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PREFACE.

IN the following School Edition of Euclid's Elements of

Geometry the subject is treated in Euclid's order and
manner, but with no special regard for the exact words of

Simson's translation, which appears to have been scrupulously

followed by many English editors.

Further explanation has been given whenever this appeared

to be necessary or desirable, and we have not hesitated

occasionally to give proofs different from those of Euclid. In
Book I. we have, for example, discarded altogether Euclid's

incomplete proof of Prop. 24, which would, we imagine, be
now accepted as satisfactory by few examiners ; and we have
made Prop. 22 logically complete by shewing that, under the

given conditions, the two circles will necessarily intersect. It

may be interesting to remark that, with the additional axiom
which must be explicitly or implicitly assumed (and which is

indeed implied though riot expressed in I. 1), I. 22 may be
taken immediately after I. 3. No alternative proofs of I. 5

and I. 6 have been given, because the experience both of

teachers and examiners appears to shew that the average
beginner finds Euclid's proofs easier to understand—at any
rate easier to reproduce—than the alternatives which have
been suggested.

The changes we have made in Book II. are more
considerable than in Book I. We have substituted for

Euclid's proofs of Props. 9 and 10 the proof in which the

equality to be established is shewn directly from the diagram.

Tlie advantage of this for educational purposes need not be
dwelt upon ; but as this proof is somewhat long, alternative

proofs of these propositions are given, as also of II. 8, which
do not require the construction of the different squares and
rectangles. These alternative proofs being logically sound
and strictly geometrical, may be given in examinations, except
when a proof by means of a diagram is definitely asked for.

Proofs of II. 1 2 and II. 1 3 are also given in which the equality

that has to be established is proved at once from the diagram.

543S10



vi PREFACE.

These proofs might be given immediately after I. 47, as in

Lardner's Euclid, where, so far as we can discover, these

interesting and instructive extensions of I. 47 first appear.

The second book of Euclid is often found to be difficult

and distasteful to beginners ; we hope, however, that the

changes we have ventured to introduce, and the explanations

and additions we have given, will make the study of this

important section of Geometry more attractive and more
valuable.

In Books III. and IV., although the propositions have been
taken in Euclid's order, Euclid's methods have not always
been followed.

" The contact of circles," says De Morgan, "is in a state

of confusion in Euclid : there is a positive assumption," the

more objectionable because it is implied but not definitely

expressed, " that a circle which touches another internally is

entirely within and that a circle which touches another
externally is entirely without the other circle." This judg-

ment of De Morgan, from which few would dissent, is a

sufficient justification of a departure from Euclid's method of

treating the contact of circles.

Propositions 26, 27, 28 and 29 are proved by superposition.

This is the more instructive method ; and it has the additional

advantage that as each of the propositions can be proved
quite independently of the others, it is not necessary to.

remember the order in which they happen to have been
placed.

Of Euclid's two alternative proofs of III. 9 and III. 10
we have in both cases given the first proof ; whereas Simson,
with what seems to us to be singular want of judgment, gave
only Euclid's second and inferior proof.

Book IV, only contains the solutions of the problems

(1) to inscribe a regular polygon in and to circumscribe a
regular polygon about a given circle, when thi^ can be done by
a geometrical construction, and (2) to inscribe a circle in and
circumscribe a circle about a regular polygon. The plan of

the whole book is however somewhat concealed by the fact

that in the case of the triangle it is not necessary that the
figure should be regular. We have slightly altered Euclid's

constructions so as to bring into greater prominence the fact

that the solution of the first problem depends only upon the
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possibility of dividing four right angles into the requisite

number of equal parts.

The Theory of Proportion as treated by Euclid is very

difficult, and the Vth Book of the Elements is now rarely

read by students, or even by teachers ; we think, however,

that a more geometrical treatment of the subject presents no
great difficulty. After making a few simple deductions from
Euclid's definition of proportion, we have proved all the

fundamental theorems required in Plane Geometry, and which
therefore are all that we are concerned with, directly from the

theorem that rectangles of equal altitude are to one another
as their bases, and its converse. These proofs have the great

advantage of being independent of one another, and we
believe that they will be found both easy and interesting

;

and we are confirmed in this belief by the opinions of all who
have read the proof sheets. The English words alternately

and inversely are used instead of ^alternando' and ^invertendo,'

and the unnecessary and misleading terms * componendo ' and
^ dividendo,' and some others, are omitted.

A few additional propositions have been given in the text

;

and in a note following each book we have grouped together

the other important theorems with which the student should

make himself familiar on a second reading. The Appendix
to Book VI. is especially important. Most of the examples
which are given under the different propositions are very

simple, and could be solved by an average well-taught student

quite early in his study of Geometry.
The greater part of the examples have been selected from

Mathematical Journals and Examination papers ; but manv
are original.

Abbreviations and symbols for words have been used at

an early stage, because the different steps of the reasoning are

more easily followed when contractions are employed ; and,

when students are themselves required to write out proofs, it

is of the utmost importance that each of the different ste;

of the proof should be made to stand out as clearly as possible

by the use of abbreviations.

De Morgan remarked a generation ago that ' many
teachers think it meritorious to insist upon their pupils

remembering the very wm-ds of Simson
'

; and we are afraid

that even at the present day there are some teachers who
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still hold that view. It should on the contrary be considered

distinctly meritorious to depart from the exact words of text-

book or teacher, provided that a sound proof is given.

References to previous propositions &c. are now given in

the margins of most editions of Euclid ; and it may be well to

point out that these references are given for the convenience of
the learneVy to shew him where to look for some knowledge he
may have forgotten. Examiners stand in no need of such
help, and by no means wish to impose on the memory of

. students the heavy and useless burden of learning how to

give accurately numbered references to the different propo-

sitions of Euclid. On the other hand, in the reports

^ of examiners there is not unfrequently a complaint that
^ candidates who possess this knowledge, or more often per-
• haps who only think they possess it, sometimes give a mere
reference by number to a preceding proposition when some
concise reason for a statement is really required. Euclid
himself never referred to previous propositions by name or

number ; such words as ' it has been demonstrated ' being
used, without further specification.

CHARLES SMITH.
SOPHIE BRYANT.

EUCLID.

Very little is known about the life of Euclid, the author

of the Elements, except that he was born about 330 B.C. and
died about 275 B.C., and that he was the first and one of the

most famous mathematicians of the University of Alexandria,

where he taught for many years.

Euclid's Elements consists of thirteen books. The first

four and the sixth are on plane geometry ; the fifth is on the

theory of proportion, and applies to magnitude in general

;

the seventh, eighth, and ninth are on arithmetic ; the tenth

on incommensurable magnitudes ; the eleventh and twelfth on
the elements of solid geometry ; and the thirteenth on the

regular solids and miscellaneous propositions in plane and
solid geometry.



EUCLID'S ELEMENTS OF GEOMETRY.

BOOK I.

DEFINITIONS.

1. A point has position but no magnitude.

2. A line has position and length but no breadth or

thickness.

The extremities of a line are points, and the intersection

of two lines is a point.

3. A surfkce lias position^ length and breadth^ but no
thickness.

Clearer ideas of the nature of a surface, a line and a point will be

obtained by reversing the order in which they are considered.

Any object, a cricket ball for example, takes up a certain amount of

space, and the surface of the ball is the boundary between the space

occupied by the ball and the surrounding air. The surface is not a thin

layer of leather next to the air any more than it is a thin layer of air

next to the leather ; it is the boundary between the two, and it has no
thickness whatever. It will be noticed that the terms length and breadth
are not very appropriate to the surface, or any part of the surface, of the

ball.

Again, the cricket ball might have a black patch upon it, and the

boundary of this patch is a line. The line is not a thin strip of the black

surface next to the red any more than it is a thin strip of the red surface

next to the black; it is the boundary between the two and it has no
breadth whatever. There may. be two lines on a surface which intersect

one another, and if this be the case a point will be common to the two
lines, and this point will have no magnitude whatever.

Thus, instead of Euclid's definitions, the following may be given.

A surface is the boundary of a portion of space. A surface has no
thickness whatever.

A line is the boundary of a portion of a surface. A line has wo
breadth or thickness but lenaih only.

S. B. E. ^ 1
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We oS?.y rttiS.?; ;t 'llfij^ ; ha? b,e,en' diawii on paper when a very imrroio

porAMnT df fhe^uvf'ace;l?avS,K6n'*,(ii,scoloured, but this discoloured portion

of the paper would not be visible if it were entirely without width. It

must be always remembered that geometrical lines have absolutely no
width, although this is by no means true of the strokes made on paper
to represent lines, and to enable us to reason about them. A point is

represented on paper by the intersection of two lines, or by a small dot

;

and however small the mark put on paper to represent a point may be,

it must have some magnitude or it would not be visible ; the geometrical

point which is represented by the mark has, however, no magnitude
whatever.

A point is denoted by a single letter of the alphabet placed near it.

A line is denoted by two or more letters of the alphabet which denote

points on the line.

4. A straight line is one which lies evenly between its

extreme points.

A clearer idea of the nature of a straight line is obtained by
considering how to test whether a line drawn on paper is or is not
straight. If we apply to the line the straight edge of a flat ruler, and
if the edge can be made to coincide with the line throughout its whole
length, then the line must be straight, but not otherwise. If, however,
we do not know that the edge itself is straight, but if it is found that the
line will everywhere coincide with the edge, and will continue to do so

when the edge is moved along the line, and if moreover the line will still

coincide with the edge when the ruler is turned about the edge, then both
the edge and the line must be straight lines.

5. A plane surface^ or a plane, is a surface such that

the straight line joining any two jyoi/its on the surface will lie

evitirely on the surface.

Thus a plane surface is one on which a straight edge will lie through-
out its entire length in any position whatever.

There are surfaces which are not plane on which a straight line will

lie in certain positions, for example, a straight line may be made to

coincide in certain positions with the surface of a circular cylinder—the
surface of an ordinary pencil is made to be as nearly as possible of this

shape—but a straight line will not lie along the cylinder in all positions.

The above definition of a plane is the one now usually given ; Euclid,
however, gave the following definition :

A plane surface is a surface which lies evenly hctioeen straight lines

on it.



DEFINITION. 3

6. A plane ang^le is ike ind^/n/iticn ,U} cr.it another of
iivo straigJit lines loliich meet toyetliei hut are not in ihe same
straight line.

The point where the two straight lines meet is called the
vertex of the angle, and the lines themselves are sometimes
called the arms of the angle.

When only two straight lines meet at a point A, the angle formed by
the lines may be called the angle A.

When, however, more than two straight lines meet in a point A, so

that there is more than one angle whose vertex is A, each angle must be
described by three letters, the outside letters denoting points one on each
of the lines bounding the angle and the middle letter denoting the
vertex of the angle. Thus the angle between the straight lines AB and
AC 'm called the angle BAC, and the angle between the straight lines AG
and AD is called the angle GAD, also the angle between the lines AB

D/

and AD is called the angle BAD. It should be noticed that the angle
BAD is equal to the sum of the angles BAC and CAD, and the angle
BAC is equal to the difference of the angles BAD and CAD.

It must be carefully noticed that the angle between two straight lines
does not depend on the lengths of the bounding lines. Thus the same
angle may be called BAC, FAE, EAB or CAF.

Two angles which have a common vertex and are on opposite sides of
a common bounding line, are called adjacent angles. Thus the angles
BAC and DAG are adjacent angles.

7. When one straight line standing on cmother straight line

makes the adjacent angles equal, eax:,h of these angles is a right
angle, and the straight line lohich stands on the other is called

a perpendicular to it.

W
Thus, if the adjacent angles A CD

and BCD are equal, and ACB is a
straight line, each is a right angle.

B

1—2
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It fpiil- 1)0* pi5(JT^d '.later, oix tiiai^ when two straight lines cross one
andtheJ'j.Volajs't.o f®rm; fourraiigljes.a't their point of intersection, then if

one of these angles is a right angle they will all four be right angles.

Hence each of the lines is perpendicular to the other, and the lines are

said to he pejyendicular, or at right angles, to one another.

8. An angle greater than a right angle is I
called an obtuse angle. ___y

9. An angle less than a right angle is called

an acute angle.

10. Any portion of a plane surface hounded hy one or 7nore

lines is called a plane figure, and if the figure is entirely

hounded hy straight lines it is called a plane rectilineal
figure. [See note on page 13.]

The straight lines which form the houndary of a rectilineal

figure are called its sides.

The sum of the lengths of the straight or curved lines which

form the houndary of a plane figure is called its perimeter.

If the sides of a rectilineal figure are all equal it is said to

be equilateral.

If the angles of a rectilineal figure are all equal it is said

to be equiangular.

A figure is described by putting letters at different points along its

boundaries, one letter being placed at each angular point, if there are
any.

Thus the whole figure ABODE is divided by the straight line AG into

the two parts ^B (7 and .4 CDi\

The perimeter of the figure ABODE is the sum of the lengths of its

five sides AB, BO, OD, DE and EA.
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11. A circle is a i)lane Ji'jure hounded hy one line^ called

the circumference, and is such that all straight lines drawn
from a certain point within it, called the centre, to the cir-

cumference are equal to one another.

A straight line drawn from the centre of a circle to the

circumference is ccdled a radius of the circle.

Thus, by definition, all radii of the same circle are equal to one
another.

A straight line drawn through the centre of a circle and
terminated both ways hy the circumference is called a diameter
of the circle.

Although, by the above definition, a circle is the figure enclosed by
its circumference, the circumference itself is often called the circle when
no ambiguity would arise. For example, two circles are said to cut one
another when the circumferences intersect ; the two circles, strictly

speaking, have in this case a certain area in common.

12. A plane figure hounded by three,

straight lines is called a triangle.

13. Any plane figure bounded
by four straight lines is called a
quadrilateral.

A straight line joining two opposite
angular points of a quadrilateral is called

a diagonal of the quadrilateral.
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14. A 'plane figure hounded by more than four straight

lines is called a polygon.

It will be seen at once that a three-sided figure (triangle) has three

angles, and that a quadrilateral has four angles ; and after a little

consideration it will be seen that any rectilineal figure has as many
angles as sides.

15. An equilateral triangle is a tri

angle whose three sides are equal.

16. An isosceles triangle is a
triangle which has two sides equal.

17. A scalene triangle is a triangle

which lias three unequal sides.

18. A right angled triangle is

a triangle one of whose angles is a right

In a right angled triangle the side which is opposite to the right

angle is called the hirpotenuse.

19. An obtuse angled triangle
is a triangle one of whose angles is an
obtuse angle.

20. An acute angled triangle
is a triangle all of wJtose angles or
acute.

It will be proved later on that every triangle has at least two acute
angles, so that no triangle can have two right angles or two obtuse
angles or one right angle and one obtuse angle.



DEFINITIONS. 7

21. Parallel straight lines are straight lines in a
plane which do not meet however far they are produced in

either direction.

22. A parallelogram is a quadri

lateral whose opposite sides are parallel.

23. A rectangle is a quadri-

lateral whose opposite sides are parallel

and one of whose angles is a right angle.

24. A rhombus is a

quadrilateral all of wjiose

sides are equal.

25. A square is a quadrilateral all

whose sides are equal and one of whose angles

is a right angle.

Thus a square is a riglit angled rhombus.

Postulates.

In order to draw the diagrams required for the study of

geometry it is necessary to assume the possibility of per-

forming certain simple operations ; and these operations which
we take for granted that we can perform should be as few in

number and as simple in character as possible.

A geoniefriccd construction irhirh ive take for granted that

we can perform is called a postulate.
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The postulates assumed by Euclid are three in number :

Post. i. A straight line Tnay he drawn from any one point
to any other point.

Post. ii. A terminated straight line may he produced to any
length in that straight line.

Post. iii. A. circle mxiy he described with any given point as

centre and with any given linefrom that point as radius.

These postulates require the use of a straight ruler and a pair of
compasses. It must however be borne in mind that the ruler is not
supposed to be divided or graduated in any way, so that it cannot be used
to draw a line of any proposed length ; nor are we supposed, in the third

postulate, to be able to draw a circle with any given point for centre and
with a radius equal to a given straight line but which is not drawn from
the given centre.

Axioms. *

It is necessary to assume the truth of certain elementary

facts of geometry; and these elementary facts which we
assume to be true, and on which the whole science of

geometry is to be built up, should be as few in number and
as simple and obvious as possible.

A geometrical truth which is taken for granted without

proof is called an axiom, or a Postulate.

The following are Euclid's axioms :

Ax. i. Things which are equal to the same thing are equal
to one another.

Ax. ii. If equals he added to equals, the wholes are equal.

Ax. iii. If equals he takenfrom equals, the remainders are
equal.

Ax. iv. If equals he added to unequals, the wholes are

unequal.

Ax. V. If equals he taken from unequals, the remainders
are unequal.

Ax. vi. Things which are the doubles of the same thing, or

of equal things, are equal.

* See Note on Page 11,
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Ax. vii. Tkmgs which are halves of the same thing, or of
equal things, are equal.

.\x. viii. The whole is greater than a part.

Ax. ix. Any figure, or diagram, can he transferred from
one position to another without change of shape or size.

Magnitudes which can he made to coincide are equal.

This axiom, the first part of which was not definitely enunciated by
Euclid, gives the meaning and supplies a test of the equality of geometri-

cal magnitudes.

To test, for example, the equality of two angles.

Suppose one of the angles to be taken up and put down again without
change but so that its vertex coincides with the vertex of the other, and
one of its arms falls on an arm of the other, and so that the remaining
arms are both on the same side of those which were made to coincide

;

then the remaining arms will also coincide if the angles are equal, but

not otherwise.

The placing one geometrical magnitude upon another is

called superposition, and the one magnitude is said to be

applied to the other.

Ax. X. Two straight lines cannot enclose a space.

The axiom with reference to straight lines may be stated

in the following forms :

If two straight lines have two points in common they will

coincide throughout.

If two straight lines coincide for any portion of their lengths^

they will coincide throughout.

Ax. xi. All right angles are equal.

It is not necessary to assume that all right angles are equal ; for this

can, and therefore should, he proved. [See p. 33.]

Ax. xii. If a straight line rneet two other straight lines, so

as to WAike the two interior angles on one side of it together less

than two right angles, the other straight lines will meet if

continually produced on the side on which are the angles which

are less than two right angles.

The consideration of this axiom should be deferred to a later stage

when the need for it arises.
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The first eight axioms are true of magnitudes of all kinds, and not
merely of geometrical magnitudes. They were called ' common notions

'

by Euclid, and are now sometimes called General Axioms, the others

being called Geoznetrical Axioms.

With reference to the first seven axioms it should be noticed that

when restricted to plane geometrical magnitudes, and it is only geometri-

cal magnitudes with which we are concerned, they can all be proved

by superposition ; this will be seen by considering any definite kinds of

magnitude, straight lines or angles, for example.

Axiom viii is only an indirect definition of a part.

It should also be noticed that Axioms i to vii are not all independent
of each other, for example Axiom vi is only a particular case of Axiom ii.

Moreover the axioms are not arranged in proper order, for Ax. ix,

which gives the meaning and supplies a test of the equality of magni-
tudes, should precede all the others.

In addition to the axioms definitely enunciated by Euclid

there are some others which he tacitly assumed : these will be

pointed out when it is necessary to use them. For example,

see Propositions 1, 2, 12 and 22 of Book I.

Other axioms of the same type as (i) to (vii) frequently occur, for

example the axiom ' If one magnitude be greater than a second, and the

second be greater than a third, then will the first be greater than the

third.' The truth of one of these axioms will be at once obvious in any
particular case, and a formal enunciation of such an axiom is no more
necessary in Geometry than in Arithmetic.

Each of the different propositions which are considered by Euclid
proposes to effect Bome geometrical construction or to prove some
geometrical truth.

A problem, is a geometrical construction which is to be performed.

To solve a problem is to shew how the required construction can be
effected by means of the postulates and other constructions which we
have previously shewn how to perform.

A theorem is the statement of some geometrical truth.

The Ixirpothesis of a theorem is that which is supposed to be true,

and the conclusion is that which, it is asserted, necessarily follows from
the hypothesis.

To prove a theorem is to employ the fundamental axioms and other
theorems which have been already proved, to shew that the conclusion
necessarily follows from the hypothesis.
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The following symbols and abbreviations will be used.

These should be adopted in all written work, not only to save

time in writing, but more especially because the different steps

of the reasoning stand out more clearly when contractions are

used, and consequently tlie argument is more easily understood

and reproduced.

The iirst eight propositions will, however, be
in full.

>
<

St.

const.

pt.

alt.

sq.

printed

A

for tlierefore or hence,

. .

.

because or since,

... is greater tJian^ rt.

... is less t/um,

... is equal to,
\\

... a7iffle, \r

... angles, par".

... straight, post.

... construction^ def.

. .

.

hypothesis, ax.

... point, rect.

... alternate, perp.

... square, adj.

O for circle,

perpendicular,

right angle,

triangle,

is parallel to,

parallelogram,

parallelogram,

postulate,

definition,

aaciomy

rectangle,

perpendiAiular,

adjacent.

irote. In the best Greek manuscripts which have come down to us,

Axioms I to IX are called ' Common Notiom,' and x, xi and xa are given
as Postulates vi, iv, v respectively.

[See Peyrard's Edition of Euclid's Elements in Greek, Latin and
French.] We have not, however, thought it necessary to alter the

arrangement as given by Simson.
The first English edition of Euclid's Elements was that of Billingsley

published in 1570. This edition contains a translation of all the thirteen

books with many notes and additions.
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PROPOSITIOISr I. Pkoblem.

To describe an equilateral triangle iipon a given finite

straight line.

Let AB be the given straight line.

It is required to describe an equilateral triangle upon AB.

Const. With A as centre and AB as radius describe

the circle BCD. [Post. iii.

With B as centre and BA as radius describe the circle

AGE, [Post. in.

These circles must intersect.

Let (7 be a point of intersection.

Draw the straight lines CA, GB-, [Post. i.

then ABC is an equilateral triangle constructed as re-

quired.

Proof. Because A is the centre of the circle BCD,

ACi& equal to AB. [Def. 11.

Also because B is the centre of the circle ACE,

BG is equal to BA. [Def. 11.

And, since AG and BG are both equal to AB, the three

lines AC, BG and AB are all equal, so that ABC is an
equilateral triangle, and it is described on the given straight

line AB.
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It is now usual to describe each proposition as a Problem or Theorem,
as the case may be ; the distinction between problems and theorems was
not, however, so marked by Euclid.

The statement of what has to be done, or of what has to be proved, is

called the enunciation of the proposition.

The enunciation is repeated with special refeience to a particular

diagram, and this is called the particular enunciation. Then follows

the construction, namely, the directions for drawing such lines and
circles as may be required to solve the problem or to enable us to prove
the theorem ; and lastly the proof that the construction given does
really effect what is required in the case of a problem, or that the theorem
enunciated is really true.

A finite straight line is a straight line with fixed ends; when the ends
of a straight hue are not fixed it is called an indefinite straight line, or

a straight line of unlimited length.

The two circles (that is, the two circumferences) will cut in two points,

one on each side of the hue AB; thus two equilateral triangles can be
drawn, one on each side of the given line.

It should be noticed that no proof that the circles will intersect is

offered. Thus Euclid tacitly assumes as an axiom that if two circles be

such that the centre of either is on the circumference of the other, then the

two circumferences will intersect.

Ex. 1. Produce a given finite line AB both ways, and find points C,

D on AB produced such that BG and CD may each be equal to ^Z? ; find

also points E, F on BA produced such that AE and EF may each be
equal to BA.

Ex. 2. Produce the given finite straight line AB and find on the line

so produced a point C such that ^C is equal to four times AB.

Ex. 3. Describe on a given straight line AB an isosceles triangle

each of whose equal sides is the double of AB.

Ex. 4. On a given straight line describe an isosceles triangle each of

whose equal sides is four times the given line.

Ex. 5. If F be the other point of intersection of the circles in the

figure* to Prop. I, and the lines AF, BF be drawn, shew that the figure

ACBF is a rhombus.

* Sometimes any collection of lines and points is called a figure.

The student will have no difficulty in seeing when the word figure is

used only for a picture or diagram, and when it has the meaning given

on page 4,
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PROPOSITION II. Problem.

From a given point to draw a straiyht line equal to a given
straight line.

Let A be the given point, and BG the given straight line.

It is required to drawfrom the point A a straight line equal

in length to BC.

Const. From ^ to j6 draw the straight line AB. [Post. i.

On AB describe the equilateral triangle ABD. [I. 1.

With centre B and radius BC describe the circle CEF.
\Post. iii.

Produce DB until it meets the circle CEF in the point G.

\Fost. ii.

With centre B and radius DG describe the circle RGK.
\Post, iii.

Produce DA until it meets the circle HGK in the point L.

\Post. ii.

Then the line ALi^ drawn as required.

Proof. Because D is the centre of the circle HGKL,
DL is equal to DG. [Def. 11.

But the lines DA and DB are equal since they are sides

of the equilateral triangle A BD.

Hence, taking DA from DL and DB from DG^ the
remainder AL must be equal to the remainder BG,
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Again, B is the centre of the circle CEGy therefore BO
is e(iiial to BG.

But BG has been proved to be equal to AL.

Hence AL is equal to the given line BG, and it is draum,

from the given jjoint A.

It should be noticed that it is taken for granted that any straight line

through the centre of a circle will, if produced far enough, cut the circle.

The most general case of this assumption is

Any strahjht line drawn through a point within a circle {or any other

cloned Jhjure) will, ifproduced far enough both wayn, cut the circle in two
points.

For if a straight Hne be drawn in any direction from a point xcithin

a circle, a point on the line must sooner or later be outside the circle,

since the circle is limited in all directions, and it is at once seen to be
impossible to join a point within a circle (or any other closed figure) to a
point outside the circle by any line straight or curved which does not
cross the boundary.

The point A may be joined to either end of the given line, and the
equilateral triangle can be drawn on eith'r side of the joining line.

Moreover 1)B in the diagram will cut the circle CKF in another point, X
suppose ; and if a circle be described with I) as centre and DX as radius,

and AD he produced in the direction front A to D to cut this circle in F,

then A Y will be equal to BC, as is easily seen. Thus by varying Euclid's

construction we can in general draw eight straight lines from A equal to

BC.

Ex. 1. Draw a diagram for the case in which A is on the line BC.

Ex. 2. On a given base describe an isosceles triangle each of whose
equal sides is equal to a giveu straight line.

Ex. 3. From a given point draw a straight line equal in length to

twice a given straight line.
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PROPOSITION III. Problem.

From the greater of two giveji straight lines to cut off a part
equal to the less.

Let AB and CI) be the given straight lines, of which AB
is the greater.

It is required to cut offfrom AB a part equal to CD.

Const. From A draw the straight line AE equal to CD.
[I. 2.

With centre A and radius AE describe the circle EFG.
[Post. iii.

Then this circle must cut AB, since AB is greater than AE.

Let the circle cut ^^ in the point //, then All is the
part required.

Proof. Because A is the centre of the circle EFGH,

AHis equal to AE. [Def. 11.

But AE was made equal to CD.

Therefore ^^ is equal to CD, and it is cut off from AB.
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Propositions II. and III. are only necessary because the compasses
allowed to be used by Postulate iii. are supposed to close of themselves
when they are taken up from the paper.

N.B. The references to the definitions, axioms, postulates and
preceding propositions which are put in the margin are given for the
convenience of the learner who may not be sufficiently familiar with what
has already been proved ; these numbered references must not, however,
be considered as forming part of the proof. Beferences were not in fact

given by Euclid.

Sometimes the letters Q.E.D, are placed at the end of a Theorem,
and the letters Q.E.F. at tlie end of a Problem. These are the initial

letters of quod erat demonstrandum (which was to be proved) and quod
erat faciendum (which was to be done), respectively.

Ex. 1. Produce the smaller of two given strai^^ht lines so that the

whole line so produced may be equal to the greater.

Ex. 2. Draw a straight line equal to the sum of two given straight

lines.

Ex. 3. Draw a straight line equal to the difference of two given
straight lines.

Ex. 4. Draw a straight line equal to the sum of three given straight

lines.

Sometimes one particular side of a triangle is distinguished by being

called the base : the opposite angular point is then called the vertex.

If two sides of a triangle are equal, the third side of the triangle is

generally called the base of the isosceles triangle.

One theorem is said to be a Corollary of a second when the truth

of the first becomes obvious as soon as the truth of the second is

established.

S. B. R.
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PROPOSITION lY. Theorem.

If, in two triangles, two sides and the included angle of the

mie he respectively equal to two sides and the included angle

of the other ; then will the base and the remaining angles of
the one he respectively equal to the base and remainiyig angles

of the other, those angles heing equal which are opposite to equal

sides; also the two triangles will he equal.

Let ABC and DEF be two triangles in which the sides

AB, AC are equal respectively to the sides BE and DF, and
the included angle BAC is equal to the included angle EDF;
then it is required to prove that BC is equal to EF, tJiat the

angles ABC, ACB are equal respectively to DEF, DEE, and
that the triangles are equal.

Proof. Suppose the triangle ABC to be taken up and
applied to the triangle DEF, so that the point A may be on
the point D, and the line .4^ on the line DE, the triangle

ABC being turned over if necessary so that it may be on
the same side of DE as the triangle DFE.

Then, because the point A coincides with the point I), and
the line AB lies along DE, and -4-5 is equal to DE,

therefore the point B must coincide with the point E.

Again, because AB coincides with DE, and the angle BAG
is equal to the angle EDF,

the line AC must fall on the line DF.

And, since the point A coincides with the point D, and the

line AC lies along DF, and AC i^ equal to DF,

therefore the point C must coincide with the point F.
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And, since it has been proved that the point B coincides

with the point E, and the point C coincides with the point F^

the line CB must coincide with the line FE^ [Ax. x.

and CB must be equal to FE.

Moreover, the triangle ABC altogether coincides with
tlie triangle DEF^ and is equal to it; also the angle ABC
coincides and is equal to the angle DEF, and the angle ACB
coincides and is equal to the angle DFE.

Figures which can be made to coincide by superposition are said to be
congruent. Congruent figures are equal in all respects; for since they
can be made to coincide by superposition, each side of one figure must be
equal to tlie corresponding side of the other, and each angle of one figure

must be equal to the corresponding angle of the other, the two figures

must also be equal in area.

It should be noticed that the third form of Axiom x. is assumed in

the above proof, for B would not necessarily coincide with E if AB could
fall along DE for a certain distance and then diverge from it.

It may or may not be necessary to turn one triangle over in order to

make it coincide with the other. The figures ABC and DEF are so
drawn that it would in this case be necessary to turn ABC over.

The following theorems can also be proved by superposition.

Ex. 1. In the triangles ABC and DEF, the side BC is equal to the

side EF, and the angles ABC^ ACB are equal respectively to the angles

BEE, BEE. Shew that the triangles are equal in all respects.

Ex. 2. In the quadrilaterals ABCB and EFGH, the sides AB, BC,
CB are equal respectively to the sides EF, EG, Gil, and the angles ABC,
BCB are equal respectively to the angles EFG, EGII. Shew thai

the quadrilaterals are equal in all respects.

2—2
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PROPOSITIOISr Y. Theorem.

The angles at the base of an isosceles triangle are equal
to each other ; and if the equal sides be produced, tJie angles on
the other side of the base will also be equal to each other.

Let ABC be an isosceles triangle in which the sides AB
and AC are equal, and let AB and AG be produced to X and
Y respectively.

It is required to prove that the angles ABC and, ACB are

equal, a,nd also that the angles CBX and BCY are equal.

Const. In BX take any point i), and from A T cut off a
part AE equal to AD. [I. .3.

Join DC and BE.

Proof. Tn the triangles DAC and EAB,

DA is equal to EA, [Const.

CA is equal to BA, [hyp.

and the included angle DAC is the same as the included
angle EAB.
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Therefore the triangles DAC and EAB are equal in all

respects, so that [I. 4.

DC is equal to JiJB,

the angle JDCA is equal to the angle liJBA^

and the angle ADC is equal to the angle AEB.

Again, because the whole AD is equal to the whole AE,
[Const,

of which the parts AB and AC are equal, [^yp-

therefore the remainder BD is equal to the remainder CE,

Then, in the triangles BDC and CEBj we have proved that

BD is equal to CE^

DC is equal to EB,

and that the included angle BDC is equal to the included

angle CED.

Hence the triangles BDC and CEB are equal in all

lespects, so that [I. 4.

the angle DBC is equal to the angle ECBy and the angle

DCB is equal to the angle EBC.

And, since it has been proved that

the angle DCA is equal to the angle EBAy and the angle

DCB is equal to the angle EBCy

therefore, taking equals fnnn equals, the remaining angle

BCA is equal to the remaining angle CBA.

Thus we have proved, as was required, that the angles ABC
and ACB are equal and also that tfie angles DBC and ECB
are equal.

Corollary. An equilateral triangle is also equiangular'.

Ex. 1. Prove that the angles DUE and DGE are equal.

Ex. 2. Prove that, if DE be drawn, the triangles DBE and DGE
are equal in all respects.

Ex. 3. If two isosceles triangles are on the same base and on the

same side of it, one triangle must be entirely within the other.

Ex. 4. Prove that the opposite angles of a rhombus are equal to one
another.
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Ex. 5. Two isosceles triangles ACB, ADB are on the same base AB

;

shew that the triangles A CD, BCD are equal in all respects.

Ex. 6. Points D, E, F are taken on the sides AB, BC, CA respec-

tively of an equilateral triangle ABC, so that AB, BE and GF are all

equal ; shew that the triangles FAD, DBE, ECF are equal in all

respects, and that the triangle DEF is equilateral.

PROPOSITION VI. Theorem.

If two angles of a triangle he equal to each other^ the sides

which are ojyposite to the equal angles will he equal to each other.

Let ABC be a triangle in which the angles BCA and CBA
are equal to each other ; it is required to prove that the sides

AB and AC, which are opposite to the equal angles are equal

to each other.

Proof. For, if the two sides are not equal, one of them
must be greater than the other.

Suppose then that BA is greaber than CA, and cut off from
BA a part BD equal to GA. [I. 3.

Join DC. [Post. i.

Then, in the triangles DBC and ACB
DB is equal to AG [Const.

BC is equal to CB

and the included angle DBC is equal to the included angle

ACB. [hyp.



BOOK L 23

Hence the triangles DEC and ACB are equal in all respects;

but this is impossible, for one triangle is manifestly smaller

than the other.

It is therefore impossible that one of the sides ABy AG
should be greater than the other. The two sides A By AC rmust

therefore be equal to each other.

Corollary. An equiangular triangle is also equilateral.

Converse Theorems. Two theorems are said to be converse theorems

when the hypothesis of each is the conclusion of the other.

Propositions V. and VL are converse theorems. This will be seen at

once when they are enunciated as under :

If two sides of a triangle are eqxml, the opposite angles will be equal.

If txoo angles of a triangle are equal, the opposite sides tcill he equal.

It must be carefully noticed that the converse of a true theorem is by
no means always true.

For example, it is true that all men are mortal, but it is not true that

all mortals are men. Again, it is true that a right-angled triangle has

tioo acute angles, but it is not always true that a triangle with tioo acute

angles is right-angled.

To prove a converse theorem in geometry, an indirect method is

generally adopted ; that is, the theorem is proved to be true by shewing
that it is impossible for it to be false. In Prop. VI., for example, the
sides are proved to be equal by shewing that it is impossible for them to

be unequal.

The proof of a theorem by shewing that the supposition that the

theorem is not true leads to an absurdity, is sometimes called a Reductio
ad absurdum.

Ex. 1. If, iu the figure to Prop. V., the lines BE and CD intersect in

F
;
prove that BF is equal to CF, and that the triangles BFD and CFE

are equal in all respects.

Ex. 2. If, in the figure to Prop. V., the lines BE and CD intersect in

F \ prove that the straight line AF will bisect the angle BAG and also

the angle BFC.

Ex. 3. Shew that either diagonal of a rhombus bisects each of the
angles through which it passes.
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PROPOSITION VII. Theorem.

On the same base and on the same side of itj there ca7inot

he two triangles which have their sides terminated in one

extremity of the base equal to one another and also those ter-

minated in the other extreiyiity of the base equal to one another.

If possible let ABC and ABD be two triangles on the

same base AB and on the same side of it such that CA is

equal to DA and also CB equal to DB.

When two triangles are on the same base and on the same
side of it (I.) the vertex of each triangle is without the other

triangle, or (II.) the vertex of one triangle is within the other,

or else (III.) the vertex of one triangle is on a side of the other.

Thus there are three and only three cases to be considered.

Case I. When the vertex of each triangle is without the
other. Join CD.

Then, because -4(7 is equal to AD^ [^I/P-

the angle ACD is equal to the angle ADC. [I. 5.

But the angle ADC is less than the angle BDC
;

therefore the angle ACD is less than the angle BDC.
Therefore the angle BCD, which is a part of the angle

ACD
J

is less than the angle BDC.
Again, because BD is equal to BC, [%i^«

the angle BCD is equal to the angle BDC. [I. 5

Thus the angle BCD is both equal to and less than the
angle BDC, which is impossible.

Therefore, in this case, BC cannot be equal to BD at the
same time that AC ia equal to AD.
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Cask II. When the vertex of the triangle ADB is within

the triangle ACB.

Join (72), and produce AC and AD to X and F respectively.

Then, because AG \^ equal to AD, \J^yP'

the angle XCD is equal to the angle YDC. [I. 5.

But the angle BDC is greater than the angle YDC
;

therefore the angle BDC is greater than the angle XCD
;

and the angle XCD is greater than the angle BCD
;

therefore the angle BDC is greater than the angle BCD.

Again, because BC is equal to BD, U*^!/P'

the angle BDC is equal to the angle BCD. [I. 5.

Thus the angle BDC is both equal to and greater than the

angle BCD^ which is impossible.

Therefore, in this case, BC cannot be equal to BD at the

same time that AC is equal to AD.

Case III. needs no demonstration, for it is obvious that

BD and BC are unequal.

It has therefore been proved that in tto case can CA be

equal to DA and at the same time CB equal to DB.

Ex. Theie cannot be two equilateral triangles on the same base and
on the same side of it.

In the Greek only one case is given. Both are given by Billingsley.
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PROPOSITION VIII. Theorem.

If in two triangles the three sides of the one are respectively

equal to the three sides of the other, the triangles will he equal

i7i all respects, those angles being equal which are opposite to

equal sides.

Let ABC and DEF be two triangles such that £C is equal

to EF, CA equal to FB and AB equal to DF ; it is required

to prove that the triangles are equal in all respects.

Proof. For, if the triangle BFF be applied to the

triangle ABC, so that the point F may be on B and the

straight line FF on BC, the two triangles being on the same
side of BC ; then will the point F fall on the point C, since

FF is equal to BC.

And when FF coincides with BC the sides FD and FD
must coincide respectively with the sides BA and CA ; for, if

they took up any other position such as BG and CG, there

would be two triangles ABC, GBC on the same base and on
the same side of it having GB equal to AB and also GC equal

to AG, which we know is impossible. [I. 7.

Hence, when F coincides with B and F with C, FD will

coincide with BA and FD with CA ; thus the two triangles

will altogether coincide, and are therefore equal in all respects.
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Alternative Proof. (Philo's Proof.)

The following proof, which has the great advantage of being indepen-

dent of I. 7, is often given.

Let ABC and DEF be two triangles having the sides AB, BC, GA of

the one respectively equal to the sides DE, EF, FD of the other ; then

will the triangles be equal in all respects.

Let the triangle DEF be applied to the triangle ABC bo that EF
coincides with BC, with the sides terminating in B equal as also those

terminating in C, and so tliat the triangles DEF and ABC may be on
opposite sides of the line BG.

Let GBC represent the triangle so applied, so that G corresponds to

D.

Join AG. Then AG may (i) cut BG or (ii) fall outside BC or (iii) may
pass through B or G.

Then, since BA is equal to BG, the angles BAG and BGA are equal.

Also, since CA is equal to GGy the angles GAG and CGA are equal.

Hence, taking in the first case the sum and in the second case the

difference of these equals, it follows that the angle BAG is equal to the

angle BGG.

Thus, in every case, we have the two sides BA, AG and the included
angle BAG equal respectively to the two sides BG, GG and the included
angle BGG ; whence it follows, from I. 4, that the triangles BAG and
BGG are equal in all respects, and therefore the triangles BAG and DEF
are equal in all respects.

Ex. 1. Shew that equilateral triangles on equal bases are equal in

all respects.

Ex. 2. Shew that a diagonal of a rhombus divides it into two
triangles equal in all respects.

Ex. 3. In the quadrilateral ABCD the sides AB and AD are equal
and the sides GB and GD are equal ; shew that the angles ABG and
ADG are equal and that AG bisects each of the angles BAD and BGD.

Ex. 4. If two isosceles triangles be on the same base, the line

joining their vertices, produced if necessary, will bisect the vertical

angles of the isosceles triangles and will also bisect the common base.
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PROPOSITION IX. Pkoblem.

To bisect a glve/u anffle, that is, to divide it into two eqiuil

angles.

Let BAC be the given angle, it is required to divide it into

two equal angles.

Const. In ^^ take any point Z), and from AV cut off a
part AE equal to AD. Join DE.

On the side of DE remote from A describe the equilateral

triangle DFE^ and join AF.

Then the straight line AF will bisect the angle BAG.

Proof. In the triangles ADF and AEF,

V ( AD = AE,

\ AF=AF,
[ and DF=EF:

[Co7lSt,

[Const.

.*. the A' ADF and AEF are equal in all respects, and
in particular [I. 8.

^DAF= /.EAF.

Therefore t/ie angle BAC is bisected by AF.

The equilateral triangle DFE is constructed on the side of DE remote
from A, for the construction would otherwise fail if DAE happened to
be itself an equilateral triangle. If, however, DAE is not an equilateral
triangle, DFE can be on either side of DE.
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PROPOSITION X. Problem.

To bisect a given finite straight line.

Let AB be the given straiglit line. Jt is required to

bisect AB.

Const. Upon AB describe the equilateral triangle ABC,
[1. 1.

Bisect the angle ACB by the at. line CD which meets AB
in the point D. [ \. 9.

Tli-en A B will be bisected in D.

Proof. In the triangles A CD, BCD,

V
f

AC^BC, \Const.

CD = CD,

( and Z ^ C/) = Z BCD
;

{Const.

.'. the A' ACD and BCD are equal in all respects, and
in particular [T. 4.

AD^DB.
Hence AB is bisected in D.

Ex. 1. Shew that, in the figure to Prop. IX., AF bisects the angle
BFE.

Ex. 2. Divide a given angle into four equal parts, and also into
eight equal parts.

Ex. 3. Shew that, in the figure to Prop. X., CD is perpendicular
to AB,

Ex. 4. Divide a straight line into four equal parts, also into eight

equal parts.
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PROPOSITION XI. Problem.

To draw a st7'ai(/ht line at right angles to a given straight

line, from a given j)oint upon it.

Let AB he the given straight line and G a given point

on it.

It is required to dra-v from C a straight line at right

angles to AB,

E

Const. In CA take any point i>, and from CB cut off

a part CE equal to CD.

On DE describe the equilateral triangle DEF, and join FG.

Then FG will be the line required.

Proof. In the triangles DGF,ECF,

V ( DC^CE,
\ . GF=GI\
[andi DF^EFi

[Const.

\Const.

.•. the triangles DCF, EGF are equal in all respects, and
in particular [I. 8.

/LDGF= /.EGF,

and they are adjacent angles.

Hence, by definition, each is a right angle, and FG is at

rt. Z'toAB.
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PROPOSITION XII. Problem.

To draw a straight line perpendicular to a given straight

line of unlimited lengthfrom a given point without it.

Let AB he the given straight line, and C the given point

without it.

It is required to draw from C a straight line perpendicular

to AB.

Const. Take any point J) on the side of AB remote
from C, and with centre C and radius CD describe a circle.

This circle will cut the line AB, produced if necessary, in

two points U and F. Bisect BF in C, and join CG.

Then CG is the litie required.

Join CE and CF.

Proof. Then, in the triangles EGG, FGC,

EG^GF. [Const.

CG = CG,

^and CE=CF^ being radii of a circle

;

[Const.

,\ the triangles EGG and FGC are equal in all respects, and
in particular [I. g

^EGC= ^FGC,

and these are adjacent angles.

Hence, by definition, CG is at rt. Z. * to AB.
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The point T> is taken on the side of the line AB opposite to that on
which C is situated, in order to ensure that the circle will cut the line

Ah. The line AB must be of unlimited length, so that it may be
produced if necessary so as to cut the circle.

It is assumed that the circle will in this case cut the line AB, and the
nature of this assumption requires examination. Since C and D are on
opposite sides of AB^ CD will cut AB in some point between C andD;
and since GO is less than CD, the point will be within the circle;

and any straight line drawn through a point within a circle will, if

produced far enough both ways, cut the circle in two points. [See

p. 15.]

Ex. 1. Shew that the diagonals of a rhombus bisect each other and
are at right angles.

Ex. 2. Prove that if any two isosceles triangles are on the same
base, the line joining their vertices, produced if necessary, will bisect the

base and will be at right angles to the base.

Ex. 3. Shew that the three straight lines joining the angular points

of an equilateral triangle to the middle points of the opposite sides are

equal to one another.

Ex. 4. Shew that in any isosceles triangle the bisector of tlie vertical

angle is perpendicular to the base and bisects the base.

Ex. 5. Shew that, if the line joining an angular point of a triangle

to the middle point of the opposite side be perpendicular to that side, tlie

triangle must be isosceles.

Ex. 6. Shew that, if a line be drawn bisecting a second line

at right angles, any point on the first line will be equally distant from
the ends of the second.

Ex. 7. Construct a rhombus, having given the length of a side and
one diagonal.

Ex. 8. Construct a right-angled triangle, having given the length of

the hypotenuse and of one side.

Ex. 9. If the triangle ABC be turned over about its side AB, shew
that the line joining the two positions of G will be perpendicular to AB.

Ex. 10. In the quadrilateral ABCD, AB =AD and / ABG=z i ADC;
shew that BG=GD.

Ex. 11. Prove by superposition that, if all the sides of one qiTadri-

lateral be equal respectively to the sides of another quadrilateral and if also
one pair of corresponding angles be equal, then will the quadrilaterals be
congruent. [See page 19.]
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PROPOSITION A. Theorem.

All riyht angles are equal.

Let the st. line AB standing on CD make the adjacent
angles CBA, ABD equal to one another ; then, by definition,

each of these angles is a right angle.

Also let EF standing on GH make the adjacent angles
GFE, EFH equal to one another, so that each of these angles
is a right angle.

1) F J{

It is required to prove that either of tJie angles CBA or ABD
is equal to either of tlie angles GFE or EFH,

Let the st. line CBD be applied to the st. line GFH so

that the pt. B may be on the pt. F, and AB and EF on the

same side of GFH. Then we have to prove that AB will

coincide with EF.

For, if BA does not coincide with FEy but falls in some
other position FX ;

then since Z CBA =Z.ABD,

/LGFX-^/LXFH.

But, since FE is perp. to GH^

/.GFE=^Z.EFH.

And Z.GFX is greater than /.GFE\

:. Z GFX is greater than /L EFH.
Also Z.EFH is greater than /.XFH\

/. Z GFX is greater than Z XFH,
But it is impossible that Z GFX should be both equal to

and greater than Z XFH.
Hence the line BA must coincide with FE^ and therefore

/LCBA^/LGFE,

S. B. K. ^
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PROPOSITION XIII. Theorem.

The angles which one straight lirie snakes with another^ on
one side of it, are either two right a7igles or are together equal

to two right angles.

Let AB be a st. line making the Z^ABC, ABD with the

St. line CBD and on one side of it ; then it is required to prove

that the angles ABC, ABD are either right angles or are

together equal to two right angles.

D

If Z ABC = Z ABD, each is a rt. Z , by definition.

But, if Z ABC is not equal to Z ABD, draw from the point

B the St. line BU perp. to CD. [I. 11.

Then the two Z ^ CBB and IJBD are right angles, and
ZEBD is equal to Z EBA and Z ABD together.

/. Z« CBB, EBA and ABD are together equal to two
rt. Z «.

But Z « CBE and EBA make up theZCBA.

Hence the Z * CBA and ABD are together equal to two

rt. Z '.

Cor. I. If two straight lines cut one another the four
angles at their point of intersection are together equal to four
right angles.

Cor. II. If any number of straight lines meet at a point

all the angles between successive lines are together equal to four
right angles.

Ex. 1. If one of the angles which two intersecting lines make with

one another is a right angle, they will all four be right angles.

Ex. 2. U AB and CBD are any two straight lines, the bisectors of

the angles CBA and ABD will be at right angles.
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Def. Two angles are said to be supplementary when their sum is

two right angles, and either angle is called the supplement of the other.

Two angles are said to be complementary when their sum is a right

angle, and either angle is called the complement of the other.

Thus the angles GBA and ABB are supplementary, and the angles

"EBA and ABB are complementary.

PROPOSITION XIV. Theorem.

If at a point in a straight line tivo other straight lines on
opposite sides of it make the adjacent angles together equal to

two right angles, tfcese two straight lines must he in one and t/ie

same straight line.

At the point B in the st. line AB^ let the two st. lines

CB, DB on opposite sides oi AB make the adjacent Z * ABC,
ABD together equal to two rt. Z " ; then it is required to prove

that CB and BD are in the same st. line.

C n D
f

For, if JW be not in the same st. line as C/?, produce CB
beyond B and let BX be the produced part.

Then, CBX is a st. line,

.*. Z ^ ABC and ABX are together equal to two rt. Z ".

[I. 13.

But, by hypothesis,

Z ^ ABC and ABD are together equal to two rt. Z ".

Hence sum of Z" ABC and ABX = sum of Z* ABC and
ABB. [Ax. xi. or Prop. A.

Take away the common Z ABC from tliese equals
;

then ZABX=^ ZABD,
and this is impossible unless BX coincides with BD.

Hence BD and CB must be in the same st. line.

3—2
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PROPOSITION XV. Theorem.

If two straight lines cut one another^ the vertically opposite

angles will be equal.

Let the st. lines AB and CD cut one another at the point
E ; then it is required to prove that Z. AED = Z CEB and
LAEC= /.BED.

R

Since CE meets AEB,

.-. /.AEC and Z. CEB together = two rt. Z \ [T. 13.

And, since BE meets CED^

/. Z CEB and Z ^^Z) together := two rt. Z ^ [I. 13.

Hence Z. AEC and Z CEB = Z C^'^ and Z ^^i>. [Ax. xi.

Take away the common Z C^J5 from each of these equals

;

then

ZAEC=ZBED.
And in the same way it can be proved that

ZCEB =ZAED.

Ex. 1. A line ABC is met in the point B by the two straight lines

BB and BF which are on opposite sides of ABC, and the angles ABD
and CBF are equal. Shew that DBF is a straight line.

Ex. 2. Shew that, in the figure to Prop, xv, the bisectors of the
angles AEG and DEB are in the same straight line.

Ex. 3. The straight lines AB and CD bisect each other and are at
right angles; shew that ACBD is a rhombus.

Ex. 4. Four straight lines OA, OB, OC and OD meet in the point
O, and the angles AOB, COD are equal and the angles BOG^ DOA are;

also equal ; shew that AOC and BOD are straight lines.
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PROPOSITION XVI. Thbouem.

If one aide of a triangle he 'produced^ the exterior angle will

he greater than either of tJie interior ojyposite angles.

Let the side BC of the A ABC be produced to D ; then

it is required to prove that the exterior angle ACD is greater

than either of the interior and opposite angles BAG and ABC.

I

Const. Bisect AC in the point E, [I. 10.

Join BE and produce it to F^ and from EF cut off

EG = BE. Then join GC.

Proof. In the A" AEB and CEG,

r AE = EC, [Const.

BE = EG, [Const.

&ndZ AEB = vertically opp. Z CEG. [I. 1 5.

.\^BAE^- /.ECG. [I. \.

But /.ACD> Z.ECG\

.-. Z.ACD^ ^BAC.

Also, by producing AC to H and bisecting BC, it can be
proved in a similar manner that

ZBCII:^^ABC.

But Z BCJI ^ vertically opj). Z ACD
;

.-. Z ACJJ > Z ABC.

ThusZ ACD is greater than eitherZ BAG arZABC.
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Ex. 1. Is an exterior angle of a triangle greater than the interior

adjacent angle?

Ex. 2. Every triangle has at least two acute angles.

Ex. 3. Each of the hase angles of an isosceles triangle is an acute

Ex. 4. Shew that, if the sides of a triangle are produced, any two
exterior angles are together greater than two right angles.

Ex. 5. Shew that only one perpendicular can be drawn to a straight

line from any given point without it.

PROPOSITION XVII. Theorem.

Any two angles of a triangle are together less than two right

angles.

Let ABC be a triangle ; then it is required to prove that

any two of its angles are together less than two right angles.

Produce BC to D.

Then ext. Z ACB > int. opp. Z ABC, [I. 16.

To each of these unequals add Z ACB ; then

sum of Z^AGD and ACB>^\im of Z'ABG and ACB.

But Z *ACB and ACB are together equal to two rt. Z *.

[I. 13.

/. Z * ABC and ACB are together less than two rt. Z *.

In the same manner it can be shewn that Z ^ ABC and
BAC, and also that Z* BCA and BAC are together less than

two rt. Z ^

I
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This proposition may be enunciated in the following form :

If a straight line intersects two other straight lines which
meet in a point, the three lines not all passing through the same
point, the two interior angles which it makes with those straight

lines are together less than two right angles.

It will now be seen that Axiom xii is the Converse of

Proposition XVII.

PROPOSITION XVIII. Theorem.

If, in any triangle, one of two sides he greater than the

other, the angle which is opposite to tlie greater side will he

greater than the angle which is opposite to the smaller.

In the triangle ABC let ^C be greater than AB y then it

is required to prove that Z. ABC is greater tJianZACB.

From AG cut oSAD equal to AB, and join BD,

Then V AB = AD,

,\/.ADB = /.ABD. [I. 5.

But exterior Z ADB > int. opp. Z DCB
;

[I. 16.

:.Z.ABD^ZDCB.

But /L ABC > Z. ABD
;

:,/.ABC>/LACB.

Simson's enunciation was as follows :

The greater side of any triangle is opposite to the greater angle.
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PROPOSITION XIX. Theorem.

If, in any triangle, one of two angles be greater than the

other, the side which is opposite to the greater angle is greater

than the side which is opposite to the smaller.

In the AABC let Z ABC he greater than Z.ACB] then it

is required to jjrove that AC is greater than A B.

For, if ^C be not greater than AB, it must either be equal

to AB or less than AB,

Now AC cannot be equal to AB, for then /.ABC would
~/.ACB, which is not the case.

And again AC cannot be less than AB, for thenZ^^C
would, by the preceding proposition, be less than Z.ACB,
which is not the case.

Hence AC must be greater than AB.

Simson's enunciation was as follows :

The greater angle of any triangle is opposite to the greater side.

Simson's enunciations of Propositions XVIII. and XIX., which are

unfortunately still sometimes given, are a fruitful source of error, for no
one can tell from these enunciations what is supposed to be known and
what is to be proved. It must therefore be remembered that what is

supposed to be known is put first in these enunciations.
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PROPOSITION XX. Theorem.

Any two sides of a triaityle are together yreater than the

third side.

Let ABC be a triangle. It is required to jyrove that any
two of its sides are togetlier greater than the third side.

\ Produce BA to i>, making AD -^AC \ and join CJJ.

j

Then, V AD^AC, [Const.

.-.^ACD^ZADC. [1.5.

But ZBCJD>ZACD;
.\/:bcd>/.adc.

Therefore, in the h.BCD,

the side BD opp. Z. BCD > the side BC opp. Z BDC. [I. 19.

But BD is made up of BA and AD^ and AD — AC]
.*. sum ofBA and AC > BC.

In tlie same way it can be proved that the sum of BC and
CA is greater than AB, and that the sum of CB and BA is

greater than AC.

Kx. 1. The difference of two aides of a triangle is less than the third

side.

Ex. 2. Any three sides of a quadrilateral are together greater than
the fourth side.

Ex. 3. The sum of the sides of a quadrilateral is greater than the

sum of its diagonals.
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PROPOSITION XXI. Theorem.

Iffrom, the ends of one side of a triangle two straight lines

he drawn to any point within the triangle, these straight lines

will together be less than the sum of the other two sides of the

triangle, but they tvill contain a greater angle.

From the ends B, C of the side BC of the A ABC let the

two st. lines BD, CD be drawn to any point D within the

A; then it is required to prove that the sum, of BD and DC is

less than the sum ofBA and AC, and that Z IWC > Z BAC.

Produce BD to meet ^C in the point E.

Then the sum of BA and AE > BE. [I. 20.

Add EC to each of these unequals, then

the sum of BA, AE and EC >BE and EC,

i. e. BA and ^C > BE and EC.

Again, the sum of DE and EC > DC.

Add BD to each of these unequals, then

the sum of BD, DE and EC > BD and DC,

i. e. BE and EC > BD and DC.

But BA and AC t^ BE and EC
;

/. BA and AC :> BD and DC.

Again, ext. Z BDC > int. opp. Z DEC, [I. 16.

and ext. Z DEC > int. opp. Z BAB

;

[I. 1 6.

-o/lBDC^^BAE.
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The proposition may be generalised as follows

:

If there are two convex rectilineal figures on the same base, one of
which is entirely within the other, the perimeter of the inner figure will be

the svialler.

[A convex rectilineal figure is such that the production of any one

of its sides would lie entirely outside the figure.]

For example, let the figures be ABGD and AEFD, and let AE produced

cut BC in X, and EF produced cut CD in Y.

Then, sum of AB and BX>AX;
.: perimeter of -45CD> perimeter of AXCD.

Again, sum of EX, XC and CY>EY;
:. perimeter of ^X(7Z) > perimeter of AEYD.

And, sum of FY and YD>FD ;

.-. perimeter of ^JBFD> perimeter of AEFD.

Hence perimeter of -4JBCD> perimeter of AEFD.

Ex. 1. Shew that in a right-angled triangle the side opposite to the

right angle is the greatest side.

Ex. 2. In an obtase-angled triangle the greatest side is that which
is opposite to the obtuse angle.

Ex. 3. Shew that the perpendicular from a given point on a given

straight line is shorter than any other straight line drawn from the given

point to the given straight line.

Ex. 4. Shew that any straight line drawn from the vertex of a

triangle to a point in the base is less than the longer of the two sides, or

than either side if they are equal.

Ex. 5. In the quadrilateral ABCD, AB is the greatest side and CD
is the least; shew that I BCD is greater than A DAB, and LCDA
greater than L ABC.

Ex. 6. If be any point within the A ABC, the sum of the lines

OA, OB, OC will be less than the sum but will be greater than half the
sum of the sides of the triangle.

Ex. 7. Shew that the sum of the diagonals of a convex quadrilateral

is greater than the sum of either pair of opposite sides, and also greater

than half the suin of the sides.

Ex. 8. ABCD is a convex quadrilateral and is any point within
it ; shew that the sum of OA, OB, OC, OD is greater than the sum of AC
and BD except when O is at the point of intersection of ^C and BD.

Ex. 9. The sum of the distances of any point within a rectilineal

figure from the angular points is greater than half the sum of the sides.
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PROPOSITION XXII. Problem.

To construct a triangle the sides of which shall be respec-

tively/ equal to three given straight lines, provided that ariy two

of these lines are togetJier greater than the third.

Let A^ B, C be any three straight lines any two of which

are together greater than the third. Then it is required to

construct a triangle the sides of vjhich are respectively equal

to the lines A, B^ and G.

We may suppose that a line which is not less tlian either

of the others is called A.

Const. Draw any straight line DX^ and from it cut off

DE equal to ^ ; and then, in the same direction, EF equal to

B and FG equal to G.

With centre E and radius ED describe the circle DHK
cutting the line DX in P. Then, since, 'by hypothesis, DE or

EP is not less than EF but is less than EF and FG together,

the point P must be between F and G.

Again, with centre F and radius FG describe tlie circle

GLM cutting the line DX in Q. Then, since by hypothesis

FG is less than FE and ED together, the point Q must lie

between F and D.
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Since FD > FQ, the point D must be without the circle

GLM.

And, since FP < FG, tlie point P must be within the
circle GLM.

But when there are two points on the circumference of
one circle one of which is within and tlie other without another

circle^ it is obvious that the two circles must cut one another.

Hence the circles DHK and GLM will cut otie another.

Let R be one of the points of intersection, and join BE and
RF. Then EFR will be the triangle required.

For radius ER = radius ED = line A
,

and radius FR = radius FG =- line C,

also EF^MuqB.

Thus the sides of the triangle EFR are equal respectively

to the three given straight lines.

The axiom which must be here assumed is the following :
—

' Any line which joins a point within a circle {or any other closed Jignre)
to a point toithout the figure must cut the boundary of the figure.^

It will be seen that the whole difficulty in the above proposition lies in

the proof that, with the given conditions^ the circles drawn must cut one
another.

The proposition may be enunciated in the following form, which will

be seen to be the converse of Proposition XX. :

—

It is always possible to construct a triangle toliose sides are respectively

equal to three given straight lines, provided that any two of these lines are
together greater than the third,

Euclid gives the condition that any two of the lines are together
greater than the third in the enunciation of the problem, but he makes
no attempt to shew the necessity and sufficiency of this condition, the
condition is not indeed mentioned except in the enunciation. All that
Euclid does is therefore to shew how to make a triangle whose sides are
respectively equal to three straight lines, assuming that it is always
possible to make such a triangle.



46 EUCLID.

PROPOSITION XXIII. Problem.

At a given point in a given straight Ihie to make an angle

equal to a given aifigle.

Let AB be the given st. line and A the given point

in it, and let C be the given angle; then it is requii'ed to

make an angle equal to the angle C, with its vertex at A and
having AB for one of its arms.

Const. Take any two points D, E one on each of the

lines bounding the angle C, and join DE.

From AB cut off AF=CD, and make the AAFG having

its sides AF, FG, GA equal respectively to CD, DE, EC.
[I. 22.

Then, in the A « it 7^(7, (7i>^,

V
[

AF^CD,
\ GA = EC,

[s,nd FG = DE;

.\ZFAG= ZDCE. [1.8.

Thus ^ FAG is the angle required.

PROPOSITION XXIV. Theorem.

If two sides of one triangle be equal respectively to two sides

of another, and if the included angles be unequal, the triangle

which has the greater included angle will have the greater base.

Let ABC, DEFhe two triangles having the sides AB, BC
equal respectively to the sides DE, EF and Z. ABC greater

than Z DEF ; then it is required to prove that the base AC is

greater than the base DF.
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At the point B in the st. line AB make

/.ABG = /.DEF,

B.ndBG^EF. Join AG.

In the A' ABG, DEF,

V / AB^DE,
BG = EF,

[iind^ABG = ZDEF:
,\AG = DF.

Now if the point G is on the line AG it is obvious that

AG<AG. But, if G be not on AC, bisect the angle CBG by
the line BX which meets ^C in X. Join GX.

Then, in the A" GBX, CBX,

\-
(

BG = BC,

-j
BX^BX,

.\GX = XC,

/. GX and XA = CX and XA
= CA.

But 6^-3r and XA are greater than ^6^

;

/. CA>AG.

[Hyp.

[Const.

[Cotisi.

[1.4.

[Const.

[Const.

[1.4.

[I. 20.

The above proof is now usually given instead of Euclid's, which is

defective. The defect in Euclid's proof was pointed out by Billingsley

(1570), who completed the proof. Simson refers to a rigid proof by
Campanus, but does not give one.
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PROPOSITION XXV. Theorem.

If two sides of one triangle he equal res'pectively to two sides

of another, and if the bases he unequal, the triangle which has
the greater hose tvill have the greater included angle.

Let ABC, DEF be two triangles having the sides AB, EC
equal respectively to the sides DE, EF and the base AC
greater than the base DF -, then it is required to prove iJuit

Z. ABC is greater than Z. DEF.

For, if /.ABC be not greater than Z.DEF^ it must be

either equal to or less than jL DEF.

But, since BA = DE and BC = EF, the Z ABC cannot be

equal to Z DEF, for then by I. 4, the base AC would be equal

to the base DF, which is not true.

Nor can Z ABC be less than Z DEF, for then by the

preceding proposition AC would be less than DF, which is

not true.

Hence Z ABC must be greater than Z DEF.

Ex. 1. Make an angle equal to the sum of two given angles.

Ex. 2. Make an angle equal to the difference of two given angles.

Ex. 3. Construct a triangle having given the base and the two

angles at the base.

Ex. 4. Construct a triangle having given the lengths of two sides

and the angle contained by those sides.
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PROPOSITION XXVI. Theorem.

If in two triangles, two angles of the one he equal respec-

tively to two angles of the other, and if also the sides adjacent to

the eqical angles, or the sides opposite to a pair of equal angles,

be eqtcal, then the two triangles will be equal in all respects,

those sides being eqical which are opposite to equal angles.

In the triangles ABC, DEF, if /.ABC= /LDEF, and
Z.ACB^ /LDFE, and if also either BC = EF or AB = DE;
then it is required to prove that the triangles are equal in all

respects.

Case I. When the sides BC and EF adjacent to the

equal angles are equal.

B C E

If BA be not equal to ED, one of them must be the

greater. If possible, let BA be the greater, and cut otF from
BA the part BG equal to ED. Join GC.

Then in the A" GBC, DEF,

BG==ED, [Cmist

BG= EF, [Hyp

and included Z GBC = included Z DEF [Hyp.

.'. ZBCG^^EFD. [I. 4

But Z EFD = Z BOA
;

[Hyp,

.'. ZBCG = ZBCA,

the part equal to the whole, which is impossible.

Hence ED cannot be unequal to BA, i.e. ED^BA.
And then, since BA = ED, BC = EF, and Z ABC = Z DEF;
,'. A' ABC, DEF are equal in all respects.

H. B. E. 4:
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Case II. When the sides AB^ DE opposite to a pair of
equal angles are equaL

H C

If BC be not equal to EF^ one of them must be the
greater. If possible, let BC be the greater, and cut off the
part BH equal to EF. Join AH.

Then, in the A« ABH, DEF,

V
f

AB^DE, [Hyp.

\ BE=EF, \Con8t.

(and included Z ABH = included Z BEF; . [Hyp.

.\ZAHB = ZDFE. [I. 4.

But ^BFE^^ACB; [Hyp.

:,Z.AHB^Z.ACB,

that is, an exterior angle of the triangle AHC equal to an
interior opposite angle, and this is impossible. [I. 16.

Hence EF cannot be unequal to BC^ i.e. EF = BG.

And then V BC = EF,

AB = DE,
QxiALABC^^DEF\

:, A'^ ABC, jDEF are equal in all respects.
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PROPOSITION B. Theorem.

If two sides oj' one triangle be respectively equal to two sides

of another triangle^ and if the angles opposite to one pair of
equal sides be also equal, then will the angles opposite the other

pair of equal sides be either equal or supplementary ; and, in
theformer case, the triangles tviU be equal in all respects.

In the triangles ABC, DEF let AB = DE, AC= BF, and
/. ABC = Z DEF; then it is required to 2^rove that tlte angles

ACB and DFE are either equal or supplementary.

C E F G

For, if ZBAC^ZEDF,
then, since AB ^ DE, AC = BF and /.BAG =^/.EDF',

:. A« ABC and DEF are congruent, and /. ACB - Z DFE,

But, if /. BAC be not equal to AEDF, on the same side

of ED that F is, make

/EDG^Z.BAG\

and let EF, produced if necessary, meet DG in G.

Then, in the A« DEG, ABC
ED = BA, [Hyp.

/EDG = /BAC, [Const,

\/DEG^ZABC; [Hyp.

/. DG = AC, and /DGE=/ACB. [I. 26.

Also, since AC = DF, and DG = AC, DG^DF\
.-. Z DFG = Z DGF=. Z ACB.

But /DFE is supplementary to /DFG; [1. 13.

.*. /DFE is supplementary to /ACB.

4—2
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Cor. If two sides of one triangle are equal respectively to

two sides of another and tlie angles opposite to one pair of equal

sides a/re also equal, the two triangles are equal in all respects

when the angles opposite the other pair of equal sides are both

acute, or both obtuse, or when one of these angles is a right

angle.

For one of two supplementary angles is greater and the other is less

than two right angles, or else both are right angles.

Ex. 1. The bisectors of the equal angles ABC, ACB of the isosceles

triangle ABC meet the sides AG, AB respectively in the points E, F\
shew that BE=CF.

Ex. 2. The hypotenuse and one side of one right-angled triangle

are respectively equal to the hypotenuse and one side of another right-

angled triangle. Shew that the two triangles are equal in all respects.

Ex. 3. The bisector of the angle BAC of any triangle meets the
opposite side in the point D, and BA>CA. Shew that BB>GD.

Ex. 4. D is any point on the side BC of the triangle ABG\ shew that

the perimeter of the triangle is greater than twice A D.

Ex. 5. Shew that, if the line bisecting an angle of a triangle passes
through the middle point of the opposite side, the triangle must be
isosceles.

Ex. 6. From any point on the bisector of an angle perpendiculars

are drawn to the lines containing the angle ; shew that these perpen-

diculars are equal.

Ex. 7. Shew that, if the perpendiculars drawn from a point on two
intersecting straight lines are equal, the point must be on one or other

of the lines which bisect the angles between the intersecting lines.

Ex. 8. Shew that, if the perpendiculars from two of the angular
points of a triangle on the opposite sides are equal, the triangle must be
isosceles.
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When a straight line intersects two other straight Hnes it

makes with them eight angles to which particular names are

given.

Thus, in the figure,

AGD, AGC\ EHB, BHF are called exterior angles.

HGD, HOC, GHE, GHF are caUed interior angles.

CGH and GHF, also DGH and GHE, are called

alternate angles.

Also AGD and GHF are called respectively an exterior
angle and the interior and opposite angle on the same side of
the line AB.
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PROPOSITION XXVII. Theorem.

If a straight line cutting two other straight lines Tnake tJie

alternate angles equal, these two straight lines will he parallel.

Let the straight line EF cut the two straight lines AB, CD
in' the points E, F respectively, and let the alternate angles

AEF and EFD be equal ; then it is required to prove that AB
and CD a/re parallel.

For, if ^^ and CD are not parallel, they will meet if

produced far enough. Let them be produced towards B and
i>, and if possible let them meet in the point X.

Then EXF would be a triangle and the exterior Z AEF
would be equal to the interior and opposite Z EFX, which we
know is impossible.

It is therefore impossible that AB and CD should meet
when produced towards B and D ; and it can be proved in a
similar manner that it is impossible that they should meet
when produced towards A and C.

/. J^isllto CD.

PROPOSITION XXYIII. Theorem.
*

If a straight lin£ cut two other straight lines and make an
exterior angle equal to the interior and opposite angle on the

same side of the line, or make the two interior angles on the

same side of the line together equal to two right angles, the two
straight lines will he parallel.
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Let the st. line EF cut the two st. lines AJi^ CD in the

points G, II respectively, and make the exterior angle EGB
equal to the interior and opposite angle GHD on the same
side of EF^ or make the two interior angles BGU^ GHD on
the same side of EF equal to two right angles ; then it is

required to prove tJiat AB and CD are 2KiraUel,

First, suppose that Z EGB = /L GIID.

Since Z EGB = vertically opp. /. A Gil, [I. 15.

.\ZAGH=:»M.ZGIID',

.', AB is II to CD. [I. 27.

ISText, suppose that Z " BGH and GIID together equal two
rt. Z«.

Since Z AGII and Z BGH together - two rt. Z
», [I. 13.

Sum oi Z'^AGH and BGH= sum of Z « BGH and GHD

;

.\ZAGH-. ZGHD,

and these aie alternate angles.

.-. AB is II to CD. [I. 27.

Ex. 1. Prove Prop, xxviii. in the same manner as Prop, xxvii.

Ex. 2. Shew that, if two straight lines are perpendicular to the same
straight line, they are parallel to one another.

Ex. 3. Shew that every rhombus is a parallelogram.
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PEOPOSITION XXIX. Theorem.

If a straight line cut two 'parallel straight lines, it imll make
alternate angles equal, each exterior angle equal to the interior

opposite angle on the same side of the straight line, and the

two interior angles on the same side of the line together equal to

two right angles.

Let the st. line £JF cut the two parallel lines AB, CD in

the points G, H respectively ; then it is required to prove that

the alternate Z* AGH, GHD are equal, the ext. Z. EGB = int.

opp. Z GHD, and that the two int. Z * BGH, GHD are together

equal to two rt. Z *.

F

For, if Z AGH be not equal to Z GHD, one of them must
be the greater; if possible, let Z AGH be greater than Z GHD.

Add Z HGB to each of these unequaJs,

then /LAGH and Z HGB > Z GHD and Z HGB.

But ZAGH and Z HGB - two rt. Z
«

;

.-. Z GHD and Z HGB < two rt. Z \

Hence, by Axiom xii.*, the lines AB and CD will meet if

produced towards B and D ; but this is impossible since the

lines are parallel.

/. Z * AGH and GHD cannot be unequal,

i.e. Z AGH= alt. Z GHD.

Then, •/ ZAGH^Z GHD,

and Z AGH= vertically opp. Z EGB

y

.',ZEGB = ZGHD.
* See Note, page 58.
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Again, •/ /. GHD - Z AGH,
adding Z BGH to each,

Z GHD and Z ^(?// = Z ^G^^ and Z BGH.
But /.\AGH and ^G^ZT = two rt. Z "

;

.-. Z « (?//Z> and ^6'^ - two rt. Z ».

PROPOSITION XXX. Theorem.

Straight lines which are parallel to the same straight line

are parallel to one another.

Let each of the st. lines AB and CD be parallel to EF-j
then it is required to prove that AB is parallel to CD.

X

A / B

C

'

D

r
r

Draw some st. line XY which will cut ^J9, C/>, EF in

the points (?, H^ K respectively.

Then V^l^ is || to ^i>",

ZAGH= alternate Z HKF. [I. 29.

And •/ CD is ll to EF,

Z CHK= alternate Z HKF. [I. 29.

Hence exterior Z CHK — interior opp. Z AGH

;

/. AB is II to CD. [I. 28.

Cor. If a straight line intersect one of two parallel straight lines it

will intersect the other.

Ex. 1. If a straight line is parallel to one of two parallel straight

lines it is parallel to the other.

Ex. 2. If a straight line is perpendicular to one of two parallel

straight lines it is perpendicular to the other.
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NOTE ON AXIOM XII.

As the definition of parallel straight lines simply describes them by
the negative property that they never meet, it is necessary that some
positive property of parallel lines should be assumed as an axiom. The
axiom assumed by Euclid has been objected to on the ground that it is

not self-evident, and it must in fact be allowed that it is not more self-

evident than Proposition xvii., of which it is the converse. Many
attempts have been made to found the theory of parallel lines upon an
axiom more nearly self-evident than Euclid's Axiom xii., but the only
substitute for Euclid's Axiom which appears to really diminish the
difficulty is the following :

' Two straight lines which intersect one another cannot both be parallel

to the same straight line.'

The above axiom is generally called Playfair's Axiom, although
Professor Playfair was not the first to suggest it.

It would be a good exercise for the student to prove Prop. xxix. by
assuming Playfair's Axiom instead of Euclid's Axiom xii.

PROPOSITION XXXI. Problem.

To draw a straight line through a given point parallel to a
given straight line.

Let A be the given point and BG the given st. line ; then
it is required to draw through the pt. A a st. line parallel to

BC.

D

In BC take any point i), and join AD. Then at the point

A in the st. line AD make Z. DAE equal to /CADC, these Z^
being on opposite sides of DA. [I. 23.

Then Z EAD ^ alt. ZADC; [Const.

/. EA is parallel to BC, [I. 27.

and EA is drawn through the given point A.
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PROPOSITION XXXII. Theorem.

If a side of a triangle he produced^ the exterior angle ivill

be equal to the sum of the two interior opposite angles.

The three interior angles of any triangle are equal to two

right angles.

Let the side BG of the A ABC be produced to D ; then

it is required to prove (a) that Z.ACD = suin of /.'AJiC and
CAB^ and

(fi)
tliat the three angles ABCy CAB and BCA are

together eqy>al to two rt. Z *.

Tlirough C draw C^ || to AB. [T. 31.

Then V ABWtoCF;

.-. ZACB= alt. Z BA C, [I. 29.

and ext. ^ BCD = int. opp. ZABC. [I. 29.

/. Z

M

CE and BCD =Z'BAC and ABC.

But /.'ACE and BCD together make up Z ACD.

.-. exterior Z ACD = Z » BAC and ABC.

Now add Z ACB to each of these equals, then

Z " ^Ci> and ^Ci5 = Z " 5^C, ABC and ACB.

But Z.' ACD and ^C^ together = two rt. Z «

:

[I. 13.

.% Z' BAC, ABC and ACB together = two rt. Z \
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Cor. I. All the interior angles of any rectilineal figure together with

four right angles are equal to tioice as many right angles as the figure has

sides.

For any rect. figure ABODE can be
divided into as many a * as there are sides

by drawing st. lines from any point O
within it to each of its angular points.

Then the sum of the interior angles of

all these triangles will be equal to twice as

many right angles as the figure has sides.

But the interior angles of these triangles make up the interior angles

of ABODE together with the angles at the point O, and the angles at O
are together equal to four right angles.

Thus the interior angles of the figure together with four right angles
are equal to twice as many rt. l " as the figure has sides.

For example, the sum of the interior angles of any quadrilateral is

equal to four right angles.

Cor. II.* All the exterior angles of any convex rectilineal figure are
together equal to four right angles.

A convex rectilineal figure is one which would not be cut by the
production of any of its sides.

Every int. Z of a convex rectilineal figure together with its corre-

sponding ext. Z are equal to two rt. Z *.

Hence all the interior angles together with all the exterior angles are

equal to twice as many right angles as the figure has sides.

Hence, by Cor. I., the exterior angles are together equal to four right

Cor. I. and Cor. II. were given in Billingsley's edition (1570).
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The quadrilateral BBCA on page 42 is an example of a figure which
is not convex. An angle such as BDG in this figure, which is greater

than two right angles, is called a re-entrant angle.

Ex. 1. Prove that the sum of the three interior angles of a triangle
is equal to two right angles, by drawing a line through one angular point
parallel to the opposite side.

Ex. 2. Shew that, if two angles of one triangle are equal respectively

to two angles of another triangle, their third angles will also be equal.

Ex. 3. Shew that, if one of the angles of a triangle is equal to the
sum of the other two, the triangle is right-angled.

Ex. 4. Shew that, if one of the angles of a triangle is greater than
the sum of the other two, the triangle is obtuse-angled.

Ex. 5. If in a triangle every angle is less than the sum of the other
two, the triangle is acute-angled.

Ex. 6. The angles of all equilateral triangles are equal.

Ex. 7. Divide a right angle into three equal parts.

Ex. 8. Make an angle equal to one-sixth of a right angle.

Ex. 9. Equilateral triangles BCD, CAE, ABF are described on the
sides of any triangle ABCy the equilateral triangles being all outside the
triangle ABC ; shew that AD, BE, CF are all equal.

Ex. 10. Shew that if two isosceles triangles have equal vertical angles,

the base angles will also be equal.

Ex. 11. Shew that the sum of the exterior angles of a convex quadri-

lateral is equal to the sum of the interior angles.

Ex. 12. Shew that the sum of the interior angles of any convex
hexagon is double the sum of the exterior angles.

Ex. 13. Shew that each of the angles of a regular* pentagon is six-

fifths of a right angle.

Ex. 14. Shew that each of the angles of a regular hexagon is fonr-

thirds of a right angle.

Ex. 15. Each of the angles of a polygon is three-halves of a right

angle. How many sides has the polygon?

Ex. 16. The side BA of the triangle ABC is produced to D, and the
line bisecting the angle CAD is parallel to BC. Shew that the triangle is

* A polygon which is both equilateral and equiangular is called a
vgalax polygon.
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PROPOSITION XXXIII. Theorem.

The straight lines which join the extremities of two equal

a/nd parallel straight lines, towards the same parts, are them-

selves equal and parallel.

Let AB and CD be two equal and parallel st. lines and let

them be joined towards the same parts by the st. lines AC
and BD ',

then it is required to prove that AC and BD are

themselves equal and parallel.

V AB is 11 to CD,

.'. ZABC = alt. Z BCD. [I. 29.

Then in A' ABCy DCB
V ( AB=CD, \Hyp.

\ BC=CB,
land included Z. ABC = included Z DGB ;

.\AC = BD. [1.4.

Also ZAGB=ZCBD,
and these are alternate angles ; .\ AC i^\\ to BD. [I. 27.

Ex. 1. The straight hnes which join the extremities of two equal

and parallel straight lines, towards opposite parts, are bisected at their

points of intersection.

Ex. 2. If each of two equal and parallel straight lines be divided

into the same number of equal parts, the lines joining corresponding

points of division will all be parallel.

Ex. 3. The perpendicular distances of the points A, B from the

straight line LM are equal, shew that LM is either parallel to AB or

bisects AB»
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PROPOSITION XXXIV. Theorem.

The opposite sides and angles of a paraUelograni are equals

and eojch diagonal bisects the parallelogram.

Let ABCD be a par", of which BD is a diagonal ; it is

required to prove that opposite sides are equalj that opposite

angles are equal am.d that a diagonal bisects the figure.

^iWQQ AB \s\\to DC,

/. ABD = alt. Z. BDC, [T. 29.

Since AD is H to BC,

/:ADB = alt. Z DBC, [I. 29.

Then, in the A" ABD, CDB

V ( /.ABD = /.BDC,
\ /:adb=/:dbc,
(and the side DB adjacent to the equal angles is common

;

.-. AB = DC, [I. 26.

AD = BC,

/. DAB = Z BCD,

and AABD = ABCD.

Similarly, ii AC he drawn, it can be proved that

^ABG= /.CDA,

and that AC bisects the figure.
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Ex. 1. Shew that a quadrilateral is a parallelogram,

(i) if one pair of opposite sides are equal and parallel,

(ii) if pairs of opposite sides are equal,

(iii) if pairs of opposite angles are equal,

(iv) if the diagonals bisect each other.

Ex. 2. Shew that the diagonals of a parallelogram bisect each other.

Ex. 3. If one angle of a parallelogram is a right angle, they are all

right angles.

Ex. 4. Shew that a square, or any other rhombus, is a parallelogram,

and that its diagonals are at right angles.

Ex. 5. Shew that all the angles of a square are right angles.

Ex. 6. Shew that the diagonals of a square, or of any other rhombus,
are at right angles.

Ex. 7. Shew that the diagonals of a rectangle are equal.

Ex. 8. Shew that, if the diagonals of a parallelogram are equal, it

must be a rectangle.

Ex. 9. Shew that, if the diagonals of a parallelogram are equal and
perpendicular, the parallelogram must be a square.

Ex. 10. From any two points on a straight line perpendiculars are

drawn on a parallel straight line ; shew that these perpendiculars are

equal.

Ex. 11. Shew that any line through 0, the point of intersection of

the diagonals of a parallelogram, is cut by either pair of opposite sides in

two points equidistant from O.

Ex. 12. Shew that any straight line through the point of inter-

section of the diagonals of a parallelogram will divide the parallelogram

into two equal parts.

Ex. 13. Shew how to find a point which is at given perpendicular
distances from two given intersecting straight lines.
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PROPOSITION XXXV. Theorem.

Parallelograms on the same hose and between the same
parallels are equal.

Let the 11"" ABCD, EBCF be on the same base and
between the same parallels AF, BC ; then it is required to

prove that these |1"** are equal.

V ABCD is a H"*, and opposite sides of a H™ are equal

;

.\ AB = DC

V AB is II CD, Z. BAE =Z CDF, [I. 29.

•/ BE is II CF, /.AEB^Z. DEC. [I. 29.

Hence in A" AEB, DEC,

V| AB = DC,

ZBAE = /:CDF,
[and Z.AEB = ZDFC,

,'. A AEB = A DEC.

,'. ABCFA diminished by ti.AEB

^ ABCFA diminished by A DEC;

.-. \r EBCF -Ar ABCD,

S. B. E.
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The two parallelograms although equal in area are not equal in all

respects, unless by chance the angles BCB and EBC are equal. It is

easily proved that two parallelograms are equal in all respects when, and
only when, two adjacent sides and the included angle of the one are

equal to two adjacent sides and the included angle of the other.

This is the first example of two figures being proved to be equal in

area without being equal in all respects.

In the case of two parallelograms on the same base and between the

same parallels it is easy to subdivide one of the figures into parts which,

when properly fitted together, will coincide with the other figure. For
set off distances DG, GH along AF, each equal to AD, until the last point

of subdivision of ^i^ comes within EF. Then draw lines through G, H
parallel to ABy as in the figure.

Then it is easily proved that AHFM is equal in all respects to A GEK.

Then again the figure LGHM can be proved to be equal in all respects
to the figure NDGK ; and the figure CDGL to the figure BADN.

Hence, remove the triangle HFM to the position GEK, and then
remove the figure LGHM to the position NDGK, and finally remove the
figure CDGL to the position BADN ; we shall then have moved the parts
into which the parallelogram BEFC is divided so as to make them coin-
cide with the parallelogram BADC.

Ex. 1. Make a rhombus equal to a given parallelogram and having
each of its sides equal to the longer side of the parallelogram.

Ex. 2. Make a rectangle equal to a given parallelogram and having
one of its sides equal to a side of the parallelogram.

Ex. 3. Shew that, if the lengths of the sides of a parallelogram be
given, the area will be greatest when it is a rectangle.
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PROPOSITION XXXVI. TnEORBnyi.

Parallelograms on equal bases and between the same parallels

are equal.

Let ABCD, BFGII be two |p"« on equal bases BC\ FG and
between the same parallels BG and AH ',

then it is required

to prove that ABCD is equal {in area) to EFGH.

B

Join BE and CH.

Then BG = FG, [hyp.

and since opposite sides of a ||™ are equal, FG = EH

;

.'. BC and EH are equal and ||.

Hence BCHE is a l|n\ [I. 33.

Then the H"" ABCD and EBCH are on the same base BC
and between the same ||*

;

/. ir ABCD = 11>« EBCH. [I. 35.

Also the ll'»« EBCH and EFGH are on the same base EH
and between the same ||*

;

•
.-. ir EBCH=\r EFGH [I. 35.

Hence ll>" ABCD = H"^ EFGH.

The altitude of a parallelogram, with reference to a particular side

as base, is the length of the perpendicular drawn to the base from any
point on the opposite side.

It is easily seen that H*"^ which are between the same ir have equal
altitudes, and that H™* which have equal altitudes can be so placed as to be
between the same parallels.

6—2
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Ex. 1. Parallelograms on equal bases and with equal altitudes are
equal.

Ex. 2. Equal parallelograms on equal bases must be between the
parallels, or must have the same altitude.

Ex. 3. Equal parallelograms which have the same altitude must be
on equal bases.

Ex. 4. Divide a given parallelogram into four equal .parallelograms.

PROPOSITION XXXVII. Theorem.

Triangles on the same base and between the same parallels

are equal.

Let the A^ ABC, ADC be on the same base ACj and
between the same H^ ^C and BD ; then it is required to prove
that A ABC = A ADC.

Join BD and produce it indefinitely both vs^ays. Through
A draw AB \\ to CB, and meeting BD in E. Also through C
draw CF \\ to AD meeting BD in F.

Then EACB and DACF&yq 1|™« on the same ba.se'jC and
between the same H^

Hence \r EACB =^\r DACF. [1.35.

But A ABC is half 1^ EACB, [I. 34.

and A ADC is half ir DACF. [I. 34.

.-. A ABC - A ADC,
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PROPOSITION XXXVIII. Theorem.

Triangles on equal bases and between the same parallels

are equal.

Let ADC and D£^F be two A" on equal bases and between
the same parallels BF and AD ; then it is required to prove

that these A* are equal.

I) H

Join AD and produce it indefinitely both ways. Through
B draw BG \\to AC and meeting DA in G. Also through F
draw FH \\ to ED and meeting AD in H.

Then by const, the figures GBCA and DEFH are 11»'«;

and they are on equal bases and between the same H^.

Hence 1^ GBCA = |l>" DEFH.

But A ABC is half 11"' GBCA,

and A DEF is half H"' DEFH-,

.'. A ABC = A DEF.

[I. 36.

[I. 34.

The altitude of a triangle, with reference to any particular side as
base, is the perpendicular drawn to the base from the opposite angular
point.

It is easily seen that a" which are between the same parallels have
equal altitudes, and that a " which have equal altitudes can be so placed
as to be between the same parallels.
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' Ex. 1. Shew that equal a^ which are between the same parallels are
on equal bases.

Ex. 2. Of two triangles between the same parallels that which has the
greater base has the greater area.

Ex. 3. If the base of a triangle be divided into any number of equal
parts and the points of division be joined to the vertex, the triangle will

thereby be divided into the same number of equal triangles.

Ex. 4. Two triangles are between the same parallels and one triangle

is double the other ; shew that the base of one triangle must be double
the base of the other.

Ex. 5. Two triangles have a common vertex and their bases are in

the same straight line; shew that if the base of one triangle be three
times the base of the other, then the area of the first triangle will be
three times that of the second.

Ex, 6. If two sides of a triangle are given, the area will be greatest

when these sides are at right angles.

Ex. 7. If D, E are the middle points of the sides AB, AG of the
triangle ABC, and DE be drawn, the triangle ADE will be one-quarter
of the triangle ABC.

Ex. 8. If D, E be the middle points of the sides AB, AG of the
triangle ABC and if BE, CD intersect at F, the triangle BEG will be
equal to the quadrilateral ADFE.

Ex. 9. Shew that, if the line CD is bisected by AB, the triangles

ACB and ADB are equal in area.

Ex. 10. Two triangles of equal area are on the same base and on
opposite sides of it

;
prove that the straight line joining their vertices is

bisected by the base, produced if necessary.

Ex. 11. Shew that, if D be the middle point of the base BC of the

A ABC, and P be any point on AD, the A" APB and APG will be equal.

Ex. 12. Shew that, if the a^ APB and APG are equal, the point P
must be on the line joining A to the middle point of BG.

Ex. 13. Shew that the diagonals of a parallelogram divide the figure

into four equal triangles.

Ex. 14. Shew that, if two triangles have two sides of the one equal
respectively to two sides of the other, and if the included angles are
supplementary, the triangles will be equal in area.
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PROPOSITION XXXIX. Theorem.

Equal triangles on the same hose, and on the same side of
itj are between the same parallels.

Let ABC, DBC be equal A** on the same base BC and on
the same side of it ; it is required to prove that AD is parallel

toBG.

Join AD. Draw AX \\to BC and meeting BD, produced if

necessary, in the point X. Join XC.

Then ABC, XBG are A*' on the same base and between
the same H^

.-. A ABC = A XBC. [I. 37.

But, by hyp., A ABC-- A DBC.

.-. A XBC = A DBC,

which is impossible, unless X coincides with D, so that AD
must itself be 11 to BC.
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PROPOSITION XL. Theorem.

Equal triangles on equal bases in the same straight line and
on the same side of it are between the same parallels.

Let ABC, DEF be equal A^ on equal bases BC, EF in

the same straight line BF, and on the same side of BF; then
it is required to prove that AD is parallel to BF.

Join AD. Draw AX parallel to BF and meeting ED^
produced if necessary in the point X. Join XF.

Then ABC, XEF are A^ on equal bases and between the

same H^

/. A ABC - A XEF. [I. 38.

But, by hyp., A ABC - A DEF.
.-. AXEF^^ADEF,

which is impossible, unless X coincides with D, so that AD
must itself be parallel to BC.

Ex. 1. Shew that equal triangles on equal bases have the same
altitude.

Ex. 2. Shew that equal triangles which have equal altitudes have
equal bases.

Ex. 3. The straight line joining the middle points of two sides of a
triangle is parallel to the third side and equal to half of it.

Ex. 4. If D, E, F be the middle points of the sides BC, CA, AB of
the triangle ABC, shew that the straight lines BE, EF, FD divide the
triangle ABC into four other triangles equal in all respects.

Ex. 5. If a quadrilateral be bisected by each of its diagonals, it must
be a parallelogram.
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Ex. 6. Shew that if one diagonal of a quadrilateral bisect the quad-
rilateral it will bisect the other diagonal.

Ex. 7. A quadrilateral is divided into four triangles by its diagonals;
shew that, if two adjacent triangles be equal, the other two triangles will

also be equal.

Ex. 8. A quadrilateral is divided into four triangles by its diagonals
;

shew that, if two opposite triangles are equal, one pair of opposite sides

will be parallel.

PROPOSITION XLI. Theorem.

If a parallelogram and a triangle he on the same base and
hetmeen the same parallels^ the parallelogram will he double the

triangle.

Let the ||"' A BCD, and the A BBC be on the same base

and between the same parallels BC and AE; then it is

required to prove that ||'" ABCD is double A BBC.

Join AC. Then the A** ABC, BBC are on the same base

and between the same parallels

;

.-. A ABC = A BBC. [I. 37.

But IP" ABCD is double A ABC, for any ||"^ is bisected by
a diagonal.

.-. 11'" ABCD is double A BBC.

A parallelogram is often described by naming two opposite angular
points instead of all the four angular points in order.

Thus the H™ ABCD may be called the |p AC, or the ||™ BD.

Ex. 1. If be any point within the parallelogram ABCD, the sum
of the triangles OAB and OCD will be equal to half the parallelogram
ABCD.

Ex. 2. Through the ends of each diagonal of a quadrilateral lines

are drawn parallel to the other diagonal; shew that the area of the
parallelogram so formed is double the area of the quadrilateral.
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PROPOSITION XLII. Problem.

To describe a 'parallelogram equal to a given triangle^ and
having one of its angles equal to a given angle.

Let ABC be the given A, and D the given Z. It is

required to make a \\"^ equal in area to the A ABC and having
one of its angles equal to the angle D.

Through A draw a line XY parallel to BG. At the point

B in the st. line CB make an angle CBE equal to Z D, and
let BE meet XY in the point E. Draw CF parallel to BE
ineeting XY in F.

Then A ABC is half \r EBCF, \' they have the same
base and are between the same parallels.

Bisect BC in G, and draw GH parallel to BE and meeting
XY in H.

Then ir EBGH is also half \r EBCF.

Hence H''^ EBGH= A ABC, and Z EBG = Z i>.

PROPOSITION XLIII. Theorem.

The complements of the parallelograms, which are about the

diagonals of any parallelogram are equal.

Ij&t ABCD be a ir, and AC one of its diagonals, let EH,
GF be ir« about AC (that is |1™« one diagonal of which is

along AC) ; then it is required to prove that the |1'"* BK, KD,
which make up the figure ABCD (and which are therefore

called the complements of the H'^^ EH and GF), are eqvM to

one another.
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Since every 1|'" is bisected by its diagonal,

A ABC - A ADC,

l\ AHK -^ l\ AEK,

and ^KFG-^AKGC.

From A ABC take the sum of the A« AHK and KFC,
and from the A ADC take the sum of the A« AEK and
KGC \ then the remainders will be equal.

Hence \r HF r^\\^ KD.

It should be noticed that the converse of this theorem is true,

namely :

—

'7/ any ir he divided into four ||"** by two lines \\ respectively to two
adjacent sides; then if two opposite ||"" he eqnal, the other two ||"** will be

about a diagonal of the given H*".'

Let GE, EH, Hh\ FG be the four ir" into which |r ^C is divided by
lines

II
to adjacent sides, and let ||™ iJG = ||™ FH. Then we have to

prove that AKC is a st. line.

For, if AKC is not a st. line, let AK cut DC in the point A'. Draw
XY

II
to AD and cutting AB in Y. Then the complements GE and KY

are equal. Hence [|™ KY=\\^ KB, which is impossible. Hence AKO
must be a straight line.

Ex. 1. Shew that each of the parallelograms about the diagonal of a
rhombus, is a rhombus.

Ex. 2. Shew that each of the parallelograms about the diagonal of a
rectangle, is a rectangle.

Ex. 3. Shew that the parallelograms DH and AF are equal.

Ex. 4. Shew that the parallelograms EC and GB are equal
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Ex. 6. Shew that, if KB and KB be joined, the triangles AKD and
AKB will be equal.

Ex. 6. Shew that the triangles DEB, DHB are equal.

Ex. 7. Shew that the triangles DGB, DFB are equal.

Ex. 8. Shew that the straight lines EH, DB, GF are parallel

PROPOSITION XLIV. Problem.

To a given straight line apply a parallelogram which shall

he equal to a giveyi triangle, and have one of its angles equal to

a given angle.

Let AB be the given st. line, C the given Z and PQR the
given triangle; then it is required to make a ||"* equal to

A FQEf having AB for one of its sides, and having one of its

angles equal to /. C.

Make ir TSRU e(\n3\ to A PQR and with Z SRU= Z C.

[I. 42.

Produce BA to D. Make ZDA£J = ZC. From AD cut

off AF^RS, and from AE cut oK AG = RU.

Through F and B draw XT, ZW parallel to AE. Through
G draw KGH \\ to BAD, cutting XY in H and ZW in K.

Join KA, then KA cannot be H to XY, since it meets AG
which is parallel to XY. Produce KA to meet XY in L.

Lastly, through L draw LNM || to AB, and meeting EA
produced in N and ZW in if.

Then AM is the ||'" required.
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For, by construction, AM and AH are the complements of

the ir^ about the diagonal KL of the H™ KMLH.

Hence 11"' AM = H™ AH. [I. 43.

But II™ AH was made ^qual in all respects to the H"" TSRU^
and by construction H™ TSRU = A P(?i?.

Hence H™ ^^= A P(?i?.

Thus II"* ^if is the ||"^ required, for it is equal to the given

A, and has AB for one of its sides and the angle BAN is

equal to the given Z C.

Euclid proves at some length that KA will meet XYy but offers no
proof that KG will meet XY^ although this equally needs proof. Both
alike are included in Prop. xxx. Cor. Other cases occur in Props, xxxvii.,

XXXVIII., XXXIX. and xl.

The problem is sometimes enunciated in the following form

:

^Construct a parallelogram equal to a given parallelogram and having
one of its sides of given length,^

It will be seen that the problem is solved by drawing a ||™ such that a
given II™ FAGH may be one of its complements and that the other

complement may have one of its sides of given length.

It would be well for the student first to consider the simpler case

—

'To make a rectangle equal to a given rectangle and having one side

of given length.'

The following example leads to another construction which may be
given instead of that in the text

:

Construct a triangle equal to a given triangle^ and having one of its

sides of given length.

Let ABC be the given triangle. Take a point X on BC, or BG
produced, such that BX is equal to the given length. Join XA, and
through G draw the line CY\\XA and meeting BA^ produced if necessary,

in the point Y. Join XY.

Then since GY\\XA, i^YAX= i^GAX. Add i^AXB to each. Then
A YXB = A CAB, and the side BX is of the required length.
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PROPOSITION XLV. Problem.

To describe a parallelogram equal to a given rectilineal

figure^ and having an angle equal to a given angle.

Let ABODE be the given rectilineal figure, and F the
given angle ; it is required to make a \\^ equal to the figure
ABODE and having one of its /.' equal to Z F.

Divide the figure into A^ by joining angular points.

1^ P

H

Make the |1™ GIIKL equal to A ABO and having

^ffGL = ZF. [1.42.

To the line UK apply a ||"^ HKNM equal to A ^CZ) and
having Z MHK = Z.F. [I. 44.

To the line MN apply H™ MNPO equal to A ADE and
having Z.OMN = /LF.

Proceed in this way until a ||"^ has been made equal to

each of the A^ into which the given figure was divided.

Then •/ LG \^\\ to KH,

sum of Z « LGH and KEG = two rt. Z «. [I. 29.

But, by construction,

^LGH =^F = /.KHM;
.'. sum of Z « KHM and KHG = two rt. Z

«

Hence (xi^Jif is a st. line. [I. 14.

Then, since KJV is || to GHM,

and LK is |1 to GHM;
.', LKN is also a st. line.
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Similarly it can be proved that HMO and KNF are st.

lines, and so for any number of H'"".

Hence the figure LO is a ||"', and it is made up of parts

which by construction are equal respectively to the different

A** into which the given figure was divided.

The IP" LO is therefore equal to the given figure, and
/.OGL=^F.

Ex. 1. Make a rectangle equal to the sum of two given rectangles.

Ex. 2, Make a rectangle equal to the difference of two given rect-

angles.

PROPOSITION C. Problem.

To describe a triangle equal to a given rectilinealfigure*

.

Let ABODE be the given rectilineal figure; then it is

required to make a triangle equal to the figure ABODE,

Join BDf and through C draw the line OX parallel to BD
and meeting AB produced in X.

Then, •/ OX is || to BD,

ABXD=ABCD. [I. .37.

To each add the figure BDEA.

Then figure XDEA = figure BODEA.

"We have therefore made a figure XDEA equal in area to,

but having one side fewer than, the given figure BODEA.

* This is given in T. Simpson's Geometry, 1780.
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This process may now be applied to the figure AXDE, and
may be repeated as often as may be necessary until at last a

figure of only three sides will be made whose area is equal to

that of the given rectilineal figure.

Euclid's method of making a parallelogram equal to a given recti-

lineal figure by means of Propositions xlii., xliv. and xlv. would be
practically very long and tedious, and it would be much shorter and
simpler first to make a triangle equal to the given figure by the method
of Prop. C, and then to use Euclid's Prop. xlii.

PROPOSITION XLVI. Theorem.

On a given straight line to describe a square.

Let AB be the given st. line ; then it is required to describe

a square on AB.

From A draw AC ^.^ to AB, and cut ofl AD equal to AB.
Through D draw DE \\ to AB, and through B draw BF \\ to

AB and meeting DE in the point F. Then ABFD is the

square required.

For, by construction, ABFD is a |l™, and its opp. sides are

/. equal.

Hence AB = DF and BF=AD.

But, by construction, AD ^ AB
-,

/. AB = AD = DF=FB.
Also the angle BAD is a rt. /. ^, by construction.

The figure ABFD is therefore a square, for all its sides

are equal and one of its angles is a right angle.
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Cor. If two adjacent sides of a rectangle are equal, it is a
square.

Euclid's definitiou of a square is that it is 'a four sided figure which
has all its sides equal and all its angles right angles.'

Now if the four sides of a quadrilateral are all equal, and a diagonal
be drawn, it follows at once [I. 8] that the two triangles into which the
figure is divided are equal in all respects, and therefore [I. 27] opposite
sides are parallel, so that every rhombus is a parallelogram. And it

follows at once from I. 29 that all the angles of a parallelogram are right

angles if any one angle is a right angle.

Euclid's definition is therefore objectionable since it contains more
than is necessary. The same objection would apply to the definition of a
triangle as *a three sided figure which has three angular points.'

Ex. 1. Prove that two squares are equal in all respects when their

sides are equal.

Ex. 2. Prove that the sides of two equal squares must be equal.

Ex. 3. Describe a rhombus one of whose sides is a given straight

line and one of whose angles is equal to a given angle.

Ex. 4. Describe a square which will have a given straight line for

one of its diagonals.

Ex. 5. Shew that the diagonals of a square are equal and are at

right angles to one another. ,

Ex. 6. Shew that the parallelograms about the diagonals of a
square, are squares.

Ex. 7. Construct a square which has one angular point at a given
point and two others on a given straight line.

Ex. 8. Construct a rectangle having given the lengths of two adja-

cent sides.

S. B. E.
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PROPOSITION XLYII. Theorem.

l^he square described on the hypotenuse of a right-angled

triangle is equal to the sutu of the squares described on the other

two sides.

Let AJBC be a right-angled triangle, £AC being the right

angle; then it is required to prove that the square described on
BG is equal to the sum of the squares described 07i CA arid AB.

ELD
On BC, CA, AB describe the squares BI), CF, AH.

Through A draw AL \\ to BF or CD and meeting BD
in L.

Join AE and HC.

V /. ^ BAC and BAK are right angles, •

.*. CAK is a St. line. [I. 14.

Also *.' Z ^ CAB and CAF are right angles,

BAFis a st. line.

Now the rt. Z HBA = rt. Z EBC.

Add /. ABC to each of these equals

;

then whole Z HBG = whole Z EBA.
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Then in A« UBG, EBA,
HB=-BA, [Const.

BC = BE {C(m8L

&iid^HBC = ZEBA.

Hence AHBC =AEBA.

But sq. BK is double AlfBC, since they are on the same base

and between the same parallels.

And, for a similar reason, ||"" BL is double AABE.

Hence sq. BK=\\'^ BL.

Similarly by joining AD and BG it can be proved that

sq. CF=\rCL.

But 11"'» BL and GL together make up the whole square BD,

Hence

sq. BJ) = sum of the squares BK and GF^

i.e. square on BG = sum of squares on GA and AB.

Ex. 1. Shew that the square on a diagonal of a square is double the

original square.

Ex. 2. Find a straight line the square on which is (1) double, and
(2) treble a given square.

Ex. 3. Shew how to find a square which is equal to the stun of any
number of given squares.

Ex. 4. Find a line the square on which is equal to the difference of
two given squares.

Ex. 5. Shew that, in the figure to I. 47,

(i) BF=CK.
(ii) HA (? is a straight hne.

(iii) BK and CF are parallel to the bisector of the angle BAG.

(iv) if CH cut AB in X, and BG cut AC in Y; then will

A CXK= A CBA = aBYF.
(v) AX=AY. [From (i) and (iv).]

(vi) AE iH perpendicular to CH, and AD to BG.

6—2
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The above proposition, which is supposed to have been discovered by
Pythagoras, is of very great importance.

Many ways of shewing how two squares can be cut up into pieces and
put together again so as to form a single square have been invented. The
simplest method is the following.

Let the two squares be ABCD and AEFG, and let them be placed

side by side, as in the figure, with the angular point A common, the side

AE lying along AD, the sides GA and AB being therefore in the same
straight line, since the angles GAE and BAE are right angles.

Cut off BH equal to GA. Also produce AD to K making DK equal

to AE.

Join FH, HC, CK, KF.

Then, since GA = HB, GH=AB.
Also, since DK=AE, EK=AD.

Hence the four right-angled triangles FGH, HBC, GDK and KEF are
equal in all respects, for in each case the sides containing the right "angle

are equal respectively io AB and GA. And, since these four triangles are

equal in all respects,

FH=HG=CK=KF.
Also Z BCH = L DCK.

Hence LHGK=mm of L^ B.GD and DGK
= sum of z " HGD and HGB.

Thus Z HGK is a right angle.

The figure FHCK is therefore a square.

If then the triangle FGH be moved to the position FEK, and the
triangle HBG to the position KDG, the parts into which the squares
ABGD and AEFG are divided by the straight lines FH and HG will make
up the square FHGK, which is the square on the hypotenuse of a right-

angled triangle of which the sides are equal to AB and AG respectively.
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PROPOSITION XLVIII. Theorem.

If ths square on one side of a triangle he equal to the sum of
the squares on the other tioo sides, the angle contained by those

two sides is a right angh.

Let ABC be a A such tliat sq. on BC - sum of squares on
CA and AB ; then it is required to prove that /.BAG is a
right angle.

Draw AJJ a. "" to AC, and make AD^AB.

Join DC.

Then, •/ / CAD is a. rt. Z
,

sq. on CD = sum of squares on DA and A C [I. 47.

= sum of squares on BA and AC [Const.

= square on BC. [^VP-

Hence CD --. BC

Then, in the A" BAC, DAC

V I BA = AD,

]
AC=AC

(&ndBC = DC
.'. ZBAC = ZDAC. [1.8.

But Z DAC is a rt. Z , by construction,

,*. Z BAC is also a rt. Z .



86 EUCLID,

ADDITIONAL PROPOSITIONS.

There are certain properties of straight lines, triangles and paral-

lelograms which are not definitely proved by Euclid but which are both
interesting and important. Some of these have already been given as
examples, but it will be convenient to collect together the most important
of the theorems and problems which the student should know, and
which may be quoted as known results, in addition to those included in
Book I. of Euclid's Elements.

We know that every point on the circumference of a certain circle is

at a fixed distance from the centre of the circle, and that no point not
on the circumference is at that distance from the centre. This is

expressed by saying that the locus of a point whose distance from a given
point is equal to a fixed length is a circle whose centre is at the fixed point.

Again it is known that if ABC be any triangle, the triangle whose
vertex is at any point on the line through A parallel io BC is equal in

area to the triangle ABC ; and it is also known that if any triangle is

equal in area to the triangle ABC, and is on the same base BC and on
the same side of it, its vertex must be on the line through A parallel

to BC. This is expressed by saying that the locus of the vertices of equal
triangles on the same base and on the same side of it is a straight line

parallel to the common base.

If the equal triangles are not necessarily on the same side of the

common base, it is easily seen that the locus of their vertices will be a
pair of straight lines parallel to the common base and on opposite sides

of it.

Def. If an unlimited number of points satisfy a given condition,

and if all these points lie on a certain line (or lines), and if also every

point on this line (or lines) satisfies the given condition ; then the line

(or lines) is called the locus of the points which satisfy the given con-

dition.

I. The locus of a point which is equidistant from ttco given points is

a straight line.

Let A, B he the two given points. Join AB and bisect it in C.

Then, since CA = CB, O is one point on the required locus.

Let D be any other point such that DA =DB. Join DC.

Then the three sides of the triangle ACD are equal respectively to

the three sides of the triangle BCD;

.: iDCA= aDCB,

and therefore, by definition, each of these angles is a right angle.
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Hence every point which is equidistant from A and B lies on the line

which is 1 • to AB and passes through its middle point.

Moreover every point on the line through C 1 to AB is equidistant
from A and B.

For, if P be any point on this line, AC, CP and lACP are equal
respectively to PC, CP and iBCP; :. AP= BP.

Thus the loom of a point which is equidistant from two given points is

the straight line which bisects and is perpendicular to the line joining the

given points.

This may also be enunciated in the following form

:

The locus of the vertices of all isosceles triangles on a given base is

the straight line which bisects the given base and is perpendicular to it.

Ex. Find a point which is equidistant from three given points.

From the above, the locus of points equidistant from the first two of

the given points is a straight line, and the locus of points equidistant

from the second and third of the given points is another straight line.

Hence the point which is equidistant from the three given points is the
point of intersection of these loci. It should be noticed that there is no
point equidistant from three given points which are on the same straight

line.

II. The locus of a point whose perpendicular distances from two
given straight lines are equal is the pair of straight lines which bisect

the angles between the given straight lines.

Let ABC, DBE be the given straight lines.

Draw BX, BY bisecting the angles CBE, EBA respectively.

[It should be noticed that the bisectors of the angles CBE, ABD are
in the same straight line which is perpendicular to the line bisecting the
angles EBA, DBC.}
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Let P be any point on BX, and draw the 1" PL, PM to the lines
BC, BE respectively.

Then, in the triangles BPL, BPM
V / lPBL= iPBM [Hyp.

'

rt. lBLP=vt. I BMP
land BP, opposite the rt. / ', is common

.-. PL=PM. [I. 20.

Thus the perpendiculars from any point on BX to tlie lines J?C and
BE are equal.

Again, let P be any point within the compartment CBE such that

the 1" from P on BC and BE are equal.

Then, in the triangles PLB, PMB, the two sides PL, PB are equal
respectively to the two sides P3I, PB and the angles opposite to PB in

the two triangles are right angles
;

.-. /.PBL= IPBM. [Prop. B.

Hence, if the perpendiculars from P on the given lines are equal to

one another, P must be on the bisector of one of the angles between the

given lines.

This proves the theorem.

Ex. Find a point which is equidistant from three given lines,

many such points are there ?

How

HI. The locus of a point tohose perpendicular distance from a given
straight line is equal to a given length is a pair of straight lines parallel

to the given line and on opposite sides of it.

This follows at once from I. 33 and I. 34, since by I. 28 straight

lines which are perpendicular to the same straight line are parallel to

one another.



BOOK I. 89

IV. A quadrilateral is a parallelogravi (i) when both pairs of opposite

sides are equal, (ii) when both pairs of opposite angles are equal, and
(iii) when the diagonals bisect each other.

Let ABCD be a quadrilateral whose diagonals AG and BD meet in 0.

(i) Let^J5= C7Dandi?C7=2)^.

Then the three sides of aABD are equal respectively to the three

sides of A CDB ; hence the angles opp. to equal sides are equal

;

.-. z ADB= L GBT), and / ABT)= z BDC,

and these are pairs of alternate angles.

Hence AD is
I|
to BC, and AB is

||
to DC, so that ABCD is a |1»°.

(ii) Let Z DAB= z BCD and z ABC= L CDA.

Then the sum of the angles DAB and ABC is equal to the sum of

the angles BCD and CDA.

Hence the sum of the angles DAB and ABC is half the sum of all

the angles of the quadrilateral.

But we know that the sum of the interior angles of any quadrilateral

is equal to four right angles.

Hence sum of z ' DAB and ^i?C= two rt. z ';

.'. AD is
II
to BC. [I. 28.

Similarly sum of l* BAD and ^DC= two rt. z "j

.-. AB is
II
to CD. [I. 28.

Hence the figure ABCD is a |i".

(iii) Let AO= OC and BO = OD.

Then, in the a' AOB and COD,

AO=OC, BO=OD, and z ^05= vert. opp. z COD;
.'. lABO= Z cdo,

and these are alternate angles.

Hence AB\^
jj
to CD. [I. 27.

Similarly by considering the a* AOD , BOC xi can be proved that

AD is
II
to BC.

Hence the figure ^J5CD is a parallelogram.
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Ex. i. If E is the middle point of the side CA of the triangle ABC,
the sum of BA and BG will be greater than twice BE.

Produce BE to G, making EG= BE. Join GG and GA.

[See figure to Prop, xvi.]

Then, since BG and AG bisect one another at E, BGGA is a H™,
and CG=BA. But the sum of BG and GG is greater than BG.

Hence sum of BA and EC is greater than BG, that is greater than
twice BE.

Ex. ii. In a right-angled triangle the distance of the middle point of

the hypotenuse from the right angle is equal to half the hypotenuse.

Let D be the middle point of the hypotenuse BG oi the right z **

aABG. Produce AD to E so that DE= AD. Join EB and EG. Then
ABEG is a rectangle, and its diagonals BG and AE are equal. /. &c.

V. The diagonals of a parallelogram bisect each other, and the point

of intersection of the diagonals of a parallelogram is the middle point of
any straight line drawn through it and terminated by a pair of parallel

sides ; also every such line bisects the area of the parallelogram.

Let ABCD be a H"* whose diagonals intersect in the point 0.

Then, in the A^ AOB, COD,

AB= CD, lABO= alt. IGDO, /.BAO= &\t. iDGO;
.: AG .^OG and B0= CD.

Now let POQ be any line drawn through and meeting the parallel

Mdes AB, GD in P, Q respectively.

Then in the a" BOP, DOQ
BO=OD, iBOP=veit. opp. z DOQ, and zPJ50= alt. /.ODQ;

.-. PO=OQ, and aBP0=aDQ0.
To each of these equal triangles add the figure BOQG.
Then figure BPQG= AjBDC=half |r BADG.
Thus any line through the intersection of the diagonals of a parallelo-

gram bisects the area of the parallelogram.

Since the portion of any line, drawn through the intersection of the
diagonals of a parallelogram, intercepted by the boundary of the figure,

is bisected at the intersection of the diagonals, this point is often called

the centre of the parallelogram.
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VI. The line joining the middle 'points of any two sides of a triangle

is parallel to, and equal to half, the third side ; and conversely, the line

through the middle point of one side of a triangle parallel to a second side

will bisect the remaining side of the triangle.

Let E, F be the middle points of the sides AC, AB respectively of

the A ABC. Join EF, BE and CF.

Then, since BF=FA

aBFC=aAFG;
.: ABFG=ha.U a ABC.

Similarly ABEG=h&lt A ABC.

Hence aBFC=aBEC,

and .-. FE is
II

to BG.

[L38.

[I. 39.

Now let D be the middle point of BG, and join DE, DF.

Then, it can be proved in the same manner that DE is || to AB
and DF \\ to AC.

Hence BFED and DFEG are ||"", whence it follows that

BD=FE and DG=FE.

Thus FE is equal to half BG.

Conversely, let F be the middle point of BA, and let FK be
drawn || to BG to meet AG in E.

Then, since FE is || to BC

aBFG=aBEG.

But, since BF=FA, ABFG=h&U aBAG.

Hence ABEG=h&U a BAG,

and therefore E is the middle point of AG.

Thus the line drawn through the middle point of one side of a triangle

parallel to a second side will bisect the remaining side of the triangle.

It is easily proved that the four triangles AEF, BED, GDE, and DEF
are equal in all respects, so that the three lines joining the middle points

of the sides of a triangle in pairs will divide the original triangle intofour
congruent triangles.
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VII. The four middle points of the sides of any quadrilateral are

the angular points of a parallelogram.

Let P, Q, R, S be the middle points of the sides AB, BG, CD, DA
respectively of the quadrilateral ABGD.

Join AG, BD, PQ, QR, RS, SP.

[VI.]

Then, since AP=PB and GQ = QB; we know that

PQ is
II
to ^C and PQ=half u4(7.

Similarly RS is \\
to AG and RS

=

half A G.

Hence PQ=RS and PQ is || to RS.

.: PQRS is a parallelogram.

Now let U, V be the middle points of the diagonals AG, BD
respectively.

Then, since P, V are the middle points of AB, DB respectively,

PV is
II
to AD and PF=half AD.

Similarly UR is || to AD and U'P=half AD.

Hence PVRU is a parallelogram.

So also SVQU is a parallelogram.

And, since the diagonals of a ij™ bisect each other, the middle points

of PR, QS and UV coincide.

VIII. In the triangle ABG, if P be any point on the line joining A
to the middle point of BG, then will aAPB= aAPG; and conversely if
aAPB= aAPG, the line AP, produced if necessary, will bisect BG.

First let D be the middle point of BG,
and let P be any point on DA. Join

P£, PG.

Then / BD= DG
aADB= aADG

and aPDB=aPDG.
Hence, taking equals from equals,

aAPB=aAPG.
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Conversely, let aAPB=aAPG.
Join P to the middle point of BC.

Then we have to prove that APD is a straight line.

Since BD= DC, aBDP= aGDP.

And, by hyp., A APB = A APC.

Hence the sum of the A'' APB and BPD is equal to half a ABC.

But the straight line AD bisects a ABC.

Hence the a' APB and BPD are together equal to the a ADB^
which is impossible unless the point P is on the straight line AD.

It can be proved in the same manner that, if the triangles APB
and APC are in the ratio of any two whole numbers, then will AP,
produced if necessary, cut BC in a point D such that BD and DC are in

the ratio of the same two whole numbers. For example, if A APB is

three-fourths of a APC, then will BD be three-fourths of DC; and
conversely, if BD be three-fourths of DC, and P be any point on ADj
then will aAPB be three-fourths of a APC.

Ex. 1. Points D, E are taken on the sides BC, CA respectively of the

aABC, so that 2BD=DC and CE = EA. Shew thatj if the lines ylD,

BE intersect in the point P, BP=PE.
Since BD= half DC, aAPB= half a APC.

And, since CE= EA, aAPE= half A APC.

Hence aAPB= a APE, and therefore BP=PE.

Ex. 2. Points D, E are taken on the sides BC, CA respectively of

the A ABC, so that SBD =DC and 2GE=EA. Shew that, if AD, BE
intersect in P, 2BP= PE.

Def. A line drawn from an angular point of a triangle to the middle
point of the opposite side is called a median of the triangle.

IX. Tlie three medians of a triangle meet in a point, and their common
point is a point of trisection of each median.

Let D, E, F be the middle points of the sides BC, CA, AB respectively

of the A ABC. Join BE, CF and let them intersect in G. Join AG and
OD. Then we have to prove that AGD is a straight line.
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D G

Since BF=FA, aBFC= aAFC
and also ABFG= a AFG.

Hence, taking equals from equals, a BGC= a AGO.

Since CE= EA, it can be proved in the same manner that

aBGC=aBGA.
Hence ABGA = a CGA .

But, since BD= DC, aBGD= aCGD.

Hence sum of a^BGA, BGD=mm of A" CGA, GGD.

Hence sum of a^BGA, BGD= ha.l{ a ABC.

Now, if AGD is not a straight line, draw the straight line AD.

Then, since BD=DC, aADB= half a ABC,
and we have proved that the sum of a^ AGB, BGD is half a ABC.

Hence the sum of a* AGB and BGD is equal to aADB, and this is

impossible unless the point G is on the straight line AD.

Hence the three medians AD, BE, CF meet in a point.

Again, we have proved that

aBGA=aCGA.
And, since GE=EA, aCGA= twice a EGA.

.: aBGA= twice aAGE ;

/. BG= 2GE.

Similarly GG= 2GF and AG=2GD.

If GD be produced to H so that DH=GD ; then, since BC and CH
bisect each other, GCHB is a ||™ and CH=BG. It is then easily seen

that in the A GCH the sides are parallel to the medians of ABC, and that

each side is two-thirds of the corresponding median.

Def. The point of intersection of the medians of a triangle is called

the centroid.

Ex. If the three lines joining a point within a triangle to the

angular points divide the triangle into three equal parts, the point must
be the centroid of the triangle.
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X. A median of a triangle vnll bisect any straight line parallel to the

side bisected by that median and terminated by the other two sides.

Let AD he the median bisecting the side BC oi the A ABC, and let

EKF be any line parallel to BC and meeting AB, AD, AC (produced

either way if necessary) in the points E, K, F respectively. Join

ED, FD.

Then, since BD= DC, aABD= a ADC.

And, since BD= DG, and EF is || to BC, aBED= a CFD.

Hence, taking equals from equals, aAED= aAFD.
Now, if EK be not equal to KF, and X be taken on KF, or KF

produced, such that EK=KX.
Then :• EK=KX, aAKE=aAKX

and also ADKE= a DKX,
Hence A AED= a AXD.

But aAED=aAFD.
:. aAFD=aAXD,

and this is impossible, for FX cannot be parallel to AD. [L 39.

Hence KF cannot be unequal to KE.

In precisely the same manner can be proved the following proposition,

of which the above is a particular case :

—

If two equal triangles are on equal bases in the same straight line, the

sides of the two triangles will intercept equal lengths from any straight

line drawn parallel to their bases.

XL If two equal triangles are on the same base and on opposite sides

of it, the line joining their vertices will be bisected by the base or the base

produced.

Let ABC, DBC be the equal triangles, and let the base, produced if

necessary, out AD in O.

Take a point X on OD, or OD produced, such that AO= OX.

Then it can be easily proved that aBCX= aBCA.
Hence aBCX= a BCD, and therefore X must coincide with D, for

XD cannot be parallel to BC.
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XII. To divide a given finite straight line into any number of equal
parts.

Let ^jB be the given finite straight line and let it be reciuired to divide
it into five equal parts.

Draw any straight line AZ through one extremity of the given line,

and set off along AZ equal lengths AP, PQ, QR, RS, ST, as many in

number as there are to be equal parts in AB.

Join TB, and through P, Q,R, S draw lines parallel to TB and cutting
AB in the points C, D, E, F respectively.

Then AB will be divided into five equal parts at the points C, D, E, F.

Draw lines through P, Q, R, S parallel to AB and meeting QD, RE,
SF and TB respectively in the points U, V, W, X.

Since PC, QD, RE, &c. are parallel, the angles AFC, PQU, QRV, &c.
are equal.

Also, since AB, PU, QV, &c. are parallel, the angles PAC, QPU,
RQV, &c. are equal.

And the sides AP, PQ, QR, RS and ST were made all equal.

Hence the triangles PAG, QPU, RQV, &g. are equal in all respects.

Hence AC=PU=QV=RW=SX.
But, since PD, QE, RF, SB are m, PU=GD, QV=DE, RW=EF

and SX=FB.

Hence AG=CD=DE=EF=FB.

Xni. Find a point on a given straight line the sum of whose distances

from two given points is the least possible.

Let AB be the given straight line, and G, D the given points.

Then, if the two given points are on opposite sides oi AB, and if the

line joining them cut AB, produced if necessary, in the point P, the sum
of the lines joining P to G and D is obviously less than the sum of the

lines joining any other point on AB to G and D.
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If, however, G and D are on the same side of AB [since (by I.) the

distance of any point on AB from D is equal to its distance from the

point E which is such that DE is l' to y4B and is bisected by it],

draw DL l ' to AB and produce it to E so that LE = DL.

Then, if CE cut AB in Q, Q is the point required.

For, since the distance of any point on AB from D is equal to its

distance from E, the sum of the distances of any point on ^B from C
and D is equal to the sum of its distances from G and E, and this latter

sum is least for the point Q. Hence the sum of QG and QD is less than
the sum of PG and FD, where F is any other point on AB.

Since lDQL= iLQE =yert. opp. iGQA, the point Q, the sum of

whose distances from G and D is the least possible, is such that the lines

CQ and DQ make equal angles icith AB.

XIV. Of all triangles on a given base and of given area the isosceles

triangle Juts the least perimeter.

Let AB be the common base of the triangles. Then, since all the

triangles have the same area, their vertices must all lie on a line, GD
suppose, parallel to AB.

Bisect AB in E, and through E draw the line EF x'" to AB and
meeting CD in the point F. Join AF, FB.

Then AFB is the isosceles triangle which is on the base AB and has

the given area.

Draw BK 1 to GD^ and produce BK and AF to meet in G.

S. B. E. 7
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Then, since FK is parallel to AB,

L GFK= L FAB and Z KFB = L FBA,
Also, since FB=FA; lFAB= l FBA,

:. L GFK= L BFK.
Hence, in the triangles GFK, BFK

L GFK= L BFK, rt. i GKF= rt. z BKF and FK is common

;

.-. GF=BF;
.'. sum of AF and FB= AG.

Now let PAB be any other of the triangles, and join PG.

Then, in the triangles PKG, PKB,

GK=KB, PK is common and rt. Z PKG= rt. Z PKB ;

.-. PG =PB.
Hence the sum of AP and PB is equal to the sum of -4P and PG, and

the sum of AP and PG is greater than AG, i.e. greater than the sum of
AF&ndiFB.

Hence the sum of AP and BP is greater than the sum of AF and FB.

Thus the perimeter of the isosceles triangle AFB is less than the

perimeter of any other triangle APB which is on the same base and is of
equal area.

XV. Of all triangles on a given base and of given perimeter the

isosceles triangle has the greatest area.

Let AGB be the isosceles triangle on the base AB which has the given
perimeter.

Draw through G the line XY parallel to AB.



BOOK I. 99

Then the area of any triangle on the base ^J5 is greater than, equal
to, or less than the triangle A CB according as its vertex is on the opposite

side of XF, on XY, or on the same side of XF as ^5.

Now, let PAB be any triangle whose vertex is on the side of XY
opposite to AB. Let AP cut XY in Q, and join QB.

The sum of AP and BP is greater than the sura oi AQ and QB. But,

by the preceding prop., the sum oi AQ and QB is greater than the sum of

AGBJidi CB.

Hence every triangle on the base AB whose area is equal to or greater

than that of the triangle ACB has a greater perimeter, and therefore the

area of any triangle with the same perimeter as the A ACB must be less

than the area of the a ACB.

We have already proved that the three medians of a triangle meet in

a point.

Def. When three or more straight lines meet in a point, they are said

to be concnrrent.
The following other cases of concurrence are of importance.

XVI. TJie three lines which bisect the angles of a triangle are

conctirreut.

Let the bisectors of the angles ABC, ACB of the a ABC meet in the

point 0.

B L G

Join OAj then we have to prove that OA bisects the angle BAC.

Draw the lines OL, OM, ON perpendicular to BC, CA, AB respectively.

Then, since BO bisects the angle ABC, we know that OL— ON. [11.

And, since CO bisects the angle ACB, we know that OL=OM. [II.

Hence OAf= ON, whence it follows [II.] that OA bisects the angle BAC.

If the sides of a, triangle be produced it can be proved in the same
manner that the bisector of one of the interior angles of a triangle and
the bisectors of the other two exterior angles will meet in a point.

7—2
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XVn. The three lines drawn through the middle points of the sides of
a triangle perpendicular to those sides are concurrent.

Let D, E, F be the middle points of the sides BC, CA, AB of the
t^ABC.

Let the lines through E, F perpendicular to CA, AB respectively meet
in S, and join SD.

Then we have to prove that SD is l^ to AB.
Join AS, BS, CS.

Then in a" AES, CES, AE= EC, ES ia common, and

rt. Z^-E.9=rt. AGES.
Hence AS=CS.
Similarly AS=BS ; and /. BS=CS.
Then, in a'' BBS, CDS,

BD=DC, SD is common, and BS=CS;
:. IBDS= LCDS,

and .-. >SfDis j.'to^C.

The point S is equidistant from the three points A, B, C.

XVIII. The three lines drawn through the angular points of a triangle

perpendicular to the opposite side are concurrent.

Let AD, BE, GF be drawn from the points ^, ^, C l"* to BC, CA,
AB respectively; then it is required to prove that AD, BE, CF are
concurrent.
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Through A, B, (7 draw lines QAR, EBP,' i>Cg parallel to'^C,' CA, AB
respectively forming the triangle PQR.

Then, since ABCQ and ACBR are il™" BC=AQ and BG=RA.
Hence A is the middle point of RQ, and similarly it can be proved

that B and C are the middle points of RP and PQ respectively.

Also, since RQ is || to BC, and JD is l' to BC, AD is also l"- to gi2.

So also BE is ±^ to RP and (7F l' to PQ.

But we know (by the previous proposition) that the lines drawn
through the middle points of the sides of a triangle l' to those sides

respectively, will meet in a point.

Hence AD^ BE and CF are concurrent.

Def. The lines drawn from the angular points of a triangle per-

pendicular to the opposite sides are called the perpendiculars of the

triangle, and the point of concurrence of the perpendiculars is called the

ortbocentre of the triangle.

MISCELLANEOUS THEOREMS AND PROBLEMS.

No general rules can be given which will enable a student to prove
a new theorem. When the different propositions established by Euclid
in Book i. have been thoroughly mastered, together with those marked
I. to XVIII., tie student must rely upon his own resources. The following

additional exercises may, however, be suggestive.

It will be noticed that in order to solve a problem it is generally best to
begin by supposing that what is required to be done is already done; and
then, by an examination of the diagram, we try to find out in what way
the required construction depends upon, and can be effected by means
of, other constructions which we have previously shewn how to perform.

In order to prove a new theorem it is also often desirable to begin by
supposing that what has to be proved is really true, and then proceed
to consider what is necesscn-y and sufficient to ensure the truth of this

assumption. We thus shew, it may be in a series of steps, how the
theorem which we require to prove follows necessarily from some theorem
which is already known.

This is the reverse of the course adopted in all cases for purposes of
demonstration by Euclid, who begins with certain known theorems or
known constructions, and proceeds to shew how these known theorems
necessarily lead to that which it is required to prove, or how, by means
of certain known constructions, the new construction can be effected.

The ' putting together ' of known results in order to obtain some new
theorem, or some new construction, is called S3mtliesis.

The ' taking to pieces ' of a proposed theorem or construction in
order to see from what known truths it necessarily follows, or by means
of what known constructions it can be effected, is called Analysis.
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Ex. 1. t>raw d tine •patdlTel to the hose BG of the triangle ABC and
cutting the sides AB, AG in the points F, E respectively so that FE may
be equal to the sum of BF and CE,

B C

[Suppose the line FE to be drawn as required.

Then it naturally suggests itself to take the point O on FE such that

FO=BF, and therefore OE=EC.

Then, since BF=FO, if 50 be joined, z FOB= L FBO.

But, since FOE is || to BG, L FOB= L OBG.

Hence must be on the line bisecting the angle ABG.

Similarly must be on the line bisecting the angle A GB.

Hence the required line can be drawn by the following construction*.]

Const. Bisect the angles ABG, AGB by the lines BO and GO, and
through O, the point of intersection of these bisectors, draw a line parallel

to BG and cutting AB, AG in F, E respectively.

Then, by construction, z FBO= Z OBG,

and, •.• BG || to FO,

I OBG= I FOB;

.'. iFBO= I FOB;

.'. FO = FB.

Similarly 0E=£0, and .-. FE=BF+GE,

Ex. 2. Draiv through any point P within tJie angle XOY a straight

line cutting the lines OX, OY in the points Q, R respectively so that

QP=PR.

* In future the * analysis ' will be put iu brackets, as in this case.

The student will find it necessary, in all except the very simplest

cases, to make an Analysis ; this need not, however, be written out for

an examiner in addition to the Synthesis.
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[Suppose the line QPR to be drawn as

required.

Then, if OP be joined, and OP be produced

to S so that PS=OP, the lines OS and QR
bisect each other in P.

Hence ORSP is a [IV.

Hence the required line can be drawn as

follows :]

Const. Join OP, and produce it to S so that PS= OP.

Draw SR parallel to OX and meeting OY in R.

Draw SQ parallel to 07 and meeting OX in Q.

Then, since SROQ is a |1™, its diagonals bisect each other; .'. RQ
passes through the middle point of OS, i.e. through P, and RQ is

bisected in P.

Let P be without the angle XOY, and let it be required to draw a

line PQR cutting OX, OY in Q, R respectively so that PQ = QR.

[Suppose the line PQR drawn as required.

Take the point S on OX so that Q.9= OQ.

Then, since PR and OS bisect each other in

Q, PORS is a H*". Hence PS is \\ to OY and
SR

II
to PO. The required line can therefore be

drawn by the following construction.]

Const. Draw PS || to 07 and meeting OX in S.

Draw SR \\ to PO and meeting OYinR.
Then PORS is a ir, and /. PR will be bisected by OS.
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Ex. 3. Bisect a triangle hy' a straight line drawn through a given
point in one of its sides.

Let P be the given point in the side BC.

[Suppose the line PQ to be the required line through P which bisects

the area of the triangle, so that a P(3C= half A ABC.
Bisect BG in Z> and join AD.

Then a ^Z)C= half a ^2>'C= a P(3C.

.-. aADC= aPQC.
Take away the a QDG from each of these equals; then

aADQ= aPDQ,
and .-. DQ is

II
to A P.

Hence PQ is found by the following construction. ]

Const. Bisect BC in D, and draw TJQ parallel to AP to cut AG
in Q. Join PQ.

Then •.• AP is
|| to DQ

aPQD=aAQD.
Add A DQG to each of these equals;

then aPQC=a^DC,
and A^DC7= half a ABC, since CI>=half CP;

.-. APQG=h&U A ABC.

Ex. 4. Bisect a quadrilateral hy a straight line through one of its

angular points.

Let G be the angular point through which the line is to be drawn to

bisect the quadrilateral.

Produce Di, and draw BL \\ to AG to meet DA in L. Then
aABC=aLAG, and .-. ACLD = quad. ABGD.

Now bisect LD in P and join GP. Then GP will bisect the quadri-

lateral.

For, since I>P= halfD7_.

A Ci)P= half of aGDL
=half of quad. GDAB.

.
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It will be seen that the above construction would fail if LA were
greater than AD^ that is if aALG, or a ABC, were greater than a ADC,
In that case it would be necessary to draw a line through D parallel to

^C to meet BA produced in M. Then the quadrilateral would be bisected

by drawing a line from C to the middle point of BM.

Ex. S. Bisect a quadrilateral by a straight line drawn through a
given point in one of its sides.

Let P be the given point in the side AB\ then it is required to draw
a straight line through P which will bisect the quadrilateral ABCD.

Draw DL parallel to CA to meet BA produced in L. Join CL.

Then a CLP= quad. ABCD. [See Ex. 4.

Bisect BL in X, then ACXP=half quad. ABCD.

Now draw through X a line
|| to PC to meet CD in Q. Then PQ

will bisect the quadrilateral.

For, since XQ is
|| to PC, a CQP= a CXP ;

.-. , adding a CPB to each, fig. CQPB= a CXB

= half quad. JPCD.

[If BA be greater than AL and BP be greater than 7^A', the line

through A' || to CP must be drawn to cut BC in P, and then the line PP
will bisect the quadrilateral.]
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Ex. 6. Draw a 'straight line'iquat a'nd parallel to a given straight

line atid having its extremities on two given straight lines.

[Suppose CD the line required equal and parallel to the given line AB
and with its ends on the given lines OX, OY.

Through any point P on OX draw a line || to AB, and cut off a
length PQ=AB.

Then •.* DC and PQ are equal and parallel, DQ is
||
to OX.

Hence DC can be drawn as follows:]

Const. Take any point P on OX and draw the line PQ equal and
parallel to AB.

Through Q draw QD
||
to OX to cut OF in D. Through D draw

DC
II

to QP to cut OX in C.

Then, since DP is a ||™, DC is equal and || to QP, and therefore

equal and || to BA ; DC is therefore the line required.

Ex. 7. Fivd the locus of a point the sum of whose perpendicular

distances from two given intersecting straight lines may he equal to a given

length.

Let P be any point such that, if PL, PM be the l» on OX and OY,
the sum of PL and P3I may be equal to ^ J5.

Draw OK l' to OX and make 0K= AB.
Draw through K the line KZ \\ to OX and cutting OF in the point C.

Produce LP to cut KZ in the point N.

Then, since OLNK is a |r,

LN=OK=AB', and LN=LP+PM •

.'. PN=PM.
Thus the perpendiculars from P to the fixed lines OC, CZ are equal,

and therefore P must be on the line through C bisecting the angle OCZ.
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Ex. 8. On the sides of any triangle ABC, and external to the triangle

the squares BCDE, CAFG, ABHK are described, X, Y, Z heing the centres

of these squares, and the parallelograms FAKL, EBHM, DCGN are com-
pleted. Ba, Be are the perpendiculars from B on the lines AE, CH
respectively, and is the point of intersection of AE and CH. Prove the

following properties of the figure :

(i) aFAK=aHBE=aDCG=aABC.
(ii) LA, MB, NC are l"" to BC, CA, AB respectively.

(iii) LA, MB, NC meet in a point.

(iv) The medians of the aABC through A, B, C are l*- to FK, HE,
DG respectively.

(v) BLAE, CLAD, &c. are ir».

(vi) If ^ F be 1 ' to BC, and if BC be produced to cut HM, GN in S,
r respectively, SB = CT=AV; also Gr=Cr and SH=Br.

(vii) HG and AE intersect at right angles at O.

(viii) CH, BG, LA meet in a point.

(ix) BO bisects z HOE.
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(x) BOr is a straight line.

(xi) KOiy is a straight line.

(xii) BaOc is a square.

(xiii) XacZ is a straight line l' to BOY.

(xiv) AX^ BY, CZ meet in a point.

(xv) X, F, Z are the middle points of MN, NL, LM respectively.

[The student is recommended to attempt to prove these theorems for

himself, and also to see in what way they are modified when the triangle

is right angled.]

(i) Since BAK and CAF are rt. Z % and all the angles at a point are

together equal to four rt. L*, L^ BAG and FAK are supplementary. But
L " LFA and FAK are supplementary.

Hence Z AFL--= Z CAB ; also AF=AG and FL=zAK=AB.

Hence a* FAL and CAB are congruent.

Then aFAK= aFAL= a CAB,

and similarly AHBE= A CAB= aDCG.

(ii) It has just been proved that a* FAL and ACB are congruent,

so that I FAL— lACB. Let LA produced cut -BC in F; then, since

Z CAF is rt. Z , Z FAL and z CAV- rt. l; :. L ACV and z CAV=Tt. Z .

Hence L^ is l >• to BG. Similarly 3IB i^ to GA and NG ± >• to ^5.

(iii) Since LA, MB, NG are perpendicular to the opposite sides BG,
CA, AB respectively, they will meet in a point. [XVlH.

(iv) By completing the H*" BAGP, it can be proved exactly as in (ii)

that the diagonal AP, which will we know bisect BG, is ±' to FK.

(v) We have proved in (ii) that LA is parallel to BE, and in (i) that

AL=BG=BE. Hence BLAE is a W"". Hence also ALHM and ALGD
are ir% &c. Thus BL is equal and ||

to EA, GL equal and
||
to ^D, &c.

(vi) Since z ACV and Z GCT are complementary, lAGV= Z CGT,
Z C^F= Z GCT. Also CG = CA.

Hence A* GGT and ^C7F are congruent.

Hence TG = GV and GT^AV.

Similarly SH=BV and BS=AV.

(vii) Let AE cut J5C in U. Then A" ^B^ and CBH are congruent,

since EB= GB, BA =BH and Z EBA = Z CBJf. Thus z i?CH= Z Z?£^ ;

also I GUO= I BUE. Hence sum of Z" SCO and Cr70= sum of A" BEA
&nd BUE=Tt. z.

Hence Z C0£ is a right angle.

Thus CH is 1 • to AE. Similarly BG is 1 *" to AD, &c.
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(viii) CH is l' to AE by (vii). Hence Cff is l' to BL by (v). So
also BGis, l' to CL. And, from (ii), 1,4 is 1 "• to EC.

Thus 41/, BG, GH are the ±" of the aLBC ; they are .-. concurrent.

(ix) If Be, 5a be 1' to CH, AE respectively, the A' BGc and BEa
are equal in all respects ; .*. Be = Ba. And, since the 1 " from B on the
lines GH^ OE are equal, BO bisects the angle HOE.

(x) The diagonals of a square are l'; .*. iAYG=rt. L^= L COA.
But the four angles of the quad. YAOG are together equal to four rt. L '.

Hence the / * YAO, YGO are supplementary, and if Fa, Y-^ be the per-

pendiculars on OA, OC respectively, z YAa.= L YG^\ also LAa.Y= A GyY^
and YA = YC. Hence the 1 " Ya, Yy are equal, and therefore 1' is on
the bisector of lAOC.

Hence J5OF is a straight line.

(xi) Since lAOH=rt. z = iHKA, the angles KAO and KHO are

supplementary, and KA =KH.
Hence, as in (x), KO bisects i AOH. Similarly DO bisects the

vertically opposite Z COE.

Hence KOD is a straight line.

(xii) Since BcOa is a rectangle, and the adjacent sides Ba, Be are

equal, BcOa is a square, and .'. ca bisects OA at rt. z '.

(xiii) Since EGG is a rt. z , and X is the middle pt. of GE^
XO=XG=XB. Similarly ZO = ZB. Hence X, Z are vertices of isosceles

A* on the base BO. Hence XZ bisects BO at rt. z ". But, by (xii), ca
bisects J50 at rt. z ". Hence XacZ is a straight line.

(xiv) Since YOB is j.' to XZ, and similarly XA ±' YZ and ZG
1' XY, the lines AX, BY, GZ meet in the orthocentre of the aXYZ.

(xv) YF= YA, FL= AB. Also Z AFL=z z GAB, and z YFA = lYAG;
.-. Z YFL= Z YAB.

Hence a" YFL and YAB are congruent, so that YL=YB and
lLYF= I BYA. Hence sum of l" LYF and AYL= sum of l' BYA
and AYL, so that Z B YL is a right angle.

Similarly z BYN is a rt. z , and F?^= FB.

Hence F is the middle point of LN.

So also X, Z are the middle points of MN and L3/ respectively.

Also AX= YZ= half MN, BY=ZX= half ^^I,, and GZ=XY= half L3/.

Otherwise thus :

—

From (i) and (ii) LA is equal and ± ' to BG. Hence LA is equal and
II
to HM. Hence LAMH is a |1™, and therefore the middle point of AH,

i.e. the point Z, is the middle point of LM. Similarly X is the middle
point of MN, and F is the middle point of NL.
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MISCELLANEOUS EXERCISES.

1. Shew that, if the line bisecting an angle of a triangle passes
through the middle point of the opposite side, the triangle must be
isosceles.

2. Shew that, if the line bisecting an angle of a triangle be
perpendicular to the opposite side, the triangle must be isosceles.

3. On a given straight line find a point which is equidistant from
two given points.

4. On a given straight line find a point which is equidistant from
two given straight lines.

5. On a given base describe an isosceles triangle equal in area to a
given triangle.

6. In an equiangular polygon each exterior angle is one-tenth of a
right angle. How many sides has the figure ?

7. Each of the angles of a polygon is nine-fifths of a right angle.

How many sides has the polygon ?

8. What is the least number of triangles into which a plane figure

of n sides can be divided ?

9. Shew how to find a point which is at given perpendicular distances

from two given intersecting straight lines.

10. Draw a straight line which will bisect each of two given
parallelograms.

11. Shew that no convex polygon can have more than three of its

exterior angles obtuse, or more than three of its interior angles acute.

12. Shew that the straight lines which bisect two opposite angles of

a parallelogram are either coincident or parallel.

13. Shew that the three distances of any point within an equilateral

triangle from the angular points are such that the sum of any two is

greater than the third.

14. On a given base describe an isosceles triangle of given perimeter.

15. Draw through a given point a straight line making equal angles
with two given straight lines.

16. Two quadrilaterals have equal angles and two adjacent sides of

the one are equal respectively to the two corresponding adjacent sides of

the other ; shew that the quadrilaterals are equal in all respects.

17. Two quadrilaterals have equal angles and two opposite sides of
the one are equal respectively to the two corresponding opposite sides of
the other; shew that the two quadrilaterals are equal in all respecta
unless the other opposite sides of each quadrilateral are parallel.
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18. ABOi ACB are the equal angles of the isosceles triangle ABGj
and the bisectors of these angles meet the opposite sides in the points X,
F respectively. Shew that, if XY be drawn, the straight lines ^T, YX,
XG will all be equal.

19. D, Ey F are the middle points of the sides BC, CA, AB of the
triangle ABC. Shew that, if BA be greater than GA, BE will be greater

than CF.

20. Shew that the sum of any two of the medians of a triangle are

together greater than the third median.

21. Construct a triangle whose medians are equal to three given
straight lines the sum of any two of which is greater than the third,

22. Shew that the sum of the medians of a triangle is greater than
three-fourths of the perimeter of the triangle.

23. Shew that, if the line joining the middle points of two opposite
sides of a quadrilateral bisect the quadrilateral, these opposite sides must
be parallel.

24. A line parallel to the diagonal BD of the parallelogram ABCD
cuts the sides BG, GD in the points P, Q respectively; shew that the

triangles ABP and ADQ are equal in area.

25. The sides BG, GA, AB of a triangle are produced to D, £, F
respectively so that GD = BG, AE = CA and BF= AB. Shew that the

area of the triangle DEF is seven times that of the triangle AUG.

26. The triangle ABG is three times the triangle A'BG; shew that,

if AA', produced if necessary, cut BG in D, A'D will be equal to one-third

otAD.

27. Shew that, if two parallelograms have a common diagonal, their

other angular points are at the corners of another parallelogram.

28. Construct a parallelogram whose diagonals and one side are
given in length.

29. Four points lie in a plane, and no one of the points is within
the triangle having the other three for angular points. Find the point in

the plane the sum of whose distances from the four given points is the

least possible.

30. ABC is an equilateral triangle, BG is produced to D making
GD = BC, and AB is produced to E making BE = 2AB\ shew that

ED = 2AD.
31. D is the middle point of the side BG of the triangle ABC, and

any other line is drawn through D cutting the sides AB, AC, produced if

necessary, in the points P, Q. Shew that the triangle APQ is greater

than the triangle ABG.

32. Shew that, if two of the medians of a triangle are equal, the
triangle must be isosceles.

33. Shew that, if two of the perpendiculars of a triangle are equal,
the triangle must be isosceles.
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34. -O is the middle point of the side BC of the triangle ABC.
Shew that, if the angle BAG is acute, AD is greater than DC.

35. E, F are the middle points of the sides AB, CD of the
parallelogram A BCD. Shew that the lines ED, BF will trisect the
diagonal AC.

36. Shew that the sum of the lengths of the perpendiculars, drawn
to the sides of an equilateral triangle from any point within it, is

constant.

37. Through the extremities of each diagonal of a quadrilateral lines

are drawn parallel to the other diagonal. Shew that the area of the
parallelogram so formed is double that of the original quadrilateral.

38. Shew that, if ABCD be a parallelogram and be any point on
the diagonal AC^ then will aAOB= aAOD. Shew also that, if the

aAOB=aAOD, then will be on AC.

39. The sides AB, CD of the quadrilateral ABCD are parallel; E, F
are the middle points of AD, BC respectively, and the straight line EF
cuts the diagonals AC, BD in the points X, Y respectively. Shew that

EF is parallel to ^B or CD, that EF is equal to half the sum of ^J3 and
CD, and that XY is equal to half the difference of AB and CD.

40. The four feet of the perpendiculars let fall from one angular
point of a triangle on the internal and external bisectors of the other two
angles will all lie on a straight line which passes through the middle
points of two of the sides.

41. ABCD is a square, and a line AXY is drawn through A cutting

DC in X and BC produced in Y. Shew that the sum of AX and AY is

greater than twice AC.

42. Construct a right-angled triangle, having given the length of the

hypotenuse and the difference of the other two sides.

43. Construct a triangle having given one side, the angle opposite to

that side, and the sum of the other two sides.

44. Construct a triangle having given one side, the angle opposite to

that side, and the difference of the other two sides.

45. Construct a triangle equiangular to a given triangle and having
a given perimeter.

46. Divide a straight line into two parts the square on one of which
may be double the square on the other.

47. Construct a triangle having given the lengths of two sides and
the corresponding median.

48. Construct a triangle having given two of the sides and the area.

49. Find a point on the base of a triangle such that the difference of

the perpendiculars from it on the sides may be equal to a given length.
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50. Find a point on the base of a triangle such that the sum of the
perpendiculars from it on the sides may be equal to a given length.

51. Divide a given straight line into two parts such that the
difiference of the squares on the two parts may be equal to a given
square.

52. Divide a given straight line into two parts such that the sum of
the squares on the two parts may be equal to a given square.

53. Divide a triangle into three equal parts by lines drawn through
a given point in one of its sides.

54. Divide a triangle into four equal parts by lines drawn through a
given point in one of its sides.

55. Divide a parallelogram into four equal parts by lines drawn
through a given point in one of its sides.

56. Construct a right-angled triangle having given one of the sides

containing the right angle and the difference between the hypotenuse and
the other side.

57. ^&. Gc are the perpendiculars drawn from the points B, G
respectively on the internal bisector of the angle BAG. Shew that
'i£^GAh= 2£^ABc:= £^ABG.

58. Find the condition that must exist in order that it may be
possible to fold the four corners of a quadrilateral piece of paper flat

down on the paper so that the four angular points meet in a point, and
the paper is everywhere doubled.

59. Any two points D, E are taken on the sides AB, AG respectively

of the triangle ABG, and F is the point of intersection of BE and GD.
Shew that the sum of FD and FE is less than the sum of AD and AE.

60. Any parallelograms ABDE, AGFG are described externally on
the sides AB, AG of any triangle ABC. Shew that, if DE and FG be
produced to meet in L, and BM, GN be drawn each equal and parallel to

AL, the parallelogram BMNG will be equal to the sum of the parallelo-

grams ABDE and AGFG.

61. In the quadrilateral ABGD the sides AB and GD are parallel

and are together equal to BG; shew that the bisectors of the angles ABC
and BCD intersect on AD.

62. Points A, B, C are taken on three parallel straight lines; BC^
CA, AB, produced if necessary, meet the lines through A, B, G respectively

in the points D, E, F. Prove that the triangles AEF, BED, CDE are all

equal.

63. Shew that, in the figure to I. 47, the line joining the centre of

the square BCDE to the point A, will bisect the angle BAG.

S. B. E. 8
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64. Prove thaC, if the diagonals of a quadrilateral intersect at right
angles, the sum of the squares on one pair of opposite sides is equal to
the sum of the squares on the other pair of opposite sides.

65. Through the angular points of a triangle are drawn three
parallel straight lines; shew that the area of the triangle formed by
joining the points in which each parallel meets the side, produced
if necessary, of the original triangle opposite to the angular point
through which it is drawn, is equal to twice that of the original triangle.

66. ABCD is a quadrilateral in which the angles ABC and BCD are
equal; shew that the angle BAD is greater than, equal to, or less than,
the angle CDA, according as CD is greater than, equal to, or less

than, AB.

67. Shew that, if the middle points of three of the sides of a quad-
rilateral be three given points, the middle point of the remaining side

will be one or other of three other fixed points.

68. Shew that, if one pair of opposite sides of a quadrilateral are

equal, the middle points of the other two sides and the middle points
of the diagonals are at the angular points of a rhombus.

69. AB, CD are two given finite straight lines, find the locus of a
point P which is such that the triangle APB is equal to the triangle CPD.

70. AB, CD, EF are any three given finite straight lines which are

not all parallel. Find a point such that the three triangles AOB,
COD, EOF are all equal.

71. The angular points of one parallelogram are on the sides of
another; shew that the two parallelograms have the same centre.

72. ABCD is a square and any point E is taken in AB, and in BC,
CD, DA respectively points F, G, H are taken so that each of the lines

BE, CG, DH is equal to AE. Shew that EFGH is a square.

73. Through the point of intersection of the diagonals of a square
any two perpendicular lines are drawn meeting the sides in order in the
points P, Q, B, S and the sides produced in the points P', Q', R, S'.

Shew that PQRS and P'Q'R'S' are squares.

74. Find the square of least area whose angular points are respec-

tively on the four sides of a given square.

.

75. The four angular points of a rectangle with unequal sides are
respectively on the four sides of a given square ; shew that the sides

of the rectangle are parallel to the diagonals of the square, and that the
perimeter of the rectangle is equal to the sum of the diagonals of the

square. Shew also that the area of the rectangle is less than one quarter

of the area of the square.

76. ABODE is a regular pentagon, and AB, DC are produced to

meet in F. Shew that CF= CA = BE.
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77. ABGD is a parallelogram having the side AD double of AB;
the side AB is produced both ways to E and F till each produced part is

equal to AB, and lines are drawn from G and D to £ and F respectively

so as to cross within the parallelogram; shew that they will meet at
right angles.

78. Points D, E, F are taken on the sides BC, CA, AB respectively

of the triangle ABC, such that BD= 2DC, CE= 2EA and AF=2FB.
Shew that the triangle DEF is one-third of the triangle ABC.

79. Points E, F are taken on the sides CA, AB of the triangle ABC
such that AE =2EC and BF=2FA, and the lines BE and CF intersect

in 0; shew that BO=&OE.

80. Points F, D are taken on the sides AB, BC respectively of

the triangle ABC, so that AF is the fourth part of AB, and CD the third

part of CB, and AD, CF intersect in
;
prove that ^D is bisected in 0.

81. A point D is taken on the side BC of the triangle ABC such
that CD = 5DB, and O is the middle point of the line AD. Shew that,

if ^0 be produced to cut AC in E, CE = QAE and 7EO-^50B.

82. From any point P on the side BC of the triangle ABC, lines PQ,
PR are drawn parallel to AB, AC respectively and meeting AC, AB
respectively in the points Q, R. Shew that the parallelogram PQAR is

greatest when P is the middle point of BC.

83. Shew that the sura of the areas of the complements of the

parallelograms about the diagonal of a given parallelogram cannot be
greater than half the area of the parallelogram.

84. In a given triangle inscribe a parallelogram equal to half the

triangle, so that one side of the parallelogram may be in the same
straight line with one side of the triangle and one angular point of

the parallelogram at a given point on that side.

85. Prove that, if be any point in the plane of a parallelogram
ABCD and the parallelograms OAEB, OBFC, OCGD, ODHA be com-
pleted, then will EFGH be a parallelogram whose area is double that of
the parallelogram ABCD.

86. -A. quadrilateral is divided into four equal triangles by lines

joining its angular points to a point within it
;
prove that no such point

exists unless one of its diagonals be bisected by the other.

87. In the figure to I. 47, HK and CF are produced to meet in M,
and EB, DC are produced to meet H3I, GM respectively in P, Q; shew
that HPQG is a square, and that MAL is a straight line. Shew also

that, if HB, KG be produced so as to meet the line through E parallel to

BA in the points R, S respectively, then will BRSA be a square.

88. Shew that the four internal bisectors of the angles of any
parallelogram are the sides of a rectangle whose diagonals are parallel to

the sides of the original parallelogram and equal to the difference

between them.
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89. The external angles of a parallelogram are bisected: prove that
the figure formed by the four bisectors is a rectangle, the sum of whose
diagonals is equal to the perimeter of the parallelogram.

90. Through a given point draw two equal and perpendicular

lines having their extremities respectively on two given straight lines.

91. Describe a square whose angular points shall lie on the sides, or

the sides produced of a given parallelogram.

92. Through a given point draw two equal lines inclined at a
given angle and whose extremities are respectively on two given straight

lines.

93. Describe an equilateral triangle having one of its vertices at

a given point on one side of a given triangle and having its other vertices

respectively on the other two sides, produced if necessary.

94. If three parallelograms are described having their sides parallel

to two given straight lines and having for diagonals the sides of a given

triangle, the other three diagonals will meet in a point.

95. In a given triangle inscribe a square.

96. In a given triangle inscribe a rectangle the difference of whose
adjacent sides is equal to a given length.

97. I>E is drawn parallel to the base BC of the triangle ABC
and meets the sides AB, ^C in the points D, E respectively. Shew that,

if BE and CD meet in K, AK will bisect the lines DE and BG.

98. On the sides of a parallelogram as hypotenuses right-angled

isosceles triangles are described external to the parallelogram. Shew
that the vertices of the triangles are at the angular points of a square.

99. On the sides AB, BG of the parallelogram ABGD equilateral

triangles ABF, BCQ are described exterior to the parallelogram; shew
that the triangle PQD is equilateral.

100. Equilateral triangles are described on the four sides of a
parallelogram external to the parallelogram, prove that their vertices are

at the angular points of a parallelogram, which is a rhombus when
the original parallelogram is a rectangle, and a rectangle when the

original parallelogram is a rhombus.
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DEFINITIONS.

1. A rectangle is said to be contained hy any two of its

adjacent sides.

Since, by definition, a rectangle is a parallelogram with one of its

angles a right angle, it follows at once from Euclid I. 29, that all its

angles are right angles. It is then easily seen by superposition that any
two rectangles are equal in all respects if two adjacent sides of one
rectangle are equal respectively to two adjacent sides of the other.

The construction of a rectangle which is to have two of its adjacent
sides equal respectively to two given straight lines, can be effected in a
similar manner to the construction of a square on a given straight line.

We may therefore speak of the rectangle contained by two given straight

lines, which are not adjacent sides of any rectangle actually drawn,
meaning thereby any rectangle, two of whose adjacent sides are equal
respectively to the two given straight lines.

The abbreviation *rect. A By BC^ will be used for Hlie

rectangle contained hy AB and CD.^

It is easily seen that the rectangle contained by two equal

straight lines is equal to the square on either, or to the square

on any straight line equal to either of the given lines.

2. If C be any point on the straight line AB, and if D
be any point on AB produced, the straiglit line is said to be
divided internally into the two segments AC and CB, and
externally into the two segments AD and DB, the points C and
D being called the points of section.

Book II. deals with certain cases of the equality of squares

and rectangles. These must be proved by purely geometrical

methods; and those proofs are to be preferred in which the

equality is demonstrated directly by means of a figure.

The measurement of areas in relation to the measurement
of the lines containing them has no place in a purely geo-

metrical treatment of areas. This subject is, however, dealt

with in a separate note at the end.



118 EUCLID.

PROPOSITION I. Theorem.

If there he two straight lines^ one of ^vhich is divided into

any number of j)CLrts, the rectangle contained hy the two straight

lines is equal to the sum of the rectangles contained by the

undivided line and the several parts of the divided line.

Let AB and CD be the two straight lines, and let A£ be
divided into any number of parts AE, EF, FB. -Then it is

required to ^^rove that the rect. AB, CD is equal to tlie sum of
red. AE, CD, rect. EF, CD and rect. FB, CD.

D

G

From A draw AG at right angles to AB, and make AG=CD.

Through G and B draw lines parallel to AB and AG
respectively and intersecting in II, thus completing the

rectangle AGHB.

Through E and F draw lines parallel to AG meeting Gil
in the points K, L respectively.

Then all the figures AH, AK, ELy FII are rectangles.

Since ^6^ = C

A

figure AH iii the rect. AB, CD.

Since opposite sides of H™^ are equal,

EK= FL =AG = CD', and therefore

figure AK is the rect. AE, CD

;

figure EL is the rect. EF, CD
;

and figure FH is the rect. FB, CD.
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But figure AH is equal to the sum of the figures AK, EL
and FH.

Hence the rectangle contained hy AB and CD is equal to

the sum of the rectangles contained hy AE and CZ>, EF and
CD, and FB and CD.

Conversely, live sum of the rectcmgles contained hy any
straight lirie and two or more otlier straight lines is equal to the

rectangle contained by the first straight line and a straight line

which is equal to the sum of the other straight lines.

Precisely similar reasoning can be applied to prove that the rectangle

contained by two straight lines both of which are divided into parts is

equal to the sum of the rectangles contained by every pair of parts, one
being taken from each of the two lines in all possible ways.

The student should identify the rectangles contained by each pair of

segments in the above figure, and in other figures which he should draw
for himself.
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PROPOSITION II. Theorem.

Ifa straight line he divided into two jpar^ the square on the

straight line is equal to the sum of the rectangles contained by
the whole line and each of the i:)arts.

Let the straight line ^^ be divided into two parts at the

point (7; then it is required to prove that the square on the

whole line is equal to the sum of the red. AB, AC and red.

AB, CB.

On AB describe the square ABDE.

Draw CF parallel to ^^ to meet DE in F.

Then the figures AD^ AF^ CB are rectangles.

By construction AE = BD = AB.

Hence figure AF is the rect. AB, AC, and figure CD is the

rect. AB, CB.

But figure AD = the sum of the figures AF and CD;

.'. the square on AB is equal to the sum of the rectangles

contained by ^^ and AC and by ^^ and CB.

Ex. If a straight line be divided into any number of parts the square
on the line is equal to the sum of the rectangles contained by the line

and each of the parts.
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PROPOSITION III. Theorem.

If a straight line he divided into any two parts the rectangle

contained hy the whole straight line and one of the parts is equal

to the square on that part together with the rectangle contained

by the two parts.

Let the straight line AB be divided into any two parts at

the point C. Then, it is required to prove that red. ABy AC is

equal to the sum of the sq. on AC amd the rect. AC, CB.

On AC describe the square ACDE.

Produce ED to meet BF drawn || to CD, or AE, in the

point F, thus completing the rect. ABFE.

Since AE, CD, BF are opposite sides of rectangles,

AE=CD=BF', and, by construction, AE = AC.

Hence figure yl^is the rect. AB, AC

;

figure CF is the rect. CB, AC

;

also figure AD is the square on AC.

But figure AFis the sum oi AD and CF.

,', rect. AB, AC = the sum of the square on AC and the

rect. CB, AC.

It should be noticed that Propositions II. and UI. are special cases of

Prop. I.
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PROPOSITION IV. Theorem.

If a straight line he divided into two parts the square on the

wlhole line is equal to the su7n of the squares on the two parts

together with twice the rectangle contained by the 2)arts.

Let the line AJBhe divided into two parts at C. Then it is

required to prove that the square on AB is equal to the sum of
the squares on AO, CB and twice the rect. AC, CB.

On AB describe the square ABDE. Through G draw CF
II to BD to meet DE in F.

From BD cut off BG = BC. Through G draw GHK
BC and meeting CF in H and AE in K.

to

C B

K H

E F D

Then the figures AH, CG, HD and KF are all rectangles

by construction.

By construction, BD = BA and BG^BC', .'. GD = AC.

Since opposite sides of rectangles are equal,

.-. KE::^GD=^AC, EF=AG and GH=GB.
Figure CG is square on BC \ for BG - BC.

Figure AH\^ rect. AC, CB; for CH^BG = BC.

Figure KF is equal to the square on AC ; for

EE=GD^.AC, and EF = AC.

Also figure HD is equal to rect. AC, CB ; for HG=GB
and GD = AC.

But figure AD is made up of the figures CG, KF, All and
HD,

Hence square on AB = the sum of square on CB, square on
AC and twice rect. AC, CB,
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The reasoning of this proposition may be extended to the case of a
line divided into any number of parts. Thus it may be proved that

^If a straight line be divided into any number ofparts the square on tJie

whole line is equal to the sum of the squares on the different parts together

with twice the rectangles contained by the parts two and two in all possible

ways.^

It should be noticed that the above theorem is a particular case of the

generalisation of Prop. L stated on page 119.

Prop. IV. may be enunciated as follows :

—

*The square on the sum of two straight lines is equal to the sum of the

squares on the lines and twice the rectangle contained by them.^

Every proposition about divided lines is equivalent to some proposition

about the sums or differences of lines, and the student should practise

himself in variation of statement. The difficulty which learners may
find in doing this arises from paying too much attention and effort of

memory to the form of words instead of concentrating the intelligence on
the geometrical figure.

[It is recommended that Prop. YII. should be taken immediately after

Prop. IV.]

Ex. 1. The square on any straight line is equal to four times the
square on half the line.

Ex. 2. The square on any straight Une is equal to nine times the
square on one-third of the line.

Ex. 3. Divide a given square into 4, or 9, or 16 equal squares.

Ex. 4. Divide an equilateral triangle into 4, or 9, or 16 equal equi-

lateral triangles.

Ex. 5. In the figure to II. 4 shew that EHB is a straight Une.

Ex. 6. Shew that, if KF and CG be joined, the rect. KF, CG is twice

the rect. AC, CB.
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PROPOSITION V. Theorem.

If a straight line he divided into two equal parts and also

into two unequal parts^ the rectangle contained by the unequal
parts and the square on the line between the points of section

are together equal to the square on half the line.

Let the straight line ^^ be bisected at C and divided

unequally at D. Then, it is required to prove that red. AD,
DB and square on CD are together equal to the square on
CB or AG.

A GDI
K

L H

F E

On CB describe the square CBEF.

Draw DG \\ to CF cutting FE in G, and cut off DKr=. DB,

Through K draw a line || to AB cutting CF in // and the
line through -4 || to CF in L.

When all the quadrilaterals are rectangles, and opposite

sides of rectangles are equal.

Hence DG =BE=BC and DK=BD; .-, KG - CD.

Hence fig. AK is rect. AD, DB; for DK=DB.

fig. AHi% rect. AC, DB; for GH=^DK^DB.

and fig. Z>^is rect. AC, DB ; for BE = BC =AC.

Hence fig. AH=^g. DE.

Also fig. HG is equal to square on CD ; for

KII=^CD = KG. .
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Then sum of rect. AD, DB and sq. on CD
= sum oi AK and RG
-^8umoi AH, CKsindNG

- sum of DB, CK and HG
-fig. CE

• = square on GB.

Ex. 1. If a given straight line be divided into any two parts, the
rectangle contained by the parts is greatest when the parts are equal.

Ex. 2. If a given straight line be divided into any two parts the sum
of the squares on the parts is least when the parts are equal.

Ex. 3. Shew that, if the perimeter of a rectangle is given, the area ia

greatest when it is a square.

Ex. 4. The square on the sum of two unequal lines is greater than
four times their rectangle.

Ex. 5. Prove that the square on any straight line drawn from the
vertex of an isosceles triangle to a point on the base, is less than the
square on a side of the triangle by the rectangle contained by the seg-

ments of the base.

Ex. 6. A line is drawn from the right angle of a right-angled triangle

perpendicular to the opposite side. Shew that the square on the perpen-
dicular is equal to the rectangle contained by the segments of the
hypotenuse.
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PROPOSITION VI.

If a straight line be bisected and produced to any pointy tJie

rectangle contained hy the whole line thus jjroduced^ and the

part of it produced, together with the square on half the bisected

line, is equal to the square on the straight line which is made up

of the Imlfand the part produced. *

M

B D

K

H E

Let the straight line ^^ be bisected at and produced to

D. Then it is required to prove that rect. AD, DB and sq. on

CD are together equal to sq. on CD.

On CD describe the square CDDF. Draw AX \\ to CF,

and BH parallel to CF meeting FF in H. From DF cut off

DG = DB, and through G draw GKLM \\ to AD and meeting

BH, CF, AXinK, L, M respectively.

Then all the quadrilaterals are rectangles, and opposite

sides of rectangles are equal.

Hence AM=CL =BK= DG, and DG was made equal to

DB.

Hence figure AGib rect. AD, DB ; and figure AL is rect.

AC, BD.

Also, since DE ^ DC and DG - DB ; .'. GE ^ BC ^ CA.

Hence figure KE is rect. AC, BD; for KG = BD.

:. rect. KE= rect. AL.

And, since LK= CB and LF=GE=CB;
.*. figure LH is equal to sq. on CB.
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Nowsq. on6'i> = fig. CE

= sum of figures CG, KE, LH
= suin of figures CG^ AL, LH
= sum of figures AG^ LII

= sum of rect. AD, DB and sq. on GB.

It is important to notice that Prop. V. and Prop. YI. are

both included under the following enunciation :

—

* If a straight line he bisected and he also divided {internally

or externallij) into two unequal segments, the rectangle contained

hy the unequal segments is equal to the difference of the squares

on Jmlf the line and on the line between the points of section.^

This Proposition aud also Proposition V. may be enunciated in terms
of the sum and difference of two straight lines.

If we take AC and CD as the straight lines, then AD is their sura

and DB 19. their difference. Hence the proposition is equivalent to the

following :

—

The rectangle contained hy the sum and difference of two straight lines

is equal to the difference of the squares on the lines.

Again, if we take AD aud BD as the lines, CD is half their sum and
CB is lialf their difference. Hence the proposition is equivalent to the
following :

—

The rectangle contained hy tico straight lines is equal to the difference

of the squares on lialf their sum and half their difference.
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PROPOSITION VII. Theorem.

If a straight line he divided into any two parts the sum of
the squares on the whole line and one of the parts is equal to

twice the rectangle contained by the whole line and that i)CLrt

together with the square on the other part.

Let the straight line AB be divided into any two parts in

the point C. Then it is required to prove that the sum of the

squares on AB and BC is equal to twice rect. AB, BG and sq.

on AC.

C B

H

E F D

On AB describe the square ABDE. Through G draw CF
parallel to AE meeting ED in F.

Prom BD cut off BC equal to BG, and through C draw a
line II to AB cutting CF in II and AE in K.

Then all the quadrilaterals are rectangles, and since

AB = BD &,ndBG = BG,

.*. J(? is rect. AB, BG, and CD is also rect. AB, BG,

Hence AG and CD are together twice rect. AB, BG.

Also CG is the square on BC, for BG = BG.

And, since BD = BA and BG =- BC; .'. GD = GA,

But opposite sides of rectangles are equal;

/. EF = AG, and KE=GD = CA.

Hence KF is equal to the square on ^C.

Now the two squares AD and CG are equal to the sum of

the figures KF, AG and CD.

Hence the sum of the squares on ^^ and BG is equal to

the square on AG together with twice the rectangle AB, BC.
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Since AG \^ the difference between AB and BG^ the above
proposition can be enunciated in the following more interesting

form :

—

* The square on the difference of any two straight lilies is

less than the sum of the squares on the lin^s hij twice the

rectangle contained by them.'

Ex. 1. Shew that the sum of the squares on two straight lines is

never less than twice the rectangle contained by them.

Ex. 2. Shew that the sum of the squares on two straight lines is

never less than half the square on the sura of the lines.

PROPOSITION VIII. Theorem.

The square on the sum of two straight lines exceeds tlie

square on their difference by four times the rectangle contained

by the lines.

AD B C

rrA M N

L P Q R

F G H E

Let AB and BC be the two given straight lines, placed so

that ABG is a straight line.

Cut off from AB a. part AD equal to BC.

Then AC i^ the sum of the given lines and DB is the
difference. It is required to prove that sq. on AC exceeds the

square on DB byfour tim£s the rect. AB^ BC.

On AC describe the square ACEF. Through />, B draw
lines parallel to ^/' meeting FE in (?, H respectively.

From AF cut oKAK=AD and FL = AD.

S. B. K. 9
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AT) B G

31 N

P Q

K

F G HE
Draw through K, L lines parallel to .4(7 cutting DG^ BH^

CE in J/, N^ and P, Q^ R respectively.

Then all the quadrilaterals in the diagram are rectangles.

Since AF^AC, AX = AD and LF=AD = BG;

.-. KL = DB, and AL = AB = KF.

But opposite sides of rectangles are- equal,

/. MP = KL = DB, and MN=^DB.

Hence figure FN is equal to the sq. on DB.

Now figure FG is equal to the sum of the figures PN^ DO,
OH, HL and LD.

Figure DO is rect. AB, BC,

for DC = AB and CO==AK= BG.

Figure OH is rect. AB, BC,

for OE = KF=AB and NO = BG.

Figure HL is rect. AB, BG, for HF=AB and FL = BG.

Figure Z/> is rect. ^^, BG, for ^Z = ^i? and AD = BG.

Hence the square on AG is equal to the square on DB
together with four times the rectangle AB, BG.

The enunciation of this proposition given above is more
interesting than that given by Euclid, which is as follows :

—

1/ a straight line be divided into any two parts, four times

the rectangle contained by the whole line and one of the parts,

together with the square on the other part, is equal to the square

on the line made up of the whole and thef/rst part.
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Alternative Proof.

Let AB^ BD be the two given straight lines, ABD being a

St. line. Cut off from AB (which is supposed to be the

greater) a part BC equal to BD.

Then ^Z> is the sum of the lines and AC \'a their difference.

[Or with Euclid's Enunciation :

—

Let AB be a straight line divided into two parts at the

point C. Produce AB to D, making BD = BC. Then AD is

the line made up of AB and BC]

C B D
-i 1

Then, by II. 4,

Sq. on AD- sum of sq. on AB, sq. on BD and twice rect. A B, BD.

But, since BC = BD,

Sq. on i?C = sq. on BD, and rect. AB, BD = rect. AB, BC.

.'. sq. on ^Z>=sum of sq. on AB, sq. on BC and twice

rect. AB, BC.

Again, by II. 7,

Sum of sq. on. AB and sq. on BC — sq. on AC and twice
rect. AB, BC.

Hence sq. on AD = sq. on AC and four times rect. A7i, BC.

I 9-2
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PROPOSITIONS IX. AND X.

If a straight line he bisected and he also divided^ internally

or externally, into two unequal parts, the su7n of the squares on
the unequal parts will he equal to twice the square on half the

line and tivice the square on the line hetween the points of section.

Let XF be a straight line bisected at Z and divided into

two unequal parts at W.

Z W

X w

Then it is required to prove that the sum of sq. on XW and
sq. on WY is equal to twice sq. on XZ and twice sq. on ZW.

Now XW \^ equal to the sum of XZ and ZW, and WY \^

equal to the difference of XZ (or ZY) and ZW.

Hence both cases are included in the following enunciation,

in which form the theorem will be proved :

—

The sq. on the sum of two straight lines and the sq. on their

difference are together equal to twice the sum of the squares on

the given lines.

Let AB and BC be the two given straight lines, placed so

that ABC is a straight line.

Cut off from AB a. part AD equal to BC.

Then AC is the sum of the given lines and DB is their

difference. It is required to prove that the sum, of the squares

on AC and DB is douhle the sum, of the squares on AB and
BC.

D

K M N

P Q

II E
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On AC describe the square AGEF. Through 2>, B draw
lines II to AF meeting FE in G, II respectively.

From AF cut off AK=AD and FL = AD.

Draw through K, L lines parallel to AG cutting DG^ BUj
GE in M, iV, and P, Q, R respectively.

Then all the quadrilaterals in the diagram are rectangles.

Now sum of figures FG and PN
= sum of figures LB, GO, FP and NG.

Since AF=AG, AK^AD and LF=AD = BG\

.'. KL = DB and KF=AL = AB = DG.

But opposite sides of a rectangle are equal,

/. MP = KL = DB, and MN=DB.

Hence figure PN is equal to the sq. on DB.

Figure LB is sq. on AB, ior AL = AB.

Figure GO is sq. on AB, for MG = KF=^AB

a.ud MO = DG = AB.

Figure FP is sq. on BG, for LP=AD = BG

Bind LF=AD = BG.

Figure NG is square on BG, for GO = AK=-AD-= BG.

Also FG is square on A G.

Hence sum of squares on AG and BD is equal to twice
sum of squares of ^^ and BG.
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Alternative Proof.

The following proof may be given :

—

X Z W

X Z Y W

By Euclid II. 4,

Sq. on JrTr=sum of sq. on XZ, sq. on ZW, and twice rect.

XZ, ZW.

Also by Euclid II. 7,

Sq. on WY and twice rect. ZY^ ZW ^ sum of sq. on ZY a-nd

sq. on ZW.

Hence, as ZY=XZ,
Sq. on WY and twice rect. XZ, ZW - sum of sq. on XZ \

and sq. on ^TT.

Hence, by addition,

Sq. on XTf, sq. on TFZand twice rect. XZ^ ^JF^- twice sq.

on XZ, twice sq. on ZW and twice rect. XZ, ZW.

Take away twice rect. XZ, ZW, which is common ; then

Sum of squares on XW and Try= twice sum of squares on

XZ^xidZW,

PROPOSITION A. Theorem.

The difference of the squares on any two straight lines is 1

equal to the rectangle contained by the sum and the difference of
the lines.

[We have already shewn [see page 127] that this theorem is induded
in Prop. V. or Prop. VI. On account, however, of the importance of the

theorem, an independent proof is given.]
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Let AB^ AC be the two straight lines. On AB, AC
describe squares ABDE^ ACFG, both squares being on the

same side of the line ACB. The side AG oi the smaller

square will be along the side AE oi the larger, since Z ^ BAE
and CAG are right angles.

E D

y

F

^i L' 1r

Produce GF to cut BD in //.

Then, since AE = ^i? and AG = .iC,

(?^ = CB = difference of Hnes AB, AC.

Since opp. sides of a rectangle are equal, BH—AG = AG^
and ED = AB.

Hence FB is rect. AC, CB, and ^7/ is rect. AB, CB.

Now the difference of the squares on AB and AC

-^the sum of EH a.ud FII

= the sum of rect. AC, CB and rect. AB, CB

= rect. contained by CB and the sum oi AC and AB [II. 1.

= rect. contained by the sum and the difference of AB and AC.
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PROPOSITION B. Problem.

To produce a given straight line so that the rectangle con-

tained by the whole line so produced and the part produced may
he equal to a given square.

Let AB be the given straight line, and let CD be a side of

the given square. Then, it is required to produce AB to some

point E such that rect. AE, EB may he equal to the square on
CD.

C D

[Suppose that E is the point required. Then, by II. 6, if

is the middle point of ^^,

sq. on 0E=^ sum. of rect. AE, EB and square on OB
=^ sum of squares on CD and OB.

Hence, if BF be drawn perp. to AB and equal to CD, and
OF be joined, OF will be equal to the required line OE.

Hence the following construction*.]

Draw BF pei^). to AB, making BF= CD.

Bisect AB in (9, and join OF.

With as centre and OF as radius describe a circle cutting

AB produced in E. Then rect. AE, EB will be equal to the

square on CD.

Por sq. on 0E= rect. AE, EB and sq. on 0^.

And sq. on OE ~ sq. on 0F== sum of squares on BF and OB.

Hence rect. AE, EB and sq. on Oj5 = sq. on BF and sq.

on OB.

Take away the common sq. on OB.

Then rect. AE . EB = Bq. on BF^sq. on CD.

* See note on page 102.
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PROPOSITION XI. Problem.

To divide a given straight line into two parts so that the

rectangle contained by the whole line and one of the parts nicuy

he equal to the square on the other part.

Let AB he the given straight line. On A/i describe the

square ABCD.

Bisect AD in E^ and join BE.

Produce EA to F so that EF= EB.

On AF describe the square AFGH\ then H will fall on

AB, since Z" FAII and FAB are rt. Z", and AB will be

divided in // so that rect. AB, BE is equal to sq. on AH.

Produce GH to meet CD in K.

Then \* DA is bisected in E and produced to F,

,\ rect. DF, FA and sq. on ^^ = sq. on EF [II. 6.

-sq. on EB (since EF=EB)
= sum of squares on ^^ and AE. [I. 47.

From these equals take the square on AE ; then

rect. DF, FA=^^({. on AB,
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But figure FK is rect. DF, FA, since FG^FA.

Hence figure FK=sq. AC.

From these equals take away the fig. AK which is

common; then

fig. FII=fig. lie.

But fig. FN is a square, and is .*. the sq. on All, and
fig. HC is equal to rect. AB, HB, for BG^AB.

Hence sc^. on AH= rect. AB, BK.

Def. When a straight line is divided into two parts so that the
rectangle contained by the whole line and one of the parts is equal to the
square on the other part, the line is said to be divided in 'medial
section.' The line is also said to be divided in 'extreme and mean
ratio/ for in this case, as will be seen in Book vi, tbe ratio of the whole
line to one part is equal to the ratio of that part to the other.

The analysis [see page 101] of this problem will shew how the above
construction could be invented, and will enable the student to solve other
analogous problems.

Analysis. Suppose that AB is divided in the required manner at the
point H. Construct AFGH, the square on AH, and also the rectangle

HB, BA, these being -put on opposite sides of the line AB, as in the figure.

Then it is natural to complete the square AB, and as FK is equal to

AC, we see that DA is to be produced to F so that the rectangle contained
by the whole line produced and the part produced may be equal to the

square on AB, Thus the problem is reduced to a particular case of

that considered in Prop. B.
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Ex. 1. If in the diagram to Prop. XI, CB and FG are produced to

meet in i2, shew that BHR is a straight line.

Ex, 2. Shew that, if the lines GB, FC and AKhe drawn, they will

all be parallel.

Ex. 3. If FC cut AB, UK in P, Q respectively ; then FP=QC.

Ex. 4. ir GC=|r FB= \\'^ AK.

Ex. 5. The lines KF and HG are parallel.

Ex. 6. If KF cut ^H in the point .Y, HX=BH.

Ex. 7. F5 is 1 "• to DH.

Ex. 8. If D/f and EB intersect in O, AG is parallel to FJi, and
perpendicular to DH.

Ex. 9. If BA he produced to Z so that AZ = UA,
rect. BZ.AZ=AB\ [Euclid XIII. 5.]

Ex. 10. The sura of the squares on AB and BH is three times the

square on AH. [Euclid XIII. 4.]

Ex. 11. The square on the sum of AB and BH is five times the

square on AH.

Ex. 12. The difference of the squares on AH and HB is equal to the

rectangle AH, HB.

Ex. 13. If, in the figure to Euclid II. 11, a point L be taken on ED
produced such that EL — EB, and if a square ALMN be described so that

the squares AG and AM are on opposite sides of ADL; shew that the

line BA will be divided externally at N so that sq. on AN is equal to

rectangle BA, BN.

Ex. 14. If X be taken on HA such that HX—HB, then square on
HX is equal to the rectangle HA, AX.

[This result is important. It shews that if a straight line be divided

in medial section, and if the lesser segment be cut ofiE from the greater,

this latter is thereby divided in medial section. And this process can be
continued ; whence it follows that AB and AH are incommensurable.
(Euclid XIII. 6).]

Ex. 15. DF is divided in medial section at A.

Ex. 16, DR is divided in medial section at H.

Ex. 17. GX is parallel to DH.

Ex. 18. Divide a straight line into two parts such that the sum of
the squares on the whole line and one part may be equal to three times
the square on the other part.
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Def. The projection of a terminated straight line on
any other straight line is the length intercepted between the
feet of the perpendiculars from the ends of the terminated
line on tlie other.

Thus, if AL^ BM be the perpendiculars from A and B on the line Zi",
then LM is the projection of ^^ on the line XY.

M

Also, if AB be the perpendicular from A on the line BG^ produced if

necessary; then BD is the projection of BA on BG.

It is easily seen that the projections of a finite line on any two parallel

lines are equal ; and also that the projections on any straight line of two
equal and parallel straight lines are equal.

PROPOSITION XII. Theorem.

In an obtuse-angled triangle, the square on the side 02J2)Osite

to the obtuse angle is equal to the sum of the squares on the

other two sides together with twice the rectangle contained by
either of these sides and the projection upon it of the other.

Let ABC be a triangle having the obtuse angle BAG.
Draw CD i.^ to BA produced, then AD \9, the projection of

AC on BA.

It is required to prove tliat sq. on BC exceeds the sum of the

squares on BA, AC by twice the rect. BA, AD,
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Then, by II. 4,

sq. on ^i> = sum of sq. on BA, square on AD and twice
rect. BA, AD.

To each of these equals add the square on CD.

Then, sum of squares on BD and DC

= sum of squares on BA^ A D and DC together with twice
rect. BA, AD,

But, since ADC is a right angle,

sum of squares on BD and DC is equal to sq. on BC.

Also sum of squares on AD and DC is equal to sq. on AC.

Hence the square on BC is equal to the sum of the squares
on BA and AC together with twice rect. BA, AD.

Euclid's enunciation of this theorem is

:

In obtuse-angled triangles, if a pet'pendicula?' be draum
from either of the acute angles to the opposite side produced,

the square on the side subtending the obtuse angle, is greater

than the squares on the sides containing the obtuse angle, by

twice the rectangle contained by the side upon which, wlien

produced, tJie perpendicular falls, and the straight line inter-

cepted without the triangle betiveen the perpendicular and the

obtuse angle.
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Alternativp] Proof.

The following alternative proof which is strictly analogous

to I. 47, and which shews directly the equality of the figures,

is much more instructive than Euclid's proof*.

Let ABC be a triangle having the obtuse angle BAC. On
the sides BG, CA, AB describe the squares BCDE, CAFG,
ABHKy all the squares being external to the triangle.

Draw AL ±^ to BC, and produce it to meet DE in X
Draw BM ±^ to CA produced, and let BM and GF

produced meet in Y.

Draw (7iV J.^ to BA produced, and let CN and HK
produced meet in Z.

Then, since AM is the projection of BA on AC, it is

required to prove that sq. on BC exceeds the sum of the squares

on CA and AB by twice reel. CA, AM.
Join AD and BO.

* This interesting extension of I. 47 is given in Lardner's Euclid.

London, 1828, but cannot be traced earlier.
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Add Z BCA to each of the right Z.^BCD and ACG; then

Z BCG^Z. DCA.

Also ^C = /)C and (7(? = CA.

Hence A BCG = A DCA.

But rect. CFis double A J5(7i>,

because they are on the same base and between the same
parallels,

and similarly rect. CX is double A CAD.

Hence rect. CX=rect. CY.

Similarly rect. ^-X'= rect. i^iT,

these being respectively the doubles of the equal A^ ABUj
IIBC.

And rect. ^y=rect. AZ,

these being respectively the doubles of the equal A" BAF,
KAC

Hence sq. BD = sum of rect. BX and rect. CX.

= sum of rect. CY and rect. BZ,

= sum of rectangles CF, BK, A Fand AZ.

But CF is square on CA,

BK is square on AB,

sum of AY and AZ = 2AY-- 2 rect. CA, AM, for AF= CA.

Hence sq. on AB = square on CA, square on AB and twice

rect. CA, AM.
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PROPOSITION XIII. Theorem.

In any triangle the square on the side opposite to an acute

angle is less than the sum of the squares on the sides containing

tlie acute angle hy twice the rectangle contained hy either of
those sides and the projection upon it of the other side.

In the triangle ABC let BCA be an acute angle.

Draw BD i.^ to CA, or CA produced; then CD is the

projection of CB on CA.

Then, it is required to prove tJiat the sq. on AB is less than

the sum of the squares on BC and CA hy twice rect. AC, CD.

Then, whether D falls on CA or CA produced, by II. 7

sq. on CA and sq. on CD
= sq. on AD and twice rect. AC, CD,

To each of these equals add the sq. on BD.

Then sq. on CA, sq. on CD and sq. on BD
= sq. on AD, sq. on BD and twice rect. AC, CD.

But, since BD is j_ ^ to CA,

sq. on CD and sq. on BD = sq. on CB,

also sq. on AD and sq. on ^i) = sq. on AB.

Hence sq. on CA and sq. on CB
= sq. on ^^ and twice rect. AC, CD',

i.e. sq. on AB is less than sum of squares on CA and CB by
twice rect. AC, CD.

When BAC is a right angle, CA is the projection of CB on
CA, and we have to prove that sq. on .4^ is less than sum of

squares on CA and CB by twice the square on CA, which
follows at once from I. 47.
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Alternative Proof.

This proposition can be proved in a manner analogous to

the proof of I. 47, as in the Alternative proof of Prop. XII,

Let ABC be an acute angle of the triangle ABC ; then the

figure being constructed as on p. 142, we first prove as before

that

rect. AY =^ rect. AZ,

rect. j9-^=rect. BX,

and rect. C'A'' = rect. CY.

N^y<M

L

Hence square CF is less than the sum of the squares C£I
and BK by the sum of rect. BX and rect. BZ^ that is by twice

the rect. BX.

But BX is rect. BCf BL, and BL is the projection of BA
on BC.

Hence sq. on AC is less than the sum of the squares on AB
and BC by twice the rectangle contained hy BC and the pro-

jection of AB upon BC.

The student should go through the proof when the triangle

ABC is obtuse-angled, as in the figure on p. 142.

S. B. E. 10
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PROPOSITION XIV. Problem.

To describe a square equal to a given rectilinealfigure.

Let X be the given rectilineal figure.

Construct a rectangle ABCD equal to the figure X. [I. 45.

[If by chance BC^BA, the square is already constructed.

But, if not]

Produce AB to E, making BE= BC. Bisect AE in F.

With centre F and radius FE describe the circle EGA,
and produce CB to meet the circumference in //.

Then the square on BH will be equal to the given figure.

Join HF.

Then, AE is bisected at F and divided unequally at B
;

/. sq. on i^^ = rect. AB, BE and sq. on FB.

But FE = FII;

/. sq. on FE=^sq. on i^^= sq. on HB and sq. on FB.

Hence sq. on HB and sq. on FB
= rect. AB, BE and sq. on FB.

Take away the common square on FB ; then

sq. on JIB = rect. AB, BE = rect. AC.

But rect. AC was made equal to the given figure X,

Hence sq. on HB is equal to figure X.
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It should be noticed that the above is the last step in the

solution of the important problem to find the side of a square

which is equal in area to any given rectilineal figure, the
previous steps being given in Propositions 42, 44 and 45 of

Book I—or in Prop. 42 and Prop. C.

By ' squaring a figure ' is meant the drawing of a square
whose area is equal to that of the given figure.

Ex. 1. Describe a rt. z®*^ A equal to a given rectilineal figure and
Buch that one of its sides containing the right angle is double of the other.

Ex. 2. Describe an isosceles right-angled triangle equal to a given
rectilineal figure.

Ex. 3. Having given one side of a rectangle equal to a given square,
find the other side.

Ex. 4. Point out the succession of steps by which Euclid ' squares'

any rectilineal figure.

Ex. 5. Describe a rectangle equal to a given square, and having the
sum of two of its adjacent sides equal to a given st. line.

Ex. 6. Construct a rectangle equal to a given square and having the
difference of two adjacent sides equal to a given st. line.

Ex. 7. Shew that of all rectangles of equal area, the square has the
smallest perimeter.

I
10—2
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NOTE I.

In Pure Geometry no attempt is made to estimate the area of squares
and rectangles in relation to the lengths of their sides. In those
special cases, however, in which the lengths of adjacent sides of a rect-

angle can be expressed in terms of some common unit length; then,
if the square on that unit length be taken as the unit of area, it is proved
in Arithmetic 1 that the number of units of area in the rectangle is equal
to the product of the number of units of length in two of its adjacent
sides.

Lines that have a common measure are said to be conunensurable,
and lines which have no common measure are said to be incommen-
surable.

Pairs of lines which are incommensurable occur in the simplest

geometrical figures. For example, the square on a diagonal of a square
is twice the square on a side, so that the ratio of a diagonal to a side is

4^2 to 1, and we know that ^2 cannot be expressed as a Vulgar Fraction,

and therefore no line which is contained an exact number of times in

the side of a square can be contained an exact number of times in the

diagonal, so that a side and a diagonal of a square are incommensurable.

It is not necessary to give other cases of lines which are incommen-
surable; the student must, however, constantly bear in mind that there

is no security, and in fact little probability, that the lines in any figure

are commensurable.

Now, if we assume that the different lines, referred to in the cases

considered in the Propositions 1 to 10 of Book II. of Euclid's Elements,
are coinmensurahle,i\\e geometrical proofs lead at once to certain algebraical

identities; these algebraical formulae are thus established, with the
limitation, however, that the letters therein refer only to commensurable
numbers. Conversely the geometrical truths are established by the alge-

braical proofs, hut only for commensurable lines.

Algebraical Formulae

ANALOGOUS TO, AND DEDUCED FROM, EUCLID II. 1—10.

Prop. I. On the supposition that the different parts of the divided

line are commensurable and contain a, &, c, &c. units of length, and that

the undivided line contains x units of length, the proposition proves that

{a + h + c + )x= ax-\-l)x-\-cx+ ....

The student should write for himself the result when the second line

is also divided. [See 0. Smith's Elementary Algebra, Art. 46.]

Prop. II. On the supposition that the two parts of the divided line

are commensurable, and contain a and h units of length respectively, we
have

(a + &)2= (a + 6) a -h (a+ 6) 6.

Prop. III. We have in this case

a (a + 6) = a^ -i- ab.

^ See C. Smith's Arithmetic^ page 161.



BOOK II. 149

Prop. IV. Oil the supposition that the two parts of the divided line

are commensurable, and contain a and h units of length respectively,

we have

{a + hf= a^ + h--\-2ah.

Prop. V. On the supposition that the parts of the divided line are

commensurable, and that AC, or CB, contains a units and that CD
contains h units, we have from

rect. AD .DB + ^q. on CD = sq. on CB,

the algebraical identity

(a + 6) (a- t) + 6- = a2.

Prop. VI. On the supposition that the parts of the divided line

are commensurable, and that AC, or CB, contains a units, and that CD
contains h units, we have from

rect. /ID.BD + sq. on CB = Bq. on CD,

the algebraical identity

(a + 6) (6-rt) + a2= 62.

Prop. VII. On the supposition that the two parts of the line are

commensurable, and contain a, b units respectively, we have from

sq. on AB + fiq. on BC=Bq. on AC + 2 rect. AB . BC,

the algebraical identity

{a + by^ + h-^= a^ + 2{a + b)b.

Or, if AB contain a units and BC contain b units, then

a^+b^={n-by + 2ab.

Prop. VIII., IX. and X. On the supposition that the two lines are
commensurable, and contain a and b units respectively, we have from
VIII. the identity

{a + 6)2=(a-J)2 + 4afo.

Also from IX. or X., the identity

{a + by2+{a-bf:=2a^ + 2b^.

Prop. A. On the supposition that the sides of the squares are
commensurable, and contain a, b units respectively, we have

a'^-b^={a + b) (a-b).

Prop. B. If the given straight line contain a units, and the side

of the given square contain b units ; then the problem gives the geometri-
cal solution of the quadratic equation

{a + T)x = b-.
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NOTE 11.

It should be noticed that after Prop. 1, Book II., has been proved by
means of a diagram, it is possible to deduce from it all the remaining
propositions included in Euclid II., 1 to 10, without reference to any
figure in which the different squares and rectangles are actually con-
structed, and that this can be done by strictly geometrical methods.
This procedure, though logically sound, would be far inferior to the

method adopted in the text, where in each case the equality which it is

desired to establish is shewn directly by means of a figure. It would,
however, be a useful exercise for the student to make the deductions in

this manner.

N.B. The symbol AB^ is often used for shortness instead of Hhe
square on AB,^ and the symbol AB . BG in the place of ' the red.
AB, BG.' In all examinations these symbols, and also the signs + and - ,

are now allowed to be used in writing out any theorems or problems
which are not given in Euclid's text. The symbols AB"^ and AB .BG
may not, however, be used in writing out the propositions given by
Euclid.

The reason for the distinction is that it is thought that no one who
is able to do deductions is likely to imagine that these symbols could have
the same meanings as the algebraical symbols a^ and a .h, ox that they
are in any way connected with the numerical measures of rectangles.

The use of these symbols ought never to be allowed at any time until

it is clear that AB^ and AB .BG are used by the student simply as the

shortest way of writing ' the square on AB ' and • the rectangle contained

hy AB and BG' respectively.

MISCELLANEOUS PROBLEMS AND THEOREMS.

I. Find two lines, having given their sum and their difference.

A O X B G D

Let AB be the given sum of the lines and GB their given difference.

From BA cut off BX= GD, and bisect ^X in 0; then AO and OB are

the lines required.

For the sum of OB and OA isAB ; and since OX=AO, the difference

of OB and OA is equal to XB, which was made equal to GD.

n. Find two lines, having given their sum and the area of the

rectangle contained by them.

Let AB be the given sum, and let the rectangle contained by them be
equal to the square on GD.
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[If the area is given equal to a certain rectilineal figure, the square
whose area is equal to that of the given figure can be constructed by
n. 14.]

Bisect AB in O.

E B

[Now, if AE and EB be the required lines, we know that

AE.EB + OE^= OB^;

.: CD^+OE^=OB^.

Hence, if OX be drawn x' to AOB and such that OX= CD, we have

OX^+OE^=OB^;

.: XE^=:OB^ (I. 47) and XE= OB.

Hence E can be found by the following construction.]

Draw OX 1' to AOB, and take OX=CD.

With X as centre and radius equal to OB, describe a circle cutting

AB in E. Join XE.

Then, since A0= OB, AE.EB + 0E^=: OB^ [II. 5.

=XE^ [const.

= OX^+OE'. [1.47.

Hence AE.EB=^OX^

= CD^. [const.

Thus the lines AE, EB are such that their sum is AB, and the

rectangle contained by them is equal to the square on CD.

III. Find ttDo straight lines, having given their difference and the area

of the rectangle contained by them.

This is easily seen to be Prop. B.
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IV. Find Uoo straight lines, having given their sum and the difference

of the squares described on them.

Let AB be the given sum of the lines.

We know [Prop. A] that the difference of the squares on any two
straight lines is equal to the rectangle contained by their sum and
difference.

Hence if we apply to AB a rectangle ABGD equal to the given
difference of the squares on the lines, BC will be equal to the difference

of the lines. And now that the sum and the difference of the required
lines are known, the lines can be found as in I.

V. Find tioo straight lilies, having given their difference and the

difference of the squares described on them.

VI. The sum of the squares on any two sides of a triangle is equal to

twice tJie square on half the third side and twice the square on the median
that bisects the third side.

Let D be the middle point of the side BC of the A ABC. Join AD.
Then it is required to prove that

AB^ +AC^= 2DC^+ 2AD\

Then, if AD is j.'* to BC, the theorem follows at once from I. 47.

But, if AD be not ±'' to BC, draw AL l"- to BC, produced if

necessary. Then one of the angles ADC, ADB must be obtuse and the
other acute. Let ADB be the obtuse angle, as in the figures. Then, by
II. 12 and II. 13,

AB^=BD^ + AD^+ 2BD.DL;

and AC^=DC^+ AD^-2DC.DL.

But, since BD=DC, BD^=DC^,

and BD.DL = DC.DL.

Hence, by addition,

AB^+ AC^=2DC^+ 2ADK
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Ex. 1. Find the locus of a point which moves so that the sum of the

squares on the lines joining it to tico given points is constant.

U A, B be the two given points and be the middle point of AB;
then if P be any point on the locus, PA^ + PB'^= 2A0^'+ 2P0K Hence, if

PA^+PB^ is constant, PO"^ is constant, so that P is at a fixed distance
from 0. The locus required is therefore a circle whose centre is the
middle point of the line joining the two given points.

VII. The sum of tJie squares on tJie sides of any quadrilateral exceeds
the sum of the squares on the diagonals by four times the square on the line

joining the middle points of the diagonals.

Let ABCD be any quadrilateral, and let U, V he the middle points of

its diagonals AC, BD respectively.

Then, by VI., since U is the middle point of ^0,

AB^ + BC^=2BU^ + 2AU\

and AD^+ DC-^=2DU^ + 2AU''.

.: AB^+ BC^ + CD^ + DA^=2BU^+ 2DU-2+4AU^.
Again, since V is the middle point of BD,

2B U^ + 2DU^=iUV^+4BVK
But 4AU-=AC^ and 4BV^=BD^.

Hence AB^+ BC^'+CI)^ + DA^=AC-^ + BD^+ 4UV\
Cor. I. The sum of the squares on the sides of a parallelogram is

equal to the sum of the squares on the diagonals.

For the diagonals of a parallelogram bisect each other, and therefore
UV is zero.

Cor. II. If the sum of the squares on the sides of a quadrilateral is

equal to the sum of the squares on the diagonals, the qua,drilateral must be

a parallelogram.

For the points U and V must coincide, and therefore the diagonals of

the quadrilateral must bisect each other, whence it follows that the
quadrilateral must be a parallelogram.
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VIII. The difference of the squares on two sides of any triangle is

equal to tioice the rectangle contained by the base and the projection on the

base of the corresponding median.

Let D be the middle point of the side BC of the triangle ABC, and
let AL be perpendicular to the base, produced if necessary. Then, if

AB be supposed to be greater than AG, it is required to prove that

AB^-AC'^= 2BG.DL.

Since z ALB is a rt. z ,

AB^=BL'^ + AL^ and AC^=CL^+ AL^;
.'. AB^-AG^=BL^-CL^.

But the difference of two squares is equal to the rectangle contained
by their sum and difference [II. A].

Now, in fig. I. [or in fig. iii. where L and G coincide]

BL + LC=BG, and BL-LG= 2DL;
and in fig. ii., BL + GL = 2DL and BL - GL = BG;

.: in all cases, BL^ -GL^=2BC. BL.

Hence AB"^- AG^=2BG .BL.

IX. Divide a given straight line into two parts so that the square on

one part may be double the rectangle contained by the lohole line and the

other part.

Let AB be the given straight line.

[Suppose that AB is divided at G so that AG'^=2AB . BG. Construct

AGDE the square on AG, and also GBFG
the rectangle AB.BO, placing them on
opposite sides of AB, as in the figure.

Then, since EG is by supposition equal

to twice GF, it is natural to produce BF and j

GG to H, K so that FH=BF and GK= GG.
Then sq. £(7=fig. GH. Hence, if we com-
plete the rectangle ABHL and the square

ABFM, we shall have rect. EK=rect. AH.
But rect. AH=2 sq. ^i^=sq. on MB. Hence M
the line LA is produced to E so that

LE.AE =MB\ and .-. ME^-MA'^=MB%
or 3IE'^=MB^ + MA^. We have therefore

the following construction, i]

On AB describe the square ABFM. L K H
1 See p. 102,

E

c7

G~

B
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Join MB, and draw BX i "• to MB and such that BX=BA = MA.
Join MX.

Produce MA to E making ME equal to MX. On AE describe the

square AEDC, then G will be on AB, and AB will be divided at G in the

manner required.

Produce A3I, BF to L, H respectively so that ML =MA and FH=BF.
Join LH and draw CGiT || to ^L and cutting MF, LH in G, K
respectively.

Then, since M is the middle point of LA,

LE.AE + MA^=ME^ [II. 6.

=MX^ [const.

=ilfB2 + BA'2 [1.47.

=MB^+MA^ [const.

Hence LE ,AE= MB^=2AB^-;
.-. rect. £j:=rect. ^H.

Take away the common rectangle AK.

Then sq. £6'= rect. GH=2 rect. C'F.

Hence AG^=2AB.BC.
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MISCELLANEOUS EXERCISES.

1. Divide a given straight line into two parts such that the rectangle
contained by the parts may be the greatest possible.

2. Shew that, if the perimeter of a rectangle be given, its area will

be greatest when it is a square.

3. Shew that the greatest right-angled triangle, which has the

sum of the sides containing the right angle equal to a given straight line,

is isosceles.

4. Divide a given straight line so that the sum of the squares on the

two parts may be the least possible.

5. Prove that, of all right-angled parallelograms having the same
perimeter, the square has the shortest diagonals.

6. Given that the sum of the squares on two lines is equal to one
given square, and that the difference of the squares on the lines is

equal to another given square ; find the lines.

7. Prove Euler's Theorem that, if any four points A^ B, C, I) be
taken in order on a straight line, then will

rect. AB, CD-hrect. AD^ BC =reot. AC, BD.

8. Find a line the square on which is one-eighth the square on
a given line.

9. Divide a straight line into two parts such that the rectangle

contained by the parts may be equal to one-eighth of the square on the

given straight line.

10. Divide a given straight line, internally or externally as the case

may be, into two parts the difference of the squares on which is equal to

a given square.

11. From one angle of a triangle a perpendicular is drawn on the
opposite side, and the square on the perpendicular is equal to the
rectangle contained by the. segments of the opposite side. Shew that the
triangle must be right angled.

12. If be the orthocentre [see page 101] of the triangle ABC, shew
that the sum on the squares of BC and OA is equal to the sum of the
squares on CA and OB and also to the sum of the squares on AB and OC.

13. Shew that the locus of a point which moves so that the difference

of the squares of its distances from two fixed points is constant, is a
pair of parallel straight lines.

14. D is any point on the base BC of an equilateral triangle ABC

;

shew that the square on ^D exceeds the sum of the squares on CD and
DB by the rect. CD, DB.
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15. Shew that the sum of the squares on the lines joining any point
to two opposite vertices of a rectangle is equal to the sum of the squares
on the lines joining the same point to the other two opposite vertices.

16. The sum of the squares on the four lines joining any point
to the four corners of a square is equal to four times the square on
the line drawn to the centre of the square together with the square on
one of the diagonals of the square.

17. ABCD is any quadrilateral and F, G, H, K are the middle
points of AC, BD, AD, BG respectively. Shew that the simi of the squares
on ^JS and GD is equal to twice the sum of the squares on FG and HK.

18. In any quadrilateral the sum of the squares on the diagonals is

equal to twice the sum of the squares on the lines joining the middle
points of opposite sides.

19. Shew that, if two sides of a quadrilateral are parallel, the
squares on the diagonals are together equal to the squares on the two
sides which are not parallel and twice the rectangle contained by the
sides which are parallel.

20. If squares ABDE, AGFG be described outwards on the sides

AB, AG of the triangle ABG ; shew that the sum of the squares on EG
and jBC is double the sum of the squares on AB and AG.

21. Shew that, if squares be described on the sides of any triangle

and adjacent corners of the squares be joined so as to form a hexagonal
figure, the sum of the squares on the sides of the hexagon is equal to four
times the sum of the squares on the sides of the original triangle.

22. A point is taken within a rectangle, and straight lines are
drawn from it to the angular points of the rectangle, and others per-
pendicular to the sides. Prove that the sum of the squares on the former
is double the sum of the squares on the latter, and that these sums are
least when the point is the centre of the rectangle.

23. The line AB is bisected in G and produced to D so that the
square on GD is equal to the sum of the squares on AB and BG; shew
that the rectangle AD, BD is equal to the square on AB.

24. Shew that three times the difference of the squares on the lines

drawn from the vertex of a triangle to the points of trisection of the base
is equal to the difference of the squares on the two sides of the triangle.

25. Points D, E are taken on the base BG of the triangle ABC such
that BD =DE=EG ; shew that the sum of the squares on AB and AG is

equal to the sum of the squares on ^D and AE together with four times
the square on DE.

26. The squares on the straight lines drawn from the right angle to
the points of trisection of the hypotenuse of a right-angled triangle are
together equal to five times the square on the line between the points of
trisection.
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27. Inscribe a square within the greater of two given squares such
that its area may be the mean of the areas of the two given squares.

28. Divide a straight line into two parts such that the rectangle
contained by them may be equal to the square on their difference.

29. rind the locus of a point P which moves in the plane of the
triangle ABC so that twice the square on FA is equal to the sum of the

squares on FB and BG,

30. ^j -S are two given points, and CT> a given straight line not
perpendicular to the line joining AB. Find the point P on the line CD,
produced if necessary, such that the difference of the squares on BA and
BB may be equal to twice the square on AB.

31. Shew that, if the sum of the squares on two opposite sides of a
quadrilateral is equal to the sum of the squares on the other two opposite
sides, the diagonals of the quadrilateral must be at right angles.

32. -^B is divided into two parts at C, and D, E are the middle
points of ^C and GB respectively. Shew that the square on J.£ together

with three times the square on EB are equal to the square on BD
together with three times the square on BA.

33. Find the locus of a point which moves so that the sum of the
squares on the lines joining it to four fixed points is constant, and find

the position of the point when this sum is least.

34. Shew that the sum of the squares on the distances of the
middle point of either of the diagonals of a quadrilateral from thfi four»

angular points is equal to half the sum of the squares on the sides.

35. The sum of the squares on the medians of a triangle is equal to
three-fourths of the sum of the squares on the sides.

36. If (^ is the centroid of the triangle ABG^ the sum of the squares
on the sides of the triangle is three times the sum of the squares on the
lines GA, GB, GC.

37. Find two straight lines having given any two of the following

:

(i) their sum, (ii) their difference, (iii) the rectangle contained by
them, (iv) the sum of the squares on the lines, (v) the difference of the

squares on the lines.

[Taking the above five quantities two together in all possible ways we
shall have ten different problems. One of the ten problems, namely, the

case when we have given the rectangle contained by the lines and the
difference of their squares, cannot be solved without the aid of Book III.]

38. Produce a given straight line so that the square on the whole
line produced may be double the square on the part produced.

39. Shew that the area of any square inscribed in a given square is

greater than that of any inscribed rectangle whose sides are unequal.
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40. Shew that the perimeter of any square inscribed in a given

square is greater than that of any inscribed rectangle whose sides are

unequal.

41. Divide a given straight line into two parts so that the rectangle

contained by the whole line and one of the parts may be equal to the

rectangle contained by the other part and a given straight line.

42. Divide a given straight line into two parts so that the rectangle

contained by one segment and one given straight line may be equal

to the rectangle contained by the other segment and another given

straight line.

43. Divide a given straight line into two parts such that the

rectangle contained by the whole line and one of the parts may be four

times the square on the other part.

44. Divide a given straight line into two parts such that the

rectangle contained by the whole line and one part may be one-fourth

the square on the other part.

45. Divide a given straight line into two parts such that the square
on one part may exceed the rectangle contained by the whole line and
the other part by a given square.

46. Divide a given straight line into two parts so that the sum
of the squares on the whole line and one part may be equal to five times

the square on the other part.

47. Produce a given straight line so that the sum of the squares on
the whole line so produced and the part produced may be three times the

square on the given line.

48. Divide a given straight line into two parts so that the rectangle
contained by one segment and a given straight line may be equal to the
square on the other segment.

49. Shew that, if the area of a quadrilateral be given, the perimeter
will be least when it is a square.

50. Shew that, if the perimeter of a quadrilateral be given, the area
will be greatest when it is a square.
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BOOK III.

DEFINITIONS.

1. A circle is a plane figure bounded by one li/ie^ called

(he circumference, arid is such that all straight lines drawn
from a certain jfoint tvithin it, called the centre, to the circum-

ference are equal to one another.

2. A straight line drawn from the centre of a circle to the

circumference is called a radius.

3. A straight line drawn through the centre ofa circle and
terminated both ways by the circumference is called a diameter
of the circle.

Although, by the above definition, a circle is the figure enclosed by
its circumference, the circumference itself is often called the circle when
no ambiguity would arise.

The following simple properties of a circle, wliich are not,

however, directly proved by Euclid, are of importance, and
follow at once from the definition. Some of these properties

are required, and have already been considered, in Book I.

s. B. K 11
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(i) A circle is a closed figure.

(ii) The centre of a circle is within the figure.

It will be seen that (i) and (ii) are implied in the definition of a circle.

(iii) Any straight line drawn through a point within a

circle will, if produced sufficiently far in both directions, cut

the circumference in two points. [See note on I. 2.]

(iv) A point is within or without a circle according as its

distance from the centre is less or greater than the radius.

(v) All diameters of a circle are equal, and each is bisected

at the centre.

For the length of any diameter is clearly twice the length of a radius.

(vi) Two circles which have equal diameters, or equal

radii, are equal.

This is given as a definition by Euclid, but it is really a theorem
which is easily proved by superposition. For, if one circle be applied to

the other so that their centres coincide ; then, since the radii are equal,

every point on the circumference of one circle will coincide with a point

on the circumference of the other. Thus the circles altogether coincide.

(vii) A circle is bisected by any diameter, and each

portion is therefore called a semi-circle.

For, if one of the two portions into which a circle is divided by a

diameter be applied to the other, so that the common diameters coincide,

every point on the circumference of one portion will, since all radii of a
circle are equal, coincide with a point on the circumference of the other,

so that the two portions will then altogether coincide.

(viii) Two circles which have the same centre cannot

intersect.

For, any point on the circumference of the circle which has the

smaller radius is at a distance from the centre of the larger circle which
is less than the radius of that circle. Hence every point on the circum-

ference of the smaller circle must be within the larger.

(ix) Equal circles have equal radii.

(x) A circle can only have one centre.

For, if the two points 0, 0' could both be centres of a circle, and if

A, B were the extremities of the diameter through and O' ; then and
<y would both bisect AB, which is impossible.
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4. Any part of tJte circumference of a circle is called an
arc.

5. Any straight linejoining two points on the circumference

of a circle is called a chord. The straight line joining the

extremities of any arc is called the chord of the arc.

D
Thus the whole ckcumference of the circle ABCD is divided at the

points A and C into the two arcs ABC, ADC ; and the straight line AC
is the chord of each of these arcs.

6. A segment of a circle is the figure contained hy a
chord and either of the two arcs into which it divides the cir-

cumference.

Thus the chord AC, in the figure above, divides the circle ABCD into
the two segments ABC and ADC.

7. Circles which have tlie same centre are said to he con-
centric.

8. A straight line is said to touch a circle when it meets

the circle but does not cut it at the jmint of meeting. T']ie

straight line is called a tangent to the circle^ and the 2)oint

which is common to the straight line and the circle is called

the point of contact of the tangent.

In passing along the line FDG from F to G we pass at D from one
side of the arc to the other, so that the line cuts the circle at D.

The line BAC, however, touches the circle ADE at the point A,
because the line and the circle have the point A in common and the line

does not cut the circle at A.

11—2
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9. Circles are said to touch one another ivhen they

meet^ hut do 7tot cut one another at the point of rneethifj.

The circle of which PBQ is an arc does not touch the circle ABC, for

of the two points P, Q near the point B, and on opposite sides of it, one
is without and the other is within the circle ABC, so that the circles FBQ
and ABC cut one another at the point B.

The circle DAE touches the circle ABC, for they have the point A in

common, and any two points D, E on one circle near the point A^ and
on opposite sides of it, are both within the circle ABC, so that the two
circles do not cut at the point A. So also the circle FCG touches the

circle ABC, for the point G is common, and any two points F, G on one
circle near the point C, and on opposite sides of it, are both outside the

circle ABC, so that the two circles do not cut at C.

In the diagram the circle DAB touches the circle ABC
internally^ and the circle ABC touches the circle DAE
externally ; also each of the circles ABC, FCG touches the

other externally.

It will be proved later on that, if one circle touch another

internally, every point of the first circle, except the point of

contact itself, will be within the other circle ; it will also be

proved that if two circles touch each other externally, every

point of either circle, except the point of contact, will be out-

side the other circle. [See Prop. XIII.]

10. The length of the perpendicular drawnfrom a point to

a straight line is called the distance of the point from the

straight line.

Thus two chords of a circle are said to be equally distant from the
centre of the circle when the perpendiculars drawn to the chords from
the centre are equal; also when the perpendiculars from the centre on
two chords are unequal, the chord on which the x' is the greater is

farther from the centre than the other chord.
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11. The angle in a segment of a circle is the angle

contained by the two straight lines drawnfrom any point of tlie

hounding arc to the two extremities of its chord.

Thus the angle APB is an angle in the segment ACB.

The angle APB is also sometimes said to stand on the arc

AD£.

12. A sector of a circle is the figure bounded by two
radii and the arc of a circle intercepted between them.

Thus the figure AOCD is a sector of the circle ABCD, OA and OC
being radii of the circle.

13. Segments of circles which contain equal anghs are said
to bfi similar.

I
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PROPOSITION I. Problem.

To Jind the centre of a given circle.

Let ABC be the given circle. It is required to find its

centre.

Take any two points A, B on the circumference. Join AB^
and bisect it in C. Through C draw a line ± '^ to AB, and
produce this line both ways to meet the circumference in the

points E, F. Bisect EF at 0.

Then the point is the required centre.

For, if possible, let some point G, which is not on EF, be
the centre. Join AG, BG and CG.

Then, in the A' ACG, BCG

AG=CB,
CG=CG,

[and GA = GB.

.'. Z ACG = adjacent Z BCG.

/. ^^(76^ is a right angle.

But Z AGE is a right angle.

.'. Z ACG = ZACE, which is impossible.

It is therefore impossible for any point not on the line EF
to be the centre ; the centre must therefore be on the line EF.

But, if the centre is on the line EF, it must be at 0, the

middle point of EF, for the distances of E and F from every

other point on EF are unequal.

Hence the point is the centre.

Cor. A line which bisects any chord of a circle and is at

right angles to it will pass through the centre.

[Const.

[Hyp.

[1.8.



BOOK III. 167

PROPOSITION II. Theorem.

If any two points he taken on the circumference of a circle,

the straight line which joins them will be entirely within the

circle.

Let ABC be a circle and A, B any two points on the

circumference. Then it is required to prove that every point on
the line AB, between A and i?, is within the circle.

Find the centre of the circle. [III. 1.

In AB take any point i), and join OD.

Then the exterior Z ADO > int. opp. Z. DBO. [I. 16.

But, since OA = OB, Z. ABO = Z OAB. [I. 5.

Hence Z ADO > Z. GAD,

But the greater side of a triangle is opposite to the greater

angle

;

.-. OA>OD; [I. 19.

and since the distance of the point D from the centre is less

than the radius of the circle, the point D must be within the

circle.

Thus any point on the line AB between A and B is

within the circle.

Cor. I. //* AB or BA be produced, every point on tJie line

produced is without the circle.

For, if E be any point on AB produced, and OE be joined, the
ext. z DBA > int. opp. Z OEB ; but lOAB= l OBA ;

.-. Z OAB > Z OEA ;

/. OE > OA . Hence E is without the circle.

Cor. II. A straight line cannot cut a circle in more tlian

two points.
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PROPOSITION III. Theorem.

A straight line drawn from the centre of a circle to bisect

any chord which does not pass through the centre, ivill cut it at

right angles; and conversely^ a straight line drawn through the

centre of a circle perpendicular to any chord vnll bisect that

chord.

Let be the centre of the circle ABC, and D the middle

point of any chord AB, which does not pass through 0. Join

01). Then, it is required to prove that ODis ± ^" to AB.

Join OA, OB.

Then, in the A« ODA, ODB

V( AD = DB, [Hyp.

\ OD = OD,

iand radius OA = radius OB',

/. Z ODA = adjacent Z ODB

;

/. ODis ±' to AB.

Now let OD be drawn from the centre perpendicular to

any chord AB. Then, it is required to prove that AD = DB.

In the triangles ODA, ODB
ZODA=ZODB, [Hyp.

ZOAD= Z OBD, since OA = OB,

and OA = OB, these equal sides being opposite

to equal angles

;

AD^DB. [I. 26.
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It follows from Props. I. and III. that a straight line

(i) passes through the centre of a circle,

(ii) is at right angles to a chord of the circle,

and (iii) bisects that chord,

provided that it satisfies any two of these conditions.

Ex. 1. The locus [see p. 86] of the middle points of all parallel chords

of a circle is the diameter perpendicular to the chords.

Ex. 2. The locus of the centres of all the circles which pass through
two given points is a straight line.

Ex. 3. Through any point within a circle draw a chord which will

be bisected in O.

Ex. 4. Shew that the line joining the middle points of any two
parallel chords of a circle passes through the centre of the circle.

Ex. 5. Shew that the line joining the middle points of any two
parallel chords of a circle is perpendicular to the chords.

Ex. 6. Shew that, if the line joining the middle points of two chords
of a circle be perpendicular to one of the chords, it will also be perpen-
dicular to the other.

Ex. 7. The line joining the middle points of two chords of a circle

passes through the centre ; shew that the chords must be parallel.

Ex. 8. AB, AC &re equal chords of a circle; shew that they make
equal angles with the radius through A.

Ex. 9. The chords AB, AG of & circle make equal angles with the
radius through -4. Shew that ^£=.4(7,

Ex. 10. Through two given points A ,B describe a circle whose diameter
will be equal to a given straight line which is not less than the straight

line AB.

Ex. 11. Shew that, if two chords of a circle be equal, they will subtend
equal angles at the centre of the circle. Prove also the converse theorem.

Ex. 12. Shew that, if two chords of a circle be unequal, the greater

chord will subtend the greater angle at the centre.
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PROPOSITIO:^r IV. theorem.

Two chords of a circle, which do not both pass through the

centre, cannot bisect each other.

Let ABCD be a circle, and AC, BD any two chords

intersecting in the point E which is not the centre of the

circle. Then, it is required to prove that E cannot he the

middle point both of AC and of BD.

For, if one of the chords pass through the centre, that

chord cannot be bisected in the point E which is not the

centre, since the centre is the middle point of every diameter

of a circle.

And, if neither of the chords pass through the centre, find

the centre, suppose, and join OE.

Then, if both AC and BD were bisected in E, the line OE
through the centre of the circle would, by the preceding

proposition, be perpendicular both to AG and to BD ; and this

is impossible.

It is therefore impossible for the chords AB and CD to

bisect each other.

Ex. 1. Shew that the diagonals of any parallelogram inscribed in a
circle (that is, which has its vertices on the circumference of the circle)

intersect in the centre.

Ex. 2. Shew that any parallelogram inscribed in a circle is a rectangle.

Ex. 3. Shew that a rhombus inscribed in a circle is a square.

Ex. 4. Shew that, if AB, CD be any two diameters of a circle ; then

At B, C, D will be at the angular points of a rectangle.
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PROPOSITION y. Theorem.

Tvjo circles which have a coinmon point cannot have the

same centre.

Let the two circles BACy DAE have the point A in

common. Then, it is required to prove that the circles cannot

have a common centre.

For, let be the centre of the circle BAG. Join OA.

Then, whether the circles cut or touch one another at the

point A, unless they altogether coincide with one another, it

must be possible to draw some line through which will meet
tlie circles in different points. Let OXY be such a line

meeting the circle BAG in Y and the circle DAE in X. Then,

since is the centre of the ®BAG,

OY=OA.

But F is not equal to OX
;

,*. OA is not equal to OX.

Hence is not the centre of the circle DXAE.

Euclid divides this very simple proposition into two,

which are enunciated thus

:

Prop. V. If two circles intersect, they cannot have tlie same
centre.

Prop. VI. If one circle touches another internally they

cannot have the same centre.

Cor. Two concentric circles cannot have a common point.
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PROPOSITION YII. Theorem.

If from any jwini within a circle which is not the centre,

straight lines be drawn to the circumference^ the greatest is tJiat

which passes through the centre, and the remainder of that

diameter is the least; and of any two other such lines the

greater is that which is the nearer to the greatest ; also from, the

same point there can only he drawn two equal straight lines to

the circumference, one being on each side of the diameter through

the point.

Let ABC be a circle whose centre is 0, and let P be any

point within it. Through P draw the diameter LOPM. Then,

it is required to prove

L

(i) that PL, in which the centre lies, is the longest line

which can be drawn from P to the circumference

;

(ii) that PM, the remainder of the diameter, is the least

;

(iii) that of any two other straight lines drawn from P to

the circumference, the longer is that which makes the smaller

angle with PL ; and

(iv) that only two equal straight lines can be drawn from

P to the circumference, and that they must be on opposite

sides of the diameter LOPM.
Let PB be any straight line from P to a point in the

circumference. Join OB.

Then PO and OB together are > PB.

But the radii OB and OL are equal;

.-. PO and OL are > PB, that is PL > PB.

Thus, PL is greater than any other straight line from P to

the circumference.
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Again, PB and PO together are > OB, and OB = OM ;

.-. Pi? and PO>OM,

that is, P^ and PO > PM and Pa
Take away PO, which is common ; then PB > PM,

Thus, PM is less than any other straigJit line from P to the

circumference.

Now let PB and PC be any two lines from P such that

PB makes a smaller angle with PL than PC does

;

then the point B must be between L and C on the arc, so that

/LPOB>^POC.

Hence, in the A« POB, POC
radius OB = radius 0(7, PO = PO,

and included ZPO^> included Z POG

;

,\ PB>PC. [I. 24.

Thus, ofany two straiyJit lines from P to tlie circumference,

tliai is the yreater which makes the sinaller angle with the

longest line PL.

This proves that no two lines from P to the circumference
can be equal which are on the same side of the diameter LPM.
If, however, any two radii 00, OD are on opposite sides of

LOM but make equal angles with it, and if PC, PD be joined;

then in the A« POC, POD

radius OC= radius OD, PO = PO,

and included Z POC = included Z POD;

/. PC = PD, and Z CPO = Z DPO.

Thus, there is one other, and only one otiier, straight line

from P to the circumference which is equal to ariy line PC, and
these equal lines make equal angles with the diameter through P
and are on opposite sides of it.

The particular case should be noticed when P is on the circumference,
and when therefore the least distance from P of a point on the circumfer-
ence is zero.
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PROPOSITION YIII. Theorem.

Iffrom any point without a circle straight lines he drawn
to the circumference, the greatest is that which passes through

the centre, and the least is that which tvhenproducedpasses through
the centre, and of any two others, that which subtends the greater

angle at the centre is the greater; also from, the sarne point there

can only be drawn two equal straight lines to the circumference.

Let ABC be any circle whose centre is 0, and let P be

any point without the circle. Let the straight line PO cut

the circle in M, and PO produced cut the circle in L.

Then, it is required to prove

(i) that PL is the longest straight line which can be

drawn from P to the circumference;

(ii) that PM is the shortest

;

(iii) that of any two other straight lines drawn from P
to the circumference that is the greater which subtends the

greater angle at the centre ; and

(iv) that only two equal straight lines can be drawn from
P to the circumference.

Let PB be any straight line from P to a point in the

circumference. Join OB,

Then PO and OB together are > PB.

But the radii OB and OL are equal

;

/. PO and OL > PB, that is PL > PB.

Thus, PL is greater than any other straight line from P to

the circumference.
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Again, PB and BO are together > OP ; and OB=OM\
:, PB and 0M> OP,

that is, PB and 0M> OM and MP.

Take away OM, which is common,

then PB>PM.

Thus, PM is less than any other straight line from P to the

circumjerence.

Now let PB and PD be any two straight lines from P to

the circumference, and let Z POB be greater than Z POD.

Then, in the A" POB, POD
radius BO = radius £>0,

OP=OP,
I and included Z ^6>P > included Z DOP

;

.\PB^PD, [1.24.

Thus, ofany two straight lines from P to the circumference,

that is the greater which svhtends the greater angle at the centre.

This proves that no two lines from P to the circumference

can be equal which are on the same side of the line PO. If,

however, any two radii OD, OC are on opposite sides of PO
but make equal angles with it, and if PD and PC be joined

;

then, in the A« POD, POG

radius OD = radius OC,

OP=OP,
land included Z POD = included Z POG

\

,\ PD = PG.

Thus, there is one otiier, and only one otJier, straight line

from P to the circumference which is equal to any such line

PD, and these equal lines are on opposite sides of PO and
subtend equal angles at the centre.
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PROPOSITION IX. Theorem.

Iffrom a point within a circle more than two equal straight

lines can he drawn to the circumference^ that 'point must he the

centre of the circle.

Let ABC be a circle, and let the three lines OA, OB, OC,
drawn to the circumference from a point within the circle,

be equal ; then, it is required to prove that the point is the

centre of the circle.

Join AB, BC and bisect them in the points i>, E re-

spectively. Join OD and OE,

Then, in the A« ODA, ODB

AD = BD, [Co7isL

DO = DO,

and radius 0^ = radius OB;

,\ ZOZ>^ = adjacent Z.ODB;

,', OB is 1.^ to AB.

And, since DO is ±^ to AB and bisects AB, the centre of the

circle must be in the line DO. [III. 1 Cor.

Similarly the centre of the circle must be in the line EO.

Hence the centre must be at 0, the only point which is

common to the lines DO and EO*.

* Euclid gave two proofs of Prop. IX. , of which the above is the first.
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PROPOSITION X. Theorem.

One circle cannot cut anotJier in more than tvuo points.

If it be possible let the circles A£Cj BBC cut one another

in the three points B, C, E.

1
Y ^

^

F X

(T —:zy^

Join BCj CE and bisect them in the points F^ G re-

spectively. Through F draw FX ± "" to BC, and through G
draw GY i.'' to CE. Then the lines FX and GY will

intersect each other since the lines to which they are at right

angles intersect each other. Let FX^ (tF intersect in 0.

Then BG^ a chord of each circle, is bisected at right angles

^y FX;

/. the centre of each circle is in the line FX. [III. 1. Cor.

For the same reason, the centre of each circle must be in

the line GY.

Hence 0, the point of intersection of FX and GY^ must
be the centre of both circles.

But it has been proved that two circles which have a

common point cannot be concentric*. [III. 5.

Hence two circles cannot have more than two common
points.

Cor. Two circles cannot have a common arc.

* Euclid gave two proofs of Prop. X. of which the above is the first.

S. B. E. 12
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The line joining the centres of two circles will bisect their

common chord at right angles.

For two circles cannot cut one another in more than two
points [III. 10], and the line which is perpendicular to their

common chord and bisects that chord must pass through both
centres [III. 1. Cor.].

The following proof may be given.

Let Aj B be the points of intersection of two circles whose
centres are 0, X respectively.

Join OA, OB, XA, XB, AB and OX, and let C be the

point of intersection of AB and OX, produced if necessary.

Then, in the A« OAX, OBX

OA = OB, AX= BX and OX is common

;

.\^AOX=ZBOX.

Then, in the A« COA, COB

OA = OB, OC is common, and /:AOC = Z BOC

;

.\AC = CB and Z OCA = adj. Z OCB.

Thus OX bisects AB and is at right angles to it.
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The following problem is of importance

:

179

2^0 describe a circle whose circumference will pnss through

three given points not on tJie same straight line.

Let A, B^ C he, the three given points.

Join ABf BG and bisect them in 7), E respectively.

Draw DX ± ^ to ^^ and ^Z i. "^ to CB. Then the lines

DX and EY will intersect since the lines to which they are

± ^ intersect. Let be the point of intersection of DX^ EY,

Join OA, OB, OC.

Then, in the A" ADO and BDO

AD = BDf DO \s common and included angles ADO and

BDO are equal, being rt. Z^

Hence AO^BO.

Similarly BO = CO, so that AO =BO = CO.

Hence, a circle described with centre and radius AO
will pass through the three points A, B, C, and therefore will

be the circle required.

Ex. Find a pomt which is equidistant from three given points.

12—2
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PROPOSITIOlSrS XI. AND XII. Theorems.

If one circle touch another^ internally or externally, tlie

straight line joining tlieir centres, prodticed if necessary, will

2)ass through the point of contact.

Let be the centre of the circle ABC, and let X be the
centre of any other circle which passes through the point A.

Then, it is required to prove that if the two circles touch

one another at the point A, the point A must be on the line OX,
or OX produced.

For, if the point A be not on the line OX, or OX produced,

we can take two points F, Q on the circle whose centre is X
near the point A but on opposite sides of it, P, Q being both
on the same side of OX. Join XP, XA, XQ and OP, OA, OQ.

Then Z OXP < Z OXA and Z OXA < Z. OXQ.

Hence, in the A* OXP, OXA radius XP = radius XA,
XO is common, and /.OXP< ZOXA;

/. OP<OA.

So also, since Z OXA < OXQ, OA < OQ.

Now, since OP < radius OA, P is within the O ABC;
and, since 0Q> radius OA, Q is without the © ABC.

Hence, if A, the common point of the two circles, is not on
the straight line OX, or OX produced, the arc PAQ of the

circle whose centre is X will cut the circle ABC, which is

contrary to the hypothesis that the two circles touch at A.
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Hence, if two circles touch each other, the line joining their

centres, produced if necessary, must pass through their common
point.

Conversely. If two circles have a common jyoint which is

071 the line joining their centres, or on this line produced^ the

two circles will touch one another at that point.

Let 0, X be the centres of two circles which have a common point A
on the hne OX or OX produced.

First, let the common point be in OX produced, as in the figure on
the left.

Take any point P on the circle whose centre is X, and join PX, PO.

Then the sum of PA' and XO>PO.

Butrad. PX=rad. ^Z;

.-. the sum of AX and XO>PO,

that is, AO>PO.

Hence P must be within the circle whose centre is 0. And, as every
point on the circle centre X, except the point J, is within the O centre 0,
the two circles cannot cut at A, and must therefore touch one another.

In the second figure, if P is any point on the © centre 0,

XPandPO>A'0

>XA and^O;

:.XP>XAy since PO=AO.

Hence P is without the circle centre X. And, as every point, except
A, of the circle centre is without the circle whose centre is A, the two
circles cannot cut at A, and must therefore touch one another.
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PROPOSITION XIII. Theorem.

Two circles cannot touch each otlter in more thari one point.

Let the circle PAQ touch the circle ABC at the point A.

Then, it is required to prove that the two circles will have no
other conimo7i points.

It has been proved that when two circles touch each other,

the line joining their centres, produced if necessary, will pass

through the point of contact.

Let 0, X be the centres of the circles ABC, PAQ re-

spectively.

First, let the point of contact be in OX produced.

Let P be any point on the circle PAQ, which in the figure

is the circle of smaller radius. Join PX and PO.

Then PO < PX and XO together.

But radius -4X = radius PX

;

. /. PO < AX and XO ; i.e. PO < AO.

And, as the distance of P from the centre of the circle ABC is

less than the radius of that circle, P must be within the

circle ABC.

Thus, if two circles touch each other internally, every point

on the smaller circle, except the 2>oint of contact, is within the

larger, so that the two circles have no other points in common,
and therefore caimot touch (or cut) one another again.
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Next, let the point of contact be in OX,

Let P be any point on the circle PAQ. Join P-ST, PO.

Then OP and PX are together > OX;

i.e. OP and PX > OA and ^X

But radius PO = radius AO ; /. ZP > X^.

And, as the distance of P from the centre of the circle ABC
is greater than the radius of that circle, P must be without

the circle ABC.

Thus, if two circles touch each other externally, every point

on one of the circles, except the point of contact, is outside the

other circle, so that the two circles have no other points in

common, and therefore cannot touch (or cut) one another

again.

Ex. 1. If two circles touch each other, the distance between their

centres is equal to the sum or to the difference of the radii.

Ex. 2. If two circles cut one another the distance between their

centres must be less than the sum and greater than the difference of the

radii.

Ex. 3. Find the locus of the centre of a circle which touches a given
circle at a given point.

Ex. 4. A circle of given radius touches a given circle, shew that its

centre lies on one or other of two concentric circles.

Ex. 5. Find the two points, one on each of two circles external to

one another, which are farthest apart, and the two points which are

nearest together.

Ex. 6. With a given point as centre describe a circle to touch a
given circle. How many such circles can be drawn?

Ex. 7. Describe a circle of given radius to touch two given circles.

Ex. 8. Draw a circle of given radius to touch a given circle and pass
through a given point.

Ex. 9. PP\ QQ' are parallel diameters of two circles which touch
one another. Shew that either PQ and P'Q' or PQ' and P'Q will pass
through the point of contact.
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PROPOSITION XIV. Theorem.

Equal chords in a circle are equally distantfrom the centre;

and conversely
i
chords which are equally distantfrom the centre

are equal.

Let AB, CD be equal chords in a circle whose centre is 0.

Then, it is required to prove that they are equally distant

from 0.

Draw OE^ OF perpendicular to AB^ CD respectively.

Join OA, DC.

Then, •/ OE is drawn from the centre ± ^ to ^^,

/. AE = EB, and /. ^J^=half AB.

Similarly CF= hsi\i CD.

But, by hypothesis, AB=CD; .-. AE^CF;
.*. sq. on ^^ = sq. on CF.

The radius OA = radius OC

;

,\ sq. on OA = sq. on OC.

But, since OEA is a rt. Z ®,

sq. on OA = sq. on AE with sq. on OE.

So also sq. on OC = sq. on CF with sq. on OF.

Hence

sq. on AE with sq. on OE = sq. on CF with sq. on OF.

And sq. on ^^ = sq. on CF;

sq. on 0^= sq. on OF,

and/. OE=OF.
Thus, if the chords AB and CD are equal, they are equally

distantfrom the centre.



BOOK III. 185

Conversely, let the chords AB and CD be equally

distant from the centre ; then, it is required to prove that the

chords are equal.

The same construction being made, we have proved that

sq. on ^^ with sq. on OB = sq. on CF with sq. on OF,

But sq. on 0^=sq. on OF; since, by hyp., 0E=^ OF,

/• sq. on -4i^= sq. on CF;

and.-. AF=CF,

But it has been proved that -4^ = half AB, and that
Ci^=half CD.

Hence AB = CD.

Thus, i/ tJie chords AB cmd CD are eqtiaUy distant from
the centre, they are equal in length.

Ex. 1. Find the locus of the middle points of equal chords of a
circle.

Ex. 2. Through a point within a circle two chords are drawn
equally inclined to the diameter through ; shew that these chords are
equal.

Ex. 3. Two equal chords AB, CD of a circle intersect in O ; shew that
^40 is equal to CO or to DO.

Ex. 4. Two chords AB, CD of a circle intersect in 0, and AO= CO ;

shew that £0= DO.

Ex. 5. Two parallel chords of a circle are cut by a diameter in two
points equally distant from the centre ; shew that the chords are equal.

Ex. 6. Through two points on a diameter of a circle equally distant
from the centre two parallel chords are drawn ; shew that the extremities
of these chords are at the angular points of a parallelogram.

Ex. 7. Draw a chord of a given circle equal to one given chord and
parallel to another.
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PROPOSITION XV. Theorem.

A diameter is the greatest chord of a circle ; and, of otJiers,

a chord which is nearer the centre is greater than one more
remote ; and, conversely, of any two chords the greater is that

which is nearer to the centre.

First, let ^^ be any diameter of a circle whose centre is

0, and let CD be any other chord. Then, it is required to

prove that AB>CD.

Join OC, OD.

Then, since all the radii of a circle are equal

;

OA = OB = OC = OD.

Hence sum of OG and OD = sum of OA and OB - AB.

But sum of OC and OD>CD]

,\ AB > CD.

Next, let UF be any chord further from the centre than

CD. Then, it is required to prove that CD > EF.

Draw OG, OH a."" to CD, EF respectively, and join OE.

Then, since OG and OH are the i" from the centre on
CD, EF respectively, CG = GD and EH .. HF; [III. 3.

/. CG = half CD and EH = half EF.
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Since /. OGC is a right Z. %

sq. on 00 = sq. on OG with sq. on GO. [I. 47.

So also, sq. on OE-=s(\. on OZTwith sq. on ^^. [I. 47.

But rad. (?(7 = rad. (9^; /. sq. on 0(7 = sq. on OE.

Hence

sq. on OG with sq. on 6^(7 = sq. on OH with sq. on EH.

But sq. on 06^ < sq. on OH, since OG < 0^.

Hence sq. on GC > sq. on EH,

and/. GG>EH
Hence CD>EF,
Thus, i/* Ci> is nearer <Ae centre <Aaw ^i^, ^Aen CD > ^jPl

Conversely, let CD be > -^^; then, it is required to

prove that CD is nearer the centre tlian EF.

The same construction being made, we have proved that

CG = half CD and EH= half EF.

But, by hypothesis, CD>EF;
.', CG > EH and sq. on CG > sq. on EH.

Also, as before

sq. on OG with sq. on CG = sq. on OH with sq. on EH.

But sq. on CG > sq. on EH.

Hence sq. on OG<s({. on OH;

,\ OG<OH.
Thus, if CD > EF, it is nearer tlie centre thorn EF.

Cor. The longest chord of a circle which can he drawn
throtigh a given point within it is the diameter through the

point, and the shortest cluyrd is that which is perpendicular to

that diameter.

Ex. 1. Through a given point within a circle draw the shortest

possible chord.

Ex. 2. If the shortest chords which can be drawn through the points

O, 0' within a circle are equal, prove that 0, 0' are equally distant from
the centre of the circle.



188 EUCLID.

PROPOSITION XVI. Theorem.

The straight line drawn through any 'point on a circle

perpendicular to the radius through that point is a tangent

to the circle, and every other straight line through that point
will cut the circle.

Let A be any point on a circle whose centre is (9, and let

BAG be the st. line through A i.^ to the radius AO] then, it is

required to prove that BAG touches the circle and that any other

straight line through A will cut the circle.

Take any point D on the line BAG, and join OD.

Then, in the A OAD, since Z. GAD is a rt. Z. ",

Z ODA is < a rt. Z ^

Hence Oi) > radius 0^. [1.19.

And, since the distance of any point D on the Hne BAG
from the centre of the circle is greater than its radius, every

point on the line BAG, except the point A, is without the

circle.

.'. BAG does not cut the circle, i.e. it is a tangent to the circle.

Now, let XAY be any other straight line through the

point A.

Draw OE x.-" to XAY.

Then, since Z GEA is a rt. Z\ Z OAE is < a rt. Z «

j

/. GE < radius GA.

Hence the point E must be within the circle, and therefore

the st. line XAY cuts the circle at the point A.
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Ex. 1. If two cii'cles touch one another at any point, the two circles

have the same tangent line at that point.

Ex. 2. Shew that the tangents to a circle at the two extremities of

any diameter are parallel.

Ex. 3. Shew that if two tangents to a circle are parallel, their points

of contact are extremities of a diameter.

Ex. 4. Draw a tangent to a circle which will be parallel to a given

straight line.

Ex. 5. Draw a tangent to a given circle perpendicular to a given

straight line.

Ex. 6. Draw a circle to touch a given line at a given point and to

pass through another given point.

Ex. 7. Shew that the locus of the middle points of all chords of a
circle which are of given length is a concentric circle.

Ex. 8. Shew that all chords of a given circle which are of given

length will touch a concentric circle.

Ex. 9. Shew that a straight line will cut, touch, or lie entirely outside

a circle, according as its distance from the centre is less than, equal to, or

greater than the radius of the circle.

Ex. 10. Two circles are concentric; shew that all chords of the

outer which touch the inner are equal in length.
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PROPOSITION XVII. Problem.

Draw a straight line from a given point so as to touch a
given circle.

Case I. When the given point is within the given circle,

the problem is impossible, for every straight line drawn from
a point within a circle must cut the circle.

Case II. When the given point is on the circumference
of the given circle.

Join the given point to the centre, and draw a straight

line through the given point perpendicular to this radius.

Then, by the preceding proposition, this perpendicular is the
tangent required.

Case III.

circle.

When the given point is without the given

Let A be the given point, and the centre of the given
circle BCD.

Join OA cutting the circle BCD in the point E.

With as centre and OA as radius describe a circle FAG.

Through E draw a st. line ± "^ to OA and produce it to cut

the circle FAG in the points F, G.



BOOK III. 191

Join OF^ OG cutting the circle BCD in the points H^ K
respectively.

Join AH
J
AK. Then AH and AK will be the required

tangents from A to the circle BCD.

For, in the A« OEF, OHA, '

radius OE = radius OH,

radius OF = radius OA,

and included Z AOF is common

;

,\ Z.OEF=Z.OHF.

But, by construction, Z OEF is a rt. Z ®

;

/. Z O^i^ is a right angle.

But a st. line drawn from the extremity of a radius of a
circle and at rt. Z. " to it, is a tangent to the circle. [III. 16.

Thus ^^ is a tangent to the circle BCD.

So also ^^ is a tangent to the circle BCD.

Cor. The two tangents drawn to a circle froni any
external point are equal in length.

For, since OHA and OKA are rt. Z ^,

sq. on OA = sq. on OH with sq. on AH,

and sq. on OA = sq. on OK with sq. on AK.

Hence

sq. on OH with sq. on AH=sq. on OK with sq. on AK.

But sq. on OH = aq. on OKj since radius OZr= radius OK.

,\ sq. on ^jff^=sq. on AK; A AH=AK.
Then, since the three sides of the AAHO are equal

respectively to the three sides of the AAKO, these triangles

are equal in all respects, so that ZAOH=ZAOK and
ZHAO=ZKAO.

Thus two tangents can be dratvn to a circle from any
external point and these two tangents are equal in length; also

the two tangents subtend equal a7igles at the centre, and the line

joining the external point to the centre bisects the angle between
the iange7its.
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PROPOSITION XVIII. Theorem.

The straight line drawn from tht, centre to the point of
contact of any tangent to a circle is perpendicular to that

tangent.

Let the straight line DAE touch the circle ABC, whose
centre is in the point A. Then, it is required to prove that

Z. OAE is a right angle.

D AGE
For, if possible, let OA be not perpendicular to DA E.

Draw OG ± '^ to DAE.

Then, since ZOGA is a. rt. Z «, ZOAG is less than a rt. Z ^;

.\ZOAG<cZOGA;
/. OG < OA.

Hence G would be within the circle, and therefore the line

DAE would cut the circle.

Thus, if DAE is a tangent, it must be ± ' to OA.

PROPOSITION XIX. Theorem.

The straight line drawn from the point of contact of a
tangent to a circle perpendicular to that tangent passes through

the centre of the circle.

It has been proved that a tangent is i'^ to the radius

through its point of contact, that is to say, the line joining

the centre to the point of contact is x ^ to the tangent, and
there is only one perpendicular to a straight line at a given

point; this i.^ must therefore pass through the centre.
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Ex. 1. From any point on the outer of two concentric circles tangents

are drawn to the inner ; shew that these tangents are of constant length.

Ex. 2. Find the locus of a point from which the tangents drawn to

a given circle are of given length.

Ex. 3. Find, when possible, a point on a given straight line such
that the tangents from it to a given circle may be of given length.

Ex. 4. Shew that the two tangents at the extremities of any chord

of a circle make equal angles with the chord.

Ex. 5. Shew that, ii A, B are any two points on a circle, the

perpendicular from A on the tangent at B is equal to the perpendicular

from B on the tangent at A.

Ex. 6. Find the locus of the centres of circles which touch two
parallel straight lines.

Ex. 7. Shew that the locus of the centres of circles which touch two
given intersecting straight lines is two straight lines.

Ex. 8. Find the centre of a circle which touches three given straight

lines which are not all parallel and which do not meet in a point. How
many such circles can be drawn ?

Ex. 9. Describe a circle of given radius to touch two given intersecting
straight lines.

Ex. 10. Shew that a circle can be drawn to tench the sides of any
rhombus.

Ex. 11. Construct a rhombus, having given its angles and the radius
of its inscribed circle.

Ex. 12. Shew that, if the four sides of a quadrilateral touch a circle,

the sum of one pair of opposite sides is equal to the sum of the other
pair.

Ex. 13. Shew that, if the six sides of a hexagon touch a circle, the
sum of three alternate sides is equal to the sum of the other three
alternate sides. Shew also that the corresponding theorem is true for any
polygon of an even number of sides all of which touch the same circle.

Ex. 14. Shew that, if the sides of a quadrilateral touch a circle, the
sum of the angles which one pair of opposite sides subtends at the centre
is equal to two right angles.

Ex. 15. TA^ TB are two fixed tangents to a circle whose centre is O,
and any other tangent to the circles cuts T.4, TB respectively in the
points P, Q. Prove that PQ subtends a constant angle at the centre of
the circle, and that the perimeter of the triangle TPQ is constant.

S. B. E. 13
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Note. Before considering tlie next proposition it is neces-

sary to extend the meaning given to an angle. Hitherto it

has been understood that an angle was less than two right

angles. Euclid never definitely frees himself from this restric-

tion, although, as will be seen, angles of indefinite magnitude
are necessarily introduced in the proof of Euclid vi. 33.

The following definition of an angle should now be sub-

stituted for that previously given.

Def. If a straight line turn about the fixed extremity 0,
starting from the initial 2)osition OA, when it is in any position

OB it is said to have described the angle AOB.

A

As there is no limit to the amount of turning of the line,

an angle. can be of any magnitude whatever. It will, how-
ever, be sufficient for our present purposes to consider angles

not greater than four right angles, that is angles described in

the first complete revolution of the moving line.

An angle greater than two right angles is distinguished in

Geometry by the mark --^ placed over it.

Thus any two straight lines AO, CO, which meet in a
point, form two angles, one of which is greater than and the

other is less than two right angles

;

/
of these angles /.AOC stands for that which is greater than two
right angles, and Z. AOC for that which is less than two right

angles with the same bounding lines, so that Z.AOC and
Z. AOC are together equal to four right angles.
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PROPOSITION XX. Theorem.

An angle at the centre of a circle is double an angle at the

circumference which stands on the same arc.

In the circle ABCD let Z ABC at the circumference and
/. AOC at the centre, 0, stand on the same arc ADC ; then, it

is required to prove that Z AOC is double Z ABC.

'0 A
D D

Join BO and produce it to E.

Then, since AO = BO, Z OBA = Z OAB.

But ext. Z ^0^ = sum of Z » ABO and OAB

;

:. Z AOB = twice Z ABO.

So also Z EOG = twice Z OBC.

Hence, in figure 1,

sum oi Z^ AOE and EOG= twice sum of Z « ABO and OBC
;

i.e. Z AOC ^ twice Z.ABC.

And, in figure 2,

difference of Z. « JE'OC and EOA = twice difference of

Z « O^C and OBA
;

i.e. Z^ 0(7 = twice Z^^C.
Also, in figure 3,

sum of Z 8 AOE, EOC = twice sum of Z ' ABO, OBC

;

i.e. Z AOC = twice ZABC.

Hence, in all cases, the angle at the centre is double the

angle at the circumference toJiich stands on the same arc.

13—2
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/

PROPOSITION XXI. Theorem.

Tlie angles in the same segment of a circle are equal.

Let the angles ABC, ABC be any two angles in the

segment ABDC of the circle ABDC \ then, it is required to

prove that /.ABC^/.ADC.

Let be the centre of the circle. Join OA, OC.

Then the Z.AOC at the centre and the Z. ABC at the

circumference stand on the same arc AEC
\

:. Z.AOG = twice Z.ABC', [III. 20

or, in figure 2, Z AOG = twice Z ABC.

Similarly Z^OC = twice Z.ABC)

or, in figure 2, Z AOC = twice Z ADC.

Hence ZABC = ZADC.

Conversely. T/ie locus of a point at which a given

straight line subtends a constant angle is two arcs of circles

through the extremities of the given line.

"Lei AB be the given straight line, and let G be any point such that

the angle ACB is equal to the constant angle ; also let P be any other

point such that / APB= L ACB, P being on the same side of AB as the

point C
Describe a circle through the points A^ G, B. [p. 179.

Then we have to prove that this circle will pass through the point P.

For, if the circle do not pass through P it will cut BP, or BF
produced, in some point Q. Join QA.
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Then, the angles AQB^ ACB are in the same segment AQCB of a
circle

;

.-. IAQB= I ACB.

But we know that Z APB= lAGB.

Hence lAQB= lAPB\ but this is impossible, for one of these
angles is an exterior angle of the triangle APQ, of which the other is

an interior opposite angle.

Hence the circle through A, C, B must pass through P.

Similarly all the points on the other side of ^i? at which AB subtends
the constant angle are on another arc of a circle through A and B.

PROPOSITION XXII. Theorem.

The opponite angles of a quadrilateral inscribed iii a circle

are togetlier equal to two right angles.

Let ABCD be a quadrilateral inscribed in the circle ABCD;
then, it is required to prove that the swm of any two opposite

angles is equal to two right angles.

Draw the diagonals AG and BD,

Then the /. ' CAD, CBD are in the same segment

;

,\/:GAD=^^ CBD. [III. 21

Also the angles BAG, BBC are in the same segment

;

:./LBAG^/.BDG.
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Hence

sum of /L^ BAG and GAD = sum of Z « BDC, and (7^i>,

i.e. Z .5^2) = sum of Z « ^i)(7 and CBD.

To each of these equals add the Z ^(7i>

;

then

sum of Z « 5^i) and ^CZ) = sum of Z « 52)C, GBD and ^Ci).

But the sum of the three angles BDGy GBD and BGD of

the JS.BGD is equal to two right angles.

Hence the sum of Z * ^^Z) and BGD is equal to two right

angles.

In the same manner it can be proved that the sum of

Z ^ ABG and ADG is equal to two right angles.

Cor. I. If one of the sides of a quadrilateralinscrihed in

a circle he 'produced^ the exterior angle will he equal to the

opposite angle of the quadrilateral.

Cor. II. The two segments into which a circle is divided

hy any chord contain supplementary angles.

Alternative Proof.

Join two opposite angular points A and G to 0, the centre of the
circle. [See figure on the preceding page.]

Then a AOG at the centre and /. ADG at the circumference stand on
the same arc ABG.

:. Z^Da=half jLAOG.

Also A AOG &t the centre and A ABG at the circumference stand on
the same arc ADG.

.'. I ABG=ha.U A AOG.

Hence sum of A " ADG and ABG

=half sum of A " AOG and AOG
=half four right angles

=two right angles.
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Conversely. If two opposite angles of a quadrilateral he

together equal to two right angles, a circle can he described

ahout the quadrilateral.

Let the sum of the angles ABC, ABC of the quadrilateral ABCD be

equal to two right angles. Describe a circle through the three points

A, B, C; then we have to prove that this circle passes through the

point D.

For, if the o« did not pass through D, it would cut CD, or CD
produced, in some point X. Join AX.

Then, since A, B, C, X lie on a circle,

Sum of i' ABC and ^ZC= two right angles.

But, by hyp., sum of Z ' ABC and ^DC= two right angles.

Hence sum of Z ABC and AXC= sum of Z " ABC and ADC.

Hence Z AXG= Z ADC; but this is impossible, for one of these angles

is an exterior angle of the triangle ADX of which the other is an interior

opposite angle.

Hence the circle through A, B, C must also pass through D.

Def. A quadrilateral which is such that a circle can be
described through its four angular points is called a cyclic
quadrilateral.

Ex. 1. Shew that, if ABC be any segment of a circle, and P be a
point on the same side of ^C as the segment ; then will the angle APC
be less or greater than the angle ABC according as P is outside or inside

the segment ABC,

Ex. 2. A triangle is inscribed in a circle ; shew that the angles in

the three segments exterior to the triangle are together equal to four
right angles.

Ex. 3. An equilateral triangle is inscribed in a circle, shew that
the angle subtended by one of the sides at any point of the circle is

twice the angle subtended at that point by either of the other two
sides.

Ex. 4. A square is inscribed in a circle; shew that at any point of

the circumference one side subtends an angle three times the angle
subtended by any one of the other sides.

Ex. 5. A regular hexagon is inscribed in a circle ; shew that at any
point on the circumference one side subtends an angle which is equal to

five times the angle subtended by one of the other sides.

Ex. 6. AB, CD are chords of a circle which intersect in 0. Shew
that the triangles OAC, ODB are equiangular, and that the triangles

OAD, OCB are also equiangular.
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Def. Segments of circles which contain equal angles are

said to he similar.

PROPOSITION XXIII. Theorem.

On the same straight line^ and on the same side of it, there

cannot he two similar segments of circles not coinciding with one

another.

If it be possible, upon the same straight line AB^ and on
the same side of it, let there be the two similar segments of

circles ACB^ ABB, which do not coincide with one another.

Then, since the arcs ACB, ADB do not coincide, it is

possible to draw a st. line APQ cutting them in different

points P, Q respectively.

Join PB, QB.

Then, since the segments are similar, by definition

ZAPB = ZAQB.

But it is impossible that APB, an exterior angle of the
A PQB, should be equal to an interior opposite angle PQB.

It is therefore impossible that the segments ABB, AGB,
which are not coincident, should be similar.
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PROPOSITION XXIV. Theorem.

Similar segments of circles on equal straight lines^ are equal

to one another.

Let ABC, DEF be two similar segments of circles upon
the equal straight lines AC^ DF.

Then, it is required to prove thai the segments ABC, DEF
are equal to one another.

For, if the segment DEF be applied to the segment ABC
so that the point D falls upon the point A and the st. line DF
upon the st. line AG^ the arcs DEF and ABC being upon the

same side of AC,

Then, since DF=AC^ the point i^will fall on the point C.

There will then be two similar segments on the same st.

line AC and on the same side of it; and therefore, by the

preceding proposition, the two segments must altogether

coincide.

/. segment DEF= segment ABC.

It should be noticed that this proposition is equivalent to

the following

:

If two segments of circles on equal straight lines contain

equal angles, the two circles of which the segments are parts are

equal.

From Prop. xx. it also follows that

If in two circles equal chords subtend equal or supplementary
angles at the circumference^ the circles must he equal.

Ex. 1. Prove that, if AB, AC are equal sides of the isosceles triangle

ABC, and B be any point on BC, or BG produced, the circles ABB and
ABC will be equal.



202 EUCLID.

I^ROPOSITION XXV. Theorem.

An arc of a circle being given : co-mplete the circle.

Let ABC be a given arc of a circle. It is required to find
the centre and complete the circle.

Take any point B in the arc, and join AB^ CB.

Bisect AB and BG^ and let B, E be their middle points

respectively.

Through the points i>, E draw the st. lines i>X, DY
respectively ±^ to AB and BG,

Since AB^ CB intersect, DX and EY must also intersect.

Let be the point of intersection.

Then, since DX bisects AB and is ± ' to it, the centre of

the © is in DX. [III. 1 Cor.

So also the centre of the O is in EY.

Hence 0, the only point which is common to DX and EY^
must be the centre of the circle.

The circle of which ABC is an arc can now be completed,

for it is the circle with as centre and OA as radius.
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PROPOSITION XXVI. Theorem.

In equal circles the a/rcs which subtend equal angles at the

centres, or at the circumferences, are equal.

Let ABCD, EFGH be equal circles, and let the Z.^ AOC,
EKG at the centres, and therefore the angles ABC, EFG at

the circumferences, be equal ; then, it is required to prove that

the arcs ADC, ERG are equal.

For let the O EFGH be applied to the ABCD so that

the centre K is on the centre 0, and the radius KE on the
radius OA. Then, since the radii of the circles are equal, the
point E will fall on the point A, and the whole circumferences
EFGH, ABCD will coincide.

And, since EK coincides with AO, and /.EKG — /.AOC,
KG will lie on OC, and the point G will coincide with the
point C, since KG = OC.

Hence the arc EHG coincides with, and is therefore equal
to the arc ADC.

Thus, in equal circles the arcs which subtend equal angles
at the centres, or at the circumferences, are equal.

Cor. In eqical circles chords which subtend equal angles
at the centres, or at the circumferences, are equal.
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PROPOSITIONS XXVII. and XXIX. Theorems.

In equal circles the angles at the centres^ or at the circum-

ferences^ which stand on equal arcs, are equal. Also, the chords

of equal arcs are equal.

Let ABCD, EFGH be equal circles, and let the arcs ADC,
EHG be equal ; then, it is required to prove that the angles

AOC, EKG, which are subtended at the centres hy the equal

arcs, are equal, and also that the chords AC and EG are equal.

For let the O EFGH be applied to the © ABCD so that

the centre X is on the centre 0, and the radius KE on the

radius OA. Then, since the radii of the circles are equal, the

point E will fall on the point A, and the whole circumferences

EFGH, ABCD will coincide.

And, since the arc EIIG lies on the arc ADC, the point E
being on the point A, and the arcs are equal, their other

extremities must also coincide.

Thus the point G falls upon the point C.

Hence, as G is on C and X on 0, the radius XG coincides

with the radius OC, and therefore ZEXG=ZAOC.
Thus, in equal circles, the angles at the centres (and

therefore also the angles at the circumferences which are the

halves of the angles at the centres), which stand on equal arcs,

are equal.

Also, since E \'& on A and G on C, the chord EG coincides

with the chord AC, and is therefore equal to it.

Thus, in equal circles, the chords which join the extremities

of equal arcs are equal.
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PROPOSITION XXVIII. Theorem.

In equal circles, if two chords be equal, the arcs tJiey cut ojf'

/ram the circumferences are equal.

In the equal circles ABCD, EFGH, whose centres are 0,

-^respectively, let the chords AC and EG be equal ; then, it is

required to prove that the arcs ADC, EHG and also the arcs

ABC, EFG cut offhy these chords are equal.

Join OA, OC, KE, KG.

Then, in the A^ AOC, EKG, since the radii of the circles

are equal

AO = EK, OC = KG', also, byhyp., ^C = ^G?;

.-. Z AOC=^EKG,
Now let the EFGH be applied to the O ABCD, so

that the centre K is on the centre 0, and the radius KE on
the radius OA.

Then, since the radii of the circles are equal, the point E
will fall on the point A, and the whole circumferences EFGH,
ABCD will coincide.

And, since KE coincides with OA, and /.EKG = /.AOC,
KG will lie on OC, and the point G will coincide with the

point C.

Hence the arc EHG coincides with, and is therefore equal

to the arc ADC. So also the arcs ABC and EFG coincide

and are equal.

Thus, in equal circles, equal chords cut the circumferences

into parts which are respectively equal.
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Note. The enunciations of Propositions xxvi. to xxix.,

as given by Euclid, refer only to equal circles; the student
will, however, have no difficulty in seeing that all these

enunciations may be given in the form ' In equal circles, or in

tlie same circle^ &c.'

These Theorems are in fact more important when considered

as properties of a single circle, than when they are considered

only as properties of equal circles.

Thus in a circle, or in equal circles, if any one of the pairs

arcs, chords^ angles subtended at centre, are equal, they will all

be equal.

The following proposition is of importance :

If equal chords of two circles subtend equal angles at the

centres of the circles (or subtend equal or supplementary angles

at two points on the circumferences), the two circles m,ust he

For, let the chords AB and CD of two circles subtend
equal angles at their centres 0, K respectively.

Then, since Z AOB = Z CKD,

the sum of Z ^ OAB, DBA = sum of Z

«

OCD, OBG.

But, since OA = OB and KC = KD, Z OAB = Z OBA and
Z KCD = Z KDG. Hence these four angles are all equal.

Therefore, in the A"" ABO, CDK, we have AB= CD,

Z.OAB= /.KCD and /LOBA= AKDC',

/. OA ~0C. [See also Prop, xxiv.]

Ex. 1. Two triangles are inscribed in a circle and two of the sides

of the one are respectively parallel to two sides of the other ; shew that
the third sides are equal.

Ex. 2. A triangle is inscribed in a given circle and one of its angles

is of constant magnitude ; shew that the opposite side touches a fixed

circle.

Ex. 3. Two given circles intersect in the points A^B. Any line is

drawn through A cutting the circles again in the points P, Q, respectively.

Shew that the angle PBQ is constant.

Ex. 4. Two given circles intersect in the points A, B. Through
any point P on one of the circles lines PAX, PBY are drawn cutting the
other circle in X, 7 respectively. Shew that the straight line XY is

of constant length.
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PROPOSITION XXX. Problem.

To bisect a given arc of a circle.

Let ABC be the given arc. It is required to bisect it.

B

Join AC^ and bisect it in D.

Through D draw a line i.' to AG and let it cut the
circumference in the point B. They the arc ABC will be
bisected in B.

Join AB, CB.

Then, in the A" ADB, CDB

AD = DG
DB = DB

and rt. Z ADB = rt. Z CDB and these are the included angles;

.-. AB = BCy

and since the chords AB, BC are equal, they cut the whole
circumference into arcs which are equal, the greater arc equal
to the greater and the less arc equal to the less. [III. 29.

Hence the arcs AB and BC are equal, for they are both
less than the semi-circumference, since BD produced is a
diameter.

Ex. 1. Divide a given arc of a circle into four equal parts.

Ex. 2. Divide a given arc of a circle into eight equal parts.

Ex. 8. Divide the circumference of a circle into twelve equal parts.
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PROPOSITION XXXI. Theorem.

The angle in a semi-circle is a right angle, the angle in a
segment greater than a semi-circle is less than a right angle, and
the angle in a segrnent less than a serni-circle is greater than a

right angle.

Let ABCD be a circle of which is the centre and AOD
is a diameter, and let any chord DB be drawn dividing the

circle into the segments BAD, BCD of which the segment

BAD is greater and the segment BCD is less than a semi-

circle.

Take any point C in the arc BCD, and join CB, CD, AB.

Then, it is required to prove that Z ABD is a rt. Z , that

Z BAD is less than a rt. Z , and that Z BCD is y^ a rt. Z

.

Join OB.

Then, since OA = OB = OD,

Z OBA = Z OAB and Z OBD = Z ODB.

Hence sum of Z ^ OBA and OBD is equal to the sum of

Z« OAB and ODB.

That is, Z ABD = sum of Z « BAD and BDA.

Hence Z ABD =^ half the sum of the angles of the ABAD
= half two right angles.

Thus, the angle ABD in a semi-circle is a right angle.

Then, since Z ABD is a rt. Z , Z BAD must be less than a

rt. Z.

Thus, the angle BAD in the segment BAD, which is greater

than a aevm-circley is less than a rt. Z .
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Again, since ABCD is a quadrilateral inscribed in a circle,

the sum of the opposite angles BAD and BCD is equal to two
rt. Z«.

But of these /. BAD has been proved to be less than one

rt. Z;
/. Z BCD is greater than a rt. Z .

Thus, the angle BCD in the segment BCD, which is less

than a semi-circle^ is greater than a rt, Z

.

Ex. 1. Shew that every diameter of a circle sabtends a right angle
at any point on the circumference.

Ex. 2. Shew that, if the chords AB, CD of a circle intersect at O
within the circle, the angle AOC will be equal to the sum of the angles
at the circumference which stand on the arcs AC and BD.

Ex. 3. AB and CD are two perpendicular chords of a circle; shew
that the sum of the arcs AC and BD is equal to half the circumference of
the circles.

Ex. 4. Two circles intersect in the points A, B and a straight line

PAQ is drawn through A cutting the circles in P, Q respectively. Shew
that, if the circles are equal the chords PB and QB will be equal ; and
conversely that, if PB=QB, the circles must be equal.

Ex. 5. Two circles intersect in AB and through A two straight lines

PAQ, PAS are drawn cutting one circle in P, P respectively and the other
circle in Q, S. Shew that, if the chord PP is equal to the chord QS, the
circles must be equal ; and conversely that, if the circles are equal the
chords PP and QS will be equal.

Ex. 6. Chords of a circle whose centre is pass through a fixed

point P; shew that the locus of the middle point of the chord is the
circle whose diameter is OP.

Ex. 7. Describe a rectangle, having given one of its diagonals in

magnitude and position and also a point through which the other
diagonal passes.

Ex. 8. Two circles touch one another at the point A and are touched
by a straight line in the points B, G respectively. Shew that the circle

whose diameter is BC passes through A. Shew also that if the lines BA,
CA be produced to cut the circles again in C, B' respectively, the lines

BB' and CC will be diameters.

S. B. E, li
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PROPOSITION XXXII. Theorem.

If a straight line touch a circle, and through the j)oint of
contact a chord of the circle he drawn, the angles which this

chord makes vnth the tangent are equal to the angles in the

alternate segme^its of the circle.

Let the st. line X^F touch the circle ABCD in the point

A, and let the chord AC he drawn through A. Then, it is

required to prove that the angles XAC, YAC are equal to the

angles in the alternate segments CDA, ABC respectively.

X A Y

From A draw a st. line J. ^ to XA Y meeting the circle

again in the point B.

Then, since AB is ±^ to the tangent XAY and passes

through its point of contact, AB must be a diameter of the

circle. [III. 19.

Join BC. Also take any point I) on the arc CDA and
join DC, DA.

Then, since ^^ is a diameter,

ZBCA is art. Z. [III. 31.

Hence the sum of Z' BAC, ABC = a rt. Z

.

But the sum of Z' BAC, CAY= a. rt. Z.

Hence the sum of Z' BAC, CAY= sum oiZ'BAC, ABC;

.\ZCAY=ZABC,
which is the angle in the alternate segment.
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And, since ABGD is a quadrilateral inscribed in a circle,

sum of ^ « ABC, ADC = 2 rt. ^ «,

and sum of Z « CilT, CAX= 2 rt. Z «.

Hence sum of Z « C^ T, (7^X= sum of Z « ABC, ADC,

But it has been proved that Z C^7= Z ^5(7

;

,\zcax=/:adc,

which is the angle in the alternate segment.

Conversely. If a straight line, drmvn through one
extremity of a chord of a circle, make with tlie cJiord an angle

equal to the angle in the altei'nate segment of the circle, the

straight line will touch the circle,

Ex. 1. Two circles touch internally or externally at the point A,
and through A two straight lines are drawn cutting one circle in P,
R respectively and the other circle in Q, S. Shew £hat PR is parallel

to QS, and that the tangents at P, Q, and also the tangents at R, S are

parallel.

Ex. 2. Shew that, if an equilateral triangle be inscribed in a circle,

the tangents at its angular points will form another equilateral triangle.

Ex. 3. Shew that, if 2) is a point on the base AB of the A ABC
such that z CDB= L AGBy then will BG touch the circle through the
points A, C, D.

Ex. 4. ABGD is a parallelogram whose diagonals AC, BD intersect

in the point O. Shew that, if the circles AOB, COD be drawn, they
will touch one another at 0.

Ex. 5. Two circles intersect in the points A, B and through these
points any two lines PAQ, RBS are drawn cutting one circle in P, R
respectively and the other circle in Q, S. Shew that PR is parallel

to QS,

Ex. 6. ^ is a common point of two circles, and through A two
straight lines are drawn cutting one circle in P, R respectively and the
other circle in Q, S. Shew that, if PR is parallel to QS the two circles

must touch at the point A,

U—

2
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PROPOSITION XXXIII. Problem.

Upon a give7i straight line describe a segment of a circle

which will contain an angle equal to a given angle.

Let AB be the given straight line, and X the given angle.

It is required to describe on AB a segment of a circle containing

an angle equal to the angle X.

First, let the angle JST be a rt. Z

.

Bisect AB in C, and with C as centre and CA or CB as

radius describe a semi-circle ADB. Then, since the angle in a

semi-circle is a right angle, this semi-circle will be the segment
required.

But, if ZX he not a rt. angle.

At the point A make the angle BAD equal to the given

angle X, and through A draw AE ± ^ to DA.

Bisect AB in (7, and draw through C the line FCG
perpendicular to AB, and let FG cut AF in 0.

/l.
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Join OB.

Then, in the A^ AGO, BOO,

AC = BG, CO is common, and rt. Z ACO^rt. Z BCO;

:. AO=:BO.

Hence the circle described with as centre and OA as

radius will pass through B. Let this be the circle AHBK.

Then, AD is, by construction, ± "^ to rad. AO ;

/. AD touches the circle AHBK.

Hence /.DAB is equal to the angle in the alternate

segment AHB.

But Z DAB = given angle X.

Hence we have described on ^^ a segment AffB containing

an angle equal to the given angle X.

Ex. 1. Construct a triangle having given one side, the angle opposite
to that side and the sum of the other two sides.

Let AB he the given side, X the given angle and YZ a straight

line equal to the sum of the other two sides.

[Suppose that ACB is the required triangle. Since the sum of AC
and CB is equal to YZ, produce ^ C to D making CD = CB ; then (1)
AD=YZ. And, since CD= CB, /.CDB= iCBD; .'. I ACB = sum of

Z " CDB and CBD= twice z CDB. Thus lADB= half iACB= half given
angle X. Hence (2) D is on a segment of a circle of which AB is the chord
and which contains an angle equal to half the given aftgle. The con-
ditions (1^ and (2) determine the point D

:

—hence we have the following
construction.]

On AB describe a segment of a O containing an angle equal to half
the given angle X Then, with A as centre and radius equal to YZ
describe a O cutting the former © in a point D. Join AD. From
I DBA cut off z DBK= z ADB, and let BK cut AD in the point C.

Then, since ZDBC= l BDC, CD = CB, and therefore sum of AC and
CB=AD= giyen st. line YZ. Also

Z ACB = sum of equal Z * CDB and CBD

= twice z CDB = given angle Z.

Hence aXCB is the triangle required.

Ex. 2. Construct a triangle having given one side, the opposite
angle, and the length of the perpendicular drawn on the given side

from the opposite angular point.
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Ex. 3. Construct a triangle having given one side, the opposite

angle, and the length of the line drawn from the opposite angular

point to the middle point of the base.

Ex. 4. Construct a triangle having given one side, the opposite

angle, and the difference of the other two sides.

Ex. 5. Find, when possible, a point on a given straight line at

which another given finite straight line subtends an angle equal to a

given angle.

Ex. 6. Find a point on the circumference of a given circle at which
the line joining two fixed points subtends an angle equal to a given

angle.

Ex. 7. Construct a right-angled triangle having given the lengths

of the hypotenuse and one of the other sides.

Ex. 8. ^ is a fixed point on a given circle and P is any other point

on the circumference, AP \q produced to Q so that PQ=AP. Shew
that the locus of Q is a circle.

Ex. 9. A, B are two fixed points on a circle and P is any other

point on the circle. On AP, or AP produced, a point Q is taken so that

PQ=zPB; shew that Q lies on one or other of two fixed circles through
A and B.

Ex. 10. The straight line AB of given length moves so that its

extremities ^, ^ lie on the two fixed lines OX, OY respectively. Shew
that the locus of the centre of the circle through the points 0^ A, B
is a circle.

Ex. 11. Two circles intersect in the points A, B, and through^, B
parallel straight lines PAQ,RBS are drawn cutting one circle in P, R
respectively and the other circle in Q, S, Shew that PQSR is a
parallelogram.

Ex. 12. Shew that, of all triangles on the same base and with equal

vertical angles,- the isosceles triangle has the greatest area.

Ex. 13. ABCD is a quadrilateral in a circle, and the angles DAB,
ABC are equal

j
prove that CD is parallel to AB.

Ex. 14. Shew that the lines bisecting the interior angles of any
quadrilateral form a cyclic quadrilateral.

Ex. 15. Shew that the lines bisecting the exterior angles of any
quadrilateral form a cyclic quadrilateral.

Ex. 16. Prove that the lines bisecting any angle of a quadrilateral

inscribed in a circle and the line bisecting the opposite exterior angle

intersect on the circle.

Ex. 17. AB and CD are parallel chords of a circle, and the chords

AC, AD, BC, BD are drawn. Shew that AC=BD and AD=BC.

Ex. 18. The circle A goes through the centre of the circle B ; shew
that the tangents to B at their points of intersection will meet on the

circumference of A,
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PROPOSITION XXXIV.

From a given circle to cut off a segment^ which will contain

an angle eqiud to a given angle.

Ijet ABC be the given circle and X the given angle. It is

required to cut offfrom the circle ABC a segment which unll

contain an angle equal to the angle X.

A.
Take any point P on the circle, and draw DPE the

tangent at P. [III. 17.

At P make Z EPQ = Z.X, PQ cutting the circle ABC
in Q.

Then, since PE is a tangent to the circle, and PQ a chord
through its point of contact,

Z EPQ = the angle in alternate segment PACQ,

But /.EPQ=AX.

Hence the angle in the segment PACQ -= Z X, so that
the segment PACQ is the segment required.
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PROPOSITION XXXY. Theorem.

If any number of chords of a circle pass through a fixed
point within it, the rectangles contained by their segments are

all equal.

Let the point through which the chords pass be the centre

of the circle ; then it is obvious that the rectangle contained
by the segments of any chord is equal to the square of the
radius.

Next, let the chords all pass through a point P which is

not the centre.

Draw the diameter AB through P, and let be the centre.

Then, since AB is bisected in 0,

rect. AP, PB with sq. on OP= sq. on OA [II. 5.

so that rect. AP, PB is equal to the difference of the squares

on the radius and on the distance OP.

Now let CD be any other chord through P.

Draw OE i.^to CD, and join OG.

Then, since OE passes through the centre of the O and is

± ^ to CD, it bisects CD,

Hence rect. GP, PD with sq. on ^P = sq. on CE. [II. 5.
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Add the sq. on OE to each of these equals ; then

rect. CP, FD with sq. on EF and sq. on OE
= sq. on CE and sq. on OE.

But, since OE is ± "^ to DC,

sq. on EF and sq. on Oi5'=sq. on OP, [I. 47.

also sq. on ^C and sq. on 0-£' = sq. on OC
Hence rect. (7P, Pi> with sq. on OF = sq. on OCy

so that rect. CF, FD is equal to the difference of the squares

on the radius and on the distance OF.

Thus, t?ie rectangles contained by the segments of all cliords

o/a O which pg,ss through a point F tvithiii it are equal to one

another, and equal to the difference of tJie squares on the radius

of the circle and the distance ofFfrom its centre.

Conversely. If two straight lines intersect in a point
and the rectangles contained by tJieir segments are equal, a
circle can be drawn through their four extremities.

For, let the lines AB, CD intersect in so that rect. AO, OJ? = rect.

GO, OD. Draw a circle through A, B, C\ and, if possible, let this circle

cut CD, produced if necesssiry, in the point X. Then, by the preceding
prop., rect. AO, 05= rect. CO, OX. Hence rect. CO, 0D= rect. CO,
OX, which is impossible unless X coincides with D.

Ex. 1. Two circles intersect in the points A, B, and any line is

drawn cutting ^B in the point O, one of the circles in P, Q and the
other in R, S. Shew that the rectangles PO, OQ and i20, OS are equal.

Ex. 2. Two circles intersect in the points A, B ; and, through any
point O on the common chord AB, two lines are drawn one cutting one
of the circles in the points P, Q and the other cutting the other circle in
the points R, S. Shew that a circle will pass through the points
P, Q, R, S.
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PROPOSITION XXXVI. Theorem.

Iffrom any point without a circle two straight lines he

dratun, one of which cuts the circle and the other touches it

;

the rectangle contained by the whole line which cuts the circle

and the part of it without the cirde will he equal to the square

on the tangent.

Let P be any point without the circle ABC and let PAC^
PB be two lines through P, of which PAC cuts the in the

points A, C, and PB touches the circle at the point B. Then,

it is required io prove that rect. PA, PC— sq. on PB.

Let be the centre of the circle. Draw OD ± ^ to PAC.
Join OP, OA and OB.

Then, since OD passes through the centre and is i.^ to AC,
it will bisect AC.

And, since CA is bisected at D,

rect. PA, PC with sq. on AD = sq. on PD. [II. 6.

Add the sq. on OD to each of these equals ; then

rect. PA, PC with sq. on ^2> and sq. on OD
= sq. on PD and sq. on OD.

But, since Oi) is ± ' to PAC,

sq. on AD and sq. on OD = sq. on OA, [I. 47.

also sq. on PD and sq. on 0D = sq. on OP.
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Hence

rect. PAj PC with sq. on radius OA = sq. on OP.

If the line which cuts the circle passes through the centre

and cuts the circle in the points Z, M.

Then, since LM is bisected in 0,

rect. PL, PM with sq. on radius OL = sq. on OP. [II. 6.

Thus, the rectangle contained hy the segments of any chord

through P is equal to the difference of tJie squares on OP and
on a radius of the circle.

Again, since PB touches the O at the point B, PB is ± "^

to the radius BO.

,\ sq. on PB with sq. on radius BO = sq. on OP.

Thus, the square on tJie tangent frora P to tJie O is equal to

the difference of the squares on OP and on a radius of tJie

circle.

Hence, the rectangle contained hy the segments of any clwrd

of a circle which passes through an external point is equal to

the square on the tangent dravm to the circlefrom that point.

Conversely. If two straight lines he hoth produced to

meet in a point and if the rectangles contained hy their

segments are equal^ a circle can he drawn through their

four extremities.

Ex. 1. AB, CD, EF are the common chords of three circles which
cut one another in pairs; shew that the Hnes AB, CD, EF are all

parallel, or that they will (being produced if necessary) meet in a
point.

First, suppose that two of the chords are parallel. Then, since the
line joining the centres of two circles is at right angles to their common
chord, it is easily seen that, if two of the common chords of three circles

taken in pairs be parallel, the three centres of the circles are on a straight
line perp. to these

|| chords ; and the third common chd. must also
be ± to the line of centres, and must .*. be || to the other two common
chds.

Next, let CD and EF, two of the common chords be not parallel.

Let O be the point of int. of CD and EF, produced if necessary. Join
OA, then we have to shew that OA, or OA prod, will pass through the
pt. B.
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For, if OA do not pass through B it will cut the two circles through
id, JB in different pts., X, Y suppose. Then, since A, X, G, D are on the
circle ABCD, rect. OA . OX=rect. 00. OD; and, since A,Y,E,F are
on the circle ABEF, rect. OA . 07= rect. OE.OF. But, since (7, D, E, F
are on a circle, rect. 00 . 0D= rect. OE . OF. Hence rect. OA . OX=iect.
OA.OY; the pts. X, Y must /. coincide, and OA must pass through
B the only other point which is common to the circles AEF and CDA,

Ex. 2. Two circles touch one another at the point and are cut by
any other circle in the points A, B and C, D respectively; shew that

AB, CD and the common tangent at will meet in a point or be all

parallel.

Ex. 3. Each of three given circles touches the other two ; shew that

the common tangents at the three points of contact will meet in a point

or be all parallel.

Ex. 4. Any number of circles are drawn through two fixed points

A, By and from any fixed point on the line AB produced tangents are
drawn to the circles ; shew the locus of the points of contact of these

tangents is a circle.

PROPOSITION XXXVII. Theorem.

Iffrom a point without a circle there be drawn two straight

lines, one of which cuts the circle in two points and the other

meets it ; and if the rectangle contained hy tlie whole line which

cuts the circle and the part of it without the circle he equal to

the square on the line which meets the circle; then the line

which m^ets the circle must he a tangent.

From a point P without the circle ABC^ let the two lines

PAC, PB be drawn, of which PAC cuts the circle in the

points A, G and PB meets the circle in B ; then, it is required

to prove that, if the rect. PA, PC he equal to the square on PB,

then PB will touch the circle at the point B.
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For, if PB were not a tangent, it would cut the circle

at j6, and would therefore, if produced, cut the circle again

at some point D.

But, in that case, by the preceding proposition

rect. PA, PC= rect. PB, PB.

But rect. Pil, P(7= sq. on P^.

Hence sq. on PB = rect. PB, PI),

which is impossible.

Hence PB cannot cut the circle.

Secants and Tangents.

Def. A line which cuts a circle in two points is called a
secant. -

If any secant be drawn through a fixed point P on a
circle, this secant can be turned about the point P so that its

second point of intersection with the circle will move up to

and ultimately coincide with the point P itself.
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Def. The limiting position of a secant of a circle when its

two points of intersection coincide is called a tangent to the

circle.

The figure shews different positions of the secant PQ, its ultimate
position, when Q coincides with P, being the tangent FT.

If in any position of the secant PQ the radii QP, OQhe drawn, since

OPQ is an isosceles triangle, l OPQ differs from a rt. z by half z POQ;
hence when PQ, and therefore also z POQ, vanishes, the z OPr=rt. l

.

Thus the new definition leads to the same result as the old.

Since the tangent to a circle is a secant whose points o£

intersection are coincident, the properties of tangents are

merely particular cases of the properties of secants, and it is

most important that the student should make himself familiar

with the method of deducing the properties of tangents from
those of secants.

Thus Props. XYI., XVIII., XIX. are only particular cases

of Prop. I., Cor., and Prop. III. ; Prop. XXXII. is a parti-

cular case of Prop. XXI. ; and Prop. XXXVI., Exs. 2 and 3

are particular cases of Ex. 1.

In like manner the properties of touching circles follow

from those of intersecting circles. For example, Props. XI.
and XII. are particular cases of the theorem (page 178) that

the line joining the centres of two circles bisects their common
chord. Also Prop. XIII. follows from Prop. X.
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ADDITIONAL PROPOSITIONS.

In addition to the properties of circles proved by Eaclid, the following

are important. Most of these have already been given, but it will be

convenient to collect together all those additional propositions with

which the student must make himself familiar.

I. The locus of the middle points of all equal chords of a circle is a
concentric circle. [From III. 14.

II. All straight lines, whose "perpendicular distances from a giveti

point are equal to one another, touch a fixed circle of which that point is

the centre. [From III. 16.

ni. All chords of a circle which are of equ^l length toiich a fixed

concentric circle. [From I. and II.

IV. If two circles cut each other, the line joining their centres bisects

their common chord. [Page 178.

V. Equal chords of a circle subtend equal angles at the centre, and
conversely chords of a circle which subtend equxil angles at the centre arc

equal. [Page 206.

VI. The two tangents which can be drawn to a circle from any
external point are equal in length and make equal angles with the line

joining the external point to the centre of the circle. [Page 191.

VII. If a straight line subtend equal angles at two points on the same
side of it, a circle will pass through these two points and the two extremities

of the line. [Converse of IIL 21.

VIII. If a straight line subtend supplementary angles at two points

on opposite sides of it, a circle will pass through these txco points and the

two extremities of the line. [Converse of III. 22.

IX. Chords of a circle which subtend equal or supplementary angles at

points on the circumference are equal, and therefore [III] touch the same
concentric circle.

X. If in two circles equal chords subtend equal or supplementary
angles at points on the circumference, the circles must be equal.

[Page 206.

XI. If a straight line, drawn throxigh one extremity of a chord of a
circle, make with the chord an angle equal to the angle in the alternate

segment of the circle, the straight line will tou^h the circle.

[Converse of III. 32.

XII. If two straight lines intersect in a point and if the rectangles
contained by their segments be equal, a circle will pass through their four
extremities. [Converse of III. 35.

XIII. If two straight lines be both produced to meet in a point and if
the rectangles contained by their segments be equal, their four extremities
are concyclic. [Converse of III. 36.
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MISCELLANEOUS THEOREMS AND PROBLEMS.

1, Divide a given straight line so that the rectangle contained by the

two parts may be equal to a given square.

Let AB be the given st. line, and let the sq. on XY be the given sq.

D

F

fk

\

r

\ ^
C
/
H

Bisect AB in O, and draw a O with centre and rad. OA, or OB.

[Then, if C is the reqd. pt., and FCH the chd. of the O L^ to AB
;

rect. AC, CB = rect. FC, CH=sq. on FC, since FH is bisected by the i.""

diam"" AB; .', FG= Qiwen line XY. Hence we have the following con-

struction :—

]

Draw the rad. OD ±' to AB, and from OD cut off OE = XY. Through
E draw the chord FG l' OD and /. 1| to AB. Through F draw the

chd. FH 1' to AB and cutting AB in G. Then AB will be divided at

G in the manner required.

For, since FH is ± • to the diam' AB, it will be bisected in G. Also
rect. AG, GB= re(it. FG, GH=&q. on FG. But OGFE is a ir ; .-. GF=
OE, and OE==XY. Hence rect. AG, GB= sq. on XY.

[Another construction is given on page 151.]

2. Produce a given straight line so that the rectangle contained by the

whole line so produced and the part produced may be equal to a given
square.

Let ABhe the given st. line and let the square on XY be the given sq.

Bisect AB in O, and draw a O APBQ with centre O and rad. OA, or OB.

L
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[Then, if G be the pt. on AB such that AC, BC=XY\ and if the

tangent CD be drawn to the O; then CD-= CB . CA = XY'\ and /. CD =
XY. Now all points from tch. the tangents drawn to a given © are of
given length lie on a concentric ©; hence we have the following con-

struction:—

]

Take any pt. P on the APBQ, and draw the tangent PL, making
PL = XY. With centre O and radius OL des. a 0« cutting AB produced
in C, Then C is the point reqd.

From G draw CD touching the © APBQ in D. Join DO, LO and PO.
Then, since PL and DC are tangents, z» OPL and ODG are rt. Z";
.-. OL^=OP^ + PL'^ and OC^=OD^+ DC^. But by const. OL = OC and
OP=OD, whence it follows that DG = PL, and PL=ZF. Hence
XY^=DC^= GA.GB. Thus O is the pt. required.

[See also Prop. B, page 136.

3. The four extremities of any two parallel lines which are both

bisected at right angles by the same st. line, lie on a circle.

Let AB, CD be any two parallel st. lines whose middle points are U, V
respectively, and let UV be at right angles to AB and CD ; then it is

required to prove that a circle loill pass through the four points

A, B, D, C.

Join ^C and BD. Through E the middle point of AC draw a line X'
to ^C and cutting UV in 0. Join AO, BO, GO, DO.

Then, since ^C is bisected at rt. Z' by EO, any point on EO is

equally distant from A and C. Thus AO=OG. For the same reason
OG=OD and OB = OA. Hence OA = OB = OC=OD, and therefore the
circle whose centre is and radius OA will pass through all the four
points.

Or tbus. It is sufficient to prove that a pair of opposite angles are
supplementary. Now, if AUVG be folded over along the line UV, UA
will fall on UB, since rt. z VUA = rt. iVUB; and A will fall on B,
since UA=UB. Similarly G will fall on D, and therefore UAGV vfiil

coincide with UBDV. Hence l AGV = z BDV. But, since AB and CD
are

||
, the angles A and G are supplementary ; hence the angles A and D

are supplementary.

S. B. E. 15
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4. 2'o dravo the common tangents of two given circles.

Let A and B be the centres of the given circles, of wh. the © whose
centre is A is the greater.

[Suppose that PQ has been drawn to touch the circles at P, Q
respectively on the same side of AB. Then, if AP and BQ he joined,

the angles APQ and BQB are rt. z S since PQ touches both circles.

Draw BX
\\ to PQ to cut AP in X; then PQBX is a ||", and /. XP= BQ.

Hence AX is equal to the difference of the radii of the circles ; and, since

Z AXB is a rt. A , X is on the circle whose diameter is AB. Hence the
construction is as follows :—

]

On AB as diam"" describe a , and in this © place a chord AX equal
to the difference of the radii of the given circles. Draw the radius AXP
through Z, and draw the radius BQ

||
to AP and on the same side of AB.

Join PQ, then PQ will touch both ©«.

For, since ^Z= difference of AP and BQ, XP=BQ, and XP is also
||

to BQ ; .-. XPQB is a |r.

But, since AB is the diam. of the © AXB, AXB is a rt. z , and .*.

all the angles of XPQB are rt. z ^ ; and, since the angles APQ, BQP are

right angles, it follows that PQ touches both the given circles.

A chord ^X of the circle whose diameter is AB can always be drawn
equal to the difference of the radii of the given circles unless this

difference is greater than AB, in which case one circle lies entirely

within the other. When one chord AX can be drawn, another chord AY
can also be drawn on the other side of AB such that z BA Y= z BAX,
Q.ndiAY=AX.

A common tangent to two circles whose points of contact are on the
same side of the line joining their centres is called a direct comxnon
tangent.

Thus two given circles, neither of which is entirely within the other,

have two direct common tangents; and it is easily seen that these
common tangents make equal angles with the line joining the centres

of the circles and cut this line produced in the same point.
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Next suppose that PQ has been drawn to touch the circles at P, (

respectively on opposite sides of AB.

Then, if AP aud BQ be joined, the angles APQ, BQP are rt. z»,

since PQ touches both circles. Draw BX || to PQ to cut AP produced
inX; thenPQBXia a |r, and /. PX=QB. Hence AX is equal to the

mm of the radii of the circles ; and since AXB is a rt. z , X is on the

circle whose diameter is AB.

Hence AX can be drawn, and then PQ in the same manner as for

the direct common tangents. A chord AX of the circle whose diameter is

AB can always be drawn equal to the sum of the radii of the given circles

unless this sum is greater than AB, in which case the two circles will

cut one another, or one © will be entirely within the other; and when
one such chord can be drawn, another chord equally inclined to AB can
also be drawn.

A common tangent to two circles whose points of contact are on
opposite sides of the line joining their centres is called a transverse
common tangent.

Thus two given circles which do not cut one another, and neither of

which is entirely within the other, have two transverse common tangents,

which make equal angles with the line joining their centres and which
cut this line in the same point.

The student should consider the special cases when the two given
circles touch one another.

5. The three 'perpendiculars * of a triangle meet in a point.

Let BE, CF be the perpendiculars from B, C upon the opposite sides

CA, AB respectively of the triangle ABC, or on those sides produced;
and let BE, CF, produced if necessary, meet in 0. Then it is required

to prove that if OA be joined and produced to cut BC at D, AD will be ±^
to BC.

Join FE.

15—2
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Then, since the z * OFA, OEA are rt. z % their sum is equal to two
rt. Z";

/. 0, F, A, E are cyclic [III. 22, Converse.

Hence Z OFE= z 0^£ in the same segment.

Again, since rt. z BFC=Tt z B£C,

B, F, E, C are cyclic [III. 21, Converse.

Hence z CFE = Z CjB£ in the same segment.

Hence /.OAE= iGBE.

To each add lACB\

then Z OAE and z ^ C£= Z CBE and lACB.

But Z C-B£ and z ^C5= rt. z , since z Bi-'Crrrt. z
;

.'. Z 0^£ and Z ^CJ5 = rt. z ,

and therefore Z^DC=rt. z.

The case of an obtuse-angled triangle requires no separate examina-
tion. For when A ABC is acute-angled, as in the figure, the a AOB is

obtuse-angled, and AE, BD, OF are the 'perpendiculars' of the a AOB^
and these meet in the point C.

It should be noticed that, if O be the orthocentre of the a ABC, then
A^ B, C will be the orthocentres of the A" BOG, COA, AOB respectively,

the feet of the perpendiculars for all four triangles being the points

D, E, F.

The A DEF, whose angular points are the feet of the perpendiculars

of the A ABC is called the pedal triangle of the a ABC.

It should also be noticed that, since the angles BOC and BAC are

supplementary, the Q^ BOC and BAC are equal; and similarly each of

the 0» COA, AOB is equal to the © ABC.

Thus, if O is the orthocentre of the triangle ABC, the four circles

BOC, COA, AOB, ABC are all equal.
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Conversely, if ABC he any triangle and a point such that the circles

BOC, COA, AOB are equal, then each is equal to the circle ABC and O is

the orthocentre of the triarigle ABC.

It is of importance to notice that the sides of the £>,DEF m&ke equal
angles with the sides of the a ABC on which they meet.

For, since A, E, D, B are cyclic,

lEDC= IBAC.
And, since A, F, D, C are cyclic,

lFDB= /.BAC.

Hence Z BDF= l CDE = iBAC.
Similarly iDEC= l.AEF= iCBA,

and Z AFE= L BFD = lACB.
Now, if XYZ be the triangle of minimum perimeter whose angular

points are on the sides BC, CA, AB respectively of an acute-angled

triangle ABC, it follows from XIII. page 96 that any two sides of the
triangle XYZ must make equal angles with the side of the a ABC on
which they meet. For, if YX, ZX were not equally inclined to BC, we
could by keeping Y and Z fixed and taking the point X' on BC which is

such that YX\ ZX' make equal angles with BC, obtain a aX'YZ whose
perimeter is less than that of XYZ. Now we have proved that the. sides

of the aDEF make equal angles with the sides of the a ABC on which
they meet, and it is easy to prove that no other such triangle can be
inscribed in ABC.

Hence the pedal triangle of an acute-angled triangle is the inscribed

triangle of minimum perimeter.

In the case of an obtuse-angled triangle the inscribed triangle of
minimum perimeter has the foot of the l*" drawn from the obtuse angle
for one angular point and the two others are indefinitely near the obtuse
angle.

6. Iffrom any point on the circumference of a circle, perpendiculars
be draicn to the sides of an inscribed triangle, the three feet of the peipen-
diculars lie on a st. line.

From any pt. on the G ABC draw OB, OE, OF l' to BC, CA, AB.
Join DF and FE ; then we have to prove that DF and FE are in the
same st. line. To prove that DFE is a st. line, we have only to prove
that Z DFB= lEFA.
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Join OB, OA.

Now, since z " ODB and OFB are rt. Z % 0, D, J5, Fare cyclic.

Hence lDFB= i DOB

= complement of z OBD

= complement of z OAE [III. 22, Cor.

= jLEOA

= z £2^.4, since E, A, 0, F are cyclic.

.*. DF is in the same st. line as FE,

Conversely. From any point the JL^ OB, OE, OF are drawn to

the sides BC, CA, AB of the tnangle ABC ; then, if the three points

D, E, F lie on a st. line, the point must be on the circle throxujh A, B
and C.

With the above figure

Z DFB -- vertically opp. z EFA .

But Z DFB= z DOB, since D, B, F, are cyclic

= complement of z OBD.

And Z EFA = lEOA, since E, F-,0, A are cyclic

= complement of z OAE.

Thus complement of Z Oi)D= complement of Z OAE ;

.-. iOBD= I OAE,

whence it follows that 0, B, C, D lie on a circle, so that must be on
the circle through A, B and C.

The line on which the feet of the perpendiculars he is called the Pedal
Ziine of with respect to the triangle *.

. Ex. The four circles circumscribing the four triangles formed by four
given straight lines, no two of which are parallel, have a common point of
intersection.

Let be the second pt. of intersection of the 0* ABF and FDE, and

* This line is sometimes called the 'Simson Line.' The theorem
was not, however, discovered by Simson but by Wallace.
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let OL, OM, ON, OP be the 1" from O on the st. lines ABC, AFD, BFE,
CDE respectively.

Then, since is on the ABF, L, M, N are on a st. line.

And, since is on the O FDE, M, N, F are on a st. line.

Hence L, M, N, P are all on a st. line.

Then, since L, M, P are on a st. line, is on the AGD.

And, since L, N, P are on a st. line, is on the O BCE.

Hence is on all four of the Q' ABF, FDE, ACD and BCE.

Or thxm. Since O is on the BAF,

L BOF= L BAF.

And, since is on the FDE,

L FOE = supplement of / FDE= L CDA.

Hence z jB0£=8um of z » CAD and CDA ;

.-. z BOB and Z BCE= 2 rt. z »

;

.-. is on the © BCE.

Similarly is on the CDA.

7. If two pairs of opposite sides of a hexagon inscribed in a circle be

parallel, the third pair xoill also be parallel.
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Let ABGDEF be a hexagon inscribed in a circle, and let ^B be
i|
to

DE, and BG
\\ to EF ; then it is required to prove that CD is || to AF.

Join DA.

Then, CD is
|| to FA, it L CDA = L FAD.

But Z CD^ = supplement of z ABC,

and Z FAD = supplement of Z DEF.

We have /. to prove that lABC= L DEF.

Join EB.

Then, since ^5 is || to ED, z ^£^= z BSD.

And, since jBC is 1| to EF, z CBE= z B£i^.

Hence, by addition, /.ABC= i FED.

A corresponding theorem is true for a decagon, or for any polygon
inscribed in a circle and having an odd number of pairs of sides.

8. In any hexagon inscribed in a circle, the sum of three alternate

angles is equal to the sum of the other three alternate angles.

Let ABCDEF be the hexagon inscribed in a O . Join AD.

Then the sum of the angles ABC and CDA is equal to half the angles
of the quad. ABCD.

Also the sum of the angles ADE and EFA is equal to half the angles
of the quad. ADEF.

Hence, by addition, the sura of the angles B, D, F of the hexagon is

equal to half the sum of all the angles of the hexagon.

A corresponding theorem is true for an octagon inscribed in a circle,

or for any polygon of an even number of sides.
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9. Through A^ B, the points of intersection of two circles, the parallel
lines PAQ, RBS are draicn which cut one circle in the points P, R
respectively and the other circle in the points Q, S respectively. Prove
that PQSR is a parallelogram, and that the lines PQ and RS are greatest

when they are parallel to the line joining the centres of the circles.

Let Z, r be the centres of the curcles.

Draw XK L^io PA, and produce KX to meet RB in the pt. L. Then,
since RB is || to PA, and KXL is ±' to P^, it will also be l' to RB.

Hence PA is bisected at K and RB at L.

So also, draw through Y a line MYN to meet AQ, BS at rt. z 'at M, N
respectively.

Then AQ is bisected at M and BS at N.

Hence PQ=2KM and RS = 2LN.

But by construction KMNL is a |r, and .'. KM = LN.

Hence PQ = RS, and PQ is || to RS ;

,-. PQSR is a parallelogram.

If PQ is parallel to XY, KXYM is a H™, and .'. 2XY=2KM=PQ.

But, if PQ be not || to A'}', draw XZ
\\ to PQ to meet YM in Z. Then,

since YZM is l"" to PAQ, and XZ is || to PAQ, YZ must be ±' to XZ.

Hence lXYZ< zXZF, and /. XZ<XY.

But XZ=KM=iPQ\ .: PQ < 2XY.

Thus PQ is greatest when it is parallel to XY, and its greatest length is

twice XY.

To draw through A the line PAQ of given length, we have only to
place in the O whose diara. is XY a chord equal to half the given length,
and draw PAQ parallel to this chord.

The following proof that PQSR is a ir should be noticed

:

Since AQSB is a quad, in a ©,

/ ^QS= supplement of lABS.
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And, since PRBA is a quad, in a © , iABS= L APR.

Hence I'' AQS and APR are supplementary, and /. QS and PR are

parallel.

If the St. line BQ he drawn, since ^Q is
||
to BS, lAQB= L QBS;

.'. the chords AB, QS subtending these equal angles are equal.

Thus, QS=PR=AB, for all positions of the parallel lines PAQ, RBS.

10. There are many interesting and instructive problems in which a
circle is required to be drawn so as to satisfy three given conditions.

Some cases of this problem can be solved at this stage ; but other cases,

including that of the construction of a circle so as to touch three given

circles, must be deferred as a knowledge of some of the theorems proved
in Book vi. is required for their solution. The construction of a circle

to pass through three given points, and of a circle to touch three given

straight lines are given in Euclid, Book iv.

When in these problems the Analysis only is given, the proofs will

present no difficulties.

(i) Draw a circle through tivo given points so as to touch a given st.

line.

It is required to draw a O through the pts. A, B so as to touch the

st. line CD.

D X T X C

Suppose the drawn as required touching CD in the pt. X.. Join AB
and produce it to cut CD in T. Then TZ^^rect. TB.TA. Hence we
have only to find the side of a sq. equal to the known rect. TB . TA,
and set off along CD, on either side of T, TX equal to the side of this

square. Then the through A, B, X will be the circle required.
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If AB is
II
to CD ; then, since CD touches the at X, l AXC^ L ABX.

But, since AB || to CD, /.AXC= IBAX. Hence lABX= iBAX, and
AX=BX. Thus X is on the line which bisects AB at rt. z ".

[It should be noticed that there are two solutions of the problem when
AB is produced to cut CD, one solution if AB is || to CD, and that the

problem is impossible if CD cuts AB between A and i?.]

(ii) Draio a circle through two given points to touch a given circle.

Let A, B he the given points and CDE the given ©. Through A, B
draw any circle cutting the given © in the points C, D. Join AB and
CD and produce them to meet in T. From T draw TX to touch the given

O in X. Then the © through A, B e^ndiX will be the circle required.

For, since TX touches the given ©, TX^=TC . TD.

And, since ^, i?, C, D lie on a Q,TG.TD=TA. TB.

Hence TX^=TA . TB, wherefore TX touches the © ABX at .Y; and
since TX touches both © ' at the point A', the © ' touch one another.

When the point is determined as above, tico tangents can be drawn
from it to the given circles and there are two corresponding circles

through A and B, one of which touches the given © externally and the
other touches it internally.

When the line CD is parallel to AB, let A', Y be the points of contact

of the tangents to the given © which are || to AB ; then it is easily seen
that the ©" ABX, ABY will be the required circles.

(iii) Draic a circle to touch a given circle, to pass through a given point

and to Jiuve a given tangent at that point.
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This is a particular case of the preceding problem, when the two
given points are coincident.

Or thus. Let be the centre of the given , AB the given st. line
and C the given point on AB.

A

Suppose that a circle centre X has been drawn to touch AB at C and
the given © at Q.

Then ZC is X' to AB
-,

also XQO is a st. line and XQ=XG',
:. XO=XC plus the radius of the given circle. We therefore produce
XC to Y so that CY=QO. Then XO = XY, so that X is equidistant from
O and Y, and is .*. on the line which bisects OF at rt. z ". Z is also on
the line through (7 X' to AB; hence the position of X is determined, and
the o can be constructed.

If Y be taken on the side of ^B on which lies, the same construction
will give the centre of the circle which touches AB at G and which is

touched by the given circle internally.

Or thus. The required circle being supposed to be drawn to touch
the given O in Q. Join GQ and produce it to cut the given © again in
R, and join OR.

Then, since RO= OQ and XQ=XC,

I ORQ=: L OQR=\ert. L XQG= L XGQ.

Hence OR is || to XG, and

Hence the construction :

I'to^^.

Draw from a radius OR X « to AB, and join RG cutting the given
© in Q. Produce OQ to cut the line through G X' to ^^ in X. Then X
is the centre of a circle which touches AB in G and the given circle in Q.

If R' be the other extremity of the diameter ROR', and GR' cut the
given © again in Q', a © can be drawn to touch AB 2Li G and the given

© internally at Q'.

(iv) Draw a circle to touch two given st. lines and to pass through a
given point.
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Suppose that a © whose centre is X has been drawn to pass through
the given pt. P and to touch the lines OA, OB at Q, R respectively.

Then, since the PQR touches OQ, OR its centre must lie on the st.

line 00 which bisects the z AOB. And if the chd. PS of the O be drawn
I'to OG it will be bisected by OC; .'. S can be found by drawing PK ±""

to OC and producing it to S so that KS= PK. Two points P and S on the
required O are now known, and the problem is thus reduced to (i).

(v) Draw a circle to touch two given st. lines and a given circle.

Suppose that a whose centre is X has been drawn to touch the
given St. lines OA, OB at P, Q respectively; and the given O, whose
centre is C, externally at R.

Then XRC is a st. line, and XC exceeds XQ and XP by the rad. RC.
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Hence, if ZP, XQ be produced to 8 and T so that PS=^QT=RC; and
if lines ESD, FTG be drawn through S, T parallel respectively to OA
and OB, the circle whose centre is X and rad. XC will touch EB and FG.
Hence we have first to draw the lines ED, EG and then describe a O to

touch EB, EG and pass through G [see iv.] ; then, a concentric will

touch OA, OB and the given circle.

Tivo circles can be drawn through the point G to touch the st. lines

EB, EG, and there are two corresponding circles wh. will touch the lines

AO, BO and the given Q externally ; and, if the given cuts neither of

the lines OA, OB, two other circles can be drawn to touch OA, OB and
the given circle internally.

11. Produce a given st. line AB both ways and find two points X, Y,

one on each of the produced parts, such that the rectangles XA . AY and
XB .BY may he equal respectively to given squares.

Let the given squares be the squares on GB and EE, and draw
through A, B lines PAQ, BBS l'' to AB and such that PA=AQ=CB
findEB =BS= EE.

[Now it is known (Ex. 3) that P, Q, R, S lie on a circle ; and if we
suppose that X, Y are the points required, so that XA . A Y= CB^=PA . AQ
and XB . BY=EE^=RB . BS, we see that X, Y are on the circle through
P, Q, R, S.]

Draw a circle through P, Q, R, S and let this circle cut the line AB
produced in the points X, Y ; then these are the points required. For,

since XY, PQ, RS are chords of a circle, XA.AY=PA.AQ and
XB . BY = RB . BS. Hence, by construction XA . AY = CB'^ and
XB.BY=EF^.

12. Braw a circle so as to bisect the circumferences of each of three

given circles.

Suppose that the circle PQRSTJJ is drawn as required so as to bisect

the circumferences of the three given circles APQ, BRS, CTW, whose
centres are B, E, F respectively.
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Then, since the three circumferences are bisected, PQ, RS, TU are

diameters.

Now if DE be joined and produced to meet the G PQRSTU in X, F,

rect. XD . Dr=rect. QD . DP=known square,

and rect. XE . EY=:rect. RE . i';-S= known square.

Hence, by the preceding problem, the two points X, Y where the required
circle will cut the line DE can be found ; and we can find in a similar

manner the two points Z, W in which the required circle will cut the line

FE. The required circle can therefore be constructed, since four points

on its circumference can be found.

Or thus. Let O be the centre of the required circle of which the
diameters PDQ, RES and TFU are the chords of intersection with the
given circles.

Then, since the chords of intersection are bisected at D, E^ F
respectively, OD is l' to PDQ, OE X"" to RES and OF l' to TFU.

Hence OD- + DQ^=OQ^-=OR^=OE'^+ ER^.
Hence the difference of the squares on OD and OE is equal to the

difference of the squares on the radii RE and DQ.

Hence [viii. p. 154] lies on a fixed straight line i « to DE.
Similarly lies on a fixed straight line 1 to EF.

By drawing these st. lines the position of is determined, and the
radius of the required circle can at once be found.

Ex. 1. Drato a circle through a given point so as to bisect the circum-
ferences of two given circles.
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13. If tico of the sides of a triangle equal in all respects to a given

triangle pass respectively through tioo given points, the third side xoill touch

a Jixed circle.

\^—^A

Let the two sides AB, AC pass respectively through the given points

Then, since the angle PAQ is const., the pt. A will be on a fixed O
through P and Q.

Through A draw the chord AX of the Q PAQ parallel to BC.

Then z PAX - l ABC = const, z ;

.•. arc PX is const., so that Z is a fixed point.

Dmw AD, XY ±' to BC. Then ^XFD is a ||™.

Hence XY = AD = const.

Hence BG always touches a fixed circle whose centre is the fixed

point X and whose radius is equal to the perp. distance of A from BC.

14. If two of the sides of a triangle equal in all respects to a given
triangle touch respectively two given circles, the remaining side will aho
touch a fixed circle. Bobillieb's Theoeem.
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Let the sides AB, AG touch the given ©» whose centres are P, Q in
the points R, S. Through P, Q draw lines TPU, TQV parallel to BA, GA
respectively intersecting at T and cutting BG in i7, F" respectively.

Then since VPT, VQT are || to BA, GA respectively and are at
given ±' distances from these lines, the a UTV is of constant shape and
size. Hence, by the preceding theorem, UV touches a fixed circle.

15. Draio three straight lines through three given points so as to make
a triangle equal in all respects to a given triangle.

Let P, Q, R be the three given points.

Suppose that ^J5C is a A whose sides pass through P, Q, R respec-
tively and which is equiangular to the given a A'B'G'.

Then, gince Z QAR = Z B'A'G\ A must lie on a fixed © QXR through

Q and R. So also B must lie on a fixed O R YP through R and P, and
C must lie on a fixed O PZQ through P and Q.

[It is easy to see that these three O* intersect in a point.]

Now, if any line BPG be drawn through P cutting the ©" RYP,
PZQ in B, C respectively, and BR, GQ be produced to meet in A ; then,

since z RBP = z G'B'A' and Z PGQ = z A'G'B', L QAR must be = to

z B'A'C\ so that A must lie on the © QXR.

Thus an infinite number of a " can be drawn whose sides pass through
P, Q, R respectively and which are equiangular to the given aA'B'G'.

Now BPG is of greatest length when BG is || to the line joining the

centres of the ©* RYP, PZQ, and this greatest length is twice the
distance between the centres [see 9, page 233]. And, provided B'G' is not
greater than twice the distance between the centres of the © RYP,
QZG, a line can be drawn through P to cut the circles in B, G respec-

tively so that BG=B'G' [see 9, page 233]. The a ABG will then be the A
required.

S. B. E. 16
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MISCELLANEOUS EXERCISES.

1. Draw a circle with a given radius to touch two given circles.

2. Find the shortest and greatest straight lines whose extremities
are one on each of two given non-intersecting circles.

3. Find a point without a given circle such that the angle between
the tangents drawn from that point to the given circle may be equal to a
given angle.

4. One circle is entirely within another ; draw the greatest and least

chords of the outer which touch the inner circle.

5. AA', BB', GC are parallel chords of a circle ; shew that the
triangles ABC, A'B'C are equal in all respects.

6. Shew that if two circles cut one another in the points A, B and
AG, AD are the diameters through A, the line GD will pass through B.

7. Find a point in the diameter produced of a given circle, from
which the tangent drawn to the circle will be of given length.

8. Construct a triangle having given the base, the vertical angle,

and the length of the line drawn from the vertex to the middle point of

the base.

9. Divide a circle into two segments the angle in one of which is

twice the angle in the other.

10. Divide a circle into two segments the angle in one of which is

five times the angle in the other.

11. Find the complete locus of a point at which the equal sides of a

given isosceles triangle subtend equal angles.

12. AB is the diameter of a semi-circle and P, Q, R, ..., K any
number of points on the circumference taken in order from A. Shew
that the square on AB is greater than the sum of the squares on AP,
PQ, QB, KB.

13. Describe a circle of given radius, with its centre on one given

circle and touching another given circle.

14. Draw a circle touching two given circles and having its centre

on a given diameter of one of those circles.

15. In a given circle inscribe a triangle so that two of the sides may
pass respectively through two fixed points and the third side may be of

given length.
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16. Shew that if two of the sides of a triangle inscribed in a circle

are parallel respectively to two given straight lines, the third side will

touch a fixed circle.

17. In a given circle inscribe a triangle so that one side may pass

through a given point and the other two may be parallel to given straight

lines.

18. Shew that, if any quadrilateral be inscribed in a circle, a quadri-

lateral with the same sides taken in any other order can be inscribed in

the same circle.

19. In a given circle inscribe a quadrilateral having two opposite

sides equal respectively to two given straight lines and the other two
sides equal to one another.

20. In a given circle inscribe a quadrilateral so that two opposite
sides may be equal respectively to two given straight lines and that the

sum of the other two sides may be equal to a third given straight line.

21. AB, AC are two chords of a circle, and BB is drawn parallel to

the tangent at A to meet AG in Z> ; shew that the circle BCD will touch
AB.

22. Through a point within a given circle draw a chord AOB such
that the difference between A and OB may be equal to a given straight

line.

23. Shew that, of all triangles which have the same base and equal
vertical angles, the isosceles triangle has the greatest area and the greatest

perimeter.

24. Shew that, if ^C and BD are parallel chords of a circle and if O
is the point of intersection oi AB and CB, the two circles OAC, OBD
will touch one another.

25. Find a chord of a given circle which is of given length and
which subtends a right angle at a given point.

26. Through two given points describe a circle so that it may
intercept a given length on a given straight line.

27. Through one of the points of intersection of two given circles

two straight lines are drawn cutting one of the circles in P, Q and the
other in P', Q\ Shew that the angle between PQ and P'Q' is constant.

28. Two circles touch one another internally at 0, and a line is

drawn cutting one circle at P, P' and the other in Q, Q'
; shew that PQ

and P'Q' subtend equal angles at 0.

29. One circle touches another internally at the point 0, and the
tangent to the inner circle at any point P cuts the outer circle in the
points Q, R\ shew that OP bisects the angle QOR.

16—2
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30. ^i B are two fixed points on a circle and C, D the extremities

of a chord of constant length ; shew that the point of intersection of ^C
and BD is on one or other of two fixed circles.

31. AB is a chord and ^C an equal length on the tangent at A
to a circle ABM; BC, produced if necessary, cuts the circle again in D,
andM is the middle point of the arc cut off by AB and on the side opposite
to that on which G lies ; shew that AGDM is a parallelogram.

32. AB, CD are any two parallel diameters of two circles and AC
cuts the circles again in the points P, Q respectively. Shew that the
tangents at P and Q are parallel.

33. Construct a triangle having given the base, the vertical angle
and the area. Hence, or otherwise, find two points, P, Q on the given
straight lines AB, AC respectively so that the triangle APQ may be of
given area and PQ of given length.

34. Equilateral triangles BCA', CAB', ABC are described on three

sides of the triangle ABC, the equilateral triangles being all three on the
same side of their bases as the triangle ABC, or all three on the opposite

side. Shew that, in either case, the lines AA', BB', CC, will meet in a
point.

35. The tangent at A to one circle is parallel to the chord BG of

another circle ; AB, AG cut the first circle in D, E and the second circle

in F,G\ shew that DE is parallel to FG.

36. Two parallel chords are drawn in a circle ; shew that the four

straight lines joining their extremities will all touch each of two circles

whose centres are on the given circle.

37. 0, O' are the centres of two circles which touch one another
at A, and B is the middle point of 00'. Through a point P on the

tangent at ^ a line is drawn perpendicular to PB, shew that the two
circles intercept equal chords on this straight line.

38. AB and CD are parallel chords of a circle and E is the middle
point of AB. Shew that, if DE meet the circle again in P, PA, PB are

tangents to the circles GAE, CBE, respectively.

39. is the middle point of the chord AB of a circle and PQ is any
chord through 0. Shew that AB produced cuts the tangents at P and Q
in points equidistant from the centre.

40. Shew that the locus of the middle points of all the chords of a

circle which pass through a given point is a circle.

41. Two circles intersect in the points A, B, and C, D are the points

of contact of a common tangent; shew that CD subtends supplementary
angles at A and B.

42. The diagonals AC, BD of the parallelogram ABCD intersect in

O ; shew that the circles A OB, GOD touch each other.
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43. Through one of the points of intersection of two given circles

draw a chord of either circle such that its middle point is on the other

circle.

44. Shew that, if from any point on a given arc of a circle

perpendiculars be let fall on the radii to its extremities, the line joining

the feet of these perpendiculars will be of constant length.

45. Construct a -triangle having given the base, the difference of the

sides and the difference of the base angles.

46. Four fixed points -4, 7>, C^B are taken on a circle, and two other

circles are drawn to touch each other, one circle passing through A and B
and the other through G and D. Shew that the locus of the point of

contact is a circle.

47. Construct a triangle having given the base, the sum of the sides

and the difference of the angles at the base.

48. Shew that, if the chords of a circle which bisect two of the
angles of an inscribed triangle be equal, the triangle must be isosceles

or the third angle equal to an angle of an equilateral triangle.

49. Draw when possible a line cutting two given concentric circles

so that the chord intercepted by one circle may be double the chord
intercepted by the other.

50. -A-B, AC are equal chords of a circle, and AF, AQ any two other
chords which cut J5C in the points R, S respectively. Shew that P, Q,
S, R are cyclic.

51. is any point on the circumference of the circle circumscribing
the triangle ABC, and 0A% OB', OC are chords of the circle perpendicular
respectively to BC, CA, AB. Shew that the triangles ABGy A'B'G' are
equal in all respects.

52. A^ B are two fixed points within a circle. Describe a circle

through A and B and cutting the given circle in D and E so that the
lines DAy EB may intersect on the given circle.

53. ABG is any triangle inscribed in a circle, and AP, BQ are
chords of the circle parallel to BG, GA respectively; shew that PQ is

parallel to the tangent at G.

54. The bisectors of the angles of the triangle ABG inscribed in a
circle meet in a point and cut the circle again in the points A\ B\ G'
respectively; shew that is the orthocentre of the triangle A'B'C'.

55. A, B are the points of intersection of two given circles, and any
other circle through A cuts the given circles again in C, D respectively.
Shew that, if any line tlnough B cut the circles ACB, ADB in E, F
respectively, the lines GE, FD will intersect on the circle GAD.
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56. Through A, one of the points of intersection of two given circles,

draw a line PAQ cutting the circles in P, Q respectively, so that the

difference between AP and AQ may be equal to a given line.

57. Through one of the points of intersection of two given circles a

line is drawn cutting the circles again in P, Q. Shew that the locus of

the middle point of PQ is a circle.

58. Shew that, if a circle A passes through the centre of a circle B,
the tangents to B at their points of intersection will meet on the

circle A.

59. A, B, C are any three points on a circle and the tangents at B,
C meet in 0; shew that, if a chord of the circle be drawn through
parallel to BA, it will be bisected by AC.

60. Two circles touch one another externally in the point P, and a

straight line touches the circles in the points A, B respectively; shew that

the circle whose diameter is AB passes through P and touches the line

joining the centres of the circles.

61. Shew that, if P be any point on the circle circumscribing the

equilateral triangle ABC, one of the lines PA, PB, PC is equal to the
sum of the other two.

62. Shew that, if a quadrilateral be inscribed in a circle and all but

one of its sides be drawn parallel respectively to three given straight

lines, the remaining side will be parallel to a fixed straight line.

Shew that the corresponding theorem is true for an inscribed hexagon,
and for any inscribed polygon of an even number of sides.

63. Shew that if a pentagon be inscribed in a circle and all but one
of the sides be drawn in given directions, the remaining side will be of

given length. Shew also that the theorem is true for any polygon of an
odd number of sides.

64. Two circles cut one another at right angles, and tangents are

drawn to one of the circles from any point on the other; prove that the

middle point of the chord of contact of these tangents is on the second
circle.

65. Two circles cut each other at right angles aX A, B; P is any
point on one of the circles and PA, PB cut the other circle in the points

Q, li respectively. Shew that QR is a diameter.

66. Any point P is taken on a given segment of a circle described on
the line AB, and perpendiculars AG, BH are dropped on BP, AP respec-

tively; shew that GH is of constant length and touches a fixed circle

whose centre is the middle point of AB.

67. -^D, BE, CF are the perpendiculars of the triangle ABC ;
prove

that the feet of the perpendiculars from i> on AB, AC, BE, CF are on a

straight line.
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68. Through a point on a circle any three chords are drawn
;
prove

that the circles described on these chords as diameters will intersect

again in three points on a straight line.

69. Inscribe a triangle in a given circle so that two of its sides may
pass respectively through two given points and that the third side may
be parallel to the line joining the given points.

70. \i A,B,C,T> be four points on a circle, and ii AB, CD produced
meet in F, and AD, BC produced meet in G, the lines which bisect the

angles F and G are perpendicular to one another, and parallel to the

bisectors of the angles between AG and BD.

71. If a straight line be equally inclined to the diagonals of a
quadrilateral inscribed in a circle, it will be equally inclined to either

pair of opposite sides.

72. Shew that, if from the middle point of each side of a quadrilateral

inscribed in a circle a perpendicular be drawn to the opposite side, these

four perpendiculars will meet in a point.

73. Three circles BGO, GAG, ABO meet in a point 0, and from any
point D on the circle BGO the lines DB, DG are drawn to cut the circles

ABO, GAO in F, E respectively; shew that EAF is a straight line.

Shew also that the lines joining the centres of the three circles form a

triangle equiangular to the triangle DEF.

74. Shew that the bases of all triangles with a common angle and
the same perimeter touch a circle.

75. Construct a triangle having given the perimeter, one angle and
the length of the perpendicular drawn from that angular point to the
opposite side.

76. On a given circle find two points which shall be at once
coneyclic with two given points A, B and also with two other given
points C, D.

77. Through the centre of the circle circumscribing the triangle

ABG lines are drawn parallel to AB, AG meeting the tangents at B, G
respectively in E, F. Shew that EF touches the circle.

78. -P, Q are points one on each of two concentric circles, and the
tangents at P, Q meet in T; shew that, if the line joining T to the
centre of the circles bisects PQ, the tangents at P and Q must be at

right angles.

79. From any point T the tangents TP, TP' afb drawn to a circle

and the tangents TQ, TQ' are drawn to a concentric circle. Shew that
PQ, PQ' make equal angles with the tangent at P.

Shew also that the lines PQ, PQ', P'Q, P'Q' touch two circles whose
centres are respectively T and the centre of the given circles.
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80. ^ and B are any two points one on each of two given circles.

Draw through A and B two equal and parallel chords.

81. A point P on one given circle is joined to a point Q on another
given circle ; shew that there is one and only one other line RS which is

equal and parallel to PQ and which has its extremities one on each of

the given circles.

82. Through a point P draw a straight line cutting two given
straight lines in the points ^, B respectively such that the rectangle
APy PB may be equal to a given square.

83. Shew that, if one circle can be drawn cutting three given circles

so that the three chords of intersection are parallel respectively to three
given straight lines, then an infinite number of such circles can be
drawn.

84. Draw a circle to cut three given circles so that two of the
chords of intersection may be parallel respectively to given straight lines,

and that the third may pass through a given point.

85. Draw a circle through two given points to cut a given circle so

that the common chord may be of given length.

86. Describe a circle bisecting the circumferences of two given
circles and cutting a third given circle so that the common chord may
be of given length.

87. Shew that the locus of the centre of a circle, which cuts two
given circles so that each of the chords of contact may pass through
a fixed point, is a straight line.

88. Describe a circle so that each of its chords of intersection with
three given circles shall pass through a fixed point.

89. Shew that, if a point be taken within the parallelogram ABGD
such that the angles OBA, OBA are equal, the circles AOB, BOG, COD
and DOA will aU be equal.

90. On the sides BG, GA, AB any three points D, E, F respectively
are taken ; shew that the three circles EAF, FBD, DGE intersect in a
point O. Shew also that if the triangle DEF is equiangular to a given
triangle, the point will be fixed.

91. Four given points in a plane are joined two and two by three
pairs of straight lines. Shew that, if the bisectors of the angles between
any one of these pairs be parallel to the bisectors of the angles between
either of the other pairs, the four given points must be cyclic.

92. Describe afi isosceles triangle, equiangular to a given triangle, so
that the extremities of its base may be on a given circle, and that the
two sides may pass respectively through two given points.

93. Construct a square such that two of its sides may pass respec-
tively through two given points and that the other two may meet at a
third given point.
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94. Describe a square whose sides pass through the four given

points P, Q, R, S respectively.

95. Describe a square whose four sides touch respectively four given

circles.

96. ABC is an equilateral triangle inscribed in a circle, and P is any
point on the circumference ; shew (i) that the sum of the perpendiculars

from A, ]3, C on the tangent at P is constant, and (ii) that the sum of

the squares on PA, PB, PC is constant.

97. The sides of a triangle with given angles pass respectively

through three given points ; shew that the loci of the in-centre, of the

circum-centre, of the centroid, and of the orthocentre are circles.

98. Shew that, if the sides of a triangle with given angles pass
respectively through three given points, every line invariably connected
with it passes through a fixed point.

99. If the sides of a moving angle of constant magnitude touch each
a given circle, every line dividing the angle into parts of constant
magnitude will touch a fixed circle whose centre is on a circle which
passes through the centres of the given circles.

100. Shew that if one angular point of a polygon of given species

be fixed, and if one of the sides not passing through the given angular
point touches a fixed circle, then will all the other sides touch fixed

circles.
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BOOK IV.

DEFINITIONS.

1. When each of the angular points of one rectilineal

figure lies on a side of a second rectilineal figure, the first

figure is said to be inscribed in the second.

2. When each of the sides of one rectilineal figure passes

through an angular point of a second rectilineal figure, the

first figure is said to be described about^ or circum-
scribed to, the second.

Thus the figure PQRST is inscribed in the figure ABODE, and the

figure ABODE is described about the figure PQRST.

3. When each of the angular points of a rectilinear figure

is on the circumference of a circle, the figure is said to be

inscribed in the circle, and the circle is said to be

circumscribed to the rectilineal figure.

4. When each of the sides of a rectilineal figure touches

the circumference of a circle, the figure is said to be circum-
scribed to the circle, and the circle is said to be inscribed
in the figure.

5. A straight line is said to be placed in a circle when
the extremities of the line are on the circumference of the

circle.
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PROPOSITION I. Problem.

In a given circle to place a chord equal to a given straight

line which is not greater tlian tlie diameter of the circle.

Let ABC be the given circle and XY the given straight

line ; theii it is required, to draw a chord of tlie circle equal

to XY.

Take any point P on the circle and draw the diameter PQ.

Then, if PQ = XY, what was required is done.

But, if XY^PQ, cut off from PQ the line PD = XY.

With P as centre and PD as radius describe a circle.

Then this circle will cut the given circle in two points,

Bf S suppose.

Join PP, PS; then each of the chords PP, PS will be

equal to XY.

For radius PP = radius PS = radius PD,

and PD = XY, by construction.

Hence PP = PS = XY.

Ex. 1. Draw a chord of a given circle equal to one given straight

line and parallel to another.

Ex. 2. Through any given point draw a chord of a circle equal to a
given straight line.
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PROPOSITION II.

In a given circle inscribe a triangle equiangidar to a given

triangle.

Let ABC be the given , and DEF the given A ; then

it is 7'equired to inscribe in the AEC a A equiangular to

the A EEF.

Draw the tangent XPY at any point P on the circle.

Make Z XFQ - Z EEF, FQ cutting the at Q.

Also, make Z YFE^ZEFD, FE cutting the at E.

Join QE. Then A FQE is the reef A.

For, since XFY is the tangent to the at the pt. P,

Z XFQ = Z FEQ in the alt. segment,

and Z YFE - Z FQE in the alt. segment.

Thus ZFEQ=:ZXFQ = ZEEF, [Const,

and Z FQE = Z YFE - Z EFD

;

[Const.

.*. remaining Z QFE = remaining Z FEE.

Hence A FQU is equiangular to the A DEF and it is

inscribed in the given circle.

Or tlius:

Find 0, the centre of the given circle, and draw any radius OF,

Make zPOQ = twice LDEi\ and zP0i2= twice lEFD.
Join Pg, QH, RP. Then PQR is the a required.

For Z PPQ=half Z POQ = z DEF,

and Z PQR

=

half Z POR = z DFE.

Hence remaining zPPQ= remaining zFDE.
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PROPOSITION III. Problem.

About a given circle to describe a triangle equiangular to a
given triangle.

Let ABC be the given , and DUF the given A ; then
it is required to describe about ABC a A equiangular to

the A jDUF.

Produce FF both ways to the points G, H.

Take the centre of the © ABC, and draw any radius OX.
At make the ^^ XOY, XOZ equal to the Z

»

DEII, DFG
respectively, X, Z being on the O

.

Draw the tangents at X, Y, Z and produce them to meet
in pairs in the points L, J/, N.

Then LMN is the triangle required.

For, all the Z « of the quad. OXNY are equal to 4 rt. Z «.

But, since MN and NL touch the at X, F respectively,

/LOXN=^OYN=r\../.\

Hence remaining angles XOF and XNY- two right Z ".

But Z « BEH and DBF =^ two riglit Z \

/. Z « JTOr and XNY= Z « i)^// and DBF,

hut ZXOY=^Z DBII; .'. Z XIfY= Z i>^i^.

Similarly Z iy^JfX = Z i>i^^.

But the three angles of any A are equal to two rt. Z ^

;

.'. the remaining Z MLN= remaining Z EDF.

,\ A LMN is equiangular to A i)^-^ and it is described

about the ABC.
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PROPOSITION IV. Pkoblem.

To inscribe a circle i7i a given triangle.

Let ABC be the given A ; then it is required to inscribe

a O in the A ABC.

Bisect the angles ABC, ACD and let the bisectors meet
in /.

From / draw ID, IE, IF ± '^ to BC, CA, AB respectively.

Then, in the A' IBD, IBF
V[ Z.IBD = Z.IBF,

\ rt. ZlDB = Yi. AIFB,
land IB opposite to equal angles is common

;

/. ID = IF.

Similarly ID-=IE.

Hence ID = IE = IF,

and therefore the described with centre / and radius ID
will pass through the three points D, E, F, and it will touch
the three sides of the A ABC since these sides are i. to the

radii ID, IE, IF respectively, and pass through their ex-

tremities.

Cor. I. Ilie three bisectors of the angles of a triangle meet
in a point.

Join Al. Then, since L AFI = L AEI- rt. L ,

sq. on AF and sq. on FI=sq. on AI=sq. on AE and sq. on EL
But FI=EI, and .-. sq. on JFI=sq. on EI.

Hence sq. on ^F=:sq. on AE ; and .*. AF=AE.
Then, since AI, AF, FI are equal respectively to AI, AE, EI,

lFAI= lEAI.
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Cor. II. If a circle touch ttvo given straight lines its

centre must he on one or other of the two straight lines which
bisect the angles between the given straight lines.

Def. The circle DFF is called the inscribed circle of

the triangle ABC, and its centre is called the centre of the
inscribed circle or the in-centre.

Ex. 1. In a given circle inscribe an equilateral triangle.

Ex. 2. Inscribe a right-angled isosceles triangle in a given circle.

Ex. 3. Shew that, if an equilateral triangle be inscribed in a circle

and the tangents at the angular points be drawn, the triangle so formed
will also be equilateral.

Ex. 4. Shew that, if an equilateral triangle be circumscribed to a
circle, and the points of contact of its sides be joined, the triangle so

formed will be equilateral.

Ex. 5. Shew that all equilateral triangles inscribed in a given circle

are equal.

Ex. 6. Shew that all equilateral triangles circumscribed to a given
circle are equal.

Ex. 7. Shew that a circle inscribed in an equilateral triangle

touches each side at its middle point.

Ex. 8. An equilateral triangle is inscribed in a circle, and the
tangents to the circle at its angular points are drawn ; shew that the
triangle formed by the tangents is four times the original triangle.

Ex. 9. Shew that, in any triangle, each side subtends an obtuse
angle at the in-centre.

Ex. 10. Find the centre of a circle which cuts off equal lengths

from the sides of a triangle.

Ex. 11. Shew that, if the triangle formed by joining the points of

contact of the circle inscribed in the triangle ABC be equiangular to the

triangle ABC, both triangles must be equilateral.

Ex. 12. Construct a triangle, having given the centres of three of the

circles which touch its sides.

Ex. 13. Shew that the triangle whose vertices are the centres of the

three escribed circles of any triangle is acute-angled.
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Proposition IV. is a particular case of the problem to describe a circle

to touch three given straight lines.

Let the st. lines PBGK, QCAL, RABM be the given st. lines.

Bisect the Z " MBC, BGQ by lines meeting at Ij.

Then, since I^B bisects I MBC, the 1" from Ij on MBA and BG are

equal; and, since Ij^C bisects A BGQ, the ±" from Ij on BG and AGQ
are equal.

Hence a circle whose centre is I^ will touch BG and the productions
of .4J5and^C.

Since the 1" from Jj on ABM and ACQ are equal, it follows (as in

Cor. I.) that IiA bisects the angle BAG, and therefore GII^ is a straight

line.

IR

K

M

Similarly, if I2 is the point of intersection of lines bisecting z ''RAG,
AGK, a O whose centre is J, will touch AG and the productions of

BA, BG.

Also, if ig is the pt. of intersection of the bisectors of Z * LAB,
ABP, a O whose centre is J, will touch AB and the productions of
GA, GB.
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Thus, when three straight lines intersect in three points, there are

four circles which touch the st. lines ; one of the circles touching the

sides of the a formed by the lines and each of the others touching one
side of that a and the prolongation of the remaining sides.

Def. A circle which touches one side of a given triangle

and the other two sides produced is called an escribed circle

of the triangle.

It is important to notice that the line joining the centres of any two

of the four circles, produced if necessary, will pass through an angular
point of the A

.

Also, since the two bisectors of the angles between two st. lines are

at rt. Z S it follows that the line joining any two centres is l • to the line

joining the other two centres, so that each centre is tlie orthocentre of the

A whose angular points are tlie three otJier centres.

Thus the a ABC is the pedal triangle of the triangle whose vertices

are the centres of any three of the four circles which touch its sides.

Since Z' IBI^ and ICI^ are rt. z*, the © whose diameter is 11^
passes through B and C.

Hence X, the middle point of 11^, is the centre of the O BICI^ and
.-. lBXG= 2iBI^G.

But Z BIiC= Z BI^I+ z IIiC

= ZBCI+ lIBG since I, B, I^, C are cyclic

=^lBCA+^lABC.

Hence Z BXC= L BCA + z ABC]

.-. z BXC+ I BAG=2 rt. z •, and therefore A' is on the © ABC.

And it can be proved in a similar manner that the circum-circle of
ABC passes through all the points X, X\ Y, F, Z, Z' which are the
middle points of the lines 11^, I^I.^, 11^, L^I^, 11^, I^I^. [See page 279.]

Again, since XB=XC, the line through X ±' to BO will bisect BC
and will .-. be a diameter of the © ABC. But XX' is the diameter
through X, since z XAX' is a rt. z . Hence the diameter XX' cuts BC
at rt. z % in D suppose.

Then, since X' is the middle point of Iglg, sum of ±" from I^, I^ on
BC is equal to 2X'D.

And, since X is the middle point of IZ3 , I and J3 being on opposite
sides of BC,

difference of i" from Jj, I on BC is equal to 2XD.

Hence, if r, r^^, r^, r^ be the radii of the ©".whose centres are I, I^,

Ly, I3 respectively and R the radius of the circum-circle of the a, we
have

ri + r^ + 7-3 - r= 2A:'.Y= 4R.

S. B. E. 17
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PROPOSITION y. Pkoblem.

To describe a circle about a given triangle.

Let ABC be the giv^en A ; then it is required to describe

a circle about it.

Bisect the sides AC, AB in the points E, F respectively.

Through E, F draw lines ± ^ to AC, AB respectively and
meeting in the point 0.

Join AG', also, if the point is not on BC, join BO
and CO.

Then, in the A« AFO, BFO
( AF=BF,

FO^FO,
land rt. ZAFO = rt. Z BFO

;

.'. AO^BO.

Similarly AO = CO.

.-. AO = BO--.CO.

Hence the circle described with as centre and OA as

radius will pass through all three points A, B, C and will

therefore be the circle required.

Def. The o ABC is called the circumscribed circle
of the A ABC, and its centre is called the centre of the
circumscribed circle or the circum-centre.
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Cor. The three lines drawn perpendicular to the three

sides of a triangle and through their middle points will meet

in a point.

It will be obvious that the above is the same problem as that

considered on p. 179.

Ex. 1. Shew that, in an equilateral triangle, the in-centre coincides

with the circum-centre.

Ex. 2. Shew that, if the in-centre and the circum-centre of a triangle

coincide, the triangle must be equilateral.

Ex. 3. Shew that the radius of the circumscribing circle of an
equilateral triangle is double the radius of the inscribed circle.

PROPOSITION VI. Problem.

To inscribe a square in a given circle.

Let ABC be the given circle; then it is required to

inscribe a square in the circle.

Draw any diameter POQ and the perpendicular diameter

ROS. Join PS, SQ, QR, RP.

Then PSQR is the square required.

For, since the chords PS^ SQ, QR, RP all subtend equal

angles at the centre,

/. PS = SQ = QR = RP,

And Z PRQ is a right angle, since POQ is a diameter.

.'. PSQR is a square, and it is inscribed in the given circle.

17—2
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PROPOSITION VII. Problem.

To describe a square about a given circle.

Let ABC be the given circle; then it is

describe a square about it.

N P K

n

to

f^V G/

M Q h

Draw any diameter FOQ and the perpendicular diameter

ROS.
Draw tangents to the circle at the points P, S, Q, R and

let the tangents be produced to meet in the points K, X, M, N.
Then KLMN is the square required.

The tangents at F and Q are ± "" to the diameter POQ,

and ROS is also ± ' to FOQ
;

/. NFK, ROS, MQL are all H.

So also KSL, FOQ, NRM are all 1|,

and are J. ' to NFK, ROS and MQL.
Hence all the quadrilaterals in the figure are rectangles.

But the opposite sides of rectangles are equal;

/, NK- ML = RS = diameter of circle,

and XL — NM= FQ = diameter of circle.

Hence the sides of KLMN are all equal, and its angles are

rt. Z ^, so that it is a square.

Ex. 1. Shew that the square inscribed in a given circle is half the
circumscribed square.

Ex. 2. Shew that the square inscribed in a given circle is equal to

twice the square on the radius.

Ex. 3. Shew that every parallelogram inscribed in a circle is a
rectangle.

Ex. 4. Shew that every parallelogram circumscribed to a circle is a
rhombus.

Ex. 5. In a given circle inscribe a quadrilateral equiangular to a
given quadrilateral in which the sum of one pair of opposite angles is two
right angles.

Ex. 5. About a given circle describe a quadrilateral equiangular to a
given quadrilateral.
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PROPOSITTOK YIII. Problkm.

To inscribe a circle in a given square.

Let ABCD be a square ; then it is required to describe a O
ill it.

A P B

Bisect the sides AB, BC, CD, DA in the points F, Q, R, S
respectively. Join PR, QS and let them meet in 0.

Then, since AB = DC, their halves are equal

;

.-. AP = DR, and AP is also || to DR.
Hence PR is ll to AD or BC.
Similarly QS is ll to AB or CD.
Hence ASOP is a 1|™ ; but opposite sides of H"" are equal

;

.-. SO=AP^ha.liAB.
Similarly PO, QO, RO are each equal to half a side of the

square, so that PO=QO = RO = SO.
Hence the O described with centre and radius OP will

pass through the four points P, Q, R, S.

And, since PR is || to AD, Z OPB = alt. Z BAD = rt. Z .

Hence AB touches the O whose centre is and radius OP.
Similarly all the other sides of the square touch the

PQRS.
Hence the circle PQRS is inscribed in the given square.

It is of importance to notice that a circle can be inscribed in any
convex quadrilateral in which the sum of one pair of opposite sides is equal
to the sum of the other pair.

Let ABCD be the quad, such that AB + CD =BC+ DA.
Draw a circle to touch the three sides AB, BC, CD in P, Q, R.
Then, if AD does not touch this circle, draw from A the tangent AX

and produce it so as to cut CD (produced, if necessary) in the point Y.

Then, since the two tangents drawn to a circle from any point are
equal,

AP=AX, BP=BQ, CR= CQ, YR=YX.
Hence AB+CY=BC+ AY.
But AB + CD =BC+ AD; [Hyp.

.•. Cr~ CD=YD, which is impossible.

Hence AD must touch the which touches AB, BC and CD.
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PROPOSITION IX. Problem.

To circumscribe a circle to a given square.

Let ABCD be the given square; then it is required to

circumscribe a circle about it.

Draw the diagonals AC, BD, and let be their point of

intersection.

Then, since AB = AD, Z ABD = Z ADB.

But, since Z DAB is a rt. Z , Z « ABD and ADB are

together equal to a rt. Z

.

Hence Z ABD = Z ADB = half a rt. Z

.

So also ZBAC=-Z BCA = half a rt. Z
,

Z Z>^(7 = Z i>(7^ = half a rt. Z
,

and Z i)^C = Z 5Z>C = half art. Z.

And, since Z ABO - half a rt. Z - Z OJ:^ ; .*. AO = BO.

Similarly BO = CO ^ DO.

Hence the circle described with centre and radius OA
will pass through the four points A, B, C, D and will be the

O required.
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PROPOSITION X. Problem.

To construct an isosceles triangle having each of the angles

at the base dovhle the vertical angle.

Take any st. line AB^ and divide it at the point C so that

the rect. AB^ BC = sq. on AC.

With A as centre and AB a,B radius describe the circle

PBQ. In the circle FBQ place the chord BD equal to AC.
Join A I). Then ABD is the triangle required.

Join CDj and about the AACD describe the circle ACD.

Then rect. BA, ^C = sq. on ^C [Const.

= sq. on BD. [Const.

Hence BD touches the qACD at the point D
;

/. Z BDC = /.CAD in the alt. segment.

To each add Z. CDA
;

then whole Z BDA -^ sum of Z « CAD and CDA.

But /. BCD = sum of Z « CAD and CDA.

Hence /.BCD ^ A BDA.

But, since ^2) = ^ J5, Z BDA = Z ^^/>

;

,\/BCD=/CBD;
.', BD = CD, and BD = CA;

.-. CD^^CA, and .-. Z CAD =/ CDA.
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But it has been proved that Z BDG = Z CAD.

Hence whole Z BDA = twice Z BAD.

But Z ABD - Z j5i>^, since ^i> = AB.

Thus each of the Z « ^7iZ), ^Z>^ is double the Z i?^i>, so

that ABD is constructed as required.

Note. The student may have no difficulty in the above proposition,
but will doubtless feel that it is unsatisfactory because there is nothing to

shew what suggested the construction adopted. It will, however, appear
by the following Analysis that Euclid's construction suggests itself in a
perfectly straightforward manner.

Analysis. Suppose that the a ABD is such that

/ ABD= L ADB = 2 z BAD.

Then the given relation suggests at once the bisection of the Z BDA
by the st. line DC.

Then Z BDC= \ z BDA = z BAD.

Hence BD will touch at D the circle circumscribing the A A CD ;

.-. sq. on jBZ)= rect. BG, BA.

But, since lCDA= iGAD, CD = GA.

And z L'CD = sum of z « GAD and GDA

=2lBAD= A ABD
.: BD=^GD=GA.

Hence sq. on GA = iect. BG, GA,

which at once suggests Euclid's construction.

The division of a right angle into equal parts.

(i) Since any angle can be bisected, and the halves
bisected again, and so on without limit, a right angle can he

divided into 2, 4, 8, 16, 32,... equal parts.

(ii) Since the angles of an equilateral triangle are all

equal and are together equal to two right angles, each of the
angles is two-thirds of a right angle, and by bisecting any one
of the angles we obtain an angle equal to one-third of a right

angle.

Hence, by (i), a right angle can he divided hito 3, 6, 12,

24,... equal parts.
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(iii) If an isosceles triangle be constructed each of whose
base angles is double the vertical angle, the vertical angle will

be one-fifth of two right angles ; and if the vertical angle be
bisected we obtain an angle equal to one-fifth of a right angle.

Hence, by (i), a right angle can he divided into 5, 10, 20,

40,... equal parts.

(iv) The difference between an angle of one-third of a
right angle and an angle of one-fifth of a right angle is an
angle of two-fifteenths of a right angle, and by bisecting this

angle we obtain an angle equal to one-fifteenth of a right angle.

Hence, by (i), a right angle can he divided into 15, 30, 60,

120,... equal parts.

(v) Gauss proved that a right angle can by a geometrical

construction be divided into any number of equal parts pro-

vided that the number is prime and of the form 2" + 1.

Numbers of this form are 3, 5, 17, 257,.... The construction

for the division of a right angle into 17 equal parts is, however,

extremely complicated.

It is very important to remember that it is impossible to

divide a right angle into a number of equal parts, unless that

number is included in one of the sets given above—it is

impossible, for example, to divide a right angle into 7 equal

parts or into 9 equal parts by a geometrical construction.

Tliis of course does not mean that a construction cannot be
found which will very approximately effect the required sub-

division, which is all that is required in geometrical drawing.

Ex. 1. Shew that, if the circles ACI> and VBQ intersect again in the
point Ry and AR be joined, z AJ)It= l ARD = 2i DAR.

Ex. 2. Shew that in the isosceles aACD each of the angles at the
base is one-third the vertical angle.

Ex. 3. Shew that, if the tangent at A to the circle AGD cut DB
produced in 7, then BY=BA.

Ex. 4. Shew that, if the circles ACD, PBQ intersect again in the
point R, CR will be parallel to BD, and will bisect the angle ARD.

Ex.5. Shew that Cii = ^B.
Ex. 6. Construct an isosceles triangle whose vertical angle is three

times each of the base angles.

Ex. 7. Construct an isosceles triangle whose vertical angle is two-
ninths of each of the base angles.

Ex. 8. Construct an isosceles triangle each of whose base angles is

three-fourths of the vertical angle.
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PROPOSITION XI. Problem.

To inscribe a regular pentagon in a given circle.

Let be the centre of the given circle ; it is required to

inscribe a regular pentagon in the circle.

Since all the sides of the regular pentagon to be inscribed

in the circle are to be equal, they will all subtend equal angles

at the centre. But the angles at the centre are together equal

to four rt. Z ^. Hence each side must subtend at the centre

an angle equal to one-fifth of four rt. Z ^.

Construct an isosceles A XYZ having each of the Z^
XYZ, XZY double the Z YXZ then ZX7^= two-fifths of

two rt. Z ^ = one-fifth of four rt. Z ^

Draw any radius OA, and also the radii OB, 00, OD, OE
so that Z.AOB^/.BOG = /LCOI)^Z.BOE^/.XYZ,

Then, since Z XYZ = one-fifth of four rt. Z ^, and all the

angles at are together equal to four rt. Z ^, the remaining

Z EOA = one-fifth of four rt. Z «.

Join AB, BC, CD, BE, EA.

Then ABODE is the required regular pentagon.
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For, all the radii of the O are equal, and the angles

AOB, BOC, COD, DOE, EOA are all equal,

/. the isosceles A« AOB, BOG, COD, DOE, EOA are

equal in all respects.

Hence their bases are all equal, so that the pentagon is

equilateral ; also their base angles are all equal, whence it

follows that the angles of the pentagon are the doubles of

the base angles, and are all equal.

Hence ABODE is a regular pentagon, and it is insciibed

in the given circle.

Note. It will be seen at once that the above method is

applicable to all polygons provided that the necessary sub-

multiple of four rt. Z ^ can be found by a geometrical con-

struction. The cases in which this can be done are enumerated
in the note to the previous proposition.

1. If the diagonals of a regular pentagon be drawn, as in the figure

below, prove that the pentagon FQRST is regular.

2. Shew that the square on AS h equal to the rectangle ATy ST.
[Euclid XIII. 8-1

3. Shew that ABPE is a rhombus.

4. Shew that the © EPB touches DE and CB.

5. Shew that, if an equilateral pentagon have any three of its angles
equal, it will be equiangular. [Euclid xiii. 7.]

6. Shew that, it AB be the side of a regular decagon inscribed in
a circle, and if AB be produced to D, BD being equal to the side of a
regular hexagon inscribed in the same circle, then will BD^=AD.AB.
[Euclid xiii. 9.]
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7. Shew that, if AB, BC, CD be three consecutive sides of a regular
decagon inscribed in a circle, then will AD be equal to the sum of AB
and the radius of the circle.

8. Shew that the square on the side of a regular pentagon is equal
to the sum of the squares on the sides of a regular hexagon and a regular
decagon inscribed in the same circle. [Euclid xiii. 10.]

PROPOSITION XII. Problem.

To describe a regular pentagon about a given circle.

Let be the centre of the given circle. It is required to

describe a regular pentagon about the circle.

Construct an isosceles A XYZ having each of the Z ^

XYZ, XZY double ^YXZ. Then / ZZ^ = two-fifths of

two rt. Z * == one-fifth of four rt. Z ^

Draw any radius OA, and also the radii OB, 00, OD, OE
such that

/.A0B =AB0O = Z.G0D^Z.DOE = /LXYZ.

Then, since Z XYZ is one-fifth of four rt. Z ^, and all the
angles at are together equal to four rt. Z ^, the remaining
Z EOA = one-fifth of four rt. Z ^

Draw the tangents to the circle at the points A, B, 0, D, E
and produce each tangent to meet the consecutive one so as to

form the pentagon PQRST.
Then the pentagon PQRST will be the figure required.

Join OP, OQ, OP, OS, OT.
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Then we know that if two tangents he drawn from any
external point to a circle tJie tangents are equal in length and
subtend equal angles at the centre^ and also that the line joining

tJie external point to the centre bisects the angle between the

tangents. [III. 17, Cor.]

Hence PA^PB, QB = QC, PC = PD, &c.

;

also Z POA = Z POB, Z QOB = Z QOC, &c.

;

and ZAPO = half Z APB, Z BQO = half Z BQC, &c.

But, by construction, Z AOB = Z BOC ;
.*. their halves are

equal, i.e. ZPOB^ZBOQ.
And, in the A' POB, QOB

v[ ZPOB =ZQOB
i rt.Z OBP = rt./:OBQ

I and OB, adjacent to equal angles, is common

.*. PB=^QBsind ZOPB = ZOQB.

Hence PQ = twice PB.

Similarly all the sides of the pentagon PQKST can be
shewn to be bisected at their points of contact.

Hence PT= 'IPA = 2PB = PQ.

Similarly PQ = QR, QR = ES and ST=TP.

Thus the figure PQRST is equilateral.

Also, since Z OPB = Z OQB, their doubles are equal,

i.e. ZTPQ=ZPQR.
Similarly ZPQR^ZQRS^Z RST.

Thus the angles of the pentagon P^^^ST^ are all equal.

Hence PQRST is a regular pentagon and it is described

about the given circle.

Note. It will be seen that the above method is applicable

to all polygons provided that the necessary sub-multiple of

four rt. Z ^ can be found by a geometrical construction.
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PROPOSITION XIII. Problem.

To inscribe a circle in a given regular pentagon.

Let ABODE be the given regular pentagon ; then it is

required to inscribe a circle in the pentagon.

[Hyp.

\Const.

Bisect the angles EAB, ABC by st. lines meeting in the

pt. 0. Join 00, OD, OE.

In the A« OAE, OAB
AE=AB
OA = OA

[and ZOAE^^OAB
.\/OEA=ZOBA.

But Z OBA = h Z ABO, and ZABO==ZAED (hyp.),

,\ZOEA = iZAED,
so that OE bisects Z AED.

And then, since OA bisects Z BAE and OE bisects Z AED,
it can be proved in the same manner that OD bisects Z EDO,
and then that 00 bisects Z DOB.

Hence the angles of the- pentagon are bisected by the straight

lines AO, BO, 00, DO, EO respectively.

Now draw from the lines OH, OK, OL, OM, ON ±/
respectively to AB, BO, OD, DE, EA.

Then, in the A« OBII, OBK
\'i ZHBO=ZKBO
\vt.Z.OHB = Yt.ZOKB
land OB, opp. to equal angles, is common

/. OE = OK.
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In the same way it may be proved that

0K= OL, OL = OM, 0M= ON and ON ^011.

Hence OH^ OK, OL, OM, ON are all equal, and .*. a O
with centre and radius OA will pass through the five points

H, K, L, M, N', and, since the Z « at if, K, L, M, N are rt. /. \
this circle will touch all the sides of the given pentagon, and
is therefore the circle required.

PROPOSITION XIV. Problem.

To describe a circle about a given regular pentagon.

Let ABODE be the given regular pentagon; tlicn it is

required to describe a circle about it.

Bisect the Z ^ BAB, ABC by st. lines meeting in tlie pt. 0.

Join OC, OD, OK.

In the A' OAK, OAB

-:( AK = AB [Hyp.

I
OA = OA

land ZOAK = Z OAB [Const.

.'.ZOKA=ZOBA.

But Z OBA = J Z ABC, and ZABC=Z AKD (hyp,)
;

/. Z OKA = J Z AKD, so that OK bisects Z AKD. \
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And then, since OA bisects Z BAE and OE bisects Z. AED,
it can be proved in a similar manner that OD bisects Z EDC^
and then that OC bisects Z DOB.

Hence the angles of the pentagon are bisected hy the straight

lines OA, OB, OC, OD, OE respectively.

Since the angles of the pentagon are all equal, and are

bisected by the st. lines OA, OB, OG, OD, OE it follows that

ZOAB = ZOBA, ZOBC = ZOCB, ZOCD^ZODC,

and ZODE =ZOED;

/. OA = OB, OB=OC, OC = OD and OD = OE.

Hence a circle whose centre is and radius OA will pass

through the five points A, B,C, D, E and will therefore be the

circle required.

Note. It will easily be seen that the constructions given
in Props. XIII and XIV do not depend on the number of the
sides of the pentagon. Thus we have the following theorem :

—

If two of the angles of any regular polygon be bisected by st.

lines which meet in the point 0, the lines joini7ig to the other

vertices will bisect the remaining angles of the polygon, a circle

whose centre is will touch all the sides of the polygon, and
another circle whose centre is will pass through all the vertices

of the polygon.

PROPOSITION XV. Problem.

To inscribe a regular hexagon in a given circle.

Let be the centre of the given circle ; then it is required

to inscribe a regular hexagon in the circle.

Since all the sides of the regular hexagon to be inscribed

in the circle are to be equal, they will all subtend equal angles

at the centre, and each side must /. subtend at the centre an
angle equal to one-sixth of four rt. Z ^.

Construct an equilateral triangle XYZ ; then, since the

angles are all equal, each angle must be one-third of two
rt. Z ^ or one-sixth of four rt. Z ^
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Draw any radius OA^ and draw the radii OB^ OC, OD,
OE, OF so that

/.aob=/.boc=/.god=/ldoe=/:eof=/:xyz.

Then, since Z XYZ = one-sixth of four rt. Z ^ and all the

angles at are together equal to four rt. Z «, the remaining

Z FOA is also one-sixth of four rt. Z ».

Join AB, BC, CD, DE, EF.

Then ABCDEF is the required regular hexagon.

For all the radii of the circle are equal, and the angles

AOB, BOC, COD, &c. are all equal;

/. the isosceles A" AOB, BOG, COD, <fec. are equal in

all respects.

Hence their bases are all equal, so that the hexagon is

equilateral ; also their base angles are all equal, whence it

follows that the angles of the hexagon are all equal.

Hence ABCDEF is a regular hexagon and it is inscribed

in the given circle.

Ex. 1. Shew that the side of a regular hexagon inscribed in a circle

is equal to the radius of the circle.

Ex. 2. One regular hexagon is inscribed in a given circle and
another is circumscribed about the circle ; shew that the area of one
hexagon is three-fourths the area of the other.

Ex. 3. An equilateral triangle and a regular hexagon are inscribed

in the same circle ; shew that the area of the triangle is half that of the

hexagon.

Ex. 4. An equilateral triangle and a regular hexagon are circum-
scribed about a given circle ; shew that the area of the hexagon is two-
thirds of that of the triangle.

S. B. E. 18
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PROPOSITION XVI. Problem.

To inscribe a regular quindecagon in a given circle.

Since all the sides of the regular quindecagon to be
inscribed in the circle are to be equal, they will all subtend
equal angles at the centre, and each side must therefore

subtend at the centre an angle equal to one-fifteenth of four

rt. Z. \

Construct a triangle ABC having each of the Z ^ ABC,
ACB double the angle BAC ; then Z BAC is equal to one-fifth

of two rt. Z^ or one-tenth of four rt. Z^. On AC construct

the equilateral A CAD, then Z CAD is one-third of two
rt. Z^ or one-sixth of four rt. Z ^.

Hence ZBAD is the difference between one- sixth and
one-tenth of four rt. Z ^ and is therefore one-fifteenth of

four rt. Z^
A

B C

Now draw any radius OP, and draw the radii OQ, OB,
OS,... such that Z POQ =Z QOB =Z BOS = ... =Z BAD.

Then, since ZBAD is one-fifteenth of four rt. Z«, there

will be fifteen radii in all drawn from the point 0, the angle

between consecutive radii being the same throughout.

JoinP^, QE,BS,....
Then PQRS ...is the required regular quindecagon.

For all the radii of the circle are equal, and the angles

POQ, QOR, BOS,... are all equal; /. the isosceles A« POQ,
QOR, BOS,

.

. . are equal in all respects.

Hence their bases are all equal, so that the quindecagon is

equilateral; also their base angles are all equal, whence it

follows that the angles of the quindecagon are all equal.

Hence PQRS ... is the required regular quindecagon.
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MISCELLANEOUS THEOREMS.

1. An equilateral polygon inscribed in a circle is also equiangular.

For join the centre to each of the angular points A, JB, G, D, ....

Then, since the sides of the polygon are all equal, they will subtend equal
angles at the centre; and /. the isosceles a* AOB, BOC, COD, ... are
equal in all respects. Hence their base angles are equal, and the angles
of the polygon are .". the doubles of these base angles and are equal.

2. An equiangular polygon inscribed in a circle has its alternate sides
equal.

For, if AB, BC, CD, DE, ... be consecutive sides of the equiangular
polygon, and ACy BD be joined.

Then, in the A" BAC, BDC
L ABC= L BCD (hyp.), lBAC= I BDC in the same segment,

and BC opp. to equal angles is oommon

;

.-. AB=CD.
Similarly BC=DE.

3. All equiangular polygon with an odd number of sides inscribed in
a Q is also equilateral.

This follows at once from the preceding.

4. To describe a regular pentagon on a given straight line.

Let AB be the given st. line.

I)

18-2



276 EUCLID.

Since the pentagon is to be a regular pentagon, all its angles are to

be equal, and therefore if its sides be produced all its exterior angles will

be equal.

Hence each exterior angle will be one-fifth of four rt. l ".

Produce therefore AB both ways to X, Y respectively, and make
lXBP= L 7^Q = one-fifth of four rt. L \ [This is equal to one of the
base angles of an isosceles a each of whose base angles is double the
vertical z .]

Bisect L " ABB, BAQ by st. lines meeting in 0.

Then, since iABP= I BAQ, lABO= iBAO, and /. AO = BO.
Describe a © with centre and radius OB.

Then z ^ OjB= supplement of A" OAB, OBA
= supplement of lABG
= Z ZBC= one-fifth of four rt. Z ^

Hence ^^ is a side of a regular pentagon inscribed in the circle, and
the construction can be completed.

Any regular polygon can be constructed in a similar manner provided

the required submultiple of four rt. Z * can be found by a geometrical

construction.

5. To find, in terms of the sides, the lengths of the tangents drawn
from the angular points of a triangle to its inscribed and escribed circles.

Let a, b, c be the lengths of the sides BG, CA, AB of the a ABC, and
let s be half the sum of the sides.
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Since the two tangents drawn to a circle from any point are equal,

AFi + AEi =AB+BFi +AC+GEi

=AB + BD^ +AG+ CDi

=AB +BC+CA=2s;

.: AFi =AEi=s (i).

Similarly BD^=BF^=8, and CD^=CE^=8.

Again, 2AB +2CD=AB +AF+FB+ 2CD
=AB+AE+BD+CE+CD
=AB +BC+CA = 28',

.'. CD=GE=s-c (ii).

AE=AF=8-a, and BD-BF=8-h.

BD^ = BF^=AF^-AB=8-c;

Similarly

From (i)

from (ii) BDi= GD .(iii),

so that D and Dj are equidistant from the middle point of BG.

Similarly E, E^ are equidistant from the middle point of GA, and
F, F^ are equidistant from the middle point of AB.

Also, since GD^=BD=8-b, and GDc,-GE^~AE=8-a;

:. DiD^=s-b + 8-a=c=AB.
Again, DD^^BD^ - BD=GD -BD = {8-c) - {8-b) = b-c.

Q. If O is the orthocentre of the a ABG, and AL the chord of the
circum-circle perpendicular to BG, OL will be bisected by BG.

Let AD, BE be drawn perpendicular to BG, GA respectively, and let

O be their point of intersection, then O is the orthocentre. And, if AD
be produced to meet the circum-circle in L, we have to prove that OD— DL.

Now, since z " BDA, BEA are equal, being rt. z % therefore points
B, D, E, A are on a circle.

Hence i DBF = i DAE.
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But z DAE, i.e. L LAC= iLBC, in the same segment.

Hence in the a' BBO, JBDL,

lDBO= iBBL, rt. z BDO=:vi. i BDL,

and BB adjacent to the equal angles is common

;

.'. OD=DL.

[The student should draw a figure for the case when the triangle is

obtuse-angled.]

7. The distance of the orthocentre from any vertex of a triangle is

twice the perpendicular distance of the circum-centre from the opposite side

of the triangle.

Let AB^ BE, CF be the three 'perpendiculars' of the a ABC, meeting
in the orthocentre 0, and let SA', SB', SC be the perpendiculars from the
circum-centre on the sides BC, CA, AB respectively.

Then we know that A', B\ C are the middle points of the sides on
which they lie.

Bisect OA, OB, OC in X, Y, Z respectively.

Join YZ, B'C.

Then, since BC'=C'A and CB'= B'A, B'C is
|1 to BC and equal to

half BC.

And, since 07= YB and OZ = ZG, YZ is || to BC and equal to half BC.

Hence B'C and YZ are equal and parallel.

And, since the three sides of the A YOZ are parallel respectively to

the three sides of the a B'SC, the a^ are equiangular; and the corre-

sponding sides YZ and B'C are equal.

Hence a" YOZ, B'SC are equal in all respects, so that OY=SB' and
OZ = SC'.

Hence 0B= 2SB', 0C=2SC, and similarly 0A=2SA',
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8. The mne-point Circle. In any triangle the three middle points

of the sides, the three feet of the 'perpendiculars drawn from the angular
points on the sides, and the three middle points of the lines joining the

orthocentre to the angular points all lie on a circle called the nine-point

circle whose radius is half that of the circum-circle of the triangle.

Let AD, BE, CF be the perpendiculars of the a ABC intersecting in

the orthocentre 0. Let S be the circum-centre, and SA', SB', SC the
±" from S on the sides BG, CA, AB respectively; then A', B\ C are

the middle points of the sides on which they lie. Let X, Y, Z be the
middle points of OA, OB, OC respectively.

Then we have to prove that A', B', C, D, E, F, X, Y and Z lie on
a circle.

/ fX,
/

/'y
\\

yK
JlB'

/T^y^
\ -^\ A

/ ^Yj^-- \ \

\yC--^'^^^^\ ^/'S\\y

D

Join SA and A'X and let ^'A' cut OS in the point iV^.

Then, we know that 0A = 1A'S
;

.-. XA—A'S and is parallel to it.

Hence A'X is parallel to SA, and A'X=SA.
And, in the a" ONX, StJA'

{ L OXN= L SA'N, since 0X\\ SA',

\ L NOX= L NSA',

[and OX=10A = SA'-,

.-. ON=NS,&ndNX=NA'=^A'X=isSA.
Thus the circle whose centre is N, the middle point of SO, and whose

radius is half the radius of the circum-circle will pass through A' and X,
and therefore also through D, since z XDA' is a rt. z ®.

And it can be proved in a similar manner, that the same circle will

pass through B\ Y and E and also through C, Z and F.

Thus the nine-points A', B\ C, D, E, F, X, Y and Z all lie on a circle

rohose radius is half that of the circum-circle and whose centre is tfie

middle point of the line joining the circum-centre and orthocentre.
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9. The centroid of any triangle is on the line joining the circum-
centre and the orthocentre of the triangle.

Let S be the circum-centre and the orthocentre of the a ABC.
Join SO.

Let A' be the middle point of £C. Join AA' cutting SO iu G.

B A' D C

Then we know that SA' is l-- to BC and that A0= 2SA'.

Bisect OA in L and GO in iT, and join LK.
Then LK is ||i to AO and Li:= i04.
Hence LiT is equal and parallel to SA'.

Hence the a* SGA\ KGL are equal in all respects, so that

A'G=GLx^GA,
which proves that G is the centroid.

10. The pedal line of any point on the circum-circle of a triangle

bisects the line joining the point to the orthocentre.

Let P be any point on the circum-circle of the a ABC, whose ortho-
centre is O and circum-centre S.

Draw PL, PM the l" from P on BC, CA respectively.

Produce PL to meet the circum-circle again on the point a, and
join Aa.

Let LM and OA, produced if necessary, cut in X
Then, since l" PLC and PMC are rt. i\ P, L, M, C are cyclic

;

.-. lPLM=lPCA= iPaA.
Hence LM is

|| to aA, and PL, OA are l' to BC and .". are
l|

;

.'. LaAX is a ||™ and La = XA.

Draw the ±" SA\ SV on BC, Pa respectively.

Then, since V is the middle point of Pa,

PL-La=2VL= 2SA'=OA;
.: PL = OA+La=OA+XA = OX.

Hence PL is equal and 1| to OX, so that PLOX is a ||™, and .-. the
diagonal OP is bisected by the diagonal LX.

Hence the pedal line of any point on the circum-circle bisects the line

joining the point to the orthocentre.

Let p be the middle point of OP, through which, as we have just

proved, the pedal line of P passes.
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Join Np, where N is the centre of the nine-point circle.

Then, since Op=pP and ON=NS, Np is |1 to SP and Np = ^SF.

Hence p is on tlie nine-point circle.

So also, if P' be the other extremity of the diameter PSP' of the
circum-circle, the pedal line of P' will cut OP' in a point p' on the
nine-point circle, and Np' will be parallel to SP\ and therefore pp' is a
diameter of the nine-point circle.

Now we have proved that the pedal line of P makes with J3C an
angle equal to the complement of the angle PCA or PP'A. The pedal
line of P' will similarly make with BC an angle equal to the com-
plement of the angle P'PA.

Hence the pedal lines of P, P' the extremities of any diameter of the

circum-circle are at right angles.

And, since the pedal lines of P and P' are at rt. z • and pass
respectively through the extremities of a diameter of the nine-point
circle, their point of intersection must be on the nine-point circle, which
is Steiner's Theorem

:

Steiner's Theorem. The pedal lines of the two extremities of any
diameter of the circum-circle intersect at right angles on the nine-point
circle.
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MISCELLANEOUS EXERCISES.

1. Construct a rhombus having given its angles and the radius of its

inscribed circle.

2. Shew that, if an equilateral polygon be circumscribed to a circle,

its alternate angles will be equal ; and that, if the number of sides be
odd, the polygon will be regular.

3. Shew that the greatest triangle inscribed in a given circle is equi-

lateral, and that the greatest quadrilateral inscribed in the circle is a square.

4. Shew that the triangle formed by joining the points of contact of

one of the circles which touch three given straight lines is equiangular to

the triangle formed by joining the centres of the other three circles.

5. Shew that the line joining the feet of the perpendiculars from two
angles of a triangle on the opposite sides is at right angles to the line

joining the other angle to the centre of the circum-circle.

6. Divide a parallelogram into two quadrilaterals by a straight line

so that a circle may be inscribed in each quadrilateral. When is the
problem impossible?

7. Construct an isosceles triangle each of whose base angles is seven
times the vertical angle.

8. Construct a triangle having one angle equal to three times and
another equal to six times the third angle.

9. AB is the side of an equilateral triangle inscribed in a circle, and
^C is the side of an inscribed square; shew that BC is the side of a
regular polygon of twelve sides inscribed in the circle.

10. AB is the side of a regular pentagon inscribed in a circle, and
AG the side of an inscribed hexagon ; shew that 5(7 is equal to the side

of a regular polygon of thirty sides inscribed in the circle.

11. PQRS is a cyclic quadrilateral and the opposite sides PQ, ES are
cut by two straight lines in the points A, B and G, D respectively ; shew
that, if the four points A, B, G, D lie on a circle, the lines AG and BD
will cut QR and SP in four points which lie on a circle, and will also cut
PR and QS in four cyclic points.

12. Shew that, if any quadrilateral is divided into four triangles by
its diagonals, the circum- centres of the four triangles are at the angular
points of a parallelogram.
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13. Shew that, if the base and vertical angle of a triangle be given

the centres of the four circles which touch its sides will lie on one or other

of two fixed circles through the extremities of the base.

14. Having given any three points A, B, C7 on a given circle, find a

fourth point D on the circle such that a circle can be inscribed in the

quadrilateral ABCD.

15. ABCD is a cyclic quadrilateral, and the sides AB, CD meet in E
and AD, BG meet in F. Shew that the circles ABF, DCF, BCE, ADE
meet in a point on EF.

16. Construct a triangle having given the orthocentre, the circum-

centre, and one angular point.

17. A given circle touches two given straight lines. Draw another
tangent to the given circle so that the part of it intercepted between the

given tangents may be of given length.

18. Construct a triangle having given one side and the radii of the

in-circle and circum-circle.

19. Construct a triangle having given the inscribed circle, the position

of one angular point, and the sum of the two sides which meet in that

angular point.

20. -^^> -^0 are two given straight lines and is any point within

the angle BAC. Shew how to draw through O a straight line BOG so that

the in-oircle of ABCm&j touch BG at 0.

21. ABCD is a quadrilateral described about a circle, and BD is

joined. Shew that the circles inscribed in the triangles ABD, GBD will

touch one another, and that a circle can be described to pass through the

four points where these inscribed circles touch the sides of ABCD.

22. Shew that the four points of contact of the direct common
tangents of two given circles which are external to each other, the four

points of contact of the transverse common tangents, and the four points

of intersection of common tangents which are not on the line joining the

centres of the circle, lie on three concentric circles.

23. ABCDE is a regular pentagon and P is any point on its circum-

circle; shew (1) that the sum of the perpendiculars from A, B, G, D, E
on the tangent at P is constant and (2) that the sum of the squares on
PA, PB, PC, PD and PE is constant.

24. Shew that, if I be the in-centre of the triangle ABC, and AI, BI,
GI be produced to meet the circum-circle of ABC in A', B\ G' respectively,

then I will be the orthocentre of the triangle ABC.
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25. Shew that, if circles be described to touch the sides, three and
three, of any convex quadrilateral, either all internally, or one side ex-
ternally and the two adjacent sides produced ; then the centres of either
system of circles will lie on a circle.

26. Shew that the centres of the four circum-circles of the four
triangles formed by four straight lines will lie on a circle through their
common point.

27. Haying given the base and the vertical angle of a triangle, prove
that the loci of the orthocentre, the nine-point centre and the centroid
are all circles.

Prove also that the nine-point circle touches a fixed circle whose radius
is equal to that of the circum-circle.

28. Shew that, if a line BG of constant length have its extremities
on the two fixed straight lines AX, AY, the loci of the circum-centre and
the orthocentre of the triangle ABG are circles.

29. Construct a triangle having given the vertical angle and the
lengths of the two segments into which the base is divided by the point
of contact of the inscribed circle.

30. Construct a triangle having given the length of one side, the
difference of the other two sides, and the radius of the inscribed circle.

31. Construct a triangle having given the base, the vertical angle,

and the length of the line cut off by the base from the bisector of the
vertical.

32. Construct a triangle having given the length of the line from the
vertical angle to the middle point of the base, the length of the bisector of

the vertical angle cut off by the base and the difference of the angles at

the base.

33. Having given two circles in magnitude and position, and a line

given in position, draw two parallel tangents to the given circles which
will intercept a given length on the given straight line.

34. From B the circum-centre of the triangle ABG, the perpendiculars

BA\ SB', iSC are drawn to the sides, and these perpendiculars are pro-

duced to X, F, Z respectively so that SA'=A'X, SB'=B'Y, and SG'=G'Z.
Shew that the triangles ABG, XYZ have the same nine-point circle.

35. Prove that the three perpendiculars to the sides of a triangle

from the three internal points of contact of the three escribed circles will

meet in a point.

36. Through a given point O draw a straight line cutting two given
straight lines ^X,^ Fin the points J5, G respectively so that the perimeter
of the triangle ABG may be equal to a given straight line ; also draw
through O the straight line which makes with OX, OY the triangle of
minimum perimeter.
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37. Shew that, if a quadrilateral be circumscribed to a circle, the

orthocentres of the four triangles formed by two consecutive tangents and
their chord of contact are at the angular points of a parallelogram.

38. Shew that, if ABGD is a cyclic quadrilateral and the diagonals

AG, BD be drawn, the orthocentres of the four triangles BCD, GDA,
DAB, ABG are at the angular points of a quadrilateral equal in all

respects to the given quadrilateral.

39. Shew that, if S be the centre and R the radius of the circum-

circle of a triangle and I, Ij, I^, I3 be the centres of the circles which
touch its sides, then

(1) IIi^ + I^I.J^=16R'^,

(2) SP + SIi^ + SI^^ + S'V= 12R".

40. -A- triangle is divided into two others by a line from the vertex to

the point of contact of the inscribed circle with the base. Shew that the

in-circles of the two triangles so formed will touch one another.

41. A parallelogram is divided into two triangles by a diagonal ; shew
that the nine-point circles of these two triangles touch one another.

42. Through the middle point of each side of a cyclic quadrilateral a

line is drawn perpendicular to the opposite side ; shew that the four per-

pendiculars meet in a point.

43. Inscribe a triangle in a given circle so that the orthocentre may
be at a given point, and that one of the sides may pass through another
given point.

44. Shew that, in any triangle ABC the foot of the perpendicular

from the orthocentre on the bisector of the angles BAG is on the diameter

of the nine-point circle which passes through the middle point of BG.

45. Shew that, if a circle X pass through the centre of a circle Y, an
infinite number of quadrilaterals can be inscribed in X whose sides, or

sides produced, will touch Y.

46. ^-RC' is any triangle and A', B', G' the middle points of its sides;

P, Q, R are the feet of the perpendiculars from A', B\ G' on B'G', G'A\
A'B' respectively, and P', Q', R' are the middle points of the sides of PQR

;

also, X, Y, Z are the feet of the perpendiculars of the triangle P'Q'R'.

Shew (1) that the circle inscribed in PQR is concentric with the circum-
circle of ABG, and (2) that the circum-circle of PQR is concentric with
the in-circle of XYZ.

47. Shew that, if the radius of one of two circles is double the radius
of the other, and the circles are not entirely external to one another, an
infinite number of triangles can be constructed such that the given circles

are respectively the circum-circle and the nine-point circle of the triangle.
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48. Two given straight lines AX, AY are cut by a moving line in the

points B, C respectively so that the sum of AB and ^C is equal to a given

straight line. Shew the loci of the circum-centre, the orthocentre, the

nine-point centre, and the centroid of the triangle ABC, for different

positions of BG, are all straight lines.

49. Shew that, if four points be taken on a circle, the four nine-point

circles of the four triangles whose angular points are three of the four

given points, will meet in a point.

50. Shew that, if four points be taken on a circle, the four pedal

lines of each point with respect to the triangle formed by the other three

will meet in a point which is the point of intersection of the nine-point

circles of the four triangles.
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DEFINITIONS.

1. If one magnitude he equal to another rej>eated twice,

thrice, or any othe7' whole number of times, the first magnitude
is said to be a multiple of the second, and the second is

said to be a sub-multiple, or a measure, of the first.

2. l^wo m.agnitude8 of the same kind are said to he

commensurable wlien they have a common measure, and
to be incommensurable when they have no common measure.

Magnitudes which are incommensurable are of frequent occurrence
in Geometry; for example, a side and a diagonal of a square are

incommensurable, the side of an equilateral triangle and the radius of

its inscribed circle are incommensurable, and the area of an equilateral

triangle is inconmiensurable with the area of a square described on one
of its sides.

Capital letters A, B, C, ... will generally be employed to denote
magnitudes (not numerical representations of magnitudes but the magni-
tudes themselves), and multiples of magnitudes will be denoted by using
numbers, or small letters to represent whole numbers.

Thus 2^, 5B, mA, nB, pG, ... represent multiples of the magnitudes
A, B, C, .... Also any equimultiples of the magnitudes A and £ will be
represented by viA and mB, or by nA and nB, &c.

3. IVie relation of two magnitudes of the same kind to one

another in respect to relative greatness is called tlieir ratio.

The ratio of the two magnitudes A and B is denoted by ^ : B, which
is read * A to B.'

The first of the two magnitudes is sometimes called the antecedent
and the second the consequent.

S. B. E. 19
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Hitherto two magnitudes have been compared only with respect to

equality or inequality. Unequal magnitudes could be precisely compared
if it were always possible to find a common measure of both ; but this is,

as we have seen, by no means always the case. But although a side and
a diagoual of a square, to take an example of two incommensurable
magnitudes, have no common measure, we can form an approximate
idea of their relative lengths, that is of their ratio. For, if the side

were divided into 10 equal parts it would be found that the diagonal
contained more than 14 and less than 15 of these parts, and if the side

were divided into 1000 equal parts it would be found that the diagonal
contained more than 1414 and less than 1415 of such parts.

Euclid's definition that • magnitudes are said to have a ratio to one
another, when the less can be multiplied so as to exceed the greater,' is

only an indirect way of stating that two magnitudes have a ratio when,
and only when, they are of the same kind. Thus two straight lines have
a ratio to one another, and so also have two areas or two angles ; but
we cannot compare an angle with an area, or a weight with a length,

' In definition 3 Euclid gives that sort of inexact notion of a ratio

which defines it in the case of commensurable quantities, and gives some
light on its general meaning. It stands here like the definition of a
straight line, "that which lies evenly between its extreme points" prior

to the common notion "two straight lines cannot enclose a space" which
is the actual subsequent test of straightness.' De Morgan.

The exact definition of the equality of ratios is given in the following

definition.

4. The ratio of the first offour magnitudes to the second is

said to he equal to the ratio of the third to the fourth, provided
that whenever any equimultiples of the first and third are

taken and also any equimultiples of the second and fourth, the

multiple of the first is always greater than, equal to or less than

the multiple of the second according as the multiple of the third

is greater than, equal to or less than the multiple of the fourth.

Thus, if A and B be the first and second of the magnitudes (which
must be magnitudes of the same kind) and G and D be the third and
fourth (which must also be magnitudes of the same kind, though not
necessarily of the same kind as A and B); and if any equimultiples

mA, viG of the first and third are taken, and also any equimultiples

nB, nD of the second and fourth ; then the ratio of ^ to 5 is equal to

the ratio of C to D, provided that

mA>nB whenever mC>nD,
j)iA =nB whenever mC=nD,

and mA<nB whenever mG<nD,

i.e. mA = nB according as mG = nD,

wluitevttr whole numbers m and n may be.
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It should be noticed that two magnitudes are commensurable when
some multiple of one is equal to a multiple of the other. For, if mA=nB ;

then, if A be divided into n equal parts, mn of those parts are contained
in inA, and therefore also in iiB, whence it follows that B contains m of
the parts. Thus A and B are commensurable, the ii^^ part of A being
the same as the vi}^ part of B.

5. Four rrbagnitudes are said to he in proportion, or to

he proportionals, wJien the ratio of the first to the second is

equal to the ratio of the third to the fourth.

If the four magnitudes be denoted by the letters A^ B, C, D; then
A, B, C, D are in proportion if the ratio of ^ to 2? is equal to the ratio

of G to D, which is written in the form

A :B = C :J),

and read *A to B equals C to D.'

The relation is sometimes written in the form

A :B y.C :D,

which is read *A is to B as C is to D.'

The first and fourth of four magnitudes in proportion are called the
extremes, and the second and third are called the means.

In a proportion, the antecedents of the equal ratios, that is the first

and third terms of the proportion, are sometimes said to be homologous;
80 also the consequents, namely the second and fourth terms, are said

to be homologous.

6. When magnitudes of the same kind are such that the

ratio of the first to the second^ of the second to the third, of
the third to the fourth, and so on, are all equal, the magnitudes
are said to he in continued proportion.

When three magnitudes are in continued proportion, tJte

second is called the mean proportional hetween the first and
third, and the third is called the third proportional to the

first and second.

Thus, if A : B-B : (7,

B is a mean proportional between A and C, and C is the third proportional

to A and B.

19—2
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7. When there are any number of magnitudes of the same
kindj the Jirst is said to have to the last the ratio com-
pounded of the ratio of the first to the second, of the ratio of
tlie second to tJie third, and so on to the last.

Thus, if there are three magnitudes A, B, C of the same kind, the

ratio of A to G is compounded of the ratios of ^ to J5 and B to G.

A ratio which is cornpounded of two equal ratios is said to

he the duplicate of either of the equal ratios. So also a ratio

which is compounded of three equal ratios is said to be the

triplicate of any one of those equal ratios.

Thus, ii A : B=B : G, the ratio A : G ia the duplicate of the ratio

^ to £ or JS to G.

8. Rectilinealfigures which have the angles of the one taken

in order equal respectively to the angles of the other taken in

the same order, and in which the ratio of the side adjacent to

two angles in one figure to the side adjacent to the equal angles

in the other figure is the samefor all the pairs of sides, are said

to be similar.

Thus the figures ABGD, PQRS are similar, if the angles A, B, G, D
are equal to the angles P, Q, R, S respectively, and if also

AB : FQ =BG : QR=GD : RS=&c.

N.B. It must be carefully noted that when two figures ABGD...,
PQRS... are said to be similar, it is always understood that A and P,

B and Q, G and R, ..., are equal angles.

9. The altitude of a parallelogram, with reference to a
particular side as base, is the length of the perpendicular drawn
to the basefrom any point on the opposite side.

It is easily seen that |n which are between the same ||« have equal

altitudes, and that 11°^^ which have equal altitudes can be so placed as to

be between the same parallels.

TJie altitude of a triangle, with reference to any particular

side as base, is the perpendicular drawn to the base froTn the

opposite angular point.

It is easily seen that A* which are between the same parallels have

equal altitudes, and that A" which have equal altitudes can be so placed

as to be between the same parallels.
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THEORY OF PROPORTION.

PBOPOSITION i.

If four magnitudes he proportional, they will be proportional when
taken inversely.

Let Ay By C, D be the four magnitudes in proportion, so that

A :B=C :D.

Then, it is required to prove that

B : A =D : C.

Since A, B, C, D are in proportion, we know that for all integral

values of m and n,

mA = uB according as mC = nD,

i.e. nB= mA according as nD = mC.
> >

Hence, by definition,

B :A=D'. C.

-PKOPOSITION ii.

Ratios which are equal to tJie same ratio are equal to one another.

Let Ay B; Gy D; Ey Fhe three pairs of magnitudes such that

A :B = C :D,

and C:D=E:F;
then, it is required to prove that

A : B=E : F.

Of A, Gy E take any equimultiples viA, juG, niE; and of B, D, F take any
equimultiples nB, nD, nF.

Then, by hypothesis.

viA - nB according as mC=nDy

and mG = nD according as mE - nF.
< <

Hence mA = nB according as mE - nF,

and therefore, by definition, A : B =E : F.
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PEOPOSITION iii.

Equal magnitudes have the same ratio to the same magnitude, or to

equal magnitudes.

For, let A = B and C=D; then it is obvious that mA = viB and
nG=nD.

Hence mA =nC as mB = nD
;< <

.-. A : G=B : D
;

or, if C is the same as D,
A : C=B : C.

PROPOSITION iv.

Magnitudes which have the same ratio to the same magnitude, or to

equal magnitudes, must be equal.

Let A, B, C, D be four magnitudes in proportion such that B= D;
then, it is required to prove that A = C.

For, if possible, let A exceed Chy X; then, however small X may be,

some multiple of X, mX suppose, will be greater than B. And, since A
exceeds G by X, mA will exceed mG by mX, so that the difference between
mA and mG will be greater than B, and therefore some multiple of B,
uB suppose, will lie between mA and mG.

Hence mA >nB, but mG<nB.
But B=D, so that nB=nD.
Hence mA>nB, but mG<nD, which is impossible since A :B= G:D.
Hence, if ^ : B= G : D and B=D, A must be equal to G.

PROPOSITION V.

Two magnitudes and any two of their equimultiples are in proportion.

Let A and B be any two magnitudes, and let pA, pB be any two of
their equimultiples ; then, it is required to prove that

pA :pB=A :B.
It is obvious that

p . mA =p . nB if mA =nB,

p . mA >2> . nB if mA >nB,

and p . mA <p . nB if mA<nB.

Bwip .mA=m.pA,di.ndip .nB—n.pB\

:. vi.pA-n.pB according as »i^

=

nB,

Hence, by definition,

pA'.pB^AiB.
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PROPOSITION vi.

If any number of ratios are eqiuil, all the magnittides being of the same
kind, the ratio of the sum of all the antecedents to the sum of all the con-

sequents is equal to the ratio of any one of the antecedents to tJie correspond-

ing consequent.

Let the pairs of magnitudes he A, B ; C, D; £, F;...

Then A:B=G:D=E :F=

By definition of equal ratios, whatever whole numbers m and n may be,

if mA>nB,

then will mC>nB,

also nE>nF,

Hence m{A + C + £+ ...)>n{B +D +F+ ...).

So also, if

mA=nB, m{A + C+E + ...)=n{B +D +F+ ...),

and if mA<nB, m{A-\-C-{-E-if ...)<n{B-{-D +F+ ...).

Thus, for all values of m and ?i,

m(vl + C + £+...) = n(Z? +D + F+...) according as 7;iJ[ =^nB.

Uenoe, by definition,

A + G+Ji^-... :B +D+F+... = ^ : B.
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PROPOSITION I.

Triangles and 'parallelograms of equal altitudes are to one
another as their bases.

First let the A« ABC, DEFhave the same altitude; then
it is required to prove that

A ABC : A DEF= BC : EF.

D

Y X II G G B E F K L M PQ
Produce BG, and cut off any number of parts CG^ GH, ...,

XZeach equal to BC, and join AG, AH, ..., AX, AY.

Also produce EF, and cut off any number of parts FE,
KL, LM, ..., PQ each equal to EF, and join DK, DL, DM, ...,

DP, DQ.

Then AABC=AAGG=AAGH=^...^AAXY,
for all the A^ have the same altitude and

BG = CG=GH=...=XY.
Hence A ABY is the same multiple of A ABC that BY is

of BG.

Similarly A DEQ is the same multiple of A DEF that
EQ is of EF.

Moreover, since the A^ ABY and DEQ have equal

altitudes,

AABY>A DEQ, if BY>EQ,
A ABY ^ A DEQ, if BY = EQ,

and A ^^7 < A DEQ, ii BY < EQ.

Thus of four magnitudes, namely the A ABC, the

A DEF, the base BG and the base EF, we have taken an^/

equimultiples of the first and third, and also ani/ equimultiples

of the second and fourth ; and we have shewn that the

multiple of the first is always greater than, equal to or less
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than the multiple of the second according as the multiple of

the third is greater than, equal to or less than the multiple of

the fourth. Hence, by definition,

A ABC : A DEF=BG : EF.

Next let ABCG\ DEFF' be ll'"« with equal altitudes. Then
it can be proved in a precisely similar manner that

IP" ABCC : ir DEFF' - BC : EF.

Y' X.'..... H' G' C A I) F' K' L' M' p' Q'

uiima 7
LTx K G C BE F K L M P Q

[Since II'" AC = 2 A ABC and jl™ JDF=2ADEF, it

follows from Prop. v. that ||'» AC : ||'" DF= A ABC : A BEF.
Hence, by Prop, ii., if the theorem is true either for parallelo-

grams or for triangles it is true for both.]

Conversely. If two triangles or two paralJdograms are

to one another in the ratio of two sides one in each figure, t/ieir

altitudes with reference to those sides are equal.

Let 11™ CBAC : ir DEFF'=BC : EF.

Then, if the altitudes of the ||°" with reference to their sides BG, EF
respectively be not equal, construct the ||

"^ EFST of the same altitude as

ir CBAC
Then, since the H™" CBAC\ EFST have the same altitude,

ir CBAC' : ir EFST=BG : EF. ^, ^ 7) "•

.-. ir CBAC' : II" DEFF'
""

-' Z7zr= ir CBAC :
II
•" EFST. [Prop.

Hence [Prop, iv] \r DEFF' =:\r EFST, ^—% e
—
F

and therefore ST coincides with I'D.

Cor. Triangles and parallelograins on equal bases are to

one another as tlieir altitudes.
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Theory of Proportion continued.

We can now prove the remaining theorems in proportion
which are required in Book YI.

It must first be noted that the only geometrical mag-
nitudes which need be considered are straight lines and
rectilinear areas; there is, however, one theorem involving

angles, but this is proved directly from the definition of

proportion.

It was shewn in Book I. how to construct a rectangle equal

to any given rectilinear area, and also how to construct a
rectangle equal to a given rectangle and having one of its sides

of given length. It therefore follows from VI. 1 that two
straight lines can be found whose ratio is equal to that of any
two given rectilinear areas ; also rectangles can be constructed
whose ratio is equal to that of any two given straight lines.

PEOPOSITION vii.

If four magnitudes of the same kind be proportionals, they loill he

proportionals when taken alternately.

Let P, Q, R, S be the four magnitudes of the same kind such that

P:Q=R:S;
then, it is required to prove that

P:R=Q:S:
All the four magnitudes must either be areas or straight lines.

First let all the magnitudes be areas.

Construct a rectangle abed equal to the area P, and to be apply the
rectangle beef equal to Q.

d <; e

4

b
J

, I i/ t

Also to ah and bf apply rectangles ag, bk equal to E and S respectively.

Then, since the rectangles ac, be have the same altitude, they are to

one another as their bases.
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Hence P : Q= ab : bf.

But P:Q=R:S;

/. R : S= ab : bf,

rect. ag : rect. bk= ab : bf.

299

Hence [by Euclid VI. 1 converse] the rectangles ag and bk have the

same altitude, so that k is on the line hg.

Hence the rectangles ac, ag have the same altitude, namely ab ; also

be, bk have the same altitude, namely bf.

.'. rect. ac : rect. ag=bc : bg,

and rect. be : rect. bk= bc : bg;

.'. rect. ac : rect. ag= rect. be : rect. &A;

;

.-. P :R=Q :S.

Next let the magnitudes be the four straight lines AB, BG, CD, DE.

Construct the rectangles Ab, Be, Cd, De with the same altitude.

B.

Then Ab : Bc=AB : BG,

and Gd: De = GD :DE.

But AB :BC=CD :DE,

.'. Ab :Bc=Gd : De.

Hence by the first case

Ab : Cd= Bc : De,

and these rectangles have the same altitude,

- _:. AB : GD=BG : DE.

r

[VI. 1.

[Prop. ii.
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PROPOSITION viii.

If there are six magnitudes such that the first is to the second as the

fourth to the fifth and also the second to the third as the fifth to the sixths

then will the first he to the third as the fourth to the sixth.

Let the six magnitudes A, B, C, X^ Y, Z he such that

A :B =X: Y and B : G=Y : Z ;

then it is required to prove that

A : C=X : Z.

The three magnitudes A, B, G must be of the same kind and the

three magnitudes X, Y, Z must also be of the same kind.

First suppose that all the magnitudes are areas.

Construct a rectangle abed equal to ^ ; to be apply the rectangle beef

equal to B, and to ef apply the rectangle efhg equal to C.

Also to ab, bf, fh apply rectangles ak, bm, fn equal respectively to X,
Yy Z, as in the figure.

Then, since the rectangles ac, be, fg have equal altitudes, they are to
one another as their bases.

Hence ab : 6/=rect. ae : rect. be

=A :B [Const.

=X : r [Hyp.

= rect. ak : rect. bin [Const.

Hence the rectangles ak and bm have the same altitude.

[VI. 1, Converse.
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Similarly the rectangles 6m and fn have the same altitude, so that the

three rectangles ak, hm^ fn have all the same altitude.

Hence A : C=rect. ac : rect. fg

= ab :fh [VI. 1.

= rect. ak : rect. /w [VI. 1.

=X:Z.

Secondly, let the magnitudes ^, J5, C be straight lines and the magni-
tudes X, Y, Z be areas.

Let ah, hf, fh be equal to the straight lines A, B, C respectively, and
to these lines apply rectangles ak, bm, fn equal to X, Y, Z respectively.

Then, as in the first case, these three rectangles must have the same
altitude.

Hence A : C=ab :fh

= rect. ak : rect. fn

=X :Z.

Thirdly, let all the magnitudes be straight lines.

Apply to the lines X, 7, Z rectangles P, Q, R of the same altitude.

[Hyp.

[VI. 1.

[Prop. ii.

Then A :B=X:Y

and X:Y=.P:Q;

.'. A : B=P : Q.

Similarly B :C= Q:R.

Hence, by the second case,

A : C=P:R
=X:Z. [VI. 1.

Cor. If A : B=X : Y, then the duplicate of the ratio A : B 18 equal to

the duplicate of the ratio X : Y.

For, if A : B=B : C &nd X : Y=Y:Z, and if also A:B=X:Y;

then will B:G=Y:Z,

and .-. (Prop, vii.) A :G=X:Z.

But, by def., ^ : C is the duplicate ratio of ,4 : B,

and X,Z ,, „ „ X:Y,
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PROPOSITION ix.

If the four magnitudes A, B, C, D are in proportion; then will

A+B:A =C+D:G,

A+BiB =C+D:D,

A-B:A =G-D:C,

and A+B '.A-B=C+D : C-n.

First let all the magnitudes be areas.

Construct a rectangle abed equal to A, and to be apply the rectangle

beef equal to B.

d m c e

I b

i 1 i
1 h

Also to ah, bf apply the rectangles ag, bh equal to G and D respec-

tively.

Then, since the rectangles ac, be have equal altitudes 6c, they are to

one another as their bases.

Hence ab : 6/=rect. ac : rect. be

=A :B

= G:D

= rect. ag : rect. bk

{Const.

[Hyp.

{Gonst.

Hence, by the converse of VI. 1, the rectangles ag, bk have the same
altitude, so that k is on the straight line hg.

Hence

Similarly

A +B : A = rect. ae : rect. ac

=af : ab

= rect. ak : rect. ag

= G+D: C.

A+B:B= G +D:D.
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Now from ba cut off bl = bf, and through I draw mln parallel to dah
meeting de, hk respectively in m, n.

Then rectangles am, an are clearly equal io A-B and G -D respec-

tively.

Hence A-B : ^=rect. am : rect. ac

—al : ab

= rect. an : rect. ag

=C-D : C.

Also A+B : A -B= rect. ae : rect. am

= af : al

= rect. ak : rect. an

=C+D: C-D.

Next let the magnitudes A, B he straight lines and the magnitudes
G, D be areas.

Let a6, bf be equal to the straight lines A , B, and to these lines apply
the rects. ag, bk equal to G, D respectively ; then as before the rects. ag,

bk have the same altitude. Also cut off from ba the line bl equal to bf.

Then A + B : A=af:ab

=rect. ak : rect. ag

= C+D : G.

Similarly A +B:B=G+D :D,

A-B :A =C-D : G,

and A +B :A-B=G+D :G-D.

Lastly, let all the magnitudes be straight lines.

Apply to the lines C, 7) rectangles P, Q having the same altitude.

Then[VLl] P:Q = G'.D.

Hence, by the second case,

A+B:A=F+Q:Q.

Also P+Q:Q= G+D:G',

.. A+B :A =G+D: G.

And the other results can be proved in a similar manner.
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PROPOSITION II. Theorem.

A straight line parallel to one side of a triangle cuts the

other two sides (or these sides produced) 2^roportionalIy ; and,
conversely, the straight line joining points which divide two sides

ofa t^ {or both these sides produced^ in the same ratio is parallel

to the third side.

Let ABC be the given triangle, and let DE be any st. line

11 to BG and cutting AB, AC, or these produced, in the points

D, E respectively ; then it is required to prove that

AD :DB =AE :EC.

Join BE and CD.

Then, since DE is || to BC, A BDE= A CED.

But equal magnitudes have the same ratio to the same
magnitude

;

/. A BDE : A ADE= A CED : A ADE.

But A BDE : A ADE = BD : DA, [YI. 1.

and A CED : A ADE=CE : EA.

But ratios which are equal to equal ratios are equal to one
another

;

,', BD :DA = CE:EA.
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Conversely. Let the points D and E be taken on AB^
AC respectively (or on both these produced) such that

BD : DA = CE : EA ; then it is required to j^t'ove that BE
is 11 to BG,

For BD :DA = A BDE : A ADE, [VI. 1.

and GE :EA = A GED : A AED.

But, by hyp. BD iDA^CE :EA;

.-. A BDE : A ADE= A GED : A AED.

Hence A BDE = A (7^Z>,

and they are on the same base DE.

.-. DE is 11 to BG.

Cor. It will be easily seen that

AB:BD = AG : GE,

[For A ABE = A ACD

;

.'. A ABE : A BDE = A AGD : A GED.]

and AB:AD = AC:AE.

Ex. 1. Through any point within the triangle ABC straight Unes
AOD, BOE, COF are drawn to meet the opposite sides of the triangle in

D, Ef F respectively. Shew that

A AOB : A AOC=BD : DC, &o.

Ex. 2. Find a point within the triangle ABC such that

aBOC=za COA = aAOB.
Ex. 3. Shew that the three medians divide a triangle into six equal

parts.

Ex. 4. Find a point within the triangle ABC such that

A B0C=2 A COA = i A AOB.

Ex. 5. Shew that, if be the point defined in Ex. 4, and AO cut BC
inD,

4a ^0B=3a BOD and 40^ = 302).

Ex. 6. On the sides BC, CA of the triangle ABC the points D, E
are taken respectively such that CD = 2BD and CE = 2EA . The lines

AD, BE intersect at O and CO is produced to cut AB in K. Shew that
AK=KB, CO =WK, and 2B0 = S0E.

Ex. 7. D, E are points on the sides BC, CA respectively of the
triangle ABC such that BD = IDG and CE = EA; shew that AD
bisects BE.

S. B. E. 20
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Ex. 8. From any point on the diagonal AG oi the quadrilateral
ABCI) lines OX, OY are drawn parallel to AB, AD respectively so as to
meet CB, CD respectively in X, Y. Shew that XY is parallel to BD.

Ex. 9. One straight line cuts three parallel straight lines in A, J5, G
respectively and another straight line cuts them in P, Q, E respectively

;

shew that

AB : BG=PQ : QR.

[For AB : BG = A AQB : A GQB = A PBQ : aRBQ = PQ: QR.]

Ex. 10. ABy GD are two parallel straight lines and P, Q are points
on AB, CD respectively such that AP : PB = CQ : QD. Shew that AG,
BD and PQ will meet in a point.

Ex. 11. ABC, PQR are two triangles such that PA, QB, RC meet
in a point; shew that, if AB is parallel to PQ and BC parallel to QR,
then will ^C be parallel to PR.

Ex. 12. A line parallel to the side BC of the triangle ABC cuts AB,
AG respectively in F, E, and BE, CF intersect at 0; shew that AG will

pass through the middle points of BC and FE.

[A BOG : A GOA = BF : FA = CE : EA = a GOB : aBOA ;

.'. A GOA = aBOA, whence result.]

Ex. 13. is any point on the median AD of the triangle ABC, and
BO, CO are produced to meet GA, BA respectively in E, F. Shew that

EF is parallel to BC.

Ex. 14. E, F are the middle points of the sides AD, BC of the

parallelogram ABCD; shew that BE, DF will trisect AC.

Ex. 15. E, F are the middle points of the sides DA, DC of the

parallelogram ABCD; shew that BE, BF will trisect AC.

Ex. 16. D is any point on the side BC of the triangle ABC, and any
line parallel to BC cuts AB, AD, AG in P, Q, R respectively; shew that

PQ : QR=BD : DC.

PROPOSITION III. Theorem.

If an angle of a triangle he bisected by a straight line which
cuts the base, the ratio of the segments of the base ivill be equal to

the ratio of the other sides of the triangle; and conversely, if one

side of a triangle be divided into segments whose ratio is equal to

that of the adjacent sides of the triangle, the straight line joining

the point of section to the opposite vertex tvill bisect the vertical

angle.
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Let BAC be a triangle, and let the bisector of the angle

BAC cut BG in D ; then it is required to jyTove that

BD '.DC = BA'. AC.

Draw CE II to DA meeting BA i^roduced in E,

Then, since AD \\ CE,

Z BAD = int. opp. Z AEC and Z DAC = alt. Z ^(7^.

But Z 7?ili) ==ZDAC, [Hyp.

.-. Z AEC --^^^ ACE, and /. ^A' = ^C.

But, since ^i) is || to CE,

BD :DC = BA : AE, [VI. 2.

/. BD :DC = BA : AC.

Conversely. Let /> be such that BD : DC = BA : AC
;

then it is required to prove that DA will bisect Z BAC.

Through C draw CE \\ to DA meeting BA produced in E.

Then, since DA \\ to CE,

BD:DC = BA : AE. [YI. 2.

But, by hyp., BD:DC = BA : AC.

Hence BA:AE»BA:AC,
and /. AE = AC, and /.AEC = ^ ACE.

But, since AD \\ CE,

/ BAD = int. opp. /AEC and Zi)u4C = alt. /ACE.

Hence / BAD =^/ DAC.

20—2
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PROPOSITION III*. Theorem.

If the exterior angle of a triangle, made by producing one

of its sides, he bisected by a straight line which cuts the base, the

ratio of the segments of the base will be equal to the ratio

of the other sides of the triangle; and conversely, if one

side of a triangle be divided externally into segments whose ratio

is equal to that of the other sides of the triangle, the straight line

drawn from the point of section to the vertex will bisect the

exterior angle of tJie triangle.

In the A BAC let BA be produced to D, and let the

bisector of the Z CAD cut BC produced in E
',
then it is

required to prove that

BE '. CE = BA -.AC.

B G E

Through C draw CF \\ to AE cutting BA in F.

Then, •/ CF is parallel to EA,

BE'. CE = BA :AF. [YI. 2.

And, since CFh \\ to EA,

^CAE = 3At.ZFCA,

and Z DAE = int. opp. Z AFC.

But by hyp. Z CAE = ZDAE',

.-. ZFCA=ZAFC, and /. AF=AC.

Hence. BA :AF=BA : AC

;

.-. BE: CE = BA : AC.

Conversely. Let E be such that BE :CE=BA : AC

;

then it is required to prove that EA will bisect the ext. Z CAD.

Through C draw CF H to ^^ cutting BA in F.
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Then BE '.CE = BA I AF. [VI. 2.

But BE -.CE^BA: AC. [Hyp.

.-. BA :AF=BA : AC, and /. AF=AC.

Hence ZAFC = ^ACF.

But, since Ci^' is || to EAy

Z.AFC = Z.DAE and ZACF=ZCAE.
Hence ZDAE^ZCAE.

This extension of Prop. III. was not given hy Euclid. It

was, however, quoted by Pappus as a known theorem.

Ex. 1. Shew that, in an isosceles triangle, the bisector of the
external vertical angle is parallel to the base. Shew that this agrees

with III*.

Ex. 2. The internal and external bisectors of the angle BAC cut the
base £0 in D, E respectively and the circle ABC in F, G respectively,

and X is the middle point of BC. Shew that FG is the diameter of the
circle ABC perpendicular to BG •, shew also that FG touches the
QAGD and GG touches the qAGE, and that FC^ = FD.FA and
GG^ = GA . GE.

Ex. 3. AGB is a right angle, and the bisectors of the angle ACB cut
AB in D, E. Shew that, if be the middle point of AB, GG touches
the circle DGE.

Ex. 4. Construct a triangle having given the base, the vertical angle,

and the angle the bisector of the vertical angle makes with the base.

Ex. 5. Construct a triangle having given the base and the position

of the line bisecting the vertical angle.

[See page 346 for the Circle of Apollonius.]
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PROPOSITION IV. Theorem.

In equiangular triangles^ the sides about any pair of equal

angles are pQ'ojyortionals.

Let ABC, BEFhe equiangular triangles, having the angles

A^ B, C equal respectively to the angles D^ E^ F ; then it is

required to prove that tlie sides about a pair of equal angles are

proj)ortionals.

D

Apply the A EDF to the A ABC so that I) falls on A
and DE falls on AB, then I>F will fall on ^C since

ZEDF=ZBAC, and E, F will fall at some points, G, II

suppose, on ABj AC respectively.

Then, V ZAGH=ZDEF, and ZDEF^ZABC, [Hyp.

/.AGH=ZABC, and /. GH is |1 to BG.

Hence AB -. AG = AG : All
,

[VI. 2.

.-.alternately AB:AG= AG:AII [VI. vii.

= DE:DF, [Const.

so that the sides about the equal angles BAG and EDF are

proportionals, and it can be proved in a similar manner that

the sides about either of the other pairs of equal angles are

proportionals.

PROPOSITION V. Theorem.

If the sides of two triangles about each of their angles be

jyroportionalSf the triangles will be equiangular; and those

angles tvUl be equal which are opposite to homologous sides.
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Let tlie triangles ABCj DBF have their sides proportional,

so that

AB:BC = DE:EF,

BC:CA--EF:FD;

and /. CA :AB=^FI): DB

;

[VI. viii.

E

then it is required to prove tlutt the triangles ABC aiul DBF
ai'e equiangular.

At points B and G respectively make Z " CBGy BCG equal

to Z « DBF, DFB respectively. Then will Z BGC = Z BDF.

And, since A" BGC and BDF are equiangular,

BC:BG = FB'.BD. [VI. 4.

But, by hyp.,

BG'.BA^FE.BD',

/. BG.BG = BG:BA', [VT. iv.

/. BG = BA.

And, similarly, CG = CA.

Hence in the A« ^6?C, ^^C
J5^ = BG, CA = CG and BC is common

;

/. the two triangles are equiangular.

But the A^ BCG and BFD are equiangular;

/, the A^ BAC and BFD are equiangular.
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PROPOSITION VI. Theorem.

If two triangles have one angle of the one equal to one angle

of the other and the sides about these equal angles proportionals^

the triangles will he similar.

In the triangles BAG, EDF, let Z. BAG = /.EBF, and
BA '.AG-ED'.DF', then it is required to prove that the A^
BAG, EDF are similar.

D E

From ABj produced if necessary, cut off AG = DE; and
from AG, produced if necessary, cut off AI£=DF. Join GH.

Then, V AG = DE, AII=I>F, and the included ZGAff=
included Z EDF, the A« EDF, GAII are equal in all respects.

But BA:AG=-ED:DF
= AG:AII-

/. alternately BA:AG = AG: AIL

Hence Gil is parallel to BG

;

/. Z ABG = ZAGH=/.DEF,
and ZAGB = /.AHG = /.DFE.

,\ A^ BAG, EDF are equiangular, and are therefore

similar. [YI. 4.

Ex. 1. Shew that two isosceles triangles are similar if their vertical

angles are equal.

Ex. 2. The length of the shadow of an upright stick 3 feet 6 inches
long is 2 feet 10 inches, and at the same time the length of the shadow of

a tree is 75 feet; what is the height of the tree

?

Ex. 3. Shew that, if any two chords AB, CD of a circle intersect in

the point 0, the triangles AOC, BOB are similar.

Ex. 4. In two different circles the chords AB, CD subtend equal
angles at the circumferences. Shew that the ratio of AB to CD is equal

to the ratio of the radii of the circles.
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Ex. 5. Equilateral triangles are inscribed in different circles ; shew
that their sides are in the ratio of the radii of the circles.

Ex. 6. Shew that, if the sides AB, AG oi the triangle ABC be equal,

and D be any point on the side BC, then will the circles ABB, ACT) be
equal.

Ex. 7. -D is any point on the side BG of the triangle ABC; shew
that the radii of the circles ADB^ ADG are in the ratio of AB to AG.

PROPOSITION VII. Theorem.

If two triangles have one angle ofthe one equal to one angle

of the other, and the sides about one other angle in each pro-

portional so that the sides opposite the equal angles are homo-
logous, then will the third angles of tJie triangles be either equal

or supplementary, and if tliey are equal the triangles will be

similar.

B

E

In the A« BAG, EDFlet /.BAC = /.EDF, and AB:BC =
DE : EF, the sides BC, EF opposite to the equal angles being
homologous ; then it is required to prove that the Z » BCA,
EFD are either equal or supplementary.

If /.ABC=./.DEF, then will /:BCA=/.EFD, and the
two A* will be equiangular and therefore similar.

But, if /.ABC be not equal to /.DEF, make Z.ABG
= /.DEF, BG cutting AC, produced if necessary, in the
point G.

Then, \' /. BAG = / EDF, and /.ABG = /.DEF, the
remaining Z.^ BGA, EFD will be equal and the A« ABG,
DEF will be equiangular.

Hence AB'.BG=DE'. EF. [VI. 4.

But AB\BC^DE:EF',
,\ AB:BG = AB:BC,a,nd .', BG = BC.

[VI. ii. and iv.

Hence ZBCA =ZBGC
= supplement of Z BGA
— supplement of /C EFD,
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PROPOSITION VIII. Theorem.

In a right-angled triangle the 'perpendicular drawn from
the right angle to the base will divide the triangle into two parts
which are similar to the whole and to each other.

Let BAG be a right-angled triangle, the Z BAG being the

rt. Z. , and let AD he drawn ± to BG ; then it is required to

prove that A^ DBA, DAG are similar to A ABG and to each

other.

Since ZADB is a rt. Z , Z ^ Dl^A and BAD are together
equal to a rt. Z .

But ZDAG and Z BAD together make up the rt. Z BAG.

Hence

Z « DBA and BAD = Z' DAG emd BAD

;

.\ZDBA=ZDAG,
and similarly ZDAB = ZDGA.

Hence the three A^ DBA, DAG, ABG are equiangular,
and are .*. similar.

Cor. DA is a mean proportional between BD and DG.

For, from the similar A^ BDA, ADG, we have

BD:DA=^DA:AG.

Also GA is a mean proportional between GD and GB.

For, from the similar triangles AGB, DGA,

BG:GA = GA: GD.

So also AB is a mean proportional between BD and BG,
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Ex. 1. Two parallel tangents to a circle are cut by the tangent at

the point P in the points K, L respectively. Shew that the radius of the

circle is a mean proportional between PK and PL.

Ex. 2. Two circles touch externally at 0, and P, Q are the points of

contact of a common tangent which does not pass through ; shew that

POQ is a right angle, and that PQ is a mean proportional between the

diameters of the circles.

PROPOSITION IX. Problem.

From a given straight line to cut off any assigned sub-

multiple.

Let AB he the given straight line. Then it is required to

cut offany assigned sub-multiple of AB,

From A draw any indefinite straight line AX^ and \n AX
take any point C.

Along AX set off lengths equal to AC, until a length AD
is found which is the same multiple of ^C that AB is of the

required part.

Join BD, and through C draw a line |1 to DB so as to cut

AB in the point E.

Then, since GE is H to DB,

AB:AE = AD:AC.

Hence ^7? is the same multiple oi AE that AD i^ oi AG.

,*, AE \& the required sub-multiple of AB,
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PROPOSITION X. Problem.

To divide a given straight li7ie similarly to a given divided
straight line.

Let AB be the given undivided straight line, and place AC
the given straight line

which is divided into

any number of parts

at the points U^ F so

that thetwo lines make
any angle at the point

A.

Join BCj and draw
through E^ F lines

parallel to BG so as ^.

to cut ^5 in the points

Gj ^respectively. Then AB will be divided in the required

manner.

For, since EG is |1 to FH,

AG:GH=AE'.EF.
Let EKL be drawn parallel to AB so as to cut FH^ CB in

Z, L respectively ; then GK and HL are IP"^ ',

.-. GH=EK and HB = KL.
But, since FK is || to CX,

EK'.KL = EF:FC',

/. GH:HB = EF'.FG.

Ex. 1. Shew that the ratio of the perpendiculars from two given

points Af B on any straight line which cuts AB in a fixed point is

constant.

Ex. 2. To divide a given straight line internally and externally in

a given ratio.

Let ABhe the given straight line which it is required to divide in the
ratio of /I (7 :CA



BOOK VI. 317

From CA cut off CE= CD. Join BD, BE and through C draw CX,
Cy parallel respectively to BD, BE and cutting AB, or AB produced, in

A', Y. Then X, Y are the points required.

Ex. 3. Through two given points on a given circle draw two parallel

chords which are in a given ratio.

Ex. 4. A, B are fixed points and P any other point on a given circle.

Shew that if AP is produced to Q so that PQ : PB is constant, the locus

of Q is a circle through A, B.

Ex. 5. On two given straight lines OX, OY points A, B are taken
respectively so that the sum of OA and OB is equal to a given length

;

shew that, if the parallelogram OAQB be completed, the locus of Q is a
straight line, and the locus of the middle point of AB is a straight Une.

Ex. 6. ABC is an isosceles triangle, AB and AC being the equal

sides, and any line is drawn cutting BC in D, CA in E and AB produced
in jP; shew that

CD:DB= CE:BF.
Ex. 7. Shew that, if a quadrilateral have two parallel sides one of which

is double the other, the two diagonals intersect at a point of trisection.

Ex. 8. The straight lines AB, AC, AD meet in a point, and from any
point P on AC the perpendiculars PE, PF are drawn to AB, AD re-

spectively; shew that PE : PF is constant for all positions of P on ^C
Ex. 9. Find a point within the triangle ABC such that, if OD,

OE, OF be the perpendiculars on the sides BC, CA, AB respectively,

OD : OE : OF may be equal to given ratios.

Ex. 10. Divide the triangle ABC into three triangles BOC, COA,
AOB such that aBOC:a COA iaAOB may be equal to given ratios.

Ex. 11. Through the middle point of the side BC of the triangle

ABC a straight line is drawn cutting the sides AB, AC respectively in the
points X, Y; shew that CY : YA =XB i XA.

Ex. 12. Shew that, if D be the middle point of the side BC of the
triangle ABC, and if any straight line be drawn through C, cutting AD
in E and AB in F, then will AE : ED = 2AF : FB.

Ex. 13. Draw through a given point a straight hne cutting the three
given straight lines AX, AY, AZ in P, Q, R respectively so that PQ : QR
may be equal to a given ratio.

Ex. 14. Two given circles intersect in the points A, B and any other
circle touches them both in the points P, Q respectively ; shew that the
tangents at P and Q meet on AB produced, and that AP : BP=AQ : BQ.

Ex. 15. AA', BB', CC are the three diagonals of a complete
quadrilateral, and is the common point of the circum-circles of the

triangles formed by the lines taken in threes; shew that BOC, B'OC;
COA, COA' and AOB, A'OB' are pairs of similar triangles, and that

OA . OA'=0B . OB' z=OC . OC [Use VI. IG.]

Ex. 16. On the sides BC, CA, AB are taken the points D, E, F
respectively such that BD= 2DC, CE = 2EA and AF=2FB. Also BE
and CF meet in P, CF and AD meet in Q and AD and BE meet in JR.

Shew that AR=RQ= dQD, and that 7aPQR= a ABC.
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PROPOSITION XI. Problem.

Tojind a third 'proportional to two given straight lines.

Let AB and AC be the two given straight lines. It

required to find a third proportional to AB and AC.

Produce AB and cut off BB = AC.

Join BCy and draw BF || to BC so as to cut AC produced
in^.

Then, since BC in \\ to DF,

AB:BD--=AC.CF.
But BD^AC;

/. AB:AC = AC:CF.
Hence CF is the required third proportional.

PROPOSITION XII. Problem.

To find afourth proportional to three given straight lines.

Let ABy CDy EF be the three given straight lines. It is

required tofind afourth proportional to AB^ CD and EF.

E-
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Produce AB and cut oflf BG = CD.

Draw any line AUK through Aj and cut oft*AH == EF.

Join BH, and through G draw GK \\ to BH so as to cut

the line AHK in the point K.

Then, since BH is ll to GK,

AB.BG = AH'.HK.

But BG = GJ) and AH=EF ;

/. AB.CD = EF'.HK.

Hence HK is the required fourth proportional

PKOPOSITION XIII. Problem.

To find a meaii proportional between two given straight

lines.

J)

Place the given st. lines AB, BG in the same st. line.

On AC describe a semicircle, and through B draw a line

± ^ AC so as to meet the circumference in the point D.

Then BD is the required mean proportional between AB
and BG.

Join AD and DC.

Then, since ADC is an angle in a semicircle, it is a rt. Z.

Hence sum of Z'' BAD, ADB = sum of Z« CDB, ADB

;

,\ Z BAD = Z CDS, and similarly Z ADB - Z BCD.
Hence the A" BAD, BDC are similar,

and AB'.BD = BD'.BC.

Thus BD is the required mean proportional between AB
and BG.

Def. If the ratio of a side of one polygon to a side of
another he equal to the ratio of an adjacent side of tJie second

to an adja^cent side of the first, these four sides are said to be

Reciprocally Proportion^.
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PROPOSITION XIV. Theorem.

Equal 'parallelograms^ which have one angle of the one equal

to one angle of the other, have their sides about the equal angles

reciprocally proportional; and conversely, parallelograms which
have one angle of the one equal to one angle of the other, and
their sides about the equal angles recijyrocally proportional, are

equal to one another.

Let AG, AF be equal 11'"% which have the Z^ nt A equal.

Then it is required to prove that the sides about the equal angles

are recij^rocally 2)roportional, that is that DA :AQ = EA : AB.

Let the sides DA, AG he placed in the same st. line ; then

EA and AB will also be in a st. line, since /. EAG = /.DAB.

Complete the ir BAGH,
Then, since H™ CA = IP" AF,

IP" CA : 11™ BG = IP" AF: \\^ BG.

But, since |l™^ CA, BG are between the same |1^ DAG,
CBH,

W^CA :\r BG^DA'.AG.
Similarly \r AF : H™ BG = EA: AB.

Hence DA : AG = EA : AB.

Next let the sides about the equal angles DAB, EAG of

the 11™^ AC, .4i^be reciprocally proportional, that is let

DA:AG = EA:AB.

The same construction being made, we have as above

DAiAG^^irCAiW'^BG,
and EA:AB = |1™ AF : T EG.

Hence jp" CA : Ip" BG = IP" AF: IP" BG,

and therefore IP" CA = IP" AF.
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PROPOSITION XV. Theorem.

Equal iriafigles which have one angle of the one equal to one

angle of the other^ have their sides about the equal angles reci-

procally proportio7ial ; and conversely, triangles which have one

angle of the one equal to one angle of the other, and their sides

about the equMl angles reciprocally proportional^ are equal to

one another.

Let ABC, DAE he equal A« which have Z BAG ^^ DAE.
Then it is required to prove that BA :AE — DA : AG.

Place the A^ so that BA and AE are in the same st. line

;

then, since /^DAE~ZBAG, DA and AG will also be in a st.

line.

Join BD.

Then, since A ABG=- A DAE,

A ABG : A BAD = A DAE : A BAD.

0^

But A BAG : A BAD = GA : AD, [VI. 1.

and A DAE : A BAD = EA : AB.

Hence GA'.AD = EA:A B. [VI. ii.

Next, let the sides about the equal angles BAG, DAE be
reciprocally proportional, that is, let GA : AD= EA : AB.

Then, the same construction being made,

GA:AD = A GAB -.A DAB,
and EA:AB=A EAD : A DAB.

Hence A GAB : A DAB=^A EAD : A DAB,

and .*. A GAB=A EAD.

s. u. K. 21
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PROPOSITION XYI. Theorem.

Iffour straight lines he proportionals, the rectangle contained
hy tlie extremes will he equal to the rectangle contained hy the

means ; and conversely, if the rectangle contained hy two straight

lines he equal to the rectangle contained hy two other straight

IhieSf the four straight lines will he 2^^oportionals.

Let the four straight lines AB, CD, EF, GHhe such that

A B : CD - KE : GIL ; then it is required to prove that tlie

rectangle AB^ Gil is equal to the rectangle CD, EF.

K B

E F G II

Let AB be greater than CD, and cut off from i\i AK= CD.

Through A draw a straight line perpendicular to AB, and
on it set off AM, A L equal to GJI, EF respectively, and
complete the rectangles BAMN, KALF.

Then, since AB:CD = EF'. Gil,

a.udAB> CD, EF will be > GIL

Hence KP will cut 3/iV^, in Q suppose.

Then rect. A.¥ : rect. AQ^AB: AK [VL L

=^AB'.CD,

and rect. AP : rect. AQ = AL'. AM [VL L

^EF'.GIL

But, by hyp., AB'.CD^EF'.GH;

/, rect. ^i\^:rect. AQ =^VQct. AP'.reci. AQ
[VL ii.

.•. rect. ^i\^-rect. AP, [VL iv.

that is, rect. AB, Gil == rect. CD, EF.
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Next, let rect. AB, GH^rect. CD, EF.

Then, the same construction being made,

V rect. ^-P = rect. AN,
rect. AP : rect. AQ = rect. AX : rect. AQ.

[VI. iii.

But rect. AP : rect. AQ = AL'.AM [VI. 1.

=^ EF : Gil,

and rect. ^if: rect. AQ^^AB : AK [VI. 1.

^AB'.CD.
Hence AB.CD^EF-. GH. [VI. ii.

PROPOSITION XVII. Theorem.

If three straight liiies he in continued proportion, the

rectangle contained by the extremes is eqiial to the square on
the mean ; and conversely, if the rectangle contained by ttvo

straight lines is equal to the square ofa third, the third straight

line is a mean proportional to tJie otJier two.

Let the three straight lines AB, CD, GH be in continued
proportion, so that AB : CD = CD : GH; then it is required to

prove that rect. A B, GH — sq. on CD,

N

L P

M
Q

A K

G U

Let AB be greater than CD, then CD will be greater than
GH.

Cut off AK= CD, and on ^iT describe the square KALP.
From AL cut oflf AM=GH, and complete the rectangle

AMNB, and let PK cut MN' in the point Q.

Then the proof is precisely the same as in the preceding
proposition (of which this is a particular case), except that AP
is now a square.

21—2
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Ex. 1. The tangents at the ends of the diameter AB oi b, circle are
cut by any other tangent in the points P, Q respectively; shew that
4.AP.BQ=AB\

Ex. 2. P, Q are the points of contact of a common tangent of two
circles which touch one another externally at O, and PL, QM are

diameters of the circles. Shew that the triangles LPQy PQM are
similar and that PQ^=PL.QM.

Ex. 3. Shew that, in the figure to [IV. 10],

aABD: aAGD^aACD: aBCD.

PROPOSITION XYIII. Problem.

Ujyoii a given straight line to describe a rectilineal figure

similar and similarly situated to a given rectilinearfigure.

Let ABCDE be the given rectilinear figure and FG the

given straight line. It is required to describe on FG a
rectilineal figure similar and similarly situated to ABCDE.

Divide the figure ABCDE into triangles by drawing lines

from A to the other angular points.

At F and G make the Z « GFII, FGH equal respectively

to the Z« BAC, ABC.

Then at F and H make the Z « IIFK, FIIK equal respec-

tively to the Z « CAD, ACD.

And at F and iTmake the Z « KFL, FKL equal to the Z

«

DAE, ADE.

Then FGHKL will be the figure required.
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For, since in each of the pairs of A^ FGH, ABC; FHK,
ACD ; FKLj ADE\ two angles of the one are by const, equal

respectively to two angles of the other, the pairs of triangles

must be equiangular.

Thus AFGH^ ^ABC,

Z GHK=^ sum of /. « FUG, FHK
= ACB,ACD=^ZBCD,

Z IIKL = 8um of Z » HKF, FKL
= GDA,ADE=/LGDE,

Z.KLF=^DEA,

and Z GFL = sum of Z « GFff, HFK, KFL
= BAG, GAD, DAE^/LBAE,

Hence the figures FGIIKLy ABGDE are equiatiyular.

Again, since A^ FGH, ABG are equiangular, they are

similar

;

/. FG.AB = GH',BG = FH:AG.

And, since A^ FHK, AGD are equiangular, they are

similar

;

/. FH '. AG =-~HK : GD =FK : AD.

And, since A^ FKL, ADE are equiangular, they are

similar

;

/. FK .AD = KL\DE^LF'. EA.

Hence, in the figures FGJIKL, ABGDE, the ratios FG : AB,
Gil : BG, UK : CD, KL : DE and LF : EA are all equal [and

are also equal to the ratios FII : AG, FK : AD].

Hence the figures FGIIKL, ABGDE are similar.

The same construction and proof would apply however many-

sides the given rectilinear figure might have.

N.B. It should be noticed that two polygons are similar

when the ratios of all paips of corresponding lines, including

diagonah as well as sides, are equal. Also that two polygons

are similar if all pairs of corresponding angles are equal,

including the angles made by diagonals.
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PROPOSITION XIX. Theorem.

Similar triangles are to orve another in the duplicate ratio

of thtir homologous sides.

Let the A« ABCy DEF be similar, having the Z « at ^, By

C equal respectively to the Z « at D, E, F, so that BC and EF
are a pair of corresponding sides ; then it is required to jyrove

that A ABC : A DEF is equal to the duplicate of t/ie ratio

AB : DE,

Let BC be >EF; then, since BC : EF= AB : DE, AB will

he>DE,
Prom BC cut off BH = EF, and from BA cut off BG = ED,

Join GH and HA.

Then in the A« DEF, GBR,

DE, EF and included Z DEF are equal respectively to

GB, BH and included Z GBII,

Hence the A^ DEF, GBH slyq equal in all respects.

Hence Z BGH= Z ^i)i^= ^BAC;
/. (?Zrisll to^C,

and .-. BG:BA = BH'.BC.

Now BG:BA = A BGH : A 5^^,

and ^^ : BC= A ^//J '.ABAC.

/. AJ5G^^: A J5iZ4 = A BHA : A J5^a .

Hence, by definition,

A BGH : A ^^C = duplicate of A BGH : ABHA
- duplicate of ^6r":^^

= duplicate of ED : BA.

Hence A i>^i^ : A ABC = duplicate of ED : BA.
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PROPOSITION XIX* Theorem.

Similar triangles are to one another as the squares on
corresjwnding sides.

Let the a» ABC, DEF be similar, having the Z" at J, B, G equal

respectively to the z " at Z), E, F.

Construct the squares BK, EM on the corresponding sides J?C, EF,

II

.^.

N M

From BG cut off BH=EF, and from BA cut off BG=ED. Join
GH, AH.

Through H draw HP || to BL so as to cut LK in P.

Then, BG^ BH and the included Z GiJZT are equal respectively to
DE, EF and the included z D-Bi^.

Hence A" GBH, DEF are equal in all respects;

/. BG:BA =ED:BA= EF: BC=BH : BG.

Now aABG'.aABH=BG:BH,
and eq.BK '.rect. BP=BG :BH;

.'. aABG : A^B/I=sq. BA" : rect. BP.

And aABH:aGBH=AB:BG;
.: aABH : aDEF^BG : BH;

But rect. BP : sq. EM=BL : EN=BG : BH
;

.-. A^P-ff : ADJ5F=rect. PP : sq. EM,

and aABG : aABH= sq. PA' : rect. BP

;

:. AABG : AP£P=sq. BK : sq. £ilf.
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PROPOSITION XX. Theorem.

A pair of similar polygons may he divided into the same
number of similar triangles, having the same ratio to one

another that the polygons have, and the ratio of the polygons

is the duplicate of the ratio of homologous sides.

Let the polygons ABODE, FGRKL be similar, AB and
FG, BC and Gil, &c. being corresponding sides. Then it is

required to 2>^ove that the jwlygons can be divided into pairs of
similar triangles whose ratio and also the ratio of the whole

polygons is the duplicate of the ratio of AB to FG, or of BG
to GH, Sc.

iD

Join AC, AD, FII and FK.

Then, since the polygons are similar,

^ ABC^ZFGII and AB:FG = BC: GH.

Hence the A* ABC, FGH are similar;

,\ /.ACB = ZFIIG,
and AC:FII=BC:GIL

Again, since the polygons are similar, Z BCD = /. GHK,
and we have proved that Z ACB^ZFEG

;

:, /.ACD^ZFHK.
Also • BC'.GH^CD'.HK;

and we have proved that BC : GH= AC : FII;

,\AC '.FII=CD:HK,
i. e. the sides about the equal /.^ ACD and FlIK are pro-

portionals.

Hence the A« A CD, FIIK are similar.
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It can clearly be proved in a similar manner that A^ ADE^
FKL are similar, and the proof would apply however many
sides the polygons might have.

Now, since the ratio of similar A* is the duplicate of the

ratio of corresponding sides,

A ABC ; A i^r^'j?- duplicate of ratio AB : FG,

and l^ACD:AFHK= „ „ „ CD.HK
= „ „ „ AB : FGy

and AADF:AFKL= „ „ „ FA : LF

„ „ „ AB : FG.

Hence the ratio of each of the triangles into which ABODE
is divided to the corresponding triangle in FGHKL is the

duplicate of the ratio AB : FG.

Hence (Prop, vi) the ratio of the sum of all the triangles

which make up ABODE to the sum of all the triangles which
make up FGHKL is the duplicate of the ratio AB : FG, so that

fig. ABODE : fig. FGHKL = duplicate of ratio AB : FG.

Cor. I. The ratio of the perimeters of similar polygons

is equal to the ratio of any pair of correspo7iding sides.

Cor. II. Two similar polygons which are equal in area,

are equal in all respects.

For the polygons can be divided into the same number of similar

triangles, which have the same ratios as the polygons ; and it is easily

seen that, if similar triangles are equal in area, they are equal in all

respects.

It should be noticed that we have only proved the theorem when the

two figures are divided into triangles by lines drawn from corresponding
vertices. It would be a good exercise for the student to prove that, if

any point X be taken within ABODE and the lines XA, XB, ... be

drawn, a point Y can be found within the figure FGHKL such that if

YF, YG, ... be drawn, the pairs of a" AXB and FYG, BXG and GYII,
&c. will be similar.
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PROPOSITION XXI. Theorem.

Rectilinear figures, which are similar to the same rectilinear

figure, are similar to one another.

Let each of the rectilinear figures ABCD, EFGH be
similar to the figure XYZW; then it is required to prove
tluit tlie figures ABCD, EFGH are similar to one another.

B E F X Y

By definition, if two rectilinear figures are similar corre-

sponding angles are equal, and all pairs of corresponding sides

are in the same ratio.

Hence /.A=Z.X, and /LX^^E;
:. Z.A=./LE, and similarly ^B^^F, &c. (1)

Again AB : Zr=BC:YZ= &c.,

and XY'.EF=YZ:FG = kc.',

/. AB:EF= BO : FG = *fec. [VI. viii.] (2)

From (1) and (2) it follows that ABCD and EFGH are
similar.

PROPOSITION XXII. Theorem.

If/our straight lines are proportionals^ and any similar and
similarly situated rectilinear figures be described on the first

and second and any similar and similarly situated rectilinear

figtires be also described on the third and fourth, then %vill the

fourfigures be proportionals; and conversely, iffour rectilinear

figures so described be pi^oportionals, the straight lines on which
they are described loill also be proportionals.

Let the St. lines AB, CD, EF, GE be such that

AB'.CD^EF'.GH,
and let the similar and similarly situated rectilinear figures

P, Q be described on AB, CD respectively, and the similar

and similarly situated figures B, S be described on EF, Gil
respectively ; then it is required to prove that P : Q = B ; S,
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To AB, CD take a third proportional XY, and to UF, GU
take a third proportional ZW.

Then,

and

But

and similarly

Hence

^xxi^QAB'.CD = EF'.GH,

CD',XY=GII'.ZW',

.-. AB:XY=EF', ZW. [VI. viii.

P'.Q = duplicate of ratio AB\GB
= AB:XY,

R'.S = EF'.ZW.

F:Q = E:S,

Conversely, let P:Q = Ji:S.

To AB, GJJj EF take a fourth proportional LM, and on
LM describe the figure T similar and similarly situated to the

figure R.

Then, by the above, since

AB',CD = EF.LM-
.\F:Q = li:T.

But P:Q = R:S;
/. R:T=R:S,a.ud /. T=S.

But the similar figures T and S which are equal in area,

must be equal in all respects

;

[VI. 20 Cor. ii.

.\LM=GII.

But AB:CD = EF:LM;
,\AB:CJ) = EF,Gl[,
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PROPOSITION XXIII. Theorem.

Equiangular parallelograms have to one another the ratio

which is compounded of the ratios of their sides.

Let AC
J
-4^ be equiangular H"^^, which have the /.^ at A

equal. Then it is required to prove that the ratio of the 1|™^ is

equal to the ratio compounded of the ratios of their sides which
contain the equal angles.

Let the sides DA^ AG be placed in a straight line; then
EA and AB will also be in a st. line, since /.EAG = /LDAB,

Complete the H"^ BAGH.

Then j|"" AC^ AH are between the same parallels DAG,
CBU',

/. \r AC'.\r AH=DA:AG.

Similarly H'" AH '.\Y^ AF=BA'. AE.

Hence \Y'' AC : \\'''AF^ ratio compounded of |1'" ^(7 : \\^AH
siiid \rAH :\r AF

— ratio compounded of ratios equal to

these ratios *

= ratios compounded of DA : AG and
BA : AE.

* Euclid's proof is slightly different from the above, but in both

proofs it is assumed that the ratio compounded of any two given ratios

is equal to the ratio compounded of any two other ratios which are

equal respectively to the given ratios. In the Geometry of the Associa-

tion for the Improvement of Geometrical Teaching this assumption is

included in the definition of the compounding of ratios.
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PROPOSITION XXIII*.

The ratio of equiangular parallelograms is equal to tJie

ratio of the rectangles contained hy tlieir adjacerit sides.

Let AliCD, EFGH be equiangular parallelograms which have the

angles at A and E equal to one another.

Then it is required to prove that

\rABCD : r EFGH=ieGt. AB, AD : rect. EF, EH.

K

rr
M N

f /
E Y F

Draw AK, EM l' to AB, EF respectively, making AK=AD and
EM=EH. Complete the rectangles BAKL and FEMN.

Draw DX, HY l^ to AB, EF respectively.

Then, since lDAX= iHEY and lAXD=^ lEYH, the a" D.^A'

and HEY are similar;

/. DX:DA=HY:HE.

But \r DB : \r KB=DX : KA=DX : DA,

and r HF : r MF=HY : ME=HY : HE.

Hence T DB : r KB= ir HF : |1™ MF ;

.-. , alternately, ||™ DB : H™ fIF=rect. KB : rect. MF.

[VI. 1, Cor.

Note. Euclid's Prop. XXIII. conveys no clear idea, for Euclid offers

no suggestion as to the nature of the operation by which ratios can
be compounded. From the above form of the theorem we leain
that the ratio compounded of the ratios of two pairs of straight
lines is equal to the ratio of the rectangle contained by the ante-
cedents to the rectangle contained by the consequents of the pairs
of ratios.
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PROPOSITION XXV. Problem.

7V) describe a rectilineal figure ivhich shall he similar to (Xtie

and equal to another given rectilineal figure.

Let ABCD and EFGH be the given rectilineal figures.

Then it is required to describe a rectilineal figure similar to

ABCD and equal to EFGH.

On AB describe the rectangle ABKL equal in area to the
figure ABCD,

Also on BK describe the rectangle BKMN equal to
EFGH, so that AB, BN may be in the same st. line.

Find XY the mean proportional between AB and J^iT.

Then the rect. figure described on XF similar to ABCD
will be equal to EFGH, and will be the figure required.

For figure ABGD : sim''. fig. on J^F= duplicate of AB : XY
==AB'.BN',

since AB:XY=XY : BX.

But AB : BN== rect. AK : rect. BM
- figure ABCD : figure EFGH [Const,

Hence

fig. ABCD :sim\ fig. on XY=fig. ABCD-Ag. EFGH.

Hence figure on XY similar to figure ABCD is equal to

the figure EFGH.
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PROPOSITION XXIY. Theorem.

Parallelograms about the diagonal of any parallelogram

are similar to the whole jmrallelogram and to one another.

Let ABCD be a jl*", and BH, FG 1|'"« about the diagonal

A C. Then it is required to j^rove tliat \\^^ EU^ FG^ BD are all

similar.

A H B

A"\\. V

\ r^^4
o .

In tlie ir"« EH, DB,

/.EAH^^DAB,

/. A11K-Z.ABC, since IIKG and BG are ||,

and tlie opp. Z " of ||"'* are equal

;

.•, 11"'^ Elly BD are equiangular.

Again, since UK is
|l to BG and EK to />C,

AU',AB=^AK'.AC

= AE'.AD,

And, since opp. sides of H"'^ are equal, it follows that the

ratios of all pairs of corresponding sides of the ||'"« EH, BD
are equal.

Hence ir"« EH, BD are similar.

And it can be proved in the same manner that ||*"* FG,
BD are similar.

But rect. figures which are similar to the same figure are

similar to one another, so that the three ll"'* EH, FG, BD are

all similar.
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PROPOSITION XXYI. Theorem.

If two similar parallelograyns have a common angle, and
be similarly situated^ their diagonals will coincide.

Let the ir« ABCD, AIIKE which have the Z.^ Sit A
common be similar and similarly situated, so that AB and

AH are corresponding sides. Then it is required to prove that

the diago7ials AG and AK are coincident, .

Since the |l'"^ BD^ HE are similar, the sides about the

equal Z ^ ABC^ AHK are proportionals.

Thus Z ABC = Z AHK, and AB : AH= BG : HK-

.\ A^ ABGy AHK are simiUr ; and /. ZBAG = ZBAK,

so that the st.- lines AG, ^^ coincide.

Cor. If trvo similar polygons have a common angle, and
he similarly situated, all their diagonals through the common
angle will coincide. [See figure on page 328.]

PROPOSITION XXX. Problem.

7'o cut a given straight line in extreme and mean ratio.

Let AB he the given st. line; then it is required to divide

it into two parts at the point C so that AB : AG = AC : BG.

If AB:AG = AC :BC,

rect. AB, BC = Bq. on AC.

Hence the problem is the same as that given in Book il.,

Proposition 11.
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N.B. Propositions XXVII., XXYIIL and XXIX. are

omitted. Of these XXVII. is unimportant, and XXVIII.
and XXIX. have already been given on page 224.

PROPOSITION XXXI. Theorem.

In a rifjht-awjled triangle, the rectilinear Jigure described

upon the side opposite to the right angle is equal to the sum of
the similar and siindarly situated figures described on the sides

containing the rigid angle.

I^et ABC be the right-angled A, having the rt. /.BAG,
and let the three similar and similarly situated rectilinear

figures X, F, Z be described on the sides B(\ CA, Ali
respectively ; then it is required to prove that the figure X
is equal to tlie sum of the figures Y aiul Z.

Draw^i) ±'-toi?C.

Then we know that A' ABC^ DAC are similar, so that

BC'.CA = CA:CD',
.', BG'.CD^ the duplicate of the ratio BC : CA.

But since the figures X and Y are similar and similarly

situated,

fig: A" : fig. Y= the duplicate of the ratio BC : CA
= BC'.CD.

Similarly fig. X: fig. Z=BC : BD.
Hence fig. X : sum of figures Y and Z = BC : sum of CD

and BD.

But BC is equal to the sum of CD and BD

;

.'. fig. A' is equal to the sum of figures Y and Z.

S. B. E. 22
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PROPOSITION XXXIII. Theorem.

In equal circles angles, whether at tlie centre or the cir-

cumference, have the same ratio as the arcs on which they

stand. Also the areas of sectors are in the same ratio as their

angles.

Let A£f LM be arcs of equal circles and let AOB, LSM be
two angles at their centres. Then it is required to pi'ovc

that Z.AOB : /.LSM=arc AB : arc LM, and also that

sectorAOB : sectorLSM^ /. AOB : ^LSM.

From draw any number of radii OC, OB, ..., OX, Y
making the angles BOG, COB,
ZAOB.

XOY each equal to

Also from S draw any number of radii SN, SP, SQ, ...,

SW, SZmsXdng the angles MSJST, JSrSP^ PSQ, ..., WSZ each
equal to Z.LSM.

Then, since ZAOB =ZBOC = /.COB=...,

arc AB = arc BC = arc CB =

Hence the arc ABCY is the same multiple of the arc AB
that the Z.AOY is of the ZAOB.

Similarly the arc LMNZ is the same multiple of the arc
LM that the /. LSZ is of the Z LSM.

Moreover, since the two circles have equal radii,

the arc ABY ~ arc LMZ

according as i\\^ /.AOY^ZLSZ.
<
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Hence of four magnitudes, namely the Z A OB, the Z. LSM,
the arc AB and the arc LAI, we have taken any equimultiples

of the first and third, and also ani/ equimultiples of the second

and fourth ; and we have shewn that tlie multiple of the first

is always greater than, equal to, or less than the multiple of

the second according as the multiple of the third is greater

than, equal to, or less than the multiple of the fourth.

Hence by definition

arc AB : arc LM=ZAOB : Z. LSM.

Since an angle at the circumference of a circle is half

the angle at the centre on the same arc, the ratio of the angles

at the circumferences which stand on the arcs AB^ LM re-

spectively is equal to /. AOB : Z LSM, and therefore also

equal to arc AB : arc LM.

Again, since in the same circle, or in equal circles, sectors

with equal angles are equal*, it follows that sector ^OF is the

same multiple of sector AOB that /.AOY is of Z.AOB, and
that sector LSZ is the same multiple of sector LSM that

Z LSZ is of Z LSM.

Moreover sector -4OF = sector Z^S'^
<

I

according as /. AOY = ^ LSZ.

Hence by definition

sector AOB : sector LSM=/.AOB : /^LSM.

N.B. In the above proof it will be seen that angles not merely
greater than two right angles, but greater than any number of right
angles, must be considered ; for the proof is invalid unless we can take
any multiples whatever (millions, for example) of the angles AOB and
LSM.

It is sometimes asserted that Euclid did not recognise angles greater
than two right angles, but this is not true. He, however, omitted to
give an extended definition of an angle, when it was required by him in
ni. 20 and again in VI. 33.

* This is obvious by superposition,

22—2
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ADDITIONAL PROPOSITIONS.

I. If an angle of a triangle he bisected hy a straight line

which cuts the opposite sidcj the sum of the rectangle contained

hy tJie two segments of that side and the square on the bisecting

line is equal to tJie rectangle contained by the other two sides

of the triangle.

Let the Z ABC of the aABC be bisected by the line J3Z), which cuta

AC in D. Then it is required to prove that the sum of rect. AD, DC and
sq. on BD is eqvxil to the rect. AB, BG.

Describe the circle ABCE about the A ABC, and produce BD to cut
the circumference at the point E. Join EG.

Then, by hyp., z ABD = Z EBG
and Z BAD = z BEG,

for they are in the same segment.

Hence A" ABD, EBG are equiangular and are .'. similar, so that

AB : BD=EB : BG; [VI. 4.

> .-. rect. AB, BG =rect. BD, BE [VI. 16.

= rect. BD, DE and sq. on BD [II. 3.

=rect. AD, DC and sq. on BD.

Similarly, if the bisector of the exterior angle at B cut the base at F
and the circle again in G, it will be easily seen that the triangles ABF,
GBG are similar, and therefore

AB : BF=GB : BG

;

.: AB . BG=BF . GB=BF . GF-BF*
=AF . GF-BF\
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II. If a perpendicular he dravnifroni a vertex ofa triangle

to the opposite side, the rectangle contained hy the otlter sides of
the triangle is equal to the rectangle coiitained hy the perpen-

dicular and the diameter of the circle descrihed ahout the

tria7igle.

Let BD be the perp. drawn from the vertex B to the side AC, and let

BE be the diameter of the circle described about ABC, Then it is

required to prove that

rect. AB, BC=rect. BD, BE.

Describe the circle ABC, and let BE be the diameter through B,
Join AE,

Then in the A" BAE, BDC

L AEB = I DCB in the same segment

;

and, since BE is a diameter,

lBAE= Tt. I = I BBC,

Hence the A' BAE, BDC are equiangular, and are /. similar, so that

BA : BE=DB : BC

;

.'. rect. BA, i?C= rect. DB, BE.

[VI. 4.

[VI. IG.

Since 2a ABC =rect. CA, BD;

.-. 2a : AB . BC=CA . BD . AB , BC
=GA.BD : BE .BD

= CA : BE;

.'. Ui . A=BC . CA . AB,

where Ji is the radius of the circle.
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III. PTOLEMY'S THEOREM.

The rectangle contained hy the diagonals of a quadrilateral

inscribed in a circle is equal to the sum of the rectangles

contained hy the two pairs of opposite sides.

Let ABCD be any quadrilateral inscribed in a circle; then, if AC,
BD be drawn, it is required to prove that rect. AG, BD is equal to the

sum of rect. AB, CD and rect, AD, BG,

Make the l ADE equal to the Z BDC, E being on AG.

Then, in the i^'' ADE, BDG, L ADE- L BDC, and z DAE= z DBO
in the same segment ; .*. the A * ADE, BDC are equiangular, and are .*.

similar, so that

AD : AE=BD : BC;
/. rect. AD, BC=rect. BD, AE, [VI. 16.

Again, to each of the equal z " ADE, BDC add lEDB, then
lADB= Z GDE\ also /.ABD= lEGD in the same segment;
.". A* ADB and EDG are equiangular, and are .'. similar, so that

AB : BD=EG : CD,

and .-. rect. AB, CD= rect. BD, EG.

Hence sum of rect. AD, BG and rect. AB, CD
=sum of rect. BD^ AE and rect. BD, EG
=rect. BD, AG.

The following theorem, which includes the converse of Ptolemy's
Theorem, is of great importance.

Tbeorem. If A, B, G, D he any four points on a plane, and the lines

AB, BG, d'c. he joined, then any tivo of rect. AB, CD, rect. AG, BD and
rect, AD, BG are together greater than the third, unless the four points

lie on a circle.

Make z » ADE, DAE equal respectively to the z ' BDC, DBG.

Then the a* ADE, BDC are equiangular, and are /. similar, so that

AD: AE=BD:BC;
,\ rect. AD, BG =iect. BD, AE,
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. D

A
Also AB :DE=BD'.DC\

or AD :DB=ED : DC,

But lADB= I EDO, since lADE= iBDC.
Thus in the A" ADB, EDO the sides about a pair of equal angles are

:
:
', and .•. the A are similar, so that

AB :BD-EC '. CD;
/. rect. AB, CD= rect. BD, EC.

Hence the sum of rect. AD, BC and rect. AB, CD
= sum of rect. BD, AE and rect. BD, EC
=rect. contained by BD and the sum of AE and EC.

Hence the sum of rect. AD, BC and rect. AB, CD is always greater

than the rect. AC, BD unless the sum of AE and EC is equal to AC, that

in unless the point E is on the line AC, in which case A, B, C, D are

cyclic, for i DAC would then be equal to i DBC. [See also page 374.]

Ex. 1. If ABC he an equilateral triangle and D any point on its

circumcircle, tJien will one of the three distances DA, DB, DC be equal to

the sum of the other two.

For, if DA cut BC, then by Ptolemy's Theorem,

DA . BC=DB .CA+DC. AB.

Ex. 2. If ABCDE be a regular pentagon, and O any point on the arc

of its circumcircle cut off by EA ; then will OA + OC-^ OE= OB + CD.

Apply Ptolemy's Theorem to the quadrilaterals OABC, OBCD, OCDE,
ODEA, OEAB in order; then we have, since all the sides and all the

diagonals are equal,

d . OB:i=a .OA+a. OC, a . OB + a . OD = d . OC,

d . OD= a . OC+ a . OE, a . OD= d . OE + a . OA
and a . OB=za . OE + d . OA,

where a is the length of a side and d o{ o. diagonal.

Hence (2a + d){OB + OD) = {2a + d){0A + OC + OE),

and therefore OB + OD= OA+OC + OE.

The above method of proof can be extended to the case of any polygon
with an odd number of sides. Thus we have the following theorem :

—

If ABCD AT be any regular polygon icith an odd number of sides,

and he any point on its circumcircle betncen Y aiidA, the sum of OA,
OC, OE, OY is equal to the sum of OB, OD, OA'.
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IV. HARMONIC RANGES AND PENCILS.

1. Def. Points which lie on a straight line are said to be CoUinear,

and straight lines which pass throiigh a point are said to be Concurrent. A
set of points lying on a straight line is called a Range, and a set of straight

lines passing through a point is called a Pencil.

Four coUinear points A, B,G,D are said to form a Harmonic Range
when

AB : BC=AD : CD,

that is when ^C is divided internally and externally in the same ratio at

the points B and D.

[Since AB : BG=AD : CD;

.'. alternately, AB : AD =BC : CD,

so that BD is also divided internally and externally in the same ratio at

the points A and C]

If A, B, G, D form a harmonic range, the pair A and G, and also the

pair B and D, are called harmonic conjugates.

2. If A, B, G, D form a harmonic range, and U, V be the middle points

of AG, BD ; then will UG^= UB . UD and VB''= VA . VC.

If A, B, G, D is a harmonic range

AB : BG=AD : CD.

A B G D

Hence AB +BG : AB - BG=AD + CD : AD - CD.

Hence 2UG : 2UB = 2UD : 2UG

;

.-. UC^= UB . UD.

And, since AB : BG=AD : CD,

.-. alternately, AB : AD=BC : CD;

.'. AB +AD : AD-AB=BG+GD : CD-BG.

.: 2AV : 2BV=2BV : 2C7F;

/. BV'^=AV . CV.

Conversely, if U is the middle point of AC, and UG^=UB . UD;
then A, B, G, D must be a harmonic range.

For, since UC^=UB . UD, 2UB : 2UG=2UG : 2UD;
le.AB-BG : AB +BG=AD-GD : AD+GD;

.'. 2AB : 2BG=2AD : 2GD,

.'. AB I BC=^AD : CD.
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3. If A, B, C, D is a harmonic range and O be any point, and if the

line through G parallel to OA cut OB, OD in X, Y respectively ; tJien

willXC=GY.

The A' ABO, C^.Y are similar ; .-. AB : BC=AO : XC.

The A' ADO, CDr are similar ; /. AD : CD = AO : CY.

But AB : BC=AD : CD, since A, B, C, D is harmonic;

/. AG : XC=AO : CY;
/. XC=CY.

4. If Af B, C, D be a harmonic range and he any point, and if the

lines OA, OB, OC, OD he cut by any other straight line in the points

A', B\ &, If respectively ; then will A', B', C\ 1)' be also a harmonic
range.

For, if XCY be drawn parallel to OA to cut OB, OD in X, Y
respectively; then, by (3), XC=CY. And, if X'C'Y* be drawn parallel

to OA to cut OBj OD in X', Y' respectively; then, since A'CFis parallel

toX'CY\X'C : C'Y'=XG : C r, so that X'C = C F'.
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Also A'B' : B'G'=:A'0 : X'C,

and A'D' : C'D'=A'0 : G'T;

:. A'B' : B'G'=A'jy : CD',

so that A'^ B\ C'f D' form a harmonic range.

Det ^4 pencil of four lines tohich are ctit by any transversal infour
points forming a harmonic range, is called a Baxmonic FenclL

V. THE CIRCLE OF APOLLONIUS.

The locus of a point whose distances from two fixed points are in a
constant ratio is a circle.

Let ^, J5 be the given points.

The points A', Y which divide the straight line AB internally and
externally in the given ratio are clearly points on the locus. Let P be
any other point on the locus. Then, by supposition,

AP : PB=AX '. XB=AY i 57= given ratio.

Hence PA, PY are the internal and external bisectors of the angle
APB, and- are therefore at rt. z ".

Hence P must be on the circle whose diameter is AF.

Conversely. Since AX : XB=AY : PF, if C be the middle point
of AF,

CB.CA=:CX^ [IV. 2

where Q is any point on the circle APF.
Hence CQ touches the circumcircle of the A ABQ, and therefore

Z CQB= L CAQ.
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The triangles BGQ, QGA are therefore similar, and

AQ : BQ^CQ : CB.

Similarly, since CA . CB= CF^,

AP : BP=CP : CB=CQ : CB;

.'. AQ : BQ=AP : BP.

Hence every point of the circle XPY is on the locus.

The following form of the theorem is important

:

If A, B are ttoo points on a straight line throngh the centre C of a
circle stich that rect. CA . CB is equal to the square on the radius of the

circle, then will the ratio of the distances of any point on the circle from A
and B he constant.

For, let Q be any point on the circle
;

then since CA . CB= CQ^,

CA I CQ=CQ : CB.

Hence the A* ACQ, QCB are similar, and therefore

AQ : BQ=AC : Cg=con8t.
[See page 357.]

Ex.1. Construct a triangle having given the base, the vertical angle,

and the ratio of the other two sides.

Ex. 2. Construct a triangle having given the base, the ratio of the
other two sides, and the length of the median corresponding to the base.

Ex. 3. Construct a triangle having given the base, the ratio of the
other two sides, and the length of the bisector of the vertical angle cut
off by the base.

Ex. 4. Construct a triangle having given the base, the ratio of the
other two sides, and the area.

Ex. 5. ABC is a triangle, find a point O such that AO : BO and
BO : CO may be equal to given ratios.

Ex. 6. A, B, C, D are four collinear points, find the locus of a point
at which AB and CD subtend equal angles.

Let P be a point such that Z APB = z CPD. Make z APO= z PDC,
and let PO cut ABCD in 0. Then, since z OPA= z PBC, OP touches
the circumcircle of APD. And

Z BCP= z CPD+ L CDP= Z APB + Z OPA= Z OPB ;

.-. OP also touches the qBPC. Hence OA . OD = OP^=OB, OC, and
there is only one point on ABCD such that OA . 0D=^ OB . OC. Hence
the locus of P is a circle whose centre is O.
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VI. CEVA'S THEOREM.

If through any point the lines AOD, BOE, COF be draivn »o as to

nit the sides BC, CA, AB of the triangle ABC, produced if necessary^ in

the points D, jB, F respectively ; then the ratio compounded of the ratio of
the segments of the sides taken in order will be equal to unity.

For

and

Similarly

and

A ADB
A ODB

A AOB

A COA

A BOG

DC,

DC;

DC.

FB,

EA.

DC, AF : FB, and CE : EA

A AOB,

A CDA =BD
A CDO=BD
A COA=BD
A BOC=AF
A AOB= CE

Hence the ratio compounded of BD
is equal to the ratio compounded of

A AOB : A COA, a COA : a BOC and a BOC
that is equal to a AOB : a AOB, which is equal to unity.

If the sides are divided into segments which are commensurable, the
ratios of the segments can be expressed as the ratios of whole numbers, i.e.

as vulgar fractions, and the ratio compounded of their ratios will then be
the continued product of these vulgar fractions. Thus, Ceva's Theorem
can, in this case, be enunciated in the form

BD GE AF_.
DC' EA ' FB~ '

The Converse of Ceva's Theorem is very important.

Conversely. If points D, E, F be taken on the sides BG, CA, AB
respectively of the triangle ABC so that

BD
DC

GE
EA

AF
FB= 1.

then will AD, BE, CF meet in a point.
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For, if AB, BE meet in O and CO cut AB in F\ by Ceva's Theorem

BD CE ^F'^.
DC ' EA ' F'B '

Hence ^l*' : FB= AF' : 2^"J5, and therefore ^' and i*" coincide.

It sliould be carefully noticed that two, if any, of the three points

D, E, F must be on the productions of the sides on which they lie,

so that of the three pairs BD, DC ; CE, EA ; AF, FB the segments are

both in the same direction in all three cases, or in only one case ; and
therefore, if the segments of the same line he considered to he of opposite

sign when they are drawn in opposite directions, then the converse of

Ceva's Theorem asserts that AD, BE, CF, will meet in a point, if

BD CE AF_
DC'EA'FB~'^

Ex. 1. If D, E, F are the middle points of the sides BC, CA, AB ot

the triangle ABC ; shew that AD, BE, CF will meet in a point.

Ex. 2. Shew that the bisectors of the three angles of a triangle meet
in a point.

Ex. 3. Shew that the bisectors of two of the exterior angles of a
triangle and of the remaining interior angle meet in a point.

Ex. 4. The in-circle of the triangle ABC touches the sides BC, CA^
AB in the points D, E, F respectively ; shew that AD, BE, CF meet in

a point.

Ex. 5. An escribed circle of the triangle ABC touches the sides

BC, CA, AB, or these sides produced, in the points D, E, F respectively;

shew that AD, BE, CF meet in a point.

Ex. 6. The three escribed circles of the triangle ABC touch the
sides BC, CA, AB externally in the points D, £, F respectively; shew
that AD, BE, CF are concurrent.

Ex. 7. Lines drawn through a point meet the sides BC, CA, AB of

the triangle ABC in A', Y, Z and on these sides the points A', Y', Z' are

taken such that BX=X'G, CY^Y'A and AZ=Z'B. Shew that AX\
BY', CZ' are concurrent.

Ex. 8. The three lines AO, BO, CO meet BC, CA, AB respectively

in D, E, F and the circle DEF cuts BC, CA, AB again in D\ E', F*
respectively; shew that AD', BE', CF will meet in a point.
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VIL MENELAUS' THEOREM.

If a straight line cut the sides of a triangle, produced if necessary ^ the

ratio compounded of the ratio of the segments of the sides^ taken in order, is

equal to unity.

Let a St. line cut the sides BC, CA, AB of the a ABC in D, E, F
respectively. Then we have to prove that the ratio compounded of
BD : DC, GE to EA and AF to FB is equal to unity.

Through A draw AX
\\ to DEE and cutting BG in X.

Then, since ^Z is
|| to DEF,

CE : EA = GD : DX
and also AF : BF=XD : BD.

Hence the ratio compounded of CE : EA and AF : BF is equal
to the ratio compounded of CD to DX and DX : BD, that is equal to

the ratio CD : BD.

Hence the ratio compounded of CE : EA, AF : BF and BD to CD
is equal to the ratio compounded of CD : BD and BD : CD, i.e. to the
ratio CD : CD, which is unity.

If the sides are divided into segments which are commensurable, the
ratios of the segments can he expressed as the ratios of whole numbers,
i.e. as vulgar fractions, and the ratio compounded of their ratios will

then be the continued product of these vulgar fractions. Thus Menelaus'
Theorem can, in this case, be enunciated in the form

BD CE AF
DC EA' BF= 1.

The converse of the theorem can be proved in the same manner as
the converse of Ceva's Theorem.
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It should be carefully noticed that one or three of the points D,E,F
must be on the productions of the sides on which they lie, so that of

the three pairs BD, DC; GE, EA ; AF, FB the segments are both in the

same direction in two or in none ; and therefore, if the segments of the

same line he considered to he of opposite sign when they are in opposite

directions, then the converse of the Theorem of Menelaus asserts that

I>, E^ F lie on a straight line, if

BB CE ^^_i
DG'EA'FB

From the theorems of Ceva and Menelaus it follows that, if AD, BE,
CF are concurrent and if EF cuts BC in G, then will G, B, D, G form a
harmonic range.

-O B

For, from Ceva's Theorem

BD CE AF
DC' EA ' FB~ •

and from Menelaus' Theorem ^^i^ . -rrr • 9tr = 1-
GC EA FB

Hence GB : GC=BD : DC.

Ex. 1. D, E, F are points on the sides BC, CA, AB respectively
such that AD, BE, CF meet in a point, and the lines EF, FD, DE cut
BC, CA^ AB in X, Y, Z respectively; shew that X, Y, Z are coUinear.

Ex. 2. The in-circle of the A ABC touches BC, CA, AB respectively
in D, E, F, and EF, FD, DE cut BC, CA, AB in A', F, Z respectively

;

shew that A', F, Z are collinear.

Ex. 3. The tangents &t A, B, C to the circumcircle of the A ABC
meet the sides BC, CA, AB in the points D, E, F respectively; shew
that D, E, F are collinear.

[BD : GD= BA^ : CA^
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Vra. KADICAL AXIS. CO-AXAL CIRCLES.

1. Let the tangents OP, OQ to the two circles whose centres are A
and B respectively, be equal in length.

Join AP, AO, BQ, BO, and draw OX l to AB.

Then, since z " OPA, AXO, OQB are rt. Z %

AX^+XO^=AO^=AP^+PO^

and XB^+XO^=BO^=BQ^+OQ\
Hence, if 0P= OQ,

AX^-XB^=AF2-BQ^= const.

Hence X is afixed point, and therefore is on the fixed straight line

1 to AB and which divides AB in X so that AX'^-XB^ is equal to the

difference of the squares on the radii.

Conversely, if X be the point on AB such that

AX^-XB^^= AP^-BQ^,

and O be any point on the line through X perpendicular to AB, the

tangents from O to the two circles (or, if be within the circles, the

rectangle contained by the segments of chords through 0) will be equal.

Thus the locus of a point from which the tangents drawn to two given

circles are equal in length is a straight line perpendicular to the line

joining their centres. This line is called the Radical Axis of the circles.

If the circles cut one another, the radical axis must pass through the

points of intersection, for the tangents to the two circles from a point of

intersection are equal, being both of zero length. That the radical axis

of intersecting circles is their common chord can, however, be at once
seen from Euclid IH. 36.
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When two circles touch one another, their radical axis is the tangent

at their point of contact.

It is easily seen that the intersection of the radical axis and the line

of centres is within both circles or without both circles according as the

circles do or do not cut one another.

A point may be regarded as a circle of zero radius, and the radical

axis of the circle whose centre is A and radius AP and the point-circle B
is the line perpendicular to AB and which cuts AB in X so that

AX^-XB'^=AF^,

2. The radical axes of three circles taken in pairs meet in a point.

For, a A, By G he the centres of the three circles, and if the radical

axis of the circles A and B meets the radical axis of the circles A and G
in the point ; then, since O is on the radical axis of A and B, the

tangents from O to the circles A and B are equal ; and, since O is on
the radical axis of the circles A and G, the tangents from O to the circles

A and G are equal. Hence the tangents from O to the circles B and G
must be equal, whence it follows that O is on the radical axis of the

circles B and G.

If the centres A, By G are on a straight line, the three radical axes
are parallel.

Def. The point of intersection of the three radical axes of three circles

taken in pairs is called their Badical Centre.

Since two straight lines can only meet in one point, unless they
altogether coincide, it follows that three given circles can only have one
radical centre, imless the given circles are co-axal.

Ex. Draw the radical axis of two given circles.

If the given circles intersect, the radical axis is their common chord.

If the given circles do not intersect, draw any other circle which
intersects them both, and let PQ, RS be the common chords. Then, O,
the point of intersection of PQ and RSy is on the radical axis of the
given circles. Hence the required straight line is the line through
perpendicular to the join of the centres of the given circles.

Defi Gircles which are such that any pair have the same radical axis
are called Co-axal Circles.

Since the radical axis of two circles is i"" to the line joining their
centres, it follows that the centres ofa system of co-axal circles are collinear,

3. It is obvious that all circles through two given points are co-axal

;

and that all circles co-axal with two intersecting circles must pass
through their points of intersection.

Thus, if two circles of a co-axal system intersect one another, they
will all intersect one another in the same two points ; and, if two circles

of a co-axal system do not intersect one another, no two circles of the
system can intersect one another.

S. B. E. 23
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In a system of non -intersecting co-axal circles there are two point-

circles, that is circles of zero radius. These are the points L, L' on the

line of centres such that LX-= L'X^= XB'^- BQ^, where X is the inter-

section of the radical axis and the line of centres, and B is the centre

and BQ the radius of any one of the circles.

Def. In a system of co-axal circles, the tioo circles of zero radius are

called the Iiimiting Points.

In a system of intersecting co-axal circles there can be no limiting

points, for a circle of zero radius cannot pass through the two points

common to all the circles of the system.

When the co-axal circles touch one another at a point, the two
limiting points coincide with the point of contact.

If be any point on the radical axis of a system of co-axal circles,

the tangents from to all the circles of the system will be of equal
length, and therefore the circle described with as centre and the length

of these tangents as radius will cut all the circles of the co-axal system
at right angles.

Thus corresponding to a given system of co-axal circles there is a
system of circles each of which cuts all the circles of the given system
orthogonally. Moreover these orthogonal circles are co-axal with one
another, their radical axis being the line of centres of the original co-axal
system ; for, if any number of circles cut a given circle orthogonally, the
tangents to them from the centre of the given circle are all equal to its

radius, so that the centre of the given circle is on the radical axis of

every pair of the orthogonal circles.

Since BL . BL'=BX^-XL^=BQ^, it follows that any circle through
the limiting points of a co-axal system cuts every circle of the system
orthogonally.
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The figure shows two systems of co-axal circles, every circle of one
system cutting all the circles of the other system orthogonally. In one
system all the co-axal circles have two common points which are the
limiting points of the orthogonal system.

A co-axal system is determined (1) when two of the circles are given,

(2) when one circle and the common radical axis are given, (3) when the
two common points are given if the circles intersect each other, or

(4) when the limiting points are given if the circles do not intersect each
other.

We have seen that co-axal circles are cut orthogonally by an infinite

number of other circles which are co-axal with one another, and

Conversely. Three, or more, circles which are cut orthogonally by
more than one circle must be co-axal.

For, the centre of any circle which cuts two given circles orthogonally
must be on their radical axis, and therefore the centre of a circle which
cuts three given circles orthogonally must be at their radical centre ; and
if there is more than one such orthogonal circle, there must be more
than one radical centre of the given circles, which must therefore be
co-axal.

4. One circle of a given co-axal system icill pass through any given
point.

For, take any point on the given radical axis, and draw OK the
tangent to one of the circles ; then join O to P the given point, and on
OP take the point Q such that OP.OQ=OK\ Now take any other
point on the radical axis, and find a point 12 in a similar manner. Then
the circle PQR is the circle required.

^If the co-axal circles have two common points, the circle through
these points and the given point is the circle required.]

5. 2"wo circles of a co-axal system will touch a given straight line.

Let the radical axis cut the given straight line in the point O, and let

OQ be the tangent from O to one of the co-axal circles. Take P, P* on
the given line such that PO= OP'^OQ.

Then the two circles required are the circles through P and P', which
can be constructed as in the previous case.

23—2
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Ex. 1. Draw a circle to cut three given circles orthogonally.

[The circle whose centre is the radical centre of the three given circles,

and whose radius is the length of the tangent from the radical centre to

any one of the circles, is the circle required.]

Ex. 2. Draw a circle to cut two given circles orthogonally and to

pass through a given point.

[If ^, JB be the centres of the given circles and P the given point, the

tangents from A and B to the required circle are equal to the radii of the

circles A and B respectively. Hence, if Q be taken on AP, such that

AP . AQ = B(i. on rad. of circle A, and if E be taken on BP such that

BP .BB— sc^. on radius of circle B, the circle PQR will be the circle

required.]

Ex. 3. Draw a circle to cut a given circle orthogonally and to pass
through two given points.

6. The difference "between the squares on the tangents drawn from any
given "point to two given circles is equal to twice the rectangle contained

by the distance between the centres of the circles and the perpendicular
distance of the given point from their radical axis.

axis

Let ^, jB be the centres of the given circles and MXM' their radical

Draw the tangents TP^ TQ from any point T. Draw TN, T3I ± ' to

AB and MXM' respectively, and join AP, AT, BQ, BT.

Then

and

TF^=Ar^-AP^=AN^+ NT^-AP'^,

TQ^=BT^-BQ^=Bm+NT^-BQ^i

TP^-TQ^=AN^-BN^+ BQ^-AP^,
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Let V be the middle point o( AB ;

then AN^ - NB^={AN+NB) {AN-NB) =2AB . VN.

Also

BQ2 _ AI^=BX^ - XA^= {BX+XA) {BX- XA)=2BA . VX.

Hence TF^- TQ^=2AB .VN+2AB .XV

=2AB.XN=2AB.MT.

Cor. If I" be on the co-axal circle whose centre is C, then will

TI^=2AC.MT,

and TQ^=2BC.MT.

Hence I'F-^ :TQ-=AC:BC.

Thus we have the following very important theorem (which includes

the Theorem of Apollonius as a particular case)

:

The tangents draicn to two circles from any point on a co-axal circle

are in a constant ratio.

Conversely. TJie locus of a point from which the tangents drawn to

two given circles are in a given ratio, is a co-axal circle.

For, let At B Be the centres of the given circles, and let P be any
point on the locus. Draw through P a circle co-axal to the given circles

and let G be its centre. Then the squares of the tangents drawn from P
to the given circles are in the ratio AC : BC, whence it follows that C is

B.fixed point, and therefore any point P on the locus is on a fixed co-axal
circle.
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IX. POLES AND POLARS.

1. Through the fixed point O draw any straight line so as to cut a
given circle, whose centre is C, in the points P, Q, and let the tangents at
P, Q intersect in T.

Join CT and OC, and draw TN l^ to OC. Let TO, TN cut OPQ in
the points V, K respectively. Join GP, CQ and NP, NQ.

[Now CT hisects PQ and is i"- to PQ, for PTQ and PCQ are isosceles
triangles.

The A« CVQ, CQT are therefore similar, and CV : CQ = CQ -. CT,
so that CF.Cr=CQ2.]

Then, since Z rFO= z TNO =rt. Z, the points T, F, 2^, O are
cycUc.

Hence CN.CO= CV, CT= CQ\
And, since CN, (70= sq. on radius of circle, A^ is a fixed point if O is

fixed, so that T is always on a fixed line ± « to OC.

Thus we have the following theorem

:

If a chord of a circle passes through a given point, the tangents at its

extremities meet on afixed straight line, which is called the polar of the

given point.

Conversely. If tangents be drawn to a circle from any point on a
given straight line, their chord of contact will pass through a fixed point,

which is called the pole of the given straight line.

For, if T be any point on the given line TN, and if the corresponding
chord of contact PQ cut the line through the centre of the circle ± •" to

the given line in the point O; then, as above, CN . C0=8(i. on rad.

Hence, as N_ is fixed, O is a fixed point.
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A figure should be drawn for the case in which the pole is within the
circle, in which case the polar will not cut the circle.

[For, since GN . CO= aq. on rad., if CO be less than the radius, CN
must be greater.]

When the pole is 07i the circumference of the circle, the polar is the
tangent at that point.

2. Since TPG, TQC, TNC are right angles, the points T, P, N, C, Q
lie on a circle ; and, since TP=TQ and 1\ P, N, Q are cyclic, 2W and
the ± " line ON will be the bisectors of the angles between PN and ^Y.

Hence OP : OQ=PN : NQ =PK : KQ,

so that we have the following theorem

:

A chord of a circle is divided harmonically by any iwint on it and the

polar of tJuit point.

3. If the polar of P passes through Q, the polar of Q uill j^fiss

through P.

Let Q be any point on the polar of P with respect to the circle whose
centre is C.

Then CP will out the polar of P at rt. z'iixN, and CN . CP=sq. on
radius.

Join CQ, and draw PM ± to CQ.

Then, since P3IQ, PNQ are rt. z % P, N, Q, M are cyclic.

.-. CQ . CM=CN . CP=sq. on radius.

Since PM is X"" to CQ and meets CQ in M so that CQ , CM=8q_. on
rad., PM must be the polar of Q.
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4. Salmon's Theorem. The perpendiculars from each of two (liven

points on the polar of the other with respect to a circle are in the ratio of
the distances of the points from the centre of the circle.

Let P, Q be the given points, and C the centre of the circle.

From P draw Pp, Pp' J.*" to QC and to the polar of Q respectively.

Also from Q draw Qq, Qq' ± to PC and to the polar of P respectively.

Then, since z PpQ=xi. l = I PqQ, P,p, q, Q are cyclic, and therefore

PC .Cq= QC ,Cp.

But PC . NC=8q. on radius =(3 (7 . MG

;

.'. PC {NC+ Cq)=zQC {MC +Cp), i. e. PC . Nq^QC .Mp\

... PC .Qq'r=QC .Pp',

or Pp' : Qq'=CP : CQ.

5. If ABCD is a cyclic quadrilatetal, the rectangles contained by the

perpendiculars draion from any point on the circle to AB and CD, AC and
BD, and AD and BC, are all equal.

Let the perpendiculars OP, OQ, OR, OS, OT, OUhe drawn from any
point on the circle ABCD to AB, BC, CD, DA, AC andBD respectively.

Join OA, OB, OC, OD. Join PQ and SR.

Since 0, P, B, Q are cyclic, and S, 0, R, D are cyclic,

I POQ = supplement of aPBQ
- lSDR= iSOR.
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Also I OQP= L OBP= I ODS= L ORS ;

.*. A POQ and SOR are similar, and

PO : Q0=SO : RO;

.'. PO .RO=QO .SO.

It can be proved in a similar manner that a» POU and TOR are

similar, so that

PO : UO= TO : RO,

and therefore PO . R0= UO . TO.

If C moves up to and ultimately coincides with B, and D moves up
to and ultimately coincides with A, so that BG and DA become the
tangents at B and A respectively and DC coincides with AB ; then we
have as a particular case [which can easily be proved independently] the
theorem

:

6. If from any point on a circle perpendiculars be drawn on any txoo

tangents and on their chord of contact, the rectangle contained by the

perpendiculars on the tangents is equal to tlie square on the perpendicular
on the chord of contact.

The theorem can be extended to the case of any inscribed polygon
with an even number of sides.

For let ^1, i?2» I's* PA^Pb* Pe ^® *^^ perpendiculars from any point of

a circle on the sides AB, BC, CD, DE, EF, FA respectively of the
inscribed hexagon ABCDEF, and let x be the perpendicular from O on
AD. Then, from the quad. ABCD, p^ • Ps=P2 • ^l ^^^t horn the quad.
DEFA, X . pr^=p^ . Pq ; /. Pi.p^. Ps=Po . p^ . p^.
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7. If ABCD is any quadnlateral described about a circle, the

rectangle contained by the 'perpendiculars from A and G on any other

tangent to the circle is in a constant ratio to the rectangle contained by the

perpendiculars from B and D on the same tangent.

Let P, Q, R, S be the points of contact of the sides AB, BC, CDy
DA, with the circle whose centre is X.

Let be any other point on the circle, and let Aa, Bb, Cc, Dd be the
perpendiculars from ^, B, C, D on the tangent at O, and let Oa, Ofi, Oy, 08
be the perpendiculars from on SP, PQ, QR, JiS respectivel3%

Then, by Salmon's Theorem,

Aa : XA = Oa : XO,

Cc : XC=Oy : XO',

.'. Aa.Cc : XA . XC^Oa . Oy : XO'^.

Similarly Bh . Dd : XB ,XD=0^.08 : XO^.

But, from (a), Oa . Oy=0^ . 05
;

.-. Aa.Cc : XA . XC=Bb . Dd : XB . XD

;

.: Aa. Cc : Bh . Dd:=XA . XC : XB . XD.

The theorem can be extended to the case of any circumscribed polygon
with an even number of »ides.
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X. CENTRES OF SIMILITUDE.

1. In Euclid VI. 8 the triangles ABC, DBA and I)AC are proved to

be similar. It will, however, be seen that when the perimeter of the
triangle BBA (figure, page 314) is described in the order of the letters D,
J5, At the rotation is in the same direction as that of the hands of a
watch, and that this is also the case for the triangle DAG; but in the

triangle ABC the rotation is in the opposite direction.

Defc Two similar polygons ABCD ... and A'B'G'D' ... are said to he

directly glmllar or reversely similar according as the directions of
rotation are the same or opposite when the two perimeters are described in

the order of the corresponding angular points A, B, C, D^ ... and A\ B',

C\ D', ... respectively.

Thus, for example, all the triangles in the figure to Euclid VI. 26 are

directly similar.

Def. The Centre of Similitude of two similar polygons ABC ...y

A'B'C ... is the point such that

OA : OA'=OB : OB'=OC : 0C'= ... =AB : A'B'.

The centre of similitude of two similar figures can always be found as

a point of intersection of two circles of Apollonius ; we shall, however,
only consider the following simple and important case.

2. When two similar triangles have their corresponding sides parallel^

the lines joining their coirespondijig angular points will meet in a point
which is the centre of similitude of the two triangles.

Let ABC, A'B'C be the two similar triangles having AB || to A'B\
BG II to B'C and CA 11 to C'A'.

Draw AA', BB' and let them be produced if necessary to meet in 0.
Then we have to prove that OC'G is a straight line.

Since A'B' is
1|
to AB, th& a" OA'B', OAB are similar;

""
,-. OB' ;OB= A'B' ; AB,
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And, since A* A'B'C, ABC are similar,

A'B' :AB= B'G' : BG

;

:. OB' : OB=B'C : BC.

Also z C'B'0= L CBO.

Hence a^ 0C'B\ OCB are similar and /. / B'OG'~ i BOG, so that
OG'G is a straight line.

The point O is the centre of similitude, for it is easily seen that

OA' : OA = OB' : OB=00' : OG= A'B' : AB.

It should be noticed that if the three sides of one triangle are parallel

respectively to the three sides of another, the triangles must be directly

similar.

Conversely. If any point O be joined to the three vertices of any
triangle ABG, and the lines OA, OB, OG be divided in the points A\ B\
G' so that OA' : OA = OB' : OB= OG' : OG, then will the triangles A'B'G',
ABG be similar and will be their centre of similitude.

Ex. Shew that, if two pairs of corresponding sides of two similar
polygons are parallel, all the pairs of corresponding sides will be parallel,

and the lines joining corresponding vertices will all meet in a point.

3. If a straight line be drawn from a fixed point O to any point P on
a given circle, and if OP be divided in Q so that OQ : OP is constant, the
locus of Q will be a circle.

_
For, let A be the centre of the circle on which P lies, and let OA be

joined and divided in B so that OB ; OA may be equal to the given ratio
OQ : OP. Join BQ,
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Then the triangles OBQ, OAP are similar (for the angle at is

common and OQ : OB=OP -. OA).

Hence BQ : OB =AP : OA, so that BQ is constant, and therefore Q
is on a fixed circle \Yhose centre is B.

Ex. Shew that, if one side of a triangle and the opposite angle be
given, the loci of the centroid, orthocentre and nine-point centre are
circles.

For, if BC be the given side, and the opposite angle BAC be also

given, the point A will lie on the arc of a circle through B and C. If ^*

be the middle point of BC, the centroid G is on A'A and is such that

A'G=^A'A ; hence, as the locus of ^ is a circle, the locus of G is a circle

of one-third the radius. Now S the circumcentre of ABC is fixed, and
we know that SGNO is a straight line and SN : SG and SO : SG are

constant ratios ; hence, as the locus of G is a circle, the loci of N and
are also circles.

4. Let A, B he the centres of two circles whose radii are a, b

respectively; and let C, D be the points on AB such that

DA '.BB-AC :CB= a:h.

Draw any line through D cutting the circle A in the points P, P'.

Join AP, AP' and draw BQ, BQ' \\
to AP, AF to meet DPP* in Q, Q'

respectively.

Then the a VBQ, DAP are equiangular and therefore similar

;

.-. BQ : AP=DB : DA = b : a.

Hence Q, and similarly Q', are on the circle B.

Hence also DQ : DP=DQ' : DP'= b : a.
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The proof is precisely the same when the line is drawn through G the
internal centre of similitude.

Def. The tivo points tvhich divide the line joining the centres of two
given circles inteimally and externally in the ratio of the radii are called

the centres of similitude of the circles.

It is easily seen that the centres of similitude of two circles are the
points where common tangents to the circles (if there are any common
tangents) cut the line joining their centres ; and that if two circles touch
one another the point of contact is a centre of similitude.

It should be noticed that the tangents at the corresponding points

Q, P, and also Q\ P', are parallel, since the radii to which they are

respectively perpendicular are parallel ; and that the tangents at the
non-corresponding points Q, P', and also Q', P, meet on the radical axis

of the given circles [for the tangents at P, P' make equal angles with
JDQQ'PP' and the tangent at Q, is parallel to that at P, so that the tangents
at Q and P" make equal angles with DQQ'PP'y and if T be the point of

intersection TQ- TP'].

It will also be easily proved that if another line be drawn to cut the
circles in q, q' and p, p' respectively ; then corresponding chords Qq and
Ppy and also Q'q' and P'p', will be parallel, and non-corresponding chords

Qq and P'p\ or Q'q' and Pp, will meet on the radical axis.

5. By means of the Theorem of Menelaus it is easy to prove the
following theorem:

The six centres of similitude of three given circles when taken in pairs
lie by threes onfour straight lines.

Def. A straight line on which three of the centres of similitude of
three given circles lie^ is called an axis of similitude.

6. The centres of similitude of the circum-circle and the nine-point
circle of any triangle are the centroid and the orthocentre.

I

For, if S be the circum-centre, N the nine-point centre, the ortho-
centre and G the centroid ; then we know [see page 280] that the four
points S, G, N, O are on a straight line in the order named. "We know
also that SO=2 NO, and SG=iS0=%SN=2GN. Hence the points G
and divide SN in the ratio of the radii of the circles, for the circum-
radius is twice the nine-point radius.
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7. Since rect. T)Q . BQ' is constant for all chords through Z>, and
DQ : DP= DQ' : DP'= b : a, it follows that

rect. DQ . DP'= rect. DQ' . DP= const.,

where Q, P" and Q', P are points on each circle the radii to which are
not parallel, and which are therefore called non-corresponding points.

Again, if BQ\ APhe produced to meet in T,

z TQ'P= L AP'P, since BQ' \\ AP'

= L TPQ'.

Hence TP= TQ\ and therefore a circle whose centre is 2' and radius

TP will touch the given circles at P, Q'.

So also a circle will touch the given circles at Q and P'.

Hence the following theorem :

If a line he draxon through a centre of similitude of two given circles so

as to ctit the circles in two pairs of points, two circles can he drawn to

touch the given circles in non-corresponding points.

Conversely. If a circle touch two given circles the line joining its

points of contact with the circles will pass through one or other of the

centres of similitude of the given circles.

It will be easily seen that when the given circles both touch the
variable circle externally, or both internally, the line joining the points
of contact will pass through the external centre of similitude ; and that
when one of the given circles touches the variable circle internally and
the other touches it externally, the line joining the points of contact will

pass through the internal centre of similitude.

Ex. 1. The radical axis of any two circles, each of which touches two
given circles both internally or both externally, passes through the
external centre of similitude of the given circles.

Ex. 2. The radical axis of any two circles, each of which touches two
given circles one internally and the other externally, passes through the
internal centre of similitude of the two given circles.
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Ex. 3. Any circle which touches two given circles is cut orthogonally
by one or other of two fixed circles.

8. The circle wlwse diameter is the line joining the centres of
similitude of tioo circles is sometimes called their circle of similitude.

'^^.T

Let G, D be the centres of similitude of the circles whose centres are
A, B and radii a, b respectively.

Let T be any point on the circle whose diameter is CD, and join TA^
TB. Draw TP, TP' touching the circle A and TQ, TQ' touching the
circle B. Join AP, BQ,

Then, since DA : DB=AG : GB=a : 6,

by the Theorem of Apollonius

TA : TB=:a : b=PA : QB.

Also the angles APT, BQT are right angles
;

.. A^ATP, BTQ are similar.

Thus Z PTA= Z QTB, and .'. Z PTP'= z QTQ' ;

also TP:TQ==PA:QB.

Thus the tangents drawn to two given circles, from any point on the

circle whose diameter is the line joining their centres of similitude, are in
the ratio of the radii of the given circles.

Since the tangents drawn from T to the given circles are in a fixed

ratio, it follows from vni. (3) that

The circle of similitude is co-axal with the given circles.
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XI. TO DRAW A CIRCLE TO TOUCH THREE GIVEN
CIRCLES.

Let A^ B, C be the centres of the given circles. Then, if be the

centre of a circle which touches all the given cu'cles externally, it is

easily seen that a circle whose centre is and radius OG will touch the

two circles whose centres are A, B respectively, and whose radii are the

differences of the radii of the circles A and C, and B and C respectively.

Thus the problem is reduced to that of drawing a circle through the

point C BO as to touch two given circles.

Now, if the required circle touches the two circles in P, Q respectively,

the line PQ will pass through D the external centre of similitude ; more-
over the rectangle DQ . DP is known [p. 367]. If then, the point X be
taken on the line DC such that DX . DC is equal to the known rectangle
DQ . DP, the point X will be on the required circle. Thus the problem
is further reduced to that of drawing a circle through two known points
C, A' so as to touch a fixed circle, and this problem has already been
solved [page 235].

There will in general be eiglit different circles which touch the three
given circles, for each of the given circles may touch internally or
externally. The above construction will have to be slightly modified to

apply to the other cases.

Ex. 1. Draw a circle to pass through a given point and touch a given
circle and a given straight line.

[The centres of simihtude of a circle and a straight line (that is of a
circle of infinite radius) are the two extremities of the diameter of the
circle which is perpendicular to the straight line.]

Ex.2.
line.

Draw a circle to touch two given circles and a given straight

S. B. E. 24
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XII. INVERSION.

Def. If P, Q be two points on the radius OA of a circle whose centre
is O, such that OP . OQ = 0A\ the points P, Q are said to be inverse
points with respect to the circle whose centre is and radius OA.

The point O is called the pole of inversion and OA is called the
radius of inversion.

If the point P trace out a curve, the curve which is the locus of Q is

called the inverse of the locus of P with respect to the pole 0.

1. The inverse of a straight line, with respect to any pole without it,

is a circle loJiich passes through the pole of inversion.

Let be the pole of inversion, and from draw OP X « to the given

st. line.

Let Q be the inverse of P with respect to the circle whose radius is

OA , and let S be the inverse of any other point B on the given straight

line.

/ R

• «i
i

A P
--...-'-' y

Then, by definition, OQ .OP=OA^=OS . OR.

Hence Q^ P, R, S are cyclic;

.-. Z OSQ = Z OPR = rt. Z

.

Hence S is on the circle whose diameter is OQ.

Thus the inverse of the straight line PR is a circle through the pole

of inversion.

Conversely, the inverse of the circle OSQ with reference to a pole O
on its circumference is a straight line perpendicular to the diameter-

through O.

It should be noticed that a straight line through the pole inverts into

itself.
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2. The inverse of a circle is another circle, and the pole of inversion

is a centre of similitvde of a circle and its inverse.

Let P be any point on a circle whose centre is A, and let O be the

pole of inversion.

Let Q be the inverse of J^, so that OQ.OB = Tc^, where k is the radius

of the circle of inversion.

[The circle of inversion is rarely drawn.]

Now, if OP cnt the given circle again in F, since OP,OQ=:J(^ and
OP. OP' is also constant, it follows that OQ : OP' is const.

Hence, if QB be drawn || to P'A to out OA in P,

OB:OA =BQ: AP'= OQ : OP'= const.

Hence P is a fixed point and BQ is of constant length.

Thus as P moves round the circle, the inverse point Q describes
another circle ; moreover the origin O is the external centre of similitude

of the given circle and its inverse, since OB : OA = BQ,: AP'.

If OC be the tangent from to the given circle, then

QB:AP=OQ: OP'

^OQ, OP '.OP*. OP

= k^:OC^.

Cop. If the circle of inversion cuts the given circle orthogonally (in

which case the tangent from O to the given circle is equal to the radius
of the circle of inversion) the given circle inverts into itself.

24—2
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3. Two inverse curves cut the radius vector through corresponding
points at equal angles.

Let p, q, r he the inverse points of P, Q, R with respect to the
point 0.

Then since Op.OP=Oq. OQ, the points p, P, Q, q are cycHc.

Hence z OPQ = L Oqp.

Now, if Q move up to P and ultimately coincides with it, the line QP
will ultimately be the tangent to the curve on which P and Q lie. So
also qp in its ultimate position will be the tangent at p to the inverse of

the curve PQ.

But, when iPOQ is made smaller and smaller and ultimately

vanishes, l qpP= L Oqp ;
.'. ultimately the tangent at P to the curve

PQ and the tangent at p to the inverse curve pq make the same angles

with OpP.

If two curves meet at the point P, and PQ, PR are the tangents at P
and pq, pr the tangents at the corresponding point of their inverses, it

follows from the above that the angles between the two tangents at P are

equal to the angles between the tangents to the inverse curves at p.

Hence two curves cut one another at a common point at the same angle

as their inverses cut one another at the inverse point.

Two special cases are important, namely

:

If two curves touch one another their inverses with respect to any
point will touch one another.

Also, if two curves cut one another at right angles their inverses with
respect to any point will cut one another at right angles.
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4. Coaxal circles invert into coaxal circles.

[When the coaxal system has two real common points, it is at once
ohvious that their inverses have two real common points, and are there-

fore coaxal. The following proof applies to both types of coaxal circles.]

We know that coaxal circles are cut orthogonally by an infinite

number of circles.

Hence, if we invert with respect to any point, the inverse-eirclea will

[by 3] be cut orthogonally by an infinite number of circles.

But we know that when three, or more, circles are cut orthogonally
by more than one circle they must be coaxal.

5. Coaxal circles with real limiting points invert into concentric

circles if one of the limiting points be the pole of inversion.

For we know that any circle through the limiting points L, L' of a
coaxal system will cut all the circles of the system orthogonally.

Hence, if we invert with respect to L, any straight line through the
inverse of L' will cut all the inverse circles orthogonally, whence it

follows that the inverse circles are concentric, the inverse of !»' being the
common centre.

Conversely, a system of concentric circles invert into coaxal circles of
which the pole of inversion is a limiting point.

Ex. 1. Shew that three circles can be inverted into themselves if the
radical centre be taken as the pole of inversion.

Ex. 2. Shew how to invert two given circles into equal circles.

[If r-i , r^ be the radii of the given circles, k the constant of inversion,

and T] , Tg the lengths of the tangents from the pole to the two circles

;

then Pj : ri=P : r^^ and pj '• ^2= ^^^ • '''•2^' Hence, in order that pi may be
equal to p»,

Hence the pole must be anywhere on a certain coaxal circle.]

Ex. 3. Shew how to invert three given non-coaxal circles into equal
circles.
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Ex. 4. If OA, 00 be two equal rods, and AB, BO, CD, DA four
other equal rods, the six rods being hinged together at the points O, A^
By C, jD ; then, if O be kept fixed, B and D will describe inverse curves.

For, since 00=0A, DG=DA and BC=BA, the points 0, D, B are
on the straight line which bisects AC perpendicularly. Also CA bisects

BD.

Hence OD.OB= OE^ - DE^
= OC2-DC2= const.

Hence if any curve is described by B, the inverse curve 'will be de-

scribed by D ; and, in particular, if one of the points describes part of a
circle through O the other will describe part of a straight line.

The above arrangement of jointed rods is called a Feaucellier Cell.

Ex. 5. Prove that, if A, B, C be any three points, and A', B\ C
their inverses with respect to the point 0, then will

BO _ OA _ AB
B'C . OA' ~ 0^' . OB' ~ A'B' .

00''

Deduce Ptolemy's Theorem and its converse. [See page 342.]

For, since OA' . OA= OB'. OB= 00'. 00=k^ the points A', A, B, B'
are cyclic and the a^ OAB, OB'A' are similar. Hence

A'B' : AB= OB' : OA = OA' . OB' : OA . OA',

Hence A'B' .00' :AB=OA'. OB' . 00' : k\

A'B' . 00' B'C . OA' CA' . OB'
"Whence AB BG CA

Now, if ^, J5, C are on a straight line, the points 0, A'^ B', C are

cyclic; and since one of the three segments BO, CA, AB is equal to the
sum of the other two, it follows that one of the three rectangles B'C .OA',

CA' . OB', A'B' . OC is equal to the sum of the other two.

If, however, the points A, B, C are not on a straight line, it is obvious
that the sum of any two of the three lines BO, CA, AB is greater than
the third. Hence, if 0, A', B', C be four points not on a circle, the

sum of any two of the rectangles B'C . OA', CA' . OB', A'B' . OC is

greater than the third rectangle.
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XIII. MAXIMA AND MINIMA.

1. The following theorems have already been proved.

(i) If the base and the sum of the two other sides of a triangle are

given, the area is greatest when the triangle is isosceles. [page 98.

(ii) If the base and the area of a triangle are given^ tlie sum of the

two other sides is least when the triangle is isosceles. - [page 97.

(iii) If the sum of two straight lines is given, the rectangle contained

by them is greatest when they are equal. [II. 5, Cor.

(iv) If the area of a rectangle is given, tlie perimeter is least wlien the

rectangle is a square. [II. 14, Cor.

(v) If two sides of a triangle are given in lengthy the area is greatest

wlien the given sides are at right angles.

[For the altitude of the triangle. P7>.

4

is less than PB unless PBA is a right

angle.]

Now let ABhQQ, fixed chord of a circle and let C, D be the two points

at which the tangents are parallel to AB.

Then, if a point P travel round the circle, the area of the triangle

APB will change continuously, and it will be easily seen that on one
side of AB the triangle APB will be greatest when P is at C, and on
the other side of AB the triangle will be greatest when P is at D.

Def. When a geometrical line, angle, or area is dravm so as to satisfy

certain conditions under ichich it can change continuously in magnitude,
it is said to have a wia-gtmrni^ value when it has increased up to a
certain limit after which it diminishes ; and it is said to have amiaixnvan.
value wlieli it has diminished to a certain limit after which it increases.
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Thus the area of the triangle APB, of which the base AB is fixed and
P is any point on a circle through A and B, has the two maxima values
ACB and ADB, the tangents at G and D being parallel to AB ; and there
are also two minima values when P is on the circle but indefinitely near
to A or to Bf in which cases the triangle APB has zero area.

In the above example it will be seen that for many positions of P on
the circle the triangle APB will be greater than the triangle ADB (the

arc ^D5 being supposed to be smaller than the arc ACB), so that a
maximum value of a magnitude is by no means necessarily the greatest

value; if, however, there is only one maximum value, this must be
greater than any other value of the magnitude in question.

There are two important points to notice :

(1) that maxima and minima values occur alternately,

(2) that a magnitude is either a maximum or a minimum at a
position of symmetry.

Ex. 1. Through a fixed point 0, within a circle whose centre is C,
a chord POQ is drawn. Find when the triangle PCQ is a maximum
or a minimum.

Since the two sides CP, CQ of the triangle PCQ are given, the area
will be the greatest when the angle PCQ is a right angle. Hence, if is

at such a distance from the centre that one chord, and therefore two
chords, can be drawn through it which will subtend a right angle at the
centre, this chord will give the greatest triangle.

Hence as the chord is turned about 0, the area of the triangle is a
minimum when the chord is the diameter through 0, it is a maximiim
when the chord subtends a right angle at the centre of the circle, a
minimum when it is in the position of symmetry perpendicular to the
diameter, a maximum again when it again subtends a right angle at the
centre, and a minimum when it again lies along the diameter.

If, however, the point is so near to the centre that the shortest chord
through it subtends at the centre an angle equal or greater than a right

angle [it will be easily seen that in this case 2CO- :f rad^], the triangle

will be a minimum when the chord lies along the diameter and a maximum
when the chord is perpendicular to the diameter.

Ex. 2. A,B are two fixed points on the same diameter of a circle,

and PQ is any chord through A ; find when the triangle PBQ is a
maximum or a minimum.

Ex. 3. POQ is any chord of a circle through a fixed point O ; find

the position of the chord when the sum of the squares of PO and QO is

minimum.

Ex. 4. P is any point on the arc AGB of a circle. Shew that the
sum of the chords AP and BP is greatest when they are equal.
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Ex. 5. Find the points on a given straight line at which another

given finite line subtends a maximum angle. Where are the points at

which the second given line subtends a minimum angle?

2. If all the sides of a polygon except one he of given lengths, the area

of the polygon will he greatest xchen its vertices all lie on a circle whose

diameter is the variable side of the polygon*.

Let AB, BC, CD be each of given length. Then the area of ABGD
will be a maximum when B and G are on the circle whose diameter

is AD.

_0
B

D X
Join BD. Then, if ABD is not a right angle, turn the area BCD
about B until BD is perpendicular to AB. Then the area BCD will

be unchanged but the area ABD will be increased.

Hence when the area ABCD is greatest, the angle ABD must be a
right angle. Similarly the angle ACD must be a right angle, and
therefore B and C must be on a circle whose diameter is AD.

[The figure has been drawn for the case of a quadrilateral, but the
proof will apply to all cases.]

3. If a figure he hounded hy a curved line of given length and a
straight line of indefinite lengthy the included area will he a maximum
when the figure is a semi-circle.

Let AXCYB be a curved line of given length, and let G be any point
on it such that ACB is not a right angle.

Then, keeping the figures AXG, CYB unchanged, turn CYB about G
until ACB becomes a right angle, and join AB. Then the figure so

formed will be greater than before, for the areas AXG, CYB are un-
changed, but the triangle ACB is increased.

Hence the enclosed area can always be increased unless the bounding
straight line subtends a right angle at every point on tlie curve, that is

unless the curve is the arc of the semi-circle whose diameter is AB.

* The interesting methods of sections 2—6 appear to have been first

given by Thomas Simpson in 1747.
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Cor. A circle encloses a maximum area for a given perimeter.

Let the perimeter of the curve ABGD be given, and let the points

^, C be such that arc ABC=axG CDA.

Join AC.

Then, if the whole is greatest, the areas ABCA and ABCA must be
equal ; for, if they were unequal the smaller could clearly be made equal

in all respects to the greater, and the whole area would thereby be
increased.

• Thus the area ABCA bounded by the curved line ABC of given length
and the indefinite straight line AC must be a maximum, and must
therefore be a semi-circle.

4. If any number of straight lines he given, each of lohich is less than
the sum of all the others, there is a certain circle in which the given lines

can be the sides of an inscribed polygon.

Take any circle and place in it in succession chords equal respectively

to the given straight lines, and let the sum of the angles subtended at

the centre of the circle by these chords be less than four right angles

;

then, if the radius of the circle be continually diminished, each chord
will subtend a greater and greater angle at the centre, and therefore, by
sufficiently diminishing the radius of the circle, the sum of all the angles

at the centre can be made greater than four right angles. It is therefore

clear that there must be one circle, and only one, the radius of which is

such that the sum of the angles subtended by chords equal respectively

to the given straight lines is equal to four right angles, and this circle is

the circle required.

The actual construction of the circle in which a polygon can be

inscribed whose sides are equal respectively to given straight lines cannot

in general be effected by ruler and compasses. The construction can,

however, be made in the case of a quadrilateral.
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5. To find the circle in which a quadrilateral can be inscribed whose

sides are equal respectively to four given straight lines each of which is

less than the sum of the other three.

Let AB, X, Y, Z be the four given straight lines, and suppose the

construction effected, so that BC=X, GD=Y and DA = Z, A, B, G, D
being cyclic.

Then, if BA be produced, Z DAE=z l DGB.

If therefore z BEA be made equal to Z GBD, then a' DAE, DGB will

be similar, so that

EA : AD=BG : GD,

i.e. EA : Z=X : Y, which gives the length of AE.

Also ED:DA=DB:DG;

.-. ED : DB=DA : DG=Z -.Y.

Hence D is on the circle of Apollonius given by ED : DB =^Z : Y,

E and B being fixed points.

But D is also at a fixed distance Z from A.

Thus D is found, and knowing D the rest of the construction is

obvious.

Ex. Construct a quadrilateral having given the lengths of the four
sides and the sum of a pair of opposite angles.

The above construction will apply to this case; if instead of pro-
ducing BA, we make the iBAE equal to the known sum of the angles
A and G. ,
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6. The. area of a quadrilateral lohose sides are of given lengths is

greatest when the quadrilateral is cyclic.

Construct the circle in which the quadrilateral ABCD can be inscribed

whose sides are equal respectively to the four given straight lines.

Now, let A'B'C'B' be any other quadrilateral formed by lines of

the given lengths. Then on A'B\ B'C\ G'D\ B'A' describe segments
similar and therefore equal in all respects to the segments APB, BQGj
CRD and BSA respectively.

Then the perimeter A'P'B'Q'C'R'D'S' is equal to the perimeter
APBQGRDS.

Hence the area A'P'B'Q'G'R'D'S' is [by 3] less than the circle

APBQGRDSA.

But the sum of the segments A'P'B', &c. is equal to the sum of the
segments APB, etc.

Hence the area of the quadrilateral A'B'G'D' is less than the area of

the quadrilateral ABGD.

7. The theorem that the area of a cyclic quadrilateral is greater than
that of any other quadrilateral with the same sides, is of very great

importance. The following is an independent proof.

Let ABGD be a cyclic quadrilateral, and let AB'G'B be any other
quadrilateral with equal sides, the side AD being common to the two.

Let the lines bisecting the angles BAB', GDG' meet in 0. Join OB,

Then, AB= AB' and AO bisects the Z BAB' ; whence it follows that

BO =B'0 and AO bisects z BOB'.

So also GO= G'0 and DO bisects z GOG\

Then, since B0= B'0, GO= G'0 and BG=B'G\

aBOG= A B'OG' &nd lBOG= iB'OG'.
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Now the sum of quad. ABCD, aOBC and fig. ABOB'= the sum of

quad. AB'G'D, a OB'C and fig. DCOC.

But A OBC= A OB'C.

Hence quad. ABCD is greater than quad. AB'G'D,

If figure DCOC is greater than fig. ABOB'.

Take /3, 7 on ^O, DO respectively so

that 0^ = 0B and Oy=OC.

Since

/ .50(7= Z .B'OC", Z .805'= / COG' ;

and 0^, OD are the bisectors of BOB'
and GOG' respectively;

.-. lAOB= ZDOO and lpOy= /.BOG.

Hence a /3O7 is equal in all respects

to Ai^OO;

.-. 1^0= lBGO

<cBGX<BAD, since ABGD ia

a circle,

Make then z 07^= i^AD; then Z
will fall between ^ axid A.

And A, Z, y, D will be cyclic

;

.-. Oy.OD=OZ.OA>Op. OA,

i.e. OG .OD>OB .OA.

Hence, as the angles BOA and GOD are equal, a G0D> a BOA.

But 2 A C70D=fig. DCOC' and 2 a£0^ = fig. ABOB'
;

.-. fig. D000'> fig. ^BOB',

and .-. quad. .4BC'D>quad. ^'5'C'D'.

[The student should draw a figure in which the bisectors of the angles
BAB', CDG' meet on the other side of AB, in which case a very slight

modification of the proof is required.]
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Or tlius: It is easily proved that, if ABGB be a quadrilateral, and
TJV be the projection of BB on ^C ; then

AB^ + GD'^-BC^-BA^=2AG . UV.

Hence AB^+CD'^-BC^-DA^ :2AG .BD=UV : BD.

But, by the converse of Ptolemy's Theorem, if the sides of a quad,
be given, the rectangle contained by the diagonals is greatest when the
quad, is cyclic.

Hence the above equal ratios are least when the quad, is cyclic.

But UV : BD is least when the angle between AG and BD is

greatest.

Hence the rectangle contained by the diagonals and also the angle
between them are both greatest when a quadrilateral of given sides is

cyclic.

From this it easily follows that the area of a quadrilateral whose
sides are of given length is a maximum when the quad, is cyclic.

8. The area of a polygon with a given number of sides and a given
perimeter is greatest when the polygon is regular.

For, if any two of the sides, AB and BG suppose, are unequal ; then
the triangle ABG will be increased by taking instead of AB and BG two
other sides each equal to half the sum of AB and BG, all the other sides

of the polygon remaining unchanged.

Hence, when the area of the polygon is a maximum, every pair of
consecutive sides, and therefore all the sides, must be equal.

Again, if the sides AB, BO, GD,... of the polygon ABGD...XYZ be all

equal, the area of ABGD, and therefore the whole area, can be increased
unless A, B, G, D are cyclic ; and when AB, BG, GD are equal chords of
a circle it is easily seen that Z ABG— z BGD.

Thus when the area of the polygon is a maximum, any two consecutive
angles and therefore all the angles must be equal.

Cor. The area of a regular polygon of given perimeter increases as
the number of the sides increases.

For let ABGD... he a regular polygon of

n sides. Take any point F on GD, and
make the isosceles triangle FXE so that
FX-\-XE=FD^DE; then AFXE is greater

than aFDE, and therefore the polygon
ABGFXE... of n+ 1 sides is greater than
ABGD.... But the polygon ABGFXE... is

less than the regular polygon of n + 1 sides

and the same perimeter.

Hence the regular polygon of n sides is

less than the regular polygon of w+ l sides

with the same perimeter.
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9. The area and the perimeter of a polygon of a given number of sides

which circumscribes a given circle, are least when the polygon is regular.

Let AX, ^ rbe two tangents to a circle whose centre is O. Let D be
the point such that, if the tangent at D cuts AX,AY in B,G respectively,

BD=DG&ndL :.OB=OC.

Let the tangent at any other point Q cut AX, AYiaP, R respectively.

Join OB, OC, OP, OR and let OP cut BG in K.

Then, since the tangents from any point to a circle are equal and
subtend equal angles at the centre, it follows that

I BOG= ^ L A'OF= L POR.

Hence i BOP= I COR.

But OB= OG and z OBK= lOGB^ L OGR j

:. t^BOK= t.GOR.

Hence £^BOP> t. GOR ;

/. a7^0P+ Ai?OX+ t^ROY> t^GOR-if aB0X+ aR0Y\

i.e. aPOX+aROY>aGOY+aBOX.
But 2aPOX+2aROY= figure OXPR Y,

since PX=PQ and RQ=RY.

Also 2aC0Y+2aB0X= figure OXBGY.

Hence figure OXPRY> Qgure OXBGY.

Again, it is easily seen that

figure 0XPi2r=rect. PR.OY,

and figure OXBGY= rect. BG.OY;
.-. PR>BG.

Thus the area enclosed by two fixed tangents to a circle and a variable
tangent is least, and the length of the intercepted portion of the variable

tangent is also least when the variable tangent is bisected at its point of
contact.
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From this the general theorem readily follows. For, if ABCD... be a
polygon circumscribing a circle, the sides AB, BG, CD,... touching the
circle at P, Q, R,....

Then, when the area of the polygon is least each side must be bisected

at its point of contact.

Hence AP=PB, BQ= QC, CR=RD,...

But BP=BQ, CQ=GR,...

Hence AB=BG=GI>-....

Also, since the tangents from A^ B, G,... to the circle are all equal,
the angles at A, jB, (7,... must be all equal.

The polygon ABGD... must therefore be regular.

Again, if any tangent be drawn to the circle between P and Q so as to

cut AB, BG respectively in X and Y, it is clear that the area and also

the perimeter of the circumscribing polygon AXYGD... will be less than
the area and perimeter of the polygon ABGD....

But the area (or perimeter) of the regular polygon which circumscribes
the circle and has the same number of sides as the polygon AXYBGD...
is less than the area (or perimeter) of AXYBGD....

Hence the area {or perimeter) of a regular polygon which circumscribes

a given circle decreases as the number of its sides increases.

Ex. Through a fixed point a line is drawn cutting the fixed

straight lines XAX'y YAY' in the points P, Q respectively. Shew that
the area PAQ is a minimum when PQ is bisected in O, and find when
the length of PQ is a minimum.
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10. Fermat's Problem. Tojind the point within a triangle the sum
of whose distances from the angular points of the triangle is a minimum.

Let ABC be the triangle. On the side of BG opposite to A describe

the equilateral triangle BDG.

Let AD meet the ciroum*circle of BCD in the point O. Then O is

the required point.

Join OB, OC.

Take any other point P within the triangle ABCy and join PA^ FBi
PC, PD.

Then, by Ptolemy's Theorem

DO .BC=OB .DC+OC .BD\

:. DO=OB + OC, since BC= CD= liD.

Hence OA + 0B + OC=AD.

And, by the converse of Ptolemy's Theorem

BP . DC + CP . DB is not less than DP . BC
;

and BG^CD=:DB;
.-. BP + CP is not less than DP.

Hence AP+BP+CP is not less than DP and AP;

:. AP+BP+CP>AD
>OA + OB + OC.

[The above elegant solution of Fermat's problem is due to E. Chartres,
Nature, Feb. 2, 1888.]

It is easily seen that each of the sides of ABC subtends at O an
angle equal to one-third of four right angles.

[It should be noticed that the above reasoning fails if any one of the
angles of the given triangle is greater than four-thirds of a right angle.]

S. R E. 25
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XIV. THE CIROUM-CIRCLE, THE IN-CIRCLE AND
THE NINE-POINT CIRCLE.

1. If S, I he the centres and B, r the radii of the circum-circle and
the ill-circle respectively of a triangle, then will SI^=B^—2Rr.

Let ABC be the triangle, and let AI cut the circum-circle again in P.

Q

Then

Now

and

SP=B^-AI.IP.

IPIB= IIAB+ lIBA = iA+iB,

lPBI=^PBG+ lCBI= iA + iB;

.-. PI=PB.

[Euclid III. 35.

Let PSQ be the diameter through P, then the rt.-augled A* PBQ,
IFA are equiangular, for lBQP= iFAI.

Hence

Hence

IF : AI=:BP : PQ = IP : PQ :

.-. PQ.IF=AI.IP.

SI^=B^-2Br.

Cor. The diameter of the inscribed circle cannot he greater than the
radius of the circum-circle.

[For, since SI^ = B^-2Br, B^ cannot be less than 2Br, i.e. B cannot
be less than 2r. When B= 2r, SI is zero, so that the two centres
coincide, and the triangle must in this case be equilateral.]
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2. If in the triangle ABC, the "bisector of the angle BAG cut BG in T,

and ifAK is the perpendicular from A to BGy A' the middle point of BG
and D the point of contact of the in-circle ; then will A'D'^= A'T . A'K.

Since P is the middle point of the arc BPG, PA' is perp. to BG.

We know that PB=PL
But PB touches the G ATB, since

APBT= lPAG= I TAB;

.: PT .PA=PB''=PI\
:. PT '. PI=PI '. PA.

Hence, as PA'j ID, AK are parallel,

A'T :A'D=A'D:A'K;
.'. A'D^=A'T.A'K.

3. If one triangle can he inscribed in one given circle and circum-

scribed to anotlier, an infinite number of triangles can be so drawn.

For, if one triangle can be inscribed in the circle whose centre is -S" and
radius jR, and circumscribed about the circle whose centre is I and
radius r; then we know that

SP=R^-2Er.

Hence, if A be any point on the circle S, and AI cut the circle again
inP,

AI.IP=R^-SI^=2Rr.

Now let the tangents from A to the circle I cut the circle S in P, (7.

Then, if I' be the centre of the circle inscribed in the triangle ABG,
I' must be on the line AIP which bisects the angle BAG; and if r' be
the radius of the circle inscribed in ^PC,

Ar.rP=21ir'.

25—2
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Hence .41' : r'= 2E : I'P,

and AI:r=2R:IP.

But, from similar triangles

Ar :r'=AI :r;

.'. IP=I'P, so that I and r must coincide.

Thus, if from any point A on the circle S tangents be drawn to the
circle I which cut S again in the points B, G ; then the line BG will also

touch the circle I. [See also page 400.

Ex. Shew that, if a triangle be inscribed in one given circle and two
of its sides touch another given circle, the locus of the in-centre of the

triangle is a circle.

For, let ABC be inscribed in the circle whose centre is S and radius R,
and let the sides AB, AG touch the circle whose centre is I and radius r,

and let I' be the in-centre of ABG and r' its radius.

Let All' cut the circle S in P.

Then, since I is a fixed point

-4J. IP= const,

and Ar.rP=2R.r\
Also AI : AI'=r : r',

whence IP : I'P is const., and .-. IP : II' is const.

Hence the locus of I' is similar to the locus of P, and is therefore a

circle.

l>efi A Forism is a 'problem such that no solution is possible unless

a certain relation between the geometrical magnitudes concerned holds

good, and lohen the problem admits of one solution there are an infinite

niunber of solutions.

The Porism that, if a single triangle can be inscribed in one given
circle and circumscribed to another then an infinite number of such
triangles can be so drawn, is due to W. Chappie [Lady's Diary, 1746].

Euler's investigation was given in 1765.

4. The following properties of a triangle are often useful.

It will be easily seen that if S be the circumcentre and the

orthocentre of the triangle ABG, then lSAB= L OAG.
[See figure, page 279.

[For Z G'SA=i L ASB= lAGB, and rt. Z SG'A =rt. z ADC.'\

Hence iSAO- I BAO - Z SABz= iBAO- Z GAB
= (90°-P)-(90°-C)= C-P.

Also, if I be the in-centre, AI will bisect z BAG, and .*. also Z SAO.

Hence l8AI= lIAO = l{G-B).
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Again, since A'X is parallel to SA,

IA'XD= lSAD= C-B,

so that the chord of the nine-point circle cut offfrom BC subtends an angle

C-B at any point on that circle.

5. Feuerbacli's Theorem. The nine-point circle of a triangle

touches the inscribed and the three escribed circles of the triangle.

In the triangle ABC let A', B\ C be the middle points of the sides

and D, £, F the feet of the perpendiculars ; also let K, I,, IT be the

points of contact of the in-circle and a, jS, 7 the middle points of lA,

IB, IG.

Let P be the middle point of the arc A'D of the nine-point circle, and
let PK cut the nine-point circle of ABC in 0.

[To avoid great complication certain lines are not drawn in the figure.

Their absence will not, however, lead to any difficulty in following the

reasoning.]

Then

Also

Hence

and

Hence

lA'OP=\A'0-D= \{C-B).

A'yK=yKC - yA'K= ^C-^B.

.'. is on the circle A'yK,

is on the nine-point circle of the aBFG.

lA'Op=lA'yp= ^B,

lA'OC'= lA'B'C'=B\

.'. l^OG'= \B=^aG'\

.'. O is on the circle paC',

is on the nine-point circle of aAIIL

1 MOp= L Map= L aMA = I IAM= L ILM,
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And, since O ia on the O^yK,

I pOK= L PyK= L yKG= I IGK= I ILK.

Hence / MOK=z z MLK ;

.•. O is on tJie inscribed circle KLM.

And, since the tangents at P and K to the nine-point circle and the
in-circle are parallel, and tangents to a circle make equal angles with
their common chord, it follows that the tangents at their common point

are coincident, so that the two circles touch at 0.

From the above proof it appears that the nine-point circles of the

triangles BIC, CIA, AIB pass through the point of contact of the in-circle

and the nine-point circle of the triangle ABC.

[The above proof is substantially the same as that given in the

Geometric Elementaire of Rouch^ and Comberousse.

The following theorem can be proved in a similar manner.

If A-^, ^2> -^3» ^4 ^^ ^'^y f^'^'"'
points on a plane and Pj, Qj, JJj he

the feet of the perpendiculars from A^ on tlie sides of the triangle

A^A^A^, and similarly for A^, A^ and A^; then will the four nine-

point circles of A^^ A^ A^ d'c. and the four circum-circles of Pj Q^ Ri d;c,

all meet in a point.
'\

6. It can be proved in a similar manner that the nine-point circle of

a triangle touches each of the escribed circles. Moreover, since the nine-

point circle of the triangle ABG is also the nine-point circle of each of

the triangles BCQ, GAO, ABO, where O is the orthocentre of ABG, it

follows that

If be the orthocentre of the triangle ABG, the nine-point circle of
the triangle ABG touches the sixteen circles which touch the sides of the

four triangles ABG, BGO, GAO, ABO.
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7. The following interesting extension of Feuerbach's Theorem was
given by T. T. Wilkinson in the Lady's and Oentleman's Diary for 1857.

It can be proved without difficulty that the six radical axes of the

inscribed and escribed circles of any triangle ABC intersect perpen-

dicularly in pairs at the middle points of the sides of ABC.

From this it follows that, if K^, K^, /iTg, K^ be the radical centres of

the four circles taken in threes, the middle points of the sides of ABC
are the feet of the perpendiculars of the triangles Ki ivgiTg, &c. ; and
therefore the nine-point circle of ABC is also the nine-point circle of each

of the triangles K^ K^ K^ , &c.

Hence, by Feuerbach's Theorem, the nine-point circle of ABC touches
the sixteen circles which touch the sides of the triangles K^ K^ ^^a ^'^'

We can now take the radical centres of the inscribed and escribed
circles of K^K^K^, and prove in the same manner that the nine-point

circle of ABC touches sixteen other circles, and so on indefinitely.

8. Def. If each of the sides of a triangle is the polar with respect to

a circle of the opposite angular pointy the triangle is said to be self-polar
with respect to the circle^ and the circle is called the polar circle of the

triangle.

Since the line joining the centre of a circle to any point is per-
pendicular to the polar of the point with respect to the circle, it follows
that the centre of the polar circle of a given triangle is the orthocentre
of the triangle ; and, since a point and its polar with respect to a circle

are on the same side of the centre of the circle, it follows that an acute-

angled triangle cannot be self-polar with respect to any circle.

In the case of a right-angled triangle the polar circle reduces to a
point-circle at the right angle, and in this case it is easily seen that the
circum-circle and the nine-point circle touch at the right angle. This is

a particular case of the following theorem

:

9. The circum-circley the nine-point circle, and the polar-circle of a
triangle haiie a common radical axis.

Let S, N, O be the centres of the circum-circle, the nine-point circle

and the polar-circle respectively of the triangle ABC.

Then, since is the orthocentre, we know that ON=^NS [p. 279],
and that OD = DL [p. 277] where OADL is perpendicular to BC.

Now let P be a point common to the circum-circle and the polar-
circle.

Then, since A is the pole of BG with respect to the polar-circle,

0D.0^= square of radius of polar-circle=0P^.

.-. 20P'=20D.0A = 0L.0A= 0S^- SF".
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Z

And, since SN—t^O,

ANP^+ 4Sf^2^ 25'P2+ 2P02

;

/. 42^P2+ ^02=25P2+ 0>S2-5'P2;

/. 4NP^=SF^, and .-. NP^l^SP,

Thus 2^P is equal to the radius of the nine-point circle, and therefore

either point of intersection of the circum-circle and the polar-circle is

also on the nine-point circle, which proves the theorem.

Or thus: Let the tangents &i A, B, G to the circum-circle cut the
opposite sides of the a in L, M, N respectively, and let U, V, W be the

middle points of AL, BM, ON respectively.

Let AL cut the polar circle in the points P, P\ Then, since A is the

pole of BC with respect to the polar circle, the range APLF is harmonic.

Hence » UA^=UP . UP\

But, if B', C are the middle points of CA, AB respectively (and
.-. points on the nine-point circle) B'C'U is a straight line; and

VA=\LA, VB'= \LG, VG'= \LB.

But LA^=LB.LG;
.'. UA^=UB' , UC\

Hence the tangents from U to the three circles are all equal ; and
similarly the tangents from V and from W to the three circles are all

equal. *

Hence UVW is the radical axis of the three circles.

The circle whose diameter is GO is the circle of similitude of the

circum-circle and the nine-point circle, and is therefore co-axal with
them [p. 368].
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XV. PROPERTIES OF A QUADRILATERAL.

The figure formed by four straight lines indefinitely produced is called

a foTir-line or a complete qoadrilateraL

The four lines have six intersections, namely the points A^B, C, D,
E, F in the figure.

There are three diagonals (that is lines which join the intersection of

two of the given lines to the intersection of the other two), namely the

\\ne& AC,BD,EF.
The triangle PQR whose sides lie along the diagonals is called the

diagonal triangle of the quadrilateral.

1. Each of the three diagonals of a quadrilateral is divided harmoni-

cally by the other two diagonals.

Consider the triangle AEF; then, since AQ, FB^ ED meet in a point,

i-|!-^=l- [leva's Theorem.

And, since BBR is a straight line,

FR EB AD
, ^^, ,

ER'AB'FD^^'
[^I^"^l*°«-

Hence FQ: QE =FR: ER.

Thus E, Q, F, R i?i a, harmonic range, and similarly A, P, G, Q and
B, P, D, R are harmonic ranges.
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Cor. If ABCD is a cyclic quadrilateral, the triangle PEF is such that

each of its angular jpoints is the pole of the opposite side with respect to

the circle.

For, since APCQ is harmonic, and ylC is a chord of the circle, the
polar of P must pass through Q [p. 359], and it must similarly pass
through B.

Hence EF is the polar of P with respect to the circle ABCD,

Also, if PE, PF be drawn, the pencil PE, PQ, PF, PR would be cut
by EGD and by EBA in points forming harmonic ranges, since E, Q, F, R
is a harmonic range ; whence it follows that PF is the polar of E and EP
the polar of F.

2. If the sides AB, BG, CD, DA of the quadrilateral ABCD touch a
circle in the points a, j8, 7, 5 respectivehj ; then ivill 07 and j35 pass
through the intersection of the diagonals AG, BD.

Let a/3, 75 meet in Q, ay, /35 in P, and a8, py in R.

Then we know that P, Q, R are the poles of QR, RP, PQ respectively

with respect to the circle.

But B is the pole of a^,

and D is the pole of 75

;

/. BD is the polar of Q,
the point of intersection of

a/3 and 75. F
ButPR is the polar of Q.

Hence

BPDR is a straight line.

Similarly

APCQ is a straight line,

and

EQFR is a straight line.
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3. The middle points of the three diagonals of a qvudrilateral lie on

a straight line.

Let a, /3, 7 be the middle points of the sidea BG, CE, EB of the

triangle BCE^ and U, F, W the middle points of the diagonals AC, BD,
EF,

Hence

Then, since Ey=yB, Ep-pG and EW=:WF, ypW is a straight line,

and
ySir : yW= GF : BF.

Similarly 7a F" and apU are straight lines, and

7F:oF=J5D: GD,

and aU : pU=BA : EA.

PJV yV aU_GF ED BA
y)V'aV'pU~BF'GD'EA'

But, by the Theorem of Menelaus, since ADF is a straight line

CF ED BA
BF' CD' EA~ '

_ PW yV aU .

^^"^^
7"^-^F-^=^'

whence it follows that UVW is a straight line.

If the parallelogram EAFX be completed, W will be the middle point
of the diagonal AX, and therefore UVW will be parallel to C'A', a result

which is sometimes useful.
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Ex. 1. If ?7, V, W be the middle points of the diagonals of a
quadrilateral, W being on the external diagonal EF^ and if the line

XJVW cut the opposite sides BC, AD in M, M' and the opposite sides CD,
AB in L, L'; then will WM.WM' =WL .WV=WU . WV. Shew also

that each of these rectangles is equal to WF"^^ if ABGD is cyclic.

Since 7a is y to EL, and ^a ||
to EB,

WL : WV=Wp : Wy=WU : WL'

;

.'. WL. WL'=WU.WV.
Similarly WM . WM'= WU .WV.

Now, U ABCD is cyclic, it is easily seen that FCEX is also cyclic.

Hence Z ELW= L EOX=z l EFX= l AEW ;

.-. z EL'W= Z LEW.

Hence WE touches the circle ELL' ;

.-. WL.WL'=^WE\

Ex. 2. If ABCD be a cyclic quadrilateral, the exterior diagonal wiU
subtend supplementary angles at the middle points of the diagonals AG
and BD.

4. (1) The orthoeentres of the four triangles formed hy four straight

lines are on a straight line,

(2) the three circles whose diameters are the diagonals of the quadri-

lateral are co-axal,

(3) the middle points of the diagonals are on a straight line,

and (4) the circles on the diagonals cut the polar circles of the four
triangles and also the circum-circle of the diagonal triangle orthogonally.

Let Oj be the orthocentre of the triangle EBC.

Then, since lEeC=rt. l = lEcC, the points E, e, c, G are cyclic,

and 0ie.0i^=0iC.0iC.

Hence Oj is on the radical axis of the circles whose diameters are EF
and -4C respectively. ^

Similarly, if 0^, O3, O4 are the orthoeentres of the triangles ABF,
FGD, DAE respectively, the points Og, O3, O4 will also be on the radical
axis of the circles whose diameters are EF and A G.

Hence the four orthoeentres are on a straight line.

Also the line of orthoeentres is the radical axis of the circles EF and
AG, and it can be proved in a similar manner that the orthoeentres are

on the radical axis of the circles EF and BD.

Hence the circles whose diameters are the diagonals of any quadrilateral

have a common radical axis.
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But the centres of all co-axal circles lie on a straight line.

Hence the viiddlc points of the three diagonals of any quadrilateral lie

on a straight line.

Again, the square on the radius of the polar circle of the triangle

KBG is equal to OJi. 0^h = O^C .0-^c = O^E .O^e, so that the radius of

the polar circle of EBG is equal to the tangent from its centre to any one
of the circles whose diameters are the diagonals of the quadrilateral.

Hence the circles lohose diameters are EF, AC, BD all cut orthogonally

the polar circle of the triangle EBC, and therefore similarly the polar
circles of the triangles EAD^ CDF and ABF.

And, since APCQ is harmonic [figure, p. 393], UC^= UP . TJQ, whence
it follows that the circle PQR is cut orthogonally by the circle whose
diameter is AG^ and similarly by the circles on the other diagonals.

Also, since the four polar circles and the circum-circle of the diagonal
triangle are cut orthogonally by more than one circle, these Jive circles

must he co-axal.

[The above elegant proof was first given by M. Mention in Nouvelles
Annalcs, t. xu.]
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5. Another proof that the middle points of the diagonals lie on a
straight line depends upon the following theorem :

IfAB and CD are two given straight lines, the locus ofa point P which
moves so that the sum of the areas of the triangles FAB, BCD is constant,

is a straight line.

Let be the point of intersection of the given straight lines AB
and CD.

' Then, if OX, OY be measured along OA, 00 so that OX^AB and
OY=CD, it is obvious that a0PX= aAPB and aOPY= aPCD.

Hence P must move so that the area OXPY is constant.

Hence aXPY must be constant, and therefore the locus of P is a
straight line 'parallel to XY,

It is important to notice that, if the line on which P moves cut the
given lines in L, M, and Q be any point on LM produced, it will easily be
seen that the difference of the triangles OQX, OYQ is equal to OXPY.

Hence we may say that the locus ofP which moves so that the sum
of A "" APB and CPD is constant is a straight line, provided that either of
the triangles APB, CPD is considered to change from 'positive to negative
when P crosses AB or CD, or when the direction of rotation in APB, or
CPD, changes.

Let XJ, F, Whe the middle points of the diagonals AC, BD, EF of a
complete quadrilateral.

Then aAUB=IaACB and aDUC=^aDAC.
Hence AAUB+ aDC/C= half figure ABCD.^

Similarly aAVB+aDVC= half figure ABCD.

Again, AAWB=^i AABF and aDWC=^aDFC',
.. AAWB - aDWC=YibM f^gvixl ABCD I

but W and U are on opposite sides of CD.

Hence W is on the line UV.

If a circle whose centre is can be inscribed in ABCD, it is easily

seen that A ^OB + a COD= half figure ABCD, and .-. O is on UVW.
Thus, if a quadrilateral he circumscribed to a circle, the centre of the

circle is on the line through the middle points of the diagonals.

[Newton's Theorem.
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XVI. PONCELETS THEOREM.

1. If the chords AB, A'B' of oiie circle touch a second circle in the

points P, P', then will the chords A A', BB' touch a third circle co-axal

with the two former circles^ the points of contact lying along PP'.

Let AA', BB' cut PP' in the points Q', Q respectively.

Then the tangents AB^ A'B' make equal angles with PP, and
lABQ= lAA'B'.

Hence Z BQQ'=. I A'Q'Q, and therefore a circle can be drawn to touch

AA', BB' at Q', Q respectively.

Also the A" PBQ, P'A'Q' are similar, and the A» APQ', B'P'Q are

similar

;

.-. BP:BQ =A'P :A'Q',

and APiAQ'= B'F:B'Q.

Moreover, if AX be drawn parallel to BB' so as to cut PP' in X,

/ AXP= lBQP= L AQ'Q, so that AX=AQ' ; and, since ^.Y is |1 to BQ,

BP:BQ=AP:AX=iAP :AQ',

The ratios BP : BQ, AP : AQ', B'P' : B'Q and A'P' : A'Q' are there-

fore all equal.

The circle through A, B, A'^ B' is therefore co-axal with the other two
circles. [Page 357.]

It can be shewn in the same manner that another co-axal circle will

touch the lines AB' and BA'. [Hart, Q. J. vol. n.
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2. Foncelet'a Tbeorem. Ij a triangle he inscribed in one given
circle and tico of its sides touch another given circle^ the third side wiU
always touch a fixed co-axal circle.

Let ABG^ A'B'C be any two triangles inscribed in one given circle,

and let the sides BA, BG, B'A', B'G' touch a second given circle in the
points 2?, g, p', q_' respectively.

Then, by the preceding theorem, AA' and BB' will both touch a
co-axal circle, the points of contact being on ^^'p'.

So also BW and GG' will both touch a co-axal circle, the points of

contact being on qq^.

Now B is the pole of -pq, and B' the pole of i^'q' with respect to the
inner circle. Hence BB' is the polar of the point of intersection of 'pq

and 2>'(?'. But -pp' and qq' meet on the polar of the point of intersec-

tion olpq and ^'2' [p. 394], and therefore on BB'.

Hence the co-axal circle which touches both AA' and BB\ and the
co-axal circle which touches both BB' and GG' touch BB' in the same
point, and must therefore be the same co-axal circle. [Page 355.]

Thus AA' and GG' both touch the same co-axal circle.

Hence, by the preceding theorem, AG and A'G' t(»ich another co-axal

circle.

Thus AGm all its positions touches a fixed co-axal circle.

It follows that, if ^C in any one of its positions touches the circle to

which BA, BG are tangents, it will touch the same circle in all positions;

so that, if one triangle be inscribed in one given circle and circumscribed

to another, an infinite number of such triangles can be draion.

The theorems can easily be extended to the following :

If any polygon be inscribed in a given circle, and all its sides but one

touch another given circle, the reniaining side loill touch a fixed co-axal

circle.

If any one polygon can be inscribed in one given circle and circum-

scribed to another, there will be an infinite number of such polygons.
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3. In the same way can be proved the following theorem :

If a triangle he inscribed in one given circle of a co-axal system,

and if tico of its sides touch two other given circles of the system, then

will the third side touch one or other of two fixed circles of the co-axal

system.

4. Let the circles whose centres are S, I and radii B, r respectively

be such that triangles can be inscribed in the first whose sides touch
the second, and let ABC be one such triangle which touches the circle I
in the points P, Q, R.

Then JA will pass through a, the middle point of QR, and
la.IA = r\

Hence the circum-circle of ahc, that is tlie nine-point circle of PQR,
is the inverse of the circle S with respect to the circle J, and is therefare

a fixed circle.

This fixed nine-point circle of PQR always touches the in-circle of

PQR. Hence the in-circle ofPQR touches a fixed circle.

Again, the centroid and the orthocentre of the triangle PQR are the
centres of similitude of the circle PQR and its nine-point circle ; hence,

as these circles are both fixed, the centroid and the orthocentre of the

triangle PQR are fixed ^points.

Also, if the tangents bX A, B, G form another triangle XYZ, it will

easily be seen that the circum-circle of XYZ is the inverse or the
nine-point circle of ABC with respect to S.

But the nine-point circle of ABC touches the circle PQR,

Hence the circum-circle of XYZ will touch the inverse of the circle

PQR with respect to >S ; so that the circum-circle ef XYZ for all possible

positions ofABC will touch a fixed circle.

S. B. E. 26
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5. If chords of a circle subtend a right anrjle at a given point ;

then (i) the locus of the viiddle points of the chords is a circle, (ii) the

locus of the poles of the chords is a circle, and (iii) these three circles

belong to a co-axal system of which O is a limiting point.

Let POp, P'Op' be any two i)erpendicular chords of the given circle

through the given point 0.

Let G be the centre of the circle, and M the middle point of OG.

Let the tangents at P, P' meet in T ; then CT will be perpendicular
to PP* and will bisect it in V.

Since POP' is a right angle, and V is the middle point of PP\
PV=VP'=VO.

Now 2C3P+ 2MV^= GV^ + OV'^=GV^+VP'^= square on radius.

Hence MV is of constant length.

Thus the locus of the middle point of PP' is a circle ivhose centre is

the middle point of GO.

[If ON be the ±' from O on PP', it is easily seen that MN = MV, so

that the locus of N coincides with that of F.]

Again, since GV. GT = (radius)^, the locus of T is the inverse of the
locus of V with respect to the given circle. Hence the locus of T is also

a circle.

Produce P'Op' to meet the tangent at P in K, and let the tangent
Sitp' cut TPK int.

Then, since P'T and p't make equal angles with P'p'K,

TK:tK^TP':tp'

=--TP : Pt.
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Hence, by the theorem of Apollonius, the ratio of the distances from

T and t of all points on the circle whose diameter is PK^ is equal to

TP : Pt ; and O is on this circle since POK is a rt angle.

Hence TO:tO=TP:tP,

or TO : TP=tO : tP,

whence it follows that the circle on which T, t lie is co-axal with the

given circle and a point-circle at 0.

Again, since VO'^=PV . FF, it follows that the locus of V is co-axal

with the given circle and a point-circle at O.

Thus the circles on which V and T lie belong to the co-axal system

determined hy the given circle and a point-circle at O.

6. Let PQRS be a quadrilateral inscribed in one given circle and
whose sides touch another given circle in the points K, L, iLf, N.

It is easily proved that KM and LN intersect at right angles, at O
suppose.

Also it can be proved as above that PO : PL= QO : QL, and therefore
also that PO:PL= QO : QL = liO : BM=SO : SN.

Hence is a point-circle belonging to the co-axal system defined
by the given circles.

Hence the diagonals of the quadrilateral formed by joining the points

of contact of any one of the quadrilaterals which are inscribed in one

of the given circles and circumscribed to the other meet in a fixed point
on the line joining the centres of the given circles.

26—2
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li At B are the centres of the two given circles, and we draw two
perpendicular chords through O equally inclined to the straight line ABO^
meeting the circle which is circumscribed by the quadrilaterals in K, M
and L, Ny two of the angular points of the quadrilaterals will be at the
extremities of the diameter through A, B and 0.

Hence in that case KBLP will be a square, and

KB^ BL^P^ SF^

SB^ "^
BQ-' ~ SQ^-

"^ SQ^
~

Hence

(R+d)^ ' {R-df '

where R, r are the radii of the two circles and d the distance between
their centres.

]!f.B. It should be noticed that in the above investigation it has been
understood that PQRS is a convex quadrilateral.

If PQRS is a crossed quadrilateral, the above relation between R, r

and d does not hold good. It can, however, be easily proved that, in

this case, the centre of the circle PQRS is on the circumference of the
other circle. Conversely, if the centre of one circle he on the circumference

of a second, an infinite number of quadrilaterals, in which one pair of
opposite sides intersect, can he inscribed in the first circle each of whose
sides will touch the second.
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XVn. MISCELLANEOUS PROBLEMS.

1. To inscribe a square in a given triangle.

It is required to inscribe a square in the triangle ABC so that two of

the angular points of the square may be on one of the sides of the

triangle (on BG suppose) and the remaining angular points on CA^ AB
respectively.

Let PQRS be the square required.

Then, since QR : BC=AQ : AB, and QR= QP,

QP :BC=AQ : AB.

Now, if AP be produced to cut the line through B perpendicular to

BG in X,
QP : BX=AQ : AB,

Hence BX must be equal to BG, so that the following is the
construction required

:

Draw BX peri)endicular and equal to BG. Join AX cutting BG in P.
Then draw PQ || to BX cutting BA in Q, QR || BG cutting ^(7 in R, and
RS perpendicular to BG. Then it can be easily proved that PQRS is a
square, and it is described in the required manner.
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Or tlius : Instead of the problem proposed consider the following

:

About a given square describe a triangle similar to a given triangle.

The necessary construction in this case is obvious ; for if DEFG is

the given square and ABG the given triangle, we have only to draw
through E and F lines KEH, KFL making with DG produced angles

equal to ABC, AGE respectively.

To complete the original problem we have now only to alter the
scale.

Divide AB in Q so that AQ : QB =KE : EH, Draw QR parallel to

BG and complete the figure.

Then it is easily seen that

QB : EF=AQ : KE=BQ :HE=^QP : ED,

Hence QR=^QP, for EF=^ED.

Thus the figure PQRS, which is a rectangle by construction, is a
square.

2. In many cases a problem can be solved more readily by first

solving a cognate problem and then altering the scale of the diagram, as
in the above case.

For example : To inscribe a square in a given regular pentagon.

It is easily seen that one side of the square must be parallel to a side

of the pentagon.

Now take any square ABCD, having the side DA parallel to the side

TP of the given pentagon PQRST,

Draw through A, B, G, D lines parallel to PQ, QR, RS, ST
respectively.

Then the pentagon circumscribing ABGD can easily be completed,

and a square can then be inscribed in the given pentagon by altering the

scale.

Again : Tofind three points P, Q, R, one on each of the circumferences

of three given concentric circles, so that tlic triangle PQR may be equi-

lateral [or of given species).

The solution of the cognate problem

To find a point the ratios of whose distances from the angular points of
a given triangle may be equal to given ratios (namely to the ratios of the

radii of the given circles) by means of circles of Apollonius suggests

itself at once, and an alteration of the scale gives the solution of the

original problem.
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The following is another problem which is readily solved in this

manner

:

To describe a qxiadrilateral of given species (that is, similar to a given

quadrilateral) so that its angular points may lie on the sides of another

given quadrilateral.

In order to construct a quadrilateral PQRS similar to a given

quadrilateral and whose sides PQ, QR, RS, SP pass respectively through
the given points A, B, G, D, it is &t once obvious that P, Q, R, S lie on
arcs of known circles through D and A, A and B, B and C, and G and
D respectively, since the angles at P, Q, R, S are given angles. Moreover,

it is easily seen that we may start with any point P of the arc on which
P lies and complete a figure PQRS which will be equiangular to the

given quadrilateral [cf. Book III., page 241].

In order, however, that the quadrilateral PQRS may be similar to the

given quadrilateral, it is also necessary, and sufficient, that the diagonal

PB should make a given angle with PQ, and therefore also with QR.

Hence PR must cut the circles DPA, BRC, in points X, Y suppose,

such that the angles XPA and YRB are each equal to known angles ; the

points X and Y can therefore be found.

Find the points X, Y; then XY will cut the circles DPA, BRG in two
of the vertices of the required quadrilateral, and the other two vertices

can be at once found.

To complete the construction for the problem originally proposed, we
have only to divide the sides of the given quadrilateral corresponding
to PQ, QR, &c. in the ratios PB : BQ, QG : GR, &c., and join the points
of section. The proof that the quadrilateral formed by joining these
points of section is similar to ABGD is obvious.

N-B. The above construction becomes porismatio when three (and
therefore all four) of the circles DPA, AQB, BRG, CSD meet in a point.

For let be on the three circles DPA, AQB and BRG, and let PR cut
the circle DPA in X

Then, since XPAO and OAQB are circles,

lOXR=lPAO^. lOBQ;
.*. X is on the circle OBRG.

Hence, when the circles on which P, Q, R, S lie have a common
point, the diagonal PR always passes through the other point of
intersection of the circles DPA and BRG, and therefore PR makes a
constant angle with PA, whence it follows that all quadrilaterals through
A, B, G, D which are equiangular to the given quadrilateral are similar to

one another.

Hence, in this case, if one quadrilateral can be drawn through
A, B, G, D similar to the given quadrilateral, there will be an infinite

number of such quadrilaterals.
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For example, if ^4, jB, C,D be four points such that yiC is perpendicular
to BD, all rectangles whose sides in order pass through A, B, C, D
respectively will be similar to one another, and therefore an infinite

number of squares or no square at all can be drawn to circumscribe
ABCD when the diagonals AG and BD are at right angles.

3. Castillon's Problem. In a given circle to inscribe a triangle

whose sides pass respectively through three given points,

^
Let P, Q, E be the three given points, and suppose that ABG i& the

triangle required.

Draw the chord BX parallel to RQ. Join XC and produce XG and
jRQ to meet in Y.

Then Z ARQ=: L ABX= L AGY.

Hience A, B, C, Y are cyclic,

and .-. BQ . QY=:AQ . <2C= constant,

since Q is a fixed point.

Hence 7 is a Jixed point. Hence in the triangle BXG the sides BG,
XG pass through fixed points P, Y respectively, and the third side ia

parallel to BQ.

Now draw the chord BZ parallel to FY. Join XZ cutting FY in W.

Then iFWX= I BZX= L BGX.

Hence P, W^ G, X are cyclic, and therefore,

YW . YF=YG . YX= constant,

since F is a fixed point.

Hence IF is a.Jixed point.

But, since BX and BZ are || to the fixed lines RQ, FY respectively,

the angle XBZ is constant, whence it follows that XZ is of fixed length,

and therefore XZ touches a fixed concentric circle, and it also passes

through the fixed point W. The line XZ can therefore be drawn, and
when XZ is found the triangle ^PC is determined.
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MISCELLANEOUS EXERCISES.

I. Shew that the sum of the lengths of the perpendiculars drawn
on the sides of an equilateral triangle from any point within it is

constant.

- 2. Shew that the sum of the lengths of the perpendiculars drawn
on the sides of any regular polygon from any point within it is constant.

3. E, F, G, H are the middle points of the sides AB, BC, CD, DA
of the parallelogram ABCD. The lines AG, CH meet in X, and the

lines AF, CE meet in Y. Shew that X is a point of trisection of each of

the lines GA, HC, DB and that AXCY is a parallelogram whose area is

one-third that of ABCD.

4. Find a point such that if it be joined to the extremities of

three given straight lines AB, CD and EF, the three triangles AOB,
COD and EOF will all be equal.

5. Two circles intersect in the points A, B and through A a line

FAQ is drawn to cut the circles in P, Q respectively; shew that the
ratio BP :BQ ib constant.

6. Through a given point on the circumference of a circle draw
two chords inclined at a given angle and in a given ratio.

7. Find a straight line such that the perpendiculars on it from
three given points may be in given ratios.

8. On the circle circumscribing the triangle ABC, two points D, E
are taken such that AD-=AE'=AB .AC. Shew that, if DE cut BC
in K, AK will bisect the angle BAC.

9. The internal and external bisectors of the angle BAC meet BC
the opposite side of the triangle in the points D, E respectively; shew
that the circles ABD and ABE cut one another at right angles.

10. Shew that, if two circles cut one another orthogonally, any line

through the centre of either which cuts both circles is divided harmoni-
cally.

II, Construct a triangle having given the base, the ratio of the

other sides, and the sum of the squares on these sides.

12. One vertex of a triangle of given species is fixed, and another
moves on a given straight line ; find the locus of the third vertex.

13. The bisector of the angle BAC of the triangle ABC cuts the
circum-circle in G, and GL, GM are drawn perpendicular to AB^ AC
respectively; shew tliat 2AL =2AM=AB + AC.
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14. In a given triangle inscribe another with its sides parallel
respectively to three given straight lines.

15. A quadrilateral is divided into four triangles by its diagonals

;

shew that the centroids of these four triangles are at the angular points
of a parallelogram.

16. Having given the inscribed and the circumscribed circles of a
triangle, shew that the centres of the escribed circles lie on a fixed circle.

17. Shew that, if I is the in-centre of the triangle ABC, and O^ the
centre of the escribed circle corresponding to the side BG, then will

AI.AO^ =AB.AG.

18. Shew that, if three circles touch each other, the three lines

joining the centre of each to the point of contact of the other two will

meet in a point.

19. In a given triangle inscribe a parallelogram similar to a given
parallelogram.

20. Shew that, if ABC be any triangle and PQR any triangle

circumscribing ABC, and XYZ the triangle circumscribing PQR with
its sides parallel to the corresponding sides of ABC, then will

aXYZ:APQR=aPQR:aABC.

21. Shew that if the nine-point circle of a triangle be given and also

one of the angular points, the loci of the orthocentre, the centroid and
the circum-centre are circles.

22. The tangents at A, B, C to the circum-circle of the triangle ABG
meet the sides BG, GA, AB in P, Q, R respectively; shew that P, Q, R
lie on a straight line.

23. Shew that, if the lines AO, BO, GO meet the sides of the

triangle ABG in X, Y, Z respectively ; then will

d£. ^4.^ = 9
AX'^ BY GZ

24. ^^', BB\ GG' are diameters of a circle, and they meet the sides

BGf GAf AB of the triangle ABG respectively in X, Y, Z ; shew that

A'X B'Y G'Z

XA'^ YB"^ ZG"

25. Construct a triangle having given one angle, the ratio of the
sides containing that angle, and the length of the diameter of the
circum-circle.

26. If J> O^, Og, Og are the centres of the four circles which touch
the sides of a triangle whose circum-centre is S, and if G, G^, G^, G^ be
the centroids of the triangles 0^0»0^ , O^O^I, 0^10^ , lOiO^ respectively,

then will ISGy O^SG^, O^SG^ and 6.^80^ he straight lines.
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27. Having given the circum-circle of a triangle and one of its sides,

find the loci of the centroid, the orthocentre and the nine-point centre.

28. Find the locus of the middle points of the sides of all triangles

which have a given orthocentre and are inscribed in a given circle.

29. Shew that, if two circles cut one another orthogonally, .the

chord of contact of the tangents drawn to one circle from any point P
on the other will pass through the other extremity of the diameter
through P.

30. Shew that the polar of a fixed point with respect to a system of

co-axal circles passes through a fixed point.

31. Shew that, if two circles cut orthogonally, the rectangle con-
tained by their common chord and the maximum chord of the two circles

which Can be drawn through a common point is equal to the rectangle

contained by the diameters of the circles.

32. Prove that, if a circle pass through two fixed points 0, O' and
cut a given circle in the points Q, Q', then will the ratio OQ . OQ' to

O'Q . O'Q^ be constant.

33. The lines joining each of the centres of three given circles to the
centres of similitude of the other two pass by threes through four points.

34. Two circles touch at the point A and any points P, P' are taken
on the two circles such that PAP* is a right angle. Shew that PP'
passes through a fixed point.

35. Draw a line cutting the sides BG, CA, AB of the triangle ABC,
or these sides produced, in the points P, Q, R respectively so that PQ
and QR may be equal to given straight lines.

36. Two points'!?, C are taken on two given straight hues AX, AY
respectively such that AB +AC is a given length ; shew that the locus of

the centre of the circle ABC is a straight Hne.

37. From any point on the radical axis of two given circles a
tangent is drawn to each of the circles ; shew that the line joining the
points of contact wQl pass through one or other of the centres of simili-

tude of the two given circles.

38. Shew that, if a circle cut two given circles orthogonally, the line

joining either point in which it cuts one of the given circles to either of

the points in which it cuts the other will pass through one of the centres

of similitude of the given circles.

39. A line AB of constant length slides with its ends on two fixed

lines CAX, CB Y. Prove that the locus of the orthocentre of the triangle

CAB is a circle.

40. Shew that the three radical axes of the in-circle and the three
escribed circles of any triangle are the three lines through the middle
points of the sides perpendicular to the internal bisectors of the opposite
angles of the triangle.
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41. Find the side of a square having given the lengths of the three
lines joining a point to three consecutive angular points of the square.

42. Shew that, if G is the centroid of the triangle ABGy the
algebraic sum of the perpendiculars from A, B, G on any line through
G is zero.

43. Shew that, if the lines AG, BO, GO be produced to cut the sides

BG, GA, AB of the triangle ABG in the points A\ B', G' respectively,

and the circle A'B'G' cuts the sides of ABG again in A'\ B'\ G"
respectively, then will AA'\ BB", GG" meet in a point.

44. From any point O the perpendiculars OX, OY, OZ are drawn
to the sides BG, GA, AB of the triangle ABG, and the circle XYZ cuts
the sides again in X', Y', Z'. Shew that the perpendiculars from
X', F, Z' to the sides on which they lie will also meet in a point.

45. Points A', B', G', are taken on the sides BG, GA, AB respectively
of the triangle ABG such that AA', BB', GG' meet in a point. Shew
that the lines joining A, B, G respectively to the middle points of B'G\
G'A', A'B' will also meet in a point.

46. Shew that, if lines from the vertices of a triangle to the opposite
sides pass through the circum-centre, the circles on these lines as
diameters will touch the nine-point circle.

47. Describe a circle to pass through two given points and to subtend
a given angle at a third given point.

48. Shew that, if four points A, B, G, D be taken on a circle of radius
B (1) the centroids of the triangles BGD, GDA, DAB, ABG all lie on a

circle of radius -^ , (2) the orthocentres lie on a circle of radius R, and
o

R
(3) the nine-point centres are on a circle of radius ^

.

a

49. In a given triangle inscribe a rectangle one of whose sides is

parallel to the base, and which is such that the difference of two adjacent
sides is equal to a given straight line.

50. If from each of the vertices of a quadrilateral inscribed in a
circle perpendiculars are drawn on the two opposite sides, and the feet of

these perpendiculars are joined, prove that the four lines so found are

equal.

51. Draw a circle of given radius so as to cut two given circles

orthogonally.

52. Describe a circle passing through a given point and cutting two
given straight lines so that the intercepted chords may subtend given

angles at the centre.

53. Shew that the distance between the polars of the centres of

similitude of two circles with respect to one of the circles is equal to the
distance between the polars with respect to the other circle.
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54. From a point without a given circle draw a straight line to cut

the circle so that the rectangle contained by the whole line and the part

within the circle may be equal to the square on the part without the

circle.

55. is any point within the triangle ABC. Find points D, E on
AB, AG respectively such that DO :E0 may be equal to a given ratio

and that DOE may be equal to a given angle.

56. Shew that, if be the orthocentre of the triangle ABC, and if

P,Q,Rhe the circum-ceutres of the triangles BOC, COA, AOB, then will

the triangle PQR be equal in all respects to ABC, and the lines AP, BQ,
CR will all pass through the nine-point centre of ABC.

57. In a given triangle ABC inscribe a rhombus having one of its

angular points at a given point on BC, and the other angular points on
BCy GA, AB respectively.

58. In a given triangle ABC inscribe another triangle A'B'C similar

to a given triangle PQR and having one of its sides parallel to a given
straight line.

59. Find points A, B on the two given straight lines OX, OY
respectively, such that AB may subtend a given angle at the given point
P, and that the distances APy BP may be in a given ratio.

60. The tangents to a circle at the points A, B intersect at right

angles at D, and the tangent at any point P of the circle cuts AB in Q.
Shew that DA and DB are the bisectors of the angle PDQ.

61. The opposite sides of a cyclic quadrilateral meet in P, Q and
about the four triangles thus formed circles are described

; prove that the
tangents to these circles at P and Q form a quadrilateral equal in all

respects to the original.

62. Two circles intersect vn A, B and any straight line through A
cuts them again in P and Q respectively. Shew that the locus of the
point which divides PQ in a given ratio is a circle.

63. If each side of a parallelogram, produced if necessary, pass
through one of four fixed points which lie on a given straight line, then
will each diagonal also pass through a fixed point on the given straight
line.

64. A point P being given in the side BC of the triangle ABC, draw
a straight line parallel to BC and cutting AB, AC in B\ C so that the
angle B'PC may be a right angle.

65. Two circles touch one another at C, and any straight line is

drawn cutting one circle in P, Q and the other circle \xi R, S. Prove
that the ratio PR. PS: PG^ is constant.

66. Through one of the points of intersection of two circles a line is

drawn, and the points in which it meets the circles are joined to the
other point of intersection ; prove that the orthocentre of the triangle so
formed lies on a fixed circle.
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67. On a given circle are taken two fixed points A, B and a variable
point P. On BP or its production a point Q is taken such that BQ : AP
is a given ratio. Brove that the locus of Q consists of two circular
arcs.

68. In a given triangle ABC inscribe a triangle A'B'C so that the
lines joining A, B, G to the middle points of B'G'y C'A\ A'B' respectively
may pass through a given fixed point.

69. Find a pair of points on a given circle concyclic with each of
two given pairs of points.

70. Describe an equilateral triangle with one of its angular points at
a given point, a second on a given straight line, and a third on a given
circle.

71. Construct a triangle whose angular points shall be one on each
of three given circles, and whose sides shall pass through three of their

centres of similitude.

72. A\ B\ G' are the middle points of the sides BG, GA, AB of the
triangle ABG, and A'P, B'Q, G'B. are tangents from A', B', G' to the
in-cu-cle whose centre is I; shew that AP^ BQ, GR are parallel to

A'IJ B'l, G'l respectively, and that they meet in a point.

73. ABG, A'B'G' are two directly similar triangles but are not
similarly situated. Find a point O such that

AO : A'Oz=AB : A'B=BO : B'0= GO : G'O.

74. Describe a triangle equal in all respects to a given triangle, and
with its angular points respectively on three given straight lines which
meet in a point.

75. Describe when possible a triangle equal in all respects to a given
triangle, and with its angular points respectively on the sides of a given
triangle.

76. Through a given point P draw a line cutting two given circles in

the points A, B 80 that the rectangle PA . PB may be equal to a given
square.

77. Construct a triangle having given the lengths of two of its

sides and the length of the line bisecting the angle between them and
terminated by the third side.

78. Construct a triangle having given the lengths of two of its sides

and also of the line from their intersection to a point which divides the

base in a given ratio.

79. Find three points A, B, G, one on each of three given circles

whose centres are P, Q, R respectively, such that JBC7, GA, AB are

parallel respectively to QR, RP, PQ.
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80. Describe two equal circles to touch one another and also to

touch two given straight lines at given points respectively.

81. Describe two circles whose radii are in a given ratio to touch

one another and also to touch two given straight lines at given points.

82. Draw tangents, one to each of two given circles, inclined at a

given angle and such that the sum of their lengths is equal to a given

straight line.

83. Shew that, if AOL, BOM, CON be drawn through any point

to cut BC, CA, AB in L, M, N respectively, and if A\ B\ C", P, Q, R he

the middle points of BC, CA, AB, AL, BM, CN respectively; then wiU
A'P, B'Q, C'R meet in a point.

84. Describe a circle such that the tangents to it from three given

points may be of given lengths.

85. Draw a straight line parallel to a given straight line so that the

part of it intercepted by two other given straight lines may subtend a
given angle at a given point.

86. ^J^ is perpendicular to the side BC of the triangle ABC, and the

lines BO, CO are drawn to any point O on AB and are produced to meet
AC, AB in JS, F respectively. Shew that AD bisects the angle EDF.

87. Shew that, if the median AD ot the triangle ABC be a mean
proportional to the sides AB, AC it will be equal to AK, where K is on
BC produced and AK makes equal angles with AB and AC.

88. Having given the base and the vertical angle of a triangle, shew
that the loci of the in-circle and of the centre of the circle through the

centres of the three escribed circles are circles.

89. Inscribe a square in a given quadrilateral.

90. From the middle points of the sides of a cyclic quadrilateral

perpendiculars are drawn to the opposite side; shew that these four
perpendiculars meet in a point.

91. The bisectors of the angle BAC of the triangle ABC meet BC in

D, G, also E, H and F, K are similar points on CA, AB respectively.

Shew (1) that GHK is a straight line, (2) that the circles whose diameters
are DG, EH, FK respectively have a common radical axis.

92. Construct a triangle having given the circura-centre, the in-

centre and the orthocentre.

93. T is any point on the radical axis of two given circles O, O', and
a common tangent touches the circles in P, P* respectively. OP, OP' cut
the circles O, O' respectively again in the points Q, Q' ; shew that the
circle TQQ' will touch the given circles.

94. Shew that the lines Joining the angular points of a triangle to
the points of contact of the corresponding escribed circles with the
opposite sides meet in a point on a hne through the in-centre and the
centroid of the triangle.
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95. On the sides BC, CA, AB of the triangle ABC and external to

the triangle the similar isosceles triangles BA'C, CB'A, AG'B are de-

scribed; shew that AA\ BB\ CC meet in a point.

96. On the sides BC, GA, AB of the triangle ABC and external to

the triangle the equilateral triangles BA'C, CB'A, AC'B are described;

shew that, if X, Y, Z are the centroids of the equilateral triangles, the

triangle XYZ is equilateral.

97. The straight line AB is divided into any two parts at the point
G, and on AB, BC, GA the equilateral triangles AG'B, BA'C, CB'A are
described, the triangle AG'B being on the side opposite to that on which
the other triangles lie. Shew that AA', BB\ CC are equal and meet in

a point, and that, if X, Y, Z are the centroids of the three equilateral

triangles, the triangle XYZ is equilateral.

98. Construct a triangle having given the vertices of the three equi-

lateral triangles drawn on its sides external to the triangle.

99. A line is drawn cutting two given circles so that the intercepted
chords are equal ; shew that the tangents at the extremities of one of the

intercepted chords meet the tangents at the extremities of the other in
four points on the circle of similitude of the given circles.

100. If the vertices of one triangle are at the middle points of the
sides of another, the in-centre of the first triangle is the radical centre of

the circles escribed to the second.

101. Having given an angle of a triangle in position, and the sum of

the containing sides of the triangle ; shew that the locus of the circum-
centre of the triangle is a straight line.

102. Prove that the radical centre of the three escribed circles of a
triangle is the centre of a circle inscribed in the triangle formed by
joining the middle points of the sides of the given triangle.

103. Shew that, if A, B, G be any three points on a straight line, and
O be any other point, then will

AOr-,BG+BO'^.GA + GO^.AB+BG.GA.AB=Q.

104. Shew that, \iA,B,Ghe any three points on a straight line, and
APf BQf GR the three tangents from them to any circle, then will

AF^.BG+ BQ^.GA + GR^.AB +BG.GA.AB=0.

105. On the sides BG, GA, AB of the triangle ABG points P, Q, R
are respectively taken. Shew that the circum-centres of the triangles

AQR, BRP, GPQ are the angular points of a triangle similar to ABG.

106. If ^'. -B', G' are the middle points of the sides BG, GA, AB of

the triangle ABG, and if be any point within the triangle, and D, E, F
be the middle points of AO, BO, GO respectively; then will the lines

A'D, B'E, G'F meet in a point.
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107. If from any jwint within a triangle ABC, the three perpen-

diculars OP, OQ, OR are drawn to the sides BC, CA, AB respectively,

the three perpendiculars from A, B, G on OR, RP^ PQ respectively will

also meet in a point.

108. The bisectors of the aiigles A, B, C of the triangle ABC meet
BC, CA, AB respectively in the points D, D'; E, E' and F, F'.

Shew that the circles whose diameters are DD', EE\ FF resi^ectively

have two common points P, P". Shew also that, if PX, PY, PZ be the

perpendiculars from P on BC, CA, AB respectively, the triangle XYZ
will be equilateral.

109. Three circles with their centres on the sides BC, CA, AB
respectively of the triangle ABC are described so as to cut the circum-

circle of ABC orthogonally at A, B, C respectively; shew that the three

circles are co-axal.

110. ABCD is a quadrilateral and any line parallel to CD is drawn
which cuts BC, DA, BD, CA, Ali, or these lines produced, in the points

P, P', Q, Q', O respectively. Shew that OP . OF=OQ . OQ'.

111. AB ia & fixed chord of a circle and PQ is any other chord
whose middle point is on AB. Shew that the locus of the point of

intersection of the tangents at P, Q is & circle.

112. Shew that, if either of two given circles be inverted into the

other, their circle of simiUtude will invert into their radical axis.

113. Shew that, if any two intersecting straight lines be inverted

with respect to a point P, and if PM, PN be drawn perpendicular to the

bisectors of the angles between the given lines, and PM, PN be produced
to Q, R respectively so that PM =MQ and PN=NR, then will the points

Q and R invert into the centres of similitude of the inverses of the given
straight lines.

114. Draw a circle through a given point so as to cut two given
circles at given angles.

115. Construct a rectangle of given area whose sides pass respectively

through four given points.

116. The sides DA, CB of the cyclic quadiilateral^BCD are produced
to meet in E, and the sides AB, DC to meet in F. Shew that the circle

whose diameter is EF will cut the circle ABCD orthogonally.

117. If A, B, C, D be any four points in a plane, and if P, Q, R, S be
the centroids of the triangles BCD, CDA, DAB, ABC respectively, shew
that the quadrilateral PQRS is similar to ABCD.

118. Through a given point P draw a straight line cutting two given
straight lines AB, AC in the points D, E respectively so that the sum of

AD and AE may be of given length.

119. Through a given point P draw a straight line cutting two given
straight lines AB, ^C iu the points D, E respectively so that the
difference of AD and AE may be of given length.

s. a j:. 27
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120. Draw a straight line in a given direction so as to intersect two
given straight lines AB, AG in D, E respectively so that the triangle ADE
may be of given area.

121. Draw a straight line through a given point so as to cut off a
triangle of given area from two given straight lines.

122. A quadrilateral is divided into four triangles by its diagonals

;

shew that the quadrilaterals having for angular points (i) the ortho-
centres and (ii) the circum-centres of the four triangles are similar
parallelograms ; and that, if their areas be respectively Aj and Ag and
A be the area of the original quadrilateral, then 2A + Ai= 4A2.

123. If Ey F are two conjugate points with respect to a given circle,

the circles whose centres are E, F and which cut the given circle

orthogonally will cut each other orthogonally.

124. Shew that, if ^ be a fixed point on a given circle and AB, AG
two chords through A such that the sum of their squares is constant,
then will the middle point oi BG lie on a fixed straight line.

125. From any point T pairs of tangents TP, TP' and TQ, TQ' are
drawn to two concentric Circles. Shew that QP, Q'P make equal angles
with the tangent TP.

126. Find two points Q, Q' one on each of two given circles such that
QQ' may be parallel to a given straight line and that QQ' may be (1) of
maximum and (2) of minimum length.

127. ^D, BE, GF are the perpendiculars from A, B, C on the sides

BG, GA, AB respectively of the triangle ABG, and points D', E\ F' are
taken on these sides so that BD'=DG, GE'= EA, AF'= FB. Shew that,

if O be the circum-centre of ABG, OA, OB, OG will bisect E'F', VD',
D'E' respectively.

128. Shew that, if a circle be drawn so as to touch one given circle

and to cut another given circle at right angles, it will touch another fixed

circle whose centre is on the line joining the centres of the two given
circles.

129. The centre of the circle through the centres of three given
circles, the radical centre of the circles, and the centre of the circle which
bisects their circumferences, are in a straight line.

130. -^K, BL, GM are the bisectors of the angles of the triangle ABG,
and the in-circle and the three escribed circles touch BG in the points

D, Dj, D2, -D3 respectively, shew that ADj, BJL, D^M pass through the
other extremity of the diameter DD' of the iu-circle.

131. Shew that, if the in-circle of the triangle ABG touch the sides

BG, GA, AB in D, E, F respectively, and if Oj, Og, O3 are the centres of

the corresponding escribed circles, then will O^D, O^E and O3F meet in a
point.
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132. Draw a line parallel to a given straight line and cutting two

given circles so that the intercepted chords may be in a given ratio.

133. Three circles A, B^ G are touched externally by a circle whose
centre is P, and internally by a circle whose centre is Q. Shew that

PQ passes through the point of concurrence of the radical axes of

A, B and G taken in pairs.

134. Draw through a given point on one of two given circles a
straight line such that the chords of the circles intercepted on it may be

(1) equal and (2) in a given ratio.

135. Through a fixed point O any two chords POP*, QOQ' of a given

circle are drawn ; shew that the locus of the second point of intersection

of the circles POQ, P'OQ' is a circle.

136. ABGD is a cyclic quadrilateral and the sides AB, GD meet in J'J,

the sides AD, BC in F and the diagonals AG, BD in G. Shew that, if GK
is drawn perpendicular to EF, K will be on the circles ABE and GI)F.

137. On the sides AB, AG oi the triangle ABG find two points P, Q
respectively such that BP=PQ = QG.

138. On the sides AB, AG of the triangle ABG find two points P, Q,

respectively such that BP : PQ and PQ : QG are given ratios.

139. Shew that, if a circle cut two of the diagonals of a quadrilateral

harmonically, the circle must be one of a co-axal system whose radical

axis is the line through the middle points of the diagonals, and that it

will cut the other diagonal harmonically.

140. Shew that, if A A', BB', GC be the perpendiculars from the

angular points of the triangle ABG on the opposite sides, and if a, /3, y
be the orthocentres of the triangles AB'G', BG'A\ GA'B'] then will the

triangle a/37 ^^ equal in all respects to A'B'G' and A'a, B'[i, G'y will meet
in a point and bisect each other.

141. Two circles touch each other internally at 0, and a line cuts

them in ^, D and B, G respectively. The tangent at A intersects the
tangents at B and G in G and E respectively, and the tangent at I>

intersects the tangents at B and G in F and H respectively. JProve that

OA, OD bisect the angles GOE, i^'Oii" respectively, and that E, F, G, H
are on a circle which touches the given circles at 0.

142. The locus of the point of contact of two circles which touch one
another and also two given circles is a circle co-axal with the given
circles.

143. Draw a straight line to cut four given straight lines so that the
three intercepted portions may be proportional to three given straight

lines.

144. Draw through a given point P a line cutting the sides BG, CA,
AB of the triangle ABG, or these sides produced, in the points I), E, F
respectively such that DE : EF may be equal to a given ratio.

27—2
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145. From the angular points of a triangle ABC tangents AP, BQ,
CR are drawn to a given circle. Shew that, if one of the rectangles

AP.BG, BQ. CA, CR.AB be equal to the sum of the other two, the
circle ABC will touch the given circle.

146. Two given circles are such that a triangle ABC can be inscribed

in one and circumscribed about the other. The tangents &t A,B^G form
another triangle PQR. Shew that the circum-circle of PQR, for all

possible positions of ABC, will touch a fixed circle.

147. Construct a triangle having given the base, the ratio of the
other sides, and the angle between the medians through the extremities

of the base.

148. Prove that, if a straight line PQRS be drawn intersecting the
sides of a square in order in P, Q, R, S so that PQ . RS =PS . QR, then
will PQRS touch the circle inscribed in the square.

149. Shew that, if a variable circle pass through a given point and
cut a given circle at a given angle, it will touch another fixed circle.

150. Draw a circle of a given co-axal system so as to cut a given
circle orthogonally.

151. Shew that, if the polars of any point P with respect to two given
circles meet in P', then will PP' be bisected by the radical axis of the
given circles.

152. Shew that, if P be a given point within the angle formed by two
given straight lines AX, A Y, and if tlie tangent at P to the circle which
passes through P and touches AX, AY cut the lines in B, C respectively;

then will the perimeter of ABC be less than that of any other triangle

cut off from the given lines by a line through P.

153. Shew that all circles whose centres lie on a given straight line

and which cut a given circle orthogonally are co-axal.

154. From any point P on the bisector of the angle A of the triangle

ABC the perpendiculars PA', PB', PC are drawn to the sides BC, CA,
AB of the triangle ; shew that PA' intersects B'C on the median through
A.

155. Shew that the lines joining the middle points of the sides of a
triangle to the middle points of the corresponding perpendiculars meet in

a point.

156. If ^^» jBJ5, CF be any three lines through a common point
which meet the sides BC, CA, AB of the triangle ABC in D, E, F
respectively, and HA', B', C be the middle points of BC, CA, AB
respectively, then the lines joining A', B', C to the middle points of AD,
BE, CF will meet in a point.

157. Shew that, if the parallelogram PQRS be inscribed in the
triangle ABC so that PQ is on BC and the sides QR, SP are parallel

to AK, then will the centre of the parallelogram be on a line parallel to

AK and midway between AK and the middle point of BC.
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158. Shew that all circles which cut two given circles at equal angles
are cut orthogonally by the same circle.

159. Shew that, if a circle touch two given circles, its radius is in a
constant ratio to the distance of its centre from the radical axis of the
given circles.

160. Any circle is drawn through one of the limiting points of a
co-axal system so as to touch one of the circles of the system ; shew that

it cuts any other circle of the system at a constant angle.

161. Any circle which touches two given non-intersecting circles

will cut a fixed circle co-axal to the given circles at a constant angle.

162. All circles which cut two given non-intersecting circles at

given angles will touch two fixed circles co-axal with the given circles.

163. A straight line cuts the sides BG, CA, AB of the triangle ABC,
produced if necessary, in the points D, E, F respectively. Shew that if

FD : DE be equal to a given ratio, the circles ABC, FBD, DEC, FAE
will meet in a point.

164. Draw through a given point a straight line such that the
rectangle contained by the perpendiculars upon it from two other given
points may be equal to a given square.

165. A given line EF is such that its square is equal to the sum of

the squares of the tangents drawn from E and F to a given circle which
is not cut by EF or EF produced. Prove that an iufinite number of

quadrilaterals can be inscribed in the circle of which EF is the exterior

diagonal.

166. Shew that the locus of a point whose polars with respect to

three given circles meet in a point, is the circle which cuts the three

given circles orthogonally.

167. The centres of similitude of two circles are joined to any point

on one of the circles and the joining lines intersect the other circle in

the points P, 2^ and Q, Q' respectively. Shew that one of the two pairs

of chords PQ, P'Q' and PQ', P'Q will meet on the radical axis of the

circle, and the other pair will cut the line of centres in fixed points.

168. Shew that, if a triangle ABC is inscribed in a circle of a co-axal
system, and if the sides BC, CA, AB touch circles of the system in the
points A', Y, Z respectively, then will AX, BY, CZ meet in a point.

169. Shew that, if A', B', C be the points of contact of the in-circle

of the triangle ABC, AABC<t4tAA'B'C'.

170. Two straight lines cut a pair of opposite sides of a cyclic

quadrilateral in four points which lie on a circle ; shew that these lines
will cut the other pair of opposite sides, and also the diagonals of the
quadrilateral, in four cyclic points, and that all these circles are co-axaL
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171. Two straight lines are drawn to cut two given circles in the
points P, Q, R, S and P', Q\ R', S\ so that P, Q, P', Q' are on one circle

and R, S, R\ S' on the other. Shew that PQ', F'Q cut RS\ R'S in four

points which lie on a circle co-axal with the given circles.

172. If any st. line be drawn to cut two given circles in four

points and the tangents to the circles at the points of section be drawn,
the four points in which a tangent to one of the circles intersects a
tangent to the other all lie on a circle co-axal with the given circles.

173. If a St. line cut two given circles so that the intercepted

chords are in a given ratio and the tangents to the circles at the points
of intersection be drawn, a tangent to one of the circles will meet a
tangent to the other circle on a fixed co-axal circle.

174. Shew that the chords of contact of the four common tangents
of two given non-intersecting circles which are not perpendicular to the

line of centres will pass through the limiting points of the circles.

175. -A. chord AB of the outer of two circles touches the inner in G,

and cuts their radical axis in D; shew that AD : BD=A(P : GB'^.

176. Through one of the limiting points of a co-axal system any
straight line is drawn cutting a fixed circle of the system in two points

;

shew that the rectangle contained by the distances of these points from
the radical axis is constant.

177. Shew that, if the in-circle and the circum-circle of a triangle be
given, the loci of the nine-point centre, the orthocentre and the centroid

of the triangle are all circles.

178. The in-circle of the triangle ABG touches BG in D, and P is the
pole with respect to the in-circle of the line which bisects AB and AG;
shew that DP is equal to the radius of the escribed circle which touches
BG externally.

179. A is one of the points of intersection of two given circles, and
AP, AQ are chords of the two circles which make a constant angle with
one another; shew that if the parallelogram PAQT be completed the
locus of T is a circle, and that the locus of a point which divides PQ
in a constant ratio is also a circle.

180. Oj, O2, O3 are the centres of the escribed circles of a triangle,

and A', B\ G' are the middle points of its corresponding sides; shew
that 0^A\ OgB', O3C" meet in a point.

181. Describe a circle to cut two given circles orthogonally and to

touch a third given circle.

182. Describe a circle to touch two given circles and to cut a given
circle orthogonally.

183. Shew that if the transverse common tangents to two given
circles be perpendicular to the direct common tangents, the eight points

of contact of the four tangents will lie on two straight lines.
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184. Points P, Q are taken one on each of two given non-inter-

secting circles and PQ subtends a right angle at a limiting point of the
given circles ; shew that the tangents at P and Q intersect on a fixed

circle co-axal with the given circles.

185. The line joining the centres of the cu'cum-circle and the
in-circle of a triangle will pass through the orthocentre and the
centroid of the triangle formed by joining the points of contact of the

in-circle.

186. The in-circle of the triangle ABC touches the sides in D, E, F.

Shew that the algebraic sum of the perpendiculars from i>, E, F on the

line joining the circum-centre and the in-centre is zero.

187. Shew that, if the vertices of a variable triangle of constant
species move on fixed straight lines, every point invariably connected
with it moves also on a fixed straight line. And, if the sides of a
variable triangle of given species pass through fixed points, every line

invariably connected with the triangle will also pass through a fixed

point.

188. In a given circle inscribe a quadrilateral whose three diagonals
are of given lengths.

189. Shew that an infinite number of triangles can be described such
that each has the same circum-circle, nine-point circle and polar circle as

a given triangle.

190. From two points P, P' which are inverse points with respect to

a circle, perpendiculars PX, PY, PZ, and P'A", P'Y', P'Z' are drawn on
the sides of any triangle inscribed in the circle ; shew that the triangles
XYZy X'Y'Z' will be similar.

191. AOD, BOE, COF are the perpendiculars of the triangle ABC
and A', B\ C are the middle points of the sides, also X, Y, Z are the
middle points of EF, FD, DE respectively

;
prove that the pedal lines of

]), E, F with respect to the triangle A'B'C and the pedal lines of

A', B', C with respect to the triangle DEF all pass through the in-centre

of the triangle XYZ.

192. Shew that an infinite number of triangles can be inscribed in a
circle so that each of its sides will pass through one of the vertices of a
triangle which is self-polar with respect to the circle.

193. X and Y are two circles and is one of their limiting points ; a
variable tangent to Y is drawn cutting X in the points P, Q. Prove that
the circle OPQ touches a fixed circle concentric with X

194. Two given circles 0, 0' intersect in the points A, B, and from
any point P on the circle the lines PA, PB are drawn cutting the

circle 0' ap;ain in the points Q, R respectively ; shew that (1) the loci of

the circum-centre, the orthocentre, and the centroid of tlie triangle PQR
are circles, and (2) that the circle PQR touches a fixed circle.
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195. Prove that with four given straight lines, three distinct cyclic

quadrilaterals can be constructed, that their areas are equal, that the six

diagonals which intersect within the circle are equal in pairs ; and that,

if Z, m, 11 be the lengths of these different diagonals, S the area of the
quadrilateral and B the radius of the circle, 4:RS= lvm.

196. Shew that, if A', B\ C are the middle points of the sides of the
triangle ABC, and D, E, F the feet of the perpendiculars, and if EG\
FB' intersect in a and similarly for ^ and y, also if B'G\ EF intersect

in a' and similarly for ^ and 7'; then will (1) the points a, ^, 7 lie on
SN, (2) the lines Aa\ 2i/3', Cy' will all be perpendicular to SN, (3) the
points A, a, ^\ y' will lie on a straight line, and (4) a'^'y' is self-polar

with respect to the nine-point circle.

197. Prove that the polar circles of all the triangles formed by five

straight lines are cut orthogonally by the same circle.

198. AD, BE, CF are the perpendiculars of the triangle ABC. The
projections of E and F on BC are X, X' respectively, the projections of
F and D on CA are Y, Y' respectively, and the projections of D and E
on AB are Z, Z' respectively. Shew that a circle will pass through the
six points X, X' , Y, F, Z, Z'

.

199. F>, E, F are the feet of the perpendiculars of the acute-angled
triangle ABC. From any point P on BC, PQ is drawn parallel to DE
to meet CA in Q, then QK parallel to EF to meet AB in R, then BS
parallel to FD to meet BC in S, ST parallel to DE to meet CA in T
and TU parallel to EF to meet AB in U. Shew that UP is parallel to
FD, and that the perimeter of PQBSTU is double the perimeter of the
triangle DEE.

200. ABCD is a cyclic quad, and from the intersection of the
diagonals perpendiculars OP, OQ, OR, OS are drawn to the sides
AB, BC, CD, DA respectively. Shew that the sides of PQRS are
equally inclined to the sides of ABCD on which they meet. Shew also
that, if points P', Q', R\ S' are taken on AB, BC, CD, DA respectively,
such that P'Q' is parallel to PQ, Q'R' to QR and R'S' to RS, then S'P'
will be parallel to SP, and the rectangle contained by the perimeter of
P'Q'R'S' and the radius of the circle ABCD will be equal to the rectangle
AC.BD.
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BOOK XL

DEFINITIONS.

1. A finite portion of space regarded as separatedfrom the

rest, is called a solid.

2. T/ie boundary of a portioyi of space, tlmt is of a solid,

is called a surface.

3. A plane surface^ or a plane, is a surface such tluit

the straight line joining any two points on the surface will lie

entirely on the surface.

4. Two straight lines which are in the same plane, and
which do 7iot meet however far tliey a/re produced, are said to

be parallel.

5. Parallel planes are planes which do not meet however

far they are produced.

6. A straight line is said to be parallel to a plane
when it does not meet the plane however far they are both

produced.

7. A straight line is said to be at right angles to

a plane when it is at right angles to every straight line which

lies in the jylane and nwets it.

Postulate I. A ])lane can be drawn through any straight

line.

Postulate II. A j^lane can be tur7ied round any indefinite

straight line uj)on it until it passes through any given point.

PROPOSITION I.

One part of a straight line cannot lie in a plane and
another jmrt without it.

This follows immediately from the definition by which a straight line

given in the plane lies in it throughout its whole extent. It has been

taken for granted from the beginning. For example, in EucUd i. 2, it

is assumed that BD when produced must intersect the circle GEF^ which
implies that it cannot leave the plane of the circle.

Again, in Book I, Prop. 4, AB is placed on DE so that the lines

coincide to begin with, and it is necessarily assumed that they cannot
afterwards separate.
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PROPOSITION II.

Two straight lines which intersect are in the same plane^
and three straight lines which intersect two and two are in the
same plane.

Let PQ, jRS be two straight lines which cut one another
in A, and let XT be a third straight line which cuts FQ, MS
in B, C respectively. Then it is required to prove that FQ, RS
are in the same plane, and that FQ, FS, XY are in the same
plane.

Let any plane pass through the straight line FQ, and let

this plane be turned about FQ produced indefinitely until it

passes through the point C.

Then, since the points A, C are on this plane, the straight

line ^C is wholly on the plane.

Hence the two intersecting lines FQ and RS lie on a
plane.

Also, since B and C are in the plane through FQ and RS,
the straight line BG is wholly in that plane.

Hence the three straight lines FQ, RS, XY, which inter-

sect two and two, lie on the same plane.
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It follows from the above proof that one, and only one, plane can be

drawn:

(1) to pass through any three points which are not in the same
straight line;

(2) to pass through a given straight line and a given point not on
the line

;

(3) to pass through two intersecting straight lines

;

(4) to pass through two parallel lines.

Lines or points which are in the same plane are said to he co-planar.

Since any three points lie on a plane, a triangle is necessarily a
plane figure. Four points are, however, not necessarily co-planar, and
therefore a quadrilateral is not necessarily a plane figure.

A quadrilateral ichich is not in a plane is called a skew quadrilateraL

PROPOSITION III.

If two planes cut one another their common section is a
straight line.

Let A, B he any two points common to two planes.

Then, by definition, the straight line AB throughout its

whole extent will lie on both planes.

Moreover no point which is not on the straight line AB
can be on both planes, for only one plane can be drawn
through a straight line and a point not on that line.
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PROPOSITION IV.

A straight line ivhich is 2^^'i'pendicular to each of two
intersecting straight lifies at their 2)oint of intersection^ is

2)e7'pendicular to the plane in which they lie.

Let J.B and AC be two intersecting straight lines and let

FA be perpendicular to each of them. Then it is required to

2)rove that PA is perpendicular to the 2ylane BA C.

P

Through A draw any other line AX in the plane BAG.

Join BG and let it cut AX in />.

Produce FA below the plane to Q so that AQ=^FA.
Join FC, FB, FB, QC, QB, QB.

Then, in the A« FAC, QAC
FA = QA, AC is common, and rt. ^ FAG = rt. ^ QAG

;

Similarly Pi? = (?i?.

Again in A« I'BC and QBC,

FB = QB,BG = BG EindFC^QG;
:. AFBG^ /.QBC.

Hence, in A« FBB and QBB,

FB = QB, BB = BB and included /. FBB = included /. QBB
;

/. FB = QB.

And, since FA = QA, AB - AB and FB = QB;

/. /.FABr^ ^ QAB, and /. both are rt. Z.\

.-. FAQ is ± ' to AB.

Thus, if FA is ± ' to ^7? and to ^C, it is ± '^ to any other

straight line through A which is in the plane BAG,
therefore j.' to the plane BAG.

md
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PROPOSITION y.

If three straight liTies meet in a jyoint mid if a fourth

straight line through that ])oint is perjyendicular to each of

theniy the three straight lines must lie in a plane.

Let the straight line AP be perpendicular to each of the

three straight lines AB^ AC, AD, Then it is required to

prove that AB, AC, AD lie in a plane.

For, if possible, let ^D be not in the plane through

AB and AC.

Let a plane be drawn through AP and AD and let it cut

the plane JJAC in the line AX.

Then, since AP is ± ' to both AB and ^C7, it is ± "" to the

line AX which lies in the plane BAG.

Hence the angles PAD and PAX are both right angles,

which is impossible, since they are both in the plane PAD.

Therefore AD must itself lie in the plane BAG.

The proposition can be enunciated as follows :

* The locus- of the lines dratvn perpendicular to a given

straight lin£ through a given point on it, is a plane.'

The following constructions are important and their results of

frequent use. The solution of 5 gives the centre of a sphere through
four given points.

Ex. 1. Through a given point on a given straight line draw a plane
perpendicular to the given straight line.

Ex. 2. Through any point draw a plane perpendicular to a given

straight line.
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Ex. 3. The locus of a point which is equally distant from two given
points is the plane which passes through the middle point of the straight

line joining the two given points and its perpendicular to that straight

line.

Ex. 4. Find the locus of the points which are equidistant from three

given points. When are there no such points ?

Ex. 5. Find the point which is equidistant from four given points.

When is this impossible ?

PROPOSITION VI.

Two straight lines which are perpendicular to the same
plane ^nust he parallel.

Let the straight lines AB and CD be perpendicular to the

same plane. Then it is required to jyrove that AB andj CD are

parallel.

Let AB^ CD meet the plane XF, to which they are both
perpendicular, in the points B^ D respectively.

Join BD. Then AB, CD are both j.
"^ to the plane XT,

and BD is in the plane XY

\

:. Z. « ABD and CDB are rt. Z «.

And, since Z ^ ABD and CDB are together equal to two
rt. Z. ", it follows that AB and CD must be parallel provided

that they are in the sam,e plane.

Through D draw EDF in the plane XY and x ' to BD,
making DE = DF.

Join BE, BF, AE, AD, AF.

Then the sides BD, DE and the included Z BDE of the

A BDE are equal respectively to the sides BD, DF and the

included Z BDF of the A BDF.
Hence BE = BF.

Since ^^ is x' to the plane XY, Z ABE =it. /. = /. ABF.
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Tiius AB, BE and the included Z ABE of the A ABE
are equal respectively to AB^ BF and the included /i ABF of

the A ABF.

neiice AE:=AF.

Then, because AD^ DE^ AE are equal respectively to

AD, DF, AF;

.-. Z ADE= Z. ABF, so that ED is at rt. Z» to i4Z>.

But Z EDB = Yt. Z (const.), and Z EDC = rt Z , since

Ci> is ± ' to plane BDE.

Thus J'Z) is 1 ' to i52), AD and CZ)

;

.•. CD lies in the plane through AD and 7^/9. [XI. 5.

But ^j5 is in the plane through AD and BD

;

[XI. 2.

/. ^5 and CD are both in the plane ADB.

And the Z « ^^/> and CZ>i5 are rt. Z »

;

/. ^j5 is parallel to CD.

[The student will find it helpful to construct solid figures with
cardboard, thread and sticks or wires to illustrate this and some other of

the more difficult propositions.]

PROPOSITION VII.

If two straight lines be parallel, the straight line drawn
from any point in the one to any point in the other, is in the

plane of the parallels.

This follows from the definition of a plane.
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PROPOSITION VIII.

If a straight line is at right angles to a plane^ any 'parallel

straight line will be at right angles to the same plane.

Let AB, CD be any two parallel lines, and let ^^ be
perpendicular to the plane X Y. Then it is required to prove
that CD is perpendictdar to tJie plane XY.

Let the parallel lines meet the plane XY in the points
J5, D respectively. Join BD.

In the plane XY draw EDF x'^ to BD^ and make
ED= DF.

Join BE, BF, AE, AD, AF.

Then, since BD, DE and the included /. BDE are equal
respectively to BD, DF and the included /. BDF,

/. BE=^BF.

And, since AB is j."^ to the plane in which BE and BF
lie, Z ^^^=rt. Z - Z ABF.

And, since AB, BE and the included Z ABE are equal
respectively to AB, BF and the included Z ABF,

.\AE=AF.
Then, since AD, DE, EA are equal respectively to

AD, DF, FA,

Z ADE= Z ADF, and /. each is a rt. Z.

.'. ED is X ' to AD, and it was drawn ± "^ to BD.

/. ^2> is x"- to the plane ADB.
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But since AB and CD are parallel, CD must be in the
plane ABD

\

.% GD\& J. ' to DE,

But, since AB and CD are ||, and ^^ is x"^ to i?i>,

(7Z> must also be ± ' to BD.

Hence CD is ± ' to the plane through DB and DE, that
is to the plane to which AB is perpendicular.

PROPOSITION IX.

Straight lines which are 2^ii'<^IgI io the same straight line

are lyarallel to otie anotJier.

X

H

Let each of the lines AB^ CD be parallel to the line XY.
Then it is required to j^i'ove that AB arid CD are parallel to

one another.

[The case when the three lines are all in one plane has
already been proved.] [I. 30.

Take any point H in XY, and in the plane of the H"

XY, CD draw IIF i. ' to XY cutting CD in F.

Also in the plane of the IP XY, AB draw HE x' to XY
cutting AB in E.

Then, since XH is ± "^ to HF and to HE, XY must be

J.
"^ to the plane EHF.

But AB and CD are each of them || to XY

)

:, AB and CD are also ± "^ to the plane EHF; [XI. 8.

.-. AB is 11 to CD. [XI. 6.

Ex. 1. Shew that the middle points of the sides of a skew quadri-

lateral are at the angular points of a parallelogram.

B. E. 2d>
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PROPOSITION X.

I'he angles hetween any Uvo intersectiJig straight lines are

equal to the angles hetween any other two intersecting straight

lines which are parallel to them resj^ectively.

Let the straight lines AB, CD wliich intersect at E be

II respectively to the straight lines XY^ ZW which intersect

at 0. Then it is required to prove that the angles hetween

AB and CD are equal respectively to the angles hetween

XY and ZW.

Join EO^ and in the plane of the H^ AB, XY, draw any
line KL \\ to EO so as to cut AB, XY in the points K, L
respectively.

Also in the plane of the parallels CD, ZW draw any line

MN II to EO so as to cut CD, ZW in the points Jf, N
respectively.

Then, EOLK is a ||'" by construction,

/. KL is equal and parallel to EO.

Similarly MN is equal and parallel to EO.

Hence KL is equal and parallel to i/if

;

[XI. 9.

.-. KLNM is a 1|>" and KM = LN.

Then, since KE = LO, EM= OiYand KM=LN\
/. Z KEM=^ Z LON,

and .-. also Z KEG ^ Z LOZ.
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Cor. If through any point P on the line of intersection

of two given planes, tivo straight lines he drawn, one on each
plane, perjyendicular to the line of intersection, the arigles

between these lines tvill be constant for all j^ositions of P.

Def. The angles between two planes are the angles

between tlie straight lines draivn in the planes through any
point of their line of intersection and perpendicidar to that

line. Such an angle is called a dihedral angle.

Def. Two planes are at right angles when the two
lines, drawn in the planes through the same point on their line

of intersection and perpendicular to that line, are at right

angles to one another.

If P is any point on the line of intersection AB oi two
perpendicular planes, and PQ, PR are drawn in the planes

perpendicular to APB, then PQ and PR are at right angles,

by definition ; also PQ and PR are at right angles to APB.

Hence PQ, PR are at right angles to the planes ABR, ABQ
respectively.

Thus we have the alternative definition.

Def. T'wo jjlanes are at right angles when a lin^ dratun
in one of the planes perjyendicular to their line of intersection

is perpe'ndicular to the other plane.

Def. The angle between two straight lines which are not

parallel, and tvhich do not intersect, is the angle between two
straight lines drawn through any point parallel respectively to

those straight lines.

It should be noticed that the last definition could not have been
given until it had been proved that the angle between two straight lines

drawn through any point, parallel respectively to two given straight

lines, is a constant angle.

28—2
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PROPOSITION XI.

To draio a straight line perpendicular to a plane from a
given point without it.

Let P be the given point without the given plane MN.
Then it is required to draw a line through P perpendicular to

the plane MN.

Draw any line XY va. the given plane MN, and draw
FA ±^toxr.

Through A draw AZ in the plane MN ± ^ to XY.

Then, if PA were ^.^ to AZ, it would be ± '' to two lines

in the plane MN, and would /, be the line required.

But, if PA be not ± ^ to AZ, draw PB ± ^ to AZ.

Then PB will be the line required.

In the plane MN draw CBD \\ to XY.

Since by construction XY \^ ±^ to ^P and io AZ, XY i^

± * to the plane PAZ.

Hence CBD, which is H to XY, is also x'^ to the plane

PAZ;
:, PBm A.' to CB.

But PB is also ± -^ to ^^

;

/. P^ is 1.' to the plane ABC.

Def. 2^he projection o/ a point on a plane is the foot

of the perpendicular drawnfroTn the point to the plane.

If a straight line PA meet a plane MN in the point A,

and B is the projection of P on the plane, it is easily seen



BOOK XL 437

that the projection on the plane of any other point on tlie line

PA will lie on the line AB. Thus the projection of a straight

line on a inlane is a straight line.

Def. The angle between a straight line and a
plane is the angle between the straight line and its 2yrojection

on the plane.

Ex. 1. Shew that the shortest straight line drawn from a given point
to a given plane is the perpendicular from the point to the plane. Shew
also that all the lines through a given point which make the same angle
with a given plane are equal in length ; and that the line which makes a
greater angle with the perpendicular is greater than that which makes
a less angle.

Ex. 2. A line AB meets a plane at B, and BC is projection of J^ on
the plane. Shew that the angle ABC is less than the angle between AB
and any other line on the plane drawn through the point B.

Ex. 3. Shew that the angles between two planes are equal to the

angles between the perpendiculars drawn to the planes from any point.

Ex, 4. Any number of planes have a common line of intersection.

Shew that the feet of the perpendiculars on the planes from any point lie

on a circle.

Ex, 5. Shew that parallel straight lines make equal angles with the

same plane.

Ex. 6. Shew that the angle between two given planes is equal to the

angle between any two planes parallel respectively to the given planes.
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PROPOSITION XII.

To draw a straight line perpendicular to a given planefrom
a given point on the plane.

Let P be the given point on the given plane MN. Then
it is required to draw a line through P perpendicular to the

plane MN,

Through P draw in the given plane any line PX and
a x'^ line PY.

In any other plane through PX, draw the line PZ ± ' to

PX
In the plane through PY and PZ draw PQ ± "^ to PY.

Then PQ will be l '^ to the given plane MN.

For, since PX is ± >• to PY and to PZ,

PX is i.
•• to the plane YPZ, and .'. to PQ.

Hence PQ is ± " to PX and to PF, and /. to the plane

XPY, which is the given plane MN.

Ex. 1. Through a given point draw a plane perpendicular to a given
plane.

Shew that an Infinite number of such planes can be drawn. Draw a
plane through two given points perpendicular to a given plane.

Ex. 2. Through two given points on a given plane draw a plane
making a given angle with the given plane.

Ex. 3. Draw the planes which bisect the angles between two given
planes.
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Ex. 4. Shew that the locus of a point whose perpendicular distances

from two given planes are equal is one or other of the two planes which
bisect the angles between the given planes.

Ex. 5. Find the locus of points which are equidistant from three

given planes. [Shew that the complete locus is four straight lines.]

Ex. 6. Find all the points which are equidistant from four given
planes. How many such points are there?

PROPOSITION XIII.

From the same point tliere cannot he drawn two straight

lines i)erj)endicnlar to a given plane.

Let A be the given point and MN the given plane. Then
it is required to 2)rove that the two lines AB^ AC cannot both he

perpendicular to MN.

Fig. 1. Fig. 2.

Draw a plane through ABj AC and let it cut the plane
J/iV in the straiglit line XY.

Then, in fig. 1, where A is on the plane J/iT, if AB and
AC were both ±' to MX, the Z' BAY, C^F which lie in a

plane would both be rt. Z ^, and this is impossible.

And, in fig. 2, where A is not on the plane, ii AB and AC
were both ± ' to MX, the Z « A BC, ACB in the A ABC would
boll I be rt. Z ^, which is impossible.
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PROPOSITION XIV.

Planes to which the same straight line is per^^eudicular are

parallel.

Let AB be perpendicular to each of the planes XY, 2W,
Then it is required to prove that the planes XY, ZW are
parallel.

r^iw

LJU'
For if the planes were not parallel they would meet.

And, if any common point, C suppose, were joined to A and By
AB would be i."^ to AG and to BC since it is x'^ to both
planes, so that two angles in the A ABC would be right

angles, and this is impossible.

Hence the planes XF, ZW cannot have a common point,

that is, they must be parallel.

PROPOSITION XV.

If a pair of intersecting straight lines he parallel respectively

to another pa^r of intersecting straight lines, the flane through
the first pair is j^cirallel to the plane through the second jmir.

Let the straight lines AB, BG be H respectively to the
straight lines DB, EF. Then it is required to prove that the

plane ABC is parallel to the plane DEE.
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Through B draw a line BG ± '^ to the plane DEF.

In the plane DEF draw GH, GK parallel to ED, EF
respectively.

Then, since AB and i/6^ are both || to DE, they are || to

one another.

Hence sum of Z « GBA, BGII^ 2 rt. Z «.

But Z ^6'iy is a rt. Z , since i?6^ is ± "^ to plane ^6?ir.

Hence Z 6^i5^ is a rt. Z

.

So also Z (y^C is a rt. Z

.

Hence 6^J5 is x ' to the plane ABC.

But GB is also ±' to the plane DEF; .•, the planes ABC,
DEF, which have a common perpendicular, must be parallel.

PROPOSITION XVI.

Two 'parallel planes are cut by a third plane in parallel

straight lines.

Let the parallel planes AB, CD be cut by any other plane

in the lines EF, GH. Then it is required to prove that EF
and GH are parallel.

D
F r-^-^H-

For every point on EF is on the plane AB, and every

point on GU is on the plane CD. Hence, if EF, GH had a

common point when produced, the platies AB and CD would
have a common point, and this is impossible, since the planes

^^and CDsive ||.

Hence EF and GH cannot meet when produced, and by
supposition they are in the same plane.

/. EF is II to GH,
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Ex. 1. Two planes which are parallel to a third plane are parallel to

each other.

Ex. 2. Through a given point draw a plane parallel to a given

plane.

Ex. 3. Shew that, if a straight line is perpendicular to a plane, it is

perpendicular to any parallel plane.

Ex. 4. Shew that, if a straight line is parallel to a plane, it is

parallel to any parallel plane.

Ex. 5. Shew that, if a straight line is parallel to any straight line on
a given plane, it is parallel to the plane.

Ex. 6. Shew that, if a given straight line be parallel to a given

plane, any plane through the line will cut the given plane in another

straight line parallel to the given line.

Ex. 7. Shew that, if a straight line be parallel to a plane, a parallel

line drawn through any point on the plane will lie entirely on the plane.

Ex. 8. Shew that, if a straight line is parallel to each of two planes,

it is parallel to their line of intersection.

Ex. 9. Shew that the lines of intersection of three planes are either

parallel or concurrent.

Ex. 10. Shew that, if AB, CD are parallel straight lines, any plane

through AB meets any plane through CD in a line parallel to AB
and CD.

PROPOSITION XVII.

If two straight lines are cut by parallel planes, they are cut

in the same ratio.

Let the straight lines ABC, DEF be cut by the parallel

planes PQ, US, UV in the points A, B, C and D, E, F
respectively. Then it is required to prove that

AB'.BC^DE'.EF.

.zfel
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Join CDj and let CD cut the plane RS in the point G.

Join AD, BG, GE, CF.

Then the 1|
planes PQ, RS are cut by the plane ACD in

the lines AD^ BG
;

/. AD is 11 to BG.

So also 6'i^ is 11 to GE.

Since BG is || to AD, AB\BC = DG \ GC.

Also, since GE is jl to CF, DG:GC = DE : EF.

But ratios which are equal to the same ratio are equal to

one another

;

:,AB\BG = DE'.EF,

Ex. Shew that parallel planes intercept equal lengths from parallel

lines.

PROPOSITION XVIII.

Every plane which passes through a liiie at right angles to a

given plane is at right angles to that plane.

Let AB be .l"^ to the plane J/iV, and let ABC be any
plane through AB which cuts the plane J/iV in the line BC.
Then it is required to prove that the plane ABC is at right

angles to the plane MN,

-,N

M

In the plane MN draw the line BD j. '" to BC.

Then, since AB is ± " to the plane MN, AB is ± ' to BD
which lies in that plane.

Hence the lines AB, BD, which are drawn in the planes

ABC, MN respectively at right angles to BC their line of

intersection, are x'^ to one another.

Hence, by definition, the planes ABC and MN are at right

angles to one another.
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PROPOSITION XIX.

I/each of two planes he at right angles to a third plane^ their

line of intersection will he at right arigles to the third plane.

Let ^^ be the line of intersection of two planes each of

which is J.
'^ to the plane J/TT. Then it is required to prove

that AB is ± ^ to the plane MN.
A

Let BG^ BT) be the lines of intersection of MN with the

two planes through AB.

In the plane CBD draw BX, BY ±^ to BG, BD respec-

tively.

Then, since the planes ABC, CBD are at right angles, and
BX is drawn in the plane CBD ± " to their line of intersection,

BX is ± ^ to the plane ABC.
Hence ^^ is ± '' to BX.
So also ^^ is ±^to J5r.

Hence AB\^ ± '^ to the plane in which BX^ ^F lie, that is

to the plane MN,
Definitions. A polyhedron is a solid hounded on all

sides hy planes.

The planes which hound a polyhedron are called its faces.

The straight lines in which the faces of
a polyhedron intersect one another are called

its edges.

The points where three or more edges of a
polyhedron meet are called its vertices.

A solid angle is hounded hy three or more planes which
TYieet in a point.

A convex solid is a solid no planeface of which would if
produced cut the solid.
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PROPOSITION XX.

If a solid anyle be contained hy three plane angles^ the sum
ofany two of them is greater than the third.

'5 D <^^>v
Y Z

Ijet the solid angle at be bounded by the three planes

YOZ^ ZOX, XOY which intersect in pairs in the lines OX,
OY, OZ. Then it is required to prove that the sum of any two

of the three angles YOZ^ ZOX^ XOY is greater than the third.

Ijet the Z YOZ be greater than either of the other angles,

then it is only necessary to prove that Z YOZ is less than the

sum of the Z

«

ZOX and XOY.

In the plane YOZ make Z YOD - Z YOX.

Through D draw a line in the plane YOZ cutting Y^ OZ
in the points 7i, G respectively. Take a point A on OX such
that OA - OD.

Then OA, OB and included Z AOB are equal to OD, OB
and the included Z BOB

;

/. BD = BA.

But BG is less than the sum of BA and AG
;

/. J)G is less than AG.

Then, V OD = OA, OG is common, and DG<AG ',

,\ Z DOG < Z AOG.

But Z BOD==ZBOA;

/. whole Z ^0(7 < sum of Z « ^0^ and AOG.

Cor. 7/* a so^tc? a?i^?e is bounded by any member ofplane
angles any one of these is less tlian the sum of all the others.
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PROPOSITION XXT.

Every solid angle^ of a convex solid, is contained by plane

angles which are together less than four right angles.

Let any plane cut the planes bounding the solid angle at

in the lines AB, BG, ..., FA.

Take F any point in the plane ABGDEF^ and join FA^
FB, ..., FF.

Then the sum of all the angles of the A*' AOB, BOC, ...,

FOA is equal to the sum of all the angles of the A^ AFB,
BFC, ..., FFA, for the A^ are equal in number!

But, by the previous proposition, if ABCDEF is a convex

polygon, Z FAB is less than the sum of /.^ FAO and BAO,
and similarly at B, C, F, E, F.

Hence the sum of the angles of the A^ AOB, BOG, ...,

FOA excluding the angles at is greater than the sum of the

angles of the A^ AFB, BFG, ..., FFA excluding the angles

at F.

Hence the sum of all the angles at is less than the sum
of all the angles at P, that is less than four right angles.
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ADDITIONAL PROPOSITIONS.

I. POLYHEDRA.

1. Polyhedra are named according to the number of their plane

faces. For example, a polyhedron bounded by four plane faces is called

a tetrahedron, one bounded by six planes a hexahedron, by eight an
octahedron, by twelve a dodecahedron, and by twenty an icosahedron.

2. A solid bounded by three pairs of parallel planes is called a
parallelepiped.

Since two parallel planes are cut in parallel lines by any other
plane, it is easily seen that the six faces of a parallelepiped are all

parallelograms.

Conversely, if the six faces of a hexahedron are all parallelograms, it

follows from Euclid XI. 15 that the planes of opposite faces are parallel.

A parallelepiped in which each of the three planes ichich meet at a

vertex is perpendicular to the other tico, is called a rectangular parallel-

epiped.

A rectangular parallelepiped in which the three edges which vieet in a
point are equal, is called a cube.

It will be easily seen that the polyhedron bounded by six rectangles
must be a rectangular paralklepipcdy and that the polyhedron bounded
by six squares must be a cube.

The lines joining opposite vertices of a parallelepiped are called its

diagonals.

Thus AE, BF, CG, DH are the diagonals in the above figure.

The following properties of a parallelepiped will be easily proved :

(i) The diagonals of any parallelepiped meet in a point and bisect

each other.

(ii) The section of a parallelepiped by any plane which cuts two
pairs of opposite faces, is a parallelogram.

(iii) The square on a diagonal of a rectangular parallelepiped is equal
to the sum of the squares on the three edges which meet at a vertex.

(iv) If the diagonals of a parallelepiped are all equal, the parallel-

epiped must be rectangular.
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3. A pirramid is a polyhedron all tvlioAS faces hut one meet in a
pointy which is called the vertex of the pyramid, the face opposite to the

vertex being called its base.

The length of the perpendicular drawn from the vertex of a pyramid
on the base is called the altitude of the pyramid.

A pyramid on a triangular base is called a triangular pyramid, and a
pyramid whose base is a square (like the pyramids of Egypt) is called a
square pyramid ; and so on.

A triangular pyramid is generally called a tetrahedron.

It is easily seen that any plane section of a pyramid parallel to its

base is similar to the base.

4. A prism is a polyhedron all hut two of whose faces are parallel to

the same straight line ; the faces which are parallel to the straight lines

are called the sides, arid the other two faces are called the ends of the

prism.

If two planes are both parallel to a given straight line, their line of
intersection must also be parallel to the given straight line. It therefore

follows that, if the two ends of a prism are parallel to one another, the
sides are all parallelograms.

It should be noted that a parallelepiped is a prism with parallel ends.

It is easily seen that all parallel plane sections of a prism, which do
not meet either of the ends, are similar and equal polygons.
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n. TWO NON-INTERSECTING STRAIGHT LINES.

To draic a straight line perpendicular to each of two given non-
intersecting straight lines.

Let AB and CD be the given st. lines.

Through any point E on CD draw the st. line EF \\ to AB.

From any pt. G in AB draw GH ±' to the plane CDF, meeting the
plane in H.

Through H draw HK in the plane CDF \\ to FE or AB to cut CD
in K; then, since AB and HK are parallel, AGHK is a plane. Complete
the ll"" GHKL.

Then, since KL and GH are ||, and GH is l' to the plane CDF, KL
must also be ±' to the plane CDF. Hence LK is x' to CD and to

KH, and .-. also to ^ J? which is || to KH.

Thus the st. line KL meets AB and CD and is perpendicular to both.

The straight line KL is the shortest straight line which joins two
points one on each of the two given lines AB and CD. For, if G be any
other point on A B, the J. ' from G on the plane through CD and a line

parallel to AB will, as we have seen, be equal to LK, and therefore all

points on CD are at a distance from G greater than LK.

Thus the shortest distance between two non-intersecting straight

lines is perpendicular to both lines.

For example, if KL he the line of intersection of two sides of a
room, A' being on the ceiling and L on the floor ; then KL is the
shortest distance between any two straight lines drawn on the ceiling

and floor respectively through K and L.

Ex. Having given three straight lines no two of which lie in a
plane, draw a straight line parallel to one of the lines and intersecting
the other two.

[Let AB, CD, EF be the given lines. Draw EG \\ to AB and let CD
cut the plane FEG in X In the plane FEG draw XY

|| to EF, and let

the plane CXY cut AB in Z. Then a line through Z \\ to YX will

intersect CDX and will be the line required.]

S. B. E. 29
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IIL PROPERTIES OF A SPHERE.

Def. A spbere is the surface generated by the complete revolution of
a semi-circle about its diavieter.

It will easily be seen that the distance of any point on the surface

of a sphere from the centre of the semi- circle is equal to its radius, so

that we have the alternative definition :

—

A sphere is the locus of a point ivhich mooes in space so that its

distance from a certain fixed point, called the centre, is always equal to

a given length, which is called the radius of the sphere.

Any straight line through the centre of a sphere whose extremities are

on the surface is called a diameter of the sphere.

It is obvious that all diameters of a sphere are equal.

It follows from the definition of a sphere that any plane section

through its centre is a circle whose radius is the radius of the sphere.

Def. The section of a sphere by any plane passing through its centre

is called a great circle of the sphere.

Any two planes through the centre of a sphere must intersect along

a straight line through the centre, that is along a diameter of the sphere,

and this diameter is also a diameter of each of the sections ; hence any
two great circles of a sphere must bisect each other.

1. Let ABC be any great circle of a sphere, and let DEF be any plane

section parallel to ABC. Draw the diameter POP' J.' to the plane

ABC, and let it meet the plane DEF at rt. Z ^ in the pt. N.

Let Q be any point on the section of the sphere by thejfplane DEF.
Join NQ and QO.
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Then, since z ONQ is a rt. Z ,

Hence NQ is constant for all positions of Q on the section.

Thus any plane section of a sphere is a circle whose centre is the

projection of the centre of the sphere on the plane of the section.

It follows from the relation

that the radius of any plane section of a sphere becomes smaller and
smaller as the perpendicular distance of the plane from the centre of the

sphere is increased, and that when this perpendicular distance is equal

to the radius of the sphere the section becomes a circle of zero radius.

Thus the plane drawn through a point P on a sphere perpendicular to

the diameter of the sphere through P will toucli the sphere at P.

Def. The extremities of the diameter of a sphere which is jperpen-

dicular to any circular section of the sphere are called the poles of
that circle.

Thus P, P' are the poles of the circles ABC or DEF.
Since the arcs of great circles are proportional to the angles they

subtend at the centre of the sphere, it follows from Euclid XI. 20 and 21
that

(i) The sum of any two sides of a spherical triangle, whose sides are

arcs of great circles, is greater than the third side.

(ii) The sum of all the sides of a convex spherical polygon, whose
sides are arcs of great circles, is less than a great circle of the sphere.

The student will have no difficulty in proving the following pro-

perties of a sphere

:

Ex. 1. Any line drawn through a point P on a sphere perpendicular
to the radius OP will touch the sphere.

Ex. 2. If two spheres are concentric, any tangent plane to the inner

will cut the outer in a circle of constant radius.

Ex. 3. Tlie planes of all small circles of a sphere which are of equal

radius are equally distant from the centre of the sphere and touch a.

concentric sphere.

Ex. 4. If two circles on a sphere bisect each other, they must both
be great circles.

Ex. 5. All points on a plane section of a sphere are equally distant

from the poles of the section.

Ex. 6. If be the centre of a sphere, Q any external point, and
PQ a tangent line to the sphere at the point P which passes through Q,
then will P lie on the plane perpendicular to OQ which meets it in the
point N such that ON . OQ = Sq. on radius of the sphere.

Conversely, if Q be any point external to a sphere whose centre is O
and the point N be taken on OQ such that ON . OQ= Sq. on radius of

the sphere ; then, if P be any point on the section of the sphere by the

plane through N perpendicular to ONQ, the line QP will touch the sphere.

29—2
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Ex. 7. If the distance between the centres of two spheres is less than
the sum and greater than the difference of their radii, the two spheres
will intersect in a circle.

Ex. 8. If the distance between the centres of two spheres is equal to

the sum of their radii, the two spheres will touch one another externally;

and if the distance between the centres is equal to the difference of the
radii, the two spheres will touch internally.

Ex. 9. The locus of the centres of all plane sections of a sphere
which pass through a given point is a sphere.

Ex. 10. The locus of the centres of all plane sections of a sphere

which pass through a given straight line is a circle.

Ex. 11. The locus of a point whose distances from two given points

are in a given ratio, is a sphere.

Ex. 12. If through a given point O any straight line is drawn
which cuts a given sphere in the points P, Q, the rectangle OP, OQ
is constant.

The following problems should also be noted :

Ex. 1. To draw a tangent plane to a sphere from a given external

point.

Let be the centre of the sphere, P the external point, and V the

middle point of OP. Then the sphere whose centre is V and radius

OF or VP will cut the given sphere in a circle, and the tangent plane to

the sphere at any point of this circle will pass through P.

Ex. 2. Tt) draw a tangent plane to a sphere through a given straight

line which does not cut the sphere.

Let O be the centre of the sphere and KL the given straight line.

Through draw a plane ± •" to KL and cutting the sphere in a great

circle and KL in M. Then if P, Q be the tangent lines from 31 to the

great circle, the planes at PKL, QKL will be the planes required.

Ex. 3. Draw a plane so as to touch three given spheres.

It is easily seen that a common tangent plane to two spheres will cut

the line joining their centres in one or other of the two points which
divide that line in the ratio of the radii of the spheres. These points

are called the centres of similitude of the spheres.

It is also easily seen that a plane which passes through a centre of

similitude of two spheres and touches one of the spheres will also touch

the other sphere.

Hence, if jST be a centre of similitude of the spheres A and B, and

L a centre of similitude of the spheres A and C, the planes through the

line KL which touch the sphere A will touch the three spheres A, B
and C

Ex. 4. Through a given point draw a plane to touch two given

spheres.
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IV. THE TETRAHEDRON.

1. The four lines from the vertices of a tetrahedron to the centroids of
the opposite faces meet in a point.

Let
(7i, g^ be the centroids of the faces BCD, CDA respectively.

Then, Bg^ and Ag^ will both pass through K, the middle point of CD.

Hence Ag^, Bg^ are both in the plane ABK, and will therefore meet,
in G suppose.

Then, since Bg^ = 2g^K &nd Ag^= 2g^K,

AAGB=2AKGB = SAg^GB;
.: AG = SGg^.

Thus Ag^ is met by Bg^ in a point G such that Ag^G = g^A, and it can
be proved in a similar manner that Cg^ and Dg^ also pass through the
point G.

Def. The point of intersection of the four lines from the vertices of a
tetrahedron to the centroids of the opposite faces is called the centroid of
the tetrahedron.

2. The four lines through the circum-centres of the faces of a
tetrahedron and perpendicular to the faces will meet in a point.

3. The six planes through the middle points of the edges of a
tetrahedron and perpendicular to the edges will meet in a point.

4. Through each edge of a tetrahedron a plane is drawn bisecting

the angle between the tioo planes which intersect along that edge; shew

that these six planes have a common point which is the centre of the sphere

which touches the faces of the tetrahedron.

5. Eight spheres will touch four given planes which do not meet in

a point and no three of which intersect in a straight line.

6. One sphere will pass through any four points which do not lie

on a plane.
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7. If two pairs of opposite edges of a tetrahedron are at right

angles^ the four lines through the vertices perpendicular respectively to

the opposite faces will meet in a point.

Let Aa, Bb, Cc, Dd be the perpendiculars from A, B, C, D on the

opposite faces of the tetrahedron ABCD, and let AB be perpendicular

to CD, and AC perpendicular to BD.

Join Ba and produce it to cut CD in K.

Then, since ^a is l' to plane BCD,
CD is ± ' to Aa, and it is also l '' to AB

;

.-. CD is J."" to the plane ABa, and /. to AK and BK.

Hence CD is X'' to AK, AB and Bb
;

.-. Bb must be in the plane ABK, so that Aa and Bb lie in a plane and
must therefore intersect.

A

Again, if Ca cut BD in L, BD can be proved in a similar manner
to be l"" to CL, and it is also X "" to Cc, A a and A C, whence it follows

that Aa, Cc, AC and CL lie in a plane, so that Aa and Cc intersect.

And, since CD is I.
"" to BK and BD X ' to CL, the point a must be the

orthocentre of ABC, and BC is X' to aD. But BC is also X"" to Aa
;

.\ BC must be X"" to the plane AaD and therefore X'"to AD. [Thus
if two pairs of opposite edges be X"", the third pair will also be at

rt. z«.]

Then, as before, we can shew that Aa meets Dd.

Thus Aa meets Bb, Cc and Dd, and so also Bb meets Aa, Cc and Dd.

But, if each of Aa, Bb and Cc meets the other two, they must all

meet in a point, for they cannot all lie on a plane.

Hence the four ' perpendiculars ' of a tetrahedron meet in a point

provided two pairs of opposite edges are at right angles.

It should be noticed that when two pairs of opposite edges of a

tetrahedron are at rt. z " (and therefore, as we have seen, the third

pair also at rt. l «), the sum of the squares of one pair of opposite edges

is equal to the sum of the squares of either of the other pairs.
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V. THE REGULAR SOLIDS.

A regtQar solid is a solid hounded by plane faces which are all equal

regular polygons.

We know (1) that three planes at least must meet at any solid angle,
i and (2) that the sum of the plane angles at the solid angle must be less

than four right angles.

Since each of the angles of an equilateral triangle is two-thirds of a
right angle, it follows that three, or four, or five (but not more than five)

equilateral triangles can meet at a point and form a solid angle.

Thus there can only be three (and it can be proved that there are

really three) regular solids whose faces are equilateral triangles.

The regular solids whose faces are equilateral triangles are the tetra-

hedron, the octahedron and the icosaliedron.

Only three squares can meet at a point to form a solid angle, for the

sum of all the plane angles at a solid angle must be less than four right

angles.

The regular solid whose faces are squares is the cube.

ZCZTI

Three, but not more than three, regular pentagons can meet at a
point to form a solid angle, for an angle of a regular pentagon is six-fifths

of a right angle.
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There is a regular solid whose faces are regular pentagons, namely
the dodecaliedron.

Three of the angles of a regular hexagon are together equal to four

right angles, and three of the angles of a regular polygon of more than
six sides are greater than four rt. angles.

Hence no regular solid can be formed whose faces are regular polygons
of more than five sides.

Hence there can only he jive regular solids.
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MISCELLANEOUS EXERCISES.

1. Shew that every plane section of a parallelepiped which cuts two
pairs of opposite faces is a parallelogram.

2. Shew that the middle points of the four diagonals of a parallele-

piped are coincident.

3. The corners of a triangle ABC are joined to a point outside

its plane, and the joining lines OA, OB, OC are cut by a plane parallel

to that of the triangle in D, E, F respectively
;
prove that the triangle

DEF is similar to the triangle ABC.
If the plane DEF is not parallel to ABC, prove that the intersections

of BC, EF, of CA, FD and of AB, DE lie in a straight line.

4. A number of unlight,ed candles stand upon a table, and another

lighted candle, shorter than any of the former, stands on the same table;

prove that the shadows formed on the ceiling by the unlighted candles,

if produced, will all meet in a point.

5. Shew that, if a given straight line is parallel to a given plane,

the shortest distance between the given line and any line on the given

plane, which is not parallel to it, is constant.

6. Find the locus of points which are equally distant from two inter-

secting straight lines.

7. OA, OB, OC are three straight lines which meet in a point.

Find a line OP such that iAOP= i BOP = z COP.

8. Shew that, if the opposite edges of a tetrahedron are equal in

pairs, each of the solid angles is bounded by three plane angles whose
sum is equal to two right angles.

9. Three lines OA, OB, OC meet in a point. Shew that, if the
angles AOB, AOC are equal, the planes AOB, AOC make equal angles
with the plane BOC.

10. A, B are two points on the same side of a given plane. Find
the point P on the plane such that the sura of the straight lines PA, PB
is a minimum.

11. AB is the line of intersection of two planes, and P, Q are two
given points one on each of the planes. Find the point X on AB such
that the sum of PX and QX is a minimum.

12. OA, OB, OC are three lines on a plane and OP is such that

I POA = L POB = L POC. Shew that OP is perpendicular to the plane
OABC.

13. If a point within a spherical triangle whose sides are arcs of

great circles be joined to the three angles by arcs of great circles, prove
that the sum of the leugths of these three arcs is intermediate between
the perimeter and the semiperimeter of the triangle.
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14. AB, CD are two parallel lines, and four lines through A, B, C, D
parallel to one another are cut by any plane in a, b, c, d respectively

;

shew that ab is parallel to cd.

15. P, Q are any two points on two given non-coplanar lines; shew
that the middle point of PQ is on a fixed plane.

16. P, Q are any two points on two given non-coplanar lines
;

shew that the point which divides PQ m a given ratio lies on a fixed

plane.

17. Shew that the square on a diagonal of a cube is three times the

square on one of its edges.

18. Shew that the locus of a point, the sum of the squares of whose
distances from two given points is constant, is a sphere.

19. Shew that the locus of a point, the difference of the squares of

whose distances from two given points is constant, is a plane.

20. Through a given point draw a straight line to meet two given

non-intersecting straight lines.

21. Find the shortest path on the walls of a room from a given

point on one wall to a given point on the adjacent wall.

22. Shew that the three lines joining the middle points of opposite

edges of a tetrahedron meet in a point and bisect each other.

23. Of the three rectangles contained by pairs of opposite edges of

a tetrahedron, the sum of any two is greater than the third.

24. The middle points of the edges of a regular tetrahedron are the

vertices of a regular octahedron.

25. Shew how to cut any four given straight lines OA, OB, OC, OD
meeting in the point by a plane, so that tlie four points of intersection

may be the angular points of a parallelogram.

26. The middle points of the six edges of a cube which do not meet
a particular diagonal of the cube all lie on a plane to which the diagonal

is perpendicular.

27. Shew how to cut a cube by a plane so that the section may be

a regular hexagon.

28. Shew that, if the pairs of opposite edges of a tetrahedron are at

right angles, the shortest distances between opposite edges meet at the

point of intersection of the perpendiculars.

29. A tetrahedron is cut by a plane parallel to a pair of opposite

edges ; shew that the section is a parallelogram, and find the position

of the plane when the area of the parallelogram is a maximum.

30. Shew that if a plane section of a tetrahedron be a parallelogram

it must be parallel to a pair of opposite edges.
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31. Shew that if a plane section of a regular tetrahedron be a

parallelogram its perimeter is constant.

32. Shew that if each edge of a tetrahedron is equal to the opposite

edge, the straight line which joins the middle points of two opposite edges
will be at right angles to those edges.

33. I^ points A, B, G he taken on three conterminous edges of a

cube, the triangle ABC will be acute angled.

34. U A, B, G, D are four points -not on a plane, the sum of the

angles ABG, BGD, GDA, DAB will be less than four right angles.

35. If in a tetrahedron each edge is equal to the opposite edge, the

faces will all be acute-angled triangles.

36. ABGD is one face of a cube, and a plane through D cuts the

edges through A, B, G which are perpendicular to the plane ABGD in

the points A\ B', G' respectively ; shew that A'B'G'D is a parallelogram

which may be a rhombus but not a square.

37. In a regular tetrahedron the line joining the middle points of a

pair of opposite edges is the shortest distance between them.

38. If AD is a diagonal of a cube, and PQ an edge which does not
meet AD, the shortest distance between AD and PQ is the line joining

their middle points.

39. Shew that an edge of a regular octahedron is perpendicular to

an edge which meets it but is not on the same face of the octahedron.

40. If a sphere touch the six edges of a tetrahedron, the sum of

one pair of opposite edges is equal to the sum of either of the other

pairs of opposite edges.

41. If a sphere touch the six edges of a tetrahedron, the three lines

joining the points of contact of opposite edges will meet in a point.

42. Shew that the line joining the middle points of a pair of

opposite edges of a tetrahedron passes through the centroid of the

tetrahedron.

43. Shew that the six planes, each passing through one edge of a

tetrahedron and bisecting the opposite edge, meet in a point.

44. Through the middle points of every edge of a tetrahedron a

plane is drawn perpendicular to the opposite edge ; shew that the six

planes so drawn will meet in a point such that the centroid of the
tetrahedron is midway between it and the centre of the circumscribing

sphere.

45. D, E, F are any pts. on the sides BG, GA, AB respectively of

the triangle ABG, and is any point not on the plane of the triangle
;

shew that the sum of the angles BOG, GOA, AOB is greater than the

sum of the angles EOF, FOD, DOE.
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46. If X is any pt. on the base BCD of the tetrahedron ABCD, the
sum of the angles BAX, CAX, DAX is less than the sum but greater than
half the sum of the angles BAG, GAD, DAB.

47. If be a point within the tetrahedron ABGD, the sum of the
three angles BOG, GOD, DOB is greater than the sum of BAG^ CAD,
DAp.

Shew also that the sum of the areas of the a« BOG, GOD, DOB is

less than the sum of the areas of the a^ BAG, GAD, DAB.
[Cf. Euclid I. 21.]

48. If from any point outside a sphere lines be drawn to all the
points of a small circle of the sphere, prove that these lines meet the
sphere again in a circle.

49. Prove Euler's Theorem, namely that if E be the number of
edges, S the number of solid angles and F the number of faces of a
polyhedron ; then will F + S =E + 2.

50. The sum of all the plane angles of a convex polyhedron is

double the sum of the angles of a plane polygon having the same number
of vertices as the polyhedron.
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