田

UNIVERSITY OF CALIFORNIA. AT LOS ANGELES

THE

ELEMENTS OF BOTANY

FOR BEGINNERS AND FOR SCHOOLS

By ASA GRAY

NEW YORK•:CINCINNATI $\cdot:$ CHICAGO
AMERICAN BOOK COMPANY

GRAY'S BOTANICAL SERIES
 Gray's How Plants Grow
 Gray's How Plants Behave
 *Gray's Lessons in Botany
 Gray's Field, Forest, and Garden Botany
 (Flora only)
 *Gray's School and Field Book of Botany (Lessons and Flora)
 Gray's Manual of Botany. (Flora only)
 *Gray's Lassons and Manual of Botany Gray's Botanical Text-Book
 I. Gray's Structural Botany
 II. Goodale's Physiological Botany
 Coulter's Manual of Botany of the Rocky
 Mountains
 Gray and Coulter's Text-Book of Western Botany
 EDITIONS OF 1901
 *Leavitt's Outlines of Botany
 (Based on Gray's Lessons)
 *Leavitt's Outlines of Botany with Flora
 (Outlines and Gray's Field, Forest, and Carden Botany)
 *Leavitt's Outlines and Gray's Manual

Copyright, 1887, by Asa Gray
REV. LESSONS
W. P. 27

PREFACE.

This volume takes the place of the author's Lessons in Botany and Vegetable Pifsiology, published over a quarter of a century ago. It is constructed on the same lines, and is a kind of new and much revised edition of that successful work. While in some respects more extendel, it is also more concise and terse than its predecessor. This should the better fit it for its purpose now that competent teachers are common. They may in many cases develop paragraphs into lectures, and fully illustrate points which are barely, but it is hoped clearly, stated. Indeed, even for those without a teacher, it may be that a condensed is better than a diffuse exposition.

The book is adapted to the higher schools, "How Plants Grow and Behave" being the "Botany for Young Pcople and Common Schools." It is intended to ground beginners in Structural Botany and the principles of vegetable life, mainly as concerns Flowering or Phanerogamous plants, with which botanical instruction shoulh always begin ; also to be a companion and interpreter to the Manuals and Floras by which the student threads his flowery way to a clear knowledge of the surrounding vegetable creation. Such a book, like a grammar, must needs abound in technical words, which thus arrayed may seem formidable; nevertheless, if rightly apprehended, this treatise should teach that the study of botany is not the learuing of mames and terms, but the acquisition of knowledge aud ideas. No effort should be made to commit technical terms to memory. Any term used in lescribing a plant or explaining its structure can be looked up when it is wanted, and that should suffice. On the other hand, plans of
structure, types, adaptations, and modifications, once understood, are not realily forgotten ; and they give meaning and interest to the technital terms used in explaining them.

In these "Elements" naturally no mention has been made of certain terms and names which recent cryptogamically-minded botanists, with lack of proportion and just perspective, are endeavoring to introduce into phanerogamous botany, and which are not needed nor appropriate, even in more advanced works, for the adequate reeognition of the ascertaned analogies and homologies.

As this volume will be the grammar and dictionary to more than one or two Manuals, Floras, etc., the particular directions for procedure which were given in the "First Lessons" are now relegrated to those works themselves, which in their new editions will provide the requisite explanations. On the uther hand, in view of such extended use, the Glossary at the end of this book has been considerably enlarged. It will be found to include not merely the common terms of botanical deseription but also many which are unusual or ulsolete ; yet any of them may now and then be encountered. Moreover, no small number of the Latin and Greek words which form the whole or part of the commoner specitic names are added to this Glossary, some in an Anglicized, others in their Latin form. This may be helpful to students with suall Latin and less Greek, in catching the meaning of a botanical name or term.

The illustrations in this volume are largely increased in number. They are mostly from the hand of Isaae Sprague.

It happens that the title chosen for this book is that of the author's earliest publication, in the year 1836 , of which copies are rarely seen; so that no inconvenience is likely to arise from the present use of the name.

ASA GRAY.
Cambridge, Massachusetts, March, 1887.

CONTENTS.

Page
SECTION I. INTRODUCTORY 9
SECTION II. FLAX AS A PAT'TERN PLANT 11
Growth from the Seed, Organs of Vegetation 11
Blossoming, Flower, \&c. 14
SECTION III. MORPIIOLOGY OF SEEDLINGS 15
Germinating Maples 15
Cotyledons thickened, hypogrons in germination 18
Store of Food external to the Embryo 20
Cotyledons as to number 22
Dicotyledonous and Polycotyledonous 23
Monocotyledonous 24
Simple-stemmed Plants 26
SECTION IV. GROWTTI FROM BUDS; BRANCHING 27
Buds, situation and kinds 27
Vigorous vegetation from strong Buds 28
Arrangement of Branches 29
Non-developed, Latent, and Accessory Buds 30
Enumeration of kinds of Burls 31
Definite and Indefinite growth; Deliquescent and Excurrent 31
SECTION V. ROOTS 33
Primary and Secondary. Contrast between Stem and Ront 34
Fibrous and Fleshy Roots; names of kinds 34
Anomalous Roots. Epiphytic anci larasitic Plants 36
1)uration: Annuals, Biennials, Perennials 37
SECTION VI. STEMS 38
Those above Gronnd : kimls and modifications 39
Subterranean Stems aml Bramches 42
Rootstock, 42. Tuher, 44. ('orm, 45 Bulb and Bulblets 46
Consolitated Vegetation 47
SECTION VII. LEAVES 49
§ 1. Leaves as Foliage 49
Parts and Venation 50
Forms as to qeneral outline 52
As to apex and particular outline 53
As to lobing or division 56
Compoumd, Perfoliate, and Equitant Leaves 57
With no distinction of Petiole and Blade, Plyyllodia, \&c. 61
§ 2. Leaves of Special Conformation and Use 62
Leares for storage 62
Leaves as bud-scales, 63, Spines, 64, and for Climbing 64
Pitchers, 64, and Fly-traps 65
§3. Stipules 66
§4. 'The Arrangement of Leaves 67
Phyllotaxy, 67, of Altermate Leaves 69
Of Opposite and Whorled Leaves 71
Venation or Præfoliation 71
SECTION VIII. FLOWERS 72
§ 1. Position and Arrangement, Inflorescence 73
Raceme, 73, Corymb, U'mbel, Spike, Head 74
Spalix, Catkin, or Ament 75
Panicle: Determinate Inflorescence 76
Cyme, Fascicle, Glomerule, Scorpioid or Helicoid Cymes 77
Mixed Inflorescence 78
§2. Parts or Organs of tie Flower 79
Floral Envelopes : Perianth, Calyx, Corolla 79
Essential Organs: Stamen, Pistil 80
Torus or Receptacle 81
§3. Plan of tile Flower 81
When perfect, complete, regular, or symmetrical 81
Numerical Plan and Alternation of Organs 82
Flowers are altered branches 83
§4. Modifications of the Type 85
Unisexual or diclinous 85
Incomplete, Irregular, and Unsymmetrical 86
Flowers with Multiplication of Parts 88
Flowers with Union of Parts: Coalescence 88
Regislar Forms, 89, Irregular Forms 90
Papilionaceous, 91, Labiate, 92, and Ligulate Corollas 93
Adnation or Consolidation 94
Position of Flower or of its P'arts 96
§5. Arrangement of Parts in the Bud 97
Estivation or l'refloration, its kinds 97
SECTION IX. STAMENS IN PAR'TICULAR 98
Andrœcium, 98, Insertion, Relation, \&c. 99
Anther and Filament. Pollen 10I
SEC'IION X. PISTILS IN PARTICULAR 105
§ 1. Angiospermode or Ordinary Gyxecium 105
Parts of a complete Pistil 105
Carpels, Simple Pistil 109
Compond Pistil witl Cells and Axile Placentæ 107
One-celled with Free Central Placenta 108
One-celled with l'arietal Placentæ 108
§ 2. Gymnospermous Gineecium 109
SECTION XI. OVULES 110
Their larts, Insertion, and Kinds. 111
SECTION XII. MODIFICATIONS OF TIIE RECEPTACLE 112
Torus, Stipe, Carpophore, Disk 113
SECTION XIII. FERTILIZA'TION 114
§ 1. Adaptations for Pollination of the Stigma 114
Close and Cross Fertilization, Anemophilous and Entomophitons 115
Dichogamy and Heterogony 116
§ 2. Action of the loleen and Formation of the Embryo 117
SECTION XIV. THE FRUIT 117
Nature and kinds 118
Berry, Pepo, Pome 119
Drupe and Akene 120
Cremocarp, Caryopsis, Nut 121
Follicle, Legume, Capsule 122
Capsular Dehiscence, Silique and Silicle 123
Pjxis, Strobile or Cone 124
SECTION XV. THE SEED 125
Seed-coats and their appendages 125
The Kernel or Nucleus, Embryo and its parts, Albumen 127
SECTION XVI. VEGETABLE LIFE AND WORK 128
§1. Anatomical Structure and Growth 129
Nature of Growth, Protoplasm 129
Cells and Cell-walts. Cellular Structure or Tissue 130
Strengthening Cells. Wood, Wood-cells, Vessels or Ducts 132
§2. Cellcontents 136
Sap. Chlorophyll, Starch 136
Crystals, Rhaphides 137
§3. Anatomy of Roots and Stems 138
Endogenous and Exogenous Stems 139
Particular strncture of the latter 140
Wood, Sapwood and Heart-wood. The living parts of a Tree 141
§4. Anatomy of Leaves 142
Epidermis, Stomata or Breathing pores 143
§5. Plant Food and Assimilation 144
§6. Plant Work and Movement 149
Movements in Cells or Cyclosis 149
Transference from Cell to Cell 150
Movements of Organs, 'Twining Stems, Leaf-movements 150
Movements of 'Temdrils, Sensitiveness 152
Movements in lowers 153
Movements for capture of Insects 154
Work costs, using up Material and Energy 155
SECTION XVII. CRYPTOGAMOUS OR FLOWERLESS PLANTS 156
Vascular Cryptogams, l'teridopliytes 156
llorsetails (Equisetatea), Ferns 157
Club-Dlosses (Lycopotium), 太c. 161
Quillworts (lsoëtes), lillworts (Marsilia) 161
Azolla. Cellular Cryptogans 162
Bryopliytes. Mosses (Musei) $16: 3$
Liverworts (Ilepatiex) 164
'Thallophytes 165
Characea 167
Alga, Scaweeds, \&c. 168
Lichenes or Lichens 171
Fungi 172
SECTION XVIII. CLASSIFICATION AND NOMENCLATURE 175
§ 1. Kinds and Relationsmip 175
Species, Varicties, Individuals 176
Genera, Orders, Classes, \&e. 177
§ 2. Names, 'Terms, and Cilaracters 178
Nomenclature of Genera, Species, and Varieties 179
Nomenclature of Orders, Classes, \&e. 'Terminology 180
§ 3. Systen 181
Artificial and Natural 182
Synopsis of Series, Classes, \&e. $18: 3$
SECTION XIX. BOTANICAL WORK 181
§ 1. Collection or herborization 184
§2. Herbarium 186
$\S 3$. Investigation and Determination of Plants 187
§4. Signs and Abbreviations 188
Abbreviations of the Names of botanists 190
Glossary combined witil Index 193

ELEMENTS OF BOTANY.

Section I. Introductory.

1. Botany is the name of the science of the vegetable kingdom in general; that is, of plants.
2. Plants may be studied as to their kinds and relationships. This stady is Systematic Botany. An enumeration of the kinds of regetables, as far as known, classified accordiug to their varions degrees of resemblance or difference, constitutes a general System of plants. A similar account of the vegetables of any particular country or distriet is ealled a Flora.
3. Plants may be studied as to their structure and parts. This is Structural Botany, or Organography. The study of the organs or parts of plants in regard to the different forms and different uses whieh the same kind of organ may assume, - the comparison, for instance, of a flower-leaf or a bud-seale with a common leaf, - is Vegetable Morpiology, or Monpiological Botany. The study of the minute strueture of the part;, to learn by the microseope what they themselves are formed of, is Vegetable Anatomy, or Histology; in other words, it is Microseopical Structural Botany. The stuly of the actions of plauts or of their parts, of the ways in which a plant lives, grows, and aets, is the province of Physiological Botany, or Vegetable Pursiology.
4. This book is to teacle the outlines of Structural Botany and of the simpler parts of the plysiology of plants, that it may be known how plants are constructed and adapted to their surroundings, and how they live, move, propagate, and have their being in an existence no less real, although more simple, than that of the animal creation which they support. Particularly, this book is to teach the principles of the structure and relationships of plants, the nature and names of their parts and their modifications, and so to prepare for the study of Srstematic Botany; in which the learner may aseertain the name and the place in the system of any or all of the ordinary plants within reach, whether wild or cultivated. And in ascertaining the name of any plaut, the student, if rightly taught, will come to know all about its general or particular structure, rank, and relationship to other plants.
5. The vegetable kingdom is so vast and various, and the difference is so wide between ordinary trees, shrubs, and herbs on the one hand, and mosses, moulds, and such like on the other, that it is hardly possible to frame an intelligible account of plants as a whole without contradictions or misstatements, or endless and tronblesome qualifications. If we say that plants come from seeds, bear flowers, and have roots, stems, and leaves, this is not truc of the lower orders. It is best for the begimer, therefore, to treat of the higher orders of plants by themselves, without particular reference to the lower.
6. Let it be understood, accordingly, that there is a higher and a lower series of plants; namely: -

Phanerog.mous Plants, which come from seed and bear flowers, essentially stamens and pistils, through the eo-operation of which sced is produced. For shortness, these are commonly called Piranerogans, or Phenogams, or by the equivalent English name of Flowering Plants. ${ }^{1}$

Cryptoganous Plants, or Cryptogays, come from minute bodics, which answer to sceds, but are of much simpler structure, and such plants lave not stamens and pistils. Therefore they are called in Englislı Flowerless Plants. Such are Ferms, Mosses, Algre or Scaweeds, Fungi, etc. These sorts have each to be studied separately, for each class or order has a plan of its own.
7. But Phanerogamous, or Flowering, Plants are all constructed on one plan, or type. That is, taking almost any ordinary herb, shrub, or trce for a pattern, it will exemplify the whole series: the parts of one plant answer to the parts of any other, with only certain differences in particulars. And the occupation and the delight of the scientific botanist is in tracing out this common plan, in detecting the likenesses under all the diversities, and in noting the meaning of these manifold diversities. So the attentive study of any onc plant, from its growth out of the seed to the flowering and fruiting state and the production of seed like to that from which the plant grew, would not only give a correct general idea of the structure, growth, and characteristics of Flowering Plants in general, but also serve as a pattern or standard of comparison. Some plants will serve this purpose of a pattern much better than others. A proper pattern will be one that is perfect in the sense of having all the principal parts of a phanerogamous plant, and simple and regular in having these parts free from complications or disguises. The common Flax-plant may very well serve this purpose. Being an ammal, it has the advantage of being easily raised and carried in a short time through its circle of existence, from seedling to fruit and seed.

[^0]
Section II. Flax as a pattern plant.

8. Growth from the Seed. Phancrogamons plants grow from seed, and their flowers are destined to the production of seeds. A seed has a rudimentary plant ready formed in it, - sometimes with the two most essential parts, i. e. stem and leaf, plainly discernible; sometimes with no obvious distinction of organs until germination begins. This incipient plant is called an Embryo.
9. In this section the Flax-plant is taken as a specimen, or type, and the development and listory of common plants in general is illustrated by it. In flax-seed the embryo nearly fills the coats, but not quite. There is a small deposit of nourishment between the sced-coat and the embryo: this may for the present be left out of the account. This embryo consists of a pair of leaves, pressed together face to face, and attached to an extremely short stem. (Fig. 2-t.) In this rudimentary condition the real nature of the parts is not at once apparent; but when the seed grows they promptly reveal their character, - as the accompanying figures (Fig. 5-7) show.

10. Before the nature of these parts in the seed was altogether understood, techmical names were given to them, which are still in use. These initial leaves were named Cotrledons. The initial stem on which they stand was called the Radicife. That was because it gives rise to the first root; but, as it is really the beginming of the stem, and because it is the stem that produces the root and not the root that produces the stem, it is better to name it the Caducle. Recently it has been named Hypocotyle; which signifies something below the cotyledons, without pronouncing what its nature is.

Fig. 1. Pod of Flix. 2. Section lengthwise, showing two of the seeds; one whole, the other cut half away, bringing contained embryo into view. 3. Similar section of a flax-seed more magnified and divided flatwise; turned round, so that the stem-end (caulicle) of the embryo is below: the whole broad upper part is the inner face of one of the cotyledons; the minnte nick at its base is the phumule. 4. Similar section through a seed turned edgewise, showing the thickness of the cotyledons, and the minute plumule between them, i. e. the minute bud on the upper end of the caulicle.
11. On committing these seeds to moist and warm soil they soon sprout, i. e. germinate. The very short stem-part of the embryo is the first to grow. It lengthens, protrudes its root-end; this turns downward, if not already pointing in that direction, and while it is lengthening a root forms at its point and grows downward into the ground. This root continues to grow on from its lower end, and thus insinuates itself and penetrates into the soil. The stem meanwhile is adding to it length throughout; it erects itself, and, seeking the light, brings the seed up out of the ground. The materials for this growth have been supplied by the cotyledons or seed-leaves, still in the seed: it was the store of nousashing material they held which gave them their thickish shape, so unlike that of ordinary leaves. Now, relieved of a part of this store of food, which has formed the growth by which they have been raised into the air and light, they appropriate the remainder to their own growth. In enlarging they open and throw off the seed-husk; they expand, diverge into a horizontal position, turn green, and thus become a pair of evident leaves, the first foliage of a tiny plant. This seedling, although diminutive and most simple, possesses and puts into use, all the Organs of Vegetation, namely, root, stem, and leaves, each in its proper element, - the root in the soil, the stem rising out of it, the leaves in the light and open air. It now draws in moisture and some
 food-materials from the soil by its root, conveys this through the stem into the leaves, where these materials, along with other erode food when these imbibe from the air, are assimilated into vegetable matter, i. e. into the material for further growth.
12. Further Growth soon proceeds to the formation of new parts, downward in the production of more root, or of branches of the main root, upward in the development of more stem and leaves. That from which a stem with its leaves is contimed, or a new stem (i.e. brambly) originated, is a Bud. 'The most conspicuous and familiar buds are those of most shrubs and trees, bearing buds formed in summer or autumn, to grow the following

[^1]spring. But every such point for new growth may equally bear the name. When there is such a bud between the cotyleduns in the seed or seedling it is called the Plumule. This is eonspicuous chough in a bean (Fig. 29.), where the young leaf of the new grow h looks like a little plume, whence the name, plamule. In flax-seed this is very minute indeed, but is discernible with a magnilier, and in the seedling it shows itself distmetly (Fig. 5, 6, 7).
13. As it grows it shapes itself meto a second pair of leaves, which of course rests on a sceond joint of stem, although in this instance that remains too short to be welt secen. Upon its summit appears the third pair of leaves, soon to be raised upon its proper joint of stem; the next leal is single, and is carried up still lurther upon its supporting joint ol stem; and so on. The root, meanwhile, continues to grow undergromed, not joint after joint, but continuously, from its lower cud ; and commonly it before long multiplies itsell by branches, whieh leagthen by the same continuous growth. But stems ate built up by a succession of leaf-bearing growths, such as are strougly marked in a reed or cornstalk, and less so in such an lierb as Flas. The word "joint" is ambiguous : it may mean cither the portion between successive leaves, or their junction, where the leaves are attached. For precision, therefore, the place where the leaf or leaves are borne is called a Node, and the naked interval between two nodes, an Internode.
14. In this way a simple stem with its garniture of leaves is developed from the sced. But brsides
 this direct contimuation, buds may form and develop into lateral stems, that is, into branches, from any node. The proper origin of branches is from the Anil of a leaf, i. e. the angle hetween leaf and stem on the upper side; and branches may again branch, so huilding up the herb, shrub, or tree. But sooner or later, and without long delay in an amnal like Flax, instead of this contimanee of mere regetation, reproduction is prepared for by

Fig. 8. Upper part of Flax-plant in blossom.
15. Blossoming. In Flax the flowers make their appearance at the end of the stem and branches. The growth, which otherwise might contime them farther or indefinitely, now takes the form of blossom, and is subservient to the produetion of seed.
16. The Flower of Flax eonsists, first, of five small green leaves, crowled into a circle: this is the Calyx, or flower-cup. When its separate leaves are referred to they are ealled Sepals, a name which distinguishes them from foliage-leaves on the one hand, and from petals on the other. Then come five delicate and colored leaves (in the Flax, blue), whieh form the Corolla, and its leaves are Petals; then a cirele of organs, in

whieh all likeness to leaves is lost, consisting of slender stalks with a knob at summit, the Stamens; and lastly, in the eentre, the rounded body, whieh beeomes a pod, surmounted by five slender or stalk-like bodies. This, all together, is the Pistil. The lower part of it, whieh is to contain the sceds, is the Orary; the slender organs surmonnting this are Styles; the knob horne on the apex of eaeh style is a Stigma. Going back to the stamens, these are of two parts, viz. the stalk, called Filament, and the body it bears, the Antier. Anthers are filled with Pollen, a powdery substanee made up of minute grams.
17. The pollen shed from the anthers when they open falls upon or is conveyed to the stigmas; then the pollen-grains set up a kind of growth (to be discerned only by aid of a good microseope), whieh penetrates the style: this growth takes the form of a thread more delieate than the finest spider's web, and reaches the bodies which are to become seeds (Orules they are called until this change oceurs) ; these, touehed by this influence, are ineited to a new growth within, which becomes an embryo. So, as the ovary ripens into the seed-pod or eapsule (Fig. 1, etc.) containing seeds, each seed enclosing a rudimentary new plantlet, the round of this vegetable existenee is eompleted.

Fig. 9. Flax-flowers about natural size. 10. Section of a flower moderately enlarged, showing a part of the petals and stamens, all five styles, and a section of ovary with two ovules or rudimentary seeds.

Section III. MORPHOLOGY OF SEEDLINGS.

18. Having obtained a general idea of the growth and parts of a phanerogamous plant from the common Flax of the field, the seeds and seedlings of other familiar plauts may be taken up, and their variations from the assumed patteru examined.
19. Germinating Maples are excellent to begin with, the parts bcing so mueh larger than in Flax that a common magnifyiug glass, although convenient, is hardly necessary. The only disadvantage is that fresh secds are not readily to be had at all seasons.
20. The seeds of Sugar Maple ripen at the end of summer, and germinate in early spring. The embryo fills the whole seed, in which it is nieely packed; and the nature of the parts is obvious even before growth begins. There is a stemlet (eaulicle) and
 a pair of long and narrow seedleaves (cotyledons), doubled up and coiled, green even in the seed, and in germination at once unfolding into the first pair of foliage-leaves, though of shape quite unlike those that follow.
21. Red Maple seeds are ripe and ready to germinate at the begiming of summer, and are therefore more convenient for study. The cotyiedons are crumpled in the seed, and not easy to straighten out until they unfold themselves in germination. The story of their development into the seedling is told by the accompanying Fig. 14-20; and that of Sugar Maple is elosely similar. No plumule or bud appears in the embryo of these two Maples until the seed-leaves have nearly attained their full growth and are acting as foliage-leaves, and until a root is formed below. There is no great store of nourishment in these thin cotyledons; so further growth has to wait until the root and seed-leaves have collected and elaborated sufficient material for the formation of the second internode and its pair of leares, which lending their help the third pair is more promptly produced, and so on.
22. Some change in the plan comes with the Silver or Soft White Maple. (Fig. 21-25). This blossoms in earliest spring, and it drops its large and ripened keys only a few weeks later. Its eotyledons have not at all the appearance of leaves; they are short and broad, and (as there is no room to be saved by folding) they are straight, execpt a small fold at the top, a vestige of the labit of Maples in general. Their unusual thickness is due

Fig. 11. Embryo of Sugar Maple, cut through lengthwise and taken out of the seed. 12, 13. Whole embryo of same just beginning to grow; a, the stemlet or caulicle which in 13 has considerably lengthened.
to the large store of mutritive matter they contain, and this prevents their developing into actmat leaves. Correspondingly, their eaulicle does not Inginen to clevate them above the surface of the soil ; the growth below the cotyledons is nearly all of root. It is the little plumule or bud betweer.

them which makes the upward growth, and which, being well fed by the entyledons, rapidly develops the next pair of leares and raises them upon a long internode, and so on. The cotyledons all the while remain below, in the husk of the froit and seed. and perish when they have yielded up the st ore of food whieh they contained.
23. So, even in plants so much alike as Maples, there is considerable difference in the amoment of food stored up in the entyledons by which the growth is to be made; and there are corresponding differenees in the ger-

Fig. 14. One of the pair of keys or winged fruits of Red Maple; the seed-bearing portion cut open to show the seen. 15. Seod enlarged, and divided to show the crmmpled emhryo which fills it. 16. Emhryo taken out and partly opened. 17. Fmbryo which has unfohlel in early stage of germination and begun to grow. 18. Seedling with next joint of stem and leaves apparent; and 19 with these parts full-grown, and hul at apex for further growth. 20. Seedling with another joint of stem and pair of leaves.
mination. The larger the supply to draw upon, the stronger the growth, and the quicker the formation of root below and of stem and leaves above. This deposit of food thickens the cotyledons, and readers them less and less leaf-like in proportion to its amount.
24. Examples of Embryos with thickened Cotyledons. In the Pumpkin and Squash (Fig. 20, 27), the cotyledous are well supplied with nourishing matter, as their sweet taste demonstrates. Still, they are flat and not very thick. In germination this store is promptly utilized in the development of the caulicle to twenty or thirty times its length in the seed, and to corresponding thickness, in the formation of a cluster of roots at its lower cnd, and the early production of the incipient plumule; also in their own growth into efficient green leaves. The case of onr common Bean (Phaseolus vulgaris, Fig. 28-30) is nearly the
 same, except that the cotyledons are much more gorged ; so that, although carried up into the air and light upon the lengthening cauliele, and there aequiring a green color, they never expand into useful leares. Instead of this, they nourish into rapid growth the plumule, which is plainly visible in the seed, as a pair of incipient leares; and these form the first actual foliage.
25. Very similar is the germination of the Becch (Fig. 31-33), except that the caulicle lengthens less, lardly raising the cotyledons out of the gromid. Nothing would be gained hy clevating them, as they never grow out into efficient leaves; but the joint of stem belonging to the plumule lengthens well, carrsing up its pair of real foliage-leaves.
20. It is nearly the same in the Bean of the Old World (Vicia Faba, here called Horse Bean and Windsor Bean) : the caulicle lengethens very little, does not undertake to elevate the liravy sced, which is left below or

Fig. 21. Fruit (nne key) of Silver Maple. Acer dasycarpmm, of natural size, the seed-bearing portion livided to show the seed. 22. Embryo of the seed taken out. 23. Same opened out, to show the thick cotyledons and the little plamule or bud between them. 24. Germination of Silver Maple, natural size; merely the base of the fruit, containing the seed, is shown. 25. Embryo of same, taken out of the husk; uppr part of growing stem cut off, for want of room.
upon the surface of the soil, the flat but thick cotyledons remaining in it, and supplying fool for the growth of the root beiow and the plumule above. In its near relative, the Pea (Fig. 34, 35), this use of cotyledous

for storage only is most completely carried out. For they are thickened to the utmost, even into hemispheres; the caulicle does not leugthen at all ; merely sends out roots from the lower end, and develops its strong plumule from the upper, the sced remaining unmoved underground. That is, in technical language, the germination is hypogaous.
27. There is sufficient nourishment in the cotylcdons of a pea to make a very considerable growth before any actual foliage is required. So it is the stem-portion of the plumule which is at first conspicuous and streng. growiug. Here, as scen in Fig. 35, its lower nodes bear each a useless leaf-scale instead of an efficicnt leaf, and only the later oncs bear leaves fitted for foliage.

Fig. 26. Embryo of Pumpkin-seed, partly opened. 27. Young seedling of sime.
Fig. 28. Embryo of Common Bean (lhaseolus vulgaris): caulicle bent down over edge of cotyledons. 29. Same germinating : canlicle well lengthened and root beginning; thick cotyledons partly spreading; and plumule (pair of leaves) growing between them. 30. Same, older, with plumule developer into internode and pair of leaves.
28. This hypogaous germination is exemplified on a larger scale by the Oak (Fig. 36, 37) and Horse-chestnut (Fig. 35, 39); but in these the downward growth is wholly a stout tap-root. It is not the cauliele; for

this lengthens hardly any. Indeed, the carliest growth which carries the very short caulicle out of the shell comes from the formation of footstalks to the cotyledons; above these develops the strong plumule, below grows the stout root. The growth is at first entirely, for a long time

Fig. 31. A Beech-mut, cut across. 32. Beginning germination of the Beech, showing the plumule growing before the cotyledons have opened or the root has scarcely formel. 33. The same, a little later, with the plumule-leaves developing, and elevated on a long internode.

Fig. 34. Enihryo of Pea, i. e. a pea with the coats removed; the short and thick caulicle presented to view. 35. Same in advanced germination: the plumule has developed four or five internodes, bearing single leaves; but the first and second leaves are mere scales, the third begins to serve as foliage; the next more so.
mainly, at the expense of the great store of food in the cotyledons. These, after serving their purpose, decay and fall away.
29. Such thick cotyledons never separate; indeed, they sometimes grow together by some part of their contiguous faces; so that the germination

seems to proceed from a solid bulb-like mass. This is the case in a horse-chestunt.
30. Germinating Embryo supplied by its own Store of Nourishment, i. e. the store in the cotyledurs. This is so in all the illustrations thus far, essentially so cren in the Flax. This nourishment was supplied by the mother plant to the orule and seed, and thenee taken into the embryo during its growth. Suelı embrros, filling the whole seed, are comparatively large and strong, and vigorous in germination in proportion to the amount of their erowth while connceted with the parent plant.
31. Germinating Embryo supplied from a Deposit outside of Itself. This is as common as the other mode; and it necurs in all degrees.

[^2]Some seeds have very little of this deposit, hut a comparatively large embryo, with its parts more or less developed and reeognizable. In others this deposit forms the main bulk of the seed, and the embryo is small or minute, and comparatively rutimentary. The following illustrations exemplity these various grades. When an embryo in a seed is thus surrounded by a white substance, it was natural to liken the latter to the white of an egrg, and the embryo or germ to the yolk. So the matter around or by the side of the embryo was called the Albumen, i. e. the white of the seed. The analogy is not very good; and to avoid ambiguity some botanists eall it the Endosperm. As that means in Enghish merely the inwards of a seed, the new name is little better than the old one; and, since we do not change names in botany exeept when it camot be avoiled, this name of albumen is generally kept пp. A sced with such a deposit is albuminous, one with none is exalbuminous.
32. The Albumen forms the main bulk of the seed in wheat, maize, rice, buckwheat, and the like. It is the floury part of the seed. Also of the eocoa-nut, of collee (where it is dense and hard), ete.; while in peas, beans, almonds, and in most edible nuts, the store of food, although essentially the same in nature and in use, is in the embryo itself, and therefore is not counted as anything to be separately named. In both forms this eoneentrated food for the germinating plant is food also for man and for
 animals.
33. For an albuminous seed with a well-developed embryo, the common Moruing Glory (Ipomoa purpurea, Fig. 40-43) is a convenient example, being easy and prompt to grow, and having all the parts well apparent. The seeds (duly soaked for examination) and the germination should be compared with those of Sugar and Red Maple (19-21). The only essential difference is that here the embryo is surrounded by and erumpled up in the albumen. This substance, which is pulpy or mneilaginots in fresh and young seeds, hardens as the seed ripens, but beeomes again pulpy in germination ; and, as it liquifies, the thin cotyledons absorbs it by their

[^3]whole surface. It supplements the mutritive matter contained in the cmbryo. Both together form no large store, but sufficient for establishing the seedling, with tiny root, stem, and pair of leares for initiating its independent growth; whieh in due time proceeds as in Fig. 41, 45.
34. Smaller embryos, less developed in the seed, are more dependent upon the extrancous supply of food. The figures $46-53$ illustrate four

grades in this respect. The smallest, that of the Peony, is still large enough to be seen with a hand magnifying glass, and even its cotyledons may be discerued by the aid of a simple stage mieroscope.
35. The broad cotyledons of Mirabilis, or Four-o'clock (Fig. 52, 53), with the slender caulicle almost encirele and enclose the floury albumen, instead of being enclosed in it, as in the other illustrations. Evidently here the germinating embryo is principally fed by one of the leaf-like cotyledons, the other being out of contact with the supply. In the embryo of Abronia (Fig. 54, 55), a ucar relative of Mirabilis, there is a siugular modification; one cotyledou is almost wanting, being reduced to a rudiment, leaving it for the other to do the work. This leads to the question of the
36. Number of Cotyledons. In all the preceding illustrations, the embryo, however different in slape and degree of development, is evidently

FIg. 44. Seedling of Morning Glory more adranced (root cut away); cotyledons well developed into foliage-leaves: succeeding internode and leaf well developerl, and the next forming. 45. Seedting more advanced; reduced to much below natural size.
constructed upon one and the same plan, namely, that of two leaves on a caulicle or initial stem, - a plan which is obvious even when one cotyledon becomes very much smaller than the other, as in the rare instance of Abronia (Fig. 54, 55). In other words, the embryos so far examined are all
37. Dicotyledonous, that is, two-cotyledoned. Plants which are thus similar in the plau of the embryo agree likewisc in the general structure of

their stems, leaves, and blossoms; and thus form a class, named from their embryo Dicotriedones, or in English, Dicotrledonous Plants. So long a name being ineonvenient, it may be shortened into Dicotyls.
35. Polycotyledonous is a name employed for the less usual case in which there are more than two cotyledons. The Pine is the most familiar case. This occurs in all Pines, the number of cotyledons varying from three to twelve; in Fig. 56, 57 they are six. Note that they are all on the same level, that is, belong to the same node, so as to form a circle or whorl at the summit of the caulicle. When there arc only threc cotyledons, they divide the space equally, are one third of the circle apart. When only two they are 180° apart, that is, are opposite.
39. The case of three or more cotyledons, which is constant in Pines and in some of their relatives (but not in all of them), is occasional among Dicotyls. And the polycotyledonous is only a variation of the dicotyledonous type, - a difference in the number of leaves in the whorl; for a pair is a whorl reduced to two members. Some suppose that there are really only

Fig. 46. Section of a seed of a Peony, slowing a very small embryo in the albumen, near one end. 47. This embryo detached, and more magnified.

Fig. 48. Section of a seel of Barberry, showing the straight embryo in the middle of the albumen. 49. Its embryo detached.

Fig. 50. Section of a Potato-seed, slowing the embryo coiled in the albumen. 51. Its embryo detacherl.

Fig. 52. Section of the seed of Mirabilis or Four-o'clock, showing the embryo coiled round the outsile of the albumen. 53. Embryo detached; showing the very broad and leaf-like cotylelons, applied face to face, and the pair incurvel.

Fig. 54. Embryo of Alronia umbellata; one of the cotyledons very small. 55. Same straightened out.
two cotyledons even in a Pine-embryo, but these divided or split up congenitally so as to imitate a greater number. But as leaves are often in whorls on ordinary stems, they may be so at the very begiming.

40. Monocotyledonous (meaning with single cotyledon) is the name of the one-cotyledoned sort of embryo. This goes along with peculiarities in stem, leaves, and flowers; which all together associate such plants into a great elass, called Monocotylebonous Plants, or, for shortness, Monocotrls. It me:ms mercly that the leaves are alternate from the very first.
41. In Iris (Fig. 58, 59) the embryo in the seed is a small cylinder at one cond of the mass of the albumen, with mo apparent distinction of parts. The end which almost touches the seed-eoat is caulicle; the other end belongs to the solitary cotyledon. In germination the whole lengthens (but mainly the cotstedon) only enough to push the proximate end fairly out of the seed: from this end the root is formed; and from a little higher the plomule later emerges. It would appear, therefore, that the eotyledon answers to a minute leaf rolled up, and that a chink through which the plamule grows out is a part of the inrolled edges. The embryo of ladian Corn shows these parts on a larger seale and in a more open state (Fig. 6668). There, in the sced, the cotyledon remains, imbibing nourishment from the softened albumen, and transmitting it to the growing root

61
 below and new-forming leaves above.
42. The general plan is the same in the Onion (Fig. 60-65), but with a striking difference. The embryo is long, and coiled in the albumen of the seed. 'To ordinary examination it shows no distinction of parts. But germination plainly shows that all except the lower end of it is cotyledon. For after it has lengthened into a long thread, the chink from which the

[^4]plumule in time emerges is seen at the base, or near it; so the caulicle is

Fig. 62. Germinating Onion, more alvanced ; the chink at lase of cotyleton opening for the protrusion of the flumale, consisting of a threal-shapel leaf. 63. Section of hase of Fig. 62, showing phmule enclosel. 64. Suetion of same later; plumble emerging. 65. Later stage of 62 ; upler part cut off. tit. A grain of Indian Corn, flatwise, cut away a little, so as to show the embro, lying on the albumen, which makes the principal holk of the seen. 67. A grain cut through the middle in the opposite direction, diviling the embryo through its thick cotyledon and its phamule, the latter consisting of two leaves, one enclosing the other. 68. The embryo, taken out whole: the thick mass is the cotylelon; the narrow hody partly enclosed ly it is the phomule; the little projection at its hase is the very short ralicle enclosel in the sheathing hase of the tirst leaf of the fumule.

Fig. 69. Grain of Indian Corn in germination ; the aseenting spront is the first leaf of the phmule, enclosing the younder leaves within: at its lase the primary root has liroken through. 70. The same, adsamcell; the second and thirl leaves developing, while the sheathing first leaf does not further develop.
the cereal grains) it raises the eomparatively light seed into the air, the tip still remaning in the seed and feedng upon the albumen. When this food is exhausted and the seedling is well es-

13. In Maize or Indian Corn (Fig. 66-70), the embryo is more de. veloped in the seed, and its parts can be made out. It lies agaiust the starehy albumen, but is not enelosed therein. The larger part of it is the cotyledon, thickish, its edges involute, and its back in contact with the albumen; partly euclosed by it is the well-derel. oped plumule or bud whiell is to grow. For the cotyledon remains in the seed to fulfil its office of imbibing nouristment from the softened alloumen, which it couveys to the growing sprout; the part of this sprout which is visible is the first leaf of the plumule rolled up into a sheath and enclosing the rudiments of the succeeding leares, at the base enclosing even the minute cauliele. In germination the first Ieaf of the plumule develops only as a sort of sheath, protecting the tender parts within; the second and the third form the first foliage. The cauliele never lengthens: the first root, which is formed at its lower end, or from any part of it, has to break through the enclosing sheath; and succeeding roots soon spring from all or any of the nodes of the plumule.
44. Simple-stemmed Plants are thus built up, by the continuous production of one leaf-bearing portion of stem from the summit of the preceding one, begiming with the initial stem (or caulicle) in the embryo. Some Dicotyls and many Monocotyls develop only in this single line of gromth (as 10 parts above ground) until the flowering state is approaehed. For some examples, sce Cycas (Fig. 71, front, at the left) ; a tall Yucea or Spaush Bayonet, and two Cocoa-mut Palms behind ; at the right, a group of Sugarcanes, and a Banana behind.

Fig. 71. Simple-stemmed vegetation.

Secion IV. GROIVTH FROM BUDS : BRANCHING.

45. Most plants inerease the amount of their vegetation by branching, that is, by produeing lateral shoots.
46. Roots braneh from any part and usnally withont definite order. Stems normally give rise to branches only at definite points, namely, at the nodes, and there ouly from the axils of leaves.
47. Buds (Fig. 72, 73). Every ineipient shoot is a Bud (12). A stem continues its growth by its terminal bud; it branehes by the formation and development of lateral buds. As normal lateral buds occupy the axils of leaves, they are called axillary buds. As leaves are symmetrically arranged on the stem, the buds in their axils and the branches into whieh axillary buds grow partake of this symmetry. The most conspicuous buds are the sealy winterbuds of most shrubs and trees of temperate and cold chmates; but the name belongs as well to the forming shoot or branch of any herb.
48. The Terminal Bud, in the most general sense, may be said to exist in the embryo, - as cotyledons, or the cotyledons and plumnle, - and to crown each successive growth of the simple stem so long as the summit is eapable of growth. The whole aseending growth of the Palin, Cy. cas, and the like (such as in Fig. 71) is from a terminal bud. Branches, being repetitions of the main stem and growing in the same way, are also lengthened by terminal buds. Those of Horse-chestnut, Hickory, Maples, and such trees, being the resting buds of winter, are conspienous by their protective covering of seales. These bud-seales, as will hereafter be shown, are themselves a kind of leaves.
49. Axillary Buds were formed on these
 anuual shoots carly in the summer. Oceasionally they grow the same season into branches; at least, some of them are pretty sure to do so whenever the growing terminal bud at the end of the shoot is injured or destroyed. Otherwise they may lie dormant until the following spring. In many trees or shrubs these axillary buds do not show themselves until spring ; but if searehed for, they may be deteeted, thongh of small size, hidden under the bark. Sometimes, althongh early

Fig. 72. Shoot of Horse-chestnut, of one year's growth, taken in autumn after the leaves have fallen; showing the large terminal bud and smaller axillary buds.

Fig. 73. Similar shoot of Shaghark ITickory, Carya alba.
formed, they are concealed all summer lone under the base of the leaf-stalk, which is then hollowed ont into a sort of inverted cup, like a candleextinguisher, to eover them; as in the Loenst, the Yellow-wood, or more strikingly in the Button-wood or Plane-tree (Fig. 74).

50. The leaf-scars, so conspicuous in Fig. 72, 73, under each axillary bud, mark the place where the stalk of the subtending leaf was attached until it fell in antumn
51. Scaly Buds, which are well represented in Fig. 72, 73, commonly belong to trees and shubs of comtries in which growth is suspended during winter. The sealy coverings protect the tender young parts beneatli, not so much by kecping out the eold, which of course would penetrate the bud in time, as by shichling the interior from the effects of sudden changes. There are all gradations between these and
52. Naked Buds, in which these seales are inconspicuous or wanting, as in most herbs, at least above ground, and most tropieal trees and shrubs. But, nearly related plants of the same climate may differ widely in this respeet. Rhododendrons have strong and sealy winter-buds; while in Kalmia they are naked. One species of Viburmum, the IIobble-hush, has eompletely naked bods, what would be a pair of scales developing into the first leaves in spring; while another (the Suowball) has conspienous sealy buds.
53. Vigor of Vegetation from strong buds. Large and strong buds, like those of the Horse-chestnut, IHickory, and the like, contain sereral leaves, or pairs of leaves, ready formed. folled and packed away in small compass, just as the seed-leaves of a strong embryo are packed away in the seed: they may ceven contain all the blossoms of the ensuing season, plainly visible as small buds. And the stems upon whieh these buds rest are filled with abundant nourishment, whieh was deposited the summer before in the

[^5]wood or in the bark. Under the surface of the soil, or on it covered with the fallen leaves of autumn, simalar strong buds of our peremial herbs may be formd; while beneath are thick roots, rootstocks, or tubers, charged with a great store of nourishment for their nse. This explains how it is that vegetation from such buds shoots finth so vigorously in the spring of the year, and chothes the bare and lately frozen surface of the soil, as well as the naked boughs of trees, very promptly with a eovering of limesh green, and often with brillimit blossums. Everything was prepared, and reen formed, beforehand: the short, juints of stem in the bud have only to lengthen, and to separate the leases from each other so that they may unfold and grow. Only a small part of the vegetation of the satson eomes directly from the seed, and none of the earliest vermal vegetathom. 'This is all from buds which have lived through the winter.
54. The Arrangement of Branches, being that of axillary buds, answers to that of the leaves. Now leaves principally are cither opposite or alternate. Leaves are opposite when there are two from the same joint of stem, as in Maples (Fig. 20), the two being on opposite sides of the stem; and so the axillary buds and branches are opposite, as in Fig. 75. Leares are allernute when there is only one from each joint of stem, as in the Oak, Limetree, Poplar, Butom-wood (Fig. 74), Murning-Glory (Fig. 45, - mot combing the seedleaves, which of course are opposite, there being a pair of them) ; also in Indian Corn (Fig. 70), and Iris (Fig. 59). Consequently the axillary buds are also alternate, as 111 llickory (Fig. 73) ; and the branches they form alternate, - making a different kind of spray from the other mode, one brameh shooting on one side of the stem and the next on some other. For in the alternate arranement no leaf is on the same side of the stem as the one next above or next bolow it.
55. But the symmetry of branches (unlike that of the leares) is rarely complete. This is due to several causes, and most commonly to the
56. Non-development of buds. It never happens that all the buds grow. If they did, there might be as many branehes in any year as there were leases the fear before. And of those which do hegin to grow, a latge portion perish, somer or later, for want of nomishment, or for want of light, or beanse those which first begin to grow have an adrantage, which they are apt to keep, taking to themselves the nourishment of the stem, and starring the weaker buds. In the IIorse-eliestant (Fig. 72), Itickory (Fig. Ti3) Maguolia, and most other trees with large scaly buds, the terminal bid is the strongest, and has the adrantage in growth; and next in streagth are the upper axillary buds: while the former continues the shoot of the lant fear, some of the latter give rise to branches, and the rest fail to grow. In the Lilac also (Fig. 75), the uppermost axillary buds are stronger than the lower ; bat the terminal bud rarely appears at all; in its place the uppermost pair of axillary buds grow, and su each stem bramehes ever! rear into two, - making a repeatedly two-forked ramification, as in Fig. 76.
57. Latent Buds. Axillary buds that do not grow at the proper season, and especially those which make no appearance externally, may lone remain latent, and at length upon a favorable occasion start into growih, so forming branches apparently out of place as they are out of time. The new shoots seen springing directly out of large stems may sometimes originate from such latent buds, which have preserved their life for years. But commonly these arise from
58. Adventitious Buds. These are buds which eertain shrubs and trees produce anywhere on the surface of the wood, especially where it has been injured. Thes give rise to the slender twigs which often feather the sides of great branches of our American Elms. They sometimes form on the root, which naturally is destitute of buds; they are even found upon some leaves; and they are sure to appear on the trunks and roots of Willors, Poplars, and Chestnuts, when these are wounded or mutilated. Indeed Osier-Willows are pollarded, or cut off, from time to time, by the cultivator, for the purpose of producing a crop of slender adventitious twigs, suitable for basket-work. Such brauches, being altogether irregular, of course interfere with the natural symmetry of the tree. Another canse of irregularity, in certain trecs and shrubs, is the formation of what are called
59. Accessory or Supernumerary Buds. There are cases where two, three, or more buds spring from the axil of a leaf, instead of the simgle one which is ordinarily found there. Sometimes they are
 placed one over the other, as in the Aristolochia or Pipe-Vinc, and in the Tartarean Honersuckle (Fig. 77) ; also in the Ioner-Locust, and in the Walnut and Butternut (Fig. 78), where

Fig. 75. Shoot of Lilac, with winter huds : the two uppermost axillary ones strong; the terminal not develobel. 76 . Forking ramification of Lilac; reduced in size.

Fig. 77. Tartarean Honeysuckle, with three accessory buds in each axil.
the upper supernumerary bud is a good way out of the axil and above the others. And this is here stronger than the others, and grows into a branch whieh is comsiderably out of the axil, while the lower and swaller ones commonly do not grow at all. In other cases three buds stanl side by side in the axil, as in the Hawthorn, and the Red Maple (Fig. 79.) If these were all to grow into bramehes, they would stitle each other. But some of them are commonly flower-buds: in the Red Maple, only the middle one is a leaf-bud, and it does not grow until after those on each side of it have expanded the blossoms they contain.
60. Sorts of Buds. It may be useful to enumerate the kinds of buds which have been described or mentioned. They are

Terminal, when they occupy the summit of (or terminate) a stem,

Luteral, when thes are borne on the side of a stem; of which the regular kind is the

Axillary, sitnated in the axil of a leaf. These are
Accessory or Supernumerary, when they are in addition to the normal solitary bud; and these are Collateral, when side by side; Superposed, when one above another;
Extra-axillary, when they appear above the axil, as some do when superposed, and as occasionally is the case when single.
Nuked buds; those which have no proteeting seales.
Scaly buds; those which have protecting seales,
 which are altered leaves or bases of leaves.

Leaf-buds, contain or give rise to leaves, and develop into a leafy shoot.
Flocer-buds, contain or eonsist of blossoms, and no leaves.
Mixed buds, eontain both leaves and blossoms.
61. Definite annual Growth from winter buds is marked in most of the shoots from strong buds, suel as those of the Horse-chestmut and Hickory (Fig. 72, 73). Suela a bud gencrally eontains, already formed in miniature, all or a great part of the leaves and joints of stem it is to produee, makes its whole growth in lenglh in the course of a few wecks, or sometimes even in a few days, and then forms and ripens its buds for the next year's similar growth.
62. Indefinite annual Growth, on the other hand, is well marked in such trees or shrubs as the Honey-Locust, Sumac, and in sterile shoots of

[^6]the Rose, Blackberry, and Raspherry. That is, these shoots are apt to grow all summer fong, until stophed by the frosts of autunn or some other eause. Consequently they form and ripen not terminal bud protected by scales, and the upper axillary buds are produced so late in the scason that they have no time to mature, nor has their wood time to solidify and ripen. Such stems therefore commonly die back from the top in winter, or at least all their upper buds are small and fecble; so the growth of the sne. ceeding year takes place mainly from the lower axillary buds, which are more maturc.
63. Deliquescent and Excurrent Growth. Ins the former case, and wherever axillary buds take the lead, there is, of course, no single main stem, continued year after year in a direet line, but the truuk is soou lost

80
in the branches. Trees so formed eommonly have romded or spreading tops. Of such trees with deliquescent stems, - that is, with the trunk dissolved, as it were, into the suceessively divided branches, - the common Ameriean Elm (Fig. 80) is a good illustration.
64. On the other hand, the main stem of Firs and Spruces, unless destroyed by some injury, is earried on in a direet line throughout the whole growth of the tree, by the development year after year of a terminal hod: this forms a single, uninterrupted shaft, - an excurrent trunk, which eannot be confounded with the branches that procecd from it. Of sueh spiry or spire-shaped trees, the Firs or Spruces are eharacteristic and familiar examples There are all gradations between the two modes.

[^7]
Section Y. ROOTS.

65. It is a property of stems to produce roots. Stems do not spring from roots in ordinary cases, as is generally thought, but roots from stems. When perennial herbs arise from the ground, as they do at spring-time, they rise from subterranean stems.
66. The Primary Root is a downward growth from the root-end of the caulicle, that is, of the initial stem of the embryo (Fig. 5-7, 81). If it goes on to grow it makes a main or tap-root, as in Fig. 37, etc. Some plants keep this main root throughout their whole life, and send off only small side branches; as in the Carrot and Radish : and in various trees, like the Oak, it takes the lead of the side-branches for several years, unless accidentally injured, as a strong taproot. But commonly the main root divides off very soon, and is lost in the branches. Multiple primary roots now and then occur, as in the secalling of Pumpkin (Fig. 27), where a cluster is formed even at the first, from the root-end of the canlicle.
67. Secondary Roots are those which arise from other parts of the
 stem. Any part of the stem may produce them, but they most readily come from the nodes. As a general rule they naturally spring, or may be made to spring, from almost any young stem, when placed in favorable circumstances, - that is, when placed in the soil, or otherwise supplied with moisture and screened from the light. For the speeial tendency of the root is to avoid the light, seek moisture, and therefore to bury itself in the soil. Propagation by dirision, which is so common and so very important in cultivation, depends mon the proelivity of stems to strike root. Stems or branches which remain under gromed give out roots as freely as roots themselves give off branches. Stems which creep on the ground most commonly root at the joints; so will most branches when bent to the ground, as in propagation by layering; and propagation by cuttings equally depends upon the tendency of the cut end of a shoot to produce roots. Thus, a picce of a plant which has stem and leaves, either developed or in the bond, may be made to produce roots, and so become an independent phant.

Fig. 81. Seerlling Maple, of the natural size; the root well supllied with root-hairs. here large enough to be seen by the naked eye. S2. Lower end of this root, magntfied, the root seen just as root-hairs are beginning to form a little behind the tip.
68. Contrast between Stem and Root. Stems are aso :nding axes; roots are descending axes. Stems grow by the suecessive derelopment of intermodes (13), one alter another, each leaf-bearing
 at its summit (or node); so that it is of the essential nature of a stem to bear leaves. Roots bear no leaves, are not distinguishable into nodes and internodes, but grow on continuously from the lower end. They commonly branch freely, but not from
69. Although roots generally do not give rise to stems, and therefore do not propagate the plant, exceptions are not uncommon. For as stems may produce adventitious bads, so also may roots. The roots of the Sweet Potato among herbs, and of the Osage Orange among trees freely produce adventitious buds, developing into leafy shoots; and so these plants are propagated by root-cut. tings. But most growths of subterrancan origin which pass for roots are forms of stems, the common Potato for example.
70. Roots of ordinary kinds and uses may be roughly classed into fibrous and fleshy.
71. Fibrous Roots, such as those of Indian Corn (Fig. 70), of most annuals, and of many perennials, serve only for absorption: these are slender or thread-like. Fine roots of this kind, and the fine branches which most roots send out are called Rootlets.
72. The whole surface of a root absorbs moisture from the soil while fresh and new ; and the newer roots and rootlets are, the more freely do they imbibe. Accordingly, as long as the plant grows above ground, and expands fresh foliage, from which moisture largely escapes into the air, so long it continues to extend and multiply its roots in the soni beneath, remerning and increasing the fresh surface for absorbing moisture, in proportion to the demand from above. And when growth ceases above ground, and the leaves die and fall, or no longer act, then the roots generally stop growing,
and their soft and tender tips harden. From this period, therefore, until growth begins anew the next spring, is the best time for transplanting; especially for trees and shrubs.
73. The absorbing surface of young roots is much increased by the formation, near their tips, of Root-hairs (Fig. 81, 82), which are delicate

86

tubular outgrowths from the surface, through the delicate walls of which moisture is promptly imbibed.
74. Fleshy Roots are those in which the root becomes a storehouse of nourishment. Typical roots of this kind are those of such bienuials as the turnip and carrot; in which the food created in the first season's vegetation is accumulated, to be expended the next season in a vigorous growth and a rapid development of flowers, fruit, and seed. By the time the seed is matured the exhausted root dies, and with it the whole plant.
75. Fleshy roots may be single or multiple. The single root of the commoner bienuials is the primary root, or tap-root, whieh begins to thicken in the seedling. Names are given to its shapes, such as

Conical, when it thickens most at the erown, or where it joins the stem, and tapers regularly downwards to a point, as in the Parsnip and Carrot (Fig. 84);

Turnip-shaped or napiform, when greatly thickened above, but abıuptly becoming slender below; as the Turnip (Fig. 83) ; and

[^8]Spindlesshaped, or Fusiform, when thickest in the middle and tapering to both ents; as the common Radish (Fig. 85).

76 . These examples are of primary roots. It will be seen that turnips, carots, and the like, are not pure root throughout : for the eauliele, from the lower end of whel the root grew, partakes of the thickening, perhans also some joints of stem above: so the bud-bearing and growing top is stem.
77. A fine example of secondary roots (67), some of which remain fibrous for absorption, while a few thicken and store up food for the next season's growth, is furnished by the Sweet Potato (Fig. S6). As stated above, these are used for propagation by cuttings; for any part wilh produce adrentitious buds and shoots. The Dahlia produces faseicled (i. e. clustered) fusiform roots of the same kind, at the base of the stem (Fig. 8it) : but these, like most roots, do not produce adrentitious bods. The buds by whieh Dahlias are propagated belong to the surviving base of the stem above.
78. Anomalous Roots, as they may be ealled, are those whel subserve other uses than absorption, food-storing, and gixing the phant to the suil.
trial Roots, i. e. those that strike from stems in the open air, are common in moist and warm climates, as in the Mangrove which reaches the coast of Floridat, the Banỵan, and, less strikingly, in some herbaceous phants, sueh as Sugar Canc, and even in Indian Corn. Such roots reach the gromen at length, or tend to do so.

Aerial Rootlets are abun. dantly produced by many climbing plants, such as the Iry, Poison Iry, Trumpet Creeper, ete., springing from the side of stems, which thes fasten to trunks of trees, walls, or other supports. These are used bs the plant for climbing.
79. Epiphytes, or Air-

Plants (Fig. s5), are called by the former name hecause eommonly growing
Fig. Es. Fpiphytes of Florila and (iongia. viz, Epilendrum conopseum, a small Orehi l, and Tillankia usneniles, the sn-eallen Long Moss or Blark Iloss, Which is momoss, but a thuwering plant, also T. recurvata; on a bough of Live Oak
upon the trumks or limbs of other plants; by the latter beeause, having no conncetion with the soil, they most derive thei sustenane from the air only. 'They have aerial roots, which do not reach the ground, but are used to fix the plant to the surface upon which the phant grows: they also take a part in absorbing moisture from the air.
80. Parasitic Plants, of which there are various kinds, strike their roots, or what answer to roots, into the tissue of foster plants, or form attachments with their surface, so as to prey upon their juices. Of this sort is the Mistletoe, the seed of which germinates on the bough where it falls or is left by birds; and the forming root penetrates the bark and engrafts itself into the wood, to which it becomes mited as firmly as anatural branch to its parent stem; and indeed the parasite lives just as if it were a branch of the tree it grows and feeds on. A most common parasitic herb is the Dodder; which abounds in low grounds in summer, and coils its long and slender, leafless, yellowish stems - resembling tangled threads of yarn - round and round the stalks of other plants; wherever they touch piercing the bark with minute and very short rootlets in the form of suckers, which draw out the nourishing juices of the plants laid hold of. Other parasitic plants, like the Beech-drops and Pinc-sap, fasten their roots nuder ground upon the roots of neighboring plants, and rob them of their juices.
81. Some plants are partly parasitic; while most of their roots act in the ordinary way, others make suckers at their tips which grow fast to the

roots of other plants and rob them of nomishment. Some of our species of Gerardia do this (Fig. 89).
82. There are phanerogamous plants, like Monotropa or Indian Pipe, the roots of which feed mainly on decaying regetable matter in the soil. These are Saprophytes, and they initate Mushrooms and other Fungi in their mode of life.
83. Duration of Roots, etc. Ruots are said to be either ammal, biennial, or perennial. As resjects the first and sceond. these terms may be applicd either to the root or to the plant.
84. Ammuals, as the name denotes, live for only one year, generally for

[^9]only a part of the year. They are of course herbs; they spring from the seed, blossom, mature their fruit and seed, and then dic, root and all. Annuals of our temperate climates with severe winters start from the seed in spring, and perish at or before autumn. Where the winter is a moist and growing season and the summer is dry, winter amnals prevail; their seeds germiuate noder autumn or winter rains, grow more or less during winter, blossom, fruetify, and perish in the following spring or summer. Ammuals are fibrous-rooted.
85. Biennials, of which the Turnip, Beet, and Carrot are familiar examples, grow the first season without hlossoming, usually thicken their roots, liying up in them a stoek of nourishment, are quieseent during the winter, but shoot vigorously, blossom, and seed the next spring or summer, mainly at the expense of the food stored up, and then die completely. Amnuals and bienmials flower only onee; hence they have been called Monocarpic (that is, once-fruiting) plants.
86. Perennials live and blossom year after year. A perennial herb, in a temperate or cooler elimate, usually dies down to the ground at the end of the season's growth. But subterramean portions of stem, charged with buds, survive to renew the development. Shrubs and trees are of course peremial; even the stems and branches above ground live on and grow year after year.
87. There are all gradations between ammals and biennials, and between these and perennials, as also between herbs and shrubs; and the distinetion between slrubs and trees is quite arbitrary. There are perennial herbs and even shrobs of warm climates whieh are ammals when raised in a climate which has a winter, - being destroyed by frost. The Castoroil plant is an example. There are peremial herbs of which only small portions survive, as off-shoots, or, in the Potato, as tubers, etc.

Section VI. STEMS.

88. The Stem is the axis of the plant, the part which bears all the other organs. Brauches are secondary stems, that is, stems growing out of stems. The stem at the very begiming produces roots, in most plants a single root from the base of the embryo-stem, or cauliele. As this root becomes a descending axis, so the stem, which grows in the opposite direction is called the ascending axis. Rising out of the soil, the stem bears leaves; and leaf-bearing is the partieular characteristic of the stem. But there are forms of stems that remain underground, or make a part of their growth there. These do not bear leaves, in the common sense; yet they bear rudiments of leaves, or what answers to leaves, although not in the form of foliage. The so-ealled stemless or acaulescent plants are those which bear no obrious stem (caulis) above ground, but ouly flower-stalks, and the like.
89. Stems above ground, through differences in duration, texture, and size, form herbs, shrubs, trees, etc., or in other terms are

Herbaceous, dying down to the ground every year, or after blossoming.
Suffrutescent, slightly woody below, there surviving from year to jear.
Suffruticose or Frutescent, when low stems are decidedly woody below, but herbaceous above.

Fruticose or Shrubly, woody, living from year to year, and of considerable size, - not, however, more than three or four times the height of a man.

Arborescent, when tree-like in appearance or mode of growth, or approaching a tree in sizc.

Arboreous, when forming a proper tree-trunk.
90. As to direction taken in growing, stems may, instead of growing upright or erect, be

Diffuse, that is, looscly spreading in all directions.
Declined, when turned or bending over to one side.
Deeumbent, reclining on the ground, as if too weak to stand.
Assurgent or Ascending, rising obliquely upwards.
Procumbent or Prostrate, lying flat on the ground from the first.
Creeping or Repent, prostrate on or just beneath the ground, and striking root, as does the White Clover, the Partridge-berry, etc.

Climbing or Scandent, ascending by clinging to other objects for support, whether by tendils, as do the Pea, Grape-Vine, and Passion-flower and Virginia Creeper (Fig. 92, 93); by their twisting leaf-stalks, as the Virgin's Bower; or by rootlets, like the Ivy, Poison Ivy, and Trumpet Creeper.

Twining or Voluble, when coiling spirally around other stems or supports; like the Morning-Glory (Fig. 90) and the Hop.
91. Certain kinds
 of stems or branches, appropriated to special uses, have received distinct substantive names; such as the following : 92. A Culm, or straw-stem, such as that of Grasses and Sedges.
93. A Caudex is the old name for such a peculiar trumk as a Palm-stem ; it is also used for an upright and thick rootstock.
94. A Sucker is a branch rising from stems under ground. Sueh are produced abundantly by the Rose, Raspherry, and other plants said to multiply "by the root." If we uncover them, we see at once the great difference between these subterrancan branches and real roots. They are only creeping branches mider gromd. Remarking how the upright shoots from these branches become separate

Fig. 90. Twining or voluble stem of Morning-Glory.
plants, simply by the dying off of the comecting under-ground stems, the gardeucr expedites the result by entting then through with his spade. That is, he propagates the plant "by division."
95. A Stolon is a branch from above ground, which reelines or beeomes prostrate and strikes root (usually from the nodes) wherever it rests on the soil. Thence it may send up a vigorous shoot, which has roots of its own, and becomes an independent phant when the eomeeting part dies, as it does after a while. The Curant and the Gooseberry naturally multiply in this way, as well as by suckers (which are the same thing, only the eomecting part is concealed under ground). Stolons must have suggested the operation of layering by bending down and covering with soil branches which do not maturally make stolons; and alter they have taken root, as they almost always will, the gardener cuts through the comnecting stem, and so converts a rooting branch into a separate plant.
96. An Offset is a short stolon, or sucker, with a crown of leaves at the end, as in the Honseleck (Fig. 91), which propagates abuudantly in this way.
97. A Runner, of which the Strawberry presents the most familiar and characteristic example, is a long and slender, tendril-like stolon, or branch from next the gromed, destitute of comspicuous leaves. Each rumer of the Straw-

91 berry, after having grown to its full
lengith, strikes root from the tip, which fixes it to the gromud, then forms a bud there, which develops into a tuft of leaves, and so gives rise to a new plant, which sends out new rumers to act in the same way. In this manuer a single Strawberry plant will spread over a large space, or prodnce a great number of plants, in the course of the smmmer, all comected at first by the slender rumers; but these die in the following winter, if not before, and leave the plants as so many separate individuals.
98. Tendrils are branches of a very slender sort, like rumers, not destined like them for propagation, and therefore always destitute of buds or leaves, being intended only for elimbing. Simple tendrils are such as those of Passion-fluwers (lig. 92). Compound or branching tendrils are borne by the Cucumber and Pumpkin, by the Grape-Vine, Virginia Creeper, ete.
99. A tendril commonly grows straight and outstretehed until it reaches some neghboring support, such as a stem, when its apex hooks around it 10 secure a hold: then the whole tendril shortens itself by coiling up spirally, and so draws the shoot of the growing phat nearer to the supporting object. But the tendrils of the Virginia Creeper (Ampelopsis, Fig.

Fig. 91. Houseleck (Sempervivuru), with offsets.
93), as also the shorter ones of the Japanese speeies, effeet the object differently, namely, by expandiur the tips of the tendrils into a tlat disk, with an adhesive face. This is applied to the supporting object, and it adheres

its branches by eoiling brings up the growing shoot close to the support. This is an adaphation for elimbing mural rocks or walls, or the trumk of trees, to which ordinary tendrils are unable to eling. The lvy and Poison lvy altain the same result by means of aerial rootlets (78).
100. Some tendrils are leaves or parts of leaves, as those of the Iea (Fig. 35). The nature of the tendril is known by its position. A tendril from the axil of a leaf, like that of Pas-sion-flowers (Fig. 92) is of course a stem, i. e. a branch. So is one which terminates a stem, as in the Grape-Vine.
101. Spines or Thorns (Fig. 95, 96) are commonly stunted and hardenod hranches or tips of stems or bramehes, as are those of Hawthorn, Honcy-Locust, cte. In the l'ear and Sloe all gradations occur between spines and spine-like (spineseent) branches. Spines

may be reluced and indurated leaves; as in the Barberry, where their nature is revealed by their situation, muderneath an axillary bud. But

[^10]priekles, such as those of Blackberry and Roses, are only excrescences of the bark, and not branches.
102. Equally strange forms of stems are characteristic of the Cactus family (Fig. 111). These may be better understood by comparison with
103. Subterranean Stems and Branches. These are very mumerous and various; but they are commonly overlooked, or else are confounded with roots. From their situation they are out of ordinary sight; but they will well repay examination. For the vegetation that is carried on under ground is hardly less varied or important than that above gromd. All their forms may be referred to four principal kinds : namely, the Rhizoma (Rhizome) or Rootstock, the Tuber, the Corm or solid bulb, and the true Bulb.
104. The Rootstock, or Rhizoma, in its simplest form, is merely a creeping stem or branch
 growing beneath the surface of the soil, or partly covered by it. Of this kind are the so-called creeping, running, or scaly roots, such as those

97
by which the Mint (Fig. 97), the Coucl-grass, or Quick-grass, and many other plants, spread so rapidly and widely, - "by the root," as it is said. That these are really stems, and not roots, is evident from the way in whieh

Fig. 95. A branching thorn of Honey Locust, being an indurated leafless brameh developed from an accessory bud far above the axil: at the cut portion below, three other buds (a) are concealed umber the petiole.

Fig. 96. Spine of Cockspur Thorn, developed from an axillary lind, as the leafscar below witnesses: an accessory leaf-budi is seen at its base.

Fig. 97. Rootstocks, or creeping subterranean branches, of the Peppermint.
they grow; from their consisting of a succession of joints; and from the leaves which they bear on each node, in the form of small scales, just like the lowest ones on the upright stem next the ground. They also produce buds in the asils of these scales, showing the scales to be leaves; whereas real roots bear neither leaves nor axillary buds. Placed as they are in the damp and dark soil, such stems naturally produce roots, just as the creeping stem does where it lies on the surface of the ground.
105. It is easy to see why plants with these runuing rootstocks take such rapid and wide possession of the soil, and why they are so hard to get rid of. They are always perennials; the subterrancan shoots live over the first winter, if not longer, and are provided with vigorous buds at every joint. Some of these buds grow in spring into upright stems, bearing foliage, to elaborate nourishment, and at length produce blossoms for reproduction by seed; while many others, fed by nourishment supplied from above, form a new generation of subterranean shoots; and this is repeated over and over in the course of the season or in suceceding years. Meanwhile, as the subterranean shoots increase in number, the older ones, connecting the suc-
 cessive growths, die off year by year, liberating the already rooted side-branches as so many separate plants; and so on indefinitely. Cutting these rumning rootstocks into picces, therefore, by the hoe or the plough, far from destroying the plant, only accelerates the propagation; it converts one many-hranched plant into a great number of separate individuals. Cutting into pieces only multiplies the pest; for each piece (Fig. 98) is already a plantlet, with its roots and with a bud in the axil of its scale-like leaf (either latent or apparent), and with prepared nourishment enough to develop this bud into a leafy stem; and so a single phant is all the nore speedily converted into a multitude. Whercas, when the subterranean parts are only roots, cutting away the stem completely destroys the plant, except in the rather rare cases where the root freely prodaces adventitious buds.
106. Rootstocks are more commonly thiekened by the storing up of considerable nourishing matter in their tissuc. The common species of Iris (Fig. 164) in the gardens have stout rootstocks, which are only partly covered by the soil, and which bear foliage-leaves instead of mere scales, closely covering the upper part, while the lower produces roots. As the leaves die, year by year, and decay, a scar left in the form of a ring marks the place where each leaf was attached, that is, marks so many nodes, separated by very short internodes.
107. Some rootstocks are marked with large round scars of a different

Fig. 98. A piece of the ruming rontstock of the Peppermint, with its node or joint, and an axillary bud ready to grow.
sort, like those of the Solomon's Seal (Fig. 99), whieh gave this mane to the plant, from their looking somewhat like the impression of a seal upon

wax. Here the rootstock sends up every spring an herbaccous stalk or stem, which bears the foliage and flowers, and dies in autumn. The seal is the circular scar left by the death and separation of the base of the stout stalk from the living rootstock. As but one of these is formed each year, they mark the limits of a year's growth. The bud at the cud of the rootstock in the figure (which was taken in summer) will grow the next spring into the stalk of the scason, which, dying in autumn, will leave a similar sear, white amother bud will be formed farther on, crowning the ever-advancing summit or growing end of the stem.
108. As each year's growth of stem makes its own ronts, it soon becomes independent of the older parts. And after a certain age, a prortion ammally dies off behind, abont as fast as it inereases at the growing end, death following life with equal and certain step, with only a narrow interval. In vigorous plants of Solomon's Seal or Iris, the living rootstock is several inehes or a foot in length; while in the short rootstock of Trillimu or Birthroot (Fig. 100)
 life is reduced to a narrower span.
109. An upright or short rootstock, like this of Trillinm, is commonly called a Caudex (93); or when more shortened and thickence it would beeome a corm.
110. A Tuber may be muderstood to be a portion of a rootstock thiekened, and with buds (eyes) on the sides. Of cotrse, there are all gradations between a tuber and a rootstock. Helianthus tuberosus, the so-eatled Jerusalem Artiehoke (Fig. 101), and the common Potato, are typieal and familiar examples of the tuber. The stalks by which the tubers are attached to the parent stem are at onee seen to be different from the roots, both in appearance and maner of growth. The scales on the tubers are the rudiments of leaves; the eyes are the buds in their axils. The Potato-plant

Fig. 99. Rootstock of Solomon's Seal, with the bottom of the stalk of the season, and the hud for the next year's growth.

Fig. 100. The very short rootstock and strong terminal bud of a Trillium or Birthroot.
has threc forms of branches: 1. Those that bear ordinary leaves expanded in the air, to digest what they grather from it and what the roots gather from the soil, and convert it into nourishment. 2. After a while a second set of branches at the summit of the plant bear flowers, which form fruit and seed out of a portion of the nourishment whieh the leaves have prepared. 3. But a larger part of this nourishment, while in a liquid state, is carried down the stem, into a third sort of branches under ground, and accumulated in the form of stareh at their cxtremities, which become tubers, or depositories of prepared solid food, - just as in the Turnip, Carrot, and Dahlia (Fig. 83-87), it is deposited in
 the root. The use of the store of food is oljvious enough. In the autumm the whole plant dies, except the seeds (if it formed them) and the tubers; and the latter are left discomected in the gromid. Just as that small portion of nourishing matter which is deposited in the seed feeds the embryo when it germinates, so the much larger portion deposited in the tuber nourishes its buds, or eyes, when they likewise grow, the next spring, into now plants. And the great smpply enables them to shoot with a greater vigor at the begiming, and to produce a greater amount of vegetation than the scedling plant could do in the same space of time; which vegetation in turn may prepare and store up, in the course of a few weeks or months, the largest quantity of solid nourishing material, in a form most available for food. Taking advantage of this, man has transported the Potato from the cool Andes of Chili to other cool elimates, and makes it yicld him a eopions supply of food, especially important in comntries where the season is too short, or the summer's heat too little, for profitably cultivating the prineipal erain-plants.
111. The Corm or Solid Bulb, like that of Cyclamen (Fig. 10.3), and of Indian Turnip (Fig. 104), is a very short and thick fleshy subterranean stem, often broader than high. It sends ofl roots from its lower end, or rather face, leaves and stalks from its upper. The corm of Cyelamen goes on to enbarge and to produce a succession of flowers and leaves year atter year.

Fig. 101. Tubers of Ifelianthus tuberosus, called "artichokes."
Fig. 102. Bulblet-like tubers, such as are occasionally formed on the stem of a Potato-plant above grouud.

That of Indian Thruip is formed one year and is consumed the ncst. Fig. 104 represents it in early summer, having below the corm of last year, from which the roots have fallen. It is partly consumed by the growth of the
 stem for the season, and the corm of the year is forming at base of the stem above the liue of roots.
112. The corm of Crocus (Fig. 105, 106), like that of its relative Gladiolus, is also reproduced annually, the new ones forming upon the summit and sides of the oid. Such a corm is like a tuber in budding from the sides, i. e. from the axils of leaves; but these leaves, instead of being small scales, are the sheathing bases of fo-liage-leaves which corered the surface. It resembles a true bulb in having these sheaths or broad scales; but in the corm or solid bulb, this solid part or stem makes up the principal bulk.
113. The Bulb, strictly so-called, is a stem like a reduced corm as to its solid part (or plate); while the main body consists of thickened scales, which are leares or leaf-bases. These are like budscales; so that in fact a bulb is a bud with fleshy scales on an exceedingly short stem. Compare a White Lils bulb (Fig. 107) with the strong scaly buds of the Hickory and Horse-chestnut (Fig. 72 and 73), and the resemblance will appear. In corms, as in tubers and rootstocks, the store of food for future growth is deposited in the stem; while in the bulb, the greater part is deposited in the bases of the leaves, changing them into thick
 scales, which closely orerlap or enclose one another.
114. A Scaly Bulb (like that of the Lily, Fig. 107, 108) is one in which the scales are thick but comparatively narrow.
115. A Tunicated or Coated Bulb is one in which the scales enwrap each other, forming concentric coats or layers, as in Hyacinth and Onion.

Fig. 103. Corm of Cyclamen, much reduced in size : roots from lower face, leafstalks and flower-stalks from the upper.

Fig. 104. Corm of Indian Turnip (Arisæma).
Fig. 105. Corm of a Crocus, the investing sheaths or dead leaf-bases stripped off. The faint cross-lines represent the scars, where the leaves were attacherd, i. e. the nodes: the spaces between are the internoiles. The exhansted corm of the previous year is underneath ; forming ones for next year on the sunmit and sides.

Fig. 106. Section of the same.
116. Bulblets are very small bulbs growing out of larger ones; or small bulbs produced above ground ou some plants, as in the axils of the leaves of the butbiferous Lilies of the gardens (Fig. 110), and often in the flower-clusters of the Leek and Onion. They are plainly buds with thickened scales. They never grow into branches, but detach themselves when full grown, fall to the ground, and take root there to form new plants.
117. Consolidated Vegetation. An ordiuary herb, shrub, or tree is evidently constructed on the plan developing an extensive surface. In fleshy rootstocks,

107

108

tubers, corms, and bulbs, the more conduring portion of the plant is concentrated, and reduced for the time of struggle (as against drought, heat, or cold) to a small amount of exposed surfaee, and this mostly sheltered in the soil. There are many similar consolidated forms which are not subterranean. Thus plants like the Houseleek (Fig. 91) imitate a bulb. Among Cactuses the columar species of Cereus (Fig. 111, \langle), may be lik-
 ened to rootstocks. A green rind serves the purpose of foliage ; but the surface is as nothing compared with an ordinary leafy plant of the same bulk. Compare, for instance, the largest Cactus known, the Giant Cereus of the Gila River (Fig. 111, in the background), which rises to the height of fifty or sixty feet, with a common leafy tree of the same height, such as that in Fig. 89, and estimate how vastly greater, even without the foliage, the surface of the latter is than that of the former. Compare, in the

Fig. 107. Bulb of a wild Lily. 108. The same divided lengthwise, showing two forming buds of the next generation.

Fig. 109. A ground leaf of White Lily, its base (cut across) thickened into a bulb-scale. This plainly shows that bulb-scales are leaves.

Fig. 110. Bulblets in the axils of leaves of a Tiger Lily.
same vicw, an Opuntia or Prickly-Pear Cactus, its stem and branches formed of a suceession of thick and tlattened joints (Fig. 111, a), which may be likened to thbers, or an Epiphyllum (d), having short and flat joints, with an ordinary leafy shrub or herb of equal size. And finally, in Melon-Cactuses, Echinocactus (c), or other globose forms (which may be likened to permanent corms), with their globular or bulb-like shapes, we have plants in the eompactest shape; their spherical figure being such as to expose the least possible amount of substance to the air. These are adaptations to elimates which are very dry, either throughont or for a part of the year. Similarly, bulbous and corm-bearing plants, and the like, are examples of a form of vegetation which in the growing season may expand a large surface to the air and light, while during the period of rest the living vegetable is reduced to a globe, or solid form of the least possible surface; and this protected by its outer coats of dead and dry scales, as well as by its situation muder ground. Such are also adapted to a season of drought. They largely belong to countries which have a long hot season of little or no rain, when, their stalks and foliage above and their roots beneath early peristing, the plants rest securely in their compact bulbs, filled with nourishment and retaining their moisture witly great tenacity, until the rainy season comes romml. Then they shoot forth leaves and flowers with wonderful rapility, and what was perhaps a desert of arid sand becomes green with foliage and gay with blossoms, almost in a day.

Section VII. Leaves.

118. Stems bear leaves, at definite points (nodes, 13); and these are produced in a great variety of forms, and subscrve various uses. The commonest kind of leaf, which therefore may be taken as the type or pattern, is an expanded green body, by means of which the plant exposes to the air and light the matters which it imbibes, exhales certain portions, and assimilates the residue into vegetable matter for its nourishment and growth.
119. But the fact is alrcady familiar ($10-30$) that leaves occur under other forms and serve for other uses, - for the storage of food already assimilated, as in thickened seed-leaves aud bulb-scales; for covering, as in bud-scales; and still other uses are to be pointed out. Indeed, sometines they are of no service to the plant, being redueed to mere scales or rudiments, such as those on the rootstocks of Peppermint (Fig. 97) or the tubers of Jerusalem Artichoke (Fig. 101). These may be said to be of service only to the botanist, in explaning to him the plan upon which a plant is constructed.
120. Aceordingly, just as a rootstock, or a tuber, or a teudril is a kind of stem, so a bud-seale, or a bulb-scalc, or a cotyledon, or a petal of a flower, is a kind of leaf. Even in respect to ordinary leares, it is natural to use the word eitlace in a wider or in a narrower sense; as when in one sense we say that a leaf consists of blade and petiole or leaf-stalk, and in another sense say that a leaf is petioled, or that the leaf of Mepatica is threc-lobed. The comncetion should make it plain whether by leaf we mean leaf-blade only, or the blade with any other parts it may have. Aud the student will readily understand that by leaf in its largest or morphological sense, the botanist means the organ which occupics the place of a leaf, whatever be its form or its function.

§ 1. LEAVES AS FOLIAGE.

121. This is tautological; for foliage is simply leaves: hat it is very convenient to speak of typical lcaves, or those which serve the plant for assimilation, as foliage-leaves, or ordinary leaves. Thesc may first be considered.
122. The Parts of a Leaf. The ordinary leaf, complete in its parts, consists of blade, foot-stall, or petiole, and a pair of stipules.
123. First the Blade or Lamina, which is the essential part of ordinary leaves, that is, of such as serve the purpose of foliage. In structure it consists of a softer part, the green pulp, called parenchyma, which is traversed and supported by a tibrous frame, the parts of which are called rihs or reins, ou account of a certain likeness in arrangement to the veins of animals.

The whole surfaee is covered by a tramsparent skin, the Epidermis, not mulike that which eovers the surlace of all fiesh shoots.
121. Note that the leaf-blate expands horizontally, - that is, normally presents its faecs one to the sky, the other to the ground, or when the leaf is erect the upper face looks toward the stem that bears it, the lower face away from it. Whenever this is not the case there is something to be explained.
125. The framework consists of rood, - a fibrous and tough material which runs from the stem through the leaf-stalk, when there is one, in the form of parallel threads or bundles of fibres;
 and in the blade these spread out in a horizontal direction, to form the ribs and ceins of the leaf. The stout main branches of the framework are called the Rils. When there is only one, as in Fig. 112, 114, or a middle one decidedly larger than the rest, it is called the Midrib. The smaller divisions are termed Veins; and their still smaller subdivisions, Veinlets. The latter subdivide again and again, until they become so fine that they are invisible to the naked eye. The fibres of which they are composed are lollow; forming tubes by which the sap is bronght into the leaves and carried to every part.
126. Venation is the name of the mode of reining, that is, of the way in which the veins are distributed in the blade. This is of two principal kinds; namely, the parallel-veined, and the netted-reined.
127. In Netted-veined (also called Reticulated) leaves, the veins branch off from the main rib or ribs, divide into fmer and finer remlets, and the branches unite with each other to form meshes of network. That is, they anastomose, as anatomists say of the veins and arteries of the body. The Quince-leaf, in Fig. 112, shows this kind of veining in a leaf with a single rib. The Maple, Basswood, Plane or Buttonwood (Tig. 74) show it in leaves of several ribs.
123. In parallel-ceined leares, the whole framework consists of slender ribs or veins, whieh rom parallel with each other, or nearly so, from the base to the point of the leaf, - not dividing and subdividing, nor forming meshes, except br minute eross-veinlets. The leaf of any grass, or that of the Lily of the Valley (Fig. 113) will furnish a good illustration. Such parallel veins Limacus ealled Verres, and parallel-veined leaves are still eommonly ealled nereed laves, while those of the other kind are said to be
veined, - terms which it is convenient to nse, although these "nerves" and "veins" are all the same thing, and have no likeness to the nerves and little to the veins of animals.
129. Netted-veined leaves belong to plants which have a pair of seedleaves or cotyledons, such as the Maple (Fig. 20, 24,), Beech (Fig. 33), and

113

the like; while parallel-veined or nerved leaves belong to plants with one cotyledon or true sced-leaf; such as the Iris (Fig. 59), and Indian Corn (Fig. 70). So that a mere glance at the leaves generally tells what the structure of the embryo is, and refers the plant to one or the other of these two grand classes, - which is a great convenience. For when plants differ from each other in some one important respect, they usually differ corres. pondingly in other respects also.
130. Parallel-veined leaves are of two sorts, -one kind, and the commonest, having the ribs or nerves all running from the base to the point of the leaf, as in the examples already given; while in another kind they run from a midrib to the margin, as in the common Pickerel-weed of our ponds, in the Banana, in Calla (Fig. 114), and many similar plants of warm climates.
131. Netted-veined leaves are also of two sorts, as in the examples already referred to. In one case the veins all rise from a single rib (the midrib), as in Fig. 112, 116-127. Such leaves are called Feather-veined or Penni-veined, i. e. Pinnately-veined; both terms meaning the same thing, namely, that the veins are arranged on the sides of the rib like the plume of a feather on each side of the shaft.

Fig. 113. A (parallel-veined) leaf of the Lily of the Valley. 114. One of the Ealla Lily.
132. In the other ease (as in Fig. 74, 129-132), the veins branch off from three, five, seven, or nine ribs, which spread trom the top of the leafstalk, and run through the blade like the toes of a web-tooted bird. IIenee these are said to be Palmately or Jigitately veined, or (since the , ribs diverge like rays from a centre) Rudiate-veined.
133. Since the general outline of leaves aceords with the frame-work or skeleton, it is plain that feather-ceined (or penni-rcined) leaves will ineline to clongated shapes, or at least to be longer than broad; while in roduate veined leaves more romided forms are to be expected. A glance at the following figures shows this.
134. Forms of Leaves as to General Outline. It is neeessary to give names to the prineipal shapes, and to define them rather precisely, sinee they afford easy marks for distinguishing species. The same terms are used

for all other flattened parts as well, such as petals; so that they make up a great part of the deseriptive language of Botany. It will be a good exereise for joung students to look up leaves answering to these names and definitions. Begiming with the narrower and proceeding to the broadest forms, a leaf is said to be

Linear (Fig. 115), when narrow, several times longer than wide, and of the same breadth throughout.

Lanceolate, or Lance-shaped, when eonspieuously longer than wide, and tapering upwards (Fig. 116), or both upwards and downwards.

Oblong (Fig. 117), when nearly twice or thrice as long as broad.
Elliptical (Fig. 118) is oblong with a flowing outline, the two ends alike in width.

Ocal is the same as broadly elliptical, or elliptical with the breadth considerably more than half the length.

Orate (Fig. 119), when the ontline is like a section of a hen's eggg lengthwise, the broader end downward.

Orbicular, or Rotund (Fig. 132), cireular in outline, or neary so.
135. A leaf whieh tapers toward the base instead of toward the apex may be

Oblanceolate (Fig. 121) when of the lance-shaped form, only more tapering toward the base than in the opposite direction.

Spatulate (Fig. 122) when more rounded above, but tapering thence to a narrow base, like an old fashioned spatula.

Fig. 115-120. A series of shapes of feather-veinel leaves.

Obovate (Fig. 123) or inversely ovate, that is, ovate with the narrower end down.

Cuneate or Cunciform, that is, Wedgo-shaped (Fig. 12t), broad above and tapering by uearly straight lines to an acute angle at the base.
136. As to the Base, its slape characterizes several forms, such as

Corlate or Meart-shaped (Fig.
 120,129), when a leaf of an ovate form, or something like it, has the out-
 line of its rounded base turned in (forming a notch or sinus) where the stalk is attached.

Reniform, or Kidneyshaped (Fig. 131), like the last, only rounder and broader than long.

Auriculate, or Eured, having a pair of sumall and blunt projections, or ears, at the base, as in one species of Magnolia (Fig. 126).
Sagittate, or arrow-shaped, where such ears are acute and turned downwards, while the main body of the blade tapers upwards to a point, as in the common Sagittaria or Arrow-hcad, and in the Arrow-leaved Polygonmu (Fig. 125).
Hastate, or Halberl-shaped, when such lobes at the base point outwards, giving the shape of the halberd of the olden time, as in another

Polygonum (Fig. 127).
Peltate, or Shiell-shupell (Fig. 132), is the name applied to a curious modification of the leaf, commonly of a romded form, where the footstalk is attached to the lower surfiee, instead of the base, and therefore is matu-

[^11]rally likened to a shield borne by the outstretched arm. The common Watershield, the Nelumbium, and the White Water-lily, and also the Mandrake, exhibit this sort of leaf. On comparing the shield-shaped leaf of the common Marsh Pemnywort (Fig. 132) with that of another common species (Fig. 130), it is at once seen that a shield-shaped leaf is like a kidney-shaped (Fig. 130, 131) or other rounded leaf, with the margins at the base brought together aud united.
137. As to the Apex, the following terms express the principal varia-tions:-
Acaminate, Pointed, or Taper-pointed, when the summit is more or less prolonged into a narrowed or tapering point; as in Fig. 133.
Acute, eading in an aeute angle or not prolonged point; Fig. 134.
Oltuse, with a blunt or rounded apex; as in Fig. 135, ete.
Truncate, with the end as if eut off square; as in Fig. 130.
Retuse, with rounded summit slightly indented, formiug a very shallow noteh, as in Fig. 137.
Emarginate, or -Votched, indented at the end more decidedly; as in Fig. 133.

Obcordate, that is, inversely heart-shaped, where an obovate leaf is more deeply noteched at the end (Fig. 139), as in White Clorer and Wood-sorrel ; so as to resemble a cordate leat inverted.

Cuspidute, tipped with a sharp and rigid point ; as in Fig. 140.
Mucronate, abruptly tipped with a small and short point, like a mere projeetion of the midrib; as in Fig. 141.
Aristate, Aun-pointed, and Bristle-pointed, are terms used when this mueronate point is extended into a longer bristle-form or slender appendage.
The first six of these terms can be applied to the lower as well as to the upper end of a leaf or other organ. The others belong to the apex only.

139. As to degree and nature of Division, there is first of all the difference between

Simple Leares, those in which the blade is of one piece, howerer much it may be cut up, and

Compound Leares, those in whieh the blade eonsists of two or more separate pieces, upon a common leaf-stalk or support. Yet between these two kinds every intermediate gradation is to be met with.
139. As to Particular Outlines of Simple Leaves (and the same applies to their separate parts), they are

Entire, when their gencral outline is completely filled out, so that the margin is an even line, without tecth or notehes.

Serrate, or Saz-toothed, when the margin only is cut into sharp teeth, like those of a saw, and pointing forwards: as in Fig 142.
Dentate, or Toothed, when such teeth point ontwards, instead of forwards; as in Fig. 143.

Crenate, or Scalloped, when the teeth are broad and rounded; as in Fig. 144.
Repand, Undulate, or Wavy, when the margin of the leaf forms a wavy line,
 bending slightly inwards and outwards in succession; as in Fig. 145.

Sinuate, when the margin is more strongly sinuous or turned inwards and outwards ; as in Fig. 146.

Incised, Cut, or Jayged, when the margin is cut into sharp, deep, and irregular tecth or incisions; as in Fig. 147.

Lobed, when decply cut. Then the pieces are in a general way called Lobes. The number of the lobes is briefly expressed by the phrase twolobed, three-lobed, five-lobed, many-lobed, ete., as the case may be.
140. When the depth and character of the lobing needs to be more particularly speeified, the following terms are employed, viz.: -

Lobed, in a special sense, when the incisions do not cxtend decper than about half-way between the margin and the centre of the blade, if so far, and are more or less rounded; as in the leaves of the Post-Oak, Fig. 148, and the Hepatica, Fig. 152.

Cleft, when the incisions extend half way dorn or more, and especially when they are sharp; as in Fig. 149, 153. And the phrases teo-rleft, or, in the Latin form, bifirl, three-pleft or trifit, four-cleft or quadrifid, fiveeleft or quinquefil, ete., or mony-cleft, in the Latin form, multifid, - express the number of the Segments, or portions.

Parted, when the ineisions are still deeper, but yet do not quite reach to the midrib or the base of the blade; as in Fig. 150, 154. And the terms tuo-parted, three-parted, etc., express the number of such divisions.

Divided, when the incisions extend quite to the midrib, as in the lower part of Fig. 151, or to the leaf-stalk, as in Fig. 155; which really makes the
leaf compound. Here, using the Latin form, the leaf is said to be bisected, trisected (Fig. 155), cte., aceording to the number of the divisions.

1 $\ddagger 1$. The Mode of Lobing or Division corresponds to that of the veining, whether pimately ceined or palmetcly ceined. In the former the notehes or incisions, or sinuses, coming between the prineipal veins or ribs are direeted toward the midrib) : in the latter they are direeted toward the apex of the petiole; as the figures show.
142. So degree and mode of division may be tersely expressed in brief phrases. Thus, in the four upper figures of pimately reined leaves, the first is said to be pimately lobed (in the special sensc), the sceond pinnately cleft (or pinnatifid in Latin form), the third pinnately parted, the fourth pinnately divided, or pinnatisected.
143. Correspondingly in the lower row, of palmately reined leares, the first is palmately lobed, the second palmately cleft, the third palmatcly parted, the fourth palmately divided. Or, in other language of the same meaning (but now less commonly employed), they are said to be digitately lobed, cleft, parted, or dicided.
144. The number of the divisions or lobes may come into the phrase. Thus in the four last named figures the leaves are respectively palmately

three-lobed, three-eleft (or trifid), three-parted, three-dicilded, or better (in Latin form), trisected. And so for higher numbers, as fire-lobed, fiep-cleft,

Fig. 148, pinnately lobed; 149, pinnately cleft; 150, pinnately parted; 151, pimnately divided, leaves.

Fig. 152, palmately three-lohed ; 153, palmately threeceft; 154, palmately three-parted ; 155, pahmately three-divided or trisectel, leaves.
etc., up to many-lobed, many-cleft or multifith, cte. The same mode of expression may be used for pimately lobed leaves, as pininately 7 -lobed, -cloft, -parted, etc.
145. The divisions, lobes, ete., may themselves be catioe (withont teeth or notches), or serrate, or otherwise toothed or ineised; or lobed, eleft, parted, etc. : in the latter cases making twice pinuatifid, twice palmately or pinautely lobed, parted, or diciled leaves, etc. From these illastrations one will perceive how the botanist, in two or three words, may describe any one of the almost cudlessly diversified shiples of leaves, so as to give a clear and definite idea of it.
146. Compound Leaves. A compound leaf is one which has its blade in entirely separate parts, each usually with a stalklet of its own; and the stalklet is often jointed (or articulated) with the maiu leaf-stalk, just as this

is jointed with the stem. When this is the case, there is no doubt that the leaf is compound. But when the picees have no stalklets, and are not jointed with the main leaf-stalk, it may be considered cither as a divided simple leaf, or a compomd leaf, according to the eireumstances. This is a matter of names where all intermediate forms may be expected.
147. While the pieces or projecting parts of a simple lai-blade. are called Lobes, or in deeply cut leaves, etc., Segmentr, or Dicisions, the separate picces or blades of a eompound leaf are called Leaflets.
148. Compound leaves are of two prineipal kinds, namely, the Pinzate and the Palmate; answering to the tro modes of veining in retieulated leaves. and to the two sorts of lubed or divided leaves (141).
149. Pinute leaves are those in whieh the leaflets are arranged on the sides of a main leaf-stalk; as in Fig. 156-155. They answer to the

Fig. 156-15s. Pinnate leaves, the first with an odd leaflet (ond d-pimnte); the second with a tendril in phace of uppermost leaflets; the third abruptly pimnate, or of even pairs.
feather-reined (i, e. pinnately-veined) simple leaf; as will be seen at once on eomparing the forms. 'the leaflets of the former answer to the lubes or divisions of the latter; and the continuation of the petiole, along which the leallets are arranged, auswers to the midrib of the simple leal.
150. 'Three sorts of pimmate leaves are here given. liyg. 156 is pinnate rith an ord or end leaflet, as in the Common Loeust and the Ash. Fig. 158 is pinnate with a tendril at the end, in place of the odd leatlet, as in the Vetehes and the Pea. Fig. 158 is eventy or abruptly pinnute, as in the Honey-Locust.

1s1. Pulnate (also named Digilate) leaves are those in which the leaflets are all borne on the tip of the leaf-
 stalk, as in the Lupine, the Common Clover, the Virgimia Creeper (Fig. 93), and the Horse-chestmut and Buckeye (Fig. 159). They evidently auswer to the radiate-reined or palnately-seined simple leaf. That is, the Clover-leaf of three leaflets is the same as a palmately three-ribbed leaf cut into three separate leaflets. And sueh a simple five-loted leaf as that of the Sugar-Minle. if more ent, so as to separate the parts, would produce a palmate leaf of five leaflets, like that of the Horse-ehestnut or Buckeye.
152. Either sort of eompound leaf may have any number of leaflets; yet palmate leaves eannot well hare a great many, sinee they are all erowded together on the end of the main leaf-stalk. Some Lupines have nute of eleven; the Horse-ehestmut has seven, the Swect Buekfye more commonly five, the Clover three. A pinate leaf often has only seven or five leaflets, or only three, as in Beans of the genus Phaseolns, ete.; iu some rarer cases only two; in the Orange and Lemon and also in the common Barberry there is only one! The joint at the place where the leatlet is mnited with the petiole distinguishes this last ease from a simple leaf. In other specirs of these genera the lateral leaflets also are present.
153. The leaflets of a eomponnd leaf may be either entire (as in Fies. 126-128), or serrate, or lobed, eleft, parted, cte.; in fact, may present all the variations of simple leares, and the same trims equalls apply to them.
154. When the division is earried so far as to separate what would be one leaflet into two, three, or several, the leaf becomes dombly or trice compound, either pianateiy or patmately, as the ease may be. For example, while the clnstered leares of the Honey-Locust are simply pimatr, that is, once pimate, those on new shoots are bepumate. or triere pimute, as in Fig. 160. When these leatlets are again divided in the same way, the leat

[^12]becomes thrice pinuate, or tripinnate, as in many Acacias. The first divisions are called Pinne; the others, Pinnules; and the last, or little blades themselves, Leaflets.
155. So the palmate leaf, if again compounded in the same way, becomes twice palmate, or, as we say when the divisions are in threes, twice ternate (iin Latin form biternate); if at third time compounded, thrice ternate or triternate. But if the division gocs still further, or if the degree is variable, we simply say that the leaf is decompound; either palmately or pinnately decompound, as the case may be. Thus, Fig. 161 reprcseuts a four times ternately compound (in other words a terrately decompound) leaf of a common Meadow Rue.
156. When the botamist, in describing leaves, wishes to express the number of the leaflets, he may use terms like these:-
Unifoliolate, for a compound leaf of a single leaflet; from the Latin unum, one, and foliolun,

160 leaflet.
Bifoliolate, of two leaflets, from the Latin bis, twice, and folioluin, leaflet.

Trifoliolate (or ternate), of three leaflets, as the Clover; and so on.
Paimatel!, lifoliolate, trifoliolate, quadrifoliate, plurifoliolute (of several leaflets), etc. : or else
Pinuately li., tri, quadri., or plurifoliolato (that is, of two, three, four, five, or several leatlets), as the case may the: these are terse ways of denoting in single plarases both the number of leaflets and the kind of compounding.
157. Of foliage-leaves having certain peeuliarities in structure, the following may be noted:-

Fig. 160. A twice-pinnate (abruptly) leaf of the Honey-Locust.
Fig. 161. Ternately decompound leaf of Mealow Pue.
159. Perfoliate Leaves. In these the stem that bears them seems to fon through the blade of the leaf, more or less above its hase. A common
 in the formation of the leaf the bases, meeting around the stem, grow torether there.
159. Connate-perfoliate. Such are the upper leaves of true Honeysnckles. Here (Fig. 163) of the opposite and sessile leaves, some pairs, especially the uppermost, in the course of their formation unite aromed the stem, whieh thas seems to run through the disk formed by their union.
160. Equitant Leaves. While ordinary leaves spread horizontally, and mesent one face to the sky and the other to the earth, there are some that present their tip to the sky, and their faces right and left to the horizon. Among these are the equitant leaves of the Iris or Flower-de-Luce. Inspection shows that each leaf was formed as if folded toyether lempthrise,

Fig. 162. A summer branch of Uvularia perfoliata; lower leaves perfoliate, upler corlate-clasping, uplermost simply sessile.

Fig. 163. Branch of a Itoneysuckle, with comate-perfoliate leares.
Fig. 164. Rontstock and equitant loaves of Iris. 165. A section across the cluster of leaves at the bottom, showing the eduitation.
so that what would be the upper surface is within, and all grown together, except next the bolton, where catch leaf covers the next younger one. It was from their straddling over cath older, like a man on horseback (as is seem in the eross-section, Fig. 165), that Linnaeus, with his lively fane, called these Equitant leaves.
161. Leaves with no distinction of Petiole and Blade. The lares of fris just mentioned show one form of this The fiat but narrow leaves of Jonquils, Dattiodils, and the eylimentreal teat of Onions are other instances. Needle-shuped leaves, like those of the Pine, Larch, and Spruce, and the aul-shaped as well as the seale-shuped leaves of Junipers, Red Cedar, aud Arbor-Vite (Fig. 166), are exampics.
162. Phyllodia. Sometimes an expanded petiole takes the place of the blade; as in numerous New Holland Acacias, some of which are now common in greenhouses. Such counterfeit blades are called plyyllodia, - meaning leal -like bodies. They may be known from true blades by their standing edgewise, their margins being directed upwards and downwards; while in true blades the faces look upwards and downwards; executing in equitant leaves, as already explained.
163. Falsely Vertical Leaves. These are apparent exceptions to the rule, the blade standing edgewise instead of flatwise to the stem; but this position comes

160
 by a twist of the stalk or the base of the blade. Such leaves present the two faces about equally to the light. The Compass-plant (Silphium laciniatum) is an example. So also the leaves of Boitomia, of Wild Lettuce, and of a vast mumbor of Australian Myrtaceous shrubs and trees, which much resemble the phyllodia of the Acacias of the same country. They are familiar in Callistomon, the Buttle-brush Flower, and in Eucalyptus. But in the latter the leaves of the young tree have the normat structure and position.
164. Cladophylla, meaning branchleaves. The foliage of Ruscus (the Butcher's Broom of Europe) and of Myrsiphyllum of South Africa (cultivated for decoration under the false

Fig. 166. Branch of Arbor-Vita, with awl-shaped and scale-shaperl leaves.
Fig. 167. The ambiguous leaf! (chadophyllum) of Myrsiphyllum.
Fig. 1GS. Same of Ruscus, or Butcher's Broom.
name of Smilax) is peculiar and puzzling. If these blades (Fig. 167, 168) are really leaves, they are most anomalous in ocenpying the axil of anothen leaf, reduced to a little seale. Yet they have an upper and lower face, as leaves should, although they soon twist, so as to stand more or less edgewise. If they are branches which have assumed exactly the form and office of leares, they are equally extraordinary in not making any further development. But in Ruseus, flowers are borne on one face, in the axil of a little seale: and this would seem to settle that they are branches. In Asparagus just the same things as to position are thread-shaped and brancl-like.

§ 2. Leaves of special conformation and use.

165. Leaves for Storage. A leaf may at the same time serve both ordinary and special uses. Thus in those leaves of Lilies, such as the common White Lily, which spring from the bulb, the upper and green part
 serves for foliage and elaborates nourishment, while the thickened portion or bud-scale beneath serves for the storage of this nourishment. The thread-shaped leaf of the Onion fulfils the same office, and the nourishing matter it prepares is deposited in its sheathing base, forming one of the concentrie layers of the onion. When these layers, so thick and succulent, have given up their store to the growing parts within, they are left as thin and dry husks. In a Houseleek, an Aloe or an Agave, the green color of the surface of the fleshy leaf indicates that it is doing the work of foliage; the deeper-seated white portion within is the storehouse of the nourishment which the green surface has elaborated. So, also, the seed-leaves or cotyledons are commonly used for storage. Some, as in one of the Maples, the Pea, Horse-chestunt, Oak, etc., are for nothing else. Others, as in Beech and in our common

Fig. 169. A young Agave Americana, or Century-plant; fleshy-leaved.

Beans, give faint indications of service as foliage also, chiefly in vain. Still others, as in the Pumpkin and Flax, having served for storage, develop, into the first efficient foliage. Compare
 $11,22-30$, and the accompanying figures.

166. Leaves as Bud-Scales serve to protect the forming parts within Having fulcilled this purpose they commonly fall off when the sloot develops and foliage-leaves appear. Occasionally, as in Fig. 170, there is a transition of budscales to leaves, which reveals the nature of the former. The Lilac also shows a gradation from bur-scale to simple leaf. In Cormus florida (the Fiowering Dogwood), the fom bui-scales which through the winter protect the heal of forming dowers remain until blossoming, and then the base of each grows out into

Fic. 170. Series of bud-scales and foliagr-leaves from a developing bud of the Low Sweet Buckeye (Esculus parvilhou). showing neally complete gratation, from a scale to a compond leaf of five leatlets; and that the scales answer to reluced petioles.

Fig. 171. Shoot of common Barherry, showing transition of foliage-leaves to spines.
a large and very showy petal.like leaf; the original dry scale is apparent in the notch at the apex.
liji. Leaves as Spines occur in several plants. A familiar instance is that of the eommon Barberry (Fig. 171). In almost any summer shoot, most of the gradations may be seen between the ordinary leaves, with sharp bristly teeth, and leaves which are reduced to a branching spinc or thorn. The fact that the spines of the Barberry produce a leaf-bud in their axil also proves them to be leaves.

168. Leares for Climbing are various in adaptation. True foliageleares serve this purpose ; as in Gloriosa, where the attenuated tip of a simple leaf (otherwise like that of a Lily) hooks around a supporting object; or in Solanum jasminoides of the gardens (Fig. 172), and in Manrandia, etc., where the leaf-stalk coils round and clings to a support; or in the compound leaves of Clematis and of Adlumia, in which both the leaflets and their stalks hook or coil aromed the support.
169. Or in a compound leaf, as in the Pea and most Vetches, and in Cuma, while the lower leafets serve for foliage, some of the uppermost are developed as tendrits for climbing (Fig. 16i). In the common Pea this is so with all but one or two lairs of leaflets.
1i0. In one Curopean Vetelh, the leaflets are wanting and the whole petiote is a tendril, while the stipules become the only foliage (Fig. 173).

1i1. Leaves as Pitchers, or hollow tubes, are familiar in the common Pitcher-plait or Side-saddle Flower (Sarracenia, Fig. 174) of our bogs. These pitchers are gencrally half full of water, in which flies end other insects are drowned, often in such numbers as to make a rich manure for the plant. More curious are some of the southern species of Sarmenia. which seem to be specially adapted to the capture and destruction of flies and other insects.

FIG. 172. Leaves of solanum jasminoides, the petiole arlapted for shimbing.
Fig. 173. Leaf of Lathyrus Aphaca, consisting of a pair of stipules and a tendril.
172. The leaf of Nepenthes (Fig. 175) combines three structures and uses. The expanded part below is foliage: this tapers into a tendril for

climbing; and this bears a pitcher with a lid. Inscets arc canght, and per haps digested, in the piteher.
173. Leaves as Fly-traps. Insects are caught in another way, and more expertly, by the most extraordiuary of all the plants of this country, the Dionæa or Venus's Fly. trap, which grows in the sandy bogs around Wilmington, North Carolina. Here (Fig. 176) each leaf bears at its summit an appendage which opens and shuts, in shape something like a stcel-trap, and operating much like one. For when open, no sooner does a fly alight on its surface, and brush against any one of the two or three bristles that grow there, than the trap suddenly closes, capturing the intruder. If the fly escapes, the trap soon slowly opens, and is ready for another capture. When retained, the insect is after a time moistened by a secretion from mi-
 mute glands of the immer surface, and is digested. In the various species of Drosera or Sundew, inssets are caught

Fig. 174. Leaf of Sarmacenia purpurea, entire, and another with the upper part cut off.

Flg. 175. Leaf of Nepenthes; foliage, tendril, ant pitcher combined.
Fig 17 t . Leaves of Dionea; the tray in one of them open, in the others closed.
by sticking fast to very viscid glands at the tip of strong bristles, aided by adjacent gland-tipped bristles which hend slowly toward the eaptive. The use of such adaptations and operations may be explained in anothe: place.

§ 3. STIPULES.

174. A leaf complete in its parts consists of blade, leaf-stalk or petiole, and a pair of stipules. But most leaves have cither fugacious or mimute stipules or none at all; many have no petiole (the blade being sessile or stalkless) ; some bave no elear distinetion of blade and petiole; and many

175. Stipules are such appendages, either wholly or partly separated from the petiole. When quite separate they arc said to be free, as in Fig. 112. When attached to the base of the petiole, as in the Rose and in

Fig. 177. Leaf of Red Clover: st, stipules, adhering to the base of p, the petiole; b, blade of three leaflets.

Fig. 178. Part of stem and leaf of Prince's-Feather (Polygonum orientale) with the united sheathing stipules forming a sheath or ocrea.

Fig. 179. Terminal winter bud of Magnolia Umbrella, natural size. 180. Outermost bud-scale (pair of stipules) detached.

Clover (Fig. 177), they are adnate. When the two stipules unite and sheathe the stem above the insertion, as in Polygonum (Fig. 178), this sheath is called an Ocrea, from its likeness to a greave or leggin.
177. In Grasses, when the sheathing base of the leaf may answer to petiole, the summit of the slicalh commonly projects as a thin and short membrane, like an ocrea: this is called a Ligula or Ligule.
178. When stipules are grecu and leaf-like they act as so much foliage. In the Pea they make up no small part of the actual foliage. In a related plant (Lathyrus Aphaca, Fig. 173), they make the whole of it, the remainder of the leaf being tendril.
179. In many trees the stipules are the bud-seales, as in the Beech, and very conspicuously in the Fig-tree, 'Tulip-tree, and Magnolia (Fig. 179). These fall off as the leaves nufold.
180. The stipules are spines or prickles in Locust and several other Leguminous trees and shrubs; they are tendrils in Smilax or Greenbrier.

§ 4. THE ARRANGEMENT OF LEAVES.

181. Phyllotaxy, meaning leaf-arrangement, is the study of the position of leaves, or parts answering to leaves, upon the stem.
182. The technical name for the attachment of leaves to the stem is

181

182
the insertion. Leaves (as already noticed, 54) are inserted in three modes. They' are

Alternate (Fig. 181), that is, one after another, or in other words, with only a single leaf to each node;

Opposite (Fig. 182), when there is a pair to each node, the two leaves in this case being ilways on opposite sides of the sten;

Whorled or Verticillute (Fig. 183) when there are more than two leaves on a node, in which ease they divide the cirele
 equally between them, forming a Verticel or whorl. When there are three leav's in the whorl, the leaves are one third of the circumference apart; when four, one quarter, and so on. So the phan of opposite leaves, which is very common, is merely that of whorled leaves, with the fewest leares to the whorl, namely, two.
183. In both modes and in all their modifications, the arrangement is such as to distribute the leaves systematieally and in a way to give them a gocd exposure to the light.
184. No two or more leares crer grow from the same point. The soealled Fwisicled or Clustered leaves are the leaves of a brancla the nodes of whieh are very close, just as they are in the bud, so keeping the leaves in a eluster. 'This is erident in the Lareh (Fig. 184), in which examination shows each eluster to be made up of numerous leaves erowded on a spur or short axis. In spring there are only such clusters; but in summer some of them lengthen into ordinary shoots with seattered alternate leaves. So, likewise,
 each eluster of two or three needleshaped leaves in Pitch Pines (as in Fig. 185), or of five leaves in White Pine, answers to a similar extremely short branch, springing from the axil of a thin and slender scale, which represents a leaf of the main shoot. For Pines produce two kinds of leaves, -1 . primary, the proper leares of the shoots, not as foliage, but in the shape of delieate seales in spring, which soon fall away; and 2. secondary, the fuscicled leaves, from buds in the axils of the former, and these form the actual folinge.

Fig. 183. Whorled leaves of Galium.
Fig. 184. A piece of stem of Lareh with two clusters (fascicles) of numerous leaves.

Fig. 185. Piece of a branch of Pitch Pine, with three leares in a fascicle or bundie, in the axil of a thin scale which answers to a primary leaf. The bundle is surrounded at the base by a short sheath, formed of the delicate scales of the axillary bud.
185. Phyllotaxy of Alternate Leaves. Alternate leaves are distributed aloug the stem in an order which is uniform for each species. The arrangement in all its modifications is said to be spiral, because, if we draw a line from the insertion (i. c. the point of attachment) of one leaf to that of the next, and so on, this line will wind spirally around the stem as it rises, and in the same specics will always bear the same number of leates for each turn round the stem. That is, any two successive leaves will always be separated from each other by an equal portion of the circumference of the stem. The distauce in height between any two leaves may vary greatly, even on the same shoot, for that depends upon the length of the internodes, or spaces between the leaves; but the distance as measured around the circumference (in other words, the Angular Divergence, or angle formed by any two successive leaves) is uniformly the same.
186. Two-ranked. The greatest possible divergence is, of course, where the second leaf stands on exactly the opposite side of the stem from the first, the third on the side opposite the second, and therefore over the first, and the fourth over the second. This brings all the leaves into two rauks, one on one side of the stem and one on the other, and is therefore called the Tuoranked arrangement. It occurs in all Grasses, - in Indian Corn, for instance; also, in the Basswood (Fig. 181). This is the simplest of all arrangements, and the one which most widely distributes successive leaves, but which therefore gives the fewest vertical ranks. Next is the
187. Three-ranked arrangement, - that of all Sedges, and of White Hellebore. Here the second leaf is placed one third of the way round the stem, the third leaf two thirds of the way round, the fourth leaf accordingly directly over the first, the fifth over the second, and so on. That is, three leaves occur in each turn round the stem, and they are separated from each other by one third of the circumference. (Fig. 186, 187.)
188. Five-ranked is the next in the scries, and
 the most common. It is scen in the Apple (Fig. 188), Cherry, Poplar, and the greater number of trecs and shrubs. In this ease the line traced from leat to leaf will pass twice round the stem before it reaches a leaf

[^13]situated directly over any below (Fig. 189). Ilere the sixth leaf is over the first ; the leaves stand in five perpendicular ramks, with equal angular distance from each other; and this distance between any two sucecssive leaves is just two fifths of the eireumference of the stem.
189. The five-ranked arraugement is expressed by the fraction $\frac{2}{5}$. This
 fraction denotes the divergence of the suceessive leaves, i. e. the angle they form with each other: the numerator also expresses the number of turns made round the stem by the spiral line in completing one eyele or set of leaves, namely, two; and the denominator gives the number of leaves in each eycle, or the number of perpendicular ranks, namely, five. In the same way the fraction $\frac{1}{2}$ stands for the two-ranked mode, and $\frac{1}{3}$ for the three-ranked: and so these
 different sorts are expressed by the series of fractions $\frac{1}{2}, \frac{1}{3}, \frac{2}{5}$. Other eases follow in the same numerical progression, the nest being the
190. Eight-ranked arrangement. In this the ninth leaf stands over the first, and three turns are made around the stem to reach it; so it is expressed by the fraction $\frac{3}{8}$. This is seen in the Holly, and in the common Plantain. Then cones the
191. Thirteen-ranked arrangement, in which the

190 fourteenth leaf is over the first, after fire turns around the stem. The common Houseleek (Fig. 191) is a good example.
192. The series so far, then, is $\frac{1}{2}, \frac{1}{3}, \frac{2}{5}, \frac{3}{8}, \frac{5}{13}$; the numerator and the denominator of each fraction being those of the two next preceding ones added together. At this rate the next higher should be $\frac{8}{21}$, then $\frac{13}{3} \frac{3}{4}$, and so on : and in faet just sueh cases are met with, and (eommonly) no others. These higher sorts are found in the Pine Family, both in the leares and the cones and in many other plants with small and crowded leaves. But in those the number of the ranks, or of leaves in caeh eycle, can only rarely

Fig. 188. Shoot with its leares 5-ranked, the sixth leaf over the first; as in the Apple-tree.
Fig. 189. Diagram of this arrangement, with a spiral line drawn from the attachment of one leaf to the next, and so on; the parts on the side turned from the eye are fainter.

Fig. 190. A ground-plan of the same; the section of the leaves similarly numbered; a dotted line drawn from the edge of one leaf to that of the next marks out che spiral.
be made out hy direet inspection. They may be indirectly aseertained, however, by studying the secondury spirals, as they are called, which usually beeome conspieuous, at least two series of them, one turning to the right and one to the left, as shown in Fig. 191. For an aceonnt of the way in whiel the character of the phyllotaxy may be dedueed from the seeondary spirals, see Struetural Botimy, Chapter IV.
193. Phyllotaxy of Opposite and whorled Leaves. This is simple and comparatively uniform. The leaves of each pair or whorl are phaced over the intervals between those of the preeeding, and therefore under the intervals of the pair or whorl next above. The whorls or pairs alternate or eross eael other, usually at right angles, that is, they decussute. Opposite leaves, that is, whorls of two leaves only, are lar eommoner than whorls of three or forr or more members. This arrangement in suecessive decussating pairs gives an adrantageous distribution on the stem in four vertisal ranks. Whorls of three give six vertieal ranks, and so on. Note that in descriptive botany leaves in whorls of two are simply ealled opposite leaves; and that the term verticillate or whorled, is employed ouly for eases of more than two, unless the latter number is speeified.
194. Vernation or Præfoliation, the disposition of the leaf-blades in the bud, eomprises two things; 1st, the way in whiel each separate leaf is folded, coiled, or paeked up in the bud; and 2 d , the arrangement of the leaves in the bud with respect to one another. The latter of course depends very mueh upon the

191
 phyllotaxy, i. c. the position and order of the leaves upon the stem. The same terms are used for it as for the arrangement of the leaves of the flower in the flower-bud. See, therefore, "Estivation, or Præfloration."
195. As to eaeh leaf separately, it is sometimes straight and open in vernation, but more commonly it is either bent, folded, or rolled up. When the upper pari is bent down upon the lower, as the young blade in the Tulip-tree is bent upon the leafstalk, it is said to be Inflexed or Reclined in vernation. When folded by the midrib so that the two halves are placed face to face, it is Contuplicate (Fig. 193), as in the Magnolia, the Cherry, and the Oak. When folded back and forth like the plaits of a fan, it is

[^14]Plicate or Plated (Fig. 191), as in the Maple and Currant. If rolled, it may be so cither from the tip downards, as in Ferns and the Sunden (Fig. 197), when in unrolling it resembles thee head of a erosier, and is said to be Circizate; or it may be rolled up parallel with the axis, either from one cdge into a coil, when it is Conrolute (Fig. 195), as in the Apricot and Plum; or rolled from both edges towards the midrib, - sometimes inwards, when it is Inoolute (Fig. 195), as in the Violet and Water-Lily; sometimes outwards, when it is Rerolute (Fig. 196), in the Rosemary and Azalea. The figures are diagrams, representing sections through the leaf, in the way they were represented by Linnxus.

Section VIII. Flowers.

196. Flowers are for the production of seed (16). Stems and branches, which for a time put forth leaves for vegetation, may at length put forth flowers for reproduction.

§ 1. POSITION AND ARRANGEMENT OF FLOWERS, OR INFLORESCENCE.

197. Flower-buds appear just where leaf-buds appear; that is, thes are either terminal or arillury (47-49). Morphologically, flowers answer to shoots or branches, and their parts to leaves.
198. In the same species the flowers are usually from axillary burls only, or from terminal buds only; but in some they are both axillary and terminal.
199. Inflorescence, which is the name used by Limnæus to signify mode of tlower-arrangement, is accordingly of three elasses: namely, Indeterminate, when the flowers are in the axils of leaves, that is, are from axillary buds; Determinute, when they are from terminal buds, and so terminate a stem or bramely; and Mixed, when these two are combined.
200. Incleterminate Inflorescence (likewise, and for the same reason, called indefinite influrescence) is so named hecause, as the flowers all come from axillary buds, the terminal bud may keep on growing and prolong the stem indefinitely. This is so in Moneywort (Fig. 199).
201. When flowers thus arise singly from the axils of ordinary leaves, they are axillary and solitary, not collected into tlower-clusters.
202. But when several or many flowers are produced near each other, the accompanying leaves are apt to be of smaller size, or of different shape or character: then they are called Bracts, and the flowers thus brought together form a cluster. The kinds of flower-clusters of the indeterminate class have re-
 ceived distinct names, according to their form and disposition. They are principally Raceme, Corymb, Umbel, Spike, Head, Spadix, Catkin, and Panicle.
203. In defining these it will be necessary to use some of the following terms of descriptive botany which relate to inflorescence. If a flower is stalkless, i. e. sits directly in the axil or other support, it is said to be sessile. If raised on a naked stalk of its own (as in Fig. 199) it is pedunculate, and the stalk is a Peduncle.

204. A peduncle on which a flower-eluster is raised is a Common peduncle. That which supports each separate flower of the cluster is a Partial peltuncle, and is generally ealled a Pedicel. The portion of the general stalk along which flowers are disposed is called the Axis of inflorescence, or, when covered with sessile flowers, the Rhuchis (back-bone), and sometimes the Receptacle. The leaves of a flower-cluster generally are termed Bracts. But when bracts of different orders are to be distinguished, those on the common peduncle or axis, and which have a flower in their axil, keep the name of bracts; and those on the pedicels or partial flowerstalks, if any, that of Bractlets or Bracteoles. The former is the preferable English name.
205. A Raceme (Fig. 200) is that form of flower-cluster in which the flowers, each on their own foot-stalk or pediecl, are arranged along the sides of a common stalk or axis of inflorescence; as in the Lily of the Valley, Currant, Barberry, one section of Cherry, etc. Each flower comes from the axil of a small leaf, or bract, which, however, is often so small that it might eseape notice, and even sometimes (as in the Mustard Family) disappears altogetleer. The lowest blossoms of a

Fig. 199. Piece of a flowering-stem of Moneywort (Lysimachia nummularia, with single flowers successively produced in the axils of the leaves, from below upwards, as the stem grows on.
Fig. 200. A raceme, with a general peduncle (p), pedicels (p^{\prime}), bracts (b), and bractlets (b^{\prime}). Plainly the bracts here answer to the leaves in Fig. 199.
raceme are of course the oldest, and therefore open first, and the order of blossoming is ascending from the bottom to the top. The summit, never being stopped by a terminal flower, may go on to grow, and often does so (as in the common Shepherd's Purse), producing lateral flowers one after another for many weeks.
206. A Corymb (Fig. 202) is the same as a raceme, except that it is flat and broad, cither convex, or level-topped. That is, a raceme becomes a corymb by lengthening the lower pedicels while the uppermost remain

shorter. The axis of a corymb is short in proportion to the lower pedicels. By extreme shortening of the axis the corymb may be converted into
207. An Umbel (Fig. 203) as in the Milkweed, a sort of flower-cluster where the pedicels all spring apparently from the same point, from the top of the peduncle, so as to resemble, when spreading, the rays of an umbrella;

204 whence the name. Here the pedicels are sometimes called the Rays of the umbel. And the bracts, when brought in this way into a cluster or circle, form what is called an Involucre.
208. The corymb and the umbel being more or less leveltopped, bringing the flowers into a horizontal plane or a conrex form, the aseendiug order of development appears as C entripetal. That is, the flowering proceeds from the margin or circumference regularly towards the centre; the lower flowers of the former answering to the outer ones of the latter.
209. In these three kinds of flower-clusters, the flowers ans raised on conspienons pedicels (204) or stalks of their own. The shortening of these pedicels, so as to render the flowers sessile or nearly so, converts a raceme into a Spike, and a corymb or an umbel into a Head.
210. A Spike is a flower-chuster with a more or less lengthene axis, alone which the flowers are sessile or nearly so; as in the Plantain (Fir. 20t).
211. A Head (Copitulum) is a round or rommlish cluster of flowers,

Fig. 201. A raceme. 202. A corymb. 203. An umbel.
Fig. 204. Spike of the common Plantain or Ribwort.
which are sessile on a very short axis or receptacle, as in the Button-ball, Button-bush (Fig. 205), and Red Clover. It is just what a spike would

become if its axis were shortened; or an umbel, if its pedicels were all shortened until the flowers becane sessile. The head of the Button-bush is naked; but that of the Thistle, of the Dandelion, and the like, is surrounded by empty bracts, which form an Inrolucre. 'T'wo particular forms of the spike and the head have received particular names, namely, the Spadix: and the Cuthin.
212. A Spadix is a fleslyy spike or head, with small and often imperfect flowers, as in the Calla, Indian Tumip, (Fig. 206), Sweet Flag, ete. It is commouly surrounded or embraced by a peculiar cuveloping leaf, called a Spatie.
213. A Catkin, or Ament, is the name given to the scaly sort of spike of the Birch (Fig. 207) and Alder, the Willow and Poplar, and one sort of flower-clusters of the Oak, Hickory, and the like, - the so-called Amentaceous trees.
214. Compound flower-clusters of these kinds are not uncommon. When the stalks whieh in the simple umbel are the pedicels of single flowers themselves branch into an umbel, a Compound Umbel is formed.

Fig. 205. Heal of the Button-bush (Cephalanthus).
Fig. 206. Spadix and spathe of the Indian Turnip; the latter cut through below.
Fig. 207. Catkin, or Ament, of Birch.

This is the inflorespence of Caraway (Fig. 20S), Parsnip, and almost all of the great family of Umbethiferons (umbel-beariug) plants.

215. The secondary or partial umbels ol a compound umbel are L'mbeleets. When the umbellets are subtended by an involucre, this secondary involucre is called an Intolucel.
216. A Compound raceme is a cluster of racemes raermosely arranged, as in Smilacina racemosa. A compount corymb is a enrmb some branches of which brateh again in the same way, as in Mountain Ash. A compound s_{i} itipe is a spicately disposed eluster of spikes.

21f. A Panicle, such as that of Oats and many Grasses, is a compound flower-cluster of a more or less open sort which branches with apparent irregularity, neither into corsmbs nor racemes. Fig. 209 represents the simplest pamicle. It is, as it were, a raceme of which some of the pedicels have branched so as to bear a few flowers on pedicels of their own, while others remain simple. A compound panicle is one that

299 branches in this way again and agam.
218. Determinate Inflorescence is that in which the flowers are from terminal buds. The simplest case is that of a solitary terminal flower, as

210

212
in Fig. 210. This stops the growth of the stem ; for its terminal bud, becoming a hassom, ean no more lengthen in the manner of a leaf-bud. Any

Fuc. 20s. Compoum t'mbel of Caraway.
Fug. 219. Diagram of a simple panicle.
Fig. 210. 1hiagram of an opposite-leavel plant, with a single terminal flower. -il. Sum, with a cyme of theve flowers: a, the first Hower, of the main axis; b, thase of briuches. 212. Same, with flowers also of the third order, c c.
further growth must be from axillary buds developing into branches. If such branches are leafy shoots, at length terminated by single blossoms, the infloreseence still consists of solitary flowers at the summit of stem and branches. But if the tlowering branches bear only bracts in place of ordhnary leaves, the result is the kind of flower-cluster catled
219. A Cyme. This is commonly a flat-topped or convex flower-eluster, like a corymb, only the blossoms are from terminal buds. Fig. 211 illustrates the simplest eyme in a phat with opposite leares, namely, with three flowers. The middle flower, a, terminates the stem ; the two others, $b b$, terminate branches, one from the axil of cach of the uppermost leaves; and being later than the middls one, the flowering proceeds from the centre outwaids, or is Centrifayal. This is the opposite of the indeterminate mode, or that where all the flower-buds are axillary. If flowering branches appear from the axils below, the lower ones are the later, so that the order of blossoming continues centrifuyal or, which is the same thing, descending, as in Fig. 2l3, making a sort of reversed raceme or false raceme, - a kind of cluster which is to the truc raceme just what the flat eyme is to the corymb.
220. Wherever there are bracts or leaves, buts may be
 produced from their axils and appear as flowers. Fig. 212 represents the case where the branches, $b b$, of Fig. 211, each with a pair of small leaves or bracts about their middle, have branched again, and produced the branchlets and flowers $c c$, on each side. It is the continued repetition of this which forms the full or compound cyme, such as that of the Laurestinus, Hobble-bush, Dogrwood, and Hydrangea (Fig. 214).
221. A Fascicle (meaning a bundle), like that of the Sweet William and Lychnis of the gardens, is only a cyme with the flowers mueh crowded.
222. A Glomerule is a cyme still more compacted, so as to imitate a head. It may be known from a true head by the flowers not expanding centripetally, that is, not from the circumference towards the contre.
223. The illustrations of determinate or cymose intlorescence have been taken from piants with opposite leaves, which give rise to the most regular cymes. But the Rose, Cinquefoil, Buttercup, etc., with alternate leaves, furnish also good examples of cymose inflorescence.
224. A Cymule (or diminutive cyme) is cither a reduced small cyme of few flowers, or a branch of a compound cyme, i. e. a partial cyme.
225. Scorpioid or Helicoid Cymes, of various sorts, are forms of de. terminate inflorescence (often puzzling to the student) in which one half of the ramification fails to appear. So that they may be called incomplete cymes. The commoner forms may be understood by comparing a complete

Fig. 213. Diagram of a simple cyme in which the axis lengthens, so as to take the form of a raceme.
cyme, like that of Fig. 215 with Fig. 216, the diagram of a cyme of an op-posite-leaved plant, having a series of terminal flowers and the axis con-

tinued by the development of a branch in the axil of only one of the leaves at each node. The dotted lines on the left indicate the place of the wanting

branches, which if present would convert this srorpioid cyme into the complete one of Fig. 215. Fig. 217 is a diagram of similar infiorescence with alternate leaves. Both are kinds of false racemes (219). When the bracts are also wanting in such cases, as in many Borragincous plants, the true nature of the infloreseence is very much disguised.

Fig. 214. Compound cyme of Hydrangea arborescens, with nentral enlarged Howers romm the circumference.

Fig. 215. A complete forking cyme of an Arenaria, or Chickweel.
FIG. 216. Diagram of a scorpioid cyme, with opposite leaves or bracts.
Frg. 217. Diagram of analogous scorpioid cyme, with alternate leaves or bracte.

22e. These distinctions between determinate and indeterminate inflorescence, between corymbs and cymes, and between the true and the false raceme and spike, were not recognized by botanists much more than half a century ago, and even now are not always attended to in descriptions. It is still usual and convenient to describe rounded or flat-topped and open ramification as corymbose, even when esscutially cymose; also to call the reversed or false racemes or spikes by these (strictly incorrect) names.
227. Mixed Inflorescence is that in which the two plans are mixed or combined in compound clusters. A mixed panicle is one in which, while the primary ramification is of the indeterminate order, the secondary or ultimate is wholly or partly of the determinate order. A contracted or elongated inflorescence of this sort is called a Thyrsus. Lilac and Horsechestnut afford common examples of mixed inflorescence of this sort. When loose and open such flower-clusters are called by the general name of Panicles. The lioads of Compositæ are centripetal; but the brauches or peduncles which bear the heads are usually of centrifugal order.

§2. PARTS OR ORGANS OF THE FLOWER.

228. These were simply iudicated in Section II. 16. Some parts are necessary to seed-bearing; these are Essentiul Oryans, mamely, the Stamens and Pistils. Others serve for protection or for attraction, often for both. Such are the leaves of the Flower, or the Floral Encelopes.
229. The Floral Envelopes, taken together, are sometimes called the Periantif, also Perigone, in Latiu form Perigonium. In a flower which possesses its full number of organs, the floral envelopes are of two kinds, namely, an outer circle, the Calfx, and an imer, the Corolla.
230. The Calyx is commonly a circle of green or greenish leaves, but not always. It may be the most brightly colored part of the blossom. Each calyx-leaf or piece is called a Sepal.
231. The Corolla is the inner circle of floral envelopes or flower-leaves, usually of delicate texture and colored, that is, of some other color than green. Each corolla-leaf is called a Petal.
232. There are flowers in abundance which consist wholly of floral envelopes. Such are the so-called full double flowers, of which the choicer roses and camellias of the cultivator are familiar examples. In them, under the gardener's care and selection, petals late taken the place of both stamens and pistils. These are monstrous or unuatural flowers, incapable of producing seed, and subservient only to human graification. Their common name of double flowers is not a sensible one: except that it is fixed by custom, it were better to translate their Latin name, flores pleni, and call them full foovers, meaning full of leaves.
233. Moreover, certain plants regularly produce neutral forers, consist. ing of floral envelopes only. Iu Fig. 214, some are seen around the margin
of the ceme in IIydrangea. They are likewise familiar in the Hobble-bush and in Whd-Cambery tree, Vibmom Oxycocens; where tire form an attractive setting to the cluster of small and comparatively inconspicuous

perfect flowers which they adorn. In the Guelder Rose, or Snow-ball of ormanental cultivation, all or most of the blossous of this same shrub are trausformed into weutral flowers.
234. The Essential Organs are likewise of two kinds, placed one above or within the other; namely, first. the Stamens or fertilizing organs, and second, the Pistiss, which are to be fertilized and bear the seeds.
235. A Stamen consists of two parts, namely, the Filament or stalk (Fig. 219 a), and the Axtifer (b). The latter is the moly
 essential part. It is a case, commonly with two lobes or cells, each opening lengthwise by a slit, at the proper time, and discharging a powder or dustlike substance, usnally of a yellow color. This powder is the Pollex, or fertilizing mater, to produec which is the office of the stamen.
236. A Pistil (Fig. 220, 221) when complete, has three parts; Ovary, Stile, aud Stigma. The Ocary, at base, is the hollow portion, which contains one or more Orules or rudimentary seeds. The S tyle is the tapering

[^15]portion above: the Stigma is a portion of the style, usually its tip, with moist naked surface, upon whiei grams of pollen may lodge and adhere, and thenee make a growth which extends down to the ovales. When there is no style then the stigma occupies the tip of the ovary.
237. The Torus or Receptacle is the end of the flower-stalk, or the portion of axis or stem out of which the several organs of the flower grow, upon which they are borne (Fig. 223).
238. The parts of the flower are thus disposed on the receptacle or axis essentially as are leaves upon a very short stem; first the sepals, or outer floral leaves; then the petals or imer floral leaves; then the stamens; lastly, at summit or centre, the pistils, when there are two or more of them, or the single pistil, when only one. Fig. 223 shows the organs displayed, two of cach hind, of such a simple and symmetrical flower as that of a Sedum or Stouecrop, Fig. 222.

§ 3. PLAN OF FLOWER.

239. All flowers are formed upon one general plan, but with almost, infinite variations, and many disguises. This common plan is best understood by taking for a type, or standard for comparison, some perfect, complete,

regular, and symmetrical blossom, and one as simple as such a blossom could well be. Flowers are said to be

Perfect (hermaphrodite), when provided with both kinds of essential organs, i. e. with both stamens and pistils.

Complete, when, besides, they have the two sets of floral envelopes, namely,
Fig. 221. Model of a simple pistil, with ovary cut across and slightly opened ventrally, to show the ovules and their attachment.

Fig. 22. Flower of Sellum ternatum, a Stonecrop.
Fig. 223. Parts of same, two of each kinu, separatel and displayed; the torus or receptacle in the centre; a, a sepal ; b, a petal ; c, a stamen; a, a pistil.
calyx and corolla. Such are completely furnished with all that belongs to a flower.

Regular, when all the parts of each set are alike in shape and size.
Symmetrical, when there is an equal number of parts in each set or circle of organs.
240. Flax-flowers were takeu for a pattern in Section II. 16. But in them the five pistils have their ovaries as it were consolidated into one body.
 Sedum, Fig. 222, has the pistils and all the other parts free from such combination. The flower is perfect, complete, regular, and symmetrical, but is not quite as simple as it miglit be; for there are twice as many stamens as there are of the other organs. Crassula, a relative of Sedum, cultivated in the conservatories for winter blossoming (Fig. 224) is simpler, being isostemonous, or with just as many stamens as petals or
 sepals, while Sedum is diplostemonous, having double that number: it has, indeed, two sets of stamens.
241. Numerical Plan. A certain number either runs through the flower or is discernible in some of its parts. This number is most commonly either five or three, not very rarely four, occasionally two. Thus the ground-plan of the flowers thus far used for illustration is five. That of Trillium (Fig. 226, 227) is three, as it likewise is as really, if not as plainly, in Tulips and Lilies, Crocus, Iris, and all that class of blossoms. In some Sedums all the flowers are in fours. In others the first flowers are on the plan of five, the rest mostly on the plan of four, that is, with four sepals, four petals, eight stameus (i. e. twice four), and four pistils. Whatever the ground number may be, it runs through the whole in symmetrical blossoms.

242. Alternation of the successive Circles. In these flowers the parts of the successive cireles alternate; and such is the rule. That is,

[^16]the petals stand over the intervals between the sepals; the stamens, when of the same number, stand over the intervals between the petals; or when twice as many, as in the Trillim, the outer set alternates with the petals, and the inner set, alternating with the other, of course stands before the petals; and the pistils alteruate with these. This is just as it should be on the theory that the circles of the blossom answer to whorls of leaves, which alternate in this way. While in such flowers the cireles are to be regarded as whorls, in others they are mather to be regand d as condensed spirals of alternate leaves. But, however this may be, in the mind of a morpholngieal botanist,
213. Flowers are altered Branches, and their parts, therefore, altered leaves. That is, certain buds, which might hage grown and lengithened into a leafy branch, do, under other circumstances and to accomplish other purposes, develop into blossoms. In these the axis remains short, neally as it is in the bud; the leaves therefore remain close together in sets or circles; the onter ones, those of the calyx, gencra'ly partake more or less of the character of foliage ; the next set are more delicate, and form the corolla, while the rest, the stamens and pistils, appear under forms very different from those of ordinary leaves, and are concerned in the productior. of sced. This view gives to Botany an interest which one who merely no tiees the shape and coments the parts of blossoms, without understanding their plan, has no conception of.
244. That flowers answer to branches may be shown, first, from thei position. As explained in the section on Inflorescence, flowers arise from the same places as branches, and from no other; flower-buds, like leaf-buds, appear either on the summit of a stem, that is, as a terminal bud, or in the axil of a leaf, as an axilary bud. And, as the plan of a symmetrical flower shows, the arraingement of the parts on their axis or receptacle is that of leares upon the stem.
255. That the sepals and petals are of the nature of leaves is evident from their appearance; they are commonly called the leaves of the flower. The calyx is most generally green in color, and foliaccous (leaf-like) in texture. And though the corolla is rarely green, yet neither are proper leaves ilways green. In our wild Painted-cup, and in some scarlet Sages, common in gardens, the leaves just under the flowers are of the brightest red or searlet, often much brighter-colored than the corolla itself. And sometimes (as in many Cactuses, and in Carolina Allspice) there is such a regular gradation from the last leaves of the plant (bracts or bractlets) into the leares of the calyx, that it is impossible to say where the one euds and the other begins. If sepals anc leaves, so also are petals; for there is no cleanly fixed limit between them. Not only in the Carolina Allspice and Cactus (Fig. 229), but in the Water-Lily (Fig. 228) and in a variety of flowers with more than one row of petals, there is such a complete transition between calyx and corolla that no one can surely tell how many of the leaves belong to the one and how many to the other.
246. That stimens are of the same general nature as petals, and therefore a moditieation of leares, is shown by the gradual tramsitions that oecur between the one and the
 other in many blossoms; espeeially in enltivated flowers, suell as Roses and Camellias, when they begin to double, that is, to change their stamens into petals. Some wild and natural flowers show the same interesting transitions. The Carolina Allspice and the White Water-Lily exhilit complete gradations not only between sepals and petals, but between petals and stamens. The sepals of our W ater-Lily are green outside, but white and petal-like on the inside; the petals, in many rows, gradually grow narrower towards the centre of the tlower; some of these are tupped with a trace of a yellow anther, but still are petals; the next are more eontracted and sta-men-like, but with a flat petal-like filament; and a further narrowing of this completes the genuine stamen.
247. Pistils and stamens now and then change into caeh other in some Willows; pistils often turn into petals in eultivated flowers; and in the Donble Cherry they are oceasionally replaced by small mreen leaves. Sometimes a whole blussom ehanges into a eluster of green leaves, as in the "green
 roses" occasionally noticed in gardens, and sometimes it degenerates into a leafy branch. So the botanist regards pistils also as answering to leaves; that is, to single leaves when simple and separate, to a whorl of leaves when eonjoined.

[^17]
§ 4. MODIFICATIONS OF THE TYPE.

248. The Deviations, as they may be called, from the assumed type or pattern of flower are most various and cxtensive. The differences between one species and another of the same genus are comparatively insiguificunt; those between different genera are more striking; those between different families and classes of plants more and more profound. They represent dillerent adaptations to conditions or modes of life, some of which have obvious or probable utilities, although others are beyond particular explanation. The principal modifications may be conveniently classified. First those which in place of perfect (otherwise called hermaphrodite or bisexual) flowers, give origin to
249. Unisexual, or Separated, or Diclinous Flowers, imperfect flowers, as they have becn called in contradistinction to perfect dowers; but that

term is too ambiguous. In these some flowers want the
 stamens, while others want the pistils. Taking hermaphrodite flowers as the pattern, it is natural to say that the missing organs are suppressed. This expression is justified by the very numerous cases in which the missing parts are abortive, that is, are represented by rudiments or restiges, which serve to excmplify the plan, although uscless as to office. Unisexual flowers are

Monceious (or Monoirous, i. c. of one household), when flowers of both sorts or sexes are produced by the same individual plant, as in the Ricimus or Castor-oil Plant, Fig. 230.

Dicecious (or Dioirous. i. e. of separate honseliolds), when the two kinds are borne on different plants; as in Willows, Pophars, Hemp, and Moonseed. Fig. 231, 232.

Polygamous, when the flowers are some of them perfect, and some staminate or pistillate onls.

Fig. 230. Unisexual flowers of Castor-oil phant: s, siaminate flower ; p, pistillate flower.

FIG. 231, staminate, and 232, pistillate flower of Moonseed.
250. A blossom having stamens and no pistil is a Staminate or Male flower. Sometimes it is called a Sterile flower, not appropriately, for other tlowers may equally be sterile. One having pistil but no stamens is a Pistillate or Female flower.
251. Incomplete Flowers are so named in contradistinction to complete: they waut either one or both of the floral envelopes. Those of Fig. 230 are incomplete, having caJyx but no corolla. So is the flower of Anemone (Fig. 2333), although
 its calyx is colored like a corolla. The flowers of Saururus or Lizard's.tail,
 although perfect, have neither calyx nor corolla (Fig. 234). Incomplete flowers, accordingly, are

Naked or Achlamydeous, destitute of both floral envelopes, as in Fig. 234, or
Apetalous, when wanting only the corolla. The case of corolla present and calyx wholly wanting is extremely rare, although there are sceming instances. In fact, a single or simple perianth is taken to be a calyx, anless the absence or abortion of a calyx can be made evident.

252. In contradistinetion to regular and srmmetrical, very many flowers are

Irregular, that is, with the members of some or all of the floral circles unequal or dissimilar, and

Unsymmetrical, that is, when the circles of the flower or some of them differ in the number of their members. (Symmetrical and unsymmetrical are used in a different sense in some recent books, but the older use should be adhered to.) Want of mumerical symmetry and irregularity commonly go together; and both are common. Indecd, few flowers are entirely

Fig. 233. Flower of Anemone Pennsylvanica; apetalous, hermaphrodite.
Fig. 234. Flower of Saururus or Lizard's-tail; naked, but hermaphrolite.
Fig. 235. Flower of Mustard. 236. Its stamens and pistil separate and enlarged.
Fig. 237. Flower of a Violet. 238. Its calyx and corolla displayed: the five smaller parts are the sepals; the five intervening larger ones are the petals.
symmetrical beyond calyx, corolla, and perhaps stamens; and probably no irregular blossoms are quite symmetrical.
253. Irregular and Unsymmetrical Flowers may therefore be illus-

trated together, beginning with cases which are comparatively free from other complications. The blossom of Mustard, and of all the very natural family which it represents (Fig. 235, 236), is regular but unsymmetrical in the stamens. There are four equal sepals, four equal petals ; but six stamens, and only two members in the pistil, which for the present may

Fig. 2\%9. Flower of a Larkspur. 240. Its calyx and corolla displayed; the five larger parts are the sepals; the four smaller, of two shapes, are the petals; the place of the fifth petal is vacant. 241. Diagram of the same; the place for the missing petal marked by a dotted line.

Fig. 242. Flower of a Monkshood. 243. Its parts displayed; five sepals, the upper forming the hood; the two lateral alike, broad and Hat; the two lower small. The two pieces umber the hood represent the corolla, reduced to two odd-shaped petals; in centre the numerous stamens amd three pistils. 244. Diagram of the calyx and corolla; the three dotted lines in the place of missing petals.
be left out of view. The want of symmetry is in the stamens. These are in two circles, an onter and an imer. The outer eirele consists of two stamens only; the inmer has its proper number of four. The flower of Violet, which is on the phan of fi:e, is symmetrical in calyx, corolla, and stamens, inasmuch as each of these cireles consists of five members ; but it is conspicuously irregular in the corolla, one of the petals being very diflerent from the rest.

254 . The flowers of Larkspur, and of Monkshood or Aconite, which are nearly related, are both strikingly irregular in caly x and corolla, and considerably unsymmetrical. In Larkspur (Fig. 239-241) the irregular calyx consists of five sepals, one of which, larger than the rest, is prolonged behind into a large sac or spur ; but the corolla is of only four petals (of two shapes), - the fifth, needed to complete the symmetry, being left out. Aud the Munkshood (Fig. 242-244) has five very dissimilar sepals, and a corolla of only two very small and curiously-shaped petals, - the three needed to make up the symmetry being left out. The stamens in both are ont of spmmetry with the ground-plan, being numerous. So are the pistils, which are usually diminished to three, sometimes to two or to one.
255. Flowers with Multiplication of Parts are very common. The stamens are indefinitely numerous
 in Lurkspur and in Monkshood (Fig. 242, 243), while the pistils are fewer than the ground-plan suggests. Most Cactus-flowers have all the organs much increased in number (Fig. 229), and so of the Water-Lily. In Anemone (Fig. 233) the stamens and pistils are multiplied while the petals are left out. In Buttercups or Crowfoot, while the sepals and petals coutorm to the ground-plan of five, both stamens and pistils are indefinitely multiplied (Fig. 245).
256. Flowers modified by Union of Parts, so that these parts more or less lose the appearance of separate leaves or other organs growing out of the end of the stem or receptacle, are extremely common. There are two kinds of such union, namely : -

Coalescence of parts of the same circle by their contiguous margins; and Adnution, or the union of adjacent circles or unlike parts.
257. Coalescence is not rare in leares, as in the upper pairs of Honcssuckles, Fig. 163. It mas all the more be expected in the crowded circles or whorls of flower-leaves. Datura or Stramonium (Fig. 246) shows this coalesence both in calcx and eorolla, the five sepals and the fire petals being thus united to near their tips, each into a tube or long and narrow cup. These unions make needful the following terms:-

Fig. 245. Flower of Ranunculus bulbosus, or Buttercup, in section.

Gamopetalous, said of a corolla the petals of whieh are thus coalescent into one body, whether only at base or higher. The union may extend to the very summit, as in Morning Glory and the like (Fig. 247), so that the number of petals in it may not be apparent. The old name for this was Monopetalous, but that means " one-petalled;" while gamopetalous means " petals united," and therefore is the proper term.

Polypetalous is the counterpart term, to denote a corolla of distinct, that is, separate petals. As it means "many petalled," it is not the best possible name, but it is the old one and in almost universal use.

Gamosepalous applies to the calyx when the sepals are in this way umited.

Polysepalous, to the calyx when of separate sepals or calyx-leaves.
255. Degree of union or of separation in descriptive botany is expressed in the same way as is the lobing of leaves (139). Sce Fig. 249-253, and the explanations.
259. A corolla when gamopetalous commonly shows a distinction (well marked in Fig. 249-251) between a contracted tubular portion below, the Tube, and the spreading part above, the Border or Limb. The junetion between tube and limb, or a more or less cularged upper portion of the tube between the two, is the Throat. The same is true of the calyx.
260. Some names arc given to particular forms of the gamopetalous corolla, applicable also to a gamosepalous calyx, such as

Wheel-shaped, or Rotate; when spreading out at once, without a tube or with a very short one, something in the shape of a wheel or of its diverging spokes, Fig.
 252. 253.

Salver-shaped, or Salver-form ; when a flat-spreading border is raised on

Fig. 246. Flower of Datura Stramonium ; gamosepalous and gamopetalous.
Fig. 247. Funnelform corolla of a common Morning Glory, detached from its polysepalous calyx.
a narrow tube, from which it diverges at right angles, like the salver rep-

resented in old pietures, with a slender handle beneath, Fig. 249-251, 255.

Bell-shaped, or Campanulate; where a short and broad tube widens upward, in the sloape of a bell, as in Fig. 254.

Fumel-shaped, or Fumel-form; grad-
 ually spreading at the summit of a tube which is narrow below, in the

shape of a funnel or tumel, as in the eorolla of the common Morning Glory (Fig. 247) and of the Stramonium (Fig. 246).

Fig. 248. Polypetalous corolla of Soapwort, of five petals with long claws or stalk-like bases.

Fig. 249. Flower of Standing Cypress (Gilia coronopifolia); gamopetalous: the tube answering to the long claws in 248 , except that they are coalescent: the limb or horler (the spreading part above) is five-parted, that is, the petals not there united except at very base.

Fig. 250. Flower of Cypress-vine (Ipomœa Quamoclit); like preceding, but limb fice libed.

Fig. 251. Flower of Tpomoa coccinea; limb almost entire.
Fig. 252. Wheel-shaped or rotate and five-parted corolla of Bittersweet, Solanum Dulcamara. 253. Wheel-shaped and five-lohed corolla of Potato.

Fig. 254, Flower of a Campanula or Hartbell, with a campanulate or bell-sliaped corolla; 255, of a Phlox, with salver-shaped corolla; 956 , of Deal-Nettle (Lamium), with labiate ringent (or gaping) corolla: 257, of Snapdragon, with labiate personate corolla: $\Omega:-9$, of Toad-Flax, with a similar corolla spurred at the base.

T'abular; when prolonged into a tube, with little or no spreading at the border, as in the corolla of the Trumpet Honcysuckle, the calyx of Stramonimn (Fig. 246), ete.
261. Although sepals and petals are usually all blade or lamina (123), like a sessile leaf, yet they may have a contracted and stalk-like base, aur-
 swering to petiole. This is called its Claw, in Latin Unguis. Unguiculute petals are miversal and strongly marked in the Pink tribe, as in Soapwort (Fig. 248). 262. Such petals, and various others, may have an outgrowth of the inner face into an appendage or fringe, as in Soapwort, and in Silene (Fig. 259), where it is at the junction of claw and blade. This is called a Crown, or Corona. In Passionflowers (Fig. 260) the crown consists of numerous threads on the base of each petal.
263. Irregular Flowers may be polypetalous, or nearly so, as in the papilionaceous corolla; but most of them are irrcgular through coalescence, which often much disguises the numerical symmetry also. As affecting the corolla the following forms hare received particular names :
264. Papilionaceous Corolla, Fig. 261, 262. This is polypetalous, except that two of the petals cohere, usually but slightly. It belongs only to the Leguminous or Pulse family. The name means butterfly-like; but the likeness is hardly obvious. The names of the five petals of the papilionaceous forolla are curiously ineongruous. They are,

269

Fig. 259. Unguiculate (clawed) petal of a Silene; with a two-parted crown.
Fig. 260. A small Passion-flower, with crown of slender threads.
Fig. 261. Front view of a papilionaceous corolla. 262. The parts of the same, displayed: s, Standard, or Vexillum; w, Wings, or Alæ; k, Keel, or Carina.

The Standand or Banner (I^{\prime} exillum), the large upper petal whieh is external in the bud and wrapped around the others.
The Wings (. Har), the pair of side petals, of quite different shape from the standiard.
The keel (Curinut), the two lower and usually smatlest petals; these are lightly coalesecnt into a body which bears some likeness, wit to the kecl, but to the prow of a boat; and this eneloses the stamens and pistik. A lea-hlossom is a typieal example; the present illustration is from a species of Loenst, Robinia hisprida.
265. Labiate Corolla (Fig. 256-25.5), which would more properly have

265 been ealted Bilabiate, that is, two-lipped. This is a common form of gamopetalous eorolla; and the calex is often bilabiate also. These flowers are all on the plan of five; and the irregularity in the corolla is owing to mequal union of the petals as well as to diversity of form. The two petals of the upper or posterior side of the flower unite with each other higher up than with the lateral petals (in Fig. 256, quite to the top), forming the $U_{p p e r}$ lip: the lateral and the lower similarly unite to form the Lower lip. The single noteh whieh is generally found at the summit of the upper lip, and the two notches of the lower lip, or in other words the two lobes of the upper and the three of the lower lip, reveal the real composition. So also does the altermation of these five parts with those of the ealyx outside. When the ealyx is also bilabiate, as in the Sage, this alternation gives three lobes or sepals to the upper and two to the lower lip. Two forms of the labiate corolla have been designated, viz.: -
Ringent or Gaping, when the orifice is wide open, as in Fig. 256.
Personute or Masked, when a protuberance or intrusion of the base of the lower lip (ealled a Palute) projeets over or closes the orifice, as in Snapdragon and Toad-Flax. Fig. 257, 258.
Fig. 263. Corolla of a purple Gerardia laid open, showing the four stamens; the cross shows where the fifth stamen would be, if present.

Fig. 264. Corolla, laid open, and stamens of Pentstemon grandiflorus, with a sterile filament in the place of the fifth stamen, and representing it.

Fig. 265. Corolla of Catalpa laid open, displaying two gool stamens and three abortice ones or vestiges.
266. There are all gradations between labiate and regular corollas. In those of Gerardia, of some speeies of Pentstemon, and of Catalpa (Fig. 263-265), the labiate character is slight, but is manifest on close inspection. In almost all such flowers the plan of five, whieh is obvious or ascertainable in the calyx and corolla, is obscured in the stamens by the abortion or suppression of one or three of their number.
267. Ligulate Corolla. The ligulate or Strap-shaped corolla mainly belongs to the family of Composite, in which numerous small flowers are

gathered into a head, within an involucre that imitates a calyx. It is best exemplified in the Dandelion and in Chiecory (Fig. 266). Each one of these straps or Ligules, looking like so many petals, is the corolla of a dis-

tinct flower: the base is a short tube, which opens out into the lignle: the five minute teeth at the end indicate the number of constituent petals. So this is a kind of gamopetalous corolla, which is open along one side nearly

Fig. 266. Two flower-heads of Chiccory.
Fig. 267. One of them half cut away, better showing some of the flowers.
to the base, and outspread. The nature of such a corolla (and of the stamens also, to be explained in the next section) is illustrated by the flower of a Lobelia, Kig. 255.
265. In Asters, 1)aisies, Sunflower, Coreopsis (Fig. 268), and the like, only the marginal (or Ray) eorollas are ligulate; the rest (those of the Disi) are regularly gamopetalons,
 tubular, and five-lobed at summit; but they are small and individually inconspicuons, only the ray-flovers making a show. In fact, those of Coreopsis and of Sunflower are simply for show, these ray-flowers being not only sterile, but neutral, that is, having neither stamens nor pistil. But in Asters, Daisies, Golden-rods, and the like, these ray-flowers are pistillate and fertile, serving

therefore for seed-bearing as well as for show. Let it not be supposed that the show is useless. See Section XIII.
269. Adnation, or Consolidation, is the union of the members of parts belonging to different circles of the flower (256). It is of course miderstood that in this (as likewise in coalescence) the parts are not formed and then conjoined, but are produced in union. They are born united, as the term adnate implies. To illustrate this kind of union, take the accompanying series of flowers (Fig. 270-274), shown in vertical section. In the first, Fig. 270, Flax-flower, there is no adnation; sepals, petals, and stamens, are fiee as well as distinet, being separately borne on the receptacle, one errele within or above the next ; only the five pistils have their oraries coalescent. In Fir. 271, a Cherry-flower, the petals and stamens are borne on the throat of the calyx-tube; that is, the sepals are coalescent into a cup. and the petals and stamens are adnate to the imer face of this; in other

[^18]Fig. 269. A slice of the proceding more enlarged, with one tubular perfect fower (') left standing on the rectptacle, with its bractlet or chaff (b), one ligulate and nentral ra: Hower (cc), and part of mother; dd, section of bracts or leaves of the involucre.
words, the sepals, petals, and stamens are all consolidated up to a certain height. In Fig. 272, a Purslane-flower, the same parts are adnate to or consolidated with the ovary up to its middle. In Fig. 273, a Haw-thorn-flower, the consolidation has extended over the whole ovary; and petals and stamens are adnate to the ealyx still further. In Fig. 274, a Cranberry-blossom, it is the same except that all the parts are free at the same height; all seem to arise from the top of the ovary.

270. In botanical description, to express tersely such differenees in the relation of these organs to the pistil, they are said to be

Hypogynous (i.e. under the pistil) when they are all free, that is, not adnate to pistil nor connate with each other, as in Fig. 270.

Perigynous (around the pistil)
 when comnate with each other, that is, when petals and stamens are inserted or borne on the calyx, whether as in Cherry-flowers (Fig. 271) they are free from the pistil, or as in Purslane and Hawthorn (Fig. 272, 273) they are also adnate below to the ovary.

Epigynous (on the ovary) when so adnate that all these parts ap.
 pear to arise from the very summit of the ovary, as in Fig. 274. The last two terms are not very definitely distinguished.
271. Another and a simpler form of expression is to deseribe parts of the flower as being

Free, when not united with or inserted upon other parts.
Distinct, when parts of the same kind are not united. This term is the counterpart of coalescent, as free is the counterpart of adnate. Many writers use the term "free" indiseriminately for both; but it is better to distinguish them.

Fig. 270. Flax flower in section; the parts all free, - hypogynous.
Fig. 271. Cherry-flower in section; petals and stamens adnate to tule of calyx, perigynous.

Fig. 272. Purslane-flower in section; calyx, petals, stamens, all adnate to lowet half of ovary, - perigynous.

Connate is a term common for either not free or rot distinct, that is, for parts united congenitally, whether of same or of different kinds.

Adnate, as properly used, relates to the union of dissimilar parts.

2i2. In still another form of expression, the terms superior and inferior have been much used in the sense of above and below.

Superior is said of the ovary of Flax-flower, Cherry, ete., because above the other parts; it is equivalent to "ovary free." Or it is said of the calyx, etc., When above the ovary, as in Fig. 2f3-275.

Infertor, when applied to the ovary, means the same as "calyx adnate;" when applied to the floral envelopes, it meaus that they are free.
273. Position of Flower or of its Parts. The terms superior and inferior, or upper and lower, are also used to indicate the relative position of the parts of a flower in reference to the axis of inflores-
cence. An axillary flower stands between the bract or leaf which subtends it and the axis or stem which bears this bract
 or leaf. This is represented in sectional diagrams (as in Fig. 275, 276) by a transverse line for the bract, and a small cirele for the axis of inflorescence. Now the side of the blossom which faces the bract is the
Anterior, or Inferior, or Lower side; while the side next the axis is the

Posterior, or Superior, or Upper side of the flower.
274 . So, in the labiate corolla (Fig. 25(6-25S), the lip which is composed of three of the five petals is the anterior, or inferior, or lower lip; the other is the posterior, or superior, or upper lip.

[^19]275. In Violets (Fig. 235, 276), the odd sepal is posterior (next the axis) ; the odd petal is therefore autruor, or next the subtending leaf. In the papilionaceous tlower (Fig. 261, and diagram, Fig. 275), the odd sepal is anterior, and so two sepals are posterior; consequently, ly the alternation, the old petal (the standard) is posterior or upper, and the two petals forming the keel are anterior or lower.

§ 5. ARRANGEMENT OF PAliTS IN THE BUD.

276. Estivation was the fanciful name given by Limmens to denote the disposition of the parts, especially the leaves of the flower, before Anthesis, i. e. before the blossom opens. Proflorution, a better term, is sometimes used. This is of importance in distingrishing diflerent families or genera of plants, being gencrally muiform in each. The wstivation is best seen by making a slice across the flower-bud; and it may be expressed in diagrams, as in the accompanying figures.
277. The pieces of the calyx or the corolla either overlap each other in the bud, or they do not. When they do not overlap, the æstivation is

Valcate, when the pieces meet each other by their abrupt edges, without any infolding or overlapping; as the calyx of the Linden or Basswood (Fig. 27i).

Induplicate, which is valvate with the margins of each piece projecting inwards, as in the calys of a common Virgin's-bower, Fig. 27S, or

Inrolute, which is the same but the margins rolled inward, as in most of the large-flowered species of
 Clematis, Fig. 279.

Reduplicate, a rarer modification of valvate, is similar but with margins projecting outward.

Open, the parts not touching in the bud, as the calrx of Mignonette.
278. When the pieces overlap in the bud, it is in one of two ways; either every piece has one edge in and one edge ont, or some pieces are wholly outside and others wholly inside. In
the first case the æstiration is
Convolute, also nanied Contorteck or Twisted, as in Fig. 280, a cross-section of a corolla very strongly thus convolute or rolled up together, and in the corella of a Flax-flower (Fig. 281), where the petals only moderately overlap in this way. Here onc edge of every petal eovers the next before

Fig. 277. Diagram of a flower of Linden, showing the calyx valvate and corolla imbricate in the bul, etc.
Fig. 278. Valvate-induplicate astivation of calyx of common Virgin's-hower. Fig. 279. Valvate-involute astivation of same in Vine-hower, Clematis Vitialla.
it, while its other edge is covered by the next behind it. The ollher mode is the

Imbricate or Imbricated, in which the outer parts cover or overlap the imner so as to "break joints," like tiles

280 or shingles on a roof; whenee the name. When the parts are three, the first or outermost is wholly external, the third wholly interual, the second has one margin covered by the first while the other overlaps the third or inmermost piece: this is the arrangement of altermate three-
 ranked leaves (157). When there are five pieces, as in the coroila of Fig. 225, and calyx of Fig. 251, as also of Fig. 241, 276, two are external, two are internal, and one (the third in the spiral) has one edge covered
 by the outermost, while its other edge covers the innermost; which is just the five-ranked arrangement of alternate leaves (155). When the pieces are four, two are outer and two are imer; which answers to the arrangement of opposite leares.
279 . The imbricate and the convolute modes sometimes vary oue into the other, espeeially in the corolla.
980. In a gamopetalous corolla or gamosepalous calyx, the shape of the tube in the bud may sometimes be notice-
 able. It may be

Plicate or Plaited, that is, folded lengthwise; and the plaits may either be turned outwards, forming projecting ridges, as in the corolla of Campanula; or turned inwards, as in that of Gentian Bellaloma; or
Supervolute, when the phaits are convolutely wrapped round each other, as in the corolla of Morning Glory aud of Stramonimm, Fig. 252.

Section IX. STAMENS IN Partictlar.

281. Andrœcium is a technical name for the staminate srstem of a flower (that is, for the stamens taken together), which it is sometimes convenient to use. The preceding section has dealt with modifications of the flower pertaining mainly to calcx and corolla. Those relating to the stamens are now to be indicated. First as to

Fig. 280. Convolute estivation. as in the corolla-lobes of Oleander.
Fig. 281. Diagram of a Flax-flower; calyx imbricated and corolla convolute in the bud.

Fig. 282. Upper part of corolla of Datura Stramonium in the bud ; aud below a section showing the convolution of the plaits.
282. Insertion, or place of attachment. The stamens usually go with the petals. Not rarely they are at base

Epipetalous, that is, inserted on (or aduate to) the corolla, as in Fig. 283. When free from the corolla, they may be

IIypogynous, inserted on the receptacle under the pistil or gynœcium.

Perigynous, inserted on the calyx, that is, with the lower part of filament adnate to the calyx-tube.

Epigynous, horne apparently on the top of the ovary; all which is explained in Fig. 270-274.

Gynandrous is another term relating to insertion of rarer occurrence, that is, where the stamens are

$$
a
$$

 inserted on (in other words, adnate to) the style, as in Lady's Slipper (Fur. 284), and in the Orchis family generally. 283. In Relation to each ${ }^{a}$ Other, stamens are more commonly
Distinct, that is, without any union with each other. But when united, the following
 indicate their modes of mutual comection:-
Monadelphous (from two Greek words, meaning "in one brotherhood "), when united by their filaments into one set, usually into a ring or cup below, or into a tube, as in the Nallow Family (Fig. 286), the Passionflower (Fig. 260), the Lupine (Fig. 287), and in Lobelia (Fig. 285).

Diadelphous (meaning in two brotherhoods), when united by the filaments into two sets, as in the Pea and most of its near relatives (Fig. 288), usually nine in one set, and one in the other.

Triadelphous. (three brotherhoods), when the filaments are united in three sets or elusters, as in most species of Hypericum.

Fig. 283. Corolla of Morning Glory laid open, to show the five stamens inserted on it, near the base.

Fig. 284. Style of a Lady's Slipper (Cypripedium), and stamens united with it ; a, a, the antliers of the two good stamens; st, an abortive stamen, what should be its anther changed into a petal-like body ; stig, the stigma.

Fig. 285. Flower of Lohelia cardinalis, Cardinal flower; corolla making approach to the ligulate form; filaments ($s t$) monadelphous, and anthers (a) syngevesious.

Pentallfphous (five brotherhoods), when in five sets, as in some species of Ityperienn and in American Linden (fig. 277, 259).

Polyalelpleoks (many or several
 brotherhoods) is the term generally employed when these sets are several, or even more than two, and the particular number is left unspecified. These terms all relate to the lilaments.
Syngenesious is the term to denote that stamens have theiranthers mited, eoaleseent into a ring or tube; as in Lohelia (Fig. 255), in Violets, and in all of the great famity of Compositie.
254. Their Number in a flower is commonly expressed directly, but sombines adjectively, by a scries of terms whieh were the name of elasses in the Limman artificial system, of wheh the following names, as also the pree ding, are a survival:-

Monumdrous, i. e. solitary-stamened, when the flower has only one stamen,
Diandrous, when it has two stamens only,
Triendrous, when it has three stamens,

Tretrandrous, when it has four stamens,

Pentanlious, when it has five stamens,

Mexandrous, when with six stamens, and so on to

Polyandrous, when it has

289

290

291 many stamens, or more than a dozen.
285. For which terms, see the Glossary. They are all Greek numerals prefixed to -andria (from the Greek), which Limmens used for andracium, and are made into an English adjective, -undrous. Two other terms, of same origin, desiguate particular eases of momber (four or sis) in connection with unequal length. Namely, the stamens are

Didynamous, when, being only four, they form two pairs, one pair longer than the other, as in the Trumpet Creeper, in Cerardia (Fig. 26:3), ete.

[^20]T'etrallynamous, when, being only six, four of them surpass the other two, as in the Mustard-Hower and all the Crueferoms lamily, Fig. 235.
256. The Filament is a kind of stalk to the anther, commonly stender or thread-like: it is to the auther nearly what the petiole is to the blade of a leaf. Therefore it is not an essential part. As a leaf may be without a stalk, so the anther may be Sessile, or without a filament.
287. The Anther is the essential part of the stamen. It is a sort of case, filled with a fine powder, the Pollen, which serves to fertilize the pistil, so that it may perfect seeds. The anther is said to be

Innate (as in Fig. 292), when it is attached by its base to the rery apex of the filament, turning neither inward nor nutward;

Adnate (as in Fig. 293), when attached as it were by one liace, usually for its whole length, to the side of a continuation of the filament; and

Versatile (as in Fig. 291), when fixed by or near its middle only to the very point of the filament, so as to swing loosely, as in the Lily, in Grasses, etc. Versatile or adnate anthers are

Introrse, or Incumbent, when facing inward, that is, toward the centre of the flow-
 er, as in Magnolis, Water-Lily, etc.

Extrorse, when facing outwardly, as in the Tulip-tree.

289. Rarely does a stamen bear auy resemblance to a leaf, or even to a petal or flower-leaf. Nevertheless, the botanist's idea of a stamen is that it answers to a leaf developed in a peculiar form and for a special purpose. In the filament he sees the stalk of the leaf; in the anther, the blade. The blade of a leaf consists of two similar sides; so the anther consists of tro Lobes or Celles, one answering to the left, the other to the right, side of the blade. The two lobes are often comected by a prolongation of the filament, which answers to the midrib of a leaf; this is called the Connective. This is conspicuous in Fig. 292, where the connective is so broad that it separates the two cells of the anther to some distance.
259. A simple coneeption of the morpholugical relation of an anther to a leaf is given in Fig. 295, an ideal fignre, the lower part representing a stamen with the top of its anther cut away; the upper, the corresponding upper part of a leaf.

Fig. 29. Stamen of Isopyrum, with imate anther, 293 . Of Tulip-tree, with :uluate (and extrorse) antler. 294 . Of Evening Primrose, with versatile anther.

Fig. 295. Diagram of the lower part of an anther, cut across ahove, and the uper part of a leaf, to show how the one answers to the other; the filament to petiole, the connective to midrib; the two cells to the right and left halves of the blade.
290. So anthers are generally two-celled. But as the pollen begins to form in two parts of each eel (the anterior and the posterior), sometimes these two strata are not confluent, and the anther even at maturity may be four-celled, as in Moonseed (Fig. 296) ; or rather, in that case (the word
 cell being used for each lateral half of the orgalli), it is two-celled, but the cells bilocellate.
291. But anthers may become one-celled, and that cither by confluence or by suppresssion.
292. By confluence, when the two cells run together into one, as they nearly do in most species of Pentstemon (Fig. 297), more so in Monarda (Fig. 300), and completely in the Mallow (Fig. 295) and all the Mallow family.

Fig. 296. Stamen of Moonseed, with anther cut across; this 4-celled, or rather 4locellate.

Fig. 297. Stamen of Pentstemon pubescent; the two anther-cells diverging, and almost confluent.
Fig. 293. Stamen of Mallow ; the anther supposed to answer to that of Fig. 297, but the cells completely confluent into one.

Fig. 299. Stamen of Globe Amaranth; very short filament bearing a single anther-cell; it is open from top to bottom, showing the pollen within.
Fig. 300-305. Stamens of several plants of the Labiate or Mint Family. Fig. 300. Of a Monarda: the two anther-cells with bases divergent so that they are transverse to the filament, and their contiguous tips confluent, so as to form one sell opening by a contimous line. Fig. 301. Of a Calamintha: the broad connecfive separating the two cells. Fig. 302. Of a Sage (Salvia Texan ; with long and slender connective resembling forks of the filament, one bearing a goon anther-cell; the other an abortive or poor one. Fig. 303. Another Sage (S. coccinea). with connective longer and more threal-shaped, the lower fork having its anther-cell wholly wanting. Fig. 304. Of a White Sage, Aulibertia grandifora; the lower fork of connective a mere vestige. Fig. 305. Ot another White Sage (A. starchyodes), the lower fork of comective suppressed.
293. By suppression in certain cases the anther may be reduced to one cell or halved. In Globe Amaranth (Fig. 299) there is a single cell without vestige of any other. Different species of Sage and of the White Sages of California show various grades of abortion of one of the anther-cells, along with a singular lengthening of the comnective (Fig. 302-303).
294. The splitting open of an anther for the discharge of its pollen is termed its Dehiscence.
295. As the figures show, this is commonly by a line along the whole length of each cell, either lateral or, when the anthers are extrorse, often along the outer face, and when introrse, along the imer face of each cell. Sometimes the opening is only by a chink, hole, or pore at the top, as in the Azalea, Pyrola (Fig. 307), etc. ; sometimes a part of the face separates as a sort of trap-door (or valve), hinged at the top, and opening to allow the cscape of the pollen,
 as in the Sassafras, Spice-bush, and Barberry (Fig. 308).
296. Pollen. This is the powdery matter, commonly of a yellow color, which fills the cells of the anther, and is diseharged during blossoming,

309

310

311

312

313
after which the stamens generally fall or wither away. Under the microscope it is found to consist of grains, usually round or oval, and all alike in the same species, but very different in different plants. So that the

314

315

316

317

318
plant may sometimes be recognized from the pollen alone. Several forms are shown in the accompanying figures.

Fig. 306. Stamen with the usual dehiscence of anther down the side of each cell.
Fig. 307. Stamen of Pyrola; cells opening by a terminal hole.
Fig. 308. Stamen of Barberry; cells of anther each opening by an uplifted valve.
Fig. 309. Magnified pollen of a Lily, smooth and oval; 310, of Echinocystis, grooved lengthwise; 311, of Sicyos, with bristly points and snooth bands; 312, of Musk Flant (Mimulus), with spiral grooves; 313, of Snecory, twelve-sided and dotted.

Fig. 314. Magnified pollen of Hibiscus and other Mallow-plants, beset with prickly projections : 315 , of Circea, with angles bearing little lobes; 3I6, of Even-
297. An ordinary pollen-grain has two coats; the outer coat thickish, but weak, and frequently adorned with lines or bands, or studded with points; the inmer coat is extremely thin and delicate, but extensible, and its cavity when fresh contains a thickish protoplasmic Iluid, often rendered turbid by an immense number of minute particles that float in it. As the prollen matures this lluid usually dries up, but the protoplasm does not lose its vitality. When the grain is wetted it absurbs water, swells up, and is apt to burst, discharging the contents. Bat wheu weak syrup is used it absorbs this slowly, and the tough inner coat will sometimes break through the outer and begin a kind of growth, like that which takes place when the pollen is placed upon the stigma.
295. Some pollen-grains are, as it were, lubed (as in Fig. 315, 316), or formed of four grains united (as in the Heath family, Fig. 317) : that of Pinc (Fig. 318) has a large rounded and empty bladder-like expansion upon each side. This renders such pollen very buoyant, and capable of being transported to a great distance by the wind.
299. In species of Acacia simple grains lightly cohere into globular pellets. In Milkweeds and in most

319

320

321
 Orchids all the pollen of an anther-cell is compacted or coherent into one mass, called a Pollen-mass, or Pollinium, plural Pollinid. (Fig. 319-322.)
ing Primrose, the three lobes as large as the central lody; 317, of Kalmia, four grains united, as in most of the Heath fanily; 318, of Pine, as it were of three grains or cells united; the lateral enpty and light.

Fig. 319. Pollen, a pair of pollinia of a Milkweed, Aselepias, attached by stalks to a gland; moderately magnified.

Fic. 300. Pollinium of an Orchis (Habenaria), with its stalk attached to a sticky gland; magnified. 321. Some of the packets or partial pollinia, of which Fig. $3: 0$ is mate up, more magnified.

Fig. 329. One of the partial pollinia, tom up at top to show the grains (which are each composed of four), and highly magnified.

Section X. PISTILS IN PARTICULAR.

§ 1. ANGIOSPERMOUS OR ORDINARY GYN(ECIUM.

300. Gynœecium is the teclmical name for the pistil or pistils of a flower taken collectively, or for whatever stands in place of these. The various modifications of the gynocium and the terms which relate to them reguire particular attention.
301. Tile Pistil, when only one, oceupics the centre of the flower; when there are two pistils, they stand facing cael other in the centre of the flower; when several, they commonly form a ring or circle; and when very numerous, they are generally erowded in rows or spirals on the surface of a more or less enlarged or clongated receptacle. Their number gives rise 10 certain terms, the counterpart of those used for slamens (2S4), which are survivals of the names of orders in the Limean artificial system. The names were coined by prefixing Greck numerals to -gynia used for gynecium, and changed into adjectives in the form of -gynous. That is, a flower is

Monogyzous, when it has a single pistil, whether that be simple or compoume:

Digynous, when it has only two pistils; Triyynous, when with three; Tetragynous, with four; Pentayynous, with five; Hexayynous, with six; and so on to Polygynous, with mathy pistils.
302. The Parts of a Complete Pistil, as already twice explained (16, 236), are the Ovary, the Style, and the Stigma. The ovary is one esseatial part: it contains the rudiments of sceds, called Orules. The stigma at the summit is also essential: it receives the pollen, which fertilizes the ovules in order that they may become seeds. But the style, commouly a tapering or slender cohmm borne on the summit of the ovary, and bearing the stigna on its apex or its side, is no more necessary to at pistil than the filament is to the stamen. Accordingly, there is no style in many pistils: in these the stigma is spssile, that is, rests directly on the ovary (as in Fig. 326). The stigma is very various in shape and appearance, being sometimes a little knob, (as in the Cherre, Fig. 271), sometimes a point or small surface of bare tissue (as in Fig. 327-33(), and sometimes a longitudinal crest or line (as in Fig. 32 t, 3 $41-3+3$), or it may oecupy the whole lengit of the style, as in Fig. 331.
303. The word Pistil (Latin, Pistillum) means a pestle. It came into use in the first place for such flowers as those of Crown Imperial, or Lils, in which the pistil in the centre was likened to the pestle, and the perianth aromen it to the mortar, of the apothecary.

304 A pistil is cither simple or compount. It is simple when it answers to a single fower-leaf, compond when it auswers to two or three, or a fuller eirele of such leaves conjoined.
305. Carpels. It is convenient to have a name for each flower-leaf of the gynocium; so it is called a Carpel, in Latin Carpellam or Carpidium. A simple pistil is a carpel. Each component flower-leaf of a eompound pistil is likewise a carpel. When a flower has two or more pistils, these of course are simple pistils, that is, separate carpels or pistil-leaves. There may be only a single simple pistil to the flower, as in a Pea or Cherry blossom (Fig. 271); there may be two sneh, as in many Saxifrages; or many, as in the Strawberry. Nore commonly the single pistil in the centre of a blossom is a compound one. Then there is seldom moch difficulty in aseertaining the number of earpels or pistil-leases that compose it.
306. The Simple Pistil, viewed morphologically, answers to a leafblade with margins incursed and united where they meet, so forming a elosed case or pod (the ovary), and bearing ovules at the suture or junction of these margins: a tapering upper portion with margins similarly inrolled, is supposed to form the style; and these same margins, exposed at the tip or for a portion of the length, beeome the stigma. Compare, under this view, the three accompanying figures.

307 . So a simple pistil should have a one-eelled ovary, only one line of
 attachment for the ovules, a single style, and a siugle stigma. Certain variations from this normal condition which sometimes oeenr do not invalidate this morphological conception. For instance, the stigma may become two-lohed or tworidgerl, because it consists of two leafmargins, as Fig. 324 shors; it may become 2-locellate by the turning or growing inward of one of the sutures, so as to divide the eavity.
308. There are two or three terms which primarily relate to the parts of a simple pistil or carpel, and are thence carried on to the componnd pistil, viz.: -

Vextral Suture, the line which answers to the united margins of the rarpel-leaf, therefore naturally called a suture or seam, and the ventral or imner one, because in the circle of carpel-leaves it looks intrard or to the entre of the flower.

Dorsal Suture is the line down the back of the carpel, answering to
Fig. 323. An inrolled small leaf, such as in double-flowered Cherry blossoms is oftem seen to occupy the place of a pistil.

Fic. 324. A simple pistil (of Isopyrum), with ovary ent arross; the imer (ventral) fare turned toward the eye: the ovules seem to be home on the rentral suture, answering to leaf-margins: the stigma ahose seen also to answer to leaf-margins.

Fig. 325. Pot or simple pistil of Caltha or Marsh-Marigold, which has opened, and shed its seeds.
the midrib of the leaf, - not a seam therefore; but at maturity many fruits, such as pea-pods, open by this dorsal as well as by the ventral line.

Placenta, a name given to the surface, whatever it be, whieh bears the ovules and seeds. The name may be needless when the ovules grow directly on the ventral suture, or from its top or bottom; but when there are many orules there is usually some expansion of au orule-bearing or seed-bearing surface; as is seen in our Mandrake or Podophyllnm, Fig. 326.
309. A Compound Pistil is a combination of two, three, or a greater number of pistil-leaves or carpels in a cirele, united into one body, at least

by their ovaries. The annexed figures should make it elear. A series of Saxifrages might be seleeted the gynœeium of which would show every gradation between tro simple pistils, or separate earpels, and their complete coalescence into one eompound and two-celled orary. Even when the constituent styles and stigmas are completely eoaleseent into one, the nature of the combiuation is usmally revealed by some external limes or gronves, or (as in Fig. 328-330) by the internal partitions, or the number of the placentr. The simplest ease of compound pistil is that
310. With two or more Cells and Axile Placentæ, namely, with as many eells as there are carpels, that have united to eompose the organ.

[^21]Such a pistil is just what would be formed if the simple pistils (two, three, or fire in a circle, as the ease maty be), like those of a Peony or Stonecrop (Fig. 221,225), pressed together in the eentre of the flower, were to colere by their contiguons parts. In such a case the phacentæ are naturally axile, or all brought together in the axis or eentre; and the ovary has as many Dissepiments, or internal Partitions, as there are empels in its composition. For these are the contiguous and coalescent walls or sides of the eomponent carpels. When sueh pistils ripen into pods, they often separate along these lines into their clementary carpels.

331
 Fig. 329) have early vanished or have been suppressed. Indecd, traces of them may often he detected in Pinks. On the other hand, it is equally supposable that in the Primula family the frec central is derived from parietal placentation by the carpels bearing ovules only at base, and forming a consolidated common placenta in the axis. Mitella and Dionæa help, out this conception.
312. One-celled, with Parietal Placentæ. In this not uneommon case it is conceived that the two or three or more carpel-leaves of such a compound pistil coalesce by their adjacent edges, just as sepal-leaves do to form a gamo-

334

33a

336 sepalous calyx, or petals to form a gamopetalous corolla, and as is shown in the diagram, Fig. 333 , and in an actual eross-sec-

tion, Fig. 334. Here each earpel is an open leaf, or with some introflexion, bearing ovules along its margins; and each placenta consists of the con-

Fig. 331, 332. Pistil of a Samlwort, with rertical aml transverse section of the ovary: free central placenta.

Fig. 333. Plan of a one-celled ovary of three carpel-leaves, with parietal placente, cut across below, where it is complete; the upper part showing the top of the three leaves it is composed of, approaching, but not united.

Fig. 334. Cross section of the ovary of Frost-weed (Helianthemuni), with three parietal placents, hearing orules.

Fig. 335. Cross section of an ovary of Ifyperieum graveolens, the three large placentere meeting in the centre, so as to form a three-celle: orary. 3atio. Same in fruit, the placentex now separate :and romben.
tiguous margins of two pistil-lcaves grown together. There is every gradation between this and the three-eelled ovary with the placentex in the axis, even in the same genus, sometimes even in difierent stages in the same pistil (Fig. 335, 336).

§ 2. GYMNOSPERMOUS GYNGECIUM.

313. The ordinary pistil has a closed ovary, and accordingly the pollen can act upon the contained ovales only iudirectly, through the stigne. This is expressed in a term of Greek lerivation, viz.: -

Angiospermous, meaning that the sceds are borne in a sue or closed vessel. The comnterpart term is

Gymnospermous, meaning maked-seeded. This kind of pistil, or gynecium, the simplest of all, yet the most peculiar, eharacterizes the Pine family and its relatives.
314. While the ordinary simple pistil is conecived by the botanist to
be a leaf rolled together into a closed pool (306), those of the Pine, Larch (Fig. 337), Cedar, and Arbor-Vita (Fig. 338, 339) are open leaves, in the form of scalcs, each bearing two or more orules on the inner face, next the base. At the time of blossoning, these pistil-leaves of the young cone diverge, and the pollen, so abundantly shed from the staminate blossoms, falls directly upon the exposed ovules. Afterward the scales close over each other until the seeds are ripe. Theu they separate that the secds may be shed. As the pollen acts directly on the ovnles, such pistil (or organ aeting as pistil) has no stigma.
315. In the Yew, and in Torreya and Gingko, the gynœeium is reduced to extremest simplieity, that is, to a naked orule, without any visible carpel.
316. In Cycas the large naked ovules are borne
 on the nargins or lobes of an ohvinins open leaf. All Gymnospermous plants lave other peculiarities, also distinguishing them, as a class, from Angiospermous plants.

Fig. 337. A pistil, that is, a scale of the cone, of a Larch, at the time of flowering; insithe view, showing its, pair of naked ovules.

Fig. 338. Tranchlet of the American Arbor-Vitie, considerably larger than in nature, terminated by its pistillate flowers, each consisting of a single scale (an open pistil), together forming a small cone.

Fig. 339. One of the scales or carpels of the last, removed and more enlarged, the inside exposed to view, showing a pair of ovules on its base.

Section XI. OYLLES.

317. Ovule (from the Latin, meaning a litte egg) is the technical name of that which in the flower answers to and beeones the seed.
318. Ovnles are naked in gemmospermous plants (as just deseribed); in all others they are chelosed in the ovary. They may be produced along the
 whole length of the cell or cells of the ovary, and then they are apt to be numerons; or only from some part of it, generally the top or the bottom. In this case they are usually few or single (solitary, as in Fig. 341-343). They may be sessile, i. e. without stalk, or they may be attached by a distinct stalk, 340 the Funicle or Funiculus (Fig. 340).
319. Considered as to their position and direction in the ovary, they are

Horizontal, when they are neither turned upward nor downward, as in Podophyllum (Fig. 326);

Ascending, when rising obliquely upwards, usually from the side of the cell, not from its very base, as in the Buttereup (Fig. 3t1), and the Pursline (Fig. 272);

Erect, when rising upright from the very base of the cell, as in the Buekwheat (Fig. 342);

Pendulous, when hanging from the

341

342

343 side or from rear the top, as in the Flax (Fig. 270); and

Suspended, when hanging perpendicularly from the very summit of the cell, as in the Ancmone (Fig. 343). All these terms equally apply to seeds.
320. In structure an ovule is a pulpy mass of tissue, usually with one or two coats or coverings. The following parts are to be noted; viz: -

Kervel or Nuclets, the body of the ovule. In the Mistletoc and some related plants, there is only this nuelens, the coats being wanting.

Tegunexts, or coats, sometimes only one, more commonly two. When two, one has been called Primine, the other Secundine. It will serve all purposes to eall them simply outer and inner orule-coats.

Orifice, or Foramex, am opening through the coats at the organic apex of the orule. In the seed it is Mircopplle.

Cualaza, the place where the coats and the kernel of the orule blend.
Hilum, the place of junetion of the funieulus with the body of the ovule.
Fig. 340. A cluster of ornles, pendulons on their funicles.
Fig. 341. Section of the ovary of a Buttereup, lengthwise, showing its ascending suule.

Fig. 342. Section of the ovary of Buckwheat, showing the erect ovule.
Fig. $3 \ddagger 3$. Section of the ovary of Anemone, showing its suspended ovule-
321. The Kinds of Ovules. The ovules in their growth develop in three or four different ways, and thereby are distinguished into

Orthotropous or Straight, those which develop without curving or turn-

ing, as in Fig. 344. The elalaza is at the insertion or base; the foramen or orifice is at the apex. This is the simplest, but the least common bind of ovule.

Campylotropous or Incurved, in which, by the greater growth of one side,

348

349

350

352

$3 \overline{3} 3$

354
the ovule curves into a kidney-shaped outline, so bringing the orifice down close to the base or chalaza; as in Fig. 345.

Amphitropous or Half:Inverted, Fig. 346. Here the forming ovule, instead of curving perceptibly, keeps its axis nearly straight, and, as it grows, turns round upon its base so far as to become transverse to its funiculus, and adnate to its upper part for some distance. Therefore in this ease the attachment of the funiculus or stalk is about the middle, the chalaza is at one end, the orifice at the other.

Anatropous or Inverted, as in Fig. 34\%, the com-

355 monest kind, so called because in its growth it has as it were turned over upon its stalk, to whieh it has continued adnate. The organic base, or chalaza, thus becomes the apparent summit, and the

[^22]wifiec is at the base, by the side of the hilam or place of attachment. The adnate portion of the finiculus, which appears as a ridge or cord extending from the hilum to the chalaza, and whieh distinguishes this kind of ovale, is called the Rnaphe. The amphitropous ovule (Fig. 346) has a short or ineomplete rhaphe.
322. Fig. 345-352 show the stages through whieh an ovule becomes antropons in the course of its growth. The annexted two figures are sections of sueh an ovule at maturity ; and Fig. 355 is Fig. 353 enlarged, with the parts lettered.

Section Xil. MOinffications of the receptacle.

323. The Torus or Receptacle of the flower (237, Fig. 223) is the portion which belongs to the stem or axis. In all preceding illustrations it is small and short. But it sometimes lengthens, sometimes thickens or variously enlarges, and takes on varions forms. Some of these have received special names, very few of whieh are in common use. A lengthened portion of the receptaele is called

A Stipe. This name, whieh means simply a trunk or stalk, is used in

botany for various stalks, even for the leaf-stalk in Ferns. It is also applied to the stalk or petiole of a carpel, in the rare cases when there is any, as in

Fig. 356. Longitulinal section of flower of Silene Pennsylvanica, showing stipe hetween calyx and corolla.

Fig. 357. Flower of a Cleome of the section Gynandropsis, showing hroadened receptacle to bear petals, lengthened stipe below the stamens, aml another between these and pistil.

Fig. 358. P'istil of Geraminm or Craneshill.
Fig. 359. The same, ripe, with the five carpels splitting away from the long beak (carpophore), and hanging from its top, by their recurving styles.

Goldthread. Then it is technically distinguished as a Thecaphore. When there is a stalk, or lengthened internode of receptacle, directly under a compound pistil, as in Stamleya and some other Crucifera, it is called a Grnophore. When the stalk is developed below the stamens, as in most species of Silene (Fig. 356), it has been called an Anthopmore or Gono. phore. In Fig. 357 the torus is dilated above the calyx where it bears the petals, then there is a long internode (gonophore) between it and the stamens; then a shorter one (gymophore) betwecn these and the pistil.
324. A Carpophore is a prolongation of reeeptacle or axis between the carpels and bearing them. Umbelliferous plants and Geramium (Fig. 358, 359) afford characteristic cxamples.
325. Flowers with very numerous simple pistils generally lave the receptacle enlarged so as to give them room; sometimes becoming broad and flat, as in the Flowering Raspberry, sometimes clongated, as in the Black-

362
berry, the Magnolia, ctc. It is the receptacle in the Stramberry (Fig. 360), much enlarged and pulpy when ripe, which forms the eatable part of the fruit, and bears the small seed-like pistils on its surface. In the Rose (Fig. 361), instead of being conrex or conical, the receptacle is deeply coneave, or urn-shaped. Indeed, a Rose-hip may be likened to a strawberry turned inside out, like the finger of a glove reversed, and the whole covered by the adtierent tube of the calyx. The calyx remains beneath in the strawbery.
326. In Nelumbium, of the Water-Lily famils, the singular and greatly enlarged receptacle is shaped like a top, and bears the small pistils immersed in separate cavities of its flat upper surface (Fig. 362).
327. A Disk is an enlarged low receptacle or an outgrowth from it, hypogynous when underneath the pistil, as in
 Rue and the Orange (Fig. 30:3), and pritignons when admate to calyx-tube (as in Buckthom, Fig. 36t, 36.3), and Cherry (Fig. 2il), or

Fig. 360. Longitudinal sention of a young strawherry, cularged.
Fig. 361. Similar section of a young Rose-hip.
Fig. 36 . Enlarged and top-shaped receptacle of Nelumbium, at maturity.
Fig. 363. liypogynous disk in Orange.
to both calyx-tube and ovary, as in Hawthorn (Fig. 273). A flattened
 hypogynoms disk, mulerlying the ovary or ovaries, and from whieh they fall away at maturity, is sometimes called a Gynobase, as in the Rue family. In some Borragineous flowers, such as Homedstongue, the gynobase runs up in the centre between the earpels into a earpophore. The so-called epigynous disk (or Sty lopodium) erowning the summit of the ovary in Howers of Umbelliferæ, etc., camnot be said to belong to the receptacle.

Section XIII. Fertilization.

328. The end of the flower is attained when the ovules become seeds. A flower remains for a certain time (longer or shorter according to the species) in anthesis, that is, in the proper state for the fulfilment of this end. During authesis, the ovules have to be fertilized by the pollen; or at least some pollen has to reaeh the stigma, or in gymmosjermy the ovule itself, and to set up the peculiar growth upon its moist and permeable tis. sue, whieh has for result the produetion of an embryo in the ovules. By this the ovnles are said to be fertilized. The first step is pollination, or, so to say, the sowing of the proper pollen upon the stigma, where it is to germinate.

§ 1. ADAPTATIONS FOR POLLINATION OF THE STIGMA.

329. These various and ever-interesting adaptations and processes are illustrated in the "Botanical Text Book, Struetural Botany," chap. VI. seet. iv., also in a brief and simple way in "Botany for Young People, How Plants Behave." So mere outlines only are given here.
330. Sometimes the applieation of pollen to the stigma is left to ehance, as in diœcious wind-fertilized tlowers; sometimes it is rendered very sure, as in flowers that are fertilized in the bud; sometimes the pollen is prevented from reaching the stigma of the same flower, although placed very near to it, but then there are always arrangements for its transference to the stigma of some other blossom of the kind. It is among these last that the most exquisite adaptations are met with.
331. Aeeordingly, some flowers are particularly adajted to elose or solf. fertilization: others to eross fertilization; some for either, according to cireumstanees.

Fig. 364. Flower of a Buckthorn showing a conspicuous perigyuous disk.
Fig. 365. Vertical section of same tlower.

Close Fertilization occurs when the pollen reaches and acts upon a stigma of the very same flower (this is also called self-fertilization), or, less closely, upon other blossoms of the same eluster or the same individual plant.

Cioss Fertilization oceurs when ovules are fertilized by pollen of other individuals of the same species.

Hybridization oceurs when ovules are fertilized by pollen of some other (ucecssarily some nearly related) species.
332. Close Fertilization would seem to be the natural result in ordinary hermaphrodite flowers; but it is by no means so in all of them. More commonly the arrangements are such that it takes place only after some opportunity for cross fertilization has been adforded. But close fertilization is inevitable in what are catled

Cleistogamous Flowers, that is, in those which are fertilized in the flowerbud, while still unopened. Most flowers of this kind, indeed, never open at all ; but the closed thoral coverings are foreed off by the growth of the precociously fertilized pistil. Common examples of this are found in the earlier blossoms of Specularia perfoliata, in the later ones of most Violets, especially the stemless species, in our widd Jewel weeds or lmpatiens, in the subterranean shoots of Amphicarpea. Every phant which prodnces these eleistoganous or budfertilized flowers bears also more conspicnous and open flowers, usually of bright colors. The latter very commonly fail to set seed, but the former are prolifie.
333. Cross Fertilization is uaturally provided for in dixcions plants (249), is much farored in monœcions phants (249), and hardly less so in dichogramous and in heterogonous flowers (335). Cross fertilization depends upon the transportation of polien ; and the two primeipal agents of conveyance are winds and insects. Most flowers are in their whole structure adapted either to the nue or to the other.
334. Wind-fertilizable or Anemophilous flowers are more commonly diœcious or monœcions, as in Pines and all coniferous trees, Oaks, and Birches, and Sedges; yet sometimes herinaphrodite, as in Plantains and most Grasses; they produce a superabundance of very light pollen, adapted to be wind-borne; and they offer neither neetar to feed winged insects, nor fragrance nor bright colors to attract them.
335. Insect-fertilizable or Entomophilous flowers are those which are sought by insects, for pollen or fis nectar, or for both. Through their visits pollen is conveyed from one flower and from one plant to another. Insects are attracted to such hlossoms by their bright colors, or their fragrance, or by the nectar (the material of honer) there provided for them. While supplying their own needs, they carry pollen from anthers to stigmas and fiom phant to plant, thus bringing about a certain amount of cross fertilization. Willows and some other dimeions flowers are so fertilized, clietly by bees. But most insect-risited flowers have the stamens and pistils associated either in the same or in contiguous blossoms. Even when in the same blossom, anthers and stigmas are very commonly so situated
that muder insect-visitation, some pollen is more likely to be deposited upon other than upon own stigmas, so giving a chance for eross as well as for elose fertilization. On the other hand, numerous flowers, of very various kinds, have their parts so arranged that they must almost necessarily be crossfertilized or be barren, and are therefore dejendent upon the aid of insects. This aid is secured by different exquisite adaptations and contrivances, which would need a volume for full illustration. Indeed, there is a good number of volunes devoted to this subjeet. ${ }^{1}$
336. Some of the adaptations which favor or cnsure cross fertilization are peeculiar to the particular kind of blossom. Orchids, Milkweeds, Kalmia, Iris, and papilionaceous flowers eaeh have their own special contrivances, quite diflerent for each.
337. Irregular tlowers (253) and especially irregular corollas are usually alaptations to insect-visitation. So are all Nectaries, whether hollow spurs, saes, or other coneavities in whieh neetar is secreted, and all nectariferous ylands.
333. Noreover, there are two arrangements for cross fertilization common to hermaphrodite flowers in various different families of plants, which have reecived special names, Dichoyamy and Heterogony.
339. Dichogamy is the commoner case. Flowers are dichogamous when the anthers discharge their pollen either before or after the stigmas of that tower are in a eondition to reecive it. Such flowers are

Protecondrous, when the anthers are carlier than the stigmas, as in Gentians, Campanula, Epilobiun, etc.

Proterogynous, when the stigmas are mature and moistened for the reception of pollen, before the authers of that blossom are ready to supply it, and are withered before that pollen ean be supplied. Plantains or Ribworts (mostly wind-fertilized) are strikingly proterogynous: so is Amorpha, our Papaws, Serophularia, and in a less degree the blossom of Pears, Hawthorns, and Horse-chestnut.
340. In Sablatia, the large-flowered species of Epilobium, and strikingly in Clerodendron, the diehogany is supplemented and perfected by morements of the stamens and style, one or both, adjusted to make sure of eross fertilization.
341. Heterogony. This is the case in which hermaphrodite and fertile flowers of two sorts are produced on different individuals of the same species; one sort having higher anthers and lower stigmas, the other having ligher stigmas and lower anthers. Thus reeiprocally disposed, a visiting insect carries pollen from the high anthers of the one to the high stigma of the other, and from the low anthers of the one to the low stigma of the other. These plants are practically as if direcious, with the advantage that

[^23]both kinds are fruitful. Houstonia and Mitchella, or Partridge-berry, are excellent and familiar examples. These are cases of

Heterogone Dimorphism, the relative lengths being only short and long reciprocally.

Heterogone Trimorphism, in which there is a mid-length as well as a long and a short set of stamens and style; occurs in Lythrum Salicaria and some species of Oxalis.
342. There must be some essential advantage in cross fertilization or cross breeding. Otherwise all these various, clabomate, and expuisitely adjusted adaptations would be aimless. Doubtless the advantage is the same as that which is realized in all the higher animals by the distinction of sexes.

§ 2. ACTION OF POLLEN, AND FORMATION OF THE EMBRYO.

343. Pollen-growth. A grain of pollen may be justly likened to one of the simple bodies (spores) which answer for seeds in Cryptogitmous phats. Like one of these, it is capable of germination. When deposited upon the moist surface of the stigma (or in some cases eren when at a certain distance) it grows from some point, its living inner coat breaking through the inert outer coat, and protruding in the form of a delicate tube. This as it lengthens penetrates the lonse tissue of the stigma and of a loose conducting tissue in the style, feeds upon the nourishing liquid matter there provided, reaches the cavity of the ovary, enters the srifice of an orule, and attaches its extremity to a sac, or the lining of a definite carity, in the ovule, called the Embryo-Sac.
344. Origination of the Embryo. A mlobule of living matter in the embryo-sac is formed, and is in some way placed in close proximity to the apex of the pollen tube; it probably absorbs the coutents of the latter; it then sets up a special growth, and the Embryo ($8-10$) or rudimentary plantlet in the seed is the result.

Section XIV. THE FRUIT.

345. Its Nature. The ovary matures into the Fruit. In the strictest sense the fruit is the seed-vessel, technically mamed the Pericarp. But practically it may include other parts organieally eomected with the pericarp. Especially the calyx, or a part of it, is often ineorporated with the ovary, so as to be undistimgushably a portion of the periearp, and it even forms along with the receptacle the whole bulk of such edible fruits as apples and pears. The receptacle is an obvious part in hlackberries, and is the whole edible portion in the strawhery

316 . Also a eluster of distinet carpels mis, in riponing, be consoliflated or compacted, so as practically to be taken for one fruit. Such are raspber-
ries, blackberries, the Magnolia frnit, ete. Moreover, the ripened product of many flowers may be compacted or grown together so as to form a single compound fruit.

34i. Its kinds have therefore to be distinguished. Also various names of common use in descriptive botany have to be mentioned and deffined.
348. In respect to composition, accordingly, fruits may be classified into

Simple, those which result from the ripening of a single pistil, and consist only of the matured ovary, either by itself, as in a cherry, or with calyx-tube eompletely incorporated with it, as in a gooseberry or cranberry.

Aggregate, when a eluster of carpels of the same flower are crowded into a mass; as in raspberries and blackberries.

Accessory or Anthocarpous, when the surroundings or supports of the pistil make up a part of the mass; as does
 the loose ealyx changed into a fleshy and herry-like envelope of our Wintergreen (Gaultheria, Fig. 366, 36i) and Bulffil). berry, which are otherwise simple fruits. In au aggregate fruit such as the strawberry the great mass is reeeptacle (Eig. 360. 369) ; and in the blackberry (Fis. 369) the juicy receptacle forms the central part of the sarory mass.
Multiple or Collective, when formed from screral flowers consolidated
 into one mass, of whieh the common receptacle or axis of iniloresectice, the floral envelopes, and even the braets, etc., make a part. A mulberry (Fig. 40S, which superfieially mueh resembles a blackberry) is of this multiple sort. Apineapple is another example.
349. In respect to texture or consistenee, fruits may be
distinguished into three kinds, riz.: -
Fleshy Fruits, those which are more or less soft and juicy throughout:
Fig. 366. Forming fruit (capsule) of Gaultheria, with calyx thickening around its hase. 367. Section of same mature, the berry-like calyx nearly enclosing the capsure.

Fig. 368. Section of a part of a strawberry. Compare with Гis. 360.
Fig. 369. Similar section of part of a blackberry. 870. One of its component simple fruits (drupe) in section, showing the pulp, stone, and contained seed: more enlarged. Compare with Fig. 375.

Stone Pruits, or Drupacrous, the outer part fleshy like a berry, the inner hard or stony, like a nut ; aud

Dry Fruits, those whieh have no flesh or pulp.
350 . In reference to the way of disseminating the contained seed, fruits are said to be

Indehiscent when they do not open at maturity. Fleshy fruits and stone fruits are of course indchisecut. The seed becomes free only through decay or by being fed upon by animals. Those which eseape digestion are thus disseminated by the latter. Of dry fruits many are indehiseent; and these are variously arranged to be transported by animals. Some burst irregularly; many are

Dehiscent, that is, they split open regularly along certain lines, and discharge the seeds. A dehisecnt fruit almost always contains many or

371

372

34
351. The principal kinds of fruit which have received substantive names and are of common use in deseriptive botany are the following. Of fleshy fruits the leading kind is
352. The Berry, such as the gooseberry and eurrant, the blueberry and cranberry (Fig. 3il), the tomato, and the grape. Here the whole flesh is soft throughout. The orange is a berry with a leathery rind.
353. The Pepo, or Gourd-fruit, is a hard-rinded berry, belonging to the Gourd family, such as the pumpkin, squash, eucumber, and melon, Fig. 372, 3 ;3.
354. The Pome is a name applied to the apple, pear (Fig. 374), and quince; fleshy fruits, like a berry, but the primeipal thickness is calyx, only

Fig. 371. Leafy shoot and berry (cut across) of the larger Cranberry, Vaccinium macrocarpon.

Fig. 372. Pepo of Conurd, in section. 373. One rarpel of same in diagram.
FIg. 374. Longitudinal and transverse sections of a pear (pome).
the papery pods arranged like a star in the eore really belonging to the carpeis. The fruit of the Hawthorn is a drupaccous pome, something between pome and drupe.
355. Of fruits which are externally fleshy and interually hard the leading kind is
356. The Drupe, or Stone-fruit ; of whirh the cherry, plum, and peach (lig. 375) are familiar examples. In this the

375 outer part of the thiekness of the periearp beeomes fleshy, or softens like a berry, while the mer hardens, like a mut. From the way in which the pistil is construeted, it is evident that the fleshy part here answers to the lower, and the stone to the upper face of the component leaf. The layers or concentrie portions of a drape, or of any pericarp whieh is thus separable, are named, when thus distinguishable into three portions, Epicarp, the extemal layer, often the mere skin of the fruit, Hesocarp, the middle layer, which is commonly the fleslyy part, and Endocarp, the imnermost layer, the stone. But more commonly only two portions of a drupe are distinguished, and are named, the outer one

Sarcocarp or E.cocarp, for the flesh, the first name referring to the fleshy character, the scoond to its being an extemal layer; and

Putamen or Endocarp, the Stone, within.
357. The typical or true drupe is of a siagle earpel. But, not to multiply technical names, this name is extended to all such fruits when fleshy without and stony within, although of compound pistil, - even to those having several or separable stones, such as the fruit of Holly. These stones in such drupes, or drupaceous fruits, are called Pyrene, or Nucules, or simply Nutlets of the drupe.
355. Of Dry fruits, there is a greater diversity of kinds having distinct names. The indehiscent sorts are commonly oneseerled.
359. The Akene or Achenium is a small, dry and indeliscent one-secded fruit, often so seed-like in appearance that it is

376

3.7
 popularly taken for a maked seed. The fruit of the Butter cup or Crowfont is a good example, Fig. 376, 37\%. Its nature, as a ripened pistil (in this

Fig. 375. Longitulinal section of a peach, showing flesh, stone, ald seed.
Fig. 376. Akene of a Buttercup. 377. The same, diviled lengthwise, to show the contained seed.

Fig. 378. Akene of Virgin's-bower, retaining the feathered style, which aids in dissemination.
case a simple carpel), is apparent by its bearing the remains of a style or stigma, or a scar from which this has fallen. It may retain the style and use it in various ways for dissemination (Fig. 378).
360. The fruit of Compositae (though not of a single carpel) is also an akene. In this case the pericarp is invested by an adherent calyx-tube; the limb of which, when it has any, is called the Pappus. This name was first given to the down like that of the Thistle, but is applied to all forms mulder which the limb of the calyx of the "compound flower" appears. In Lettuce, Dandelion (Fir.

379

380

381

352

383

354), and the like, the achenium as it matures tapers upwards into a slender beak, like a stalk to the pappus.
361. A Cremocarp (Fig. 355), a name given to the fruit of Umbellifere, consists as it were of a pair of themes united completely i: the blossom, but splitting apart when ripe into the two closed carpels. Each of these is a Mere carp or Hemicarp, names seldom used.

362. A Utricle is the same as an akene, but with a thin and bladdery loose pericarp; like that of the Goosefoot or Pigweed (Fig. 386). When ripe it may burst open irregularly to discharge the seed; or it mas. open by a circular line all round, the upper part falling off like a lid; as in the Amaranth (Fig. 387).
363. A Caryopsis, or Grain, is like an akene with
 the seed adhering to the thin pericarp throughout, so that fruit and seed are incorporated into one body; as in wheat, Indian corn, and other kinds of grain.
364. A Nut is a dry and indehiscent fruit, commonly one-celled and one-

Fig. 379. Akene of Mayweed (no pappus). 380. That of Sncenry (its pappus a shallow cup). 381. Of Sunflower (pappus of two deciduous scales). 382. Of Sneezeweed (Heleninm), with its pappus of five scales. 383. Of Sow -Thistle, with its pappus of delicate downy hairs. 34. Of the Dandelion, its pappus raised on a long beak.

Fig. 385. Frit (cremocary) of Osmorrhiza; the two akene-like ripe carpels separating at maturity from a slumber axis or carpophore.

Fig. Sst. Utricle of the common Pigweed (Clrenopotium allium).
FIg. 387. Utricle (pyxis) of Amaranth, opening all round (circumscissile).
seeded, with a hard, erustaccous, or lony wall, such as the cocoanut, hazel-
 nut, chestnut, and the acorn (Fig. 37, 353.) Here the involuere, in the form of a cup at the base, is called the Cupcle. In the Chestnut the cupule forms the bur; in the Hazel, a leafy husk.
365. A Samara, or Key-fruit, is cither a mut or an akene, or any other indehisent fruit, fumished with a wing, like that of Ash (Fig. 359), and Elm (Fig. 390). The Maple-fruit is a pair of keys (Fig. 391).
366. Dehiscent Fruits, or Pods, are of two elasses, viz., those of a simple pistil or earpel, and those of a compound pistil. Two common sorts of the first are named as follows : -
307. The Follicle is a fruit of a simple earpel, whiel dehisces down one side only, i. e. by the imer or ventral suture. The fruits of Marsh Marigold (Fig. 392), Pæony, Larkspur, and Milkweed are of this kind.
365. The Legume or true Pod, such as the peapod (Fig. 393), and the fruit of the Legmminons or Pulse family generally, is one which opens along the dorsal as

399

390

391

392

into which it splits are called Vabres. A Loment is a legume mhieh is constricted between the seeds, and at length breaks up erosswise into distinct joints, as in Fig. 394.
369. The pods or dehiscent fruits belonging to a compound orary have several technieal names : but they all may be regarded as kinds of
370. The Capsule, the dry and dehiscent fruit of any eompound pistil. The eapsule may discharge its seeds through chinks or pores, as in the

[^24]Poppy, or burst irregularly in some part, as in Lobelia and the Snapdragon; but commonly it splits open (or is dehiscent) lengthwise into regular picces, called Valines.
371. Regular Dehiscence in a capsule takes place in two ways, which are best illustrated in pods of two or three cells. It is either
Loculicidul, or, splitting direetly into the loculi or cells, that is, down the back (or the dorsal suture) of each cell or carpel, as in Iris (Fig. 39.) ; or
Septicidul, that is, splitting through the partitions or septa, as in St. John's-wort (Fig. 396), Rhododeudron, ete. This divides the eapsule into its component carpels, which then open by their ventral suture.
372. In loculicidal dehiscence the valves naturally bear the partitions on their middle; in the septicidal, half the thickness of a partition is borne on the margin of each valve. Sce the annexed diagrams. A variation of either mode occurs when the valves break away from the partitions, these remaining attached in the axis of the fruit. This is called Seplifragal deliscence.

396

395 One form is seen in the Morning-Glory (Fig. 400).
373. The capsules of Ruc, Spurge, and some others, are both loculicidal and septicilal, and so split into half-carpellary valves or pieces.
374. The Silique (Fig. 401) is the techinical name of the peculiar pod of the Mustard family; which is two-celled by a false partition stretched across between two parietal placentr. It generally opens by two valves from below upward, and the placentre with the partition are left behind when the valves fall off.
375. A Silicle or Pouch is only a short and broad silique, like that of the Shepherd's Purse, Fig. 402,
 403.

[^25]376. The Pyxis is a pod which opens by a circular horizontal linc, the upper part forming a lid, as in Purslane (Fig. 404), the Plantain, Henbanc, ete. ln these the dehiscence extends all round, or is cir-
 cumscissile. So it does in Amaranth (Fig. 357), forming a oneseeded utricular pyxis. In Jeffersonia, the line does not separate quite round, but leaves a portion for a hinge to the lid.
377. Of Multiple or Cullective Fruits, which are properly masses of fruits aggregated into one body (as is seen in the Mulberry (Eig. 408), Pineapple, etc.), there are two kinds with special names and of peculiar structure.
378. The Syconium or Figfruit (Fig. 405, 406) is a fleshy axis or summit of stem, hollowed out, and lined within by a multitude of mmute flowers, the whole becoming pulpy, and in the common fig, luscious.

379. The Strobile or Cone (Fig. 4I1), is the peculiar multiple fruit of Pines, Cypresses, and the like; hence named Coniferc, viz. cone-bearing

Fig. 401. Silique of a Cadamine or Spring Cress.
Fig. 402. Silicle of Shepherd's Purse. 403. Same, with one valve removel.
Fig. 40t. Pyxis of Purslane, the lid detaching.
Fig. 405. A fig-fruit when young. 406. Same in section. 407. Magnified portiom, a slice, showing some of the flowers.

Fig. fos. A mulnury. 409. One of the graine vomarer, enlargel ; seen to be a pisfilbate flower with calla becoming theshy. 410. Same, with Heshy calyx cut - reross
plants. As already shown (313), these cones are open pistils, mostly in
 the form of that scales, regularly overlying each other, and pressed together in a spike or head. Each scale bears one or two naked seeds on its iuner face. When ripe and dry, the scales turn back or diverge, and in the line the seed peets off and lalls, gencratly carryiug with it a wing, a part of the lining of the scale, which facilitates the dispersion of the seeds by the wind (Fig. 412, 413). In ArborVita, the seales of the small conc are few, and not very unlike the leaves. In Cypress they are very thick at the top and narrow at the base, so as to make a peculiar sort of closed cone. In Juniper and Red Cedar, the few scales of the very small cone become fleshy, and ripen into a fruit which closely resembles a berry.

Section XV. THE SEED.

380. Seeds are the final product of the flower, to which all its parts and offices are subservient. Like the ovute from which it originates, a sed consists of coats and kernel.
381. The Seed-coats are commonly two (320), the outer and the imer. Fig. 414 shows the $t w o$, in a seed cut through lengethwise. The outer coat is often hard or crustaceons, whence it is called the Testa, or shell of the secd; the imere is :lluost always thin and delicate.
382. The shape and the markings, so various in different seeds, depend mostly on the outer coat. Sometimes this fits

411 the kerncl closely; sometimes it is expauded into a winy, as in the Trum-pet-Creeper (Fig. 415), and occasionally this wing is cut up into shreds or tufts, as in the Catalpa (Fig. 416) ; or instead of a wing it may bear a Coma, or tuft of long and solt hairs, as in the Milkweed or Silkweed (Fig. 417). The use of wings, or downy tufts is to render the seeds buoyant

Fig. 411. Cone of a common Pitch Pine. 4l2. Insile view of a separated scale or open carpel; one seed in flace: 413, the other speth.

Fig. 414. Seed of a Limlen or Basswoon ent through lengthwise, and magnified, the parts lettered: \quad. the hilum or scar ; b, the outer coat; c, the inmer; a, the albumen; e, the embryo.
for dispersion by the winds. This is clear, nof muly from their evident adaptation to this purpose, but also from the lact that winged and tufted seeds are found only in fruits that split open at maturity, never in those that remain elosed. The coat of some secds is beset with long hairs or wool. Colton, one of the most important vegetable products, since it forms the principal clothing of the

416
larger part of the human race, consists of the long and woolly hairs which thickly cover the whole surface of the seed. There are also crests or other

417 appendages of various sorts on certain sceds. A few seeds have an additional, but more or less incomplete covering, outside of the real seed-coats called an
383. Aril, or Arillus. The loose and transparent bag which encloses the seed of the White Water-Lily (Fig. 418) is of this kind. So is the mace of the nutucg; and also the scarlet pulp aromen the sceds of the Waxwork (Celastrus) and Strawbery-bush (Euonymus). The aril is a growth from the extremity of the seed-stalk, or from the placenta when
 418 there is no seed-stalk.
384. A short and thickish appendage at or close to the hilum in certain seeds is called a Caruncle or Strophole (Fig. 419).
385. The various terms which define the position or direction of the ovule (erect, asceuding, etc.) apply equally to the seed: so also the terms anatropous, orthotropous, campylotropous, etc., as already defined $(320,321)$, and such terms as

Hilum, or Scar left where the seed-stalk or funiculus falls away, or where the seed was attached dircetly to the placenta when there is no sced-stalk.

419

Rhaphe, the line or ridge which runs from the hilum to the chalaza in anatropous and amphitropous seeds.

Cinalaza, the place where the sced-coats and the keruel or muclens are orgamically comected, - at the hilum in orthotropous and campylotropous sceds, at the extremity of the rhaphe or tip of the seed in other kinds.

Micropyle, answering to the Foramen or orifice of the ovnle. Compare the accompanying figutes and those of the ovoles, Fig. 341-355.

[^26]356. The Kernel, or Nucleus, is the whole body of the seed within the eoats. In many seeds the kernel is all Embryo ; in others a large part of it is the Al bumen. For example, in Fig. 423 , it is wholly embryo; in Fig. 422, all but the small

421
 speek ($!$) is albumen.
357. The Albumen or Endosperm of the seed is sufficiently eharacterized and its office explamed in Seet. III., 31-35.
385. The Embryo or Germ, whieh is the rudimentary plantlet and the final result of blossoming, and its development in germination have been extensively illustrated in Sections II. and III. Its essential parts are the Radicle and the Cotyledons.
359. Its Radicle or Caulicle (the former is the term long and generally used in botanical deseriptions, but the latter is the more eorrect one, for it is the initial stem, which merely gives origin to the root), as to its position in the seed, always points to and lies near the micropyle. In relation to the periearp it is

Superior, when it points to the apex oif the fruit or cell, and
Inferior, when it points to its base, or downward.
390. The Cotyledons have already been illustrated as respeets their number, - giving the important distinction of Dicotyledonozs, Polycotyledonous and Monocotyledonous embryos (36-43),

424 -also as regards their thickness, whether foliuceous or fleshy; and some of the very various slapes and adaptatious to the seed have been figured. They may be straight, or folded, or rolled up. In the latter case the cotyledons.may be rolled up as it were from one margin, as in Calyeanthus (Fig. 42t), or from apex to base in

425

426 a flat spiral, or they may be both folded (plicate) and rolled up (roncolute), as in Sugar Maple (Fig. 11.) In one very natural family, the Crucifere, two different moles prevail in the way the two cotyledons are brought round against the radicle. In one series they are

Fig. 420. Seed of a Violet (anatropons) : a, hilum; b, rhaphe; c, chalaza.
Fig. 421. Seed of a Larkspur (also anatropons); the parts lettered as in the last.
Fig. 422. The same, cut through lengthwise: a, the hilum; c, chalaza; d, outer seed-coat ; e, inner seel-coat; f, the allmmen; g, the mimute embryo.

Fig. 423. Seed of a St. John's-wort, divided lengthwise; here the whole kernel is embryo.

Fig. 424. Embryo of Calycanthas; upper part cut away, to show the convolute cot.yleilons.

Fig. 425. Seed of Bitter Cress, Barharea, cut across to show the accumbent cotyledons. 426. Embryo of same, whole.

Acrumbent, that is, the edges of the fiat entyledons lie agrainst the radicle, as in Fig 425, 426 . lo another thery are

Incumbernt, or with the plane of the eotgledons bronght up in the opposite

427

428 direction, so that the back of one of them lies against the radicle, as shown in Fig. 427, 423.
391. As to the situation of the embryo with respect to the albumen of the seed, when this is present in any quantity, the embryo may be Axile, that is oecupping the axis or centre, cither for most of its length, as in Violet (Fig. 429), Burberry (Fig. 48), and Pine (Fig. 56) ; and in these it is straight. But it may be variously curved or coiled in the albomen, as in Helianthemum (Fig. 430), in a Potato-seed (Fig. 50), or Onion-seed (Fig. 60), and Linden (Fig. 414) ; or it may be coiled around

429

430

430 a the outside of the allonmen, partly or into a circle, as in Chickweed (Fig. 431, 432) and in Mirabilis (Fig. 52). The latter mode prevails in Campylo-

431

432 tropous seeds. In the cereal grains, such as Indian Corn (Fig. 67) and Rice, 430^{a}), and in all other Grasses, the embreo is straight and applied to the outside of the abundant albumen.
392. The matured seed, with embryo ready to germinate and reproduce the kind, completes the cyele of the vegetable life in a phanerogamous plant; the account of whieh began with the seea and seedling.

Section XVI. VEGETABLE LIFE AṆD WORK.

393. The following simple oullines of the anatomy and plysiology of plants (3) are added to the preceding structural part for the better preparation of students in deseriptive and systematic botany ; also to give to all learners some general idea of the life, growth, intimate structure, and action of the beings whieh compose so large a part of organie nature. Those who would 'xtend and rerify the fiets and principles here outlined will use the Phrsiongieal Botany of the "Botanieal Text Book," by Professor Goodale, or some similar hook.

Fig. 427. Seed of a Sisymbrium, cut across to show the incumbent cotyledons. 42S. Embryo of the same, detached whole.

Fig. 429. Section of seed of Violet : anatropons with straight axile embryo in the allumen. 430. Suction of seed of Rock Rose, Helianthemum Canadense ; orthotronnus, with curvel cmbryo in the albumen. 430a. Section of a grain of Rice, lengthwise, showing the embryo ontside the albumen, which forms the Irincipat hulk.

Fifs. 431. Simet of a Chicliweed, camplonmons. 432. Section of same, show. infr slemder embryo coiled aromm the outsile of the abmumen of the kernel.

§ 1. ANATOMICAL STRUCTURE AND GROWTH.

394. Growth is the increase of a living thing in size and substrnce. It appears so natural that plants and animals should grow, that oue rarely thiuks of it as requiring explanation. It seems enough to say that a thing is so because it grew so. Growth from the seed, the germination and development of am embryo into a plantlet, and at length iuto a mature plaut (as illustrated in Seetions II. and III.), ean be followed by ordinary observation. But the embryo is already a miniature plantlet, sometimes with hardly any visible distinction of parts, but often one whieh has already made very considerable growth in the seed. To investigate the formation and growth of the embryo itself requires well-trained eyes and hands, and the expert use of a good componnd microscope. So this is beyond the reach of a beginner.
395. Moreover, although observation may show that a seedling, weighing only two or three grains, may double its bulk and weight every week of its early growth, and may in time produce a huge amount of vegetable matter, it is still to be asked what this vegetable matter is, where it came from, and by what means plants are able to increase and accumulate it, and build it up into the fabrie of herbs and shrubs and lofty trees.
396. Protoplasm. All this fabric was built up under life, but only a small portion of it is at any one time alive. As growth proeeeds, hife is passed on from the old to the new parts, mueh as it has passed on from parent to offspring, from generation to generation in unbroken continuity. Protoplasm is the common name of that plant-stuff in which life essentially resides. All growth depends upon it ; for it has the peculiar power of growing and multiplying and building up a living structure, - the animal no less than the vegetable strueture, for it is essentially the same in both. Indeed, all the animal protoplasm comes primarily from the vegetable, whieh has the prerogative of produeing it ; and the protoplasm of plants furnishes all that portion of the food of aumals which forms their flesh and living fabric.
397. The very simplest plants (if such may specifically be called plants rather than animals, or one may say, the simplest living things) are mere partieles, or pellets, or threads, or even indefinite masses of protoplasm of vague form, which possess powers of motion or of ehanging their shape, of imbibing water, air, and even other matters, and of assimilating these into plant-stuff for their own growth and multiplication. Their growth is increase in substance by incorporation of that which they take in and assimilate. Their multiplication is by spontaneons division of their substance or body into two or more, each capable of eontinuing the process.
398. The embryo of a phanerogamous plant at its begiming (344) is essentially such a glohule of protoplasm, whieh soon constricts itself into two and more sueh globules, which hold together inseparably in a row; then the last of the row divides without separation in the two other plancs, to
form a compound mass, each grain or globule of which goes on to double itself as it grows; and the definite shaping of this still increasing mass builds up the embryo into its form.
399. Cell-walls. While this growth was going on, each grain of the forming structure formed and clothed itself with a coat, thin and transparent, of something different from protoplasm, - something which hardly and only transiently, if at all, partakes of the life and action. The protoplasm forms the living organism; the coat is a kind of protective covering or shell. The protoplasm, like the flesh of animals which it gives rise to, is composed of four chemical elements: Carbon, Hydrogen, Oxygen, aud Nitrogen. The coating is of the nature of wood (is, indeed, that which makes wood), and has only the three elements, Carbon, Hydrogen, and Oxygen, in its composition.
400. Although the forming structure of an embryo in

435 the fertilized ovule is very minute and difficult to see, there are many simple plants of lowest grade, abounding in pools of water, which more readily show the earlier stages or simplest states of plant-growth. One of these, which is common in early spring, requires only moderate magnifying power

436 to bring to view what is shown in Fig. 437. In a slimy mass which holds all loosely together, little spheres of green vegetable matter are seen, assembled in fours, and these fours themselves in clusters of fours. A transient inspection shows, what prolonged watching would confirm, that each sphere divides first in one plane, then in the other, to make four, soon acquiring the size of the original, and so on, producing successive groups of fours. These pellets each form on their surface a transparent wall, like that just described. The delicate wall is for some time capable of expanside growth, but is from the first much firmer than the protoplasm within; through it the latter imbibes surrounding moisture, which becomes a watery sap, occupying vacuities in the protoplasmic mass which enlarge or run together as the periphery increases and distends.

$43 i$ When full grown the protoplasm may become a mere lining to the wall, or some of it central, as a nucleus, this usually connected with the wall-lining by delicate threads of the same substance. So, when full grown, the wall with its lining - a vesicle, containing liquid or some

Fig. 433-430. Figures to illustrate the earlier stages in the formation of an embryo; a single mass of protoplasm (Fig. 433) dividing into two, three, and then into more incipient cells, which by continued multiplication build up an embryo

Fig. 137. Magnified view of some of a simple fresh water Alga, the Tetraspora lubric:a, eth sphere of which may answer to an individual plant.
solid matters and in age mostly air - naturally came to be named a Ceil. But the name was suggested by, and first used ouly for, cells in eombination or built up into a labric, much as a wall is built of bricks, that is, into a
401. Cellular Structure or Tissue. Suppose mumerous cells like those of Fig. 437 to be heaped up like a pile of cannon-balls, and as they grew, to be compacted together while soft and yielding; they would flatten where they touched, and each sphere, being touched by twelve surrounding ones would become twelve-sided. Fig. 438 would represent one of them. Suppose the contiguous faces to be united into one wall or partition between adjacent cavities, and a cellular structure would be formed, like that shown in Fig. 439. Roots, stems, leaves, and the whole of phan. erogamous plants are a fabric of countless numbers of such cells. No such exact regularity in size and shape is ever

435

439 actually found ; but a nearly truthful magnified view of a small portion of a slice of the flower-stalk of a Calla Lily (Fig. 440) shows a fairly corres-

ponding structure ; except that, owing to the great air-spaces of the interior, the fabric may be likened rather to a stack of chimmers than to a solid fabric. In young and partly transparent parts one may discern the cellular structure by looking down directly on the surface, as of a forming root. (Fig. 82, 441, 442).
402. The substance of whieh cell-walls are mainly composed is called Cellulose. It is essentially the same in the stem of a delicate leaf or petal and in the wood of an Oak, except that in the latter the walls are

Fig. 438. Diagram of a vegetable cell, such as it would be if when spherical it were equally pressed by similar surroumling cells in a heap.

Fig. 439. Iteal construction of eellular tissue so formed, in section.
Fig. 440. Magnified view of a portion of a transverse slice of stem of Calla Lily. The great slaces are tubular air-channels built up by the cells.
much thickened and the calibre smatl. The protoplasm of cach living cell appears to be completely shut up, and isolated in its shell of cellulose ; but mieroscopic investigation has bronght to view, in many cases, minute
 threads of protoplasm which here and there traverse the cell-wall through minute pores, thus comecting the living portion of one cell with that of adjacent cells. (Sce Fig. 447, \&c.)
403. The hairs of plants are cells formed on the surface; either clongated single cells (like the root-hars of Fig. 441, 442), or a row of shorter cells. Cotton fibres are long and simple cells growing from the surfaee of the seed.
404. The size of the cells of which common plans are made up varies from about the thirtieth to the thousandth of an ineh in dianeter. An ordinary size of short or roundish cells is from $\frac{1}{300}$ to $\frac{1}{500}$ of an inch; so that there may generally be from 27 to 125 millions of cells in the compass of a cubie inch!
405. Some parts are built up as a compact structure ; in others cells are arranged so as to build up regular airchannels, as in the stems of aquatic and other water-loving plants (Eig. 440), or to leave irregular spaces, as in the lower part of most leaves, where the cells only here and there come into close contact (Fig. 443).
406. All such soft cellular tissue, like this of leares, that of pith, and of the green bark, is called Parenchyma, while fibrous and woody parts are composed of ProsenChyma that is, of peculiarly transformed

407. Strengthening Cells. Common cellular tissue, which makes up the whole strueture of all very yomg plants, and the whole of Mosses and other vegetables of the lowest grade, even when full grown, is too tender or too britte to gise needful strength amd tongliness for plants which are to rise to any considerable lopight and support themselves. In these needful strength is imparted, and the eonverance of sap through the plant is facilitated, by the change, as they are formed, of some cells info thieker-walled and tongher tubes, and by the ruming together of some of

Fig. 411. Much magnified small portion of young root of a seedling Maple (such ats of Fig. 82) ; and 442, a few cells of same more magnitied. The prolongations from the hack of some of the cells are root-hairs.

Fig. 443. Magnilied section throush the thitkness of a leaf of Florida StarAnise.
these, or the prolongation of others, into hollow fibres or tubes of various size. Two sorts of such trausformed cells go together, and essentially form the
40s. Wood. This is found in all common herls, as well as in shrubs and trees, but the former have much less of it in proportion to the softer cellular tissuc. It is forned very early in the growlh of the root, stem, aud leaves, - traces of it appeariug in large embryos even while yet in the seed. Those cells that lengthen, and at the same time thieken their walls form the proper Woody Fibre or Wood-cells; those of larger size and thimer walls, which are thickened only in certain parts so as to have peculiar markings, and whieh often are seen to be made up of a row of cylindrical ectls, with the partiions between absorbed or broken away, are ealled Dects, or sometimes Vessels. There are all gradations bet ween wood-eells and duets, and betwect booth these and common cells. But in most plants the three kinds are fairly distinet.
409. The proper cellular tissue, or parenchymu, is the ground-work of root, stem, and leaves; this is traversed, ehiefly lengthwise, by the strengtheniug and conducting tissue. wood-cells and duet-eclls, in the form of bundles or threads, whieh, in the stems aud stalks of herbs are lewer aud comparatively scattered, but in shrubs and trees so numerrous and erowded that in the stems and all permanent parts they make a solid mass of wood. They extend into aud ramily in the leaves, spreading out in a horizontal plane, as the framework of ribs and veins, which supports the softer cellular portion or parenclyma.
410. Wood-Cells, or Woody Fibres, consist of tubes, commonly between one and

446 two thonsandths, hut in Pine-wood sometines two or three hundredths, of an inch in diameter. Those from the tough bark of the Basswoorl,

Fig. 44. Magnified wool-cells of the bark (bast-cells) of Basswood, one and part of another. 445. Some wood-cells from the wool (amd below part of a duct); and 446, a detached wood-cell of the sume; equally magnified.

Frg. 447. Some wool-cells from Cuttonwool, llatanus, highly magnifierl, a whole cell and lower end of another on the luft ; a cell cut half away lengthwise, and half of another on the right : some pores or pits ('t) seen on the left; while $b b$ mark sections through these on the cut surface. When living and young the protoplasm extents into these anl by mimter perforations comects across them. In age the pits become open passages, facilitating the passage of sap and air.
shown in Fig. 444, are only the fiftecn-hundredth of an inch widc. Those of Buttonwood (Fig. 447) are larger, and are here highly magnified besides. The figures show the way wood-cells are commonly int together, namely, with their tapering ends overlapping each other, - spliced together, as it were, - thus giving more streugth and toughness. In hard woods, such as Hickory and Oak, the walls of these tubes are very thick, as well as dense; while in soft woods, such as Whitc-Piue and Basswood, they are thimer.
411. Wood-cells in the bark are generally longer, finer, and tougher than those of the proper wood; and appear more like libres. For example, Fig. 446 represents a cell of the wood of Basswood of arerage length, and Fig. 444 onc (and part of another) of the fibrous bark, both drawn to the same scalc. As these long cells form the principal part of fibrous bark, or bust, they are named Bust-cells or Bust-fibres. These give the great toughness and flexibility to the inner bark of Basswood (i. c. Bast-wood) and of Leatherwood; and they furnish the invaluable fibres of flax and hemp;

449
 the proper wood of their stems being tender, brittle, and destroyed by the processes which scparate for use the tough and slender bast-cells. In Leatherwood (Dirca) the bast-cells are remarkably slender. A viem of one, if magnified on the scale of Fig. 444, would be a foot and a hall long.
412. The wood-celis of Pines, and more or less of all other Coniferous trees, have on two of their sides very peculiar disk-shaped markings (Fig. 445-450) by which that kiud of wood is recognizable.
413. Ducts, also called Vessels, are mostly larger than wood-cells: indced, some of them, as in Red Oik, laave calibre large cnough to be discerned on a cross section by the naked cye. They make the visible porosity of such kinds of wood. This is particularly the case with

Dotted ducts (Fig. 451, 452), the surface of which appears as if riddled with round or oval pores. Sueh ducts are commonly made up of a row of harge cells more or less confluent into a tube.
Scaluriform ducts (Fig. 45S, 459), common in Ferns, and generally angled by mutual pressure in the bundles,

451

452

Fig. 448. Nagnified bit of a pineshaving, taken parallel with the silver grair. 444. Surarate whole wool-cell, more magnified. 450. Same, still more magnitied; buth sections regrestaterl: a, disks in sertion, b, in face.

Fig. 451,452 . A large and a smaller dotted dat from Grape-Vine.
have transversely elongated thin places, parallel with each other, giving a ladder-like appcarance, whence the nume.

Annular ducts (Fig. 457) are marked with cross lines or rings, which are thickened portions of the cell-wall.

Spiral ducts or ressels (Fig. 453-455) have thin walls, strengthened by a spiral fibre adhercut within. This is as delicate and as strong as spiderweb: when uncoiled by pulling apart, it tears up and amihilates the cellwall. The uncoiled threads are scen by gently pulling apart mauy leaves, such as those of Amaryllis, or the stalk of a Strawberry leaflet.

Laticiferous ducts, Vessels of the Latex, or Milk-cessels are peculiar branching tubes which hold latex or milky juice in certain plants. It is very difficult to see them, and more so to make out their nature. They
 are peenliar in branching and inosculating, so as to make a net-work of tubes, rumning in among the cellnlar tissue; and they are very small, except when gorged and old (Fig. 460, 461).

Fig. 453, 454. Spiral ducts which uncoil into a single thread. 455. Spirai duct which tears up as a band. 456. An anmular duct, with variations above. 457. Loose spiral duct passing into annular. 458. Scalariform ducts of a Fern; part of a bundle, prismatic by pressure. 459. One torn into a band.

Fig. 460. Niik Vessels of Dandelion, with cells of the common cellular tissue. 461. Others from the same older and gorged with milky juice. All highly magnified.

§ 2. CELL-CONTENTS.

414 The living eontents of young and active cetls are mainly protoplasm with water or watery sap which this has imbibed. Ohl and effete cells are often enpty of solid matter, contaning only water with whaterer may he dissolved in it, or air, according to the time and circumstances. All ther various products which phants in generat ctaborate, of which particular plamts specially elaborate, out of the eommon food which they derive from the soil and the air, are contained in the eells, and in the cells they are produced.
415. Sap is a general name for the principal lifuid contents, - Crude sap, for that whieh the phant tikes in, Elaboretell sup for what it has digested or assimilated. They must be undistinguishably mixed in the cells.
416. Among the solid matters into which cells convert some of their elaborated sap two are general and most important. These are Chlorophyll and Sturch.
417. Chlorophyll (meaning lecf.yreen) is what gives the green color to herbage. It consists of soft grains of rather complex nature, partly waxlike, part!! protoplasmic. These abomed in the eetls of all common leares and the green rind of plants, wherever exposed to the light. The green color is seen through the transparent skin of the leaf and the walls of the containing cells. Chloroplyyll is essential to ordinary assimilation in plants : by its means, under the intlucuce of sumlight, the plant converts crude sap into regetable matter.
418. Far the largest part of all regetable matter produced is that which goes to build up the plant's fabrie or cellular structure, either directly or indirectly. There is no one grod name for this most important product of regetation. In its fimal state of edth-walls, the permanent fabric of herb and shrub and tree, it is called Cetlulose (10) : in its most soluhle form it is Sugur of one or another kind; in a le-s soluble form it is Dextrine, a kind of liquefied starch: in the form of solide grains stored up in the eells it is Starch. By a serics of slight chemical changes (mainly a variation in the water entering into the composition), one of these forms is converted into another.
419. Starch (Furina or Feculd) is the form in wheh this common plant material is, as it were, laid be for future use. It consists of solitd grains, somewhat different in form in different plants, in size varsing from $\frac{1}{300}$ to $\frac{1}{4000}$ of an inch, partly translucent when wet, and of a pearly lustre. From the concentric lines, which commonly appear under the microscope, the grains sem to be made up of layer orer layer. When loose they are commonly wal, as in potato-starels (Fig. 162) : when much compacted the grains may become angular (Fis. 463).
420. The starel in a potato was produced in the foliage. In the soluble form of dextrine, or that of sugar, it was convesed through the cells of the herbage and stalks to a subtermean shoot, and there stored up in the
tuber. When the potato sprouts, the starch in the vicinity of developing buds or eyes is changed buck igam, lirst into mucilaginous dextrine, ther into sugar, dissolved in the sap, and in thes form it is made to flow to the growing parts, where it is laid down into cellulose or cell-wall.

462

$+143$
421. Besides these eell-eontents whieh are in obvions and essential relation to mutrition, there are others the use of which is problematical. Of such the commonest are
422. Crystals. These when slender or needle-shaped are called Rhaphides. They are of inorganic matter, usually of oxalate or phosphate or sulphate of lime. Some, at least of the latter, may be direet erystallizö-

tions of what is taken in dissolved in the water absorbed, but others must be the result of some claboration in the plant. Some phants lave hardly any; others abound in them, especially in the foliage and bark. In Loenstbark almost every eell holds a errstal; so that in a square inch not thicker than writing-paper there may be over a milion and a half of them. When

Fig. 462. Some magnified starcl-grains, in two cells of a potato. 463. Some cells of the albumen or tlonry lart of Indian Corn, tilled with starel-grains.

Fig. 464. Four cells from dried Onion-peel, each holding a crystal of different shape, one of them twinuel. t6.5. Some cell.s from stalk of Rhubarb-plant, three containing chlorophyll; two (one torn acros:) with rhaphides. 46f. Phaphides in a cell, from Arisema, with stmall cells surromblins. 467 . I'rismatis: crystals from the hark of llickory, tis. Glomerate erystal in a cell, from Beet-root. 469. A few cells of locust-bark, a erystal in cach. 40. A detached cell, with rhaphides being foreed out, as harpens when put in water.
necedle-shaped (rhapliites), as in stalks of Calla-Lily, Rhubarb, or Fouro'clock, they are usually packed in shear-like bundles. (Fig. 465, 466.)

§ 3. ANATOMY OF ROOTS AND STEMS.

423. This is so nearly the same that an account of the internal structure of stems may serve for the root also.
424. At the beginning, either in the embryo or in an incipient shoot from a bud, the whole stem is of tender cellular tisstue or parenelyma. But wood (consisting of wood-cells and ducts or vessels) begins to be formed in the carliest growth; and is from the first arranged in two ways, making two gencral kinds of wood. The difference is obvious even in herbs, but is more conspicuous in the enduriag stems of shrubs and trees.
425. On one or the other of these two types the stems of all planerogamous plants are constructed. In one, the wood is made up of separate threads, seattered here and there throughout the whole diameter of the stem. In the other, the wood is all collected to form a layer (in a slice across the stem appearing as a ring) between a central cellular part which has none in it, the Pith, and an outer cellular part, the Bark.
426. An Asparagus-shoot and a Corin-stalk for herbs, and a rattan for a

47 woody kind, represent the first kind. To it belong all plants with monocotyledonous em. bryo (40). A Bican-stalk and the stem of any common shrub or tree represcut the second: and

4.3
to it beloug all plants with dicotyleclonous or polycotyledonous embryo. The first has becn called, not very properly, Endogenous, which means in-silc-growing ; the seconl, properly cnough, E.rogenous, or outside-growing.
427. Endogenous Stems, those of Monocotyls (10), attain their greatest size and most characteristic development in Palms and Dragontrees, therefore chiefly in warm climates, although the Palmetto and some

[^27]Yuccas become trecs along the southern border's of the United States. In such stems the woody bundles are more numerous and crowded toward the circumfercuce, and so the harder wood is outside ; while in an exogenons stem the ofdest and hardest wood is toward the centre. An endogenous stem has no clear distinction of pith, bark, and wood, concentrically arranged, no silver grain, no ammal layers, no bark that peels off clean from the wood. Yet old stems of Yuceas and the like, that continuc to increase in diameter, do form a sort of layers and a kind of scaly bark when old. Yuccas show well the curviug of the woody bundles (Fig. 471) which below taper out and are lost at the rind.
423. Exogenous Stems, thuse of Dicotyls (3i), or of plants coming from dicotyledonous and also polycotyledonons embryos, have a structure which is familiar in the wood of our ordinary trees and shrubs. It is the same in an herbaceous shoot (such as a Flax-stem, Fig. 474) as in a Maple-stem of the first year's growth, except that the woody layer is commonly thinner or perthaps reduced to a circle of bundles. It was so in the tree-stem at the begmining. The wood all

474 forms in a cylinder, - in cross section a ring - around a central cellular part, dividing the cellular core within, the pith, from a cellular bark without. As the wood-bundles increase in number and in size,

they press upon each other and become wedge-shaped in the cross section; and they continue to grow from the outside, next the bark, so that they become very thin wedges or plates. Betwern the plates or wedges are very thin plates (in cross section lines) of muel compressed cellular tissue, which comncet the pith with the bark. The plan of a one-vear-old woody stem of this kind is cxlibited in the figures. which are essentially diagrams.
429. When such a stem grows on from pear to pear, it adds ammully a

Fig. 474. Short piece of stem of Flax, magnifted, showing the bark, wood, and pith in a cross section.

Fig. 475. Diagram of a cross section of a very young exogenous stem, showing six wooly bundles or welges. 476. Same later, with welges increased to twelve. 477. Still later, the wedges filling the space, separated only by the thin lines, or medullary rays, ruuning from pith to bark.
layer of wood ontside the preeeding one, between that and the bark. This is exogenons erowh, or outside-growing, as the name denotes.
430. Some new bark is formed every year, as well as new wood, the

former inside, as the latter
is outside of that of the year preceding. The ring or zone of tender forming tissue between the bark and the wond has heen called the Candium Layer. Cambium is :n old name of the physiologists for nutritive juice. And this thin layer is so gorged with rich mutritive sap when spring growth is renewed, that the bark then seems to be loose from the wood and a layer of viseid sap (or cambium) to be poured out between the two. But there is all the while a comection of the bark and the wood by delieate cells, rapidl! multiphying and erowing.
431. The Bark of a year-old stem consists of three parts, more or less distinet. namely, - begiming nest the wood. -

1. The Laber or Fibrous Bark, the Imer Bafl. This contains some wood-cells, or their equivalent, commonly in the form of bast or bast-eclls (411, Fig. 444), sueh as those of Basswood or Limden, and among herbs Those of flax and hemp, whieh are spun and woven or made into cordage. It also contains cells which are named siere-eells, on account of mmerous slits and pores in their walls, by which the protoplasm of eontignous eells communicates. In woody stems, whenerer a new laser of wood is formed, some new liber or inner hark is also formed outside of it.

Fig. 473. Pice of a stem of Soft Maple, of a year ohl, cut crosswise and letgeth. wise.

Fig. 479. A portion of the same, maqnifient.
Fig. 4s0. A small piece of the same, taken from one sile. reaching from the hark to the pith, and hiohly matnifiel: ", a small hit of the pith; b, spiral lucts of what is called the mondullory shirette: c, the wool: l. d. dotted dnete in the wool; e, e, mmular ducts; f, the litur or inner lark: ft the green hak; h, the eorky layer; i, the skin. or epiknmis; j, one of the melnlary rays, or plates of silver grain, seen on the eross-section.
2. Tine Green Bark or Middle Bark. This consists of cellalar tissue only, and contains the same green matter (chlorophyll, 417) as the leaves. In woody stems, before the season's growth is completed, it becomes covcred by
3. The Corky Layer or Outer Burk, the cells of which contain no chlorophyll, and are of the nature of cort. Common cork is the thick corky layer of the burk of the Cork-Oak of Spain. It is this which gives to the stems or twigs of shrubs and trees the aspeet and the color peculiar to each, - light gray in the Ash, purplo in the Red Maple, red in several Dogwoods, ete.
4. Tie Epidermis, or skin of the plant, consisting of a layer of thicksided empty cells, which may be eonsidered to be the outermost layer, or in most herbaceous stems the only layer, of cork-cells.

432. The green layer of bark seldom grows mueh after the first season. Sometimes the corky layer grows and forms new lavers, inside of the old, for years, as in the Cork-Oak, the Sweet Gum-tree, and the White and the Paper Bireh. But it all dies atter a white; and the contimal enlargement of the wood within finally stretches it more than it ean bear, and sooner or later eracks and rends it, while the weather acts powerfully upon its surface; so the older bark perishes and falls away piecemeal year by year.
433. So on old trunks only the inner bark remains. This is renewed crery year from within and so kept alive, while the older and onter layers die, are fissured and rent by the distending tronk, weathered and worn, and thrown off in fragments, - in some trees slowly, so that the bark of old trunks may acquire great thiekness; in others, more rapidly. In IIoneysuckies and Grape-Vines, the layers of liber loosen and die when only a year or two old. The amnal layers of liber are sometimes as distinct as those of the wood, but often not so.

[^28]434. The Wood of an exogenous trunk, having the old growths covered by the new, remains nearly unchanged in age, except from decay. Wherever there is an ammal suspension and renewal of growth, as in temperate climates, the ammal growths are more or less distinctly marked, in the form of concentric rings on the cross section, so that the age of the tree may be known by counting them. Orer twelve hundred layers have been counted on the stumps of Sequoias in California, and it is probable that some trees now living antedate the Christian era.
435. The reason why the ammal growths are distinguishable is, that the wood formed at the begiming of the season is more or less different in the size or eharaeter of the eells from that of the close. In Oak, Chestnut, etc., the first wood of the season abounds in dotted ducts, the calibre of which is many times greater than that of the proper wool-eells.
436. Sap-wood, or Alburnum. This is the newer wood, living or recontly alive, and taking part in the conveyance of sap. Sooner or later, each layer, as it becomes more and more deeply covered by the newer ones and forther from the region of growth, is converted into
437. Heart-wood, or Duramen. 'This is drier, harder, more solid, and much more durable as timber, than sap-wood. It is generally of a different eolor, and it exhibits in different species the hue peculiar to each, sueh as reddish in Red-Cedar, brown in Blaek-Walnut, black in Ebony, ete. The enange of sap-wool into heart-wood results from the thickening of the walls of the wond-cells by the deposition of hard matter, lining the tubes and diminishing their calibre; and by the deposition of a vegetable coloringmatter peculiar to each species. The heart-wood, being no longer a living part, may decay, and often does so, withont the least injury to the tree, except by diminishing the strength of the trunk, and so rendering it more diable to be overthrown.
438. The Living Parts of a Tree, of the exogenous kind, are only tuese: first, the rootlets at one extremity; second, the buds and leaves of the season at the other; and third, a zone cousisting of the newest wood and the newest hark, comecting the rootlets with the buds or leares, lowcver widely separated these may be, - in the tallest trees from two to four homdred feet apart. And these parts of the tree are all renewed every year. No wonder, therefore, that trees may live so long, since they ammally reprotuce erersthing that is essential to their life and growth, and since only a very small part of their bulk is alive at once. The tree survives, but notling now living has been so long. In it, as elsemhere, life is a transitory thing, ever abandoning the oll, and renewed in the young.

§ 4. ANATOMY OF LEAVES.

439. The woot in leaves is the framework of ribs, veins, and veinlets (125), serving not only to strengthen them, but also to bring in the sap, and to distribute it throughout every part. The cellutar portion is the
green pulp, and is nearly the same as the green laver of the bark. So that the leaf may properly enough be regarded as a sort of expansion of the fibrous and green layers of the bark. It has no proper corky layer; but the whole is covered by a transparent skin or epidermis, resembling that of the stem.
440. The cells of the leaf are of various forms, rately so compact as to form a close cellular tissue, usually loosely arranged, at least in the lower part, so as to give copious intervening spaces or air passages, commmicating throughout the whole interior (Fig. 443, 483). The green eolor is given by the chlorophyll (417), seen throngh the very transparent walls of the cells and throngh the trauslucent epidermis of the leaf.
441. In ordinary leaves, having an upper and muder surface, the green cells form two distimet strata, of different arrangement. Those of the upper stratum are oblong or cylindrical, and stand endwise to the surfaee of the leaf, usually close together, learing hardly any vacant spaces; those of the lower are commonly irregular in shape, most of them with their longer diameter parallel to the face of the leaf, and are very loosely arranged, leaving many and wide air-chambers. The green color of the lower is therefore diluted, and paler than that of the upper face of the leaf. The upper part of the leaf is so constructed as to bear the direct action

of the sumshine; the lower so as to afford freer cirenlation of air, and to facilitate transpiration. It commmicates more directly than the upher with the external air by means of Stomates.
442. The Epidermis or skin of leaves and all young shoots is best seen in the foliage. It may readily be stripped off from the surface of a Lily-leaf, and still more so from more flesly and soft leaves, sueh as those

[^29]of Houselcek. The epidermis is usually composed of a single layer, occasionally of two or three layers, of empty cells, mostly of irregular ontline. The sint uous lines which traverse it, and may be dis-

484

455

456

49
cerned under low powers of the microscope (Fig. 487), are the boundaries of the cpiderinal cells.
443. Breathing-pores, or Stomates, Stomata (singular, a Stoma, literally, a mouth) are openings through the cpidermis into the air-chambers or intercellular passages, always between and guarded by a pair of thinwalled guardian cells. Although most abmendant in leaves, especially on their lower faec (that whieh is serecned from direet sumbight), they are found on most of her green parts. They estallish a direct commmieation between the external air and that in the loose interior of the leaf. Their guardian cells or lips, which are soft and delicate, like those of the green pulp within, by their greater or less turgidity open or elose the orifice as the moisture or dryness varies.
444. In the White Lily the stomata are so remarkably large that they may be seen by a simple mieroseope of moderate power, and may ine discerued even by a good hand lens. There are about 60,100 of them to the square inch of the epidermis of the lower lace of this Lily-leaf, and only alout 3000 to the same space on the upper face. It is computed that an average leaf of an Apple-tree has on its lower face about 100,000 of these moutls.

§5. PLANT FOOD AND ASSIMILATION.

445. Only phants are capable of originating organizable matter, or the materials which compose the structure of veretables and animals. The essential and pecular work of phants is to take up portions of earth and air (water belonging to both) upon which animals camot live at all, and to convert them into sometling organizable; that is, into something that, under life, may be built up into vegetable and animal structures. All the food of animals is produced by plants. Animals live upon regetahles,

[^30]directly or at second hand, the camivorous upon the herbivorms; and vegetables live upon earth and air, immediately or at second hand.
446. The Food of plants, then, primarily, is carth and air. This is evident enough from the way in which they live. Many phants will flourish in pure sand or prowdered chalk, or on the hare face of a roek or wall, watered merely with rain. Aud almost any plant may be made to grow from the seed in moist sand, and inerease its weight many times, even if it will not come to perfection. Many naturaliy live suspended from the bramehes of trees high in the air, and nourished by it alone, never having any comection with the soil; and some which naturally grow on the gromud, like the Live-forever of the gardens, when pulled up by the roots and hung in the air will often flomish the whole summer long.
447. It is true that fast-growing plants, or those which produce much vegetable matter in one scason (espeeially in sueh eoneentrated form as to be useful as food for man or the higher amimals) will come to matnrity mly in an euriched soil. But what is a rich soil? One which contains decomposing vegetable matter, or some decomposing animal matter; that is, in either case, some deeomposing organie matter formerly produced by plants. Aided by this, grain-bearing and other important vegetables will grow more rapidly and vigoronsly, and make a greater anome of nourishing matter, than they enuld if left to do the whole work at once from the begiming. So that in these cascs also all the organic or organzable matter was made by plants, and made ont of earth and air. Far the larger and most essential part was air and water.
448. Two kiuds of material are taken in and used by plants; of which the tirst, although more or less essential to perfect plant-growth, are in a certain sense subsidiary, if not accidental, viz.:-

Earthy constituents, those wheh are left in the form of ashes when a leaf or a stick of wood is burned in the open air. These consist of some potash (or sodd in a marine plant), some silex (the same as flint), and a little lime, alumine, or magnesia, iron or manganese, sulphur, phosphorus, etc., - some or all of these in variable and usually minnte proportions. They are sueh materials as happen to be dissolved, in small quantity, in the water taken up by the roots; and when that is consnmed by the plant, or flies off pure (as it largely does) by exhalation, the earthy matter is left behind in the eells, - just as it is left incrusting the sides of a teakettle in which mueh hard water has been boiled. Naturally, therefore, there is more earthy matter (i. e. more ashes) in the leaves than in any other part (sometimes as mueh as seven per ecnt, when the wood eontains only two per cent); beeanse it is throngh the leares that most of the water escapes from the plant. Some of this earthy matter incrusts the cell-walls, some gofes to form ergstals or rhaphides, whieh abound in many plants (42z), some enters into eertain speeial regetable produets, and some appears to be necessary to the well-being of the higher orders of phants, although forminer no necessary mart of the proper vegetable structure.

The essential constituents of the organic fabrie are those which are dissipated into air and vapor in eomplete burning. They make up from 88 to 99 per eent of the leaf' or stem, and essentially the whole both of the cellnlose of the walls and the protoplasm of the contents. Burning gives these materials of the plant's strueture back to the air, manly in the same condition in whieh the plant took them, the same eondition which is reaehed more slowly in natural deeay. The ehemieal elements of the cell-walls (or cellulose, 402), as also of stareh, sugar, and all that elass of organizable cell-material, are earbon, hydrogen, and oxygen (399). The same, with nitrogen, are the constituents of protoplasm, or the truly vital part of vegetation.
449. These chemical elements out of which organie matters are composed are supplied to the plant by water, carbonie aeid, and some combinations of nitrogen.

Water, fiar more largely than anything else, is imbibed by the roots ; also more or less by the foliage in the form of vapor. Water eonsists of oxygen and hydrogen; and cellulose or plant-wall, starel, sugar, ete., however different in their qualities, agree in containing these two elements in the same relative proportions as in water.

Carbonic acid gas (Carbon dioxide) is one of the components of the atmosphere, - a small one, ordimarily only about $\frac{2}{2500}$ of its bulk, - suffieient for the supply of vegetation, but not enough to be injurious to animals, as it would be if aceumulated. Every current or breeze of air brings to the leaves expanded in it a succession of fresh atoms of carbonie acid, whieh it absorbs through its multitudinous breathing-pores. This gas is also taken up by water. So it is brought to the ground by rain, and is absorbed by the roots of plants, either as dissolved in the water they imbibe, or in the form of gas in the interstices of the soil. Manured ground, that is, soil containing decomposing vegetable or animal matters, is constantly giving out this gas into the interstiees of the soil, whence the roots of the growing erop absorb it. Carbonie aeid thus supplied, primarily from the air, is the souree of the carbon which forms much the largest part of the substance of every plant. The proportion of carbon may be roughly cstimated by charring some wood ol foliage ; that is, by heating it out of contact with the air, so as to decompose and drive off all the other constituents of the fabrie, leaving the large bulk of ehareoal or carbon behind.

Nitrogen, the remaining plant-element, is a gas which makes up more than two thirds of the atmosphere, is brought into the foliage and also to the roots (being moderately soluble in water) in the same ways as is carbonic acid. The nitrogen whieh, mixed with oxygen, a little carbonic aeid, and vapor of water, constitutes the air we breathe, is the source of this fourth plant-element. But it is very doubtful if ordinary plants ean use any nitrogen gas direetly as food; that is, if they ean direetly cause it to eombine with the other elements so as to form protoplasm. But when combined with hydrogen (formmg ammonia), or when combined with oxygen
(nitric acid and uitrates) plants appropriate it with avidity. And several natural processes are going on in which nitrogen of the air is so combined and supplied to the soil in forms directly available to the plant. The most efficient is nitrification, the formation of nitre (nitrate of potash) in the soil, especially in all fertilc soils, through the action of a bacterial ferment.
450. Assimilation in plants is the conversion of these inorganic substances - essentially, water, carbonic acid, and some form of combined or combinable nitrogen - into vegetable matter. This most dilute food the living plant conceutrates and assimilates to itself. Only plants are capable of converting these mineral into organizable matters; and this all-important work is done by them (so far as all ordinary vegetation is concerncl) only
451. Under the light of the sun, arting upon green parts or foliuge, that is, upon the chlorophyll, or upon what answers to chlorophyll, which these parts contain. The sun in some way supplics a power which enables the living plant to originate these peculiar chemical combinations, - to organize matter into forms which are alone capable of being endowed with life. The proof of this proposition is simple; and it shows at the same time, in tle simplest way, what a plant does with the water and carbonic acid it consumes. Namels, lst, it is only in sunsthine or bright daylight that the green parts of plants give out oxygen gas, - then they regularly do so ; and 2 d , the giving out of this oxygen gas is required to render the chemical composition of water and carbonic acid the same as that of cellulose, that is, of the plant's permanent fabric. This shows why plants spread out so liarge a surface of foliage. Leaves are so many workshops, full of machinery worked by sun-power. The emission of oxygen gas from any suu-lit foliage is seen by placing some of this under water, or by using an aquatic plant, by coliecting the air bubbles which rise, and by notiug that a taper burns brighter in this air. Or a lealy plant in a glass globe may be supplicd with a certain small percentage of carbonic acid gas, and after proper exposire to sunshinc, the air on being tested will be found to contain less carbonic acid and just so much the more oxygen gas.
452. Now if the plant is making cellulose or any equivalent substance, - that is, is making the very materials of its fabrie and growth, as must generally be the case, - all this oxygen gas given off by the leares comes from the decomposition of earbonic acid taken in by the plant. For cellulose, aud also starch, dextrine, sugar, and the like are composed of carbon abour with oxygen and lydrogen in just the proportions to form water. And the carbonic acid and water taken in, less the oxygen which the earbon b:ought with it as earhonic acid, and whieh is given off from the foliage in s:mshine, just represcar's the manufictured artiele, celtulose.

453 . It comes to the same if the first product of assimilation is sugar, or dextrine which is a sort of soluble starch, or starch itself. Aud in the plant all these forms ase readily changed into one another. In the tiny seedling, as fist as this assimilated matter is formed it is used in growth, that is, in the formation of cell-walls. After a time some or much of
the produel may be accumulated in store for future growth, ats in the root of the turnip, or the taber of the potato, or the seed of corn or pulse. 'This store is mainly in the form of starch. When growth beegins anew, this starch is turned into dextrine or into sugar, in liquid form, and nsed to nourish and build up the germinating embryo or the new shoot, where it is at length eonverted into edtulose and ased to build up phant-structure.
451. But that which builds phant-fatmic is not the celhular structure itsell: the work is done by the living protoplasm which dwells within the walls. This also has to take and to assimilate its proper food, for its own maintenance and growth. Protoplasm assimiates, along with the other three clements, the nitrogen of the phant's food. This comes primarily from the wast stock in the atmosphere, but mainly through the earth, where it is accumulated through various processes in a fertile soil, - mainly, so far as concerns crops, from the decomposition of former vegetables aud animals. This protoplasm, which is formed at the same time as the simpler cellulose, is essentially the same as the flesh of anmals, and the source of it. It is the common basis of vegetable and of animal life.
45. So plant-ussimilation protuces all the food and fubric of animals. Starch, sugar, the oils (which are, as it were, these farimerous matters more deosidated), ehlorophyll, and the like, and even cellulose itself, form the food of herhivoroms animals and much of the food of man. When digested they enter into the blood, undergo varions translormations, and are at length decomposed into carbonic acid and water, and exhaled from the lungs in respiration, -- in other words, are given back to the air by the animal as the very same materials which the plant took from the air as its food, -are given back to the air in the same form that they would have taken if the vegetable matter had been left to decay where it grew, or if it had been set on tire and burned; and with the same result, too, as to the heat, - the heat in this casc producing and maintaining the proper temperature of the animal.
556. The protoplasm and other products containing nitrogen (gluten, legumine, ete.), and which are most acemmalated in grains and seeds (for the nourishment of their embryos when they germinate), compose the most mutritious vegetable food consumed by animals; they form their proper flesh and sinews, while the earthy constituents of the plant form the carthy matter of the bones, ete. At length decomposed, in the secretions and excretions, these nitrogenous constituents are through successive changes linally resolved into mineral matter, into carbonic acid, water, and ammonia or some nitrates, - into exactly or essentially the same materials which the plants took up and assimilated. Animals depend upon vergetables absolutely and directly for their subsistence; also indirectly, because
4.7. Plants purify the air for animals. In the very process bs which they create food they take from the air carbonie acid gas, injurions to animal respiration, which is continually poured into it by the breathing of all animals, by all decay, by the burmug of fuel and all other ordinary combnstion; and
they restore an equal bulk of life-sustaining oxygen needful for the respiration of ammals, - needful, also, in a certain measure, for plants in any work they do. For in plants, as well as in mimals, work is done at a certain cost.

§ 6. PLANT WORK AND MOVEMENT.

453. As the organic basis and truly living material of plants is identical with that of animals, so is the life at bottom essentially the same; but in animals something is added at every rise from the lowest to highest organisms. Action and work in living beings require movement.
454. Living things more; those not living are only moved. Plants move as truly as do animals. The latter, nomished as they are upon organized food, which has been prepared for them hy plants, and is found ouly here and there, must needs have the power of going alter it, of collecting it, or at least of taking it in ; which requires them to make spontaneous movements. But ordinary plants, with their wide-spread surface, always in contact with the earth and air on wheh they feed, - the latter everywhere the same, and the former very much so, - might be thought to have no need of movement. Orditary plants, indeed, have no locomotion; some float, but most are rooted to the spot where they grew. Yet probably all of them execute various morements which must be as truly self-cansed as are those of the lower grades of animals, - movements whieh are overlooked only because too slow to be direetly observed. Nevertheless, the motion of the homr-hand and of the minute-hand of a watch is not less real than that of the secoud-h:md.
455. Locomotion. Noreover, many microscopie plants living in mater are seen to move freelr, if not briskly, nuder the mieroscope; and so likewise do more eonspicuous aquatic plants in their embryolike or seedling state. Evernat maturity, speeies of Oseillaria (such as in Fig. 458, minute worm-shaped plants of fresh waters, taking this name from their oscillating motions) freely
 excente three different kinds of movement, the very delicate investing coat of cellulose not impeding the action of the living protoplasm within. Even when this coat is firmer and hardened with a siliceous deposit, such eresecnt-shaped or boat-shaped one-celled plants as Closterium or Naricula are able in some way to move along from place to phace in the water.
456. Movements in Cells, or Cell-circulation, sometimes called $C y$ closis, has been ditected in so many phants, especially in comparatively

Fig. tss. Two individuals of an Oscillaria, magnitied.

Lransparent aquatic plants and in hairs on the surface of land plants (where it is casiest to observe), that it may be inferred to take place in all cells during the most active part of their life. This motion is commonly a
 streaming movement of threads of protoplasm, carrying along solid gramules by which the action may be observed and the rate measured, or in some cases it is a rotation of the whole protoplasmic contents of the cell. A comparatively low magnifying power will show it in the cells of Nitella and Chara (which are cryptogamons plants) ; and under a moderate power it is well seen in the Tape Grass of fresh water, Vallisneria, and in Naias flexilis (Fig. 489). Minute particles and larger greenish globules are seen to be carried along, as if in a current, around the cell, passing up one side, across the end, down the other and across the bottom, completing the circuit sometimes within a minute or less when well warmed. To see it well in the cell, which like a string of beads form the hairs on the stamens of Spiderwort, a ligh magnifying power is needed.
462. Transference of Liquid from Cell to Cell, and so from place to place in the plamt, the absorption of water by the rootlets, and the exhalation of the greater part of it from the foliage, - these and similar operations are governed by the pliysical laws which regulate the diffusion of fluids, but are controlled by the action of living protoplasm. Equally under vital control are the varions chemical transformations which attend assimilation and growth, and which involve not only molecular movements but conveyance. Growth itself, which is the formation and shaping of now parts, implies the direction of internal activities to definite ends.
463. Movements of Organs. The living protoplasm, in all but the lowest grade of plants, is enclosed and to common appearance isolated in separate cells, the walls of which can only in their earliest state be said to be alive. Still plants are able to canse the protoplasm of adjacent cells to act in concert, and by their combined action to effect movements in roots, stems, or leaves, some of them very slow and gradual, some manifest and striking. Such movements are brought about through individually minute changes in the form or tension in the protoplasm of the imnumerable cells which make up the structure of the organ. Some of the slower movements are effected during growth, and may be explained by inequality of growth on the two sides of the bending organ. But the more rapid changes of position, and some of the slow ones, camot be so explained.

Fig. 489. A few cells of a leaf of Naias flexilis, highly magnified: the arrows indicate the courses of the circulating currents.
464. Root-movements. In its growth a root turus or bends away from the light and towad the eentre of the earth, so that in lengthening it buries itself in the soil where it is to live and act. Every one must have observed this in the germination of seeds. Careful observations have shown that the tip of a growing root also makes little sweeps or short movements from side to side. By this means it more readily insinuates itself into yielding portions of the soil. The root-tips will also turn toward moisture, and so seeure the most faporable positions in the soil.
465. Stem-movements. The root end of the eaulicle or first joint of stem (that below the eotyledons) aets like the root, in turning downard in germination (making a complete bend to do so if it happens to point upward as the seed lies in the ground), while the other end turns or points skyward. These opposite positions are taken in complete darkness as readily as in the light, in dryness as much as in moisture: there fore, so far as these movements are physical, the two portions of the same internode appear to be oppositely allected by gravitation or other influenees.
466. Rising into the air, the stem and green shoots generally, white young and phiable, bend or direet themselses toward the hight, or toward the stronger light when unequally illuminated; white roots turn toward the darkness.
467. Many growing stems have also a movement of Nutation, that is, of nodding successively in different dircetions. This is brought about by a temporary increase of turgidity of the eells along one side, thus bowing the stem over to the opposite side; and this line of turgesecnce travels round the shoot continually, from right to left or from left to riglit aceording to the speeies: thus the shoot bends to all points of the compass in suecession. Commonly this mutation is slight or hardly observable. It is most marked in

46S. Twining Stems (Fig. 90). The growing upper end of such stems, as is familiar in the Hop, Pole Beans, and Moming-Glory, turns over in an inclined or horizontal direction, thus stretehing out to reach a neighboring support, and by the continual ehange in the direetion of the nodding, sweeps the whole circle, the sweeps being the longer as the stem lengthens. When it strikes against a support, such as a stem or branch of a neighboring plant, the motion is arrested at the contaet, but comtinnes at the growing apex becond, and this apex is thus made to wind spinally around the supporting body.
469. Leaf-movements are all but universal. The presentation by most leaves of their upper surlace to the light, from whatever direction that may come, is an instance; for when turned upside down they twist or bend round on the stalk to reeover this normal position. Leaves, and the leatlets of compomed leaves, change this position at nightfall, or when the light is withdrawn ; they then take what is ealled their sleeping posture, resuming the diurnal position when daylight returns. 'This is very striking
in Locust-trees, in the Sensitive Plant (Fig. 190), and in Worodsorrel Young seedlings droop or chose their leaves an might in phats which are not thus affected in the adult foliage. All this is thought to be a protec. tion against the eold by noeturnal radiation.
470. Varions plants climb by a coiling movement of their lates or their leaf-stalks. Familiar examples are seen in Clematis, Manmulia. Tropso-
 In the latter, and in other wooly plants which elimh in this way, the petioles thieken and harden after they have grasped then support, thus securing a very efm hold.
471. Tendril movements. Tendrils are either leaves or stems (98, 165), specially developed for elimbing purposes. Cobsea is a good example of partial transformation; some of the leatlets are normal, some of the same leaf are little tendrils, and sone intermediate in charaeter. The Passion-flowers give good examples of simple stem-tendrils (Fig. 92); Grape-Vines, of braneled ones. Most tendrils make revolving sweeps, like those of twining stems. Those of some Passion-flowers, in sultry weather, are apt to move fast enough for the movement actually to be seen for a part of the circuit, as plainly as that of the second-hand of a watel. Two herbaceous speeies, Passiflora grace lis and P'. sieyoides (the first an aunual, the seeond a strong-rooted perenuial of the casiest cultivation), are admirable for illustration both of revolring movements and of scusitive coiling.
472. Movements under Irritation. The mont familiar case is that of the Seusitive Plant (Fig. 490). The leaves suddenly take their nocturnal position when roughlly touched or when shoeked by a jar. The leaflets elose in pairs, the four outspread partial petioles come eloser together, and the common petiole is depressed. The seat of the morements is at the base of the leaf-stalh and stalklets. Schraukia, a near relative of the Sensitive Plant, aets in the same way, but is slower. These are not anoma. lous actions, but only
 extreme manifestations of a faculty more or less common in foliage. In Luenst and Iloney-Lucusts for example, repeated jars will slowly prodnec similar effeets.

Fig. 490. Fiece of stem of Sensitive Plant (Mimosa pudica), wiht two leaves, the lower open, the upper in the closed state.
473. Leaf-stalks and tendrils are adapted to their uses in climbing by a similar sensitivencss. The coiling of the leaf-stalk is in response to a kind of irritation produced by eontact with the supporting body. This may be shown by gentle rubbing or prolonged pressure upon the upper face of the leaf-stalk, which is soon followed by a eurvature. Tendrils are still more sensitive to contalet or light friction. 'This eauses the free end of the tendril to coil round the support, and the sensitiveness, propagated downward along the tendril, causes that side of it to become less turgescent or the opposite side more so, thus throwing the tendril into eoils. This shortening draws the plant up to the support. Tendrils which have not laid hold will at length commonly coil spontaneously, im a simple coil, from the free apex downward.
In Sicyos, Eehinocystis, and the abose mentioned Passion-flowers (471), the tendril is so sensitive, under a high summer temperature, that it will curve and coil promptly after one or two light strokes by the hand.
474. Among spontaneous movements the most siugular are those of Desmodiun gyrans of India, sometimes called Telegraph-plant, which is cultivated on account of this action. Of its three leaflets, the larger (tcrminal) one moves only by drooping at nightifall and rising with the dawn. But its two small lateral leatlets, when in a congenial high temperature, by day and by night move upward and downward in a succession of jerks, stopping occasionally, as il to recover from exhaustion. In most plant-movements some obriously useful purpose is subserved: this
 of Desmodium gyrans is a riddle.
475. Movements in Flowers are very various. The most remarkable are in some way comected with fertilization (Sect. Xlll.). Some occur under irritation: the stamens of Barherry start forward when tonched at the base inside: those of many polyandrous flowers (of Sparmamia very strikingly) spread ontwardly when lightly brushed: the two lips or lobes

Fig. 491. Portion of stem and leaves of Telegraph-plant (Desmodium gyrans), almost of natural size.
of the stigma in Mimnlus close after a touch. Some are antomatic and are comnected with dichogamy (339) : the style of Sabbatia and of largeflowered speeies of Epilobium bends over strongly to one side or turns downward when the blossom opens, but slowly erects itself a day or two later.
476. Extraordinary Movements connected with Capture of Insects. The most striking cases are those of Drosera and Dionæa; for an account of which sce "How l'lants Behave," and Goodale's " Physiological Botany."
477. Thic upper face of the leaves of the common species of Drosera, or Sundew, is beset with stout bristles, having a glandular tip. This tip sceretes a drop of a clear but very viscid liquid, which glistens like a dewdrop in the sun; whence the popular name. When a fly or other small insect, attracted by the liquid. alights upon the leaf, the viscid drops are so tenacious that they hold it fast. In struggling it only beeomes more completely entangled. Now the ncighboring bris-
 thes, which have not been touched, slowly bend inward from all sides toward the captured inscct, and bring their stieky apex against its body, thus inereasing the number of bonds. Morcover, the blade of the leaf commonly aids in the capture by bceoming concave, its sides or edges turniug inward, which brings still more of the gland-tipped bristles into contact with the captive's body. The inscet perishes; the clear liquid disappears, apparently by absorption into the tissue of the leaf. It is thought that the absorbed secretion takes with it some of the juiees of the inseet or the products of its decomposition.

47S. Dionæa muscipula, the most remarkable vegetable fly trap (Fig. 176, 492), is related to the Sundews, and has a more special and active apparatus for flycatching, formed of the summit of the leaf. The two halves of this rounded body move as if they were hinged upon the midrib; their edges are fringed with spiny but not glandular bristles, whieh interlock when the organ closes. Upon the face are two or three short and delieate bristles, which are sensitive. 'They do not themselves move when ionehed. but they propagate the sensitiveness to the organ itself, causing it to close with a quiek movement. In a fresh

Fig. 492. Plant of Dionea muscipula, or Venus's Fly-trap, reduced in size.
and vigorous leaf, under a high summer temperature, and when the trap lies widely open, a touch of any one of the minute bristles on the face, by the finger or any extrancous body, springs the trap (so to say), and it closes suddenly; but after an hour or so it opens again. When a fly or other small insect alights on the trap, it, eloses in the same mamer, and so quickly that the intercrossing marginal bristles obstruct the egress of the insect, unless it be a small one and not worth taking. Afterwards and more slowly it completely closes, and presses down upon the prey; then some hidden glands pour out a glairy liquid, which dissolves out the juices of the insect's body; next all is re-absorbed into the plant, and the trap opens to repeat the operation. But the same leaf perhaps never captures more than two or three insects. It ages instead, becomes more rigid and motionless, or decays away.
479. That some few plants should thus take animal food will appear less surprising when it is considered that hosts of plants of the lower grade, known as Fungi, moulds, rusts, ferments, Bacteria, etc., live upon animal or other orgmized matter, either decaying or living. That plants should execute movements in order to accomplish the ends of their existence is less surprising now when it is known that the living substance of plants and animals is essentially the same; that the beings of both kingdoms partake of a common life, to which, as they rise in the scale, other and higher endowments are successively superadded.
480. Work uses up material and energy in plants as well as in animals. The latter live and work by the consumption and decomposition of that which plants have assimilated into organizable matter through an energy derived from the sun, and which is, so to say, stored up in the assimilated products. In every intemal action, as well as in every movement and exertion, some portion of this assimilated matter is transtormed and of its stored energy expeuded. The steam-engine is an organism for converting the sun's radiant energs, stored up by plants in the fuel, into mechanical work. An animal is an engine fed by regetable fuel in the same or other forms, from the same source, by the decomposition of which it also does mechanical work. The phant is the producer of food and accumulator of solar energy or force. But the plant, like the animal, is a consumer whenever and by so much as it does any work execpt its great work of assimilation. Erery internal change and movement, every trasformation, such as that of stareh into sugar and of sugar into cell-walls, as well as every movement of parts which becomes externally visible, is done at the expense of a certain amonnt of its assimilated matter and of its stored energy; that is, by the decomposition or combustion of sugar or some such product into carbonic acid and watcr, which is given back to the air, just as in the animal it is given back to the air in respiration. So the respiration of plants is as real and as essential as that of animals. But what plants consume or decompose in their life and action is of insignificant amount in comparison witl what they compose.

SEction XVII. CRYPTOGANOIS OR FLOWERLESS PLANTS.

481. Even the begimer in botany shonld have some general idea of what eryptogamous plants are, and what are the obrions distinctions of the , rineipal fanilies. Alhhough the lower grades are difficult, and need special books and grood mieroscopes for their study, the higher orders, such as Ferns, may be determined ahmost as readily as plameroganous plants.
482. Limmus gave to this lower grade of phats the name of Cryptogamia, thereby indieating that their organs answering to stamens and pistils, if they had any, were recondite and unknown. There is no valid reason why this long-familiar name shouk not be kept up, along with the comnterpart one of Phaneroyamia (6), althongh organs analogous to stanens and pistil, or rather to pollen and ovule, have been diseovered in all the higher and most of the lower grades of this series of plants. So also the English synonymous name of Flowerless Plants is both grood and convenient: for they have not flowers in the proper sense. The essentials of flowers are stamens and pistils, giving rise to seeds, and the essential of a seed is an embryo (8). Cryptngamons or Flowerless plants are propagated by Spoaes; and a spore is not an cmbryo-plantlet, but mostly a siugle plant-cell (399).
483. Vascular Cryptogams, which compose the higlier orders of this series of plants, have stems and (nsually) leaves, constructed upon the general plan of ordinary plants; that is, they have wood (wood-cells and ressels, 408) in the stem and leaves, in the latter as a frame work of reins. But the lower grades, laviug only the more elementary cellular structure, are called Cellular Cryptogans. Far the larger number of the former are Ferns: wherefore that class has been called

4S4. Pteridophyta, Pteridophytes in English form, meaning Fernplants, - that is, Ferms and their relatives. They are mainly Horsetaits, Ferns, Club-Mosses, and various aquaties which have been called Iydropterides, i. e. Water-Ferms.
485. Horsetails, Equisetucea, is the name of a family which consists only (among now-living plants) of Equisetum, the botanical name of Horsetail and Scoming Rash. They have hollow stems, with partitions at the nodes; the leaves eonsist only of a whorl of scales at each node, these coalesecnt into a sheath: from the axils of these leaf-seales, in many species, branches grow out, which are similar to the stem but on a much smaller scale, elose-jointed, and with the tips of the leaves more apparent. At the apex of the stem appears the fructificution, as it is called for lack of a better term, in the form of a short spike or head. This eonsists of a good mumber of stalked shields. bearing on their imer or under face sereral wedgeshaped spore-cases. The spore-cases when they rijeen open down the inner
side and discharge a great number of green spores of a size large enough to be well seen by a hand-glass. The spores are aided in their discharge

and dissemination by four elub-shaped threads attached to one part of them. These are hygrometric: when moist they are rolled up over the spore; when dry they straighten and exhibit lively movements, closing over the spore when breathed upon, and murolling promptly a moment after as they dry. (See Fig. 493-495.)
456. Ferns, or Filices, a most attractive famm of plants, are very mumerous and varied. In warm and equable climates some rise into forest-trees, with habit of Palns; but most of them are perennial herbs. The wood of a Fern-trunk is very dif-
 ferent, however, from that of a palm, or of any exogenous stem rither. A section is represented in Fig. 500. The curved plates of wood each ter-

Fig. 493. Upper part of a stem of a Horsetail, Equisetum sylvaticum. 494. Part of the hear or spike of spore-cases, with some of the latter taken off. 495. View (more enlargel) of imder side of the shiehl-shaped body, hearing a circle of sporecases. 496. One of the latter detached and more magnifiect. 497. A spore with the attached arms moistened. 498. Same when dry, the arms extended.

Fig. 499. A Tree-Fern, Dicksonia arhorescens, with a young one near its hase. In front a common herthaceous Fern (Polypolium vulgare) with its creeping stem or rootstock.

Fig. 500. A section of the trumk of a Tree-Fern.
minate upward in a leaf-stalk. The subterranean truak or stem of any strong-growing herbaceons Fern shows a similar structure. Most Ferns are ciremate in the bud; that is, are rolled up in the manner shown in Fig. 197. Uneoiling as they grow, they have some likeness to a crosier.
487. The fructification of Ferus is borne on the baek or under side of the lcaves. 'The carly botanists thought this such a peculiarity that they

alwars called a Fern-leaf a Frond, and its petiole a Stipe. Usage continues these terms, although they are superfluous. The fruit of Ferns consists of Spore-cases, teelmically Sporangia, which grow out of the veins of the leaf. Sometimes these are distributed over the whole lower

Fig. 501. The Walking-Fern, Camptosorus, reducel in size, showing its fruitdots on the veins approximated in pairs. 50 . A small piece (pinmule) of a Shield-Fern: a row of truit-dots on each side of the midrib, each covered by its kidney-shaped indusium. 503. A spore-case from the latter, just bursting by the partial straightening of the incomplete ring; well magnifiel. 50t. Three of the spores of 509 , more magnified. 505. Schizea pusilla, a very small and simpleleavel Feru, drawn nearly of natural size. 506. One of the lohes of its fruitbearing portion, magnified, bearing two rows of spore-cases. 507. Spore-case of the latter, detachend, opening lengthwise. 508. Aller-tongue, Ophioglossum: spore-cases in a kind of spike: a, a portion of the fruiting part, about natural size; showing two rows of the tirm spore-cases, which open transversely into two valves.
surface of the leaf or frond, or over the whole surface when there are no proper leal-blades to the froud, but all is reduced to stalks. Commouly the spore-cases occupy only detached spots or lines, each of which is called a Sorus, or in English merely a Fruit-dot. In many Fcras these fruit-lots are naked; in others they are produced under a scale-like bit of membranc, called an Indusions. In Maidenhair-Ferns a little lobe of the leaf is folded back over each fruit-dot, to serve as its shicld or indasium. In the true Brake or Bracken (Pteris) the whole edge of the fruit-bearing part of the leaf is folded back over it like a hem.
488. The form and structure of the spore-cases can be made ont with a common hand magnifying glass. The commonest kind (shown in Fig. 503) las a stalk formed of a row of jointed cells, and is itself composed of a layer of thin-walled cells, but is incompletely surrounded by a border of thicker-walled cells, forming the Rivg. This extends from the stalk up one side of the spore-case, round its summit, descends on the other side, but there gradually vanishes. In ripening and drying the shrinking of the cells of the ring on the outer side canses it to straighten; in doing so it tears the spore-case open on the weaker side and discharges the minute spores that fill it, commonly with a jerk which scatters them to the wind. Another kind of spore-case (Fig. 507)

is stalkless, and has its ring-cells forining a kind of cap at the top: at maturity it splits from top to botton by a regular dehisennce. A third kind is of firm texture and opeus across into two valves, like a clam-shell (Fig. 505a) : this kind makes an approach to the next fanily.
489. The spores germinate on moistened ground. In a conservatory they may be found germinating

510
on a damp wall or on the elges of a well-watered flower-pot. Iustead of directly forming a fern-plantlet, the spore grows first into a body which

Flg. 509. A young prothallus of a Mailen-hair, moderately enlarged, and an older one with the first fern-leaf developed from near the notch. 510. Middle portion of the young one, much magnified, showing below, partly among the rootlets, the antheridia or fertilizing organs, and above, near the notch, three pistillidia to be fertilized.
closely resembles a small Liverwort. This is named a Protiallus (Fig. 509) : from some point of this a bud appears to origimate, whieh produees the first fern-leaf, soon followed by a second and third, and so the stem and leaves of the plant are set up.
490. Investigation of this prothallus under the microseope resulted in the discovery of a wholly unsuspected kind of fertilization, taking place at

this germinating stage of the plant. On the under side of the prothallas two kinds of organs appear (Fig. 510). One may be likened to an open and depressed ovule, with a single cell at bottom answering to mueleus; the other, to an anther; but instead of pollen, it discharges corkserewshaped mieroseopic filaments, which bear some cilis of extreme temmits, by the rapid vibration of which the filaments move freely over a wet surface. These filaments travel over the surface of the prothallus, and even to other prothalli (for there are natural hybrid Ferns), reaeh and enter the ovule-

Fig. 511. Lyeopodium Carolinianum, of nearly natural size. 512. Inside view of one of the bracts and spore-ease, maguified.

Fig. 513. Open 4 -valved spore-case of a Selaginella, and its four large spores (maerospores’, magnified. 514. Macrospores of another Selaginella. 515. Same separated.

Fig. 516. Plant of Isoetes. 517. Base of a leaf and contained sporocarp filled with mierospores eut aeross, magnified. 518. Same divided lengthwise, equally magnified ; some microspores seen at the left. 519. Section of a spore-case containing macrospores, equally magnitied; at the right three maerospores more magnified.
like cavities, and fertilize the cell. This thercupon sets up a growth, forms a vegetable bud, and so develops the new plint.
491. An essentially similar process of fertilization has been discovered in the preceding and the following families of Pteridophytes; but it is mostly subterranean and very difficult to observe.
492. Club-Mosses or Lycopodiums. Some of the common kinds, called Ground Pine, are familiar, being largely used for Christmas wreaths and other decoration. They are low evergreens, some creeping, all with considerable wood in their stems: this thickly beset with small leaves. In the axils of some of these leaves, or more commonly, in the axils of peculiar leaves changed into bracts (as in Fig. 511, 512) spore-cases appear, as roundish or kiducy-shaped bodies, of firm texture, opening round the top into two valves, and discharging a great quantity of a very fine yellow powder, the spores.
493. The Selaginellas have been separated from Ļpeopodium, which they much resemble, because they produce two kinds of spores, in separate spore-cases. One kind (Microspores) is just that of Lycopodium; the other consists of only four large spores (MAcrospores), in a spore-case which usually breaks iu pieces at maturity (Fig. 513-515).
494. The Quillworts, Isoetes (Fig. 516-519), are very unlike Club Mosses in aspect, but have been associated with them. They look more like Rushes, and live in water, or partly out of it. A very short stem, like a corm, bears a cluster of roots underneath; above it is covered by the broad bases of a cluster of awlshaped or thread-shaped leaves. The spore-cases are immersed in the bases
 of the leaves. The nuter leaf-bases contain mmerous macrospores; the inner are filled with innumerable microspores.
495. The Pillworts (Marsilia and Pilularia) are low aquaties, which

Fig. 520. Plant of Marsilia quadrifoliata, reduced in size ; at the right a pair of sporo-carps of about natural size.
bear globular or pill-shaped fruit (Sporocarps) on the lower part of their leaf-stalks or on their slender creeping stems. The leaves of the commoner species of Marsilia might be taken for four-lcaved Clover. (Sec Fig. 520.) The sporocarps are usually raised on a short stalk. Within they are divided lengthwise by a partition, and then crosswise by several partitions. These partitions bear numerous delicate sacs or spore-cases of two kinds, intermixed. The larger ones contain each a large spore, or macrospore ; the smaller contain numerous microspores, immersed in mucilage. At maturity the fruit bursts or splits open at top, and the two kinds of spores are discharged. The large oncs in germination produce a small prothallus; upon which the contents of the microspores act in the same way as in Ferns, and with a similar result.
496. Azolla is a little floating plant, looking like a small Liverwort or Moss. Its brauches are covered with minute and scale-shaped leares. On the under side of the branches are found egro-shaped thin-walled sporocarps of two kinds. The small ones open across and discharge mierospores; the larger barst irregularly, and bring to view globose spore-cases, attached to the bottom of the sporocarp by a slender stalk. These delicate spore-cases burst and set free about four macrospores, which are fertilized at germination, in the manner of the Pillworts and Quillworts. (See Fig. 521-526.)

497. Cellular Cryptogams ($\$ 53$) are so called because composed, even in their higher forms, of cellular tissue only, without proper woodcells or vessels. Many of the lower kinds are mere plates, or ribbons, or simple rows of cells, or even single cells. But thcir highest orders follow the plan of Ferns and phanerogamous plants in having stem and leaves for their uprard growth, and commonly roots, or at least rootlets,

Fig. 521. Small plant of Azolla Caroliniana. 522. Portion magnified, showing the two kinds of sporocarp; the small ones contain microspores; 523 represents one more magnified. 524. The larger sporocarp more magnified. 525. Same more magnified and burst open, showing stalked spore-cases. 526. Two of the latter highly magnified ; one of them bursting shows four contained macrospores: between the two, three of these spores highly magnified.
to attach them to the soil, or to trunks, or to other bodies on which they grow. Plants of this grade are chiefly Mosses. So as a whole they take the name of
498. Bryophyta, Bryophytes in English form, Bryum being the Greek name of a Moss. These plants are of two principal kinds. true Mosses (Musci, which is their Latin name in the plural); and Hepatıc Mosses, or Liverworts (Hepatiore).
499. Mosses or Musci. The pale Peat-mosses (species of Sphagnum, the prineipal component of sphaguous bogs) and the strong growng Haireap Moss (Polytrichum) are among the larger and commoner representatives of this numerous family; while Fountain Moss (Fontinalis) in running water sometimes attains the length of a yard or more. On the other liand, some are barely individually distinguishable to the naked eye. Fig. 527 represents a common little Moss, eularged to about twelve times its natural size; and by its side is part of a leaf, much magnified, showing that it is composed of cellular tissue (parenchyma-cells) only. The leares of Mosses are always simple, distinct, and sessile on the stem. The fructification is an urn-slaped spore-case, in this as in most cases raised on a slender stalk. The spore-ease loosely bears on its summit a thin and pointed cap, like a candle-extinguisher, called a Calyptra. Detaching this, it is found that the spore-case is like a prxis (376), that is, the top at maturity comes off as a lid (Operculum); and that the interior is filled with a green powder, the spores, which are discharged through the open mouth. In most Mosses there is a fringe of one or two rows of teeth or membrane around this mouth
 or orifice, the Peristome. When moist the peristome closes hygrometrieally orer the orifiee more or less; when drier the teeth or processes commonly bend outward or recurve; and then the spores more readily eseape. In Hair-eap Moss a membrane is stretched quite across the mouth, like a drum-head. retaining the spores until this wears away. See Figures 527-54l for details.
500. Fertilization in Mosses is by the analogues of stamens and pistils, which are hidden in the axils of leaves, or in the eluster of leaves at the

Fig. 527. Single plant of Physcomitrium pyriforme, magnified. 528. Top of a leaf, cut across; it consists of a single layer of cells.
end of the stem. The analogue of the anther (Antheridium) is a cellular sac, which in bursting diseharges immmerable deticate cells floating in a mucilaginous liquid; each of these bursts and scts free a vibratile self-

moving thread. These threads, one or more, reach the orifice of the pistilshaped body, the Pistillidium, and act upon a particular cell at its base within. This cell in its growth develops into the spore-case and its stalk (when there is any), carrsing on its summit the wall of the pistillidinm, which becomes the ealyptra.
501. Liverworts or Hepatic Mosses (Hepalica) in some kinds resemble true Mosses, having distinet stem and leaves, although their leaves occasionally ron together; while in others there is no distinction of stem and leaf, but the whole plant is a leaf-like body, which produces rootlets on the lower face and its fructification on the upper. Those of the moss-like kind (sometimes called Scale-Mosses) have their tender spore-cases splitting into four valves; and with their spores are intermixed some slender spiral

Fig. 529. Mnium cuspidatum, smahler thán nature. 530. Its calyptra, detached, enlarged. 531. Its spore-case, with top of stalk, magnified, the lid (532) being detached, the outer peristome appears. 533. Part of a cellular ring (annulus) which was under the lid, outside of the peristome, more magnified. 534. Some of the outer and of the imer peristome (consisting of jointed teeth) mucl magnified. 535. Antheridia and a pistillidium (the so-called flower) at end of a stem of same plant, the leaves torn away (0°, antheridia, \mathcal{F}. pistilidium), magnfied. 536. A hursting antheridium, and some of the accompanying jointed threads, highly magnified. 5:3. Summit of an open spore-case of a Moss, which has a peristome of 16 pairs of teeth. 538. The donble peristome of a Hypnum. 539-541. Spmre-case, detached calyptra, and top of more enlarged spore-caso and detacheil hid, of Physcomitrium pyriforme (Fig. 527) : orifice shows that there is no peristome.
and very hegrometric threads (called Elaters) which are thought to aid in the dispersion of the spores. (Fig. 542-544.)
502. Marehantia, the commonest and largest of the true Liverworts, forms large green plates or fronds on dimp and shady ground, and sends up from some part of the upper face a stout stalk, ending in a several-lobed umbrella-shaped body, under the lobes of which hang several thin-walled spore-cases, which burst open and discharge spores and elaters. Riccia natans (Fig. 545) consists of wedge-shaped or heart-shaped fronds, which float free in pools of still water. The under face bears copious rootlets; in the substance of the upper face are the sporc-cases, their pointed tips

merely projecting: there they burst open, and discharge their spores. These are comparatively lew and large, and are iu fours; so they are very like the macrospores of Pillworts or Quillworts.
503. Thallophyta, or Thallophytes in English form. This is the name for the lower class of Celluar Cryptogams, - plants in which there is no marked distiuction into root, stem, and leaves. Roots in any proper sense they never have, as organs for absorbing, although some of the larger Seaveeds (such as the Sca Colander, Fig. 553) have them as holdfasts. Instead of axis and foliage, there is a stratum of frond, in such plants commonly called a Thallus (hy a strained use of a Greek and Latin word which means a green shoot or bough), whieh may have any kind of form, leaflike, stem-like, branchy, extended to a flat plate, or gathered into a sphere, or drawn out into threads, or reduced to a single row of cells, or even reduced to single cells. Indecd, Thallophytes are so multifarious, so numerous in kinds, so protean in their stages and transformations, so recondite in their fructifieation, and many so microsenpic in size, cither of

[^31]the plant itself or its essential organs, that they have to be elaborately deseribed in separate books and made subjeets of speeial study.
501. Nevertheless, it may be well to try to give some general idea of what Algæ and Liehens and Fungi are. Limmeus had them all under the orders of Algæ and Fungi. Afterwards the Lichens were separated; but

of late it has been made most probable that a Liehen consists of an Alga and a Fungus conjoined. At least it must be so in some of the ambiguous forms. Botanists are in the way of bringing out new classifications of the Thallophytes, as they come to understand their structure and relations better. Here, it need only be said that
505. Lichens live in the air, that is, on the ground, or on rocks, trunks, walls, and the like, and grow when moistened by rains. They assimilate air, water, and some eartly matter, just as do ordinary plants. Algæ, or Sea-

weeds, live in water, and live the same kind of life as do ordinary plants. Fungi, whatever medium they inhabit, live as animals do, upon organie matter, - upon what other plants have assimilated, or upon the products of

Fig. 545, 546. Two plants of Riccia natans, about natural size. 547. Magnified section of a part of the froml, showing two immersed spore-cases, and one emptied space. 548. Magnified section of a spore-case with some spores. 549. Magnified spore-case torn out, and spores; one figure of the spores united; the other of the four separated.

Fig. 550. Branch of a Chara, about natural size. 551. A fruiting portion, magnifiel, showing the structure; a sporocarp, and an antherillium. 55?. Outlines of a portion of the stem in section, showing the central cell and the outer or cortical cells.
their decay. True as these general distinetions are, it is no less true that these orders run together in their lowest forms ; and that Algre and Fungi may be traced down into forms so low and simple that no clear lise can be drawn between them; and even into forms of which it is meertain whether they should be called phants or animals. It is as well to say that they are not high enough in rank to be distinetively either the one or the other. On the other hand there is a peculiar group of plants, whieh in simplicity of composition resemble the simpler Algæ, while in fructification and in the arrangements of their simple cells into stem and branehes they seem to be of a higher order, viz.: -
506. Characeæ. These are aquatic herbs, of eonsiderable size, abounding in ponds. The simpler kinds (Nitella) have the stem formed of a single row of tubular eells, and at the nodes, or junction of the cells, a whorl of similar branches. Chara (Fig. 550-5.32) is the same, exeept that the cells which make up the stem and the principal branches are strengthencd by a coating of many smaller tubular cells, applied to the surface

enwrapped by tubular cells twisted around it : by the side of this is a smaller and gloinlar antheridium. The latter breaks up into eight shield-

[^32]shaped pieces, with an internal stath, and bearing long and ribbon-shaped filaments, which consist of a row of delicate cells, each of which discharges a frec-moting microseopic threal (the analogue of the pollen or pollen-tube), nearly in the mamer of Ferns and Mosses. One of these threads reaches and fertilizes a cell at the apex of the mucleus or solid body of the sporocarp. This subsequently germinates and forms a new individual.
507. Algæ or Seaweeds. The proper Seawecds may be studied by the aid of Professor Farlow's "Marine Algw of New Eugland; "the

555

556
fresh-water species, by Prof. H. C. Woods's "Fresh-water Alge of North America," a larger and less accessible volume. A few common forms are here very briefly mentioned and illustrated, to grive an idea of the family. But they are of almost endless diversity.
505. The common Rockweed (Fucus vesiculosus, Fig. 554, abounding between high and low water mark on the coast), the rarer Sca Colander (Agarmun Tumeri, Fig. 553), and Laminaria, of whieh the larger forms are called Devil's Aprons, are good representatives of the olive green or brownish Seaweeds. They are attached either by a disk-like base or by root-like holdfasts to the rocks or stones on which they grow.
509. The hollow and iuflated places in the Fucus vesiculosus or Rockweed (Fig. 551) are air-bladders for bnorancy. The fructification forms in the substance of the tips of the frond: the rough dots mark the places where the conceptacles open. The spores and the fertilizing cells are in different plants. Scetions of the two kinds of conceptacles are given in Fig. 555 and 556. The contents of the conceptacles are discharged through

Fig. 555. Magnified section through a fertile conceptacle of Rockweed, showing the large spores in the midst of threads of cells. 556. Similar section of a sterile conceptacle, containing slender antheridia. From Farlow's "Marine Algæ of New England."
a small orifice whieh in cach figure is at the margin of the page. The large spores are formed cight together in a mother-cell. The minute motile filaments of the antheridia fertilize the large spores after injection into the water: and then the latter promptly aequire a cell-wall and germinate.
510. The Florideæ or Kose-red series of marine Algæ (which, however, are sometimes green or brownish) are the most attractive to amateurs. The delicate Porphyra or Laver is in some countries eaten as a delieacy, and the eartilaginous Chondrus erispus has

557 been largely used for jelly. Besides their conceptaeles, which contain true spores (Fig. 560), they mosily have a fructification in Tetraspores, that is, of spores originating in fours (Fig. 559).

560
511. The Grass-green Algæ sometimes form broad membranous fronds, such as those of the common Ulva of the sea-shore, but most of thent form

mere threads, either simple or branched. To this division belong almost

Fig. 557. Small plant of Chondrus crispus, or Carrageen Moss, reduced in size, in fruit; the spots represent the fructitication, consisting of numerons tetraspores in bunches in the substance of the phant. 558. Section through the thickness of one of the lobes, magnifien, passing through two of the imbehled fruit-clusters. 559. Two of its tetraspores (spores in fours), highly magnified.

Fig. 550. Section through a conceptacle of Delesseria Leprieurei, much magnified, showing the spores, which are single specialized cells, two or three in a row.

Fig. 561. A piece of the rosered Delesseria Lepreinrei, donble natural size, 562. A piece cut out and much magnitied, showing that it is composed of a layer of cells. 563. A few of the cells more highly magnified: the cells are gelatinous and thick-walled.
all the Fresh-water Algx, such as those which constitute the silky threats or grecu slime of ruming streams or standing pools, and which were all called Confervas before their immense diversity was known. Some are formed of a single row of cells, developed each from the end of another. Ollers branch, the top of one cell producing more thran one new one (Fig. 56t). Others, of a kind which is very common in fresh watcr, simple threads made of a line of cells, have the chlorophyll and protoplasm of each cell ar-

a cell of each thread bulge or grow out, and unite when they meet; the cell-wall partitions between them are absorbed so as to open a free communication ; the spiral band of grecn matter in both cells breaks up; the whole of that of oue cell passes orer into the other; and of the united contents a large green spore is formed. Soon the ohd cells decay, and the spore

Fig. 564. The growing end of a branching Conferva (Cladophora glomerata), much magnifiel; showing how, hy a kind of budding growth, a new cell is formed by a cross partition separating the newer tip from the older part below; also, how the liranches arise.

Fig. 5ffín. Two magnified indiviluals of a Spirogra, forming spores by conjugation; a completed spore at base : above, successive stages of the conjngation are represented.

Fig. 566. C'losterium acutum, a common Desmid, moderately magnified. It is a single firm-walled cell, filled with green protoplasmic matter.

Fig. 567. Nore magnified view of three stages of the conjugation of a pair ci the same.
set free is ready to germinate. Fig. 565 represents several stages of the conjugating process, which, however, would never be foumd all together like this in one pair of threads.
513. Desmids and Diatomes, which are microscopic one-celled plants of the same class, conjugate in the same way, as is shown in a Closterimm by Fig. 566, 567. Here the whole living contents of two individuals are incorporated into one spore, for a fresh start. A reproduction which costs the life of two individuals to make a single new one would be fatal to the species if there were not a provision for multiplication by the prompt division of the new-formed individual into two, and these again into two, and so on in geometrical ratio. And the costly process would be meaningless if there were not some real advantage in such a fresh start, that is, in sexes.

514. There are other Algæ of the grass-green series which eonsist of single cells, but which by continued growth form plants of considerable size. Three kinds of these are represented in Fig. 568-574.
515. Lichens, Latin Lichenes, are to be studied in the works of the late Professor Tuckerman, but a popular exposition is greatly needed. The subjoined illustrations (Fig. 575-580) maty simply indicate what some of the commoner forms are like. The eup, or shield-shaped spot, or knob, which bears the fructification is named the Apothecium. This is mainly

Fig. 568. Early stage of a species of Botrydium, a glohose cell. 569, 570. Stages of growth. 571. Full- grown plant, extended and ramified below in a root-like way. 572 . A Vaucheria; single cell grown on into a much-branched threal; the end of some branches enlarging, and the green contents in one (a) there condensed into a spore. 573. More magnified view of a, and the mature spore escapiug. 574. Bryopsis plumosa; apex of a stem with its branchlets; all the extension of one cell. Variously maguified.
composed of slender sacs (Asei), having thread-shaped cells intermived; and each ascus contains few or several spores, which are commonly double or treble. Most Lichens are flat expansions of grayish hue: some of them foliaceous in texture, but never of bright green color; more are crustaccous; some are wholly pulverulent and nearly formless. But in several the vegetation lengthens into an axis (as in Fig. asb), or imitates stem

and branches or threads, as in the Reindecr-Moss on the ground in our northern woods, and the Usnea hanging from the boughs of old trees overhead.
516. Fungi. For this immense and greatly diversified class, it must here suffice to indicate the parts of a Mushroom, a Sphæria, and of oue or two common Moulds. The true vegetation of common Fungi consists of slender cells which form what is called a Mycelium. These filamentous

Fig. 575. A stone on which varions Lichens are growing, such as (passing from left to right) a Parmelia, a Sticta, and on the right, Lecidia geographica. so called from its patches resembling the outline of islands or continents as depicted mpon maps. 576. Piece of thallus of Parmelia conspersa, with section throngh an apothecium. 577. Section of a smaller apothecium, enlarged. 578. Two asci of same, and contained spores, and accompanying filaments; more magnified. 579. Picce of thallus of a Sticta, with section, showing the immersed apothecia; the small openings of these dot the surface. 580. Cladonia coccinea; the fructification is in the searlet knols, which surromid the eups.
cells lengthen and branch, growing by the absorption through their whole surface of the decaying, or orgaizable, or liviug matter which they feed upon. In a Mushroom (Agaricus), a kuoblby mass is at length formed, which develops into a stont stalk (Stipe), bearing the cap (Pileus) : the under side of the eap is covered by the Ilymenium, in this genus consisting of radiating plates, the gills or Lamelle' ; and these bear the powdery spores in inmense numbers. Under the microseope, the gills are found to be studded with projecting eelts, each of which, at the top, produces four stalked spores. These form the powder which collects on a sheet of paper upon which a mature Mushroom is allowed to rest for a day or two. (Fig. 581-586.)
517. The csculent Morel, also Spheria (Fig. 555, 556), and many other Fungi bear their spores in sacs (anci) exactly in the manner of Lichens (515).

518. Of the Moulds, one of the commoner is the Breal-Nould (Fig. 587). lu liuiting it sends up a sleuder stalk, which bears a globutar sac ;

Fig. 581. Agaricus campestris, the common edible Mushroom. 582. Section of cap and stalk. 583. Minnte portion of a section of a gill, showing some sporebearing cells, moch magnitied. 584. One of these, with its four spores, more magnified.

Fig. 585. Sphæria rosellia. 586. Two of the asci and contained double spores, quite like those of a Lichen; much magnified.
this bursts at maturity and diseharges immumerable spores. The blue Cheese-Mould (Fig. 55ヶ) bears a cluster of bramehes at top, each of which is a row of naked spores, like a string of beads, all breaking apart at maturity. Botrstis
 (Fig. 559), the fruiting stalk of which branches, and each branch is tipped with a spore, is one of the many moulds which live and feed upon the juices of other plants or of animals, and are often very destructive. The extremels numerous kinds of smut, rust, mildew, the ferments, bacteria, and the like, many of them very destructive to other regetable and to animal life, are also low forms of the elass of Fungi. ${ }^{1}$

Fig. 587. Ascophora, the Bread-Mouh. 5s8. Aspergillus glancus, the mould of cheese, but common on mouldy vegetables. 559. A species of Botrytis. All magnified.
${ }^{1}$ The "Introduction to Cryptogamous Botany," or third volume of "The Botanical Text Book," now in preparation by the anthor's colleague, Protessor Farlow, will be the proper guide in the study of the Flowerless Plants, especially or the Alge and Fungi.

Section XVIII. CLASSIfication and nomenclature.

519. Classification, in botany, is the consideration of plants in respect to their kinds and relationships. Some system of Nomenclature, or naming, is necessary for fixing and expressing botanical knowledge so as to make it available. The vast multiplicity of plants and the varions degrecs of their relationship imperatively require order and system, not ouly as to names for designating the kinds of plants, but also as to terms for defining their differences. Nomenclature is concerned with the names of plants. Terminology supplies names of organs or parts, and terms to designate their differences.

§ 1. KINDS AND RELATIONSHIP.

520. Plants and animals have two great peculiaritics: 1st, they form themselves; and 2 d , they multiply themselves. They reproduce their kind in a continued succession of
521. Individuals. Mineral things occur as masses, which are divisible into smaller and still smaller ones without alteration of properties. But organic things (vegetables and animals) exist as individual leings. Each owes its existence to a parent, and produces similar individuals in its turn. So each individual is a link of a chain ; and to this chain the naturalhistorian applies the name of
522. Species. All the descendants from the same stock therefore compose one species. And it was from our observing that the several sorts of plants or animals steadily reproduce themselves, or, in other words, keep up a succession of similar individuals, that the idea of species originated. There are few species, however, in which man has actually observed the succession for many generations. It could seldom be proved that all the White Pine trees or White Oaks of any forest came from the same stock. But observation having familiarized us with the general fact that individuals proceeding from the same stock are essentially alike, we infer from their close resemblance that these similar individuals belong to the same species. That is, we infer it when the individuals are as much like each other as those are which we know, or confidently suppose, to have sprung from the same stock.
523. Identity in species is inferred from close similarity in all essential respects, or whenever the differences, however considerable, are not known or reasonably supposed to have been originated in the course of time under changed conditions. No two individuals are exactly alike; a tendency to variation pervades all living things. In cultivation, where variations are looked after and cared for, very striking differences come to light; and if in wild nature they are less common or less conspicuons, it is partly because they are uncared for. When such variant forms are pretty well marked they are called
524. Varieties. The White Oak, for example, presents two or three varieties in the shape of the leaves, although they may be all alike upon each particular tree. The question often arises, and it is often hard to answer, rhether the difference in a particular case is that of a variety, or is specifie. If the former, it may commonly be proved by fiuding sueh intcrmediate degrees of difference in various individuals as to show that no clear distinetion can be dratw between them; or else by observing the variety to vary baek again in some of its oflspring. The sorts of Apples, Pears, Potatoes, and the like, show that differences which are permanent in the individual, and continue unchanged through a long series of generations when propagated by division (as by offsets, enttings, grafts, bulbs, tubers, ete.), are not likely to be reproduced by seed. Still they sometimes are so, and perhaps ahways tend in that direction. For the fundamental law in organic nature is that ofl'spring shall be like parent.

Races are sueh strongly marked varieties, capable of coming true to seed. The different sorts of Wheat, Maize, Peas, Radishes, etc., are familiar examples. By selecting those individuals of a species which have developed or inherited any desirable peenliarity, keeping them from mingling with their less promising brethren, and selecting again the most promising plants raised from their seeds, the eultivator may in a few generations render almost any variety transmissible by seed, so long as it is eared for and kept apart. In fact, this is the way the cultivated domesticated races, so useful to man, have been fixed and presersed. Races, in fact, ean hardly, if at all, be said to exist independently of man. But man does not really produce them. Sueh peculiarities - often surprising enough - now and then origimate, we know not how (the plant sports, as the gardeners say); they are only preserved, propagated, and generally further developed, by the cultivator's skilful care. If left alone, thes are likely to dwindle and perish, or else revert to the original form of the species. Vegetable races are commonly amuals, which ean be kept up ouly by seed, or herbs of which a suceession of generations ean be had every year or two, and so the cdueation by selection be completed without great lapse of time. But all frnit-trees could probably be fixed into races in an equal number of generations.

Bud-varieties are those which spring from buds instead of seed. They are uneommon to any marked extent. They are sometimes ealled Sports, but this name is equally applied to variations among seedlings.

Cross-breens, strietly so-ealled, are the variations which come from cross-fertilizing one variety of a species with another.

Hybrids are the varieties, if they may be so ealled, which come from the erossing of speeies (331). Only nearly related speeies can be hỵbridized; and the resulting progeny is usually self-sterile, but not always. Hybrid plants, however, may often be fertilized and made prolific by the pollen of one or the other parent. This produces another kind of eross-breeds.
525. Speeies are the units in elassifieation. Varieties, althoug's of
utmost importance in cultivation and of considerable consequence in the flora of any comntry, are of less hotanieal signifieanec. For they are apt to be indetinite and to shade ofl one form into another. But species, the botanist experts to be distinct. Indeed, the practical diflerence to the botanist between species and varictics is the definite limitation of the one and the indefniteness of the other. The botanist's determination is partly a matter of observation, martly of judgment.
526. In an enlarged view, varicties may be incipient species; and nearly related species probably came from a common stock in eartier times. For there is every reason to believe that existing vegetation came from the more or less changed vegetation of a preceding geologieal rra. Ilowever that may be, species are regarded as permancut and essentially unchanged in their succession of individuals through the actual ages.
527. There are, at nearly the lowest computation, as many as one humdred thousand species of phanerogamous phants, and the erypogamons species are thought to be still more numerous. They are all commeted hy resemblances or relationships, near and remote, which show that they are all parts of one system, realizations in mature, as we may affirm, of the conception of One Mind. As we surwey them, they do not form a single and comected chain, stretching from the lowest to the highest organized species, although there obviously are lower and higher grades. But the species throughout group themselves, as it were, into elusters or constellations, and these into still more comprehensive elusters, and so on, with gaps between. It is this chastering whieh is the ground of the recognition of kinds of species, that is, of gromps of species of supecssive grades on degree of gencrality ; such as that of similar species into Genere, of genera into Fumilies or Orders, of orders into Clusses. In classitication the sequence, proceeding from ligher or more genemato lower or special, is always Class, Order, Genus, Species, Variety (if meed he).
523. Genera (in the singular, Genus) are assemblages of closely related species, in which the cssential parts are all constructed on the same particular trpe or plan. White Oak, Red Oak, Scarlet Oak, Live Oak, etc., are so many species of the Oak gemus (hatim, Quercus). The Chestmuts compose another genus; the Becehes another. The Apple, Pear, and Crab are species of one genus, the Quince represents another, the various species of Hawthorn a third. In the anmal kingdom the common cat, the wild-cat, the pantlier, the tiger, the lopard, and the lion are species of the cat kind or genus; while the dog, the jackal, the different species of wolf, and the foxes, compose another genus. Some genera are represented by a rast mumber of species, others by few, very many hy only one known species. For the genus may be as perfectly represented in one species as in several, although, if this were the case thronghout, genera and species would of course be identical. The Befch gemms and the Chestmit genus would be just as distinct from the Oak genns even if but one Beech and one Chestnint were known; as indeed was once the case.
529. Orders are groups of genera that resemble each other; that is, they are to genera what genera are to species. As familiar illustrations, the Oak, Chestnut, and Beech genera, along with the Hazel genus and the Hornbeams, all belong to one order. The Birches and the Alders make another ; the Poplars and Willows, another; the Walnuts (with the Buttermut) and the Hickories, still another. The Apple genus, the Quince and the Hawthoms, along with the Plums and Cherries and the Peach, the Raspberry with the Blackberry, the Strawberry, the Rose, belong to a large order, which takes its name from the Rose. Most botanists use the names "Order" and "Eamily" srnonsmously; the latter more popularly, as "the Rose Family," the former more technically, as "Order Rosacece."
530. But when the two are distinguished, as is common in zoölogy, Family is of lower grade than Order.
531. Classes are still more comprehensive assemblages, or great groups. Thus, in modern botany, the Dicotyledonous plants compose one class, the Monocotyledonous plants another (36-40).
532. These four grades, Class, Order, Genus, Species, are of universal use. Variety comes in upon occasion. For, although a species may have no recognized varieties, a genus implies at least one species belonging to it ; every genus is of some order, and every order of some class.
533. But thesc grades by no means exhanst the resources of classification, nor suffice for the elucidation of all the distinctions which botanists recognize. In the first place, a higher grade than that of class is needful for the most comprehensive of dirisions, that of all plants into the two Series of Phanerogamous and Cryptogamous (6); and in natural history there are the two Kingdoms or Realms, the Vegetable and the Animal.

534 . Moreover, the stages of the scaffolding have been variously extended, as required, by the recognition of assemblages lower than class but higher than order, viz. Subclass and Cohort; or lower than order, a Suborder; or between this and genus, a Tribe; or between this and tribe, a Subtribe; or between genus and species, a Subgenus; and by some a species has been divided into Subspecies, and a varicty into Subrarieties. Last of all are Indiciduals. Suffice it to remember that the following are the principal grades in classification, with the proper sequence; also that only those here printed in small capitals are fundamental and universal in botany:-

Series,

Class, Subclass, Cohort,
Order, or Family, Suborder, Tribe, Subtribe, Genus, Subgenus or Section,

Species, Variety.

§ 2. NAMES, TERMS, AND CHARACTERS.

535. The name of a plant is the name of its genus followed by that of the speeies. The name of the genus answers to the surname (or family name) ; that of the speeies to the baptismal name of a person. Thus Quercus is the name of the Oak genus; Quercus alba, that of the White Oak, Q. rubra, that of Red Oak, (). migiol, that of the Blaek-Jaek, ete. Botanieal names being Latin or Latimized, the adjective name of the speeies comes after that of the geous.
536. Names of Genera are of one word, a substantive. The older ones are mostly elassical Latin, or Greek adopted into Latin; sueh as Quercus for the Oak genus, Fagus for the Beech, Corylas, the Hazel, and the like. But as more genera beeame known, botanists had new names to make or borrow. Many are named from some appearance or property of the flowers, leaves, or other parts of the plant. To take a few examples from the early pages of the "Manal of the Botany of the Northem United States," - the genus Hepatica comes from the shape of the leaf, resembling that of the liver. Myosurus meaus monse-tail. Delphinium is from delphin, a dolphin, and alludes to the shape of the flower, whieh was thought to resemble the elassieal figures of the dolphin. Xanthorrhiza is from two Greek words meaning yellow-root, the common name of the plant. Cimicifuga is lormed of two Latin words meaning to drive away bugs, i. e. Bugbane, the Siberian speeies being used to keep away such vermin. Sanguinaria, the Bloodroot, is named from the blood-like eolor of its juiee. Other genera are dedieated to distinguished botanists or promoters of seienee, and bear their nanes: such are Magnoliu, which eommemorates the early French botanist, Magnol ; and Jeffersonia, named after President Jefferson, who sent the first exploring expedition over the Roeky Mountains. Others bear the name of the discoverer of the plant; as, Sarracenia, dedieated to Dr. Sarrazin, of Quebee, who was one of the first to send the common Piteher-plant to the botanists of Europe ; and Claytonia, first made known by the early Virginian botanist Clayton.
537. Names of Species. The name of a speeies is also a single word, appended to that of che genus. It is commonly an adjeetive, and therefore agrees with the generie name in ease, gender, ete. Sometimes it relates to the eountry the speeies inhabits ; as, Claytonia Virginica, first made known from Virginia; Sanguinaria Canadensis, from Canada, ete. More commonly it denotes some obvious or characteristic trait of the speeies; as, for example, in Sarracenia, our northern species is named purpurea, from the purple blossoms, while a more southern one is named flata, beeause its petals are yellow; the speeies of J (ffersonia is called diphylla, meaning two-leaved, becanse its leaf is divided into two leaflets. Some speeies are named after the discoverer, or in eompliment to a botanist who has made them known; as, Magnolia Fraseri, named after the botanist Fraser, one
of the first to find this speeics ; and Sarracenia Drummondie, for a Pitcherphant found by Mr. Drammond in Etorida. Such personal specitie names are of course written with a capital initial letter. Occasionally some old substantive name is used for the species; as Magnolia Umbrella, the Umbrella tree, and Ramunculus flammula. These are also written with a capital initial, and need not accord with the generic name in gender. Gcographical specific names, such as Canadensis, Curoliniana, Americana, in the later usage are by some written without a capital initial, but the older usage is better, or at least more accordant with English orthography.
538. Varietal Names, when any are required, are made on the plan of speeific mames, and follow these, with the prefix var. Ramunculus Flammula, var. reptans, the creeping variety: R. abortivus, var. micranthus, the small-flowered variety of the species.
539. In recording the name of a plant it is usual to append the name, or an abbreviation of the name, of the botanist who first published it; and in a flora or other systematic work, this reference to the source of the name is completed by a further citation of the name of the book, the volume and page where it was first published. So "Ramunculus acris, L.," means that this Buttercup was first so named and described by Linneus; " R. multifitur, Pursh," that this species was so named and published by Pursh. The suffix is no part of the name, but is an abbreviated reference, to be added or omitted as consenience or definiteness may require. The authority for a generic name is similarly recorded. Thus, "Renticulus, L.," means that the genus was so named by Limmos; "Myosurus, Dill.," that the Monse-tail was established as a genus moder this name by Dillenius; Caulophyllum, Michx., that the Blue Cohosh was published under this name by Michan. The full reference in the lastnamed instance would be, "in Flora Boreali-Americana, first volume, 205th page," - in the customary abbreviation, "Michx. Fl. i. 205."

510 . Names of Orders are given in the phral number, and are commonly formed by prolonging the name of a genus of the group taken as a representative of it. For example, the order of whieh the Buttercup or Crowfoot genus, Ramuneulus, is the representative, takes from it the name of Rumunculacea; meaning Plante Ranunculacee when written out in full, that is, Rammenlaceous Plants. Some old descriptive names of orders are kept up, such as Crucifere for the order to which Cress and Mustard belong, from the cruciform appearance of their expanded corolla, and Umbellifere, from the flowers being in umbels.
541. Names of Tribes, also of suborders, subtribes, and the like, are plurals of the name of the typical genus, less prolonged, usually in ea, inere, idece, etc. Thus the proper Butterenp tribe is Ramunculece, of the Clematis tribe, Clematidece. While the Rose family is Rosaceo, the special Rose tribe is Roser.

542 . Names of Classes, etc. For these see the following synopsis of the actual classification adopted, p .183.
543. So a plant is named in two worts, the gencric and the specific names, to which may be added a third, that of the variety, upon occasion. The generic mane is jeculiar: oficionsly it musi not be used 1 wice oser in botany. The specific name must not be used wier over in the same genus, but is free for any other gemus. A (uesers: albur, or White Oak, is no hindrance to Betala alba, or White Bireh; and so of other names.
544. Characters and Descriptions. Plants are characterized by a terse statement, in hotanical terms, of their peenliarities or distimgnishing marks. The character of the order shouk inchde mothing which is common to the whote class it helongs to; that of the genus, nothing wnich is common to the order; that of the species nothing which is shated with all other species of the genus; and so of other divisions. Descriphions may enter into complete details of the whole structure.
545. Terminology, also called Glossology, is nomenclature applied to organs or parts, and their forms or moditications. Each organ or special part has a substantive name of its own: slatees and other moditications of an organ or part are designted by adjective terms, or, when the forms are peculiar, substantive names are given to them. By the correct use of such botanical terms, and by proper subordination of the chatacters under the order, genus, species, etc., plants may be described and determined with much precision. The elassical language of botany is Latin. While modern languages have their own mames and terms, these usually lack the precision of the Latin or Latimzed botanical terminology. Fortunately, this Latinized terminology has beron largely adopted and ineorporated into the English techmical language of botany, thus sccuring precision. And these terms are largely the basis of specifie names of plants.
546. A glossary or vocabulary of the primeipal botanical terms used in phanerogamons and vascular cryptogramons botans is appended to this volume, to which the student may refer, as occasion arises.

§ 3. SYSTEM.

547. Two systems of classification used to be recognized in botany, - the artificial and the natural ; but only the latter is now thought to deserve the name of a system.
548. Artificial classifications have for object merely the aseertaining of the name and place of a plant. Thes do not attempt to express relationships, but serve as a kind of dictionary. They distribute the genera and species according to some one peculiarity or set of peculiarities (just as a dictionary distributes words aceording to their first letter), disregarding all other considerations. At present an artifieial classification in hotany is needed only as a key to the natural orders, - as an aid in referring an unknown plant to its proper family : and such keys are still very necdful, at least for the hegimer. Formerly, when the orders themselyes were not clearly made out, an artificial classification was required to lead the
student down to the gemus. Two such classifications were long in vogue: First, that of Tournefort, fonded manly on the leaves of the flower, the calyx and corolla: this was the prevalent system throughout the first half of the eighteenth century; but it has long since grone by. It was succeeded by the well-known
549. Artificial System of Linnæus, which was founded on the stamens and pristils. It consists of twenty-four classes, and of a variable number of orders; the elasses founded mainly on the number and disposition of the stanens; the orders partly upon the number of styles or stigmas, partly upon other considerations. Useful and popular as this system was down to a time within the memory of still surviving botanists, it is now completely obsolete. But the tradition of it survives in the names of its elasses, Monandria, Diandria, Trimdria, ete., which are famuliar in terminology in the adjective terms monandrous, diandrous, triandrous, etc. (2St) ; also of the orders, Monogynia, Digynia, Trigynia, etc., preserved in the form of monogynous, digynous, trigynons, cte. (.0t); and in the name Cryptogamia, that of the 24 th elass, which is continucd for the lower series in the natural classification.
550. Natural System. A genuine system of botany consists of the orders or famihes, duly arranged under their classes, and having the tribes, the genera, and the speeies arranged in them according to their relationships. This, when properly carried ont, is the Natural System; because it is intended to express, as well as possible, the rarions degrees of relationship among plants, as presented in nature; that is, to rank those species and those genera, etc., next to each other in the classification which are really most alike in all respects, or, in other words, which are coustructed most nearly on the same particular plan.
551. There can be only one natnral system of botany, if by this term is meant the plan aeeording to which the regetable creation was called into being, with all its grades and diversities among the species, as well of past as of the present time. But there may be many natural systems, if we mean the attempts of men to interpret and express that plan, - systems whieh will vary with advancing knowledge, and with the judgment and skill of different botanists. These must all be very imperfect, bear the impress of individual minds, and be slaped by the current philosophy of the age. But the endeavor always is to make the classifieation answer to Nature, as far as any system can which has to be expressed in a definite and serial arrangement.
552. So, although the classes, orders. genera, etc., are natural, or as natural as the systematist can make them, their grouping or order of arrangement in a book, must necessarily be in great measure artificial. Indeed, it is quite impossible to arrange the orders, or even the few classes, in a single series, and yet have each group stand next to its nearest relatives on both sides.
553. Especially it should be understood that, although phancrogamous
plants are of higher grade than eryptogamous, and angiospermous or ordinary phanerogamons higher than the gymmospermous, yet there is 110 culmination in the vegetable ing dom, nor any lighest or lowest order of phanerogamous plants.

554 . The particular system most largely nsed at present in the classi. fication of the orders is essentially the following : -

Series I. PHANEROGAMIA: Pilanerogamols or Flowering Plants.
Class I. DICOTYLEDONES ANGIOSPERMEE, called for shortness in English, Dicotyledons or Dicotyls. Orules in a elosed ovary. Embryo dicotyledonous. Stem with exogenoms plan of growth. Leaves reticulate-veined,

Artificial Dirision I. Polypetale, with petals mostly present and distinct. Orders about 50 in nmmber, Remunculacere to Cornacese.
Artificial Dicision II. Gamopetalee, with gamopetalous corolla. Orders about 45, Caprifoliacee to Plantayinacea.
Artificial Dicision III. Apetale or Incompletee, with periantl, when present, of calyx only. Orders about 35 in number, from Nyctaginacee to Salicacea.
Class II. DICOTYLEDONES GYMNOSpERMEE, in English Gimnosperms. No ovary or pericarp, but owules and seeds maked, and no proper calyx nor corolla. Embryo dieotyledonous or polyeotyledonons. Stem with exogenous plan of growth. Leaves mostly parallel-veined. Consists of order Guetacea, which strietly comects with Angiospermous Dicotyls, of Conifere, and of Cycadacea.
Class III. MONOCOTYLEDONES, in English Moxocotyledors or Monocotyls. Angiospermous. Embryo monocolyledonous. Stem with endogenous plan of growth. Leaves mostly parallel-veines.

Dicision I. Petalonde. Perianth eomplete, having the equiralent of both calyx and corolla, and all the imer series corolline. About 18 orders.
Dicision II. Calycine. Perianth complete (in two series) but not corolline, mostly thiekish or ghmaceous. Chiefly two orders, Juncacere, the true Rushes, and Palma, Palms.
Dicision III. Spadiciflore or Nudiflore. Perianth none, or rudimentary and incomplete: intlorescence spadiceous. Of five orders, Typhacere and Aroidece the principal.
Dicision $I V$. Gidmacee. P'eriantl none, or very rudimentary : glumaceous bracts to the flowers. Orders mainly Cyperacece and Graminere.
Series II. CRyPTOGaMIA: Cryptogamors or Flonerless Plants.
Class I. P'terlidol'liYta, l'teridofiytes (484).
Class II. BRYOPllita, Bryophytes (498).
Class III. THaJhol'liyta, Thallophtes (503).

Section dix. botanical work.

555. Some hints and brief instructions for the collection, examination, and preservation of specimens are added. They are especially intended for the assistance of those who have not the advantage of a teacher. 'They apply to phanerogamous phants and Ferns ouly, and to systematic botany. ${ }^{1}$

§ 1. COLLECTION, OR HERBORIZATION.

556. As much as possible, plants should be examined in the living state, or when freshly gathered. But dried specimens should be prepared for more leismely examination and for comparison. To the working botanist good dried specimens are indispensable.

55\%. Botanical Specimens, to be complete, should have root or rontstock, stem, leares, Howers, both open and in bud, and fruit. Sometimes these may all be obtained at one gathering ; more commonly two or three gatherings at different times are requisite, especially for trees and slirubs.
559. In Herborizing, a good knife and a narrow and strong trowel are needed; but a rery strong knife will serve instead of a trowel or small piek for digging out bulbs, tubers, and the like. To carry the specimens, either the tin box (casculum) or a portfolio, or both are required. The tim box is best for the collection of specimens to be used fresh, as in the class-room; also for very thick or fleshy plants. The portfolio is indispensable for long expeditions, and is best for specimens which are to be preserved in the herbarium.
559. The Vasculum, or Botanical Collerting-bor, is made of tin, in slape like a candle-box, only flatter, or the smaller sizes like an English sandwiehcase; the lid opening for nearly the whole length of one side of the box. Any portable tin box of convenient size, and caprable of holding specimens a foot or fifteen inches long, will answer the purpose. The box should shat close, so that the specimens may not wilt: then it will keep leafy branches and most flowers perfectly fresh for a day or two, especially if slightly moistence. They should not be wet.

560 . The Portfolio is best made of two pieces of solid binder's-board, covered with enamel cloth, which also forms the back, and fastened by straps and buckles. It may be from a foot to twenty inches long, from nine to eleven or twelve inches wide. It should contain a necdful quantity of smooth but strong and pliable paper (thin so-called Manilla paper is best), either fastened at the back as in a book, or loose in folded sheets when not rery many specimens are required. As soon as gatliered, the specimens should be separately laid between the leaves or in the folded sheets. ami kent muder moderate pressmre in the elosed portfolio.

[^33]561. Of small herbs, especially anmuals, the whoie plant, root and all, should be taken for a speeimen. Of larger ones branches will suffice, with some leaves from near the root. Enough of the root or subtermean part of the plant should be collected to show whether it is an anmald, a biennial, or a peremnial. Thiek roots, bults, tubers, or braneles of specimens intended to be pressed should be thimned with a kuife, or cut into slices. Keep the specimens within the length of fifteen or sixtcen mehes, by folding, or when that cinnot be done, by cutting into lengths.
562. For Drying Specimens a grood supply of sol't and unsized paper is wanted; and some eonvenient means of applying considerable pressure. To make good dried botanieal sprecimens, dry them as rapidly as possible between many thieknesses of sun-dried paper to absorb their moisture, under as much pressure as can be given without crushing the more delicate parts. This pressure may be lad by a botanical press, of which various forms have been contrived; or by weights plaeed upon a board, - from forty to eighty or a lumedred ponnds, according to the quantity of speeimens drying at the time. For use while travelling, a good portable press may be made of thick biuders' boards for the sides, and the pressure may be applied by strong straps will buekles. Still better, on some accounts, are portable presses made of wire network, which allow the dampness to eseape by evaporation between the meshes. For herborization in a small way, a light wire-press may be taken into the field and made to serve also as a portfolio.
563. It is well to have two kinds of paper, namely, driers of bibulous paper, stitehed into pads (or the pads may be of thick carpet-paper, eut to size) and thin smooth paper, folded once; the specimens to be laid into the fold, either when gathered or on returning from the excursion. These sheets are to hold the specimens until they are quite dry. Erery day, or at first even twice a day, the specimens, left undisturbed in their sheets, are to be shifted into fire-dried or smi-dried fresh driers, and the pressure renewed, while the moist sheets are spread out to dry, so as to take their turn again at the next shilting. This course must be continued until the specimens are no longer moist to the touch. Good and comely specimens are either made or spoiled within the first twenty-four or t'inty-six hours. After that, when plenty of driers are used, it may not be necessary to change them so frequently.
564. Succulent plants, which long refuse to part with life and moisture, and Spruces and some other evergreens which are apt to cast off their leaves, may be plunged for a moment into boiling water, all but the flowers. Delicate flowers may be encased in thin tissue paper when put into the press. Thick parts, like the heads of Suu-flomers and Thistles, may be cut in two or into slices.
565. Dried specimens may be packed in bundles, either in folded paper or upon single half-sheets. It is better that sueh pajer should not be bibulous. The packages should be well wrapped or kept in close eases.
566. Poisoning is nceessary if specimens are to be permanently preserved from the depredation ol inseets. The usual application is an almost saturated solution of corrosive sublimate in 95 per cent alcohol, freely applied with a large and soft brush, or the specimens dipped into some of the solution poured into a large and flat dish; the wetted specimens to be transferred for a short time to driers.

§ 2. HERBARIUM.

567. The botanist's collection of dried specimens, ticketed with their names, place, and time of collecton, and systematically arranged under their genera, orders, etc., forms a Hortus Siccus or Herburium. It comprises not only the speeimens whieh the proprietor has himself collected, but those which he acpuires through friendly exchanges, or in other ways. The specimens of an herbarium may be kept in folded slicets of paper; or they may be fastened on lall-sheets of thick and white paper, either by gummed slips, or by glue applied to the specimens themselves. The former is best tor private and small herbania; the latter for large ones which are much turned over. Each sheet should be appropriated to one species; two or more diflerent plants shonld never be attached to the same sheet. The generic and specifie name of the plant should be added to the lower right-hand corner, either written on the sheet, or on a ticket pasted down; and the time of eollection, the loeality, the color of the flowers, and any other information which the specimens themselves do not afford, should be duly recorded upon the sheet or the ticket. The sheets of the herbarium should all be of exactly the same dimensions. The herbarium of Linuxes is on paper of the common foolscap size, about cleven inches long and seven wide. This is too small. Sixteen and three eighths inches by eleven and a half inehes is an approved size.
568. The sheets containing the species of each genus are to be placed in genus-covers, made of a full sheet of thick paper (such as the strongest Manilla-hemp paper), to be when lolded of the same dimensions as the species-shect but slightly wider: the name of the genus is to be written on one of the lower corners. These are to be arranged muder the orders to which they heloug, and the whole kept in elosed cases or cabinets, either laid flat in compartments, like "pigeon-holes," or else placed in thick portfolios, arranged like lolio volnmes. All should be kept, as much as practicable, in dust-proof and insect-proof eases or boxes.
569. Fruits, tubers, and other hard parts, too thick for the herbarium, may be kept in pastehoard or light wooden boxes, in a collection apart. Small lonse fruits, seeds, detached flowers, and the like may be conseniently preserved in paper capsules or envelopes, attached to the herbarium. sheets.

§ 3. INVESTIGATION AND DETERMINATION OF PLANTS.

570. The Implements required are a hand magnilying glass, a pocket lens of an iuch or two focus, or a glass of two leuses, one of the lower and the other of the higher power; and a sharp penkuife for dissection. With these and reasonable persererance the structure of the flowers and fructification of most phanerogamous plants and Ferns can be made out. But for ease and comfort, as well as for certainty and right training, the student should have some kind of simple stage microscope, and under this make all dissections of small parts. Without it the student will be apt to fall into the bad habit of guessing where he ought to ascertain.
571. The simple microscope may be reduced to a good leus or doublet, of an inch focus, mounted over a glass stage, so that it can be moved up and down and also sidewise, and with (or without) a litıle mirror underneath. A better one would have one or two additional lenses (say of half and of a quarter inch focus), a pretty large stage, on the glass of which several small objects can be placed and conveniently brought under the lens; and its height or that of the lens should be adjustable by a rackwork; also a swivel-mounted little mirror beneath, which is needed for minute objects to be viewed by transmitted light.
572. For dissecting and displaying small parts on the stage of the microscope, besides a thin-bladed knife, the only tools needed are a good stock of common needles of various sizes, mounted in landles, and one or more saddler's-needles, which, being triangular, may be ground to sharp cdges convenient for dissection. Also a pair of delicate-pointed forceps; those with curved points used by the dentist are most convenient. A cup of clean water is indispensable, with which to moisten or wet, or in which occasionally to float delicate parts. Small flowers, buds, fruits, and seeds of dried specimens can be dissected quite as well as fresh ones. They have only to be soaked in warm or boiling water.
573. The compound microscope is rarely necessary cxcept in cryptogamic botany and vegetable anatomy; but it is very useful and convenient, especially for the examination of pollen. To the advanced botanist it is a necessity, to all students of botany an aid and delight.
574. Analysis. A few directions and hints may be given. The most important is this: In studying an unknown plant, make a complete examination of all its parts, and form a clear idea of its flomal structure and that of its fruit, from pericarp down to the embryo, or as far as the materials in hand allow, before taking a step toward finding out its name and relationship by means of the keys or other helps which the Manuals and Floras provide. If it is the name merely that is wanted, the shorter way is to ask some one who already knows it. To verify the points of structure one by one as they happen to occur in an artificial key, withont any preparatory investigation, is a usual but is not the best nor the surest
way. It is well to make drawings or outline sketehes of the smaller parts, and especially diaglams of the plan of the flower, such as those of Fig. 225, 227, 241, 244, 275-277. I'or these, cross sections of the flower-bud or flower are to be made: and longitndinal seetions, such as Fig. 270-274, are equally important. The dissection even of small seeds is not difficult after some practice. Commonly they need to be soaked or boiled
575. The right appreeiation of characters and terms used in description needs practice and calls for judgment. Plants do not grow exactly by rule and plummet, and measurements must be taken loosely. Diflerence of soil and situation are responded to by eonsiderable variations, and other divergences oceur which camot be accounted for by the surroundings, nor be anticipated in general descriptions. Annuals may be very depauperate in dry soils or seasons, or very large when particularly well nomished. Warm and arid situations promote, and wet ones are apt to dıminish pubescence. Salt water canses increased succulence. The color of tlowers is apt to be lighter in shade, and brighter in open and elevated situations. A color or hue not normal to the species now and then occurs, which nothing in the conditions will acconnt for. A vhite-flowered variation of any other colored blossom may alucays be expected; this, though it may be notable, no more indieates a distinet variety of the species than an albino would a variety of the human speeies. The numerieal plan is subject to variation in some flowers; those on the plan of five may now and then vary to four or to six. Variations of the ontline or lobing of leaves are so familiar that they do not much mislead. Only wider and longer observation sulfices to prevent or correct mistakes in hotanical study. But the weighing of evidence and the balaneing of probabilities, no less than the use of the well-ordered and logical system of elassifieation, give as exceltent training to the judgment as the search for the facts themselves does to the observing powers.

§ 4. SIGNS AND ABBRETIATIONS.

576. For a full accomnt of these, whether of former or actual use, see "Structural Botany" of the "Botanieal Text Book," pp. 367, 392, as also for the principles which govern the accentnation of names. It is needful here to explain only those used in the Manuals and Floras of this country, for which the present volume is an introduction and companion. They are not numerous.
577. In arranging the species, at least those of a large gemus, the divisions are denoted and graduated as follows: The sign § is prefixed to sections of the highest ram: these sections when they have names affixed to them (as lruxis§ Cerasus) may be ealled subgenera. When the divisims of a gemus are not of such importance, or when divisions are made under the subremus itself, the most eomprehensive ones are marked by asterisks, " for the first, * * for the secomd, and so on. Subdivisions are
marked with a prefixed + ; those under this head with ++; and those under this with $=$, if there be so many grades. A similar notation is followed in the synopsis of the genera of an order.
578. The interrogation point is used in botany to indieate doubt. Thus Clcmatis crispa, L.? expresses a doubt whether the plant in question is really the Clematis crispa of Limmens. Clematis? polypetala expresses a doubt whether the plant so named is really a Clematis. On the other hand the exelamation point (!) is used to denote certainty whenever there is special need to affirm this.
579. For size or height, the common signs of degrees, minutes, and seconds, have been used, thus, $1^{\circ}, 2^{\prime}, 3^{\prime \prime}$, stand respectively for a foot, two inches, and three lincs or tweliths of an inch. A better way, when such brevity is needed, is to write 1^{ft}. 2^{in}. 83^{l}.
580. Signs for duration used by Limmens were \odot for an annual, of for a biemial, $2 f$ tor a peremial herb, 5 for a shrub or trec. DeCandolle bronglit in \odot for a plant that died after once flowering, (1) if annual, (2) if bienuial.
581. 'To indicate sexes, δ means staminate or male plant or blossom; \boldsymbol{q}, pistillate or female; \uparrow, perfect or hermaphrodite.
582. To save room it is not uneommon to use ∞ in plate of "many ; " thus, "Stamens ∞," for stamens indefinitely numerous: " ∞ flora" for pluritlora or many-flowered. Still more eommon is the form "Stamens 5-20," or "Calyx 4-5-parted," for stamens from five to twenty, calyx four-purted or five-parted, and the like. Sueh abbreviations lardly need explanation.
583. The same may be said of sueh abbreviations as Cal. for calyx, Cor. for corolla, Pet. for petals, St. for stamens, Pist. for pistil, Hab. for habitat, meaning place of growth, Herl. for herbarium, Hort. for garden. Also l. c., loco citato, which avoids repetition of volume and page.
584. "Structural Botany" has six pages of abbreviations of the names of botanists, mostly of botanieal authors. As they are not of much consequence to the begimer, white the more adraneed botanist will know the names in full, or know where to find them, only a selection is here appended.

abbreviations of the names of botanists.

Adans. $=$	Adanson.	Gimel.	$=$ Gimelin.
Ait.	Aiton.	Good.	Goodenongh.
Al1.	Allioni.	Givev.	Greville.
Andr.	Andrews.	Criseb.	Grisebach.
Arn.	Arnott.	Gron.	\} Gronorius.
Aub.	Aublet.	Gronov.	
Bartr.	Bartram.	Hall.	Haller.
Beauv.	Palisot de Beauvois.	llartm.	Hartmann.
Benth.	Bentham.	Hartu.	Hlartweg.
Bernh.	Bernhardi.	Harv.	Harsey.
Bigel.	Jacob Bigelow.	HIaw.	Haworth.
Bong.	Bongard.	Hegelm.	Hegelmaier.
Bonpl.	Bonpland.	Hemsl.	Hemsley.
Br . or R . Br .	Robert Brown.	Herb.	Herbert.
Cass.	Cassini.	$\mathrm{H} / \mathrm{ff} \mathrm{m}$.	Hoffmann.
Cav.	Cavanilles.	lloffimans.	Hoffmansegg.
Cham.	Chamisso.	Honk.	Hooker.
Chapm.	Chapman.	Ilook. f.	J. D. Hooker.
Chois.	Choisy.	Hornem.	Ilornemann.
Clayt.	Clayton.	Ituds.	Hudson.
Curt.	Curtis.	llimb.	Humboldt. [Kunth.
Curt. (M. A.)	M. A. Curtis.	/IBK.	Ilmmboldt, Bompland, and
Dart.	Darlington.	Jacq.	Jacquin.
DC. $\}$	DeCandolle.	Jacq.f.	J. F. Jacquin.
DeCand. $\}$	Decandolle.	Juss.	Jussieu.
A. DC.	Alphouse DeCandolle.	A. Juss.	Adrien de Jussiea.
Desc.	Descourtilz.	kit.	Kitaibel.
Desf.	Desfontaines.	L. or Linn.	. Limmeus.
Desv.	Desvaux	Labill.	Labillardiere.
Dill.	Dillenius.	Lag.	Lagasca.
Dougl.	Donglas.	Lam.	Lamarck.
Duham.	Dubamel.	Ledeb.	Ledebour.
Dun.	Dunal.	Lehm.	Lehmann.
Eat.	Eaton (Amos) or D. C.	Lesq.	Lesquereus.
Ehrh.	Ehrhart.	Less.	Lessing.
Ell.	Elliott.	Lestib.	Lestibndois.
Endl.	Endlicher.	L'IHer.	L'Heritier.
Engelm.	Engelmann.	Lindb.	Lindberg.
Engl.	Engler.	Lindh.	Lindheimer.
Fisch.	Fischer.	Lindl.	Lindley.
Freel.	Frolich.	Lodd.	Loddiges.
Gartn.	Gærtuer.	Loud.	London.
Gaud.	Gaudin.	M. Biph.	Marschall von Bieberstein.
Gaudich.	Gandichaud.	Marsh.	Marshall (Humptrey).
Ging.	Gingins.	Mart.	Martius.

$\begin{array}{lc}\text { Mast. } & =\text { Masters. } \\ \text { Maxim. } & \quad \text { Maximowicz } \\ \text { Meisn. } & \text { Meisner or } \\ \text { Meissn. }\end{array} \quad \begin{aligned} & \text { Meissner. }\end{aligned}$
Mich.r. or M.r. Mirhans.
Michr.f. F. A. Michaux.
Mill. Miller.
Miq. Miquel.
Mitch. Mitchell.
Mof. Moęino.
Moq. Moquin-Tandon.
Moric. Moricand.
Moris. Morison.
Muetl. Arg. J. Mucller.
Muell. (F.) Ferdinand Mueller.
Muhl. Muhlenberg.
Murr. Murray.
Naud. Naudio.
Neck. Necker.
$\left.\begin{array}{l}\text { Nees } \\ \text { N. ab E. }\end{array}\right\}$ Nees von Esenbeck.
Nutt. Nuttall.
Ed. Edcr.
Ort. Ortcga.
P. de Beauv. Palisot de Beauvois.

Pall. Pallas.
Parl. Parlatore.
Pav. Pavon.
Pers. Persoon.
Planch. Plauchon.
Pluk. Plukenet.
Plum. Plumier.
Poir. Poiret.
Radlk. Radlkofer.
Raf. Rafinesque.
Red. Redonté.
Reichenb. Reichenbach.
Rich. L. C. Richard.
Rich.f. or A. Achille Richard.
Richards. Richardson.
Ridd. Riddell.

 Rotto.	$t_{1}=$ Rwmer \& Schultes. Rottbel!.
Rupn.	Ruprecht.
St. Hil.	Saiut-Hilaire.
Salish.	Salisbury.
Schit.	Schkuhr.
Schlecht.	Schlechtendal.
S'chrad.	Schrader.
Schreb.	Schreber.
Schwein.'	Schweinitz.
Scop.	Scopoli.
Spreng.	Sprengel.
Sternb.	Steruberg.
itpud.	Steudel.
siull.	Sullivant.
Thunb.	Thumberg.
Torr.	Torrey.
Tourn.	Tournefort.
Trautv.	Trautvetter.
Trin.	Trinius.
Tuck.	Tuckerman.
İaill.	Vaillant.
Vent.	Ventenat.
Vill.	Villars.
Wahl.	Wahlenberg.
FIalds.	Waldstein.
Wall.	Wallich.
Wallr	Wallroth.
Walp.	Walpers.
Trall.	Walter.
ITang.	Wangenheim.
Wals.	Sereno Watson, unless other iuitials are given
Fedd.	Weddell.
Irendl.	Wendland.
Wiks.	Wikstrom.
Willd.	Willdenow.
Wulf.	Wulfen.
Zucc.	Zuccarini.
Zuccag.	Zuccagini.

GLOSSARY AND INDEX,

OR

DICTIONARY OF TIE PRINCIPAL TERMS IN DESCRIPTIVE BOTANY, COMBINED WITH AN INDEX.

Abstract

For the convenience of unclassical students, the commoner Latin and Greek words (or their equivalents in English form) which enter into the composition of hotanical names, as well as of technical tems, are added to this Glossary. The numbers refer to pages.

A, at the begiming of words of Greek derivation, commonly signifies a negative, or the absence of something; as apetalous, withont jetals; aphylous, lealless, \&c. In words beginning with a vowel, the prefix is an; as anantherous, destitute of anther.
Abnormal, contrary to the usual or the natural structure.
Aboriginal, original in the strictest sense; same as indigenous.
Abortive, imperfectly formed, or rudimentary.
Abortion, the imperfect formation or the non-formation of some part.
Alrupt, sudilenly terminating; as, for instance,
Abruptly pinnate, pinnate without an odd leaflet at the end, 58 .
A cantho-, spiny.
Acaulescent (acaulis), apparently stemless; the proper stem, bearing the leaves and tlowers, being very short or subterranean.
Accessory, something additional; as Accessory buds, 30, 31; Accessny fruits, 118 .
Accrescent, growing larger after flowering.
Accrete, grown to.
Accumbent, lying against a thing. The cotyledous are accumbent when they lie with their edges against the radicle, 128.
Acephalous, headless.
Acerose, needle-shaped, as the leaves of Pines.
Acetabuliform, saucer-shaped.
Achenium, or Achenium (1 lural achenia), a one-seeded, seed-like fruit, 120.
Achlimydeous (Hower), without floral envelopes, 86.
Acicular, neerlle-shajerl; more slender than acerose.
Acinaciform, scimitar-shapel, like some bean-pols.
Acines, the separate grains of a fruit, such as the raspberry.
Acorn, the nut of the Oak, 192.
Acotyledonous, destitute of cotyledons or seed-leaves.
Acrogenous, growing from the apex, as the stems of Ferns and Mosses. Acrogens, or Acrogenous I'lints, a name for the vascular cryptogamous plants, 156.
Aculeate, armed with prickles, i. e. roculei: as the Rose and Brier.
Aculeolate, armed with small prickles, or slightly prickly.
Acuminate, taper-pointed, 5l.
Acutc, merely sharp-pointed, or ending in a point less than a right angle, 54.

Adelphous (stamens), joined in a fraternity (odelphia); see monadelphous, \&c. Aden, Greck for gland. So Adenophorous, gland-bearing.
Adherent, sticking to, or more commonly, growing fast to another boly.
Adnate, literally, growing fast to, born allherent, 95 . The anher is alluate when tixel by its whole length to the filament or its prolongation, 101.
Adnation, the state of being aduate, 94 .
Ad inessed or appressed, brought into contact with, but not united.
Adscendent, ascendent, or ascending, rising gradually upwarls, 39.
Alsurgent, or assuryent, same as ascembing, 39.
Alventitious, out of the proper or usual phice; e. g. Aldventitious buds, 30 .
Adcentive, applied to foreign plants accilentally or sparingly introduced into a comstry, but hardly to be called natmadized.
Equilatercl, equal-sided ; opposed to ohlique.
Aerial roots, se., 36.
Eruyinous, verdigris-colored.
Estival, produced in summer.
Estivation, the arrangement of parts in a flower-bud, 97.
Agamous, sexless.
Aggregate fruits, 118.
Agrestis, growing in fiells.
Air-cells or Air-pussayes, spaces in the tissue of leaves and some stems, 131.
Air-Plents, 36.
Akene or Ahenium, 120.
Ala (phural, alet), a wing; the side-jetals of a papilionaceous corolla, 92.
Alabastrum, a flower-buct.
Alar, situated in the forks of a stem.
Alate, winged.
Albescent, whitish, or turning white.
Albus, Latin tor white.
Albumen of the seed, nomrishing matter stored up with the embryo, $21,127$.
Albumen, a vegetable product, of four elements.
Albuminous (seeds), furnished with albumen, 21.
Alburnum, young wood, sap-wood, 142.
Alliaceous, with odor of garlic.
Allogamous, close fertilization.
Alpestrine, subalpine.
Alpine, belonging to high mountains above the limit of forests.
Alternate (leaves), one after another, 29, 67. Petals are alternate with the sepals, or stanens with the petals, when they stand over the intervals between them, 82.
Alveolate, honeycomb-like.
Ament, the scaly spike of trees like the Birch and Willow, 75.
Amentaceous, catkin-like, or catkin-bearing.
Amorphous, shapeless, withont any definite form.
Amphicarpous, producing two kinds of fruit.
Amphigastrium (plural, amphigastria), a peculiar stipule-like leaf of Liverworts.
Amphitropous, ovules or seeds, 111.
Amphora, a pitcher-shaped organ.
Amplectant, embracing. Amplexicaul (leaves), clasping the stem by the base.
Ampullaceous, swelling out like a bottle or bladder (ampulla).
Amylaceous, Amyloid, composed of starch (amylum), or starch-like.
Anandrous, without stamens.
Anantherous, without anthers. Ananthous, lestitute of flowers; flowerless.
Anastomosing, forming a net-work (anastomosis), as the veins of leaves, 50 .
Anatropous ovales or seeds, 111.
Ancipital (anceps), two-edged.
Andrucium, a name for the stamens taken together, 98.

Andro-diecious, flowers staminate on one plant, perfect on another.
Androgynous, having both staminate and pistillate flowers in the same cluster.
Androphore, a column of muitel stamens, as in a Mallow.
Androus, or Ander, andra, andrum, Greek in compoumls for male, or stamens.
Anemophilous, wim-loving, said of wind-fertilizable flowers, 113.
Anfractuose, bent hither and thither as the anthers of the Squash, \&e.
Angiosperme, Angiospermous, with seeds formed in an ovary or periearp, 109.
Anyular divergence of leaves, 69.
Anisos, unequal. Anisonerous, parts unequal in number. Anisopetalous, with umequal petals. Anisophyllous, the leaves unequal in the pairs.
Annual (plant), flowering and fruiting the year it is raised from the seed, and then dying, 37.
Annular, in the lorm of a ring, or forming a circle.
Annulate, marked by rings; or furnishell with an
Annulus, or ring, like that of the spore-ease of most Ferns. In Mosses it is a ring of cells placed between the mouth of the spore-case and the lin in many species.
Annotinous, yearly, or in yearly growths.
Anterior, in the blosson, is the part next the braet, i. e. external; while the posterior side is that next the axis of inflorescence. Thus, in the P'ea, \&c., the keel is anterior, and the stamlard posterior, 97.
Anthela, an open paniculate cyme.
Anther, the essential part of the stamen, which contains the pollen, 14, 80, 101.
Antheridium (plural antheridia), the organ in Cryptogams which answers to the anther of Flowering Plants, 150.
Antheriferous, anther-bearing.
Anthesis, the period or the aet of the expansion of a flower.
Anthocarpus (frnits), 118.
Anthophore, a stipe between calyx and corolla, 113.
Anthos, Greek for flower ; in composition, Monththous, one-flowered, \&e.
Anticous, same as anterior.
Antrorse, directed upwards or forwards.
Apetalous, destitute of petals, 86 .
Aphyllous, leafless.
Apical, belonghy to the apex or point.
Apiculate, pointleted; tipped with a small point.
Apocarpous (pistils), when the several pistils of the same flower are separate.
Apophysis, any irregmlar swelling; the enlargement at the base of the spore-case of the Umbrella-Moss.
Apothecium, the fructification of Licheus, 171.
Appendage, any superadled part. Appendiculate, proviled with appendages.
Appressed, close pressed to the stem, \&c.
Apricus, growing in dry aud sunny places.
Apterous, wingless.
Aquatic (Aquatilis), living or growing in water; applied to plants whether growing under water, or with all but the base raisel out of it.
Arachnoid, Araneose, cobwebby; clothed with, or consisting of, soft downy fibres.
Arboreous, Arborescent, tree-like, in size or form, 39.
Arboretum, a collection of trees.
Archegonium (plural archegonia), the organ in Mosses, \&c., which is analogous to the pistil of Flowering Plants.
Arcuate, hent or curved like a bow.
Arenose (Arenarius), growing in sand.
Areolate, marked out into little spaces or areole.
Argenteous, or Argentate, silvery-like.
Argillose, growing in elay.
Argos, Greek for pure white; Argophyllous or Argyrophyllnus, white-leaved, \&c.
Argutus, aeutely dentate.

Arillate (seeds) furnished with an aril.
Arillition, aril-like.
Arilius, of Aril, a tlesly growth from base of a seed, 126.
Aristate, awned, i. e. furnishel with an arista, like the beard of Barley, \&c., 54.
Aristulate, diminutive of the last; short-awned.
Arrect, brought into upright position.
Arrow-shaped or Arrow-hended, same as sagittate, 53.
Articulated, jointel ; furnished with joints or articalations, where it separates or inclines to do so. Articulated leaves, 57 .
Artificial Classification, 181.
Ascenting (stems, \&e.), 39; (seeds or ovales) 110.
Ascilium, a pitcher-shaped body, like leaves of sarracenia.
Ascus (asci), a sac, the spore-case of Lichens and somu Fungi.
Aspergilliform, shaped like the brush used to sprinkle holy water; as the stigmas of many Grasses.
Asperous, rough to touch.
Assimilation, 144, 147.
Assurgent, same as ascending, 39.
Atropous or Atropal (ovmles), same as orthotropous.
Aurantiacous, orange-colored.
Aureous, golden.
Auriculnte, furnished with auricles or ear-like appendages, 53.
Autogamy, self-fertilization, 115.
Awl-shaped, sharp-pointed from a broader base, 61.
Aun, the bristle or beard of Barley, Oats, \&c.: or any similar appendage.
Avned or Alv-pointed, furnishel with an awn or long hristle-shapeel tip, 54.
Axil, the angle on the upper side between a leaf and the stem, 13 .
Axile, belonging to the axis, or occupying the axis.
Axillary (buds, \&c.), occurring in an axil, 27.
Axis, the central line of any body; the organ romd which others are attached; the root and stem. Ascending and Descending Axis, 38.

Buccate, berried, berry-like, of a pulpy-nature like a berry (bacca).
Budius, chestnut-colored.
Bunner, see Standard, 92.
Burbute, bearded; bearing tufts, spots, or lines of hairs.
Barbed, furnished with a barb or double look; as the apex of the bristle on the fruit of Echinospermum (Stickseed) \&c.
Barbellate, said of the bristles of the pappus of some Composite when beset with short, stiff hairs, longer than when denticulate, hint shorter than when plumose.
Barbellulate, dimimutive of barbellate.
Bark, the covering of a stem outside of the wood, 13S, 140.
Bastl, belonging or attached to the
Buse, that extremity of any organ by which it is attached to its support.
Besifixed, attached by its base.
Bast, Bast-fibres, 134.
Beaked, enting in a prolonged narrow tip.
Bearded, see barbate. Beard is sometimes used for awn, more commonly for loug or stiff hairs of any sort.
Bell-shaped, of the shape of a bell, as the corolla of Harebell, 90.
Berry, a fruit pulpy or juiey throughont, as a grape, 119.
Bi- (ir Bis), in compound words, twice; as
Biarticulate, twice-jointel, or two-jointed; separating into two pieces.
Biauriculate, having two ears, as the leaf in fig. 126.
Bicallose, having two callosities or harder spots.
Bicarinaie, two-kpeled.
Bicipital (Bicens) two-healed; diviling into two parts.

Biconjugate, twice paired, as when a lectiole forks twice.
Bidentete, having two teeth (not t wice or doubly dentate).
Bicnial, of two years' continuance; suringing from the seed one season, flowering and lying the next, 38 .
Bifarious, two-rankel; arrangel in two rows.
Bifitl, two-cleft to about the midlle.
Bifoliolate, a compound leaf of two leatlets, 59.
Bifurcate, twice forkel; or more commonly, forked into two branches.
Bijugate, bearing two pairs (of leaflets, Ne.).
Bilabiate, two-lipped, as the corolla of Labiater.
Bilumellate, of two phates (lamellee), as the stigma of Mimulus.
Bilobed, the same as two-fobed.
Bilocellute, when a cell is divided into two locelli.
Biloculder, two-celled; as most anthers, the pood of Foxglove, \&e.
Binary, in twos.
Binate, in couples, two together. Bipartite, the Latin form of two parted.
Binodal, of two nodes.
Binomial, of two words, as the name of genus and species taken togetlier, 180 .
Bipalmate, twice palmately divided.
Biparous, bearing two.
Bipinnute (leaf), twice 1 immate, 58. Bipinnatiful, twice pinnatifil, 57.
Bipinnatisect, twice pimnately livided.
Biplicate, twice folled together.
Biserial, or Bistriate, oceupying two rows one within the other.
Biserrate, donbly serrate, as when the teeth of a leaf are themelses serrate.
Bisexual, laving both stamens and pistil.
Biternate, twice ternate; i. e, principal livisions three, each bearing three leaftets, 59.
Blatdery, thin and intlated.
Blade of a leaf, its expamdel prortion, 49.
Bloom, the whitish powler on some fruits, leaves, \&e.
Boat-shaped, concave within and keeled without, in shape like a small boat.
Border of corolla, \&c., 89.
Brachiate, with olposite branches at right angles to each other.
Brachy-, short, as Brachycarpous, short-fluited, \&e.
Bract (Bractea), the leat of an intorescence. Slectially, the hract is the small leaf or seale from the axil of which a flower or its pedicel proceens, 73.
Bracteate, furnished with hracts.
Bracteolate, furmished with bractlets.
Bracteose, with mumerous or conspicuous bracts.
Bractlet (Bracteole), or Bracteole, is a bract seated on the perlicel or flower-stalk, 73.
Branch, Branchiny, 27 .
Breathiny-pores, 144.
Bristles, stiff, sharp hairs, or any very stemer bodies of simikar aplearance.
Bristly, heset with bristles. Bristle-pointed, 54.
Brunneous, brown.
Brush-shaped, see aspergilliform.
Bryology, that part of botany which relates to Mosses.
Bry"phyta, Bryophytes, 163.
But, a hanch in its earliest or undeveloped state, 27. Bul-scales, 63.
Bulb, a leaf-thed with tleshy seales, usinally subtemanean, 46.
Bulbils, liminutive bulls.
Bulbiferous, bearing or producing bulls. Bulbose or bulbons, bull-like in shape, \&e.
Balblets, small bulbs, borne above gromul, $4 t$.
Bulb-scales, 46.
Bullute, appearing as if blistered or haddery (from bulla a bubble).
Byssaceous, composed of fine flax-like threads.

Caducous, dropping off very early, comparel with other parts; as the calyx in the Poppy, falling when the flower opens.
Ceruleous, hne. Cornlescent, lecoming bluish.
Cesspitose, or Cespitose, growing in turf-like patehes or tufts.
Calathiform, cul-sinaperl.
Culcarate, turnished with a spur (calcar), 86, 87.
Calceolate or Calceiform, shiper-shaped, like one petal of the Lady's Slipper.
Callose, hardened; or furnished with callosities or thickened spots.
Calvous, bald or naked of hairs.
Calyciflorus, when petals and stamens are adnate to calyx.
Cillycinc, belonging to the calyx.
Calyculate, furnisher with an outer accessory calyx (culyculus) or set of bracts looking like a calyx, as in true Pinks.
Calyptra, the hood or veil of the capsule of a Moss, 163.
Calyptrate, having a calyptra.
Cellyptriform, shaped like a calyptra or candle-extinguisher.
Calyx, the outer set of the floral envelopes or leaves of the flower, 14, 79.
Cambium, Ctmbium-layer, 140.
Campenulate, bell-shaped, 90.
Campylotropous, or Campylotropal. curved ovules and seeds, 111. Campylospermous, applied to fruits of Umbellifere when the seel is curvel in at the edges, forming a groove down the inner face; as in Sweet Cicely.
Canaliculate, channellel, or with a deep longitudinal groove.
Cancellate, latticerl, resembling lattice-work.
Candidus, Latin for pure white.
C'anescent, grayish-white; hoary, usually beeause the surface is covered with fine white hairs. Incanous is whiter still.
Canous, whitened with pubescence; see incanous.
Capillaccons, Capillary, hair-like in shape; as fine as hair or slender bristles.
Capitate, having a globular apex, like the head on a pin.
Capitellute, diminutive of capitate.
Cipitulum, a close rounded dense cluster or head of sessile flowers, 74.
Caproolutc, bearing tendrils (from capreolus, a tendril).
Cipsule, a dry dehiscent seed-vessel of a compound pistil, 122.
Capsular, relating to, or like a capsule.
Capture of insects, 154.
Carinu, a keel; the two anterior petals of a papilionaceous flower, 92.
Carinute, keeled, furnished with a sharp ridge or projection on the lower side.
Cariopsis, or Caryopsis, the one-seeded fruit or grain of Grasses, 121.
Carneous, tlesh-colored; pale red. Carnose, fleshy in texture.
Carpel, or Carpidium, a simple pistil or a pistil-leaf, 106.
Carpclary, pertaining to a carpel.
Carpology, that department of lotany which relates to fruits.
Carpophore, the stalk or support of a pistil extending between its carpels, 113.
Carpos, Greek for fruit.
Cartiluginous, or Cartilagineous, firm and tough in texture, like cartilage.
Caruncle, an excrescence at the scar of some seeds, 12%.
Caranculate, furnished with a carmele.
Caryophyllaceous, pink-like: applied to a corolla of 5 long-elawed petals.
Cussideous, helmet-shaped.
Ctssus, empty and sterile.
Cutenate, or Catemulute, end to end as in a chain.
Cuthin, see Ament, 75.
Cundate, tailed, or tail-pointed.
Caudex, a sort of trunk, such as that of Palms; an upright rootstock, 39, 44.
Coudicle, the stalk of a pollen-mass, \&c.
Caulescent, having an obvious stem, 36 .

Caulicle, a little stem, or rudimentary stem (of a seedling), 11, 127.
Cauline, of or belonging to a stem, 36 . Caulis, Latin name of stem.
Caulocarpic, equivalent to peremmial.
Caulome, the cauline parts of a plant.
Cell (diminutive, Cellule), the cavity of an anther, ovary, \&c.; one of the anatomical elements, 131.
Cellular Cryptogams, 162. Cellular tissue, 131.
Cellulose, 131. Cell-walls, 130.
Centrifugul (inflorescence), produced or expanding in succession from the centre outwards, 77.
Centripetal, the opposite of centrifugral, 74.
Cephala, Greek for head. In compounds, Monic: phalous, with one head, Microcephalous, small-headed, \&e.
Cereal, belonging to corn, or corn-plants.
Cernuous, nodding; the summit more or less inclining.
Cheta, Greek for bristle.
Chiff, small membranous scales or bracts on the receptacle of Composita; the glumes, \&c., of grasses.
Chaffy, furnished with chaff, or of the texture of chaff.
Chalaza, that part of the ovule where all the parts grow together, $110,126$.
Channelled, hollowed out like a gitter; same as canaliculute.
Character, a phrase expressing the essential marks of a sjueies, genus, \&e., 181.
Chartaceous, of the texture of paper or parchment.
Chloros, Greek for green, whence Chloranthous, green-flowered; Chlorvcarpous, green-fruited, \&c.
Chlorophyll, leaf green, 136.
Chlorosis, a condition in which naturally colored parts turn green.
Choripetulous, same as polypetalous.
Chorisis, separation of the normally united parts, or where two or more parts take the place of one.
Chromule, coloring matter in plants, especially when not green, or when liquid.
Chrysos, Greek for golden yellow, whence Chrysenthous, yellow-flowered, \&c.
Cicatrix, the scar left by the fall of a leaf or other organ.
Ciliate, beset on the margin with a fringe of cille, i. e. of hairs or bristles, like the eyelashes fringing the eyelids, whence the name.
Cinereous, or Cineraceous, ash-grayish; of the color of ashes.
Circinate, rolled inwards from the top, 72.
Circumscissile, or Circumcissile, divided by a circular line round the sides, as the pods of Purslane, Plantain, \&e., 124.
Circumscription, general outhine.
Cirrhiferous, or Cirrhose, furnished with a tendril (Latin, Cirrhus); as the Grapevine. Cirrhose also means resembling or coiling like tendrils, as the leaf stalks of Virgin's-bower. More properly Cirrus and Cirrose.
Citreous, lemon-yellow.
Clados, Greek for branch. Cladophylla, 64.
Class, 178, 183.
Classification, 175, 183.
Clathrate, latticed; same as cancellate.
Clavate, club-shaped; slender below and thickened upwards.
Clavellate, diminutive of clavate.
Claviculate, having Claviculce, or little tendrils or hooks.
Claw, the narrow or stalk-like base of some petals, as of Pinks, 91.
Cleistogamous (Cleistogamy), fertilized in closed bud, 115.
Cleft, cut into lobes, 55.
Close fertilization, 115.
Climbing, rising by clinging to other objects, 39, 151.
Club-shaped, see clacate.
Clustered, leaves. flowers, Sc., aggregated or collected into a bunch.

Clypeate, buckler-shaped.
Coadunate, same as connote, i. e. united.
Cualescent, srowing together. Coalescence, 88.
Coaretatc, contracted or brought close tugether.
Coated, having an intermment, or covered in layers. Coated bulb, 46.
Cobutbly, same as arachnoid; bearing hairs like cobwebs or gossaner.
Coccintous, scarlet-red.
Coccus (pharal cucci), anciently a berry: now mostly used to denote the separable carpels or mutlets of a dry fruit.
Cuchlearyorm, spoon-slapet.
Cochleate, coiled or shaped like a snail-shell.
Celospermous, applied to those fruits of Cmbellifere which have the seed hollowed on the inner face, by incurving of top and bottom; as in Coriander.
Coherent, usually the same as connate.
Cohort, name sometimes used for groups between order and class, 178.
Coleorhiza, a ront-sheath.
Collateral, side by side.
Collective fruits, 118.
Collum or Collar, the neek or junction of stem and root.
Coiored, parts of a plant which are other-colored than green.
Columella, the axi- to which the carpels of a compound pistil are often attacherl, as in Geranium (112), or which i- left when a prod opens, as in Azalea.
Column, the united stamens, as in Mallow, or the stamens and pistils united intn one body, as in the Orehis family.
Columnar, shaped like a column or pillar.
Comu, a tuft of any sort (literally, a head of hair), 125.
Comose, tufted; bearing a tuft of hairs, as the seeds of Milkweed, 125 .
Commissure, the line of junction of two carpels, as in the fruit of Cmbelliferæ.
Complanate, flattened.
Compound leaft, 54. 57. Compound pistil, 107. Compound umbel, 75, \&c.
Complete (flower), 81.
Complicate, folded upon itself.
Compressed, flattened on opposite sides.
Conctptacle, 168.
Concinnous, neat.
Concolor, all of one color.
Conchiform, shell- or half-shell- shaped.
Conduplicate, folded upon itself lengthwise, 71.
Cone, the fruit of the Pine family,124. Coniferous, cone-bearing.
Confertus, much crowded.
Conferruminate, stuck together, as the cotyledons in a horse-chestnut.
Confluent, blended together; or the same as coherent
Conformed, similar to another thing it is associated with or compared to; or closely fitted to it, as the skin to the kernel of a seed.
Congested, Conglomerate, crowded together.
Conglomerate, crowded into a glomerule.
Conjugate, coupled; in single pairs. Conjugation, 170.
Comnate, united or grown together from the first formation, 96.
Connate-perfoliate, when a pair of leaves are connate round a stem, 60.
Connective, Connecticum, the part of the anther connecting its two cells, 101.
Comivent, converging, or brought close together.
Constlilation (Horal), 94.
Consolidated forms of vegetation, 47 .
Contents of cells, 136 .
Continumus, the reverse of interrupted or articulated.
Contontenl. twisted torether. Contortell estivation, same as convolute, 97.
Contortuplicute, twisted bark upon itself.
Contrated, either narmwed or shortened.

Contrary, turned in opposite direction to the ordinary.
Convolute, rolled up lengthwise, as the leaves of the llum in vernation, 72. In restivation, same as contorted, 97.
Cordate, heart-shaped, 53 .
Coriaceous, resembling leather in texture.
Corky, of the texture of cork. Corky layer of bark, 141.
Corm, a solid bulb, like that of Croeus, 45 .
Corneous, of the consistence or appearante of horn.
Corniculate, furnished with a small hom or spur.
Cornute, horned; bearing a horn-like projection or appendage.
Corolla, the leaves of the flower within the calyx, 14,79 .
Corollaceous, Corolline, like or belonging to a corolla.
Corona, a coronet or crown; an appendage at the top of the claw of some petals, 91.
Coronate, crowned; furnished with a crown.
Cortex, bark. Cortical, belonging to the bark (contex).
Corticate, coated with bark or bark-like covering.
Corymb, a flat or convex indeterminate flower-cluster, 74.
Corymbiferous, bearing corymbs.
Curymbose, in corymbs, approaching the form of a corymb, or brancled in that way.
C'osta, a rib; the midrib of a leaf, \&e. Costute, ribled.
Cotyledons, the proper leaves of the embryo, 11, 127.
Crateriform, goblet-shaped or deep saucer-shaped.
Creeping (stems), growing flat on or beneath the ground and rooting, 39.
Cremocarp, a half-fruit, or one of the two carpels of Umbellifere, 121.
Crenate, or Crentlled, the edge sealloped into rounded teeth, 55.
C'renulate, minutely or slightly crenate.
Crested, or Cristate, bearing any elevated appendage like a erest.
Cretacenus, chalky or chalk-like.
Cribrose, or cribriform, pierced like a sieve with small apertures.
Crinite, bearing long hairs.
Crispate, curled or crispy.
Croceous, saffron-color, deep reddish-yellow.
Cross-breeds, the progeny of interbred varieties, 176.
Cross fertilization, 115.
Crown, see corona. Crowned, see coronate.
Cruciate, or Cruciform, cross-shaped. Cinciform Corolla, 86.
Crustaceous, hard and brittle in texture; erust-like.
Cryptogamous Plınts, C'ryptogrms, 10, 156.
Cryptos, concealed, as Cryptopetalous, with concealed petals, \&e.
Crystals in plants, 137.
Cucullate, hooded, or hood-shaped, rolled up like a cornet of paper, or a hood (cucullus), as the spathe of Indian Turnip, 75.
Culm, a straw; the stem of (irasses and Sedges, 39.
Cultrate, shaped like a trowel or broad knife.
Cuneate, Cuneiform, wedse shaperd, 53.
Cup-shaped, same as cyathiform or near it.
Cupule, a little cup; the cup to the acorn of the Oak, 122.
C'upular, or Cupulate, provided with a cupule.
Cupuliferons, cupule-bearing.
Curviceined, with curved ribs or veins.
Curviserial, in oblique or spiral ranks.
Cushion, the enlargement at the insertion or base of a petiole.
Cuspidate, tipped with a sharp and stiff point or cusp, 54.
Cut, same as incised, or applied generally to any sharp and deep division, 55 .
Cuticle, the skin of planto, or more strietly its external pellicle.
Cyaneous, bright bhe.
Cyathifor'm, in the shape of a cup, or particularly of a wine-glass.
Cycle, one complete turn of a spire, or a circle, 70.

Cyclicul, rolled up circularly, or coiled into a complete circle.
Cychosis, cireulation in closed cells, 149 .
C'ylindruceous, approaching to the Cylimbrical form, terete and not tapering.
Cymbeform, or C'ymbiform, same as boat-shaped.
C'yme, a cluster of centrifugal inflorescence, 77.
Cymuse, furnished with cymes, or like a cyme.
Cymule, a partial or diminutive cyme, 77.
Deca- (in words of Greek derivation), ten; as
Decagynous, with 10 pistils or styles, Decamerous, of 10 parts, Decandrous, with
10 stamens, 心c.
Deciluous, falling off, or subject to fall: said of leaves which fall in autumn, and of a calys and corolla which fall before the fruit forms.
Declinate, declined, turned to one side, or downwards.
Decompound, several times componnded or divided, 5! .
Decumbent, reclined on the ground, the summit tending to rise, 39.
Decurrent (leaves), prolonged on the stem beneath the insertion, as in Thistles.
Decussute, arranged in pairs which successively cross each other, 71.
Deduplication, same as chorisis.
Definite, when of a uniform number, and not above twelve or so.
Definite Inflorescence, 72 .
Deflexed, bent downwards.
Deflorate, past the flowering state, as an anther after it has discharged its pollen.
Dehiscence, the regular splitting open of capsule or anther, $10.3,119$.
Dehiscent, opening by regular dehiscence, 119, 123.
Deliquescent, branchingr off so that the stem is lost in the branches, 32.
Deltoid, of a triangular shape, like the Greek capital $د$.
Demerscd, growing below the surface of water.
Dendroid, Dendritic, tree-like in form or appearance.
Dendron, Greek for tree.
Deni, ten together.
Dens, Latin for tooth.
Dentate, toothed, 55. Denticulate, furnished with denticulations, or little teeth.
Depauperate, impoverished or starved, and so below the natural size.
Depressed, flattened or as if pressed down from above.
Derma, Greek for skin.
Descending, tending gradually downwards. Descendmg axis, the root.
Desmos, Greek for things connected or bound together.
Determinate Inftorescence, 72 .
Dextrorse, turned to the right hand.
Di- Dis (in Greek compounds), two, as
Diadelphous (stamens), united by their filaments in two sets, 99.
Diagnosis, a short distinguishing character or descriptive phrase.
Dialypeticlous, same as polypetalous.
Dianlrous, having two stamens, \&c.
Diophanous, transparent or translucent.
Dicarpellary, of two carpels.
Dichlamydeous (flower), having both calyx and corolla.
Dichogamous, Dichogamy, 116.
Dichotomous, two-forked.
Diclinous, having the stamens in one flower, the pistils in another, 85.
Dicoccous (fruit), splitting into two cocci or closed carpels.
Dicotyls, 23.
Dicotyledonous (embryo), having a pair of cotyledons, 23. Dicotyledonous Plants, 23, 182.

Didymous, twin.
Didyntmous (stamens), having four stamens in two pairs, 100.
Diffusc, spreading widely and irregularly.

Digitate (fingered), where the leaflets of a compound leaf are all borne on the apex of the petiole, 58 .
Digynous (flower), having two pistils or styles, 105.
Dimerous, made up of two parts, or its organs in twos.
Dimidiate, halred; as where a leaf or leatlet has only one side developed.
Dimorphism, 117. Dimorphous, Dimorphic, of two forms, 117.
Diccious, or Dioicous, with stamens and pistils on different plants, 85 .
Dipetalous, of two petals. Diphyllous, two-leaved. Dipterous, two-winged.
Diplo-, Greek for double, as Diplostemonous, with two sets of stamens.
Disciform or Disk-shaped, flat and cireular, like a link or quoit.
Discoidal, or Discoid, belonging to ar like a disk.
Discolor, of two different colors or hues.
Discrete, separate, opposite of concrete.
Disepalous, of two sepals.
Disk, the face of any flat body; the central part of a head of flowers, like the Sunflower, or Coreopsis, as opposed to the rey or margin; a fleshy expansion of the receptacle of a tlower, 113.
Disk-flowers, those of the disk in Composita.
Dissected, cut deeply into many lobes or divisions.
Dissepiments, the partitions of a compound ovary or a fruit, 108.
Dissilient, bursting in pieces.
Distichous, two-ranked.
Distinct, uncombined with each other, 95.
Dithecous, of two theca or anther-cells.
Divaricate, straddling; very widely divergent.
Divided (leaves, \&c.), eut into divisions down to the hase or midrib, 55.
Dodeca, Greek for twelve; as Dordecayynous, with twelve pistils or styles, Dode candrous, with twelve stamens.
Dodrans, span-long.
Dolabriform, axe-shaped.
Dorsal, pertaining to the back (dorsum) of an organ. Dorsal Suture, 106.
Dotted Ducts, 148.
Double Flowers, where the petals are multiplied unduly, 79 .
Dounny, elothed with a coat of soft and short hairs.
Drupaceous, like or pertaining to a drupe.
Diupe, a stone-fruit, 120. Drupelet or Drupel, a little drupe.
Ducts, the so-called vessels of plants, 134 .
Dumose, bushy, or relating to bushes.
Duramen, the heart-wood, 142 .
Dwarf, remarkably low in stature.
E-, as a prefix of Latin compound words, means destitute of; as ecostate, without a rib or midrib; exalbuminous, without albumen, Sc.
Eared, see auriculate, 53 .
Ebracteate, destitute of bracts. Ebracteolate, destitute of bractlets.
Eburneous, ivory-white.
Echinate, armed with prickles (like a hedgeling). Echinulate, a diminutive of it.
Edentate, toothless.
Effete, past bearing, \&e.; said of anthers which have discharged their pollen.
Effuse, very loosely branched and spreading.
Eglandulose, destitute of glands.
Elaters, threads mixed with the spores of Liverworts, 165.
Ellipsoudal, approaching an elliptical tigure.
Elliptical, oval or oblong, with the ends regularly rounded, 52.
Emarginate, notehed at the summit. 54.
Embryo, the rudimentary plantlet in a seed. 11, 127.
Embryonal, belonging or relating to the embryo.
Embryo-sac, 117.

Emersed, raised out of water.

Findecayynous, with eleven pistils or styles. Endecandrous, with eleven stamens
Endemic, peculiar to the country geographically.
lindocarp, the inner layer of a pericarp or fruit, 120).
Endochrome, the coloring matter of Alcie and the bike.
Endogenous Stems, 1:38. Findogenous plants, an old name for monocotyledons.
Endopleurn, inner seed-coat.
Endonhizul, radicle or root sheathed in germination.
Endosperm, the albumen of a reed, 21 .
tnlostome, the oritice in the immor coat of an ovule.
Ennen-, nine. Ennengynous, with nine petals orstyles. Enneandrous, ninc-stamened
Ensute, Ensiform, sworl-shap ed.
Entire, the margins not at all toothed, notehed, or divided, but even, 5is.
Entomophilous, said of flowers frequented and fertilized by insects, 113.
Ephemeral, lasting for a day or less, as the corolla of I'urelane, die.
Epil-, (ireek for upon.
Epicalyr, such an involucel as that of Malvacea.
Epicarp, the outermost layer of a fruit, $1 \geq 0$
Epidermul, relating to the Epidermis, or skin of a plant, 50, 141, 143.
Epiguens, growing on the earth, or close to the grount.
Epigynous, upon the ovary, 95, 99.
Epipetelous, borne on the petals or the corolla, 99.
Epilhyllous, borne on a leaf.
Epiphyte, a plant growing on another plant, but not nourished by it, 36 .
Epiphytic or tipiphytal, relating to Epiphytes.
Epipterous, winged at top.
Episperm, the skin or coat of a seed, especiatly the outer coat.
Equal, alike in number or length.
Equally pinnote, same as abruptly pinnate, 57.
Equitant (riding straddle), 60.
Erit n, Greek for wool. Erianthous, woolly-flowered. Eriophorous, wool-bearing, \&c.
Erose, eroded, as if gnawed.
Erostrate, not beaked.
Erythros, Greek for red. Erythrocarpous, red-fruited, \&e.
Essentinl Organs of the flower, 80.
Estivation, see astiv"tiom.
Etiolnterl, blanched by excluding the lisht, as the stalks of Celery.
$E u$, Greck prefix, meaning very, or much.
Erergreen, holding the leaves over winter and mutil new ones appear, or longer.
$E x$, Latin prefix; privative in place of " e " when nest letter is a vowel. So Fixalate, wingless; Exalbuminous (seed), withont albumen, 21.
Excurrent, running out, as when a midrib projects heyond the apex of a leaf, or a trunk is continued to the very top of a tree, 32.
Exiguous, puny.
Exilis, lank or meagre.
Eximius, distinguished for size or beauty.
Exo-, in Greek compounds, outward, as in
Exocarp, outer laver of a pericarp, 120.
Exogenous, outwarl growing. Exogenous stems, 139.
Exorhizal, radicle in germination not sheathed.
Erostome, the orifice in the outer coat of the ovale.
Expplanite, spread or hattened out.
Exserted, protruding out of, as the stamens out of the corolla.
Exstipulate, destitute of stipules.
Extine, outer coat of a pollen-grain.
Extra-axillary, said of a branch or bud somewhat out of the axil, 31.
Extrorse, turned outwards: the anther is extroree when fastened to the filament on the side next the pistil, and opening on the outer side, 101.

Falcate, scythe-shaped; a flat body curved, its edges parallel.
Filse Racemes, 78.
Frmily, in botany same as Order, 177.
Farina, meal or starehy matter, 136 .
Farinaceous, mealy in texture. Furinose, covered with a mealy powder.
Fesciate, banded; also applied to monstrous stems which grow that.
Fascicle, a close chaster, 77.
Fuscicled, Fusciculated, growing in a bundle or tuft, as the leaves of Lareh, 68, and roots of Peony, 35.
Fastigiate, close, parallel, and upright, as the branches of Lombardy l'oplar.
Finx (plural, fauces), the throat of a calyx, corolla, 心c., 89.
Fiveolate, Fucose, honeycombed; same as viluoblute.
Feather-reined, with veins of a leaf all springing from the sides of a midrib, 51.
Fecula or Frecula, starch, 136.
Female flower or plant, one bearing pistils only.
Fenestrate, pierced with one or more large holes, like windows.
Ferrugineous, or Ferruginous, resembling iron-rust ; red-grayish.
Fertile, fruit-bearing, or capable of it; also said of anthers producing good pollen.
Fertilization, the process by which pollen causes the embryo to be formed, 114.
Fibre (woody), 133. Fibrous, containing much fibre, or compostd of fibres.
Fibrilluse, formed of small fibres, or Fibrille.
Fibro-viscular bundle or tissue, formed of fibres and vessels.
Fildle-shoped, obovate with a deep recess on each side.
Fidus, Latin suffix for cleft, as Bifid, two-cleft.
Filcment, the stalk of a stamen, 14, 80, 101; also any slender thread-shaped body.
Filamentose, or Filamentous, bearing or formed of slender threads.
Filiform, thread-shaped; long, slender, and cylindrical.
Fimbriate, fringed; furnished with fringes (fimbric).
Fimbrillate, Fimbrilliferous, bearing small fimbria, i. e. fimbrille.
Fissiparous, multiplying by division of one body into two.
Fissus, Latin for split or divided.
Fistular, or Fistulose, hollow and cylindrical, as the leaves of the Cnion.
Flabelliform, or Flabellate, fan-shaped.
Flagellate, or Flagelliform, long, narrow, and Ilexible, like the thong of a whip; or like the rumners (flagella) of the Strawberry.
Flavescent, yellowish, or turning yellow.
Flavus, Latin for yellow.
Fleshy, composed of firm pulp or flesh.
Flexuose, or Flexuous, bending in opposite directions, in a zigzag way.
Tloating, swimming on the surface of water.
Floccose, composed of or bearing tufts of woolly or long and soft hairs.
Flora (the goddess of flowers), the plants of a country or district, taken together, or a work systematically describing them, 9.
Floral Envelopes, or Flower-leaves, 79.
Floret, a diminutive flower, one of a mass or cluster.
Floribund, abundantly tloriferous.
Florula, the flora of a small district.
Flos, floris, Latin for flower.
Flosculus, diminutive, same as floret.
Flower, the whole organs of reproduction of Phænogamous plants, 14, 72.
Flower-bud, an unopened flower.
Flowering Plants, 10, 156. Flowerless Plants, 10, 150.
Fly-trap leaves, 65.
Fluitans, Latin for floating. Fluriatile, belonging to a river or stream.
Foliaceous, belonging to, or of the texture or nature of, a leaf (folium).
Foliate, provided with leaves. Latin prelixes denote the number of leaves, as bifoliate, trifoliate, \&r. Foliose, leafy; abounding in leaves.
Foliolate, relating to or bearing leathets (foliola) ; trifuliate, with three leaflets, \&e.

Folium (plural, folia), Latin for leaf.
Follicle, a simple pod, opening down the inner suture, 122.
Folliculer: resembling or belonging to a follicle.
Fooml of Plents, 144.
Foot-stalk, cither petiole or peduncle, 49.
Foramen, a hole or orifice, as that of the ovnle, 110.
Foraminose, Foraminulose, piereed with holes.
Forked, branched in two or three or more.
Fornicate, bearing formices.
Fornix, little arched scales in the throat of some corollas, as of Comfrey.
Foveate, deeply pitted. Foreolate, diminutive of foreate.
Free, not united with any other parts of a different sort, 95.
Fringed, the margin beset with slender appendages, bristles, \&e.
Frond, what answers to leaves in Ferns, de., 157; or to the stem and reaves fused into one, as in liverwort.
Frondescence, the bursting into leaf.
Frondose, frond-bearing; like a frond, or sometimes used for leafy.
Fructificution, the state or result of fruiting.
Fructus, Latin for fruit.
Frut, the matured ovary and all it contains or is connected with, 117.
Fruit-dots in Ferns: see Surus.
Frustulose, consisting of a chain of similar pieces, or Frustules.
Frutescent, somewhat shrubby ; becoming a shrub (Frutex), 39.
Fruticulose, like a small shrub, or Fruticulus. Fruticose, shrubby, 39.
Fugacious, soon falling off or perishing.
Fulcrate, having accessory organs or fulcra, i. e. props.
Fulcous, tawny; dull yellow with gray.
Fungus, F'ungi, 172.
Funicle, Funiculus, the stalk of a seed or ovale, 110.
Funnelform, or funnel-shaped, expanding gradually upwards into an open mouth, like a funnel or tunnel, 90.
Furcate, forked.
Furfuraceous, covered with bran-like fine scurf.
Furrowed, marked by longitudiual channels or grooves.
Fuscous, deep gray-brown.
Fusiform, spindle-shaped, 36.
Galbalus, the fleshy or at length woody cone of Tuniper and Cypress.
Galea, a helmet-shaped body, as the upper sepal of the Monkshood, 87.
Guleate, shaped like a helmet.
Grtmopetalous, of united petals, 89.
Gamophyllous, formed of united leaves. Gamosepalous, formed of united sepals, 89.
Geminate, twin; in pairs.
Gemma, Latin for a bud.
Gemmation, the state of budding; budding growth.
Gemmule, a small bud; the plumule, 6.
Genera, phural of genus.
Geniculate, bent abruptly, like a knee (genu), as many stems.
Gentric Names, 179.
Genus, a kind of a rank above species, 177.
Germ, a growing point ; a young bud; sometimes the same as embryo, 127.
Germen, the old name for ovary.
Germination, the development of a plantlet from the seed, 12.
Geron'ogrous, inhabiting the Old Word.
Gibloms. more tumid at one place or on one site than the other.
Cilrous, hirty redili=h-yellow.
Glubrote, berominge esibrous with age, or almost glabrous.
Gilabruas, smooth, in the sense of having no hairs, bristles, or other pubescence.

Gladiate, sword-sliaped, as the leaves ol Iris.
Glends, small cellular organs which secrete oily or aromatic or other products; they are sometimes sunk in the leaves on rind, as in the Orange, Prickly Ash, \&c.; sometimes on the surface as small projections: sometimes raised on hairs or bristles (glundular hairs, foc.), as in the sweethrier and sumdew. The name is also given to any small swellings, S.c., whether they secrete anything or not; so that the word is loosely used.
Glandular, Glandulose, furnished with glands, or gland-like.
Glans (Glanel), the acorn or mast of Oak and similar fruits.
Glareose, growing in gravel.
Glaucescent, slightly glaucous, or bluish-gray.
Glaucous, covered with a bloom, viz. with a fine white powder of wax that rubs off, like that on a fresh plum, or a cabbage-leaf.
Globose, spherical in form, or nearly so. Gilobular, nealy gholose.
Glochidiate, or Glochideous, (bristles) barbed; tipped with harbs, or with a double hooked point.
Glomerate, closely aggregated into a dense cluster.
Glomerule, a dense head-like cluster, 77.
Glossology, the depariment of botany in which technical terms are explained.
Glumaceous, glume-like, or glume-bearing.
Glume; Glumes are the husks or floral coverings of (irasses, or, particularly, the outer husks or bracts of each spikelet.
Glumelles, the inner husks of Grasses.
Gonophore, a stipe below stamens, 113.
Gossypine, cottony, flocculent.
Gracilis, Latin for slender.
Grain, see Caryopsis, 121.
Gramineous, grass-like.
Granular, composed of grains. Granule, a small grain.
Graveolent, heavy-scented.
Griseous, gray or bluish-gray.
Growth, 129.
Grumous, or Grumose, formed of coarse clustered grains.
Guttate, spotted, as if by drops of something colored.
Gymnos, Greek for nakerl, as
Gymnocarpous, naked-fruited. Gymnospermous, naked-seeded, 109.
Gymnospermous !/ynœcium, 109.
Gymnosperma, or Gymnospermous Plants, 183.
Gynandrous, with stamens borne on, i. e. united with, the pistil, 99.
Gynocium, a name for the pistils of a flower taken altorether, 10\%.
Gynobase, a depressed receptacle or support of the pistil or carpls, 114.
Gynophore, a stalk raising a pistil above the stamens, 113 .
Gynostegium, a sheath around pistils, of whatever nature.
Gynostemium, name of the column in Orchids, S.e., consisting of style and stigma with stamens combined.
Gyrate, coiled or moving circularly.
Gyrose, strongly bent to and fro.
Habit, the gencral aspect of a plant, or its mode of growtl.
Habitat, the situation or country in which a plant grows in a wild state.
Hairs, bair-like growths on the surface of plants.
Hairy, beset with hairs, especially longish ones
Halberd-shaped, see histate, 53.
Halved, when appearing as if one half of the body were cut awar.
Hamate, or Hamose, looked; the end of a slender body bent round.
Hamulose, bearing a small hook; a dimimutive of the last.
Haplo-, in Greek compounds, single; as Haplostemonous, having only one series of stamens.

Hastate, or Hastile, shaped like a halberd; furnished with a spreading lobe on each side at the base, 53.
Head, capitulum, a form of inflorescence. 74 .
Heart-shaped, of the shape of a heart as painted on cards, 53.
Heart-acood, the older or matured wood of exogenous trees, 142.
Helicoid, coiled like a helix or shail-shell, 77.
Helmet, the upper sepal of Monkshood is so called.
Helvolous, grayish-yellow.
Memi- in compounds from the Greek, half: e. g. Hemispherical, \&c.
Hemictrp, half-fruit, one carjel of an Umbelliferous plant, 121.
Hemitropous (ovule or seed), nearly same as amphitropous, 123.
Hepta- (in words of Greek origin), seven; as Meptagynous, with seven pistils or styles. Heptameroms, its parts in sevens. Heptandrous, having seven stamens.
Merb, plant not woody, at least above ground.
Herbuceous, of the texture of an herb: not woody, 39.
Merbarium, the botanist's arranged collection of dried plants, 186.
Herborizutinn. 184.
Hermaphrodite (flower), having stamens and pistils in the same blossom, 81.
Hesperidium, orange-fruit, a hard-rinded berry.
Hetero-, in Greek compounds, means of two or more sorts, as
Heterocarpous, bearing fruit of two kinds wr shajes.
Ileterogamous, bearing two or more sorts of flowers in one chuster.
Heterogony, Heterogone, or Heterogonous, with stamens and pistil reciprocally of two sorts, 116. Heterostyled is same.
Heteromorphous, of two or more shapes.
Heterophyllous, with two sorts of leaves.
Heterntropous (orule), the same as amplitropors, 123.
Hexa- (in Greek compounds), six; as Hexagonal, six-angled. Hexagynous, with six pistils or styles. Hexamerous, its parts in sixes. Hexandrous, with six stamens. Hexapterous, six-winged.
Mibernaculum, a winter bud.
Hiemal, relating to winter.
Hilar, belonging to the hilum.
Milum, the scar of the seed; its place of attachment, 110, 126.
Hippocrepiform, horseshoe-shaped.
Hirsute, clothed with stiffish or beard-like hairs.
Hirtellous, minutely hirsute.
IIispid, bristly, beset with stiff hairs. Itispidulous, diminutive of hispid.
Histology, 9.
Hoary, grayish-white; see canescent, \&c.
Holosericeous, all over sericeous or silky.
IHmo-, in Greek compounds, all alike or of one sort.
Homodromous, running in one direction.
Homogamous, a head or eluster with flowers all of one kind.
Homogeneous, uniform in nature ; all of one kint.
Homogone, or Homogonous, counterpart of Heterogone or Homostyled.
Homologous, of same type; thus petals and sepals are the homologues of leares.
Homomallous (leaves, \&e.), originating all round an axis, but all bent or curved to one side.
Homorphous, all of one shape.
Homotropous (embryo), cursed with the seed; eurved only one way.
Hood, same as helmet or galea. Moodcd, hood-hapert; see cucullate.
Hookend, same as homite.
Horn, a spur or some similar appendage. Horny, of the texture of horn.
IIortensis, pertaining to the garden.
Hortus Siccus, an herbarium, or collection of dried plants, 201.
Humifuse, IIumistrate, spread over the surface of the ground.
Humilis, low in stature.

ITyaline, transparent, or partly so.
Hybrid, a eros-breed between two allied species, 176.
Hydrophytes, water-plants.
Hyemal, ste hiemal.
Hymenium of a Mushrom, 172.
H!ponthium, a hollow flower-receptache, such as that of Rose.
Hypoo, Greek pretix for under, or umlemeath.
Ifypocotyle, or Hypocoty'. part of stem below the cotvledons, 11.
Hypocruter?form, properly IIjpocraterimmphous, salver-shaped.
Hypogean, or Hypogeoms, produced under wround, 19.
Hupogynous, inserted under the pistil, :55, $!9$.
IIysteranthous, with the blos-oms developed earler than the leaves.
Ucosandrous, having 20 (or 12 or mo e) stamens inserted on the calyx.
Imberbis. Latin for beardless.
Imbricate, fmbricated, Imbricatice, overlapming one another, like tiles or shinglea on a roof, as the bud-scales of Horse-chestumt and Heckory, 27. In aestivation. where some leaves of the ealyx or corota are overlapped on both sides by whers, 98.
Immarginute, destitute of a rmo or border.
Immersed, growing wholly under water.
Impai-pinnate, pinnate with a single leallet at the apex, 57.
Imperfect flowers, wanting either stamens or pi-til. s.).
mequilateral, unequal-sided, as the leaf of a benomia.
Inane, empty, said of an anther which prodmet ino jwilen, Sc.
Inrppendiculute, not appendaged.
Inconous, Inconescent, hoary with soft whate pubeccence.
Incarnate, flesh-colored.
Incised, cut rather deeply and irregularly, is.
Included, enelosed: when the part in que-tinn does not project beyond another.
Incomplete Floner, wanting calyx or corolla, sto.
Incrassated, thickenerl.
Incubon, with tip of one leaf lying that over the base of the next above.
Incumbent, leaning or resting upn the cotyledons are incumbent when the batk of one of them lies against the radicle, 12s; the anthers are incumbent when turned or looking inwards.
Incurved, gradually curving inwards.
Indefinite, not uniform in number, or ton mamerons to mention (wer 12).
Indefinite or Indeterminate In toresct nce, -2.
Indehiscent, not splitting open; i. e. not dehiscent, 119.
Indigenous, native to the country.
Indivirlucts, 175.
Indumentum, any !airy eoating or pubescence.
Induplicate, with the edges turned inwards, 97.
Induriate, clothed with old and withered parts or inturia.
Indusium, the shiell or eovering of a fruit-dot of a Fern, 159.
Inermis, Latin for marmed, not prickly.
Inferior, growing below some other organ, 96.
Infertile, not producing seed, or pollen, as the case may be.
Inflated, turgid and bladiery.
Inflexed, bent inwards.
Inflorescence, the arrangement of flowers on th" stem, 72.
Infra-axillary, situated beneath the axil.
Infundibuliform or Infiuntibulor. fmmel-whaped. 80.
Innate (anther), attached by its base to the very apex of the filament. 101.
Innovation, a young shont. or new growth.
Insertion, the place or the mork of attachment of an organ to its support, 95, 99.
Integer, entire, not lobed. Integerimas, quite entire, not serrate.

Interc:llular Passages or Spaces, 131, 143.

Interfolinceous, between the leaves of a pair or whorl.
Internorle, the part of a sten between two nodes, 13.
Interpetiolar, between petioles.
Interruptedly punate, pimate with small leaflets intermixed with larger.
/utine, immer coat of a pollen grain.
Intrafoliactous (stipules, dec.). placed between the leaf or petiole and the stem.
Introrse, turned or facing inwards; i. e. towards the axis of the flower, 101.
Iatiuse, as it were pushed inwards.
lucersed or Interfed, where the apex is in the direction opposite to that of the organ it is compared with.
Incolucel, a partial or small involuere, 76.
Involucellate, furnished with an involucel. Intolucrute, furnished with an involucre.
Involucre, a whorl or set of bracts around a flower unbel, or head, \&e., 74, 75.
Incolute, in vernation, 72 ; rolled inwards from the edges, 97.
Aregular towers, 86, 91.
lsos, Greek for equal in number. Isomerous. the same number in the snceessive circles or sets. Isostemonous, the stamens equal in number to the sepals or petals.

Jointed, separate or separable at one or more places into pieces, 64, \&c.
$J u g u m$ (plural Jugt), Latin for a pair, as of leaflets, - thus Unijug't'e, of a single pair' ; Bijugate, of two pairs, se.
Suluceus, like a catkin or Julus.
Keel, a projecting ridge on a surface, like the keel of a boat; the two auterior petal. of a papilionaceous corolla 42.
Keeled, furnished with a keel or sharp longitudinal ridge.
Kermesine, Carmine-red.
Kernel of the ovale and seed, 110.
Key, or Key-fruit, a Samara, 122.
Kidney-shaped, resembling the outline of a kidney, 53.
Labellum, the odd petal in the Orehis Family.
Lubiate, same as bilabiate or two-lipped, 92.
Labintiftorous, having fowers with bilabiate corolla.
Labium (plural, Labia), Latin for lip.
Lacerate, with margin appearing as if torn.
Lacmiate, slashed: cut into deep narrow lobes or Lacinio.
Lactescrnt, producing milky juice, as does the Milkweed, \&c.
Lacteus, Latin for malk-white.
Lacunose, full of holes or gaps.
Lacustrine, belonging to lakes.
Lerigate, smooth as if polished. Latin, Lif cis, smooth, as opposed to rough.
Lageniform, gourd-shaped.
Lagopuus, Latin, hare-footed; densely clothed with long soft hairs.
Lamellar or Lamellate, consisting of that plates, Lamellae.
Laminn, a plate or blade, the blade of a leaf, \&c., 49.
Lamate, Lanose, woolly; elothed with long and soft entangled hairs.
L.mecolate, lance-shaped, 52.

Lamuginous, cottony or woolly.
Latent buds, concealed or undeveloped buds, 30 .
Lateral, belonging to the side.
Later, the milky juice. \&c.. of plants, 135.
Lar (Lasus). loose in texture, or sparse: the opposite of crowded.
Leaff 49. Leaf-buds 31
Leaflet. one of the divicions or blades of a compurnd leaf, 57 .
Iraf-like. same as foliaceons
Leathery of about the consintence of leather; coriaceous.

Legume, a simple pod which dehisces in two pieces, like that of the Pea, 122.
Leguminous, belonging to legumes, or to the Leguminous Family.
Lenticular, lens-shaped; i. e. flattish and convex on both siles.
Lappaceous, bur-like.
Lasio, Greek for woolly or hairy, as Lasianthus, woolly-flowered.
Lateritious, brick-colored.
Laticiferous, containing latex, 138.
Latus, Latin for broal, as Latifulius, broal-leaved.
Leaf-scar, Leaf stalk, petiole.
Lenticels, lenticular dots on young bark.
Lentiginose, as if freckled.
Lepal, a made-up word for a staminode.
Lepis, Greek for a scale, whence Lepidute, leprous; covered with scurfy scales.
Leptos, Greek for slender; so Leptophyllous, slender-leaved.
Leukos, Greek for white; whence Leucanthous, white-flowered, \&c.
Liber, the inner bark of Exogenous stems, 140.
Litl, see operculum.
Ligneous, or Lignose, woody in texture.
Ligulate, furnished with a ligule, 93.
Ligule, Ligula, the strap-sbaped corolla in many Compositx, 93; the membranons appendage at the summit of the leaf-sheaths of most Grasses, 57.
Limb, the border of a corolla, \&c., 89.
Limbate, bordered (Latin, Limbus, a border).
Line, the twelfth of an inch; or French lines, the tenth.
Linear, narrow and flat, the margins parallel, 52.
Lineate, marked with parallel lines. Lineolate, marked with minute lines.
Lingulate, Linguiform, tongne-shaped.
Lip, the principal lobes of a bilabiate corolla or calyx, 92.
Litoral or Littoral, belonging to the shore.
Livil, pale lead-colored.
Lobe, any projection or division (especially a rounded one) of a leaf, Sc.
Lobed or Lobate, cut into lobes, 55, 56; Lobulate, into small lobes.
Locellate, having Locelli, i. e. compartments in a cell: thus an anther-cell is often bilocellate.
Loculament, same as loculus.
Locular, relating to the cell or compartment (Loculus) of an ovary, \&c.
Loculicidal (debiscence), splitting down through the back of each cell, 123.
Locusta, a name for the spikelet of Grasses.
Lodicule, one of the scales answering to perianth-leaves in Grass-flowers.
Loment, a pod which separates transversely into joints, 122.
Lomentaceous, pertaining to or resembling a loment.
Lorate, thong-shaped.
Lunate, crescent-shaped. Lunulate, diminutive of lunate.
Lupuline, like hops.
Lusus, Latin for a sport or abnormal variation.
Lutenlus, yellowish; diminutive of
Luteus, Latin for yellow. Lutescent, verging to yellow.
Lyrate, lyre-shaped; a pinnatifid leaf of an obovate or spatulate outline, the endlobe large and roundish, and the lower lobes small, a× in fig. 149.

Macros, Greek for long, sometimes also used for large : thus Macrophyllous, long. or large-leaved, \&c.
Macrospore, the large kind of spore, when there are two kinds, 160, 161.
Maculnte, spotted or blotched.
Male (flowers or plants), having stamens but no pistil.
Mammose, breast-shaped.
Marcescent, withering withont falling off.
Marginal, belonging to margin.

Marginate, margined with an edge different from the rest.
Marginicidal dehiscence, 123.
Muritime, belongines to sea-coasts.
Marmorate, marbled.
Mas., Mase., Masculine, male.
Masked, see personute.
Mealy, see farinaceous.
Merlim, Medial, belonging to the middle.
Merlifixed, attached by the middle.
Medullary, belonging to, or of the nature of, pith (Medulla); pithy.
Meslullury Rays, the silver-grain of wood, 140, 141.
Medullary Shenth, a set of duets just around the pith, 140 .
Meinstemonous, having fewer stamens than petats.
Membranaceous or Membranous, of the texture of membrane; thin and soft.
Meniseoid, crescent-shaped.
Mericarp. one carpel of the fruit of an Cmbelliferous plant, 121.
Merismatic, separating into parts by the formation of partitions across.
Merous, from the Greek for part; used with numeral pretix to denote the number of pieces in a set or circle: as Monomeroms, of only one, Dimerous, with two, Trimerous, with three parts (sepals, petals, stamens, \&c.) m each eirele.
Mesocarp, the middle part of a pericarp, when that is distinguishable into three layers, 120.
Mesophlceum, the middle or green bark.
Micropyle, the closed orifice of the sed, 110. 126.
Microspore, the smaller kind of spore when there are two kinds, 161.
Midrib, the middle or main rib of a leaf, 50.
Mill-ressels, 138.
Minitte, vermilion-eolored.
Mitriform, mitre-shaped: in the form of a peaked cap, or one cleft at the top.
Moniliform, neeklace-shaped; a eylindrical body contracted at intervals.
Monocarpe (duration), flowering and seeding hat once, 38 .
Monochlamydeous, having only one floral envelope.
Monocotyledonous (embryo), with only me cotyledon, 24.
Monocotyledonous Plants, 24. Momucotyls. 24.
Monceious, or Monoicous (flower), having stamens or pistils only, 85.
Monogynous (flower), having only one pistil, or one style, 105.
Momopetalous (flower), with the corolla of one piece, 89.
Monophyllous, one-leaved, or of one piece.
Monos, Greek for solitary or only one; thns Monadelphous, stamens united by their filaments into one set, 99 ; ifonambrous (flower), having only one stansen, 100.
Monosepalous, a calyx of one piece; i. e. with the sepals unted into one body.
Monospermous, one-seeded.
Monstrosity, an unnatural deviation from the usmal strueture or form.
Morphology, Morphological Botany, 9; the department of botany which treats of the forms which an organ may assume.
Moschate, Musk-like in odor.
Morements, 149 .
Mucronate, tipped with an abrupt short point (Muero). 54.
Mucronulate, tipped with a minute abrupt point ; a diminutive of the last.
Multi-, in composition, many; as Multangular, many-ancled: Multicipit h, many headed, \&e.; Multifarious, in many rows or ranks; Multithl, many-cleft; 1/ultilocuiar, many-cetted; Multiserial, in many rows.
Multiple Fruits. 118, 124.
Muricate, beset with short and hard or prickly points.
Muriform, wall-like; resembling courses of bricks in a wall.
Wuticous, pointless, blunt, marmet.
Mycelium, the spawn of Fungi; i. e. the filaments from which Mushrooms, \&c., originate, 172.

Naked, wanting some usual covering, as achlamydeous flowers, 86 , gymnospermous seeds, 109, 125 , \& c.
Names in botany, 179.
Nanus, Latin for dwarf.
Napiform, turnip-shaped, 35.
Natural System, 182.
Naturalized, introduced from a foreign country, and flourishing wild.
Nericular, boat-shaped, like the glumes of most Grasses.
Necklace-shaped, looking like a string of beads; see moniliform.
Necter, the sweet secretion in flowers from which bees make honey, \&c.
Nectariferous, honey-bearing; or having a nectary.
Nectary, the old name for petals and other parts of the flower when of unusual shape, especially when honey-bearing. So the hollow spur-shaped petals of Columbine were called nectaries; also the curious long-clawed petals of Monkshood, 87 , 心e.
Needle-shaped, long, slender, and rigid, like the leaves of Pines.
Nemorose or Nemoral, inhabiting groves.
Nerve, a name for the ribs or veins of leaves when simple and parallel, 50 .
Nerced, furnished with nerves, or simple and parallel rils or veins, 50.
Nerrose, conspicuously nerved. Neralose, minutely nervose.
Netted-veined, furnished with branching veins forming network, t0, 51.
Neuter, Neutral, sexless. Neutral flower, 79.
Niger, Latin for black. Nigricans, Latin for verging to black.
Nitid, shining
Nizal, living in or near snow. Niveus, snow-white.
Noolding, bending so that the summit hangs downward.
Norle, a knot; the "joints" of a stem, or the part whence a leaf or a pair of leaves springs, 13.
Nollose, knotty or knobby. Nodulose, furnished with little knobs or knots.
Nomenclature, 175, 179.
Normal, according to rule, natural.
Notate, marked with spots or lines of a different color.
Nucamentaceous, relating to or resembling a small nut.
Nuciform, nut-shaped or nut-like.
Nucleus, the kernel of an ovile (110) or seed (12:) of a cell.
Nucule, same as nutlet.
Nude, (Latin, Nudus), naked. So Nulicaulis, naked-stemmed, \&e.
Nut, Latin Nux, a hard, mostly one-seeded imbehiscent fruit; as a chestnut, butternut, acorn, 121.
Nutant, notding.
Nutlet, a little nut; or the stone of a drupe.
Ob- (meaning over against), when prefised to words signifies inversion; as, $O b$ compressed, flattened the opposite of the usual way; Obcordute, heart-xhaped, with the broad and notched end at the apex insteal of the base, 54 ; Oblunceolate, lance-shaped with the tapering print downwards, 52.
Oblique, applied to leaves. \&c., means mequal-sided.
Oblong, from two to four times as long as liroad, 52.
Oborate, inversely ovate, the broml end upward, 53. Oboroid, solid obovate.
Obtuse, blunt or round at the end, 5 .
Obrerse, same as inverse.
Obrolute (in the bul), when the margins of one piece or leaf alternately overlap those of the opposite one.
Ocellate, with a circular colored pateh. like an eye.
Ochroleucous, yellowish-white: dall cream-color.
Ocreate, furmished with Ocrea (bouts), or stipules in the form of sheaths, 57.
Octo, Latin for cight, enters into the composition of Octu!ynous, with eight pistils or styles; Octamerous, its parts in eights; Octundrous, with eight stamens, \&c.

Oculate, with eye-shaped marking.
Officinet, used in medieine, therefure kept in the shops.
Offist, short banches nest the gromm which take root, 40.
Oides, termination, from the Greek, to denote likeness; so Dianthoides, Pink-like.
Oleraceous, coculent, as a pot-herb.
Oligos, Greek tor few; thus Oligonthous, few-flowered, \&c.
Olicaceous, olivo-rreen.
Oophoritium, a name for sporecase containing marrospores.
Opaque, apphed to a surface, means dull, not shinins.
Operculate, furnished with a lid (Operculum), as the pmerecase of Mosses. 163.
Opposite, said of leaves and branches when on opposite sides of the sem from each other (i. e. in pairs), 29, 68. Stamens are opposite the petals, Sic., when they stand before flem.
Oppositifolius, situated opposite a leaf.
Orbicular, Orbiculute, circular in outline, or nearly so, 52.
Order, group below elass, 178. Ortinal mames, 180.
Organ, any member of the plant, as a leaf, a samen, Sc.
Oryanography, study of organs, 9. Organogenesis, that of the development of organs.
Oroyulis, of the height of a man.
Orthos, Greek for straight; thus, Orthocarpous, with straight fruit; Orthostachous, straight-ranked.
Orthotropous (ovule or seed), 111.
Osseous, of a bony texture.
Outgrowths, growths from the surface of a leaf, petal, \&c.
Ocal, broadly elliptical, 52.
Ovary, that part of the pistil containing the ovules or future seeds, 14, 80, 105.
Ocate, shaped like an erg, with the broader end flownwards; or, in plain surfaces, such as leaves. like the section of an egg lengthwise, 52.
Ovoid, ovate or oval in a solid form.
Orule, the body which is destined to become a seed, 14. 80, 105, 110.
Oouliferous, ovale-bearing.
Palate, a projection of the lower lip of a labiate corolla into the throat, as in Snapdragon, \&c.
Puter (plural palece), ehaff; the inner husks of Grasses; the chaff or braets on the receptaele of many composite, as Coreopsis, and Suntlower.
Paleaceous, furnished with chaff, or chaffy in texture.
Paleolate, having Puleule or palea of a second order, or narrow palear.
Palet, English term for palea.
Palmote, when leaflets or the divisions of a leaf all spread from the apex of the petiole, like the hand with the wutspread fingers, 57. 58.
Pilmotely (veined, lobed, \&e.), in a palmate manner, 51, 56.
Pulmutifid, -lubet, -sert, palmately eleft, or labed, or divided.
Prludose, inhabiting marshes. $P_{\text {alustrine, same. }}$
Pinduriform, or P'thturate, fidlle-shaped (which see).
Pamicle, an open and branched cluster, 81.
Ponicled, Paniculate, arranged in panicles, or like a paniele.
I'tnose, covered with a felt of woolly hairs.
Papery, of about the eonsistence of letter-papar.
Pipiliontceous, butertl-shaped; applied to such a corolla as that of the Pea, 91.
Papilla (plural pupillue). little nipple-shaped protuberances.
Pupillate, Papilluse, covered with pap:llar.
P'口pus, thistle-down. The down crowning the acheninm of the Thistle. Groundsel.
Sc., and whatever in Composita answers to calyx, whether hairs, teeth, or scales, 121.
Pupyraceous, like parchment in texture.
Parallel-veined or nerved (leaves), 50.

Paraphyses, jointed tilaments mixed with the antheridia of Musses.
Parasitic, living as a parasite, i. c. on another plant or animal, 37.
Parenchemytous, composed of parenchyma.
Parenehymu, soft eellular tissue of plants, like the green pulp of leaves, 132.
Parietal (placenta, Se.), attached to the walls (parietes) of the ovary.
Paripinnute, pinnate with an even number of leatlets.
Parted, separated or cleft into parts almost to the base, 55.
Parthenogenesis, producing seed without fertilization.
Partial involuere, same as an involucel; portial putiole, a division of a main leafstalk or the stalk of a leaflet; pertial peduncle, a branch of a peduncle: pertial umbel, an umbellet, 76 .
Partition, a segment of a parted leaf; or an internal wall in an ovary, anther, \&c.
Patelliform, disk-shaped, like the jutellt or kneepan.
Patent, spreading, open. Patuloms, moderately spreading.
Peaci-, in composition, few; as paucifloroms, few-flowered, \&c.
Pear-shaped, solid obovate, the shape of a pear.
Pectinate, pinnatitid or pinnately divided into narrow and close divisions, like the teeth of a comb.
Pedete, like a bird's foot; pahmate or palmately cleft, with the side divisions again cleft, as in Viola pedata, \&e.
Pedicel, the stalk of each particular flower of a cluster, 73.
Pedicellate, Pedicelled, borne on a pedicel.
Pedalis, Latin for a foot high or loner.
Pedluncle, a flower-stalk, whether of a single flower or of a flower-cluster, 73.
Peduncled, Pedunculate, furnished with a peduncle.
Pelorin, an abnormal return to regularity and symmetry in an irregular flower; commonest in Snapdragon.
Peltate, shieh-shaped; said of a leaf, whatever its shape, when the petiole is attached to the lower side, somewhere within the margin, 53.
Pelciform, basin-shaped.
Pendent, hanging. Pendulous, somewhat hanging or lrooping.
Penicillute, Penicilliform, tipped with a tuft of tine hairs, like a painter's pencil; as the stigmas of some Grasses.
Pennate, same as pimate. Pemminerved and Pcmicimed, pimate ve veined, 51.
Penta- (in words of Greek composition), tive: as P'emulelphoms. 99 : Pentug!nmes, with five pistils or styles; Pentameroas, with its parts in fives, or on the plan of five; Pentundrous, having tive stamens, $112 ; P_{t}$ ntastichous, in five ranks, \&c.
Pepo, a fruit like the Melon and Cucumber, 119.
Perenninl, lasting from year to year, 38 .
Perfect (Hower), having both stamens and pistils, 81 .
Perfolute, passing through the leaf, in appearance, 60.
Perforate, pierced with holes, or with transparent dots resembling holes, as an Orange-leaf.
Peri-, Greek for around; from which are such terms as
Perimhth, the leaves of the fower collectively, 79.
Pericarp, the ripened ovary; the walls of the fruit, 117.
Perictrpic, belunging to the pericarp.
Perigonium, Perigone, same as periunth.
Perigyniam, boties around the pi-til; applied to the closed cup or bottle-shaped body (of bracts) which enchses the orary of Sedses, and to the bristles, little scales, む. . of the flowers of some other Cyperaces.
Perifynous, the petals and stamens borne on the calyx, 95, 99.
Periphoric, aromul the outside, or periphery, of any organ.
Perisperm, a name for the abumen of a seed.
Peristome, the frimge of teeth to the spore-case of Mosses, 163.
Persstent, remaining leyond the period when such parts commoniy fall, as the leaves of evergreens, and the caly of such tlowers as persist during the growth of the fruit.

Personate, masked; a bilabiate corolla with a palute in the throat, 92
Pertuse, perforated witlo a hole or slit.
I'rublute, having scales ('ermbe), such as but-scales.
Pes, pedis, Latin for the foot or support, whence Longipes. long-stalked, \&c.
P'tal, a leaf of the corolla, 14, 79.
Petalody, metamorphosis of stamens, Ne., into pretals.
I' tuloid, Petaline, petal-like'; resembling or colored like petals.
I'tiole, a footstalk of a leaf; a leaf stalk, 49.
Petiolch. Petiolute, furnished with a petiole.
Petiolulote, said of a leatlet when raised on its own partial leafstalk.
Petraus, Latin for growing on rocks.
Phalanx, phalanges, bundles of stamens.
Phenogamous, or Phanerogamous, plants bearing flowers and producing seeds; same as Flowering Plants. Phenogams, Pluntrogums, 10.
Phlent, Greek name for bark, whence Endophlwum, inner bark, Sc.
Phreniceous, deep red versing to scarlet.
Plyycology, the botany of Algre.
Ihyllocloliu, branches assmming the form and function of leaves.
Phyllotium (phoral, phyllorlit), a leaf where the seeming blade is a dilated petiole, as in New Holland Aeacias, 61.
Phyllome, foliar parts, those answering to leaves in their nature.
Phyllon (plural, phylla), Greek for leaf and leaves; used in many compound terms and names.
Phyllotuxis, or Phyllotaxy, the arrangement of leaves on the stem, 67.
Physiological Buteny, 9.
Phytography, relates to characterizing and describing plants.
Phyton, or Phytomer, a name used to designate the pieces which hy their repetition make up a plant, theoretically, viz. a joint of stem with its leaf or pair of leaves.
Pilcus of a mushrom, 172.
Piliferous, bearing a slender bristle or hair (pilum), or beset with hairs.
Pilose, hairy; clothed with soft slender hairs.
Pinna, a primary division with its leaflets of a bipinnate or tripinnate leaf.
Pinnule, a secondary division of a bipimate or tripimate leaf, 66.
Pinnate (leaf), when leaflets are arranged along the sides of a common petiole, 57.
Pinnately lobet, cleft, purted, divided, reined, 56.
Pinnatifid, Pinnatisect, same as pinnately cleft and pinnately parted, 56.
Pisiform, pea-shaped.
Pistil, the seed-bearing organ of the flower, $14,80,105$.
Pistillate, having a pistil, 85.
Pistillidium, the body which in Mosses answers to the pistıl, 159, 164.
Pitchers, 64.
Pith, the cellular centre of an exogenous stem, 138 .
Plucenta, the surface or part of the ovary to which the ovules are attached, 107.
Placentiform, nearly same as quoit-shaped.
Plaited (in the bud), or Plicate, folded, 72, 98.
Platy-, Greek for broad, in compounds, sueh as Platyphyllous, broad-leared, \&c.
Pleio-, Greek for full or abounding, used in compounds, such as Pleiopetalous, of many petals, \&e.
Plumbeus, leal-colored.
Plumose, feathery; when any slender body (such as a bristle of a pappus or a style) is lieset with hairs along its sides, like the plume of a feather.
Plumule, the bud or first shoot of a germinating plantlet above the cotyledons, 13.
Pluri, in composition, many or several: as Mlurifoliolate, with several leaflets.
Pod, specially a lemme, 122; also may be appled to any sort of capsule.
Jodium, a foot-talk or stipe, used only in Greek compumbls, as (*nfixed) Leptor pohlus, slomder-stalked, or (prefixed) Polocepholus, with a stalked head, and

Pogon, Greek for beard, comes into various compounds.

Pointless, destitute of any pointed tip, such as a mucro, awn, acumination, \&c.
Pollen, the fertilizing powder contained in the anther, 14, 80, 103.
Pollen-growth, 117. Polleniferous, pollen-bearing.
Pollen-muss, Pollinium, the united mass of pollen, 104, as in Milkweed and Orchis.
Pellicaris, Latin for an inch long.
Pollination, the application of pollen to the stigma, 114.
Poly-, in componnd words of Greek origin, stme as multi- in those of Latin origin, viz. many, as
Polyadelphous, stamens united by their filaments into several bundes, 100.
Polyondious, with mumerous stamens (inserted on the receptacle), $\mathbf{1 0 0}$.
Polycarpic, term used by Det'andolle in the sense of perennial.
Polycotyledonous, having maty (more than two) cotyledoss, as Pines, 23.
Polygamous, having some perfect and some unisexnal thowers, 85.
Polygonal, many-angled.
Polygyuous, with many pistils or styles, 105.
Polymerous, formed of many parts of each set.
Polymorphous, of several or varying forms.
Pulypetalous, when the petals are distinet or separate (whether few or many), 89.
Polyphyllous, many-leaved; formed of several distinct pieces.
Polysepulous, same as the last when applied to the calyx, 89.
Polyspermous, many-seeded.
Pome, the apple, pear, and similar lleshy fruits, 119.
Pomiferous, pome-bearing.
Porrect, ontstretchea.
Posterior side or portion of a flower (when axillary) is thist toward the axis, 96.
Poach, the silicle or short pod, as of Shepherd's l'urse, 123.
Precocious (Latin, precox), unusually early in development.
Prefloration, same as estivation, 97.
Prefoliation, same as vernation, 71.
Premorse, ending abruptly, as if bitten off.
Pratensis, Latin for growing in meadows.
Prickles, sharp elevations of the bark, comins off with it, as of the Rose.
Prickly, bearing prickles, or shary projections like them.
Primine, the outer coat of the covering of the ovule, 110 .
Primordicl, earliest formed; primordial leaves are the tirst after the eotyledons.
Prismatic, prism-shaped; having three or more angles boumling that sides.
Procerous, tall, or tall and slim.
Process, any projection from the surface or edge of a body.
Procumbent, trailing on the ground, 39 .
Procurent, rumning through but not projecting.
Proluced, extended or projecting; the upper sepal of a Larkspur is produced above into a spur, 87 .
Proliferous (biterally, bearings offspring), whore a new branch rises from an older one, or one head or cluster of thowers ont of another.
Propuculum or Propagulum, a shoot for propagation.
Prosenchyma, a tissue of wood-cell:.
Prostrate, lying flat on the ground, 39.
Protandrous or Proterandrous, the anthers tirst matering, 116.
Proteranthous, flowering before lating.
Proterogynous or Protogynous, the stigmas first to mature, 116.
Prothallium or Prothallas, 160.
Protoplasm, the soft nitrorenous lining or contents, or living part, of cells, 129.
Protos, Greek for first; in various compounds.
Pruinose, Pruinate, frosted: covered with a powder like hoar-frost.
P'seudo-, Greek for false. Pseudo-bulb, the aerial corms of epiphytic Orchids, \&c.
Psilos, Greek for bare or maked, used in-many componnds.
Pteridophytit, Pteridopliytes, 15 ti.
Pteris, Greek for wing, and general name for Fern, enters into many compounds.

Puberulent, covered with fine and hort or almost impereeptible down.
Pubescout, hairy or downy, especially with tine and soft hairs or pubescence.
P'ulverulent or Puireraceous, as if dusted with fine powder.
P'alvinate, cushioned, or shaped like a cushion.
r'umilus, low or little.
Panctate, dotted, cither with minute holes or what look as such.
Pancticulate, minutely punctate.
I'ungent, prickly-tipped.
l'uniceous, carmine-red.
P'arpureus, originally red or crimson, more used for duller or bluish-red.
Pusillus, weak and small, tiny.
I'utamen, the stone of a drupe, or the shell of a nut, 120 .
Pygmeus, latin for dwarf.
I'yramidth, shaped like a pyramid.
Pyrene, Pyrenu, a seed-like nutlet or stone of a small drupe.
Pyriform, pear-shaped.
Pyxidate, furnished with a lid.
Pyxis, Pyxidium, a pod opening round horizontally by a lid, 124.
Quadri-, in words of Latin origin, four; as Qualraugular, iour-angled; Quadrifoliate, four-leaved; Quadrifid, four-cleft. Quaternate in fours.
Quinate, in fives. Quinque, tive.
Quincuncial, in a quincunx; when the parts in æstivation are five, two of them outside, two inside, and one half out and half in.
Quintuple, tive-fold.
Ruce, a marked variety which may be perpetuated from seed, 176.
Raceme, a flower-eluster, with one-flowered pedicels arranged along the sides of a general peduncle, 73.
Racemose, bearing racemes, or raceme-like.
Rachis, see rhachis.
Radial, belonging to the ray.
Radiate, or Rttliant, furnished with ray-flowers, 94.
Ruthate-reined, 52.
Radical, belonging to the root, or apparently eoming from the root.
Raticant. rooting, taking root on or above the gromad.
Rudicels, little roots or rootlets.
Raticle, the stem part of the embryo, the lower end of which forms the root, 11, 12i
Rameal, belonging to a branch. Ramose, full of branclies (rami).
Ramentaccous, beset with thin chaffy seales (Ramenta), as the stalks of many Ferns.
Ramificution, branching, 27.
Ramulose, full of branchlets (ramuli).
Raphe, see rhaphe.
Ray, parts diverging from a centre, the marginal flowers of a head (as of Coreopsis, 94), or cluster, as of 1 I ydrangea (78), when different from the rest, especially. when ligulate and diverging (like rays or sunbeams); also the branclues of an mubel, 74.
Ray-Howers, 94 .
Receptacle, the axis or support of a flower, 81,112 ; also the common axis or support of a head of flowers, 73 .
Reclined, turned or curved downwards; nearly reeumbent.
Rectinerred, with straight nerves or veins.
Recurped, curved outwards or back wards.
Reduplicute (in wstivation), valvate with the margins turned outwards 97.
Reflexed, bent eutwards or harkwards.
Rifracted, bent smidenly, su as to appear broken at the bend.
Reqular, all the parts similar in shape, 82.
Reniform, kidney-shaped, as

Repand, wavy-margined, 55.
Repent, creeping, i. e. prostrate and rooting underneath.
Replum, the frame of some fods (as of Prjekly Poply and Cress), persistent after the valves fall away.
Reptant, same as repent.
Resupinate, inverted, or appearing as if upside down, or reversed.
Reticulated, the veins forming network, 50. Retiform, in network.
Retinerved, reticulate-veined.
Retroftexed, bent backwards; same as reftexet.
Retuse, blunted; the apex not only obtuse but somewhat indented, 54.
Revolute, rolled backwards, as the margins of many leaves, 72 .
Rhachis (the backbone), the axis of a spike or other body, 73.
Rhaphe, the continuation of the seed-stalk along the side of an anatropons ovale or seed, 112, 126.
Rhaphides, crystals, especially needle-shaped ones, in the tissues of plants, 137.
Rhizanthous, flowering from the root.
Rhizom", Rhizome, a rootstock, 42-44.
Rhombic, in the shape of a rhomb. Rhomboidal, approaching that shape.
Rib, the principal piece, or one of the principal pieces of the framework of a leaf, or any similar elevated line along a body, 49, 50.
Rimose, having chinks or eracks.
Ring, an elastic band on the spore-cases of Ferns, 159.
Ringent, grimning; saping open, 92.
Riparious, on river-banks.
Ricalis, Latin for growing along brooks; or Rivularis, in rivulets.
Root, 33.
Root-hairs, 35.
Rootlets, small roots, or root-branches, 33 .
Rootstoch, root-like trunks or portions of stems on or under ground, 42.
Roridus, dewy.
Rosaceous, arranged like the petals of a rose.
Rostellate, bearing a small beak (Rostellum).
Rostrate, bearing a beak (Rustrum) or a prolonged appendage.
Rosulate, in a rosette or cluster of spreading leaves.
Rotate, wheel-shaped, 89.
Rotund, rounded or roundish in outline.
Ruber, Latin for red in general. Rubescent, Rubicund, reddish or blushing.
Rudimentary, imperfectly developed, or in an early state of development.
Rufous, Rufescent, brownish-red or reddish-brown.
Rugose, wrinkled; roughened with wrinkles.
Ruminated (albumen), penetrated with irregular channels or portions, as a nutmeg, looking as if chewed.
Runcinate, coarsely saw-toothed or cut, the pointed tecth turned towards the hase of the leaf, as the leaf of a Dandelion.
Runner, a slender and prostrate braneh, rooting at the end, or at the joints, 40.
Sabulose, growing in sand.
Sac, anv elosed membrane, or a deep purse-shaped cavity.
Saccate, sac-shiped.
Sagittute, arrowhead-chaped, 53.
Salsuyinous, growine in brackish soil.
Sulver-shaped, or Sulver-form, with a border spreading at riglit angles to a slender tube, 89.
Samara, a wing-fruit, or kev, 122.
Samaroid, like a samara or key-fruit.
Sap, the juices of plants generally, 136. Supwood, 142.
Saprophytes. 37 .
Sarcocurp, the tleshy part of a stone fruit, 120.

Sarmentaceous, Sirmentose, bearing long and flexible twigs (Sarments), either spreading or procumbent.
Saw-toothed, see scroute, 5.5.
S'cabrous, rough or harsh to the toueh.
Acalariform, with cross-bands, resembling the steps of a ladder, 134.
Sicales, of buds, 28; of bulbs, \&e., 46 .
Soralloped, same as create, 50.
S'aly, fumished with scales, or scale-like in texture.
Scontent, climbing. 39.
Srope, a pedumele rising from the ground or near it, as in many Violets.
scopiform, scape-like.
scrpigerots, scape-bearing.
Sor of the seed, 126. Lect-senms, 27, 28.
Scarious or Scariose, thin, dry, and membranons.
Scion, a shoot or slip used for gralting.
Scleros, Greek for hard, henee selerocarpons, hard-fruited.
Scobiform, resemblins sawdust.
Scorpioid or Scorpiodal, curved or circinate at the end, 77.
Scrobiculate, pitted; excavated into shallow pits.
Scurf, Scurfiness, minute seales on the surface of many leaves, as of Goosefoot Scutate, Scutiform, buckler-shaped.
Scutellate, or Scutclliform, saucer-shaped or platter-shaped.
Secund, one-sided; i. e. where Howers, leaves, \&c., are all turned to one side.
Secundine, the inner coat of the ovule, 1 Fo .
Seed, 125. Sced-leaves, see cotyledons. Sted-ressel, 127.
Segment, a subdivision or lobe of any cleft body.
Segregute, separated from each other.
Semi-, in compound words of Latin origin, half; as
Scmi-adherent, as the calyx or ovary of I'urskane: Semicordute, half-heart-shaped;
Semilumar, like a half-moon; Semiorute, half-ovate, \&c.
Seminal, relating to the seed (Semen). Seminiferous, seed-bearing.
Sempervirent, evergreen.
Semsitireness in plants, 149, 152.
Senary, in sixes.
Sepul, a leaf or division of the calyx, 14, 79.
Sepaloid, sepal-like. Sepaline, relating to the sepals.
Separated Flowers, those havintr stamens or pistils only, 85.
Stptate, divided by partitions.
Scptenute, with parts in sevens.
Septicidtal, where dehiseence is through the partitions, 123.
Septiferous, bearing the partition.
Septifrogal, where the valves in dehiscence break away from the partitions, 123.
Septum (plural septa), a partition or dissepiment.
Serial, or Seriate, in rows; as biserial, in two rows, \&e.
Sericeous, silky; clothed with satiny pubescence.
Serotinous, late in the season.
Sorate, the margin cut into teeth (Serratures) pointing forwards, 55.
Sorrulate, same as the last, but with tine tecth.
Sessile, sitting; without any stalk.
Scoqui-, Latin for one and a half; so Sesquipedtelis, a foot and a half long.
Setu, a bristle, or a slender body or apmendare resembling a bristle.
Setuceous, bristle-like. Setiform, lristle-shaped.
Sotigerous, bearing bristles. Stose, beset with briethes or bristly hairs.
Stulu, a diminutive bristla. Setulose, provided with suel.

Sheuth, the base of such leaves as those of Grasses, which are
Sheathing, wrapped round the stem.
shield-shoped, same as scutate, or as peltete, 53.

Shrub, Shrubby, 39.
sieve-cells, 140.
Sigmoid, curved in two directions, like the letter S, or the Greek sigma.
Silicle, a poueh, or short pod of the Cress Family, 123.
Siliculose, bearing a silicle, or a fruit resembling it.
Silique, capsule of the Cress Family, 123.
Siliquose, bearmg siliques or pods which resemble siliques.
Silky, glossy with a coat of tine and soft, close-pressed, straight hairs.
Silver-grain, the medullary rays of wood, 139.
Silvery, shmmer white or blush-gray, usually from a silky pubescence.
Simple, of one prece; opposed to compound.
Sinistrorse, turned to the left.
Sinuate, with margin alternately bowed inwards and outwarls, 5.5.
Sinus, a recess or bay, the re-entering angle between two lobes or projections.
Sleep of Plants (so called), 151.
Smooth, properly speaking not rough, but often used for glabrous, i. e. not pubescent.
Soboliferous, bearing shoots (Soboles) from near the ground.
Solitary, single, not associated with others.
Surdid, dull or dirty in hue.
Surediate, bearing patches on the surface.
Sorosis, name of a multiple fruit, like a pine-apple.
Sorus, a fruit-dot of Ferns, 159.
Spadiceous, chestnut-colored. Also spadix-bearmg.
Spadix, a fleshy spike of flowers, 75.
Span, the distance between the tip of the thumb and of little finger outstretchat, six or seven inches.
Spathaceous, resembling or furnished with a
Spathe, a bract which mwraps an inflorescence, 75.
Spatulate, or Spothulate, shaped like a spatula, 52 .
Species, 175.
Specific Names, 179.
Specimens, 184.
Spermaphore, or Spermophore, one of the names of the placenta.
Spermum, Latin form of Greek word for seed; much used in composition.
Spica, Latin for spike; hence Spicate, in a spike, Spiciform, in shape resembling a spike.
Spike, an inflorescence like a raceme, only the flowers are sessile, 74.
Spikelet, a small or a secondary spike; the inflorescence of Grasses.
Spine, 41, 64.
Spindle-shaped, tapering to each end, like a radish, 36 .
Spinescent, tipped by or deqenerating mito a thorn.
Spinose, or Spiniferous, thorny.
Spiral Vessels or ducts, 135.
Spithameous, span-high.
Spora, Greek name for seed, used in compound words.
Sporadic, widely dispersed.
Sporangium, a spore-case in Ferns, \&e., 158.
Spore, a boly resulting from the fructification of Cryptogamous plants, in them the analogue of a seed.
Spore-case (Sporangium), 158.
Sporocarp, 162.
Sport, a newly appeared variation, 176.
Sporule, same as a spore, or a small spore.
Spumescent, appearing like froth.
Spur, any projecting appendase of the flower, looking like a spur but hollow, as that of Larkspur, fig. 239.
Squamate, Squamose, or Squamacevus, furnished with scales (squame).

Squamellate, or Squamulose, furnished with little scales (Squamellae, or Squamule).
S'quetmifin'm, shaped like a seale.
S'funrose, where seales, laves, or any appendages spread widely from the axis on which they are thickly set.
Squarrulose, diminutive of squarrose; slightly spuarrose.
Stachys, Greek for spike.
Stalk, the stem, petiole, peduncle, Sce, as the case may be.
Stamen, 14, 80, 98.
Stominate, furnished with stamens, 86 . Strmiutul, relating to thr stamens.
Stominofiom, an abortive stamen, or other body in place of a stamen.
Stamburd, the upper petal of a papilionaceous corolla, 92.
Sturch, 136, 163.
Stution, the particular kind of situation in which a plant naturally oceus.
Stellute, Stellultu, starry or star-like; where speral similar parts spread out from
a common centre, like a star.
Stem, 39. Stemlet, diminutive stem.
Stemiess, destitute or apparently destitute of stem.
Stenos, Greck for narrow; hence Stenophyllous, narrow-leaved, 太e.
Sterile, barren or impertect.
Stiyma, the part of the pistil which receives the pollen, 14, 80, 105.
Stigmatic, or Stigmatose, belonging to the stigmat.
Stipe (Latin S'tipes), the stalk of a pistil, \&uc., when it has any, 112: also of a Fern, 158, and of a Mushroom, 172.
Stipel, a stipule of a leaflet, as of the Bean, dee.
Stipellate, furnished with stipels, as in the Bean tribe.
Stipitate, furnished with a stipe.
Stipuiaceous, beionging to stipules. Stipulate, furnished with stipules.
Stipules, the appendages one each side of the base of certain leaves, 66.
Stirps (plural, stirpes), Latin for race.
Stock, used for race or source. Also for any root-like base from which the herb grows up.
Stole, or Stolon, a trailing or reclined and rooting shoot, 40 .
Stoloniferous, producing stolons.
Stomate (Latin Stoma, plural Stomata), the breathing-pores of leaves, 144 .
Stome-fruit, 119.
Storage-leaves, 62.
Stramineous, straw-like, or straw-eolored.
Strop-shaped, long, flat, and narrow.
Strinte, or Striated, marked with slemder longitudinal grooves or stripes.
Strict, close and narrow; straight and narrow.
Strigillose, Strigose, beset with stout and appressed, stiff or rigid bristles.
Strohilaceous, relating to or resemblines a strohile.
Strobile, a multiple fruit in the form of a cone or head, 124.
strombuliform, twisted, like a spiral shell.
Strophinle, same as coruacle, 126. Strophiolate, furnished with a strophiole.
Strumt, a wen; a swelling or protuberanee of any organ.
strumose, bearing a struma.
Stupoise, like tow.
Style, a stalk between ovary and stigma, 14, 80, 105.
Styliferous, Stylese, bearing styles or comspicuous ones.
Ntyloporinm, an epigyous disk, or an enlargenent at the base of the style.
Sub, as a prefix, about, nearly, somewhat: as Subcordute. lishtly cordate; Substr. ratt, - lightly semate; subarilhery, just beneath the axil, de.
Subcluss, suboridur, subtribe. 178
Suberose, corky or cork-like in texture.
Suhulate, awl-shaped; tapering trom a broadish or thickish base to a sharp point.
Sucrise, as if eut off at lower end.
succubous, when crowded leaves are eath covered by base of nest above.

Suckers, shoots from subterranean branches, 39.
Suffrutescent, slightly shrubby or woody at the base only, 39 ,
Sreffruticose, rather inore than suffrutescent, 37, 34 .
Sulcute, grooved longitudinally with deep furrows.
Superior, above, 96 ; sometimes equivalent to posterior, 96.
Supernumerary Buls, 30, 31.
Supervolute, plaited and convolute in bud, 97.
Supine, lying flat, with face upward.
Suprotaxillery, borne above the axil, as some buds, 31 .
Supra-decompound, many times componnled or divided.
Surculose, producing suckers (Surculi) or shoots resembling them.
Suspended, hanging down. Suspended ovales or seeds hang fiom the very summit of the cell which contains them.
Sutural, belonging or relating to a suture.
Suture, the line of junction of contiguons parts grown torether, 10 f .
Suord-shaped, applied to narrow leaves, with acute parallel edges, tapering above.
Syconium, the fig-fruit, 124.
Sylvestrine, growing in woods.
Symmetrical Flower, similar in the number of parts of each set, 82.
Sympetalous, same as gamopetalon-.
Sympode, Sympodıum, a stem composed of a series of superposed branches in such a way as to imitate a simple axis, as in Grape-vine.
Synentherous or Syngenesious, where stamens are mited by their authers, 100.
Syncarpous (froit or pistil), composed of several carpels consolidated into one.
Synonym, an equivalent superseded name.
Sunsopalous, same as grmose palous.
System (artifieial and natural), 182, 183.
Systemutic Botany, the study of plants after their kinds, 9 .
Tabescent, wasting or shrivelling.
Tail, any long and slender prolongation of an organ.
Taper-pointed, same as acuminate, 54.
Tip-root, a root with a stout tapering botly, :2-35.
Thwny, dull yellowish, with a tinge of brww.
Taxonomy, the part of botany which treats of classification.
Tegmen, a name for the immer seed-coat.
Tendril, a thread-shaped organ used for climbing, 40.
Terete, long and round; same as cylindrical, only it may taper.
Terminal, borne at, or belonging to, the extremity or summit.
Terminology treats of technical terms; same as Glossology, 181.
Ternate, Ternately, in threes.
Tessellate, in cinecker-work.
Testu, the outer (and usually the harder) coat or shell of the seed, 125.
Testaceous, the color of unglazed pottery.
Tetra- (in words of Greek composition), four ; as, Tetracoccous, of four cocci.
Tetrudynamous, where a flower has six stamens, two shorter than the four, 101.
Tetragonal, four-angled. Tetragynous, with four pistils or styles. Tetramerous, with its parts or sets in fours. Tetrandrous, with four stamens, 100.
Tetrospore, a quadruple spore, 169.
Thalamaflorous, with petals and stamens inserted on the torus or Thalamus.
Thallophytr, Thallophytes, 165.
Thallus, a stratum, in place of stem and leaves, 165.
Theca, a case; the cells or lobes of the anther.
Thecaphore, the stipe of a carpel, 113.
Thorn, an indurated pointed branch, 41, 42
Thread-shopet, slemder and round or ronndish, like a thread.
Throat, the opening or gorge of a monopetalous corolla, de., where the border and the tube join, and a little below, 89 .

Thyrse or Thypsus, a compact and pramidal panicle of cymes or eymules, 79.
Tomentose, clothed with matted woolly !atirs (tomentum).
Tongue-shoped, long and ilat, but thickish and blant.
Toothed, furnishet with teeth or short projections of any sort on the margin; used especially when these are sharp, like saw-teeth, amil do mot point forwards, 5 j .
Top-shaped, shaped like a top, or a cone with apex downwards.
Torose, Torulose, knobby; where a cylindrical borly is swollen at intervals.
Torus, the receptacle of the llower, 81,112 .
Thrile ea, a spiral duet.
Iruchys, Greek for rough; used in compounds, as, Trachyspermous, rough-seeded.
Transterse, aeross, standing right and feft insteat of fore and aft.
Tri- (in composition), three; as,
Triudelphous, stamens umited by their filaments into three bundles, 99.
Triandrous, where the flower has three stamens, 112.
Tribe, 178.
Trichome, of the nature of hair or pubescence.
Trichotomous, three-forked. Tricoccous, of three cocei or roundish carpels.
Tricolor, having three colors. Tricostate, having three ribs.
Tricuspidate, three-pointed. Tridentate, three-toothed.
Trienniul, lasting for three years.
Trifarions, in three vertical rows; looking three ways.
Tritid, three-cleft, 56.
Trifulinte, three-leaved. Trifoliolate, of three leaflets.
Trifurcate, three-forked. Trigonous, three-angled, or triangular.
Trigynous, with three pistils or styles, 116. Trijugate, in three pairs (jugi).
Trilobed or Trilobate, three-lobed, 55.
Triloculur, three-celled, as the pistils or pods in fig. 328-330.
Trimerous, with its parts in threes. Trimorphism, 117. Trimorphic or Trimorphous, in three forms.
Trinervate, three-nerved, or with three slender ribs.
Triocious, where there are three sorts of flowers on the same or different individHals, as in Red Maple. A form of Polygamous.
Tripartible, separable into three pieces. Tripartite, three-parted, 55.
Tripetrlons, having three petals.
Triphyllous, three-leaved: composed of three preces.
Tripinnate, thrice pinnate, 59. Tripinnatifid, thrice pinnately cleft, 57.
Triple-ribbed, Triple-nerved, \&c., where a mitrib branches into three, near the base of the leaf.
Triquetrous, sharply three-angled; and espectally with the sides concave, like a bayonet.
Triserial, or Triseriate, in three rows, under each other.
Tristichms, in three longitudinal or perpendicular ranks.
Tristigmatic, or Tristigmatose, having three stigmas.
Tirisulcate, three-grooved.
Triturnate, three times ternate, 59.
Trivial Name, the speeitic name.
Trochlear, julley-shaped.
Trumpet-shuped, tubular; cnlarend at or towards the summit.
Trumente, as if eut off at the top.
Trunk, the main stem or wneral horly of a stem or tree.
Tube (of corolla, \&c.), 8!
Tuber, a thickened portion of a subterranean stem or branch, provided with eyes (buds) on the sides. 44.
Tuberele, a small excrescemer.
Tubercled, or Tubtrulatr, bearing excrescences or pimples.
Tulkeform, trumpet-shaped.
Thberous, rosembling a tuber. Tuberiferous, hearing tuhers.
Thimlar, hollow and of an rlongated form; holhowed like a pipe, 91.

Tubuliflorous, bearing only tubular flowers.
Tunicate, coated; invested witl lityers, as an onion, 46.
Turbinate, top-shaped.
Turio (plural turiones), strong young shoots or suckers springing out of the ground ; as Asparagus-shouts.
Turnip-shaped, broader than high, abruptly narrowed below, 35 .
Twining, ascending by coiling round a support, 39.
Type, the ideal pattern, 10.
Typical, well exemplifying the characteristics of a species, genus, \&c.
Uliginose, growing in swamps.
$U m b e l$, the umbrella-like form of inflorescence, it.
Umbellate, in umbels. Umbelliferous, bearing momels.
Umbellet (umbellula), a secondary or jartial mubel, 76.
Umbilicate, depressed in the centre, like the ends of an apple; with a navel.
Umbonate, bossed; furnished with a low, rounded projection like a boss (umbo).
Umbraculiform, umbrella-shaped.
Unarmed, destitute of spines, prickles, and the like.
Uncial, an inch (uncia) in length.
Uncinate, or Uncate, hook-shaped: booked over at the end.
Under-shrub, partially shrubby, or a very low shrub.
Undulate, or Undate, wary, or wary-margined, 55.
Unequally pinnate, pinnate with an odd number of leaflets, 65.
Unguiculate, furnished with a claw (unguis), 91.
Uni-, in compound worls, one; as Unicellular, one-celled.
Uniflorous, one-flowered. Unifolicte, one-leaved.
Unifoliolate, of one leaflet, 59. Unïugate. of one pair.
Unilabiate, one-lipped. I'nilateral, one-sisled.
Unilocular, one-celled. U'niovulate, having only one ovule.
Uniserial, in one horizontal row.
Unisexual, having stamens or pistils only, 85.
Univalved, a pod of only one piece after dehiscence.
Unsymmetrical Flower's, 86.
Urceolate, urn-shaped.
Utricle, a small thin-walled, one-seeded fruit, as of Goosefoot, 121.
Utricular, like a small bladder.
Vaginate, sheathed, surrounded by a sheath (vagina).
Valve, one of the pieces (or doors) into which a dehiscent pod, or any similar body, splits, 122, 123.
Valvate, Valvular, opening by valves. Valvate, in astivation, 97.
Variety, 176.
Vascular, containing vessels, or consisting of vessels or ducts, 134.
Vascular Cryptogams, 156.
Voulted, arched; same as fornicate.
Vegetable Life, \&c., 128. I'egetable anatomy, 129.
Veins, the small ribs or branches of the framework of leaves, $\& c ., 49,50$.
Veined, leiny, furnished with evident veins. Veinless, destitute of veins.
Feinlets, the smaller ramitications of veins, 50.
Velate, furnished with a veil.
Velutinous, velvety to the touch.
Venation, the veining of leaves, \&c., 50.
Venenate, poisonous.
Venose, veiny; furnished with conspicuous veins.
Ventral, belonging to that side of a simple pistil, o: other organ, which looks towards the axis or centre of the flower; the opposite of dorsal; as the
Ventral Suture, 106.
Ventricose, inflated or swelled out on one side.

Venulıse, furnished with veinlets.
Vermicular, worm-like, shaped like worms.
Jernal, belonging to spring.
Fernation, the arrangement of the leaves in the bud, 71 .
Vernicose, the surface appearing as if varnished.
Verrucose, warty; beset with little projections like warts.
Versatile, attached by one point, so that it may swing to and fro, 101.
revtex, same as apex.
Vertical, upright, perpendicular to the horizon, lengthwise.
Verticil, a whorl, 68 . Verticillate, whorled, 68.
l'erticillaster, a false whorl, formed of a pair of opposite cymes.
Vesicular, bladdery.
Vespertine, appearing or expanding at evening.
Tessels, ducts, \&e., 134.
Vexillary, Iexillar, relating to the
lexillum, the st:mblard of a papilionaccous flower, 92.
Villose, shaggy with long and soft hairs (Villosty).
Vimineous, producing slender twigs, stch as those used for wicker-work.
Vine, in the American use, any trailing or climbing stem; as a Grape-vine.
Vurescent, Viridescent, greenish; turning green.
l'irgate, wand-shape; as a long, straight, and slender twig.
Viscous, Viscid, having a glutinous surface.
Vitta (plural rittce), the oil-tubes of the fruit of Umbelliferæ.
l'itelline, yellow, of the hue of yolk of egg.
Viviparous, sprouting or germinating while attached to the parent plant.
Toluble, twining; as the stem of Hops and Beans, 39.
Volute, rolled up in any way.
Wavy, the surface or margin alternately convex and concave, 55.
Waxy, resembling beeswax in fexture or appearance.
Wedge-shaped, broad above, tapering by straight lines to a narrow base, 53 .
W'keel-shaped, 89.
Whorl, an arrangement of leaves, \&c., in circles around the stem.
Whorled, arranged in whorls, 68.
Wing, any membranous expabsion. IVings of papilionaceous flowers, 92.
W'inged, furnished with a wing; as the fruit of Ash and Elm, tig. 300, 301.
Wood, 133, 142. Woody, of the texture or consisting of wout.
Woody Fibre, or Weord-Cells, 134.
Woolly, clothed with long and entangled soft hairs.
Work in plants, 149, 155.
Xanthos, Greek for yellow, used in compounds; as Xanthocarpus, yellow-fruited.
Zygomorphous, said of a flower which can be bisected only in one plane into similas halves.

THE UNIVERSITY LIBRARY

This book is DUE on the last date stamped below

NOV 10 inta

-4241952

14. 12 995

AUG 2 F 1953
SEP 201963

HAM129988

[^0]: ${ }^{1}$ The name is sometimes Phanerogamons, sometimes Phenogamous (Phanerogams, or Phonograms), terms of the same meaning etymologically ; the former of preferable form, but the latter shorter. The meaning of such terms is explained in the Glossary.

[^1]: Fig. 5. Early Flax seedling : stem (caulicle), root at lower end, expanded seepleaves (cotyledons) : at the other: minute lind (plumule) between these. 6 . Same later; the bud developed into second pair of leaves, with hardly any s stem-part beLow them; then into a third pair of leaves, raised on a short joint of stem; and a fifth leaf also showing. 7. Same still older, with more leaves developed, but these singly (one after another), and with joints of stem between them.

[^2]: Fig. 36. Ifalf of an acorn, cut lenglhwise, filled by the very thick cotyledons, the hase of which encloses the minute cauliele. 37. Oak-seedling.

 Fig. 3s. Half of a horse-chestmut. similarly cut ; the caulicle is curved down on the side of one of the thick cotylerlons. 39. Horse-chestant in germination; fontstalks are formel to the cotyledous, pushing ont in their lengthening the growing parts.

[^3]: Fig. 40. Seed of Morning Glory divided, moderately magnified; slows a longitudinal section through the rentre of the embryo as it lies crumpled in the albumen. 41. Embryo taken out whole and unfolded; the broad and very thin cotyledons notched at summit ; the caulicle below. 42. Early state of germination. 43. Same, more alvanced; caulicle or primary stem, cotyledons or seedleaves, and beluw, the ront, well developed.

[^4]: Fig. 56. Seetion of a Pine-seen, showing its polycotylenlonous embryo in the centre of the allomen; morlerately magnified. 57. Seedling of same, showing the freshly expanded six eotyledons in a whorl, and the phmule just appearing.

 Fig. 58. Section of a seed of the Iris, or Flower-he-Lnce, enlarged, showing its small embryo in the albumen, mear the bottom. 59. A germinating seedling of the sume, its phomule developed into the first four leaves (alternate), the first one rudimentary; the eotydedon remains in the serel.

 Fig. 60. Suetion of an Onion-seed, showing the slemler and coiled embryo in the alhumen; moderately magnitied. 61. Seed of same in carly germination.

[^5]: Fig. 74. An axillary het, concealed under the hollowed hase of the leafstalk, in Buttonwood or Plaue-tree.

[^6]: Fig. 78. Butternut branch, with accessory buls, the uppermost alove the axil.
 Fig. 79. Red-Maple branch, with accessory buds placed side by side. The annular lines toward the base in this and in Fig. 72 are scars of the bud-scales, and indicate the place of the winter-bul of the preceding year.

[^7]: Fig. SU. An American Etm, with Spruce-trees, and on the left Arbor Vitæ.

[^8]: Fig. S6. Sweet-Potato plant forming thickened roots. Some in the middle are just beginning to thicken; nue at the left has grown more; one at the right is stil larger.

 Fig. 87. Fascicled fusiform roots of a Dahlia : a, a, buds on base of stem.

[^9]: Fig. 89. Roots of Yellow Gerardia, some attached to and feeding on the root of a Blueberry-bush.

[^10]: Fig. 92. A small Passion-flower (Passiftora sicyodes), showing the tendrils.
 Fig. 93. Piece of the stem of Virginia Creeper, bearing a laf and a tendril. 9 . Ti 's of a tembril, about the natural size, showing the disks by which they hold fast to walls, etc.

[^11]: Fig. 121, oblanceolate ; 122, spatulate ; 123, obovate ; and 124, wedse-shaped, feather-veined, leaves.

 Fig. 125, sagittate ; 126, auriculate ; and 127, haiberd-shaped or hastate leaves.
 Fig. 12S-132. Various forms of radiate-veined leaves.

[^12]: Fig. 159. Palmate (or digitate) leaf of five leatlets, of the Sweet Buckeyr.

[^13]: Fig. 186. Three-ranked arrangement, shown in a piece of the stalk of a Sedge, with the leaves cut off above their hases; the laves are numbered in order, from 1 to 6 . 18\%. Diagram or cross-section of the same, in one plane; the leaves similarly numbered; showing two cycles of three.

[^14]: Fig. 191. A young plant of the Houseleek, with the leaves (not yet expanded) numberel, and exbibiting the 13 -ranked arrangement; and showing secondary spirals.

 Fig. 192. Opposite Ieaves of Enonymus, or Spindle-tree, showing the successive pairs crossing each other at right angles.

[^15]: Fig. 218. A flos plenis, namely, a full donble flower of Rose.
 F!c. 219. A stamen: a, filament : b, anther, discharging pollen.
 Fir. .2.2. A pintil; with ovary, a, half cut away, to show the contained ovules; 3, style: c, stigma.

[^16]: Fig. 224. Flower of a Crassula. 225. Diagram or ground-plan of same.
 Fig. 226. Flower of a Trillium; its parts in threes.
 Fig. 227. Diagram of flower of Trillium. In this, as in all such diagrams of crosssection of blossoms, the parts of the outer circle represent the calyx ; the next, corolla; within, stamens (here in two circles of three each, and the cross-section is through the anthers) ; in the centre, section of three ovaries joined into a compound one of three cells,

[^17]: Fig. 228. Series of sepals, petals, and stamens of White Water-Lily, showing ihe transitions.

 Fig. 2:9. A Cactis hlossom.

[^18]: Fig. 265. Head of flowers of a Coreopsis, divided lengthwise.

[^19]: Fig. 273. Hawthorn-blossom in section; parts arlnate to whole face of ovary, and with each other beyond; another grade of perigynous.

 Fig. 274. Cranberry-blossom in section; parts epigynous.
 F'ig. 275. Diagram of papilionaceous flower (Robinia, Fig. 261), with bract below; axis of inflorescence ahove.

 Fig. 276. Diagram (f Violet-flower; showing the relation of parts to bract and axis.

[^20]: Fig. 286. Flower of a Mallow, with calyx and corolla nut away ; showing monadelphous stamens.

 Fig. 287. Monadelphous stamens of Lupine. 288. Dialelphous stamens (9and 1) of a lea-hussom.

 Fig. 289. One of the five stamen-clusters of the flower of American Linden, with acempanying seale. The five elusters are shown in section in the diasram of this flower, Fis. 277.

 Fig. 240. Five syngenesious stamens of a Coreopsis. 291. Same, with tube laid open aud displayed.

[^21]: Fig. 326. Simple pistil of l'odophyllum, eut across, showing ovules borne on placenta.

 Fig. 327. Pistil of a Saxifrage, of two simple carpels or pistil-leaves, united at the base only, cut across both above and below.

 Fig. 328. Compoum 3-carpellary pistı of common St. Joh's-wort, cut across: the three styles separate.

 Fig. 329. The same of shrubby St. John's-wort ; the three styles as well as ovaries here united into one.

 Fig. 330. Compound 3-carpellary pistil of Tradescantia or Spiderwort; the three stigmas as well as styles and ovary completely coalescent into one.

[^22]: Fig. 344. Orthotropous ovule of Buckwheat: c, hilum and chalaza; f, orifice.
 Fig. 345. Campylotropous ovnle of a Chickweed: c, hilum and chalaza; f, orifice.
 Fig. 346. Amphitropons ovule of Mallow: f, orifice; h, hilum; r, rhaphe; c, chalaza.
 Fig. 347. Anatropous ovnle of a Violet; the parts lettered as in the last.
 Fig. 348-350. Three early stages in the growth of ovule of a Magnolia, showing the forming oiter and imner coats, which, even in the later figure have not yet completeiy enclosel the nucleus; 351, further advanced, and 352, completely anatropous ovale.
 Fig. 353. Longitudinal section, and 354, transverse section of 352.
 Fig. 355. Same as 353, enlargel, showiug the parts in section : a, outer coat; b, inner coat; c, nucleus; d, rhaphe

[^23]: 1 Beriming with one by C. ('. Sprengel in 1793, and again in our day with Darwin, " On the Various Contrivances by which Orchids are fertilized by Insects," and in suceeeding works.

[^24]: Fig. 39s. Nut (acorn) of the Oak, with its cup or cupule.
 Fig. 389. Samara or key of the White Ash, winged at end. 390. Samara of the American Flm, winged all rouncl.

 Fig. 391. Pair of samaras of Sugar Maple.
 Fig. 392. Follicle of Marsh Marigold (Caltha palustris).
 Fig. 303. Legume of a Sweet Pea, opened.
 Fig. 391. Loment or jointed legume of a Tick-Trefoil (Desmodium).

[^25]: Fig. 395. Capsule of Iris, with loculicidal dehiscence; below, cut across.
 Fig. 396. Porl of a Marsh St. John's-wort, with septicilal dehiscence.
 Fig. 397, 398. Diagrams of the two motes.
 Fig. 399. Diagram of septifragal dehiscence of the loculicidal type. 400. Same of the septicidal or marginicidal type.

[^26]: Fig. 415. A winged seed of the Trumpet-f'reeper.
 Fig. 416. One of Catalpa, the kernel cut to show the embryo.
 Fig. 417. Seed of Milkweed, with a Come or tuft of long silky hairs at one end.
 Fig. 418. Seed of White Water-Lily, enclosed in its aril.
 Fig. 419. Seed of Ricinus or Castor-oil plant, with caruncle.

[^27]: Fic. 171. Diagram of structure of Palm or Yucca. 472. Strncture of a Comstalk, in transverse and Iongiturimal section. 473. Same of a small Palm-stem. The dots on the cross sections represent eut ends of the woody bumbes or threads.

[^28]: Fig. 481. Maguified view of surface of a bit of young Maple wood from which the bark has been torn away, showing the wood-cells and the bark-ends of medullary rays.

 Fig. 482. Section in the opposite direction, from bark (on the left) to beginning of pith (on the right), and a medullary ray extending from one to the other.

[^29]: Fig. 483. Magnified section of a leaf of White Lily. to exhilit the cellular structure, both of upper and lower stratum, the air-passares of the lower, and the epidernis or skin, in section, also a little of that of the lower face, with some of its stomates.

[^30]: Fig. 484. Small portion of epilermis of the lower face of a White-Lily leaf, with stomata.

 Fig. 485. One of these, more magnifiel, in the closed state. 466. Another stoma, open.

 Fig. 487. Small portion of epilermis of the Garden Balsam, highly magnified, showing very sinuous-walled cells, and three stomata.

[^31]: Fig. 542. Fructification of a Jungermannia, magnified; its cellular spore-stalk, surrounded at base by some of the leares, at summit the 4 valved spore-case opening, discharging spores and elaters. 543. Two elaters and some spores from the same, highly magnified.

 Fig. 544. Ons of the fromlose Liverworte, Steetzia, otherwise like a Jungermannia; the spore-case not yet protruded from its sheath.

[^32]: Fig. 553. Agarum Turneri, Sea Colander (so called from the perforations with which the frond, as it grows, becomes riddled); very much reduced in size.

 Fig. 554. Upper end of a Rockweed, Fucns vesiculosus, reduced half or more, b, the fructification.

[^33]: ${ }^{1}$ For fuller directions in many particulars, see "Structural Botany," PP. 370374.

