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Abstract

Ue present a general algorithm for computing the limit, as 5 -» 1 , of

the set of payoffs of perfect public equilibria, of repeated games with

long-run and short-run players, allowing for the possibility that the

players' actions are not observable by their opponents. We use the

algorithm to obtain an exact characterization of the limit set when the

players' realized actions, but not their choices of mixed strategies, are

observable. Ue show each that long-run player's highest equilibrium payoff

is generally greater in this case than when their actions are unobserved.





1. Introduction

Fudenberg-Kreps-Maskin [1989] (here referred to as FKM) show that the

folk theorem extends in the natural way to repeated games with long run and

short run players if the players' choices of mixed strategies are observed at

the end of each period. They further show that the folk theorem need not

obtain when the only information revealed at the end of each period is the

realized choice of action as opposed to the intended mixed strategy. In the

latter case, with a single long-run player, they characterize the equilibrium

payoffs in the limit as the discount factor goes to one. Their proof expli-

citly constructs equilibria in "review strategies" whose form is simple.

This paper considers the case of multiple long run players. Rather

than explicitly constructing equilibrium strategies, we extend the techni-

ques of Fudenberg-Levine-Maskin [1989] (FLM) to study games with several

long-run players facing a sequence of short-run opponents, allowing the

possibility that players' strategies need not be observable. As in FLM, at

the end of each period all players observe a public signal that is

imperfectly correlated with players strategies. We present a general

algorithm for computing the limit of the set of payoffs of perfect public

equilibria, and use it to provide an exact characterization of the limit set

in the case where the players' realized actions, but not their choices of

mixed strategies, are observed by their opponents.

When all players are long-run, the limit set of payoffs is the same

regardless of whether or not the players' actions are observable, provided a

"pairwise full rank" condition is satisfied. We show that this is not the

case in games where some of the players are short-run: the introduction of

moral hazard may lower each long-run player's highest equilibrium payoff.



2. The Model

In the star,e pame . each player i - 1 to n simultaneously chooses a

(pure) action a, from a finite set A. with m. elements. Each action•^
i 1. r

profile a e A X. A, induces a probability distribution n (a) over^ 1-1 i '^ -^ yz

publicly observed outcomes y and privately observed outcomes z -

(z..,...,z ). We let n (a) denote the marginal for y. The public

outcomes lie in a finite set Y with m elements. Each player i's

realized payoff r (z ,y) depends on his own private information and on the

realized outcome: his opponents' strategies matter only in their influence

on the distribution over outcomes. This model includes as a special case

games where the public information y perfectly reveals the actions chosen.

It also includes games where y conveys only imperfect information about

the actions. For example, y can be the realized market price and the z.

- a. can be choices of output levels as in Green-Porter [198'4), or y can

be the realized quantity of a good and z - a. the care with which the

good is manufactured. The key to the folk theorem is that there is an

outcome y is publicly observed, which rules out games where the players

receive only private signals. The latter case is considered in Lehrer

[1988] and Fudenberg and Levine [1989].

Player i's expected payoff to an action profile a is

g^(a) - S ff (a)r (z y),
yGY -^

zeZ

which gives the normal form of the game.

We will also consider mixed actions a. for each player i. For each

profile a - (a.. , . . . ,a ) of mixed actions, we can compute the induced

distribution over outcomes,



TT (q) - 2 tt (a)Q(a), z (a) - Z tt (a)Q(a)
y" aeA y^ y aeA y

and the expected payoffs

g (q) - S S Q(a)7r (a)r (z ,y).

y€Y aGA >

2GZ

We denote the profile where player i plays a. and all other players

follow profile a by (a,,Q . ) ; tt (a., a .) and p. (a., a .) are defined in
-' 1 -1 y^ 1 -L "i 1 -

1

the obvious way.

As in FtCM, we label players so that ieLR-(l,2 2) , i<n, are

long-run players, whose objective is to maximize the normalized discounted

value of per-period payoffs using the common discount factor 6. If

(g.(t)) is a sequence of payoffs for long-run player i, player i's present

value is

(1-6) S 5^g.(t)
t-0 ^

where we normalize by (1-5) to measure the repeated game payoffs in the

same units as payoffs in the stage game.

The remaining players j S SR - {i+l,...,n) represent different types

of short-run players, each representative of which plays only once. One

example of a model with long and short-run players is Selten's [1977] chain.-

store game, where a single long-run incumbent faces a sequence of short-run

opponents (see FKM for other examples).

In the repeated game, in each period c - 0,1,..., the stage game is

played, and the corresponding public outcome is then revealed. The public

history at the end of period t is h(t) - (y (0) , . . . ,y ( t) ) . The private

history for long-run plaver 1 at the end of period c is h.(t) -



(a.(0),z.(0),...,a.(t),z.(t)). A strater.v for long-run player 1 is a

sequence of ir.aps mapping public and private histories (h( t- 1 ) ,h . ( t- 1 ) ) to

mixed actions. A strater.v for the period-t plavers of type i . j G SR, is

a map from the public information h(t-l) to mixed actions. Note that the

short- run player j observes the public information at t, but not the

private history corresponding to the play of his predecessors. However, if

the public information reveals the past choices of action, as in FtCM then

these private histories are extraneous.

Each strategy profile generates probability distributions over

histories in the obvious way, and thus also generates a distribution over

histories of the players' per-period payoffs. We denote tlie repeated game

with discount factor S by G(5).

Let A. denote the space of mixed actions, and

B: A, X ... X A. -* A „ , X ... xj^
1 i £+1 n

be the correspondence that maps any mixed action profile (a.. , . . . •°'n) fo^"

the long run players to the corresponding static equilibria for the short

run players. That is, for each a e graph(B), and each j > i, a.

maximizes e.Cq'. ,a .).
J J -J

Our focus is on a special class of the Nash equilibria that we call

perfect public eouilibria . A strategy for long-run player i is public if at-

each time c, it depends only on the public information h(c-l) and not on

the private information h.(t-l). A perfect public equilibrium is a profile

of public strategies such that at every date t and for every history h(t-l)

the strategies are a Nash equilibrium from that date on. (Note that in a

public equilibrium the players' beliefs about each others' past play are

irrelevant: No matter how player i plays, all nodes in the same information



set for i at the beginning of period t lead to the same probability

distribution over i's payoffs. This is why we can speak of "Nash

equilibrium" as though each period began a new subgame
.

)

It is easy to show that perfect public equilibria are sequential, and

that the set of public equilibrium payoffs is stationary, that is, the set

of perfect public equilibrium payoffs in any period t and for any public

history h(t-l) is independent of t and h(t-l). However, when the

players' actions are not perfectly observed, there may be sequential

equilibrium payoffs that are not obtainable with public strategies. (With

observed actions all equilibria are public.)

In any period t of a public equilibria, the players period-t mixed

actuibs Q(h(t-1)) are common knowledge. In particular, each short-run

player j believes he will face the mixed action a .(h(t-l)). Since the

short-run players care only about their one-period payoffs, in a public

equilibrium each period's mixed action must lie in the graph of B. (This

need not be true of the sequential equilibria that are not public, for

subsets of the players can use their knowledge of their own past actions to

correlate their play. See FLM for an example of the way this correlation

can generate additional equilibrium payoffs.)

3 . Dynamic Protrrarominfr and Local Generation

Let E(5) C IR be the set of normalized values that can arise in

perfect public equilibria when the discount factor if 6. Abreu-Pearce-

Stachetti [1987] introduced the notion of a self -generated set of payoffs

for games with long-run players only, and showed that a sufficient condition

for a set of payoffs to be in E(5) is that it be self -generated. FLM

showed that a sufficient condition for a set of payoffs W to be in E(5)



for all 8 sufficiently close to 1 is that W be locally generated.

This section observes that those definitions and results carry over

immediately to games with some short-run players.

Definition 3.1 : Let 5 , W c IR and v e IR be given. Action a is

enforceable with respect to v. W and 6 if there exist vectors

i
w(y) e IR

, y € Y, such that q e graph(B) and for all i e LR and

a. e A.

,

1 L

v. - (l-5)g.(a.,a .) + 5 S TT (a., a . )w, (y) for a. s.t. a. (a.) >
.... 1 ''l l -1 y L -r i -^ i i l

V. > (l-5)g.(a.,a . ) + 5 S TT (a., a ,
)w, (y) for a. s.t. a. (a.) -

and

(3.2) w(y) G W.

We also say that the w(y)'s enforce (a,v) with respect to W and 5.

If for a given a, a v exists satisfying (3.1), we say that a is

enforceable with respect to W and S . Note that each w(y) specifies

continuation payoffs only for the long-run players.

Equation 3.1 says that if all players j '^ i play ct • then (i) no

short-run player i can increase his payoff by deviating from a., and (ii)

if long-run player i's present value starting tomorrow on when y occurs

today is given by w. (y) , then player i receives exactly present value v

from any of the actions in the support of a., and no choice of action

yields a higher present value. We can exploit the linearity of the

incentive constraints to show:

Lemma 3.2 (Enforcement With Small Variation) : Let C be a convex subset of

i
IR . Suppose (a,v) is enforced by W(y) e C and S. Let

w - 2 „ TT (Q:)w(y). Then there is a constant k. such that for all S' > S
yeY y ' -^

^



there is a v' e IR and there are continuation payoffs w' (y) e C that

enforce (q,v'). Moreover,

(i) ||w'(y)-w|| < Kd-S')

(ii) Z^^Y 'ry(a)w'(y) = w

(iii) w'(y) + iS')'^ (V -v) e W.

(iv) w'(y) - w + |f|^ (w(y)-w).

Proof : This is just a matter of checking that W (y) defined by (iv) are

in C and satisfy (3.1), (3.2) and the other properties; see for example

FLM. I

Definition 3.3 : If for a given v, W, and 5 an a exists so that (a,v)

is enforceable with respect to W and S, we say that v is generated by

W. P(5,W) is the set of all points generated by W. A subset W of IR

is locally generated if for each v G W there exists a 5 < 1 and an open

set U containing v such that U c P(5,W).

Lemma 3.U : If W C IR is compact, convex and locally generated, then there

exists a 5 < 1 such that for all 5' > S, W c E(5').

Proof : By local generation we may find an open cover (U) of W together

with S < 1, such that U c P(5 ,U). Since W is compact, choose a finite

subcover, and let S be the maximum of S over this subcover. Let 5' > 5.

Then 6' > 6 for each U in the subcover. Since U C P(5 ,W) , by Lemma

3.2(iii) for each v e U we may find w(y) e W that enforce v with respect

to the discount factor 5'. So U c P(5',W), and since the U's cover W,

this implies W c P((5',W). Finally, since W is compact, it is straightfor-

ward to use the principle of optimality to conclude that since each point in

W can be enforced using continuation payoffs in W, that M c E(5). I



A. Enforceability on Halfspaces and the Set of Limit Equilibria

This section describes an algorithm that computes the limiting value of

the set E(5) as S tends to one. Section 5 uses this algorithm to

characterize the limit set of equilibria.

The key to the algorithm is the study of the payoffs that can be

i
generated using continuation payoffs that lie in half-spaces H of IR :

these are sets of the form H(A,k) - (v|A-v<k) for A 6 IR and k e IR.

Definition 4.1 : The maximal score attainable by action a in direction X

*
with discount factor 5, denoted k (a, A, 5) is the maximum of A*v such

that there exists v e IR and k G IR with (a.v) enforceable with respect

to 8 and H(A,k) and such that k - A • v. The halfspace associated with

* *
this maximum is H (a, A, 6); its boundary is the hyperplane h (a, A, 5)

given by A»v-k(a,A,5).

This definition asks us to fix a mixed action a and a direction A, and

then find the "highest" halfspace in direction A such that a point on the

boundary of the hyperplane can just be generated with action a and

continuation payoffs in the halfspace.

Lemma 4.1 : (i) k (a, A, 5) - k (a, A) independent of 5.

(ii) k*(cr.A) < A o g(Q);

(iii) k (a, A) - A • g(Q) if and only if g(Q) is enforceable with respect

to the hyperplane orthogonal to A at g(a)

.

•k

Proof : (i) if k (a,A,<5') - k, then there is a v with A • v - k and

continuation payoffs w' (y) e H(A,k) that enforce (a,v) with respect to

(5',H(A,k)). Now consider the payoffs

w"(y) - [(5"-5')/5"(l-5')]v + [5 ' (l-6")/(5" (1-5 '
) ]w' (y) .



Since 6" is less than one, the coefficient of v in the above equations

is less than one as well. Then since v is on the boundary of H(A,k) and

each W (y) is in H(A,k), W (y) is in H(A,k) as well. Moreover, it is

easy to check from (3.1) and (3.2) that the w"(y) enforce (a,v) with

respect to ((5",H(A,k)).

(ii) k (a, A) > A • g(Q) would imply that g(Q) is in the interior

of the maximal halfspace. Since each v* G H* is a strict convex combina-

tion of g(Q) and points in H*, this is impossible.

(iii) k (a, A) - g(Q) clearly requires that (a,g(Q)) be

enforceable with continuation payoffs on the hyperplane orthogonal to A

and passing through g(a)

.

'

We should point out that k (a, A) is not necessary upper semi-

continuous in a. Although the constraints in the definition of

enforceability (3.1) have the closed graph property, half-spaces are not

compact so the set of payoffs enforceable with continuations on a given

half-space is not generally upper hemi-continuous in a.

St

Definition 4.2 : The maximal score in direction A, k (A), solves

k (A) - sup ,,„\ ^ (o,^)- The maximal halfspace in direction A is
Qegraph(B) ^ •

' r

H*(A) - H(A.k*(A)).

Definition 4.3 : Q - nH (A).

Note that Q is convex, and that each point q on the boundary of Q is

enforceable on all of the halfspaces that are tangent to Q at q.

Theorem 4.1 : (i) For all 5, E(5) C Q.

p
(ii) If the dimensions of Q c IR is i, then lim^ , E(5) - Q.

o-*l



10

Proof of (i) : We will show more strongly that E (5), the convex hull of

E(5), is contained in Q. If not, we may find a halfspace H(A,k) and a

point V G E(<5) such that A • v - k > k*(A) and A • v < k for all

v' e E (5). Then v must be enforceable with continuation payoffs in

E(5) C H(A,k), contradicting the definition of k (A).

Some preliminaries are needed before proving (ii).

Definition 4.4 : A subset W C IR is smooth if it is closed, has non-empty

i 2
interior with respect to [R , and the boundary of W is C submanifold

i
of IR .

Since any compact convex set with non-empty interior Q can be

approximated arbitrarily closely by smooth convex sets W C interior(Q)

,

part (ii) of the theorem will follow once we show that each such W in the

interior of Q is locally generated.

Lemnia 4.4 : If W C interior(Q) is a smooth convex set, then Q is locally

generated.

Proof : We must show that for all v € W there is a 5 < 1 and an open

neighborhood U of v with U c P(5,W). This is easy to do for

v e interior(W). As in FLM, let a be a static Nash equilibrium. Fix a U

containing v and with closure in the interior of W. This implies each

u e U can be expressed as (l-5)g(Q) + 5w, where w e W for some

5 < 1. Moreover, the continuation payoffs w(y) - w clearly enforce (a,u)

so U C P(5,W)

.

Next we consider points v on the boundary of W. Fix such a v, and

let A be normal to W at v. Let k - A • v, and let H - H(A,k) be

the unique halfspace in the direction A that contains W and whose
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boundary h is tangent to W at v. Since W C interior(Q) , it follows

that H is a proper subset of the maximal halfspace H (A) . Let a be a

*
strategy that generates a boundary point of H (A) using continuation

payoffs in H (A). Since v is a boundary point of H, which is a proper

subset of H (A), for some 6' < 1 and € > 0, (or.v) can actually be

enforced with respect to H(A,k-€).

By enforcement with small variation (Lemma 3.2(iv)), for S" > 6'
,
we

may find w(y,(5") that enforce (a,v) and a /c > such that

w(y.5") e H(A,k-[5'(l-5")/5"(l-5')]0.

and |w(y.6")-v| < k(l-S") .

Consider, then, the ball U(5") around v of radius 2/c(l-5"). Since

W is smooth, for 5" sufficiently close to one there exists a /c > the

2
difference between H and W in U(5) is at most /c(l-5") . It follows

that there exists a 5 < 1 such that v can be enforced by continuation

payoffs w(y) e interior W. Since w(y) are interior they may be trans-

lated by a small constant independent of y generating incentive compatible

payoffs in a neighborhood U of v. I

5. The Characterization of E(S) for Games with a Product Structure

We now specialize to games with a product structure. A special case of

these games is the case in which actions are observable but mixed strategies

are not. In these games Fudenberg and Maskin [1986] show that the folk

theorem holds when there are no short-run players. With short run players and

a single long-run player FKM show that the folk theorem fails, but are never-

theless able to characterize equilibrium payoffs. Using Theorem 4.1, we can

This observation originates with Matsushima [1988]
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extend this latter characterization to encompass many long-run and short-run

players, and moral hazard as well.

Formally, a game has a product structure if y - (y-,,---,y„,y(, ,) with

ISprobability one, and -n (a) = tt (a,) . . . tt (a.)7r (a. ,) where tt

y ^1 1 y^ ^ y^+i
'^^

^i
the marginal distribution on y.. In other words, each long-run player's

action influences only the distribution of hiw "own" outcome y., and the

y. are statistically independent. In addition, we require a full rank

condition: for i - 1 L the matrix tt. - ( tt (a.)) with rows a. 6 A.
' ' 1 y.^ x' 1 1

and columns y, € Y. should have rank m equal to the number of player

i's actions. It is easy to see that under this condition any a e graph(B)

can be enforced by some (not necessarily feasible) specification of the

2
continuation payoffs. Notice that this is a generalization of a game with

observable actions . Observable actions means that y. is isomorphic to a.

so that TT. is the identity matrix.

Let e. be the unit vector in the direction of the i coordinate
1

axis, and recall that k (e.) corresponds to maximizing player i's payoff

* X.

and k (-e.) to minimizing it. We also define V to be the subset of IR

generated as convex combinations of payoffs to long-run players

(g.. (q) g (q)), where a e graph(B) . Note that this set is closed,

since B is, and convex. Our goal is to prove:

Theorem 5.1 : In a game with a product structure satisfying the full rank

condition, Q is the intersection of V with the 2i constraints

"k -k

k (-e.) < V. < k (e. )

.

X L 1

2
FLM call this the "individual full rank" condition to distinguish it

from a stronger condition called "pairwise full rank".
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If, following Fudenberg and Maskin [1986], we assume that Q has dimension

i, it follows from Theorem 4.1 that Q is the limit of E(6) as 6 -» 1

.

Although this gives a characterization of limit payoffs as 5 - 1 , it

is not interpretable as a folk theorem, as in general k (e.) is not the

best payoff for player i in the graph(B)

.

In proving Theorem 5.1 there are two cases: directions X that are

parallel to a coordinate axis, and those that are not. We refer to the

former as coordinate directions, the latter as non-coordinate directions.

*
From the definitions of Q and k

, Q must satisfy the constraint

k (-e.) < V. < k (e.). To prove Theorem 5.1 in turn suffices to show that

for non-coordinate directions A we can obtain scores k (A) on the

boundary of v.

Lemma 5.2 : In a game with a product structure, if \ is a non-coordinate

direction, then k (A) - A • v, where v e V and V c H(A,k (A)).

Proof : By Lemma 4.1(iii), it suffices to show that for some v e V and k'

such that h(A,k') is tangent to V at v, that there is an a with

(g, (a) g (a)) - V that may be enforced on h(A,k'). By the definition

of V we may find a € graph(B) and a k' such that

(g,(Q:) g (q)) - V and h(A,k') is tangent to V at v. Consequently,

we need only construct w(y) satisfying A • w(y) - k' , and such that the

incentive constraints (3.1) and (3.2) are satisfied. Since

y - (y^ ^i'^i+l^'
^^ initially restrict attention to w. (y) - w^(y^)

,

and such that the incentive constraints all hold with exact equality. They

may be written as

(5.1) V. - (l-5)g.(a.,a . ) 4- 5Z n (a.)w.(y.)

Since n. has rank m. , there exist a solution w.(y.).
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Since A is non-coordinate, X . j^ for at least two players, say

i = 1,2. Consequently, A • w(y) = k' provided that

i

1=3

Clearly, setting 0^(y) =
^^'-^l''

"^

"l^^-l^' ^2^^^ " ^2^^2^ "^

^2^y]L)'
^^^^

w. (y) - w.(y.) for i f^ 1 , 2 preserves incentive compatibility for any func-

tions w' of y and w' of y . If we choose w'(y ) - -

(-^-i
/-^^ ) ^1 (Y-i ) .

and w' (y ) - (1/A )(k'-S. A.w.(y.)), the resulting w(y) completes the

proof. I

Now we show how to determine the constraints k (e.) and k (-e.) m

some classes of games of economic interest. Following FKM , we define two

bounds on the payoffs of the long-run player 1 - 1,...,^. First,

V. a min max g.(a.,a .)
-

1

X 1 -

1

Qegraph(B) a.eA.

is the minmax, incorporating the constraint that short- run players must play

best responses to some play of the long-run players. FPCM argue that every

long-run player's payoff is at least v. in every equilibrium. The second

bound is

*
V. H max min p,.(a.,a .),
L 11-1

Qegraph(B) a.6support(a.

)

which is the most player i can get if he cannot be trusted not to maximize

within the support of a mixed strategy. Let a be the strategies for

i's opponents that lead to v., and let a be strategies for all

players that solve the problem defining v.

.

FVsH show that for games with observed actions and a single long-run

player the limit set of equilibrium payoffs is the interval [y v ] . FLH
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consider games with unobserved actions where all players are long-run. In

*
these games all strategy profiles are in graph(B) , so v. - max g. (a)

,
and

any strategy profile a that gives player i payoff v. necessarily has

*i *i . ,

a. a static best response to a .. This means that player i can be
1

^ -1 '

induced not to deviate from a with continuation payoffs that are ortho-

gonal to player i's coordinate axis, so that k (e.) - max g.(a). When

*i
some players are short run, o. need not be a static best response to

*i *
Q ., which is why k (e.) can be less than max g.(a).
-1 '

1 a "=1

An important class of games that do not have perfect observability are

moi'al hazard mixing games . These are games for which tt (a.) is strictly

positive for all a. e A., y. G Y. and i - l,...,i, so there is genuine

k
moral hazard. In addition we require that if o e graph(B) and g.(Q) - v

then a. is not a best response to a . . This will imply that the

incentive constraint due to moral hazard binds on player 1 at his optimal

equilibrium.

Theorem 5.3 : (i) In games with a product structure k (e.) < v. and

*
k (-e. ) < -V.

,

1 -L

(ii) In games with observable actions k (e.) - v. and

k*(-e.) - - v..
1 ~i

* *
(iii) In moral hazard mixing games k (e.) < v.

,

*
Proof : We calculate for each a e graph(B) , the scores k (a,e.) and

*
k (-Q,-e.). In the e. case, let 7 - +1 and in the -e. case let

•k

7 - -1. Then k (a, 76.) is the solution to the linear programming problem

max 7V.

subject to;
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V. =- (l-(5)g. (a. ,Q .) + 6S TT (a.)w.(y.) Q(a.) >

(5.2) V. > (l-5)g.(a.,a .) + 61, n (a.)w.(y.) Q(a.) -

TV . > 7W . ( y . )

.

To see that this program determines k (a,e.), note that the incentive

constraints for players other than 1 can always be satisfied for some

continuation payoffs w(y) by the full rank condition, and that the

condition that w(y.) e H(7e.,v.) is simply 7V. > 7w.(y.).
•^ L 11 '^ ' 1 L '^ 1

Proof of ( i

)

: Suppose k (e.) > v. . Then, since k is independent of 5,

for each S e [0,1] there exists e > and a e. graph(B) such that

k (a,e.) > v. + [6/(l-S)]e and k (a,e.) - k (e.) - t. It follows that for

all a. with a(a. ) >
1 L

k*(a,e.) - (l-5)g.(a.,a .) + S E n (a.)w.(y.)

y . eY .
-^ 1

with w.(y.) < k(e.,Q) + e. Let a. be such that a. (a.) > and

*
g.(a.,a .) < g.(a:,a .) for all Q(a'.) > 0. By the definition of v.,
°i L -1 '^i 1 -1 1 ' 1

g.(a.,a .) < v. . Consequently,

k^(Q,e.) < (l-5)v* + 5(k(e.,Q)+£)

or k (a,e.) < v. + [5/(,l-S)]e . This contradicts the assumption that

k (a,e.) > v* + [5/(l-5)]e, so k*(e.) < v*.

Next, suppose k (-e.) > -v.. As above, there is an a G graph(B)

such that k (a.-e.) > - y. + [S/{l-6)]e and k (a,-e.) - k (-e.) - £. It

follows that for all a. 6 A.
1 1

-k*(-e^,a) > (l-5)g^(a^,a_^) + S Z n (a^)w^(y^)

y.ey. -^i
' X ' X

with w.(y.) > k(e.,Q) - e. Let a. be such that g.(a.,a .) > g.(a'.,Q: .)
L -^ 1 X X ^x X -X °x X -X
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for all a. eA.. By the defir'. tionof v., e.(a.,a .) >v.. Consequently

-k*(-e^,a) > (1-5) + 5(-k(e.,a)-€),

or k (e.,Qa) < -v. + [6/il-8)]e . Again, this is a contradiction.

Proof of (ii) : Under perfect observability, the constraints (5.2) simplify

to

V. - (l-5)g.(a.,Q .) + (5w.(a.) Q(a.) >

(5.3) V. > (l-5)g.(a.,Q .) + 5w.(a.) a(a.) -
L ''l 1 -1 1 1 1

7V. > 7W. (y . )

.

L 1 -^ I

For 7-1, set v. - min , . „ g.(a.,a .), and
1 Q. (a. )>0 °x 1 -

1

X 1

w.(a.) - [v. -(l-5)g. (a. ,a. ) 1/5 for a. with a. (a.) > 0;11 1 "^1 1 1
"

1 11
w.(a.) - min . g.(a) for a. with a. (a.) - 0. Since these continuation
1 1 aeA. ^1^ ^ 1 1^ 1'^

1

payoffs satisfy constraints (5.3), we conclude that

*
k (a.e.) > min , . g.(a.,a .),

^ ' J.^ a.esupport(a.) ^i^ i' -i^'

* *
/ \ *

and k (e.) - max k (a,e.) > max min , . g.(a.,a .) -v..
^ i' a ^ '

i"^ a a.Gsupport(a. ) ^i i -i i

Combining this inequality with that of part (i) we have k (e.) - v..

For 7 - -1, set V. - max g.(a.,m .), where m is the minmax
1 a. '^i 1 -1

1

profile against player i, and set w.(a.) - [v. - (l-5)g. (a. ,m .)]/5 for

all a.. Once again these continuation payoffs satisfy (5.3), and hold

player i's payoff to v. regardless of how he plays. Thus k (-e.) < v

and so combining with part (i) yields k (-e.) - v

Proof of (iii) : We turn finally to moral hazard mixing games and -y - 1.

Let 77-. - min . n (a.) > from the assumption that all outcomes
-1 a.GA. ,y.ey. y. i

^

ii-'i-'i-'i
have positive probability under all profiles.
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Now for each a consider Che problem of finding max v. subject to

the constraints (5.2). At the solution to this program,

V. = k (a.e.) > w.(y.), so that

*
2 TT (a.)w.(y.) < k (a,e.) + rr, min w.(y.).

Choose a. so that a. (a.) > 0. Then
1 11

*
k (a.e.) < (1-5)2. (a. , a .) + <5v. + Stt. min w.(y.),

1 ''i 1 -1 1 ~i y.ey. 1 -^ 1
•^ 1 -^ 1

or

w^(y^) > e[ ia-S)/6] [k (a.e^)-max g^].

Since we know from above that k (a.e.) satisfies
1

max g. > max v. > min g. , we may add this constraint to the LP problem and

find also

max g^ > w^(y^) ^ 7l[ [(1-7)/5] [min g^-max g^].

Consequently the relevant constraint set of continuation payoffs is bounded

independent of a, and it follows that there exists a with

k (e.,a) - k (e.); that is, the sup over a is attained.

* *
Suppose then that k (a,e.) - v.. For some a. with a. (a.) > 0,^^ ^ ' i' 1 1 11

* *
g. (a. ,a .) < v., by the definition of v.. Since a. (a.) >=1 1 -1 1 -^ 1 11

v^ - (l-(5)g^(a a_^) + S ^ ff (a^)w^(y^).
y.eY. -^i
•' 1 1

Since g.(a.,Q .) < v. and w.(y.) <v., it follows that g.(a.,a .) -v
^x 1 -1 1 1-^1 1 °i 1 -1 1

and since tt (a.) > for all y. , w.(y.) - v. for all y. e Y. . But we
y. 1 -'i' 1 'i 1 ^11
^ 1

then have

V. > (l-5)g. (a'. ,a .) + 5v.
1 '^i 1 -1 1

for all a', e A., with exact equality if and only if Q.(a.) > 0. In other11 -^ J J 1^1
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words, a. is a best response to q . yielding the payoff v. , and

contradicting the definition of a moral hazard mixing game.

Remark : An alternative interpretation of part (iii) of the theorem is that

player i's moral hazard reduces his best equilibrium payoff relative to

the case of observed actions unless the best observed action payoff v. can

be attained in the stage game with a profile where player i does not have

an incentive to deviate. It is intuitive that moral hazard should not be

costly in this case, as there is no need to "keep track" of player i's

action; the theorem shows that this is the only case where moral hazard has

no additional cost.

We now give an example of a moral hazard mixing game.

L M R

U
"

D

4,0 0,1 1,-100

2.2 1,1 0,3

Figure 1

The payoff matrix in Figure 1 gives the expected payoffs as a function of

the actions. Player 1 is a long-run player facing a sequence of short-run

player 2's. If player I's actions are observable, but not his mixed strat-

egy, then by Theorem 5.1, his maximum equilibrium payoff is v. - 2, which

corresponds to player 1 playing D with probability p G [1/2,100/101].

Now imagine that there are two outcomes y' and y" and that

n
,
(U) - TT „(D) - 1 - e. It is clear that we may define payoffs r.(y^,a )

that give rise to the normal form in Figure 1, for example

r^(yj^,L) - 4-6£/(l-2£)

r^(y^,L) - 2-6€/(l-20.
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This class of games obviously has a product structure and for € ^ 1/2

satisfies the full-rank condition.

These games also satisfy the pairwise full rank condition described in

FLM. According to FLM , if player 2 were a long-run player the limit set of

equilibria would be the same as that with observable actions. However, with

a short run player, the limit set is strictly smaller when c > 0. This

follows from the fact that the game is a moral hazard mixing game:

r 1-f.

l-£-J

is strictly positive, and the most player 1 can get from a pure strategy

is < V - 2, while if player 1 is indifferent between up and down, he

must clearly get no more than one.

Note that it can be shown that as £ ->•
, k (e.) converges v - 2.

This is quite generally true: if we fix a payoff matrix and consider a

sequence of corresponding information structures that converge to perfect

observability, the maximum payoffs converge to v..

6. Conclusion

We have investigated the limit of the set E(5) of public equilibria.

When this limit is smaller than the limit set of feasible payoffs, it raises

the possibility that a strictly larger limit set could be obtained by

considering a larger class of equilibria. In particular, some action by a

short- run player might not be a best response to any independent random-

ization by his opponents, but be a best response to a correlated

distribution over the opponents' strategies. When the players' actions are

perfectly observed, this possibility is irrelevant, as all equilibria are

public equilibria. However, when actions are imperfectly observed, two



21

players can condition on the public information and their own past play in

such a way that the distribution over their actions given only the public

information is a correlated distribution. Thus, there can be equilibria

where the short- run players choose responses that are not in the range of

B. The characterization set of all the equilibrium payoffs in these games

remains an open problem.
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