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PREFACE.

This book is almost entirely made up of lecture-notes

which from time to time during the last four years I

have written out for the use of students who have begun

with me the study of what I have ventured to call, after

Neumann, the Newtonian Potential Function.

The notes were intended for readers somewhat familiar with

the principles of the Differential and Integral Calculus, but

unacquainted with many of the methods commonly used in

applying Mathematics to the study of pliysical problems.

These students, I learned, found it difficult to get from any

single book in English a treatment of the subject at once

elementary enough to be within their easy comprehension,

and at the same time suited to the purposes of such of them

as intended eventually to pursue the subject farther, or

wished, without necessarily making a specialty of Mathe-

matical Physics, to prepare themselves to study Experi-

mental Physics thoroughly and understandingly. What is

here printed seems to have been of use to some of those

who have read it in manuscript, and it is hoped that it may

now be helpful to a larger number of students.

Since these notes are professedly elementary in character,

I feel that no apology is needed for what may seem to be

the rather prolix way in which some of the subjects are

treated, or for an arrangement of matter which would be
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unsuitable in a book intended for a different class of readers.

I have not hesitated to use a long proof whenever this has

seemed to me more easily comprehensible than a short and

mathematically neater one, and I have often given more than

one demonstration of a single theorem in order to illustrate

different methods of work. Although I have used freely

the notation * of the Calculus, I have assumed on the part

of the reader only an elementary knowledge of its principles.

The short treatment of Electrostatics and Electrokinematics

in Chapter v. is introduced to show how the theorems of the

preceding chapters may be made useful in discussing a certain

class of physical problems ; but it is hoped that a person who

has mastered even the very little here given will be able, with

the aid of a good treatise on Descriptive Physics, to understand

some Electric phenomena which often puzzle those who have

studied the subject from the experimental side only. It is also

hoped that those readers who mean to study Electricity from

* In this book the change made in a function u by giving to the

independent variable x the arbitrary, finite increment Ax, and keeping the

other independent variables, if there are any, unchanged, is denoted by

Ax". Similarly, AyU and AgU express the increments of u due to changes

respectively in y alone and in z alone. The total change in u due to

simultaneous changes in all the independent variables is sometimes

denoted by Au; so that if u=f{x, y, z),

Aj.M . ,
AyU ^ , AzH ^ ,Am= —^ • Ax 4 2L_ . Ay H ?— .Az+e,

Ax Ay Az

where € is an infinitesimal of an order higher than the first.

The partial derivatives of u with respect to x, y, and z are denoted by

DxU, DyU, and D^u, and the sign = placed between a variable and a con-

stant is used to show that the former is to be made to approach the

latter as its limit. In those cases where it is desirable to draw attention

to the fact that a certain derivative is total, the differential notation

-— is used.
ax
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the mathematical point of view will find what they have learned

here useful when they take up standard works on the subject.

My sincere thanks are due to H. N. Wheeler, A.M., who

has read much of the manuscript of the following pages and

all of the proof, and to Dr. E. H. Hall, who has examined

parts of Chapters iv. and v. and helped me with various

suggestions. I am indebted to other friends also, and among

them to Mr. W. A. Stone for the use of some of his problems.

The reader who wishes to get a thorough knowledge of

the properties of the Newtonian Potential Function and of

its applications to problems in Electricity is referred to the

following works, which, with others, I have consulted and used

in writing these notes.

Betti : Teorica delle Forze Xewtoniane e sue Applicazioni all'

Elettrostatica e al Magnetismo.

Clausius : Die Potentialfunction und das Potential.

Gumming : An Introduction to the Theory of Electricity.

Chrystal: The article "Electricity" in the Ninth Edition of the

Encyclopaedia Britannica.

Dirichlet: Yorlesungen iiber die im umgekehrten Yerhaltniss des

Quadrats der Entfernung wirkenden Krafte.

Gauss : Allgemeine Lehrsatze in Beziehung auf die im verkehrten

Yerhiiltnisse des Quadrates der Entfernung wirkenden Anzieh-

ungs- und Abstossungskrafte. Also other papers to be found

in Volume V. of his Gesammelte Werke.

Green : An Essay on the Application of Mathematical Analysis to

the Theories of Electricity and Magnetism.*

Mascart: Traite d'Electricite Statique. Also Wallentin's translation

of the same work into German, with additions.

*A copy of the original edition of this paper is to be found in the

Library of Harvard University, Gore Hall, Cambridge. The paper has

been reprinted by Ferrers in " The Mathematical Papers of George Green,"

and by Thomson in Crelle's Journal.
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Mascart et Joubert : Lemons sur I'Electricite et le Magnetisme.

Also Atkinson's translation of the same work into English, with

additions.

Mathieu: Theorie du Potential et ses Applications h. I'Electro-

statique et an Magnetisme.

Max-well: An Elementary Treatise on Electricity. A Treatise jon

Electricity and Magnetism.

Minchin : A Treatise on Statics.*

C. Neumann : Untersuchungen iiber das Logarithmische und New-
ton'sche Potential.

Riemann : Schwere, Electricitat und Magnetismus, edited by Hatten-

dorff.

Schell : Theorie der Bewegung und der Krafte.

Thomson : Reprint of Papers on Electrostatics and Magnetism.

Thomson and Tait: A Treatise on Natural Philosophy.

Todhunter : A Treatise on Analytical Statics. A History of the

Mathematical Theories of Attraction and the Figure of the Earth.

Watson and Burbury : The Mathematical Theory of Electricity

and Magnetism.

Wiedemann : Die Lehre von der Electricitat.

* The third edition of Minchin's Statics with its admirable treatment

of the subjects here discussed did not reach me, unfortunately, until all

but a very few of the following pages were electrotyped.
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THE

NEWTONIAN POTENTIAL FUNCTION.

-ooX»<0-o-

CHAPTER I.

THE ATTEAOTION OP GEAVITATION.

1. The Law of Gravitation. Every body in the universe

attracts every other body with a force which depends for mag-

nitude and direction upon the masses of the two bodies and

upon their relative positions.

An approximate value of the attraction between any two rigid

bodies may be obtained by imagining the bodies to be divided

into small particles, and assuming that every particle of the one

body attracts every particle of the other with a force directly

proportional to the product of the masses of the two particles,

and inversely proportional to the square of the distance between

their centres or other corresponding points. The true value of

the attraction is the limit approached by this approximate value

as the particles into which the bodies are supposed to be divided

are made smaller and smaller.

2. The Attraction at a Point. By "the attraction at any

point P in space, due to one or more attracting masses," is

meant the limit which would be approached by the value of the

attraction on a sphere of unit mass centred at P if the radius of

the sphere were made continually smaller and smaller while its

mass remained unchanged. The attraction at P is, then, the

attraction on a unit mass supposed to be concentrated at P.
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If the attraction at every point throughout a certain region

has a value other than zero, the region is called "a field of

force "
; and the attraction at any point P in the region is called

" the strength of the field" at that point.

3. The TTnit of Force. It will presently appear that all spheres

made of homogeneous material attract bodies outside of them-

selves as if the masses of the spheres were concentrated at their

middle points. If, then, h be the force of attraction between

two unit masses concentrated at points at the unit distance

apart, the attraction at a point P due to a homogeneous sphere

4 ttCL o
of radius a and of density p is A; ^. where r is the dis-

tance of P from the centre of the sphere. In all that follows,

however, we shall take as our unit of force the force of attrac-

tion between two unit masses concentrated at points at the unit

distance apart. Using these units, k in the expression given

above becomes 1, and the attraction between two particles of

mass nil ^^^^ *^2 concentrated at points r units apart is —^-^«

4. Attraction due to Discrete Particles. The attraction at a

point P, due to particles concentrated at different points in the

same plane with P, may be expressed in terms of two com-

ponents at right angles to each other.

fPa Y

1 \

/;"'

,
*^ '/' ' ...m

' P^
'_--!'

'

\ j

'^^i^ x'mj

Fig. 1.

Let the straight lines joining P with the different particles be

denoted by ?'i, r^i r^-, •••, and the angles which these lines make

with some fixed line Px by aj, og, og, •••. If, then, the masses
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of the several particles are respectively m^, m2, m^, •••, the

components of the attraction at P are

^ micosaj m., cosag . "NT^mcosa r-^^^=^7^+-^—+--2^^^ [1]

in the direction Px, and

^_ mi sin oi 7712 sin 02 j^ _X ^m sin a r-^-,

in the direction Py, perpendicular to Px,

The resultant force at P is

n^^/X:'-\Y\ [3]

and its line of action makes with Px the angle whose tangent

. Y
IS — •

X
If the particles do not all lie in the same plane with P, we

ma}' draw through P three mutually' perpendicular axes, and call

the angles which the lines joining P with the different particles

make with the first axis ai, ag, ag, •••
; with the second axis,

A' /^a? /^s?
•••

; and with the third axis, yi, yg, yg, •••. The three

components in the directions of these axes of the attraction at

P due to all the particles are then

^ "NT^mcosa ^ V^mcoSiS r^ X^mcosy r..-.

The resultant attraction is

B = ^X'+Y^+Z\ [5]

and its line of action makes with the axes angles whose cosines

are respectively

— , — , and — rSl

5. Attraction at a Point in the Produced Axis of a Straight

"Wire. Let /x be the mass of the unit of length of a uniform

straight wire AB of length ?, and of cross section so small that
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we may suppose the mass of the wire concentrated in its axis

(see Fig. 2) , and let P be a point in the line AB produced at a

'M'

Tig. 2.

distance a from A. Divide the wire into elements of lensrth

Ax. The attraction at P due to one of these elements, M, whose

nearest point is at a distance x from P, is less than ^— and

greater than—^ •

^ {x-^Axy

The attraction at P due to the whole wire lies between

Z^^-
and 7 —^ — ; but these quantities approach the

x^ jL^{x-{-Axy
^ ^^

same limit as Aa; is made to approach zero, so that the attrac-

tion at P is

HmitZfjAx_ p+ V(fa; _
X^ ~Ja X^

"^ 1

a a-\-l
m

If the coordinates of P, A^ and B are respectively (a;, 0, 0)

,

(xi, 0, 0), and (xi + ^ O5 0) , this result may be put into the form

.-x,"
r 1 1 1

y,
—-J

•

X^ ~~ X Xi ~~~ X —\~ i I

[8]

6. Attraction at any Point, due to a Straight Wire. Let P
(Fig. 3) be any point in the perpendicular drawn to the straight

wire AB at A^ and let PA = c, AB = Z, AM— x, and the angle

ABP= 8. Let ilO/"be one of the equal elements of mass (/xA«)

into which the wire is di™ed, and call PM^ r. The attraction

at P due to this element is approximately equal to ^^—;^, and

acts in some direction lying between P3f and P-iV. This attrac-

tion can be resolved into two components whose approximate

values are -~ '—— in the direction PA, and — '——- in the
(c^-fa;-')! ' {c' + x'y^
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direction PL. The true values of the components in these

directions of the attraction at P, due to the whole wire, are,

then, respectively

:

and

Jo (c' + ar)ii c
[ Vc2 + a^Jo c

P]

Jo (?

jjixdx — /x

[+ x')i c LV?+«^Jo "

M= ni-smS). , [10]

X--

Fig. 3.

The resultant attraction is equal to the square root of the sum

of the squares of these components, or

i? = ^V2(l-sin8) = -V2(l-cos^P^)=— sini^PP,[ll]
c c c

and its line of action makes with PA an angle whose tangent is

1 - sin 8 _ 1 - cos^PB _ 2sin^|^^PP

cos 8 sin^P5 2 &m ^APB' cos^APB
= tauiAPB.

That is, the resultant attraction at P acts in the direction of

the bisector of the angle APB.
From these results we can easily obtain the value of the

attraction at any point P, due to a uniform straight wire B'B
(Fig. 4) . Drop a perpendicular PA from P upon the axis of

the wire. Let AB = I, AB' = 1', PA = c, ABP= 8, AB'P = 8',

BPB'=0. The component in the direction PA of the attrac-

tion at P is [9]

-(cos 8 4- cos 8'),
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and that in the direction PL is

/^

-(sinS'— sin 8),

so that the resultant attraction is

R = ~ >/2[l+cos(6 + ^')] = -£cosi(S + 8') = -^sini^. [12]

Fig. 4.

The line of action PK oi R makes with PA an angle </> such

that

- . sin S' — sin S . , ,^, -. r._Ttan cj, = —
r- = tani(8'- 8)

;

[13]
coso + coso'

-^

...J5'P/r=^-S' + i(S'-8) = |-i(8 + 8'),

and
TT5P/r = |-8-i(S'-8) = ^-i(8+8').

It is to be noticed that PK bisects the angle 0, and does not

in general pass through the centre of gravity or any other fixed

point of the wire. Indeed, the path of a particle moving from

rest under the attraction of a straight wire is generally curved

;

for if the particle should start at a point Q and move a short

distance on the bisector of the angle BQB' to Q\ the attraction

of the wire would now urge the particle in the direction of the

bisector of the angle BQ'B\ and this is usually not coincident

with the bisector of BQB'.
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If g is the area of the cross section of the wire, and p the

mass of the unit vokime of the substance of which the wire is

made, we may substitute for /x in the formulas of this section

its value qp.

If instead of a very thin wire we had a body in the shape of

a prism or C3'linder of considerable cross section, we might

divide this up into a large number of slender prisms and use the

equations just obtained to find the limit of the sum of the attrac-

tions at an}' point due to all these elementar}^ prisms. This

would be the attraction due to the given body.

7. Attraction at a Point in the Produced Axis of a Cylinder

of Revolution. In order to find the attraction due to a homo-

geneous cylinder of revolution at any point P (Fig. 5) in the

axis of the cylinder produced, it will be convenient to imagine

the cylinder cut up into discs of constant thickness Ac, by

means of planes perpendicular to the axis.

Let p be the mass of the unit of volume of the cylinder, and

a the radius of its base. Consider a disc whose nearer face is

at a distance c from P, and divide it into elements by means of

b' b

EiG. 5.

radial planes drawn at angular intervals of A^ and concentric

cylindrical surfaces at radial intervals of Ar.

The mass of any element M whose inner radius is r is equal

to pAc«A^[rAr + ^(Ar)^], and the whole attraction at P due to

• ^ 1 A(9AcrrA?-+i(Ar)n . ,. . • . „ pM IS approximately p ^—
o o

—^ ^^ ^ 1^^® ]ommg>P

with some point of M. The component of this attraction in •

the direction PC is found by multiplying the expression just
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:, the cosine of the angle CPS, so that thegiven by ——
attraction at P in the direction PC, due to the whole disc, is

approximately

Ac.iimy^-^Mr^!:±KM!] = Ac po r^^r^
L^ (c^ + r2)=5 Jo Jo Cc2 4-?'2^(c2 + ?-2)i

irp Ac [14]

If the bases of the cylinder are at distances Cq and Co + 7i

from P, the true value of the attraction at P in the direction

PC, due to th^ cylinder QQ', is

limit

-I^ 7rp Ac 1- ~~

Vc^4- a^_ --ri- Vc^+ a'

dc

= 27rp[/i+Vco'4-a'-V(co + /0'+a']. [15]

This is evidently the whole attraction at P due to the cylin-

der, for considerations of symmetry show us that the resultant

attraction at P has no component perpendicular to PC.

[14] gives the attraction due to the elementary ^x^o, ABA}B\
on the assumption that the whole matter of the disc is concen-

trated at the face ABC. The actual attraction at P due to

this disc may be found by putting Cq = c and 7i = Ac in [15].

If a, the radius of the cylinder, is very large compared with

h and Cq, the expression [15] for the attraction at P due to the

cylinder approaches the value 27rph.

8. Attraction at the Vertex of a Cone. The attraction due to

a homogeneous cone of revolution, at a point at the vertex of

the cone, may be found by the aid of [14].

If Fig. 6 represents a plane section of the cone taken through

the axis, and if PM= c, MM^ = Ac, and MB = r, the attraction

at P due to the disc ABCD is approximately

• Ac
v?+?_

27rpAc(l— cos a),
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limit

Ac = !'

and the attraction due to the whole cone is

2 7rp (1 - cos a) Ac = 2 Trp (1 - COS a)
^'J^qT^^^

= 27rp(l-COSa) .PX. [16]

The attraction at P due to the frustum ABKN is found by

subtracting the vakie of the attraction due to the cone ABP
from the expression given in [16]. The result is

27rp(l - COSa) {PL - PM) = 27rp(l - COSa) Jfi^, [17]

and it is easy to see from this that discs of equal thickness cut

out of a cone of revolution at different distances from the vertex

by planes perpendicular to the axis exert equal attractions at

the vertex of the cone.

Fig. 6.

It follows almost directly that the portions cut out of two

concentric spherical shells of equal uniform density and equal

thickness, by any conical surface having its vertex at the

common centre P of the shells, exert equal attraction at this

centre ; but we may prove this proposition otherwise, as fol-

lows :

Divide the inner surface of the portion cut out of one of the

shells by the given cone into elements, and make the perimeter

of each of these surface elements the directrix of a conical

surface having its vertex at P. Divide the given shells into

elementary shells of thickness Ar b}' means of concentric spheri-

cal surfaces drawn about P. In this way the attracting masses

will be cut up into volume elements.

Let ML' (Fig. 7) represent one of these elements, whose

inner surface has a radius equal to r ; then, if the elementary
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cone APB intercept an element of area Aw from a spherical sur-

face of radius unity drawn around P, the area of the surface

element at MM' is ^-^Aw, and that at LL' is (r + Ar)2Aa). The

f^x
D

/<v-^^
^;;;;^>V-'''Mm l _ A

B-i'-^r" M' L'

^^^>-
J,Jr"V'

G
Fig. 7.

*

attraction at P in the direction PM, due to the element ML', is

approximately
r^AwAr . .

p
—-— = pAcoAr,

and the component of this in any direction Px, making an

angle a with PJf, is approximately pAwA?' cos a. The attraction

at P in the direction Px, due to the whole shell EDFG, is,

then, ^^^
X=lim> pArAtocosa,

where the sum is to include all the volume elements which go to

make up the shell. If PP= r^, PG = n, PF'= r^ , PG' = rj',

and /x = P(^ = P'(?',

X=
I

^dr
I
C09ado) = py,

I
COS ado).

The attraction at P in the same direction, due to the shell

E'D'F'G', is

X' = p I
^
c??' j COSado) = /ofi ( cos adu.

But the limits of integration with regard to w are the same in

both cases ;
.*. X= X', which was to be proved.

If the shells are of different thicknesses, it is evident that

they will exert attractions at P proportional to these thick-

nesses.
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The area of the portion which a conical surface cuts out of a

spherical surface of unit radius drawn about the vertex of the

cone is called " the solid angle " of the conical surface.

9. Attraction of a Spherical Shell. In order to find the

attraction at P, an}' point in space, due to a homogeneous

spherical shell of radii ?o ^^^ ''i? i* will be best to begin by

dividing up the shell into a large number of concentric shells

of thickness A?', and to consider first the attraction of one of

these thin shells, whose inside radius shall be r.

Let p be the density of the given shell, that is, the mass of

the unit of volume of the material of which the shell is com-

posed. Join P (Fig. 8) with by a straight line cutting the

inner surface of the, thin shell at iV, and pass a plane through

FO cutting this inner surface in a great circle NLSL% which

L

Fig. 8.

will serve as a prime meridian. Using iV as a pole, describe

upon the inner surface of the thin shell a number of parallels of

latitude so as to cut off equal arcs on NLSL'. Denote by A^

the angle which each one of these arcs subtends at 0. Through

PO pass a number of planes so as to cut up each parallel of

latitude into equal arcs. Denote by A(^ the angle between any

two contiguous planes of this series. By this means the inner

surface of the elementary shell will be divided into small quad-

rilaterals, each of which will have two sides formed of meridian

arcs, of length r-A^, and two sides formed of arcs of parallels

of latitude, of length rsin^-A<^ and rsin(^4- A^)-A^, where
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$ is the angle which the radius drawn to the parallel of higher

latitude makes with ON. The area of one of these quadri-

laterals is approximately r^sin^- A^- A</), and the thickness of

the shell is A?-, so that the element of volume is approxi-

mately ^-^sin^- A?'. A^ • A(^. Let FM=y, then the attrac-

tion at P, due to an element of mass which has a corner at

M, is approximately ^ ~ —, in the direction FM,

This force ma}^ be resolved into three components: one in the

direction PO, the others in directions perpendicular to PO
and to each other ; but it is evident from considerations of

symmetry that in finding the attraction at P due to the whole

shell we shall need only that component which acts in PO. This

, , pj-^sin^- A}'A^A<i>-cos/tPJf .„ „^
IS approximately ^ -~^

; or, it PO = c,

r
pj-^ sin 0(c — 7' cos 0) A7'AO i\cfi p.„^

f
The attraction at P due to the whole elementary shell is, then,

approximately (truly on the assumption that the whole mass of

the shell is concentrated at its inner surface)

,

Ar f fP^'
^^" Ojo-r cos 0)dOd4 ^ ^^^ . j-^g-j

and the true value at P of the attraction due to the given shell is

Xdr, [20]

If in the expression for X we substitute for its value in

terms of y, we have, since

2/2 = c^ 4- r^ — 2 cr cos^,

and hence 2ydy=F2crsm0d0i

Jo Jyo 2c-?/2 (rJyo V 2/ /

=^fr!^4±iq^ [21]
y Jv,
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In order to find the limits of the integration with regard to ?/,

we must distinguish between two cases

:

I. If P is a point in the cavity enclosed by the given shell,

yQ = r — c and yiz=r -\-C',

.'. X

and

TrprV- (? 4- {r + c)2 r^ - c2 4- (r --c)n = 0, [22]
(? r -\-G r — c _

pXdr = 0; [23]
'ro

SO that a homogeneous spherical shell exerts no attraction at

points in the cavity which it encloses.

II. If P is a point without the given shell,

..x=^

yQ = c — r and i/i = c + r
;

V- c2 -}- (c+ r)2 r^- c2+ (c - ry~

c + r c — r
= *Y. [24]

rXdr-*JP(n^ r„»). '25]and

From this it follows that the attraction due to a spherical 3
shell of uniform density is the same, at a point without the shell, 3 ^^^ ^ ' '

as the attraction due to a gui&S-equal to that of the shell con-

centrated at the shell's centre.

If in [25] we make ro = 0, we have the attraction, due to a

solid sphere of radius Vi and density p, at a point outside the

sphere at a distance c from the centre. This is

4 TTpy-i^

3c2
[26]

10. Attraction due to a Hemisphere. At any point P in the

plane of the base of a homogeneous hemisphere, the attraction

of the hemisphere gives rise to two components, one directed

toward the centre of the base, the other perpendicular to the

plane of the base. We will compute the values of these com-

ponents for the particular case where P lies on the rim of the

hemisphere's base, and for this purpose we will take the origin
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of our S3 stem of polar coordinates at P, because by so doing

we shall escai^e having to deal with a quantity which becomes

infinite at one of the limits of integration. Denote the coordi-

nates of any pointX in the hemisphere by r, 6^ ^, where (Fig. 9)

XPN=cl>, IPL = e, andPi = r.

Fig. 9.

If Ti be the radius of the hemisphere,

PT= PJV^cosNPT= PX cos XPN- cosNPT =2r^ sin ^ cos <^.

cos
XTTor 11^ IK IL COS d) . /, ,XPL — =— = = s\n$ cos <^.

PL r r

PS
PL

rynT J- '^ KL IL sin <i>

cos SPL = —- =— = ^ sin ^ sin ^.

The mass of a polar element of volume whose corner is at

L is approximately p' ILAcfi-PLA6 - Ar or p7^s'm6ArA9/\(fi,

and this divided by r^ is the attraction at P in the direction PL
of the element, supposed concentrated at L, The components

of this attraction in the direction PX and PFare respectively

psin^ArA^A</>cosXPi and p sin ^ArA^A</) cos ^SPi^.

The component in the direction Py of the attraction at P due

to the whole hemisphere is, then,

J—
/*"" /»2ri sinfl co8(|>

2d</)| dO I psm^Osmcfidr = ^pri, [27]



oOtrT

CbU^.fH5
nr%^^c^f.^^,^ ^ ^cp

aa^xu^ d e^ f
CX-X^

'O

-= ^OCL

dyyjus/^^-^*"^^



i^-'-
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and the component in the direction Px'is

X—
/*"" /^2riBm9 co8<f>

.2d<^l dO i ps'in^ e COS i>dr=^7rpri. [28]

This last expression might have been obtained from [26] by

making c equal to r and halving the result.

11. Attraction of a Hemispherical Hill. If at a point on the

earth at the southern extremity of a homogeneous hemispheri-

cal hill of density p and radius Vi the force of gravity due to the

earth, supposed spherical, is g, the attraction due to the earth

and the hill will give rise to two components, g — ^p^i down-

wards, and f Trpri northwards. The resultant attraction does

not therefore act in the direction of the centre of the earth, but

makes with this direction an angle whose tangent is
l^pn
g-^pn

^^^^4/^

Fig. 10.

Let
(f>

(Fig. 10) be the true latitude of the place and (^ — a)

the apparent latitude, as obtained by measuring the angle which

the plumb-line at the place makes with the plane of the equator.

Let a be the radius of the earth and a- its average density. Then

tana =- i:^pn _ -^pn

9-ipn 2(7raa--pri)
[29]
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The radius of the earth is very large compared with the

radius of the hill, and a is a small angle, so that approximately

a = -^-^, and the apparent latitude of the place is ^ ^-^«
2aar 2 aa-

If ^1 is the true latitude of a place just north of the same hill,

its apparent latitude will be <^i + -^-^ , and the apparent differ-
2a(T

ence of latitude between the two places, one just north of the

hill and the other just south of it, will be the true difference

plus ^. If there were a hemispherical cavity between the two
acr

places instead of a hemispherical hill, the apparent difference of

latitude would be less than the true difference.

12. Ellipsoidal Homceoids. A shell, thick or thin, bounded

by two ellipsoidal surfaces, concentric, similar, and similarly

placed, shall be called an ellipsoidal homoeoid.

Fig. 11.

It is a property of every such shell that if any straight line

cut its outer surface at the points S, S' (Fig. 11) and its inner

surface at Q, Q', so that these four points lie in the order

SQQ'S\ the length SQ will be equal to the length Q'jS',

We will prove that the attraction of a homogeneous closed



THE ATTEACTION OF GRAVITATION. 1?

ellipsoidal homoeoid, at any point P in the cavity which it shuts

in, is zero.

Make P the vertex of a slender conical surface of two

nappes, A and jB, and suppose the plane of the paper to be

so chosen that PQ is the shortest and PM the longest length

cut from any element of the nappe A by the inner surface of

the homoeoid. Draw about P spherical surfaces of radii PQ,
PM, PS, and PO, and imagine the space between the inner-

most and outermost of these surfaces filled with matter of the

same density as the homoeoid. The nappe A cuts out a portion

from this spherical shell whose trace on the plane of the

paper is QLOT. Let us call this, for short, " the element

QLOT." The attraction atP, due to the element QMOS which

A cuts out of the homoeoid, is less than the attraction at the

same point due to the element QLOT, and greater than that

due to the element whose trace is KMNS. But the attraction

at P, due to the first of these elements of spherical shells, is to

the attraction due to the other as the thickness of the first shell

is to that of the other, or as QT \^ to KS. (See Section 8.)

The limit of the ratio of QT to KS, as the solid angle of the

cone is made smaller and smaller, is unity ; therefore the limit

of the ratio of the attraction at P due to the element QMOS, to

the attraction due to the element of spherical shell whose trace

is QLNS, is unity. By a similar construction it is easy to show

that the limit of the ratio of the attraction at P, due to the

element which B cuts out of the homoeoid, to the attraction due

to the portion of spherical shell whose trace is Q'L'N'S', is

unity.

But the attractions at P, due to the elements Q'L'N'S' and

QLNS, are equal in amount (since their thicknesses are the

same) and opposite in direction, so that if for the elements of

the homoeoid these elements were substituted, there would be no

resultant attraction at P. In order to get the attraction at P
in any direction due to the whole homoeoid we may cut up the

inner surface of the homoeoid into elements, use the perimeter

of each one of these elements as the directrix of a conical sur-
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face having its vertex at P, and find the limit of the sum of the

attractions due to the elements which these conical surfaces cut

from the homoeoid. Wherever we have to find the finite limit of

the sum of a series of infinitesimal quantities, we may without

error substitute for any one of these another infinitesimal, the

limit of whose ratio to the first is iinit3\ For the attractions at P
due- to the elements of the homoeoid we may, therefore, substi-

tute attractions due to elements of spherical shells, which, as we
have seen, destroy each other in pairs. Hence our proposition.

A shell bounded by two concentric spherical surfaces gives a

special case under this theorem.

13. Sphere of Variable Density. The density of a homo-
geneous body is the amount of matter contained in the unit

volume of the matei'ial of which the body is composed, and this

may be obtained by dividing the mass of the body by its volume.

If the amount of matter contained in a given volume is not

the same throughout a body, the body is called heterogeneous,

and its density is said to be variable.

The average density of a heterogeneous body is the ratio of

the mass of the body to its volume. The actual density p at

any point Q inside the body is defined to be the limit of the

ratio of the mass of a small portion of the body taken about Q
to the volume of this portion as the latter is made smaller and
smaller.

The attraction, at any point P, due to a spherical shell whose

density is the same at all points equidistant from the common
centre of the spherical surfaces which bound the shell but dif-

ferent at different distances from this centre, may be obtained

with the help of some of the equations in Article 9.

Since p is independent of 6 and ^, it may be taken out from

under the signs of integration with regard to these variables,

although it must be left under the sign of integration with re-

gard to r.

Equations 19 to 24 inclusive hold for the case that we
are now considering as well as for the case when p is constant,
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SO that the attraction at all points within the cavity enclosed by

a spherical shell whose density varies with the distance from the

centre is zero.

If P is without the shell, the attraction is

or, if /o=/(7-),

I

Xdr = X —^^
—

,

The mass of the shell is evidently

^';N 47rr2 •f{r)dr = 4,r
j
/(r) • r^cZr,

hmit

[30]

[31]

and [30] declares that a spherical shell whose density is a

function of the distance from its centre attracts at all outside

points as if the whole mass of the shell were concentrated at the

centre.

If ?'o
= 0, we have the case of a solid sphere.

14. Attraction due to any Mass. In order to find the attrac-

tion at a point P (Fig. 12) , due to vmy attracting masses M\ we
may choose a system of rectangular coordinate axes and divide

Fig. 12.

Jf' up into volume elements. If p is the average density of one

of these elements (Av')^ the mass of the element will be pAv'.

Let Q, whose coordinates are x\ y\ z\ be a point of the ele-



20 THE ATTRACTION OF GEAVITATION.

ment, and let the coordinates of P be a?, y, z. The attraction

at P in the direction PQ due to this element is approximately

^ ^—-^ , and the components of this in the direction of the coordi-

nate axes are
'

P^^cosa', ^[cos/5', and^^'cosy, [32]
PQ^ PQ PQ'

where a', yS', y' are the angles which PQ makes with the positive

directions of the axes.

It is easy to see that

, PL x'—x
cos a' = — - =

,PQ PQ
and, similarly, that

/3' = ^, and cos y' = z' — z
cos --- .

PQ ' PQ
Moreover,

TQ'=.j^'^'Zs' + SQ'=={x'-^y-\-{y'-yy-^{^'-^)\

and this we will call ?*^.

The true values of the components in the direction of the

coordinate axes of the attraction at P, due to all the elements

which go to make up M', are, then,

^._ hmit S^pAv'(x'-x) CS ^ .

'^•^

^-Av'=o2J^
—

:^ L ^

_ r r r p (^'— a?) clx'dy'dz'
. poo 1

^J J J l(x'-xy+{y'-yy+{z'-zyy^' •- ^-J

Y^ Hmit S^p^v'iy'—y)

^CC C p(y'-y)dx^dy'dz'
^33 -,

JJJl(x'-xy+{y'-yy-h{z'-zyY^' ^
"^

y _ Hmit \^p^v'(z'—z)

_CC C p(z'—z)dx'dy'dz'
. P33

-,

''JJjl{x'-xy-\-{y'-yy+{z'^zy]i' L cj
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where p is the density at the point (x\ y\ z') , and where the

integrations with regard to x', y\ and 2;' are to include the whole

of Jf'.

The resultant attraction at P, due to M^ ^ is

i? = VX2+F2 + Z2; [34]

;ti<

whose cosines are

and its line of action makes with the coordinate axes angles

The component of the attraction at the point (x, y, z) in a

direction making an angle e with the line of action of E is

i?cos€. If the direction cosines of this direction are A', /a', v',

we have
cos€ = XA'+ M/^'H- vv'-

15. The quantities X, Y, Z, and E, which occur in the last

section, are in general functions of the coordinates cc, y, and 2; of

the point P. Let us consider X, whose value is given in [33 J

.

If P lies without the attracting mass M', the quantity -—

is finite for all the elements into which M' is divided. Let L
be the largest value which it can have for any one of these

elements, then X is less than X
j j j

pdx'dy'dz', or L-M\ and

this is finite. If P is a point within the space which the attract-

ing mass occupies, it is easy to show that, whatever physjpal

meaning we may attach to X, it has a finite value. To prove

this, make P the origin of a system of polar coordinates, and

divide M^ up into elements like those used in Section 10. It

will then be clear that

X= C C Cp^in^Oco^cjidrded^i, [36]

where the limits are to be chosen so as to include all the at-

tracting mass. Since sin^^cos^ can never be greater than

Wvod. :^
e M*^. f
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unity, X is less than ill pdrdOdcji, which is evidently finite

when p is finite, as it always is in fact.

The corresponding expressions,

Y= C C Cpsm^Osmfl>drd$dcl>, [37]

Z = C C CpsinOcoaOdrdedcfi, [38]and

can be proved finite in a similar manner ; and it follows that

X, F, Z, and consequently i2, are finite for all values of x, y,

and z.

As a special case, the attraction at a point P within the mass

of a homogeneous spherical shell, of radii ?o and ^i, and of den-

sity p, is

[39]i-^P

7"^ — Tq^

r"

where r is the distance of P from the centre of the shell.

16. Attraction between Two Straight Wires. Let AK and

BK' (Fig. 13) be two straight wires of lengths I and V and of

line-densities fi and fx' ; and let KB = c. Divide AK into

M M

Fig. 13.

K'

elements of length Ax, and consider one of these MM', such

that AM= X. The attraction of BK' on a unit mass concen-

"J ]_^

3IB MK'
therefore, the whole element MM' whose mass is fiAx were con-

centrated at Jf, the attraction on it, due to BK', would be

trated at iHf would be (Sections 2 and 5), /a' If,

fifx'Ax

'
1 1 '

MB MK'
/x/x

l-\-c — x l + l'+c — x
[40]
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The actual force, clue to the attraction of BK\ with which the

whole wire AK is urged toward the right, is

limit

Ax l-[-C — X I -\-V -\-G — X_

1 1

x — {l-\-V-{-c) x — {l-\-c)

I

dx

t^A log
x — l — c

= ^^'log(l+^K^i^. [41]

17. Attraction between Two Spheres. Consider two homo-

geneous spheres of masses M and M^ (Fig. 14) , whose centres

C and C" are at a distance c from each other. Divide the sphere

M' into elements in the manner described in Section 9. The
attraction due to 3f at any point P' outside of this sphere is, as

M
we have seen,

,
, and its line of action is in the direction

P'C.
CP'

Fig. 14.

Let P'=(r, ^, <^) be any point in the sphere Jf', and let

CP' = y. The attraction of M in the direction P'(7 on an

element of mass pr^sin^ArA^A0 supposed concentrated at P' is

Jfp r^ sin^ArA^ Ac/) , .,
^. v ^.-u- ^^ ^ j. ^v.—

, and the component of this parallel to the
y

line aC is
^P^^sin^(c-rcos^)ArA^Ac^,

^^^ ^^^^^ ^.^^
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which the whole sphere M^ is urged toward the right by the

attraction of M is, then,

where the integration is to be extended to all the elements

which go to make up M'. It is proved in Section 9 that the

M'
value of this triple integral is —— , so that the force of attraction

c'-

MM'
between the two spheres is —-

—

18. Attraction between any Two Rigid Bodies. In order to

find the force with which a rigid body M is pulled in any direc-

tion (as for instance in that of the axis of x) by the attraction

of another body M', we must in general find the value of a

sextuple integral.

Let J^f be divided up into small portions, and let Am be the

mass of one of these elements which contains the point (x, y^ z)

.

The component in the direction of the axis of x of the attrac-

tion at (ic, 2/, z) due to Jf' is

///i
p(x'—x)dx'dy'dz'

[ {x'- xy-\- {y'-^ yy-{- {z'- zyy

and this would be the actual attraction in this direction on a

unit mass supposed corjpentrated at {x, y, z) . If the mass Am
were concentrated at this point, the attraction on it in the direc-

tion of the axis of x would be

A CCC p(x'—x)dx'dy'dz' p.^n

"^JJJ l{x'-xy-{-{y'-yy-}-{z'-zy^f •- ^

The actual attraction in the direction of the axis of x of M'
upon the whole of Jf is, then,

limit \^ Am . r r r p(x'-x)dx'dyW .. .-,





- ^_I /
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If p' is the density at the point (a;, ?/, z) , and if the elements

into which M is divided are rectangular parallelopipeds of di-

mensions Ax, Ay,, and Az, the expression just given may be

written

C C C C C C p'p(^'~ ^)dxdydzdx'dy'dz' r-.^-,

J J J J J J [{x'-xy+{y'-yy-^{z'-zyy^' ^ ' ^

where the integrations are first to be extended over M' and

then over M.

EXAMPLES.

^ 1. Find the resultant attraction, at the origin of a S3'stem of V*^<9=X iv,

rectangular coordmates, due to masses of 12, 16, and 20 units p,^z^,^
respectively, concentrated at the points (3, 4), (—5, 12), and

(8, —6). What is its line of action ?

^2. Find the value, at the origin of a system of rectangular

coordinates, of the attraction due to three equal spheres, each of

mass m, whose centres are at the points (a, 0, 0) , (0, &, 0)

,

(0,0,c). Find also the direction-cosines of the line of action /?•

of this resultant attraction. <^«<«-5

"^ 3. Show that the attraction, due to a uniform wire bent into

the form of the arc of a circumference, is the same at the centre

of the circumference as the attraction due to any uniform

straight wire of the same density which is tangent to the given
^^

wire, and is terminated by the bounding radii (when iiroduced) M'= pl^tu/tff

of the given wire.

^4. Show that in the case of an oblique cone whose base is

any plane figure the attraction at the vertex of the cone due to

any frustum varies, other things being equal, as the thickness

of the frustum.

v^5. Find the equation of a family of surfaces over each one of

which the resultant force of attraction due to a uniform straight

wire is constant.

-^ 6. Using the foot-pound-second system of fundamental units,

and assuming that the average density of the earth is 5.6, com-

pare with the poundal the unit of force used in this chapter.

\
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7. If in Fig. 2 we suppose P moved up to -4, the attraction

at P becomes infinite according to [7], and yet Section 15

asserts that the value, at any point inside a given mass, of the

attraction due to this mass is alwaj's finite. Explain this.

d -^ 8. A spherical cavity whose radius is r is made in a uniform

v.^^^ ^ ^t -, sphere of radius 2 r and mass m in such a way that the centre

i^trs^ "c^-^f^-J^ot the sphere lies on the wall of the cavity. Find the attraction

ff ^ - r^>^ ^"® *^ ^^® resulting solid at different points on the line joining

the centre of the sphere with the centre of the cavity.

9. A uniform sphere of mass m is divided into halves by the

plane AB passed through its centre C. Find the value of the

attraction due to each of these hemispheres at P, sl point on the

, ^ perpendicular erected to AB at C, if CP= a.

^x a"*"' 10. Considering the earth a sphere whose density varies only
"'

'
^*^^

m*ri with the distance from the centre, what may we infer about the

H ~ ^3 '^'- law of change of this density if a pendulum swing with the same

; a^'"*'= ^^* jjeriod on the surface of the earth and at the bottom of a deep

..t*"" mine? What if the force of attraction increases with the depth

at the rate of -th of a dyne per centimetre of descent?
n

1 1 . The attraction due to a cylindrical tube of length h and

of radii Pq and Pi, at a point in the axis, at a distance Cq from

the plane of the nearer end, is

27rp[Vco^'+i?i^-V?T^^+V(Co+/0'+^o'-V(co+/0'+i?i'].
[Stone.]

^12. A spherical cavity of radius b is hollowed out in a sphere

of radius a and density p, and then completely filled with

matter, of density po- If c is the distance between the centre

of the cavity and the centre of the sphere, the attraction due

to the composite solid at a point in the line joining these two

centres, at a distance d from the centre of the sphere, is

^r.

4
- TT

3 d? {d±cY
[Stone.]

3. The centre of a sphere of aluminum of radius 10 and of

density 2.5, is at the distance 100 from a sphere of the same
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size made of gold, of density 19. Show that the attraction

due to these spheres is nothing at a point between them, at a

distance of about 26.6 from the centre of the aluminum sphere.

[Stone.]

14. Show that the attraction at the centre of a sphere of radius

r, from which a piece has been cut by a cone of revolution

whose vertex is at the centre, is Trpv sin^a, where a is the

half angle of the cone. [Stone.]

15. An iron sphere of radius 10 and density 7 has an eccentric

spherical cavity of radius 6, whose centre is at a distance 3

from the centre of the sphere. Find the attraction due to

this solid at a point 25 units from the centre of the sphere,

and so situated that the line joining it with this centre makes

an angle of 45° with the line joining the centre of the sphere

and the centre of the cavity. [Stone.]

16. If the piece of a spherical shell of radii Vq and r^, inter-

cepted by a cone of revolution whose solid angle is w and whose

vertex is the centre of the shell, be cut out and removed, find

the attraction of the remainder of the shell at a point P situated

in the axis of the cone at a given distance from the centre of

the sphere. If in the vertical shaft of a mine a pendulum be

swung, is there any appreciable error in assuming that tlie only

matter whose attraction influences the pendulum lies nearer the

centre of the earth, supposed spherical, than the pendulum

does ?

^17. Show that the attraction of a spherical segment is, at its

vertex,

o 7 r . 1 /27i

where a is the radius of the sphere and h the height of the

segment.

18. Show that the resultant attraction of a spherical segment

on a particle at the centre of its base is

3 (a — h)-
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'^ 19. Show that the attraction at the focus of a segment of a

paraboloid of revohition bounded by a plane perpendicular to

the axis at a distance h from the vertex is of the form

4 TvpCi loo; !

20. Show that the attraction of the oblate spheroid formed

by the revolution of the ellipse of semiaxes a, 6, and eccen-

tricity e, is, at the pole of the spheroid,

and that the attraction due to the corresponding prolate spheroid

is, at its pole,

4^pa(l-e^) |^ l_+6_^]

21. Show that the attraction at the point (c, 0, 0), due to

the homogeneous solid bounded b}' the planes ic = a, x = b, and

by the surface generated by the revolution about the axis of x

of the curve y =f{x) , is

22. Prove that the attraction of a uniform lamina in the form

of a rectangle, at a point P in the straight line drawn through

the centre of the lamina at right angles to its plane, is

A • -1 «&
4 fx sm ^—^

,

where 2 a and 26 are the dimensions of the lamina and c the

distance of P from its plane. [See Todhunter's Analytical

jStatics.']
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CHAPTER II.

THE NEWTOMAIJ POTENTIAL EUNOTION III THE CASE

or GEAVITATION.

19. Definition. If we imagine an attracting body M to be

cut up into small elements, and add together all the fractions

formed by dividing the mass of each element by the distance of

one of its points from a given point P in space, the limit of this

sum, as the elements are made smaller and smaller, is Called the

value at P of " the potential function due to M."

If we call this quantity F, we have

jrr limit

X^, [46]

where Am is the mass of one of the elements and r its distance

from P, and where the summation is to include all the elements

which go to make up M.
If we denote by p the average density of the element whose

mass is Am, and call the coordinates of the corner of this ele-

ment nearest the origin x', y', z\ and those of P, x, y, z, we may
write

Am = pAx'Ay'Az',

and

^^ r r r pdx'dy'dz' p, .-,

^~JjJ l{x'- xy-\- {y'- yy-^{z'- zyjh'
L ^J

where p is the density at the point (x', y', z') , and where the

triple integration is to include the whole of the attracting mass M.
As the position of the point P changes, the value of the quan-

tity under the integral signs in [47] changes, and in general V
is a function of the three space coordinates, i.e., V=f{x,y,z).

To avoid circumlocution, a point at which the value of the
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potential function is Vo is sometimes said to be " at potential

T"o-" From the definition of Fit is evident that if the value at

a point P of the potential function due to a system of masses

3Ii existjing alone is Vi, and if the value at the same point of

.the potential function due to another system of masses M2 exist-

ing alone is F2, the value at P of the potential function due to

3Ii and M2 existing together is F= Vi + F^.

20. The Derivatives of the Potential runction. If P is a

point outside the attracting mass, the quantity

which enters into the expression for V in [47], can. never be

zero, and the quantity under the integral signs is finite every-

where within the limits of integration ; now, since these limits

depend only upon the shape and position of the attracting mass

and have nothing to do with the coordinates of P, we may dif-

ferentiate "Fwith respect to either x, ?/, or z by differentiating

under the integral signs. Thus :

'Iff
p (x'— x) dx'dy'dz' rAQi

l^x'-xy+(y'-yr-\-{z'-zyy ^ ^

where the limits of integration are unchanged by the differen-

tiation. The dexter integral in this equation is (Section 14)

the value of the component parallel to the axis of x of the

attraction at P due to the given masses, so that we may write,

using our old notation,

^
D^V=X, [49]

and, similarly, DyV=Y, [50]

D^V= Z. [51]

The resultant attraction at P is
*

i^ = VX^ + ^2+^" = V(AF)2^-(I>,F)2 + (J9,F)^ [52]
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and the direction-cosines of its line of action are :

cosa = —^— , cos/5 = -^, and cosy = -^— [53]

It is evident from the definition of the potential function that

the value of the latter at any point is independent of the par-

ticular s^^stem of rectangular axes chosen. If, then, we wish to

find the component, in the direction of any line, of the attraction

at any point P, we may choose one of our coordinate axes

parallel to this line, and, after computing the general value of

F, we may differentiate the latter partially with respect to the

coordinate measured on the axis in question, and substitute in

the result the coordinates of P.

21. Theorem. The results of the last section may be summed
up in the words of the following

THEOREM.

To find the component at a point P, in any direction PK^ of

the attraction due to any attracting mass M, we may divide the

difference between the values of the potential function due to M at

P' {a point between P and K on the straight line PK) and at P
by the distaiice PP'. The limit approached by this fraction as

P' approaches P is the component required.

We might have arrived at this theorem in the following way

:

If X, F, Z are the components parallel to the coordinate axes

of the attraction at any point P, the component in any direction

P/r whose direction-cosines are A, /x, and v, is

^t^fc ^ XX+fjiY-j-vZ=XD,V-j-fjiD^V-\-vD,V. [54]

Let X, y, z be the coordinates of P, and x -\- Ax, y -f- Ay,

z-\- Az those of P', a neighboring point on the line PK.
If V and F' are the values of the potential function at P and

P' respectively, we have, by Taj^or's Theorem,

F' = F+ Aoj . D,F+ A2/ -i),F+ A2; • D,F -f €,

where c is an infinitesimal of an order higher than the first.
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V'-V ^^
. J) yjL. ^y

. J) yx ^^
, T) Y_i_ _!_ . r55-i

Ax = \-PP', Ay = ix,-PP', t^z^v'PP\

limit (TjzT
pp/= 0i pp\

and this (see [54]) is the component in the direction PK of

the attraction at P : which was to be proved.

but

therefore AAF+/>tD,F+vAF, [56]

22. The Potential Function everywhere Finite. If P is a

point within the attracting mass, the sum whose hmit expresses

the value of the potential function at P contains one apparently

infinite term. That V is not infinite in this case is easily

proved by making P the origin of a system of polar coordinates

as in Section 15, when it will appear that the value of the

potential function at P can be expressed in the form

Vp=^ rrr/3rsin^cZrcZ^d<^; [57]

and this is evidently finite. ~ L ^
Although Vp is everywhere finite, j'et when we express its

value by means of the equation [47], the quantity under the in-

tegral signs becomes infinite within the limits of integration,

2'

4f1K^
u X

•

Fig. 15.

when P is a point inside the attracting mass. Under these cir-

cumstances we cannot assume without further proof that the

result obtained by differentiating with respect to x under the

integral signs is really D^V. It is therefore desirable to com*
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pute the limit of the ratio of the difference (A^F) between the

values of V at the points P'= (cc -f- Aa;, y, z) and P= {x, y, z),

both within the attracting mass, to. the distance (Aa;) between

these points. For convenience, draw through P (Fig. 15) three

lines parallel to the coordinate axes, and let Q = {x', y', z').

Let PQ = r, F'Q = r', and X'PQ=^.

Then
r'^ = 7'^ + (Aic)^— 2r' Aflj'COSi^,

where cos w = ,

r

and ^xF^ rrm l\ pdx'dy'dz'

Ax J J J \r' rj Ax

-SfS>
9-2 _ jJ2 \

p fj^t (~lyt ^^1

r'r^-^rr'^J Ax

'2 rAx cos ij/ — (Ax)

^

\ p dx' dy' dz'

r'r^-{-rr''^ J Ax
Therefore

fff'

fSf

'^-^
' p dx' dy' dz'

2?-^

pdx'dy'dz' cos xj/ i-^on
"^i

'
L^^-l

This last integral is evidentl}' the component parallel to the

axis of X of the attraction at P, so that the theorem of Article

21 may be extended to points within the attracting mass.

It is to be noticed that p is a function of x', y', and z', but not

a function of x, y, and 2:, and that we have really proved that the

derivatives with regard to £c, ?/, and z of

jj^EM,tl^dx'dy<dz<,
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where F is any finite, continuous, and single-valued function of

x\ y', and z', can always be found by differentiating under the

integral signs, whether (x^y^z) is contained within the limits of

integration or not.

23. The Potential Function due to a Straight Wire. Let

/x be the mass of the unit length of a uniform straight wire AB
(Fig. 16) of length 2?. Take the middle point of the wire for

the origin of coordinates, and a line drawn perpendicular to the

wire at this point for the axis of x.

^v

8/

'B

Fig. 16.

The value of the potential function at any point P (x, y) in

the coordinate plane is, then, according to [47],

V^ £\ jjidy'

, [a;^+(y-2/)2]i
r = /^ log{Vx'-^{y'-yy+y'-yl

+1

If r = AP = -\/x'+{l-yy\ and r' = BP= -Vx' + (Z + ?/)'»

whence y

,12

4.1

we may eliminate x and y from [59] and

express Vp in terms of r and r'.

Thus:

Vp = IJi\02-—' = alog—'—

H

[601

It is evident from [60] that if P move so as to keep the sum

of its distances from the ends of the wire constant, Vp will



IK THE CASE OF GBAVITATION. 35

remain constant. P's locus in this case is an ellipse whose

foci are at A and B.

From [59] we get

D^V.==^
«,[_,. [r + (Z- 2/)] r'[r'-(^ + 2/)]

X

X

X

J 2
{i + yy

_r[r + (Z-2/)] r'[r'-(^ + 2/)]

1 — cos8— 1 — cosS'

cosS + cosS'

and this (Section 6) is the component in the direction of the

axis of X of the attraction at P.

24. The Potential Function due to a Spherical Shell. In

order to find the value at the point P of the potential function

due to a homogeneous spherical shell of densit}^ p and of radii Tq

and ri, we may make use of the notation of Section 9.

r r r p7^smOdrdOd4 _ r r rprdydrd<i>

= !5P par C%j. [61]

If P lies within the cavity enclosed by the shell, the limits of

y are (r — c) and {r -\-c)^ whence

V=2^p{r,'-r,'). [62]

If P lies without the shell, the limits of y are (c — r) and

(c 4- ^') 5 whence
4 0j3-^.

[63]

If P is a point within the mass of the shell itself, at a dis-

tance c from the centre, we may divide the shell into two parts
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by means of a spherical surface drawn concentric with the given

shell so as to pass through P. The value of the potential func-

tion at P is the sum of the components due to these portions of

the shell ; therefore

O C

= i^plrf-t^\-^r,K [34]¥ j 3c

If we put these results together, we shall have the following

table :
—

lO>»l^ f^i-v
I

V:

AF=

A'F=

c<ro

27rp(r,2-r„2)

n< c < i\

irp

^TTpfr^

'-]-l^r,^
3c

3 \ c'

Tx<G

3c

47rp

3c2

3^ ^"^^
'^

^

If we make F, i^c^? and i)/Fthe ordinates of curves whose

abscissas are c, we get Fig. 17.*

Here LNQS represents F, and it is to be noticed that this

curve is everywhere finite, continuous, and continuous in direc-

tion. The curve 0^-BC represents D^V. This curve is every-

where finite and continuous, but its direction changes abruptly

when the point P enters or leaves the attracting mass. The
three disconnected lines OA, DE, and FG represent D^-V.

If the density of the shell instead of being uniform were a

function of the distance from the centre [p=/(r)], we should

have at the point P, at the distance c from the centre of the

V= —lf{r).r^drlcly. [65]

* See Thomson and Tait's Treatise on Natural Philosophy.
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From this it follows, as the reader can easily prove, that the

value of the potential function due to a spherical shell wliose

density is a function of the distance from the centre only is

r
at-, -

'

Qm^
Fig. 17.

constant throughout the cavity enclosed by the shell, and at all

outside points is the same as if the mass of the shell were con-

centrated at its centre.

25. Equipotential Surfaces. As we have already seen, F is, in

general, a function of the three space coordinates [_V==f(x,y,z)'],

and in 'any given case all these points at which the potential

function has the particular value c lie on the surface whose

equation is y^j-^^^y^^)^,_ ^

Such a surface is called an " equipotential" or "level" sur-

face. By giving to c in succession different constant values,

the equation V= c yields a whole family of surfaces, and it is

always possible to draw through any given point in a field of

force a surface at all points of which the potential function has

the same value. The potential function cannot have two differ-

ent values at the same point in space, therefore no two different

surfaces of the family F=c, where Fis the potential function

due to an actual distribution of matter, can ever intersect.

^{i^^ 0- * \;<
'X*ju[. (^ o^t*.
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THEOREM.

If there he any resultant force at a point in space ^ due to any

attracting masses, this force acts along the normal to that equi-

potential surface on which the point lies.

For, let V=f{x, y,z) = c be the equation of the equipotential

surface drawn through the point in question, and let the coordi-

nates of this point be a?oi 2/o? ^o- The equation of the plane

tangent to the surface at the point is

(X - x,)Da^^V+ {y-y,)Dy^V+ {z - Zo)D,^V= 0,

and the direction-cosines of any line perpendicular to this plane,

and hence of the normal to the given surface at the point

(^0,2/0,2:0), are

cos a = ^^'^^
[66^1

cos 13 = ^^^""^
=. [QGj,']

and cos y = ^^"^
[660]

V{n,,vy-h{D,vy-^{D,,vy

But if we denote the resultant force of attraction at the point

(fljo, 2/o? ^0) ^y -K? and its components parallel to the coordinate

axes by X, Y", and Z, these cosines are evidently equal to

X Y^ Z— , — , and — respectively, so that a, f3, and y are the direction-
Ji, It li

angles not only of the normal to the equipotential surface at the

point (iCo, 2/0? ^0) -> bi^t also [35] of the line of action of the re-

sultant force at the point. Hence our theorem.

Fig. 18 represents a meridian section of four of the system

of equipotential surfaces due to two equal spheres whose sec-

tions are here shaded. The value of the potential function due

to two spheres, each of mass Jf, at a point distant respectively

ri and Tg from the centres of the spheres, is
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and if we give to V in this equation different constant values,

we shall have the equations of different members of the S3stem

of equipotential surfaces. Any one of these surfaces ma}' be

easily plotted from its equation by finding corresponding values

Fig. 18.

of Ti and r.2 which will satisfy the equation ; and then, with the

centres of the two spheres as centres and these values as radii,

describing two spherical surfaces. The intersection of these

surfaces, if they intersect at all, will be a line on the surface

required.

If 2 a is the distance between the centres of the spheres,

2MV= -— gives an equipotential surface shaped like an hour-
a

glass. Larger values of V than this give equipotential sur-

faces, each one of which consists of two separate closed ovals,

one surrounding one of the spheres, and the other the other.

2 3f
Values of V less than give single surfaces which look more

a
and more like ellipsoids the smaller V is.

Several diagrams showing the forms of the equipotential

surfaces due to different distributions of matter are given at

^tv>«r>*-»i/tv
'y/' »- c^'v*-*-/ . ff^M^ «-**-

ryy^

/4.A.'>.^X«
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the end of the first volume of Maxwell's Treatise on Electricity

and Magnetism.

26. The Value of V at Infinity. The value, at the point P,

of the potential function due to any attracting mass M has

been defined to be

Y_. limit \^Am

Let 7'o be the distance of the nearest point of the attracting

mass from P, then «

N'f'T.^) V<-^^m or —. [67]
.^ TojL^ To

M
The fraction — has a constant numerator, and a denominator

which grows larger without limit the farther P is removed from

the attracting masses ; hence, we see that, other things being

equal, the value at P of the potential function is smaller the

farther P is from the attracting matter ; and that if P be moved

away indefinitel}^, the value of the potential function at P
approaches zero as a limit. In other words, the value of the

potential function at '''•infinity^' is zero.

27. The Potential Function as a Measure of Work. The

amount of work required to move a unit mass, concentrated at

a point, from one position, Pj, to another, Pg, by any path, in

face of the attraction of a system of masses, M^ is equal to

Fig. 19.

Vi — F2, where Vx and V2 are the values at Pi and P^ of the

potential function due to M.
To prove this, let us divide the given path into equal parts

of length As, and call the average force which opposes the
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motion of the unit mass on its journey along one of these

elements AB (Fig. 19), F. The amount of work required to

move the unit mass from ^ to ^ is jPAs, and the whole work

done by moving this mass from Pi to P2 will be

^.y 'F^s.

As As is made smaller and smaller, the average force opposing

the motion along AB approaches more and more nearly the

actual opposing force at A, which is —D,V: therefore

limit

As =o^y^"' = -Jp?^- ^- '^ = ^' - ^^-

It is to be carefully noticed that the decrease in the potential

function in moving from Pj to P2 measures the work required

to move the unit mass from Pj to Pg. If P2 is removed farther

and farther from M, V2 approaches zero, and Vi— Vi approaches

Vx as its limit, so that the value at any point Pi, of the poten-

tial function due to any system of attracting masses, is equal

to the work which would be required to move a unit mass, sup-

posed concentrated at Pi, from Pi to " infinity" by any path.

The work (W) that must be done in order to move an attract-

ing mass M' against the attraction of any other mass Jf, from

a given position by any path to " infinity," is the sum of the

quantities of work required to move the several elements (A?7i')

into which we may divide 3/', and this may be written in the

form

r C C r C r pp'dxclydzdx'dy'dz' rcHl

W is called by some writers '
' the potential of the mass 3/'

with reference to the mass M" ; by others, the negative of Wis
called "the mutual potential energy of Jf and M'."

In many of the later books on this subject, the word
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"potential" is never used for the value of the potential func-

tion at a point, but is reserved to denote the work required to

move a mass from some present position to infinit}'. If V is

the value of the potential function at a point P, at which a

mass m is supposed to be concentrated, mV is the potential

of the mass m. If we could have a unit mass concentrated

at a point, the xyotential of this mass and the value of the poten-

tial function at the point would be numericallj^ identical.

, 28. Laplace's Eq^uation. We have seen that the value of the (j
(li.'»- I potential function and the comjjonent in any direction of the \y\\

attraction at the point P are always finite functions of the space

coordinates, whether P is inside, outside, or at the surface of

the attracting masses. We have seen also that by differentiating

V at an}' point with respect to au}^ direction we may find the

always finite component in that direction of the attraction at

the point. It follows that D^V, DyV^ D^V are everywhere

finite, and that, in consequence of this, the potential function

is ever3'where continuous as well as finite.

If P is a point outside of the attracting masses, the quantity

under the integral signs in [48], by which dx'dy'dz' is multi-

plied, cannot be infinite within the limits of integration, and we

can find D^^V by differentiating the expression for D^V under

the inteojral si^ns.

In this case

D,'V= Cj^n(^'-^y - ''\dx'dy'dz\ [69]

and similarly,

i)/F= CCp(y'~ yy - '^'pdx'dtjw, [70]

D/V=Cf p(^'-^y-r'
^ fiMy'dz'. [71 ]

Whence, for all points exterior to the attracting masses,

'A'F+Z>/F+ Z)/F=0. [72]

This is Laplace's Equation.
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The operator (D/ + i)/ + Z)/) is sometimes denoted by the

symbol V-, so that [72] may be written

V2F=0. [73]

The potential function, due to every conceivable distribution

of matter, must be such that at all points in empty space

Laplace's Equation shall be satisfied.

29. The Second Derivatives of the Potential Function are

Finite at Points within the Attracting Mass. If the point P
lies within the attracting mass, "Fand D^V are finite, but the

quantity under the integral signs in the expression for; D^V
becomes infinite within the limits of integration, and we cannot

assume that D^V may l)e found by differentiating D^V under

the integral signs. In order to find D^^F under these circum-

stances, it is convenient to transform the equation for D^V.

Let us choose our coordinate axes so as to have all the attract-

ing mass in the first octant, and divide the projection of the

contour of this mass on the plane yz into elements (dy'dz').

Upon each one of these elements let us erect a right prism,

cutting the mass twice or some other even number of times.

Consider one of the elements dy'dz' whose corner next the

origin has the coordinates 0, ?/', and z'. The prism erected on

this element cuts out elements ds^^ ds^-, ds^^ ds^, ••• ds2n from the

surface of the attracting mass and that edge of the prism which

is perpendicular to the plane yz at (0, y', z') cuts into the

surface at points whose distances from the plane of yz are

ttj, Og, a-s, ••• ttg^.i, and out of the surface at points whose dis-

tances from the same plane are O2? <^4 f'e? •••
(^2n' -^t ever\' one

of these points of intersection draw normals towards the interior

of the attracting mass, and call the angles which these normals

make with the positive direction of the axis of x, ai, ag, ag, ••• ag^.

It is to be noticed that aj, og, 05, ••• a2,i_i are all acute, and that

«2i «4, 0(3,
••• a2« are all obtuse. The element dy'dz' may be re-

garded as the common projection of the surface elements
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dsi, dso, dss, ••• dsoni and, so far as absolute value is concerned,

the following equations hold approximately :

dy'dz'= dsi cos ai = ds^ cos ag = ds^ cos ag = • • • = cZsg^ cos a2„.

But dy'dz', dsi,ds2,ds^, etc., are all positive areas, and cosag,

cosa4, costtg, etc., are negative, so that, paying attention to

signs as well as to absolute values, we have

dy'dz'— -j-dsi cosai= —ds,^ cosa2= +dsQ C03a3= —ds^ cosa4= etc.

=///'
• x) dx'dy'dz'

^ =ffdy'dz'f(^D^ t\dx', [74]

and in order to find the value of this expression by the

use of the prisms just described, we are to cut each one

of these prisms into elementary rectangular parallelopipeds by
planes parallel to the plane of yz ; we are to multiply the

values of every one of these elements which lies within the

attracting mass by the value of pDjI ] at its corner next

the origin [i.e., at (x'^y'^z')"]
; and we are to find the limit of

the sum of these as dx' is made smaller and smaller. We are

then to compute a like expression for each of the other prisms,

and to find the limit of the sum of the whole as the bases of the
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prisms are made smaller and smaller and their number corres-

poudiugly increased.

Wherever the function ^ is a continuous and finite function
7*

of x\ we have

DJP- = 1 DJp + pDJ 1 = IdJp - pDJ (- 1^ :

hence, if the elementary prisms cut the surface of the attracting

mass only twice,

a; '=02

Djr^_^jdy^dz^ - ^1 +/jy ^
DJpdx'dyW ; [75]

and, in general,

D,V== ffdy'dz'
'2n

-{- C C C-DJpdx'dy'dz'

Zi Pi Ps Ps— cos tti dsi H cos a.2 ds2 -\ cos a3 ds.^ +
\ ^'l ^2 ^3

+ ^cosa2^ds2j+J J J -DJpdx'dy'dz'y

[76]

[77]

Pft P
where — is the value of the quantity - at the point where the

line y = y\ z = z' cuts the surface of the attracting mass for the

^'th time, counting from the plane yz.

In order to find the value of the limit of the sum which occurs

in this expression, it is evident that we may divide the entire sur-

face of the attracting mass into elements, multiply the area of each

element by the value of
"—^— at one of its points, and find the

r

limit of the sum formed by adding all these products together

;

but this is equivalent to the surface integral of ^ taken all
r

over the outside of the attracting mass, so that

AF=J^cosacis ^-jjj^dx^dy^dz\ [78]
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where the first integral is to be taken all over the surface of the

attracting mass and the second throughout its volume. This

expression for D^Vis in some cases more convenient than that

of [48].

We have proved this transformation to be correct, however,

only when ^ is finite throughout the attracting mass. If P is a
r

point within the mass, ^ is infinite at P. In this case surround
r

P by a spherical surface of radius c small enough to make the

whole sphere enclosed b^' this surface lie entirely within the

attracting mass. This is possible unless P lies exactly upon

the surface of the attracting mass. Shutting out the little

sphere, let Fg he the potential function due to the rest (T2) of

the attracting mass ; then, since P is an outside point with re-

gard to T2, we have, by [78],

D,V2=f-^cosa'ds'-^f^ cos ads -\-CCC^^dx'dy'dz', [79]

where the first integral is to be extended over the spherical

surface, which forms a part of the boundary of the attracting

Fig. 21.

mass to which V2 is due ; the second integral is to be taken

over all the rest of the bounding surface of the attracting mass
;

and the triple integral embraces the volume of all the attracting

mass which gives rise to T^.

As € is made smaller and smaller, V^ approaches more and

more nearly the potential function V, due to all the attracting

mass.

In the integral |
- cos a ds', cos a can never be greater than 1

nor less than — 1 , so that if p is the greatest value of p on the
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surface of the sphere, the absolute value of the integral must be

less than - 1 c?s' or 47rpe, and the limit of this as c approaches

zero is zero. The second integral in [79] is unaltered by any

change in e. If we make P the origin of a system of polar

coordinates, it is evident that the triple integral in [79] may be
^

written r* r r .

dy-cf ^c/i.

jjJDJp-rsmedrd)d4„ l»^^ ^ r ^.6 .6.r,

and the limit which this approaches as e is made smaller and j'^^^.<^

smaller is evidently finite, for, if r = 0, the quantity under the

inteoral sisrn is zero.

Therefore,

limit

€=0 D^V, = D^V= f^ cosads +fff^dx'dy'dz', [81]

and [7^] is true even when P lies within the attracting mass.

Under the same conditions we have, similarly.

and

D,V=f~: cos /? ds^fff^ dx' dy> dz\ [82]

D,V=f7 cosy ds +jjj -jA dx'dy'dz'. [83]

Observing that in these surface integrals r can never be zero,

since we have excluded the case where P lies on the surface of

the attracting mass, and that the triple integrals belong to the

class mentioned in the latter part of Section 22, we will differ-

entiate [81], [82], and [83] with respect to x, y, and z respec-

tively, by differentiating under the integral signs. If the results

are finite, we may consider the process allowable.

Performing the work indicated, we have

/>/F= fp cos a .A
(-

J ds-{- C C Cd, f-j • DJp . dx' dy' dz', [84]

i)/V=fp cosyS . Dy f-] ds +JJJd, f-] . DJp . dx' dy' dz', [85]

A'F=rp cos y .AAV +rj"j'AA^ ^

- _ 2 , *j:2^
. g>y ^ , ct,< Vv,' c/v

c --£- . r: . 4'^.tJ^6. d&^<f'
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and by making P the centre of a system of polar coordinates

and transforming all the triple integrals, it is easy to show that

the values of D^V^ I^^y-i -D/Fhere found are finite whether

P is within or without the attracting mass. This result* is

important.

30. The Derivatives of the Potential Function at the Surface

of the Attracting Mass. Let the point P lie on the surface

of the attracting mass, or at some other point or surface where

p is discontinuous. Make P the centre of a sphere of radius e,

and call the piece which this sphere cuts out of the attracting

mass Ti and the remainder of this mass T^. Let Fi and F2 be

the potential functions due respectively to 7\ and Tg, then

V=V, + V,, AF=AF+AF2,
and the increment [A(Z)j.F)] made in D^V by moving from P
to a neighboring point P', inside Tj, is equal to the sum of the

corresponding increments [A (Z>, Fi)] and JA {D^ V2) ] made in

D,V, and^Fs.
With reference to the space 7^2? ^ is an outside point, so that

the values at P of the first derivatives of V2 with respect to x,

2/, and z are continuous functions of the space coordinates and

Let d(o be the solid angle of an elementary cone whose vertex

is at any fixed point in Ti used as a centre of coordinates.

Fig. 22.

The element of mass will be pT^dwdr. The component in the

direction of the axis of x of the attraction at due to Ti is the

* Lejeune Dirichlet, Vorlesungen iiber die im umgehehrten Verhdltniss des

Quadrats der Entfernung wirkenden Krdfte.

Riemann, Schwere, Electricitat, und Magnetismus.
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«2 a7 7 .

limit of the sum taken throughout T^ of ^ -^^— , where a is
r

the cosine of the angle which the line joining with the element

in question makes with the axis of x. The difference between

the limits of co is not greater than 47r, and the difference be-

tween the limits of r is not greater than 2e. If, then, k is the

greatest value which pa has in 7\, j^ ^^

(AF"i)o<87rKC. ^ t*-^ ^^

It follows from this that if P' is a point within 7\ so that

PF'<C c, the change made in D^Vi by going from P to P' is far

less than ICttke ; but this last quantity can be made as small as

,we like by making c small enough, so that

whence

^'™i'o A (D, V) = p']5i'o A (J9. F,) + p'],7i'o A(A F.) = 0,

and D^F varies continuously in passing through P. In a similar

manner, it may be proved that DyV and D^V are everywhere,

even at places where the density is discontinuous, continuous

functions of the space coordinates.

The results of the work of the last two sections are well illus-

trated by Fig. 17. We might prove, with the help of a trans-

formation due to Clausius,* that the second derivatives of the

potential function are finite at all points on the surface of the

attracting matter where the curvature is finite, but that these

derivatives generally change their values abruptly whenever the

point P crosses a surface at which p is discontinuous, as at the

surface of the attracting masses. The fact, however, that this

last is true in the special case of a homogeneous spherical shell

suffices to show that we cannot expect the second derivatives

of V to have definite values at the boundaries of attracting

bodies.

* Die Potential/unction und das Potential, §§ 19-24.
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31. Gauss's Theorem. If any closed surface T drawn in a

field of force be divided up into a large number of surface

elements, and if each one of these elements be multiplied hy the

component, in the direction of the interior normals of the force

of attraction at a point of the element, and if these products be

added together, the limit of the sum thus obtained is called the

'"• surface integral of normal attraction over T."

If an\' closed surface T be described so as to shut in com-

pletel}' a mass m concentrated at a point, the surface integral

of normal attraction due to m, taken over T, is 47rm; and, in

general, if any closed surface T be described so as to shut in

completely any system of attracting masses Jf, the surface in-

tegral over T of the normal attraction due to M is AlttM.

Fig. 23.

In order to prove this, divide T' up into surface elements,

and consider one of these ds at Q. The attraction at Q in the
/111 /VM

direction QO, due to the mass m concentrated at 0, is

The component of this in the direction of the interior normal is

— cosa, and the contribution which ds yields to the sum whose

limit is the surface integral required is . Connect

every point of the perimeter of ds with by a straiglit line,

thus forming a cone of such size as to cut out of a spherical

surface of unit radius drawn about an element dco, say. If we

draw about a sphere of radius r = OQ^ the cone will intercept

on its surface an element equal to r^ • d<ji. This element is the
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projection on the spherical surface of ds ; hence dscosa = r^dw,

approximately, and the contribution of the element ds to our

surface integral is ind-jD. But an elementary cone may cut the

surface more than once ; indeed, any odd number of times. Con-

sider such a cone, one element of which cuts the surface tin'ice

in Si, So, and S.^. Let OSi, OS2, and OSo^ be called ?'i, rg, and

7*3 respectively, and let the surface elements cut out of T by the

cone be ds^, dsg, and ds^, and the angles between the line S^O

and the interior normals to T at /S'j, S2, and S^ be a^, ag, og. It is

to be noticed that when the cone cuts out of T, the corresponding

angle is acute, and that when it cuts in, the corresponding angle

is obtuse, ai and ag are acute, and as obtuse. If we draw about

three spherical surfaces with radii Vi, i^-, and r^ respectively,

the cone will cut out of these the elements Tidm, r^diji, and

r-ldoi. In absolute size, dsi = Vidm secai, ds.2 = ridin secag, and

ds^=^ r^d'jisecas, approximately, but dsg and I'^do) are both posi-

tive, being areas, and secag is negative. Taking account of

sign, then, ds^^— i^^ da) sec ao, and the cone's three elements

yield to the surface integral of normal attraction the quantity

,
dSoQOSao\ ., ^ , 7 \ 7

-\ —
_
—- — m {d'j) — tt'o) -f doi) — mdd

rs J

'ds^ cos tti , dsq cos a.)m i
— , H —-—

= H —
:

—-
1
= m ( aa> — a-o) + aco ) = m aw.

However many times the cone cuts T, it will yield mdw to the

surface integral required : all such elementary cones will yield

then my d(o = m4t7r if T is closed, and, in general, m0, when

is the solid angle which T subtends at 0.

If, instead of a mass concentrated at a point, we have any

distribution of masses, we may divide these into elements, and

apply to each element the theorem just proved ; hence our gen-

eral statement.

If from a point without a closed surface T an elementary

cone be drawn, the cone, if it cuts T at all, will cut it an even

number of times. Using the notation, just explained, the con-

tribution which an}^ such cone will yield to the surface integral

taken over T of a mass m concentrated at is
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/ dSi COS Oj clS2 COS as ,
dgg COS ag dS4 COS 04

V n^ ri ri ri

= m (— do) + ^'^ — ^^ + c^w — • • • ) = 'jji • = 0,

and the surface integral over any closed surface of the normal

attraction due to anj- system of outside masses is zero.

The results proved above may be put together and stated in

the form of a

Theorem due to Gauss.

If tJiere be any distribution of matter partly within and paHly

witliout a closed surface T, and ifM be the sum of the masses

which T encloses, and 31' the sum of the masses outside T, the

surface integral over T of the normal attraction N toward the

interior, due to both M and ilf , is equal to Att^L If V be the

potential function due to both M and M', we have

CjSTds = Cd, V-ds = 4. ttM.

It is easy to see that if a mass M be supposed concentrated

on the surface of any closed surface T whose curvature is every-

where finite, the surface integral of normal attraction taken

over Twill be 27rJf ; for all the elementary cones which can be

drawn from a point P in the surface so as to cut T once or some

other odd number of times lie on one side of the tangent plane

at the point, and intercept just half the surface of the sphere of

unit radius whose centre is P.

From Gauss's Theorem it follows immediately that at some

parts of a closed surface situated in a field of force, but en-

closing none of the attracting mass, the normal component of

the resultant attraction must act towards the interior of the

surface and at some parts toward the exterior, for otherwise

the limit of the sum of the intrinsically positive elements of the

surface, each one multiplied by the component in the direction

of the interior normal of the attraction at one of its own points,

could not be zero. In other words, the potential function,

whose rate of change measures the attraction, must at some
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parts of the surface increase and at others decrease in the direc-

tion of the interior normal.

From this it follows that the potential function cannot have a

maximum or a minimum value at a point in empty space ; for

if at such a point Q the potential function had a maximum value,

we could surround Q by a small closed surface, at every point

of which the potential function would increase in the direction

of the interior normal, and this would be inconsistent with the

fact that the surface integral of normal attraction taken over

the surface, which would contain no matter, must be zero.

Similarly it may be shown that the potential function cannot

have a minimum value at a point in empty space.

If the potential function be constant over a closed surface

which contains none of the attracting mass, it has the same

value throughout the interior ; for if this were not the case,

some point or region Q within T would have a value greater or

less than the surrounding region, and we could enclose Q, b}" a

closed surface to which we could apply the course of reasoning

just used to show that V cannot attain a maximum value at a

point in empty space.

32. Tubes of Force. A line which cuts orthogonally the dif-

ferent members of the system of equipotential surfaces cor-

responding to any distribution of matter is called a "line of

force," since its direction at each point of its course shows the

direction of the resultant force at the point. If through all

points of the contour of a portion of an equipotential surface

lines of force be drawn, these lines lie on a surface called a

Fig. 24.

"tube of force." We may easily apply Gauss's Theorem to a

space cut out and bounded by a portion of a tube of force and

two equipotential surfaces ; for the sides of the tube do not con-
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tribute anything to the surface integral of normal attraction, and

the resultant force is all normal at points in the equipotential

surfaces. If w and w' are the areas of the sections of a tube of

force made b}^ two equipotential surfaces, and if F and F' are

the average interior forces on w and o>', we have

Foi-\-F'w' = [87]

if the tube encloses emptj- space, and

Fai-\-F'(o'=4.7rm [88]

when the tube encloses a mass m of attracting matter.

33. Spherical Distributions. In the case of a distribution

about a point in spherical shells, so that the density is a

function of the distance from this point only, the lines of force

are straight lines whose directions all pass through the central

point. Every tube of force is conical, and the areas cut out of

different equipotential surfaces by a given tube of force are pro-

portional to the square of the distance from the centre.

Consider a tube of force which intercepts an area
\f/
from a

spherical surface of unit radius drawn with as a centre, and

apply Gauss's Theorem to a box cut out of this tube b}^ two

equipotential surfaces of radii r and (?' + Ar) respectively.

Fig. 25.

Let AOB (Fig. 25) be a section of the tube in question.

The area of the portion of spherical surface w which is repre-

sented in section at ad is r^i/^, and the area of that at be is

(r -\- Ar)^i/f. If the average force .acting on w toward the inside

of the box is F^ the average force acting on w' toward the inside

of the box will be — (i^+A^i^), and the surface integral of

normal attraction taken all over the outside of the box is

Fi^xff -{F+ A,F) (r + Ar)2,/. = -xf,. A,(F. r^) ., [89]
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If the tube of force which we have been considering be ex-

tended far enough, it will cut all the concentric layers of matter,

traverse all the empty regions between the layers, if there are

such, and finally emerge into outside space.

If we choose r so that the box shall contain no matter, the

surface integral taken over the box must be zero.

lu this case,

therefore, -^=4' [^^3

and F=--+/x. [01]
T

From this it follows that in a region of empty space, either

included between the two members of a system of concentric

spherical shells of density depending only upon the distance

from the centre, or outside the whole system, the force of attrac-

tion at different points varies inversely as the squares of the

distances of these points from the centre.

Suppose that the box (abed) lies in a shell whose density is

constant ; then the surface integral of normal attraction taken

over the box is equal to 47r times the matter within the box. In

this case the quantity of matter inside the box is

47r

where e is an infinitesimal of an order higher than the first.

Therefore,
- i/^AXi^O = 4:7r(pxpi^Ar + e)

,

limit AJFr^) . o

whence ir=_ iiE^T ^_4, [92]
3 ir

and ]7-=_£_?7rp?'2 + ^. [93]
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If the box lies in a shell whose density is inversely propor-

tional to the distance from the centre, we shall have

whence i^=-27rX + ^, [95]

and ^=_£_27rXr + /A. [96]
r

In general, if the box lies in a shell whose density is f{r) , we

shall have

whence ^= 4" " ^J/(^)'''
* ^^- C^^]

In order to learn how to use the results just obtained to de-

termine the force of attraction at any point due to a given

spherical distribution, let us consider the simple case of a single

shell, of radii 4 and 5, and of density [A.r] proportional to the

distance from the centre.

At points within the cavity enclosed by the shell we must

have, according to [90] and [91],

F=^ and F=--+/x; .^

But the force is evidently zero at the centre of the shell, where

*?' is zero, so that c must be zero everywhere within the cavity,

and there is no resultant force at any point in the region. The

value, at the centre, of the potential function due to the shell is

evidently

X^ar = ^-^^, [99]
3

and it has the same value at all other points in the cavity.

In the shell itself it is easy to see that we must have at all

points,

F=^-^\7^ and F=---^+/*'. [100]

^ = j Att
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In order to determine the constants in this equation, we may
make use of the fact that F and V are everywhere continuous

functions of the space coordinates, so that the values of F and

V obtained by putting r = 4, the inner radius of the shell, in

[100], must be the same as those obtained by making r = 4 in

the expressions which give the values of i^ and Ffor the cavity

enclosed by the shell. This gives us

^.0,. c' = 2567rA and />t' = ?5^,

so that for points within the mass of the shell we have

^F= M^_^Xr2, [101]

and F= _+___. [102]

For points without the shell we have the same general expres-

sions for F and V as for points within the cavity enclosed by

the shell, namely,

F=\ and V=-- + m, [103]

but the constants are different for the two regions.

Keeping in mind the fact that i^and V are continuous, it is

easy to see that we must get the same result at the boundary of

the shell, where r= 5, whether we use [103], or [101] and [102].

This gives

A: = — 369 7rA, and m = 0;

so that for all points outside the shell we have

^^_36^^ [104]

and F= ^-^^. [105]
r

These last results agree with the statements made in Section

13, for the mass of the shell is 369 irX,

The values, at every point in space, of the potential function

and of the attraction due to any spherical distribution may be

m
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found by determining, first, with the aid of Gauss's Theorem,

the general expressions for F and V in the several regions

;

then the constants for the innermost region, remembering that

there is no resultant attraction at the centre of the sj'stem ; and

finally, in succession (moving from within outwards) , the con-

stants for the other regions, from a consideration of the fact

that no abrupt change in the values of either F or V is made by

crossing the common boundary of two regions.

This method of treating problems is of great practical im-

portance.

34. Cylindrical Distributions. In the case of a cylindrical

distribution about an axis, where the density is a function of

the distance from the axis only, the equipotential surfaces are

concentric cylinders of revolution ; the lines of force are straight

lines perpendicular to the axis ; and every tube of force is a

wedge.

If we apply Gauss's Theorem to a box shut in between two

equipotential surfaces of radii r and r + Ar, two planes perpen-

dicular to the axis, and two planes passing through the axis,

Fig. 26.

we have, if xp is the area of the piece cut out of the cylindrical

surface of unit radius by our tube of force,

<o = r • i/^, <o' = (?• -|- Ar) • i/^,

and for the surface integral of normal attraction taken over the

box,
Fi^ + F'i,i' = -xP'^,{r^F). [106]

If our box is in empty space.

so that F=- and V= clogr
-{- fi. [107]
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If the box is within a shell of constant density p,

— i/a. A,(r . F) = 4:7ripprAr,

so that F= 27rpr and F=clogr — 7rp7'^+/x. [108]

35. Poisson's Equation. Let us now appl}^ Gauss's Theorem

to the case where our closed surface is that of an element of

volume of an attracting mass in which p is either constant or a

continuous function of the space coordinates. We will consider

three cases, using first rectangular coordinates, then cylinder

coordinates, and finally spherical coordinates.

n

Ll

Fig. 27.

I. In the first case, our element is a rectangular parallelopiped

(Fig. 27). Perpendicular to the axis of x are two equal sur-

faces of area A?/ • As;, one at a distance x from the plane yz^ and

one at a distance x-\-Ax from the same plane. The average

force perpendicular to a plane area of size A?/ As;, parallel to the

plane yz^ and with edges parallel to the axes of y and 2;, is evi-

dently some function of the coordinates of the corner of the

element nearest the origin. '

That is, if P=(a7, y^z)^ the average force on PP^ parallel to

the* axis of x is X=f{x, ?/, 2;), and the average force on P1P7 in

the same direction is f{x-{-Ax, y, z) = X+A^X, so that PP4

and P1P7 yield towards the surface integral of interior-normal

A X
attraction taken over the element, the quantity —Ax/\y/iz-—^—
Similarly, the other two pairs of elementary surfaces yield
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— AfljAi/Aa;—'^— and
A?/

AxAy Az A^Z
Az'

and, if pq is the average

densit}' of the matter enclosed b}' the box, we have

— AxAyAz A^X . A„r , A,Z
Ax Ay Az

AttpqAxAyAz. [109]

This equation is true whatever the size of the element AxAyAz.
If this element is made smaller and smaller, the average nor-

mal force [X] on FP^ approaches in value the force [i^xl^] ^t

P in the direction of the axis of a; ; I^ and Z approach respec-

tively the limits I)yV and D^V] and p^ approaches as its limit

the actual density [/a] at P.

Taking the limits of both sides of [109], after dividing by
AxAyAz^ we have

or vV=-47rp, [110]

which is Poisson's Equation. The potential function due to any
conceivable distribution of attracting matter must be sucli that

at all points within the attracting mass this equation shall be

satisfied.

For points in empty space p=0, and Poisson's Equation

degenerates to Laplace's Equation.

II. In the case of cylindrical coordinates, the element of vol-

ume (Fig. 28) is bounded by two cylindrical surfaces of revo-

FiG. 28.

lution having the axis of z as their common axis and radii r and

r + A?-, two planes perpendicular to this axis and distant Az
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from each other, and two planes passing through the axis and

forming with each other the diedral angle A^.

Call i?, 0, and Z the average normal forces upon the elemen-

tary planes PPgi PAi ^"^^ P^z respectively, then the surface

intesrral of normal attraction over the volume element will be

- A(9 A2 A,(r • P) - Ar A;s A^© - A6> [rAr + i(Ar)2]A^^

= 47rpQ (vol. of box)
;

[HI]
whence, approximatel}',

1 A,(rJ?)

r Ar

1 A.0
r

A,Z
A(9 A2

= -4 ^Po
vol. of box

r ArA^As;
[112]

The force at Pin direction PP5 is I)^ F, in direction PP4 is D^ V,

and perpendicular to LP in the plane PLP^ is -'Dq F, so that

if the box is made smaller and smaller, our equation approaches

the form 1 1 „ „

iA(^.AF) + -,D,^F+i)/F=-47rp. [113]

Fig. 29.

III. In the case of spherical coordinates, the volume element

is of the shape shown in Fig. 29. Let OP=r^ ZOP=0, and
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denote by
(f>

the diedral angle between the planes ZOP and

ZOX. Denote by i?, 0, and ^ the average normal forces on the

faces PPq, PPs-, and PP2 respectively ; then the surface integral

of normal attraction over the elementary box is approximately

-sin^A^A<^.A,(r2i?)-rA^ArA^$-rA^Ar.A^(sin^.0)

= A7rpQ-{yo\. of box)
; [114]

whence J_ . M^f^ +_J_ .

A** +^_ .MlMl®!
r^ Ar rsin^ A0 rsin^ A^

. vol. of box r^i KT
^^ r^sin^'ArA^Ac^ "- "^

The force at P in the direction PPg is D^F, in the direction

PPi is D(k F, and in the direction PP^ is --D^F; there-
r sin ^ r

fore, as the element of volume is made smaller and smaller, our

equation approaches the form

sin^.A(^'AF) + ^^^+i>0(sin^.Z),F)

= -4.7rpr's[ne. [116]

This equation, as well as that for cylinder coordinates, might

have been obtained by transformation from the equation in

rectangular coordinates.

36. Poisson's Equation in the Integral Form. In [109] X
may be regarded as a function of cc, ?/, z, Ay, and Az, which ap-

proaches D^Fas a limit when Ay and Az are made to approach

zero, and it may not be evident that the limit, when Ace, Ay, and

A X
Az are together made to approach zero, of the fraction -^— is

D/F. For this reason it is worth while to establish Poisson's

Equation by another method.

It is shown in Section 29 that the volume integral of the

quantity —DA-j, taken throughout a certain region, is the sur-
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face integral of ^cosa taken all over the surface which bounds
r

the region. In this proof we might substitute for - any other

function of the three space coordinates which throughout the

region is finite, continuous, and single-valued, and state the

results in the shape of the following theorem

:

If T is an}' closed surface and U a function of a;, ?/, and z

which for every point inside Thas a finite, definite value which

changes continuously in moving to a neighboring point, then

11 i DJJ'dxdydz =— |
C^cosacZs, [H^]

C C ^DyU'dxdydz=^- Cuco^(ids, [118]

and
I I

i D^U'dxdydz = —
|
C7cosyc?s, [^19]

where a, j8, and y are the angles made by the interior normals

at the various points of the surface with the positive direction

of the coordinate axes, and where the sinister integrals are to be

extended all through the space enclosed by T, and the dexter

integrals all over the bounding surface.

If we apply this theorem to an imaginary closed surface which

shuts in any attracting mass of density either uniform or vari-

able, and if for ?7in[117], [118], and [119] we use respectively

D^F, DyV^ and -D^F, and add the resulting equations together,

we shall have

JJJCZ)/F+ DiV+ A' V) dxdy dz

= - C{D.Vcosa + DyVcos^ + D,Veosy)ds. [120]

The integral in the second member of this equation is evi-

dently (see [56]) the surface integral of normal attraction taken

over our imaginary closed surface, and this by Gauss's Theorem

is equal to 47r times the quantity of matter inside the surface,

so that
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= — 47r|
I

I pdxdydz. [121]

Since this equation is true whatever the form of the closed

surface, we must have at every point

For if throughout any region V Fwere greater than —A-n-p, we
might take the boundary of this region as our imaginary surface.

In this case every term in the sum whose limit gives the sinister

of [121] would be greater than the corresponding term in the

dexter, so that the equation would not be true. Similar reason-

ing shuts out the possibility of VF's being less than — 47rp.

37. The Average Value of the Potential Function on a Spheri-

cal Surface. If, in a field of force due to a mass m concentrated

at a point P, we imagine a spherical surface to be drawn so as

to exclude P, the surface integral taken over this surface of the

value of the potential function due to m is equal to the area of

the surface multiplied b}' the value of the potential function at

the centre of the sphere.

To prove this, let the radius of the sphere be a and the dis-

tance [OP'] of P from its centre c. Take the centre of the

sphere for origin and the line OP for the axis of x. Divide the

surface of the sphere into zones by means of a series of planes

cutting the axis of x perpendicularly at intervals of Ax. The
area oi each one of these zones is 27radx, so that the surface

integral of — is

/
« Va^ + c^ — 2ca;

2 7rmaVa" -f- c^ — 2 ex
+ a

and the value of this, since the radical represents a positive

• • 4 ttQ/ 7)1)

quantity, is , which proves the proposition.
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The surface integral of the potential function taken over the

sphere divided by the area of the sphere is often called '
' the

average value of the potential function on the spherical sur-

face."'

If we have any distribution of attracting matter, we may
divide it into elements, apply the theorem just proved to each

of these elements, and, since the potential function due to the

whole distribution is the sum of those due to its parts, assert

that

:

The average value on a spherical surface of the potential

function due to any distribution of matter entirely outside the

sphere is equal to the value of the potential function at the

centre of the sphere.

It follows, from this theorem, that if the potential function is

constant within any closed surface S drawn in a region T, which

contains no matter, so as to shut in a part of that region, it will ' T
have the same value in those parts of T which lie outside S.

For, if the values of the potential function at points in empty

space just outside S were different from the value inside, it would

always be possible to draw a sphere enclosing no matter whose

centre should be inside /S, and which outside S should include

only such points as were all at either higher or lower potential

than the space inside S ; but in this case the value of the poten-

tial function at the centre of the sphere would not be the average

of its values over its surface.

The value of the potential function cannot be constant in un-

limited empty space surrounding an attracting mass Jf, for, if

it were, we could s.uiTOund the mass by a surface over which the

surface integral of normal attraction would be zero instead of

The average value on a spherical surface of the potential

function [ F] , due to any distribution [3/] of attracting matter

wholly within the surface, is the same as if M were concen-

trated at the centre of the space which the surface encloses.

For the average values [Fq and T^ + A^Fq] of F on con-

centric spherical surfaces of radii r and r + Ar may be written
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I
Vds (or —

I Vdu), if do) is tlie solid angle of an ele-
47ry-V 4:7rJ

mentary cone with vertex at 0, which intercepts the element ds

from the surface of a sphere of radius ?'), and —
|
{V-\-^rV)do) ;

whence AyF^ =—- JA^F-cZo),
4:7rJ

and BrVo =— I DrV-do).
4:7rJ

Now —
I
DrV'h^du) is the integral of normal attraction taken

over the spherical surface, whence, by Gauss's Theorem,

^ T^ 4:7rM
1 Tr ^^

. AAFo = — -—^, and Fo = — + 0,
47rr r

since FJ)=0, for r=Qo.

38. The Equilibrium of Fluids at Rest under the Action of

Given Forces. Elementary principles of Hydrostatics teach us

that when an incompressible fluid is at rest under the action of

any system of applied forces, the hydrostatic pressure p at the

point (a?, y, z) must satisfy the differential equation

dp = p{Xdx + Ydy + Zdz)
, [122]

where X, Y", and Z are the values at that point of the force

applied per unit of mass to urge the liquid in directions parallel

to the coordinate axes.

For, if we consider an element of the liquid \_Lx £^y ^z']

(Fig. 27) whose average density is p^ and whose corner next

the origin has the coordinates (a;, y^ z) , and if we denote by p^
the average pressure per unit surface on the face PP^P^P^, by

p^H-A^_p^ the average pressure on the face P^P^P^P^^, and by

Xo the average applied force per unit of mass which tends to

move the element in a direction parallel to the axis of x, we
have, since the element is at rest,

p.Ay Az + po ^0 ^^AyAz = (p, + A^p,) Ay Az,

or Po-^'> = -^-
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If the element be made smaller and smaller, the first side of

the equation approaches the limit pX, and the second side the

limit Dj,p, where p is the hydrostatic pressure, equal in all direc-

tions, at the point P.

This gives us D^p = p X. [1 23]

In a similar manner, we may prove that

and D^p = pZ;

whence dp = D^p dx-{-DyP dy -j- D^pdz

= p(Xdx + Tdy + Zdz)

.

If in any case of a liquid at rest the only external force

applied to each particle is the attraction due to some outside

mass, or to the other particles of the liquid, or to both together,

X, F, and Z are the partial derivatives with regard to x, y^ and

2 of a single function F, and we may write our general equation

in the form

dp = p(D^V' dx + DyV' dy + D.V- dz) = p'dV,

whence, if p is constant,

p = pF+ const., [124]

and the surfaces of equal hydrostatic pressure are also equi-

potential surfaces.

According to this, the free bounding surfaces of a liquid at

rest under the action of gravitation only are equipotential.

EXAMPLES.

3^, A >/ 1. Prove that a particle cannot be in stable equilibrium under ^^^^'^'^^^'j

r f****/ ^YiQ attraction of any system of masses. [Earnshaw.]

^ 2. Prove that the number of ergs required to move to infinity / <£-/*ot- <^

a mass of one gramme concentrated at a point F is the value aJ^ ^ -u-^

of the potential function at P divided by about 15220000.

J 3. Prove that if all the attracting mass lies within an equi-

potential surface S on which F=(7, then in all space outside S
the value of the potential function lies between C and 0.
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4. The source of the Mississippi River is nearer the centre of

the earth than the mouth is. What can be inferred from this

about the slope of level surfaces on the earth ?

5. If in [59] X be made equal to zero, V becomes infinite.

How can j^ou reconcile this with what is said in the first part of

Section 22?

6. Are all solutions of Laplace's Equation possible values of

the potential function in empty space due to distributions of

matter ? Assume some particular solution of this equation

which will serve as the potential function due to a possible dis-

tribution and show what this distribution is.

7. If the lines of force which traverse a certain region are

parallel, what may be inferred about the intensity of the force

within the region ?

8. The path of a material particle starting from rest at a

pointP and moving under the action of the attraction of a given

mass i^fis not in general the line of force due to ifcTwhich passes

through P. Discuss this statement, and consider separately

cases where the lines of force are straight and where they are

curved.

9. Draw a figure corresponding to Figure 17 for the case of

a uniform sphere of unit radius surrounded by a concentric

spherical shell of radii 2 and 3 respectively.

10. Draw with the aid of compasses traces of four of the

equipotential surfaces due' to two homogeneous infinite cylinders

of equal density whose axes are parallel and at a distance of

5 inches apart, assuming the radius of one of the cylinders to

be 1 inch and that of the other to be 2 inches.

11. Draw with the aid of compasses meridian sections of

four of the equipotential surfaces due to two small homogeneous

spheres of mass m and 2m respectivelj', whose centres are 4

inches apart. Can equipotential surfaces be drawn so as to lie

wholly or partly within one of the spheres ? What value of the

potential function gives an equipotential surface shaped like

the fisrure 8 ? Show that the value of the resultant force at the

point where this curve crosses itself is zero.
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faces of equal force are also equipotential surfaces? Prove

vour assertion.

16. Prove that if a mass Mi be divided up into elements, and

if eacli one of these elements be multiplied by the value at one

of its own points of the potential rtUJi'':tion Kj due to another

mass M^^ the limit of the sum of these intinitesimal products will

be equal to the limit of the sum exUiuded over M. of the product

of the masses of its elements bv the corresponding values of the

X>otential function due to 3/,. That is, show that

where ttwe sinister integral is to embrace all 3fi aud the dexter

all Mi. [Gauss.]
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12. A sphere of radius 3 inches and of constant density /w, is

surrounded by a spherical shell concentric with it of radii 4

inches and 5 inches and of density />tr, where r is the distance

from the centre. Compute the values of the attraction and of

the potential function at all pomts in space and draw curves to

illustrate the fact that V and D^V are everywhere continuous

and that D^^Fis discontinuous at certain points.

13. A very long cylinder of radius 4 inches and of constant

density fi is surrounded by a cylindrical shell coaxial with it

and of radii 6 inches and 8 inches. The density of this shell is

inversely proportional to the square of the distance from the

axis, and at a point 8 inches from this axis is fx. Use the Theo-

rem of Gauss to find the values of F, D^V, and jD/F at differ-

ent points on a line perpendicular to the axis of the cylinder at

its middle point. If the value of the attraction at a distance

of 20 inches from the axis is 10, show how to find /*.

14. Use Dirichlet's value of D^V, given by equation [78],

to find the attraction in the direction of the axis of x at points

within a spherical shell of radii Vq and Vi and of constant den-

sity p.

15. Are there any other cases except those in which the

density of the attracting matter depends only upon the distance

from a plane, from an axis, or from a central point, where sur-

faces of equal force are also equipotential surfaces? Prove

your assertion.

16. Prove that if a mass M^ be divided up into elements, and

if each one of these elements be multiplied by the value at one

of its own points of the potential function V2 due to another

mass 3/2, the limit of the sum of these infinitesimal products will

be equal to the limit of the sum extended over M2 of the product

of the masses of its elements by the corresponding values of the

potential function due to Mi. That is, show that

Cv2'dMi=: CVi'dM^,

where the sinister integral is to embrace all Mi and the dexter

all M2. [Gauss.]
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17. Two uniform straight wires of length I and of masses mi

and 9712 are parallel to each other and perpendicular to the line

joining their middle points, which is of length y^. Show that

the amount of work required to increase the distance between

the wires to 2/2 by moving one of them parallel to itself is

—
f,
— y — Wl^-\-y^-l\og ±^

^ L y

18. Show that if the earth be supposed spherical and covered

with an ocean of small depth, and if the attraction of the par-

ticles of water on each other be neglected, the ellipticity of the

ocean spheroid will be given by the equation,

2 _ The centrifugal force at the equator_ _

19. A spherical shell whose inner radius is r contains amass
m of gas which obeys the Law of Boyle and Mariotte. Find

the law of density of the gas, the total normal pressure on the

inside of the containing vessel, and the pressure at the centre.

20. If the earth were melted into a sphere of homogeneous

liquid, what would be the pressure at the centre in tons per

square foot ? If this molten sphere instead of being homo-

geneous had a surface density of 2.4 and an average density of

5.6, what would be the pressure at the centre on the supposition

that the density increased proportionately to the depth?

21. A solid sphere of attracting matter of mass m and of

radius r is surrounded by a given mass M of gas which obeys

the Law of Boyle and Mariotte. If the whole is removed from

the attraction of all other matter, find the law of density of the

gas and the pressure on the outside of the sphere.

22. The potential function within a closed surface S due to

matter wholly outside the surface has for extreme values the

extreme values upon S.

23. If the potential functions V and V due to two systems

of matter without a closed surface have the same values at all

points on the surface, they will be equal throughout the space

enclosed by the surface.
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24. The potential function outside of a closed surface due to

matter wholly within the surface has for its extreme values two

of the following three quantities : zero and the extreme values

upon the surface.

25. Prove that if R is the distance from the origin of coordi-

nates to the point P, and if Vp is the value at P of the potential

function of any system of attracting masses within a finite dis-

tance of the origin, the limit as R is made infinite of Vp-P is

equal to Jf, the whole quantity of attracting matter.
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CHAPTER HI.

THE POTENTIAL POTOTION IN THE CASE OF

EEPULSION.

39. Repulsion, according to the Law of Nature. Certain

physical phenomena teach us that bodies ma}' acquire, by

electritication or otherwise, the property of repelling each other,

and that the resulting force of repulsion between two bodies is

often much greater than the force of attraction which, ac-

cording to the Law of Gravitation, every body has for every

other body.

Experiment shows that almost every such case of repulsion,

however it may be explained physicall}', can be quantitatively

accounted for by assuming the existence of some distribution of

a kind of" matter," every particle of which is supposed to repel

every other particle of the same sort according to the " Law*of

Nature," that is, roughly stated, with a force directly propor-

tional to the product of the quantities of matter in the particles,

and inversely proportional to the square of the distance between

their centres.

In this chapter we shall assume, for the sake of argument,

that such matter exists, and proceed to discuss the eifects of

different distributions of it. Since the law of repulsion wiiicli

we have assumed is, with the exception of the opposite direc-

tions of the forces, mathematically identical with the law which

governs the attraction of gravitation between particles of pon-

derable matter, we shall find that, b}' the occasional intro-

duction of a change of sign, all the formulas which we have

proved to be true for cases of attraction due to gravitation

can be made useful in treating corresponding problems in

repulsion.
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40. Force at Any Point due to a Given Distribution of

Repelling Matter. Two equal quantities of repelling matter

concentrated at points at the unit distance apart are called

" unit quantities" wlien they are such as to make the force of

repulsion between them the unit force.

If the ratio of the quantity of repelling matter within a small

closed surface supposed drawn about a point P, to tlie volume

of the space enclosed by the surface, approaches the limit p when

tlie surface (always enclosing P) is supposed to be made smaller

and smaller, p is called the "density" of the repelling matter

at P.

In order to find the magnitude at an}' pointP of the force due

to any given distribution of repelling mutter, we may suppose

the space occupied by this matter to be divided up into small

elements, and compute an approximate value of this force on the

assumption that each element repels a unit quantity of matter

concentrated at P with a force equal to the quantity of matter

in the element divided by the square of the distance between P
and one of the points of the element. The limit approached by

this approximate value as the size of the elements is diminished

indefinitely is the value required.

Fig. 30.

Let Q (Fig. 30), whose coordinates are x', y\ z\ be the

corner next the origin of an element of the distribution. Let p

be the densit}' at Q and Aaj'Ai/'Ag' the volume of the element;

then the force at P due to the matter in the element is approxi-



4
«

Y4 THE POTENTIAL FUNCTION

n ^'T* A.?/ j\^'
mately equivaleot to a force of magnitude

"— ^ acting in

the direction QP, or a force of magnitude — ^— ^—— acting

in the direction PQ. If the coordinates of P are ic, ?/, !2, the

component of this force in the direction of the positive axis of a;

— p Ax' Ay' Az' (x' — x) i ^i ^^ ^ -n.

to the axis of x due to the whole distribution of repelling

matter is

Y^ CC C p(^'-x)dx'dyW
^ ^

J J J l(x'-xy-\-{y'-yy+{z'-zyy^' •-
^-^

where the triple integration is to be extended over the whole

space filled with the repelling matter. For the components of

the force at P parallel to the other axes we have, similarly,

T=- CC C p(y'-y)dx'cly'dz' p. ^5 1

J J J l(x'-xy-{-{y'-yy+{z'-zyy^' ^
"-•

and

Z =-CCC p(z'-z)dx'dy'dz'
ri25 1

J J J [(x'-xy+ (v'- vY-\- (z'- zYli ^ ""-^l{x'-xy+(y'-yy+{z'-zy]i

If we denote by V the function

p dx'dy'dz'

fff, 211'ax'-xy+(y'-yy-^{z'-zy^h
[126]

which, together with its first derivatives, is everywhere finite

and continuous, as we have shown in the last chapter, it is easy

to see that

X=-AF, F=-Z),F, Z = -D,V, [127]

B=V{Dj^y+{Wy+Wn', [128]

and that the direction-cosines of the line of action of the re-

sultant force at P are
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It follows from this (see Section 21) that the component in

any direction of the force at a point P due to any distribution

M of repelling matter is minus the value at P of the partial

derivative of the function V taken in that direction.

The function Fgoes by the name of the Newtonian potential

function whether we are dealing with attracting or repelling

matter.

In the case of repelling matter, it is evident that the resultant

force on a particle of the matter at any point tends to drive that

particle in a direction which leads to points at which the i^oten-

tial function has a lower value, whereas in the case of gravita-

tion a particle of ponderable matter at any point tends to move

in a direction along which the potential function increases.

41. The Potential Function as a Measure of Work. It is

easy to show by a method like that of Article 27 that the

amount of work required to move a unit quantity of repelling

matter, concentrated at a point, from Pj to P^^ in face of the

force due to any distribution M of the same kind of matter, is

V2 — Fi, where Fi and V2 are the values at Pi and Pg respec-

tively of the potential function due to M. The farther Pi is

from the given distribution, the smaller is T^i, and the less does

V2 — Vi differ from V2' In fact, the value of the potential

function at the point Pg, wherever it may be, measures the work

which would be required to move the unit quantity of matter by

any path from " infinity" to P2.

42. Gauss's Theorem in the Case of Repelling Matter. If a

quantity m of repelling matter is concentrated at a point within

a closed oval surface, the resultant force due to m at any point

on the surface acts toward the outside of the surface instead of

towards the inside, as in the .case of attracting matter.

Keeping this in mind, we may repeat the reasoning of Article

31, using repelling matter instead of attracting matter, and sub-

stituting all through the work the exterior normal for the in-

terior normal, and in this way prove that

:
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If there be any distribution of repelling matter partly within

and partly without a closed surface T, and if M be the whole

quantity of this matter enclosed by T, and iHf' the quantity out-

side T, the surface integral over T of the component in the di-

rection of the exterior normal of the force due to bothM and Jf'

is equal to 4 ttM. If V be the potential function due to M and

Jf', we have
Ji), F- cZs = 4 Tr.lf.

43. Poisson's Equation in the Case of Repelling Matter. If

we apply the theorem of the last article to the surface of a

volume element cut out of space containing repelling matter,

and use the notation of Article 35, we shall find that in the case

of rectangular coordinates the surface integral, taken over the

element, of the component in the direction of the exterior

normal is

ACCA2/A2:
A.X . A,F ,

A,Z = 47rpo.Aa;A2/A^, [130]
Aic A?/ Az

where X is the average component in the positive direction of

the axis of x of the force on the elementary surface A2/A2;, and

where Y and Z have similar meanings. It is evident that if

the element be made smaller and smaller, X, Y, and Z will

approach as limits the components parallel to the coordinate

axes of the force at P. These components are — Z^^F, —DyV^
and —D^V\ so that if we divide [130] by AicA^/Az and then

decrease indefinitely the dimensions of the element, we shall

arrive at the equation

v'F=-47rp. [131]

B}^ using successivel}^ cylinder coordinates and spherical co-

ordinates we may prove the equations

jA(^AF) + jD/F+A^F=-47rp, [132]

and sin^. AC?-"AF) +^^+ D^(sin^. 2>^F)

= -47rpr2sin^, [133]
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SO that Poisson's Equation holds whether we are deaUng with

attracting or repelling matter.

44. Coexistence of Two Kinds of Active Matter. Certain

physical phenomena may be most conveniently treated mathe-

matically by assuming the coexistence of two kinds of "matter"

such that any quantity of either kind repels all other matter of

the same kind according to the Law of Nature, and attracts all

matter of the other kind according to the same law.

Two quantities of such matter may be considered equal if,

when placed in the same position in a field of force, they are

subjected to resultant forces which are equal in intensity and

which have the same line of action. The two quantities of

matter are of the same kind if the direction of the resultant

forces is the same in the two cases, but of different kinds if the

directions are opposed. The unit qnantitj' of matter is that

quantity which concentrated at a point would repel with the

unit force an equal quantity of the same kind concentrated at

a point at the unit distance from the first point.

It is evident from Articles 2, 14, and 40 that m units of one

of these kinds of matter, if concentrated at a point {x, y^ z) and

exposed to the action of mi, mg, mj, ... mj, units of the same

kind of matter concentrated respectively at the points (x^, yi^z^),

(a^a, 2/2. 2:2), (a^g, y^, z^), ... {x„, y,,, 2;^), and of m^+i, m^t+g? ... m„

units of the other kind of matter concentrated respectively at

the points {Xj^_)^i^ Vn + l^ ^^t + l)' (•^^+2? 2/a + 2i ^/fc + 2)? .•• \^nl Vnl ^n)^

will be urged in the direction parallel to the positive axis of x

with the force

X=-mV??kfejZ^ + mV?^1JZ£)

,

[134]

i = \ i = *;+ l

where r^ is the distance between the points (a;, y, 2;) and

(a^o ?/» 2;..)

.

If we agree to distinguish the two kinds of matter from each

other by calling one kind " positive " and the other kind " neg-

ative," it is easy to see that if ever}' m which belongs to positive
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matter be given the plus sign and ever}' m which belongs to

negative matter the minus sign, we may write the last equation

in the form
i = n

X=—m\yii(Xi-x) ^ |-135-]

i=i

The result obtained by making m in [135] equal to unity is

called the force at the point {x, y, z).

In general, m u»its of either kind of matter concentrated at

the point {x, y, z) , and exposed to the action of any continuous

distribution of matter, will be urged in the positive direction of

the axis of x by the force

\r err p(x^—x)dx'dy'dz'
. riQAi^=-VJJ [ix'-xr+ (y'-yr+ iz'-zyy '

^^^^^

in this expression, p, the density at {x',y\z'), is to be taken

positive or negative according as the matter at the point is

positive or negative : m is to have the sign belonging to the

matter at the point (x, y, z) : and the limits of integration are to

be chosen so as to include all the matter which acts on m.

With the same understanding about the signs of m and of p,

it is clear that the force which urges in any direction s, m units

of matter concentrated at the point (cc,?/, z) is equal to —m -DgV,

where Fis the everywhere finite, continuous, and single-valued

function

p (x'— x) dx' dy' dz'

fff,[{x'-xy-{-{y'-yy+{z'-zy^^'

and that mV measures the amount of work required to bring up

from " infinity " by any path to its present position the m units

of matter now at the point (x, y, z) .

If we call the resultant force which would act on a unit of

positive matter concentrated at the point P "the force at P,"

it is clear that if any closed surface T be drawn in a field of

force due to an}'' distribution of positive and negative matter so

as to include a quantity of this matter algebraically equal to Q,
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the surface integral taken over T of the component in the direc-

tion of the exterior normal of the force at the different points of

the surface is equal to 47rQ.

It will be found, indeed, that all the equations and theorems

given earlier in this chapter for the case of one kind of repelling

matter may be used unchanged for the case where positive and

negative matter coexist, if we only give to p and m their proper

signs.

It is to be noticed that Poisson's Equation is applicable

whether we are dealing with attracting matter or repelling mat-

ter, or positive and negative matter existing together.

EXAMPLES.

1. Show that the extreme values of the potential function

outside a closed surface /S', due to a quantity of matter algebrai-

cally equal to zero within the surface, are its extreme values

on S.

2. Show that if the potential function due to a quantit}- of

matter algebraically equal to zero and shut in by a closed sur-

face S has a constant value all over the surface, then this con-

stant value must be zero.
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CHAPTER IV.

SUEPAOE DISTEIBUTIONS.-GKEEN'S THEOSEM.

45. Force due to a Closed Shell of Repelling Matter. If a

quantity of very finely-divided repelling matter be enclosed in a

box of any shape made of indifferent material, it is evident

from [127] and from the principles of Section 38 that if the vol-

ume of the box is greater than the space occupied by the repel-

ling matter, the latter will arrange itself so that its free surface

will be equipotential with regard to all the active matter in

existence, taking into account any there may be outside tlie box

as well as that inside. It is easy to see, moreover, that we

shall have a shell of matter lining the box and enclosing an

empty space in the middle.

That any such distribution as that indicated in the subjoined

diagram is impossible follows immediately from the reasoning

of Section 37. For ABC and DEF are parts of the same

equipotential free surface of the matter. If we complete this

surface by the parts indicated by the dotted lines, we shall

enclose a space void of matter and having therefore throughout

a value of the potential function equal to that on the bounding
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surface. But in this case all points which can be reached from

hy paths which do not cut the repelling matter must be at the

same potential as 0, and this evidently includes all space not

actually occupied by the repelling matter ; which is absurd.

Let us consider, then (see Fig. 32), a closed shell of repelling

matter whose inner surface is equipotential, so that at every

point of the cavity which the shell shuts in, the resultant force,

due to the matter of which the shell is composed and to any

outside matter there may be, is zero.

Let us take a small portion w of the bounding surface of the

cavity as the base of a tube of force which shall intercept an

Fig. 32.

area w' on an equipotential surface which cuts it just outside the

outer surface of the shell, and let us apply Gauss's Theorem to

the box enclosed by w, w', and the tube of force. If F^ is the

average value of the resultant force on ix)\ the only part of the

surface of the box which yields anything to the surface integral

of normal force, we have _ -r r^r^ 0i

where m is the quantity of matter within the box. If we multi-

ply and divide by w, this equation may be written

2^'=i^.-^. [137]

If (0 be made smaller and smaller, so as always to include a

given point A, w' as it approaches zero will always include a

point B on the line of force drawn through A, and F' will ap-

proach the value F of the resultant force at B.

The shell may be regarded as a thick layer spread upon the
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inner surface, and in this case the limit of — may be consid-

ered the vakie at A of the rate at which the matter is spread

upon the surface. If we denote this limit by cr, we shall have

If B be taken just outside the shell, and if the latter be very

thin, "^^
[~l) evidently differs little from unity ; and we see

that the resultant force at a point just outside the outer sur-

face of a shell of matter, whose inner surface is equipotential,

becomes more and more nearl}^ equal to 47r tunes the quantity

of matter per unit of surface in the distribution at that point as

the shell becomes thinner and thinner.

The reader may find out for himself, if he pleases, whether or

not the line of action of the resultant force at a point just out-

side such a shell as we have been considering is normal to the

shell.

It is to be carefully noticed that the inner surface of a closed

shell need not be equipotential unless the matter composing the

shell is finely divided and free to arrange itself at will.

When the shell is thin, and we regard it as formed of matter

spread upon its inner surface, o- is called the *' surface density
"

of the distribution, and its value at any point of the inner sur-

face of the shell may be regarded as a measure of the amount of

matter which must be spread upon a unit of surface if it is to

be uniformly covered with a layer of thickness equal to that of

the shell at the point in question.

46. Surface Distributions. It often becomes necessary in the

mathematical treatment of physical problems, on the assump-

tion of the existence of a kind of repelling matter or agent, to

imagine a finite quantity of this agent condensed on a surface

in a layer so thin that for practical purposes we may leave the

thickness out of account. If a shell like that considered in the

last section could be made thinner and thinner by compression
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while the quantity of matter in it remained unchanged, the

volume density (p) of the shell would grow larger and larger

without limit, and a- would remain finite. A distribution like

this, which is considered to have no thickness, is called a sur-

face distribution.

The value at a point P of the potential function due to

a superficial distribution of surface density o- is the surface

integral, taken over the distribution, of -, where r is the dis-
r

tance from P.

It is evident that as long as P does not lie exactly in the

distribution, the potential function and its derivatives are always

finite and continuous, and the force at any point in any direc-

tion may be found by differentiating the potential function

partially with regard to that direction.

If p were infinite, the reasoning of Article 22 would no

longer apply to points actually in the active matter, and it is

worth our while to prove that in the case of a surface distri-

bution where a is everywhere finite, the value at a point P of

the potential function due to the distribution remains finite, as

P is made to move normally through the surface at a point of

finite curvature.

To show this, take the point (Fig. 33), where P is to cut

the surface, as origin, and the normal to the surface at as
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the axis of x, so that the other coordiuate axes shall lie in

the tangent plane.

If the curvature in the neighborhood of is finite, it will be

possible to draw on the surface about a closed line such that

for every point of the surface within this line the normal will

make an acute angle with the axis of x.

For convenience we will draw the closed line of such a shape

that its projection on the tangent plane shall be a circle whose

centre is at and whose radius is U, and we will cut the area

shut in by this line into elements of such shape that their pro-

jections upon the tangent plane shall divide the circle just

mentioned into elements bounded by concentric circumferences

drawn at radial intervals of Au, and by radii drawn at angular

distances of A<^.

If ic, 0, are the coordinates of the point P, x', y\ 2' those

of a point of one of the elements of the area shut in by the

closed line, and a the angle which the normal to the surface

at this point makes with the axis of .t, the size of the surface

element is approximately-

—

'-—^, where u'^ = z'^-\- y'^^ and the
COSa

value at P of the potential function due to that part of the sur-

face distribution shut in by the closed line is

^ g-udu

COSaV(^ — x'y+ U^

The quantity

V.=p^r f^ • [139]

au (xseca

'\2

is always finite, for, whatever the value of the quantity under

the radical sign in the last expression may be when x^ x\ and u

are all zero, it cannot be less than unity, and therefore Fi must

be finite even when P moves down the axis of x to the surface

itself.

If V and V2 are the values at P of the potential functions

due respectively to all the existing acting matter and to that
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part of this matter not lying on the portion of the surface shut

in by our closed line, we have F=Fi + F2, and, since P is a

point outside the matter which gives rise to F2, the latter is

finite ; so that Fis finite.

The reader who wishes to stud}^ the properties of the deriva-

tives of the potential function, and their relations to the force

components at points actually in a surface distribution, will find

the whole subject treated in the first part of Riemann's Schwere,

Electricitdt und Magnetismus.

Using the notation of this section, it is easy to write down

definite integrals which represent the values of the potential

function at two points on the same normal, one on one side of

a superficial distribution, and at a distance a from it, and the

other on the other side at a like distance, and to show that the

difference between these integrals may be made as small as we

like by choosing a small enough. This shows that the value of

the potential function at a point P changes continuously, as P
moves normally through a surface distribution of finite super-

ficial density. If matter could be concentrated upon a geo-

metric line, so that there should be a finite quantity of matter

on the unit of length of the line, or if a finite quantity of matter

could be really concentrated at a point, the resulting potential

function would be infinite on the line itself, and at the point.

47. The Normal Force at Any Point of a Surface Distribu-

tion. In the case of a strictly superficial distribution on a

closed surface where the repelling matter is free to arrange

itself at will, the inner surface of the matter (and hence the

outer surface, which is coincident with it) is equipotential, and

the resultant force at a point B just outside the distribution is

normal to the surface and numerically equal to 47r times the

surface density at B. This shows that the derivative of the

potential function in the direction of the normal to the surface

has values on opposite sides of the surface differing by 4 tto-,

and at the surface itself cannot be said to have any definite

value.
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It is easy, however, to find the force with which the repelling

matter composing a superficial distribution is urged outwards.

For, take a small element w of the surface as the base of a tube

of force, and apply Gauss's Theorem to a box shut in by the

surface of distribution, the tube of force, and a portion w' of

an equipotential surface drawn just outside the distribution.

Let F and F^ be the average forces at the points of w and o>'

respectively, then the surface integral of normal forces taken

over the box is F'o)' — Fai, and this, since the only active

matter is concentrated on the surface of the box (see Section

31), is equal to 2jr(row, where o-q is the average surface density

5-^ at the points of the element w. This gives us

F=F"^-27r<r^.
(ti

Now let the equipotential surface of which w' is a part be

drawn nearer and nearer the distribution ; then

lim— = 1 , lim jP' = 4 tto-q, and F=2 Tra-^.

F is the average force which would tend to move a unit quan-

tity of repelling matter concentrated successively at the differ-

ent points of w in the direction of the exterior normal, but the

actual distribution on w is wo-q, so that this matter presses on

the medium which prevents it from escaping with the force

27r(ro^(o; and, in general, the pressure exerted on the resisting

medium which surrounds a surface distribution of repelling

matter is at an}^ point 27ro^ per unit of surface, where o- is the

surface density of the distribution at the point in question.

We may imagine a superficial distribution of matter which is

fixed, instead of being free to arrange itself at will. In this

case the surface of the matter will not be in general equipoten-

tial, but, if we apply Gauss's Theorem to a box shut in by a

slender tube of force traversing the distribution, and by two

surfaces drawn parallel to the distribution and close to it, one

on one side and one on the other, we may prove that the
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normal component of the force at a point just outside the dis-

tribution differs by 4 tto- from the normal component, in the same

sense, of the force at a point just inside the distribution on the

line of force which passes through the first point.

48. Green's Theorem. Before proving a very general theorem

due to Green,* of which what we have called Gauss's Theorem

is a special case, we will show that if T is any closed surface

and U a function of x^ y, and z, which for every point inside T
is finite, continuous, and single-valued,

C C CDM'dxdydz= Cu-D^x-ds, [140]

where the first integral is to include all the space shut in by T,

and the second is to be taken over the whole surface, and where

D^x represents the partial derivative of a? taken in the direction

of the exterior normal.

To prove this, choose the coordinate axes so that T shall lie

in the first octant, and divide the space inside the contour of the

Fig. 34.

projection of T on the plane yz into elements of size dydz. On
each of these elements erect a right prism cutting T twice or

some other even number of times. Let us call the values of U
at the successive points where the edge nearest the axis of x of

* George Green, An Essay on the Application of Mathematical Analysis to

the Theories of Electricity and Magnetism. Nottingham, 1828.
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any one of these prisms cuts T, C/i, U's, U^^ ... U2n respectively

;

the angles which this edge makes with exterior normals drawn

to T at these points, ai, a2, ag, ... aa^ ; and the elements which

the prism cuts from the surface T, dsj, dsg, dsg, ...dson- It is

evident that wherever a line perpendicular to the plane yz cuts

into T, the corresponding value of a is obtuse and its cosine

negative, but wherever such a line cuts out of T, the correspond-

ing value of a is acute and its cosine positive.

Keeping this in mind, w^e shall see that although the base of

a prism is the common projection of all the elements which it

cuts from T, and in absolute value is approximately equal to

an}^ one of these multiplied by the corresponding value of cos a,

yet, since dxdy, dsj, dsg, etc., are all positive areas and some of

the cosines are negative, we must write, ifwe take account of signs,

dydz = — dsicosai = +ds2Cosa2 = — (^S3Cosa3= •••,

If the indicated integration with regard to x in the left-hand

member of [140] be performed and the proper limits introduced,

we shall have

ff fD,Udxdydz= C Cdydzl-Ui-hUi-Us+U, ],[U1]

where the double sign of integration directs us to form a quan-

tity corresponding to that in brackets for every prism which

cuts T, to multiply this by the area of the base of the prism,

and to find the limit of the sum of all the results as the bases of

the prisms are made smaller and smaller.

Since we ma}^ substitute for dydz any one of its approxi-

mate values given above, we may write the quantity within

the brackets

Ui cos tti dsi -f- U2 cos ttg ds2 -f- Us cos a^ds^-l ,

and this shows that the double integral is equivalent to the sur-

face integral, taken over the whole of T, of Ccosa, whence we

may write

f f fD^U'dxdydz= Cucosads, [142]
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where the first integral is to be taken all through the space shut

in by T, and the second over the whole surface.

Let P{x, y, z) be any point of T, a, /S, and y the angles

which the exterior normal drawn to P at T makes with the

coordinate axes, and P' a point on this normal at a distance

An from P. The coordinates of P' are

£c 4- An -cos a, 2/4- An 'COS ^, + An* cosy,

and if W=f(x, y, z) be any continuous function of the space

coordinates,

Wp =f{x,y,z),

TF^, =/(aj + Ancosa, 2/ -f- An cos ^, 2; + An cosy)

=/(«) Vi ^) + An cos a .DJ+ An cos ^ • Dyf

an(j
+AncosyA/+(A^)'Q,

Wp.-Wp
ppf

whence

cosa- D^f-\- cosyS • Dyf-^ cos y . DJ-\- An • Q,

lim i^t^^^= i), Trp= cos aA/+cos^Z),/+cosyA/. [143]

If, as a special case, W=x, we have D^x= cosa; so that

[142] may be written

f C fD,U'dxdydz= CuD^x-ds, [144]

which we were to prove.*

Green's Theorem, which follows very easily from this result,

may be stated in the following form :

If U and V are any two functions of the space coordinates

which together with their first derivatives with respect to these

coordinates are finite, continuous, and single-valued throughout

the space shut in by any closed surface T, then, if n refers to

an exterior normal,

* This theorem has been virtually proved already in Sections 29 and 36.
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CCC(D,U'D,V+D,U'D,V+D,U'D,V)dxdydz

= CU' D^V' ds - fffU' v'F- dxdydz [145]

= CV'D^U'ds - C C CV'VU'dxdydz, [146]

where the triple integrals indude all the space within T and the

single integrals include the whole surface.

Since DJJ'DJ^=D,{U'D,V)-U'D,^V,

we have
j |

i DJJ'D^V- dxdydz

= C C CD,(U'D^V)dxdydz- C C CU'D.'V'dxdydz;

but, from [144],

C C CD,{U'DJ^)dxdydz= CU'D.V-D^X'ds,

whence
I I (

{DJJ'D^V) dxdydz

= CU'D.V-D^X'ds- CCCU'D,' V' dxdydz. [147]

If we form the two corresponding equations for the deriva-

tives with regard to y and z, and add the three together, we shall

obtain an expression which, by the use of [143], reduces im-

mediately to [145]. Considerations of symmetry give [146].

If we subtract [146] from [145], we get

f f ("((7. v'F- V' V' U)dxdydz

=y{U'D^V-V'DM)ds. [148]

In applying Green's Theorem to such spaces as those marked

Tq in the adjoining diagrams, it is to be noticed that the walls

of the cavities, marked jS' and S", as well as the surfaces,
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marked S^ form parts of the boundaries of the spaces, and that

the surface integrals, which the theorem declares must be taken

Fig. 35.

over the whole boundaries of the spaces, are to be extended

over ;iS" and S" as well as over S. We must remember, how-

ever, that an exterior normal to Tq at S' points into the cavity C.

49. Special Cases under Green's Theorem. I. If in [148]

V be the potential function due to any distribution either of

repelling matter or of positive and negative matter existing

together, whether this matter is within or without T, and if

[7= 1 we have . o >...
^'^^"

and AttC C Cpdxdydz= Cl—D^V^ds. [U9]

The triple integral on the left-hand side of the equation is the

whole amount of matter (algebraically considered, where we have

both positive and negative matter) within T, and the dexter is

the surface integral taken over T of the force i£L-tJie_ direc-

tion of the exterior normal ; so that [149] expresses Gauss's

Theorem.

II. If in [145] we make CT equal to F, and let this represent

as before the potential function due to any distribution of actual

matter within or without T, we shall have

C C CRHxdydz^Cv-D^Vds + AirC C CpVdxdydz, [150]

where R is the resultant force at the point (a;, y^ z") .
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III. If in [145] we make U= V= u, any function which

within the closed surface T satisfies the equation v'w = 0, we

shall have

r r fL{D,uy+ {DyUy-i-{D,uy^ axclydz = Cu 'D^U' ds. [151]

IV. If in [148] Fis the potential function clue to two distri-

butions of active matter, Mi inside the closed surface T and 3/2

outside it, and if U= - where r is the distance of the point

(ic, ?/, z) from a fixed point 0, we must consider separately the

two cases where O is respectively without T and within T.

A. If is without T, V^
[-

J =0 for points within the sur-

face. Also, V F= — 47rp, so that

f^ds -JV' D^ (^i) ds = - 4.^fff^-dxdydz.

Fig. 36.

The triple integral is evidently equal to the value at the point

of the potential function due to Mi alone. If we call this Fi,

and notice (see [143]) that i>„?' at any point of T is the cosine

of the angle 8 between r and the exterior normal to T, we have

JMlas-f^ds^-i.V,. [152]

If T is a surface equipotential with respect to the joint action

of Ml and M2, and if we denote by Vg the constant value of V
on T, we have

J r J ir
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and it is easy to show, by the reasoning used in Section 31,

that/ ^^ ds = 0, whence
r

B. If is a point inside T, whether or not it is within Jfj,

and if T is equipotential with respect to the action of Jfi and

3f2i we will surround b}'^ a small spherical surface s' of

radius r', and apply [148] to the space lying inside T and with-

out the spherical surface. In doing so, it is to be noticed that

s' forms part of the boundary of the region we are dealing with,

and that an exterior normal to the region at s' will be an interior

normal of the sphere.

Fig. 37.

Since for all points of the region we are considering V f _
|
= 0,

we have

= -4:'irC C C^dxdydz; [154]

or, since ds'= r'^do)', where doi' is the area which the elementary

cone whose base is ds' and vertex intercepts on the sphere

of unit radius drawn about 0,

f^^ds +vX^ds -
r' fA'F. du>'-Cvdio'

= — 47rj
I

I -dxdydz, [1^^]
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It is easily proved, by the reasoning of Section 31, that

Jcos8 , .
'

and it is clear that if r' be made smaller and smaller, the third

integral of [155] approaches the limit zero. If V is the average

value of Fon the surface s',

fv'dj= V'Cdio = F'47r

;

and as ?'' is made smaller and smaller, this approaches the value

47r Fo, where Vq is the value of Fat 0. The value, when r' is

zero, of the triple integral in [155] is evidently Fi, and we

have

f^ds + 47r F, - 47rFo = - 4^ Fi. [156]

If V2 is the value at of the potential function due to Jfg

alone, Fo = Fi + F2, so that [156] may be written in the form

F-F—rJ^''- ^'''^

\.
^'.^

If T is not equipotential with respect to the action of Mi and

M2, we have

A7rV2= f^^ds-CvDj-^ds. [158]

V. If in [148] we make U=--, where r is the distance of

the point (x.y^z) from a fixed point 0, and if V—v., a function

which within the closed surface T satisfies the equation V v = 0,

we shall have

4:7rv=: CvDJ-\ds - f— ds, [159]

if is within T, and

CPil!^ ds =Cv ' D, (-) ds, [160]

if is outside T.
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50. The Surface Distributions Equivalent to Certain Volume

Distributions. Keeping the notation of IV. in the last article,

let r be a closed surface equipotential with respect either to

the joint action of two distributions of matter, M^ inside T and

M2 outside it, or (when Mz equals zero) to the action of a

single distribution within the surface ; and let Fi, F2, and V
be the values of the potential functions due respectively to M^
alone, to M2 alone, and to Mi and M2 existing together. If a

quantity of matter were condensed on T so as to give at every
—D V

point a surface density equal to — , the whole quantity of
47r

matter on the surface would be

AttJ

and this, b}' [149], is equal in amount to Mi. Let us study the

effect of removing Mi from the inside of T and spreading it in

a superficial distribution 3// over T, so that the surface density

at every point shall be ^^^—
• In what follows, it is assumed

4c7r

that we have two distributions of matter, one inside the closed

surface and the other outside. It is to be carefuU}- noted, how-

ever, that by putting Jfg equal to zero in our equations, all our

results are applicable to the case where we have an equipotential

surface surrounding all the matter, wliich may be all of one kind

or not.

The value, at any point 0, of the potential function due to

the joint effect of iHfg and the surface distribution Mi\ would be

^'--'-i-J'-
ds.

r

If is an outside point, we have, by [153],

Vo = V2 + Vi,

so that the effect at any point outside an equipotential surface

of a quantity Mi of matter anyhow distributed inside the sur-

' face is the same as that of an equal quantity of matter dis-

tributed over the surface in such a way that the superficial
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density at ever}- point is ——"•— , where V is the value of the
4 TT

potential function due ta the joint action of Mi and any matter

(Jlfa) that may be outside the surface.

If is an inside point, we have, by [157],

Vo = V, + Vs-V2 = Vs, [161]

which shows tliat the joint effect of M2 and Mi is to give to all

points within and upon the surface the same constant value of

the potential function which points upon the surface had before

Ml was displaced by Mi'. If, therefore, Mi and M2 exist without

Ml, there is no force at any point of the cavity shut in by T;

or, in other words, the force due to Mi alone is at all points

inside T equal and opposite to that due to Jfg.

If Ml and M2 exist without Jfi', the cavity enclosed by T is, in

general, a field of force. Mi acts as a screen to shield the space

within T from the action of M2.

The surface of Mi is equipotential with respect to all the

active matter, so that there is no tendency of tlie matter com-

posing the surface distribution to arrange itself in any different

manner upon T.

51. The potential function V, due to any distribution of

matter whose volume density p is everywhere finite, satisfies tlie

following conditions

:

(1) Fand its first space derivatives are everywhere finite and

continuous, and are equal to zero at an infinite distance from

the attracting mass.

(2) If E is the distance from the origin of coordinates to the

point P, .. .^

where M is a definite constant.

(3) Except at the surface of the attracting mass, or at some

other surface where p is discontinuous,

V^F= — 47rp,

where p is to be put equal to zero outside of the attracting mass.
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It is easy to show from Green's Theorem that for a given

value of p as a function of x, y^ and 2;, only one function which

will satisfy these three conditions exists.

Suppose, for the sake of argument, that there are two such

functions, Fand F', and put u = F— F'. It is evident that u

satisfies conditions (1) and (2), and that V (u) = except where

p is discontinuous. Parallel to each surface of discontinuit}',

and very near to it, draw two surfaces, one on each side, so as

to shut in the places where V u is not zero, and draw a spherical

surface about the origin, using a radius M large enough to

enclose all the surfaces of discontinuity.

If now we apply [151] to that part of the space inside the

spherical surface and not shut in by the barriers which we have

drawn, and if we notice that each pair of parallel barriers to-

gether yields nothing to the surface integral, we shall have

f f f[ {D^uY + {Dyuy 4- {D.uy] dxdydz = Cu-D^u- ds,

where the dexter integral is to be extended over the spherical

surface only.

If d(i) is the solid angle of the infinitesimal cone which inter-

cepts the element ds from the spherical surface, we have

I
uD^uds = H^ i uD^udu).

Now since u satisfies condition (2) above, it is easy to show

that if we make B grow larger and larger, this surface integral

approaches the value zero as a limit, for u approaches the value

— and DrU the value —

-

-^ and DjiU the value ^^ , so that the whole integral ap-

proaches the value — , which, when li is made infinite,

approaches the value zero.

If we embrace all space in our sphere, we shall have

r r f(D,uy + (Dyuy + (A^)'] dxdydz = 0,

whence D^u = 0^ DyU — 0^ DgU = 0.
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Therefore ii is constant in all space, and since it is zero at

infinity, must be everywhere zero, so that V= V,

52. Thomson's Theorem or Dirichlet's Principle. We will now
prove a theorem* which is usually called Dirichlet's Principle

by Continental writers, but which in English books is generally

attributed to Sir W. Thomson. This theorem, in its simplest

form, asserts that there always exists one, but no other than

this one, function, v, of x, y, z, which (1) is finite, continuous, and

single-valued, together with its first space derivatives, through-

out a given closed region L
; (2) at every point of the region

satisfies the equation W^v = ; and (3) at every point on the

boundary of the region has any arbitrarily assigned value, pro-

vided that this can be regarded as the value at that point of a

single-valued function which has derivatives finite, continuous,

and single-valued all over this boundary.

There is evidently an infinite number of functions which

satisfy the first and third conditions. If, for instance, the equa-

tion of the bounding surface S of the region is F{x, ?/, z) ^ 0,

and if the value of v at the point (a;, 2/, z) upon this surface is to

be /(ic, y,z), any function of the form

<E>(a;, y,z)'F (x, y, z) -{-f(x, y, z)

would satisfy the third condition, whatever finite function <&

might be.

If we assign to the function to be found a constant value O
all over /S, v = C will satisfy all three of the conditions given

above.

* Green, An Essay on the Application of Mathematical Analysis to the

Theories of Electricity and Magnetism. Gauss, Allgemeine Lehrsdtze in Bezie-

hung auf die im verkehrten Verhdltnisse des Quadrats der Entfernung wirkenden

Anziehungs- und Ahstossungskrafle. Thomson, Reprint of Papers on Electro-

statics and Magnetism. Dirichlet, Vorlesungen iiher die im umgekehrten Ver-

hahniss des Quadrats der Entfernung wirkenden Krafte. Also, Thomson and

Tail's Natural Philosophy, and several papers by Dirichlet in Crelle's Jour-

nal and in the Comptes Rendus.
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If the sonorht function is to have different values at different

points of S, and if for u in the integral

which is to be extended over the whole of the region, we substi-

tute any one of all the functions which satisfy conditions (1)

and (3) , the resulting value of Q will be positive. Some one at

least of these functions (y) must, however, yield a value of Q
which though positive, is so small that no other one can make Q
smaller. Let h be an arbitrary constant to which some value

has been assigned, and let w be any function which satisfies

condition (1) and is equal to zero at all parts of S, then

U==v-\-hw will satisfy conditions (1) and (3), and conversely,

there is no function which satisfies these two conditions which

cannot be written in the form U=v -{-hw, where h is an arbi-

trary constant, and w a function which is zero at S and which

satisfies condition (1).

Call the minimum value of Q due to v, Q„, and the value of Q
due to U, Qu^ then

Qjr= Q„+2/i rjY(A'y -Aw -^DyV'DyW + D,V'D,w)dxdydz

+ h'fff[{D^wy + (D^wy + (A^)'] dxdydz,

which, since w is zero at the boundary of the region, may be

written, by the help of Green's Theorem,

Q^_ Q^ =:-2h C C CwV\v)dxdydz + h'^QK

Now since Q„ is the minimum value of Q, no one of the infi-

nite number of values of Qu— Qv formed by changing h and w
under the conditions just named can be negative; but if V^w
were not everywhere equal to zero within i, it would be easy

to choose w so that the coeflScient of 2h in the expression

for Qu— Q„ should not be zero, and then to choose h so that

Qu— Qv should be negative. Hence V^^ is equal to zero through-
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out jL, and there alwa3's exists at least one function which satis-

fies the three conditions stated above.

There is onl}" one such function ; for if beside v there were

another w = 'y + /iw, we should have, since the coefficient of 1i is

zero when V^(^^) = 0,

and, that Q„ may be as small as Q^, ^O must be zero, whence

either /i = or = 0, and if = 0, w is zero. Therefore,

ri = -y, and there is only one function which in any given case

satisfies all the three conditions given above.

By applying the same reasoning to the space outside a closed

surface 8 and inside a spherical surface of large radius R which

is finally made infinite, it is easy to prove that there always exists

in the space outside a closed surface S one and only one function

V which (1) has a given value at every point of S^ (2) satisfies

the equation V'v = 0, (3) together with its first derivatives, is

finite and continuous outside S^ and (4) is such that the limit,

as R becomes infinite, of Rv is a definite, finite constant.

These theorems help us to prove other theorems, of which two

are of considerable interest for us.

I. If a function v=f{x,y,z), together with its first space

derivatives, is finite and continuous in all space outside a sur-

face jS^ and outside this surface satisfies the equation V^v = 0,

and if v Va^ + 2/^ + ^^^ approaches a definite, finite, constant

limit as the point (x, ?/, z) moves away from the origin to in-

finity, then this function may be considered to be the potential

function of a surface distribution of matter upon S.

In order to prove this, we will first apply [160] to v', the

function which has on S the same value as v, which inside S is,

with its first derivatives, finite and continuous, and which satisfies

the equation V^v'= ; and use the space inside S as our region.

This gives

where n refers to the exterior normal of S,
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If we now apply [159] to the function v, using as a field the

space outside S and within a spherical surface S' of large radius

Ji, drawn about the point as centre, we shall have

where n is made to refer to the same normal as before by a

change of sign in the first two integrals. If now we combine

the two equations just obtained, and make H infinite, so that the

last two integrals of the second equation shall vanish, we shall

have

which is the value at an outside point of the potential function due

to a superficial distribution of surface density — (D^^v'—D^v)
4:Tr

spread upon S,

It is to be noticed that the letter r refers to a point without

S in each of the last three equations. Instead of one closed

surface we might have several, as it is easy to prove by intro-

ducing as many Dirichlet's functions as there are surfaces.

We will state the second theorem, leaving the proof, which is

almost identical in form with the one just given, for the reader.

II. If a function v'=F(x,y,z) satisfies the equation ^^^1^'=

throughout the space enclosed by a closed surface S, and within

this space, together with its first derivatives, is everywhere

finite and continuous, it may be considered to be the potential

function within this space of a surface distribution on S.

The superficial density of this distribution will be found to be

4:7r

where v is the function which has the same value on S that v'

has, and outside S satisfies the equation ^"^(v) = and the other

conditions given above.

It follows, from these theorems, that we may assign any con-

tinuously arranged arbitrar}^ values to the potential function at
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the different points of a closed surface S, make these values the

common values on the surface of the functions v and v', and

assert that a distribution of matter on S of surface density

cr = — {D^v^ — DnV) would give rise to a potential function
47r

having the chosen values on S. In this case v and v' would be

the values in regions respectively without and within S of the

potential function due to this surface distribution. It is, then,

always possible to distribute matter in one and onl}* one way
upon a given closed surface so that the value of the potential

function due to the matter shall have given values all over the

surface.

EXAMPLES.

1. Prove that there always exists one, but no other than this

one, function, v, which, together with its first space derivatives,

is finite, continuous, and single-valued everywhere within a given

region L, has values at the boundary of the region equal to

those of an arbitrarily chosen, finite, continuous, and single-

valued function, /(«, y, z) , and satisfies at every point in L the

equation

D,(K' D^v) + Dy{K' D^v) + D,{K- D,v) = 0,

where ^ is a function positive within L.

2. If the potential function due to a certain distribution of

matter is given equal to zero for all space external to a given

closed surface S and equal to <j>{x^ y^ z)^ where <^ is a continu-

ous single-valued function zero at all points of S^ for all space

within S ; there is no matter without S^ there is a superficial dis-

tribution of surface density

47r

upon S<i and the volume density of the matter within S is

[Thomson and Tait.]

4:7r
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CHAPTER V.

ELEOTEOSTATIOS AND ELEOTEOKINEMATIOS.

53. Introductory. Having considered abstractly a few of

tlie characteristic properties of what has been called " the New-
tonian potential function," we will devote this chapter to a very

brief discussion of some general principles of Electrostatics and

Electrokinematics. By so doing we shall incidentally learn how

to apply to the treatment of certain practical problems many of

the theorems that we have proved in the preceding chapters.

In what follows, the reader is supposed to be familiar with

such electrostatic phenomena as are described in the first few

chapters of treatises on Statical Electricity, and with the hypoth-

eses that are given to explain these phenomena.

Without expressing any opinion with regard to the physical

nature of what is called electrification^ we shall here take for

granted that whether it is due to the presence of some sub-

stance, or is only the consequence of a mode of motion or of a

state of polarization, we may, without error in our results, use

some of the language of the old "Two Fluid Theory of Elec-

tricity " as the basis of our mathematical work.

The reader is reminded that, among other things, this theory

teaches that :
—

(1) Every particle of a body which is in its natural state con-

tains, combined together so as to cancel each other's effects at

all outside points, equal large quantities of two kinds of elec-

tricity with properties like those of the positive and negative

" matter" described in Section 44.

(2) Electrification consists in destroying in some way the

equality between the amounts of the two kinds of electricity

which a body, or some part of a body, naturally contains, so

that there shall be an excess or charge of one kind. If the
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charge is of positive electricity, the body is said to be posi-

tively electrified ; if tlie charge is negative, negatively electrified.

Either kind of electricity existing uncombined with an equal

quantity of the other kind, is called /ree electricity.

(3) When a charged body A is brought into the neighborhood

of another body B in its natural state, the two kinds of elec-

tricity in every particle of B tend to separate from each other,

one being attracted and the other repelled by -<4's charge, and

to move in opposite directions.

In general, a tendency to separation occurs in all parts of the

body, whether it is charged or not, where the resultant electric

force (the force due to all the free electricity in existence) is

not zero. This effect is said to be due to induction.

In our work we shall assume all this to be true, and proceed

to apply the principles stated in Section 44 to the treatment of

problems involving distributions of electricit}'. We shall find it

convenient to distinguish between conductors, which offer prac-

tically no resistance to the passage of electricity through their

substance, and nonconductors, which we shall regard as prevent-

ing altogether such transfer of electricity from part to part.

54. The Charges on Conductors are Superficial. When elec-

tricity is communicated to a conductor, a state of equilibrium is

soon established. After this has taken place, there can be no

resultant force tending to move any portion of the charge

through the substance of the conductor, for, by supposition, the

conductor does not prevent the passage of electricity through

itself.

Moreover, the resultant electric force must be zero at all

points in the substance of a conductor in electric equilibrium

;

for if the force were not zero at an}^ point, electricity would

be produced by induction at that point, and carried away

through the body of the conductor under the action of the

inducing force.

From this it follows that the potential function V, due to all

the free electricity in existence, must be constant throughout
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the substance of any single conductor in electric equilibrium,

whether or not the conductor be charged, and whether or not

there be other charged or uncharged conductors in the neigh-

borhood. Different conductors existing together will in general

be at different potentials, but all the points of any one of these

conductors will be at the same potential.

Wherever V is constant, V^F=0, and Iience, by Poisson's

Equation, p = 0, so that there can be no free electricity within

the substance of a conductor in equilibrium, and the whole

charge must be distributed upon the surface. Experiment

shows that we must regard the thickness of charges spread upon

conductors as inappreciable, and that it is best to consider that

in such cases we have to do with really superficial distributions

of electricity, in which the conductor bears a rough analogy to

the cavity enclosed by the thin shells of repelling matter de-

scribed in the preceding chapter.

The surface density at any point of a superficial distribution

of electricity shall be taken positive or negative, according as

the electricity at that point is positive or negative, and the force

which would act upon a unit of positive electricity if it were

concentrated at a point F without disturbing existing distribu-

tions shall be called "the electric force" or "the strength of

the electric field at P."

It is evident, from Sections 45 and 46, that the electric force

at a point just outside a charged conductor, at a place where

the surface density of the charge is cr, is 47ro-, and that this is

directed outwards or inwards, according as cr is positive or nega-

tive.

In other words, D^V^ the derivative of the potential function

in the direction of the exterior normal, is equal to — 4 tto-, and

the value of F" at a point P just outside the conductor is greater

or less than its value within the conductor, according as the

surface density of the conductor's charge in the neighborhood of

P is negative or positive.

It is to be carefully noted that, although the surface of a con-

ductor must alwaj's be equipotential, the superficial density of
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the conductor's charge need not be the same at all parts of the

surface. We shall soon meet with cases where the electricity

on a conductor's surface is at some points positive and at others

negative, and with other cases where the sign of the potential

function inside and on a conductor is of opposite sign to the

charge.

It is evident, from the work of Section 47, that the resistance

per unit of area which the nonconducting medium about a con-

ductor has to exert upon the conductor's charge to prevent it

from flying off, is, at a part where the density is o-, 27ro^.

55. General Principles which follow directly from the Theory

of the Newtonian Potential Function. If two different distribu-

tions of electricity, which have the same system of equipoten-

tial surfaces throughout a certain region, be superposed so as to

exist together, the new distribution will have the same equipo-

tential surfaces in that region as each of the components. For,

if Vi and ^2, the potential functions due to the two components

respectively, be both constant over any surface, their sum will

be constant over the same surface.

Two distributions of electricity, which have densities ever}'-

where equal in magnitude but opposite in sign, have the same

system of equipotential surfaces, and, if superposed, have no

effect at any point in space.

Two distributions of electricity, arranged successively on the

same conductor so that at every point the density of the one

is m times that of the other, have the same system of equipo-

tential surfaces, and the potential function due to the first is

everywhere m times as great as that due to the second.

If the whole charge of a conductor which is not exposed to

the action of any electricity except its own is zero, the super-

ficial density must be zero at all points of the surface, and the

conductor is in its natural state. For if a- is not everywhere

zero, it must be in some places positive and in others negative
;

and, according to the work of the last section, the potential

function F, due to this charge, must have, somewhere outside
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the conductor, values higher and lower than Fo, its value in the

conductor itself. But this would necessitate somewhere in empty

space a value of the potential function not lying between Vq and

0, the value at infinity ; that is, a maximum in empty space if

T^ is positive, and a minimum if Vq is negative ; which is

absurd.

A system of conductors, on each of which the charge is null,

must be in the natural state if exposed to the action of no out-

side electricity. For, by applying the reasoning just used to

that conductor in which the potential function is supposed to

have the value most widely different from zero, we may show

that the surface density all over the conductor is zero, so that

no influence is exercised on outside bodies ; and then, suppos-

ing this conductor removed, we may proceed in the same way

with the system made up of the remaining conductors.

If a charge M of electricit}', when given to a conductor, ar-

ranges itself in equilibrium so as to give the surface density

o- =f{x, y, z) and to make the potential function T^ = j
^—

constant within the conductor, a charge —M, if arranged on the

conductor so as to give at every point the densit}' — o-= —f(x,y,z)

would be in equilibrium, for it would give everywhere the poten-

tial function (

~^' = — Fo, and this is constant wherever Vq
J r

is constant.

Only one distribution of the same quantitj' of electricityM on

the same conductor, removed from the influence of all other

electricity, is possible ; for, suppose two different values of sur-

face density possible, (ri=fi{x,y,z) and or2=/2 (ic, 2/, 2;), then

— 0*2 = — /2(a;,2/, 2) is a possible distribution of the charge —31.

Superpose the distribution — o-g upon the distribution o-j so that

the total charge shall be equal to zero ; then the surface density

at every point is 0-1— o-g, and this must be zero by what we have

just proved, so that o-i = 0-2.

Since we may superpose on the same conductor a number of

distributions, each one of which is by itself in equilibrium, it is



108 ELECTROSTATICS.

easy to see that if the whole quantity of electricity on any con-

ductor be changed in a given ratio, the density at each point

will be changed in the same ratio.

56. Tubes of Force and their Properties. We have seen that

a unit of positive electricit}' concentrated at a point P just out-

side a conductor would be urged away from the conductor or

drawn towards it, according as that point on the conductor which

is nearest P is positive^ or negatively electrified. If we regard

lines of force drawn in an electric field as generated by points

moving from places of higher potential to places of lower poten-

tial, we may say that a line of force proceeds from ever}^ point

of a conductor where the surface density is positive, and that a

line of force ends at every point of a conductor where the sur-

face densit}'^ is negative. No line of force either leaves or

enters a conductor at a point where the surface density is zero,

and no line of force can start at one point of a conductor where

the electrification is positive and return to the same conductor

at a point where the electrification is negative. No line of force

can proceed from one conductor at a point electrified in an}' way
and enter another conductor at a point where the electrification

has the same name as at the starting-point. A line of force

never cuts through a conductor so as to come out at the other

side, for the force at ever}' point inside a conductor is zero.

Lines and tubes of force are sometimes called in electrostatics

lines and tubes of " induction."

When a tube of force joins two conductors, the charges Qj,

Q2 of the portions Si, S2 which it cuts from the two surfaces are

Tig. 38.

made up of equal quantities of opposite kinds of electricity.

For if we suppose the tube of force to be arbitrarily prolonged
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and closed at the ends inside tlie two conductors, the surface

integral of normal force taken over the box thus formed is zero,

for the part outside the conductors yields nothing, since the re-

sultant force is tangential to it, and there is no resultant force

at any point inside a conductor. It follows, from Gauss's

Theorem, that the whole quantity of electricity {Q1 + Q2) inside

the box must be zero, or Qi = — Q21 which proves the theorem.

If o"! and 0-2 are the average values of the surface densities of

the charges on Si and S2 respectively, we have (TiSi= Qi and

0-282 = Q2', whence

<r2 = -crif- [162]

The integral taken over any surface, closed or not, of the

force normal to that surface is called by some writers the flow

of force across the surface in question, and by others the induc-

tion through this surface.

If we apply Gauss's Theorem to a box shut in by a tube

of force and the portions S^^ 82 which it cuts from any two

equipotential surfaces, we shall have, if the box contains no

electricity,

F282-FiSi=0, [163]

where Fi and F2 are the average values, over Si and 82 respec-

tively, of the normal force taken in the same direction (that in

which F decreases) in both cases. In other words, the flow of

force across all equipotential sections of a tube of force con-

taining no electricity is the same, or the average force over an

equipotential section of an empty tube of force is inversely pro-

portional to the area of the section.

Fig. 39. {a"^

When a tube of force encounters a quantity m of electricity

(Fig. 39), the flow of force through the tube on passing this
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electricity is increased by 47rm. If, however, the tube encoun-

ters a conductor large enough to close its end completely, a

charge m will be found on the conductor just sufficient to reduce

to zero the flow of force (7) through the tube. That is,

= -_!.
Air

It is sometimes convenient to consider an electric field to be

divided up by a system of tubes of force, so chosen that the flow

of force across any equipotential surface of each tube shall be

equal to 47r. Such tubes are called unit tribes; for wherever

one of them abuts on a conductor, there is alwa^'s the unit quan-

tity of electricity on that portion of the conductor's surface which

the tube intercepts. In some treatises on electricity the term

*' line of force" is used to represent a unit tube of force, as

when a conductor is said to cut a certain number of " lines of

force."

It is evident that m unit tubes abut on a surface just outside

a conductor charged with m units of either kind of electricity,

if the superficial density of the charge has everywhere the same

sign. These tubes must be regarded as beginning at the con-

ductor if m is positive, and as ending there if m is negative.

If a conductor is charged at some places with positive elec-

tricity and at others with negative electricity, tubes of force

will begin where the electrification is positive, and others will

end where the electrification is negative.

It is evident that no tube of force can return into itself.

Fig. 40.

57. Hollow Conductors. When the nonconducting cavity,

shut in b}' a hollow conductor K (Fig. 40) , contains quantities
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of electricity (mj, mg, mg, etc., or ^ m) distributed in any way,

but insulated from /jT, there is induced on the walls of the cavity

a charge of electricity algebraically equal in quantity, but oppo-

site in sign, to the algebraic sum of the electricity within the

cavity.

Call the outside surface of the conductor S^ and its charge

Jfo, the boundary of the cavity Si and its charge M^, and sur-

round the cavity by a closed surface /S, every point of which lies

within the substance of the conductor, where the resultant force

is zero. Now the surface integral of normal force taken over

S is zero, so that, according to Gauss's Theorem, the algebraic

sum of the quantities of electricity within the cavity and upon

JSi is zero. That is,

Jfi + mi + m2+m3-}-...=Jf,+^(m) =0, [164]

and this is our theorem, which is true whatever the charge on

JSo is, and whatever distribution of free electricitj' there may
be outside K. If the distribution of the electricity within the

cavity be changed by moving mi, mg, etc., to different positions,

the distribution of JtffOn /S'^ will in general be changed, although

its value remains unchanged.

If K has received no electricity from without, its total charge

must be zero ; that is.

If a charge algebraically equal to M be given to IC,

M, = M-Mi.

The combined effect of ^ (m), the electricity within the cavity,

and Mi^ the electricity on the walls of the cavity, is at all points

without JSi absolutely null. For, if we apply [153] ioS, any sur-

face drawn in the conductor so as to enclose Si, we shall have D„V
everywhere zero, since the potential function is constant within

the conductor ; this shows that Fi, the potential function due to
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all the electricity within ;S', must be zero at all points without S
;

but JS may be drawn as nearly coincident with Si as we please.

Hence our theorem, which shows that, so far as the value of the

potential function in the substance of the conductor or outside

it, and so far as the arrangement of M^ and of M', any free

electricity there may be outside K, are concerned. Mi and ^ (m)

might be removed together without changing anything. The

potential function at all points outside Si is to be found by con-

sidering only M and M'.

If Si happens to be one of the equipotential surfaces of ^ (m)

considered by itself. Mi vrill be arranged in the same way as a

charge of tlie same magnitude would arrange itself on a con-

ductor whose outside surface was of the shape Si^ if removed

from the action of all other free electricity.

The potential function ( V2) due to M^ and M^ is constant

everywhere within So ; for if we apply [157] to a surface S^

drawn within the substance of the conductor as near S^ as we

like, we shall have

which proves the theorem.

The potential function within the cavity is equal to T^ + T^,

where Vi is the potential function due to Mi and ^ (m). Of these,

V2 is, as we have seen, constant throughout K and the cavity

(Section 31) which it encloses, while Vi has different values in

different parts of the cavity, and is zero within the substance of

the conductor.

Suppose now that, by means of an electrical machine, some

of the two kinds of electricity existing combined together in a

conductor within the cavity be separated, and equal quantities

{q) of each kind be set free and distributed in any manner
within the cavity.

The value of Vi within the cavity will probably be different

from what fE was before, but V2 will be unchanged ; for the
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quantity of matter in the cavity is unchanged, being now, alge-

braically considered,

2^(m) +g-g=2^(m),

so that Mi is unchanged, although it may have been differently

arranged on Si^ in order to keep the value of Fi zero within

the substance of the conductor. If now a part of the free

electricity in the cavity be conveyed to Si in some way, the sub-

stance of the conductor will still remain at the same potential as

before. For, if I units of positive electricity and n units of

negative electricity be thus transferred to S^^ the whole quantity

of free electricity within the cavity will be ^ (^) — ^ + w? and

that on Si will be Jiff + Z — 7i : but these are numerically equal,

but opposite in sign, and the charge on Si, if properly arranged,

suffices, without drawing on M^ to reduce to zero the value of

Vi in K. Since 3f^ and Jf' remain as before, V2 is unchanged,

and the conductor is at the same potential as before. So long

as no electricit}' is introduced into the cavity from loithout K,
no electrical charges within the cavity can have any effect out-

side Si.

Most experiments in electricity are carried on in rooms, which

we can regard as hollows in a large conductor, the earth. T^,

the value of the potential function in the earth and the walls of

the room, is not changed by anything that goes on inside the

room, where the potential function is F=Fi + F2. Since we
are generally concerned, not with the absolute value of the poten-

tial function, but only with its variations within the room, and

since V2 remains always constant, it is often convenient to dis-

regard V2 altogether, and to call Vi the value of the potential

function inside the room. When we do this we must remember*

that we are taking the value of the potential function in the

earth as an arbitrary zero, and that the value of Vi at a point in

the room really measures onl}' the difference between the values

of the potential function in the earth and at the point in ques-

tion. When a conductor A in the room is connected with the
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walls of the room by a wire, the value of Vi in A is, of course,

zero, and A is said to have been put to earth.

58. Induced Charge on a Conductor which is put to Earth.

Suppose that there are in a room a number of conductors, viz. :

Ai charged with Mi units of electricity, and A2, A-^, A^, etc.,

connected with the walls of the room, and therefore at the po-

tential of the earth, which we will take for our zero. If the

potential function has the value pi inside ^1, every point in the

room outside the conductors must have a value of the potential

function hing between ^1 and 0, else the potential function must

have a maximum or a minimum in empty space. If p^ is posi-

tive, there can be no positive electricity on the other conductors
;

for if there were, lines of force must start from these conductors

and go to places of lower potential ; but there are no such places,

since these conductors are at potential zero, and all other points

of the room at positive potentials. In a similar way we may
prove that if jh is negative, the electricity induced on the other

conductors is wholly positive.

Now let us apply [158] to a spherical surface, drawn so as

to include Ai and at least one of the other conductors, but with

radius a so small that some parts of the surface shall lie within

the room. If we take the point at the centre of this surface,

we shall have

47rF2 = i CD,V'ds + \ Cvds. [165]

If M is the whole quantity of electricity within the spherical

surface, there must be a quantity —J[f outside the surface, either

on the walls of the room or on conductors within the room.

The value at of the potential function, 1^25 ^^^ to the elec-

M
tricity without the sphere, is less in absolute value than

,

a
for it could only be as great as this if all the electricity outside

the sphere were brought up to its surface.

By Gauss's Theorem,

^
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therefore, Cvds = 4:Tra[M+aV2]' [166]

Now, if Ml is positive, the integral is positive, for all parts of

the spherical surface within the room yield positive differentials,

and all other parts zero, so that the second side of the equation

is positive. But aFgis of opposite sign to Jf, and is less in

absolute value ; hence, M is positive, and the total amount of

negative electricity induced on the other conductors within the

spherical surface by the charge on A^, is numerically less than

this charge, unless some one of these conductors surrounds A^
;

in which case the induced charge comes wholly on this conduc-

tor, while the other conductors, and the walls of the room, are

free. Some of the tubes of force which begin at Ai end on the

walls of the room, provided these latter can be reached from

Ai without passing through the substance of any conductor.

59. Coefficients of Induction and Capacity. If a number of

insulated conductors, -^2, A^, A^, etc., are in a room in the pres-

ence of a conductor Ai charged with Mi units of electricity, the

whole charge on each is zero ; but equal amounts of positive and

negative electricity are so arranged by induction on each, that

the potential function is constant throughout the substance of

every one of the conductors.

Let the values of the potential functions in the system of con-

ductors be pi, P21 Psi Pit etc. Since each conductor except Ai is

electrified, if at all, in some places with positive electricity, and

in others with negative electricity, some lines of force must

start from, and others end at, every such electrified conductor,

80 that there must be points in the air about each conductor at

lower and at higher potentials than the conductor itself. But

the value of the potential function in the walls of the room is

zero, and there can be no points of maximum or minimum poten-

tial in empty space ; so that pi must be that value of the poten-

tial function in the room most widely different from zero, and

P27 Ps-) P41 etc., must have the same sign as pi.

The reader may show, if he likes, that both the negative part
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and the positive part of the zero charge of any conductor, ex-

cept Ai, is less than Mi.

Let pii be the value of the potential function in a conductor

Ai charged with a single unit of electricity*, and standing in

the presence of a number of other conductors all uncharged

and insulated. Then if i>i25 Pis? Ph? etc., are, under these cir-

cumstances, the values of the potential functions in the other

conductors, A2, ^3, ^4, etc., the potential functions in these

conductors will be MiPiz-, M^pi^, ^^iPw, etc., if ^1 .be charged

with Ml units of electricity instead of with one unit. This is

evident, for we may superpose a number of distributions which

are singly in equilibrium upon a set of conductors, and get a

new distribution in equilibrium where the density is the sum of

the densities of the component distributions, and the value of

the resulting potential function the sum of the values of their

potential functions.

If Ai be discharged and insulated, and a charge Jfg be given

to A2, the values of the potential functions in the different con-

ductors may be written

M2P21, M2P22, M2P2S, M2P2i, etc.

If now we give to Ai and A2 at the same time the charges Mi
and M2 respectively, and keep the other conductors insulated,

the result will be equivalent to superposing the second distribu-

tion, which we have just considered, upon the first, and the con-

ductors will be respectively at potentials,

M1P11 + M2P21, MiPi2-\-M2P22, M1P1S + M2P23, etc. [167]

If all the conductors are simultaneously charged with quanti-

ties Ml, M2, Ms, M^, etc., of electricity respectively, the value

of the potential function on A„ will be

V, = MiPij, + M2P2JC + ^sPsk-^ hM^Pjoc+ M^p^^, [168]

Writing this in the form Vu=a,,-\-M„p„u, we see that if the

charges on all the conductors except ^^ be unchanged, aswill be

constant, and that every addition of — units of electricity to

Pkk
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the charge of A,, raises the value of the potential function in

it by unity. If we solve the n equations like [168] for the

charges, we shall get n equations of the form

M,= V,q,,-hV2q2u+Vsqsu + '" + V,q,,+ •" +V^qr,,, [169]

where the g's are functions of the p's.

If all the conductors except A/, are connected with the earth,

Mk = V^ qukt and q^^ is evidently the charge which, under these

circumstances, must be given to A^ in order to raise the value

of the potential function in it by unity. It is to be noticed that

q^j^ and — are in general different.

The charge which must be given to a conductor when all the

conductors which surround it are in communication with the

earth, in order to raise the value of the potential function with-

in that conductor from zero to unity, shall be called the

capacity of the conductor. It is evident that the capacity of a

conductor thus defined depends upon its shape and upon the

shape and position of the conductors in its neighborhood.

60. Distribution of Electricity on a Spherical Conductor.

Considerations of symmetry show that if a charge M be given

to a conducting sphere of radius r, removed from the influence

of all electricit}' except its own, the charge will arrange itself

uniformly over the surface, so that the superficial density shall

be everywhere o- = -•

The value, at the centre of the sphere, of the potential function

M
due to the charge il^f on the surface is— , and, since the potential

r

function is constant inside a charged conductor, this must be

the value of the potential function throughout the sphere. IfM
M

is equal to r, — = 1 ; hence the capacity of a spherical conductor
r

removed from the influence of all electricity except its own, is

numerically equal to the radius of its surface.
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61. Distribution of a Given Charge on an Ellipsoid. It is

evident from the discussion of homoeoids in Chapter I. tliat a

charge of electricity arranged (on a conductor) in the form of

a shell, bounded by ellipsoidal surfaces similar to each other

(and to the surface of the conductor), and similarly placed,

would be in equilibrium if the conductor were removed from the

action of all electricity except its own. We may use this prin-

ciple to help us to find the distribution of a given charge on a

conducting elUpsoid.

Let us consider a shell of homogeneous matter bounded by

two similar, similarly placed, and concentric ellipsoidal surfaces,

whose semi-axes shall be respectively a, 6, c, and (l-|-a)(i,

(l+a)6, (l+a)c. If any line be drawn from the centre of

the shell so as to cut both surfaces, the tangent planes to these

two surfaces at the points of intersection will be parallel, and

the distance between the planes is pa, where p is the length

of the perpendicular let fall from the centre upon the nearer of

the planes.

If p is the volume densit}^ of the matter of which the shell is

composed, the mass of the shell is Jtf=|-7r a6c [(1-f- a) '^—1] p,

and the rate at which the matter is spread upon the unit of sur-

face is, at any point, o- = /oS, where 8 is the thickness of the

shell measured on the line of force which passes through the

point in question. Eliminating p from these equations, we have

0- = ^ [170]
47ra6c[a+a2 + ^a3] •-

"^

If, now, in accordance with the hypothesis that the thickness of

the electric charge on a conductor is inappreciable, we make a

smaller and smaller, noticing that 8 differs from pa by an infini-

tesimal of an order higher than the first, we shall have for a

strictly surface distribution,

<. =A. [171]

If the equation of the surface of the ellipsoidal conductor is

a? b^ &
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we have

1=j4+£+4,
p \ a* It c*p

and

This last expression shows that, as c is made smaller and

smaller, o- approaches more and more nearly the value

M
4 irdb \.\l —~

and this gives some idea of the distribution on a thin elliptical

plate whose semi-axes are a and &.

For a circular plate, we ma}' put a = 6 in the last expression,

which gives

^
[173]

for the surface density at a point r units distant from the centre

of the plate.

The charge M distributed according to this law on both sides

of a circular plate of radius a raises the plate to potential

Y^M r« dr ^ ttM

a Jo x//7-'_'>-2 2 a
'

so that the capacity of the plate is

—

.

[174]
TT

62. Spherical Condensers. If a conducting sphere A of radius

r (Fig. 41) be surrounded by a concentric spherical conducting

shell B of radii r^ and r^ and charged with m units of electricity

while B is uncharged and insulated, we shall have

(1) the charge m uniformly distributed upon S, the surface

of the sphere
;

(2) an induced charge — m (Section 57) uniformly distributed

upon /Si, the inner surface of B
;
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(3) a charge +m (since the total charge of B is zero) uni-

formly distributed on /So, the outer surface of B.

Fig. 41.

The value at the centre of the sphere of the potential function

771 Wi TYl
due to all these distributions is Va= 1 , and this is

r Ti r„

the value of F throughout the conducting sphere. The value of

the potential function in B is V^ = —;—
' o

If now a charge M be communicated to B, this will add itself

to the charge m alread}' existing on S^^ and the charge on Si will

be undisturbed. The values of the potential functions in the

conductors are now

_ m m
''^4 ^^ ~z z~r 7':

, and Vb =

If now B be connected with the earth so as to make Fg = 0,

the charges on S and Si will be undisturbed, but the charge on
/yyy mft

jSo will disappear. V^ is now equal to
r Vi

If A were uncharged, and B had the charge M, this charge

would be uniformly distributed upon S„, for, since the whole

charge on S is zero, the whole charge on Si must be zero also.

It is easy to see that S and Si must both be in a state of nature,

for if not, lines of force must start from S and end at Si, and

others start at S^ and end at S, which is absurd.
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If A were put to earth by means of a fine insulated wire

passing through a tiny hole in B, and if B were insulated and

charged with M units of electricity, we should have a charge x

on S, a charge — ic on Si, and a charge M-\-x on S^. To find

X X X Jyf
X, we need only remember that 71 = 1 1 = 0, whence
X may be obtained. * " "

If B be put to earth, and A be connected by means of the fine

wire just mentioned, with an electrical machine which keeps its

prime conductor constantly at potential Vi, A will receive a charge

y and will be put at potential Vi. To find y, it is to be noticed

that there is a charge —y on Si, and no charge on S^, which is

y y
put to earth. T^ = = Vi, whence y may be obtained.

If r = 99 millimeters and r^ = 100 millimeters, y — 9900 Fi.

If a sphere, equal in size to A but having no shell about it,

were connected with the same prime conductor, it too would

receive a charge z sufficient to raise it to potential Fi, and z

would be determined b}^ the equation Fi= -• If r = 99, we have
r

2 = 99 Vi'f hence we see that A, when surrounded by B at

potential zero, is able to take one hundred times as great a

charge from a given machine as it could take if B were removed.

In other words, B increases ^'s capacity one hundred fold.

A and B together constitute what is called a condenser.

Fig. 42.

If A of the condenser AB, both parts of which are supposed

uncharged, be connected by a fine wire (Fig. 42) with a sphere
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A' which has the same radius as A, and is charged to potential

Fi, A and A' will now be at the same potential [F2], and A will

have the charge ic, and A' the charge y. The total quantity of

electricity on A' at first was r Fi, so that a; -+- 2/ = r Fi, and

y ^
V,= - =

X X
-:7 + ::r'r r

whence x and y may be found.

The reader may study for himself the electrical condition of

the different parts of two equal spherical condensers (Fig. 43)

,

Fig. 43.

of which the outer surface So of one is connected with an elec-

tric machine at potential Fi, and the inside of the other, S\ is

connected with the earth. The two condensers, which are sup-

posed to be so far apart as to be removed from each other's

influence, illustrate the case of two Leyden jars arranged in

cascade.

63. Condensers made of Two Parallel Conducting Plates.

Suppose two infinite conducting planes A and B to be parallel

to each other at a distance a apart ; choose a point of the

plane A for origin, and take the axis of x perpendicular to the

planes, so that their equations shall be ic = and x = a. Let the

planes be charged and kept at potentials F^ and Vs respectively.

It is evident from considerations of symmetry that the potential

function at the point P between the two planes depends only

upon P's X coordinate, so that

D,V=0, AF=0, D/F=0, j[>/F=0.
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Laplace's Equation gives, then,

whence D^V=C, and V=Cx-^D.

If x = 0, V= F^ ; and if x = a, V= Vb ; so that

V={Vb-V,)1 + V^, and AF=^^i^.
The lines of force are parallel between the planes, and the

surface densities of the charges on A and B are

— and — respectively.
A-rra Aiira

If we take a portion of area 8 out of the middle of each plate,

there will be a quantity of electricity on /S^ equal to —^—^ ~ ^\
4:Tra

and an equal quantity of the other kind of electricity on S^,

The force of attraction between S^ and Ss will be 2 tto-^ • jS, or

Stt a"

If Ss be put to earth, the charge that must be given to S^ in

order to raise it to potential unity is

S
4t7ra

In other words, the capacity of Sj_ is inversely proportional to

the distance between the plates.

In the case of two thin conducting plates placed parallel to and

opposite each other, at a distance small compared with their

areas, the lines of force are practically parallel except in the

immediate vicinity of the edges of the plates ;* and we may infer

Va

Fig. 44.

* See Maxwell's Treatise on Electricity and Magnetism, Vol. I. Fig. XII.
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from the results of this section that the capacity of a condenser

consisting of two parallel conducting plates of area /S, separated

by a layer of air of thickness a, when one of its plates is put to

S ^
earth is very approximately for large values of - •

4:7ra a

64. Capacity of a Long Cylinder surrounded by a Concentric

Cylindrical Shell. In the case of an infinite, conducting cylinder

of radius r^, kept at potential Vi and surrounded by a concentric

conducting cylindrical shell of radii r„ and r', kept at potential

Vo, we have symmetry about the axis of the cylinder, so that

I)fj,V= 0, and Laplace's Equation reduces to the form

whence, for all points of empty space between the cylinder and

its shell, rr n I m
But V= Vi when r= r^, and V= V^ when r = r,,,

F;iog^"+F.log^
hence F= ', [183]

log-"

and Z),F=
^^°~^"^ '-'

r

Fig. 45.

The surface densities of the electricity on the outer surface

of the cylinder and the inner surface of the shell are respectively
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V — V , V — VLl Ll_ and —^ -1-

47rrilog!!f 47rr<,log_!

so that the charge on the unit of length of the cj'linder is

—iH—2, and the charge on the corresponding portion of the

2 log!}

inner surface of the shell is the negative of this. We may find

the capacity of the unit length of the cyUnder by putting Fo =

and 7"^= 1, whence capacity =
2 log !1"

If To in this expression is made very large, the capacity of the

cylinder will be very small.

In the case of a fine wire connecting two conductors, 7\ will

be ver}^ small, and there will be no conducting shell nearer than

the walls of the room, so that the capacity of such a wire is

plainly negligible.

65. Specific Inductive Capacity. In all our work up to this

time we have supposed conductors to be separated from each

other by electrically indifferent media, which simpl}' prevent

the passage of electricity from one conductor to another. "We

have no reason to believe, however, that such media exist in

nature. Experiment shows, for instance, that the capacity of

a given spherical condenser depends essentiallj' upon the kind

of insulating material used to separate the sphere from its

shell, so that this material, without conducting electricity,

modifies the action of the charges on the conductors. Insu-

lators, when considered as transmitting electric action, are

sometimes called dielectrics.

Whatever may really be the physical natures of the sub-

stances, such as glass, paraflSne, ebonite, etc., which we com-

monly use as insulators, it has been shown that their behavior

would be fairly well accounted for on the supposition that they
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are made up of truly insulating matter in which are imbedded,

at little distances from one another, small, conducting par-

ticles. It is evident that every such particle, if lying in a

field of force, would be polarized ; that is, one part would be

charged positively by induction, and the part most remote

from this would be charged negatively, and that these induced

charges would have some influence in determining the A^alues

of the potential function at points in the dielectric and in the

conductors adjacent to it.

Using the notation of Section 62, let the part -4 of a spheri-

cal condenser be charged with m units of positive electricity

and separated from the part B, which is put to earth, by a

spherical shell of radii r and r^ made up of a given dielectric.

Let us first ask ourselves what the effect of the dielectric would

be if it consisted of extremely thin concentric conducting spheri-

cal shells separated by extremely thin insulating spaces. It is

evident that in this case we should have a quantity —m of elec-

tricity induced on the inside of the innermost shell, a quantity

+m on the outside of this shell, a quantity —m on the inner

surface of the next shell, a quantity +m on the outside of this

shell, and so on. If there were n such shells in the dielectric

layer, and n -h 1 spaces, and if 8 were the distance from the

inner surface of one shell to the inner surface of the next,

and XS the thickness of each shell, the value, at the centre of

-4, of the potential function due to the charges on these shells,

would be

V'^m[-^ ^- 4-^ 1

= — mX8

28 r-A.8 + 28

1

r-\-n8 r — X.8 -{-n8

1

1 ^1

,8 + n8j

}(r-\-8){r-X8-\-8) (r+28) (r-A8+2 8)

This quantity lies between

G =-mA8^ ?—— and H=-mXs\^
^^{r + k8Y ^(r+A:8y
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but these differ from each other by less than € = mXS ~ —, so

—-, which is easily seen to lie between
r or

G and H, differs from Va by less than e. If, then, 8 is very

small in comparison with r and r^, VJ differs from mX(
Vi r

by an exceedingly small fraction of its own value.

This shows that the effect, at the centre of -4, of such a

system of conducting shells as we have imagined would be

practically the same as if a charge —m\ were given to the

inner surface of the dielectric, and a charge +mA. to its outer

surface, while the charges on the surfaces of the thin shells

within the mass of the dielectric were taken away. That is,

the value of the potential function in A would be

m(l — X)f -) instead of m { V
\r r'J \7' r'J

Such a system of shells introduced into what we have hitherto

supposed to be the electrically^ inert insulating matter between

the two parts of a spherical condenser would increase the capa-

city of the condenser in the ratio of 1 to 1 — X. It is to be

noticed that A is a proper fraction : X = and A = 1 would

correspond respectively to a perfect insulator and to a perfect

conductor.

As Dr. E. H. Hall has suggested to me, the result given

above might be easil}" obtained by computing* the amount of

work done in moving a unit particle of electricity (supposed

to be concentrated at a point, and not to disturb existing dis-

tributions) from A to B. It is easy to see that the force at

any point in the mass of one of the tliin conducting shells

would be zero, and that the force at any point in the space

between two shells would be exactly the same as if there were

no shells in the dielectric. We have no reason to think that

there are any such differences between the values of the force

at contiguous points in the dielectric as this would indicate,

and the conception of the thin shells has been introduced only

* Mascart et Joubert, Lemons sur VElectricity, § 124.
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because the effect of these shells can be more easily computed

thau that of a number of discrete particles.

When, however, the dielectric between the parts of a spheri-

cal condenser is supposed to contain not a system of continuous

shells, but a number of separate conducting particles, these are

often regarded as forming a series of concentric layers, and it is

assumed that the sum of the charges induced on the inner

sides of the particles in the innermost layer is — X'wt, where

X' is a proper fraction, larger or smaller in different dielectrics

according as the particles are nearer together or farther apart,

and that the inner surfaces of all the other layers have each

the same charge, and the outer surface of every layer the cor-

responding positive charge + X'm. The effect of this kind of

dielectric, if made to replace a perfect insulator in our calcu-

lations, would be to increase the capacity of the condenser in

the ratio 1 to 1 — /;t, where fx = k'X, and it is evident that the

same effect might be produced by a charge — jxm on that

surface of the dielectric which touches A^ and a charge -{ fxim

on that surface which is in contact with B.
-^ Experiment shows that dielectrics used to separate and to

surround charged conductors behave, in many respects, as if

every surface in contact with a conductor had a charge opposite

in sign to that of the conductor, and in absolute value /x times

as great, /a being less than unit}', and constant for any one

dielectric. That is, if the dielectric separating from each other

a number of conductors be displaced by another, the capacities

of all the conductors will be changed in the same ratio, depend-

ing only upon the natures of the two dielectrics.

The ratio of the fraction , in the case of any dielectric to
1-/X

the same fraction in the case of air, for which /a is very

nearly the same as for what we call a vacuum, is called the

specific inductive capacity of the dielectric in question. This

ratio is greater than unity for all solid and liquid dielectrics

with which we are acquainted. The specific inductive capacity

of a perfect conductor would be infinite.
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The following very clear statement of the effect produced by

changing the dielectric which envelops the parts of a condenser

made of two plates, is due to Dr. Hall, and is copied with his

permission

:

" The fundamental fact concerning static electrical induction

as observed by Faraday is this,* that if the two plates of a

condenser, separated by air, receive respectivelj^ Ci and — eg

units of electricity when charged to a certain difference of

potential, e.g,^ by connection with the poles of a battery of

many cells in series, the same two plates would, if any other

medium were substituted for the air, other conditions remaining

unchanged, receive respectively Ke^ and — Ke.2 units of electric-

ity, K being some quantity greater than unity. This quantity

K is called the specific inductive capacity of the second medium.
" Now, since the difference of potential between A and B is

the same in these two cases, the * electromotive intensity,' f i.e.^

the force exerted upon unit quantity of electricity, is the same
in the two cases at any given point lying in the region through

which the change of dielectric extends. If we were to attempt

to determine the surface densities of the charges of the conduc-

tors by means of the equation %

dv dv
TTO" ' = 0,

the values obtained would be the same for both cases. These

would be the actual values of the surface densities if air were

used, but would evidently not be the actual surface densities

for the other case. For this latter case, the values thus found

are called the '- appareyit^ surface densities, and bear to the

true densities the ratio 1 to K.
" We must not conclude from this that A and B with charges

Kci and — /iTeg respectively in the second medium would act,

* Maxwell's Treatise on Electricity and Magnetism, Art. 62.

t Maxwell's Treatise on Electricity and Magnetism, Art. 44.

X Maxwell's Treatise on Electricity and Magnetism, First Edition, Art. 83.

See, also. Section 47 of this book.



130 ELECTEOSTATICS.

in all electrical respects, like the same bodies with charges Bi

and — ^2 in air. Two spheres, A and B^ in air, with centres at

distance r from each other, and having charges e^ and —62
p p

respectively, would attract each other with a force -1-?, whereas

the same two spheres with actual charges Kei and — Ke2 in a

medium of specific inductive capacity K would attract each

other with a force* —^. This seems at first inconsistent

with the fact that the electromotive intensity at any point, as

stated above, is the same in both cases. The electromotive

intensity at any point, however, means the force that would be

exerted upon unit actual quantity of electricity at that point,

not the force that would be exerted upon unit apparent quan-

tity. So the average force exerted by ^'s charge upon ^'s

charge in either of our two cases is —„ for each actual unit of

JB's charge. Hence, the total force exerted by A upon B is

J-? for the first case, and—l-H for the second case, as stated

before."

66. Charge induced on a Sphere by a Charge at an Outside

Point. The value at any point P of the potential function due

to mi units of positive electricity concentrated at a point A^^ and

m2 units of negative electricity concentrated at a point ^2? is

m^ 9712V= where i\ = A^P and r2 = A2P.
?-l

7*2

It is easy to see that if mi is greater than m2, so that m^= Xwig

where A.> 1 , F will be equal to zero all over a certain sphere

which surrounds J.2.

If (Fig. 46) we let ^1^2 =«, ^iO = 8i, ^0=^2, OD = r,

it is eas3' to see that

g _^ g
__a_ ^^ a'X' ^g 3 X2 = A,

* Maxwell's Treatise on Electricity and Magnetism, Art. 94.
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and „ = ^L-^ = ?:l^. [176]

If PR represents the force fy due to the electricity at -4^, and

PQ the force /g due to the electricity at A2, the line of action of

the resultant force F (represented by PL) must pass through

the centre of the sphere, since the surface of the sphere is equi-

potential.

Fig. 46.

The triangles A^PO and A^PO are mutuall}^ equiangular, for

they have a common angle AiOP, and the sides including that

angle are proportional (7^ = 8182)' Hence, from the triangles

QPL and A1PA2, by the Theorem of Sines,

sin tti sin aj

whence

-r-r^ 7. [177]
Sm (ag — tti)

-. -. ^, r. [178]
Smag smaj sin (ag — tti)

f2 n fi r^

Now, according to Section 50, we may distribute upon the

spherical surface just considered a quantity 7712 of negative elec-

tricity in such a way that the effect of this distribution at all

points outside the sphere shall be equal to the effect of the

charge — m^ concentrated at -^2? a^^ the effect at points within

the sphere shall be equal and opposite to the effect of the charge

mi concentrated at A^. Since F is the force at P in the direc-
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tion of the interior normal to the sphere, we shall accomplish

this if we make the surface density at every point equal to o-,

where

4^^ ^ _F= - «^"''
==
- (g'^ - '•)'"»

;

[180]
Ti rri

and if we now take away the charge at Ai^ the value of the po-

tential function throughout the space enclosed b}' our spherical

surface, and upon the surface itself, will be zero. If the spheri-

cal surface were made conducting, and were connected with the

earth by a fine wire, there would be no change in the charge of

the sphere, and we have discovered the amount and the distri-

bution of the electricity induced upon a sphere of radius r, con-

nected with the earth by a fine wire and exposed to the action

of a charge of mi units of positive electricity concentrated at a

point at a distance Si from the centre of the sphere.

If now we break the connection with the earth, and distribute

a charge m uniformly over the sphere in addition to the present

distribution, the potential function will be constant (although

no longer zero) within the sphere, and we have a case of equi-

librium, for we have superposed one case of equilibrium (where

there is a uniform charge on the sphere and none at A^ upon

another. The whole charge on the sphere is now

M=m — mo = m —
,

8i

and the value of the potential function within it and upon the

surface,

j^_M ,mi_m
r Si r

If the conducting sphere were at the beginning insulated and

uncharged, we should have M= 0, and therefore

„ =^(l-K^, and r=f. [181]

If we have given that the conducting sphere, under the influ-

ence of the electricity concentrated at Ai is at potential Fi, we
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know that its total charge must be Vi r ^^ , and its surface

density

It is easy to see that the sphere and its charge will be at-

tracted toward Ai with the force

Si V(V-0' Si

and the student should notice that, under certain circumstances,

this expression will be negative and the force repulsive.

If mi = ms, the surface of zero potential is an infinite plane,

and our equations give us the charge induced on a conducting

plane by a charge at a point outside the plane.

The method of this section enables us to find also the capacit}'"

of a condenser composed of two conducting cylindrical surfaces,

parallel to each other, but eccentric ; for a whole set of the

equipotential surfaces due to two parallel, infinite straight lines,

charged uniformly with equal quantities per unit of length of

opposite kinds of electricity, are eccentric cylindrical surfaces

surrounding one of the lines Az-, and leaving the other line Ai
outside. We may therefore choose two of these surfaces, dis-

tribute the charge of Ai on the outer of these, and the charge

of A2 on the inner, by the aid of the principles laid down in

Section 50, so as to leave the values of the potential function

on these surfaces the same as before. These distributions thus

found will remain unchanged if the equipotential surfaces are

made conducting.

The reader who wishes to study this method more at length

should consult, under the head of Electric Images, the works of

Gumming, Maxwell, Mascart, and Watson and Burbury, as well

as original papers on the subject by Murphy in the Philosophical

Magazine^ 1833, p. 350, and b}^ Sir W. Thomson in the Cam-
bridge and Dublin Mathematical Journal for 1848.
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67. The Energy of Charged Conductors. If a conductor of

capacity O, removed from the action of all electricity except its

own, be charged with M^ units of electricity, so that it is at

potential Vi =—\ the amount of work required to bring up to

the conductor, little by little, from the walls of the room, the

additional charge AA(, is A TF, which is greater than Fi •AM or

^i.Aif, and less than ( F^ + A^F) • Ai^f or ^^ + ^^»A3f.

If the charge be increased from Mi to M2 by a constant flow,

the amount of work required is evidently

Jm, C 2C 2 ^ '
'^*

^ -•

The work required to bring up the charge M to the conductor

at first uncharo^ed is then

M^^CV^^MV
20 2 2

'
[185]

This is evidently equal to the potential energy of the charged

conductor, and this is independent of the method by which the

conductor has been charged.

If, now, we have a series of conductors A^^ A^, ^3, etc., in the

presence of each other at potentials Fi, F2, F3, etc., and having

respectively the charges Jfi, M2, -Mg, etc., and if we change all

the charges in the ratio of a; to 1, we shall have a new state of

equilibrium in which the charges are xMi, XM2, xM^^ etc. ; and

the values of the potential functions within the conductors are

fljFi, XV21 xVsi etc. The work (ATT) required to increase the

charges in the ratio x-\- Ax instead of in the ratio x is greater

than

{Ml Ax) (xVi) -h {M2AX) (XV2) + {M2AX) (XV2) + etc.,

or xAxlMi Vi + M2V2 + MsVs + etc.],

and less than

{x + Aa;)Ax IM^Vi +M2 Fg -{-M^ V3 + etc.] ;
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hence the whole amount of work required to change the ratio

from — to -^ is

1 1

TF2-TT^i=^t_^'[jl^^7i+ifer2F2+Jf3F3 + etc.]. [186]

If in this equation we put a^i = and iCg = 1 , we get for the

work required to charge the conductor from the neutral state to

potentials Fi, F2, F3,

TF=i[JtfiFi + ^2F2 + Jf3F3+-]=i^(^F). [187]

68. If a series of conductors A^^ A2, ^3, etc., are far enough

apart not to be exposed to inductive action from one another,

and have capacities (7i, 02, Cg, etc., and charges M^, Jfg, iHfg, etc.,

so as to be at potentials Fi, F2, F3, etc., where 31^= CiVi,

M2 — C2F2, M^= O3F3, etc., we may connect them together by

means of fine wires whose capacities we may neglect, and thus

obtain a single conductor of capacity

Ci+C2 + 03+...=^(0).

The charge on this composite conductor is evidently

j^i + jf2 + i>f3 + -=^(-^);

and if we call the value of the potential function within it F, we
shall have ^—

v

^—

^

whence F= ^^^^+
^'J' +f^^^ +

'^
, [188]

C1 + C2 + C3+- ^ •

a formula obtained, it is to be noticed, on the assumption that

the conductors do not influence each other.

The energy of the separate charged conductors before being

connected together was

Tr=i(JfiFi+iV/2F2 + 3i-3F3+...) = i-f^4-^' +^+-')
\ ^1 ^2 ^3 /

'^y [189]=*s



1

Hi^fi + ^, + 3f3 + -y_ \^^ 'A ^190^

136 ELECTROKINEMATICS.

and the energy of the composite conductor is

Ci +(72+03 + •••

_ x^^
(^1 H~ (^2 + (^3 "H " •

*

T^CO^

which is always less than E unless the separate conductors were

all at the same potential in the beginning.

69. Steady Currents of Electricity. As we have already

seen,* when a charged body A is brought up into the neighbor-

hood of a previously uncharged, insulated conductor i?, the

two kinds of electricity which, according to our provisional

theory, exist in equal quantities in every particle of B^ tend to

separate from each other and, as a consequence, free electricity

appears on ^'s surface ; some parts of this surface becoming

charged positively and other parts negatively. If xl is brought

into a given position and fixed there, the distribution on the

surface of B quickly attains and keeps— except as there may
be leakage into the surrounding medium— a value determined

by the fact that the whole interior of B must be a region at con-

stant potential, or, in other words, that the resultant force at

any point within B due to the free electricities on its surface

must be equal and opposite to the force at that point due to all

the free electricity outside B. If now A with its charge is

moved to a new position, the old distribution on 5's surface will

not in general screen the interior of B from the action of ^'s

charge, and a new separation of electricity within B and a new

arrangement or combination of the charge on the surface is

necessary before a new state of equilibrium can be established.

If A be moved continuously in an}^ manner, there will be a con-

stant attempt on the part of the separated electricities to set

* See Section 53.
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Up a state of equilibrium, and hence at every point of B there

will be, in general, some electrical change going on continually.

If two conductors A and B at different potentials be con-

nected by a fine wire, the whole will form a single conductor,

which can only be in a state of equilibrium when the value of

the potential function due to all the free electricity in existence

is constant throughout its interior, and there will be such a

transfer of electricity through the wire as will establish this

state of equilibrium in a very short time. If, however, by any

device we can furnish unlimited quantities of electricity to A
and B in such a way as to keep them at the same potentials as

at the beginning, there will be a continual attempt to establish

electric equilibrium within the compound conductor consisting

of A, B, and the wire, and, as a result, there will be a continual

transfer of electricity through the wire.

The transfer of electricity from one place to another through

a conductor is a vevy common phenomenon. Sometimes, as we
have seen, electricity traverses the conductor for a short time

only ; sometimes, however, the transfer goes on indefinitely,

and, so far as we can judge from its attendant phenomena, at

a constant rate, so that just as much of a given kind of elec-

tricity crosses any surface within the conductor in any one

second as in any other : such a continuous steady transfer as

this is called a " steady current."

The existence of a steady current in a conductor implies a

force tending to drive electricity through the conductor ; that is,

it implies, at least in the absence of moving magnetic masses

and of electric currents in the neighborhood of the conductor,

free electricity somewhere in existence which gives rise to a

potential function not constant throughout the conductor. No
part of a conductor through which a steady current is fiowing

can accumulate free electricity as the time goes on, for such an

accumulation increasing with the time would be accompanied

by changes which must show themselves outside the conductor.

We are led to assume, then, that if any closed surface be drawn
inside a conductor which carries a steady current, just as much
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electricity of a given kind enters the region enclosed by the

surface in any interval of time as leaves it during that interval.

We have seen that at every point inside a conductor where

there is a resultant electric force there will be an electric sepa-

ration which will go on as long as the force exists. Experi-

ment seems to show that the rate of separation of quantities of

electricity is proportional to the magnitude of the force. Let

P be a point of a small plane area u> inside a conductor, and

let F be the average value during the intei-val from t to t-\- ^t

of the component of the electric force normal to this area ; then

in what follows we shall assume that the amount of positive

electricity which crosses this surface, in the sense in which the

force points, during the interval isk • lO' F - Ai, where A; is a con-

stant depending only upon the material of which the conductor

is composed and upon its physical condition. The average

value of this flux per unit of time per unit of surface is, there-

fore, k • F. If, now, (o and A^ are made to grow smaller and

smaller in such a manner that P is always a point ot w, F ap-

proaches as a limit the negative of the value at P of the deriva-

tive, taken in the direction in which F acts, of F, the potential

function due to all the free electricity in existence ; so that at

any instant the value at a point, P, in any direction, n, of the

rate of flow of positive electricity across a surface normal to ?i,

per unit of this surface per unit of time, is the value at P
of -k'D^V,

It follows from this that if any tube of force be drawn in a

conductor which carries a steady current, there is no flow

through the sides of the tube. Consider a region shut in by a

tube of force and by two equipotential surfaces inside a con-

ductor through which a steady current is flowing. Let o>i and cog

be the areas of the equipotential ends of the region, and let Fi

and F2 be the average values of the normal force, taken in the

same sense in both cases, over these ends. Applying Gauss's

theorem to this region we have ^3^2 — ^i'*Ji = ^ttQ, where Q is

the amount of free electricity, algebraically considered, within

the region. If the conductor is homogeneous, the amount of
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positive electricity which enters— or the amount of negative

electricity which leaves— the region by one end per unit of

time is kFi • wi, and the amount which leaves it at the other end

is kF^ • t02. These amounts are equal, so that JP2^2 — -^i^i = »

hence, Q = 0, and there is no free electricity at any point within

a homogeneous conductor which carries a steady current. The
free electricity which gives rise to the potential function the

rate of change of which is proportional to the flow of electricity

within the conductor, must then lie either outside the conduc-

tor, or on its surface, or both. It would not be difficult to

prove that there must be a distribution of electricity on parts

of the surface of everj' conductor which carries a steady current

and is in contact in some places with an insulating medium

;

but the fact that a wire through which such a current is passing

may be moved about so as to change its position with respect

to outside bodies without changing the amount of the current

will suffice to make it probable that a part, at least, of the free

electricity that we have been considering moves with the wire.

Since the density of the free electricity within a conductor

which carries a steady current is zero, the potential function

F, inside the conductor, must satisfy Laplace's Equation

;

that is, ^^V=0. It is easy to see, since there can be no

accumulation of free electricity in any conductor which bears

a steady current, that the amount of electricity which comes

up on one side to the common surface of two such conductors

which are in contact must be equal to that which goes away
from this surface on the other ; that is, at every point of

the surface, hi • i>„Fi = A^g • D^^V^^ where Zcj and k^ are the spe-

cific conductivities of the two conductors, and Z>„Fi and A.l^
the values at the point, taken in the- same sense in both cases,

of the derivatives of V in the direction of the normal to the sur-

face, one on one side of the surface, and the other on the other.

It is to be noticed that the boundary between two such con-

ductors may or may not be an equipotential surface. At every

point of the common surface of a conductor and an insulating

medium A; •Z>„F= or i)„F= ; hence the equipotential sur-
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faces within the conductor cut the surface where the conductor

abuts on the insulating medium at right angles.

70. Linear Conductors. Resistance. Law of Tensions. Let

us consider the case of a linear conductor, that is, one in which

all the lines of force ai*e parallel to each other and to the sides

of the conductor, so that every tube of force has a constant

cross-section throughout that part of its length which lies in the

given conductor. It will appear later on that any right cylin-

diical conductor, whatever the form of its cross-section, will be

a linear conductor, if every point of one of its ends be kept

at one constant potential, and every point of the other end at

another. It will also be evident that such wires as are ordinarily

used for making electrical connections are, to all intents and

purposes, except perhaps at the very ends, linear conductors,

whether these wu*es are straight or curved. Let the ends of a

homogeneous long uniform straight wire of constant cross-

section g, and of length Z, be kept respectively at potentials

V and V". Take the axis of the wire for the axis of x, and

the origin at that end of the wire at which the potential func-

tion due to all the free electricity in existence is V ; then every

line of force inside the wire is parallel to the axis of x ; and

since there is no force in any direction perpendicular to the

axis of ic, Z>j,F=Oi, D^V=0, and Laplace's Equation, which

must be satisfied by "F inside the wire becomes i>/F'=0,

whence V= Ax -\- B; or, since V=V' when x = 0, and V= V"
when x = l,

(V"-V')x ,

I

The steady current c which traverses the wire carries across

every right section in the unit of time —kq • Z)^!^ units of posi-

tive electricity in the positive direction of the axis of x. That is,

c=-A:g.AF=^(F'-F"),

where Jc is the specific conductivity of the material out of which
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the wire is made. The quantity — is called the resistance of

the wire, the quantity -^ its conductivity. The quantity k is

a function of the temperature. In the case of a pure solid metal

at any ordinary temperature a rise of 10° Centigrade will increase

- by somethiuo; like —th of its own value. Tliis fractional

increase is much smaller in the case of some alloy's : for Ger-

man silver it is about •

227

It is an important physical principle, first enunciated in a

slightly different form by Ohm, that if a fixed portion of the

surface of a given homogeneous conductor be kept constantly

at potential Fi, and another fixed portion at potential F^, while

the rest of the surface of the conductor is in contact with an

insulating medium, the ratio of Vi— V^ to the steady current

which traverses the conductor,— as measured by the quantity

of positive electricity per unit of time which either enters the

conductor through the surface F= F, or leaves it through the

surface F= F2,— is a quantity independent of Vi and T^,

This ratio is called the resistance of the conductor under the

given circumstances. The resistance of a conductor depends

not only upon its shape, the material of which it is composed,

and the temperature and other physical conditions of this

material, but also upon the shape, size, and position of those

portions of the surface which are kept at the potentials Fi and

Fg. The resistance of so much of a tube of force drawn in a

conductor which bears a steady current as lies between the

equipotential surfaces F= Vi and F= T^ is the ratio of Fi — T^

to the amount of positive electricity per unit of time which

enters the portion of the tube which we have been considering

through the surface F= Fi, or leaves it through the surface

F= Fg, or crosses any section of the tube in the direction indi-

cated. Any electric change which, under the same* conditions

of temperature and pressure, will leave this tube of force still
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a tube of force and its eqiiipotential ends still equipotential,

however the value of the potential function may be changed,

will, according to this law of Ohm, leave the resistance the

same. Other things being equal, the resistance of a tube of

force increases with the length of the tube and diminishes as

the section of the tube is made greater.

Suppose that we have a series of linear conductors joined

end to end in a closed ring, so that the end of the 7ith conductor

is in contact with the beginning of the first. Let VJ and VJ'

be the values of the potential function at the beginning and end

of the mth conductor, and r^ the resistance of this conductor.

Since the same current c must traverse every conductor of the

series, we have

and, if we add them together, we shall get

(F,'-F/') + (F3'-F,") + (F;-F3")+-H-(F-/-K")
c =

n + ^'a + ^sH f-?'„

where V2 — Vi" is the difference between the values of the

potential function on opposite sides of the surface common to the

second and first conductors, F3' — V2" the corresponding differ-

ence for the third and second conductors, and so on around the

ring.

Experiment shows that when any two conductors made of

different materials are placed in contact with each other, a sud-

den separation of electricit}' takes place at the common surface,*

and there is set up a difference of potential between tliem which

gives rise to a discontinuity of the potential function at the

* Although the language of the old " Two Fluid Theory " is used in

this chapter, the reader is strongly urged to make himself acquainted with

the physical theories now commonly used in accounting for electrical

phenomena. See Dr. 0. J. Lodge's papers "On the Seat of the Electro-

motive Force in the Voltaic Cell," printed in the Philosophical Magazine

for March, April, May, and October of 1885, and his "Modern Views of

Electricity," a series of contributions to Nature, begun in 1886.
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surface. The amount of this discontinuity, which remains con-

stant after it has once been established, is the same for all

points of the common boundary of the two conductors, and is

independent of their size and shape, of the extent of surface in

contact, and of the absolute values of the potential function on
either side of the boundary. We shall represent the sudden

fall in the value of the potential function encountered by pass-

ing from a conductor made of material ^ to a conductor made
of material B across any point of their common surface by the

symbol A\ B. A certain class of substances, to which all

metals belong, has the property that if X, Jf, and N are any

three of these substances, all at the same temperature,

L\M-^M\N=L\N.
This class is said to obey " Volta's Law of Tensions." If a

number of conductors made of different kinds of metals all at

the same temperature be placed in line, the first in contact with

the second, the second with the third, and so on, the algebraic

sum of the jumps of the potential function encountered in going

from the first conductor to the last through all the others is

exactly the same in amount as the single jump which would

occur at the common surface of the first and last conductors if

they were put directl}^ in contact with each other. Some other

substances besides metals obey the Law of Tensions, but most

liquids and solutions, whether in contact with each other or with

metals, do not obey this law.

The sum of the jumps in the potential function encountered

in passing from copper to zinc by way of an iron conductor is

the same, if the whole be at one temperature, as the jump
encountered in passing directly from copper to zinc. But this is

not equal to the sum of the jumps met with in passing from

copper to zinc through sulphuric acid.

Cu
I

Fe + Fe
|
Zn=Cu

|
Zn,

but Cu
I

(H2SO4) + (H2SO4)
I

Zn=7^Cu
I

Zn.

The numerator of the expression just found for the intensity

of the current which traverses a closed chain of linear conduc-
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tors is evidently the algebraic sum of the jumps m the potential

function encountered by travelling in the direction in which the

current is supposed to move; i.e., from the first conductor to

the last through all the others, and reckoning the jump at any

boundary positive if the value of the potential function is

increased as one crosses the boundary. If all the conductor^

whicli form the circuit are metallic and all at the same temper-

ature, whether or not they are all made of the same kind of

metal, this numerator is zero, and it follows that in order that

a steady current may traverse a circuit of conductors, one at

least of the conductors must not obey the Law of Tensions.

The same formulas apply to a circuit composed of conductors

of any form if each of the common surfaces of contiguous con-

ductors is equipotential.

71. Electromotive Force. A galvanic battery may be re-

garded as a chain of three or more generally non-linear conduc-

tors, at least one of which disobeys the Law of Tensions. The

first and last members of the chain are called the poles of the

battery. The algebraic sum of the jumps in the potential func-

tion encountered by starting at that pole of a galvanic battery

at which the potential is less, and passing to the other pole

through the battery, is called the electromotive force of the

battery. The difference of potential between the poles of the

battery, when they are not connected, measures this electro-

motive force. Chemical action goes on inside every battery

when its poles are closed ; some of its solutions are decomposed,

and the products of this decomposition often appear at the

boundaries of the liquid conductors inside the battery, and

decrease the electromotive force by changing the amount of

jump in the potential function at each of these boundaries.

For this reason the electromotive force of a battery in action

may be much less than when the poles are open. This differ-

ence, when the poles are closed by a conductor of low resistance,

often amounts to 40 per cent of the whole in the case of a

Daniell's cell, and to much more in the case of a less constant

element.
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It is easy to show that when the poles of a battery are

closed by a conductor of resistance i2, the difference between

the values of the potential function at the ends of this con-

RE
ductor is , where E is the electromotive force of tbe

B-^-R
battery under the given circumstances, and B the resistance

of the conductors which make up the battery itself.

The steady current which flows through the circuit carries

units of positive electricity across every cross-section

per unit of time. With a given battery the intensity of the

current can be changed very much by increasing or decreasing

the resistance of that part of the circuit which lies outside the

battery.

In dealing with problems in electrostatics, we have assumed

that the units have been so chosen that the unit quantity of

positive electricity concentrated at a point would repel a like

quantity at the unit distance from the first with the unit force.

With this understanding, om* formulas are correct whatever the

absolute values of the units may be. If, however, the units,

are such that the unit quantity of electricity concentrated at a

point repels a like quantity at the unit distance from the first,

with fx times the unit of force, the quantity /a will enter as a

factor into most of our formulas.

In the Ceutimetre-gramme-second system of Electrostatic

Absolute Units the unit of electric quantity is that quantity of

electricity which, if it could be concentrated at a point, would

repel a like quantity concentrated at a point a centimetre from

the first with a force of one dyne. This unit is found incon-

veniently small, however, when one has to deal with such steady

currents as are usuall}' met with in practice, and the coulomb,*

which is equal to about 3,000,000,000 of these absolute units, is

the practical unit of quantity most frequently used. The prac-

* This unit is one-tenth of what is called the Centimetre-gramme-second

Absolute Electromagnetic Unit of Quantity.
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tical unit of resistance, called the ohm, is the resistance of a

column of pure mercury, one square millimetre in section and

one hundred and six centimetres long, at zero degrees Centi-

grade.*

The unit of difference of potential, called the volt, is such

that if the two ends of a wire of one ohm resistance were kept

at a volt's difference of potential, the steady current which

traversed the wire would carr}- past an}' cross-section a coulomb

of electricity per second. The electromotive force of a care-

fully set up Daniell's cell is about 1.08 volts.

A current of a coulomb per second is called an ampere.

A condenser which requires one coulomb of electricity to charge

it so that the difference of potential between its poles is one

volt, is said to have a capacity of one farad. The practical

unit of capacity is the microfarad or the millionth of a farad.

The capacity of a conducting sphere nine kilometres in radius

would be one microfarad, that of the earth something over

700 microfarads. The capacity of a nautical mile of such

ocean telegraph cable as is usually laid may be taken to be

about one-third of a microfarad.

72. Kirchhoff's Laws. The Law of Divided Circuits. From

what has been proved in the preceding sections about conduc-

tors which carry steady currents follow two theorems of much

practical importance, called Kirchhoff's Laws.

I. If several wires which form part of a conductor carrying

a steady current meet at a point, the sum of the intensities of

all the currents which flow towards the point through the wires

is equal to the sum of all those which recede from it ; or, in other

words, the algebraic sum of all the currents which approach

the point through the compound conductor is zero.

- II. If out of any network of wires which form a complex

conductor and carry a steady current a number of wires which

form a closed figure be chosen, and if, starting at any point,

* The resistance at 0° Centigrade of a wire of pure copper 1™™ in

diameter and 1™ long is about 0.01642 ohms.
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we follow the figure around in either direction, calling all cur-

rents which move with us positive, and all discontinuities of the

potential function which lift us from places of lower potential

to places of higher potential positive, the algebraic sum of the

products formed by multiplying the resistance of each conduc-

tor by the current running through it is equal to the algebraic

sum of the jumps in the potential function which we encounter

in going completely around the figure.

The first of these laws is an immediate consequence of the

fact that there can be no growing accumulation of free electricity

anywhere in a circuit which bears a steady current. To prove

the second law, let ai, ag, ffs ••• ««? b® ^ linear conductors, which,

taken in order, form a closed figure, itself a part of a complex

conductor which carries a steady current. In passing from «!

to a„ through all the other conductors, let VJ and F}" be the

values of the potential function at the beginning and end of the

jih. conductor, and let Vj and Cj be respectively the resistance of

this conductor and the value of the current running through it.

Then, from the definition of the term resistance, we have the

following equations

:

or, adding them all together,

(hTi + Cgz-a 4- Cgrs H \- c,,r^

= V,'- V," + Vs'- F/'+ V,'- Vs"+ - + Fx - F„",

which is the statement of this law.

If electricity is free to pass from a point P to another point

P' by two wires of resistance Vi and ?2 respectively, and if a

steady current be flowing from P to P', the current will be

divided between the two wires in the inverse ratio of their resist-

ances or in the direct ratio of their conductivities.

For, if F and V be the values of the potential function at

P and P', we have V— V = Cir^ and F— F' = Cg^s, whence

Ci : C2 = rg : r^*
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Moreover, C1 + C2 = (F-

1

T*

^2

1'

Ci-hCg b
or.

The expression in the second number of the last equation is,

by the definition of the term, the resistance of the compound
conductor formed of the two which join F and P'. It is evi-

dent that the conductivity of this conductor is the sum of the

conductivities of the two wires of which it is composed.

Almost all the formulas commonly used in the laboratory in

comparing resistances, electromotive forces, and capacities can

be deduced from the theorems proved in this section, and

although it lies entirely beyond the scope of this book to con-

sider methods of making electric measurements, applications

of these theorems to a few examples, the importance of which

will be appreciated only by those who have studied the sub-

ject elsewhere, are subjoined by way of illustration. ,

I. Wheatstone's Bridge.

If four wires, AB^ BD, DF, FA, having resistances i^j, R2,

B^, -K3, respectively, form a closed quadrilateral, and if the

Fig. 47.

poles of a battery be joined to two opposite vertices A and D
of the figure, and the connecting wires of a galvanometer, or
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other instrument for detecting the existence of a current, to the

other two vertices, then if the galvanometer shows no current,

To prove this, let Ci, 63, C2, C4, be the currents which flow

in the direction indicated by the order of the letters used in

naming the wires, in AB, AF, BD, and FD, respectively.

Applying Kirchhoflfs First Law to the points B and F, we get

d = C2 and Og = Cj. Applying the Second Law to ABGF and

DBGF successively, we have CiRi= C^R^^ Co 2^2 = C^^ 2?4

;

whence, dividing the last of these equations by the preceding

one and equating Ci to C2 and Cg to C^^ we have the required

relation.

If AB and BD are two wires whose resistances we wish to

compare, we may arrange them as in the diagram and use for

AFD a long piece of uniform wire. We may then slide F along

on this wire until depressing the key K in the galvanometer

branch causes no current to go through the latter. When this

ppint has been found, the lengths of the segments of the wke

AFD are to each other as the resistances of AB and BD.

II. Poggendorff's Method of comparing Electromotive

Forces.

The electromotive force of an element may be compared with

that of a more powerful battery whose internal resistance is

known by a method due originally to Poggendorff. Join up

the batteries as in the accompanying diagram with their elec-

tromotive forces opposed, and alter the resistance R of the
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branch AD until the galvanometer G shows no current ; then

the electromotive force of the element, L\ is to the electromo-

tive force of the battery, or element, L, as li is to the whole

resistance in the circuit ADLA.
Let B be the resistance of the branch ALD, and apply Kirch-

hoff's Second Law to the closed figures ADVA and ADLA.
Since no current passes through (r, we have CR = E' and

C{B-\- R) =E, where C is the current which traverses the cir-

cuit ADLA. Eliminating C from these equations, we have

E':E = R:B + B. q.e.d.

III. Thomson's Method of comparing the Capacities op

Two Condensers.

Let 5 be a battery of constant electromotive force running

through the outside resistance AHDLF, and let the point D be

put to earth. Let Oi and C2 be the capacities of the two con-

densers which we wish to compare, and let one pole of each of

these condensers be put to earth. Let the second pole of one

of them be touched to H^ and the second pole of the other to L
for a moment, then let these poles be removed from H and L

Earth

Fig. 49.

and connected together by touching them to the ends of the

conductor MJ^. Finally, let the keyK be depressed. If, under

these circumstances, no current goes through the galvanoscope,

the capacities of the condensers are to each other inversely

as the resistances Ri and R2 of HD and DL.
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Conversely, if these resistances are to each other as C^. to Ci,

no current will go through the galvanoscope.

Take the potential of the earth for a zero, and call the poten-

tials of H and JO, V\ and T^, respectively.

Since HD and DL are traversed by the same current,

Ti - ^ - F2
.

When the poles of the condensers are put in contact with II

and i, the first condenser, one of whose poles is to earth and

the other at potential Fi, receives CxVx units of positive elec-

tricity from^; while the other condenser receives C^V^ units

of positive electricity from L. When the poles of the conden-

sers are removed from H and L^ and connected with M and N^

we have a compound condenser, of whose poles one is at poten-

tial zero, and the other, since the whole charge* is CxVx -f- Cc^Y^-,

at potential

G^Vx-^CV, ^ V,(C,R,- C2R2)

If this quantity is zero, that is, if Ci : Cg = i?2 = ^it 110 current

will flow through the galvanoscope when the ke}' ^is depressed.

73. Properties of the Potential Function inside Conductors

which carry Steady Currents. If the value of the potential

function within a conductor which bears a steady current is given,

all the circumstances of the flow within the conductor are fixed.

Positive electricity flows into the conductor from without through

all parts of the surface where the derivative of the potential

function, taken in the direction of the exterior normal, is posi-

tive, and out of it through all parts of the surface where this

derivative is negative. At all points where the conductor abuts

on an insulating medium, the derivative is zero; it may be

* See Equation 188.
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zero at other points also. Since there is no free electricit}^

inside a conductor which carries what we have called a steady

current, such a current, to use the language of the " Two Fluid

Theory," must consist of a flow of positive electricity in one

direction at every point, and an equal flow of negative electricity

in the opposite direction. There can begio closed equipotential

surface lying wholly inside a conductor which carries a steady

current, unless there is some constant source of positive or of

negative electricity within this surface, for the whole flow of

positive electricity per unit of time through such a surface from

within outwards is equal to k times the surface integral of the

intensity of the component of force in the direction of the exte-

rior normal, and this integral, which cannot vanish, is equal

[Section 31] to 47r times the quantity of free electricity' within

the surface. There must then be such a constant source of free

electricity within the surface as shall furnish just as much per

unit of time as the current carries away.

It is easy to prove analytically that— given a homogeneous

conductor and certain portions, ^, -B, C, ..., of its surface

which are to be kept at potentials F^, F^, Vc, •••? while at all

other portions the value of the derivative of the potential function

taken in the direction of the exterior normal is to be zero— there

exists a function which (1) satisfies these surface conditions,

provided that they do not require at any point of the surface a

discontinuity in the potential function or in its derivatives ; and

which (2) inside the conductor satisfies Laplace's Equation, and

with its first space derivatives is finite, continuous, and single

valued.

That one such function exists, namel}', the potential function

inside the conductor when A^ B^ (7, etc., are kept at the given

potentials and the rest of the surface is exposed to an insulating

medium, is, however, clear enough from phjsical considerations,

but for practical purposes we need to prove that this is the only

function which satisfies the given conditions. Suppose for the

sake of argument that two such functions, V and TF, exist,

and call their difference U* The function U^ then, satisfies con-
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dition (2) and is itself equal to zero, or else has its derivative

in the direction of the exterior normal equal to zero at every

point of the surface. Applying Green's Theorem in the form

of Equation 151 to w, we find that the quantity

which can never be negative, must be zero at every point within

the conductor, so that D^u^ DyU, and D^u must vanish and u

be a constant throughout the space within the surface. Now
at portions of the surface itself, u is zero, hence it must be equal

to zero everywhere inside the conductor, and V= W. If by

any means, then, we find a function which satisfies the surface

conditions and the general space conditions which the poten-

tial function inside a certain conductor which bears a steady

current under given surface conditions must satisfy, this func-

tion is itself the potential function.

Since the sum of any two special solutions of Laplace's Equa-

tion is itself a solution of the equation, it is evident that the

sum of the potential functions inside a conductor which bears

steady currents under two distinct sets of surface conditions,

will be the potential function within the same conductor due to

the set of surface conditions formed by adding the values of the

potential function at the surface in the two original cases. In

other words, if we superpose two states of electrokinematic

equilibrium in a conductor, the result will be another such state.

Any surface supposed drawn in a conductor which carries a

steady current in such a way that the derivative of the potential

function taken normal to this surface is zero shall be called a

surface offlow.

If a conductor which under given surface conditions carries

a stead}'' current be cut in two by means of a surface of flow,

and if the two parts be separated while the surface conditions

on what was the bounding surface of the old conductor remain

the same as before, and the fresh surfaces now abut on an

insulating medium, the state of flow at every point inside each

part of the conductor will be just the same as before, for the
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values of V and D^V on the surface of the new conductors are

what they were before separation so that V must have the

same values* at all inside points.

When a conductor is cut in two by a surface of flow, the fresh

surfaces exposed receive a statical charge of free electricity,

and the charges on what was the bounding surface of the origi-

nal conductor are in part changed so that it is only within the

parts of the old conductor that the effect of the separation

is nil.

74. Method of Finding Cases of Electrokinematical Equilib-

rium. Although the circumstances of flow within a given

conductor are fixed when the value of the potential function

within it is known, yet, given a single-valued solution of

Laplace's Equation, in general finite and continuous, there is an

infinite number of diff'erent conductors, all belonging to a cer-

tain class, in which the flow is determined by the one function.

/•

For instance, V= - -f d, where c and d are constants and r the
r

distance from a fixed origin to the point (a;, y, «), gives the

value of the potential function inside a conductor bounded by

two spherical surfaces of radii a and b having as their com-

mon centre when these surfaces are kept respectivel}^ at poten-

c c
tials - -f d and ^ + c^« In this case the whole amount, per unit

a b

of time, of positive electricity which enters the conductor

through the surface r = a, crosses every equipotential spherical

surface within the conductor, and leaves it by the surface r=b
is iiircJc^ where k is the specific conductivity of the material out

of which the conductor is made. The resistance of the con-

ductor is, by definition,

c_c
a b _b — a

4 ttcTc 4 irlcdb

a quantity independent of c and d.

* See Equation 151.
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It is evident that any conical surface whose vertex is will

be in this case a surface of flow, and that the formula V=--\-d
r

will give us the flow in any piece cut out of the spherical shell

just considered by such a surface. It is easy to see that if cd

is the solid angle of the cone, the resistance of the portion of

h — a
the conductor cut out will be

koiob

Again, the equation V= c[ ]-\-d^ where Vi and r^ are

the distances of the point (cc, y, z) from the fixed points Oi and

O2, gives us the potential function inside an infinite conductor

bounded in part by the surfaces = a and = 5,

*

when the first is kept at potential ac + d, the second at poten-

tial be -\- d. In this case the surface V= c? is a plane bisecting

at right angles the straight line O1O2. Larger and smaller values

of Fthan this give closed surfaces, each of which surrounds one

of the points and leaves the other outside. For very large valufes

of F, if is positive, the equipotential surfaces are very small

nearly spherical surfaces surrounding Oi.

To find the amount of positive electricity which enters the

conductor under consideration, per unit of time, through the

surface V= ac -f- d, where ac shall be positive, we must integrate

over this surface —JcD^Vor —kc
rj To

According

to Gauss's Theorem the resulting integral is exactly the same

as that taken over any other closed surface, large or small,

which surrounds Oi and leaves O2 outside. Let us consider,

then, a spherical surface of radius c<0i02 whose centre is

at Op The required integral in this case is — 47re-A; times the

average value of D^ V taken over the spherical surface ; or,

since rj for all points on this surface is equal to e,

Aiir^kc - + average value of D^
{
-

£2 iVn
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If now e be made smaller and smaller, DJ —
j
always has some

finite value for every point on the surface of the sphere sur-

rounding Oi, and the expression just given approaclies the limiting

form ^iTtkc. Hence, 47^^'c units of positive electricity enter the

given conductor through the surface V= ac + dm every second,

whether this surface is large or small. The resistance of the

conductor between the surfaces V= ac-\-d and V=hc-{-d is,

by definition of the term, —

.

If a and h are made very large and equal, with opposite signs,

the two surfaces through which electricity enters and leaves the

conductor become very nearly coincident with spherical surfaces

of radius e = - drawn about Oi and O2 respectively. The
a

resistance of the conductor in this case is Considerations
27rA'c

of symmetry show that any plane which contains the line OiO^

is ta surface of flow. If we cut the conductor in two by such a

plane we shall have an infinite conductor with two nearly hemi-

spherical electrodes sunk in its plane surface. The resistance

of this part of the whole conductor is , a quantity independent
irke

of the distance apart of the electrodes. This is nearly the case

of two poles of a battery sunk in the earth.

Again, the expression

F=clog^ + c?,

where i\ and r^ are the distances of a point P in space from

any two parallel straight lines, A and J5, is a solution of

Laplace's Equation which, with its derivatives, vanishes at an

infinite distance from these lines and which is constant all over

any one of a double system of circular cylindrical surfaces

(Fig. 50) , some of which surround one of the given lines, and

some the other. This function, then, when c and d are properly

determined, is the potential function within an infinite lamina,
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either thick or thin, when that lamina is perforated perpendicu-

larl}- to its plane by two circular cylindrical holes, the curved

surfaces of which are kept at given constant potentials, ^irhc

units of positive electricity per unit of time per unit of thickness

of the lamina enter the conductor through one of the cylindrical

surfaces, and the same amount leaves it b}' the other surface.

The resistance of the lamina is then the difference between the

values of the potential function at the electrodes divided by

^irkc times the thickness of the lamina.

Fig. 50.

These examples will serve to show how we ma}' discover an

indefinite number of cases of kinematic equilibrium by assuming

some function, in general finite and continuous, which satisfies

Laplace's Equation, and then taking as a conductor one inside

which the given function is everywhere finite, and which is

bounded by surfaces over each of which either the function is

constant or its normal derivative zero.
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EXAMPLES.

1. Show that in general the surface density of a charge dis-

tributed on a conductor is greatest at points where the convex

curvature of the surface of the conductor is greatest.

2. A hollow in a conductor is at the uniform potential Vi

when a charge is communicated to a conductor within the cavity

sufficient to raise this conductor to potential V2 if it were in

empty space. Give some idea of the changes brought about by

this charge.

3. Illustrate by a figure the effect on the lines of force of

introducing a spherical conductor into any field of force.

4. Prove that if a distribution of electricity over a closed

surface produce a force at every point of the surface perpendic-

ular to it, this distribution will produce a potential function

constant within the surface.

5. Two conducting spheres of radii 6 and 8 respectively are

connected by a long fine wire, and are supposed not to be ex-

posed to each other's influences. If a charge of 70 units of

electricit}' be given to the composite conductor, show that 30

units will go to charge the smaller sphere and 40 units to the

larger sphere, if we neglect the capacity of the wire. Show
25

also that the tension in the case of the smaller sphere is

2887r

per square unit of surface.

6. An uncharged sphere A, of radius r, occupies the centre

of the otherwise empt}', equipotential cavity, enclosed by a

spherical shell B of radii r^ and r^, so large that the effect inside

the cavity of the charge induced on ^ by a charge m, communi-

cated to A from without, may be neglected. If the value of the

potential function within the cavity before A was charged was

(7, at what potential is A now? Ans. C-\ •

7. The first of three conducting spheres. A, B, and (7, of

radii 3, 2, and 1 respectively, remote from one another, is

charged to potential 9. If -4 be connected with B for an
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instant, by means of a jBne wire, and if then B be connected

with C in the same way, C"s charge will be 3 • 6. [Stone.] If,

in the last example, all three conductors be connected at the

same time, C's charge will be 4 • 5.

8. A charge of J/ units of electricity is communicated to a

composite conductor made up of two widely separated ellipsoidal

conductors, of semiaxes 2, 3, 4 and 4, 6, 8 respectively, con-

nected by a fine wire. Show that the charges on the two ellip-

1 2
soids will be -Jf and - Jf respectively. [Stone.]

3 3

9. Can two electrified bodies repel each other when no lines

of force can be drawn from one body to the other ?

10. Two conductors, A and J5, connected with the earth are

exposed to the inductive action of a third charged body. Do
A and B act upon each other? If so, how?

11. Show that two equal conductors similarly placed with re-

spect to each other always repel each other if raised to the same

potentials and insulated ; but that if the values of the potential

function within the conductors differ never so little from each

other, the conductors will repel each other at great distances,

but at very near distances (supposing no spark to pass) they

will attract each other. [Cumming|.]

12. The superficial densit}' has the same sign at all points of

a conducting surface outside which there is no free electricity.

13. Show that 7'-;- 8 of the unit tubes of force proceeding

from an electrified particle, at a distance 8 from the centre of a

conducting sphere of radius r, which is put to earth, meet the

sphere if there are no other conductors in the neighborhood,

and that the rest go off to " infinity."

14. A charged insulated conductor A is so surrounded by a

number of separate conductors B^ (7, D, ••, which are put to

earth, that no straight line can be drawn from any point of A
to the walls of the room without encountering one of these other

conductors : will there be any induced charge on the walls of

the room? See Section 37.

15. Two uniform straight wires of equal density, each two
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inches long, lie separated by an interval of one inch in the

same straight line. Find the equation of the equipotential sur-

faces due to these wires, and find what must be the density of a

superficial distribution of matter on one of these surfaces which

at all outside points would exert the same attraction as the

wires do.

16. An insulated conducting sphere of radius r charged with

m units of positive electricity is influenced by m units of posi-

tive electricit}^ concentrated at a point 2r distant from the cen-

tre of tlie sphere. Give approximately the general shape of the

equipotential surfaces in the neighborhood of the sphere.

Give an instance of a positively electrified body whose poten-

tial is negative.

17. A conductor, the equation of whose surface is

^ +^ +^ = 1,
25 16 9 '

is charged with 80 units of electricity ; what is the densitj' at a

point for which cc = 3, 2/ = 3 ?

If the density at this point be a, what is the whole charge on

the ellipsoid?

18. Prove that the capacity of n equal spherical condensers

when arranged in cascade is only about -th of the capacity of
n

one of the condensers ; but that if the inner spheres of all the

condensers be connected together by fine wires, and the outer

conductors be also connected together, the capacity of the com-

plex condenser thus found is about n times that of a single one

of the condensers.

19. Prove that if the charges of a system of conductors be

increased, the increment of the energy of the system is equal to

half the sum of the products formed by multiplying the increase

in the charge of each conductor by the sum of the values of

the potential function within it at the beginning and the end of

the process ; or to half the sum of the products formed by mul-

tiplying the increment of the value of the potential function
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in each conductor by the sum of the original and final charges

on that conductor. [Maxwell.]

20. Prove that if the charges of a fixed S3'stem of conductors

be increased, the sum of the products of the original charge and

the final potential of each conductor is equal to the sum of the

products of the final charge and the original potential. [Max-

well.]

21

.

Discuss the following passage from Maxwell's Elementary

Treatise on Electricity

:

" Let it be required to determine the equipotential surfaces

due to the electrification of the conductor C placed on an insu-

lating stand. Connect the conductor with one electrode of the

electroscope, the other being connected with the earth. Elec-

trify the exploring sphere,* and, carrying it by the insulating

handle, bring its centre to a given point. Connect the elec-

trodes for an instant, and then move the sphere in such a path

that the indication of the electroscope remains zero. This path

will lie on an equipotential surface."

22. Prove that the coefficients of potential {p) and induction

(g) treated in Article 59 have the following properties

:

(1) The order of the suffixes of anyp or any q can be inverted

without altering the value of the coefficient, or, in other words,

(2) All them's are positive, butpj^ is less than either p„ OYpj^,

(3) Those g's whose two suffixes are the same are positive

;

the others are negative. That is, g^j^ and g„ are positive ; but

qj,i is negative and is, moreover, numerically less than either of

the others.

23. Prove that the following theorems (Maxwell's Elemen-

tary Treatise on Electricity) are contained in the statements of

the preceding problem :

(1) In a system of fixed insulated conductors, the potential

function in A^ due to a charge communicated to Ai is equal to

the potential function in Ai due to an equal charge in A^.

* A very small conducting sphere fitted with an insulating handle.
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(2) In a system of fixed conductors connected, all but one,

with the walls of the room, the charge induced on A^ when Ai

is raised to a given potential is equal to the charge induced on

Ai when Aj^ is raised to an equal potential.

(3) If in a system of fixed conductors, insulated and origi-

nally' without charge, a charge be communicated to A^ which

raises it to potential unity and Ai to potential n, then if in the

same system of conductors a charge unity be communicated to

Ai, and Ai^ be connected with the earth, the charge induced on

Aj, will be — n.

24. A condenser consists of a sphere A of radius 100 sur-

rounded by a concentric shell whose inner radius is 101, and

outer radius 150. The shell is put to earth, and the sphere has

a charge of 200 units of positive electricity. A sphere B of

radius 100 outside the condenser can be connected with the

condenser's sphere by means of a fine insulated wire passing

through a small hole in the shell. B is connected with A ; the

connection is then broken, and B is discharged ; the connection

is then made and broken as before, and B is again discharged.

After this process has been gone through with five times, what

is A's potential ? What would it become if the shell were to be

removed without touching A?
25. Suppose the condenser mentioned in the last problem in-

sulated and a charge of 100 units of positive electricity given to

the shell. What will be the potential of the sphere? of the

shell? If we then connect the sphere with the earth by a fine

insulated wire passing through the shell, what will the charge on

the shell be? What will be the potential of the shell? If next

A be insulated, and the shell be put to earth, what will be ^'s

potential ? What will be its potential if the shell be now wholly

removed?

26. A spherical conductor of radius r is surrounded by a con-

centric conducting spherical shell of radii Ei and Bq, and the

outer surface of this shell is put to earth. If the inner conduc-

tor be charged, show the effect at all points in space of moving

the conductor so that it shall be eccentric with the shell. How
is the capacity of the system changed by this ?
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27. Prove that if the spherical surfaces of radii a and 6,

which form a spherical condenser, are made slightly eccentric,

c being the distance between their centres, the change of elec-

trification at any point of either surface is —'-—
,

where 6 is the angular distance of the point from the line of

centres, and where the difference between the values of the

potential function on the two surfaces is unity.

28. Show that if an insulated conducting sphere of radius a

be placed in a region of uniform force (X) , acting parallel to

(X

the axis of cc, the function — X-x 1

[_
IT

conditions which the potential function outside the sphere must

satisfy, and is therefore itself the potential function. Show

that the surface density of the charge on the sphere is .

47ra

[Watson and Burbury.]

29. Prove that if the negative pole of one cell is connected

with the positive pole of another, the two cells form a battery

which has the positive pole of the first cell for its positive pole

and the negative pole of the second cell for its negative pole.

Cells thus connected are said to be joined up "in series" or

*' tandem." Show that if n equal cells be joined up in series,

the battery thus foraied will liave n times the electromotive

force and n times the resistance of one of the single cells.

Consider a battery made up of a number of cells not all equal

joined up in series.

30. If the positive poles of two equal cells be connected

together for a new positive pole, and the negative poles for a

new negative pole, the cells are said to be connected in " mul-

tiple arc." Show that if n equal cells be joined up in multiple

arc, the electromotive force of the battery thus formed is equal

to the electromotive force of one of the single cells, but the

resistance of the battery is only -th of the resistance of the cell.

Consider a battery made up of n cells not all equal joined up

in multiple arc.
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31. Show that if the poles of a battery made up of a given

number of equal cells are to be connected by a resistance H
greater than the sum of the resistance of all the cells, the

greatest current will traverse B when the cells are joined up

in series, but that if li is very small, the cells should be joined

up in multiple arc. If B is such that by arranging the cells in

a certain number of parallel rows and joining up the numbers

of each row in series the resistance of the whole battery can

be made equal to i?, this arrangement will give the maximum
current.

32. A battery is joined up in simple circuit with a resistance

B and a galvanometer of resistance G. After the deflection of

the galvanometer has been noted, an additional wire (or shunt)

of resistance S is placed across the poles of the battery, and the

resistance B is decreased (to r) until the galvanometer deflec-

tion is the same as before. Assuming that the electromotive

force of the battery remains constant, show that the resistance

S(B — r)
of the battery is -A- L, rxhomson.l

G-hr '- -^

33. How many square centimetres of tin foil must be used

in making a parallel plate condenser of one microfarad capacity,

if the sheets of foil are to be separated from each other by

paraffined paper whose thickness is one-fifth of a millimetre,

and whose specific inductive capacity is 2? Ans. 36,0007r.

34. Using the potential function V= clogr, where r is the

distance from a fixed axis, show that the resistance of a con-

ductor bounded by two concentric circular cylindrical surfaces

of radii a and &, and by two planes, distant h from each other,

perpendicular to the axis of the cvlindrical surfaces, is

27rhk

Apply the result to the problem of finding the resistance of the

liquid in a cylindrical galvanic element.

35. Using the potential function, F= clog-, where rj and
^2
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rg are the distances from two parallel fixed axes, show how to

find (see Figure 50) the resistance of a conductor bounded by

two parallel planes and by two somewhat eccentric circular

cylindrical surfaces which cut the planes orthogonally. In the

case of an element in which the zinc electrode is a cylindrical

rod and the copper electrode a cylindrical shell surrounding it,

is the resistance of the liquid greater or less when the zinc is

eccentric to the copper shell than when it is concentric with it?

36. Prove that if at ever}' point of an infinitely long wire,

one end of which is kept at potential Vq, while the potential at

the infinitely distant end is zero, there is leakage into the

surrounding medium at a rate proportional to the value of the

potential function at the point, V= FoC'""*, where x is the dis-

tance from that end of the wire which is kept at potential Vq.

MISCELLANEOUS PROBLEMS.

1. Prove that the attraction due to a homogeneous hemi-

sphere of radius r is zero, at a point in the axis of the hemi-

3
sphere distant -r approximately from the centre of the base.

2. Show that the attraction at the origin due to the homo-

geneous solid bounded by the surface obtained b}' revolving

one loop of the curve r^ = a^ • cos 29, is - ira.

3. If the earth be considered as a homogeneous sphere of

radius r, and if the force of gravity at its surface be g, show

that from a point without the earth, at which the attraction is

n — 1 f \n — 1\
g, the area 27rrM 1 —^ j on the surface of the earth

will be visible.

4. A spherical conductor A, of radius a, charged with M
units of electricity', is surrounded by n conducting spherical

shells concentric with it. Each shell is of thickness a, and is

separated from its neighbors by empty spaces of thickness a.

Show that the limit approached by Y^ as n is made larger and
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M
larger is — (nat. log 2) , and that for a finite number of shells

Va = — I —' —dx. rStone.l

5. If two systems of matter (ilfand 3f'), both shut in by a

closed surface >S', give rise to potential functions
( V and V) ,

which have equal A'alues at every point of S, whether or not S
is an equipotential surface of either S3'stem, then V cannot

differ from V at any point outside S, and the algebraic sura of

the matter of either system is equal to that of the other. [See

Section 52, and Watson and Burbury's Mathematical Theory of

Electricity and Magnetism^ § 60.]

6. Show that if two distributions of matter have in common
an equipotential surface which surrounds them both, all their

equipotential surfaces outside this will be common.

7. Prove that if Fbe the potential function due to auv dis-

tribution of matter over a closed surface S^ and if o-' be the

density of a superficial distribution on S, which gives rise to

the same value of the potential function at each point of S as

that of a unit of matter concentrated at any given point 0,

then the value at of the potential function due to the first

distribution is
j "F' • a- • dS.

8. Show that if we have matter every particle of which

attracts every other particle with a force proportional to the

ni\\ power of the distance, the attraction at any p'>int A.ithin a

quantity of the matter will be infinite if n + 2<0. [Minchin.]

9. Show that if w, v, and w are any three solutions of

Laplace's Equation,

10. Prove that if there be two homogeneous solids of. equal

density bounded by similar surfaces, their attrrction intensities,

for the law of the inverse square, at two points similarly situ-

ated with respect to them, are in the ratio of the corresponding

linear dimensions of the solids. [Newton.]

11. Hence show that the attraction at a point on a given
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diameter inside a solid homogeneous ellipsoid varies as the dis-

tance of the point from the centre. [Minchin.]

12. Supposing that a sphere of water is brought together by

the mutual attractions of its particles from a state of infinite

diffusion and that the amount of work done b}' these forces is

sufficient to raise the temperature of the sphere one degree

Centigrade ; show that the radius of the sphere is about one-

fortieth of the radius of the earth, if the earth's radius be

|637 X 10^ centimetres, and if one water-gramme-centigrade-

flegree be equivalent to 4.2 x lO'' ergs. [Minchin.]

' 13. We have seen (Section 27) that the amount of work

Required to move any mass Jf' in the j)resence of another mass

if from a position X to a position K in any manner is the differ-

ence between the values of the potential of M' in the positions

JTand L. Professor Alfred M. Mayer of the Stevens Institute

of Technology has given* for certain cases a graphical illustra-

tion of this fact in the shape of a diagram very like those drawn

by an indicator attached to a steam-engine.

Let be the centre of a spherical mass M of repelling mat-

ter, and let another spherical mass M' of similar matter be

mo 7ed up towards 0, along the straight line XO, from an infi-

nite distance. At every point of Jf"s path suppose an ordi-

nal drawn equal in length to the intensity at that point of the

forte of repulsion between i^fand M', and draw the curve deter-

min .d by the ends of these ordinates. If, now, K and L are

any .wo points on OX, the area KLL'K', shut in by the curve,

the ixis of X, and the ordinates at L and K, is numerically

equa! to the work done in moving M' from L to K, and the

'.•vwhol. amount of work done in moving M' from infinity to the

r * P -ofessor Mayer, in his paper entitled "Potential as Measured by-

Work a Mathematical Discussion," read before the American National

Acadf my on May 10, 1887, supposes the curve mechanically generated

by the end of a rod which slides vertically out of the top of M', in such

a way that the distance of the top of the rod from the centre of M' is

always numerically equal " to the pressure exerted on M' by the inter-

action of 31' and M." .

0.
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position L is the limit approached by the area LPPV as P is

made to recede indefinitely from 0. Prove that this is true,

and show by actual computation of the quantities involved that

the value of the potential of Jf' when its centre is at i, is

numericall}' equal to so much of the infinitely extended area

between the curve y = —~ and the axis of a;, as lies to the right

of the ordinate drawn at L.

P'

Fig. 51.

14. Prove that in general, if M and M' are any two rigid dis-

tributions of attracting or repelling matter, and if M^ be moved
without rotation from one position to another so that a point Q
fixed in M' traces out the straight line XA", and if at every

point of this line an ordinate be drawn equal in length to the

intensity, when Q is at that point, of the component parallel to

KL of the force between M and M\ the area bounded by the

curve, the axis of a?, and the ordinates at A' and L will be

numerically equal to the work done in moving Jf' from the one

position to the other. Can a similar construction be made when

M^ moves in any manner from any one position to any other?

15. Assuming the length of the earth-quadrant to be 10,000,-

000 metres, and the density of the earth to be 5.6, show that

the dyne is equivalent to about 15,220,000 centimetre-gramme-

second attraction units ; so that two masses of about 3901
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grammes each, if concentrated at two points a centimetre apart,

would attract each other with a force of one dyne.

16. Prove that the intensity at the middle point of its base

of the attraction due to a uniform right cone of height h and

semi-vertical-angle a is

27r/a/i sina-j sina-fcosa— sinacosa IH-logctn^-ctnf- — ^

[Minchin.]

17. If the law of attraction is expressed by any function,

<^'(r) , of the distance, the intensity of the attraction of any homo-

geneous solid, estimated in a given direction, at any point P,

is expressed by the surface integral | <^(r)-cosX-ds, where r

is the distance from P of any point on the surface bounding

the solid, ds the element of this surface, and X the angle made by

the normal to the element with the given direction. [Minchin.]

18. Prove that if we have matter attracted to any number of

fixed centres with forces proportional to any function of the

distance, or if we have matter every particle of which attracts

ever}' other particle according to any function of the distance

between the particles, there exists a "potential function" the

derivative of which in any direction at any point gives the

intensity of the force which would solicit a unit quantity of

matter concentrated at the point to move in the given direction.

Is the Newtonian law of attraction the only one which yields a

potential function which satisfies Laplace's Equation? Can all

these potential functions be used as measures of work?

19. Prove that if any set of operations be performed upon

the complex variable z = x-\-yi taken as a whole, and if the

result [w=f{z)~\ be written in the form <^(x, y)-\-i - {{/(x, ?/),

where <^ and i//, which are said to be conjugate to each other,

are real functions of x and y i

(1) Both <^ and ip satisfy Laplace's Equation.*

* See Byerly's Integral Calculus, Holzmiiller's Isogonale Verwandtshaften,

Minchin's Uniplanar Kinematics, Maxwell's Treatise on Electricity and

Magnetism, Lamb's Treatise on Fluid Motion, etc., etc.
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(2) D,cf> = D„xl; and Z),<^ = - A«A.

(3) At any point Q, the derivative of <^ taken in any direc-

tion PQ in the plane xy is equal to the derivative of \p taken in

a dh'ection PR at right angles to PQ, and such that the angle

QPR corresponds to a counter-clockwise rotation.

(4) The equations <^(ic, y) = c, if/{x, y)=c', represent two

families of curves which cut each other orthogonally.

20. Prove that

:

(1) If
<f>

and ij/ are any two conjugate functions of x and y,

that is, if c^ + ii}/ is a function of the complex variable x -j- yi,

taken as a whole, then, conversely-, it* and y are two conju-

gate functions of ^ and ^.

(2) If <^ and if/ are any two conjugate functions of x and y,

and if a and /? are any two other conjugate functions of x and y,

and if for x and y in the expressions for
(f>

and if/ we substi-

tute the expressions for a and yS, we shall get two new conjugate

functions of x and y.

(3) If ^1 and if/i, cf>2 and
\f/2

are any two pairs of conjugate

functions, <^i rb ^2 ^-^d if/i ± \f/2
are conjugate functions of x and y,

21. Prove that in any case of steady uniplanar flow of elec-

tricity, — that is, flow which at ever}" point is parallel to a given

plane, and of such a character that its intensity and direction

is the same at all the points of any line drawn perpendicular to

the given plane,— there exists a function conjugate to the

potential function. This function is called the " flow function."

22. Show by the ordinarj- rules for treating imaginary quan-

tities that, if z = x-\-yi, z^^ V2:, logs; will yield respectively

the following pairs of conjugate functions : A{x'^—y^)<, —2Axy
;

Ar^ cos -, Ar^ sin- ; A logr, Ad ; where i^ = y? -\-y'^ and

y
6 = tan~^-. State some problems of steady flow within con-

ductors which these conjugate functions will help to solve.

23. Show that, with certain broad limitations, either one

(say <^) of any pair [(/>, \p] of conjugate functions of x and y
may be taken as the potential function in empty space due to
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an electrostatic distribution the density of which is a function

of X and y only, and which, therefore, must be constant at all

points on any indefinitely extended line drawn perpendicular

to the plane of xy. Show also that in the case of the same

distribution the other function \p will be constant along any line

of force.

24. Show that either one (say <;^) of any pair [^, i/^] of con-

jugate functions of x and y may be taken as the potential func-

tion inside a conductor which carries a steady current flowing

at every point in a direction parallel to the plane of xy and the

same in intensity and direction at all points of any line drawn

perpendicular to this plane. Sliow that in this case the other

function i// will be constant along any line of flow, and that the

two equations
(f>
— c, if/

= c' represent, respectively, if c and c'

are parameters, cylindrical equipotential surfaces and cylindri-

cal surfaces of flow. If ds is the element of any curve AB in

the plane xy, and if Z>„<^ is the derivative of (ft taken in the

direction of the normal to ds which points towards the right as

one goes along the curve from A to 5, the integral — A; | D^^ • ds

gives the amount of positive electricity which crosses per unit

of time from left to right so much of a right cylindrical surface

erected on AB as is enclosed by two planes parallel to the

plane of xy and at the unit distance from each other. Since

Dn(ji == Dg^^ the integral just considered is equal to — A;(i/'5 —
'A.4) ?

and — k times the difference between the values of ij/ on two

right cylindrical surfaces of flow gives the amount of flow

across the unit height of so much of any cylindrical surface

which cuts the plane of xy at right angles as is included between

the given surfaces of flow.

25. Prove that

:

(1) If ri, rg, r3, '"T^ are the lengths of the radii vectores

drawn from any point P to any n parallel axes, and if ^j,

^2, ^3, ••• On are the angles which these radii vectores make with

a fixed line in the plane of xy which is perpendicular to the

axes,
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xp = AA + AA 4- ^3^3 + • • • + A,A,

are conjugate solutions of Laplace's Equation.

(2) The equation if/
= c' represents for each value of c' a

cylindrical surface which passes thi'oiigh all the axes.

(3) For very large values of c, the equation </> = c represents,

at least in part, as many closed cylindrical surfaces, each sur-

rounding one of the axes, as there are positive terms in the

expression for ^.

(4) For very large negative values of c, the equation ^ = c

represents, at least in part, so many closed cylindrical surfaces,

each surrounding one of the axes, as there are negative terms

in
<f>.

(5) If 5^= 0, no one of the cylindrical surfaces i/' = c' ends

at infinity.

(6) The value of I D„^ds taken around any closed curve in

the plane xy which surrounds the Jth axis and no other is equal

to the change made in i// by going around the curve [see Exam-

ple 24] , and this is 2 irAj.

(7) However the axis ma}' be distributed and whatever

values may be assigned to the ^'s, </> represents the potential

function corresponding to a uniplanar flow of electricity * within

the substance of an infinite conducting lamina, either thick or

thin, when cylindrical holes, on the curved surface of each one of

which (^ is constant, are cut through the lamina so as to remove

all the axes, and if the curved surfaces of these holes are kept

at potentials equal to the values of <^ on them. This is practi-

cally the case of a very large thin sheet of metal touched at

certain points by the ends of wires connected with the poles of

batteries.

(8) If in the value of <^ there is an even number (2 m) of

terms, half of which are positive and half negative, and if,

* See papers by Foster and Lodge in the Philosophical Magazine for

1875 and 1876.



MISCELLANEOUS PROBLEMS. 173

moreover, all the ^'s are numerically equal, we have the ease in

which m equal pieces of wire connected with the positive pole

of a battery touch a thin sheet of metal in m places, and m
similar pieces of wire connected with the negative pole of the

battery touch the metallic sheet in m other places. In this case,

if Pi and P2 are any two points in the metal, the resistance of so

much of the sheet as lies between the equipotential surfaces on

which Pi and Pg lie, is ^^2 ~ *^^i
, when 8 is the thickness of the

27rAnm
lamina, and k its specific conductivity.

(9) It cf> consists of two terms the coeflScients of which are

numerically equal but opposite in sign, we have the case of a

thin sheet of metal touched at two points by the two poles of a

battery. Here the curves in the plane xy, for which \j/ is con-

stant, are circles (Fig. 50) whose centres are on the line which

bisects at right angles the line which gives the points where the

battery electrodes touch the sheet.

Show that this value of <fi enables us to find the resistance

of a thin circular disc touched at two points on its circumference

by the poles of a battery, and hence, by superposition, the

resistance of such a disc touched b}* any number of pairs of

battery poles at different places on the circumference. State

other problems which an inspection of Figure 50 shows can be

solved by the aid of the value of ^.

(10) If <{> is made up of an infinite number of terms with

coefficients all numerically equal, but alternately positive and

negative, and if the corresponding axes cut the plane of xy in a

straight line so that the distance between any axis and the next

is 5, certain of the lines of force in the plane of xy will be

straight lines which cut at right angles the line on which the

traces of the axes lie. Show that by aid of this cf> we can find

the resistance of a lamina of breadth b, and of infinite length

when touched at two points opposite each other, one on one

edge, and the other on the other. Draw from general knowl-

edge a diagram which shall give the shape of the lines of flow

and the equipotential lines in such a lamina.
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26. Prove that where there is symmetry about the axis from

which 6 is measured, r"* • P^(cos 6) and '"^^ —^, where

P^(cos^) is the coefficient of a*" in the development, in ascend-

ing powers of a, of (1 — 2acos ^ + a^) , are particular solu-

tions of Laplace's Equation in polar coordinates ; that is, of

r . D,\rV) + -J- • Z)e(sin • DeV) = 0.
sm^

27. Hence show that any expression of the form

Ao + A^r . Pi(cos 0) + A^i-^ • PgCcos $)-{ hA • r^Pn (cos 0)

Pq B,-F,(cosO) B,'F,(cose) . . P,„.P^(cos^)
"T" "I 9 • ^ ~r •*• "r ,, }

where A^^ Bq, A^^ P^, ^2? ^21 ^tc, are arbitrary constants,

satisfies the equation. The P's here introduced are sometimes

called Legendre's Coefficients, sometimes Zonal Surface Spherical

Harmonics.

28. Show that Po(/x) = 1,

Pi(/x) =/i,

P2(/.)=i(3/>t2-l),

P3W=i(5/.«-3/.),

29. Show that when (9 = 0, P^(cos^), or P^(l), the coeffi-

cient of a"* in the development of (1 — a)~^, is equal to 1.

30. Prove that, if in any case of s^^mmetry about a line, a

convergent series Qq + aiZ + a.j^z^ + a^z^ + ••• represents the value

of the potential function at a point Q distant z from the fixed

point 0, both and Q being on the line, then the series

aoPo (cos 0) + ajrPi (cos 6) + a./r^P.^ (cos 6) + a^r^Ps (cos ^) H

—

formed by writing instead of z"^ in the former series ?-"* • P^(cos 0) ,

will represent in polar coordinates with as origin and the

given line as axis from which is measured, a finite, single-

valued function which satisfies Laplace's Equation and for all

points on the given line on the positive side of 0, where —
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and r — 2, has the same values as the given series. Given the

radius of convergence of the first series, within what limits can

we safely use the second series ? If any portion of the given

line traverses a region of empty space, does the new series

represent the potential function at all points in this region

within the limits of convergency of the series ?

31. Prove that if in any case of symmetry about a line, a

«! «2 ^3
convergent series—1--^ +— H represents the value of the

potential function, the series

1 P (q,obG\
formed by writinsr instead of -in the former series -^^—--^j

will represent, so long as the new series is convergent, a finite,

single-valued function which satisfies Laplace's Equation and,

for all points on the line on the positive side of 0, has the same

values as the given series.

32. Prove that the potential function due to a uniform circular

ring of mass Jf, of radius a, and of small cross-section is equal to

M(l _ 1 .
«'--P2(cos^) 1-3

^
a^.P4(cos^)

r\ 2*
r^ 2.4* r^

if a < ?', and to

Mf^ I r^'P^XcosO) .1-3 r^-P4(cos^)

a\ 2 a" 2.4 a*

if a>r, where the centre of the ring is the origin, and the axis

of the ring the axis from which 6 is measured.

33. Prove that the potential function due to a uniform circular

disc of mass Jf, of radius a, and of small thickness, is equal to

2 3f/l a^ 1 a'^'P^ JGOsO) 1.3 a^.P4(cos^)

a" [2' r 22
. 2 !

7^ 2^
. 3 !

7^

if a<r, and to

—— a—r- Pi(cosO) + - • ^ ^— ^ ^
a" \

^ ^2 a 2^.2! a"

if a > r, where the centre of the ring is the origin.
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ADDITIONAL ANSWERS TO PROBLEMS.

CHAPTER I.

... ^ 11.3032 ^ 96501 , „ a -.i ,

('> ^=274625' ^=274625' ^"^^^^^ ^^ = 0.041+;

^ = 40° 29'+.

(2) R = 7n\, cosa = ^^, cos)S = -— , cosy = -—, where
a~\ o~\ c'X.

^=v.i+^'+?-

(5) If 2 Z be the length of the wu*e, and if the axis of the

wire be taken for the axis of abscissas with the origin at the

middle point, the required equation is

2 cKv^— 1 = l —3f — y
^

(6) If the radius of the earth be taken as 3960 miles, and

the mass of a cubic foot of water as 62.5, one poundal is equiv-

alent to 952 million attraction units approximately.

(8) If c be the distance of the point P from the centre of the
"1

1
sphere, the required attraction is m

f 8(c±r)'_
, if P is

without the solid ; — , if P is within the cavity, and
'

8r''
^

m
c—

r)]8r^L (c + r

if P is a point in the mass of the solid.

(9) The attraction of a hemisphere of radius i2 at a point P
facing the flat side of the hemisphere and lying on the perpen-

dicular to this side erected at the centre is
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M
2o?E

\_R^ - 2 a^+ (2 a' - B') Vi2' + o?~\ , where a = OP.

The attraction of the other hemisphere ma}^ be fouud by sub-

tracting this quantity from the attraction due to the whole

sphere of which this hemisphere is a part. See § 9.

(10) (a) That the density varies inversely as the distance

from the centre.

(^)
^

4.TTE'

"2 2R
r 98l7ir 327w

(12) Here d is supposed to be greater than a.

(15) The attraction is 34.9, and its line of action makes an

angle of 1°49' with the line joining the centre of the sphere

with the point in question.

CHAPTER II.

(7) That the force is constant.

(9) Fo_i = ?7rp(18-0; Fi_2 = |7rpA5 + ?^;

T^ 2 /or- 14 ^ j^ 2 40
F._3 = -p(2.---c^j; F...-.P-.

(11) Yes; 1.46 -.

(12) If 3>r, V==.l.(^-^^

if 4>r>3, F=7r/xf-— +— j;

If 5>r>4, F=7r/x(^—---—
-j;

.„ ^ . Tr 405

r

(15) No.

(20) (1) About 1,830,000 tons of 2000 pounds each.
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,
CHAPTER V.

(9) Yes.

(14) Yes.

(17) o-=0.44, m = a(1.81+).

^ ^ 101 \102J
' 1^102;

(25) -
; - ;

—-— on inside of shell, — on outside of shell

;

o o 41 41

2 . __2_. 202
205

' 205 ' 205*
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A Treatise on Plane Surveying.

By Daniel Cabhakt, C.E., Professor of Civil Engineering in the West-
ern University of Pennsylvania, Allegheny. Illustrated. 8vo. Half
leather, xvii + 498 pages. Mailing Price, $2.00; for introduction, $1.80.

rPHIS work covers the whole ground of Plane Surveying. It

illustrates and describes the instruments employed, their ad-

justments and uses; it exemplifies the best methods of solving the

ordinary problems occurring in practice, and furnishes solutions

for many special cases which not infrequently present themselves.

It is the result of twenty years' experience in the field and technical

schools, and the aim has been to make it extremely practical^ having

in mind always that to become a reliable surveyor the student needs

frequently to manipulate the various surveying instruments in the

field, to solve many examples in the class-room, and to exercise

good judgment in all these operations. Not only, therefore, are

the different methods of surveying treated, and directions for using

the instruments given, but these are supplemented by various field

exercises to be performed, by numerous examples to be wrought,

and by many queries to be answered.

Chapter I. Chain Surveying.
" II. Compass and Transit Surveying.
" III. Declination of the Needle.
" IV. Laying Out and Dividing Land.
" V. Plane Table Surveying.
" VI. Government Surveying.
" VII. City Surveying. Including the Principles of Levelling.

" VIII. Mine Surveying. Including the Elements of Topography.

The following Tables have been added : Logarithms of num-
bers ; Approximate equation of time ; Logarithms of trigonometric

functions ; For determining with greater accuracy than the pre-

ceding ; Lengths of degrees of latitude and longitude ; Miscellaneous

formulas, and equivalents of metres, chains, and feet ; Traverse

;

Natural sines and cosines ; Natural tangents and cotangents.

The judicial functions of surveyors, as given by Chief Justice

Cooley, are set forth in an appendix.

The work is published just as this Catalogue goes to press, so

that full notices cannot be given. Send for the special circular.
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Byerly's Syllabi.

By W. E. Byerl,y, Professor of Mathematics in Harvard University.
Each, 8 or 12 pages, 10 cents.

Syllabus of a Course in Plane Trigonometry.

Syllabus of a Course in Plane Analytical Geometry.

Syllabus of a Course in Plane Analytic Geometry. {Advanced Course.')

Syllabus of a Course in Analytical Geometry of Three Dimensions.

Syllabus of a Course on Modern Methods in Analytic Geometry.

Syllabus of a Course in the Theory of Equations.

Elements of the Differential and Integral Calculus.

With Examples and Applications. By J. M. Taylor, Professor of
Mathematics in Madison University. 8vo. Cloth. 249 pages. Mailing
Price, $1.95; Introduction Price, $1.80.

rpHE aim of this treatise is to present simply and concisely the

fundamental problems of the Calculus, their solution, and

more common applications. Its axiomatic datum is that the

change of a variable, when not uniform, may be conceived as

becoming uniform at any value of the variable.

It employs the conception of rates, which affords finite differen-

tials, and also the simplest and most natural view of the problem of

the Differential Calculus. This problem of Jinding the relative

rates of change of related variables is afterwards reduced to thaj^jof

finding the limit of the ratio of their simultaneous increments

;

and, in a final chapter, the latter problem is solved by the principles

of infinitesimals.

Many theorems are proved both by the method of rates and that

of limits, and thus each is made to throw light upon the other.

The chapter on differentiation is followed by one on direct integTa*

tion and its more important applications. Throughout the work

there are numerous practical problems in Geometry and Mechanics,

which serve to exhibit the power and use of the science, and to

excite and keep alive the interest of the student.



78 MATHEMATICS.

The Nation, New York: It has

two marked characteristics. In the

first place, it is evidently a most

carefully written book. There is

nothing vague or slipshod in it.

Nearly every sentence, certainly

every theorem, seems to have been

constructed with a strenuous effort

to give it clearness and precision.

This constant attention to the form

of expression has enabled the author

to be concise without becoming ob-

scure. We are acquainted with no

text-book of the calculus which com-

presses so much matter into so few

pages, and at the same time leaves

the impression that all that is neces-

sary has been said. In the second

place, the number of carefully se-

lected examples, both of those worked
out in full in illustration of the text,

and of those left for the student to

work out for himself, is extraordi-

nary. From this point of view, those

teachers and pupils who are accus-

tomed to or prefer a different text-

book, would still do well to provide

themselves with this, regarding it

merely as a collection of examples

and without any reference to the text.

Elementary Co-ordinate Geometric.

By W. B. Smith, Professor of Physics, Missouri State University. 12mo.
Cloth. 312 pages. Mailing Price, $2.15; for introduction, $2,00.

VXTHILE in the study of Analytic Geometry either gain of

knowledge or culture of mind may be sought, the latter

object alone can justify placing it in a college curriculum. Yet the

subject may be so pursued as to be of no great educational value.

Mere calculation, or the solution of problems by algebraic processes,

is a very inferior discipline of reason. Even geometry is not the

best discipline. In all thinking, the real difficulty lies in forming

clear notions of things. In doing this all the higher faculties are

brought into play. It is this formation of concepts, therefore, that

is the essential part of mental training. And it is in line with this

idea that the present treatise has been composed. Professors of

mathematics speak of it as the most exhaustive work on the sub-

ject yet issued in America ; and in colleges where an easier text-

book is required for the regular course, this will be found of great

value for post-graduate study.

Wm. G. Peck, Prof, of Mathe-
matics and Astronomy, Columbia
College : I have read Dr. Smith's Co-
ordinate Geometry from beginning
to end with unflagging interest. Its

well compacted pages contain an im-
mense amount of matter, most ad-

mirably arranged. It is an excellent

book, and the author is entitled to

the thanks of every lover of mathe-
matical science for this valuable con-

tribution to its literature. I shall

recommend its adoption as a text*

! book in our graduate course.
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