Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

 NATIONAL FOREST LAND CAPABLE OF GROWING WESTERN WHITE PINE
by
Alan W. Green and Jack R. Alley

CUKALNT SEAL RECORDS

This Research Paper is one of a series of publications by the Intermountain Forest and Range Experiment Station. The series reports results of a study started in 1962 to evaluate management alternatives on lands capable of growing white pine within National Forests in eastern Washington, northern Idaho, and western Montana. The study was done in cooperation with the Northern Region of the U.S. Forest Service. The series of publications includes the following items:

Relations between western white pine site index and tree height of several associated species, by Glenn H. Deitschman and Alan W. Green. U.S. Forest Serv. Res. Pap. INT22, 1965.

Market trends for western white pine, by Robert E. Benson and Larry L. Kirkwold. U.S. Forest Serv. Res. Note INT-65, 1967.

Cost control in timber growing on the Na tional Forests of the Northern Region, by J. H. Wikstrom and J. R. Alley. U.S. Forest Serv. Res. Pap. INT-42, 1967.

Ranking of treatment opportunities in existing timber stands on white pine land in the Northern Region, by J. H. Wikstrom and Jack R. Alley. U.S. Forest Serv. Res. Pap. 46. (In preparation)

EVALUATING
\section*{SPECIES ALTERNATIVES}
\section*{FOR}
NATIONAL FOREST LAND CAPABLE OF GROWING WESTERN WHITE PINE
by
Alan W. Green and Jack R. Alley

WTERMOUNTAIN FOREST AND RANGE EXPERIMENT STATION Forest Service
U.S. Department of Agriculture

Ogden, Utah 84401
Joseph F. Pechanec, Director

THE AUTHORS

ALAN W. GREEN joined the U.S. Forest Service in 1955 as a Research Forester in silviculture and regeneration at the Central States Station office in Carbondale, Illinois. Three years later he was transferred to Iowa, where he was Superintendent of the Amana Experimental Forest. In 1961 he was reassigned to Foreign Forestry Services in the Washington Office. In 1964 he joined the Timber Production Economics project at Intermountain Station in Ogden. He holds both bachelor and master of science degrees in forestry from Purdue University.

JACK R. ALLEY is Chief of the Branch of Timber Management Planning in the U.S. Forest Service Regional Office in Missoula, Montana. A 1940 graduate of the University of Idaho, he joined the Forest Service in 1946. His career has included assignments as Assistant Ranger and District Ranger on the Colville, Flathead, Nezperce, and Clearwater National Forests. In 1958 he joined the valuation section of the Timber Management Branch in Missoula, and he later served the Regional Office in Ogden in a similar capacity. Until 1966 he was a special cooperator with the Intermountain Forest and Range Experiment Station in a study of the management of white pine lands in the Northern Rocky Mountains.

THE WHITE PINE AREA

Approximately 3.5 million acres of National Forest land in the Forest Service's Northern Region are growing or are capable of growing white pine. About 3.2 million acres of this land are forested; nearly 0.3 million acres were considered nonstocked when last surveyed (see appendix A). This estimate includes only

Area
(Thousand acres)
White pine
Douglas-fir
428
602
Ponderosa pine 98
Spruce 150
Hemlock (mountain
and western)
Lodgepole pine 438
Grand fir 489
Subalpine fir 190
Western redcedar 287
Western larch 346
Whitebark-limber pine 5
Nondesignated 7
Total
3,219
the National Forest land on which it has been demonstrated that white pine can be grown as shown in the accompanying map. Figures are based on a summary of Forest Survey data covering the period 1958 to 1962. Tabulated below is land area by principal species type, stand size, and slope percent.

Stand size

Sawtimber stands
1,850
Pole stands 620
Seedling and sapling stands 749

Total forested
3,219
Nonstocked 278
Grand total
3,497
Slope
($\overline{\text { Percent }}$)
0-30
31-50
51-70
70+
Total
Area
(Thousand acres)
1,393.4
1,119.4
606.0
100.0

3,218.8

CONTENTS

THE WHITE PINE AREA iii
FOREWORD vi
INTRODUCTION 1
DETERMINING PRACTICAL SPECIES ALTERNATIVES 2
Site Suitability 2
Factors of Risk 4
ESTIMATING COSTS OF STAND ESTABLISHMENT 6
Variable Costs 6
Costs and Management Alternatives 6
ESTIMATING COMPARATIVE YIELDS AND VALUES 9
Yields 9
Values 9
MAKING ECONOMIC EVALUATIONS 11
MECHANICS OF AN EVALUATION - AN EXAMPLE 12
Preliminary Selection of Species 12
Preliminary Estimates 13
Evaluation Summary and Computer Analysis 14
SUMMARY 20
APPENDIX A: WHITE PINE LAND AREA SUMMARIES FOR NATIONAL FOREST LAND IN THE NORTHERN REGION 21
APPENDIX B: INVESTMENT ANALYSIS PROGRAMS 27

FOREWORD

The cutting of old timber stands presents management with a continuing problem which species should be established to bring the land back into timber production? Frequently the choice of species or species mixtures to feature lies among many desirable species, such as those that grow together in the white pine zone on the National Forests of the Northern Rocky Mountain area.

In the past, choosing a species to feature in this region was relatively simple. White pine was an obvious choice on many areas because it produced large volumes of high quality wood per acre, could be regenerated; naturally with relative ease, and could be sold at a higher price than its associated species. In recent years, however, production of white pine has suffered from increasingly heavy losses from blister rust (Cronartium ribicola) in young stands and from both rust and bark beetles in mature stands.

Recent surveys show that the best efforts
made toward blister rust protection have been inadequate. An average of 48 percent of the white pine trees in stands less than 20 years old are lethally infected and there is a relatively constant infection rate of 1 to 2 percent per year. The heavy mortality and growth loss associated with blister rust, as well as the uncertainty of success attending efforts to protect white pine from the disease by either prevention or control, lead to only one conclusion: white pine must be eliminated from the regeneration plans of the Northern Region until such time as effective control measures are developed or disease-resistant stock that compares favorably with other species in terms of growth and cost of regeneration is available.

During the interim period, good utilization of these lands for timber production requires that managers choose from among the alternative species available those that seem likely to return the greatest net value yield per acre in view of the costs, yields, and risk of loss expected.

INTRDDUCTION

The management of any operation requires frequent evaluation of alternative courses of action. Such evaluation defines a goal or objective and selects the best available method of achieving it. From all possible actions the manager sorts out those that are feasible in his situation and ranks or grades them for efficiency in terms of time and money. In this process a specific goal must be defined, since without it no real alternatives exist to be evaluated.

Forestry is an integrated operations business in which many kinds of activities are required for the production of a merchantable stand of trees. The allocation of an entire budget for timber growing cannot be based on a choice between regeneration or thinning; to evaluate these two kinds of work as alternative means of spending money is meaningless. Obviously both thiese activities (and others) are needed for a sustained yield operation. However, it is logical to evaluate alternative means of regeneration to determine which would be most efficient, or to evaluate various thinning opportunities to determine which stands should be thinned with the money available. Some specific goal must be chosen before alternatives can be determined and evaluated as means of reaching that goal.

The efficient use of public funds is a basic requirement in public land management. Order and consistency in decision making are highly desirable so that decisions may be both biologically and economically sound.

This paper is concerned with the establishment of timber stands in lands capable of growing western white pine. Included are a discussion of the biological aspects of species selection for regenerating cutover land for the primary purpose of timber production, and a description of a method of evaluating alterna-
tive species and alternative means of stand establishment for efficient use of money for timber production.

The task of evaluation of species for stand establishment involves a series of evaluations that may overlap, depending on the conditions of an individual project. In general, the following steps are taken:

1. Determining the objective of the stand establishment project.
2. Determining the species alternatives by means of an ecological evaluation of the site.
3. Eliminating those species that are clearly impractical for reasons of high risk, low timber value, or other known disadvantages.
4. Evaluating remaining alternative species under alternative methods of treatment for
a. probable cost of stand establishment,
b. probable yield of stand,
c. probable value of stand, and
d. probable rate of return (or other criterion) under alternative investment plans.
5. Choosing the species or species mixture that offers greatest probability of achieving the objective.

The first three steps require judgments based on knowledge and experience. Step 4 requires computations based on all available data on costs, yields, and values for the various species to be evaluated. With the help of electronic data processing (EDP) equipment, such computations can be made with relative ease. All of these operations are described in some detail in this paper.

DETERMINING PRACTICAL SPECIES ALTERNATIVES

For the accomplishment of any given objective, the theoretical alternatives always outnumber the real or practical ones. Theoretically almost any species could be grown in the white pine lands under discussion. Most species can be eliminated, however, for obvious economic or biological reasons. The purpose of regenerating stands for timber production is to produce a high yield of merchantable wood. Therefore, the first task in evaluation is to make a realistic selection of species that seem likely to meet this timber growing goal.

The primary factors to be considered in choosing a species or species mixture to regenerate for timber production are the suitability of the site for different species, and the risk of loss associated with each species during the timber growing rotation. Other factors, such as timber quality of the species and special treatment requirements, also enter into the management decision.

Site Suitability Habitat Type

The suitability of a particular site for certain species may be judged on the basis of the habitat type. This classification describes an area according to the climax association of species that is expected to occupy the area generally in the course of natural plant succession. Thus it provides a useful basis for (1) classifying the ecological character of a forest site and (2) describing (to a certain degree) the relative biotic productive potential of a given site for each species. This is especially true in the absence of more definitive data with which fo estimate the comparative productivity of various species for different sites.

Essentially, foresters are either accelerating or delaying natural succession of vegetation with silvicultural practices designed to im-
prove the forest crop. Because the habitat type classification identifies the probable plant succession, it is a useful indication of the species that should be seriously considered for regeneration on a specific site. Determining the habitat type is not simple, but it is an essential part of the timber manager's job. With training, he can identify the ecological indicator plants growing in association with major tree species, and can relate topographic and physiographic site conditions to the habitat so as to reach a reliable conclusion.

Species Associated With Western White Pine

Western white pine occurs in several habitat types. It grows in association with a large number of species and in a variety of plant associations. It occurs only as a seral (successional) species, however, and is eventually replaced by more tolerant climax species.

The range of environmental conditions over which tree species occur is determined primarily by moisture and temperature. The range of one species may overlap the range of another; to the extent of this overlap, the two species may be grown together. Figure 1 shows the relative range of conditions under which white pine and its associate species will grow. The two dashed lines mark the limits of the habitat condition range of white pine. Other species whose ranges fall at least partially within these lines could be associate species on a given area. The habitat condition range of any other species could be marked on the diagram to show associate species.

The diagram indicates that at lower elevations, where the habitat is dry, ponderosa pine occupies most of the forested area. Farther up the slope, the habitat becomes cooler and generally more moist, and Douglas-fir begins to mix with the ponderosa pine. Still farther
up the slope, under more cool and more moist conditions, other species begin to appear. As elevation increases, ponderosa pine is no longer present; then other species disappear while new ones appear. This process continues up to the timberline.

The diagram is a simplification, and shows only the effects of changes in elevation on the moisture-temperature regimes of the habitat situation. Other site features, such as topography, aspect, vegetative cover, and soil characteristics, also affect the habitat condition, and thus the range of individual species. For example, the difference between south and north slopes can have an effect equivalent to a difference in elevation. The combined features of the environment provide some habitat condition to which each species is adapted to some degree.

Also shown relatively in figure 1 is the range of conditions under which a species occurs as a climax species; that is, the range in which it can perpetuate itself in competition with other species native to the site. The crosshatching on each species bar shows the
extent to which that species is climax. White pine, larch, lodgepole pine, and Engelmann spruce are strictly successional species. ${ }^{1}$ The other species can become climax in certain situations and over sufficient length of time. However, the important timber species are seral over most of their natural range (table 1).

Factors of Risk

The species that can be grown on white pine lands may be determined from the chart (fig. 1) and table 1. For some of these species, however, the element of risk may be great enough to eliminate the species from consideration. A degree of risk in growing any species is a biological fact of life in forestry, but risk varies widely. Volume losses from

[^0]
Table 1.-The distribution and ecological role of the major species by important tree union ${ }^{1}$

(Key: s, minor seral role; S, major seral role; c, minor climax role; C, major climax role.)

Major Species	Climax tree union					
	Ponderosa pine	Douglasfir	Grand fir	Sprucefir	Cedar	Hemlock
White pine	-	-	5	S	S	S
Subalpine fir	-	-	-	C	-	s
Engelmann spruce	-	-	-	S, c	-	s
Western hemlock	-	-	-	-	-	C
Mountain hemlock	-	-	-	-	-	C
Western redcedar	-	-	-	-	C	S
Whitebark pine	-	-	-	S	-	-
Lodgepole pine	-	S	S	S	S	S
Grand fir	-	-	C	S	S	S
Western larch	-	S,s	S	S, s	S	S
Douglas-fir	-	C	S	S, s	S	S
Ponderosa pine	C	S	S	-	s	5

${ }^{1}$ Adapted from Daubenmire, R. F., Classification of conifer forests in eastern Washington and northern Idaho. Northwest Sci. 27:17-24, 1953.
insects, diseases, fires, and storms range from small percentages of potential production to total wipeout of individual stands. Certain species are more susceptible to fire and storm damage, and to attack by insects or disease. Some respond more dramatically than others to such injuries. The threat of the unknown, especially in view of past insect and disease problems, injects into the problem of species selection more speculation than is comfortable for the land manager. However, some estimate of risk is a necessary part of the species evaluation, even if it must be based on judgment rather than measurement.

For individual stands, catastrophic losses from fires and storms cannot be predicted. Insect and disease attacks cannot ordinarily be predicted with the surety desired. For large areas, however, risk is usually assigned a value in terms of a discount applied to the gross volume yield normally expected from stands of certain species. The greater the discount applied to gross yield, the less attractive the species or species mixture may be for a timber production program. However, the comparative importance of the risk factor is apparent only in the net volume yield estimate. A stand of one species discounted 15 percent may produce more net volume than another species discounted only 10 percent.

It is obvious that the present risk in growing white pine is too high. The volume yields expected from stands established during the past 25 years will probably have to be discounted 75 percent or more because of mortality and growth losses from blister rust and bark beetles. Other species could be similarly devastated. Blister rust and bark beetles are the current sources of extreme risk, but other serious pest problems are evident.

Dwarfmistletoe probably ranks next to blister rust as a source of growth loss, chiefly affecting lodgepole and ponderosa pine, Doug-las-fir, and western larch. Casebearer damage
on western larch has become serious during the past few years. Larch stands are expected to suffer annual defoliation for at least the next decade and perhaps for two decades before the casebearer can be effectively controlled by natural means. The real effects of such defoliation are unknown, of course, but a substantial reduction in growth and perhaps some mortality are expected.

Currently insects and disease are causing loss of timber value in other species - in varying degrees depending on locality and stand conditions. Any one of these nuisances could flare into a serious setback for the species. Also, the threat of another imported disease reminiscent of blister rust or chestnut blight always exists.

Risks are important considerations in timber growing decisions, but there is no reason to assume timber growing will cease because of the risks involved. Land managers must increase the biological and economic soundness of their timber growing projects by carefully considering predictable volume losses and by using the best means available for reducing the amount of unknown risk that confronts them in their evaluations. Risk and expected losses must be reevaluated as a matter of course through the life of the stand, because the sources and degree of risk associated with an individual stand change with time and advances in technology.

Good insurance against the risks associated with a single species is to forgo monoculture forestry and concentrate on stands of mixed compatible species. When choosing the species mixture, the manager must consider the degree of risk (expected loss) associated with each alternative species and make some judgment as to which combination will give the best results relative to the expected costs. Also he should recognize that mixed stands are more difficult to manage than singlespecies stands.

ESTIMATING COST OF STAND ESTABLISHMENT

When the possible species alternatives have been reduced by eliminating those that do not seem likely to achieve the desired objectives, economic evaluations should be made to determine which of the remaining species are most promising. First, an estimate of costs of stand establishment must be made for each species and for each management alternative that applies.

Variable Costs

Various individual costs will enter into the estimate. This report is concerned; only with variable costs. Fixed costs, primarily those associated with land administration and fire protection, can be assumed to be fairly constant regardless of species.

The variable costs for timber growing in the Northern Region are broadly classified under the following activities: ${ }^{2}$

Regeneration: Site preparation, planting, seeding
Stocking control: Precommercial thinning Quality control: Pruning
Protection: Insect, disease, and animal control
The management alternatives for a particular species in any given situation may range

[^1]from no treatment to any combination of treatments. Volume yields can be manipulated to some degree by cultural treatments. The kind, extent, and timing of such treatments greatly affect the costs of growing timber.

In estimating costs, we may be concerned with (1) the general or average level of cost associated with the type of work required by the treatment; (2) the range of costs applicable to a particular job; and (3) the variation in cost due to variation in the conditions under which work is done. Average level costs and range of costs, such as those shown in table 2, are useful only as guides in project planning. Variations must be estimated as far as possible.

Timber growing costs on specific projects vary widely depending on size of area, topography, and amount of work required (as determined, for example, by type of site preparation needed or number of trees planted). Even the cost of site preparation by itself varies. If fuels are adequate, site preparation may be accomplished by the fire that is designed primarily to reduce hazard. If fuels are light, it may be necessary to use some form of mechanical treatment, which is more costly.

At the present time, the Northern Region estimates the average costs for regeneration establishment to range from a low of $\$ 2$ to $\$ 3$ per acre to well over $\$ 100$ per acre, depending on the species established, site preparation needs, and regeneration methods.

Costs and Management Alternatives

When there are several species alternatives, the cost of the regeneration project is influenced by the choice of the silvicultural system used to harvest the existing stand and to regenerate a new stand. Species vary in their silvicultural requirements and the land manager must choose a system compatible with
the species to be grown and the condition of the stand to be harvested. Careful consideration of all feasible systems is important in a cost evaluation.

For example, it is known that small clearcuts involve comparatively higher regeneration expenses than larger clearcuts do. The cost of site preparation for regeneration establishments varies inversely with size of area treated, up to a point. Site preparation for large blocks (40 acres and larger) is less expensive per unit area than for smaller blocks. However, portions of larger areas may need to be planted to achieve adequate stocking.

Seed tree cuts, on the other hand, can be expensive even on large areas. Scattered seed trees cost money because they represent capital tied up for a period of time. During this time they are in the high risk category because of increased likelihood of loss. The need to protect the selected seed trees also raises the costs of logging and site preparation. Finally, seed trees may be worth less money because many logging operators are reluctant to go back and pick up small volumes per acre, particularly when this must be done without damage to the newly established stand.

Regardless of what methods or techniques of stand establishment and management are
used, from an investment standpoint there is a real economic advantage in delaying major management costs. This is due to the effect of time on compounding interest rates.

Consider as an illustration a choice between planting and natural regeneration with thinning. Each plan has advantages. Artificial regeneration largely eliminates the guesswork in establishing a stand. It also has the advantage of establishing a predetermined number of trees per acre. However, planting is a costly operation that is capitalized over the entire rotation. Natural regeneration, if it is prompt and adequate to establish the desired stand, is the least expensive method of growing timber over the long haul, even if the stand requires a substantial thinning in 10 to 15 years.

Consider that one stand is planted at a cost of $\$ 50$ per acre and receives no additional treatment, whereas another stand is regenerated naturally for $\$ 20$ per acre. On the second stand, the $\$ 30$ not needed for regeneration is otherwise invested for 15 years; then it is spent for thinning. Both stands represent a total investment of $\$ 50$ per acre. After 80 years, however, the $\$ 50$ invested in the planted stand represents $\$ 1,152$ if compounded at a nominal 4 percent per year. The $\$ 50$ spent on the natural stand, however, represents only $\$ 845$ after 80 years. This means that to earn

Table 2.-Average costs and range in costs ${ }^{1}$ for important timber growing activities, Northern Region, fiscal year 1966

Activity	Average cost	Range in cost
Site preparation and hazard reduction:	$\cdots-$ Dollars per acre $-\cdots-$	
Prescribed burning	18	$3-95$
Dozer piling and scarification	43	$10-165$
Slashing of residual stand	20	$4-57$
Burning dozer piles	6	$2-43$
Terracing	47	$16-171$
Regeneration:	18 (est.)	
\quad Seeding	34	$11-80$
Planting	30	$11-139$

${ }^{1}$ Project level.
${ }^{2}$ Thinning only - does not include marking.

4 percent on the $\$ 50$ invested, the planted stand must be sold for $\$ 1,152$ per acre; to earn 4 percent, the natural stand need be sold for only $\$ 845$ per acre (fig. 2).

However, natural regeneration loses some of its economic advantage (1) if the chance for successful establishment of the desired species
is uncertain, (2) if to attain it requires cutting in small blocks or leaving seed trees and waiting a considerable time for stand establishment, or (3) if species growth differentials are significant. If natural reproduction is not established in 5 years, necessity for another site preparation job is almost a certainty.

Figure 2.-The effect of time on the future value of investments.

ESTIMATING COMPARATIVE YIELDS AND VALUES

Yields

To evaluate species alternatives in terms of wood production for a given period of time, some means are needed for estimating comparative volume yields of different species for a particular site. This involves an estimate of growth potential of individual species in different site and habitat situations. At the present time, not enough reliable data are available to permit making an ideally accurate estimate. However, some approaches to yield estimates do exist and can provide a working approximation.

Site index is commonly used to indicate relative land quality for any given species. Generally, site 80 land will grow more of a given species than will site 60 land. But site index primarily reflects the capacity of the trees to attain a specified height at a given age, usually 50 years. It does not tell how much timber the site will produce in a specified time. In spite of its limitations, however, site index does afford a means of separating broad classes of land quality with which the land manager must work.

In existing yield tables for major species growing on white pine land, gross cubic-foot volumes are based on the assumption that every tree is 100 percent sound. Projecting stand growth over long periods of time requires downward adjustments for cull, mortality, and growth loss from natural causes.

Despite the uncertainty of growth and losses, a realistic look at the potential yield of any given stand will reveal that the yield can be expected to fall within some defined range. Using species yield tables, the manager can determine some probable minimum and
maximum volumes, barring a catastrophic wipeout. Then, by ranking the stand for risk, the land manager may make an estimate of future yields within the probable range and define the confidence he has in the estimate.

Values

Estimates of future value yield must be based on some assumption about future stumpage prices. Presently there are differences in average net stumpage prices among major species. However, a recent study by Benson and Kirkwold ${ }^{3}$ indicates that price differences among species have been shrinking over the past several years; the prices of formerly low-value species have been rising, while the prices of formerly high-value species have been dropping.

If this trend continues, species price differences for stands now being regenerated could become insignificant. On the other hand, these price differentials may not narrow below their present spread, or they could widen again in the future.

Although estimation of future stumpage prices is highly speculative, the land manager will have to make some price assumptions in the course of species evaluations. In doing so, he should recognize that uniformity of tree size and amount of merchantable wood per acre do influence the net stumpage values. It is generally recognized that logging and tree conversion costs vary inversely with tree size and volume per acre.

[^2]

Figure 3.-A method of evaluating species alternatives for stand establishment.

MAKING ECONOMIC EVALUATIONS

Economic evaluations can be made in a variety of ways. ${ }^{4}$ The rate of return on investment is the method most commonly used to evaluate alternative opportunities to spend money to achieve specified goals, and this is the method discussed in this paper. Rate of return considers costs, value yield, and time to indicate the rate at which value grows. This in turn indicates some rate of efficiency of money use.
Other methods of evaluation could be used. For certain projects, the least-cost approach would be appropriate. If the goal were merely to cut over a stand and regenerate a new stand of trees to meet the requirements of multiple land use objectives, the species or species combination that could be established at least cost would be a natural choice. Such a decision disregards differences in yields of values that would be generated for the money spent and the length of time required for yields or values to accrue. If these considerations are unimportant, the least-cost decision is valid.

In some situations, estimated future yields and values could be compared. If cost were no object, the species estimated to provide the greatest yield or value would be rightly chosen. But again, this kind of evaluation ignores time; only if it made no difference

[^3]whether the yield would be available at 50 or 100 years could the decision stand.

In another method, the benefit-cost comparison, future values are not discounted. The species or combination that promises the greatest volume or value yield for the money is the obvious choice. This method also ignores the time required to attain the yield or value.

An evaluation procedure is outlined in figure 3. The diagram shows the sequence of calculations that produces estimates of yield and rate of return for each species to be evaluated, under managed or unmanaged conditions. With site index and productivity data, the comparative productivity of the species to be evaluated may be estimated. A decision is then made as to initial number of trees per acre to be assumed in the evaluation. Following the decision to manage the stand or to leave it unmanaged, yield data or stand projections (based on assumptions of management, tree growth, and mortality) are taken together with the number of trees per acre to calculate expected yield for the stand. On the basis of this anticipated yield, timber growing costs and product values generated are taken together to calculate a rate of return for the species. This procedure, carried out for each species to be considered, gives the timber manager a comparative measure of the efficiency of a stand establishment operation in terms of rate of return. The outline in figure 3 is an idealization of the method; it assumes a foundation of consistent biological data and value assumptions on which to base expected value returns.

MECHANICS OF AN EVALUATION - AN EXAMPLE

The steps in the proposed method of evaluation have been outlined in the introduction. The tedious mathematical calculations normally associated with rate-of-return computations that are complicated can be largely eliminated by using one of the several EDP investment analysis programs now available. Two such programs - one by Hall ${ }^{5}$ and the second by Row ${ }^{6}$ - have been adapted for use in problems of the kind discussed in this paper. The modified programs are described in detail in appendix B. Illustrations in the example are taken from computer output of these programs.

The example that follows will clarify the procedures required, particularly those making use of EDP equipment for rate-of-return calculations.

This illustration of the evaluation and decision process is designed to show how silvicultural decisions (or necessities) can influence the economic efficiency of timber growing operations. The example is somewhat simplified and does not take into account all the possible alternatives. However, it does show the flow of thinking necessary to sound decisions in stand regeneration.

Problem: From a timber type of several hundred acres, a mature stand of white pine and Douglas-fir with minor volumes of grand fir and Engelmann spruce is to be harvested and regenerated for the primary purpose of timber production. The timber manager is free to decide on cutting unit size and layout. The habitat type is a spruce-fir climax tree union.

The goal is to grow a merchantable stand of sawtimber of mixed species in the most

[^4]efficient manner. The criterion of efficiency will be the rate of return on investment earned by alternative plans that will achieve the goal.

Preliminary Selection of Species

The species to be evaluated are those normally associated with the habitat (see table 1) and particularly those that apparently did well in the stand to be harvested. As the first step in evaluation, the land manager considers each of these potential species and makes the following decisions:

1. White pine.-Poor risk because of blister rust. Drop from consideration.
2. Subalpine fir. - Risk is moderate, but trees would have to be planted because seed trees are few in existing stand and in stands outside harvest area. This species is not usually grown in the nursery and probably should not be considered.
3. Engelmann spruce.-Some risk because of spruce budworm but worth considering.
4. Whitebark pine. - Not good timber species; high risk because of blister rust. Drop from consideration.
5. Lodgepole pine. - Good species but would have to be planted; sufficient seed from an acceptable seed zone for producing planting stock would be difficult to obtain. Drop from consideration.
6. Grand fir. - Some loss expected from heart rot but definitely worth consideration.
7. Western larch.-Good species, but expected loss in growth and unknown mortality from casebearer makes it risky at this time. Drop.
8. Douglas-fir.-Moderate risk because of spruce budworm but good species to grow.

The elimination process leaves three species that are judged likely to produce acceptable
volumes of merchantable wood. The timber manager ranks them in order of preference as follows: Douglas-fir, Engelmann spruce, and grand fir. He decides to grow a mixed stand, so at least two and probably all three species should be grown.

Notice that in this example the timber manager does not need to make further choice between species alternatives. Under different site conditions, he might find that he had a choice among four or five species. In that event, he would follow the evaluation process described below for several species mixtures - as many as he judged likely to achieve the project goal - and would choose the most efficient.

Preliminary Estimates

The timber manager now sees two alternative plans for regenerating and managing the new stand:
A. Clearcut in small blocks (20 acres), regenerating all three species naturally with seed from the residual stand.
B. Clearcut in large block (100 acres) and regenerate by planting mostly grand fir and spruce. Some Douglas-fir will seed in.

In either case, natural seeding of most species will probably occur within the first 5 years, requiring subsequent thinning to bring about the species composition and proportions desired.

At this point in the economic evaluation, the manager must decide what alternative plans are compatible with the project goal, so that he may compare the costs likely to be incurred. Of basic concern are the investment periods and the cultural treatments to be evaluated. For this illustration, two treatment plans - A and B - are evaluated. Costs are estimated for each plan according to two time periods and two stocking control treatments adapted to these time periods.

General Assumptions

The following assumptions are made in the calculations of comparative costs of stand establishment:

1. Site preparation: The same standard for site preparation applies to both planting and natural regeneration.
2. Costs of site preparation: Not including slash disposal, costs range from $\$ 15$ per acre on 20 -acre units to $\$ 11$ per acre on 100 acre units.
3. Seed source: Under natural regeneration, there is a charge to seed source to cover the additional costs of sale layout and administration entailed by cutting in small blocks. This is estimated at $\$ 3$ per acre.
4. Time to stand establishment: Under natural regeneration, there is a 3-year lag between site preparation and stand establishment. Planting can be completed within 1 year of site preparation.
5. Number of trees planted: On a 100 -acre unit, planted trees per acre average 290. This assumes full planting (450 trees per acre) on 30 acres and an average of 225 trees per acre on the remaining 70 acres that are likely to receive some natural regeneration.
6. Thinning: A precommercial thinning is required 15 years after stand establishment. Thinning costs average $\$ 35$ per acre in natural stands and only $\$ 20$ per acre in planted stands because fewer trees need to be removed.

Volume Yields Assumed

The estimate of gross volume yield is based on increments of 100 cubic feet per acre per year for spruce, 80 cubic feet for grand fir and 60 cubic feet for Douglas-fir. On planted areas species distribution is expected to be about 50 percent spruce and 50 percent grand fir. In the natural stand a relatively high proportion (60 percent) of Douglas-fir is expected, with 20 percent each of spruce and grand fir.

Investment period assumed. - The two investment periods used in this illustration are (1) the time required to grow a merchantable stand in which nearly all the volume is in trees 8 inches d.b.h. and larger, and (2) a full sawtimber rotation of a length required to grow trees to the size class objectives currently in effect for National Forests in the Northern Rocky Mountain area.

The planted stand - predominantly spruce and grand fir - is expected to be merchantable, as defined in (1) above, in about 55 years from time of planting. Depending on the proportion of Douglas-fir, the natural stand could reach merchantable size in 60 to 65 years from regeneration date.

The sawtimber rotations required to meet the current size class objectives would be 100 years for species in the planted stand and 110 years from regeneration for species in natural stands.

Anticipated volume.-Making the above assumptions, and discounting potential yields for risk by some reasonable percentage, the land manager finds that the anticipated volumes of standing timber when the stand reaches merchantable size are as follows:

1. Planted stands at 55 years

$$
C u . f t .
$$

Spruce	2,750
Grand fir	2,200

2. Natural stands at 66 years Spruce $\quad 1,260$ Grand fir $\quad 1,008$ Douglas-fir 2,268

Growing stands to a full sawtimber rotatation would require an intermediate cut at about 55 to 65 years. The estimated yields from intermediate and harvest cuts are as follows:

1. Planted stands

Intermediate cut at 55 years

> Cu.ft.

Spruce
1,215
Grand fir $\quad 1,215$
Harvest cut at 100 years
Spruce $\quad 3,800$

Grand fir $\quad 3,200$
2. Natural stands

Intermediate cut at 60 years
Douglas-fir
Spruce 324
Grand fir 324
Harvest cut at 110 years
Douglas-fir
5,160
Spruce $\quad 1,220$
Grand fir $\quad 1,220$

Values Assumed

The perils of predicting future wood values have already been pointed out. However, whenever money is allocated for timber-growing projects some assumption about the future is implied if not stated. It is important that, regardless of what price estimates are used for these future values, all analysts within an operational unit should use the same estimate. In this illustration the following stumpage value relationships are used:

Per cubic foot
Douglas-fir \$0.06
Spruce . 05
Grand fir . 07
Having estimated costs, yield, values, and time schedule, the timber manager can now conclude the evaluation by summarizing the details of each alternative plan preliminary to recording them on the input data coding forms that are the basic information source for the EDP program.

Evaluation Summary and Computer Analysis

Short Investment Period
Plan A
Clearcut in small blocks of 20 acres and regenerate naturally to Douglas-fir, grand fir, and spruce.
Costs:
Seed source $\quad \$ 3$ per acre at year 0
Site preparation $\quad \$ 15$ per acre at year 0
Thinning at age $15 \quad \$ 35$ per acre at year 18
Returns: Value of merchantable stand at age 66
Spruce $1,260 \mathrm{cu}$. ft. at $\$ 0.05 \$ 63.00$
Douglas-fir $2,268 \mathrm{cu}$. ft. at $\$ 0.06 \quad 136.08$
Grand fir $1,008 \mathrm{cu}$. ft. at $\$ 0.07$

Total
70.56
$\$ 269.64$

Plan B
Clearcut in large block of 100 acres and regenerate by planting mostly grand fir and spruce with some Douglas-fir seeding in.

Costs:
Site preparation $\$ 11$ per acre at year 0
Planting $\$ 25$ per acre at year 1
Thinning at age $15 \quad \$ 20$ per acre at year 18
Returns: Value of stand at age 56
Spruce
$2,750 \mathrm{cu}$. ft. at $\$ 0.05 \$ 137.50$
Grand fir
$2,200 \mathrm{cu} . \mathrm{ft}$. at $\$ 0.07$
Total $\frac{154.00}{\$ 291.50}$

This information when recorded for machine use would appear as in figure 4 if Hall's program is used. The information on each line represents one card to be used in the program. (Detailed instructions for recording information to be used in this program are given in appendix B.) The output (figure 5) from the investment analysis prints out the details of the alternative plans, the name of the Forest submitting the problem, the person to whom the output is to be sent, the name of the project, and the rate of return on the investment relative to the estimates of value yields provided. The rate of return for the plan analyzed is the last rate printed in the list of trials produced by the computer.

Long Investment Period

Plan A

Clearcut in small blocks of 20 acres and regenerate naturally to Douglas-fir, grand fir, and spruce.

Costs:

Seed source
$\$ 3$ per acre at year 0
Site preparation $\$ 15$ per acre at year 1
Thinning at age $15 \quad \$ 35$ per acre at year 18
Returns: Intermediate cut at year 60
Douglas-fir
$972 \mathrm{cu} . \mathrm{ft}$. at $\$ 0.06 \$ 58.32$
Spruce
$324 \mathrm{cu} . \mathrm{ft}$. at $\$ 0.05$
16.20

Grand fir
$324 \mathrm{cu} . \mathrm{ft}$. at $\$ 0.07 \underline{22.68}$
Total $\$ 97.20$
Harvest cut at year 113
Douglas-fir
$5,160 \mathrm{cu}$. ft. at $\$ 0.06$
$\$ 309.60$

Spruce
$1,220 \mathrm{cu}$. ft. at $\$ 0.05$
61.00

Grand fir
1,220 cu. ft. at $\$ 0.07$
85.40

Total
$\$ 456.00$

Plan B

Clearcut in large block of 100 acres and regenerate by planting mostly grand fir and spruce with some Douglas-fir seeding in.

Costs:

Site preparation
Planting

- 25 per acr year 1

Thinning at age $15 \quad \$ 20$ per acre at year 16
Returns: Intermediate cut at year 60
Spruce
$1,215 \mathrm{cu}$. ft. at $\$ 0.05$
Grand fir
$1,215 \mathrm{cu}$. ft. at $\$ 0.07$
\$ 60.75

Total
Harvest cut at year 100
Spruce
$3,800 \mathrm{cu}$. ft. at $\$ 0.05$
$\$ 190.00$
Grand fir
$3,200 \mathrm{cu}$. ft. at $\$ 0.07$
224.00

Total
$\$ 414.00$
This information on the input data form would appear as in figure 6, and the output as in figure 7.

The rates of return (percent interest) calculated by the computer for the four alternatives are as follows:

Short investment period: plan A, 2.95; plan B, 3.30

Long investment period: plan A, 2.79; plan B, 2.95

Under the assumptions used, planting large clearcut blocks costs less and yields more than regenerating naturally in small units, and consequently plan B shows a higher rate of return than plan A, for both investment periods. Different plans with different assumptions would give different results. Unless there were some good reasons why grand fir and spruce would not completely satisfy all the goals of the timber production program,

NATIONAL FOREST - COEUR D \neq ALENE UNIT - SUPERVISOR \ddagger S OFFICE
ATTENTION - ROBERT COOK

PROBLEM - BEAR CREEK PROPOSED SALE--SHORT PERIOD
PLAN A, SMALL BLOCK CLEARCUT, NATURAL REGEN.
4

NT. RATE	0	SUM $=$	216.00
NT. RATE	.0200	SUM	29.16
NT. RATE	. 0400	SUM	-15.27
NT. RATE	. 0390	SUM	-14.29
NT. Rate	. 0380	SUM =	-13.23
NT. RATE	. 0370	SUM $=$	-12.08
NT. RATE	. 0360	SUM	-10.84
NT. RATE	. 0350	SUM $=$	-9.50
NT. RATE	. 0340	SUM $=$	-8.05
NT. RATE	. 0330	SUM $=$	-6.48
NT. RATE	. 0320	SUM =	-4.79
NT. RATE	. 0310	SUM	-2.96
NT. Rate	. 0300	SUM	-1.00
NT. RATE	. 0290	SUM	1.12
NT. RATE	. 0299	SUM $=$	-0.79
NT. RATE	. 0298	SUM	-0.59
NT. RATE	. 0297	SUM	-0.38
NT. RATE	. 0296	SUM =	-0.17
NT. RATE	. 0295	SUM $=$. 04

PROBLEM - BEAR CREEK PROPOSED SALE--SHORT PERIOD
PLAN B, LARGE block clearcut, plant
1 SITE PREPARATION
2 PLANTING (AVE. 290 TREES PER ACRE)
3 THINNING
4 TIMBER VALUES (2750 CU.FT. SP.. 2200 G.F.)

2	0	-11.00
2	1	-25.00
2	16	-20.00
2	56	291.50

NT. RATE	0	SUM $=$	235.50
NT. RATE	. 0200	SUM $=$	46.09
NT. HAIL	.0400	sUM $=$	-13.30
NT. RATE	. 0390	SUM $=$	-11.69
NT. RATE	. 0380	SUM $=$	-9.99
NT. RATE	. 0370	SUM $=$	-8.18
NT. RATE	. 0360	SUM	-6.26
NT. RATE	. 0350	SUM	-4.23
NT. RATE	. 0340	SUM $=$	-2.07
NT. RATE	. 0330	SUM	. 22
NT. RATE	. 0339	SUM	-1.85
NT. RATE	. 0338	SUM	-1.62
NT. RATE	. 0337	SUM $=$	-1.40
NT. RATE	. 0336	SUM $=$	-1.17
NT. RATE	. 0335	SUM $=$	-0.94
NT. RATE	. 0334	SUM $=$	-0.71
NT. RATE	. 0333	SUM $=$	-0.48
NT. RATE	. 0332	SUM $=$	-0.25
NT. RATE	. 0331	SUM $=$	-0.02
NT. RATE	. 0330	SUM $=$. 22

Figure 5.-Machine output from investment analysis of illustration problem. A, Plan A, short investment period; B, Plan B, short investment period.

INVESTMENT ANALYSIS PROGRAM NO. 1

PROBLEM - BEAR CREEK PROPOSED SALE - LONG PERIOD
PLAN A, SMALL BLOCK CLEARCUT, NATURAL REGEN.

```
1 SEED SOURCE, NATURAL REGEN. SMALL BLOCK
2 SITE PREP.
3 TMINNING
4 INTERMEDIATE CUT (972 CUFT.DF,324 SP,324 GF)
5 HARVEST CUT (5160 CUFT.DF;1220 SP,1220 GF)
```

NT. RATE	0	SUM $=$	500.20
NT. RATE	.0200	SUM	36.07
NT. RATE	. 0400	SUM	-20.04
NT. RATE	. 0390	SUM	-19.18
NT. RATE	. 0380	SUM $=$	-18.23
NT. RATE	. 0370	SUM $=$	-17.16
NT. RATE	. 0360	SUM	-15.97
NT. RATE	. 0350	SUM	-14.65
NT. RATE	. 0340	SUM	-13.18
NT. RATE	. 0330	SUM $=$	-11.54
NT. RATE	. 0320	SUM	-9.73
NT. RATE	. 0310	SUM $=$	-7.71
NT. RATE	. 0300	SUM	-5.47
NT. RATE	. 0290	SUM	-2.98
NT. RATE	. 0280	SUM $=$	-0.22
NT. RATE	. 0270	SUM	2.85
NT. RATE	. 0279	SUM $=$. 07

PROBLEM - BEAR CREEK PROPOSEO SALE - LONG PERIOD
PLAN B, LARGE BLOCK CLEARCUT, PLANT

```
SITE PREP.
2 PLANTING (AVE. 290 TREES/ACRE)
3 THINNING
4 INTERMEDIATE CUT (1215 CUFT.SP, 1215 GF)
5 HARVEST CUT ( }3800\mathrm{ CUFT.SP, 3200 GF)
```

NT. RATE	0	SUM $=$	503.80
NT. RATE	. 0200	SUM $=$	51.50
NT. RATE	. 0400	SUM =	-23.66
NT. RATE	. 0390	SUM $=$	-22.20
NT. RATE	. 0380	SUM $=$	-20.60
NT. RATE	. 0370	SUM $=$	-18.87
NT. RATE	. 0360	SUM	-16.97
NT. RATE	.035u	SUM $=$	-14.91
NT. RATE	. 0340	SUM $=$	-12.66
NT. RATE	. 0330	SUM $=$	-10.21
NT. RATE	. 0320	SUM $=$	-7.54
NT. RATE	. 0310	SUM =	-4.62
NT. RATE	. 0300	SUM	-1.45
NT. RATE	. 0290	SUM =	2.02
NT. RATE	. 0299	SUM =	-1.11
NT. RATE	. 0298	SUM =	-0.78
NT. RATE	. 0297	SUM $=$	-0.44
NT. RATE	. 0296	SUM $=$	-0.10
NT. RATE	. 0295	SUM $=$. 25

Figure 7.-Machine output from investment analysis of illustration problem.
A, Plan A, long investment period; B, Plan B, long investment period.
the manager in this case would no doubt choose plan B regardless of the time period involved.

With thoughtful screening of species, realistic cost and value yield estimates based on the best data available, and full use of the speed and convenience of modern EDP equipment, economic evaluation of alternatives can
be made more easily and with more consistency than ever before. Once he has these evaluations, the timber manager is in a good position to make sound decisions about particular timber growing projects because he is able to judge the effectiveness with which money and land are combined to reach timber production goals.

SUMIMARY

The 3.5 million acres of National Forest land in the Northern Rocky Mountain area that are capable of growing western white pine are also highly productive for growing a number of other species.

Lack of a means to suppress blister rust makes it imperative that other species be substituted for white pine at the present time. Also, if public agencies are to use their money efficiently, economic evaluations of species alternatives are necessary. The species choice for timber production is determined by the capacity of the site to grow various species and the degree of efficiency with which each species may be used to attain the timber production goal or objective. Rate of return on the tree-growing investments is the most useful measure of efficiency.

The real species alternatives to evaluate are those judged to have the best chance of producing a merchantable stand. As a hedge against unknown future losses of any given species from insects and disease, mixed species stands should be the rule.

Choice of species mixtures to regenerate for timber production can be based on the following evaluation:

1. Determine the species biologically best
suited to the area to be regenerated. This calls for a determination of habitat type and a close examination of the species present and thriving in the stand to be harvested.
2. Eliminate from consideration those species thought to be the poorest risks because of current disease or insect problems, or other obvious disadvantages.
3. Estimate the costs necessary to establish a satisfactory stand of the alternative species and to manage it at a specified level until harvest.
4. Estimate the intermediate and harvest yields likely from the level of management prescribed.
5. Estimate the values of these yields.
6. Compute the alternative rate of return (interest rate) from estimated value yield and costs of the timber growing operation.

For effective use of such evaluations, (1) only practical alternatives should be evaluated, (2) the most reliable information available should be used, and (3) each area to be regenerated should be considered within the framework of its own peculiarities and conditions.

APPENDIX A

WHITE PINE LAND AREA SUMMARIES FOR NATIONAL FOREST LAND IN THE NORTHERN REGION
Appendix table 1. --LAND AREA BY WHITE PINE SITE CLASS AND ASPECT

Appendix table 2.--LAND AREA BY WHITE PINE SITE CLASS, SLOPE PERCENT,

AND STAND SIZE

(In acres)

Appendix table 3،--LAND AREA BY WHITE PINE SITE CLASS AND SITE INDEX OF PRINCIPAL SPECIES; SAWTIMBER STANDS

APPENDIX B

INVESTMENT ANALYSIS PROGRAMS

INVESTMENT PROGRAM NO. ${ }^{1}$ CDC-3100 VERSION OF OTIS HALL'S PROGRAM

Complex Investments in Forestry

Limitations.-This program will handle up to 150 separate items of cost or income, will cover periods of up to 200 years, and will give an interest rate earned up to 50 percent, carried to the hundredth of a percent. The highest cash value that can be entered is \$999,999,999.99.

Data input.-Data are prepared on 80 -column punch cards. Three cards are used to provide data needed for returning output to user: two title cards identify the problem; one card each is used for each cash flow item of cost or income in any one year. The exception to this is an annual item that continues at a constant rate over the time period. Any annual item would be read in on a single card but would be coded as shown below.

Card 1-Identifies Forest
Cols. 1-32-Name of Forest
Card 2-Identifies unit
Cols. 1-32-Name of unit
Card 3-Identifies user
Cols. 1-32-Name of user
Card 4-Title card
Cols. 1-55-Name of problem
Card 5-Problem description
Cols. 1-52-Description
Cols. 53-55-Number of items (cards) or cost and income
Card 6 . . . n-(Item cards)
Cols. 1-3-Number of item
Cols. 4-59-Information identifying item
Col. 60-If the item occurs in single year, code " 2 "; if the item recurs annually from the beginning of the investment, code "1."
Cols. 63-65-Years since beginning of investment up to year of item. The number of years entered is the number that
have elapsed since the investment program was initiated.
Cols. 68-80-Cash value of the item to the nearest cent. The decimal point is punched in column 78. If the item is a cost, a minus sign is placed in the column before the first digit. (Therefore column 68 never contains a digit; it is reserved for the minus sign.) Cost items of less than $\$ 1.00$ are punched with a decimal point in column 78 and the minus sign in column 77.

Card $n+1$-End-of-file card if last problem. Any number of problems can be run for a particular Forest by repeating cards 4 to n. Also, problems from any number of Forests can be run by placing a card with NEW FOREST in columns 1-10 between each set of Forest problems. Repeat cards 1 to n for each Forest. End-of-file card follows last problem.
Output. - The output includes the data identifying the user, the problem identification, and the problem data cards. Following this, the interest rates tested and the corresponding sums (capital values) are printed. The last rate printed is the problem answer unless

1. the costs exceed the income, in which case the word LOSS is printed,
2. the rate earned is greater than 50 percent, in which case the statement INTEREST RATE GREATER THAN 50 PERCENT is printed.
[^5]Test problem.-Following is a listing of the data (cards 6-16) used by Hall.

Cols	Cols	Col	Cols	Cols
$1-3$	$4-56$	60	$63-65$	$68-80$
001	COST OF LAND		2	000
002	COST OF CLEARING AND PLANTING	-25.00		
003	COST OF RELEASE FROM COMPETING VEGETATION	2	000	-20.00
004	COST OF SPRAYING FOR INSECTS	2	004	-6.00
005	INCOME FROM THINNING FOR PULPWOOD	2	008	-3.00
006	INCOME FROM THINNING FOR PULPWOOD	2	015	20.00
007	INCOME FROM THINNING FOR PULPWOOD	2	025	36.00
008	INCOME FROM HARVEST OF SAWLOGS AND PULPWOOD	2	033	40.00
009	VALUE OF BARE LAND	2	040	450.00
010	ANNUAL COSTS IN PROPERTY TAXES, ETC.	2	040	25.00

Problem answer. - Interest rate $=0.0601$. Sum $=0.07$ or 0.08 , depending on the number of significant digits carried by the computer (fig. 8).

```
C
OTIS HALL PROGRAM--RATE EARNED, LONG TERM INVESTMENT
    MALL--1962. RESEARCH BULLETIN NO. 752. PURDUE UNIV.
        HALL=-1963, SUPPLEMENT TO APPENOIX, RESEARCH BULLETIN NO. }75
        REVISED 1967. INT. STA.(WIKSTROM) CDC 3100
        PROGRAM LTINVI
        INTEGER PR
        DIMENSION M(150) &N(150),A(150)
        DIMENSION NAME (B)
        DIMENSION PR(20),PRBI (13) ,LBL(14)
        READ (60,10) (NAME(I),I=1,B'
    10 FORMAT (8A4)
        WRITE (61,9)(NAME (I),I=1,B)
    9 FORMAT (I9HINATIONAL FOREST - 8A4)
        READ (60,10) (NAME (I) I I l | 8)
        WRITE (61,8) (NAME (I),I=1,8)
    8 FORMAT ( 8HOUNIT - ,8A4)
        READ (60,10)(NAME (I), I=1,8)
        WRITE (61,7) (NAME (1),I=1,8)
    FORMAT (13HOATTENTION - .8A4/1H*)
        WRITE (61,20)
    20 FORMAT (1HO.41X34HINVESTMENT ANALYSIS PROGRAM NO. 1)
15 READ (60,4)(PR(I),I=1,20)
        GO TO(999,401)EOFCKF(60)
401 IF(PR(1).EQ.4HNEW )1.402
    FORMAT (20A4)
402 WRITE(61,3) (PR(I),I=1, 20)
    3 FORMAT (11HOPROBLEM - ,20A4)
        READ(60,2)(PRB1(J),J#1,13),1
    2 FORMAT (13A4,13)
        WRITE (61,5) (PRB1(J),J=1,13),I
    5 FORMAT (IH0,13A4:I4//)
        DO 21 10=1,I
        READ(60:22)L,LBL,M(ID),N(ID):A(ID)
    22 FORMAT (13,14A4,I1, 2X,I3,2X,F13.2)
    21 WRITE (61,23)L,LBL,M(ID),N(ID),A(ID)
    2 3 \text { FORMAT (1H I3,14A4,11,2X,I3,2X,F13,2)}
120 FORMAT (1HO)
        WRITE (61.120)
        J=0
        SUM=0.0
        P=0.0
40 DO 50 10=1.I
        K=M(ID)
        GO TO(46,42)K
    42D=A(ID)/(1.+P)*W(ID)
    GO TO 50
    46 IF (P) 49,49,47
47D=A(ID)*((1* + P)*WN(ID) - 1. )/(P* (1.*P)**N(ID))
    GO TO 50
    4 9 ~ Y R = N ( 1 0 )
    O=A(ID)*YR
    50 SUM=SUM * 0
        IF (SUM)90,62,64
    6 2 ~ P R I N T ~ 7 3 , P , S U M ~
    73 FORMAT (10HINT: RATE F6.4.8X,7H SUM =F20.2)
    GO TO 15
    64 IF(P-0.5)70,70,65
    6 5 \text { PRINT } 6 6
    6 6 \text { FORMAT (39H INTEREST RATE GREATER THAN 50 PERCENT ;}
        GO TO 15
    70 IF(J)80.71,80
    71 PRINT 73,P,SUM
        P=P+.0200
    7 6 \text { SUM =0.0}
    GO TO 40
    80IF (J-1)81,82,81
    81 GO TO 62
    82 PRINT 73,P;SUM
    P=P*.0010
85 P=P-.0001
        J=2
        GO TO 76
    90 IF(J) 100,91,100
    91 IF(P) 100,92,100
    9 2 \text { PRINT } 9 3
    9 3 \text { FORMAT ( 6H LOSS )}
        GO TO 15
100 IF (J-2)101,110,101
101 J=1
            PRINT 73, P,SUM
            P=P=.0010
            GO TO }7
110 PRINT 73,P,SUM
    GO TO }8
999 STOP
    ENO
                3 2 0 0 ~ F O R T R A N ~ D I A G N O S T I C ~ R E S U L T S ~ - ~ F O R ~ L T I N V I ~
```

NO ERRORS

Figure 8.-EDP program for investment analysis, No. 1, adapted from Otis Hall program.

INVESTMENT ANALYSIS PROGRAM
 NO. 2
 CDC-3100 VERSION OF CLARK ROW'S
 INVESTMENT ANALYSIS PROGRAM

This program is essentially the one published in Agriculture Handbook 304, "A guide for evaluating reforestation and timber stand improvement projects by Marty, et al. It has been modified for use on the CDC-3100 computer. The dimension of the program was cut to fit 60 K storage. Also some statements were made consistent with CDC-3100 language.

Two features were added to the program in the process of revision:

1. The input was modified to include the name and address of the user. The first three input cards are used for this purpose. This was done simply to facilitate handling of both input and output.
2. Control cards 5, 6, and 7 are now printed out with labels to facilitate the checking of input should problems arise. Note that the only optional card in the input is card 13. It is required whenever NX on card 6 is coded 02. Note also that JX, MX, and NX on control card 6 must always be " 01 " or larger.

Output options.-The program computes

1. internal rate of return
2. present worth.

Either or both can be obtained - note "program options" columns 13-14 on control card 5.

INSTRUCTIONS FOR PREPARING CONTROL CARDS

Card	Columns	ITEM	Field	Label
1	1-20	Name of Forest		Name
2	1-20	Name of unit		Name
3	1-20	Name of user		Name
4	1-80	Number and/or name of problem		Name
5	1-4	Minimum rate of interest	. XXX	RINT
	5-8	Interest rate increment	. XXX	
	9-12	Maximum rate of interest	. XXX	
	13-14	$\begin{aligned} & \text { Program options } \\ & 00=\text { Interest rate only } \\ & 01=\text { Present worth and interest rate } \\ & 02=\text { Present worth only } \end{aligned}$	XX	IOUT
6	1-2	Type of alternatives $01=$ Rotation $02=$ Site index $03=$ Production system	XX	LZ

Number of alternatives
5-7
8-10 Number identifying alternative 2
11-13 Number identifying alternative 3
23-25 Time period, alternative 1 (1-999)
26-28 Time period, alternative 2
29-31 Time period, alternative 3
41-42 Maximum number of products (0-3)
43-45 Maximum number of periodic costs
46-48 Number periodic costs, alternative 1
49-51 Number periodic costs, alternative 2
52-54 Number periodic costs, alternative 3
64-65 Number sets of annual costs (1-8)
66-67 Number sets of product prices (1-8)
68-69 Type of terminal calculation ($01=$ perpetual series; $02=$ final value)
70-71 Number of final value (0-10)
1-3 Maximum number of returns of product 1 (0-50) in any one plan
4-6 Number of product 1 returns, alternative 1
7-9 Number of product 1 returns, alternative 2
10-12 Number of product 1 returns, alternative 3
22-24 Maximum number returns of product 2 (0-50)
25-27 Number of product 2 returns, alternative 1
28-30 Number of product 2 returns, alternative 2
31-33 Number of product 2 returns, alternative 3
43-45 Maximum number returns of product 3 (0-50)
XXX
XXX K1X(2)
XXX K1X(3)

46-48
49-51
52-54

1-20 Name and unit of measure, product 1
21-40 Name and unit of measure, product 2
41-60 Name and unit of measure, product 3

XXX	$\mathrm{NC}(\mathrm{L}, \mathrm{KC})$
XXXXXX.XX	$\mathrm{PECO}(\mathrm{L}, \mathrm{KC})$
XXX	
XXXXXX.XX	
XXX	
XXXXXX.XX	

(Card 9 may be repeated 19 times if necessary to include all costs)

1-3 Year of $j^{\text {th }}$ return, $K^{t h}$ product, plan 1
XXX N1 (L,KC)
$\begin{array}{llll}\text { 4-8 } & \text { Volume of } j^{\text {th }} \text { yield, } K^{\text {th }} \text { product, plan } 1 & \text { XXXXX }^{10} & \text { JLD1(L,K1) } \\ 9-12 & \text { Quality index } j^{t h} \text { yield, } K^{t h} \text { product, plan } 1 & \text { XXXX }^{11} & \text { JUAL1(L,K1) }\end{array}$
9-12 Quality index, $J^{\prime \prime}$ yield, $K^{\prime \prime}$ product, pian 1
13-15 Year of $j^{\prime \prime \prime}$ return, $K^{\prime \prime \prime}$ product, plan 2 XXX
16-20 Volume of $j^{\text {th }}$ yield, $K^{\text {th }}$ product, plan $2 \mathrm{XXXXX}^{10}$
21-24 Quality index, $j^{t / h}$ yield, $K^{t h}$ product, plan $2 \mathrm{XXXX}^{11}$
25-27 Year of $j^{\text {th }}$ return, $K^{\text {th }}$ product, plan 3 XXX
28-32 Volume of $j^{\text {th }}$ yield, $K^{\text {th }}$ product, plan 3 XXXXX ${ }^{10}$
33-36 Quality index, $j^{\prime / \prime}$ yield, $K^{t / \prime}$ product, plan $3 \quad \mathrm{XXXX}^{11}$
(Card 10 may be repeated 49 times if necessary to include all product returns)

11	$1-9$	1st annual cost assumption	XXXXX.XXX	ANC(J)
(at least	$10-18$	1st change in annual cost	XXXXX.XXX	CANC(J)
one card	$19-27$	2nd annual cost assumption	XXXXX.XXX	
required)	$28-36$	2nd change in annual cost	XXXXX.XXX	
	$37-45$	3rd annual cost assumption	XXXXX.XXX	
	$46-54$	3rd change in annual cost	XXXXX.XXX	
	$55-63$	4th annual cost assumption	XXXXX.XXX	
	$64-72$	4th change in annual cost	XXXXX.XXX	

(Card 11 may be repeated. Up to 8 annual cost assumptions can be used)

12
(at least one card required)

13
(at least one card required
if $\mathrm{NX}=02$)

1-9 $\quad i^{\text {th }}$ unit price assumption, product 1
XXXXX.XXX
PR (1,M)
10-18 $\quad i^{\text {th }}$ change in unit price, product 1 XXXXX.XXX
19-27 $i^{\text {th }}$ unit price assumption, product 2 XXXXX.XXX CPR (1,M)

28-36 $\quad i^{\text {th }}$ change in unit price, product 2 XXXXX.XXX PR (2,M)

37-45 $\quad i^{\text {th }}$ unit price assumption, product 3 XXXXX.XXX CPR (2,M)

46-54 $\quad i^{\text {th }}$ change in unit price, product 3

PR (3,M)
CPR (3,M)
(Card 12 may be repeated 9 times if additional price assumptions are needed)
(Do not use if terminal calculation is infinite series)

$1-9$	1st final value assumption	XXXXX.XXX	FVAL(N)
$10-18$	1st change in final value	XXXXX.XXX	
$19-27$	2nd final value assumption	XXXXX.XXX	
$28-36$	2nd change in final value	XXXXX.XXX	
$37-45$	3rd final value assumption	XXXXX.XXX	
$46-54$	3rd change in final value	XXXXX.XXX	

(Card 13 may be repeated up to three times if additional final values are needed)
14 1-2 Terminal card (punch 98 or 99
Punch 98 if another problem follows
Punch 99 if last problem
1-10 NEW FOREST - used only if problem that follows is from a new forest.

[^6]Figure 9.-EDP program for investment analysis, No. 2, adapted from Clark Row program.

```
3200 FORTRAN (2.0)
09/12/67
```

```
PROGRAM INVEST2
```

PROGRAM INVEST2
INVESTMENT ANALYSIS PROGRAM
INVESTMENT ANALYSIS PROGRAM
CLARK ROW, SOUTHERN FOREST EXP. STA. 1963
CLARK ROW, SOUTHERN FOREST EXP. STA. 1963
ROW--USFS RESEARCH PÄPER SO-b
ROW--USFS RESEARCH PÄPER SO-b
RENISED MARTY 1966--
RENISED MARTY 1966--
MARTY--USDA HANDBOOK 304
MARTY--USDA HANDBOOK 304
REVISED INTERMOUNTAIN STA. (WIKSTROM)=-1967
REVISED INTERMOUNTAIN STA. (WIKSTROM)=-1967
DIMENSION ANC (10), CANC (10),NC(3,100), PECO(3,100),N1 (3,100), JLDI(3,
DIMENSION ANC (10), CANC (10),NC(3,100), PECO(3,100),N1 (3,100), JLDI(3,
150),JUAL1 (3,50),N2(3,100),JUAL2 (3, 50),N3(3,100), JLD3 (3, 50),JUA
150),JUAL1 (3,50),N2(3,100),JUAL2 (3, 50),N3(3,100), JLD3 (3, 50),JUA
2L3(3, 50), PR(3,10), CPR(3,10),FVAL(25), RATE (100), RTLOG(100), VALIN(
2L3(3, 50), PR(3,10), CPR(3,10),FVAL(25), RATE (100), RTLOG(100), VALIN(
33,100),LY(3),KCX(3),K1X(3),K2X(3),K3X(3),A(12),L1(3),JLD2(3, 50)
33,100),LY(3),KCX(3),K1X(3),K2X(3),K3X(3),A(12),L1(3),JLD2(3, 50)
DIMENSION RINT(3),NAME (20)
DIMENSION RINT(3),NAME (20)
C
C
1 READ (60,10) (NAME (I),I=1,8)
1 READ (60,10) (NAME (I),I=1,8)
10 FORMAT (8A4)
10 FORMAT (8A4)
WRITE (61,9) (NAME (I), I=1,8)
WRITE (61,9) (NAME (I), I=1,8)
9 FORMAT (I9HINATIONAL FOREST - ,8A4)
9 FORMAT (I9HINATIONAL FOREST - ,8A4)
READ (60,10) (NAME (I),I=1,8)
READ (60,10) (NAME (I),I=1,8)
WRITE (61,8) (NAME (I),I=1,8)
WRITE (61,8) (NAME (I),I=1,8)
8 FORMAT (BHOUNIT - 8A4)
8 FORMAT (BHOUNIT - 8A4)
READ (60,10) (NAME (I),I =1,8)
READ (60,10) (NAME (I),I =1,8)
WRITE (61,7) (NAME (I), I=1,8)
WRITE (61,7) (NAME (I), I=1,8)
7 FORMAT (13HOATTENTION - .8A4/IH-)
7 FORMAT (13HOATTENTION - .8A4/IH-)
WRITE (61,20)
WRITE (61,20)
2 0 ~ F O R M A T ~ (1 H 0 , 4 1 X 3 4 H I N V E S T M E N T ~ A N A L Y S I S ~ P R O G R A M ~ N O . ~ 2) ~
2 0 ~ F O R M A T ~ (1 H 0 , 4 1 X 3 4 H I N V E S T M E N T ~ A N A L Y S I S ~ P R O G R A M ~ N O . ~ 2) ~
C READ CARD 5, PROBLEM TITLE
C READ CARD 5, PROBLEM TITLE
142 READ (60,15) (NAME (I),I=1,20)
142 READ (60,15) (NAME (I),I=1,20)
15 FORMAT (20A4)
15 FORMAT (20A4)
GO TO (410,143) EOFCKF (60)
GO TO (410,143) EOFCKF (60)
143 IF(NAME(1).EQ.4HNEW)1,144
143 IF(NAME(1).EQ.4HNEW)1,144
144 WRITE (61,21) (NAME (I),I =1,20)
144 WRITE (61,21) (NAME (I),I =1,20)
21 FORMAT (14H0 PROBLEM NO ,20A4)
21 FORMAT (14H0 PROBLEM NO ,20A4)
C READ CARD 1, RATE AND OUTPUT OPTIONS
C READ CARD 1, RATE AND OUTPUT OPTIONS
READ (60,17000) (RINT (I),I=1,3), IOUT
READ (60,17000) (RINT (I),I=1,3), IOUT
17000 FORMAT (3F4.3.I2)
17000 FORMAT (3F4.3.I2)
WRITE (61,1800) (RINT(I),I=1,3), IOUT
WRITE (61,1800) (RINT(I),I=1,3), IOUT
1800 FORMAT (17HOCONTROL CARD 5 , 3F5.3,I4)
1800 FORMAT (17HOCONTROL CARD 5 , 3F5.3,I4)
RATE (1)=RINT (1)
RATE (1)=RINT (1)
OO 17001 I=2.200
OO 17001 I=2.200
IF(RATE (I-1)-RINT (3)) 17002,17003,17003
IF(RATE (I-1)-RINT (3)) 17002,17003,17003
17002 RATE(I)=RATE (I-1) +RINT (2)
17002 RATE(I)=RATE (I-1) +RINT (2)
GO TO 17001
GO TO 17001
17003 LENGTH=I-1
17003 LENGTH=I-1
IF (LENGTH-(LENGTH/2)*2)17004:17005,17004
IF (LENGTH-(LENGTH/2)*2)17004:17005,17004
17004 LLNGTH=(LENGTH+1)/2
17004 LLNGTH=(LENGTH+1)/2
GO TO 137
GO TO 137
17005 LLNGTH=LENGTH/2
17005 LLNGTH=LENGTH/2
GO TO 137
GO TO 137
17001 CONTINUE
17001 CONTINUE
137 OO 138 I=1,LENGTH
137 OO 138 I=1,LENGTH
138 RTLOG(I)=1.+RATE(I)
138 RTLOG(I)=1.+RATE(I)
C
C
C READ CARDS 6-7, PROBLEM DESCRIPTION ANO SCHEDULE LABELS
C READ CARDS 6-7, PROBLEM DESCRIPTION ANO SCHEDULE LABELS
READ(60,11)LZ,LX,(LI(L),L=1,3),(LY(L),L=1,3),KX,KCXX,(KCX(L),L=1,3
READ(60,11)LZ,LX,(LI(L),L=1,3),(LY(L),L=1,3),KX,KCXX,(KCX(L),L=1,3
1),JX,MX,NZ,NX
1),JX,MX,NZ,NX
11 FORMAT (2I2,3I3,9X,3I3,9X,I2,4I3,9X,4I2)
11 FORMAT (2I2,3I3,9X,3I3,9X,I2,4I3,9X,4I2)
WRITE (61.99)
WRITE (61.99)
99 FORMAT (1HO16X,2HLZ,2X,2HLX,3(3X,2HLI), 3(3X, 2HLY), 2X,2HKX, 1X,4HKCXX
99 FORMAT (1HO16X,2HLZ,2X,2HLX,3(3X,2HLI), 3(3X, 2HLY), 2X,2HKX, 1X,4HKCXX
1,3(2X,3HKCX), 2X, 2HJX, 2X, 2HMX, 2X, 2HNZ, 2X, 2HNX)
1,3(2X,3HKCX), 2X, 2HJX, 2X, 2HMX, 2X, 2HNZ, 2X, 2HNX)
WRITE (61,55)LZ,LX,(LI(L),L=1,3),(LY(L),L=1,3),KX,KCXX,(KCX(L),L=1,
WRITE (61,55)LZ,LX,(LI(L),L=1,3),(LY(L),L=1,3),KX,KCXX,(KCX(L),L=1,
13), JX,MX,NZ,NX
13), JX,MX,NZ,NX
55 FURMAT,ITHWCONTROL CARU 6 , 12, 2X,12,8(2X,13),2X,12,4(2X,13):4(2X
55 FURMAT,ITHWCONTROL CARU 6 , 12, 2X,12,8(2X,13),2X,12,4(2X,13):4(2X
1,I2))
1,I2))
READ (60,88)K1XX,(K1X(L),L=1,3),K2XX,(K2X(L),L=1,3),K3XX,(K3X(L),

```
            READ (60,88)K1XX,(K1X(L),L=1,3),K2XX,(K2X(L),L=1,3),K3XX,(K3X(L),
```

```
        1L=1,3)
        88 FORMAT(413,9X,413,9x,413)
        WRITE (61,999)
    999 FORMAT(1H017X,4HK1XX,3(2X,3HK1X), 1X,4HK2XX,3(2X, 3HK2X), 1X,4HK 3XX,
        13(2X,3HK3X))
            WRITE (61,5)K1XX,(K1X(L),L=1,3),K2XX,(K2X(L),L=1,3),K3XX,(K3X(L),
        IL=1,3)
        5 FORMAT(17HMCONTROL CARD 7 ,12(2X,13))
C
C READ CARD 6, PRODUCT NAMES
            READ (60, 4)(A(I),I=1,12)
        4 FORMAT (14A5)
            IF(LZ-2)145,146,147
    145 WRITE (61,23)
    23 FORMAT (73HO ROTATI
        ION LENGTH IN YEARS)
            GO TO 149
    146 WRITE (61,24)
    24 FORMAT 170HO
            IE INDEX IN FEET)
            GO TO 149
    147 WRITE (61,25)
    25 FORMAT (69HO
            IDUCTION SYSTEM)
    149 WRITE(61, 26) (LI(L), L=1,LX)
    26 FORMAT (7X,A4,2(16X,A4))
            IF (KCxX) 160,160,152
    152 WRITE (61,27)
    27 FORMAT \17H0 PERIODIC COSTS,/115H YEAR COST YEAR C
            1OST. YEAR COST YEDD COST YEAR COST
            2 YEAR COSTI
C
READ CARDS 7, PERIODIC COSTS
            DO 155 KC=1,KCXX
            READ (60,13) (NC(L,KC),PECO(L,KC),L=1,3)
            FORMAT(3(I3,F9.2) )
    155 WRITE(61,29)(NC(L,KC), PECO(L,KC),L=1,LX)
    FORMAT (16,F9.2,2(111,F9.2))
    160 IF (K1XX) 170,170,162
    162 WRITE (61,30) (A(I),I= 1,4)
        FORMAT (25HO PERIODIC RETURNS FROM, 4A5)
        WRITE (61,31)
    31 FORMAT 1118H YEAR YIELD QUAL YEAR YIELD QUAL YEAR YIELD
        IQUAL YEAR YIELD QUAL YEAR YIELD QUAL YEAR YIELD QUAL)
C
C READ CARDS 8, PRODUCT 1 RETURNS
            00 165 Kl= 1,K1XX
            READ(60,14)(N1(L,K1),JLDI(L,K1),JUAL1(L,K1),L=1,3)
        14 FORMAT (3(I3,I5,14))
    165 WRITE(61,32) (N1(L,K1),JLD1(L,K1),JUALI(L,K1),
        LL=1,LX)
        32 FORMAT (316,2(18,216))
    170 IF(K2XX) 180,180,172
    172 WRITE (61,30)(A(I),I=5,8)
        WRITE (61,31)
C
    READ CARDS 8, PRODUCT }2\mathrm{ RETURNS
            DO 175 K2=1,K2XX
            READ (60,14)(N2(L,K2),JLD2 (L,K2),JUAL2(L,K2),L=1,3)
    175 WRITE (61,32) (N2 (L,K2),JLD2 (L,K2),JUAL2 (L,K2),L=1,LX)
    180 IF (K3XX) 190,190,182
    182 WRITE (61,30)(A(I), I=9,12)
        WRITE (61,31)
C
C READ CARDS 8, PRODUCT 3 RETURNS
            DO 185 K3=1, K3XX
            READ(60,14)(N3(L,K3),JLD3(L,K3),JUAL3(L,K3),L=1,3)
    185 WRITE(61,32)(N3(L,K3),JLD3(L,K3);JUAL3(L,K3), L=1,LX)
1 2
C
    READ CARD 9, ANNUAL COSTS
    190 READ (60,12) (ANC (J), CANC(J),J=1,JX)
```

```
C
READ CARD 10, PRICES
        DO 191 M=1,MX
    191 READ(60,1200)(PR(K,M),CPR(K,M),K=1,KX)
    1200 FORMAT(6F9.3)
        IF(NZ-1)195,195.193
C
    READ CARD 11, FINAL VALUE
    193 READ (60,12) (FVAL (N),N=1,NX)
    195 DO 390 J=1.JX
        DO 390 M=1,MX
        LLLX=NX
        IF (NX.EQ.O)196:198
    196 LLLX=1
    198 DO 390 N=1,LLLX
        WRITE (61,34) ANC (J), CANC (J)
    34 FORMAT 137HO ANNUAL COST S. F7.2, 46H
        1 CHANGE IN ANNUAL COST , F13.4.17H PERCENT PER
        2YEAR)
            OO 199 K=1,KX
            JJ1=(K*K*K-1+0)
            JJ2=JJ1 +1
            JJ3=\J1 +2
            JJ4=JJ1 + 3
    199 WRITE(61,35)(A(JJ1),A(JJ2),A(JJ3),A(JJ4),PR(K,M),A(JJI),A(JJZ),
        1A(JJ3),A(JJ&),CPR(K,M))
    35 FORMAT 112HO PRICE OF, 4A5, 5H $, FT.2, 26H CHANGE IN
        IPRICE OF, 4A5, F13.4, 17H PERCENT PER YEAR)
            IF(NZ-1)204,204,205
    204 WRITE (61,36)
    36 FORMAT (30HO PERPETUAL INVESTMENT SERIES)
        GO TO 210
    205 WRITE (61,37) FVAL(N)
    3 7 \text { FORMAT (37HO VALUE AT END OF ONE INVESTMENT S, F7.2)}
    210 DO 345 L=1,LX
        KCXA=KCX(L)
        K1XA=K1X(L)
        K2XA=K2X(L)
        K3XA=K3X(L)
        NZERO=1
            DO 340 I=1,LENGTH
        GO TO (220.330),NZERO
    220 DANC=0.0
        DCANC=0.0
        DKC=0.0
        DKl=0.0
        DK2=0.0
        DK3=0.0
        DFVAL=0.0
        RTLOI=RTLOG(I)
        DISCO=RTLOG(I) LY(L)
        IF(ANC(J)) 225,230.225
    225 DANC=(ANC(J)*(DISCO-1.))/(RATE(I)*DISCO)
    230 IF (CANC(J)) 235,240,235
    235 DCANC=(CANC(J)*ANC(J)*DISCO-LY(L)*(RATE(I)-1.)/(RATE(I)**2*DISCO))
    240 IF(KCXA) 250,250,241
    -1 J0 2%5 KC=1,RCXA
    KXLY=NC(L,KC)
    DISC=RTLOI ** KXLY
    245 DKC=OKC+PECO(L,KC)/DISC
    250 IF (KIXA) 260,260,251
    251 D0 255 K1=1,K1XA
    KXLY=N1 (L,K1)
    OISC=RTLOI * KXLY
    QUAL1=JUALI(L,KI) .01
    YLDI=JLDI(L,K1)*.l
    255 DK1 =DK1*(YLD1*PR(1,M)*QUAL1*(1**CPR(1,M)*N1 (L,K1))/DISC)
    260 IF (K2XA)270.270.261
    261 D0 265 K2=1,K2XA
        KXLY=N2(L,K2)
        DISC=RTLOI ** KXLY
        QUAL2=JUAL2(L,K2) .01
    YLD2=JLO2(L,K2)* -1
    265 DK2=DK2+(YLD2*PR(2,M)*QUAL2*(1.*CPR(2,M)*N2(L,K2))/DISC)
    270 IF(K3XA)280,280,271
```

```
    271 D0 275 K3=1,K3XA
    KXLY=N3(L,K3)
    DISC=RTLOI * KXLY
    QUAL3=JUAL3(L,K3) .01
    YLD3=JLD3(L,K3) .1
    275 DK3=DK3*(YLO3*PR(3,M)*QUAL3*(1**CPR(3,M)*N3(L,K3))/DISC)
    280 TDVAL=DK1+DK2+DK3-DANC-DCANC-DKC
    IF(NZ-1)290,290,295
    290 VALIN(L.I)=TDVAL (1.*1./(DISC0-1.))
    GO TO 340
295 DFVAL=FVAL(N)/DISCO
    VALIN(L,I) =TDVAL*DFVAL
    IF(VALIN(L,I)) 330,340,340
    330 VALIN(L,I) =0.0
    NZERO=2
    3 4 0 ~ C O N T I N U E ~
    345 CONTINUE
    DO 1308 I=1,LENGTH
    RATE(I)=RATE(I)*100.0
1308 CONTINUE
    IF (IOUT.GT.1)1320,1208
1208 WRITE (61,1309) (NAME(I),I=1,20)
1309 FORMAT (1H1,12HPROBLEM NO., 20A4)
    00 1311 L=1,LX
    DO 1312 I=1,LENGTH
    IF (VALIN(L,I).GT.0.0)1312,1207
1207 IF (VALIN(L,I).EQ.0.0)1314,1206
1206 IF (I.EQ.1)1316,1205
1205 WRITE(61,1313) LI(L),RATE(I-1),RATE(I),VALIN(L,I-1),VALIN(L,I)
1313 FORMAT {IHO,37HINTERNAL RATE OF RETURN FOR SCHEDULE ,A4,12H IS BET
    IWEEN ,F5.1,5H AND,F5.1/1H, 23HWITH PRESENT WORTHS OF,F6.2,5H AND
    2,F6.2,15H RESPECTIVELY. )
    GO TO 1311
1314 WRITE(61,1315) LI(L),RATE(I)
1315 FORMAT (1HO,37HINTERNAL RATE OF RETURN FOR SCHEDULE ,A4,4H IS ,F7.
    11/1
        GO TO 1311
1312 CONTINUE
1316 WRITE(61,1317) LI(L),RATE(I),VALIN(L,I)
1317 FORMAT (1HO,37HINTERNAL RATE OF RETURN FOR SCHEDULE ,A4,32H IS NOT
    I INCLUDED IN THE PROBLEM.)
1311 CONTINUE
1320 IF(IOUT.EQ.0)4665,1204
1204 WRITE (61,1309) (NAME (I),I=1,20)
    WRITE (61,38)
    38 FORMAT 170H PRESENT DISCOUNTED NET WORTH AT GIVEN ALTERNATIVE RA
    lTES OF INTEREST)
        [F (LZ-2) 1300,1501,1301
    1300 WRITE(61,40) (LY(L),L=1,3)
    40 FORMAT (THO RATE,15X,13,2(17X,I3)/)
        GO TO 1302
1301 WRITE(61,1303) (LI(L),L=1,2)
1303 FORMAT (7HO RATE,14X,A4,2(16X,A4)/)
1302 CONTINUE
        DO 365 I=1,LENGTH
        WRITE(61,41) RATE(I),(VALIN(L,I),L=1,LX)
        41 FORMAT (1H ,F7.1.3F20.2)
        365 CONTINUE
4 6 6 5 ~ D O ~ 4 6 6 7 ~ I = 1 , L E N G T H
4667 RATE(I) =RATE(I)/100.0
    390 CONTINUE
C
C READ CARO 12, END OF PROBLEM
                READ (60,11) IEND
                IF(IEND-98)400,142,410
    400 WRITE (61,42)
    4 2 ~ F O R M A T ( 2 3 H O ~ E R R O R ~ I N ~ I N P U T ~ C A R D S )
    4 1 0 ~ S T O P
        END
                3 2 0 0 ~ F O R T R A N ~ D I A G N O S T I C ~ R E S U L T S ~ - ~ F O R ~ I N V E S T 2 ~
```

NO ERRORS
LOAD, 56
RUN, 15

This modification of Row's program does essentially the same things as the Hall program used in the problem illustration. It is more complex, however, and accepts a more sophisticated input in that it requires fewer computed values.

For example, the estimated intermediate and final harvest values need not be computed. Instead, the analyst specifies the product(s), the expected volume of each product, the quality of each product, and a set of product prices. The assigned prices are automatically adjusted by the quality index specified and the yield values are computed as part of the program.

Another requirement of the program is
that the analyst specifies the minimum and maximum interest rates to be considered and the interest rate increment to be used in searching for the internal rate of return to be earned by each alternative.

The program accepts three different types of alternatives (rotation length, site index, production system, etc.) and compares three alternatives (three stands, three thinning jobs, etc.) simultaneously. The program also computes the present net worth for the range of interest rates specified.

The input and output of the problem illustrated in the text are shown here (figs. 10, 11).

	INPUT DATA CODING FORM	Lunit ${ }^{\text {Len de }}$	pron			em	Loon numer	
TO：FOREST SERVICE，MISSOULA ATTENTION：TIMBER MANAGEMENT					INSTRUCTIONS FOR E．D．P． 1．PUNCH CARDS AND VERIFY 2．RUN WITH INVESTMENT ANALYSIS NO． 2 3．RETURN OUTPUT TO USER			
	CMIEIUIRI IDI IA	EINIEJ I \111	111111	し11111				
	SIUPIEIRIVIIISLC	l CAFIAIICIE	111111	1111111	1111111	111111111	1111111	11111
	RCIIBIEIRITI CICIC					11111111	1111111	111111
	BIEIAIRI ICIRIEIEIK	IPIRI¢｜P｜PASIEID	HEI I－LIIXINIG	PPIERRIIIND 11	111111111	1111111	1111111	1111111
				1	1111111	111111111	11111111	1111111
	allorziobllla	111111111	11311010	1111	dillaidi3blal3ial	311	all 10110110	は111111
	0016101616101041	111	11	1111111	1111111	1111111	1111111	111111
	SAIWITIIMIBIERI	－ICIUBIIICI IFIE		11111	1	111111	11i11111	11111111
	Oloblololololil31．	obloldoldololal	－1019 1111	111111111	1111111	11111	い11	11
	dollolotold 155.			111111	$1111 \mid$	111111	いい」1」	11111
					いい111	1111111	111	111
	0161001917121010		olasa｜｜｜｜ 1	111｜11｜	11	111111	111	1111111
	00610101312141010			1	111111111	111111111	11111111	111111111
	010131214101010			し1111｜	11111111	－11111111	11	11111111
	0	$61011101013\|2\| 101010$	9017이｜｜111	11	1111111	111111	11111	1111111
	1		111｜11	111｜11｜	い11111	111111	い11111	1111111
	0｜11131｜｜2｜210101010	11111	111111	111	111111	11	111111	1111
	dablal lioble	dobl	11	111111	1111111	111111111	1111111	11111111
	O10101010．．11901	1111｜｜	111111	1111111	111111	1111111	111111111	11111111
${ }^{28}$	31111111	11111111	$11 \mid 11111$	1111し1111	11111111	111111111	$11 \mid 11111$	11111111
14	91911111111	111111	1111111	111111	111111	111111111	111111111	1111111
	1111				111	ル｜｜11．	1111｜11	11111
	111	11111	い1111	1111111	111111111	111111111	11111111	111111
	リ1111		1111111	111111	111111」	11111111	11111111	い1111」
25		011112｜13｜14｜ $15\|16\| 17\|18\| 19$	$\frac{1}{23,24] \mid 251}$					
Figure 10．－Input for problem illustrated in the text，for use with EDP program No． 2.								

PROBLEM NO. BEAR CREEK PROPOSED SALE -LONG PERIOD
INTERNAL RATE OF RETURN, FOR SCHEDULE 0001 IS BETWEEN 2.7 AND 2.8 WITH PRESENT WORTHS OF 2.99 AND $\mathbf{- 0 . 2 3}$ RESPECTIVELY.
INTERNAL RATE OF RETURN FOR SCHEOULE 0002 IS BETWEEN WITH PRESENT WORTHS OF 2.14 ANO $\mathbf{- 1 . 5 3}$ RESPECTIVELY.
(

Headquarters for the Intermountain Forest and Range Experiment Station are in Ogden, Utah. Project headquarters are also at:

Boise, Idaho
Bozeman, Montana (in cooperation with Montana State University)
Logan, Utah (in cooperation with Utah State University) Missoula, Montana (in cooperation with University of Montana)
Moscow, Idaho (in cooperation with the University of Idaho)
Provo, Utah (in cooperation with Brigham Young University)

FOREST SERVICE CREED

The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's Forest Resources for sustained yields of wood, water. forage, wildlife, and recreation. Through forestry research, cooperation with the States and private owners, and management of the National Forests and National Grasslands, it strives - as directed by Congress - to provide increasingly greater service to a growing Nation.

[^0]: ${ }^{1}$ Engelmann spruce may become climax, but only in the Engelmann spruce-subalpine fir-grouse whortleberry (huckleberry) habitat type, which Daubenmire feels is uncommon and peripheral in the Northern Region, since he found only four isolated occurrences in northeast Washington and north Idaho. (R. Daubenmire. Vegetation: Identification of typal communities. Science 151 (3708): 291-298. 1966.)

[^1]: ${ }^{2}$ The allocation of costs for these activities may vary. For example, site preparation does not include slash disposal for hazard reduction, which customarily is charged against the crop just harvested. Only the cost incurred as a result of the decision to utilize the land to grow more trees should be charged against the future crop. In some instances site preparation can be fully accomplished in the course of hazard reduction; in such cases the cost of site preparation is zero. When slashing of the residual stand is necessary to provide enough fuel to achieve adequate site preparation, felling costs are charged against the future crop. Any increase in burning costs caused by slashing the residual stand must also be charged to the future crop. Note also that some degree of stocking control is achieved through control of planting density.

[^2]: "Benson, Robert E., and Larry L. Kirkwold. Market trends for western white pine. U.S. Forest Serv. Res. Note INT-65, 8 pp., illus., 1967.

[^3]: ${ }^{\dagger}$ Marty, Robert, Charles Rindt, and John Fedkiw. A guide for evaluating reforestation and stand improvement projects in timber management planning on the National Forests. U.S. Dep. Agr., Agr. Handbook 304, 24 pp. 1966.

[^4]: ${ }^{5}$ Hall, Otis. Evaluating complex investments in forestry and other long-term enterprises using a digital computer. Purdue Univ. Res. Bull. 752, 11 pp., 1962. Also, Supplemental appendix, 2 pp., 1963.
 ${ }^{6}$ In Marty, et al. See footnote 4.

[^5]: -Programs in this appendix were adapted by J.H. Wikstrom of Intermountain Station from Hall's and Row's works.
 ${ }^{\text {s }}$ See footnote 5.

[^6]: ${ }^{10}$ Decimal implied before last digit (127.3 punched 01273).
 ${ }^{11}$ Decimal implied before third digit (1.15 punched 0115).

