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EVALUATION AND DEVELOPMENT OF WATER WAVE THEORIES FOR 

ENGINEERING APPLICATION 

by 
R. G. Dean 

I. INTRODUCTION 

The following were the primary goals of the research reported: (1) for given wave 
conditions, to establish a rational basis for selection of one of the numerous available 

progressive-water-wave theories and (2) to tabulate the most appropriate wave theory or 

theories in a form convenient for preliminary design use. The main emphasis has been an 
attempt to assist the engineer in his selection and application of wave theories in marine 
design problems. The research has proceeded in several distinct phases which are described 

briefly below. 
An early phase of the research was related to evaluating the analytical validity of 

water-wave theories; that is, the degree to which the various available theories satisfy the 

equations constituting the mathematical formulation. The results of this phase, first 

published in September, 1968 (Dean, 1968a), established that, of the eight theories included 

in the study, the Stream-function fifth-order provided the best fit over a wide range of wave 

conditions. For very shallow water waves, the Airy and first-order Cnoidal theories provided 

the best fit. However, because the Stream-function theory can be extended to quite high 

orders, it was expected that it would provide the best fit, even for most shallow water wave 

conditions. Based on the results of this phase, the following phases concentrated on further 

exploration and development of the Stream-function theory for engineering application. 

The second phase represented an examination of near-breaking wave conditions using the 

Stream-function theory (Dean, 1968b). This problem is complicated because breaking 

conditions represent a mathematical as well as a hydrodynamic instability, and therefore the 

computational aspects are not straightforward. The results of this study indicated that of 

the two stability criteria, the kinematic criterion rather than the dynamic criterion governs 

at breaking. It was also found that near breaking the pressure distribution was hydrostatic 

rather than characterized by a zero pressure gradient as predicted by some other studies. 

The complexities of the numerical computations led to an attempt to establish the breaking 

index for only three relative water depths (shallow, transitional zone and deep). It was 

found that for shallow and deepwater waves, the breaking heights established from the 

Stream-function wave theory were up to 28 percent higher than those established earlier by 

other investigations. For transitional depth conditions, however, the breaking heights 

determined in the study agreed well with those of earlier investigations. 

The third phase of the investigation (Dean and LeMehaute, 1970) was related to the 

“experimental validity of water wave theories” as compared to “analytical validity.” The 

motivation of this phase was the recent publication of a fairly comprehensive set of 

measurements of water particle velocities for shallow water waves and comparison with a 

number of wave theories by LeMehaute, Divoky, and Lin (1968); a comparison with the 



Stream-function theory was therefore conducted as a part of the present study. On an 

overall basis, the Stream-function theory provided a significantly better fit to the measured 

water particle velocities than the other theories. The standard deviation between the 

measured and Stream-function representations was 0.17 foot/second as compared to 

0.24 foot/second for the theory providing the next best fit. The primary significance of this 

phase of the study is that the wave conditions are in the shallow-water region where theories 

other than the Stream-function would be expected to provide better comparisons with 

measurements. Although this favorable comparison is not taken as demonstration of the 

superiority of the Stream-function for all wave conditions, the results were very encouraging 

and, to some extent, surprising. 

The final phase of the investigation has been the development of a computer program to 

tabulate wave quantities that would be of value to engineers in design, and that would also 

be valuable to persans concerned with the further development and improvement of 

water-wave theories. During the development of the tables, it has been found that more 

meaningful information than originally anticipated could be presented. 

In the early phases of this study, dimensional variables [i.e., water depth/(wave period) 

and wave height/(wave period)] were used to characterize the wave conditions (Dean, 

1968b). This feature will be evident in the description of some of the results. In the latter 

phases of the study, it was decided to characterize the wave conditions by the following 

dimensionless quantities: h/L, and H/L,, where h,H and L, represent the water depth, 

wave height, and small-amplitude deepwater wavelength, respectively. The tables are 

developed for 40 cases of (h/L,, H/L,). 

The results of the research are presented in two volumes. The present report (Volume 1) 

documents the research results and describes the wave tables and their application. 

Volume II presents the wave tables that have been developed for 40 cases encompassing 

most conditions encountered in engineering design. 

It should be noted that all of the available wave theories have not been included in the 

comparisons described earlier. Some of the theories omitted were developed during the 

period of this research; some have been available, but were not compared, usually because 

they are not employed extensively for engineering purposes. 

II. STREAM FUNCTION WAVE THEORY 

Introduction 

At an early stage of the research, the study indicated that the Stream-function theory 

generally provided a better fit to the boundary conditions and also to available laboratory 

measurements. The study therefore developed into an effort to explore and develop the 

Stream-function theory for engineering application. Before presenting this work, the basis 

for the Stream-function theory will be described in some detail in an attempt to define the 

similarities with and differences from other theories. It should be noted that there are two 

representations of the Stream-function theory: (1) for a given wave height, H, water 



depth, h, and wave period, T, a (symmetrical) representation can be developed to describe 

the kinematics and dynamics of the motion and (2) for a given measured water surface 

displacement, n(t) representing a single oscillation (e.g., trough-to-trough), a representation 

can be determined which completely defines the kinematics and dynamics of the wave 

motion. The first case is, of course, of more interest to designers; in another application, the 

second case has been employed for the analysis of hurricane-generated wave and wave-force 

data. Only the first mode has been explored under the present study. 

Formulation 

The water-wave phenomenon of interest here can be idealized as a two-dimensional 

boundary value problem of ideal flow. The assumption of ideal flow is essential to a 

mathematical formulation that can be readily solved by known techniques. Figure | defines 

terms employed in the formulation. 

Mean Water 
Level 

on h 
Velocity 

Components 

Figure 1. Definition sketch, progressive wave system 

Differential Equation 

Ideal flow incorporates the assumptions of an incompressible fluid and irrotational 

motion. For pressures normally experienced in progressive water-wave motions, the 

incompressibility assumption can be shown to be valid. Shock pressures due to a wave 

breaking against a seawall may be an important exception; however these are not 

encompassed by the results of this research. The assumption of irrotational flow may be 

questioned. Probably the best reason for this assumption, at this stage, is that it allows 

formulation of a boundary-value problem that can be solved in an approximate manner. The 

solutions can then be compared with measurements to determine the apparent need for the 

refinement to include a nonzero rotation. 

The differential equation (DE) for two-dimensional ideal flow, the Laplace equation, can 

be presented in terms of either the velocity potential, ¢ or stream function, yp, 

V0) = (1) 

Vey 0 (2) 



where, in two dimensions 

= NE Jae (3) 

and ¢ and w are defined in terms of the velocity components u and w (see Figure 1) as: 

EGON es OW) 
Did ie Osco 

(4) 

Boundary Conditions 

Two types of boundary conditions are required on the upper and lower surfaces (for the 

present study, it will be assumed that the depth is uniform). The kinematic boundary 

condition applies to both boundaries, and simply requires that the components of flow at 

these boundaries be in accordance with the geometry and motion (if any) of the boundaries. 

This condition can be stated as follows: 

Bottom Boundary Condition (BBC) 

Wa" 10), Ze) —h (5) 

Kinematic Free Surface Boundary Condition (KFSBC) 

Ue Sip 40 isos) (6) 

Dynamic Free Surface Boundary Condition (DFSBC) 

The remaining free surface boundary condition, the so-called dynamic free surface 

boundary condition (DFSBC), requires that the pressure immediately below the free surface 

be uniform and equal to the atmospheric pressure, p, - 

Pa i 1 36 2 i Ge 5 3e = Constant = Ors i (O<n%2) (2) 

In the above formulation, it is tacitly assumed that surface tension effects are negligible. It is 

customary to incorporate the atmospheric pressure term into the constant, Q’, to yield a 

new constant, Q 

i 13 n+ ge (u? +w?) - 52-0 (8) 



In the formulation presented, no requirements have been placed on the permanence of 

wave form; that is, the wave could change form as it propagates due to the relative motion 

and interference of components propagating with various phase speeds. The treatment of 

this general problem including the nonlinearities is complex, and was not the subject of this 

research. Rather, in the present investigation, it is assumed that the wave propagates with 

constant speed, C, and without change of form. It is then possible to choose a coordinate 

system propagating with the speed of and in the same direction as the wave, and relative to 

this coordinate system the motion does not change, and is therefore steady. The time 

dependency in the formulation vanishes, the horizontal velocity component with respect to 

the moving coordinate system is u-C; and the formulation may be summarized as: 

De Wen = Wea = 0 (9) 

BBC: W = Op BS lo (10) 

Boundary an Ww 

Conditions SE SBE: Bele anes a mn Aes) ay 

, mle i. 2 2 Chink san DFSBC: n + 35 ((u - Cc) WH otra Gi, at Ts) (12) 

Motion is periodic in x with spatial periodicity of the wavelength, L. (13) 

To avoid misimpressions about the assumptions and formulation presented here and those 

employed in other investigations of nonlear waves, it is noted that the formulation 

incorporating the assumption of propagation without change of form is common to the 

development of all the following nonlinear water wave theories: 

Stokes 2nd , and higher order wave theories 

Cnoidal 1st and 27d order theories by e.g., Keulegan and Patterson (1940), 

and Laitone (1960) 

Solitary wave theory, 15! order by Boussinesq (Munk, 1949) 

Solitary wave theory, 274 order by McCowan (Munk, 1949) 

Stream-function wave theory by Von Schwind and Reid (1972) 

To reiterate, analytical validity will be based on the degree to which a theory satisfies the 

boundary-value problem formulation, Equations (9) through (13). If a theory could be 

found that provided exact agreement to the formulations, then the analytical validity would 

be perfect. There is no guarantee that good analytical validity ensures that a theory will 

provide a good representation of the natural phenomenon, because implicit in the 

formulation are the assumptions that capillary and rotation forces and other effects are 

negligible. Experimental validity will be based on the agreement between wave theories and 

measured data. 



The Stream-function Solution 

For the formulation expressed in Equations (9) through (13), a Stream-function solution 

may be expressed as: 

NN 
vix,z) =B2+ >) x(n) sinh [22 (h + 2) cos [2z8 x] (14) 

n=1 

Evaluating this expression on the free surface, i.e., setting z=, we find 

a [garam an 
NS ae) Maya 

n= 

X(n) sinh [22 (hi n)| cos 2a x] (15) 
al 

where NN represents the order of the representation, ie., the number of terms 

contributing to the series expression, Vn represents the (constant) value of the 

Stream-function on the free surface, L is the (undetermined) wavelength, and 

the X(n) represent, at this stage, undetermined coefficients. 

For particular wave conditions, it is regarded that the wave height, period, and water 

depth are specified. Equation (14) exactly satisfies the governing differential equation and 

the bottom and free surface kinematic boundary conditions for arbitrary values 

of L, Vn and the X(n) coefficients. The Stream-function expression is also periodic 

in x with wavelength, L. The only remaining boundary condition is the dynamic 

free-surface boundary condition; the parameters L and the X(n)’s are to be chosen such 

that this boundary condition is best satisfied for a specified wave height. 

The procedure for determining the unknown parameters, which can be considered as a 

nonlinear numerical perturbation procedure, is presented in Appendix I. 

Il. EVALUATION OF VALIDITIES OF WAVE THEORIES 

Introduction 

As discussed earlier, there are two types of validity that were examined. ‘Analytical 

validity” is based on the degree to which a theory satisfies the governing equations (of the 

boundary value problem formulation). Good analytical validity, however, does not 

necessarily imply good representation of the natural phenomenon. Experimental validity is 

based on the agreement between a theory and measurements. To date, some reasonably 

good laboratory data are available, and at least two field measurements of water particle 

velocities are reportedly underway (as of 1972) in the petroleum industry, and hopefully, 

will be available within the next few years. 

Discussion of Differences Between Stream-function and Other Wave Theories 

Later in this section, it will be shown that the Stream-function theory provides a better 

fit than other theories to the boundary conditions and also provides a better fit to 



laboratory measurements of water particle velocities. It is therefore worthwhile to compare 

some of the inherent features of the Stream-function and other theories. Although it is 

difficult to discuss all other theories in general statements, an attempt will be made to 

present the more significant representative differences. 

Consider, as an example, the Stokes higher order wave theories. The general form of the 

solution exactly satisfies the differential equation, the bottom boundary condition, and, is 

properly periodic in the x-direction. The solution does not provide exact fits to either the 

kinematic or dynamic free surface boundary conditions. Suppose that the (n-1)th order 

solution is known and that the nth order theory is to be developed. The nt’ coefficients are 

determined such that they minimize the errors in the two free surface boundary conditions 

at the (n-1)¢/ order. A significant problem is that the configuration of the nf order water 

surface is not known, a priori; it is therefore necessary to best satisfy the boundary 

conditions on an approximate expansion of the nth order water surface. The apparent effect 

of minimizing the errors present on the approximate nh order water surface is that the 

resulting theory of a given order, if convergent, may not provide the best fit possible for the 

number of terms (order) included. 

As a comparison with the preceding discussion of the Stokes’ theory, consider the 

corresponding features of a Stream-function theory solution. The general form of the 

solution exactly satisfies all of the boundary value problem requirements except the 

DFSBC. 

At this stage, one inherent advantage of the Stream-function theory is evident—all of the 

“free” parameters can be chosen to provide a best fit to the DFSBC. A second and 

important inherent advantage is that for a given nth order wave theory, all of the 

coefficients are chosen such that they best satisfy the boundary condition on the néh order 

water surface. The distinction is that because a numerical iteration approach is used, the nth 

order wave form is known (through iteration) at that order of solution. Other advantages of 

the Stream-function theory are that a solution can readily be obtained to any reasonable 

order, and that a measure of the fit to the one remaining boundary condition is more or less 

automatically obtained in the course of the solution. Also, the form of the terms in the 

solution is inherently better for representing nonlinear waves, due to the 7 term appearing in 

the argument of the hyperbolic sine term [cf. Equation (15)]. 

The disadvantage of the Stream-function theory is that, unless tabulated parameters are 

available, it does require the use of a digital computer with a reasonably large memory. The 

complexity of other nonlinear theories, however, generally also requires the use of a 

high-speed computer. 

It is noted that a similar but different Stream-function theory has been developed and 

reported by Von Schwind and Reid (1972) subsequent to the analytical validity study 

reported here, and employs a definition of the DFSBC error which differs from that in the 

present study. The paper by Von Schwind and Reid presents boundary condition errors for 

three wave cases. A comparison between their errors and those resulting from the 

Stream-function theory will be presented. 



Analytical Validity 

The analytical validity of a particular wave theory has been previously defined as the 

degree to which the theory satisfies the defining equations, i.e., Equations (9) through (13). 

Again, for emphasis, it is noted that a theory providing an exact fit to the boundary 

conditions would have a perfect analytical validity. However, due to assumptions of ideal 

flow, etc., in the formulation of the problem, a perfect analytical validity does not ensure 

that the theory would provide a good representation of laboratory or field phenomenon. 

The reason for viewing the problem in two steps, i.e., analytical and experimental 

validity, is that the results of the analytical validity test would at least tend to indicate the 

relative applicability of the available wave theories for particular wave conditions. Also, the 

results would provide guidance about whether the most fruitful approach would be directed 

toward a more representative formulation of water-wave theories or toward the 

improvement of the solutions of existing formulations. 

Definition of Boundary Condition Errors 

Most wave theories exactly satisfy the governing differential equation and bottom 

boundary condition, although some of the solutions only approximately satisfy the 

differential equation. Table A lists a number of the theories available for design use and also 

indicates the conditions of the formulation which are satisfied exactly by each of the 

theories. Inspection of Table A shows that the two nonlinear (free surface) boundary 

conditions provide the best basis for assessing the analytical validity, because no theory 

exactly satisfies both of these conditions. 

Errors based on the dynamic and kinematic free surface boundary conditions, are defined 

as functions of phase angle (8) as follows: 

e1(0) = ah - _¥ (16) 

e2(8) Sn + 52 [(u-c)? +w} -S- 4G (17) 

where Q represents the mean value of the quantity Q (Bernoulli constant) defined in 

Equation (12). Overall errors are defined as the root mean squares of the distributed errors, 

A | sy 
Dye = We, 2 tens (18) 

Pitts 
Ko ai ) E2 z = Goi (19) ee 

where j represents sampling at various (evenly spaced) phase angles. 



TABLE A 

Water Wave Theories Included in Evaluation Presented by Dean (1968a) 

| Exactly Satisfies 

| DE | BBC | KFSBC | DFSBC 
Linear Wave Theory—Airy 

(Ippen, 1966) 

Third Order Stokes 

(Skjelbreia and Hendrickson, 1961, 

as summarized by Le Mehaute and Webb, 1964) 

Fifth Order Stokes xX xX 

(Skjelbreia and Hendrickson, 1961) ini be fe ed 

First Order Cnoidal 

(Laitone, 1960) 

Second Order Cnoidal 

(Laitone, 1960) 

First Order Solitary 

(Boussinesq, as summarized by Munk, 1949) 

Second Order Solitary xX xX xX 

(McCowan, as summarized by Munk, 1949) - 

Stream-Function Numerical Wave Theory—Fifth Order || X xX xX 

(Dean, 1968a) 



Results of Analytical Validity Comparison 

Most of the results of the study of analytical validity carried out under this project have 

been published elsewhere (Dean, 1968a), and therefore will be reviewed only briefly here. 

The study included 40 wave cases as shown in Figure 2. For each of these cases, the 

overall errors, E, and E, were calculated for the wave theories shown in Table A. The 

overall dynamic free surface boundary condition errors were made dimensionless by dividing 

by the wave height, H, i.e., 

E2' = E2/H (20) 

The overall kinematic free surface boundary condition error is dimensionless as defined in 

Equation (18). 

Plots of the dimensionless kinematic and dynamic free surface boundary condition errors 

are presented in Figures 3,4,5,and6 for H/Hp =0.25 and 1.0 (Hp = breaking wave 

height). The KFSBC error is identically zero for the Stream-function and McCowan theories. 

As stated previously, it is difficult to select a single index that would clearly be 

representative of the overall validity of all wave theories. However, an index was chosen that 

provided a severe test for the Stream-function theory, and yet this theory provided the best 

general analytical validity. 

The following evaluation plan was adopted, the results of which would be somewhat 

biased against the Stream-function theory. Most of the wave theories do not satisfy exactly 

either the DFSBC or KFSBC; however, the Stream-function theory does satisfy exactly the 

KFSBC. It therefore seems reasonable that if the Stream-function theory can be shown to 

compare favorably against other theories on the basis of only the DFSBC, then it should 

provide an even better analytical validty than the comparison shows. 

In the analytical validity investigation, the eight wave theories in Table A were examined. 

Because the fifth order was the highest of the Stokes theories available, it was arbitrarily 

decided to include the Stream-function theory only to the fifth order. 

The evaluation was then based on comparisons presented in Figures 3, 4, 5, and 6 and 

also on the corresponding figures for H/Hp = 0.50 and 0.75, which are not presented here. 

The results of this study are shown in Figures 7 and 8. 

Figure 7 presents the results for all theories excluding the Stream-function theory. It is 

seen that the Stokes V theory provides the best fit for deep water, the Airy theory provides 

the best fit in a part of the transitional and shallow-water ranges, and the first-order Cnoidal 

wave theory generally provides the best fit in the shallow-water range. 

Figure 8 presents the same type of information. Only the fifth-order Stream-function 

theory is included and provides the best fit over a wide range including all of the transitional 

and deepwater wave regions and also a significant part of the shallow-water range included 

in the comparison. The Airy wave theory provides the best fit for a small part of the 

shallow-water, near-breaking waves and the first-order Cnoidal wave theory provides the best 

fit for the remainder of the shallow-water region. 

10 
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Figure 2. Wave characteristics selected for evaluation 
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: 
In evaluating the results obtained in the shallow-water region, it is noted that one | 

eighth-order Stream-function theory was calculated for breaking wave conditions and 

h/T? = 0.1 foot/second? as shown in Figure 6. This figure shows that the use of higher order | 

Stream-function theories would extend the range of best validity of this theory to shallower | 

conditions (Figure 8). | 

Comparison with Stream-function Theory Developed by Von Schwind and Reid 

As noted earlier, Von Schwind and Reid (1972) have developed a Stream-function | 

theory with basic similarities to the theory employed in this study. The principal difference _ 

between the two theories is that Von Schwind and Reid transform their problem to and | 

carry out their solution in the complex plane. It is noted that their solution in terms of 

wavelength and coefficients is also obtained by iteration. The DFSBC_ error 

definition e,(@), used by Von Schwind and Reid was originally defined by Chappelear 

(1961), and is somewhat different from that employed here (Equation 17) and is | 

Eo (8) 
e,(8) = 5 +h (17a) 

It is noted by comparison of Equations (17) and (17a), that the actual distribution of 

DFSBC errors would appear as numerically smaller based on Equation (17a) due to the 

water depth and Bernoulli constant appearing in the denominator. 

Von Schwind and Reid presented distributed DFSBC errors for three sets of wave 

conditions. Errors were calculated for the same wave conditions using the present theory. 

Figures 9, 10, and 11, are reproduced from Von Schwind and Reid, and the maximum 

errors obtained by the present theory [indicated University of Florida (UF)] are shown for 

each wave case. The maximum UF errors obtained are so small that it would not be 

worthwhile to show them graphically. Note that all errors (e,) shown in 

Figures 9, 10, and 1] are based on Equation (17a). The reason that the errors obtained by 

the present theory are smaller than those obtained by Von Schwind and Reid is not known. 

With a numerical solution, it is possible to obtain a low error (down to some limit) by 

increasing the order of the theory or by increasing the number of iterations used to obtain 

the solution. For the three cases shown in Figures9 through 11, the UF waves were 

seventh-order and each solution was obtained by 15 iterations; the corresponding values for 

the Von Schwind-Reid waves are not known. 

Conclusions Resulting from the Analytical Validity Study 

The analytical validity evaluation is based on the degree to which the various theories 

satisfy the governing equations in the boundary value problem formulation. It is stressed 

again that there is no guarantee that a theory providing a good analytical validity will 

necessarily represent well the features of the natural wave phenomenon. The reason is that 

there are assumptions (negligible viscosity and capillary effects) introduced into the 
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three numerical wave theories, wave no. 1 
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Figure 11. Comparison of errors in dynamic free surface boundary condition for 
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governing equations which may adversely affect the degree to which the formulation 

represents real wave motion. The purpose of the analytical validity study, rather, was to 

attempt to resolve the question of whether the theories developed for the same formulation 

and for various regions of relative depth do indeed provide the best fit in these regions. Also 

this study, combined with some additional studies reported later in this report, does aid in 

determining whether the most critical need in wave theory research is in the improvement of 

the formulation or in the development of improved solutions to the existing formulation. 

The results of the analytical validity study have shown that: 

1. The general status of wave theories for h/t? > 0.2 foot/second? , for instance, is much 

more satisfactory than for the smaller values of h/T?. In particular, for the larger relative 

depths, there is reasonable consistency between the fits to the dynamic free surface 

boundary condition and the maximum drag force as calculated by the various theories 

including a seventh-order Stream-function theory. In shallow water, it is not clear that the 

boundary condition fit is an appropriate measure of wave theory validity, unless the 

associated errors are very small. In particular, the Airy wave theory provides a relatively 

good fit to the boundary conditions in shallow water; however this theory does not 

represent many of the observed features of shallow-water waves including the strong 

skewness of the wave profile about the mean water level. 

2. The Stokes higher order wave theories converge to accurate representations of wave 

motion in deep water; however, in transitional and shallow water, the boundary condition 

fits are relatively poor. Furthermore, no fifth-order Stokes theory solution could be found 

for shallow-water waves or the smaller values of the transitional zone. The limiting value 

of h/T? for which a solution exists, depends on H/T? and was in the range of 

0.1 <h/T? <0.5 foot/second? for the conditions examined. 

3. Finally, it is observed that the second-order Cnoidal theory provided a worse fit to the 

boundary conditions than the first-order Cnoidal theory for all wave conditions examined. 

There are other versions of Cnoidal theories; the boundary condition fits of these theories 

have not been evaluated in this study. 

4. The Stream-function theory described in this report provides good analytical validity 

over a wide range of wave conditions. 

The reader is referred to Dean, (1968a) for reinforcement of statements presented. 

Experimental Validity 

As previously described, experimental validity is based on the comparison of theoretical 

predictions and measured wave phenomena. If it could be generally shown that the theory 

providing the best analytical validity also provides the best experimental validity, then it 

could be concluded that the formulation is valid and that the errors in the boundary 

conditions are also good indicators of experimental validity. If the differences between the 

theory and experiments were of the same order as the estimated experimental error, and if 

this could be shown to be the situation generally, then the most productive direction in 
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water-wave research on this problem would be improved measurements. If however, the 

disagreement between theory and experiment is much larger than can be attributed to 

experimental error, and especially if this difference were of engineering significance, then 

additional efforts on the formulation and solution of water wave theories would be 

indicated. 

The availability of data is inadequate to carry out a comprehensive evaluation of 

experimental validity over all ranges of relative depth and heights of engineering importance, 

Le Mehaute, Divorky, and Lin (1968) have carried out a measurement program in which 

distributions over depth of horizontal water particle velocities were measured under the 

crest phase position of fairly high waves in the shallow and transitional depth ranges. The 

results included measured horizontal water particle velocity distributions for eight cases, and 

also a vertical water particle velocity distribution for one case, and one measured wave 

profile. Le Mehaute, Divorky, and Lin compared a number of wave theories with their data; 

however the Stream-function theory was not included. The experimental validity reported 

in this study was based on a comparison of the Stream-function theory with the data 

described earlier. 
It should be emphasized that the only addition to the paper by Le Mehaute, Divorky, and 

Lin (1968) is (1) comparison of the Stream-function theory with the data and 

(2) calculations which represent the overall agreement between the data and several of the 

theories. In the Stream-function horizontal velocity component profiles presented, a 

uniform mass transport velocity has been subtracted out, whereas due to time limitations, 

the other theoretical velocity distributions were simply plotted from Le Mehaute, Divorky, 

and Lin. It is not clear whether or not the mass transport term should be subtracted out. 

Although the experiments were conducted in a closed tank, the data were taken before 

waves reflected from the beach had propagated back to the tank test section, and the zero 

net flow over depth had probably not been established completely. 

In all, data for 10 different wave conditions are available. These waves are in the shallow 

and transitional depth regions, and according to the conventional breaking criteria, the wave 

heights range from 0.43 to 0.70 of the breaking height. The wave conditions are shown as 

points in Figure 12 where isolines representing various ratios of wave height to breaking 

wave height are also presented. It is emphasized that the breaking wave height in Figure 12 

is the conventional breaking height: i.e., H/h = 0.78 in shallow water (McCowan reviewed by 

Munk, 1949); H/L=0.142 in deep water (Michell, 1893); in the transitional range, the 

breaking limit was first established by Reid and Bretschneider (1953) by interpolating on 

the basis of measured data and is presented in several more available references, e.g. (Ippen, 

1966) and (Bretschneider, 1960). A recent paper by Divoky, Le Mehaute, and Lin (1970) 

reports an experimentally determined shallow-water breaking limit of approximately 

Hp/h = 0.60 to 0.66 as compared to the conventional value of 0.78. The recent experiments 

resulting in the lower value were obtained with a laterally converging wave channel. 

Certainly it is apparent that more work is needed to better resolve wave breaking limits. 
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Table B presents the comparison results included in the experimental validity evaluation. 

The eight comparisons of horizontal water particle velocity are presented in Figures 13 

through 20; the vertical velocity comparison is presented in Figure 21; and the wave profile 

is presented in Figure 22. 
Figures 13 through 20 indicate that the Stream-function theory is in reasonable 

agreement with the data. It is noteworthy that the shallow-water wave theories which 

should provide good fits to the data are so poor. Another interesting feature of the 

comparison is that the linear (Airy) wave theory agrees better with the data than would be 

expected. 

Of the 12 theories included in the comparison, the better agreements with data were 

provided by the following five theories: Airy, Keulegan and Patterson Cnoidal wave theory, 

Goda, Long-Wave, and Stream-function. These five theories were then selected for further 

examination of their agreement with the data. The standard deviations between each of 

these theories and the data were calculated, and are presented in Table C where it is seen 

that the Stream-function theory provided the best fit to the data, followed, in order, by the 

Goda, Keulegan and Patterson Cnoidal, Airy, and the Long-Wave Theories. 

The Goda “theory” is actually a series representation in which the analytical forms of the 

terms comprising the series are the same as the hyperbolic and trigonometric functions in 

the Stokes theories. However, the coefficients modifying these terms were determined 

empirically by wave tank experiments. 

Additional calculations not presented here showed that, assuming the data were valid, the 

Stream-function wave theory would on the average overpredict the maximum total drag 

force on a vertical cylinder by 21 percent. 

Data representing the vertical velocity distribution with depth are available for only one 

set of wave conditions. (see Figure 21). The McCowan theory provides the best fit to the 

data; the next best fit is associated with the Stream-function theory. Differences between 

the McCowan and Stream-function theories, however, are quite small and it is probably not 

justified to draw conclusions from only one set of data. Interpreted in terms of vertical drag 

forces on a horizontal cylinder, the Stream-function would underpredict the forces by 30 

percent. 

The one set of wave profile data are compared with the various theories in Figure 22. 

Although no detailed comparisons were made, it appears that the Stream-function theory is 

in as good or better agreement than any of the other theories shown. 

Conclusions Resulting from the Experimental Validity Study 

Comparisons of Stream-function theory predictions with measurements of velocity 

components and one wave form representing transitional and shallow-water waves indicate 

reasonably good agreement. Interpreted on the basis of maximum horizontal drag force 

components, the Stream-function theory would over predict by an average of 21 percent. 

Recognizing that the experimental accuracy is approximately 5 percent these results are 

considered reasonable for engineering applications. The predicted maximum vertical drag 
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S/n 

T= 3.58 sec. 

H= 0.241 ft 

h=0.556ft 

0.4 0.8 12 16 2.0 2.4 

w (ft-sec’) 

Figure 21. Vertical water particle velocity, Case 9 
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TABLE C 

Standard Deviation of Differences Between Horizontal 

Velocities: Measured vs. Predicted 

Case No. 

ORFZ2,9 

Ons 9 

0.096 

0.126 

0.245 

0.216 

ORREZS 

0.183 

Standard Deviation, o (ft/sec) 

Airy 

ON 2332 

0.234 

0.470 

0.442 

ORZiZ5 

0.181 

0.493 

0.418 

0.337 

Long Wave Goda K & P Cnoidal 

ORs7/9 OG ASS 

u,, = measured velocity component 

u,, = theoretical velocity component 

J = number of levels considered for each case (14 to 15) 
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forces on a horizontal cylinder would be too small by 30 percent; however, this statement is 

based on a comparison with only one set of data. Good qualitative agreement was found 

between measured and predicted wave profiles.’ 

Finally, based on the results of both the analytical and experimental validity studies, it is 

concluded that the Stream-function theory is best suited for engineering design purposes. It 

was decided to tabulate variables that would be of use in engineering design as calculated 

from the Stream-function theory. The next section describes the variables included in the 

tables. 

IV. DESCRIPTION OF TABLES 

Introduction 

An attempt has been made to include in the tables those variables of greatest present 

engineering interest and application. In addition, other variables were included which would 

be relevant to checking the relative analytical validity of other theories or variables which 

were of scientific interest and could conceivably be required for engineering in the future. 

Variables have been included which describe the detailed kinematics of the waves and also 

which represent, e.g., the integrated effect of the flow on a structural member. 

It is not possible to assemble in concise tabular form all variables that could be of 

engineering use. It is feasible to tabulate the dimensionless drag force for all vertical piling 

extending from the bottom up to a certain level. It would not be feasible, however, to 

concisely tabulate the total drag force on members with all possible inclinations relative to a 

vertical. 

Forty sets of dimensionless wave conditions were selected for tabulation. Each case is 

characterized by values of h/L, and H/L,. The parameter h/L,, ranged from 0.002 to 2.0 

and covered the relative depth range from shallow to deep water. The 

parameter H/L, included wave steepnesses ratios: 0.25, 0.5, 0.75, and 1.0 of the breaking 

wave steepness for each of the 10 h/L, values tabulated. Figure 23 shows the 

dimensionless wave conditions selected for tabulation and also indicates the referencing 

notation for the cases. 

All tabulated variables are presented in dimensionless form. The description of these 

variables is presented in the following paragraphs and in Tables D, E, and F, where generally 

the following are included: the equation for the variable, the dimensionless form of the 

variable, an equation number for reference purposes, and the table number in the wave 

tables. To reduce confusion, it should be noted that the tables presented in this report are 

denoted by letters; the wave tables are identified by Roman numerals. 

Variables Presented in Tabular Form 

Three classes of variables are tabulated: (1) Internal field variables, depending on @ and S, 

(2) Variables depending on @ only, and (3) Overall variables which have a single value for 

the entire wave, for example the wavelength. 
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WAVE STEEPNESS, H/L, 

H, = BREAKING WAVE HEIGHT 

sat (2) Le a7! 

(3) THE CASE DESIGNATION IS 

DETERMINED BY THE INTERSECTION 

OF THE VERTICAL LINES AND THE 

LINES PARALLELING THE BREAKING 

INDEX CURVE ; 

FOR EXAMPLE: CASE 3-8 

2 5 Osun 5 16! 2 5 10° 

RELATIVE DEPTH, h/L. 

Figure 23. Wave characteristics selected for tabulation 
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Internal Field Variables Depending on 6 and S 

The internal field variables are tabulated at equally spaced dimensionless distances above 

the bottom, i.e., at S/h values of 0,0.1,0.2 ...up to and including the free surface, and 

at @ values of 0°, 10°, 20°, 30°, 50°, 75°, 100°, 130°, 180°. Figure 24 shows a sample 

presentation of the dimensionless horizontal velocity component field. 

A description of the entries in Figure 24 will serve to familiarize the reader with most of 

the features of the tables. The first row lists the phase angles (theta) in degrees. The second 

row lists the dimensionless wave profile (n/H) at the corresponding phase angles. The 

percent values listed beneath the n/H values are the differences between the 

Stream-function and Airy Theories, defined as: 

Stream-function—Airy 
Ren cent — |) PRET OU percent 

Stream-function 

The main body (remaining portion) of the table lists the dimensionless horizontal water 

particle velocities. The row labeled “Surface” represents the dimensionless velocities 

evaluated at the free surface; the percentage differences for velocities are calculated as 

defined above for the profile. The remaining part of the table represents the dimensionless 

velocities and percentage differences evaluated on a grid of (0, S/h). The lack of entries for 

the higher S/h and higher theta values (right side of page) results from the wave profile in 

the trough region being lower than in the crest region (left side of page). Two additional 

comments pertaining to the percentage values will complete the description of the sample 

table. A percentage difference value of exactly 100 percent implies that the 

Stream-function profile occured at a (6,S/h) value, however, the Airy profile was lower 

than the particular S/h at the phase angle, 0, 1.e., this grid poit was not “covered” 

by the Airy profile. For example, this is the case at 6 = 0°, S/h= 1.5 and 1.6 and @ = 180°, 

S/h=0.8 and 0.9. Finally, the asterisks indicate that the percentage differences were not 

calculated because the Stream-function value was less than 5 percent of the maximum 

Stream-function value. This avoided the tabulation of very large percentages which would 

have been the result of division by a small number. 

A brief description of each of the tabulated internal field variables is presented below. 

Horizontal Water Particle Velocity Component, u(6, S) 

The horizontal water particle velocity component, u(@, S), is defined by Equation (21). 

(The equations for the tabulated functions are presented in Tables D, E, and F.) The values 

u'(9, S) tabulated, are presented (Table I) in the following dimensionless form: 

ee AS) 
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Vertical Water Particle Velocity Component, w(0, S) 

The vertical water particle velocity component, w(@,S), is defined by Equation (22). 

The dimensionless values tabulated (Table II), w’(@,S), are defined by: 

w(6, S) 
H/T 

WE py By) = 

Horizontal Water Particle Acceleration, Du/Dt 

The horizontal water particle acceleration, Du/Dt’ is defined in terms of the velocity 

components as presented in Equation (23). Note that the tabulated values represent the 

total (or material, substantial, etc.) acceleration consisting of the sum of the local and 

advective contributions. The dimensionless values tabulated (Table III), Du'/Dt', are 

defined by: 

Du’ AL Du 
Dt (H/T?) Dt 

Vertical Water Particle Acceleration, Dw/Dt 

The vertical water particle acceleration, defined in Equation (24), is tabulated 

(Table IV) in the following dimensionless form: 

Die fick lL a BU 
Dt (H/T?) Dt 

Drag Force Component, Fp (8, S) 

The drag force component up to a certain elevation, S, is defined by Equation (25) 

and tabulated (Table V) in dimensionless form as: 

paciyh 2 
Eyal Eaeay FD 

Inertia Force Component, F,(0, S) 

The inertia force component up to a certain elevation, S, is defined by Equation (26) 

and tabulated (Table VI) in dimensionless form as: 

4 
a | 

Sir leprae I 
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Drag Moment Component, Mp (0, S) 

The drag moment component about the bottom due to wave pressures acting on a 

vertical member extending up to an elevation, S, is presented as Equation (27) and 

presented (Table VII) in dimensionless form as: 

2 
a cence eeneererens M: 

D Enaws| D 

Inertia Moment Component, M,(@, S) 

The inertia moment component about the bottom due to wave pressures acting on a 

vertical member extending up to an elevation S, is defined in Equation, (28) and presented 

(Table VII) in dimensionless form as: 

U = 

mst 
Wier ef 
GH OmD s(H/Ea) ie I 

Dynamic Pressure Component, pp (8, S) 

The dynamic pressure component, defined by Equation, (29) is tabulated (Table IX) in 

dimensionless form as: 

er 2 
Pp’ = EB Pp 

This completes the description of the field variables (depending on @ and S) that are 

included in the tables. 

Variables Depending on 6 Only 

Water Surface Displacement, n(@) 

The water surface displacement is defined in Equation (30), and tabulated 

(Tables I through IX) in dimensionless form as: 

Total Drag Force Component, Fp) (@) 

The total drag force component is defined by Equation (25) with the upper limit taken 

to be h+ (0), and is tabulated (Table V, labeled “SURFACE”) in dimensionless form as: 

ins Ye oS ee Fp 

D CppeD (H/T) *h 
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Total Inertia Force Component, F'(8) 

The total inertia force component is defined by Equation (26) with the upper limit 

taken to be h + (0), and is tabulated (Table VI, labeled “SURFACE”’) in dimensionless 

form as: 

4 
Ser FT I 

Total Drag Moment Component, M)p)(@) 

The total drag moment component is defined by Equation (27) with the upper limit 

taken to be h + 7(6) and is tabulated (Table VII, labeled “SURFACE”’) in dimensionless 

form as: 

4 paints Can a 
Mp Ce (H/T) *h? B 

Total Inertia Moment Component, M,(@) 

The total inertia moment component is defined by Equation (28) with an upper limit 

of h + n(6) and is tabulated (Table VII, labeled “SURFACE”) in dimensionless for as: 

Mr’ = ge a 2 a" Mr 

I CyemD* (H/T*) h* 

Kinematic Free Surface Boundary Condition Error, € , (0) 

The kinematic free surface boundary condition error is defined by Equation (35). This 

variable, as defined, is in dimensionless form and is tabulated in Table X: 

Item 1, Linear Wave Theory 

Item 2, Stream-Function Theory 

Dynamic Free Surface Boundary Condition Error, €, (0) 

The dynamic free surface boundary condition error is defined by Equation (36) and is 

tabulated (Table X) in the following dimensionless form: 

with 

Item 3, Linear Wave Theory 

Item 4, Stream-Function Theory 

This completes the presentation of variables depending on @ only. 
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Overall Variables (do not depend on @ or S) 

Wavelength, L 

For the Stream-function theory, there is no definable expression for the wavelength. 

Rather the wavelength is determined as a part of the numerical solution as described in 

Appendix I. The dimensionless wavelength is presented (Table XI, Item 1) in the following 

dimensionless form: 

Average Potential Energy, PE 

The average potential energy is defined by Equation (38) and is tabulated (Table XI, 

Item 2) in dimensionless form as: 

Note that the dimensionless form is defined to be 0.5 for the linear (Airy) wave theory. 

Average Kinetic Energy, KE 

The average kinetic energy is defined by Equation (39), and is also tabulated (Table XI, 

Item 3) in dimensionless form as: 

KE! = [zeal KE 

yH? 
As for the dimensionless potential energy, the dimensionless value for the linear (Airy) 

wave theory is 0.5. 

Average Total Energy, TE 

The average total energy is simply the sum of the potential and kinetic energy 

contributions [Equation (40)], and is tabulated in dimensionless form (Table XI, Item 4) 

such that the difference from unity is an indication of the deviation from the linear wave 

theory. 

TE’ = Y 
8 

T =| 
Average Total Energy Flux, F rp 

The average total energy flux is defined by Equation (41), and is tabulated (Table XI, 

Item 5) in dimensionless form as: 

Fi. = : F TE |yH2 L/T| “TE 
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Group Velocity, Ce 

The group velocity is defined as the ratio of total energy flux to total energy 

[Equation (42)] and is presented (Table XI, Item 6) in dimensionless form as: 

SME 
cg = [Sal ve 

The dimensionless group velocity is defined such that for linear wave theory the shallow and 

deepwater values are 1.0 and 0.5, respectively. 

Average Momentum, M 

The total average momentum is defined by Equation (43) and is presented (Table XI, 

Item 7) in dimensionless ferm as: 

Mt = 
yH 

8 if ul 

The dimensionless momentum is defined such that for linear wave theory the result is unity. 

Note that mass transport velocity, U = [M/ph] is proportional to the average momentum. 

Average Momentum Flux in Wave Direction, Fn, 

The total average momentum flux in the wave direction is defined by Equation (44) 

and is tabulated (Table XI, Item 8) in the following dimensionless form: 

The above definition reduces to 1.5 and 0.5 for linear wave theory for shallow and 

deepwater waves, respectively. 

Average Momentum Flux Transverse to Wave Direction, F,, 

The total average momentum flux in a direction perpendicular to the wave advance 

direction is needed to define the radiation stress tensor, (discussed by Bowen 1969), is 

defined by Equation (45), and is tabulated (Table XI, Item 9) in the following dimensionless 

form: 

XN ( 8 

: ES | F 
y V y 

For linear wave theory, the above definition reduces to 0.5 and 0.0 for shallow and 

deepwater waves, respectively. 
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Kinematic Free Surface Boundary Condition Errors, €, 

The kinematic free surface boundary condition error is defined in dimensionless form 

by Equation (35) and the root-mean-square (RMS) and maximum values are tabulated 

(Table XI, Items 10 and 12) as defined by Equation (46). 

Dynamic Free Surface Boundary Condition Errors, €, 

The dynamic free surface boundary condition error is defined by Equation (36) and is 

represented in the following dimensionless form: 

The RMS and maximum values are tabulated (Table XI, Items 11 and 13) as defined by 

Equation (47). 

Kinematic Free Surface Breaking Parameter, B, 

The kinematic free surface breaking parameter is tabulated (Table XI, Item 14) as 

defined by Equation (48) (dimensionless form). 

Dynamic Free Surface Breaking Parameter, B, 

The dynamic free surface breaking parameter is tabulated (Table XI, Item 15) as 

defined by Equation (49) in dimensionless form. 

Variables Presented in Graphical Form—Combined Effect of Shoaling and Refraction 

In addition to developing the tabulated values previously described, the study included 

the development of the combined effect of shoaling and refraction for nonlinear waves 

advancing toward shore with a deepwater direction, a,, over bathymetry characterized by 

straight and parallel contours. 

For linear wave theory, it is possible to separate the shoaling and refraction effects, 

because neither wave celerity, C (governing refraction), nor group velocity, Cg (governing 

energy flux), is dependent on wave height. For nonlinear waves, both celerity and group 

velocity at a certain location depend on wave height as well as wave period and water depth. 

The shoaling-refraction effects for nonlinear waves are therefore not separable, and the 

combined effect depends on the deepwater wave steepness, H,/L,, as well as the local 

relative depth. 

Because the shoaling-refraction results are not readily presented in tabular form, graphs 

are presented as Figures 25, through 29 for deepwater wave directions, a, of 0°, 10°, 20° 

40°, and 60°. A brief description of the use of these graphs follows. A wave with a 

deepwater direction a,, will propagate toward shore such that the local H/L, will fall 

along a curve characterized by the deepwater value H,/L,. At any particular relative 

depth, h/L,, the local wave steepness H/L, and direction @ are read from the ordinate 
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and interpolated from the appropriate isolines, respectively. The region to the lower right of 

the line of dots indicates the region where use of the linear theory agrees with the nonlinear 

results presented within 1 percent in H/L, and 1° in wave direction, a. 

V. EXAMPLES ILLUSTRATING USE OF WAVE TABLES 

Introduction 

The preceding chapter has described the formats and the various dimensionless 

parameters included in the wave tables. To aid in the application of the tables, examples will 

be presented illustrating their use. The first example is a problem of a near-breaking wave 

interacting with an offshore structure supported by cylindrical piling. This example will use 

those tables which contain the wave profile and the wave forces and moments. Additional 

examples will then be presented which will illustrate the use of most of the remaining wave 

tables. Where possible, examples were selected to parallel problems which may occur in 

offshore design. 

It is worthy of note that the tables have a much wider applicability than can be illustrated 

by the limited number of examples presented here. A thorough familiarity with the 

information summarized in the tables should aid in an understanding of them and their use 

in many problems involving water-wave phenomena. The examples will be presented in U.S. 

Customary units; however the tables are in dimensionless form, and any system could be 

used readily. 

Example 1—Deck Elevation and Wave Forces and Moments on an Offshore Platform 

Consider the design problem of determining the deck elevation and horizontal wave 

forces and moments upon individual members of the offshore platform illustrated in 

Figure 30. Suppose that the design depth (mean low water + maximum tide + storm 

surge), h, is 41 feet, and the main structural members of the platform and outriggers are 

pilings 6 feet in diameter, with piling fenders 3 feet in diameter. The fenders extend from 

4.1 feet above the design stillwater level to a depth of 8.2 feet. The outriggers are 20.5 feet 

high. Suppose that analysis indicates that the design wave will have a (breaking) 

height, H, of 31.78 feet and a period, T, of 20 seconds. The drag and inertia 

coefficients, Cp and Cy, for this structure are assumed to be 1.05 and 1.5, respectively. 

To determine which set of tables to use, calculate h/L, and H/L,, where L, = eT? /(2n), 

nee 41 ‘ 
i 7 Ea (aye Oe 

ne M7 

In this and most subsequent examples in this chapter, the tables for Case 4-D will be used 

(see Figure 23). A sample table set for Case 4-D is included as Appendix Il. 
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Deck Elevation 

To ensure that the deck is above the design crest elevation; thereby avoiding unnecessarily 

large horizontal and vertical forces and damage to the platform base, the height of the lower 

elevation of the deck will be: 

where h is the design water depth, 7,,,, is the maximum displacement of the wave above 

design stillwater level, and h’ is the deck freeboard (say 10 feet for this problem). 7, 4, 

will occur at zero phase angle (9 = 0°) and from any of the first nine tables, eta/height = 

0.89 for 0 = 0°. Therefore, Tee 10.69, (El) =28.3 feet and h” =h+n+h' =41 + 28.3 + 

10 = 79.3 feet. The platform will be constructed so the lower deck elevation will be 79.3 

feet above the bottom. 

In determining the forces and moments, it is assumed that the piling are sufficiently far 

apart to be considered isolated. First, the forces acting upon several structural members will 

be determined. The total force, F7(@, S),will be a summation of the drag force, Fp (8,5), 

and inertia force, F;(8, S), components at any particular phase angle. Each component 

will be presented graphically; the components will then be added to establish the total force, 

and the maximum force acting upon each member will be obtained from the graph. 

Forces on Member “a” 

In the case of the outrigger, Member a, the drag force is given by: 

S 
Cy a 

BA (8,S_) Sieg | ulu|ds’ 

0 

where D is the piling diameter, S, (= 20.5’) is the height of the outrigger above bottom, 

and p= mass density of sea water, 1.99 sluggs/foot?. To determine Fp(0, S,), select the 

tabulated dimensionless drag value for the force, Fp (8,S,), at depth S,/h = 0.5 from 

Table V and multiply the dimensionless force by: 

CoD (H/T) *h 

2 

C,eD (H/T) *h _ 1.05(1.99) (6) (31.78/20) 741 _ age lbs 

2 am 2 0.6489 kips 
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The inertia force on Member a is given by: 

Fy (8,S_) = 

To determine F;(9, S,), select the tabulated value of the dimensionless inertia force, 

F;(9,S), for a relative depth S,/h = 0.5 from Table VI and multiply the dimensionless 

force by: 

Cy emD* (H/T?)h 

4 
_ {274.9 lbs 
lo. 2749 kips 

The total force will be determined by summation of F;(@,S,) and Fp(@,S,) at each phase 

angle, 0. The force calculations are summarized in Table G and the forces are plotted in 

Figure 31. 

TABLE G 

Horizontal Wave Forces on Member "a" 

36.31 29.00 14.60 4.30 - 0.04 -1.14 -1.54 -1.62 -1.60 

47 207 9 = O03" =O 74-1 008 = 105) =1' 04 

22.59 36.36 36.63 17.25 

6.21 10.00 10.07 

23.56 25.02 19.47 12.86 6 0.29 -0.82 -1.02 -1.04 

Forces on Member “‘b”’ 

Next, consider the horizontal forces acting on the main support piling. In this case, the 

forces are integrated from 0 toh + 7(@). To determine Fp(0), multiply the tabulated 
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value for the dimensionless total drag force, Fp (0) (indicated “Surface” in Table V) by 

the same constant as for Member a, 1.-e., 

CD (H/T) *h 
5 = 0.6849 kips 

Similarly, F7(9) is found by multiplying the tabulated value, F7(@), indicated “Surface” in 

Table VI by: 

COD? (H/T*)h 
> = 0.2749 kips 

The calculated forces are summarized in Table H and are plotted in Figure 32. 

TABLE H 

Horizontal Wave Forces on Member "b" 

242.39 119.80 37.00 7.72 - 0.25 -2.19 SA 52)s)  SA5C)?3 

113.47 84.55 30.12 

ee 99 Forces on Member “‘c 

Finally, consider structural Member c, the fender. The computation for this member is a 

combination of the two previous methods since it is sometimes over-topped by the wave. 

The forces are integrated from S,, = 32.8 ft to S,, = 45.1 ft; therefore, the force acting on 
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an imaginary piling up to the bottom of the fender is subtracted from a similar term for the 

top of the fender. The dimensionless forces are obtained by subtracting the dimensionless 

force components pertaining to the bottom of the member from those pertaining to the top. 

If the top of the member is submerged, the value at Sie = 1.1 should be used; for times that 

the top is not submerged, the value indicated “Surface” should be employed for Ses: Note 

that the selection of the proper value for the member upper elevation follows readily from 

the tables; the values at Si), > — 1.1 are used at phase angles where they are tabulated 

(0<6 <20°) and the values labeled “Surface” are used for the remaining phase angles 

(30° <@ < 180°). 
Summarizing, for each phase angle, the net dimensionless force components on Member c 

are obtained by: 

py = FF! - F! 

i ae eT 

’ 
Pr 

Il | 
Eis 

| ea 

N U L 

where the subscripts, N, U and L indicate net, upper and lower. The dimensionalizing 

constant for drag force for the member is calculated (recalling that D = 3) 

CpypD (H/T) * h 
2 

0.3245 kips 

and for the inertia force component 

ff 2 Cy om (Hn yial 

4 
0.0687 kips 

The required calculations are summarized in Table I and the results are shown in Figure 33. 

The maximum horizontal wave-induced forces are now available for the design wave, and 

may be used in further design analysis. They are summarized in Table J. 

Moments on Member “a” 

The moments due to the wave forces acting on the structure are also essential in design. 

For any member, the moment about the mudline is defined as: 

So Se 

S dE (8 ,S) + | Ss dF, (6,S) 

Si $1 Si 

Il 

SS 

dp) 

W Qu hy 
be 
@ ep) i} M,, (8) 

I 
ep 

S + Ss 
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TABLE I 

Horizontal Wave Forces on Member "c" 

-2.84 -2.95 

rita 63.34 49.68 23.72 6.40 = 0.14 -1.87) -2.48 =2559)) =25156 

-0.36 -0.36 

-0.12 -0.12 

Rey 0.0 65.78 96.88 84.55 30.12 6.08 1.03 0.27 0.0 

40.55 62.97 60.49 26.23 

25.23) 33.91 24.06 

F,, (kips) 2 SO Lea LORS, 5.40 2.08 0.23 -0.06 -0.11 -0.11 -0.12 
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where 

S2 
mM, (0) = PED? | S ululds 

and 

2 £e2 
M,(8,S) = CmemD | Gyr ads 

TABLE J 

Summary of Maximum Wave Forces on 
Several Platform Components 

Phase Angle of 

Maximum Force, 

ge (P) 

Note: Phase angles and maximum forces obtained by interpolation 

from Figures 31, 32 and 33. 

Consider the total moment about the mudline on the outrigger (Member a). In this case 

S, = 0, and S, = S, = 0.5h. To determine the drag moment, Mp(6), multiply the 

dimensionless tabulated value for the drag moment, Mp(@), listed at depth S,/h. = 0.5 in 

Table VII, by: 

CppD (H/T) *h* 26,606 for Mp in ft-lbs 

2 ~ (26.606 for Mp in ft-kips 

Similarly, multiply M;(@) listed at depth S /h = 0.5 in Table VIII by: 

CyPmD* (H/T*)h* 11,272 for Mz in ft-lbs 

Saaee  lle 272) fo reM edn lols 
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to obtain M;(@). These moments are added to obtain M,7(@), as shown in Table K and 

Figure 34. 

TABLE K 

Wave Moments (About Mudline) on Member "a" 

-67 POS 10). OL = O..29).= (0. 39)'— 0.240 = 0.40 

BW oD DOGS. So VUOseh. Salolatsy, oakley eG) 

65.9 105.1 104.4 47.9 

24 SM 20218) 202.7) Masi2hr3 47.6 + 2.7 - 8.6 -10.3 -10.6 

Moments on Member “‘b”’ 

Next consider the moment on the main structural piling (Member b). The limits of 

integration are from 0 to h + ni 0). Therefore, take the tabulated values labeled “Surface” 

from Table VII, [Mp (8)], and Table VIII, [M;()], and multiply by: 

Cp)eD (H/T) *h* 

2 
26.606 for Mp in ft-kips 

and 

CyOmD* (H/L*)h? 
Z LG AVA, se@ne) (ul in ft-kips 

I 

in order to obtain Mp(9) and M;(@). The two moments are added to obtain M7(@) as 

indicated in Table L and plotted in Figure 35. 

Moments on Member “‘c”’ 

The fender has the same limits of integration for moment calculation as for the force 

calculation and is determined in a similar manner. However, the tablulated moments, 

Mp(@, S), and M;(@,S), are taken from Tables VII and VIII. The total moment acting on 

the fender is found by: M7(@) = Mp(@) + M,(0). The calculations are summarized in 

Table M and are plotted in Figure 36. 
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TABLE L 

Wave Moments (About Mudline) on Member "b" 

268.1 102.6 23.0 . abo) Sales} 

885 

3876 1497 

TABLE M 

Wave Moments (About Mudline) on Member "c" 

61.94 46.01 18.59 3.63 - 0.18 -1.04 <-1.31 -1.35 -1.33 

27.04 20.94 2.40 - 0.08 -0.77 -1.00 -1.04 -1.02 9.61 

34.90 25.07 9 1.23 - 0.10 -0.27 -0.31 -0.31 -0.31 

aaa 

41.87 59.20 47.47 13.45 

17.66 26.76 24.82 10.04 

MI on 0.0 24.21 

(fe-kips) Bele eee 

(Ee-kipe) 
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The maximum calculated forces and moments on the three platform members due to the 

design wave are summarized in Table N. 

TABLE N 

Summary of Maximum Wave Forces and Moments 

Mp (8 ,S) 

(ft-kips) 

Example 2—Wave Characteristics, Kinematics and Pressure Fields 

This example describes the use of the tables for calculating various parameters associated 

with a periodic wave. These parameters include the wavelength and the kinematic and 

pressure fields. 

Wavelength 

The wavelength is presented in dimensionless form in Table XI of the sample output and 

is determined as follows: 

For example, for the same wave considered in Example 1, L’ = 0.422 and T = 20 seconds. 

The wavelength is therefore: 

Tip= 5. 206200)) 04.212) 6 = 864 3) ee 

Wave Profile 

The dimensionless wave profile, 7'(@), is tabulated in each of Tables I through IX and is 

defined as: 

74, 



therefore 

n(@) = n’(6) - H 

The wave profile calculation for Case 4-D is summarized in Table O and is plotted in 

Figure 37. Note that 7 is an even function of 0. 

Water Particle Kinematics 

The water particle kinematics will be calculated for Case 4-D as presented in the sample 

output. These kinematics will be calculated for mid-depth (i.e., 20.5 feet above the bottom). 

The dimensionless forms of these variables are presented in Tables I through IV of the 

sample output. The dimensionless water particle velocities are defined as: 

u(6,S) 
H/T 

u’(@,S)= 

and 

w! (@,5)=%hoe5) 

and the dimensionless water particle total accelerations are defined as: 

eg ou 
Du = 7 Dt 
Dt ~ H/T2 

and 

’ Dw 
Dw) . Dt 
Dt ~ H/T2 

Note that these are functions of @ and S, however, for convenience, the dependence has 

not been indicated in the above expressions. The calculations of the water particle velocities 

and accelerations over the range 0° <6 < 180°, are also summarized in Table O and plotted 

in Figure 37. 

It will be noted that in the tables of wave functions, the variables are only presented for 

phase angles ranging between 0° and 180°. All of the variables are either symmetrical or 

antisymmetrical about a phase angle of 0°. The variables that are symmetrical include: the 

water surface profile, the horizontal component of water particle velocity and the vertical 
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@ degrees 

Figure 37. Example calculations of wave profile, kinematics 
and dynamic pressure 
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component of water particle acceleration. The antisymmetrical variables include the vertical 

component of velocity and the horizontal component of velocity and the horizontal 

component of water particle acceleration. 

Dynamic Pressure 

The dynamic pressure also was calculated at a distance of 20.5 feet above the bottom. 

The dimensionless form of this variable is: 

and is presented in Table 1X of the sample output. The calculations are summarized in 

Table O of this report and presented in graphical form in Figure 37. Note that pp is an even 

function of 0. 

Example 3—Free Surface Boundary Condition Errors 

The free surface boundary condition errors and the reason for examining and tabulating 

these errors have been described in Section II. To illustrate the use of tables to calculate the 

free surface boundary condition errors, both the distributed errors on the free surface and 

the root-mean-square and maximum errors as gross measures of these errors will be 

presented. The distributed kinematic and dynamic free surface boundary condition errors 

are presented in Table X, Items 1 through 4 of the sample output and the root-mean-square 

errors and maximum errors are presented in Table XI, Items 10 through 13. 

Distributed Boundary Condition Errors 

The calculations of the distributed boundary condition errors are presented in Table P 

and Figure 38. The kinematic free surface boundary condition errors as defined and 

presented in the wave tables (Table X, Items 1 and 2) are in dimensionless form. However, 

the dynamic free surface boundary condition errors (Table X, Items 3 and 4 of wave tables) 

are dimensional as illustrated in the sample calculations accompanying Table P. The 

calculations of the root-mean-square (RMS) and maximum kinematic dynamic free surface 

boundary condition errors are presented below. 

Overall Kinematic Free Surface Boundary Condition Errors 

The RMS kinematic free surface boundary condition errors are presented as Item 10 in 

Table XI, i.e., 

€1° = 0.0475 (Linear Wave Theory) 

She SS Oo (Stream-function Wave Theory) 
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The maximum KFSBC error is obtained from Item 12 of Table XI, 

le, | mee 0.0856 (Linear Wave Theory) 

|e, | = 0.0 (Stream-function Wave Theory) 
max 

Overall Dynamic Free Surface Boundary Condition Errors 

The RMS DFSBC errors are presented in dimensionless form as Item 11 in Table XI, i.e., 

Janae = 0.0241 

(Linear Wave Theory) 

tee =O). 7/6 Dyers 

ey H = 0.0048 

(Stream-function Wave Theory) 

Ven? = WodiSs) se 

The maximum DFSBC errors, obtained from Table XI, Item 13 are: 

E2 

(Linear Wave Theory) 

eral | eR we 
max 

le2hmax - 0.0289 

(Stream-function Wave Theory) 

leo | = OM9N8n te 
max 

In the interpretation of the boundary condition errors in accordance with the discussion in 

Section II, if the boundary condition errors for any given theory were found to be generally 

better than for the Stream-function theory, then it could be concluded that at least the 

analytical validity of that wave theory would be better, and (as discussed earlier) there is 

evidence that the analytical wave theory is a good indicator of the experimental validity (or 

of the wave phenomenon in nature). 
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Example 4—Calculation of Energy, Momentum, and Energy and Momentum Fluxes 

The tabulations of average potential, kinetic, and total energy and energy fluxes and 

average momentum and momentum fluxes are presented in Table XI. The calculation of 

these quantities in dimensional form is straightforward and will simply be presented without 

discussion. 

Average Potential Energy (Table XI, Item 2) 

PRs i 
PE’ = (yH278) 0.213 

PE 0-21'3'(8080)) = 1721, ft—iib/7ee 

Average Kinetic Energy (Table XI, Item 3) 

2 RE 
KE’? —a (yH2/78) — 0.254 

KE = 0.254 (8080) = 2052) £t—Ib/£te 

Total Energy (Table XI, Item 4) 

Au ay Y = (yH2/78) ~ 0.467 

TE i} 0.467(8080) = 3773 ft-1b/£t? 

Energy Flux (Table XI, Item 5) 

' Es PTE a 
Fig > quel 0.447 

ym Ge 

For = 0.447(349166) = 156077 ft-lbs/ (ft-sec) 

Group Velocity (Table XI, Item 6) 

Gir) pagal mee Noes 
G (L/T) : 

Co = 0.957(43.21) = 41.36 ft/sec 

82 



Average Momentum (Table XI, Item 7) 

r= = M YH? T 0.505 

8 L 

M = 0.505(187) = 94.42 lb-sec/ft? 

Average Momentum Flux in Wave Direction ( Table XI, Item 8) 

Fm. 
Dos — Da = (23) = 0.603 

F. = 0.603(8080) = 4872 lb/ft 

The average momentum flux has been recognized in recent years as an important dynamic 

quantity and is related to wave setup within the surf zone and also is an important factor in 

the longshore transport of littoral material. 

Average Momentum Flux Transverse to Wave Direction (Table XI, Item 9) 

’ Fim, 
[Poe eS = 0.156 H2 Ng “ 

Gi = 0.156(8080) = 1260 

SY 

From the momentum flux components presented, it is possible to obtain any component 

of the radiation stress tensor (Bowen, 1969). 

Example 5—Free Surface Breaking Parameters 

The free surface breaking parameters as defined by Equations (48) and (49) are based on 

two stability considerations. The kinematic free surface breaking parameter is defined in 

terms of the speed of a water particle on the surface at the crest relative to the wave form 

speed. If this parameter should equal unity, then the wave is regarded as unstable due to 

kinematic considerations. The dynamic free surface breaking parameter is defined as the 

ratio of the vertical acceleration of a water particle on the surface at the wave crest relative 

to the acceleration of gravity. The interpretation is that if this parameter should equal unity, 

then the pressure immediately under the crest would be zero and if the parameter should 
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exceed unity, then according to the equations of motion, the pressure beneath the wave 

crest would be negative which is unrealistic and would indicate an unstable water surface. 

It should be noted that the theory employed in the study is composed of a finite series of 

terms. To adequately define an instability formally, it may be necessary to extend the 

representation to include an infinite number of terms. The results presented here for the 

free surface breaking parameters should be interpreted accordingly. For the sample output 

(Case 4-D, Table XI, Item 14) shows that the kinematic free surface breaking parameters for 

the linear and Stream-function representations are 0.429 and 0.733, respectively. The 

corresponding values (Table XI, Item 15) for the dynamic free surface breaking parameter 

are 0.0409 and 0.286, respectively. The wave height associated with this case is 

approximately 0.78 of the depth and according to the McCowan criterion, the wave would 

be breaking. 

Example 6—Combined Shoaling-Refraction 

The shoaling-refraction results were not tabulated, but are presented for various 

deepwater directions in graphical form as Figures 25 through 29 of this report. 

Example 6-a 

Consider a deepwater wave propagating over bathymetry characterized by straight and 

parallel contours; the deepwater wave conditions considered are: 

H9 =i S12) eit 

Ti Sisec 

Qo = 40° 

Suppose that we wish to find the wave height and direction in a water depth of 30 feet and 

also the wave height, water depth and wave direction at breaking. Figure 28 is applicable for 

a deepwater wave direction of 40°. The deepwater wavelength L, is calculated as: 

yy pe, Ga es GEN 2 ula ae 
27 6 2 

therefore 

Ho 
Taos = 0.01 

and for h = 30 ft 

Fie 3 Oeaans 



The line for H,/L, = 0.01 is simply followed to the left to the intersection with h/L, : 

0.0260. At this intersection, 

Ho. ret 0.0119 

12h Se (OGL) (CHILE) sjer/ih sere, 

The second part of the example requires the breaking depth, height and angle. For this, the 

H,/L, = 9.01 curve intersects the breaking curve at: 

h 
Ban aes 0.0190 

therefore 

H 
B ya. on = 0.0147 

= ) a, 17 

therefore 

Hp = 0.0147(1152) = 16.9 £t 

hp = 0.0190(1152) = 21.9 ft 

Example 6-b 

Suppose that a wave is observed in transitional depths and it is desired to determine the 

height at deep water, breaking, or any depth of interest. For this example, the values 

of H/L, andh/L, are calculated from the observed wave height and period and water 

depth. If the observed direction corresponds to one of the graphs available, then one 

proceeds as before in Example 6-a. If the observed point is not in accordance with any of 

the graphs available, then an interpolative procedure is required. As an example, consider 

the following observed wave characteristics 

H Z0ReRt 

h 60 ft 

T = 12 sec 

iat g i} 
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and it is desired to calculate the wave height and direction in a water depth of 40 feet. From 

the observed information 

Tigi <=mnsieS 

H/Lo = 0.0271 

h/Lo = 0.0814 (h = 60 ft) 

h/Ly = 0.0542 (h = 40 ft) 

Examining the available figures, it is seen that the deepwater wave direction is between 

10° and 20°. As a close approximation, the problem is solved for a, = 10° and a, = 20°, 

and the desired results obtained by interpolation. For a, = 10°, from Figure 26, a line 

passing through H/L, = 0.0271, h/L, = 0.0814 is sketched with the same approximate 

shape as those for H,/L, =0.02 and 0.04 to determine H/L, = 0.033 and a = 6.2° for 

h/L, = 0.0542. The corresponding values for a, = 20° are H/L, = 0.031 and a = 12°. The 

procedure is shown graphically in Figure 39 for a, = 10°. Because for a, = 10° and 20°, the 

a values corresponding to h/L, = 0.0814 and H/L, = 0.0271 are 6.8° and 13° respectively, 

and the desired @ for these conditions is 11°, the values of H/L, and a for h = 40 feet may 

be determined by linear interpolation as: 

He (G03 033) Be EO ae ph = 0.033 + {335 — 35st (11° - 6.8°) = 0.032 

or 

A f=10737 33)(03032) M=n23i6 FEE 

and 

= ° MLAS Oo Ge)) o - ° = ° a = 6.22 + 1ST = 8-2} (ire - 6.89) = 10.1 

Dissipative mechanisms such as percolation and bottom friction are not included in these 

results, and in many cases these mechanisms will be of greater significance than the 

nonlinear effects on the celerity and group velocity which represent the difference between 

the results presented here and the linear wave theory. 

Example 7—Use of Tables for Nontabulated Wave Conditions 

Most of the previous examples have been presented for wave conditions which were 

available as one of the 40 tabulated cases, i.e., Case 4-D. It is anticipated that the tabulations 

will be used primarily for preliminary design, and therefore that the 40 cases may provide 

adequate information for this purpose without interpolation. Final design of, for example, a 
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platform supported by battered piling would probably be carried out by establishing a 

Stream-function or other wave theory representation for the particular wave conditions 

selected for design. 

On occasion, it may be desired to interpolate between the cases presented in the tables 

for wave conditions that are substantially different from any of the 40 cases. Several 

numerical and graphical interpolation methods were explored with a goal of obtaining a 

simple method which yielded reasonably accurate results. Because most wave variables of 

interest are nonlinear, numerical schemes which used linear interpolation proved to be 

inaccurate. The best procedure was found to be a simple graphical procedure which 

generally yields results within 5 percent. 

Method 

The method uses the tabulated parameters of interest for the H/Hp values above and 

below the value of interest at the two lower and two higher h/L, tabulated values; in all 

for each parameter desired, the interpolated value is based on values of that parameter for 

eight tabulated wave conditions. The method is outlined in the following paragraphs and 

illustrated by two examples. 

Suppose that the wave height, period, and water depth selected for design are Hp, Tp, 

and hp. The design wave steepness and relative depth are calculated as: 

Wave Steepness: Lan 
0D 

Ap 
Relative Depth: —— elative Dep ae 

where 

eke leg 2 
Lop = oq 'D 

The relative depth and wave steepness are plotted on Figure 40 to establish which wave 

cases should be used for design. For the example shown, H/Lo, = 0.086 and 

h/Lop = 0.313. This point falls between H/Hp values denoted as B and C (i.e., 50 and 75 

percent of breaking heights, respectively) and between tabulated h/L, values denoted as 

Cases 7 and 8. The interpolation would therefore be based on the tabulated parameter of 

interest for Cases 6-B, 6-C, 7-B, 7-C, 8-B, 8-C, 9-B, and 9-C. ’ 

The interpolation proceeds as follows. An auxiliary plot is made of the variable of 

interest, e.g., the total dimensionless drag force at 0 = 0° [denoted Fp) (0°, Surf.)]. This plot 

provides a continuous distribution of F)(0°, Surf.) versus h/L, for relative breaking 

heights B and C. Interpolated Fj values are then obtained from the auxiliary plot for 

the h/L, design value (0.313). The interpolation for the design wave steepness requires 
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Figure 40. Interpolation aid 
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measuring (Figure 40) the vertical linear distance from the B and C lines to the 

design H/L, of interest; denote these values, A, and A,, respectively. Weighting 

factors, W, are then established as: 

(50) 

WwW 

The interpolated Fp value is finally determined as: 

’ ? 

(Fp), = Wi (Fp), + Wy (Fp) 

where the subscripts, D, L and U outside the parentheses denote: “Design,” “Lower” 

(Case B), and “Upper” (Case C). 

Example 7-a—Numerical Illustration of Interpolation Procedure 

Consider the following wave conditions selected for design 

Hy = 44 £t 

Tp = 10 sec 

hy = 160 ft 

which yield 

Lop aT T Siete 

h 

— = 0.313 
°D 

Top = 0.0859 

and suppose that we require the maximum dimensionless drag force on a piling that extends 

from the bottom to above the crest level. This maximum value would occur at 6 = 0° and is 

the value labeled “SURFACE” in the tabulations. Plotting of the wave steepness and relative 

depth on Figure 40 indicates that the design values are spanned by Cases 7-B, 7-C, 8-B and 

8-C. In accordance with the preceding section the values of F)(0°, Surf.) for Cases 6-B, 6-C, 

7-B, 7-C, 8-B, 8-C, 9-B, and 9-C are required for interpolation and are summarized in 

Table Q. 
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TABLE Q 

Summary of (O° Surf, ) Required for Example 7-a 

The values in Table Q are presented as an auxiliary plot in Figure 41. Interpolation at the 

design h/L, of 0.313 yields the following values of Fp for relative breaking of 50 and 75 

percent respectively. 

4.90 

6.10 

Relative Breaking of 50 percent (Line B): (Fp) q 

Relative Breaking of 75 percent (Line C): (Fp y 

To interpolate to the design H/L,, the distances A, and A, are measured from 

Figure 40. For this example, these are found to be: 

A, = 0.11 in 

Ao 0.32 in 

The weighting values are then (Equation 50) 

WwW = Teva anrewacnit a 

W 0.256 
OF. A ea 
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(0°, Surf) 
Fp 

5 6 U 8 S 10 

Cte ak oe te 
50.0 = 

20.0 

ooo ll TE | 
10.0 

5.0 : 

2.0 

10 a a 

0.1 0.2 0.5 1.0 2.0 

h/Lo 

Figure 41. Auxiliary plot of F) for example 7a 
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and the interpolated value of Fp is: 

ih) Wr (FD) 5, + Wu (FD) y 

(0.744) (4.90) + (0.256) (6.10) 

5.22 

To evaluate this interpolated value, a Stream-function solution was developed for the 

conditions of interest, and Fp from the actual solution was found to be 5.04 or a difference 

of about 3.4 percent. 

More comprehensive evaluations of the accuracy of the interpolation method are 

presented in the next example. 

Example 7-b—Assessment of the Interpolation Method 

To present a more extensive evaluation of the accuracy of the interpolation method, two 

special cases (one shallow-water and one deepwater) were selected for evaluation. The wave 

characteristics for these two cases are presented in Table R. 

TABLE R 

Wave Characteristics Selected for Accuracy 
Evaluation of Interpolation Method 

Wave Height, Wave Period, Water Depth, 
Case (eens near ok @coaae rant | en ES ya 

ne Water) 

S-2 

(Deep Water) 

Using the procedure described, interpolated values of a number of quantities of interest 

were developed and compared with values obtained by Stream-function solutions at the 

wave conditions of interest. Table S presents a summary of the percentage differences 

between the solution and interpolated values. 

As an overall statement regarding the interpolation, it is noted that Table S indicates that 

the procedure presented generally provides results which are within 5 percent; however, 

differences up to 10 percent could occur. One final comment concerning the consistency of 

the tabulated values is in order. In preparing the auxiliary plots, it was usually found that a 

line could be drawn through the four points within 2 to 3 percent, except for the breaking 
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TABLE S 

Summary of Percentage Differences Between Values 
Determined by Stream Function Solutions 

and by Interpolation 

Percentage Difference? 

Case S-l Case S=-2 Dimensionless Variable®@ 

We (OS Olt); Homizie wViel. 
Comp., Zero Phase Angle, 

Mid-Depth 

Fp (0°, Surf), Max. Drag 
Force Component, Acting 
Over Entire Depth +6.7 +3.4 

? 

F;, (10°, Surf), Inertia 

Force Component +1.3 Not Evaluated 

F_(75°, Surf), Inertia 
Force Component Evaluated -3.9 

Mj(0°, Surf), Max. Drag 
Moment Component About 

Mudline +4.5 +3.6 

Mz (10°, Surf), Inertia 
Moment Component +2.2 Not Evaluated 

Mz (75°, Surf), Inertia 
Moment Component Evaluated 

pp (0°, 0.5), Dynamic 
Pressure Component, 

zero Phase Angle, 
Mid-Depth 

Pp (180°, 0.5), Dynamic 
Pressure Component, 
Trough Phase Position, 

Mid-Depth 

L’, Wave Length 

TE’, Total Energy 
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TABLE S—Continued 

Percentage DifferenceD 

Fam o Total Energy Flux 

M', Momentum 

? . 

Fm.., Momentum Flux in 
x ; j 

Wave Direction 

Momentum Flux 

Transverse to 

Wave Direction 

KFSBP, Kinematic Free 
Surface Breaking 
Parameter 

DFSBP, Dynamic Free 
Surface Breaking 
Parameter 

Refer to Tables D, E, and F for a more complete description of the dimensionless variables. 

] lue — -f i i ERE ERe IN Erte ee see ae DCA PUNCH OMSL UEON Y ogyRereant 
Stream-function Solution 
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wave height, H/Hp=1.0 in which case the maximum deviations could amount to 

+5 percent. The probable explanation for this deviation is that: (1) the calculated wave 

heights for the tabulated cases were allowed to deviate from the desired values by 1 percent, 

and (2)the different orders to represent different cases could cause a difference in 

kinematics of 1 to 2 percent. The effects noted above could conceivably amount to 

deviations of +5 percent for those variables which are inherently nonlinear, e.g., drag forces 

or wave breaking parameters. 

This completes the section illustrating the use of the wave tables. It should be recognized, 

however, that only the more simple examples have been presented and that the tables can be 

effectively applied to the solution of situations which are considerably broader and more 

complex than those examined in this section. 

VI. SUMMARY 

This report presents the results of an investigation which has demonstrated that the 

Stream-function wave theory provides a generally better representation of periodic wave 

phenomena than other wave theories examined. As a result of this indication, tables have 

been prepared, based on the Stream-function wave theory, that include parameters which 

should be an aid in preliminary offshore design. The tables also include parameters which 

are presently of greatest interest to researchers. 

Because of its simplicity, the linear wave theory is widely used for many calculations over 

all ranges of relative depth. This study has identified that, for a number of variables, there 

are substantial differences between the linear and Stream-function wave theories. Although 

this point has not been amplified in this report, inspection of the tables will substantiate this 

conclusion. The identification of these differences should be of assistance in planning 

experimental programs to provide definitive research results. 

If the set of tables is extensively applied, as is hoped, undoubtedly the users will note 

shortcomings, omissions or develop recommendations directed toward the improved 

usefulness, applicability, or efficiency of the tables. The author would welcome information 

of this type so that future work may benefit by as wide a range of user’s needs as possible. 
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APPENDIX I 

NUMERICAL SOLUTION OF STREAM FUNCTION PARAMETERS 

Introduction 

This appendix outlines the method of determining numerical values for the parameters in 

the general form of the Stream-function solution. The numerical solution requires the use of 

a reasonably high-speed, large memory computer. 

Review of Problem Formulation 

The problem of a two-dimensional, periodic wave propagating in water of uniform depth 

has been discussed in Section II of the main body of this report. If the water is 

incompressible and the motion irrotational, then the following boundary value problem can 

be established for an “arrested” wave system. 

Differential Equation (DE): 

v2y = 0 (I-1) 

Bottom Boundary Condition (BBC): 

w= 0, z= -h (1-2) 

Kinematic Free Surface Boundary Condition (KFSBC): 

Boundary an oe A 

Conditions Oxa UEC 3S Mee) (I-3) 

Dynamic Free Surface Boundary Condition (DFSBC): 

nen aCabe aC) 2h Saw? neice sy Z = n(x) 14 
ut 2g 2g f (I4) 

Motion is periodic in x with spatial periodicity of the wavelength, L. _(I-5) 

Equations (I-1 through I-5) represent the common formulation for all of the classical 

nonlinear water wave problems in which it is assumed that the wave propagates without 

change of form and a reference coordinate system has been chosen that travels with the 

wave form. For a specified wave height, water depth and wave period, the goal then is to 

determine as exactly as possible a solution to the formulation. 
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Stream-function Solution 

The general form of the Stream-function solution is: 

N 
(2 

W(x,z) = z Z + oF (n) sinh - (h + 2) cos = x] (1-6) 

The water displacement, n, is determined by setting z= 7 in Equation (1-6) 

NN 
Dee ed 

ies aod mil X(n) sinh [2ze (hee n) | cos [2m x] (1-7) 
n 1 L 

where Vn ‘is the (constant) value of the Stream-function on the free surface. The velocity 

components are defined by: 

u-c=- 3 (1-8) 

w= + ov (L9) 

In continuing the quest to determine a solution that satisfies Equations (I-1) to (1-5) as 

faithfully as possible, it is noted that for arbitrary values of: Wap L, and the X(n)’s, the 

Stream-function solution exactly satisfies all of the requirements of the formulation except 

the DFSBC, Equation (1-4). All of the effort can therefore be directed to determining these 

“free” variables such that they represent the specified wave height and also “best” satisfy 

Equation (I-4). The approach employed is numerical iteration, in which a trial solution is 

regarded as available and at each step of the iteration; the “free” variables are modified to 

improve the solution. 

As a preliminary step, an error is defined in the one remaining unsatisfied boundary 

condition, 

J 

Boe | (. > OF (I-10) 

where the Q;’s represent equally spaced (in @) values of the quantity in Equation (14), 

and Q represents the average of the Q;’s. If, for example, J = 41, and the free variables 
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could be adjusted so that E was very small, then the associated solution would provide a 

good fit to the complete formulation at these 41 points, and computations have shown that 

the fit or other phase angles would be comparably good. The problem therefore has evolved 

into one of minimizing the total error E. The procedure used is a least-squares procedure, 

which reguires formally that 

@ ™ Il oO (I-11) 
@ EI 

Q E wt erie ee (I-12) 
Q 

(The parameter Vy is not determined by the least-squares procedure, but is selected such 

that the mean water level is not changed by the other variables selected. This will be 

discussed later.) Examination of Equations (I-11) and (1-12) further will indicate that the 

usual least-squares procedure is not applicable, because the error is not defined as a 

quadratic function of the unknowns. This problem then falls in the category of a nonlinear 

least-squares problem. 

The problem was linearized as follows. Suppose that at the kt" iteration, a trial solution 

is available. The objective is to select changes in the unknowns such that the errors will be 

reduced. If this were a linear least-squares problem, only one iteration would be required. 

Expressing the quantity Q in terms of small changes in the unknowns (to be determined at 

the ki! iteration). 

k+1 NN ag 20% 
Ole ay an i aK(tay OX¥(m) + apo AL (I-13) 

where 

dQ ~ BO) Von dQ _du 0Q _dw 

dX(n) dn dX(n) ~ du dX(n) * dw OX(n) (I-14) 

a (I-15) 
a} a phe I p) i Bin wd 

where the 0Q/d0n, 0Q/du are obtained from Equation (I-4) and the 0n/0X(n), du/dX(n), 

etc., are obtained from Equations, (I-7), (1-8), etc. 
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Rewriting the least-squares procedure in terms of the unknowns: AL and AX(n) 

ae = 0 (1-16) 

dE = ie 
Sixtay = Or n= 1....NN (I-17) 

Equations (I-16) and (I-17) represent a set of NN + ] linear simultaneous equations in 

terms of the NN + 1 unknowns. After each iteration, the water surface is recalculated, by 

iteration, from Equation (1-7) and Vn is redetermined such that 

L 

| Ces = 0 (1-18) 
0 

which can be expressed in integral form as: 

L/2 

y= z| X(n) sinh [2z2 (h + n) | cos eu x] dx (I-19) 

0 

where, in the computations, a Simpson’s rule approximation to Equation (I-19) is used. 

One complete iteration comprises a simultaneous solution for AL and the AK(n)’s and a 

redetermination of Vn: Successive iterations involve exactly the same procedure, and the 

iterations can be terminated when successive reductions in the error E are small. Numerical 

instabilities can occur, especially near breaking wave conditions, and one effective procedure 

in these cases is to apply only a fraction of the AL and AX(n)’s specified by the 

least-squares solution. 

One final comment should be directed toward the problem of establishing the desired 

wave height. Although it is possible to develop more sophisticated procedures which 

converge on the wave height, the procedure followed here was simply to conduct successive 

runs until the wave height was within an acceptable limit (1 percent) of the desired height. 
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APPENDIX II 

DEVELOPMENT OF COMBINED SHOALING—REFRACTION COEFFICIENTS 

Introduction 

This appendix describes briefly the method employed to calculate the combined 

shoaling—refraction coefficients. 

Background 

The shoaling—refraction coefficients developed are valid for a bathymetry characterized 

by straight and parallel bottom contours and for a wave system which suffers no energy 

losses. The two principles employed are Snell’s Law and the concept that there is no energy 

flux across a wave ray, see Figure II-1. 

Snell’s Law governs refraction and relates the wave propagation speed, C, to the wave 

direction, a , 

sin oO, _ — Sin a2 
or Const TCR. (II-1) 

in which the subscripts pertain to any arbitrary depths. 

The requirement that no energy is propagated across wave rays may be written as: 

la cos a], = [Fars cos a), = Const. (UI-2) 

in which Fp, represents the energy flux per unit width in the direction of wave 

propagation and the cos a term represents the width between adjacent wave rays. 

The Fp, term could be expressed as the product of the wave energy density, TE, and the 

group velocity, C¢, although this will not be helpful in the effort here. For linear wave 

theory, it is possible to separate the refraction and shoaling effects because neither the 

celerity, C, (governing refraction) nor the group velocity, C¢ (governing shoaling) depend 

on wave height. For our case, inspection of Equations (II-1) and (II-2) will show that the 

two phenomena are coupled through the dependency of C and Cy on the wave height. 

Method 

The method employed here utilizes the dimensionless energy flux, Fp, (Table XI, 

Item 5) and the dimensionless wavelength, L’ (Table XI, Item 1), where 
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Figure II-1. Definition sketch for shoaling-refraction considerations 
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Equation (II-1) can be rewritten in terms of the dimensionless quantities as: 

gl. Wea = glo ALE en = Const) (II-3) 

However since the period is conserved, i.e., T, = T, 

sii Gn) LY ehin Ga aa Gad = Pos = Const; (1-4) 

The energy flux relationship, Equation (II-2) can be expressed as: 

2 
2)3 

“or Ee Ea Fag L’ cos a = Constoe 
0 

or recognizing that the period is conserved 

2 

| fee ii COS a= Const, (II-5) 

Equations (II-4) and (II-5) describe the shoaling-refraction process in terms of available 

dimensionless parameters, and were solved as described in the following paragraphs. 

Solution 

It was found convenient to characterize a particular incoming deepwater wave by the 

direction, @,, and deepwater steepness, H, /L,. The problem is to determine wave 

steepnesses at other relative depths h/L, such that Equations (II-4) and (II-5) are satisfied 

recalling that L’ and Fp, both depend on h/L, and H/L,. For each relative 

depth, h/L,, four values of L’ and Err are available (for H/Hp = 0.25, 0.5, 0.75, and 

1.0, c.f. Figure 23) whereas a continuous distribution is required for the purpose here. For 

each relative depth, h/L,, 

between the four available points; for H/Hp =0, it was assumed that the simple linear wave 

theory applied, see Figure II-2 for an example for h/L, = 0.02. 

For given H, /L, and @,, the constants in Equations (II-4) and (II-5) are defined. The 

wave steepness H/L, and direction @ at any relative depth are determined by iteration of 

continuous distributions were obtained by fitting straight lines 

the two following equations. 

k sin ~ 
0, = sin! tz wm (11-6) 

k+1 [ (Ho/Lo)* (Foe) 6 i COS aig) 2 

Lo ki k k k ee) 
| (Fim) (lip) COS) oO 
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in which the superscript k +1 denotes the (k + 1)" iteration and applies to the 

improved estimates of a and H/L,. Once these estimates are known, the parameters with 

the k subscripts on the right hand sides of Equations (II-8) and (II-9) are calculated and 

improved estimates of a@ and H/L, are determined, etc. The procedure was initiated in 

deep water and the wave steepness and direction calculated at the remaining nine values of 

relative depth advancing shoreward or until breaking was indicated. At each relative depth, 

the iteration converged very rapidly with three or four iterations usually sufficient. For the 

first iteration at a relative depth, the initial value for wave steepness was taken as the final 

value for the preceding (greater) relative depth. 

The shoaling-refraction results are presented in graphical form, for a, = 0°, 10°, 20°, 

40°, and 60° in Figures 25, 26, 27, 28, and 29, respectively. A description of these tables is 

presented in SectionIV and two examples illustrating their application are given in 

Section V. 
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APPENDIX III 

SAMPLE SET OF WAVE TABLES FOR CASE 4-D 
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