phenomena will occur : the wire connecting A
and B will be heated and a magnetic field will be pro

duced which is most intense near the wire. If A and

B are merely charged conductors, their potentials are

equalized so rapidly, and the thermal and magnetic effects

are in consequence so transient, that it is somewhat

difficult to observe them. If, however, we maintain A
and B at constant potentials by connecting them with the

terminals of a voltaic battery the thermal and magnetic

effects will persist as long as the connection with the

battery is maintained, and are then easily observed.
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The wire connecting the two bodies A and B at different

potentials is said to be conveying a current of
electricity,

and when A is losing its positive charge and B its negative

charge the current is said to flow from A to B along the

wire.

Let us consider the behaviour of the Faraday tubes

during the discharge of the conductors A, B. Before the

conductors were connected by the wire these tubes may
be supposed to be distributed somewhat as in the figure.

Fig. 86.

When the conducting wire CD is inserted, the tubes which

were previously in the region occupied by the wire cannot

subsist in the conductor, they therefore shrink, their

ends travelling along the wire until the ends which were

previously on A and B come close together and the effect

of these tubes is annulled. The distribution of the tubes

in the field before the wire was inserted was one in which

there was equilibrium between the tensions along the

tubes and the lateral repulsion they exert on each other :
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now after the tubes in the wire have shrunk the lateral

repulsion they exerted is annulled and there will therefore

be an unbalanced pressure tending to push the surround

ing tubes such as JEF, GH into the wire, where they will

shrink like those previously in the wire. This process

will go on until all the tubes which originally stretched

from A to B have been forced into the wire and their

effects annulled.

The discharge of the conductors is thus accompanied

by the movement of the tubes in towards the wire and

the sliding of the ends of these tubes along the wire.

The positive ends of the tubes move on the whole from

A towards B along the wire, the negative ends from

B towards A.

169. Strength of the current. If we consider

any cross-section of the wire at P, and if in the time &t

N units of positive electricity cross it from A towards B
and N units of negative electricity from B towards A,

(N +N )/St is called the strength of the current at P.

When the wire is in a steady state the strength of the

current must be the same at all points along the wire,

for if it were not the same at P as at Q a positive or

negative charge would accumulate between P and Q and

the state of the wire would not be steady.

170. Electrodes. Anode. Cathode. If the ends

R, S of a body through which a current is flowing are

portions of equipotential surfaces, then R and S are called

the electrodes, and if the current is in the direction RS,

R is called the anode and S the cathode.

171. Electrolysis. In addition to the thermal arid

magnetic effects mentioned in Art. 168, there is another
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effect characteristic of the passages of the current through
a large class of substances called electrolytes. Suppose
for example that a current passes between platinum plates
immersed in a dilute solution of sulphuric acid, then the

solution suffers chemical decomposition to some extent

and oxygen is liberated at the platinum anode, hydrogen
at the platinum cathode. There is no liberation of hydro

gen or oxygen in the portions of the liquid not in contact

with the platinum plates however far apart these plates

may be. Substances whose constituents are separated in

this way by the current are called electrolytes, and the act

of separation is called electrolysis. Electrolytes may be

solids, liquids, or, as recent experiments have shown, gases.

Iodide of silver is an example of a solid electrolyte, while

as examples of liquid electrolytes we have solutions of a

great number of mineral salts or acids as well as many
fused salts.

The constituents into which the electrolyte is separated

by the current are called the ions : the constituent which

is deposited at the anode is called the anion, that which

is deposited at the cathode the cation. With very few

exceptions, an element, or such a group of elements as

is called by chemists a radical/ is deposited at the same

electrode from whatever compound it is liberated; thus

for example hydrogen and the metals are cations from

whatever compounds they are liberated, while chlorine

is always an anion.

The amount of the ions deposited by the passage of a

current through an electrolyte was shown by Faraday to

be connected by a very simple relation with the quantity

of electricity which passes through the electrolyte.
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172. Faraday s First Law of Electrolysis. The

quantity of an electrolyte decomposed by the passage of

a current of electricity is directly proportional to the

quantity of electricity which passes through it.

Thus as long as the quantity of electricity passing

through an electrolyte remains the same, it is immaterial

whether the electricity passes as a very intense current

for a short time or as a very weak current for a long time.

173. Faraday s Second Law of Electrolysis.

If the same quantity of electricity passes through different

electrolytes the weights of the different ions deposited will

be proportional to the chemical equivalents of the ions.

Thus, if the same current passes through a series

of electrolytes from which it deposits as ions, hydrogen,

oxygen, silver, and chlorine, then for every gramme of

hydrogen deposited, 8 grammes of oxygen, 108 grammes
of silver and 35 5 grammes of chlorine will be deposited.

If we define the electro-chemical equivalent of a sub

stance as the number of grammes of that substance depo

sited during the passage of the unit charge of electricity,

we see that Faraday s Laws may be comprised in the

statement that the number of grammes of an ion deposited

during the passage of a current through an electrolyte is

equal to the number of units of electricity which have

passed through the electrolyte multiplied by the electro

chemical equivalent of the ion.

Elements which form two series of salts, such as copper,

which forms cuprous and cupric salts, or iron, which forms

ferrous arid ferric salts, have different electro-chemical

equivalents according as they are deposited from solutions

of the cuprous or cupric, ferrous or ferric salts. The
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electro-chemical equivalents of a few substances are given
in the following table

;
the numbers represent the weight

in grammes of the substance deposited by the passage of

one electro-magnetic unit of electricity (see Chap. xn.).

Hydrogen 00010352.

Oxygen .
, 000828.

Chlorine 003675.

Iron (from ferrous salts) 002898.

(from ferric salts) 001932.

Copper (from cuprous salts) 006522.

(from cupric salts) 003261.

Silver 01118.

The chemical composition of the portions of the elec

trolyte situated between the electrodes is unchanged by
the passage of the current. Imagine a plane drawn across

the electrolyte, there must pass in any time towards the

cathode across the plane an amount of the cation chemi

cally equivalent to that of the anion deposited in the

same time at the anode
;
while a corresponding amount

of the anion must cross the plane towards the anode.

Thus in every part of the electrolyte the cation is moving
in the direction of the current, the anion in the opposite

direction.

Faraday s laws of electrolysis give a method of

measuring the quantity of electricity which has passed

through a conductor in any time and hence of measuring

the average current. For if we place an electrolyte in

circuit with the conductor in such a way that the current

through the electrolyte is always equal to that through the

conductor, then the amount of the electrolyte decomposed

will be proportional to the quantity of electricity which
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has passed through the conductor; if we divide the

weight in grammes of the deposit of one of the ions by
the electro-chemical equivalent of that ion we get the

number of electro-magnetic units of electricity which has

passed through the conductor, dividing this by the time

we get the average current in electro-magnetic units.

An electrolytic cell used in this way is called a volta

meter
;
the forms most frequently used are those in which

we weigh the amount of copper deposited from a solution

of copper sulphate, or of silver from a solution of silver

nitrate, or measure the amount of hydrogen liberated by
the passage of the current through acidulated water.

174. Relation between Electromotive Force

and Current. Ohm s Law. The work done by the

electric forces on unit charge of electricity in going
from a point A to another point B is called the electro

motive force from A to B. It is frequently written as

the E.M.F. from A to B.

Ohm s Law. The relation between the electromotive

force and the current was enunciated by Ohm in 1827,

and goes by the name of Ohm s Law.

This law states that if E is the electromotive force

between two points A and B of a wire, / the current

passing along the wire between these points, then

E=RI,
where R is a quantity called the resistance of the wire.

The point of Ohm s Law is that the quantity R defined

by this equation is independent of the strength of the

current flowing through the wire, and depends only upon
the shape and size of the wire, the material of which it is

made, and upon its temperature and state of strain.

T. E. 19
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The most searching investigations have been made as

to the truth of this law when currents pass through
metals or electrolytes; these have all failed to discover

any exceptions to it, though from the accuracy with

which resistances can be measured (in several investiga
tions an accuracy of one part in 100,000 has been attained)
the tests to which it has been subjected are exceptionally
severe.

Ohm s Law does not however hold when the currents

pass through rarefied gases.

175. Resistance of a number of Conductors in

Series. Suppose we have a number of wires AB, CD,

A etc oi FIG H

Fig. 87.

EF... (Fig. 87) connected together so that B is in contact

with (7, D with E, F with G and so on. This method of

connection is called putting the wires in series.

Let rlt TV, r3 ... be the resistances of the wires AB,
CD, EF... and let i be the current entering the circuit

AB, CD... at A, then the current i will flow through
each of the conductors. Let us consider the case when

the field is steady, then if VA) v
, VG, &c. denote the

potentials at A, B, C, &c. respectively, the .E.M.F. from

A to B is VA VB ;
thus we have by Ohm s Law,

But since B and C are in contact they will, if the wires
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are made of the same substance, be at the same potential ;

hence VB = vC) VD = VE ,
and so on

;
hence adding the pre

ceding equations we get

But if R is the resistance between A and b\ then by
Ohm s Law we have

VA VF = Ri.

Comparing this expression with the preceding, we see

that

-8 = r1 +r,+ f,+ ....

Hence when a system of conductors are put in series, the

resistance of the series is equal to the sum of the resist

ances of the individual conductors.

176. Resistance of a number of Conductors

arranged in Parallel. If the wires instead of being

arranged so that the end of one coincides with the

beginning of the next, as in the last example, are arranged
as in Fig. 88, the beginnings of all the wires being in

Fig. 88.

contact, as are also their ends, the resistances are said to

be arranged in parallel, or in multiple arc.

We proceed now to find the resistance of a system of

wires so arranged. Let i be the current flowing up to A,
let this divide itself into currents il} ia ,

i3 ... flowing through

192
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the circuits ACB, ADB, AEB... whose resistances are

n&amp;gt;
ra ,

7-3 ... respectively. Then if VA ,
VB are the potentials

of A and B respectively, we have by Ohm s Law

Now

But if R is the resistance of the system of conductors,

then by Ohm s Law,

Ri = (VA VB) ;

hence comparing this expression with the preceding one

we see that

1 =1 I 1
R
~

i\ r2 rs

or the reciprocal of the resistance of a number of con

ductors in parallel is equal to the sum of the reciprocals

of the individual resistances. The reciprocal of the resist

ance of a conductor is called its conductivity, hence we
see that we may express the result of this investigation

by saying that the conductivity of a number of conductors

in parallel is equal to the sum of the conductivities of

the individual conductors.

In the special case when all the wires connected up in

multiple arc have the same resistance, and if there are n

wires, their resistance when in multiple arc is l/n of the

resistance of one of the individual wires.
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177. Specific resistance of a substance. If we

have a wire whose length is I and whose cross section is

uniform and of area a, we may regard it as built up of

cubes whose edges are of unit length, in the following

way ;
take a wire formed by placing I of these cubes in

series and then place a of these filaments in parallel ;
the

resistance of this system is evidently the same as that

of the wire under consideration. If a is the resistance of

one of the cubes the resistance of the filament formed by

placing I such cubes in series is la, and when a of these

filaments are placed in parallel the resistance of the

system is IO-/OL ;
hence the resistance of the wire is

la-

a

Since a only depends on the material of which the wire

is made we see that the resistance of a wire of uniform

cross section is proportional to the length and inversely

proportional to the area of the cross section.

The quantity denoted by a in the preceding expression

is called the specific resistance of the substance of which

the wire is made
;

it is the resistance of a cube of the

substance of which the edge is equal to the unit of length,
the current passing through the cube parallel to one of its

edges.

178. Heat generated by the passage of a cur

rent through a conductor. Let A and B be two points

connected by a conductor, let E be the electromotive

force from A to B. By the definition of electromotive

force, work equal to E is done on unit positive charge
when it goes from A to B, and on unit negative charge
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when it goes from B to A
;
hence if in unit time N units

of positive charge go from A to B and N units of nega
tive charge from B to A, the work done is E (N + N f

).

But N + N is equal to C, the strength of the current

flowing from A to B, thus the work done is equal to EC.
If R is the resistance of the conductor between A and B,
E = RC

; thus the work done in unit time is equal to RC2
.

We see that the same amount of work would be spent
in driving a current of the same intensity in the reverse

direction, viz. from B to A.

By the principle of the Conservation of Energy the

work spent by the electric forces in driving the current

cannot be lost, it must give rise to an equivalent
amount of energy of some kind or other. The passage
of the current heats the conductor, but if the heat is

caused to leave the conductor as soon as produced the

state of the conductor is not altered by the passage of

the current. The mechanical equivalent of the heat pro
duced in the conductor was shown by Joule to be equal
to the work spent in driving the current through the con

ductor, so that the work done in driving the current is

in this case entirely converted into heat. Thus if H is

the mechanical equivalent of the heat produced in time t,

The law expressed by this equation is called Joule s Law.

It states that the heat produced in a given time is pro

portional to the square of the strength of the current.

Since by Ohm s Law E = RC, the heat produced in

the time t is also equal to
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179. Voltaic Cell. We have seen that in an electric

field due to any distribution of positive and negative

electricity, the work done when unit charge is taken

round a closed circuit vanishes; the electric intensity

due to such a field tending to stop the unit charge in

some parts of its course and to help it on in others.

Hence such a field cannot produce a steady current

round a closed circuit. To maintain such a current

other forces must come into play by which work can be

done
;
this work may be supplied from chemical sources,

as in the voltaic battery ;
from thermal sources, as in the

thermoelectric circuit
;
or by mechanical means, as when

currents are produced by dynamos. We shall consider

here the case of the voltaic circuit. Let us consider

the simple form of battery consisting of two plates, one

of zinc, the other of copper, dipping into a vessel

containing dilute sulphuric acid. If the zinc and copper

plates are connected by a wire, a current will flow

round the circuit, flowing from the zinc to the copper

through the acid, and from the copper to the zinc

through the wire. When the current flows round the

circuit the zinc is attacked by the acid and zinc

sulphate is formed. For each unit of electricity that

flows round the circuit one electro-chemical equivalent of

zinc and sulphuric acid disappears and equivalent amounts

of zinc sulphate and hydrogen are formed. Now if a piece

of pure zinc is placed in dilute acid very little chemical

action goes on, but if a piece of copper is attached to

the zinc the latter is immediately attacked by the acid

and zinc sulphate and hydrogen are produced ;
this action

is accompanied by a considerable heating effect, and we

find that for each gramme of zinc consumed a definite
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amount of heat is produced. Now let us consider two

vessels (a) and (/8), such that in (a) the zinc and copper
form the plates of a battery, while in (0) the zinc has

merely got a bit of copper fastened to it : let a definite

amount of zinc be consumed in the latter and then let the

current run through the battery until the same amount

of zinc has been consumed in (a.) as in (13). The same

amount of chemical combination has gone on in the two

cells, hence the loss of chemical energy is the same in

(a) as in (/3). This energy has been converted into heat

in both cases, the difference being that in the cell (#)

the heat is produced close to the zinc plate, while in (a)

the places where heat is produced are distributed through
the whole of the circuit, and if the wire connecting the

plates has a much greater resistance than the liquid

between them, by far the greater portion of the heat

is produced in the wire, and not in the liquid in the

neighbourhood of the zinc. Though the distribution of

the places in which the heat is produced is different in the

two cases, yet, since the same changes have gone on in the

two cells, it follows from the principle of the Conservation

of Energy, that the total amount of heat produced in the

two cases must be the same. Thus the total amount of

heat produced by the battery cell (a) must be equivalent

to that developed by the combination of the amount of

zinc consumed in the cell while the current is passing

with the equivalent amount of sulphuric acid.

180. Electromotive Force of a Cell. If C is the

current, R the resistance of the wire between the plates,

r that of the liquid between the plates, t the time the

current has been flowing, then by Joule s law the mechanical
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equivalent of the heat generated in the wire is RCH, that

of the heat generated in the liquid is rCH. We shall

see in Chapter xm, that when a current flows across

the junction of two different metals, heat is produced
or absorbed at the junction ;

this effect is called the

Peltier effect. The laws governing the thermal effects

at the junction of two metals differ very materially from

Joule s law. The heat developed in accordance with

Joule s law in a conductor AB is, as long as the strength

of the current remains unaltered, the same whether the

current flows from A to B or from B to A. The thermal

effects at the junction of two metals G and D depend

upon the direction of the current
;

thus if there is a

development of heat when the current flows across the

junction from C to D, there will be an absorption of heat

at the junction, if the current flows from D to C. These

heat effects which change sign with the current are called

reversible heat effects. The heat developed at the junction

of two substances in unit time is directly proportional to

the strength of the current and not to the square of the

strength.

In the case of the voltaic cell formed of dilute acid

and zinc and copper plates, the current passes across the

junctions of the zinc and acid and of the acid and copper
as well as across the metallic junctions which occur in the

wire used to connect up the two plates. Let P be the

total heat developed at these junctions when traversed

by unit current for unit time. Then the total amount

of heat developed in the voltaic cell is

RCH+rCH + PCt.

Since a current C has passed through the cell for a

time t, the number of units of electricity which have
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passed through the cell is Ct, hence, if e is the electro

chemical equivalent of zinc
:
eCt grammes of zinc have been

converted into zinc sulphate. Let w be the mechanical

equivalent of the heat produced when one gramme of zinc

is turned into zinc sulphate, then the mechanical equi

valent of the heat which would be developed by the

chemical action which has taken place in the cell is eCtw
;

but this must be equal to the mechanical equivalent of

the heat developed in the cell, and hence we have

RCH + rCH + PCt = eCtw,

or (R + r)C=ew-P.

The quantity on the right-hand side is called the electro

motive force of the cell.

We see that it is equal to the sum of the products of

the current through the external circuit and the external

resistance and the current through the battery and the

battery resistance.

We shall now prove that if the zinc and copper plates

instead of being joined by a wire are connected to the

plates of a condenser, then if these plates are made of

the same material, they will be at different potentials,

and the difference between their potentials will equal the

electromotive force of the battery. For when the system

has got into a state of equilibrium, and any change

is made in the electrical conditions, the increase in the

electrical energy must equal the energy lost in making

the change. Suppose that the potential of the plate of

the condenser in connection with the copper plate in the

battery exceeds by E the potential of the other plate

of the condenser in connection with the zinc plate of

the battery ;
and suppose now that the electrical state is
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altered by a quantity of electricity equal to BQ passing
from the plate of the condenser at low potential to the

plate at high potential through the battery from the zinc

to the copper. The electrical energy of the condenser is

increased by EBQ, while the passage of this quantity of

electricity will develop at the junctions of the different

substances in the cell a quantity of heat whose mechani

cal equivalent is equal to PBQ. If t is the time this

charge takes to pass from the one plate to the other, the

average current will be equal to $Q/t, hence the heat

developed in accordance with Joule s law will be pro

portional to (&Q/t)
2 x t or to (BQ)

2

/t ; by making &Q small

enough, we can make this exceedingly small compared with

either ESQ or P&Q which depend on the first powers of

SQ. The loss of chemical energy is eSQ x w, and this

must be equal to the heat produced plus the increase in

the electrical energy, hence we have

or E= ew - P,

that is, the difference of potential between the plates of

the condenser is equal to the electromotive force of the

battery. Hence we can determine this electromotive

force by measuring the difference of potential.

The simple form of voltaic cell just described does not

give a constant electromotive force, as the hydrogen pro

duced by the chemical action does not all escape from the

cell
;
some of it adheres to the copper plate, forming a

gaseous film which increases the resistance and diminishes

the electromotive force of the cell.

The copper plate with the hydrogen adhering to it is

said to be polarized and to be the seat of a back electro-
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motive force which makes the electromotive force of the

battery less than its maximum theoretical value. We
shall perhaps get a clearer view of the condition of the

copper plate with its film of hydrogen from the following

considerations. The hydrogen in an electrolyte follows

the current and thus behaves as if it had a positive

charge of electricity ;
if now the hydrogen ions when

they come up to the copper plate, do not at once give up
their charges to the plate, but remain charged at a small

distance from it
;
we shall have what is equivalent to

a charged parallel plate condenser at the copper plate,

the positively charged hydrogen atoms corresponding to

the positive plate of the condenser, and the copper to the

negative plate. If the positively charged hydrogen ions

charge up the positive plate of this condenser, driving off

by induction an equal positive charge from the copper

plate, instead of giving up their charge directly to this

plate ;
the flow of electricity through the battery increases

the charge in the condenser. To increase this charge

work has to be done. If V is the potential difference

between the plates of the condenser, the rest of the nota

tion being the same as on p. 298, we have

(R + r) CH + VCt + PCt = ewCt

or (R + r)C=ew-P- V;

thus the electromotive force of the cell is diminished by
the potential difference between the plates of the condenser.

Another cause of inconstancy is that the zinc sulphate

formed acts as an electrolyte and carries some of the

current ; the zinc, travelling with the current, is deposited

against the copper plate and alters the electromotive force

of the cell.
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The deposition of hydrogen against the positive plate

of the battery, and its liberation as free hydrogen, can be

avoided in several ways ;
in the Bichromate Battery the

copper plate is replaced by carbon, and potassium bichro

mate is added to the sulphuric acid
;
as the bichromate is

an active oxidising agent it oxidises the hydrogen as soon

as it is formed, and thus prevents its accumulation on the

positive plate.

181. DanielPs Cell. In Daniell s cell, the zinc and

sulphuric acid are enclosed in a porous pot (Fig. 89) made

ZINC ROD

SULPHURIC ACID SOL

POROUS POT

CORPER SULPHATE SOL

COPPER CYLINDER

Fig. 89.

of unglazed earthenware
;

the copper electrode usually
takes the shape of a cylindrical copper vessel, in which

the porous pot is placed. The space between the porous

pot and the copper is filled with a saturated solution of

copper sulphate, in which crystals of copper sulphate are

placed to replace the copper sulphate used up during the

working of the cell. When the sulphuric acid acts upon
the zinc, zinc sulphate is formed and hydrogen gas libe

rated
;
the hydrogen following the current, travels through
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the porous pot, where it meets with the copper sulphate,
chemical action takes place and sulphuric acid is formed

and copper set free. This copper travels to the copper

cylinder and is there deposited. Thus in this cell instead

of hydrogen being deposited on the copper, we have copper

deposited, so that no change takes place in the condition

of the positive pole and there is no polarization.

182. Calculation of E.M.F. of DanielPs Cell.

The chemical energy lost in the cell during the passage

of one unit of electricity may be calculated as follows :

in the porous pot we have one electro-chemical equivalent

of zinc sulphate formed while one equivalent of sulphuric

acid disappears ;
in the fluid outside this pot one equiva

lent of sulphuric acid is formed and one equivalent of

copper sulphate disappears, thus the chemical energy lost

is that which is lost when the copper in one electro

chemical equivalent of copper sulphate is replaced by the

equivalent quantity of zinc.

Now the electro-chemical equivalent of copper is

003261 grammes, and when 1 gramme of copper is

dissolved in sulphuric acid the heat given out is 909*5

thermal units, or 909*5 x 4*2 x 107 mechanical units, since

the mechanical equivalent of heat on the C. G. s. system

is 4*2 x 107
. Thus the heat given out when one electro

chemical equivalent of copper is dissolved in sulphuric

acid is 003261 x 909*5 x 4*2 x 107 - 1*245 x 108 me

chanical units.

The electro-chemical equivalent of zinc is &quot;003364

grammes, and the heat developed when 1 gramme of

zinc is dissolved in sulphuric acid is 1670 x 4*2 x 107

mechanical units. Hence the heat developed when one
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electro-chemical equivalent of zinc is dissolved in sulphuric

acid is 003364 x 1670 x 4 2 x 107 = 2 359 x 108 mechanical

units.

Thus the loss of chemical energy in the porous pot is

2 359 x 108 while the gain in the copper sulphate is

1-245 x 108
,
thus the total loss is 1114 x 10 8

. Thus ew

in Art. 180 = 1114 x 108
. The electromotive force of a

Daniell s cell is about T028 x 108
. We see from the near

agreement of these values that the reversible thermal

effects (see Art. 180) are of relatively small importance,

though if we ascribe the difference between the two num
bers to this cause these effects would be much greater
than those observed when a current flows across the

junction of two metals.

183. In Grove s cell the hydrogen at the positive

pole is got rid of by oxidising it by strong nitric acid. The
zinc and sulphuric acid are placed in a porous pot, and this

is placed in a larger cell of glazed earthenware containing
nitric acid

;
the positive pole is a strip of platinum foil

dipping into the nitric acid. This cell has a large electro

motive force, viz. T97 x 108
.

Bunsen s cell is a modification of Grove s, in which

the platinum is replaced by hard gas carbon.

184. Clark s cell, which on account of its constancy
is very useful as a standard of electromotive force,

is made as follows. The outer vessel (Fig. 90) is a small

test-tube containing a glass tube down which a platinum
wire passes ;

a quantity of pure redistilled mercury suffi

cient to cover the end of this wire is then poured into

the tube
;
on the mercury rests a paste made by mixing
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mercurous sulphate, saturated zinc sulphate and a little

zitic oxide to neutralize it
;
a rod of pure zinc dips into

the paste and is held in position by passing through a

MARINE GLUE

ZINC SULPHATE SOLUTION

ZINC SULPHATE CRYSTALS

MERCUROUS SULPHATE

MERCURY

PLATINUM WIRE

Fig. 90.

cork in the mouth of the test-tube. The electromotive

force of this cell is T434 x 108 at 15 Centigrade.

Cadmium cell. In this cell the zinc of the Clark cell

is replaced by Cadmium, the negative electrode instead

of being zinc is an amalgam containing twelve parts by

weight of Cadmium in 100 of the amalgam; the zinc

sulphate solution is replaced by a saturated solution of

Cadmium sulphate; the rest of the cell is the same as

in the Clark cell. This all has a smaller temperature

coefficient than the Clark cell and is the one now most

frequently used as a standard
;

its electromotive force at

tC. is

T0185 - 0-000038 (t
-

20)
- 0*00000065 (t

-
20)

2 volts.

185. Polarization. When two platinum plates are

immersed in a cell containing acidulated water, and a

current from a battery is sent from one plate to the other
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through the water, we find that the current for some time

after it begins to flow is not steady bat keeps diminishing.
If we observe the condition of the plates, we shall find

that oxygen adheres to the plate A, at which the current

enters the cell, while hydrogen adheres to the other plate

B, by which the current leaves the cell. If these plates

are now disconnected from the battery and connected by
a wire, a current will flow round the circuit so formed,

the current going from the plate B to the plate A

through the electrolyte and from A to B through the

wire. This current is thus in the opposite direction

to that which originally passed through the cell. The

plates are said to be polarized, and the E.M.F. round the

circuit, when they are first connected by the wire, is called

the electromotive force of polarization. When the plates

are disconnected from the battery and connected by the

wire the hydrogen and oxygen gradually disappear from

the plates as the current passes. In fact we may regard
the polarized plates as forming a voltaic battery, in which

the chemical action maintaining the current is the com

bination of hydrogen and oxygen to form water. Though

hydrogen and oxygen do not combine at ordinary tem

peratures if merely mixed together, yet the oxygen and

hydrogen condensed on the platinum plates combine

readily as soon as these plates are connected by a wire

so as to make the oxygen and hydrogen parts of a closed

electrical circuit. There are numerous other examples of

the way in which the formation of such a circuit facilitates

chemical combination.

186. A Finite Electromotive Force is required

to liberate the Ions from an Electrolyte. This follows

T. E. 20
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at once by the principle of the Conservation of Energy
if we assume the truth of Faraday s Law of Electrolysis.

Thus suppose for example that we have a single Daniell s

cell placed in series with an electrolytic cell containing
acidulated water; then if this arrangement could produce
a current which would liberate hydrogen and oxygen from

the electrolytic cell, for each electro-chemical equivalent of

zinc consumed in the battery an electro-chemical equiva
lent of water would be decomposed in the electrolytic cell.

Now when one electro-chemical equivalent of hydrogen
combines with oxygen to form water, 1 47 x 108 mechanical

units of heat are produced, and the decomposition of one

electro-chemical equivalent of water into free hydrogen
and oxygen would therefore correspond to the gain of this

amount of energy. But for each electro-chemical equi
valent of zinc consumed in the battery the chemical energy
lost is (Art. 182) equal to I ll4 x 108 mechanical units.

Hence we see that if the water in the electrolytic cell

were decomposed, 3 56 x 107 units of energy would be

gained for each unit of electricity that passed through
the cell : as this is not in accordance with the principle

of the Conservation of Energy the decomposition of the

water cannot go on. We see that electrolytic decom

position can only go on when the loss of energy in the

battery is greater than the gain of energy in the electro

lytic cell.

If we attempt to decompose an electrolyte, acidulated

water for example, by an insufficient electromotive force

the following phenomena occur. When the battery is

first connected to the cell a current of electricity runs

through the cell, hydrogen travelling with the current

to the plate where the current leaves the cell, oxygen
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travelling up against the current to the other plate.

Neither the hydrogen nor the oxygen, however, is libe

rated at the plates, but adheres to the plates, polarizing
them and producing a back E.M.F. which tends to stop
the current

;
as the current continues to flow the amount

of gas against the plates increases, and with it the polari

zation, until the E.M.F. of the polarization equals that of

the battery, when the current sinks to an
excessively

small fraction of its original value. The current does

not stop entirely, a very small current continues to flow

through the cell. This current has however been shown

by v. Helmholtz to be due to hydrogen and oxygen
dissolved in the electrolytic cell and does not involve any

separation of water into free hydrogen and oxygen. The

way in which the residual current is carried is somewhat
as follows. Suppose that the battery with its small E.M.F.

has caused the current to flow through the cell until the

polarization of the plates is just sufficient to balance the

E.M.F. of the battery ;
the oxygen dissolved in the water

near the hydrogen coated plate will attack the hydrogen
on this plate, combining with it to form water, and will,

by removing some of the hydrogen, reduce the polarization
of the plate; similarly the hydrogen dissolved in the water

or it may be absorbed in the plate, will attack the oxygen
on the oxygen coated plate and reduce its polarization.
The E.M.F. of the polarization being reduced in this way
no longer balances the E.M.F. of the battery; a current

therefore flows through the cell until the polarization
is again restored to its original value, to be again reduced

by the action of the dissolved gases. Thus in consequence
of the depolarizing action of the dissolved gases there

will be a continual current tending to keep the E.M.F.

202
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of the polarization equal to that of the battery; the

current however is not accompanied by the liberation

of free hydrogen and oxygen and its production does not

violate the principle of the Conservation of Energy.

187. Cells in Series. When a series of voltaic cells,

Daniell s cells for example, are connected so that the zinc

pole of the first is joined up to the copper pole of the

second, the zinc pole of the second to the copper pole

of the third, and so on, the cells are said to be connected

up in series. In this case the total electromotive force of

the cells so connected up is equal to the sum of the

electromotive forces of the individual cells. We can see

this at once if we remember (see Art. 180) that the electo-

motive force of any system is equal to the difference

between the chemical energy lost, when unit of electricity

passes through the system, and the mechanical equivalent

of the reversible heat generated at junctions of different

substances : when the cells are connected in series the

same chemical changes and reversible heat effects go on

in each cell when unit of electricity passes through as

when the same quantity of electricity passes through the

cell by itself, hence the E.M.F. of the cells in series is the

sum of the E.M.F. S of the individual cells.

The resistance of the cells when in series is the sum of

their resistances when separate. Thus if E is the E.M.F.

and r the resistance of a cell, the E.M.F. and resistance

of n such cells arranged in series are respectively nE
and nr.

188. Cells in parallel. If we have n similar cells

and connect all the copper terminals together for a new
terminal and all the zincs together for the other terminal
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the cells are said to be arranged in parallel. In this case

we form what is equivalent to a large cell whose E.M.F.

is equal to E, that of any one of the cells, but whose

resistance is only r/n.

189. Suppose that we have N equal cells and wish to

arrange them so as to get the greatest current through a

given external resistance R. Let the cells be divided into

m sets, each of these sets consisting of n cells in series,

and let these m sets be connected up in parallel. The

E.M.F. of the battery thus formed will be nE, its resistance

nrjm, where E and r are respectively the E.M.F. and

resistance of one of the cells. The current through
the external resistance R will be equal to

nE E
n nr H rR + - + -

m n m

Now nm = N, hence the denominator of this expression
is the sum of two terms whose product is given, it will

therefore be least when the terms are equal, i.e. when

R
n

or

z?
nR = r.m

Since the denominator in this case is as small as possible

the current will have its maximum value. Since nr/m is

the resistance of the battery we see that we must arrange
the battery so as to make, if possible, the resistance of

the battery equal to the given external resistance. This

arrangement, though it gives the largest current, is not
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economical, for as much heat is wasted in the battery as

is produced in the external circuit.

190. Distribution of a steady current in a

System of Conductors.

KirchhofPs Laws. The distribution of a steady
current in a network of linear conductors can be readily
determined by means of the following laws, which were

formulated by Kirchhoff.

1. The algebraical sum of the currents which meet at

any point is zero.

2. If we take any closed circuit the algebraical sum
of the products of the current and resistance in each of

the conductors in the circuit is equal to the electromotive

force in the circuit.

The first of these laws expresses that electricity is not

accumulating at any point in the system of conductors;
this must be true if the system is in a steady state.

The second follows at once from the relation (see

Art. 180)

where R is the external resistance, r the resistance of the

battery whose E.M.F. is E, and / the current through the

battery. For RI is the difference of potential between

the terminals of the battery, and by Ohm s law this is

equal to the sum of the products of the strength of

the current and the resistance for a series of conductors

forming a continuous link between the terminals of the

battery.

191. Wheatstone s Bridge. We shall illustrate

these laws by applying them to the system known as the
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Wheatstone s Bridge. In this system a battery is placed
in a conductor AB, and five other conductors AC, BG, A D,

BD, CD are connected up in the way shown in Fig. 91.

Let E be the electromotive force of the battery, B the

resistance of the battery circuit AB, i.e. the resistance

of the battery itself plus the resistance of the wires con

necting its plates to A and B. Let G be the resistance

of CD, and b, a, OL, j3 the resistances of AC, BC, AD, BD

respectively. Let x be the current through the battery,

y the current through AC, z that through CD. By
Kirchhoff s first law the current through AD will be

x y t
that through CB y z, and that through DB

x y + z.

Since there is no electromotive force in the circuit

ACD we have by Kirchhoff s second law,

by 4- Gz OL (x y) ;

the negative sign is given to the last term because travelling

round the circuit in the direction ACD the current x-y
flows in the direction opposite to that in which we are

moving; rearranging the terms we get

(b + a)y + Gz-ouK = Q (1).

Since there is no electromotive force in the circuit

CDS, we have

Gz+ fi(x-y + z)-a (y
-

z) = 0,

or -(a + ).?/ +( + + )* + #z?
=

(2).
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From (1) and (2) we get

x

[CH. IX

y

* + ) + (6 + )(a

(3).

Since the electromotive force round the circuit ACB
is E, we have

hence by (3), we have

x = G (a + 6 + (6 + a) (a

ri

^ - y 4. 2- = ((7 (a + 6) + a (6 + a)}

where

...(4),

+ G (a + b) (a + ft) + a (a + /3) (a + b)
- a (aa

-
bj3)

= BG(a + b + a + /3) + B(b+a)(a + l3)

+ G(a + b)(ot+j3) + aboi + abfi + aa/3 + 6a&

A is the sum of the products of the six resistances

B, G, a, b, ct, /3, taken three at a time, omitting the product

of any three which meet in a point.
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In the expressions given in equations (4) for the

currents through the various branches of the network

of resistances, we see that the multiplier of E/& in the

expression for the current through an arm (P) (other than

CD) is the sum of the products of the resistances other

than the battery resistance and the resistance of P taken

two and two, omitting the product of any two which meet

at either of the extremities of the battery arm or at either

of the extremities of the arm P.

From these expressions we see at once that if we keep
all the resistances the same, then the current in one arm

(A) due to an electromotive force E in another arm (B),

is equal to the current in (B) when the electromotive E
is placed in the arm A. This reciprocal relation is not

confined to the case of six conductors, but is true what

ever the number of conductors may be.

We may write the expression for x given by equation

(4) in the form

J?
~B+R

where

P _ G (a + b) (a + ff) + gaff + aotb + a/3b + aftb

R is the resistance, between A and B, of the crossed

quadrilateral ACBD.

We see that R = (sum of products of the 5 resistances

of this quadrilateral taken 3 at a time, leaving out the

product of any three that meet in a point): divided by
the sum of the products of the same resistances taken two

at a time, leaving out the product of any pair that meet

in A or B.
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192. Conjugate Conductors. The current through
CD will vanish if

in this case AB and CD are said to be conjugate to each

other, they are so related that an electromotive force in

AB does not produce any current in CD: it follows from
the reciprocal relation that when this is the case an
electromotive force in CD will not produce any current
in AB.

The condition that CD should be conjugate to AB
may be got very simply in the following way. If no current

flows down CD, C and D must be at the same potential;
hence since z = Q, we have by Ohm s law

by = a O -
y),

since the difference of potential between A and C is

equal to that between A and D.

Since the difference of potential between C and B is

equal to that between D and B, we have

hence eliminating y and x y, we get

- = -

or b& = aa.

When this relation holds we may easily prove that

l

which we may write as
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where S is the resistance of ADB, ACB placed in series,

P the resistance of the same conductors when in parallel,

and P the resistance of GA D, CBD in parallel.

When AB is conjugate to CD, then in whatever

part of the network an electromotive force is placed,

the current through one of these arms is independent

of the resistance in the other. We may deduce this

from the preceding expressions for the currents in various

arms of the circuit; it can also be proved in the following

way, which is applicable to any number of conductors.

Suppose that an electromotive force in some branch of

the system produces a current through AB, then we may
introduce any E.M.F. we please into AB without altering

the current through its conjugate CD. We may in par

ticular introduce such an electromotive force as would

make the current through AB vanish, without altering

the current in CD, but the effect of making the current

in AB vanish would be the same as supposing AB to

have an infinite resistance; hence we may make the

resistance of AB infinite without altering the current

through CD.

193. We may use Wheatstone s Bridge to get a differ

ence of potential which is a very small fraction of that

of the battery in the Bridge. The difference of potential

between C and D is equal to Gz, i.e. to

G (aa
-

bj3) E
~K~~

it thus bears to E the ratio of G (aa b/3) to A. By

making aa b/3 small we can without using either very

small or very large resistances make the ratio of the poten

tial difference between C and D to E exceedingly small
;
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for example, let a =101, a = 99, 6 = 0=100, B=G = 1.

Thus we find that this ratio is nearly equal to 1/4 x 106
,

or the potential difference between C and D is only about

one four-millionth part of the E.M.F. of the battery.

194. Heat produced in the System of Con
ductors. Assuming Joule s law (see Art. 178) we shall

show that for all possible distributions consistent with

Kirchhoff s first law, the one that gives the minimum rate

of heat production is that given by the second law.

For, consider any closed circuit in a network of con

ductors, let u, v, w... be the currents through the arms

of this circuit as determined by Kirchhoff s laws, and

7\, r2 ,
... the corresponding resistances. The rate of heat

production in this closed circuit is by Joule s law equal to

r1w
2 +r2?/

2 + ..................... (1).

Now suppose that the currents in this circuit are

altered in the most general way possible consistent with

leaving the currents in the conductors not in the closed

circuit unaltered, and consistent also with the condition

that the algebraical sum of the currents flowing into

any point should vanish : we see that these conditions

require that all the currents in the closed circuit should

be increased or diminished by the same amount. Let

them all be increased by f ;
the rate of heat production

in the circuit is now by Joule s law

Now since the currents u, v, w are supposed to be

determined by Kirchhoff s laws

r-flL + r2v + =0,
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if there is no electromotive force in the closed circuit

Hence the rate of heat production is equal to

r^ + r^ + ... + (r1 + ra + rg + ...)f
2

...... (2).

Of the two expressions (1) and (2) for the rate of heat

production (2) is always the greater ;
hence we see that

any deviation of the currents from the values determined

by KirchhofFs law would involve an increase in the rate

of heat production.

195. Use of the Dissipation Function. We may
often conveniently deduce the actual distribution of the

currents by writing down F the expression for the rate of

heat production and making it a minimum, subject to the

condition that the algebraical sum of the currents which

meet in a point is zero. Or we may by the aid of this

condition express, as in the example of the Wheatstone s

Bridge, the current through the various arms in terms of

a small number of currents x
y y, z, then express the rate

of heat production in terms of x, y, z.

F is often called the Dissipation Function.

When there are electromotive forces Ep ,
E

q
in the

arms through which currents up ,
u
q
are flowing respec

tively, then the actual distribution of current is that

which makes

a minimum. Thus in the case of the Wheatstone s

Bridge (Art. 191)

F=
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and equations (4) of Art. 191 are equivalent to

which are the conditions that F - 2Ex should be a

minimum.

A very important example of the principle that

steady currents distribute themselves so as to make the

rate of heat production as small as possible, is that of

the flow of a steady current through a uniform wire
;
in

this case the rate of heat production is a minimum when

the current is uniformly distributed over the cross section

of the wire.

196. It follows from Art. 194 that if two electrodes

are connected by any network of conductors, the equivalent

resistance is in general increased, and is never diminished,

by an increase in the resistance of any arm of this net

work.

If R is the resistance between the electrodes, i the

current flowing in at one electrode and out at the other,

then Ei2
is the rate of heat production. Let A and B

respectively denote the network before and after the

increase in resistance in one or more of its arms. With

out altering the resistance alter the currents until the

distribution of currents through A is the same as that

actually existing in B. The rate of heat production for
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the new distribution is by Art. 194 greater than that

in A. Now take this constrained system and without

altering the currents suppose that the resistances are

increased until they are the same as in B. Since the

resistances are increased without altering the currents

the rate of heat production is increased, so that as this

rate was greater than in A before the resistances were

increased it will a fortiori be greater afterwards. But

after the resistances were increased the currents and

resistances are the same as B, hence the rate of heat

production in B and therefore its resistance is greater

than that of A.

197. The following proof of the reciprocal relations

between the currents and the electromotive forces in a

network of conductors is due to Professor Wilberforce.

Let A, B be two of the points in a network of con

ductors, let RAB denote the resistance of the wire joining

AB
,
VA the potential of A, VB that of B, GAB the

current flowing along the wire from A to B, EAS the

electromotive force of a battery in AB, tending to make

the current flow through the battery in the direction AB
,

let currents from an external source be led into the net

work, the current entering at a point A being denoted by
IA- Then if 2,1A denotes the sum of all these currents

siA =o.
We have by Ohm s law,

RABCAB=VA -VB + EAB (1).

Let us suppose that another distribution of currents,

potentials, and electromotive forces is denoted by dashed

letters. We have by (1),

RABGAB@ AB ( VA - VB) VAB + EABVAB -
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Taking the whole network of conductors we have

^nABCABG AB = 2(VA -VS) G AB + ^EABC AB .

The coefficient of VA is the sum of all the currents

that flow outwards from A, this must be equal to I A ,

hence

2&amp;lt;RABCABC AB = 2iVAI A + 2*EABC AB .

Since the left-hand side is symmetrical with respect
to the accented and unaccented letters we have

Now suppose that all the / s and /&quot;s are zero, and

that all the E s are zero except EAB ,
all the En

s except
E CD] (2) becomes

EABVAB = E CD CCD,

i.e. that when unit electromotive force acts in AB, the

current sent through another branch CD of the network

is the same as the current through AB when unit electro

motive force acts in CD. Again in equation (2) suppose
that all the E s and E&quot;s are zero, that a current IA is led

in at A and out at B, all the other / s vanishing, and that

in the distribution represented by the dashed letters a

current I c is led in at C and out at D, all the other /&quot;s

vanishing, then by (2)

Thus if unit current be led in at A and out at B the

potential difference between C and D is the same as the

potential difference between A and B when unit current

is led in at C and out at D.

198. Distribution of Current through an infinite

Conductor. We shall now consider the case when the

currents instead of being constrained to flow along wires
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are free fco distribute themselves through an unlimited

conductor whose conductivity is constant throughout its

volume. We shall suppose that the current is introduced

into this conductor by means of perfectly conducting

electrodes, i.e. electrodes made of a material whose specific

resistance vanishes. The currents will enter and leave the

conductor at right angles to the electrodes, for a tangential

current in the conductor would correspond to a finite tan

gential electric intensity in the conductor and therefore in

the electrode, but in the perfectly conducting electrode a

finite electric intensity would correspond to an infinite

current. Let A and B be the electrodes, i the current which

enters at A and leaves at B
,
then we shall prove that the

current at any point P in the conductor is in the same direc

tion as, and numerically equal to, the electric intensity at the

same point, if we suppose the conducting material between

the electrodes to be replaced by air, and the electrodes A
and B to have charges of electricity equal to ij^Tr and

i/4f7r respectively. For the current is determined by
the conditions (1) that it is at right angles to the surfaces

A and B, and (2) that since the current is steady, and there

is no accumulation of electricity at any part of the con

ductor, the quantity of electricity which flows into any

region equals the quantity which flows out. Hence we

see that the outward flow over any closed surface enclos

ing A and not B is equal to i, over any closed surface

enclosing B and not A is equal to i, and over any closed

surface enclosing neither or both of these surfaces is zero.

But the electric intensity, when the conductor is replaced

by air and A has a charge i/4&amp;gt;7r
of positive electricity,

while B has an equal charge of negative electricity,

satisfies exactly the same conditions, which are sufficient to

T. E. 21
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determine it without ambiguity; hence the current in the

conductor is equal to the electric intensity in the air and

is in the same direction. A line such that the tangent to

it at any point is in the direction of the current at that

point is called a stream-line. The stream-lines coincide

with the lines of force in the electrostatic problem.

199. If q is the intensity of the current at any point

P (i.e. the current flowing through unit area at right

angles to the stream-line at P), a the specific resistance

of the conductor, ds an element of the stream-line, then

by Ohm s law the E.M.F. between the electrodes A and B
is equal to

faqds,

the integral being extended from the surface of A to that

of B. As &amp;lt;r is constant, this is equal to

a-fqds.

If F is the electric intensity at P in the electrostatic

problem, since F =
q, the E.M.F. between A and B is

equal to

trfFda-,

but if V is the difference of potential between A and B
in the electrostatic problem,

V=JFds.

Hence the E.M.F. between A and B is equal to 0V.

But if C is the electrostatic capacity of the two conductors,

since these have the charges ^
/4&amp;lt;7^

and
i/4&amp;gt;7r respectively,

Hence the E.M.F. between A and B =
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or the resistance between A and B is equal to

We see from this that the resistance of a shell bounded

by concentric spherical surfaces, whose radii are a and b,

is equal to

The resistance per unit length of a shell of conducting
material bounded by two coaxial cylindrical surfaces whose
radii are a and b is equal to

a- , b^a
The resistance between two spherical electrodes whose

radii are a and b and whose centres are separated by a

distance R, where R is very large compared with either

a or 6, is equal to

4-7T ja 6 R\

approximately.

The resistance per unit length between two straight

parallel cylindrical wires whose radii are a and b, and

whose axes are at a distance R apart, where R is very

large compared with a or 6, is approximately

a , R*

s^ a-

If we have two infinite cylinders, one with a charge
of electricity E per unit length, the other with the charge
E

;
then if A and B are the centres of the sections of

these cylinders by a plane perpendicular to the axis and

212
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P a point in this plane, the electrostatic potential at P
will be equal to

if the cylinders are so far apart that the electricity

may be regarded as uniformly distributed over them.

Thus the lines along which the electrostatic potential is

constant are those for which

jD T)

= a constant quantity.

That is, they are the series of circles for which A and B
are inverse points. The lines of force are the lines which

cut these circles at right angles, i.e. they are the series of

circles passing through A and B. But the lines of force

in the electrostatic problem coincide with the lines along
which the currents flow between two parallel cylinders as

electrodes; hence these currents flow in planes at right

angles to the axes of the cylinders, along the circles

passing through the two points in which these planes

intersect the axes of the cylinders.

Since the resistance of unit length of the cylinders is

the resistance of a length t is

a . R2

This will be the resistance of a thin lamina whose thick

ness is t when the current is led in by circular electrodes

radii a and 6, if the thickness of the lamina is so small

that the currents are compelled to flow parallel to the



199] ELECTRIC CURRENTS 325

lamina. The lines of flow in this case are circles

passing through A and B; they are represented in

Fig. 92.

Fig. 92.

Since the currents flow along these circles we shall

not alter the distribution of current if we imagine the

lamina cut along one or other of these circles; hence

if the lamina is bounded by two circular areas such as

APB, BQA the lines of flow will be circular arcs passing

through A and E.

To find the resistance of a lamina so bounded, con

sider for a moment the flow through the unlimited

lamina. The current will flow from out of each electrode

approximately uniformly in all directions; hence if we

draw a series of circles intersecting at the constant angle

a at A and B, we may regard the whole lamina as made

up of the conductors between the stream-lines placed in

2-77-

multiple arc
;
the number of these conductors is and
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since the same current flows through each, the resistance

of any one of them is 2?r/a of the whole resistance; thus

the resistance of one of these conductors is

a , R*

^ log a&

Thus, for example, if the electrodes are placed on

the circumference of a complete circle, a = TT and the

resistance of the lamina is

200. Conditions satisfied when a current flows

from one medium to another. Let AB be a portion

of the surface of separation of two media, al the specific

resistance of the upper medium, o-2 that of the lower, let

6 and
(j)
be the angles which the directions of the current

in the upper and lower media respectively make with the

normal to the surface. Let qlt q.2
be the intensities of

the currents in the two media, i.e. the amount of current

flowing across unit areas drawn at right angles to the

direction of flow. Then since, when things are in a steady

state, there is no increase or decrease in the electricity

at the junction of the two media, the currents along the

normal must be equal in the two media.

Thus q l cos 6 = q2 cos
(j&amp;gt;

.................. (1).

Again, the electric intensity parallel to the surface

must be equal in the two media, and since the electric

intensity in any direction is equal to the specific resistance

of the medium multiplied by the intensity of the current

in that direction, we have

o-fli
sin 6 = cy?2 sin

(f&amp;gt;

............... (2),
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hence from (1) and (2) we have

crl tan 6 = cr2 tan
(j&amp;gt;.

This relation between the directions of the currents

in the two media is identical in form with that given in

Arts. 74 and 157, for the relation between the directions

of the lines of electric intensity and of magnetic force

when these lines pass from one medium to another.

We see that if o-
l is greater than cr2 ,

then c is greater
than 6

;
hence when the current flows from a poor con

ductor into a better one the current is bent away from

the normal.

The bending of the current as it flows from one

medium into another is illustrated in Fig. 93, which is

taken from a paper by Qudncke. The figure represents

E

the current lines in a circular lamina, one half of which is

lead, the other half copper, the electrodes E, E being placed

on the circumference. It shows how the currents in going
from the worse conductor (the lead) to the better one (the
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copper) get bent away from the normal to the surface of

separation.

The electric intensity parallel to the normal in the

medium whose specific resistance is a^ is

flrtfj
cos 6,

that in the medium whose specific resistance is a2 is

&amp;lt;T2q2 cos
(/&amp;gt;.

Since q cos 6 is by equation (1), equal to

q2 cos(f), we see that if ^ differs from cr2 the normal

electric intensity will be discontinuous at the surface of

separation.

If the normal electric intensity is discontinuous there

must be a distribution of electricity over the surface such

that 4?r times the surface density of this distribution is

equal to the discontinuity in the normal electric intensity;

hence if s is the surface intensity of the electricity on the

surface, and if the current is flowing from the first medium
to the second

4f7rs = a^q.2 cos &amp;lt;f) o-^ cos 6

=
(0-2-0-1)^1 cos 6.



CHAPTER X

MAGNETIC FORCE DUE TO CURRENTS

201. It was not known until 1820 that an electric

current exerted any mechanical effect on a magnet in its

vicinity. In that year however Oersted, a Professor at

Copenhagen, showed that a magnet was deflected when

placed near a wire conveying an electric current.

When a long straight wire with a current flowing

through it was held near the magnet, the magnet tended

to place itself at right angles both to the wire and the

perpendicular let fall from the centre of the magnet on

the wire.

The lines of magnetic force due to a long straight wire

may be readily shown by making the wire pass through
a hole in a card-board disc over which iron filings are

sprinkled. When the disc is at right angles to the wire,

the iron filings will arrange themselves in circles when

the current is flowing; these circles are concentric, having
as their centre the point where the wire crosses the plane

of the disc.

The connection between the direction of the current

and that of the magnetic force is such that if the axis
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of a right-handed screw (i.e. an ordinary corkscrew) coin

cides with the direction of the current, then if the screw

is screwed forward into a fixed nut in the direction of the

current the magnetic force at a point P due to the current

is in the direction in which P would move if it were rigidly
attached to the screw.

Many students will find that they can remember the

connection between the direction of the current and

the magnetic force more easily by means of a figure
than by a verbal rule. The following figure exhibits

this relation.

Fig. 94.

202. Ampere s law for the magnetic field due

to any closed linear circuit. This may be stated as

follows : At any point P, not in the wire conveying the

current, the magnetic forces due to the current can be

derived from a potential H where O = Cico, i being the

current flowing round the circuit, w the solid angle sub

tended by the circuit at P, and C a constant which

depends on the unit in which the current is expressed.

When the unit of current is what is known as the

electromagnetic unit, see Chap. XIL, C is unity. We
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shall in the following investigations suppose that the

current is measured in terms of this unit.

We see from Art. 134 that this is equivalent to saying

that the magnetic field due to a current is the same

as that due to a magnetic shell whose strength is i,

the boundary of the shell coinciding with the circuit

conveying the current. The direction of magnetization
of the shell is related to the direction of the current in

such a way that if the observer stands on the side of the

shell which is charged with positive magnetism and looks

at the current, the current in front of him flows from

right to left.

The best proof of the truth of Ampere s law is that

though its consequences are being daily compared with

the results of experiments, no discrepancy has ever been

detected.

The potential due to the magnetic shell at a point
in the substance of the shell is not the same as that due

to the electric circuit, nor is the magnetic force at such a

point the same in the two cases. This however does not

cause any difficulty in determining the magnetic force due

to a circuit at any point P, for, since only the boundary
of the equivalent magnetic shell is fixed, we can always

arrange the shell in such a way that it does not pass

through P.

We can easily prove, however, that at any point,

whether in the substance of the shell or not, the mag
netic force due to the circuit is equal to the magnetic
induction due to the shell. For let P be a point in the

substance of the shell, then though the magnetic force

due to the shell will not be the same as at P
,
a point just
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outside the shell, yet the force due to the current at P
will differ from that at P by an amount which vanishes

when the distance PP is indefinitely diminished. The

magnetic force at P due to the current is the same as

the magnetic force at P due to the shell. Since the shell

is magnetized along the normal, the tangential magnetic
force in the shell is equal to the tangential magnetic
induction. Now, by Art. 158, the tangential magnetic
force at P

,
a point just outside the shell, is equal to

the tangential magnetic force at P, a point just inside

the shell, and this, as we have just seen, is equal to the

tangential magnetic induction at P. Again, by Art. 158,

the normal magnetic force at P is equal to the normal

magnetic induction at P. Thus since the normal force

at P is equal to the normal induction at P, and the

tangential force at P is equal to the tangential induction

at P, the magnetic force at P is equal in magnitude
and direction to the magnetic induction at P. Since

the magnetic force at P due to the current is equal to

the magnetic force at P due to the shell, we see that

the magnetic force due to the current at P is equal
to the magnetic induction due to the shell at P.

Thus since the lines of magnetic induction due to the

shell form a series of closed curves passing through the

shell, the lines of magnetic force due to the current flowing

round a closed linear circuit will be a series of closed

curves threading the circuit.

203. Work done in taking a magnetic pole

round a closed curve in a magnetic field due to

electric currents. Let EFGH be the closed curve

traversed by the magnetic pole; if this curve threads the
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circuit traversed by the current, then the magnetic shell

whose magnetic effect is equivalent to that of the current

must cut the curve, let it do so in PQ. Let a, 6, c be the

components of magnetic induction due to the shell at any

point, a, j3, 7 the components of the magnetic force at the

same point, and A, B, C the components of the intensity

of magnetization. Since the magnetic force due to the

Fig. 95.

circuit is the same as the magnetic induction due to

the shell, W, the work done on the unit pole when it

traverses the closed curve EFGH under the influence of

the electrical currents, is given by the equation

W = / (adx + bdy + cdx),

the integral being taken round the closed curve.

Hence we have by Art. 153

W = / {(a + 4mA)dx+($ +
4&amp;gt;7rB) dy + (7 + 4nrC) dz],

or since by Art. 134 the line integral of the magnetic
force due to the shell vanishes when taken round a closed

circuit, we have

f(adx + ftdy -f ydz) = 0;

hence W = 4?r/ (Adx + Bdy + Cdz),

where the integral is now taken from P to Q, the points

where the shell cuts the curve EFGH, since it is only
between P and Q that A, B, C do not vanish.
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If
&amp;lt;/&amp;gt;

is the strength of the magnetic shell, and the

direction of integration is from the negative to the positive

side of the shell

J(Adx + Bdy + Cdz) = c/&amp;gt;
;

hence
W=4&amp;lt;7r&amp;lt;j).

If i is the strength of the current which the shell

replaces

&amp;lt;/&amp;gt;

=
!,

see Art. 202
;
hence

Thus the work done on unit pole when it travels

round a closed curve which threads the circuit once in

the positive direction, i.e. when the pole enters at the

negative side of the equivalent shell and leaves at the

positive, is constant whatever be the path, and is equal to

If the closed curve along which the unit pole travels

does not thread the circuit of the current, the work done

on the unit pole vanishes, for we can draw the equivalent

shell so as to be wholly outside the path of the pole, and

in this case A t B, C vanish at all points of the path.

If the path along which the unit pole is taken threads

the circuit n times in the positive direction (the positive

direction being when the pole in its path enters the

equivalent magnetic shell at the negative side and leaves

it at the positive), and ra times in the negative direction,

the work done on the pole on its path is equal to

4&amp;gt;7ri (n ra).

The value of f(adx + ftdy + &amp;lt;ydz)
taken round a closed

circuit is independent of the nature of the material which

is traversed by the circuit
;

it is the same, if the currents
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are unaltered, whether the circuit lies entirely in air,

entirely in iron or any other magnetizable medium, or

partly in air and partly in iron. For the field may be

regarded as made up of two parts, one, in which the

components of the magnetic force are alt &, 7! due to the

magnetic action of the currents when there is nothing

but air in the neighbourhood; the other, a field whose

components are
, /3 , 7o due to the magnetization in

duced or permanent of the iron.

Hence

j(cndx + ftdy + ^dz)
= /{(! + ) das + (ft + &) dy + (7x + 7o) dz}.

Since
, /30) y are the forces due to a distribution

of magnets the work done by these forces on a unit pole

taken round a closed circuit must vanish, hence

f(a dx + /3 dy + yQdz) = 0,

when the integral is taken round any closed circuit.

Thus

j(a.dx
and

/(otjcb + Pidy +
= 4-7T (sum of currents embraced by the circuits).

Thus j(adx + fidy + &amp;lt;ydz) depends merely upon the

currents in the field and not upon the nature of the

material intersected by the circuit.

204. Magnetic force due to an infinitely long

straight current, in a field in which there are no

magnetizable substances. In this case the magnetic
force is numerically equal to the magnetic induction, and

hence the total normal magnetic force taken over any
closed surface vanishes. Take as the closed surface a
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right circular cylinder with the current for axis, and let

R be the radial magnetic force at any point of the curved

surface of this cylinder ; by symmetry R is constant over

the curved surface. Since the current is infinitely long
the magnetic force will not vary as we move parallel to

the wire conveying the current
;
hence the normal mag

netic force taken over one of the plane ends will cancel

that taken over the other. Thus, if S is the curved

surface of the cylinder, the total magnetic force taken

over the cylinder is RS, and since this vanishes, R must

vanish
;
hence there is no radial magnetic force due to

the current.

To find T the tangential magnetic force, let P be

any point, and OP the perpendicular let fall from P
on the current

;
T is the magnetic force at right angles

to OP and to the direction of the current. With as

centre and radius OP describe in a plane at right angles

to the current a circle
;

at each point on the circum

ference of this circle the tangential magnetic force will

by symmetry be constant, and equal to T. The work

done when unit pole is taken round this circle is 27rrT,

and since the path encircles the current once this must

by Art. 203 be equal to 4-Tn, if i is the strength of the

current; hence we have

or the tangential magnetic force varies inversely as the

distance from the current.

We shall now show that the magnetic force parallel to

the current vanishes.

We can do this by regarding the straight circuit as

the limit of a circular one with a very large radius.
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Consider the magnetic force at a point P due to the

circular current. Through P draw a circle in a plane

parallel to that of the current, so that the line joining

the centre of this circle, to the centre of the circle in

which the current is flowing, is perpendicular to the planes

of these circles. Then if T is the magnetic force along

the tangent to this circle at P, T will be, by symmetry,
the tangential force at each point of this circle. Hence

the work done in taking unit pole round the circumference

of this circle is 2-TrOP . T, this must however vanish as the

circle does not enclose any current, thus T must be zero.

Proceeding to the limit when the radius of the circle is

indefinitely increased we see that the magnetic force due

to a straight current has no component parallel to the

current.

Thus the lines of magnetic force due to the long

straight current are a series of circles whose centres are

on the axis of the current and their planes at right angles

to the current. The direction of the magnetic force is

related to that of the current in the way shown in the

diagram, Fig. 92
;

i.e. the directions of current and

magnetic force are related in the same way as the direc

tions of translation and rotation in a right-handed screw.

The magnetic force at a point P not in the current

itself is thus derivable from a potential H, where

11 = 2i0 + 4,7rni,

where 6 is the angle PO, the perpendicular let fall from

P on the axis of the current, makes with a fixed line in

the plane through at right angles to the current : n is

an integer. The potential is a multiple-valued function

having at each point an infinite series of values differing

T. E. 22
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from each other by multiples of 4?, which is the work

done in taking unit magnetic pole round a closed circuit

embracing the current. This indeterminateness in the

potential arises from the fact that the work done on

unit pole as it goes from one point P to another point

Q, depends not merely on the relative positions of P and

Q but also on the number of times the pole in its path
from P to Q encircles the current.

205. Magnetic force inside the conductor con

veying the current. When the current is flowing

symmetrically through a circular cylinder, we can easily

find the magnetic force at a point inside the cylinder.

Let be the centre of a cross section of the conductor,

and P a point at which the tangential force T is required ;

in the plane of the section draw a circle whose centre is

and radius OP. The work done in taking unit pole

round this circle is 2-TrOP. T, this by Art. 203 is equal to

4-7T times the current enclosed by the circle. Hence we

have

27rOP. T=4&amp;gt;TT (current enclosed by the circle with

centre and radius OP).

If the current is all outside this circle, the right-hand
side of this equation vanishes : hence T vanishes and there

is no magnetic force. Thus there is no magnetic force in

the interior of a cylindrical tube conveying a current.

If the current is uniformly distributed over the cross

section, and i is the total current flowing through the

cylinder whose radius we shall denote by a, the current

through the circle whose radius is OP is equal to

. OP 2
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OP 2

Hence 2-TrOP. T= 4nri .
~-

Thus when the current is uniformly distributed, the

magnetic force inside the cylinder varies directly as the

distance from the axis
;

outside the cylinder it varies

inversely as this distance.

206. The total normal magnetic induction through

any cylindric surface passing through two lines parallel

to the current is the same whatever be the shape of the

Fig. 96.

surface connecting these lines. This follows at once from

the principle that the total magnetic induction over any
closed surface is zero. To find an expression for the in

duction through the cylindric surface, let A and B be the

points where the two lines intersect a plane at right angles
to the current, the point where the axis of the current

intersects this plane. Take the cylindrical surface such

that if B is the point nearest to 0, the normal section of

the surface is the circular arc BC and the radial portion
CA. Since the magnetic force is everywhere tangential to

222
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BG no tube of force passes through the portion corre

sponding to BC
;

if r is the distance of any point P on
CA from 0, the magnetic force at P is

2*

r

hence the number of tubes of magnetic force passing

through the portion corresponding to AC is

I

2ij . OA
oc r ^0(7

= 2ilo

and this represents the number passing through each
unit of length of any cylindric surface passing through
A and B.

207. Two infinitely long straight parallel cur
rents flowing in opposite directions. Let A and S,

Fig. 97, be the points where the axes of the currents

intersect a plane drawn at right angles to the direction

of the currents. Let the direction of the current at A

be downwards through the paper, that at B upwards ;
if i

is the strength of either current, the magnetic potential
at a point P is, Art. 204, equal to

2i Z PAB 27rn - 2i TT - Z PBA
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This may be written

341

thus along an equipotential line the angle APB is

constant, hence the equipotential lines are the series of

circles passing through AB.

The lines of magnetic force are at right angles to the

equipotential lines, they are therefore the series of circles

having their centres along AB such that the tangents to

them from 0, the middle point of AB, are of the constant

length OA.

The lines of magnetic force and the equipotential

lines are represented in Fig. 98.

Fig. 98.

The direction of the magnetic force is easily found

as follows. If PT is the direction of the magnetic force

at P, then since PT is the normal to the circle round
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APB, the angle BPT is equal to the complement of the

angle PAB.

The magnetic force R at P is the resultant of the

forces 2i/AP at right angles to AP and 2i/BP at right

angles to BP. Resolving these along PT, we have

os ABP + -2L cosBAPnr

AP.BP

Thus the intensity of the magnetic force at P varies

inversely as the product of the distances of P from A
and B.

At a point on the line bisecting AB at right angles
AP=BP

y
and along this line, which may be called the

axis of the current, the magnetic force is inversely pro

portional to the square of the distance from A or B
,

the direction of the force is parallel to the axis.

At a point whose distances from A and B are large

compared with AB we may put AP = BP = OP, in this

case the magnetic force varies inversely as OP 3
,
and the

direction of the force makes with OP the same angle as

OP makes with the line at right angles to A B.

208. Number of tubes of magnetic force due
to the two currents which pass through a circuit

consisting of two parallel wires. Let A, B be the

points where the two currents intersect a plane drawn

at right angles to them, C, D the points where the wires

of the circuit cut the same plane. Then, Art. 206,
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the number of tubes of magnetic force due to A which

AC
pass through CD per unit length

= 2i log -=-=: . Similarly
A.JJ

the number which pass through CD and are due to the

current B is

hence the number through CD per unit length due to the

current i at A and i at B, is

AC BW

AC.BD

We see from the symmetry of the expression that this

is the number which would pass through the circuit AB
due to currents + i and i at C and D respectively.

When the circuits AB, CD are so situated that the

total number of tubes passing through CD due to the

current in. A, B is zero, the circuits AB, CD are said to

be conjugate to each other. The condition for this is that

AC.BD ... . ,

log . ^ p ~ should vanish, or that

AC AD
~BC~ BD

another way of stating this result is that C and D must

be two points on the same line of magnetic force due

to the currents at A and B; this is equivalent to the

condition that A and B should be points on a line of

magnetic force due to equal and opposite currents at

C and D. Since the lines of magnetic force due to the
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currents A and B are a series of circles with their centres

on AB it follows that if CD is conjugate to AB it will

remain conjugate however CD is rotated round the point

, being the point where the line bisecting CD at right

angles intersects AB.

A case of considerable practical importance is when

we have two equal circuits AB and CD, the current

through A being in the same direction as that through
C and that through B in the same direction as that

through D.

Let us consider the case when AB and CD are equal
and parallel and so placed that the points A, B, D, C are

at the corners of a rectangle. Then if i is the current

flowing round each of the circuits, H the magnetic

potential at a point P will, by Art. 204, be given by
the equation

1 = 2i6 2i$ + constant,

where 6 and
4&amp;gt;

are the angles subtended respectively

by AB and CD at P.

The lines of magnetic force are the curves which cut

these at right angles ; along such a line

is constant, where r1} rz ,
r3) r4 are the distances of a point

on the line from A, B, C, D respectively.

The lines of magnetic force are represented in Fig. 99.

There are two points E, F where the magnetic force

vanishes
;
these points are on the line drawn through 0,

the centre of the rectangle, parallel to the sides A B and

CD
;
we can easily prove that OE is equal to OA .
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At a point P on the axis of the current, i.e. on the line

through at right angles to AB, the magnetic force is

parallel to the axis and is by Art. 207 equal to

2t . AB 2i . CD~~
~CPr

if OP = x, AB = 2a, AC = 2d, the magnetic force at P is

equal to

4tia

o p

Fig. 99.

This is, neglecting the fourth and higher powers of x,

equal to

thus, if */3d = a, the term in a? disappears and the lowest

power of x which appears in the expression for the

magnetic force is the fourth. Thus with this relation

between the size of the coils and the distance between

them the force near varies very slowly as we move

along the axis.
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The number of tubes of magnetic force which pass

through one circuit when a current % flows round the

other may, by using the result given on page 343, easily
be proved to be equal to

... BG

Fig. 100.

209. Direct and return currents flowing uni

formly through two parallel and infinite planes.

Let the two parallel planes be at right angles to

the plane of the paper and let this plane intersect them

in the lines AB, CD, Fig. 100. Let a current i flow upwards
at right angles to the plane of the paper through each

unit length of AB and downwards through each unit

length of CD. Let EF be the section of the plane

parallel to AB and CD and midway between them. We
shall prove that the magnetic force between the planes

is uniform and parallel to EF, being thus parallel to the

planes in which the currents are flowing and at right

angles to the currents.

We shall begin by proving that the magnetic force

has no component at right angles to the planes in which

the currents are flowing. This is evidently true by
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symmetry at all points in the plane midway between

AB and CD
;
we can prove it is true at all points in

the following way. Take a rectangular parallelepiped one

of whose faces is in the plane whose section is EF, let

another pair of faces be parallel to the plane of the paper
and the third pair perpendicular to the line EF. The

total normal magnetic induction over this closed surface

vanishes. Since the currents are uniformly distributed

in the infinite planes, the magnetic induction will be the

same at all points in a plane parallel to those in which the

currents are flowing. Hence the total magnetic induction

over the pairs of faces of the parallelepiped which are at

right angles to the parallel planes will vanish : for the

induction at a point on one face will be equal to that at

a corresponding point on the opposite face, and in the

one case it will be along the inward normal, in the other

along the outward. Hence since the total induction over

the parallelepiped is zero the induction over one of the

faces parallel to the planes must be equal and opposite to

that over the opposite face. But one of these faces is

in the plane EF where the magnetic induction normal

to the face vanishes; hence the total normal induction

over the other face must vanish, and since the induction

is the same at each point on the face the induction can

have no component at right angles to this face, i.e. at

right angles to the planes in which the currents are

flowing. This proof applies to all parts of the field,

whether between the planes or outside them.

To prove that the force parallel to the currents

vanishes, we take a rectangle PQRS with two sides PQ,
RS parallel to the currents, the other sides PS, QR being
at right angles to the planes of the currents. No current
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flows perpendicularly through this rectangle, hence (Art.

203) the work done when unit magnetic pole is taken

round its circumference is zero. But since the magnetic
force parallel to PS, RQ vanishes, the work done on unit

pole, ifFis the force along PQ, F
f

that along RS, is equal to

(F-F )PQ.
Since this vanishes F=F

,
i.e. F is constant throughout

the field, and since by symmetry it vanishes along EF it

must vanish throughout the field.

We have now proved that throughout the field the

components of the magnetic force in two directions at

right angles to each other vanish, hence the magnetic

force, where it exists, must be parallel to EF, Fig. 100.

By drawing a rectangle in the space outside the planes

with one pair of its sides parallel to EF we can prove

that the force parallel to EF also vanishes outside the

planes, so that in this region there is no magnetic force.

To find the magnitude of the magnetic force H between

the planes, take a rectangle such as LMNK, Fig. 100,

cutting one of the planes, the sides of the rectangle being

respectively parallel and perpendicular to EF. The quan

tity of current flowing through this rectangle is i x LM,
since i flows through each unit of length of the plane;

hence 4-Tn x LM is equal to the work done in taking unit

magnetic pole round the rectangle. But this work is

H x LM, since no work is done when the pole is moving

along MN, NK and KL, hence we have

or H=

Thus the magnetic force is independent of the distance

between the planes.
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210. Solenoid. We can apply exactly the same

method to the very important case of an infinitely long

right circular solenoid, i.e. an infinitely long right circular

cylinder round which currents are flowing in planes

perpendicular to the axis. Such a solenoid may be con

structed by winding a right circular cylinder uniformly

with wire, the planes of the winding being at right angles

to the axis of the cylinder, so that between any two planes

at right angles to the axis and at unit distance apart there

are the same number of turns of wire. We can show by
the same method as in Art. 209, that inside the cylinder

the radial magnetic force vanishes, and that the force

parallel to the axis of the cylinder is uniform, that out

side the cylinder the magnetic force vanishes: and that

if H is the magnetic force inside the cylinder parallel to

the axis

H =4t7r (current flowing between two planes separated

by unit distance).

If there are n turns of wire wound round each unit

length of the cylinder and i is the current flowing through
the wire, this equation is equivalent to

H=
4&amp;gt;7rni.

The preceding result is true whatever be the shape
of the cross section of the cylinder on which the wire is

wound, provided the number of turns of wire between two

parallel planes at unit distance apart perpendicular to the

axis of the cylinder is uniform.

Endless Solenoids. Near the ends of a straight

solenoid the magnetic field is not uniform and ceases to be

parallel to the axis of the cylinder and equal to 4i7rni. We
can, however, avoid this irregularity if we wind the wire
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on a ring instead of on a straight cylinder. Suppose the

ring is generated by the revolution of a plane area about

an axis in its own plane which does not cut it, and let the

ring be wound with wire so that the windings are in planes

through the axis of the ring and so that the number of

windings between two planes which make an angle 6 with

each other is equal to nOj^nr ;
n is thus the whole number

of windings on the ring. Then we can prove as in Art.

209 that the magnetic force vanishes outside the solenoid,

and that inside the solenoid the lines of magnetic force

are circles having their centres on the axis of the solenoid

and their planes at right angles to the axis. Let H be

the magnetic force at a distance r from this axis; the

work done on unit pole when taken round a circle whose

radius is r and whose centre is on the axis and plane

perpendicular to it is %7rrH
;
this by Art. 203 is equal to

4-Tr times the current flowing through this circle, and is

thus equal to 4&amp;gt;7rni
t
if i is the current flowing through one

of the turns of wire. Hence

2ni
or H =

.

r

Thus the force is inversely proportional to the distance

from the axis.

The preceding proof will apply if the solenoid is wound

round a closed iron ring; if however there is a gap in the

iron it requires modification.

Let Fig. 101 represent a section of the solenoid and

suppose that ABDC is a gap in the iron, the faces of

the iron being planes passing through the axis of the

solenoid. Let this axis cut the plane of the paper in 0.
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Let P be a point on the face of one of the gaps, B the

magnetic induction in the iron at right angles to OP,

then since the normal magnetic induction is continuous

B will also be the magnetic induction in the air. Hence

if
fji

is the magnetic permeability of the iron, the magnetic

force in the iron is BJJJ, while that in the air is B. If

Fig. 101.

OP = r, the work done in taking unit pole round a circle

whose radius is r is

(27r

where is the angle subtended by the air gap at the axis

of the solenoid. Hence by Art. 203 we have

or B =

This formula shows the great effect produced by even

a very small air gap in diminishing the magnetic induction.
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Let us take the case of a sample of iron for which

At
- 1 = 1000, then if 0/2*-

= 1/100, i.e. if the air is only
one per cent, of the whole circuit, the value of B is only
one-eleventh of what it would be if the iron circuit were

complete, while even though 0/2-Tr were only equal to

1/1000 the magnetic induction would be reduced one-half

by the presence of the gap.

We can explain this by the tendency which the tubes

of magnetic induction have to leave air and run through
iron. If the magnetic force in the solenoid due to the

current circulating round it is in the direction of the

arrow, the face AB of the gap will be charged with

positive magnetism, the face CD with negative. If this

distribution of magnetism existed in air, tubes of mag
netic induction starting from AB and running through
the air to CD would be pretty uniformly distributed in

the field
;
in this case they would only be in the solenoid

for a short part of their course. But as soon as the

solenoid is filled with soft iron these tubes forsake the air

and run through the iron, and as they are in the opposite

direction to the tubes due to the current they diminish

the magnetic induction in the iron.

Problems like the one just discussed can be easily

solved by making use of the analogy between the distribu

tion of magnetic induction in a field containing magnetic
and non-magnetic substances, and the distribution of

electric current in a field containing substances of different

electrical conductivity. This analogy is shown by the

following table, the properties stated on the left-hand side

relating to the magnetic field due to a magnetizing circuit

traversed by a current i, those on the right relating to the
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distribution of current produced by a battery of electro

motive force E.

MAGNETIC SYSTEM.

1. The line integral of the

magnetic force round any closed

curve threading the magnetizing
circuit is 47ri, while round any
other closed curve it vanishes.

2. The lines of magnetic in

duction are closed curves thread

ing the magnetizing circuit.

3. The magnetic induction

is
p.

times the magnetic force,

where p. is the magnetic per

meability.

CURRENT SYSTEM.

1. The line integral of the

electric force round any closed

curve passing through the bat

tery is E, while round any other

closed curve it vanishes.

2. The lines of flow of the

current are closed curves passing

through the battery.

3. The intensity of the cur

rent is by Ohm s Law c times

the electric force, where c is the

specific conductivity of the sub

stance, i.e. the reciprocal of the

specific resistance.

4. At the junction of two

different media the normal elec

tric current and the tangential

electric force are continuous.

4. At the junction of two

different media the normal

magnetic induction and the

tangential magnetic force are

continuous.

From these results we see that the magnetic induction

due to a magnetizing circuit carrying a current i will be

numerically equal to the current produced by a battery

coinciding with the circuit, if the electromotive force of

the battery is 4?
,
and if the specific conductivity of the

medium at any point in the surrounding field is numeri

cally equal to the magnetic permeability at that point.

Since the magnetic permeability of iron is so much

greater than that of air or other non-magnetic substances,

we may, when we use the analogy of the current, regard
the magnetic substances as good conductors, the non

magnetic substances as very bad ones.

T. E. 23
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Thus in the case of a magnetizing coil round an iron

ring, the current analogue is a battery inserted in a ring

of high conductivity, the ring being surrounded by a very
bad conductor

;
in this case practically all the current will

go round the ring, very little escaping into the surround

ing medium. If E is the E.M.F. of a battery, c the specific

conductivity of the ring, I its length, a the radius of its

cross section, the resistance of the ring is I/OTTO?, the

current through the ring is Ec7ra?/l, the average intensity

of the current is Ec/l: hence the magnetic induction in

an iron ring of length I due to a magnetizing circuit

traversed by a current is ^Trip/I. Suppose now that there

is a gap in this circuit, in the electric analogue this

would correspond to cutting the ring, inserting a disc of a

bad conductor in the opening, this would evidently greatly

reduce the current
;

if c? is the width of the slit, Cj the

specific conductivity of the material with which it is filled,

then the resistance of the ring is - + ^ 2 ,
the current

through the ring is equal to

Ewafo

l + d(--

the average intensity of current is equal to

EC

The magnetic induction in the slit iron ring will therefore

since the magnetic permeability of air is unity, be

a
d (/*-!)
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Any problem in the distribution of currents has a

magnetic analogue. Thus take the problem of the

Wheatstone Bridge (Art. 191), in the magnetic analogue
we have six iron bars AB, BC, CA, AD, BD, CD (Fig. 89)
with a magnetizing circuit round AB; if ll} 12) 1B ,

14 are

the lengths, a1} a2 ,
a3) a4 the areas of the cross sections,

and
yitj, /A2 , yu3 , yit4

the magnetic permeability of AC, CB,

AD, BD respectively, we see from the theory of the

Wheatstone Bridge that there will be no lines of magnetic
induction down CD if

a result which may be applied to the comparison of the

magnetic permeabilities of various samples of iron.

The student will find the use of this analogy between

magnetic and current problems of great assistance in

dealing with the former, and he will find it profitable to

take a number of simple cases of distribution of current

and find their magnetic analogues,.._.

211. Ampere s Formula. We saw, Art. 137, that

the magnetic force exerted by a magnetic shell of uniform

strength c/&amp;gt;,

is that which would be produced if each unit

of length at a point P on the boundary of the shell exerted

a magnetic force at Q equal to
&amp;lt;/&amp;gt;

sin 0/PQ*, where 6 is the

angle between PQ and the tangent at P to the boundary
of the shell : the direction of the magnetic force at Q is

at right angles to both PQ and the tangent to the boundary
at P. Since the magnetic force due to the shell is by
Ampere s rule the same as that due to a current flowing
round the boundary of the shell, the intensity of the

current being equal to the strength of the shell, it follows

232
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that the magnetic force due to a linear current may be

calculated by supposing an element of current of length ds

at P to exert at Q a magnetic force equal to ids sin 0/PQ
2
,

where i is the strength of the current, and 6 the angle
between PQ and the direction of the current at P : the

direction of the magnetic force being at right angles both

to PQ and to the direction of the current at P.

The direction of the magnetic force is related to the

direction of the current, like rotation to translation in

a right-handed screw working in a fixed nut.

212. Magnetic force due to a circular current.

The preceding rule will enable us to find the magnetic
force along the axis of a circular current.

Let the plane of the current be at right angles to the

plane of the paper. Let the current intersect this plane

Fig. 102.

in the points A, B, Fig. 102, flowing upwards at A and

downwards at B. Let be the centre of the circle round

which the current is flowing, P a point on the axis of

the circle. The force at P will by symmetry be along OP.

If i is the intensity of the current, then the force at P
due to an element ds of the current at A will be at right

angles to the current at A, i.e. it will be in the plane

of the paper, it will also be at right angles to AP: the
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magnitude of this force is ids/AP
2

,
hence the component

along OP is equal to

., OA

By symmetry each unit length of the current will furnish

the same contribution to the magnetic force along the

axis at P: hence the magnetic force due to the circuit

is equal to
D A 2

27H

Thus the force varies inversely as the cube of the

distance from the circumference of the circle. At the

Fig. 103.

centre of the circle AP= OA, hence the magnetic force

at the centre is equal to

2-Tn

OA
and thus, if the current remains of the same intensity,

varies inversely as the radius of the circle.
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The lines of magnetic force round a circular current
are shown in Fig. 103. The plane of the current is at

right angles to the plane of the paper and the current

passes through the points A and B.

213. A case of some practical importance is that of

two equal circular circuits conveying equal currents and

placed with their axes coincident. Let A, B; C, D be
the points in which the currents, which are supposed to

flow in planes at right angles to the plane of the paper,
cut this plane, the currents flowing upwards at A and (7,

downwards at B and D : let P be a point on the common
axis of the two circuits. The magnetic force at P is,

if i is the intensity of the current through either circuit,

equal to

AP*

where a is the radius of the circuits. If 2d is the
distance between the planes of the circuits, and x = OP,
where is the point on the axis midway between the

planes of the currents, the magnetic force at P is

(a? + (d + x)*)* (a

1-&amp;lt;V-

+ terms in x* and higher powers of x\ .

Thus if a = 2d, that is if the distance between the

currents is equal to the radius of either circuit, the

lowest power of x in the expression for the magnetic
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force will be the fourth. Thus near where x is small

the magnetic force will be exceedingly uniform.

This disposition of the coils is adopted in Helmholtz s

Galvanometer.

214. Mechanical Force acting on an electric

current placed in a magnetic field.

The mechanical forces exerted by currents on a mag
netic system are equal and opposite to the forces exerted

by the magnetic system on the currents. Since the forces

exerted by the currents on the magnets are the same as

those exerted by Ampere s system of magnetic shells, it

follows that the mechanical forces on the currents must

be the same as those on the magnetic shells; hence the

determination of the mechanical forces on a system of

currents can be effected by the principles investigated

in Art. 136. Introducing the intensity of the current

instead of strength of the magnetic shell we see from

that article that the force in any direction acting on

a circuit conveying a current i is equal to i times the

rate of increase of the number of unit tubes of magnetic

induction passing through the circuit, when the circuit is

displaced in the direction of the force. In many cases the

deduction from this principle given on page 219 is useful,

as it shows that the forces on the current are equivalent

to a system of forces acting on each element of the circuit.

If i is the strength of the current, ds the length of an

element at P, B the magnetic induction at P, the

angle between ds and B, then the force on the element

is equal in magnitude to idsB sin 0, and its direction is

at right angles both to ds and B. The relation between

the direction of the mechanical force and the directions

of the current and the magnetic induction is shown in
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the accompanying figure, where the magnetic induction is

supposed drawn upwards from the plane of the paper.

mechanical force

Fig. 104.

215. Couple acting on a plane circuit placed
in a uniform magnetic field. Let A be the area of

the circuit, i the intensity of the current, &amp;lt; the angle
between the normal to the plane of the circuit and the

direction of the magnetic induction. The number of unit

tubes of magnetic induction due to the uniform field

passing through the circuit is iAB cos
&amp;lt;,

where B is the

strength of the magnetic induction in the uniform field,

and this does not change as the circuit is moved parallel

to itself; there are therefore no translatory forces acting
on the system. The number of tubes passing through
the circuit changes however as the circuit is rotated, and

there will therefore be a couple acting on the circuit
;

the moment of the couple tending to increase $ is by
the last article equal to the rate of increase with

&amp;lt;/&amp;gt;

of

the number of unit tubes passing through the circuit,

that is to

-j-r
(lAB COS

&amp;lt;)

= iAB sin (&amp;gt;.
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The couple vanishes with
(/&amp;gt;,

and hence the circuit tends

to place itself with its normal along the direction of the

magnetic induction, and in such a way that the direction

of the magnetic induction through the circuit and the

direction in which the current flows round it are related

like translation and rotation in a right-handed screw

working in a fixed nut.

216. Force between two infinitely long straight

parallel currents. Let the currents be at right angles

to the plane of the paper, intersecting this plane in A
and B, let the intensity of the currents be i, i respec

tively, and let the currents come from below upwards

through the paper. Then, by Art. 204, the magnetic
force at B due to the current through A is equal to

2i

AB&amp;gt;

and is at right angles to AB\ hence, by Art. 214, the

mechanical force per unit length on the current at B
is equal to

and since it acts at right angles both to the current and

to the magnetic force, it acts along AB. By the rule

given in Art. 214, we see that if the currents are in the

same direction the force between them is an attraction,

if the currents are in opposite directions the force between

them is a repulsion. Hence, we see that straight parallel

currents attract or repel each other, according as they are

flowing in the same or opposite directions, with a force

which varies inversely as the distance between them.
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217. Mechanical force between two circuits,

each circuit consisting of a pair of infinitely long

parallel straight conductors. Let the currents be

all perpendicular to the plane of the paper and let the

currents of the first and second pairs intersect the plane
of the paper in A, B and C, D respectively: we shall

consider the case when the circuits are placed symmetri

cally and so that the line EF bisects both AB and CD
at right angles. Let the current i flow upwards through

Fig. 105.

the paper at A, downwards at B, the current i
f

upwards

through the paper at C, downwards at D. The force

between the circuits will by symmetry be parallel to EF.

Between the currents at A and C there is an attraction

along CA equal per unit length to

2n
AC

the component of this parallel to EF is

Btf

AC EF.

Between the currents B and C there is a repulsion along

BC equal per unit length to

BC
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the component of this parallel to EF is

:- -$&amp;gt;

Hence on each unit length of G there is a force parallel

to FE, and equal to

there is an equal force acting in this direction on each

unit length of D
;
hence the total force per unit length on

the circuit CD is an attraction parallel to EF equal to

If EF = x, AE = a, CF= b, this is equal to

1 1,..,

this vanishes when as = and when x is infinite. Hence

there must be some intermediate value of x when the

attraction is a maximum. This value of x is easily found

to be given by the equation

X* = J {2 Va
4 + 64 -a2 6 2 -

(a
2 + 62

)}
:

when a b is very small this gives

x a b,

when b/a is very small

a
% = =. .

V3

218. Force between two coaxial circular cir

cuits.

The solution of the general case requires the use of

more analysis than is permissible in this work : there
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are however two important cases which can be solved by

elementary considerations. The first of these is when the

radii of the circuits are nearly equal, and the circuits are

so close together that the distance between their planes
is a very small fraction of the radius of either circuit.

In this case the force per unit length of each circuit is

approximately the same as that between two infinitely

long straight parallel circuits, the distance between the

straight circuits being equal to the shortest distance

between the circular ones. Thus if i, i are the currents

through the circular circuits, whose radii are respectively

a and 6, and x is the distance between the planes of

the circuits, the attraction between the parallel circuits

is at right angles to the planes of the circuits and is

approximately equal to

(a
-

This is a maximum when x a b
;
that is, when the

distance between the planes of the circuits is equal to

the difference of their radii.

Another case which is easily solved is that of two

coaxial circular circuits, the radius of one being small com

pared with that of the other, Let i be the intensity of the

current flowing round the large circuit whose radius is a,

i the current round the small circuit whose radius is b
;

let x be the distance between the planes of the circuits.

Then since b is very small compared with a, the magnetic
force due to the large circuit will be approximately uniform

over the second circuit and equal to 27rm2

/(a
2 + #2

)^, its

value at the centre of that circuit. Thus the number of
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unit tubes of magnetic induction due to the first circuit

which pass through the second circuit is equal to

Hence by Art. 214 the force on the second circuit

in the direction in which x increases, i.e. the repulsion

between the circuits, is equal to

Thus the attraction between the circuits is equal to

This is a maximum when x a/2, so that the attraction

between the circuits is greatest when the distance between

their planes is half the radius of the larger circuit.

In the more general case when the radii have any

values, there is, unless the radii are equal, a position in

which the attraction is a maximum. When we use the

attraction between currents as a means of measuring
their intensities, the currents ought to be placed in this

position, for not only is the force to be measured greatest

in this case, but it is also practically independent of any

slight error in the proper adjustment of the distance

between the coils.

219. Coefficient of Self and Mutual Induction.

The coefficient of self-induction of a circuit is defined

to be the number of unit tubes of magnetic induction

which pass through the circuit when it is traversed by
unit current, there being no other current or permanent

magnet in its neighbourhood.
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The coefficient of mutual induction of two circuits

A and B is defined to be the number of unit tubes of

magnetic induction which pass through B when unit

current flows round A, there being no current except
that through A, or permanent magnet in the neigh
bourhood of the circuits.

We see from Art. 138 that the coefficient of mutual
induction is also equal to the number of unit tubes of

induction which pass through A when unit current flows

round B.

If the circuit consist of several turns of wire, then in

the preceding definitions we must take as the number of

tubes of magnetic induction which pass through the circuit,

the sum of the number of tubes of magnetic induction

which pass through the different turns of the circuit.

We see from the preceding definitions that if we
have two circuits A and B, and if the currents i

t j flow

respectively through these circuits, then the numbers of

tubes of magnetic induction which pass through the

circuits A and B are respectively,

Li + Mjy
and Mi 4- Njt

where L and N are the coefficients of self-induction of

the circuits A and B respectively, and M is the coefficient

of mutual induction between the circuits. The results

given in the preceding articles enable us to calculate the

coefficient of self-induction in some simple cases.

In the case of the long straight solenoid discussed in

Art. 210, when unit current flows through the wire the

magnetic force in the solenoid is kirn, where n is the

number of turns per unit length ;
hence if A is the area

of the core of the solenoid, and if the core is filled with
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air, the number of unit tubes of magnetic induction

passing through each turn of wire is equal to ^irnA, and

since there are n turns per unit length, the coefficient of

self-induction of a length I of the solenoid is equal to

If the core were filled with soft iron of permeability //,,

then the number of unit tubes of magnetic induction

which pass through each turn of wire is 4*7rn/j,A, and the

coefficient of self-induction of a length I is ^irrPlpA.

If the iron instead of completely filling the core only

partially fills it, then if B is the area of the core occupied

by the iron, the coefficient of self-induction of a length

I is 4&amp;gt;7rri*l
{&amp;gt;5

+ A -
B}.

Consider now the coefficient of mutual induction of

two solenoids a and (B with parallel axes. The coefficient

of mutual induction will vanish unless one of the solenoids

is inside the other, for the magnetic force due to a current

through a solenoid vanishes outside the solenoid. Hence

when a current flows through a no lines of induction will

pass through ft unless ft is either inside a or completely
surrounds it.

Let ft be inside a. Let B be the area of the solenoid ft,

and let m be the number of turns of wire per unit length.
Then if unit current flows through a, the magnetic force

inside is 4nrn, where n is the number of turns per unit

length. Hence if there is no iron inside the solenoids, the

number of tubes of magnetic induction passing through
each turn of ft is &7rnB, and since there are m turns

per unit length, the coefficient of mutual induction of

a length I of the two solenoids is 4vrnmlB.

We see, by Art. 218, that the coefficient of mutual
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induction between a large circle of radius a and a small

one of radius 6, with their planes parallel and the line

joining their centres at right angles to their planes, is

equal to

where x is the distance between the planes.

If we have two circuits a, /3, each consisting of two

infinitely long, parallel straight conductors, the current

flowing up one of these and down the other, then by
Art. 208, the coefficient of mutual induction between a

and ft is, per unit length, equal to

AC. ED

where A, B, G, D are respectively the points where the

wires of the circuits a and /3 intersect a plane at right

angles to their common direction. The current through
the conductor intersecting this plane in A is in the same

direction as that through the conductor passing through G.

220. We can express the energy in the magnetic

field due to a system of currents very easily in terms of

the currents and the coefficients of self and mutual in

duction of the circuits. We proved, Art. 163, that the

energy per unit length in a unit tube of induction at P is

equal to R/STT, where R is the magnetic force at P. The

tube of induction is a closed curve, and the total amount

of energy in this tube is equal to

where ds is an element of length of the tube and

denotes the sum of all the products Rds for the tube.
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But ^Rds is the work done on unit pole when it is taken

round the closed curve formed by the tube of induction,

and this by Art. 203 is equal to 4?r times the sum of the

currents encircled by the curve. Hence the energy in

a tube of induction is equal to

J (the sum of the currents encircled by the tube).

Hence the whole energy in the magnetic field is equal to

half the sum of the products obtained by multiplying the

current in each circuit by the number of tubes of mag
netic induction passing through that circuit.

Thus if we have two circuits A and B, and if i, j are the

currents through A and B respectively, L,N the coefficients

of self-induction of A and B, M the coefficient of mutual

induction between these circuits, then the numbers of

tubes of magnetic induction passing through A and B

respectively are

Li + Mj,

and Mi + Nj.

Hence the energy in the magnetic field around this

circuit is

If we have only one circuit carrying a current i, then if

L is its coefficient of self-induction, the energy in the

magnetic field is

\Li\

Thus the coefficient of self-induction is equal to twice the

energy in the magnetic field due to unit current.

We may use this as the definition of coefficient of self-

induction, and this definition has a wider application than

T. E. 24
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the previous one. The definition in Art. 219 is only

applicable when the currents flow through very fine wires,

the present one however is applicable when the current is

distributed over a conductor with a finite cross section.

Thus let us consider the case where we have a current

flowing through an infinitely long cylinder whose radius

is A, the direction of flow being parallel to the axis of

the cylinder, and where the return current flows down

a thin tube, whose radius is OB, coaxial with this cylinder.

Fig. 106.

Let i be the current which flows up through the

cylinder and down through the tube, let us suppose that

the current through the cylinder is uniformly distributed

over its cross section. The magnetic force will vanish

outside the tube, for since as much current flows up

through the cylinder as down through the tube, the total

current flowing through any curve enclosing them both

vanishes, and therefore the work done in taking unit pole

round a circle with centre and radius greater than

that of the tube will vanish. Since the magnetic force

due to the currents must by symmetry be tangential to

this circle and have the same value at each point on its
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circumference, it follows that the magnetic force vanishes

outside the tube. We can prove as in Art. 204 that at

a point P between the cylinder and the tube the magnetic
force is equal to

where r = OP.

At a point P inside the cylinder the magnetic force is

where a = OA, the radius of the cylinder.

By Art. 163 the energy per unit volume is equal to

/ULH^/STT, where H is the magnetic force
; hence if /x is the

magnetic permeability of the cylinder, the magnetic energy
between two planes at right angles to the axis of the

cylinder and at unit distance apart is equal to

4^2 ros 27rrdr
4i&amp;gt; f

o~~ 5
--

f~ ~5~
8?r j OA r* 8?r J o

Hence, since the coefficient of self-induction per unit

length is twice the energy when the current is unity, it

is equal to

In this case the coefficient of self-induction will be very
much greater when the cylinder is made of iron than when
it is made of a non-magnetic metal like copper. For take

the case when OB = e.OA, where e = 2718, the base of the

Napierian logarithms ;
then the self-induction for copper,

for which p is equal to unity, is equal to 2*5 per unit

242
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length, but if the cylinder is made of a sample of iron

whose magnetic permeability is 1000, the coefficient of

self-induction per unit length is 502. Thus in this case

the material of the conductor through which the current

flows produces an enormous effect, much greater than it

does in the case of the solenoids.

The self-induction depends upon the way in which the

current is distributed in the cylinder ;
thus if the current

instead of spreading uniformly across the section of the

cylinder were concentrated on the surface, the magnetic

force inside the cylinder would vanish, while that in the

space between the tube and the cylinder would be the

same as before, hence the energy would now be

* ZTrrdr OB
OA i VA.

so that the coefficient of self-induction would now be

2 log (OB/OA), thus it would be less than before and in

dependent of the material of which the cylinder is made.

221. Rational Current Element. In Ampere s

expression for the magnetic force due to a current, the

current is supposed to be divided up into elements, an ele

ment ds giving rise to a magnetic force equal to ids sin 0/r
2
.

Each of those elements when regarded as a separate

unit corresponds to an unclosed electric current, whereas

on the Modern Theory of Electricity such currents do not

exist. Thus the mathematical unit does not correspond

to a physical reality. To obviate this inconvenience

Mr Heaviside has proposed another interpretation of the

element of current ;
he points out that the magnetic force

ids sin 0/r
2

is that due to a system of closed currents

distributed through space like the lines of magnetic
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induction due to a small magnet, PQ, PQ being the ele

ment of current ds, and i representing the number of lines

of magnetic induction running through PQ, i.e. passing

through each cross section of the magnet ;
the current at

any point in the field round the element of current is repre

sented in magnitude and direction by the magnetic induc

tion at that point due to the little magnet. The reader

will have no difficulty in proving this result, if he applies

the principle that the work done in taking the unit mag
netic pole round any closed circuit is equal to 4?r times the

current passing through the circuit. The element, PQ,
with its associated system of currents, Mr Heaviside calls

the rational current element, it has the advantage of corre

sponding to a possible physical system. It is important

to notice that this view of the element of current gives

us for closed circuits the same result as the old one, i.e.

the closed current is entirely confined to the closed

circuit and does not spread out at all into the surrounding

space ;
for let PQ, RS be two elements, then if we place

these together so that the end Q of one coincides with the

beginning, R, of the other, then the analogy with the lines

of magnetic induction shows that the currents which

when PQ was alone in the field diverged from Q now run

through QS and diverge from S, hence if we put a number

of such elements together so as to form a closed circuit

the current will never leave the circuit.

We shall see that the magnetic force produced at P
when a charged particle moves with a velocity v, is

ev sin 0/OP
2
,
where e is the charge on the particle and

the angle between v and OP
;
the direction of the force

is at right angles to the plane containing v and OP. Thus

another interpretation of the element ds of a circuit is,
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that it is a place where n charged particles are moving in

the direction of the element with the velocity v
; n,e,v and

i being connected by the relation nev ids.

MEASUREMENT OF CURRENT AND RESISTANCE.

Galvanometers.

222. The magnetic force produced by a current may
be used to measure the intensity of the current. This is

most frequently done by means of the tangent galvano

meter, which consists of a circular coil of wire placed with

its plane in the magnetic meridian. If the magnetic field

is not wholly due to the earth, the plane of the coil must

contain the resultant magnetic force. At the centre of

the coil there is a magnet which can turn freely about

a vertical axis. When the magnet is in equilibrium its

axis will lie along the horizontal component of the mag
netic force at the centre of the coil, thus when no current

is flowing through the coil the axis of the magnet will be

in the plane of the coil. A current flowing through the

coil will produce a magnetic force at right angles to the

plane of the coil, proportional to the intensity of the

current. Let this magnetic force be equal to Qi where

i is the intensity of the current flowing through the coil

and a quantity depending upon the dimensions of the

coil. G is called the Galvanometer constant. Let H
be the horizontal component of the magnetic force at the

centre of the coil. Then the resultant magnetic force at

the centre of the coil has a component H in the plane of

the coil and a component Qi at right angles to it, hence
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if is the angle which the resultant magnetic force makes

with the plane of the coil,

tan = ^f
12

.(l).

When the magnet is in equilibrium its axis will lie along

the direction of the resultant magnetic force, hence the

passage of the current will deflect the magnet through
an angle 6 given by equation (1). As the current is pro

portional to the tangent of the angle of deflection, this

instrument is called the tangent Galvanometer.

The smaller we can make H, the external magnetic
force at the centre of the coil, the larger will be the angle

through which a given current will deflect the magnet.

By placing permanent magnets in suitable positions in the

neighbourhood of the coil we can partly neutralize the

earth s magnetic field at the centre of the coil : in this way
we can reduce H and increase the sensitiveness of the

galvanometer. A magnet for this purpose is shown in

Fig. 107, which represents an ordinary type of galvano

meter.

Fig. 107.
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Another method of increasing the sensitiveness of the

instrument is employed in the astatic galvanometer.
In this galvanometer (Fig. 108) we have two coils A and B
in series, so arranged that the current circulates round

Fig. 108.

them in opposite directions. Thus, if the magnetic force

at the centre of the upper coil is upwards from the plane
of the paper, that at the centre of the lower coil will be

downwards. Two magnets a, /?, mounted on a common

axis, are placed at the centres of the coils A and B re

spectively, the axes of magnetization of these magnets

point in opposite directions
;
thus as the magnetic forces

at the centres of the two coils due to the currents are also

in opposite directions, the couples due to the currents

acting on the two magnets will be in the same direction.

The couples arising from the external magnetic field

will however be in opposite directions: if the external

magnetic field is uniform and the moments of the two

magnets very nearly equal, the couple tending to restore

the magnet to its position of equilibrium will be very

small, and the galvanometer will be very sensitive.
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The larger we make G the greater will be the sensi

tiveness of the galvanometer. If the galvanometer consists

of a single circle of radius a, then (see Art. 212) G =
2?r/a.

If there are n turns close together and arranged so that

the distance between any two turns is a very small fraction

of the radius of the turns, then G is approximately 2irn/a.

If the galvanometer consists of a circular coil of rectangular

cross section, the sides of the rectangle being in and at

right angles to the plane of the coil, and if 26 is the breadth

of this rectangle (measured at right angles to the plane of

the coil), 2a the depth in the plane of the coil, n the

number of turns of wire passing through unit area, then

taking as axis of x the line through the centre of the coil

at right angles to its plane, and as axis of y a line through

the centre at right angles to this, we have

G = 27m
6 rc+a

tfdxdy
b rc+ a

_6 } c- a

where c is the mean radius of the coil.

If 26,
2&amp;lt;/&amp;gt;

are the angles subtended at the centre by

AB, CD, Fig. 109, this reduces to

cot-

G = 4f7rnb log .

rn-^4- r

*!

In sensitive galvanometers the hole in the centre for

the magnet is made as small as possible, so that the inner

windings have very small radii
;
when this is the case, we

may put (j&amp;gt;

=
^

,
and then

n

G = ^Trnb log cot ^ .
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In this case when the area of the cross section of the

coil is given, i.e. when 262 cot 6 is given, we can prove that

G is a maximum when
f\

log cot - = 2 cos 6,
Zi

the solution of this equation is = 16 46 : this makes the

breadth bear to the depth the ratio of 1 to 1*61.

H G

Fig. 109.

The sensitiveness of modern galvanometers is very

great, some of them will detect a current of 10~13

amperes.

It would take a current of this magnitude centuries to

liberate 1 c.c. of hydrogen by electrolysis.

Since
TT

i = 77 tan 0,
Or

while = sin cos 6.

Thus for a given absolute increment of i, B0 will be

greatest when 6 is zero, and for a given relative increment,
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SO, or the change in deflection, will be greatest when

(9-45.

In some cases it is important to have the magnetic

field near the magnet as uniform as possible. This can be

attained (see Art. 213) by using two equal coils placed

parallel to one another and at right angles to the line join

ing their centres, the distance between the coils being

equal to the radius of either. The magnet is then placed

on the common axis of the two coils and midway between

them.

223. Sine Galvanometer. In this galvanometer,

Fig. 110, the coil itself can move about a vertical axis, its

Fig. 110.

position being determined by means of a graduated hori

zontal circle. In using the instrument the coil is placed so

that when no current goes through it the magnetic axis

of the magnet at its centre is in the plain of the coil.

When a current passes through the coil, the magnet is

deflected out of this plane, and the coil is now moved
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round until the axis of the magnet is again in the plane
of the coil. When this is the case the components of

the magnetic force at right angles to the plane of the

coil due respectively to the current and to the external

magnetic field must be equal and opposite. If H is

the external magnetic force,
&amp;lt;j&amp;gt;

the angle through which

the coil has been twisted when the axis of the magnet
is again in the plane of the coil, the external force at right

angles to the plane of the coil is H sin &amp;lt;. If i is the

current through the coil, G the magnetic force at its

centre when the wires of the coil are traversed by unit

current, then the magnetic force at right angles to the

coil due to the current is Gi
;
hence when this is in equi

librium with the component due to the external field,

H sin
(j&amp;gt;

= Gi,

. H .

or i = -~- sm
(/&amp;gt;.

The advantage of this form of galvanometer is that the

magnet is always in the same position with respect to the

coil. For the same coils and magnetic field the deflection

is greater for the sine than for the tangent galvano
meter.

224. Desprez-d Arsonval Galvanometer. In this

galvanometer the coil carrying the current moves while

the magnets are fixed. The galvanometer is represented
in Fig. 111. A rectangular coil is suspended by very fine

metal wires which also serve to convey the current to the

coil. The coil moves between the poles of a horse-shoe

magnet, and the magnetic field is concentrated on the coil

by a fixed soft iron cylinder placed inside the coil. When
a current flows round the coil, the coil tends to place itself
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so as to include as many tubes of magnetic induction

as possible (Art. 215). It therefore tends to place itself so

that its plane is at right angles to the lines of magnetic
induction. The motion of the coil is resisted by the

torsion of the wire which suspends it, and the coil takes a

position in which the couple due to the torsion of the wire

just balances that due to the magnetic field. When the

magnetic field is uniform the relation between the de-

Fig, ill.

flection and the current is as follows. Let A be the area

of the coil, n the number of turns of wire, i the current

through the wire, B the magnetic induction at the coil.

When the plane of the coil makes an angle $ with the

direction of magnetic induction the number of tubes of

magnetic induction passing through it is

BAnsm&amp;lt;f&amp;gt;,

hence, by Art. 215, the couple tending to twist the coil is

iBAncoscf).

If the torsional couple vanishes when &amp;lt; is zero, the

couple when the coil is twisted through an angle &amp;lt;
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will be proportional to
&amp;lt;;

let it equal T&amp;lt;/&amp;gt;,

then when
there is equilibrium, we have

iBAn cos
&amp;lt;f&amp;gt;

=
r^&amp;gt;,

or j =
J2JL71 cos

(j&amp;gt;

if &amp;lt; is small this equation becomes approximately

~BAn

225. Ballistic Galvanometer. A galvanometer may
be used to measure the total quantity of electricity passing

through its coil, provided the electricity passes so quickly
that the magnet of the galvanometer has not time to

appreciably change its position while the electricity is

passing. Let us suppose that when no current is passing
the axis of the magnet is in the plane of the coil, then

if i is the current passing through the plane of the coil,

G the galvanometer constant, i.e. the magnetic force at the

centre of the coil when unit current passes through it,

m the moment of the magnet, the couple on the magnet
while the current is passing is

Qim.

If the current passes so quickly that the magnet has

not time sensibly to depart from the magnetic meridian

while the current is flowing, the earth s magnetic force

will exert no couple on the magnet. Thus if K is the

moment of inertia of the magnet, 9 the angle the axis

of the magnet makes with the magnetic meridian, the

equation of motion of the magnet during the flow of

the current is
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thus if the magnet starts from rest the angular velocity

after a time t is given by the equation

7 &amp;gt;,.,, icfa.

ac

If the total quantity of electricity which passes through

the galvanometer is Q and the angular velocity com

municated to the magnet w, we have therefore

Kco GmQ.

This angular velocity makes the magnet swing out of

the plane of the coil : if H is the external magnetic force

at the centre of the coil, the equation of motion of the

magnet is, if there is no retarding force,

at*

Integrating this equation we get

1 -cos &amp;lt;9

= 0.

If S- is the angular swing of the magnet, the angular

velocity vanishes when 8 ^, hence

= 2mH (1
- cos ^) = 4&amp;lt;mH sin2 -

.

On substituting for co the value previously found we get

Q = 2 sin |S- 7^-
VmH.R.

If T is the time of a small oscillation of the magnet,

hence

TH
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We have neglected any retarding force such as would

arise from the resistance of the air. Galvanometers which

are used for the purpose of measuring quantities of

electricity are called ballistic galvanometers, and are

constructed so as to make the effects of the frictional forces

as small as possible. This is done eifcher by making the

moment of inertia of the magnet very large, or by making
the magnet so symmetrical about its axis of rotation that

the frictional forces are but small. The correction to be

applied when the frictional forces are not negligible is

investigated in Maxwell s Electricity and Magnetism,
Vol. II. p. 386.

226. Measurement of Resistance. The arrange
ment of conductors in the Wheatstone s Bridge (Art. 191)

Fig. 112.

enables us to determine the resistance of one arm of the

bridge, say BD, Fig. 89, in terms of the resistances of the

arms A C, GB and AD. For the measurement ofresistances

by this method wires having a known resistance are used.

These are called resistance coils, and are made in the

following way. A piece of silk-covered German-silver

wire is taken and doubled back on itself (to avoid effects

due to electromagnetic induction, see Chap. XL) and then

wound in a coil. Its length is then carefully adjusted
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until its resistance is some multiple of the standard

resistance, the ohm. Each end of this coil is soldered to

a stout piece of brass such as A
y B, or C, Fig. 112

;
these

pieces are attached to an ebonite board to insulate them

from each other. Two adjacent pieces of brass can be

put in electrical connection by inserting stout well-fitting

brass plugs between them. When the plug is out the

resistance between B and G is that of the wire, while

when the plug is in there is practically no resistance

between these places.

Fig. 113.

When there is no current through the arm CD of the

Wheatstone s Bridge there is, by Art. 191, a certain

relation between four resistances : hence to measure a

resistance by this method we require three known re

sistances. These resistances are conveniently arranged
in what is known as the Post-Office Resistance Box.

This is a box of coils arranged as in Fig. 113, and pro
vided with screws at A, B, C, D, to which wires can be

attached. To determine the resistance of a conductor

such as R connect one end to B and the other end to D
;

connect one terminal of a galvanometer to C and the other

to D, and one electrode of a battery to A, the other to B.

The arrangement of the conductors is the same as that in

the diagram in Art. 191, which is reproduced here by the

T. E. 25
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side for convenience. To measure the resistance of R:

take one or more plugs out of CA and CB and then pro
ceed to take plugs out of AD until there is no deflection

of the galvanometer, when the battery circuit is completed.
As the current through CD vanishes, we must have by
Art. 191

resistance of BD x resistance of A G
= resistance of BG x resistance of AD.

As the resistances of AC, BC, AD are known, that of BD
is determined by this equation.

227. Resistance of a Galvanometer. A method

due to Lord Kelvin for measuring the resistance of a

galvanometer is an interesting example of the property

of conjugate conductors. We saw (Art. 192) that if CD
is conjugate to AB, then the current sent through any
arm of the bridge by a battery in AB is independent of

the resistance in CD, and the converse is also true. To

apply this to measure the resistance of a galvanometer,

place the galvanometer in the arm BD of the bridge and

replace the galvanometer in CD by a key by means of

which the circuit CD can be completed or broken at

pleasure. Then adjust the resistance of AD until the

deflection of the galvanometer is the same when the

circuit CD is completed as when it is broken. As in

this case the current through BD is independent of the

resistance of CD, CD must be conjugate to AB, and we

have therefore (Art. 191),

resistance of galvanometer x resistance of AC
= resistance of BC x resistance of A D.



CHAPTEE XI

ELECTROMAGNETIC INDUCTION

228. Electromagnetic Induction, of which the laws

were unravelled by Faraday, may be illustrated by the

following experiment. Two circuits A and B, Fig. 114, are

placed near together, but completely insulated from each

Fig. 114.

other; a galvanometer is in the circuit B, and a battery and

key in A. Suppose the circuit A at the beginning of the

experiment to be interrupted, press down the key and
close the circuit, the galvanometer in B will be deflected,

indicating the passage of a current through B, although B
is completely insulated from the battery. The deflection

of the galvanometer is not a permanent one, but is of the

same kind as that of a ballistic galvanometer when a finite

252
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quantity of electricity is quickly discharged through it,

that is, the magnet of the galvanometer is set swinging, but

is not permanently deflected, as it oscillates symmetrically
about its old position of equilibrium. This indicates that an

electromotive force, acting for a very short time, has acted

round B. The direction of the deflection of the magnet
of the galvanometer in B indicates that the direction of

the momentary current induced in B was opposite to that

started in A. After a time the motion of the magnet
subsides and the magnet remains at rest, although the

current continues to flow through A. If, after the magnet
has come to rest, we raise the key in A, so as to stop the

current flowing through the circuit, the galvanometer in

B is again affected, the direction of the first swing in this

case being opposite to that which occurred when the

current in A was started, indicating that when the current

in A is stopped, an electromotive force is produced round

B tending to start a current through B in the same

direction as that which previously existed in A. This

electromotive force, like the one produced when the circuit

A was completed, is but momentary.
These experiments show that the starting or the

stopping of a current in a circuit A is accompanied by
the production of another current in a neighbouring circuit

5, the current in B being in the opposite direction to that

in A when the current is started and in the same direction

when the current is stopped.

If instead of making or breaking the current in A, this

current is kept steadily flowing in the circuit, while the

circuit itself is moved about, then when A is moving away
from B an electromotive force is produced tending to send

round B a current in the same direction as that round A,
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while if A is moved towards B an electromotive force acts

round B tending to produce a current in the opposite

direction to that round A. These electromotive forces in

B only occur when A is moving, they stop as soon as it is

brought to rest. If we replace the circuit A, with the

current flowing through it, by its equivalent magnet, then

we shall find that the motion of the magnet will induce

the same currents in B as the motion of the circuit A. If

we keep the circuit A, or the magnet, fixed and move B,

we also get currents produced in B.

The currents started in B by the alteration in intensity

or position of the current in A, or by the alteration of the

position of B with respect to magnets in its neighbour

hood, are called induced currents
;
and the phenomenon is

called electromagnetic induction.

A good deal of light is thrown on these phenomena
if we interpret them in terms of the tubes of magnetic

induction. Let us first take the case when the induction

is produced by starting a current in A. Then before the

current circulates through A no tubes of magnetic induc

tion pass through B ;
when the current is started through

A this circuit is at once threaded by a number of tubes of

magnetic induction, some of which pass through B. The

induced current through B also causes B to be threaded

by tubes of magnetic induction, which since the induced

current is in the opposite direction to the primary one in

A, pass through the circuit in the opposite direction to

those sent through it by the current in A
;
thus the effect

of the induced current in B is to tend to make the total

number of tubes of magnetic induction passing through B
zero; that is, to keep the total number of tubes of magnetic

induction through B the same as it was before the current



390 ELECTROMAGNETIC INDUCTION [CH. XI

was started in A. We shall find, when we investigate the

laws of induction more closely, that the tubes of magnetic
induction passing through B, due to the induced current,

are at the moment of making the primary circuit equal in

number and opposite in direction to those sent through B
by the current in A. The laws of the induction of currents

may thus be expressed by saying that the number of tubes

of magnetic induction passing through B does not change

abruptly.

Again, take the case when currents are induced in

B by stopping the current in A. Initially the current

flowing through A sends a number of tubes of magnetic
induction through B : when the current in A is stopped
these tubes cease, but the current induced in B in the

same direction as that in A causes a number of tubes of

magnetic induction to pass through B in the same direc

tion as those due to the original current in A. Thus the

action of the induced current is again to tend to keep the

number of tubes of magnetic induction passing through B
constant.

The same tendency to keep the number of tubes of

magnetic induction through B constant is shown by the

induction of a current in B when A is moved away from or

towards B. When A is moved away from B, the number
of tubes of magnetic induction due to A which pass

through B is diminished, but there is a current induced in

B in the same direction as that through A, which causes

additional tubes of magnetic induction to pass through B
in the same direction as those due to A : the production
of these tubes counterbalances the diminution due to the

recession of A, and thus the induced current again tends

to keep the number of tubes of magnetic induction passing
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through B constant. The same thing occurs when A is

moved towards B, or when currents are induced in B
by the motion of permanent magnets in its neighbour
hood.

Not only is there a tendency to keep the number of

tubes of magnetic induction passing through any circuit

in the neighbourhood of A constant, there is also the same

tendency with respect to the circuit A itself. Let us

suppose that A is alone in the field, then, when a current

is flowing round A, tubes of magnetic induction pass

through it. If the circuit is broken, and the current

stopped, the number of tubes would fall to zero; the

tendency, however, to preserve unaltered the number of

tubes passing through the circuit, will under suitable cir

cumstances, cause the current, in its effort to continue

flowing in the same direction, to spark across an air-gap

when the circuit is broken, even though the original

E.M.F., applied to send the current through A, was totally

Fig. 115.

inadequate to produce a spark. To show this effect

experimentally it is desirable to wind the coil A round a

core of soft iron, so as, with a given current, to increase the
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number of tubes of magnetic induction passing through
the circuit; the coil of an electro-magnet shows this effect

very well. The effect of this tendency is shown very

clearly in the following experiment. The coil of an electro

magnet E, Fig. 115, is placed in parallel with an electric

lamp L, the resistance of the lamp being very large com

pared with that of an electro-magnet; in consequence of

this, when the two are connected up to a battery, by far

the greater part of the current will flow through the coil,

comparatively little through the lamp, too little indeed to

raise the lamp to incandescence. If however the circuit is

broken at K, the tendency to keep the number of tubes of

magnetic induction passing through the circuit constant,

will send a current momentarily round the circuit HLGE,
which will be larger than that flowing through the lamp
when the battery is kept continuously connected up to

the circuit
;
and thus though the lamp remains quite dark

when the current is steady, it can be raised to bright

incandescence by repeatedly making and breaking the

circuit.

229- The electromotive force round a circuit due

to induction does not depend upon the metal of which

the circuit is made. This may be proved by taking two

equal circuits of different metals, iron and copper, say,

placed close together and arranged so that the electro

motive forces due to induction in the two circuits tend

to oppose each other. When this circuit, connected up
to a galvanometer, is placed in a varying magnetic

field, no current passes, showing that the electromotive

forces in the two circuits are equal and opposite.

Faraday proved that in a magnetic field varying at
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an assigned rate, the electromotive force round a circuit

due to induction is proportional to the number of tubes of

magnetic induction passing through the circuit, by taking
a coil made of several turns of very fine wire, and in

serting in it a galvanometer whose resistance was small

compared with that of the coil : when this coil was placed

in a varying field the deflection of the galvanometer was

found to be independent of the number of turns in the

coil. As all the resistance in the circuit is practically in

the coil, the resistance of the circuit will be proportional to

the number of turns in the coil. Since the quantity of

electricity passing through the circuit is independent of

the number of turns, it follows that the E.M.F. round the

circuit must have been proportional to the resistance, i.e.

to the number of turns of the coil. Hence, since the turns

of the coils were so close together that each enclosed the

same number of tubes of magnetic induction, it follows

that when the rate of change is given the E.M.F. round

the circuit must be proportional to the number of tubes

of magnetic induction passing through it.

Faraday also showed by rotating the same circuit

at different speeds in the same magnetic field that the

E.M.F. round the circuit is proportional to the speed
of rotation, i.e. to the rate of change of the number of

tubes of magnetic induction passing through the circuit.

These investigations of Faraday s determined the

conditions under which induced currents are produced:
F. E. Neumann was however the first to give, in 1845, an

expression by which the magnitude of the electromotive

force could be determined. We may state the law of

induction of currents as follows Whenever the number of
tubes of magnetic induction passing through a circuit is
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changing, there is an E.M.F. acting round the circuit

equal to the rate of diminution in the number of tubes of

magnetic induction which pass through the circuit. The

positive direction of the E.M.F. and the positive direction

in which a tube passes through the circuit are related to

each other like rotation and translation in a right-handed

screw.

We shall show later on (page 472) that this law can

be connected with Ampere s law (Art. 214) by dynamical

principles.

Let us apply this law of induction to the case of a

circuit exposed to a variable magnetic field. Let the

circuit contain a galvanic battery whose electromotive

force is E
,
and let the resistance of the circuit, including

that of the battery, be R. If P is the number of tubes of

magnetic induction passing at any time t through the

circuit, there will be an E.M.F. equal to -dP/dt round

the circuit due to induction; hence by Ohm s law, we

have if i is the current round the circuit,

dP

(1).

Suppose the magnetic field is due to two currents, one

circulating round this circuit and the other through a

second circuit in its neighbourhood; let j be the current

passing round the second circuit. Let L be the coefficient

of self-induction of the first circuit, N that of the second,

M the coefficient of mutual induction between the two

circuits. Then as the magnetic field is due to the two

circuits,
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and equation (1) becomes

If S is the resistance of the second circuit and EQ the

electromotive force of any battery there may be in that

circuit, then we have similarly,

230. Let us compare these equations with the equa
tions of motion of a dynamical system having two degrees

of freedom, one degree being fixed by the coordinate x,

the other by the coordinate y ;
these coordinates may be

regarded as fixing the positions of two moving pieces. Let

the first moving piece be acted upon by the external force

E
,
the second by the force EJ. Let the motions of the

first and second moving pieces be resisted by resistances

proportional to their velocities, and let Rx, Sy be these

resistances respectively. The momenta corresponding to

the two moving pieces will be linear functions of the

velocities. Let the momentum of the first moving piece

be
Lx + My,

that of the second

MX + Ny.

Then, if L, M, N are independent of the coordinates x, y,

the equations of motion of the two systems will be
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Comparing these equations with those for the two currents

we see that they are identical if we make i, j the currents

round the two circuits coincide with x, y the velocities

of the two moving pieces. The electrical equations of a

system of circuits are thus identical with the dynamical

equations of a system of moving bodies, the current flowing
round a circuit corresponds to a velocity, the number of

tubes of magnetic induction passing through the circuit

to the momentum corresponding to that velocity, the

electrical resistance corresponds to a viscous resistance,

and the electromotive force to a mechanical force.

A further analogy is afforded by the comparison of

the Kinetic Energy of the Mechanical System with the

energy in the magnetic field due to the system of

currents. The Kinetic Energy of the Mechanical System
is equal to

The energy in the magnetic field is by Art. 220 equal

to

This expression becomes identical with the preceding

one if we write x for i and y for
;

.

Since the terms in the electrical equations which

express the induction of currents correspond to terms

in the dynamical equations which express the effects of

changes in the momentum, and as these latter effects arise

from the inertia of the system, we are thus led to regard

a system of electrical currents as also possessing inertia.

The inertia of the system will be increased by any circum

stance which, for given values of the currents, increases

the number of tubes of electromagnetic induction passing
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through the circuits
;
the inertia of the system may thus

be increased by the introduction of soft iron in the neigh

bourhood of the circuits.

231. We can illustrate by a mechanical model the

analogies between the behaviour of electrical circuits and

a suitable mechanical system. Models of this kind have

been designed by Maxwell and Lord Rayleigh; a simple

one which serves the same purpose is represented in

Fig. 116.

&quot; 2

Fig. 116.

It consists of three smooth parallel horizontal steel

bars on which masses m,, M, m2 slide, the masses being

separated from the bars by friction wheels: the three

masses are connected together by a light rigid bar, which

passes through holes in swivels fixed on to the upper part
of the masses

;
the bar can slide backwards and forwards

through these holes, so that the only constraint imposed by
the bar is to keep the masses in a straight line.

This system will, if we regard the velocities of mlt m2

respectively along their bars as representing currents

flowing round two circuits, illustrate the induction of

currents. Let us start with the three masses at rest,

then suddenly move m forward along its bar, m2 will then
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move backwards, an effect analogous to the production
of the inverse current in the secondary when the current

is started in the primary. If now m x is moved uniformly
forward the friction between mz and its bar will soon bring
it to rest and it will continue at rest as long as the motion

of mx remains uniform : this is analogous to the absence of

current in the secondary when the current in the primary
is uniform. If now we suddenly stop ml3 ra2 will start

off in the direction in which m 1 was moving before being

brought to rest. This is analogous to the direct current in

the secondary produced by the stoppage of the current

in the primary. These effects are the more marked the

greater the mass M.

It is instructive to find the quantities in the dynamical

system which correspond to the coefficients of self and

mutual induction. Let us suppose that the bar on which

M slides is midway between the other two.

Then if xv is the velocity of m l along its bar, #2 that of

ra2 ,
the velocity ofM will be (a^ + #2)/2, and T the kinetic

energy of the system is given by the equation

The momentum along x^ is dTfdx^ and is therefore

equal to

M\. M .

l + -,ri+ 4-**

The momentum along #2 is dT/dx2 and is therefore

equal to

M_ &
f

+
M\

Thus m^ + if/4, m2 + if/4 correspond to the coefficients of
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self-induction of the two circuits, while
M/4&amp;gt; corresponds

to the coefficient of mutual induction between the circuits.

The effect of increasing the coefficient of mutual induction

between the circuits, such an increase for example as may
be produced by winding the primary and secondary coils

round an iron core, may be illustrated by the effect pro
duced on the model by increasing the mass M relatively

to ml and w2 .

The behaviour of the model will illustrate important
electrical phenomena. Thus suppose the mass m^ is struck

with a given impulse, it will evidently move forward with

greater velocity if m2 is free to move than if it is fixed,

for if m2 is free the large mass M will move very slowly

compared with mi} the connecting bar turning round the

swivel on M almost as if this were fixed: if however m2 is

fixed, then when m l moves forward it has to drag M along
with it, and will therefore move more slowly than in the

preceding case. When m^ is free to move it moves in

the opposite direction to ra^ Now consider the electrical

analogue, the case when m2 is free to move corresponds
to the case when there is in the neighbourhood of the

primary circuit a closed circuit round which a current can

circulate : the case when ra2 is fixed corresponds to the

case when this circuit is broken, when it can produce no

electrical effect as no current can circulate round it. The

greater velocity of rax when m2 was free than when it

was fixed shows that when an electrical impulse acts on

a circuit the current produced is greater when there

is another circuit in the neighbourhood than when the

primary circuit was alone in the field; in other words,

the presence of the secondary diminishes the effective

inertia or self-induction of the primary.
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232. Effect of a Secondary Circuit. As an

example in the use of the equations given in Art. 229 we

shall consider the behaviour of a primary and a secondary
coil when an electric impulse acts upon the primary.

Let us suppose that originally there were no currents in

the circuits. Let L, M, N be respectively the coefficients

of self-induction of the primary, of mutual induction

between the primary and the secondary, and the coefficient

of self-induction of the secondary : R, S the resistances

of the primary and secondary respectively, x and y the

currents through these coils. Then if P is the external

electromotive force acting on the primary, we have by
the equations of Art. 229,

R0 =P (1),

% =
(2).

The primary is acted on by an impulse, that is the force

P only lasts for a short time, let us call this time r.

Then if a?
, y are the values of a?, y due to this impulse

we have by integrating equation (1) from = to t = r

r r
Jo Jo

Since r is indefinitely small and x is finite

ft

\
xdt = 0;

Jo

let {

T

Pf
dt = P,

Jo

then we have Lx + My = P (3).

Similarly by integrating (2) we get

=
(4),
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hence

If the secondary circuit had not been present the
current in the primary due to the same impulse would
have been PjL: thus the effect of the secondary is to

increase the initial current in the primary : it diminishes
its effective self-induction from L to L - M 2

/N. This is

an illustration of the effect described in the last article.

Equation (4) expresses that the number of tubes of mag
netic induction passing through the second circuit is not
altered suddenly by the impulse acting on the first circuit.

When the impulse ceases, the circuits are free from
external forces, and the equations for x and y are

jt (Lx + My) + Rx = Q ............... (5),

Sy = Q...; ........... (6).

Let us now choose as the origin from which time is

measured the instant when the impulse ceases. Integrate
these equations from t = to t = oo

, then since x and y
will vanish when = oo we have

,00

R I xdt = Lx + MyQ

= P by equation (3),

but
J^

xdt is the total quantity of
electricity which passes

across any section of the primary circuit, if we denote
this by Q we have

-$ .--:;

......

.-:,.
hence Q is not affected by the presence of a secondary
circuit. Thus since the current is greater to begin with

T. E.
26
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when the secondary is present than when it is absent, it

must, since Q is the same in the two cases, die away
faster on the whole when the secondary is present.

The presence of the secondary increases the rate at

which the current dies away just after it is started, but

diminishes the rate at which the current ultimately dies

away.

Integrating (6) from t = to t = oo we find

-00

J

= by equation (4) ;

hence the total quantity of electricity passing across any

section of the secondary circuit is zero.

To solve equations (5) and (6) put

x = Ae~Kt
,

eliminating A and B we find

(R-L\)(S-N\) = MW (7);

hence if Xj, X2 are the roots of this quadratic, we have

j 1 * 2

We notice that since
\Lx&amp;gt;

+ Mxy + %Ny*t
the expres

sion for the kinetic energy of the currents, must be positive

for all values of x and y, LN - Mz must be positive, and

therefore \ and X2 are positive quantities. If we deter

mine the values of the A s and .B s from the values of

x and y when t = 0, we find after some reductions

1 PN
-M-
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We see from the quadratic equation (7) that one of its

roots is greater than, the other root less than S/N, thus

\ S/N, X2 S/N are of opposite signs, and therefore

by (8), x the current through the primary never changes

sign; y the current through the secondary begins by

being of the opposite sign to x, it changes sign, and

finally x and y are of the same sign.

A very important special case of the preceding in

vestigation is when the two circuits are close together,

or when the circuits are wound round a core of soft iron

which completely fills their apertures ;
in this case nearly

all the lines of magnetic force which pass through one

circuit pass through the other also
;
this is often expressed

by saying that there is very little magnetic leakage between

the circuits. When this condition is fulfilled L M 2

/N is

very small compared with L. In the limiting case when
this quantity vanishes we see by equation (7) that one of

the values of X, say X2 &amp;gt;

is infinite, while \ is equal to

RS
LS + NR

In this case we find from equations (8) and (9) that,

except at the very beginning of the motion,

PM

The relation between the currents and the time, when

262
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L M 2/N is small, is represented by the curves in

Fig. 117; the dotted curve represents the current in the

primary when the secondary is absent.

Fig. 117.

233. Currents induced in a mass of metal by
an impulse. Let us suppose that the impulse is due

to the sudden alteration of a magnetic system. Let N
be the number of tubes of magnetic induction due to

this system which pass through any circuit
;

to fix our

ideas let us suppose this is the primary circuit in the

case considered in Art. 232. Then using the notation of

that article

__&quot;

dt

by Faraday s law.

Hence P = P P dt = -(NT
- N9),

J o

where NT and N represent respectively the number of

tubes of magnetic induction passing through the circuit
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at the times t = r and t = respectively. We have,

however, by equation (3), Art. 232,

Lx, +% = P,

or Lx, + My, + Nr
= N .

Now the right-hand side is the number of tubes of

magnetic induction which pass through the circuit at the

time t = 0, i.e. the time when the impulse began to act
;

the left-hand side represents the number of tubes of

magnetic induction, some of them now being due to the

currents started in the circuit, which pass through the

circuit at the time t = T when the impulse ceases to

act. The equality of these two expressions shows that

the currents generated by the impulse are such as to

keep the number of tubes of magnetic induction which

pass through the circuit unaltered. The case we have

considered is one where there is only one secondary,
the reasoning is however quite general, and whenever an

impulse acts upon a system of conductors, the currents

started in these conductors are such that their electro

magnetic action causes the number of tubes of magnetic
induction passing through any of the conducting circuits

to be unaltered by the impulse.

Let us apply this result to the case of the currents

induced in a mass of metal by the alteration in an

external magnetic field.

The number of tubes passing through every circuit

that can be drawn in the metal is the same after the

impulse as before. Hence we see that the magnetic field

in the metal is the same after the impulse as before. This

will give an important result as to the distribution of

currents inside the metal. For we have seen (Art. 203)
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that the work done when unit pole is taken round a closed

circuit is equal to 4nr times the current flowing through
that circuit. Now as the magnetic field inside the metal,

and therefore the work done when unit pole passes round

a closed circuit, is unaltered by the impulse, the current

flowing through any such closed curve is also unaltered

by the impulse ; hence, as there were no currents through
it before the impulse acted, there will be none generated

by the impulse. In other words, the currents generated
in a mass of metal by an electric impulse are entirely on

the surface of the metal, and the inside of the conductor

is free from currents.

234. The currents will not remain on the surface,

they will rapidly diffuse through the metal and die away.
We can find the way the currents distribute themselves

after the impulse stops by the use of the two fundamental

principles of electro-dynamics, (1) that the work done

by the magnetic forces when unit pole travels round

a closed circuit is equal to 4-Tr times the quantity of

current flowing through the circuit, (2) that the total

electromotive force round any closed circuit is equal

to the rate of diminution of the number of tubes of

magnetic induction passing through the circuit.

Let u, v, w be the components of the electric current

parallel to the axes of x, y, z at any point ; a, /3, 7 the

components of the magnetic force at the same point. The

axes are chosen so that if x is drawn to the east, y to the

north, z is upwards. Consider a small rectangular circuit

ABCD, the sides AB, BC being parallel to the axes of z

and y respectively. Let AB=2h, BC= 2k. Let a, /3, 7 be

the components of magnetic force at 0, the centre of the
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rectangle ; x,y,z the coordinates of
;
let the coordinates

of P, a point on AB, be x, y + k, z + f ;
the z component

of the magnetic force at P will be approximately

dy ,, dry 1

v + -r-+--,-k.dz dy

Let now a unit magnetic pole be taken round the

rectangle ABCD, the direction of motion round ABCD

being related to the positive direction of x like rotation

and translation in a right-handed screw. The work done

on unit pole as it moves from A to B will be

which is equal to 2hy + 2hk -7- ;

ay

the work done on the pole as it moves from G to D is

We may show similarly that the work done on unit

pole as it moves from B to G is equal to

and when it moves from D to A, to

Adding these expressions we see that the work done on unit

pole as it travels round the rectangle ABCD is equal to

dy dz

The quantity of current passing through this rectangle is

equal to 4tuhk,
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hence since the work done on unit pole in going round
the rectangle is equal to 4?r times the current passing
through the rectangle, see Art. 203, we have

dy

By taking rectangles whose sides are parallel to the axes
of x and z, and of as, y we get in a similar way

da. dy
-j
---ri.................. (2)

dz dx

If X, F, Z are the components of the electric intensity at

0, we can prove by a similar process that the work done
on unit charge of

electricity in going round the rectangle
ABCD is equal to

If a, b, c are the components of magnetic induction
at 0, the number of tubes of magnetic induction passing

through the rectangle is ax^hk; hence the rate of

diminution of the number of unit tubes is equal to

da

But by Faraday s law of Electromagnetic Induction the

work done on unit charge in going round the circuit is

equal to the rate of diminution in the number of tubes

of magnetic induction passing through the circuit, hence

da ... fdZ dY
--rr4M= -=---F-

at \dy dz
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or

similarly

da dZ
dt . dy

db_dX
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WT
e can also prove by a similar method that

da fd*a d2a dW

with similar equations for b and c.

These equations are identical in form with those which

hold for the conduction of heat, and we see that the

currents and magnetic force will diffuse inwards into

the metal in the same way as temperature would diffuse

if the surface of the metal were heated, and then the

heat allowed to diffuse.

235. We may apply the results obtained in the

conduction of heat to the analogous problem in the dis

tribution of currents. As a simple example let us take

a case in one dimension. Let us suppose that over the

infinite face of a plane slab we have initially a uniform

distribution of currents, and that these currents are left

to themselves. Then from the analogous problem in the

conduction of heat we know that after a time t has

elapsed the current, at a distance x from the face to which

the currents were originally confined, will be proportional

to

This expression satisfies the differential equation and

vanishes when t = except at the face where x = 0.

The currents at a distance x will attain their maximum

value when

and the magnitude of the maximum current will be

inversely proportional to x.
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In the case of copper /JL= 1, a 1600, hence the time

at which the current is a maximum at a place, one centi

metre from the surface, is 2-7T/1600 seconds, or about 1/250

of a second, a point 1 cm. from the surface would receive

the maximum current after about 1/25,000 of a second,

while at a point 10 cm. from the surface the current would

not reach its maximum for about 4/10 of a second.

Let us now consider the case of iron : for an average

specimen of soft iron we may put a = 104
, //,

= 103
;
hence

in this case, the time the current, 1 cm. from the surface,

will take to reach its maximum value is about 2?r/10

seconds, while a place 10 cm. from the face only attains

its maximum after 20?r seconds. Thus the currents

diffuse much more slowly through iron than they do

through copper. The diffusion of the currents is regu
lated by two circumstances, the inertia of the currents

which tends to confine them to the outside of the con

ductor, and the resistance of the metal which tends to

make the currents diffuse through the conductor; though
the resistance of iron is greater than that of copper,

this is far more than counterbalanced by the enormously

greater magnetic permeability of the iron which increases

the inertia of the currents, and thereby the tendency
of the currents to concentrate themselves on the outside

of the conductor.

When t is much greater than ^/(CT/TT/A), e~t^l^ differs

little from unity, in this case the currents are almost in

dependent of x and vary inversely as A, thus the currents

ultimately get nearly uniformly distributed, and gradually

fade away.

236. Periodic electromotive forces acting on
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a circuit possessing inertia. So far we have confined

our attention to the case of impulses; we now proceed
to consider the case when electromotive forces act on
a circuit for a finite time. If these forces are steady the

currents will speedily become steady also, and there will

be no effects due to induction; when, however, these forces

are periodic, induction will produce very important effects

which we shall now proceed to investigate. We shall

commence with the case of a single circuit whose co

efficient of self-induction is L and whose resistance is R
;

we shall suppose that this circuit is acted on by an

external electromotive force varying harmonically with

the time, the force at the time t being equal to E cos pt }

this expression represents a force making p/27r complete
vibrations a second, it changes its direction p/Tr times per
second. If i is the current through the coil, we have

j
\

-M.VV JJ/ \J\JO JJU \
-*-

/ j

the solution of this equation is

,_#cos(^-a)

where tana = -^ ........................ (3).

The maximum value of the electromotive force is E,

while the maximum value of the current is

if a steady force E acted on the circuit the current

would be E/R. Thus the inertia of the circuit makes

the maximum current bear to the maximum electromotive

force a smaller ratio than a steady current through
the same circuit bears to the steady electromotive force
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producing it. The ratio of the maximum electromotive

force to the maximum current, when the force is periodic,

is equal to {R* 4- L 2

p
2

}

2
;

this quantity is called the

impedance of the circuit.

We see from equation (2) that the phase of the current

lags behind that of the electromotive force. When the

force oscillates so rapidly that Lp is large compared with

R, we see from equation (3) that a will be approximately

equal to Tr/2. In this case the current through the coil

will be greatest when the electromotive force acting on

the circuit is zero, and will vanish when the electromotive

force is greatest.

In this case, since Lp is large compared with R, we

have approximately
. E .

t-jjrinj*;

thus the current through the circuit is approximately

independent of the resistance and depends only upon
the coefficient of self-induction and on the frequency of

the electromotive force. Thus a very rapidly alternating

electromotive force will send far more current through
a short circuit with a small coefficient of self-induction,

even though it is made of a badly conducting material,

than through a long circuit with large self-induction,

even though this circuit is made of an excellent con

ductor. For steady electromotive forces on the other

hand, the current sent through the second circuit would

be enormously greater than that through the first.

The work done by the current per unit time, which

appears as heat, is equal to the mean value of either
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E cos pt . i or Ri2
,
and is equal to

Thus when the electromotive force changes so slowly that

Lp is small compared with R, the work done per unit

time varies inversely as R; while when the force varies

so rapidly that Lp is large compared with R, the work

done varies directly as R. If E, p and L are given the

work done is a maximum when

R = Lp.

237. Circuit rotating in the Earth s field. An
external electromotive force of the type considered in the

last article is produced when a conducting circuit rotates

with uniform velocity o&amp;gt; in the earth s magnetic field about

a vertical axis. If 6 is the angle the plane of the circuit

makes with the magnetic meridian, H the horizontal com

ponent of the earth s magnetic force, A the area of the

circuit, then the number of tubes of magnetic induction

passing through the circuit is

HA sin 6 :

the rate of diminution of this is

.

dt

If the circuit revolves wifch uniform angular velocity &&amp;gt;,

= wt, and the rate of diminution in the number of tubes

of magnetic induction passing through the circuit is

HA a) cos at,

as this, by Faraday s law, is the electromotive force

acting on the circuit. The case is identical with that just

considered if we write co for p and HA a) for E
;
thus
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if L is the coefficient of self-induction of the circuit,

R the resistance, i the current through the circuit,

a)

The motion of the circuit is resisted by a couple whose

moment is, by Art. 214, equal to the current multiplied

by the differential coefficient with respect to 6 of the

number of tubes of magnetic induction due to the earth s

field passing through the circuit
;
thus the moment of

the couple is

iHA cos 6,

H*A 2
o) cos cot cos (cot a)

[LW +R^
Thus the couple always tends to oppose the rotation

of the coil unless 6 is between ^ and ^ +
a or between

STT , STT

To maintain the motion of the circuit work must be

spent ;
the amount of work spent in any time is equal

to the mechanical equivalent of the heat developed in

the circuit.

The mean value of the retarding couple is

*c0 cos PL H*A z
Ra&amp;gt;

it vanishes when co is zero or infinite and is greatest
when co = RjL.

If the circuit rotates so rapidly that LCD is large

compared with R, a. is approximately equal to Tr/2, and

we see that

HA sin cot
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Now by definition Li is the number of tubes of

magnetic induction due to the currents which pass

through the circuit, while HA sin wt is the number pass

ing through the same circuit due to the earth s magnetic
field

;
we see from the preceding expression for i that the

sum of these two quantities, which is the total number of

tubes of magnetic induction passing through the circuit,

remains zero throughout the whole of the time. This is

an illustration of the general principle that when the

inertia effects are paramount the number of tubes passing

through any conducting circuit remains constant.

238. Circuits in parallel. Suppose that two points
A and B are connected by two circuits in parallel. Let
R be the resistance of the first circuit, S that of the

second
;
let the first circuit contain a coil whose coefficient

of self-induction is L, the second one whose coefficient of

self-induction is N. Let the coils be so far apart that

their coefficient of mutual induction is zero. Then if

a difference of potential Ecospt be maintained between

the points A and B we see by the preceding investigations
that i and j, the currents in the two circuits, will be given

by the equations

. _ E cos (pt a)~~~

._Ecos(pt-@)
J
~

{N*p + 8*}*

where tan a = -~
,

tan ft
= -

.

Jl&amp;gt; b

If the external electromotive force varies so rapidly that
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Lp and Np are large compared with R and 8 respectively &amp;gt;

then

. _ E sin pt~~
~

Np
or the currents flowing through the two circuits are

inversely proportional to their coefficients of self-induc

tion. Thus with very rapidly alternating currents the

distribution of the currents is almost independent of

their resistances and depends almost entirely on their

self-inductions. Thus if one of the coils had a moveable

iron core, the current through the coil would be very
much increased by removing the iron, as this would

greatly diminish the self-induction of the circuit.

239. Transformers. We have hitherto confined our

attention to the case when the only circuit present was

the one acted upon by the periodic electromotive force.

We shall now consider the case when in addition to the

circuit acted upon by the external electromotive force,

which we shall call the primary circuit, another circuit is

present in which currents are induced by the alternating

currents in the primary: we shall call this circuit the

secondary circuit, and suppose that it is not acted upon

by any external electromotive force beyond that due to

the alternating current in the primary. A very important

example of this is afforded by the transformer. In this

instrument a periodic electromotive force acts on the

primary, which consists of a large number of turns of

wire
;
in the ordinary use of the transformer for electric

lighting this electromotive force is so large that it would

T. E. 27
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be dangerous to lead the primary circuit about a building ;

the current for lighting is derived from a secondary circuit

consisting of a smaller number of turns of wire. The

primary and secondary circuits are wound round an iron

core as in Fig. 118.

Fig. 118.

The tubes of magnetic induction concentrate in this

core, so that most of the tubes which pass through the

primary pass also through the secondary.

The current in this secondary is larger than that in

the primary, but the electromotive force acting round it

is smaller. The current in the secondary bears to that in

the primary approximately the same ratio as the electro

motive force round the primary bears to that round the

secondary.

Let L, M, N be respectively the coefficients of self-

induction of the primary, of mutual induction between the

primary and the secondary and of self-induction of the

secondary, let R and S be the resistances of the primary
and secondary respectively, x and y the currents through

these coils. Let Ecospt be the electromotive force acting
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on the primary. To find x and y we have the following

equations :

(1),

The values of x and y are

x = A cos (pt
-

a) (3),

By substituting these values in equations (1) and (2),
we find

,_ T

Lptan a = -=-

Y + s^

an/- =-.
Np

From the expressions for A and a in terms of E we see

that the effect of the secondary circuit is to make the

primary circuit behave like a single circuit whose co

efficient of self-induction is L and whose resistance is R .

We see from the expressions for L and R
,
that L is less

than L, while R is greater than R. Thus the presence of
the secondary circuit diminishes the apparent self-induc

tion of the primary circuit, while it increases its resistance.

272
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When the electromotive force changes so rapidly that Np
is large compared with 8, we have approximately

M

ft
- a = TT.

This value of the apparent self-induction is the same

as that under an electrical impulse, see Art. 231. In a

well-designed transformer L M*/N is exceedingly small

compared with L. When the secondary circuit is not

completed S is infinite
;
in this case L = L. When the

secondary circuit is completed through electric lamps

&c., 8 is in practice small compared with Np, so that

L L M*/N. Thus the completion of the circuit

causes a great diminution in the value of the apparent

self-induction of the primary circuit. The work done per

unit time in the transformer is equal to the mean value

of Ecospt.x, it is thus equal to

1 E z cos a

E*R

When the secondary circuit is broken S is infinite and

therefore L = L, R = R, and the work done on the trans

former per unit time or the power spent on it is equal to

1 E*R

When the circuit is completed, and 8 is small compared



239] ELECTROMAGNETIC INDUCTION 421

with Np, L = L- M*IN, R = R +M 2

S/N*, and then the

power spent is equal to

rV

This is very much greater than the power spent

when the secondary circuit is not completed; this must

evidently be the case, as when the secondary circuit is

completed lamps are raised to incandescence, the energy

required for this must be supplied to the transformer. The

power spent when the secondary circuit is not completed
is wasted as far as useful effect is concerned, and is spent
in heating the transformer. The greater the coefficient of

self-induction of the primary, the smaller is the current

sent through the primary by a given electromotive force,

and the smaller the amount of power wasted when the

secondary circuit is broken. When the secondary circuit

is closed the self-induction of the primary is diminished

from L to Lr

;
since there is less effective self-induction

in the primary, the current through it, and consequently
the power given to it, is greatly increased.

We see from the expression just given that the power
absorbed by the transformer is greatest when

that is, when

When there is no magnetic leakage, i.e. when
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the power absorbed continually increases as the resist

ance in the secondary diminishes
;
when however LN is

not equal to M z the power absorbed does not necessarily

increase as S diminishes, it may on the contrary reach

a maximum value for a particular value of S, and any
diminution of 8 before this value will be accompanied

by a decrease in the energy absorbed by the transformer.

The greater the frequency of the electromotive force, the

larger will be the resistance of the secondary when the

absorption of power by the transformer is greatest. When
the frequency is very great, such as, for instance, when

a Leyden jar is discharged (see page 436), the critical value

of the resistance in the secondary may be exceedingly

large. In this case the difference between the maximum

absorption of power and that corresponding to S = may
be very great. Thus when S = 0, the power absorbed

is equal to

1 E*R

or approximately for very high frequencies

while the maximum power absorbed is

which exceeds that when S = in the proportion of L p
to 2R.

The currents x, y in the primary and secondary are

represented by the equations

x A cos (pt a),
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Thus the ratio of the maximum value of the current
in the primary to that in the secondary is B/A : by
equation (5), we have

or, when Np is large compared with S,AM
B~ N

13 a = TT.

If the primary and secondary coils cover the same
length of the core, and are wound on a core of great
permeability, then MjN is equal to m/nt where m is the
number of turns in the primary, and n the number in
the secondary.

If we have a lamp whose resistance is s in the secondary
the potential difference between its electrodes is sy, i.e.

sB cos (pt
-

/9).

The maximum value of this expression is sB; substi

tuting the value of B, we find that when Np is large com
pared with 8 this value is equal to

M ET
SN E

This is greatest when L =
0, in which case it is equal to

H
and this, as S is small compared with Np, is equal to

4E
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If R is small compared with SM*/N
2 this is ap

proximately

Thus if for example M/N= &amp;lt;

20, the maximum current

through the secondary is 20 times that through the

primary ;
while

.
the electromotive force between the

terminals of the lamp is approximately

s F
20S

Now s is always smaller than S, as S is the resistance

of the whole secondary circuit, while s is the resistance

of only a part of it : the electromotive force between the

terminals of any lamp is thus in this case always less than

1/20 of the electromotive force between the terminals of

the secondary. In getting this value we have assumed the

conditions to be those most favourable to the production

of a high electromotive force in the secondary; if there

is any magnetic leakage, i.e. if L is not zero, then at

high frequencies the electromotive force in the secondary

would be very much less than the value just found, in

fact where there is any magnetic leakage, the ratio of the

electromotive force in the secondary to that in the primary

is indefinitely small when the frequency is infinite.

240. Distribution ofrapidly alternating currents.

When the frequency of the electromotive force is so great

that in the equations of the type

L -^ + M -~ + ... Rx = external electromotive force,
dt dt

the term Rx depending on the resistance is small com

pared with the terms Ldxjdt, Mdyjdt depending on
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induction, which, if the electromotive force is supposed to

vary as cospt, will be the case when Lp, Mp are large

compared with R
;
the equations determining the currents

take the form

-7- (Loc + My + ...)
= external electromotive force,

cLt

dN
&quot;

dt

where N is the number of tubes of induction due to the

external system passing through the circuit whose co

efficient of self-induction is L.

We see from this that

Lx -f My + . . . + N = constant,

and since a?, y . . . N all vary harmonically, the constant

must be zero. Now Lx + My + ... is the number of tubes

of magnetic induction which pass through the circuit

we are considering due to the currents flowing in this

and the neighbouring circuits, while N is the number of

tubes passing through the same circuit due to the ex

ternal system. Hence the preceding equation expresses

that the total number of tubes passing through the circuit

is zero. The same result is true for any circuit.

Now consider the case of the currents induced in a

mass of metal by a rapidly alternating electromotive force.

The number of tubes of magnetic induction which pass

through any circuit which can be drawn in the metal is zero,

and hence the magnetic induction must vanish through
out the mass of the metal. The magnetic force will con

sequently also vanish throughout the same region. But

since the magnetic force vanishes, the work done when unit

pole is taken round any closed curve in the region must

also vanish, and therefore by Art. 203 the current flowing
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through any closed curve in the region must also vanish
;

this implies that the current vanishes throughout the mass

of metal, or in other words, that the currents generated

by infinitely rapidly alternating forces are confined to the

surface of the metal, and do not penetrate into its interior.

We showed in Art. 235 that the currents generated

by an electrical impulse started from the surface of the

conductor and then gradually diffused inwards. We may
approximate to the condition of a rapidly alternating force

by supposing a series of positive and negative impulses
to follow one another in rapid succession. The currents

started by a positive impulse have thus only time to

diffuse a very short distance from the surface before the

subsequent negative impulse starts opposite currents from

the surface
;
the effect of these currents at some distance

from the surface is to tend to counteract the original

currents, and thus the intensity of the current falls off

rapidly as the distance from the surface of the conductor

increases.

The amount of concentration of the current depends
on the frequency of the electromotive force and of the

conductivity of the conductor. If the frequency is infinite

and the conductivity finite, or the frequency finite and

the conductivity infinite, then the current is confined to

an indefinitely thin skin near the surface of the conductor.

If, however, both the frequency and the conductivity are

finite, then the thickness of the skin occupied by the

current is finite also, while the magnitude of the current

diminishes rapidly as we recede from the surface. Any
increase in the frequency or in the conductivity increases

the concentration of the current.
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The case is analogous to that of a conductor of heat,

the temperature of whose surface is made to vary har

monically, the fluctuations of temperature corresponding
to the alterations in the surface temperature diminish in

intensity as we recede from the surface, and finally cease

to be appreciable. The fluctuations, however, with a long

period are appreciable at a greater depth than those with

a short one. We may for example suppose the temperature
of the surface of the earth to be subject to two variations,

one following the seasons and having a yearly period, the

other depending on the time of day and having a daily

period. These fluctuations become less and less apparent
as the depth of the place of observation below the surface

of the earth increases, and finally they become too small

to be measured. The annual variations can, however, be

detected at depths at which the diurnal variations are

quite inappreciable.

This concentration of the current near the surface of

the conductor, which is sometimes called the throttling of

the current, increases the resistance of the conductor to

the passage of the current. When, for example, a rapidly

alternating current is flowing along a wire, the current

will flow near to the outside of the wire, and if the

frequency is very great the inner part of the wire will

be free from current
;
thus since the centre of the wire is

free from current, the current is practically flowing through
a tube instead of a solid wire. The area of the cross

section of the wire, which is effective in carrying this

rapidly alternating current, is thus smaller than the

effective area when the current is continuous, as in this

case the current distributes itself uniformly over the whole

of the cross section of the wire. As the effective area for
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the rapidly alternating currents is less than that for con

tinuous currents, the resistance, measured by the heat pro
duced in unit time when the total current is unity, is greater
for the alternating currents than for continuous currents.

241. Distribution of an alternating current in

a Conductor. The equations given in Art. 234 enable

us to find how an alternating current distributes itself

in a conductor. We shall consider a case in which the

analysis is simple, but which will serve to illustrate the

laws of the phenomenon we are discussing. This case

is that of an infinite mass of a conductor bounded by a

plane face. Take the axis of x at right angles to this

face, and the origin of coordinates in the face; let the

currents be everywhere parallel to the axis of z, and the

same at all points in any plane parallel to the face of the

conductor. Then if
yu,

is the magnetic permeability and

cr the specific resistance of the conductor, w the current at

the point as, y, z at the time t parallel to the axis of z,

we have by the equations of Art. 234,

dw (d?w d2w d2w

or, since w is independent of y and

dw

We shall suppose that the currents are periodic, making
r complete alternations per second. We may put,

writing i for V 1,

w = ipt 0)
^

where co is a function of x
t
but not of t. Substituting this

value of w in equation (1) we get
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or if n2

2 _^2&)

The solution of this is

a, = Ae-nx + Benx,

where A and B are constants.

XTNow ?i =
j

V41

We shall suppose that the conductor stretches from

x = to x = oo and that the cause which induces the

currents lies on the side of the conductor for which x is

negative. It is evident that in this case the magni
tude of the current cannot increase indefinitely as we

recede from the face nearest the inducing system ;
in

other words, w cannot be infinite when x is infinite : this

condition requires that B should vanish
;
in this case we

have

and therefore

w = e
a e

Thus if w = A cos pt when x 0,

.

,Ae \ &quot; J cos-f ^-\ x

at a distance x from the surface.
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This result shows that the maximum value of the

current at a distance x from the face is proportional to

_nnw\*x
\ &amp;lt;r J

t Thus the magnitude of the current diminishes

in geometrical progression as the distance from the face

increases in arithmetical progression.

In the case of a copper conductor exposed to an electro

motive force making 100 alternations per second, /A
=

1,

&amp;lt;7
= 1600, ^ = 27rxlOO; hence

{2*v&p/&amp;lt;r}*
=

ir/2, so that

_TT

the maximum current is proportional to e 2
. Thus at

1 cm. from the surface the maximum current would only
be 208 times that at the surface, at a distance of 2 cms.

only &quot;043, and at a distance of 4 centimetres less than

1/500 part of the value at the surface.

If the electromotive force makes a million alternations

per second [Zirftp/o]*
= 50?r; the maximum current is thus

proportional to e~50wx
,
and at the depth of one millimetre

is less than one six-millionth part of its surface value.

The concentration of the current in the case of iron

is even more remarkable. Consider a sample of iron

for which
JJL
= 1000, a = 10000, exposed to an electro

motive force making 100 alternations per second, so that

p = 2-7T x 100. In this case
{27r/i/)/&amp;lt;rp

= 20 approximately,
and thus the maximum current at a depth of one milli

metre is only *13 times the surface value, while at

5 millimetres it is less than one twenty-thousandth part

of its surface value.

If the electromotive force makes a million alternations

per second, then for this specimen of iron
{29r/*p/&amp;lt;r}
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is approximately 2000, and the maximum current at the

distance of one-tenth of a millimetre from the surface

is about one five-hundred-millionth part of its surface

value.

We see from the preceding expressions for the current

that the distance required to diminish the maximum cur

rent to a given fraction of its surface value is directly

proportional to the square root of the specific resistance,

and inversely proportional to the square root of the number

of alternations per second.

242. Magnetic Force in the Conductor. The

currents in the conductor are all parallel to the axis of z,

and are independent of the coordinates y, z.

Now the equations of Art. 234 may be written in the

form
da _ fdw dv\ db fdu

~
dt
= (7

\dy~dz) ~dt

dc fdv
du

dt \dx dy

where a, 6, c are the components of the magnetic induc

tion, u, v, w those of the current. In the case we are

considering u = v 0, and w is independent of y and z
;

hence a = c = 0, and the magnetic induction is parallel

to the axis of y. Thus the currents in the plate are

accompanied by a magnetic force parallel to the surface

of the plate and at right angles to the direction of the

current.

From the above equations we have

db _ dw
dt~ dx
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and by Art. 241 w = Ae~mx cos (pt mx),
i

where m =

*J2crm .

Hence b = TT\
mx-r}

4/

7T
cos [pt

- mx -
m \f 4

Thus the magnetic force in the conductor diminishes

as we recede from the surface according to the same law

as the current.

243. Mechanical Force acting on the Con
ductor. When a current flows in a magnetic field a

mechanical force acts on the conductor carrying the

current (see Art. 214). The direction of the force is

at right angles to the current and also to the magnetic

induction, and the magnitude of the force per unit volume

of the conductor is equal to the product of the current

and the magnetic induction at right angles to it.

In the case we are considering the magnetic induction

and the current are at right angles. If w is the intensity

of the current, the current flowing through the area

dxdy is wdxdy, hence the force on the volume dxdydz

parallel to x, and in the positive direction of x, is equal

to

wbdxdydz.

The total force parallel to x acting on the conductor is

II I wbdxdydz,

but since b and w are both independent of y and , the

force acting on the conductor per unit area of its face is

I wbdx,
J o
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Now if a, ft, 7 are the components of the magnetic

force _ dft da.

dx dy

hence, since b = fift, we see that the force on the con

ductor parallel to x is

where ft is the value of ft when as = 0, i.e. at the surface

of the conductor, and ftx is the value of ft when x oo .

But it follows from the expression for b given in the

last article that ftM = ;
hence the force on the conductor

parallel to x per unit area of its face due to the action of

the magnetic field on the currents is equal to

STT

The magnetic force is not uniform in the conductor

but diminishes as we recede from the surface
; hence, if the

conductor is a magnetic substance, there will, in addition

to the mechanical force due to the action of the magnetic
field on the currents, be a force due to the effort of

the magnetic substance to move towards the stronger

parts of the field. The magnitude of the force parallel to

x per unit volume is by Art. 164 equal to ^=- --^ :

OTT ax
thus the force acting per unit area of the face of the

slab due to ^his cause is

-00

f-J 8?r dx
dx

T. B. 28
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LL/3
2

Adding this to the force ^ due to the action of the
07T

magnetic field on the currents we find that the total

force parallel to x is per unit area of surface of the slab

/3
2

/87r, which for equal values of /3 is the same for

magnetic as for non-magnetic substances.

This force is always positive, and hence the conductor

tends to move along the positive direction of x\ in other

words, the conductor is repelled from the system which in

duces the currents in the conductor. These repulsions have

been shown in a very striking way in experiments made

by Professor Elihu Thomson and also by Dr Fleming.

In these experiments a plate placed above an electro

magnet round which a rapidly alternating current was

circulating, was thrown up into the air, the repulsion

between the plate and the magnet arising from the cause

we have just investigated.

6 2

The expression ^~
is the repulsion at any instant,

but since /3 is proportional to cos (pt + e) the mean value

of /3
2
is H 2

/2 if H is the maximum value of /3 . Hence

the mean value of the repulsion is equal to

ML
16-7T

244. The screening off of Electromagnetic In

duction. We have seen in Art. 242 that the magnetic
force diminishes rapidly as we recede from the surface

of the conductor, and becomes inappreciable at a finite

distance, say d, from the surface. At a point P whose

distance from the surface is greater than d we may neglect

both the current and the magnetic force. Thus the electro-
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magnetic action of the currents in the sheet of the con

ductor whose thickness is d just counterbalances at P
the electromagnetic action of the original inducing system
situated on the other side of the face of the conductor.

Hence the slab of thickness d may be regarded as

screening off from P the electromagnetic effect of the

original system. In the investigation in Art. 242 we sup

posed that the conductor was infinitely thick, but since

the currents are practically confined to the slab whose

thickness is d, it is evident that the screening is done

by this layer and that no appreciable advantage is gained

by increasing the thickness of the slab beyond d. The

thickness d of the slab required to screen off the magnetic
force depends upon the frequency of the alternations and

on the magnetic permeability and specific resistance of the

conductor. By Arts. 241 and 242 the current and magnetic
force at a distance x from the surface are proportional to

e~mx)
where m =

(2v/ip/0
&amp;gt;

} ,
hence for a thickness d to

reduce the magnetic force to an inappreciable fraction of

its surface value md must be considerable. If we regard
the system as screened off when the magnetic effect is

reduced to a definite fraction of its undisturbed value,

then d the thickness of the screen is inversely propor
tional to m. The greater the frequency the thinner the

screen. Thus from the examples given in Art. 241 we

see that if the system makes a million oscillations a

second, a screen of copper less than a millimetre thick

will be perfectly efficient, while a screen of iron a very
small fraction of a millimetre in thickness will stop prac

tically all induction. If the system only makes 100 alter

nations a second, the screen if of copper must be several

centimetres and if of iron several millimetres thick.

282
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245. Discharge of a Leyden Jar. One of the

most interesting applications of the laws of induction of

currents is to the case of a Leyden jar, the two coatings of

which are connected by a conducting circuit possessing

self-induction. Let us consider a jar whose inside A is

connected to the outside B by a circuit whose resistance

is R and whose coefficient of self-induction is L. Let i

be the current flowing through the circuit from A to B\

VA and VB the potentials of A and B respectively. Then

by the laws of the induction of currents

di
L -r + Ri = electromotive force tending to increase i

dt
= VA -VB .................................... (1).

If Q is the charge on the inside of the jar, and C the

capacity of the jar, then

or (VA -Ve)=%.

The alteration in the charge is due to the current

flowing through the conductor, and i is the rate at which

the charge is diminishing, so that

dQ
di*

Substituting this value of i in equation (1), we get

The form of the solution of this equation will depend upon
whether the roots of the quadratic equation

c
are real or imaginary.
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Let us first take the case when they are imaginary,
i.e. when

In this case the solution of (2) takes the form

where A and a are arbitrary constants.

We see from this expression that Q is alternately

positive and negative and vanishes at times following
one another at the interval

The charge Q is thus represented by a harmonic function

whose amplitude decreases in geometrical progression as

the time increases in arithmetical progression.

The discharge of the jar is oscillatory, so that if, for

example, to begin with, the inside of the jar is charged

positively, the outside negatively; then on connecting by
the circuit the inside and the outside of the jar, the posi
tive charge on the inside diminishes; when however it has

all disappeared there is a current in the circuit, and the

inertia of this current keeps it going, so that positive

electricity still continues to flow from the inside of the jar;

this loss of positive electricity causes the inside to become

charged with negative electricity, while the outside gets

positively charged. Thus the jar which had originally

positive on the inside, negative on the outside, has now

negative on the inside, positive on the outside. The poten
tial difference developed in the jar by these charges tends
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to stop the current and finally succeeds in doing so. When
this happens the charges on the inside and outside would

be equal and opposite to the original charges if the re

sistance of the circuit were negligible ;
if the resistance

is finite the new charges will be of opposite sign to the

old ones, but smaller. The current now begins to flow

in the opposite direction, and goes on flowing until the

inside is again charged positively, the outside negatively ;

if there were no resistance the charges on the inside and

outside would regain their original values, so that the

state of the system would be the same as when the dis

charge began; if the resistance is finite the charges are

smaller than the original ones. The system goes on then

as before until the charges become too small to be ap

preciable. The charges in the jar and the currents in the

wire are thus periodic, the charges surging backwards and

forwards between the coatings of the jar.

The oscillatory character of the discharge was sus

pected by Henry from observations on the magnetization

of needles placed inside a coil in the discharging circuit.

The preceding theory was given by Lord Kelvin in 1853.

The oscillations were detected by Feddersen in 1857.

The method he used consisted of putting an air break

in the wire circuit joining the inside to the outside of

the jar. This air break is luminous when a current passes

through it, shining out brightly when the current passing

through it is great, while it is dark when the current

vanishes. Hence if we observe the image of this air space

formed by reflection at a rotating mirror, it will, if the

discharge is oscillatory, be drawn out into a band with

dark and bright spaces, the interval between two dark

spaces depending on the speed of the mirror and the
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frequency of the electrical vibrations. Feddersen observed

that the appearance of the image of the air break formed

by a rotating mirror was of this character. He showed

moreover that the oscillatory character of the discharge

was destroyed by putting a large resistance in the circuit,

for he found that in this case the image of the air space

was a broad band of light gradually fading away in

intensity instead of a series of bright and dark bands.

When the discharge is oscillatory the frequency of the

discharges is often exceedingly large, a frequency of a

million complete oscillations a second being by no means

a high value for such cases. We see by the expression (3)

that when R = 0, the time of vibration is 2ir*/LC
;
thus

this time is increased when the self-induction or the

capacity is increased. By inserting coils with very great

self-induction in the circuit, Sir Oliver Lodge has produced

such slow electrical vibrations that the sounds generated

by the successive discharges form a musical note.

In the preceding investigation we have supposed that

R2 was less than 4L/C; if however R is greater than this

value, the solution of equation (2) changes its character,

and we have now

where Xi, ^ are the roots of the quadratic equation

i=0.
L&amp;gt;

R
Xl =

R
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If we take t = when the circuit is closed, then dQ/dt
vanishes when t = and we get, if Q is the value of Q
when t = 0,

Hence dQ/dt never vanishes except when t = and when
t = oo . Thus Q which is zero when = oo never changes

sign. The charge in this case instead of becoming positive
and negative never changes sign but continually diminishes,
and ultimately becomes too small to be observed. This

result is confirmed by Feddersen s observations with the

rotating mirror.

The behaviour of the Leyden jar is analogous to that

of a mass attached to a spring whose motion is resisted

by a force proportional to the velocity. If M is the mass
attached to the spring, x the extension of the spring, nx
the pull of the spring when the extension is x, rdxjdt the

frictional resistance, then the equation of motion of the

spring is

*d*x dx

Comparing this with the equation for Q we see that if

we compare the extension of the spring to the charge
on the jar, then the coefficient of self-induction of the

circuit will correspond to the mass attached to the spring,
the electrical resistance of the circuit to the frictional

resistance of the mechanical system, and the reciprocal of

the capacity of the condenser to n, the stiffness of the

spring.
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The pulling out of the spring corresponds to the charg

ing of the jar, the release of the spring to the completion
of the circuit between the inside and the outside of

the jar ;
when the spring is released it will if the friction

is small oscillate about its position of equilibrium, the

spring being alternately extended and compressed, and

the oscillations will gradually die away in consequence
of the resistance

;
this corresponds to the oscillatory dis

charge of the jar. If however the resistance to the motion

of the spring is very great, if for example it is placed in a

very viscous liquid like treacle, then when it is released it

will move slowly towards its position of equilibrium but

will never go through it. This case corresponds to the

non-oscillatory discharge of the jar when there is great
resistance in the circuit.

We have seen that the resistance of a conductor to a

variable current is not the same as to a steady one, and

thus since the currents which are produced by the dis

charge of a condenser are not steady, R, which appears in

the expression (2), is not the resistance of the circuit to

steady currents. Now R the resistance depends upon the

frequency of the currents, while as the expression (3)

shows, the frequency of the electrical vibrations depends
to some extent on the resistance

;
hence the preceding

solution is not quite definite, it represents however the

main features of the case. For a complete solution we

may refer the reader to Recent Researches in Electricity

and Magnetism, J. J. Thomson, Art. 294.

246. Periodic Electromotive Force acting on
a circuit containing a condenser. Let an external

electromotive force equal to E cos pt act on the circuit
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which connects the coatings of the jar, let C be the capacity
of the jar, L the coefficient of self-induction, and R the

resistance of the circuit connecting its coatings. Then if

x is the charge on one of the coatings of the jar (which
of the coatings is to be taken is determined by the con

dition that an increase in x corresponds to a current in

the direction of the external electromotive force), we can

prove in the same way as we proved equation (2) Art. 245,

that

The solution of this equation is

-
.

* si&quot;^- g)
., ...(2),

, ,1 dx Ecos(pt-a)and thus -=- = -^- -
dt

where tan a =

Comparing these equations with those of Art. 234 we

see that the circuit behaves as if the jar were done

away with and the self-induction changed from L to

L l/(7p
2

. We also see from (3) that if Cp
2

is greater

than 1/2Z, the current produced by the electromotive force

in the circuit broken by the jar (whose resistance is

infinite) is actually greater than the current which would

flow if the jar were replaced by a conductor of infinite con

ductivity. If Cp
2 = \JL the apparent self-induction of the
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circuit is zero, and the circuit behaves like an induction-

less closed circuit of resistance R. Thus by cutting the

circuit and connecting the ends to a condenser of suitable

capacity we can increase enormously the current passing

through the circuit. We can perhaps see the reason for

this more clearly if we consider the behaviour of the

mechanical system, which we have used to illustrate the

oscillatory discharge of a Leyden jar, viz. the rectilinear

motion of a mass attached to a spring and resisted by a

frictional force proportional to the velocity. Suppose that

X, an external force, acts on this system; then at any
instant X must be in equilibrium with (1) the resultant

of the rate of diminution of the momentum of the mass,

(2) the force due to the compression or extension of the

spring, (3) the resistance. If the frequency of X is very

great, then for a given momentum (1) will be very large,

so that unless (1) is counterbalanced by (2) a finite force

of very great frequency will produce an exceedingly small

momentum. Suppose however the frequency of the ex

ternal force is the same as that of the free vibrations of

the system when the friction is zero, then when the mass

vibrates with this frequency, (1) and (2) will balance each

other, so that all the external force has to do is to balance

the resistance
;
the system will therefore behave like one

without either mass or stiffness resisted by a frictional

force.

247. A circuit containing a condenser is parallel

with one possessing self-induction.

Let ABC, AEG, Fig. 119, be two circuits. Let L be

the coefficient of self-induction of ABC, R the resistance

of this circuit, C the capacity of the condenser in AEG, r
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the resistance of wires leading from A and to the plates.
Then if i is the current through ABC, a; the charge on the

Fig. 119.

plate nearest to A, we have, neglecting the self-induction

of the circuit AEG,
T di -p

. doc x
L

dt
+ R* = r

dt
+ C

since each of these quantities is equal to the electromotive

force between A and C.

If i = cos pt,

(LY + Rrf .

then x = * T sin (pt + a),

Lp 1
where a = tan&quot;

1

-^5- + tan&quot;
1 ~ .R rpC

dx /Zy + R2

Hence - = / - cos (pt + a).

Thus the maximum current along AEC is to that

along ABC as \/Zy + .R2
is to A/7^-2

+r2
, or, if we can

neglect the resistances of the wires to the condenser, as

R* : l/Cp. We see that for very high frequencies



248] ELECTROMAGNETIC INDUCTION 445

practically all the current will go along the condenser

circuit.

Thus when the frequency is very high a piece of a

circuit with a little electrostatic capacity will be as

efficacious in robbing neighbouring circuits of current

as if the places where the electricity accumulates were

short-circuited by a conductor.

248. Lenz s Law. When a circuit is moved in a

magnetic field in such a way that a change takes place

in the number of tubes of magnetic induction passing

through the circuit, a current is induced in the circuit ;

the circuit conveying this current being in a magnetic
field will be acted upon by a mechanical force. Lenz s

Law states that the direction of this mechanical force is

such that the force tends to stop the motion which gave
rise to the current. The result follows at once from the

laws of the induction of currents. For suppose Fig. 120

Fig. 120.

represents a circuit which, as it moves from right to left,

encloses a larger number of tubes of induction passing

through it from left to right. The current induced will

tend to keep the number of tubes of induction unaltered,

so that since the number of tubes of magnetic induction

due to the external magnetic field which pass through
the circuit from left to right increases as the circuit

moves towards the left, the tubes due to the induced
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current will pass through the circuit from right to left.

Thus the magnetic shell equivalent to the induced current

has the positive side on the left, the negative on the

right. Since the number of tubes of induction due to

the external field which pass through this shell in the

negative direction, i.e. which enter at the positive and

leave at the negative side, increases as the shell is moved
to the left, the force acting on the shell is, by Art. 214,

from left to right, which is opposite to the direction of

motion of the circuit.

There is a simple relation between the mechanical

and electromotive forces acting on the circuit. Let P be

the electromotive force, X the mechanical force parallel
to the axis of x, i the current flowing round the circuit,

u the velocity with which the circuit is moving parallel
to x, N the number of unit tubes of magnetic induction

passing through the circuit. Then

_~
dt

and if the induced current is due to the motion of the

circuit dN dN
-jr =-T- u;
dt ax

hence P =-.
dx

Again, by Art. 214, we have

v .dNX =i -j ,dx

so that Xu = -Pi.

If we wish merely to find the direction of the current

induced in a circuit moving in a magnetic field, Lenz s law

is in many cases the most convenient method to use.
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An example of this law is afforded by the coil revolving

in a magnetic field (Art. 237) ;
the action of the magnetic

field on the currents induced in the coil produces a couple

which tends to stop the rotation of the coil. The magnets
of galvanometers are sometimes surrounded by a copper

box, the motion of the magnet induces currents in the

copper, and the action of these currents on the magnets

by Lenz s law tends to stop the magnet, and thus brings

it to rest more quickly than if the copper box were

absent. The quickness with which the oscillations of

the moving coil in the Desprez-D Arsoiival Galvanometer

(Art. 224) subside is another example of the same effect
;

when the coil moves in the magnetic field currents are

induced in it, and the action of the magnetic field on these

currents stops the coil. Again, if a magnet is suspended
over a copper disc, and the disc is rotated, the movement
of the disc in the magnetic field induces currents in the

disc; the action of the magnet on these currents tends

to stop the disc, and there is thus a couple acting on the

disc in the direction opposite to its rotation. There must,

however, be an equal and opposite couple acting on the

magnet, i.e. there must be a couple on the magnet in

the direction of rotation of the disc; this couple, if the

magnet is free to move, will set it rotating in the

direction of rotation of the disc, so that the magnet and

the disc will rotate in the same direction. This is a

well-known experiment ;
the disc with the magnet freely

suspended above it is known as Arago s disc. Another

striking experiment illustrating Lenz s law is to rotate

a metal disc between the poles of an electro-magnet, the

plane of the disc being at right angles to the lines of

magnetic force
;

it is found that the work required to turn
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the disc when the magnet is on is much greater than

when it is off. The extra work is accounted for by the

heat produced by the currents induced in the disc.

249. Methods of determining the coefficients of

self and mutual induction of coils. When the coils

are circles, or solenoids, the coefficients of induction can

be calculated. When, however, the coils are not of these

simple shapes the calculation of the coefficients would be

difficult or impossible ; they may, however, be determined

by experiment by means of the following methods.

250. Determination of the coefficient of self-

induction of a coil. Place the coil in BD, one of the

Fig. 121.

arms of a Wheatstone s Bridge, and balance the bridge

for steady currents, insert in CD a ballistic galvanometer,

and place a key in the battery circuit. When this key
is pressed down so as to complete the circuit, although

there will be no current through the galvanometer when

the currents get steady, yet a transient current will flow

through the galvanometer, in consequence of the electro

motive forces which exist in BD arising from the self-

induction of bhe coil. This current though only transient



250] ELECTROMAGNETIC INDUCTION 449

is very intense while it lasts and causes a finite quantity
of electricity to pass through the galvanometer, producing
a finite kick. We can calculate this quantity as follows :

an electromotive force E in BD will produce a current

through the galvanometer proportional to E, let this cur

rent be kE. In consequence of the self-induction of the

coil there will be an electromotive force in BD equal to

d

where L is the coefficient of self-induction of the coil and

i the current passing through the coil. This electromotive

force will produce a current q through the galvanometer
where q is given by the equation

If Q is the total quantity of electricity which passes

through the galvanometer

=
-kffi(Li)dt,

the integration extending from before the circuit is com

pleted until after the currents have become steady. The

right-hand side of this equation is equal to

where i is the value of i when the currents are steady.

By the theory of the ballistic galvanometer, given in

Art. 225, we see that if 9 is the kick of the galvanometer

T. E. 29
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where T is the time of swing of the galvanometer needle,

G the galvanometer constant, and H the horizontal com

ponent of the earth s magnetic force.

Hence we have

TT
rr

(1)..

TTUT

Let us now destroy the balance of the Wheatstone s

Bridge by inserting a small additional resistance r in

BD, this will send a current p through the galvanometer.
To calculate p we notice that the new resistance has

approximately the current i running through it, and the

effect of its introduction is the same as if an electromotive

force ri were introduced into DB, this as we have seen

produces a current kri through the galvanometer ;
hence

p = kri .

This current will produce a permanent deflection
&amp;lt;/&amp;gt;

of

the galvanometer, and by Art. 222

H
p = tan

&amp;lt;p

-Q
,

TT

or &n = tan&amp;lt; -~ ..................... (2).

Hence from equations (1) and (2), we get

sin \Q TL = r --\- .

tanc TT

251. Determination of the coefficient of mutual
induction of a pair of coils. Let A and B, Fig. 122,

represent the pair of coils of which A is placed in series

with a galvanometer, and B in series with a battery ;
this
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second circuit being provided with a key for breaking or

closing the circuit.

Let R be the resistance of the circuit containing A.

Suppose that originally the circuit containing B is broken

and that the key is then pressed down, and that after

the current becomes steady the current i flows through
this circuit. Then before the key is pressed down no

Fig. 122.

tubes of magnetic induction pass through the coil A,
while when the current i flows through B the number
of such unit tubes is Mi, where M is the coefficient of

mutual induction between A and B. Thus the circuit

containing A has received an electrical impulse equal to

Mi
t
so that Q, the quantity of electricity flowing through

the galvanometer, will be Mi/R, and if 6 is the kick of

the galvanometer, we have

using the same notation as before. We can eliminate

a good many of the quantities by a method somewhat
similar to that used in the last case. Cut the circuit con

taining the coil A and connect its ends to two points on the

circuit B separated by a small resistance $
;
then if R is

292
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very large compared with S this will not alter appreciably

the current flowing round J5; on this supposition the

current flowing round the galvanometer circuit will be

8 .

and if $ is the corresponding deflection of the galvano

meter

8 . H
.(2).

Hence from equations (1) and (2), we get

RS sin i&amp;lt;9 TM R + S tan
&amp;lt;/&amp;gt;

TT

252. Comparison of the coefficients of mutual

induction of two pairs of coils. Let A, a be one pair

of coils, B, b the other. Connect a and b in one circuit

with the battery, and connect the points P and Q (Fig. 123)

Fig. 123.

to the two electrodes of a ballistic galvanometer. Insert

resistances in PAQ and PBQ until there is no kick of

the galvanometer when the circuit through a and b is

made or broken. Let R be the resistance then in PAQ,
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8 that in PBQ, and let Mlt M 2 be the coefficients of mutual

induction between the coils Aa, Bb respectively, then

ML M,
R~ S

*

To prove this we notice that, by Art. 190, if we have

any closed circuit consisting of various parts, the sum of

the products obtained by multiplying the resistance of

each part by the current passing through it is equal to the

electromotive force acting round the circuit. In the case

when the electromotive forces are transient, we get by

integrating this result, that the sum of the products got

by multiplying the resistance of each part of the circuit by
the quantity of electricity which has passed through it is

equal to the electromotive impulse acting round the circuit.

Let us apply this to our case : if i is the steady current

flowing through the coils a and b, the electromotive impulse

acting on A due to the closing of the circuit is M^i, while

that on B is M2i. If x is the quantity of electricity which

passes through A when the circuit through a, b is closed,

y that through B, x y will be the quantity which passes

through the galvanometer ;
hence applying the above rule

to the circuit APQ, we have if K is the resistance of the

galvanometer circuit

Rx + K(x-y) =Mli.

Applying the same rule to the circuit BPQ, we get

But if the total quantity which passes through the

galvanometer is zero, we have x yt
and therefore

Ml_M1
R~ S
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253. Comparison of the coefficients of self-

induction of two coils. Place the two coils whose

coefficients of self-induction are L and N respectively in

the arms AB, BD of a Wheatstone s Bridge, Fig. 121,

balanced for steady currents, then adjust the resistances

in AD, BD so that no kick of the galvanometer occurs

when the battery circuit is made
;

these alterations in

the resistances of AD and BD will entail proportional

alterations in those of AC and BG in order to keep the

bridge balanced for steady currents. Then when there is

no kick of the galvanometer when the circuit is made, and

no steady deflection when it is kept flowing, we have

L_P_R
N~ Q~ S

where P, Q, R, S are the resistances of the arms AD, BD,

AC, BC respectively.

We can see this as follows : suppose we have a

balanced Wheatstone s Bridge with the resistances in as

above, then for steady currents the balance will be un

disturbed if P and Q are altered in such a way that their

ratio remains unchanged ;
but the alteration of P and Q

in this way is equivalent to the introduction into AD
and BD of electromotive forces proportional to P and Q.

For since no current flows through the galvanometer
the same current flows through AD as through BD}

and

the preceding statement follows by Ohm s Law. Hence

we see that the introduction into the arms AD and BD
of electromotive forces proportional to P and Q, will not

alter the balance of the bridge, and, conversely, that if

this balance is not altered by the introduction of an



254] ELECTROMAGNETIC INDUCTION 455

electromotive force A into the arm AD, and another, B,

into the arm BD, then A/B must be equal to P/Q.

Now if we have coils in AD and BD whose coefficients

of self-induction are L, N, then since after the current

gets steady, the same current, i say, flows through each of

these coils, there must be, whilst the current is getting

steady, an impulse Li in AD, and another equal to Ni
in BD. Since these impulses do not send any electricity

through the galvanometer they must, by the preceding

reasoning, be proportional to P and Q, hence

= PN Q

254. Heat developed by the hysteresis of iron.

We can, as Dr John Hopkirison showed, deduce from the

law of Electromagnetic Induction the expression given on

p. 261 for the heat produced in iron per unit volume when
the magnetic force undergoes a cyclical change. Take

the case of a solenoid filled with iron and carrying a

current whose value i is changing cyclically ;
let I be the

length of the solenoid, n the number of turns of wire per
unit length, a the area of cross section of the core and

B the magnetic induction. The electromotive force in

the solenoid due to induction is nla-j-, hence the work
Cit

spent by the current in time T in consequence of the

presence of the iron is

[
T

-

7
dB j+

\ inla r- . at.
Jo dt

But ifH is the magnetic force

H = 4}7TW,
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so that the work spent by the current, appearing as heat

in the iron, is equal to

| laH-j-dt.4-7TJ o dt

Since the volume of the iron is la, the heat produced

per unit volume is

!H
d
4dt

This is the value already obtained on p. 261.



CHAPTER XII

ELECTRICAL UNITS:

DIMENSIONS OF ELECTRICAL QUANTITIES

255. In Art. 9 we denned the unit charge of elec

tricity, as the charge which repelled an equal charge with

unit mechanical force when the two charges were at unit

distance apart and surrounded by air at standard tem

perature and pressure. When we know the unit charge

the various other electrical units easily follow. Thus the

unit current is the one that conveys unit charge in unit

time; unit electric intensity is that which acts on unit

charge with unit mechanical force
;

unit difference of

potential is the potential between two points when unit

work is done by the passage of unit charge from one point

to the other. Unit resistance is the resistance between

two points of a conductor between which the potential

difference is unity when the conductor is traversed by
unit current.

The step from the electrical to the magnetic quanti

ties is made by means of the law that the work done

when unit magnetic pole is taken round a closed circuit is

equal to 4?r times the current flowing through the circuit.

This law is to some extent a matter of definition. All

that is shown by experiment is that the work done when



458 ELECTRICAL UNITS [CH. XII

unit pole is taken round the circuit is proportional to the

current flowing through the circuit, and, as long as the

current remains the same, is independent of the nature

of the substances passed through by the pole in its tour

round the circuit. If we said that p times the work done

was equal to 4?r times the current, these conditions would

still be fulfilled provided p was independent of the current,

the magnetic force and the nature of the substances in

the field. Though, as we shall see later, it would be

possible to get a somewhat more symmetrical system of

units by a proper choice of p, yet in practice, to avoid

the introduction of an unnecessary constant, p is always
taken as unity. When p 1, it follows from Art. 210 that

the magnetic force at the centre of a circle of radius a

traversed by a current i is 27ri/a; thus unit magnetic
force will be the force at the centre of a circle of radius

2-7T traversed by unit current. Thus knowing the unit

current we can at once determine the unit magnetic force.

Having got the unit magnetic force, the unit magnetic

pole follows at once, since it is the pole which is

acted on by unit magnetic force with the unit mechani

cal force. From these units we can go on and deduce

without ambiguity the units of the other magnetic quan
tities. The System of units arrived at in this way is

called the Electrostatic System of Units.

Starting from the unit charge as defined in Art. 9,

we thus arrive at a unit magnetic pole. In Art. 114,

however, we gave another definition of unit magnetic pole

deduced from the repulsion between two similar poles.

The unit magnetic pole as defined in Art. 114 does not

coincide with the unit pole at which we arrive, starting,

as we have just done, from the unit charge of electricity.

The numerical relation between the two units depends
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upon what units of length and time we employ ;
if these

are the centimetre and second, then the unit magnetic

pole on the electrostatic system of units is about 3 x 1010

times as great as the unit pole defined in Art. 114.

Instead of starting with unit charge of electricity we

may start with unit magnetic pole as defined in Art. 114.

The units of the other magnetic quantities would at once

follow from considerations similar to those by which we

deduced the unit electrical quantities from the unit

electrical charge. The electrical units would follow from

the magnetic ones, by the principle that the magnetic
force at the centre of a circular current of radius a is

2iri/a, where i is the strength of the current; thus the

unit current is that which produces unit magnetic force

at the centre of a circle whose radius is 2-jr. In this

way we can get the unit current, and from this the units

of the other electrical quantities follow without difficulty.

The System of units got in this way is called the Electro

magnetic System of Units.

The electromagnetic system of units does not coincide

with the electrostatic system. The electromagnetic unit

charge of electricity bears to the electrostatic unit charge
a ratio which depends on the units of length and time

;
if

these are the centimetre and second the electromagnetic
unit of electricity is found to be about 3 x 1010 times the

electrostatic unit. The ratio of the electromagnetic unit

of charge to the electrostatic unit is equal to the ratio of

the electrostatic unit pole to the electromagnetic unit.

In the following table the relations between the

electrostatic and electromagnetic units of various electric

and magnetic quantities are given. Here v is the ratio

of the electromagnetic unit charge of electricity to the

electrostatic unit.
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Electrostatic unit

Quantity Symbol in terms of

Electromagnetic

Quantity of Electricity e l/v

Electric intensity F v

Potential difference V v

Current i l/u

Resistance of a conductor R v2

Electric Polarization D l/v

Capacity of a condenser C 1/V
2

Strength of Magnetic Pole m v

Magnetic force H l/v

Magnetic induction B v

Magnetic permeability /A
v2

Coefficient of Self-Induction L v2

Certain combinations of these quantities are equal
to purely geometrical or dynamical quantities, such as

length, force, energy. The numerical expression of such

combinations must evidently be the same whatever system
of units we employ; thus, for example, the mechanical

force on a charge e placed in a field of electric intensity

is Fe, but this force is a definite number of dynes, quite

independent of any arbitrary system of measuring electric

quantities, thus F x e must be the same whatever system
of electrical units we employ.

The following are examples of such combinations.

Time =?.
^

Y
Length =

-^
Force = Fe

;
mH.

Energy = %Ve ; j; Rift; \Li\

Energy per unit volume = FD/Str pH*/8ir.
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Thus since Fe is independent of the electrical units

chosen, if we adopt a new system in which the unit

of e is v times the old unit, the new unit of F must be

l/v times the old unit. Again, Ri2
is another quantity

unaltered by the change of units, so that if the new

unit of i is v times the old, the new unit of R must

be 1/fl
2 times the old unit.

Dimensions of Electrical Quantities

256. For the general theory of Dimensions we shall

refer the reader to Maxwell s Theory of Heat, Chap. IV.
;

we shall in this chapter confine our attention to the

dimensions of electrical quantities.

It may be well to state at the outset that the

dimensions of electrical quantities are a matter of

definition and depend entirely upon the system of units

we adopt. Thus we shall find that on the electromagnetic

system of units a resistance has the same dimensions as

a velocity, while on the electrostatic system of units it

has the same dimensions as the reciprocal of a velocity.

In fact we might choose a system of units so as to make

any one electrical quantity of any assigned dimensions
;

when the dimensions of this are fixed that of the others

becomes quite determinate.

A symbol representing an electrical quantity merely
tells us how much of the quantity there is, and does not

tell us anything about the nature of the quantity; this

would require a dynamical theory of electricity. A theory
of dimensions cannot tell us what electricity is; its

object is merely to enable us to find the change in the

numerical measure of a given charge of electricity or any
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other electrical quantity when the units of*length, mass

and time are changed in any determinate way.

We have to fix the electrical quantities by one or

other of their properties. Thus, to take an example, we

may fix a charge of electricity by the repulsion it exerts

on an equal charge, as is done in the electrostatic system
of units, or by the force experienced by a magnetic pole

when the charge is being transferred from one place to

another by a current, as is done in the electromagnetic

system ;
these two measures are of different dimensions.

To take a simpler case we might fix a quantity of water

by the number of hydrogen atoms it contains, by its

mass, or by its volume at a definite temperature; all

these measures would be of different dimensions.

On the electrostatic system of units the force between

two equal charges e, separated by a distance L in a

medium whose specific inductive capacity is K, is e
2

/KL
2
,

and since this is of the dimensions of a force we have the

dimensional equation

m
KL? T*

M, L, T representing mass, length and time.

This result, with the meaning assigned to K in Art.

68, is only true on the electrostatic system of units. We
may, however, generalize the meaning of K and say that

whatever be the system of units, the repulsion between

the charges is e^lKL?, where K is defined as the specific

inductive capacity of the medium on the new system of

units. We may regard this as the definition ofK on this

system. The ratio of the K s for two substances on this

system is of course the same as the ratio of the K s on the



256] DIMENSIONS OF ELECTRICAL QUANTITIES 463

electrostatic system. We shall regard the dimensions of

K as indeterminate and keep them in the expression for

the dimensions of the electrical quantities
1

. From equa
tion (1) we have the dimensional equation

Similarly on the electromagnetic system of units the

repulsion between two poles of strength m separated by a

distance L in a medium whose magnetic permeability is
/JL

is m^f/jiL
2
, fjb

for this system of units being a quantity of

no dimensions. We shall suppose that whatever be the

system of units the force between the poles is equal to

m^lfjuD: where
/JL

thus determined is defined as the

magnetic permeability of the medium on this system of

units. Thus, for example, if m is the measure, on the

electrostatic system of units, of the strength of a pole,

the force between two equal poles separated by unit

distance in air is not m2 but 9 x 1020m2
. Hence we say

the magnetic permeability of air on the electrostatic

system of units is 1/9 x 1020
. We shall regard the di

mensions of
fji

as being left undetermined and retain
JJL

in the expressions for the dimensions of the electric

quantities. Since w2

//zZ
2

is of the dimensions of a force

we have the dimensional equation

We shall find it instructive to suppose that the electric

and magnetic units are connected together by the rela

tion that p times the work done by unit pole in traversing

a closed circuit is equal to 4?r times the current flowing

through the circuit: the convention made on both the

electrostatic and magnetic systems is that p is a quantity

1
Kiicker, Phil. Mag. vol. 27, p. 104.
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of no dimensions and always equal to unity. We shall for

the present leave the dimensions ofp undecided.

The dimensional equation connecting the electric and

magnetic quantities is therefore

p x H x L = i,

where H is magnetic force, L a length and i a current.

Taking this relation and starting with the electric

charge, we can get by the equations given in Art. 255 the

dimensions of all the electrical and magnetic quantities in

terms of M, L, T, p,K : or starting with the magnetic pole

we can get them in terms of M, L, T, p, /JL.
The results

for some of the more important electrical quantities are

given in the following table.

Quantity Symbol Dimensions in Dimensions in terms
terms of K and p of

/u,
and p

Charge e

Electric intensity F
Potential difference V

Current i

Resistance R

Electric polarization D

Capacity C KL

Specific inductive

capacity K K
Strength of Mag

netic pole m pK

Magnetic force H
Magnetic induction B

Magnetic per

meability p
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We see from this table that the dimensions of K, /UL,
and

p must on all systems of measurement be connected by
the relation

On Maxwell s theory of the electric field p/^^K is equal
to the velocity with which electric disturbances travel

through a medium whose magnetic permeability is
//,
and

specific inductive capacity K.

On the electrostatic system of units K is of no dimen

sions, as the specific inductive capacity of air is taken as

unity whatever may be the units of mass, length and time.

Also on this system p is by hypothesis of no dimensions,

being always equal to unity. Hence the dimensions of

the electrical quantities on this system of units are got

by omitting p and K in the third column of the table.

On the electromagnetic system of units ^ is of no

dimensions, the magnetic permeability of air being taken

as unity whatever the units of mass, length and time
; p is

also of no dimensions on this system. Hence the dimen

sions of the electrical quantities on this system of units

are got by omitting //,
and p from the fourth column in

the table.

Another system of units could be got by taking //,
and

K as of no dimensions and p a velocity. If this velocity

were taken equal to the ratio of the electromagnetic unit

charge to the electrostatic unit, then the unit of electric

charge on this system would be the ordinary electrostatic

unit of that quantity, while the unit magnetic pole would be

the unit as defined on the electromagnetic system. This

system would thus have the advantage that the electric

T. E. 30
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quantities would be as defined in the electrostatic system,
while the magnetic quantities would be as defined in the

magnetic system, and we should not have to introduce

any new definitions : whereas if we use the electrostatic

system we have to define all the magnetic quantities

afresh, and if we use the electromagnetic system we have

to re-define all the electrical ones 1
.

This system is however never used in practice; the

electromagnetic system or one founded upon it is uni

versally used in Electrical Engineering, and the electro

static system is used for special classes of investigations.

257. The units of resistance, of electromotive force,

of capacity on the electromagnetic system are either too

large or too small to be practically convenient : hence new-

units which are definite multiples or submultiples of the

electromagnetic units are employed. These units and their

relation to the electromagnetic system of units (when
the units of length, mass and time are the centimetre,

gramme and second) are given in the following table.

The unit of resistance is called the Ohm and is equal

to 10 electromagnetic units.

1 It should be noticed that it is only when the electromagnetic system

of units is used that magnetic induction has the meaning assigned

to it in Art. 153. If we use any system of units in which we start

from electrical quantities, the magnetic induction through unit area

appears as the quantity whose rate of variation is equal to p times the

electromotive force round the boundary of the area. The magnetic

induction defined in this way is always proportional to the magnetic

induction as defined in Art. 153. The two are however only identical

on the electromagnetic system of units. With the definition of Art. 153

the magnetic induction is of the same dimensions as magnetic force,

since they are both the mechanical force on a unit pole when placed in

cavities of different shapes.
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The unit of electromotive force is called the Volt and is

equal to 108

electromagnetic units.

The unit of current is called the Ampere and is equal

to 10&quot;
1

electromagnetic units.

The unit of charge is called the Coulomb and is equal

to 10&quot;
1

electromagnetic units.

The unit of capacity is called the Farad and is equal to

10~9

electromagnetic units.

The Microfarad is equal to 10~15

electromagnetic units.

The Ampere is the current produced by a Volt through
an Ohm.

We shall now proceed to explain the methods by
which the various electrical quantities can be measured in

terms of these units : when the quantity is so measured it

is said to be determined in absolute measure.

258. Determination of a Resistance in Absolute

Measure. The method given in Art. 226 enables us

to compare two resistances, and thus to find the ratio

of any resistance to that of an arbitrary standard such as

the resistance of a column of mercury of given length and

cross section when at a given temperature. In order to

make use of the electromagnetic system of units we must

find the number of electromagnetic units in our standard

resistance, or what amounts to the same thing we must

be able to specify a conductor whose resistance is the

electromagnetic unit of resistance.

The first method we shall describe, that of the re

volving coil, was suggested by Lord Kelvin, and carried

out by a committee of the British Association, who were

the first to measure a resistance in absolute measure. The

302
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method was also one of those used by Lord Rayleigh
and Mrs Sidgwick in their determination of the Ohm.

When a coil of wire spins about a vertical axis in the

earth s magnetic field, currents are generated in the coil
;

these currents produce a magnetic force at the centre

of the coil. If a magnet is placed at the centre of the

coil, this magnetic force gives rise to a couple on the

magnet tending to twist the magnet in the direction in

which the coil is rotating. The resistance of the coil may
be deduced from the deflection of the magnet as follows.

Let H be the horizontal component of the earth s

magnetic force, A the area enclosed by one turn of the

coil, n the number of turns, 9 the angle the plane of

the coil makes with the magnetic meridian
;

let the coil

revolve with uniform velocity &&amp;gt;,
so that we may put

= at.

The number of tubes of magnetic induction passing

through the coil is equal to

nAH sin 6,

and the rate of diminution of this is

nAHco cos cot.

Hence, if L is the coefficient of self-induction of the

coil, R its resistance, and i the current flowing through the

coil, the current being taken as positive when the lines of

magnetic force due to the current and those due to the

earth pass through the circuit in the same direction,we have

L -y- + Ri = nAHco cos cot.

dt

Hence, as in Art. 237, we have

nAHco fr)
,

i = [R cos cot + Leo sin
a&amp;gt;t\.~
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Now if unit current through the coil produces a mag
netic force G at the centre, the current i through the coil

will produce a magnetic force Gi cos cot at right angles to

the magnetic meridian, and a force Gi sin cot along the

magnetic meridian, since 6 = cot. Hence the magnetic
force due to the currents in the coil has a component

nAHGcoR nAHGco , D r-
{R cos 2arf + Lo&amp;gt; sm

at right angles to the magnetic meridian
;
and a component

nAHGLco2 nAHGco
2 (JP + ) 2

along the magnetic meridian.

Now suppose we have a magnet at the centre of the coil,

and let the moment of inertia of this magnet be so great

that the time of swing is very large compared with the

time of revolution of the coil. The magnetic force acting

on the magnet due to the current induced in the coil

consists, as we see, of two parts, one constant, the other

periodic, the frequency being twice that of the revolution

of the coil. By making the moment of inertia of the

magnet great enough we may make the effect of the

periodic terms as small as we please ;
we shall suppose

that the magnet is heavy enough to allow us to neglect

the effect of the periodic terms; when this is done the

magnetic force at the centre has a component equal to

nAHGcoR
2 (tt* + ft&amp;gt;

2Z2

)

at right angles to the magnetic meridian, and one equal to

nAHGLco*~

along it.
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Hence if $ is the angle the axis of the magnet at the

centre of the coil makes with the magnetic meridian,

1 nAHGwR
- 2

~

~^|
1 nAGcoR

or tancf&amp;gt;= -
1 nAGLfaP

I
^^^_______

This equation enables us to find R
}
as A, G, L can be

calculated from the dimensions of the rotating coil. When
Leo is small compared with R the equation reduces to

the simple form
1 nAGa)

When the coil consists of a single ring of wire of

radius a, n = 1, A = Tra2
,
G = 2?r/a ;

hence

Thus by this method we compare R, which, by Art. 256,

is of the dimensions of a velocity, with the velocity of a

point on the spinning coil.

The preceding investigation is only approximate as

we have neglected the magnetic field due to the magnet

placed at the centre of the ring.

259. Lorenz s Method. This was also one of the

methods used by Lord Rayleigh and Mrs Sidgwick in

their determination of the Ohm. It depends upon the

principle that if a conducting disc spins in a magnetic

field which is symmetrical about the axis of rotation, and

if a circuit is formed by a wire, one end of which is



259] DIMENSIONS OF ELECTRICAL QUANTITIES 471

connected to the axis of rotation while the other end presses

against the rim of the disc, an electromotive force propor

tional to the angular velocity will act round the circuit.

We can determine this electromotive force by finding

the couple acting on the disc when a current flows round

this circuit.

Let / be the current flowing through the wire. When
this current enters the disc at its centre it will spread

out
;
let q be the radial current crossing unit length of the

circumference of a circle of radius r at the point defined by
0. Let rdr dO be an element of the area of the disc. The

radial current flowing through this area is equal to qrdd.

Hence by Art. 214, if H is the magnetic force normal to

the disc at this area, the tangential mechanical force

acting on the area is equal to Hqrdr dQ. The moment of

this force about the axis of the disc is equal to

hence the couple acting on the disc is equal to

r

Hqr*drd0,jJ

the integration being extended over the area of the disc.

Since the current flowing across a circle drawn on the

disc, with its centre at the centre of the disc, must equal

the current I flowing into the disc, we have

Since the magnetic field is symmetrical about the axis

of rotation, H is independent of 6, hence the couple acting

on the disc is equal to

IJHrdr.
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If N be the number of tubes of magnetic induction

passing through the disc

and thus the couple acting on the disc is equal to

1

Now suppose there is a battery whose electromotive

force is E in the circuit, then in the time St the work
done by the battery is EIt\ this work is spent in heating
the circuit and in driving the disc. The angle turned

through by the disc in this time is wbt, if co is the angular

velocity of the disc
;
hence the mechanical work done is

equal to

2^
INo) St.

By Joule s law the mechanical equivalent of the heat

produced in the circuit is equal to

where R is the resistance of the circuit. Hence we have

by the Conservation of Energy

ERt = Rl^t +~ INn&t,
ZTT

/=

hence there is a counter-electromotive force in the circuit

equal to
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This case illustrates the remark made on page 394,

since from Ampere s law of the mechanical force acting on

currents on a magnetic field we have deduced, by the aid

of the principle of the Conservation of Energy, the expres

sion for the electromotive force due to induction, and have

thus proved by dynamical principles that the induction of

currents is a consequence of the mechanical force exerted

by a magnet on a circuit conveying a current.

In Lord Rayleigh s experiments, the disc was placed

between two coils through which a current passed, and

the axis of the disc and of the two coils were coincident.

The magnetic field acting on the disc may be considered

as approximately that due to the current through the coils,

as this field is very much more intense than that due to

the earth. Hence if i is the current through the coils,

M the coefficient of mutual induction between the coils

and a circuit coinciding with the rim of the disc,

N=Mi.

So that the electromotive force due to the rotation of the

disc is

Mica

~2^

The experiment was arranged as in the diagram, Fig.

1 24
;
a galvanometer was placed in the circuit connecting

the centre of the disc and the rim, and this circuit was

connected to two points P, Q in the circuit in series with

the coils, and the resistance between P and Q was adjusted

until no current passed through the galvanometer. If R
is the resistance between P and Q, and if a current i flows

through PQ the E.M.F. between P and Q will be Ei, but,

since there is no current through the galvanometer, this



474 DIMENSIONS OF ELECTRICAL QUANTITIES [CH. XII

balances the electromotive force due to the rotation of the

disc; hence

P . _ Miw=^T
T&amp;gt;

MM
or R =

.

Fig. 124.

Since M can be calculated from the dimensions of the

coil and the disc, this formula gives us R in absolute

measure.

260. The method given in Art. 251 for determining a

coefficient of mutual induction in terms of a resistance may
be used to determine a resistance in absolute measure. If

we use a pair of coils whose coefficient of mutual induction

can be determined by calculation, then equation (2) of

Art. 251 will give the absolute measure of a resistance.

This method has been employed by Mr Glazebrook.

The result of a large number of experiments made by
the preceding methods is that the Ohm is the resistance

at C. of a column of mercury 106 3 cm. long and 1 sq.

millimetre in cross section.

For a comparison of the relative advantages of the

preceding methods the student is referred to a paper by
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Lord Rayleigh in the Philosophical Magazine for November,
1882.

261. Absolute Measurement of a Current. A
current may be determined by measuring the attraction

between two coils placed in series with each other and

with their planes parallel and at right angles to the line

joining their centres. If i is the current through the

coils, M the coefficient of mutual induction between the

coils, x the distance between their centres, the attraction

between the coils is equal to

dM
.,

--T-**.
dx

By attaching one of the coils to the scale-pan of a

balance and keeping the other fixed we can measure this

force, and hence if we calculate dMjdx from the dimensions

of the coils we can determine i in absolute measure.

The unit current is very conveniently specified by the

amount of silver deposited from a solution of silver nitrate

through which this current has been flowing for a given
time.

Lord Rayleigh found that the Ampere is the current

which flowing uniformly for one second would cause the

deposition of 001118 gramme of silver.

262. The unit electromotive force is that acting on a

conductor of unit resistance when conveying unit current.

A practical standard of electromotive force is the Clark

cell (Art. 183), whose electromotive force at t Centigrade
is equal to

1-434 {i
_ -00077 (*

-
15)} volts.

263. Ratio of Electrostatic and Electromag
netic Units. The table given on page 460 shows that
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the ratio of the measure of any electrical quantity on the

electrostatic system of measurement to the measure of the

same quantity on the electromagnetic system, is always
some power of a certain quantity which we denoted by
&quot;v&quot; and which is the ratio of the electromagnetic unit

of electric charge to the electrostatic unit.

The measurement of the same electrical quantity on

the two systems of units will enable us to find u/
y.&quot; The

quantity which has most frequently been measured with

this object is the capacity of a condenser. The electro

static measure of the capacity can be calculated from

the dimensions of the condenser; thus the electrostatic

measure of the capacity of a sphere is equal to its radius
;

the capacity of two concentric spheres of radii a and b is

ab/(b a); the capacity of two coaxial cylinders of length I,

radii a and b, is %1/log b/a. Thus if we choose a condenser

of suitable shape the electrostatic measure can be calculated

from its dimensions.

The electromagnetic measure can be determined by the

following method due to Maxwell. One of the arms AC of

a Wheatstone s Bridge is cut at P and Q (Fig. 125), one

plate of the condenser is connected to P, the other to a

vibrating piece R which oscillates backwards and forwards

between P and Q ;
when R comes into contact with Q the

condenser gets charged, when into contact with P it gets

discharged. The current through the galvanometer may
be divided into two parts. There is first a steady current

which flows through AD when no electricity is flowing into

the condenser, this we shall denote by y. Besides this there

is at times a transient current which flows while the con

denser is being charged. We shall suppose that each time

the condenser is being charged a quantity of electricity
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equal to Y flows through DA in the opposite direction to y.

Then if the condenser is charged n times a second the

amount which flows through the galvanometer owing to

the charging of the condenser is nY. If the time of swing

Fig. 125.

of the galvanometer needle is very long compared with

l/n of a second this will produce the same effect on the

galvanometer as a steady current whose intensity is nY

flowing from D to A. Thus if nY=y, the current due to

the repeated charging of the condenser will just balance

the steady current and there will be no deflection of the

galvanometer.

We now proceed to find Y. This is evidently equal to

the quantity of electricity which would flow from A to D
if there were no electromotive force in the wire BG and

the plates of the condenser with the greatest charge they

acquire in the experiment were connected to P and Q

respectively.

Let Z be the current from the condenser along PA
during the discharge, Y the current along AD, W the

current along BD. Let the resistances of AB, BG, GD,

DB, DA be c, a, 7, /3, a respectively. Let the coefficients
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of self-induction of these circuits be Z1} L.2 ,
L3 , L^, L6

respectively. Then from the circuit ABD, we have

tiff dZ] dW_
&quot;

\dt~Tt] P~dt~

Integrating from just before discharging until after the

condenser is completely discharged, and remembering that

both initially arid finally Y, Z, W vanish, we have

aY+c(Y-Z)-j3W = ............ (1),

where Y, Z, W are the quantities of electricity which have

passed during the discharge through AD, PA, and BD

respectively.

Similarly from the circuit DBG, we have

(/3 + 7-fa)F+(7 + a)F-a = ...... (2).

We find from equations (1) and (2)

Now Z is the maximum charge in the condenser;

hence if C is capacity of the condenser, and A and C
the potentials of A and C respectively when the charge

is a maximum, i.e. when no current is flowing into the

condenser,

Z=C{A-C}.
If y is the current flowing through AD when no

current is flowing in the condenser, and D denotes the

potential of D,

A - D = a,

.-. A-C=
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Hence by equation (3)

J+

But when there is no deflection of the galvanometer

nF = y;

hence

If we know the resistances and n, we can deduce from

this equation the value of C in electromagnetic measure.

In practice the resistance of the battery a is very small

compared with the other resistances, hence putting a = 0,

we find that approximately

1 +
cy \ 7 (a

By this method we find the electromagnetic measure

of the capacity of a condenser; the electrostatic measure

can be found from its dimensions.

Now by Art. 255

electrostatic measure of a condenser

electromagnetic measure of the same condenser

Experiments made by this method show that

v 3 x 10 10

cm./sec. very nearly.



CHAPTER XIII

DIELECTRIC CURRENTS AND THE ELECTROMAGNETIC
THEORY OF LIGHT

264. The Motion of Faraday Tubes. Dielectric

Currents. In Chapter XL we considered the relation

between the currents in the primary and secondary circuits

when an alternating current passes through the primary

circuit,we did not however discuss the phenomena occurring

in the dielectric between the circuits. As we regard the

dielectric as the seat of the energy due to the distribution

of the currents, the study of the effects in the dielectric

is of primary importance. We owe to Maxwell a theory,

now in its main features universally accepted, by which

we are able to completely determine the electrical con

ditions, not merely in the conductors but also in every

part of the field. We shall also see that Maxwell s

views lead to a comprehensive theory of optical as well

as of electrical phenomena, and enable us by means of

electrical principles to explain the fundamental laws of

Optics.

Before specifying in detail the principles of Maxwell s

theory, we shall endeavour to show by the consideration of

some simple cases that in considering the relation between

the work done in taking unit magnetic pole round a closed
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circuit and the current flowing through that circuit

(see Art. 203), we must include under the term current,

effects other than the passage of electricity through con

ducting media, if we are to retain the conception that

the dielectric is the seat of the energy in electric and

magnetic phenomena.

Let us consider the case of a long, straight, cylindrical

conductor carrying an alternating electric current. In

the dielectric around this wire there is a magnetic field,

and, according to the views enunciated in Art. 163, there

is in a unit volume of the dielectric at a place where the

magnetic force is H an amount of energy equal to /j,H
2

/87r.

As the alternating current changes in intensity, the energy
in the surrounding field changes, and this change in the

energy must be due to the motion of energy from one part

of the field to another, the energy moving radially towards

or away from the wire conveying the current. If the

dielectric medium possesses inertia, and if its properties

in any way resemble those of any kind of matter with

which we are acquainted, the energy cannot travel from

one place to another with an infinite velocity.

As the alternating current changes, the energy in the

field will change also
;
when the current is passing through

its zero value, it is evident that the magnetic energy
cannot now vanish throughout the field, for we assume

that the energy travels at a finite rate, and it is only a

finite time since the current was finite. If the magnetic

energy did vanish it would imply that the energy could

travel over a distance, however great, in a finite time.

If, however, the magnetic energy does not vanish simul

taneously all over the field, there must be places where

T. E, 31
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the magnetic force does not vanish. But the current

through the conductor vanishes and there are no magnetic
substances in the field. Hence we conclude that unless

we assume that the energy in the magnetic field can

travel from one place to another with an infinite velocity,

we must admit that in a variable field magnetic forces

can arise apart from magnets or electric currents through
conductors.

265. Let us now see if we can find any clue as to what

produces the magnetic field under these circumstances.

Let us consider the following simple case. Let A, B

(Fig. 126) be two vertical metal plates forming a parallel

Fig. 126.

plate condenser, and let the upper ends of these plates be

connected by a wire of high resistance. Suppose that

initially the plate A is charged with a uniform distribution

of positive electricity while B is charged with an equal

distribution of negative electricity. If the plates are dis

connected, horizontal Faraday tubes at rest will stretch

from one plate to the other. When the plates are

connected by the wire the horizontal Faraday tubes will

move vertically upwards towards the wire. Let v be the

velocity of these tubes, and a the surface density of the
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electricity on the plates, then the upward current passing
across unit length in the plate A and the downward

current in B are equal to vcr. By Art. 209 these currents

will produce a uniform magnetic field between the plates,

the magnetic force being at right angles to the plane
of the paper and its magnitude equal to ^TTVCT. If N is

the number of Faraday tubes passing through unit area

of a plane in the dielectric parallel to the plates of the

condenser N =
&amp;lt;r. Thus the magnetic force between the

planes is equal to 4&amp;lt;7rNv. The condition of things between

the plates is such that we have the Faraday tubes moving
at right angles to themselves, and that we have also a

magnetic force at right angles both to the Faraday tubes

and to the direction in which they are moving ;
while the

intensity of this force is equal to 4?r times the product
of the number of tubes passing through unit area and the

velocity of these tubes.

Let us now see what are the consequences of gene

ralizing this result, and of supposing that the relation

between the magnetic force and the Faraday tubes which

exists in this simple case is generally applicable to all

magnetic fields. Suppose then that whenever we have

movements of the Faraday tubes we have magnetic force

and conversely, and that the relation between the magnetic
force and the Faraday tubes is that the magnetic force

is equal to 4?r times the product of the polarization

(Art. 70) and the velocity of the Faraday tubes at right

angles to the direction of polarization ;
and that the direc

tion of the magnetic force is at right angles to both the

direction of polarization and the direction in which the

Faraday tubes are moving.

312
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We shall begin by considering what on this view is

the physical meaning of H x 00
, where 00 is a line so

short that the magnetic force may be regarded as constant

along its length, and H1

is the component of the magnetic
force along 00 .

Let OA (Fig. 127) represent in magnitude and direction

the velocity of the Faraday tubes, and OP the polarization ;

then if OB represents the magnetic force, OB will be at

right angles to OA and OP and equal to

4&amp;lt;7r.OA. OP sin 0,

where &amp;lt; is the angle POA. The component H1

of the

magnetic force along 00 will be

4&amp;lt;7r.OA. OP sin
&amp;lt;/&amp;gt;

cos 0,

where 6 is the angle BOO . Thus we have

H x 00 = ^7r.OA.OP. 00 sin
(/&amp;gt;

cos

= 247rA (1),

where A is the volume of the tetrahedron three of whose

sides are OA, OP, 00 .
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Let us now find the number of Faraday tubes which

cross 00 in unit time. To do this, draw 00 and O D
equal and parallel to AO, OA being the velocity of the

Faraday tubes. Then the number of tubes which cross

00 in unit time is the number of tubes passing through
the area OCDO .

The area of the parallelogram 00DO is equal to

OA x 00 smAOO .

The number of tubes passing through it is therefore

OPxsmO xOA xOO smAOO (2),

where 6 is the angle between OP and the plane of the

parallelogram OCDO
,

this is the same as the angle

between OP and the plane AOO . But

6A = OP x sin & x A x 00 sin AOO
,

where A as before is the volume of the tetrahedron POO A.

Hence from (1) and (2) we see that

H x 00 = 4-7T (number of Faraday tubes crossing 00 in

unit time).

Thus IH ds where the integral is taken round a closed

curve is equal to 4?r times the number of tubes which pass

inwards across the curve in unit time.

In Art. 203 iH ds was taken as equal to 4?r times the

currents flowing through the space enclosed by the curve,

and the only currents discussed in that article were

currents flowing through conductors : we shall now con

sider what interpretation we must attach to the new

expression we have just found for IH ds.
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In the first place, any tube which in unit time passes

inwards across one part of the curve and outwards across

another part, will not contribute anything to the total

number of tubes passing across the closed curve, for its

contribution when it passes inwards is equal and opposite
to its contribution when it passes outwards. Hence all

the tubes we need consider are those which only cross

the curve once, which pass inwards across the curve and

do not leave it within unit time. These tubes may be

tube

tube

Fig. 128.

divided into two classes, (1) those which remain within

the curve, (2) those which manage to disappear without

again crossing the boundary. The first set will increase the

total polarization over any closed surface bounded by the

curve, and the number of those which cross the boundary
in unit time is equal to the rate of increase in this total

polarization. The existence of the second class of tubes

depends upon the passage of conductors, or of moving

charged bodies, through the area bounded by the curve.
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Thus suppose we have a metal wire passing through the

circuit, then the tubes which cross the boundary may run

into this wire and be annulled, the disappearance of each

unit tube corresponding to the passage of unit electricity

along the wire
;
or a tube might have one end on the wire

and cross the circuit, its end running along the wire
;
the

passage of such a tube across the boundary means the pas

sage of a unit of electricity along the wire
; again, one end

of a tube might be on a charged body which moves through
the circuit. Thus the number of tubes of class (2) which

cross the circuit in unit time is equal to the number of

units of electricity which pass in that time along conductors

or on charged bodies passing through the circuit, i.e. it is

equal to the sum of the conduction and convection currents

flowing through the circuit.

Hence the work done when unit pole is taken round a

closed circuit is equal to 4?r times the sum of the conduction

and convection currents flowing through that circuit plus

the rate of increase of the total polarization through the

circuit. From this we see that a change in the polariza

tion through the circuit produces the same magnetic effect

as a conduction current whose intensity is equal to the

rate of increase of the polarization. We shall call the

rate of increase in the polarization the dielectric current.

The recognition of the magnetic effects due to these

dielectric currents is the fundamental feature of Maxwell s

Theory of the Electric Field. We have given a method

of regarding the magnetic field which leads us to expect

the magnetic effects of dielectric currents. It must be

remembered, however, Maxwell s Theory consists in the

expression of this result and is not limited to any particular

method of explaining it.
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266. Propagation of Electromagnetic Disturb

ances. We shall now proceed to show that Maxwell s

Theory leads to the conclusion that an electric disturbance

is propagated through air with the velocity of light.

We can employ the equations we deduced in Art. 234,

if we regard u, v, w the components of the current, as the

components of the sum of the dielectric, convection, and

conduction currents. If X, F, Z are the components of the

electric intensity, andK its specific inductive capacity, then

the x, y, z components of the polarization are respectively

the components of the dielectric currents are therefore

K^dX^ I^dY K^dZ
4&amp;lt;7r dt 4?r dt 4?r ~dt

If cr is the specific resistance of the medium, the

components of the conduction current are

X Y Z
a a 1 a

Hence u, v, w the components of the total effective

current are given by the equations

_%idXL X
U
~^TT dt

+
a-

Y
=

47T dt
+

O-

K dZ ZW= T- -j7 + -
4-7T dt cr

Hence substituting these values of u, v, w in the equa
tions of Art. 234 we get, using the notation of that Article,
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4w 4^-=
r dt

i j.L dZ
4?H-; 7T

266]

the following equations as the expression of Maxwell s

Theory,
(K dX X\_dy d^

4?T -\
-j 77 | r -^ 7- ,

(4?r dt a) dy dz

Y\ da.
__ dy

a]~dz dx

Z\_dj3_da.
a)

~
dx dy

_da,_dZ_dY
dt dy dz

_db_dX _dZ^
dt dz dx

_dc = dY_dX
dt

~
dx dy

Let us now consider the case of a dielectric for which

o- is infinite, so that all the currents are dielectric currents
;

putting a infinite in the preceding equations, and a = pa,

b = /A/3, c = py, we get

(1),

,TdX dyK =- = -=

dt dy

rrdY da.
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Differentiating the first equation in (1) with respect

to t, we get
d*X _ d dy d d/3

~di?
~

dy~di ~dz dt

Substituting the values of dy/dt, d/3/dt, and noticing

that by (1)

^

dx dy dz

is independent of the time, we get

We may by a similar process get equations of the same

form for Y, Z, a, b, c.

To interpret these equations let us take the simple

case when the quantities are independent of the coordi

nates x
y y. Equation (3) then takes the form

If we put

and change the variables from z and t to f and rj, we get

The solution of which is

where F and/ denote any arbitrary functions.
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Since F (z t/^/pK) remains constant as long as

z /VpK is constant, we see that if a point travels along
the axis of z in the positive direction with the velocity

l/VyLL&r, the value of F(z t/^^K) will be constant at this

point. Hence the first term in equation (5) represents a

value of X travelling in the positive direction of the axis

of z with the velocity 1/V^K. Similarly the second term

in (5) represents a value of X travelling in the negative

direction along the axis of z with the velocity l/VyuJfT.

For example, suppose that when t 0, X is zero except
between z=+e, z e where it is equal to unity, and

suppose further that dX/dt is everywhere zero when t = 0.

Then equation (5) shows that after a time t

X = between z = -=== - e, and z = -== + e,

and between z --7= e, and z = --:= +

and is zero everywhere else. Thus the quantity repre
sented by X travels through the dielectric with the

velocity

It is shown in treatises on Differential Equations that

equation (3), the general form of the equation (4), represents

a disturbance travelling with the velocity l/V/iJT.

Thus Maxwell s Theory leads to the result that electric

and magnetic effects are propagated through the dielectric

with the velocity l/V/Aj&T.

Let us see what this velocity is when the dielectric is

air. Using the electromagnetic system of units we have
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for air /*= 1, K ,
where v is the ratio of the electro

magnetic unit of electricity to the electrostatic unit

(Art. 255). Hence on Maxwell s Theory electric and

magnetic effects are propagated through air with the

velocity &quot;v&quot; Now experiments made by the method

described in Art. 263 lead to the result that, within the

errors of experiment, v is equal to the velocity of light

through air. Hence we conclude that electromagnetic
effects are propagated through air with the velocity of light.

This result led Maxwell to the view that since light travels

with the same velocity as an electromagnetic disturbance,

it is itself an electromagnetic phenomenon ;
a wave of light

being a wave of electric and magnetic disturbances.

267. Plane Electromagnetic Waves. Let us con

sider more in detail the theory of a plane electric wave.

If/, g, h are the components of the electric polarization in

such a wave, I, m, n the direction cosines of the normal to

the wave front, and X the wave length, then we may put

/= / cos --
(Ix + my+nz- Vt),

2-7T

g = g cos (Ix + my + nz- Vt),
A.

h = hQ cos (Ix + my + nz Vt) ,

A,

where V is the velocity of propagation of the wave, and

fo&amp;gt; 9o&amp;gt;

h quantities independent of x, y, z or t. Since

df dq dh
-J-

_|
2.

_|

dx dy dz

we have If + mg + nh =
0,

and therefore lf+mg + nh = 0.
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Thus the electric polarization is perpendicular to the

direction of propagation of the wave.

By equation (2), Art. 266, we have

= dZdY
dt

and

= _
dt dy dz

Hence

da 4-7T 2?r , , , . 2-Tr /7 Tr .= - {mh
-
ng ]

sin (Ix+my + nz- Vt),

g
- mh ) cos (las + my + nz- Vt) ;

or snce

a = 4nrV(ng mh) ;

similarly ^ = ^irV(lh nf),

7 =4&amp;gt;7rV(mf-lg).

Hence la + m/3 + ny = 0,

so that the magnetic force is at right angles to the

direction of propagation of the wave, and since

the magnetic force is perpendicular also to the electric

polarization.

Since {a
2 + /3

2 + 7
2

}*
= 4-TrF f/

2 + #
2 + A2

),

the resultant magnetic force is 4vrF times the resultant

electric polarization.

Hence in a plane electric wave, and therefore on

Maxwell s Theory in a plane wave of light, there is in
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the front of the wave an electric polarization, and at

right angles to this, and also in the wave front, there is a

magnetic force bearing a constant ratio to the polarization.

We shall see in Art. 270 that in a plane polarized light

wave the electric polarization is at right angles to, and

the magnetic force in, the plane of polarization.

In strong sunlight the maximum electric intensity is

about 10 volts per centimetre, and the maximum magnetic
force about one-fifth of the horizontal magnetic force due

to the earth in England.

268. Propagation by the Motion of Faraday
Tubes. The results obtained by the preceding analysis
follow very simply from the view that the magnetic force

A B
Fig. 129.

is due to the motion of the Faraday tubes. The electro

motive force round a circuit moving in a magnetic field

is
eo^ual

to the rate of diminution of the number of tubes
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of magnetic induction passing through the circuit. Thus

let P, Q (Fig. 129) be two adjacent points on a circuit, P , Q
the positions of these points after the lapse of a time St.

Then the diminution in the time Bt of the number of

tubes of magnetic induction passing through the circuit

of which PQ forms a part may, as in Art. 136, be shown

to be equal to the number of tubes which pass through
the sum of the areas PP Q Q. The number passing

through PP Q Q is equal to

PQxPP x 5 sin sin 0,

where B is the magnetic induction, $ the angle it makes

with the plane PP Q Q, and 6 the angle between PP and

PQ. If V is the velocity with which the circuit is moving
PP = V8t. Thus the rate of diminution in the number

of tubes passing through the circuit is

2PQ . VB sin $ sin 0.

Hence we may regard the electromotive force round

the circuit as equivalent to an electric intensity at each

point P of the circuit whose component along PQ is equal
to VB sin &amp;lt; sin 9. As the component of this intensity

parallel to B and V vanishes, the resultant intensity is

at right angles to B and V and equal to

where ^r is the angle between B and V. In this case

the circuit was supposed to move, the tubes of induction

being at rest
;
we shall assume that the same expression

holds when the circuit is at rest and the tubes of mag
netic induction move with the velocity V across an element

of the circuit at rest.

Let us now introduce the view that the magnetic force

is due to the motion of the Faraday tubes. Let A (Fig.
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130) represent the velocity of the Faraday tubes, OP the

electric polarization, and OB the magnetic induction, which

Fig. 130.

in a non-crystalline medium is parallel to the magnetic
force and therefore (see page 483) at right angles to OP
and OA. By what we have just proved the electric in

tensity is at right angles to OB and OA, and therefore

along OC. Now in a non-crystalline medium the electric

intensity is parallel to the electric polarization; hence

OP and 00 must coincide in direction
;
thus the Faraday

tubes move at right angles to their length.

Again, if E is the electric intensity, by what we have

just proved
E = BV. ....................... (1).

But if H is the magnetic force, //,
the magnetic permea

bility,

and by Art. 265
H

where P is the electric polarization.

(2),
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Hence by (1) and (2)

IfK is the specific inductive capacity of the dielectric

hence we have F2 =
1/yuJJT.

The tubes therefore move with

the velocity 1/A///JT at right angles to their length.

269. Evidence for Maxwell s Theory. We shall

now consider the evidence furnished by experiment as to

the truth of Maxwell s theory.

We have already seen that Maxwell s theory agrees

with facts as far as the velocity of propagation through
air is concerned. We now consider the case of other

dielectrics.

The velocity of light through a non-magnetic dielectric

whose specific inductive capacity is K is on Maxwell s

theory equal to I/VX

Hence

velocity of light in this dielectric

velocity of light in air

specific inductive capacity of air

specific inductive capacity of dielectric

But by the theory of light this is also equal to

1

n

T. E. 32
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where n is the refractive index of the dielectric. Hence

on Maxwell s theory

7i
2 = electrostatic measure of the specific inductive capacity.

In comparing the values of n2 and K we have to re

member that the electrical conditions under which these

quantities are on Maxwell s theory equal to one another,

are those which hold in a wave of light where the electric

intensity is reversed millions of millions of times per

second. We have at present no means of directly measur

ing K under these conditions.

To make a fair comparison between n2 and K we ought
to take the value of K determined for electrical oscilla

tions of the same frequency as those of the vibrations of

the light for which n is measured. As we cannot find K
for vibrations as rapid as those of the visible rays, the

other alternative is to use the value of n for waves of very

great wave length ;
we shall call this value n^.

The process by which n^ is obtained is not however

very satisfactory. Cauchy has given the formula

connecting n with the wave length X,which holds accurately
within the limits of the visible spectrum, unless the refract

ing substance is one which shows the phenomenon known
as anomalous dispersion. To find nm we apply this em

pirical formula to determine the refractive index for waves

millions of times the length of those used to determine

the constants A, B, C which occur in the formula. For

these reasons we should expect to find cases in which K
is not equal to ri^, but though these cases are numerous

there are many others in which K is approximately equal
to r. A list of these is given in the following table :
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Name of Substance K ri^

Paraffin 2 29 2 022

Petroleum spirit T92 T922

Petroleum oil 2 07 2 075

Ozokerite 213 2 086

Benzene 2 38 2 2614*

Carbon bisulphide 2 67 2 678*

As examples where the relation does not hold, we
have

Glass (extra dense flint) 101 2 924*

Calcite (along axis) 7 5 2 197*

Quartz (along optic axis) 4 55 2*41*

Distilled water 76 1-779*

Sir James Dewar and Professor Fleming have shown
that the abnormally high specific inductive capacities of

liquids such as water, disappear at very low temperatures,
the specific inductive capacities at such temperatures

becoming comparable with the square of the refractive

index.

Maxwell s Theory of Light has been developed to a

considerable extent and the consequences are found to

agree well with experiment. In fact the electromagnetic
is the only theory of light yet advanced in which the

difficulties of reconciling theory with experiment do not

seem insuperable.

270. Hertz s Experiments. The experiments made

by Hertz on the properties of electric waves, on their

* These are the values of w 2 where n is the refractive index for

sodium light.

322



500 DIELECTRIC CURRENTS [CH. XIII

reflection, refraction, and polarization, furnish perhaps the

most striking evidence in support of Maxwell s theory,

as it follows from these experiments that the properties

of these electric waves are entirely analogous to those

of light waves. We regret that we have only space

for an exceedingly brief account of a few of Hertz s

beautiful experiments; for a fuller description of these

and other experiments on electric waves with their

bearings on Maxwell s theory, we refer the reader

to Hertz s own account in Electrical Waves and to

Recent Researches in Electricity and Magnetism by
J. J. Thomson.

We saw in Art. 245 that when a condenser is dis

charged by connecting its coatings by a conductor, elec

trical oscillations are produced, the period of which is

approximately 2?r \/LC where C is the capacity of the

condenser, and L the coefficient of self-induction of the

circuit connecting its plates. This vibrating electrical

system will, on Maxwell s theory, be the origin of elec

trical waves, which travel through the dielectric with the

velocity Vand whose wave length is 2?rF V LC. By using

condensers of small capacity whose plates were connected

by very short conductors Hertz was able to get electrical

waves less than a metre long. This vibrating electrical

system is called a vibrator.

Hertz used several forms of vibrators
;
the one used

in the experiment we are about to describe consists of two

equal brass cylinders placed so that their axes are coinci

dent. The two cylinders are connected to the two terminals

of an induction coil. When this is in action sparks

pass between the cylinders. The cylinders correspond to
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the plates of the condenser, and the air between the

cylinders (whose electric strength breaks down when
the spark passes) to the conductor connecting the plates.

The length of each of these cylinders is about 12 cm.,

and their diameters about 3 cm.
;
their sparking ends are

well polished.

To detect the presence of the electrical waves, Hertz

used a very nearly closed metallic circuit, such as a piece
of wire, bent into a circle, the ends of the wire being ex

ceedingly close together. When the electric waves strike

against this detector very minute sparks pass between

the terminals
;
these sparks serve to detect the presence

of the waves. Recently Sir Oliver Lodge has introduced

a still more sensitive detector. It is founded on the fact

discovered by Branly that the electrical resistance of a

number of metal turnings, placed so as to be loosely in

contact with each other, is greatly affected by the impact
of electric waves, and that all that is necessary to detect

these waves is to take a glass tube, fill it loosely with iron

turnings, and place the tube in series with a battery and

a galvanometer. When the waves fall on the tube its

resistance, and therefore the deflection of the galvano

meter, is altered.

The analogy between the electrical waves and light
waves is very strikingly shown by Hertz s experiments
with parabolic mirrors.

If the vibrator is placed in the focal line of a parabolic

cylinder, and if the Faraday tubes emitted by it are

parallel to this focal line
;
then if the laws of reflection

of these electric waves are the same as for light waves,
the waves emitted by the vibrator will, after reflection
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from the cylinder, emerge as a parallel beam, and will

therefore not diminish in intensity as they recede from

the mirror. When such a beam falls on another parabolic

cylinder, the axis of whose cross section coincides with

the axis of the beam, it will be brought to a focus on the

focal line of the second mirror.

The parabolic mirrors used by Hertz were made of

sheet zinc, and their focal length was about 12*5 cm.

The vibrator was placed so that the axes of the cylin

ders coincided with the focal line of one of the mirrors.

The detector, which was placed in the focal line of an

equal parabolic mirror, consisted of two pieces of wire
;

each of these wires had a straight piece about 50 cm.

long, and was then bent at right angles so as to pass

through the back of the mirror, the length of the bent

piece being about 15 cm. The ends of the two pieces

coming through the mirror were bent so as to be exceed

ingly near to each other. The sparks passing between

these ends were observed from behind the mirror. The

mirrors are represented in Fig. 131.

J
1

Fig. 131.
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Reflection of Electric Waves.

To show the reflection of these waves the mirrors were

placed side by side so that their openings looked in the same

direction and their axes converged at a point distant about

3 metres from the mirrors. No sparks passed between the

points of the detector when the vibrator was in action. If

however a metal plate about 2 metres square was placed
at the intersection of the axes of the mirrors, and at right

angles to the line which bisects the angle between the axes,

sparks appeared at the detector. These sparks however

disappeared if the metal plate was turned through a small

angle. This experiment shows that the electric waves are

reflected and that, approximately at any rate, the angle of

incidence is equal to the angle of reflection.

Refraction of Electric Waves.

To show the refraction of these waves Hertz used

a large prism made of pitch. This was about T5 metres

high, and it had a refracting angle of 30 and a slant side

of 1 2 metres. When the electric waves from the mirror

containing the vibrator passed through this prism, the

sparks in the detector were not excited when the axes of

the two mirrors were parallel, but sparks were produced
when the axis of the mirror containing the detector made
a suitable angle with that containing the vibrator. When
the system was adjusted for minimum deviation, the sparks
were most vigorous in the detector when the angle between

the axes of the mirrors was equal to 22. This would

make the refractive index of pitch for these electrical

waves equal to 1*69.
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Electric Analogy to a plate of Tourmalins.

If a properly cut tourmaline plate is placed in the

path of a plane polarized beam of light incident at right

angles on the plate, the amount of light transmitted

through the tourmaline plate depends upon its azimuth.

For one particular azimuth all the light will be stopped,
while for an azimuth at right angles to this the maximum
amount of light will be transmitted.

If a screen be made by winding metal wire round a

large rectangular framework so that the turns of the wire

are parallel to one pair of sides of the frame, and if this

screen be interposed between the mirrors when they are

facing each other with their axes coincident, then it will

stop the sparks in the detector when the turns of the wire

are parallel to the focal lines of the mirrors, and thus to the

Faraday tubes proceeding from the vibrator : the sparks
will however recommence if the framework is turned

through a right angle so that the wires are perpendicular
to the focal lines of the mirror.

If this framework is substituted for the metal plate
in the experiment on the reflection of waves, the sparks
will appear in the detector when the wires are parallel

to the focal lines of the cylinders and will disappear when

they are at right angles to them. Thus this framework

reflects but does not transmit Faraday tubes parallel to

the wires, while it transmits but does not reflect Faraday
tubes at right angles to them. It thus behaves towards

the transmitted electrical waves as a plate of tourmaline

does towards light waves. By using a framework wound
with exceedingly fine wires placed very close together
Du Bois and Rubens have recently succeeded in polarizing
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in this way radiant heat, whose wave length, though greater

than that of the rays of the visible spectrum, is exceedingly
small compared with that of electric waves.

Angle of Polarization.

When light polarized in a plane at right angles to the

plane of incidence falls upon a plate of refracting substance,

and the normal to the wave front makes with the normal

to the refracting surface an angle tan~1

/ct&amp;gt;
where

//.
is the

refractive index, all the light is refracted and none re

flected. When light is polarized in the plane of incidence

some of the light is always reflected.

Trouton has obtained a similar effect with electric

waves. From a wall 3 feet thick reflection was ob

tained when the Faraday tubes proceeding from the

vibrator were perpendicular to the plane of incidence,

while there was no reflection when the vibrator was
turned through a right angle so that the Faraday tubes

were in the plane of incidence. This proves that on

the electromagnetic theory of light we must suppose
that the Faraday tubes are at right angles to the plane
of polarization.

A very convenient arrangement for studying the

properties of electric waves is described in a paper by
Professor Bose in the Philosophical Magazine for January
1897.



CHAPTER XIV

THERMOELECTRIC CURRENTS

271. Seebeck discovered in 1821 that if in a closed

circuit of two metals the two junctions of the metals are

at different temperatures, an electric current will flow

round the circuit. If, for example, the ends of an iron

and of a copper wire are soldered together and one of the

junctions is heated, a current of electricity will flow round

the circuit
;
the direction of the current is such that the

current flows from the copper to the iron across the hot

junction, provided the mean temperature of the junctions
is not greater than about 600 Centigrade.

The current flowing through the thermoelectric circuit

represents a certain amount of energy, it heats the circuit

and may be made to do mechanical work. The question
at once arises, what is the source of this energy ? A dis

covery made by Peltier in 1834 gives a clue to the answer

to this question. Peltier found that when a current

flows across the junction of two metals it gives rise to

an absorption or liberation of heat. If it flows across

the junction in one direction heat is absorbed, while if it

flows in the opposite direction heat is liberated. If the

current flows in the same direction as the current at the
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hot junction in a thermoelectric circuit of the two metals

heat is absorbed; if it flows in the same direction as

the current at the cold junction of the circuit heat is

liberated.

Thus, for example, heat is absorbed when a current

flows across an iron-copper junction from the copper to

the iron.

The heat liberated or absorbed is proportional to the

quantity of electricity which crosses the junction. The
amount of heat liberated or absorbed when unit charge
of electricity crosses the junction is called the Peltier

Effect at the temperature of the junction.

Now suppose we place an iron-copper circuit with one

junction in a hot chamber and the other junction in a

cold chamber, a thermoelectric current will be produced

flowing from the copper to the iron in the hot chamber,
and from the iron to the copper in the cold chamber.

Now by Peltier s discovery this current will give rise

to an absorption of heat in the hot chamber and a libera

tion of heat in the cold one. Heat will be thus taken

from the hot chamber and given out in the cold. In this

respect the thermoelectric couple behaves like an ordinary

heat-engine.

272. The experiments made on thermoelectric currents

are all consistent with the view that the energy of these

currents is entirely derived from thermal energy, the

current through the circuit causing the absorption of heat

at places of high temperature and its liberation at places
of lower temperature. We have no evidence that any
energy is derived from any change in the molecular state
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of the metals caused by the passage of the current or

from anything of the nature of chemical combination

going on at the junction of the two metals.

Many most important results have been arrived at

by treating the thermoelectric circuit as a perfectly re

versible thermal engine, and applying to it the theorems

which are proved in the Theory of Thermodynamics to

apply to all such engines. The validity of this application

may be considered as established by the agreement be

tween the facts and the result of this theory. There are

however thermal processes occurring in the thermoelectric

circuit which are not reversible, i.e. which are not reversed

when the direction of the current flowing through the

circuit is reversed. There is the conduction of heat along
the metals due to the difference of temperatures of the

junctions, and there is the heating effect of the current

flowing through the metal which, by Joule s law, is pro

portional to the square of the current and is not reversed

with the current. Inasmuch as the ordinary conduction

of heat is independent of the quantity of electricity passing
round the circuit, and the heat produced in accordance

with Joule s law is not directly proportional to this

quantity, it is probable that in estimating the connection

between the electromotive force of the circuit, which is

the work done when unit of electricity passes round the

circuit, and the thermal effects which occur in it, we

may leave out of account the conduction effect and the

Joule effect and treat the circuit as a reversible engine.
If this is the case, then, as Lord Kelvin has shown, the

Peltier effect cannot be the only reversible thermal effect

in the circuit. For let us assume for a moment that the

Peltier effect is the only reversible thermal effect in the
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circuit. Let Pl be the Peltier effect at the cold junction

whose absolute temperature is Tl} so that Pl is the

mechanical equivalent of the heat liberated when unit of

electricity crosses the cold junction ;
let P2 be the Peltier

effect at the hot junction whose absolute temperature is

Tz ,
so that P2 is the mechanical equivalent of the heat

absorbed when unit of electricity crosses the hot junction.

Then since the circuit is a reversible heat-engine, we have

(see Maxwell s Theory of Heat)

work done when unit of electricity goes round the circuit
=

jp ^ .

*2~ -M

But the work done when unit of electricity goes round

the circuit is equal to E, the electromotive force in the

circuit, and hence

E-M-TJ.Z.

Thus on the supposition that the only reversible

thermal effects are the Peltier effects at the junctions,

the electromotive force round a circuit whose cold junction

is kept at a constant temperature should be proportional

to the difference between the temperatures of the hot

and cold junctions. Gumming, however, showed that

there were circuits where, when the temperature of the

hot junction is raised, the electromotive force diminishes

instead of increasing, until, when the hot junction is

hot enough, the electromotive force is reversed and the

current flows round the circuit in the reverse direc

tion. This reasoning led Lord Kelvin to suspect that

besides the Peltier effects at the junction there were
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reversible thermal effects produced when a current flows

along an unequally heated conductor, and by a laborious
series of experiments he succeeded in establishing the
existence of these effects. He found that when a current
of electricity flows along a copper wire whose tempera
ture varies from point to point, heat is liberated at any
point P when the current at P flows in the direction of

the flow of heat at P, i.e. when the current is flowing
from hot places to cold, while heat is absorbed at P
when the current flows through it in the opposite direc

tion. In iron, on the other hand, heat is absorbed at

P when the current flows in the direction of the flow

of heat at P, while heat is liberated when the current
flows in the opposite direction. Thus when a current

flows along an unequally heated copper wire it tends to

diminish the differences of temperature, while when it

flows along an iron wire it tends to increase those differ

ences. This effect produced by a current flowing along
an unequally heated conductor is called the Thomson
effect.

Specific Heat of Electricity.

273. The laws of the Thomson effect can be con

veniently expressed in terms of a quantity introduced by
Lord Kelvin and called by him the specific heat of the

electricity in the metal. If a- is this specific heat of

electricity, A and B two points in a wire, the temperatures
of A and B being respectively ^ and t

2&amp;gt;

and the difference

between ^ and t2 being supposed small, then a is defined

by the relation,

&amp;lt;r(A

-
2)
= heat developed in AB when unit of electricity

passes through AB from A to B.
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The study of the thermoelectric properties of con

ductors is very much facilitated by the use of the thermo

electric diagrams introduced by Professor Tait. Before

proceeding to describe them we shall enunciate two

results of experiments made on thermoelectric circuits

which are the foundation of the theory of these circuits.

The first of these is, that if El is the electromotive

force round a circuit when the temperature of the cold

junction is t and that of the hot junction tl} E2 the electro

motive force round the same circuit when the temperature
of the cold junction is t1} and that of the hot junction t2 ,

then El + E2 will be the electromotive force round the

circuit when the temperature of the cold junction is t
,

and that of the hot junction tz . It follows from this

result that E, the electromotive force round a circuit

whose junctions are at the temperatures t and ^, is

equal to

t

Qdt,

r

J

where Qdt is the electromotive force round the circuit

when the temperature of the cold junction is t ^dt,

and the temperature of the hot junction is t + ^dt. The

quantity Q is called the thermoelectric power of the

circuit at the temperature t.

The second result relates to the electromotive force

round circuits made of different pairs of metals whose

junctions are kept at assigned temperatures. It may
be stated as follows : If EAc is the electromotive force

round a circuit formed of the metals A, C, Esc that round

a circuit formed of the metals B, C, then EAC EBC is the

electromotive force acting round the circuit formed of the
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metals A and J5; all these circuits being supposed to work

between the same limits of temperature.

274. Thermoelectric Diagrams. The thermo

electric line for any metal (.A) is a curve such that the

ordinate represents the thermoelectric power of a circuit

of that metal and some standard metal (usually lead) at a

temperature represented by the abscissa. The ordinate is

taken positive when for a small difference of temperature
the current flows from lead to the metal A across the

hot junction.

It follows from Art. 273, that if the curves a and /3

represent the thermoelectric lines for two metals A and B,

then the thermoelectric power of a circuit made of the

metals A and B at an absolute temperature represented

by ON will be represented by RS, and the electromotive

force round a circuit formed of the two metals A and B

when the temperature of the cold junction is represented

by OL, that of the hot junction by OM, will be repre

sented by the area EFGH.

Let us now consider a circuit of the two metals A and

B with the junctions at the absolute temperatures OLl}

OL2) Fig. 133, where OL^ and OL2 are nearly equal. Then
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the electromotive force round the circuit (i.e. the work

done when unit of electrical charge passes round the

circuit) is represented by the area EHGF. Consider now
the thermal effects in the circuit. We have Peltier effects

Fig. 133.

at the junctions ; suppose that the mechanical equivalent

of the heat absorbed at the hot junction when unit of

electricity crosses from B to A it is represented by the area

P
l ,

let the mechanical equivalent of the heat liberated at

the cold junction be represented by the area P2 . There

are also the Thomson effects in the unequally heated

metals
; suppose that the mechanical equivalent of the

heat liberated when unit of electricity flows through the

metal A from the hot to the cold junction is represented

by the area Kl} and that the mechanical equivalent of

the heat liberated when unit of electricity flows through
B from the hot to the cold junction is represented by

T. E. 33
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the area Kz . Then by the First Law of Thermodynamics,
we have

&TeB,EFGH = P1 -Pi + Ka -K1 ......... (1).

The Second Law of Thermodynamics may be expressed
in the form that if H be the amount of heat absorbed

in any reversible engine at the absolute temperature t,

then

In our circuit the two junctions are at nearly the same

temperature, and we may suppose that the temperature
at which the absorption of heat corresponding to the

Thomson effect takes place is the mean of the tempera
tures of the junctions, i.e. \ (OL^ + OZ2 ).

Hence by the Second Law of Thermodynamics, we
have

Hence from (1) and (2) we get

areaEFGH = 1
j

A +A
J
(0L, - OLJ,

or since OL^ is very nearly equal to OLZ and therefore

is very nearly equal to P2) this gives approximately

area EFGH = (01*
- OL2).

UJui

But when OL^ is very nearly equal to OL2 ,
the area

so that
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thus P1 is represented by the area GHVU. Now Pl is

the Peltier effect at the temperature represented by OL1}

hence we see that at any temperature

Peltier effect = (thermoelectric power) (absolute

temperature),

or P=Qt,

where t is the absolute temperature.

By the definition of Art. 273 we see that if ^ is the

specific heat of electricity for the metal A, cr2 that for B,
then

K! - KZ = (o-i
- o-2) LJj^.

But by (1)

area EFGH = P, - P2 +- K, -Klt

and P1
= area GHVU,

P2
= area FEST.

Hence K^ - K2
= area SEEV - area TFGU

(tan 1 tan 2) OL^ x L2L1}

where lf 2 are the angles which the tangents at E and F
to the thermoelectric lines for A and B make with the axis

along which temperature is measured. Hence

o-i
-

&amp;lt;ra
= (tan 0!

- tan 2) 0A ............ (3).

When the temperature interval L^L^ is finite the areas

UGHV and FEST will still represent the Peltier effects at

the junctions, and the area TFGU the heat absorbed when
unit of electricity flows along the metal B from a place
where the temperature is OL2 to one where it is OL^

332
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The preceding results are independent of any assump
tion as to the shape of the thermoelectric lines. The
results of the experiments made by Professor Tait and

others show, that over a considerable range of tempera
tures, these lines are straight for most metals and alloys,

while Le Roux has shown that the specific heat of

electricity for lead is excessively small. Let us assume

that it is zero and suppose that the diagram represents
the thermoelectric lines of metals with respect to lead:

then since these lines are straight, is constant for any
metal and cr2 vanishes when it refers to lead, the value of

o- the specific heat of electricity in the metal is by (3)

given by the equation
&amp;lt;r
= tan . t,

where t denotes the absolute temperature.

The thermoelectric power Q of the metal with respect
to lead at any temperature t is given by the equation

Q = tan&amp;lt;9(- ),

where t is the absolute temperature where the line of

the metal cuts the lead-line
;

t is defined as the neutral

point of the metal and lead.

Let us consider two metals; let lt 2 be the angles

their lines make with the lead- line, and ^ and t2 their

neutral temperatures, then Ql and Q2 their thermoelectric

powers with respect to lead are given by the equations

Q, = tan 0! (t
-

t,\

Q, = tan &amp;lt;92 (I
-

t.2) ;

hence Q, the thermoelectric power of a circuit consisting

of the two metals, is given by the equation

- tan
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where T is the neutral temperature for the two metals
and is given by the equation

y _ 1 tan ft
- t2 tan ft

tan ft
- tan ft

The electromotive force round a circuit formed of

these metals, the temperatures of the hot and cold junc
tions being Tl} T2) respectively, is equal to

l\dt
=

(tan ft
- tan ft) (T,

-
T,) ( (T, + T2)

- T
).

This vanishes when the mean of the temperatures
of the junctions is equal to the neutral temperature.
If the temperature of one junction is kept constant the

electromotive force has a maximum or minimum value

when the other junction is at the neutral temperature.

In Fig. 134 the thermoelectric lines for a number of

metals are given. The figure is taken from a paper by
Noll, Wiedemanris Annalen, vol. 53, p. 874. The abscissae

represent temperatures, each division being 50 C., the

ordinates represent the E.M.F. for a temperature difference

of 1 C., each division representing 2 5 microvolts. To
find the E.M.F. round a circuit whose junctions are at

&amp;lt;!
and t2 degrees we multiply the ordinate for ^ (^ + 2)

degrees by (t2 ^).



CHAPTER XV

THE PROPERTIES OF MOVING ELECTRIC CHARGES

275. As the properties of moving electric charges are

of great importance in the explanation of many physical

phenomena, we shall consider briefly some of the simpler

properties of a moving charge and other closely allied

questions.

Magnetic Force due to a Moving Charged Sphere.

The first problem we shall discuss is that of a uniformly

charged sphere moving with uniform velocity along a

straight line. Let e be the charge on the sphere, a its

radius, and v its velocity ;
let us suppose that it is moving

along the axis of
z&amp;gt;

then when things have settled down
into a steady state the sphere will carry its Faraday tubes

along with it. If we neglect the forces due to electro

magnetic induction, the Faraday tubes will be uniformly
distributed round the sphere and the number passing

normally through unit area at a point P will be e/4?rOP
2
,

being the centre of the charged sphere. These tubes

are radial and are moving with a velocity v parallel to the

axis of z, hence the component of the velocity at right

angles to their direction is v sin 0, where is the angle OP
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makes with the axis of z
; by Art. 265 these moving

tubes will produce a magnetic force at P equal to

4-7T 0/4-7T . OP2

) vsinO = ev sin 0/OP*.

The direction of this force is at right angles to the tubes,
i.e. at right angles to OP; at right angles also to their direc
tion of motion, i.e. at right angles to the axis of z

; thus
the lines of magnetic force will be circles whose planes are

at right angles to the axis of z and whose centres lie along
this axis. Thus we see that the magnetic field outside
the charged sphere is the same as that given by Ampere s

rule for an element of current ids, parallel to the axis of z,

placed at the centre of the sphere, provided ev = ids.

276. As the sphere moves, the magnetic force at P
changes, so that in addition to the electrostatic forces there
will be forces due to electromagnetic induction, these will

be proportional to the intensity of the magnetic induction

multiplied by the velocity of the lines of magnetic induc

tion, i.e. the force due to electromagnetic induction at a

point P will be proportional to p (ev sin 0/OP
2

) x v, where
ft is the magnetic permeability of the medium

; while the
electrostatic force will be e/K.OP*, where K is the specific
inductive capacity of the medium. The ratio of the force

due to electromagnetic induction to the electrostatic force

is pKv*am or sin 0t;
2

/F
2
, where Fis the velocity of light

through the medium surrounding the sphere; hence in

neglecting the electromagnetic induction we are neglecting
quantities of the order v2

/ F 2
. The direction of the force due

to electromagnetic induction at P is along NP, ifPNis the
normal drawn from P to the axis of z

;
this force tends to

make the Faraday tubes congregate in the plane through
the centre of the sphere at right angles to its direction
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of motion
;
when the sphere is moving with the velocity

of light it can be shown that all the Faraday tubes are

driven into this plane.

Increase of Mass due to the Charge on the Sphere.

277. Returning to the case when the sphere is moving
so slowly that we may neglect v*/V

2
;
we see that since H,

the magnetic force at P, is ev sin 0/OP
2
,
and at P there

is kinetic energy equal to fj,H
2

/87r per unit volume (see

Art. 163), the kinetic energy per unit volume at P is

yLteV sin2

O/STT . OP 4
.

Integrating this for the volume outside the sphere, we find

u6 2/
y
2

that the kinetic energy outside the sphere is
,
where a

oft

is the radius of the sphere. Thus if m be the mass of the

uncharged sphere the kinetic energy when it has a charge e

is equal to

Thus the effect of the charge is to increase the mass of

the sphere by 2/ie
2

/3a. It is instructive to compare this

case with another, in which there is a similar increase in

the effective mass of a body; the case we refer to is that

of a body moving through a liquid. Thus when a sphere

moves through a liquid it behaves as if its mass were

m + m
,
where m is the mass of the sphere, and m the

mass of liquid displaced by it. Again when a cylinder

moves at right angles to its axis through a liquid its

apparent mass is m + m ,
where m is the mass of the liquid

displaced by the cylinder. In the case of an elongated
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body like a cylinder, the increase in mass is much greater
when it moves sideways than when it moves point fore

most, indeed in the case of an infinite cylinder the increase

in the latter case vanishes in comparison with that in the

former; the increase in mass being m sin2
0, where 6 is the

angle the direction of motion of the cylinder makes with

its axis. In the case of bodies moving through liquids the

increase in mass is due to the motion of the body setting

in motion the liquid around it, the site of the increased

mass is not the body itself but the space around it where

the liquid is moving. In the electrical problem we may
regard the increased mass as due to the Faraday tubes

setting in motion the ether as they move through it.

From the expression for the energy per unit volume we

see that the increase in mass is the same as if a mass

^Tr/jiN
2 were bound by the tubes, and had a velocity given

to it equal to the velocity of the tubes at right angles
to themselves, the motion of the tubes along their length
not setting this mass in motion. Thus on this view the

increased mass due to the charge is the mass of ether set

in motion by the tubes. If we regard atoms as made

up of exceedingly small particles charged with negative

electricity, embedded in a much larger sphere of positive

electricity, the positive charge on this sphere being equal
to the sum of the negative charges embedded in it, it is

possible to regard all mass as electrical in its origin, and

as arising from the ether set in motion by the Faraday
tubes connecting the electrical charges of which the atoms

are supposed to be made up. For a development of this

view the reader is referred to the author s Conduction of

Electricity through Gases and Electricity and Matter.
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Momentum in the Electric Field.

278. The view indicated above, that the Faraday
tubes set the ether moving at right angles to the direction

of these tubes, suggests that at each point in the field

there is momentum whose direction is at right angles to

the tubes, and by symmetry in the plane through the

tube and the line along which the centre of the charged

sphere moves. As the mass of the ether moved per unit

volume at P is 4?rpN2 where N is the density of the

Faraday tubes at P, the momentum per unit volume

would, on this view, be 4 &amp;lt;

7r//JV
r2 v sin 6. This is equal to

BN where B is the magnetic induction and N the density

of the Faraday tubes at P, the direction of the momentum

being at right angles to B and N. We shall now prove

that this expression for the momentum is general and is

not limited to the case when the field is produced by a

moving charged sphere.

279. Since the magnetic force due to moving Faraday
tubes is (Art. 265) equal to 4?r times the density of the

tubes multiplied by the components of the velocity of the

tubes at right angles to their direction, and is at right

angles both to the direction of the tubes and to their

velocity; we see if a, fi, 7 are the components of the mag
netic force parallel to axes of x

y y y
z at a place where the

densities of the Faraday tubes parallel to x, y, z
are/&quot;, g, h,

and where u, v, w are the components of the velocity of

the tubes, a, /3, 7 are given by the equations

a = 4?r (hv gw), {3
= 4?r (fw hu), 7 = 4?r (gu fv).
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If all the tubes are not moving with the same velocity
we shall have

a =

with similar expressions for fi, 7. Here u^v^ wl are the

components of the velocity of the tubes/!, gl} h\ -u.2 ,
v&amp;gt;2 ,
w2

those of the tubes /2 , g2 ,
h., and so on.

Now T the kinetic energy per unit volume at P is

equal to

~
(

2 +P + 7
2

)
=

:

x 167T2
. ((S (hv

-

=
ZTTJJ, . {(2 (hv

-
gw))* + (2 (fw - hu)? + (2 (gu -fv))

2

} ;

the momentum per unit volume parallel to x due to the

dT
tubes /,#!, /*! is equal to ^ ,

i.e. to

(fw - hu)
-
g (gu -fv)\

= P (ffiV
~

^i/3).

Similarly that due to the tubes /2 , g2 ,
h2 is equal to

and so on, thus P the total momentum parallel to x per
unit volume is given by the equation

where/ g, h are the densities parallel to x, y, z of the whole

assemblage of Faraday tubes. Similarly Q, R, the com

ponents of the momentum parallel to y and z, are given

respectively by the equations
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Thus we see that the vector P, Q, R is perpendicular
to the vectors a, /3, y, f, g, h, and its magnitude is BN sin 6

where B is the magnetic induction at the point, N the

density of the Faraday tubes and the angle between B
and N

,
hence we see that each portion of the field possesses

an amount of momentum equal to the vector product of

the magnetic induction and the dielectric polarization.

280. Before considering the consequences of this

result, it will be of interest to consider the connection

between the momentum and the stresses which we have

supposed to exist in the field. We have seen (Arts. 45, 46)

that the electric and magnetic forces in the field could be

explained by the existence of the following stresses :

(1) a tension along the lines of electric force
;

O7T
a

1 KR*
(2) a pressure -r at right angles to these lines;

here K is the specific inductive capacity, and R the

electric force
;

(1) a tension ^ along the lines of magnetic force;

(2) a pressure ^ at right angles to these lines;

here p is the magnetic permeability of the medium and H
the magnetic force.

Let us consider the effect of these tensions on an

element of volume bounded by plane faces perpendicular

to the axes of x, y, z. The stresses a are equivalent to a

hydrostatic pressure KR*/87r and a tension KR2

/4&amp;lt;7r along
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the lines of force. The effect of the hydrostatic pressure
on the element of volume is equivalent to forces

d

parallel to the axes of x, y, z respectively, A#, Ay, A^ being
the sides of the element of volume.

Let us now consider the tension KR^j^-jr. We know
that a stress N in a direction whose direction cosines are

l
t m, n is equivalent to the following stresses :

(Nl2

acting on the face AyA,? parallel to x,

Nmn

Nln

Nmn
y,

Thus the effect of these stresses on the element of

volume is equivalent to a force parallel to x equal to

the forces parallel to y and z are given by symmetrical
expressions.

In our case the tension is along the lines of force,V T7&quot; p
hence l==

&amp;gt;

m =
&amp;gt;

n=
&amp;gt;

where X
&amp;gt;

Y
&amp;gt;

% are tne
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components of the electric force, hence substituting these

values for I, m, n and putting N =
,
we see that the

~r7T

tension produces a force parallel to x equal to

fd XX* d KXY d KXZ\ ,
-,

-
A 1- ~i

-
A h i * A# AT/A.

\dx 4-7T dy 4?r dz 4vr /

The force parallel to x due to the hydrostatic pressure

and this tension is equal to

f--
V dx

d K (Z2 + F2 + Z*) d_
KX*

~\ 7

dx 8?r dx 4?r

d KXY d KXZ\
dy 4&amp;gt;7r dz 4&amp;gt;7r J

when the medium is uniform, this may be written

K_\ Y (dX_dY\ _ (dZ_dX\
4-7T | \dy dx J . \dx dz J

v (dX dY dZ\\ .

+ X -j + -r- + -j- }&amp;gt;

A#Ay A^.
\dx ay dz J)

Now KX
)
KY

) KZ=^f,
and by equation (4) Art. 234,

dX dY dc dZ dX db

dy dx dt dx dz
~

dt dz dy dt

(7

T7&quot; ^71^ J &amp;lt;7\

(LA. Cil Ci/i\ .

1 H -T- + -T- =
4&amp;lt;7rP ;dx dy dz]

thus the force parallel to x due to the electric stresses may
be written

/ dc ,db TrA

(*ar* +z
v
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In the same way the magnetic stresses may be shown
to give a force parallel to x equal to

4-7T | \dy dx) \dx dz)

fda. d/3 dy
\dx dy dz

since by Art. 234

dy dz~
^

dt dz dx~
^

~di ~dx~ ~dy~
1T

~dt
)

and &amp;gt;,__,.__ _p __
ix dy dz

where a is the density of the magnetism, the magnetic
stresses give rise to a force parallel to x equal to

dg , dh

hence the system of electric and magnetic stresses together

gives rise to a force parallel to x equal to

\dt
^ ~^ + Xp +

The terms Xp and acr represent the forces acting on the

charged bodies and the magnets in the element of volume,
and are equal to the rate of increase of momentum parallel
to x of these bodies, the remaining term

-r (eg bh) A# kykz

equals the rate of increase of the x momentum in the

ether in the element of volume. This agrees with our

previous investigation ;
for we have seen (p. 524) that

the momentum parallel to x per unit volume is equal to

gc hb,
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281. A system of charged bodies, magnets, circuits

carrying electric currents &c. and the ether forms a self-

contained system subject to the laws of dynamics; in

such a system, since action arid reaction are equal and

opposite, the whole momentum of the system must be

constant in magnitude and direction, if any one part of

the system gains momentum some other part or parts

must lose an equal amount. If we take the incomplete

system got by leaving out the ether, this is not true.

Thus take the case of a charged body struck by an electric

wave, the electric force in the wave acts on the body and

imparts momentum to it, no other material body loses

momentum, so that if we leave out of account the ether

we have something in contradiction to the third law of

motion. If we take into account the momentum in the

ether there is no such contradiction, as the momentum
in the electric waves after passing the charged body is

diminished as much as the momentum of that body is

increased.

282. Another interesting example of the transference

of momentum from the ether to ordinary matter is afforded

by the pressure exerted by electric waves, including light

waves, when they fall on a slab of a substance by which

they are absorbed. Take the case when the waves are

advancing normally to the slab. In each unit of volume

of the waves there is a momentum equal to the product

of the magnetic induction B and the dielectric polariza

tion N
;
B and N are at right angles to each other, and

are both in the wave front; the momentum which is at

right angles to both B and N is therefore in the direction

of propagation of the wave. In the wave B = ^ir^NY, so

T. E. 34
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1 B2

that BN =--TT, V being the velocity of light; B is a

periodic function, and may be represented by an expression

of the form B cos (pt nan), x being the direction of propa

gation of the wave
;
the mean value of B2

is therefore

-|5
2

. Thus the average value of the momentum per unit

1 B 2

volume of the wave is ^
--^ ,

the amount of momentum
STT /juy

that crosses unit area of the face of the absorbing
1 B 2

substance per unit time is therefore 5
---~ x V, or

OTTyLt V

--
B&amp;lt;?.

As the wave is supposed to be absorbed by the
STT/LI

slab no momentum leaves the slab through the ether, so
T&amp;gt; 2

that in each unit of time ^ units of momentum are

communicated to the slab for each unit area of its face

exposed to the light : the effect on the slab is the same

therefore as if the face were acted upon by a pressure

Bfl&TTii. It should be noticed that
//,

is the magnetic

permeability of the dielectric through which the waves

are advancing, and not of the absorbing medium.

If the slab instead of absorbing the light were to

reflect it, then if the reflection were perfect each unit

area of the face would in unit time be receiving Bfl&irp

units of momentum in one direction, and giving out an

equal amount of momentum in the opposite direction
;

the effect then on the reflecting surface would be as if

a pressure 2 x Bf/STr/j, or B 2

/4&amp;gt;7r/j,
were to act on the

surface. This pressure of radiation as it is called was

predicted on other grounds by Maxwell
;

it has recently

been detected and measured by Lebedew and by Nichols

and Hull by some very beautiful experiments.
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283. If the incidence is oblique and not direct, then

if the reflection is not perfect there will be a tangential
force as well as a normal pressure acting on the surface.

For suppose i is the angle of incidence, B the maximum

magnetic induction in the incident light, B that in the

reflected light, then across each unit of wave front in the

incident light JB 2

/87r/j, units of momentum in the direction

of the incident light pass per unit time, therefore each

unit of surface receives per unit time cosiBi/Sjr^ units

of momentum in the direction of the incident light, or

cos i sin i5 2

/87r/u. units of momentum parallel to the re

flecting surface. In consequence of reflection

cos i sin iB 2

/87Tfj,

units of momentum in this direction leave unit area of

the surface in unit time, thus in unit time

cos i sin i (
2 -

B^ftTriJb

units of momentum parallel to the surface are communi

cated to the reflecting slab per unit time, so that the slab

will be acted on by a tangential force of this amount.

Professor Poynting has recently succeeded in detecting

this tangential force.

Since the direction of the stream of momentum is

changed when light is refracted, there will be forces

acting on a refracting surface, also when in consequence

of varying refractivity the path of a ray of light is not

straight the^refracting medium will be acted upon by
forces at right angles to the paths of the ray; the de

termination of these forces, which can easily be accom

plished by the principle of the Conservation of Momentum,
we shall leave as an exercise for the student.

342
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284. We shall now proceed to illustrate the distribu

tion of momentum in some simple cases.

Case of a Single Magnetic Pole and an Electrified Point.

Let A be the magnetic pole, B the charged point, m
the strength of the pole, e the charge on the point, then

at a point P the magnetic induction is m/AP 2 and is

directed along AP, the dielectric polarization is

and is along BP, hence the momentum at P is

me sin APB

and its direction is the line through P at right angles

to the plane APB. The lines of momentum are therefore

circles with their centres along AB and their planes at

right angles to it, the resultant momentum in any direction

evidently vanishes. There will however be a finite moment

of momentum about AB : this we can easily show by

integration to be equal to em. Thus in this case the

distribution of momentum is equivalent to a moment of

momentum em about AB. The distribution of momentum

is similar in some respects to that in a top spinning about

AB as axis. Since the moment of momentum of the

ether does not depend upon the distance between A and

B it will not change either in magnitude or direction

when A or B moves in the direction of the line joining

them. If however the motion of A or B is not along

this line, the direction of the line AB and therefore the

direction of the axis of the moment of momentum of the

ether, changes. But the moment of momentum of the

system consisting of the ether, the charge point, and the

pole must remain constant
;
hence when the momentum in
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the ether changes, the momentum of the system consisting

of the pole and the charge must change so as to com

pensate for the change in the momentum of the ether.

Thus suppose the charged point moves from B to B f

in

the time 8t, then in that time the moment of momentum

Fig. 135.

in the ether changes from em along AB to em along AB ;

this change in the moment of momentum of the ether is

equivalent to a moment of momentum whose magnitude
is em&6, where $0 = /.BAB f

,
and whose axis is at right

angles to AB in the plane BAB . The change in the

moment of momentum of the pole and point must be equal
and opposite to this. Since the resultant momentum of

the ether vanishes in any direction, the change in the

momentum of the pole must be equal and opposite to the

change in momentum of the point, and these two changes
must have a moment of momentum equal to emW : we see

that this will be the case if S/ the change in momentum
of the point is at right angles to the plane BAB and

fs s\

equal to p ,
while the change in momentum in the

pole is equal and opposite to this. This change in

momentum r^- occurring in the time 8t may be re-
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garded as produced by a force F acting on the point at

right angles to the plane BAB and given by the equation

_ em $0
*
AB Bt

,. BB smABB
]\OW 00= -r-TT

-
,An

or if v be the velocity of the point,

^ vStsmABB

Sd v sin ABB
Tt

=
-AB~

thus F-

where H is the magnetic force at the point and
&amp;lt;/&amp;gt;

the

angle between H and the direction in which the point
is moving ;

from this we see that a moving charged point
in a magnetic field is acted on by a force at right angles
to the&quot; velocity of the point, at right angles also to the

magnetic force at the point, and equal to the product of

the charge, the magnetic force and the velocity of the

point at right angles to the magnetic force. Thus we

see that we can deduce the expression for the force acting
on a charged point moving across the lines of magnetic
force directly from the principle of the Conservation of

Momentum. We should have got an exactly similar

expression if we had supposed the charge at rest and

the pole in motion
;
in this case we must take v to be the

velocity of the pole and
&amp;lt;p

the angle between v and AB.
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285. From the expression given on page 524 for the

momentum in the field we can prove that the momentum
in the ether due to a charged point at P and the magnetic
force produced by a current flowing round a small closed

circuit, is equivalent to a momentum passing through P
whose components F, G, H parallel to the axes of x, y, z

respectively are given by the equations

TJ, ( d 1 dl\
$ = Liia. m -: n-^-~

\ dzr dyr)

n - f d 1 7 d 1
Cr = LLIOL in -j I -=

\ ax r dzr

TT / 7
d 1 d 1\H =

/MO. (l-j m -y-
-

1
,

\ dy r dxr)

where i is the current flowing round the circuit, a the
area of the circuit and I, m, n the direction cosines of the

normal to its plane, x, y, z are the coordinates of P and r

the distance of P from the centre of the circuit, the charge
at P is supposed to be the unit charge. We see that

dF dG . ( d2 1 / d* 1 d2
1 \ d2

= J
JYI n I _ 4. _]_i_/

dy dx r
{

-7 ~- J -
&quot;

7 &quot;

orsnce;e
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due to the small circuit. We have similarly if a and b

are the x and y components respectively of this induction

dH dF _
dx dz

dG dH
~? r~ = a -

dz dy

The usual expression for the electromotive force due

to induction follows at once from the principle of the

Conservation of Momentum. For the momentum in the

ether is equivalent to a momentum through P whose

components are F, G, H. Suppose that in consequence
of the motion of the circuit or the alteration of the current

through it, F, G, H become F+SF, G + SG, H + SH,
then the momentum in the ether still passes through P
but has now components F-\-SF, G + SG, H+SH instead

of F,G,H; but the momentum of the whole system, point
circuit and ether must remain constant

;
thus to counter

balance the changes in momentum SF, SG, SH at P due

to the ether, we must have changes in momentum of the

unit charge at P equal to SF, -SG, -SH. Suppose
that the time taken by the changes SF, SG, SH is St, then

in the time St the x momentum of the unit charge at P
must change by - SF, i.e. the unit charge must be acted on

by force . Thus there is at P an electric force whose

? ET

component parallel to x is -
-^-

, similarly the components

parallel to y and z are - ^
,

The electric force
at at

whose components we have just found is the force due to

electromagnetic induction, and its magnitude is that given



286] PROPERTIES OF MOVING ELECTRIC CHARGES 537

by Faraday s law. To prove this we notice that the line

integral of the electric force round a fixed circuit of which

ds is an element is equal to

_dFdx dG_dy_
dH dz\

dt ds dt ds dt ds)

dtj \ as ds ds

d(dG dH\ dH dF dF dG
J T~j--- j
dtj { \dz ay) \dx dz) \dy dx

by Stokes theorem
;
here I, m, n are the direction cosines

of the normal to a surface filling up the closed curve, dS
is an element of this surface. Substituting the values

already given for -=-- -=
, &c. the preceding expression

becomes

-7- 1 (la + mb 4- nc) d8 ;

dt J

the integral in this expression is the number of lines of

magnetic induction passing through the closed circuit,

hence we see that the line integral of the electric force

due to induction round a closed circuit equals the rate of

diminution in the number of lines of magnetic induction

passing through the circuit
;

this however is exactly

Faraday s law of induction (see Art. 229).

286. When a charged particle is moving so rapidly

that v*/V
2 cannot be neglected, the distribution of the

Faraday tubes round the particle is no longer uniform

and the expression 2pe*v/a given in Art. 277 for the

momentum of the charged sphere has to be modified.

For an investigation of this case we refer the reader to
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Recent Researches in Electricity and Magnetism, where,

page 21, it is shown that when the velocity of the charged

sphere is w, R the momentum parallel to z is in the

general case given by the equation

R=l^
2 a w(p_*)irV 4 2

+ l sin2*(l+-
2 V 4 w2

^ w
where sm;j=^.

From this value of R we see that when w approaches

V, the value of Rjwt
the apparent mass, increases rapidly

with w
;
thus if an appreciable amount of the mass of a

body is due to electric charge, the mass of the body will

increase with the velocity, it is only however when the

velocity of the body approaches that of light that this

increase becomes appreciable, in the limiting case where

the velocity is that of light the apparent mass would be

infinite. The influence of velocity on the apparent mass

of particles travelling with great velocities has been

detected by Kaufmann by some very interesting experi

ments, a short account of which will be found in the

author s Conduction of Electricity through Gases, page 533.

Kaufmann found that a particle moving with a velocity

about five per cent, less than the velocity of light, had a

mass about three times that with small velocities.

The increase in the mass of a slowly moving charged

sphere is 2/me
2

/3a, i.e. 4 (potential energy of the sphere)/3 F2
,

thus if this mass were to move with the velocity of light

its kinetic energy would be two-thirds of the electrical

potential energy. The same proportion between the in-
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crease in the mass due to electrification and the electrical

potential energy can be shown to hold for any system of

electrified bodies as well as for the simple case of the

charged sphere.

287. Effects due to changes in the velocity of

the moving charged body. We shall take first the

case of a charged sphere moving so slowly that the lines of

force are symmetrically distributed around it, and consider

Fig. 136.

what will happen when the sphere is suddenly stopped.

The Faraday tubes associated with the sphere have inertia

and are in a state of tension, thus any disturbance com

municated to one end of a tube will travel along the tube

with a finite and constant velocity the velocity of light.

Let us suppose that the stoppage of the particle takes a

finite small time r. We can find the configuration of the

tubes, after a time t has elapsed since the sphere began
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to be stopped, in the following way. Describe with the

centre of the charged sphere as centre two spheres, one

having the radius Vt, the other the radius V(tr).
Then since no disturbance can have reached the portions

of the Faraday tubes situated outside the surface of the

outer sphere these tubes will be in the positions they

would have occupied if the sphere had not been stopped,

while since the disturbance has passed over the tubes

within the inner sphere, these tubes will be in their

final position. Thus consider a tube which when the

particle was stopped was along the line OPQ, being

the centre of the charged sphere, this will be the final

position of the tube
;
hence at the time t the portion of

this tube inside the inner sphere will be in the position

OP, the portion P Q outside the outer sphere will be in

the position it would have occupied if the sphere had not

been stopped, i.e. if is the position to which would

have come if the sphere had not been stopped, P Q will

be a straight line passing through . Thus to preserve

its continuity the tube must bend round in the shell

between the surfaces of the two spheres, and take the

position OPP Q . Thus the tube which before the sphere

was stopped was radial, has now, in the shell, a tangential

component, and this implies a tangential electric force;

this tangential force is, as the following calculation shows,

much greater than the radial force at P before the sphere

was brought to rest.

Let us suppose that 8, the thickness of the shell, is so

small that the portion of the Faraday tube inside it may
be regarded as straight, then, if T is the tangential force

inside the pulse, R the radial force, we have

T PN 00 sin d wtsm6
R PN .(1),
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where w is the velocity with which the sphere was moving
before it was stopped, and 9 the angle OP makes with the

direction of motion of the sphere ;
t is the time since the

sphere was stopped. Since OP = Vt and R = e/K . OP2

,

K being the specific inductive capacity of the medium, we

have, writing r for OP,

__ ew sin 6~
KV.rS

Thus the tangential force varies inversely as the distance

and not as the square of the distance.

The tangential Faraday tubes move radially outwards

with the velocity V, they will therefore produce a mag
netic force at right angles to the plane of the pulse and in

the opposite direction to the magnetic force at P before

the sphere was stopped ;
this force is equal to

Jr KT ew sinVx 47r.-: = s ;

4-7T r8

the magnetic force before the sphere was stopped was

ew sin 6/r
2
,
thus the magnetic force in the pulse, which

however only lasts for a very short time, exceeds that in

the steady field in the proportion of r to 8.

Thus the pulse produced by the stoppage of the sphere
is the seat of very intense electric and magnetic forces

;

the pulses formed by the stoppage of the regularly elec

trified particles of the cathode rays form, in my opinion,

the well-known Rontgen rays.

288. Energy in the Pulse. The energy due to the

magnetic force in the field is per unit volume
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integrating this through the pulse we find that the energy

due to the magnetic force in the pulse is

The energy due to the tangential electric force in the

pulse is per unit volume

KT2 eVsiQ2
l9

integrating this through the pulse we find that this energy
, . . Tr

is equal to ^ ,
since /juK

=
-^ .

OO

Thus the total energy in the pulse is
^ ^-g

;
and this

energy radiates away into space. The energy in the field

before the sphere was stopped was l/juehv^/a, where a is

the radius of the sphere (see Art. 277). Thus if 3 is not

much greater than the diameter of the sphere a very con

siderable fraction of the kinetic energy is radiated away
when the particle is stopped.

*

289. Distribution of Momentum in the Field.

There is no momentum inside the surface of the sphere

whose radius is b (t T), there is a certain amount of

momentum in the pulse, and momentum in the opposite

direction in the region outside the pulse ;
we shall leave

it as an exercise for the student to show that the mo

mentum in the pulse is equal and opposite to that outside

it, so that as soon as the sphere is reduced to rest the

whole momentum in the field is zero.

290. Case of an Accelerated Charged Body.

The preceding method can be applied to the case when

the charged body has its velocity altered in any way, not
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necessarily reduced to zero. Thus if the velocity instead

of being reduced to zero is diminished by $w, we can show

in just the same way as before that the magnetic force H
in the pulse is given by the equation

TT e&w . sin 6
J_ = ,

TO

and the tangential electric force T by

m eAw sin 6
~

KVrS

Now 8 = V&t if Bt is the time required to change the

velocity by Aw, hence we have

_ e Aw sin 6 e

but Aw/& = -f, where/ is the acceleration of the particle,

hence

efsmO T_ e /sin 6

V r KV 2 r

It must be remembered that / is not the acceleration

of the sphere at the time when H and T are estimated

but at the time r/V before this. We see that when the

velocity of the sphere is not uniform, part of the magnetic

and electric force will vary inversely as the distance from

the centre of the sphere, while the other part will vary

inversely as the square of this distance
;
at great distances

from the sphere the former part will be the most im

portant.

The energy in the pulse emitted whilst the velocity is

changing is equal to

3 V 2

where d is the thickness of the pulse ;
since d = VSt, where
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Bt is the time the acceleration lasts, the energy emitted in

the time St is

thus the rate of emission of energy is 2e*f*/3 V.

291. Magnetic and Electric Forces due to a

charged particle vibrating harmonically through
a small distance. The magnetic force proportional to

the acceleration which we have just investigated arises

from the motion of the tangential part of the Faraday
tubes the portion PN of Fig. 134

;
the radial tubes are

however also in motion, their velocity at right angles to

their length being w sin 0, where w is the velocity of the

particle when its acceleration is /, i.e. at a time r/V
before the force is estimated. This motion of the radial

tubes produces a magnetic force ew sin 0/r
2 in the same

direction as that due to the acceleration. Thus H the

magnetic force at P is equal to

ewsiuO efsind
-pr- HPF&quot;

and is at right angles to OP and to the axis of z along

which the particle is supposed to be moving. Let the

velocity of the particle along this line be w sin.pt and its

acceleration therefore wpcospt. The magnetic force at P
at the time t will depend upon the velocity and accelera

tion of the particle at the time t ^, these are respectively

w siup (t - y J

and wp cosp (t - y j
,
thus H the magnetic

force at P is given by the equation
/ T\ (

eo&amp;gt; sin ship it ^J ew sin 6p cos p It
-^

TT_\ &quot;/
,__ ^Hm-H

- +-
Pr
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If a, /3, 7 are the components of this force parallel to

the axes of x, y, z, then

= 0.s\ *--*-
j A-/ /\ **- *

r sm 6 r sin 6

Hence

/ ,
r \

^ eo) sinjp 1 1
-^1 ,eo)S.^^p ,,

a = T-

If JT, F, ^T are the components of the electric force, we
have by equation (1), page 489,

/ r
jv j JQ j&amp;gt; ecosmp U !^ V

dz dxdz

eo) sn ^
V.___ ^

dt dz dx dydz

j-dZ _d(3 _da __f d- d*\

dt
~
dx dy \da? dy

2
) r

Hence the periodic parts of X, F, Z are given by the

equations

p dxdz

,,
1 ft&quot;

T j^&amp;gt; j&amp;gt;

eeocos p t -TT

i(d* d2 \ ^
11Z = -

--.
--H -j-. .

p \dx2

df) r

T. E. 35
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In addition to these there are the components

e d 1 e d 1 e d I~
~Kdzr

of the electrostatic force due to the charge at 0. In this

investigation co is supposed to be so small compared with

V that ca
2

/F
2

may be neglected.
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