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PREFACE.

object of the following treatise is to exhibit the

elementary principles and notation of the Quaternion

Calculus, so as to meet the wants of beginners in the

class-room. The Elements and Lectures of Sir William

Rowan Hamilton, while they may be said to contain the

suggestion of all that will be done in the way of Quater-

nion research and application, are not, for this reason, as

also on account of their diffuseness of style, suitable for

the purposes of elementary instruction. Tait's work on

Quaternions is also, in its originality and conciseness,

beyond the time and needs of the beginner. In addition

to the above, the following works have been consulted:

Calcolo dei Quaternione. Bellavitis ; Modena, 1858.

Exposition de la MetTiode des fiquipollences* Traduit

de 1'Italien de Giusto Bellavitis, par C.-A. Laisant ; Paris,

1874. (Original memoir in the Memoirs of the Italian

Society. 1854.)

Thorie ^lementaire des Quantites Complexes. J.

Hoiiel; Paris, 1874.

Essai sur une Manure de Representer les Quantites

Imaginaires dans les Construction G-eometriques. Par

R. Argand; Paris, 1806. Second edition, with preface
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by J. Hoiiel; Paris, 1874. Translated, with notes, from

the French, by A. S. Hardy. Van Nostrand's Science

Series, No. 52; 1881.

Kurze Anleitunff zum Rechnen mit den (Hamilton''sclieri)

Quaternionen. J. Odstrcil; Halle, 18T9.

Applications Mecaniques du Qalcul des Quaternions.

Laisant; Paris, 1877.

Introduction to Quaternions. Kelland and Tait; Lon-

don, 1873.

A free use has been made of the examples and exercises

of the last work; and, in Article 87, is given, by permis-

sion, the substance of a paper from Volume L, page 379,

American Journal of Mathematics, illustrating admirably

the simplicity and brevity of the Quaternion method.

If this presentation of the principles shall afford the

undergraduate student a glimpse of this elegant and pow-

erful instrument of analytical research, or lead him to

follow their more extended application in the works above

cited, the aim of this treatise will have been accomplished.

The author expresses his obligation to Mr. T. W. D.

Worthen for valuable assistance in the preparation of

this work, and to Mr, J. S. Gushing for whatever of

typographical excellence" it possesses.
A. S. HABDY.

HANOVER, N.H., June 21, 1881.
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QUATERNIONS.

CHAPTER I.

Addition and Subtraction of Vectors, or Geometric Addition and

Subtraction.

1. A "Vector is the representedive of transference through a

given distance in a given direction.

Thus, if A, B are any two points, vector AB implies a trans-

lation from A to B.

A vector may be represented geometrically by a right line,

whose length denotes the distance over which transference takes

place, and whose direction denotes the direction of the trans-

ference. In thus designating a vector, the direction is indicated

by the order of the letters.

Thus, AB (Fig. 1) denotes transference ^g-1 -
.

.

from A to B, and BA from B to A.

Retaining the algebraic signification of the signs + and , if

AB denotes motion from A to B, then AB will denote motion

from B to A, and
AB= BAr AB = BA / . . .

'.('!.)'

Hence, the effect of a minus sign before a vector Is to reverse

its direction* ';" ... .'.':'. ,'.;
:

;'

-:
. ..;.'. .

;;;' -.;...'..;.' ':-.,;.;/'.

'.The conception'' of :a vecter.i^r^ft^j- lj$||i^.'3^
elements, distance 'G&'d&yrt^ffi
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of a moving body, velocity, an electric current, etc., are vector

quantities.

Analytically, vectors are represented by the letters of the

Greek alphabet, a, /?, y, etc.

2. It follows, from the definition of a vector, that all lines

which are equal and parallel may be represented by the same vec-

tor symbol with like or unlike signs.

If equal and drawn in the same

direction, they will have the same

sign. Hence an equalit}' between

two vectors implies equality in dis-

tance with the same direction.

Thus, if AB (Fig. 2), CD, BE, EF

and no are equal and drawn in the same direction, they may be

represented by the same vector symbol, and

AB = CD = BE = EF = HG = a . . , . (2) .

3. It follows also from the definition of a vector that, if vec-

tors are not parallel, they cannot be represented by the same

vector symbol.

Thus, if the point A (Fig. 3) move over the right line AB,

from A to B, and then over the right line BC, from B to c, and

AB = a, BC must be denoted by
some other symbol, as fi.

The result of these two succes-

sive translations of the point A is

the same as that of the single and

direct translation AC=y, from A to

c
;
in either case A is found at the

extremity of the diagonal of the

parallelogram of which AB and BC are the sides. This combina-
tion of successive translations is called addition, and is written

in the ordinary way,
(3).

This expression would be absurd if the symbols denoted mag-
nitudes only. It means that transference from A to B, followed
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by transference from B to c, is equivalent to transference from

A to c. The sign + does not therefore denote a numerical ad-

dition, or the sign = an equality between magnitudes. It is,,

however, called an equation, and read, as usual, "a plus /? is.

equal to y." This kind of addition is called geometric addition.

4. If the point A (Fig. 3), instead of moving over the sides

AB, DC of the parallelogram ABCD, had moved in succession over

the other two sides, AD and DC, the result would still have been

the same as that of the single translation over the diagonal AC.

But since AB and BC are equal in length to DC and AD respect-

ively, and are drawn in the same direction, we have (Art. 2)

AB = DC and BC = AD,

and if the first two translations are represented b}
r AB and BC,

the second two may be represented by BC and AB, or

a + /3
=

/3 + a = y (4).

Hence tlie operation of vector addition is commutative, or the

sum of any number of given vectors is independent of their order.

5. If the point A (Fig. 4) move in succession over the three

edges AB, BC, CG of a parallelepiped,

we have

and

or

Fig. 4.

AB + BC = AC,

AC + CG = AG,

(AB + BC) + CG = AG.

In like manner

BC -f CG = BG,

AB 4- BG = AG,
or

Hence

AB + (BC + CG) = AG.

(AB + BC) 4- CG = AB + (BC + CG)

and the operation of vector addition is associative, or the sum

of any number of given vectors is independent of the mode of

Dinsr them.
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6, Since, if AC = y (Fig. 3) ,
then CA = y, we have

or, comparing with equation (3),

a term may be transposedfrom one member to another in a vector

equation by changing its sign.

Also, in every triangle, any side may be considered as the

sum or difference of the other two, depending upon their direc-

tions as vectors. Thus (Fig. 3)

It is to be observed that no one direction is assumed as posi-

tive, as in Cartesian Geometry. The only assumption is that

opposite directions shall have opposite signs. The results must,

of course, be interpreted in accordance with the primitive as-

sumptions, Thus, had we assumed BA = a (Fig. 3) , y and fi

beiiiff as before, then . -

7. If two vectors having the same direction be added together,

the sum will be a vector in the same direction. If the vectors

be also equal in length, the length of the vector sum will be twice

the length of either. If n vectors, of equal length and drawn

in the same direction, be added together, the sum will be the

product of one of these vectors by n, or a vector having the same

direction and whose length is n times the common length. If

then (Fig. 2)v AF = XAD = #CD = iBa,

where A, B and F are in the same straight line, ci> = AB, and #

is a positive whole number, x expresses the ratio of the lengths
of AF and a. From the case in which x is an integer we pass,

by the usual reasoning, to that in which it is fractional or in-

commensurable. Vectors, then, in the same direction, have the

same ratio as the corresponding lengths.
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If AB = a be assumed as the unit vector, then

AF = ?7la,

in which m is a positive numerical quantity and is called the

Tensor. It is the ratio of the length of the vector ma to that

of the unit vector a, or the numerical factor by which the unit

vector is multiplied to produce the given vector.

Any vector, as ft, may be written in general notation

In this notation, T/? (read "tensor of /3") is the numerical

factor which stretches the unit vector so that it shall have the

proper length ; hence its name, tensor. It is, strictly speaking,

an abstract number without sign, but, to distinguish between it

and the negative of algebra, it may be said to be always posi-

tive. TJ/3 (read
" versor of ft") is the unit vector having the

direction of /? ;
the reason for the name versor will appear later.

T and U are also general symbols of operation. "Written be-

fore an expression, they denote the operations of taking the

tensor and versor, respectively. Thus, if the length of /? is n

times that of the unit vector,

where T denotes the operation of taking the stretching factor,

i.e. the tensor. While

ros)=Uj8

indicates the operation of taking the unit vector, that is, of

reducing a vector /? to its unit of length without changing its

direction.

8. If BC (Fig. 5) be any vector, and BA=S/BC, theu

- BA = AB = - 2/BC ; Plg 5>

and, in general, if BA and BC be 5_c_A

any two real vectors, parallel and

of unequal length, we may always conceive of a coefficient y

which shall satisfy the equation

BA = 2/BC.
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where y is plus or minus, according as the vectors have the same

or opposite directions, y may be called the geometric quotient,

and is a real number, plus or minus, expressing numerically the

ratio of the vector lengths. This quotient of parallel vectors,

which may be positive or negative, whole, fractional or incom-

mensurable, but which is always reed, is called a Scalar, because

it may be always found by the actual comparison of the parallel

vectors with a parallel right line as a scale.

It is to be observed that tensors are pure numbers, or signless

numbers, operating only metrically on the lengths of the vectors

of which they are coefficients : while scalars are sign-bearing

numbers, or the reals of Algebra, and are combined with each

other by the ordinary rules of Algebra ; they may be regarded

as the product of tensors and the signs of direction.

Thus, let

Then Ta = a. If we increase the length .of a by the factor 5,

& is a tensor, but the tensor of the resulting vector is ba. If we

operate with 6, b is not a tensor, for a is not only stretched

but also reversed ;
the tensor of the resulting vector is as before

ba
;
in other words, direction does not enter into the conception

of a tensor. As the product of a sign and a tensor, b is a

scalar. The operation of taking the scalar terms of an expres-

sion is indicated by the symbol S. Thus, if c be any real alge-

braic quantity,

for 6aL
T

a is a vector, and the only scalar term in the expres-
sion is c.

9. It is evident from Art. 7 that if a, &, c are scalar coeffi-

cients, and a any vector, we have

(a + b + c) a =

Furthermore, if (Fig. 6)

OA = a, AB = /?, BO = y, OA f= ma,
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then, A'B' being drawn parallel to AB and B'C' to BC,

A'B' = m/3, B'C' = my.
Now

00 = a + + y,

and
OC' = TttOC = M

(
a + /? + y) .

But we have also

oc' = OA' + A'B' + B'C'

= ma + m/3 + my.
Hence

m (a + ft -f- y) = ma + m$ +my . . . (7) ,

or the distributive laiu holds (pod for the multiplication of scalar

and vector quantities.

10. It is clear that while

a a= 0,

a /3 cannot be zero, since no amount of transference in a direc-

tion not parallel to a can affect a.

Hence, if

na + m/3 = 0,

since a and /? are entirely independent of each other, we must

have
na = and m/2 = 0,

or

n = and m 0.

Or, if

then
m = m ( and n= n'.

And, in general, if
s

then

-
.

{..... (8).
Sa=0 and 2/3 = r
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Three or more vectors may, however, neutralize each other.

Thus (Fig. 7)

Fls 7>
a + /3 + y + = 0,

/? a=0,

and this whether ADCD be plane or

gauche. In any closed figure, there-

fore, we have

+ =<),

where o> /3, y, 8, ,
are the vector sides in order.

11. Examples.

1* The right lines joining the extremities of equal and parallel

right lines are equal and 2JCLraJleL

Fig 3.

o ^ _ t
Let OA and BD (Fig. 8) bo

the given lines, and OA = a,

BO =
,

DA = y. Then, by
condition, BD = a.

Now,

BA = BO -f- OA = ft + a
;

also, BA = BD -(- DA = a -j- y ;

or, equating the values of BA,

Hence (Art. 2) , y = j5, and BO is parallel and equal to DA.

2. The diagonals of a parallelogram bisect each other.

In Fig. 8 we have
BD = OA s= OP -f- PA ;

also
BD = BP + PD

;

.*. OP 4"PA = BP +PD.

But, OP and PD being in the same right line,

OP =
Similarly

PA =
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Hence

and

mPD + ?iBP = PD -|- BP,

w = 1
,

?i = 1
,

OP = PD, BP = PA.

3. If two triangles, having an angle in each equal and tJie

including sides proportional , be joined at one angle so as to have

their homologous sides parallel, the remaining sides will be in a

straight line.

Let (Fig. 9) AB = a, AE = 0. Then,

}' condition, DC = aa, DB = xft.

Now

Fig. 9.

CB = CD -|- DB = X
(ft a).

But
BE = fi

- a.

Hence (Art. 2), B being a common point, CB and BE are one

and the same noht line.

4. If two right lines join the alternate extremities of two

parallels, the line joining their centers is half the difference of
the parallels.

Fig 10We have (Fig. 10)

AB = AD + DC + CB,

and, also,

AB = AE + EF + FB.

Adding

2 AB = (AD + AE) + (DC + EF) + (CB + FB)

EF CD
;

or, as lines,

AB = % (EF CD) .
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5. The wiedials of a triangle meet in a point and trisect each

other.

11
Let (Fig. 11) B0 = a, CD-/?. Then

OC = a, DA=/5.
Now

BA=2a+2/3=2(a

and, since OD

parallel.
A

Again

,
BA and OD are

IiF + PA = BA = 2 OD = 2 (OP + PD) .

But BP and PD, as also OP and PA, lie in the same direction,

and therefore rt , ~
BP 2 PD and PA = 2 OP.

Hence the medials OA and DB trisect each other.

Draw cr and PE. Then

and

PE = PB + BE = a + - f (2 a + j8)
= i (j8

-
a) .

Hence PE and CP are in the same straight line, or the medials

meet in a point.

C. In any quadrilateral, plane or gauche, the bisectors of

opposite sides bisect each other.

We will first find a value for OP (Fig. 12) under the supposi-

tion that P is the middle point of

GE. We shall then find a value for

OP, under the supposition that P is

the middle point of FII, If these

expressions prove to be identical,

these middle points must coincide.

In this, as in many other problems,
the solution depends upon reaching

the same point by different routes and comparing the results.
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Let OA = a, OB = /?, DC = y.

1st. oc + CG = OE + EG. (a)

But
CG = iCB = i(-y),

which, in (a), gives

a)

= i(* + + y).

2d. FH -J-AB
= F

or

OP = OF + FP = ^ y + i (a + j9 y)

which is identical with (6) , Hence, the middle points of FH

and GE coincide.

7. If ABCD (Fig. 13) be any parallelogram, and OP any line

parallel to DC, and the indicated lines be drawn^ then will HN

be parallel to AD.

Fig 13

AO = ma,
AD = no. +p/3,

OD =

We have
NH = NO + OM = NP + PM,

in which
NO = ar ( ma + na +^/8) 5

OM= (1 m)a,
NP = a? ( m/5 +
PM = (1 m)/3.
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Substituting in the above equation, ^ve obtain, by Art. 10,

rig. is i m
M # = --

D xft C m

Substituting this value in
\

A \^
B NM=NO-fOM,

:
_i M

(
ma + na +^)/8).+ (1

~ m)a

w m

Hence AD and NM are parallel.

8. If) through any point in a parallelogram ,
?mes &e drawn

parallel to the sides , /te diagonals of the two non-adjacent

parallelograms so formed will intersect on the diagonal of the

original parallelogram.

Fig u. Let (Fig. 14) OA = a, OB = f}.

Then OR = ma, o& = ii/3.

We bave

m a,

ES =EO-|-OR+RS=ma+(l 7l) jl3.

Also

FO FR + EG = XRD + RO = X [nQ -f (1 7?l) a] ma, (a)
and

FO = FE + EO = 2/ES -f EO = 1J \JHa + (1 ?l) /?] 71/3. (6)

From (a) and (&)

n =
2/ (1 n) n and g (1 m) m = ?/7?i.

Eliminatinff y
X-- - .

1 m n
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Substituting this value of x in (a)

FO =- -
[n/3 + (1

- m) a]
- ma

1 m n

08 + .),
1 in n

or, FO and oc = (ft + a) are in the same straight line.

9. If, in any triangle OAB (Fig. 15), a line OD be drawn to

the middle point O/AB, and "be produced to any point^ as F, and

the sides of the triangle be produced to meet AF and BF in H and

R, then will HE be parallel to AB.

Let OA = a, OB = /?. Then OR = cca,

OH = 3^8, AB = /5 a. FJS- 16-

NOW

Also, OF = (a + ^), that is, some

multiple of OD.

Then, 1st.

.-. x=pz and 1=^ p. (ct)

Eliminating 21

J>
= B+1.

And, 2d.

AH =
= g (-O + OP)

.-. y = qz and 1 = ^ g.

Eliminating 2

g = 2/ + i.

From (a) and (&)

jg-^-yz ---- ,

P 9
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and, since p = x + 1 and g = y + 1,

Fig. 15. x =
2/

and j)
= g .

2//3
o;a = tf(/3 a)

or, mi and AB are parallel.

10. If any line PR (Fig. 16) be drawn, cutting the two sides

of any triangle ABC, and be produced to meet the third side in Q,

then

PC BQ . RA = CR . AQ . BF.Pig 1G.

Let BP = a, CR = /3. Then PC =pa,
HA= rft and BA DC + CA = (1 +p} a

We have

as also

.-. ffl (i

Eliminating y

whence

or

= yp and x (I + ?) = r + y,

x = (1 + x) pr ;

AQ__BQ PC RA

BA~~BA
*

BP
*

CR
1

PC . BQ . RA = CR . AQ . BP.

11. If triangles are equiangular^ the Bides about the equal

angles are proportional.

Let (Fig. 17) Bc = a, CA =
/J. Then BE = ma, ED = nfr

BD = ma + n/3 and BA = a + /?.

Now
BD =:

Whence
m = p, n=p and m = n,

.-, BE :BC: : ED: CA.
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12. If, through any point o (Fig. 17), within a triangle ABC,
lines be drawn parallel to the sides, then will

ED GF HI 9 Fig. 17,

P"
}

= Tj

CA CB ^AB B

Let CA = /3, CB = CL. Then AH = v/*\S^\
a )8, ED = m/?, HI = jp (a /}) and > /\ \
We have

co = CG + GO = cn 4- HO. (a)
Now, as lines,

= = n CG = CA G\= (1--?0 /5
CB CA

' ^

EB ED ,. x
=?7i, .'. G0= CE = CB EB = (1 Wl) a.

CB CA v y

DI5 DE /^ \ / n\= = 111. .

*
. PIO AD ^ AB DB = (1 ?W ) (a p).

AB AC v / \ r-/

Substituting in (a)

(1
_

71) + (1
- m ) a = jp0 + (i

_ m) (a j8) ,

or (Art. 10)

12. Complanar vectors are those which lie in, or parallel fa,

the same plane. If a, /?, y are any vectors in space, they are

complanar when equal vectors, drawn from a common origin,

lie in the same plane.

If a, ft, y are complanar, hut not parallel, a triangle can al-

ways be constructed, having its sides parallel to and some mul-

tipie of a, /3, 7, as aa, &, cy. If we go round the sides of the

triangle in order, we have

aa + 60 + cy
= 0.

If a, /3, y are not complanar, conceive a plane parallel to

two of them, as a and /?. In this plane two lines may be drawn

parallel to and some multiple of a and /?,
as aa and I/3 ;

and

these two vectors may be represented by pS (Art. 3).
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Now #8, being in the same plane with aa and &/3, cannot

therefore be equal to y, or to any multiple of it
; pS and y can-

not therefore (Art. 10) neutralize each other. Hence

2& + cy = aa. + &/? + cy cannot be zero.

If, then, ive have the relation

aa + b/3 + cy
=

between non-parallel vectors, they are complanar; or, if a, /J, y

be not complanar, and the above relation be true, then, also,

a = 0, & = 0, c = 0.

13. Co-initial vectors are those which denote transference

from the same point.

(a). If three co- initial vectors are complanar, and give the

relations, .

(a) aa+&/3 + cy = 0) ^
(6) a + 6 + c = J

vy?

J7i6y ?iW terminate in a straight line.

For, let OA = a (Fig. 15) . OB = ^, OD = y Then DA = a y,

BA = a j8.

From Equation (9), (&)

(a + & + c) a = 0,

from which, subtracting (a) of Equation (9),

J (a
-

JS) + C (a
-

y)
= 0,

&BA + CDA =
;

and, since these two vectors neutralize each other, and have a

common point, they are on the same straight line. Hence,
A, D and B are in the same straight line.

(&) . Conversely, if a, /?, y are co-initial, complanar and ter-

minate in the same straight line^ and a, &, c have such values

as to render . * . Aaa + op + cy = 0,

then witt
,

,
, A

Ct -I- + C = 0.

or DA = a y and BA = a /3.



GEOMETRIC ADDITION AND SUBTRACTION.

But, by condition,

or

in which

17

:-j8 = (a- y),

(1
-

X) a -
/3 + a?y

= 0,

(1- a) -1+3 = 0.

14. Examples.

1. The extremities of tlie adjacent sides of a parallelogram
and the middle point of the diagonal between them lie in the same

straight line.y
Fig. 18.

Let OA = a, OB = /3, oc = y.
A D

Then
OB = OB + BD,

2y /5 a = 0.

But, also, 2 1 1 =

hence, B, c and A are in the same straight line (Art. 13).

2. If two triangles, ABC and SMN (Fig. 19), are so situated

that lines joining corresponding angles meet in a point, as o,

then the pairs of corresponding sides produced will meet in three

points, P, Q, R, which lie in the same straight line.

Let OA = a, OB = /?, oc = y.

Then os = ma, OM = n/3,

ON = J9y, BA = a /?,

MS = ma 71/3,

BR = x (a /?) and

MR= y (ma /?)
.

rig. 19.

1st. BM = BR ME,
or

.-. n 1 = x + yn, x

Eliminating y m
(
u _ i)

= 0.

m n
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Also

OR = OB + BR =s
ft -h X -

ft)
=

ft
- m

J
n

_ M (a
-

/?),

whence ^ n (m-1) ft m(n-l)a
OB = m _ ^

2d. ON = CP NP,

or

.*, p 1 <y 4- w^), ^3 W)t = 0.

Eliminating w n (p \)
V =

^ _ }

Also *

, *

3d. In the same manner, we obtain

m Q-l) a-p (m-l)y / ,

Q
^) wz,

"

From (a) , (5) and (c) we observe that, clearing of fractions,

and multiplying (a) by p 1, (&) by m 1, (c) by n 1, and

adding the three resulting equations, member by member, the

collected coefficients of a, /?, y, in the second member of the

final equation, are separately equal to zero. Hence the first

member

OR (m-n) (p -1) + OP (W-JD) (w -1) + OQ (jp-m) (n ~1) = 0.

But

(m n) (p 1) + (n p) (m 1) + (p
~ m) (n 1) = 0.

Hence, E, p and Q are in the same straight line.
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Fig 20

3. Given the relation

aa + &/? + cy = 0.

Then a, /?, y are complanar ; but, if co-initial (as they

be made to be, since a vector is not changed by motion parallel

to itself, i.e. by translation

without rotation) ,
and a +

b + c is not zero, they do

not terminate in a straight

line. Hence, if o is the ori-

gin, and A, B, c, their ter-

minal points, A, B and c

are not collinear. Let these

points be joined, forming

the triangle ABC (Fig. 20),

and OA, OB, oc prolonged to

meet the sides in A! uj c.' To find the relation between the

segments of the sides, let

whence

T = ?

Substituting these in succession in the given relation,

-a
x

-&+ oy = 0,

whence, since A,' c, B are to be collinear,
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and, for a like reason,

Whence

and

a + b
1

or, from the given relation,

a'=.
frfi-My /^ y + aa /= aa + ^

Whence

_ _ ,a ~
c

' P ~
c + ct

' r ~ + 6

&(a'-j8)-c(y -a'),

and
BA.' c OB' a AC' 5

- 2=: --^ i

"
3 -T =

i

A'O & B'A c O'B a

or,

BA' . CB' . AC' . == A'O . B'A . C'B*

4. 7f o (Fig. 20) be any point, and ABC any Mangle, the

transversals through o and the vertices divide the sides into seg-

ments Jiaving the relation

BA' . CB' . AC' , = A'O . B'A C'B.

Let A'O = a, BC = aa, CB' ^8, CA = &/?, Then BA = aa + &/?

Also let

BO = fl?BB{ OA = yA
F

A, BC^ ??1BA, CC'= ^CO.
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Then

BO = #BB' = x (BC + CB') = a (aa +/?) ,

OA = ^A'A= y (A'C + CA) = y (a+ b/3) ,

BC'= mBA = m (aa + /3) ,

cc'= zoo = % (CB + BO) = z [ aa + # (aa 4- /?)] .

From the triangle BOA we have

Eliminating y

From the triangle BCC'

BC -f- cc'4- C'B = 0,

aa 4- z [ aa 4- x (aa+ /3) ] m
(<

= 0,

whence, as usual, and substituting the above value of :

1-fl6(1- a)
1 ??i= z z- -^-,

1 6a
-

-,

1 6a

or

1 a

Substituting for m, 6 and a,

CA_ AB f CA
BC B C A IS

which is the required relation.

5. If (Fig. 20) lines be

drawn through A,' sj c,' and

produced to meet the opposite

sides of the triangle in p, Q,

a, then are p, Q and E col-

linear.
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With the notation of the last example,

BC'

1st. From the triangle C'BA'

C'A'= C'B + BA'

+ &-2

Also
A'K = OSC

f

A.'= A'C + CK= A 7

C

ancl
BR= BC + OR = aa ~ -i-

/?. (a)

2d. Fi^om the triangle C
;

AB'

c'u^ C'A + AB'

Also
B

;

Q as JTC'B
;= B'C + CQ = B'

and /
T

x

BQ = BC + CQ = (a+ y) a = a(a ~~
i) a. (6)

ct ^

A'P= A'C + JSP = (1 a) a 4- y (aa+ &/J) ,
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1
BP= yBA= SLJ:

(oa + 6/3) . (c)

Multiplying the second members of (a), (&)> (<0> by (a 1)

(b 2), (a 2) (& 1), (a &) respectively, their sum is

zero. Hence

(a 1) (6
-

2) BR - (a
-

2) (6
-

1) BQ + (a
-

&) BP= 0.

But

(a
- 1 ) (5 2)

-
(a
-

2) (6
- 1 ) + (a

-
6) =5 0.

Hence R, Q and p are collinear.

%
6. If PC (Fig. 20) and PO be produced to meet AA' and BC,

then T ancZ s are collinear uitJi c! A similar proposition would

obtain for Q and R.

With the following notation,

BA = a, BA'= /?, BB'= aa+ ft/?,

we have ^ x {^^^t^-*^
BO = BA

X
-f- AB'+ B'O = BA ;+ A'O,

f (1 a) a + x(aa.'-f- bjB)
;

y =^T^

also Fig. 20

BP = fi4[il- ^=1=^^ + AP
;

and

_^.f. ^>J==J3A ^. AU , Ct/i-*/a^|
j8 +^ = a + u[(l-a)a-6j8],-TtHHJ
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. ..-
. V --

j

1 a

BO
1 a

Now to find BS, BC' and BT, we have

Fig. 20.

3d, BT=

1st

BS = fl/BA
r= BP -j-

l
'

, b

BB

2d.

Q BC' = S/BA = BC + wco,

BA'+ Z'A.'O = BP +

a i

Clearing of fractions and adding

(l_26-a)Bs + (2a + &-l) Bc
f+ (6 a) BT= 0,

as also

Hence s, c' and T are collinear.

15 A medial vector is one drawn from the origin of two co-

initial vectors to the middle point of the line joining their

extremities.
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Thus (Fig. 21), if p is the middle point of AB, OP is a medial

vector. To find an expression for it, let OA = a, OB =
, then

or, adding,

OP = OA + AP = a -f- AP,

OP = OB + BP =ft AP,

(10).

The signs in this expression will, of course, depend upon the

original assumptions. Thus, if AO = a,

OP = a -f AP = /? AP,

P
~2

16. An Angle-Bisector is a line which bisects an angle.

To find an expression for an angle-bi-

sector as a vector, let OE = a (Fig. 21)

and OF = ft be unit vectors along OA and

OB. Complete the rhombus OEDF. Since

the diagonal of a rhombus bisects the

angle, PD is a multiple of OP. Now OD
= a + /3, hence

or = (11).

In this expression OP is of any length and x is indeterminate.

If OP is limited, as by the line AB, then

(a)

aa,

AP = ?/AB = y(b/3 aa),

aa= y(5j8 aa),
or

Eliminating x

Substituting in (a)

x a = ya and x = i

y--

AP = AB (12).
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17. Examples.

1. If parallelograms, whose sides are parallel to two given

lines, be described upon each of the sides of a triangle as diago-

nals^ the other diagonals mil intersect in a point.

Let ABC (Fig. 22) be the given tri-

angle. Let the diagonals B'F and A'D

intersect in P, and suppose OE to meet

A'D in some point as P!

Let OA = a, oB'=/3, whence OA'=

Fig. 22.

a, OB

Now

But
B'P DP=: a, (a)

(Art. 15)

DP= 2DH = 2 . | (DC+ OA')

And

Substituting in (a) ,
we obtain, as usual,

# " .

Again

But
OP P= #oa = # * i (OA -f- OB)

Substituting in (&) this value of OP' and DP'= ^DH, we obtain

as before,

1+ WWl 71

Or, 7;pH= 2iDH=:Dp'=Dp. Hence, P and P' coincide, and

the three diagonals meet in a point.

2. A triangle can always be constructed whose stides are equal

and parallel to the medials of any triangle.



GEOMETRIC ADDITION AND SUBTRACTION. 27

In Fig. 23 we have

AA'= AB + BA'= AB

Bli'=: BC

CC' = CA
;

-h cc'= = 0. (Art. 10).

3. The angle-bisectors of a triangle meet in a point.

Let a, /?, y be unit vectors along BC, Plo. 0&

AC, AB (Fig. 23).

Then (Art. 16)

Now
= y(a y). (a)

BC = AC AB,

aa.= bft c (b)

where a, &, c are the lengths of the sides.

Substituting a from (b) in (a) t *,, *-\

BP = 1

We have also

CP = AP AC = X (y + /?) 5/3,

\ ^ /

Eliminating 2/

Substituting in (c)

cb

C6 + 5 + C
( aa a/3)

=&(*+?)

Hence (Art. 16) c9 is an angle-bisector.
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18. The Mean Point of any polygon is
v
that to which the

vector is the mean of the vectors to the angles.

Hence, to find the mean point, add the vectors to the angles

and divide by the number of the angles. Thus, if al5 a2 ,
a3 ....

be the vectors to the angles, the vector to the mean point is

+n ,-,0-v.... (13),

where n is the number of the angles.

The mean point of a polyedron is similarly defined. It co-

incides in either case, as will appear later, with the center of

gravity of a system of equal particles situated at the vertices

of the polygon or polyedron.

19. Examples.

1. The mean point of a tetraedron is the mean point of the

tetraedron formed ly joining the mean points of the faces.

Let (Fig. 24) OA = a, OB s=
/?, 00 =

y. The vectors from o to the mean,

points of the faces are

and that to the mean point of the tetraedron formed by joining

them is

which is the vector to the mean point of OABC.

The same is true of the tetraedron formed by joining the meau

points of the edges AB, BC and CA with o, since
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The above is, of course, independent of the origin, and would
be true were o not taken at one of the vertices.

2. The intersection of the bisectors of the sides of a quadri-
lateral is the mean point.

Let (Fig. 25) OA = a, OB = /5, oc = y,

D = 8, OR= p. Then (Art. 15) o.

p =z i.
(OP 4- OE)

If o is at A, then OA = a = 0, and

3. If the sides (in order) ofa quadrilateral be divided propor-

tionately, and a neiv quadrilateral formed by joining the points

of division, then will both quadrilaterals have the same mean

point.

Let a, /3, y, S be the vectors to the vertices of the given

quadrilateral, from any initial point o.
*

Then, for the vector to the mean point, we have

If m be the given ratio, and a', $ y! 8' the vectors to the vor-

tices of the second quadrilateral, then

a'== a -\- m (ft a)
=

(1 m) a

whence
S' = a + (1 m) (S a)

= 8 - m (8 a) ;
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4. In any quadrilateral, plane or gauche, the middle point

of the bisector of the diagonals is the mean point.

Let (Fig. 26) OA = a, OB = /5, oc = y, os = 7.

vie 26.

c Then (Art- 15 )

OP = (OQ + OS)

5. J/ tfie ftw opposite sides of a quadrilateral be divided pro-

portionately, and the points of division joined, the mean points

of the three quadrilaterals will lie in the same straight line.

Let oj A' (Fig. 27) be the points

of division, and m the given ratio,

Then, if OA = a, BC = y, OA'= wa,

c fc = my, AB = /J and o is the in-

itial point, the vectors to the mean

points P, pj p
1''

are

OP =
OP r = J [ (m + 2) a+ 2 + (2

- m) 7] ,

1 m / \
(y-a),

Therefore, pi p? P are in the same straight line.

20. Exercises.

1. The diagonals of a parallelepiped bisect each other.

2. In Fig. 58, show that BG and OH are parallel,

3. If the adjacent sides of a quadrilateral be divided

ttonatdy, the line joining the points of division is parallel to the

diagonal joining their extremities.
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4. The medial to the base of an isosceles triangle is an angle-
bisector. cc *,**,

5. In any rigHt-angled triangle ABC (Fig. 58), the lines BK,

CF, AL meet in a point.

6. Any angle-bisector of a triangle divides the opposite side

into segments proportional to the other two sides. ci\'k,

7. The line joining the middle point of the side of any paral-

lelogram with one of its opposite angles,, and the
diagonal

which

it intersects, trisect each other. U^x >*%jJCW4 ^^^^^^
8. If the middle points of the sides of any quadrilateral be

joined in succession, the resulting figure will be a parallelogram

with the same mean point. 1*^ ^xjlJJlix, yL ST
9. The intersections of the bisectors of tie exterior angles

of any triangle with the opposite sides are in the same straight

line.
''/

10. If AB be the common base of two triangles whose vertices

are c and D, and lines be drawn from any point E of the base

parallel to AD and AC intersecting BD and BC in F and a, then is

FG parallel to DC.



CHAPTER II.

Multiplication and Division of Tectors, or Geometric Multipli-

cation and Division*

21. Elements of a Quaternion.
The quotient of two vectors is called a Quaternion.
We are now to see what is meant by the quotient of two

vectors, and what are its elements.

Let a and /3' (Fig. 28) be two vec-

tors drawn from o and o' respectively

and not Ij'ing in the same plane ;
and

let their quotient be designated in the

usual way by .

Whatever their relative positions, we
<>'> ^, jjf may a|wayg conceive that one of these

vectors, as
/?,' may be moved parallel

to itself so that the point o' shall move over the line o'o to o.

The vectors will then lie in the same plane. Since neither the

length or direction of
($'

has been changed during this parallel

motion, we have /3
= & and the quotient of any two vectors, a,

fB\ will be the same as that of two equal co-initial vectors, as a

and yS. We are then to determine the ratio -, in which a and ft

lie in the same plane and have a common origin o.

Whatever the nature of this quotient, we are to regard it as

some factor which operating on tlie divisor produces tlie dividend,

i.e. causes /? to coincide with a in direction and length, so that

if this quotient be #, we shall have, by definition,

1=? (").
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If at the point o' we suppose a vector o'c = y to be drawn,

not parallel to the plane AOB, and that this vector be moved as

before, so that o' falls at o, the plane which, after this motion,

y will determine with a, will differ from the plane of a and
ft,

so

that if the quotient

q and q
f

will differ because their planes differ. Hence we con-

clude that the quotients q and q
f cannot be the same if a, ft and

j are not parallel to one plane, and therefore that the position

of the plane of a and /3 must enter into our conception of the

quotient q.

Again, if y be a vector o'c, parallel to the plane AOB, but

differing as a vector from
ft',

then when moved, as before, into

the plane AOB, it will make with a an angle other than BOA.

Hence the angle between a and ft must also enter into our con-

ception of g. This is not only true as regards the magnitude of

the angle, but also its direction. If, for example, y have such a

direction that, when moved into the plane AOB, it lies on the

other side of , so that AOC on the left of a is equal to AOB, then

the quotient q',
of -, in operating on y to produce a must turn y

y

in a direction opposite to that in which q = - turns ft to produce
P

a. Therefore q and q' will differ unless the angles between the

vector dividend and divisor are in each the same, both as regards

magnitude and direction of rotation. Of the two angles through

which one vector may be turned so as to coincide with the other

iy meant the lesser, and it will therefore, generally, be < 180?

Finally, if the lengths of ft and y differ, then
^
= g will still

differ from - = q( Therefore the ratio of the lengths of the vec-
y

tors must also enter into the conception of q.

We have thus found the quotient g, regarded as an operator

which changes ft into a, to depend upon the plane of the vectors,

the angle between them and the ratio of their lengths. Since
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two angles are requisite to fix a plane, it is evident that q

depends upon four elements, and performs two distinct opera-

tions :

1st. A stretching (or shortening) of /?,
so as to make it of

the same length as a
;

2d. A turning of /5, so as to cause it to coincide with a in

direction,

the order of these two operations being a matter of indiffer-

ence.

Of the four elements, the turning operation depends upon

three ; two angles to fix the plane of rotation, and one angle to

fix the amount of rotation in that

Fig. 28. plane. The stretching operation de-

pends only upon the remaining one,

i.e., upon the ratio of the vector

lengths. As depending upon four

elements we observe one reason for

calling q a quaternion. The two ope-
\

O f
*^ n' rations of which^jfis the symbol being

entirely independent of each other, a

quaternion is a complex quantity, decomposable, as will lie

seen, into two factors, one of which stretches or shortens the

vector divisor so that its length shall equal that of the vector

dividend, and is a signless number called the Tensor of the

quaternion ; the other turns the vector divisor so that it shall

coincide with the vector dividend, and is therefore called the

Yersor of the quaternion. These factors are symbolically repre-

sented by T# and TI#, read u tensor of g" and "versor of g,
n

and q may be written

g Jq . Ug.

22. An equality between fivo quaternions may be defined di-

rectly from the foregoing considerations.

If the plane of a and /S Tbe moved parallel to itself
;
or if the

angle AOB (Fig. 28) , remaining constant in magnitude and esti-

mated in the same direction, be rotated about an axis through o

perpendicular to the plane ;
or the absolute lengths of a and
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vary so that their ratio remains constant, q will remain the same.
Hence if

,

2i = ? and -=
q\

B B
then will

P P

<2
=

<l

r

,

when

1st. The vector le/igths are in the same ratio, and

2cl. Tlie vectors are in the same or parallel planes, and
3d. The vectors make with each other the same angle botJi as

to magnitude and direction.

The plane of the vectors and the angle "between them are

called, respectively, the plane and angle of the quaternion, and

the expression -, a geometric fraction or quotient. It is to be

observed that q has been regarded as the operator on /?, produc-

ing a. This must be constantly borne in mind, for it will sub-

sequently appear that if we write qft
= a to express the operation

by which q converts ft into a, qft and ftq will not in general be

equal.

23. Since #, in operating upon ft to produce a, must not only

turn ft through a definite angle but also in a definite direction,

some convention denning positive and negative rotation with

reference to an axis is necessary.

By positive rotation with reference to an axis is meant left-

handed rotation when the direction of the axis is from the plane

of rotation towards the eye of a person who stands on the axis

facing the plane of rotation.

[If the direction of the axis is regarded as from the eye

towards the plane of rotation, positive rotation is righthanded.

Thus, in facing the dial of a watch, the motion of the hands is

positive rotation relatively to an axis from the eye towards the

dial. For an axis pointing from the dial to the eye, the motion

of the nands is negative rotation. Or again, the rotation of the

earth from west to east is negative relative to an axis from north

to south, but positive relative to an axis from south to north.]

On the above assumption, if a person stand on the axis, fac-

ing the positive direction of rotation, the positive direction of
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the axis will always be from the place where he stands towards

the left.

If ?', &, j (Fig. 31) be three axes at right angles to each other,

with directions as indicated in the

rig. si (Ms),
figure, then positive rotation is from i

to j, from j to &, and from fc to i, rela-

tively to the axes A1

, f, j respectively.

A precisely opposite assumption would

/ be equally proper. -The above is in

^_ accordance with the usual method of
1

estimating positive angles in Trigo-

nometry and Mechanics.

24. Let OA and OB (Fig. 29) be any

two co-initial vectors whose lengths are a and &, a and /? being

unit vectors along OA and OB, so that

Fig. 29

OA = aa,

OB = &?

Let the angle BOA between the

vectors be represented by <
;

also

B draw AD perpendicular to OB, and

T~ let the unit vector along DA be 8,

/ The tensor of OD is evidently

a cos < and that of DA a sin <. If

we assume that, as in Algebra, geometrical quotients which

have a common divisor are added and subtracted by adding and

subtracting the numerators over the common denominator, so

that

then, since

we have
OA

OB

a y __ a 7

i# P ft

OA = OD + DA,

OD + PA
OB

__OP PA
~~

OB OB

_a cos< .,/? a sin< . 8"
b .ft

'

H
b ./5

__
n /cos

<f>
. 8

,

sin <_ i

/% \

~"~~
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We have already defined (Art. 8) the quotient of two parallel

vectors as a scalar, and in the first term of the parenthesis, ft

being a unit vector, ^ = 1, and
P

Sj

The last term contains the quotient - of two unit vectors at

right angles to each other. This quotient is to be regarded, as

before, as a factor which, operating on the divisor /?, produces

8, i.e., turns ft left-handed through an angle of 90 ; and this

quotient must designate the plane of rotation and the direction

of rotation. If we define the effect of any imit vector, operating

as a multiplier upon another at right angles to it, to be the turn-

ing of the latter in a positive direction through an angle of 90

in a plane perpendicular to the operator, then the unit vector e,

drawn from o perpendicular to the plane of 8 and /3, and iu the

direction indicated in the figure, will be the factor which oper-

ating on /? produces 8, and

/3
= 8 or = c.

The unit vector e, as an axis, determines the plane of rotation ;

its direction determines the direction of rotation, and by defini-

tion its rotating effect extends through an angle of 90 ;
as a

quotient, therefore, it completely determines the operator which

changes /? into 8. Equation (a) thus becomes

OB

or, if OA, and OB be themselves denoted by a and /3, and the ten-

sors of a and j8 by Ta and T/J,

sin<) . . . . (15),
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in which is the tensor of #, being the ratio of the vector

lengths, and cos< + e sin< is the versor of g, its plane, deter-

mined by the axis e, and angle < being the plane and angle of

the quaternion.

AVhen a and /3 are of the same length, or Ta=T/3, T#==-^
1,

and the effect of q as a factor, or operator, is simply one of

version.

Like T, the symbol U is one of operation, indicating the oper-

ation of taking the versor, so that

JJq= cos $ + sin <.

This operation takes into account but one of the two distinct

acts which we have seen the quotient q must perform, as an

agent converting ft into a, namely, the act of version ;
it thus

eliminates the quantitative element of length. In this respect it

is similar to the reduction of a vec-

tor to its unit of length, an opera-

tion which also eliminates this same

element of length, and has been

designated by the same symbol TJ.

>JJ-

B When a and ft are at right angles

to each other, < = 90, and the ver-

sor cos < -f e sin $ reduces to the

unit vector e, which has been de-

fined, as an operator, to be a versor turning a line at right

angles to it through an angle 90? Any vector, therefore, as a,

contains, in its unit vector in the same direction, a versor

element or factor of which TJa is the symbol, TJ indicating the

reduction of a to its unit of length or the taking of its versor

factor. Hence the appellation versor of a (Art. 7) ,

If in Equation (15) the vectors be reduced to the unit of

length,

Fig 2<J.

/

up
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25. AVe may now express the relation

S - 2
(cos < + e sin

<f>)
= q (Eq. 15)

P P

in the symbolic notation

r^'^[ ^-
^ = T^ . 11*7 J

and say that /ie quotient of two vectors is tlie product of a tensor

and a versor; and that

1st. The tensor of the quotient, f \ is the ratio of their

tensors;
\ "'

2d. The versor of the quotient, (cos<+ e sin<), is the cosine

of the contained angle plus the product of its sine and a unit

vector, at right angles to their plane and such that the rotation

ichich causes the divisor to coincide in direction icith the dividend

shall be positive.

26. If, for - =
g, we write =

</J
it is evident that q

f

differs

3 ft

from q both in the act of tension and ver-

sion ; the tensor of q
1

being the reciprocal
Flg ' 30'

of the tensor of q, and the unit vector *,

while still parallel to its former position,

is reversed in direction (Art. 23) since

the direction of rotation is reversed (Fig.

30). Hence

.Sin<) .... (17).
a Tci

^ is called the reciprocal of |.
As already remarked, the.

a . p

positive direction of is a matter of choice. It is only neces-

sary that if we have + e in
TJ^,

we must have c in TIC, or

conversely.
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27. Let , J, A (Fig. 31) represent unit vectors at right angles

to each other. The effect of any unit vector acting as a multi-

plier upon another at right angles to it,

Flff' 31 ' has been defined (Art. 24) to be the

\J turning of the latter in a positive direc-

tion in a plane perpendicular to the ope-

rator or multiplier through an angle of

/ 90? Thus, i operating on ./produces fc._^__ This operation is called multiplica-

tion, and the result the product, and is

expressed as usual

(18).

The quotient of two vectors being a factor which converts

the divisor into the dividend, we have also

either the product or quotient of two unit vectors at right angles to

each other being a unit vector perpendicular to their plane.

This multiplication is evidently not that of algebra ;
it is a

revolution, which for rectangular vectors extends through 90?

Nor is fc in Equation (18) a numerical product, nor i in Equa-
tion (ID) a numerical quotient. This Mnd of multiplication and

division is called geometric.

In accordance with the above definition we may write the fol-

lowing equations : , ^

. (20),
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l<(-j) = i _!_=
J

(20).

Since the effect of 2, &, j as operators is to turn a line from one

direction into another which differs from it by 90? the}* are

called quadrantal versors.

28. Since

\

we have

or

/= & and i x& = J = Ixj,

We may denote the continued use of i as an operator by an

exponent which indicates the number of times it is so used.

This is consistent with the meaning of an exponent in algebraic

notation. In both cases it denotes the number of times the

operator is used, in one instance as a numerical factor, in the

other as a versor. Thus

*s

In conformity to this notation the above equation becomes
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and in a similar manner.

(22).

Hence the square of a unit vector is 1.

The meaning of the word "
square

"
is more general than that

which it possesses in Algebra, as was that of the word "product
"

in Art. 27. The propriety of this ex-

Klg' 31
-tension of meaning lies in the fact that

3 for certain special cases, the processes

above defined reduce to the usual alge-

braic processes to which these terms

were originally restricted* The conclu-

sion i
2 = 1 is seen to follow directly

from the definition, since if i operates

twice in succession on either j or A
1

,

it turns the vector, in either case suc-

cessively through two right angles, so

that after the operation it points in the opposite direction. A
similar reversal would have resulted if the minus sign had been

written before the vector. Thus (j)=s^j. Hence ix f,

or I*, as an operator, has the effect of the minus sign in revers-

ing the direction of a line.

29. It is to be observed that so long as the cyclical order a, j,

fc, e, j, fc, i, .... is maintained, the product of any two of these

three vectors gives the third f thus

and therefore

as also

a = ?= i
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hence

*0 = ()./,

which involves the Associative lew:.

~\Ye ma}' therefore omit the parentheses and write

(23),

or, the continued product of tliree rectangular unit vectors is the

same so long as the cyclical order is maintained.

But

or, a cliange in tJie cyclical order reverses the sign of the product.

"30. In Equation (24) we have assumed that

That this is the case appears from the fact that i operating on

? produces &, or

and that the same result would be obtained by operating with i

on j, producing fc, and then reversing fc. That is, to turn the

negative, or reverse, of a vector through a right angle, is the

same as turning the vector through a right angle and then re-

versing it. The negative sign zs, therefore, commutative with f,

;, ft, or

*(-, = -(/ = - ...... (25).

31. It follows directly from the definition of multiplication,

as applied to rectangular unit vectors, that the commutative prop-

erty of algebraic factors does not hold good. For

but
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Hence, to change the order of the factors is to reverse the sign

of the product. The operator is always written first
; and, since

the order cannot be changed without affecting the result, in

reading such an expression as ij
= &, this sequence of the factors

must be indicated by saying
"

i into j

equals &" and not "
i multiplied by j

equals /J," the latter not being true.

Hence also the conception of a quo-

tient as a factor requires a similar dis-

tinction, which in Algebra is unneces-

g- 31,

sary. In the latter, from - = a we
o

have, indifferently, ab = c and ba = c.

But from - =
,
while ij

= k is true,
j

ji=zk is not true. In expressing therefore the relations be-

tween *, j and fc by multiplication instead of division, care must

be taken to conform to the definition, the quotient being used

as the multiplier or operator on the divisor. This non-com-

mutative property of rectangular unit vectors, which results

directly from the primary definition of the operation of multipli-

cation, will be seen hereafter to extend to vectors in general

and to quaternions, whose multiplication is not commutative

except in special cases.

The quotient then being a factor which operates on the divisor

to produce the dividend, we have

fc .

that is, -T,/
= ^ (26),

the cancelling being performed by an upward right-handed stroke.

Buf& = ft is not true, for this would involve ji= ij.

\

32. It follows also that the directions of rotation of a fraction,

as -, and its reciprocal are opposite- Thus
j

A' - 1 -- = l
i T "- * * *
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and therefore that the reciprocal of the quotient i is i\ or

that is, the reciprocal of a unit vector is the vector reversed. This

may be written

the exponent denoting that, as a factor or versor, i is used once,

while the minus sign before the exponent indicates a reversal in

the direction of rotation.

33. If a be any unit vector, we obtain from the preceding

Article

a-=a( a)
a

But

hence

-a=a- (30),
a a

or, a unit vector and its reciprocal are commutative and tJieir

product plus unity.

If a is not a unit vector,

a = TaUa,

_
a TaUa Ta

(31),V "

the tensor of the reciprocal of a vector leing the reciprocal of its

tensor. ,

It must be carefully observed that a traction, as -, cannot be

11 l

written indifferently ft- or -fc, for this would involve lei-
1= $-**,

which is not true.
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1 It

By definition k (- i)
= -./, or ki~ l = fc- = ->=-. Hence,

- = fci or Si"1 , From the meaning attached to the ordinary
i i

notation of algebra, , ,

i- = -z (a )

would appear to be correct ; for, cancelling, we have k = k.

Whereas, since be written &-, we should have

or

which is not true.

. 31

Of course that equation (a) is false is

directly evident from the fact that

t
_jf 7

ancl (a) involves i ( j) = ( j ) i

or ij~ji- The above, however, shows

that, as cancelling must be performed

by an upward right-handed stroke

when the expression is in the form of
"~

a quotient or fraction, so when ex-

pressed in the form of multiplication,

the cancelled factors must be adjacent.

In such an expression as

it might be supposed permissible to write also

^.^1,
since in either case the correct result is obtained. This arises,

however, from the fact that both the fractions in the first mem-

ber of (6) are equal to ft, and therefore may be permuted so as

to read We .s2 = = 1. The process of (c) is, how-
s? i i
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ever, illegitimate, and the result is correct, not because the

process is so, but because the factors are in this case commu-
tative.

34. Since the act of tension is independent of that of version,

and their order is immaterial,

xi . yj = xy . ij
= yx . (j

= zk ... (32) ,

where x and y are any two scalars and xy = z. Hence the com-

mutative principle applies to tensors. If then a, , y are in the

direction of z, j and Jc respectivel}*, and a, &, c are their tensors,

a/3=TaT/3. ij
= ab . fc,

ay = TaTy . ik == OC . j, etc.
,

or, the product of any two rectangular vectors is the product of

their tensors and a unit vector at right angles to their plane.

So also

a __ Ta I __ Ta __ 7,'

a Ta . i a . .

"*' '

or, the quotient of two rectangular vectors is the quotient of their

tensors times a unit vector at right angles to their plane.

35. If, as above, a= ai
,
then

aa=ca.az,

a2 = -a2

'

(33).

Hence, the square of any vector is minus the square of its tensor.

Since Ta = a is the ratio of the lengths of a and Ua, the square

of any vector is the square of the corresponding line, regarded as

a length or distance only, with its sign changed.

If ai = a and bi = /3,

aB= abi~ = ab.
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36. That the multiplication of rectangular vectors is a dis-

tributive operation may be seen
Fl* 3

;- directly from Fig. 32 by ob-
"** " *

serving that

(34),\

i being perpendicular to and in

of the paper.

37. Exercises in the transformations of i, j, ft -.

l.j(-i)=k. 2. /(-) =

K 7 / *\ _ j* C* ( 1*\
*

_

9. (-./)(-*)=: 10. (-0(~./)

11. JLss-fc. 12. Z^'^

14. Z^=

25. Is it connect to write, in general, the product of any frac-

tions, as - * -, in the form - ?

j J JJ
j'

A ^_ jV
2$. Estate whether ~- '4 = - is correct or not, and why.

K v AD

27.
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38. Resuming Equation (15),

the quaternion q was shown (Art. 25) to be the product of a

tensor and a versor. It may also "be regarded as the sum of two

parts, the first of which -~ cos
<j>

is a scalar, whose sign is

that of the cosine of the angle (<) between the vectors, while the

second -^ sin . e is a vector at right angles to their plane,

whose sign depends upon the direction of rotation of the fraction

^.
This may be expressed symbolically in the notation

so that we have both

q =
and

q =

The second member of this last equation is read " scalar of q

plus vector of <?," Sq and Yg being respectively symbols for the

scalar and vector parts of the quaternion. As already explained

in the case of the symbol S, V is a symbol of operation, denoting

the operation of taking the vector terms of the expression before

which it is written.

The quotient of two vectors is, therefore, the sum of a scalar

and a vector. _ -

The scalar of the quotient \&q = cos
<j>

\is the ratio of the

tensors times the cosine of the contained angle. TJie tensor of

the vector part T'Vq= sin <t>\ is the ratio of the tensors times

the sine of the contained angle. The versor of the vector part

=
e] is a unit vector perpendicular to their plane, having a
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direction such that the direction of rotation of the divisor is posi-

tive or left-handed,

Letting a and b Ibe the tensors of a and /?,
and collecting the

preceding expressions for facility of reference, -we have

cos $
o

- sin <

... (36).v '

These expressions require no further explanation than that

derived from a simple inspection of Equation (15) in connection

with the meaning already assigned to T, TJ, S and V as symbols
of operation.

39. De Moivre's Formula.

The following considerations -will explain why the parenthesis

(cos<-f esinc) as a versor turns /3 left-handed through an

angle <. They also contain the quaternion interpretation of

imaginary quantities.

Let v = sin
<j>
and z = cos <.

Differentiating,

or

dv = zdcf>, (a)

(6)
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Multiplying (a) by V^T, and adding the result to (b) ,

dz+ dv . V^T= ( v 4- z V^I) d<f>,

or

dz + cZy . V^l = (u V^T+ s) V^l
whence

which maj* be written

2+
or

cos
<#) + sin

<f>
. V^T=

whence

V 1

But we have from (d)

and therefore, from (e) and (/),

(cos </> + sin
</>

. V l)
m=cosw< + sinw^ . V 1 (37) 5

which is the well-known formula of De Moivre.

This formula ma}
r be made the basis of a system of analytical

trigonometry. Thus, for example, to deduce the formulae for

the sine and cosine of the sum of two angles, we have from (cZ)

cos 6 + sin V- 1= e
evr

Multiplying member by member,

(ff)

But from De Moivre's formula

cos ^ + 0) + Bi
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Equating the first members of (g) and (A), since in any equa-

tion between real and imaginary quantities these are separately

equal in the two members, we have

cos (0 4- <) = cos cos < sin 6 sin <.

sin (8 + <) = sin 6 cos < + cos# sin 0.

These formulae, while they may be of course demonstrated

independently of De Moivre's formula, are here deduced from

imaginary expressions. It would therefore appear that these

expressions admit of a logical interpretation.

If any positive quantity m be multiplied by (V I)
2 the re-

sult is m. That is, in accordance with the geometrical inter-

pretation of the minus sign, we may regard the above factor

(Vl) 2 as having turned the linear representative of m about

the
originjthrough

an angle of 180?
If,Jnstead

of multiplying

m by (V^I)
2

,
we multiply it by V 1, we may infer from

analogy that the line m has been turned through an angle of 90

about the origin. If, too, we ob-

F%
-

T
sions

^\
"
f

i m

'

serve tliat eacl1 f t3ie fQur expres-

-1 \ m, mV 1, wi, mV 1

i

\"F is obtained from the preceding by
/ multiplying by the factor V 1

, they
TJiV 1 / , .

/ may be regarded as denoting m

i

V
order a distance m on the co-ordi-

""i'r nate axes OX, OF, OX,
1 OY'

(Fig. 33) , V^T being, as a factor,

a versor turning a line left-handed through a quadrant. These

expressions therefore locate a point on the axes, both as to dis-

tance and direction from the origin.

Since every imaginary expression can be reduced to the form

a b V 1, we may, in accordance with the above interpre-
tation of V 1, regard such an expression as defining the posi-
tion of a point out of the axes. Thus OA = a (Fig. 34) and
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Fig 34.

off at A at right aagles to OA since b is multiplied

by V 1
;
so that in passing over OA and AP in succession we

reach the point p. It is also evident that such an expression

implicitly fixes the position of p by

polar co-ordinates, since Va2+ W = OP

and taiiPOA = -. In like manner
a

& + aV 1 would locate a point pj

OA' having a length = a, but laid off

perpendicular to OA, since V^l is a

factor, and A'P'= b. As before,

we have implicitly OP'= Vet
8
4- &2 and

tan P'OA =s -.
o

Furthermore, if we operate on the

first_ expression,
a + ftV^l, which fixes the point p, with

V 1, we obtain the second, &-j-aV^l, or V^T as a

factor turns OP through 90 so as to make it coincide with

OP! As an operator, therefore, we may regard V 1, like i,j,

ft, as a quadrantal versor, turning a line through a quadrant

in a positive direction. Algebraically it denotes an impossible

operation. (In Algebra quantities are laid off on the same

line in two opposite directions, + and . It was because quan-

tities are so estimated only in Algebra that Sir W. Hamilton

called it the Science of Pure Time, since time can be estimated

only into the future or the past.) But it is unreal or imaginary

only in an algebraic sense. If the restrictions imposed by Al-

gebra are removed, by enlarging our idea of quantity and at the

same time modifying the operations to which it is subjected, this

imaginary character disappears. In applying the old nomen-

clature to these new modifications, it will be seen that the prin-

ciple of permanence is observed, $.eM the new meaning of terms

is an extension of the old ; and when the new complex quantities

reduce to those of Algebra, the new operations become identical

with the old.

If now we operate upon
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which, if we regard a = OA (Fig. 35) and b^f^l AP as

vectors, is equivalent to OP, with the

Fig. 35. expression

cos < -f- sin < . V 1

of De .Moivre's forniula, we obtain

'

so that ^ f ^= * i
als<>

PA" and AL perpendicular and AS par-

aUel to O.Y! Then

a cos & sin ^*
= OL A"L OAj'

a sin $ -h & cos< LA + SP = A"P.

Make oA r

=^AJ' and lay off A'p'=:A r

'p perpendicular to OX,
since it has V 1 as a factor

;
then

(a cos < 6 sin <) +V^l (a sin ^ + 6 cos <)= OA'H- A
fp'= OP,'

and F'OP = 0.

But the formulae for passing from a set of rectangular axes

OX, OY, to another rectangular set OX', OYf

, are

or

y = 2/'cos fj>
aj'

in which XOX'=<f), O;= OA, ?/
= AP, o;

r

OA= OK + KA,

AP= NP A"K,

A"K being perpendicular and A"N- parallel to OX.
Hence the effect of the operator has been to turn OP left-

handed through an angle <, which is equivalent to turning the

axes right-handed through the same angle.
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+ 1, 1 and V 1 are particular cases of the general versor

cos<-fsin< . V 1,

namely, when
<f>

is 0, 180 and 90 respectively, + 1 preserv-

ing, 1 reversing and V 1 semi-inverting the line operated

upon.
"VVe may now see the meaning of De Moivre's formula

. V l)
m = cosm< + sinni< . V 1.

As operators, the first member turns a line through an angle <

successively m times, while the second member turns it through m
times this angle once* pioducing the same result. The expressions

cos $ + sin
<f>

. V^I and cos < + sin < . are identical, except

that in the latter the plane of rotation is not indeterminate,

being perpendicular to e, V 1 being any unit vector with in-

determinate direction in space,

Equation (37) may be put under the form

cosm (2 7T?i + <t>) + sin in (2 irn + <) . Vpl= [cos (2 ?ra + <)+
. V 1]*.

In the second member if
<f>
= and m=

,
we have ^1 for all

integral values of n, while the first member for w = 0, w = l,

n = 2 becomes 1, -i + ^V"17!, -i-^V^l, the three

roots of unity.

In the same way for m = |,

ttxe six roots of unity. The real roots lie on the axis, along

which direction is assumed plus ancl minus, while the imaginary
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roots are vectors in a direction not that of the axis, and are the

sum of two vectors, one of which is in the direction of the axis

and the other perpendicular to it.

40. Let a and ft be unit vectors along OA and OB (Fig. 36) .

Resolve OA = a into the two vectors

FiK se. OD, DA. Then

OA = a = OD + DA.

But
OD

DA = == sm
<f>

e being a unit vector perpendicular to

the plane AOB } as in the figure. Hence

(a)

Now when a and ft are unit vectors, we have by definition

5L . ft
= (cos + esin <^)/?

= a
; or, comparing with (a) ,

distributive law, therefore, applies to the multiplication

of a vector by the scalar and vector parts of a quaternion; for

if a and ft are not unit vectors, the tensors, as merely numerical

factors, can be introduced without affecting the versor conclu-

sion. Resolve ft into the vectors oc, CB, CB being perpendicular

to OA. Then
OB = ft

= oc + CB.

But
OC = COS . a, CB = e (sin <(> a) .

Hence
COS

<f>
. a sin ^> . ea = /S,

or, by the distributive principle,

(COS <f>
Sin

<j>
.

e) a = ft.
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Using the two members of this equation as multipliers on the

corresponding members of (a)

or, since a2 = 1
,

/?a ..... (38).

If a and /J are not unit vectors,

/3a-T/3Ta(-cos< + sm<) . . . (39).

Operating with each member of (a) on /?,

a/3
= (cos <f>

. ft + sin< . ej8)j8

= cos<#> . /3
2+ sin< . e

2

= cos< sin< ...... (40),

or, if a and /? are not unit vectors,

. . . (41).

Tlie product of any two vectors is, therefore, a quaternion,

which, as before, may be regarded either as the sum of a scalar

and a vector or the product of a tensor and a versor. In gen-

eral'notation

a0 = Sa0+Yo = S7+Tg .... (42),

ap = Tq.Uq ........ (48).

Tlie scalar of the product [Sa/3
= TaT/3 cos

<#>]
is the product

of the tensors and the cosine of the supplement of the contained

angle*

Tlie vector of the product [Ya = TaT/3 sin $ . e] has for its

tensor [TYa/?= TaT/? sin $] the product of the tensors and the

$im of the contained angle, and for a versor [UVa/3 = e] a

unit vector at right angles to their plane such that rotation about

it as an axis isposfcive or left-handed.
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Representing the tensors of a and /? by a and 6, we have, as

in Art. 38, from Equation (41),

Fig 30. Tg = db

Ug = cos
<j>

rv

Yg = ab sin < . e

Y<y=a&

UYg = -

SUg =
VUg = sin

<f>

^TVUg = sin

(TT : S)g--

(44).

1 41. Eesuming the expressions for the products and quotients

of a and /?,

/3a
= T/>Ta ( cos < + sin ^) , (a)

(c)
Ta

(d)

we observe

1 st< That if a and /? be interchanged the sign of the vector

part is changed. It is equivalent to a reversal of the angle <,

and consequently a change in the direction of rotation. Hence

Vector multiplication is not therefore in general commutative.

2d. If the vectors are unit vectors,

(46),
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the product being expressed also by a quotient. This is of

course always possible, as appears from (a), (b)^ (c) and (d),

and the transformation may be effected thus :

[Eq. (SI)]

fia T/?Ta (cos c sin 0) ;

or

/3a
= T/3Ta ( cos + esin0) .

3d. If = 0, then in either (a) and (6) or (c) and (c?)

the vector part of q becomes zero, and the quaternion de-

grades to a scalar. When = the vectors are parallel, and

a?= TaT/3 = a&, as in Art, 35; also - = =-, as in

/3 T/? u

Art. 8. If at the same time a and ft are unit vectors - = - = 1

/3
a

[or = at,"
1 = - a2 =1] and a/3

= a2 = 1, as in Arts. 33 and 28.

Tjf tfien # 5e MI?/ quaternion and Y#= 0, ?/*e vectors of which q

is the quotient or product are parallel.

4th. If = 90? then in either (a) and (&) or (c) and (c7)

the scalar part of q becomes zero, and the quaternion degrades

to a vector
;
and either the product or quotient of two rectangu-

lar vectors is therefore a vector at right angles to their plane,

aft reducing to a&c arid 2 to ^e, as in Art. 34. If at the

P b
a

same time a and ft are unit vectors, a/3
= e and - =

c, as in

Art. 27.
^

Jf then q be any quaternion and $q = 0, the vectors ofwhich q

is the quotient or product are perpendicular to each other.

5th. If an equation involves scalars and vectors, the vector

terms having been so reduced as to contain no scalar parts T then

since the scalar terms are purely numerical and independent of

the others, the sums of {lit scalars and vectors in each member

are separoAdy equal. Thus if

then \. (47),
and
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which might also be written (Art. 38)

Gth. C being the quotient which operates on a to produce /?
a

we have by definition*

7th. TYa/J, or ab sin<, & $e area of a parallelogram whose

sides are equal in length to a and b and parallel to a and /3.

SajS, or afccos^, is numerically the area of a parallelogram

whose sides are a and &, and angle ab is the complement of
<f>.

8th. Since the scalar symbol S indicates the operation of

taking the scalar terms,
Sa=0 ....... (49),

and, for a similar reason,
Ya=a .......

Again, since a2 is a scalar,

Y(a*)=0 ....... (51),

V(a
2
) may be written Y . a.

2
, as also S(a

2
)
= S . a2

,
but these forms-

must be distinguished from (Ya)
s and (Sa)

2
? which latter are

also sometimes written Y2a and S2
cu

9th. Comparing (a) and (&),

S^a ....... (53),
and

Ya = -Y/3a ...... (54).

Adding and subtracting (a) and (b) ,
we have also

..... (55),
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10th. a/3 . |8a
=

(Sa/3 +Ya/3) (SajS
-
Va0) [Eqs. (53) and (54)]

=
(Sa/3)

2- SaYa/3 + Sa/SVa/?
-

(Ta/?)
2
.

Hence
.... (57),

or, from Equation (44),

..... (58).

42. Powers of Vectors.

The symbol t
w

,
m being a positive whole number, has been

seen (Art. 28) to represent a quadrantal versor used m times

as an operator ;
the exponent denoting the number of times i is

used as a quadrantal versor. By an extension of this meaning
of the exponent, i would naturally represent a versor which,

as a factor, produces the th part of a quadrantal rotation.

Thus i* produces a rotation through one-third, and ^ through

three-fifths of a quadrant, respectively. With the additional

meaning attached to the negative exponent (Art. 32), as indi-

cating a reversal in the direction of rotation, we may in general

define ?, where i is any vector-unit and t any scalar exponent,

as the representative of a versor which would cause any riyht

line in a plane perpendicular'' to i to revolve in that plane through

an angle t x 90? the direction of rotation depending upon the

sign of t. Hence every such power of a unit vector is a versor,

and, conversely, every versor may be represented as such a

power.
*

2<

Since the angle (<) of the versor is t x -, we have * =
9

and any versor

cos < + e sin
<f>

may be expressed 3*

cos^ + csin^ = ir ..... (59),

and
2 ^

e~^- . . * . (60),

the vector base being the unit vector about which rotation takes

place, and the exponent the fractional part of a quadrant through

which rotation occurs.
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The operation of which i- is the agent is one-half that of

which i is the agent, and therefore two operations with the

former is equivalent to one with the latter ; or, as in Algebra,

(Cl),

or, employing the other versor form, if a, /3, y are complanar unit

vectors so that

a 2
= cos c + e sin < = TJ

ft
20

- = cos 6 + esin 6 = e^?

then since

a 13 a

r^y
we have

(cos0 + sin<) (cos0+ csmtf) = cos

e(sin < cos & 4- cos < sin 0)

= cos (<f> + 0)+ esin
(< + fl)

.

The second member is the U-, its angle being (<+0), and

may he therefore expressed as the power of a unit vector, and

written w
;
this exponent is the sum of the exponents of

the factors, or
2 * ^ c+fl)

//t 1V
cir ir= e w ...... (ua)

This is evidently an abridged form of notation to which die

algebraic law of indices is applicable.

Since e
2

1 and therefore e
4=l; if *!, t must be an

odd multiple of 2, and if *=+!, t must be an even multiple

of 2.

In either case the coefficient of TT in < = -TT is a whole num-

ber, and cos < sin
<f> degrades, as above, to the scalar 1,

since sin WITT = when m is an integer.

If c*=, t must be an odd number; in which case also
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m=i5 ti 2-9 etc., cosm7r = and the versor degrades to the

vector e.

If the vector is not a unit vector, as atf = p, to interpret tho

exponent, say pi, so as to satisfy the formula

which is analogous to Equation (61), we must combine with the

conception of rotation through half a quadrant an act of tension

represented by the square root of the tensor of p. Thus, if

a? = 16, and we write

p*
= (16zy=16-*%

then

or, if 0; = V8,

^8.i = V2.**,

** = Vs .

And, in general,

f
/ = (arf)'

= a#.i' ..... (64),

or the tensor of the power is the power of the tensor, and the

versor of the power is the power of the versor. Symbolically

Any such power (p*), as the representative of the agent of

both an act of tension and version, is therefore a quaternion,

whose tensor and versor can be assigned by the above rules, and,

conversely, every quaternion can "be expressed as the power of a

vector, which quaternion naay degrade to either a scalar or a

vector as seen in the preceding versor conclusions. Hence it

follows that the index-law of Algebra is applicable to the powers

of a quaternion.
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43. Relation between the Vector and Cartesian deter-

mination of a point.

If z, /, fa are three unit vectors perpendicular to each other at

a common point, then the vector from this point to any point P

may be written ..... (67),

in which 0, t/, are the Cartesian co-ordinates of P. If the vec-

tors are not mutually perpendicular and arc represented by a, /?>

y, then

in which a?, y, z are the Cartesian co-ordinates of P referred to

the oblique axes. So long as the vectors a, /3, y are not com-

plauar, p refers to any point in space.

Since an}* quaternion q may be expressed as the sum of a sca-

lar and a vector, ifw be any scalar, then

(69).

As composed of four terms, we observe an additional reason

for calling this complex expression a quaternion.

Any vector equation

p= cr= aa + b/3 + Cy,

involves three numerical equations , as

a;=a, #=&) ^= c,

unless the vectors are oomplanar ; in which case we ma}' write

y =; na+ mft,

and

jO=(a+ rt)a+ (y + m)^,
o-= (a 4- c) a + (b + cm)j8,

which, for
jo
=

o-, involves T)ut two equations

= 6 + cm*
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Resuming the quadrinomial form of g, when the component
vectors are at right angles, we have

Tg= xi + yj+ zk

Since (TTg)
2= - (Vg)

2 = 3?+ f+ *, we have

TTg = -

'

(70),

TVg

Also, since (Art. 41, 10th.)

(71).

Tg = Vi

71=^.9
Tg

fq

TTU2=^ :

(72).

44. The plane of a quaternion has been already defined as the

plane of the vectors or a plane parallel to them. The axis of

a quaternion is the^ vector perpendicular to its plane, and its

angle is that included between two co-initial vectors parallel to

those of the quaternion. If this angle is 90 the quaternion is

called a Right Quaternion, Any two quaternions having a

common plane, or parallel planes, are said to be Complanar.

If their planes intersect, they are Diplanar. If the planes of

several quaternions intersect in, or are parallel to, a common

line, they are said to be Collinear, It follows that the axes of

collinear quaternions are complanar, being pei*pendicular to the

common line. ComplanaJ: quaternions are always collinear^ and
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complanar axes correspond to collinear quaternions, "but the lat-

ter may of course be diplanar.

Let and be any two quaternions. If complanar, they
O rB O"D

may be made to have a common plane ; and, if diplanar, their

planes will Intersect. In the former case let OE be any line of

their common plane, or, in the latter, the line of intersection

of their planes. Now, -without changing the ratios of their vec-

tor lengths, the planes, or the angles of the given quaternions,

two lines, OF and oa, may always be found, one in each plane,

or in their common plane, such that with OE we shall have

^ =^ and 2^ = ^;
O'B OE O"D OB

and, therefore, any two quaternions, considered as geometric

fractions, can be reduced to a common denominator ; or, in the

above case

O'A O"C_OF oo __ OF + oa

o
7^ O"D~OE OE

~~
OE

Moreover, a line OH, in the plane AO'B, may always be found

such that

O'A __ OE

o's^oa
1

and therefore

o"o O^A__OG ^525
o"5

*

</B
"~

OE
*

OH
~~

OH"*

and
O'A

^
O r

'C OF^Ca^OF OE__OF
O'B

*

O tJD
~~

OE
*

OE
"""

OE OGr
"

OGr

45, Reciprocal of a Quaternion,

The reciprocal of a scalar is another scalar with the same

sign, so that, as in Algebra, if a? be any scalar, its reciprocal is

*->=!
X
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The reciprocal of a vector has been defined (Art. 33), so that,

if a be anj- vector, - = a" 1 =-- TJa.
a. Ta

The reciprocal of a quaternion has also been defined (Art.

20) ; thus

T q

being any quaternion,

is its reciprocal. The only difference between the quotients

- and - (Fig. 37) is that, as opera-
p a

tors, one causes /3 to coincide with a,

while the other causes a to coincide

with ft. A quaternion and its recipro-

cal have, therefore, a common plane

and equal angles as to magnitude,

but opposite in direction; that is,

their axes are opposite. Or

Z - = Z q and axis _ = axis q.
q q

Since

and .--""

the product of two reciprocal quaternions is equal to positive

unity, and each is equcd to the quotient of unity by the other;

we have, therefore, as in Algebra, -#=1 and 2 = p and no

new symbol is necessary for the reciprocal-
-

is, however,

sometimes written Eg, E being a general symbol of operation,

namely, that of taking the reciprocal. It follows from the above

that
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or, the tensors of reciprocal quaternions are reciprocals of each

other ; while the versors differ only in the reversal of the angle,

If then

we shall have

Ta

(74).

- e sn <

46. Conjugate of a Quaternion.

If
ft' (Fig. 37) be taken complanar with ft and a, and making

with a the same angle that ft does,

Tig 37 T/3' being also equal to T/?, then, if

- = g,
- . is called the conjugate of

^ P
g, and is written Kg. The sjmbol K
indicates the operation of taking the

conjugate. A quaternion and its con-

jugate have, therefore, a common

plane and tensor, as also, in tne ordi-

nary sense, equal angles ;
but their axes are opposite ; or

and

If then

we shall have

axis Tig

Tot

.* . 1
: axis = axis-

9

. . (75).

. - - (76),

or, the tensors of conjugate quaternions are equal) and the versors

differ only in the reversal of the angle.

Regarding a scalar and a vector as the limits of a quaternion
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(Art. 41, 3d and 4th), we see from Equation (76) that the con-

jugate of a scalar is the scalar itself, and that

(77),

or, the conjugate of a vector is the vector reversed. In general
notation we may write

whence it follows from the above that

or (Art. 43) I . . . . (7H),

JLq = 10 xi 20 #fc )

that is, f^6 scalar of the conjugate of a quaternion is the scalar

of the quaternion, and Hie vector of the conjugate of a quaternion

is the vector of the quaternion reversed, ; a result which may be

expressed symbolically

These are Equations (53) and (54) .

If we add and subtract the two conjugate quaternions

we have

...... (80).V ;

The sum of two conjugate quaternions is, therefore, always a

scalar, positive or negative as the Z q is acute or obtuse. If

Z q = -, this sum is evidently zero.
i

Since, if q is a scalar, Kg = <?, then, conversely, ifKq= q, q

is a scalar.
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47. Opposite Quaternions.

If, for -, we write (Fig. 37), the latter is called the

Opposite of q, and is evident^ q, for

-- .

ft

"
P P P

As appears from the figure, opposite quaternions have a com-

mon plane and tensor, supplementary angles and opposite axes ;

or

. T(g) =Tg, Z # = T Ztf and axis ( gr)
= axis g.

Since

P P P P

the sum of two opposite quaternions is zero, or

Fig 37.

a
m
a _ a ft _ a _ _ -

~
' ^ """ ~

'

or, iftfifr quotient Is negative unity.

If then

we shall have

If Z
vector.

rp

. . . (81).

= j; and, conversely, if Kg= g, q is a
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48. Since U(/ is independent of the vector lengths* aud only

dependent upon relative direction
, versors are equal whose axes

and angles are the same. Hence

But (Art. 24)

and, Equation (82) ,

a Ua \]/3

IT!--L . . .

q -Cq
(83),

Again, since the conjugate of a versor is the same as the re-

ciprocal of that versor, we have, from Equations (82) and (83),

KUflf (84).

49. Representation of Versors ly spherical arcs.

If a, /3, y, are co-initial unit vectors, their extremities will

all lie on the surface of a unit sphere (Fig. 38) .
-

being any
a. P

quaternion, II 3 turns (3 from the position

OB to OA, and this versor may be repre-

sented by the arc BA joining the vector

extremities ; for this arc determines the

plane of the versor as also the magnitude
and direction of its angle, the direction

of rotation being indicated by the order

of the letters as in the case of vectors.

This representation of versors by vector

arcs is of importance in the theorems re-

lating to the multiplication and division of quaternions, and

may be made upon a unit sphere ; for, if a, /?, y, are not unit

vectors, the quaternions will differ from the versors by a nu-

merical factor only, the introduction of which cannot aflfeet the
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3d

versor conclusions. Disregarding, then, the tensors, since ver-

sors are equal whose planes are parallel and angles equal (in-

cluding direction), equal arcs on the

same great circle and estimated in the

same direction represent equal versors,

for any arc may be slid over the great

circle on which it lies without change of

length or reversal of direction. On this

plan B'A = AB will represent the recipro-

cal or conjugate of BA, and a quadrautal

versor would have for its representative

BC, an arc of 90? Also, the veraors of

all complanar quaternions will Tbe repre-

sented by arcs of the same great circle, while arcs of different

great circles will represent the veraors of diplanar quaternions,

which are always unequal.

If M, N and P are the vertices of a spherical triangle, the vector

arcs MN, NP and PM will represent versors, and it will he seen

that by taking the geometric sum of two of these arcs in a cer-

tain order, the remaining arc will represent the versor of their

product ; so that if q' be represented by PM and q by NP, fjfq may
be constructed by a process of spherical addition represented by
PM + NP= NM, NM representing the versor q'q ; but that because

q'q and qq
1

are not generally equal, this process of spherical ad-

dition, as representing versor multiplication, is not commutative

as was that of vector addition, PM + NP and NP + PM representing

diplanar versors.

50. Addition and Subtraction of Quaternions.

Since a quaternion is the sura of a scalar and a vector, in

finding the sum or difference of several quaternions the sum or

difference of their scalar and vector parts may be taken sepa-

rately. The former -will he a scalar and the latter a vector
;

consequently, tlie sum or difference of several quaternion is a,

quaternion .
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1. Both the associative and commutative principles "being

applicable to the summation of scalars, as also to that of vectors

(Arts. 4, 5), they also hold good for the addition and subtrac-

tion of quaternions ;
or

q+r=r+q )
and t

. . . (85).

If then

r = S/- +Yr
i

5 = q+ r H = Ss + Y*
;

in which

and, in general,

(86),k ; '

or, in quaternion addition and subtraction, S and Y are distribu-

tive symbols.

"2. Itq + r +i> + ..... = s, then, Equation (78) ,

...... (87),

K, like S and Y, being a distributive symbol.

3. Again, since the conjugate of a scalar is the scalar itself,

But Sq = SKtf . Hence

ESq = 8q = SKq ..... (88).

Also, since the conjugate of a vector is the vector reversed,
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Hence

(89);

hence K is co/Mnutative with S and Y.

4. Since any two quaternions may be
Fl8 3S

reduced to a common denominator (Art.

_c_ 4 44) ,
so that

B'

and since

B lV-j-Ty'>T(a'+y')

unless a r = &y and #>0, it follows that

unless {r
= aj

r and35>0. Hence, in general, T5# is not equal

to STtf. Moreover, since USg is a function of the tensors under

the 3 sign, while SU<7 is independent of the tensors, US# is not

equal to SUy. This also appears from the representation of ver-

sors by spherical arcs (Fig. 38). Hence, m tlie addition and

subtraction of quaternions, T and II are no*, in general^ dis-

tributive symbols.

51. Multiplication of Quaternions*

L Let

be any two quaternions. Then

The last member, being the sum of a scalar and a vector, is a

quaternion. Hence, the product of two quaternions is a quater-

ii) and

in which

and

Vgr
' + SrVff +Y . YffYr

(90),

(91).



GEOMETEIC MULTIPLICATION- AND DIVISION. 75

If we multiply q by r, we obtain

Yrg = SrYg + SgYr +Y . YrYg.

But, Equation (53),

S , VrYg = S . YgYr,

.-. Srg = 8gr (92).

But, Equation (54),

V. YgYr = -Y. YrYg,

and therefore the products qr and rg are not equal. Hence,

quaternion multiplication is not in general commutative. If,

however, g and r are complanar, Yg and Yr are parallel, and

Y . VgYr = ; in which case gr = rq. Conversely, if gr= rg., g

and r are complanar.

Since Reciprocal, Conjugate and Opposite quaternions are

complanar, they are commutative, or

q'K.q
= Kg . g

q-=z-q = wrl = q-
l

q[ . . . (93V
g g

v J

2. It has been shown (Art. 44) that any two quaternions

g, g,'
can be reduced to the forms 5. and I having a common

a a

denominator, or to the forms ^ and ?. Hence
o a

'

c t ^ ^ 2

\Ye have then

(94).
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In a similar manner

Hence the tensor of the product (or quotient) of any two qua-

ternions is the product (or quotient) of their tensors, and the ver-

sor of the product (or quotient) is the product (or quotient) of

their versors.

In fact, tensors being commutative, we have, in general,

TILq^UTq ...... (96),

uq - THj . un?=

3. The multiplication and division of tensors being purely

arithmetical operations, we proceed to the corresponding opera-

tions on the versors. It has been shown (Art. 44) that any

two versors </, q', may be reduced to the forms

ff
=2-2, r/=4=', (Fig. 39),

a OA'ft OB

A, B, Cj being the vertices of a spherical triangle on a unit

sphere. Then
,

. . .

f, J P 7 oc
(/q == L. . JC -~ I- s= .

jS
a a OA

If we represent the versors <f and q by the vector arcs o
r

and AB, then the versor 1, the product of y'g, will be repre-
a

y
r

sented by the arc AC' ; moreover if j" == -
represent any divi-

/3

dend and ^ s= - any divisor, then

"

q
~~

a /?

~~

ft

""
OB

the versor of the product #'# being

BC' + AB = AC f

,
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and the versor of the quotient .

AC' AB = Bc f

;

and, as in the addition and subtraction of quaternions, the pro-
cess consisted in an algebraic addition and subtraction of scalars

but a geometric addition and subtrac-

tion of vectors, so the multiplication

and division of quaternions is reduced

to the corresponding arithmetical ope-

rations on the tensors and the geome-
trical multiplication and division of"

the versors, the latter being con-

structed by means of representative

arcs and the rules of spherical addition and subtraction.

4. The representation of a versor by the arc of a great circle

on a unit sphere illustrates the non-commutative character of

quaternion multiplication. For, AB and BA' (Fig. 39) being equal

arcs on the same great circle, as versors

and similarly

Now if

then

AB :

CB:

<K= and r-*-

Vr= -a,.=- ancl r1'-
//? y

s o f

ft a a

the versors qr and rq being represented by the arcs CA' and AC'

respectively. These arcs, though equal in length, are not in the

same plane, and therefore the versors rq and qr are not equal.

Constructing these versors, by spherical addition we should have

BC' + AB = AC',

AB -I- BC'= BA f + CB = CA 1

,

a change in the order giving unequal results.
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Hence, unless AC' and CA' lie on the same great circle, in

which case q and r are complanar, quaternion multiplication is

not commutative,

5. Other results, hereafter to be obtained symbolically, may

be readily proved by means of spherical arcs, as follows :

If AB (Fig. 39) represents the versor of q = -, A'B = BA repre-

sents the versor of K# or i. The spherical sum of AB 4- BA
q I

being zero, the effect of the versors in the products q&q and q-

is to annul each other. Hence, if the vectors are not unit

vectors, qKq = &j . g = (Tg)
2 ..... (08),

Again, from

we have

*,-.
y

and the versor of K (qr) will therefore be represented by A'C.

But

whence ..... (99),

or, tlie conjugate of the product of two quaternions is Me product

of their conjugates in inverted order.

6. The product or quotient of complanar quaternions is readily

derived from the foregoing explanation of versor products and

quotients as dependent upon a geometric composition of rota-

tions. For, disregarding the tensors, the vector arcs which

represent the versors, since the latter are complanar, will lie on

the same great circle, and the processes which for diplanar ver-

sors were geometric now become algebraic. Thus for #
r

="/j
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and, Fig. 39,
BA' + AB = AB + BA' = AA' ;

a a
also for 2"=- and r/=,

a

! =
g

f a a a
"

J3 j9*

mid
BA + AA r = BA r

.

The product or quotient of any two cornplanar quaternions is

therefore obtained by multiplying or

dividing their tensors and adding or Flg &
subtracting their angles. Thus

pq = Tp * Try [cos (<f + 6) 4-

sin(0+fl)].

(cos 2 <^ + sin 2 ^) ,

or, generally,
, . . (100),

alienee result the following general formulae,

which are all involved in Art. 42.

52. 1. Distributive and Associative Laws in Vector

and Quaternion Multiplication,

Having assumed (Art. 24)

ft
_, z^fi+y,

a a a
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whence

since a is any vector, we have

jBa

Taking the conjugate of

1* 99]

[Bq. 87]

Hence
Ka(E/3-f Ky) = KaK/5 + KaKy,

or
= '/?'+ aV. (6)

Taking the conjugate of (/?<x + ya) ,

K(]8a +- y<*)
= K/3a + Kya= KaK + KaKy.

Hence, from (a) and (5) ,
the multiplication of vectors is a

doubly distributive operation, and

(+y)(cx + S)==/3a + ya+ /2S+rS . . (102).

/?'

2. Let q~%r, be any quaternion and a any vector ;
also /3

a

vector along the line of intersection of a plane perpendicular to

a with the plane of q. Then another vector, S, may he found in

the latter plane, such that g=-f , having the same angle, plane
f

00
and axis as ^. Also let y be a vector in the intersecting plane,

such that 2= a. If now a be any scalar,

= ag + aj.
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Taking the conjugates as above,

Hence, in general,

(a 4- a) (a'+ a')
= aa r+ aa'+ a*a + aa f

; (c)

or regarding a, a', and a, a' each as the sum of two scalars and

two vectors respect!vely,

a'2) + (a
1

! + a',)

03)

since, from (c), the factors in the expression preceding the last

are distributive. Putting for the parentheses, which are sums

of a scalar and a vector, the quaternion symbols p, q, r and s,

*wp havft

(p + q)(r + s)**pr+ps + qr+qs . . (103),

or, the multiplication of quaternions is a doMy distributive

operation,

8. Assuming any three quaternions under the quadrinomial

form. Article 43, z", &, j being unit vectors along three mutually

rectangular axes, we have

q=w +xi +yj +a*, (a)

Multiplying first (c) by (6) and the result by (a), and then

(&) by (a) and (c) by this result, observing the or#er of the fac-

tors, it will be found that the scalar and vector parts of these

two products are respectively equal, and therefore

q(rs^(qr)s ..... (104),

or, the associative law te trite in the multiplication of quaternions,
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53. 1 . If a ancl /J be any two vectors, then

whence, Equation (55), or, comparing Equations (39), (41)

80) '

(a + /S)' = a- +2SaW . . . (103).

2. Similarly

(a
-

/3) (a
-

ft)
= (a

-
/3)

2 = a2 -
(a + )a

or

(a-/3)
2
=a--2Sa/34-/3

2
. . . (106).

3. From Equation ( 7), or by multiplying q = $q + Vq into

hence, from Equation (98) ,
the equalities

a/3 . /3a
=s gK# = (Sa/3)

2
(Taj8)

2 = (Tg)
2

. (107) .

34. Applications.

1. /n a^i^ right-angled triangle, the square on the hypothenuse

is equal to the sum of the squares on the sides.

Let the sides, as vectors, be repre-
40 *

seated by a and /? (Fig. 40) , and the
^A

hypothenuse by y. Then

Squaring, Equation (105),

r

or, as lengths simply, changing signs [Equation (33)],

2. In any right-angled triangle, the medial to the hypothenuse
is one-half the hypothenuse.
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In Fig. 40, for the medial vector CD = 8, we have (Ait. 1.5)

or

Squaring, and since S/3a = 0.

or

... ..2.

3, jy ifee diagonals of a parallelogram are (it eight awjle* to

each other, it is a rhombus.

Let the vector sides be represented by a and j6. Then a -H/8

and a /8 are the vector diagonals.

By condition -
(

S(a + ^)(a-^) = 0. I-V -* *

[Art. 41, 4]

But, Equation (53),

2
B(a + )(*-)=' -05=0,

which is true only when Ta= T/3, that is when the sides are

equal.

4. The figureformed by joining the middle points of the sides

of a square is itself a square.

Let BC and CA (Fig. 40) be the sides of a square, P and Q

their middle points, and o the middle point of the side opposite

BC. Then, with the same notation,

or PQ and QO ai^e at right angles.

5. In any triangle, the square of a side opposite an acute

angle is eqv&l to the sum of the squares of the other sides, less.
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twice the product of the base and the lute between the acute angle

and the foot of a perpendicularfrom the angle opposite the base.

Let CA = /?,
CB = a, BA = y (Fig. 41).

Then

Now

2 Say = - 2TaTy COS (180- B)=

ft Hence

&2 =_ rr c
2 + SoccosB - a 2 - e* + 2ad,

or

If B is a right angle, Say Q, and? as in Example 1,

TThat does this theorem become for a side opposite an obtuse

angle ?

6. 7/1 any plane triangle* to find a side in terms of the other

two sidett and their opposite angles.

In Fig. 41,

Multiplying into a

/3a
= aH

Taking the scalars (Art. 41, 5),

or
ba cosc = a2 ca cos (180 B) ;

.-. a = & cosc + c COSB.

The above operation with a is indicated by saying simply,
u
operating with x S a," meaning tliat a is first introduced and

then the scalars taken. The position of the sign X will indicate
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low a is used. If used as a multiplier, we should write, *-
oper-

ating with 8 a x ."

7. The sines of the angles, in any plane triangle, are propor-
tional to the opposite sides.

In Fig, 41

Operating with x V. a, that is, as explained in the preceding

example, multiplying into a and taking the vectors (Art, 41. 5),

Ta =T(a + y) a =V . a2 + Vya.

But V . a2=
;
hence ^ ** v:

;

Y/?a=Yya,
& sine = ca sinB,

^^
4

or

sine: siuB::c:6.

Notice that T/3a and Yya involve a unit vector at right angles

to their plane, and that, owing to the order of the vector factors,

e has the same sign in both members of the equality, and may
therefore be cancelled. The period in V . a2

may evidently be

omitted, as in Y/3a ;
it will be used hereafter only to avoid am-

biguity. Thus Eqr means the conjugate of qr ;
but K# .ri&r

multiplied by the conjugate of g.

8. In a right-angled triangle, to find the sine and cosine of the

acide angles.

Let AB = y, AC = fa BC = a (Fig. 42) .
Fi, 42.

Then

whence

Taking the scalars, since S-= 0,
/*

1
c

l=rCOSA, 01
u
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Taking the vectors

-sin
b

sinc = 0;
I

In this example UT^
= UV

|-

9. To find the nine and cosine of the sum of two angles.

Let a, 0, y be eomplaiuir unit vectors (Fig. 43), and e a unit

vector perpendicular to their plane. We have

7 y P= ' '

Fig 43 in which

Hence

co$(<f> + 0) + e si = (cos in<^) (cos<9 + esin0)

Equating the scalar and vector parts in succession, there re-

sults, since
2= 1,

cos (< + 6) = cos
<f>

cos sin $ sin0,

sin ($ + 0) = sin
<j>

cos + cos < sin0.

10. To find the sine and cosine of the difference of two angles.

Let the angle between y and a (Fig. 43) be ^. Then
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in which
B
'- =

cos(i/r <9)

8
-

-
7

and, as in the preceding example,

cos(i/r 0)=cos# cos ^-f sin si

sin
(i/r 0) = cos0 sin

/r sin0 cos
\jt*

11. If a straight line intersect two other straight lines so as to

make the alternate angles equal, the two lines are parallel.

Let a and y (Fig. 44) be unit vectors along AB and CD, and

/3 a unit vector along AC. Then

ap = cos 9 + e sin 0,
Fis- -

/?y
=

whence

and therefore, Equation (56), y= a.

If a= ABj then

[Eq. (55)]

12. If a parallelogram be described on the diagonals of any

parallelogram, the area of the former is twice that of the

latter.

Let a and /? represent the sides as vectors ; then the diagonals

are a + /3 and a ft, and

since Va 2
=Yj8*=s and -Ya = YjBu.
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But, from the order of the factors,

hence

TT(a + )(-)=* 2 TYjBa,

which is the proposition (Art. 41, 7)-

13. Parallelograms on the same base and between the same

parallels are equal.
TTc have (Fig. 45)

Fis? 45

A K 1> y BE = BA + AE

= BA + X BC.

Operating with Y . BC x

V(BC . BE)=Y(BO .BA),
since Yscso

8 = 0.

BC . BE sillEBC = BC . BA sin ABC,

which is also true when the bases are equal, but not co-incident.

/14. If, from any point in the plane of a parallelogram, per-

pendiculars are let fall on the diag-

onal and the two sides that contain

it, the product of the diagonal and

its ^eypendfcwto" is equal to the

SMWI, 0?- difference, of the products

of the sides and their respective per-

pendiculan* as the point lies

out or within the parallelogram.

Let OA ==
a, OB = /?, OP = p (Fig. 46) .

Then

But

Heace
= TY(a
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For p'
== op f

, we have

15. 7ft o^i aji# frw sides of a triangle, as AC, AH (Fig. 47),

cm?/ two exterior imralldofjrams^ as ACFG, ABDE, be constructed,

and the sides ED, GF, produced to meet in H, tlien Kill tlie sum of

the areas of the parallelograms be equal to that ichose sides are

equal and parallel to CB and AH.

Let AE = a, AB = /?, AC

and AO = S. Then

Operating with X T . J3

~V\
r
e have also

AH = AO + GH

Operating with X Y . y

Y(AH.y)=YSy. (6)

Hence, from (a) and (6),

.

y) =Ya/3 YSy, f*

* '

V

*
'"
^ ^

V(AH . CB)

&*?}*<. ^ f t*k ^ ^^"
These vectors have a common v^rsor ; wheace the proposition,

If one of the parallelograms, as Ai>
r

, be interior, then AE'= a

and AH P = a % J

fi
= S + y

r

y, and

.-. YAH'C/3
-

y) =-Ya^ TSy=Va -
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But in this case

UV (AH' . CB) = - UT/3a = - ITS/,

and the area of the parallelogram on AH', CB, is the area of AF

minus the area of AD'

1 G . To find the angle between the diagonals of a pamllelogram*
Let AD = BC = a (Fig. 48),

Fig. is. and BA = CD = ft, d and d 1

being

the tensors of the diagonals.

Then

AC . DB = (a ft) (a + ft)

Taking the scalars

cosDOC . cfcZ'=a2 If.

Taking the vectors

sin DOC . cfrf

since UV(AC . DB) = - UVa/?.

a2
&
2

17. Tlie sum of the squares on the diagonals of a parallelo-

gram equals the sum of the squares on the sides.

In Fig. 48

or

BD3+ CA2= BA2+ AD2+ DC2+ CB2
.

18. TJie sum of the squares of the diagonals of any quadri-
lateral is twice the sum of the squares of the lines joining the

middle points of the opposite sides.
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Let AB = a. AD = /3, DC = y (Fig. 40). For the squares of

the diagonals, we have

and for the bisecting lines

Whence the proposition readily follows,

19. Tlie sum of the squares of the sides of any quadrilateral

exceeds the sum of the squares on the diagonals by four times the

square of the line joining the middle points of the diagonals,

Let AB = a, AC = /?, AD = y

(Fig. 50) . The squares of the Fig so,

sides as vectors are i>

or

2(a
2 +

1
82

4-y
2)- 2S/?a

-
2Sy/3.

The squares of the diagonals are

or

The former sum exceeds the latter by

or by

which may be put under the form
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But
a

"j"

y as Aff, and c &A. Substituting these values,

we obtain

4(AO + SA)
2

,
or 4 so 2

,

which is also true of the vector lengths.

20. In any quadrilateral, if the lines joining the middle points

of opposite sides are at right angles, the diagonals are equal,

With the notation of Fig. 49, we have

But, by condition.

Whence

or

The sum of the squares of the diagonals is

or

4 4.^ 2
^

2

)
2 =

(/3 a)
2

,

AC2 = BD2
,

21. JH any quadrilateral prism^ the

sum of the squares of the edges exceeds

the sum of the squares of the diagonals

by eight times the square of the line

joining the points of intersection of the

tioo pairs of diagonals.

Let OA = a, OB= /?, OC= y, OD = S

(Fig. 51). For the sum of the

squares of the edges we have

(a)

(6)
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The vectors to the intersections of the diagonals are

and

md the vector joining these points is

*(a+0-).

Squaring and multiplying by eight, we have

which added to (6) gives (a) .

22. In any tetraedron, if tico pairs of opposite edges are at

right angles, respectively > the third pair will be at right angles.

Let OA = a, OB = , oc= y (Fig* 52) .

The conditions give

Subtracting the first of these equa-

tions from the second

which is the proposition.

23. To find the relations between the edges^ plane angles and

areas of a tetraedron.

With the notation of Fig. 52, we have

CA . CB s= (a y) (ft y),
or

CA . CB aS on/

Representing the tensors of CA and CB by m and n, and taking

fche scalarsof (a), ^
S(CA . CB) = Sap - Say- SyjS -f y

2
,

whence * 1

<? ac cosAOC be cos BOO = mw cos ACB ab cosAOB^,
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which is the relation between the edges and their included

tingles.

Taking the vectors of (#), and squaring,

v

+ (Toy)* +YayYy
-

Yy/SYa +Yy/3Y<xy + (Yy)
s
,

But
-

(Ya/JYy/?+ Yy/2Ya/?)
= - 2 S . Ya/SYy/3 (Eq. 55)

in which B is the angle between the planes AOB, BOG.

Also

-
(Ya/3Yay +TayTa) = - 2 S . Ya/SYay

= 2 TYa/3TYay COS A,

and

YayYyyS + Yy/3Yay = 2 S . YayYy/3 = - 2 TYayTYy/3 COS (180
-

c)

= 2TYayTYy/8cOSC,
Fig 52.

c in which A, B and c are the angles

opposite the edges BC, AC and AB re-

spectively. Hence (6) becomes

-
[TY(CA * CB)]

2= - (TYa/?)
2-

(TYay)
3

+ 2TYa/3TYay COSA+ 2 TYa/JTVy/3 COSB

A

But (Art. 4=1, 7th)

TY(CA * CB) = 2 area ACS,

and similarly for the others. Hence, dividing by 4,

(areaABC)
2= (area AOB)

S + (area AOc)
2 + (area Boc)

2

2 area AOB areaAOC cosA 2 areaAOB area BOO cos B

2 areaAOC areaBOC cos c ,

which Is the relation between the plane faces and their included

angles.
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If the angles are right angles, then

(area ABC)
S = (area AOB)

S + (area AOC)*+ (area Boc)
3

.

24. To inscribe a circle in a given triangle.

Let a, /3, y (Fig. 53) be unit vec-

tors along the sides. Then, Art. 16,

the angle-bisectors are

a

Now

Operating with V . (y + a) x

% _ ^a7

Hence

Yy/3-f-Va^+Yay
1

or, since a, /?, y are unit vectors, ** (i l k ^ ' *
5

osnB
smA-f suiB + smc

Squaring, to find the length of AO, we have, since

2 (1+ ,cos A) , $H* -*** * '

tf'-w; t--t "r'V1. /^e-fl.Uj(*
r

/

_ AO -- f--CSiUB T2(1 +C09A) ,

LSID A -\- Sinn + smcj

csinB

25. JjT tangents be draivn at the vertices of a triangle inscribed

in a circle, their intersections with the opposite sides oftfw triangle

will lie in a straight line.
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Let o be the center of the circle (Fig. 54) whose radius is r,

and OA = a, OB = /?, oc = y. Since OA and AP are at right

angles,

S(OA . AP) = 0,

But

AP = AB + BP = AB

Fig & hence, substituting this value above,

and

ni j^_
*

I -'/"'
y

Say
-

Sa,8
'

oay Sap

Say

Similarly, or, by a cyclic change of vectors,

-
Say

Whence

(Say
- Sa) OP + (Sa

-
SjSy) OQ + (Spy

-
Say)OR = 0.

But also

(Say
- &z) + (Sa^- S^y)+ (Sy - Say) =r 0.

Hence p, Q and R are collinear.

26. 27i^ sw??i of the angles ofa triangle is two right angles.
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Let a, /2, y be unit vectors along BC, CA and AB (Fig. 55).
Then (Art. 42)V

Fig. 55

r .

-

** A

But

Hence (< + 9 + <A)
= an even multiple of 2 (Art. 42) , as 2 n y

7T

as we go round the triangle n times.

In taking the arithmetical sum, or passing once round, we
take the first even multiple of 2, or

-
7T

and the sum of the interior angles is STT 2ir=
TT, or two right

angles.

27. ZVie angles at tlie lose ofan isosceles triangle are equal to-

each other.

Let a and ft (Fig. 56) be the vector sides Fis- 56-

of the triangle, and Ta = Tft. Then, if the

proposition be true,

or

a

ch is true, since Ta= T.
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28. To find a point on the base of a triangle such that, if lines

be drawn through it parallel to and limited ly the sides, they will

be equal.

Fig. 57. Draw DE (Fig. 57) and DF parallel to

the sides. From similar triangles, if

AE =i

__ AE _ FB
__
AB AF

~~
AC

~"
AB

~~
AB

whence

Now

i
AF

T .M. o* .-_
JL

" iW

AB

or, since FD= AE,

(1

But, since FD is to be equal to ED,

(1

.-. (1

= y ;

=:S/BAB,
= 2/UAC,

and therefore

and D is on the angle-bisector.

29. If any line be drawn through the middle point of a line

joining two parallels, it is bisected at that

point.

30. If the diagonal of a parallelogram

^K is an angle-bisector, the parallelogram is a

rhombus.

31. In any tri<mgle the sum of the

squares of the lines OH, KE, DF (Fig, 58)

is three times the sum of the squares of the

sides of the triangle.

* 32. TJie sum oftJie angles about two right lines which intersect

is four right angles.
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33. If the sides of any polygon be produced so as to form
one angle c/t each vertex, the sum of the angles is four right

angles. ^ >/A ,-,

34. Find the eight roots of unity (Art, 39).

35. The square of the medial to any side of a triangle i$ one-

half the sum of the squares of the sides which contain, it, minus-

one-fourth the square of the third side.

55. Product of two or more Vectors.

1. Let q = a/3, ? = y. Then, since Sqr = S?*#,

Sa/3y
=

Sya/3.

Let q = ya, / = /3. Then

Sqr = 8rq = Sya/3= S/3ya ;

(108),

or, the scalar of the product of three vectors fs the same if the

cyclical order is not changed.

This may also be shown by means of the associative law of

vector multiplication as follows:

= (Sa +Ya/3)y.

Taking the sealars

, since S(SajG.y)=a,

introducing the term S * ySa/5 = 0,

= S . yYajS + S
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In a similar manlier

= S . a(S/Jy +Vj8y)
= g . aVfiy
= S(Y/?y.a)

and, as before,

Sa/3y=Sya=Sya/3.
2. Again

= 8 . a

= S . aTy/?

= -
Say/3 ...... (109),

or, a change in tlie cyclical order of three vectors changes the sign

of the scalar of their product.

3. Resuming

and taking the vectors,

Va/3y= T . a

Also

.'. Ta^y=Yy/5a ....... (110),

or, the vector of the product of three vectors is the same a$ the

vector of their product in inverted order.

4. Geometrical interpretation of Sa/3y.

Let a, /?, y be unit vectors along the three adjacent edges OA,

OB, oc (Fig. 59) of anj* parallelepiped, 6 being the angle be-
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tween a and /J, and & the angle made by y with the plane AOB.
Then

heing a vector perpendicular to the plane AOK.

Operating with X S . y

S ( COS + e sin 0)y

ty
But Sey = cos of the angle f\ i

between e and y= sin#
r

; /&',-./&

Now, if a, jS, y represent as rectors the edges OA, OB, oc,

whose lengths are , 6, c,

=r TaTjCTy sin sin 0'

But a&sin5 = area of the parallelogram whose sides are a and

fr, and csin0'= perpendicular from c on the plane AOB. Hence

Sa/?y = volume of a pamllelopiped whose edges are

a, & and c, drawn parallel to a, /3 and y.

Car. 1. "Whatever the order of the vectors, the volume is the

same
; hence, as already shown,

SajSy
=

S/?ya
=

Sya^S =s T Say/3, etc.

<7or 2, If Sa/Jy
= 0, neither a, /}, nor y being zero, then either

= 0, or 6 J= 0, ana ZAe sectors are com_p?awar. .

Cor. 3. Conversely, if a, f$, y are cotnplanar, Sa/8y = 0.

GOT. 4. The volume of the triangular pyramid of -which" the

edges are oc, OB, OA, is Sa/?y.

5. We have seen that when a, /J and y are complanar, Sa/2y
= 0,

and therefore a/3y is a vector. To find this vector, suppose a
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triangle constructed whose sides AB, BC, CA have the directions

of a, ft and y respectively, a vector not being changed by motion

parallel to itself. Since the tensor of the vector sought is the prod-

uct of the tensors of a, ft and y, we have to find U(AB - BC . CA) ,

i.e., its direction. Circumscribe on the triangle ABC a circle and

draw a tangent at A, represented by T'AT. Since the angles TAB

and BCA are equal, we have

CA AT'[_ AT_

whence

U(BC . CA) = U(AB * AT')[= U(BA . AT)].

Introducing UAB X

U(AB . BC . CA) = U(AB . AB . AT') [=U(AB . BA . AT) ] ,

or, since U(AB . BA) = (U AB)
2

1
,

U(AB . BC . CA)= U . AT' U * AT*

Henee, if A, B, c are any three non-collinear points in a plane,

or if a, /?, y are the sides of a triangle joining them, in order

(in either direction, since Ya/?y = Yy/2a) ,

are the vector tangents to the circumscribing circle at the angles

of the triangle.

Again, if A, B, c are any three points in a plane, not in a

straight line, and a and ft
are two vectors along the two succes-

sive sides AB, BC of the triangle which they determine, and CD a

vector drawn from c parallel to y, intersecting the circumscribed

circle at D, then is BA parallel to Va/Jy
= B. For

whence U . =-^, which turns /3 parallel to a, turns y into a

ft

direction 8= BA, the opposite angles of an inscribed quadrilateral

being supplementary.
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If y have a direction such that CD crosses AK, or the quadri-

lateral is a crossed one, it is evident on construction of the

figure thatfe

U&'= Ua/3y
= U (AD)= - US.

Hence the continued product of the three successive vector

sides of a quadrilateral inscribed in a circle is parallel to the

fourth side, its direction being towards or from the initial point

as the quadrilateral is uncrossed or crossed ; and, conversely, no

plane quadrilateral can satisfy the above formula US = TJa/3y,

unless A, B, c and D are con-circular. The continued product
of the four successive sides of an inscribed quadrilateral is a

Since the product of two vectors is a quaternion whose axis is

perpendicular to their plane, while the product of a quaternion

by a vector perpendicular to its axis is another vector perpen-

dicular to its axis, and so on s it follows that the continued

product of any even number of complanar vectors is generally a

quaternion whose axis is perpendicular to their plane, while the

product of any odd number of complanar vectors is a vector in

the same plane. Hence the formulae

Sa=sO, Sa#y = 0, SajSySo-
= 0, etc.,

for complanar vectors.

If, however, the given vectors are parallel to the sides of a

polygon ABC ..... :vra inscribed in a circle, then

U(AB . BC . CD ..... 3kiN . NA)= II(AB <. BC . CA) II(AC * CD DA)
.....

x U(AM . MX.NA),

But each of the products U(AB . BC CA) is equal to U . AT,

AT being the tangent to the circle at A. Hence

U(AB * BC . CD * MN . NA) = (U . AT)%

which reduces, according as n is even or odd, to 1 or U . AT,

Hence the product of the vectors win be a scalar or a vector
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according as their number is even or odd, and in the latter case

this vector is parallel to the tangent at A,

If the yectors are not complanar, but parallel to the successive

sides of a gauche polygon inscribed in a sphere, the polygon

may be divided as above into triangles, for each of which the

product of the three successive sides is a vector tangent to the

circumscribing circle, all these vectors lying in the tangent plane

to the sphere at the initial point. If the number of sides is even,

their product will be a quaternion whose axis is perpendicular to

the tangent plane, ?.e., lies in the direction of the radius of the

sphere to the initial point ; if odd, the product is a vector in the

;angent plane,

; Hence, if A, u, c and D are four given points, not in a plane,

LB = a, BO=:/8, cr> = y being given vectors, and P any other

point such that DP = <r, PA= />,
if P lies ou the surface of a

sphere through the four given points, we have the necessary and

sufficient condition

a/3y<rp
=

pery/Ja,

for each member is equal to minus the conjugate of the other,

and must therefore (Art. 46) be a vector.

6. From Equation (56),

Operating with T . a x

2V, aV = Y. a?-

Introducing in the second member pay /3ay,

-
ay/3+ /Jay

-
/Jay)

= T(a/3 4- /?a)y-

Hence
, . . . (111).
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This formula may be extended. Thus, for a write TaS. and

we have
^ tfa&fy = yS(YaS)

-
j3S(YaS)y.

Y *YaSYy ySaS/3
-

0SaSy , . . . (112),

An inspection of this formula sliows that it
^ gives,, a yector

complanar with y and /?. ^Moreover, since

Y . YaSY/3y = Y . YyjSYaS = SSy/3a
- aSy8,

it is also complanar with a and 8, and is, therefore, parallel to

the line of intersection of the planes of a, 8, and /3 y.

Similarly

Y . Y/JyYaS = SS/Jya
- a^yS = -Y . Ya3Y/?y - (113) .

Adding Equations (112) and (113)

. . (114),
or

SSa^y = aSjl5yS-/3Say8+ySaj8S . - , (H5),

a formula expressing a vector S in terms of any three given di-

planar vectors, a, /?, y ; so that, if

g/JyS^&j SayS= SyoS = C, Sa/3S = a, SajQy
= m,

7. Resuming Equation (111), and adding aSjSy to both mem-

erS ' Y . aYjSy+ aS/?y
=

ySajS Say+ aS/3y,

whence

Y.aCS^y + Y^y)^
Yay=aSy-/SSay+ ySa. . . , (116).

The farm of this equation shows that a and y may be inter

changed, or that Ya^y= Yy/?a, as already shown,

Again, replacing a by YajS in Equation (111),

T.T/STJ8y= yS(T^) J
8-

j

(117).
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8. Writing YySa/J first as V(y Sa/S) ,
and then as T(yS . a/5)

we have

V(y . Sa/3)
= T . y (88aj9 -hY8<x/3)

[Equation (110)] = ySa8+YyS/3-YyaSS+YySSa. (a)

Y(y8 . a/3)
=Y(SyS +YyS) (Sa/3 +Ya/3)

YySSa/3 +YaSy8 +Y . YySYa/5

= YySSa^ -f-Ya^Sy8 -Y . Ya^VyS,

or, Equation (112), -.

-
SSa/?y+ ySa/?8. (&)

Equating (a) and (&),

. . (118),

a formula expressing a vector 8 in terms of three other vectors

resulting from their products taken two and two ; so that, if

m, SaS= a, S/?S
= I, SyS = c,

Operating on Equation (118) with S * p X ,
we obtain, since

S /oYya =

ly Sj88S/ya SaSfy&f Sy8Spa/3 = 0,

-
S/38Sypa +'SySSpa/3

-
Sp8Sa/^y = . (119)

a formula eliininatiDg S.

56. Exercises,

Prove the following relations :

1. SajffyS
=

SSa/3y.
-

f '

'

2. a/? . /?y
=

ay. ,,* w ^
*

:,

5, Say<5 = Sa^Sy8- SayS/58+ Sa8S^y .jtX ^M, (121) ,

from which show that Sa/SyS = SjSyScr.
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..

,v ,, , .

g. S . Ya0Y^= SaSS/?y -4 SayS/88 ...... (122).

7.
'

8.

9. ay y/?a=2Sa/Jy.

ID. Y(aYy+/?Yya+yYa)=0 V V"\^ . . . (123).

11.
*

'

12.

13.

14. S.yY^a = y)3a-yS/3a + ^Sya-aS^y . . (124).

15. S f Y(Ya/3Y/3y) Y(Y/3yYya) Y(YyaYa^) = - (Sa/3y)*. V

16. S[Ya/3Yy8 + YayV8/3 + Ya8Y
J8y]=0 r.o - 'Vi

1

^,^25).
17. If Say = ra, Sa/>

= 0, .S$o = 0, Sy/>
= 0, show that p = 0.

Conversely, if p is not zero, then Sa/3y = Q.

18. Interpret p = a'^a.

We have first, directly,

/. p, a and ft are complanar.

TpTa COS ^= TaT^ COS
<j>,

or, since T/o
= T/3, cos^= cos ^>.

Similarly Yap = Y/3a, and sinfl = sin <. Hence

and a bisects the angle between /? and p.

19. Show that p = o^or
1= <r\$ofi

-
Yo/3) .

20. p being any vector, show that Y . YopYp =
a?p.

* > <

21. If Sa/?=as
, show that a is perpendicular to j8

a.

22. What are the relative directions of a and /J, ifK- = - ?

ff

a

If K-=-3a as
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57. Examples.

1. The altitudes of a triangle intersect in a point.

Let (Fig* 60) AC /3, CB = a, AB = y.

Fig. eo Then vectors along c'c, B ;B and A'A are

c

ey, /3 9 ea

respectively. Now

AO = AC + CO AB + BO,

~y C7 B Or

ft Cey y -f- y/?.

Operating with x S /3, we have, since 2/Sf/S
2 = 0,

Having assumed o to fee the intersection of the altitudes BB'

and cci let o' be the intersection of AA ; and cci Then

or

AO' =s AC + CO,'

ea i=
/3 x r

y.

Operating with x S a

-
Scya Saey

S/?a _ Sajg

Hence o and o f

coincide, and
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2. To circumscribe a circle about a triangle.

Let (Fig. 61) AC =& CB = a, AB = y.

Then
A fO = iCca,

c'o = ycy,

B'0 = 3e8.

Operating with X S . /? on the expres-

sion

AO =
we have

Operating with x S . a on

B0 f= -

we have

Therefore y= 2/

r and o and o f
coincide.

The radius may be found by squaring

whence

since, if a, &, c are the tensors of a, , 7,

Hence

Vcs sin
aA+ a^co^c a

2 sinA 2 sinA
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3. In any triangle, the centre of the circumscribed circle, the

intersection of the altitudes and the intersection of the mediate lie

in the same straight line; and the distance between the last two

points is two-thirds of the distance between the first two.

Let M (Fig. 62) be the intersection of

the meclials, A' that of the altitudes, and

c the center of the circle.

Then, from Ex. 5, Art. 11, where CP

(Fig. 11) is given in terms of the adjacent

sides, we have

Sey/3

Sey/5"

From Ex. 1, Art. 57,

From Ex* 2, Art. 57,

But

and

.'. MA f

=2CM,

and, since, as vectors, they are multiples of each other, and have

a common point, they form one and the same straight line.

4. To find the condition tfiat the perpendiculars from the angles

of a tetraedron to the opposite faces shall intersect.

With the notation of Fig. 52, the perpendiculars from A and B

on the opposite faces are

Y/3y and Yya.

If they intersect, at p say, then must A, B, p lie in one plane.

Hence, Art. 55, 4, Cor. 3,
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or

S (0
-

a) [S . TjSyYya + T . TjSyYya] = 0,

S (/3 a)V . Y/JyYya 0.

But, Equation (117),
c

or

S/3y
= Say. (a) o<J-

From the figure, we have

or, from (a), = y*-2Say
= (y-a)

2

= AC2 +OB2
.

Hence the condition is that the sums of the squares of each pair

of opposite edges shall be the same.

5. Interpret Equation (118),

SSa/3y
=

under the condition that a, j8, y be complanar with S.

If a^ 0, y are complanar, Say= 0, and therefore, 8 being in

or out of the plane,

SaSY/3y + S/3$Vya+ SySYaj?s 0. (a)

If 8 be in the plane, we have for any four co-initial lines

OA, OB, oc, OD,

Sin BOO COSAOB + SitlCOA COS BOD + SlllAOB COS COD = 0>

and, for a line perpendicular to or>,

sin BOC sinAOD + sincoA sin BOD+ sinAOB sincoD = 0.

If 8 is perpendicular to the plane, the terms in (a) vanish

separately.
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6. If X, Ti Z &e the angles made by any line OP with three

rectangular axes, then

eos3X+ cos2 F+ cos
s = 1.

From Equation (67)

ip = %is+ y ij -f- '*= x + yk z; ,

whence

(Sip)
2=^

Operating in a similar manner with S .j x and S . A x we obtain

If Tp as r, then p
2= r2

, Si> r cos X, etc. Hence

or2= op2
(cos

2 ^:+ cos2 F+ cos
2

Z) ,

or

^Applications
to Spherical Trigonometry.

Let ABC (Fig. 63) be any spherical triangle on the surface of

n w
a unit sphere whose center is o

; a,0, y
c/

*

being unit vectors from o to the vertices.

The sides AB, BC, CA represent versors

whose angles are c, a, 5, and axes are

ocf =7! <*' =
; OB'=^ ; a

; ^; y
being unit vectors to the vertices of the

polaa- triangle whose sides are a; &J cj

the supplements of the opposite angles

A, B, c of the triangle ABC.

We have first

y a y
(a)v y
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Taking the scalars, we have [Equation (00)],

But

-=S~S- + S.YY-.
y * y

&

, S- cose, S- = cos&,a y
ana

B a
S . T^T

-= S(sinc * y') (sin& . &')

= sine sin 5 cosa'J>

= sin c sin & cos A.

Hence, in (a),

cosa= cose cos& + sine sin& cos A,

By a cyclic permutation of the letters in (a) , we obtain

i=l I
a p a

Whence, as before

or

cos "b = cosa cos c+ sina sine Saf

7
r

,

in which Say cos5 f= COSB.

/. cos& cosa cosc+ sina sine COSB. (o)

Similarly, or directly by cyclic permutation in (c),

cosc= cos& cosa+ sin& sina cosa

Prom the relation

ff p*'
7= a' ^

may be deduced in like manner

COSA = cose COSB sine sins cosa.
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8. Resuming the equation

/L/3*
7 * 7

of the last example, and taking the vectors, we have [Equa-

tion (91)],

Tfi-B^+B^ +T.T^ (a)

y a y y a.
' a y

But
o

Y- = a'sina,

fl a
S-Y- = cosc(/?'sin&)=coscsm& .

/8J

a /?S~V- = cos&(y'sinc) = cos&sinc . yj

Y . TT-=
=5 sin c sin 6 ( a sin a')

= sine sin b sin A a.

Substituting in (),

sin a . a'= cose sin b /3'-f-cos&sincy' sine sin 6 sinA -a. (6)

Operating with x S . y'"
1

,

a' /3
f V

7
a

sina . S~-f = coscsmdS {-7+ cos&sincS . sincsin&sinAS-;?
7 7 7 7

in which

S
r
= cos^' = COSB,

S 1

S ,
= COSA,

S
,
= 0, since a and y

f

are at right angles.

Hence
sinacosB= cos2> sine cose sin& COSA,
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and in the same manner, or by a cyclic permutation of the letters,

sinb cose = cose sina cosa sine COSB,

sine COSA = cosa sinfr cos 5 sina cose,

9* Operating on Equation (&) of the last example with

X V . y'-
1 instead of X S . y'-

1

,

a' fl' y
r

a
sinaY . = cose sm& V -: + cos b sine Y^j sine sin 5 sinAY-/

7 y y y
But

Y-
f

0|

Y^-j = a sina' = asm A,
7

Substituting these values

sin a sin B . /3
= cos c sin b sin A . a

sin c sin & sin A * Y-;

Operating with x a" 1
, and substituting for

D
- = cos c + y' sin c%
a '

we obtam

sina sins cose sina sinB sine y'
= cose sin& sinA

sine sin& sinA *
y'. ^
****

Equating the scalar or vector pails, we have in either case

sina SIUB = sin A sln&,

or

sina : sin^ : : sinA : sinB.

The formulae of the preceding examples have all been deduced
n n

from the equation
- = - The product as well as the quotient

may also be employed, as follows :
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10. Assuming the rector product

and taking the rector part, we have [Equation (117)],

T . JafiVfiy = - /3Say. (a)

But
T . Ta/3Y/?y= Y(y'sinc) (ot'sin a) =s sine sina sins . /?,

and, Art. 55, 4,

Sa/?y == sine sin^

ff being the angle made by oc with the plane of c. Substituting

in (a).

sine sina sins , /?
= sine sin0

f

. /?,

sin ff =z sina sin B.

By permutation, from (a) ,

aSa/?y,

or

sin 6 sine sin A . a = sincsin0' * a,

,\ sin 0* = sin & sin A.

Equating these values of sin# we have, as in Example 9,

sinct : sin& : : SHIA : sins,

11. Let j9a , j9fi , pe represent the arcs drawn from the vertices

of ABC perpendicular to the opposite sides,

Resuming Equation (a) of the preceding example, and taking
the tensors,

TT . Ta/3T/?y = SajSy
= sine sinj9fl ,

=
S/3ya

= sin a siny^
= sin b sin#B ,
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and, taking the tensor of Y . Ya/3Yj8y from the last example,

sine sina sins sin a sinp = sin& sin^j= sine sinjv
or

sinpa= sine sins,

sin o

c
= sin a sin B.

12. Show that if ABC, A'B'C' be tvjo tri-rectangular triangles on

the surface of a sphere,

cos AA' = COSBB' coscc' COSB'C COSBC',

the triangles being lettered in the same order.

Let a, /3, y : a!, ft y
r be the vectors to the vertices. These

being at right angles, in each triangle, we have

cosAA f = Saa' S .

or, Equation (122),

COS AA' = S$3'Syy
r -

S/3'yS/V
== cosBB r coscc' COSB'C COSBC'

[The vectors of Equation (122) are arbitrary, but we may
divide both members by the tensor of the product of the vectors,

so that

S(YUa/?YU-yS) =SUaSSU/3y
- SUaySU8,

for the unit sphere.]

13. Let ABCD be a spherical quadrilateral whose sides are

AB = a, BC = &, CD = c, DA = cE, the vectors to the poles of these

arcs being a', ft y',
8

r

respectively. Then

Va/3 a'sina,
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From Equation (122),

S . Ya/3VyS = SaSSjgy
-

SayS/JS,

or

sin a sin c SaV = ( cos DA) (
- cos DC)

-
(
- cos DB) ( cos AC) *

But Sa'y'
= COSL, L being the angle formed by the arcs AD

and CD where they meet, the ares being estimated in the

directions indicated by the order of their terminal letters,

Hence

sinAB sin CD cos L = cos AC cos BD cos AD cos BC,

a formula due to Gauss.

14. Retaining the above notation, ABCD being still a spherical

quadrilateral, denote the angles at the intersections of the arcs

AB and CD, AC and DB, AD and BC, by L, M and N respectively*

Then, from Equation (125),

S[YajSYyS+ YayYS/J + YaSY/3y]= 0,

we have identically

siiiAB sinCD COSL -I- sin AC SIIIBD cos M +- sin AD sinBC COSN = 0*

Were the points A, B, c, D on the same great circle, the angles

L, M: and N would be zero, and the above reduces to

sin AB sin CD + sin AC sin BD + sinAD sin BC = ,

and for a line OA,' perpendicular to OA and in the same plane*

dropping the accent, we have

COSAB sin CD+ cosAC sinBD + cosAD sinBC = 0,

which are the results of Example 5 of this article.
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58, General Formulae.

1. We have seen, Equation (86), that SS= SS and TS= 2T ;

but (Art 50, 4) that ST Is not equal to T2, nor STJ to US. We
have also seen, Equations (96) and (97), that TII= nT and

UO nU; but SH is not equal to IIS, nor YII to EV:* ibr,

1st, SII is independent of the factors under the n sign, provided

the product remains the same, while IIS is dependent upon
them

; and, 2d, because (Art, 55
? 5) DT is not necessarily a

vector.

2. Resuming Equation (92),

and, since r is arbitrary, writing rs for r, we have, by the asso-

ciative law (Art. 52),

a formula which ma}' evidently be extended. Hence* the scalar

of the product of any number of quaternions is the same, so long

as the cyclical order is maintained.

3. Let j5, <?, r, s be four quaternions, such that

gr^ps. (a)

Operating with Kgx ,

Kg . gy*
-

since conjugate quaternions are commutative. Hence

or

Operating on (a) with x Kr, we have

qr * Kr= ps * Kr,
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or

Hence, in any equation of the products of two quaternions^

the first factor of one member may be removed by writing its con-

jugate as the first factor of the second member, and dividing the

latter by the square of the tensor^ or simply by introducing the

reciprocal as the first factor in the second member. By substi-

tuting tbe word last for first, the above rule will apply to the

second transformation.

4. Resuming, for facility of reference, the equations

-i-i^/J^T/3q _
^
_

^
_^

we observe directly that

. . .. (129),

= TYKq . * . . (131)*

5. It has been already shown (Art. 54, Fig. 40) that

(Ta)
2+ (!/?)*= (Ty)

2
: and (Art. 54, Fig. 42) that Ta^Ty . cos <#,

; and therefore

(Ty)
3
COS^ + (Ty)

2
sin2^= (Ty)

2
,

or

Hence, from Equations (44),

3= l .... (132).
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This important formula might Lave been mitten at once by

assuming the above well-known relation of Plane Trigonometry.

6. From Equations (129) and (131), we may write Equa-
tion (132) under the form

or, from Equation (107),

(&ir-(Vqr = (Tq)*= (^r+(TVq)* , (134),

since 2 = l.

7. Comparing (A), (JB) and

. . . (135),

TYU-= TV UKq . . (136),

and from Equations (129) and (135),

. . (137).

8. Since Tg= TKg, we have

Tg.TK^ = (T$)
2

. . . . , (138),

and Tq being a positive scalar,

As exercises in the transformation of these and -the following

symbolical equations, some of the results already obtained will

be deduced anew. Thus, to prove that T(gg
f

)
= TqTq'? whence

T . g
8 = (Tg)

s
, we have

Equation (107)

Equation J99 )
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9. Substituting for &q and TV<y their values from Equations

(79) and (131)
. . (140).

10. Resuming from Art. 51, 1, the expressions

Y/'# = SrYfl + StfYV + T . YrVg, (a)

Tgr= Sr/VV + S/ Y? + V . Y?Yr, (ft)

(c)

we have, by adding and subtracting,

/T

J

And, if #= r, from (a) and (c),

whence
. . . (143).

Dividing Equations (142) by

since, evidently,

2

Again, substituting in the second of Equations (142) the value

of (V<?)
s from Equation (134) ,

we have

..... (146),

and dividing by (T#)
a

SU.^=2(SIJg)
a -l ...... (147).

Substituting (Sg)
2 from the same equation

..... (148).
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Equations (146) and (148) may be written

and (S-T)?
2 =

Introducing in (a), or (&), the condition that q and r are

complanar, we have, after substituting versors,

TCqr= TCffSUr + TUrSUgr,

since, under the condition, T(\T^TUr) = 0.

Taking the tensors, since q and r are eomplanar,

. . . (149),

and, interpreting, Art. 51,6,

sin(0 + <)= sinS cos
<j>+ costf sin

<f>.

Introducing the same condition of cornplanarit}* in (c)

or, substituting versors as above,

SU^= SUgSUr-TTUgTVUr . . . (150),

or, interpreting,

cos(0 + ^}= costf cos^ sin<^ shift

Ml. Puttang Equation (146) under the Ibrm

2
'

and writing V? for 5, we have

.... (151).

12. Taking the tensors of die first ofEquations (342), we have
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and writing V# for q

or, by Equations (133) and (151),

whence _
TT , V^= Vi(Tr/-S$) ..... (152),

mcl

13. From the definition of the powers of a quaternion, we have

<r"V = l, (flS)*
= 9" .... (154).

Hence, since # = Tg .Ug, Tn= HT and rn = HU,

Tg-.Tgr=l, TJgr
-m

.U9" = l . . (155).

Also, because U^-
w

or, since Kpg = EgKp, writing 2>g for g, and making m= 1
,

-^-1 ..... (156),

the reciprocal of the product af two quaternions being equal to the

product of tJieir reciprocals in inverted order,

This formula may be extended by the Associative principle, by
a process similar to that employed in the deduction of Equation

(126), so that if IT represent the product of the same factors as

those of n, in reverse order,

..... (157).
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The equation "Kpq= ISiqKp may be deduced without reference

to spherical arcs. For, by Art 44, any two quaternions can "be

reduced to the forms q = -, p J, whence
a

pq=
^->

or j?Qf.a=:y, ^>j8
=

y,

and therefore

Kp . y = Kp .^= (Kp !>)= (Tp))8.

Now

,= K/)jf . pq . a = Ejjg . y

which, by the Associative law, gives

EH^ITK ...... (158).

14. Show that E( #) = - Kg.

15* Show that

= (Tp)
2
4- (T^r)

2+ 2TpTgSU .

= (Tp + Tg)
2- 2 TpTg(l-SU

and therefore that T(p + q) cannot be greater than the sum or

less than the difference of Tp and Tgr.

16. Show that ^UY^"
1 = TTg SgUY?.

K. Applications to Plane Trigonometry-

1. For formulae involving 20, let

Then
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From Equation (142), S . g
3 =

(Sgr)
2
-KVg)

9
,
we then have

or, dividing out Tq,

and, interpreting,

Again, from Equation (147), SU . q* = 2(SUg)
2 -

1,

whence

Again, from Equation (142), Y . q
z=

or, dividing out T^ and e,

whence

2. Resuming Equations (140) and (150),

= TYU^SUr + SUgTYUr,
= SU^SUr - TYU^TYUr,

which have already been interpreted as the sine and cosine of

the sum of two angles, and writing for

), r"1 =

q and r being complanar, we have

SUgTVUr . . (159),

YUr . . (160),

or, interpreting,

sin (6 <)
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3. Adding Equations (149) and (150),

TTCqr + TTU^/*"
1 = 2 SUrTTlty.

in which, if qr= p, qr~
l =

ti .-. r/=Vjtf* r==V5*FVArt. />K, tf),

T\T^ + TTUf = 2SU(ViF1

)TTT(\'p?) . (161),
or

Similarly, by subtracting the same equations,

-1 = 2 SUgTTUr, _
TTUp - TTU^ = 2SU(y/rf)TTU(\V-

1

) . (162),
or

since sin?/ = 2eosi(& + y) sin|(x y) .

4. From Equations (150) and (160), by addition and sub-

traction, -we obtain, in a similar manner,

. . , (163),
and _ _

SCp - SUi = - 2TTU(V^OTTTtVjF1

)^

whence
cosa- + cosy= 2 cos(g + y) cos|-(a; ij ) ,

cos?/ cosa =s 2 sin |(or+ y) sin |(or y )
,

5. Resuming Equation (152),

TTV^=

it may be put under the form

or

and, in a similar manner, from Equation (151),

or
!-!- cos 0,
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6. From Equation (142)

l-tan2

And, in a similar manner,

cot 20 =
2 cot6

7* From Equations (90) and (91), q and r being compknar,

Sqr= S^Sr + S . V^Yr= SgSr r TV
= S^TVr

we have, by division,

_ (TY
""l

or

Also

(TV : S)^ =v '*

or

8. Adding and subtracting
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we have

(TV : S) j? (TT : S) *

_ TYpS* TYflSjp = TTtfrSt* TTUfSTJp

Hence, from Equations (149) and (159),

or

cos

By a similar process,

9. From Equations (161) and (163)

whence TV1T 4- TVTJZ

(TTU : SU)-v^^(TT;S)V^= '

And, in a similar manner, from Equations (162) and (163),

or
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10. Similar formulae may be deduced for functions of other

ratios of an angle* Thus, from Equation (00), writing rs for

r, and making //
= ?*= $ all eomplanar. Tre have, by Equation

S . 9
5

or

cos 3 & = eos5^ 3 cos B sin3 0,

or, under the more familiar form,

3 cos0.



CHAPTER III.

Applications to Loci*

60, Any vector, as p, may be resolved into three component

vectors parallel to any three given vectors, as a, ft y, no two

of which are parallel,
and which are not parallel to any one

plane. Thus n1

p = za + #j8-f*y ..... (164)

refers to any point in space.

If the variable scalars a, y, & are functions of two independ-

ent variable scalars, as * and u, p is the vector to a surface,

which, if the functions are linear, will te a plane* We may,

therefore, write
,

. .

as the general equation of a surface.

If &, y and g are functions of one independent variable scalar,

as i, p is the vector to a curve? which, if the functions are

linear, becomes a right line. We may, therefore, write

as the general equation of a curve in space*

If a, ft y are complanar, we may replace either two of the

vectors in Equation (164) by a single vector, in which case

p
= $(t) contains but two variable scalars, functions of t, and

is the equation of a plane curve, or of a straight line if the func-

tions are linear.

The essential characteristic of the various equations of a

straight line is that they are linear, and involve, explicitly
or

implicitly, one indeterminate scabr.
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6L Assuming
p = xa + yfa (a)

in which x and y are variable scalars, functions of a single vari-

able and independent scalar, as f, as the general form of the

equation of a plane curve, by substituting in any particular case

the known functions x=f(t)^ yf'(t)i or x=*f"(y), we may
avail ourselves of the Cartesian forms and apply to the resulting

function in p the reasoning of the Quaternion method.

Por example, suppose a and /? are unit vectors along the axis

and directrix of a parabola, the origin being taken at the focus

In this case we have the Cartesian relation

or, substituting in (a),

as the vector equation of the parabola.

Or, again, a and /? being afcy given vectors parallel to a diam-

eter and tangent at its vertex,

P-ja + (c)

is the vector equation of a parabola, in terms of a single inde-

pendent scalar t.

62. Let/(#) be any scalar function as, for example,

/(*) = *.
Then

d [/(*) ]
= 2 xdx= [/*(*) ] dx.

If, however, f(q) be a function of a quaternion j, as, for

example, in the above case,

/(<?) = 2
s

,

then

' $ [/()]
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which cannot, however, be written 2qdq, because of the non-

commutative character of quaternion multiplication. "We can-

not, therefore, write, in general,

d [/(?)]= [/(?)]*?

or form, as usual, a differential coefficient. Since vector* as

well as quaternion, multiplication is non-commutative, the same

is true of the differentiation of a function of a vector. Thus , if

and in order to write #[/(?)] [/
r

(p)]^Pi it would be necessary

to determine a vector o> such that vdp dp /><,
or

or., if e be the versor of cZp, since the tensors cancel,

that is (Art. 56, 18), we must have p, c and <r complanar, or

Tecr= Vpe. Since complanar quaternions are commutative, if q

and dq are complanar, or if dq or dp is a scalar, this peculiarity

of quaternion and vector differentiation disappears* In this

case, dq and dp being scalars, f(q) or f(p) are quaternion or

vector functions of scalar variables, to which the ordinary rules

of differentiation are applicable. In fact we have only to assume

such a function, as

p =

in which a 1

,
a fr

r a
r

",
..... are constants and the only variables are

the scalar multipliers, to see that the vectors a', a", am ..... syce

to be treated as constants and the usual rales of differentiation

applied to the scalar coefficients.

Such equations, then, as those of the parabola, (V) and (a),
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Art- 61, in which a and j8 are given constant vectors, may be

differentiated as usual. Thus, from

P

we have

and
JQ' "being am- two vectors to the curve,

is the vector secant ; so that when p and p* become consecutive,

and the secant a tangent,

is a vector along the tangent to the curve at the point corre-

sponding to t. The vector to this point being -a+ *, and x
&

any variable scalar, we may write the equation of the tangent
line at that point

for any given point, x being the only scalar variable.

63. It has been seen that the usual definition of differential

coefficients is inapplicable to quaternions in general, for this

definition involves the commutative property of maltiplication,

which is not, in general, true of quaternions, nor of the vectors

to which they may degrade. It becomes necessary, therefore, to

give a definition of differentials which shall not involve this prop-

erty, yet which shall also be true of quaternions which degrade
to scalars, and therefore be equally applicable to ordinary scalar

quantities ,

If p =f(q) , such a definition is involved in the formula
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for, let/(2, r, s,
.....)= bo any relation between a system of

quaternions g, r, $,
.....

, and let A#, Ar, A 5, ..... be finite and

simultaneous differences, so that q+Aq, r + Ar, $+As,
satisfy the relation /(#, r, s,

.....
)
= 0. Then in passing from the

new system g + A#, ..... to the old system q .....
, the simul-

taneous differences can all be made to approach zero together,

since they all vanish together. If, while these differences Ag,
Ar, ..... thus decrease indefinitely together, they be all multi-

plied by the same increasing number, M, the equimultiples wAg,
nAr, ..... may tend to finite limits, and these limits are defined

to be the simultaneous differentials of the related quaternions #,

r, 5, .....
, and are written dq, dr, ds, ..... . Simultaneous differ-

entials are, therefore, the limits of equimultiples of simultaneous

decreasing differences. If, then, in Ap=/(g-hA#) /(#),
while the finite differences A^, Ag be indefinitely decreased, they
be multiplied by a number, ?i, ultimately to be made infinity,

so that

and we pass to the limit, writing dp for nAjp, and dq for n

we have

a formula for the differential of a single explicit function of a

single variable.

dr, .....)-*(?, r, .....)] (168).

In these formulae, dq, eZr, ..... are any assumed variables, no

reference having been made to their magnitudes, and n any

positive whole number conceived so as to tend to infinity. To

show that these differentials need not be small, as also the ap-

plication of the formula to the differentiation of ordinary scalar

quantities, let
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then

whence, as usual,

or, n being a positive whole number.

n A #= 2xrt Aaj-Hr^/i A a?)
3
.

If, now, the differences A ?/ and A x tend together to zero,

while ?* increases and tends to infinity in such a manner that

it A x tends to some finite limit, as a, we have, for the other

equimultiple n A ?/,

But, since a, and therefore a2
, is finite, yr 1 ^2 tends to zero,

and. at the limit, n Ay = 2#a. Hence the limits of the equi-

multiples n A x and nAy are respectively a and 2#a, and

"by definition; from which

For a vector function we should write

and for a scalar function, p = < (t) ,

f)-^(o]
- (no),

in which latter and dt are independent and arbitrary scalars.

64. As a further illustration of the definition, let
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FIT f4

be the equation of any plane curve in space, and OP= p (Fig. 04)
a vector from the origin to a point P

of the curve ; t being any arbitrary sca-

lar representing time, for example ; so

that its value, for any other point r
1

of

the curve, represents the interval

elapsed from any definite epoch to the

time when the point generating the

curve has reached P;

If p
1

be the vector to P; then

p
f

p = pp'= Ap

is strictly the finite difference between p and p, and, if the corre-

sponding change in t be At,

-'= (P -fA p)
-

p =Ap=

where OP'= <(? +A t) , and A t is the interval from p to p
r

In^Ai, P would have reached some point as p". for which

op"=0(J + iAf), on the supposition that PP" is described in

A f. On the basis of this closer approximation to the velocity

at P, P would have been found at />", had this velocity remained

unchanged, such that

2 (OP"- t)
-

For a closer approximation to the vector described in A t with

the velocity at P, suppose at the end of &A t the point is at pm ,

for which OP'"= <fr(t -f A), Under this supposition, the vec-

tor described in A t would have been

and, at the limit, representing the multiple of the diminishing

chord by dp,
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65. Resuming Equation (167),

dp = df(q)= n [/fe+n-'dg-) -/(?)], (a),

the second member may be written /(<?, dq) , but not, as ordi-

narily, f(q)dq.

In/(#, dq), dq may be composed of parts, as q; 5", q
lft

, ,

with reference to which /(g, dq)=f(q, q
r+q"+ ) is distrib-

utive. To prove this, let

we are to prove that

f'+ 9") =

Since before passing to the limit, the second member of (a)

is a function of w, q and cZg, we may express this function by
the symbol /n (^, dq), and write

f(q, dq) = n[f(q+ *~* dq) -/(g)] =/.(,, dj) ,

or

/(? + ?r1

^) =/(^) + ^r^Cff, <Zgf) .

Replacing <7g by q' and ^" in succession, we have

f(9 + ^ff ')
-

and, following the same law of derivation,

from which

/.(, 9'+ ?") =/.(?, 9") +/.(?+ "-1

9", 9') ,

the limiting form of which, for n= w, is

') . - (171),



APPLICATIONS TO LOCI. 139

which maj*, in like manner, be extended to the case of

It follows from the above that, \tp~J(q, ayfy),

If Q = F(q, r, ..,), whence, Equation (168),

the last member will be a linear and homogeneous function of

tfg, <?r, ..... , and distributive with reference to each of them.

Hence, to differentiate such a function, we do so with reference

to each factor, and take the sum of the results obtained, as usual
;

taking care, however, not to make use of the commutative prop-

erty. Thus d(qr) dq . r+ qdr> but not rdq+ qdr.

66. When q is a function of any variable scalar
, represent-

ing time, for example, then, if t be given a finite increment A f,

for which the corresponding one of q is A #, we have

A q == A w+ A xi +A itf + A zk ;

and, if the several parts of the quaternion vary continuously
with the independent variable f, at the limit we may form, as

usual, the differential coefficient

.

ft dtdt dfat

The successive differential coefficients, as also the partial ones,
when q <(?, v, ..... ) , are derived from the quadrinomial form in

the same manner.



67. Examples.
1 . To find

dVw8 + a? +

ft
f7Tg g dt_

clt U</"

2.

Tlae first member l3eing a scalar, we have

From the second member

= limit pdp H- rip . p + ^"

= pdp + dp . p=
Equating

From this we may obtain

dTp= S .

or
dp___

Tp p

3. To find dUq* "W"e have
X^TIg =

;

T^r = dq,



APPLICATIONS TO LOCI. 141

whence
. TJg , d\Jq Tg _ rfg~~

*

TgTJg TgUg
~

g*
or

clUq _ dq __ clTq

IJg q Tq'

and, substituting from Ex. 2,

^ =^-S^;
Uq q q

or

4* From the above expressions for tfEq and dUg, we have

r?g = dTq * Tig 4- TgcZTJg <+** '<* ' I

as the form under which the differential of a quaternion may
alwaj

T
s be written.

5. To find dU/>. We have, from p

from Ex, 2

<Zp _, dTp , (ZTJp

P Tp Up

whence, also,
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6* From the above expressions fo^ dip and rfl)

7. That S, T and K are commutative with d is seen from the

following:

whence .

x

dq = dSq + fflrqi (a)

and, since dq is a quaternion,

dq
hence

and dT^ = Tdg. (c)

Again

whence

and, taking the conjugate of dq in either (6) or (a) ,
we have,

with or without (c) ,

8.

=* 2 S . qKdq = 28. K?dtg, [Equation (80)]

or, since T# TS# and TJKg U-= ,

dTg= S . U-dg S . V<r
l

dq,

If g= a vector, as
/>, then, since Ep = p, this becomes

as in Ex. 2.
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9. r= 2
.

limit \_qdq + dq . q + n~l

(dq)*"]

If q = a vector, as p, then Sg = 0, Sdq = 0, and

as in Ex. 2.

10. r = -\/g. Then gsrr
2

, and, as before,

r.

Operating with rx and X Er, in succession.

. r,

or, adding,

(r + Kr)

which gives f?r= d*Jq in terms of dq.

H. ^-1 = 1. We have

qt(

Operating with q""
1 X
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If q = a vector* as p,

7 1 1,7 1
d~= dp-
P P P

-1*1+^-1
i*

=^_?s~
""p

2
p p

p p/p

12. Differentiate STJg.

= ScZUg S . v US %
[Ess. 7 and 3.]

* ^ $ ,

13. Differentiate TCq.

= T . dCq =T .VUg [Ixs- 7 and 3.]

14. Differentiate IVCq.

[Ex. 2.]

-fflr-
Y
lfo.

5

UYtf UY0
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The Bight Line.

As in Cartesian coordinates, the form of the equations of a

right line, as of other loci, will depend upon the assumed con-

stants, and in any given problem one form may be more con-

veniently used than another.

68. Bight line through the origin,

If o be the initial point, or origin^ and p= OK a variable vec-

tor in the prolongation of a = OA, then

p= xa ....... (173)

is the equation of a right line through the origin in the direction

of the constant vector a.

The equations

(174)v '

obviously refer to the same right line*

Since any line, represented as a vector by a, is parallel to

p =:ca, we may say that the above equations are those of a right

line through the origin parallel to a given line ; or, A being a

point given by a = OA, they are the equations of a right line

through the origin and a given point.

69. Parallel lines.

If j8
= OB be a constant vector to a given point B, then

...... (1T5)

is the equation of a right line through a given point, and parallel

to a given line, as />'= xa through the origin* Or, being a given

vector, it is the equation of a right line through a given point

and having a given direction* If a is an undetermined vector,

it becomes the general equation of any one of the infinite num-

ber of right linea which may be drawn through a given point If

o and B coincide, =
T and, as before. D =s ara.
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a remaining the same, and
/?'
= OB' being a vector to any other

point Bj for the equations of two parallels, we have

...... (176),
ra

'

or, since a and p ft are parallel,

70. Right line through two given points.

If OAs=a (Fig. 65), OB= /3 are the vectors to the given

points, and p the variable vector to any

F%. ss Poillt R of the I whose equation is re-

B R quired, we have

and
OR = OA+ AR,

or, for the required equation,

a) . (178),

which, if one of the points, as A, coincides with the origin,

becomes p= #/?, as before.

We have seen, Art. 55, that if Say= 0, a, f3 and y are com-

planar. Replacing y by the variable vector p,

Sa&srO ...... (179)

is tJie equation of a plane, since it expresses the condition that p

is complanar with a and ft. If we have also Sayp =: Oy the two

equations, taken together, represent the line of intersection of

these two planes.

These equations may be obtained from the line p = $a by ope-

rating with S(Vaj3) x and S(Vay)x ; or, conversely, to find the

equation of the line in terms of known quantities, having given
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write these latter under the form

whence it appears that p is perpendicular to both Va^S and

and is consequently parallel to the axis of their product;

therefore

p = 7/T . Ta/3Vay
. (112)]

or, putting

7L Eight line perpendicular to a given line.

1. Let 8 = OB (Fig. 66) be a vector through the origin. To

find the equation of DC through its extremity jigf 66,

and perpendicular to it. Now p 8 is a D B c

vector along BR, and therefore by condition

88(p-8)-0.

Whence SSp= (T8)
2
, or

SSp= <j, a constant - , . . . (180),

In order that p, p 8 and 8 be complanar, we must have

or

2. p 8, being perpendicular to both 8 and TSp, mil "be

parallel to the axis of their product, or to T . SYSp. Henoe, if

y
= oc be a vector to any point c* in the plane of oi> and BK, the

equation of a right line through a given point o, perpendicular to

a given line OD T mil be

(181).
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3. If the perpendicular is to pass through the origin, then,

from Equation (180),

or, in another form, from Equation (181), y being parallel to

T , SVSy, ...... (188).

4. The student will find it useful to translate, the Quaternion

into the Cartesian forms. Thus, from Equation (180) , if BOD 0,

whence, if r and c? represent the tensors,

rd cos 6 = c?
2
, or r =

,

COS0

the polar equation of a right line.

5. Equation (181), of a line through a given point and per-

pendicular to a given line through the origin, may be otherwise

obtained, as follows :

Let y and 8, as before, be vectors to the point and along the

given line, respectively, and ft a vector along the required per-

pendicular, whose equation will then be

P**y + xp. (a)

To eliminate ft we have the conditions

88)8 = 0,

since 8 and ft are perpendicular to each other, and

= 0,

since y, 8 and ft are complanar. But TSy is perpendicular to this

plane, and therefore T . SVSy is parallel to ft ; hence, substitut-

ing in (a),

p
or simply
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If SyfyS ^ 0, y, S and /3 are not complanar, and the problem is

indeterminate ;
which also appears from (a) , by operating with

X S . 8, whence, since S/38
= 0,

a result which is independent of /3, and an infinite number of

lines satisfy the condition.

6. If the line to which the perpendicular is drawn does not

pass through the origin, let

p = /5 -f- xa (a)

be its equation* Then, if p be the vector to the foot of the per-

pendicular, we have Sa(p y) = 0, or

because the line is perpendicular to (a) , or its parallel a. Hence,

from (6),'

or, for the perpendicular p y,

Its length is evidently

TT[Ua.(y-/3)] ..... (184).

7. This perpendicular is the shortest distance from the point

to the line. The problem may, therefore, be stated thus : to

find the shortest distance from c to the line p = xa + p. p being

the vector from c to any point of the given line, this vector is

and, in order that its length be a minimum,

T(/J + xa. - y)dT(/J+ xa- y)
-

y) a]daj
= 0,



ISO

or

that is, the line must be perpendicular to p = 03a+ )8-

8. If the perpendicular distance from the origin to p = (3 + xa

is required, p, being as before the vector to the foot of the per-

pendicular, coincides with it ; hence, y being zero, and S repre-

senting this value of p,

Operating with X S 8, since SoS = 0,

*
Hence

TX 8/3$ S . ffT8TJ8In ^s -i.'ii.ii..-. ^"^ *
..... i

TS TS
or

T8=S./3FS ...... (185).

72. We are to observe that the foregoing equations of a right

line axe, as remarked in Art. 60, all linear functions involving,-

explicitly or implicitly, a single real and independent variable

scalar. Such is evidently the case for such equations as

p = an, [Eq. (173)]

[Eq. (175)]

a). [Eq. (178)]

So also for the implicit forms, as Yap = [Eq. (174)] ;
em-

ploying the trinomial forms

we have

op = (fot cy) + (ex cwf)J + (c^ &#) ^ (005 + "by+ ea?)
.

Whence

Top = (&s cy) a -f- (c oz)J + (ay &a?) 7c=
;

in which a; and ^ are functions of #,



APPLICATIONS TO LOCI, 151

The Plane.

73. Equation of a plane.

1. If, in the equation S . B/5= 0, which denotes that /3 is per-

pendicular to 8, we replace ft by the variable vector p,

S . BP = (186)

is the equation of a plane through the origin perpendicular to 8.

2. Or, let S = OD (Fig. 66) be the vector- rig. es cwi>.

perpendicular on the plane, and DR any line D R o

of the plane.

Then

or o

S8p = c, a constant . . (187)

is the general equation of a plane perpendicular to S* Here DR

is any line of the plane ; and, if Y8p = ,

Scp = an indeterminate quantity . . . (188).

If the plane pass through the origin, we have, as before,

S8p = 0. Conversely, if SSp = c is the equation of a plane, 8 is a

vector perpendicular to the plane.

S. The equation of a plane through the origin perpendicular

to 8 may also be written in terms of any two of its vectors, as

y and /8 ;

Both of these indeterminate vectors may be eliminated by

operating with S 8 x , whence

as before
;
or one may be elnninated by operating with T . /J x ,

whence

Yfr=^4
i
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from which we may again derive S<Sp=G "by operating witlx

V . 8 X ; for

= pS3|S-/JS80, [Eq.(lll)]

whence, since S3 = 0, SSp 0.

4. The equation of a plane through a point B, for which

OB = /S, and perpendicular to S, is

(189).

5. Having the equation of a plane, SSp = c, to find its dis-

tance from the origin, or the length of p when it coincides with

S
?
we have p = scS ; hence

or

which, in p == 08, gives

_ c

or

74 To find the equation of a plane through the origin, making

equal angles with three given lines.

Let a, /3, y be unit vectors along the lines. The equation of

the plane will be of the form

SSp = 0.

By condition, SaS = SS = SyS = TSsin<z=tf, < being 'the

common angle made by the lines with the plane.

Hence
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To eliminate 8, we have, from Equation (118),

SSay = Ya/3SyS + T/Jy8a8 + YyaS/3S,

and, by condition,

SSa/Jy == flr
(Ya/3 + Y/3y + Tya) .

The vector represented by the parenthesis is, then, the per-

pendicular on the plane, whose equation, therefore, is

0. . . . (191),

and the sine of the angle < is

75, Equation of a plane tJirough three given points.

Let a, /3, y be vectors to the given points ; then are the lines

joining these points, as (a /?), (/3 y), lines of the plane. If

p is the variable vector to any point of the plane, p a is also a

line of the plane. Hence

or

But

S(- P/3
2

)
= 0, S(-a

2
/?)
= Q, etc.,

S( /oay)
=

S/oya
= S . /)Yya,

S/)a^3=S . pYajS, etc.,

hence

-Sa/2y==0 . . (192),

which, by making the vector-parenthesis = S, may be written

under the form
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in which 8 is along the perpendicular from the origin on the

plane. When p coincides with this perpendicular, p = #S
7 and,

from the above equation ,

or, for the vector-perpendicular,

76. We observe again, from inspection of the equations of a

plane, that, as remarked in Art, 60, they are linear and func-

tions of two indeterminate scalars. Thus, for a plane through

the origin

SSp=0, [Eq. (186)]

employing the trinomial forms 8s=cs+Zy+cfc and p

we obtain

the last terra of which is the scalar part ; hence

the equation of a plane through the origin o, perpendicular to a

line from o to (a, &, c) , which may be written /(&\ ?/, z) = ;

or as a function of two indeterminates.
'

In the same way, from

an inspection of the other forms,

[Art. 73,3]

SSp
- c r = as +% + c - c r = 0, [Eq. (187)]

we observe they are linear functions of two indeterminate scalars*

77. Exercises and Problems on the Bight Line and
Plane.

1. ft and y being vectors along two given lines wMcJi intersect

at the point At to which the vector is OA. = a, to write the equation

of a line perpendicular to each of the two given lines at their

intersection.
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is a vector in the direction of the required line, whose

equation, therefore, is

p = a +ccT/8y ...... (193).

If a' = OA' be a vector to any other point, as A,' then is

the equation of a line through a given point perpendicular to a

given plane-; the latter Ibeing given by two of its lines.

2. a and j8 being vectors to tico given points ,
A and B, and

SSjo
= c the equation of a given plane, to find the equation of a

plane through A and B perpendicular to the given ylanz*

8, /3j-
a and a /? are lines of the required plane, hence

or

Sp(a-#)S + Sa/3S=0 ..... (194)

is the required equation.

3. oc = 7 being a vector to a given point c, and p = a+ xj$,

p = a'+ a?
r

/3' the equations of two given lines, to ^urite the equation

of a plane- through c parallel to the tivo given lines.

If lines be drawn through the given point parallel to the given

lines, they will lie in the required plane. As vectors, ft and /?'

are such lines, and p y is also a line of the plane. Hence

is the required equation. If y= a, or a', it is the equation of a

plane through one line parallel to the other. Or, if y is inde-

terminate, it is the general equation, of a plane parallel to two

given lines.

Otherwise : the equation of a plane through the extremity of

7 parallel to two given lines, whose directions are given by
a and & is evidently p = y +xa + yft.

4. To find the distance between two points.

a and /? being vectors to the points,

Squaring
c
2 =s &2+ a2 2 ab cose.
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5. A plane being given by two of its lines, ft and y, to ivrite

the equation of a right line through A perpendicular to the plane.

Let OA = a. Draw two lines through A parallel to ft and y.

Then
...... (196).

If the plane is given b}* the equation SSp = c, then

6. Find the length of the perpendicular from A to the plane,

in the preceding example.

Operating on Equation (197) with S . 8 x

or

7. SS(p /3)
= Q, Equation (189), being the equation of a

plane through B perpendicular to S, to Jind the distance from a

point c to the plane.

Let y= oc. The perpendicular on the plane from c, being

parallel to 5, will have for its equation

To find a?, operate with S . 8 X , whence

S^SSy
or, from the equation of the plane ,

and

xTB= TS~1

SS(y
-

0) = S [US . (y
-

/J)].

8. Write the equation of a plane through, the parallels
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9. Write the equation of a plane through the line

pa+xft

perpendicitlar to the plane

SSp= 0.

10. Given the direction of a vector-perpendicular to a plane^

to find its length so that the plane may meet three given planes in

a point,

Let S Ibe the given vector-perpendicular, and

the equations of the given planes. If the equation of the plane

be written

SSp = #,

then x must have such a value that one value of p shall satisfy

the equations of all four of the planes. From Equation (118)

we have

pSa/Jy=

Operating with S . 3 x ,
to introduce #,

fllSa^y
= cSSa/3 + aSSjfly + &SSycu

11. To find the shortest distance between two given right lines.

Let the lines be given by the equations

p = a + x, (a)

X=a'+*'/3! (b)

The equation of a plane through either line, as (6) , parallel to

the other (a), is [Equation (195)]

S/5/J' (/>-*') = <>. (c)

V/J
f

is a vector-perpendicular to this plane. Hence, if yVftff

be the shortest vector distance between the lines, we have, since

a a' #V/3/?' is a vector complanar with ft and /3,'
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or

S(S/3/3
r + TftB') (a

- a' - yVflB')= 0,

whence

or, dividing by T(Y$3'),

the symbol T denoting that only the positive numerical value of

the scalar is taken.

Otherwise : since the distance is to be a minimum,

whence

or

or the shortest distance is their common perpendicular, whose

length may be found as above.

12. Given S^p = dz and SS2/>= tf2 , the equations oftwo planes,

tojind the equation of their line of intersection.

This equation will be of the form

r-p)=0 and S(p
f

-p)/3' = 0,

(a)

To find m and ?i, we have, from (a) ,

from which we obtain

But

.
'
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And similarly

Substituting these values in (a)

which is the equation of the required line, a less useful form than

those of the two simple conditions of Art. 70.

If the two planes pass through the origin, then also does their

line of intersection ; and since every line in one plane is perpen-

dicular to 8I? and every line in the other to S2) JSA is a line

along the intersection, as in (a) , and the equation becomes

...... (200).

13. Tlie planes leing given as in Equation (189),

SS(p-) = 0, (a)

SS'(p~/?') = 0, (6)

to find tJie line of intersection.

The vector p to any point of the line must satisfy both (a)

and (&). This vector may be decomposed into three vectors

parallel to 8, 8' and YSS,' which are given, and not coniplanar,

by Equation (US) ; whence

pS . Saw= SpSY(S' . T8S r

) + SpS'V(Y8S' . 8)+ S(pVSS')YSS
r

,

or, from (a) and (b) ,

-p(TYSS')
2= S80V(8

r
. Y881

)+ S8'j8'Y(YS8' . 8) + SSS'pYSS',

or, since SSS'p is the only indeterminate scalar, putting it equal

to x, we have

-
p(TV88

r

)
2= SS0Y(S' . VS8') + SS'/T^YSS' . 8) + aY8S:

If the planes pass through the origin, in which case j8 and

are zero, we have, as before,
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14, To ivrite the equation of a plane through the origin and

the line of intersection of

S3(P ~/3)= 0, (a)

S8'0>-/3') = 0. (6)

If/) is such that S3p = S3/?, and also SS'p
= SS

r

/3\ then both the

above equations will be satisfied. Hence, from (a) and (6)

which is also a plane through the origin. This equation may
also be written

which shows that

is a vector-perpendicular to the plane, and therefore to the line

of intersection of (a) and (6) .

15. To jind the equation of condition that four points lie in

a plane.

If the vectors to the four points be a, /3, y, 8, then, to meet

the condition,
8 a, 8

/?, 8 y

must be complanar, and therefore

S (8-a)(S~/3)(S-y)=0,
whence

SS^y+ SaSy + Sa/JS^Sa/Jy . . . (201),

which is the equation of condition.

Or, x and y being indeterminate, we have also

or

and
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Or, in general,
cea+ &0 -I- cy + rZS =

are the sufficient conditions of eomplanarity.

These conditions are analogous to Equation (9).

16. Given the three planes of a triedml, to find the equations

of planes through the edges perpendicular to the opposite faces,

and to show that they intersect in a right line.

Taking the vertex as the initial point, let

Sap = 0, (a)

S/3p
= 0, (6)

Syp = (c)

he the equations of the plane faces. Then Ya is a vector par-

allel to the intersection of (a) and (&), and T . yVa/3 is a vector

perpendicular to the required plane through their common edge.

Hence the equation of this plane is

Similarly, or by a cyclic change of vectors,

0, (V)

(c
r

)

are the equations of the other two planes.

If from their common point of intersection normals are drawn

to the planes, then are V . yVa/5, Y . aVy3y and Y . /3Vya vector

lines parallel to them ; but, Equation (123),

V(yYa + aY/?y+ jSYya) = 0.

Hence these vectors are complanar, and the planes therefore

intersect in a right line.

Otherwise: from Equation (111)
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hence, from (V) .

S(pySa ~p/?Say) = Sa/SSpy
-

Say&pB = 0.

Similarly, or by cyclic permutation,

But the sum of these three equations is identically zero, either

two giving the third by subtraction or addition.

17. To find the locus of a point ichich divides all right lines

terminating in two given lines into segments ivhich ham a com-

mon ratio-

Fig 67. A Let DA and D'B (Fig. 67) be the two

given lines, a and /? unit vectors parallel

to them, BA any line terminating in the

given lines, and R a point such that

RA= mBR. Assume DD', a perpendicular

to both the given lines, o, its middle

point, as the origin, and oi>= 8, CD'= 8, OR = p.

Then
OA =

ja + EA = 8 -f- XOL.

OB sss p + RB = 5 -f y$.

Adding
2p + RJL + RB = aa +y/J. (a)

But

wi wi

which substituted in (a) gives

whence, since S8j8= S8a= 0,

*

JS8p(m + l)

or J7ie Zaczts is a plane perpendicular to
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If the given ratio is unity, or BR = HA, then m = 1 and

and the locus is a plane through o perpendicular to

If a and /3 are parallel, then (&) becomes

p 8 = m (a?'a p 8) ,

whence

a right line perpendicular to DD: If at the same time m = 1,

88/0
= and p= x"a,

a right line through the origin parallel to the given lines.

18. If the sums of the perpendiculars from two given points on

two given planes are equal, the sum of the perpendiculars from

any point of the line joining them is the same.

Let A and B be the given points, OA = a, OB &
/?, and SSp=<,

S8 r

/>
= d 1

be the equations of the planes ; 8 and 8' being unit

vectors, so that x& and #8' are the vector-perpendiculars from A
on the planes. Then

#=Sa8 cZ,

y = Sa8'- dl

and

Similarly

But, by condition,

or

SOff- a) (8 + 80= 0. (a)

The vector from o to any other point of the line AB is

a+ s (ft a) ; whence, for this point,

for which point, since (a) remains true, the sum therefore is

unchanged.
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19. To find the locus of the middle points oftlie elements of an

hyperbolic paraboloid.

Let the equations of the plane director and rectilinear direc-

trices be

SSp = 0,

and p = a

Also, let O3i =s p be the vector to the middle point of an ele-

ment so chosen that the vectors to the extremities are a + x/3

and aT

-j- x'f}'. Then, since M is the middle point,

The vector element is

and, being parallel to the plane director,

This is a scalar equation between known quantities from whieh-

we may find x* in terms of x ; substituting this value in (a) , we
have an equation of the form

or the locus is a right line.

20. If, from any three points on the line of intersection of two

planes^ lines be drawn^ one in each plane, the triangles formed

by their intersections are sections of the same pyramid.

The Circle and Sphere.

78. Equations oftlie circle.

The equation of the circle maj
T be written under various

forms. If a. and ft are vector-radii at right angles to each other,

and Ta =s T/J, we may write

P = cos0 . a + sin0 . ft .... (203}

In terms of a single variable scalar 9.
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If a and /3 are unit vectors along the radii,

or, since i

The initial point being at the center,

(205)

are evidently all equations of the circle.

If o (Fig. 68) be an}' initial point, c the center, to which the

vector oc = y, p the variable vector to

aay point p, CP a, then

p y a,

whence

(p-y)
2 = -^- - (206),

the vector equation of the circle whose

radius is r,

IfTy == c, it may be put under the form

e
2-^ (207).

If the initial point is on the circumference, we still have

(p y)
2 = **; buty* = ?*, hence

2 a a f\ tone's
p z Rypy U ^iUo J ,

or, since in this case Spy = Spa,

= (209).

79. Equations of the sphere.

This surface may be conveniently treated of in connection

with the circle ; for, since nothing in the previous article restricts

the lines to one plane, the equations there deduced for the circle

are also applicable to the sphere-
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Another convenient form of the equation of a sphere is

(Fig. 68)

7)Ta ..... (210),

the center being at the extremity of y and To, the radius.

80, Tangent line and plane.

A vector along the tangent being cZp, we have, from Equation

(203), V** --ft**-:-:, ,v,,-.

and for the tangent line TT = p + #cZp,

. /?] (211),

where -JT is any vector to the tangent line at the point corre-

sponding to #.

From the ahove we have directly

g. 69.

or the tangent is perpendicular to the radius vector drawn to the

point of tangency.

By means of this property we may
write the equation of the tangent as

follows : let IT be the vector to any point

of the tangent, as B (Fig. 69), c being

the initial point and
/>

the vector to P,

the point of tangency. Then

(212),

are the equations of a tangent. Since nothing restricts the line

to one plane, they are also the equations of the tangent plane to

a sphere.
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The above well-known property may also be obtained by

differentiating Tp= Ta
; whence, Art. 67, 2,

Spc?p
== 0,

and therefore p is perpendicular to the tangent line or plane.

8L Chords of contact.

In Fig. 69 let CB = p be the vector to a given point. The

equation of the tangent BP must be satisfied for this point ;

hence, from Equation 212,

or

S/?<r
= -r* ...... (213),

which is equally true of the other point of tangency p,' and being
the equation of a right line, it is that of the chord of contact PF!

And for the reason previously given,, it is also the equation of

the plane of the circle of contact of the tangent cone to the

sphere, the vertex of the cone being at B.

*

82. Exercises and Problems on the Circle and the

Sphere.

IB the following problems the various equations of the plane*

line, circle and sphere are employed to familiarize the student

with their use. Other equations than those selected in. any

special problem might have been used, leading sometimes more

directly to the desired result. It will be found a useful exercise

to assume forms other than those chosen, as also to transform

the equations themselves and interpret the results. Thus, for

example, the equation of the circle (209),

may be transformed into
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which gives immediately (Fig. 70) the property of the circle,

that the angle inscribed in a semi-circle is

a right angle. Obviously, this includes the

case of chords drawn from any point in a

sphere to the extremities of a diameter, and

the above equation is a statement of the prop-

osition that, p being a variable vector, the

locus of the vertex of a right angle, whose

sides pass through the extremities of a and

a^ is a sphere.

Again, with the origin at the center, we have (Fig, 71 ),

(p + a) + (a p) = 2 a,

and, operating with x S . (p a),

.-. P is a right angle. This also follows from

Tp=Ta, whence p
s=aa and S(p+o)(p a)=0.

Again, from Tp Ta, ;
-

' ''

*

The first member is the rectangle of the chords PD, PD' (Fig. 71),

and the second member is

2OD . OP&hlDOP.

Hence the rectangle on the chords drawn from any point of a

circle to the extremities of a diameter is four times the area of

a triangle whose sides are p and a.

Also, from Tp = Ta,

P
2^~A

and for any other point

But p' p is a vector along the secant, and p'+p is a -vector

along the angle-bisector ; now when the secant becomes
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gent, the angle-bisector becomes the radius
;
therefore the radius

to the point of contact is perpendicular to the tangent.

1. TJte angle at the center of a circle is double that at the cir-

cumference standing on the same arc.

We have

and therefore, Ait. 56, IS,

whence the proposition,

Tp = Ta,

'

r/
of me2. In any circle, the square of me tangent equals the product

of the secant and its external segment.

_ In Fig. 69 we have
g. 69 (Wa).

p

CB = CF + PB,
2:=.-. CB:=

or
PBS=CB9 CP

CB2 CD2
, as lines,

L,f ,',*"* . ' = ED . BD'

3. The right line joining the points of intersection of ttvo circles

is perpendicular to the line joining their centers.

Let (Fig, 72) cc' = a, CP= p, OP' = p', and r
7
r

f

be the radii

of the circles. Then

Fig- 72

also

Hence

or

Sa(P -p r

)
= 0;

hence pp f and cc' are at right angles.



170 QUATEBNI02SS.

4. A chord is drawn parallel to the diameter of a circle; the

radii to the extremities of the chord make equal angles with the

diameter.

If p and p' be the vector-radii, 2 a the vector-diameter, then

#a = the vector-chord, and

whence the proposition.

5. IfABC is a triangle inscribed in a circle, show that the vector

of the product of the three sides in order is parallel to the tangent

at the initial point, [Compare Art. 53.]

If AB = jS,
CA = y, and o is the center of the circle, then

-T(AB .BC * CA)

and B being points of the circumference satisfying

p
2 -2Spa=0 [Eq. (209)], substituting and operating with

S a X /
f - JC /' . ^ ;

^
-* *v* f ,

* *
,

-
--

'

S . aV(AB . BC . CA) = 2SaSay -'2Sa/3Say = 0. '*

Hence T(AB . BC . CA) is perpendicular to a, or parallel to the

tangent at A*

6, TJie sum of the squares of the lines from any point on a

diameter of a circle to the extremities of a parallel chord is equal

to the $wm of the squares of the segments of the diameter,

Let pp f

(Fig. 73) be the chord parallel to the diameter Di>f

rig. 73, o the given point, and c the center of the

circle. Let CP = p, CP' s=
p! oc = a, OP = j8

and op f

=j<3' Then
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But

S(P -P')(P+P')
Therefore

Sap -f Sa/o'

and

7. To find the intersection of a plane and a sphere.

Let p
3 = r2 be the equation of the sphere, 8 a vector-perpen-

dicular from its center on the plane and TS = d. Then, if be

a vector of the plane,

Substituting in the equation of the sphere, since S/5S = Q
y we

have JU ^ *

X^r*"ft 4

V
the equation of a circle whose radius is Vr2 d2

, and which is

real so long as d < r.

8. Ibj/md tfie intersection of two spheres.

Let the equations of the given spheres be (Eq. 207)

Subtracting, we have

2 Sp(y y
r

)
= a

The intersection is therefore a circle whose plane is perpen-

dicular to y y' the vector-line joining the centers of the spheres-

Assuming (Eq* 210)

y)c=:Ta and

show that 2 Sp(y y
f

)
= a constant, as above.
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9. The planes of intersection of three spheres intersect in a

right line.

Let /, y", y'" be the vector-lines to the centers of the spheres,

and their equations

The equations of the planes of intersection are, from the pre-

ceding problem,

2Sp(y'-/)=c"-c', (a)

r'")=c'"-c', (6)

Now, if p be so taken as to satisfy (a) and
(2>) ,

we shall

obtain their line of intersection. But if p satisfies (a) and (&),

it will also satisfy their difference, which is (c) ; the planes there-

fore intersect in a right line.

10. To find the locu$ of the intersections ofperpendiculars from

ajixedpoint upon lines through another fixed powt.

Let P and P' be the points, pp f= a, and S a vector-perpen-

dicular on any line through P,' as p a + a^, Then

and operating with S . S X

which is the equation of a circle (Eq. 209) whose diameter is PP'.

11. From a Jiosed point p, lines are drawn to points^ as

p r

j
p ff

, of a given right line. Required the locus of a point o
on these lines, such that PP' . PO = m2

.

Let the variable vector PC p ;
then Fp f

=a7/>. By the condition

T(PP'.PO)= m2
,

or
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If <5 be the vector-perpendicular from p on the given line,

and TS = d,

or

hence the locus is a circle through p.

12. If through any point chords be drawn to a circle, to find

the locus of the intersection of the pairs of tangents drawn at the

points of section of the chords and circle.

Let the point A be given by the vector QA = a, o being the

initial point taken at the center of the circle. Let //= OR be

the vector to one point of intersection K* The locus of s is

required. The equation of the chord of contact is (Eg. 213)

which., since the chord passes through A, may be written

where a is a constant vector. The locus is therefore a straight

line perpendicular to OA (Eg. 180).

13* Tofind the locus of the feet ofperpendiculars drawn through

a given point to planes passing through another given point.

Let the initial point be taken at the origin of perpendiculars,

a the vector to the point through which the planes are passed,

and 8 a perpendicular. Then

88(8- a) =0,
or

is true for any perpendicular. Hence the locus is a sphere whose

diameter is the line joining the given point^
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Otherwise : if the origin be taken at the point common to the

planes, and the equation of one of the planes is S8p= 0, then

the vector-perpendicular is (Eq. 198)

and, if p be the vector to its foot,

or

p a= 6

whence

^
Sa ~cr= -S- J

*

Adding the last two equations
"*

which is the eqnation of a sphere whose radius is T- and center

is at the extremity of -, or whose diameter is the line joining

the points. ,V,,^ ^^ +

"V

14, 2b /ncZ i/ie locus of a, point p which divides any line os

drawn from a given point to a given plane ,
so tfiotf

OP . os = m, a constant,

v'A
Let OP =

/)
and os= a-

\
also let SSo-= c be the equation of the

plane. We have, by condition,

and
Up = Uo- ;

and
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Substituting in the equation of the plane

? - 0,

which is the equation of a sphere passing through o and having

for a diameter.
OB 7.

15. To find the locus of a point the ratio of whose distances

from two given points is constant.

Let o and A be the two given points, OA = a, OB= p, R being
a point of the locus. Then, by condition, if m be the given

ratio,

whence tv
^ .wv*. v -

1
== ap- r

or

I 2Sap a2 m
P l~m3 1-m2 ^ l-

which is the equation of a sphere whose radius is T m
a

T an<l
* 1 mj

whose center c is on the line OA, so that oc =--a* (Eq. 210) .

1 Wr

16. Given two points A and B, to find the locus O/P when

o being the origin, let OA= CL, OB= ^, op=p. Then, by

condition,

p== (p-a
whence
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which is the equation of a sphere whose center is at the extremity

of (a+ /3), if So/? is negative, or the angle AOB acute. If this

angle is obtuse, there is no point satisfying the condition. If

AOB = 90, the locus is a point.

83. Exercises in the transformation and interpretation of

elementary symbolic forms.

1. From the equation

derive in succession the equations

)
= T(p-a) and T-

and state what locus they represent.
'rt

-

4 *

2. From the equation
fit

derive symbolically the equations

r *VCy'

-l, andTYTJ-=l,'

,.: ,-,wLV >1: V'^^ t;o -
and interpret them as the equations of iiie same locus.
L

IS. Transform
,

.-

to the forms

S-=l and
and interpret.

a
l

4. Transform S^^- = to S-=S-> and interpret.

o. Transform G>-#)
2= (/>- a)

2 to

and interpret,

6. What locus is represented by K- -= 0?
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7. What by f-]= - 1 ? By(^Y=-aa
?W _ H W

8.
a a p

a Q
9. U- = -U-?

v
u- = u2

a a a

12. Y-=O?
a

is. =
a a

14. su=su? su-=-su-?
a a a

- _- = -SD-?
a a a

15. Tp = l?'

16. Transform (p a)
3 = a2 to T(/> a) = Ta, and interpret.

17. Under what other form mav we, write (p -= a)
s= (8j- a)

2 ?

^ v , T * , -, A, ,. Q i^XK^-^X^*^*^ >W* VfA
Of

wh^foraj
is it the equation ? j **

^ ^ ^
18.'?ffo?H| ? >^-f 1 = 0? Translate the Iaker4nto Car-

,

18. ^ M ? V'+ 1 = 0? Translate the latter into Car-

tesian coordinates, by means of the trinomial form, and so deter-

mine the locus anew.

19. T(p-0) = TOS-a)

20. Compare SU-1= T-
P tt P wr, Tl

21. What locus is represented by S/Jp +/
s'= wBen T/3= 1 ?

20. Compare SU-1= T- and S-= 1 with the forms of Ex. 3.

22.

23. T =-
V tty

'
>

* I
24. Show that V * Ya/3To/> = is the equation of a plane.

What plane ? [Eq. (112)]. / !
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The Conic Sections.

Cartesian Forms.

84. TJie Parabola.

Resuming the general form of the equation of a plane curve

from the relation y 2px, we obtain

(214)

for the vector equation of the parabola when the vertex is the

initial point. If the latter is taken anywhere on the curve, from

the relation y*= 2p'o:, we obtain

..... (215);

and if the initial point is at the focus, then y
2 = 2px +p* gives

or again, in terms of a single scalar
,

...... (217).

In Equations (214), (215) and (216), a and ft are unit vectors

parallel to a diameter and tangent at its vertex, being at right

angles to each other in Equations (214) and (216) ; in Equation

(217) a and /B are any given vectors parallel to a diameter and

tangent at its vertex, the initial point being on the curve.

85. Tangent to the parabola.

From Equation (216) we have for the vector along the tangent

(Art. 62) <H^^^'**'V '->'> /: '*
' "" " "
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and, therefore, the equation of the tangent is

+
pJ

. . (218).

From Equation (217) the vector along the tangent is

and the equation of the tangent is

be the vector to a point on the diameter of a parabola, the

point being given by the equation

p = ma+ nfi, (a)

and a tangent to the curve be drawn through this point, then

() must satisfy the equation of the tangent-line and

ma+ n/3 = a + tp + x(ta + /?),
&

whence ^
m*=-+xt and n

hence, in general, two tangents can be drawn to the curve through

the given point. When wa = 2m, they coincide
;

in this case,

from (), 3

the j>oint being on the curve. If 2m>n\ t is imaginary, and

no tangent can be drawn ; in this case (a) becomes

the point being within the curve.
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Fig 74

86. Examples on the parabola.

1. The intercept of the tangent on the diameter is equal to the

abscissa of the point of contact.

Since the tangent is parallel to

the rector ta+ ft* or to any multiple

of it, it is parallel to ?a + t/3 or to

is, to (Fig. 74)

But
OP + ox^- 1

TP = TO + OF ;

TO OX.

2. Jjf, from any point on a di-

ameter produced ^ tangents be draivn,

the chord of contact is parallel to the

tangent at the vertex of the diameter.

If f and f correspond to the

points of tangency, we have for the rector-chord of contact

'''

which is parallel to

or, from Equation (6), Art. 85, to

which is independent of m.

3. To find the locus of the extremity of the diagonal of a rect-

angle whose sides are two chords dwvnfrom the vertex.

Let OP and OP' be the chords. Then

fc (<*>

CW
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The vector-diagonal <' is p + p, or

which may be put under the form of the equation of the parabola

by adding and subtracting ^L a, giving

But, by condition, S/>p'
= 0. Hence, from (a) and (6),

being zero,

which in (c) gives

S'=^
Changing the origin to the extremity of 4j>a,

Hence the locus is a similar parabola whose vertex is at a

distance of twice the parameter of the given parabola from its

vertex.

Moreover, from (cl), #x' = (2p)
2
. Hence t7ie parameter is a

mean proportional between the animates and the abscissas of the

extremities of chords at right angles.

4. If tangents be drawn at the vertices of an inscribed triangle,

the sides of t7ie triangle produced will intersect the tangents in three

points of a right line.

Let OPP' (Fig. 74) be the inscribed triangle, and one of the

vertices, as o, the initial point. Then, for the points P and p f

respectively, we have
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Let 7T!, TT2, -jrg lie the vectors to the points of intersection ; then

-jTj
= OP -|- PSa

= - a. -

Also

2
'

Hence

In a similar manner

But

:

Also

' = OP + y (p
r~

t+ t
1

Hence

Now

Also

Hence TTI, ?r2 and 7rs terminate in a straight line.
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5. The principal tangent is tangent to all circles described on

the radii vectores as diameters.

Let AP = p (Fig. 75), a and /?

being unit vectors along the axis

and principal tangent. Then, if

the circle cut the tangent in T,

and TC be drawn to the center,

T(TC) = T(FC)
.*. TC2

J(p ??i

Also

TC = TA + AP -f FC

=
z/3 + ma

TC2 = [-80+ ma+|(p-ma)]
2
.

Equating these values of TC2
,

we have, since S/?a= 0,

Fig. 75.

which gives but one value for z.

v-6. Tofind the length of the cuwe.

It has been seen (Art. 62) that, if p = <f>(t) be the equation
of a plane curve, the differential coefficient is the tangent to the

curve. Hence, if this be denoted by p' =<'(), Tp'dt is an

element of the curve whose length will be found by integrating

Tp
; with reference to the scalai* variable involved between proper

limits; or

For the parabola
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7. To find the area of the curve.

With the notation of the previous example, twice the area

swept over by the radius vector will be measured by (Art. 41, 7)

TYp/A??. The area will then be found by integrating TVpp' with

reference to the involved scalar between proper limits and taking

one-half the result ; or

For the parabola

A -* '

or, since a/9
= 90, I ft

' ^^ *v ' "'

From the origin, where y = 0, to any point whose ordinate is

1 !r
'*v""f ynf *'

y, the area of the sector swept over by p is - tf = \tty ; adding
12p

the area 0.^ of the triangle, which, with the sector, makes up
the total area of the half curve, we have f a?#, or two-thirds that

of the circumscribing rectangle. The origin may be changed to

any point in the plane of the curve, to which the vector is y, by

substituting the value p = j + px in the equation of the curve,

pi being the new radius vector ;
we may thus find any sector area

limited by two positions of
/>z , the vertex of the sector being at

the new origin. Thus, transferring to an origin on the principal

tangent, distant b from the vertex, p = fy8+pi,' which, in the

equation of the parabola, gives j . y ^

f
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integrating, as before, between the limits y= 6 and y = ?

Fig 76

87, Relations bvticeen three intersecting tangents to the Parabo-

la. ["Am. Journal of

Math.," vol. i. p. 379.

M. L. Holman and

E. A. Bugler.]

Let Q ps,, pa be
^

the

vectors'
n
b tlie three

points of tangency, PJ,

psi P3 [Fig. 76], and

*TI,
"
2 ,

7rg the vectors to

s15 s2,
s3, the points of

intersection of the tan

gents. Resuming Equa-

tion (216), where the

focus is the initial

point, and a and ft are

unit vectors along the

axis and the directrix,

Since p
z =s (Tp)

s
, and Sa/3 = 0, we have, for the three points

*

(6).

The vector along the tangent is

J
i
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and therefore

whence, equating the coefficients of a and

whence, substituting, and ty the cyclic permutation of the sub-

scripts >

From

and from (c)

and from (d) and (e)
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From (c) ,
it appears that the distance of the point of intersec-

tion of two tangents from the axis is the arithmetical mean of the

ordinates to their points of contact, From (/), that the distance

from the focus to the point of intersection of tico tangents is a

mean proportional to the radii mctores to the points of contact.

1st. If pz becomes a multiple of
/?-,

t

5

*

Or, the parameter is the double ordinate through the focus, or

twice the distance from the focus to the directrix.

Fig, 77.

2cL If pz is the multiple of p2 (Fig. 77) , then pa p l is a focal

chord, and

Xp* = pi,

or, from (a) , ^ * i^r/ r/, a,U* ru,u*Jt-* r"
fi^ ^

^ * H ^
whence

-
y*
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or '*

yifaya +/)
and ,

'

-
.

yiffa+J^O-'*
1

"- "
(?)

From (a) and (c)

or, a Zene /rom tte /o<j?ts to the intersection of the tangents at the

extremities of a focal chord is perpendicular to the focal chord.

The vectors along the tangents are

p1
7r3 and ps 7T3?

and, from (7i),

"*i *
or, tt tangents at the extremities of the focal chord are perpen-

dicular to each other.

Since, from (#},

we have

w+ \

or, the tangents at the extremities of a focal chord intersect

the directrix,

3d. If p2 becomes a multiple of a (Fig. 78) , & = 0, and from

W

|a+|A (0

or, the subtangent is bisected at the vertex.
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Also

=-fji
a~^'

Operating with S . *r3 X

or, a perpendicular from the focus on the tangent intersects it on

the tangent at the veriest*

Fig. 78.

Again, since w8 is parallel to the normal at pa , the latter may

be written, from (Q ,

whence

or
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bonce, the subnormal is constant; and the normal is twice the

perpendicular on the tangent from the focus.

The normal at P! maj- be written

or

\^"
a
"^!> y"~

a
2p

whence, from (I),

i
1 2

or, tfie distance from the foot of the normal to the focus equals

the radius vector to the point of contact, or the distance from the

point of contact to the directrix, or the distance from the focus to

the foot of the tangent.

The portion of the tangent from its foot to the point of con-

tact may be written za + pl5 in which z has just been found,

Hence

or

the portion of the tangent from the foot of the focal perpendicu-
lar to the point of contact is

P Vi 1

'2
a
"~^P+^w .P)

or

or, comparing (j) and (fc), *^e tangent is bisected by the focal

perpendicular, and hence the angles between the tangent and tJie

axis and the tangent and the radius vector are equal, and the

tangent bisects the angle between the diameter and radius vector

to the point of contact.
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(k) is also the perpendicular from the focus on the normal,

and shows that the locm oftlie foot of the peypendicitJar from the

focus on the normal is a parabola, itfiose vertex is at the focus of
the given parabola and whose parameter is one-fourth that of the

given parabola,

88, The Ellipse.

1. Substituting in the general equation p = xa+ yft the value

of y from the equation of the ellipse referred to center and apces

we have

ps*WL+ ml(c?-sP)lll .... (220),

7yJ

in which m = - and a and /? are unit vectors along the axes.
a

For unit vectors along conjugate diameters, the equation of the

ellipse becomes

Again, if
<f>
be the eccentric angle, the equation of the ellipse

may be written In terms of a single scalar variable,

j8 . . . . (222).

2, From Eq. (220) we have, for the vector along the tangent,

o ox i n m
ar) "*a?/S

= a --

hence, foi* the equation of the tangent line,

,r = aa+ 2/j8+:0/a--mfc) . . - (223):

or, more simpl}
T

, from Eq. (222), the vector-tangent is
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and the equation of the tangent is

ft), (224).

Since sin<.a+ cos.)8 is along the tangent, cos< . a+
shi( . and - sin< , a + cos< . /3 are rectors along conjugate

diameters.

89. Examples on the Ellipse.

1. T/ie area of the parallelogram formed ly tangents drawn

through the vertices of any pair of conjugate diameters i$ constant.

We have directly

= 4 TYa/?= tt constant;

namel}', tlie rectangle on the axes.

2. Tfttf swm of the squares of conjugate diameters is constant ,

waZ to #ie sie?w, o/i/ie squares on the a&es.

For, since Sa/2= 0,

3. TOe eccentric angles of the vertices of conjugate diameters

differ by 90?

The vector tangent at the extremity of

psscos^ * a + sin< . /j (a)

is

This is also a vector along the diameter conjugate to p, and is

seen to be the value of p when in (a) we write < + 90 for <,

4. T/ie eccentric angle of the extremity of equal conjugate diam-

eters is 45? and the diameters fall upon the diagonals of the

rectangle on the axes.
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5. The line joining the points of contact of tangents is

parallel to the line joining the extremities of parallel diam-

eters*

6. Tangents at right angles to each other intersect in the cir~

cumference of a circle.

7. If an ordinate PD to the major axis be produced to meet the

circumscribed cirde in Q, then

QD : PD : : a : &.

8. If an ordinate PD to the minor axis meets the inscribed circle

in Q, then
QD : PI> ; : b : a.

9. Any semi-diameter is a mean proportional between the dis-

tances from the center to the points where it meets the ordinate of

any point and the tangent at that point.

For the point p (Fig. 82) we have

p = cos < . a + sin. <
)8.

Also

OT= EOF = OQ + QT

= E(COS< . aH-sin</> . )

a + sin<' . ft + 1( sin $' . a

Eliminating i, 11

or

OT = iCOF =- -
T7r P "

008(i^-*
1

)

But

Eliminating ej

or
N= cos<--

** ON . OT=OP2
.
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10. To find the length of tlie curve.

With the notation of Ex. 6. Art. 86, we obtain, from Eq.

(222),
p'= sin < . a + cos . /?,

Tp'= V(a
a -&a

)si

which involves elliptic functions. If a &, we have, for the

x,<*

circle, s s = I r= r
(< <W .

A
From Eq. (220) , we obtain

/a? a c

-ab^|
-
7
====A|1-

J,, Va2 - a^ ^ a-

which may be expanded and integrated ; giving for the entire

curve

a converging series. If e 0, we have, for the circle, 2irr.

11. To JindtJie area of the ellipse.

With the notation of Ex. 7, Art. 86,

.

A D

'

J

or, since a/3 =90?
*

The whole area is therefore
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90. The Hyperbola.

1. Let a and ft be unit vectors parallel to the asymptotes*

Then, from the equation,

,
.

we hare, for the equation of the hyperbola,

or, if a and /? are given vectors parallel to the asymptotes,

p = to+ ...... (226)
t

or, again, in terms of the eccentric angle,

p = sec< * a-ftan< . 0. . . . (227).

2. The equation of the tangent, obtained as usual, is from

Eq. (226),

. (228),

where ta - is a vector along the tangent.

91. Examples on the Hyperbola.

1. J7, when t7ie hyperbola is referred to its asymptotes, one

diagonal of a parallelogram ivhose sides are the codrdinates is

the radius vector ,
the other diagonal is parallel to the tangent

If (Fig* 79) cx= to, XP=|, then
&
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but fa is parallel to the tangent at P (Art. 90) . ta + @ and
8 *

tai- are evidently conjugate semi-diameters.

Tig. 79.

vertex.

A diameter bisects all chords parallel to the tangent at its

Let (Fig. 79) CP be the diameter, t corresponding to the

point p. The tangent at P is parallel to ta ? and CP = fo+ ..

JP'P" being the parallel chord,
* t

OP'= CO

\ t

Also, if t' correspond to P!

\ t

OPW.+/J;

or
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Hence, for every point, as o, determined by x, there are two

points P' and p", determined by the two corresponding values

of y, which are equal with opposite signs.

3. The tangent at P! to the conjugate hyperbola is parallel to

CP (Fig. 79).
"'

'- ,. /,<"'*'
'

4. The portion of the tangent limited by the asymptotes is

bisected at the point of contact.

5. If, from the point D (Fig. 79) ,
where, the tangent at P meets

the asymptote, DN be drawn parallel to the oilier asymptote, then

the portion of PN produced, which is limited by the asymptotes, is

trisected at p and N.

We have n o

t'a + =

and the equation of ss
f

is

whence, for the points s, s;

3 = 1,

6. 2%e intercepts of the secant between the hyperbola and its

asymptotes are equal.

The vector along the tangent parallel to the secant is to.

^.

Hence (Fig. 79)

but OP" = opf

(Ex. 2) ,
and therefore P"K" = P'E!
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7. If through any point p" (Fig. 79) a line R"P'K' be drawn

in any direction, meeting the asymptotes in E" and -R, then

8. If through p,
r P" (Fig. 79) lines be drawn parallel to the

asymptotes, forming aparallelogram ofwhich P'P" is one diagonal,

the other diagonal will pass through the center.

The vector from c to the farther extremity of the required

diagonal is

But t"a + ~ is the vector from c to the other extremity of the
t

required diagonal.

9. If the tangent at any point p meet the transverse axis in T,

and PN be the ordinate of the point p
; then

or . CN= a2
,

c being the center and a the semi-transverse axis.

From Eq. (227) , substituting in CT = CP+ PT,

and
CT CN = (x sec

<f> a) (sec< a)= a2
,

or

CT . CN = a2
.

,

ID, If the tangent at any point p meet the conjugate axis at T,'

and PN' be the ordincAe to the conjugate axis, then

CT' , CN' = S2
,

C being the center and b the semi-conjugate axis.
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92. The preceding examples on the conic sections involve

directly the Cartesian forms. A method will now be briefly

indicated peculiar to Quaternion analysis and independent of

these forms.

1. The general form of au equation of the first degree, or as

it may be called from analogy, a linear equation in quaternions, is

aqb + a'06
f

+"</&"+ ..... = c,

or

= c, (a)

in which q is an unknown quaternion, entering once, as a factor

only, in each term, and a, b, a', b'
f

.....
,
c are given quaternions.

It may evidently be written

= Sc + Yc,
whence

c, (b)

o. (c)
But

Sag* = Sg&a= SqSba + & .

and
= Y(Sa+ Ya

V ';"

I + Y(SctY^S6 + SctYgYft + YV/S6

< , ,

+ Y . YciTtfY5 +JfciWVq Y . YaYfcV?

+ Y . a (K&) Vg + 2 VaS

We have therefore, from (6) and (c) ,

Yc SffSYoft 4- SY . a (K&)Yg + 2 SYctS

or 5 writing
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we obtain

Sc = mZ + SpS,'

Yc = w8 + SY . a(K&)p + 2 SYaS

We may now eliminate ze> between these equations, obtaining

To . d - Sc . S = dSYa (Kfc)p
-

SSpS'-j- d 2 SVaS . pY&

which involves only the vector of the unknown quaternion g, and

which, since T and S are commutative, may be written under

the general form
y = Vrp + SjSSap,

in which y, a, a,
.....

, /3, $ are known vectors, r a known

quaternion, but p an unknown vector. This equation is the

general form of a linear vector equation. The second member,

being a linear function of p, may be written

Yrp + SjSSap = <fr>
= y .... (229),

where <p designates any linear function of p. If we define the.

inverse function $~
l

by the equation

ihe determination of p is made to depend upon that of ^"
1
.

2. Without entering upon the solution of linear equations, it

is evident ou inspection that the function < is distributive as

regards addition, so that

- (230).

Also that, a being any scalar,

(281),
and

ctyp = #Zp ...... (232).

3* Furthermore, if we operate upon the form
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with S * or X , <r being any vector whatever,

= S8(<r/8Sap) + So-(Y?*p) .

But

S(<r/3Sap)
= Str^Sa/)

= SpaS/?cr = S(paS/3<r) ,

and

S(oTrp) = 8[<rV(Sr + Yr)p] = SrStrp + S:r(Vr)/>

SrSpo-
- Sp(Vr)<r= S[pY(Kr)cr].

Hence, if we designate by <'<r,

r + Y(Kr)<7,

a new linear function differing from by the interchange of the

letters a and /?, and Kr for r, we shall have, whatever the vectors

p and o-
3

Functions, which, like <f>
and <f>

f

, enjoy this property, are called

conjugate functions. The function < is said to be self-conjugate,

that is, equal to its conjugate <#>,
when for any vectors p, er,

93. In accordance with Boscovich's definition, a conic sec-

tion is the locus of a point so moving that the ratio of its dis-

tances from a fixed point and a fixed right line is constant.

1. Let F (Fig. 80), be the fixed point or Fig so

focus, DO the fixed line or directrix, and P
FP ^

any point such that == e* the constant ratio
DF

or eccentricity. Draw FO perpendicular to

the directrix, and let ro^a, 00=2/7, PD=au
and FP= p. By definition,

T(FD)
or fjMfat&iwtfLr

} f P
2= eW. (a)

A1SO
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Operating with S . a x , we have, since Say= 0, *

Sap + 2Ja
2 = a2

,

a2 a4 = (a
3
-Sap)

2
.

Substituting in (a)

or

'p
s ==e2 (a

2

-Sap)
s .... (233),

in which e may be less, greater than, or equal to unity, corre-

sponding to the ellipse, hyperbola and parabola.

Fig. 82.

2. For the ellipse, Fig. 81, putting p = a?a for the points

A and A! we have * ^ J J ^ * fc

'

. ^
' c * 7 ^

_- _ and a; = *

1+6 1 e

r^ since p= (Ba= OJFO,

PO, \r,

1 e A"

whence

and therefore

FO =
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which furnish the well-known properties of the ellipse,

FA r

=a(l-f e),

CF = ae
i

AO =
e

CO = -

3. Changing the origin to the center ofi the curve, let CF = a'
;

then OP :=
p' and /c?== p' a', <r =

( )
a

; whence
V 1 0* 1 I O 1

1 /)2 x"^
1

^^ ^ i^ ^J

a --
""

a; Substituting these values of p and a in

w
remembering that af2 = ct

s e2
,j^e obtain

or, dropping the accents, c being the initial point,

e
2
) . . . (234),

the equation of the ellipse in terms of the major axis with the

origin at the center. If p coincides with the axes, Tp = a or &,

as it should.

4. Equation (234) may be deduced directly from Newton's

definition, thus : let CF = a (Fig. 81) as before, F and F' being

the foci, and CF= p. Then

FP= p a, F f

P 5= p + a,

and, by definition,

FP -h F'P= 2 a

as lines ; or
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a being the semi-major axis. Whence

V- (p
-

a)
2= 2 a - V- (/> + a)

2
.

Squaring

Squaring again

(Spa)
2- 2^2-S^ + a4 =- a2 (p

2+ Mpi + a2) ,

ay + (Spa)
2 = -a4 -a3 a2

, .

or, as before,

94. 1. The equation of the ellipse

a2 p
2+ (Sap)

2=-a

may be put under the form

or, in the notation of Art. 92, writing

the equation of the ellipse becomes

Sp</>p=l . ..... (235).

2. By inspection of the value of <p it is seen that, when p

coincides with either axis, p and <p coincide.

Operating on <j>p with S a- x , we have
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operating on ^><r
= *~~ a

with S . p X , we have
a (1 e )

hence

Sp</xr=S<r<p ...... (236),

and <t> is self-conjugate.

3. Differentiating Equation (235), we have

= 0,

= 0, [Eq. (232) ]
= 0. [Eq. (236)]

If IT be a vector to any point of the tangent Iine7 .

*.

whence .

Sp^(7r p)=S(7r~p)<^p=0, (a)
or

S?r^p= Sp<#>p = Sp</wr=l .... (237)

is the equation of the tangent line.

From (a) we see that <p is a vector parallel to the normal at

the point of contact, being parallel to p only when p coincides

with the axes, as already remarked.

4. To transform the preceding equations into the usual Car-

tesian forms, let i be a unit vector along CA (Fig. 81), and ,;
a

unit vector perpendicular to it. If the coordinates of P are x

and y, then, since a= CP, ^"%
- *

p= xi 4- 30", <P
and ;^

_ a2
p + aSap ___ <**(s*+ 30') + a^S ." "
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- 2or ? since 1 e* =
cr

and

,'

Again, if #' and y' are the coordinates of a point in the tangent,

and

The above applies to the hyperbola when e > 1, that is, when
62

e
*= .

giving the corresponding equations
cr

95. Examples,

1. To find the loom of the middle points ofparallel chords,

Let/3 be a vector along one of the chords, as RQ (Fig, 82),
the length of the chord being 2y, and let y be the vector to its

middle point ; then

are vectors to points of the ellipse, and

whence, expanding, subtracting, and applying Equation (236) ,
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the equation of a straight line through the origin. Since </?

is parallel to the normal at the extremity of a diameter parallel

to /?, the locus is the diameter parallel to the tangent at that

point.

2. Equation of condition for conjugate diameters.

Denote the diameter OF (Fig. 82) of the preceding problem,

bisecting all chords parallel to j3, "by cu Tjien

or

In the latter, /? is perpendicular to the normal <a at the ex-

tremity of a, and is therefore parallel to the tangent at that

point ;
hence this is the equation of the diameter bisecting all

chords parallel to a. Therefore, diameters which satisfy the

equation Sa</S = are conjugate diameters.

3. Supplementary chords.

Let PP' (Fig. 82) and DD' be conjugate diameters, and the

chords FD, PD' be drawn. Then, with the above notation,

DP = a 5,

D fP=
and
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But

Hence, if DP is parallel to a diameter, PD' is parallel to its

conjugate.

4. If two tangents be drawn to the ellipse, the diameter parallel

to the chord of contact and the diameter through the intersection

of the tangents are conjugate.

Let TQ (Fig. 82) and TR be the tangents at the extremities of

the chord parallel to /?, and OT = TT. Then

Q~ OQ
r

From the equation of the tangent STT</? l,5ve have

Expanding and subtracting

= 0.

Hence, Ex. 2, ?r and /?, or OP and OD, are conjugate. The
locus of T for parallel chords is the diameter conjugate to the

chord through the center.
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5. IfQQQ
1

(Fig. 82) be a diameter and QR a chord of contact,

then is Q'R parallel to OT.

RQ being parallel to
ft, and OQ' = OQ, we have

whence, directly RQ' = 2 #a
;
as also SRQ<RQ'=O, RQ and RQ'

being supplementary chords/
' ^ *****

6. TJie points in whicJi any two parallel tangents as Q'T,' QT

(Fig. 82) are intersected by a third tangent^ as TT| lie on conju-

gate diameters. * ^ * * , .

*,; ^',

*'*' *
? ^

' $

The equation of RT' is STr^p^f, and that of Q
;
T' is

For the point Tj ?r = TT' ; whence, by subtraction,

^7. Chord of contact.

The equation of the tangent,

is linear, and satisfied for both Q and R. Hence, writing o- for p

as the variable vector, IT being constant^

is the equation of the chord of contact,

^8. To Jind the locus of T for all diords through a faced point

(Fig. 82).

Let s be a fised point of the chord RQ, so that os = or=a

constant. Then

a right line perpendicular to <<r, or parallel to the tangent at the

extremity of os, and the locus of x for all chords through s.
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9. Any semi-diameter is a mean proportional between the dis-

tances from tlie center to the points where it meets the ordinate of

any point and the tangent at that point.

Q'

OB (Fig. 82) and OP being still represented by ft and a, let

ox= x'a and OQ p = %a -f- yp. Then from the equation of the

tangent, Sr</p= 1, we obtain

whence, since Sa^>/3
= 0,

or

ON . OT = OF2
.

10. Ifvi)' (Fig. 82) and pp r are conjugate diameters, then are

PD awd YD* proportional to the diameters parallel to them.

With the same notation

whence
OE = m(a /?) , OF SB n(a



APPLICATIONS TO LOCI.

From the equation of the ellipse ( /-& ;
* '& {"

and

Now, from (a) , since S/3</3
= Sa<a = 1 and

2m3 =1.
Similarly, from (5) ,

211

(a)

(6)

=
Sct<&8

= 0,

Also

::Tm(a
: : OE : OF.

11. TJie diameters along tJie diagonals of the parallelogram on

the axes are conjugate; and the same is true of diameters along

the diagonals of any parallelogram ivhose sides are the tangents at

tlie extremities of conjugate diameters.

12. Diameters parallel to the sides of an inscribed parallelo-

gram are conjugate.

Fig 83.

Let the sides of the parallelogram. (Fig. 83) be

and let

Then

pp' = a, PQ

OP = /3, OQ s=
p.

OP ;

=sp-fa, OQ' = p' + a, o
f

p = /
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Prom the equation of the ellipse, Sp<p= 1 , we have for o/ and F'

whence, since Sp<p = Sp' <p' = 1 .

Subtracting

or

13. The rectangle of the perpendiculars from the foci on the

tangent is constant^ and equal to the square of tlie semi-conjugate

axis.

Tig. 83

D'

Let tlie tangent be drawn at E (Fig. 83) and OR = p. Then

$p is parallel to the normal at R, that is, to the perpendiculars

TD, F;D! Hence, OF being a,

a,

which, since D and D' are on the tangent, in S:r<fy>
= 1 give

or
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whence

9P
and

But

or, substituting a2
p
2 from Equation (234) and cr =

Also

a4
^

^ ^"'

14. T/A /oo? o/ #Ae perpendicularfrom the focus on the tangent

is in the circumference oftJie circle described on the major axis.

To prove this we have to show that the line OD (Fig. 83) is

equal to a. Now

from the preceding example. Hence

a , 2Sa^p(l-
(oD)S=5a +-__,
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The Parabola,

96. 1. Eesuming Equation (*233) and making e = l ? the

equation of the parabola is

.
..

. . , (238),
which ma' be written - ** s -

*

or

in which, if we put

p a"1

Sap- -

we have for the equation of the parabola

Spfap + s&a"
1)! (239)

and, as in the case of the ellipse,

Scnp = Sp<cr...... (240]

Operating on <p by S . a x , we obtain '-
,

- ^
'

"

:;

>0*.". .*:'. . (241)

hence, <p ft a perpendicular to the axis.

Operating on
<fy> by S . p X

2. Differentiating Equation (239), we have
t)

,
tf

'.

"

-^x x
' J '

J t

2Sp^p+2Sdpa-
1 = 0.

For any point of the tangent line to which the vector is
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from which, substituting dp in the above,

-'- pa'
1

)
=

;

or, since Sp<p
- 1 2Spa~

1

[Eq. (239)],

-1+2 Spa"
1 + Sxa- 1 -

Spa'
1 = 0,

whence

STT^p + a-^ + SpcT^l . . . . (243),

the equation of the tangent line.

3. From (a) we obtain

or, since -TT p is a vector along the tangent,

is in the direction of the normal.

4. If cr be a vector to any point of the normal, the equation

of the normal will be
1

) ..... (244).

5. The Cartesian form of Equation (239) is obtained by

making
p = xi + y} 9

a = K> (Fig. 80) = pi ;

xpi

yj.--- '

whence, Equation (239) becomes

?̂ P

.: ^=2

the equation of tlie parabola referred to the focus.
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97. Examples.

1. The subtanyent is bisected at the vertex.

-'
'

V'S

We have (Fig. 84) FT = xa, -which in the equation of the tangent

gives

,

But Sa<j>p
=

1
hence

multiplying by a
(a)

P = <*,

a aSa" 1

p,

AT= AF aSflT
1

p.

But the value of </> gives
"

,
- ^ , ^, ^

)

* '

'

a2^p = p a" 1

Sap ;
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and, since <p is a vector along MP and a" 1

Sap a vector along FM,

from p = FM + MP we have , .

f
*

,

*
X*

.;
, *K fc* J

. . v , c **/ f '* *

ra =s a" 1

Sap = aSa"1

pj (6}

MP = a2 <p; (c)

.'. AT = AK FM = AM,

or, as lines,

AT = A 31.

2. TOe distances from the focus to tJie point of contact and the

intersection of the tangent with the axis are equal

tta = a aSa^pf"
or (Fig. 84) ,

(FT)
2 = (a-aSa-V)

2

= (a-a-
1
Sap)

2

[Bq, (238)] =p2

r^"
1/

.'. FP= FT,

3. TJie subnormal is constant and equal to half the parameter.

The vector-normal being ^p-j-cr
1

(Art. 96, a), we have

(Fig. 84)
-

pNs
but

PN = PM + MS

r
v- [EX. 1,

or

or, the distances BIN and FO are equal, and the subnormal = p,

a constant.

4. The perpendicular from the focus on the tangent intersects

it on the tangent at the vertex, and AQ = MP (Fig. 84) .
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Since (Ex. 2) FP = FT = PD, FD is perpendicular to PT or par-

allel to PN. Otherwise :

NP == -
z(<f>a.+ a'1

)
= a2

(<p + a'1

) (Ex. 3)

=
a?<t>p + a = MP + FO, [Ex 1

, (c) ]
'

o. To j^Jic? tfie ?ocws o/ Ae intersection of the perpendicular

from the vertex on the tangent .
and the diameter produced

through the point of contact. :* '
'

*
'

Fig. 84.

8 D

Let FS = o- (Fig, 84) be a vector to a point of the locus.

Then

FS = FA + AS = FP + PS,

a"1

)
= p + %a.
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Operating with x S . 4>p, then, since Sa<p = [Eq. (241)],

[Eq. (242)]

.-. 2

and

or

cr fa= a20p.

Operating with x S . a

S(<r fa)a==Q,

or [Eq. (180)], the locus is a right line perpendicular to the

axis and fp distant from the focus.

6, To find the locus of the intersection of the tangent and the

perpendicular from the vertex.

If the origin be taken at the vertex, then since <j>p + a~ l
is a

vector along the normal, the equation of the locus will be

1

). (a)

To eliminate a?, operate with S . a x which gives

<M
, ^ tj /r fj^ ,/ } f,

x j^Srwr, whence Sa'V = ^.
a2

To eliminate p, the equation of the tangent, Sn-

SpcT
1 =1? for the new origin becomes

or L
*-/ -..i ,

-

+ 2Sa-V

Operating on (a) with X S . <pj whence STT^P =s (^p)
2

, the

preceding equation becomes X^v^^* )'

2o?
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Also [Eg. (242)] S/xfr>
= a2

(<fr>)S which, in the equation of

the parabola Sp((j6p + 2a-1

)=l } gives

Whence, from (&) and (c), by subtraction,

But, from (a),

Equating these values of (^p)
2 and substituting the value of ,

which is the equation of the locus required. To transform to

Cartesian coordinates, make

TT= on + yj, and a= i,

whence
^ =T^+ ^)' Sair^-aa:,

a2= -a2
,

and '.
"

. ^'(

'
1

*
t
.'

' *

-'ri *'/'*- *''-''

Utf ^A
the equation of the cissoid to the circle whose diameter is the

distance from the vertex to the directrix, y f- jj3>
i

7. If pp f

(Fig. 75) be a focal diord, and PA, PA\produced
meet the directrix in i>

f

, D, then will PD and P'D' 6e parallel to AF.

AD f= iRAP= AO + QD ?

'

Operating with S . a x

a2
. (r/)
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Now rp = p and FP' = tip are vectors to points on the

curve, and hence satisfy its equa-
tion. Whence [Eq. (288)]

Fi^ 75 < 6^

-(a
2

-Sap)
2

or

.'. a' (a
2 -2 Sap) = a2

. (

Hence, comparing with (a),

or, the sides produced of the

triangle AFF are cut propor-

tionately, and therefore D'P' is

parallel to AF.
m

'

^ ^

8. If, with a diameter equal to three times the focal distance,

a circle le described with its center at the vertex, the cotton
chord bisects the line joining the focus and vertex. f$>

-6

The equation of the curve being
"^

that of the circle whose center is A (Fig. 75) 9
referred to F, is

of the form [Eq. (210)]

or, by condition, < . ^

which, in (a) , gives

which, is the proposition.

aT
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98. The Cycloid.

1. Let a and /S be vectors along the base and axis of the

cycloid and T/?= Ta = r, the radius of the generating circle.

Then, for any point p of the curve,

x = rO r sin0 = ?'

y = r rcosfl r(l cos0),

and the equation of the cycloid is

p = (6
-

sin0)a4-(l
-

cos0)/3.

4
'

''-'

2. The vector along the tangent is *"" ' * r

|

'

(1 cos#)a +

and the equation of the tangent is

3- The vector from p to
p

the lower extremity of the vertical

diameter of the generating circle through P is

,* j'-*'-^' "'^-r f -. ' *:" 'V

"P ^ - PC = (1 cos#) + sin^ . a,
^

1 t
and, from the above expression, for the vector-tangent KT, \

S(PC . PT) = O;

hence PC is perpendicular to the tangent, or the normal passes

through the foot of the vertical diameter of the generating cir-

cle for the point to which the normal is drawn, and the tangent

passes through the other extremity.

4. If, through r, a line be. drawn parallel to the base,

intersecting the central generating circle in Q, show that

PQ = r(-Tr 6) =s arcQA, A being the upper extremity of the

axis.
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* ,

5. With the notation of Ex. 6, Art. 86,
'"

/

p* =(1 cos0)a-hsin0 , ft,

p'
2 = - [(1

- eosg

rV 1- 2 cos 6 + cos2 + sin2 r V2-2cos0

the length of the entire curve.

6. With the notation ofJEx. 7, Art.

^(9 .9)8 + (1
-

cos(9)
2

/3a]

= TY[(0 sin - sin
2
<9 -(1- c

= r* f(0 sin0 -|- 2 cos^ - 2)
*/27r

Fr2 1=
-(sintf (9 cos0 -f 2 siu0 - 2

fl)

L 2 JS

the whole area of the curve.

99. Elementary Applications to Mechanics,

1. If 5 be the magnitude of any force acting in a known di-

rection, the force, as having magnitude and direction, may be

represented by the vector symbol /?, which is independent of

the point of application of the force. In order, completely, to

define the force with reference to any origin o, the vector OA=a,
to its point of application A, must also be given. For concur-

ring forces, whose magnitudes are 5J &J
F .....

, we have, for the

resultant, /? S/3J which is true, whether the forces are compla-

uar or not, and is the theorem of the polygon offerees extended*

For two forces, ft
= r

-f
"

;
whence jS

2= '2 + 0"
2 + 2 SffP", or
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/y
2 = V2+ &"3 + 2 &

r

&" costf, wiiich is the theorem of the parallelo-

t/mm of forces. For any number of concurring forces, the con-

dition of equilibrium will be 2j8
r= 0. For a particle constrained

to move on a plane curve whose equation is p= <j>(t), dp being

in the direction of the tangent, since the resultant of the ex-

traneous forces must be normal to the curve for equilibrium, we

have
= 0. - (a)

2. If oA f

=a,'and'is a force acting at A,' then TYa'0'=a'&' sin

is the numerical value of the moment of the couple ft
1 at A' and

/?' at o. Representing, as usual, the couple by its axis, its

vector symbol will be Yo/0! If ft act at some point other

than the origin, as c[ and oc'= y', the couple will be denoted by

Y{a' y')/?!
From this vector representation of couples, it fol-

lows that their composition is a process of vector addition; hence

the resultant couple is SV(a'-y')# and, for equilibrium,

5Y(o'y') /?'=<). If the couples are in the same or parallel

planes, their axes are parallel and T2 = 5T. Since a' y' is

independent of the origin, the moment of the couple is the same

for all points. Since Y(a'- y')/?'= Va'/3'
-Yy'$ the moment of

a couple is the algebraic sum of the moments of its component

forces. If the forces are concurring, and a' is the vector to

their common point of application, SV<x7?'=YV
f= Ya r

2/3
r=

Ya f

/J, or the moment of the resultant about any point is tlie sum

of the moments of the component forces. When the origin is on

the resultant, a' coincides with /}'
in directions and Ya'/J

=
;
or

the algebraic sum of the moments about any point of the resultant

is zero. If a single force f? ^Sts at A.[ we may, as usual, intro-

duce two equal and opposite forces at the origin, or at any other

point c; and thus replace
'

A , by
r and

Va'^
or by 0V and

Y(a' y')jG.'
If be a unit vector along any axis oz through the

origin, then the moment of (j? acting at A( with reference to the

axis oz, will be - S0V& or - 8 . VW If P and I are in the

same plane, in which case they either intersect or are parallel ;

or, if the axis passes through A^ there will be no moment : in

these cases, aj ft
1 and are eoniplanar, and Sj8

;

a' = 0.
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3. If the forces are parallel, their resultant ft
= 2/3'=

= U2&' ; and, therefore, for equilibrium, ST/5'= S6'= 0. The

moment of a force with reference to any axis oz through the

origin being S/3
r

a', and the moment of the resultant being

equal to the sum of the moments of the components, we have

SSj8'a
r

f, which, for parallel forces, becomes S(Si' * TJ/5 . o)

S(Uj8S&
f

a' 0? which, being true for any axis, is satisfied

which is independent of IT/?, and hence is the vector to the cen-

ter of parallel forces. "When S& f= 0, the above equations give

/3 and a = oo, the system reducing to a couple. For a sys-

tem of particles whose weights are w[ w\
l

, we have the vec-

tor to the center of gravity a =
j

From this equation,

Sw>
f

(a a-
r

)
=

; whence, if the particles are equal, the sum of
the vectorsfrom the center of gravity to each particle is zero; and,

if unequal, and the length of each vector is increased propor-

tionately to the weight of each particle, their sum is zero. For

equal particles, a= w
, or the center of gravity ofa system of

"2\w

equal particles is tJie mean point (Art. 18) of the polyedron of
which the particles are the vertices. For a continuous bod}'

whose weight is w^ volume V, and density D at the extremity of

a^ a= c VCL

,
in which S may be replaced by the integral sign

XDav
if the density is a known function of the volume. For a homo-

Hdva!
geneous body, a =

, which is applicable to lines, surfaces
zav

or solids, v representing a line, area or volume. Thus, for a

plane curve p= <(*) o[ dv = d$ = T(Zp = T^
f

(f)dt and

rT
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A. General conditions of equilibrium of a solid body. Let

the forces $ $ .....
,
act at the points A,' A," of a solid body,

and OA' = aj OA" = a," , Replacing each force by an equal

one at the origin and a couple, the given system will be equiva-

lent to a system of concurring forces at the origin and a system

of couples. Hence, for equilibrium,

S/?
f=0, (d)

SYa'/8'= 0. (e)

Let be the vector to any point x. Then, from (cZ),

V * 2/3
f= 0, and therefore, from (e) , T . S/3'= 3Ya'/3' ; whence

Conversely, f being a vector to any point, the resultant couple,

for equilibrium, is 3Y(a'- f)/J
?=

;
. -. 2Ya''= and 2/?'= 0.

Therefore (/) is the necessary and sufficient condition of equi-

librium.

This condition may be otherwise expressed by the principle

of virtual moments. Let 55 S" ..... be the displacements. Then

the virtual moment of ft is S,3
r

8' ; and, for equilibrium,

SS'8 r=0. This equation involves (d) and (e). Thus, if the

displacement corresponds to a simple translation, S'=S"=Sm

= etc. = a constant* and we may write 2S/?'S
f= S82j3

f =
;

whence, since 8 is real, 2/3'= 0. Again, if the displacement

corresponds to a rotation, about an axis
> being a unit vector

along the axis,

the last term being a vector perpendicular to the axis. For a

rotation about this axis through an angle 0, this term becomes

- ^tnV= - { cos0 Yfa'+ sin* YfrJ and a! becomes

a'a= - {SJa'- cos Ya'+ sintf Vfe'

which, for an infinitely small displacement,
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Placing the scalar factor under the vector sign and writing

simply for 0, to denote the indefinitely short vector along oz,

or, 8'= YW Hence 2S0'8
f= 2S'Va'= SSYa'/3' ; or, since is

not zero, 3Ya'/S'= 0.

5. Illustrations.

(1) Three concurrent forces, represented in magnitude and

direction by the mediate of any triangle, are in equilibrium.

(See Ex. 2, Art. 17.)

(2) If three concurring forces are in equilibrium, they are

complanar. By condition, /3'+/J"+/3'"=0, Operating with

S . 0'0"x , we have S/?
r

|S"j8
frr- 0.

(3) In the preceding case, operating with Y. /3
f

x, we have

Y/?
f

/3'

r

-fY/3'/3
r"=Q ; whence, since the forces are complanar,

TY/3'"= TV/3
r

&'" or &'&" sin($ 0") = VV" sin(# ft
1

") . A sim-

ilar relation may be found for any two of the forces ;
whence

6': 6": ft"': : sin($' "'): sin(# "'): sin(# 0").

(4) If two forces are represented in magnitude and position

by two chords of a semicircle drawn from a point on the circum-

ference, the diameter through the point represents The resultant.

(5) A weight, w\ rests on the arc of a vertical plane curve,

and is connected, by a cord passing over a pulley, with another

weight, w? Find the relation between the weights for equili-

brium*

(a) Let the curve be a parabola, and the pulley at the focus.

Then, from Eq, (a) of this article, the equation of the curve be-

ing p= -
(y

z-tf)*+y& we have
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in which r = radius vector. Hence

or, since r=o?-f jp, w'=iv" Hence, if the weights are equal,

equilibrium mil exist at all points of the curve.

(I) Let the curve be a circle and the pulley at a distance m
from the curve on the vertical diameter produced. With the

origin at the highest point of the circle, p
= ora + V2RX $f$.

Hence, r being the distance of the pulley from w[

= Q - -

(o) Let w be placed on the concave arc of a vertical circle,

aud acted upon by a repulsive force varying inversely as the

square of the distance from the lowest point of the circle. To
find the position of equilibrium. The origin being at the lowest

point of the circle, and r the distance required, let p be the

intensity of the force at a unit's distance
;
then ^ will be its

intensity for any distance r
,
and

?

whence

(d) Let w9
rest on a right line inclined at an angle & to the

horizontal, and connected with to" by a cord passing over a pul-

ley at the upper end of the line. Find the relation between the

weights. With the origin at the lower end of the line, its equa-
tion is p as oja. If ft is in the direction of w\ then &a(w

f

/3+w"a)
=

J
.'. 40 r

'ss0'BlIL0.

(6) To find the center of gravity of three equal particles at

the vertices of a triangle. A, B, c being the vertices, the vector
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from A to the center of gravity of the weights at A and B is

J-AB = AD. The vector to the center of gravity of the three

weights is ^-(AB +AC) = AB +XDC = AB-[-#( I-AB + AC) ;

.-. &:=$, and the required point is the center of gravity of the

triangle.

(7) Find the center of gravity of the perimeter of a triangle*

(8) Find the center of gravity of four equal particles at the

vertices of a tetraedron.

(9) Show that the center of gravity of four equal particles

at the angular points of any quadrilateral is at the middle point

of the line joining the middle points of a pair of opposite sides.

(10) The center of gravity of the triangle formed by joining

the extremities of perpendiculars, erected outwards, at the mid-

dle points of any triangle, and proportional to the corresponding

sides, coincides with that of the original triangle. Let ABC be

the triangle, BC = 2 a, CA = 2/3 and e a vector perpendicular to

the plane of the triangle. Then, if m is the given ratio, B the

initial point, and %, E2 , Eg the extremities of the perpendiculars

to BC, CA, AB, respectively,

BB!= a + Wfcea, Bitj= 2 a + ft + me/3, BR^ = a + ft 7ft(a +/3) ;

(11) To find the center of gravity of a circular arc. The

equation of the circle p = r(cos0 . a-hsin0 . ), gives &p =
a + cos0 *

r^09)T<
r

(<9)tM fr(cos(9

f!iy(0)cW CdO

For an arc of 90 integrating between the limits ^ and 0,
2

ttl
= ^L(a+ 15) , the distance from the center being V2 ; which

-3T 7T
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may be obtained directly also by integrating between the limits

- and -. For a semicircumference or arc of 60? we have, in

5 )' ^
like manner, and .

7T 77

(12) If a, /?, y are the vector edges of any tetraedron, the

origin being at the vertex, then p a, /J y, a j8 are lines of

the base, p being any vector to its plane. Hence this plane is

represented by S (p
-

a) (0
-

y) (a
-

0) = ;
.-. Sp (Ya/3 +

Yya-f Yj8y) Sa/3y
= 0. If 8 be the vector perpendicular on

the base,

and, taking the tensors,

T (Ya/J+ V/Jy + Yya) =
6 x vo1 ' = 2 area base.

alt.

O, in which the

last terms are twice the vector areas of the plane faces. The
sum of the vector areas of all the faces is therefore zero. Since

any polyedron may be divided into tetraedra by plane sections,

whose vector areas will have the same numerical coefficient, but

have opposite signs two and two, the sum of the vector areas of

any polyedron is zero. These vector areas represent the pres-

sures on the faces of a polyedron immersed in a perfect fluid

subjected to no external forces. For rotation, since the points

of application of these pressures are the centers of gravit}- of

the faces, to which the vectors are

we have the couples

*- fT(aY0y + Yya+ yVa/J) ,

since aYa-|-aY/?a= 0, etc. But, Equation (123), this sum is

zero. Hence there is no rotation.
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100. Miscellaneous Examples.

1. In Fig. 58, F, A and K are collinear.

2. In Fig. 58, AD3-AES=AB3-AC2
.

3. In Fig. IS, if the lines from the vertices of the parallelo-

gram through o and P are angle-bisectors, OJCLTP is a

rectangle.

4. If the corresponding sides of two triangles are in the same

ratio, the triangles are similar.

5. /?, a, y being the vector sides of a plane triangle, if /?=a-f-y,

show that &
2
=cj

2 -~cc&cosB+a&cosc,

6. The sides BC, CA } AB of a triangle are produced to D, E, r,

so that CD = muc, AE = ?tCA, BF =^>AB. Find the inter-

sections Q], Q2 , Qg of EB, re ; FC, DA; DA, EB.

7. In any right-angled triangle, four times the sum of the

squares of the medials to the sides about the right angle

is equal to five times the square of the hypothenuse.

8. If ABC be any triangle, ai its mean point, and o any point

in space, then

AB2+ BC2+ CA2 = 3 (OA
2+ OB3+ OC2

)
-

(3 Oil)
2

.

9. If ABCD be any quadrilateral, M its mean point, and o any

point in space, then

AB2+ BC2
-f CD

2+ DA2

= 4(OA
2+ OB2+ OC2+ OD2

)
-

(40M)
2- AC2- BD2

.

10. If ABC be any triangle, and c', B', A ; the middle points of

AB, AC, CB, then, o being any point in space,

AB3+BC2+CAa

=4(OA
2+OB3+OC2

)-4(OB
Fi!+OC r2

-t-OA
/2

).

11. If ABC be any triangle and >i its mean point, then

AB2+ BC3
-f CA

2=

Points P, Q, R, s ai*e taken hi the sides AB, BC, OD, DA of a

parallelogram, so that AP= WAS, BQ = msc, etc. Show

that PQES is a parallelogram whose mean point coincides

with that of ABCD.
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13. The sides of any quadrilateral are divided equably at p, Q,

B, s, and the points of division joined in succession. If

PQES is a parallelogram, the original quadrilateral is a

parallelogram,

14. The middle points of the three diagonals of a complete

quadrilateral are collinear.

15. If any quadrilateral be divided into two quadrilaterals by

any cutting line, the centers of the three are collinear.

16. If a circle be described about the mean point of a paral-

lelogram as a center, the sum of the squares of the hues

drawn from any point in its circumference to the four

angular points of the parallelogram is constant.

17. A quadrilateral possesses the following property : any point

being taken, and four triangles formed by joining this

point with the angular points of the figure, the centers

of gravity of these triangles lie in the circumference of a

circle. Prove that the diagonals of this quadrilateral are

at right angles to each other.

18. The sum of the vector perpendiculars from A, B, c, .... on

any line through their mean point is zero.

19. a, 5, c are the three adjacent edges of a rectangular paral-

lelopiped. Show that the area of the triaugle formed by

joining their extremities is |-V&
2
c
3+ aV+oW.

20. Given the co-ordinates of A, B, c, D referred to rectangular

axes. Find the volume of the pyramid o ABCD, o being

the origin.

21. Any plane through the middle points of two opposite edges
of a tetraedron bisects the latter.

22. The chord of contact of two tangents to a circle drawn

from the same point is perpendicular to the line joining

that point with the center.

23- If two circles cut each other and from one point of section

a diameter be drawn to each circle, the line joining their

extremities is parallel to the line joining their centers,

and passes through the other point of section.
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24. The square of the sum of the diameters of two circles, tan-

gent at a common point, is equal to the sum of the

squares of any two common chords through the point of

tangency, at right angles to each other.

25. T is any point without a circle whose centre is c ; from T

draw two tangents TP, TQ, also any line cutting the circle

in v, and PQ in R
;
draw cs perpendicular to TV. Then

SR . ST = SV2
.

26. If a series of circles, tangent at a common point, are cut

by a fixed circle, the lines of section meet in a point.

27. In Ex. 26, the intersections of the pairs of tangents to the

fixed circle, at the points of section, lie in a straight

line.

28. If three given circles are cut by any circle, the lines of

section form a triangle, the loci of whose angular points

are right lines perpendicular to the lines joining the

centers of the given circles.

29. The three loci of Ex. 28 meet in a point.

30. Given the base of an isosceles triangle, to find the locus of

the vertex.

31. Find the locus of the center of a circle which passes through

two given points.

32. Find the locus of the center of a sphere of given radius,

tangent to a given sphere.

33. The locus of the point from which two circles subtend

equal angles is a circle, or a right line.

34. Given the base of a triangle, and m times the square of

one side plus n times the square of the other, to find the

locus of the vertex.

35. Given the base and the sum of the squares of the sides of

a triangle, to find the locus of the vertex.

36. In Ex. 35, given the difference of the squares, to find the

locus.
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37. OB and OA are any two lines, and MP is a line parallel to

OB. Find the locus of the intersection of OQ and BQ
drawn parallel to AP and OP, respectively.

38. From a fixed point F, on the surface of a sphere, chords

FP', PP", .... are drawn. Find the locus of a point o on

these chords, such that PP'. PO = m2
.

39. A line of constant length moves with its extremities on two

straight lines at right angles to each other. Find the

locus of its middle point.

40. Find the locus of a point such that if straight lines be

drawn to it from the four corners of a square, the sum

of their squares is constant.

41. Find the locus of a point the square of whose distance

from a given point is proportional to its distance from a

given line,

42. Find the locus of the feet of perpendiculars from the origin

on planes cutting off pyramids of equal
' volume from

three rectangular co-ordinate axes.

43. Given the base of a triangle and the ratio of the sides, to

find the locus of the vertex.

44. Show that YapY/o/3 = (Ya/?)
2
is the equation of a hyperbola

whose asymptotes are parallel to a and /3.

45. Find the point on an ellipse the tangent to which cuts off

equal distances on the axes.

46. A and B are two similar, similarly situated, and concentric

ellipses ;
c is a third ellipse similar to A and B, its center

being on the circumference of B, and its axes parallel to

those of A and B : show that the chord of intersection of

A and B is parallel to the tangent to B at the center of c.

PRESSWORK BY GINK & Co., BOSTON
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Elements of the Calculus,

By A. S. HAKDY, Professor of Mathematics in Dartmouth College, Svo.
Cloth, xi + 239 pages. By mail, $1.60; for introduction, $1.50.

S text-book is based upon the method of rates. The object
of the Differential Calculus is the measurement and comparison

of rates of change when the change is not uniform. Whether a

quantity is or is not changing uniformly, however, its rate at any
instant is determined essentially in the same manner, viz* : by let-

ting it change at the rate it had at the instant in question and

observing what this change is. It is this change which the Cal-

culus enables us to determine, however complicated the law of

variation may be. From the author's experience in presenting the

Calculus to beginners, the method of rates gives the student a more

intelligent, that is, a less mechanicals grasp of the problems within

its scope than any other. No comparison has been made between

this method and those of limits and of infinitesimals. This larger

view of the Calculus is for special or advanced students, for which

this work is not intended
;
the space and time which would be

required by such general comparison being devoted to the applica-

tions of the method adopted.

Part I., Differential Calculus, occupies 166 pages. Part II., Inte-

gral Calculus, 73 pages.

George B. Merriman, Prof, of
Mathematics and Astronomy', Ritt-

yers College: I am glad to observe

that Professor Hardy has adopted
the method of rates in his new Calcu-

lus, a logical and intelligent method,
which avoids certain difficulties in-

volved in the usual methods.

J, B. Coit, Prof, of Mathematics,
Boston University: It pleases me
very much. The treatment of the

first principles of Calculus by the

method of rates is eminently clear.

Its use nest year is quite probable.

Ellen Hayes, Prof, of Mathemat-

ics, WeUesley College : I have found

it a pleasure to examine the book.

It must commend itself in many
respects to teachers of Calculus.

W. B. McDaniel, Prof, of Mathe-

matics, Western Maryland College:

Hardy's Calculus and Analytic Ge-

ometry are certainly far better books

for the college class-room than any
others I know of. The feature of

both books is the directness with

which the author gets right at the

very fact that he intends to convey
to the student, and the force of his

presentation of the fact is greatly

augmented by the excellent arrange-

ment of type and other features of

the mechanical make-up.
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The Method of Least Squares.
With Numerical Examples of its Application. By GEORGE C, COM-

SSOCK, Professor of Astronomy in the University of Wisconsin, and

Director of the Washlbiirn Observatory, Svo. Cloth, mi + 68 pages.

Mailing price, $1.05; for introduction, fcl.OO.

rpHIS work contains a presentation of the methods of treating

observed numerical data which are in use among astronomers,

physicists, and engineers. It has been written for the student,

and presupposes only such mathematical attainments as are usually

possessed by those who have completed the first two years of the

curriculum of any of our better schools of science or engineering.

Peirce's Elements of Logarithms.
With an explanation of the author's Three and Four Place Tables, By
Professor JAMES MILLS PEIKCE, of Harvard University. 12mo. Cloth.

80 pages, Mailing price, 55 cents ;
for introduction, 50 cents.

rpHE design of the author has been to give to students a more

complete and accurate knowledge of the nature and use of

Logarithms than they can acquire from the cursory study com-

monly bestowed on this subject.

Mathematical Tables Chiefly to Four Figures.

With full explanations. By Professor JAMBS MILLS PKC&CE, of Harvard

University, 12mo. Cloth. Mailing price, 45 cents ; introduction, 40 cents,

Elements of the Differential Calculus,

With numerous Examples and Applications. Designed for Use as a Col-

lege Text-Book. By W. E. BTTEBLY, Professor of Mathematics, Harvard

University. 8m 273 pages. Mailing price, $2.15; introduction, $2.00;

allowance, 40 cents.

peculiarities of this treatise are the rigorous use of the

Doctrine of Limits, as a foundation of the subject, and as

preliminary to the adoption of the more direct and practically con-

venient infinitesimal notation and nomenclature ;
the early intro-

duction of a few simple formulas and methods for integrating j
a

rather elaborate treatment of the use of infinitesimals in pure

geometry ;
and the attempt to excite and keep up the interest of

the student by bringing in throughout the whole book, and not

merely at the end, numerous applications to practical problems in

geometry and mechanics.
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Elements of the Integral Calculus.

Second Edition, revised and enlarged. By W, E. BYERLT, Professor of

Mathematics m Harvard University, 8vo. xvi + 383 pages. Mailing
price, $2.15 ;

for introduction, $2.00 ;
allowance for old book, 40 cents.

rpHIS work contains, in addition to the subjects usually treated

in a text-book on the Integral Calculus, an introduction to

Elliptic Integrals and Elliptic Functions; the Elements of the

Theory of Functions
;
a Key to the Solution of Differential Equa-

tions ;
and a Table of Integrals.

The subject of Definite Integrals is much more fully treated

than in the earlier edition, and in addition to the new matter,

mentioned above, a chapter has been inserted on Line, Surface,

and Space Integrals. The Key has been enlarged and improved,

and the Table of Integrals, formerly published separately, has

been much enlarged, and is now bound with the Calculus.

E. Clark, Prof, of Mathe- - additions. It is a fine introduction

matics, Sheffield Scientific School of s to the topics on which it treats. It

Tale University : The additions to may well take its place beside the

the present edition seem to me most treatises of Todhunter and "William-

]udicious and to greatly enhance its son, as one of the best of hand*

value for the purposes of university books for students and teachers of

instruction, for which in several im- the higher mathematics.

portant respects it seems to me better Wm _ j yall&lm prof, of Math*-
adapted than any other American ^ randerbilt University: It is
text-book on the subject.

pleasing to see the author avoiding,

W. C. Esty, Prof, of Mat7iematicst and in some cases leaving out of

Amherst College, Amherst, Mass. : sight, the old rats long since worn

Its value is greatly increased by the - smooth by our teaching fathers.

A Short Table of Integrals.

Revised and Enlarged Edition. To accompany Byerly's Integral Cal-

culus. By B. 0. PEIBCE, Professor of Mathematics, Harvard University.
32 pages. Mailing price, 15 cents, Bound also with the Calculus,

Byerly's Syllabi.

By W, E. BYERLT, Professor of Mathematics in Harvard University,
Each, 8 or 12 pages, 10 cents. The series includes, Plane Trigonometry,
Plane Analytical Geometry, Plane Analytic Geometry (Advanced
Course), Analytical Geometry of Three Dimensions, Modem Methods
in Analytic Geometry, the Theory of Equations.
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Directional Calculus.

By E. W, HYDE, Professor of Mathematics in the University of Cincin-

nati. 8vo, Cloth, xii + 247 pages, with blank leaves for notes. Price

by mail, 2.15, for introduction, $2.00.

rnHIS work follows, In the main, the methods of Grassmann's

Aiisdehnungslehre, but deals only with space of two and three

dimensions. The first two chapters which give the theory aud

fundamental ideas and processes of his method, will enable students

to master the remaining chapters, containing applications to Plane

and Solid Geometry and Mechanics ;
or to read Grassmaim's original

works. A very elementary knowledge of Trigonometry, the Differ-

ential Calculus and Determinants, will be sufficient as a preparation

for reading this book.

Daniel Carhart, Prof, of Mathe-

matvx, Western University of Penn-

sylvania: I am pleased to note the

success which lias attended Professor

Hyde's efforts to bring into more

popular form a "branch of mathemat-

ics which is at once so abbreviated in

form and so comprehensive in results.

Elements of the Differential and Integral Calculus.

With Examples and Applications. By J, M. TAYLOR, Professor of

Mathematics in Madison University. 8vo. Cloth. 249 pages. Mailing

price, $1.95 ;
for introduction, $1.80 ;

allowance for old book, 40 cents.

rnjjE aim of this treatise is to present simply and concisely the

fundamental problems of the Calculus, their solution, and more

common applications.

Many theorems are proved both by the method of rates and that

of limits, and thus each is made to throw light upon the other.

The chapter on differentiation is followed by one on direct integra-

tion and its more important applications. Throughout the work

there are numerous practical problems in Geometry and Mechanics,

which serve to exhibit the power and use of the science, and to

excite and keep alive the interest of the student. In February, 1891,

Taylor's Calculus was found to be in use in about sixty colleges,

all that is necessary has been said.

In the second place, the number of
The Nation, N&w York : In the

first place, it is evidently a most

carefully written book. . . . We are

acquainted with no text-book of the

Calculus which compresses so much
matter into so few pages, and at the

same time leaves the impression that

carefully selected examples, both of

those worked out in full in illustra-

tion of the text, and of those left for

the student to work out for himself>

is extraordinary*
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Elementary Co-ordinate Geometry.

By W. B. SMITH, Professor of Math,, Missouri State University. 12mo t

Cloth* 312 pages. Mailing Price, 82,15; for introduction, $2.00.

TI7HILE in the study of Analytic Geometry either gain of

knowledge or culture of mind may be sought, the latter

object alone can justify placing it in a college curriculum. Yet the

subject may be so pursued as to be of no great educational value.

Mere calculation, or the solution of problems by algebraic processes,

is a very inferior discipline of reason* Even geometry is not the

best discipline. In all thinking, the real difficulty lies in forming
clear notions of things. In doing this all the higher faculties are

brought into play. It is this formation of concepts, therefore, that

is the essential part of mental training. And it is in line with this

idea that the present treatise has been composed* Professors of

mathematics speak of it as the most exhaustive work on the sub-

ject yet issued in America
;
and in colleges where an easier text*

book is required for the regular course, this will be found of great

value for post-graduate study.

Wm. & Peck, Prof, of Mathe- mirably arranged. It is an excellent

mattes and Astronomy, Columbia book, and the author Is entitled to

College : I have read Dr. Smith's Co- tlie thanks of every lover of mathe*
ordinate Geometry from "beginning matical science for thisvaluable con
to end with unflagging interest. Its tribution to its literature, I shall

well compacted pages contain an im- recommend its adoption as a teixtr

dense amount of matter, most ad- book in our graduate course.

Elements of the Theory of the Newtonian Poten-

t/a/ Function.

By B. O. PEIKCE, Professor of Mathematics and Physica, in Harvard

University. 12mo. Cloth, 154 pages. Mailing price, $1.60; for mtrcn

duotion, .fl.50.

THHIS book was written for the use of Electrical Engineers and

students of Mathematical Physics because there was in English

no mathematical treatment of the Theory of the Newtonian Poten-

tial Function in sufficiently simple form. It gives as briefly as i&

consistent with clearness so much of that theory as is needed be-

fore the study of standard works on Physics can be taken up with,

advantage. In the second edition a brief treatment of Electro*

kinematics and a large number of problems have been added.
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Academic Trigonometry: p/ane and spherical.

By T. M. BLAKSLEB PhJX (Yale), Professor of Mathematics in Des

Moines College, Iowa. 12mo. Cloth. 33 pages. Mailing price, 30

cents
;
for introduction, 25 cents.

rpHE Plane and Spherical portions are arranged on opposite pages.

The memory is aided by analogies, and it is believed that the

entire subject can be mastered in less time than is usually given to

Plane Trigonometry alone, as the work contains but 29 pages of text*

The Plane portion is compact, and complete in itself.

Examples of Differential Equations^

By GEORGE A, OSBOBNE, Professor of Mathematics in the Mfossachu-

setts Institute of Technology, Boston, 12mo. Cloth, vu 4- 50 pages,

Mailing Price, 60 cents; for introduction, 50 cents,

\ SERIES of nearly three hundred examples ^rith answers, sys-"
tematically arranged and grouped under the different cases,

and accompanied by concise rules for the solution of each case.

Seldett J, Coffin, lately Prof, of Its appearance is most timely, and it

Mathematics, Lafayette College : supplies a manifest want.

Determinants.

The Theory of Determinants: an Elementary Treatise. By PAUL H
EUNtrs, B,S. recently Professor of Mathematics in the University of

Colorado, now Principal of West High School, Denver, Col, 8vo, Cloth,

viii + 217 pages. Mailing Price, $1.90; for introduction, $1.80.

HHHIS book is written especially for those who have had no pre-

vious knowledge of the subject, and is therefore adapted to

self-instruction as well as to the needs of the class-room. The

subject is at first presented in a very simple manner. As the

reader advances, less and less attention is given to details.

Throughout the entire work it is the constant aim to arouse

and enliven the reader's interest, by first showing how the various

concepts have arisen naturally, and by giving such applications as

can be presented without exceeding the limits of the treatise.

William CK Peck, Prof, of Mathe-

matics, Columbia College, N. T. : A
hasty glance convinces me that it is

an improvement on Muir.

. 30, 1886.)

T. W. Wright, Prof, of Mathemat-
ics, Union Univ., Sohenectady, J^T.:
It fills admirably a vacancy in oui

mathematical literature, and is e

very welcome addition indeed.
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Analytic Geometry.
By A. S. HABDT, PkD., Professor of Mathematics in Dartmouth College,
and author of Elements of Quaternions. Svo. Cloth, xiv-j- 239 pages.
Mailing Price, $1.60; for introduction, $1.50.

work is designed for the student, not for the teacher.

Particular attention has been given to those fundamental con-

ceptions and processes which, in the author's experience, have been

found to be sources of difficulty to the student in acquiring a grasp

of the subject as a method of research. The limits of the work axe

fixed by the time usually devoted to Analytic Geometry in our

college courses by those who are not to make a special study in

mathematics. It is hoped that it will prove to be a text-book which

the teacher will wish to use hi his class-room, rather than a book of

reference to be placed on his study shelf.

Oren Root, Professor ofMathemat-

ics, Hamilton College. It meets quite

fully my notion of a text for our

classes. I have hesitated somewhat
about introducing a generalized dis-

cussion of the conic in required work.

I have, however, read Mr. Hardy's
discussion carefully twice; and it

seems to me that a student who can

get the subject at all can get that.

It is my present purpose to use the

work next year.

John E. dark, Professor of Mathe-

matics, Sheffield Scientific School of
Tale College : I need not hesitate to

say, after even a cursory examina-

tion, that it seems to me a very at-

tractive book, as I anticipated it

would be. It has evidently been pre-

pared with real insight alike into the

nature of the subject and the difficul-

ties of beginners, and a very thought-
ful regard to both; and I think its

aims and characteristic features win
meet with high approval. While

leading the student to the usual use-

ful results, the author happily takes

especial pains to acquaint him with

the character and spirit of analytical

methods, and, so far as practicable, to

help him acquire skill in using them,

John It. French, Dean of College

of Liberal Arts, Syracuse Univer-

sity: It is a very excellent work,

and well adapted to use in the reci-

tation room.

Elements of Quaternions.

By A. S. HABDT, Ph.D., Professor of Mathematics, Dartmouth College,

Second edition, iwfeed. Crown Svo. Cloth, viii + 234: pages. Mailing
Price, $2.15; Introduction, $2.00.

rpHE chief aim has been to meet the wants of beginners in the

class-room, and it is believed that this work will be found

superior in fitness for beginners in practical compass, in explanar

tions and applications, and in adaptation to the methods of instruc-

tion common in this country.
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Elements of Plane Analytic Geometry.

By JOHN D. EuiirKLB, Walker Professor of Mathematics in the Massa-

chusetts Institute of Technology, Boston. 8vo. Cloth, ii + 344 pages

Mailing Price, 32 25
;
for introduction, $2 00.

TN this -work, the author has had particularly in mind the needs

of those students Tvho can devote but a limited time to the

subject, and yet must become quite familiar \vith at least its more

elementary and fundamental part. For this reason, the earlier

chapters are treated with somewhat more fulness thau is usual.

For some propositions, more than a single proof is given, and par-

ticular care has been taken to illustrate and enforce all parts of

the subject by a large number of numerical applications. In the

matter of problems, only the simpler ones have been selected, and

the number has in every case been proportioned to the time that

the students mil have to devote to them. In general, propositions

have been proved first with reference to rectangular axes. The

determinant notation has not been used.

Descriptive Geometry.

By LINUS FAracE, Assistant Professor of Descriptive Geometry and

Drawing in the Massachusetts Institute of Technology. 8vo. Cloth.

54 pages, with 16 lithographic plates, Including 88 diagrams. Mailing

Fnce, $1.35; for introduction, $1.25.

"TNT addition to the ordinary problems of Descriptive Geometry,

this work includes a number of practical problems, such as

might be met with by the draughtsman at any time, showing the

application of the principles of Descriptive Geometry, a feature

hitherto omitted in text-books on this subject, All of the prob-

lems have been treated clearly and concisely. The author's sole

aim has been to present a work of practical value, not only as a

text-book for schools and colleges, but also for every draughtsman*

The contents are: Chap. I., Elementary Principles ;
Notation.

Chap. IL, Problems relating to the Point, Line, and Plane. Chap.

III., Principles and Problems relating to the Cylinder, Cone, and

Double Curved Surfaces of Revolution. Chap. IYM Intersection of

Planes and Solids, and the Development of Solids; Cylinders;

Cones ; Double Curved Surfaces of Revolution
;
Solids bounded by

Plane Surfaces. Chap. Y, Intersection of Solids. Chap. VL Mis-

cellaneous Problems.
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Wheeler's Plane and Spherical Trigonometry.

By H. N. WHEELER, A.M., formerly of Harvard University. 12mo.
Cloth. 211 pages. Mailing price, $1.10; introduction, $1.00; allow-

ance, 30 cents. Peirce's Mathematical Tables are included.

rpHE special aim of the Plane Trigonometry is to give pupils a

better idea of the trigonometric functions of obtuse angles

than they could obtain, from any book heretofore existing.

In the treatment of Spherical Trigonometry special pains has

been taken to present applications to Geometry and Astronomy,
and problems involving these applications.

Adjustments of the Compass, Transit, and LeueL

By A. V. LANE, O.E
,
PhD , Associate Professor of Mathematics, Uni-

versity of Texas, Austin. 12mo, Cloth, v + 43 pages. Mailing price,
33 cents

;
for introduction, 30 cents.

Principles of Elementary Algebra.

By H. W. KEIGWU*, Professor of Mathematics, Episcopal Academy,
Cheshire, Conn. 12ioo. Paper. ii+ 41 pages. Mailing and introduc-
tion price, 20 cents.

little book is intended as .an outline of thorough oral

instruction, and is all the "text" which the author has

found it necessary to put into his pupils' hands. It should, of

course, be accompanied by a good set of exercises and problems.

Metrical Geometry. An Elementary Treatise on Mensuration.

By GEORGE BRUCE HALSTKD, PhlX, Professor of Mathematics, Univer-

sity of Texas, Austin. 12mo. Cloth. 246 pages. Mailing price, $1.10;
for introduction, $1.00.

rpHIS work applies new principles and methods to simplify the

measurement of lengths, angles, areas, and volumes. It is

strictly demonstrative, but uses no Trigonometry, and is adapted

to be taken up in connection with or following any elementary

Geometry, A hundred illustrative examples are worked out in the

course of the book, and at the end are five hundred carefully

arranged and indexed exercises, using the metric system.
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A Treatise on Plane Surveying,

By DANIEL CARHA.RT, CUE., Professor of Civil Engineering in the West
ern University of Pennsylvania, Allegheny. Illustrated. 870. Half

leather, xvii + 498 pages. Mailing Price, 82.00, for introduction, $1,80.

lS work covers the whole ground of Plane Surveying, It

illustrates and describes the instruments employed, their ad-

justments and uses
;

it exemplifies the best methods of solving the

ordinary problems oecumng in practice, and furnishes solutions

for many special cases which not infrequently present themselves.

It is the result of twenty years' experience in the field and technical

schools, and the aim has been to make it extremely practical, having

in mmd always that to become a reliable surveyor the student needs

frequently to manipulate the various surveying instruments in the

field, to solve many examples in the class-room, and to exercise

good judgment in all these operations, otfot only, therefore, are

the different methods of surveying treated, and directions for using

the instruments given, but these are supplemented by various field

exercises to be performed, by numerous examples to be wrought,

and by many queries to be answered.

The judicial functions of surveyors, as given by Chief Justice

Cooley, are set forth in an appendix.

As a practical and complete treatise, Carhart's Surveying has

received a cordial welcome.

W. A. Moody, Pro/, of Mathemat-

it$) Bowdoin College; I consider the

book exceptionally fine in execution,

subject-matter, and arrangement.

D. W. Herinfc, formerly Prof, of

Math,, Unw. of City of New York :

The Surveying is, I think, superior

as a text-hook to any book on the

subject with which. I am acquainted.
It is compendious without being too

voluminous, and the skilful treat-

ment of the subject accords perfectly

with the methods of the author, both

as a teacher and -a practical engi-

neer.

Orea Boot, Pro/, of Mathematics,
Hamilton College . I have looked it

through with great interest. The

mechanical execution is, in the first

place, elegant; the arrangement is

admirable, . . . The work seems ad-

mirably adapted to student use and

tae class-room.

Hoover, Pro/, of Mathemat-
Ohio University: It is indeed a

superior work, and merits the widest

adoption,

Colman Bancroft, Prof, of Mathe-

matics, Hiram College
'
I find in it

several important matters not con-

tained in other text-books with, which
I am acquainted, matter which I

have felt obliged to give my classes

by lectures.
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