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PREFACE

This book is written to replace the author's An Outline of

Wave Mechanics, published by the Cambridge University Press

in 1930 and now out of print. It is intended for students in the

final year of an honours course of experimental physics, and

also as an introduction to more advanced text-books for those

who intend to specialise in the subject. With such readers in

view, and in order to keep the book reasonably short, 1 have

not hesitated to omit some mathematical developments that

can easily be found in other text-books. The book attempts to

build up the elementary theory from experimental facts, and

to show how simple problems can be solved. A certain number

of examples are included.

N. F. MOTT
BRISTOL
January, 1951
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CHAPTER I

THE DIFFERENTIAL EQUATIONS OF
WAVE MECHANICS

1. DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

Many problems in wave mechanics can be reduced to the

solution of a differential equation of the type

2>
=

> (1)

and a thorough understanding of this equation is essential to

the student of the subject; f(x) is a known function of *r, and

by means of the equation it is possible to plot y against x when
the values of y and of dyfdx are given for one arbitrary value

of x. An equivalent statement is that two independent solu-

tions, y^ and y2 ,
exist and that Ayl + By2 is the general solu-

tion. Methodsf exist of obtaining these solutions graphically,

which can be utilised when f(x) is given as a plotted curve or

tabulated.

The simplest case of equation (
1
) is that in which f(x) is a

constant; if f(x) is a positive constant, we may write

/(*) = *,

and two independent solutions then exist, cos kx and sinkx.

The general solution is

y = A cos kx +B sin kx

or y = a cos (kx 4- e),

where A, B, a and are arbitrary constants. The solution is

then oscillating (Fig. la).

fCf., for example, D. R. Hartree, Proc. Manchr. lit. phil. Soc. LXXVII, 91,

1933; W. F. Manning and ,7. Millman, Phys. Rev. Lin, 673, 1038; M. V.

Wilkes, Proc. Camb. phil. Soc. xxxvi, 204, 194O; L. Fox and E. T. Goodwin,
Proc. Camb. phil. Soc. XLV, 373, 1949.
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If f(x) is constant and negative, we set

f(x) = -/
and the solutions are then e~?x and e?x

, with the general
solution

y = Ae?x + Be~?x .

These solutions also are illustrated in Fig. 16.

f<x)

(B)

Fig. 1 . Solutions of the differential equation y" +/(#) y = 0. (a) for

f(x) = A;
2
, (6) for f(x) = y

2
, (c) for an arbitrary form of f(x) which

changes sign, the solution for negative values of x taking either of

the forms shown in (6).

In the general case where f(x) is not a constant, it is easy to

show that, if f(x) is positive, y is an oscillating function, while

iff(x) is negative, y is of exponential form. For iff(x) is positive,

y and dPy/dx
2 have the opposite sign. Therefore, if we consider

any point A on the curve for which y is positive, the curve

bends in the direction shown in Fig. 2a, getting steeper and

steeper until it crosses the axis when it will begin to bend in

the opposite direction. If, on the other hand, f(x) is negative,

y and d2
yjdx

2 ate of the same sign, and the slope at a point
such as A will increase, giving an exponentially increasing

curve as shown in Fig. 26.
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The general form of the solution y for a function f(x) which

changes sign is as shown in Pig. Ic. When f(x) becomes negative

y goes over to the exponential form. It should be emphasised

that there will always be one solution which decreases expon

entially, but that the general solution will increase. If one

stipulates that the solution should be that which decreases

exponentially, this determines the phase of the oscillations in

the range of x for which oscillations occur.

X

\
(*>)

Fig. 2.

A useful method exists of determining approximate solutions

of the differential equation (1 ), for the case where f(x) does not

vary too rapidly with x. This is known in the literature as the

Wentzel-Kramers-Brillouinf (W.K.B.) method, though appar-

ently first given by Jeffreys.J In the discussion given here we

shall confine ourselves to the case where f(x) is positive.

In order to obtain this approximate solution we set

y = (2)

Here a and /3
are both functions of #; a represents the amplitude

of the oscillations, ]8 the phase. On substituting into (1) we

obtain

f G. Wentzel, Z. Phys, XXXVIH, 518-29, 1926; H. A. Kramers, Z. Phys.

xxxix, 828-40, 1926; L. Brillouin, C.R. Acad. Sci., Paris, CLXXXIII, 24-6,

1926.
* H. Jeffreys, Proc. L&nd. math. Soc. (2), xxm, 428-36, 1925; Phil. Mag.

xxxin, 451-6, 1942.
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where a dash denotes differentiation with respect to x. We are

at liberty to impose one arbitrary condition on the two func-

tions a, j3;
we set therefore

so that j8
-

\f*dx, (3)
J Xo

where XG is an arbitrary constant. This gives us correctly the

phase of the solution and in fact tells us nothing that we did

not know already; if f(x) is varying slowly, y goes through a

complete oscillation in an interval Ax of x such that /*A# = 2?r.

The purpose of the approximate method explained here,

however, is to estimate a, the amplitude of the oscillations.

Since f(x) is varying slowly, so is a, and we thus neglect a" in

comparison with od . We thus obtain

whence on integrating

Ina + lnj3'
= const.

This gives a = const. (jS')~*,

or, substituting for
/?'

from (3),

a = const./"*.

The approximate solution (2) is thus

f

y - const./"* exp \i
f
J'

}

f*dx\.
Jar,

'

It follows that the amplitude of the oscillations increases as /
becomes smaller and the wavelength increases. This is shown

in Fig. Ic.

Exercise

Show that if / = #~4
,
the above solution is exact.
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111 certain cases it is possible to obtain a solution of (1), or

of the more general equation

in the form of a power series. As an example of the method
we give the solution of Bessel's equation

Idy

We set for y y x^(aQ -f a^x -f 2 a;2+) (&)

When this series is inserted in the equation, the coefficient

of every power of x must vanish. The lowest power of x which

occurs is that of p 2; the coefficient of xp~2 must vanish. This

gives the quadratic equation known as the indicial equation

p*-n
2 ^

or p = n.

There are thus two possible values of
/o;

these give the two

independent solutions of the equation.
The coefficient of x?+* is

Since this must vanish we obtain a relation between as f2 and a8 .

Thus from a we obtain a2 ;
from a

2 we obtain a4 ;
and so on.

The student will easily see that the odd coefficients a
l9
a3 , etc.,

vanish.

It is of interest to discuss the form of the solutions of (4) for

large n by means of the W.K.B. method. The equation (4) may
be reduced to the standard form (1 ) by means of the substitution

y = ar*z,

giving for,
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It will be seen that for x > ^l(n
2 -

) the solutions are oscillating,

and for large x behave like cos a; and sin x or e lx
. For

x<*J(n
2 --

1), on the other hand, they are exponential. The

solution in series for which the first term in (5) is x 11

clearly

corresponds to the solution which decreases as x decreases,

while that which begins with

x-n corresponds to the in-

_ creasing solution. The two

solutions are illustrated in

Fig. 3.

5 10 15 20 ~
Exercise

Discuss the form of the

solution for small positive

values of x of

i-o

both by means of the indicia I

equation, and by the W.K.B.

method. Show that the num-

ber of oscillations between

05 \ x = and any finite value

of x is infinite. Why is this
' ^ ^ ^ ^ ^ ^ --"- ^ -

case for tlie equation

Fig. 3. The two solutions of (4) for n = 2. 2" + I 1 -f
-

1 2 = ?

2. WAVE EQUATIONS

In most forms of wave motion in one dimension, the dis-

placement T of the vibrating medium at a point x in space

satisfies an equation of the form

-
. (O)

a* w l '

v (the wave velocity) is a constant which depends on the

medium. Examples are:
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(a) The vibrations of a string of tension T and mass p per
unit length. *F is here the lateral displacement, and x the

distance measured along the string. The proof of this relation,

together with the formula for v,

v2 = T/p,

can be found in any text-book on vibrations, e.g. Coulson's

Waves, Chapter II.

(6) Sound waves. Here *F is the condensation, or Ap/p, where

p is the density.

(c) Electromagnetic waves. In a plane polarised wave, the

state of the medium is described by the electric vector E and

the magnetic vector H, which are perpendicular to each other

and to the direction of propagation. When the latter is along
the ar-axis they satisfy the equations

8E BH
f>_ --. __ __ ___ -.. _
8x Bt

'

K fa dt
' v '

where c is the velocity of light in a vacuum and K the dielectric

constant. Eliminating H between these equations we obtain

( '

The general solution of equation (6), as may easily be veri-

fied, is

where F and G are any arbitrary functions whatever. This

solution means that some quite arbitrary form of displacement,

F(x), is moving with velocity v to the right without change of

form, and another function G(x) moves to the left. This is

illustrated in Fig. 4.

Particular solutions are:

(i) T
which represents a simple harmonic wave of wavelength
A = 27T/A;;
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(ii ) T = A {sin k(x -vt) + sin k(x + vt)}

= 2A sin kx cos fcttf
,

which represents a standing wave.

The generalisation to three dimensions of equation (0) is

where V2
is defined as

V2 =

Fig. 4. General solution of equation (6).

The solution representing a plane wave moving in the direction

defined by the direction-cosines (Z, m, n) is

* = A sin {&(fo -f my + wz -
trt)}.

It is easily verified that this is a solution of (9), making use of

the relation /
2
-fm2 + n2

1 .

The wave velocity v may vary from point to point in space.

Thus in the case of the vibrating string the density p may vary

along the length of the string; in the case of electromagnetic

radiation, the light may pass from a medium of one refractive

index to another. Two cases of interest present themselves,

(i) that of a sharp boundary and (ii) that of a gradual change.

(i) There will be a sharp change in v, for example at the

boundary between glass and air, or at a point where two

strings of different density are joined together. Any wave inci-

dent normally on such a boundary will be partially reflected.
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We shall now calculate the amplitude of the reflected wave at

a boundary where the wave number changes suddenly from k

to k
f

. It is convenient to use the complex exponential form

for the function representing the waves, it being understood

that the wave amplitude is actually represented by the real (or

imaginary) part of the function written down.f We then write

for the incident wave!T

for the reflected wave Aei(~kx~Mt
\

and for the transmitted wave

The problem is to calculate A and B. a)/2ir is here the fre-

quency, which, of course, cannot change when the wave goes
from one medium into another.

It is convenient to choose the plane x for the boundary
at which v and hence k( = wfv) changes. We then have for the

wave amplitude
\p = (e

ikx
_|_ A e~ikx

)
e-*** x < 0,

= Belk
'x

e~-
itot x>0.

The values of A and B are determined by the boundary condi-

tions applicable at x = 0. For the case of the string, it is

obvious that these are that MP* and cW/dx must be continuous;

in other words, there is no kink in the string. In the case

where T is the electric vector E of a plane polarised wave

falling normally on a reflecting surface, it may be shown that

the same conditions are satisfied. The condition that T is con-

tinuous then gives*

and that S^jdx is continuous,

f As will be shown in Chap. II, in wave mechanics we actually represent
the amplitude by a complex function.

J Alternatively we could use the complex conjugate; in this chapter w*
shall use the convention that the time factor is c-**.

Cf., for example, .1. A. Stratton, Electromagnetic Theory, New York,

1041, p. 35.
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On solving for A and B we find

A = (k- k')l(k + fc'),
B -

2fc/(i 4- *').

If we define by R the proportion of the incident energy re-

flected, then R can be equated to A 2
,
so that

Since &'/
= M where /i is by definition the refractive index,

this may be written

#=(1- M )2/(1 + /X)
2

.

For glass, for example (/x~ 1-5), this gives /2~0-04.

Exercise

Verify, for waves in strings and for electromagnetic waves,

that the flow of energy in the reflected and transmitted waves

is equal to that in the incident wave.

A particularly interesting case arises when k', the wave

number in the medium on which the wave is falling, is imagin-

ary. This can arise, for instance, for electromagnetic waves in

a medium containing free electrons; if N is the number of such

electrons per unit volume, the refractive index
\

is given byf

where e is the electronic charge; for low enough values of the

frequency v the right-hand side becomes negative. For such

cases we may write .
,J

*' = ty,

where y is real and positive. For the transmitted wave (x > 0)

we have then two alternative forms

Obviously the latter is not admissible, since it increases

indefinitely as x increases. We therefore take for x >

T = J3e-i*e-H

f This equation is discussed further in ('hup. IV, 10.
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The boundary conditions now give

ik(l-A) = -y,

, A fe-iywhence A =
7 . .

k + iy

The modulus of A is unity; in other words, A is of the form

e iot
\
thus the amplitude of the reflected wave is now unity.

Therefore, when a wave is incident on a medium of imaginary
refractive index, it is totally reflected.

Exercise

Investigate the reflection of waves from a slab of material

in which the refractive index is imaginary. Take for the

boundaries of the slab x = and x = a, and set

-ikx) e-i<,>t X< Q

'*)e-
iMi 0<a;<a,

a<x.

Show that if e~fa <g. 1, then approximately

and thus that the intensity penetrating the slab decreases as

e-2ya a8 a js increased.

(ii) If there is no sharp change in k, but a gradual change from

point to point, then no partial reflection occurs; but a beam of

waves will be bent as it traverses the medium. A formula for

the radius of curvature of a beam of waves in traversing a

medium will be important. Fig. 5 shows such a beam. ABC,
A'B'C are wave fronts one wavelength apart. We require to

know the radius of curvature p of the beam, equal to CO or CG'.
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Let us denote by A the wavelength in the centre of the beam,
shown in Fig. 5 by GG'. Then, if 2t is the thickness AB of the

beam, we may write

AA' = X+~t,
vn

where S/Sn means differentiation normal

to the beam. Then applying the rules

of similar triangles to the triangles CGG'',

CAA', we see that

I 1 8X

Fig. 5.

This formula will be used further in

Chapter II, 3.

3. DISPERSION, GROUP VELOCITY AND WAVE GROUPS

In wave motion of the type described by equation (6) there

is no dispersion; that is to say the wave velocity v is inde-

pendent of frequency. If, on the other hand, v is a function of

frequency, dispersion will occur.

We require first to prove the formula for the group velocity

VG with which a group of waves propagates itself. This formula

is j
dto

where o> = "2-nv and k = 2ir/A. The formula is often written

dv

It will be noticed that since w = vk, for non-dispersive systems
the wave and group velocities are the same.

The simplest way of obtaining formula (11) is to superimpose
two simple harmonic waves with wave numbers A*, k' differing by
a small quantity. We have then for the resultant amplitude

sin (kx cot) -f sin (k'x a//.),
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which is equal to

rt
. (k + k

f

cu + o/ \ ik-k' co-o/ \

2 sin
^

~x - -T-
tj

cos^- x - *

)

-

This function represents a series of wave groups, as shown in

Y"ig. fta, each of length Az = 27r/(&- &'), moving from left to

right with velocity (<j*-a>')l(k-k'). Since fc-fc' and co-a/ are

small, this may be written dajjdk.

:' -A/V-
-

Fig. 0.

Wave groups of length Ao: have thus been obtained by super-

imposing two simple harmonic waves for which the values of k

are separated by A&, where

AzAA; 277. (12)

It is of interest to prove a similar theorem for a single wave

group. Suppose that we add together simple harmonic waves

with wave-numbers lying in the range At by setting for the

wave amplitude

*F= f" A(k)e
ikxdk 9 (13)

J-OO

where A(k) vanishes, or tends rapidly to zero, outside a range

AJk about the value k . It is convenient to take for A(k) the

Gaussian function, a form which permits the integrations to be

carried out. We set
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The integral then becomes

where a =

The integral is easily evaluated; it may be written

Putting k \bla = ,
and remembering that

rJ-c.
we find for (14)

or, in our case, \rr^ Afcexp [ (|&k)
2x2

-f ikQ x] .

This represents a wave group of the form (Fig. 6b)

const, exp { (#/| A.r)
2
-f ik x},

where, equating JAfc to 1/iA.r, we have

; 8. (15)

The somewhat different interpretations given to A.r, A& account

for the difference between (12) and (15).

It is of interest to generalise the integral (13) to investigate

motion of the wave group, and thus to obtain the formula for

the group velocity for a single group. At a subsequent time t

the amplitude T will be represented by

/*00

J-
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If we expand

then the integral may be evaluated as before. The reader will

easily verifyf that the wave group moves with velocity dwjdk,
and that the width A# increases, and becomes for large t

AAr.

4. FOURIER'S THEOREM AND CHARACTERISTIC FUNCTIONS

It will be convenient to introduce the reader to the problem
of characteristic functions by writing down again the differ-

ential equation of a vibrating string (cf. equation (6))

_
a*

~
ar2 '

where T is the displacement at a point distant x from one end

of the string. We consider in this section the possible vibra-

tions when the string is rigidly held at the two ends, for

example at x = and x = a.

We define as a 'normal mode' a mode of vibration of the

string in which each point executes simple harmonic motion

with frequency o>/27r, say. Thus for a normal mode

Y(a; , t)
=

^(ar) {A cos wt +B sin
<*>*}, (17)

where ifj(x) satisfies the equation,

&-
If the string is uniform, so that v is not a function of x, the

solutions which vanish at x = are

i/r
= sm(a)X/v). (19)

t Cf. N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions, 1949,

p. 17.
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The displacement of the string must also vanish at x a.

;
this

will be the case if

atD/v = Tin, (20)

where n is an integer. These values of w, then, determine the

frequencies with which the string can vibrate. Substituting (19)

and (20) into (17), we see that the most general type of vibra-

tion of which the string is capable is that which results when
all the normal modes are superimposed, namely,

X sin (irnx/a) {An cos a)n t + Bn sin a>,, }, (21)
n

where An1 Bn are arbitrary constants and

We shall now show how to determine the subsequent motion

if the string is given any arbitrary initial displacement and

released from rest. At time t = 0, then, let the displacement be

y = TO,

where F is some function that vanishes at x and x = a.

Since (21) is the general solution of the differential equation

(16), that is to say, it represents the most general motion

possible, it must be possible to represent the subsequent motion

by a series of this type. Since the string is released from rest

at time t = 0, the coefficients Bn must all vanish; the subse-

quent motion is thus given by

y = 2 An cos wn t sin 1 1 .

n \ a '

It follows that, putting t = 0, it must be possible to represent

the function F(x) by an expansion of the type

(22)

An expansion of this type is known as a Fourier series.
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The coefficients A
tl may be determined by making use of the

orthogonal relation

sin I 1 sin I
~

I dx 0, m 4= n,
\ a / \ a /

which is easily verified. It may also be seen that

f . /7rnx\
sm2

I \dx = }2 a.

Jo \ a /

If then we multiply both sides of (22) by sin (irmxla) and inte-

grate from to a, all terms vanish except that in w; we have,

therefore,

i f
a

x

\aAm = jf'V) sm

This equation determines the coefficients and hence the subse-

quent motion.

Exercises

(1) Determine the coefficients An for a string plucked at the

centre, so that the initial displacement is given by

Find the energy of each normal mode, and verify that the sum
of the energies of all the normal modes is equal to the work

done in displacing the string in the first place.

(2) A string of mass per unit length />,
tension T and length

2a, is rigidly fixed at the two ends x = a. It is set in vibration

by a sound wave which exerts on it a force p cos wt per unit

length. Write down the equation of motion of the string, and

verify that the solution corresponding to forced vibrations is

y
_.

*
[

where y is the displacement.

p*

pa)* cos
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Write down also the complete solution of the equations, and,

without working out any integrals, find the solution appropriate
to the case where the string is at rest and undisplaced at

time t = 0.

The Fourier expansion is a particular case of a more general

type of expansion, which may be illustrated by considering the

normal modes of a vibrating string of which the mass per unit

Fig. 7.

length (/>) is not constant. It will be remembered that v2 = Tjp\
vz will thus be a function of #, and we may write l/v

2 =
/(#),

so that (18) becomes

W-<>. (23)

Such an equation, together with the boundary conditions that

if/
must vanish at x = and x = a, defines a series of values of

o>. For suppose we choose a small value of co and obtain the

integral of equation (23) that vanishes at x = 0; the solution,

oscillating on account of the considerations of 1, will cross

the rr-axis again at some value of x greater than a. As to is

gradually increased, a function
\fj

will be obtained which does

vanish at x = a, as shown in Fig. 7. We call this the first

characteristic function, and denote it by ^(x), and the corre-

sponding value of to by toj. Similarly $2(x) denotes the solution

with one zero between x = and x = a, and so on.
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Exercises

(I) Prove the orthogonal relation

f
a

Jo

for two characteristic solutions of (23), and hence show how to

expand any arbitrary function in a series of characteristic

functions.

(2) Use the W.K.B. method to determine the values of cun

corresponding to solutions of (23) for large values of r?.

5. LEGENDRE POLYNOMIALS

The Legendre polynomials P;(cos#) are defined as follows:

If |#|<1 we may expand the quantity (1 2#cos0-f #2
)~* in

ascending powers of x. The polynomials are defined as the

coefficients in the expansion. Thus

1
= 1 + xP^cos 6) + z2P2(cos 0) + . . . .

It will easily be verified that

Pl (cos 6) cos 6,

P
2 (cos0) =

The functions are orthogonal:

r
Jo

P,(cos 0) pr(cos 0) sin 0d6 = 0.

The importance of the Legendre functions is that, in spherical

polar coordinates (r, 0, <f>),
the general solution of an equation

of the type
= 0, (24)

which is a function of r, alone, is

P,(cos0)/(r),
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where /(/*) satisfies

r dr
(25)

The reader will easily verify this for / = (),/ = I.

To obtain the most general solution which is a function also

of
<f>
one has to introduce the associated Legendre polynomials,

P;
M
(cos 6). where u has the values 0, 1, 2, ...,/. Some values are

The general solution of (24) is

where /still satisfies (25), and u has 2/4- 1 integral values from

-/to 4-/.



CHAPTER II

THE WAVE EQUATION OF SCHROD1NGER

1. THE WAVE FUNCTION

Wave mechanics is a system of equations which determines the

behaviour of the fundamental particles of physics, the electron,

the proton, the neutron, and their interaction with radiation.

In its present form it appears adequate to describe the behaviour

of the electrons outside the atomic nucleus sufficiently accur-

ately to account for the known facts of spectroscopy , chemistry,
and so on. Within the nucleus it has had some success, notably
in giving an explanation of a-decay; but at the time of writing

not sufficient is known about the forces between the constituents

of the nucleus for a forecast to be made of its ultimate success

in this field.

In this chapter we shall limit ourselves to the application of

wave mechanics to electrons. The theory will be based on a

single experimental fact, the diffraction of electron beams.

This was first discovered by Davisson and Germerf and by
G. P. Thomson, J and has now become a useful technique of

applied physics. Briefly the experimental facts are as follows.

When a beam of electrons passes through a crystalline sub-

stance, such as a metal foil, the beam is scattered by the sub-

stance in exactly the same way as a beam of X-rays is scattered.

Thus diffraction rings are produced by a beam which has

penetrated a polycrystalline foil; and from a single crystal a

beam of electrons is reflected according to the Bragg law. The

beam of electrons thus behaves as though it were a beam of

waves, and the wavelength can be determined; it is related to

f C. Davisson and L. H. Conner, Phys. Rev. xxx, 707, 1927.

{ G. P. Thomson, Proc. Roy. Soc. A, cxvn, <H) t 1928.
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the momentum p of each electron by the equation

A = /?/?>. (1)

where h is Planck's constant,!

Tn this book we prefer to treat (1) as given by experiment,
and thus as the observed fact on which the whole theory of

wave mechanics must be based. It was predicted, however, by
Louis de BroglieJ before it was discovered experimentally.
A simplified version of his argument is as follows:

If there is some relationship between the momentum vector

p of the particle and some property of a train of waves, it must

be obtained by equating p to some vector which describes the

wave motion. Now a train of waves, travelling in the direction

defined by the direction cosines (l,m,n), may be written

sin {k(lx -f my + nz) a>t}.

k is here the wave number, or 2?r multiplied by the reciprocal

of the wavelength. Since k(lx + my + nz) is a scalar, and (#, y, z)

is a vector, it follows that the quantity with components

(kl, km, kn)

is itself a vector. This we call the wave vector, and denote it

by k. Thufl if a correspondence of the type envisaged exists

between the momentum of a particle and the wavelength of a

wave, it must be of the form

p = const, k.

That the constant should be Planck's constant divided by 2-n

was suggested by the existence of a similar relationship for

light quanta, where the momentum was known to be hv/c, in

other words hk/^-n-.

Returning now to beams of electrons, one can define more

precisely the observed behaviour as follows. In any problem in

t For experimental proof that beams of particles of atomic mass behave
in the same way, cf. F. Ktiauer and O. Stern, Z. Phys. LIII, 786, 1929, or
1. Estermann and O. Stern, Z. Phys. LXI, 115, 1930.

t L. de Hroglic, Phil. Mag. XI.VH, 44, 1924; Ann. Phys,, Paris, in, 22, 1923.
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which it is desired to calculate the path of a beam of electrons,

its scattering by atoms or crystals or its bending by electric or

magnetic fields, one has to postulate the presence of a wave,
and calculate the wave amplitude everywhere. Then the

density of electrons at any point will be proportional to the

intensity of the wave at this point. All this is merely the

expression of an experimental fact, the diffraction of electrons

by crystals.

We denote the amplitude of this wave by T. Since no way
of measuring its amplitude exists except through the property
that the intensity is proportional to the density of electrons,

it is reasonable to choose our 'units' so that the square of the

modulus of XF is equal to the density of electrons; thus

where N is the number of electrons per unit volume.

The quantity Y, known as the wave function, is a complex

quantity

The square of the modulus is thus defined by

The asterisk is used throughout this book to denote the complex

conjugate of a complex quantity. Thus if

then *F*=/-tV.

It is often a stumbling-block to the beginner in this subject

that a physical quantity, the wave function, should be repre-

sented by a complex quantity. The reason is as follows. We
know a priori nothing about the wave function, but we should

expect, by analogy with the case of light waves, that the type
af expression which in other wave systems represents the

energy density would in this case give the particle density.
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But the energy density in any wave system is always given by
the sum of the squares of two independent quantities whose

magnitudes define the state of the wave. For a light wave
these quantities are E and H and the energy density is

(jf?
2
-f//

2
)/877. For elastic waves they are the displacement and

velocity of the medium. Thus, for the waves associated with

electrons or other material particles, it is reasonable to assume

that the state of the wave at any point is defined by two

quantities / and g, and it is convenient to combine them into a

single function T by means of (2).

It may be noted that Maxwell's equations for the electro-

magnetic field in free space may be treated in the same way;
the equations are

._ 9H ... 8E- c curd E =
, c curlH = ~~,

ct <jt

and ifT is written for E -f ?'H, both equations may be combined

in the single equation
.ff

i-Tr-
ct

It will be convenient at this stage to make a further assump-
tion about the form of a plane wave. A plane wave travelling,

say, along the x-axis has, for any type of wave motion, the

form
A sin (lex wt + e),

where k is the wave number, o>/27r the frequency, and e a phase.
In a plane polarised light wave E and H are in phase; thus the

energy density is proportional to

and fluctuates with time at any point. There is no reason to

think that any such fluctuation occurs in the wave associated

with an electron; it would in fact be difficult to understand

what physical significance could be ascribed to a rapid fluctua-

tion of the probability that an electron would be found at a
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certain point. It is therefore reasonable to suppose that/ and g

are 90 out of phase, so that, A being a constant or a slowly

varying function of x t

/= A cos(kx wt),

y A sin (kx a>t),

and |Y|
2 =/2 + 2 = .4 2

.

With this convention
|

T
|

2
keeps a steady value independent

of time. Making use of the complex function T we see that a

plane wave moving from left to right is represented by

We shall represent a wave going in the opposite direction by

In the remainder of this book we shall follow the accepted
convention and use always the complex wave function *F, and

shall not refer again to the real and imaginary parts, / and g.

2. SCHKODINGER'S EQUATION

We shall now write down Schrodinger's wave equation in

the form appropriate to a beam of electrons, each of total

energy W, moving in an electrostatic field.

We represent by V(x, y, z) the potential energy of an electron

in this field; thus in a uniform electrostatic field E in the z

direction, for example, we should have

for an electron in the field of a nucleus of charge Ze,

where r = <J(x
2
-f y

2
-f z

2
) is the distance from the nucleus. W ,

the

total energy, is equal to the kinetic energy at the point where

we arbitrarily choose V(x, y y z) to be zero, at z = for the first

case and r = oo for the second. Then at the point (#,t/, z) the
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kinetic energy of one of the particles is W V(x,y,z). There-

fore the experimental relation (1) shows that the wavelength A

of the accompanying Wave is

A = A/V{2w(JF-F)}. (3)

Now it is clear from the considerations of Chapter I, 2 that

for motion in one dimension a function T which oscillates in

space with constant wavelength A satisfies the equation

and that the generalisation to three dimensions is

The simplest assumption that we can make is that the same

equation is satisfied where A varies from point to point. Thus

substituting from (3) we obtain

(W - V)T = 0. (4)

This is Schrodinger's equation for the wave function *F.

It is convenient to introduce the symbol ft to denote h/2n.

With this notation the wave equation becomes

-i~ = 0.
n*

Certain results of this equation must be verified before it can

be regarded as satisfactory. It must be shown:

(i) That it makes correct predictions about the bending of

beams in electric and magnetic fields, where the classical

Newtonian mechanics is known to give correct results.

(ii) That it predicts that the total current in a steady beam
does not vary from point to point, so that the equation does

not predict the creation or annihilation of particles.

We shall attend to these points in turn.
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3. BENDING OF A BEAM OF ELECTRONS

According to Newtonian mechanics, the bending of a beam by
an electric field can be calculated as follows. The force on each

particle normal to the beam is dV/dn, where 8/dn denotes

differentiation normal to the beam. The radius of curvature R
of the orbit of each particle is obtained by equating this to the

centrifugal force, mv2
/R, which may be written 2(WV)/R.

Thus
1 2V I

W-V). (5)

We wish to show that the same formula for the bending of a

beam of electrons can be obtained by means of wave mechanics.

We have already shown that if A, the wavelength, is a function

of position, the radius of curvature of the beam is given by (cf.

Chap. I, 2):

R Xdn

Since A = h/J{2m(W V)}, we see that formula (5) follows.

Thus, in so far as the effect of an electric field is concerned,

classical and quantum mechanics give the same result.

A similar result may be obtained for a magnetic field using

(13), but the proof will not be reproduced here.

4. SOLUTIONS OF SCHRODINGER'S EQUATION AND THE
CONSERVATION OF THE NUMBER OF PARTICLES

In the next chapter it will be shown that the frequency v of

an electron wave is related to the total energy W of the electron

which it represents by the equation

Thus if ifj(x,y,z) is any solution of (4) describing the behaviour

of a beam of particles each of energy W y
the full form of the

wave function is

v - WJh. (6)
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The use of the negative sign in the exponential is simply a con-

vention. As long as we are dealing with steady beams of

particles all having the same energy, the time will enter into

the wave function through a factor e~2niwi/h as in (6). It will

thus simplify all formulae dealing with such beams if we write

down the functions
iff
and not the functions X

F; a plane wave

going from left to right, for instance, will be written = e>
kjc

.

With this simplification, certain examples will be considered

which illustrate the novel features of wave mechanics and also

verify the conservation of particles. We shall begin by con-

sidering the motion along the .r-axis of a beam of electrons

of infinite width in a field of potential energy V(x). The

Schrodinger equation then becomes

In the absence of a field (V = 0), the solution representing a

beam moving from left to right is

- Aeikx
(k

2 = Z

which represents A* electrons per unit volume, or

A 2 v (}>mv
2 = W)

crossing unit area per unit time. In the presence of a field we

may distinguish two cases:

(i) V(x) varies slowly from point to point. An approximate
solution may then be obtained by the W.K.B. method (Chap. I,

1) and is

where A is a constant, and the lower limit of the integral is

arbitrary. The form of the solution is illustrated in Fig. 8 for

the case where V = eEx, and thus for an electron accelerated

by an electric field. It will be seen that as the electron is

accelerated, so that the wavelength shortens, the amplitude
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also decreases. The number of electrons per unit volume is,

by (7),
J2

IT! 2 = -
1 '

(W-V)*

But W V is the kinetic energy, so that
|

T
|

2
is inversely pro-

portional to v, the velocity of the particles at the point con-

V(x)

Fig. 8. Potential energy function and wave function $ for an
electron accelerated by a field.

sidered. Thus v\ T |

2
,
the number of particles crossing unit area

per unit time, is the same at all points of the beam. The
conservation of particles is thus verified.

If V(x) is a slowly varying function of x, then the predictions
made by wave mechanics are the same as those of classical

mechanics; the electrons are accelerated by the field, and none
of them is reflected. Here, as in the bent beam treated in 3,

wave mechanics makes no new predictions. If, however, V(x)
varies significantly in a distance small compared with the wave-

length, the predictions of wave mechanics are entirely different

from those of classical mechanics. This case will now be treated.

(ii) We may consider an extreme case, a 'potential jump', or

in other words a plane perpendicular to the x-axis at which the

potential energy function V(x) changes discontinuously. This
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example is introduced in order to illustrate the principles of

wave mechanics; no case of a discontinuous potential jump
exists in nature. The example closest to that discussed here is

perhaps the rapid change in the potential energy function

which exists at the surface of a metal (cf. Chap. V, 7).

We set then for V(x)

V(x) = #<(),

= FO x>o,

and consider a stream of particles each of kinetic energy

W(W > V ) incident on the potential jump from the left. At the

potential jump there is a sudden change of wavelength; the

wave-number changes from

to V =

Therefore according to the arguments of Chapter I, 2, the

wave must be partially transmitted and partially reflected, [n

order to calculate how much is reflected, and how much trans-

mitted, it is necessary to know the boundary conditions satis-

fied by the wave function. These are that ^ and difj/dx are

continuous. This may easily be seen, since

dx

and, although the integrand is discontinuous, the integral (which

represents the area under a curve) must be continuous.

With these boundary conditions, the analysis of Chapter I,

2, may be applied as it stands. With an incident wave of

amplitude unity (e
ikx

), the amplitude of the reflected wave is

(k k')l(k + &'), and that of the transmitted wave is 2k/(k + k').

The numbers of particles incident, reflected and transmitted

per unit area per unit time are

v incident,

v(k- k')*l(k + k' )
2

reflected,

and 4t/2/(fc + &')2 transmitted.
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The proportion R reflected is thus

and the proportion T transmitted is

T =

It will easily be verified that T + R is equal to unity. It is thus

verified again that the wave equation chosen is compatible
with the conservation of charge.

The prediction made by wave mechanics, that some of the

particles are transmitted and some reflected, is of course fully

at variance with classical mechanics, according to which they
would all be transmitted. We see then that wave mechanics is

unable to make a definite statement about the behaviour of an

electron incident on a potential jump; it only allows a calcula-

tion of the average numbers transmitted and reflected, or in

other words the probability that a given electron is transmitted

or reflected. This inability to make exact predictions about

the behaviour of individual particles is a general property of

wave mechanics.

5. THE CURRENT VECTOR

The student will easily verify that, for a wave function of

the type

the number of electrons v(\A |

2
| B\

2
) crossing unit area per

unit time may be written

2mt

A general proof that this quantity is independent of x is of

interest. Since
tft
and 0* satisfy the equations

d
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we have, multiplying the first equation by 0* and the second

by if/
and subtracting,

In other words

It follows that the current is independent of x. If this were not

a consequence of the wave equation, the equation would lead

to incorrect results.

In three dimensions the vector

represents the number of electrons per unit time crossing unit

area perpendicular to itself, and is known as the current vector.

Exercise

Prove the theorem equivalent to (8), that

divj - 0.

0. THE TUNNEL EFFECT

We have not yet considered the description in wave mechan-

ics of a beam of electrons entering a field which opposes their

motion and eventually stops them and turns them back. To
describe what happens, we shall consider a beam of electrons

moving from left to right along the #-axis and at x = entering
a field E. The potential energy of an electron is then given by

V(x) = eEx;

the kinetic energy is WV, so the electrons are stopped and

turned back when x = WjeE.
To describe the behaviour of the electrons according to wave

mechanics, we have to solve the Schrodinger equation
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for this form of V(x). Consider first the form of the solution

to the right of the point where x W/eE. W V is then

negative, and the arguments of Chapter I, 1 show that there

are two solutions, one of which increases with increasing x and

one of which decreases. The solution which represents the

physical state of affairs is the one which decreases; the other

solution would represent a rapidly increasing density of

particles beyond W/eE, which is absurd. We choose then the

decreasing solution; this i&, of course, a real function of #.

To the left of x = W/eE, then, we have an oscillating solution

</r(x), which, since it fits onto the real solution to the right, will

be real too. Thus the complete wave function with the time

factor

represents a standing wave, that is to say, an incident wave
and a reflected wave having equal amplitudes.
The description given by wave mechanics of the phenomenon

is not very different from that given by classical mechanics; all

the electrons are reflected. The only difference is that they are

not all reflected exactly at the point where x = W/Ee; some of

them penetrate a little further. There is thus a finite if small

probability of finding an electron at any distance beyond the

point where x = W/Ee.
This fact has important consequences; it gives to an electron

a finite probability of penetrating through what is called in

quantum mechanics a 'potential barrier'. A potential barrier

is illustrated in Fig. 96, formed by two fields; a field E opposing
the electron's motion from x to x = a, and a field E in the

opposite direction from x = a to x 2a. The potential energy of

the electron in this field is

V(x) = Eex Q<x<a,

V(x) = Ee(2a -x) a<x<2a.

In general a potential barrier is a region in which V(x) > W
sandwiched between two regions in which W > V(x). According
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Ecx

V(x)

Fig. 9. (a) Electrons reflected by a field, (b) A potential barrier

due to two fields as described. V is the potential energy of an
electron and $ the wave function.
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to classical mechanics, particles incident on such a region will

all be reflected; according to wave mechanics a certain pro-

portion of the particles will penetrate the barrier and come out

the other side. This prediction of wave mechanics is known in

the literature as the 'tunnel effect'.

If
iff j, i/r# are the amplitudes of the wave function at the two

extremities of the barrier, the chance of penetration P is given

approximatelv by

f-i^/^.1 1
- ()

In many practical cases P can be calculated by the W.K.B.
method. Neglecting the factor outside the exponential in (7),

which in general changes little in comparison with the expon-
ential factor, we see from (9) that

(10)

the integration being from one extremity of the barrier to

the other.

Some physical phenomena in which the tunnel effect is

important are:

(a) The escape of a-particles from a radioactive nucleus

(Chap. VII, 3).

(6) The escape of electrons from a metal under the action of

a strong field (Chap. V, 7).

(c) The passage of electric current between two metals

separated by an oxide layer.

The discussion of waves with imaginary refractive index

given in Chapter I, 2, is relevant to the phenomena con-

sidered here.

It is important to estimate how thick a barrier electrons can

in fact penetrate. Let us suppose that two metal wires are

separated by an air gap or an oxide layer of thickness a. If a

potential difference of, say, half a volt is applied across the gap,
a certain current will pass. Let us suppose that the area of the

contact is 1 sq. mm. A metal contains about 1C23 free electrons
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per c.c., and they move with a speed of about 108 cm./sec., so

that 1029 will impinge on each side of the gap each second. If

half a volt is applied, about one-tenth of the mean kinetic

energy of the electrons (cf. Chap. VI, 7), we may suppose that

one-tenth of the electrons have not energy enough to pass

through the gap against the field. Thus the number of electrons

passing through the gap in the direction of the field is, each

second, about
1028P,

where P is the quantity defined by (9). A current of one

ampere corresponds to c. 1019 electrons per sec., so we see

that a current of this magnitude will flow if P = 10~9
, while

a milliampere will flow if P = 10~12
. Taking for the height <f>

of the barrier a quantity of the order of the work function,

we have, since

exp{- lV(2m<) a/h}
= P,

pj
cm *

Thus a gap of 10~7 cm. would give one ampere, 1-4 x 10~7 cm.

a current of one milliampere. It will be seen that the current

drops very rapidly as the thickness is increased, and barriers of

c. 2 x 10~ 7 cm. are practically opaque.

7. SCATTERING OF BEAMS OF PARTICLES BY ATOMS

An important class of question which wave mechanics can

solve is that of the scattering of beams of particles by atoms

or nuclei. The problem can be put as follows. A substance, for

example a gas, contains N scattering centres (atoms, nuclei)

per unit volume. A particle (electron, proton, a-particle) moves

through the substance. What is the probability, per length x

of its path, that the particle is scattered through an angle 6

into the solid angle dco ? We denote this probability by

NI(6)xda>.
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It is clear that 1(6) has the dimensions of an area. The integral

iir sili^ (l(d)da>= f

giv
res the effective total cross-section of the atom or other

centre for the type of collision in question. In other words,

NA is the chance of a collision per unit length of path.

By the methods developed in this chapter it is possible only
to calculate the scattering of particles by a centre of force, for

example the scattering of a-particles by the field of a heavy
nucleus. The scattering of electrons by atoms is a many-body

problem, involving the possibility of transfer of energy between

the incident electron and the electrons of the atoms. It is,

however, possible to consider approximately elastic collisions

(those in which the electron loses no energy) by representing

the atom as a centre of force. It will be shown in Chapter IV,

6 how this force may be calculated. We denote by V(r) the

potential energy of an electron acted on by this force.

The problem, then, is to calculate 1(0) for a stream of

particles incident on a region, at a distance r from the centre

of which the potential energy of any one particle is V(r). One

has therefore to find a solution of Sehrodinger's equation

which represents an incident plane wave and a scattered wave.

Such a solution must have the form, for large r,

pikr

if,
etkx + ?--/($).

Here the first term represents the incident wave moving from

left to right along the #-axis, the second the scattered wave

which must fall off inversely as ;. The solution represents a

state of affairs in which v particles cross unit area per unit time in

the incident beam; in the scattered beam there are r~2
\f(B)\

2

particles per unit volume at a distance r from the scattering
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centre. Thus v\f(0)\
2 dw cross an area r2 doj per unit time;

hence

One of the most important cases is that in which V = ZZ'ez
lr,

corresponding to the scattering of particles of charge Z'e(Z' = 2

for a-particles, Z' = 1 for electrons) by a bare nucleus of

charge Ze. Here an exact analysis! shows that

__ I

It is remarkable that for this case and for this case alone

wave mechanics yields the same formula as classical mechanics.

This formula was in fact derived from classical mechanics by

DarwinJ and used by Rutherford to interpret his experiments
on the scattering of a-particles by metal foils which established

the nuclear model of the atom.

For a more general field V(r), it may be shown that each

element of volume dxdydz scatters a wavelet of amplitude, at a

distance R from the element,

(r)dxdydz*t, (11)

where
ifj represents the amplitude of the whole wave at that

point. This may be shown in two ways. The rigorous method

is to make use of a theorem known as Green's theorem (outside

the scope of this book); the proof is given by Mott and Massey.
A more elementary method is as follows. Consider a beam of

electrons moving along the #-axis and incident on a region of

sheet-like form in which the potential is defined by

V = x < 0,

= VQ 0<x<a,
= a<x,

where a is some small distance. We shall suppose that W > V .

f \V. Gordon, Z. Phys. XLVIII, 180, 1928; Mott and Massey, chap. HI.

t C. G, Darwin, Phil. Mag. xxvii, 499, 1914.

Mott and Massey, chap. vi.
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We may calculate the amplitude reflected as follows. We set

= Befk
'x + Ce~ ik

'x

= Deikx a < x,

where k2 - k'2 =* 2mVJH*.

Putting in the boundary conditions that
</r

and
di/f/efa;

are

continuous at x = and x a, and making also the assumption
that k'a<^I, we find

Now our problem is to find the amplitude of a wavelet

scattered by a volume element dxdydz in which the potential

is VQ . Let this be (xdxdydz/R. A surface element of the sheet of

area IdS will then scatter a wavelet aadS/R. These wavelets

add up to give a reflected wave of amplitude, at a point distant

x from the sheet,

/QO eikK

oca ---
27Tzdz,

Jo M

where R2 = z2 -4- x2
\
on integration this gives, for x < 0,

This has to be equated to Ae~ ikx
. Thus

whence <x = (P-'2
)/47r

= 2<rrmV /h
z

,

which is what we set out to prove.

The result (11) may now be used to calculate the scattering

of electron waves by a centre of force, if W is everywhere great

compared with F. Under these conditions the form of the

wave cannot be greatly perturbed within the atom, so that in

calculating the scattered wavelets one can assume that $ a*
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any point is given by eikx . This approximate method of obtain-

ing the scattered amplitude f(6) is known as the Bornf approxi-

mation. In fact, of course, near the centre of an atom V(r)

always becomes large; nevertheless, the Born approximation
does give fair results for electrons of high energy. Making use

of Bom's approximation, the amplitude of the wave scattered

through an angle may be calculated as follows. Let OXZ be

Fig. 10.

the plane normal to the bisector of the angle between the inci-

dent and reflected rays (Fig. 10). Then all the wavelets scat-

tered from any plane parallel to OXZ will be in phase with

each other, and the wavelets scattered from two such planes
distant y from each other will have a phase difference py,

where, as may easily be verified,

k = 27T/A.

The resultant, therefore, of all scattered wavelets will be, at

large distances R from the atom, f(0)/R, where

t M. Born. Z. Phys. xxxvn, 863, 1926; Z. Phys. xxxvm, 803, 1926. The
former paper is the first in which the probability interpretation of the wave
function is introduced explicitly.
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If we take spherical polar coordinates (r, 6', </>') such that

y = rcos 0', this becomes

2-TrWl

o o

Writing cos #' = 2, sin#'d0' = dz, we find finally on inte-

grating over z

The integration may be carried out for various forms of

V(r).

Exercises

(1) Carry out the integration in (12) for the screened

Coulomb field

Ze2

V(r) = ---exp(-gr).

Show that as ry->0, the Rutherford scattering formula is

obtained.

(2) If V(r) is the potential energy function due to a nucleus

of charge Ze and a negative charge distribution of charge

density ep(r), show that (12) can be put in the form

where F(B) = TT f p(r)
~^ r*dr.

Jo K
Interpret this as showing that each element dp of charge
scatters according to the Rutherford law.

(3) From (12) show that the scattering is spherically sym-
metrical if the radius of the atom is small compared with

A/27T, where A is the wavelength of the incident wave. Show
that this is true, in general, of the exact solution of the wave

equation.
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(4) Find the scattering due to a hard sphere of radius a, on

the surface of which $ may be assumed to vanish; you may
take a<^A/27r. Show that the total cross-section is 4?ra2 .

8. ELECTRONS IN A MAGNETIC FIELD

The Schrodinger equation for an electron moving in an

electromagnetic field isf

= 0, (13)

where A is the vector potential of the field, defined by

H = curl A.

For a uniform field H along the .c-axis, the vector potential is

so that the equation reduces to

Exercise

Using (13), prove (8) verifying the conservation of charge.

t For the proof, see, for example, N. F. Mott and I. N. Sneddon, Wave
Mechanics and its Applications, 1948, p. 39.



CHAPTER III

WAVE GROUPS AND THE UNCERTAINTY
PRINCIPLE

1. THE FREQUENCY OF ELECTRON WAVES

In the last chapter we have considered the description in terms

of wave mechanics of beams of electrons, each electron of which

has the same energy W. We have introduced a wave function

T of the form

Y0(s, 0,2)6-'", (1)

where
i/j

satisfies the equation

*")?*)

?(H^-F)0 = 0, (2)

and have interpreted the solution by saying that
| T(x,j/, z\t) |

2

is the average density of electrons in the beam at the point

(x y y, z), or that
|

V
\

2
dxdydz is the probability that an electron

will be found at any moment in the volume element dxdydz.
We now show how to apply wave mechanics to a more general
case than that of steady beams, namely, to a state of affairs

where the density varies with the time. At the same time we
shall introduce an expression for the frequency v( o>/27r) of

electron waves.

We consider first the following idealised experiment. Sup-

pose that a beam of particles each having velocity v is incident

on a screen, in which there is a hole which can be closed by a

shutter (Fig. 11). The shutter is closed initially, then opened
for a time tQ and then closed again. Then a beam of length vtQ

will pass through the hole and move forward with velocity v.

According to the concepts of wave mechanics, however, we
must describe the whole phenomenon in terms of the wave

function T. A continuous train of waves falls on the screen;
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vtn

when the shutter is opened a train of waves of limited length,

that is to say a wave group or wave packet, is allowed to pass

through. As usual, we must set

the intensity of the wave at any

point equal to the density of elec-

^ .

^
trons there. The wave group must

* \ //^ travel with t*16 grouP velocity of
*

the waves; thus if wave mechanics

is to give a correct description

of the observed phenomena, the

group velocity of the waves must

be equal to the actual velocity of

the particles that they represent.

The group velocity in any type of wave motion is (cf. Chap. I,

3) dw/dk, where CD
(
= ZTTV) is defined by (1). We must thus set

Ffc. 11.

da)

~dk
v. (3)

Up to the present we have not ascribed any physical meaning
to the frequency v of electron waves. By integrating (3), how-

ever, we may find an expression for to and hence v. For, by
equation (I) of Chapter II, we see that

k = mv/H.

dw Hk

dk m'
Thus (3) becomes

On integrating we find

2
/H -h const.

Thus for a freely moving particle we may set

ft to = hv = kinetic energy -f constant.

We next have to consider the value of this constant. It will

be realised that a steady beam of particles moving through a

field of force must be represented by a wave with frequency
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the same at all points. It is natural to take a point where the

potential energy is zero and to define hv as the kinetic energy
there. We see therefore that

Ha> = hv = W
, (4)

where W is the total energy of each electron. It must be

realised, however, that the point where the potential energy
vanishes is quite arbitrary, and so the total energy of a particle

in a field of force contains an arbitrary constant.

It is rather surprising that the frequency of these electron

waves should also contain an arbitrary constant; it suggests

that, though the equations of wave mechanics are correct in

their description of how matter actually behaves, these waves

have not the same sort of physical reality as sound or electro-

magnetic waves. This view will be confirmed by the considera-

tions of Chapter V.

2. THE WAVE EQUATION FOR NON-STATIONARY PHENOMENA

The wave equation (2) applies to steady beams; it will not

apply to wave groups such as that shown in Fig. 11. The

equation that we require must contain terms in d*j8t, so that

it may be used to calculate the future motion of a wave group
when its initial form is given. Moreover it must be of the first

order in the time; that is to say it must contain terms in

3T/& but not in d^/dt
2

. This is because, as we have seen in

Chapter II, the complex function V contains two real terms /
and g which are analogous to the displacement and the velocity

of waves on a string, or to E and H in electromagnetic theory;
thus a knowledge of T alone at a given time, without a know-

ledge of 3T/5/, should suffice for the calculation of its value at

all subsequent times. Only if the equation is of the first order

will this initial condition be enough.
The required equation can be obtained by eliminating W

from (2). From (4) we have for the typical wave function

describing electrons of energy W
T(:r, y, z; t)

= $(x. y> z) e~
im/*. (5)



46 WAVE GROUPS

Differentiating this equation, we obtain

-.

dt H

Substituting in (2), we find

..
i ft! 2m

This is the required equation. Its most general solution is

made up by superimposing solutions of the type (5):

rr

As will be shown in Chapter VT, such a solution represents a

state of affairs in which the energy of the electron is not known,
but the probability that it has the value W is

|

Aw |

2
.

Exercise

Make use of (6) to verify the conservation of number of

particles, namely, to prove that

the integral being over all space.

Notation

It is often convenient to write H for the operator,

2m

so that the Schrodinger equation (6) becomes

i dt

and the equation (2)

(H-W)f-O.
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3. THE DESCRIPTION IN WAVE MECHANICS
OF A SINGLE PARTICLE

The wave group described in 1 and illustrated in Fig. 11

describes a number of electrons; the integral

\*dxdydz (7)

gives the average or probable number of electrons passing

through the hole while the shutter is open. It need not be an

integer; and it may be less or greater than unity. We might,

however, imagine the shutter open just long enough to let, on

the average, one electron pass through; then the integral (7)

will be set equal to unity, and the volume occupied by the

wave group, the shaded area in Fig. 11, represents the space

where, as a result of the experimental arrangement illustrated,

the electron may be.

This arrangement with a shutter may be thought of as just

a way of obtaining approximate information about the position

and velocity of a particle. Many other devices may be imagined.
Given any such device we may formulate as follows the way
in which wave mechanics must be used to make predictions

about the future position and velocity of the particle. We con-

fine our description to movement in one dimension, though it

may at once be generalised to three. Suppose that measure-

ments are made, at a given instant of time, of the position and

momentum of th6 particle. Suppose that the results of these

measurements are that the position is at X
Q with a probable

error | A#; and that the momentum is pQ with a probable error

\tp. Now ifAx AJP is not too small, the result of these measure-

ments can be described by a wave function having the form of

a wave group. The chance that the particle is between the

points x,x + dx as the result of our measurement may be written

const, exp {(x
- x

)
2
/(|Ax)

2
}
dx.

This by the rules of wave mechanics, is equal to \*\
2
dx\ we

thus set at t =

T = const. eik** exp {(x
- z

)

2
/2(Aa;)

2
}, (8)
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where k = p /ft. Such a wave function, then, represents a

particle at the required position, and with momentum approxi-

mately equal to pQ . But (8) can be expanded, as shown in

Chapter I, 3, in the form

if/
= \A(k)exp{ik(x xQ)}dk y

where A(k) = const, exp {

-
(k
- i

)

2
(|Ax)

2
/2}.

The wave group is thus made up of simple harmonic waves

with & in a range about & of A&, where

Afc = 4,/2/Ax,

as may indeed be seen without mathematical development
from the considerations of Chapter I, 3. The wave group
thus describes particles with momenta p lying in the range
determined by | A(k) |

2
,
and thus between pQ ^A^, where

To a good enough approximation, this may be written

ApAz~A. (9)

Equation (9) states the uncertainty principle of Heisenberg.
If measurements are made so that Aj9 Aa: is greater than h, it is

still possible to imagine a wave group set up, similar to a wave

group of white light, containing waves having a range of fre-

quencies; but if A#A# is less than A, it is impossible to set up a

wave group to represent the results of the measurements. We
are thus driven to the conclusion that

either measurements for which &x&p<h are impossible in

the nature of things,

or it is impossible to describe the motion of an electron by
means of wave mechanics.

The facts of electron diffraction seem to rule out the second

alternative; we are thus driven to believe that there is in fact

a limiting accuracy of all measurement. We shall come back

to this point in the next section.
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Once a wave group has been set tip describing the results of

the initial measurement, the wave equation (6), being linear in

d/8t, will predict its form at any future time. Thus at any
future time it is possible to state the probability |MP*(a?, t) \

2dx

that the particle will be found between x and x + dx. This then

is the type of prediction that wave mechanics enables one to

make: given certain initial measurements, made with a certain

probable error, one can predict the chance that at any future

Classical mechanics Wave mechanics

Fig. 12. Showing the contrast between the classical and wave-
mechanical method of prediction. In the classical method a measure-

ment shows that the particle is in the volume AH moving within

the directions shown by the arrows. By considering all the orbits

such as PQ consistent with this original measurement, one arrives

at the conclusion that after time t the particle will he within the

volume CD. The wave-mechanical treatment pictures a wave packet

moving from AR to CD, passing through the intermediate posi-
tion EF.

time a particle (or system of particles) will be found at a given

point. In this, wave mechanics is similar to classical mechanics;

but classical mechanics proceeds by calculating the system of

orbits which are consistent with the original measurement;
these are absent in wave mechanics. The difference between

the two methods is illustrated in Fig. 1 2.

In fields which vary slowly with the distance it may be

shownf that the wave group of wave mechanics follows the

f Cf., for example, Mott and Sneddon, chap. i.
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same path as the particles of classical mechanics; it is only
when we have to deal with fields varying in a distance com-

parable with the wavelength of an electron (c. 10~8 cm.) that

the two systems give different results, as in the diffraction or

scattering of electrons by atoms.

4. THE UNCERTAINTY PRINCIPLE

We have seen that, if wave mechanics is valid, measure-

ments must be impossible unless

It will be of interest to estimate the magnitude of these quanti-

ties. If we write p = mv,

~ 7 c.g.s. units for an electron.

Thus if Ax is 1 cm., At; ~ 7 cm./sec., which is of order one part in

108 of the velocity of electron in an atom. If, however, Ax is of

the order of the size of an atom (10~
8
cm.), Av/v~ 1.

It is of great interest to examine the hypothetical experi-

ments by which we could determine position and momentum

simultaneously, and to show that they do in fact yield an

uncertainty of the predicted amount. The most famous of

these demonstrations is the 'gamma-ray microscope' first dis-

cussed by Heisenberg. The argument put forward is as follows.

A beam of electrons is supposed to be travelling along the

x-axis with known momentum p. It is desired to observe an

electron and to measure its position; for this purpose it is

imagined that a microscope will be used, and since the utmost

resolving power is required a short wavelength should be chosen.

The position can then be determined to an accuracy given by

Ax =
A//a,

where a is the aperture, A the wavelength, and / the distance

from the electron to the lens.
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Radiation cannot be scattered by an electron without dis-

turbing the electron; radiation is scattered by free electrons

according to the rules of the Compton effect, according to

which the momentum lost by the light quantum when scattered

is transferred to the electron. Thus
i i

if a quantum having frequency v, and

hence momentum hv/c, is scattered

through an angle 6, momentum equal to

cos#)/c

is transferred to the electron. Thus ^

we cannot observe the electron without *

disturbing it. Moreover, we disturb it
**

by an unknown amount, since, owing Fj rj
to the finite aperture of the lens, 6 is

not known exactly. In Fig. 13, may lie between ABC and

ABC'. There is thus an uncertainty a/f in and hence, since

0-90, of
7 .,
/iva/cf

in the momentum transferred to the electron. Since A = c/v

this may be written A 7 .J
&p =

ha/jA,

where Ap is the uncertainty in the momentum of the electron

after the measurement has been made. We see that

ApArr = h
y

as we expect.



CHAPTER IV

STATIONARY STATES

1. THE OLD QUANTUM THEORY

It can now be regarded as an experimental fact that the total

internal energy of an atom or molecule is quantised. By the

internal energy we mean the total energy of the electrons and

nuclei moving about their centre of gravity; the kinetic energy
of the translational motion of the atom or molecule as a whole

can of course have any positive value. The internal energy,

however, cannot have any arbitrary value, but only one of a

series of discrete values, of which one is

|-
the lowest. This is what is meant by the

statement that the energy is quantised.

The simplest and most important appli-

cation of this principle is to the energy
of the electrons in an isolated atom, and

thus in an atom of a monatomic gas or

vapour. It is usual to measure this quan-

tity with the convention that the total
Fis?. 14. Ener<*v levels i -i ^

of an atom.
energy 1S zero when one electron is re-

moved far from the atom and is at rest.

With this convention, the quantised energy values of an atom
are negative. A typical scheme is shown in Fig. 1 4. The distance

of each horizontal line from the zero represents the energy of

the atom in one of the quantised states. The lowest state of

the atom is known as the normal or ground state, the higher
states as excited states. The energy 7 required to remove an

electron to a slate at rest at infinity from an atom in the

normal state is known as the ionisation potential.

No detailed review of the experimental evidence for the

existence of quantised states in atoms will be given here, but

we may mention the following:
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(a) The existence of a definite energy required to excite an

atom, and the fact that it is large compared with the thermal

energies")" of molecules in a gas, follow from the observation

that the specific heat per gramme atom of a monatomic gas is

fj?, which can all be accounted for by translational motion.

Collisions between gas atoms therefore do not change the

internal energy.

(6) Many experimentsJ have been carried out which show

that electrons after hitting an atom are deflected either without

loss of energy, or with loss equal to one of the excitation

potentials Wl WQJ W2 W of Fig. 14 or else greater than the

ionisation potential /.

(c) Detailed information about the energy levels is derived

from spectroscopic evidence, coupled with the hypothesis that

radiation of frequency v is emitted and absorbed in quanta

according to the equation

assuming this hypothesis, the existence of line spectra proves
the existence of stationary states.

It should be emphasised that only the isolated atom in a gas
or vapour has a system of energy levels of the type shown in

Fig. 14. The electronic system of an isolated molecule has a

similar system, but in addition the vibrational motion of the

nuclei about their mean positions and the rotation of the

molecule as a whole introduce additional series of levels, much
closer together. The energy levels of electrons in solids are not

quantised (cf. Chap. V, 7).

The hypothesis of the existence of stationary states was

introduced into physics by Niels Bohr in 1913. At the same

time he introduced another hypothesis in order to be able to

calculate the values of the quantised energies for the case of a

f The thermal energy \kT of an atom at room temperature is 0037 of an

electron volt (kT~ 1/40 eV.); the excitation potentials are of order 8-20 eV.

J Cf., for instance, E. G. Dytnond and E. E. Watson, Proc. Roy. Soc. A,

cxxn, 571, 1029.

N. Bohr, Phil. Mag. xxvi, 1, 47tt, and 857, 1018.
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single particle moving round a centre of force, or a pair of

particles moving round their centre of gravity. This hypo-
thesis is as follows: the orbits are as predicted by Newtonian

mechanics, but only those orbits are found in nature for which

the total angular momentum is a multiple of h/2Tr(= H). This

hypothesis, though extremely valuable at the time, has now
been abandoned in favour of the description given by wave

mechanics.

With the aid of this hypothesis one can show:f

(a) That the energy of an electron moving round a nucleus

of charge Ze and of infinite mass is

_ ra~~~
n

where n is an integer. This formula is confirmed by wave

mechanics. Tt is in agreement with experiment, not only for

the spectra of atomic hydrogen (Z = 1) and ionised helium

(Z = 2), but for the X-ray levels of heavy atoms. For these it

is a fair approximation to treat each K electron as moving in

a field of a point charge (Z a}e, with a between and 1.

(6) That if one takes into account the motion of the nucleus

(mass M ) about the centre of gravity, m in the above equation
must be replaced by ra*, where

This small correction can be verified by comparing the values

of the Rydberg constant obtained from hydrogen and ionised

helium (cf. Chap. V, 2-1).

(c) That a diatomic molecule rotating about its centre of

gravity has quantised energy levels obtained as follows. We
may treat it as a rigid body of moment of inertia 7, given by

2a is here the distance between the nuclei and M the mass
of each nucleus, the electronic mass being neglected. If the

I Cf. the original papers by Niels Bohr, or any text-book on atomic physics.
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angular velocity about the centre of gravity is o>, the angular
momentum is Iw

t so that Bohr's hypothesis gives us

/co = Ifi,

where / is an integer. The kinetic energy W is thus given by

. (i)

The treatment by the methods of wave mechanics replaces I'
2

by /(Z-h 1), as shown in Chapter V, 2-2.

It will be noticed that the interval between energy levels is

less by a factor of order m/M (1/1860 for hydrogen) than for

the line spectra of free atoms. For if we take for a the radius

of the first Bohr orbit of hydrogen (S
2
/we

2
) we find for the

interval AW between the ground state (/
= 0) and the first

first excited state (/
=

1)

\W = ^- = m ^
27 2J/2S2

"

The second factor is the ionisation energy of hydrogen (13-60

eV.).

AW is thus less by a considerable factor than kT at room

temperature (0-025 eV.). Therefore diatomic molecules in a

gas in thermal equilibrium at room temperature will rotate, as

is shown by the observed value |jR of the specific heat. At very
low temperatures the specific heat of H2 does in fact drop
towards the value |Jf?, since when kT < W the collisions are not

in general energetic enough to excite rotation.f Or, expressed
in other terms, the exponential factor exp ( WjkT), which

determines the number of rotating molecules, becomes small.

2. TREATMENT OF STATIONARY STATES IN WAVE MECHANICS

According to the principles of wave mechanics, any electron

or other particle shut up in an enclosed space will have a

t The experimental evidence is reviewed, for instance, by R. H. Fowler,
Statistical Mechanics, 2nd ed., Cambridge, 1936, p. 83.
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quantised series of energy values. Thus an electron bound in

an atom, or an atom vibrating as a whole about a fixed position

in a solid, will have quantised energy values, while a freely

moving atom or electron will not.

The reason for this can be seen most simply by considering
an idealised case, that of the motion of a particle shut up in a

box with perfectly reflecting sides. We need to consider motion

in one dimension only; we thus consider that the particle

moves along the x-axis from x to x = a, and that at these

two extremities, where the walls of the box are, the wave
function vanishes. The Schrodinger equation for the particle is

2mW

of which the solutions are

sin kx, cos kx,

wnere tc ==
^^

The solution which vanishes at x = is sin kx, and this vanishes

at x = a only if ka = UTT, and thus if

_ _" ~ "
2

'
* '

Solutions of the Schrodinger equation satisfying the required

boundary conditions exist therefore only if W has the series of

quantised values given by (2).

It will be remembered that, according to wave mechanics,

our knowledge of the position of a particle in a given state is

given by a wave function
?/r,

such that
| iff \

2dx is the probability

that the particle will be found between x and x + dx. In our

case

n . HTTX
w ~ C sin

,

a
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where C is a constant. Such a solution can only be found if

W has one of the values (2). We deduce that the energy can

only have these values.

The value of C should be chosen so that the function is

normalised, i.e. so that

fa
^dx = 1.

Jo

As regards orders of magnitude, we note that if a is of the

dimensions of an atom (3x 10~8
cm.), and m the mass of an

electron, the quantity h2
/Sma

2
is of the order of the ionisation

potential of an atom (actually 4*1 eV.). If a is the diameter of

a nucleus (say 5 x 10~13
cm.), and m the mass of a nucleon, we

obtain c. 107
eV., of the order of the energies concerned in

nuclear reactions.

Suppose that we now \
f energy

3

consider an electron shut

up in a box bounded, not

by perfectly reflecting sides,

but by an electrostatic field

which pushes the electron

back when it tries to get

out. The potential energy
of an electron in this field

is shown in Fig. 15. Let

the electron have an arbitrary energy W. The wave function

in the neighbourhood of the points A and B, where the

'classical' electron would try to get out, is shown also in Fig.

15; in the regions where the classical electron cannot go, $ will

decrease exponentially, while within the box it will oscillate.

If we start to draw the wave function from either end taking

the solutions that decay exponentially outside the box instead

of increasing exponentially, the two solutions will not in general

join up in the middle; only for a discrete series cf energy values

Wn will they do so, and these will be the quantised values that

the energy of the electron must have.
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An electron in a hydrogen atom is held in a box very much
of this type. The potential energy of such an electron plotted

along a line passing through the nucleus is shown in the upper

part of Fig. 16: an electron with the

energy represented by the horizontal

line AB can move freely between

the points A, B, where it will suffer

total reflection. The wave function

will be as shown in the lower half of

the diagram; it will oscillate in the

region between A and B and die

away exponentially outside. Clearly,

only for a series of energies Wn will

such a solution of the Schrodinger

equation be obtainable.

Fig. 16. Potential energy
of electron and wave function

for hydrogen atom.

Exercise

Write down an equation whose roots are the quantised

energies of a particle moving along the x-axis in the field de-

rived from the potential

V(x) = |*|>cx,

= - U
|

X
|
< a.

Show that there is always at least one bound state for a

particle in this field, but only one if

(3)

3. THE SIMPLE HARMONIC OSCILLATOR

One of the simplest and most important examples in the

theory of stationary states is that of the linear oscillator.

A particle of mass M is held to a fixed point P by a restoring
force px where x is the displacement.f According to

f The most important applications are the vibrations of an atom in a solid,

where x is the displacement, and the vibrations of a diatomic molecule, where
? is the change in the internuclear distance.
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Newtonian mechanics, it will vibrate about P with arbitrary

amplitude and energy, and frequency v given by

= -1 IP
27TV Jf"

Our problem in quantum mechanics is to find the allowed

quantised values of the energy W* and the appropriate wave
functions.

Fig. 17. Potential energy of a particle executing simple
harmonic motion.

The potential energy of the particle is \px*. This is plotted
in Fig. 17; according to classical mechanics the particle will

move backwards and forwards between A and B. Since the

velocity of the particle is <j{2(W
-

V)m}, the chance that it will

be found between x and x + dx is proportional to (W F)~*.

The Schrodinger equation is

It is interesting to obtain an approximate solution by means
of the W.K.B. method. This is (for x between A and B)

(5)



60 STATIONARY STATES

The true solution will decrease exponentially outside AB. As an

approximation, however, we may demand that the wave func-

tion shall vanish at the two extremities A, B. The lower limit

of the integral in (5) must then be taken at A, and the condition

is thus satisfied if

x
l being the values of x for which the integrand vanishes.

Our quantum condition, then, consists in fitting n half waves

into the interval AB.
The integral can be evaluated by setting

ipx* = IF sin2 0;

we find, as may easity be seen,

W = nhv, n>,\.

The exact solution of the problem involves finding the values

of W for which a solution of (4) exists which oscillates between

A and B and decays exponentially outside. These values of W
are given bv

W =

The normalised solution! for the first two states are

where [Mp\-*

*-(*>)
*

The reader will easily verify that the above solutions satisfy

(4). The quantity (H
2
IMp)* gives a measure of the radial

extension of the wave function in the ground state.

The quantum number n(n = 1,2, ...) which labels each sta-

tionary state has in wave mechanics a simple meaning; n \

f For details of the solution cf., for example, Mott and Sneddon, p. 51.
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is equal to the number of zeros in the imve function, not counting
the zeros at the two extremities.

It is worth emphasising here that, if we are dealing with an

atom vibrating in a solid or molecule, the radial extension of

the wave function in the ground state is small compared with

the distance between atoms. For if this latter distance is a, we

may expect the interatomic forces to be of order e2/'
2

,
and thus

p ~ e2/a?.

The radial extension of the wave function, as we have seen, is

*: substituting for^> this gives

But H2
/me

2
is the radius of the hydrogen atom, and thus of the

same order as a. Thus the radial extension is of order

where m is the mass of an electron, M of an atom.

4. QUANTISATION IN THREE DIMENSIONS

Quantisation in three dimensions differs from that in one in

two respects: each stationary state is specified by three quantum
numbers instead of one; and levels may be degenerate, that is

to say two different states with different wave functions may
have the same value of the energy.

These two points are both illustrated by the case of a

particle moving in a box with perfectly reflecting sides. Let

the interior of the box be defined by

0<x<a,

< z < c,

so that the box has rectangular sides with edges of length

a, fe, r . The Schrodinger equation is
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which has solutions satisfying the boundary conditions

if, and only if, the energy W has one of the values

2m la2
ft
2 c2

(6)

The quantum numbers n
l9 n^ n%, with unity subtracted in each

case, are equal to the number of nodal planes in the wave

function parallel to the planes x 0,

y = 0, and z respectively. The

case illustrated in Fig. 18 shows the

state (4, 3, 2).

That degenerate states may occur

is clear from formula (6). For in-

stance, if a = b, the wave functions

with quantum numbers (nv n2,n3 )

and (n2,nl9 n3 )
are solutions of the

wave equation corresponding to the

same value of the energy. Tt will be noticed that, when two

degenerate states exist with wave functions^ i/r2 >
then a linear

combination such as

(7)

Fig. 18. Nodal planes of

wave funetion of particle in

a box.

is also a solution of the wave equation.

Exercise

If a = b
y
sketch the nodal surfaces of the* wave function (7)

for tij
= 1

,
w2

= 2 and various values of the constants A ,
B.

5. QUANTISATION WITH SPHERICAL SYMMETRY
AND THK HYDROGEN ATOM

This is an important problem, as it includes the treatment

of the hydrogen and other atoms. We have to find the station-

ary states of a particle moving in three dimensions which is

under the attraction of a centre of force. The potential energy
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of the particle is then a function only of its distance r from the

centre of force. We denote it by V(r). In the particular case

of an electron moving in the field of a positively charged
nucleus of charge Ze,

V(r)
= =2*. (8)

The Schrodinger equation is then-.
The solutions of this equation in spherical harmonics can be

found in numerous text-books and will not be given here. The

salient points are given in the remainder of this section.

The solutions may be divided into:

(a) Solutions having spherical symmetry, such that

The corresponding states of the atom are known as s states,f the

quantum number /, giving the number of nodal surfaces passing

through the origin, being zero. IU will later be identified with

the angular momentum of the state.

(6) Solutions having the forms

These are known as p states; they have one nodal plane passing

through the origin; thus by definition I = 1. A p state is triply

degenerate, the three independent wave functions shown above

all having the same energy.

(c) Solutions having the forms

f The symbols used in speetroscopy, ,/>, d, referred originally to lines,

not states, and meant sharp, principal, diffuse.
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These are known as d states; they have two nodal planes

passing through the origin, so that 1 = 2. The degeneracy is

fivefold, not sixfold as would at first appear, because the three

last wave functions are not independent, their sum being zero.

(d) States of higher quantum number /; these can con-

veniently be expressed only in terms of spherical harmonics

=Pjii(cos 0) eiu*f(r)

The degree of degeneracy is 21 -f 1 -

2s
/>!.

3d

Fig. 19. Nodal surfaces and amplitude of the wave functions of the

hydrogen atom.

The function /(r) will itself have a number of zeros; each of

these determines a spherical nodal surface in the wave function.

The principal quantum number, n, is defined so that n 1 is

equal to the total number of nodal surfaces, planar and

spherical. Thus n / 1 is equal to the number of zeros in f(r).

If V(r) is given by (8) and thus is the potential energy in a

Coulomb field, the energy of an electron depends only on n

(apart from relativistic corrections mentioned in Chapter VII),

and is given by we*Z2
1
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This is not the case for any other field, the energy depending
on I also.

In Fig. 19 we show the wave functions of the hydrogen atom
for a number of states. Above we show the intersection of the

nodal surfaces with the plane passing through the nucleus.

Turning now to the Schrodinger equation, it will easily be

seen by direct substitution that for s states, where
i/r =/(r),

the equation reduces to

d2
f 2df 2w , T7V ^4/1 J

' -^(W-V)f^O.

The student is recommended to verify this. In the general
case it becomes

J 9 ' J
dr* r dr

The substitution

reduces (9) to

This is of the same form

as the equation for the

motion of an electron in

one dimension. The solu-

tion </, however, must van-

ish at the origin, in order-

that / may remain finite

there. The type of solution

is shown in Fig. 20. The

quantity F(r) defined by

,*- K)
-

*
-0. (9)

(10)

*\r) =
-jp(

w ~ v)-^2 F^ 20.

is positive between two values r
1 and r2 ;

within this region the

wave function oscillates; outside it decays exponentially.
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For the case of the Coulomb field, equation (9) may be

solved in series. The solution may be found in any text-book;

we quote here the first three wave functions

1* (n= 1,!0) /(r)
= qe-^,

2s (n = 2, / = 0) /(r)
= c2(2--)e-^

2
,

a

22) (n = 2, I = 1) /(/)
= c3 re-

r'2a
.

Here a is the Bohr radius, given by

a =

and the constants C15
c2,c3 are normalising factors. The student

is recommended to verify by substitution that these values of

f(r) are solutions of equation (9) for the appropriate values of W.

Exercises

(1) Consider the motion of an electron in the field defined by

F(r) = r>cx,

Show that there are no stationary states at all if

(2) For the case / = and V(r) = -e2
/r, the solution of (10),

vanishing at the origin, found approximately by the W.K.B.

method, is

Remembering that W is negative, obtain approximate values

of the quantised energy values by fitting n half-waves into the

region where W V is positive, i.e. by setting

where r is the value of r for which the integrand vanishes.f

t The method in fact gives the exact value of W. This would not l>e the

case for any other form of V(r).
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The integral can be evaluated by setting

(3) Show that if F(r)-> const. /r at large values of r, there

will exist an infinite series of stationary states leading up to a

series limit; while if V(r) tends to zero faster than r""
1

, the

number of bound states is finite.

(4) Show that, for an attractive field of the type

the equation giving the energy values is indeterminate.

0. INTERPRETATION OF THE WAVE FUNCTIONS

If a hydrogen atom is, for example, in the ground state, it is

described by a wave function ^ given by

i/j(r)
= Ce~rta

,
a * W/me* = 0-54^4.

The interpretation of this function is, as usual, that \^(r) \*dr

is the probability that an electron will be found in the volume

element dr at a distance r from the nucleus. This is all the

information provided by wave mechanics about the position

of the electron.

It is usual to choose the constant C so that

(r)|
2dr=l; (11)

the wave function will then describe a state of affairs where it

is known that an electron is in the atom. The wave function is

then said to be normalised. It will easily be verified that

/~t __ A ._ }w - 7T W

In some phenomena (e.g. scattering problems, cf. Chap. II,

7) the atom behaves like a nucleus surrounded by a cloud of

negative charge of density
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where
*/>

is the normalised wave function. The electrostatic

potential of the field due to a nucleus and this charge is, as

may easily be verified,

,(VW
\r a!

A second electron in the neighbourhood of a hydrogen atom

may thus be treated as though it moved in a field of potential

energy V(r) such that

In atoms containing more than one electron it is a fair

approximation to consider each electron as having its own wave
function

ifj(r). Thus, for instance, in the helium atom each

electron may be regarded as having a wave function

where a is a parameter. One way of finding the best value of

the parameter a is the variational method given in the next

section.

Another method of finding the wave functions ifj(r) is that

due to Hartree, the method of the 'self-consistent field'.

Hartree does not use an analytic form for 0(r); for the helium

atom he proceeds as follows. He supposes that each electron

moves in a field of potential energy V(r) produced by the nucleus

(charge Z = 2) and by the other electron, treated as a distribu-

tion of charge of density e
\ ifj(r) |

2
. V(r) will then be given by

Poisson's equation

dr2 r dr

and the boundary conditions

V(r) ~ - 2e2/r r small,

-- e2jr r large.
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If we know
i/r, then, we can calculate F(r); and if we know F(r)

we can calculate
if/
from Schrodinger's equation. Hartree, by a

process of successive approximations, calculates
ifj

so that it is

self-consistent; in other words, if V is deduced from
i/r
and then

iff calculated, the original value is obtained.f

7. VARIATIONAL METHOD OF OBTAINING APPROXIMATE
WAVE FUNCTIONS

Let us write the Schrodinger equation for a single particle

in a field with potential energy V(r) in the form (cf. p. 46)

ft
2

where # = ~ '- V2 +F.
2m

Multiplying by 0* and integrating over all space we see that

W =
fy*H*l*dT.

(13)

The total energy of the electron is thus the sum of two parts:

(a) |j/r*Fi/fC?T.
This clearly represents the potential energy of

the electron in the field of potential energy V(r).

Jj2
/

(b) r
;-- \\fi*V

2
tf/dr. This (positive) term represents the kin-

2w J

etic energy. The reasons why this is so lie somewhat outside

the scope of this book.

It is shown in the more advanced books on wave mechanics

that if ifj(x,y,z) is any normalised function of #,2/,z, i.e. such

that (11) is satisfied, then the true wave function is that for

which the integral (13) is a minimum. This gives a very useful

method of obtaining approximate wave functions; one can take

a given analytic expression containing one or more parameters,
work out the integral (13) and choose the parameters so as to

minimise the energy.

f Hartree's method is discussed further in Chap. V; a review is given by
D. R. Hartree, Rep. Prog. Phys. xi, 113, 1940-7.
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Exercises

(1) For the hydrogen atom, take of the form Ce~* r normal-

ised to unity and work out the integral (13). Show that it has

the minimum value when A = me2
/H

2
.

(2) A hydrogen atom is placed in a strong electric field E,

so that the potential energy of its electron is

e2---
1- Eex.

r

By assuming a wave function of the form

obtain an approximate expression for the energy due to the

field.

(3) Describing both electrons in the helium atom by a wave
function of the form (12) with an unknown value of a,

calculate the first ionisation energy. This is done as follows.

First calculate the kinetic energy and potential energy in the

field of the nuclei. Their sum is

the 2 arising because there are two electrons. Then calculate

the interaction energy of the electrons; this, by the arguments
of the last section, is

r i /i i\U* -e2
(~ + e~

J I \r a)

The sum of these is the total (negative) energy of the atom,
and a must be chosen so that it takes a minimum value. To
obtain the first ionisation energy, we must subtract it from the

second ionisation energy, viz. 4 x we4
/27&

2
.

8. ORTHOGONAL PROPERTY OF THK WAVE FUNCTIONS

This property is of considerable importance for subsequent

developments. The term orthogonal means that, if lf i//2 are
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solutions of the Schrodinger equation corresponding to two

different energy values, then

the integral being over all space.

Exercise

The student is recommended to verify the orthogonal rela-

tion for the functions shown on pp. 60, 66. It is, for instance,

obvious from symmetry that s and p functions are orthogonal
to each other.

We shall prove the orthogonal relation for the case of one

dimension only, that is to say for a particle moving along a

straight line. The two wave functions then satisfy the equations

If we multiply the first equation by $$ and the second by
and subtract the second from the first, we obtain

The first two terms may be written

Thus on integrating over all space

2m

The term on the left vanishes, because, since we are dealing

with bound electrons, the wave functions tend to zero far from

the region in which they are bound. Also we have postulated
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that Wj and W2 should be unequal. It follows that

i:

We have taken the complex conjugate of 2 rather than the

function itself. For a particle moving in an electrostatic field

the wave functions are real, and this makes no difference. In

the presence of a magnetic field, however, terms of the type

Aidy/dx occur in the wave equation (Chap. I, 7), so the wave
functions are complex. The reader will easily verify from Chap-
ter II (13) that if A is a constant the relation (14) is verified

in this case.

An important consequence of the orthogonal relation is that

any arbitrary function /(#, y, z) can be expanded in a series of

wave functions
i// 7l , provided that the function / satisfies the

same boundary conditions as the functions ^7J
. Thus suppose,

for instance, that the functions $n(x,y,z) are the series of

wave functions for the hydrogen atom, and that f(x, y, z) is any
function which tends to zero at infinity. Then we may write

n(x,y y z), (15)

and find the coefficients An by multiplying both sides by $*
and integrating over all space. We find, using the orthogonal

relation, that

For a particle bound in a box, a simple harmonic oscillator,

etc., all the states are quantised. For a hydrogen atom, on the

other hand, the summation should include an integration over

the unquantised states, in which the electron is free from the

atom (cf. Chap. VI, 3).

It will be shown in Chapter VI that if an electron is des-

cribed by a wave function of the type (15), the coefficients An

may be interpreted as follows: we do not know in which

stationary state the electron is; the chance that it is in the

is .
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9. PERTURBATION THEORY
It is very useful to be able to calculate the change in the

energy of an electron in an atom due to a small perturbation,
for example, an electric or magnetic field. This may be done as

follows :

We write the wave equation

(H-W)t = 0, (16)

and calculate the change w in W due to a small additional

term v(x,y,z) added to the potential energy. The wave equa-
tion may now be written

{H + v-(W + w)}(t+f) = 0, (17)

where / is the change in
i/j. Making use of (16) and neglecting

all terms of the second order such as vf, wf, this gives

(H-W)f+(v-w)$ = 0.

Now we may expand/ in a series of the type (15)

where the
ifjn are the solutions of (16) and Wn the corresponding

energy values; we use also the suffix zero to denote the state

the electron is in.

We then find

If we multiply both sides by $$ and integrate, we find

w= 0*t^ rfT, (19)

a formula which is essentially the same as (13), and gives us to

the first order the change w in the energy. If we multiply both

sides by 0j* and integrate, we obtain

(20)
rrw ~~ rrO

which, with (18), gives us the perturbed wave function.
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Exercises

(1) Let us suppose that the potential energy of an electron

in the field of a nucleus is, owing to the finite radius r of the

nucleus,

r<r .

Calculate the change in the energy of the Is state due to this

correction.

(2) A particle is bound to its mean position by a force such

that its potential energy is %px* + qx*. Treating the second

term as a perturbation, find the energies of the first two

stationary states.

Two of the most important applications of perturbation

theory are to an electron in an electric and in a magnetic field;

these will be treated in the next three sections.

10. THE POLAR1SABILITY OF AN ATOM

In this section we shall calculate the polarisability of an

atom. The calculation will be specifically for a hydrogen atom,
but can be extended to any atom if we describe each electron

by its own wave function (p. 102).

We give first a classical calculation. Suppose that an electron

is bound to a mean position by a force px when the displace-

ment is x. It can then vibrate with a frequency VQ given by

In the presence of a field E, the displacement x is given by

px = eE. (21)

The dipole moment is thus

ex = e*E/p = e*E/47T
2
mvQ.

The polarisability a, defined as ex/E, is thus given by

'*
(22)
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If, instead of a static field, E is replaced by a field J cos2m>

oscillating with frequency v, (21) becomes

mx +px = eEQ cos "l^vt
;

on integrating we find

ex = e2EQ cos 27n//47r
2
ra(i/

2 - y2 ),

so that the polarisability is now given by

e2

* =
4^^vf)- (23)

This calculation is artificial in that it makes use of the con-

cept of an elastically bound electron, capable of vibrating with

a definite frequency. We shall now give the corresponding
wave-mechanical calculation.

The electron in .the atom is acted on by a field E in, for

instance, the z direction. The addition term in the potential

energy of the electron, due to this field, isf

v(z) = Eez.

In the presence of the field, then, the wave function of the

electron is, instead of the original ^ (r), by (18) and (20)

-V *(* .V> -) (24)
n H'w

"~ nO

where 2n0 is defined by

and dr denotes the element of volume dxdydz. The charge

density p(x,y,z) in the atom is obtained by taking the square
of the modulus of (24) and multiplying by e, so that

p(x,y,z) = _*|^(r)! + etfS=25= W,>l> +tM (25)
n "n ~~

^0

Terms of order E2 are neglected, since the polarisability is

always defined for values of E small compared with the fields

within the atom.

t Note that e is the numerical value of the electronic charge,
- e the charge

on the electron.



76 STATIONARY STATES

Now the dipole moment of the atom is by definition

Jp(x,y
9 z)zdr 9 (26)

so that the polarisability a is Ipzdr/E. The function
| ift (r) |

2 is

spherically symmetrical; thus, substituting (25) in (26), the

first term gives a vanishing contribution, and we are left with

which gives us the desired quantum mechanical formula for the

polarisability of an atom.

This formula (27) may be compared with the classical

formula (22). The frequencies vnQ of the absorption lines of

the atom are given by

Thus (27) may be written

,

xvn*>rrkwnere

It may also be shown, though the calculation will not be

given here, that for a field vibrating with frequency v, the

formula for the polarisability which generalises (23) is

-/
n

-S- (28)

The quantity fn0 is called the 'oscillator strength' of the

transition. It may easily be provedf that, for atoms containing
a single electron,

That this relation is satisfied follows also from (28), since for

high values of the frequency v the polarisability must tend to

t Of., (or example, Mott and Sneddon, p. 169.
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the classical value (23), the forces binding the electron to the

atom being then unimportant.
It will be shown in Chapter VI that the intensities of absorp-

tion and emission lines are proportional to the oscillator

strengths.

It will be seen at once by symmetry that for the hydrogen
atom in tho ground state all oscillator strengths vanish except
those for which n refers to a p state. The values of the non-

vanishing oscillator strengths have been calculated.f Some
values are, for transitions from the initial state Is:

Final state fn0 ,

n = 2 0-4161,

n = 3 0-0791,

Asymptotic formula for large n l-6n~3
,

L/w for all discrete values of n 0-5041,

S/H for continuous spectrum 0-4359.

The dielectric constant *, equal to the square of the refrac-

tive index, /n
2

,
can be deduced from the value of a by the

formula 2 i . A \rK n* = I 4- 47riVa,

where N is the number of atoms per unit volume. It will be

seen that, if v^>^ n() ,
this formula tends to

the usual formula for a medium containing ^V free electrons

per unit volume.

It is also of interest to calculate the amplitude of the radia-

tion scattered by a single atom. In the presence of an oscil-

lating field E, the dipole induced in the atom is E. The
electric vector of the scattered radiation, at a point P at a

distance r from the atom in a direction making an angle $ with

E
'
is

t Cf., for instance, H. Bethe, Handb. Phys. xxiv, pt. 1, 443, 1933.



78 STATIONARY STATES

Inserting formula (28) for a we find for the electric vector of

the scattered radiation

_ y Sin <Z> 2^ ^ n
rmt* Y

n
2 -v2

It will be noticed that, if the incident radiation is on the

long wavelength side of all absorption lines, the scattering

increases with decreasing wavelength.
If v5>vHQ for all absorption lines of appreciable oscillator

strength, the formula becomes

E e2--
-sin^, (30)

r me2

the scattering formula for a free electron. Such a formula is

obviously only valid if the wavelength of the radiation remains

great compared with the size of the atom. For the case when
this is not so, compare Chapter V, 46.

Exercise

Work out the oscillator strength for the transition 2p to 1

of the hydrogen atom, using the wave functions given on

p. 66.

11. THE STARK EFFECT
>

The threefold degenerate p states are split by an electric

field. This may be seen as follows. The energy of the atom due

to the electric field is %aE
2

. If the atom is in a p state, the

wave functions are of the form xf(r) y yf(r), zf(r). Thus, if the

field E is along the z-axis, the oscillator strength of the transi-

tion p~+ls, for instance, vanishes except for the last of these

wave functions. Thus for a field in the z-direction, the polarisa-

bility of the state zf(r) differs from that for the other two.

The three p states therefore split into one non-degenerate and
one doubly degenerate state.

Consequently p~>s transitions appear as doublets.
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12. EFFECT OF A MAGNETIC FIELD

In this section we determine the effect of a magnetic field on

an atom in a p state, obtain an expression for the Zeeman effect

for an electron without spin, introduce the electron spin and

describe the spin doublet in X-ray and optical spectra.

Suppose a magnetic field H is applied along the z-axis. Then
there are three ways in which we can treat it: (a) by classical

theory, (b) by old quantum theory, (c) by wave mechanics.

(a) By classical theory. We suppose (as on p. 74) that

wthe electron is held in position by an elastic force pr for

a \displacement /*, so that it can vibrate with frequency
VQ =4- (27r)~\/(/>/n?). In the presence of the magnetic field there

are t'hree possible normal modes, with different frequencies.

The electron can vibrate along the field, in which case the

frequency is unaltered, or rotate in circular orbits in the plane

perpendicular to the field. In the latter case, if w is the angular

velocity v
of the motion and r the radius, we have

wo*2 r = pr eHwr/c.

The firsjt term represents the centrifugal force, the last the

force act\ing on an electron moving with velocity o>r perpendicu-
lar to a ^nagnetic field. Solving for to, and treating H as &

small quantity, we find

,. J*.. (31)2n 4-Trmc

If emission or absorption lines were due to vibrating elec-

trons, we should' expect that a magnetic field would split all

lines into three components. Such a splitting is observed in a

magnetic field (Zeaman effect), but only for singlet lines is it

given by (31). The historical importance of the Zeeman effect

is that the occurrence of e/m in a formula in agreement with

experiment in certain cases gave the first experimental proof
that electrons take part in the emission of light from atoms.

(6) By old quantum theory. One can show that the magnetic
moment of an atom ii which an electron rotates with angular
momentum / is e//2wc. For a circular orbit the proof is simple.
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The magnetic moment is the product of the area (rrr
2
) and the

current in electromagnetic units, which, if e is as usual in electro-

static units, is equal to

7TT
2 x eoj/2Trc

= ea)r2/2c el/2mc.

The magnetic moment of an atom with angular momentum in

is thus ,

en
i.

2mc

The quantity eh/2mc is known as the Bohr magneton and will

be denoted by ju#.

If one supposes that the component uU of the angular
mentum along the magnetic field is also quantised and u

integral values, it follows that the energy of the atom iija

'

magnetic field is

The level thus splits in 2/+ 1 states (cf. 5).

Making use of the selection rule (Chap. VI, STM^flHP in

optical transitions u will change only by or 1, WMrthat
EI spectral line of frequency VQ will, in the presence of t itoagnetic

field, split into three lines; the frequency of on of ihese is

unaltered, while those of the others differ from i^-by v where

H.

The predictions of the old quantum theory for an electron

without spin are thus the same as (31).

(c) By wave mechanics. This again gives the /same result, and
identifies the angular momentum Ifi of the last section with the

quantum number / of p. 64. We shall, however^ confine ou;

;o p states (I 1).
^

;*

We have expressed the three wave functions

n the form

Taking spherical polar coordinates tMs| can, however, be

vritten
sin 6 cos <f>f(r), sin 6 sin 6f(m/B cos Of(r].
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<f>
is here the azimuthal angle about the magnetic field. If, then,

we want to represent rotation of the electron about this field,

it is clear that the correct combinations of these wave functions

to represent the three normal modes as in (a) above are

0J = sin OeWffr), 02 = sin 0e-**f(r), 3
= cos 6f(r). (32)

Now the perturbing term due to a magnetic field H along
the z-axis is (cf. Chap. II, 7)

eH
rrU l7kt>~ 7 , CO = r -

,

d<f> 2mc

and the changes in the energy of these three states due to the

field are thus
n= 1,2,3.

/

\^U^n
v

functions being normalised, this gives for the three

states of (32)
Hjigt 0>

the same result as on the old theory.
This treatment, moreover, identifies I with the angular

momentum of the atom.

13. THE ELECTRONIC SPIN

The hypothesis that the electron possesses a mechanical

moment (angular momentum) equal to one half quantum (|^),

and a magnetic moment fiB (one Bohr magneton) has to be

introduced into physics for the following reasons:

(a) According to wave mechanics atoms in which one electron

is outside a closed shell (e.g. Na, Ag) should in their normal

states have the quantum number I equal to zero and should

thus have no magnetic moment. The experiments of Gerlach

and Stern on the splitting of beams of atoms by an inhomo-

geneous magnetic field show, however, that for the silver atom,
for example, the ground state splits into two in a magnetic
field. Since the multiplicity of a state with angular momentum
in is 2/-fl, one has to assume that the angular momentum of

the atom is i^, and ascribe this to the electron itself.
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(6) Spectroscopic evidence shows that states for which I >

in atoms with one electron outside a closed shell are doublets.

This can only be ascribed to the electron spin, which can have

two orientations in the internal magnetic field which results

from the orbital movement of the electron.

(c) Measurements of the gyromagnetic effect of ferromagnetic
materials enable a value to be obtained for the small change in

angular momentum of a specimen that accompanies a change
in magnetic moment. For iron and nickel the ratio of magnetic
to mechanical moment is e/mc, not ef^mc as would be the case

if the magnetism were due to the movement of the electrons.

This proves the existence of elementary magnets (the electrons)

for which the ratio is efmc. Since the mechanical moment is |ft,

the magnetic moment is ek/2mc, or one Bohr magneton.
In describing the spin, then, we need to introduce a variable

a
z
which can only take two values, 1. a

z jjiBH is defined as

the energy which the electron's spin will have, if a magnetic
field H is set up along the z-axis. It amounts to the same

thing to say that \Ttaz is the component of the mechanical

moment of the spin along the z-axis. The state of the electron

will be described by a wave function x(^)*> the interpretation
of this wave function is as usual that

| x(az) I

2
gives the proba-

bility that, if a measurement were made to determine the

energy of the spin in a field H along the z-axis, the result

would be HjjiB <jz (az
=

1). There are two stationary states

for x(z)'> t>he first, xa (
as)> is defined by the equations

and describes the state of the spin when the energy is known
to be + nxH. The second, xp(az)i

1S defined by

and describes the state of the spin when the energy is known
to be fis H.

In this book these wave functions will be used only in

describing the two-electron problem (cf. Chap. V, 3).



THE ELECTRONIC SPIN 83

The complete description of an electron is by the product of

the orbital wave function </r(r) and the spin wave function

gives the probability that the electron is in the volume element

dr at the point r, and at the same time the spin moment along
the z-axis is \a$i (az

=
I). The orbital function ^(r) will be

little affected by the spin unless the electron is moving with

velocity comparable with that of light, which for electrons

bound in atoms is only the case for the inner X-ray levels.

That the effect is small may be seen most simply as follows.

If an electron is moving with velocity v it produces a magnetic
field of order Tr . 9H =

ev/cr
2

.

The energy of the electron's magnetic moment eh/2mc in such

a field is of order

But, if r is the radius of the atom, h/mr is of the order v, where

v is the velocity of an electron in the atom. Thus the energy
term duo to the electron's spin is of order

which is smaller by the factor v*/c
2 than the energy e2/r of the

electron in the field of the rest of the atom.

If we substitute v~e2
/Ti, the term #2/c

2 is seen to be of order

(e
2
/ftc)

2
. The quantity e2jHc is known as the fine structure

constant, and is equal approximately to 1/137.
For the calculation of the interaction between spin and

orbital moment and for the evaluation, for instance, of the

splitting of p states, one would naturally use the more exact

theory of the electron due to Dirac, and reviewed briefly in

Chapter VII. The analysis given here and the wave functions

X(<T) are more convenient, however, for an elementary treat-

ment of the two-body problem, as given in the next chapter.



CHAPTER V

THE MANY-BODY PROBLEM

1. THK WAVE EQUATION FOR TWO PARTICLES

The problem considered in the preceding chapters has been the

motion of a single particle in a field of force. The state of a

particle has been described by an 'orbital' wave function

ifj(x, y, z) which depends on the spatial coordinates x, y, 2, and

by a spin wave function x(z) depending on the component aa
of the spin moment along the z-axis. In this way a discussion

of the hydrogen atom has been given by treating the electron

as moving .in the field of a fixed proton; and a discussion of

more complicated atoms has been given by treating each elec-

tron as moving in the field of the nucleus and the averaged field

of all the other electrons, so that each electron is given its

separate wave function. This method is, of course, an approxi-

mation; in this chapter, then, we shall develop the theory

appropriate to several interacting particles.

Let us consider two particles of masses m
l9
m2 moving along

a straight line, and having coordinates x
l9
x2 . Suppose also

that the potential energy of the system when the two particles

are at the points x
l9
x2 is V(xl9 x2 ). Then according to classical

mechanics the equations of motion are

3V BV
-

, m 2
CXi

Now if we make the transformation

m
l
x

l
=. -

, m 2 x2
= -

CXi

these equations transform into
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and are thus the same equations as those of a single particle of

unit mass moving in two dimensions with coordinates gl9 2 .

This suggests that in wave mechanics also the treatment of

two particles each moving on a straight line should be the same

as that of one particle moving on a surface. If this is so the

two particles will be described by a wave function i//(xlt x2 ) y
of

which the interpretation will be the following: | if/(xl9
x2 ) \

2dxl
dx2

is the probability that at any moment one particle will be

found with its coordinate between x
l
and x

1 -h dxl
and the other

particle between x2 and x2 -hdx2 . Also this wave function will

satisfy the equation of a particle of unit mass moving in a

plane, namely'

or, transforming back to the coordinates xl9 x29

The treatment can be extended to the problem of two par-

ticles moving in three dimensions. Their behaviour should be

determined by a wave function ^(x^y^z^x^y^z^) of the co-

ordinates of both particles. The interpretation of the wave

function is that, if

P =
i VH^i, </i> *r, *2 > y* zz) ^dr^dr^ (2)

then P is the probability that one particle will be found in the

volume element drl at the point (x^y^z^ and the other in the

volume element drz at the point (xZJ y2,z2 ). The wave function

satisfies the equation

which is the Schrodinger equation for a pair of particles. V is

the potential energy of the particles, both in one another's

field and in any external field.
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The wave function for a pair of particles is thus a function

of six coordinates. It will be realised that the 'wave' repre-

sented by this function is not a wave in any medium with

extension in space.

It will be seen that if the two particles do not interact, and

if one is in a state defined by a wave function ^a(xl9 yly 1 ), and

the other in a state defined by a wave function $b(x^y& z2 ), the

wave function for the pair of particles is the product

t(xi> 2/i V> X2> 2/2> *a)
= 0(*i> Vi> zi) tb(x* 2/2* %)- (

4
)

This is consistent with the interpretation of the wave functions,

and can also be deduced from the wave equation, as the reader

will easily verify.

If the two particles are of the same type (two electrons or

two protons), the form is more complicated than (4), (cf. 3).

2. A PAIR OF PARTICLES IN ONE ANOTHER'S FIELD

Under this heading we include

(a) the hydrogen atom, when the motion of the nucleus is

considered,

(b) the rotation of diatomic molecules; in an elementary
treatment we may suppose that the effect of the electrons is to

introduce a force holding the two nuclei at a certain distance

from each other.

The potential energy function V in (3) is then a function

V(r) of the distance r between the nuclei. The wave equation

(3) can be separated by writingf

(X, Y,Z) are then the coordinates of the centre of gravity of

the two particles, (x, y, z) the coordinates of one particle relative

f For a detailed treatment of this transformation, cf. A. Sommerfeld,
Wave Mechanics, London, 1930, p. 27.
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to axes through the other. The equation transforms into

H* i 8* & d*\ 2
/ P 8* d*\

^A^ +^ +^r^m^
where MQ = m l 4-m2 ,

m* = mlm2/(ml + ra2 ).

Solutions of this equation may be obtained having the form

h2

where / satisfies -^ V2/+ WJ =
(6)

and g satisfies ~ ^ V2
g + (W2 - V) g = (6)

if Wi + W2
= IF. Clearly/ is the wave function of a free particle

of mass M, and represents the movement of the atom or mole-

cule as a whole; g describes the probable length and orientation

of the line joining the particles. Equation (6) is the same as

that of a particle moving in a field in which its potential energy
is F(r), except that w* replaces the mass m of the particle.

2 1 . The hydrogen atom

Equation (6) shows that the quantised values of the internal

energy W2 of an atom consisting of a nucleus of mass M and

charge Ze and an electron are

W = -

where m* = m/(l+ m/M). e,h, and m are scarcely known accur-

ately enough for the difference between m and m* to be

observable directly in the spectrum of hydrogen; but the differ-

ence in the Rydberg constants as deduced from the spectra of

hydrogen (Z = 1) and ionised helium (Z = 2) enables the effect

to be seen and a value of m/M obtained in good agreement
with that from other sources.f

f See, for instance, J. A. Crowther, Ions, Electrons and Ionising Radiations,

7th e<i., Ixmdon, 1944 p. '274.
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2-2. The diatomic molecule

We have here at least three particles to consider: the two

nuclei, and one or more electrons. In what follows we shall as

usual denote the mass of each electron by m and the co-

ordinates of all of them by the single symbol q. The masses of

the two nuclei will be denoted by Ml9
M2 and their coordinates

by
^ = (^,7^)

and R2
= (XZ,YZ,ZZ).

We write the distance between the nuclei as

It was first shown by Born and Oppenheimerf that it is

permissible, to a good approximation, to treat the molecule in

the following way. First we solve (or imagine solved) the

Schrodinger equation for the electrons moving in the field of

the nuclei supposed at rest at the points Rx ,
R2 ;

the solutions

will be a series of wave functions
iftn(Rl9

R2 ; q) with correspond-

ing energy values Wn(R). We then treat this energy Wn(R) as

though it were part of the potential energy of the two nuclei

when distant R apart. In fact we take for this potential energy

(7)

thus adding to W
ri (R) the Coulomb interaction of two nuclei

with charges Z^, Z2 e.

A discussion of some methods of calculating V(R) will be

given in 6; we obtain, for normal and excited states, curves

such as shown in Fig. 21
;
for a stable molecule the ground state

has a minimum, shown at the point P. The value R for which

this occurs is the equilibrium value of the distance between

the nuclei.

t M. Born and J. R. Oppcnheimcr, Ann. Phys., Lpz. LXXXIV, 457, 1927.
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Following the method of Born and Oppenheimer, we then

tfrite down the Schrodinger equation for a pair of nuclei acting

)n each other with a force such that their potential energy is

V(R). This is

-
V(R)}<fl

=
(8)

V(R)

Fig. 21. Energies l'(R) of a diatomic molecule as a function of

the distance R between the nuclei; curve (1) is for the ground state,

curves (2) and (3) for excited states. The vibrational wave functions

for the first two excited states are shown below.

Just as for the hydrogen atom the wave function can be

separated into a factor / describing the motion of the centre

of gravity, and a factor g(R) describing the behaviour of the

line joining the nuclei, that is to say, the vector R. It is this

second function (/(R) which is of interest; it describes rotation
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of the molecule about its centre of gravity, and vibration about

the mean position P. The equation satisfied by y is, writing M
for J/(l/1 + 3/2 ),

O f (9)

which, as for the hydrogen atom, has solutions of the form

(cf. Chap. IV, 5)

g(R) = /

where G(R) satisfies

2M l(l+- W - F ~
This solution describes a state of the molecule in which it is

rotating with / quanta of angular momentum.
Now the function V(R) has, we assume, a minimum for

R = R . In the neighbourhood of this value of JR, then, we

may write

rw-i/j-i
+^W). (..)

where a is a dimensionless constant, in general of order unity.

U is the dissociation energy of the molecule, for most molecules

in the range 2-6 eV. U is thus of the order of the excitation

potential of an atom, and R
()
of the atomic radius. But M is

several thousand times greater than the electronic mass. Thus

the arguments of Chapter IV, 3, show that the radial extension

of the wave function (?, for the first few states at any rate, is

small compared with 7? . It is thus legitimate to use the

approximation (11) for V(R), and also to replace R by RQ in

the term 1(1+ \)/R* in (10). Equation (10) thus becomes

= 0.
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Comparing this with (4) of Chapter IV, we see that x may be

replaced by R R and p by 2f7a//?g: the quantised values of

the energy W are given by

where n in an integer and

Various points may be noted about this formula. The term

h2
l(l+l)/2MRl represents the rotational energy of a molecule

with moment of inertia MR% and I quanta of angular mo-

mentum; it replaces the formula ft
2
/
2
/23/J?g [Chap. IV (1)] of

the old quantum theory. It will be noticed that the interval

between energy levels is smaller by a factor of order ni/M than

the interval between energy levels of an atom. The last term

in (12) gives the vibrational energy. The interval hv between

vibrational levels is of order ^(Mjm) larger than that between

rotational levels. The energy levels of a molecule are thus

crowded far more closely together than those of an atom and

give rise to the so-called band spectra.

2-3. The Franck-Cond,on principle

This states that if a molecule is in a vibrational state such

as that represented by the horizontal line AB in Fig. 21. and

if through absorption of radiation it makes a transition to an

excited electronic state such as that marked (2) in the same

figure, then the energy of the quantum absorbed will normally
lie between AD and BC. It is supposed that the atomic nuclei

are vibrating slowly between A and J?, and that the change in

the electronic configuration is rapid compared with the nuclear

motion.

It will be seen that the energy hv required to make an

electron jump to an excited electronic state in a molecule is in

general greater than the minimum energy required to reach

the excited state.



92 THE MANY-BODY PROBLEM

Exercises

(1) Prove that at temperatures such that kT$>hv the width

(ED in Fig. 21) of the absorption band of a molecule corre-

sponding to a given electronic transition is proportional to T*.

(2) Obtain a solution of the Schrodinger equation for the

potential energy function introduced by Morsef

for the case I = 0.

(3) How much does the value of / affect the equilibrium
value RQ of R, and the vibrational frequency v ? (In the approxi-
mation of 2-2 there is no change with I.)

(4) If the potential energy function near the minimum is

V(R) = -U + a(R- tf
)

2 + j8(/Z
-

)

3/?
,

use perturbation theory (Chap. IV, 9) to evaluate the effect

of the final term on the energy of the first and second vibra-

tional states. In practice how great do you expect this cor-

rection to be ?

3. SYSTEMS CONTAINING TWO OR MORE PARTICLES
OF THE SAME TYPE

In this section we shall discuss certain important properties

of systems containing two or more particles of the same type.

Examples of such systems are the helium atom (two electrons),

the hydrogen molecule (two protons, as well as two electrons),

the oxygen molecule (two oxygen nuclei).

We shall begin by confining ourselves to systems containing
two such particles. We shall first prove, as a theorem in mathe-

matics, that if the system is in a non-degenerate stationary

state with quantised energy, the wave function is either sym-
metrical or antisymmetrical in the coordinates of the two

particles.

By this we mean the following. Let q1
denote the spatial

coordinates (x^y^z^ of one of the particles together with its

f P. M. Morse, Phys. Rev. xxxiv, 57, 1929.
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spin coordinate av if it has a spin.f Similarly, let q2 denote the

coordinates of the other particle. Then the wave function des-

cribing the two particles may be written 0(</i,</2 )- The wave
function is said to bej symmetrical if

and antisymmetrical if

The proof is as follows. For brevity we write I for q^ 2 for q2 .

Tf the wave equation is written

{fl(l,2)-W}0(l,2) = 0, (13)

then the operator //(I, 2) is necessarily symmetrical; i.e.

//(1,2) = //(2,1). (14)

This follows from the fact that the particles are identical.

Suppose, then, we interchange 1 and 2 in equation (13); we
obtain

(//(2,1)-W)

and by (14) this may be wrritten

It follows that 0(2, 1) is a solution of the original wave equation

(13). But we have already stated that 0(1,2) is a non-

degenerate solution; that is to say, for the energy W there is

no other solution satisfying the boundary conditions. Thus

i/r(2, 1) must be a multiple of 0(1, 2), so that

0(2,1) = 40(1. 2). (15)

Interchanging 1 and 2, this gives

0(1, 2) = 40(2,1). (16)

I KIcctrons, protons, and neutrons have a spin, alpha-particles do not.

| Thus the function

/i-#2)
8 f (Zi-z*)

2
)

is symmetrical, cos0 = (2 1
~22 )/r antisymmetricjil, and functions such as

(1 -f*cos0)/r unsymmetrical.
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Multiplying these equations together and dividing by

0(1,2)0(2,1),

we find A 2 = 1.

whence A 1 .

It follows that all non-degenerate quantised solutions are

either symmetrical or antisymmetrical.

The simplest example is the idealised problem of a diatomic

molecule rotating in two dimensions, i.e. in a plane; the rota-

tion is described by the wave functions e ti0
,
where 6 is the

angle which the line joining the nuclei makes with a fixed axis.

Since 6 changes to TT -f when the positions of the particles are

interchanged, it will easily be seen that wave functions for

even values of / are symmetrical, those for odd values anti-

symmetrical. The same is true for the wave functions for

rotation in three dimensions, -FJ

M
(cos 8) eiu$.

We shall next prove that, if a system containing two identical

particles is in a state described by a symmetrical wave function,

it can never ma-ke a transition to a state described by an anti-

symmetrical wave function, and vice versa. This follows at

once from the wave equation which determines the rate of

change of 0, namely (cf. p. 46)

4f = //(!, ^(1,2).

Since H(1 9 2) is symmetrical, the change 80 in which takes

place in time 8t must have the same symmetry as 0. Thus a

symmetrical function will stay symmetrical and an anti-

symmetrical one will stay antisymmetrical, for all time and

under any perturbation whatever.

We must now appeal to experiment, and state that for

electrons, protons, and neutrons quantised states with anti-

symmetrical wave functions are the only states found in

nature, while for certain nuclei, notably He4
,
C12 and O10

, only
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those with symmetrical wave functionsf are found. The evidence

for this wr
ill be given below; we discuss first, however, the reason

why only half the theoretically possible states occur in nature.

Suppose that two particles are under consideration, and that

measurements are made of the position, momentum, and spin
direction of one, which can be represented in the sense of

Chapter III, 3, by a wave function wa (q), and also of the

other, which can be represented by a wave function i(^(q).

Then it might seem natural to set for the wave function

f particles

Then
| w^qj wh(q2 ) \*d^d<h

would be equal to the chance of the first particle having co-

ordinates between q and qi + dq2 and the second between q2

and q2 -f dq2 . But such a wave function tells us more about the

system than we can in fact know about it. If the particles are

of the same type, it is impossible to tie a label on to one of

them, and to say that this is the 'first particle
1

,
and it is this

one that we find at qv The wave function ^(q^q^) should give,

when one writes down and interprets its square 1 |

2
, the chance

that at qt
one particle will be found, and at q% the other, without

making any statement about which is which. If this is the

correct interpretation of the wave function, it is clear that

must be symmetrical. Further, this will be the case if we set

but not for the simple products. Unless, however, we make some

hypothesis as to whether the wave functions should be symme-
trical or antisymmetrical, an ambiguity exists in wrave mechan-

ics; we do not know whether to take the plus or minus sign.

f Particles for which the wave functions are symmetrical are said to obey
Kinstejn-Bose statistics, those for which they are antisymmetrical Fermi-

Dirac statistics.
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4. APPLICATIONS OF THE SYMMETRY PROPERTIES
OF THE WAVE FUNCTIONS

4-1. The exclusion principle

This important principle, first introduced into wave mechan-

ics by Pauli, states that no two electrons in a given atom can

have the same quantum numbers. The validity of this principle

shows at once that wave functions describing electrons are anti-

symmetrical. For suppose two electrons, to the approximation
in which we can neglect their interaction, have the wave func-

tions wa(q), wb(q). The antisymmetrical function formed from

these is

But if wa(q)> u}b(q) are the same function, as they will be if both

electrons are in the same state, this must vanish. Therefore it

is not possible for both particles to be in the same state, if the

function is antisymmetrical.
The wave function w includes the spin coordinate; a more

detailed discussion of the spin coordinates is given in 4-3.

4' 2. Particles without spin obeying Einstein-Bose statistics

If a particle has no spin, it is described by the spatial or

orbital coordinate r = (x, y, z) only. Certain nuclei such as He4
,

C12 and O 16
, already mentioned as obeying Einstein-Bose sta-

tistics, have no spin. We consider rotational states of mole-

cules containing two of these nuclei (e.g. 2 ). The rotational

wave functions of a diatomic molecule are symmetrical! in the

coordinates ra ,
r2 of the two nuclei for even values ofthe quantum

number / describing the rotation of the molecule, antisym-
metrical for odd values of /. Analysis of the band spectra shows

that only states with even values of I are found for 2 and for

the (unstable) molecule He2 . This shows that the nuclei have

no spin and obey Einstein-Bose statistics (i.e. have symmetrical
wave functions).

t This is true for the lowest electronic state; for certain excited states it

may be the other way round, as may be seen from the arguments of 6-3.
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Other evidence can be derived from the scattering of a-parti-

cles in helium, where the symmetry of the wave function describ-

ing the two particles leads to anomalies in the scattering, f
f

4*3. Particles with spin obeying Fermi-Dirac statistics

It has been emphasised in Chapter IV, 13, that the effect

of the spin on the orbital wave functions is small, and that to a

good approximation one can represent the wave function of a

particle with spin by a product of the form

a is here + 1, according as the spin direction lies parallel or

antiparallel to a fixed axis, and x capable of taking two

independent forms x and
xp>

In the same way, then, the wave
function of a pair of particles with spin can be written

where
<//

is a solution of an equation of the type (3) in which

the spin is neglected. The symbol r
l
here denotes x

l9 yl9
z
l9 etc.

Now solutions of this equation, for non-degenerate quantised

states, are either symmetrical or antisymmetrical in 14, r2 ; we

may write them ^^r^r^^^r^r^. Thus the wave function

of the whole system, which must be antisymmetrical for an

interchange of q1 (denoting the whole group xlt y/a ,
z

l ,a1 )
and #2 ,

must have one or other of the forms

where xs> XA are themselves symmetrical and antisymmetrical
in oj, a2 . Now such functions can be formed from x*>Xp only as

follows:

A symmetrical function xs(av az) can ^e formed in three ways:

X(l)Xa(2),

(18)

t Cf. Mott and Mussey, p. 102.
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and an antisymmetrical function XA^V^) *n on 'v one way:

We thus reach the following conclusion. In any system con-

taining two particles with spin, the states can be separated into

those with symmetrical orbital wave functions
i/js , including

usually the ground state, and those with antisymmetrical orbital

functions ^A . Transitions between states writh symmetrical and

antisymmetrical orbital wave functions, though possible, will

have very low probability; to the approximation that the wave

function (17) is valid, they do not occur. All states with sym-
metrical orbital wave functions are singlet states, the two spins

being antiparallel so that they contribute nothing to the

mechanical or magnetic moment; all states with antisym-
metrical orbital functions are triplets, the total spin moment

along a fixed direction being, in multiples of ft, 1, 0, or -f 1.

4-4. The rotational states of H2

The proton has a spin with angular momentum &H and a

magnetic moment of about two nuclear magnetons (^Hj2Mc).

Owing to the smallness of this magnetic moment, which will

influence the orbital wave functions very little, the transition

probabilities from rotational states for which / is even (sym-
metrical wave functions) to those for which / is odd will be

very small indeed. In fact for ordinary purposes hydrogen gas
can be regarded as a mixture of two gases, parahydrogen (mole-

cules in singlet states for which / is even) and orthohydrogen

(molecules in triplet states for which I is odd). Transitions from

one state to the other take place practically only in the presence
of a catalyst which dissociates the molecules into atoms, so that

an atom from one molecule can recombine with that from

another,f In the absence of a catalyst, when the gas is cooled

the numbers of molecules in the various rotational states will

not reach the equilibrium values, because molecules cannot

fCf. A. Farkas and L. Farkas, Proc. Hot/. Soc. A, CMI. 124, 1985; D. D.

Eley, 'The Catalytic Activation of Hydrogen', contribution to AfhwHres in

Catalysis, New York, 104?, vol. 1, p. 157.
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jump from the state / = 1 to I = 0. This fact has an important
effect on the specific heat at low temperatures, which has been

observed experimentally.!

4-5. The helium atom

The Schrodinger equation for two electrons moving in the

field of a nucleus is

= 0,

where //0 = --(Vf + V|)0+ '0, (19)
~*iiL

2 2 2

and where

The first two terms in F represent the potential energy of the

two electrons in the field of the nucleus, and the final term the

interaction energy of the two electrons.

It follows from the arguments of 4-3 that the solutions of

this equation are either symmetrical or antisymmetrical: that

states with symmetrical orbital functions are singlets (known
as parahelium states), that states with antisymmetrical orbital

functions are triplets (known as orthohelium), and that transi-

tions from one series to another have very low probability. In

this section we shall show how to calculate approximately the

energies of these states.

We shall start with the approximation in which each electron

is given a separate orbital wave function, denoted by *f*a (r),

*fjb (r). We shall suppose, moreover, that these functions are

either the same
(ifta

=
i//b ),

or else that they are orthogonal.
Then an approximate wave function describing the pair of

electrons will be

0(1,2) =
^{0rl(l)^(2)0rf(2)06 (l)}. (20)

t Cf. the review by R. II. Fouler. Statistical Mechanics* *Jnd ed., Cam
bridge, 193(i, p. 82.
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The factor 1/^2, if
ifj(l

and ^ft
are normalised, ensures that the

wave function ^(1,2) is normalised, in other words that it satis-

fies the equation

Jj
= 1.

Approximate values of the energy of the atom can then be

found from the formula

W being here the total energy of both electrons.

Substituting for t^(l, 2) we find

W = IJ, (21)

where ,..,
(22)

The integral J is known as an 'exchange' integral.

On the basis of this theory we can give a descriptive analysis

of the level scheme of helium: for the ground state we may set

ifja
=

ijjbJ both being spherically symmetrical functions of the

type Ce~rla
. Then only a symmetrical function of the type

0(ri)0(r2) 1S possible. Bu if one of the electrons is excited,

there exist two states with different energy levels, corresponding
to the two signs in (20) and (21). Moreover the ground state

and the excited states which have symmetrical wave functions

in the spatial coordinates rl5
r2 are singlet states (known as

states of parahelium); the spin wave function is of the form

and so the two spins point in opposite directions and make no

contribution to the mechanical and magnetic moments. The

ground state, for which both electrons have spherically sym-
metrical wave functions, has thus no resultant angular mo-

mentum or magnetic moment at all; excited states, such as
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that in which one electron remains in the Is state while the

other is in a state with orbital angular momentum IH, have

angular momentum of this amount and magnetic moment

p,B L They show a normal Zeeman effect.

The states with antisymmetrical orbital wave functions

(states of orthohelium) have the three spin wave functions

PARAHELIUM ORTHOHELIUM

3Si

25,

Metastable
level

Fig. 22. Energy levels of helium.

given by (18). They are thus triplet states, of total spin

moment one unit of //. Provided that the excited electron

is not in an s state (/
=

0), the spin magnetic moment will

interact with the orbital moment so that the state will split

into three states with different energies. States in which the

excited electron is in an s state will not be split except in the

presence of a magnetic field.

A schematic representation of the energy levels of helium is

shown in Fig. 22.
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We may note heref that the exchange integral is positive.

Thus the triplet levels (orthohelium) lie below the singlet levels.

This may be understood, because an antisymmetrical orbital

wave function must vanish when tj
= r2 and will in general be

small when the particles are close together. Thus the positive

contribution to the energy made by the interaction term

e2/ 1

r1 r2 1

is smaller than for the symmetrical states.

4 6. The structure of atoms iviih more than two electrons

In describing atoms more complicated than helium, the most

convenient approximation is the following:

All electrons are supposed to move in the so-called self-

consistent field. This field, in which the potential energy of an

electron is V(r) y
is defined as follows. For small r

where Z is the atomic number, and for large values of r

At other points it is defined as the field of the nucleus and the

average field produced by all the other electrons, if each of them
is treated as producing a charge density e

\ $(r) |

2
. It will be

noticed that with this definition V(r) is not quite the same for

each electron.

In this field the lowest level, with principal quantum number
758. = 1, is known as the K level. The energy of such a level is

given approximately by the Bohr formula

t For the evaluation of the exchange integrals and suitable choice of the

wave functions fa, fa, the reader is referred to the following authorities:

(i) The original paper on the subject is by W. Heisenberg, Z. Phys. xxxix,
409, 1926.

(ii) A very complete account of the calculations made up to 1938 is by
H. Bethe, Handb. Phys. xxiv, pt. 1, 342, 1933.

(iii) L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics,
New York, 1935, p. 210.
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for Z = 79 (gold), for instance, this is 84,000 eV. By the Pauli

principle two electrons can be accommodated in the K level.

The next set of levels, with principal quantum number 2, can

accommodate eight electrons, two in s states (I
= 0) and six in

p states (I
=

1). The electrons in these states form what is

known as the L shell. There are in fact three L levels; the level

o 0-5 i-o
o

1-5 2-0

Atom radius r in A

Fig. *23. Radial charge distribution for the different electron

groups of K+
.

Lj, with quantum number / = (2s), which can accommodate

two electrons, and the levels Lfl and Lin ,
with 1=1 (2p), and

spin directions either parallel or antiparallel to the direction of

the orbital momentum.

Owing to the Pauli principle, an electron cannot normally

jump from an L to a K level, since all the states in the K level

are occupied. Under electron bombardment, however, a K
electron may be ejected from an atom; an L electron may then

fall into the vacant level, a quantum of X-radiation being
emitted. Processes of this type are responsible for the emission
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of X-ray lines. The transitions from the Lu and LUI levels to

the K level give rise to the lines known as K
ai
and K^.

Fig. 23 shows the charge distribution calculated by the

method of the self-consistent field in the several shells of the

potassium positive ion. The quantity plotted here is r2
|</f|

2
,

and thus the number of electrons between spheres of radii

r, r-f dr, divided by rrdr.

Some points to notice about the shell distribution of electrons

in atoms are the following:

(1) Normally only the outermost shell of electrons in an

atom is responsible for chemical binding, and is thus affected

by the chemical state of an atom. Therefore the frequencies
and breadths of most X-ray emission lines, unlike optical

spectra, are almost unaffected by the state of chemical binding.
Breadths and structures of lines which start from the outer-

most level do, however, depend on the chemical state of the

atom (cf. 7).

(2) Any closed shell, K, L or M, i.e. one in which all the

states of a given principal quantum number are occupied, has

a spherically symmetrical charge distribution, and no resultant

spin or magnetic moment.
The reader will easily verify that for an L shell, for instance,

the distribution is spherically symmetrical; since the three p
functions have the form

*/(r), Vf(r), *f(r),

the resultant charge density is

(3) Information about the charge density in atoms can be

obtained experimentally from the intensities with which atoms

(for example in a crystal) scatter X-rays. The argument is as

follows. If a polarised light wave falls on a free electron, the

classical formula for the scattered amplitude, measured at a

point P at distance R from it, is|

E e2 . .

t Cf. Chap. IV, 10.
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here
<f>

is the angle between the electric vector E of the incident

wave and the line joining the electron to the point P. This

formula is not in fact valid for free electrons, for which the

Compton effect with recoil of the electron is to be expected;
but the formula may be used to calculate the coherent scattering

by an atom of radiation for which the frequency is great com-

pared with the absorption frequencies of the atom. One assumes

that if e P(r) is the charge density, then each element of volume

dr scatters a wavelet of amplitude

and that these wavelets interfere. The resultant amplitude

may be calculated exactly as in Chapter II, 7; corresponding
to formula (11) the resultant amplitude is

n^ (23)

i_ ET/m f
aj

r>/ , sin(47rrsin0/A)where F(0) = P(r) ,~ --TT/Y
Jo 4T7/- sin 0/A

20 is here the angle of scattering and A the wavelength of the

X-radiation.*)* F(6) is known as the atomic scattering factor.

For an unpolarised wave sin
<f>
must be replaced by

(4) The diamagnetic susceptibility depends critically on the

radial extent of the wave function; it is given byj

Ne* C=
2)
S^l

I For a review of this subject, see, for example, R. W. James, The. Optical

Principles of the Diffraction of X-rayft t London, 1948, chup. HI. For some
recent determinations of the electron density in the ions of alkali -halide

crystals, see R. Brill, H. G. Grimm, C. Hermann and C. Peters, Ann. Phys.,

Lpz., xxxiv, 393, 1939, or the review of this work by A. Eucken. Lehrbuch

der chemischen Physik, 1944, vol. n, pt. 2, p. 537.

J Cf. E. C. Stoner, Magnetism and Matter, Leipzig, p. 108.
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where N is the number of atoms per unit volume, and the

summation is over all the n electrons of the atom.

A number of approximate methods exist for obtaining wave
functions of atoms. There is first of all the method of the self-

consistent field due to Hartree, already mentioned. Then
various improvements to the Hartree method, notably that

of Fock, have been developed. f Finally the Thomas-FermiJ
method is available for atoms too complicated to be treated

by other methods.

5. INTERATOMIC FORCES AND THE FORMATION
OF MOLECULES

Forces between atoms are of the following types:

(a) Van der Wools attractive forces.^ A calculation based on

wave mechanics shows that, at sufficiently large distances r, all

atoms and molecules attract each other with a force of which

the potential energy V(r) is of the form <7/r
6

. This force is of

importance in considering the equation of state of imperfect

gases, and is responsible for cohesion in solid or liquid rare

gases, methane (CH4 ), solid hydrogen, etc. The constant C is

given in terms of the absorption frequencies vr and the related

oscillator strengths fr
.

If we make the approximation that the oscillator strengths
of all lines can be neglected except those of one line for each

atom, of frequencies v, v
,
then

(f
2 \ 2

1

__r
I

47T2 TW / in/ (v -f v'
)

For the rare gases, where no other attractive force comes into

play, the van der Waals attraction is rather weak, on account

of the high values of the excitation potentials. This is shown

by the low values of the melting and boiling points of these

substances.

f A review of these methods and of the results obtained have been given

by D. R. Hartree, Rep. Prog. Phy*. n, 118, 1040-7.

t Cf., for example, Mott and Sneddon, p. 158.

For further details compare, for example, Mott and Sneddon, p. 14.
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The van cler Waals force is the only force between neutral

atoms when their charge clouds do not overlap.

(6) Repulsive overlap forces. As soon as two closed shells

overlap, a strong repulsive force sets in; in principle this can

be calculated by the methods of wave mechanics, but the

calculations are laborious and the results obtained not always
reliable ;f it is usual to use empirical forms such as

Ar~* (,9-9-12), or Be^r

for the potential energy of two atoms distant r apart.

(c) Ionic forces. It seems to be a good approximation to treat

alkali-halide crystals as made up of positive metal ions and

negative halide ions, the crystal being held together by the

electrostatic attraction between them, and the ions kept apart

by the repulsive overlap forces. Much work has been done in

explaining in terms of these forces the properties of crystals

built of atoms or ions of which the outermost electronic shell

is closed; e.g. alkali-halides and solid rare gases. This, however,

is not strictly a part of wave mechanics, and we shall confine

ourselves to giving references here.J

6. COVALENT FORCES

Apart from the van der Waals forces and electrostatic attrac-

tion between ions, forces between atoms arise only when the

wave function of one atom overlaps that of the next. The

valence forces of chemistry are of this type.

f For a recent attempt, cf. G. VVyllie and E. F. Benson, Proc. phys. Soc. A,

LXIV, 276, 1U31.

J For alkali-halides and crystals held together by ionic forces, see the

following: M. Horn and M. Goppert-Mayer, Jlandb. Phys. xxiv, pt. 2, G25,

11)83; N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals,

1940, chap, i; .1. Sherman, Chem. Rev. xi. 153, 11)32.

For criticism of the approach under (c) above, and the refinement? intro-

duced by wave mechanics, see P. O. Lowdin, ^4 Theoretical Investigation into

some Properties of Ionic Crystals, Uysala, 1940.

For a discussion of solid rare gases, see J. K. Lennurd-Jones and B. M.

Dent, Proc. Roy. Soc. A, cxm, 073, 1927.
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We shall discuss valence forces in the following way:

(a) We shall give a treatment of the movement of an electron

in the hydrogen molecular ion H2+, where the problem is

that of the movement of a single electron in the field of two

protons.

(6) We shall discuss the hydrogen molecule H2 by a method
known as the method of molecular orbitals,f in which each

electron is pictured as shared between the two atoms in the

same way as in H^, so that each electron can move inde-

pendently from one atom to the other.

(c) An outline will be given of an alternative mathematical

approach, that of London-Heitler, in which each electron is

located on its own atom; they are allowed to change places,

but not to move across independently of each other.

It will be realised that (6) and (c) are alternative approxima-

tions; the true wave function will lie somewhere between the

two extremes.

(d) Finally we shall enumerate some of the main points in

the application of wave mechanics to more complicated
molecules.

6-1. The molecular ion H2
+

The essential point in the treatment of this ion is that for

every state of the electron in a single atom there will be two

states for the molecule. Consider, for example, the Is state of

the atom, with a normalised function of the form

where r is the distance from the nucleus. If the two nuclei are

at points defined by the vectors

t The name is due to J. E. Lennard-Jones, Trans. Faraday Soc. xxv,
8, 1929.
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then
I
r - r

tt |

=
V((*

-
*,)

2 +
(.'/
-

</)
2 + (*

- s) 8
}

represents the distance of the electron from the point ra ;
a

similar expression may be written down for the distance from

rb . Then Ave may write

a(r)
= Mr-ra |)

for an electron in the ground state in atom a, and

for an electron in the ground state in atom 6.

An electron in the molecule may be located on either of the

atoms; one may write the wave function

By symmetry it is just as likely to be on one atom as on the

other; that is A 2 must be equal to J52
,
so that A = B and the

two possible wave functions (unnormalised) are

and H^ = ^(r)-06 (r). (24-2)

Moreover, these have different energies; using the formula for

the energy W from Chapter TV, (13), in the form

W
f| T \

2dr ----

|

VF*//WT, (25)

we see that W( 1 A) = / J,

where A =

J =
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Exercise

Show that A
the energy W.

B by minimising the expression (25) for

We shall not discuss the numerical evaluation of the integrals

A, /, J, since formula (25) gives only an approximate form for

the wave function of H2
+

; actually it is possible to obtain an

exact solution of the Schrodinger equation for an electron

moving in the field of two nuclei.f For our purpose, however.

5 IP/? (atomic
i

units)

-0-5

W

-10

-15

-2-0

Fi#. 24. Energies of an electron in the states of (1) even and

(2) odd parity of the ion // 3+. The full lines represent the energy of

the electron, the dotted lines with the addition of the term c 2
/K.

we need only notice that the symmetrical solution has no

nodal surface; the energy of the electron will tend to W as

the distance K between the nuclei tends to infinity, and 4H^
as R tends to zero. WQ is here the ionisation potential of

hydrogen, we4
/27i

2
. The electron's energy W(R) thus exerts an

attractive force between the two nuclei
;
and it is not surprising

t Cf. O. Burrau, K. Danske Vidcnsk. Sehk. vn, 14, 1927; K. A. Hylleraas,
Z. Phys. LXXI, 780, 1931; G. Steensholt, 2. Phytt. c, 547, UWC.
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that when the potential energy of the nuclei in one another's

field is added to give the total energy V(R),

one obtains a curve with a minimum (Fig. 24). On the other

hand the state (24-2) with odd parity tends, as R tends to zero,

to the 2p state of an electron in the field of a charge 2e, which

has energy WQ . The electron thus exerts no attractive force;

and when the term e2/R is added the potential energy leads to

repulsion only.

l/

Fig. 25. Wave functions of the hydrogen molecular ion; (0), (6),

and (c) are plotted along the line joining the nuclei; (a) and (6) show

the two states derived from * atomic wave function, (c) and (d)

those derived from p atomic wave function.

The considerations of Chapter VI show that optical transi-

tions are allowed between the two states considered here.

The states formed from atomic wave functions of p sym-

metry are also of interest. If the nodal surface is perpendicular

to the line joining the nuclei, the wave function corresponding

to the lower of the two states will be as in Fig. 25c. If, on the

other hand, the nodal surfaces are in the plane of the paper,

the wave function will change sign in going through the paper,

but when they are plotted along any line parallel to the line

joining the nuclei the wave function will be as in Fig. 25d.

States for which a nodal surface passes through the line joining

the nuclei are called TT states; those for which the line joining

the nuclei contains no node are called a states.
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6-2. The method of molecular orbitals for the hydrogen mole-

cule H 2

In this method the two electrons in the molecule are both

described by the same wave function T(r), namely, one of the

type (24* 1) illustrated in Fig. 25a. The wave function of the

pair of electrons in the ground state is, including spin co-

ordinates.

The ground state, like the ground state of the helium atom,

thus has no magnetic moment due to its electrons.

Excited states can be treated in a similar way. As for helium,

there is a singlet and a triplet series of terms.t
The error in the method of molecular orbitals is that it

neglects altogether any correlation between the positions of the

electrons; it suggests that it is as likely that both electrons are

located on the same atom as that they are on different atoms.

ti-3. The method of London -Heitier as applied to H2

This method of approach goes to the opposite extreme, and

starts with an approximation in which the two electrons are

located definitely on different atoms. The electrons are allowed

to change places, but not to move independently from atom
to atom.

The wave function that we use must be antisymmetrical in

bhe coordinates of the two electrons, including spin. The two

possibilities, starting with Is wave functions
ifja (r),ifjb (r) for an

electron in either atom, are

) ) (26)

). (27)

The former is the wave function of the ground state. Here the

intisymmetrical spin wave function, as for the helium atom,
*ives a singlet state, with zero spin moment.

t It rnu*.t be emphasised that each electronic state is split into a very
afge number of states by the quantised rotational and vibrational states

liscussed in 2-2 above.
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The energy W of the two states is, as in (21) and (22),

(7J)/(1A),

where /,/ are formally as defined on p. 100 and

A =

The wave functions are now not orthogonal and A does not

vanish, as it does for the analogous case of the helium atom.

The integrals can be worked out.f The exchange integral J is

negative, and, together with the energy e2/R of the Coulomb
interaction between the nuclei, leads to attraction between the

atoms for state (26), repulsion for (27).

In the absence of overlap between the wave functions, / is

just equal to the energy of a pair of free atoms, and J and A
vanish. Cohesion of the type described here is a result of over-

lap, and in general maximum cohesion occurs when the overlap
is a maximum.

6-4. Some general features of chemical binding

The considerations of the previous section show

(a) that a bond involving two electrons, one from each atom,
can only be formed if the two spins are antiparallel;

(6) that a strong bond involves considerable overlap between

the wave functions.

We shall apply these principles first to the water molecule

H2O. The oxygen atom has two electrons in the state 2s and
four in the state 2p. Thus two of the 2p wave functions are

necessarily paired already, while two are ready to form bonds

with hydrogen. But these two must be different wave func-

tions; they must necessarily have their nodal surfaces at right

angles to each other. That is why the lines joining the nuclei

of the two hydrogen nuclei to the oxygen nucleus make approxi-

mately a right angle with each other (actually 105).

t The original paper is that by W. Heitler and F. London, Z. Phys. xuv, 455,

1927. See also reviews of later work by H. Bethe, fiandb. Phys. xxiv, pt. 1,

535, 193.3; and Pauling and Wilson, Introduction to Quantum Mechanics, p. 340.

8
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Another important feature of the theory of chemical binding
is the occurrence of hybridised wave functions. An example is

the behaviour of carbon in diamond or in such compounds as

CH4 . Here each carbon atom is surrounded at the four corners

of a tetrahedron by atoms with which it forms a homopolar
bond. It would not be correct to say of the four outer electrons

in carbon that two are in s states and two in p states; it is

correct to ascribe to each of them one of four 'hybridised' wave

functions, which extend as far as possible in the four tetra-

hedral directions, so as to give the maximum overlap. These

four wave functions are

(28)

The student is recommended to verify that they have the

desired properties.

7. THE THEORY OF SOLIDS

In this section there will be space only to summarise a few

of the more important contributions made by wave mechanics

to the theory of solids.

7-1. Concept of a conduction band

Consider any normally non-conducting crystal as, for

example, sodium chloride. Suppose that an extra electron is

brought from outside and placed on one of the metal ions Na+
.

Then according to wave mechanics such an electron will have

the following property. It will not stay localised on one ion,

but will be able to jump freely from one ion to the next.

Moreover, in a perfect lattice, if an electric field F is applied,
the electron will be accelerated, the acceleration being given by
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m
eff ,

the so-called effective mass, may differ somewhat from

the mass of a free electron, but is of the same order of magni-
tude. The concept of a mean free path does not arise for an

idealised lattice in which all the ions are held rigidly in position.

This property of an extra electron brought into a crystal can

be deduced from the following properties of the solutions of

the Schrodinger equation for an electron moving in a periodic

field. Let V(x,y,z) be the potential energy of an electron

moving in the field that it will encounter within the crystal.

Then V(x,y,z) will have the same period a as the crystal

lattice. The Schrodinger equation is

,

The solutions may be shown to have the form

</,
= ^X(#,//,2), (29)

where uk(x,y,z) is periodic, with the same period as the lattice.

This may be compared with the form

if,
=

for a free electron. Thus the wave function of an electron in

the lattice is similar to that of a free electron, and represents a

particle moving in a definite direction without being scattered.

It is modulated, however, by the field of the lattice.

A mean free path arises if the electrons are scattered, and

this occurs only if atoms are displaced from their mean position

by heat motion, or if impurities are present. In either case the

electron wave is scattered. In the case of an atom displaced
from its mean position a distance x, the amplitude of the

scattered wave is proportional to x, and the intensity is pro-

portional to x2
. Since the mean value of ar

2 varies as the tem-

perature, so does the resistance of a metal.

Corresponding to each wave number k there is an energy
value W(k). For small k, W is of the form

W(k) =
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though for higher energies it is more complicated, and bands

of forbidden energy occur. The first band of allowed energies
is known as the 'conduction band'.

7-2. Semi~condwtors

Semi-conductors are substances for which the conductivity
increases with increasing temperature. Most but not all are

activated by impurities; that is to say, their conductivity

depends on the presence of small traces of impurity present in

concentrations from one part in 106 to about one per cent. It is

thought that these impurities are dispersed in atomic form, and
that each such impurity centre can release an electron with the

expenditure of an amount of energy W that is not too big

compared with kT, and is small compared with the excitation

energy of a free atom. The electrons released are, as we say,

'in the conduction band'; they are free to move through the

lattice.

If there are N impurity centres per unit volume, it can be

shown that in thermal equilibrium the number n of free elec-

trons (electrons in the conduction band) is per unit volume

where N = (2TrmkT/h
2
)*.

The conductivity a is obtained by multiplying by ev
t
where v

is the mobility,J a = nev.

Both N and v vary with temperature, but frequently the

exponential is the predominating term, so that the slope of a

plot of Ino- against 1/T enables an estimate of W to be made.

Actually the slope of such a curve decreases with increasing
concentration of impurity,f for a reason which is not yet fully

understood.

The current theory of the nature of the impurity centres

which explains qualitatively why the values of W are so much

f Cf. The Report on the Heading Conference on Semi -conductors, London,
1951.



SEMI-CONDUCTORS 117

smaller than the ionisation potentials of free atoms, is as fol-

lows. An impurity atom can be accepted by a non-metallic

substance in various ways. For instance, ZnO accepts excess

zinc by taking a zinc ion (Zn
4

)
into a so-called interstitial

position, which means into one of the small gaps between the

zinc and oxygen ions of the crystal lattice. Alkali-halides

accept excess metal through the presence of lattice sites from

which the anion (the halogen ion) is absent. In either case the

centre carries a positive charge, so that the field round it is

e/Kr
2

9
where K is the dielectric constant of the medium. The

centre has to be neutralised by an electron. If an electron is

'in the conduction band', that is to say, free to move from

atom to atom, its potential energy in the field of the centre is

e2/i<r. It can thus be held in quantised energy levels, exactly

similar to those of an electron in the field of a proton, except
that in all formula e2 must be replaced by e2/* and m by metf

.

The binding energy is thus

m

For materials such as silicon (*~17), activated by suitable

impurities, this gives, assuming meff /ra~l, about 0-01 Ve, in

good agreement with experiment.")"

If the wave function of the bound electron is of the form

(7e~r/a , the quantity a may be defined as the 'radius' of the

orbital. It should be given by

a~i<n2
/me* = K x 0-54,4, (31)

or about 1A for silicon. The impurity atoms are thus swollen

owing to their presence in the dielectric.

It is not suggested that these formulae, (30) and (31), are

exact since the assumption that the potential is e2//cr cannot

be true right up to the dissolved ion. However, they give

correctly the order of magnitude.

f Cf. G. L. Pearson and J. Bardeen, Phys. Itev. LXX\ , 863, 1949.
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7-3. Metals

These are treated by a method similar to the method of

molecular orbitals. We shall illustrate this by considering a

'one-dimensional' metal, i.e. a row of N atoms, each containing

one electron. It is convenient to think of this row as bent into

a closed loop (Fig. 26), round which the electrons can move.

We then ascribe to each electron a

wave function of the type

e***uk(x), (32)

where x denotes the distance of the

point considered from a fixed point
on the loop. In order that the wave

function (32) may join up smoothly

again at 0, k must satisfy the quan-
tum condition

where L is the circumference and n is an integer. We now intro-

duce the Pauli principle, that only two electrons, with spins in

opposite directions, can be in states described by the wave func-

tion with given k. Thus states are occupied with all integral values

of n between \N; higher states, at the absolute zero of temper-

ature, are empty. The electrons have kinetic energies between

zero and H^ai
= 7r

2H2
(NjL)

2ISm. Since (N/L) is the interatomic

distance, this energy is of the order of several electron volts.

The important conclusion of this calculation is that the

electrons in a metal at the absolute zero of temperature are not

at rest, but have energies between zero and some value Wmtâ
of this order, and hence large compared with kT. This band
of energy levels is known as the Fermi distribution of levels.

The calculation can be extended to three dimensions; the

formula for W is then

_
a" -

2m

where N is the number of electrons per unit volume in the metal.
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It will be seen that, since H;nax ^> kT, raising the temperature
will excite only a fraction of the total number of electrons of

order kT/Wm&x ,
and that these will each acquire energy of the

order kT. Thus the total thermal energy of the N electrons

in a metal is a numerical constant multiplied by

The specific heat per electron is thus a multiple of

and thus linear in the temperature.
The electronic specific heat is important at low temperatures,

since that due to lattice vibrations varies as T3
. It has been

observed at the temperature of liquid helium for a number of

metals.|
An exact discussion of the specific heat involves a treatment

of Fermi-Dirac statistics, the statistics obeyed by particles

such as electrons for which wave-functions must be anti-

symmetrical. For this the reader is referred to text-books on

statistical mechanics.

The most direct experimental proof of the existence of a

broad band of energy levels is provided by the form of the

X-ray emission bands which result when an electron makes a

transition from the conduction band to an X-ray level (Fig.

27a). The width of the band gives directly the width of the

band of occupied levels.J

We show in Fig. 276 the usual energy level scheme for a

metal; the band of occupied levels of width Wm^ (the Fermi

distribution) and the work function
<f> representing the minimum

energy required to remove an electron from the metal. This

can be determined either photoelectrically or from thermionic

emission.

t Cf. N. F. Mott and H. Jones, Theory of the Properties of Metato and

Allmjft, 1936, pp. 182, 193.

} For a review of this subject from the experimental point of view see,

for example, II. W. H. Skinner, Rep. Prog. Phys. v, 271, 1938.



120 THE MANY-BODY PROBLEM

Fig. 27c shows the energies in the presence of a field F
pulling electrons away from the surface. OA represents the

potential energy eFx of an electron in the field. If the field is

strong enough, electrons can be pulled out of the metal through

zero

Fig. 27. Energy levels of electrons in metals, (a) X-ray emission;

(6) Surface of a metal; (c) Strong field emission.

the potential barrier BOA, by 'tunnel effect'. The calculation

of the chance of penetration through the barrier can be made

by the method of Chapter II, 6; the chance, that an electron

with energy WmAX incident on the barrier will penetrate it, is

e-t, where

The current emitted per unit time is obtained by multiplying
this by an approximately constant factor. One thus obtains the

result that the current depends on the field F through a formula

of the type ,* r current = const. e~-

where F9 is a constant.



CHAPTER VI

TRANSITION PROBABILITIES

1. GENERAL PRINCIPLES

The problem to be treated in this chapter is the following. An
atom is originally in a given stationary state, for example, the

ground state. It is then perturbed by a passing charged par-

ticle, by a light wave or in some other way. After the particle

has passed, or after the light wave has irradiated the atom for

a certain time, the atom may have made a transition to one of

the other stationary states. Wave mechanics enables us to

calculate the probability P that this has occurred.

The principles by which such a calculation can be made are

as follows. We denote the coordinates of the electron or elec-

trons in the atom by g, and write the Schrodinger equation in

* form
(H-WMq) - 0,

so that the quantities Wn are the energies that the atom can

have, and $n (q) is the wave function describing the atom when
the energy is Wn . Introducing the time factor, the complete
wave function is

This satisfies the time-dependent wave equation

*W
i~st

of which the general solution is

(i)

where the A n are arbitrary constants. Since, however, in the

problem to be considered the atom is initially in the ground
state, we must take for the initial form of the wave function

(2)
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We then introduce the potential energy of the electrons in

the perturbing field, for example, that of the passing particle

or light wave. Explicit forms are given in (7) and (22). The

potential energy will vary with the time; we write it V(q\ t). The
wave equation for the electrons in the atom then becomes

. (3)

This equation, being linear in the time, serves to define *F at

all subsequent times, since we are given the initial form XF of

*F by (2). We may expand this wave function in the form (1)

as indeed we may expand any arbitrary function of q in a

series of the characteristic functions
*ftn(q) of the unperturbed

atom; but the coefficients An will now be functions of the time.

We therefore write the expansion of the wave function Y at

time t in the form

The coefficients An (t) may be calculated; this will be done in

the next paragraph. First, however, we are concerned with

their interpretation. Their interpretation a new physical

assumption mentioned already in Chapter III of this book

is that
|

An (t) |

2 is the probability at time t that, under the

influence of the perturbation, the atom is in the stationary

state n. A wave function such as (1) or (4), in which all or

several normal modes are excited, describes a state of affairs

in which we do not know in which state the atom is; we are

only given the probability that it is in one state or another.

Exercise

Prove that ] |

An (t) |

2 does not vary with the time.
n

We shall now show how to calculate the coefficients. If we
substitute (4) into (3), we obtain
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and hence, multiplying by ifi*t
ili l/h

, and integrating over all

space, we find

Everything in the right-hand side is known except, of course,
XF.

An approximate solution may be obtained if we assume that

the effect of the perturbing field is so small in the time con-

sidered that all the coefficients An remain small compared with

A
,
so that the probability of excitation is small. In this case

we may replace T in the right hand of (5) by its original form

*F ft ; we have therefore

JA
~~ *^ |Vn r V0""f (")

where OJ
I(Q
= (Wn W^IU.

The value of A
Jt
at time t can be obtained by integrating from

to t; \A n \

2 then gives the probability that at time t the

atom is in the state n.

The approximation used here should give accurate results

for the excitation of an atom by a light wave; one can always
take the time short enough for all the coefficients A

n to be

small compared with A
,
unless the intensity of radiation is

so great that the probability of excitation is no longer pro-

portional to E2
. For the case of a passing particle, the approxi-

mation will no longer be good for close collisions.

2. EXCITATION OF AN ATOM BY A PASSING PARTICLE

As an example we shall work out in this section the proba-

bility of excitation of a hydrogen atom by a passing particle,

such as a proton. A proper treatment"!" describes the incident

particle as well as the electron by a wave function; but the

method given here, in which the proton is treated as a moving
centre of force, does in fact give the correct answer if the mass

of the particle is great compared with that of the electron.

t Cf. Mott arid Massey.
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In Fig. 28 the atom is situated at the point 0, the particle

moves along the line AB and passes the point C at the time

t = 0. At time t
y then, its coordinates are (vt,p, 0). Here v is

the velocity of the particle, and p the 'impact parameter' or

Fig. 28. Showing the excitation of a hydrogen atom at O by a

passing proton moving along the line AB.

distance between the path of the particle and the nucleus of

the atom. The perturbing energy V is thus the potential energy
rf an electron at the point (x, y, z) in the field of the proton, so

that

e2
.

i
-. (7)

For the purpose of this example we shall consider only distant

collisions, so that p is large in comparison with x,y>z. We can

then approximate for V. It may be written

-c2

v " "'
where R is the distance OP, and 6 the angle between OP and

the vector r = (x, j/, z) giving the position of the electron. This

gives, for large J?,

r cos
0\+

~R-}'
V~-
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Now r cos 6 is the projection of the vector (r, ?/, z) on OP; this

in equal to , _.4

Substituting, we find

f2 e*(vt.x+py)
H*,!M;0 = -

S
--

51
.

where 7? -
{(itf)

2 + ^2
}*.

We must now use this form to calculate the transition proba-

bilities from (6). Owing to the orthogonal properties (Chap. IV,

8) of the functions 0,,, the first term in V gives no contribution.

We see at once, integrating (6) from / = oo to / = -f oo, the

whole time of the collision, that

where x,,
- U^x^dr, y,,

=

The 'matrix elements' xnQy etc. have already been introduced

(Chap. IV, 10), and values given for the hydrogen atom. We
have thus only to discuss the integration over t.

If the impact parameter p is large compared with f/o>n0 ,
it

will be seen that the integrand oscillates a large number of

times in the range of t, of order p/v, in which it is not small.

Under these conditions the integral is small; it may be shown

to behave as exp( ^ton0/v). Thus as a rough approximation
we may assume that all collisions are ineffective for which p is

greater than this value v/o n0 .

This gives an interesting formula for the distance at which

collisions cease to be effective in ionising or exciting an atom.

If A
(
=

2nc/ajnQ ) is the wavelength of the radiation (light)

necessary to excite or ionise the atom, the critical distance is

A v
p^ ,

27TC

so long as t'/c^l, so that no relativistic correction need be

applied.
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If, on the other hand, p is small compared with v/w nQ ,
the

term exp(ia) l)0 t)
can be neglected; the integral (8) then re-

duces tot . 2 , .

2
i

2 *
' ~'

Thus the chance P that the atom is excited into the state n by
the passing particle is given by

p 4*4
l!/B ol* ,

v"
-

+ 9 9 ,- P<-
- - ()

If N particles cross unit area per unit time, the chance per
unit time that the atom is excited is

H2 v2
j p2

'

The upper limit of this integral may be taken to be ^/o> /<0 , and

the lower a quantity of the order of the radius a of the atom,
below which the approximations do not apply; thus for the

mean chance per unit time that the atom is excited we obtain

aojj

The loss of energy per unit length of path, dW/dx, for a par-

ticle going through a gas containing N atoms per cm.3 is thus

dW 87rA
T

e4 / v
\

dx
-
-^^^ol^ol

1^ ),
(10)

where the summation is over all states into which a transition

can occur.

These formulae express the rate of loss of energy in terms of

the quantity // /J0 ,
the 'dipole moment' of the transition to n.

It is interesting to make an estimate of the rate of loss of

energy without using quantum mechanics at all. At the

moment /> the particle P exerts a force on an electron at O

(Fig. 28) of which the component in the direction CO is

f Put
vtjp

= tan 8.
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The momentum, transferred to a free electron at O during the

collision would thus be

5 (^) + ;P* pv

so that the electron if initially at rest would acquire energy

The corresponding quantum mechanical formula for a bound

electron is, from (9).

where the summation is over all states n to which the electron

can be excited without violating the condition ajnQ <v/p. Since

we should expect that for near collisions the absorption of

energy would be about the same as for a free electron, this

suggests that the sum

should add up to unity. This is in fact the case; the quantity

/n0 defined by

f _ co o,
|2
_ Tri^o

,

./ttO I #7<0 I

-~ ~
I Jfii

I2
iiO I

is known as the 'oscillator strength' of the transition to n,

and, as already stated in Chapter IV, 10,

S/,,o
= I-

Certain interesting results follow from (10). As the velocity

v of an ionising particle passing through matter decreases, it

will be seen that the rate of loss of energy increases, until

v/wn0 becomes of the same order as a. It will be seen that

this is the case when the velocity of the particle becomes

comparable with that of the electron in the atom. When v is

very small, although the atom may be very much perturbed

by the passing particle during the collision, when the particle
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has gone away the wave function returns to its original form.

The collision is then what we call adiabatic.f

8. TRANSITIONS TO UNQUANTISED STATES

A perturbing field, for example, the field of a passing charged

particle or light wave, may ionise as well as excite an atom.

Thus we have to consider transitions also to unquantised states.

In order to use the formulae of the last section, the simplest

procedure is to quantise the unquantised states by imagining
the atom as enclosed in a large box of side L, say. For instance,

suppose that the final state of the electron is represented by the

wave function of a free particleJ

<Mr) = e'<*>. (11)

If we introduce our box of side //, together with the boundary
condition that

i/rk shall be periodic with period L, then k has

the values - _ .

x , rk = ^(n^n^n^jL,

where w
1 ,?z 2 ,

H 3 are integers.

Therefore the number of states for which k lies between the

limits Jta and k^ + dk^k} and A'2 -hd 2 ,
k3 and Ar3 -fdAr3 is

L^dk
l dk^dk^[(27T)^. (12)

Since the normalised wave function for the free electron is

it follows that the chance that after time t the electron will be

found in one of the states within the limits described by (12) is

*dt. (13)
o

1 fe

t For further references on the treatment of collisions by the method of

impact parameters, see the following: Niels Bohr, 'The Penetration of Atomic
Particles through Matter', K. Danske Vidensk. Selsk. xvm, no. 8, 1, 1948:

Mott and Massey; E. J. Williams, Itcv. Mod. Phys. xvn, 217, 1945.

J The IKS* of the free electron wave function (11) represents, of Bourse, an

approximation. One ought to replace it by the wave function of an electron

with positive energy moving in the iield of the atom. For details, cf. Mott

and Massey, chap, xiv, $ 2-1.
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Alternatively one may require the probability that the electron

is ejected in a direction lying in a solid angle <2Q and with

energy lying between W and W + dW. It will easily be verified,

since k = 27r<J(2mW)lh, that the number p(W)dW of states in

this range is given by

p(W)dW =

= L*mz
vdQdW/h*, (14)

where v(= ^(2W/m)) is written for the velocity of the ejected

electron.

Thus the chance per unit time that the electron is ejected

with energy between W and W + dW, and its direction of

motion in the solid angle dfl
y
is

m*vd&dW .

,
... IT, , ,-

dt.
,

1 f
t - e

\?tj

4. TRANSITIONS DUE TO A FORCE ON AN ELECTRON
WHICH IS PERIODIC IN THE TIME.

This case is of great importance because it includes the action

of a light wave on an atom. If v is the frequency with which

the force changes, we shall show that transitions only occur

with finite probability when the energy of the atom changes

by hv. We have thus in this section to deduce from wave
mechanics the well-known expressions of Bohr and Einstein for

the absorption of energy by radiation, on which the quantum
theory was first built up.

It is convenient to write the perturbing term V(q; t) in the

wave equation (3) in the form

V = VQ e~i<t}t+ complex conjugate

where VQ(q) is some function of the coordinates q of the electrons

and o> = 2-rrv. Then (6) shows that the chance Pn that, after

time t, the atom is in the state n, is given by

P I A tfM*rn 1
An (

l ) I >
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where

- = (n \
F

1 0)e"o-"<+ (n \
F *

| 0) e*"">+<">< (15)
i at

and where (n \

VG \ 0) = \ifj* VQ^ dr.

This formula shows clearly that, unless to = o>n0 ,
An does

not increase with the time. The sudden application of the field

at time t = will give a certain small probability for transitions

into any excited state ;f but thereafter the probability will not

increase unless the condition stated above is satisfied. But this

condition may be written

hv =\Wn-W \. (16)

We have shown therefore that transitions will only take place

effectively if the Bohr frequency condition is satisfied.

Suppose that Wn > W$\ that is to say that we are dealing with

a transition from a lower to a higher state. Then o>
7,

is positive;

we have only to consider the first term in the right-hand side

of (15); thus integrating with respect to the time, and putting
in the condition that An should vanish when t 0, we have

Thus, squaring,

pn (t)
= p i ( i

v
1 o) i-iriz^o- . (17)n

(
W TiQ~~ w )

If we now set o> equal to o>,, ,
the probability Pn (t) increases

with the square of the time, and not linearly with the time as

we should expect on physical grounds. This apparent contra-

diction, however, can be resolved as follows.

If the final state n is quantised, the concept of radiation of

exactly the frequency given by (16) acting on the atom is in-

correct. The absorption lines have a certain width; the problem
of physical importance is to calculate the chance of excitation

t The fact that the exciting radiation begins at a certain time means that

its Fourier analysis must contain frequencies other than v.
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of the atom by radiation covering a band of frequencies

wide compared with this. This is done in the next section, and

it is shown that the probability increases linearly with the

time. If the final state is unquantised (i.e. if the calculation

refers to the ionisation of an atom by a light wave) we may
use the fictitious quantisation of the last section. The atom is

enclosed in a 'box' of side L, and the matrix element becomes

(*IKJO) =
]

The number of states p(W)dW with energies between W and

W +dW is given by (14). The chance that after a time t an

electron is ejected from the atom into the solid angle rfQ with

any energy whatever is then given by the integral

'pn (t) P(Wn)dWnt

the integral being over all energies Wn . The quantity Pn (t)

defined by (17) has, however, a strong maximum when wn0
=

aj,

<ot being large; and thus for large t the integral becomes

We have here putdWn Ma}n0 and taken outside the integral sign

all terms except the one which gives rise to the sharp maximum.
To evaluate the integral we put (ct>7?0 o>)

= x; we obtain

f00
2(1 -cosz)*

I
2"

J-oo X

The integral is equal to 2?r; thus finally the chance that an

electron is ejected with velocity v (
= Hk/m) lying in the solid

angle rffi is
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3. EMISSION AND ABSORPTION OF RADIATION

Planck in his theory of black-body radiation was the first

to introduce the hypothesis that the energy of a light wave of

frequency v is quantised, being a multiple of hv. Einstein

explained the photoelectric effect by applying this idea to the

interaction between radiation and matter; light can only give

up its energy to matter in quanta of amount hv. Niels Bohr in

his theory of the hydrogen spectrum introduced the comple-

mentary idea, that an atom in making a transition from one

quantised state to another would radiate quanta of energy of

frequency determined by (16).

Einstein was the first to give a correct quantitative descrip-

tion of the intensities of radiative processes. Corresponding to

the transitions between any two states n and ra of an atomic

system, he introduced three probability coefficients, Anmt Bnnm>
and Bmn . The coefficient Anm is defined as follows. Anmdt is

the probability per time dt that an atom initially in the state n
will make a transition to the state w, in the absence of all

perturbation from outside. The coefficient Anm is supposed to

be independent of t, of the past history of the atom and of the

process by which it has been brought to the state n.

The coefficients Bmn and Bmn are defined as follows. Suppose
the atom is in the presence of radiation, unpolarised and inci-

dent in all directions with equal intensity, and such that the

energy per unit volume with frequency between v and v-f dv is

I(v)dv. Let vnm be the frequency corresponding to a transition

between the states n, m. Then if the atom is in the statem (the

lower state) the chance per time dt that it will make a transition

to the upper state n with the absorption of a quantum of

radiation is Bm>n l(vnm)dt. Also, if it is in the upper state n, the

chance that in the presence of radiation it will make a transi-

tion to the ground state with the emission of a quantum is

{Anm + Bnm I(Vnm)}dt.
In attempting to calculate the A and B coefficients by means

of wave mechanics we are faced with the following difficulty.
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The B coefficients may be calculated by a direct application

of the analysis already given, the light wave being treated as

an alternating electromagnetic field; so also may the proba-

bility of the photoelectric effect, the ejection of an electron

from an atom. The A coefficient, however, cannot be calcu-

lated in this way; at first sight there seems to be no perturba-
tion which will cause a spontaneous transition.

A more elaborate theory than will be developed in this book

is necessary to account for the A coefficient. Such a theory
was first given by Dirac.f In this theory the radiation field

is treated as a quantised vibrating system which interacts with

the atoms, and, even when no radiation quanta are present,

the interaction enables an excited atom to jump to a lower

state and create one. For further details of this theory, the

reader is referred either to the original papers or to more

advanced text-books. J

Fortunately, the A and B coefficients are connected by equa-
tions which depend on thermodynamics. These are

(19)nm mn ^

They may be proved as follows. Suppose that a number of

atoms of the type concerned are in thermal equilibrium in an

enclosed space at temperature 5P, together with the black-body
radiation characteristic of that temperature. Then in a given
interval of time as many atoms must make the transition

upwards as downwards. Thus if I(v) refers to the intensity of

black-body radiation, and N
1t,Nm are the numbers of atoms in

the states n
y m,

m I(Vnm )}
= N,HRIHn I(Vnm ).

But by Boltzmann's law

t P. A. M. Dime, Proc. Roy. A'oc. A, cxiv, 248, 1927.

{ E.g., W. Heitler, quantum Theory of Radiation, 2nd ed., 1944.
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Now if we make the temperature tend to infinity, Nn and Nm
become equal and /(v) becomes large; it follows that the two B
coefficients are equal. We may therefore write, dropping the

suffixes n, m, A \

We know, however, from the application of statistical mechan-

ics to the radiation itself that the density of black-body radia-

tion is quite independent of the type of atom present, and is in

fact given by

Comparing (20) and (21), (19) follows.

We shall therefore, in the next section, limit ourselves to

the calculation of B, the coefficient of absorption or forced

emission.

6. CALCULATION OF THE B COEFFICIENT

We make use of the method of 4. The simplest approach
will be to treat the light as an oscillating electric field E cos a)t

and neglect the effect of the magnetic field on the electron.

A more rigorous approach which gives approximately the same

result will be mentioned at the end of this section.

We take the electric vector E along the z-axis; then the

potential energy of the electron is

V(x, y, z; t)
= eEz = eEQ z cos cut. (22)

This, as in 4, can be written

F = F e-^ + F*e^,

where VQ = F* = &EQ z.

Thus (15) can be integrated, subject to the condition that

Ai(0 = O when t = 0, to give

,

'

t*wMO -fco

(23)
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where zn0 denotes the matrix element (already introduced on

pp. 75, 125)

We now consider the two terms within the square brackets.

If CD is not equal or very nearly equal to o>n0 , the function

oscillates with t\ it does not increase. If aj o>n0 vanishes, how-

ever, it increases with t. Thus, ifwe are dealing with absorption,

so that the initial state is below the final and o>
7{0 (

= Wn 1

is positive, we need consider only the former term and values

of a) near to o> w0 . In the case of stimulated emission the initial

state of energy W is above the final state, co nQ is negative and

only the second term need be considered.

In the former case, that of absorption, we retain the first

term in (23). Taking the square, we find

I 1 /A 12
f ^^n^Hft i **\ * COS \

I

A n (t) \

=

This function, giving the chance that after time t the atom is

in the state n, has as we expect a strong maximum for wn0 to.

To obtain an expression for the absorption coefficient, we sup-

pose that the atom is irradiated with light such that the energy

density between the frequencies y, v + dv is I(v)dv. The energy

density in the light wave with electric vectorEQ cosa>t is the mean
value of (E* + #2

)/87r, or of#2
/47i and thus #2/877. Replacing E*

by $irl(v)dv in the expression above for
|

An (t) |

2
, we see that the

chance that after time t the atom is excited into the state n is

p = 2,
*

\
2
r
/

/ J

Owing to the strong maximum at o> o MO ,
we may take I(v)

outside the integral sign. The substitution of p. 131 enables the

integral to be evaluated. Writing

dv = do>/27r, (o>w0 o>) t = x,

we obtain P =
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The integral as before is equal to 2ir\ thus

P
(pŷ

which increases with t as it should.

To obtain the B coefficient we must average over all direc-

tions of polarisation; we obtain

B =
ITP ( '

x
|2 + ' y P + '

* |2) ' (24)

The A coefficient may be obtained from (19), and is

Ko! 2 + l3/,J
2 + |znol

2
). (25)

It is of interest to express this in terms of the oscillator

strength already introduced on pp. 76, 127; we find, since

normally all but one of the three matrix elements in (25) will

vanish,

If one inserts numerical values one finds

A = 2-2 x 1C8
-^

sec."1
,

where A is the wavelength in ft. For a line of strong intensity

/ lies, say, between 0-1 and 1. Thus the transition probability
is about 108 sec.~1 for a line in the visible region, but much more
for lines in the X-ray region.

Finally we must add a few remarks about the approximation

(22) for the field of the light wave. Here we neglect both the

effect of the magnetic field, and the variation of E within the

atom. The correct perturbing term is actually, for a light wave

moving along the z-axis with electric vector along the z-axis

complex conjugater



CHAPTER VII

RELATIVISTIC AND NUCLEAR
DEVELOPMENTS

1. DIRAC'S RELATIVISTIC WAVE EQUATION

No fill] account of Dirac's relativistic theory will be attempted
here. In his original paperf on the subject Dirac showed that,

in order to write down a wave equation linear in the time
(it-

must be linear for the reasons given in Chap. Ill, 2), and

satisfying the principle of relativity, it was necessary to ascribe

to the electron a fourth degree of freedom, or spin; he showed

that, if this were done, the properties previously ascribed to

the spin could be deduced without further assumptions from

the equation. In any relativistic treatment x,y,z must be

treated on the same footing as it; thus the equation is linear in

djdx, 8/dy, djdz as well as d/dt. The state of the electron is des-

cribed in Dirac's theory byfour wave functions
<f/ly </r2 > 0a> 04 >

and
the quantity j i/r |

2 of the non-relativistic theory is replaced by

0101 +020? +030? + 0404-

The relativistic theory should be used in all cases where the

velocity of the electron approaches that of light, and also, even

when this is not so, to calculate the separation of spin doublets.

Some of the more important applications are the following:

(a) Calculation of separation of the ns and np states of

hydrogen (they coincide only in the non-relativistic approxi-

mation) and the spin doublet separation of the np state. f

(b) Calculation of the separation between L1
and Lu levels

in the X-ray spectrum. These levels have quantum numbers

t P. A. M. Dime, Proc. Roy. Soc. A, cxvn, 010, 1028. Cf. also Quantum
Mechanics.

I Dirac, Proc. Roy. Soc. A, cxvn, 010, 1928, and Quantum Mechanics,

1947, p. 208; H. liethc, Handb. Ptiys. xxiv, pt. 1, 311,

Cf. H. Bethe, Handb. Phys. xxiv, pt. 1, 822, 1988.
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2s, 2p. The separation is here partly due to the relativistic

correction, comparatively large for heavy nuclei since the mean

velocity of the electron increases with Z, and partly to the fact

that the field no longer has the Coulomb form owing to the

screening effect of the other electrons.

(c) Calculations of the photoelectric effect and Cornpton
effect for high energies of the electrons.f

(d) Calculations of the scattering of fast electrons by atomic

nuclei, and of the polarisation of the electron beam produced

by such scattering. In the scattered beam it may be shown

that the spins are no longer oriented at random4
(e) Scattering of fast electrons by electrons.

2. THE POSITRON OR POSITIVE ELECTRON

The positive electron was discovered independently by

Anderson|| and by Blackett and Occhialini.^f It is a particle

with the same mass as the electron, but carrying a positive

charge. It is unstable, being produced when fast electrons or

y-rays interact with nuclei, and being capable of combining
with an electron to produce one or more y-ray quanta.
The theory given by Dirac to account for the positron is as

follows. According to relativistic theory, the relation between

the energy W of a particle of mass m and its momentum p is

W 2 = c2(m
2 c2 -fp

2
). (1)

If p is small this gives

W = we2
-f- $p

2
lm -f terms in (1/c

2
),

so that the formula for the energy includes the energetic equiva-
lent me2 of the mass as well as the kinetic energy p

2
l2m.

Formula (1) gives for W
W = c^(m

2 c2 +p2
).

f A discussion of this subject is given by W. Heitler, Quantum Theory of

J Mott and Mussey, chap. iv. [Itadiation.

Mott tmd Mussey, p. 365. Original paper, C. Moller, Z. Phys. LXX, 786, 1981.

J! C. D. Anderson*, Phys. Rev. xu, 405, 1932.

f P. M. S. Rlackett and G. P. S. Occhialini, Proc. Roy. Soc. A, cxxxix,
99, 1933.
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In relativistic theory before the advent of wave mechanics it

was possible to limit the physically significant values of W to

the positive square root only; W could only change continuously
and would not be able to pass through the forbidden values

between me? to reach the negative values. In wave mechan-

ics, on the other hand, the theory allows a particle to jump
from any one allowed state to any other under the influence

of a suitable perturbation. A suitable perturbation is the com-

bined influence of radiation and of an atomic nucleus. Nothing

corresponding to such transitions appeared to occur in nature;

in fact it was not clear before the discovery of the positive

electron exactly what significance the states of negative energy

might have.

To overcome this difficulty in the theory, Diracf made the

following proposal. He suggested that the states with negative

energy should all be occupied, in the same sense that the states

of the Fermi distribution of a metal are all occupied (Chap. V,

7-3). Space is thus to be filled with a uniform 'gas' of electrons

of infinite density, and with a uniform distribution of positive

charge to neutralise their charge. Or at any rate space was

assumed to behave as if this were so.

The immediate consequence of this hypothesis is that a

quantum of radiation, or a charged particle of kinetic energy

greater than 2mc2
,

is capable in suitable circumstances (for

example, in collision with a nucleus), of lifting an electron

from the continuum into a state of positive energy; one would

thus observe the creation of

(a) an electron,

(6) a vacancy in the continuum, which OppenheimerJ first

showed would behave like a positive electron.

As is well known, the creation of such pairs is frequently
observed. They can be created for instance by X- or y-rays of

frequency v such that

l\v> 2mc2
,

t Cf. Quantum Mechanics, p. 272.

t J. R. Oppenheimer, Phys. Kev. xxxv, 939, 1930.

10
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as will be clear from Fig. 29. They cannot be formed in free

space by a single quantum, since it is impossible to conserve

at the same time energy and

___ momentum; they can, however,

I ?
be formed when radiation falls

2
_

lnc
_ ______ zero on matter. The calculation of

the intensity of pair formation

by X-rays is carried out by the

method of Chapter VI, 8; the
^

Fig. 29. initial and final wave functions

are those for an electron, with

positive and negative energy values respectively, moving in

the Coulomb field of the nucleus.

3. APPLICATIONS TO NUCLEAR PHYSICS

Applications of wave mechanics to the nucleus can only be

made in certain special cases, because of our ignorance of the

nature of the forces between the nucleons (protons and neu-

trons) of which the nucleus is believed to be made up. Problems

to which wave mechanics can be applied are of three main types:

(a) Problems where, for one reason or another, only the

Coulomb part of the field round a nucleus is important. In this

category we may place the theory of a-decay, of the internal

conversion of y-rays and perhaps the theory of /3-decay.

(6) Problems in which some assumption is made about the

force between nucleons, and wave mechanics is used to calculate

the consequences of the assumption. Attempts have been made

along these lines to calculate the binding energy of the deuteron

(one proton with one neutron), and of heavier nuclei.

(c) Problems, such as those concerned with the compound
nucleus and the spacing between the energy levels of the

nucleus, which do not depend on the law of force assumed.

In this book we shall discuss briefly only two of these prob-

lems, the theories of a- and of /?-decay. The first is the best

J For details of the calculation, see W. Heitler, chap. iv.
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known illustration of the quantum mechanical tunnel effect,

the second gives an illustration of how, in a field still not

completely understood, it is possible to obtain useful results

from wave mechanics.

3-1. The theory of oc-decay of radioactive elements

The quantitative explanation by Gamowf and by Gurney
and Condon J of the emission of a-particles from radioactive

nuclei was one of the earliest successes of wave mechanics.

The facts to be explained are as follows. Given N atoms of a

radioactive substance, NXdt of them will disintegrate spon-

taneously in a time interval dt, where A, the decay constant, is

independent of the time, and thus independent of the age of

the nucleus. For different radioactive substances A has a very
wide range of values from c. 10~18 sec."1 to c. 106 sec."1

;
there

exists a roughly linear relationship between log A and the energy
W with which the particle is emitted.

A nucleus of mass number M + 4 (i.e. containing M + 4 nu-

cleons) and of atomic number Z+2 will show a-decay if and

only if energy is released on removing an ex-particle to form a

nucleus (M, Z): we shall assume this to be the case, the energy
difference being W. Consider then the potential energy V(r) of

this a-particle at a distance r from the product nucleus (M, Z).

At large distances

at small distances, comparable with the radius of the nucleus,

V(r) must take a form corresponding to an attractive force,

because the a-particle is held within the nucleus for a long time.

The form of the potential energy may be as in Fig. 30, curve (b):

we have, of course, no detailed knowledge of the attractive part

of the curve, and indeed the a-particle may be supposed to lose

its identity within the nucleus.

t G. Gamow, Z. P%.v. j,xi, 204, 1928.

t R. W. Gurney and K. U. Condon, Mature, Lond. cxxu, 4JJ9, 1928; Pfiys.

Rev. xxxin, 127, 1929.

10*
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The a-particle eventually escapes with positive energy W\
within the nucleus it may be pictured as having the same

energy W. Thus the a-particle within the nucleus is separated
from the outside by the 'potential barrier* AOB of Fig. 30; it is

possible for the a-particle to penetrate this barrier by tunnel

Fig. 30. Potential energy of an a-particle in the field of a nucleus.

effect. Thus the decay constant A, the chance per unit time

that the a-particle escapes, is given by

where v is the velocity of the a-particle within the nucleus, rf is a

quantity of the dimensions of its diameter and P the chance that

a particle incident on the potential barrier should pass through
it. The quantity v/d gives an estimate of the number of

times per second that the a-particle impinges on the potential

barrier; no very accurate estimate need be made of it, since

P varies very rapidly indeed with the various parameters.
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We set v~ 109 cm. /sec., rf ~ 10~12
cm., and obtain

A= 1021 Psec.
- 1

.

P may be calculated by the W.K.B. method (Chap. II, 6);

equation (10) of Chapter II gives

(2)

m is here the mass of au oc-particle, and the integration is from

A to B in Fig. 30.

A convenient approximation for evaluation of this integral

is to replace V(r) by the form shown in Fig. 30, curve (c),

namely
V(r) = ^~ r>r ,

= const. r < r
,

r being a 'nuclear radius'. It is not suggested that V(r) will

actually have this form, but our complete ignorance of the true

form of V(r) within the nucleus, or of whether the interaction

can be represented by a potential energy function at all, makes

it as good an approximation as any other. Then (2) becomes

where rx
= 2Ze*/W.

The integral may be evaluated by setting

cos2 14 = r/r,;

/ 9-1

we find InP = -

where cos2 w =
^"o/

r
i- Since rj/^ is small, we may write

and therefore
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It will be seen that rl and Z are the most important factors in

determining P, and hence the decay constant; these, obviously,
define the size of the potential barrier through which the tunnel

effect occurs.

Substituting for rl9 we see that a linear relation exists be-

tween InP (and hence In A) and ^W or v, the velocity with

which the a-particle emerges. The relation may be written

log10 A
= ^- --- + CVr ,

where A = 21,

:

B = _--~ 1-2 x lO'cm./sec.-
1

.

Tun 1

.-
Bin 10

The relationship between log A and v, the velocity of the emitted

a-particle, explains the empirical Geiger-Nuttall law, according
to which the decay constants of radioactive elements increase

exponentially with the energy. Also the very large variation

in decay constants, from 105 sec.~1
(thorium C) to 0-5 x 10~18

sec.
~~1

(uranium) are explained by the large variation of the

term BZ/v for velocities varying between about 1-5 and

2 x 109 cm. /sec.

Detailed comparison of observed decay constants and veloci-

ties with the formula enable estimates of r , the nuclear radius,

to be obtained. The values deduced lie between 0-5 and

1-0 x 10-12
cm.f

3-2. The theory of fi-decay

In Gamow's theory of a-decay explained in the last section,

the decay constant A is in principle deduced from constants

already known, namely, the atomic number Z, the energy of

the emitted particle, its mass m, e and H. The unknown nuclear

f For further details of the theory of radioactive decay, see G. Gamow,
Atomic Nuclei and Nuclear Transformations, 3rd ed., p. 174, Oxford, 1949.
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radius enters only as a small correction. To develop a theory
of /?-decay, on the other hand, one has to make a new assump-

tion; this is that a neutron will change into a proton with the

creation of an electron and a neutrino if energy is gained

thereby; or that a proton will change into a positive electron

and a neutrino, again if energy is gained. And also one assumes

that the probability that such a transition occurs, the electron

and neutrino appearing in given quantised states with wave

functions
ifje(x,y,z),i)jn(x,y,z), is proportional to

| i/^i/r,, |

2
, both

functions being taken at the point where the nucleon is. This

theory, due originally to Fermi,f cannot account for the abso-

lute magnitude of the decay constant; a new constant of nature

has to be introduced for this; but it can account for the varia-

tion of the decay constant from element to element, and for

the shape of the /?-ray spectrum.
One speaks of the creation of an electron for the following

reason. It is impossible to envisage an electron as within the

nucleus before it appears outside; the radius of the nucleus is

of the order 10~12
cm., so the wavelength of the electron would

have to be of this order; it will easily be seen that such a

wave-length corresponds to c. 108
eV, which is much greater

than the energies of c. 106 eV with which they are actually

emitted.

The neutrino is a particle with no mass or charge moving
with the velocity of light. As for a light quantum, its kinetic

energy Wtl
and momentum p fl

are related by the relativistic

equation, which follows from (1) when m is put equal to zero,

Wn = cp a .

It is supposed to have a spin \H, like an electron. It is intro-

duced into the theory primarily in order to account for the

continuous )8-ray spectrum; it is supposed that a beta-active

nucleus has a given amount of energy WQ to dispose of when
the neutron changes into a proton, but that this may be

distributed between the electron and neutrino in any way.

t E. Fermi, Z. Phyx. i.xxxvm, 101, 11KJ4.
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For small atomic numbers Z and high enough energies, one

can describe the electron after emission by a plane wave. The
neutrino can be so described in any case. Thus if the whole

system is supposed shut up in a box of volume V as in Chapter
VI, 3, both

*ftt
and $n are of the form

Taking the nucleus at the origin, we see that
if*e , I/JH at that point

are both independent of p. Thus the chance per unit time for

the creation of an electron and neutrino is the same for all

states in which they may be found.

Now the number of states of the electron with energies
between Wc

and Wf+dWe
is proportional to

where pe is the momentum of the electron. With each of these

states is associated a number of states of the neutrino pro-

portional to p\. Thus the chance that the electron is emitted

with energy between W
e
and H + dH is proportional to

(3)

Now for p"^ we write p%

where WQ as before is the energy available for the reaction.

pf
is given in terms of We by the relativists c formula

so that (3) becomes

const. e(e
2 - 1 )* (

-
c)

2
de, (4)

where e = WJmc
2 and e = W0/mc

2
.

This formulaf gives the dependence of the number of emitted

/J-particles in the continuous spectrum on the energy .

t For a comparison of (4) with experiment, see, for example, H. Bethe,

Elementary Nuclear Theory: A Short Course on Selected Topics; or G. Gamow
and C. L. Oitchfield, Atomic Nuclei and Nuclear Transformations^ 3rd ed.,

Oxford, 1949.
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