
















THE

FOUNDATIONS OF GEOMETRY,



SonDon: C. J. CLAY AND SONS,
CAMBRIDGE UNIVEKSITY PEESS WAKEHOUSE,

AVE MARIA LANE.

263, ARGYLE STREET.

ILdpjtg: F. A. BROCKHAUS.

$orfe: THE MACMILLAN COMPANY.
GEORGE BELL AND SONS.



AN ESSAY

ON THE

FOUNDATIONS OF GEOMETRY

BY

BERTHAND A. W. RUSSELL, M.A.

FELLOW OF TRINITY COLLEGE, CAMBRIDGE.

CAMBRIDGE:
AT THE UNIVERSITY PRESS.

1897

[All Rights reserved.]



Camimlige :

PRINTED BY J. AND C. F. CLAY,

AT THE UNIVERSITY PRESS.

Math. Stat.

Add l

GIFT



&amp;gt;

MATH.-
STAT.

PREFACE.

present work is based on a dissertation submitted at

the Fellowship Examination of Trinity College, Cam

bridge, in the year 1895. Section B of the third chapter is in

the main a reprint, with some serious alterations, of an article

in Mind (New Series, No. 17). The substance of the book has

been given in the form of lectures at the Johns Hopkins

University, Baltimore, and at Bryn Mawr College, Pennsyl

vania.

My chief obligation is to Professor Klein. Throughout the

first chapter, I have found his &quot;Lectures on non-Euclidean

Geometry
&quot;

an invaluable guide ;
I have accepted from him the

division of Metageometry into three periods, and have found

my historical work much lightened by his references to previous

writers. In Logic, I have learnt most from Mr Bradley, and

next to him, from Sigwart and Dr Bosanquet. On several

important points, I have derived useful suggestions from

Professor James s
&quot;

Principles of Psychology.&quot;

My thanks are due to Mr G. F. Stout and Mr A. N.

Whitehead for kindly reading my proofs, and helping me by

many useful criticisms. To Mr Whitehead I owe, also, the

inestimable assistance of constant criticism and suggestion

throughout the course of construction, especially as regards

the philosophical importance of projective Geometry.

HASLEMERE.

May, 1897.
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INTRODUCTION.

OUR PROBLEM DEFINED BY ITS RELATIONS TO LOGIC,

PSYCHOLOGY AND MATHEMATICS.

1. GEOMETRY, throughout the 17th and 18th centuries,

remained, in the war against empiricism, an impregnable
fortress of the idealists. Those who held as was generally
held on the Continent that certain knowledge, independent of

experience, was possible about the real world, had only to

point to Geometry: none but a madman, they said, would

throw doubt on its validity, and none but a fool would deny
its objective reference. The English Empiricists, in this

matter, had, therefore, a somewhat difficult task
;

either they
had to ignore the problem, or if, like Hume and Mill, they
ventured on the assault, they were driven into the apparently

paradoxical assertion that Geometry, at bottom, had no cer

tainty of a different kind from that of Mechanics only the

perpetual presence of spatial impressions, they said, made
our experience of the truth of the axioms so wide as to seem

absolute certainty.

Here, however, as in many other instances, merciless logic

drove these philosophers, whether they would or no, into

glaring opposition to the common sense of their day. It was

only through Kant, the creator of modern Epistemology, that

the geometrical problem received a modern form. He reduced

the question to the following hypotheticals : If Geometry has

apodeictic certainty, its matter, i.e. space, must be a priori, and

as such must be purely subjective ;
and conversely, if space is

purely subjective, Geometry must have apodeictic certainty.

The latter hypothetical has more weight with Kant, indeed it

is ineradicably bound up with his whole Epistemology ;
never

theless it has, I think, much less force than the former. Let us

R. G. 1



2 INTRODUCTION.

accept, however, for the moment, the Kantian formulation, and

endeavour to give precision to the terms a priori and subjective.

2. One of the great difficulties, throughout this contro

versy, is the extremely variable use to which these words, as

well as the word empirical, are put by different authors. To

Kant, who was nothing of a psychologist, a priori and subjective

were almost interchangeable terms 1

;
in modern usage there is,

on the whole, a tendency to confine the word subjective to

Psychology, leaving a priori to do duty for Epistemology. If

we accept this differentiation, we may set up, corresponding
to the problems of these two sciences, the following provisional

definitions : a priori applies to any piece of knowledge which,

though perhaps elicited by experience, is logically presupposed
in experience : subjective applies to any mental state whose

immediate cause lies, not in the external world, but within

the limits of the subject. The latter definition, of course, is

framed exclusively for Psychology : from the point of view

of physical Science all mental states are subjective. But for

a Science whose matter, strictly speaking, is only mental states,

we require, if we are to use the word to any purpose, some

differentia among mental states, as a mark of a more special

subjectivity on the part of those to which this term is applied.

Now the only mental states whose immediate causes lie

in the external world are sensations. A pure sensation is, of

course, an impossible abstraction we are never wholly passive

under the action of an external stimulus but for the purposes
of Psychology the abstraction is a useful one. Whatever, then,

is not sensation, we shall, in Psychology, call subjective. It

is in sensation alone that we are directly affected by the ex

ternal world, and only here does it give us direct information

about itself.

3. Let us now consider the epistemological question, as

to the sort of knowledge which can be called a priori. Here

we have nothing to do in the first instance, at any rate

with the cause or genesis of a piece of knowledge ;
we accept

knowledge as a datum to be analysed and classified. Such

analysis will reveal a formal and a material element in

1 Cf. Erdmann, Axiome der Geometrie, p. Ill :
&quot; Fur Kant sind Aprioritat

und ausschliessliche Subjectivitat allerdings Wechselbegriffe.
&quot;
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knowledge. The formal element will consist of postulates which

are required to make knowledge possible at all, and of all

that can be deduced from these postulates ;
the material ele

ment, on the other hand, will consist of all that comes to

fill in the form given by the formal postulates all that is

contingent or dependent on experience, all that might have

been otherwise without rendering knowledge impossible. We
shall then call the formal element a priori, the material element

empirical.

4. Now what is the connection between the subjective

and the a priori ? It is a connection, obviously if it exists

at all from the outside, i.e. not deducible directly from the

nature of either, but provable if it can be proved only by
a general view of the conditions of both. The question, what

knowledge is d priori, must, on the above definition, depend
on a logical analysis of knowledge, by which the conditions

of possible experience may be revealed
;
but the question, what

elements of a cognitive state are subjective, is to be inves

tigated by pure Psychology, which has to determine what, in

our perceptions, belongs to sensation, and what is the work

of thought or of association. Since, then, these two questions

belong to different sciences, and can be settled independently,
will it not be wise to conduct the two investigations separately ?

To decree that the d priori shall always be subjective, seems

dangerous, when we reflect that such a view places our results,

as to the d priori, at the mercy of empirical psychology. How
serious this danger is, the controversy as to Kant s pure in

tuition sufficiently shows.

5. I shall, therefore, throughout the present Essay, use

the word d priori without any psychological implication. My
test of apriority will be purely logical : Would experience be

impossible, if a certain axiom or postulate were denied ? Or,

in a more restricted sense, which gives apriority only within

a particular science : Would experience as to the subject-matter
of that science be impossible, without a certain axiom or pos
tulate ? My results also, therefore, will be purely logical. If

Psychology declares that some things, which I have declared

d priori, are not subjective, then, failing an error of detail in

my proofs, the connection of the d priori and the subjective,

12
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so far as those things are concerned, must be given up. There

will be no discussion, accordingly, throughout this Essay, of

the relation of the a priori to the subjective a relation which

cannot determine what pieces of knowledge are d priori, but

rather depends on that determination, and belongs, in any

case, rather to Metaphysics than to Epistemology.

6. As I have ventured to use the word a priori in a

slightly unconventional sense, I will give a few elucidatory

remarks of a general nature.

The d priori, since Kant at any rate, has generally stood

for the necessary or apodeictic element in knowledge. But

modern logic has shown that necessary propositions are always,

in one aspect at least, hypothetical. There may be, and usually

is, an implication that the connection, of which necessity is

predicated, has some existence, but still, necessity always points

beyond itself to a ground of necessity, and asserts this ground
rather than the actual connection. As Bradley points out,
&quot; arsenic poisons

&quot;

remains true, even if it is poisoning no one.

If, therefore, the d priori in knowledge be primarily the neces

sary, it must be the necessary on some hypothesis, and the

ground of necessity must be included as d priori. But the

ground of necessity is, so far as the necessary connection in

question can show, a mere fact, a merely categorical judgment.
Hence necessity alone is an insufficient criterion of apriority.

To supplement this criterion, we must supply the hypothesis
or ground, on which alone the necessity holds, and this ground
will vary from one science to another, and even, with the pro

gress of knowledge, in the same science at different times.

For as knowledge becomes more developed and articulate, more

and more necessary connections are perceived, and the merely

categorical truths, though they remain the foundation of apo
deictic judgments, diminish in relative number. Nevertheless,

in a fairly advanced science such as Geometry, we can, I think,

pretty completely supply the appropriate ground, and establish,

within the limits of the isolated science, the distinction be

tween the necessary and the merely assertorical.

7. There are two grounds, I think, on which necessity

may be sought within any science. These may be (very

roughly) distinguished as the ground which Kant seeks in the
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Prolegomena, and that which he seeks in the Pure Reason.

We may start from the existence of our science as a fact, and

analyse the reasoning employed with a view to discovering
the fundamental postulate on which its logical possibility de

pends ;
in this case, the postulate, and all which follows from

it alone, will be d priori. Or we may accept the existence of

the subject-matter of our science as our basis of fact, and

deduce dogmatically whatever principles we can from- the

essential nature of this subject-matter. In this latter case,

however, it is not the whole empirical nature of the subject-

matter, as revealed by the subsequent researches of our science,

which forms our ground ;
for if it were, the whole science

would, of course, be d priori. Rather it is that element, in the

subject-matter, which makes possible the branch of experience

dealt with by the science in question
1

. The importance of this

distinction will appear more clearly as we proceed
2

.

8. These two grounds of necessity, in ultimate analysis, fall

together. The methods of investigation in the two cases differ

widely, but the results cannot differ. For in the first case, by

analysis of the science, we discover the postulate on which alone

its reasonings are possible. Now if reasoning in the science

is impossible without some postulate, this postulate must be

essential to experience of the subject-matter of the science,

and thus we get the second ground. Nevertheless, the two

methods are useful as supplementing one another, and the

first, as starting from the actual science, is the safest and

easiest method of investigation, though the second seems the

more convincing for exposition.

9. The course of my argument, therefore, will be as follows:

In the first chapter, as a preliminary to the logical analysis of

Geometry, I shall give a brief history of the rise and development
of non-Euclidean systems. The second chapter will prepare the

ground for a constructive theory of Geometry, by a criticism

of some previous philosophical views; in this chapter, I shall

1 I use &quot;experience&quot; here in the widest possible sense, the sense in which

the word is used by Bradley.
- Where the branch of experience in question is essential to all experience,

the resulting apriority may be regarded as absolute ;
where it is necessary only

to some special science, as relative to that science.
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endeavour to exhibit such views as partly true, partly false,

and so to establish, by preliminary polemics, the truth of such

parts of my own theory as are to be found in former writers.

A large part of this theory, however, cannot be so introduced,

since the whole field of protective Geometry, so far as I am
aware, has been hitherto unknown to philosophers. Passing,

in the third chapter, from criticism to construction, I shall

deal first with projective Geometry. This, I shall maintain,

is necessarily true of any form of externality, and is, since

some such form is necessary to experience, completely a priori.

In metrical Geometry, however, which I shall next consider,

the axioms will fall into two classes : (1) Those common to

Euclidean and non-Euclidean spaces. These will be found,

on the one hand, essential to the possibility of measurement

in any continuum, and on the other hand, necessary properties
of any form of externality with more than one dimension.

They will, therefore, be declared a priori. (2) Those axioms

which distinguish Euclidean from non-Euclidean spaces. These

will be regarded as wholly empirical. The axiom that the

number of dimensions is three, however, though empirical,
will be declared, since small errors are here impossible, exactly
and certainly true of our actual world

;
while the two remaining

axioms, which determine the value of the space-constant, will

be regarded as only approximately known, and certain only
within the errors of observation 1

. The fourth chapter, finally,

will endeavour to prove, what was assumed in Chapter III.,

that some form of externality is necessary to experience, and
will conclude by exhibiting the logical impossibility, if know

ledge of such a form is to be freed from contradictions, of

wholly abstracting this knowledge from all reference to the

matter contained in the form.

I shall hope to have touched, with this discussion, on all

the main points relating to the Foundations of Geometry.
1 I have given 110 account of these empirical proofs, as they seem to be con

stituted by the whole body of physical science. Everything in physical science,
from the law of gravitation to the building of bridges, from the spectroscope to

the art of navigation, would be profoundly modified by any considerable in

accuracy in the hypothesis that our actual space is Euclidean. The observed

truth of physical science, therefore, constitutes overwhelming empirical evidence

that this hypothesis is very approximately correct, even if not rigidly true.



CHAPTER I.

A SHORT HISTORY OF METAGEOMETRY.

10. WHEN a long established system is attacked, it usually

happens that the attack begins only at a single point, where

the weakness of the established doctrine is peculiarly evident.

But criticism, when once invited, is apt to extend much further

than the most daring, at first, would have wished.

&quot;First cut the liquefaction, what comes last,

But Fichte s clever cut at God himself?&quot;

So it has been with Geometry. The liquefaction of Euclidean

orthodoxy is the axiom of parallels, and it was by the refusal

to admit this axiom without proof that Metageometry began.
The first effort in this direction, that of Legendre

1

,
was inspired

by the hope of deducing this axiom from the others a hope

which, as we now know, was doomed to inevitable failure.

Parallels are denned by Legendre as lines in the same plane,

such that, if a third line cut them, it makes the sum of the

interior and opposite angles equal to two right angles. He

proves without difficulty that such lines would not meet, but

is unable to prove that non-parallel lines in a plane must meet.

Similarly he can prove that the sum of the angles of a triangle

cannot exceed two right angles, and that if any one triangle has

a sum equal to two right angles, all triangles have the same

sum
;
but he is unable to prove the existence of this one

triangle.

11. Thus Legendre s attempt broke down; but mere failure

1 V. Memoires de 1 Academie royale des Sciences de 1 Institut de France,
T. XIL 1833, for a full statement of his results, with references to former

writings.
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could prove nothing. A bolder method, suggested by Gauss,

was carried out by Lobatchewsky and Bolyai
1

. If the axiom

of parallels is logically deducible from the others, we shall, by

denying it and maintaining the rest, be led to contradictions.

These three mathematicians, accordingly, attacked the problem

indirectly : they denied the axiom of parallels, and yet obtained

a logically consistent Geometry. They inferred that the axiom

was logically independent of the others, and essential to the

Euclidean system. Their works, being all inspired by this

motive, may be distinguished as forming the first period in

the development of Metageometry.
The second period, inaugurated by Riemann, had a much

deeper import : it was largely philosophical in its aims and

constructive in its methods. It aimed at no less than a logical

analysis of all the essential axioms of Geometry, and regarded

space as a particular case of the more general conception of

a manifold. Taking its stand on the methods of analytical

metrical Geometry, it established two non-Euclidean systems,

the first that of Lobatchewsky, the second in which the axiom

of the straight line, in Euclid s form, was also denied a new

variety, by analogy called spherical. The leading conception in

this period is the measure of curvature, a term invented by

Gauss, but applied by him only to surfaces. Gauss had shown

that free mobility on surfaces was only possible when the

measure of curvature was constant
;
Riemann and Helm hoitz

extended this proposition to n dimensions, and made it the

fundamental property of space.

In the third period, which begins with Cayley, the philo

sophical motive, which had moved the first pioneers, is less

apparent, and is replaced by a more technical and mathematical

spirit. This period is chiefly distinguished from the second, in

a mathematical point of view, by its method, which is projective

instead of metrical. The leading mathematical conception here

1 This bolder method, it appears, had been suggested, nearly a century

earlier, by an Italian, Saccheri. His work, which seems to have remained

completely unknown until Beltrami rediscovered it in 1889, is called &quot; Euclides

ab omni naevo vindicatus, etc.&quot; Mediolani, 1733. (See Veronese, Grundziige
der Geometrie, German translation, Leipzig, 1894, p. 636.) His results

included spherical as well as hyperbolic space ; but they alarmed him to such

an extent that he devoted the last half of his book to disproving them.
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is the Absolute (Grundgebild-), a figure by relation to which all

metrical properties become projective. Cayley s work, which

was very brief, and attracted little attention, has been perfected
and elaborated by F. Klein, and through him has found general

acceptance. Klein has added to the two kinds of non-Euclidean

Geometry already known, a third, which he calls elliptic ;
this

third kind closely resembles Helmholtz s spherical Geometry,
but is distinguished by the important difference that, in it,

two straight lines meet in only one point
1
. The distinctive

mark of the spaces represented by both is that, like the surface

of a sphere, they are finite but unbounded. The reduction of

metrical to projective properties, as will be proved hereafter,

has only a technical importance ;
at the same time, projective

Geometry is able to deal directly with those purely descriptive
or qualitative properties of space which are common to Euclid

and Metageometry alike. The third period has, therefore, great

philosophical importance, while its method has, mathematically,
much greater beauty and unity than that of the second

;
it is

able to treat all kinds of space at once, so that every symbolic

proposition is, according to the meaning given to the symbols,
a proposition in whichever Geometry we choose. This has the

advantage of proving that further research cannot lead to con

tradictions in non-Euclidean systems, unless it at the same

moment reveals contradictions in Euclid. These systems, there

fore, are logically as sound as that of Euclid himself.

After this brief sketch of the characteristics of the three

periods, I will proceed to a more detailed account. It will be

my aim to avoid, as far as possible, all technical mathematics,

and bring into relief only those fundamental points in the

1 Klein s first account of elliptic Geometry, as a result of Cayley s projective

theory of distance, appeared in two articles entitled
&quot; Ueber die sogenannte

Nicht-Euklidische Geometrie, I, II,&quot; Math. Annalen 4, 6 (18712). It was

afterwards independently discovered by Newcomb, in an article entitled &quot; Ele

mentary Theorems relating to the geometry of a space of three dimensions, and

of uniform positive curvature in the fourth dimension,&quot; Crelic s Journal fiir die

reine und angewandte Mathematik, Vol. 83 (1877). For an account of the

mathematical controversies concerning elliptic Geometry, see Klein s &quot;Vor-

lesungen iiber Nicht-Euklidische Geometrie,&quot; Gottingen 1893, i. p. 284 ff. A

bibliography of the relevant literature up to the year 1878 was given by Halsted

in the American Journal of Mathematics, Vols. 1, 2.
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mathematical development, which seem of logical or philo

sophical importance.

First Period.

12. The originator of the whole system, Gauss, does not

appear, as regards strictly non-Euclidean Geometry, in any of

his hitherto published papers, to have given more than results
;

his proofs remain unknown to us. Nevertheless he was the

first to investigate the consequences of denying the axiom of

parallels
1

,
and in his letters he communicated these consequences

to some of his friends, among whom was Wolfgang Bolyai. The
first mention of the subject in his letters occurs when he was

only 18
;

four years later, in 1799, writing to W. Bolyai, he

enunciates the important theorem that, in hyperbolic Geometry,
there is a maximum to the area of a triangle. From later

writings it appears that he had worked out a system nearly, if

not quite, as complete as those of Lobatchewsky and Bolyai
2

.

It is important to remember, however, that Gauss s work on

curvature, which was published, laid the foundation for the

whole method of the second period, and was undertaken,

according to Riemann and Helmholtz 3
,
with a view to an

(unpublished) investigation of the foundations of Geometry.
His work in this direction will, owing to its method, be better

treated of under the second period, but it is interesting to

observe that he stood, like many pioneers, at the head of two

tendencies which afterwards diverged.

13. Lobatchewsky, a professor in the University of Kasan,
first published his results, in their native Russian, in the

proceedings of that learned body for the years 1829 1830.

Owing to this double obscurity of language and place, they
attracted little attention, until he translated them into French 4

1 Veronese (op. cit. p. 638) denies the priority of Gauss in the invention of

a non-Euclidean system, though he admits him to have been the first to

regard the axiom of parallels as indemonstrable. His grounds for the former

assertion seem scarcely adequate : on the evidence against it, see Klein, Nicht-

Euklid, i. pp. 171-174.
- V. Briefwechsel mit Schumacher, Bd. n. p. 268.

3 Cf. Helmholtz, Wiss. Abh. n. p. 611.

4 Crelle s Journal, 1837.
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and German 1
: even then, they do not appear to have obtained

the notice they deserved, until, in 1868, Beltrami unearthed

the article in Crelle, and made it the theme of a brilliant

interpretation.

In the introduction to his little German book, Lobatchewsky
laments the slight interest shown in his writings by his com

patriots, and the inattention of mathematicians, since Legendre s

abortive attempt, to the difficulties in the theory of parallels.

The body of the work begins with the enunciation of several

important propositions which hold good in the system proposed
as well as in Euclid : of these, some are in any case independent
of the axiom of parallels, while others are rendered so by

substituting, for the word &quot;

parallel,&quot;
the phrase

&quot;

not inter

secting, however far
produced.&quot; Then follows a definition,

intentionally framed so as to contradict Euclid s : With respect
to a given straight line, all others in the same plane may be

divided into two classes, those which cut the given straight line,

and those which do not cut it
;
a line which is the limit between

the two classes is called parallel to the given straight line. It

follows that, from any external point, two parallels can be

drawn, one in each direction. From this starting-point, by
the Euclidean synthetic method, a series of propositions are

deduced
;
the most important of these is, that in a triangle the

sum of the angles is always less than, or always equal to two

right angles, while in the latter case the whole system becomes

orthodox. A certain analogy with spherical Geometry whose

meaning and extent will appear later is also proved, consisting

roughly in the substitution of hyperbolic for circular functions.

14. Very similar is the system of Johann Bolyai, so similar,

indeed, as to make the independence of the two works, though
a well-authenticated fact, seem all but incredible. Johann

Bolyai first published his results in 1832, in an appendix to

a work by his father Wolfgang, entitled
;

&quot;

Appendix, scientiam

spatii absolute veram exhibens : a veritate aut falsitate

Axiomatis XI. Euclidei (a priori hand unquam decidenda)

independentem ; adjecta ad casum falsitatis, quadratura circuli

geometrica.&quot; Gauss, whose bosom friend he became at college
1 Theorie der Parallellinieu, Berlin, 1840. Republisbed, Berlin, 1887.

Translated by Halsted, Austin, Texas, U.S.A. 4th edition, 1892.
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and remained through life, was, as we have seen, the inspirer of

Wolfgang Bolyai, and used to say that the latter was the only
man who appreciated his philosophical speculations on the

axioms of Geometry ; nevertheless, Wolfgang appears to have

left to his son Johann the detailed working out of the hyper
bolic system. The works of both the Bolyai are very rare, and

their method and results are known to me only through the

renderings of Frischauf and Halsted l
. Both as to method and

as to results, the system is very similar to Lobatchewsky s, so

that neither need detain us here. Only the initial postulates,

which are more explicit than Lobatchewsky s, demand a brief

attention. Frischauf s introduction, which has a philosophical
and Newtonian air, begins by setting forth that Geometry deals

with absolute (empty) space, obtained by abstracting from the

bodies in it, that two figures are called congruent when they
differ only in position, and that the axiom of Congruence is

indispensable in all determination of spatial magnitudes. Con

gruence was to refer to geometrical bodies, with none of the

properties of ordinary bodies except impenetrability (Erdmann,
Axiome der Geometric, p. 26). A straight line is defined as

determined by two of its points
2
,
and a plane as determined by

three. These premisses, with a slight exception as to the straight

line, we shall hereafter find essential to every Geometry. I have

drawn attention to them, as it is often supposed that non-

Euclideans deny the axiom of Congruence, which, here and

elsewhere, is never the case. The stress laid on this axiom by

Bolyai is probably due to the influence of Gauss, whose work on

the curvature of surfaces laid the foundation for the use made
of congruence by Helmholtz.

15. It is important to remember that, throughout the

period we have just reviewed, the purpose of hyperbolic

Geometry is indirect: not the truth of the latter, but the

logical independence of the axiom of parallels from the rest, is

1
Frischauf, Absolute Geometric, nach Johann Bolyai, Leipzig, 1872. Halsted,

The Science Absolute of Space, translated from the Latin, 4th edition, Austin,

Texas, U.S.A. 1896.
2 Both Lobatchewsky and Bolyai, as Veronese remarks, start rather from

the point-pair than from distance. See Frischauf, Absolute Geometric,

Anhang.
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the guiding motive of the work. If, by denying the axiom of

parallels while retaining the rest, we can obtain a system free

from logical contradictions, it follows that the axiom of parallels

cannot be implicitly contained in the others. If this be so,

attempts to dispense with the axiom, like Legendre s, cannot be

successful
;
Euclid must stand or fall with the suspected axiom.

Of course, it remained possible that, by further development,
latent contradictions might have been revealed in these systems.
This possibility, however, was removed by the more direct and

constructive work of the second period, to which we must now

turn our attention.

Second Period.

16. The work of Lobatchewsky and Bolyai remained, for

nearly a quarter of a century, without issue indeed, the

investigations of Riemann and Helmholtz, when they came,

appear to have been inspired, not by these men, but rather by
Gauss 1 and Herbart. We find, accordingly, very great difference,

both of aim and method, between the first period and the second.

The former, beginning with a criticism of one point in Euclid s

system, preserved his synthetic method, while it threw over one

of his axioms. The latter, on the contrary, being guided by a

philosophical rather than a mathematical spirit, endeavoured to

classify the conception of space as a species of a more general

conception : it treated space algebraically, and the properties it

gave to space were expressed in terms, not of intuition, but of

algebra. The aim of Riemann and Helmholtz was to show, by
the exhibition of logically possible alternatives, the empirical

nature of the received axioms. For this purpose, they conceived

space as a particular case of a manifold, and showed that various

relations of magnitude (Massverhdltnisse) were mathematically

possible in an extended manifold. Their philosophy, which

seems to me not always irreproachable, will be discussed in

Chapter II.
; here, while it is important to remember the

philosophical motive of Riemann and Helmholtz, we shall

confine our attention to the mathematical side of their work.

In so doing, while we shall, I fear, somewhat maim the system
of their thoughts, we shall secure a closer unity of subject, and

1

Compare Stallo, Concepts of Modern Physics, p. 248,
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a more compact account of the purely mathematical develop

ment. But there is, in my opinion, a further reason for

separating their philosophy from their mathematics. While

their philosophical purpose was, to prove that all the axioms

of Geometry are empirical, and that a different content of our

experience might have changed them all, the unintended result

of their mathematical work was, if I am not mistaken, to afford

material for an a priori proof of certain axioms. These axioms,

though they believed them to be unnecessary, were always
introduced in their mathematical works, before laying the

foundations of non-Euclidean systems. I shall contend, in

Chapter III., that this retention was logically inevitable, and

was not merely due, as they supposed, to a desire for conformity
with experience. If I am right in this, there is a divergence

between Riemann and Helmholtz the philosophers, and Riemann

and Helmholtz the mathematicians. This divergence makes it

the more desirable to trace the mathematical development

apart from the accompanying philosophy.

17. Riemann s epoch-making work,
&quot; Ueber die Hypothesen,

welche der Geometrie zu Grunde
liegen*&quot;,

was written, and read

to a small circle, in 1854
; owing, however, to some changes

which he desired to make in it, it remained unpublished till

1867, when it was published by his executors. The two

fundamental conceptions, on whose invention rests the historic

importance of this dissertation, are that of a manifold, and

that of the measure of curvature of a manifold. The former

conception serves a mainly philosophical purpose, and is de

signed, principally, to exhibit space as an instance of a more

general conception. On this aspect of the manifold, I shall

have much to say in Chapter II.
;

its mathematical aspect,

which alone concerns us here, is less complicated and less

fruitful of controversy. The latter conception also serves a

double purpose, but its mathematical use is the more prominent.
We will consider these two conceptions successively.

18. (1) Conception of a manifold*. The general purpose
of Riemann s dissertation is, to exhibit the axioms as successive

1 Gesammelte Werke, pp. 255-268.
2 On the history of this word, see Stallo, Concepts of Modern Physics,

p. 258. It was used by Kant, and adapted by Herbart to almost the same
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steps in the classification of the species space. The axioms of

Geometry, like the marks of a scholastic definition, appear as

successive determinations of class-conceptions, ending with

Euclidean space. We have thus, from the analytical point of

view, about as logical and precise a formulation as can be

desired a formulation in which, from its classificatory character,

we seem certain of having nothing superfluous or redundant, and

obtain the axioms explicitly in the most desirable form, namely
as adjectives of the conception of space. At the same time, it

is a pity that Riemann, in accordance with the metrical bias

of his time, regarded space as primarily a magnitude
1

,
or

assemblage of magnitudes, in which the main problem consists

in assigning quantities to the different elements or points,

without regard to the qualitative nature of the quantities

assigned. Considerable obscurity thus arises as to the whole

nature of magnitude
2

. This view of Geometry underlies the

definition of the manifold, as the general conception of which

space forms a special case. This definition, which is not very

clear, may be rendered as follows.

19. Conceptions of magnitude, according to Riemann, are

possible there only, where we have a general conception,

capable of various determinations (Bestimmungsweisen). The

various determinations of such a conception together form a

manifold, which is continuous or discrete, according as the pas

sage from one determination to another is continuous or discrete.

Particular bits of a manifold, or quanta, can be compared by

counting when discrete, and by measurement when continuous.
&quot; Measurement consists in a superposition of the magnitudes to

be compared. If this be absent, magnitudes can only be

compared when one is part of another, and then only the more

or less, not the how much, can be decided
&quot;

(p. 256). We thus

reach the general conception of a manifold of several dimensions,

of which space and colours are mentioned as special cases.

meaning as it bears in Riemann. Herbart, however, also uses the word

Reihenform to express a similar idea. See Psychologic als Wissenschaft, i.

100 and n. 139, where Riemann s analogy with colours is also suggested.
1 Compare Erdmann s

&quot;

Grossenbegriff vom Raum.&quot;

3 Compare Veronese, op. cit. p. 642: &quot;Riemann ist in seiner Definition

des Begrififs Grb sse dunkel.&quot; See also Veronese s whole following ciiticism.
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To the absence of this conception Riemann attributes the
&quot;

obscurity&quot; which, on the subject of the axioms,
&quot;

lasted from

Euclid to Legendre&quot; (p. 254). And Riemann certainly has

succeeded, from an algebraic point of view, in exhibiting, far

more clearly than any of his predecessors, the axioms which

distinguish spatial quantity from other quantities with which

mathematics is conversant. But by the assumption, from the

start, that space can be regarded as a quantity, he has been led

to state the problem as : What sort of magnitude is space ?

rather than : What must space be in order that we may be able

to regard it as a magnitude at all ? He does not realise,

either indeed in his day there were few who realized that

an elaborate Geometry is possible which does not deal with

space as a quantity at all. His definition of space as a species

of manifold, therefore, though for analytical purposes it defines,

most satisfactorily, the nature of spatial magnitudes, leaves

obscure the true ground for this nature, which lies in the

nature of space as a system of relations, and is anterior to the

possibility of regarding it as a system of magnitudes at all.

But to proceed with the mathematical development of

Riemann s ideas. We have seen that he declared measurement

to consist in a superposition of the magnitudes to be compared.
But in order that this may be a possible means of determining

magnitudes, he continues, these magnitudes must be inde

pendent of their position in the manifold (p. 259). This can

occur, he says, in several ways, as the simplest of which, he

assumes that the lengths of lines are independent of their

position. One would be glad to know what other ways are

possible : for my part, I am unable to imagine any other

hypothesis on which magnitude would be independent of place.

Setting this aside, however, the problem, owing to the fact that

measurement consists in superposition, becomes identical with

the determination of the most general manifold in which

magnitudes are independent of place. This brings us to

Riemann s other fundamental conception, which seems to me
even more fruitful than that of a manifold.

20. (2) Measure of curvature. This conception is due to

Gauss, but was applied by him only to surfaces
;
the novelty in

Riemann s dissertation was its extension to a manifold of n
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dimensions. This extension, however, is rather briefly and

obscurely expressed, and has been further obscured by Helm-
holtz s attempts at popular exposition. The term curvature,

also, is misleading, so that the phrase has been the source of

more misunderstanding, even among mathematicians, than any
other in Pangeometry. It is often forgotten, in spite of

Helmholtz s explicit statement *, that the &quot; measure of cur

vature
&quot;

of an ?i-dimensional manifold is a purely analytical

expression, which has only a symbolic affinity to ordinary
curvature. As applied to three-dimensional space, the implica
tion of a four-dimensional &quot;

plane
&quot;

space is wholly misleading ;

I shall, therefore, generally use the term space-constant instead 2
.

Nevertheless, as the conception grew, historically, out of that

of curvature, I will give a very brief exposition of the historical

development of theories of curvature.

Just as the notion of length was originally derived from the

straight line, and extended to other curves by dividing them
into infinitesimal straight lines, so the notion of curvature was

derived from the circle, and extended to other curves by
dividing them into infinitesimal circular arcs. Curvature may
be regarded, originally, as a measure of the amount by which a

curve departs from a straight line
;
in a circle, which is similar

throughout, this amount is evidently constant, and is measured

by the reciprocal of the radius. But in all other curves, the

amount of curvature varies from point to point, so that it

cannot be measured without infinitesimals. The measure

which at once suggests itself is, the curvature of the circle most

nearly coinciding with the curve at the point considered.

Since a circle is determined by three points, this circle will

pass through three consecutive points of the curve. We have

thus defined the curvature of any curve, plane or tortuous
; for,

since any three points lie in a plane, such a circle can always
be described.

If we now pass to a surface, what we want is, by analogy,

a measure of its departure from a plane. The curvature, as

above defined, has become indeterminate, for through any point

of the surface we can draw an infinite number of arcs, which

1
Vortrage und Reden, Vol. n. p. 18. 2 Cf. Klein, Nicht-Enklid, i. p. 160.

R. G. 2
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will not, in general, all have the same curvature. Let us, then,

draw all the geodesies joining the point in question to neigh

bouring points of the surface in all directions. Since these

arcs form a singly infinite manifold, there will be among
them, if they have not all the same curvature, one arc of

maximum, and one of minimum curvature 1
. The product of

these maximum and minimum curvatures is called the measure

of curvature of the surface at the point under consideration.

To illustrate by a few simple examples : on a sphere, the

curvatures of all such lines are equal to the reciprocal of the

radius of the sphere, hence the measure of curvature every

where is the square of the reciprocal of the radius of the sphere.

On any surface, such as a cone or a cylinder, on which straight

lines can be drawn, these have no curvature, so that the

measure of curvature is everywhere zero this is the case, in

particular, with the plane. In general, however, the measure

of curvature of a surface varies from point to point.

Gauss, the inventor of this conception
2
, proved that, in

order that two surfaces may be developable upon each other

i.e. may be such that one can be bent into the shape of the

other without stretching or tearing it is necessary that

the two surfaces should have equal measures of curvature at

corresponding points. When this is the case, every figure

which is possible on the one is, in general, possible on the

other, and the two have practically the same Geometry
3

. As
a corollary, it follows that a necessary condition, for the free

mobility of figures on any surface, is the constancy of the

1 Since we are considering the curvature at a point, we are only concerned

with the first infinitesimal elements of the geodesies that start from such a

point.
2
Disquisitiones generales circa superficies curvas, Werke, Bd. iv. SS. 219-

258, 1827.
3
Nevertheless, the Geometries of different surfaces of equal curvature are

liable to important differences. For example, the cylinder is a surface of zero

curvature, but since its lines of curvature in one direction are finite, its

Geometry coincides with that of the plane only for lengths smaller than the

circumference of its generating circle (see Veronese, op. cit. p. 644). Two
geodesies on a cylinder may meet in many points. For surfaces of zero

curvature on which this is not possible, the identity with the plane may be

allowed to stand. Otherwise, the identity extends only to the properties of

figures not exceeding a certain size.
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measure of curvature 1
. This condition was proved to be

sufficient, as well as necessary, by Minding
2

.

21. So far, all has been plain sailing we have been dealing
with purely geometrical ideas in a purely geometrical manner

but we have not, as yet, found any sense of the measure of

curvature, in which it can be extended to space, still less to

an ^^-dimensional manifold. For this purpose, we must examine

Gauss s method, which enables us to determine the measure

of curvature of a surface at any point as an inherent property,

quite independent of any reference to the third dimension.

The method of determining the measure of curvature from

within is, briefly, as follows : If any point on the surface be

determined by two coordinates, u, v, then small arcs of the

surface are given by the formula

ds- = Edu- + 2Fdu dv + Gdv*,

where E, F, G are, in general, functions of u, v.
3 From this

formula alone, without reference to any space outside the sur

face, we can determine the measure of curvature at the point

u, v, as a function of E, F, G and their differentials with respect

to u and v. Thus we may regard the measure of curvature of

a surface as an inherent property, and the above geometrical

definition, which involved a reference to the third dimension,

may be dropped. But at this point a caution is necessary. It

will appear in Chap. III. ( 176), that it is logically impossible

to set up a precise coordinate system, in which the coordinates

represent spatial magnitudes, without the axiom of Free

Mobility, and this axiom, as we have just seen, holds on sur

faces only when the measure of curvature is constant. Hence

our definition of the measure of curvature will only be really

free from reference to the third dimension, when we are dealing

with a surface of constant measure of curvature a point which

1 For we may consider two different parts of the same surface as corre

sponding parts of different surfaces ;
the above proposition then shows that a

figure can be reproduced in one part when it has been drawn in another, if the

measures of curvature correspond in the two parts.
2

Crelle, Vols. xix., xx., 1839-40.
3 In this formula, u, v may be the lengths of lines, or the angles between

lines, drawn on the surface, and having thus no necessary reference to a third

dimension,

22
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Riemann entirely overlooks. This caution, however, applies

only in space, and if we take the coordinate system as presup

posed in the conception of a manifold, we may neglect the

caution altogether while remembering that the possibility of

a coordinate system in space involves axioms to be investi

gated later. We can thus see how a meaning might be found,

without reference to any higher dimension, for a constant

measure of curvature of three-dimensional space, or for any
measure of curvature of an ?i-dimensional manifold in general.

22. Such a meaning is supplied by Riemann s dissertation,

to which, after this long digression, we can now return. We
may define a continuous manifold as any continuum of elements,

such that a single element is defined by n continuously variable

magnitudes. This definition does not really include space, for

coordinates in space do not define a point, but its relations to

the origin, which is itself arbitrary. It includes, however, the

analytical conception of space with which Riemann deals, and

may, therefore, be allowed to stand for the moment. Riemann

then assumes that the difference or distance, as it may be

loosely called between any two elements is comparable, as

regards magnitude, to the difference between any other two.

He assumes further, what it is Helmholtz s merit to have

proved, that the difference ds between two consecutive elements

can be expressed as the square root of a quadratic function of

the differences of the coordinates : i.e.

ds2 = ^n
2i

w aik dxi . dxky

where the coefficients a^ are, in general, functions of the coordi

nates a?! #2 . . . xn .

1 The question is : How are we to obtain a

definition of the measure of curvature out of this formula ? It is

noticeable, in the first place, that, just as in a surface we found

an infinite number of radii of curvature at a point, so in a

manifold of three or more dimensions we must find an infinite

number of measures of curvature at a point, one for every two-

dimensional manifold passing through the point, and contained

in the higher manifold. What we have first to do, therefore, is

1 In what follows, I have given rather Klein s exposition of Eiemann, than

Eiemann s own account. The former is much clearer and fuller, and not

substantially different in any way. V. Klein, Nicht-Euklid, i. pp. 20fi ff.
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to define such two-dimensional manifolds. They must consist,

as we saw on the surface, of a singly infinite series of geodesies

through the point. Now a geodesic is completely determined

by one point and its direction at that point, or by one point

and the next consecutive point. Hence a geodesic through
the point considered is determined by the ratios of the in

crements of coordinates, da^ dx.2 ... dxn . Suppose we have two

such geodesies, in which the i th increments are respectively

dxi and d&quot;^. Then all the geodesies given by

form a singly infinite series, since they contain one para

meter, namely X : V. Such a series of geodesies, therefore,

must form a two-dimensional mani

fold, with a measure of curvature

in the ordinary Gaussian sense.

This measure of curvature can be

determined from the above for

mula for the elementary arc, by
the help of Gauss s general formula

alluded to above. We thus obtain an infinite number of

measures of curvature at a point, but from -- of these,

the rest can be deduced (Riemann, Gesammelte Werke,

p. 262). When all the measures of curvature at a point are

constant, and equal to all the measures of curvature at any
other point, we get what Riemann calls a manifold of constant

curvature. In such a manifold free mobility is possible, and

positions do not differ intrinsically from one another. If a

be the measure of curvature, the formula for the arc becomes,

in this case,

In this case only, as I pointed out above, can the term &quot;measure

of curvature&quot; be properly applied to space without reference

to a higher dimension, since free mobility is logically indis

pensable to the existence of quantitative or metrical Geometry.

23. The mathematical result of Riemann s dissertation



22 FOUNDATIONS OP GEOMETRY.

may be summed up as follows. Assuming it possible to apply

magnitude to space, i.e. to determine its elements and figures

by means of algebraical quantities, it follows that space can be

brought under the conception of a manifold, as a system of

quantitatively determinable elements. Owing, however, to the

peculiar nature of spatial measurement, the quantitative deter

mination of space demands that magnitudes shall be independent
of place in so far as this is not the case, our measurement will

be necessarily inaccurate. If we now assume, as the quantitative

relation of distance between two elements, the square root of a

quadratic function of the coordinates a formula subsequently

proved by Helmholtz and Lie then it follows, since magnitudes
are to be independent of place, that space must, within the

limits of observation, have a constant measure of curvature, or

must, in other words, be homogeneous in all its parts. In the

infinitesimal, Riemann says (p. 267), observation could not

detect a departure from constancy on the part of the measure

of curvature
;
but he makes no attempt to show how Geometry

could remain possible under such circumstances, and the only

Geometry he has constructed is based entirely on Free Mobility.

I shall endeavour to prove, in Chapter III., that any metrical

Geometry, which should endeavour to dispense with this axiom,

would be logically impossible. At present I will only point out

that Riemann, in spite of his desire to prove that all the axioms

can be dispensed with, has nevertheless, in his mathematical

work, retained three fundamental axioms, namely, Free Mobility,

the finite integral number of dimensions, and the axiom that

two points have a unique relation, namely distance. These, as

we shall see hereafter, are retained, in actual mathematical

work, by all metrical Metageometers, even when they believe,

like Riemann and Helmholtz, that no axioms are philosophically

indispensable.

24. Helmholtz, the historically nearest follower of Riemann,
was guided by a similar empirical philosophy, arid arrived

independently at a very similar method of formulating the

axioms. Although Helmholtz published nothing on the subject

until after Riemann s death, he had then only just seen

Riemann s dissertation (which was published posthumously),
and had worked out his results, so far as they were then
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completed, in entire independence both of Riemann and of

Lobatchewsky. Helmholtz is by far the most widely read of

all writers on Metageometry, and his writings, almost alone,

represent to philosophers the modern mathematical standpoint
on this subject. But his importance is much greater, in this

domain, as a philosopher than as a mathematician
;
almost his

only original mathematical result, as regards Geometry, is his

proof of Riemann s formula for the infinitesimal arc, and even

this proof was far from rigid, until Lie reformed it by his

method of continuous groups. In this chapter, therefore, only
two of his writings need occupy us, namely the two articles

in the Wissenschaftliche Abhandlungen, Vol. II., entitled respec

tively &quot;Ueber die thatsachlichen Grundlagen der Geometric,&quot;

1866 (p. 610 ff.), and
&quot; Ueber die Thatsachen, die der Geometric

zum Grunde
liegen,&quot;

1868 (p. 618 ff.).

25. In the first of these, which is chiefly philosophical,

Helmholtz gives hints of his then uncompleted mathematical

work, but in the main contents himself with a statement of

results. He announces that he will prove Riemann s quadratic
formula for the infinitesimal arc

;
but for this purpose, he says,

we have to start with Congruence, since without it spatial

measurement is impossible. Nevertheless, he maintains that

Congruence is proved by experience. How we could, without

the help of measurement, discover lapses from Congruence, is a

point which he leaves undiscussed. He then enunciates the

four axioms which he considers essential to Geometry, as

follows :

(1) As regards continuity and dimensions. In a space of

n dimensions, a point is uniquely determined by the measure

ment of n continuous variables (coordinates).

(2) As regards the existence of moveable rigid bodies.

Between the 2n coordinates of any point-pair of a rigid body,

there exists an equation which is the same for all congruent

point-pairs. By considering a sufficient number of point-pairs,

we get more equations than unknown quantities : this gives us

a method of determining the form of these equations, so as to

make it possible for them all to be satisfied.

(3) As regards free mobility. Every point can pass freely

and continuously from one position to another. From (2) and
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(3) it follows, that if two systems A and B can be brought into

congruence in any one position, this is also possible in every
other position.

(4) As regards independence of rotation in rigid bodies

(Monodromy). If (n l) points of a body remain fixed, so that

every other point can only describe a certain curve, then that

curve is closed.

These axioms, says Helmholtz, suffice to give, with the

axiom of three dimensions, the Euclidean and non-Euclidean

systems as the only alternatives. That they suffice, mathe

matically, cannot be denied, but they seem, in some respects,

to go too far. In the first place, there is no necessity to make

the axiom of Congruence apply to actual rigid bodies on this

subject I have enlarged in Chapter II. 1

Again, Free Mobility,

as distinct from Congruence, hardly needs to be specially

formulated : what barrier could empty space offer to a point s

progress ? The axiom is involved in the homogeneity of

space, which is the same thing as the axiom of Congruence.

Monodromy, also, has been severely criticized
;
not only is it

evident that it might have been included in Congruence, but

even from the purely analytical point of view. Sophus Lie has

proved it to be superfluous
2

. Thus the axiom of Congruence,

rightly formulated, includes Helmholtz s third and fourth

axioms and part of his second axiom. All the four, or rather,

as much of them as is relevant to Geometry, are consequences,

as we shall see hereafter, of the one fundamental principle of

the relativity of position.

26. The second article, which is mainly mathematical,

supplies the promised proof of the arc-formula, which is Helm

holtz s most important contribution to Geometry. Kiemann

had assumed this formula, as the simplest of a number of

alternatives : Helmholtz proved it to be a necessary conse

quence of his axioms. The present paper begins with a short

repetition of the first, including the statement of the axioms, to

which, at the end of the paper, two more are added, (5) that

space has three dimensions, and (6) that space is infinite. It

1 See 69-73.
2
Grundlagen der Geometric, i. and n., Leipziger Berichte, 1890; v. end of

present chapter, 45.
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is supposed in the text, as also in the first paper, that the

measure of curvature cannot be negative, and, consequently,

that an infinite space must be Euclidean. This error in both

papers is corrected in notes, added after the appearance of

Beltrami s paper on negative curvature. It is a sample of

the slightly unprofessional nature of Helmholtz s mathematical

work on this subject, which elicits from Klein the following

remarks 1

:

&quot; Helmholtz is not a mathematician by profession,

but a physicist and physiologist From this non-mathematical

quality of Helmholtz, it follows naturally that he does not

treat the mathematical portion of his work with the thorough
ness which one would demand of a mathematician by trade

(von Fach)&quot; He tells us himself that it was the physiological

study of vision which led him to the question of the axioms,

and it is as a physicist that he makes his axioms refer to actual

rigid bodies. Accordingly, we find errors in his mathematics,

such as the axiom of Monodromy, and the assumption that the

measure of curvature must be positive. Nevertheless, the

proof of Riemann s arc-formula is extremely able, and has, on

the whole, been substantiated by Lie s more thorough investi

gations.

27. Helmholtz s other writings on Geometry are almost

wholly philosophical, and will be discussed at length in

Chapter II. For the present, we may pass to the only other

important writer of the second period, Beltrami. As his work is

purely mathematical, and contains few controverted points, it

need not, despite its great importance, detain us long.

The &quot;

Saggio di Interpretazione della Geometria non-

Euclidea 2
,

5

which is principally confined to two dimensions,

interprets Lobatchewsky s results by the characteristic method

of the second period. It shows, by a development of the work

of Gauss and Minding
3
,
that all the propositions in plane

Geometry, which Lobatchewsky had set forth, hold, within

ordinary Euclidean space, on surfaces of constant negative

1 Nicht-Euklid, i. pp. 258-9.
2 Giornale di Matematiche, Vol. vi., 1868. Translated into French by

J. Hoiiel in the &quot; Annales Scientifiques de 1 Ecole Normale Superieure,&quot;

Vol. vi. 1869.
3 Crelle s Journal, Vols. xix. xx., 1839-40.



26 FOUNDATIONS OF GEOMETRY.

curvature. It is strange, as Klein points out 1

,
that this inter

pretation, which was known to Riemann and perhaps even to

Gauss, should have remained so long without explicit statement.

This is the more strange, as Lobatchewsky s
&quot; Geometrie

Imaginaire&quot; had appeared in Crelle, Vol. XVII.
2

,
and Minding s

article, from which the interpretation follows at once, had

appeared in Crelle, Vol. XIX. Minding had shewn that the

Geometry of surfaces of constant negative curvature, in par

ticular as regards geodesic triangles, could be deduced from

that of the sphere by giving the radius a purely imaginary
value ia

3
. This result, as we have seen, had also been obtained

by Lobatchewsky for his Geometry, and yet it took thirty years
for the connection to be brought to general notice.

28. In Beltrami s Saggio, straight lines are, of course,

replaced by geodesies ;
his coordinates are obtained through

a point-by-point correspondence with an auxiliary plane, in

which straight lines correspond to geodesies on the surface.

Thus geodesies have linear equations, and are always uniquely
determined by two points. Distances on the surface, however,

are not equal to distances on the plane ;
thus while the surface

is infinite, the corresponding portion of the plane is contained

within a certain finite circle. , The distance of two points on

the surface is a certain function of the coordinates, not the

ordinary function of elementary Geometry. These relations

of plane and surface are important in connection with Cayley s

theory of distance, which we shall have to consider next. If

we were to define distance on the plane as that function of

the coordinates which gives the corresponding distance on the

surface, we should obtain what Klein calls &quot;a plane with a

hyperbolic system of measurement (Massbestimmung)&quot; in which

Cayley s theory of distance would hold. It is evident, however,

that the ordinary notion of distance has been presupposed in

setting up the coordinate system, so that we do not really

1 Nicht-Euklid, i. p. 190.

2 This article is more trigonometrical and analytical than the German book,

and therefore makes the above interpretation peculiarly evident.

3 Such surfaces are by no means particularly remote. One of them, for

example, is formed by the revolution of the common Tractrix

= a
( log

tan ^ + cos
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get alternative Geometries on one and the same plane. The

bearing of these remarks will appear more fully when we come

to consider Cayley and Klein.

29. The value of Beltrami s Saggio, in his own eyes, lies in

the intelligible Euclidean sense which it gives to Lobatchewsky s

planimetry : the corresponding system of Solid Geometry, since

it has no meaning for Euclidean space, is barely mentioned in

this work. In a second paper
1

, however, almost contemporaneous
with the first, he proceeds to consider the general theory of

?i-dimensional manifolds of constant negative curvature. This

paper is greatly influenced by Riemann s dissertation
;

it begins

with the formula for the linear element, and proves from this

first, that Congruence holds for such spaces, and next, that

they have, according to Riemann s definition, a constant negative

measure of curvature. (It is instructive to observe, that both

in this and in the former Essay, great stress is laid on the

necessity of the Axiom of Congruence.)
This work has less philosophical interest than the former,

since it does little more than repeat, in a general form, the

results which the Saggio had obtained for two dimensions

results which sink, when extended to n dimensions, to the

level of mere mathematical constructions. Nevertheless, the

paper is important, both as a restoration of negative curvature,

which had been overlooked by Helmholtz, and as an analytical

treatment of Lobatchewsky s results a treatment which, to

gether with the Saggio, at last restored to them the prominence

they deserved.

Third Period.

30. The third period differs radically, alike in its methods

and aims, and in the underlying philosophical ideas, from the

period which it replaced. Whereas everything, in the second

period, turned on measurement, with its apparatus of Con

gruence, Free Mobility, Rigid Bodies, and the rest, these

vanish completely in the third period, which, swinging to the

opposite extreme, regards quantity as a perfectly irrelevant

1 &quot; Teoria fondamentale degli spazii di curvatura costanta,&quot; Annali di

Matematica, n. Vol. 2, 18G8-9. Also translated by J. Hoiiel, loc. cit.
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category in Geometry, and dispenses with congruence and the

method of superposition. The ideas of this period, unfortu

nately, have found no exponent so philosophical as Riemann

or Helmholtz, but have been set forth only by technical

mathematicians. Moreover the change of fundamental ideas,

which is immense, has not brought about an equally great

change in actual procedure ;
for though spatial quantity is no

longer a part of projective Geometry, quantity is still employed,
and we still have equations, algebraic transformations, and so

on. This is apt to give rise to confusion, especially in the

mind of the student, who fails to realise that the quantities

used, so far as the propositions are really projective, are mere

names for points, and not, as in metrical Geometry, actual

spatial magnitudes.

Nevertheless, the fundamental difference between this period

and the former must strike any one at once. Whereas Riemanri

and Helmholtz dealt with metrical ideas, and took, as their

foundations, the measure of curvature and the formula for the

linear element both purely metrical the new method is

erected on the formulae for transformation of coordinates re

quired to express a given collineation. It begins by reducing
all so-called metrical notions distance, angle, etc. to projective

forms, and obtains, from this reduction, a methodological unity

and simplicity before impossible. This reduction depends,

however, except where the space-constant is negative, upon

imaginary figures in Euclid, the circular points at infinity; it is

moreover purely symbolic and analytical, and must be regarded
as philosophically irrelevant. As the question concerning the

import of this reduction is of fundamental importance to our

theory of Geometry, and as Cayley, in his Presidential Address

to the British Association in 1883, formally challenged philo

sophers to discuss the use of imaginaries, on which it depends,

I will treat this question at some length. But first let us see

how, as a matter of mathematics, the reduction is effected.

31. We shall find, throughout this period, that almost

every important proposition, though misleading in its obvious

interpretation, has nevertheless, when rightly interpreted, a

wide philosophical bearing. So it is with the work of Cayley ,

the pioneer of the projective method.
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The protective formula for angles, in Euclidean Geometry,
was first obtained by Laguerre, in 1853. This formula had,

however, a perfectly Euclidean character, and it was left for

Cayley to generalize it so as to include both angles and

distances in Euclidean and non-Euclidean systems alike 1
.

Cayley was, to the last, a staunch supporter of Euclidean

space, though he believed that non-Euclidean Geometries could

be applied, within Euclidean space, by a change in the definition

of distance 2
. He has thus, in spite of his Euclidean orthodoxy,

provided the believers in the possibility of non-Euclidean spaces
with one of their most powerful weapons. In his

&quot; Sixth

Memoir upon Quantics&quot; (1859), he set himself the task of

&quot;establishing the notion of distance upon purely descriptive

principles.&quot;
He showed that, with the ordinary notion of

distance, it can be rendered projective by reference to the

circular points and the line at infinity, and that the same is

true of angles
3

. Not content with this, he suggested a new

definition of distance, as the inverse sine or cosine of a certain

function of the coordinates
;
with this definition, the properties

usually known as metrical become prujective properties, having
reference to a certain conic, called by Cayley the Absolute.

(The circular points are, analytically, a degenerate conic, so

that ordinary Geometry forms a particular case of the above.)

He proves that, when the Absolute is an imaginary conic, the

Geometry so obtained for two dimensions is spherical Geometry.
The correspondence with Lobatchewsky, in the case where

the Absolute is real, is not worked out : indeed there is,

throughout, no evidence of acquaintance with non-Euclidean

systems. The importance of the memoir, to Cayley, lies

entirely in its proof that metrical is only a branch of de

scriptive Geometry.
32. The connection of Cayley s Theory of Distance with

Metageometry was first pointed out by Klein 4
. Klein showed

in detail that, if the Absolute be real, we get Lobatchewsky s

1 See Klein, Nieht-Euklid, i. p. 47 f., and the references there given.
2 See quotation below, from his British Association Address.

3 Compare the opening sentence, due to Cayley, of Salmon s Higher Plane

Curves.
4 V. Nicht-Euklid, i. Chaps, i. and n.
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(hyperbolic) system ;
if it be imaginary, we get either spherical

Geometry or a new system, analogous to that of Helmholtz,
called by Klein elliptic ;

if the Absolute be an imaginary

point-pair, we get parabolic Geometry, and if, in particular,

the point-pair be the circular points, we get ordinary Euclid.

In elliptic Geometry, two straight lines in the same plane meet
in only one point, not two as in Helmholtz s system. The
distinction between the two kinds of Geometry is difficult,

and will be discussed later.

33. Since these systems are all obtained from a Euclidean

plane, by a mere alteration in the definition of distance, Cayley
and Klein tend to regard the whole question as one, not of

the nature of space, but of the definition of distance. Since

this definition, on their view, is perfectly arbitrary, the phi

losophical problem vanishes Euclidean space is left in un

disputed possession, and the only problem remaining is one

of convention and mathematical convenience
1
. This view has

been forcibly expressed by Poincare :

&quot; What ought one to

think,&quot; he says,
&quot;

of this question : Is the Euclidean Geometry
true ? The question is nonsense.&quot; Geometrical axioms, ac

cording to him, are mere conventions : they are &quot;

definitions

in disguise
2

.&quot; Thus Klein blames Beltrami for regarding his

auxiliary plane as merely auxiliary, and remarks that, if he

had known Cayley s Memoir, he would have seen the relation

between the plane and the pseudosphere to be far more intimate

than he supposed
3
. A view which removes the problem entirely

from the arena of philosophy demands, plainly, a full dis

cussion. To this discussion we will now proceed.

34. The view in question has arisen, it would seem, from

a natural confusion as to the nature of the coordinates em

ployed. Those who hold the view have not adequately realised,

I believe, that their coordinates are not spatial quantities, as

in metrical Geometry, but mere conventional signs, by which

different points can be distinctly designated. There is no

reason, therefore, until we already have metrical Geometry,

1 See p. 9 of Cayley s address to the Brit. Ass. 1883. Also a quotation from

Klein in Erdmann s Axiome der Geometric, p. 124 note.

2
Nature, Vol. XLV. p. 407.

3 Nicht-Euklid, i. p. 200.
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for regarding one function of the coordinates as a better ex

pression of distance than another, so long as the fundamental

addition-equation
1 is preserved. Hence, if our coordinates are

regarded as adequate for all Geometry, an indeterminateness

arises in the expression of distance, which can only be avoided

by a convention. But projective coordinates so our argument
will contend though perfectly adequate for all projective

properties, and entirely free from any metrical presupposition,
are inadequate to express metrical properties, just because they
have no metrical presupposition. Thus where metrical pro

perties are in question, Beltrami remains justified as against
Klein

;
the reduction of metrical to projective properties is

only apparent, though the independence of these last, as against
metrical Geometry, is perfectly real.

35. But what are projective coordinates, and how are they
introduced ? This question was not touched upon in Cayley s

Memoir, and it seemed, therefore, as if a logical error were

involved in using coordinates to define distance. For coor

dinates, in all previous systems, had been deduced from dis

tance
;
to use any existing coordinate system in defining distance

was, accordingly, to incur a vicious circle. Cayley mentions

this difficulty in a note, where he only remarks, however,
that he had regarded his coordinates as numbers arbitrarily

assigned, on some system not further investigated, to different

points. The difficulty has been treated at length by Sir R.

Ball (Theory of the Content, Trans. R. I. A. 1889), who urges
that if the values of our coordinates already involve the usual

measure of distance, then to give a new definition, while retain

ing the usual coordinates, is to incur a contradiction. He says

(op. cit. p. 1) :

&quot; In the study of non-Euclidean Geometry I have

often felt a difficulty which has, I know, been shared by others.

In that theory it seems as if we try to replace our ordinary
notion of distance between two points by the logarithm of

a certain anharmonic ratio-. But this ratio itself involves the

notion of distance measured in the ordinary way. How, then,

1 I.e. the equation AB + BC = AC, for three points in one straight line.

2 The formula substituted by Klein for Cayley s inverse sine or cosine.

The two are equivalent, but Klein s is mathematically much the more
convenient.
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can we supersede our old notion of distance by the non-

Euclidean notion, inasmuch as the very definition of the latter

involves the former ?
&quot;

36. This objection is valid, we must admit, so long as

anharmonic ratio is defined in the ordinary metrical manner.

It would be valid, for example, against any attempt to found

a new definition of distance on Cremona s account of an

harmonic ratio 1

,
in which it appears as a metrical property

unaltered by projective transformation. If a logical error is

to be avoided, in fact, all reference to spatial magnitude of

any kind must be avoided; for all spatial magnitude, as will

be shown hereafter
2

,
is logically dependent on the fundamental

magnitude of distance. Anharmonic ratio and coordinates

must alike be defined by purely descriptive properties, if the

use afterwards made of them is to be free from metrical pre

suppositions, and therefore from the objections of Sir R. Ball.

Such a definition has been satisfactorily given by Klein 3
,

who appeals, for the purpose, to v. Staudt s quadrilateral con

struction 4
. By this construction, which I have reproduced in

outline in Chapter ill. Section A, 112 ff., we obtain a purely de

scriptive definition of harmonic and anharmonic ratio, and, given
a pair of points, we can obtain the harmonic conjugate to any
third point on the same straight line. On this construction, the

introduction of projective coordinates is based. Starting with

any three points on a straight line, we assign to them arbitrarily

the numbers 0, 1, oo . We then find the harmonic conjugate to

the first with respect to 1, oo
,
and assign to it the number 2.

The object of assigning this number rather than any other, is

to obtain the value 1 for the anharmonic ratio of the four

numbers corresponding to the four points
5

. We then find the

harmonic conjugate to the point 1, with respect to 2, oo
,
and

assign to it the number 3
;
and so on. Klein has shown that

by this construction, we can obtain any number of points, and

1 Elements of Projective Geometry, Second Edition, Oxford, 1893,

Chap. ix.

2
Chap. in. Section B.

3 See Nicht-Euklid, i. p. 338 ff.

4 See his Geometrie der Lage, 8, Harmonische Gebilde.

5 The anharmonic ratio of four numbers, p, q, r, s, is denned as



A SHORT HISTORY OF METAGEOMETRY. 33

can construct a point corresponding to any given number,
fractional or negative. Moreover, when two sets of four points
have the same anharmonic ratio, descriptively defined 1

,
the

corresponding numbers also have the same anharmonic ratio.

By introducing such a numerical system on two straight lines,

or on three, we obtain the coordinates of any point in a plane,

or in space. By this construction, which is of fundamental

importance to protective Geometry, the logical error, upon
which Sir R. Ball bases his criticism, is satisfactorily avoided.

Our coordinates are introduced by a purely descriptive method,

and involve no presupposition whatever as to the measurement

of distance.

37. With this coordinate system, then, to define distance

as a certain function of the coordinates is not to be guilty of

a vicious circle. But it by no means follows that the defi

nition of distance is arbitrary. All reference to distance has

been hitherto excluded, to avoid metrical ideas; but when

distance is introduced, metrical ideas inevitably reappear, and

we have to remember that our coordinates give no information,

primd facie, as to any of these metrical ideas. It is open to

us, of course, if we choose, to continue to exclude distance in

the ordinary sense, as the quantity of a finite straight line,

and to define the ivord distance in any way we please. But

the conception, for which the word has hitherto stood, will

then require a new name, and the only result will be a con

fusion between the apparent meaning of our propositions, to

those who retain the associations belonging to the old sense

of the word, and the real meaning, resulting from the new

sense in which the word is used.

This confusion, I believe, has actually occurred, in the case

of those who regard the question between Euclid and Meta-

geometry as one of the definition of distance. Distance is a

quantitative relation, and as such presupposes identity of

quality. But protective Geometry deals only with quality

for which reason it is called descriptive and cannot distinguish

between two figures which are qualitatively alike. Now the

meaning of qualitative likeness, in Geometry, is the possibility

1 I.e. as transformable into each other by a collineation. See Chap. in.

Sec. A, 110.

R. G. 3
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of mutual transformation by a collineation *. Any two pairs of

points on the same straight line, therefore, are qualitatively

alike
;
their only qualitative relation is the straight line, which

both pairs have in common
;
and it is exactly the qualitative

identity of the relations of the two pairs, which enables the

difference of their relations to be exhaustively dealt with by

quantity, as a difference of distance. But where quantity is

excluded, any two pairs of points on the same straight line

appear as alike, and even any two sets of three : for any three

points on a straight line can be protectively transformed into

any other three. It is only with four points in a line that we

acquire a projective property distinguishing them from other

sets of four, and this property is anharmonic ratio, descript

ively defined. The projective Geometer, therefore, sees no

reason to give a name to the relation between two points, in so

far as this relation is anything over and above the unlimited

straight line on which they lie; and when he introduces the

notion of distance, he defines it, in the only way in which

projective principles allow him to define it, as a relation between

four points. As he nevertheless wishes the word to give him

the power of distinguishing between different pairs of points,

he agrees to take two out of the four points as fixed. In this

way, the only variables in distance are the two remaining

points, and distance appears, therefore, as a function of two

variables, namely the coordinates of the two variable points.

When we have further defined our function so that distance

may be additive, we have a function with many of the proper

ties of distance in the ordinary sense. This function, therefore,

the projective Geometer regards as the only proper definition of

distance.

We can see, in fact, from the manner in which our projective

coordinates were introduced, that some function of these

coordinates must express distance in the ordinary sense. For

they were introduced serially, so that, as we proceeded from the

zero-point towards the infinity-point, our coordinates continually

grew. To every point, a definite coordinate corresponded : to

the distance between two variable points, therefore, as a

function dependent on no other variables, must correspond
1 See Chap. in. Sec. A.
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some definite function of the coordinates, since these are

themselves functions of their points. The function discussed

above, therefore, must certainly include distance in the ordinary
sense.

But the arbitrary and conventional nature of distance, as

maintained by Poincare and Klein, arises from the fact that the

two fixed points, required to determine our distance in the

project!ve sense, may be arbitrarily chosen, and although, when
our choice is once made, any two points have a definite distance,

yet, according as we make that choice, distance will become a

different function of the two variable points. The ambiguity
thus introduced is unavoidable on projective principles; but

are we to conclude, from this, that it is really unavoidable ?

Must we not rather conclude that projective Geometry cannot

adequately deal with distance ? If A, B, C. be three different

points on a line, there must be some difference between the

relation of A to B and of A to C, for otherwise, owing to the

qualitative identity of all points, B and C could not be dis

tinguished. But such a difference involves a relation, between

A and B, which is independent of other points on the line
;

for unless sve have such a relation, the other points cannot be

distinguished as different. Before we can distinguish the two
fixed points, therefore, from which the projective definition

starts, we must already suppose some relation, between any
two points on our line, in which they are independent of other

points ;
and this relation is distance in the ordinary sense l

.

When we have measured this quantitative relation by the

ordinary methods of metrical Geometry, we can proceed to

decide what base-points must be chosen, on our line, in order

that the projective function discussed above may have the

same value as ordinary distance. But the choice of these base-

points, when we are discussing distance in the ordinary sense,

is not arbitrary, and their introduction is only a technical

device. Distance, in the ordinary sense, remains a relation

between two points, not between four ; and it is the failure to

perceive that the projective sense differs from, and cannot

1 It follows from this, that the reduction of metrical to projective properties,

even when, as in hyperbolic Geometry, the Absolute is real, is only apparent,
and has a merely technical validity.

32
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supersede, the ordinary sense, which has given rise to the views

of Klein and Poincare . The question is not one of convention,

but of the irreducible metrical properties of space. To sum

up: Quantities, as used in projective Geometry, do not stand

for spatial magnitudes, but are conventional symbols for purely

qualitative spatial relations. But distance, qua quantity,

presupposes identity of quality, as the condition of quantitative

comparison. Distance in the ordinary sense is, in short, that

quantitative relation, between two points on a line, by which

their difference from other points can be defined. The pro

jective definition, however, being unable to distinguish a

collection of less than four points from any other on the same

straight line, makes distance depend on two other points

besides those whose relation it defines. No name remains,

therefore, for distance in the ordinary sense, and many pro

jective Geometers, having abolished the name, believe the

thing to be abolished also, and are inclined to deny that two

points have a unique relation at all. This confusion, in

projective Geometry, shows the importance of a name, and

should make us chary of allowing new meanings to obscure one

of the fundamental properties of space.

38. It remains to discuss the manner in which non-

Euclidean Geometries result from the projective definition of

distance, as also the true interpretation to be given to this view

of Metageometry. It is to be observed that the projective

methods which follow Cayley deal throughout with a Euclidean

plane, on which they introduce different measures of distance.

Hence arises, in any interpretation of these methods, an

apparent subordination of the non-Euclidean spaces, as though
these were less self-subsistent than Euclid s. This subordi

nation is not intended in what follows
;
on the contrary, the

correlation with Euclidean space is regarded as valuable, first,

because Euclidean space has been longer studied and is more

familiar, but secondly, because this correlation proves, when

truly interpreted, that the other spaces are self-subsistent.

We may confine ourselves chiefly, in discussing this inter

pretation, to distances measured along a single straight line.

But we must be careful to remember that the metrical defi

nition of distance which, according to the view here advocated,
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is the only adequate definition is the same in Euclidean and

in non-Euclidean spaces : to argue in its favour is not, there

fore, to argue in favour of Euclid.

The project!ve scheme of coordinates consists of a series of

numbers, of which each represents a certain anharmonic ratio

and denotes one and only one point, and which increase

uniformly with the distance from a fixed origin, until they
become infinite on reaching a certain point. Now Cayley
showed that, in Euclidean Geometry, distance may be ex

pressed as the limit of the logarithm of the anharmonic

ratio of the two points and the (coincident) points at infinity

on their straight line
; while, if we assumed that the points at

infinity were distinct, we obtained the formula for distance in

hyperbolic or spherical Geometry, according as these points

were real or imaginary. Hence it follows that, with the

project!ve definition of distance, we shall obtain precisely the

formulae of hyperbolic, parabolic or spherical Geometry, accord

ing as we choose the point, to which the value + oc is assigned,

at a finite, infinite or imaginary distance (in the ordinary sense)

from the point to which we assign the value 0. Our straight

line remains, all the while, an ordinary Euclidean straight line.

But we have seen that the projective definition of distance fits

with the true definition only when the two fixed points to

which it refers are suitably chosen. Now the ordinary meaning
of distance is required in non-Euclidean as in Euclidean

Geometries indeed, it is only in metrical properties that these

Geometries differ. Hence our Euclidean straight line, though
it may serve to illustrate other Geometries than Euclid s, can

only be dealt with correctly by Euclid. Where we give a

different definition of distance from Euclid s, we are still in the

domain of purely projective properties, and derive no information

as to the metrical properties of our straight line. But the

importance, to Metageometry, of this new interpretation, lies in

the fact that, having independently established the metrical

formulae of non-Euclidean spaces, we find, as in Beltrami s

Saggio, that these spaces can be related, by a homographic

correspondence, with the points of Euclidean space ;
and that

this can be effected in such a manner as to give, for the

distance between two points of our non-Euclidean space, the
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hyperbolic or spherical measure of distance for the corresponding

points of Euclidean space.

39. On the whole, then, a modification of Sir R. Ball s view,

which is practically a generalized statement of Beltrami s method,

seems the most tenable. He imagines what, with Grassmann, he

calls a Content, i.e. a perfectly general three-dimensional mani

fold, and then correlates its elements, one by one, with points

in Euclidean space. Thus every element of the Content ac

quires, as its coordinates, the ordinary Euclidean coordinates

of the corresponding point in Euclidean space. By means of

this correlation, our calculations, though they refer to the

Content, are carried on, as in Beltrami s Saggio, in ordinary

Euclidean space. Thus the confusion disappears, but with it,

the supposed Euclidean interpretation also disappears. Sir

R. Ball s Content, if it is to be a space at all, must be a space

radically different from Euclid s 1

;
to speak, as Klein does, of

ordinary planes with hyperbolic or elliptic measures of distance,

is either to incur a contradiction, or to forego any metrical

meaning of distance. Instead of ordinary planes, we have sur

faces like Beltrami s, of constant measure of curvature
;
instead

of Euclid s space, we have hyperbolic or spherical space. At

the same time, it remains true that we can, by Klein s method,

give a Euclidean meaning to every symbolic proposition in non-

Euclidean Geometry. For by substituting, for distance, the

logarithm above alluded to, we obtain, from the non-Euclidean

result, a result which follows from the ordinary Euclidean

axioms. This correspondence removes, once for all, the possi

bility of a lurking contradiction in Metageometry, since, to a

proposition in the one, corresponds one and only one proposition

in the other, and contradictory results in one system, therefore,

would correspond to contradictory results in the other. Hence

Metageometry cannot lead to contradictions, unless Euclidean

Geometry, at the same moment, leads to corresponding contra

dictions. Thus the Euclidean plane with hyperbolic or elliptic

measure of distance, though either contradictory or not metrical

1 Sir E. Ball does not regard his non-Euclidean content as a possible space

(v. op. cit. p. 151). In this important point I disagree with his interpretation,

holding such a content to be a space as possible, a priori, as Euclid s, and

perhaps actually true within the margin due to errors of observation.



A SHORT HISTORY OF METAGEOMETRY. 39

as an independent notion, has, as a help in the interpretation of

non-Euclidean results, a very high degree of utility.

40. We have still to discuss Klein s third kind of non-

Euclidean Geometry, which he calls elliptic. The difference

between this and spherical Geometry is difficult to grasp, but

it may be illustrated by a simpler example. A plane, as every
one knows, can be wrapped, without stretching, on a cylinder,

and straight lines in the plane become, by this operation,

geodesies on the cylinder. The Geometries of the plane and
the cylinder, therefore, have much in common. But since the

generating circle of the cylinder, which is one of its geodesies,
is finite, only a portion of the plane is used up in wrapping it

once round the cylinder. Hence, if we endeavour to establish

a point-to-point correspondence between the plane and the

cylinder, we shall find an infinite series of points on the plane
for a single point on the cylinder. Thus it happens that

geodesies, though on the plane they have only one point in

common, may on the cylinder have an infinite number of inter

sections. Somewhat similar to this is the relation between the

spherical and elliptic Geometries. To any one point in elliptic

space, two points correspond in spherical space. Thus geodesies,

which in spherical space may have two points in common, can

never, in elliptic space, have more than one intersection.

But Klein s method can only prove that elliptic Geometry
holds of the ordinary Euclidean plane with elliptic measure

of distance. Klein has made great endeavours to enforce the

distinction between the spherical and elliptic Geometries 1

,
but

it is not immediately evident that the latter, as distinct from

the former, is valid.

In the first place, Klein s elliptic Geometry, which arises as

one of the alternative metrical systems on a Euclidean plane or

in a Euclidean space, does not by itself suffice, if the above

discussion has been correct, to prove the possibility of an

elliptic space, i.e. of a space having a point-to-point corre

spondence with the Euclidean space, and having as the ordinary

distance between two of its points the elliptic definition of the

distance between corresponding points of the Euclidean space.

To prove this possibility, we must adopt the direct method of

1 See Nicht-Euklid, i. p. 97 if. and p. 292 ff.
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Newcomb (Crelle s Journal, Vol. 83). Now in the first place

Newcomb has not proved that his postulates are self-consistent
;

he has only failed to prove that they are contradictory
1

. This

would leave elliptic space in the same position in which Lobat-

chewsky and Bolyai left hyperbolic space. But further there

seems to be, at first sight, in two-dimensional elliptic space, a

positive contradiction. To explain this, however, some account

of the peculiarities of the elliptic plane will be necessary.

The elliptic plane, regarded as a figure in three-dimensional

elliptic space, is what is called a double surface 2
,
i.e. as Newcomb

says (loc. cit. p. 298) :

&quot; The two sides of a complete plane are

not distinct, as in a Euclidean surface.... If. ..a being should

travel to distance 2D, he would, on his return, find himself on

the opposite surface to that on which he started, and would

have to repeat his journey in order to return to his original

position without leaving the surface.&quot; Now if we imagine a

1 Newcomb says (loc. cit. p. 293): &quot;The system here set forth is founded

on the following three postulates.

&quot;1. I assume that space is triply extended, unbounded, without properties

dependent either on position or direction, and possessing such planeness in its

smallest parts that both the postulates of the Euclidean Geometry, and our

common conceptions of the relations of the parts of space are true for every

indefinitely small region in space.

&quot;2. I assume that this space is affected with such curvature that a right

line shall always return into itself at the end of a finite and real distance 21)

without losing, in any part of its course, that symmetry with respect to space

on all sides of it which constitutes the fundamental property of our con

ception of it.

&quot;3. I assume that if two right lines emanate from the same point, making
the indefinitely small angle a with each other, their distance apart at the

distance r from the point of intersection will be given by the equation

2aZ&amp;gt; . rir*
TT

&m
2D

The right line thus has this property in common with the Euclidean right line

that two such lines intersect only in a single point. It may be that the number
of points in which two such lines can intersect admit of being determined from

the laws of curvature, but not being able so to determine it, I assume as a

postulate the fundamental property of the Euclidean right line.&quot;

It is plain that in the absence of the determination spoken of, the possibility

of elliptic space is not established. It may be possible, for example, to prove

that, in a space where there is a maximum to distance, there must be an infinite

number of straight lines joining two points of maximum distance. In this

event, elliptic space would become impossible.
2 For an elucidation of this term, see Klein, Nicht-Euklid, i. p. 99 ff.
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w;0-dimensional elliptic space, the distinction between the sides

of a plane becomes unmeaning, since it only acquires significance

by reference to the third dimension. Nevertheless, some such

distinction would be forced upon us. Suppose, for example,
that we took a small circle provided with an arrow,

as in the figure, and moved this circle once round

the universe. Then the sense of the arrow would

be reversed. We should thus be forced, either to

regard the new position as distinct from the former,

which transforms our plane into a spherical plane,

or to attribute the reversal of the arrow to the action of a

motion which restores our circle to its original place. It is

to be observed that nothing short of moving round the

universe would suffice to reverse the sense of the arrow. This

reversal seems like an action of empty space, which would force

us to regard the points which, from a three-dimensional point

of view, are coincident though opposite, as really distinct, and

so reduce the elliptic to the spherical plane. But motion, not

space, really causes the change, and the elliptic plane is there

fore not proved to be impossible. The question is not, however,

of any great philosophic importance.

41. In connection with the reduction of metrical to pro-

jective Geometry, we have one more topic for discussion. This

is the geometrical use of imaginaries, by means of which, except

in the case of hyperbolic space, the reduction is effected. I

have already contended, on other grounds, that this reduction,

in spite of its immense technical importance, and in spite of

the complete logical freedom of protective Geometry from

metrical ideas, is purely technical, and is not philosophically

valid. The same conclusion will appear, if we take up Cayley s

challenge at the British Association, in his Presidential Address

of 1883.

In this address, Professor Cayley devoted most of his time

to non-Euclidean systems. Non-Euclidean spaces, he declared,

seemed to him mistaken a priori
1

: but non-Euclidean Geometries,

1 Cf. p. 9 of Report: &quot;My own view is that Euclid s twelfth axiom, in

Playfair s form of it, does not need demonstration, but is part of our notion of

space, of the physical space of our experience, but which is the representation

lying at the bottom of all external experience.&quot;
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here as in his mathematical works, were accepted as flowing
from a change in the definition of distance. This view has

been already discussed, and need not, therefore, be further

criticised here. What I wish to speak about, is the question
with which Cayley himself opened his address, namely, the geo
metrical use and meaning of imaginary quantities. From the

manner in which he spoke of this question, it becomes im

perative to treat it somewhat at length. For he said (pp. 8-9):

&quot;... The notion which is the really fundamental one (and
I cannot too strongly emphasize the assertion) underlying and

pervading the whole notion of modern analysis and Geometry,

[is] that of imaginary magnitude in analysis, and of imaginary

space (or space as the locus in quo of imaginary points and

figures) in Geometry : I use in each case the word imaginary
as including real.... Say even the conclusion were that the

notion belongs to mere technical mathematics, or has reference

to nonentities in regard to which no science is possible, still

it seems to me that (as a subject of philosophical discussion)

the notion ought not to be thus ignored ;
it should at least

be shown that there is a right to ignore it.&quot;

42. This right it is now my purpose to demonstrate. But

for fear non-mathematicians should miss the point of Cayley s

remark (which has sometimes been erroneously supposed to

refer to non-Euclidean spaces), I may as well explain, at the

outset, that this question is radically distinct from, and only

indirectly connected with, the validity or import of Meta-

geometry. An imaginary quantity is one which involves

V 1 : its most general form is a + V 1 b where a and b are

real
; Cayley uses the word imaginary so as to include real, in

order to cover the special case where 6 0. It will be con

venient, in what follows, to exclude this wider meaning, and

assume that b is not zero. An imaginary point is one whose

coordinates involve V 1, i.e. whose coordinates are imaginary

quantities. An imaginary curve is one whose points are ima

ginary or, in some special uses, one whose equation contains

imaginary coefficients. The mathematical subtleties to which

this notion leads need not be here discussed
;
the reader who

is interested in them will find an excellent elementary account

of their geometrical uses in Klein s Nicht-Euklid, 1 1. pp. 38-46.
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But for our present purpose, we may confine ourselves to

imaginary points. If these are found to have a merely technical

import, and to be destitute of any philosophical meaning, then

the same will hold of any collection of imaginary points, i.e.

of any imaginary curve or surface.

That the notion of imaginary points is of supreme im

portance in Geometry, will be seen by any one who reflects

that the circular points are imaginary, and that the reduction

of metrical to project!ve Geometry, which is one of Cayley s

greatest achievements, depends on these points. But to discuss

adequately their philosophical import is difficult to me, since

I am unacquainted with any satisfactory philosophy of ima-

ginaries in pure Algebra. I will therefore adopt the most

favourable hypothesis, and assume that no objection can be

successfully urged against this use. Even on this hypothesis,

I think, no case can be made out for imaginary points in

Geometry.
In the first place, we must exclude, from the imaginary

points considered, those whose coordinates are only imaginary
with certain special systems of coordinates. For example, if

one of a point s coordinates be the tangent from it to a sphere,

this coordinate will be imaginary for any point inside the

sphere, and yet the point is perfectly real. A point, then, is

only to be called imaginary, when, whatever real system of

coordinates we adopt, one or more of the quantities expressing

these coordinates remains imaginary. For this purpose, it is

mathematically sufficient to suppose our coordinates Cartesian

a point whose Cartesian coordinates are imaginary, is a true

imaginary point in the above sense.

To discuss the meaning of such a point, it is necessary to

consider briefly the fundamental nature of the correspondence

between a point and its coordinates. Assuming that elementary

Geometry has proved what I think it does satisfactorily

prove that spatial relations are susceptible of quantitative

measurement, then a given point will have, with a suitable

system of coordinates, in a space of n dimensions, n quantitative

relations to the fixed spatial figure forming the axes of co

ordinates, and these n quantitative relations will, under certain

reservations, be unique i.e., no other point will have the same
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quantities assigned to it. (With many possible coordinate

systems, this latter condition is not realized : but for that

very reason they are inconvenient, and employed only in special

problems.) Thus given a coordinate system, and given any set

of quantities, these quantities, if they determine a point at all,

determine it uniquely. But, by a natural extension of the

method, the above reservation is dropped, and it is assumed

that to every set of quantities some point must correspond.
For this assumption there seems to me no vestige of evidence.

As well might a postman assume that, because every house in a

street is uniquely determined by its number, therefore there

must be a house for every imaginable number. We must

know, in fact, that a given set of quantities can be the co

ordinates of some point in space, before it is legitimate to give

any spatial significance to these quantities : and this knowledge,

obviously, cannot be derived from operations with coordinates

alone, on pain of a vicious circle. We must, to return to the

above analogy, know the number of houses in Piccadilly, before

we know whether a given number has a corresponding house or

not
;
and arithmetic alone, however subtly employed, will never

give us this information.

Thus the distinction which is important is, not the dis

tinction between real and imaginary quantities, but between

quantities to which points correspond and quantities to which

no points correspond. We can conventionally agree to denote

real points by imaginary coordinates, as in the Gaussian method

of denoting by the single quantity (a + V 1 6) the point whose

ordinary coordinates are a, b. But this does not touch Cayley s

meaning. Cayley means that it is of great utility in mathe

matics to regard, as points with a real existence in space, the

assumed spatial correlates of quantities which, with the

coordinate system employed, have no correlates in every-day

space; and that this utility is supposed, by many mathema

ticians, to indicate the validity of so fruitful an assumption.
To tix our ideas, let us consider Cartesian axes in three-

dimensional Euclidean space. Then it appears, by inspection,

that a point may be situated at any distance to right or left of

any of the three coordinate planes ; taking this distance as a

coordinate, therefore, it appears that real points correspond to
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all quantities from x to +00. The same appears for the

other two coordinates; and since elementary Geometry proves
their variations mutually independent, we know that one and

only one real point corresponds to any three real quantities.

But we also know, from the exhaustive method pursued, that

all space is covered by the range of these three variable

quantities : a fresh set of quantities, therefore, such as is

introduced by the use of imaginaries, possesses no spatial

correlate, and can be supposed to possess one only by a

convenient fiction.

43. The fact that the fiction is convenient, however, ma}
be thought to indicate that it is more than a fiction. But this

presumption, I think, can be easily explained away. For all

the fruitful uses of imaginaries, in Geometry, are those which

begin and end with real quantities, and use imaginaries only
for the intermediate steps. Now in all such cases, we have a

real spatial interpretation at the beginning and end of our

argument, where alone the spatial interpretation is important :

in the intermediate links, we are dealing in a purely algebraical

manner with purely algebraical quantities, and may perform

any operations which are algebraically permissible. If the

quantities with which we end are capable of spatial inter

pretation, then, and only then, our result may be regarded as

geometrical. To use geometrical language, in any other case,

is only a convenient help to the imagination. To speak, for

example, of projective properties which refer to the circular

points, is a mere inemoria technica for purely algebraical

properties ;
the circular points are not to be found in space,

but only in the auxiliary quantities by which geometrical

equations are transformed. That no contradictions arise from

the geometrical interpretation of imaginaries, is not wonderful :

for they are interpreted solely by the rules of Algebra, which

we may admit as valid in their application to imaginaries. The

perception of space being wholly absent, Algebra rules supreme,
and no inconsistency can arise. Wherever, for a moment, we
allow our ordinary spatial notions to intrude, the grossest

absurdities do arise every one can see that a circle, being a

closed curve, cannot get to infinity. The metaphysician, who

should invent anything so preposterous as the circular points,
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would be hooted from the field. But the mathematician may
steal the horse with impunity.

Finally, then, only a knowledge of space, not a knowledge of

Algebra, can assure us that any given set of quantities will have

a spatial correlate, and in the absence of such a correlate,

operations with these quantities have no geometrical import.
This is the case with imaginaries in Cayley s sense, and their

use in Geometry, great as are its technical advantages, and

rigid as is its technical validity, is wholly destitute of philo

sophical importance.

44. We have now, I think, discussed most of the questions

concerning the scope and validity of the projective method. We
have seen that it is independent of all metrical presuppositions,
and that its use of coordinates does not involve the assumption
that spatial magnitudes are measured or expressed by them.

We have seen that it is able to deal, by its own methods alone,

with the question of the qualitative likeness of geometrical

figures, which is logically prior to any comparison as to quantity,
since quantity presupposes qualitative likeness. We have seen

also that, so far as its legitimate use extends, it applies equally
to all homogeneous spaces, and that its criterion of an indepen

dently possible space the determination of a straight line by
two points

1
is not subject to the qualifications and limitations

which belong, as we have seen in the case of the cylinder, to

the metrical criterion of constant curvature. But we have also

seen that, when projective Geometry endeavours to grapple
with spatial magnitude, and bring distance and the measure

ment of angles beneath its sway, its success, though technically
valid and important, is philosophically an apparent success only.

Metrical Geometry, therefore, if quantity is to be applied to

space at all, remains a separate, though logically subsequent
branch of Mathematics.

45. It only remains to say a few words about Sophus Lie.

As a mathematician, as the inventor of a new and immensely
powerful method of analysis, he cannot be too highly praised.

Geometry is only one of the numerous subjects to which his

1 The exception to this axiom, in spherical space, presupposes metrical

Geometry, and does not destroy the validity of the axiom for projective

Geometry. See Chap. in. Sec. B, 171.
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theory of continuous groups applies, but its application to

Geometry has made a revolution in method, and has rendered

possible, in such problems as Helmholtz s, a treatment infinitely

more precise and exhaustive than any which was possible
before.

The general definition of a group is as follows : If we have

any number of independent variables xl
.r2 ...&vrt ,

and any series

of transformations of these into new variables the trans

formations being defined by equations of specified forms, with

parameters varying from one transformation to another then

the series of transformations form a group, if the successive

application of any two is equivalent to a single member of the

original series of transformations. The group is continuous,

when we can pass, by infinitesimal gradations within the group,
from any one of the transformations to an} other.

Now, in Geometry, the result of two successive motions

or collineations of a figure can always be obtained by a single

motion or collmeation, and any motion or collineation can be

built up of a series of infinitesimal motions or collineations.

Moreover the analytical expression of either is a certain trans

formation of the coordinates of all the points of the figure
1
.

Hence the transformations determining a motion or a col

lineation are such as to form a continuous group. But the

question of the protective equivalence of two figures, to which

all projective Geometry is reducible, must always be dealt

with by a collineation
;
and the question of the equality of

two figures, to which all metrical Geometry is reducible, must

always be decided by a motion such as to cause superposition ;

hence the whole subject of Geometry may be regarded as a

theory of the continuous groups which define all possible

collineations and motions.

Now Sophus Lie has developed, at great length, the purely

analytical theory of groups; he has therefore, by this method

of formulating the problem, a very powerful weapon ready for

1 Mathematicians of Lie s school have a habit, at first somewhat confusing,

of speaking of motions of space instead of motions of bodies, as though space

as a whole could move. All that is meant is, of course, the equivalent

motion of the coordinate axes, i.e. a change of axes in the usual elementary

sense.



48 FOUNDATIONS OF GEOMETRY.

the attack. In two papers
&quot; On the foundations of Geometry

1

,&quot;

undertaken at Klein s urgent request, he takes premisses which

roughly correspond to those of Helmholtz, omitting Mono-

dromy, and applies the theory of groups to the deduction of

their consequences
2

. Helmholtz s work, he says, can hardly be

looked upon as proving its conclusions, and indeed the more

searching analysis of the group-theory reveals several possi

bilities unknown to Helmholtz. Nevertheless, as a pioneer,
devoid of Lie s machinery, Helmholtz deserves, I think, more

praise than Lie is willing to give him3
.

Lie s method is perfectly exhaustive
; omitting the premiss

of Monodroray, the others show that a body has six degrees of

freedom, i.e. that the group giving all possible motions of a

body will have six independent members
;

if we keep one point

fixed, the number of independent members is reduced to three.

He then, from his general theory, enumerates all the groups
which satisfy this condition. In order that such a group should

1 &quot; Ueber die Grundlagen der Geometrie,&quot; Leipziger Berichte, 1890. The

problem of these two papers is really metrical, since it is concerned, not with

collineations in general, but with motions. The problem, however, is dealt

with by the projective method, motions being regarded as collineations which
leave the Absolute unchanged. It seemed impossible, therefore, to discuss Lie s

work, until some account had been given of the projective method.
2 Lie s premisses, to be accurate, are the following :

Let
xi=f(x,y, , i, 2 ---)

.r
a
= 0(ar, y, z, a

t ,
a2 ...)

r3=^(*. y,z, i, &quot;&amp;gt;..-)

give an infinite family of real transformations of space, as to which we make the

following hypotheses :

A. The functions /, 0, \j/,
are analytical functions of

x, y, z, alf flo....

B. Two points x^y l
z
l ,

X2y 2z2 possess an invariant, i.e.

fi(-^i&amp;gt; ?A&amp;gt; n a, y-i, z.2)=0(aV 2//, Zi, -V&amp;gt; 2/2 ,
z2 )

where .r/..., x.2 ,... are the transformed coordinates of the two points.

C. Free Mobility: i.e., any point can be moved into any other position ;

when one point is fixed, any other point of general position can take up oo 2

positions; when two points are fixed, any other of general position can take up
oo l

positions ;
when three, no motion is possible these limitations being results

of the equations given by the invariant ft.

3 On this point, cf. Klein, Hohere Geometrie, Gottingen, 1893, n. pp. 225-

244, especially pp. 230-1.
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give possible motions, it is necessary, by Helmholtz s second

axiom, that it should leave invariant some function of the

coordinates of any two points. This -eliminates several of the

groups previously enumerated, each of which he discusses in

turn. He is thus led to the following results:

I. In two dimensions, if free mobility is to hold uni

versally, there are no groups satisfying Helmholtz s first three

axioms, except those which give the ordinary Euclidean and
non-Euclidean motions

;
but if it is to hold only within a

certain region, there is also a possible group in which the

curve described by any point in a rotation is not closed, but

an equiangular spiral. To exclude this possibility, Helmholtz s

axiom of Monodromy is required.

II. In three dimensions, the results go still more against
Helmholtz. Assuming free mobility only within a certain region,

we have to distinguish two cases : Either free mobility holds,

within that region, absolutely without exception, i.e. when one

point is held fast, every other point within the region can

move freely over a surface : in this case the axiom of Mo

nodromy is unnecessary, and the first three axioms suffice to

define our group as that of Euclidean and non-Euclidean mo
tions. Or free mobility, within the specified region, holds

only of every point of general position, while the points of a

certain line, when one point is fixed, are only able to move

on that line, not on a surface
;
when this is the case, other

groups are possible, and can only be excluded by Helmholtz s

fourth axiom.

Having now stated the purely mathematical results of Lie s

investigations, we may return to philosophical considerations,

by which Helmholtz s work was mainly motived. It becomes

obvious, not only that exceptions within a certain region, but

also that limitation to a certain region, of the axiom of Free

Mobility, are philosophically quite impossible and inconceivable.

How can a certain line, or a certain surface, form an impassable
barrier in space, or have any mobility different in kind from

that of all other lines or surfaces ? The notion cannot, in

philosophy, be permitted for a moment, since it destroys that

most fundamental of all the axioms, the homogeneity of space.

We not only may, therefore, but must take Helmholtz s axiom

R. G. 4
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of Free Mobility in its very strictest seuse
;
the axiom of

Monodromy thus becomes mathematically, as well as philo

sophically, superfluous. This is, from a philosophical standpoint,

the most important of Lie s results.

46. I have now come to the end of my history of M eta-

geometry. It has not been my aim to give an exhaustive

account of even the important works on the subject in the

third period, especially, the names of Poincare, Pasch, Cremona,

Veronese, and others who might be mentioned, would have

cried shame upon me, had I had any such object. But I have

tried to set forth, as clearly as I could, the principles at work

in the various periods, the motives and results of successive

theories. We have seen how the philosophical motive, at first

predominant, has been gradually extruded by the purely mathe

matical and technical spirit of most recent Geometers. At

first, to discredit the Transcendental Aesthetic seemed, to Meta-

geometers, as important as to advance their science
;
but from

the works of Cayley, Klein or Lie, no reader could gather that

Kant had ever lived. We have also seen, however, that as

the interest in philosophy waned, the interest for philosophy

increased : as the mathematical results shook themselves free

from philosophical controversies, they assumed gradually a

stable form, from which further development, we may reason

ably hope, will take the form of growth, rather than trans

formation. The same gradual development out of philosophy

might, I believe, be traced in the infancy of most branches of

mathematics
;
when philosophical motives cease to operate,

this is, in general, a sign that the stage of uncertainty as to

premisses is past, so that the future belongs entirely to mathe

matical technique. When this stable stage has been attained,

it is time for Philosophy to borrow of Science, accepting its

final premisses as those imposed by a real necessity of fact

or logic.

47. Now in discussing the systems of Metageometry, we
have found two kinds, radically distinct and subject to different

axioms. The historically prior kind, which deals with metrical

ideas, discusses, to begin with, the conditions of Free Mobility,
which is essential to all measurement of space. It finds the

analytical expression of these conditions in the existence of
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a space-constant, or constant measure of curvature, which is

equivalent to the homogeneity of space. This is its first

axiom.

Its second axiom states that space has a finite integral
number of dimensions, i.e. in metrical terms, that the position
of a point, relative to any other figure in space, is uniquely
determined by a finite number of spatial magnitudes, called

coordinates.

The third axiom of metrical Geometry may be called, to

distinguish it from the corresponding protective axiom, the

axiom of distance. There exists one relation, it says, between

any two points, w
rhich can be preserved unaltered in a combined

motion of both points, and which, in any motion of a system
as one rigid body, is always unaltered. This relation we call

distance.

The above statement of the three essential axioms of

metrical Geometry is taken from Helmholtz as amended by Lie.

Lie s own statement of the axioms, as quoted above, has been

too much influenced by project!ve methods to give a historically

correct rendering of the spirit of the second period; Helmholtz s

statement, on the other hand, requires, as Lie has shewn, very
considerable modifications. The above compromise may, there

fore, I hope be taken as accepting Lie s corrections while

retaining Helmholtz s spirit.

48. But metrical Geometry, though it is historically prior,

is logically subsequent to protective Geometry. For project!ve

Geometry deals directly with that qualitative likeness, which

the judgment of quantitative comparison requires as its basis.

Now the above three axioms of metrical Geometry, as we shall

see in Chapter ill. Section B, do not presuppose measurement,

but are, on the contrary, the conditions presupposed by
measurement. Without these axioms, which are common to

all three spaces, measurement would be impossible : with them,

so I shall contend, measurement is able, though only empirically,

to decide approximately which of the three spaces is valid of

our actual world. But if these three axioms themselves express,

not results, but conditions, of measurement, must they not be

equivalent to the statement of that qualitative likeness on

which quantitative comparison depends ? And if so, must we

42
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not expect to find the same axioms, though perhaps under a

different form, in protective Geometry ?

49. This expectation will not be disappointed. The above

three axioms, as we shall see hereafter, are one and all

philosophically equivalent to the homogeneity of space, and

this in turn is equivalent to the axioms of projective Geometry.
The axioms of projective Geometry, in fact, may be roughly
stated thus :

I. Space is continuous and infinitely divisible
;
the zero of

extension, resulting from infinite division, is called a Point.

All points are qualitatively similar, and distinguished by the

mere fact that they lie outside one another.

II. Any two points determine a unique figure, the straight

line
;

two straight lines, like two points, are qualitatively

similar, and distinguished by the mere fact that they are

mutually external.

III. Three points not in one straight line determine a

unique figure, the plane, arid four points not in one plane

determine a figure of three dimensions. This process may, so

far as can be seen a priori, be continued, without in any way

interfering with the possibility of projective Geometry, to five

or to n points. But projective Geometry requires, as an axiom,

that the process should stop with some positive integral number

of points, after which, any fresh point is contained in the

figure determined by those already given. If the process stops

with (n 4- 1) points, our space is said to have n dimensions.

These three axioms, it will be seen, are the equivalents of

the three axioms of metrical Geometry
1

, expressed without

reference to quantity. We shall find them to be deducible, as

before, from the homogeneity of space, or, more generally still,

from the possibility of experiencing externality. They will

therefore appear as a priori, as essential to the existence of any

Geometry and to experience of an external world as such.

50. That some logical necessity is involved in these axioms

might, I think, be inferred as probable, from their historical

development alone. For the systems of Metageometry have

not, in general, been set up as more likely to fit facts than the

1 Axiom ii. of the metrical triad corresponds to Axiom in. of the projective,

and vice versa.
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system of Euclid
;
with the exception of Zollner, for example, I

know of no one who has regarded the fourth dimension as

required to explain phenomena. As regards the space-constant

again, though a small space-constant is regarded as empirically

possible, it is not usually regarded as probable ;
and the finite

space-constants, with which Metageometry is equally con

versant, are not usually thought even possible, as explanations
of empirical fact . Thus the motive has been throughout not
one of fact, but one of logic. Does not this give a strong

presumption, that those axioms which are retained, are retained

because they are logically indispensable ? If this be so, the

axioms common to Euclid and Metageometry will be d priori,
while those peculiar to Euclid will be empirical. After a

criticism of some differing theories of Geometry, I shall proceed,
in Chapters HI. and iv., to the proof and consequences of this

thesis, which will form the remainder of the present work.

1 Cf. Helniholtz, Wiss. Abh. Vol. n. p. 640, note: &quot;Die Bearbeiter
der Nicht-Euklidischen Geometric (haben) deren objective Wahrheit nie

behauptet.&quot;



CHAPTER II.

CRITICAL ACCOUNT OF SOME PREVIOUS PHILOSOPHICAL

THEORIES OF GEOMETRY.

51. WE have now traced the mathematical development
of the theory of geometrical axioms, from the first revolt against

Euclid to the present day. We may hope, therefore, to have

at our command the technical knowledge required for the

philosophy of the subject. The importance of Geometry, in

the theories of knowledge which have arisen in the past, can

scarcely be exaggerated. In Descartes, we find the whole

theory of method dominated by analytical Geometry, of whose

fruitfulness he was justly proud. In Spinoza, the paramount
influence of Geometry is too obvious to require comment.

Among mathematicians, Newton s belief in absolute space was

long supreme, and is still responsible for the current formu

lation of the laws of motion. Against this belief on the one

hand, and against Leibnitz s theory of space on the other, and

not, as Caird has pointed out 1
, against Hume s empiricism,

was directed that keystone of the Critical Philosophy, the

Kantian doctrine of space. Thus Geometry has been, through

out, of supreme importance in the theory of knowledge.
But in a criticism of representative modern theories of

Geometry, which is designed to be, not a history of the subject,

but an introduction to, and defence of, the views of the author,

it will not be necessary to discuss any more ancient theory

than that of Kant. Kant s views on this subject, true or false,

have so dominated subsequent thought, that whether they were

1 The Critical Philosophy of Kant, Vol. I. p. 287.
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accepted or rejected, they seemed equally potent in forming
the opinions, and the manner of exposition, of almost all later

writers.

Kant.

52. It is not my purpose, in this chapter, to add to the

voluminous literature of Kantian criticism, but only to discuss

the bearing of Metageometry on the argument of the Tran

scendental Aesthetic, and the aspect under which this argument
must be viewed in a discussion of Geometry

1
. On this point

several misunderstandings seem to me to have had wide pre

valence, both among friends and foes, and these misunder

standings I shall endeavour, if I can. to remove.

In the first place, what does Kant s doctrine mean for

Geometry ? Obviously not the aspect of the doctrine which

has been attacked by psychologists, the &quot; Kantian machine-

shop
&quot;

as James calls it at any rate, if this can be clearly

separated from the logical aspect. The question whether space

is given in sensation, or whether, as Kant maintained, it is

given by an intuition to which no external matter corresponds,

may for the present be disregarded. If, indeed, we held the

view which seems crudely to sum up the standpoint of the

Critique, the view that all certain knowledge is self-knowledge,

then we should be committed, if we had decided that Geometry
was apodeictic, to the view that space is subjective. But even

then, the psychological question could only arise when the

epistemological question had been solved, and could not, there

fore, be taken into account in our first investigation. The

question before us is precisely the question whether, or how

far, Geometry is apodeictic, and for the moment we have only

to investigate this question, without fear of psychological con

sequences.

53. Now on this question, as on almost all questions in the

Aesthetic or the Analytic, Kant s argument is twofold. On

the one hand, he says, Geometry is known to have apodeictic

certainty: therefore space must be a priori and subjective.

On the other hand, it follows, from grounds independent of

1 For a iliseussion of Kant from a less purely mathematical standpoint, see

Chap. iv.
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Geometry, that space is subjective and a priori ;
therefore

Geometry must have apodeictic certainty. These two argu
ments are not clearly distinguished in the Aesthetic, but a

little analysis, I think, will disentangle them. Thus in the first

edition, the first two arguments deduce, from non-geometrical

grounds, the apriority of space ;
the third deduces the apodeictic

certainty of Geometry, and maintains, conversely, that no other

view can account for this certainty
1

;
the last two arguments

only maintain that space is an intuition, not a concept. In

the second edition, the double argument is clearer, the apriority

of space being proved independently of Geometry in the meta

physical deduction, and deduced from the certainty of Geometry,
as the only possible explanation of this, in the transcendental

deduction. In the Prolegomena, the latter argument alone is

used, but in the Critique both are employed.
54. Now it must be admitted, I think, that Metageometry

has destroyed the legitimacy of the argument from Geometry
to space ;

we can no longer affirm, on purely geometrical

grounds, the apodeictic certainty of Euclid. But unless Meta

geometry has done more than this unless it has proved, what

I believe it alone cannot prove, that Euclid has not apodeictic

certainty then Kant s other line of argument retains what

force it may ever have had. The actual space we know, it may
say, is admittedly Euclidean, and is proved, without any reference

to Geometry, to be cl priori; hence Euclid has apodeictic

certainty, and non-Euclid stands condemned. To this it is no

answer to urge, with the Metageometers, that nod-Euclidean

systems are logically self-consistent
;

for Kant is careful to

argue that geometrical reasoning, by virtue of our intuition

of space, is synthetic, and cannot, though a priori, be upheld

by the principle of contradiction alone 2
. Unless non-Euclideans

can prove, what they have certainly failed to prove up to the

present, that we can frame an intuition of non-Euclidean spaces,

1 Cf. Vaihinger s Commentai, n. pp. 202, 265. Also p. 336 if.

2
E.g. second edition, p. 3 J: &quot;So wcrden auck alle geometrisclieii (miud-

satze, z. B. dass in einem Triaugel zwei Seiten zusammen grosser sind als die

dritte, nieiuals aus allgenieiiien Begriffen von Linie uud Triangel, sondern

aus der Anscliauung, und zvvar a priori mit apodiktisolier Gewissheit

abgeleitet.&quot;
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Kant s position cannot be upset by Metageometry alone, but

must also be attacked, if it is to be successfully attacked, on

its purely philosophical side.

55. For such an attack, two roads lie open : either we may
disprove the first two arguments of the Aesthetic, or we may
criticize,, from the standpoint of general logic, the Kantian doc

trine of synthetic a priori judgments and their connection with

subjectivity. Both these attacks, I believe, could be conducted

with some success
;
but if we are to disprove the apodeictic cer

tainty of Geometry, one or other is essential, and both, I believe,

will be found only partially successful. It will be my aim to

prove, in discussing these two lines of attack, (1) that the dis

tinction of synthetic and analytic judgments is untenable, and

further, that the principle of contradiction can only give fruitful

results on the assumption that experience in general, or
:
in a

particular science, some special branch of experience, is to be

formally possible ; (2) that the first two arguments of the Tran

scendental Aesthetic suffice to prove, not Euclidean space,

but some form of externality which may be sensational or

intuitional, but not merely conceptual a necessary prerequisite

of experience of an external world. In the third and fourth

chapters, I shall contend, as a result of these conclusions, that

those axioms, which Euclid and Metageometry have in common,

coincide with those properties of any form of externality which

are deducible, by the principle of contradiction, from the possi

bility of experience of an external world. These properties,

then, may be said, though not quite in the Kantian sense, to be

a priori properties of space, and as to these, I think, a modified

Kantian position may be maintained. But the question of the

subjective or objective nature of space may be left wholly out

of account during the course of this discussion, which will gain

by dealing exclusively with logical, as opposed to psychological

points of view.

56. (1) Kant s logical position. The doctrine of synthetic

and analytic judgments at any rate if this is taken as the

corner-stone of Epistemology has been so completely rejected

by most modern logicians
1

,
that it would demand little attention

1 Cf. Bradley s Logic, Bk. in. Pt. i. Chap. vi. ; Bosanquet s Logic, Bk. i.

Chap. i. pp. 07-103.
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here, but for the fact that an enthusiastic French Kantian,

M. Renouvier, has recently appealed to it, with perfect con

fidence, on the very question of Geometry
1

. And it must be

owned, with M. Renouvier, that if such judgments existed, in

the Kantian sense, non-Euclidean Geometry, which makes no

appeal to intuition, could have nothing to say against them.

M. Renouvier s contention, therefore, forces us briefly to review

the arguments against Kant s doctrine, and briefly to discuss

what logical canon is to replace it.

Every judgment so modern logic contends is both syn
thetic and analytic ;

it combines parts into a whole, and analyses

a whole into parts
2

. If this be so, the distinction of analysis

and synthesis, whatever may be its importance in pure Logic,

can have no value in Epistemology. But such a doctrine, it

must be observed, allows full scope to the principle of contra

diction : this criterion, since all judgments, in one aspect at

least, are analytic, is applicable to all judgments alike. On
the other hand, the whole which is analysed must be supposed

already given, before the parts can be mutually contradictory :

for only by connection in a given whole can two parts or

adjectives be incompatible. Thus the principle of contradiction

remains barren until we already have some judgments, and

even some inference : for the parts may be regarded, to some

extent, as an inference from the whole, or vice versa. When
once the arch of knowledge is constructed, the parts support

one another, and the principle of contradiction is the keystone :

but until the arch is built, the keystone remains suspended,

unsupported and unsupporting, in the empty air. In other

words, knowledge once existent can be analysed, but knowledge
which should have to win every inch of the way against a criti

cal scepticism, could never begin, and could never attain that

circular condition in which alone it can stand.

But Kant s doctrine, if true, is designed to restrain a critical

scepticism even where it might be effective. Certain funda

mental propositions, he says, are not deducible from logic,

1

Philosophic de la Kegle et du Compas, Annee Philosophise, n. pp. 1-66.

2 I have stated this doctrine dogmatically, as a proof would require a whole

treatise on Logic. I accept the proofs offered by Bradley and Bosanquet, to

which the reader is referred.
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i.e. their contradictories are not self-contradictory; they com
bine a subject and predicate which cannot, in any purely logical

way, be shewn to have any connection, and yet these judgments
have apodeictic certainty. But concerning such judgments,
Kant is generally careful not to rely upon the mere subjective

conviction that they are undeniable : he proves, with every

precaution, that without them experience would be impossible.

Experience consists in the combination of terms which formal

logic leaves apart, and presupposes, therefore, certain judgments

by which a framework is made for bringing such terms together.

Without these judgments so Kant contends all synthesis

and all experience would be impossible. If, therefore, the

detail of the Kantian reasoning be sound, his results may be

obtained by the principle of contradiction plus the possibility

of experience, as well as by his distinction of synthetic and

analytic judgments.

Logic, at the present day, arrogates to itself at once a wider

and a narrower sphere than Kant allowed to it. Wider, because

it believes itself capable of condemning any false principle or

postulate ; narrower, because it believes that its law of contra

diction, without a given whole or a given hypothesis, is power

less, and that two terms, per se, though they may be different,

cannot be contradictories, but acquire this relation only by

combination in a whole about which something is known, or

by connection with a postulate which, for some reason, must

be preserved. Thus no judgment, per se, is either analytic or

synthetic, for the severance of a judgment from its context robs

it of its vitality, and makes it not truly a judgment at all.

But in its proper context it is neither purely synthetic nor

purely analytic ;
for while it is the further determination of a

given whole, and thus in so far analytic, it also involves the

emergence of new relations within this whole, and is so far

synthetic.

57. We may retain, however, a distinction roughly cor

responding to the Kantian a priori and a posteriori, though

less rigid, and more liable to change with the degree of organ

isation of knowledge. Kant usually endeavoured to prove,

as observed above, that his synthetic a priori propositions were

necessary prerequisites of experience ;
now although we cannot
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retain the term synthetic, we can retain the term a priori.

for those assumptions, or those postulates, from which alone

the possibility of experience follows. Whatever can be deduced

from these postulates, without the aid of the matter of ex

perience, will also, of course, be a priori. From the standpoint
of general logic, the laws of thought and the categories, with

the indispensable conditions of their applicability, will be alone

d priori ,
but from the standpoint of any special science, we

may call a priori whatever renders possible the experience
which forms the subject-matter of our science. In Geometry,
to particularize, we may call a priori whatever renders possible

experience of externality as such.

It is to be observed that this use of the term is at once

more rationalistic and less precise than that of Kant. Kant

would seem to have supposed himself immediately aware, by

inspection, that some knowledge was apodeictic, and its subject-

matter, therefore, a priori : but he did not always deduce its

apriority from any further principle. Here, however, it is to

be shown, before admitting apriority, that the falsehood of the

judgment in question would not be effected by a mere change
in the matter of experience, but only by a change which should

render some branch of experience formally impossible, i.e. in

accessible to our methods of cognition. The above use is also

less precise, for it varies according to the specialization of the

experience we are assuming possible, and with every progress

of knowledge some new connection is perceived, two previously

isolated judgments are brought into logical relation, and the

a priori may thus, at any moment, enlarge its sphere, as more

is found deducible from fundamental postulates.

58. (2) Kant s arguments for the apriority of space.

Having now discussed the logical canon to be used as regards

the a priori, we may proceed to test Kant s arguments as

regards space. The argument from Geometry, as remarked

above, is upset by Metageometry, at least so far as those

properties are concerned, which belong to Euclid but not to

non-Euclidean spaces ;
as regards the common properties of

both kinds of space, we cannot decide on their apriority till

we have discussed the consequences of denying them, which

will be done in Chapter ill. As regards the two arguments
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which prove that space is an intuition, not a concept, they
would call for much discussion in a special criticism of Kant,

but here they may be passed by with the obvious comment
that infinite homogeneous Euclidean space is a concept, not

an intuition a concept invented to explain an intuition, it

is true, but still a pure concept
1

. And it is this pure concept

which, in all discussions of Geometry, is primarily to be dealt

with
;
the intuition need only be referred to where it throws

light on the functions or the nature of the concept. The

second of Kant s arguments, that we can imagine empty space,

though not the absence of space, is false if it means a space
without matter anywhere, and irrelevant if it merely means

a space between matters and regarded as empty
2

. The only

argument of importance, then, is the first argument. But

I must insist, at the outset, that our problem is purely logical,

and that all psychological implications must be excluded to

the utmost possible extent. Moreover, as will be proved in

Chapter iv., the proper function of space is to distinguish

between different presented things, not between the Self and

the object of sensation or perception. The argument then

becomes the following: consciousness of a world of mutually
external things demands, in presentations, a cognitive but non-

inferential element leading to the discrimination of the objects

presented. This element must be non-inferential, for from

whatever number or combination of presentations, which did

not of themselves demand diversity in their objects, I could

never be led to infer the mutual externality of their objects.

Kant says :

&quot; In order that sensations may be ascribed to some

thing external to me.,.and similarly in order that I may be

able to present them as outside and beside one another,...

the presentation of space must be already present.&quot;
But

this goes rather too far: in the first place, the question

should be only as to the mutual externality of presented

things, not as to their externality to the Self 3
;
and in the

second place, things will appear mutually external if I have

the presentation of any form of externality, whether Euclidean

1 For a further discussion of this point, see Chaps, m. and iv.

2 See Chap. iv. for a discussion of this argument.
3 See Chap. iv. 185,
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or non-Euclidean. Whatever may be true of the psychological

scope of this argument whose validity is here irrelevant

the logical scope extends, not to Euclidean space, but only to

any form of externality which could exist intuitively, and

permit knowledge, in beings with our laws of thought, of a

world of diverse but interrelated things.

Moreover externality, to render the scope of the argument

wholly logical, must not be left with a sensational or intuitional

meaning, though it must be supposed given in sensation or

intuition. It must mean, in this argument, the fact of Other

ness
1

, the fact of being different from some other thing: it must

involve the distinction between different things, and must be

that element, in a cognitive state, which leads us to discrimi

nate constituent parts in its object. So much, then, would

appear to result from Kant s argument, that experience of

diverse but interrelated things demands, as a necessary prere

quisite, some sensational or intuitional element, in perception,

by which we are led to attribute complexity to objects of

perception
2

;
that this element, in its isolation may be called

a form of externality ;
and that those properties of this form,

if any such be found, which can be deduced from its mere

function of rendering experience of interrelated diversity pos

sible, are to be regarded as a priori. What these properties

are, and how the various lines of argument here suggested con

verge to a single result, we shall see in Chapters in. and iv.

59. In the philosophers who followed Kant, Metaphysics,
for the most part, so predominated over Epistemology, that

little was added to the theory of Geometry. What was added,

came indirectly from the one philosopher who stood out against
the purely ontological speculations of his time, namely Herbart.

Herbart s actual views on Geometry, which are to be found

chiefly in the first section of his Synechologie, are not of any

great value, and have borne no great fruit in the development
of the subject. But his psychological theory of space, his

construction of extension out of series of points, his comparison
of space with the tone and colour-series, his general preference

1 An Otherness of substance, rather than of attribute, is here intended
;
an

Otherness which may perhaps be called real as opposed to logical diversity.
2 This proposition will be argued at length in Chap. iv.
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for the discrete above the continuous, and finally his belief

in the great importance of classifying space with other forms

of series (Reihenformen
1

), gave rise to many of Riemann s epoch-

making speculations, and encouraged the attempt to explain
the nature of space by its analytical and quantitative aspect
alone 2

. Through his influence on Riemann, he acquired, in

directly, a great importance in geometrical philosophy. To
Riemann s dissertation, which we have already discussed in

its mathematical aspect, we must now return, considering, this

time, only its philosophical views.

Riemann.

60. The aim of Riemann s dissertation, as we saw in

Chapter I., was to define space as a species of manifold, i.e.

as a particular kind of collection of magnitudes. It was thus

assumed, to begin with, that spatial figures could be regarded
as magnitudes, and the axioms which emerged, accordingly,
determined only the particular place of these among the many
algebraically possible varieties of magnitudes. The resulting
formulation of the axioms while, from the mathematical

standpoint of metrical Geometry, it was almost wholly laud

able must, from the standpoint of philosophy, be regarded,
in my opinion, as a petitio principii. For when we have

arrived at regarding spatial figures as magnitudes, we have

already traversed the most difficult part of the ground. The
axioms of metrical Geometry and it is metrical Geometry,

exclusively, which is considered in Riemann s Essay will

appear, in Chapter ill., to be divisible into two classes. Of

these, the first class which contains the axioms common to

Euclid and Metageometry, the only axioms seriously discussed

by Riemann are not the results of measurement, nor of any

conception of magnitude, but are conditions to be fulfilled

before measurement becomes possible. The second class only
those which express the difference between Euclidean and non-

1 See Psychologic als Wissenscbaft, i. Section in. Chap. vn.
;
n. Section i.

Chap. in. and Section n. Chap. in. Compare also Synechologie, Section i.

Chaps, n. and in.

2 On the influence of Herbart on Riemann, compare Erdmann, Die Axiome
der Geometric, p. 30.
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Euclidean spaces can be deduced as results of measurement
or of conceptions of magnitude. As regards the first class, on

the contrary, we shall see that the relativity of position by
which space is distinguished from all other known manifolds,

except time leads logically to the necessity of three of the

most distinctive axioms of Geometry, and yet this relativity
cannot be called a deduction from conceptions of magnitude.
In analytical Geometry, owing to the fact that coordinate

systems start from points, and hence build up lines and surfaces,

it is easy to suppose that points can be given independently
of lines and of each other, and thus the relativity of position
is lost sight of. The error thus suggested by mathematics

was probably reinforced by Herbart s theory of space, which,

by its serial character, as we have seen, appeared to him to

facilitate a construction out of successive points, and to which

Riemann acknowledges his indebtedness both in his Disser

tation and elsewhere. The same error reappears in Helmholtz,
in whom it is probably due wholly to the methods of analytical

Geometry. It is a striking fact that, throughout the writings
of these two men, there is not, so far as I know, one allusion

to the relativity of position, that property of space from which,

as our next chapter will shew, the richest quarry of conse

quences can be extracted. This is not a result of any con

ception of magnitude, bat follows from the nature of our space-
intuition

; yet no one, surely, could call it empirical, since it

is bound up in the very possibility of locating things there

as opposed to here.

61. Indeed we can see, from a purely logical consideration

of the judgment of quantity, that Riemann s manner of ap

proaching the problem can never, by legitimate methods, attain

to a philosophically sound formulation of the axioms. For

quantity is a result of comparison of two qualitatively similar

objects, and the judgment of quantity neglects altogether the

qualitative aspect of the objects compared. Hence a knowledge
of the essential properties of space can never be obtained from

judgments of quantity, which neglect these properties, while

they yet presuppose them. As well might one hope to learn

the nature of man from a census. Moreover, the judgment of

quantity is the result of comparison, and therefore presupposes
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the possibility of comparison. To know whether, or by what

means, comparison is possible, we must know the qualities of

the things compared and of the medium in which comparison
is effected

;
while to know that quantitative comparison is pos

sible, we must know that there is a qualitative identity be

tween the things compared, which again involves a previous

qualitative knowledge. When spatial figures have once been

reduced to quantity, their quality has already been neglected,
as known and similar to the quality of other figures. To hope,

therefore, for the qualities of space, from a comparison of its

expression as pure quantity with other pure quantities, is an

eiTor natural to an analytical geometer, but an error, none

the less, from which there is no return to the qualitative basis

of spatial quantity.

62. We must entirely dissent, therefore, from the dis

junction which underlies Riemann s philosophy of space. Either

the axioms must be consequences of general conceptions of

magnitude, he thinks, or else they can only be proved by

experience (p. 255). Whatever can be derived from general

conceptions of magnitude, we may retort, cannot be an a priori

adjective of space : for all the necessary adjectives of space are

presupposed in any judgment of spatial quantity, and cannot,

therefore, be consequences of such a judgment. Riemann s dis

junction, accordingly, since one of its alternatives is obviously

impossible, really begs the question. In formulating the axioms

of metrical Geometry, .our question should be : What axioms,

i.e. what adjectives of space, must be presupposed, in order that

quantitative comparison of the parts of space may be possible

at all ? And only when we have determined these conditions,

which are a priori necessary to any quantitative science of

space, does the second question arise : what inferences can we

draw, as to space, from the observed results of this quantitative

science, i.e. of this measurement of spatial figures ? The con

ditions of measurement themselves, though not results of any

conception of magnitude, will be a priori, if it can be shown that,

without them, experience of externality would be impossible.

After this initial protest against Riemann s general philo

sophical position, let us proceed to examine, in detail, his use of

the notion of a manifold.

R. G. 5
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63. In the first place there is, if I am not mistaken,

considerable obscurity in the definition of a manifold, of

which an almost verbal rendering was given in Chapter i.

What is meant, to begin with, by a general conception capable

of various determinations ? Does not this property belong to

all conceptions ? It affords, certainly, a basis for counting, but

if continuous quantity is to arise, we must, surely, have some

less discrete formulation. It might afford a basis, for example,

for the distinction of points in projective Geometry, but pro-

jective Geometry has nothing to do with quantity. Something
more fluid and flexible than a conception, one would think, is

necessary as the basis of continua. Then, again, what is meant

by a quantum of a manifold ? In space, the answer is obvious :

what is meant is a piece of volume. But how about Riemann s

other continuous manifold, colour? Does a quantum of colour

mean a single line in the spectrum, or a band of finite thickness?

In either case, what are the magnitudes to be compared ? And
how is superposition necessary, or even possible ? A colour is

fixed by its position in the spectrum : two lines in the same

spectrum cannot be superposed, and two lines in different

spectra need not be their positions in their respective spectra

suffice, or even, roughly, their immediate sense-quality. The

fact is, Riemann had space in his mind from the start, and

many of the properties, which he enunciates as belonging to all

manifolds, belong, as a matter of fact, only to space. It is far

from clear what the magnitudes are which the various deter

minations make possible. Do these magnitudes measure the

elements of the manifold, or the relations between elements ?

This is surely a very fundamental point, but it is one which

Riemann never touches on. In the former case, the super

position which he speaks of becomes unnecessary, since the

magnitude is inherent in the element considered. We do not

require superposition to measure quantities corresponding to

different tones or colours
;
these can be discovered by analysis of

single tones or colours. With space, on the other hand, if we
seek for elements, we can find none except points, and no

analysis of a point will find magnitudes inherent in it such

magnitudes are a fiction of coordinate Geometry. The magni
tudes which space deals with, as we shall see in Chapter ill.,
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are relations between points, and it is for this reason that super

position is essential to space-measurement. There is no inherent

quality in a single point, as there is in a single colour, by which

it can be quantitatively distinguished from another. Thus the

conception of a manifold, as defined by Riemann, either does not

include colours, or does not involve superposition as the only
means of measurement. From this dilemma there is no escape.

64. But if
&quot; measurement consists in a superposition of the

magnitudes compared
&quot;

(p. 256), does it not follow immediately
that measurement is logically possible only where such super

position leaves the magnitudes unchanged? And therefore that

measurement, as above defined, involves, as an a priori condition,

that magnitudes are unchanged by motion ? This consequence
is not drawn by Riemann

;
indeed he proceeds immediately

(pp. 256-7) to consider what he calls a general portion of the

doctrine of magnitude (Grossenlehre), independent of measure

ment. But how is any doctrine of magnitude possible, in which

the magnitudes cannot be measured ? The reason of the con

fusion is, that Riemann s definition of measurement is applicable

to no single manifold except space, .since it depends on the

noteworthy property that what we measure in Geometry is

not points, but relations between points, and the latter, though
not the former, may of course be unaltered by motion. Let us

try, in illustration, to apply Riemann s definition of measurement

to colours. We must remember that motion, in dealing with

the colour manifold, means not motion in space but motion

in the colour manifold itself. Now since every point of the

colour manifold is completely determined by three magnitudes,
which are given in fact, and cannot be arbitrarily chosen, it is

plain that measurement by superposition involving, as it does,

motion, and therefore change in these determining magnitudes
is totally out of the question. The superposition of one colour

on another, as a means of measurement, is sheer nonsense. And

yet measurement is possible in the colour-manifold, by means of

Helmholtz s law of mixture (Mischuugsgesetz); but the measure

ment is of every separate element, not of the relations between

elements, and is thus radically different from space-measure
ment 1

. The elements are not, like points in space, qualitatively
1 I do not mean that measurement of colours is effected without reference to

52
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alike, and distinguished by the mere fact of their mutual

externality. What we have, in colours, is three fundamental

qualitatively distinct elements, out of certain proportions of

which we can build up all the other elements of the manifold

each of the resulting elements having the same combination of

qualitative diversity and similarity as the three original elements.

But in space, what could we make of such a procedure? Given

three points, how are we to combine them in certain proportions?

The phrase is meaningless. If some one makes the obvious

retort, that we have to combine lines, not points, my rejoinder

is equally obvious. To begin with, lines are not elements.

Metaphysically, space has no elements, being, as the sequel

will show, mere relations between non-spatial elements. Mathe

matically, this fact exhibits itself in the self-contradictory notion

of the point, or zero magnitude in space, as the limit in our

vain search for spatial elements. But even if we allow the line

to pass as the spatial element, what does the combination of

three lines in definite proportions give us ? It gives us, simply,

the coordinates of a point. Here again we see a great difference

between the colour and space-manifolds. In colours, the com

bination of magnitudes gives a new magnitude of the same

kind
;
in space, it defines, not a magnitude at all, but a would-

be element of a different kind from the defining magnitudes.
In the tone-manifold, we should find still different conditions.

Here, no one of the measuring magnitudes can vanish without

the tone vanishing too, and all three are so bound up together,

in the single resulting sensation, that none can exist without

a finite quantity of the others. They are all qualitatively

different, both from each other, and from any possible tone,

being constituents of it, as mass and velocity are constituents

of momentum. All these different conditions require to be

examined, before a manifold can be completely defined
;
and

until we have conducted such an examination in detail, we

cannot pronounce as to the a priori or empirical nature of the

laws of the manifold. As regards space, I have attempted such

an examination in the third and fourth chapters of this Essay.

their relations, since all measurement is essentially comparison. But in

colours, it is the elements which are compared, while in space, it is the relations

between elements,
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65. I do not wish to deny, however, the great value of the

conception of space as a manifold. On the contrary, this con

ception seems to have become essential to any treatment of the

question. I only wish to urge that the purely algebraical
treatment of any manifold, important as it may be in deducing
fresh consequences from known premisses, tends rather to

conceal than to make clear the basis of the premisses them

selves, and is therefore misleading in a philosophical investi

gation. For mathematics, where quantity reigns supreme,
Riemann s conception has proved itself abundantly fruitful

;

for philosophy, on the contrary, where quantity appears rather

as a cloak to conceal the qualities it abstracts from, the

conception seems to me more productive of error and con

fusion than of sound doctrine.

We are thus brought back to the point from which we

started, namely, the falsity of Riemann s initial disjunction,
and the consequent fallacy in his proof of the empirical nature

of the axioms. His philosophy is chiefly vitiated, to my mind,

by this fallacy, and by the uncritical assumption that a metrical

coordinate system can be set up independently of any axioms

as to space-measurement
1

. Riemann has failed to observe,

what I have endeavoured to prove in the next chapter, that,

unless space had a strictly constant measure of curvature,

Geometry would become impossible; also that the absence

of constant measure of curvature involves absolute position,

which is an absurdity. Hence he is led to the conclusion

that all geometrical axioms are empirical, and may not hold

in the infinitesimal, where observation is impossible. Thus he

says (p. 267): &quot;Now the empirical conceptions, on which

spatial measurements are based, the conceptions of the rigid

body and the light-ray, appear to lose their validity in the

infinitesimal: it is therefore quite conceivable that the relations

of spatial magnitudes in the infinitesimal do not correspond to

the presuppositions of Geometry, and this would, in fact, have

to be assumed, as soon as it would enable us to explain the

phenomena more
simply.&quot;

From this conclusion I must,

entirely dissent. In very large spaces, there might be a

departure from Euclid
;

for they depend upon the axiom of

1 For a discussion of this point, see Chap. in. Sec. B, 176.
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parallels, which is not contained in the axiom of Free Mobility ;

but in the infinitesimal, departures from Euclid could only be

due to the absence of Free Mobility, which, as I hope my third

chapter will show, is once for all impossible.

Helmholtz.

66. Helmholtz, like Riemann, was important both in the

mathematics and in the philosophy of Geometry. From the

mathematical point of view, his work has been already con

sidered in Chapter I.
;
the consideration of his philosophy,

which must occupy us here, will be a more serious task. Like

Riemann, he endeavoured to prove that all the axioms are

empirical, and like Riemann, he based his proof chiefly on

Metageometry. He had an additional resource, however, in

the physiology of the senses, which first led him to reject the

Transcendental Aesthetic, and enabled him to attack Kant

from the psychological as well as the mathematical side 1
.

The principal topics, for a criticism of Helmholtz, are three :

First, his criterion of the a priori ; second, his discussion with

Land as to the
&quot;

imaginability
&quot;

of non-Euclidean spaces ;
third

and this is by far the most important of the three his

1 The works of Helmholtz on geometrical philosophy comprise, in addition

to the articles quoted in Chap, i., the following articles :

&quot;

Ursprung uud Sinn

der geometrischen Axiome, gegen Land,&quot; Wiss. Abh. Vol. n. p. 640, 1878.

(Also Mind, Vol. m.: an answer to Land in Mind, Vol. n.)
&quot;

Urspruug und

Bedeutung der geometrischen Axiome,&quot; 1870, Vortrage und Reden, Vol. n. p. 1.

(Also Mind, Vol. i.) Two Appendices to &quot;Die Thatsachen in der Wahrneh-

mung,&quot; entitled : II.
&quot; Der Kaum kann transcendental sein, ohne dass es die

Axiome sind&quot;; and III. &quot;Die Anwendbarkeit der Axiome auf die physische

Welt,&quot; 1878, Vortrage und Eeden, Vol. n. p. 256 ff.

The two Appendices last mentioned are popularizings and expansions of the

article in Mind, Vol. in. The most widely read, though also, to my mind, the

least valuable, of all Helmholtz s writings on Geometry, is the article in Mind,

Vol. i. This contains the famous and much misunderstood analogies of

Flatland and Sphereland, which will be discussed, and as far as possible

defended, in answering Lotze s attack on Metageometry an attack based,

apparently, almost entirely on this one popular article. The present discussion,

therefore, may be confined almost entirely to Mind, Vol. in., and the philo

sophical portions of the two papers quoted in Chap, i., i.e. to the articles in

Wiss. Abh. Vol. n. pp. 610-660. His other works are popular, and important

only because of the large public to which they appeal.
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theory of the dependence of Geometry on Mechanics. Let us

discuss these three points successively.

67. Helmholtz s criterion of apriority is difficult to discover,

as he never, to my knowledge, gives a precise statement of it.

From his discussion of physical and transcendental Geometry
1

,

however, it would appear that he regards as empirical whatever

applies to empirical matter. For he there maintains, that even

if space were an a priori form, yet any Geometry, which aimed

at an application to Physics, would, since the actual places of

bodies are not known a priori, be necessarily empirical
2

. It

seems the more probable that he regards this as a possible

criterion, as it is adopted, in several passages, by his disciple
Erdmann 3

,
and so strange a test could hardly be accepted by

a philosopher, unless he had found it in his master. I have

called this a strange test, because it seems to me completely
to ignore the work of the Critical Philosophy. For if there

is one thing which, one might have hoped, had been made

sufficiently clear by Kant s Critique, it is this, that knowledge
which is a priori, being itself the condition of possible experience,

applies and in Kant s view, applies only to empirical matter.

Helmholtz and Erdmann. therefore, in setting up this test with

out discussion, simply ignore the existence of Kant and the

possibility of a transcendental argument. Helmholtz assumes

always that empirical knowledge must be wholly empirical, that

there can be no a priori conditions of the experience in question,
that experience will always be possible, and may give any kind

of result. Thus in discussing
&quot;

physical
&quot;

Geometry, he assumes

that the possibility of empirical measurement involves no

a priori axioms, and that no a priori element can be contained

in the process. This assumption, as we shall see in Chapter ill.,

is quite unwarrantable : certain properties of space, in fact, are

involved in the possibility of measuring matter. In spite of

the fact, therefore, that we apply measurement to empirical

matter, and that our results are therefore empirical, there

1 In the answer to Laud, Mind, Vol. in. and Wiss. Abb. n. p. 640.
2 See also Die Tbatsachen in der Wabrnehinung, Zusatz n., Der Eauin kaiin

transcendental sein, obne dass es die Axiome sind. Vortrage uud Reden,
Vol. n.

3 See below, criticism of Erdmann. 84.
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may well be an a priori element in measurement, which is

presupposed in its possibility. Such a criterion, therefore, must

pronounce everything empirical, but must itself be pronounced
worthless.

Another and a better criterion, it is true, is also to be found

in Helmholtz, and has also been adopted by Erdmann. What
ever might, by a different experience, have been rendered

different so this criterion contends must itself be dependent
on experience, and so empirical. This criterion seems perfectly

sound, but Helmholtz s use of it is usually vitiated by his

neglecting to prove the possibility of the different experience
in question. He says, for example, that if our experience
showed us only bodies which changed their shapes in motion,

we should not arrive at the axiom of Congruence, which he

pronounces accordingly to be empirical. But I shall endeavour

to prove, in Chapter in., that without the axiom of Congruence,

experience of spatial magnitude would be impossible. If my
proof be correct, it follows that no experience can ever reveal

spatial magnitudes which contradict this axiom a possibility

which Helmholtz nowhere discusses, in setting up his hypo
thetical experience. Thus this second criterion, though per

fectly sound, requires always an accompanying transcendental

argument, as to the conditions of possible experience. But

this accompaniment is seldom to be found in Helmholtz.

68. One of the few cases, in which Helmholtz has at

tempted such an accompaniment, occurs in connection with

our second point, the imaginability of non-Euclidean spaces.

The argument on this point was elicited by Helmholtz s Kantian

opponents, who maintained that the merely logical possibility

of these spaces was irrelevant, since the basis of Geometry was

not logic, but intuition. The axioms, they said, are synthetic

propositions, and their contraries are, therefore, not self-contra

dictory ; they are nevertheless apodeictic propositions, since no

other intuition than the Euclidean is possible to us
1

. I have

already criticized this line of argument in the beginning of the

present chapter. Helmholtz s criticism, however, was different :

admitting the internal consistency of the argument, he denied

one of its premisses. We can imagine non-Euclidean spaces,
1 See Prof. Land, in Mind, Vol. n.
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he said, though their unfamiliarity makes this difficult. From
this view it followed, of course, that Kant s argument, even if it

were formally valid, could not prove the apriority of Euclidean

space in particular, but only of that general space which in

cluded Euclid and non-Euclid alike 1
.

Although I agree with Helmholtz in thinking the distinction

between Euclidean and non-Euclidean spaces empirical, I cannot

think his argument on the &quot;

imaginability
&quot;

of the latter a very

happy one. The validity of any proof must turn, obviously, on

the definition of imaginability. The definition which Helmholtz

gives in his answer to Land is as follows : Imaginability requires

&quot;die vollstandige Vorstellbarkeit derjenigen Sinneseindrucke,

welche das betreffende Object in uns nach den bekannten

Gesetzen unserer Sinnesorgane unter alien denkbaren Beding-

ungen der Beobachtung erregen, und wodurch es sich von

anderen ahnlichen Objecten unterscheiden wlirde&quot; (Wiss. Abh.

II. p. 644). This definition is not very clear, owing to the am

biguity of the word &quot;

Vorstellbarkeit&quot; The following definition

seems less ambiguous :

&quot; Wenn die Reihe der Sinneseindriicke

vollstandig und eindeutig angegeben werden kann, muss man
m. E. die Sache fur coischaulich vorstellbar erklaren

&quot;

(Vortrage
und Reden, II. p. 234). This makes clear, what also appears from

his manner of proof, that he regards things as imaginable which

can be described in conceptual terms. Such, as Land remarks

(Mind, Vol. II. p. 45),
&quot;

is not the sense required for argumenta
tion in this case.&quot; That Land s criticism is just, is shown by
Helmholtz s proof for non-Euclidean spaces, for it consists only
in an analogy to the volume inside a sphere, which is mathe

matically obtained thus : We take the symbols representing

magnitudes in
&quot;

pseudo-spherical
&quot;

(hyperbolic) space, and give

them a new Euclidean meaning ;
thus all our symbolic propo

sitions become capable of two interpretations, one for pseudo-

spherical space, and one for the volume inside a sphere. It is,

however, sufficiently obvious that this procedure, though it

enables us to describe our new space, does not enable us to

imagine it, in the sense of calling up images of the way things

would look in it. We really derive, from this analogy, no more

knowledge than a man born blind may derive, as to light, from

1 See concluding paragraph of Helmholtz s article in Miiid, Vol. m.
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an analogy with heat. The dictum &quot;Nihil est in intellectu

quod non fuerit ante in sensu,&quot; would unquestionably be true,

if for intellect we were to substitute imagination ;
it is vain,

therefore, if our actual space be Euclidean, to hope for a power
of imagining a non-Euclidean space. What Helmholtz might,
I believe with perfect truth, have urged against Land, is that

the image we actually have of space is not sufficiently accurate

to exclude, in the actual space we know, all possibility of a

slight departure from the Euclidean type. But in maintaining
that we cannot imagine, though we can conceive and describe,

a space different from that we actually have, Land is, in my
opinion, unquestionably in the right. For a pure Kantian,

who maintains, with Land, that none of the axioms can be

proved, this question is of great importance. But if, as I have

maintained, some of the axioms are susceptible of a transcen

dental proof, while the others can be verified empirically, the

question is freed from psychological implications, and the

imaginability or non-imaginability of metageometrical spaces

becomes unimportant.
69. We come now to the third and most important ques

tion, the relation of Geometry to Mechanics. There are three

senses in which Helmholtz s appeal to rigid bodies may be

taken : the first, I think, is the sense in which he originally

intended it
;
the second seems to be the sense which he adopted

in his defence against Land; while the third is admitted by
Land, and will be admitted in the following argument. These

three senses are as follows :

(1) It may be asserted that the actual meaning of the

axiom of Free Mobility lies in the assertion of empirical rigid

bodies, and that the two propositions are equivalent to one

another. This is certainly false.

(2) The axiom of Free Mobility, it may be said, is logically

distinguishable from the assertion of rigid bodies, and may
even be not empirical ;

but it is barren, even for pure Geometry,
without the aid of measures, which must themselves be em

pirical rigid bodies. This sense is more plausible than the

first, but I believe we can show that, in this sense also, the

proposition is false.

(3) For pure Geometry and the abstract study of space,
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it may be said, Free Mobility, as applied to an abstract geo
metrical matter, gives a sufficient possibility of quantitative

comparison ;
but the moment we extend our results to mixed

mathematics, and apply them to empirically given matter, we

require also, as measures, empirically given rigid bodies, or

bodies, at least, whose departures from rigidity are empirically
known. In this sense, I admit, the proposition is correct

1
.

In discussing these three meanings, I shall not confine

myself strictly to the text of Helmholtz or Land: if I en

deavoured to do so, I should be met by the difficulty that

neither of them defines the d priori, and that each is too much

inclined, in my opinion, to test it by psychological criteria.

I shall, therefore, take the three meanings in turn, without

laying stress on their historical adequacy to the views of Land
or Helmholtz.

70. (1) Congruence may be taken to mean as Helm
holtz would certainly seem to desire that we find actual

bodies, in our mechanical experience, to preserve their shapes
with approximate constancy, and that we infer, from this

experience, the homogeneity of space. This view, in my
opinion, radically misconceives the nature of measurement,
and of the axioms involved in it. For what is meant by the

non-rigidity of a body ? We mean, simply, that it has changed
its shape. But this involves the possibility of comparison with

its former shape, in other words, of measurement. In order,

therefore, that there may be any question of rigidity or non-

rigidity, the measurement of spatial magnitudes must be

already possible. It follows that measurement cannot, without

a vicious circle, be itself derived from experience of rigid bodies.

Geometrical measurement, in fact, is the comparison of spatial

magnitudes, and such comparison involves, as will be proved
at length in Chapter in., the homogeneity of space. This is,

therefore, the logical prerequisite of all experience of rigid

bodies, and cannot be the result of such experience. Without
the homogeneity of space, the very notion of rigidity or non-

rigidity could not exist, since these mean, respectively, the

constancy or inconstancy of spatial magnitude in pieces of

1 Cf. Veronese, Grundziige der Geometric (German translation), p. ix.

Also pp. xxxiv, 304, and Note n. pp. 692-4.
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matter, and both alike, therefore, presuppose the possibility

of spatial measurement. From the homogeneity of space, we
learn that a body, when it moves, will not change its shape
without some physical cause

;
that it actually does not change

its shape, is never asserted, and is indeed known to be false.

As soon as measurement is possible, actual changes of shape
can be estimated, and their empirical causes can be sought.
But if space were not homogeneous, measurement would be

impossible, constant shape would be a meaningless phrase, and

rigidity could never be experienced. Congruence asserts, in

short, that a body can, so far as mere space is concerned, move
without change of shape ; rigidity asserts that it actually does

so move a very different proposition, involving obviously, as

its logical prius, the former geometrical proposition.

This argument may be summed up by the following dis

junction : If bodies change their shapes in motion and to some

extent, since no body is perfectly rigid, they must all do so

then one of two cases must occur. Either the changes of

shape, as bodies move from place to place, follow no geo
metrical law, are not, for instance, functions of the amount

or direction of motion
;

in which case the law of causation

requires that they should not be effects of the change of place,

but of some simultaneous non-geometrical change, such as

temperature. Or the changes are regular, and the shape S
becomes, in a new position p, Sf(p). In this case, the law

of concomitant variations leads us to attribute the change of

shape to the mere motion, and shape thus becomes a function

of absolute position. But this is absurd, for position means

merely a relation or set of relations
;

it is impossible, therefore,

that mere position should be able to effect changes in a body.

Position is one term in a relation, not a thing per se
;

it

cannot, therefore, act on a thing, nor exist by itself, apart from

the other terms of the relation. Thus Helmholtz s view, that

Congruence depends on the existence of rigid bodies, must, since

it involves absolute position, be condemned as a logical fallacy.

Congruence, in fact, as I shall prove more fully in Chapter ill.,

is an a priori deduction from the relativity of position.

71. (2) The above argument seems to me to answer

satisfactorily Helmholtz s contention in the precise form which
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he first gave it. The axiom of Congruence, we must agree,

is logically distinguishable from the existence of rigid bodies.

Nevertheless some reference to matter is logically involved in

Geometry
1

, but whether this reference makes Geometry em

pirical, or does not, rather, show an a priori element in

dynamics, is a further question.

The reference to matter is necessitated by the homogeneity
of empty space. For so long as we leave matter out of account,

one position is perfectly indistinguishable from another, and

a science of the relations of positions is impossible. Indeed,

before spatial relations can arise at all, the homogeneity of

empty space must be destroyed, and this destruction must be

effected by matter. The blank page is useless to the geometer
until he defaces its homogeneity by lines in ink or pencil.

No spatial figures, in short, are conceivable, without a reference

to a not purely spatial matter. Again, if Congruence is ever

to be used, there must be motion : but a purely geometrical

point, being defined solely by its spatial attributes, cannot be

supposed to move without a contradiction in terms. What

moves, therefore, must be matter. Hence, in order that motion

may afford a test of equality, we must have some matter which

is known to be unaffected throughout the motion, that is, we

must have some rigid bodies. And the difficulty is, that these

bodies must not only undergo no change due solely to the

nature of space, but must, further, be unchanged by their

changing relation to other bodies. And here we have a requi

site which can no longer be fulfilled a priori : which, indeed,

we know to be, in strictness, untrue. For the forces acting on

a body depend upon its spatial relations to other bodies, and

changing forces are liable to produce changing configuration.

Hence, it would seem, actual measurement must be purely

empirical, and must depend on the degree of rigidity to be

obtained, during the process of measurement, in the bodies

with which we are conversant.

This conclusion, I believe, is valid of all actual measurement.

But the possibility of such empirical and approximate rigidity,

I must insist, depends on the d priori law that mere motion,

apart from the action of other matter, cannot effect a change
i See Chap. iv. 197 if.
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of shape. For without this law, the effect of other matter

would not be discoverable; the laws of motion would be absurd,

and Physics would be impossible. Consider the second law, for

example : How could we measure the change of motion, if motion

itself produced a change in our measures ? Or consider the law

of gravitation : How could we establish the inverse square, unless

we were able, independently of Dynamics, to measure distances ?

The whole science of Dynamics, in short, is fundamentally de

pendent on Geometry, and but for the independent possibility

of measuring spatial magnitudes, none of the magnitudes of

Dynamics could be measured. Time, force, and mass are alike

measured by spatial correlates : these correlates are given, for

time, by the first law, for force and mass, by the second and

third. It is true, then, that an empirical element appears

unavoidably in all actual measurement, inasmuch as we can

only know empirically that a given piece of matter preserves

its shape throughout the necessary change of dynamical relations

to other matter involved in motion
;
but it is further true that,

for Geometry which regards matter simply as supplying the

necessary breach in the homogeneity of space, and the necessary
term for spatial relations, not as the bearer of forces which change
the configuration of other material systems for Geometry, which

deals with this abstract and merely kinematical matter, rigidity

is a priori, in so far as the only changes with which it is cog
nizant changes of mere position, namely are incapable of

affecting the shapes of the imaginary and abstract bodies with

which it deals. To use a scholastic distinction, we may say that

matter is the causa essendi of space, but Geometry is the causa

cognoscendi of Physics. Without a Geometry independent of

Physics, Physics itself, which necessarily assumes the results

of Geometry, could never arise
;
but when Geometry is used in

Physics, it loses some of its a priori certainty, and acquires the

empirical and approximate character which belongs to all

accounts of actual phenomena.
72. (3) This argument leads us to Land s distinction of

physical and geometrical rigidity. The distinction may be

expressed and I think it is better expressed by distinguish

ing between the conceptions of matter proper to Dynamics and

to Geometry respectively. In Dynamics, we are concerned with



PHILOSOPHICAL THEORIES OF GEOMETRY. 79

matter as subject to and as causing motion, as affected by and

as exerting/orce. We are therefore concerned with the changes
of spatial configuration to which material systems are liable :

the description and explanation of these changes is the proper

subject-matter of all Dynamics. But in order that such a

science may exist, it is obviously necessary that spatial con

figuration should be already measurable. If this were not

the case, motion, acceleration and force would remain perfectly

indeterminate. Geometry, therefore, must already exist before

Dynamics becomes possible : to make Geometry dependent for

its possibility on the laws of motion or any of their consequences,
is a gross varepov irpbrepov. Nevertheless, as we have seen,

some sort of matter is essential to Geometry. But this geometri
cal matter is a more abstract and wholly different matter from

that of Dynamics. In order to study space by itself, we reduce

the properties of matter to a bare minimum : we avoid entirely

the category of causation, so essential to Dynamics, and retain

nothing, in our matter, but its spatial adjectives
1
. The kind of

rigidity affirmed of this abstract matter a kind which suffices

for the theory of our science, though not for its application to

the objects of daily life is purely geometrical, and asserts no

more than this : That since our matter is devoid, ex hypothesi,

of causal properties, there remains nothing, in mere empty space,

which is capable of changing the configuration of any geometrical

system. A change of absolute position, it asserts, is nothing ;

therefore the only real change involved in motion is a change of

relation to other matter
;
but such other matter, for the purposes

of our science, is regarded as destitute of causal powers ;
hence

no change can occur, in the configuration of our system, by the

mere effect of motion through empty space. The necessity of

such a principle may be shown by a simple reductio ad absurduni,

as follows. A motion of translation of the universe as a whole,
with constant direction and velocity, is dynamically negligeable:
indeed it is, philosophically, no motion at all, for it involves no

change in the condition or mutual relations of the things in the

universe. But if our geometrical rigidity were denied, the

change in the parameter of space might cause all bodies to

1 Cf. the opinion of Bolyai, quoted by Erdmann, Axiome, p. 28
;

cf. also ib.

p. 60.
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change their shapes owing to the mere change of absolute

position, which is obviously absurd.

To make quite plain the function of rigid bodies in Geometry,
let us suppose a liquid geometer in a liquid world. We cannot

suppose the liquid perfectly homogeneous and undifferentiated,

in the first place because such a liquid would be indistinguishable
from empty space, in the second place because our geometer s

body unless he be a disembodied spirit will itself constitute

a differentiation for him. We may therefore assume

&quot;dim beams,
Which amid the streams

Weave a network of coloured
light,&quot;

and we may suppose this network to form the occasion for our

geometer s reflections. Then he will be able to imagine a

network in which the lines are straight, or circular, or parabolic,

or any other shape, and he will be able to infer that such a

network, if it can be woven in one part of the fluid, can be

woven in another. This will form sufficient basis for his

deductions. The superposition he is concerned with since

not actual equality, but only the formal conditions of equality,

are the subject-matter of Geometry is purely ideal, and is

unaffected by the impossibility of congealing any actual net

work. But in order to apply his Geometry to the exigencies of

life, he would need some standard of comparison between actual

networks, and here, it is true, he would need either a rigid body,
or a knowledge of the conditions under which similar networks

arose. Moreover these conditions, being necessarily empirical,

could hardly be known apart from previous measurement. Hence
for applied, though not for pure Geometry, one rigid body at

least seems essential.

73. The utility, for Dynamics, of our abstract geometrical

matter, is sufficiently evident. For having, by its means, a

power of determining the configurations of material systems in

whatever part of space, and knowing that changes of configura
tion are not due to mere change of place, we are able to attribute

these changes to the action of other matter, and thus to establish

the notion of force, which would be impossible if change of shape

might be due to empty space.
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Thus, to conclude : Geometry requires, if it is to be practi

cally possible, some body or bodies which are either rigid (in

the dynamical sense), or known to undergo some definite

changes of shape according to some definite law. (These

changes, we may suppose, are known by the laws of Physics,
which have been experimentally established, and which through
out assume the truth of Geometry.) One or more such bodies

are necessary to applied Geometry but only in the sense in

which rulers and compasses are necessary. They are necessary

as, in making the Ordnance Survey, an elaborate apparatus was

necessary for measuring the base line on Salisbury Plain. But

for the theory of Geometry, geometrical rigidity suffices, and

geometrical rigidity means only that a shape, which is possible

in one part of space, is possible in any other. The empirical
element in practice, arising from the purely empirical nature of

physical rigidity, is comparable to the empirical inaccuracies

arising from the failure to find straight lines or circles in the

world which no one but Mill has regarded as rendering

Geometry itself empirical or inaccurate. But to make Geo

metry await the perfection of Physics, is to make Physics,

which depends throughout on Geometry, forever impossible.

As well might we leave the formation of numbers until we had

counted the houses in Piccadilly.

Erdmann.

74. In connection with Riemann and Helmholtz, it is

natural to consider Erdmann s philosophical work on their

theories
1

. This is certainly the most important book on the

subject which has appeared from the philosophical side, and in

spite of the fact that, like the whole theory of Riemann and

Helmholtz, it is inapplicable to projective Geometry, it still

deserves a very full discussion.

Erdmann agrees throughout with the conclusions of Riemann

and Helmholtz, except on a few points of minor importance ;

and his views, as this agreement would lead one to expect, are

ultra-empirical. Indeed his logic seems though I say this with

1 Die Axiome der Geometrie : Erne philosophische Untersuchung der

Riemann-Helmholtz schen Raumtheorie, Leipzig, 1877.

R. G. 6
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hesitation to be incompatible with any system but that of

Mill : there is apparently no distinction, to him, between the

general and the universal, and consequently no concept not

embodied in a series of instances. Such a theory of logic, to

my mind, vitiates most of his work, as it vitiated Riemann s

philosophy
1

. This general criticism will find abundant illustra

tion in the course of our account of Erdmann s views.

75. After a general introduction, and a short history of

the development of Metageometry, Erdmann proceeds, in his

second chapter, to discuss what are the axioms of Euclidean

Geometry. The arithmetical axioms, as they are called, he

leaves aside, as applying to magnitude in general ;
what we

want here, he says, is a definition of space, for which the geo

metrical axioms are alone relevant. But a definition of space,

he says following Riemann demands a genus of which space

shall be a species, and this, since our space is psychologically

unique, can only be furnished by analytical mathematics (p. 36).

Now the space-forms dealt with by Geometry are magnitudes,

and conceptions of magnitude are everywhere applied in Geo

metry. But before Riemann, only particular determinations of

space could be exhibited as magnitudes, and thus the desired

definition was impossible to obtain. Now, however, we can

subsume space as a whole under a general conception of mag
nitude, and thus obtain, besides the space-intuition and the

space-conception, a third form, namely, the conception of space

as a magnitude (Grosseribegriff vom Raum, pp. 38-39). The

definition of this will give us the complete, but not redundant,

system of axioms, which could not be obtained by transforming

the general intuition of space into the space-conception, for

want of a plurality of instances (p. 40).

76. Before considering the subsequent method of defi

nition, let us reflect on the theories involved in the above

account of the conception of space as a magnitude. In the

first place, it is assumed that conceptions cannot be formed

unless we have a series of separate objects from which to abstract

a common property in other words, that the universal is

always the general. In the second place, it is assumed that all

1 On the influence of Mill, cf. Stallo, Concepts of Modern Physics, p. 216.
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definition is classification under a genus. In the third place, the

conception of magnitude, if I am not mistaken, is fundamentally
misunderstood when it is supposed applicable to space as a

whole. But in the fourth place, even if such a conception
existed, it could give none of the essential properties of space.
Let us consider these four points successively.

77. As regards the first point, it is to be observed that

people certainly had some conception of space before Riemann
invented the notion of a manifold, and that this conception
was certainly something other than the common qualities of

all the points, lines or figures in space. In the second place,
Erdmann s view would make it impossible to conceive God,
unless one were a polytheist, or the universe unless, like

Leibnitz, one imagined a series of possible worlds, set over

against God, and none of them, therefore, a true Universe

or, to take an instance more likely to appeal to an empiricist,
the necessarily unique centre of mass of the material universe.

Any universal, in short, which is a bond or unity between things,
and not merely a common property among independent objects,
becomes impossible on Erdmann s view. We cannot, therefore,
unless we adopt Mill s philosophy intact, regard the conception
of space as demanding a series of instances from which to

abstract. But even if we did so regard it, Riemann s manifolds

would leave us without resources. For Euclidean space still

appears as unique, at the end of his series of determinations.

We have instances of manifolds, but not instances of Euclidean

space. Thus if Erdmann s theory of conceptions were correct,

he \vould still be left searching in vain for the conception of

Euclidean space.

78. The second point, the view that all definition is clas

sification, is closely allied to the first, and the two together

plunge us into the depths of scholastic formal logic. The same

instances of things which could not, on Erdmann s view, be

conceived, may now be adduced as things which cannot be

defined. Whatever was said above applies here also, and the

point need not, therefore, be further discussed
1

.

1 This view seems to be derived, through Riemann, from Herbart. See

Psych, als Wiss. ed. Hart. Vol. v. p. 262.

62
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79. As regards the third point, the impossibility of ap

plying conceptions of magnitude to space as a whole, a longer

argument will be necessary, for we are concerned, here, with

the whole question of the logical nature of judgments of mag
nitude. As we had before too much comparison for our needs,

so we have now too little. I will endeavour to explain this

point, which is of great importance, and underlies, I think,

most of the philosophical fallacies of Riemann s school.

A judgment of magnitude is always a judgment of com

parison, and what is more, the comparison is never concerned

with quality, but only with quantity. Quality, in the judg
ment of magnitude, is supposed identical, in the object whose

magnitude is stated, and in the unit with which it is compared.
But quality, except in pure number, and in pure quantity as

dealt with by the Calculus, is always present, and is partly

absorbed into quantity, partly untouched by the judgment
of magnitude. As Bosanquet says (Logic, Vol. I. p. 124);
&quot;

Quantitative comparison is not prima facie coordinate with

qualitative, but rather stands in its place as the effect of

comparison on quality, which so far as comparable becomes

quantity, and so far as incomparable furnishes the distinction

of parts essential to the quantitative whole
&quot;

(italics in the

original). Thus, if we are to regard space as a magnitude, we

must be able to adduce all those series of instances of which

Erdmann speaks, and which, for the conception of space, seemed

irrelevant. But it remains to be proved that the comparison,

which we can institute between various spaces, is capable of

expression in a quantitative form. Rather it would seem that

the difference of quality is such as to preclude quantitative

comparison between different spaces, and therefore also to

preclude all judgments of magnitude about space as a whole.

Here an exception might seem to be demanded by non-

Euclidean spaces, whose space-constants give a definite mag
nitude, inherent in space as a whole, and therefore, one might

think, characterizing space as a magnitude. But this is a

mistake. For the space-constant, in such spaces, is the ultimate

unit, the fixed term in all quantitative comparison ;
it is itself,

therefore, destitute of quantity, since there is no independently

given magnitude with which to compare it. A non-Euclidean



PHILOSOPHICAL THEORIES Otf GEOMETRY. 85

world, in which the space-constant and all lines and figures
were suddenly multiplied in a constant ratio, would be wholly

unchanged ;
the lines, as measured against the space-constant,

would have the same magnitude as before, and the space-
constant itself, having no outside standard of comparison, would
be destitute of quantity, and therefore not subject to change
of quantity. Such an enlargement of a non-Euclidean world,

in other words, is unmeaning; and this proves how inapplicable
is the notion of quantity to space as a whole.

It might be objected that this only proves the absence

of quantitative difference between different spaces of positive

space-constant, or between those of negative space-constant :

the quantitative difference persists, it might be said, between

those of positive curvature in general and those of negative
curvature in general, or between both together and Euclidean

space. This I entirely deny. There is no qualitatively similar

unit, in the three kinds of space, by which quantitative

comparison could be effected. The straight lines of one space
cannot be put into the other : the two straight lines, in one

space, whose product is the reciprocal of the measure of cur

vature, have no corresponding curves in the other space, and
the measures of curvature cannot, therefore, be quantitatively

compared with each other. That the one may be regarded as

positive, the other negative, I admit, but their values are

indeterminate, and the units in the two cases are qualitatively
different. A debt of 300 may be represented as the asset

of- 300, and the height of the Eiffel Tower is + 300 metres;
but it does not follow that the two are quantitatively comparable.
So with space-constants : the space-constant is itself the unit

for magnitudes in its own space, and differs qualitatively from

the space-constant of another kind of space.

Again, to proceed to a more philosophical argument, two

different spaces cannot co-exist in the same world : we may
be unable to decide between the alternatives of the disjunction,
but they remain, none the less, absolutely incompatible al

ternatives. Hence we cannot get that coexistence of two

spaces which is essential to comparison. The fact seems to be

that Erdmann, in his admiration for Riemann and Helmholtz,
has fallen in with their mathematical bias, and assumed, as
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mathematicians naturally tend to assume, that quantity is

everywhere and always applicable and adequate, and can deal

with more than the mere comparison of things whose qualities

are already known as similar
1

.

80. This suggests the fourth and last of the above points,

that the qualities of space, even if space could be successfully

regarded as a magnitude, would have to be entirely omitted

in such a manner of regarding it, and that, therefore, none of

its important or essential properties would emerge from such

treatment. For to regard space as a magnitude involves, as

we saw, a comparison with something qualitatively similar,

and an abstraction from the similar qualities. To some extent

and by the help of certain doubtful arguments, such a com

parison is instituted by Riemann and Erdmann
;
but when they

have instituted it, they forget all about the common qualities

on which its possibility depends. But these are precisely the

fundamental properties of space, and those from which, as I

shall endeavour to prove in Chapter m.
:
the axioms common

to Euclid and Metageometry follow a priori. Such are the

dangers of the quantitative bias.

81. After this protest against the initial assumptions in

Erdmann s deduction of space, let us return to consider the

manner, in which this deduction is carried out. Here there

will be less ground for criticism, as the deduction, given its

presuppositions, is, I think, as good as such a deduction can be.

To define space as a magnitude, he says, let us start with two

of its most obvious properties, continuity and the three dimen

sions. Tones and colours afford other instances of a manifold

with these two properties, but differ from space in that their

dimensions are not homogeneous and interchangeable. To

designate this difference, Erdmann introduces a useful pair of

terms : in the geueral case, he calls a manifold w-determined

(u-bestimmt) ;
in the case where, as in space, the dimensions are

homogeneous, he calls the manifold n-extended (n-ausgedehnt).

Manifolds of the latter sort he calls extents (Ausgedehntheiten).

1 The same irreducibility of space to mere magnitude is proved by Kaut s

hands and spherical triangles, in which a difference persists in spite of complete

quantitative equality.
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That the difference between the two kinds is one of quality,

not of quantity, he seems not to perceive ;
he also overlooks

the fact that, in the second kind, from its very definition,

the axiom of Congruence must hold, on account of the quali

tative similarity of different parts. In spite of this fact, he

defines space as an extent, and then regards Congruence as

empirical, and as possibly false in the infinitesimal. This is

the more strange, as he actually proves (p. 50) that measure

ment is impossible, in an extent, unless the parts are indepen
dent of their place, and can be carried about unaltered as

measures. In spite of this, he proceeds immediately to discuss

whether the measure of curvature is constant or variable,

without investigating how, in the latter case, Geometry could

exist. We cannot knoAv, he says, from geometrical super

position, that geometrical bodies are independent of place,

for if their dimensions altered in motion according to any
fixed law, two bodies which could be superposed in one place
could be superposed in any other. That such a hypothesis
involves absolute position, and denies the qualitative simi

larity of the parts of space, which he declares (p. 171) to be

the principle of his theory of Geometry, is nowhere perceived.
But what is more, his notion that magnitude is something
absolute, independent of comparison, has prevented him from

seeing that such a hypothesis is unmeaning. He says himself

that, even on this hypothesis, a geometrical body can be defined

as one whose points retain constant distances from each other,

for, since we have no absolute measure, measurement could not

reveal to us the change of absolute magnitude (p. 60). But is

not this a reductio ad absurdum? For magnitude is nothing

apart from comparison, and the comparison here can only be

effected by superposition ; if, then, as on the above hypothesis,

superposition always gives the same result, by whatever motion

it is effected, there is no sense in speaking of magnitudes as

no longer equal when separated : absolute magnitude is an

absurdity, and the magnitude resulting from comparison does

not differ from that which would result if the dimensions of

bodies were unchanged in motion. Therefore, since magnitude
is only intelligible as the result of comparison, the dimensions

of bodies are unchanged in motion, and the suggested hypothesis
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is unmeaning. On this subject I shall have more to say in

Chapter III.
1

82. This hypothesis, however, is not introduced for its

own sake, but only to usher in the Helmholtzian deus ex

machina, Mechanics. For Mechanics proves so Erdmannn con

fidently continues that rigidity must hold, not merely as to

ratios, in the above restricted geometrical sense, but as to

absolute magnitudes (p. 62). Hence we get at last true Con

gruence, empirical as Mechanics is empirical, and impossible to

prove apart from Mechanics. I have already criticized Helm-

holtz s view of the dependence of Geometry on Mechanics, and

need not here speak of it at length. It is a pity that Erdmann

has in no way specified the procedure by which Mechanics

decides the geometrical alternatives indeed he seems to rely

on the ipse dixit of Helmholtz. How, if Geometry would be

totally unable to discover a change in dimensions of the kind

suggested, the Laws of Motion, which throughout depend on

Geometry, should be able to discover it if it existed, I am

wholly at a loss to understand. Uniform motion in a straight

line, for example, presupposes geometrical measurement; if

this measurement is mistaken, what Mechanics imagines to be

uniform motion is not really such, but Mechanics can never

discover the discrepancy. If the Laws of Motion had been

regarded as a priori, Geometry might possibly have been rein

forced by them
;
but so long as they are empirical, they presup

pose geometrical measurement, and cannot therefore condition

or affect it.

Erdmann s conclusion, in the second chapter, is that Con

gruence is probable, but cannot be verified in the infinitesimal
;

that its truth involves the actual existence of rigid bodies

(though, by the way, we know these to be, strictly speaking,

non-existent), that rigid bodies are freely moveable, and do

not alter their size in rotation (Helmholtz s Monodromy) ;
that

the axiom of three dimensions is certain, since small errors are

impossible ;
arid that the remaining axioms of Euclid those

of the straight line and of parallels are approximately, if not

accurately, true of our actual space (pp. 78, 83). He does not

i See 146-7.
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discuss how Congruence, on the above view, is compatible with

the atomic theory, or even with the observed deformations of

approximately rigid bodies: nor how, if space, as he assumes,

is homogeneous, rigid bodies can fail to be freely moveable

through space. The axioms are all lumped together as em

pirical, and it appears, in the following chapters, that Erdmann

regards their empirical nature as sufficiently proved by their

applicability to empirical material (cf. pp. 159, 165) a strange

criterion, which would prove the same conclusion, with equal

facility :
of Arithmetic and of the laws of thought.

83. The third chapter, on the philosophical consequences
of Metageometry. need not be discussed at length, since it

deals rather with space than with Geometry. At the same

time, it will be worth while to treat briefly of Erdmann
;

s

criterion of apriority. On this subject it is very difficult to

discover his meaning, since it seems to vary with the topic he

is discussing. Thus at one time (p. 147) he rejects most

emphatically the Kantian connection of the a priori and the

subjective
1
,
and yet at another time (p. 96) he regards every

presentation of external things as partly d priori, partly

empirical, merely because such a presentation is due to an

interaction between ourselves and things, and is therefore

partly due to subjective activity, partly due to outside objects.

Hence, he says, the distinction is not between different presen

tations, but between different aspects of one and the same

presentation. This seems to return wholly to the Kantian

psychological criterion of subjectivity, with the added disad

vantage that it makes the distinction, like that of analytic

and synthetic, epistemologically worthless. And yet he never

hesitates to pronounce every piece of knowledge in turn em

pirical. The fact seems to be, that where he wants a more

logical criterion, he adopts a modification of Helmholtz s cri

terion for sensations. If space be an a priori form, he says,

no experience could possibly change it (p. 108) ;
but this Meta

geometry has proved not to be the case, since we can intuit the

perceptions which non-Euclidean space would give us (p. 115).

1 &quot; Jeder Versuch, Kaut s Lehre von cler Aprioritat als des subjectiven, von

aller Erfahruug absolut uuabhangigen Erkenntnissfactors, trotzdein zu halten,

ist deshalb von voruhereiu aussichtslos.&quot;
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I have criticised this argument in discussing Helmholtz
;
at

present we are concerned with Erdmann s criterion of apriority.

The subjectivity-criterion though he certainly uses it in dis

cussing the apriority of space, and solemnly decides, by its

means, that space is both a priori and empirical since a change
either in us or in the outer world could change it (p. 97)
would seem, like several of his other tests, to be a lapse on

his part : the criterion which he means to use is Helmholtz s.

This criterion, I think, with a slight change of wording, might
be accepted ;

it seems to me a necessary, but not a sufficient

condition. The a priori, we may say, is not only that which

no experience can change, but that without which experience
would become impossible. It is the omission to discuss the con

ditions which render geometrical (and mechanical) experience

possible, to my mind, which vitiates the empirical conclusions

of Helmholtz and Erdmann. Why certain conditions should

be necessary for experience whether on account of the con

stitution of the mind, or for some other reason is a further

question, which introduces the relation of the a priori to the

subjective. But in discussing the question as to what know

ledge is a priori, as opposed to the question concerning the

further consequences of apriority, it is well to keep to the

purely logical criterion, and so preserve our independence of

psychological controversies. The fact, if it be a fact, that the

world might be such as to defy our attempts to know it, will

not, with the above criterion, invalidate the conclusion that

certain elements in knowledge are a priori] for whether ful

filled or not, they remain necessary conditions for the existence

of any knowledge at all.

84. With this caution as to the meaning of apriority, we
shall find, I think, that the conclusions of Erdmann s final

chapter, on the principles of a theory of Geometry, are largely

invalidated by the diversity and inadequacy of his tests of the

a priori. He begins by asserting, in conformity with the

quantitative bias noticed above, that the question as to the

nature of geometrical axioms is completely analogous to the

corresponding question of the foundations of pure mathematics

(p. 138). This is. I think, a radical error : for the function of

the axioms seems to be, to establish that qualitative basis on
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which, as we saw, all qualitative comparison must rest. But

in pure mathematics, this qualitative basis is irrelevant, for

we deal there with pure quantity, i.e. with the merely quanti
tative result of quantitative comparison, wherever it is possible,

independently of the qualities underlying the comparison.

Geometry, as Grassmann insists 1

, ought not to be classed with

pure mathematics, for it deals with a matter which is given
to the intellect, not created by it. The axioms give the

means by which this matter is made amenable to quantity,

and cannot, therefore, be themselves deduced from purely

quantitative considerations.

Leaving this point aside, however, let us return to Erdmann.

He distinguishes, within space, a form and a matter : the form

is to contain the properties common to all extents, the matter

the properties which distinguish space from other extents. This

distinction, he says, is purely logical, and does not correspond
with Kant s : matter and form, for Erdmann, are alike empirical.

The axioms and definitions of Geometry, he says, deal exclusively
with the matter of space. It seems a pity, having made this

distinction, to put it to so little use : after a few pages, it is

dropped, and no epistemological consequences are drawn from

it. The reason is, I think, that Erdmann has not perceived how
much can be deduced from his definition of an extent, as a

manifold in which the dimensions are homogeneous and inter

changeable. For this property suffices to prove the complete

homogeneity of an extent, and hence from the absence of quali
tative differences among elements the relativity of position and

the axiom of Congruence. This deduction will be made at length
in the sequel

2

;
at present, I have only to observe that every

extent, on this view, possesses all the properties (except the

three dimensions) common to Euclidean and non-Euclidean

spaces. The axioms which express these properties, therefore,

apply to the form of space, and follow from homogeneity alone,

Avhich Erdmann allows (p. 171) as the principle of any theory
of space. The above distinction of form and matter, there

fore, corresponds, when its full consequences are deduced, to

the distinction between the axioms which follow from the

1

Ausdehnungslehre von 1844, 2nd edition, pp. xxii. xxiii.

2 See 8 129 ff .
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homogeneity of space and those which do not. Since, then,

homogeneity is equivalent to the relativity of position, and

the relativity of position is of the very essence of a form of

externality, it would seem that his distinction of form and

matter can also be made coextensive with the distinction

of the a priori and empirical in Geometry. On this subject,

I shall have more to say in Chapter III.

In the remainder of the chapter, Erdmann insists that the

straight line, etc., though not abstracted from experience, which

nowhere presents straight lines, must yet, as applicable to

admittedly empirical sciences, be empirical (p. 159) a criterion

which he appears to employ only when all other grounds for an

empirical opinion fail, and one which, obviously, can never refuse

to do its work, since all elements of knowledge are susceptible

of employment on some empirical material. He also defines the

straight line (p. 155) as a line of constant curvature zero, as

though curvature could be measured independently of the

straight line. Even the arithmetical axioms are declared

empirical (p. 165), since in a world where things were all

hopelessly different from one another, these axioms could not be

applied. After this reminder of Mill, we are not surprised, a few

pages later (p. 172), at a vague appeal to
&quot;English logicians&quot;

as

having proved Geometry to be an inductive science. Never

theless, Erdmann declares, almost on the last page of his book

(p. 173), that Geometry is distinguished from all other sciences

by the homogeneity of its material : a principle of which no

single application occurs throughout his book, and which, as we

shall see in Chapter in., flatly contradicts the philosophical

theories advocated throughout his preceding pages.

On the whole, then, it cannot be said that Erdmann has

done much to strengthen the philosophical position of Riemann

and Helmholtz. I have criticized him at length, because his

book has the appearance of great thoroughness, and because it

is undoubtedly the best defence extant of the position which it

takes up. We shall now have the opposite task to perform, in

defending Metageometry, on its mathematical side, from the

attacks of Lotze and others, and in vindicating for it that

measure of philosophical importance far inferior, indeed, to

the hopes of Erdmann which it seems really to possess.
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Lotze.

85. Lotze s argument as regards Geometry
1 which follows

a metaphysical argument as to the ontological nature of space,

and assumes the results of this argument consists of two

parts : the first discusses the various meanings logically assign

able (pp. 233-247) to the proposition* that other spaces than

Euclid s are possible, and the second criticizes, in detail, the

procedure of Metageometry. The first of these questions is

very important, and demands considerable care as to the logical

import of a judgment of possibility. Although Lotze s dis

cussion is excellent in many respects, I cannot persuade myself
that he has hit on the only true sense in which non-Euclidean

spaces are possible. I shall endeavour to make good this state

ment in the following pages.
86. Lotze opens with a somewhat startling statement,

which, though philosophically worthy to be true, does not

appear to be historically borne out. Euclidean Geometry has

been chiefly shaken, he says, by the Kantian notion of the

exclusive subjectivity of space if space is only our private

form of intuition, to which there exists no analogue in the

objective world, then other beings may have other spaces,

without supposing any difference in the world which they

arrange in these spaces (p. 233). This certainly seems a

legitimate deduction from the subjectivity of space, which, so

far from establishing the universal validity of Euclid, establishes

his validity only after an empirical investigation of the nature of

space as intuited by Tom, Dick or Harry. But as a matter of

fact, those who have done most to further non-Euclidean Geo

metry with the exception of Biemann, who was a disciple of

Herbart have usually inherited from Newton a naive realism

as regards absolute space. I might instance the passage quoted
from Bolyai in Chapter I., or Clifford, who seems to have thought
that we actually see the images of things on the retina 2

,
or again

Helmholtz s belief in the dependence of Geometry on the be

haviour of rigid bodies. This belief led to the view that

1
Metaphysik, Book n. Chap. n. My references are to the original.

- See Lectures and Essays, Vol. i. p. 261.
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Geometry, like Physics, is an experimental science, in which

objective truth can be attained, it is true, but only by empirical

methods. However, Lotze s ground for uncertainty about Euclid

is a philosophically tenable ground, and it will be instructive to

observe the various possibilities which arise from it.

If space is only a subjective form so Lotze opens his

argument other beings may have a different form. If this

corresponds to a different world, the difference, he says, is

uninteresting: for our world alone is relevant to any meta

physical discussion. But if this different space corresponds
to the same world which we know under the Euclidean form,

then, in his opinion, we get a question of genuine philosophic

interest. And here he distinguishes two cases : either the

relations between things, which are presented to these hypo
thetical beings under the form of some different space, are

relations which do not appear to us, or at any rate do not

appear spatial ;
or they are the same relations which appear

to us as figures in Euclidean space (p. 235). The first possi

bility would be illustrated, he says, by beings to whom the tone

or colour-manifolds appeared extended
;
but we cannot, in his

opinion, imagine a manifold, such as is required for this case, to

have its dimensions homogeneous and comparable inter se, and

therefore the contents of the various presentations constituting

such a manifold could not be combined into a single content

containing them all. But the possibility of such a combination

is of the essence of anything worth calling a space : therefore the

first of the above possibilities is unmotived and uninteresting.

Lotze s conclusion on this point, I think, is undeniable, but I

doubt whether his argument is very cogent. However, as this

possibility has no connection with that contemplated by non-

Euclideaiis, it is not worth while to discuss it further.

The second possibility also, Lotze thinks, is not that of

Metageometry, but in truth it comes nearer to it than any
of the other possibilities discussed. If a non-Euclidean were

at the same time a believer in the subjectivity of space, he

would have to be an adherent of this view. Let us see more

precisely what the view is. In Book n., Chapter I., Lotze has

accepted the argument of the Transcendental Aesthetic, but

rejected that of the mathematical antinomies : he has decided
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that space is, as Kant believed, subjective, but possesses never

theless, what Kant denied it, an objective counterpart. The
relation of presented space to its objective counterpart, as

conceived by Lotze, is rather hard to understand. It seems

scarcely to resemble the relation of sensation to its object

e.g. of light to ether-vibrations for if it did, space would not

be in any peculiar sense subjective. It seems rather to resemble

the relation of a perceived bodily motion to the state of mind
of the person willing the motion. However this may be, the

objective counterpart of space is supposed to consist of certain

immediate interactions of monads, who experience the inter

actions as modifications of their internal states. Such inter

actions, it is plain, do not form the subject-matter of Geometry,
which deals only with our resulting perceptions of spatial figures.
Now if Lotze s construction of space be correct, there seems

certainly no reason why these resulting perceptions should

not, for one and the same interaction between monads, be

very different in beings differently constituted from ourselves.

But if they were different, says Lotze, they would have to be

utterly different as different, for example, as the interval

between two notes is from a straight line. The possibility

is, therefore, in his opinion, one about which we can know

nothing, and one which must remain always a mere empty
idea. This seems to me to go too far: for whatever the

objective counterpart may be, any argument which gives us

information about it must, when reversed, give us information

about any possible form of intuition in which this counterpart
is presented. The argument which Lotze has used in his former

chapter, for example, deducing, from the relativity of position,
the merely relational nature of the objective counterpart, allows

us, conversely, to infer, from this relational nature, the complete

relativity of position in any possible space-intuition unless,

indeed, it bore a wholly deceitful relation to those interactions

of monads which form its objective counterpart. But the

complete relativity of position, as I shall endeavour to establish

in Chapter in., suffices to prove that our Geometry must be

Euclidean, elliptic, spherical or pseudo-spherical. We have,

therefore, it would seem, very considerable knowledge, on Lotze s

theory of space, of the manner in which what appears to us as
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space must appear to any beings with our laws of thought. We
cannot know, it is true, what psychological theory of space-

perception would apply to such beings : they might have a

sense different from any of ours, and they might have no

sense in any way resembling ours, but yet their Geometry
would have points of resemblance to ours, as that of the blind

coincides with that of the seeing. If space has any objective

counterpart whatever, in short, and if any inference is possible,

as Lotze holds it to be, from space to its counterpart, then a

converse argument is also possible, though it may give some

only of the qualities of Euclidean space, since some only of

these qualities may be found to have a necessary analogue in

the counterpart.

87. Admitting, then, in Lotze s sense, the subjectivity of

space, the above possibility does not seem so empty as he

imagines. He discusses it briefly, however, in order to pass

on to what he regards as the real meaning of Metageometry.
In this he is guilty of a mathematical mistake, which causes

much irrelevant reasoning. For he believes that Metageometry
constructs its spaces out of straight lines and angles in all

respects similar to Euclid s, whence he derives an easy victory

in proving that these elements can lead only to the one space.

In this he has been misled by the phraseology of non-Euclideans,

as well as by Euclid s separation of definitions and axioms.

For the fact is, of course, that straight lines are only fully

defined when we add to the formal definition the axioms of

the straight line and of parallels. Within Euclidean space,

Euclid s definition suffices to distinguish the straight line from

all other curves
;
the two axioms referred to are then absorbed

into the definition of space. But apart from the restriction

to Euclidean space, the definition has to be supplemented by
the two axioms, in order to define completely the Euclidean

straight line. Thus Lotze has misconceived the bearing of

non-Euclidean constructions, and has simply missed the point

in arguing as he does. The possibility contemplated by a

non-Euclidean, if it fell under any of Lotze s cases, would fall

under the second case discussed above.

88. But the bearing of Metageometry is really, I think,

different from anything imagined by Lotze
;
and as few writers
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seem clear on this point, I will enter somewhat fully into what
I conceive to be its purpose.

In the first place, there are some writers notably Clifford

who, being naive realists as regards space, hold that our

evidence is wholly insufficient, as yet, to decide as to its nature

in the infinite or in the infinitesimal (cf. Essays, Vol. I. p. 320) :

these writers are not concerned with any possibility of beings
different from ourselves, but simply with the everyday space we

know, which they investigate in the spirit of a chemist discuss

ing whether hydrogen is a metal, or an astronomer discussing
the nebular hypothesis.

But these are a minority : most, more cautious, admit that

our space, so far as observation extends, is Euclidean, and if

not accurately Euclidean, must be only slightly spherical or

pseudo-spherical. Here again, it is the space of daily life which

is under discussion, and here further the discussion is, I think,

independent of any philosophical assumption as to the nature

of our space-intuition. For even if this be purely subjective,
the translation of an intuition into a conception can only be

accomplished approximately, within the errors of observation

incident to self-analysis; and until the intuition of space has

become a conception, we get no scientific Geometry. The

apodeictic certainty of the axiom of parallels shrinks to an

unmotived subjective conviction, and vanishes altogether in

those who entertain non-Euclidean doubts. To reinforce the

Euclidean faith, reason must now be brought to the aid of

intuition
;
but reason, unfortunately, abandons us, and we are

left to the mercy of approximate observations of stellar triangles
a meagre support, indeed, for the cherished religion of our

childhood.

89. But the possibility of an inaccuracy so slight, that

our finest instruments and our most distant parallaxes show

no trace of it, would trouble men s minds no more than the

analogous chance of inaccuracy in the law of gravitation, were

it not for the philosophical import of even the slenderest pos

sibility in this sphere. And it is the philosophical bearing of

Metageometry alone, I think, which constitutes its real im

portance. Even if, as we will suppose for the moment, obser

vation had established, beyond the possibility of doubt, that

R. G. 7



98 FOUNDATIONS OF GEOMETRY.

our space might be safely regarded as Euclidean, still Meta-

geometry would have shown a philosophical possibility, and

on this ground alone it could claim, I think, very nearly all

the attention which it at present deserves.

But what is this possibility ? A thing is possible, according

to Bradley (Logic, p. 187), when it would follow from a certain

number of conditions, some of which are known to be realized.

Now the conditions to which a form of externality must con

form, in order to be affirmed, are : first, of course, that it should

be experienced, or legitimately inferred from something ex

perienced; but secondly, that it should conform to certain

logical conditions, detailed in Chapter III., which may be sum

med up in the relativity of position. Now what Metageometry
has done, in any case, is to suggest the proof that the second

of these conditions is fulfilled by non-Euclidean spaces. Euclid

is affirmed, therefore, on the ground of immediate experience

alone, and his truth, as unmediated by logical necessity, is

merely assertorical, or, if we prefer it, empirical. This is the

most important sense, it seems to me, in which non-Euclidean

spaces are possible. They are, in short, a step in a philo

sophical argument, rather than in the investigation of fact :

they throw light on the nature of the grounds for Euclid, rather

than on the actual conformation of space
1

. This import of

Metageometry is denied by Lotze, on the ground that non-

Euclidean logic is faulty, a ground which he endeavours, by
much detail and through many pages, to make good with

what success, we will now proceed to examine.

90. Lotze s attack on Metageometry although it remains,

so far as I know, the best hostile criticism extant, and although
its arguments have become part of the regular stock-in-trade

of Euclidean philosophers contains, if I am not mistaken,

several misunderstandings due to insufficient mathematical

knowledge of the subject. As these misunderstandings have

been widely spread among philosophers, and cannot be easily

removed except by a critic who has gone into non-Euclidean

Geometry with some care, it seems desirable to discuss Lotze s

strictures point by point.

1 On the meaning of geometrical possibility, cf. Veronese, Grundzuge der

Geometrie (German translation), pp. xi.-xiii.
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91. The mathematical criticism begins ( 131) with a

somewhat question-begging definition of parallel straight lines.

Two straight lines aa, 6/3, according to this definition, are

parallel when a and b being arbitrary points on the two

lines if act = &/3, then ab = a/3, where a, /9 are two other points

on the two straight lines respectively. This definition which

contains Euclid s axiom and definition combined in a very
convenient and enticing form is of course thoroughly suitable

to Euclidean Geometry, and leads immediately to all the

Euclidean propositions about parallels. But it is perhaps
more honest to follow Euclid s course

;
when an axiom is thus

buried in a definition, it is apt to seem, since definitions are

supposed to be arbitrary, as though the difficulty had been

overcome, while in reality, the possibility of parallels, as above

defined, involves the very point in question, namely, the dis

puted axiom of parallels. For what this axiom asserts is

simply the existence of lines conforming to Lotze s definition.

The deduction of the principal propositions on parallels, with

which Lotze follows up his definition, is of course a very simple

proceeding a proceeding, however, in which the first step begs
the question.

92. The next argument for the apriority of Euclidean

Geometry has, oddly enough, an exactly opposite bearing,

although it is a great favourite with opponents of Meta-

geometry. Measurements of stellar triangles, and all similar

attempts at an empirical determination of the space-constant

are, according to Lotze, beside the mark
;

for any observed

departure from two right angles, or any finite annual parallax
for distant stars, would be attributed to some new kind of

refraction, or, as in the case of aberration, to some other physical

cause, and never to the geometrical nature of space. This is a

72
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strong- argument for the empirical validity of Euclid, but as an

argument for the apodeictic certainty of the orthodox system, it

has an opposite tendency. For observations of the kind con

templated would have to be due to departures from Euclidean

straightness, hitherto unknown, on the part of stellar light-rays.

Such departure could, in certain cases, be accounted for by a

finite space-constant, but it could also, probably, be accounted

for by a change in Optics, for example, by attributing refractive

properties to the ether. Such properties could only exist if ether

were of varying density, if (say) it were denser in the neigh
bourhood of any of the heavenly bodies. But such an assump
tion would, I believe, destroy the utility of ether for Physics ;

a slight alteration in our Geometry, so slight as not appreciably

to affect distances within the Solar System, would probably
be in the end, therefore, should such errors ever be discovered,

a simpler explanation than any that Physics could offer. But

this is not the point of my contention. The point is that, if

the physical explanation, as Lotze holds, be possible in the

above case, the converse must also hold : it must be possible

to explain the present phenomena by supposing ether refractive

and space non-Euclidean. From this conclusion there is no

escape. If every conceivable behaviour of light-rays can be

explained, within Euclid, by physical causes, it must also be

possible, by a suitable choice of hypothetical physical causes,

to explain the actual phenomena as belonging to a non-

Euclidean space. Such a hypothesis would be rightly rejected

by Science, for the present, on account of its unnecessary

complexity. Nevertheless it would remain, for philosophy, a

possibility to be reckoned with, and the choice could only be

decided upon empirical grounds of simplicity. It may well

be doubted whether, in the world we know, the phenomena
could be attributed to a distinctly non-Euclidean space, but

this conclusion follows inevitably from the contention that no

phenomena could force us to assume such a space. Lotze s

argument, therefore, if pushed home, disproves his own view,

and puts Euclidean space, as an empirical explanation of phe

nomena, on a level with luminiferous ether
1

.

1 Compare Calinon,
&quot; Sur I lnddtermination g^ometrique de PUnivers,&quot; Eevue

Philosophique, 1893, Vol. xxxvi. pp. 595-607.
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93. Lotze now proceeds ( 132) to a detailed criticism of

Helmholtz, whom he regards as a typical exponent of Meta-

geometry. It is possible that, at the time when he wrote,

Helmholtz really did occupy this position ;
but it is unfortunate

that, in the minds of philosophers, he should still continue

to do so, after the very material advances brought about by
the projective treatment of the subject. It is also unfortunate

that his somewhat careless attempts to popularise mathematical

results have so often been disposed of, without due attention

to his more technical and solid contributions. Thus his ro

mances about Flatland and Sphereland at best only fairy-tale

analogies of doubtful value have been attacked as if they
formed an essential feature of Metageometry.

But to proceed to particulars: Lotze readily allows that

the Flatlanders would set up Plane Geometry, as we know it,

but refuses to admit that the Spherelanders could, without

inferring the third dimension, set up a two-dimensional spherical

Geometry which should be free from contradictions. I will

endeavour to give a free rendering of Lotze s argument on

this point.

Suppose, he says, a north and south pole, N and $, arbi

trarily fixed, and an equator EW. Sup
pose a being, B, capable of impressions

only from things on the surface of the

sphere, to move in a meridian NBS. Let

B start from some point a, and finally,

after describing a great circle, return to

the same point a. If a is known only by
the quality of the impression it makes on

B, B may imagine he has not reached the same point a, but

another similar point a
, bearing a relation to a similar to that

of the octave in singing : he might even not arrange his im

pressions spatially at all. In order that this may occur, we

require the further assumption, that every difference in the

above-mentioned feelings (as he describes the meridian) may
be presented as a spatial distance between two places. Even

now, B may think he is describing a Euclidean straight line,

containing similar points at certain intervals. Allowing, how

ever, that he realizes the identity of a with his initial position,
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he will now seem, by motion in a straight line, to have returned

to the point from which he started, for his motion cannot,

without the third dimension, seem to him other than rectilinear.

Up to this point, there seems little ground for objection,

except, perhaps, to the idea of a straight line with periodical

similar points if B were as philosophical as, in these dis

cussions, we usually suppose him to be, he would probably

object to this interpretation of his experiences, on the ground
that it regards empty space as something independent of the

objects in it. It is worth pointing out, also, that B would

not need to describe the whole circle, in order suddenly to

find himself home again with his old friends. Accurate mea

surements of small triangles would suffice to determine his

space-constant, and show him the length of a great circle (or

straight line, as he would call it). We must admit, also, that

so hypothetical a being as B might form no space-intuition at

all, but as he is introduced solely for the purposes of the

analogy, it is convenient to allow him all possible qualifications

for his post. But these points do not touch the kernel of the

argument, which lies in the statement that such a straight

line, returning into itself after a finite time, would appear to

B as an &quot;unendurable contradiction,&quot; and thus force him, for

logical though not for sensational purposes, into the assumption
of a third dimension. This assertion seems to me quite un

warranted: the whole of Metageometry is a solid array in

disproof of it. Helmholtz s argument is, it must be remem

bered, only an analogy, and the contradiction would exist only

for a Euclidean. A complete three-dimensional Geometry has,

we have seen in Chapter I., been developed on the assumption

that straight lines are of finite length. A constant value for

the measure of curvature, as our dk^ssion of Riemann showed,

involves neither reference to the fourth dimension, nor any

kind of internal contradiction. This fact disproves Lotze s

contention, which arises solely from inability to divest his

imagination of Euclidean ideas.

Lotze next attacks Helmholtz for the assertion that B would

know nothing of parallel lines parallel straight lines, as the

context shows, he meant to say
1

. Lotze, however, takes him

1
Vortrage und Keden, Vol. n. p. 9:

&quot; Parallele Linien wiirden die
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as meaning, apparently, mere curves of constant distance from

a given straight line, which are part of the regular stock-in-

trade of Metageometry. Parallels of latitude, in the geographical

sense, would not with the exception of the equator appear to

B as straight lines, but as circles. Great circles he would call

straight, and this fact seems to have misled Lotze into thinking

all circles were to be treated as straight lines. Parallels of

latitude, therefore, though B might call them parallels, would

not invalidate Helmholtz s contention, which applies only to

straight lines.

The argument that such small circles would be parallel,

which we have just disposed of, is only the preface to another

proof that B would need a third dimension. Let us call two

of these parallels of latitude ln and lgt and let them be equi

distant from the equator, one in the northern, one in the southern

hemisphere. Consecutive tangent planes, along these parallels,

converge, in the one case northwards, in the other southwards.

Either B could become aware of their difference, says Lotze,

or he could not. In the former case, which he regards as the

more probable, he easily proves that B would infer a third di

mension. But this alternative is, I think, wholly inadmissible.

Tangent planes, like Euclidean planes in general, would have

no meaning to B
; unless, indeed, he were a metageometrician,

which, with all his metaphysical and mathematical subtlety, the

argument supposes him not to be and to such a supposition

Lotze, surely, is the last person who has a right to object.

Lotze s attempted proof that this is the right alternative rests,

if I understand him aright, on a sheer error in ordinary spherical

Geometry. B would observe, he says, that the meridians made

smaller angles with his path towards the nearer than towards

the further pole as a matter of fact, they would be simply

perpendicular to his path in both directions. What Lotze

means is, perhaps, that all the meridians would meet sooner

in one direction than in the other, and this, of course, is true.

Bewohner der Kugel gar nicht kennen. Sie wiirden behaupten, dass jede

beliebige zwei geradeste Linien, gehorig verlangert, sich schliesslich nicht nur

in einem, sondern in zwei Punkten sclmeiden miissten.&quot; (The italics are

mine.) The omission of straight in such phrases is a frequent laxity of

mathematicians.
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But the poles, in which the meridians meet, would appear to

B as the centres of the respective parallels, while the parallels

themselves would appear to be circles. Now I am at a loss to

see what difficulty would arise, to B, in supposing two different

circles to have different centres 1
. We must, therefore, take

the first alternative, that B would have no sort of knowledge
as to the direction in which the tangent planes converged.
Here Lotze attempts, if I have not misunderstood him, to prove
a reductio ad absurdum : B would think, he says, that he was

describing two paths wholly the same in direction, and then

he might regard both paths as circles in a plane. It may be

observed that direction, when applied to a circle as a whole,

is meaningless ;
indeed direction, in all Metageometry, can only

mean, even when applied to straight lines, direction towards

a point. To speak of two lines, which do not meet, as having
the same direction, is a surreptitious introduction of the axiom

of parallels. Apart from this, I cannot conceive any objection,

on .B s part, to such a view one should say must, not might.

The whole argumentation, therefore, unless its obscurity has

led me astray, must be pronounced fruitless and inconclusive.

94. After this preliminary discussion of Sphereland, Lotze

proceeds to the question of a fourth dimension, and thence to

spherical and pseudo-spherical space. As before, he appears to

know only the more careless and popular utterances of Helm-

holtz and Riemann, and to have taken no trouble to understand

even the foundations of mathematical Metageometry. By this

neglect, much of what he says is rendered wholly worthless.

To begin with, he regards, as the purpose of Helmholtz s fairy

tale, the suggestion of a possible fourth dimension, whereas

the real purpose was quite the opposite to make intelligible

a purely three-dimensional non-Euclidean space. Helmholtz

introduced Flatland only because its relation , to Sphereland

is analogous to the relation of ours to spherical space
2

. But

1 It has been suggested to me that Lotze regards the meridians as projected

on to a plane, as in a map. If this be so, there is an obviously illegitimate

introduction of the third dimension.
2 This is proved by Helmholtz s remark at the end of a detailed attempt to

make spherical and pseudo-spherical spaces imaginable (I.e. p. 28): &quot;Anders

ist es mit den drei Dimensionen des Kaumes. Da alle unsere Mittel sinnlicher

Anschauung sich nur auf einen Eaum von drei Dimensionen erstrecken, und
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Lotze says : The Flatlanders would find no difficulty in a third

dimension, since it would in no way contradict their own

Geometry, while the people in Sphereland, from the contra

dictions in their two-dimensional system, would already have

been led to it. The latter contention I have already tried to

answer
;
the former has an odd sound, in view of the attempt,

a few pages later, to prove d priori that all forms of intuition,

in any way analogous to space, must have three dimensions.

One cannot help suspecting that the Flatlanders, with two

instead of three dimensions, would make a similar attempt.
But to return to Lotze s argument: Neither analogy can be

used, he says, to prove that we ought perhaps to set up a

fourth dimension, since, for us, no contradictions or otherwise

inexplicable phenomena exist. The only people, so far as I

know, who have used this analogy, are Dr Abbot and a few

Spiritualists the former in joke, the latter to explain certain

phenomena more simply explained, perhaps, by Maskelyne and

Cooke. But although Lotze s conclusion in this matter is

sound, and one with which Helmholtz might have agreed, his

arguments, to my mind, are irrelevant and unconvincing.
There is this difference, he says, between us and the Sphere-
landers: the latter were logically forced to a new dimension,

and found it possible ;
we are not forced to it, and find it, in

our space, impossible. I have contended that, on the contrary,

nothing would force the Spherelaiiders to assume a third dimen

sion, while they would find it impossible exactly as we find a

fourth impossible not logically, that is to say, but only as

a presentable construction in given space.

After a somewhat elephantine piece of humour, about

socialistic whales in a four-dimensional sea of Fourrier s eaa

sucree, Lotze proceeds to a proof, by logic, that every form of

intuition, which embraces the whole system of ordered relations

of a coexisting manifold, must have three dimensions. One

might object, on a priori grounds, to any such attempt :

what belongs to pure intuition could hardly, one would have

die viefte Dimension nicht bloss eine Abanderung von Vorhandenem, sondern

etwas vollkommen Neues ware, so befinden wir uns schon wegen unserer

korperlichen Organisation in der absoluten Unmoglichkeit, uns eine An-

schauungsweise einer vierten Dimension vorzustellen.
&quot;
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thought, be determined by a priori reasoning
1
. I will not,

however, develop this argument here, but endeavour to point

out, as far as its obscurity will allow, the particular fallacy of

the proof in question.

Lotze s argument is as follows. In this discussion, though
our terminology is necessarily taken from space, we are really

concerned with a much more general conception. We assume,

in order to preserve the homogeneity of dimensions, that the

difference (distance) between any two elements (points) of our

manifold to borrow Riemann s word is of the same kind as,

and commensurable with, the difference between any other

two elements. Let us take a series of elements at successive

distances x such that the distance between any two is the sum
of the distances between intermediate elements. Such a series

corresponds to a straight line, which is taken as the #-axis.

Then a series OF is called perpendicular to the #-axis OX,

-mx +mx

when the distances of any element y, on OF, from -\-rnx and

mx are equal. By our hypothesis, these distances are com

parable with, and qualitatively similar to, x and y. So long

as OF is defined only by relation to OX, it is conceptually

unique. But now let us suppose the same relation as that

between OX and OF, to be possible between OF and a new

series OZ; we then get a third series OZ, perpendicular to OF,
and again conceptually unique, so long as it is defined by
relation to OF alone. We might proceed, in the same way,

to a fourth line OU perpendicular to OZ. But it is necessary,

for our purposes, that OZ should be perpendicular to OX as

well as OF. Without this condition, OZ might extend into

1 Cf. Grassmann , Ausdehnungslehre von 1844, 2nd Edition, p. xxiii.
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another world, and have no corresponding relation to OX this

is a possibility only excluded by our unavoidable spatial images.
At this point comes the crux of the argument. That OZ, says

Lotze, which, besides being perpendicular to OF, is also perpen
dicular to OX, must be among the series of OF s, for these

were denned only by perpendicularity to OX. Hence, he con

cludes, there can only be even a third dimension if OZ coincides

with one, and as soon as OX is considered fixed with only

one, of the many members of the OF series.

In this argument it is difficult to me at any rate to see

any force at all. The only way I can account for it is, to

suppose that Lotze has neglected the possibility of any but

single infinities. On this interpretation, the argument might
be stated thus: There is an infinite series of continuously

varying F s
;
to the common property of these, we add another

property, which will divide their total number by infinity. The

remaining OZ, therefore, must be uniquely determined. The

same form of argument, however, would prove that two surfaces

can only cut one another in a single point, and numberless

other absurdities. The fact is, that infinities may be of different

orders. For example, the number of points in a line may be

taken as a single infinity, and so may the number of lines

in a plane through any point ; hence, by multiplication, the

number of points in a plane is a double infinity, x 2
,
and if we

divide this number by a single infinity, we get still an infinite

number left. Thus Lotze s argument assumes what he has

to prove, that the number of lines perpendicular to a given

line, through any point, is a single infinity, which is equivalent

to the axiom of three dimensions. The whole passage is so

obscure, that its meaning may have escaped me. It is obvious

a priori, however, as I pointed out in the beginning, that any

proof of the axiom must be fallacious somewhere, and the above

interpretation of the argument is the only one I have been

able to find.

95. The rest of the Chapter is devoted to an attack on

spherical and pseudo-spherical space, on the ground that they

interfere with the homogeneity of the three dimensions, and

with the similarity of all parts of space. This is simply false.

Such spaces, like the surface of a sphere, are exactly alike
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throughout. Lotze shows, here and elsewhere, that he has

not taken the pains to find out what Metageometry really is.

I hold myself, and have tried to prove in this Essay, that

Congruence is an a priori axiom, without which Geometry
would be impossible ;

but the wish to uphold this axiom is,

as Lotze ought to have known, the precise motive which led

Metageometry to limit itself to spaces of constant measure

of curvature. We see here the importance of distinguishing

between Helmholtz the philosopher and Helmholtz the mathe

matician. Though the philosopher wished to dispense with

Congruence, the mathematician, as we saw in Chapter I.,

retained and strongly emphasized it. A little later Lotze

shows, again, how he has been misled by the unfortunate

analogy of Sphereland. A spherical surface, he says, he can

understand; but how are we to pass from this to a spherical

space ? Either this surface is the whole of our space, as in

Sphereland, or it generates space by a gradually growing radius.

Such concentric spheres, as Lotze triumphantly points out, of

course generate Euclidean space. His disjunction, however, is

utterly and entirely false, and could never have been suggested

by any one with even a superficial knowledge of Metageometry.
This point is less laboured than the former, which, in all its

nakedness, is thus re-stated in the last sentence of the Chapter:
&quot;I cannot persuade myself that one could, without the elements

of homogeneous space, even form or define the presentation of

heterogeneous spaces, or of such as had variable measures of

curvature.&quot; As though such spaces were ever set up by non-

Euclidean mathematics !

In conclusion, Lotze expresses a hope that Philosophy, on

this point, will not allow itself to be imposed upon by Mathe

matics. I must, instead, rejoice that Mathematics has not been

imposed upon by Philosophy, but has developed freely an

important and self-consistent system, which deserves, for its

subtle analysis into logical and factual elements, the gratitude

of all who seek for a philosophy of space.

96. The objections to non-Euclidean Geometry which have

just been discussed fall under four heads :

I. Non-Euclidean spaces are not homogeneous; Meta

geometry therefore unduly reifies space.
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II. They involve a reference to a fourth dimension.

III. They cannot be set up without an implicit reference

to Euclidean space, or to the Euclidean straight line, on which

they are therefore dependent.

IV. They are self-contradictory in one or more ways.

The reader who has followed me in regarding these four objec

tions as fallacious, will have no difficulty in disposing of any other

critic of Metageometry, as these are the only mathematical

arguments, so far as I know, ever urged against non-Euclideans 1

.

The logical validity of Metageometry, and the mathematical

possibility of three-dimensional non-Euclidean spaces, will there

fore be regarded, throughout the remainder of the work, as

sufficiently established.

97. Two other objections may, indeed, be urged against

Metageometry, but these are rather of a philosophical than of

a strictly mathematical import. The first of these, which has

been made the base of operations by Delboeuf, applies equally

to all non-Euclidean spaces. The second, which has not, so far

as I know, been much employed, but yet seems to me deserving

of notice, bears directly against spaces of positive curvature

alone
;
but if it could discredit these, it might throw doubt on

the method by which all alike are obtained. The two objections

are:

I. Space must be such as to allow of similarity, i.e. of the

increase or diminution, in a constant ratio, of all the lines in a

figure, without change of angles ;
whereas in non-Euclid, lines,

like angles, have absolute magnitude.
II. Space must be infinite, whereas spherical and elliptic

spaces are finite.

I will discuss the first objection in connection with Delboeuf s

articles referred to above. The second, which has not, to my
knowledge, been widely used in criticism, will be better deferred

to Chapter in.

1 See especially Stallo, Concepts of Modern Physics, International Science

Series, Vol. XLH. Chaps, xm. and xiv.
; Renouvier, &quot;Philosophic de la regie et

du compas,&quot; Annee Philosophique, n.
; Delboeuf, &quot;L ancienne et les nouvelles

geometries,&quot; Revue Philosophique, Vols. xxxvi.-xxxrx.
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Delboeuf.

98. M. Delboeufs four articles in the Revue Philosophique
contain much matter that has already been dealt with in the

criticism of Lotze, and much that is irrelevant for our present

purpose. The only point, which I wish to discuss here, is the

question of absolute magnitude, as it is called the question,
that is, whether the possibility of similar but unequal geometri
cal figures can be known a priori

1
.

In discussing this question, it is important, to begin with, to

distinguish clearly the sense in which absolute magnitude is

required in non-Euclidean Geometry, from another sense, in

which it would be absurd to regard any magnitude as absolute.

Judgments of magnitude can only result from comparison, and
if Metageometry required magnitudes which could be deter

mined without comparison, it would certainly deserve condem
nation. But this is not required. All we require is, that it

shall be impossible, while the rest of space is unaffected, to alter

the magnitude of any figure, as compared with other figures,

while leaving the relative internal magnitudes of its parts

unchanged. This construction, which is possible in Euclid, is

impossible in Metageometry. We have to discuss whether such

an impossibility renders non-Euclidean spaces logically faulty.

M. Delboeufs position on this axiom which he calls the

postulate of homogeneity
2

is, that all Geometry must presup

pose it, and that Metageometry, consequently, though logically

sound, is logically subsequent to Euclid, and can only make its

constructions within a Euclidean
&quot;homogeneous&quot; space (Rev.

Phil. Vol. xxxvii., pp. 380-1). He would appear to think,

nevertheless, that homogeneity (in his sense) is learnt from

experience, though on this point he is not very explicit. (See
Vol. xxxviii., p. 129.) No a priori proof, at any rate, is offered

1 M. Delboeuf deserves credit for having based Euclid, already in 1860, in

his &quot;

Prol6gomenes Philosophiques de la Geome trie,&quot; on this axiom certainly
a better basis, at first sight, than the axiom of parallels.

2 This meaning of homogeneity must not be confounded with the sense in

which I have used the word. In Delbceuf s sense, it means that figures may be

similar though of different sizes; in my sense it means that figures may be

similar though in different places. This property of space is called by Delbceuf

isogeneity.
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in his articles. As a result of experience, every one would

admit, similarity is known to be possible within the limits of

observation
;
but the fact that this possibility extends to

Ordnance maps, which deal with a spherical surface, should

make us chary of inferring, from such a datum, the certainty
of Euclid for large spaces. Moreover if homogeneity be empiri

cal, Metageometry, which dispenses with it, is not necessarily
in logical dependence upon Euclid, since homogeneity and

isogeneity are logically separable. I shall assume, therefore,

as the only contention which can be interesting to our argu
ment, that homogeneity is regarded as a priori, and as logically
essential to Geometry.

99. Now we saw, in discussing Erdmann s views of the

judgment of quantity, that in non-Euclidean space, as in

Euclidean, a change of all spatial magnitudes, in the same

ratio, would be no change at all
;
the ratios of all magnitudes

to the space-constant would be unchanged, and the space-

constant, as the ultimate standard of comparison, cannot, in

any intelligible sense, be said to have any particular magnitude.
The absolute magnitudes of Metageometry, therefore, are absolute

only as against any other particular magnitude, not as against
other magnitudes in general. If this were not the case, the

comparative nature of the judgment of magnitude would
be contradicted, and metrical Metageometry would become
absurd. But as it is, the difference from Euclid consists only
in this: that in Metageometry we have, while in Euclid we
have not, a standard of comparison involved in the nature

of our space as a whole, which we call the space-constant.
We have to discuss whether the assertion of such a standard

involves an undue reification of space.

I do not believe that this is the case. For an undue reifi

cation of space would only arise, if we were no longer able to

regard position as wholly relative, and as geometrically definable

only by departure from other positions. But the relativity of

position, as we have abundantly seen, is preserved by all spaces
of constant curvature in all of these, positions can only be

defined, geometrically, by relations to fresh positions
1

. This

series of definitions may lead to an infinite regress, but it may
1 For a full proof of this proposition, see Chap. in.
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also, as in spherical space, form a vicious circle, and return

again to the position from which it started. No reification of

space, no independent existence of mere relations, seems involved

in such a procedure. The whole of Metageometry, in short, is a

proof that the relativity of position is compatible with absolute

magnitude, in the only sense required by non-Euclidean spaces.

We must conclude, therefore, that there is nothing incompatible,

in a denial of homogeneity (in Delboeuf s sense), either with the

relational nature of space, or with the comparative nature of

magnitude. This last a priori objection to Metageometry, there

fore, cannot be maintained, and the issue must be decided on

empirical grounds alone.

100. The foundations of Geometry have been the subject of

much recent speculation in France, and this seems to demand

some notice. But in spite of the splendid work which the

French have done on the allied question of number and

continuous quantity, I cannot persuade myself that they have

succeeded in greatly advancing the subject of geometrical

philosophy. The chief writers have been, from the mathe

matical side, Calinon and Poincare, from the philosophical,

Renouvier and Delboeuf \
as a mediator between mathematics

and philosophy, Lechalas.

Calinon, in an interesting article on the geometrical in-

determinateness of the universe, maintains that any Geometry

may be applied to the actual world by a suitable hypothesis as

to the course of light-rays. For the earth only is known to us

otherwise than by Optics, and the earth is an infinitesimal part

of the universe. This line of argument has been already discussed

in connection with Lotze, but Calinon adds a new suggestion,

that the space-constant may perhaps vary with the time. This

would involve a causal connection between space and other

things, which seems hardly conceivable, and which, if regarded as

possible, must surely destroy Geometry, since Geometry depends

throughout on the irrelevance of Causation
1

. Moreover, in

all operations of measurement, some time is spent; unless

we knew that space was unchanging throughout the opera

tion, it is hard to see how our results could be trustworthy,

and how, consequently, a change in the parameter could be

1 See Chap, in., especially 133.
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discovered. The same difficulties would arise, in fact, as those

which result from supposing space not homogeneous.
Poincare maintains that the question, whether Euclid or

Metageometry should be accepted, is one of convenience and

convention, not of truth; axioms are definitions in disguise, and

the choice between definitions is arbitrary. This view has been

discussed in Chapter I., in connection with Cayley s theory of

distance, on which it depends.
Lechalas is a philosophical disciple of Calinon. He is a

rationalist of the pre-Kantian type, but a believer in the

validity of Metageometry. He holds that Geometry can dis

pense with all purely spatial postulates, and work with axioms

of magnitude alone *, which, in his opinion, are purely analytic.

The principle of contradiction, to him, is the sole and only test

of truth
;
we make long chains of reasoning from our premisses

to see if contradictions will emerge. It might be objected that

this view, though it saves general Geometry from being logically

empirical, leaves it only empirically logical ;
this must, in fact,

be the fate of every piece of a priori knowledge, if M. Lechalas s

were the only test of truth. However, he concludes that general

Geometry is apodeictic, while the space of our actual world, like

all other phenomena, is contingent.

Delbceuf criticizes non-Euclidean space from an ultra-realist

standpoint : he holds that real space is neither homogeneous
nor isogeneous, but that conceived space, as abstracted from real

space, has both these properties. He offers no justification for

his real space, which seems to be maintained in the spirit of

naive realism, nor does he show how he has acquired his intimate

knowledge of its constitution
2

. His arguments against Meta

geometry, in so far as they are not repetitions of Lotze, have

been discussed above.

Renouvier, finally, is a pure Kantian, of the most orthodox

type. His views as to the importance, for Geometry, of the

distinction between synthetic and analytic judgments, have

1 For a criticism of this view, see the above discussions on Riemann and
Erdmann.

a Cf. Couturat, &quot;De 1 Infini Mathematiqne,
&quot;

Paris, Felix Alcan, 1896,

p. 544.

R. G. 8
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been discussed, in connection with Kant, at the beginning of

the present Chapter
1

.

101. Before beginning the constructive argument of the

next Chapter, let us endeavour briefly to sum up the theories

which have been polemically advocated throughout the criticisms

we have just concluded. We agreed to accept, with Kant, neces

sity for any possible experience as the test of the a priori, but

1 The following is a list of the most important recent French philosophical

writings on Geometry, so far as I am acquainted with them.

Andrade :
&quot; Les bases exp6rimentales de la geometrie euclidienne &quot;

;
Rev. Phil.

1890, ii., and 1891, i.

Bonnel : &quot;Les hypotheses dans la geometric
&quot;

; Gauthier-Villars, 1897.

L Abbe de Broglie: &quot;La geometric non-euclidienne,&quot; two articles
;
Annales de

Phil. Chret. 1890.

Calinon: &quot;Les espaces geometriques
&quot;

; Rev. Phil. 1889, i., and 1891, n.

&quot; Sur Pindetermination ge&quot;ometrique de 1 univers
&quot;

;
ib. 1893, n.

Couturat : &quot;L Annee Philosophique de F. Pillon,&quot; Eev. de Met. et de Morale,

Jan. 1893.
&quot; Note sur la geometric non-euclidienne et la relativit6 de 1 espace&quot;;

ib., May, 1893.
&quot; Etudes sur 1 espace et le temps,&quot; ib. Sep. 1896.

Delbceuf: &quot;L ancienne et les nouvelles geometries,&quot; four articles; Rev. Phil.

18935.
Lechalas: &quot; La geometric generale

&quot;

;
Grit. Phil. 1889.

&quot; La geometric generale et les jugements synthetiques a priori
&quot; and

&quot;Les bases expdrimentales de la geometric&quot; ;
Rev. Phil. 1890, n.

&quot; M. Delboauf et Le probleme des mondes semblables &quot;

; ib. 1894, i.

&quot;Note sur la geometric non-euclidienne et le principe de similitude
&quot;

;

Rev. de Me&quot;t. et de Morale, March, 1893.

&quot;La courbure et la distance en geometric generale&quot;; ib., March,
1896.

&quot; La geometric generale et 1 intuition
&quot;

;
Annales de Phil. Chret., 1890.

&quot; Etude sur 1 espace et le temps&quot; ; Paris, Alcan, 1896.

Liard: &quot;Des definitions geometriques et des d6finitions empiriques,&quot; 2nd ed. ;

Paris, Alcan, 1888.

Mansion : Premiers principes de la m6tagometrie
&quot;

; two articles in Rev.

Neo-Scholastique, 1896. Separately published, Gauthier-Villars, 1896.

Milhaud : &quot;La geometrie non-euclidienne et la theorie de la connaissance &quot;

;

Rev. Phil. 1888, i.

Poincare: &quot;Non-Euclidian Geometry&quot;; Nature, Vol. XLV., 1891 2.

&quot; L espace et la geometrie
&quot;

;
Rev. de M6t. et de Morale, Nov. 1895.

&quot;

Reponse a quelques critiques,&quot; ib. Jan. 1897.

Renouvier: &quot;Philosophic de la regie et du compas
&quot;

; Grit. Phil., 1889, and

L Annee Phil., nme ann^e, 1891.

Sorel : &quot;Sur la geometric non-euclidienne &quot;

;
Rev. Phil., 1891, i.

Tannery:
&quot; Theorie de la connaissance mathematique&quot;; Rev. Phil., 1894, n.



PHILOSOPHICAL THEORIES OF GEOMETRY. 115

we refused, for the present, to discuss the connection of the

a priori with the subjective, regarding the purely logical test

as sufficient for our immediate purpose. We also refused to

attach importance to the distinction of analytic and synthetic,

since it seemed to apply, not to different judgments, but only to

different aspects of any judgment.
We then discussed Riemann s attempt to identify the

empirical element in Geometry with the element not de-

ducible from ideas of magnitude, and we decided that this

identification was due to a confusion as to the nature of magni
tude. For judgments of magnitude, we said, require always
some qualitative basis, which is not quantitatively expressible.

In criticizing Helmholtz, we decided that Mechanics logically

presupposes Geometry, though space presupposes matter; but

that the matter which space presupposes, and to which Geometry

indirectly refers, is a more abstract matter than that of Mechanics,

a matter destitute of force and of causal attributes, and possessed

only of the purely spatial attributes required for the possibility

of spatial figures. But we conceded that Geometry, when applied

to mixed mathematics or to daily life, demands more than this,

demands, in fact, some means of discovering, in the more concrete

matter of Mechanics, either a rigid body, or a body whose de

parture from rigidity follows some empirically discoverable law.

Actual measurement, therefore, we agreed to regard as em

pirical.

Our conclusions, as regards the empiricism of Riemann and

Helmholtz, were reinforced by a criticism of Erdmann. We then

had an opposite task to perform, in defending Metageometry

against Lotze. Here we saw that there are two senses in which

Metageometry is possible. The first concerns our actual space,

and asserts that it may have a very small space-constant ;
the

second concerns philosophical theories of space, and asserts a

purely logical possibility, which leaves the decision to experi

ence. We saw also that Lotze s mathematical strictures arose

from insufficient knowledge of the subject, and could all be

refuted by a better acquaintance with Metageometry.

Finally, we discussed the question of absolute magnitude,
and found in it no logical obstacle to non-Euclidean spaces.

Our conclusion, then, in so far as we are as yet entitled to a
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conclusion, is that all spaces with a space-constant are a priori

justifiable,
and that the decision between them must be the

work of experience. Spaces without a space-constant, on

the other hand, spaces, that is, which are not homogeneous

throughout, we found logically unsound and impossible to know,

and therefore to be condemned a priori. The constructive

proof of this thesis will form the argument of the following

chapter.



CHAPTER III.

Section A.

THE AXIOMS OF PROJECTIVE GEOMETRY.

102. PROJECTIVE Geometry proper, as we saw in Chapter i.,

does not employ the conception of magnitude, and does not,

therefore, require those axioms which, in the systems of the

second or metrical period, were required solely to render possible

the application of magnitude to space. But we saw, also, that

Cayley s reduction of metrical to projective properties was

purely technical and philosophically irrelevant. Now it is in

metrical properties alone apart from the exception to the

axiom of the straight line, which itself, however, presupposes
metrical properties

1

that noil- Euclidean and Euclidean spaces

differ. The properties dealt with by projective Geometry,

therefore, in so far as these are obtained without the use of

imaginaries, are properties common to all spaces. Finally, the

differences which appear between the Geometries of different

spaces of the same curvature e.g. between the Geometries of

the plane and the cylinder are differences in projective pro

perties
2
. Thus the necessity which arises, in metrical Geometry,

for further qualifications besides those of constant curvature,

disappears when our general space is denned by purely pro

jective properties.

103. We have good ground for expecting, therefore, that

the axioms of projective Geometry will be the simplest and

most complete expression of the indispensable requisites of

1 See infra, Axiom of Distance, in Sec. B. of this Chapter.
- Thus on a cylinder, two geodesies, e.g. a generator and a helix, may have

any number of intersections a very important difference from the plane.
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any geometrical reasoning : and this expectation, I hope, will

not be disappointed. Projective Geometry, in so far as it

deals only with the properties common to all spaces, will be

found, if I am not mistaken, to be wholly d priori, to take

nothing from experience, and to have, like Arithmetic, a creature

of the pure intellect for its object. If this be so, it is that

branch of pure mathematics which Grassmann, in his Ausdehn-

ungslehre of 1844, felt to be possible, and endeavoured, in a

brilliant failure, to construct without any appeal to the space of

intuition.

104. But unfortunately, the task of discovering the axioms

of project!ve Geometry is far from easy. They have, as yet,

found no Riemami or Helmholtz to formulate them philo

sophically. Many geometers have constructed systems, which

they intended to be, and which, with sufficient care in interpre

tation, really are, free from metrical presuppositions. But

these presuppositions are so rooted in all the very elements

of Geometry, that the task of eliminating them demands a

reconstruction of the whole geometrical edifice. Thus Euclid,

for example, deals, from the start, with spatial equality he

employs the circle, which is necessarily defined by means of

equality, and he bases all his later propositions on the con

gruence of triangles as discussed in Book I.
1 Before we can

use any elementary proposition of Euclid, therefore, even if

this expresses a projective property, we have to prove that the

property in question can be deduced by projective methods.

This has not, in general, been done by projective geometers,

who have too often assumed, for example, that the quadrilateral

construction by which, as we saw in Chap. I., they introduce

projective coordinates or anharmonic ratio, which is primd

facie metrical, could be satisfactorily established on their prin

ciples. Both these assumptions, however, can be justified/and

we may admit, therefore, that the claims of projective Geometry
to logical independence of measurement or congruence are

valid. Let us see, then, how it proceeds.

105. In the first place, it is important to realize that

1 Cf . Cremona, Projective Geometry (Clarendon Press, 2nd ed. 1893) p. 50 :

&quot; Most of the propositions in Euclid s Elements are metrical, and it is not easy

to find among them an example of a purely descriptive theorem.&quot;
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when coordinates are used, in protective Geometry, they are

not coordinates in the ordinary metrical sense, i.e. the numerical

measures of certain spatial magnitudes. On the contrary, they

are a set of numbers, arbitrarily but systematically assigned

to different points, like the numbers of houses in a street, and

serving only, from a philosophical standpoint, as convenient

designations for points which the investigation wishes to dis

tinguish. But for the brevity of the alphabet, in fact, they

might, as in Euclid, be replaced by letters. How they are

introduced, and what they mean, has been discussed in Chapter I.

Here we have only to repeat a caution, whose neglect has led

to much misunderstanding.
106. The distinction between various points, then, is not

a result, but a condition, of the projective coordinate system.

The coordinate system is a wholly extraneous, and merely con

venient, set of marks, which in no way touches the essence

of projective Geometry. What we must begin with, in this

domain, is the possibility of distinguishing various points from

one another. This may be designated, with Veronese, as the

first axiom of Geometry
1

. How we are to define a point, and

how we distinguish it from other points, is for the moment

irrelevant; for here we only wish to discover the nature of

projective Geometry, and the kind of properties which it uses

and demonstrates. How, and with what justification, it uses

and demonstrates them, we will discuss later.

107. Now it is obvious that a mere collection of points,

distinguished one from another, cannot found a Geometry:
we must have some idea of the manner in which the points

are interrelated, in order to have an adequate subject-matter

for discussion. But since all ideas of quantity are excluded,

the relations of points cannot be relations of distance in the

ordinary sense, nor even, in the sense of ordinary Geometry,
anharmonic ratios, for anharmonic ratios are usually defined

as the ratios of four distances, or of four sines, and are thus

quantitative. But since all quantitative comparison presupposes
an identity of quality, we may expect to find, in projective Geo

metry, the qualitative substrata of the metrical superstructure.

And this, we shall see, is actually the case. We have not

1

Op. cit. p. 22G.
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distance, but we have the straight line
;
we have not quantitative

anharmonic ratio, but we have the property, in any four points

on a line, of being the intersections with the rays of a given

pencil. And from this basis, we can build up a qualitative

science of abstract externality, which is projective Geometry.
How this happens, I shall now proceed to show.

108. All geometrical reasoning is, in the last resort, cir

cular : if we start by assuming points, they can only be denned

by the lines or planes which relate them
;
and if we start

by assuming lines or planes, they can only be denned by the

points through which they pass. This is an inevitable circle,

whose ground of necessity will appear as we proceed. It is,

therefore, somewhat arbitrary to start either with points or

with lines, as the eminently projective principle of duality

mathematically illustrates
;

nevertheless we will elect, with

most geometers, to start with points
1

. We suppose, therefore,

as our datum, a set of discrete points, for the moment without

regard to their interconnections. But since connections are

essential to any reasoning about them as a system, we intro

duce, to begin with, the axiom of the straight line. Any two

of our points, we say, lie on a line which those two points com

pletely define. This line, being determined by the two points,

may be regarded as a relation of the two points, or an adjective

of the system formed by both together. This is the only purely

qualitative adjective as will be proved later of a system of

two points. Now projective Geometry can only take account

of qualitative adjectives, and can distinguish between different

points only by their relations to other points, since all points,

per se
y
are qualitatively similar. Hence it comes that, for

projective Geometry, when two points only are given, they are

qualitatively indistinguishable from any two other points on

the same straight line, since any two such other points have

the same qualitative relation. Reciprocally, since one straight

line is a figure determined by any two of its points, and all

points are qualitatively similar, it follows that all straight lines

are qualitatively similar. We may regard a point, therefore,

as determined by two straight lines which meet in it, and the

1 Some ground for this choice will appear when we come to metrical

Geometry.
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point, on this view, becomes the only qualitative relation

between the two straight lines. Hence, if the point only be

regarded as given, the two straight lines are qualitatively

indistinguishable from any other pair through the point.

109. The extension of these two reciprocal principles is

the essence of all projective transformations, and indeed of all

projective Geometry. The fundamental operations, by which

figures are protectively transformed, are called projection and

section. The various forms of projection and section are defined

in Cremona s
&quot;

Projective Geometry,&quot; Chapter I., from which

I quote the following account.
&quot; To project from a fixed point S (the centre of projection)

a figure (ABCD... abed...) composed of points and straight lines,

is to construct the straight lines or projecting rays SA, SB, SC,

D,...and the planes (projecting planes) Sa, Sb, Sc, Sd,.... We
thus obtain a new figure composed of straight lines and planes

which all pass through the centre S.

&quot; To cut by a fixed plane a (transversal plane) a figure (affyS

...abed...) made up of planes and straight lines, is to construct

the straight lines or traces aa, cr$, cry... and the points or traces

a-a, &amp;lt;rb,
ac ...

1
. By this means we obtain a new figure composed

of straight lines and points lying in the plane a.

&quot; To project from a fixed straight line s (the axis) a figure

ABCD composed of points, is to construct the planes sA, sB,

sC.... The figure thus obtained is composed of planes which

all pass through the axis s.

&quot; To cut by a fixed straight line s (a transversal) a figure

a/378... composed of planes, is to construct the points sa, s/3,

sy In this way a new figure is obtained, composed of points

all lying on the fixed transversal s.

&quot;If a figure is composed of straight lines
, 6, c... which all

pass through a fixed point or centre S, it can be projected from

a straight line or axis s passing through S ;
the result is a figure

composed of planes sa, sb, sc....

&quot;If a figure is composed of straight lines
, b, c... all lying

in a fixed plane, it may be cut by a straight line (transversal)

1 The straight line era denotes the straight line common to the planes a and

a, the point &amp;lt;ra denotes the point common to the plane a and the straight line

a, and similarly for the rest of the notation.
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s lying in the same plane ;
the figure which results is formed

by the points sa, sb, sc...&quot;

110. The successive application, to any figure, of two

reciprocal operations of projection and section, is regarded as

producing a figure protectively indistinguishable from the first,

provided only that the dimensions of the original figure were

the same as those of the resulting figure, that, for example,
if the second operation be section by a plane, the original

figure shall have been a plane figure. The figures obtained

from a given figure, by projection or section alone, are related

to that figure by the principle of duality, of which we shall

have to speak later on.

I shall endeavour to show, in what follows, first, in what

sense figures obtained from each other by projective trans

formation are qualitatively alike; secondly, what axioms, or

adjectives of space, are involved in the principle of projective

transformation
;
and thirdly, that these adjectives must belong

to any form of externality with more than one dimension, and

are, therefore, a priori properties of any possible space.
For the sake of simplicity, I shall in general confine myself

to two dimensions. In so doing, I shall introduce no important
difference of principle, and shall greatly simplify the mathe

matics involved.

111. The two mathematically fundamental things in pro

jective Geometry are anharmonic ratio, and the quadrilateral

construction. Everything else follows mathematically from

these two. Now what is meant, in projective Geometry, by
anharmonic ratio ?

If we start from anharmonic ratio as ordinarily defined,

we are met by the difficulty of its quantitative nature 1
. But

among the properties deduced from this definition, many, if

not most, are purely qualitative. The most fundamental of

these is that, if through any four points in a straight line

we draw four straight lines which meet in a point, and if we

then draw a new straight line meeting these four, the four new

1 Cremona (op. cit. Chap. ix. p. 50) defines anharmonic ratio as a metrical

property which is unaltered by projection. This, however, destroys the logical

independence of projective Geometry, which can only be maintained by a purely

descriptive definition.
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points of intersection have the same anharmonic ratio as the

four points we started with. Thus, in the figure, abed, a b cd
,

a&quot;b&quot;c&quot;d&quot;,
all have the same anharmonic ratio. The reciprocal

relation holds for the anharmonic ratio of four straight lines.

Here we have, plainly, the required basis for a qualitative

definition. The definition must be as follows :

Two sets of four points each are defined as having the same

anharmonic ratio, when (1) each set of four lies in one straight

line, and (2) corresponding points of different sets lie two by two

on four straight lines through a single point, or when both sets

have this relation to any third set
l

. And reciprocally : Two sets

of four straight lines are defined as having the same anharmonic

ratio when (1) each set of four passes through a single point,

and (2) corresponding lines of different sets pass, two by two,

through four points in one straight line, or when both sets have

this relation to any third set.

Two sets of points- or of lines, which have the same anhar

monic ratio, are treated by project!ve Geometry as equivalent :

this qualitative equivalence replaces the quantitative equality

of metrical Geometry, and is obviously included, by its defini

tion, in the above account of protective transformations in

general.

112. We have next to consider the quadrilateral con-

1 There is no corresponding property of three points on a line, because they

can be protectively transformed into any other three points on the same line.

See 120.
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struction 1
. This has a double purpose : first, to define the

important special case known as a harmonic range ;
and secondly,

to afford an unambiguous and exhaustive method of assigning

different numbers to different points. This last method has,

again, a double purpose : first, the purpose of giving a con

venient symbolism for describing and distinguishing different

points, and of thus affording a means for the introduction of

analysis ;
and secondly, of so assigning these numbers that, if

they had the ordinary metrical significance, as distances from

some point on the numbered straight line, they would yield

1 as the anharmonic ratio of a harmonic range, and that,

if four points have the same anharmonic ratio as four others,

so have the corresponding numbers. This last purpose is due

to purely technical motives : it avoids the confusion with our

preconceptions which would result from any other value for

a harmonic range ;
it allows us, when metrical interpretations

of projective results are desired, to make these interpretations

without tedious numerical transformations, and it enables us

to perform projective transformations by algebraical methods.

At the same time, from the strictly projective point of view,

as observed above, the numbers introduced have a purely

conventional meaning ;
and until we pass to metrical Geometry,

no reason can be shown for assigning the value 1 to a har

monic range.. With this preliminary, let us see in what the

quadrilateral construction consists.

113. A harmonic range, in elementary Geometry, is one

whose anharmonic ratio is 1, or one in which the three

segments formed by the four points are in harmonic pro

gression, or again, one in which the ratio of the two internal

segments is equal to the ratio of the two external segments.

If a, b, c, d be the four points, it is easily seen that these

definitions are equivalent to one another : they give re

spectively :

ab lad 1111 , ab ad
-

/
= - 1. -j- =.. 7 ,

and 7
= = .

be dc ab ac etc ad be cd

1 Due to v. Staudt s &quot;Geoinetrie der Lage.&quot;
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But as they are all quantitative, they cannot be used for our

present purpose. Nor are any definitions which involve bi

section of lines or angles available. We must have a definition

which proceeds entirely by the help of straight lines and

points, without measurement of distances or angles. Now from

the above definitions of a harmonic range, we see that a, 6, c, d

have the same anharmomc ratio as c, b, a, d. This gives us

the property we require for our definition. For it shows that,

in a harmonic range, we can find a projective transformation

which will interchange a and c. This is a necessary and suf

ficient condition for a harmonic range, and the quadrilateral

construction is the general method for giving effect to it.

Given any three points A, B, D in one straight line, the

quadrilateral construction finds the point C harmonic to A
with respect to B, D by the following method : Take any point

outside the straight line ABD, and join it to B and D.

Through A draw any straight line cutting OD, OB in P and Q.

T.

Join DQ, BP, and let them intersect in E. Join OR, and let

OR meet ABD in C. Then C is the point required.

To prove this, let DRQ meet OA in T, and draw AR,

meeting OD in S. Then a projective transformation of A, B, C,D
from R on to OD gives the points S, P, 0, D, which, projected

from A on to DQ, give R, Q, T, D. But these again, projected

from on to ABD, give C, B, A, D. Hence A, B, (7, D can

be projectively transformed into C, B, A, D, and therefore

form a harmonic range. From this point, the proof that the

construction is unique and general follows simply
1

. .

1 See Cremona, op. cit. Chapter vui.



126 FOUNDATIONS OF GEOMETRY.

The introduction of numbers, by this construction, offers

no difficulties of principle except, indeed, those which always
attend the application of number to continua and may be

studied satisfactorily in Klein s Nicht-Euklid (i. p. 337 ff.).
The

principle of it is, to assign the numbers 0, 1, oo to A, B, D and

therefore the number 2 to 0, in order that the differences AB,
AC, AD may be in harmonic progression. By taking B, G, D as

a new triad corresponding to A, B, D, we find a point harmonic

to B with respect to G, D and assign to it the number 3, and so

on. In this way, we can obtain any number of points, and

we are sure of having no number and no point twice over,

so that our coordinates have the essential property of a unique

correspondence with the points they denote, arid vice versa.

114. The point of importance in the above construction,

however, and the reason why I have reproduced it in detail,

is that it proceeds entirely by means of the general principles

of transformation enunciated above. From this stage onwards,

everything is effected by means of the two fundamental ideas

we have just discussed, and everything, therefore, depends on

our general principle of project!ve equivalence. This principle,

as regards two dimensions, may be stated more simply than

in the passage quoted from Cremona. It starts, in two

dimensions, from the following definitions :

To project the points A, B, G. D... from a centre 0, is to

construct the straight lines OA, OB, OG, OD....

To cut a number of straight lines a, 6, c, d. . . by a transversal

s, is to construct the points sa, sb, sc, sd. . .

1
.

The successive application of these two operations, provided
the original figure consisted of points on one straight line or

of straight lines through one point, gives a figure protectively

indistinguishable from the former figure ;
and hence, by ex

tension, if any points in one straight line in the original figure

lie in one straight line in the derived figure, and reciprocally

for straight lines through points, the two operations have

given* projectively similar figures. This general principle may
be regarded as consisting of two parts, according to the order

of the operations : if we begin with projection and end with

1 The corresponding definitions, for the two-dimensional manifold of lines

through a point, follow by the principle of duality.
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section, we transform a figure of points into another figure of

points; by the converse order, we transform a figure of lines

into another figure of lines.

115. Before we can be clear as to the meaning of our

principle, we must have some notion as to our definition of

points and straight lines. But this definition, in projective

Geometry, cannot be given without some discussion- of the

principle of duality, the mathematical form of the philosophical

circle involved in geometrical definitions.

Confining ourselves for the moment to two dimensions,

the principle asserts, roughly speaking, that any theorem,

dealing with lines through a point and points on a line, remains

true if these two terms, wherever they occur, are interchanged.
Thus : two points lie on one straight line which they completely
determine

;
and two straight lines meet in one point, which

they completely determine. The four points of intersection of

a transversal with four lines through a point have an an-

harmonic ratio independent of the particular transversal; and

the four lines joining four points on one straight line to a

fifth point have an anharmonic ratio independent of that fifth

point. So also our general principle of projective transforma

tion has two sides : one in which points move along fixed lines,

and one in which lines turn about fixed points.

This duality suggests that any definition of points must

be effected by means of the straight line, and any definition

of the straight line must be effected by means of points. When
we take the third dimension into account, it is true, the duality
is no longer so simple ;

we have now to take account also of

the plane, but this only introduces a circle of three terms,

which is scarcely preferable to a circle of two terms. We now

say : Three points, or a line and a point, determine a plane :

but conversely, three planes, or a line and plane, determine

a point. We may regard the straight line as a relation between

two of its points, but we may also regard the point as a relation

between two straight lines through it. We may regard the

plane as a relation between three points, or between a point
and a line, but we may also regard the point as a relation

between three planes, or between a line and a plane, which

meet in it.
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116. How are we to get outside this circle ? The fact

is that, in pure Geometry, we cannot get outside it. For space,

as we shall see more fully hereafter, is nothing but relations
;

if, therefore, we take any spatial figure, and seek for the terms

between which it is a relation, we are compelled, in Geometry,
to seek these terms within space, since we have nowhere else

to seek them, but we are doomed, since anything purely spatial

is a mere relation, to find our terms melting away as we grasp
them.

Thus the relativity of space, while it is the essence of the

principle of duality, at the same time renders impossible the

expression of that principle, or of any other principle of pure

Geometry, in a manner which shall be free from contradictions.

Nevertheless, if we are to advance at all with our analysis of

geometrical reasoning and with our definitions of lines and

points, we must, for a while, ignore this contradiction
;
we

must argue as though it did not exist, so as to free our science

from any contradictions which are not inevitable.

117. In accordance with this procedure, then, let us define

our points as the terms of spatial relations, regarding whatever

is not a point as a relation between points. What, on this

view, must our points be taken to be ? Obviously, if extension

is mere relativity, they must be taken to contain no extension
;

but if they are to supply the terms for spatial relations, e.g.

for straight lines, these relations must exhibit them as the

terms of the figures they relate. In other words, since what

can really be taken, without contradiction, as the term of

a spatial relation, is unextended, we must take, as the term

to be used in Geometry, where we cannot go outside space,

the least spatial thing which Geometry can deal with, the

thing which, though in space, contains no space ;
and this

thing we define as the point
1

.

Neglecting, then, the fundamental contradiction in this

definition, the rest of our definitions follow without difficulty.

1 It is important to observe that this definition of the Point introduces

metrical ideas. Without metrical ideas, we saw, nothing appears to give the

Point precedence of the straight line, or indeed to distinguish it conceptually

from the straight line. A reference to quantity is therefore inevitable in

defining the Point, if the definition is to be geometrical. A non-metrical

definition would have -to be also non-geometrical. See Chap. iv. 196-199.
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The straight line is the relation between two points, and the

plane is the relation between three. These definitions will be

argued and defended at length in section B of this Chapter
1

,

where we can discuss at the same time the alternative

metrical definitions; for our present purpose, it is sufficient

to observe that projective Geometry, from the first, regards
the straight line as determined by two points, and the plane
as determined by three, from which it follows, if we take points
as possible terms for spatial relations, that the straight line

and the plane may be regarded as relations between two and
three points respectively. If we agree on these definitions,

we can proceed to discuss the fundamental principle of pro

jective Geometry, and to analyse the axioms implicated in

its truth.

118. Projective Geometry, we have seen, does not deal

with quantity, and therefore recognizes no difference where

the difference is purely quantitative. Now quantitative com

parison depends on a recognized identity of quality ;
the recog

nition of qualitative identity, therefore, is logically prior to

quantity, and presupposed by every judgment of quantity.
Hence all figures, whose differences can be exhaustively de

scribed by quantity, i.e. by pure measurement, must have an

identity of quality, and this must be recognizable without

appeal to quantity. It follows that, by defining the word

quality in geometrical matters, we shall discover what sets

of figures are protectively indiscernible. If our definition is

correct, it ought to yield the general projective principle with

which we set out.

119. We agreed to regard points as the terms of spatial

relations, and we agreed that different points could be dis

tinguished. But we postponed the discussion of the conditions

under which this distinction could be effected. This discussion

will yield us the definition of quality and the proof of our

general projective principle.

Points, to begin with, have been defined as nothing but

the terms for spatial relations. They have, therefore, no in

trinsic properties; but are distinguished solely by means of

their relations. Now the relation between two points, we said,

1 163-175.

B. G. 9
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is the straight line on which they lie. This gives that identity
of quality for all pairs of points on the same straight line,

which is required both by our projective principle and by
metrical Geometry. (For only where there is identity of

quality can quantity be properly applied.) If only two points

are given, they cannot, without the use of quantity, be dis

tinguished from any two other points on the same straight

line
;
for the qualitative relation between any two such points

is the same as for the original pair, and only by a difference

of relation can points be distinguished from one another.

But conversely, one straight line is nothing but the relation

between two of its points, and all points are qualitatively alike.

Hence there can be nothing to distinguish one straight line

from another except the points through which it passes, and

these are distinguished from other points only by the fact that

it passes through them. Thus we get the reciprocal trans

formation : if we are given only one point, any pair of straight

lines through that point is qualitatively indistinguishable from

any other. This again is, on the one hand, the basis of the

second part of our general projective principle, and on the

other hand the condition of applying quantity, in the measure

ment of angles, to the departure of two intersecting straight

lines.

120. We can now see the reason for what may have

hitherto seemed a somewhat arbitrary fact, namely, the neces

sity of four collinear points for anharmonic ratio. Recurring
to the quadrilateral construction and the consequent intro

duction of number, we see that anharmonic ratio is an intrinsic

projective relation of four collinear points or concurrent straight

lines, such that given three terms and the relation, the fourth

term can be uniquely determined by projective methods. Now
consider first a pair of points. Since all straight lines are

projectively equivalent, the relation between one pair of points

is precisely equivalent to that between another pair. Given

one point only, therefore, no projective relation, to any second

point, can be assigned, which shall in any way limit our choice

of the second point. Given two points, however, there is such

a relation the third point may be given collinear with the

first two. This limits its position to one straight line, but
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since two points determine nothing but one straight line, the

third point cannot be further limited. Thus we see why no
intrinsic projective relation can be found between three points,

which shall enable us, from two, uniquely to determine the third.

With three given collinear points, however, we have more

given than a mere straight line, and the quadrilateral con

struction enables us uniquely to determine any number of

fresh collinear points. This shows why anharmonic ratio

must be a relation between four points, rather than between

three.

121. We can now prove, I think, that two figures, which

are protectively related, are qualitatively similar. Let us begin
with a collection of points on a straight line. So long as these

are considered without reference to other points or figures, they
are all qualitatively similar. They can be distinguished by
immediate intuition, but when we endeavour, without quantity,
to distinguish them conceptually, we find the task impossible,

since the only qualitative relation of any two of them, the

straight line, is the same for any other two. But now let us

choose, at hap-hazard, some point outside the straight line.

The points of our line now acquire new adjectives, namely their

relations to the new point, i.e. the straight lines joining them
to this new point. But these straight lines, reciprocally, alone

define our external point, and all straight lines are qualita

tively similar. If we take some other external point, therefore,

and join it to the same points of our original straight line, we
obtain a figure in which, so long as quantity is excluded, there

is no conceptual difference from the former figure. Immediate

intuition can distinguish the two figures, but qualitative dis

crimination cannot do so. Thus we obtain a projective trans

formation of four lines into four other lines, as giving a figure

qualitatively indistinguishable from the original figure. A
similar argument applies to the other projective transforma

tions. Thus the only reason, within projective Geometry, for

not regarding projective figures as actually identical, is the

intuitive perception of difference of position. This is funda

mental, and must be accepted as a datum. It is presupposed
in the distinction of various points, and forms the very life of

Geometry. It is, in fact, the essence of the notion of a form of

92
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externality, which notion forms the subject-matter of projective

Geometry.
122. We may now sum up the results of our analysis of

projective Geometry, and state the axioms on which its reason

ing is based. We shall then have to prove that these axioms

are necessary to any form of externality, with which we shall

pass, from mere analysis, to a transcendental argument.
The axioms which have been assumed in the above analysis,

and which, it would seem, suffice to found projective Geometry,

may be roughly stated as follows :

I. We can distinguish different parts of space, but all parts

are qualitatively similar, and are distinguished only by the

immediate fact that they lie outside one another.

II. Space is continuous and infinitely divisible
;
the result

of infinite division, the zero of extension, is called a point
l
.

III. Any two points determine a unique figure, called a

straight line, any three in general determine a unique figure,

the plane. Any four determine a corresponding figure of three

dimensions, and for aught that appears to the contrary, the

same may be true of any number of points. But this process
comes to an end, sooner or later, with some number of points
which determine the whole of space. For if this were not the

case, no number of relations of a point to a collection of given

points could ever determine its relation to fresh points, and

Geometry would become impossible
2

.

This statement of the axioms is not intended to have any
exclusive precision : other statements equally valid could easily

be made. For all these axioms, as we shall see hereafter, are

philosophically interdependent, and may, therefore, be enun

ciated in many ways. The above statement, however, includes,

if I am not mistaken, everything essential to projective

Geometry, and everything required to prove the principle of

projective transformation. Before discussing the apriority of

these axioms, let us once more briefly recapitulate the ends

which they are intended to attain.

123. From the exclusively mathematical standpoint, as we

1 On this axiom, however, compare 131.

2 For the proof of this proposition, see Chap. in. Sec. B, Axiom of

Dimensions,
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have seen, project!ve Geometry discusses only what figures can

be obtained from each other by projective transformations, i.e.

by the operations of projection and section. These operations,
in all their forms, presuppose the point, straight line, and

plane
1

,
whose necessity for projective Geometry, from the purely

mathematical point of view, is thus self-evident from the start.

But philosophically, projective Geometry has, as we saw, a

wider aim. This wider aim, which gives, to the investigation
of projectively equivalent figures, its chief importance, consists

in the determination of qualitative spatial similarity, in the

determination, that is, of all the figures which, when any one

figure is given, can be distinguished from the given figure, so

long as quantity is excluded, only by the mere fact that they
are external to it.

124. Now when we consider what is involved in such

absolute qualitative equivalence, we find at once, as its most

obvious prerequisite, the perfect homogeneity of space. For it

is assumed that a figure can be completely defined by its

internal relations, and that the external relations, which con

stitute its position, though they suffice to distinguish it from

other figures, in no way affect its internal properties, which are

regarded as qualitatively identical with those of figures with

quite different external relations. If this were not the case,

anything analogous to projective transformation would be im

possible. For such transformation always alters the position,

i.e. the external relations, of a figure, and could not, therefore,

if figures were dependent on their relations to other figures or

to empty space, be studied without reference to other figures,

or to the absolute position of the original figure. We require

for our principle, in short, what may be called the mutual

passivity and reciprocal independence of two parts or figures of

space.

This passivity and this independence involve the homo

geneity of space, or its equivalent, the relativity of position.

1 The straight line and plane, in all discussions of general Geometry, are not

necessarily Euclidean. They are simply figures determined, in general, by two

and by three points respectively ;
whether they conform to the axiom of parallels

and to Euclid s form of the axiom of the straight line, is not to be considered in

the general definition.
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For if the internal properties of a figure are the same, what

ever its external relations may be, it follows that all parts of

space are qualitatively similar, since a change of external

relation is a change in the part of space occupied. It follows,

also, that all position is relative and extrinsic, i.e., that the

position of a point, or the part of space occupied by a figure,

is not, and has no effect upon, any intrinsic property of the

point or figure, but is exclusively a relation to other points

or figures in space, and remains without effect except where

such relations are considered.

125. The homogeneity of space and the relativity of

position, therefore, are presupposed in the qualitative spatial

comparison with which protective Geometry deals. The latter,

as we saw, is also the basis of the principle of duality. But

these properties, as I shall now endeavour to prove, belong of

necessity to any form of externality, and are thus a priori

properties of all possible spaces. To prove this, however, we

must first define the notion of a form of externality in general.

Let us observe, to begin with, that the distinction between

Euclidean and non-Euclidean Geometries, so important in me
trical investigations, disappears in projective Geometry proper.

This suggests that projective Geometry, though originally

invented as the science of Euclidean space, and subsequently of

non-Euclidean spaces also, deals really with a wider conception,

a conception which includes both, and neglects the attributes

in which they differ. This conception I shall speak of as a

form of externality.

126. In Grassmann s profound philosophical introduction

to his Ausdehnungslehre of 1844, he suggested that Geometry,

though improperly regarded as pure, was really a branch of

applied mathematics, since it dealt with a subject-matter not

created, like number, by the intellect, but given to it, and there

fore not wholly subject to its laws alone. But it must be possible

so he contended to construct a branch of pure mathematics,

a science, that is, in which our object should be wholly a creature

of the intellect, which should yet deal, as Geometry does, with

extension extension as conceived, however, not as empirically

perceived in sensation or intuition.

From this point of view, the controversy between Kantians
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and anti-Kantians becomes wholly irrelevant, since the distinc

tion between pure and mixed mathematics does not lie in the

distinction between the subjective and the objective, but

between the purely intellectual on the one hand, and everything

else on the other. Now Kant had contended, with great em

phasis, that space was not an intellectual construction, but a

subjective intuition. Geometry, therefore, with Grassmann s

distinction, belongs to mixed mathematics as much on Kant s

view as on that of his opponents. And Grassmann s distinction,

I contend, is the more important for Epistemology, and the one

to be adopted in distinguishing the a priori from the empirical.

For what is merely intuitional can change, without upsetting

the laws of thought, without making knowledge formally im

possible : but what is purely intellectual cannot change, unless

the laws of thought should change, and all our knowledge

simultaneously collapse. I shall therefore follow Grassmann s

distinction in constructing an a priori and purely conceptual

form of externality.

127. The pure doctrine of extension, as constructed by

Grassmann, need not be discussed it included much empirical

material, and was philosophically a failure. But his principles,

I think, will enable us to prove that projective Geometry,

abstractly interpreted, is the science which he foresaw, and

deals with a matter which can be constructed by the pure
intellect alone. If this be so, however, it must be observed

that projective Geometry, for the moment, is rendered purely

hypothetical
1

. All necessary truth, as Bradley has shown, is

hypothetical
2
,
and asserts, primd fade, only the ground on

which rests the necessary connection of premisses and con

clusion. If we construct a mere conception of externality, and

thus abandon our actually given space, the result of our con

struction, until we return to something actually given, remains

without existential import if there be experienced externality,

it asserts, then there must be a form of externality with such

and such properties. That there must be experienced exter

nality, Kant s first argument about space proves, I think, to

1 That projective Geometry must have existential import, I shall attempt to

prove in Chapter iv.

2
Logic, Book i. Chapter n.
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those who admit experience of a world of diverse but inter

related things. But this is a question which belongs to the

next Chapter.
What we have to do here is, not to discuss whether there is

a form of externality, but whether, if there be such a form, it

must possess the properties embodied in the axioms of pro-

jective Geometry. Now first of all, what do we mean by such

a form ?

128. In any world in which perception presents us with

various things, with discriminated and differentiated contents,

there must be, in perception, at least one &quot;

principle of differen

tiation V an element, that is, by which the things presented are

distinguished as various This element, taken in isolation, and

abstracted from the content which it differentiates, we may call

a form of externality. That it must, when taken in isolation,

appear as a form, and not as a mere diversity of material

content, is, I think, fairly obvious. For a diversity of material

content cannot be studied apart from that material content
;

what we wish to study here, on the contrary, is the bare

possibility of such diversity, which forms the residuum, as I

shall try to prove hereafter 2
,
when we abstract from any sense-

perception all that is distinctive of its particular matter. This

possibility, then, this principle of bare diversity, is our form of

externality. How far it is necessary to assume such a form, as

distinct from interrelated things, I shall consider later on 3
.

For the present, since space, as dealt with by Geometry, is

certainly a form of this kind, we have only to ask : What

properties must such a form, when studied in abstraction,

necessarily possess ?

129. In the first place, externality is an essentially relative

conception nothing can be external to itself. To be external

to something is to be another with some relation to that thing.

Hence, when we abstract a form of externality from all material

content, and study it in isolation, position will appear, of

1 Of. Bradley s Logic, p. 63. It will be seen that the sense in which I have

spoken of space as a principle of differentiation is not the sense of a &quot;

principle
of individuation &quot; which Bradley objects to.

2
Chap. iv. 186-191.

3
Chap. iv. 201 ff.
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necessity, as purely relative a position can have no intrinsic

quality, for our form consists of pure externality, and externality

contains no shadow or trace of an intrinsic quality. Thus we
obtain our fundamental postulate, the relativity of position, or,

as we may put it, the complete absence, on the part of our

form, of any vestige of thinghood.

The same argument may also be stated as follows : If we

abstract the conception of externality, and endeavour to deal

with it per se, it is evident that we must obtain an object alike

destitute of elements and of totality. For we have abstracted

from the diverse matter which filled our form, while any

element, or any whole, would retain some of the qualities of a

matter. Either an element or a whole, in fact, would have to

be a thing not external to itself, and would thus contain some

thing not pure externality. Hence arise infinite divisibility,

with the self-contradictory notion of the point, in the search

for elements, and unbounded extension, with the contradiction

of an infinite regress or a vicious circle, in the search for a

completed whole. Thus again, our form contains neither

elements nor totality, but only endless relations the terms of

these relations being excluded by our abstraction from the

matter which fills our form.

130. In like manner we can deduce the homogeneity of

our form. The diversity of content, which was possible only
within the form of externality, has been abstracted from,

leaving nothing but the bare possibility of diversity, the bare

principle of differentiation, itself uniform and undifferentiated.

For if diversity presupposes such a form, the form cannot,

unless it were contained in a fresh form, be itself diverse or

differentiated.

Or we may deduce the same property from the relativity of

position. For any quality in one position, by which it was

marked out from another, would be necessarily more or less

intrinsic, and would contradict the pure relativity. Hence all

positions are qualitatively alike, i.e. the form is homogeneous

throughout.

131. From what has been said of homogeneity and rela

tivity, follows one of the strangest properties of a form of

externality. This property is, that the relation of externality
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between any two things is infinitely divisible, and may be

regarded, consequently, as made up of an infinite number of the

would-be elements of our form, or again as the sum of two

relations of externality
1

. To speak of dividing or adding re

lations may well sound absurd indeed it reveals the impro

priety of the word relation in this connexion. It is difficult,

however, to find an expression which shall be less improper.
The fact seems to be, that externality is not so much a relation

as bare relativity, or the bare possibility of a relation. On this

subject, I shall enlarge in Chapter IV.
2 At this point it is

only important to realize, what the subsequent argument will

assume, that the relation if we may so call it of externality

between two or more things must, since our form is homo

geneous, be capable of continuous alteration, and must, since

our infinitely divisible form is constituted by such relations, be

capable of infinite division. But the result of infinite division

is defined as the element of our form. (Our form has no

elements, but we have to imagine elements in order to reason

about it, as will be shown more fully in Chapter IV.) Hence

it follows, that every relation of externality may be regarded,

for scientific purposes, as an infinite congeries of elements,

though philosophically, the relations alone are valid, and the

elements are a self-contradictory result of hypostatizing the

form of externality. This way of regarding relations of ex

ternality is important in understanding the meaning of such

ideas as three or four collinear points.

As this point is difficult and important, I will repeat, in

somewhat greater detail, the explanation of the manner in

which straight lines and planes come to be regarded as congeries
of points. From the strictly projective standpoint, though all

other figures are merely a collection of any required number of

points, lines or planes, given by some projective construction,

straight lines and planes themselves are given integrally, and

are not to be considered as divisible or composed of parts. To

1 It is important to observe, however, that this way of regarding spatial

relations is metrical
;
from the projective standpoint, the relation between two

points is the whole unbounded straight line on which they lie, and need not be

regarded as divisible into parts or as built up of points.
2

207, 208. Of. Hegel, Naturphilosophie, 254.
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say that a point lies on a straight line means, for project!ve

Geometry proper, that the straight line is a relation between

this and some other point. Here the points concerned, if our

statement is to be freed from contradictions, must be regarded,
if I may use such an expression, as real points i.e. as un-

extended material centres 1
. Straight lines and planes are then

relations between these material atoms. They are relations,

however, which may undergo a metrical alteration while re

maining projectively unchanged. When the protective relation

between the two points A, B is the same as that between the

two points A, C, while the metrical relation (distance) is

different, the three points A, B, C are said to be collinear.

Now the metrical manner of regarding spatial figures demands

that they should be hypostatized, and no longer regarded as

mere relations. For when we regard a quantity as extensive,

i.e. as divisible into parts, we necessarily regard it as more than

a mere relation or adjective, since no mere relation or adjective
can be divided. For quantitative treatment, therefore, spatial

relations must be hypostatized
2

. When this is done, we obtain,

as we saw above, a homogeneous and infinitely divisible form of

externality. We find now that distance, for example, may be

continuously altered without changing the straight line on

which it is measured. We thus obtain, on the straight line in

question, a continuous series of points, which, since it is

continuous, we regard as constituting our straight line. It is

thus solely from the hypostatizing of relations, which metrical

Geometry requires, that the view of straight lines and planes
as composed of points arises, and it is from this hypostatizing

that the difficulties of metrical Geometry spring.

132. The next step, in defining a form of externality, is

obtained from the idea of dimensions. Positions, we have seen,

are defined solely by their relations to other positions. But in

order that such definition may be possible, a finite number of

relations must suffice, since infinite numbers are philosophically

inadmissible. A position must be definable, therefore, if know

ledge of our form is to be possible at all, by some finite integral

1 See Chap. iv. 196-199.
- See a forthcoming article on &quot; The relations of number and quantity

&quot;

by
the present writer in Mind, July, 1897.
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number of relations to other positions. Every relation thus

necessary for definition we call a dimension. Hence we obtain

the proposition : Any form of externality must have a finite

integral number of dimensions.

133. The above argument, it may be urged, has overlooked

a possibility. It has used a transcendental argument, so an

opponent may contend, without sufficiently proving that know

ledge about externality must be possible without reference

to the matters external to each other. The definition of a

position may be impossible, so long as we neglect the matter

which fills the form, but may become possible when this matter

is taken into account. Such an objection can, I think, be

successfully met, by a reference to the passivity and homo

geneity of our form. For any dependence of the definition of

a position on the particular matter filling that position, would

involve some kind of interaction between the matter and its

position, some effect of the diverse content on the homogeneous
form. But since the form is totally destitute of thinghood,

perfectly impassive, and perfectly void of differences between its

parts, any such effect is inconceivable. An effect on a position

would have to alter it in some way, but how could it be altered ?

It has no qualities except those which make it the position it

is, as opposed to other positions; it cannot change, therefore,

without becoming a different position. But such a change
contradicts the law of identity. Hence it is not the position

which has changed, but the content which has moved in the

form. Thus it must be possible, if knowledge of our form can

be obtained at all, to obtain this knowledge in logical indepen
dence of the particular matter which fills it. The above

argument, therefore, granted the possibility of knowledge in

the department in question, shows the necessity of a finite

integral number of dimensions.

134. Let us repeat our original argument in the light of

this elucidation. A position is completely defined when, and

only when, enough relations are known to enable us to deter

mine its relation to any fresh known position. Only by relations

within the form of externality, as we have just seen, and never

by relations which involve a reference to the particular matter

filling the form, can such a definition be effected. But the
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possibility of such a definition follows from the Law of Excluded

Middle, when this law is interpreted to mean, as Bosanquet
makes it mean, that &quot;

Reality ... is a system of reciprocally

determinate parts
1

.&quot; For this implies that, given the relations

of a part A to other parts B, (7..., a sufficient wealth of such

relations throws light on the relations of B to C, etc. If this

were not the case, the parts A, B, C... could not be said to

form such a system ;
for in such a system, to define A is to

define, at the same time, all the other members, and to give
an adjective to A, is to give an adjective to B and C. But the

relations between positions are, when we restore the matter

from which the positions were abstracted, relations between

the things occupying those positions, and these relations, we

have seen, can be studied without reference to the particular

nature, in other respects, of the related things. It follows that,

when we apply the general principle of systematic unity to

these relations in particular, we find these relations to be

dependent on each other, since they are not dependent, for

their definition, on anything else. This gives the axiom of

dimensions, in the above general form, as the result, on our

abstract geometrical level, of the relativity of position and the

law of excluded middle.

135. Before proceeding further, it is necessary to discuss

the important special case where a form of externality has only
one dimension. Of the two such forms, given in experience,

one, namely time, presents an instance of this special case.

But it may be shown, I think, that the function, in constituting

the possibility of experience, which we demand of such forms,

could not be accomplished by a one-dimensional form alone.

For in a one-dimensional form, the various contents may be

arranged in a series, and cannot, without interpenetration,

change the order of contents in the series. But interpene

tration is impossible, since a form of externality is the mere

expression of diversity among things, from which it follows

that things cannot occupy the same position in a form, unless

there is another form by which to differentiate them. For

without externality, there is no diversity
2

. Thus two bodies

1
Logic, Vol. ii. Chap. vn. p. 211.

2
Real, as opposed to logical, diversity is throughout intended. Diverse
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may occupy the same space, but only at different times : two

things may exist simultaneously, but only at different places.

A form of one dimension, therefore, could not, by itself, allow

that change of the relations of externality, by which alone

a varied world of interrelated things can be brought into

consciousness. In a one-dimensional space, for example, only a

single object, which must appear as a point, or two objects at

most, one in front and one behind, could ever be perceived.

Thus two or more dimensions seem an essential condition of

anything worth calling an experience of interrelated things.

136. It may be objected, to this argument, that its

validity depends upon the assumption that the change of a

relation of externality must be continuous. Both to make and

to meet this objection, in a manner which shall riot imply time,

seems almost impossible. For we cannot speak of change,
whether continuous or discrete, without imagining time. Let

us, therefore, allow time to be known, and discuss whether the

temporal change, in any other form of externality, is necessarily
continuous 1

. We must reply, I think, that continuity is

necessary. The change of relation, in our non-temporal form,

may be safely described as motion, and the law of Causality
since we have already assumed time may be applied to this

motion. It then follows that discrete motion would involve a

finite effect from an infinitesimal cause, for a cause acting only
for a moment of time would be infinitesimal. It involves, also,

a validity in the point of time, whereas what is valid in any
form of externality is not, as we have already seen, the

infinitesimal and self-contradictory element resulting from

infinite division, but the finite relation which mathematics

analyzes into vanishing elements. Hence change must be

continuous, and the possibility of serial arrangement holds

good.

In a one-dimensional form other than time, the same

argument must hold. For something analogous to Causality
would be necessary to experience, and the relativity of the

form would still necessarily hold. Hence, since only these two

aspects may coexist in a thing at one time and place, but two diverse real

things cannot so coexist.

1 On the insufficiency of time alone, see Chapter iv. 191.
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properties of time have been assumed, the above contention

would remain valid of any second form whose relations were

correlated with those of the first, as the analogue of Causality
would require them to be.

137. The next step in the argument, which assumes two

or more dimensions, is concerned with the general analogues of

straight lines and planes, i.e. with figures which may be

regarded either as relations between positions or as series of

positions uniquely determined by two or by three positions.

If this step can be successfully taken, our deduction of the

above projective axioms will be complete, and descriptive

Geometry will be established as the abstract d priori doctrine

of forms of externality.

To prove this contention, consider of what nature the

relations can be by which positions are defined. We have seen

already that our form is purely relational and infinitely

divisible, and that positions (points) are the self-contradictory

outcome of the search for something other than relations.

What we really mean, therefore, by the relations defining a

position, is, when we undo our previous abstraction, the

relations of externality by which some thing is related to other

things. But how, when we remain in the abstract form, must

such relations appear ?

138. We have to prove that two positions must have a

relation independent of any reference to other positions. To

prove this, let us recur to what was said, in connection with

dimensions, as to the passivity and homogeneity of our form.

Since positions are defined only by relations, there must be

relations, within the form, between positions. But if there are

such relations, there must be a relation which is intrinsic to

two positions. For to suppose the contrary, is to attribute an

interaction or causal connection, of some kind, between those

two positions and other positions a supposition which the

perfect homogeneity of our form renders absurd, since all

positions are qualitatively similar, and cannot be changed
without losing their identity. We may put this argument
thus : since positions are only defined by their relations, such

definition could never begin, unless it began with a relation

between only two positions. For suppose three positions A,
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B. C were necessary, and gave rise to the relation abc between

the three. Then there would remain no means of denning the

different pairs BC, CA, AB. since the only relation defining
them would be one common to all three pairs, Nothing would

be gained, in this case, by reference to fresh points, for it

follows, from the homogeneity and passivity of the form, that

these fresh points could not affect the internal relations of our

triad, which relations, if they can give definiteness at all, must

give it without the aid of external reference. Two positions

must, therefore, if definition is to be possible, have some

relation which they by themselves suffice to define. Precisely
the same argument applies to three positions, or to four; the

argument loses its scope only when we have exhausted the

dimensions of the form considered. Thus, in three dimensions,

five positions have no fresh relation, not deducible from those

already known, for by the definition of dimensions, all the

relations involved can be deduced from those of the fourth point
to the first three, together with those of the fifth to the first three.

We may give the argument a more concrete, and perhaps a

more convincing shape, by considering the matter arranged in

our form. If two things are mutually external, they must

since they belong to the same world, have some relation of

externality; there is, therefore, a relation of externality between

two things. But since our form is homogeneous, the same

relation of externality may subsist in other parts of the form,

i.e. while the two things considered alter their relations of ex

ternality to other things. The relation of externality between

two things is, therefore, independent of other things. Hence,
when we return to the abstract language of the form, two

positions have a relation determined by those two positions

alone, and independent of other positions.

Precisely the same argument applies to the relations of

three positions, and in each case the relation must appear in

the form as not a mere inference from the positions it relates.

For relations, as we have seen, actually constitute a form of

externality, and are not mere inferences from terms, which are

nowhere to be found in the form 1
.

1
Geometrically, the axiom of the plane is, not that three points determine

a figure at all, which follows from the axiom of the straight line, but that the
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To sum up : Since position is relative, two positions must

have some relation to each other
;

and since our form of

straight line joining two casual points of the plane lies wholly in the plane.

This axiom requires a projective method of constructing the plane, i.e. of

finding all the triads of points which determine the same projective figure as

the given triad. The required construction will be obtained if we can find any

projective figure determined by three points, and any projective method

of reaching other points which determine the same figure.

Let O, P, Q be the three points whose projective relation is required.

Then we have given us the three straight lines PQ, QO, OP. Metrically, the

relation between these points is made up of the area, and the magnitude of the

sides and angles, of the triangle OPQ, just as the relation between two points

is distance. But projectively, the figure is unchanged when P and Q travel

along OP and OQ, or when OP and OQ turn about in such a way as still to

meet PQ. This is a result of the general principle of projective equivalence

enunciated above ( 108, 109). Hence the projective relation between 0, P, Q
is the same as that between 0, p, q or 0, P , Q ; that is, p, q and P1

, Q lie in

the plane OPQ. In this way, any number of points on the plane may be

obtained, and by repeating the construction with fresh triads, every point of the

plane can be reached. We have to prove that, when the plane is so constructed,

the straight line joining any two points of the plane lies wholly in the plane.

It is evident, from the manner of construction, that any point of PQ, OP,

OQ, OP or OQ lies in the plane. If we can prove that any point of pq lies in

R. G. 10



146 FOUNDATIONS OF GEOMETRY.

externality is homogeneous, this relation can be kept un

changed while the two positions change their relations to other

positions. Hence their relation is intrinsic, and independent of

other positions. Since the form is a mere complex of relations,

the relation in question must, if the form is sensuous or

intuitive, be itself sensuous or intuitive, and not a mere

inference. In this case, a unique relation must be a unique

figure in spatial terms, the straight line joining the two

points.

139. With this, our deduction of protective Geometry
from the a priori conceptual properties of a form of externality
is completed. That such a form, when regarded as an in

dependent thing, is self-contradictory, has been abundantly
evident throughout the discussion. But the science of the

form has been founded on the opposite way of regarding it : we
have held it throughout to be a mere complex of relations, and

have deduced its properties exclusively from this view of it.

The many difficulties, in applying such an a priori deduction

to intuitive space, and in explaining, as logical necessities,

properties which appear as sensuous or intuitional data, must

be postponed to Chapter iv. For the present, I wish to point
out that projective Geometry is wholly d priori; that it deals

with an object whose properties are logically deduced from its

definition, not empirically discovered from data; that its

definition, again, is founded on the possibility of experiencing

diversity in relation, or multiplicity in unity; and that our

whole science, therefore, is logically implied in, and deducible

from, the possibility of such experience.

140. In metrical Geometry, on the contrary, we shall find

a very different result. Although the geometrical conditions

which render spatial measurement possible, will be found

identical, except for slight differences in the form of statement,

with the d priori axioms discussed above, yet the actual

the plane, we shall have proved all that is required, since pq may be transformed,

by successive repetitions of the same construction, into any straight line

joining two points of the plane. But we have seen that the same plane is

determined by O, p, q and by O, P, Q. The straight lines PQ,pq have, therefore,

the same relation to the plane. But PQ lies wholly in the plane ;
therefore pq

also lies wholly in the plane. Hence our axiom is proved.
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measurement which deals with actually given space, not the

mere intellectual construction we have been just discussing

gives results which can only be known empirically and

approximately, and can be deduced by no necessity of thought.
The Euclidean and non-Euclidean spaces give the various

results which are a priori possible; the axioms peculiar to

Euclid which are properly not axioms, but empirical results

of measurement determine, within the errors of observation,

which of these d priori possibilities is realized in our actual

space. Thus measurement deals throughout with an em

pirically given matter, not with a creature of the intellect, and

its d priori elements are only the conditions presupposed in the

possibility of measurement. What these conditions are, we
shall see in the second section of this chapter.

Section B.

THE AXIOMS OF METRICAL GEOMETRY.

141. We have now reviewed the axioms of protective

Geometry, and have seen that they are d priori deductions

from the fact that we can experience externality, i.e. a co

existent multiplicity of different but interrelated things. But

projective Geometry, in spite of its claims, is not the whole

science of space, as is sufficiently proved by the fact that it

cannot discriminate between Euclidean and non-Euclidean

spaces
1

. For this purpose, spatial measurement is required:

metrical Geometry, with its quantitative tests, can alone effect

the discrimination. For all application of Geometry to physics,

also, measurement is required ;
the law of gravitation, for

example, requires the determination of actual distances. For

many purposes, in short, protective Geometry is wholly in

sufficient: thus it is unable to distinguish between different

kinds of conies, though their distinction is of fundamental im

portance in many departments of knowledge.

1 A detailed proof has been given above, Chap. i. 3rd period. It is to

be observed that any reference to infinitely distant elements involves metrical

ideas.

102
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Metrical Geometry is, then, a necessary part of the science

of space, and a part not included in descriptive Geometry.
Its a priori element, nevertheless, so far as this is spatial

and not arithmetical, is the same as the postulate of pro-

jective Geometry, namely, the homogeneity of space, or its

equivalent, the relativity of position. We can see, in fact, that

the a priori element in both is likely to be the same. For

the d priori in metrical Geometry will be whatever is pre

supposed in the possibility of spatial . measurement, i.e. of

quantitative spatial comparison. But such comparison pre

supposes simply a known identity of quality, the determination

of which is precisely the problem of protective Geometry.
Hence the conditions for the possibility of measurement, in

so far as they are not arithmetical, will be precisely the same

as those for projective Geometry.
142. Metrical Geometry, therefore, though distinct from

projective Geometry, is not independent of it, but presupposes

it, and arises from its combination with the extraneous idea

of quantity. Nevertheless the mathematical form of the axioms,

in metrical Geometry, is slightly different from their form in

projective Geometry. The homogeneity of space is replaced

by its equivalent, the axiom of Free Mobility. The axiom of

the straight line is replaced by the axiom of distance : Two

points determine a unique quantity, distance, which is unaltered

in any motion of the two points as a single figure. This axiom,

indeed, will be found to involve the axiom of the straight line

such a quantity could not exist unless the two points de

termined a unique curve but its mathematical form is changed.

Another important change is the collapse of the principle of

duality : quantity can be applied to the straight line, because

it is divisible into similar parts, but cannot be applied to the

indivisible point. We thus obtain a reason, which was wanting
in descriptive Geometry, for preferring points, as spatial ele

ments, to straight lines or planes
1
. Finally, an entirely new

idea is introduced with quantity, namely, the idea of Motion.

Not that we study motion, or that any of our results have

reference to motion, but that they cannot, though in projective

1 Cf. Section A, 115-117.
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Geometry they could, be obtained without at least an ideal

motion of our figures through space.

Let us now examine in detail the prerequisites of spatial

measurement. We shall find three axioms, without which such

measurement would be impossible, but with which it is ade

quate to decide, empirically and approximately, the Euclidean

or non-Euclidean nature of our actual space. We shall find,

further, that these three axioms can be deduced from the con

ception of a form of externality, and owe nothing to the

evidence of intuition. They are, therefore, like their equivalents

the axioms of protective Geometry, a priori, and deducible from

the conditions of spatial experience. This experience, ac

cordingly, can never disprove them, since its very existence

presupposes them.

I. The Axiom of Free Mobility.

143. Metrical Geometry, to begin with, may be defined as

the science which deals with the comparison and relations of

spatial magnitudes. The conception of magnitude, therefore, is

necessary from the start. Some of Euclid s axioms, accordingly,

have been classed as arithmetical, and have been supposed to

have nothing particular to do with space. Such are the axioms

that equals added to or subtracted from equals give equals, and

that things which are equal to the same thing are equal to one

another. These axioms, it is said, are purely arithmetical, and

do not, like the others, ascribe an adjective to space. As regards

their use in arithmetic, this is of course true. But if an arith

metical axiom is to be applied to spatial magnitudes, it must have

some spatial import
1

, and thus even this class is not, in Geometry,

merely arithmetical. Fortunately, the geometrical element is

the same in all the axioms of this class we can see at once, in

fact, that it can amount to no more than a definition of spatial

magnitude
2

. Again, since the space with which Geometry
deals is infinitely divisible, a definition of spatial magnitude

1 Contrast Erdmann, op. cit. p. 138.

- Cf. Erdmann, op. cit. p. 164.
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reduces itself to a definition of spatial equality, for, as soon as

we have this last, we can compare two spatial magnitudes by

dividing each into a number of equal units, and counting the

number of such units in each l
. The ratio of the number of

units is, of course, the ratio of the two magnitudes.
144. We require, then, at the very outset, some criterion

of spatial equality : without such a criterion metrical Geometry
would become wholly impossible. It might appear, at first

sight, as though this need not be an axiom, but might be a

mere definition. In part this is true, but not wholly. The part

which is merely a definition is given in Euclid s eighth axiom :

&quot;

Magnitudes which exactly coincide are
equal.&quot;

But this gives

a sufficient criterion only when the magnitudes to be compared

already occupy the same position. When, as will normally be

the case, the two spatial magnitudes are external to one another

as, indeed, must be the case, if they are distinct, and not

whole and part the two magnitudes can only be made to

coincide by a motion of one or both of them. In order, there

fore, that our definition of spatial magnitude may give unam

biguous results, coincidence when superposed, if it can ever

occur, must occur always, whatever path be pursued in bringing
it about. Hence, if mere motion could alter shapes, our cri

terion of equality would break down. It follows that the

application of the conception of magnitude to figures in space
involves the following axiom 2

: Spatial magnitudes can be moved

from place to place without distortion; or, as it may be put,

Shapes do not in any way depend upon absolute position in

space.

The above axiom is the axiom of Free Mobility
3
. I propose

to prove (1) that the denial of this axiom would involve logical

and philosophical absurdities, so that it must be classed as

1
Strictly speaking, this method is only applicable where the two magnitudes

are commensurable. But if we take infinite divisibility rigidly, the units can

theoretically be taken so small as to obtain any required degree of approxima
tion. The difficulty is the universal one of applying to continua the essentially

discrete conception of number.
2 Cf. Erdmann, op. cit. p. 50.

3 Also called the axiom of congruence. I have taken congruence to be the

definition of spatial equality by superposition, and shall therefore generally speak

of the axiom as Free Mobility.
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wholly a priori : (2) that metrical Geometry, if it refused this

axiom, would be unable, without a logical absurdity, to establish

the notion of spatial magnitude at all. The conclusion will be,

that the axiom cannot be proved or disproved by experience,

but is an a priori condition of metrical Geometry. As I shall

thus be maintaining a position which has been much contro

verted, especially by Helmholtz and Erdmann, I shall have to

enter into the arguments at some length.

145. A. Philosophical Argument The denial of the axiom

involves absolute position, and an action of mere space, per se,

on things. For the axiom does not assert that real bodies, as a

matter of empirical fact, never change their shape in any way

during their passage from place to place ;
on the contrary, we

know that such changes do occur, sometimes in a very notice

able degree, and always to some extent. But such changes are

attributed, not to the change of place as such, but to phy

sical causes : changes of temperature, pressure, etc. What our

axiom has to deal with is not actual material bodies, but

geometrical figures \ and it asserts that a figure which is pos

sible in any one position in space is possible in every other. Its

meaning will become clearer by reference to a case where it

does not hold, say the space formed by the surface of an egg.

Here, a triangle drawn near the equator cannot be moved

without distortion to the point, as it would no longer fit the

greater curvature of the new position; a triangle drawn near

the point cannot be fitted on to the natter end, and so on.

Thus the method of superposition, such as Euclid employs in

Book I. Prop. IV., becomes impossible ; figures cannot be freely

moved about, indeed, given any figure, we can determine a

certain series of possible positions for it on the egg, outside

which it becomes impossible. What I assert is, then, that

there is a philosophic absurdity in .supposing space in general

to be of this nature. On the egg we have marked points, such

as the two ends
;
the space formed by its surface is not homo

geneous, and if things are moved about in it, it must of itself

exercise a distorting effect upon them, quite independently of

physical causes
;

if it did not exercise such an effect, the things

1 For the sense in which these figures are to be regarded as material,

see criticism of Helmholtz, Chapter n. 69 ff.
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could not be moved. Thus such a space would not be homo

geneous, but would have marked points, by reference to which

bodies would have absolute position, quite independently of

any other bodies. Space would no longer be passive, but

would exercise a definite effect upon things, and we should

have to accommodate ourselves to the notion of marked points
in empty space ;

these points being marked, not by the bodies

which occupied them, but by their effects on any bodies which

might from time to time occupy them. This want of homo

geneity and passivity is, however, absurd
; space must, since it

is a form of externality, allow only of relative, not of absolute,

position, and must be completely homogeneous throughout.
To suppose it otherwise, is to give it a thinghood which no

form of externality can possibly possess. We must, then, on

purely philosophical grounds, admit that a geometrical figure

which is possible anywhere is possible everywhere, which is the

axiom of Free Mobility.

146. B. Geometrical Argument. Let us see next what sort

of Geometry we could construct without this axiom. The ulti

mate standard of comparison of spatial magnitudes must, as we
saw in introducing the axiom, be equality when superposed ;

but

need we, from this equality, infer equality when separated ? It

has been urged by Erdmann that, for the more immediate pur

poses of Geometry, this would be unnecessary *. We might
construct a new Geometry, he thinks, in which sizes varied with

motion on any definite law. Such a view, as I shall show below,

involves a logical error as to the nature of magnitude. But

before pointing this out, let us discuss the geometrical conse

quences of assuming its truth. Suppose the length of an in

finitesimal arc in some standard position were ds
;
then in any

other position p its length would be ds .f (p), where the form of

the function/ (p) must be supposed known. But how are we to

determine the position p ? For this purpose, we require p s

coordinates, i.e., some measurement of distance from the origin.

But the distance from the origin could only be measured if we

assumed our law / (p) to measure it by. For suppose the

origin to be 0, and Op to be a straight line whose length is

required. If we have a measuring rod with which we travel

1
Op. cit. p. 60.



THE AXIOMS OF METRICAL GEOMETRY. 153

along the line and measure successive infinitesimal arcs, the

measuring rod will change its size as we move, so that an arc

which appears by the measure to be ds will really be f(s) . ds,

where s is the previously traversed distance. If, on the

other hand, we move our line Op slowly through the origin, and

measure each piece as it passes through, our measure, it is true,

will not alter, but now we have no means of discovering the law

by which any element has changed its length in coming to the

origin. Hence, until we assume our function f(p), we have

no means of determining p, for we have just seen that distances

from the origin can only be estimated by means of the law

f(p). It follows that experience can neither prove nor disprove

the constancy of shapes throughout motion, since, if shapes

were not constant, we should have to assume a law of their

variation before measurement became possible, and therefore

measurement could not itself reveal that variation to us
1

.

Nevertheless, such an arbitrarily assumed law does, at first

sight, give a mathematically possible Geometry. The funda

mental proposition, that two magnitudes which can be super

posed in any one position can be superposed in any other, still

holds. For two infinitesimal arcs, whose lengths in the standard

position are ds1 and ds.2 , would, in any other position p, have

lengths f(p}. ds! and f(p)- ds2 ,
so that their ratio would be

unaltered. From this constancy of ratio, as we know through
Riemann and Helmholtz, the above proposition follows. Hence

all that Geometry requires, it would seem, as a basis for

measurement, is an axiom that the alteration of shapes during

motion follows a definite known law, such as that assumed

above.

147. There is, however, in such a view, as I remarked above,

a logical error as to the nature of magnitude. This error has

been already pointed out in dealing with Erdmanii 2
,
and need

only be briefly repeated here. A judgment of magnitude is

essentially a judgment of comparison : in unmeasured quantity,

comparison as to the mere more or less, but in measured mag-

1 The view of Helmholtz and Erdinaun, that mechanical experience suffices

here, though geometrical experience fails us, has been discussed above,

Chapter n. 73, 82.

2
Chapter n. 81.
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nitude, comparison as to the precise how many times. To

speak of differences of magnitude, therefore, in a case where

comparison cannot reveal them, is logically absurd. Now in

the case contemplated above, two magnitudes, which appear

equal in one position, appear equal also when compared in

another position. There is no sense, therefore, in supposing
the two magnitudes unequal when separated, nor in supposing,

consequently, that they have changed their magnitudes in

motion. This senselessness of our hypothesis is the logical

ground of the mathematical indeterminateness as to the law of

variation. Since, then, there is no means of comparing two

spatial figures, as regards magnitude, except superposition, the

only logically possible axiom, if spatial magnitude is to be self-

consistent, is the axiom of Free Mobility in the form first given
above.

148. Although this axiom is a priori, its application to the

measurement of actual bodies, as we found in discussing Helm-

holtz s views, always involves an empirical element 1
. Our

axiom, then, only supplies the d priori condition for carrying

out an operation which, in the concrete, is empirical just as

arithmetic supplies the a priori condition for a census. As

this topic has been discussed at length in Chapter II., I shall

say no more about it here.

149. There remain, however, a few objections and dif

ficulties to be discussed. First, how do we obtain equality in

solids, and in Kant s cases of right and left hands, or of right

and left-handed screws, where actual superposition is impos
sible ? Secondly, how can we take congruence as the only

possible basis of spatial measurement, when we have before us

the case of time, where no such thing as congruence is con

ceivable ? Thirdly, it might be urged that we can immediately

estimate spatial equality by the eye, with more or less accuracy,

and thus have a measure independent of congruence. Fourthly,

how is metrical Geometry possible on non-congruent surfaces,

if congruence be the basis of spatial measurement ? I will

discuss these objections successively.

150. (1) How do we measure the equality of solids?

These could only be brought into actual congruence if we had

1

Chapter n. g 72.
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a fourth dimension to operate in
1

,
and from what I have said

before of the absolute necessity of this test, it might seem as

though we should be left here in utter ignorance. Euclid is

silent on the subject, and in all works on Geometry it is assumed

as self-evident that two cubes of equal side are equal. This as

sumption suggests that we are not so badly off as we should have

been without congruence, as a test of equality in one or two

dimensions
;
for now we can at least be sure that two cubes have

all their sides and all their faces equal. Two such cubes differ,

then, in no sensible spatial quality save position, for volume, in

this case at any rate, is not a sensible quality. They are,

therefore, as far as such qualities are concerned, indiscernible.

If their places were interchanged, we might know the change

by their colour, or by some other non-geometrical property ;

but so far as any property of which Geometry can take cog
nisance is concerned, everything would seem as before. To

suppose a difference of volume, then, would be to ascribe an

effect to mere position, which we saw to be inadmissible while

discussing Free Mobility. Except as regards position, they are

geometrically indiscernible, and we may call to our aid the

Identity of Indiscernibles to establish their agreement in the

one remaining geometrical property of volume. This may
seem rather a strange principle to use in Mathematics, and for

Geometry their equality is, perhaps, best regarded as a defini

tion; but if we demand a philosophical ground for this definition,

it is, I believe, only to be found in the Identity of Indiscer

nibles. We can, without error, make our definition of three-

dimensional equality rest on two-dimensional congruence. For

since direct comparison as to volume is impossible, we are at

liberty to define two volumes as equal, when all their various

lines, surfaces, angles and solid angles are congruent, since

there remains, in such a case, no measurable difference between

the figures composing the two volumes. Of course, as soon as

we have established this one case of equality of volumes, the

rest of the theory follows
;
as appears from the ordinary method

of integrating volumes, by dividing them into small cubes.

Thus congruence helps to establish three-dimensional equality,

1 Contrast Delboeuf, L ancienne et les nouvelles geometries, n. Rev. Phil.

, Vol. xxxvii. p. 354.
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though it cannot directly prove such equality ;
and the same

philosophical principle, of the homogeneity of space, by which

congruence was proved, conies to our rescue here. But how

about right-handed and left-handed screws ? Here we can no

longer apply the Identity of Indiscernibles, for the two are very
well discernible. But as with solids, so here, Free Mobility can

help us much. It can enable us, by ordinary measurement, to

show that the internal relations of both screws are the same,

and that the difference lies only in their relation to other

things in space. Knowing these internal relations, we can

calculate, by the Geometry which Free Mobility has rendered

possible, all the geometrical properties of these screws radius,

pitch, etc. and can show them to be severally equal in both.

But this is all we require. Mediate comparison is possible,

though immediate comparison is not. Both can, for instance,

be compared with the cylinder on which both would fit, and

thus their equality can be proved. A precisely similar proof

holds, of course, for the other cases, right and left hands,

spherical triangles, etc. On the whole, these cases confirm my
argument; for they show, as Kant intended them to show 1

,
the

essential relativity of space.

151. (2) As regards time, no congruence is here con

ceivable, for to effect congruence requires always as we saw in

the case of solids one more dimension than belongs to the

magnitudes compared. No day can be brought into temporal
coincidence with any other day, to show that the two exactly

cover each other; we are therefore reduced to the arbitrary

assumption that some motion or set of motions, given us in ex

perience, is uniform. Fortunately, we have a large set of mo
tions which all roughly agree ;

the swing of the pendulum, the

rotation and revolution of the earth and the planets, etc. These

do not exactly agree, but they lead us to the laws of motion, by
which we are able, on our arbitrary hypothesis, to estimate

their small departures from uniformity ; just as the assumption
of Free Mobility enabled us to measure the departures of actual

1

Prolegomena, 13. See Vaihinger s Commentar, n. pp. 518532 esp.

pp. 521 2. The above was Kant s whole purpose in 1768, but only part of his

purpose in the Prolegomena, where the intuitive nature of space was also to be

proved.
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bodies from rigidity. But here, as there, another possibility is

mathematically open to us, and can only be excluded by its

philosophic absurdity ;
we might have assumed that the above

set of approximately agreeing motions all had velocities which

varied approximately as some arbitrarily assumed function of

the time,/() say, measured from some arbitrary origin. Such

an assumption would still keep them as nearly synchronous as

before, and would give an equally possible, though more com

plex, system of Mechanics
;
instead of the first law of motion,

we should have the following: A particle perseveres in its

state of rest, or of rectilinear motion with velocity varying as

f(t), except in so far as it is compelled to alter that state by
the action of external forces. Such a hypothesis is mathe

matically possible, but, like the similar one for space, it is

excluded logically by the comparative nature of the judgment
of quantity, and philosophically by the fact that it involves

absolute time, as a determining agent in change, whereas time

can never, philosophically, be anything but a passive form,

abstracted from change. I have introduced this parallel from

time, not as directly bearing on the argument, but as a simpler

case which may serve to illustrate my reasoning in the more

complex case of space. For since time, in mathematics, is one-

dimensional, the mathematical difficulties are simpler than in

Geometry; and although nothing accurately corresponds to

congruence, there is a very similar mixture of mathematical

and philosophical necessity, giving, finally, a thoroughly definite

axiom as the basis of time-measurement, corresponding to

congruence as the basis of space-measurement
1

.

152. (3) The case of time-measurement suggests the third

of the above objections to the absolute necessity of the axiom of

Free Mobility. Psycho-physics has shown that we have an

approximate power, by means of what may be called the sense

of duration, of immediately estimating equal short times. This

establishes a rough measure independent of any assumed

uniform motion, and in space also, it may be said, we have a

similar power of immediate comparison. We can see, by im-

1 On the subject of time measurement, cf. Bosanquet s Logic, Vol. i.

pp. 178183. Since time, in the above account, is measured by motion, its

measurement presupposes that of spatial magnitudes.
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mediate inspection, that the sub-divisions on a foot rule are

not grossly inaccurate
;
and so, it may be said, we both have a

measure independent of congruence, and also could discover, by

experience, any gross departure from Free Mobility. Against
this view, however, there is at the outset a very fundamental

psychological objection. It has been urged that all our com

parison of spatial magnitudes proceeds by ideal superposition.
Thus James says (Psychology, Vol. II. p. 152): &quot;Even where we

only feel one sub-division to be vaguely larger or less, the mind
must pass rapidly between it and the other sub-division, and

receive the immediate sensible shock of the more,&quot; and
&quot;

so far as

the sub-divisions of a sense-space are to be measured exactly

against each other, objective forms occupying one subdivison

must be directly or indirectly superposed upon the other 1
.&quot;

Even if we waive this fundamental objection, however, others

remain. To begin with, such judgments of equality are only

very rough approximations, and cannot be applied to lines of

more than a certain length, if only for the reason that such

lines cannot well be seen together. Thus this method can only

give us any security in our own immediate neighbourhood,
and could in no wise warrant such operations as would be

required for the construction of maps &c., much less the mea
surement of astronomical distances. They might just enable

us to say that some lines were longer than others, but they
would leave Geometry in a position no better than that of the

Hedoriical Calculus, in which we depend on a purely subjective

measure. So inaccurate, in fact, is such a method acknow

ledged to be, that the foot-rule is as much a need of daily life

as of science. Besides, no one would trust such immediate

judgments, but for the fact that the stricter test of congruence
to some extent confirms them

;
if we could not apply this test,

we should have no ground for trusting them even as much as

we do. Thus we should have, here, no real escape from our

absolute dependence upon the axiom of Free Mobility.

153. (4) One last elucidatory remark is necessary before

our proof of this axiom can be considered complete. We spoke
above of the Geometry on an egg, where Free Mobility does not

hold. What, I may be asked, is there about a thoroughly non-

1 Cf. Stumpf. Ursprung der Baumvorstellung, p. 68.
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congruent Geometry, more impossible than this Geometry on

the egg ? The answer is obvious. The Geometry of non-

congruent surfaces is only possible by the use of infinitesimals,

and in the infinitesimal all surfaces become plane. The funda

mental formula, that for the length of an infinitesimal arc, is

only obtained on the assumption that such an arc may be treated

as a straight line, and that Euclidean Plane Geometry may be

applied in the immediate neighbourhood of any point. If we

had not our Euclidean measure, which could be moved without

distortion, we should have no method of comparing small arcs

in different places, and the Geometry of non-congruent surfaces

would break down. Thus the axiom of Free Mobility, as

regards three-dimensional space, is necessarily implied and

presupposed in the Geometry of non-congruent surfaces; the

possibility of the latter, therefore, is a dependent and derivative

possibility, and can form no argument against the a priori

necessity of congruence as the test of equality.

154. It is to be observed that the axiom of Free Mobility,

as I have enunciated it, includes also the axiom to which

Helmholtz gives the name of Monodromy. This asserts that

a body does not alter its dimensions in consequence of a

complete revolution through four right angles, but occupies

at the end the same position as at the beginning. The sup

posed mathematical necessity of making a separate axiom of

this property of space has been disproved by Sophus Lie (v.

Chap. I. 45); philosophically, it is plainly a particular case

of Free Mobility
1

,
and indeed a particularly obvious case, for

a translation really does make some change in a body, namely,
a change in position, but a rotation through four right angles

may be supposed to have been performed any number of times

without appearing in the result, and the absurdity of ascribing

to space the power of making bodies grow in the process is

palpable; everything that was said above on congruence in

general applies with even greater evidence to this special

case.

155. The axiom of Free Mobility involves, if it is to be

true, the homogeneity of space, or the complete relativity of

1 As is Helmholtz s other axiom, that the possibility of superposition

is independent of the course pursued in bringing it about.
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position. For if any shape, which is possible in one part of

space, be always possible in another, it follows that all parts

of space are qualitatively similar, and cannot, therefore, be

distinguished by any intrinsic property. Hence positions in

space, if our axiom be true, must be wholly defined by external

relations, i.e. Position is not an intrinsic, but a purely relative,

property of things in space. If there could be such a thing
as absolute position, in short, metrical Geometry would be

impossible. This relativity of position is the fundamental pos
tulate of all Geometry, to which each of the necessary metrical

axioms leads, and from which, conversely, each of these axioms

can be deduced.

156. This converse deduction, as regards Free Mobility, is

not very difficult, and follows from the argument of Section A 1

,

which I will briefly recapitulate. In the first place, externality

is an essentially relative conception nothing can be external

to itself. To be external to something is to be an other with

some relation to that thing. Hence, when we abstract a form

of externality from all material content, and study it in iso

lation, position will appear of necessity as purely relative

it can have no intrinsic quality, for our form consists of pure

externality, and externality contains no shadow or trace of

an intrinsic quality. Hence we derive our fundamental pos

tulate, the relativity of position. From this follows the homo

geneity of our form, for any quality in one position, which

marked out that position from another, would be necessarily

more or less intrinsic, and would contradict the pure relativity.

Finally Free Mobility follows from homogeneity, for our form

would not be homogeneous unless it allowed, in every part,

shapes or systems of relations, which it allowed in any other

part. Free Mobility, therefore, is a necessary property of every

possible form of externality.

157. In summing up the argument we have just con

cluded, we may exhibit it, in consequence of the two preceding

paragraphs, in the form of a completed circle. Starting from

the conditions of spatial measurement, we found that the com

parison, required for measurement, could only be effected by

superposition. But we found, further, that the result of such

1 Cf. 129, 130.
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comparison will only be unambiguous, if spatial magnitudes and

shapes are unaltered by motion in space, if, in other words,

shapes do not depend upon absolute position in space. But
this axiom can only be true if space is homogeneous and

position merely relative. Conversely, if position is assumed
to be merely relative, a change of magnitude in motion

involving as it does, the assertion of absolute position is

impossible, and our test of spatial equality is therefore ade

quate. But position in any form of externality must be purely
relative, since externality cannot be an intrinsic property of

anything. Our axiom, therefore, is a priori in a double sense.

It is presupposed in all spatial measurement, and it is a

necessary property of any form of externality. A similar double

apriority, we shall see, appears in our other necessary axioms.

II. The Axiom of Dimensions 1
.

158. We have seen, in discussing the axiom of Free Mo
bility, that all position is relative, that is, a position exists

only by virtue of relations
2

. It follows that, if positions can

be defined at all, they must be uniquely and exhaustively
defined by some finite number of such relations. If Geometry
is to be possible, it must happen that, after enough relations

have been given to determine a point uniquely, its relations

to any fresh known point are deducible from the relations

already given. Hence we obtain, as an a priori condition of

Geometry, logically indispensable to its existence, the axiom

that Space must have a finite integral number of Dimensions.

For every relation required in the definition of a point con

stitutes a dimension, and a fraction of a relation is meaningless.
The number of relations required must be finite, since an

infinite number of dimensions would be practically impossible

to determine. If we remember our axiom of Free Mobility,

1 This deduction is practically the same as that in Sec. A, but I have stated

it here with more special reference to space and to metrical Geometry.
2 The question:

&quot; Kelations to what?&quot; is a question involving many
difficulties. It will be touched on later in this chapter, and answered, as far as

possible, in the fourth chapter. For the present, in spite of the glaring circle

involved, I shall take the relations as relations to other positions.

R. G. 11
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and remember also that space is a continuum, we may state

our axiom, for metrical Geometry, in the form given by Helm-

holtz (v. Chap. I. 25) :

&quot; In a space of n dimensions, the

position of every point is uniquely determined by the measure

ment of n continuous independent variables (coordinates).
1 &quot;

159. So much, then, is a priori necessary to metrical

Geometry. The restriction of the dimensions to three seems,

on the contrary, to be wholly the work of experience
2

. This

restriction cannot be logically necessary, for as soon as we have

formulated any analytical system, it appears wholly arbitrary.

Why, we are driven to ask, cannot we add a fourth coordinate

to our x, y, z, or give a geometrical meaning to & ? In this

more special form, we are tempted to regard the axiom of

dimensions, like the number of inhabitants of a town, as a

purely statistical fact, with no greater necessity than such facts

have.

Geometry affords intrinsic evidence of the truth of my
division of the axiom of dimensions into an a priori and

empirical portion. For while the extension of the number

of dimensions to four, or to n, alters nothing in plane and

solid Geometry, but only adds a new branch which interferes

in no way with the old, some definite number of dimensions

is assumed in all Geometries, nor is it possible to conceive of

a Geometry which should be free from this assumption
3

.

160. Let us, since the point seems of some interest, repeat

our proof of the apriority of this axiom from a slightly different

point of view. We will begin, this time, from the most ab

stract conception of space, such as we find in Biemann s disser

tation, or in Erdmann s extents. We have here, an ordered

manifold, infinitely divisible and allowing of Free Mobility
4

.

Free Mobility involves, as we saw, the power of passing con

tinuously from any one point to any other, by any course which

may seem pleasant to us; it involves, also, that, in such a

1 Wiss. Abh. Vol. n. p. 614.

2
Cp. Grassmann, Ausdehnungslehre von 1844, 2nd ed. p. xxm.

3
Delboeuf, it is true, speaks of Geometries with rn/n dimensions, but gives

no reference (Eev. Phil. T. xxxvi. p. 450).
4 In criticizing Erdmann, it will be remembered, we saw that Free Mobility

is a necessary property of his extents, though he does not regard it as such.
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course, no changes occur except changes of mere position, i.e.,

positions do not differ from one another in any qualitative

way. (This absence of qualitative difference is the distinguish

ing mark of space as opposed to other manifolds, such as the

colour- and tone-systems : in these, every element has a definite

qualitative sensational value, whereas in space, the sensational

value of a position depends wholly on its spatial relation to

our own body, and is thus not intrinsic, but relative.) From
the absence of qualitative differences among positions, it follows

logically that positions exist only by virtue of other positions ;

one position differs from another just because they are two,

not because of anything intrinsic in either. Position is thus

defined simply and solely by relation to other positions. Any
position, therefore, is completely defined when, and only when,

enough such relations have been given to enable us to de

termine its relation to any new position, this new position

being defined by the same number of relations. Now, in order

that such definition may be at all possible, a finite number

of relations must suffice. But every such relation constitutes

a dimension. Therefore, if Geometry is to be possible, it is

a priori necessary that space should have a finite integral

number of dimensions.

161. The limitation of the dimensions to three is, as we

have seen, empirical ; nevertheless, it is not liable to the in

accuracy and uncertainty which usually belong to empirical

knowledge. For the alternatives which logic leaves to sense

are discrete if the dimensions are not three, they must be

two or four or some other number so that small errors are

out of the question
1

. Hence the final certainty of the axiom

of three dimensions, though in part due to experience, is of

quite a different order from that of (say) the law of Gravitation.

In the latter, a small inaccuracy might exist and remain un

detected
;
in the former, an error would have to be so consider

able as to be utterly impossible to overlook. It follows that

the certainty of our whole axiom, that the number of dimensions

is three, is almost as great as that of the a priori element,

1 Cf. Riemann, Hypothesen welche der Geometrie zu Grunde liegen,

Gesammelte Werke, p. 266 ; also Erdmann, op. cit. p. 154.

112
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since this element leaves to sense a definite disjunction of

discrete possibilities.

III. The Axiom of Distance.

162. We have already seen, in discussing projective Geo

metry, that two points must determine a unique curve, the

straight line. In metrical Geometry, the corresponding axiom

is, that two points must determine a unique spatial quantity, dis

tance. I propose to prove, in what follows, (1) that if distance,

as a quantity completely determined by two points, did not exist,

spatial magnitude would not be measurable
; (2) that distance

can only be determined by two points, if there is an actual

curve in space determined by those two points ; (3) that the

existence of such a curve can be deduced from the conception

of a form of externality, and (4) that the application of quantity

to such a curve necessarily leads to a certain magnitude, namely

distance, uniquely determined by any two points which de

termine the curve. The conclusion will be, if these propositions

can be successfully maintained, that the axiom of distance is

a priori in the same double sense as the axiom of Free Mobility,

i.e. it is presupposed in the possibility of measurement, and

it is necessarily true of any possible form of externality.

163. (1) The possibility of spatial measurement allows

us to infer the existence of a magnitude uniquely determined

by any two points. The proof of this depends on the axiom

of Free Mobility, or its equivalent, the homogeneity of space.

We have seen that these are involved in the possibility of

spatial measurement; we may employ them, therefore, in any

argument as to the conditions of this possibility.

Now to begin with, two points must, if Geometry is to

be possible, have some relation to each other, for we have seen

that such relations alone constitute position or localization.

But if two points have a relation to each other, this must be

an intrinsic relation. For it follows, from the axiom of Free

Mobility, that two points, forming a figure congruent with the

given pair, can be constructed in any part of space. If this

were not possible, we have seen that metrical Geometry
could not exist. But both the figures may be regarded as
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composed of two points and their relation
;

if the two figures
are congruent, therefore, it follows that the relation is quan
titatively the same for both figures, since congruence is the

test of spatial equality. Hence the two points have a quanti
tative relation, which is such that they can traverse all space
in a combined motion without in any way altering that re

lation. But in such a general motion, any external relation

of the two points, any relation involving other points or figures
in space, must be altered

1

. Hence the relation between the

two points, being unaltered, must be an intrinsic relation, a

relation involving no other point or figure in space ;
and this

intrinsic relation we call distance 2
.

164. It might be objected, to the above argument, that it

involves a petitio principii. For it has been assumed that

the two points and their relation form a figure, to which other

figures can be congruent. Now if two points have no intrinsic

relation, it would seem that they cannot form such a figure.

The argument, therefore, apparently assumes what it had to

prove. Why, it may be asked, should not three points be

required, before we obtain any relation, which Free Mobility
allows us to construct afresh in other parts of space ?

The answer to this, as to the corresponding question in the

first section of this chapter, lies, I think, in the passivity of

space, or the mutual independence of its parts. For it follows,

from this independence, that any figure, or any assemblage
of points, may be discussed without reference to other figures

or points. This principle is the basis of infinite divisibility, of

1 This is subject, in spherical space, to the modification pointed out below,

in dealing with the exception to the axiom of the straight line. See

168171.
2 In speaking of distance at once as a quantity and as an intrinsic

relation, I am anxious to guard against an apparent inconsistency. I have

spoken of the judgment of quantity, throughout, as one of comparison ; how,

then, can a quantity be intrinsic ? The reply is that, although measurement

and the judgment of quantity express the result of comparison, yet the terms

compared must exist before the comparison ;
in this case, the terms compared

in measuring distances, i.e. in comparing them inter se, are intrinsic relations

between points. Thus, although the measurement of distance involves a

reference to other distances, and its expression as a magnitude requires such a

reference, yet its existence does not depend on any external reference, but

exclusively on the two points whose distance it is.
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the use of quantity in Geometry, and of all possibility of

isolating particular figures for discussion. It follows that two

points cannot be dependent, as to their relation, on any other

points or figures, for if they were so dependent, we should have

to suppose some action of such points or figures on the two

points considered, which would contradict the mutual inde

pendence of different positions. To illustrate by an example :

the relation of two given points does not depend on the other

points of the straight line on which the given points lie. For

only through their relation, i.e. through the straight line which

they determine, can the other points of the straight line be

known to have any peculiar connection with the given pair.

165. But why, it may be asked, should there be only one

such relation between two points ? Why not several ? The

answer to this lies in the fact that points are wholly constituted

by relations, and have no intrinsic nature of their own ]
. A

point is defined by its relations to other points, and when once

the relations necessary for definition have been given, no fresh

relations to the points used in definition are possible, since the

point defined has no qualities from which such relations could

flow. Now one relation to any one other point is as good for

definition as more would be, since however many we had, they
would all remain unaltered in a combined motion of both

points. Hence there can only be one relation determined by

any two points.

166. (2) We have thus established our first proposition

two points have one and only one relation uniquely determined

by those two points. This relation we call their distance

apart. It remains to consider the conditions of the measure

ment of distance, i.e., how far a unique value for distance in

volves a curve uniquely determined by the two points.

In the first place, some curve joining the two points is

involved in the above notion of a combined motion of the two

points, or of two other points forming a figure congruent with

the first two. For without some such curve, the two point-pairs

cannot be known as congruent, nor can we have any test by
which to discover when a point-pair is moving as a single

1 See the end of the argument on Free Mobility, 155 ff.
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figure
1

. Distance must be measured, therefore, by some line

which joins the two points. But need this be a line which the

two points completely determine ?

167. We are accustomed to the definition of the straight

line as the shortest distance between two points, which implies

that distance might equally well be measured by curved lines.

This implication I believe to be false, for the following reasons.

When we speak of the length of a curve, we can give a meaning
to our words only by supposing the curve divided into infinites

imal rectilinear arcs, whose sum gives the length of an equiva
lent straight line

;
thus unless we presuppose the straight line,

we have no means of comparing the lengths of different curves,

and can therefore never discover the applicability of our defini

tion. It might be thought, perhaps, that some other line, say

a circle, might be used as the basis of measurement. But in

order to estimate in this way the length of any curve other

than a circle, we should have to divide the curve into in

finitesimal circular arcs. Now two successive points do not

determine a circle, so that an arc of two points would have an

indeterminate length. It is true that, if we exclude infinitesi

mal radii for the measuring circles, the lengths of the in

finitesimal arcs would be determinate, even if the circles

varied, but that is only because all the small circular arcs

through two consecutive points coincide with the straight line

through those two points. Thus, even with the help of the

arbitrary restriction to a finite radius, all that happens is that

we are brought back to the straight line. If, to mend matters,

we take three consecutive points of our curve, and reckon

distance by the arc of the circle of curvature, the notion of

distance loses its fundamental property of being a relation be

tween two points. For two consecutive points of the arc could

J In Frischauf s
&quot; Absolute Geometric nach Johann Bolyai,&quot; Anhang, there

is a series of definitions, starting from the sphere, as the locus of congruent

point-pairs when one point of the pair is fixed, and hence obtaining the circle

and the straight line. From the above it follows, that the sphere so defined

already involves a curve between the points of the point-pair, by which

various point-pairs can be known as congruent ;
and it will appear, as we

proceed, that this curve must be a straight line. Frischaufs definition by
means of the sphere involves, therefore, a vicious circle, since the sphere

presupposes the straight line, as the test of congruent point-pah s.
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not then be said to have any corresponding distance apart
three points would be necessary before the notion of distance

became applicable. Thus the circle is not a possible basis for

measurement, and similar objections apply, of course, with

increased force, to any other curve. All this argument is

designed to show, in detail, the logical impossibility of measur

ing distance by any curve not completely defined by the two

points whose distance apart is required. If in the above we
had taken distance as measured by circles of given radius, we

should have introduced into its definition a relation to other

points besides the two whose distance was to be measured,

which we saw to be a logical fallacy. Moreover, how are we to

know that all the circles have equal radii, until we have an

independent measure of distance ?

168. A straight line, then, is not the shortest distance, but

is simply the distance between two points so far, this con

clusion has stood firm. But suppose we had two or more

curves through two points, and that all these curves were

congruent inter se. We should then say, in accordance with

the definition of spatial equality, that the lengths of all these

curves were equal. Now it might happen that, although no

one of the curves was uniquely determined by the two end-

points, yet the common length of all the curves was so deter

mined. In this case, what would hinder us from calling this

common length the distance apart, although no unique figure

in space corresponded to it ? This is the case contemplated by

spherical Geometry, where, as on a sphere, antipodes can be

joined by an infinite number of geodesies, all of which are of

equal length. The difficulty supposed is, therefore, not a

purely imaginary one, but one which modern Geometry forces

us to face. I shall consequently discuss it at some length.

169. To begin with, I must point out that my axiom is

not quite equivalent to Euclid s. Euclid s axiom states that

two straight lines cannot enclose a space, i.e., cannot have

more than one common point. Now if every two points,

without exception, determine a unique straight line, it follows,

of course, that two different straight lines can have only one

point in common so far, the two axioms are equivalent. But

it may happen, as in spherical space, that two points in general
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determine a unique straight line, but fail to do so when they
have to each other the special relation of being antipodes. In

such a system every pair of straight lines in the same plane
meet in two points, which are each other s antipodes ;

but two

points, in general, still determine a unique straight line. We
are still able, therefore, to obtain distances from unique straight

lines, except in limiting cases
;
and in such cases, we can take

any point intermediate between the two antipodes, join it by
the same straight line to both antipodes, and measure its

distance from those antipodes in the usual way. The sum of

these distances then gives a unique value for the distance

between the antipodes.

Thus even in spherical space, we are greatly assisted by the

axiom of the straight line
;

all linear measurement is effected

by it, and exceptional cases can be treated, through its help, by
the usual methods for limits. Spherical space, therefore, is not

so adverse as it at first appeared to be to the a priori necessity

of the axiom. Nevertheless we have, so far, not attacked the

kernel of the objection which spherical space suggested. To

this attack it is now our duty to proceed.

170. It will be remembered that, in our a priori proof
that two points must have one definite relation, we held it

impossible for those two points to have, to the rest of space,

any relation which would be unaltered by motion. Now in

spherical space, in the particular case where the two points are

antipodes, they have a relation, unaltered by motion, to the rest

of space the relation, namely, that their distance is half the

circumference of the universe. In our former discussion, we

assumed that any relation to outside space must be a relation

of position and a relation of position must be altered by
motion. But with a finite space, in which we have absolute

magnitude, another relation becomes possible, namely, a rela

tion of magnitude. Antipodal points, accordingly, like coinci

dent points, no longer determine a unique straight line. And
it is instructive to observe that there is, in consequence, an

ambiguity in the expression for distance, like the ordinary

ambiguity in angular measurement. If 1/A
&amp;lt;2 be the space con

stant, and d be one value for the distance between two points,

2-Tr/iVi + d, where n is any integer, is an equally good value.
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Distance is, in short, a periodic function like angle. Thus such

a state of things rather confirms than destroys my contention,

that distance depends on a curve uniquely determined by two

points. For as soon as we drop this unique determination, we

see ambiguities creeping into our expression for distance.

Distance still has a set of discrete values, corresponding to the

fact that, given one point, the straight line is uniquely deter

mined for all other points but one, the antipodal point. It is

tempting to go on, and say : If through every pair of points there

were an infinite number of the curves used in measuring distance,

distance would be able, for the same pair of points, to take, not

only a discrete series, but an infinite continuous series of values.

171. This, however, is mere speculation. I come now to

the piece de resistance of my argument. The ambiguity in

spherical space arose, as we saw, from a relation of magnitude
to the rest of space such a relation being unaltered by a

motion of the two points, and therefore falling outside our

introductory reasoning. But what is this relation of magni
tude ? Simply a relation of the distance between the two

points to a distance given in the nature of the space in question.

It follows that such a relation presupposes a measure of distance,

and need not, therefore, be contemplated in any argument
which deals with the a priori requisites for the possibility of

definite distances
1

.

172. I have now shown, I hope conclusively, that spherical

space affords no objection to the apriority of my axiom. Any
two points have one relation, their distance, which is inde

pendent of the rest of space, and this relation requires, as its

measure, a curve uniquely determined by those two points. I

might have taken the bull by the horns, and said : Two points

can have no relation but what is given by lines which join

them, and therefore, if they have a relation independent of the

rest of space, there must be one line joining them which they

completely determine. Thus James says
2

:

1 Nor in any argument which, like those of protective Geometry, avoids the

notion of magnitude or distance altogether. It follows that the propositions of

protective Geometry apply, without reserve, to spherical space, since the

exception to the axiom of the straight line arises only on metrical ground.
2
Psychology, Vol. n. pp. 149150.
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&quot; Just as, in the field of quantity, the relation between two

numbers is another number, so in the field of space the rela

tions are facts of the same order with the facts they relate

When we speak of the relation of direction of two points

towards each other, we mean simply the sensation of the line

that joins the two points together. The line is the relation

The relation of position between the top and bottom points of

a vertical line is that line, and nothing else.&quot;

If I had been willing to use this doctrine at the beginning,
I might have avoided all discussion. A unique relation between

two points must in this case, involve a unique line between

them. But it seemed better to avoid a doctrine not universally

accepted, the more so as I was approaching the question from

the logical, not the psychological, side. After disposing of the

objections, however, it is interesting to find this confirmation

of the above theory from so different a standpoint. Indeed, I

believe James s doctrine could be proved to be a logical neces

sity, as well as a psychological fact. For what sort of thing
can a spatial relation between two distinct points be ? It must

be something spatial, and it must, since points are wholly
constituted by their relations, be something at least as real and

tangible as the points it relates. There seems nothing which

can satisfy these requirements, except a line joining them.

Hence, once more, a unique relation must involve a unique
line. That is, linear magnitude is logically impossible, unless

space allows of curves uniquely determined by any two of their

points.

173. (3) But farther, the existence of curves uniquely
determined by two points can be deduced from the nature of

any form of externality *. For we saw, in discussing Free

Mobility, that this axiom, together with homogeneity and the

relativity of position, can be so deduced, and we saw in the

beginning of our discussion on distance, that the existence of a

unique relation between two points could be deduced from the

homogeneity of space. Since position is relative, we may say,

any two points must have some relation to each other: since

1 This step in the argument has been put very briefly, since it is a mere

repetition of the corresponding argument in Section A, and is inserted here only
for the sake of logical completeness. See 137 ff.
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our form of externality is homogeneous, this relation can be

kept unchanged while the two points move in the form, i.e.,

change their relations to other points ;
hence their relation to

each other is an intrinsic relation, independent of their rela

tions to other points. But since our form is merely a complex
of relations, a relation of externality must appear in the form,

with the same evidence as anything else in the form
;
thus if

the form be intuitive or sensational, the relation must be

immediately presented, and not a mere inference. Hence the

intrinsic relation between two points must be a unique figure

in our form, i.e. in spatial terms, the straight line joining the

two points.

174. (4) Finally, we have to prove that the existence of

such a curve necessarily leads, when quantity is applied to the

relation between two points, to a unique magnitude, which

those two points completely determine. With this, we shall be

brought back to distance, from which we started, and shall

complete the circle of our argument.
We saw, in section A 119, that the figure formed by two

points is project!vely indistinguishable from that formed by any
two other points in the same straight line

;
the figure, in both

cases, is, from the projective standpoint, simply the straight

line on which the two points lie. The difference of relation, in

the two cases, is not qualitative, since projective Geometry
cannot deal with it

; nevertheless, there is some difference of

relation. For instance, if one point be kept fixed, while the

other moves, there is obviously some change of relation. This

change, since all parts of the straight line are qualitatively

alike, must be a change of quantity. If two points, therefore,

determine a unique figure, there must exist, for the distinction

between the various other points of this figure, a unique

quantitative relation between the two determining points, and

therefore, since these points are arbitrary, between only two

points. This relation is distance, with which our argument

began, and to which it at least returns.

175. To sum up : If points are defined simply by relations

to other points, i.e., if all position is relative, every point mast

have to every other point one, and only one, relation independent

of the rest of space. This relation is the distance betiveen the
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two points. Now a relation between two points can only be

defined by a line joining them nay further, it may be con

tended that a relation can only be a line joining them. Hence
a unique relation involves a unique line, i.e., a line determined

by any two of its points. Only in a space which admits of

such a line is linear magnitude a logically possible conception.

But when once we have established the possibility, in general,

of drawing such lines, and therefore of measuring linear mag
nitudes, we may find that a certain magnitude has a peculiar

relation to the constitution of space. The straight line may
turn out to be of finite length, and in this case its length will

give a certain peculiar magnitude, the space-constant. Two

antipodal points, that is, points which bisect the entire

straight line, will then have a relation of magnitude which,

though unaltered by motion, is rendered peculiar by a certain

constant relation to the rest of space. This peculiarity pre

supposes a measure of linear magnitude in general, and cannot,

therefore, upset the apriority of the axiom of the straight line.

But it destroys, for points having the peculiar antipodal rela

tion to each other, the argument which proved that the relation

between two points could not, since it was unchanged by
motion, have reference to the rest of space. Thus it is intel

ligible that, for such special points, the axiom breaks down, and

an infinite number of straight lines are possible between them
;

but unless we had started with assuming the general validity

of the axiom, we could never have reached a position in which

antipodal points could have been known to be peculiar, or,

indeed, a position which would have enabled us to give any

quantitative definition whatever of particular points.

Distance and the straight line, as relations uniquely deter

mined by two points, are thus d priori necessary to metrical

Geometry. But further, they are properties which must belong
to any form of externality. Since their necessity for Geometry
was deduced from homogeneity and the relativity of position,

and since these are necessary properties of any form of exter

nality, the same argument proves both conclusions. We thus

obtain, as in the case of Free Mobility, a double apriority :

The axiom of Distance, and its implication, the axiom of

the Straight Line, are, on the one hand, presupposed in the
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possibility of spatial magnitude, and cannot, therefore, be con

tradicted by any experience resulting from the measurement
of space ;

while they are consequences, on the other hand, of

the necessary properties of any form of externality which is to

render possible experience of an external world.

176. In connection with the straight line, it will be con

venient to discuss the conditions of a metrical coordinate

system. The projective coordinate system, as we have seen,

aims only at a convenient nomenclature for different points,

and can be set up without introducing the notion of spatial

quantity. But a metrical coordinate system does much more

than this. It defines every point quantitatively, by its quanti
tative spatial relations to a certain coordinate figure. Only
when the system of coordinates is thus metrical, i.e., when

every coordinate represents some spatial magnitude, which is

itself a relation of the point defined to some other point or

figure can operations with coordinates lead to a metrical

result. When, as in projective Geometry, the coordinates are

not spatial magnitudes, no amount of transformation can give
a metrical result. I wish to prove, here, that a metrical coordi

nate system necessarily involves the straight line, and cannot,

without a logical fallacy, be set up on any other basis. The

projective system of coordinates, as we saw, is entirely based on

the straight line
;
but the metrical system is more important,

since its quantities embody actual information as to spatial

magnitudes, which, in projective Geometry, is not the case.

In the first place, a point s metrical coordinates constitute a

complete quantitative definition of it
;
now a point can only be

defined, as we have seen, by its relations to other points, and

these relations can only be defined by means of the straight

line. Consequently, any metrical system of coordinates must

involve the straight line, as the basis of its definitions of points.

This a priori argument, however, though I believe it to be

quite sound, is not likely to carry conviction to any one per

suaded of the opposite. Let us, therefore, examine metrical

coordinate systems in detail, and show, in each case, their

dependence on the straight line.

We have already seen that the notion of distance is im

possible without the straight line. We cannot, therefore, define
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our coordinates in any of the ordinary ways, as the distances

from three planes, lines, points, spheres, or what not. Polar

coordinates are impossible, since, waiving the straightness of

the radius vector the length of the radius vector becomes

unmeaning. Triangular coordinates involve not only angles,

which must in the limit be rectilinear, but straight lines, or at

any rate some well-defined curves. Now curves can only be

metrically defined in two ways : Either by relation to the

straight line, as, e.g., by the curvature at any point, or by

purely analytical equations, which presuppose an intelligible

system of metrical coordinates. What methods remain for

assigning these arbitrary values to different points ? Nay,
how are we to get any estimate of the difference to avoid

the more special notion of distance between two points ?

The very notion of a point has become illusory. When we

have a coordinate system, we may define a point by its three

coordinates; in the absence of such a system, we may define

the notion of point in general as the intersection of three sur

faces or of two curves. Here we take surfaces and curves

as notions which intuition makes plain, but if we wish them to

give us a precise numerical definition of particular points, we
must specify the kind of surface or curve to be used. Now
this, as we have seen, is only possible when we presuppose
either the straight line, or a coordinate system. It follows that

every coordinate system presupposes the straight line, and is

logically impossible without it.

177. The above three axioms, we have seen, are a priori

necessary to metrical Geometry. No others can be necessary,

since metrical systems, logically as unassailable as Euclid s,

and dealing with spaces equally homogeneous and equally re

lational, have been constructed by the metageometers, without

the help of any other axioms. The remaining axioms of Eu

clidean Geometry the axiom of parallels, the axiom that the

number of dimensions is three, and Euclid s form of the axiom

of the straight line (two straight lines cannot enclose a space)

are not essential to the possibility of metrical Geometry,

i.e., are not deducible from the fact that a science of spatial

magnitudes is possible. They are rather to be regarded as

empirical laws, obtained, like the empirical laws of other
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sciences, by actual investigation of the given subject-matter
in this instance, experienced space.

178. In summing up the distinctive argument of this

Section, we may give it a more general form, and discuss

the conditions of measurement in any continuous manifold,

i.e., the qualities necessary to the manifold, in order that

quantities in it may be determinable, not only as to the more
or less, but as to the precise how much.

Measurement, we may say, is the application of number
to continua, or, if we prefer it, the transformation of mere

quantity into number of units. Using quantity to denote

the vague more or less, and magnitude to denote the precise

number of units, the problem of measurement may be defined

as the transformation of quantity into magnitude.
Now a number, to begin with, is a whole consisting of

smaller units, all of these units being qualitatively alike.

In order, therefore, that a continuous quantity may be ex

pressible as a number, it must, on the one hand, be itself

a whole, and must, on the other hand, be divisible into

qualitatively similar parts. In the aspect of a whole, the

quantity is intensive
,
in the aspect of an aggregate of parts,

it is extensive. A purely intensive quantity, therefore, is not

numerable a purely extensive quantity, if any such could be

imagined, would not be a single quantity at all, since it would

have to consist of wholly unsynthesized particulars. A mea

surable quantity, therefore, is a whole divisible into similar

parts. But a continuous quantity, if divisible at all, must be

infinitely divisible. For otherwise the points at which it could

be divided would form natural barriers, and so destroy its

continuity. But further, it is not sufficient that there should

be a possibility of division into mutually external parts ;
while

the parts, to be perceptible as parts, must be mutually ex

ternal, they must also, to be knowable as equal parts, be

capable of overcoming their mutual externality. For this, as

we have seen, we require superposition, which involves Free

Mobility and homogeneity the absence of Free Mobility in

time, where all other requisites of measurement are fulfilled,

renders direct measurement of time impossible. Hence infinite

divisibility, free mobility, and homogeneity are necessary for
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the possibility of measurement in any continuous manifold,

and these, as we have seen, are equivalent to our three axioms.

These axioms are necessary, therefore, not only for spatial

measurement, but for all measurement. The only manifold

given in experience, in which these conditions are satisfied, is

space. All other exact measurement as could be proved, I

believe, for every separate case is effected, as we saw in the

case of time, by reduction to a spatial correlative. This ex

plains the paramount importance, to exact science, of the

mechanical view of nature, which reduces all phenomena to

motions in time and space. For number is, of all conceptions,

the easiest to operate with, and science seeks everywhere for

an opportunity to apply it, but finds this opportunity only by
means of spatial equivalents to phenomena

1
.

179. We have now seen in what the a priori element of

Geometry consists. This a priori element may be defined as

the axioms common to Euclidean and non-Euclidean spaces,

as the axioms deducible from the conception of a form of

externality, or in metrical Geometry as the axioms required

for the possibility of measurement. It remains to discuss, in

a final chapter, some questions of a more general philosophic

nature, in which we shall have to desert the firm ground of

mathematics and enter on speculations which I put forward very

tentatively, and with little faith in their ultimate validity. The

chief questions for this final chapter will be two : (1) How is

such a priori and purely logical necessity possible, as applied

to an actually given subject-matter like space ? (2) How
can we remove the contradictions which have haunted us in

this chapter, arising out of the relativity, infinite divisibility,

and unbounded extension of space ? These two questions are

forced upon us by the present chapter, but as they open some

of the fundamental problems of philosophy, it would be rash

to expect a conclusive or wholly satisfactory answer. A few

hints and suggestions may be hoped for, but a complete solution

could only be obtained from a complete philosophy, of which

the prospects are far too slender to encourage a confident

frame of mind.

1 Cf. Hannequin, Essai critique sur 1 hypothese des atomes, Paris, 1895,

m.

R. G. 12



CHAPTER IV.

PHILOSOPHICAL CONSEQUENCES.

180. IN the present chapter, we have to discuss two ques
tions which, though scarcely geometrical, are of fundamental

importance to the theory of Geometry propounded above. The
first of these questions is this : What relation can a purely

logical and deductive proof, like that from the nature of a form

of externality, bear to an experienced subject-matter such as

space ? You have merely framed a general conception, I may
be told, containing space as a particular species, and you have

then shown, what should have been obvious from the beginning,
that this general conception contained some of the attributes

of space. But what ground does this give for regarding these

attributes as a priori ? The conception Mammal has some of

the attributes of a horse
;
but are these attributes therefore d

priori adjectives of the horse ? The answer to this obvious

objection is so difficult, and involves so much general philo

sophy, that I have kept it for a final chapter, in order not to

interrupt the argument on specially geometrical topics.

181. I have already indicated, in general terms, the ground
for regarding as d priori the properties of any form of ex

ternality. This ground is transcendental, i.e. it is to be found in

the conditions required for the possibility of experience. The

form of externality, like Riemann s manifolds, is a general class-

conception, including time as well as Euclidean and non-

Euclidean spaces. It is not motived, however, like the manifolds,

by a quantitative resemblance to space, but by the fact that

it fulfils, if it has more than one dimension, all those functions

which, in our actual world, are fulfilled by space. But a form
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of externality, in order to accomplish this, must be, not a mere

conception, but an actually experienced intuition. Hence the

conception of such a form is the general conception, containing
under it every logically possible intuition which can fulfil the

function actually fulfilled by space. And this function is, to

render possible experience of diverse but interrelated things.

Some form in sense-perception, then, whose conception is

included under our form of externality, is d priori necessary to

experience of diversity in relation, and without experience of this,

we should, as modern logic shows, have no experience at all.

This still leaves untouched the relation of the d priori to the

subjective : the form of externality is necessary to experience,

but is not, on that account, to be declared purely subjective. Of

course, necessity for experience can only arise from the nature

of the mind which experiences ;
but it does not follow that the

necessary conditions could be fulfilled, unless the objective

world had certain properties. The ground of necessity, we may
safely say, arises from the mind

;
but it by no means follows

that the truth of what is necessary depends only on the con

stitution of the mind. Where this is not the case, our conclu

sion, when a piece of knowledge has been declared d priori,

can only be : Owing to the constitution of the mind, experience

will be impossible unless the world accepts certain adjectives.

Such, in outline, will be the argument of the first half of

this chapter, and such will be the justification for regarding
as d priori those axioms of Geometry, which were deduced

above from the conception of a form of externality. For these

axioms, and these only, are necessarily true of any world in

which experience is possible.

182 \ The view suggested has, obviously, much in common

with that of the Transcendental Aesthetic. Indeed the whole

of it, I believe, can be obtained by a certain limitation and

interpretation of Kant s classic arguments. But as it differs,

in many important points, from the conclusions aimed at by

Kant, and as the agreement may easily seem greater than it is,

I will begin by a brief comparison, and endeavour, by reference

1
Compare, with the following paragraphs, the admirable discussion in

Mr Hobhouse s Theory of Knowledge (Methuen 1896), Part i. Chapter u.

122
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to authoritative criticisms, to establish the legitimacy of my
divergence from him.

183. In the first place, the psychological element is much

larger in Kant s thesis than in mine. I shall contend, it is true,

that a form of externality, if it is to do its work, must not be

a mere conception or a mere inference, but must be a given
element in sense-perception not, of course, originally given in

isolation, but discoverable, through analysis, by attention to

the object of sense-perception
1

. But Kant contended, not only
that this element is given, but also that it is subjective. Space,
for him, is, on the one hand, not conceptual, but on the other

hand, not sensational. It forms, for him, no part of the data of

sense, but is added by a subjective intuition, which he regards
as not only logically, but psychologically, prior to objects in

space
2

.

This part of Kant s argument is wholly irrelevant for us.

Whether a form of externality be given in sense, or in a pure

intuition, is for us unimportant, since we neglect the question

as to the connection of the a priori and the subjective; while

the temporal priority of space to objects in it has been gene

rally recognized as irrelevant to Epistemology, and has often

been regarded as forming no part of Kant s thesis
3

. If we call

intuitional whatever is given in sense-perception, then we may
contend that a form of externality must be intuitional

;
but

whether it is a pure intuition, in Kant s sense, or not, is

irrelevant to us, as is its priority to the objects in it.

That the non-sensational nature of space is no essential part
of Kant s logical teaching, appears from an examination of his

argument. He has made, in the introduction, the purely

logical distinction of matter and form, but has given to this

distinction, in the very moment of suggesting it, a psycho

logical implication. This he does by the assertion that the

form, in which the matter of sensations is ordered, cannot

itself be sensational. From this assumption it follows, of course,

that space cannot be sensational. But the assumption is

1 I speak of sense-perception instead of sensation, so as. not to prejudge the

issue as to the sensational nature of space,
2 See Vaihinger s Commentar, n. pp. 86 7, 168171.
3 See Caird, Critical Philosophy of Kant, Vol. i. p. 287.
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totally unsupported by argument, being set forth, apparently,

as a self-evident axiom
;

it has been severely criticized by

Stumpf
1 and others

2

,
and has been described by Vaihinger as a

fatal petitio principii
3

)
it is irrelevant to the logical argument,

when this argument is separated, as we have separated it, from

all connection with psychological subjectivity ;
and finally, it

leaves us a prey to psychological theories of space, which have

seemed, of late, but little favourable to the pure Kantian

doctrine.

184. We have a right, therefore, in an epistemological

inquiry, to neglect Kant s psychological teaching in so far,

at any rate, as it distinguishes spatial intuition from sensation

and attend rather to the logical aspect alone. That part of

his psychological teaching, which maintains that space is not a

mere conception, is, with certain limitations, sufficiently evident

as applied to actual space ;
but for us, it must be transformed

into a much more difficult thesis, namely, that no form of

externality, which renders experience of diversity in relation

possible, can be merely conceptual. This question, to which we

must return later, is no longer psychological, but belongs wholly

to Epistemology.

185. What, then, remains the kernel, for our purposes, of

Kant s first argument for the apriority of space ? His argu

ment, in the form in which he gave it, is concerned with the

eccentric projection of sensations. In order that I may refer

sensations, he says, to something outside myself, I must already

have the subjective space-form in the mind. In this shape, as

Vaihinger points out (Commentar, II. pp. 69, 165), the argu
ment rests on a petitio principii, for only if sensations are

necessarily non-spatial does their projection demand a subjec

tive space-form. But, further, is the logical apriority of space

concerned with the externality of things to ourselves ?

Space seems to perform two functions : on the one hand,

it reveals things, by the eccentric projection of sensations,

as external to the self, while, on the other hand, it reveals

simultaneously presented things as mutually external. These

1 Ursprung der Eaumvorstellung, pp. 1230.
2 See the references in Vaihinger s Commentar, n. p. 76 ff.

3 Commentar, n. p. 71 ff.
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two functions, though often treated as coordinate and almost

equivalent
1
,
seem to me widely different. Before we discuss

the apriority of space, we must carefully distinguish, I think,

between these two functions, and decide which of them we are

to argue about.

Now externality to the Self, it would seem, must necessarily

raise the whole question of the nature and limits of the Ego,
and what is more, it cannot be derived from spatial presentation,

unless we give the Self a definite position in space. But things

acquire a position in space only when they can appear in sense-

perception ;
we are forced, therefore, if we adopt this view of

the function of space, to regard the Self as a phenomenon

presented to sense-perception. But this reduces externality to

the Self to externality to the body. The body, however, is a

presented object like any other, and externality of objects to it

is, therefore, a special case of the mutual externality of presented

things. Hence we cannot regard space as giving, primarily at

any rate, externality to the Self, but only the mutual externality

of the things presented to sense-perception
2

.

186. This, then, is the kind of externality we are to expect

from space, and our question must be : Would the existence of

diverse but interrelated things be unknowable, if there were

not, in sense-perception, some form of externality ? This is the

crucial question, on which turns the apriority of our form, and

hence of the necessary axioms of Geometry.
187. The converse argument to mine, the argument from

the spatio-temporal element in perception to a world of inter

related but diverse things, is developed at length in Bradley s

Logic. It is put briefly in the following sentence (p. 44, note):
&quot;

If space and time are continuous, and if all appearance must

occupy some time or space and it is not hard to support both

these theses we can at once proceed to the conclusion, no mere

particular exists. Every phenomenon will exist in more times

or spaces than one
;
and against that diversity will be itself an

universal
3

.&quot; The importance of this fact appears, when we

1
E.g. by Caird, op. cit. Vol. i. p. 286.

2 I have no wish to deny, however, that space is essential in the subsequent

distinction of Self and not- Self.

3 See also Book I. Chap n. passim ; especially p. 51 ff. and pp. 70-1.
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consider that, if any mere particular existed, all judgment and

inference as to that particular would be impossible, since all

judgment and inference necessarily operate by means of uni-

versals. But all reality is constructed from the This of immediate

presentation, from which judgment and inference necessarily

spring. Owing, however, to the continuity and relativity of

space and time, no This can be regarded either as simple or as

self-subsistent. Every This, on the one hand, can be analyzed

into Thises, and on the other hand, is found to be necessarily

related to other things, outside the limits of the given object

of sense-perception. This function of space and time is pre

supposed in the following statement from Bosanquet s Logic

(Vol. I. pp. 77 78): &quot;Reality
is given for me in present

sensuous perception, and in the immediate feeling of my own

sentient existence that goes with it. The real world, as a

definite organized system, is for me an extension of this present

sensation and self feeling by means of judgment, and it is the

essence of judgment to effect and sustain such an extension...

The subject in every judgment of Perception is some given spot

or point in sensuous contact with the percipient self. But, as

all reality is continuous, the subject is not merely this given

spot or
point.&quot;

188. This doctrine of Bradley and Bosanquet is the

converse of the epistemological doctrine I have to advocate.

Owing to the continuity and relativity of space and time, they

say, we are able to construct a systematic world, by judgment
and inference, out of that fragmentary and yet necessarily

complex existence which is given in sense-perception. My
contention is, conversely, that since all knowledge is necessarily

derived by an extension of the This of sense-perception, and

since such extension is only possible if the This has that

fragmentary and yet complex character conferred by a form of

externality, therefore some form of externality, given with the

This, is essential to all knowledge, and is thus logically a priori.

Bradley s argument, if sound, already proves this contention;

for while, on the one hand, he uses no properties of space and

time but those which belong to every form of externality, he

proves, on the other hand, that judgment and inference require

the This to be neither single nor self-subsistent. But I will
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endeavour, since the point is of fundamental importance, to

reproduce the proof, in a form more suited than Bradley s to

the epistemological question.

189. The essence of my contention is that, if experience is

to be possible, every sensational This must, when attended to,

be found, on the one hand, resolvable into Thises, and on the

other hand dependent, for some of its adjectives, on external

reference. The second of these theses follows from the first,

for if we take one of the Thises contained in the first This, we

get a new This necessarily related to the other Thises which

make up the original This. I may, therefore, confine myself to

the first proposition, which affirms that the object of perception
must contain a diversity, not only of conceptual content, but of

existence, and that this can only be known if sense-perception

contains, as an element, some form of externality.

My premiss, in this argument, is that all knowledge involves

a recognition of diversity in relation, or, if we prefer it, of

identity in difference. This premiss I accept from Logic, as

resulting from the analysis of judgment and inference. To

prove such a premiss, would require a treatise on Logic; I

must refer the reader, therefore, to the works of Bradley and

Bosanquet on the subject. It follows at once, from my premiss,

that knowledge would be impossible, unless the object of

attention could be complex, i.e. not a mere particular. Now
could the mental object i.e., in this connection, the object of

a cognition be complex, if the object of immediate perception
were always simple ?

190. We might be inclined, at first sight, to answer this

question affirmatively. But several difficulties, I think, would

prevent such an answer. In the first place, knowledge must

start from perception. Hence, either we could have no know

ledge except of our present perception, or else we must be able

to contrast and compare it with some other perception. Now
in the first case, since the present perception, by hypothesis, is

a mere particular, knowledge of it is impossible, according to

our premiss. But in the second case, the other perception,

with which we compare our first, must have occurred at some

other time, and with time, we have at once a form of ex

ternality. But what is more, our present perception is no
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longer a mere particular. For the power of comparing it with

another perception involves a point of identity between the

two, and thus renders both complex. Moreover, time must be

continuous, and the present, as Bradley points out, is no mere

point of time 1
. Thus our present perception contains the

complexity involved in duration throughout the specious pre

sent: its mere particularity and its simplicity are lost. Its

self-subsistence is also lost, for beyond the specious present, lie

the past and the future, to which our present perception thus

unavoidably refers us. Time at least, therefore, is essential to

that identity in difference, which all knowledge postulates.

191. But we have derived, from all this, no ground for

affirming a multiplicity of real things, or a form of externality

of more than one dimension, which, we saw, was necessary for

the truth of two out of our three axioms. This brings us to

the question : Have we enough, with time alone as a form of

externality, for the possibility of knowledge ?

This question we must, I think, answer in the negative.

With time alone, we have seen, our presented object must t&amp;gt;e

complex, but its complexity must, if I may use such a phrase,

be merely adjectival. Without a second form of externality,

only one thing can be given at one moment 2
,
and this one

thing, therefore, must constitute the whole of our world. The

object of past perception must since our one thing has nothing

external to it, by which it could be created or destroyed be

regarded as the same thing in a different state. The com

plexity, therefore, will lie only in the changing states of our

one thing it will be adjectival, not substantival. Moreover we

have the following dilemma: Either the one thing must be

ourselves, or else self-consciousness could never arise. But the

chief difficulty of such a world would lie in the changes of the

thing. What could cause these changes, since we should know

of nothing external to our thing ? It would be like a Leibnitzian

monad, without any God outside it to prearrange its changes.

Causality, in such a world, could not be applied, and change

would be wholly inexplicable.

1
Logic, p. 51 ff.

2 For the This, on such a hypothesis, has a purely temporal complexity, and

is not resolvable into coexisting Thises.
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Hence we require also the possibility of a diversity of

simultaneously existing things, not merely of successive adjec
tives

;
and this, we have seen, cannot be given by time alone,

but only by a form of externality for simultaneous parts of one

presentation. We could never, in other words, infer the

existence of diverse but interrelated things, unless the object
of sense-perception could have substantival complexity, and for

such complexity we require a form of externality other than

time. Such a form, moreover, as was shown in Chapter in.,

Section A ( 135), can only fulfil its functions if it has more

than one dimension. In our actual world, this form is given

by space ;
in any world, knowable to beings with our laws of

thought, some such form, as we have now seen, must be given
in sense-perception.

This argument may be briefly summed up, by assuming the

doctrine of Bradley, that all knowledge is obtained by inference

from the This of sense-perception. For, if this be so, the

This in order that inference, which depends on identity in

difference, may be possible at all must itself be complex, and

must, on analysis, reveal adjectives having a reference beyond
itself. But this, as was shown above, can only happen by
means of a form of externality. This establishes the a priori
axioms of Geometry, as necessarily having existential import
and validity in any intelligible world.

192. The above argument, I hope, has explained why I

hold it possible to deduce, from a mere conception like that of

a form of externality, the logical apriority of certain axioms as

to experienced space. The Kantian argument which was

correct, if our reasoning has been sound, in asserting that real

diversity, in our actual world, could only be known by the help
of space was only mistaken, so far as its purely logical scope

extends, in overlooking the possibility of other forms of

externality, which could, if they existed, perform the same task

with equal efficiency. In so far as space differs, therefore,

from these other conceptions of possible intuitional forms, it is

a mere experienced fact, while in so far as its properties are

those which all such forms must have, it is d priori necessary

to the possibility of experience.

I cannot hope, however, that no difficulty will remain, for
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the reader, in such a deduction, from abstract conceptions, of

the properties of an actual datum in sense-perception. Let

us consider, for example, such a property as impenetrability.
To suppose two things simultaneously in the same position

in a form of externality, is a logical contradiction
;
but can we

say as much of actual space and time ? Is not the impos

sibility, here, a matter of experience rather than of logic ? Not

if the above argument has been sound, I reply. For in that

case, we infer real diversity, i.e. the existence of different things,

only from difference of position in space or time. It follows,

that to suppose two things in the same point of space and

time, is still a logical contradiction : not because we have

constructed the data of sense out of logic, but because logic

is dependent, as regards its application, on the nature of these

data. This instance illustrates, what I am anxious to make

plain, that my argument has not attempted to construct the

living wealth of sense-perception out of &quot;

bloodless
categories,&quot;

but only to point out that, unless sense-perception contained

a certain element, these categories would be powerless to

grapple with it.

193. How we are to account for the fortunate realization

of these requirements whether by a pre-established harmony,

by Darwinian adaptation to our environment, by the sub

jectivity of the necessary element in sense-perception, or by
a fundamental identity and unity between ourselves and the

rest of reality is a further question, belonging rather to

metaphysics than to our present line of argument. The a

priori, we have said throughout, is that which is necessary for

the possibility of experience, and in this we have a purely

logical criterion, giving results which only Logic and Epi-

stemology can prove or disprove. What is subjective in ex

perience, on the contrary, is primarily a question for psychology,
and should be decided on psychological grounds alone. When
these two questions have been separately answered, but not

till then, we may frame theories as to the connection of the d,

priori and the subjective ;
to allow such theories to influence

our decision, on either of the two previous questions, is liable,

surely, to confuse the issue, and prevent a clear discrimination

between fundamentally different points of view.
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194. I come now to the second question with which this

chapter has to deal, the question, namely : What are we to

do with the contradictions which obtruded themselves in

Chapter in., whenever we came to a point which seemed

fundamental ? I shall treat this question briefly, as I have

little to add to answers with which we are all familiar. I

have only to prove, first, that the contradictions are inevitable,

and therefore form no objection to my argument; secondly,

that the first step in removing them is to restore the notion

of matter, as that which, in the data of sense-perception, is

localized and interrelated in space.

195. The contradictions in space are an ancient theme
as ancient, in fact, as Zeno s refutation of motion. They are,

roughly, of two kinds, though the two kinds cannot be sharply
divided. There are the contradictions inherent in the notion

of the continuum, and the contradictions which spring from

the fact that space, while it must, to be knowable, be pure

relativity, must also, it would seem, since it is immediately

experienced, be something more than mere relations. The

first class of contradictions has been encountered more fre

quently in this essay, and is also, I think, the more definite,

and the more important for our present purpose. I doubt,

however, whether the two classes are really distinct; for any

continuum, I believe, in which the elements are not data, but

intellectual constructions resulting from analysis, can be shown

to have the same relational and yet not wholly relational cha

racter as belongs to space.

The three following contradictions, which I shall discuss

successively, seem to me the most prominent in a theory
of Geometry.

(1) Though the parts of space are intuitively distin

guished, no conception is adequate to differentiate them.

Hence arises a vain search for elements, by which the dif

ferentiation could be accomplished, and for a whole, of which

the parts of space are to be components. Thus we get the

point, or zero extension, as the spatial element, and an infinite

regress or a vicious circle in the search for a whole.

(2) All positions being relative, positions can only be

defined by their relations, i.e. by the straight lines or planes
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through them
;
but straight lines and planes, being all quali

tatively similar, can only be defined by the positions they

relate. Hence, again, we get a vicious circle.

(3) Spatial figures must be regarded as relations. But a

relation is necessarily indivisible, while spatial figures are

necessarily divisible ad infinitum.

196. (1) Points. The antinomy of the point which

arises wherever a continuum is given, and elements have to be

sought in it is fundamental to Geometry. It has been given,

perhaps unintentionally, by Veronese as the first axiom, in the

form :

&quot; There are different points. All points are identical
&quot;

(op. tit. p. 226). We saw, in discussing projective Geometry,
that straight lines and planes must be regarded, on the one hand

as relations between points, and on the other hand as made up
of points

1
. We saw again, in dealing with measurement, how

space must be regarded as infinitely divisible, and yet as mere

relativity. But what is divisible and consists of parts, as space

does, must lead at last, by continued analysis, to a simple and

unanalyzable part, as the unit of differentiation. For whatever

can be divided, and has parts, possesses some thinghood, and

must, therefore, contain two ultimate units, the whole namely,
and the smallest element possessing thinghood. But in space

this is notoriously not the case. After hypostatizing space, as

Geometry is compelled to do, the mind imperatively demands

elements, and insists on having them, whether possible or not.

Of this demand, all the geometrical applications of the infin

itesimal calculus are evidence
2

. But what sort of elements do

we thus obtain ? Analysis, being unable to find any earlier

halting-place, finds its elements in points, that is, in zero quanta
of space. Such a conception is a palpable contradiction, only

rendered tolerable by its necessity and familiarity. A point

must be spatial, otherwise it would not fulfil the function of a

spatial element; but again it must contain no space, for any
finite extension is capable of further analysis. Points can

never be given in intuition, which has no concern with the

infinitesimal : they are a purely conceptual construction, arising

1
Chapter in. Section A, ( 131).

2 Cf. Hannequin, Essai critique sur 1 hypothese des atomes, Paris 1895,

Chap. i. Section in. ; especially p. 43.
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out of the need of terms between which spatial relations can

hold. If space be more than relativity, spatial relations must
involve spatial relata; but no relata appear, until we have

analyzed our spatial data down to nothing. The contradictory
notion of the point, as a thing in space without spatial

magnitude, is the only outcome of our search for spatial

relata. This reductio ad absurdum surely suffices, by itself, to

prove the essential relativity of space.

197. Thus Geometry is forced, since it wishes to regard

space as independent, to hypostatize its abstractions, and

therefore to invent a self-contradictory notion as the spatial

element. A similar absurdity appears, even more obviously, in

the notion of a whole of space. The antinomy may, therefore,

be stated thus : Space, as we have seen throughout, must, if

knowledge of it is to be possible, be mere relativity; but it

must also, if independent knowledge of it, such as Geometry
seeks, is to be possible, be something more than mere relativity,

since it is divisible and has parts. But we saw, in Chap, ill.,

Section A ( 133) that knowledge of a form of externality must

be logically independent of the particular matter filling the

form. How then are we to extricate ourselves from this

dilemma ?

The only way, I think, is, not to make Geometry dependent
on Physics, which we have seen to be erroneous 1

,
but to give

every geometrical proposition a certain reference to matter in

general. And at this point an important distinction must be

made. We have hitherto spoken of space as relational, and

of spatial figures as relations. But space, it would seem, is

rather relativity than relations itself not a relation, it gives

the bare possibility of relations between diverse things
2

. As

applied to a spatial figure, which can only arise by a differen

tiation of space, and hence by the introduction of some

differentiating matter, the word relation is, perhaps, less

misleading than any other; as applied to empty undifferen-

tiated space, it seems by no means an accurate description.

But a bare possibility cannot exist, or be given in sense-

perception ! What becomes, then, of the arguments of the

1 See Chapter n. 69 ff.

- See third antinomy below, 201 ff.
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first part of this chapter ? I reply, it is not empty space, but

spatial figures, which sense-perception reveals, and spatial

figures, as we have just seen, involve a differentiation of space,

and therefore a reference to the matter which is in space. It

is spatial figures, also, and not empty space, with which

Geometry has to deal. The antinomy discussed above arises

then so it would seem from the attempt to deal with empty

space, rather than with spatial figures and the matter to which

they necessarily refer.

198. Let us see whether, by this change, we can overcome

the antinomy of the point. Spatial figures, we shall now say,

are relations between the matter which differentiates empty

space. Their divisibility, which seemed to contradict their

relational character, may be explained in two ways: first, as

holding of the figures considered as parts of empty space, which

is itself not a relation
; second, as denoting the possibility

of continuous change in the relation expressed by the spatial

figure. These two ways are, at bottom, the same
;
for empty

space is a possibility of relations, and the figure, when viewed

in connection with empty space, thus becomes a possible relation,

with which other possible relations may be contrasted or

compared. But the second wr

ay of regarding divisibility is the

better way, since it introduces a reference to the matter which

differentiates empty space, without which, spatial figures, and

therefore Geometry, could not exist. It is empty space, then

so we must conclude which gives rise to the antinomy in

question ;
for empty space is a bare possibility of relations,

undifferentiated and homogeneous, and thus wholly destitute

of parts or of thiiighood. To speak of parts of a possibility is

nonsense
;
the parts and differentiations arise only through a

reference to the matter which is differentiated in space.

199. But what nature must we ascribe to this matter,

which is to be involved in all geometrical propositions ? In

criticizing Helmholtz (Chap. u. 73), it may be remembered,

we decided that Geometry refers to a peculiar and abstract

kind of matter, which is not regarded as possessing any causal

qualities, as exerting or as subject to the action of forces. And
this is the matter, I think, which we require for the needs of

the moment. Not that we affirm, of course, that actual matter
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can be destitute of the properties with which Physics is cogni

zant, but that we abstract from these properties, as being
irrelevant to Geometry. All that we require, for our immediate

purpose, is a subject of that diversity which space renders

possible, or terms for those relations by which empty space, if

space is to be studied at all, must be differentiated. But how
must a matter, which is to fulfil this function, be regarded ?

Empty space, we have said, is a possibility of diversity in

relation, but spatial figures, with which Geometry necessarily

deals, are the actual relations rendered possible by empty space.

Our matter, therefore, must supply the terms for these relations.

It must be differentiated, since such differentiation, as we have

seen, is the special work of space. We must find, therefore,

in our matter, that unit of differentiation, or atom 1

,
which in

space we could not find. This atom must be simple, i.e. it

must contain no real diversity; it must be a This not resolvable

into Thises. Being simple, it can contain no relations within

itself, and consequently, since spatial figures are mere relations,

it cannot appear as a spatial figure ;
for every spatial figure

involves some diversity of matter. But our atom must have

spatial relations with other atoms, since to supply terms for

these relations is its only function. It is also capable of having
these relations, since it is differentiated from other atoms.

Hence we obtain an unextended term for spatial relations,

precisely of the kind we require. So long as we sought this

term without reference to anything more than space, the self-

contradictory notion of the point was the only outcome of our

search
;
but now that we allow a reference to the matter diffe

rentiated by space, we find at once the term which was needed,

namely, a non-spatial simple element, with spatial relations to

other elements. To Geometry such a term will appear, owing
to its spatial relations, as a point ;

but the contradiction of the

point, as we now see, is a result only of the undue abstraction

with which Geometry deals.

200. (2) The circle in the definition of straight lines and

planes. This difficulty need not long detain us, since we have

already, with the material atom, broken through the relativity

which caused our circle. Straight lines, in the purely geometrical
1 This atom, of course, must not be confounded with the atom of Chemistry.
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procedure, are defined only by points, and points only by
straight lines. But points, now, are replaced by material

atoms: the duality of points and lines, therefore, has disap

peared, and the straight line may be defined as the spatial

relation between two unextended atoms. These atoms have

spatial adjectives, derived from their relations to other atoms
;

but they have no intrinsic spatial adjectives, such as could

belong to them if they had extension or figure. Thus straight
lines and planes are the true spatial units, and points result

only from the attempt to find, within space, those terms for

spatial relations which exist only in a more than spatial

matter. Straight lines, planes and volumes are the spatial

relations between two, three or four unextended atoms, and

points are a merely convenient geometrical fiction, by which

possible atoms are replaced. For, since space, as we saw, is a

possibility, Geometry deals not with actually realized spatial

relations, but with the whole scheme of possible relations.

201. (3) Space is at once relational and more than re

lational. We have already touched on the question how far

space is other than relations, but as this question is quite

fundamental, as relation is an ambiguous and dangerous word,
as I have made constant use of the relativity of space without

attempting to define a relation, it will be necessary to discuss

this antinomy at length.

202. Now for this discussion it is essential to distinguish

clearly between empty space and spatial figures. Empty
space, as a form of externality, is not actual relations, but

the possibility of relations : if we ascribe existential import
to it, as the ground, in reality, of all diversity in relation, we at

once have space as something not itself relations, though giving
the possibility of all relations. In this sense, space is to be

distinguished from spatial order. Spatial order, it may be said,

presupposes space, as that in which this order is possible. Thus

Stumpf says
1

:

&quot; There is no order or relation without a positive

absolute content, underlying it, and making it possible to order

anything in this manner. Why and how should we otherwise

distinguish one order from another ?...To distinguish different

orders from one another, we must everywhere recognize a

1
Ursprung der Raumvorstellung, p. 15.

R. G. 13
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particular absolute content, in relation to which the order takes

place. And so space, too, is not a mere order, but just that

by which the spatial order, side-by-sideness (Nebeneinander)

distinguishes itself from the rest.&quot;

May we not, then, resolve the antinomy very simply, by a

reference to this ambiguity of space ? Bradley contends (Ap

pearance and Reality, pp. 36-7) that, on the one hand, space
has parts, and is therefore not mere relations, while on the

other hand, when we try to say what these parts are, we find

them after all to be mere relations. But cannot the space

which has parts be regarded as empty space, Stumpf s absolute

underlying content, which is not mere relations, while the parts,

in so far as they turn out to be mere relations, are those rela

tions which constitute spatial order, not empty space ? If this

can be maintained, the antinomy no longer exists.

But such an explanation, though I believe it to be a first

step towards a solution, will, I fear, itself demand almost as

much explanation as the original difficulty. For the connection

of empty space with spatial order is itself a question full of

difficulty, to be answered only after much labour.

203. Let us consider what this empty space is. (I speak

of
&quot;

empty
&quot;

space without necessarily implying the absence of

matter, but only to denote a space which is not a mere

order of material things.) Stumpf regards it as given in sense
;

Kant, in the last two arguments of his metaphysical deduction,

argues that it is an intuition, not a concept, and must be

known before spatial order becomes possible. I wish to main

tain, on the contrary, that it is wholly conceptual ;
that space is

given only as spatial order
;
that spatial relations, being given,

appear as more than mere relations, and so become hyposta-

tized
;
that when hypostatized, the whole collection of them is

regarded as contained in empty space ;
but that this empty

space itself, if it means more than the logical possibility of

space-relations, is an unnecessary and self-contradictory as

sumption. Let us begin by considering Kant s arguments on

this point.

Leibnitz had affirmed that space was only relations, while

Newton had maintained the objective reality of absolute space.

Kant adopted a middle course : he asserted absolute space, but



PHILOSOPHICAL CONSEQUENCES. 195

regarded it as purely subjective. The assertion of absolute

space is the object of his second argument ;
for if space were

mere relations between things, it would necessarily disappear
with the disappearance of the things in it

;
but this the second

argument denies 1
. Now spatial order obviously does disappear

with matter, but absolute or empty space may be supposed to

remain. It is this, then, which Kant is arguing about, and it is

this which he affirms to be a pure intuition, necessarily pre

supposed by spatial order 2
.

204. But can we agree in regarding empty space, the
&quot;

infinite given whole,&quot; as really given ? Must we not, in spite

of Kant s argument, regard it as wholly conceptual ? It is not

required, in the first place, by the argument of the first half of

this chapter, which required only that every This of sense-

perception should be resolvable into Thises, and thus involved

only an order among Thises, not anything given originally

without reference to them at all. In the second place, Kant s

two arguments
3

designed to prove that empty space is not

conceptual, are inadequate to their purpose. The argument
that the parts of space are not contained under it, but in it,

proves certainly that space is not a general conception, of which

spatial figures are the instances
;
but it by no means follows

that empty space is not a conception. Empty space is un-

differentiated and homogenous; parts of space, or spatial

figures, arise only by reference to some differentiating matter,

and thus belong rather to spatial order than to empty space.

If empty space be the pre-condition of spatial order, we cannot

expect it to be connected with spatial relations as genus with

species. But empty space may nevertheless be a universal

conception; it may be related to spatial order as the state to

the citizens. These are not instances of the state, but are

contained in it
; they also, in a sense, presuppose it, for a man

can only become a citizen by being related to other citizens in

a state
4

.

1 See Yaihinger s Commentar, n. pp. 189 190.

2 See ibid. p. 224 ff. for Kant s inconsistencies on this point.
3 The fourth and fifth in the first edition, the third and fourth in the

second.

4 Cf. Vaihinger s Commentar, n. p. 218.
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The uniqueness of space, again, seems hardly a valid argu
ment for its intuitional nature; to regard it as an argument

implies, indeed, that all conceptions are abstracted from a series

of instances a view which has been criticized in Chapter II.

( 77), and need not be further discussed here 1
. There is no

ground, therefore, in Kant s two arguments for the intuitional

nature of empty space, which can be maintained against
criticism.

205. Another ground for condemning empty space is to

be found in the mathematical antinomies. For it is no solution,

as Lotze points out (Metaphysik, Bk. n. Chap. I., 106), to

regard empty space as purely subjective : contradictions in a

necessary subjective intuition form as great a difficulty as in

anything else. But these antinomies arise only in connection

Avith empty space, not with spatial order as an aggregate of

relations. For only when space is regarded as possessed of some

thinghood, can a whole or a true element be demanded. This

we have seen already in connection with the Point. When

space is regarded, so far as it is valid, as only spatial order,

unbounded extension and infinite divisibility both disappear.

What is divided is not spatial relations, but matter; and if

matter, as we have seen that Geometry requires, consists of

unextended atoms with spatial relations, there is no reason to

regard matter either as infinitely divisible, or as consisting of

atoms of finite extension.

206. But whence arises, on this view, the paradox that we
cannot but regard space as having more or less thinghood, and

as divisible ad infinitum ? This must be explained, I think, as

a psychological illusion, unavoidably arising from the fact that

spatial relations are immediately presented. They thus have

a peculiar psychical quality, as immediate experiences, by which

quality they can be distinguished from time-relations or any
other order in which things may be arranged. To Stumpf,
whose problem is psychological, such a psychical quality would

constitute an absolute underlying content, and would fully

justify his thesis
;
to us, however, whose problem is epistemo-

logical, it would not do so, but would leave the meaning of the

spatial element in sense-perception free from any implication
1

Cf. Vaihinger s Commentar, n. p. 207.
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of an absolute or empty space *. May we not, then, abandon

empty space, and say : Spatial order consists of felt relations,

and qua felt has, for Psychology, an existence not wholly
resolvable into relations, and unavoidably seeming to be more

than mere relations. But when we examine the information,

as to space, which we derive from sense-perception, we find

ourselves plunged in contradictions, as soon as we allow this

information to consist of more than relations. This leaves

spatial order alone in the field, and reduces empty space to a

mere name for the logical possibility of spatial relations.

207. The apparent divisibility of the relations which con

stitute spatial order, then, may be explained in two ways,

though these are at bottom equivalent. We may take the

relation as considered in connection with empty space, in which

case it becomes more than a relation
;
but being falsely hypo-

statized, it appears as a complex thing, necessarily composed of

elements, which elements, however, nowhere emerge until we

analyze the pseudo-thing down to nothing, and arrive at the

point. In this sense, the divisibility of spatial relations is an

unavoidable illusion. Or again, we may take the relation in

connection with the material atoms it relates. In this case,

other atoms may be imagined, differently localized by different

spatial relations. If they are localized on the straight line

joining two of the original atoms, this straight line appears as

divided by them. But the original relation is not really

divided : all that has happened is, that two or more equivalent

relations have replaced it, as two compounded relations of

father and son may replace the equivalent relation of grand

father and grandson. These two ways of viewing the apparent

divisibility are equivalent : for empty space, in so far as it is not

illusion, is a name for the aggregate of possible space-relations.

To regard a figure in empty space as divided, therefore, means,

if it means anything, to regard two or more other possible rela

tions as substituted for it, which gives the second way of view

ing the question.

The same reference to matter, then, by which the antinomy

of the Point was solved, solves also the antinomy as to the

relational nature of space. Space, if it is to be freed from

1 Cf. James, Psychology, Vol. n., p. 148 ff.
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contradictions, must be regarded exclusively as spatial order, as

relations between unextended material atoms. Empty space,

which arises, by an inevitable illusion, out of the spatial element

in sense-perception, may be regarded, if we wish to retain it, as

the bare principle of relativity, the bare logical possibility of

relations between diverse things. In this sense, empty space is

wholly conceptual ; spatial order alone is immediately experi

enced.

208. But in what sense does spatial order consist of rela

tions ? We have hitherto spoken of externality as a relation,

and in a sense such a manner of speaking is justified. Extern

ality, when predicated of anything, is an adjective of that thing,

and implies a reference to some other thing. To this extent,

then, externality is analogous to other relations; and only to this

extent, in our previous arguments, has it been regarded as a

relation. But when we take account of further qualities of

relations, externality begins to appear, not so much as a rela

tion, but rather as a necessary aspect or element in every
relation. And this is borne out by the necessity, for the

existence of relations, of some given form of externality.

Every relation, we may say, involves a diversity between

the related terms, but also some unity. Mere diversity does not

give a ground for that interaction, and that interdependence,

which a relation requires. Mere unity leaves the terms identical,

and thus destroys the reference of one to another required for a

relation. Mere externality, taken in abstraction, gives only the

element of diversity required for a relation, and is thus more

abstract than any actual relation. But mere diversity does not

give that indivisible whole of which any actual relation must

consist, and is thus, when regarded abstractly, not subject to the

restrictions of ordinary relations.

But with mere diversity, we seem to have returned to empty

space, and abandoned spatial order. Mere diversity, surely, is

either complete or non-existent; degrees of diversity, or a

quantitative measure of it, are nonsense. We cannot, therefore,

reduce spatial order to mere diversity. Two things, if they

occupy different positions in space, are necessarily diverse, but

are as necessarily something more
;

otherwise spatial order

becomes unmeaning.
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Empty space, then, in the above sense of the possibility

of spatial relations, contains only one aspect of a relation,

namely the aspect of diversity; but spatial order, by its reference

to matter, becomes more concrete, and contains also the element

of unity, arising out of the connection of the different material

atoms. Spatial order, then, consists of relations in the ordinary
sense

;
its merely spatial element, however if one may make

such a distinction the element, that is, which can be abstracted

from matter and regarded as constituting empty space, is only
one aspect of a relation, but an aspect which, in the concrete,

must be inseparably bound up with the other aspect. Here,

once more, we see the ground of the contradictions in empty

space, and the reason why spatial order is free from these

contradictions.

Conclusion.

209. We have now completed our review of the foundations

of Geometry. It will be well, before we take leave of the

subject, briefly to review and recapitulate the results we have

won.

In the first chapter, we watched the development of a branch

of Mathematics designed, at first, only to establish the logical

independence of Euclid s axiom of parallels, and the possibility

of a self-consistent Geometry which dispensed with it. We
found the further development of the subject entangled, for a

while, in philosophical controversy : having shown one axiom to

be superfluous, the geometers of the second period hoped to

prove the same conclusion of all the others, but failed to

construct any system free from three fundamental axioms.

Being concerned with analytical and metrical Geometry, they
tended to regard Algebra as a priori, but held that those

properties of spatial magnitudes, which were not deducible

from the laws of Algebra, must be empirical. In all this, they
aimed as much at discrediting Kant as at advancing Mathe

matics. But with the third period, the interest in Philosophy

diminishes, the opposition to Euclid becomes less marked, and

most important of all, measurement is no longer regarded as

fundamental, and space is dealt with by descriptive rather than
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quantitative methods. But nevertheless, three axioms, sub

stantially the same as those retained in the second period, are

still retained by all geometers.
In the second chapter, we endeavoured, by a criticism of

some geometrical philosophies, to prepare the ground for a

constructive theory of Geometry. We saw that Kant, in

applying the argument of the Transcendental Aesthetic to

space, had gone too far, since its logical scope extended only

to some form of externality in general. We saw that Riemann,
Helmholtz and Erdmann, misled by the quantitative bias, over

looked the qualitative substratum required by all judgments
of quantity, and thus mistook the direction in which the

necessary axioms of Geometry are to be found. We rejected,

also, Helmholtz s view that Geometry depends on Physics,

because we found that Physics must assume a knowledge of

Geometry before it can become possible. But we admitted, in

Geometry, a reference to matter not, however, to matter as

empirically known in- Physics, but to a more abstract matter,

whose sole function is to appear in space, and supply the terms

for spatial relations. We admitted, however, besides this, that

all actual measurement must be effected by means of actual

matter, and is only empirically possible, through the empirical

knowledge of approximately rigid bodies. In criticizing Lotze,

we saw that the most important sense, in which non-Euclidean

spaces are possible, is a philosophical sense, namely, that they
are not condemned by any a priori argument as to the necessity

of space for experience, and that consequently, if they are not

affirmed, this must be on empirical grounds alone. Lotze s

strictures on the mathematical procedure of Metageometry we

found to be wholly due to ignorance of the subject.

Proceeding, in the third chapter, to a constructive theory

of Geometry, we saw that projective Geometry, which has no

reference to quantity, is necessarily true of any form of

externality. Its three axioms homogeneity, dimensions, and

the straight line were all deduced from the conception of a

form of externality, and, since some such form is necessary to

experience, were all declared a priori. In metrical Geometry,
on the contrary, we found an empirical element, arising out of

the alternatives of Euclidean and non-Euclidean space. Three
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a priori axioms, common to these spaces, and necessary con

ditions of the possibility of measurement, still remained
;
these

were the axiom of Free Mobility, the axiom that space has a

finite integral number of dimensions, and the axiom of distance.

Except for the new idea of motion, these were found equivalent
to the projective triad, and thus necessarily true of any form

of externality. But the remaining axioms of Euclid the

axiom of three dimensions, the axiom that two straight lines

can never enclose a space, and the axiom of parallels were

regarded as empirical laws, derived from the investigation and

measurement of our actual space, and true only, as far as the

last two are concerned, within the limits set by errors of

observation.

In the present chapter, we completed our proof of the

apriority of the projective and equivalent metrical axioms, by

showing the necessity, for experience, of some form of externality,

given by sensation or intuition, and not merely inferred from

other data. Without this, we said, a knowledge of diverse but

interrelated things, the corner-stone of all experience, would be

impossible. Finally, we discussed the contradictions arising

out of the relativity and continuity of space, and endeavoured

to overcome them by a reference to matter. This matter, we

found, must consist of unextended atoms, localized by their

spatial relations, and appearing, in Geometry, as points. But

the non-spatial adjectives of matter, we contended, are irrelevant

to Geometry, and its causal properties may be left out of

account. To deal with the new contradictions, involved in such

a notion of matter, would demand a fresh treatise, leading us,

through Kinematics, into the domains of Dynamics and Physics.

But to discuss the special difficulties of space is all that is

possible in an essay on the Foundations of Geometry.

R. G. 14
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