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PREFACE.

Xt is the Author’s official duty to give a course of lec-
tures annually, during a session of six months, upon
all the leading branches of stience usunlly compre-
hended under the title « Natural Philosophy.” In
doing this, he has hitherto followed no particular text-
book, but has given his students the opportunity of
taking very full and correct notes, and has endeavour.
ed, as far as was in his power, to make the course in-
troductory to some of the best treatises on the subjects
discussed. As the lectures, though restricted to such
subjects as are adapted to an elementary class, embrace
rather a wide field, experience has shown the necessity
-of shortening the time hitherto devoted to Statics and
Dynamics, that less injustice might be done to various
other subjects, attention to which was demanded in the
cultivation of a science so rapidly progressive. The






PREFACE. vii

well as attractive inducements to prosecute his re-
searches, in the perusal of several works that have been
lately presented to him from the Cambridge press;
particularly of Mr. Whewell's Mechanics and Dyna-
mics ; the translation of Venturoli’'s Mechanics, by Mr.
Cresswell ; the Mathematical Tracts, by Mr. Airy, and
Mr. Woodhouse’s Astronomy.






ELEMENTS

OF

THEORETICAL MECHANICS.

-STATICS.

1. WHEN any number of forces, that, acting separately, would
produce motion in a body, are applied at the same time to
that body, and so that no motion ensues in consequence of
their. application, they are said to balance one another, and
the body, as affected by them, is said to be in equilibrio.

" . 2.. Forces thus exerted. are called pressures;.and the sci--
ence which treats of the .laws.of pressure in relation to the-
equilibrium of solid bodies is denominated Statlcs, from a.
Greek word signifying to weigh. .

. 8. Pressures.are pof varipus kinds ; but, viewed abstrwtly,
as the objects of Statlcs, dlﬁ'er in only two respects, quantity
and direction. ' - - '

.:4..The quantity of a.pressure is estimated by reference to
some.standard force of the same kind, for instance a certain
weight. One pressure is said to be equal to another, when,
being applied in an opposite direction, it would balance it;
or, when each of the two, being separately applied in the same
direction, would balance the same third force. Two such

B f
L3



2 " ELEMENTS OF THEORETICAL MECHANICS.

pressures, when their actions conspire, constitute a double
pressure; three a triple pressure ; and so on.

5. When a pressure is balanced, not by a force tending to
produce sensible motion in the opposite direction, but by. the
resistance merely of what we regard as an immoveable obsta-
cle, that resistance is called reaction, and is measured by the
force which it destroys.

6. The direction of a pressure is that in which it would
produce motion, if unbalanced. '

7. In Statical investigations the directions of pressures are
represented by straight lines, and their proportional quanti-
ties by lines or numbers. '

8. The Equivalent or Resultant of two or more pressures is
that single force which would require the same force or forces
as they do to produce an equilibrium.

9. The subordinate laws of Statics may be derived, by rea-
soning strictly demonstrative, from a few very obvious and
general ones, which, as referable to the principle of the suffi-
cient reason, or to familiar and universal experience, we shall
state as physical axioms.

10. Az. 1. If two equal pressures be applied to the same
point, in directions making an angle, their resultant will be
a force directed towards the same parts, and will bisect that
angle,

%l Az. 2. The resultant of forces applied to a point will
not be affected by the application or removal of forces, under
the influence of which, considered separately, that point would
be in equilibrio.

12. Adz. 8. If two equal forces, acting towards the same
parts, be applied perpendicularly to the extremities of an in«
flexible physical straight line, they will be balanced by a
force equal to their sum applied to the middle point of the
line, in an opposite direction : or their resultant is a parallel
force equal to their sum, and bisecting the distance between
them.
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For the resultant of the original forces, and that of their
increments, must be in the same direction’; otherwise that of -
the final resultant would (by Cor. 1.) be different from that
of the first, which is contrary to the supposition: and the two
resultants being in the same direction, the final resultant
must be equal to their sum.

16. Cor. 4. If the angles formed by the dlrectlons of two
constituent forces and their resultant be constant, while: the
constituent forces are increased or diminished in any the same
ratio, the resultant shall be increased or dlmmlshed in that
ratio.

. Let @ and & be a.ny two constltuent forces, and their reault-

ant r.. By Cor. 2.2 o and —-—, acting in the directions of a and

b, will have the resultant in the direction of r. N’ow léé

A and B be any other foroes in the ratio of a to b, actmg in
the directions of @ and & respectively, and R their resultant.. If

A= Ra
m

, and consequently B = 12—, R= —Z‘—’-‘-,(by C’or.'2.)

and consequently,accordmgasA7 pm d B~ =nb , R will

be = ':n' , (Cor. 3.)

, A:a=R:r. (Eucl. Book v. def. 5.)

11. Prop 1. Theorem. Two pressures, represented by the
adjoining sides of a parallelogram, are equivalent to one re-
presented by the diagonal which passes through the pomt, at
which the sides meet.

Lemma. If the equivalent of two pressures, which are in a
constant ratio to each other, ‘and are represented by the ad-
joining sides of a rectangle, ‘be always represented in direc-
tiori by the diagonal passing through the point at which they,
meet, it shall be represented by the same in quantity also.

. Let ABCD (Fig. 2.) be a rectangle, and AC the diagonal
pabsmg through the point to which the forces are applied ;
draw EAF perpendlcular to AC, and let fall the perpendicu-~

L)

~
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8 ELEMENTS OF THEORETICAL MECHANICS.

presented by the sides of this other triangle whlch are pnral-
lel to their respective directions.

Again, let 4BC (Fig. 9.) be a triangle whose mdes repre-
sent three forces, . related as above described, and let a&¢ be
another triangle whose sides a b, b ¢, ca meet 4B, BC, C4
perpendicularly in d, e and £. Addaf is a four-sided figure,
and d and £ being right angles, d 4 f and d a /. are together
equal to two right angles, that is to daf 4 dac. Hence
~Zbac==BAC. In the same.manner it may be proved
that ~abc = < ABC, or ~acb=ACB. Consequently
the triangles are similar, and the perpendicular sides are
homologous ; or the forces are represented in quantity by
the sides of abc, which are perpendicular to their respec
tive directions.
<, Let da, fc and eb now revolve equally, so as to make
equal angles with d 4, £ C and ¢ B respectively; the one of
the angles Ada, Afa becoming as much greater thar a
right angle as the other is less, their sum will still be = two
right angles as before: and so of the rest: .. abec is stilk
similar to ABC, and the latter part of the corollary is meni-
fest. - e -
21. Cor. 8. Each of three forces related as constituents
and resultant, and not in the same straight line, or each of
three such forces which are applied to one point and are ix
equilibrio, may be represented in quantity by the sine of the
angle contained by the directions of the other two: and any
~ two of them are reciprocally as the perpendiculars drawn to
their -directions from the same point in the direction of the.
third force. -

. For if 4B or P (Fig. 8.) be represented by the sine of
= BDA or of = DAQ, or its supplement I’ A4Q ; then, since
the sides of a plane triahgle are as the sines of its opposite.
amgles, AC or BD, that is @, will be proportionally repre~
sented. by. the sine of DAP or of its supplement I’ AP, and
AD or AD/, thatis R, by the sine of DBA or of its .sup=
plement BAC.. Moreover, since P: Q = Sine QAR : Sine.
PAR, P : Q =.DF :. DE, these lines DF and DE, drawn
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from any point D in the direction AR perpendicular to 4Q
and AP, being the sines of QAR and PAR to the radius
AD: aud in the same manner may the other analogies above
indicated be deduced.

22..Cor. 4. Let the forces which are represented by ‘the
lives AB and AC, or 4B and BD, (Fig. 6 and 7.) be denot-
ed by the numerical symbols a, b ; and let the angle BAC, or
its equal FBD, be denoted by ¢; Then since 4AD* = AB*
+ BD* %= 2 AB.BF = AB* BD‘ + 2 AB.BD cos. 4, the
mlyucal expression of the resultant r will be .

a4+ b + 2ab cos. 4,

and if « and B be the angles which the direction of » makes
w:th those of @ and b respectively,

Sm.a.--—Sm. 0, Sm.B--—Sm 60 (21.)

- 23, Cor. 5. Any number of forces acting at one point
may be reduced to one resultant.

* Let three forces acting at 4 (Fig. 10.) be represented by
the lines 4B, AC and AD ; from B and C draw lines parallel
to AC and’ 4B, meeting in E; then AE represents a force
equivalent to 4B and AC. From E and D draw lines paral-
lelto AD and AE meeting in F; then shall AF be the re-
Sultant of AE and, AD, or of AB, AC, and AD ; and by the
same mode of proceeding may any number of forces be com-
pomnded. The graphical process will be simplified by omit-
ting some parts of it which are unnecessary in practice. Thus
all that is essential to the composition here proposed is to
draw BE equal and parallel to AC, which determines the
point E; and EF equal and parallel to 4D, which deter-~
mines F. A and F being joined, AF will represent the re-
mltant sought. This has suggested the following elegant
Statical theorem :— If forces acting at a point 4 be repre-
sented by all the sides of a polygon but one, taken in conse-
cative order, as 4B, BE, EF, FD, the resultant of the whole
will be represented. by the remaining side 4D.” Or it may
have occurred as an obvious extension of the observation, (18.)
The resultant of 4B and BE is AE; that of AE and EF
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" -nlation, which should be employed when

we have given in the 1st Case, one side

e angles; in the 2d, two sides 4D, 4C,

. s in the 8d, two sides 4D, DC, with

#ie opposic to the latter; and in the 4¢h, the three

Jtve operation here described is termed the resnimtion of
wrees; and s of the greatest utility in the investigation of
Suatical principles, as well as in their practical application.

26. Cor. 8. When we resolve the force 4D (Fig. 8.) into
4ACand 4B, or AC and CD, and the latter is not at right
angles to 4@Q, it may be further resolved into CF and FD, of
which the former is in the direction of that line, and the lat-
ter perpendicular to it. The only resolution that gives the
just effect of 4D reduced to the direction 4Q is that which
is obtained by drawing the perpendicular DF. Them, 25 the
force FD neither comspires with 4F nor opposes it, the ana-
lysis is complete, and- AF represents the whole effect of 4D
in the direction 4Q. Hence, if a force B acting in any
meking an angle 4 with the former, the analytical expression
of the force s0 rednoed is R cos. &

21. Cor. 9. If any number of canstitnent forces be redaced
to the same direction, the sum of the forces so rednced is
equal to the resultant estimated in that direction.

Let AB, BC, CD, (Fig. 11.) represent the forces, and 4D
their resnitamt : let 4M be the direction to which the forces
tre to be reduced ; draw BE, CF and DG perpendicular to
4M, BH perpendicular to CF, and CK perpendicular to
DG. Then AE, BH, CK, or AE, EF, FG are the repre-
sentatives of the constituent forces reduced to the direction
4M, and 4G is that of the resultant 4D (28.) reduced to
the same. If the constituent forces are not all in one plane,
FC, GD, &c. to which BH, CK, &c. are drawn perpendi-
mlnr may be supposed to represent planes to which AM
is perpendicular.

28. Cor. 10. If any number of forces applied to one point
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be in equilibrio, the equilibrinm will exist, in whatever com-
mon direction the balanced forces are estimated. :

-29. Cor. 11. If any number of forces applied to one point
be reduced by projection to the same plane, the projection of
the resultant shall be the resultant of the projections of the
constituent forces: and if any number of forces be applied to
one point, and in equilibrio, their projections on the same plane
will also represent a system in equilibrio.

For the forces to be projected being represented by the
sides of a polygon, whether in the same plane or not, thelr
pro_]ectlons will form a polygon.

. 80. Cor. 12. In the composition of forces, when the num-
ber of them is considerable, the most convenient way is that
which proceeds by a previous resolution of each into its con-
stituents, in the direction of rectangular axes of co-ordinates,
given in position.

- Casel. Let AP, AP, AP", &c. (Fig. 12.) represent any
fiumber of forces applied to the point 4 and all acting in the
same plane. Draw through 4, and in that plane, any two
straight lines, 4X and 4Y at right angles to each other, and
resolve the forces AP, AP, AP’, &c. into AB, AB', AB", &c.
whose sum let be 4H, in the direction of the line 4X ; and
AC, AC', AC", &c. whose sum let be 4K, in the direction. of
the line 4Y ; complete the parallelogram 4HRK, and join
AR ; then shall 4R represent, in direction and quantity, the
tesultant of all the forces. Let the forces expressed numeri-
cally be denoted by the symbols P, P, P’, &c. and the angles
which their directions make with 4X by «, o/, ", &c. re-
spectively : and let 4H be denoted by X, 4K by Y, and 4R
by R ; also let @ denote the angle R4X. Then

X =_Pcos.a 4 P cos. o« + P’ cos. o, &c. = [P cos. a,
¢ Y= Psin. e 4 P sin.a’ 4+ P’ sin. o”, &c. =fP sin. e, -

: R ~X* 4 Yiand cos.a = X _.~TX}5=+Y7’
The process is a little sxmphﬁed by taking one of the axes

of the co-ordmates, AX or 47, m the dlrectlon of one of the
forces. :
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and comp. AB: AD=P + Q: P,
ordAB: DB =P+ Q: Q;

and as P+ Q was uniformly applied to the whole hne 4B,
the parts on 4D and DB must have been P and Q respec-
tively. It appears then, that when P: Q = CF: CE, there
will be an equilibrinm ; and by the second principle above
mentioned and demonstrated, if @ be applied to any point in
the line CB nearer to C, or more remote, the equilibrium will:
be destroyed, so that P cannot balance Q, unless P: Q=
CF: CE.

. Let E'F (Fig. 11.) represent the lever EF reversed upon
the same fulcrum C, and let a weight P be applied both at
E and at E, and Q at both F and #. There will be an
equilibrium, (11.) and there can be no reason why the -pres-
sure at C, arising from the one pair P, Q, should differ frem:
that arising from the other, so .that one-half of the whole
must arise from each. But the whole pressure at C is mani-
festly 2 P 4 2 Q, (12.) therefore that arising from Pand Q,
applied to E and F, must be = P+ Q. Let this be called
S. Instead of the fulcrum at C then we may substitute- &

force S = P + Q, acting in.a direction opposite to that of P
and Q:; ‘.

. . and since, P Q CF: CE,
- . comp. §: P=FE: FC,

and S:Q=EF: EC. ;
". Note. We may consider P as equal and opposite to the re-
sultant of § and Q, so that when two unequal forces S and
Q act perpendicularly on the arms of a straight lever, and in
opposite directions, the resultant is equal to their difference,
and acts towards the same parts as the greater.. Also the res
snltant and the less of the two forces are on opposite sides of
the greater.
A very simple demonstratlon of the property of the lever
in the.case of commensurable weights, is given by the cele-
brated Maclaurin, (see his. account of Newton’s Dise.

p. 150.) Another, that seems very plain, may be as -fol
lows : :
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Por, if pessible, let P: Q= CD: CA4, CD being — CB.
Let Cd.be = CD, but .~ CB and commensurable with 4C,
and let NV at d balance P at 4.
. Then P: Q = CD: C4, by Hyp.
’ P:N = Cd:C4 by part 1.
. and Cd: €4 > CD: CA
. o P:N=>P:Q
and Q > N, which is absurd; for by Ar-

chimedes’s second principle NV at B would overbalance P at
A, much more would Q do so if greater than N.

In the same way it may be proved that P cannot be to @
as CJ, any line greater than CB, to CA4.

" Otherwise thus: If CB = 504, P="Qbypart 1; if
CB be = 2 C4,Pis= 2= Q, for it is ™ times the force

m m »n
which balances itself at a less distance ; and if CBbe < 50;4,
Pis 4%0, for it is%times the force which balances
itself at a greater distance: that is, '

=R . - n
PZEQ’ according as CB = ;CA,

Whence P : Q=CB : CA, (Eucl. B. v. def. 5.)

82. Cor. 1. The rectangles under any two of the lines
representing the forces and their. respective distances from
the point at which the third is"applied are equal to one ano-
ther: or, if the ratio of the forces and that of the distances
be expressed by numbers, the eorresponding products are
équal.

’ P, CE = Q. CF (Fig. 16.)
S. FC=P. FE
8. EC=Q. EF.

88. Cor. 2. If the arms of a lever make an angle with each
other at the fulcrum, and two forces, applied perpendicularly
to the arms, be reciprocally as their distances from the ful-
crum, these forces shall be in equilibrio.
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ad AM : BN = C&: CF, .Ex. »q.)
or P.OCA = Q&
Otherwise thas,
UD.AC = ENBC, 3
ey ACPsan 4 = 3CQsn. B
or POK = Qe
Cuncersely it AM: BN = C: CF,
MD: {M:BN:EN y,
(B e CF 4l f‘nm pert.
MD: EV =(3: 40 \Ex =q.)
aid there s an equilibrisa, (31D

Nute. 'The rectangies under the lines representing the
forces mul the perpemdicuiar distnces of the dinections n
which they aet from 8 fuicrum or axis. ar the eorrespanding
products when the forees and  the discances ace represented
Ly numbers, may be sdopted as messures of sonets er ro-
Litive energy, aul are themseives generaily demominated so.
menta.

85. Cor. 4. When two forces n the same piane are applied
to the arms of a lever as before represenmed, and are i
equilibrio, the pressure on the fuicrim s 2 same in quastity
and direction as if' both forees were immedisteiy applied to
that point, in directions paraue: w e unes i whick they
are actually exerted.

This has been taken for granted as a part of cur third
aniom, or has been already proved, wien the .ever is straight
and the forces perpendicular to i : it remains m be proved
of ublique forces applied to the straigot iever, amd of any
e s upplicil to the angular :ever.

The forees .1D, BE Fig. 22, 23, 24.; are propagated o
4 tuleruw, which, when the lever s scralzag as in . Fig. 23,

"1.1, sustains ulso the suin of the perpec Zcular pressures DM,

V, us has been wssumed, or proved: and 4D, DM thus
. atsiitted recoinpuse o pressure eguai and parailel to 43M,
cae BE and EN produce one equai and paraliel to BY,

Now, let OB\ Fig. 25.) be an anguiar icver, 4 and B
woes pependicular o the arms, and in equilibrio.  In BC
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G, and the other in H. Draw the perpendiculars CE, CDy
Lo, LN.
Then P: Q = CD: CE, (84.)
P:Q=LN: LO, (21.)
o LN:LO=CD:CE,
Alt. LN:CD = LO: CE,
And, therefore, by similar triangles,
LC:CG = LC:CH,
" or CG = HC, which is absurd.
This demonstration applies equally when the lever is ungulnv
at C.

" P, Q, and R then are directed to one point F'; and, being
represented by three sides of & triangle CX, KL, and LG,
are such a8 would be in equilibrio, if actually apphed to one
point.

Let ACBD (Fig. 27.) be a lever with two inflexions, ane
at the fulcrum C, and the other at B. Take FG to represent
the pressure on the fulcrum, or the opposite force R, which
may replace the resistance of the fulcrum, when it is remo<
ved, and be in equilibrio with £ and Q represented by FH
and FE sides of the parallelogram FHGE. Draw HK and
HL parallel to FC and FD. 8 and 7, represented by FK
and FL, are, by what was proved in the former case, equiva-
lent to Py so that the forces S, 7} @, and R, are in equilibrio,
P being removed. But R and T are directly opposed to eacki
other; therefore 7" and its equal, that part of R which is re-
presented by LF, being removed, S, Q and R'= R — T are
in equilibrio. "The directions of these three balanced forces
still meet in F, and being represented by LH, HG, GL the
sides of a triangle, are such as would be'in ethbno if actu-
ally applied, as stated in the corollary, to one point. We
may then apply to three forces in equilibrio by the interven-
tion of a lever the 2d and 3d corollaries to Prop. I, (20, 21.)-
" The student will moreover remark, that any one of the
forces 8, Q, R’ may be considered as supplying the place of
a fulerum to the other two, so situated that its resistance may
be in the direction of that force. Thus may the demonstra-
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¢, f, and g will balance E, F, and G ; that is, 4 will balance
E, F,and G. Now let 4 and #, which must be in equili-
brio, be removed, and the remaining forces will be in equili-
brio, (11.) ‘The demonstration of the converse is obvious. |

We may suppose any number of levers in the same plane
united at the fulcrum C, or an angular lever of any number
of arms, and any forces in that plane applied to each in any
directions. The demonstration would be exactly similar to
that just given. -

40. Cor. 9. If any forces whatever in the same plane ap-
plied to a lever be in equilibrio, forces represented by their
orthogonal projections on any plane shall be in equilibrio,
when applied, as represented in the projection, to a lever, re-
presented by the orthogonal projection’ of the former npa
the same plane.

Let there be two forces P and @, represented hy BP and
4Q, (Fig. 29.) on the one side of the fulcram, and one upon
the other represented by DS. Let fall the perpendiculars
CE, CF, CQG, as in the figure, and JomPand C, QandC,
S and C.

PRB.CF 4 QA.CE = SD.CG, (389.)
and the halves of these are equal ; that is, -
APCB 4 AQCA = ASCD.
There will, consequently, be an equation between the corre-
sponding areas in the projection, and between the doubles of
the same, or the measures of the projected momenta.

4). Cor. 10. If any number of given parallel forces be ap-
plied to given points of a solid inflexible body, a point may
be found through which their resultant, when possible, will
always pass, whatever be the position of a straxght line to
which their directions are parallel.

" Case 1. Let there be two forces P and Q applied at the

pomts 4 and B, (Fig. 30.) and acting towards the same paris

in any parallel directions, and let the point C be taken in the

line 4B, so that Q: P= AC: BC,or '
Q+P:Q=A4B: AC;

through C draw DCE perpendncular to 4P or BQ ; the tri-
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that 4 da+ BBb—=(A+R)Cc. If 4R weots MN in
O, then 4.40 4 B.BO = (4 4 B) CO, by Case 1..and
dda 4 B.Bb= (d+B) Ce, all the terms being raduced
in the same ratio, viz. rad : sin. BON. - .
" If points of application lie on opposite sides of O as B and
A e
B.BQ—~A4.40 = (4 4+ B)CQ,
and B.Bp—A4.da= (4 4 B)Cec.
‘This demonstration applies to any number of points ofnp-
plication which are in the same straight line. If 4, B.and
D (Fig. 88.) be not in the same straight line, find C the cen-
tre of 4 and B, and E the centre of 4, B and D, and draw
Aa, Bb, Co, Dd, E e, all perpendicular to MN, . Then by
the first step in this case,
. AAa+4+ BBb=C.UCe,
and C.Cc+4+ D.Dd=E.Ee;
+ thatis, 4 da+4 B.Bb+ D.Dd= (44 B4D)Ee.

48. This suggests a convenient method of finding the cen-
tre of any number of given parallel forces applied to given
points in one plane. Draw in that plane two rectangular
axes of co-ordinates Oz, Oy, (Fig. 89.) Let P, P, P”, &,
be the forces, and R their resultant; that is, their algebraic
sum. Let the perpendicular distances of P, P, P”, &c. and
R from Oy, or the ordinates parallel to Oz be denoted by
%, z, 2, &c. and z,, and the co-ordinates of the same parallel
to Oy, by y, ¥, ¥’y &c. and y,, . then

Ra,=Pa+4 Pz’ 4 P, &c, or w,...‘/);w,

. and Ry, = Py4 Py 4 Py’ &c. ory, = ny

In the lines Oz and O y take O4 and OB, such that their
numerical measures are equal to z, and y, respectively, and
draw through 4 and B, AF parallel to Oy and BD parallel
to Oz; the point G, where these lines intersect, is obviously
the centre of parallel forces sought.

" If the sum of the momenta with respect to any line be = 0,
the centre is in that line; and conversely.
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. 49. Cvor. 8. If any number of parallel forees be applied to
points in any positions whatever, the momenta of these forces,

“with reference to any plane, shall be equal to the momentum

of their resultant with reference to the same.

* Let 4, B and D (Fig. 40.) represent the forces, and the
points to which they are applied; and, without respect to
their being, when of this number, necessarily in one plane,
let MNPO represent a different plane, to which are drawn
from A, B and D the perpendiculars 4 @, Bb, Dd; and from
Cthe centre of the parallel forces 4 and B, and E the centre
of the whole, perpendiculars Ce and Ee. The points a, ¢, b,
are manifestly in one straight line, as are also the points
¢ ¢,d. (Playf. Eucl. Prop. 17. and def. 2. B. 2. Suppl.) Hence
by Cor. 2,

Adda +B.Bb=C.Cc,
and C.Cc+ D.Dd=E.Ee;
that is, dda+4 B.Bb+ D.Dd=(4 4 B+ D)Ee;

and in the same way may the proof be extended to any num-
ber of forces.

i 80, This suggests a convenient method of finding the cen-
tre of any given parallel forces applied to any given points.

- Assume three rectangular axes of co-ordinates 4X, 47,
42, (Fig. 18.) Let P, Py P, &c. be the forces, and R their
resultant. Let the perpendicular distances of P, P, P~, &c.
and R, from the plane 24Y, be denoted by z, 2, 2", &c. and
2, the perpendicular distances of the same from the plane
24X, by ¥, ¥/, ¥*s &c. and y, and their perpendicular dis-
tances from the plane X4Y by 2, #, 2", &c. and 2.

P2

-Then Ba,= Pz + P2 4 P2’ &e.or z,= =
Yy

P
Ry,=Py+ Py + Py &c. ory, =%~

. P
and Rz, =Pz + P 2 4 P'2’ &c.orz, =‘,—;z—f

The numbers z,, y, and 2, attention being paid to their signs,
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of rotation about three rectangular axes, the sum of the
squares of these equivalent momenta is the same, whatever
be the positions of the said axes, provided their point of com-
mon intersection be always the same: also if the sums be

taken of the momenta reduced to each of the rectangular
ixes, the sum of the squares of these sums is constant in the
like circumstances.

* The first part is obvions from Cor. 1. for X34 /' ¥ +

J'2 = R, which is constant, the momenta to be resolved
being given: the second, from this consideration, that the re-
sultant of the same momenta must be always the same, by
whatever legitimate resolution and recomposition, i. e. sub-
stitution of exact equivalents, it may be found. Ifa more
detailed proof of the latter part be sought, it may be found
by the following well known proposition in Spherics.

Let ABC (Fig. 42.) be a spherical triangle, whose sides
A8, BC, AC, are quadrantal arches, and let X and X’ be any
two points on the surface of the sphere, connected with each
other by the arch 4, and with 4, Band C by the arches ay o'}
B, B, &c. as in the figure.

Cos. a cos. o’ 4 cos. B cos. B’ + cos. ¢ cos. + = cos. 8; For
Cos. 0 = cos. @ cos. & + sin. a sin. &’ cos. KAK", (by Sp. Trig.)
andthe arches 4K, 4K being produced to D and D, sin. a =
cos. KD, sin. o = cos. K'Y, cos. KAK’ = cos. (BD' — BD) =
cos. BD cos. BD' + sin. BD sin. BD' = cos. BD cos. BD' 4
cos. CD cos. CD’, also cos. BD cos. KD = cos. B, &c. whence,
by substltutlon, the truth of the lemma will easily appear.
Now

(X = X2+ X7, &e. +2XX, &
Y= Ve 4 Y, & +2YY), &
(2 =2+ 2%, & 4 23%, &c.
and as XX’ 4+ YY 4 .23 = RR’ cos. a cos. o
" RR’ cos. B cos. B 4+ RR’cos. y cos. oy = RR' cos. 8,
it is evident that (f X)? 4 (/' Y)* + (J2) is = R* + twice
the sum of the products, found by maltiplying together the
mumerical measures of each two of the momenta RE' &o.
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(1) Xy Yo = Xy, — Y, =S Pycos. « =/ Ps cos. B=L,
(B)Rx—~Xz=22;— X3 =/ Pxcos.y— [Pz cos.axM
(8.)Yr—Ry=Yz,— Zy, =) Pzrcos.f—/)Pycosy=N
‘' Here we may assign any given value to one of the co-ordi+
nates z, ¥ 2, suppose to z, and the two equatlons in which
it is involved will determine the other two y and z: But: a$
all the three equations hold when a resultant is possible, the
values found must be such as will, by substitution, satisfy the
third, or give LZ 4+ MY 4+ NX=0. If this be not the case,
we shall conclude that the forces cannot be reduced to one
resultant. ) )

‘When by the substitution mentioned the third equation is
satisfied, we have

R=JX 4+ Y+

Y 3
Cos. ¢ = R’ cos. b—R: cos. ¢ = g+

Thus the magnitude of R, the co-ordmates 2,9 % and the
angles a, b, ¢, are all determined.

67. Prop. IX. Prob. To determine the sonditions of equi-
librium when any forces whatever are applied to any points of
A solid bady.

There will evidently be an equilibrium, if one of the forees
P be equal and directly opposed to the resultant R of all the
rest; otherwise not. - Adopting the previ._aus notation we
find, as in Prop. V1I.

(1) P ¢os. = 0, (2.)./ P cos. = 0, (3.) /P cos. y = 0.
But these would result from the equality and parallelism of
P and R. That their directions may coineide, those of their
projections upon the three rectangular planes of the axes must
coincide. Therefore, as in Prop. VII. we must have

(4.),ny cos. « — Pz cos. B = 0,
(5.)/ Pz cos. y =S Pz cos. a =0,
(6.)S Pzcos. B—SPy cos. y=0.

68. Cor. If there be a fixed point or fulc.rum, then what-

R Y
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ever be the forces applied their resultant will be balanced by.
the resistance of that point, provided it pass through it; and
this is the only condition of equilibrium in that case. Now
the resultant will pass through it provided its projections
upon the planes of the axes pass through it when it is taken
for the origin of the co-ordinates ; that is, provided (58.) .
(1.) ny— Yﬁg = 0,
(2.) P4 z;—le =0,
. (8) Yzg— Rys =0; .
conditions which are identical with equations (4.) (5.) and
(6.) above. RS _

69. Prop. X. Prob. To determine the conditions of equili-
brium when forces are applied to the angular points of a flex-
ible polygon. '

Let ABCD, (Fig. 43.) be the polygon fixed at 4 and D, and
stretched by the forces P and Q applied at the angular
points ; the angles which the direction of P makes with the
sides- 4B and BC being a, @; and those which the direc-
tion of Q makes with BC and CD being 8 and £ respec-
tively. Let P and Q be resolved into their constituent
forces E and #, G and H in the directions of the sides pro-
duced. - An equilibrium being established, the opposite
forces applied to any side must be equal to each other.
Therefore, since (21.)

P:E = sin. (¢ + o) ¢ sin. &
and Q: G =sin. (8 + #') : sin. 8
Psin. o —E=G= Q sin. 8
sin. (@ + o) ~ sin. B+ 8)

70. Cor. 1. If all the forces applied to the polygon, in-
cluding the resistances of the supports at 4 and B, were
applied, in parallel directions, to any one point, they would
be in equilibrio.

For, after resolution as before, each would be destroyed
by one equal and opposite.

71. Cor. 2. If all the forces, from one of the extremities 4
to any angular point C, including the resistance of 4, were -
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applied at C, their resnltant would be CH, the tension of the
vext following side CD.

- 12 Cor. 8. If the forces are parallel, they and all the
- tides of the polygon are in one plane, and ¢ is the supple-
ment of 8, whence sin. & = sin. 8

and Psin.asin.d _ Qsin. Bsin.
sin.(@4d) ~ sin. (84 B)

P - Q

Of ot @ + cot. # _ cot. B + cot. &
wvill appear by expressing the sines of the angles « 4 o’
ad B 4 B in terms of the sines and cosines of their seg-
‘ments. . :

18. Cor. 4. E sin. o’ or G sin. B expresses the tension es-
timated in a direction perpendicular to the applied forces
when parallel, which is thus proved ('72.) to be constant.

74, Cor.’5. If the forces be parallel, a straight line drawn
through their centre parallel to their directions, and the ex-
treme sides of the polygon produced, shall meet in the same
point,

Let the sides 4B and DC produced meet in K, and draw
KL parallel to BP or CQ meeting BC in L : then the forces
in equilibrio at B and those at C may be represented by the
sides of the triangles BLK and CLK respectively (20.) and

le'.: EE}G I?B in prop. pert.

. P:Q=LC: LB (Euclyv.28.)
or L is the centre of the parallel forces P and Q. If there
be more sides of the polygon than are represented in this
figure, we may conceive the sum of P and Q as applied at X,
in the same directions as before; then BC being removed
and the contiguous sides extended to K, these will have the
same tensions as before, the equilibrium will remain undis-
turbed, and the distance of the centre of parallel forces from
any given axis of co-ordinates parallel to BP, CQ, &c. will
_ also remain without alteration (48.) Thus the proof may be

easily extended to any number of sides.
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. 78 Cor..6. If any of the forces as P be applied by meens
of a ring or in any way admitting of, its. sliding freely along
the flexiblse line, it is, further, a condition of equilibrinm that
the direction of the faroe shall bisect the angle of the polygon
through which it passes. :

Let MBM' bisect the angle ABC (Fxg 44.); there bemg no
reason from the data why the conmexion of the- physical
point B of the polygon with the sides 48 and BC should be
different, the resultang of the:tensions wlll bisect the angle,
or coincide with BM’. If the direction of the force P then
be not apposite to this, there cannot be an equilibrium : for
if BP represent P, draw PN and PM parallel to BM’ and
BC respectively; and, while BM is destroyed by the re-
sultant of the equal tensions, BN will cause the ring to slide
towards C.

6. Cor. 1. The tension of the contiguons sides is in this

Psin.a Psin. « P
me:,ﬁhﬁu (69.) = 2sixfaéos¢ =2cosa =4F

sec. a.
1. Cor. 8. If the sides of the flexible or funicular polygon
.be conceived as multiplied indefinitely while forces are ap-
_plied-to each physical point, the limit of the polygon is what
is called a funicular curve; and if the forces applied to the
elements of the curve F'ds, F'd s, &c. be resolved into Pds,
P ds, &c. parallel to the axis 4X, and Qds, Qds, &c. pa-
rallel to 4Y, these latter forces being conceived as substi-
tuted for the former, which will make no change in the stati-
cal condition of the curve, we may then consider those ap-
_plied between the origin and anypoint C, or f Pdsand f Qds, as
transferred, in their respective directions, to that point, the
tangential force at which will be that of which they are the
co-ordinate constituents, (71.) If we consider as positive the
force T' with which the followmg element of the curve is
drawn tangentially towards the origin of the co-ordinates, the
elementary forces Pds, Qds, &c. which act in the direction
of the positive co-ordinates are to be taken with the negative
sign, because such increments produce decrements of 7 We
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may refer all the forces-to the directions of the positive co-
ordinates, that is, mark all those with the negative sign which
act in" the opposite directions, and then prefix the. negatlve
sign to the mtegra]s J' Pds fQds, when considered as con-
stituents of 7. 'We shall then have by similar triangles

de:dy=fPds:[Qds "
dz:ds=—fPds: T
, dy:ds=—[Qds: T -
da* 4 dyt (=de): ds' = (fPdsy + (fQdsi: T
or "= (fPds) 4 (S Qds)

But, if we have no forces acting in the direction of the posl,-
tive co-ordinates, our simplest way is to consider the actu&l
directions of the forces as positive, and to take both the mta—
grals: with the positive sign.

To exemplify the application of these analogies, conceive
the line M N (Fig. 53.) to be horizontal, and a fine chain or
perfectly flexible physical line MAN, of uniform density, to
be attached to the points M, N, and to form itself into a curve ..
by its own weight. Suppose 4, the lowest point, to be taken
as the origin of the co-ordinates; let the weight of the unit
of length of the chain be taken as the unit of weight; and, in
reference to the same unit, let k¥ express the constant hori-
zontal tension, or the tension at 4. Then taking the actual
directions of the forces as positive

des: s,deS:k
dz:ds =.sz~/s*—-?z"
sds
e+ i
and the fluent corrected so as to give =0 when s =0 is
= st —k
d y: ds=Fk: s +h
_ kds
XY
which being integrated so that y = 0 ‘:ben s = 0 gives
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- y=hklog ./v+h +8

or by substitation of the value of & from the preceding equa-
tlon,sothatymaybeexpressedasafuncnonofz

y=k log. z+ k+;/.v+2hz
This curve is called the Catenary.

‘Suppose equal weights suspended from the points of the
chain at equal and very small horizontal distances, as is
nearly the case in forming the roadway of a suspension
Dridge : the sum of the weights applied froin the origin to the
termination of any ordinate y may then be denoted by y, and
‘the application being treated as uninterrupted, and the weight
of the chains and suspending rods being neglected, we have

dz:dy=y:k
kdz=ydy
and 2 kz =y

so that as the case occurs in practice the figure of the chains
will be a polygon approximating to the common Parabola.’

k in the former example is that length of the chain, and in
the present that length of the roadway whose weight is equal
to the horizontal tension.

If the depth of the inverted arch be 4 and half its span b,

Qhh=>0ork= sz- 2) so that the horizontal tension is

b . .
Z—h—tunes the weight of the whole roadway. & being found,

/% 1 ot
we have ~_k;ib'L- for the tension at any point whose ordi-
and A2 E

point of support, expressed, in both cases, as a multiple of
the weight of the roadway. The latter may also be thus ex-

pressed by — Fiak

nate is y, an —— for the same at either abutment or

—, and the angle of what we may call
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§3. A body, whose centre of crarirr # bigh. s more aasi'r
overset than one havicg :be sime Dase aud whose temre is
lower; that is, it wiil be overses b s smalier inclinazior,
and, therefore, from cocilzzz =ome Teoneniy.

Let G and G’ be the cer.tres of T TeCAELIET PRTB IS DIDECS
LC, 4C, (Fig. 45.) azaieg & forze. Eppusd wiin Tus SAIE M-
chanical advantage, te=d o ovarse: ear: of tvem, by one
ing it round a horizez:e’ Exis prssing wroupt G To make
tiem just ready to Al br inmir owr we.rn: e locmer re-
quires to be turned thronzh tne anrie GU 8 - ibe 18Tier ouiv
through G'CB. Thrs 2 citrmimge JouGeG wih wooi. LET.
straw, or the Lke. v _ De overse: CpOn & ITADSTETSE RI0PG
across which one loaded writ e seme weight of siope, iron.
or lead might be crawn wict sefery. Oz this principis is ex-
plained the danger ¢’ jomc'ng & cerriare mucn wueve, or

" making it top-beary &s i: is ceied: enc of tue passengers
starting up, as they &re apt 10 Gu. Tom sudlen ssrm, wheo
it is ready to overser

84. The statical properiies of the centre of graviry accoun:
for many particuler: in 1he mozions enc ammiiuces of animus
to which they sre hahituwec by eivv treliing. and whick
are therefore formed or assumed wiil cuou resiiony as offee
to seem instinctive.

Geometricnl Propertics of the Cestre of Gramsty.

85. The sum of the products of the particies of a bocr intc
the squares of their distar.ces from a plane parallei t¢ anvtier
given in position is a miniuin when the first mentioned
plane passes through the centre of gravity.

Let MN, MN (Fig. 46.) represent two parallel planes of
which MN passes through the ocectre of gravity of any bady.

G ; and let 4 denote a particle of the body. Draw 4BC
and GD perpendicular to the parallel planes. Then
AC? = (AB =+ DGy
or AC*= 4B 4 DG == 3 AR DG
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gravity, then the centre of the whole may be: found by the
method of momenta, (48, 49.)

. The quantity of matter in-each side is in this process to be
expressed by its length, which will be proportional to the mass,
the density being uniform. In other words, we take for the
unit of mass the mass of the unit of length. We may also pro-
ceed thus: Let thefigure be ABCD, (Fig. 49.) bisect the
sides in E, F, H, K ; join two of these points of bisection as
E, F, and divide EF in L, so that 4B: BC = FL: EL;
join L, H, and divide LH in M, so that 4B + BC : CD=
HM : LM ; join M, K, and find in the line which joins them
the point G, so that 4B 4+ BC 4+ CD: AD = KG : MG.
Then, if there be no more sides, G is the centre of gravity
of the given perimeter. If there are. more sides, proceed as
before.

91. Let ABC (Fig. 50.) be a triangular’ surface ; and from
4, one of the angular points, draw 4D bisecting in I the
opposite side BC. It shall also bisect all straight lines as
FK, parallel to the base, and terminated by the other sides of
the triangle ; For
BD: FH=AD: AH=DC: HK, or BD: DC = ¥H: HK.
Now the whole triangular physical plane may be conceived
as made up of physical lines, as FK, i. e. trapezoids of very
small breadth, of each of which the centre is in the point of
bisection ; that is, in 4D : the centre of the whole ie there-
fore in 4D. Also, if CE be drawn bisecting in E the side
AB, the centre of the whole must for a similar reason be in
CE. 1t is therefore in G, the point of intersection. Now
let E,D be joined ; ED will be parallel to 4C (Eucl. vi. 2.)
and BDE, BCA are similar triangles, as also EDG, GAC
: S.DG:GA=ED: AC=BD:BC=1:2

or, by composition,
DG:D4=1:38.

92. Cor. If any parallel forces, applied to a straight line,
with equal and indefinitely small intervals, be directly as the
distances of their points of application from the one extre-
ini-ty, their centre is one-third of the length of the line dis-
tant from the other.
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- 9. Let s be the sum of the momenta estimated with refe-
rence lo any point, straight line, or plane, up to a certain
distance  ; & the sum up to any greater distance X ; also
let ® and m' denote the quantities of matter between the
given point, line, or plane and another point or parallel line
orplane at the distances z and X respectively. The incre-

ment of the sum of the momenta, being the sum of the pro-
ducts of every particle in the mass m'—m into its distance,
will always be greater than if all the distances were equal to
the least, but less than if they were all equal to the greatest;
that is,

§—8 = (m'—m)z but = (m'—m)X
or —'?,—ts—- = zbut = X.
—m

Bat, if the cotemporary increments be continually diminish-
ed, X approaches to z as a limit ; therefore z is also the limit

& sy e . . .
of which is always, as we have just seen, intermediate

m—m

d
between X and =z, that is, d_:{ =2 or ds = xdm and

s= f 2dm ; whence, the distance to the centre of gravity,
Sxdm

m
If its distance be found in this way from the planes of
three rectangular axes, its place will be determined, (50.) If
the particles of matter are all in one physical plane, we need
only two axes of momenta: and if they be symmetrically ar-
ranged with respect to any straight line, so that the parts on
each side are perfectly equal and similar, we need only one.
100. The general formula now investigated may be conve-
niently accommodated to cases of the latter description, as
follows. Let MAN (Fig. 53.) represent a curve line whose
axis of abscissee is 4X, and whose ordinates DE are all bi-
sected by that axis ; the particles of the curve at the extre-
mity of each ordinate will have their centre of gravity in the
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tariee from C to the centre of gravity of the whole will: be
v d . §r §c §rc

109. The centre of gravity of a segmentof an: elhpse ntln
same as that of the corresponding segment of the circle de-
scribed upon either axis, the base of the segment being pa-
rallel to the other axis; for, the corresponding ordinates of
the two curves being in a constant ratio, the numerator and
denominator in the value of D will be changed in the same
ratio by the substitution of the one for the other.

110. Let EAD represent a segment of a sphencnl shell,
dz:drx=r:yorydz=rdx

and (103.) D = Jradz_,
fr dz
111, Convex surface of a right cone. Here #: j is a con-
stant ratio, as is also dz: dz
ory=mz
dz=ndx

zdx
for the whole cone whose axis = a.

Hence (103)D—lf—m—@. =§.r—-§a

112. For the centre of gravity of the cone’s solidity inves-

tigated in this way, let y =m « ; then (104.) D= _‘[—z—s-‘-i-f- =

a*dx
iz = { a for the whole cone, agreeing with the deduction by
a former method, (96.)
113. Let DAE be a paraboloid, the equation of whose ge-
nerating curve is > =ax; D=¢§a.
114. Let DAE represent a spherical segment whose ra-
dius = 7,

wllen the segment is a hemisphere.
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-118. -The same is the value of D for a segment of an clhp-.
soid if r be the semiaxis of revolution.

116. Let CEAD represent a spherical sector,. the sagltta.
of .whose terminating segment is 2. By conceiving the solid
to be divided into an indefinite number of very slender canes,
or pyramids, and .proceeding in a way analogous to the se~
cond method, (108.) we shall find the distance from the cen-
treoftbesphere_ ir—3. fa'(llo )_§(6r—3w) ar D=§
;@r+s@ .

Gmud‘rical Propemes of the Centre of Gravity demonstrated by
» the Fluxional Calculus.

117. Let MAN (Fig. 54.) be any line, straight or curved',

2, y the co-ordinates, and Y the distance of the centre of gra- .

vity from the line BC, Y = ._/_',1/__ . 2xYz= 2u-fydz:i

J2xydz. Now2nrydzis well known to be the fluxion
of the surface of revolution described by the line MAN about
‘BC as an axis. Therefore,

Any surface of revolution is equal to a rectangle under the
generating curve and the path described by its centre of gra-
vity.

" 118. Suppose now Y to denote the distance from BC to
the centre of gravity of the surface MBFN = §,

ifyd
Y= f-’/S ‘ or 25 YS = [xy*d # = the solid of revolution

described by the area S, and 2 #Y is the path of its centre of
gravity in making a complete revolution. Hence,

- The solid generated by the revolution of a plane surface is
.equal to that whose measure is the product of the surface it-
self into the path described by its centre of gravity.

It is obvious that, if the revolution of the line (11%7.) or sur-
face (118.) be incomplete, the surface or solid described will
be as the. angle of revolution; for when, in addition to the

.9
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other data, the angles are equal, every determining. circum-
stance is the same.

- 119. There are many cases in which, from the xrreg-uknty
of the figures of bodies, and their irregular or unknown dea-
sity, we cannot find the position of the centre of gravity by
either of the methods that have been described. . 'We may,
however, consider an irregular body as divided: into smeall
parts which may be accounted regular, and, from a near ap.
proximation to the centres of the separate parts, .find also
nearly the position of the common centre of the whole. The
same thing may also be often done more convemently by ex-
periment, thus:

120. Suspend a body by a thread, or wire, which its
weight is sufficient to stretch, attached to two different points
of it successively, and mark the direction of the line of sus-
pension in both cases: the intersection of the two directipns
will determine the centre of gravity.

It is often sufficient for the purpose in view to know its
distance from either extremity of a body. This may be found
by balancing it on the edge of a prism. The centre of gra-
vity is then vertically above the edge. Or, if its weight t be
known, we may allow one end to rest upon a prism or axis,
and balance the body by a weight » made to act upwards at
a given distance a from the fulcrum by means of a balance or
a pulley: then, if x be the distance from the fulcrum te the

centre of gravity, wz =pa and v = % a.

Of Machinery.

121. Having now treated, at as much length as we can al-
lot to that department, of the general principles of statics, we
are next to proceed to some of the most useful and interest-
ing applications of them; and first, to the investigation of
‘the conditions of equilibrium in machines composed entirely
of solid matter. All machinery of this description, however
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1. The Lever.

128. The lever is, in theory, considered as an infloxible
rod or bar moveable about a fulcrum or puint of suppurt, a
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that a power applied to the one extremity may bula.nce a8 re-
sistance applied to the other.

124. The conditions of equilibrium in this power have
been already explained in the general doctrine of parallel
forces. The most convenient statement or formula for the
student’s recollection seems to be that, in every variety of the
machine, there will be an equilibrium when the products of
the power and the resistance into the perpendiculars drawn
from the fulcrum to their respective directions are equal; or
when Pa=Qb
a being the perpendicular distance from the fulcrum to the
direction of P, and b that which is drawn to the direction of
Q

125. If we take into view the weight of the lever itself, we
may consider it as collected in its centre of gravity. Let the
distance of this point from the fulcrum be ¢, and "W the
weight of the instrument; then Pa= Qb + Wc, when the
centre is on the same side of the fulcrum with Q ; and Pa=
Qb — Ve, when it is on the other side.

126. Levers are usually divided into three kinds. The
first is when the fulcrum is between the power and the re-
sistance ; the second, when the resistance is between the power
and the fulcrum; the third, when the power is between the
resistance and the fulcrum. An obvious example of the
first kind is the iron bar commonly used for raising stones.
To the second kind may be referred the oars of a boat, the
resistance of the water serving as a momentary fulcrum, in
each position of the impelling oar, and the resistance which
the boat meets with in passing through the water being the
obstacle to be overcome. We find the same kind of lever
combined with the wedge in a kind of knife having a long
handle and a joint at the farther end, immediately beyond
the edge. So far as this instrument operates, in cutting, by
multiplication of pressure, it is a lever; so far as its energy
depends on its edge merely it belongs to the wedge. To the
third kind of lever may be referred spring shears and tongs.
When a man rears a ladder, by placing one end of it against
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a wall, it is first a lever of the second kind, and then of the
third. A drawbridge consists of two levers, one of the first
and one of the second kind united.

127. A machine is said to give a mechanical advantage when
it enables a power to balance a resistance greater than itself.
We shall use the phrase in that sense, although the real pur-
pose of a machine, or, in other words, the real advantage
which it presents, may be a diminution of power, or the
knowledge of the equality of two powers, or of the ratio they
bear to each other. The first kind of lever then may give,
to what we call the power, either a mechanical advantage or
the contrary. In the second, when the directions of the
forces are parallel, it has always a mechanical advantage, and
inthe third a mechanical disadvantage.

128. If we regard the lever as without weight, the farther
the power is from the fulcrum, cateris paribus, the greater is
the energy with which it acts, and that in the exact ratio of
its perpendicular distance ; but, if we consider the case of an
actual lever, which must be a heavy body, its weight will
slter that ratio. In the first kind the weight will generally
conspire with the power, and will aid it the more the greater
the length of the arm by which it acts; for the weight of
that arm will be increased, ceteris paribus, by lengthening it,
and the centre of its gravity will be farther removed from
the fulcrum, so that, on both accounts, the momentum of the
weight W ¢ will be increased. In the second kind, which we
shall here suppose of uniform thickness and density, the ex-
tension of the arm by which the power acts will, as before,
augment its energy ; but the increase of the weight of the in-
strument will always more and more counteract this effect ;
and there is a limit to the advantageous increase of the length,
or a particular length which in each case gives the greatest
practical advantage to the power.

129. Let P and Q be as before the power and the resist-
snce, @ and b the arms by which they act, ¢ the distance
from the fulcrum to the centre of gravity of the unloaded
lever, W its whole weight, and g its specific gravity, which
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we may here take as the weight of the unit of length, the
other dimensions being supposed to be constant. “Then
=ga and c=44a. Hence Pa—4$ga'=Qb or P={ge

+ —Q‘—;. For a given value of Q and b then, P admits of s
minimum, which may be found by the usual fluxionary me-
thod, or by this consideration, that, in every case when the
product of the numbers representing two quantities is con-
stant, their sum is & minimum when they are equal. Thus

. Qd 2Qb
in the present case 4 ga = Tand a=~/—§—-, or /3 Qlyg

is the minimum value of P. For the principle here employ-
ed the student may be referred to Eucl. B. ii. prop. 5. from
which it appears that a given rectangle is formed by the two
segments of the least line, or two lines whose sum is a mini-
mum, when these segments or lines are taken equal. Orit
may be more directly proved thus. Let m = § the sum and
n = 4 the difference of two numbers, and let (m + %).(m — )
=a'orm'=a'+n'; mand 2m will be least when n = 0.

130. By a lever the proportional strength of two persons
may be ascertained with tolerable accuracy; and a burden
carried by them conjointly may be equalised, or proportioned
to their respective capacities of bearing a load. Thus let P
and Q (Fig. 55.) draw the bar 4B upwards against a fulerum
C, and slide the bar along till they find that position of it by
which, when exerting their utmost force, neither can prevail,
the strength of P is to that of Q as BC to 4C. Suppose
again 4B to represent a pole or a hand-barrow, carried by P
and Q, and a weight W to be laid upon it, it ought to be so
laid at C that BC: AC = P’s strength : Q's strength. So, if
C represent a ring connected with the beam of a plough, and
which may be slid into different grooves or notches in the
bar, the draught may be equitably divided between two
horses of unequal strength.

131. To the lever are referred two instruments in very
common use, the balance and the steel-yard. Of the first of
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“ i thie index, the n.ntion of which up or down raises
- depresses the centrz f rravizy.

He In all cases, th= lustrument is aided in overcoming
the frictiuti, or rendered riors sensible, by communicating to
it a slight tremulous nmiction. as by gently striking the table,
or still better by holding a piece of hard wood or the like, in
contact with some part of its stand, and drawing over it the
teeth of a fine ~aw. or notched edge of any kind. The fol-
lowing causes probably contribute to this effect. If there be
a preponderance on one side while the beam, in consequence
of friction, refuses to quit the horizontal position, the centre
of gravity of te whole must be on that side of a vertical
plane passing through the axis on which is the greater weight;
aud the small succussions communicated to the axis will tend
to make the whole, while momentarily detached, revolve
about that centre. Besides, the beam and its weights descend
with an impulse, by which the excess of weight may overcome
a resistance that would balance its pressure. We can much
more easily strike an axe or chisel into a resisting cleft than
we can press it into it. The simple process of driving and

pulling out a nail affords another familiar example.

150. We may just observe, in conclusion of what relates
to the common balance, that in philosophical experiments we
seldom require to know the absolute so much as the relative
or proportional weights of bodies; and consequently it is of
little importance whether the arms be exactly equal or not,
provided we always puat the things to be weighed into the
same scale. This will still give us truly the ratios of their
weights.

151. The Steelyard.—This is a lever of the first kind, whose
arms are unequal, and in using which the body to be weigh-
ed is suspended from the shorter arm at a fixed distance from
the fulcrum, and counterpoised by a moveable weight, which
slides upon the longer arm, and consequently in weighing
different quantities of matter, is placed at different distances
from the fulcrum. Let a constant weight be suspended fror,
the shorter arm to balance the longer. If we then divids,
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the longer arm into parts of equal length with that by which
the weight P acts, and number them 1, 2, 8, 4, &c. beginning
from the axis, Q at the distance 1, 2, 8, &c. will balance Q,
2 Q, 3 Q, &c. respectively; or P will be the same multiple of
Q, that the arm by which Q acts is of that by which P acts.

152. The steelyard has this advantage over the common
balance in estimating great weights, that the load upon the
falerum is less, which diminishes the friction. It has, how-
ever, this disadvantage, that the longer arm is apt to bend
while the shorter does not, at least sensibly; whereas the
arms of the balance being made as equal and similar as pos-
sible, are likely to suffer flexure in the same degree.

- 158. A kind of steelyard is said to be employed in some
of the northern kingdoms, as Denmark and Sweden, in which
both weights are applied at fixed paints, and the fulcrum is
moveable.

- 4B, (Fig. 57.) is a smooth cylindrical beam, with a con=
stant weight 4 at the one end, and a hook or scale B at the
other, to which the goods to be weighed are appended. Lot
Q be the weight of the goods, and P that of the whole beam
with its hook or scale, whose common centre of gravity sup-
pose to be E. The position of equilibrium is found by slid-
ing the beam through a ring C by which it is suspended ;
then BC: EC=P:Q, and P being known, we get Q in
terms of it. The graduation of EB may be performed ex-
perimentally with known weights, or by geometrical con-
struction thus.

Let EB, (Fig. 58.) be the line to be divided, draw from E
and B any two parallel lines EH, BD on opposite sides of
EB; le¢ BD=EF = FG=GH, &c. and draw DF, DG,
DH, &c. intersecting EB in the points 1, 2, 8, &c. When
the beam is balanced and the ring is at 1, Q = P; when it
isat 2, Q=2P, andsoaon; for E1: B1=FE : BDorin
a ratio of equality; £2: B2=FEG: BD=2:1; E3: B3
=EH:BD=8:1, &. The lines BE, B1, B2, B 3, &c.
are in harmonic progression or proportional to the recipro-
cals of a series of numbers in arithmetical progression. The
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169. In the common construction of the wheel and axle, if |
we attempt to increase the power of the machine to a grest
degree, we must either make the diameter of the wheel very
large, which would be inconvenient and clumsy,; or diminish
that of the axle, and so render it weak and unable to sup-
port a great burden. There is, however, a very simple and
ingeniously contrived windlass which becomes stronger the
more it multiplies the power. Its two ends are, as in the
common wheel and axle, cylinders of unequal diameter,
and the difference between them consists merely in this, that '
the same rope passes round both cylinders in the one we '
are now to explain, and is coiled round them in opposite
directions, passing under a single moveable pulley beneath,
so that while it is taken up by the one, it is given off by the
other.

Let AC =R, BC =, (Fig. 72.) and first let an equilibrium
be maintained by a power P acting in the direction of the
tangent at 4 ; then as the two parts of the string 4F, BG
will be equally stretched, we may consider } Q as acting at
A, while the other half acts at B. This latter aids the power,
as it tends to turn the machine in the same direction. Hence

PR=}QR—1}Qr=4Q(R—7),

or Px4R=Q(3R—2r),

thatis, P: Q=D—d:2D;
the power is to the weight, including of course that of the
pulley, as the difference of the diameters of the two cylinders
to twice that of the greater. Thus, suppose the diameters
are 19 and 20 inches respectively, P: Q =1 : 40, a great i
crease of energy. We are here supposing P to act at the
circumference of the greater cylinder. If we employ a lever
to turn it, asin the common windlass, and if the power be
thus applied at ten times the former distance, a tenth part of
its former value will suffice, and P: Q = v : 40 =1 : 400.
But, without using a lever, the energy may be augmented to
this extent, and in fact indefinitely, by making the less cylin-
der more nearly equal to the greater, and thus at the same
time adding to the strength of the machine instead of dimi-




v
3

STATICS. 7

nishing it, as in the eommon construction. Let D=20
inches as before, and d =19.9, or in tenths of an inch 200
sd 199 respectively.
P: Qstill = 1: 400.

The thickness of the rope is here disregarded. By using
another rope attached to a larger wheel, and giving it the
advantage of a compound or double axle like the whole ma-
chine now described, it is evident that we may have an in-
crease of power corresponding to that obtained by the inser-
tion of a lever. The principle of this contrivance is the
making the resistance partly conspire with the power that is
to balance it. It is a very ingenious thought, and has been
adopted also, as we shall see, in the construction of the screw.

170. In the employment of the wheel and axle, or any of
its modifications, as a mechanic power, it is possible that the
force applied may be constant, while the resistance is vari-
sble, or that, conversely, the force may be variable while the
resistance is constant. In ejther case the energy of the agent
may be so modified as to produce an equable action, or one
nearly such.

171. If a man works at a common windlass to draw water
from a deep pit, by two buckets with ropes coiled in dif-
ferent directions, the weight of the empty bucket and its
rope will, as formerly mentioned, assist him in drawing up
the full bucket ; but the weight of the rope being often in
such cases very considerable, the exertion to which he is ex-
posed at different stages of the operation will be very un-
equal. He will be most assisted when he least needs it, and
least when he requires it most. The advantages of equable
action will be better considered afterwards; at present we
shall confine our attention to a simple method of producing
it. .

Suppose then, that instead of the common windlass, we
use one of a barrel shape, or resembling two truncated cones
placed base to base as in the figure, and that the ropes are
fixed to the smaller ends, so that each bucket as its rope
is coiled up approaches the middle and acts by & longer
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radius, the full bucket as it is drawn" up acts with a greater
mechanical advantage in proportion as the weight of loose
rope on that side is diminished ; and on the other hand, the
radius by which the empty bucket assists our action becomes
smaller in proportion as the weight of its uncoiling rope in-
creases.
Let R = the rad. at the middle,
r = the rad. at each end,
b = the weight of each bucket,
= that of the water each contams,
¢ = that of each rope,
J = the force applied at the distance a ﬁ'omthe
uls.

To equalise the momenta of the opposed forces at the be-
ginning and end of the ascent of the bucket, which will res-
der them with sufficient accuracy in this case equal throngb-
out, we have

1. When Q is beginning to ascend,
Sfa+bR=(b+w+c)r,

2. When Q is at the top,
SJa4+d+c)r=(0b+w)R,

By transposition of fa, and addition,
b+ w)R=2b4+w+2¢)r,

. R= f 204w+ 2¢
=0 w2t twtec

r—a- S, 2b+w
=%w 20 ywtc

Let d= the diameter of the rope, = the number of
coils from D to G, I= its length : the spires of the rope be-
ing regarded approximatively as circles, will increase in arith-
metical progression, and the extremes will be 2x R, 2 7, the
half sum of which multiplied by n =n» (R + r) =

{ ld

Hence n=— (R-l-r) DG—nd_’(E_‘_—r),

and HE = ~/( (R+r))’ (R—r)s
Boss. Mec. § 212,
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ferent angular distances, in the ratio a: #, from the position
of quiescence, 7 and y the radii of the fusee by which the
chain acts in these two cases respectively : them #r =fy.
But F:f=a:x. Hence ar =y, which is the equation of
the equilateral hyperbola referred to the assymptotes as the
axes of co-ordinates.

4. Inclined Plane.

174. If a body of any form whatever touch a plane only
in one point and be solicited by only one force, it is necessary
to an equilibrium, 1. That the direction of the force be per-
pendicular to the plane; 2. That it pass through the point
in which the body touches the plane. If it be not perpen-
dicular to the plane, it may be resolved into two, one of
which shall be perpendicular and the other parallel to it-
And as we suppose the plane to be perfectly smooth, there
is nothing to resist the parallel force.

175. If a body touch a plane in several points and be still-
solicited by only one force, then in order that it may remaine—
in equilibrio the force must be perpendicular to the plane,
and must either pass through one of the points which touch—
the plane, or be resolvable into two or more forces parallel -
to itself, each passing through one of these points. The=
same thing is to be understood of the resultant of several
forces acting in any directions.

176. Cor. 1. If the single force by which the body is so-
licited be that of gravity, the plane must be horizontal. As
we cannot change the direction of gravity and make the force
perpendicular to the plane, we must make the plane perpen-
dicular to the direction of the force.

177. Cor. 2. If a body be solicited by only two forces,
they must be in the same plane, their resultant must be per-
pendicular to the plane on which the body rests, and conse-
quently the plane of the forces will be perpendicular to the
same. Let a plane pass through, or contain in it, the direc-
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tion of :
other o‘;?ﬂ(:f the forces and the point of applieation of the
sdveniinmtemnd do not aet in this plane, it may he o
& it be "% O in the plane aad one perpendieniar o
forees i ::t tself perpendicular. Suppsing then e tw,
o b nt Pl‘“fe!obave 8 resultant, it mnnnt he destons-

ki the Temaining force. The roar of the eswdery w
obviops, ’

178. Cor. 8. If one of these foreas e ZrAENLI, ram Sianc o

the forc':m mast be vertieal, and mmsr nase thenngh s axnrse
of gravity ; for the resultant of :ne FUEan e 2 vt

- tical line passing through that centr-.

179. As we are here to investiguie “he snursinns ~f ar .-
librium produced by a body’s weignt 1 use arnar fawnx
means of an inclined plane, wa hava an y sasan 4 s
sent a vertical section of the hady pasding nringh e cursx

of gravity and perpendSeniar ns thar iane.
180. Let ABC then 'Fig. 76. rennenant & woros 4l G

inclined plane as deseriberl, MV H 5 oty s sninst Ay Satan
forces in equilibrio, its o weighe: ¢, 1 3 javer F aoiny »
G in the lines GQ, GP. and “he srsavannx f 7 i 4 A
line HG perpendicaiar o taf Irruv 4F yaryndiosiau ..
GF, AF, perpendicular v C 4. sat youinen Fh w L, csx
observe that 4C is cales Tie ongn of %k pase. 4S5 &
height, and BC jex bamar; «ut e resunmon o dx pcic M
Then since the sidix <# “ir waipe MU wic por oo i
to the directioes of dae thirer 1mavout loroe.
P-Q:-E=4Db-CD- 4.

181 If the dErursirm «f tin PUSEr Ue JAIEME U At Lion,
D4, always o7 omewrecior perpuidionss w e Lo, ».
also be perpeatcRer 1o Tt WL, ML Wil WUCLE » .
AB, and ABC wil now e tie radgin whose piCe: dle Pie-
portional 19 Tae furoves. o

FP:G@: BE=AB: E( : AC,
and the power it 1o Tue weight 8 2ie segin « A Usor.
182 If GP b parulie: ic the iengti 4C. 4D vil cvitc .

vith 4F, and
P Q:R=4k:CE: 4C.
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or referring to the homologous sides of the triangle 4BC,
P:Q:R=AB: AC: BC,
and the power is to the weight as the height to the lengt.h.
183. The power is to the weight then, as the height to

the base, or as the height to the length, according as it acts .
parallel to the base or to the length respect.lve.ly

184. We shall now find what direction gives to the powe!
the greatest advantage in balancing Q. Returning to the ge-
neral representatives of the forces, the sides of the triangle
ACD, we have

P:Q=A4D: CD =5in.C ; sin.CAD,

P=Q80C " Now for an inclined plane of gi
or P=——~5. Now for an inclined plane of given ele—
wation, and a given weight Q, the numerator is constant, andit-
P will be least when sin.CAD is greatest; that is, when CATF®
is a right angle, or 4D coincides with 4E, which is the case=
when the direction of the power’s action is parallel to the==
length of the plane. This then is the most advantageouss=
line of action ; it requires the least power to balance & given —
weight.

185. It may be useful to the student as a simple exercise===
in the application of his analytical formule to investigate thee—=
above results as follows :

Let ¢ = angle ACB = angle HGK,
and ¢ =angle LGP, GL being parallel to 4C.
Then Q cos.i = pressure on the plane,
Q sin.i = pressure down the plane,
Psin.d = pressure on or from the plane,
P cos.8 = pressure up the plane.

1. Pcos.0 = Qsin.i, or P = Qsin.i

cos.f °
2. Qcos.t ==Psind = R,
Q sin. i sin. ¢
= i
i.e. Qcos.i wos.d R,
€os. (2 0
L Qeos.(i==0)_

cos.d

1S

gl I« 1
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e to the plane, 1=0; eos-#=1;

P=Qsin.i; R=Qcos.i.

It GP be parallel to the base, #= i,
r=qQ tang.i; R= Q_c.os'('.—_‘ = __Q_’
cos. crn i
186. Cor. The equilibrium of bodies spon carve wrferss
w3y be determined by the same prineiples, i we ecommidey
the surface as represented at any point by the plane »hich
touches it there.

= Q see.2.

5. Wedge.

187. The wedge is a trianguiar prism et &x e pnv-
pose of cleaving bodies, and s.oezmes for rrmiproaasen, sl
for the raising of wei

188. We here regard the sides a garier:y wanssk, v, oz

the only effective resistarer w_. s i Zlrsntiona jerpend
cular to the sides, and the oomdzirme f onlifrinn we rex)
easily defermined.

Let the power P be appied porvsacrnas v AK aa
back of the wedge ABD, Fig 7. mi i s rematstssn
8 in cleaving a piece of wod 2x 21 2 Zrrziona GF, NS
These three forces being smpornes <o “n x o ins, ‘asw
directions must meet = cme poinr i ), LT Umo MaArLas
mllbesthethuaﬂa;c(;‘*uprﬂr»m%%:
respective directions. Nom e uder o A ‘raiguav wa
tion of the wedge Wueif 2re zarzandicuar 0 As fivesrina,
@dP:Q:R=AB:BD-AD. wwc V- G~ K= AN S5))
+ 4D.

This demonstration appiins viamsmrer i Ax sjaras M '2a
trisngular secticn. K T ix m wsemen cange, wish o
gneralts is, P:Q~ E= 40 : 4, o an rrox # W s
sum of the restscamrors m 18 Y ek Af N Bty Y Clhay
side. Let § cxpmess 2w smn o e romananss. sl § kad cha
sagle of tue cdgr. P= 4 s+ : wisuue r 2 ©rasns. that the.
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184. We shall now ' °

e sme with B and R s

the greatest advantag *

neral representati-
ACD, we have
r:

or P=-
it

Q».

vation, and -

P will be lener - !
is a right an- !
when the

fngth o1 9

e of

LS

e

RECH

= A CD,

. i =dD:CL.
C = AC: 4D,

2 it =dC: CD,

< the sum of the resistances p#

siussing them, when by some resis

o . i
vwdge.  This gives its energy in r# p

v are destro;ed and the motion whgﬂ

uperlect constrained to be parallel to 7 214

. .t the inclined plane, we supposed it t0
"ty suppose its base to be perfectly smooth,
.t a perfectly smooth horizontal plane, the

. Jwection HG, (Fig. 78, 79.) cannot exist

applied to the upright side 4B. The
v.vut to o vertical and a horizontal foreée,

«» - ruesisted by the support of the base; but

- vuiat the horizontal one unless we supply

. «v: ‘% orafixed obstacle. In Fig, 78. let

-l obatacle unconnected with the inclined
« v~ surlawe, which is supposed perpendicu-

.. v. e centre of gravity is G and whose

v oy LA presses at K ; this plane will
st direction KGD parallel to the in-

vavlvable into GH and HF, whereof

. e teaistance of MN, just as it would
wv v e Q acting parallel to the plane.

o oewe W24 which again may be resolved

v e Cidhoricontally. Hence the pressure
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' On the plane = HO: GH= 4B : AC.
“der this point of view becomes a
‘ower P prevails, or exceerds whai:
‘lic proportion now sated, wi:l
~luvate it by causing it to move
. ni para.e to aad guided by
D iucz MLV Is represeated 23
. ~Istin a girecilon porater w0 the haue.
R ."csunul into G£. ena (;1) in the .ires of the
U eistances. . GE s (ic>ll’0‘ ed Ly MY, and he pres-
e on the plane AC, repruemed 67 G, raar ce rewmverd
into G§ vertically and FD hor.zor:2iiy. Hence the har-
2ntal force or that on the back «.i th= wedze nust = ' the
ettical force = FD: FG=AB: BC. L P ncw praails,
tbe motion mast be parallel to 4B, guid=d oy M.V
101, All this coincides with the thenr: of the werdgs a«
Previously given. Observe particaiariz, with 2 rw & a
Jéare reference, that the terdency of the heavy iy <0, -
parste the two planes M.V and 4B, creates a pressars tend-
' ingto move AB backwards, or para..ei ts CB; 1.4 thar “ia
Yertical pressure is to its borizontal tendency as tas hase of
the plane to its height. Observe at the same “.ae, -ha:
the plane M.V were produced to meet the .aciired siane and
rigidly connected with it, so that they snon.d ennarizams ora
body, no such force as P wounid be requirai. The jrasgive
exerted on M.V would then couzierics we 43 a4 wpos,-
site pressure on 4B.
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s 8 power 10 the back of toe wedge: =it 4 enaryy o na.
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pressure.
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which, are visible, being formed by a piece of free-stone or
wood covered with fine sand. In a sickle, the same thing is
still more distinctly visible. It is ofien formed with a very
rough edge.

197. A file is a sort of saw with a very broad edge, and a
number of teeth placed collaterally as well as longitadinally.
If, instead of forming a saw of hard steel with teeth, we make
it of soft iron, and strew some hard gritty powder under its
edge, the powder, from the sofiness of the metal, will be
partly imbedded in it, and thus form a sort of file. ‘The
marble cutters use a saw of this kind.

6. TRe Screw.

198, This instrument may be conceived as formed by a
spiral thread or groove, cut round the surface of a convex
or of a concave cylinder, and every where making the same
angle with lines parallel to the axis ; so that if the surface of
the cylinder with the spiral threads upon it were unfolded,
becoming a plane, the spiral threads would form straight in~
clined planes parallel to each other.

199. The screw, as a mechanic power, consists of two parts
which, agreeably to the definition now given, are severally
called screws, the exterior and the interior ; the latter being
so formed, that it may be considered as a mould in which
the former is cast. The exterior has a spiral protuberance
formed on the outer surface of a convex cylinder, the interior
a corresponding spiral groove on the inner surface of a con-
cave one. The part of the machine which contains the in-
terior screw, is in fact exterior in situation, and is called some-
times the dox or nut. The one of these screws is fixed, and
the other moveable: and in giving the theory of the instru-
ment, it is of no consequence which of the two we consider
es fixed. The nut being screwed on at the top and pressed
vertically by a weight, the under side of the protuberance of
the nyt will be pressed down upon the upper surface of the
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protuberance of the convex screw, and we may suppose it
equally distributed so far as the contact extends. This
weight may be raised by turning the nut backwards, while
the rest remains fixed ; or by turning the exterior screw for-
wards, while the nut is prevented from rotation. . In the for-
mer case, the process is like that of drawing a body up an in-
clined plane; in the latter, it is like our using the same in-
clined plane as a wedge, and pressing it under the body.
The screw may, in this point of view, be regarded as a wedge
with a circular base, pressed under a body with a cireslar
motion communicated by the energy of a lever.

200. Let 4BCD, (Fig. 80.) represent a convex cylinder,
and let a number of equal and similar right-angled triangles,
whose bases are exactly equal to the circumference of a cir-
cular section of the solid, be lapped round it, so as to have
all the sides homologous to EF in the figure coincident with
the same line BC parallel to the axis, and one beginnisg
where another ends, the hypotenuses, if the triangles be
physical surfaces, will form the continued spiral protuber-
ance. Now let a particle of the nut be pressed down verti-
cally in the direction db on the point b of the spiral, which
we may consider as an elementary portion of the inclined
plane, and similar to the whole EGF. The direction of the
base at b is that of bf a tangent to a circular section of the
nut, whose circumference passes through the point of appli-
cation. Let f be the pressure in the direction b/ which
balances the vertical pressure ¢ on the small inclined plane,
J must be to- g as the height to the base, or FE : FG. Now
FE is the distance of two contiguous threads of the screw
parallel to the axis, or what is called the step of the screw;
let this be A, and let ¢ denote the circumference of the circle, .
which is = F'G ; then

Sf:ig=h:c
But the point of application 4 is within the nut, and we can-
not apply the force f at b, in the direction bf, immediately ;
but we can insert a lever represented by the radius ob
produced, and to its extremity apply a force p less than f,
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through a fixed nut have 50 threads in the inch, and let the
farther end, which turns into a moveable nut which may
slide along a groove without rotation, have 51; a turn of the
sorew will, in so far as depends upon the motion through the
fixed nut, carry forward the sliding nut, or a ruler attached
to it, ;4 inch; but, in so far as depends upon the motion into
the sliding nut, it will draw it backwards ;} inch. It will
therefore move forwards J; — 4 = z5%; inch.

204. Reviewing the conditions of equilibrium in all the me-
chanic powers, we discover by induction the observance of
a general law which it is of importance to notice and explain,
as, being equally applicable to all their combinations, it af-
fords in the more complicated cases the simplest practical
means of estimating the energy of a machine. The rule is
this: If a momentary addition be made to the power or the
resistance by some extrinsic force, so that the machine may
be put in motion in a state of what may be called dynamical
equilibrium, and the velocities of the points of application of
the two balanced forces reduced to the directions in which
they act be called the velocities of these forces respectively,
the balanced forces themselves shall be reciprocally as their ve-
locities. Reference is here made by anticipation to a principle
of Dynamics, (298.)-that a motion or velocity, represented by
the diagonal of a parallelogram, may be considered as com-
pounded of motions or velocities represented by the two sides
which meet in one of its extremities ; and that, consequently,
a velocity ¥V in any direction, reduced to another which
makes with it an angle 4, is 7 cos.d. In the application of
the principle to cases where the direction in which either
point of application moves is perpetually changing, we must
take the motion in its nascent state, or suppose it indefinitely
small.

205. Before proceeding to the investigation of the law, we
must recollect that if' a body, whose parts are inflexibly con-
nected, revolve about an axis, the absolute velocities of the
different particles will be as their distances from the axis.
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They describe similar arches in any given time, and. tbeae.n
as their radii.

206. When the lever (Flg 22, 23.) begins to revolvq, b
and F describe arches of circles to which GN, FM are tap-
geuts, and all the points of the same straight line which, js
moved in the direction of its length will move with the
velocity ; so that ¥ and v, the velocities of P and Q, vnll lp
the same as those of F and G, and these are as the radii GF,
CG, or CG:CF=v:V. But P:Q=CG:CF (84.,)_,;.
P:Q=v:V. “

If the forces be applied perpendicularly to the arms
sclves, these arms of course are to be taken instead of CF
and CG.

207. In the fixed pulley (Fig. 60.) the power and the ge-
sistance when in equilibrio are equal ; and so, it is obvnons,
are their velocities when put in motion. )

208. In any system of moveable pulleys, (Fig. 62, &c,)
when the same rope passes round the whole, if Q be ele
one inch, and the number of strings supporting the lower
block be 5, each of them being shortened one inch, P will
descend n inches: that is, v: V=1:2. But P: Q=1:n
(160.) ... P: Q=v: 7.

209. ln the pulley (Fig. 66.) where the du'ectlons of the
power and the resistance are inclined to each other, we may
cousider 4B as a lever whose momentary fulcrum is B, .and
on which P and Q act by the perpendlcular arms BF and
BD. Heuce v: V= BD: BF =sin. BQD: sin. BQA=
sin. CB.L: sin. ACB=AC: AB=P: Q. (163.)

210. lu the wheel and axle (Fig. 67.) P: Q=4C: CB

tod ) -0 17 (205.)

211 Suppose the capstan (Fig. 72.) to make one revolu-
o, the power being applied to the circumference of the
¢ 5ot vy lunder, the rope will be wound up to the length C,

Pevohd o the length ¢; € and ¢ denoting the circum-

s o the lavger and the smaller cylinder, respectively.

v hcrctore be taken up to the extent C —¢, and, each

. <-peally shortened, Q will rise 4(C'— ¢) while C
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ne o ~sanall the wotion, the ratio is constant; .°. »: V =
Q.
..+ n Hlunter's serew, while the power makes one com~
-« aevaiutiony the motion of the resistance will be A —&),
fivieuce of the two steps ; and, however small the ane
notion of the lever be, the same ratio is maintained.
‘v 10 denote the power applied, the P— P of our for-
||uu), \2 201. )
P:Q=h—NK:C=0v: V.
1on luail of these cases, (2086—2117.) if we comlderdb
.y us pusitive or negative accordmg as it conspires ot
lnu.l.wll with the force in whose line of action it is
«itedy, we may express the result in this form, PV +
. -
i Observing the law to hold in such ‘a vanetyofm
PO Lolhl(lbldbly dissimilar, we are naturally. led te sus-
. that it is included in one yet more general, and: whigh
Yo comsidered as expressing a condition of equilibrium
oally 5 and it may, in fact, be generalized as follows1
iy vise of equilibrium, whatever be the number and
‘et of the torces applied, if an indefinitely small
-+ e connuunicated to the system, provided that the come
bt when it is lexible, be inextensible and remfain

ad i ihe uascent velocities of the points of applica-
T torees P, ¥, &e. estimated in the directions of
v sad considered as positive or negative according

@ v+ e ur not with the forces in direction, be des

\us reapectively,
e PPy &e. =0, orfI’p: 0.”
«in> 1» extremely easy in the case of rigid
- i points to which the forces are applied
- e configuration.  The motion of such
“taur progressive, all the points describing
«icl divections, or rotatory, so that they
' o ulur motion about the same axis, ot
+ ' thuav wwo, that is rotatory about a:pro-
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If the motion communicated be simply a progressive one,
or what is called a motion of translation, let ¢, which in this
case may be of any magnitude, be the space which each of
‘the points of application describes in the same direction.
Then if we assume the axis of the co-ordinates AX parallel
to this, [P cos.a = 0 (67.)

That is, P cos.a 4+ P cos.«’y &c. =0,
<% Pccos.a 4 Pccos.a’y &e. =0.
But ¢ cos.a = p, ¢ cos.o’ = p/, &ec.
< Pp+ P p+P'p’, &c. = 0.

If the motion be a rotatory one, the forces being in equi-
librio, there will be no tendency arising from them to revolve
‘about the axis of the motion extrinsically communicated what-
ever it may be; and if 4X (Fig. 13.) be taken for that axis
of motion, and we project the forces P, P, &c. upon ZA4Y,
or planes parallel to it, with which they make the angles 4,
#, &c. respectively; the forces P cos.t, P cos.d, &c. their
projeetions, will also be in equilibrio, as is evident from (67.
Eq. 4, 5, and 6.) or from the consideration, that the forces
as estimated parallel to 4X can have no effect upon the equi-
librium with respect to it. The forces P cos., P cos.#, &c.
then being in equilibrio, if we let fall perpendiculars 7, 7', &c.
from the axis 4X upon their directions, and consider the
momenta as positive, which conspire with the motion com-
municated, and those as negative which oppose it, we shall
have, (39, 44.)

Pr cos.d + P7 cos.t, &c. = 0.

Let ¢ now denote the angle of rotation, or rather the length
of the arch which measures it at the unit of distance, which,
in order to comprehend every case, we must for any finite
distance conceive as indefinitely small. Then

Pcr cos.0 + Pc7 cos.t, &c. = 0.
But c¢r, ¢ 7, &c. being the absolute velocities of rotation of
the points where the perpendiculars terminate, c7 cos.d,
ey’ cos. ¥, &c. will be these velocities estimated in the directions
of P, P, &c. respectively; that is, c¢rcos.d = p, ¢ cos.&
=p, &ec.

O
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responding tension, and the other being opposite to that with
which it corresponds, [(P’p’'+ P’p", &c.) is made up of quan-
tities which, taken two and two, are equal with opposite signs;
it is therefore =0, and /' Pp = 0.

The law here stated and explained, is what is called the
¢ Principle of virtual velocities.”

Of Compound Machines.

220. Under this head we shall only describe a few of the
simpler combinations, which will be sufficient to illustrate the
way of calculating the statical effect or energy in any case.
In the further prosecution of the subject, the student ought
to seek opportunities of examining actual machinery, or of
inspecting models, and reading descriptions illustrated by
plates. He may begin with such of the latter as he will find
of easy access, as in Fergussonw's Lectures, edited by Dr.
Brewster, Imison’s School of Arts, Emerson’s Mechanws,
Gregory’s Mech. vol. ii. and any of the Encyclopedias.

" 221. Compound machines may consist of the same me-
chanic power repeated a certain number of times, or of dif-
ferent powers. To the first of these classes belong the com-
pound lever or steelyard, the compound pulley, the compound
of wheels and axles: to the latter, the lever with the screw,
already described, the lever with the screw and wheel and
axle, the same with the addition of a pulley, as exhibited in
a part of the class apparatus, the pulley or the wheel and
axle with the inclined plane, &c. In all such combinations,
the energy of each preceding is the power applied to the next
following in the order of the transmission of motion or pres-
sure, and the same uniform rule may be employed in calcu-
lating the energy in every such case: ¢ the ratio of the in-
crease of energy is that which is compounded of the ratios
of increase belonging to the powers in combination taken
separately.”. In other words, let the quotient of the resist-
ance divided by the power in each of the elementsry parts he
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Then P.CF =:Q AC — KB(,: or

AC—BC
P= ~S¢F Q.
The energy is therefore the same with that of an owdiary
lever, of which the longer arm is CF and the shorter (%)
half the difference of AC and CB.
If AC =10 inches, BC =9, and 2 = 20: " nill L v
7 @, and the half of a hundred weight will balanes n 1on
If BC = 10 inches and AC = 89, O will be on the wle of

C next to F, and the lever becoming of’ the second khiml, mny
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be suppotted at F by one of the first; as'in'the fir
of the compound ‘steelyard, (288.) If this second
as before'an energy 10, we shall have P=;}; Q,

<

will balance a ton. -
226. Compound Pulley, (Fig.87.) Heregoisa !

to ‘chrange the direction of the power, whose energ:
by the first moveable one 2% ; the energy of this |
of supporting a weight; is applied as a power to
déubles it again, and so on. With three moveal
therefore, in this form, P: Q =1 : 8, and with ,
leys, P: Q=1 : 2" . The ratio of the velocities v
conveniently traced thus. Let the lowest with
rise one inch ; each branch of its rope will be sh.
inch; hence the next pulley will rise two inches; -
of its rope will be shortened two inches, and t!
rise four inches’; each side of its rope will be !
inches, and P will descend eight inches; therefc
and the resistance are reciprocally as their velo:-

227. Conceive the fixed pulley to be remo:
act upwards by the part of the rope lo; if .
two fixed obstacles, Q would be drawrf upward-
the force 8 P, and M downwards with the for:
maining unit to balance Q being supplied by
ceive now the figure to be inverted, and M to
which are attached the strings of all the pu!
a fixed body acting as a support; P: M ="
vestigate this in the usual form, and to shew
specting the velocity is observed, may be }:-
temporary exercise.

298. Spanish Barton, (Fig. 88.) D is «
fixed point; ABCEGFP a rope passin;
able pulleys BC and EF, while the latter
rope GHEK D passing round the fixed pull:-
BC. The ropes being supposed parall.l.
=1:4and V:9.=4:1.

229. Combination of Wheels.—The pow..r
circumference of the first wheel, whose axlc -
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involute of BGH. If the sides touch or have a common tan-
gent at n, the perpendicular to this tangent is the line in
which the pressure and reaction are exerted, and, when pro-
duced, it will be a tangent to each of the wheels, (285.) to
the one at 4, and to the other at B ; and the momentum of
both pressure and resistance will be the same as if the wheels |
were in contact, the one impelling the other by friction
merely, and the action of each applied perpendicularly to the

radius of the other at its extremity.
- 2817. If the wheel and axle or the pulley be combined with
the inclined plane, the energy of either will be multiplied by
the cosecant or the cotangent of the plane’s inclination accor-
ding as the line of traction is parallel. to the length or to the
base. Co T

238. A very powerful combination for raising weights may
be formed by the screw and a wheel and axle, the wheel
having teeth adapted to the step of the screw. Suppose the
screw to be formed as in figure 94. and that ¢ represents s
tooth of the wheel. While the cylinder, which is confined to
a motion of rotation, is turned in the direction sz, the end of
the spiral a insinuates itself behind, or to the left of the tooth
¢ ; and the rest of it, as it comes round, being always more
and more to the right, will cause the tooth to move in that
direction till it is detached at the other extremity of the spi-
ral. Every time the end @ comes round it catches a new
tooth, and thus there may be several teeth impelled at once;
but it is evident that there cannot be many unless the screw
and the teeth be both very fine, or the wheel very large. The
screw thus employed is called the perpetual screw. The
power is easily calculated. Using our former notation we

express the power of the screw by —f——and that of the wheel

by —1;—— ; consequently the two combined multiply the pres-

v

sure —-— times.
hr _
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Statical Principles applied to Architectural Structure.

£389. The general principles of Statics enable us to under-
stand and to calculate the strains to which the different parts
of some of our most important mechanical structures are sub-
ject, and discover to the intelligent and scientific artist the
most advantageous way of disposing his materials, so as to
combine’ security with economy. Their application in this
way we shall illustrate in some observations upon the con-
struction of frames of carpentry, of which the formation of
toofs, as one of the most important, may serve as an exam-
ple: and, for the better understanding of this subject, it will
be proper to premise some consideration_ of the mechanism of
resistance to transverse strains, the most dangerous of those
to which timber and other materials employed in the framing
of such structures are exposed.

Transverse Strain.

" 240. Let ACBD (Fig. 95.) be a rectangular beam or joist,
of uniform texture, one of whose ends MC is firmly inserted
into a wall, or otherwise fixed. We may consider it as com-
posed of equal parallel fibres, as 4D, CB, mg, &c. equal in
strength and in close apposition to each other. The force
with which it resists being pulled asunder in the direction of
its length, is called its absolute strength ; and if a weight p,
suspended at some point B, be gradually increased till it is as
great as the beam can bear without fracture, this is called the
measure of its relative strength. It is proposed, then, having
given the dimensions of the beam and its absolute strength,
for which we must have recourse to experiment, to find, by
calculation, on the hypothesis as to texture above mentioned,
its relative strength.

241. A beam of wood and a rod of metal, though they be
naturally straight, may be bent or incurvated with a tendency
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1st, That whose section is the inscribed square, (Fig.99.)
is among those of given length that which contains the
greatest quantity of matter : for 4D. 4B is a maximum when
~DE./BE is a maximum, i.e. when DE.BE is a maximum,
which is, when DE = EB, (Eucl. ii. 5.) or when DA = 4B.

2dly, The strongest section is when 4D*. AB, or DB.DE.
~DB. \/BE is greatest ; that is, when DE. \/BE, or DE:
‘BE, or 1 DE? BE is a maximum, which is, when DE=2 BE,
or DB.DE =2 DB.BE, or AD*=2 AB. 'We may derive
this conclusion from Eucl. ii. 5. by which it is evident that
a rectangular parallelopiped, whose three adjoining linear
sides are the three segments of a given straight line, isa

maximum when these segments are all equal.
If we denote BD by d and 4B by z, AD?* will be = d*—2%,

the measure of the area = z J/d*—2°,

the relative strength is == z (d*—a*),
and by stating the fluxions of these expressions as =0, or
instead of the fluxion of the former that of its square as =0,
we shall obtain more concisely the same results.

249. Cor. 4. A hollow cylindrical tube is stronger than s
solid cylindrical rod of equal length, of similar materlals, and
containing the same quantity of matter.

Let AF, (Fig. 100.) be the exterior diameter, BE the in-
terior, and C the centre; draw BD a tangent to EHB at B
meeting F'G4 in D, and join CD. The area of the annular
section js #. 4C*—x,CB?= #.(CD*—CB?) =x.BD? ; so that
* BD is the radius of a circle equal in area to the ring. On
the hypothesis of equal distension, the sum or resultant of
the forces will in each case be the same, and its distance from
the axis of fracture will in the case of the ring be FC, and
in the case of the solid rod BD, so that the momenta resist-
ing fracture will be as F'C to BD.

- On the hypothesis of distension proportional to the dis-
tance, let f; as before, be the force of one fibre at the distance

d,‘& will be the force, and ‘f;ii the momentum of each fibre

at the distance z, and the sum of the momenta will be for the
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same kind of matter = ﬁ ‘Now, it will be proved in Dy-

namics, that /2? for a circle whose radins is- B, supposing z
to. be referred to a diameter, is } # R4, and consequently if
the distances be measured from a tangent, it will be { « R+
< « R4, (86, at the end.) So for a circle whose radius is r,
if @ be referred to a line whose distance from the centre is
R, it will be } =744 #r* R*(86.) Hence if the radius FC
be denoted by R, BC by r, and BD by k= /R*—#%, the
strength of the ring will be to that of the solid rod in the fol-
lowing ratio :

sR 4o R RiP —Lar® Lakt

2R T2k
_B(R—r) L (B4 7) (B—1) §K(R—r)
f’ .
—B+3 R

F C < BD nearly, when FC and BC are nearly egpal ; so
xbat on this hypothesis the advantage is still more decidedly
in favour of the ring.

260. We thus see it as an instance of wise adjustment, that
the bones of animals and the quills of the feathered tribes are
made hollow, by which they are at once strong and light.

. 251, Let the beam now rest on two props 4 gnd B,
(Fig. 101.) and let a weight W be suspended at apy point
D, if the weight is just not sufficient to break the beam, there
‘will be an equilibrinm, and it will be in the same circum-
stances as if sypported st 4 and B by two weights equal to
the pressures at these points, and drawing upwards by means
of strings passing over fixed pulleys. If the weight be gra-
dually increased till the beam break, the fracture will be. at
D, where the weight is suspended, as we shall find immedi-
ately, and will begin on the under side at d : for the effect is
the same as if the end 4D were firmly fixed, and a force
equal to the reaction at B drawing it upwards, or the end
BD firmly fixed, and one equal to the reaction at 4 drawing
A8, upwards Now if 4B be taken to represent the whole
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weight is W;'g' and EC = } BC. Therefore the unba-

lanced momentum producing the strain, is ¥ W.BC —

BC.BC AC.BC

e L ) =

4B

257. The strain arising from a pressure uniformly distri-
buted is, like the former, greatest at the middle section, and
is there = } W.4B, so that if a projecting beam will just
carry without fracture a certain weight, it will carry eight
times as much uniformly distributed over its length when
both extremities are supported.

258, If the beam 4B, resting on two props 4, B, and pro-
Jjecting beyond them, have its ends fixed so that they cannot
rise, it will bear twice as much in the middle as before. For
‘being of uniform texture, it cannot now bréak at the middle
without a simultaneous fracture at 4 and B. The strain at
the middle we found to be = § W.} 4B (254.) That is, as
before explained (255.) if it require W to break it in the
middle when the ends are free, each half projecting from a
wall would require 4 W. Suppose now the beam to be cut
through at W, it will require 4 W suspended at the extremity
of each half to produce fracture at 4 and B ; the sum of these
is W; and it will require another W to break it in the middle
as before when the cohesion of the fibres there is restored.

259. The transverse strain from a weight upon a beam of
given length is diminished, when it is placed obliquely to the
horizon, in the ratio of rad. : cos. Elev.

If BC, (Fig. 102.) represent the weight of any point of the
beam, it may be resolved into BD and DC, the first produc-
ing & thrust upon the abutment, the second a transverse
strain, and BC : DC = rad. : cos. BCD = rad. : cos. 4.

260. Cor. The strain on rafters for roofs of the same width
is as their length, when the covering is of the same weight
per square foot.

Let A be the weight of covering of the same kind which
would belong to 4C in a flat roof of the sagxe span. This is
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w
of course a-constant quantity ; revy b W .gec. 4 is the load

belonging to 4B ; W.sec.4.cos. 4= W is its transverse pres-
sure, and 3 W. L its momentum in producmg a strain, (257.)
which varies as L.

261. As a general corollary from the propositions now
given, it may be remarked, that what succeeds very well with
a model will often fail when tried without due precaution on
a large scale. To illustrate this remark, which is of great
importance to the engineer and the artist, suppose the ho-
mologous lines in a model of a machine or structare of any

kind, as a roof, arch, bridge, or the like, and in the machine
" or structure itself to be as 1 : n, and let the three dimensions
of length, breadth, and depth in the model be denoted by the
symbols already employed 7, 8, d. The materials being of
the same kind, the weight or stress of all similar parts or
loads, similarly placed, will obviously be increased in the
larger work in the ratio 1 : n°. But the absolute strength, or
that which resists a direct pull, being as the area of the sec-
tion, will be increased only in the ratio 1: n*: for bd is to
nb x nd in that ratio.

The relative strength resisting transverse fracture will also
be increased in the latter ratio: for that of the model will be
bd® nb X n'd

! wl

262. There isth us a limit to the increase of size in any
structure composed of given materials. Let W be the greatest
weight which one of the beams, or more generally one of the
parts of a model, or any other structure which it is proposed
to increase similarly, can bear; and let w be the stress or
weight which it actually sustains: the stress that it must ac-
tually sustain in the enlarged structure, when every linear
dimension is increased in the same ratio is »’w; but the
greatest stress whether absolute or relative that it can bear is

n* W : consequently #°w must not exceed ntW, or we must

W
have 7 not 7;

to that of the machine =

=1:n%
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- 968, If it is wished to increase the smaller structure be~
yood this limit, all the dimensions cannot be increased simi-
larly; we must alter the retio for at least one of them. The
depth of beams is the dimension which, generally speaking,
wd without a limitation imposed by some specialty in the
crcumstances, it will be advantageous to increase in the
higher ratio ; because a given addition to the strength in re-
sisting transverse strains will in that case be made with the
least expenditure of materials. Suppose then that it is wish.
ed to preserve the ratio of increase 1 : s, but that a particular
beam whose greatest strength is W would in that case be too
weak to sustain the pressure #°w to which it will he exposed :
lat ita depth be increased in the ratio 1 : #, while the breadth
and length are each increased in the ratio 1: a. The strength
2 2

will now be l-b—)-’:—lf——‘—li =a? -b—;i, that is 22 times what it was
in the model ; and it will now sustain 2* W and no more, con-
sequently #* W must be not < n’w, or

x not < n. J%o - (Ventur. § 660.)

The same propositions and the general principle of the
composition and resolution of pressure suggest some other
important maxims. Such are the following :

264. Avoid as much as possible transverse strains. This is
done, when we cannot supersede the forces producing them,
by converting them into longitudinal pulls or thrusts. We
shall see instances of this afterwards in explaining the con-
struction of roofs, and wooden bridges. In the mean time
we shall illustrate the maxim by reference to the manner in
which the late ingenious Mr. Watt formed, at one time, the
working beams of his powerful steam engines. 4B (Fig. 103.)
is the main beam, C the gudgeon or axis placed above it, CD
and CE are strutts or braces, abutting at C, and whose ends
D and E are connected with each other and with the ends of
the beam, 4 and B, from which the piston and pump rods
are suspended by iron rods DE, AD, EB. The pressures
arising from the weights at 4 and B, which would prodi
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a very great transverse strain at the axis upon a simple beam
4B, are resolvable into longitudinal strains in the directions .
DA, AC, and EB, BC; DA, and EB being stretched, and the
the ends of the beam compressed. The force in the direction
EB may be resolved into one stretching DE and compressing
EC ; and the corresponding one on the other side may be
similarly resolved. Every strain here is a pull or a thrust,
and there is no transverse strain at all. The distribution of
the pressure will be illustrated by reference to F ig. 104
which requires no explanation.

265. Avoid loading much a very obtuse angle, especially !f the
beams meeting there abut on parts naturally weak or ill supported.
Let the angle = 2a," and let the direction of the pressure W
bisect it; then if P be the longitudinal thrust in the direction

sin.a _
sin.2a

of either beam P: W =sin.a: sin.2a, or P = W.
W
2cos.a
very small, approaching to zero as a limit, while sin.a ap-
proaches to unity, or 2 cos.a will approach to zero as a be-
comes more and more nearly a right angle. Hence a finite
weight W may produce a thrust exceeding any force assigned
on the rafters which form the angle, and these will either be
crippled, or injure and perhaps overset their supports.

Let AC (Fig. 105, 106.) be a beam projecting obliquely
from a wall or other fixed support 4G, and supporting a
weight at C. Let this be represented by CD, supposed equal
in the two figures. Let BC be a brace or strutt supporting
AC; resolve CD into CE, CF, as represented in the figures, and
it will be evident that the disposition in Fig. 105. is by much
the more advantageous. In the case represented by Fig. 106.
there is a strong distension of 4C and compression of CB.
When BCF is a right angle the distension of 4C will be
moderate, and the compression of the brace represented by
EC = DF the least possible for a given value of the append-
ed weight and a given position of 4C.

266. If a part is to be cut out of a beam for the insertion of

—, and if the angle be very obtuse sin. 2 a will become
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another, let it be done on the side that becomes comcave by any
strain 0 whick it may be exposed.

Suppose 4D (Fig. 107, 108.) to be a projecting beam, with
a weight p suspended from the end BD; it is plain that
vwhen the cavity is filled up by the inserted beam, of which
FEHG is a section, the part Ffg G has more momentum to
resist fracture in the situation denoted by Fig. 107. than in
that indicated by the other. The sum of the forces called
into action is greater, and the resultant at the same time is
more distant from the axis of fracture. If these were beams
supported at both ends like joists, and loaded in the middle,
the second would be the stronger ; the axis of fracture being
then on the upper side.

267. If a beam that has a weak part, as when two are formed
islo one by scarfing, is to be strengthened there by the addition of
another, let the addition be made on the side that becomes convex
when strained.

Let 4B (Fig. 109, 110.) represent the scarfed beam, and
CD the piece added fixed to the former by iron straps or
otherwise, so as to strengthen it for opposing some transverse
strain.  If the beam project, and a weight be hung on at B,
the part CD is in the first case strained so as to exert more
nearly its utmost force than the weakened beam 4B, which
therefore receives the most aid that it can from the additional
piece. In the second case, the contrary happens: the weaker
beam is exposed to the greater strain, and CD does not sup-

Port it advantageously. The case, as before, is reversed if
these are beams supported at the ends and loaded at the
middle.

268. Avoid an unnecessary load occasioned by giving to some

Darts an useless strength.
The possibility of this we shall illustrate by a few problems.
If AB (Fig. 95.) represent a projecting rectangular beam,
loaded at B, and if the section AC be strong enough to re-
sist fracture, the sections EF, GH, &c. must be unnecessarily
Strong ; for the momentum of p to produce fracture is always
Yess in proportion as the lever by which it acts is shorter. If
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p were just sufficient to break the beam at 4C, it would not
be sufficient to break it at EF, and still less at KH. One or
both of the dimensions of breadth and depth then, may be
gradually diminished from C towards B. By this process of
reduction materials may be saved that would otherwise be
uselessly expended. The beam is even relatively strengthen
ed by the reduction. There is a strain on 4C from the weight
of the beam itself, which becomes of course less when every
section is reduced to the same relative strength. Let 4B
now represent a square beam supported at both. ends and
loaded between them ; a similar reduction may be made with
safety and advantage. For instance, if the load be uniformly
distributed, the strain will be every where as the rectangle
under the segments of the length. Now this rectangle (Eucl.

ii. 5.) gradually decreases from the middle, where it is & -

maximum, towards each end. The strength of the section
then should be proportional to this rectangle; to make it
greater is useless, and even hurtful.

269. Prob. 1. To make a beam equally strong throughout
to resist a transverse strain occasioned by a given weight ap-
plied at the extremity.

On each of our hypotheses respecting the cohesive forces,
Jbdi=pl, and here p is given and also f as we refer always
to the same beam whose texture is supposed to be uniform.
Hence dd* =1 Suppose, moreover, that the depth is con-
stant, then b = /, and if the sides be vertical planes, the hori-
zontal sections will be triangles. 'The beam in short is a tri-
angular prism or wedge with the base at the wall, the edge
at DB, and the triangular ends above and below. But if the
breadth be constant while the depth varies, d*== 7 ; the beam
may have an indefinite variety of shapes, but if either the
upper or under surface be a horizontal plane, the other must
have the curvature of the common parabola. If the sections
are to have neither breadth nor depth constant, but in a con-
stant ratio to each other, so that b=md; d*is = m d’ ==bd’
= {; and the curvature of one ofthe sides if the other be a
plane will be that of the cubical parabola.
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270. Pyobd. 11. To make a projecting beam equally strong
to resist the. stress arising from a weight uniformly distribut-
ed over its length.

Suppose the sides to be parallel vertical plains; the verti-
cal section in the direction of the length must be a triangle ;
for the weight of uniform covering of equal breadth between

" any given section and the extremity must be as the length of
that part, and the distance to its centre of gravity is also as
that length being always equal to its half. Hence dd*==4,
and as b is constant by supposition, @’ = 2 and d ==L

271. Prob. III. To make a beam of given breadth sup-
ported at both ends, equally strong throughout to resist the
stress from a weight uniformly distributed.

b being given, d* must be every where as the rectangle un-
der the segments, (256.) and the depths must be the ordinates
of an ellipse of which the length of the beam is an axis.

Of Roofs.

272. The simplest form of a roof is that of two equal raf-
ters AB, AC (Fig. 111.) abutting against each other at 4 the
vertex, and resting on the walls at B and C. If the weight
of each rafter and of the covering which it supports, as lead,
slates, tiles, &c. be supposed to be uniformly distributed, it
will press with the half of its weight vertically at B or C, and
with the other half at 4. Hence the load which may be con-
ceived to rest on the angle 4 is the half of that of the whole
portion of the roof supported by 4B and 4C, including the
weight of the rafters themselves. Complete the rhombus
4BGC, and let the weight at 4 be represented by the dia-
gonal 4G. It may be resolved into longitudinal thrusts 4B,
4C, and each wall will be pressed outwards with a force re-
presented by FB or FC =1} Atang.m ; A denoting the load
at the angle of the same name. The vertical pressure at each
of the points B, C, resulting from the pressure at 4, that is, -
from the resolution of the longitudinal thrusts of the rafters
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is AF or } 4, so that altogether the vertical pressure at each .
of these points is 4, and the two together = the whole weight
of the roof. This, however, supposes the horizontal thrusts
to be withstood, so that those in the directions of the rafters
may take effect.

278. This simple form may suffice when the rafters at B
and C are to rest on the ground, and to form a shed merely,
or when they are to rest on any immoveable obstacles in
which their ends are so firmly fixed as to prevent them from
sliding. But they could not safely be made to rest, so secured,
on the tops of walls, on which they would act with a momen-
tum proportioned to the height of the walls and to the hori-
zontal thrust, tending to overset them. In the case of very
flat roofs, composed as here of abutting rafters, the strain
would be enormous. This horizontal thrust is in such cases
counteracted by what is called the tie-beam BC, which con-
nects the lower extremities of the rafters, and then the whole
frame of the roof rests on the walls like a simple joist. BC
being in a state of distension, its place as a tie mérely might
be supplied by a rope, chain, or any thing flexible, if of suf-
ficient strength, and, as to sense, inextensible. It is, how-
ever, generally a beam or solid parallelopiped of wood to
support a floor, and may thus be exposed to a considersble
transverse as well as longitudinal strain. This is ingeniously
counteracted by the introduction of what is called a king-
post AF, acting as a tie, and not resting on BC and support-
ing 4, as the term post seems to indicate. It is dependent
from A4 where the rafters are joggled into it, or abut against it
obliquely as represented in Fig. 112, the upper end being a
truncated wedge like the key-stone of an arch. An inexten-
sible chain might perform the office of the king-post. This
addition then, it will be obvious, converts the transverse strain
on the middle of the tie-beam into a longitudinal stretching
of the king-post, that of course like any other vertical pres-
sure at 4, into longitudinal thrusts of the rafters, and these
again finally into a stretching of the tie-beam in the direction
of its length which it bears much better than a cross strain.
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The rafters are also exposed to a transverse strain propor-
tional to their load, their length, and the cosine of their ele-
vation. This is counteracted by what are called strutts or
braces F'D, FE, abutting on the king-post at F, as may be
represented by Fig. 112. inverted. The stress on these beams
is a thrust, and by their composition they produce a resultant
stretching 4F, and finally the tie-beam, as before.

274. When there are more rafters than two, they form
what may be called a polygonal roof. The common appel-
lation is a kirb-roof. The parts ought evidently to be joined
together in a state of equilibrium ; for, though it will be an
unstable one, and will require ties and braces, these will, in
that case, have nothing to do but to resist an incipient change
of form; whereas, if the parts are not in equilibrio at first,
there will be an unnecessary and often violent strain on these
subsidiary parts. '

275. If the beams and their loads be uniform in structure
and distribution, the vertical pressure at each angle will be
half the sum of the weights of the two rafters there mutually
abutting, with their proportional shares of the load of cover-
ing; and if the loads be otherwise disposed in any given man-
ner, they may be resolved (81, 34.) into their equivalent
vertigal pressures at the angles. The conditions of equilibri-
um for the polygonal roof are then the same as for the funi-
cular polygon loaded with weights, a particular case of Prop.
X Cor. 8. (72.) We may suppose that polygon loaded with
weights to be inverted, and the sides to become stiff with
moveable joints: then if 4, B, C, &c. denote the vertical
pressures at the angles of the same names, and the segments
of these angles made by the verticals be a, o’ ; 8, 8'; 7, 7/, re-

. 4 B c

spectively cot. & 4 cot. o’ = cot. B 4 cot.Z = cot.y + cot. 7”
&c. equations which not only give the ratios of the pressures
at the different angles as dependent on the positions of the
tufters, but express the equality of the horizontal thrust at all
the angles and abutments, (73.)

216. Let DACE (Fig. 113.) be a quadrapgular roof, in
which 4D and CE are equal, and similarly inclined to the
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horizon, and A4C of any length parallel to it. Also let 4 and
D denote the weights pressing vertically at the points 4, D.
The horizontal stress on the supports, or on the tie-besm,

cot.n40
its cotangent = 0. '

The vertical stress at D, arising from 4, is = horizontal
stress X cot.n = A tang. n cot.n = A, and the whole vertical
stress at D = 4 + D.

This roof, in its simplest state, is not secured against acci-
dental inequality of pressure. Should an undue load be in-
posed on < 4, as, by the wind blowing strongly upon it, s
fall of snow partially drifted, or the like, that dngle would be
depressed, and the equilibrium would cease. 'This is pre-
vented by what are called queen-posts, represented by AG and
(' H, which are beams attached at G and H to the tie-besm,
and, on the joggles of which the oblique rafters abut, as for-
merly represented in the case of the king-post, while the ho-
rizontal or truss beam AC is mortised into the sides of the
heads next to itself. 'When the transverse strain on the ob-
lique rafters is great, it may be opposed by the insertion of
braces GL, HM, abutting on the lower extremity of the
queen-posts. A good support to these braces is obtained by
the insertion of a beam NO, in contact with the upper sur-
face of the tie-beam, and extending between G and H, so 8
to prevent their approximation. This piece NQ is calleds
straining sill. If the truss beam AC require support to coun-
teract a transverse strain, it may be given by another strain-
ing sill PQ, extending like a smaller truss-beam below it, on
which the braces NP, 0OQ abut at P and Q, while their other
extremities rest on joggles of the queen-posts-at N and 0.
With this addition, the straining sill NO becomes less neces-
sary.

277. Let DABCE, (Fig. 118.) be a pentagonal roof, hav-
ing BA = BC, and 4D = CE, the parts on each side of BK
being perfectly symmetrical.

Here GAB is the supplement of m, and cot. GAB = —cot.
m, so that (275.)

is here _4___4 tang. 8, for GAC is a right angle, and
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B A
2cot.m — cot. % — cot. m
Hence B cot. # — B cot. m = 2 A cot. m.
B cot.n = (2 4 4+ B) cot. m.
or B tang. m = (2 4 4 B) tang. .

Snppose now that the rafters and their loads are all equal :
then B = 4, and tang. m = 8 tang. ».

In this case, if the span and height proposed be given, the
roof may be easily constructed. Let half the width DK
&b, the height BK=#4, and let 2 be the length of each rafter.
Then

18t, z (sin. m 4 sin.n) = b.

2d, # (cos. m 4 cos. %) =

8d, tang. m = 3 tang. n, or —— “;:: i:;n: or sin. m cos. ®
=3 sin. % cos. M.
b
ByEquloandza—z":

sin. m 4 sin. n

cosm +oosn = POE H(® 4+ n)

By Eq. 8. § sin. (m 4 n) 4 4 sin. (m—mn) = sin.(m 4 n)

= § sin. (m — n) or sin. (m —n) = } sin. (m + =).

Thus m 4 n and m—n are found ; thence are easily de-
rived m and n, and, by Eq. 1, or 2, z

278. To prevent the equilibrium from being subverted by
one of the angles A4,C yielding outwards, they must be con-
nected by a tie-beam AC. The structure then consists of the
triangular and quadrangular roofs combined.

Let the weight of the tie-beam = W#; B produces at A4 the
pressure outwsards 4 B tang. m, and the vertical pressure § B.
To this vertical force is to be added 4, the pressure resulting
from 4D and AB, with their loads at the point of the same
name, and also 4 W, so that the whole vertical pressure at 4
s 444 (B +W). Hence the horizontal thrust outwards at
Dis =(A4 + 4 (B+ #)) tang. n, (276.) By the reaction
from D towards A4, a force equal to this is exerted inwards at
4, and an eqoal one at C, compressing the tie-beam. This
counteracts the outward thrusts at 4 and C, arising from B
wd =4 B tang. m, as before stated, so that the longitudinal
strain of the tie-beam is 4 B tang. m—(A4 + 4 (B 4 W)) tang.x,
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and will operate as a distension or compression according as
the algebraic sum of these terms is positive or negative.

The vertical pressure at each abutment D and E is 4 + D
+ 4 (B 4 W). (See Vent. §602.)

279. An equilibrated roof of this or any number of sides,
may be constructed experimentally by threads with weights
suspended, so as to give it a polygonal form. To construct
the last mentioned roof in this way, take a string of any con-
venient length DABCE, and divide it into four equal parts,
suspending any equal weights from the three points of divi-
sion 4, B, C, and fixing the ends D and E in the same hori-
zontal line. Then if DK be not to KB in the given ratio of
b : h, lengthen or shorten the interval DE till these two lines
bein that ratio. Suppose now the thread, becoming rigid, to
be inverted, so that the pulls are converted into thrusts, it will
still be in equilibrio, and will exhibit the proposed roof in
miniature. The two figures will be similar polygons: there-
fore, as half the span of the threads to one of the divisions=
i of the string, or as twice the span of the polygonal string to
its length, so will 4, half the proposed span of the roof, be to
z, one of the sides of the roof; and the angles will be the
same for the one as for the other.

Of Wooden Bridges.

280. The principles that explain the structure of roofs may
be further illustrated by an examination of the construction
of wooden bridges of various forms.

The simplest form of a bridge of this sort is when one or
two beams or planks, as 4B, (Fig. 114.) are laid from side to
side of a brook or narrow ravine. But if the length of the
beam is to be considerable, and more especially if the bridge
of which it may represent a section, is to be subjected to any
considerable stress, as by cattle or carriages passing along it,
there will be a transverse strain to be counteracted. This
may be done in various ways. If there are any means of firm
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Here the addition is that of the rafters 4G, DG abutting at
4 and D and supporting H, the middle of 4D, by a new
king-post GH, and a similar truss on the other side DKB.
The abutment of the rafters GD and KD on D produces a
resultant stretching CD, which protects 4B there from any
transverse strain from this source.

Another advantageous way of supporting 4B is that exhi-
bited in Fig. 117. The introduction of the straining beam
DE enables us to give a less oblique position to the braces
CD, FE, than if they were to meet. If more support is want-
ed, it may be given by an addition of two other braces, with
a shorter straining beam immediately below DE.,

For a river, piers may be erected at convenient intervals,
and the construction now described, or some of the former,
repeated from pier to pier; and for a wide ravine or river, a
number of firmly built trapezoidal frames of carpentry may be
made to support each other by mutual ebutment, like the
stones of an arch. Bold and elegant structures of this kind
have been sometimes made of iron.

Of Arches.

281. An arch is composed of truncated wedges, as BFF' B,
BFGC, &c. (Fig. 118.) which, considered as composed each
of a transverse course of stones extending from side to side,
are named voussoirs. The uppermost, or that at the crown
of the arch BFF'B/, is called the key-stone, and the surfaces
BF, CG, &c. where the voussoirs meet, are called the joints.
These wedges, though they were perfectly smooth, might be
made to preserve, by their mutual pressure, a state of equili-
brium, each endeavouring to insinuate itself between the ad-
joining two. Their weights acting in vertical lines throngh
the centres of gravity, may be resolved into forces perpendi-
cular to the sides, and the perpendicular forces meeting at
the joints must be equal. The ratio of the weight of any part
of the arch, then, to the pressures which it occasions at the
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285. As an easy example of the application of our formuls,
let the intrados be a horizontal straight line as MN, (Fig

'120.) the lines representing the joints converging to some
point as O below it.
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Let AD=#%, OD=1l, OE=7,and OB=R. Thenc'=
h‘+8hl,cos.*l=%,md

I
R= ./; B 2hD) = r--(lb+h_55 =r.(l’+l),
: orl:l+i=r: R,
‘-and the locus of the point B is evidently the straight line
AM’ parallel to MN.

To enter into the more complex calculations necessary
when the intrados is a curve line, would be irksome to the
greater number of students in a first course, and would ex-
haust much time that might be, in such circumstances, more
advantageously employed. In addition to what is contained
in the treatises recommended in the Preface, those who wish
to prosecute farther the doctrine of Arches, and to extend the
elementary views that have been given respecting some of the
preceding topics, will consult with advantage the article
“Bripce,” with the additions to the former article “ Can-

PENTRY,” by Dr. T. Young, in the last Supplement to the Fn-
cyclpedia Britannica, Vol. 11
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DYNAMICS.

286. Tre name of this science is derived from the Greek ~
word signifying force ; but, forces being known to us only as
characterised by the motions which suggest them, our real
object in the prosecution of it is the discovery and classifica~
tion of the phenomena of sensible motion. The phenomena
of nature, even when considered merely as phenomena of mo-
tion, are, in their complex state, distinct and varied, to an ex-
tent that no language could express and no memory retain ;
but, when they have been successfully analysed, such resem-
blances are detected among the principles, or least complex
assemblages, that they can be arranged under a few general
heads; and, as resemblances detected amidst variety, espe-
cially when extensively prevalent, are naturally, and even ne-
cessarily, ascribed to some presiding influence, and considered
as the result of regulation, the generalized expressions of what
observation and experiment have discovered in the composi-
tion and consecutive order of past events, considered as indi-
cations of superintending intelligence, and declarations of
what is yet to be, are, in the language of Philosophy, deno-
minated Laws of Nature. Those that fall to be. particularly
considered in this branch of mechanical philosophy, are the
iaws of Motion. .
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proposition also as a corollary to the doctrine of the composi-
tion of motion.

If A and B (Fig. 122.) be two bodies of which one at least,
4, is in motion, a spectator in 4, insensible of his own change
of place, will ascribe to B a relative motion compounded of
the real motion of that body, if any, and one parallel, equal
and opposite to that of 4.

Selecting for illustration and proof the more complex case,
let us suppose that 4 and B are both in motion, the former
describing AC and the latter BD, uniformly, in the same time;

join CD, and complete the parallelogram ACDLE ; the spec-
. tator at C will view B as at D ; but, supposing himself to be
at 4, he will refer it to the point E, for the distances 4E and
CD are equal, and these lines will appear directed to the same
point at such a distance that 4E would subtend at it no sensible
angle. By taking any two intermediate cotemporary positions,
it is easily shewn that B appears to describe the line BE, and
that uniformly. But the motion BE is compounded of the
motions BD and DE, of which the latter is equal and parallel
to 4C.

In like manner, a spectator in B, when at D, and observing
4 st C, will, if insensible of his own change of place, refer the
position of that body to F, BF being equal and parallel to
DC; and he will ascribe to 4 the relative motion AF, com-
pounded of AC and C¥, of which the latter is parallel, equal
and opposite to his own motion BD.

800. It is obvious, too, that BE and 4# are equal and pa-
nllel, or that the apparent relative motions are parallel, equal
and opposite, whatever the real motions may be.

801. In many cases, some of them very important ones, it
is difficult to distinguish between real motions and such as are
only apparent ; this, however, must be accomplished before
we can consider our analysis of such motions as complete, and
assign to the constituent motions their proper places in our
classification of phenomena, or indicate the forces concerned
inthe production of the changes contemplated. In its ac-
complishment we are aided by an enlarged acquaintance with
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of acceleration produced in a particle sitnated at a given dis-
tance.

804. In many of our future researches, it is necessary to
consider mass and weight not absolutely, but in relation to
volume. The mass of the unit of volume is called the den-
sity of a body, and the weight of the same, its specific gravity.
Hence, if Q be the whole quantity of matter in any body, #
its weight, D its density, G its specific gravity, and ¥ its vo-
lome,

—-V, —D_

/4

W=GYV, G = V’V c’
also Q=W
and D== G

804, It is received as a result of observation and experi-
ment, and meant by Newton to be included in the second law
of motion, that the quantity of motion produced in a given
time by any unbalanced pressure, is proportional to that pres-
sure, and is the same, the pressure being given, whatever be
the quantity of matter on which it is exerted. If we deter-
mine the equality of inertia, or of mass, by the equality of ac-
celeration produced by the same weight, and then state it as
alaw that the same weight produces, in the same mass, the
same acceleration, we may seem, so far as this extends, to be
stating a merely tautological proposition. On reflection, how-
ever, we perceive, even in this restricted application of the
law, an important generalization. The equality of mass is
supposed to be determined by the equality of the change of
velocity produced by some determinate force, upon a body
baving previously a determinate mechanical condition, and in
8 determinate time, while the proposition refers to any con-
stant force, any previous state with respect to motion, and
uny given time. The law itself, in its most unrestricted sense,
8 applied to the production or extinction of motion by pres-
sure, affirms that, if a number of units of equal mass be as-

L
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certained, as above described, and any the same force em-
ployed to generate motion, the force that, acting for a given
time, wounld generate, in the unit of mass, the velocity, or
change of velocity v, will, in & mass compounded of two such
units, produce the velocity or change of velocity 4 v; in a
siss composed of three, } v; and, universally, in a mass
>m . . Lo =R

=, units, a velocity or change of velecity =wb the
change being always the same whatever be the previous con-

dition upon which it is superinduced, provided always that

the body be free, or that the resistance to the change arise

from its inertia merely.

‘When of the motions entering into composition two are
in different directions, and one of them variable while the
other is uniform, or both are variable but according to’ dif
ferent laws, the resultant of the two is a curvilinear motion.
In all such cases, indeed in all cases whatever in which this
law is to be applied, the place of the body at the end of any
assigned time may be found by supposing it to obey, for an
equal time, and in any order, each of the forces impressed,
successively.

806. Explanation of the third—When the mechanical con-
dition of one body is altered by the influence of another, it is
always observed that the influence is mutual. If 4 commu-
nicates a velocity or change of velocity to B, and both bodies
are unconstrained, there is always a velocity or change of ve-
locity communicated to 4. These changes are seldom equal.
The action and reaction which, in the enunciation of the law,
are stated as equal, are measured not by velocity merely, but
by quantity of motion as above defined, (302.) The quantity
of motion lost or gained by 4 is always equal to that gained
or lost respectively by B ; so that the whole quantity of mo-
tion belonging to the two bodies together, estimated in any
given direction, remains unaffected by their mutual attrac-
tion, repulsion, or collision. This law serves, as is observed
by Maclaurin, to render the first law more general, and to
extend it to any number of bodies; for as by the first law a
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of given dimensions and velocity, for instance, we must have
a term to denote the quantity of motion produced or expend-
ed in a given time, whether that is to be traced in its sawing
effect, its grinding effect, its corn-thrashing, or its cotton-
spinning effect.

In cases of impact, where the production of motion seems
to depend on arepulsive force of-unknown but variable inten-
sity, according to the specific' nature of the bodies concerned
and the successive degrees of approximation, we seldom con-
sider the progressive generation and extinction of motion, and
we treat it as if it were, what it is to sense, instantaneous.
.Our measure of motive force impressed is, in this case, the
quantity of motion expended ; and, on the authority of the
third law of motion, we may state an absolute equation be-
tween this measure of force, and that of the motion which it
produces. But, if in speaking of the force the reference be
to any pressure by which a certain velocity, now continued
uniformly, has been produced, we can only state a propor-
tional equation between such force and the resulting quantity
of motion.

811. Let 7 denote the velocity of an uniform motion.

S the space described.
7 the time of the motion’s continuance.
Q the quantity of matter moved.
F the motive force.
* And the relations of all the quantities concerned may be ex-
pressed as in the following table :
: FT
s
Vv = T = a
_ S 8SQ
i 4 =7
Qs
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816. 2. S=}7VT,
or the space described during the acquisition or extinction of
any velocity by a constant force, or by an uniform variation
of the motion, is the half of that which would be described in
the same time with the final or initial velocity, respectively,
continued uniform.

In the demonstration of this property of uniformly varied
motion, it will be best to confine our attention at first to one
of the two cases, suppose that of acceleration. Let the whole
time of the motion then be considered as divided into a cer-
tain number of equal parts, for instance seconds, and let s be
the increment of velocity received in the course of each se-
cond. If we suppose this increment to be received at the be-
ginning of each second, the spaces so described will be all
greater than those which are described in the corresponding
times with an equable and continuous acceleration; ‘and if we
suppose them to be all received at the end of each second, the
spaces so described will be all less than the true. If the num-
ber of seconds in the whole time be ¢, the final velocity will,
on each supposition, be ¢s, and the space which would be uni-
formly described in the same time with this velocity will be
s, If S be the space described from rest by the continuous
acceleration, we shall, therefore, have

S:t%s —~8+28+8s----41ts5:¢%,
but =04 8 4 28--~-4 (t—1)3s:¢%,

t t
orS:t8s < (t+1) '32—: t*s,but—(t—1) %—: s,
or by reduction,
’ 1 1
S:t°8 <1 +T:2but - 1—7:2.

Now, as the change of velocity is equable and continuous, we
may apply the same process of reasoning, however small, and,
consequently, however numerous be the equal times into
which the whole time is subdivided : and as ¢ the number of

the moments indefinitely increases, —:— approaches to 0 as its
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uy ii may be said to be twice that of gravity. In general,
9=mg, then our equations in (314, 816, 317.) may stand

1. v=mg¢,
2. s= 40
s=4mgt,
o

4. 8= 5—’»—9.
the force is to be determined and as a multiple of gravity,
is the quantity sought.
326. Before proceeding farther in the science of motion,
- shall exhibit an illustration and proof of the laws already
plined. For this purpose we employ a very ingeniously
+trived machine, invented by the late Mr. Atwood, the
wle of using which will be understood by the following con-
s description.
Let ADB (Flg 128.) represent a wheel or pulley, the fric-
1 of whose axis is as much as possible diminished ; to each
d of a very fine silk line passing over this pulley, let 8
tight Q be attached : the two weights Q will of course be
equilibrio. Let now an additional weight P be attached
one end of the line. Motion will then commence, snd
ying out of view for a moment the inertia of the pulley, the
eight of P will not have to put in motion merely the mass
yas in the case of an unimpeded simple fall of P to the
ound ; for it cannot at present descend without causing its
'n mass and that of 2 Q to move with the same velocity.
ow, by what has preceded, the masses of bodies are as their
eights, and the accelerative forces are directly as the mov-
g forces and inversely as the quantities of matter. Hence
e accelerative force in the circumstances supposed will be
- the whole accelerative force of gravity = PraQ Ps ik %

P
=P PraQ’ : 1; that is, the accelerative force in our ex-

wriment will be 5——— as a multiple of gravity. But the

P+8 Q
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scend with a continual acceleration a certain number of inches
according to the velocity wanted, and then let the rod s be
intercepted by a circular stage in the form of a ring through
which the box passes. After this interception the motion |
will be uniform if a few grains have been previously added to
balance the retarding power of the remaining friction.

The following construction of an experiment gives a greater
range of illustration, the motion being slower:

A B
Itself 6 m Itself 6m

add86}m addS6im

+ im __
2im 4 42im=86m
Inertia of wheels = 11m
. o6m
_3m _ 1
F=im =560 = o8-
Times. Spaces.
1 « « o« « « « linch.
2 P - |
3 .« 9
4 16
5 « « ¢« .+ . . 25
6 s+ o o+ <« o« 36
7 49
8 64

To shew the velocity acquired, remove the circular weight
4m, and use the flat rod 4 m in place of it. Let it be inter-
cepted when the botfom of the box comes to 16 inches on the
scale, or at the end of the 4th second. The mass having
described with uniform acceleration 16 inches in four seconds
is now according to the theory in a state, according to which
it would describe 82 inches uniformly in that time, or, which
is the same thmg, 8 inches in each second. Therefore at the
end of
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- & it will strike the square stage at 24 inches.
6 . . . () e se .. e . . .”
T ¥ ]
B - .14-8
) Q... e e ¢ 4 & o & e o 0 56
10 . . ... ... . 64

Egperiment on Retardation.

Let 18  m be placed in 4 and 19 im in B. Then

4 with its load =24 1 m,

B with its load = 25 } m.
The sam is 50m, which with the inertia of the wheels is 61m,
and the preponderance is m on the side of B. But let two
rods each = m be added to 4, then the mass is 63m, and the
. preponderance is m on the side of 4, ¢ = ‘—::—;g,
scending till the bottom of the box 4 reaches 26.44 inches, a
- velocity of 18 inchies per second will be acquired. The cir-
cular stage being so placed as to intercept the two rods, will
leave the mass 61m, and a preponderance m on the side of
B, so that we shall have the mass 61m projected with a ve-
locity of 18 inches per second in opposition to a retarding

and by de-

force = Gll g and the space described during the extinction of

this motion ought to be 25.6 inches. The bottom of the box
will therefore descend to about 52 inches before its motion
be destroyed.

In making the calculations for this experiment, we take for
49 198 inches, which is more accurately its true value than
192, because we cannot avoid fractions by using the appro:u—
mate number.

Qf the Motion of Bodies upon Inclined Planes.

827. In descending down a smooth inclined plane, the
force by which a body is impelled being for each particular
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880. Cor. The times of descent along inclined planes of
the same vertical height are as their lengths.

831. The spaces described in the same time by a free dD-
scent in a vertical direction, and along an inclined plane are
as the length to the height. Let S be the first of these spaces:
and s the second.

S:e=dgt:imgl=1:m=1:h "
882. Cor. 1. If AC (Fig. 124.) be an inclined phm. of
which BC is the base and AB the vemc;l helgllt, lnd we

S

(3
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dtaw BD perpendlcu]ar to AC, a body will fall from 4 to D
in the same time in which it would fall vertically to B ; for
S:8=l:h=AC: AB= AB: AD. '

833 -Cor. 2. If a circle (Fig. 125.) be situated in a vertical
p]ane and chords be drawn from either extremity of the verti-
al diameter, the velocities acquired by falling down these
chords will be proportional to their lengths, and the times of
descent through any of the chords and through the vertical
dmmeter will be equal.

" By (328.) v*== BD == 4B. BD == BC?, and v==BC.

By (332.) since ACB is a right angle, the time of descent
down AC is the same with the time of descent down 4B, and
the same may be affirmed of the descent down CB, which is
equal to that of the descent down BC when the figure is in-

Verted.

On this property of the circle may be founded several ele-
&ant theorems or problems, some of which are usually pre-
Scribed as exercises.

334. If a body fall down a series of inclined planes, and
00 velocity be lost at the transitions from the superior to the
ixferior, the final velocity will be that which is due to the
Wertical height of the whole.

- The velocity acquired by falling through BE (Fig. 126.)
= that acquired by falling through CE, which has the same
“Vertical height ; (328.) and as, by supposition, no velocity is
lost in passing from BE to EF, the velocity acquired by fall-
ing through BE, EF, will be the same with that acquired by
filing through CE, EF, that is, through CF. For a si-
hilar reason that acquired by falling through CF, FG, or
BE, EF, FG, will be equal to that acquired by falling
ﬂlrough DG, or to that which is due to the vertical height
ba, (s28.)

385. If the planes BE, EF, &c. be so numerous, and their
inclinations to each other so small, that their vertical section
BEFG may be considered as a curve, the velocity acqun‘ed
by flling through any part of it will be that which is due to

vertical distance between its two extremities.

M
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To prove this, we must shew that the velocity lost by the
continued change of direction is evanescent.

Let 4B, BC (Fig. 121.) be two inclined planes making a
finite angle 4BD, whose versed sine fo the rad. 1 = 5. Take
AB to represent the velocity v with which the body comes to
B. This may be considered as equivalent to 4E and EB,
of which the former is destroyed by the collision, and EB
remains in the direction of BC. Consequently the velocity
lost v’ will be represented by 4B — BE = ED, which is the
versed sine of 4ABD to the rad. BD; andv:v=s8:1,0r v
= sv. If the angle become indefinitely small, s vanishes,’ and
v=0.

Again, let CBF (Fig. 128.) be any given angle, and let CBE

be the % part of it; the sum of the versed sines of all the n

n.(chord EC)* _n.(arc EC)* nt. arct
D < D

th#tisé

equal parts =
that is < -’?—g- But g—;—, is constant, and hence # may be

taken so great that % shall be less than any assigned quan-

tity. The sum of the versed sines then of the angles whose
number is 7, or fs = 0, and consequently V /s=0 even sup-
posing V to be the greatest finite velocity of all.

Let AC and BC (Fig. 129.) be tangents to any portion of
a curve, at its extremities, meeting in C, and let 4C be pro-
duced to D ; subdivide the angle BCD into equal parts BCE,
ECF, &c. indefinitely, and conceive successive chords of the
curve to be drawn parallel to CE, CF, &c. beginning from
B. By falling down the polygon formed by these chords or
down the curve which is its limit, no finite velocity will be
lost; and the proposition is demonstrated.

836. In falling down curve surfaces however the force de-
rived from gravity will not be constant, as upon an inclined
plane of given elevation ; and before we can exhibit the re-
sults of a motion so regulated, we must treat of acceleration
and retardation depending on the agency of variable forces.’
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Of Accelerated and Retarded Motions depending on the Agency
of Vuriable Forces.

887. Let s and & denote any two successive values of the
space described, ¢ and ¢ the corresponding times, v and v’ the
velocities at the beginning and end of the increment of time;
then, for accelerated motion,

§—8= v ({—1t), but v (t'—1),

f—3
or —— 7v,but4'u

_But as the cotemporary increments §—s and t’—t diminish,
¢’ approaches to v as its limit; therefore =7 %, whose value
we have just seen is always intermediate between v and v/
tust- have v-also as its limit; or Z—:= v ; whence

ds=v.dt
dt = 9.

v .

For retarded motions the same investigation will suffice, if

the symbols = and  be interchanged.

- 888. Let the accelerative forces at the beginning and end
of the increment of time be ¢ and ¢', and let v-and v be the
correspondmg velocities ; then, if the accelerative force be
mcreasmg
- Y=o (t—¢), but = ¢’ (t—1);

v —
T T—t
but as the mcrement of time decreases ¢ is the lumt of q)’, and

Mefm ol‘

e =~ @, but = ¢’ ;
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d
339, }1’ =dt= ’, (338, 3317.)

orvdv=¢ds,
1
— dt(

wher

whence also ¢ = ‘%’ dv

_dds.dt—ddt.ds dds

- de =dr

840. Our first fluxional equation, ds ..

the first equation under the head of uu.-.

v = ¢, furnishes a very concise demo:.:

ors=4vt; for

ds=v.dt=¢t.dt, and s= ..

841. As the investigations to whic. .-
tions are adaptéd, are, by some disi

among others by Newton, in his Pre..

aid of a geometrical representation, ..:.

ing farther, give the elements of tln... .

Lemma. (Prin. =

Let FS (Fig. 180.) be any cur«~
the rectangles 4G, BM, &c. and '-*
circumscribed, as in the figure, 1l
If the bases 4B, BC, &c. be all ¢~
vided by continual bisection, aiwi'it e
made at each, the sum of the i mte\‘ will r
tially exterior rectangles will e:. ™ s :d
near area AFSE as a limit. R

For the difference of the abn -~ it
OP, &c. = DE.(ST4QP, &c.) = 1ui’n
diminution of its breadth become - 1+
or the sums of the two sets of =~ -~ ' ¢
each other, and consequently « iorve i
by any assigned difference. en ~.‘

It is not necessary to sapposa.. <.
we have done, that the bases m iy 131
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reference to this proposition be each quadrupled, the ares,
and the square of the extinguished velocity, which it may re-
present, will each be quadrupled. Of course the velocity it-
self which is destroyed in passing over the same space will
only be doubled: In this way is easily explained, in confor-
mity with the Newtonian measure of force, one of the most
striking of the facts adduced by the adherents of Leibnitz in
support of their measure. (See 810.)

~ 'We now proceed to exemplify the equations above inves-
tigated, and the theorems just demonstrated, in their appli-
cation to one of the most important classes of mechanical
phenomena, that of motions depending on the agency of an
accelerating or retarding force which is as the distance from
g given fixed point.

846. Let a body begin to move from 4 towards C (Fig. 132.)
under the influence of a single force whose intensity is di-
rectly as the distance from C, and,

Let AC = a,
AB = z the space through which the body
has moved,
CB = a—=, : , __
J = the value of the force at the unit of dis-
. tance.
Then f (@ —z) = its value at the dist. a — &, and as ds=dz,
v.dv=f(adz—adx)

o 2
g=r(as—3)

. or v =a/fa[2a2—2"

. Cor. The square of the velocity acquired in moving from
-4 to. C is the half of what it would have been had the force
“which acted upon the body at 4 continued constant.

For.v*= f(2¢2—2°) =fa* when 2=ga,=fa.a; nov fa
is the intensity of the force at 4, or at the distance a. De-
note this by the symbol mg: then v’=mga. But had the
force mg been constant from 4 to C, we should have had
2'HANG G, (326.) .

~

3
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If there be any slight cause obstructing the alternate ex-
cursions, the oscillations will at last cease, and C will be sens
sibly the point of final quiescence. -

849. We shall arrive at the same conclusmns by a geo-
metrical representation thus:

Let 4B (Fig. 133.) represent the accelerative force at the
point 4 where the motion commences. Join BC and draw
‘BO parallel to 4C, and if 7 be the velocity acquired in mov-
ing from 4 to C by the constant force 4B and » the velocity
acquired in passing over the same space when the force is 4B
‘at first," but varies as the distance from C: V*: v*= A40:
ABC=2:1, (344.) Now, if 4C =a, and prepresent AB,
R V 2¢a, and therefore v*= pa.

~“{Thi 've}oclty at any point E is proportionally repnn-lad
by DE, the sine of the arch whose versdd-sine is theispees
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described: For v?== ABHE, = 4BC— EH(, = AC+—E(’s,
= DC—EC* = ED- and r =ED.

330. Cor. On this scale the fir. veioclsT Wl Ta represent,
el by the radias FC.

851. The space 4C may be corsidersd a3 deseriod by a
tuccession of increasing velocme.s, each comtiniing eorecara
fora small space, if we cocxider thews ipacss ar odefern y
diminished.

The time of describinz Dm »=h o v2rnizy Fr oy [N, 5
the same with that of descri®izz Dd < Eo wox e vessiny

=

DE. For Dm: DC=D4Z: DE, =35 s ar wracgsm,

Ds Dd

IC~DE

But Dm and DA a-= zaces, 1wl DO s LE vee eony.
tional toc the vec—es 'r"_i BILD LAY 108 Tyt el a—..tf,
since the quotiezzs ¢ = iz ke Ly e verslem v
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.t e parallel to

v 22 F, and let FK

.ved into FH perpen-,

. wectiony or in that of

u /' its force estimated-

u ,r considered as pres-
ey may represent also

-« direction and down the
“K: FG=FE : EB =
= CD=

therefore f

wt ¢ where the tangential
i a body describing a cy-
civlore be performed in equal
_ .\pressed, will be isochronous.
"« ulaays parallel to the chord
- ~c.at D, the tangent at M will
I'e whole force is there tan-
"..«v the force at the distance
cvy
g 2

. aipete oscillation is J

» .he writers on the cycloid, that
~ «it equal cycloid.  If we there-
nace the two cycloidal cheeks
«presented in Fig. 135. by MC,
i equal to the base of the cy-
ac same thing, the cheeks hav-
« at My a flexible pendulum of
~oseribe the eycloid CPC, and,

yeloid desceribed on each side of
waally it will not sensibly deviate
“wad with the radius L. Hence, in
w vibrations will be sensibly iso-
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the circle in D, CD the chord of the arcl
LI a tangent to the cycloid at F, and t
DC. Let a body be on the cycloidal cu
represent its weight. This may be reso’
dicular to the curve, and FG in its di
the tangent. Let F be the weight, an.
in the tangential direction; as F anc
sures have to move the same mass, i ..
the accelerative forces in the vertical
curve respectively. Now F: f=

Fk.Cr
DC:CB=AC:CD, or f= e
2 CD==arch CI'== distance fro:.
force vanishes. The oscillations -+ L. ";: oh, u\()
cloid by its weight alone, will the '
times, (8417.) or, as it is usually
. .3.56. As the tangent at {" =S B the semi-
joining C to the corresponding
be parallel to AC, or vertical. *¥-*"v 2¢ isx not very small,
gential, and f= F=yg. e - readily obtained from

< Krer. de Cal, Int.

LslLY L s =2 =

g ime of .-
1= i and the time of a .

(318.)

357, It is demonstrated .
the involute of the cycloid
fore divide our cycloid ai <. iwial practice, the pendulum
MC, LC in the position ... orate through a large angle,

2ulefinitely small and ¢ =

with sufficient approxima-

MO, CC Leing horicci.. o0 son in a eyeloidal or inde-
cloids, ory which wnrioo v o L chat of falling through half
ing i coiduon vertexl o o circumference of a circle to
the !«:::'_f’.!. I =

I, v o
t== / Yandifs=11

N . =
/
3 It I vt ,
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‘multiple of it:
thatoous s
simple error i
tiple. Great

864. Cor. 6
geously to pro
of gravity is the same iy all ‘matter.” Wé can shew, by means
of & commoni experiment with the airpump, that bodies, of
whatever matter composed, descend with equal velocity
vacuo. ~ There mtight, howéver, be minute différentes not to
be detected in this way. It i proved, with a precision. sieh
more satisfactory, by taking pendulums of the samé Tenyth;
and composed of different materials, which, in vacuo, are al-
w&ys found to perform their escillations: tht!ough ytial dvches
in equal times. In su¢h ‘experiments, it is obvious tbatwe
canttiot ¢émploy what is called a simple pendulum, the ‘exist- i
enice ‘of ‘which' ¢ ideal merely, but miust use one compoced
throughout of inert matter, possessing also weight' vanoufy
distributed thtough' its whole length. Any compoind pen-
dulums, however, éan always, by calculation ‘or. expenﬁ:’éiii,
be reduced with sufficien¢ approximation to "an equivaled
simple one, as will be proved under the head bfegdahw.
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rods, connected above and below by two cross bars, of the
same or any other metal. On the lower bar rest two other
rods, of a more expansible metal, as zinc or some of its alloys.
These are connected at the upper ends by a bar GH, from
which depends the pendulum rod of steel XP, passing freely
through an aperture in the middle of the lower bar at O, and
carrying the ball . Suppose 4B to retain sensibly its
position, the expansion of the two outer steel rods will lower
the bar CD, and thereby tend to lower as much the bar GH,
and the ball P, which will also sink still lower by the expan-
sion of the rod KP. But the simultaneous expansion of the
rods EG, FH, will tend to raise the bar GH and the ball P;
and, if the expansion of GE or HF be equal to the sum of
the expansions of 4C and KP, the ball of the pendulum wilt
neither rise nor fall. It does not, however, follow that the
equivalent simple pendulum is neither lengthened nor short-
ened. There is a new distribution of the matter of the pen-
dulum which, as we shall afterwards see, may affect this a
little, but the remaining irregularity will now be very small,
and may still be diminished if the instrument be so con-
structed as to admit of adjustment by trial. This is called
Harrison’s pendulum, from the name of the inventor, a Lon-
don artist. It is also known by the name of the gridiron
pendulum, an appellatior: derived from its shape. It has the
name, now common to it with others, of compensation pen-
dulum, from the principle of its construction. The same
principle has been applied in various forms. Let C4 (Fig.
138.) be a steel rod supporting a hollow cylinder partly filled
with mercury, BEFD ; and let CO be the length of the equi-
valent simple pendulum. The expansion of the rod and cy-
linder tends to lower the point O, but the expansion of the
mercury raises it. By taking out or adding mercury, the
quantity may be found experimentally, which being employed,
there shall be no difference in the rate of going when the
clock is exposed to great artificial inequalities of tempera-
ture, and then it may be used with the greater confidence
through the smaller range of the common atmospherical
1
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changes. This is called Graham’s compensation pendulum.
The inventor was a celebrated clockmaker in London, dis-
tinguished by some other very ingenious improvements in his
art.

868. Since a variation of 1455 inch nearly corresponds to a
change of rate = 1” per day, it is easy to regulate a clock
by observing the number of threads in an inch of the screw
below the pendulum ball. Suppose they are 25; then to cor-
rect a variation of 10” per day, which will require the pen-
dulum to be lengthened or shortened y3§5 inch, = 135 inch,
=} % gyinch, the nut supporting the ball may be turned, for
s first and very near approximation when the rod is light and
the ball heavy, } of a revolution. By a proportion founded
on the observed reduction of error which this produces, we
may find, with all requisite accuracy, what corrective adjust-
ment is further to be employed.

869. To the balances of the finer kinds of watches, called
chronometers, the principle of compensation is also applied.
The more the balance is expanded by heat the spring has the
less power to turn it, and its vibrations become slower. When
it is contracted by cold, again, all the parts are brought nearer
to the axis, and the accelerative forces at all corresponding
points of the range of oscillation become greater. The forces
are still as the distances from the point of quiescence, and the
vibrations are still isochronous, but they are not synchronous,
a3 it is sometimes termed, with those of a balance unaffected by
temperature. The compensation balance is often constructed
thus, The rim is divided into three equal parts as in Fig. 189.
each connected with the axis by a separate radius, as abd, ac,
ad. The three divisions of the rim are perfectly similar, and
each composed of two plates of metal closely united ar sol-
dered together, the inner of steel, the outermost of brass. At
¢ fand g, near to the detached extremities of the three di-
visions of the rim, are fixed three small knobs which screw
into them, and which may have their positions shifted a little
for the sake of adjustment. Suppose now the balance to be
expanded by heat: The matter in the radii and in the parts

N
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crooked lever BAC, with which the pendulum rod 4P is
connected, so as to have the same angular motion, is termed
the crutch. Its arms terminate in two oblique faces at B
and C, called the pallets, on which the teeth of the swing
wheel drop alternately. When the pendulam ball P is mov-
ing to the left, carrying with it the arm 4B, a tooth escapes
from B, and one drops on C; on the return of the pendulam
towards the right this tooth escapes from C, and another
drops on B, and thus a tooth escapes from the crutch at every
second vibration of the pendulum. There are thirty teeth in
the swing wheel, and consequently it turns once round for
every sixty vibrations of the pendulum, that is, in one minute.
On the axis of this wheel, projecting a little through the dial
plate, the seconds hand is fixed. Knowing the weight which
puts the train of wheelwork in motion, and the radii of the
different wheels and their axes or pinions, we can find what
force is exerted at the extremity of a tooth of the swing wheel
in the direction of its motion. Let this be F. Draw EG
perpendicular to the surface of the pallet, and let fall upon it
the perpendiculars DE, AG : let the radius of the swing
wheel from D to the extremity of a tooth be called R, and
let ¥ be the pressure exerted at E or at G, considered as
having a rigid connection with the pendulum, and F” the tan-
gential pressure at P. This is the maintaining power which
prevents the gradual diminution of the oscillations that would
result from the resistance of the air and other obstructions.

It may be estimated as follows: F.R=F.DE or F= LR

DE’
F.AG = F".AP,or F'= %_G’ = %}—I,—zg—g ; where F, R and
4P are constant.
"~ When a tooth of the swing wheel escapes from C, to which
it has been for some time adding motion, the one that drops
on B is, by the obliquity of the pallet, during the remainder
of the pendulum’s excursion to the right, pushed a little back-
wards. The same thing happens in the opposite vibration.
When a tooth escapes from B, one moves forward through
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a small space to drop on C, and, by the remainder of C’s mo-
tion to the left, is forced backwards through a smaller space.
Hence this escapement, which is pretty generally used in
common house-clocks, is called the recoiling ’scapement. It
may be known by the motion of the seconds hand being al-
ternately forwards and then, through a smaller space, back-
wards. When this escapement is used, we have seen that a
pressure resulting from the weight is applied to the pendu-
lum, in the way of acceleration or retardation, throughout the
whole extent of its vibration. Now, unless this additional
force follow the same law as the cycloidal modification of
gravity, that is, be as the distance of the pendulum from the
lowest point, or nearly as the sines of its small deviations
from the vertical, which it is not, the isochronism of the os-
cillations will be disturbed. Hence the recoiling ’scapement,
though quite sufficient for ordinary purposes, is unfit to be
employed when great precision in the measurement of time is
of importance.

871. Could the motion be maintained by an instantaneous
impulse communicated to the pendulum ball, at the lowest
point D, (Fig. 141.) the isochronism would not be disturbed.
The ball having descended from 4, would commence its
ascent through D4’ with the same velocity as if it had de-
scended not from 4 but from some higher point B, and if the
impulse restore the velocity which would be lost from the
resistance of the air, &c. in descending from B to D, and
communicate about as much more, it will ascend to the cor-
responding point B'.

872. To approach as near as possible to this state of things,
is the object of what is called the dead ’scapement, or dead beat
escapement, the invention of the ingenious Mr. Graham.

BAE, (Fig. 142.) represents the crutch, CD and GF the
pallets, which are oblique planes as before, BC and EG cy-
lindrical surfaces, whose common axis is a straight line pass-
ing through 4 perpendicular to the plane of oscillation.
‘When a tooth escapes now from the pallet on the right, one
drops on C, and during the remainder of that excursion of
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spring, and the pressure of the tooth ¢, it immediately begine
to return, and the tooth e exerts its maintaining power by
pressing the pallet ¢b round till it escape from it, when the
woth d will drop on ca, and the former motion will be re-
peated.  'When the recoiling ’scapement is thus applied to &
waich, whose balance must be light, that it may not break
the fine pivots on which it turns, the inequalities of the main,-
tining power, and its deviation from the law that regulates
the action of the balance-spring, occasion much greater vari-
ations in the rate than the corresponding inequalities do when
the same sort of ’scapement is applied to a clock. The want
of momentum in the balance, arising from the smallness of is
wass, and its proximity to the axis, is partly compensated by
giving it a cousiderable velocity, and by an imitation of, ar
an improvement on Grabham’s invention. In what are called
detached *scapements the balance is subjected to the actiom of
e mainspring during a small part only of the vibration ; and
this is [ound to be a great improvement.

Of Collision, or of the Laws of Impulse as a Motive Force.

374. ln treating of this subject, bodies may be divided into
nard, softy and elastic.
A perfectly hard body is conceived as one which suffers no
compression, or change of form, by any force applied to it.
\ perfectly soft body is one, the parts of which, on the ap-
Jacation of any force, however small, suffer compression;
vii, taking a new arrangement, exert no force to regain their
~inal position.
\ verfectly elastic body is one whose parts suffer com-
.o or dilatation, and exert the same force to recover
~. soruer state as they exerted in opposition to the change
fiitl,
“heae definitions may be considered as marking the ideal
. ~I'¢erwin observed varieties in the constitution of bo-
« e e being actually found which is either perfectly
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hard, perfectly soft, or perfectly elastic. In some bodies,
however, as glass, ivory, and hard-tempered steel, the degree
of elasticity is very great, approaching nearly to that which
ia defined as ‘perfect. In other bodies, as lead or clay, it is,
i the ordinary ways of trial, scarcely sensible. .

= 875.- Al badies; appear to passess s repulsive force, the
sphere of which extends to a very small and generally
imperceptible distance around them, but which, increasing
very rapidly as the distance decreases, is sufficient to prevent
absolute or geometrical contact.”. When. 4, moving faster
than B, overtakes it, or appears to do so, this mutual repul-
sion begms to act, and continues to take somethipg from. &'s
velocity, and add something o B, till the two velocities are
equal. ‘The effect of 4's greater velocity before this equality is
attained, is merely to keep the two bodies within the sphere of
each other’s influence, so as to prolong the action of the repul-
sive force ; and, if the bodies are either perfectly hard, or per-
fectly soft,they will suffer ne sensible.change after the common
velocity is attained: - But if they are perfectly elastic, they will,
during the change just described, compress each other, and
the external particles of either body will be repelled inwards
towards those next to them, until the elastic or repulsiye force
which these exert to prevent a nearer approximation is ‘in
equilibrio with the repulsion éxerted against the other body.
Thus two spherical balls of jvory will have, in their state of
nearest approximation, not a point but a surface of apparent
contact, the base of a spherical segment in each. Two balls
of clay will also flatten each other, in the same way ; but, the
clay having no sensible tendency to recover its form, there is
no cause preserving the action of the repulsive force ; where-
as, in elastic bodies, there is such a cause; the elasticity of the
compressed interior particles in each body repelling the ex-
terioy particles towards the other; and if the elasticity be con-
sidered as perfect, there will be the same force mutually ex-
erted, and the same changes made on the velocities of the two
bodies, respectlvely, during the recoil as during the com-
pression.
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It follows, from what has. now been observed, that - it will
be sufficient to consider bodies as divided into two tlasses,
elastic and unelastic ; and we begin with the latter, as present-~
ing the simpler problem, the solution of which moreover na-
turally conducts us to the solution of that which is presented
by the other. In what follows the bodies are mpposed to be
spherical, o

Collision of Unelastic Bodies.

876. Suppose the body. 4 moving with the velocity a to
overtake B whose velocity is b, and that it is required to find
the common velocity after impact. Let this be called z : then,

a— & = velocity lost by 4,
x —b = velocity gained by B,
A (a—az)= quantity of motion lost by 4,
B(z —b) = quantity of motion gained by B.
A(a—z)= B(z—b), by third law of motxon,
Aa+Bb
whence z = 4B

Cor. Velocity lost by 4 = 1—8—(}+ Bb),

velocity gained by B = ﬁ%_-ﬁ@.
The changes of velocity, then, depend solely on the relative
velocity, or velocity of approach, and on the ratio of the
masses.
377. Suppose 4 to meet B, and to have the greater quan-
tity of motion.
The velocities being denoted as before,
a— z = velocity lost by 4,
b+ z = velocity gained by B in the direction of 4’s
motion,
A(a==z)= B(b+z), by third law of motion, and
Aa—Bb '
r= _7:}-7.
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A third casé, v.rhen Bisatrese and struck by A refuires no
separate solution, as e may g commodate 'thp,’ o .,,’,m:

tions to that case by supposing == _ o
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Collision of Pﬂfecdy Elastic Budire.

818. The result in this ease is easily found by recnilertng
what was stated at the outset, that the chaage of velaerty o
each body is doubled by the recnil.

4's velocity after impact =4 ——E

B's velocity after impact = 4B =

879. Cor. 1. The relatize veloeity remaint .achacyd .
Tespect of quantity, bat its sign is changed "y the (xomer | n
other words, the velocity of spuramern bafews “ro iegmer iy
equal to the velocity of recess aler o If of acd W/ v b
velocities of 4 and B, respectively, absx che resrd;n § b~

V—d. =
This may be proved by saberacsicy A verrsity fromn Ir.,

s determined sbove, or still mwre vapty, by this c/mrulira
fion, that since, durinz the eopgras, by a subgtrastion $iomn
s velocity and m addition w B's, tse yelative velicity a
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destroyed, or the actual velocities made equal, the equal mu-
tual action during the recoil, taking as much more from' 4,
and adding as much more to B, will reproduce the same dif-
ference as before, but in a contrary order.

880. Cor. 2. In the case of perfectly elastic bodles, not
only the products of the quantities of matter into the veloci<
ties, estimated in the same direction, remain, as in-all other
cases of collision, unchanged; but also the prodncts of tbe
same into the sguares of the velocities, for,

4 (a—a) = B ()’5=b), by third law of motion,
anda-l-a’ = b==b, Cor. 1.
‘. 4 (a*—a'*)= B (b*—b*),
or Aa*+ Bb*= A a*+Bb".
381. Cor. 8. If 4 strike B at rest, or ifdb=0,
—B

A’s velocity after impact = A TBY
24

B’s velocity after impact = ma.
Thus, if 4=13B, .

. . 1
4’s velocity after impact = el

B’s velocity after impact = {;4a.
Andif B=24,

4’s velocity after impact = -% a;

B’s velocity after impact = —5}2— a;

that is, 4 is reflected backwards with -3 of its previous v
locity, and B is progressive with 52- of the same.

It is obvious from the formula that in this case the stxiking
body, if the less of the two, must be always reflected. .
882, Cor. 4. If A and B be equal, and 4 strike B at resh
A will remain at rest after collision, and B will proceed with




e

DYNAMICS. 189

secting FG in C and join CB, 4 must be impelled in the line
4C. The demonstration is obvious.

388. Prob.2. Let d and B (Fig. 147.) be two equal spherical
balls, and let 4, moving in the direction and with the veloaity
4G, strike B obliquely; it is required to find the motion of 2ach
dfter impact. With the centre B and radius BG = the sum

* of the radii, i. e. in this case 2 BL, describe a circie, and ‘et

the direction of 4’s motion meet its circumference in (%.
Take 4G to represent A's velocity and resoive it into .14,
HG perpendicular and parallel, respectively, to the tangent

. plane DLF. Then, 1, If the bodies are pertectiy etastic,

the velocity 4H will be destroyed, and B wil proceed .n e
line BC, with a velocity represented by .1H, and .4 wiil move
in the direction GK, with a velocity represented by GA, =

. HG. 2dly, Let the bodies be unelastic; B wiii tili take the

direction BC, but now with the velccity ; 4F. 4 v re-
tain the velocity § 4H in that direction ; and, if we maxe as
before GK = HG, and draw KE perpendicuiar to it, and
=4 4H, the path and velocity of 4 after impact wiil be re-
presented by GE.

Ifboth the spheres be in motion when they mees, we ro-
quire the solution of the following preiimirary protiem.
.889. Prob. 3. Having given the radii of t#0 spheres mov-
ing s0 that their centres are always found in the same p.ane,
their velocities, the directions of their motions, aad twe -
temporary positions of their centres, to find their praition at
the moment of impact, and that of the plane which ia their
common tangent at that instant.

Let the spheres be 4 and B, '‘Fig 14%., it AD) ' de
scribed by 4 and BG by B in the sarm.e time, if moiiag i
terruptedly ; complete the parauciogramn ABCID, jwn (0,
and let it be cut if possible in a point M %7 a iine J)H = the
sun of the radii of 4 and B. Complete the parailelogram
DHFE ;

Then BC : BG = FH : FG, or
4D : BG = ED: F(,
and 4D : BG = AE : BF, Eucl. v. 19.
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the velocity’ DB = BE continues tndiminishéd, and 4D or
FB is destroyed, and, as far as.our senses can distinguiih,
instantly reproduced in the direction BF, and-the velocities
BE, BF will, by composition, produce BC = 4B, makmg
the angle CBF' = the angle 4BF.

2. If B be a ball whose radius is sensible, let D'E' be the
reflecting plane, and, having drawn DE parallel to it, ata’
distance = radius of B, and on the side on which the body
approaches it, let 4B meet this lme in B, and proceed as be-
fore.

887. Prob. 1. Let 4 snd B (Fig. 146.) be two sphericst
balls, of which 4 is perfectly elastic, and F'G a plane sur
face considered as immovable, it is required to find in’ what
direction 4 must be impelled so as after reftection from the
plane to strike B. Let FG be parallel to the plane FG; at
a distance = the radius of 4; draw BD perpendicular to FG,

and produce it to E, making DE = BD. Draw AE inter-
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- 890, In treating of impulse ‘e have hitherto considered ohly

the simplest cases, in all of which, the line of effeétive coli-
sion passes through the centre of gravity. - But even whest the
ntotion of the one body is directed towards the other’s centre
of gravity, the impulse mdy not be communicated:in that &-
rection, It will not be so directed if the perpendicular to the
common: tangent plane at the point of impact do not piits
through the centre. Thus CE (Fig. 149.) being the tangeht
plane, and 4’s velocity, 4D, being resolved into AE, ED,
the body B will be struck with what is lost by A of the quan-
tity of motion 4.4E, and in the direction DH, nét paising
through the centre of gravity G. The result is mow hess
simple than in the former case ; -and, before it can be explain-
ed, we must demonstrate some dynamical properties of* the
centre of gravity,-and the léws of rotatory motion.
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site, will not affect the state of the centre of gravity; that is,
if any forces whatever be impressed upon any parts whatever
of a system of connected bodies, the motion of the centre will be
the same as if the bodies were free, and the same as if these
forces were directly applied to itself.

898. Cor. 6. In eccentric impact there is combined with
this progressive motion a motion of rotation about the centre
of gravity.

G (Fig. 152.) being the centre, and GOQ a right angle, let
0Q represent the force impressed F. Bisect 0Q in R, s0
that OR and RQ may each represent § F: take GB= GO,
and suppose the forces BN, BP, which are each = OR, to be.
applied at B, in opposite directions; then, as BN, BP balance
each other, the body will have the same motions whether the
single force OQ be impressed, or the four equal forces OR,
RQ, BN, BP be applied to it simultaneously. Now the effect
of BP and OR, whose resultant is = their sum, = F, and
passes through G, will be to produce an uniform progressive
velocity in the whole body, while BN and RQ, with a mo-
mentum = BN . BG 4+ RQ. GO, = F. GO, conspire in pro-
ducing a rotation about G the middle point between them.

Note.—This reasoning will apply to pressure as well as im-
pulse.

899. Cor. 1. Though the eccentric impact produces both a
progressive and a rotatory motion, the latter adds nothing to
the quantity of motion estimated in any given direction.

Let FE and CD (Fig. 153.) be two planes passing through
the centre of gravity, and let their intersection be the axis of
rotation : let G4 be a straight line perpendicular to the axis,
AC perpendicular to G4, and 4B to GC. Then if v be the
angular velocity, G4.v is the absolute velocity of the particle
4, and 4.G4.v its quantity of motion in the direction AC;
this is equivalent to 4.G4.v.cos. BAC =v.4.G4.cos. BGA
=v.4.GB parallel to FE, and 4.G4.v.sin. BAC = v.A.GA.
sin. BGA = v.4.BA parallel to GC. Therefore 4.GA.vor
v/4.G4 is equivalent to v f4.GB and v [A.BA4, in the di-
rections of two rectangular axes, and f4.GB =0, f4.BA =,
(50. end); whence the truth of the Corollary is manifest.
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. 408. Cor. 2. When Fd is given, v is invereely as. pﬂ'.-ﬂ
wﬂl be constant when that is constant, and greatest wben tlmt
is least.

404. Cor. 8. A point may be assigned such that if all the
matter of a body m were there concentrated, a given force im-
pressed at a given distance from the axis would produce the
same angular velocity as it does with the matter in its natural
form. L : '

- We have only to suppose m A* — f prr,

ork=~/-/ir_’_'.
m

and any point at the distance % from the axis will have the

‘property mentioned. This point is called the Centre of Gyra-

tion, and we may call the distance % the Radius of Gyratwn.

405. Cor. 4. It is often convenient in calculation to asslgn
the mass m’ of eqmvalent resistance to be placed at a given
distance from the axis, for instance the distance d at whlcfa a
force is applied: then
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wa = fprr=mk
fprr mk
m = -dT= @

Note.—F may then be considered as impressed upon m' in
the way of direct impact, and the veloclty at the distance d,
= »5— will be known; hence, too, the angular veloclty is
glven, and the absolute velocity at any assigned distance.

406. Prop II. Prob. Let there be a system of hodiés 4, B, C,
&c. as in Prop. 1, and let a pressure F be applied in a direc-
tion to which d is the perpendicular distance; it is proposed
to find the accelerative force at the point of application.

" ‘From the connection of the parts the velocity communicated
in & given time to any particle, or the measure of its accelera-
tive force, must be as the distance from the axis. But the

ncoelerative force is also as the pressure applied to the unit of = -

mass. ~ Let 7 then be this pressure at the distance 1 from the
BXis: .

At the distances a, b, ¢ &c the pressures
on units of mass are ap, bp; cp; &c. and those on
the masses 4, B, C, &c. Aapy, Bbp, Ccy, &c.

' 'ﬂle corresponding pressures at the distance d to produce

' 4 B Cc
these will be ‘;”, rFotee

d 9 —d——’
day Bby Ccp _
a t—a t—a b

and p = fprr

.orl;d:‘. 7;;7.

Now pd, being the pressure on the tnit of mass at the dis-
tance d, is a measure of‘the accelerative force at that distance.

Note.—If the pressure be ass:gned in terms of the weight
of the unit of mass, this formula gives the accelerative force
as & multiple or submultiple of gravity.
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407. Cor. 1 f prr — gis the angular accelerative force.

. "prr
408. Cor. 2. If m' = ‘f -’ -};T,g-is the accelerative force

at the distanced. -~ "'

409. When a body lS cmmected with a fixed axis, if a
force impressed be such as to make it strike that axis, the re-
action will affect the motion of the centre of gravity. If|
~ therefore, in any case, the motion of this centre be both in
quantity and direction the same as if the body were free, it is
a proof that no force is, in the nascent state of the motion,
exerted by the axis, and that the body so struck would Begn
to turn round the same geometrical axis in free space.- A line
in that situation is called the 4zis ¢f Spontanecous Rotation.

410. Prop. II1. Prob, To find the axis of spontaneous rota-
tion.

Let a force F be impressed at O, (Fig. 154.) so as to make
the body whose centre of gravity is G to revolve about an axis
passing through C. This force may be impressed in a direc-
tion perpendicular to CO, and the incipient motion of the
centre of gravity G g will then be in the same direction, whe-
ther the body be considered as free or as connected with the

fprr

co’
, and that of G

axis.  Also the mass of equivalent inertia being m’ =

(405.) the velocity of O will be ﬁ- Ff}(;’"O’

F
=——:———. If m be the mass of the body, - is the velo-

city which the centre of gravity would have were the body
free, and CO, when possible, will be determined by the fol-
lowing equation,
F.Co.cG F
f prr . m

/‘prr

or CO= G

.
~ =
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- 411. Cor. 1. Let /pry represent the momentum of inertia
for an axis parallel to the former and passing through G.

Lprr+mi€G _ [prr

Then (86.) CO =127 2L+ CG,
,fprr’ _f rr
and GO =LL70, or CG = ,;4_'1@.

A AN fp

Now, fpr the same axls

is a constant quantity, and

CcG '=G-6 ; so that when GO is indefinitely small CG is in-

definitely greaﬁ, d if O coincide with G, there is no axis of
spontaneous conversion. This is agreeable to what has been
previously demonstrated otherwise, that when the line of ef-
fective impulse passes through the centre of gravity, the whole
mass has an equal progressive motion, without rotation, (391.)

412. Cor. 2. It is evident (897.) that the rotation about an
axis passing through C determined as above is momentary.
The continued rotation is about an axis passing through the

centre of gravxty, and CG = '/‘L'J—g is the distance at which

the absolute velocity of rotation is equal to the progressive
motion. Every point of the axis passing through C is af-
fected by two equal and opposite velocities, and therefore
momentarily quiescent.

. 418. Cor. 8. If an unelastic body whose mass is M, mov-
ing with the velocity V, strike in the direction FO (Fig. 154.)
8 body whose centre of gravity G and centre of spontaneous
rotation C are given, the motions produced may be determin-
ed thus:

. 'The.velocity common to the body and the point struck af-
ter impact will be

MV MV.CO? MV.CO*
' MV.CO

m CCFM.CO This being the velocity with which O will
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“of A in the direction 4B, perpendicular to C4, is 4C.v, and

its quantity of motion 4.4C.v. This considered as applied
at B and estimated perpendicular to-CO is 4.4C.v.sin.B =
A.AC.v.5in.CAD = 4.CD.v. .. The momentum with re-
ference to an obstacle at O considered as an edge or line
parallel to the axis is 4.CD.OB.v=A4.CD.v(CO— CB)

=4.CD.v ( CcOo— %,%’) ; and, by the conditions of the pro-
blem, the sum of these momenta = 0: that is, /°4.CD.CO,
: A.cHL4 f prr:
COfA4.CD = [A4.CA4x. h co ='f
or COf -/ Whence m m.CC

If the revolving body be a straight line as CR, (Fig. 155.)
or any surface or solid of uniform density constructed sym-
metrically with respect to that line, for example, a rectangle
bisected by it, an ellipse or ellipsoid of which it is an
axis, &c. the point O, determined by the distance CO found as
above, will be the centre of percussion. In other cases, the
sum of such momenta as HB.v.BD, that is, v/ HB.BD will
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not be equal on each side, and there will be a tendency to
rotation shout CR, or the centre of percussion will not be O,
but some other point O’ at the same distance from the axis.

416. In the case of any body revolving about a fixed axis
by its weight alone, there may be found a point at which all
the matter of the body being collected, and there also acted on
by its weight alone, the angular accelerative force shall, at
any given deviation from the vertical, be the same as before.
This point is called the Centre of Oscillation. Could the mat-
ter be actually concentrated, as supposed, it would evidently
constitute a simple pendulum, oscillating through any given
angle in the same time as the body to which it refers does in
its natural form. The distance from the axis to the centre of -
oscillation of a pendulous body, we shall occasionally call its
equivalent simple pendulum.

417. Prop. V. Prob. To find the centre of oscillation of a
body turning round a fixed axis. ,
Let w0 be the weight of the body, m its mass, G (Fig. 154.)
the ceirtre of gravity, O the centre of oscillation to be found,
and ¢ the sine of deviation of the line CG from the vertical.
In the actual form of the body the weight or motive force
may be considered as acting at the centre of gravity, and the
Pw.( C'G

Sprr’
(40'7 ) Again, when the matter is all collected at O, the an-
gular accelerative force is, by the same rule, ’ wc('(;? m’; :)’00"

Hence, by the conditions of the problem, —jwp ff" "‘: 'gO’

angular accelerative force as a multiple of gravity is ——

r_Jorr
and CO =2
418. Cor. 1. GO-‘% (411.)
419, Cor. 2. It appears by the last corollary that the dis:

tance fx"qm'. G to the centre of oscillation is equal m.ﬁ_g
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divided by the distance from G to the axis. Let then an axis
parallel to the former pass through O, and the distance from

G to the centre of oscillation will now be % But CG

='4 P G"g, (418.) Two parallel axes then passing through C

and O may be called conjugate axes of oscillation. To each
as an axis of motion the centre of oscillation is in the other.
This property has lately been ingeniously employed by Cap-
tain Kater to find the length of the equivalent simple pen-
dulum, and thence, by observing the number of its vibra-
tions in a given time, the length of the pendulum that swings
seconds in the same place.

420. Cor. 8. For the same body, and axis parallel to a line

Jp ': T is constant, and CG varies inversely

given in position,
as GO. Therefore while CG is constant GO is constant,
and consequently their sum CO remains of the same length.
That is, if a circle be described from the centre G at the dis-
tance GC in a plane perpendicular to a line given in posi-
tion, the body will oscillate in the same time through what-
ever point of its circumference the axis of oscillation pass,
provided it be always parallel to that line.

421. Cor. 4. As the rectangle under CG and GO is con-
stant, their sum CO and the corresponding time of vibration
will be a minimum with reference to the same set of parallel
Jprr

m

In every other case there will be four points in the line CGO,
the oscillations about parallel axes passing through which
will be performed in the same time. In finding the length of
the equivalent simple pendulum by Kater’s method, care
must be taken that those selected shall be conjugate to each
other.

422. Cor. 5. The distance from the axis of suspension to
the centre of oscillation may be found experimentally, where
extreme precision is not required, by taking a small spheri-

axes when they are equal, or when CG*=



DYNAMICS. 208

cal ball suspended by a fine wire or thread, and lengthening
or shortening it till it vibrate in the same tinie as the body,
and for the greater exactness applying a small correction, to
be afterwards explained (434.); or, considering the length of
the seconds pendulum as ascertained, we may cause the body
to vibrate, and count the small oscillations as long as they
are perceptible; then supposing N to be the number per
minute, the distance to the centre of oscillation, or length of
the simple pendulum whose vibrations would be synchronous,
is L="200004, (30.)
. 438, Cor. 6. Hence /prr or fprr may be found experi-
mentally. m as measured by weight may be found by a ba-
lince, CG as in (120.), and CO by one of the methods just
described ; then
m.CG.CO=[prr;
m.CG.GO=/[prr.
424. Cor.1. Let k be the radius of gyration ; that also may

be found experimentally ; for 4*= Ji }7’n T (464;.) = CG.CO.

425. Cor. 8. When a pendulum has completed the semi-
arch of vibration, so that the centre of oscillation is at the
lowest point, its velocity, or that of any other point in a line
drawn through it parallel to the axis, is that which is due to
a fall through the versed sine of the arch described ; a pro-
perty which does not belong to any point at a greater or less
distance.

The first part is obvious by a comparison of the motion
with that of the extremity of the equivalent simple pendulum ;
the second by recollecting that the velocities of different
points are as the radii of the arches which they describe,
that is, as the versed sines of the semisarches of vibration,
while those due to falls through the versed sines are in the
subduplicate ratio of the same, (320.)

426. Cor. 9. Let a body be composed of several parts whose
masses m, m’, m", &c. are known, as also the distances to their
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respective centres of gravity A, A, &’y &c. and the distances
to their centres of oscillation J V', #, &c. and let L be the
distance from the axis to the centre of oscillation of the whole;
mAl4+m' AT +m"A"l, &e.
mh+m'h +m"h", &c.

427. Cor. 10. Let m, & and I denote as before, and let a
small sliding piece u« be attached to the pendulum rod, the
variable distances from the axis to whose centres of gravity
and oscillation may be always accounted equal, and each =2;

L="m Rl4unr?
T mA4ur’
Hence L will vary with the position of u, that is, with the
variation of A, and the sliding piece may be employed to re-
gulate with precision the time of vibration. Considering L
and A as variable, we derive this fluxional equation,
dL = N 2muhr—muhl
- (m A 4 u ) *
When the numerator of the coefficient is positive (or ua =
N MR muhl—mh, that is, A a little greater than 3 4) the
signs of d and d L will be the same, when it is negative they
will be opposite.

For a detailed and perspicuous statement of the effect
in different positions as deduced from these premises, see
Whewell's Dynamics, § 92.

- We shall now show how to find by calculation fprr in
some of the cases of most frequent occurrence, on the supposi-
tion of uniform density.

428. Let & represent the increment of the required sum
between two distances from the axis of which 7 is the less
and R the greater, and m’ the increment of the mass,

s is = 7w/, but — R*m/,

L=

, (417.) (428.) (49.)

dxa

’

s .
or%—,xs7r’but4R’;

but #* is the limit of /2, and consequently of the quantity al-

!

. . 8 . .. .
ways intermediate pm while the time of the cotemporary in-
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crements is continually diminished: and ;i is another ex-

pression of the same limit, ... g—; =7, ds=r'dm,
and e = [prr=/[rdm.

"-429. Let the length of the physical stralght line C4 (Fig.
156.) =a, CB=x; the mass of the unit of length being
taken as the unit of mass, a and z may denote quantity of
matter as well as length, and dm =dz. Hence s-.fz’da:
=}2*=}a.a®, when z = a,=} m a*, m being our general sym-
bol for the mass of the body, so that for any very small cy-
linder or prism we may conceive the effect of inertia to be
the same as if one third of the mass of the body were placed
at the extremity, and the rest annihilated. .

Cor. Let ABED be a rectangle whose length AD=a and
breadth 4B = b, and let CF, parallel to AD, bisect AB in
C. Then

(@) If the rectangle revolve about the axis 4B,

s§=43m.a%

(6.) If it revolve about the axis CF

8= fym.b%

(e.) If it revolve about an axis perpendicular to its plane,
passing through its centre of gravity G,

s =1y m (a*+b%).

Note.—~This will also serve for a parallelopiped whose mass
ism, and whose section perpendicular to the axis of revolution
is the rectangle ABED.

(d) If it revolve about an axis perpendicular to its plane,
and passing through C, -

s=4m(a*+1b°.

(e.) Ifit revolve about an axis perpendicular to its plane
and passing through one of the angular points,

s=3im (a*+ BY).

Note.—The last two formulee will equally serve for a paral-
lefopiped whose section is the given rectangle revolving about
the same axes.
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430. Let ADE. (Fig. 158.) represent a physical circle,
or thin cylindrical lamina, revolving about an axis passing
through its centre and perpendicular to its plane. Let r be
the radius of this circle, and let z be the variable radius of
the dilating concentric circle XFG, by whose circumference
we may conceive the area of the given circle to be generated.
m for this circle ==, dm=2rzdz, snd s = f2w28dz,

=dsat, =}sr, whenz =r;
or g=dxrt.rt=4mr:;
so that the resistance to angular motion is the sameas if one
half of the mass were placed at the circumference and the rest
annihilated.

Cor. 1. The result will be the same for any solid revolving
cylinder of uniform density, whatever be its length.

Cor. 2. For a hollow cylinder the exterior radius of whose
section = r, and the interior = &,

s=drrt—dakt=» (rt—Re),
=dx (r'—R&).(7*+ &)= i m (r*+ 4.

Cor. 8. From the result above stated, we have an easy
method of finding s in reference to a diameter of the eircle.
Let 4B and DE (Fig. 159.) be any two diameters of the
circle at right angles to each other; let CH represent the
distance of any particle from the centre, and draw HF, HG
perpendicular to 4B and DE ; then CH*= HF*4 HG?, and
fprr =fp.CH2, =./‘pH'I'"g -l-./‘p‘.HG2 = 2fp.HF',- and
since [p.CH?*= 4§ =1, [p. HF? or its equal [p. HG*=1 = r*
=im .

Cor. 4. From this result, again, we have an easy determi-
nation of /pr r with reference to any axis in the plane of the
circle or parallel to it, as MN, at a given distance d from the
centre; for by the last corollary and the property of the
centre of gravity (86.) it must be

irrdmd=m(r+d);
and if MN be a tangent to the circle, it is § = 7%

Cor. 5. Let ABDE (Fig. 160.) be a cylinder revolving

about an axis CF passing through its centre of gravity G ;
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let FB=un, and LK = b, and ¢ = the area of a section as
KM. Also let the variable line GL = 2. Then, with re+
ference to KM as an axis of rotation, for the area of the sec-
tion 8 = ]} ¢* 8% (Cor. 8.) and therefore with reference to the
parallel axis CGH it will be } ¢* 5°+¢* 2%, and for a very thin
lamina whose thickness is dz, it will be } ¢*b*d a+c*a*d ,
the integral of which, when #=a, is }c*#*a+ 3c*a’ or
jm(}5*+4a’) To this adding its equal for the other half
of the cylinder, or as we sometimes express it, integrating be-
tween the limits # = @ and £ = — @, we have for the whole
cylinder
8 =m (3a+16°) = 5, m (4 a®+ 8 b?).

481. Some of these deductions may be simply and ele-
gantly enough verified by suspending cylinders and parallelo-
pipeds of given materials and dimensions, and causing them
to vibrate horizontally by the torsion of wires. It is easy to
construct our experiments so that the ratio of the times of
their oscillations, as deduced from the above data, shall be
known. '

432. Let ADBE (Fig. 159.) now represent a sphere, and
4B, DE, the projections of two of its great circles, at right
angles to each other : /' 7 r with reference to their intersec-
tion as an axis =fp.HF’ +/p.HG*=2 [p. HF* as be-
fore, these sums being now taken with reference to the planes
of which 4B and DE are the projections.

Let ADBE (Fig. 161.) be a sphere, of which 4B, DE are
great circles as before, draw FG perpendicular to the radius
CE, and join CF. Then CG being denoted by 2, and FG by
¥ dm = ry*dx, and s, for the matter on one side of the plane
4B, =fwy’z’dz', = m'f(r'—-.z")x’ dz, = & =r5 when
z=7. Hence for the whole sphere in reference to this plane
itis Y4 #7%, and in reference to the axis coinciding with the
intersection of the two planes

=Har’r=%3ar’.r°=§mr?
or if is equivalent to two-fifths of the whole mass accumulated
at the extremities of its equatorial radii.
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438. Let ADBG (Fig. 162.) be an oblate spheroid, gene-
rated by the revolution of the semi-ellipse ADB about the
less axis AB; let CE or C4 =1, and CD = a. KIH being
supposed parallel to CD,

KI:KH,=7r:a,
and, the sphere and spheroid being conceived as composed of
corresponding circular lamina whose radii are all as r : a, and
Jprr for such lamine being as the fourth powers of their
radii, (430.) )
ri:a* = f =15 : 8, for the axis 4B of the spheroid.
ne=Fratr= g ma’.

It is obvious from what was proved in the investigation for
the sphere (432.) that one half of this, or & watr, will be
= fp.HF: or = fp. HG* in reference to one of the ellip-
tical sections passing through the centre of the spheroid, that
is in reference to ADBG in any one of its positions. Let us
next find fp. HF* or Jp. HG® in reference to the equator.
If CK = z, and HK =y,

aC
riat=r*—a%:y° =5 (r? — 23),

and as y? for the sphere would be =7¢ — 2% and & «75 =
f p . HF? for the same on each side of a great circle, it will be

2
here :%. % rré, = % ~xa®r’; and for both sides or for the
whole spheroid 1% = asr3.

Cor. When the spheroid revolves or librates round an
equatorial diameter, the value of s, in reference to that dia-
meter, will be s xatr 4 (s ra®r’, = A xa®r(a® + r9),
=} m(a® 4 r¢), equivalent to two-fifths of the mass, nearly,
placed at a distance which is a geometrical mean between the
two semi-axes, when their difference is small.

434. To find the centres of gyration, oscillation, &c. is very
simple when /p rr has been investigated. Thus suppose &
the distance to the centre of gyration ;

2

.
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"For a very slender rod or physical line, & =‘/_.’;.£L, =

i—'—:—;:;a’; and & = $ a, nearly

~ For a circle or cylinder, 42 = ;—':-'L’-, =4r%andk =47,

Iﬂﬂy- -
gmmr', = $79; and & = 1 7, nearly.

For a sphere, 2% =

The distance to the centre of oscillation of a very slender
rod, or of a rectangular surface revolving about a side,
Jprr _ imat

n.CG™ m.la’ ) .

To find the distance from the axis to the centre of oscilla-
tion of a spherical ball, of uniform density, suspended by a
fine wire or thread whose quantity of matter may be disre-
garded, let C, (Fig. 168.) represent the axis of oscillation,
projected on the plane of the figure, to which we suppose it
perpendicular, and let G represent the projection of a line pa-
nllel to the former passing through the centre of the ball.
- [pr?, in reference to G as an axis of rotation, we have found
tobe § mre, (432.) Therefore if CG be denoted by & and O

f prr _imr?

be the place of the centre soﬁght, GO = mOG = mi’ =

'_";a.

ri
1-.,--

If the pendulum be very long compared with the radius of
the ball, we may consider O as coincident with G.

Composition of Rotatory Motion.

435. A motion of rotation about the diagonal of any paral-
ldlogram, with an angular velocity represented by that dia-
gonal, may be considered as compounded of motions of rota-
tion round the sides which meet in one of its extremities,

P
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RO and to RB, and therefore to the plane of the axes, will,
consequently, be perpendicular to R4, and its velocity.will
be RO.CH» BR.CD= AR . CE, when R is within the
angle JCY ; but if it be without that angle the velocity will
be RO.CH + BR.CD = AR. CE, (43, Case 2d.)" Henceit
is obvious that any particle whatever in the plane of the axes,
and not in the line CM, is in a state of rotation about that
line, with the common angular velocity represented by CE.
8. Let Fbe any point not in the plane of the axes; draw
FR perpendjcular to that plane, and, having drawn RO, RB,
RA as before, join FO, FB, FA. The planes FOR, FBR,
FAR are all perpendicular to the plane of the axes, (Eucl. xi.
18.) and CO, CB, CA4, which are in that plane, and perpendi-
cular to the common sections RO, RB, RA, are perpendicu-
lar to the planes FOR, FBR, FAR, and therefore to O, FB,
F A4, respectively. The velocity of F, as revolving about CY in
a circle of which the radius is FO, is FO. CH, in the direc-
‘tion FS a tangent to that circle, and, as revolving about €%,
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this, or any preferable means, the calculation may proceed as
follows. (See 425.)

. 4B.CO
'CB:CO= 4B: DO = Sy (Flg 166.)
DO* _4B'.CO
E0=3t0= 203'

velocltyofO V29.E0 = ,,/g.CO;

where both g and CO are to be in feet if the velocity is to be ;
expressed in feet. et

~ Hence velocity of I=7, = U_ C’B ~/g CO.

- Again, if we know the weight of the pendulum , as repre-

senting its mass, and CG the distance from the axis to the
centre of gravity, we can find the mass of equivalent inertia
which may be conceived as substituted at Z. This will be
M= cgl.’co. (405, 423.)

Let B represent the weight of the ball, and 2 its velocity.
By the doctrine of rotation the problem is now reduced to this
- ‘simple statement : there being given the velocity ¥ communi-
cated to a given mass M, existing in free space, by a ball of
given mass B, which lodges in it, it is proposed to find the
velocity of the ball before impact. By third law of motion,

Bs=(M+B)V, and 2 = (%[+1)V,

mCG.CO \ CI AB
‘f""( B.CI '“) CO’ - CBNY-CO.

Theory of the Torsion Balance.

440. If a cylinder be suspended by a fine metallic wire,
and the wire be a little twisted, it will spontaneously untwist
itself, and the oscillations will be isochronous. Hence the
force with which the wire resists torsion is as the angle of



L frod Wire, ~ T
.o cee . FLR BN b
Length of wire s 9 inches.
Cylinder of lead 2 19 lines in diameter, and 64 linesin
height; weight = }ib. P

Experiment 1. No. 12. 20 oscillations in 120”
2 . 7 .. . 42
8. . 1. wire not st.retched.

Cylinder of lead—helght 26 lmes—dmmeter as before—
weight 3z 2 lbs. ,
. 4 Nol2. . . . . .. 3""

T A R HVSRMRTE - Tt
6 . L ... .. e



I1. Brass Wire.

Cylinder as in Experiments 1st, 2d, and 3d
7. No. 12 . . . . . .20
8 . 1. . . . . . . &,
9. . L .. . ...

Cylinder as in Experiments 4th, 5th, and 6th.
10 No. 122 . . . . . . M4
. . 7 . . . . . . 110
12 . L..... .22

Brass wire No. 7. Cylinder = 2 Ibs.; length of wire = 36
inches.

13. . . 20 oscillations in 222",

Now let s be the force of torsion, as measured by the weight
inpounds which at the extremity of the cylinder would keep it
i equilibrio, at the distance of 1 line from the position of
quiescence ;

Jprr=4 mr* equivalent to } m at the circumference of the:
¢linder, or at the distance at which we conceive » o be ap-
plied. If ¢ be the accelerative tangential force at the extre-
nity of the radius,

= :—z,: 2—:2, (406.)

and if ¢ be the time of one complete oscillation,

:=¢~/%, (348.):2/5%‘,
“m m

andu:zg—tg, = ‘t—,"a

Here g = 4348.224 being the measure of the accelerative
force of gravity expressed in lines or 12th parts of a French

inch; for by the investigation of the equation ¢ = = %,l and
? are in the same denomination’of measure.
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torsion ; and this principle has been emplo
success by M. Coulomb of the French Acade
curate estimation of very minute forces, pa
certain the law of electrical and magnetical act

The result of M. Coulomb’s investigations i1
principle and constraction of his balance is,
force of torsion, 4 the angle of torsion, D the
wire, and L its length, F' = Af yor F='™
is a constant number for wires of the same m
ture, but different when these are different.

It may be useful to give here the investigs
mula, as a good and at the same time very s
the scientific interrogation of nature by exp.

Wm&ﬂ“. ":

1
Steel Wire. Gr. b '
No. 12. weight of 6 feet . 5 [No.12. v _
7 « ¢ o« « « . 14 7. ¢
l. L] . .. . L . 56 l. He
1. fron Wire."™ ; X
Length of wire s 9 inches. .
Cylinder of lead s 19 Lines in di. > -
height; weight = }1b. ; .
Experiment 1. No. 12. 20 « )

2 . 17 .
8. . L win

Cylinder of lead—height 26 1
weight = 8 lbs. RS
4. No.7®
B2

Men
ol
g <viidie
" N
6 N‘*:
o MahR
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right angles to a radius of the cylinder at its extremity, be
lances, in the given circumstances, a torsion of 1°. One pound,
French measure, is 7560 grains English, and the force above
investigated will be zy%zs grain,

By doubling the length of the wire, the force balancing the
tarsion of 1° would be about 1}z grain. But balances far
exceeding this in delicacy, and which are used for detecting
very minute degrees of electrical excitation, are formed by
suspending a fine needle by a fibre of silk as it comes from
the silkworm.

Biot in his Traité de Physique, tome ii. p. 351, mentions
an experiment of Coulomb, in which a small circular plate,
five lines in diameter, and weighing 84 grains, was suspended
by a silk fibre four inches long, and made one oscillation in
45". From these dats, it is easily found, that the foree re-
quisite at the distance of one line from the axis to balance
the torsion of 57°.295, &c. or the angle whose intercepted
arch is equal to the radius, must have been only »g}sv grain.
In perusing what Biot or Coulomb has written on this sub-
ject, the student will observe, that if #, as in our investiga-
tion, be the force at the extremity of radius 7, when the arch
= one line, it will be n7 for arch =7 lines to radius 7, or
arch of one line to radius 1, and the force equivalent to
this (or the force giving the same momentum) at the dis-
tance 1 = nr2

441. In illustration of what was observed in (4381.) let n be
the force of torsion at the unit of distance for the angle whose
measure is the radius, and let the body suspended be a cy-
linder whose mass is m and whose radius = a, the line of
suspension being the axis produced. The mass of equivalent
inertia at the distance 1 is 4 ma?; hence the accelerative

force at that distance, as a multiple of gravity, is

n
Ima®™

2n

= and if ¢ be the time of an oscillation ¢ == / ma

2gn
In the same manner for a very slender rod, whether cylin-
1
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purpose it is made cylindrical or spherical. In such experi-
ments, though there is then no sensible retardation from
friction, the spaces described in given times are considerably
different from what we should expect, taking into view mere-
ly the measure of gravity as modified by the slope. The
reason of this we are now in a condition to explain. When
a cylinder rolls down an inclined plane without sliding, the
velocity of rotation at its surface is equal to the progressive
velocity of the axis ; and a part of the pressure in the direction
-of thé plane’s length is employed in producing this motion of
rotation. Let 4DB (Fig.167.) represent the body rolling down
the inclined plane EG, m the numerical measure of i its mass

and weight, and s = ﬁ o= the sine of the plane’s elevation.

If the body be a cylinder, the motive, force may be con-
sidered as divided into two parts, the one of which has to
accelerate the mass m down the plane, and the other has to
do what is equivalent to an equal acceleration of the mass }m,
the equivalent of the inertia when referred to the circum-
ference. The accelerations being equal, the parts of the
whole motive force employed in them must be as the masses,
and therefore as 2: 1; or §sm will be the motive force em-
ployed in producing the motion of translation and 1 sm that
which produces the rotatory motion about C.

Or we may arrive at the same result perhaps more perspi-
cuously thus : By the composition of the progressive and the
rotatory motion, the cylinder is in a state of rotation about
the horizontal axis represented by 4; /prr, for an axis pass-
ing through C, is 4 m 7%, and for the axis 4 it is } mr*4mri=
$mr% (86.) and this is equivalent to  m at C (405.) where
the motive force sm is applied. Hence the accelerative force
at Cis i;'—; = % s as a multiple of gravity.

3
4

For a sphere it will be ——— = s, (432.) (86.)

+ 9
The force in each case being constant, the spaces will be as
the squares of the times, (317.); but for a cylinder their ab-
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solute values will be §, and for a sphere § of what they would
have been without friction or rotation.

To produce a rotation without sliding when the plane has
considerable elevation, or even when the descent is vertical,
sthread may be lapped round the middle section, and the
body suffered to fall by unrolling.

Let ABD (Fig. 168.) be a cylinder, or, for the greater ge-
nenility, & cylindrical groove cut upon a body of any shape
ad dimensions, having the middle of its geometrical axis
coincident with the body’s centre of gravity, and let it unroll
vettically by means of the thread 4 ¢ lapped round it, and
in the first place fixed at g. Let m denote the mass and
weight of the body and ¢ the tension of the thread. (By 898,
Note,) it appears that the descent of this body will be verti-
cal, and that the tension ¢ is propagated, in its proper direc-
tion, to the centre C, so that the acceleration of C, as a mul-

tiple of the natural acceleration of gravity, will be l—%.
This will also be the acceleration of A round C, another ex-

2
Mn f"or which is mtlc = ;:%, % being the radius of gyra-

, ra
tion, and @ the radius of the cylinder. Hence
t _tat mk?

. 1— =

Pty AL

ad the acceleration of C = l—%=m

When 4BD is a cylinder =} a’, (434.) Hence the mea-

2
'.ﬂre of the accelerative force is in that case —a,—_:w =% gra-
vity being denoted by unity.
Suppose now that the thread instead of being fixed at ¢
passes round 4 small fixed pulley, whose inertia may be dis-
regarded, and has a weight p suspended as in the figure. ¢

being the tension of the thread, the acceleration of C down-
wards, and of 4 about C' from this cause, will be, as before,
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f— % : also the acceleration of P dqwnwards,'imil o? A rouml

C from this cause, will be 1 — %. Therefore,

t ¢ tat
1= tl— o =we
2pmk
P+ (mtp) B’

. - t pd4(m—p)B
acceleration ofC_.l-—m, PEF (M TR’
— t _pa—(m—p)k*

acceleration of p= l-—--IT, Y Fw ey

Of Rotative Mackinery in a State of Constant Acceleration.

ori=

443. Let ADB represent a fixed pulley, or cylinder, free
to move round the axis C, and let there be two weights p
and w suspended by a line passing round it as in (Flg 169.)
of which p exceeds w.

If the inertia of the machine be disregarded, as well as the
friction and other resistances, the accelerative force will be
p—w,
p+w?

If the weight of the pulley or cylinder be m, then, taking
into account the inertia, we shall have the accelerative force
_ (p—w)g

T ptwtim

If C represent an axis passing through the centre of gra-
vity of a body of irregular shape, or whose density is not uni-
form, and if m be the weight representing its mass, & the dis-
tance from the axis to the centre of gyration, and a the radius
of a groove ADB round which the rope passes, the accelera-

(p—w)a’g
(p+w)a*+m &

tive force will be

2

it may
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be fourd experimentally thus: Suppose it to be 2, Then

the accelerative force is —(-g.'-_—%_)—g Allow the weight to de-

scend and observe the space s described in ¢,
(p—w)ig#
prw+te
=092 (ppuy.
If there be no weight 0,
pgt
&= %— -—p-
Suppose p = 80 grains Troy weight,
t=23",
8 =384 inches ;
. @=1328 grains = 2 § oz. nearly.
This is the experiment referred to in the description of
Atwood’s machine, (326.)
Note.—The friction arising from the weight of the pulley
;nmht to be balanced.
Let FGH (Fig. 170.) represent a wheel and axle; let
.4C = a, the mass of the machine, represented by a weight,
=m, the distance to the centre of gyration =, and let there
be various grooves to which by a thread lapped round them
the power p may be applied, to raise the weight w appended
to a line which is lapped round the axle; a, p, w, m and % be-
ing given, it is proposed to find the radius of the groove x
to which » may be applied most advantageously, that is, so
as to produce the greatest acceleration in #’s motion of ascent
in a given time.

=3,

and ¥ =

.The part of p which is balanced by w is E;, and the

w a
movmg force at D =

‘ (p — = )7 r—waz
accelerative force at D = - k“ L= (£9+m k’+w)Z*'

pt—zt—r




force ot ascent at k.

We may consider the pulley as in a state of momentary
rotation, about 4 ; and the point B having a motion com-
pounded of the velocity of the pulley’s ascent and the equal
velocity of rotation, will have the velocity of #’s ascent. fprr
with respect to an axis at 4 is imré4mri=jmri=§mdd,
where r = AC, and d = 4B. The resistance of the pulley theh
is equivalent to that of §m at B, or at . Again, the inertia of
w at C is equivalent to } wd® or 2w at Bor k. Hence the
p—1(wtm)

accelerative force of %’s ascent =
pHim+iw

%
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" If the string pass over a fixed pulley, whose weight is |.1lso
m, its ipertia is equivalent to 4m=¢§m at ¥, and the acce-

p—4(wi+m)

leraitive force of P's descent will now be - p¥im+iw as
. multiple of gravity.

. Let AE and HB (Fig. 172. ) represent two wheels, of which
the former turns the latter by the pinion whose radius is CF,
and p applied at 4 raises a weight w attached to the axle DG.
Let S and §' be the centres of gyration of the two wheels
with their axles, and let

CA=a, DB=a,

CF=b, DG=b,

=k DS =k, a

while the masses of the wheels are denoted by m and m.

The inertia of the wheel and axle HB together with that

2 b ¥
of -the mass w, is equivalent to ——IL+£; ﬂ +wnl at F

_b_=n,
a
&

=n,

in the cu'cnmference of that wheel or of the axle which im-

pels it with the same absolute velocity. Again, this inertia

at F, together with that of the wheel and axle 4E, is equi-
m k? mk? b® .

vnlen@ to - + o +wn? = at 4, and the moving force

wbbd,

there is p — aa S p—wnn. Therefore the accelerating
force at 4 is
p—wnn
a mké  mntks
pt+wnin, ! —

This multiplied by % X % =nn, gives the accelerative force

at G.

444. We shall conclude this part of our subject with a
short explanation of the regulating power of what is called
a Fy.

Q
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. JKagiiling of motion.is of. geask impovenryiin mest Kale
: e, sxicen 1 Sl Bt
quiay ,&. pressure to. i
wlmhmnmxt but to restore any part of the scoéle-
ration that may have been lost requires,the. gneriion of o
graniay foron, ok such es sball operiisnes .it. A irregilas
desultory motion. staaies the: machinery, and.the,febeis, shist
sapports it an well o8 the sgent when animal poweris;employ:
ed, move than one thst. is equable, and the steangth of the md,
chine and the agent must be adaptes to the. grestess, stynins
that occur, whilst at the same time more work is not pege
formed than if the motion were at a mean rate and yniform,.
To regulate a motjon which would .otherwise be gubject to
variation or reciprocatiop, as iy the applications of the steam
engine, a fly is used. Itnaheavymmofmw;njbmd
as to balance itself, connected with the mdwn.
mgmnndtbenmenxuwnthapnrtoht. 'Its depands
on the mamentum. of inertia, danoted. hyﬂmthpl,fm
Its momentum, when revolving with the angular velopity o
is yfperr; and, if v be the increment. of angalar melewisy,
the increment of mamentum is O’fpr!\ (hqu

. . IR RN I B
this bea constant quantity, ¥ == -;-7‘ When mm or
the diameter then is considerable, and |till.1_nowwhdn hotb
are s it may acquire a great momentum with hat Iistle ine
crease of angular velocity, or lose a considerable- ‘Imomentum
with little diminution of that velocity. It thus becomes a're-
ceptacle for the surplus energy of the power whem it .acts
with most intensity, or when the resistance iy least, and pre-
serves it for future demand. If, by a diminution of resist=
ance, OF.an increase of power, the machinery would.othews
wise be considerably accelerated,  the motive force is in =
great measure expended upon the fly, in which it gencratas
a proportionsl momentum with little incresse of valacity.y end:
when the resisfance is incregsed and the maving powsr ev ity
momentum diminished, and the machinery would be.verp






soon accelerate the motion of the wheels to a considerable
degree, in consequence of which the strokes would not occur
at equal intervals, and, which is of more consequence, the
inomentum acquired would be such as to expose the parts.to
a v1olent strain, and destroy the wheelwork by the shock,
when the motion is suddenly stopped,  were there not means
employed to prevent the acceleration from passing a certain
limit. Upon the axis most remote from the welght, in the
train of wheelwork which forms the striking part, is a small
plate of metal, the leaves of which make about 49 revolu-
tions for every stroke, and the resistance which it meets with
from the air in this state of rapid rotation, .is sufficient to
balance the acceleration of the descending weight, against
which it acts with great mechanical advantage,. so that the
motion already acquired is simply continued. _ Similar, to this
is the resistance you meet with in turmng a corn-fan, which
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you find it impossible to accelerate beyond a certain degree.
Here, however, both the causes above mentioned operate,
which is not the case where the moving power is a weight.
It will farther illustrate the subject if we consider what would
‘happen in the case of a clock striking a number of times suc-
cessively, without the employment of the fly, and on the sup-
position that the parts are strong enough to withstand a con-
siderable force. A part of the impetus of the descending
weight is expended at every stroke in lifting the hammer
against the force of the spring which makes it strike. Sup-
pose this expenditure constant and to be less than the force
-acquired by the descending weight in the interval between
the strokes. There will of course be an acceleration; the
strokes will occur more frequently, and there will be less in-
termediate acceleration of the weight, till at last it will be
sensibly equal to what is required for raising the hammer.
There will then be a small acceleration still visible during
each interval, but destroyed at the end of it, and none
audible.

To the causes producing uniformity already mentioned,
‘may be added the effect of friction. Though the mere in-
crease of velocity in a machine does not, according to-the
best experiments, sensibly alter the friction, which is in each
case a determinate part of the pressure, yet whenever the
increase of velocity is accompanied by an increase of resist-
ance, the friction must increase in the same ratio.

.. 446. This circumstance of the speedy attainment of uni-
formity in the motion of machinery performing work leads
to a very important principle, which tends greatly to simplify
our investigations respecting its most advantageous perform-
ance. As long as the power or force actually impressed, as
it would be measured by the dilatation or compression of an
interposed spring, exceeds the statical counterpoise of the
resistance estimated in the same manner, the machine must
accelerate; and, consequently, when it arrives at a state of
uniform motion, the power and the resistance then actually
exerted upon it effectively, are such as would, by its interven-
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(104+P)h=205—1.41 P,
j205—141P

704+P
P@05—1417) _ e measure of the useful ef-
0+ P
fect. This is a maximum when P=53 chilogrammes, and
the effect is then equal to 56 chilogramms carried one chi-
lometre in vertical height. The work, it is supposed, mny
be continued from seven to eight hours per diem.

We shall find the maximum effect here not to differ much
from that which would be assigned by the other formulay
(447.) on the supposition that » = 2.

The velocity which excludes all additional weight here be-
ing 2.928 chilometres per diem, if we combine this with a
force equal to that which a man can exert in raising a weight
from the ground while he stands still, and which, by a num-
ber of trials with Regnier’s dynamometer, may be estimated at
130 chilogrammes, we shall find the product to be 880.64;
that is, 380.64 chilogrammes raised one chilometre in a day,
and ; of this is about 56 chilogrammes raised one chilometre.
The formula itself, however, it must be observed, gives a dif-
ferent value of the pressure which extinguishes the velocity,
and which is obtained by supposing the useful effect = 0, or
205 = 1.412P.

When a man of 70 chilogrammes travels horizontally un-
loaded, his action of that kind is a maximum, and he can
continue his travel about 50 chilometres per diem, for several
successive days. This is 3500 chilogrammes carried one
chilometre.

When his load is 58 chilogrammes additional, the measure
of the action is found to be 2000, and the reduction, of course,
1500. Supposing, as before, that the reduction is propor-
tional to the load P,

58 : 1500 = P: 25.86 P.
Let d be the distance travelled with the load P,

(704-P) d = 8500 — 25.86 P,

T 7 P (8500 — 25.86
wh € Pd—- (-——77-“—_'-?’)——9.

and PAh=



When this is 2 maximem P — 498 nearly, and the maximum
effect will be about 919 or 930 chilogrammes carried hori-
wntally one chilometre.

L OF Friction.

#49. It is impossible to obtain by machinery the useful
dfect which is sought without submitting to a partial, and
that often considerable expenditure of power, from resist-
ances the overcoming of which makes no part of our primary
" object, and which, consequently, it must be our aim to dimi-

nish as much as possible. One of the most considerable of

these, which are sometimes denominated passive forces, is
friction, or the resistance arising from the asperities of the
surfaces that slide or roll upon each other. Several valuable
series of experiments have been made with a view to ascer-
tin the laws of this resistance as opposing the commence-
ment of motion, and retarding or preventing the acceleration

of motion already commenced, bat by none on so large a

scale, or so successfully, as by the justly celebrated philo-

sopher last quoted, Coulomb. His memoir on the subject

Obtained a prize from the French Academie des Sciences in
1781, and has been printed separately at Paris in 1809. A
W ery. full abstract of it is given by Prony in his Architecture
~&Jydraulique, and a short summary by Venturoli in his Ele-
®aents of Practical Mechanics. .

A measure of the force of friction in given circumstances
may be obtained in different ways. Coulomb used sledges
“xesting upon a horizontal surface, and observed what weight

it was necessary to suspend from a string, connected with the

sledge and passing horizontally over a pulley, in order to
commence motion. With the same apparatus he could ob-
serve what weight was sufficient to continue, with uniformity,

a slow motion already begun. This weight of course would

be a measure of the friction accompanying the particular ve-

locity which was communicated. If the weight of traction




therefore s0.in this case must be the latter, ; Then:tefind the
tnensure of the friction, w being the weight that measuves the
fores, of traction, W that of the sledge and ita load, m ithe
*elght of the pulley as measuring its inertiay and Ft&esfruﬂa& .
2 e B oy S

;—WW , or, for the sake of abbreviation,’ ;F \ re- 'n
fore s =dg¢°- M,F:_a'%d ) ‘;z
Let . = J> and f is what we call the coeﬁclgnt of, fhc-

tion, s

In Cbulamb’s experimemts as ¢ is expraoed in Freneh
measure, g must be taken on the same seale or = 80, being
the mimber of French feet in the measure of the accelorative
force of terrestrial gravity.
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o : Foroak!resting onoak . i .. A»fz'O.SOp‘

¢
ot f |

For iron-'res'ting on oak f=020 .

brass . . . oak. . . 0.18
~jron . . . iron. . .. . 0.28

iron . . _brass . . 0.26.

Friction of Bodies in Motion, sliding.

~ For oak sliding on oak. . .f=0.105"
' oak . . . fir . . . 0.158
fir . . . fir. . . 0167
o em . . . elm. . . 0.100,
hﬁd'nc‘fseﬁ’s'fble' dependence on the velocity. )
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_ For oak sliding on iron. . . .f=0.08.

or 0.16,
t.he former of these values being found when the velocity was
insensible, the latter when it was one foot per second: so

that in the friction of wood on metals there is an increase
with an increase of velocity.

When a coating of some consistent unctuous substance is inter-

posed.
For oak sliding onoak . . . f=0.085
) iron. . . . oak . . . 0.028
: brass . . . oak . . . 0.021

Friction of Bodies in Motion, rolling.

When. a cylinder rolls along a plane, fis, ceteris paribus,
inversely as the diameter; but is in all such cases extremely
small and scarcely worthy of consideration.

When a cylinder of lignum vite of 6 inches diameter rolls
on a plane of oak, f= 0.006 ; and when on a plane of elm, 0.01.

The friction of axes is also found to be nearly proportional
to the pressure, and does not depend sensibly on the velocity.
‘When a polished iron axle turns in a box of brass, f= 0.164;
but if it is covered with a coating of tallow, it is 0.09. When
the axis and the box are of wood, the coefficient is still less.
Here J denotes the coefficient of the friction reduced to the
axis: or as it would appear if the power applied to balance it
had no mechanical advantage against it.

456. The momentum of the friction of an axis may be di-
minished by supporting it on friction wheels.

Let ANK, BML (Fig. 173.) be two wheels whose axes are
equal, having the radii DR,ES, with D,E in the same hori-
zontal line; and let there be two others, exactly equal and
similar in every respect, 80 placed that the axle C of a pul-
ley PQT may rest upon the four honzontally. Having joined
C,D and C,E, complete the parallelogram CDGE. Suppose



Let W (Fig. 174.) be the weight of the bpdy, and let w be
a weight equal to the force of traction in the line B4, which
makes with the horizontal plane MN the angle ». - ‘The force
w is paxtly emaployed in diminishing the downward: preéssure
of W, and partly in drawing it horizontally, The diminution
of pressure is wgin.#, the remaining weight W= sin. iy
and the friction = f(W - w sin. z), the force of horizontal
traction which is supposed to be just ready to overcome tbe
friction is w cos. 2. We have therefore

w cos. 3= f'( ¥~ w sin. o) or
w

cos. 2 4 fsin, @’

and, /W being regarded as constant, w will be léast when
Cos. T +fsip_.z is greatest, that is, when,_; L

w=

. i gin. @
~—dz sin. z dx cos. v=0 or f= = tang. 2.
+.fd = cos S s — 08
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‘Thus for oak resting on oak, to commence motion z should
be 28° 16’3 but when motion is once begun, it should be only
L .
458, If a given force is to be overcome by means of a rope
coiled round a cylinder, and if the length of the rope in con-
tagt with the cylinder be made to vary in arithmetical pro-
gression, the force required to produce the state bordering on
motion will vary in geometrical progression.

.- 1t the arch of a gircnlar seetion of the cylinder embraced
by the rope be 4D, (Fig. 175.) and let it be stretched by the
forces Wand Q If Qbe = W, they will, independently of
friction, balance each other. Construct the figure as formerly
for oblique forces applied to the pulley, and if R be the re-

sultant of Q and W, W: R = AC: AD,or R %‘ée=

@ when the arch is indefinitely small, a being the arch and

r the radius. But in this case R is the force with which an
elementary part of the rope is pressed against the cylinder ;

W,
consequently the friction thence arising will be -—,_La— which

suppose =n W. In the state bordering on mation then @
must be = W 4 n W= (1+n) W. Suppose now the con-
tact of the rope and cylinder to extend to E, so that DF, =
4D = a, which thaugh here represented as large must be con~
ceived as indefinitely small, and that a force P is applied
tangentially at E, sufficient to produce the tension Q, or
(1 +n) W at D, P must, for a similar reason, be = (1 4 n) @
= (1 4 n)* W; and by pursuing the same mode of reasoning
the truth of the proposition will be obvious.
Cor. Let the arithmetical progression of the archeés be

0,a,2a,%a----mam 4,

and the corresponding geometrical progregsion of the ten-
sions, :



and '18,909,217.000 7, respectively ;

so that when the rope passes 8 times round the cyhnder the
force W will not yleld to one less than nearly 19 mllhons of
times 1tse1f

' It is ‘most convenient to employ in this calcnlatmn the
common loganthms Let the symbol of Neperian’ or hyper-
bohc logarithm be ¢ and of common logarithm L. Then since

3 —:—;.: 2».u_'.qu.
, P oo
L = 27 fq X 0.43429448, &c.
p
or L. 3, = 0.909584 ¢ when f= }.

- That a prodigious - advantage is thus gained in opposing:a
small force to a great one is well known to many who are un-

AN /~ goaTepaE
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acquainted with the principles by which its amount is ascer-
tained. The seaman, for instance, often secures his ropes in
this way.

In our calculation the slight disadvantage under which one
of the forces may act from the spiral form of the coils, (168.)
is disregarded, as well as the force required for the flexure of
the rope. : :

459. Friction, while to a certain extent it prevents or de-
stroys mation, is favourable to the maintenance of equilibri-
um. In the use of the wedge or the screw for compression
it is generally sufficient to secure the advantage already gain-
ed, without the continued exertion of active power. Without

“it nails, screws and bolts would be useless, and no machine
or permanent structure could be formed of parts once dis-
joined, no animal on a horizontal plane could exert any force
but in a direction exactly vertical, nor could a body be trans-
ported from one place to another unless by the action of a
fluid, or a tendency downwards never to be reversed.

460. Ropes of any considerable thickness occasion, by their
rigidity, a further diminution of power. When in the use of
the pulley or of the wheel and axle the power prevails, and
the weight begins to rise, the curvature of the part of the

" rope applied to the instrument, combined with its stiffness,
throws the vertical line of the power’s action as it were below
the pulley or cylinder, or a little nearer to the axis than the
extremity of the horizontal diameter, and the other side of the
rope is made to project a little outwards, so as virtually to in-
crease the horizontal lever by which the weight acts. The
resistance arising from this cause is found to depend on va-
rious circumstances, not easily subjected to calculation ; for
instance, upon the newness of the rope, or the degree in which
it has been used, on its texture, and the degrees of torsion
-employed in its formation ; but, celeris paribus, it is found to
be inversely as the radius of the cylinder to which it is ap-

. plied, in the direct sesquiplicate ratio nearly of its own radius
or diameter, and directly as a sum composed of two terms,
the one constant and the other varying as the tension.

R
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Of the Parabolic Theory of Prgjectiles.

481. Prop. 1. Theorem. If a body be projected in a direc-
tion not perpendicular to the horizon, and under the futare
influence of no force but that of gravity, its path will be sen-
sibly a parabola.

The elevation of a projectile at the highest point of its
flight is so small compared with the earth’s radius, and its
range so small a part of the earth’s circumference, that we
may here, as in our statical investigations, consider gravity
both as a constant force and as acting in parallel directions.
On this supposition the path of a projectile, in vacuo, when
not vertical, will be accurately a parabola.

Let ¢ T be the times of describing 4B, AC, (Fig. 176.)
with the uniform projectile velocity ¥, and of descending
from rest through 4E, AF by the force of gravity; complete
the parallelograms 4G, 4H ; then

AE : AF =t : T (317.)
AB? : AC? =t : T* (311.)
o AE : AF = AB* : AC* = EG? : FH*,
and the locus of the points G, H, &c. is a parabola of which
AL is a diameter, 4 its vertex, and EG a semiordinate. But,
by the second law of motion, the projectile will at the end of
the times ¢, 7, &c. be found in the points G, H, &c. Whence
the proposition is manifest.

462. Cor.1. The direction of the projectile motion is a tan-
gent to the curve, because it passes through the vertex of a
diameter, and is parallel to its ordinates.

463. Cor. 2. The velocity in any point of the curve is that
which is due to a fall from rest through a space equal to a
fourth part of the parameter, or latus rectum, belonging to the
diameter which passes through that point.

Let AF be the height due to the tangential velocity at.any
point 4, which may be the point of projection. Then AC or
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FH = 2 AF, (316.) and, P being taken to denote the para-
meter,
P AF=FH'= 4 AF*;
or AF =} P= AL,
LR being the directrix.

464. Cor. 8. The velocity is least at the vertex of the axis,
and equal at equal distances on each side of it.

465. Cor. 4. If the projections be made in different direc-
tions with the velocity acquired by falling through L4, and if
a circle be described from the centre 4, with the radius 4L,
its circumference will be the locus of all the foci.

466. Cor. 5. The time of describing any arch, as 4G, is the
same with that of falling vertically through the abscissa 4E,

: 2 BG

or its equal BG, and is therefore = / R (820, Eq. 8.)
2V : .

467. Cor. 6. P= —g—— For } P is the height due to 7,

2
(468.) and therefore = —Z?-, (320, Eq. 4.)

468. Prop. II. Problem. There being given the position
of the point from which the projection is made, that of an ob-
ject in the same horizontal plane, and the velocity of projec-
tion, it is required to describe the parabola in which the pro-
Jjectile must move to hit that object.

The velocity being given the parameter is known, (467.)
~ Let 4B (Fig. 171.) be this parameter placed at right angles
to the horizontal plane 4M in which is situated the object F
which is to be hit. On 4B, and in the plane BAF, describe
the semicircle BHA, of which let the centre be C'; draw
FED perpendicular to the horizon, and, if possible, cutting
or touching the semicircle. If it cut it in E, it will also,
when produced, meet it in another point D. Join 4,E and
A,D, and let a parabola be described of which BAN may be a
diameter, A4 the vertex of that diameter, B4 its parameter,
and to which AE or 4D may be a tangent in 4 ; this para-
bola shall pass through F.

2
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Draw FL parallel to AE or to 4D, according as the for-
mer or the latter is chosen as the direction of the impulse ; it
will be in the direction of an ordinate to the diameter AN.
Join BE or BD. Then, taking for demonstration the case
when 4E is the line of projection, we have by the similar
triangles BAE, AEK, (EK being perpendicular to 4B,)
BA. AK = AE*, or since AK — EF = AL and AE = LF

BA.AL (= P.AL) = FL3,
wherefore Fis in the parabola; and by Prop. I. and its Cer.
1 aud 2, it is evident that if a body be projected with the given
velocity in the direction 4E or 4D it will describe this pars-
bola.

4F is called the horizontal range or amplitude, FAE or

FAD the elevation, and } 4B the impetus.

469. Cor. 1. If F coincide with G, the point where the ver-
tical tangent of the semicircle meets the horizontal plane, the
problem admits of only one solution, and it is evident that the
corresponding direction 4H, or an elevation of 45° is that
which gives the greatest range with a given velocity.

470. Cor. 2. Let AF or EK = 4, and EAF the angle of
clevation = E. Then EBA also = E, and ECA=2E;

Hence AF=KE, =} Psin. 2 E,

.
or 1. 4= sn-2E
2. sin.2E=-‘—‘V%—;

49
3.V = [asE

1471, Cor. 3. Since the vertical velocity = Vsin. E, the time
ot destroying it will be —;}E—E, (820, Eq. 1.) and the Ume
of destroying and reproducing it, or the whole time of

2 V.sin. E
lighty=————.

Otherwise thus, the time of flight is that of describing 4E
uniformly with the velocity of projection, and consequently
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The parameter is known as before. Let 4B (Fig. 179.)
be a vertical straight line = P, and describe on it a segment
of a circle which may contain an angle = FAL, the supple-
ment of the zenith distance of the object. Of this circle let
C be the centre. Draw FED parallel to 4B and, when
possible, cutting the circle in £ and D, or touching it as
GH : join 4, E and 4, D, and describe a parabola, as in the
preceding problem ; it shall pass through F. Join BE, and
draw FL parallel to AE,

— BEA = — FAL by construction, = < AFE, '
and < BAE = = AEF.
.+ A BAE is similar to A AEF,
and B4 : AE = AE : EF,
whence BA.EF = AEs,
or P.AL = LF*.
.. F is in the parabola; and by Prop. I. and its Cor. 1. and 2.
the projectile will describe this parabola.

476. Cor. 1. When F coincides with G, the point where
the vertical tangent to the circular segment AHB meets the
tangent to the same at the point of projection, the problem
admits of only one solution.

471. Cor. 2. Let < BAM =3, —~ BAE=2z, and < EAM
=E. Then

4B : AE —sin.3 : sin. E,
and 4E : AF = sin. 3 : sin.z,
o AB: AF =sin.*%: sin. E.sin.z,

2
or

: A=sin.? 2 : sin. E.sin.2,

IYQ a E. M .
whence 1. 4= — . M:l—“
g sin.!%
_ Agsini¥

2. = 2sin. K. sin. 2’
Agsin.®2

V- °
But 2sin.E.sin.z = cos. (E — z)—cos. (E+42) = cos. (E—z)

w4 il

8. 2sin. E.sin.z =
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~—-co08.2. Hence £ —z and E+4z are both known when 4,
% and ¥ are given, and therefore £ may be found.
478. Cor. 3. The velocity of projection ¥ may be resolv-

ed into a velocity t—i':-l-;—'-z in the direction 4AF and a ve-

.

locity v in the vertical direction. In the half of the

.8
sin. &
time the space described in the direction AF will be 4 4F, or
the body will then be at the vertex of the diameter to which
AF is an ordinate. Its motion, being in the direction of the
V.sin &

tangent, will be parz;.llel to AF, so that the velocity e
has just been destroyed. The time of destroying this ve-

locity is %%g, and consequently the time of flight is
SV.sin.E
gsing °
. . ... AE
Otherwise thus ; the time of flight is = >, or that of de-

scribing 4E with the velocity of projection, and for AE may
P.sinE_2V: sinE

sin.g . g sng

479. Cor. 4. When the projectile is at the vertex of the
diameter to which 4F is an ordinate, and consequently is
moving parallel to 4F, it must be at its greatest height above
that line; but in that position it bisects the subtangent which
iP.sintE

sine 2

be substituted its value

is= 4 EF. Hence the greatest height H=} EF =

V? sin*E
=24 %" :
That the value of EF is here truly assigned is manifest
thus: The triangles EAF and EBF were proved to be simi-
lar, (475.) < EBA= <EAF=FE,and << BEA= ~EFA=Y.
Hence AB : AE =sin.3: sin. E,
AE : EF =sin.2: sin. E,
o AB : EF = sin.*3: sin*FE, )
480. Cor. 5. Of the two directions that with the same im-
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petus give equal ranges upon the inclined plane, the one is
as much above the line bisecting the zenith distance of the
plane as the other is below it.

~ This is evident by inspection of the figure, where the arches
HD and HE must be equal ; or by considering the value of
4in Cor. 2. where since E and z make a given sum'2, we may,
when they are unequal, change E into z and z into E, and
thus have two different divisions of 2 the products of whose
sines shall be equal.

481. Cor. 6. With a given velocity of projection the greatest
range upon a given plane AF will be when the dlrectlon of
the impulse bisects its zenith distance.

Since EAF = — EBA, AF is a tangent to the circle, as is
also GH. Therefore GA=GH, and = HAG = = GHA =
~— HAB. Now AH is the direction which gives the ampfltudé
4G.

The same conclusion may be derived from Cor. 2. by con-
sidering that since for each plane E 4z is a given sum,
sin.E.sin.z will be a maximum when E=2z=42 This
may be proved, for exercise, analytically, or by a very simple
geometrical demonstration.

482. Cor.'t. The greatest range 4’ upon the plane AF

=1P.sec.ti? p 1
, .sin?2 i % P.sin2 12
For 4= sin’g Asintl chs." %

Or thus: if we draw a line GO perpendicular to 4H,
4K . sec. 4%, or 3 P.sec.} 3= AH, and A40.sec.} 3, or
3 AH . sec. } 3 = AG.

483. Cor. 8. While the velocity of projection is constant,
but the directions different, the points of greatest distance
that can be struck are all in a parabola given in position.

For the parameter being constant, (467.) the points H are
all situated in the same line CK, which is drawn from the
centre bisecting the parameter as a vertical chord of the circle,
and GH, perpendicular to CH, is always = GA. Hence if
a parabola be described with the focus 4, and directrix CH,
it will be the locus of all the points G, or the limit of ampli-
tades for planes of all different elevations or depressions.
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As the foci of both parabolas are in the same line G4, and
GH is perpendicular to the directrix of each, -the straight
line bisecting the angle AGH will be a common tangent of
both. Hence the two curves touch each other in G; and it
is obvious that they do not meet in any other point, for to
reach any point of the limiting curve, the direction of the pri-
mitive impulse must always bisect its zenith distance. The
direct geometrical proof of this last statement is very simple, -
but would require an additional construction.

This elegant Dynamical theorem we owe to Torricelli, the
disciple of Galileeo. -

484. The formule investigated as corollaries to the two
preceding problems may be easily found without reference to

the parabola.

That a projectile discharged from 4 (Fig. 180.) may strike

F on the same horizontal plane, the direction 4B must be
such that it would reach the point B by the projectile impulse
in the same time in which it would fall vertically through
BF. Suppose .= BAF to be denoted by E, and 4F by 4 :

= cos. E’

the time of describing 4B uniformly with the

A2

. V. | ‘
P -, 1 H D ———
veloclty V= and the square of this time = V7 cos il

Vcos. EZ
Aguin, BF = Ac_.osgl%'?, and the square of the time of describ-

ing it with uniform acceleration ='%{s%f, (320, Eq. 3.)
. A3 2 4.sin. E
“VicossE ~ g.cos. E’

A _2V*sin E.cos.E _ V¥.sin. 2 E

= 7 = 7 .

If B is the object to be hit, we must make the discharge in
the direction AC, determined by this condition that the body
.shall describe CB by the force of gravity in the time in which
t would describe AC uniformly with the motion of projec-

and
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tion. If we now denote 4B by 4, and the angles B, J¥'and
BAC by g, z, and E, respectively;

AC'_.A .8in. Z BC = _A:.sm.E’
sin. z ° sin. z

A%.sin? % 2 A.sin E
Visin.'z  gsm.z ’
2V sin.E.sin. 2
g  sinfgZ

The relations of the same quantities may be otherwise in-
vestigated and stated in a form somewhat different, thus,
(Fig. 181.)

Let AK = a, FK = b, the co-ordinates of F the point to be

=T,.’E.

‘Whence 4 =

e .
struck ; < DAM =, -2-”;- = H, the height due to the velo-

city of projection; ¢ = the time of describing A.B == & hori-
zontally, or BC = y vertically,
v cos. e = horizontal velocity,
z° z*°
v?cos.? € . 2g Hcos.® e
Yy = x tang. e— } g2 (823.)

& = tvcos.e t?=

xe
or y=xztang.e — ——-
y & 4 Hcos.? €
For 1 2e(= .2
p— substitute 1 4 tang.? e (= sec.? e),

QH== JiH — 4 Hy —2°
X

and you have tang. e =

By substituting @ and b for « and y, e will be found.

The double sign indicates in general two values of e, either
of which will answer. Butif 4 H* —4 Hb = a®, there is
only one solution.

If the point F be in the same horizontal plane with the
point of projection, 4 Hb=0, and then if a®=4 H? ora
= 2 H, the problem admits of only one solution.

When in this case a is = 2 Hor in general a* =4 H* —
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ance from inertia, there is an unbalanced pressure on the an-
terior surface, which in the case of a velocity of 1300 or 1400
feet per second will in the lower regions of the atmosphere
amount to between 14 and 15 lbs. avoirdupois on the square
inch of the hemispherical base. In the use of cannon and
musketry, then, the parabolic theory of projectiles is of little
or no value, but as leading the way to a more accurate know-
ledge of the effect of the air’s resistance, of which it may as-
sist us in obtaining a measure.

The reason that artillerists were so long in detecting the
true cause of the deficiency of this theory, as a foundation of

practice, was the want of an independent method of estimat-
ing with tolerable precision the initial velocity communicated
by a given charge of powder. 'We have formerly proved that
if a ball is discharged at an angle of elevation E through an

unresisting medium, 7 = J ?1:L2E_’ A being the amplitude

upon a horizontal plane ; consequently E being given and the
amplitude measured, it is easy to find what must have been
the initial velocity, if the body has moved through such a me-
dium. But, since the air resists the motion, the amplitude
will be thereby diminished, and will become equal to one cor-
responding to a smaller velocity iz vacuo. A velocity inferior
to the true one will of course be deduced by this method.
Could the artillerist have accurately estimated the velocity of
projection by any method independent of the parabolic theory,
he would soon have perceived that the amplitude was much
inferior to what, on the principles of that theory, it ought to
be; and would thus have been led to appreciate more justly
the amount of the air’s resistance: but it is evidently impos-
sible that he should detect any inconsistency between the ini-
tial velocity and the actual range, so long as the amount of
the one was inferred from the extent of the other.

486. About the year 1742 Mr. Robins, an ingenious Eng-
lish mathematician, laid the foundation of a complete revolu-
tion in the science of gunnery, by the discovery of two me-
thods of estimating the velocity of shot, which are both de-
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serving of our particular notice. The first was by finding ex-
perimentally, as accurately as he could, the initial force of
newly inflamed gunpowder filling a space of given capacity,
and the law according to which its pressure decreases by ex-
pansion, and thence calculating the velocity which it must
cemmunicate to a given body impelled by it through a given
space. The second, and most perfect, and, on different ac-
counts, the most useful, was by a machine of his own contri-
vance, already described, the ballistic pendulum, (439.)

487. The elastic force of fired gunpowder according to Mr.
Robins’s experiments with an airpump, and subsequent cal-
calations, is, at the first moment of explosion, equal to 1000 |
times the pressure of the atmosphere, when the barometer
stands at nearly 30 inches; and the elasticity of the generated
fluid varies as its density, or inversely as the space occupied.

Mr. Robins in calculating, from these data, the velocity of:
shot, employs the geometrical method of representation ex-
plained in treating of variable forces, (344.), proceeding thus:

Let AC (Fig. 182.) represent the length of a musket barrel,
AB that of the chamber occupied by the powder; take BD
to represent the weight of the ball, and, making BD to BG
as the weight of the ball to the initial force of the powder, let
LGM be the curve whose ordinates to the line of abscissee 4C
represent the accelerative force, or which is here the same
thing, since the mass impelled is constant, the pressure of the
powder on the ball at the different points of the line BC.
Then if DE be drawn parallel to BC, and v and ¥ represent
the velocities communicated to the ball, in passing over a
space = BC, by its own weight and by the elastic force of
the inflamed powder, respectively

BCED : BCMG = v*: V*;
now v’= 2¢g.BC (320, Eq. 4.) and is known, therefore 7* will
be also given, if we can find the ratio of BCED to BCMG.
But the force of the powder being inversely as the space oc-
cupied, wlll be, in a cylindrical barrel, inversely as the length

occupied. Therefore NQ == —ﬁ, or NQ: BG=AB : AN,



254 ELEMENTS OF THEORETICAL MECHANICS.

and the curve is an hyperbols, whose assymptotes are AH
and AC. The ratio of the spaces above mentioned then is
given ; for we know the ratios BC : AB and BD : BG, there-
fore the ratio compounded of the two, viz. BCED : ABGF ;

also the ratio ABGF : BCMG = 1 : hyp. log. ;—g, whence V2

and V are given.

488. As an exemplification of our analytical formulee, we
may also solve the problem thus :

Let a body be impelled from B to C, (Fig. 183.) by a
force which is inversely as the distance from 4, and let it be
proposed to find the velocity communicated, on the supposi-
tion that the force at the distance b is f and that 4C=gq
AB = b and f are given.

Let AD = z; the force at D will be I—’;{: and vdo= b—f;i,
(839.)

Hence, v*=2bf.log. 2+ C,
0=2>f.log. b+C,
and v* = 2bf. (log.z—1log.b),

orv= J2bf.log.§, when 2=a. .

To apply this more particularly to the case under consi-
deration, let us adopt the following symbols, used by Dr.
Hutton in bis Course of Mathematics.

d = diameter of the ball in inches,

¢ = 0.7854 area of a circle to diameter 1,

m = 230 oz. avoird. = pressure of air on 1 square inch,

n : 1 the ratio of the initial force of fired gunpowder t—
the pressure m,

w = the weight of the ball, yin avoird.

p = halfthat of the powder. } ounces.

This latter element is introduced into the calculation of them
accelerative force, on the principle that, in impelling the ballll
the powder must move its own mass with the half of the sam -

velocity as estimated by that of its centre of gravity, whic™4
L J
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exhansts the same force as if it had to move half its own wasxs
with a velocity always equal to that of the ball.

_gmncd
Hence f= P
2gbmncd® L2

p+w b

e
Henee L denotes Neperian or hyperbolic logarithm. 1t the
common logarithms are used, we must introduce the factor
2302585. If v is to be in feet, g =32}, and & must be in

bfda
xr

and v =

the same denomination, because in the formula rde =

dz and consequently 2 and b must be in measure of the same
denomination with v.

489. This calculation, when we take m= = 1000, which is
below its true value, is sufficient to show the great excess of
the initial velocity of shot above what had been contemplated,
and the total insufficiency of any theory in which the resist-
ance of the air is disregarded, as a guide in artillery practice.
But the number % in our formula is not to be ascertained
vith much approach to accuracy in the way employed by
Mr. Robins, and his second method of measuring the velo-
city of a ball is greatly preferable to this one. When v is
ascertained by the pendulum, the formula above investigated

will give the value of n; and in this way Dr. Hutton general-
ly found it to be at least § of the value asssigned by Mr.
Robins.

490. In order to put to the test the received opinion respect-
ing the resistance of the air, Mr. Robins charged a musket
three times successively with the same allotment of powder,
and with a leaden ball § of an inch in diameter, and about
1% Ib. avoirdupois in weight, and discharged it into a ballistic
pendulum placed successively at the distances 25, 75 and
125 feet. The velocities with which it reached the pendulum
in these situations were found to be 1670, 1550, and 1425
feet per second, respectively; so that in passing through 50
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feet of air with the mean rate of 1610 feet, the loss of velo-
city was 120 feet per second. The time in which this velo-
city was lost, or that of passing through 50 feet of air, must
have been about 2, of a second ; and in this time a retarding
force equal to the ball’s weight would have destroyed only
one foot per second of the velocity. The resistance of the
air, then, to this ball moving with the velocity above stated,
a velocity often equalled or exceeded in practice, must have
been 120 times its weight, or equal to about 10 lbs. avoirdu-
pois. Thus in the parabolic theory the deflecting force ne-
glected greatly exceeds that taken into account.

491. Hence it follows that the curve actually described will
differ greatly from the parabola. In describing the latter,
the horizontal velocity is constant and the same with that at
the vertex, and the ascending and descending branches arein
every respect equal and similar. But in moving through the
air, the horizontal velocity is continually diminished by the
resistance of the medium, and the vertical velocity due to
impulse and gravity diminished both in ascending and de-
scending ; the descending branch of the curve will, therefore,
supposing it to terminate at the extremity of the horizontal
amplitude, be shorter and more incurvated towards the axis
than the ascending branch, the vertex will be nearest to the
farther extremity of the range, the motion will be slowest not
at the highest point D (Fig. 184.) but a little beyond it, as at
E, where the horizontal velocity at D, already much reduced
below its original value, is still farther diminished by the air’s
resistance, and not yet compounded with any considerable
velocity of descent. The point of greatest curvature too, will
for the same reason not be at the summit, but a little beyond
ity as at F, and nearer to it than £. Without the resistance
of the air the greatest range upon a horizontal plane would

. . Ve
be with an elevation of 45° and = —g . A musket or cannon

ball, a piece of cork, u feather, and the finest cobweb, pro-
jected at that elevation, with a velocity of 1600 feet per second,
would range to the very same distance, about 15 miles, where-
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as we know tha: 1z mow:ins tnrous: tue air the lighter bodies
mentioned wonic react. i¢ ar =Xce=g.ng v small distance, the
musket baii put MUzl avove DB L
ball to little more zt:ar we 1ni
non ball range: ferizr wnr e sunme projection than the

musket buliet is. tnat tn: Tosstente 1o tue former, though
much greater tuar tnot (o “us Ller, s aless pro-
portional part of 1= woeouL Tne exten of the range de-
pends not so Immed:atey oL e ressiance as on the part of
it that falls 10 the sneme o zucn evie partice of the moving

’

body, when equa:.y aistrivuies. tnut i, ou the retarding foree,
- -
oo F . .

the measure of wiL.zL - W Fooelig tue resistunce, und € the
quantity of matier. 17 vens of cifferent digmeters be cust of
the same me:ie.. 0r ve of cuuu. densty, the resistance will be
nearly as the suriace. or a: tue scvare of the diamecter, while
the quantity of matier wii. e & it cube.  That is, Retarda-

. . F . d 1 : . e

tion == Zt=-—d— = -y - 0 e relsidelon wiil be inversely
as the bali’s diameter. 1! -ne bel:t gre of cifferent matter, let
s denote specific gravity. or e wegt of the urt of volume

.. .od- 1 .o -
then, Retarcesior = . wuen d by given, Tre
s d sd Y g

specific gravity of cast iran Leing o ther of cork as 7425 w0
240, if two buiir of these veterely wnd of cova! dlzmeter
were projected with eccuzl vewociny, the be' of cork woold
in passing throvgh the seme stall space lose more than 39
times as much ve.ori'y as the bali of iroe,

In practice the azgie of cievation givivg the greatese ran;

SST rane

is found to depenc or verious chesmstances,  Jrommav be

nearly 45° for the heuviest <Lot anc smalicst velueive
for the smailest shot discharged with the greatest selecty o

stances, any one between tese limits.  According 1o Bords's
calcalation, by an approximative formula, we have for a 24
Ib. ball the following table of zngles giving the greatest range
corresponding to the initial velocities oppotite to them.

LN

is not above 30°, end it may be, zecording v varying circum
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% In the cae e tock a light wooden globe, and
t by a dowbie string of coovenient length. The
: then twisted in a given direction, and the globe
‘ilate like a pendulum. its oscillations continued
vertical plane till the string, by untwisting, be-
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gun to produce in it a considerable velocity of rotation. It
then began to deflect to that side of the original vertical
plane, which according to the theory could be predicted from
the known direction of the motion; and that ‘this could not
be owing to the untwisting of the string, operating otherwise
in some unknown way, was proved by the continuance of the
deflection towards the same side during the whole time of
rapid rotation, though in the latter half of that time the string,
having untwisted itself, was by the motion acquired twisted
in n contrary direction. In the second experiment he took
n gun barrel, and bent three or four inches of it towards the
muzele to the one side, which we shall call the left, as in
Fig. 186, This he charged with a ball of considerable wind-
age, and, foresecing that the tendency to continue its motion
through the barrel in the right line determined by the straight
part 4C would vecasion it to rub against the concave interior
surface at ', and thus, retarding by friction that side of the
ball, give it a motion from left to right about a vertical axis,
he predicied that, though thrown at first to the left of the
lwe of aim by the curvature from BC to D, it would be
tinally deflected 1o the righe of that line ; and his expectation
was veritiad.

#93. T'v whichsvever of the causes assigned this deflection,
which makes the path a iine of double curvature, be chiefly
due, a rewedy, in the case of musketry. is found in the use
vl what s calied 2 vided barrel.  The inside of a common
bativl s a sinooch boilow eyviinder, but the ritied barrel has
W aenor sutlace vut by & vurider of spiral channels or
Blvoies, proveadtny tom tae breech to the muzzle, and
wakg about one ture i e whoie ieogta. It they made
ey halla e or even less, i Would oceasion less resist-
ativy W the unpulse, and the seusidie edect would probably
be whe same. Uoe bail s wmade a uwle larger than what
would have died the bore detore the spiral channels were
vuly sudd 1> diiven howe w the powder by a mallet and strong—
uwa tdwuer, or the wusket way be charged at the breechm
by unscrewing the bareel.  Upon the discharge, the ballk
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setting a vessel filled with water upon the inside of the rim
of 8 wheel, and turning it round with such rapidity that the
fiuid shall not be spilled, even when at the highest point.

-495. . In civcular orbits the co-existent centripetal and cen~
trifugal forces are always equal ; for were either to prevail, the
body would approach nearer to the centre or recede from it.

496. In such orbits also the tangential velocity is uniform;
for the centripetal force, being always at right angles to the
direction of the motion, can neither accelerate nor retard it.

1 4971. Theorem. If a particle of matter describe the circum-
ference of a circle in consequence of continual deflection by
a centripetal force, the measure of that force is the square of
the velocity divided by the radius.

‘When the body is at 4 (Fig. 189.) its motion is in the
direction of the tangent 4F, and its velocity in the direction
AC is nothing ; and when it is at B, its motion is in the di-
rection F'B, parallel to 4C, and its velocity parallel to AF is
extinguished. The tangential velocity then at B, and which
is constant, (496.) may be considered as generated by a force
acting from H towards L, while the line HL is carried from
the position 4C to the position #B. Now if the centripetal
force at 4 be denoted by 4C, being constant it will at G be
denoted by GC, and this may be resolved into GK and GL,
whereof the latter alone accelerates the motion in the direc~
tion HL,. or perpendicular to 4F. The motion of G then,
in this direction, is produced by a force which is always as
the body’s distance from L, and if v be the velocity produced
when it reaches that point or comes by the curvilinear mo-
tion to B, 7 the radius, and f the measure of the accelerative
centripetal force at 4, v*=fr, (849,) and i,

. v?

r
It will easily appear more particularly by (849, 350.) that if
the final or tangential velocity be represented by a line equal
to the radius, the velocity generated at G, in the direction
GL, will be represented in magnitude by GK; and of the
velocity at 4 that which remains at G, after the retardation
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occasioned by the force always represented by GK, will be
denoted by GL ; also that the velocities GK and GL, in the
respective directions GL and GM, are equivalent to a velo-
city represented in magnitude by the radius, and in direction
by the tangent at G. As GK and KC are equivalent to GC,
the last conclusion will be obvious if we suppose the lines
GK, GC and GL to revolve, each through a right angle, and
s0 that GL may be in the position GM.

498. To illustrate to the student the method of using the
fluxionary calculus in such investigations, we shall apply it
to this easy case, already analysed and understood.

Let A x and 4y be taken for axes of co-ordinates, 4 H be-
ing denoted by 2 and HG by y ; and let the central force be
denoted by f; then, (339.) d¢ being supposed constant,

ddz _ _ f.KG _ é,
de -~ GC T .

ddy f.GL_f
B) WL =Ty,
drddx SJrdax
dEg T T r

da f f
4g = C—=5=,(—2)

(4.)
by (4.)

because :Ii—‘ represents the velocity in the direction parallel

to 42, and is = 0, when z=7.
dydd
by (8) 2LV L y)ay,

=Lery—n=L"

_Tft‘—— =gp= (r2 —a2?4-2%) = f7,
or v*=f7, as before,

g—; being the velocity in the curve.
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«.-498, Cor. 1. If ¢ be the periodic time, or the time of a com-

plete revolation, v = 2—:’-', and f= é%!—', (4917.)
or f= %

500. Cor. 2. If w be the angular velocity, the velocity in

the curve will be 7 w, and, by (497.)

Sf=rd
" 501. Cor. 8. If the periodic times are equal, the centripe-
tal forces are as the radii, (499.)

If the velocities are equal, the forces are reciprocally as the
radii, (497.)

If the radii are equal, the forces are in the duplicate ratio
of the velocities, (497.)

If the forces are equal, the velocities and the periodic times
are in the subduplicate ratio of the radii, (497, 499.) or the
angular velocities in the inverse subduplicate ratio of the
same, (500.)

If the squares of the periodic times be as the cubes of the
radii, the forces are inversely as the squares of the radii or
distances, (499.) '

502, Cor. 4. Since v'=fr, v* = 2 f.4 r, which compared with
the equation v?=2 ¢s, (317.) proves that the velocity in a cir-
cular orbit is that which would be acquired by falling from
rest through half the radius of that circle, ‘in consequence of
the action of the centripetal force continued constant.

2

508. Cor. 5. Since f= 4%’-' (499.)%: i;—t;,-' ; o, if f* de-

note the central force as a multiple of gravity, <
/= 1.2268 %,

where r is to be expressed in feet and ¢ in seconds.

Thus if a ball of one ounce be whirled round in a sling
which, when doubled, is two feet long, so as to make two re-
volutions in a second, the centrif;ugal force by which the string
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is.stretched . will ba.0.8144 cances : .or it:is 9.8 &c..timan the .
ball’s weight, whatever that may be.

N. B.—The ball is here considered as a point,. qruhmng
in every part the same velogity of rotation. Also J im the
preceding formulm is of the pature of an:accelerative. force,
and is stated ss having a.7atio.to g, or.as divisible by g whi
is the measure of the accelerstive, pover of gravith: But.
will occasion no difficulty, when it is recollected that the ac-
celeration is as the weight or pressure when the mass lebd
on is given. f” is an abstract number. - o

‘The following conclusion, important in some . ﬁltlln plltl
of the course, may be derived from the above formmuls. . ..

If the earth be a sphere, whose radius is 3965 miles, re-
volving in 28" 56' 47, the portion of a body’s natural weight,
which, at the equator, is lost, or balanced by the centrifogal
force, is 31y part, or z}y of the apparent weight.

504. Cor. 6. Smcef:—-—-,t... ﬂrJ? or the time of

an entire revolution is to the time of falling, by ﬁ,? oentripé-
tal force remaining constant, througb half t‘he‘ »f‘*“'?-. "
twice the circumference of a circle to the dmmf.ter or )t, is
twice the time of the cycloidal osclllatnon ofa pendulqm ‘y])?se
length is equal to ‘the radius. .

505. Cor. 7. Ifa ball ‘suspended by, astrmg eci|
a whole selmcu'cle, the string will be’ stretched i as, tbe qut
point with three times the ball’s welght. f"or, if v be tb¢ ver,

l'u»:':r

locity at the lowest point, o*=2¢g7, and f"‘ —"m=’9

So that the centnfugal pressure will be that which vould pro- .
duce in the mass of the ball twice the natural acceleration of -
gravity ; it is therefore twice the bell's.weight; and to thic
must be added its actual weight. -

506. Cor. 8. If a ball attached to a string retolve ina ven-
tical circle, the string must be able to susta.m dt least six
times the ball’s weight.

507. Cor. 9. From what has been demunmued above, wé
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may find the time in which a conical pendulum will make a
revolution. '

Let 4D (Fig. 190.) represent this pendulum, D being con-
sidered as a single particle at the extremity of a line woid of
weight and inertia 4D, and describing a circle DEBF, while
the point A4 to which the line is attached remains fixed. Let
AC=a, CD = r, and let the acceleration of gravity be de-
noted by unity. While D revolves, it is under the influence
of three balanced forces, its weight acting parallel to 4C, the
centrifugal force acting in the direction CD, and the tension
of the string in the direction D4, The balanced forces are
therefore as the sides of this triangle which denote their di-
rections,

4o
: Tz =a:r,
a
0rt=2rJ—g—,

and the time of a semicircular oscillation is equal to that in
which a simple pendulum whose length is 4C would make a
complete vibration through a cycloidal arch.

508. Cor. 10. It being assumed that when a perfect fluid
is in equilibrio the resultant of the pressures applied to any
. particle in the surface must be perpendicular to that surface,
we may determine, by this proposition, the velocity of circu-
Jation in different parts of a vortex that the surface of revolu-
tion which it assumes may be given; and conversely.

Let AHD (Fig. 191.) be a section of the surface by a plane
containing the axis KH, AC a tangent to the section at any
point 4, whose co-ordinates are x and y, 4B and BC parallel
to the axes of the co-ordinates; a particle at 4 is under the
influence of three balanced forces, its gravity, its centrifugal
tendency, and the reaction of the rest of the fluid, to which
BC, 4B and AC are perpendicular, respectively. Now

4B : BC=dz:dy.
11

Therefore d.r:dy:-:—:g.
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If AC be a straight line as in Fig. 192. that is, if the sur-
face be conical, dz : dy is a constant ratio, and, g being con-

stant, % or y«* is also constant, and the square of the angu-

lar velocity in different parts proportional inversely, or the-
square of the periodic time proportional directly to their dis-
tances from the axis. '

Sincedz:dy=yd’: g,

“’
orda= ? ydy,
if  be constant, or the whole fluid circulate in the same time,

y= 2:‘:]::, and the surface is a paraboloid.
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]

' toit; also let SP meet Dd in H, then PH = AC, — the
mean distance, = D, and supposing R = the actual distance
or radius vector, and P = the periodic time, we have

SY?: SP= PM? : PH?=PM?* : AC°= BC? : CD?*,

- SP2, BC*
or SY* = D7
2.CD? )
also PV = —c (by Conics.)
1 AC

“SY.PV- SPEBC*
But if 4 be the area described in the unit of time
= AC.BC
= —P——'— .
s 4% | A4+AC . ACs  D?
PV~ SY:PV™~ SPEBC:~ Pi.SP*~ P*.R*
Now in the same ellipse D and P are both constant, and

F==

] .
F=z R © 8lso in the different ellipses, though neither D nor

’ H
P may be the same, D* = P?, and % is constant by hypoth.

therefore F'is still = El;,

3
and FR? = ﬁI?DT a constant quantity. .
Now FRe is the value or measure of the centripetal force at
thee unit of distance.

Prop. V. If two bodies in free space be connected by mu-
tugl gttraction, and an impulse be communicated to either of
them while they are subjected to no other extrinsic influence,
they will both revolve about: their common centre of gravity
delcribing similar curves, the radius vector in each of which
Will describe equal areas in equal times, while the centre will
Move uniformly forward in a straight line:

The demonstration will be easy after perusing §§ 392, 397,
898, from which also it is obvious that if equal and opposite



YNt AFPENDIX.

s Jenoted by the area BN b ; or as the trisngles -
-2 same may be aiso proportionally represented b?_/
BN - respectiveiy.  Also if ND =§ 4N, and NV l‘
R ) r’11e
L and C wii. de the cencres of these two sets of pa Je
aid we may regard the point C as the fulcrum of &= ce
wiich the perpendicuiar forces at D sad H bals2?
other.  If the forces at C and D be called C and D5 te\
tively, @= D — C, and Q will be represented, on £5€ .
adopied, by AN*— BN®. Hence as CD =%(BY + o
.AN* — BN®) CH=31 AN*. 4B,
or24B.NO.CH =3 AN:. AB,
and NO.CH = } AN?;
.+ NO.HO =} (4dN?*—3N0.CO),
= § (40°4-N0(3.40—CO—40—N0)) =140
=/, AB*; for 3(dO— CO) = 8 BC= BN, = 40— NC-
- AB
-~ NO= 12 HO'
Dr. 'I'. Young’s Nat. Phil. vol. ii. § 320.
2. Let AEHF (Fig. 194.) represent a vertical section of 88
clastic beam from the neutral line upwards, while it is inflect
«d downwards by an appended weight. Let 4D be a very
-mall arch of the exterior curve, conceived as coincident with
'ts circle of curvature at 4, or rather at the middle point, and
‘et AC, DC be radii of this circle ; draw GB parallel to F4 ;
tiien BD is the distension of 4D, bd of ad, and so on. Now
the clastic force of the fibre or physical line 4BD will be as
‘he distension of the immediately consecutive particles, or as

‘i whole distension divided by the number of equal intervals,
BD_ GB . 1 .
W DT 40T dc for the same beam or lamina, and as

. whole force of the section while BG is constant must, for
werent degrees of flexure, be in a constant ratio to that of
2 extrenne fibre, and the position of the centre of action is
« .+ constant, being always § GB from G, the momentam of
.. dicity will vary as the force of the extreme fibre, or as
. of any other whose situation is given, and will be
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=11,?- or= %’ R being tBe radius of curvature and E'a' qha.n-

tity constant while the beam is the same, but varying with a
change of elasticity, or of the dimensions of the section.

8. If w be a weight equivalent to the force by which a beam
is stretched or compressed, and Al denote the distension or
compression for the length J, w will for the same beam be
.proportional to %—[ ;.o0r w:m.ATl.

In this case m is the weight of what has been named by Dr.
Young the modulus of elasticity. -

The weight w is proportional to that length of the same
beam of which it is the weight, and if it be put for this length
in the above equation, 7 will be the Aeight of the modulus.
The weight of the modulus we shall in what follows denote by
M.

If m be the height of the modulus, b the breadth, and d the
depth of a transverse section of a rectangular beam, all in
feet, and s the specific gravity, water being the standard ; then,
28 62.406 Ibs. is the weight of a cubic foot of water, the weight
of the modulus will be mbds x 62.408, and the weight re-

quu'ed to stretch or compress a beam-% part of its length

will be 62._40(:@101613_ Ibs. avoird.
‘A table of the moduli for different substances, with a colla-
- teral one of specific gravities, will be found in Dr. Young’s
2d-vol. p. 509.
- 4. Referring again to Fig. 198, let us denote by f the con-
tractile force of an unit of surface throughout which the dis-
tension is uniform and equal to that of the fibre at 4. fmay
- denote the force of that single fibre if we take its thickness
for the linear unit. Then 4 £b.4N = the contractile force ;
and §15.4AN x § AB =} fbd.AN = the momentum of this
force - in reference to the centre of repulsion as a fulcrum,
c2=Q.CH.
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LN IPAYPRE P

is denoted by the area BN v, v S
the same may be also proj..
BN respectively. Al

D and € will be the cvi
and we may rcg:n'd the jeeim e
which the pvrpuml;.-'ﬂ':'-

oo .
SO s -

_ M.AB
T I2.QHO

ther. If the forces = * 2
:)1 "i\ Q=D — (. i = . I{IF, not parallel to the
vely, Q= ) — (.o : -
adopted, by AN=-— B> 7 "?d at.H, ard the.re re
’ i+ e . . c:heaxis, and one in the

O A

A NOHO: ! - a

co vt f ik

. be perpendicular to HF,

. chen if HK represent F,

- ¥ " K= HL.OH, each being =

..o ./IK; in other words Fa =
S s ay

M..AB?
12.F.a’

I} makes with the axis increase

“ight angle, OH becomes continu-

. st becomes OL the length of the

siies, or the neutral point is in the

.vutractile and repulsive forces are

. «hing may, without the considera-

nus: When a weight P is applied

wain as represented in the figure,

.. as an angular lever, and the pres-

+... be that which is compounded of

wir proper directions. The resis-

.l and opposite force, compound-

. i the particles opposing the force

ac repulsion exerted by the com-

acrefore equal to that which repre-

. P | .
. pint of the axis is = jq-,abemg

-at point to the direction of the force,
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and as IE—Z was assumed equal to the momentum of elasticity,

or that of the external force which balances it, £ = R.Fa
M

= 2% 4 being = 4B the depth of the beam.

8. Now let 4B, (Fig. 195.) be an elastic beam or lamina,
of given dimensions and elasticity, slightly bent by a weight
suspended from it at B, and let it be required to find a near
approximation to the figure whnch it will assume when in
equilibrio.

Let BF be assumed as the axis of abscissse, and B for the
origin. The momentum with which P tends to turn any part
of thelamina commencing at B round a point E, and which is
opposed by the sum of the momenta of elasticity belonging to
the transverse section at that point, is P. E G=Py. Therefore
_ E_,
=ty
The radius of curvature is inversely as y, and consequently
diminishes as the ordinate increases, and is least at the vertex
4. Supposing ds constant, we have two expressions for the

radius of curvature, ; ddy nd ds. dz, of which we take the

former with the negative sign, because while the ordinates in-
crease and dz, dy, d s are positive il—x—_'diminishes. Hence

ds
Eddzx
Tedy=—T¥
But, as we suppose the flexure very small, we may consider
dy as = ds, and therefore as also constant, or

Eddz _

7y = —Pydyand
E. dz _

ay C— 4Py

The horizontal position of the beam at 4 being a tangent

to the curve, —Z—y- there vanishes, or 0 = C — 3 Pb*, AF be-

T



T

E . —
g:PW, Or—;—i—ydvi—?x:—Pw’ngar]y; . ..

Therefore ﬂ;!'/_‘j‘_ll’= — Pw.dd'} )
that this, since we regard dy? as constant,
E.da?
Ay

being = 0 when y = b or when z=aq, the correct inte-

=€—P1‘2;

da

dy .

gration gives here
E.dz

_J:;’— = P(a’— ‘2'2),

JE dx |

cordy= —

JP Jo—z
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same will serve it Jlu bumin or lemilm have

f:hl:nﬁ 1‘25 amt be sappurted by & propur abubisuin
it forces P OPposite m B, or be intlected by wqual and vppo

1. A P appiied 1 the emis.
when T=gq, y=2>b we huvy by the lieat Dut v W

/ gt
. B sbove equarions, 5=

JE ~ v
75 or %0 _--JP. these

~

t
“"'mlenlexmdth'squnﬁty. that s, walpee J whwont

M
49069. /5 there can be no inflexiou.

12 If ABD (Fig. 196.) be an elastic boam bent by bwu vywat
"‘dopposite longitudinal forces P, ¥, s that the \‘v.-th st
lexion is BC, and if we suppose £F wwl ¥, vywal awd
Peralle] to each other and eqmduumt rom 8, W e
Tigid lines connected with the axis, we may cenelder the ba e
bongitudinal forces as acting upon the segment 1l e ke
ZE by the levers EF and E'F* instend of &4 mnl § 40 (b
Womentum applied to every section from & fu &/ wilh ke th.
me as before, and the curvature will of tnrse (el e
thanged. In this way we may learn the depih wod tubles b
BG produced by equal and opposite limyglinehliend g e
Plied to the extremities of a strmight ptistmnilic btnge =l
given distance from the axis. Mea Youug's Nub §hd o4 0
Sect. 324.

Let BC=a, EF =GC=a, Wit & # s I bt
by the i =d sin. ,’/"

y the equation z =« sin (y ./l’:,

2
which gives & = #/ «n (4’ j”)
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anda:c’sm.(AF"/—

Heneec\i—a a-sm.(.l(,'-£)— (AF- ) (AI

ord—a =a(w—l)

1
= (sin. 3 r.%— l)
1

=a(oos.§r.§t;—l)'

Butassin.(AC ): l,ACC_;:,

CF ,./— 12P
and;r. CF.——,.—CF MF

‘2CF l P
= ﬁF = —;./STW— Therefore

BG:a’-;-a=a(sec. (—2 —jg)—l)

18, If an elastic bar as AF, (Fig. 195.) be slightly be:
its own weight, this may be represented by s, the arc as
sured from the origin of the co-ordinates, or approgim
by y, and the lever by which it acts is 4 y. Hence

E.ddx
—i— = —y Xy or very nearly

—l;-y———&y“ dy,

E.
—E(;—m = } (*>—P), as corrected on the prin

dz .
that dy= 0 when y = b.
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By integrating again,
AU Ec=40y—y'

4 ]
.j_[b?’ =3 b.%- %[ In
the numerator of the last factor 5 must according to the no-
tation adopted denote a weight, viz. that of the beam, if M be
the weight of the modulus, or it may be conveniently taken

in its primary signification of the length of the beam if M be
the height of the modulus.

bl
The depth of flexure ¢ = Y §
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TO

DYNAMICS.

1. Ler a spherical body descend from rest by its gravity
considered as a constant force, the measure of whose accele-
ration tn vacuo is g, through a medium whose resistance varies
as the square of the velocity, and the weight of a cubic unit

of which is % of that of the same unit of the solid, and sup-

pose it required to determine the relations of the space de-
scribed, the final velocity and the time of the descent.
It is known, from the principles of Hydrostatics and Pneu-

matics, that the body loses the —;‘— part of its weight by im-

mersion in the fluid ; and therefore the force left to overcome
its inertia, without taking into view the resistance of the fluid,

is (1—711—) times its natural weight, or'the accelerative

force is not g, but n:lg. This for heavy bodies, such as

balls of iron or lead, descending through the air, we may



. ) xd%h .
sistance to the cylinder, —— = the resistance to the sphere,

8
» d%h

and_Sx%rd’n

= the force retarding the same, as a niultiple

3
_ . . 3 .
of gravity. By reduction this becomes gna’> %t gaa s

the theoretical value of 2. It is better, however, in practice
to take its value as derived from direct experiment. For
motions not exceeding 200 feet per second, the resistance of
the air may be expressed by 0.00007015 d?v? in avoirdupois
0.00746844
sd
and s is the specific gravity of the ball, that of water being
denoted by 1.

ounces, and & by , where v is in feet, d in inches,

vdv
ds= g——_kv? (839.)

D
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ds= 1 —2kvdy
ST 2k g—kvt

1
s_-_-ﬂ(C—L.(_q—-lw“)),

- and, supposing v =0 when 8=0,

C=L.g, and 8—2—kL y—kv“

Hence also gk — = €***, e being the base of the Neperian

ox llyperbohc logarithms,

andv:./lJl—
dt= d”v,(ssS)

dok —vaI:
2Jkg(J§+ka ~To—odi)

Which being integrated on the supposition that =0, when
1 - -
| . 1 = — —,. — 7
=0 gives t= 3 /kg(L (Wa+o/B) — L (Jg—0yB))

ort= L 1.Ngtva/k

T Nog—vi/k
Were 7 such a value of the velocity that 2 V?=g, the acce-
leration would cease, and the descent become uniform. But

N9+ /R
No—ov Jk
and its logarithm increase indefinitely ; whlch shows that in
the case considered, or when the body descends from rest, ¥
is a limiting value of the velocity, never actually attained.
This also appears very clearly from the value of v =

,,/ _J e2 = J —/ ‘3— unless n be very great,

the last term of the second factor soon becomes very small,

28 v «/% approaches to the value g the number

and v = J % nearly. This limiting value of v is called the
terminal velocity.



this case, the retarding force, when the body is projected
upwards may be represented by g+Aiv+kv. The student
will find this case elegantly and perspicuously treated, as
usual, by Mr. Whewell, Dyn. p. 180, or he may consult
Dr. Hutton’s Tracts, vol. iii. p. 233, near to which he will
find the data furnished by experiment for the determination
of  and &, (§ 33.)

3. Let us now investigate Borda’s formula for the motion
of a ball projected obliquely through the air, as was promised
in §491. In doing this we shall, for the student’s easier refe-

rence, adopt the author’s notation : but, for the greater variety,
F)
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we shall investigate a little differently the general formula, and
then supply the mvestlgatlon of the particular and approxi-
native one.

Let R be the retardmg force directly opposed to the ball,
mmd let the horizontal and vertical co-ordinates be z and y re-
ipectively, ds the element of the curve, and dz constant.
Chen (339.)

dsddt dz
(4.) — g5 = R_d_s'

ddy dy.ddt=_g_R dy

(B.) de 4P rr

Multiply the two members of Eq. (4.) by %Y. and subtract

thee resulting equation from (B.), then
() ddy = —gd¢t.
(D.) d*y=—2g.dt.ddt, by Eq. (C.)

Substitute for dd ¢ and then for d¢#* their values from (4.)

and (C.)
(E.) —2R.ddy*=g.ds.d*y.

Now suppose BR==1v*or 2aR =1 if 2ag = V* V will be
what is called the terminal velocity and a is the height due to
it.

'Since 2¢R = v’ = :: s Or2R= _—F by substitution in
Eq (E.) from this Eq. and from (C.) we find,

- (F) ds.ddy=ad’y.

Let v be the velocity of the projection, 4 the height due to it,
e the angle of elevation, n its secant, c the base of the hyp. log.
At the beginning of the motion @ s = % d z, and for a tolerable
approximation we may suppose this to hold throughout for
elevations below 45° or

(G.) ndz.ddy=ad’y,
dy ndz
Fy=a’

L.dy = % + L.Bda*,

L.dy=L.ce + L.Bd<,
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H)  ord’y=Bcs da thatis,
dly= 2B c'-ildz.dz.
n a

(K.) dy:%Bc'%dzq-D.dz,thntis,
ar I n
dy:FBc- 2 dz+D.da,

a , %2
y= ”TBc- +Dz4 C,
and y being = 0 when z = 0,
=% B +Dz—2% B
y= 5 cs + z——5 B, or

y=Dz 4 —:;—B(c.-i— l)

By (H) Bee =3%—_4%%0 ()
but d:: = v* cos.! e when £ = 0; hence
B=— v'cgs’e =_2hc{)s'e'
By Eq. (X.) Z—:_ 2 Beas 4+ D; but ——ta.ng eat the
commencement of the motion, or when # = 0, and conseqnent-
ly ¢a = 1. Therefore D= tang e+ 2nhcos’e"md’°‘s n=

sec. € =

co: » we have finally

(L) y=a(magetgro—)— o (o7 —1).

This is the equation employed by Borda to find the eleva-
tion for the greatest range.
For this purpose suppose y = 0 without z vanishing : then,

=%(c‘ai'°°"— l)

(M) -
tang. e + 37, sec. €
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P
—sm e Lt
and ¢ — 8= Y Sy

“Thus find the lengths of the curve in small portions be-
tween the limits of depression ¢ and ¢ whose tangents are p
amd p’ corresponding to P and P, and let the limits be always
taken with so near an approximation that to the extent of
¢ — 3 the ratios As: Az and As: Ay may be sensibly con-
stant: then ‘

¥ —z= (8§ —8)cos. d;
Y —y= (8§ —8)sin. 0;
oxr, for the greater accuracy, instead of cos.d we may take
% (cos.0 4 cos. #) = cos. } (¢ 4 0).cos. § (¢ —6); and, in like
manner, for sin. §, sin. 4 (¢ 4 ¢).cos. } (¢ —9).
Let v be the velocity of the projectile when the angle of de-

Pmaionixd-v’:(%—t—) sec.2dor by (C)_. A *(14p%)

_ALr(+p)_ x1+p=

T nyP T2k nt P
_L 1+ p°
In like manner 94 = —F-

and if # be the mean of these two values ¢ —¢ = i{—f
very nearly.

The above investigation is easily accommodated to the as-
cending branch by conceiving the motion at the vertex to be
reversed, and the retarding force of the air converted into an
accelerating force. All the terms of Eq. (4.) and (B.) will

J .. . dt _ e*
tllen'bef positive ; Eq. (C.)will become-ﬁ == andfinally,

e—&lu :
dP=2% —or—daP= e=t40 X _ 2kds,

A 2IcA’
_ge—ﬂk'
n—P="0 &’
n—P
_’:_—e—gkl’
1, a=P



To find the minimum value of this radius we have, reject-
ing dp and (1 4 p°) ‘}, as common to both sides of the equa-
tion, 3p (n +P)=(1 +p’)%.

whence 3pn = 1 — § p® nearly,
?17—{ —-Wl’-r.,—, that is, when# is considerable, p= 5173

The point corresponding to this value of p is therefore=
nearer to the vertex than that where the velocity is least.

The number 7 in the application of the preceding formule=
may be found from the velocity of projection and the angle 0 —
elevation being given. Let the tangent of elevation be ¢
9. 1+7

2k n—Q
We take Q with the negative sign because ¢ refers to a poir==
in the ascending branch of the curve.

orp=

and let Q be what P becomes when p = ¢, v* =
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9 l+q’
Hencen_2k +Q

analt?__1 __ 1 _ i be the impetus

v® " v%cos.fe 2ghcos.?
If ¢ be the angle whose tangent is p, the quantity P will be
most easily found by this equation.
2 P=tang. psec.p + L. tang. (45 + 4 9),
which may be thus derived. In the value of P formerly ex-
pressed, p = tang. ¢, /1 + p* +,1’ = sec. 9, am_ip +/1+p*=
tang.p4sec ¢ =" - . .
sin. ¢ 1 l + sin. ¢
COS. @ COs.9 ~  COS. P
sin. 90 +sin. ¢ 2 sin. (45 4 4 9) cos. (45—3 ¢) _
sin.(90+ ¢) — 2sin. (45 + 4 ¢) cos. (45 +19)
cos. (45—40) _ ..
, tang. (4’5 + 4 9), because IO 1\ .

*If the common logarithmic tangent be employed-in this cal-
<ulation, it must be- taken to the radius 1, and multlphed by
the hyperbolic logarithm of 10. '
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DYNAXICS,

Crtensng wwe Flemeninry Pripesiions is Plagmical Astro-
vy 0 qsiat the Sindent m fillowing Novimls dnalysis
W Kepler's Lawcs. mad ks zmeeipurnt Sndisction of the Law of
[ nozerval Grozidation.

Prop. L Lrx P2 'Fig. 19.. be a curve described by 2 body
projectesdt ander the miuence of 3 cenciperal faree always
directed 1o the point S, PY the tangent o the curve and to
PVH its circle of curvature at P, draw 3Y perpendicular to
the tangent, let SP meet the circle of curvature m ¥, and,
PH being the diameter of that circle drawn throagh P, join
HYV ; then if F be the centripetal force, and ¥ the tangential
velocity at P,

| &
F= py-
F.SY F.PY

l’w,lbqhﬁmmthednecml’s, =pE =
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F.PY_ VP

2R = %(M.)whmk:thendiusofcunm Hence
2V . ¥

F=75y PY - PV

Prop. I1. Let the force be a function of the distance, and
and therefore always the same when the distance is the same;
if, in describing different trajectories, the velocity be the
same at a given distance from the centre, it shall be the same
at any other given distance.

Let SP =, the fluxion of the curve =4 ds, ~SPY=\,
v the tangential velocity at P. Then vdv=/fcos.d.ds
=f.dscos.0=-—fdy; .. the increment of the square of
the velocity is a function of the distance, and the same be-
tween the same limits of distance, independent of the species
of the curve. .

Prop. III. If the data be as in propositions I. and IZ. the
radius vector, a straight line joining the projectile, consider-
ed as a point, and the centre of force, describes equal areas
in any equal times.

Let SY=p, SC=¢, CP=17, and SP=¢ as before.

e =c'+ri42rp,

and p.dp=r.dp,
7 being regarded as constant, becanse the body may be con-
nderednmomenmnlydewnhmgdleamled'mtum

f” Z (Prop, L) or f=—, and pdo=—fd;
- v'g.d _o'r. dp v’dp
,,.T’—f — gy = p 8 dpdv-i-vdp..o,
or pv = constant,
and pv is the fluxion of the area.
Otherwise thus.
See Maclaurin’s Fluzions, § 467, | .
. Let PF (Fig. 198.) represent the flaxian of the curvé at
48, let S be a fixed point, and .RK the measuve of. the defice-
Xive accelerative force at P, whose direction is suppased to
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DYNAMICS.

Containing some Elementary Propos::
nomy, to assist the Student in ful' .
of Kepler's Laws, and his consequ: ui
Universal Gravitation.

|
)

B # 1
Pyop. I. Ler P3 (Fig. 197.) b= oy © 1l retic
projected under the influenc.
directed to the point §, PY th 21 cllipse about anothe
PVH its circle of curvature at dullective force is inver
the tangent, let SP meet th nd if among any nun
PH being the diameter of thares of the periodic time
HYV ; then if F be the centrxvs, the force that connec
velocity at P, . ‘utre is the same at a giw
o whole extent of the syst

e the diameter conjugate;
For, F being the force is’. < « the major axis, and &
-« .angent at P, and SY perpen
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"1 in H, then PH = AC. = the
‘nsing R = the actnal distance
‘indic time. we have
- AC-= BC: : CD*.

v unit ot time

. 4Cs . D*
GCT PRSP PORT
. and P are both constant, and

.nt ellipses, though neither D nor

D+
- P+, and e is constant by hypoth.

we Mis still #?‘l—g,
m D? .
=R 8 constant quantity.
value or measure of the centripetal force at
- hee.

. it two bodies in free space be connected by mu-
.. and an impulse be communicated to cither of’
s they are subjected to no other extrinsic influence,
hoth revolve about: their common centre of gravity
= similar curves, the radins vector in each of which
-ribe equal areas in equal times, while the centre will

aiformly forward in a straight line.
..+ demonstration .will be easy after perusing §§ 892, 897,
#5, rrom which also it is obvieus that if equal and opposite
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be PO at the instant for which the. Auxions are !
supposmg the construction to be obvious from the
will be the fluxion of 4C,

or PG=d.4C =—d.PD,

PE =d.CP,

CG =d.area ACP,

DE = d.area APDS,

PH =d. PG,

PL = d. PE, and negative as here

.2 area ASP = ACP4 APDS, and

d.(ACP+APDS) =CG+DE.
Biit d.CG = PCd. PG+ PGd.PC=CH+GE,"
Andd.DE=PDd.PE+4+PEd. PD=DL}GE,

Hence the second fluxion of the area or d.(C’
— DL =CK—DK =0, when PK coincit
with P.S, and consequently the first fluxion o:

constant,

Cor. When PK is on the side of SP, 1
body is movmg, CK — DK is positive, anc
area is increasing; when it is on the ot!
is negative, and the description of tl:
whence the converse of the proposition
areas described in any equal times al-
or the fluxion:of the area be const:
directed to that centre.”

Prop. IV. If a-body describe an cl:
situated in one of the foci, the deflc.
the square of the distance; and i
bodies thus revolving the squares «
the cubes of the mean distances, t!:
of them with the common centre !
tance, and varies through the who!
cording to the same law.

Let DCd (Fig. 199.) be the .U
which passes through P, 4« '

‘the minor axis, PY the tangent :-°
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quantitics of
thing, ina ...
that the ¢ene .
I’ruli. !/
revolve aly.,
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