NEW YORK UNIVERSITY
INSTITUTE OF
MATHEMATICAL SCIENCES

Existence and Uniqueness for a Third Order

Non-Linear Partial Differential Equation

CHESTER B. SENSENIG

PREPARED UNDER CONTRACT NO. Nonr-285(46) WITH THE OFFICE OF NAVAL RESEARCH, UNITED STATES NAVY AND CONTRACT NO. NSF-G6331 WITH THE NATIONAL SCIENCE FOUNDATION

REPRODUCTION IN WHOLE OR IN PART. IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES COVERNMENT.

Introduction

The purpose of this paper is to investigate the existence and uniqueness of a solution of the equation

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-u_{y} \frac{\partial}{\partial x}+u_{x} \frac{\partial}{\partial y}\right)\left(\Delta u-\lambda^{2} u\right)=0 \tag{1}
\end{equation*}
$$

where u is a real valued function of the real variables x, y, and $t ; \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$; and λ is a positive constant.

Equation (1) has arisen as an elementary mathematical model in meteorolozy [1]. In this model x and y are position variables in two dimensional Euclidean space, and t is the time. We may think of u as the effective depth of the atmosphere, of $\left(-u_{y}, u_{x}\right)$ as the velocity vector of the air particles, and of Δu as the vertical component of vorticity. We will thus speak of the solutions of the ordinary differential equations $\frac{d x}{d t}=-u_{y}(x, y, t)$ and $\frac{d y}{d t}=u_{x}(x, y, t)$ as parametric representations for the curves followed by air particles in the $x y$ - plane. It is then clear from (I) that the Helmholtzian, $\Delta u-\lambda^{2} u$, is constant along the air particle paths.

For convenience we will restrict ourselves to the consideration of existence and uniqueness of a solution of (I) in $\hat{A}=\{(x, y, t) \mid$ $-\infty<x<\infty, y \geq 0,0 \leq t \leq c\}$ where c is a positive constant. Let $\Delta u-\lambda^{2} u=h$ where u is a solution of (I) in λj. If h is smooth enough, it is well known that when $y>0$ then
(2)

$$
\begin{aligned}
u(x, y, t)= & \frac{1}{2 \pi} \iint_{\eta \geq 0} g(x, y ; \xi, \eta) h(\xi, \eta, t) d \xi d \eta \\
& -\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} u(\xi, 0, t) \frac{l}{\nu} K^{\prime}(\lambda v) d \xi
\end{aligned}
$$

where $v=\sqrt{(\xi-x)^{2}+y^{2}}$ and where we have used the appropriate Green's function $g(x, y ; \xi, \eta)$ and Bessol function $K(x)$. That is, we let $\rho=\sqrt{(\xi-x)^{2}+(\eta-y)^{2}}, \bar{\rho}=\sqrt{(\xi-x)^{2}+(\eta+y)^{2}}$, and $g(x, y ; \xi, \eta)=K(\lambda \bar{\rho})-K(\lambda \rho)$ where $K(x)$ is the modified Bessel function of the second kind of order zero. Then $g_{x x}+E_{y y}-\lambda^{2} g_{G}=$ $g_{\xi \xi}+g_{r i}-\lambda^{2} g=0, g(x, 0 ; \xi, \eta)=0$, and g behaves like log for (ξ, η) near (x, y).

We will use the above physical terminology in the following heuristic derivation of the appropriate initial and boundary conditions for equation (1).

The right side of (2) depends on h and $u(x, 0, t)$. Since h is constant along the air particle paths, we see that h can be given everywhere in A in terms of its values at points where air particle paths enter \hat{N} (i.e. at points where $u_{x}(x, 0, t)>0$ or $t=0$). In particular u can be expressed in terms of h at points where the air particle paths enter A and in terms of $u(x, 0, t)$. It therefore seems natural to prescribe the values of u on the $x t$ - plane, to prescribe the values of $\Delta u-\lambda^{2} u$ on the half plane $t=0$ and $y \geq 0$, and to prescribe $\Delta u-\lambda^{2} u$ at points on the $x t$ plane where $u_{x}>0$. That this prescription of initial and boundary values constituted a well posed problem was suggested by E. Isaacson; earlier workers in meteoroloy learned this from numerical experiments.

For convenience we will assume that air particle paths leave D (i.e. $u_{x}<0$) at points in a simply connected open set of the $x t$ - plane, and air particle paths enter \mathcal{D} (i.e. $u_{x}>0$) at points of the xt - plane exterior to the above mentioned simply connected open set.

\square

$$
i \cdot+10-\infty+\frac{1}{2}+\frac{1}{2}
$$

Fis

y

$$
\cdot 1+1 .=
$$

$$
=\quad 2=-
$$

$1+12$

$$
x
$$

- +1. . $18!$

We will find it convenient to consider a solution which at infinity does not deviate "too much" from a uniform flow parallel to the y - axis. Such a uniform flow, $u^{*}=a x+b$ where a and b are constants and $a>0$, satisfies (2) and hence any function u which satisfies (2) will also satisfy (3).
(3)

$$
\begin{aligned}
u(x, y, t)= & \frac{1}{2 \pi} \int_{\eta \geq 0} \int(x, y ; \xi, \eta)\left[h(\xi, f, t)+\lambda^{2}(a \xi+b)\right] d \xi d \eta \\
& -\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}[u(\xi, 0, t)-a \xi-b] \frac{1}{v} K^{\prime}(\lambda \nu) d \xi+a x+b
\end{aligned}
$$

when $y>0$. We will choose to work with (3) rather than (2) since we will be placing certain restrictions at infinity on $u-a x-b$ and $h+\lambda^{2}(a x+b)$.

Next we define what we mean by a weak solution of (1) in \mathcal{O}. In Part I we will show that a weak solution satisfying certain initial and boundary conditions exists with relatively weak restrictions placed on the prescribed initial and boundary conditions. In Part II we will show that as we gradually strengthen the restrictions placed on the initial and boundary conditions the solution is also gradually strengthened until we have existence of an ordinary solution of (l) satisfying the prescribed initial and boundary conditions. In Part III we prove a uniqueness theorem. Let U be any real valued function with domain A such that U_{x} and U_{y} are continuous. We require that the solutions to the ordinary differential equations $\frac{d x}{d t}=-U_{y}(x, y, t)$ and $\frac{d y}{d t}=U_{x}(x, y, t)$ exist in the large in Δ and are unique. The curves in S described by the vector $[x(t), y(t), t]$ will be called the air
 - $11+2+2-1+2+0$

 $+2+2+2+2+2+2+2$

particle paths of U. Let H be any real valued function with domain such that along each air particle path of U, H is constant (excepting possibly at points where the air particle path is tangent to the xt - plane). We will call H a pseudoHelmholtzian of U. We also require that $\int_{i>0} g(x, y ; \xi, r)[H(\xi, \eta, t)+$ $\left.\lambda^{2}(a \xi+b)\right] d \xi d r$ exists for (x, y, t) in 1$)$. If (3) is valid for u replaced by U and h replaced by some such H, then we call U a weak solution of (I) in $\|$.

We note that for U to be a weak solution of (I) in N, U_{X} and U_{y} are the only derivatives whose existence we are assuming. In the remainder of this paper we will use the notation u (and h) for genuine and weak solutions (for Helmholtzians and pseudoHelmholtzians) and the reader should be forewarned.

Existence of a weak Solution*
We will let ϕ and ψ_{I} denote the prescribed values of u and h respectively on the plane $y=0$, and Ψ_{2} will denote the prescribed values of h on the plane $t=0$. We will prove the existence of a weak solution in Theorem 1 below for $0 \leq t \leq c_{I}$ (where $c_{I}>0$ is introduced in the statement of the theorem). Heuristically the proof is based on the following construction. For each $n=1,2,3, \ldots$ we define functions h_{n}, u_{n}, x_{n}, and y_{n} inductively in the strips $\frac{k c_{1}}{n} \leq t \leq \frac{(k+1) c_{1}}{n}$ for $k=0,1, \ldots, n-1$. u_{n} may be thought of as an approximate weak solution, X_{n} and X_{n} describe the air particle paths of u_{n}, and h_{n} may be thought of as an approximate pseudoHelmholtzian of u_{n}. We show that a subsequence of $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converges to limit functions x and y respectively. We use the functions x and y to define functions h and u. We then show that the curves described by x and y are the air particle paths of u, that h is a pseudo-Helmholtzian of u, that u is a weak solution of (I), and that u and h satisfy the prescribed initial and boundary conditions.

Theorem 1. Let ϕ be a real valued function whose domain is $\{(x, t) \mid-\infty<x<\infty$ and $0 \leq t \leq c$ where c is a positive constant $\}$. Let ϕ also satisfy $\left(I_{A}\right),\left(I_{B}\right)$, and $\left(I_{C}\right)$.
$\left(I_{A}\right) \phi, \phi_{X}$, and $\phi_{X x}$ are continuous. Also for some constants L and i such that $L>0$ and $0<i<1$ we have $\left|\phi_{X X}(\bar{x}, t)-\phi_{X X}(x, t)\right| \leq$ $L|\bar{x}-x|^{i}$ for $\operatorname{all}(\bar{x}, t)$ and (x, t) in the domain of ϕ.

* Certain symbols are used throughout a large part of this report, and a glossary of such symbols is contained at the end of this report.
$\left(I_{B}\right) \quad \phi(x, t)-a x-b, \phi_{X}(x, t)-a$, and $\phi_{x x}(x, t)$ are bounded where a and b are real constants with $\mathrm{a}>0$.
$\left(I_{C}\right)$ Let the boundary of the region of outgoing particles on the (x, t) plane be given by $x_{1}(t)$ and $x_{2}(t)$. That is, let x_{1} and x_{2} satisfy a uniform Lipschitz condition with $x_{1}(t)<x_{2}(t)$ for $0 \leq t \leq c$, call C_{1} the curve consisting of the points $\left[x_{1}(t), 0, t\right]$ for $0 \leq t \leq c$, and call c_{2} the curve consisting of the points $\left[x_{2}(t), 0, t\right]$ for $0 \leq t \leq c$. Let $\phi_{x}(x, t)=0$ for $(x, 0, t)$ on C_{1} or C_{2}, let $\phi_{x}(x, t)<0$ for $x_{1}(t)<x<x_{2}(t)$, and let $\phi_{x}(x, t)>0$ for $x<x_{1}(t)$ or $x>x_{2}(t)$.

Let ψ_{I} be a real valued function whose domain is $\{(x, t) \|(x, t)$ is in the domain of ϕ and $\left.\phi_{X}(x, t) \geq 0\right\}$. Let ψ_{1} also satisfy $\left(2_{A}\right)$.
$\left(2_{A}\right) \quad \psi_{1}$ is continuous and $\psi_{1}(x, t)+\lambda^{2}(a x+b)$ is bounded where λ is a positive constant.

Let ψ_{2} be a real valued function whose domain is $\{(x, y) \mid-\infty<x<\infty$ and $y \geq 0\}$. Let ψ_{2} also satisfy $\left(3_{A}\right)$ and (3B).
$\left(3_{A}\right) \quad \psi_{2}$ is continuous and $\psi_{2}(x, y)+\lambda^{2}(a x+b)$ is bounded.
$\left(3_{B}\right) \psi_{2}(x, 0)=\psi_{1}(x, 0)$ for $(x, 0)$ in the domain of both ψ_{1} and Ψ_{2}.

Then for all small enough positive c_{1} there exists a real valued function u with domain $X_{1}=\{(x, y, t) \mid-\infty<x<\infty, y \geq 0$, $\left.0 \leq t \leq c_{1}\right\}$ such that u satisfies $\left(4_{A}\right),\left(4_{B}\right)$, and (4_{C}).
$\left(4_{A}\right) u(x, 0, t)=\phi(x, t)$.
(4_{B}) There exists a pseudo-Helmholtzian h of u such that $h(x, 0, t)=\psi_{1}(x, t)$ when (x, t) is in the domain of $\psi_{I}, h(x, y, 0)=$ $\psi_{2}(x, y)$, and (3) is valid for u and this h.
$\left(4_{C}\right) u(x, y, t)-a x-b, u_{x}(x, y, t)-a, u_{y}(x, y, t)$, and $h(x, y, t)+\lambda^{2}(a x+b)$ are all bounded.

We will start the proof of Theorem I by examining the second integral in (3).

Lemma (1.1). Let w be the function with domain \hat{N} defined by $w(x, y, t)=\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}[\phi(\xi, t)-a \xi-b] \frac{1}{\nu} K^{\prime}(\lambda \nu) d \xi$ when $y>0$ where $v=\sqrt{(\xi-x)^{2}+y^{2}}$ and $K(x)$ is the modified Bessel function of the second kind of order zero, and by $w(x, 0, t)=-\phi(x, t)+a x+b$ for $y=0$. Then w and its first and second derivatives with respect to x and y are continuous in (x, y, t) and are bounded. Also $\Delta w-\lambda^{2} w=0$ 。

Proof of Lemma (1.1). Since $\phi(\xi, t)-a \xi-b$ is bounded and continueonus, we could easily show that w is continuous for $y>0$.

Now consider a fixed point $\left(x_{0}, 0, t_{0}\right)$. For $y>0$ we have $w(x, y, t)-w(x, 0, t)=\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}[\phi(\xi, t)-\phi(x, t)+a(x-\xi)] \frac{l}{\nu} K^{\prime}(\lambda \nu) d \xi+$ $[\phi(x, t)-a x-b]\left[\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \frac{l}{v} K^{-\infty}(\lambda \nu) d \xi+I\right]$. We observe that $\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\nu} K^{\prime}(\lambda \nu) d \xi=\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \lambda y \sec \Theta K^{\prime}(\lambda y \sec \varepsilon) d \theta$. Since $\lambda y \sec \theta K^{\prime}(\lambda y \sec \theta)$ is a measurable function of θ for each $y>0$, since $\left|\lambda y \sec \leqslant K^{\prime}(\lambda y \sec \theta)\right| \leq M$, and since $\lim _{y \rightarrow 0+} \lambda y \sec \theta$ $K^{\prime}(\lambda y \sec €)=-1$ for almost all Θ, then by the Lebesque convergence theorem we have $\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\nu} K^{\prime}(\lambda \nu) d \xi \rightarrow-1$ as $y \rightarrow 0+$. Furthermore the convergence is uniform with respect to (x, t) since
$\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \lambda y \sec \in K^{\prime}(\lambda y \sec \theta) d \theta$ does not depend on (x, t). Now given

$\varepsilon>0$ we can choose $\delta_{\infty}>0$ so that $0<y \leq \delta$ implies $\mid w(x, y, t)$ $\left.w(x, 0, t)\left|\leq \overline{\mathbb{M}} \varepsilon+\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}\right| \phi(\xi, t)-\phi(x, t)+a(x-\xi)\left|\frac{1}{\nu}\right| K^{\prime}(\lambda \nu) \right\rvert\, d \xi$ for all (x, t) where \bar{M} is chosen so that $|\phi(x, t)-a x-b| \leq \bar{M}$. Now let R be any positive number such that $R>2\left|x_{0}\right|$. Since $\phi(\xi, t)-a \xi$ is uniformly continuous in (ξ, t) for $|\xi| \leq R$ and $0 \leq t \leq c$, then we can choose $\delta^{*}>0$ so that $|\phi(\xi, t)-\phi(x, t)+a(x-\xi)| \leq \varepsilon$ for $|\xi-x| \leq \delta^{*} \leq \frac{R}{2},|x| \leq \frac{R}{2}$, and $0 \leq t \leq c$. Then for $|x| \leq \frac{R}{2}$, $0<\underset{\infty}{\mathrm{C}} \leq \delta$, and $0 \leq t \leq c$ we have $|w(x, y, t)-w(x, 0, t)| \leq \bar{M} \varepsilon+$ $\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \frac{\varepsilon}{\nu} \frac{M}{\lambda \nu} d \xi+\frac{\lambda y}{\pi}\left(\int_{-\infty}^{x-\delta^{*}}+\int_{x+\delta^{*}}^{\infty}\right) \frac{2 \bar{M}}{\nu} \frac{M}{\lambda \nu} d \xi \leq \bar{M} \varepsilon+M \varepsilon+$
$\frac{4 y \bar{M} M}{\pi} \int_{\mathrm{x}+\delta^{*}}^{\infty} \frac{d \xi}{(\xi-\mathrm{x})^{2}} \leq(\bar{M}+M) \varepsilon+\frac{4 \bar{M} M}{\pi \delta^{*}}$. Now choose $\bar{\delta}>0$ so that $\bar{\delta}<\delta$ and $\frac{4 \overline{\delta M M}}{\pi \delta^{*}}<\varepsilon$. Then for $|x| \leq \frac{R}{2}, 0<y \leq \bar{\delta}$, and $0 \leq t \leq c$ we have $|w(x, y, t)-w(x, 0, t)| \leq(\bar{M}+M+1)$ e. Now for $|x| \leq \frac{R}{2}$, $0<y \leq \bar{\delta}$, and $0 \leq t \leq c$ we have $\left|w(x, y, t)-w\left(x_{0}, 0, t_{0}\right)\right| \leq$ $|w(x, y, t)-w(x, 0, t)|+\left|w(x, 0, t)-w\left(x_{0}, 0, t_{0}\right)\right| \leq(\bar{M}+M+1) \varepsilon+$ $\left|\phi(x, t)-\phi\left(x_{0}, t_{0}\right)+a\left(x_{0}-x\right)\right| \leq(\bar{M}+\mathbb{M}+2)$ e for all (x, y, t) near enough to $\left(x_{0}, 0, t_{0}\right)$. Thus w is continuous at ($x_{0}, 0, t_{0}$). This completes the proof that w is continuous.

To see that w is bounded we observe that $|w(x, y, t)| \leq$ $\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \bar{M} \frac{M}{\lambda \nu^{2}} d \xi=\bar{M} M$ for $y>0$ and $|w(x, 0, t)| \leq \bar{M}$.

We observe that the only hypothesis used, to show that w is continuous and bounded, was $\phi(x, t)-a x-b$ is continuous and bounded.

Next we will show that $w_{x}(x, y, t)$ exists and is continuous and bounded. Since $\phi(x, t)-a x-b$ is continuous and bounded, we could
$\therefore 1$
show that differentiation under the integral sign with respect to x is permitted for $y>0$. For $y>0$ we have $w_{x}(x, y, t)=$ $\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}[\phi(\xi, t)-a \xi-b] \frac{\partial}{\partial x}\left[\frac{l}{v} K^{\prime}(\lambda v)\right] d \xi=-\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}[\phi(\xi, t)-a \xi-b] \frac{\partial}{\partial \xi}$ $\left[\frac{1}{\nu^{\prime}} K^{\prime}(\lambda \nu)\right] d \xi=\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}\left[\phi_{x}(\xi, t)-a\right] \frac{1}{\nu} K^{\prime}(\lambda \nu) d \xi$. Since $w(x, 0, t)=$ $-\phi(x, t)+a x+b$, we have $w_{x}(x, 0, t)=-\phi_{x}(x, t)+a$. We list this as
(1.1.1) $W_{X}(x, y, t)=\left\{\begin{array}{l}\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}\left[\phi_{X}(\xi, t)-a\right] \frac{1}{\nu} K^{\prime}(\lambda \nu) d \xi \text { for } y>0 \\ -\phi_{X}(x, t)+\text { a for } y=0 .\end{array}\right.$

Since $\phi_{X}(\xi, t)-a$ is continuous and bounded, the continuity and boundedness of w_{x} follows exactly as it did for w.

Next we will show that W_{y} exists and is continuous and bounded. Again we could show that differentiation under the integral sign with respect to y is permitted for $y>0$ since $\phi(x, t)-a x-b$ is continuous and bounded. For $y>0$ we have $w_{y}(x, y, t)=\frac{1}{\pi} \int_{-\infty}^{\infty}[\phi(\xi, t)-a \xi-b] \frac{\partial}{\partial y}\left[\frac{\lambda y}{\nu} K^{\prime}(\lambda \nu)\right] d \xi=$ $\frac{1}{\pi} \int_{-\infty}^{\infty}[\phi(\xi, t)-a \xi-b]\left[\frac{(\xi-x)^{2}}{v^{3}} \lambda K^{\prime}(\lambda \nu)+\frac{y^{2}}{\nu^{2}} \lambda^{2} K^{\prime \prime}(\lambda \nu)\right] d \xi$. Next we observe that $\frac{\partial^{2}}{\partial \xi^{2}} K(\lambda \nu)=\frac{y^{2}}{\nu^{3}} \lambda K^{\prime}(\lambda \nu)+\frac{(\xi-x)^{2}}{\nu^{2}} \lambda^{2} K^{\prime \prime}(\lambda \nu)$. Hence for $y>0, w_{y}(x, y, t)=\frac{1}{\pi} \int_{-\infty}^{\infty}[\phi(\xi, t)-a \xi-b]\left[\frac{\lambda}{\nu} K^{\prime}(\lambda \nu)+\lambda^{2} K^{\prime \prime}(\lambda \nu)-\frac{\partial^{2}}{\partial \xi^{2}} K(\lambda \nu)\right]$
$d \xi=\frac{1}{\pi} \int_{-\infty}^{\infty}[\phi(\xi, t)-a \xi-b]\left[\lambda^{2} K(\lambda \nu)-\frac{\partial^{2}}{\partial \xi^{2}} K(\lambda v)\right] d \xi=$
$=\frac{1}{\pi} \int_{-\infty}^{\infty}\left[\lambda^{2} \phi(\xi, t)-\lambda^{2}(a \xi+b)-\phi_{x x}(\xi, t)\right] K(\lambda \nu) d \xi$. We observe that this last integral exists for $y \geq 0$. Since $\lambda^{2} \phi(x, t)-\lambda^{2}(a x+b)-$ $\phi_{x x}(x, t)$ is continuous and bounded, we could show that this last integral is continuous in (x, y, t) for $-\infty<x<\infty, y \geq 0$, and $0 \leq t \leq c$. Hence w_{y} exists for $y>0$, and w_{y} coincides for $y>0$ with a function which is continuous for $y \geq 0$. It follows that w_{y} exists and is continuous for $y \geq 0$, and we have

$$
\text { (1.1.2) } w_{y}(x, y, t)=\frac{1}{\pi} \int_{-\infty}^{\infty}\left[\lambda^{2} \phi(\xi, t)-\lambda^{2}(a \xi+b)-\phi_{x x}(\xi, t)\right] K(\lambda \nu) d \xi .
$$

To see that W_{y} is bounded we choose \bar{M} so that $\left|\lambda^{2} \phi(\xi, t)-\lambda^{2}(a \xi+b)-\phi_{x x}(\xi, t)\right| \leq \bar{M}$. Then $\left|w_{y}(x, y, t)\right| \leq \frac{\bar{m}}{\pi} \int_{-\infty}^{\infty}|K(\lambda v)| d \xi=$ $\frac{\bar{M}}{\pi} \int_{-\infty}^{\infty}\left|K\left(\lambda \sqrt{z^{2}+y^{2}}\right)\right| d z=\frac{2 \overline{M i}}{\pi} \int_{0}^{\infty}\left|K\left(\lambda \sqrt{z^{2}+y^{2}}\right)\right| d z$. If $y \geq \frac{1}{4}$, then $\left|W_{y}(x, y, t)\right| \leq \frac{2 \bar{M}}{\pi} \int_{0}^{\infty} M e^{-\lambda \sqrt{z^{2}+y^{2}}} d z \leq \frac{2 \bar{M} M}{\sqrt{\pi}-y^{2}} \int_{0}^{\infty} e^{-\lambda z} d z$. If $0 \leq y \leq \frac{1}{4}$,
then $\left|w_{y}(x, y, t)\right| \leq \frac{2 \bar{M}}{\pi} \int_{0}^{\sqrt{4}-y^{2}}\left(-M \log \lambda \sqrt{z^{2}+y^{2}} \lambda z+\frac{2 \bar{M}}{\pi} \int_{1}^{\infty}\right.$ $M-\lambda / \sqrt{z^{2}+y^{2}} d z \leq-\frac{2 \pi M \frac{1}{2}}{0}-2 \bar{M} M \int^{\infty}-\lambda z \quad \sqrt{\frac{1}{4}-y^{2}}$ $M e^{-\lambda / z^{2}+y^{2}} d z \leq-\frac{2 \bar{T} M}{\pi} \int_{0}^{\frac{1}{2}} \log \lambda z d z+\frac{2 \bar{m} M}{\pi} \int_{0}^{\infty} e^{-\lambda z} d z$. Hence w_{y} is bounded.

Using (1.1.1) and the fact that $\phi_{\mathrm{xx}}(\mathrm{x}, \mathrm{t})$ is continuous and bounded we can show that $w_{x x}$ is continuous and bounded in the same way we showed w_{x} was continuous and bounded. Also we obtain
(1.1.3) $w_{x x}(x, y, t)=\left\{\begin{array}{l}\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \phi_{x x}(\xi, t) \frac{1}{\nu} K^{\prime}(\lambda \nu) d \xi \text { for } y>0 \\ -\phi_{X X}(x, t) \text { for } y=0 .\end{array}\right.$

We could show that w_{yx} is continuous for $\mathrm{y}>0$ and $W_{y x}(x, y, t)=\frac{1}{\pi} \int_{-\infty}^{\infty}\left[\phi_{x}(\xi, t)-a\right]\left[\lambda^{2} K(\lambda \nu)-\frac{\partial^{2}}{\partial \xi^{2}} K(\lambda \nu)\right] d \xi$ for $y>0$ in the same way we obtained the similar result for ${ }^{W} y$. Hence $W_{y x}(x, y, t)=\frac{\lambda^{2}}{\pi} \int_{-\infty}^{\infty}\left[\phi_{x}(\xi, t)-a\right] K(\lambda \nu) d \xi+\frac{1}{\pi} \int_{-\infty}^{\infty} \phi_{X X}(\xi, t) \frac{\xi-x}{\nu} \lambda X^{\prime}(\lambda \nu) d \xi$
for $\mathrm{y}>0$. For $\mathrm{y}>0, \frac{1}{\pi} \int_{-\infty}^{\infty} \phi_{\mathrm{xx}}(\xi, \mathrm{t}) \frac{\xi-x}{\nu} \lambda K^{\prime}(\lambda \nu) \mathrm{d} \xi=$
$\frac{1}{\pi} \int_{-\infty}^{\infty} \phi_{x x}(x+z, t) \frac{\lambda z}{\sqrt{z^{2}+y^{2}}} K^{\prime}\left(\lambda \sqrt{z^{2}+y^{2}}\right) d z=\frac{1}{\pi} \int_{0}^{\infty}\left[\phi_{x x}(x+z, t)-\phi_{x x}(x-z, t)\right]$ $\frac{\lambda z}{\sqrt{z^{2}+y^{2}}} K^{\prime}\left(\lambda \sqrt{z^{2}+y^{2}}\right) d z$. Thus we have
(1.1.4)

$$
w_{y x}(x, y, t)=\frac{\lambda^{2}}{\pi} \int_{-\infty}^{\infty}\left[\phi_{x}(\xi, t)-a\right] K(\lambda \nu) d \xi
$$

$$
+\frac{1}{\pi} \int_{0}^{\infty}\left[\phi_{x x}(x+z, t)-\phi_{x x}(x-z, t)\right] \frac{\lambda z}{\sqrt{z^{2}+y^{2}}} K^{\prime}\left(\lambda \sqrt{z^{2}+y^{2}}\right) d z
$$

So far we have claimed that (1.1.4) is valid for $y>0$. Now we notice that the integrals in (1.1.4) converge for $y \geq 0$, and we could show that they are continuous for $y \geq 0$. Hence $W_{y x}(x, y, t)$ coincides when $Y>0$ with a function which is continuous for $y \geq 0$. Hence $W_{y x}$ exists for $y \geq 0$, and (1.1.4) is valid for $y \geq 0$.

We can show that the first integral in (1.1.4) is bounded in the same way we showed w is bounded. For the second integral in
(1.1.4) we have $\left|\frac{1}{\pi} \int_{0}^{\infty}\left[\phi_{x x}(x+z, t)-\phi_{x x}(x-z, t)\right] \frac{\lambda z}{\sqrt{z^{2}+y^{2}}} \mathrm{~K}^{\prime}\left(\lambda_{0} \sqrt{z^{2}+y^{2}}\right) d z\right|$ $\leq \frac{1}{\pi} \int_{0}^{\infty} L 2^{i} z^{i} \lambda\left|K^{i}\left(\lambda \sqrt{z^{2}+y^{2}}\right)\right| d z$
$\leq \frac{2^{1} L}{\pi} \int_{0}^{0} \frac{\sqrt{1-y^{2}}}{\sqrt{z^{2}+y^{2}}} d z+\int_{\sqrt{1-y^{2}} M z^{i}}^{\infty} e^{-\lambda \sqrt{z^{2}+y^{2}}} d z$ for $0 \leq y \leq 1$
$\int_{0}^{\infty} \mathrm{Mz}^{i} e^{-\lambda \sqrt{z^{2}+y^{2}}} d z$ for $y \geq 1$
$\leq \frac{2^{1} L}{\pi}\left(\int_{0}^{1} \frac{M}{z^{1-i}} d z+\int_{0}^{\infty} M z^{i} e^{-\lambda z} d z\right)$. This completes the proof
that $w_{y x}$ is bounded and continuous.
Since w_{x}, w_{y}, and $w_{y x}$ are continuous, then $w_{x y}$ exists and is continuous and $w_{X y}=w_{y x}$.

We could show that (1.1.2) can be differentiated under the integral sign with respect to y for $y>0$. Hence we obtain $w_{y y}(x, y, t)=\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}\left[\lambda^{2} \phi(\xi, t)-\lambda^{2}(a \xi+b)-\phi_{X X}(\xi, t)\right] \frac{1}{\nu} K^{\prime}(\lambda \nu) d \xi$ for $y>0$.

The function defined by the last integral for $y>0$ and by $-\lambda^{2} \phi(x, t)+\lambda^{2}(a x+b)+\phi_{x X}(x, t)$ for $y=0$ is continuous and bounded for $y \geq 0$. The proof of this is the same as the proof that w is continuous since $\lambda^{2} \phi(\xi, t)-\lambda^{2}(a \xi+b)-\phi_{X X}(\xi, t)$ is continuous and bounded. Hence $w_{y y}$ is continuous and bounded for $y \geq 0$ and
(1.1.5)

$$
=\left\{\begin{array}{l}
\frac{\lambda y}{\pi} \int_{-\infty}^{\infty}\left[\lambda^{2} \phi(\xi, t)-\lambda^{2}(a \xi+b)-\phi_{x x}(\xi, t)\right] \frac{1}{V^{\prime}} K^{\prime}(\lambda v) d \xi \text { for } y>0 \\
-\lambda^{2} \phi(x, t)+\lambda^{2}(a x+b)+\phi_{x x}(x, t) \text { for } y=0 .
\end{array}\right.
$$

From (1.1.3) and (1.1.5) we easily obtain $\triangle w-\lambda^{2} w=0$. This completes the proof of Lemma (1.1).

Next we will choose several constants vich we will be using. Using the properties of K, Ψ_{1}, and Ψ_{2} we see that there is a real constant M such that $|K(\lambda x)| \leq M|\log x|$ for $0<x \leq \frac{1}{2},|K(\lambda x)| \leq$ $M e^{-\lambda x}$ for $x \geq \frac{1}{2},\left|\frac{d}{d x} K(\lambda x)\right|=\lambda\left|K^{\prime}(\lambda x)\right| \leq \frac{M}{x}$ for $x>0$, $\left|\frac{d}{d x} K(\lambda x)\right|=\lambda\left|K^{\prime}(\lambda x)\right| \leq M e^{-\lambda x}$ for $x \geq 1, \quad\left|\frac{d^{2}}{d x^{2}} K(\lambda x)\right|=$ $\lambda^{2}\left|K^{\prime \prime}(\lambda x)\right| \leq \frac{M}{x^{2}}$ for $x>0, \left.\frac{d^{2}}{d x^{2}} K(\lambda x)\left|=\lambda^{2}\right| K^{\prime \prime}(\lambda x) \right\rvert\, \leq M e^{-\lambda x}$ for $x \geq 1,\left|\Psi_{1}(x, t)+\lambda^{2}(a x+b)\right| \leq M$, and $\left|\Psi_{2}(x, y)+\lambda^{2}(a x+b)\right| \leq M$.

Let W be an upper bound of the absolute values of the first and second derivatives of with respect to x and y. Let $D_{1}=$ $4 M^{2}\left(1+\frac{1}{\lambda^{2}}\right)+W+a$ and $D_{2}=52 M^{2}+\frac{16 M^{2}}{\lambda_{2}^{2}}+2 W$. Let c_{I} be any positive number such that $c_{1} \leq c, a \lambda^{2} D_{1} c_{1} \leq M$, and $2 \exp \left(-2 D_{2} c_{1}\right)>1$.

We are now ready to construct the functions h_{n}, u_{n}, x_{n}, and y_{n} 。

For each positive integer n let $h_{n}\left(x_{0}, y_{0}, t_{0}\right)=\psi_{2}\left(x_{0}, y_{0}\right)$ for $-\infty<x_{0}<\infty, y_{0} \geq 0$, and $0 \leq t_{0} \leq \frac{c_{1}}{n}$.

Lemma (1.2). h_{n} is a continuous function of (x_{0}, y_{0}, t_{0}) at almost all points on each plane $t_{0}=$ constant. Also $\mid h_{n}\left(x_{0}, y_{0}, t_{0}\right)+$ $\lambda^{2}\left(a x_{0}+b\right) \mid \leq 2 M$.

The proof of Lemma (1.2) follows immediately from the definition of h_{n}. Clearly we could omit the word "alinost", and we could replace 2 M by M . We have stated the lemma as we did so that it remains valid when we get to larger values of t_{0} which will be shown as we extend the construction to later time intervals.

Let $v_{n}(x, y, t)=\frac{1}{2 \pi} \iint g\left(x, y ; \xi, r_{i}\right)\left[h_{n}\left(\xi, r_{i}, t\right)+\lambda^{2}(a \xi+b)\right] d \xi d_{i}$ for
$-\infty<x<\infty, y \geq 0$, and ${ }^{\prime}{ }^{\geq} \leq t \leq \frac{c_{1}}{n}$, where $g(x, y ; \xi, ?)=K(\lambda \bar{p})-K(\lambda \rho)$ and ρ and $\bar{\rho}$ are defined as $\rho=\sqrt{(\xi-x)^{2}+(\eta-y)^{2}}, \bar{\rho}=\sqrt{(\xi-x)^{2}+(4+y)^{2}}$.

Lemma (1.3). $v_{n}, v_{n x}$, and $v_{n y}$ are continuous. $\left|v_{n x}\right|<4 m^{2}\left(1+\frac{1}{\lambda^{2}}\right)$ and $\left|v_{n y}\right|<4 r^{2}\left(1+\frac{1}{\lambda^{2}}\right)$. When $0<s=\sqrt{(\bar{x}-x)^{2}}+\overline{(\bar{y}-y)^{2}} \leq \frac{1}{4}$ we have $\left|v_{n x}(\bar{x}, \bar{y}, t)-v_{n x}(x, y, t)\right|<-\left(52 m^{2}+\frac{16 m^{2}}{\lambda^{2}}\right) s \log s$ and $\left|v_{n y}(\bar{x}, \bar{y}, t)-v_{n y}(x, y, t)\right|<-\left(52 m^{2}+\frac{16 M^{2}}{\lambda^{2}}\right)$ s $\log s$.

These estimates are weaker than a Lipschitz condition and stronger than a Holder condition and are used later to establish the uniqueness of air particle paths.

Proof of Lemma (1.3). We could show that v_{x} and v_{y} exist and are continuous since h is continuous almost everywhere on each horizontal plane, but we omit the proof.

For (x, y, t) in the domain of v_{n} we have

$$
\left|v_{n x}(x, y, t)\right|=\left|\frac{1}{2 \pi} \iint g_{x}(x, y ; \xi, \eta)\left[h_{n}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right] d \xi d \eta\right|
$$

$$
\leq \frac{M}{\pi} \int_{\eta=0}\left|g_{x}(x, y ; \xi, \eta)\right| d \xi d \eta<\frac{M}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|g_{x}(x, y ; \xi, \eta)\right| d \xi d \eta
$$

$$
\leq \frac{M}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\left|\frac{\lambda(x-\xi)}{\bar{\rho}} K^{\prime}(\lambda \bar{\rho})\right|+\left|\frac{\lambda(x-\xi)}{\rho} K^{\prime}(\lambda \rho)\right|\right\} d \xi d \eta
$$

$$
=\frac{2 M}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\frac{\lambda(x-\xi)}{\rho} K^{\prime}(\lambda \rho)\right| d \xi d \eta \quad \leq \frac{2 M}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\lambda K^{\prime}(\lambda \rho)\right| d \xi d \eta
$$

$$
\leq \frac{2 M}{\pi} \iint_{\rho \leq 1} \frac{M}{\rho} d \xi d \eta+\frac{2 M}{\pi} \iint_{\rho \geq 1} M e^{-\lambda \rho} d \xi d \eta
$$

$$
\leq \frac{2 M^{2}}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} d \rho d \theta+\frac{2 M^{2}}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \rho e^{-\lambda \rho} d \rho d \theta
$$

$$
=4 M^{2}+\left.4 M^{2}\left(-\frac{\rho}{\lambda}-\frac{1}{\lambda^{2}}\right) e^{-\lambda \rho}\right|_{0} ^{\infty}=4 M^{2}\left(1+\frac{1}{\lambda^{2}}\right) .
$$

Similarly $\left|v_{n y}(x, y, t)\right|<4 \pi^{2}\left(1+\frac{1}{\lambda^{2}}\right)$.
18

Let (x, y, t) and (\bar{x}, \bar{y}, t) be in the domain of v_{n}. Let $s=\sqrt{(\bar{x}-x)^{2}+(\bar{y}-y)^{2}}$ and $\rho_{1}=\sqrt{(\xi-\bar{x})^{2}+(\eta-\bar{y})^{2}}$. For $0<s \leq \frac{1}{4}$ we have $\left|v_{n x}(\bar{x}, \bar{y}, t)-v_{n x}(x, y, t)\right|$
$=\left|\frac{1}{2 \pi} \iint\left[g_{x}(\bar{x}, \bar{y} ; \xi, \eta)-g_{x}(x, y ; \xi, \eta)\right]\left[h_{n}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right] d \xi d \eta\right|$
$<\frac{M}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\eta \geq 0}\left|g_{x}(\bar{x}, \bar{y} ; \xi, \eta)-g_{x}(x, y ; \xi, \eta)\right| d \xi d \eta$
$\leq \frac{2 M}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\frac{\bar{x}-\xi}{\rho_{1}} \lambda K^{\prime}\left(\lambda \rho_{1}\right)-\frac{x-\xi}{\rho} \lambda K^{q}(\lambda \rho)\right| d \xi d \eta$
$\leq \frac{2 \pi}{\pi} \iint_{\rho \leq 2 s} \lambda\left|K^{\prime}\left(\lambda \rho_{1}\right)\right| d \xi d \eta+\frac{2 \pi}{\pi} \int_{\rho \leq 2 s} \int_{0} \lambda\left|K^{\prime}(\lambda \rho)\right| d \xi d \eta$
$+\frac{2 M}{\pi} \int_{\rho \geq 2 s} \int_{\{ }\left\{\frac{\bar{x}-\xi}{\rho_{1}}-\frac{x-\xi}{\rho_{1}}+\frac{x-\xi}{\rho_{1}}-\frac{x-\xi}{\rho}| | \lambda K^{\prime}\left(\lambda \rho_{1}\right)|+\lambda| \frac{x-\xi}{\rho}\left[K^{\prime}\left(\lambda \rho_{1}\right)-K^{\prime}(\lambda \rho)\right]\right\} d \xi d \eta$
$\leq \frac{2 M}{\pi} \int_{\rho_{1} \leq 3 s} \int_{\rho_{1}} \frac{M}{\rho_{1}} d \xi d r+\frac{2 M}{\pi} \int_{\rho \leq 2 s} \frac{M}{\rho} d \xi d \eta$
$+\frac{2 M}{\pi} \iint_{2 s \leq \rho \leq 1+s}\left[\left(\frac{|\bar{x}-x|}{\rho_{1}}+|x-\xi| \frac{\left|\rho-\rho_{1}\right|}{\rho_{1} \rho}\right) \frac{M}{\rho_{1}}+\lambda^{2}\left|\rho_{1}-\rho\right|\left|K^{\prime \prime}\left(\lambda \rho^{*}\right)\right|\right] d \xi d \lambda$
$+\frac{2 M}{\pi} \iint_{\rho \geq 1+s}\left[\left(\frac{|\bar{x}-x|}{\rho_{1}}+|x-\xi| \frac{\left|\rho-\rho_{1}\right|}{\rho_{1} \rho}\right) M e^{-\lambda \cdot \rho_{1}}+\lambda^{2}\left|\rho_{1}-\rho\right|\left|K^{\prime \prime}\left(\lambda \rho^{\#}\right)\right|\right] d \xi d \gamma$
(where ρ^{*} and $\rho^{\#}$ are between ρ and ρ_{1})
$\leq 12 M^{2} s+8 M^{2} s+\frac{2 M}{\pi} \iint_{2 s \leq \rho \leq 1+s}\left[\frac{2 M s}{\rho_{1}^{2}}+\frac{M s}{\left(\rho^{*}\right)^{2}}\right] d \xi d^{\prime}$
$\left.+\frac{2 M}{\pi} \int_{\rho \geq 1+s} \int_{-\frac{2 M S}{\rho_{1}}} e^{-\lambda \rho_{1}}+M \operatorname{Mis} e^{-\lambda \rho^{\#}}\right) d \xi d \eta_{\eta}$
$\leq 20 m^{2} s+\frac{2 n^{2} s}{\pi} \iint_{2 s \leq \rho \leq 1+s}\left(\frac{3}{\rho_{1}^{2}}+\frac{1}{\rho^{2}}\right) d \xi d \eta+\frac{2 m^{2} s}{\pi} \iint_{\rho \geq 1+s}\left(3 e^{-\lambda \rho_{I}}+e^{-\lambda \rho}\right) d \xi d \eta$
 " Sxernan ane
 $\sum_{2}=\frac{2}{2}+\frac{1}{2}$

 $\cdots+2+2$
$\leq 20 M^{2} s+\frac{6 M^{2} s}{\pi} \int_{0}^{2 \pi} \int_{s}^{3 / 2} \frac{1}{\rho_{I}} d \rho_{I} d \theta+\frac{2 \pi-2}{\pi} \int_{0}^{2 \pi} \int_{2 s}^{3 / 2} \frac{1}{\rho} d \rho d \theta$

$$
+\frac{6 m^{2} s}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \rho_{1} e^{-\lambda \rho_{1}} d \rho_{1} d \theta+\frac{2 \pi^{2} s}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \rho e^{-\lambda \rho} d \rho d \theta
$$

$\leq 20 M^{2} s+\left.12 M^{2} s \log \rho_{1}\right|_{s} ^{3 / 2}+\left.4 m^{2} s \log \rho\right|_{2 s} ^{3 / 2}$
$+\left.12 \Pi^{2} s\left(-\frac{\rho_{1}}{\lambda}-\frac{1}{\lambda^{2}}\right) e^{-\lambda \rho_{1}}\right|_{0} ^{\infty}+\left.4 m^{2} s\left(-\frac{\rho}{\lambda}-\frac{1}{\lambda^{2}}\right) e^{-\lambda \rho}\right|_{0} ^{\infty}$
$\leq 20 m^{2} s+16 m^{2} s \log 3 / 2-16 m^{2} s \log s-4 m^{2} s \log 2+\frac{76 m^{2} s}{\lambda^{2}}$
$\leq\left(20+\frac{16}{\lambda^{2}}\right) \mathrm{m}^{2} s+16 \mathrm{~N}^{2} s-16 \mathrm{~m}^{2} s \log s=\left(36+\frac{16}{\lambda^{2}}\right) \mathrm{m}^{2} s-16 \mathrm{~m}^{2} \mathrm{~s}$ log s
$\leq-\left(52+\frac{16}{\lambda^{2}}\right) \mathrm{M}^{2} \mathrm{l} \log \mathrm{s}$.
Similarly $\left|v_{n y}(\bar{x}, \bar{y}, t)-v_{n y}(x, y, t)\right|<-\left(52+\frac{16}{\lambda^{2}}\right) M^{2} s$ log s for $0<s \leq \frac{7}{4}$.

Now let $u_{n}(x, y, t)=v_{n}(x, y, t)-w(x, y, t)+a x+b$ for $-\infty<x<\infty$,
$J \geq 0$, and $0 \leq t \leq \frac{c_{1}}{n}$.
Lemma (1. L) . $u_{n}, u_{n x}$, and $u_{n y}$ are continuous. $\left|u_{n x}\right|<D_{1}$ and $\left|u_{n y}\right|<D_{1}$. When $0<s=\sqrt{(\bar{x}-x)^{2}+(\bar{y}-\bar{y})^{2}} \leq \frac{1}{4}$ we have $\left|u_{n x}(\bar{x}, \bar{y}, t)-u_{n x}(x, y, t)\right|<-D_{2} s I 0 c$ s and $\left|u_{n y}(\bar{x}, \bar{y}, t)-u_{n y}(x, y, t)\right|<$ $-D_{2} \mathrm{~s} \log \mathrm{~s}$.

The proof of Lemma (1.4) is obvious using Lemmas (1.2) and (1.3).

To make it easier to discuss the behavior of the air particle paths of u_{n} at the boundary $y=0$ we would like to extend the air
particle paths of u_{n} into the region where $y<0$. To do this we introduce new functions $F_{n I}$ and $F_{n 2}$. Let $F_{n I}(x, y, t)=-u_{n y}(x, y, t)$ and $F_{n 2}(x, y, t)=u_{n x}(x, y, t)$ for $-\infty<x<\infty, y \geq 0$, and $0 \leq t \leq \frac{c_{1}}{n}$. Let $F_{n l}(x, y, t)=-u_{n y}(x,-y, t)$ and $F_{n 2}(x, y, t)=$ $u_{n x}(x,-y, t)$ for $-\infty<x<\infty, y \leq 0$, and $0 \leq t \leq \frac{c_{1}}{n}$. That is, $F_{n l}$ and $F_{n 2}$ are the even extensions of $-u_{n y}$ and $u_{n x}$ respectively across the (x, t) plane.
Lemma (1.5). $F_{n 1}$ and $F_{n 2}$ are continuous. $\left|F_{n i}\right|<D_{1}$ for $i=1,2$. When $0<s=\sqrt{(\bar{x}-x)^{2}+(\bar{y}-y)^{2}} \leq \frac{1}{4}$ we have $\left|F_{n i}(\bar{x}, \bar{y}, t)-F_{n i}(x, y, t)\right|<$ $-D_{2} s \log s$ for $i=1,2$.

The proof of Lemma (1.5) follows trivially from Lemma (1.4). Lemma (1.6). Let (x_{0}, y_{0}, t_{0}) be any point in the domain of $F_{n I}$ and $F_{n 2}$. Then there exist unique functions $x_{n}(t)$ and $y_{n}(t)$ defined for $0 \leq t \leq \frac{c_{1}}{n}$ such that $x_{n}\left(t_{0}\right)=x_{0}, y_{n}\left(t_{0}\right)=y_{0}$, and $\frac{d x_{n}(t)}{d t}=$ $F_{n 1}\left[x_{n}(t), y_{n}(t), t\right]$ and $\frac{d y_{n}(t)}{d t}=F_{n 2}\left[x_{n}(t), y_{n}(t), t\right]$ for $0 \leq t \leq \frac{c_{1}}{n}$. Since $x_{n}(t)$ and $y_{n}(t)$ also depend on $\left(x_{0}, y_{0}, t_{0}\right)$, we also use the notation $x_{n}\left(x_{0}, y_{0}, t_{0}, t\right)$ for $x_{n}(t)$ and $y_{n}\left(x_{0}, y_{0}, t_{0}, t\right)$ for $y_{n}(t)$.

Proof of Lemma (1.6). The existence of x_{n} and y_{n} follows since $F_{n i}(i=1,2)$ is continuous and bounded [2]. The uniqueness of x_{n} and y_{n} follows since $\left|F_{n i}(\bar{x}, \bar{y}, t)-F_{n i}(x, y, t)\right|<-D_{2} s \log s(i=1,2)$ for $0<s=\sqrt{(\bar{x}-x)^{2}+(\bar{y}-y)^{2}} \leq \frac{1}{4}[3]$.

Lemma (1.7). Let $\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right)$ and $\left(x_{0}, y_{0}, t{ }_{0}, t\right)$ be any points in the domain of x_{n} and y_{n}. Let $s=\sqrt{\left(\bar{x}_{0}-x_{0}\right)^{2}+\left(\bar{y}_{0}-y_{0}\right)^{2}+\left(\bar{t}_{0}-t_{0}\right)^{2}}$ and
let $S_{n}(t)=$
$\sqrt{\left[x_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right)-x_{n}\left(x_{0}, y_{0}, t_{0}, t\right)\right]^{2}+\left[y_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right)-y_{n}\left(x_{0}, y_{0}, t_{0}, t\right)\right]^{2}}$.
\quad Then $S_{n}(t) \leq\left[2\left(D_{1}+1\right) s\right]$
Proof of Derma (1.7). Let $\left.\left.z(t)=\left[2\left(D_{1}+1\right) s\right]^{\exp \left[2 D_{2}(t\right.} t_{0}-t\right)\right]$ for $t_{0} \leq t \leq \frac{c}{n}$ and $0<s<s_{0}$. Then $z\left(t_{0}\right)=2\left(D_{1}+1\right) s$,
$z^{\prime}(t)=-2 D_{2} z(t) \log z(t)$, and $z(t) \leq\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}$ since
$2\left(D_{1}+1\right) s<\left(\frac{1}{4}\right)^{\exp \left(2 D_{2} c\right)}<1$ and $\exp \left[2 D_{2}\left(t_{0}-t\right)\right]>\exp \left(-2 D_{2} c_{1}\right)$.
We will show that $S_{n}(t)<z(t)$ thus establishing the lemma for $0<s<s_{0}$ and $t_{0} \leq t \leq \frac{c_{1}}{n}$.

For $s<s_{0}$ we have $\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}<$
$\left[\left(\frac{1}{4}\right)^{\exp \left(2 D_{2} c\right)}\right]^{\exp \left(-2 D_{2} c_{1}\right)} \leq \frac{1}{4}$. Hence $z(t)<\frac{1}{4}$ for $s<s_{0}$.
For $0<s<s_{0}$ we have $\left|x_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t_{0}\right)-x_{n}\left(x_{0}, y_{0}, t_{0}, t_{0}\right)\right|=$ $\left|\bar{x}_{0}+\int_{\bar{t}_{0}}^{t} F_{n 1}\left[x_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \xi\right), y_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \xi\right), \xi\right] d \xi-x_{0}\right|<$
$\left|\bar{x}_{0}-x_{0}\right|+D_{1}\left|\bar{t}_{0}-t_{0}\right|\left(\right.$ note $\left.\left|F_{n l}\right|<D_{1}\right) \leq\left(D_{1}+1\right)$ s. Similarly $\left|y_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t_{0}\right)-y_{n}\left(x_{0}, y_{0}, t_{0}, t_{0}\right)\right|<\left(D_{1}+1\right) s$, and hence $S_{n}\left(t_{0}\right)<2\left(D_{1}+1\right) s=z\left(t_{0}\right)$ for $0<s<s_{0}{ }^{\circ}$

Suppose $S_{n}\left(t^{*}\right) \geq z\left(t^{*}\right)$ for some s and t^{*} such that $0<s<s_{0}$ and $t^{*}>t_{0}$. Since $S_{n}\left(t_{0}\right)<z\left(t_{0}\right), S_{n}\left(t^{*}\right) \geq z\left(t^{*}\right)$, and S_{n} and z are continuous in t, then there is a t_{1} such that $t_{1}>t_{0}$, $S_{n}(t)<z(t)$ for $t_{0} \leq t<t_{1}$, and $S_{n}\left(t_{1}\right)=z\left(t_{1}\right)$. For $t_{0} \leq t \leq t_{1}$, we have $S_{n}(t) \leq z(t)<\frac{1}{4}$ and hence $\left|x_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right)-x_{n}\left(x_{0}, y_{0}, t_{0}, t\right)\right|$
$=\mid x_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t_{0}\right)+\int_{t_{0}}^{t} F_{n l}\left[x_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \xi\right), y_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \xi\right), \xi\right] d \xi$

1. $+1=$
$-1+2+2=8+11$

$\cdot-\ldots$	\cdot	
\cdot	\cdot	

$-x_{n}\left(x_{0}, y_{0}, t_{0}, t_{0}\right)-\int_{t_{0}}^{t} F_{n l}\left[x_{n}\left(x_{0}, y_{0}, t_{0}, \xi\right), y_{n}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi \mid$ $<\left(D_{1}+1\right) s-D_{2} \int_{t_{0}}^{t} S_{n}(\xi) \log S_{n}(\xi) d \xi$. Similarly
$\left|y_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right)-y_{n}\left(x_{0}, y_{0}, t_{0}, t\right)\right|<\left(D_{1}+1\right) s-D_{2} \int_{t_{0}}^{t} S_{n}(\xi) \log S_{n}(\xi) d \xi$
and hence $S_{n}(t)<2\left(D_{1}+1\right) s-2 D_{2} \int_{t_{0}}^{t} S_{n}(\xi) \log S_{n}(\xi) d \xi$ for $t_{0} \leq t \leq t_{1}$. For $t_{0} \leq \xi<t_{1}$ we have $S_{n}(\xi)<2(\xi)<\frac{1}{4},-S_{n}(\xi) \log S_{n}(\xi)$ $<-2(\xi) \log z(\xi)$, and $S_{n}\left(t_{1}\right)<2\left(D_{1}+1\right) s-2 D_{2} \int_{t_{0}^{1}}^{t_{1}} S_{n}(\xi) \log S_{n}(\xi) d \xi$ $<2\left(D_{1}+1\right) s-2 D_{2} \int_{t_{0}}^{t_{1}} z(\xi) \log z(\xi) d \xi=2\left(D_{1}+1\right) s+\int_{t_{0}}^{t} z^{\prime}(\xi) d \xi=z\left(t_{1}\right)$.
Since this contradicts $S_{\exp \left(-2 D_{2} C_{1}\right)}\left(t_{1}\right)=z\left(t_{1}\right)$, we have $S_{n}(t)<z(t)$
$\leq\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)^{n}}$ for $t \geq t_{0}$ and $0<s<s_{0}$.
Similarly the lemma can be proved when $t \leq t_{0}$ and $0<s<s_{0}$.
Lemma (I.8). x_{n} and y_{n} are uniformly continuous functions of $\left(x_{0}, y_{0}, t_{0}, t\right)$ in their domain.

The proof of Lemma (1.8) follows easily from Lemma (1.7) and the fact that $\left|x_{n t}\right|<D_{1}$ and $\left|y_{n t}\right|<D_{1}$.

Let $\left(x_{0}, y_{0}, t_{0}\right)$ be in the domain of u_{n}. We wish to define functions $\alpha_{n}, \beta_{n}, \gamma_{n}$ so that $\left[\alpha_{n}\left(x_{0}, y_{0}, t_{0}\right), \beta_{n}\left(x_{0}, y_{0}, t_{0}\right)\right.$, $\left.\gamma_{n}\left(x_{0}, y_{0}, t_{0}\right)\right]$ is the most recent point where the air particle path of u_{n} through (x_{0}, y_{0}, t_{0}) "enters" the domain of u_{n} (either β_{n} is zero or γ_{n} is zero depending on whether the particle path hits the (x, t) plane of the (x, y) plane).

For $-\infty<x_{0}<\infty, J_{0}>0$, and $0<t_{0} \leq \frac{{ }^{c} 1}{n}$ let $\gamma_{n o}$ be the largest number such that $r_{n 0} \leq t_{0}$ and $y_{n}\left(x_{0}, y_{0}, t_{0}, r_{n 0}\right)=0$. If no such $\gamma_{n o}$ exists, let $r_{n o}=0$.

When $-\infty<x_{0}<\infty, y_{0}=0$, and $0<t_{0} \leq \frac{c_{1}}{n}$ let $r_{n 0}=t_{0}$ if $\phi_{X}\left(x_{0}, t_{0}\right) \geq 0$. If $\phi_{x}\left(x_{0}, t_{0}\right)<0$, let $\gamma_{n o}$ be the largest number such that $r_{n 0}<t_{0}$ and $\nabla_{n}\left(x_{0}, y_{0}, t_{0}, r_{n 0}\right)=0$. If no such $r_{n o}$ exists let $r_{n o}=0$.

When $-\infty<x_{0}<\infty, Y_{0} \geq 0$, and $t_{0}=0$, let $r_{n 0}=0$.
We have now associated a number $\gamma_{\text {no }}$ with each point (x_{0}, y_{0}, t_{0}) such that $-\infty<x_{0}<\infty, y_{0} \geq 0$, and $0 \leq t_{0} \leq \frac{c_{1}}{n}$. Let a_{n}, β_{n}, and γ_{n} be the functions defined by $a_{n}\left(x_{0}, y_{0}, t_{0}\right)=x_{n}\left(x_{0}, y_{0}, t_{0}, r_{n 0}\right)$, $\beta_{n}\left(x_{0}, y_{0}, t_{0}\right)=y_{n}\left(x_{0}, y_{0}, t_{0}, \gamma_{n 0}\right)$, and $\gamma_{n}\left(x_{0}, y_{0}, t_{0}\right)=\gamma_{n o}$ for $-\infty<x_{0}<\infty, y_{0} \geq 0$, and $0 \leq t_{0} \leq \frac{c_{1}}{n}$. Then $\left(a_{n}, \beta_{n}, r_{n}\right)$ is a point where the curve, generated by $\left[x_{n}\left(x_{0}, y_{0}, t_{0}, t\right), y_{n}\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$ enters the domain of u_{n} as t increases (except possibly when $\beta_{n}=0$ and $\left.\phi_{x}\left(a_{n}, \gamma_{n}\right)=0\right)$.

From here on we let $a_{n 0}=a\left(x_{0}, y_{0}, t_{0}\right), \bar{a}_{\text {no }}=a_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$, $\beta_{n 0}=\beta_{n}\left(x_{0}, y_{0}, t_{0}\right), \bar{\beta}_{n 0}=\beta_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right), \gamma_{n 0}=\gamma_{n}\left(x_{0}, y_{0}, t_{0}\right)$, and $\bar{r}_{n 0}=r_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$ where $\left(x_{0}, \bar{y}_{0}, t_{0}\right)$ and $\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$ are any points in the domain of u_{n}.
Lemana (1.9). a_{n}, β_{n}, and r_{n} are continuous at points (x_{0}, δ_{0}, t_{0}) for which $r_{n o}=0$ or $r_{n o}>0$ with $\left(a_{n 0}, 0, r_{\text {no }}\right)$ not on C_{1} or C_{2}.

It is clear from the definitions of α_{n}, β_{n}, and γ_{n} that a_{n} and β_{n} are continuous at those points where γ_{n} is continuous. It is easy to show that the statement of Lema (1.9) about r_{n} is true using the uniform continuity x_{n} and y_{n} and the definition of γ_{n}.

We now wish to extend h_{n} in the t direction so that its domain is $\left\{\left(x_{0}, y_{0}, t_{0}\right) \mid-\infty<x_{0}<\infty, y_{0} \geq 0,0 \leq t_{0} \leq \frac{2 c_{1}}{n}\right\}$. Let (x_{0}, y_{0}, t_{0}) be a point in the new domain such that $\frac{c_{1}}{n}<t_{0} \leq \frac{2 c_{1}}{n}$. Go straight down to the point ($x_{0}, y_{0}, t_{0}-\frac{c_{1}}{n}$) which is in the region where u_{n} and its air particle paths are defined. Follow the air particle path of u_{n} frown $\left(x_{0}, y_{0}, t_{0}-\frac{c_{1}}{n}\right)$ down to the nearest boundary point of the domain of u_{n}. We define h_{n} at $\left(x_{0}, \delta_{0}, t_{0}\right)$ to be the value of ψ_{1} or ψ_{2} at this boundary point.

More precisely, when $-\infty<x_{0}<\infty, y_{0} \geq 0$, and $\frac{c_{1}}{n}<t_{0} \leq \frac{2 c_{1}}{n}$, we extend the definition of h_{n} by letting $h_{n}\left(x_{0}, y_{0}, t_{0}\right)=$ $\psi_{1}\left[a_{n}\left(x_{0}, y_{0}, t_{0}-\frac{c_{1}}{n}\right), r_{n}\left(x_{0}, y_{0}, t_{0}-\frac{c_{1}}{n}\right)\right]$ if $r_{n}\left(x_{0}, y_{0}, t_{0}-\frac{c_{1}}{n}\right)>0$, and by letting $h_{n}\left(x_{0}, y_{0}, t_{0}\right)=\psi_{2}\left[a_{n}\left(x_{0}, y_{0}, t_{0}-\frac{c_{1}}{n}\right), \beta_{n}\left(x_{0}, y_{0}, t_{0}-\frac{c_{1}}{n}\right)\right]$ if $\gamma_{n}\left(x_{0}, y_{0}, t_{0}-\frac{c_{1}}{n}\right)=0$.

We will now show that Lemma (1.2) remains valid for the extended h_{n}.

Proof of Lemma (1.2). Since we have already observed that the leman is true for planes $t=c^{*}$ where $0 \leq c^{*} \leq \frac{c_{1}}{c_{1}}$, we will prove the l man for planes $t=c *$ where $\frac{c_{1}}{n} \leq c^{*} \leq \frac{2 \bar{c} \bar{c}_{1}}{n}$. A similar argument can then be used to extend the proof to planes $t=c *$ for larger $c *$ as the definition of h_{n} is extended further.

Consider a fixed plane $t=c^{*}$ where $\frac{c_{1}}{n} \leq c^{*} \leq \frac{2 c_{1}}{n}$. Let
$x_{n i}(\tau)=x_{n}\left[x_{i}(\tau), 0, \tau, c^{*}-\frac{c_{1}}{n}\right]$ and $y_{n i}(\tau)=y_{n}\left[x_{i}(\tau), 0, \tau, c^{*}-\frac{c_{1}}{n}\right]$ for $i=1,2$ (see glossary for $x_{1}(\tau)$ and $x_{2}(\tau)$). Let $R_{i}=\left\{\left(x_{0}, y_{0}, c\right.\right.$ ") \mid $x_{0}=x_{n i}(\tau)$ and $y_{0}=y_{n i}(\tau)$ for some τ such that $\left.0 \leq \tau \leq \frac{c_{1}}{n}\right\}$ for $i=1,2$. Then clearly the set of points on the plane $t=c^{*}$, at which h_{n} is discontinuous in (x_{0}, y_{0}, t_{0}), is a subset of $R_{1} \cup R_{2}$. We will show that R_{1} and R_{2} have measure zero.

Choose ℓ so that $\left|x_{1}(\bar{\tau})-x_{1}(\tau)\right| \leq h|\bar{\tau}-\tau|$ for $0 \leq \bar{\tau}, \dot{\tau} \leq c_{1}$. Then for $|\bar{\tau}-\tau|<\frac{s_{0}(1)}{X+1}$ and $0 \leq \tau, \bar{\tau} \leq \frac{c_{1}}{n}$ we have
$\left|x_{n 1}(\bar{\tau})-x_{n 1}(\tau)\right|=\left|x_{n}\left[x_{1}(\bar{\tau}), 0, \bar{\tau}, c^{*}-\frac{c_{1}}{n}\right]-x_{n}\left[x_{1}(\tau), 0, \tau, c^{*}-\frac{c_{1}}{n}\right]\right|$
$\leq\left\{2\left(D_{1}+1\right)\left[\left|x_{1}(\bar{\tau})-x_{1}(\bar{c})\right|+|\bar{\tau}-\tau|\right]\right\}^{\exp \left(-2 D_{2} C_{1}\right)}$ (see Lemma 1.7)
$\leq\left[2\left(D_{1}+1\right)\left(l^{\prime}+1\right) \mid \bar{\tau}-N\right]^{\exp \left(-2 D_{2} C_{1}\right)}$. Let
$H=\left[2\left(D_{1}+1\right)\left(\ell^{\prime}+1\right)\right]^{\exp \left(-2 D_{2} C_{1}\right)}$. Then $\left|x_{n 1}(\bar{\tau})-x_{n 1}(\tau)\right|$
$\leq H|\bar{\tau}-\tau|^{\exp \left(-2 D_{2} c_{1}\right)}$ for $0 \leq \bar{\tau}, \tau \leq \frac{c_{1}}{n}$ and $|\bar{\tau}-\tau| \leq \frac{s_{0}}{\lambda+1}$.
Let k be a positive integer and choose k_{0} so that $k>k_{0}$ implies $\frac{c_{1}}{\mathrm{~km}}<\frac{\mathrm{s}_{0}}{\ell+1}$. Fix $k>k_{0}$. Let $\tau_{i}=\frac{i c_{1}}{\mathrm{kn}}$ for $\mathrm{i}=0,1,2, \ldots, k$. Let S_{μ} be the set of points $\left(x_{0}, \bar{y}_{0}, c^{*}\right)$ within and on the circle in the plane $t=c^{*}$ with center at $\left[x_{n l}\left(\tau_{\mu}\right), y_{n l}\left(\tau_{\mu}\right), c^{*}\right]$ and radius

$\left|\tau-c_{\mu}\right| \leq \frac{c_{1}}{k n}<\frac{s_{0}}{x+1}$ and hence $\sqrt{\left[x_{n I}(\tau)-x_{n 1}\left(\tau_{\mu}\right)\right]^{2}+\left[y_{n I}(\tau)-y_{n 1}\left(\tau_{\mu}\right)\right]^{2}}$ $\leq\left|x_{n l}(\tau)-x_{n I}\left(\tau_{\mu}\right)\right|+\left|y_{n I}(\tau)-y_{n I}\left(\tau_{\mu}\right)\right| \leq 2 H\left(\frac{c_{1}}{k n}\right)^{\exp \left(-2 D_{2} c_{1}\right)}$ so that $\left[x_{n 1}(\tau), \nabla_{n 1}(\tau), c^{*}\right]$ is in S_{μ} for $\tau_{\mu-1} \leq \tau \leq \tau_{\mu+1}$. Clearly $R_{1}=S_{1} \cup S_{2} \cup \ldots \cup S_{k-1}$ and $m\left(S_{\mu}\right)=4 \pi H^{2}\left(\frac{{ }^{c} 1}{\mathrm{Kn}^{\prime}}\right)^{2 \exp \left(-2 D_{2}{ }^{c} 1\right.}$) for $\mu=1,2, \ldots, k-1$ where $m\left(S_{\mu}\right)$ is the plane Lebesgue measure of S_{μ}. Hence $\bar{m}\left(R_{1}\right) \leq \sum_{\mu=1}^{k-1} m\left(S_{\mu}\right)<4 \pi H^{2}\left(\frac{c_{1}}{n}\right)^{2} \exp \left(-2 D_{2} C_{1}\right) 1-2 \exp \left(-2 D_{2} c_{1}\right)$ for
each positive integer $k>k_{0}$ where $\overline{\mathrm{n}}\left(\mathrm{R}_{1}\right)$ is the plane exterior measure of R_{1}. Since $1-2 \exp \left(-2 D_{2} c_{1}\right)<0$ by the choice of c_{1}, then $k^{1-2 \exp \left(-2 D_{2} C_{1}\right)} \rightarrow 0$ as $k \rightarrow \infty$. Therefore $\bar{m}\left(R_{1}\right)=0$ and R_{1} has measure zero. Similarly R_{2} has measure zero. This completes the proof that h_{n} is a continuous in (x_{0}, y_{0}, t_{0}) at almost all points on each plane $t_{0}=$ constant.

We have yet to show that $\left|h_{n}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right| \leq 2 M$ for $\frac{c_{1}}{n} \leq t \leq \frac{2 c_{1}}{n}$. If $\gamma_{n}\left(\xi ; \frac{t}{n}, t-\frac{c_{1}}{n}\right)=0$, then $\left|h_{n}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right|$ $\leq\left|\psi_{2}\left[a_{n}\left(\xi, \eta, t-\frac{c_{1}}{n}\right), \beta_{n}\left(\xi, \eta, t-\frac{c_{1}}{n}\right)\right]+\lambda^{2}\left[a a_{n}\left(\xi, \eta, t-\frac{c_{1}}{n}\right)+b\right]\right|$ $+a \lambda^{2}\left|\xi-a_{n}\left(\xi, \gamma, t-\frac{c_{1}}{n}\right)\right|$
$\leq M \div a \lambda^{2}\left|x_{n}\left(\xi, \eta, t-\frac{c_{1}}{n}, t-\frac{c_{1}}{n}\right)-x_{n}\left[\xi, \uparrow, t-\frac{c_{1}}{n}, \gamma_{n}\left(\xi, \uparrow, t-\frac{c_{1}}{n}\right)\right]\right|$ $\leq M+a \lambda^{2} D_{1}\left|t-\frac{c_{1}}{n}-\gamma_{n}\left(\xi, \eta, t-\frac{C_{1}}{n}\right)\right| \leq M+a \lambda^{2} D_{1} C_{1} \leq 2 M$ where we have used the fact that $\left|\psi_{2}(x, y)+\lambda^{2}(a x+b)\right| \leq M$ and $a \lambda^{2} D_{1} c_{1} \leq M$.

Sirnilarly we obtain $\left|h_{n}(\xi, r, t)+\lambda^{2}(a \xi+b)\right| \leq 2 N$ when $r_{n}\left(\xi, \eta, t-\frac{c_{1}}{n}\right)>0$.

From Lemma (1.2) we see that $\frac{1}{2 \pi} \iint g(x, y ; \xi, \eta)\left[h_{n}(\xi, \imath, t)\right.$ $\eta \geq 0$
$\left.+\lambda^{2}(a \xi+b)\right] d \xi d \eta$ exists for $-\infty<x<\infty, y \geq 0$, and $0 \leq t \leq \frac{2 c}{n}$. We extend the definition of v_{n} by letting
$v_{n}(x, y, t)=\frac{1}{2 \pi} \int_{\eta \geq 0} f(x, y ; \xi, \eta)\left[h_{n}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right] d \xi d \eta$
for $-\infty<x<\infty, y \geq 0$, and $0 \leq t \leq \frac{2 c_{1}}{n}$.
Lemma (1.3) remains valid for the extended v_{n}.
Next we extend the definition of u_{n} by letting $u_{n}(x, y, t)$ $=v_{n}(x, y, t)-w(x, y, t)+a x+b$ for $-\infty<x<\infty, y \geq 0$, and $0 \leq t \leq \frac{2 c_{1}}{n}$.

$$
\begin{aligned}
& \text {, } 1 \text {, } \rightarrow+1+\cdots+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& : \because \quad \gamma==\cdots
\end{aligned}
$$

$$
\begin{aligned}
& =\cdots+1+\quad . \quad \therefore \quad \because \\
& 2
\end{aligned}
$$

Lemma (1.4) remains valid for the extended u_{n}. Next we extend the definition of $F_{n l}$ and $F_{n 2}$ by replacing $\frac{c_{1}}{n}$ by $\frac{2 c_{1}}{n}$ in the previous definition of $F_{n 1}$ and $F_{n 2}$. Then Lemma (1.5) remains valid for the extended $F_{n l}$ and $F_{n 2}$. Now replace $\frac{c_{1}}{n}$ by $\frac{2 c_{1}}{n}$ in Lemma (1.6). The leman remains valid and it extends the domain of $x_{n} \underset{2 c_{1}}{\text { and }} y_{n}$ to $\left\{\left(x_{0}, y_{2}, t_{0}, t\right) \mid\right.$ $\left.-\infty<x_{0}<\infty,-\infty<y_{0}<\infty, 0 \leq t_{0} \leq \frac{2 c_{1}}{n}, 0 \leq t \leq \frac{2 c_{1}}{n}\right\}$. Lemmas (1.7) and (1.8) remain valid for the extended x_{n} and y_{n}. Next we extend the definitions of a_{n}, β_{n}, and γ_{n} by replacing $\frac{c_{1}}{n}$ by $\frac{2 c_{1}}{n}$ in their previous definition. Then Lemma (1.9) remains valid for the extended a_{n}, β_{n}, and γ_{n}.

We can thus extend the functions $h_{n}, v_{n}, u_{n}, F_{n l}, F_{n 2}, x_{n}$, y_{n}, a_{n}, β_{n}, and γ_{n} stepwise in time until $0 \leq t_{0} \leq c_{1}$ and $0 \leq t \leq c_{1}$. That is, to define h_{n} at a point P in a new time strip we go back a distance $\frac{c_{1}}{n}$ in time to a point P_{0}. We define h_{n} at P to be $\psi_{2}\left(a_{n}, \beta_{n}\right)$ at P_{0} if $r_{n}=0$ at P_{0}, and we define h_{n} at P to be $\psi_{1}\left(a_{n}, \gamma_{n}\right)$ at P_{0} if $\beta_{n}=0$ at P_{0}. We then define the remaining functions at P as previously. Lemmas (1.2) through (1.9) remain valid for these extended functions.

We will show that a subsequence of $\left\{u_{n}\right\}$ converges to a weak solution of (1) in $\|_{1}$ which has the properties mentioned in the theorem.

Lemma (1.10). There is a subsequence, $\left\{n_{k}\right\}$, or the positive integers such that $\left\{x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, t\right)\right\}$ and $\left\{y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, t\right)\right\}$ converge for all (x_{0}, y_{0}, t_{0}, t) in the domain of $x_{n_{k}}$ and $y_{n_{k}}$ and such that the convergence is uniform in every bounded subset.

Proof of Lemma (1.10). Since $\left|x_{n}\left(x_{0}, y_{0}, t_{0}, t\right)-x_{0}\right|$
$=\left|\int_{t_{0}}^{t} F_{n I}\left[x_{n}\left(x_{0}, y_{0}, t_{0}, \xi\right), y_{n}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi\right|<D_{1}\left|t-t_{0}\right| \leq D_{1} c_{1}$, then the sequence $\left\{x_{n}\left(x_{0}, y_{0}, t_{0}, t\right)-x_{0}\right\}$ is bounded uniformly with respect to $\left(x_{0}, y_{0}, t_{0}, t\right)$ and n.

For any ($\left.\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{t}\right)$ and $\left(x_{0}, y_{0}, t_{0}, t\right)$ in the domain of x_{n} let $s=\sqrt{\left(\bar{x}_{0}-x_{0}\right)^{2}+\left(\bar{y}_{0}-y_{0}\right)^{2}+\left(\bar{t}_{0}-t_{0}\right)^{2}}$. For $s<s_{0}$ (see glossary) we have $\left|x_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{t}\right)-\bar{x}_{0}-x_{n}\left(x_{0}, y_{0}, t_{0}, t\right)+x_{0}\right|$

$$
\begin{aligned}
\leq & \left|\bar{x}_{0}-x_{0}\right|+\left|x_{n}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{t}\right)-x_{n}\left(x_{0}, y_{0}, t_{0}, \bar{t}\right)\right|+\mid x_{n}\left(x_{0}, y_{0}, t_{0}, \bar{t}\right) \\
& -x_{n}\left(x_{0}, y_{0}, t_{0}, t\right) \mid \leq s+\left[2\left(D_{1}+1\right) s\right] .
\end{aligned}
$$

follows that the sequence $\left\{x_{n}\left(x_{0}, y_{0}, t_{0}, t\right)-x_{0}\right\}$ is uniformly equicontinuous in ($\left.x_{0}, y_{0}, t_{0}, t\right)$.

Similarly the sequence $\left\{y_{n}\left(x_{0}, y_{0}, t_{0}, t\right)-y_{0}\right\}$ is uniformly bounded and uniformly equicontinuous.

It follows from well known arguments that a subsequence, $\left\{n_{k}\right\}$, of the positive integers exists having the properties listed in Lemma (1.10).

$$
\text { Let } x\left(x_{0}, y_{0}, t_{0}, t\right)=\lim _{k \rightarrow \infty} x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, t\right) \text { and } y\left(x_{0}, y_{0}, t_{0}, t\right)
$$

$=\lim _{k \rightarrow \infty} y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, t\right)$ for $-\infty<x_{0}<\infty,-\infty<y_{0}<\infty$,
$0 \leq t_{0} \leq c_{1}$, and $0 \leq t \leq c_{1}$.
Lemma (1.11). Let ($\left.\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right)$ and ($\left.\bar{x}_{0}, y_{0}, t_{0}, t\right)$ be any points in the domain of x and y. Let
$s(t)=\sqrt{\left[x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right)-x\left(x_{0}, y_{0}, t t_{0}, t\right)\right]^{2}+\left[y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right)-y\left(x_{0}, y_{0}, t_{0}, t\right)\right]^{2}}$ and let $s=\sqrt{\left(\bar{x}_{0}-x_{0}\right)^{2}+\left(\bar{y}_{0}-y_{0}\right)^{2}+\left(\bar{t}_{0}-t_{0}\right)^{2}}$. Then
$S(t) \leq\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}$ when $s<s_{0}=\frac{1}{2\left(D_{1}+1\right)}\left(\frac{1}{4}\right)^{\exp \left(2 D_{2} c\right)}$. Also $\left|x\left(x_{0}, y_{0}, t_{0}, \bar{t}\right)-x\left(x_{0}, y_{0}, t_{0}, t\right)\right| \leq D_{1}|\bar{t}-t|$ and $\left|y\left(x_{0}, y_{0}, t_{0}, \bar{t}\right)-y\left(x_{0}, y_{0}, t_{0}, t\right)\right| \leq D_{1}|\bar{t}-t|$ for $0 \leq \bar{t}, t \leq c_{1}$.

Lemma (1.11) follows easily from Lemma (1.7) and the fact that $\left(F_{n i}\right)<D_{i}$ for $i=1,2$.
Lemma (1.12). $x\left(x_{0}, y_{0}, t_{0}, t\right)$ and $y\left(x_{0}, y_{0}, t_{0}, t\right)$ are uniformly continuous functions of ($\left.x_{0}, y_{0}, t_{0}, t\right)$ in their domain

Lemma (1.12) follows easily from Lemma (1.11).
For $\left(x_{0}, y_{0}, t_{0}\right)$ in S_{I} with $y_{0}>0$ and $t_{0}>0$ let γ_{0} be the largest number such that $\gamma_{0} \leq t_{0}$ and $y\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)=0$. If no such γ_{0} exists, let $\gamma_{0}=0$.

For $\left(x_{0}, 0, t_{0}\right)$ in D_{1} with $t_{0}>0$ let $r_{0}=t_{0}$ if $\phi_{X}\left(x_{0}, t_{0}\right) \geq 0$. If $\phi_{X}\left(x_{0}, t_{0}\right)<0$, let r_{0} be the largest number such that $\gamma_{0}<t_{0}$ and $y\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)=0$. If no such γ_{0} exists, let $\gamma_{0}=0$.

For $\left(x_{0}, y_{0}, 0\right)$ in D_{I} let $r_{0}=0$.
We have associated a number γ_{0} with each $\left(x_{0}, y_{0}, t_{0}\right)$ in D_{1}. We define functions a, β, and γ with domain \hat{O}_{I} by $a\left(x_{0}, y_{0}, t_{0}\right)$ $=x\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right), \beta\left(x_{0}, y_{0}, t_{0}\right)=y\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)$, and $\gamma\left(x_{0}, y_{0}, t_{0}\right)=\gamma_{0}$. Then (α, β, γ) is the most recent point before time $t=t_{0}$ where the curve $\left[x\left(x_{0}, y_{0}, t_{0}, t\right), y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$ enters Δ_{I} as t increases except possibly when $\beta=0$ and $(a, 0, \gamma)$ is on C_{1} or C_{2} 。

In the following we will let $a_{0}=a\left(x_{0}, y_{0}, t_{0}\right), \bar{a}_{0}=a\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$, $\beta_{0}=\beta\left(x_{0}, y_{0}, t_{0}\right), \bar{\beta}_{0}=\beta\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right), \gamma_{0}=\gamma\left(x_{0}, y_{0}, t_{0}\right)$, and $\bar{\gamma}_{0}=\gamma\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$.
Lemma (1.13). Let (x_{0}, y_{0}, t_{0}) be any point in A_{1} such that $\gamma_{0}=0$ or $\gamma_{0}>0$ with $\left(a_{0}, 0, \gamma_{0}\right)$ not on C_{1} or C_{2}. Then $\lim _{k \rightarrow \infty} a_{n_{k}}=\alpha_{0}, \lim _{k \rightarrow \infty} \beta_{n}=\beta_{k}$, and $\lim _{k \rightarrow \infty} \gamma_{n^{\circ}}=\gamma_{0}$.

Lemma (1.13) follows from the fact that for each (x_{0}, y_{0}, t_{0}) we have $x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, t\right) \longrightarrow x\left(x_{0}, y_{0}, t_{0}, t\right)$ and $y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, t\right) \longrightarrow$ $y\left(x_{0}, y_{0}, t_{0}, t\right)$ uniformly in t as $k \longrightarrow \infty$. Lemming (1.14). α, β, and γ are continuous at points (x_{0}, y_{0}, t_{0}) for which $\gamma_{0}=0$ or $\gamma_{0}>0$ with $\left(a_{0}, 0, \gamma_{0}\right)$ not on C_{1} or C_{2}.

Lemma (1.14) follows from the fact that $x\left(x_{0}, y_{0}, t_{0}, t\right)$ and $y\left(x_{0}, y_{0}, t_{0}, t\right)$ are uniformly continuous.

Let h be the function with domain δ_{1} defined by $h\left(x_{0}, y_{0}, t_{0}\right)=\psi_{1}\left(a_{0}, \gamma_{0}\right)$ when $\gamma_{0}>0$ and $h\left(x_{0}, y_{0}, t_{0}\right)=\psi_{2}\left(a_{0}, \beta_{0}\right)$ when $\gamma_{0}=0$.
Lemma (1.15). Let (x_{0}, y_{0}, t_{0}) be any point in ϕ_{I} such that $\gamma_{0}=0$ or $\gamma_{0}>0$ with $\left(a_{0}, 0, \gamma_{0}\right)$ not on C_{1} or C_{2}. Then h is continuous at $\left(x_{0}, y_{0}, t_{0}\right)$ and $\lim _{k \rightarrow \infty} h_{n_{k}}\left(x_{0}, y_{0}, t_{0}\right)=h\left(x_{0}, y_{0}, t_{0}\right)$.

Lemma (1.15) follows easily using Leman (1.13) and (1.14) and the definition of h.

Lemma (1.16). h is a continuous function of (x_{0}, y_{0}, t_{0}) almost everywhere on each plane $t_{0}=$ constant. Also $\ln \left(x_{0}, y_{0}, t_{0}\right)+$ $\lambda^{2}\left(a x_{0}+b\right) \mid \leq 2 M$.

$$
\begin{aligned}
& \text { : } \\
& \text { - }{ }^{1} 15 \mathrm{O} \\
& 1-: 1-1=
\end{aligned}
$$

$$
\begin{aligned}
& 1-1 \cdot \cdot \cdot=1+= \\
& T \\
& \text {-r. } \\
& \cdots+\cdots+1 \\
& .4 \\
& \therefore,-r i+3 ; \\
& 7= \\
& \text { ET } 1 \\
& 1-10-y^{y} \\
& \text { i }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 100.0 \quad 1 \quad 7
\end{aligned}
$$

$$
\begin{aligned}
& :-1+-1+1
\end{aligned}
$$

The proof of Lemma (1.16) is similar to the proof of Lemma (1.2) for extended h_{n}.

From Lemma (1.16) we see that
$\frac{1}{2 \pi} \iint g(x, y ; \xi, \eta)\left[h(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right] d \xi d \eta$ exists for each (x, y, t) $\uparrow \geq 0$
in \otimes_{1}. We define v to be the function with domain \mathcal{D}_{1} whose values are given by
$v(x, y, t)=\frac{1}{2 \pi} \int_{\eta \geq 0} g(x, y ; \xi, \eta)\left[h(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right] d \xi d \eta$.
Lemma (1.17). v, v_{x}, and v_{y} are continuous. $\left|v_{x}\right|<4 \pi^{2}\left(1+\frac{1}{\lambda^{2}}\right)$ and $\left|v_{y}\right|<4 M^{2}\left(I+\frac{1}{\lambda^{2}}\right)$. For $0<s=\sqrt{(\bar{x}-x)^{2}+(\bar{y}-y)^{2}} \leq \frac{1}{4}$,
$\left|v_{x}(\bar{x}, \bar{y}, t)-v_{x}(x, y, t)\right|<-\left(52 m^{2}+\frac{16 M^{2}}{\lambda^{2}}\right) s \log s$ and
$\left|v_{n y}(\bar{x}, \bar{y}, t)-v_{n y}(x, y, t)\right|<-\left(52 M^{2}+\frac{16 M^{2}}{\lambda^{2}}\right) s \log s$.

The proof of Lemma (1.17) is the same as that of Lemma (1.3). Let $u(x, y, t)=v(x, y, t)-w(x, y, t)+a x+b$ for (x, y, t) in A_{I}. Lemma (1.18). u, u_{x}, and u_{y} are continuous. $\left|u_{x}\right|<D_{1}$ and $\left|u_{y}\right|<D_{1}$. When $0<s=\sqrt{(\bar{x}-x)^{2}+(\bar{y}-y)^{2}} \leq \frac{1}{4}$, then $\left|u_{x}(\bar{x}, \bar{y}, t)-u_{x}(x, y, t)\right|<-D_{2} s \log s$ and $\left|u_{y}(\bar{x}, \bar{y}, t)-u_{y}(x, y, t)\right|$ $<-D_{2}$ s log s.

Lemma (1.18) follows from the definition of u.
Let (x, y, t) be any point in $\mathcal{N A}_{1}$. It is then clear that $\lim _{k \rightarrow \infty} E(x, y ; \xi, \eta)\left[h_{n_{k}}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right]$
$=g(x, y ; \xi, \eta)\left[h(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right]$ for almost all (ξ, h) with $h \geq 0$, $\left|g(x, y ; \xi, \eta)\left[h_{n_{k}}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right]\right| \leq 2 M|g(x, y ; \xi, \eta)|$ for all (ξ, η)
with $\eta \geq 0$ and for all k, and $\varepsilon(x, y ; \xi, \eta)\left[h_{n_{k}}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right]$ is a measurable function of (ξ, η) for $a l l k$. Hence by the Lebesgue convergence theorem we have $\lim _{k \rightarrow \infty} u_{n_{k}}(x, y, t)=u(x, y, t)$. Similarly $\lim _{k \rightarrow \infty} u_{n_{k} x}(x, y, t)=u_{x}(x, y, t)$ and $\lim _{k \rightarrow \infty} u_{n_{k}}(x, y, t)=u_{y}(x, y, t)$.

Let $F_{1}(x, y, t)=-u_{y}(x, y, t)$ and $F_{2}(x, y, t)=u_{x}(x, y, t)$ for (x, y, t) in A_{1} and let $F_{1}(x, y, t)=-u_{y}(x,-y, t)$ and $F_{2}(x, y, t)=$ $u_{x}(x,-y, t)$ for $(x,-y, t)$ in D_{1}. Then $\lim _{k \rightarrow \infty} F_{n_{1}}(x, y, t)=F_{1}(x, y, t)$ and $\lim _{k \rightarrow \infty} F_{n_{k}}(x, y, t)=F_{2}(x, y, t)$.
Lemma (1.19). Let $\left(x_{0}, y_{0}, t_{0}\right)$ be in \AA_{1} and choose $\bar{t} \geq t_{0}$ so that $y\left(x_{0}, y_{0}, t_{0}, t\right) \geq 0$ for $t_{0} \leq t \leq E$. Then the curve described by $\left[x\left(x_{0}, y_{0}, t_{0}, t\right), y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$ for $\gamma_{0} \leq t \leq \bar{t}$ is the unique air particle path of u through (x_{0}, y_{0}, t_{0}).

Proof of Lemma (1.19). For fixed $\left(x_{0}, y_{0}, t_{0}\right)$ in θ_{1} let $z_{k}(\xi)=$
$\sqrt{\left[x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right)-x\left(x_{0}, y_{0}, t_{0}, \xi\right)\right]^{2}+\left[y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right)-y\left(x_{0}, y_{0}, t_{0}, \xi\right)\right]^{2}}$ for $0 \leq \xi \leq c_{1}$. Then $Z_{k}(\xi) \rightarrow 0$ as $k \rightarrow \infty$ for each ξ. Given ξ choose k_{0} so that $k>k_{0}$ implies $Z_{k}(\xi)<\frac{1}{4}$. Then for $k>k_{0}$ we have

$$
\begin{aligned}
& \mid F_{n_{k} I}\left[x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]-F_{1}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right),\right. \\
& \leq \mid F_{n_{k} I}\left[x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] \\
& \\
& -F_{\left.\left.n_{n_{k}}, t_{0}, \xi\right), \xi\right] \mid}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] \mid \\
& \quad+\mid F_{n_{k} I}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] \\
& \quad-F_{I}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] \mid \\
& \leq
\end{aligned}
$$

$$
\begin{aligned}
& \text { - 11 • • } \cdot \text {. } \\
& \text { • } . \cdot=-1-\therefore \therefore+
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 2+142+1!2=112= \\
& \cdot 1 \cdot \\
& \text { +11- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i: . . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *). . }
\end{aligned}
$$

$$
\begin{aligned}
& 11=\cdot 14+81=8
\end{aligned}
$$

$$
\begin{aligned}
& 11 \cdot 1+2+1 \cdot+1, \ldots+1 \cdot+=
\end{aligned}
$$

$+\mid F_{n_{k}}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]$
$-F_{1}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] \mid \rightarrow 0$ as $k \rightarrow \infty$.
Thus $\lim _{k \rightarrow \infty} F_{n_{k}}\left[x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]$
$=F_{1}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]$ for each ξ, and
$F_{n_{k I}}\left[x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]$ is a measurable function
of ξ and its absolute value is less than D_{1} for each k and ξ.
Therefore by the Lebesgue convergence theorem
$x\left(x_{0}, y_{0}, t_{0}, t\right)=\lim _{k \rightarrow \infty} x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, t\right)$
$=x_{0}+\lim _{k \rightarrow \infty} \int_{t_{0}}^{t} F_{n_{k}}\left[x_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), y_{n_{k}}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi$
$=x_{0}+\int_{t}^{t} F_{1}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi$.
Similarly we obtain
$y\left(x_{0}, y_{0}, t_{0}, t\right)=y_{0}+\int_{t_{0}}^{t} F_{2}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi$.
Thus x_{t} and y_{t} exist and
$x_{t}\left(x_{0}, y_{0}, t_{0}, t\right)=F_{1}\left[x\left(x_{0}, y_{0}, t_{0}, t\right), y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$ and $y_{t}\left(x_{0}, y_{0}, t_{0}, t\right)=\mathbb{r}_{2}\left[x\left(x_{0}, y_{0}, t_{0}, t\right), y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$.

When $\left(x_{0}, y_{0}, t_{0}\right)$ is in \mathcal{D}_{I} and $\gamma_{0} \leq t \leq \bar{t}$, we have $x_{t}\left(x_{0}, y_{0}, t_{0}, t\right)=-u_{y}\left[x\left(x_{0}, y_{0}, t_{0}, t\right), y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$ and $y_{t}\left(x_{0}, y_{0}, t_{0}, t\right)=u_{x}\left[x\left(x_{0}, y_{0}, t_{0}, t\right), y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$. From the inequalities in Lemma (1.18) it is clear that $\left[x\left(x_{0}, y_{0}, t_{0}, t\right)\right.$, $\left.y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$ represents the unique air particle path of u through (x_{0}, y_{0}, t_{0}).

Proof of theorem I: On each air particle path of u, h by definition is constant except possibly at points where the air particle path reets C_{1} or C_{2}. Hence h is a pseudo-Helmholtzien of u. Since u and h satisfy (3) by the definition of u, then u is a weak solution of (1). We now observe that $u(x, 0, t)=\phi(x, t)$, $h(x, 0, t)=\Psi_{1}(x, t)$ when (x, t) is in the domain of Ψ_{1}, $h(x, y, 0)=\psi_{2}(x, y),\left|u_{x}(x, y, t)-a\right|<D_{1}+a,\left|u_{y}(x, y, t)\right|<D_{1}$, and $\left|h(x, y, t)+\lambda^{2}(a x+b)\right| \leq 2 M$.

To cormplete the proof of Theoren I we have yet to show that $u(x, y, t)-a x-b$ is bounded. We have $|u(x, y, t)-a x-b|=|v(x, y, t)-w(x, y, t)|$
$\leq \frac{1}{2 \pi} \iint_{\eta \geq 0}|\varepsilon(x, y ; \xi, \eta)| 2 \operatorname{rag} d \eta+\vec{W}$ (where \bar{W} is on upper bound of $|w|$)
$<\frac{M}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|g(x, y ; \xi, \eta)| d \xi d y+\bar{W}$
$\leq \frac{2 M}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|K(\lambda \rho)| d \xi d \eta+\bar{W}=\frac{2 M}{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \rho|K(\lambda \rho)| d \rho d \theta+\vec{W}$ which is a constant.

Thus for all small enough $c_{I}>0$ there is a weak solution with donain θ_{1} satisfying the conditions of Theorem I.
. \square

$$
: \quad 16+\frac{1}{2}+1 .::
$$

$$
-1+74-2+2
$$

$$
\cdot \frac{11}{2}+2+1+2
$$

$$
\text { . , ', }+\quad . \quad . \quad-10.10!
$$

\ldots

Getting Stronger Solutions by Strengthening Hypotheses
For the rest of this report we let u be a weak solution constructed as in the proof of Theorem I, and we let M, W, D_{1}, D_{2}, and c_{1} be fixed numbers choosen as in the proof of Theorem I. We also let $v, F_{1}, F_{2}, x\left(x_{0}, y_{0}, t_{0}, t\right), y\left(x_{0}, y_{0}, t_{0}, t\right), \alpha, \beta, \gamma$, and h denote the same functions as in the proof of Theorem I.
Theorem II. Let ϕ, ψ_{1}, and ψ_{2} satisfy the hypothesis of Theorem I with the exception that $\left(2_{A}\right)$ and $\left(3_{A}\right)$ are replaced by $\left(2_{A}^{\prime}\right)$ and $\left(3_{A}^{\prime}\right)$.
$\left(2_{A}^{\prime}\right) \quad \psi_{I}$ is uniformly Folder continuous and $\psi_{1}(x, t)+\lambda^{2}(a x+b)$ is bounded.
$\left(3_{A}^{\prime}\right) \quad \psi_{2}$ is uniformly Holder continuous and $\psi_{2}(x, y)+\lambda^{2}(a x+b)$ is bounded.

Let $\left(x_{0}, y_{0}, t_{0}\right)$ be any point in A_{1} such that $\beta_{0}>0$ or $\beta_{0}=0$ with ($a_{0}, 0, \gamma_{0}$) not on C_{1} or C_{2}. Then the second derivatives of u with respect to x and y exist and are continuous at (x_{0}, y_{0}, t_{0}) and they satisfy $\Delta u-\lambda^{2} u=h$. Thus h is the true Helmholtzian of u at $\left(x_{0}, y_{0}, t_{0}\right)$.

Theorem II is proved with the aid of several lemmas which follow.

For $\left(x_{0}, y_{0}, t_{0}\right)$ in \dot{j}_{I} and $\delta>0$ let
$R_{\delta}=\left\{(x, y, t)\left|(x, y, t) \varepsilon D_{I},\left|x-x_{0}\right|<\delta,\left|y-y_{0}\right|<\delta\right.\right.$, and $\left.| t-t_{0} \mid<\delta\right\}$. Let $\alpha_{0}^{*}=\alpha\left(x_{0}^{*}, y_{0}^{*}, t_{0}^{*}\right), \beta_{0}^{*}=\beta\left(x_{0}^{*}, y_{o}^{*}, t_{0}^{*}\right)$, and $\gamma_{0}^{*}=\gamma\left(x_{o}^{*}, y_{o}^{*}, t_{o}^{*}\right)$.
$1+1-1 x=$ $10 \quad \therefore=$
$71 \cdot$

Lemma (2.1). Let $\left(x_{0}, y_{0}, t_{0}\right)$ be any point ind l_{1} such that $\beta_{0}>0$, or $\beta_{0}=0$ with ($\alpha_{0}, 0, \gamma_{0}$) not on C_{1} or C_{2}. Then there are constants $H>0$ and $\delta>0$ such that $\left(x_{0}^{*}, y_{0}^{*}, t_{0}^{*}\right)$ and ($\left.\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$ in R_{δ} implies $\left|a_{0}^{*}-\vec{a}\right| \leq H_{s} \exp \left(-2 D_{2} c_{I}\right) \quad\left|\beta_{-\beta}^{*}\right| \leq H_{s} \exp \left(-2 D_{2} c_{1}\right)$
$\left|\gamma_{0}^{*}-\bar{\gamma}_{0}\right| \leq H s^{\exp \left(-2 D_{2} c_{1}\right)}$ where $s=\sqrt{\left(x_{0}^{*}-\bar{x}_{0}\right)^{2}+\left(y_{0}^{*}-\bar{y}_{0}\right)^{2}+\left(t_{0}^{*}-\bar{t}_{0}\right)^{2}}$.

Proof of Lemma (2.1).

Case I $\left(\beta_{0}>0\right)$. Since β is continuous at $\left(x_{0}, y_{0}, t_{0}\right)$, we can choose δ small enough so that ($\bar{x}_{0}, \overline{\mathrm{y}}_{0}, \overline{\mathrm{t}}_{0}$) in R_{δ} implies $\bar{\beta}_{0}>0$. Then ($\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}$) in R_{δ} implies $\bar{\gamma}_{0}=0, \bar{a}_{0}=x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, 0\right)$, and $\bar{\beta}_{0}=y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, 0\right)$. If we also choose δ small enough so that the diameter of R_{δ} is less than s_{o}, then Lemma (2.1) follows easily from Lemma (1.7).

Case II $\left[\beta_{0}=0, \gamma_{0}>0\right.$, and $\left(\alpha_{0}, 0, \gamma_{0}\right)$ is not on C_{1} or $\left.C_{2}\right]$. Since y_{t} is continuous and $y_{t}\left(x_{0}, J_{0}, t_{0}, r_{0}\right)=\phi_{X}\left(a_{0}, r_{0}\right)>0$ (note ($a_{0}, 0, \gamma_{0}$) is not on C_{1} or C_{2}), we can choose positive constants δ, ε_{1}, and ε_{2} so that $y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}, t\right) \geq \varepsilon_{1}>0$ for ($\bar{x}_{0}, \bar{\nabla}_{0}, \bar{E}_{0}$) in R_{δ} and $\left|t-\gamma_{0}\right| \leq \varepsilon_{2}$.

Since γ is continuous at (x_{0}, y_{0}, t_{0}), we can choose δ smaller if necessary so that ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) in R_{δ} implies $\bar{\gamma}_{0}>0$ and $\left|\bar{\gamma}_{0}-\gamma_{0}\right| \leq \varepsilon_{2}$.

Now let ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) and ($x_{0}^{*}, \bar{y}_{0}^{*}, t_{o}^{*}$) be in R_{δ}. Assume without loss of generality that $\gamma_{0}^{*} \leq \bar{\gamma}_{0}$. Then since $y\left(x_{0}^{*}, y_{0}^{*}, t_{o}^{*}, \gamma_{0}^{*}\right)=\beta_{0}^{*}=$ $0\left(r_{0}^{*}>0\right)$, we have $y\left(x_{0}^{*}, y_{0}^{*}, t_{0}^{*}, \bar{r}_{0}\right)=y\left(x_{0}^{*}, y_{0}^{*}, t_{0}^{*}, \bar{r}_{0}\right)-y\left(x_{0}^{*}, y_{0}^{*}, t_{0}^{*}, r_{0}^{*}\right)=$ $\left(\bar{r}_{0}-\gamma_{0}^{*}\right) y_{t}\left(x_{0}^{*}, \bar{y}_{0}^{*}, r_{0}^{*}, t^{*}\right)$ where t^{*} is between r_{0}^{*} and $\bar{\gamma}_{0}$. Since

 $\div \quad \div$

(

$$
\because i=0 . i=1 i
$$

+ + -

.-

\qquad
$\left|\gamma_{0}^{*}-\gamma_{0}\right| \leq \varepsilon_{2}$ and $\left|\bar{r}_{0}-\gamma_{0}\right| \leq \varepsilon_{2}$, it follows that $\left|t{ }^{*}-\gamma_{0}\right| \leq \varepsilon_{2}$ and hence $y\left(x_{0}^{*}, y_{0}^{*}, t_{0}^{*}, \bar{r}_{0}\right)=\left(\bar{r}_{0}-r_{0}^{*}\right) y_{t}\left(x_{0}^{*}, y_{0}^{*}, r_{0}^{*}, t^{*}\right) \geq \varepsilon_{1}\left(\bar{r}_{0}-r_{0}^{*}\right)=$ $\varepsilon_{1}\left|\bar{r}_{0}-r_{0}^{*}\right|$. Using $y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)=\bar{\beta}_{0}=0\left(\bar{r}_{0}>0\right)$ we now have $\left|\bar{r}_{0}-\gamma_{0}^{*}\right| \leq \frac{1}{\varepsilon_{1}}\left|y\left(x_{0}^{*}, y_{0}^{*}, t_{0}^{*}, \bar{\gamma}_{0}\right)-y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{\gamma}_{0}\right)\right|$. How choose δ smaller if necessary so that the diameter of R_{δ} is less than s_{0}. Then from Lemma (1.7) we have $\left|\bar{\gamma}_{0}-\gamma_{0}^{*}\right| \leq \frac{1}{\varepsilon_{1}}\left[2\left(D_{1}+1\right) s\right] \exp \left(-2 D_{2} c_{1}\right)$. The results for α and β follow in an obvious manner.

Case $\operatorname{III}\left(\beta_{0}=\gamma_{0}=0\right.$ and $\left(a_{0}, 0, \gamma_{0}\right)$ is not on C_{1} or $\left.C_{2}\right)$. As in Case II we can choose positive constants δ, ε_{1}, and ε_{2} so that $y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, t\right) \geq \varepsilon_{1}>0$ for ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) in R_{δ} and $\left|t-\gamma_{0}\right| \leq \varepsilon_{2}$, so that $\left|\bar{r}_{0}-\gamma_{0}\right| \leq \varepsilon_{2}$ for ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) in R_{δ}, and so that the diameter of k_{δ} is less than s_{0}.

Now let ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) and ($\mathrm{x}_{0}^{*}, \mathrm{y}_{0}^{*}, \mathrm{t}_{0}^{*}$) be in R_{δ}. If $\bar{r}_{0}=r_{0}^{*}=0$, our conclusion follows as in case I. If $\bar{r}_{0}>0$ and $\gamma_{0}^{*}>0$, our conclusion follows as in Case II. If $\bar{\gamma}_{0}=0$ and $\gamma_{0}^{*}>0$, the continuity of γ in R_{δ} can be used to conclude that there is a ($\hat{x}_{0}, \hat{y}_{0}, \hat{t}_{0}$) on the straight line segment from ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) to ($\left.x_{0}^{*}, y_{o}^{*}, t_{o}^{*}\right)$ such that $\gamma\left(\hat{x}_{0}, \hat{y}_{0}, \hat{t}_{0}\right)=0$ but $\gamma(x, y, t)>0$ (hence $\beta(x, y, t)=0)$ on the straight line segment between ($\hat{x}_{0}, \hat{y}_{0}, \hat{t}_{0}$) and ($x_{0}^{*}, y_{o}^{*}, t_{o}^{*}$). Since β is continuous in R_{δ}, it follows that $\beta\left(\hat{x}_{0}, \hat{y}_{0}, \hat{t}_{0}\right)=0$. The methods used in Case II can be used to show that $\left|r\left(\hat{x}_{0}, \hat{y}_{0}, \hat{t}_{0}\right)-\gamma_{0}^{*}\right|$

$$
\begin{aligned}
& \leq \frac{I}{\varepsilon_{1}}\left[2\left(D_{1}+1\right)\right]^{\exp \left(-2 D_{2} C_{1}\right)}\left[\left(\hat{x}_{0}-x_{0}^{*}\right)^{2}+\left(\hat{y}_{0}-y_{0}^{*}\right)^{2}+\left(\hat{t}_{0}-t_{0}^{*}\right)^{2}\right]^{\frac{1}{2} \exp \left(-2 D_{2} c_{1}\right)} \\
& <\frac{I}{\varepsilon_{1}}\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)} . \text { But }\left|\bar{r}_{0}-r_{0}^{*}\right|=r_{0}^{*}=\left|\gamma\left(\hat{x}_{0}, \hat{y}_{0}, \hat{t}_{0}\right)-r_{0}^{*}\right|
\end{aligned}
$$

and our lemma follows.

Lemma（2．2）．Let $\left(x_{0}, y_{0}, t_{0}\right)$ be in $k{ }_{1}$ such that $\beta_{0}>0$ or $\beta_{0}=0$ with（ $a_{0}, 0, \gamma_{0}$ ）not on C_{1} or C_{2} ．Then h is uniformly Holder con－ tinuous in a neighborhood of（ x_{0}, y_{0}, t_{0} ）．

Proof of Lemma（2．2）．Using Lemma（2．1）and the fact that ψ_{1} and ψ_{2} are uniformly fiblder continuous we can show that there are constants $H>0, \delta>0$ ，and $0<\varepsilon<1$ such that（ $x_{0}^{*}, \mathrm{H}_{0}^{*}, t_{o}^{*}$ ）and （ $\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$ ）in R_{δ} implies $\left|h\left(x_{0}^{*}, y_{0}^{*}, t_{o}^{*}\right)-h\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)\right| \leq H s^{\varepsilon}$ where $s=\sqrt{\left(x_{0}^{*}-\bar{x}_{0}\right)^{2}+\left(y_{0}^{*}-\bar{y}_{0}\right)^{2}+\left(t_{0}^{*}-\bar{t}_{0}\right)^{2}}$ ．It is then clear that there are positive constants $\delta_{1}<\delta$ and δ_{2} such that（ $\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$ ）in $R_{\delta_{1}}$ and $s<\delta_{2}$ implies that（ $x_{0}^{*}, \bar{y}_{0}^{*}, t_{0}^{*}$ ）is in R_{δ} ．Hence for（ $\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$ ）in $\mathrm{R}_{\delta_{1}}$ we have $\left|\mathrm{h}\left(\mathrm{x}_{0}^{*}, \mathrm{y}_{0}^{*}, \mathrm{t}_{0}^{*}\right)-\mathrm{h}\left(\overline{\mathrm{x}}_{0}, \overline{\mathrm{y}}_{0}, \overline{\mathrm{t}}_{0}\right)\right| \leq \mathrm{Hs}^{\varepsilon}$ for $s<\delta_{2}$ ．That is， h is uniformly H⿱一𫝀口lder continuous in $\mathrm{R}_{\delta_{1}}$ ．

Proof of Theorem II．Let $\left(x_{0}, y_{0}, t_{0}\right)$ be in ρ_{I} such that $\beta_{0}>0$ or $\beta_{0}=0$ with $\left(a_{0}, 0, \gamma_{0}\right)$ not on C_{1} or C_{2} ．For arbitrary（ x, y, t_{0} ）in ${ }_{1}{ }_{1}$ we have
（III）$\quad v_{x}\left(x, y, t_{0}\right)=\frac{1}{2 \pi} \iint g_{x}(x, y ; \xi, \eta)\left[h\left(\xi, \eta, t_{0}\right)+\lambda^{2}(a \xi+b)\right] d \xi d \eta$ $1 \geq 0$
$=\frac{1}{2 \pi} \iint_{\eta \geq 0} g_{x}(x, y ; \xi, \eta)\left[h\left(\xi, \eta, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)+a \lambda^{2}\left(\xi-x_{0}\right)\right] d \xi d \eta$
（III）$v_{y}\left(x, y, t_{0}\right)=\frac{1}{2 \pi} \iint_{\eta \geq 0} g_{y}(x, y ; \xi, \eta)\left[h\left(\xi, \eta, t_{0}\right)+\lambda^{2}(a \xi+b)\right] d \xi d \eta$

$$
=\frac{I}{2 \pi} \iint_{\eta \geq 0} g_{y}(x, y ; \xi, h)\left[h\left(\xi, \eta, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)+a \lambda^{2}\left(\xi-x_{0}\right)\right] d \xi d^{\prime} \eta
$$

$-\left[h\left(x_{0}, y_{0}, t_{0}\right)+\lambda^{2}\left(a x_{0}+b\right)\right] \frac{1}{\pi} \int_{-\infty}^{\infty} K(\lambda \nu) d \xi$.

$1-\ldots$

To get the second representation of v_{x} we added and subtracted $\left[h\left(x_{0}, y_{0}, t_{0}\right)+\lambda^{2}\left(a x_{0}+b\right)\right] \frac{1}{2 \pi} \iint_{\eta \geq 0} g_{x}(x, y ; \xi, \eta) d \xi d \eta$ to the first integral of (II.I), and then we observed that $\iint_{\eta \geq 0} g_{x}(x, y ; \xi, \eta) d \xi d \eta$

$$
=-\iint_{\eta \geq 0} g_{\xi}(x, y ; \xi, \eta) d \xi d \eta=0 \text {. We obtained the second representa- }
$$

tion of v_{y} in a similar manner $k y$ observing that

$$
\frac{1}{2 \pi} \int_{\eta \geq 0} \int_{y} g_{y}(x, y ; \xi, \eta) d \xi d \eta=\frac{1}{2 \pi} \iint_{\eta \geq 0} \frac{\partial}{\partial \eta}[K(\lambda \vec{\rho})+K(\lambda \rho)] d \xi d^{\eta}=-\frac{1}{\pi} \int_{-\infty}^{\infty} K(\lambda \nu) d \xi
$$

Since h is Hblder continuous at (x_{0}, y_{0}, t_{0}), we could show that differentiation with respect to x and y at (x, y, t_{0}) $=\left(x_{0}, y_{0}, t_{0}\right)$ is permitted under the integral sign in the second representations of (II.I) and (II.2). The resulting expressions are also valid for (x, y, t) in some neighborhood of (x_{0}, y_{0}, t_{0}) since h is also HBlder continuous in some neighborhood of $\left(x_{0}, y_{0}, t_{0}\right)$. Hence for (x, y, t) in some neighborhood of (x_{0}, y_{0}, t_{0}) we have
:II.3) $v_{x x}(x, y, t)=\frac{1}{2} \pi \int_{\eta \geq 0} g_{x x}(x, y ; \xi, \eta)\left[h(\xi, \eta, t) \cdots h(x, y, t)+a \lambda^{2}(\xi-x)\right] d \xi d \eta$,
:II.4) $v_{x y}(x, y, t)=\frac{1}{2 \pi} \iint_{i x y}(x, y ; \xi, \eta)\left[h(\xi, \gamma, t)-h(x, y, t)+a \lambda^{2}(\xi-x)\right] d \xi d \eta$,
(II.5) $v_{y y}(x, y, t)=\frac{1}{2 \pi} \iint_{\eta \geq 0} g_{y y}(x, y \xi \xi, \eta)\left[h(\xi, \eta, t)-r(x, y, t)+a \lambda^{2}(\xi-s)\right] d \xi d \eta$

$$
+\left[h(x, y, t)+\lambda^{2}(a x+b)\right]\left\{\begin{array}{l}
\frac{-\lambda y}{\pi} \int_{-\infty}^{\infty} \frac{1}{v} \mathbb{R}^{\prime}(\lambda \nu) d \xi \text { if } y>0 \\
1 \text { if } y=0
\end{array}\right\}
$$

 $2+2+18+1$

Since the Holder continuity of h is uniform in some neighborhood of (x_{0}, y_{0}, t_{0}), we can show with the aid of (II.3), (II.4), and (II.5) that $v_{x x}, v_{x y}$, and $v_{y y}$ are continuous at (x_{0}, y_{0}, t_{0}). Next we wish to show that $\Delta v-\lambda^{2} v=h(x, y, t)+\lambda^{2}(a x+b)$ at points ($\mathrm{x}, \mathrm{y}, \mathrm{t}$) where (II.3), (II.4), and (II.5) are valid. To aid us here we introduce $\overline{\mathrm{w}}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\left\{\begin{array}{l}-\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\nu} K^{\prime}(\lambda \nu) d \xi \text { if } \mathrm{y}>0 \\ 1 \text { if } y=0\end{array}\right\}$ and
$\bar{v}(x, y, t)=\frac{1}{2 \pi} \iint g(x, y ; \xi, \eta) d \xi d \eta$. We will first show that $t \geq 0$
$\bar{w}(x, y, t)=e^{-\lambda y}$ and $\bar{v}(x, y, t)=\frac{1}{\lambda^{2}}\left(e^{-\lambda y}-1\right)$.
Replacing $\phi(\xi, \mathrm{t})-(\mathrm{a} \xi+\mathrm{b})$ by 1 in Leman (1.1), we see $\overline{\mathrm{w}}$ has
continuous bounded first and second derivatives with respect to x and y for $\mathrm{y} \geq 0$ and $\triangle \overline{\mathrm{w}}-\lambda^{2} \overline{\mathrm{w}}=0$. Since $\overline{\mathrm{w}}(\mathrm{x}, \mathrm{y}, \mathrm{t})$
$=\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\sqrt{z^{2}+y^{2}}} K^{\prime}\left(\lambda \sqrt{z^{2}+y^{2}}\right) d \xi$, we have $\bar{w}_{x}=0$ and hence
$\bar{w}_{y y}-\lambda^{2} \bar{w}=0$. Therefore $\bar{w}=c_{1} e^{-\lambda y}+c_{2} e^{\lambda y}$. Since \bar{w} is bounded, then $c_{2}=0$. Since $\bar{w}(x, 0, t)=1, c_{1}=1$ and $\bar{w}=e^{-\lambda y}$. Replacing $h\left(\xi,{ }^{r}(, t)+\lambda^{2}(a \xi+b)\right.$ by I in (II.I) and (II.5) we see that $\bar{v}_{x}=0$ and $\bar{v}_{y y}(x, y, t)=\bar{v}(x, y, t)=e^{-\lambda y}$. Hence $\bar{v}=\frac{1}{\lambda^{2}} e^{-\lambda y}+\bar{v}_{1} y+\bar{v}_{2}$. Since \vec{v} is bounded, then $\bar{v}_{1}=0$. since $\vec{v}(x, 0, t)=0$, then $\bar{v}_{2}=\frac{-1}{\lambda^{2}}$ and $\bar{v}=\frac{1}{\lambda^{2}}\left(e^{-\lambda y}-1\right)$. We now have $\Delta v-\lambda^{2} v$
$=\frac{1}{2 \pi} \iint_{\eta \geq 0} \triangle g(x, y ; \xi, \eta)\left[h(\xi, \eta, t)-h(x, y, t)+a \lambda^{2}(\xi-x)\right] d \xi d \eta$
$+\vec{w}(x, y, t)\left[h(x, y, t)+\lambda^{2}(a x+b)\right]$
$-\frac{\lambda^{2}}{2 \pi} \iint_{\eta \geq 0} g(x, y ; \xi, \eta)\left[h(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right] d \xi d \eta$. Using the fact that

$$
\begin{aligned}
& !
\end{aligned}
$$

$\Delta g(x, y ; \xi, \eta)=\lambda^{2} g(x, y ; \xi, \eta)$ we have $\Delta v-\lambda^{2} v$
$=\left[h(x, y, t)+\lambda^{2}(a x+b)\right]\left[\bar{w}(x, y, t)-\lambda^{2} \bar{v}(x, y, t)\right]=h(x, y, t)+\lambda^{2}(a x+b)$.
Since $u=v-w+a x+b$, then u has continuous second derivatives with respect to x and y at $\left(x_{0}, y_{0}, t_{0}\right)$, and $\Delta u\left(x_{0}, y_{0}, t_{0}\right)$ -
$\lambda^{2} u\left(x_{0}, y_{0}, t_{0}\right)=h\left(x_{0}, y_{0}, t_{0}\right)+\lambda^{2}\left(a x_{0}+b\right)-0-\lambda^{2}\left(a x_{0}+b\right)=h\left(x_{0}, y_{0}, t_{0}\right)$. This completes the proof of Theorem II.

In our next theorem we assume that the prescribed values of the Helmholtzian are constant in a strip along the curves C_{1} and C_{2}. We can then show that $u_{x x}, u_{x y}$, and $u_{y y}$ exist and are contenuous for all small enough t.
Theorem III. Let ϕ, ψ_{1} and ψ_{2} satisfy the hypothesis of Theorem II. Let ϕ_{X} satisfy a uniform Lipschitz condition with respect to t. For the functions $x_{1}(t)$ and $x_{2}(t)$ of $\left(I_{C}\right)$ in Theorem I let $d_{1}=\min _{0 \leq t \leq c} x_{1}(t), d_{2}=\max _{0 \leq t \leq c} x_{1}(t), d_{3}=\min _{0 \leq t \leq c} x_{2}(t), d_{4}=\max _{0 \leq t \leq c} x_{2}(t)$, and assume $d_{2}<d_{3}$. Let $\left(3_{C}\right)$ and $\left(2_{B}\right)$ also be satisfied.
$\left(3_{C}\right)$ For some positive number \hat{c}^{\prime} and real numbers p_{1} and p_{2} we have $d_{2}+\tau<d_{3}-\tau$, $\psi_{2}(x, y)=p_{1}$ for $d_{1}-\tau \leq x \leq d_{2}+\tau$ and $0 \leq y \leq \tau$, and $\psi_{2}(x, y)=p_{2}$ for $d_{3}-\tau \leq x \leq d_{4}+\tau$ and $0 \leq y \leq \tau$.
$\left(2_{B}\right)$ There is a positive number σ such that $\sigma<\tau$ and such that $\left(x_{0}, 0, t_{0}\right)$ on C_{i} implies $\psi_{1}(x, t)=p_{i}$ when (x, t) is in the domain of ψ_{1} and both $\left|x-x_{0}\right| \leq \sigma$ and $\left|t-t_{0}\right| \leq \sigma(i=1,2)$.

Then there is a c_{2} such that $0<c_{2} \leq c_{1}$, u has continuous second derivatives with respect to x and y in d_{2} $=\left\{(x, y, t) \mid-\infty<x<\infty, y \geq 0,0 \leq t \leq c_{2}\right\}$, and $\Delta u-\lambda^{2} u=h$ in D_{2} so that h is the true Helmholtzian of u in D_{2}.

Theorem III is proved using the lemmas which follow.
Choose M_{1} so that $\left|\phi_{X}(x, \bar{t})-\phi_{X}(x, t)\right| \leq M_{1}|\bar{t}-t|$ for all (x, \bar{t}) and (x, t) in the domain of ϕ.

Let $\omega=g l b \phi_{X}(x, t)$ where the greatest lower bound is taken over all (x, t) such that $\phi_{X}(x, t) \geq 0,\left|x-x_{0}\right| \geq \sigma$ or $\left|t-t_{0}\right| \geq \sigma$ for each $\left(x_{0}, 0, t_{0}\right)$ on C_{1} or C_{2}, and $d_{1}-\left(2 D_{1} c+s_{0}+\tau\right) \leq x \leq d_{4}+2 D_{1} c+s_{0}+\tau$. Then $\omega>0$.

Choose c_{2} so that $0<c_{2} \leq c_{1}, D_{1} c_{2} \leq \frac{1}{4}, D_{1} c_{2}<\tau$, and $c_{2}\left(W D_{1}+M I_{1}-D_{1} D_{2} \log D_{1} c_{2}\right) \leq \frac{\omega}{2}$.
Lemma (3.1). h is uniformly Hblder continuous in some neighborhood of each point in \mathcal{D}_{2}.

Proof of Lemma (3.1). Let $\left(x_{0}, y_{0}, t_{0}\right)$ be any point in λ_{2}. If $\beta_{0}>0$ or $\beta_{0}=0$ with $\left(a_{0}, 0, \gamma_{0}\right)$ not on C_{1} or C_{2}, then h is uniformly HBlder continuous in some neighborhood of ($x_{0}, \bar{y}_{0}, t_{0}$) by Lemma (2.2). The only remaining case is the one in which $\beta_{0}=0$ and $\left(\alpha_{0}, 0, \gamma_{0}\right)$ is on C_{1} or C_{2}.

Case I $\left[\beta_{0}=0, \gamma_{0}>0\right.$, and $\left(a_{0}, 0, \gamma_{0}\right)$ is on $\left.C_{1}\right]$. Suppose there is a point ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) in \mathcal{D}_{2} such that
$s=\sqrt{\left(\bar{x}_{0}-x_{0}\right)^{2}+\left(\bar{y}_{0}-y_{0}\right)^{2}+\left(\bar{t}_{0}-t_{0}\right)^{2}}<s_{0}, \bar{r}_{0}>0$, and either $\left|\bar{a}_{0}-x\right|>\sigma$ or $\left|\bar{\gamma}_{0}-t\right|>\sigma$ for each $(x, 0, t)$ on C_{1}. Then $\bar{\beta}_{0}=0$ and $\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)\right|=\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)-y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{\gamma}_{0}\right)\right| \leq D_{1}\left|z-\bar{\gamma}_{0}\right|$
$\leq D_{1} c_{2} \leq \frac{1}{4}$ for $0 \leq z \leq c_{2}$. Thus for $0 \leq z \leq c_{2}$ we have $\left|y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)-y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)\right|$
$=\left|F_{2}\left[x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right), y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right), z\right]-F_{2}\left(\bar{a}_{0}, 0, \bar{r}_{0}\right)\right|$
$\leq\left|F_{2}\left[x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right), y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right), z\right]-F_{2}\left[x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right), 0, z\right]\right|$
$+\left|\phi_{x}\left[x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right), z\right]-\phi_{x}\left(\bar{a}_{0}, \bar{r}_{0}\right)\right|$
$\leq-D_{2}\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)\right| \log \left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)\right|+w\left|x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)-\bar{a}_{0}\right|+M_{1}\left|z-\bar{\gamma}_{0}\right|$
(since $\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{\mp}_{0}, z\right)\right| \leq \frac{1}{4}$ and $\left|\phi_{x x}\right|=\left|w_{x x}\right|_{y=0} \leq W$)
$\leq-D_{2} D_{1} c_{2} \log D_{1} c_{2}+W\left|x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)-x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)\right|+M_{1}\left|z-\bar{\gamma}_{0}\right|$
(since $\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)\right| \leq D_{1} c_{2}$)
$\leq-D_{2} D_{1} c_{2} \log D_{1} c_{2}+W D_{1}\left|z-\bar{\gamma}_{0}\right|+M_{1}\left|z-\bar{\gamma}_{0}\right|$
$\leq c_{2}\left(W D_{1}+M I_{1}-D_{2} D_{1} \log D_{1} c_{2}\right) \leq \frac{N}{2} \cdot$
Also $\left|a_{0}-\bar{a}_{0}\right|=\left|\left(a_{0}-x_{0}\right)+\left(x_{0}-\bar{x}_{0}\right)+\left(\bar{x}_{0}-\bar{a}_{0}\right)\right| \leq D_{1} c_{2}+s_{0}+D_{1} c_{2}$ so
that $\bar{a}_{0} \geq a_{0}-\left(2 D_{1} c_{2}+s_{0}\right) \geq d_{1}-\left(2 D_{1} c+s_{0}+\tau^{-}\right)$. Similarly
$\bar{a}_{0} \leq d_{4}+2 D_{1} c+s_{0}+\bar{c}$ and hence from the definition of ω we have $\phi_{x}\left(\bar{a}_{0}, \bar{r}_{0}\right) \geq \omega$.

Since $\left|y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right)-y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}, \bar{r}_{0}\right)\right| \leq \frac{\omega}{2}$ for $0 \leq z \leq c_{2}$ and since $\phi_{x}\left(\bar{a}_{0}, \bar{\gamma}_{0}\right) \geq \omega$, then $y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right) \geq y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{x}_{0}, \bar{r}_{0}\right)-\frac{\omega}{2}$ $=\phi_{x}\left(\bar{a}_{0}, \bar{\gamma}_{0}\right)-\frac{\omega}{2} \geq \omega-\frac{\omega}{2}=\frac{4}{2}$ for $0 \leq z \leq c_{2}$.

Since $\left(a_{0}, 0, \gamma_{0}\right)$ is on C_{1} we have either $\left|\bar{\gamma}_{0}-\gamma_{0}\right|>v$ or $\left|\bar{a}_{0}-a_{0}\right|>\sigma$ by the choice of ($\left.\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}\right)$. Thus either
$\sigma<\left|\bar{r}_{0}-r_{0}\right|=\frac{2}{\omega}\left|\int_{r_{0}}^{\bar{r}_{0}} \frac{\omega}{2} d \xi\right| \leq \frac{2}{\omega}\left|\int_{r_{0}}^{\bar{r}_{0}} y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, z\right) d z\right|$
$=\frac{2}{\omega}\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)-y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, r_{0}\right)\right|=\frac{2}{\omega}\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, r_{0}\right)\right|$
$=\frac{2}{\omega}\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, r_{0}\right)-y\left(x_{0}, y_{0}, t_{0}, r_{0}\right)\right|$
$\leq \frac{2}{\omega}\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}$, or $\sigma^{-}<\left|\bar{a}_{0}-a_{0}\right|$
$=\left|x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)-x\left(x_{0}, y_{0}, t_{0}, r_{0}\right)\right|$
$\leq\left|x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)-x\left(x_{0}, y_{0}, t_{0}, \bar{r}_{0}\right)\right|+\left|x\left(x_{0}, y_{0}, t_{0}, \bar{r}_{0}\right)-x\left(x_{0}, y_{0}, t_{0}, r_{0}\right)\right|$
$\leq\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}+D_{1}\left|\bar{\gamma}_{0}-\gamma_{0}\right| \leq\left(1+\frac{2 D_{1}}{U}\right)\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}$.
From this we see that all small enough neighborhoods of (x_{0}, y_{0}, t_{0}) do not contain any such points ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$). Therefore for all small enough neighborhoods of (x_{0}, y_{0}, t_{0}) we have ($x_{0}^{*}, y_{0}^{*}, t_{0}^{*}$) in the neighborhood and $r_{0}^{*}>0$ implies $h\left(x_{0}^{*}, y_{0}^{*}, t_{0}^{*}\right)=\psi_{1}\left(a_{0}^{*}, r_{0}^{*}\right)=p_{1}$.

Now suppose there is a point $\left(\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}\right)$ in ∂_{2} such that $\bar{\gamma}_{0}=0$ and $s<s_{0}$. Then $0 \leq \bar{\beta}_{0}=\bar{\beta}_{0}-\beta_{0}$
$\leq\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{\gamma}_{0}\right)-y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \gamma_{0}\right)\right|+\left|y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \gamma_{0}\right)-y\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)\right|$ $\leq D_{1}\left|\bar{\gamma}_{0}-\gamma_{0}\right|+\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}$. Since $D_{1}\left|\bar{\gamma}_{0}-\gamma_{0}\right| \leq D_{1} c_{2}<\hat{2}$, then $0 \leq \bar{\beta}_{0} \leq \tau$ for all such $\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$ near enough to (x_{0}, y_{0}, t_{0}). Also $\bar{\alpha}_{0}=x\left(\bar{x}_{0}, \bar{y}_{0}, \overline{\mathrm{t}}_{0}, \bar{\gamma}_{0}\right)-x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}, \gamma_{0}\right)+x\left(\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}, r_{0}\right)$
$-x\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)+a_{0} \leq D_{1}\left|\bar{r}_{0}-\gamma_{0}\right|+\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}+a_{0}$. Again $D_{1}\left|\bar{\gamma}_{0}-\gamma_{0}\right|<\tau$. Also $\alpha_{0} \leq \alpha_{2}$ since $\left(\alpha_{0}, 0, \gamma_{0}\right)$ is on C_{1}. Hence $\bar{a}_{0} \leq \alpha_{2}+\tau$ and similarly $\bar{a}_{0} \geq d_{1}-\tau$ for all such ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) near enough to $\left(x_{0}, y_{0}, t_{0}\right)$. It follows that for all such ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) near enough to (x_{0}, y_{0}, t_{0}) we have $d_{1}-\tau \leq \bar{a}_{0} \leq \alpha_{2}+\tau, 0 \leq \bar{\beta}_{0} \leq \tau$, and hence $h\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)=\psi_{2}\left(\bar{\alpha}_{0}, \bar{\beta}_{0}\right)=p_{1}$.

Therefore in Case $I h\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)=p_{1}$ for all ($\left.\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$ near enough to $\left(x_{0}, y_{0}, t_{0}\right)$. Hence h is uniformly H\&lder continuous in a neighborhood of (x_{0}, y_{0}, t_{0}).

Case II $\left[\beta_{0}=0, \gamma_{0}=0\right.$, and $\left(a_{0}, 0, \gamma_{0}\right)$ is on $\left.C_{1}\right]$. Since a, β, and γ are continuous at $\left(x_{0}, y_{0}, t_{0}\right)$, then for $\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$ in D_{2} near enough to ($\left.x_{0}, \bar{y}_{0}, t_{0}\right)$ we have $h\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)=p_{1}$, and h is uniformly HBlder continuous in some neighborhood of (x_{0}, y_{0}, t_{0}).

Similarly h is uniformly HBlder continuous in a neighborhood of (x_{0}, y_{0}, t_{0}) when $\beta_{0}=0$ and $\left(\alpha_{0}, 0, \gamma_{0}\right)$ is on C_{2}. This completes the proof of Lemma (3.1).

Theorem III follows from Lemna (3.1) as Theorem II followed from Lemma (2.2).

Next we want $u_{x x}, u_{x y}$, and $u_{y y}$ to be bounded at infinity. This is accomplished in Theorem IV.

$$
1-:-1
$$

Theorem IV. Let ϕ, ψ_{1}, and ψ_{2} satisfy the hypothesis of Theorern III. Let ϕ also satisfy (I_{D}).
(I_{D}) glb $\phi_{X}(x, t)>0$ where the greatest lower bound is taken over the set of all (x, t) such that $\phi_{x}(x, t) \geq 0$ and either $\left|x-x_{0}\right| \geq \sigma$ or $\left|t-t_{0}\right| \geq \sigma$ for each $\left(x_{0}, 0, t_{0}\right)$ on C_{1} or C_{2}.

Then there is a c_{3} such that $0<c_{3} \leq c_{2}$ and u has bounded second derivatives with respect to x and y in D_{3}
$=\left\{(x, y, t) \mid-\infty<x<\infty, y \geq 0,0 \leq t \leq c_{3}\right\}$.

Let $\bar{\omega}=$ glb $\phi_{X}(x, t)$ where the greatest lower bound is taken over the set specified in l_{D} of Theorem IV. Then $0<\bar{\omega} \leq \omega$.

Let c_{3} satisfy $0<c_{3} \leq c_{2}$ and $c_{3}\left(W D_{1}+M_{1}-D_{1} D_{2} \log D_{1} c_{3}\right) \leq \frac{\bar{L}}{2}$.
Again we prove several lemmas to aid us with the proof of the theorem.

Lemma (4.1). The HBlder continuity of h in (x, y) is uniform in $\mathbb{B}_{3}=\left\{(x, y, t) \mid(x, y, t) \varepsilon A_{3}\right.$ with $x \leq d_{1}-2 \sigma-D_{1} c_{3}-1$ or $x \geq d_{4}+2 \sigma+D_{1} c_{3}+1$ or $\left.y \geq 2 D_{1} c_{3}+1\right\}$ with respect to (x, y) and t.

Proof of Lemma (4.1). Let (x_{0}, y_{0}, t_{0}) be any point in \bar{B}_{3} and suppose $\beta_{0}=0$. We will show that then $y_{t}\left(x_{0}, y_{0}, t_{0}, t\right) \geq \frac{\bar{w}}{2}$ for $0 \leq t \leq c_{3}$. We have $y_{0}=y\left(x_{0}, y_{0}, t_{0}, t_{0}\right)-y\left(x_{0}, y_{0}, t_{0}, r_{0}\right)$ $\leq D_{1}\left|t_{0}-\gamma_{0}\right| \leq D_{1} c_{3}$. Therefore since (x_{0}, y_{0}, t_{0}) is in \mathcal{N}_{3} we have $x_{0} \leq d_{1}-2 \sigma-D_{1} c_{3}-1$ or $x_{0} \geq d_{4}+2 \sigma+D_{1} c_{3}+1$. Hence $a_{0}=x\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)-x\left(x_{0}, y_{0}, t_{0}, t_{0}\right)+x_{0} \leq D_{1} c_{3}+x_{0} \leq d_{1}-2 \sigma-1$ or $a_{0} \geq d_{4}+2 \sigma+1$, and thus $\phi_{x}\left(a_{0}, r_{0}\right) \geq \bar{\omega}_{\text {. Then for }} 0 \leq t \leq c_{3}$ we have $\left|y_{t}\left(x_{0}, y_{0}, t_{0}, t\right)-y_{t}\left(x_{0}, y_{0}, t_{0}, r_{0}\right)\right|$
$\leq\left|F_{2}\left[x\left(x_{0}, y_{0}, t_{0}, t\right), y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]-F_{2}\left[x\left(x_{0}, y_{0}, t_{0}, t\right), 0, t\right]\right|$ $+\left|\phi_{x}\left[x\left(x_{0}, y_{0}, t_{0}, t\right), t\right]-\phi_{x}\left(a_{0}, r_{0}\right)\right|$

$$
\mathrm{P}=-\ln \quad-
$$

$$
\begin{aligned}
& \leq-D_{2}\left|y\left(x_{0}, y_{0}, t_{0}, t\right)\right| \log \left|y\left(x_{0}, y_{0}, t_{0}, t\right)\right|+w\left|x\left(x_{0}, y_{0}, t_{0}, t\right)-x\left(x_{0}, y_{0}, t_{0}, r_{0}\right)\right| \\
& \quad+M_{1}\left|t-\gamma_{0}\right| \\
& \leq-D_{2} D_{1} c_{3} \log D_{1} c_{3}+W D_{1} c_{3}+M M_{1} c_{3} \leq \frac{\bar{L}}{2} \text { and hence } \\
& y_{t}\left(x_{0}, y_{0}, t_{0}, t\right) \geq y_{t}\left(x_{0}, y_{0}, t_{0}, r_{0}\right)-\frac{\bar{w}}{2}=\phi_{x}\left(a_{0}, r_{0}\right)-\frac{\bar{\omega}}{2} \geq \frac{\bar{\omega}}{2} \text { for } \\
& 0 \leq t \leq c_{3} .
\end{aligned}
$$

Now let (x_{0}, y_{0}, t_{0}) and ($\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}$) be in $\overline{19}_{3}$ with
$s=\sqrt{\left(\bar{x}_{0}-x_{0}\right)^{2}+\left(\bar{y}_{0}-\bar{y}_{0}\right)^{2}+\left(\bar{t}_{0}-t_{0}\right)^{2}}<s_{0}$. Consider the case where $\beta_{0}=0$. When $\bar{\gamma}_{0}>\gamma_{0}$, then $\bar{\beta}_{0}=0$ and $0<\bar{\gamma}_{0}-\gamma_{0}=\frac{2}{\bar{\omega}} \int_{\gamma_{0}}^{\gamma_{0}} \frac{\bar{\omega}}{2} d \xi$ $\leq \frac{2}{\omega} \int_{\gamma_{0}}^{\bar{r}_{0}} y_{t}\left(x_{0}, y_{0}, t_{0}, \xi\right) d \xi=\frac{2}{\omega} y\left(x_{0}, y_{0}, t_{0}, \bar{r}_{0}\right)$
$=\frac{2}{\bar{\omega}}\left[y\left(x_{0}, \bar{y}_{0}, t_{0}, \bar{Y}_{0}\right)-y\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)\right] \leq \frac{2}{\bar{\omega}}\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} C_{1}\right)}$. When $\bar{\gamma}_{0} \leq \gamma_{0}$, then $0 \leq \gamma_{0}-\bar{\gamma}_{0}=\frac{2}{\bar{\omega}} \int_{\gamma_{0}}^{\gamma_{0}} \overline{\frac{\omega}{2}} \mathrm{~d} \xi$
$\leq \frac{2}{\omega} \int^{\gamma_{0}} y_{t}\left(x_{0}, y_{0}, t_{0}, \xi\right) d \xi=-\frac{2}{\omega} y\left(x_{0}, y_{0}, t_{0}, \bar{\gamma}_{0}\right)$
$\leq \frac{2}{\bar{\omega}}\left[y\left(\bar{x}_{0}, \bar{x}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)-y\left(x_{0}, y_{0}, t_{0}, \bar{r}_{0}\right)\right] \leq \frac{2}{\bar{\omega}}\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}$.
Hence $\left|\bar{\gamma}_{0}-\gamma_{0}\right| \leq \frac{2}{\omega}\left[2\left(D_{1}+1\right) s\right] \exp \left(-2 D_{2} c_{1}\right)$ when $\beta_{0}=0$ and $s<s_{0}$.
Now consider the case where $\beta_{0}>0$. If $\bar{\beta}_{0}=0$ for some $\left(x_{0}, y_{0}, t_{0}\right)$ in $\bar{A} 3$ with $s<s_{0}$, we obtain $\left|\bar{\gamma}_{0}-\gamma_{0}\right|$ $\leq \frac{2}{\bar{\omega}}\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} C_{1}\right)}$ as in the previous case. If $\bar{\beta}_{0}>0$, we have $\bar{\gamma}_{0}=\gamma_{0}=0$.

Thus $\left|\bar{r}_{0}-\gamma_{0}\right| \leq \frac{2}{\bar{\omega}}\left[2\left(D_{1}+1\right) s\right]^{\exp \left(-2 D_{2} c_{1}\right)}$ for $s<s_{0}$. Since $\alpha_{0}=x\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)$ and $\beta_{0}=y\left(x_{0}, y_{0}, t_{0} \gamma_{0}\right)$, a similar result follows for a and β. Since ψ_{1} and ψ_{2} are uniformly Holder continuous, we can easily obtain the conclusion for Lemma (4.I).
$\vdots \quad \ddots \cdot,-1 \quad 1+1+1+1+1$ \square

$$
\begin{gathered}
1+2+\quad=2 \\
\vdots
\end{gathered}
$$

$\because=2+2+1+1+$

$$
F_{-1}+\frac{3}{2}
$$

$$
11=-.111
$$

$\because-1$

$$
-1=1=1
$$

$$
\cdots:=
$$

$$
\because=
$$

$$
\begin{aligned}
& \text { 1. : } \\
& \cdot 1=\frac{1}{2}+1, \ldots 1 \\
& \because 1+:= \\
& n=\ldots=\bar{i} \quad n \cdot i
\end{aligned}
$$

Proof of Theorem IV. Using the integral representations given in (II.3), (II.4), and (II.5) of the proof of Theorem II; the fact that $h(\xi, \eta, t)+\lambda^{2}(a \xi+b)$ is bounded; and the result of Lemma (4.1), we could show that $v_{x x}, v_{x y}$, and $v_{y y}$ are bounded in $\pi 3^{\circ}$. It follows that $u_{x x}, u_{x y}$, and $u_{y y}$ are bounded in \mathcal{N}_{3}. Since $u_{x x}, u_{x y}$, and $u_{y y}$ are continuous in \hat{N}_{3} by Theorem III, then $u_{x x}, u_{x y}$, and $u_{y y}$ are bounded in the closure of $\Delta_{3}-$ 何 $_{3}$. Hence $u_{x x}, u_{x y}$, and $u_{y y}$ are bounded in d_{3}.

We now come to our final existence theorem.
Theorem V. Let ϕ, ψ_{1}, and Ψ_{2} satisfy the hypotheses of Theorem IV. Let ϕ, ψ_{1}, and Ψ_{2} also satisfy the following assumptions some of which are repetitions.
$\left(I_{A}^{\prime}\right) \phi, \phi_{X}$, and $\phi_{X X}$ are continuous and have continuous bounded first derivatives with respect to x and t. Also $\left|\phi_{x x x}(\bar{x}, t)-\phi_{X X X}(x, t)\right| \leq L|\bar{x}-x|^{i}$ and $\left|\phi_{x x t}(\bar{x}, t)-\phi_{X x t}(x, t)\right| \leq L|\bar{x}-x|^{i}$ for all (\bar{x}, t) and (x, t) in the domain of ϕ.
$\left(2_{A}^{\prime \prime}\right) \psi_{I}, \Psi_{I x}$, and $\psi_{I t}$ are continuous. $\psi_{I x}$ and $\psi_{I t}$ are bounded and uniformly HOlder continuous.
$\left(3_{A}^{\prime \prime}\right) \psi_{2}, \psi_{2 x}$, and $\psi_{2 y}$ are continuous. $\psi_{2 x}$ and $\psi_{2 y}$ are bounded and uniformly Holder continuous.

$$
\begin{gathered}
\left(3_{B}^{1}\right) \quad \psi_{1}(x, 0)=\psi_{2}(x, 0) \text { and } \\
\psi_{1 t}(x, 0)=\frac{1}{2 \pi} \psi_{2 x}(x, 0) \iint_{\uparrow \geq 0} g_{y}(x, 0 ; \xi, \eta) \psi_{2}(\xi, \eta) d \xi d \eta
\end{gathered}
$$

$-\frac{1}{\pi} \psi_{2 x}(x, 0) \int_{-\infty}^{\infty}\left[\lambda^{2} \phi(\xi, 0)-\phi_{x x}(\xi, 0)\right] K(\lambda|\xi-x|) d \xi-\phi_{x}(x, 0) \psi_{2 y}(x, 0)$
for $(x, 0)$ in the domain of both ψ_{1} and ψ_{2}.

Then u satisfies $\left(4_{A}^{\prime}\right),\left(4_{B}^{\prime}\right),\left(4_{C}^{\prime}\right)$, and $\left(4_{D}^{\prime}\right)$ in \mathcal{N}_{3}.
$\left(4_{A}^{\prime}\right) u$ and its first and second partial derivatives with respect to x and y are continuous, and they all have continuous first partial derivatives with respect to x, y, and t.
$\left(4_{B}^{1}\right) \quad\left(\frac{\partial}{\partial t}-u_{y} \frac{\partial}{\partial x}+u_{x} \frac{\partial}{\partial y}\right)\left(\Delta u-\lambda^{2} u\right)=0$.
$\left(4_{C}^{\prime}\right) u(x, 0, t)=\phi(x, t), \Delta u(x, 0, t)-\lambda^{2} u(x, 0, t)=\psi_{1}(x, t)$
when (x, t) is in the domain of ψ_{1}, and $\Delta u(x, y, 0)-\lambda^{2} u(x, y, 0)$ $=\psi_{2}(x, y)$.
(4_{D}^{\prime}) $u(x, y, t)-a x-b$ and its first and second partial derivatives with respect to x and y are bounded.

Again we break up the proof of the theorem into several lemmas.

Let \mathcal{F}_{1} and \mathcal{F}_{2} be defined by $f_{1}(x, y, t)=-u_{y}(x, y, t)$ and $\mathcal{F}_{2}(x, y, t)=u_{x}(x, y, t)$ for (x, y, t) in \mathcal{S}_{3}, and $\mathcal{F}_{1}(x, y, t)$ $=u_{y}(x,-y, t)-2 u_{y}(x, 0, t)$ and $\mathcal{F}_{2}(x, y, t)=2 \phi_{x}(x, t)-u_{x}(x,-y, t)$ when $(x,-y, t)$ is in \hat{N}_{3}. Then \mathcal{F}_{1} and \mathcal{F}_{2} are continuous and have continuous first derivatives with respect to x and y. For (x_{0}, y_{0}, t_{0}) in the domain of \mathcal{F}_{1} and \mathcal{F}_{2} let $X(t)$ and $Y(t)$ be functions such that $X\left(t_{0}\right)=X_{0}, Y\left(t_{0}\right)=y_{0}$, and $\frac{d X(t)}{d t}=\mathcal{F}_{1}[X(t), Y(t), t]$ and $\frac{d Y(t)}{d t}$ $=\mathcal{F}_{2}[X(t), Y(t), t]$ for $0 \leq t \leq c_{3} \cdot X(t)$ and $Y(t)$ exist for $0 \leq t \leq c_{3}$ since \mathcal{F}_{1} and \mathcal{F}_{2} are continuous and bounded. X and Y are unique since \mathcal{F}_{1} and \mathcal{F}_{2} have continuous bounded first derivatives with respect to X and y. Since $X(t)$ and $Y(t)$ also depend on $\left(x_{0}, y_{0}, t_{0}\right)$, we use the notation $X\left(x_{0}, y_{0}, t_{0}, t\right)$ for $X(t)$ and $Y\left(x_{0}, Y_{0}, t_{0}, t\right)$ for $Y(t)$. We also observe that $X\left(x_{0}, y_{0}, t_{0}, t\right)$ and $Y\left(x_{0}, y_{0}, t_{0}, t\right)$ have continuous bounded first derivatives since \mathcal{F}_{1} and \mathcal{F}_{2} have continuous bounded first derivatives with respect to x and y.

$$
\begin{aligned}
& \text {. } 1 \text {, }
\end{aligned}
$$

$!$,
$\begin{array}{ccccccccc}1.2\end{array}$
$=-1 . .2=$

Let $\left(x_{0}, y_{0}, t_{0}\right)$ be in A_{3} and let t vary in an interval contraining t_{0} such that $[X(t), Y(t), t]$ is in $\dot{\Delta}_{3}$. For such t we have $\mathcal{F}_{i}[X(t), Y(t), t]=F_{i}[X(t), Y(t), t]$ for $i=1,2$. Hence $X\left(x_{0}, y_{0}, t_{0}, t\right)=x\left(x_{0}, y_{0}, t_{0}, t\right)$ and $Y\left(x_{0}, y_{0}, t_{0}, t\right)=y\left(x_{0}, y_{0}, t_{0}, t\right)$ for such $\left(x_{0}, y_{0}, t_{0}, t\right)$. Therefore $a_{0}=X\left(x_{0}, y_{0}, t_{0}, r_{0}\right)$ and $\beta_{0}=Y\left(x_{0}, y_{0}, t_{0}, r_{0}\right)$ for $\left(x_{0}, y_{0}, t_{0}\right)$ in \mathcal{C}_{3}.
Lemma (5.1). α, β, and γ have continuous first derivatives at $\left(x_{0}, y_{0}, t_{0}\right)$ in \hat{D}_{3} if $\beta_{0}>0$ or $\gamma_{0}>0$ with $\left(a_{0}, 0, \gamma_{0}\right)$ not on C_{1} or C_{2}.

Proof of Lemma (5.1). We will show that γ has continuous derivafives at the points mentioned. Since $a_{0}=X\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)$ and $\beta_{0}=Y\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right)$, the conclusion regarding a and β follows from the fact that X and Y have continuous first derivatives.

Case $I\left(\beta_{0}>0\right)$. Since β is continuous at $\left(x_{0}, y_{0}, t_{0}\right)$, we can choose a neighborhood R_{5} of (x_{0}, y_{0}, t_{0}) such that ($\bar{x}_{0}, \overline{\mathrm{y}}_{0}, \bar{t}_{0}$) in R_{5} implies $\bar{\beta}_{0}>0$. In such a neighborhood we have $\bar{\gamma}_{0}=0$ so that γ has continuous first derivatives at (x_{0}, y_{0}, t_{0}).

Case II ($\gamma_{0}>0$ with $\left(a_{0}, 0, r_{0}\right)$ not on C_{1} or $\left.C_{2}\right)$. Since a and γ are continuous at (x_{0}, y_{0}, t_{0}), we can choose a neighborhood R_{δ} of ($x_{0}, \mathrm{y}_{0}, \mathrm{t}_{0}$) such that ($\overline{\mathrm{x}}_{0}, \overline{\mathrm{y}}_{0}, \bar{t}_{0}$) in R_{δ} implies $\bar{\gamma}_{0}>0$ and $\left(\bar{a}_{0}, 0, \bar{\gamma}_{0}\right)$ is not on C_{1} or C_{2}. Hence $\bar{\beta}_{0}=Y\left(\bar{x}_{0}, \bar{y}_{0}, \overline{\mathrm{t}}_{0}, \bar{\gamma}_{0}\right)=0$ for $\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)$ in R_{5}. Since $Y_{t}\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}, \bar{r}_{0}\right)=\phi_{x}\left(\bar{a}_{0}, \bar{r}_{0}\right)>0$ for ($\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}$) in R_{δ}, we conclude from the implicit function theorem that γ has continuous first derivatives at (x_{0}, y_{0}, t_{0}).

Lemma (5:2). h has continuous first derivatives in \mathcal{D}_{3}. proof of Lemma (5.2). The proof follows from Lemma (5.1) if $\beta_{0}>0$ or $\gamma_{0}>0$ with ($a_{0}, 0, \gamma_{0}$) not on C_{1} or C_{2} since then $h\left(x_{0}, y_{0}, t_{0}\right)$ $=\psi_{1}\left(a_{0}, \beta_{0}\right)$ or $\psi_{2}\left(a_{0}, \gamma_{0}\right)$.

If $\beta_{0}=0$ and $\left(a_{0}, 0, \gamma_{0}\right)$ is on C_{1} or C_{2}, then h is a constant In some neighborhood of (x_{0}, y_{0}, t_{0}).

The remaining case is where $\beta_{0}=\gamma_{0}=0$ and $\left(a_{0}, 0,0\right)$ is not on C_{1} or C_{2}. We note that a, β, and γ are continuous at (x_{0}, y_{0}, t_{0}) and $\phi_{x}\left(a_{0}, 0\right) \neq 0$. Suppose there is a sequence $\left\{\left(x_{n}, y_{0}, t_{0}\right)\right\}$ of points in A_{3} such that $\gamma\left(x_{n}, y_{0}, t_{0}\right)=0, x_{n}-x_{0} \neq 0$, and $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. Then
$\frac{a\left(x_{n}, y_{0}, t_{0}\right)-a_{0}}{x_{n} x_{0}}=\frac{x\left(x_{n}, y_{0}, t_{0}, 0\right)-x\left(x_{0}, y_{0}, t_{0}, 0\right)}{x_{n}-x_{0}} \rightarrow x_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right)$ as
$n \rightarrow \infty, \frac{\beta\left(x_{n}, y_{0}, t_{0}\right)-\beta_{0}}{x_{n}-x_{0}} \rightarrow Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right)$ as $n \rightarrow \infty$, and hence $\frac{h\left(x_{n}, y_{0}, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)}{x_{n}-x_{0}}=\frac{\psi_{2}\left[a\left(x_{n}, y_{0}, t_{0}\right), \beta\left(x_{n}, y_{0}, t_{0}\right)\right]-\psi_{2}\left(a_{0}, 0\right)}{x_{n}-x_{0}}$ $\rightarrow X_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right) \psi_{2 x}\left(a_{0}, 0\right)+Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right) \psi_{2 y}\left(a_{0}, 0\right)$ as $n \rightarrow \infty$.

Suppose there is a sequence $\left\{\left(x_{n}, y_{0}, t_{0}\right)\right\}$ of points in Δ_{3} such that $\gamma\left(x_{n}, y_{0}, t_{0}\right)>0, x_{n}-x_{0} \neq 0$, and $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. Then $\frac{Y\left[x_{0}, y_{0}, t_{0}, r\left(x_{n}, y_{0}, t_{0}\right)\right]}{x_{n}-x_{0}}=\frac{Y\left[x_{0}, y_{0}, t_{0}, r\left(x_{n}, y_{0}, t_{0}\right)\right]-Y\left(x_{0}, y_{0}, t_{0}, r_{0}\right)}{x_{n}-x_{0}}$ $=\frac{\gamma\left(x_{n}, y_{0}, t_{0}\right)-\gamma_{0}}{x_{n}-x_{0}} y_{t}\left(x_{0}, y_{0}, t_{0}, \bar{\gamma}_{n}\right)$ where $\bar{\gamma}_{n}$ is between $\gamma\left(x_{n}, y_{0}, t_{0}\right)$ and γ_{0}.

Also $Y\left[x_{i n}, y_{0}, t_{0}, \gamma\left(x_{n}, y_{0}, t_{0}\right)\right]=\beta\left(x_{n}, y_{0}, t_{0}\right)=0$ and
$\frac{Y\left[x_{0}, Y_{0}, t_{0}, Y\left(x_{n}, y_{0}, t_{0}\right)\right]}{X_{n}-x_{0}}=\frac{Y\left[x_{0}, Y_{0}, t_{0}, Y\left(x_{n}, y_{0}, t_{0}\right)\right]-Y\left[x_{n}, y_{0}, t_{0}, Y\left(x_{n}, y_{0}, t_{0}\right)\right]}{x_{n}-x_{0}}$
$=-Y_{x_{0}}\left[\bar{x}_{n}, y_{0}, t_{0}, r\left(x_{n}, y_{0}, t_{0}\right)\right]$ where \bar{x}_{n} is between x_{n} and x_{0}.
Therefore $\frac{\gamma\left(x_{n}, y_{0}, t_{0}\right)-\gamma_{0}}{\bar{x}_{n}-x_{0}} y_{t}\left(x_{0}, y_{0}, t_{0}, \bar{\gamma}_{n}\right)$
$=-Y_{x_{0}}\left[\bar{x}_{n}, J_{0}, t_{0}, \gamma\left(x_{n}, y_{0}, t_{0}\right)\right]$. As $n \rightarrow \infty Y_{t}\left(x_{0}, y_{0}, t_{0}, \bar{r}_{n}\right)$
$\rightarrow Y_{t}\left(x_{0}, y_{0}, t_{0}, \gamma_{0}\right) \neq 0$. Therefore for n large enough we have
$Y_{t}\left(x_{0}, y_{0}, t_{0}, \bar{\gamma}_{n}\right) \neq 0$ and $\frac{r\left(x_{n}, y_{0}, t_{0}\right)-\gamma_{0}}{X_{n}-x_{0}}$
$Y_{x_{0}}\left[\bar{x}_{n}, y_{0}, t_{0}, \gamma\left(x_{n}, y_{0}, t_{0}\right)\right]$
$=-\frac{Y_{x_{0}}\left[\bar{x}_{n}, y_{0}, t_{0}, \gamma\left(x_{n}, y_{0}, t_{0}\right)\right]}{Y_{t}\left(x_{0}, y_{0}, t_{0}, \bar{Y}_{n}\right)} \rightarrow-\frac{Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right)}{\phi_{x}\left(a_{0}, 0\right)}$ as $n \rightarrow \infty$.
Also $\frac{a\left(x_{n}, y_{0}, t_{0}\right)-a_{0}}{x_{n}-x_{0}}=\frac{x\left[x_{n}, y_{0}, t_{0}, \gamma\left(x_{n}, y_{0}, t_{0}\right)\right]-x\left(x_{0}, y_{0}, t_{0}, r_{0}\right)}{x_{n}-x_{0}}$
$=x_{x_{0}}\left[\bar{x}_{n}, y_{0}, t_{0}, \gamma\left(x_{n}, y_{0}, t_{0}\right)\right]+\frac{\gamma\left(x_{n}, y_{0}, t_{0}\right)-\gamma_{0}}{x_{n}-x_{0}} x_{t}\left(x_{0}, y_{0}, t_{0}, \bar{\gamma}_{n}\right)$
where \bar{x}_{n} is between x_{0} and x_{n} and $\bar{\gamma}_{n}$ is between γ_{0} and $\gamma\left(x_{n}, y_{0}, t_{0}\right)$.
Hence $\frac{a\left(x_{n}, y_{0}, t_{0}\right)-a_{0}}{x_{n}-x_{0}} \rightarrow X_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right)+\frac{Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right)}{\phi_{x}\left(a_{0}, 0\right)} u_{y}\left(a_{0}, 0,0\right)$ as $n \rightarrow \infty$.

Let $\bar{\psi}_{1}(x, t)=\psi_{1}(x, t)$ when (x, t) is in the domain of ψ_{1} and, when (x, t) is not in the domain of ψ_{I}, define \bar{W}_{I} so that Ψ_{I} is continuous and has continuous derivatives everywhere. Then $\frac{h\left(x_{n}, y_{0}, t_{0}\right)-h\left(x_{0}, z_{0}, t_{0}\right)}{x_{n}-x_{0}}=\frac{\bar{\psi}_{1}\left[a\left(x_{n}, y_{0}, t_{0}\right), r\left(x_{n}, y_{0}, t_{0}\right)\right]-\bar{\psi}_{1}\left(a_{0}, r_{0}\right)}{x_{n}-x_{0}}$ $=\frac{a\left(x_{n}, y_{0}, t_{0}\right)-a_{0}}{x_{n}-x_{0}} \bar{\psi}_{I x}\left[\bar{a}_{n}, \gamma\left(x_{n}, \bar{y}_{0}, t_{0}\right)\right]+\frac{r\left(x_{n}, y_{0}, t_{0}\right)-\gamma_{0}}{x_{n}-x_{0}} \bar{\psi}_{I t}\left(a_{0}, \bar{\gamma}_{n}\right)$ (where \bar{a}_{n} is between $a\left(x_{n}, y_{0}, t_{0}\right)$ and a_{0} and $\bar{\gamma}_{n}$ is between $r\left(x_{n}, y_{0}, t_{0}\right)$ and $\left.r_{0}\right)$
$\rightarrow\left\{x_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right)+\frac{Y_{X_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right)}{\phi_{X}\left(a_{0}, 0\right)} u_{y}\left(a_{0}, 0,0\right)\right\} \psi_{I X}\left(a_{0}, 0\right)$
$-\frac{Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right)}{\phi_{X}\left(a_{0}, 0\right)} \psi_{I t}\left(a_{0}, 0\right)$ as $n \rightarrow \infty$.
From (3_{B}^{\prime}) of the theorem we obtain
$\psi_{I t}\left(a_{0}, 0\right)=\psi_{I x}\left(a_{0}, 0\right) u_{y}\left(a_{0}, 0,0\right)-\phi_{X}\left(a_{0}, 0\right) \psi_{2 y}\left(a_{0}, 0\right)$. Hence $\frac{h\left(x_{n}, y_{0}, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)}{x_{n}-x_{0}} \rightarrow x_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right) \psi_{2 x}\left(a_{0}, 0\right)$ $+Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right) \psi_{2 y}\left(a_{0}, 0\right)$ as $n \rightarrow \infty$.

$$
\begin{aligned}
& \text { Ey }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • }-\frac{1}{1} \frac{1}{-}-1+\cdots+\cdots+- \\
& \text { !. : }
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{\pi}{\sigma}+\mathrm{Ti} \\
& 11-1 .
\end{aligned}
$$

We may now conclude that $h_{x_{0}}\left(x_{0}, y_{0}, t_{0}\right)$ exists and
$h_{x_{0}}\left(x_{0}, y_{0}, t_{0}\right)=x_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right) \psi_{2 x}\left(a_{0}, 0\right)+Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, 0\right) \Psi_{2 y}\left(a_{0}, 0\right)$ (we use $h_{x_{0}}, h_{y_{0}}$, and $h_{t_{0}}$ to denote the derivatives of h since h was defined as a function of ($\left.x_{0}, y_{0}, t_{0}\right)$).

The continuity of $h_{x_{0}}$ in \hat{S}_{3} follows easily using $\left(3_{B}^{\prime}\right)$ of the theorem.

Similarly we can show that $h_{y_{0}}$ and $h_{t_{0}}$ exist and are continuous

Lemma (5.3). The first partial derivatives of h are bounded in A_{3}.
Proof of Lemma (5.3). By examining the expressions for the first derivatives of h we can easily show that the first derivatives are bounded in any set such that if (x_{0}, y_{0}, t_{0}) is the set and $\beta_{0}=0$, then $\phi_{x}\left(a_{0}, \gamma_{0}\right) \geq \bar{\omega}$. Since the set of points (x_{0}, y_{0}, t_{0}) for which $\beta_{0}=0$ and $\phi_{x}\left(a_{0}, r_{0}\right) \leq \bar{\omega}$ is a bounded set, and since the first derivatives of h are continuous everywhere, it follows that the first derivatives of h are bounded.

Lemma (5.4). (4_{A}^{\prime}) is valid in A_{3}.
Proof of Lemma (5.4). We have already shown that $u_{,} u_{x}, u_{y}, u_{x x}$, $u_{x y}$, and $u_{y y}$ are continuous in \hat{S}_{3}. We have yet to show that $u_{t}, u_{t x}$, and $u_{t y}$ exist and are continuous in δ_{3} and that $u_{x x}$, $u_{x y}$, and $u_{y y}$ have continuous first derivatives with respect to x, y, and t in A_{3}.

We could show that w and its first and second derivatives with respect to x and y have continuous bounded first derivatives with respect to x, y, and t using the same methods used to prove Lemma (1.1).
?

In a straight forward manner we can show that $v_{t}, v_{t x}$, and $v_{t y}$ exist and are continuous since h_{t} is continuous and bounded. Hence we may conclude that $u_{t}, u_{t x}$, and $u_{t y}$ exist and are continuous.

Since h has bounded first derivatives, h is H8lder continuous in (x, y) where the $H B l d e r$ continuity is uniform with respect to (x, y) and t. Hence, using (II.3), (II.4), and (II.5) of the proof of Theorem II, we can show that $v_{x x}, v_{x y}$, and $v_{y y}$ are HBlder continuous in (x, y) where the Hblder continuity is uniform with respect to both (x, y) and t. This can be shown with arguments similar to those used in proving Lemma (1.3) for all the integrals excepting the last. Te can show that the last integral has continuous bounded first derivatives with respect to x and y so the result follows for the last integral also.

Since $W_{x x}$, $W_{x y}$, and $W_{y y}$ have bounded first derivatives with respect to x and y in 3 , then $w_{x x}, W_{x y}$, and $w_{y y}$ are Holder continuous in (x, y) where the Holder continuity is uniform with respect to both (x, y) and t.

Since $u=v-w+a x+b$, it follows in A 3 that $u_{x x}$, $u_{x y}$, and $u_{y y}$ are H\&lder continuous in (x, y) and that the H\&lder continuity is uniform with respect to both (x, y) and t.

ces

- 1
34^{\prime} ': : . 3, 1 1

$\pi=1$
\square

$$
\text { : } \cdots
$$

$$
-1 .-\quad i=1
$$

\qquad
\qquad

$$
\therefore \quad . \quad \therefore \quad \because \quad<i
$$

Next we will show that the first derivatives of $X\left(x_{0}, y_{0}, t_{0}, t\right)$ and $Y\left(x_{0}, y_{0}, t_{0}, t\right)$ with respect to x_{0}, y_{0}, and t_{0} are Holder continuous in (x_{0}, y_{0}) and that the Holder continuity is uniform with respect to ($\mathrm{x}_{0}, \mathrm{y}_{0}$), t_{0}, and t . Let ($\overline{\mathrm{x}}_{0}, \overline{\mathrm{y}}_{0}, \mathrm{t}_{0}$) and ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{t}_{0}$) be any points in \wedge_{3} with $s=\sqrt{\left(\bar{x}_{0}-x_{0}\right)^{2}+\left(\bar{y}_{0}-y_{0}\right)^{2}}$. Let
$z_{1}(t)=\left|X_{x_{0}}\left(\bar{x}_{0}, \bar{y}_{0}, t_{0}, t\right)-X_{x_{0}}\left(x_{0}, y_{0}, t_{0}, t\right)\right|$ and $z_{2}(t)$
$=\left|Y_{x_{0}}\left(\bar{x}_{0}, \bar{y}_{0}, t_{0}, t\right)-Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, t\right)\right|$. Then $X_{x_{0}}\left(x_{0}, y_{0}, t_{0}, t\right)$
$=1+\int_{t}^{t} X_{x_{0}}\left(x_{0}, y_{0}, t_{0}, \xi\right) f_{1 x^{\prime}}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), Y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi$
$+\int_{t_{0}}^{t} Y_{x_{0}}\left(x_{0}, y_{0}, t_{0}, \xi\right) \mathcal{F} 1 y\left[X\left(x_{0}, y_{0}, t_{0}, \xi\right), Y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi$. Then
there are constants \bar{M} and $\varepsilon(0<\varepsilon<1)$ such that for s small

$$
\begin{aligned}
& \text { enough we have } z_{1}(t) \\
& =1 \int_{t_{0}}^{t}\left[x_{x_{0}}\left(\bar{x}_{0}, \bar{y}_{0}, t_{0}, \xi\right)-x_{x_{0}}\left(x_{0}, y_{0}, t_{0}, \xi\right)\right] f_{l x}\left[x\left(\bar{x}_{0}, \bar{y}_{0}, t_{0}, \xi\right), y\left(\bar{x}_{0}, \bar{y}_{0}, t_{0}, \xi\right), \xi\right] d \dot{\xi} \\
& +\int_{t_{0}}^{t} x_{x_{0}}\left(x_{0}, y_{0}, t_{0}, \xi\right)\left\{\mathcal{f}_{I x}\left[x\left(\bar{x}_{0}, \bar{y}_{0}, t_{0}, \xi\right), Y\left(\bar{x}_{0}, \bar{y}_{0}, t_{0}, \xi\right), \xi\right]\right. \\
& \left.-\mathcal{F}_{1 x}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), Y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]\right\} d \xi+\text { etc. } 1 \\
& \leq\left|\int_{t_{0}}^{t}\left[\vec{M} z_{1}(\xi)+\bar{M} s^{\varepsilon}+\bar{M} z_{2}(\xi)+\bar{M} s{ }^{\varepsilon}\right] d \xi\right| \leq \bar{M} \mid \int_{t_{0}}^{t}\left[z_{1}(\xi)+z_{2}(\xi)\right] d \xi+2 \bar{M} c_{3} s^{\varepsilon} . \\
& \text { Similarly } z_{2}(\xi) \leq \bar{M}\left|\int_{t}^{t}\left[z_{1}(\xi)+z_{2}(\xi)\right] d \xi\right|+2 \bar{M} C_{3} s^{\varepsilon} \text {. Let } \\
& R(t)=1 \int_{t_{0}}^{t}\left[z_{1}(\xi)+z_{2}(\xi) d \xi \mid \text {. For } t \geq t_{0}\right. \text { we have } \\
& R^{\prime}(t) \leq 4 \bar{M} c_{3} s^{\varepsilon}+2 \bar{M} R(t), \frac{d}{d t} R(t) e^{-2 \bar{M}\left(t-t_{0}\right)} \leq 4 \bar{M} c_{3} s^{\varepsilon} e^{-2 \bar{M}\left(t-t_{0}\right)} \text {, }
\end{aligned}
$$

n...

$$
\begin{aligned}
& 4-1 \cdot-:+1+!+3 \\
& \therefore 7 \mathrm{an} \quad \therefore=1+10+10
\end{aligned}
$$

$R(t) e^{-2 \bar{M}\left(t-t_{0}\right)} \leq-2 c_{3} s^{\varepsilon}\left(e^{-2 \bar{M}\left(t-t_{0}\right)}-1\right), R(t) \leq 2 c_{3} s^{\varepsilon}\left(e^{2 \bar{M}\left(t-t_{0}\right)}-1\right)$
$\leq 2 c_{3} s^{\varepsilon}\left(e^{2 \bar{M} c}-1\right)$. Thus $z_{1}(t) \leq \overline{\mathbb{M}}(t)+2 \overline{\mathrm{M}} c_{3} s^{\varepsilon} \leq 2 \overline{\mathrm{M}} c_{3} s^{\varepsilon} e^{2 \overline{\mathrm{M}} c}$. We obtain the same result when $t \leq t_{0}$. In a similar way we can show that the other first derivatives of X and Y are HBlder continuous in (x_{0}, y_{0}) uniformly with respect to $\left(x_{0}, y_{0}\right), t_{0}$, and t. Now we could show that in some neighborhood of a point ($\bar{x}_{0}, \bar{y}_{0}, \bar{E}_{0}$) the first derivatives of $a\left(x_{0}, y_{0}, t_{0}\right), \beta\left(x_{0}, y_{0}, t_{0}\right)$, and $r\left(x_{0}, y_{0}, t_{0}\right)$ with respect to x_{0}, y_{0}, and t_{0} are Holder continuous in (x_{0}, y_{0}) where the Holder continuity is uniform with respect to $\left(x_{0}, \bar{y}_{0}\right)$ and t_{0} provided that $\beta\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)>0$ or $\beta\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)=0$ with $\left[\alpha\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right), 0, \gamma\left(\bar{x}_{0}, \bar{y}_{0}, \bar{t}_{0}\right)\right]$ not on C_{1} or C_{2}.

Next we could show that in some neighborhood of each point in $人_{3}^{(j}$ the first derivatives of $h(\xi, h, t)$ are HOlder continuous in (ξ, η) where the HOlder continuity is uniform with respect to (ξ, η) and t.

For an arbitrary point (x_{0}, y_{0}, t) we have
(5.4.I) $\quad v_{x x}(x, y, t)=\frac{1}{2 \pi} \iint_{\eta \geq 0} g_{x}(x, y ; \xi, \eta)\left[h_{\xi}(\xi, r, t)+a \lambda^{2}\right] d \xi d \eta$

$$
=\frac{1}{2 \pi} \iint g_{x}(x, y ; \xi, \eta)\left[h_{\xi}(\xi, \eta, t)-h_{\xi}\left(x_{0}, y_{0}, t\right)\right] d \xi d^{r}
$$ $\eta \geq 0$

(5.4.2)

$$
\begin{aligned}
v_{x y}(x, y, t)= & \frac{1}{2 \pi} \iint_{\eta \geq 0} g_{y}(x, y ; \xi, \eta)\left[h_{\xi}(\xi, r, t)+a \lambda^{2}\right] d \xi d r \\
= & \frac{1}{2 \pi} \iint_{\eta \geq 0} g_{y}(x, y ; \xi, \eta)\left[h_{\xi}(\xi, r, t)-h_{\xi}\left(x_{0}, y_{0}, t\right)\right] d \xi d r \\
& -h_{\xi}\left(x_{0}, y_{0}, t\right) \frac{1}{\pi} \int_{-\infty}^{\infty} K(\lambda v) d \xi, \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \cdot-1 \\
& \text { ・ロッ • (1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - . . . }-
\end{aligned}
$$

$$
\begin{aligned}
& \text { What }
\end{aligned}
$$

$$
\begin{aligned}
& 1 .+2+1 \\
& \text { oi }=-
\end{aligned}
$$

(5.4.6) $\quad v_{y y}(x, y, t)=-\frac{1}{2 \pi} \iint_{\eta \geq 0} g_{\eta}(x, y: \xi, \eta) h_{\eta}(\xi, \eta, t) d \xi d h_{l}$

$$
\begin{gathered}
=-\frac{1}{2 \pi} \iint_{\eta \geq 0} g_{\eta}(x, y ; \xi, \eta)\left[h_{h}(\xi, \gamma, t)-h_{h}\left(x_{0}, y_{0}, t\right)\right] d \xi d \eta \\
\\
-\frac{\lambda y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\nu} K^{t}(\lambda \nu)\left[h(\xi, 0, t)+\lambda^{2}(a \xi+b)\right] d \xi d \eta .
\end{gathered}
$$

Since h_{ξ} and h_{η} are HOlder continuous in (x, y) uniformly with respect to (x, y) and t for (x, y, t) in some neighborhood of (x_{0}, y_{0}, t), we can differentiate under the integral signs with respect to x and y at ($\left.x_{0}, y_{0}, t\right)$, and we can show that the resulting derivatives are continuous at (x_{0}, y_{0}, t).

We could show that we can differentiate under the integral sign with respect to t in (II.3), (II.4), and (II.5) (contained in the proof of Theorem II), and from the resulting expressions we could show that $v_{t x x}, v_{t x y}$, and $v_{t y y}$ are continuous. Finally it follows that $u_{x x}, u_{x y}$, and $u_{y y}$ have continuous first derivatives with respect to x, y, and t. We remark that it would also be possible to show that the first derivatives of $u_{x x}$, $u_{x y}$, and $u_{y y}$ with respect to x, y, and t are Holder continuous in (x, y).

Leman (5.5). $\left(4_{B}^{\prime}\right)$ is valid in δ_{3}.
Lemma (5.5) is obvious since h is constant along the air particle paths of u.

We have previously shown that (4_{C}^{\prime}) and (4_{D}^{\prime}) are valid, and hence this completes the proof of Theorem V.

Part III

Uniqueness

Uniqueness Theorem. Let ϕ, ψ_{I} and ψ_{2} satisfy the hypothesis of Theorem V. Let \bar{u} be any real valued function with domain \hat{N}_{3} such that $\left(4_{A}^{\prime}\right),\left(4_{B}^{\prime}\right),\left(4_{C}^{\prime}\right)$, and $\left(4_{D}^{\prime}\right)$ are valid with u replaced by \bar{u}. Then $\bar{u}=u$ in A_{3}.

Proof. Let $\bar{h}=\Delta \bar{u}-\lambda^{2} \bar{u}$. From ($\left.4 \begin{array}{l}\text { d }\end{array}\right)$ we see that $\bar{u}(x, y, t)-a x-b$, $\bar{u}_{x}(x, y, t)-a, \bar{u}_{y}(x, y, t)$, and $\bar{h}(x, y, t)+\lambda^{2}(a x+b)$ are bounded in \mathcal{D}_{3}, and hence we can show that (3) is valid with u and h replaced by \bar{u} and \bar{h} respectively. This result follows from

$$
\begin{aligned}
& \iint\left[\triangle \bar{u}-\lambda^{2} \bar{u}+\lambda^{2}(a \xi+b)\right] g(x, y ; \xi, \eta) d \xi d \eta \\
& =\iint\left[\bar{h}(\xi, \eta, t)+\lambda^{2}(a \xi+b)\right] g(x, y ; \xi, \eta) d \xi d^{\eta} l=\int\left[g \frac{d(\bar{u}-a \xi-b)}{d n}-(\bar{u}-a \xi-b) \frac{d g}{d n}\right] d s
\end{aligned}
$$

where the double integration is over the region defined by $\eta \geq 0, \xi^{2}+\eta^{2} \leq R^{2}$, and $\rho \leq \varepsilon$, and the single integral is taken along the boundary of the above region in the positive sense. Letting $R \rightarrow \infty$ and then $\varepsilon \rightarrow 0$ we obtain (3) with u and h replaced by \bar{u} and \bar{h} respectively. Obtain functions $\overline{\mathcal{F}}_{1}, \overline{\mathcal{F}}_{2}, \bar{X}, \bar{Y}, \vec{a}, \bar{\beta}$, and $\bar{\gamma}$ from \bar{u} as $\mathcal{F}_{1}, \mathcal{F}_{2}$, X, Y, α, β, and γ respectively were obtained from u. Methods similar to those used previously can be used to show that \mathcal{F}_{1}, $\overline{\mathcal{F}_{2}}$, \bar{X}, and \bar{Y} have bounded first derivatives with respect to all their variables. Choose D to be an upper bound in λ_{3} of the absolute values of $\exists_{1}, \xi_{2}, \bar{\xi}_{1}, \overline{\mathcal{F}}_{2}$ and the first partial derivatives of $\overline{7}_{1}$, $\overline{\mathcal{F}}_{2}, \overline{\mathcal{F}}_{1}, \overline{\mathcal{F}}_{2}, \mathrm{X}, \overline{\mathrm{X}}, \mathrm{Y}, \overline{\mathrm{Y}}$, and h .

$$
\begin{aligned}
& \text { * }
\end{aligned}
$$

$$
\begin{aligned}
& -7 \div
\end{aligned}
$$

$$
\begin{aligned}
& \text {.. } 1414
\end{aligned}
$$

$$
\begin{aligned}
& \therefore
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) il . } \\
& \cdot+3+1+20
\end{aligned}
$$

Assume $u(x, y, t) \equiv \vec{u}(x, y, t)$ ind \mathcal{H}_{3}. Let $c^{*}=$ sup \bar{E} where the sup is taken over all $\bar{E} \geq 0$ such that $\bar{u}(x, y, t)=u(x, y, t)$ for (x, y, t) in \mathcal{A}_{3} and $0 \leq t \leq \bar{t}$. Possibly $c^{*}=0$. If $c^{*}=0$, then $\bar{u}\left(x, y, c^{*}\right)=u\left(x, y, c^{*}\right)$ follows from (3). If $c^{*}>0$, then $\bar{u}\left(x, y, c^{*}\right)=u\left(x, y, c^{*}\right)$ follows from the continuity of \bar{u} and u and the fact that $\bar{u}(x, y, t)=u(x, y, t)$ for $0 \leq t<c^{*}$.

Assume $c^{*}<c_{3}$. Then we will arrive at a contradiction by showing that there is an $\varepsilon>0$ such that $\bar{u}(x, y, t) \equiv u(x, y, t)$ for $c^{*} \leq t \leq c^{*}+\varepsilon$. It follows then that $c^{*}=c_{3}$, and Theorem VI is proved.

We have shown that h is identically p_{i} in some neighborhood of each point on $C_{i}(i=1,2)$. Hence we can choose $\delta_{1}>0$ so that $h\left(x, y, c^{*}\right)=p_{i}$ for $\left|x-x_{i}\left(c^{*}\right)\right| \leq \delta_{1}(i=1,2)$ and $0 \leq y \leq \delta_{1}$, and also $h(x, 0, t)=p_{i}$ when $\left|x-x_{i}\left(c^{*}\right)\right| \leq \delta_{1}(i=1,2)$ and $c^{*} \leq t \leq c^{*}+\delta_{1}$. Then we choose $\delta_{2}>0$ so that $\delta_{2}<\delta_{1}$ and $\left|x_{i}(t)-x_{i}\left(c^{*}\right)\right| \leq \frac{\delta_{1}}{3}$ $(i=1,2)$ for $c^{*} \leq t \leq c^{*}+\delta_{2}$. Then $h(x, 0, t)=p_{i}$ when (x, t) is in the domain of ψ_{1} if $\left|x-x_{i}\left(c^{*}\right)\right| \leq \delta_{1}(i=1,2)$ and $c * \leq t \leq c^{*}+\delta_{2}$. Since $\bar{u}(x, y, t)=u(x, y, t)$ for $0 \leq t \leq c^{*}$, then $\bar{h}\left(x, y, c^{*}\right)=h\left(x, y, c^{*}\right)$. Also $\bar{h}(x, 0, t)=\psi_{1}(x, t)=h(x, 0, t)$ when (x, t) is in the domain of ψ_{1}. Therefore $\bar{h}\left(x, y, c^{*}\right)=p_{i}$ for $\left|x-x_{i}\left(c^{*}\right)\right| \leq \delta_{1}(i=1,2)$ and $0 \leq y \leq \delta_{1}$, and $\bar{h}(x, 0, t)=p_{i}$ when (x, t) is in the domain of ψ_{1} if $\left|x-x_{i}\left(c^{*}\right)\right| \leq \delta_{1}(i=1,2)$ and $c^{*} \leq t \leq c^{*}+\delta_{2}$.

Let $W^{*}=$ gib $\phi_{X}(x, t)$ where the greatest lower bound is taken over all (x, t) such that $\phi_{X}(x, t) \geq 0, c^{*} \leq t \leq c^{*}+\delta_{2}$, and either $x \leq x_{1}\left(c^{*}\right)-\frac{2 \delta_{1}}{3}$ or $x \geq x_{2}\left(c^{*}\right)+\frac{2 \delta_{1}}{3}$. Then $w^{*}>0$.

\square
-4 .

- 11 \square

$$
: \quad A=
$$

$$
\text { . } \quad \text {. } \quad \cdot \quad \cdot \quad+
$$

$$
\cdot \frac{1}{2}+1+=\cdot 1+
$$

$$
1+1=1
$$

Choose $\varepsilon>0$ so that $\varepsilon<\delta_{2}, 3 D \varepsilon(2 D+1) \leq \frac{\omega^{*}}{2}, 2 D \varepsilon \leq \frac{\delta_{1}}{3}$, and $12 M D \varepsilon\left(1+\frac{1}{\lambda^{2}}\right)\left(1+\frac{2 D+1}{\omega^{*}}\right) e^{2 D C} \leq \frac{1}{3}$.

Let $\mathbb{N}(\bar{u}-u)=\left\|\bar{u}_{x}-u_{x}\right\|+\left\|\bar{u}_{y}-u_{y}\right\|$ with $\left\|\bar{u}_{x}-u_{x}\right\|$
$=\sup \left|\bar{u}_{x}(x, y, t)-u_{x}(x, y, t)\right|$ and $\left\|\bar{u}_{y}-u_{y}\right\|=\sup \left|\bar{u}_{y}(x, y, t)-u_{y}(x, y, t)\right|$ where the sup is taken over all (x, y, t) in l_{3} such that $c^{*} \leq t \leq c^{*}+\varepsilon$.

We now insert several leminas.
Lemma (uT. 1). $\left|\bar{X}\left(x_{0}, y_{0}, t_{0}, t\right)-X\left(x_{0}, y_{0}, t_{0}, t\right)\right| \leq 3 \varepsilon e^{2 D C} \mathbb{N}(\bar{u}-u)$ and $\left|\bar{Y}\left(x_{0}, y_{0}, t_{0}, t\right)-Y\left(x_{0}, Y_{0}, t_{0}, t\right)\right| \leq 3 \varepsilon e^{2 D C} \pi(\bar{u}-u)$ for $c^{*} \leq t_{0} \leq c^{*}+\varepsilon$ and $c^{*} \leq t \leq c^{*}+\varepsilon$.

Proof of Lemma (uT.1). For any fixed (x_{0}, y_{0}, t_{0}) with $c^{*} \leq t_{0} \leq c^{*}+\varepsilon$ let $z_{1}(t)=\left|\bar{X}\left(x_{0}, y_{0}, t_{0}, t\right)-X\left(x_{0}, y_{0}, t_{0}, t\right)\right|$ for $c^{*} \leq t \leq c^{*}+\varepsilon$ and $z_{2}(t)=\left|\vec{Y}\left(x_{0}, y_{0}, t_{0}, t\right)-Y\left(x_{0}, y_{0}, t_{0}, t\right)\right|$ for $c^{*} \leq t \leq c^{*}+\varepsilon$ 。

Then $z_{1}(t)=\mid x_{0}+\int_{t_{0}}^{t} \bar{f}_{1}\left[\bar{x}\left(x_{0}, y_{0}, t_{0}, \xi\right), \bar{y}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi$
$\left.-x_{0}-\int_{t_{0}}^{t} f_{1}\left[X\left(x_{0}, y_{0}, t_{0}, \xi\right), Y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right] d \xi\right)$
$\leq 1 \int_{t_{0}}^{t}\left\{\bar{y}_{1}\left[\vec{x}\left(x_{0}, y_{0}, t_{0}, \xi\right), \vec{y}\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]-\bar{z}_{1}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), Y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]\right\} d \xi \mid$
$+1 \int_{t_{0}}^{t}\left\{\bar{f}_{1}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), x_{\left.\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]}\right.\right.$
$\left.-\mathcal{F}_{1}\left[x\left(x_{0}, y_{0}, t_{0}, \xi\right), Y\left(x_{0}, y_{0}, t_{0}, \xi\right), \xi\right]\right\} d \xi$
$\leq D\left|\int_{t_{0}}^{t}\left[z_{1}(\xi)+z_{2}(\xi)\right] d \xi\right|+3\left\|\bar{u}_{y}-u_{y}\right\|\left|t-t_{0}\right|$
$\leq 3 \varepsilon\left\|\bar{u}_{y}-u_{y}\right\|+D\left|\int_{t_{0}}^{t}\left[z_{1}(\xi)+z_{2}(\xi)\right] d \xi\right|$. Similarly we obtain
$z_{2}(t) \leq 3 \varepsilon\left\|\bar{u}_{x}-u_{x}\right\|+D\left|\int_{0_{0}}^{t}\left[z_{1}(\xi)+z_{2}(\xi)\right] d \xi\right|$ so that
$z_{1}(t)+z_{2}(t) \leq 3 \varepsilon N(\bar{u}-u)+2 D\left|\int_{t_{0}}^{t}\left[z_{1}(\xi)+z_{2}(\xi)\right] d \xi\right|$.
Let $R(t)=\left|\int_{t_{0}}^{t}\left[z_{1}(\xi)+z_{2}(\xi)\right] d \xi\right|$ for $c * \leq t \leq c^{*}+\varepsilon$. For $t \geq t_{0}$
we have $R^{\prime}(t)=z_{1}(t)+z_{2}(t) \leq 3 \in N(\bar{u}-u)+2 D R(t)$,
$R^{\prime}(t)-2 D R(t) \leq 3 \varepsilon N(\bar{u}-u), \frac{d}{d t}\left[R(t) e^{-2 D\left(t-t_{0}\right)}\right] \leq 3 \varepsilon N(\bar{u}-u) e^{-2 D\left(t-t_{0}\right)}$,
$R(t) e^{-2 D\left(t-t_{0}\right)}-R\left(t_{0}\right) \leq-\frac{3 \varepsilon}{2 D} N(\bar{u}-u)\left[e^{-2 D\left(t-t_{0}\right)}-1\right]$, and
$R(t) \leq \frac{3 \varepsilon}{2 D} N(\bar{u}-u)\left[e^{2 D\left(t-t_{0}\right)}-1\right] \leq \frac{3 \varepsilon}{2 D} N(\bar{u}-u)\left(e^{2 D c}-1\right)$. Similarly we obtain the same result when $t \leq t_{0}$. Therefore $z_{i}(t) \leq z(t)+z_{2}(t)$ $\leq 3 \varepsilon N(\bar{u}-u)+2 D R(t) \leq 3 \varepsilon e^{2 D C} N(\bar{u}-u)$ for $i=1,2$.

Lemma (Tu.2). $\left|\bar{h}\left(x_{0}, \nabla_{0}, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)\right| \leq 6 D \varepsilon\left(I+\frac{2 D+1}{\omega^{*}}\right) e^{2 D c} N(\bar{u}-u)$ for $\left(x_{0}, y_{0}, t_{0}\right)$ in \mathcal{S}_{3} with $c^{*} \leq t_{0} \leq c^{*}+\varepsilon$.

Let ($\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{0}, \mathrm{t}_{0}$) be any point in δ_{3} with $\mathrm{c}^{*} \leq \mathrm{t}_{0} \leq \mathrm{c}^{*}+\varepsilon$. If $y_{0}>0$ and $t_{0}>c^{*}$ let $t_{b}(t$ sub-boundary) be the largest number such that $c{ }^{*} \leq t_{b} \leq t_{o}$ and $Y\left(x_{0}, Y_{0}, t_{o}, t_{b}\right)=0$. If no such t_{b} exists, let $t_{b}=c *$.

If $y_{0}=0, t_{0}>c^{*}$, and $\phi_{x}\left(x_{0}, t_{0}\right) \geq 0$, let $t_{b}=t_{0}$. If $\psi_{x}\left(x_{0}, t_{o}\right)<0$, let t_{b} be the largest number such that $c * \leq t_{b}<t_{o}$ and $Y\left(x_{0}, y_{0}, t_{0}, t_{b}\right)=0$. If no such t_{b} exists let $t_{b}=c *$.

If $t_{o}=c^{*}$, let $t_{b}=c^{*}$.
Let $x_{b}=X\left(x_{0}, y_{0}, t_{0}, t_{b}\right)$ and $y_{b}=Y\left(x_{0}, y_{0}, t_{0}, t_{b}\right)$. Then $\left(x_{b}, y_{b}, t_{b}\right)$ is a point where the air particle path of u enters the $\operatorname{slab} c^{*} \leq t \leq c^{*}+\varepsilon$.

$\because \quad . \quad 3-1$

In a similar manner we obtain numbers $\overline{\mathrm{x}}_{\mathrm{b}}, \overline{\mathrm{y}}_{\mathrm{b}}$, and $\overline{\mathrm{t}}_{\mathrm{b}}$ using $\overline{\mathrm{X}}$ and $\overline{\mathrm{Y}}$.

Consider the case where $t_{b}>c^{*}$ and $\phi_{x}\left(x_{b}, t_{b}\right) \geq \stackrel{\omega}{\omega}$. Then for $c^{*} \leq t \leq c^{*}+\varepsilon$ we have $y_{b}=0$ and $\left|Y_{t}\left(x_{0}, y_{0}, t_{0}, t\right)-Y_{t}\left(x_{0}, y_{o}, t_{o}, t_{b}\right)\right|$
$\leq \mid \mathcal{F}_{2}\left[X\left(x_{0}, y_{0}, t_{0}, t\right), Y\left(x_{0}, y_{0}, t_{0}, t\right), t\right]$
$-\mathcal{F}_{2}\left[X\left(x_{0}, y_{0}, t_{0}, t\right), Y\left(x_{0}, y_{0}, t_{0}, t_{b}\right), t\right] \mid$
$+\left|\phi_{X}\left[x\left(x_{0}, y_{0}, t_{0}, t\right), t\right]-\phi_{X}\left(x_{b}, t_{b}\right)\right|$
$\leq 3 D\left[\left|Y\left(x_{0}, Y_{0}, t_{0}, t\right)-Y\left(x_{0}, Y_{0}, t_{0}, t_{b}\right)\right|+\left|X\left(x_{0}, y_{0}, t_{0}, t\right)-x_{b}\right|+\left|t-t_{b}\right|\right]$
$\leq 3 D[2 D+1]\left|t-t_{b}\right| \leq 3 D \varepsilon(2 D+1) \leq \frac{\omega_{0}}{2}$, and $Y_{t}\left(x_{0}, y_{0}, t_{0}, t\right)$
$\geq Y_{t}\left(x_{0}, y_{0}, t_{o}, t_{b}\right)-\frac{\omega_{0}^{*}}{2} \geq \frac{\omega_{0}}{2}$. Therefore if $\bar{t}_{b} \leq t_{b}$ we have
$0 \leq t_{b}-E_{b}=\frac{2}{\omega^{*}} \int_{t_{b}}^{t_{b}} \frac{*}{2} d \xi \leq \frac{2}{u^{*}} \int_{t_{b}}^{t_{b}} Y_{t}\left(x_{0}, y_{0}, t_{0}, \xi\right) d \xi$
$=-\frac{2}{w^{*}} Y\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right) \leq \frac{2}{h^{*}}\left[\bar{Y}\left(x_{0}, Y_{0}, t_{0}, \bar{t}_{b}\right)-Y\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right) \mid\right.$
$\leq \frac{6 \varepsilon}{c_{v}^{*}} e^{2 D C} N(\bar{u}-u)$. When $\bar{t}_{b}>t_{b}$ we have $\bar{y}_{b}=0$ and
$0<\bar{t}_{b}-t_{b}=\frac{2}{\omega} \int_{t_{b}}^{E_{b}} \frac{\omega^{*}}{2} d \xi \leq \frac{2}{\omega^{*}} \int_{t_{b}}^{E_{b}} Y_{t}\left(x_{0}, y_{0}, t_{0}, \xi\right) d \xi$
$=\frac{2}{w^{*}} Y\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right)=\frac{2}{w^{*}}\left[Y\left(x_{0}, Y_{0}, t_{0}, \bar{t}_{b}\right)-\bar{Y}\left(x_{0}, y_{0}, t_{0}, \bar{E}_{b}\right)\right]$
$\leq \frac{6 \varepsilon}{\omega^{*}} e^{2 D c} N(\bar{u}-u)$. Hence $\left|\bar{t}_{b}-t_{b}\right| \leq \frac{6 \varepsilon}{\omega^{*}} e^{2 D C} N(\bar{u}-u)$. When $t_{b}>c^{*}$ and $\phi_{x}\left(x_{b}, t_{b}\right) \geq \omega^{*}$ we now have $\left|\bar{h}\left(x_{0}, y_{0}, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)\right|$
$=\left|\vec{h}\left(\bar{x}_{b}, \bar{y}_{b}, \bar{t}_{b}\right)-h\left(x_{b}, y_{b}, t_{b}\right)\right|=\left|h\left(\bar{x}_{b}, \bar{y}_{b}, \bar{t}_{b}\right)-h\left(x_{b}, y_{b}, t_{b}\right)\right|$ (since $\bar{h}\left(x, y, c^{*}\right)=h\left(x, y, c^{*}\right)$ and $\bar{h}(x, 0, t)=h(x, 0, t)$ for (x, t) in the domain of $\left.\psi_{1}\right)$

$$
\begin{aligned}
\leq & D\left(\left|\bar{x}_{b}-x_{b}\right|+\left|\bar{y}_{b}-y_{b}\right|+\left|\bar{E}_{b}-t_{b}\right|\right) \leq D\left[\bar{X}\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right)-X\left(x_{0}, y_{0}, t_{0}, \bar{E}_{b}\right) \mid\right. \\
& \left.+\left|X\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right)-X\left(x_{0}, y_{0}, t_{0}, t_{b}\right)\right|\right] \\
& +D\left[\left|\bar{Y}\left(x_{0}, y_{0}, t_{0}, \bar{E}_{b}\right)-Y\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right)\right|\right. \\
& \left.+\left|Y\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right)-Y\left(x_{0}, y_{0}, t_{0}, t_{b}\right)\right|\right]+D\left|\bar{t}_{b}-t_{b}\right|
\end{aligned}
$$

$\leq 6 D \varepsilon e^{2 D c} N(\bar{u}-u)+2 D^{2}\left|\bar{t}_{b}-t_{b}\right|+D\left|\bar{t}_{b}-t_{b}\right|$
$\leq 6 D \varepsilon e^{2 D C} N(\bar{u}-u)+D(2 D+1) \frac{6 \varepsilon}{e^{*}} e^{2 D c} N(\bar{u}-u)=6 D \varepsilon\left(1+\frac{2 D+1}{\omega^{*}}\right) e^{2 D C} N(\bar{u}-u)$. Similarly we obtain the same result when $\bar{t}_{b}>c^{*}$ and $\phi_{x}\left(\bar{x}_{b}, \bar{E}_{b}\right) \geq \omega^{*}$.

When $t_{b}>c^{*}, \bar{t}_{b}>c^{*}, \phi_{X}\left(x_{b}, t_{b}\right)<\omega^{*}$, and $\phi_{X}\left(\bar{x}_{b}, \bar{t}_{b}\right)<\omega^{*}$, then $\bar{h}\left(x_{0}, y_{0}, t_{0}\right)=p_{1}$ or p_{2} and $h\left(x_{0}, y_{0}, t_{0}\right)=p_{1}$ or p_{2}. Suppose $\bar{h}\left(x_{0}, y_{0}, t_{0}\right)=p_{1}$. Then $x_{b}=x\left(x_{0}, y_{0}, t_{0}, t_{b}\right)-x\left(x_{0}, y_{0}, t_{0}, t_{0}\right)$ $+\bar{x}\left(x_{0}, y_{0}, t_{0}, t_{0}\right)-\bar{x}\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right)+\bar{x}_{b} \leq D\left|t_{b}-t_{0}\right|+D\left|\bar{t}_{b}-t_{0}\right|+\bar{x}_{b}$ $\leq 2 D \varepsilon+x_{1}\left(c^{*}\right)+\frac{2 \delta_{1}}{3} \leq x_{1}\left(c^{*}\right)+\delta_{1}$. Thus we must have $h\left(x_{0}, y_{0}, t_{0}\right)=p_{1}$. Similarly if $\bar{h}\left(x_{0}, y_{0}, t_{0}\right)=p_{2}$, then $h\left(x_{0}, y_{0}, t_{0}\right)=p_{2}$. Hence $\left|\vec{h}\left(x_{0}, y_{0}, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)\right|=0$ in this case.

Next we consider the case in which $t_{b}=c^{*}, \bar{E}_{b}>c^{*}$, and $\phi_{x}\left(\bar{x}_{b}, \bar{t}_{b}\right)<\omega^{*}$. Then $\bar{h}\left(x_{0}, y_{0}, t_{0}\right)=p_{1}$ or p_{2}. Assume $\bar{h}\left(x_{0}, y_{0}, t_{0}\right)=p_{1}$. Then $x_{b} \leq x_{1}\left(c^{*}\right)+\delta_{1}$ as in the previous case. Al so $x_{b}=X\left(x_{0}, y_{0}, t_{0}, t_{b}\right)-X\left(x_{0}, y_{0}, t_{0}, t_{0}\right)+\bar{X}\left(x_{0}, y_{0}, t_{0}, t_{0}\right)$ $-\bar{x}\left(x_{0}, y_{o}, t_{0}, \bar{t}_{b}\right)+\bar{x}_{b} \geq-D\left|t_{b}-t_{0}\right|-D\left|E_{b}-t_{0}\right|+\bar{x}_{b} \geq-2 D \varepsilon+\bar{x}_{b}$ $\geq x_{1}\left(c^{*}\right)-\frac{2 \delta_{1}}{3}-2 D \varepsilon \geq x_{1}\left(c^{*}\right)-\delta_{1}$, and $Y_{b}=Y\left(x_{0}, y_{0}, t_{o}, t_{b}\right)$ $-Y\left(x_{0}, \bar{X}_{0}, t_{0}, t_{0}\right)+\bar{Y}\left(x_{0}, Y_{0}, t_{0}, t_{0}\right)-\bar{Y}\left(x_{0}, y_{0}, t_{0}, \bar{t}_{b}\right)+\bar{y}_{b} \leq 2 D \varepsilon+\bar{Y}_{b}$ $=2 D \varepsilon$ (since $\left.\bar{Y}_{b}=0\right)$. Hence $h\left(x_{0}, y_{0}, t_{0}\right) h\left(x_{b}, y_{b}, t_{b}\right)=p_{1}$, and $\left|\bar{h}\left(x_{0}, y_{0}, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)\right|=0$. We get the sane result when $\bar{h}\left(x_{0}, y_{0}, t_{0}\right)=p_{2}$.

Similarly when $t_{b}>c^{*}, \bar{t}_{b}=c^{*}$, and $\phi_{x}\left(x_{b}, t_{b}\right)<\omega^{*}$, then $\left|\bar{h}\left(x_{0}, y_{0}, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)\right|=0$.

The only remaining case is the one where $t_{b}=\bar{t}_{b}=c \%$. In this case $\left|\bar{h}\left(x_{0}, y_{0}, t_{0}\right)-h\left(x_{0}, y_{0}, t_{0}\right)\right|=\left|\bar{h}\left(\bar{x}_{b}, \bar{y}_{b}, c^{*}\right)-h\left(x_{b}, y_{b}, c^{*}\right)\right|$
$=\left|h\left(\bar{x}_{b}, \bar{y}_{b}, c^{*}\right)-h\left(x_{b}, y_{b}, c^{*}\right)\right| \leq D\left(\left|\bar{x}_{b}-x_{b}\right|+\left|\bar{y}_{b}-y_{b}\right|\right)$
$=D\left[\left|\bar{x}\left(x_{0}, y_{0}, t_{0}, c^{*}\right)-X\left(x_{0}, y_{0}, t_{0}, c^{*}\right)\right|+\mid \bar{Y}\left(x_{0}, \delta_{0}, t_{0}, c^{*}\right)\right.$ $\left.-Y\left(x_{0}, y_{0}, t_{0}, c^{*}\right) \mid\right] \leq 6 D \varepsilon e^{2 D C} N(\bar{u}-u)$ from Lemma (uT.1).

This completes the proof of Lemma (uT.2).

We now continue the proof of our uniqueness theorem. Using
(3) with $c^{*} \leq t \leq c^{*}+\varepsilon$ we obtain $\left|\bar{u}_{x}(x, y, t)-u_{x}(x, y, t)\right|$
$=\left|\frac{1}{2 \pi} \iint_{r \geq 0} \delta_{x}(x, y ; \xi, \eta)[\bar{h}(\xi, \eta, t)-h(\xi, \eta, t)] d \xi d \eta\right|$
$\leq \frac{3 D \varepsilon}{\pi}\left(1+\frac{2 D+1}{\omega^{*}}\right) e^{2 D c} \mathbb{N}(\bar{u}-u) \iint_{\eta \geq 0}\left|g_{x}(x, y \cdot \xi, \eta)\right| d \xi d \eta$
$\leq 121 \mathbb{D} \varepsilon\left(1+\frac{2 D+1}{\omega^{*}}\right)\left(1+\frac{1}{\lambda^{2}}\right) e^{2 D c} \mathbb{N}(\bar{u}-u) \leq \frac{1}{3} \mathbb{N}(\bar{u}-u)$ where we have used $\frac{M}{\pi} \iint_{\eta>0}\left|g_{x}(x, y ; \xi, \eta)\right| d \xi d \eta \leq 4 \mathbb{M}^{2}\left(1+\frac{1}{\lambda^{2}}\right)$ from the proof of Lemma (1.3). Therefore $\left\|\bar{u}_{x}-u_{x}\right\| \leq \frac{1}{3} N(\bar{u}-u)$.

Similarly $\left\|\bar{u}_{y}-u_{y}\right\| \leq \frac{1}{3}$ ir $(\bar{u}-u)$, and hence $N(\bar{u}-u) \leq \frac{2}{3} N(\bar{u}-u)$.
It follows that $N(\bar{u}-u)=0, \bar{u}_{x}(x, y, t)=u_{x}(x, y, t)$, and $\vec{u}_{y}(x, y, t)=u_{y}(x, y, t)$ for $c^{*} \leq t \leq c^{*}+\varepsilon$. Hence $\vec{u}(x, y, t)$ $=u(x, y, t)+z(t)$ for $c^{*} \leq t \leq c^{*}+\varepsilon$ and for some function $z(t)$. Since $\bar{u}(x, 0, t)=\phi(x, t)=u(x, 0, t)$, then $z(t)=0$ and $\vec{u}(x, y, t)$ $=u(x, y, t)$ for $c^{*} \leq t \leq c^{*}+\varepsilon$. But this contradicts the choice of c^{*}. Hence $c^{*}=c_{3}$ and $\bar{u}=u$ in δ_{3}.
\square

$$
=
$$

- -

$\because 1+\quad \because$

f
$.10-11$

$\therefore 1$
 \qquad
\qquad . $1+$ $\cdots 1 \mathrm{~m}^{-}$ 0 \square . $+1$ $\cdots, \cdot+1=$
. 1 . 1712. \square -1 - +
Er ai . 1 \square
r.

Chief of Naval Research
$\begin{array}{ll}\text { Navy Dept., Wash., 25, DC } \\ \text { Attn: Code } & 432 \\ \text { Code } & 438\end{array}$
Dir., Naval Res. Labs.
Washington 25, DC
Attn: Library Code 6230 Tech. Inf. Officer (6)

Commanding Officer Office of Naval Research Branch Office 346 Broadway New York 13, New York

Commanding Officer Office of Naval Research
Br . Office, 1030 E . Green St Pasadena l, California Attn: Techn. Library Dr. C.R.Deprima

Commanding Officer Office of Naval Research Br . Office, 495 Summer St. Boston 10, Massachusetts

Commanding Officer Office of Naval Research Br. Office, 1000 Geary St. San Francisco, California

Commanding Officer Office of Naval Research Br . Office, Navy No. 100 Fleet P.O., New York, NY (40)

Chief, Bureau of Ships Navy Dept., Washington 25, DC Attn: Library Code 280

Chief, Bureau of Ordnance Navy Dept., Washington 25, DC Attn: Technical Library

Dir., David Taylor Model Basin Washington 25, DC
Attn: Library Dr. H. Polachek

Libr., US Nav. Electron. Labs. San Diego 52, California

Waval Gun Factory Washington 25, DC
Attn: Library
U.S. Navy Underwater Sound Lab. Fort Trumbull, New London, Conn.

Naval Ordnance Lab., White Oak Silver Spring, Maryland Attn: Mechanics Division
U.S. Navy Hydrographic Office Suitland, Maryland

Beach Erosion Board
U.S. Corps of Engineers

Little Falls Road, NW
Washington 16, DC
Supt., US Naval Postgrad. Schoo H 2 Monterey, California

Commander
U.S. Naval Proving Ground

Dahlgren, Virginia
Attn: Library
Commanding General
Aberdeen Proving Ground Aberdeen, Maryland
Attn: Library
Commanding General
Wright-Patterson AFB, Ohio Attn: Centr. Air Doc. Of.(D13) Aeronaut. Res. Office

Chief
Armed Forces Spec. Weapons Proj. Washington 25, DC

ASTIA, Doc. Service Center
Knott Bldg., Dayton 2, Ohio (4)
U.S. Dept. of Commerce

Washington 25, DC
Attn: Nat. Hydraulics Lab.

The Computation Laboratory Nat. Appl. Math. Labs. National Bur. of Standards Washington 25, DC

Cal. Institute of Techn. Hydrodynamics Lab.
Pasadena, California
Univ. of Cal., Engin. Dept. Berkeley 4s California
Attn: Dr. J.W.Johnson
Dr. SoSchaaf
Univ. of Cal., Num. Anal. Res. 405 Hilgard Avenue
Los Angeles 24, California
Carnegie Inst. of Technology Dept. of Mathematics Pittsburgh, Pennsylvania

Chesapeake Bay Institute The Johns Hoplrins Univ. Baltimore 18, Maryland Attn: Dir., Dr. D. W. Pritchard

University of Chicago
Dept. of Meteorology
Chicago, Illinois
Attn: Dr. C. G. Rossby
Columbia University
New York 27, New York
Attn: Prof. M.G.Salvadori
Harvard Univ., Math. Dept. Cambridge, Massachusetts Attn: Prof. G. Birkhoff

Indiana Univ., Math. Dept.
Bloomington, Indiana
Attn: Prof. T. Y. Thomas
State University of Iowa
Iowa Inst. of Hydraulic Res.
Iowa City, Iowa
Attn: Prof. L. Landweber
MIT, Camoridge, Mass.
Attn: Dr. E.Reissner Dr. C. C. Lin

NYU, Meteorology Dept.
New York, New York
Attn: Dr.W. J. Pierson, Jr.

Princeton University
School of Engineering Princeton, New Jersey Attn: Prof. S. Lefschetz

Rand Corporation
1700 Scuth Main Street
Santa Monica, California
Scripps Inst, of Oceanography
La Jolla, California
Attn: Dr.W. Munk Dr. R. S. Arthur

University of Washington
Oceanographic Departinent
Seattle 5, Washington
Attn: Dr. T.G.Thompson

Woods Hole Oceanographic Inst.
Woods Hole, Massachusetts
Attn: Dr. C. Iselin
Yale Univ., Sterling Chem. Lab. New Haven, Connecticut
Attn: Prof. J. G. Kirkwood
Marine Biological Lab.
Woods Hole, Massachusetts Attn: Library

Dr. Milton Rose
Appl. Math. Div.
Broolhaven National Lab. Upton, Long Island, N. Y.

Dr. Allen Butterworth Off. Opera. Anal. and Planning AEC, 1901 Constitution Avenue Washington 25, DC

Faculty Mombers, IMS-NYU

NEW YORK UNIVERSIT*
INSTITLITE OF MATHEMATICAL SCIENC:
L"BRARY'
4 Washington Place, riew Yaik 3, N. Ys

NOV 6 乌96虫te due

FEB 17 64			
$3 / 3 / 65$	LC		
M17			
MAR256E			

```
    NYU
                                    c.l
    IMM-258
        Sensenig
Fxistence and uniqueness for
a third order... n.d.e.
```


N. Y. U. Institute of

Mathematical Sciences
25 Waverly Place
New York 3, N. Y.
4 Washirgton Place

