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Introduction

The puroose of this paper is to investigate the existence

and uniqueness of a solution of the equation

(1) (^" uy^ + ux^HAu-A) = o

where u is a real valued function of the real variables x, y, and
2 2

tj A = -£-13 + -^-5 ; and X is a positive constant.
9x <9y

2

Equation (1) has arisen as an elementary mathematical model

in meteorology [1], In this model x and y are position variables

in two dimensional Euclidean space, and t is the time. We may

think of u as the effective depth of the atmosphere, of (-u ,u )

as the velocity vector of the air particles, and of /\ \x as the

vertical component of vorticity. VJe will thus speak of the

solutions of the ordinary differential equations 4£ = -u (x,y,t)

dv
^

and g^r = u (x,y,t) as parametric representations for the curves

followed by air particles in the xy - plane. It is then clear

from (1) that the Helmholtzian, /yi - X
2
u, is constant along the

air particle paths.

For convenience we will restrict ourselves to the consideration

of existence and uniqueness of a solution of (1) in fy = )(x,y,t)|

-co <x<oo, y>0, < t < cv where c is a positive constant.

Let /\u -X u = h where u is a solution of (1) in # . If h

is smooth enough, it is well known that when y > then

u(x,y,t) = i ^ gUjy^W^tJdgdf
'/>0

(2)
'-

co

- ^ j
tt(g,0,t) i K'Uv)d£

-©
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p 2
where v = /(£-x) + y and where we have used the appropriate

Green's function g(x,y,*£, *|) and Bessel function K(x). That is,

we let p =/(€ - x )

2
+ (A

/

-y)"2
, p = /(7-x) 2

+(>?+y)
2

, and

g(x,y;g,7) = K(Xp)-K(Xp) where K(x) is the modified Bessel

p
function of the second kind of order zero. Then g + g -X g =

p
SEE +s *n

" * s = °' S(x,0;5,^) = 0, and g behaves like log p for

(£,>?) near (x,y).

We will use the above physical terminology in the following

heuristic derivation of the appropriate initial and boundary

conditions for equation (1).

The right side of (2) depends on h and u(x,0,t). Since h is

constant along the air particle paths, vie see that h can be given

everywhere in w in terms of its values at points where air

particle paths enter Xy (i.e. at points where u (x,0,t) > or

t = 0), In particular u can be expressed in terms of h at points

where the air particle paths enter and in terms of u(x,0,t).

It therefore seems natural to prescribe the values of u on the

xt - plane, to prescribe the values of /\ u. - X u on the half plane

t = and y > 0, and to prescribe /_yu - X u at points on the xt -

plane where u > 0. That this prescription of initial and boundary

values constituted a well posed problem was suggested by E.

Isaacson; earlier workers in meteorology learned this from

numerical experiments.

For convenience we will assume that air particle paths leave

S (i.e. u < 0) at points in a simply connected open set of the

xt - plane, and air particle paths enter ^(i.e. u > 0) at points

of the xt - plane exterior to the above mentioned simply connected

open set.
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We will find it convenient to consider a solution which at

infinity does not deviate "too much" from a uniform flow parallel

to the y - axis. Such a uniform flow, u" = ax+b where a and b

are constants and a > 0, satisfies (2) and hence any function u

which satisfies (2) will also satisfy (3).

u(x,y,t) =^\
J

g(x,y;?,t)[h(5 l 'l l t) + A"(a£+b)] d£d^

h>0
(3) cp

- ^ I M€,0,t)-a£-b]i K'(^v)dC + ax + b

when y > 0. We will choose to work with (3) rather than (2) since

we will be placing certain restrictions at infinity on u - ax - b

and h+ A (ax + b).

Next we define what we mean by a weak solution of (1) in £J,

In Part I we will show that a weak solution satisfjring certain

initial and boundary conditions exists with relatively weak

restrictions placed on the prescribed initial and boundary con-

ditions. In Part II x^e will show that as we gradually strengthen

the restrictions placed on the initial and boundary conditions the

solution is also gradually strengthened until we have existence

of an ordinary solution of (1) satisfying the prescribed initial

and boundary conditions. In Part III we prove a uniqueness theorem,

Let U be any real valued function with domain XV such that

U and U are continuous. We require that the solutions to the
x y

ordinary differential equations -?£ = -U (x,y,t) and -*£ = U (x,y,t)

exist in the large in &J and are unique. The curves in /£)

described by the vector [x(t ),y(t ),t] will be called the air
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particle paths of U. Let H be any real valued function with

domain /j) such that along each air particle path of U, H is

constant (excepting possibly at points where the air particle

path is tangent to the xt - plane). We will call H a pseudo-

HelmhoIt zian of U. We also require that \\ g(x,y;£, \) [H(£, *] ,t ) +

X
2 (a?+b)]d£d^ exists for (x,y,t) in A . \f (3) is valid for u

replaced by U and h replaced by some such H, then we call U a

weak solution of (1) in /V.

We note that for U to be a weak solution of (1) in /y , U and

U are the only derivatives whose existence we are assuming. In

the remainder of this paper we will use the notation u (and h)

for genuine and weak solutions (for Helmholtzians and pseudo-

Helmholtzians ) and the reader should be forewarned.
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Part I

Existence of a Weak Solution"

We will let cf> and \J/, denote the prescribed values of u and h

respectively on the plane y = 0, and \[/p will denote the prescribed

values of h on the plane t = 0. We will prove the existence of a

weak solution in Theorem 1 below for < t < c, (where c, > is

introduced in the statement of the theorem). Heuristically the

proof is based on the following construction. For each n=l,2,3,»..

we define functions h , u , x , and y inductively in the strips
kc, (k+l)c,

n n n n

—i < t < - for k=0,l, . . . ,n-l. u may be thought of as an

approximate weak solution, x and y describe the air particle

paths of u , and h may be thought of as an approximate pseudo-

Helmholtzian of u . We show that a subsequence of j x_ !- and y y^ I

converges to limit functions x and y respectively. We use the

functions x and y to define functions h and u. We then show that

the curves described by x and y are the air particle paths of u,

that h is a pseudo-Helmholtzian of u, that u is a weak solution of

(1), and that u and h satisfy the prescribed initial and boundary

conditions.

Theorem 1 . Let c|> be a real valued function whose domain is

j(x,t)
|
- co < x < co and < t < c where c is a positive constants,

Let 4 also satisfy (1a), (1r)> an^ (!
c

)»

(1.) 4, (Ji - and A are continuous. Also for some constants

L and i such that L > and < i < 1 we have 14 v (x,t)-c|> (x,t)| <
2CX. 2wC "

Llx-xl 1
for all (x,t) and (x,t) in the domain of 4>.

Certain syrabols are used throughout a large part of this report,
and a glossary of such syrabols is contained at the end of this
report.





(1R ) <J>(x,t ) - ax - b, $ (x,t)-a, and <j> (x,t) are bounded

where a and b are real constants with a > 0.

(1„) Let the boundary of the region of outgoing particles

on the (x,t) plane be given by x,(t) and Xp(t). That is, let x,

and x satisfy a uniform Lipschitz condition with x, (t) < Xp(t)

for < t < c, call C, the curve consisting of the points

tx-,(t) } 0,t] for < t < c, and call C ?
the curve consisting of the

points [x? (t),0,t] for < t < c. Let <{> (x,t) = for (x,0,t)

on C-, or Cp» let cj> ( x >t) < for x, (t) < x < Xp(t), and let

<{> (x,t) > for x < x, (t) or x > Xp(t).

Let \|/, be a real valued function whose domain is
j
(x, t ) |

(x,t

)

is in the domain of 4 ar*d c|> (x,t) > ol. Let \K also satisfy (2.).

(2.) i|r, is continuous and \|/, (x,t) + A (ax + b) is bounded

where X is a positive constant.

Let \J/„ be a real valued function whose domain is

f V
l(
x>y)

I

-°° < x < co and y > o(. Let \J/ ?
also satisfy (3 A ) and (3r)<

2
(3A ) ^p ^ s continuous and i|/p(x,y) + \ (ax + b) is bounded.

(3B ) \|fp(x,0) = i|/,(x, 0) for (x,0) in the domain of both *ff-_

and \J/p.

Then for all small enough positive c, there exists a real

valued function u with domain /y , = j(x,y,t)|-co < x < co
, y > 0,

< t < c;m such that u satisfies (Jj-a), (^-r)»
and (Uc ) •

(kA ) u(x,0,t) = cj>(x,t).

ik-a) There exists a pseudo-Helmholtzian h of u such that

h(x,0,t) = ij/-(x,t) when (x,t) is in the domain of \|/, , h(x,y,0) =

^o( x »y)» and (3) Is valid for u and this h.

(4C
) u(x,y,t ) - ax -b, ux

(x,y,t)-a, u (x,y,t), and

p
h(x,y,t) + A (ax+b) are all bounded.
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We will start the proof of Theorem 1 by examining the second

integral in (3).

Lemma (1.1) . Let w be the function with domain Ay defined by
co

w(x,y,t) = &E f [<K^,t) - a£ -b] i K'(Av)d£ when y > where

_—_-do
v =s/(?-x) +y and K(x) is the modified Bessel function of the

second kind of order zero, and by w(x,0,t) = - cj>(x,t ) + ax + b for

y = 0. Then w and its first and second derivatives with respect

to x and y are continuous in (x,y,t) and are bounded. Also

Aw - A w = 0.

Proof of Lemma (1.1) . Since 4(£»t ) - a£ - b i s bounded and continu-

ous, we could easily show that w is continuous for y > 0.

Nov/ consider a fixed ooint (x ,0,t ). For y > we have
CO o o

w(x,y,t) - w(x,0,t) = 12L ( [4(5, t) -<Kx,t) + a(x-£)] i K' (Xv)d? +

00 -co

[4(x,t) -ax -b][-»I \ i K' (Av)d£ + 1]. He observe that

~ -ob TC

M f I k 1 (Av)d£ = ^ i Ay sec 9 E* (Ay sec 9)d9. Since

-00 -&

Ay sec 9 K (Ay sec 6) is a measurable function of 9 for each y > 0,

since | Ay sec 9 K (Ay sec 9)| < M, and since lim Ay sec 9
y->0+

K (Ay sec 9) — -1 for almost all 9, then by the Lebesgue convergence
oo

theorem we have 4? 1 y K '

(Xv)dE, —> -1 as y —> 0+. Furthermore

-oo

the convergence is uniform with respect to (x,t) since

1
2

i-
j Ay sec 9 K (Ay sec 9)d9 does not depend on (x,t). Now given

"2
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e > we can choose 5 > so that < y < 6 imolies |w(x,y,t) -

op

w(x,0,t)| < Me + -^ I |<K^,t) - d>(x,t) + a(x-£)| ^ |K
f (Xv)|d§ for

-CD
all (x,t) inhere M" is chosen so that |cj»(x,t) - ax - b | < M. Now let

R be any positive number such that R > 2|x |. Since cj>(£,t) - a£

is uniformly continuous in (£,t) for |C I < R and < t < c, then

we can choose 6"> so that |cj>(5, t ) - (j>(x, t ) + a(x-5 ) I
< e for

|£-x| < 6""' < | , |x| < | , and < t < c. Then for |x| < | ,

< y < 5, and < t < c we have |w(x,y,t)-w(x,0,t)| < M e +
CD / c """ \

it j v lv b
it I

J
in

J
•

j ,i irt;^ < Me +Me +

-co V-co x+6'V
CD

kzM j —££ < (M+M)e + te!£j . Now choose o > so that
71

x+6" (£-xr
*"

7t6"

6 < 6 and ^^ < e . Then for |x| < £ , < y < 6, and < t < c

its'" " * "
p

"
we have |w(x,y,t) -w(x,0,t)| < (M+M+l)e. Now for |x| < | ,

< y < 0, and < t < c we have |w(x,y, t )-w(x ,0,t )| <

|w(x,y,t)-w(x,0,t) | + |w(x,0,t)-w(x ,0,t ) | < (M+M+l)e +

U(x,t)-ci)(x ,t ) + a(x
Q
-x)| < (M+M+2)e for all (x,y,t) near

enough to (x
Q
,0,t

o
). Thus w is continuous at (x ,0,t ). This

completes the proof that w is continuous.
(1)

,To see that w is bounded x-je observe that |w(x,y,t)| <
cp

M—* d£ = MM for y > and |w(x,0,t)| < M.
-oo Av

CO

We observe that the only hypothesis used, to show that w is

continuous and bounded, was c|>(x, t ) - ax - b is continuous and

bounded.

Next we will show that w (x,y,t) exists and is continuous and

bounded. Since cj>(x,t) - ax - b is continuous and bounded, we could

1 See page 13 for the choice of M.
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show that differentiation under the integral sign with respect to

x is raermitted for y > 0. For y > we have w (x,y,t) =
oo co

x

M
j [<K€,t)-a€-b] JL [1 K

f

(Xv)]d€ - - &
J

[<KS,t)-a£-b] ^
-oo -oo

CO

[i K* (Xv)]d£ = & ( Ux
(£,t)-a] i K

T

(Xv)d£. Since w(x,0,t) =

-00
- cj>(x,t) + ax + b, we have w (x,0,t) = ~cj> (x,t) + a. We list this

as

CO

&
j

[4x(?,t)-a]
i K'(Xv)d£ for y >

-00

(1.1.1) w
x
(x,v,t)=

- 6 (x,t) + a for y = 0.
r x

Since <j> (£,t)-a is continuous and bounded, the continuity and

boundedness of w follows exactly as it did for w.

Next we will show that w exists and is continuous and

bounded. Again we could show that differentiation under the

integral sign with respect to y is permitted for y > since

4(x,t) - ax - b is continuous and bounded. For y > we have
oo

w
y
(x,y,t) =| |

[<K5,t)-a£-b] £ [& K'(Xv)] d£ =

-co
CO

1
it

-co

2 2
[4(5,t)-a^-b][i^|i- Xk'(Xv) +^ X

2
K"(Xv)]d£. Next we

v3 v

2 _2 . ,„ _v2
observe that -2— K(Xv ) = 2_ \k' (Xv) +

^"^ X
2
k"(Xv). Hence for

^ ™ v v
oo -

y > 0, w
y
(x,y,t) =|

J
[<KC,t)-a?-b][^ k'(Xv) + X

2
k" ( Xv)--^ K(Xvfl

GO

d? = | \ [<K^,t) -a£- b] [X
2 K(Xv) - -^ K(Xv)] d? =

-co
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0D

= | \ U2
4(S,t) - X

2 (a£+b) - 43QC
(5#t)3K(Xv)d€. We observe

-co

that this last integral exists for y > 0. Since X cJ>(x,t)-X (ax+b)<

4 v ( x >t) is continuous and bounded, we could show that this last
XX

integral is continuous in (x,y,t) for -co < x < co , y > 0, and

< t < c. Hence w exists for y > 0, and w coincides for y >- - y y

with a function which is continuous for y > 0. It follows that

w exists and is continuous for y > 0, and we have

co
r

(1.1.2) w
y
(x,y,t) =1

j
[X

2
cJ>(£,t)-X

2
(a£+b)-cJ>xx (5,t)]KUv)d£ .

-co

To see that w is bounded we choose M so that
y cp

|A
24U,t)-X2 (a£+b)-4

xx U,t)| < M. Then |w
y
(x,y,t

)J
< | |K(Xv)|d£:

op _ co
_0°

| \
|K(xyz 2+y 2 )|dz = fl \ |K(X.yz 2+y

2
)|d Z . If y > £ , then

-co _ o
CO 7-3 ?j CO

Iw
y
(x,y,t)| <f JMe"^z+y dz <

2f je'^dz. If < y <
|,

o £- 2
o

then |w
y
(x,y,t)| < ^ (-M log X Jz

2
^j Xz + ^ J

-\42
+y

2 ,_ _ afa i -,_ . w „ w A 21 f -xz .
5

Me

bounded.

? -X ^
dz < - ~- 2 log Xzdz + ^-^ \ ft" dz. Hence w is—

y

Using (1.1.1) and the fact that cj> (x,t) is continuous and

bounded we can show that w is continuous and bounded in theXX

same way we showed w was continuous and bounded. Also we obtainX
GO

1 r,'
4xx (5,t)

i K (Xv)d£ for y >

(1.1.3) w (x,y,t) = {XX

'-(txx (x,t) for y = .
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We could show that w Is continuous for y > and

°P 2

w (x,y,t) =
| j

[cJ)x
(C,t)-a][A

2K(Xv) - ^-_ K(\v)]d£ for y > In

-co
the same way we obtained the similar result for w . Hence

^oo co y

w
yx

(x,y,t) = ^ j" [*x(€,t)-a]K(Xv)de+i j
„(«•*) $=r Xk' (Xv)dg

-CO -CO
CO

for y > 0. For y > 0, | j
^(^t) ^~ \K

!

(Xv)d£ =

-GO

CO c°

i
J
^(x+z.t) ~=r KuJ^+p)dz =

| j
[4xy

(x+z,t)-4xx
(x- Z ,t)]

-co /z +y 6

.

Xz K
?

(X /z
2
+y )dz. Thus vie have

wyx
(x,y,t) = \-

J
[4x

(?,t)-a]K(Xv)d5

(1.1.4)

+
71

00

1 Lv (x+z,t)-<Ly (x-z,t)] -~z- k' (x7?+y^)dz •

yz
2
+y

2

So far we have claimed that (1.1. ij.) is valid for y > 0, Now

we notice that the integrals in (1.1. \\) converge for y > 0, and we

could show that they are continuous for y > 0. Hence w__(x,y,t)— yx

coincides when y > with a function which is continuous for

y > 0. Hence w exists for y > 0, and (1.1. 1+) is valid for
— yx

y > 0.

We can show that the first integral in (1.1.1+) is bounded in

the same way we showed w is bounded. For the second integral in
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oo

(1.1.1*) we have || \ [<L_(x+z,t )-(L„ (x-z,t )]
Xz K (x/z

2
+y

2
)dz

|

1

TC I

kTxx' XX ^ y
o 7z +y

00
^

<i ( L 2
1

z
1 X|K

I

iX >/*
24y

Z
)ida

In ^ ^
co -rs—

»

A"' Mz
1

dz +^ ffe
i

e
-A/z +y dZ for < y < 1

— it

/op r^

—

2
I \ Mz

1
e~

X ^ Z +y dz for y > 1

lo
J

<-y 1 00

< i-k / i" _** dz + Mz
1

e~
Xz

dz
J

. This completes the proof

\o z
-1

i /

that w is bounded and continuous.

Since w , w , and w are continuous, then w„„ exists and is
x* y* yx xy

continuous and w = w

.

Me could shox^ that (1.1.2) can be differentiated under the

integral sign with respect to y for y > 0. Hence we obtain
op

w (x,y,t) = *Z ( [X
2
cKS,t)-X

2
(aS+b)-<|> (£,t)] i K* (Xv)d£ for

-co

y > 0.

The function defined by the last integral for y > and by

p p
-X 4(x,t)+A (ax+b)+cj> (x,t) for y = is continuous and bounded

for y > 0. The proof of this is the same as the proof that w is

continuous since X cj>(£;,t)-X (a£+b)-c|> (£,t) is continuous and
rxx

bounded. Hence w is continuous and bounded for y > and
yy -

f
°°

(1.1.5) \lF )
^24(^,t)-X2 (a^+b)-(|

xx
(^,t)]iK

,

(Xv)d? for y >

/ i. \ i -co
w (x.y.t) ={
yy ,J"

(- X
24(x,t)+X2 (ax+b)+4VT (x,t) for y = 0.

'XX

From (1.1.3) and (1.1.5) we easily obtain /\w - xS; = 0. This

completes the proof of Lemma (1.1).
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Next we will choose several constants which we will be using.

Using the properties of K, t-i » gnd typ we see that there is a real

constant M such that |K(Xx)| < M| log x| for < x < | , |K(Xx) | <

M e"
7^ for x > | , |~ K(Xx) |

= X|K* (Ax) | < | for x > ,

|^ K(Xx)| = X|k' (Xx)| < M e"^ for x > 1, | -^ K(Xx) |

=

X
2 |k"(Xx)| : il for x > 0, \-^> K(Xx) |

= X
2
|k"(Xx)| < M e

-Xx
for

x > 1, |\J/
;L
(x,t)+X2 (ax+b) | < M, and k 2

(x,y )+X
2
(ax+b) | < M.

Let W be an upper bound of the absolute values of the first

and second derivatives of w with respect to x and y. Let D-, =

k M2 (l +-i>) +W +a and Dp = 5 2M
2 + ^|- + 2W . Let c, be any

X \i
positive number such that c, < c, aP^D-jC, < M, and 2 exp(-2DpC^)>l,

We are now ready to construct the functions h , u , x , and

V
For each positive integer n let h (x

Q ,y
,t

Q ) = ^^o'^o^ for
c
l

-co < x < co , y > 0, and < t < — .

Lemma (1.2) . h is a continuous function of ( x »y »
t
Q ) at almost

all points on each plane t = constant. Also l^n^o^o*"^) +

X
2 (ax

Q
+b) | < 2M.

The proof of Lemma (1.2) follows immediately from the

definition of h . Clearly we could omit the word "almost", and

we could replace 2M by M. We have stated the lemma as we did so

that it remains valid when we get to larger values of t which

will be shown as we extend the construction to later time intervals

Let v
n
(x,y,t) = -^ \

}
gU,y;?/<) [h

n (E,/c t t )+X
2
(a£+b) Jd£df for

-co < x < co , y > 0, and < t < -=•
, where g(x,y;£/>) = K(Xp)-K(Xp)

and p and p are defined as p = /(^-x) 2
*^/ -y ) , p = /(£-x) +('

;
+y) .



.
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Lemma (1.3) . v
n , v , and v are continuous.

I
vnx l

< 1|M (H-=w)

^ X

|v I < li^ll+i), When < s a ./(x-xj^+fy-y)
2 < i we have

l
vnx (^»y' t) "vnx {x^r

' t)| < -(52M2 +i^-)a log s and

|v (x,y,t)-v (x,y,t)| < -(52M2 +i£§-)s log s.

and

\"

These estimates are weaker than a Lipschltz condition and

stronger than a Holder condition and are used later to establish

the uniqueness of air particle paths.

Proof of Lemma (1.3). We could show that v and v exist and arex y

continuous since h is continuous almost everyv.here on each

horizontal plane, but we omit the proof.

For (x,y,t) in the domain of v we have

Iv^U.y.t)! = |^ )§ gx (x,y;C,^)[hn (C,^,t)+ X
2
(a£ + b)]d?d 1 \

h>0 oo oo

<ijj lsx(x,yj€,^)|d^d>Z <|] \
|gx<x,yj5,^)|dgd'2

1 >0 -oo -co
00 CO

MV
i j2%ii K'(Xp)| + \hi*gl Z* (XP )\l d^

-oo -co v. K y
00 CO CO OD

= f M l^f^K'fxplldedv <f j j
|XK'uP>|d^

-00 -CO -00 -co

<f \}|d?d, f JJ
H .-* «d*

P<1 P>1

OM2 2it 1 OT/f2 2n oo -

< 2
|- j j

dpd9 + 2£ j J
p e^P dpdS

= UM
2

+ kW
2

(- •§ - i) e"
Xp

|

ro

= [iM
2(l+i) .

A
X^ X^

Similarly |v <x,y,t)| < l|l!
2 (l+-io .

y X



'

•

-
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Let (x,y,t) and (x,y,t) be in the domain of v . Let

= y(x-x) 2
+(y-y)

2 and P] _

= JiZ-x)
2
+(1 'J)

2
• For < s <

|
we have |v (x,y f t )-vnx

(x,y,t )

|

- 1 1 C (=
l^c J

]Csx (x,y;5,»Z)-gx
(x,y;5,>?)] [h

n
(£//,t ) + \

d
(aE,+b)]a£

>ai |

GO 00

M
<
| ) \

lgx (",y;5//)-gx
(x,y,^^)|d4d^

-CD -CO
CO CO

-CO -00

<~
J[ X|K

,

(Ap
1
)|d^d^ + ~ ^( \|K

?

Up) Ideal

p<2s p<2s

P>2S^
-L 1 -L

p,<3s p<2s

2s<p<l+s
X X -1

+ f H C(^+ix^|i^)Me-^l + X
2
|p1

-p||K
,

UP^)|]d^
p>l+s

-1- 1

(where p" and p* are between p and p, )

< 12M2 s + 8M2s + f H t^f + -^JWi
2s<p<l+s pl (p'

::
")

. 211 ( (' ,2Ms "Xpl „ -Xp*,,,,,+ —
J

)
(-p- e + Mse w )d?d^

p>l+s
1

< sah + aga. \\ i\ + \)&m + Sufi
i \ (3e"

XPl
t.-^aedJ

2s<p<l+s pl P p>l+s
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< 20M2 s

P 2it 3/2 ? 2.71 3/2

71 J ) p,
Hl K J J p

s
x 2s

2tc oo ,
rt

6n2 s f f „ ~ Apl . Aa+ l
+ ——

J ]
Px

e dp
1
d9 +

2s
2ti ooO
I [

p o"
X P dpdG

< 20M2 s + 12!-T
2
s log p1 y2 + !|II

2
s log p\l(

2
2s

+ 12M2S( . £ . ^ )8

- Ap
l

|
» + MI

2
S( „ £ . ^ )e

-Xp
X

X^

co

2

< 20H2 s + I6ll
2
s log 3/2 - I6ll

2
s log s - i|M

2
s log 2 +

l6M~a

A"
1

< (20 + i|)II
2
s + I6ll

2s- 16K2 s log s = (36 + i|)Il
2s- 16M2 s log s

x^ x^

< -(52 + i|)M2 s log s.

X

16 w2.
Similarly |v (x,y,t )-v (x,y,t ) | < -{52 + ±§)M s log s for

ny

< s < j-.

Now let u (x,y,t) = v (x,y,t)-w(x,y,t)+ax+b for -co < x < cd ,

c
l

y > 0, and < t < —- .

Lemma (1»1±). u , u . and u _. are continuous. |u
I
< D, and

——-—————— n, XL*-,. ny ila j.

^ p _
~ O "I

|u ; < D-, . V.'hen < s = y(x-x) + (y-y)
t~ -: tt we have

ny j. M-

|u (x,y,t)-u _'x,y,t)| < -D ?s log s and |u (x,y,t )-u (x,y,t ) | <
nx

-DpS log s.

nx '2 ny ny

The proof of Lemma (I.J4.) is obvious using Lemmas (1.2) and

(1.3).

To make it easier to discuss the behavior of the air particle

paths of u at the boundary y = we would like to extend the air
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particle paths of u into the region where y < 0. To do this we

introduce new functions P , and Pp. Let F ,(x,y,t) = -u (x,y,t)

and F ~(x,y,t) = u (x,y,t) for -co < x < oo , y : 0, and
nd nx

< t < — . Let F
nl

(x,y,t) = -uny
(x,-y,t) and Fn2 (x,y,t) =

c
l

u (x,-y,t) for -co < x < co , y < 0, and < t < —-. That is,

F - and P are the even extensions of -u and u „ respectively
nl n2 ny nx

across the (x,t) plane.

Lemma (1,5) . P -• and F ~ are continuous. |p , | < D, for i=l,2.

When < s =
v
/(x-x) +(y-y) < j- we have |F

nl
(x,y,t )-P

ni
(x,y,t ) | <

-DpS log s for 1=1,2.

The proof of Lemma (1.5) follows trivially from Lemma (l.lj.).

Lemma (1.6) . Let (x ,y ,t ) be any point in the domain of F , and

F . Then there exist unique functions x (t) and y„(t) defined
n2

c
x

n n
d (t)

for < t < -- such that x
n
(t

Q
) = x

Q , yn
(t

Q
) = yQ , and —^— =

P
nl fx

n
(t), yn

(t), t] and —gg
- = ^^(t), yn

(t), t] for

c
l

< t < — . Since x (t) and y (t) also depend on (x -y -t ), we— — n n ''n o'^o' o '

also use the notation x (x -y .t ,t) for x (t) and y„(x .y .t . t

)

n o' o' o' n n o'^o* o 7

for yn
(t).

Proof of Lemma (1.6) . The existence of x and y follows since

F .(1=1,2) is continuous and bounded [2]. The uniqueness of x

and yn
follows since |Fnl

(x,y,t )-Fni
(x,y,t

) | < -D
2
s log s (1=1,2)

for < s = 7(x-x) 2
+(y-yP < \ [3]

.

Lemma (1.7) . Let (x ,y ,t ,t) and ( x >yo
»t ,t) be any points in

the domain of x
n

end yn<
Let s =J(^ ~^

)
+ (y ~yo^

2+
^o~ t

o '
and



'

•

'
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let s
n
(t) =

ext>(-2Dpc,

)

,
1

exp(2D
2
c)

Then S
n
(t) < [2(D

1
+l)s]

d x when s<s
q

=
g( D +17^)

exp[2Dp (t -t)3
Proof of Lemma (1.7) . Let z(t) = [2(D

1
+l)s] for

c

t < t < -* and < s < s . Then z(t ) = 2(D n +l)s ,o — — n o o 1

exp(-2D ?c )

2 (t) = -2D
2
z(t) log z(t), and z(t) < [2(D

]L

+l)s] c x since

, exp(2D?c)
2(D,+l)s < (jj)

< 1 and exp [2D
2
(t

Q
-t)] > exp(-2D

2
c
1

).

We will show that S (t) < z(t) thus establishing the lemma for
c
l

< s < s and t < t < -— •
o o — — n

exp(-2D
2
c
1 )

For s < s we have [2(D,+l)s] <

. exp(2D
?
c) «P(-2D2«i)

[(i) * ] < £ . Hence z(t) <
J

for s < s
Q

.

For < s < s
Q

we have l*n
(x

oJ ,VV'VV^o'VV I

=

t

|x
"o

+
l°

P
ni rxn

(3Eo^o^o^ )
' ya (5o»*o-V* , ' 5ld€ - x

Q |

<

fc

o

|x -x
Q

| +D
1

|t
o
-t

o
|(note |F

nl l
< D

x
) < (D

1
+l)s. Similarly

' yn
(x
o'^o'*o jt

o )
"" 3r

n
(x

o' yo
,t

o»
t
o

)
'

< (D
i
+1)s

»
and hence

S
n
(t

Q
) < 2(D

1
+l)s = z(t

Q
) for < s < s .

Suppose S (t") > z(t") for some s and t " such that < s < s

and t" > t . Since S (t ) < z(t ), S (t"") > z(t*"), and S and 2

are continuous in t, then there is a t, such that t, > t ,' 1 1 o*

S (t) < z(t) for t < t < t,, and S (t, ) = z(t
1

). For t < t < t,,

we have S
n
(t) < z(t) < j- and hence Un (x

o ,yo
,t

o
, t )-xn

(x
Q ,yo

,t
o
,t ) |

= |x (x ,y ,t ,t )+\ F , [x (x ,y ,t ,5),y (x ,y ,t f£).£]d£
' n o ,J o* o* o ) nl n o ,J o' o,,J n o^o* o' '

t
o



.
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t

" xh^o'yo» t
o'

t
o )

-J
Pnl Cx

ii
(xo^o' to^ ) ' 3TnU ,3T ,t ,S),S3dS|

t

t

< (D^Ds -D
2 ] Sn (C) log S

n (C)dC.
Similarly

\
l^o^o^o^^yn^o^o^o'^l < (V1)s -D

2l
S
n (^ log S

n (^
t *o

and hence S
n
(t) < 2(D

1
+l)s - 2D

2
\ Sn (£) log S

n
(£)d£ for t

Q
< t < tj.

t
o

d£

For t
Q

< £ < t
x

we have S
n (£) < z(€) < |, -Sn (€)

log S
n (€)

fc

r
1

< -z(£) log z(£), and Sn
(t

1
) < 2(3^+1)8-202 \ Sn (€) log Sn (£)

fc

i
to h

< 2(D
1
+l)s-2D

2
\ z(5) log z(5)d? = 2(D

1
+l)s +\ z (g)dg = z(t

x
).

o o

Since this contradicts S (t, ) = z(t, ), we have S_(t) < z(t)
exp(-2D ?c,)

n X X n

< [2(D
1
+l)s]

d x for t > t
Q

and < s < s
Q

.

Similarly the lemma can be proved when t < t and < s < s .

Lemma (1.8). x and y are uniformly continuous functions of
n " n

(x ,y ,t ,t) in their domain.
o o o

The proof of Lemma (1.8) follows easily from Lemma (1.7) and

the fact that |x . |
< D, and lynt l

< Dt»

Let (x ,y ,t ) be in the domain of u . We wish to define
o o o n

functions a
n , Pn , Yn

so that [a
n
(x ,y ,t ),Pn

(x ,y ,t ),

Y (x ,y .t )] is the most recent point where the air particle path
'n o ,J o' o

of u through (x ,y . t ) "enters" the domain of u (either p is
n "ooo n n

zero or y is zero depending on whether the particle path hits

the (x,t) plane of the (x,y) plane).



.

.
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C
l

For -oo < x
Q

< oo , yQ
> 0, and < t

Q
< — let Yn0

be the

largest number such that yno < t
Q

and 7n^ »J >
t » Yno^

= °* If

no such rno
exists, let yn0

= 0*

When -oo < x < oo , y = 0, and < t
Q

< — let rn0
= t

Q
if

<{> (x ,t ) > 0. If 4x
(x ,t

Q
) < 0, let Yno

be the largest number

such that rno
< t and yn

(x ,Y ,t
Q ,

r

n0 ) = 0. If no such rn0

exists let y^« = °»
no

When -oo < x
q

< oo , yQ
> 0, and t

Q
= 0, let Yn0

= 0.

We have now associated a number Yn0
with each point ( x ,y ,t

o )

c
l

such that -co < x
Q

< oo , yQ
> 0, and < t

Q
< — . Let a

n , Pn ,

and yn
be the functions defined by a

n
(x

Q ,y
,t ) = x

n ( x »yo » t »Yno ),

^V^'V = yn(xo'5
r

o'
t
o' Yno )

'
and^WV = Yno

for

c
l

-co < x
Q

< oo , y Q
> 0, and < t

Q
< — . Then ( an >Pn >Yn ) is a

point where the curve, generated by [xn
(x

o ,y
,t

Q
,t ),yn

(x
Q ,y , tQ , t),t]

enters the domain of u as t increases (except possibly when

Pn
= and 4xUn ,Yn ) = 0).

From here on we let a
nQ

= a(x ,yo
,t

Q ), a
nQ

= a
n
(x

o ,yo
,t

o )

,

Pno = fV^o'V^no = ^o^o'V^no = ^o'^o'V >
and

Yno
= Yn (^o»^o J^o ) where ^o'V^ and ^o^o ,S ) are any Points

in the domain of u .n

Lemma (1,9) * a
n »Pn > an^ Yn are continuous at points (x ,y , t )

for which y ~ = or y >0 with (a ^.0,y „) not on C, or C .no no no 7 " no l d

It is clear from the definitions of a . S . and r that a
n* Kn' 'n n

and 6^, are continuous at those ooints where y~ I s continuous. It
n ' n

is easy to show that the statement of Lemma (1.9) about Yn is true

using the uniform continuity x and y and the definition of Yn »



'
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We new wish to extend h in the t direction so that its

C .

2c
l

_>

domain is }(x ,y ,t )|-co < X
Q
< co , yQ

> 0, < t
Q
< —

J
. Let

c l
2c

l
(x ,j ,t ) be a point in the new domain such that —- < t < -—— .

c
l

Go straight down to the point (x ,y ,t - —-) which is in the

region where u and its air particle paths are defined. Follow
n

c
l

the air particle path of u from (x ,y , t - —-) down to the

nearest boundary point of the domain of u . We define h at
" r n n

(x ,y ,t ) to be the value of \|/, or ty~ at this boundary point,
c
l

2c
l

More precisely, when -co < x < co , y > 0, and -— < t < ——

,

we extend the definition of h
n

by letting h
n ( x »yo » t )

=
c c c

^l
[a
n
(xo^o' to-lT ) ' Yn

(xo'yo»
to--ir )] lf Yn (x ,y ,t - -i) > 0,

and by letting h
n
(x

o ,y o
,t

o ) =
2
tan (x

o' yo'
to"^;)

» Pn
(x

o' yo'V"^ )]

if rB (xo .y
.t

o-^) = o.

We will now show that Lemma (1.2) remains valid for the

extended h ,

Proof of Lemma (1.2) . Since we have already observed that the

-::- -::-

c
llemma is true for planes t = c where < c < — ,we will prove

• c
l * 2c

i
n

the lemma for planes t = c where —— < c < —— . A similar

argument can then be used to extend the proof to planes t = c" for

larger c" as the definition of h is extended further.

-::-
c
l * 2c

lConsider a fixed plane t = c where — < c < . Let
n — — n

xni (^ = x
n
[x

i
(r) '°>^> c

'
::

'-ir ] and yni (r) = yn
[x

i
m '°'r' c " ~ !T]

for 1=1,2 (see glossary for x,^) and Xp(f))» Let R. =-(x ,y ,c"")|

cl 1
x = x . (t) and y = y^-jft) for some t such that < t < ~ [• for

1=1,2. Then clearly the set of points on the plane t = c", at

which h is discontinuous in (x ,y ,t ), is a subset of R,(J R
? .

Vie will show that R. and Rp have measure zero.



•

- '
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Choose / so that |x
]L
(r)-x

1
(t') I

< /Itr-'cl for < £, £< cr
s (1) c.

Then for It - t| < T+f and ° 1 ^> *" 1 " we have

c c

|x
nl

(^)-x
nl C2-)| = |xn

[x
1
(^),o,r,c"

:

-
T
i]-x

n
[x

1
(r),o/^c^ 1

i]|

r ^exp(-2D pc- )

< J2(D1
+l)[|x

1
(^)-x

1 (£-)l+ lr-^3| (see Lemma 1.7)

L
exp(-2D p c, )

< [2(D
1
+l)(

/(
/+l)| ;?-d] • Let

exp(-2D ? c, )

H = [2^+1 )(/+!)]
d L

. Then |xnl (S)-xnl (fc) |

exo(-2DpC, ) c^ s

< H|r -rl for < r, £< — and |£ -tj < -^ .

Let k be a oositive integer and choose k so that k > k
• ^ o o

C, S 1C-,

implies £± < j£ . Fix k > k
Q

. Let f
±

= -^± for i=0,l,2, . .
.
,k.

Let S be the set of points (x .y .c") within and on the circle in
[i,

' o' ° o'

the plane t = c with center at [x , (-£ )»5rni(^ )jOl and radius

c
exp(-2D 2

c
1

)

1) for u.=1.2 k-1. For-?2H(t^) for u=l,2, ...,k-l. For * , : ^ < ?- - we have

l

r ->' * E < FT and hence /[x^W-x^^Jl^Cy^fe)-^^)]^

c
exp(-2D

2
c
1

)

s KaW^V 1
+ ^m^-ymV 1 -

2H(^ ) so that

[x
nl

(r),y
nl

(r),c'"'] is in S^ for t , < r < tr +1
. Clearly

2 exp(-2D
2
c , )

RjC S
1
U 3

2
U . .. JSk _1

and m(S ) = }4^(t~) for

u=l,2, . . . ,k-l where m(S ) is the plane Lebesgue measure of S .

k-1 . c.
2 exP (-2D2Cl ) lm2 exp( . 2DpCl )

Hence m(R, ) < > m(S ) < i|.itH (—

)

k ^ x
for

U-l

See glossary for s •



'
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each positive integer k > k where m(R,) is the plane exterior

measure of R,. Since 1-2 exp(-2D
2
c
1

) < by the choice of c
1 ,

1-2 exp(-2DpC, )

then k —> as k -^ co . Therefore mjR,) = and

R.. has measure zero. Similarly R~ has measure zero. This

completes the oroof that hn
is a continuous in (x

o ,y
,t

Q ) at

almost all points on each plane t = constant.
o

We have yet to show that |hn (£,^ ,t )+A
2 (a£+b ) | < 2M for

IT < fc < -IT '
If Yn(5^' t "TT

:) =
°» then

l
hn (^^' t)+A2(a^ +b)l

< \* 2
[^A,t--}),Vn

(£,,'l,t- 1±)] + A
2
[aa

n
(5,^,t- 1

i) +b]|

+ a \
2 |5-a

n (5,
/?,t- 1

i)|

O G C C

< M -«-aA
2
|x
n
(?,^,t- 1

i,t-
1
i)-x

n
[5,^,t- 1i,vn

(^,^t--i)]|

c

< M+ a\2D, It- -i - v U,^*t--i)| < M+aXD,c, < 2M where we have— 1 n 'n l n — i l —

used the fact that |i|/p(x,y ) + A. (ax+b) | < M and aX D-^ < M.

Similarly we obtain |h (g,^,t)+X (a£+b)| < 2M when

Yn
(^,7,t--^) > 0.

From Lemma (1.2) we see that ^ J J
g(x,y;^,^) [h (€,'j,t

)

V
>°

2c
P X

+\ (a^+bHd^d't exists for -co < x < co , y > 0, and < t < —- .

We extend the definition of v by letting

v„U,y,t) = h \\ 6U.yf€.tHM5.*ft) + \
2 (a£+b)]d£d4

2c
for -co <x< oo, y > 0, and < t < —-— .

Lemma (1,3) remains valid for the extended v .

Next we extend the definition of u by letting u (x,y,t)
n n

2c,'

= v (x,y,t )-w(x,y,t )+ax+b for -co < x < oo , y > 0, and < t < -=-*<

/j >0



•

.' '

•
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Lemma (l.Ij.) remains valid for the extended u .

n

Next we extend the definition of P , end P ~ by replacing
c
l

2c
l_±, by in the orevious definition of P , and P . Then

n " n n± nc

Lemma (1.5) remains valid for the extended P , and F «,

c 2c
nl n2

Now replace -~ by ——- in Lemma (1.6). The lemma remains

valid and it extends the domain of x and y to 3 (x ,y ,t ,t)|
n

2c n L 2c "^°

-co < x
Q

< 00 , -co < yQ
< co , < t

Q
< -^i

, < t < -^i
{ .

Lemmas (1.7) and (1.8) remain valid for the extended x and y .

Next we extend the definitions of a , S , and v by replacing
p n' rn' 'n '

c
l 1—=• by in their previous definition. Then Lemma (1.9) remains
n * n

valid for the extended a , S , and y •
n* n n

We can thus extend the functions h , v . u,F,,F OJ x,n n' n' n± iad' n

y , a , B . and v stepwise in time until < t < c n and
'n* n' ^n.' 'n — o — 1

< t < c, • That is, to define h at a point P in a new time
c
lstrip we ao back a distance — in time to a point P . We definen o

h
n

at P to be Vz
(a-
n »Pn )

at P
o

if Yn
= ° at P

o»
and v,e define h

n

at P to be ^i ( an >Yn ) at P
Q

if Pn
= at P

q
. We then define the

remaining functions at P as previously. Lemmas (1.2) through (1.9)

remain valid for these extended functions.

We will show that a subsequence of > u V converges to a weak

solution of (1) in *v, which has the properties mentioned in the

theorem.

Lemma (1.10) . There is a subsequence, -fn, 7, of the positive

integers such that j"xn
(x

o ,yo
,t

Q
,t

)

j and f yn Uo ,y
,t

Q
,t A

converge for all (x ,y ,t ,t) in the domain of x and y am
o o o n

k
n
k

such that the convergence is uniform in every bounded subset.



:

.

.
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Proof of Lemma (I.

1

0). Since |x
n
(x ,y ,t

Q
,t )-x

Q |

= ll ^l^n^o^o^o^^n^o^V^^^ 3 ^! < V^o' ± D
l
c
l>

t
o

then the sequence {xn (x
o ,yo

,t
Q
,t )-x

Qj
is bounded uniformly with

respect to (x ,y ,t ,t )
and n '

For any (x ,y ,T ,t) and (x
Q ,yo

,t ,t) in the domain of xn

; p _ p — 2
let s =n/(xo

-x
o ) +(y -y )

+ ^ t ~t
o )

. For s < s
Q

(see glossary)

we have |xn (x
QJ ,t

Q
, t )-xQ

-xn (x ,y ,t
o
,t )+x

Q |

< Ix^o^^n^o^o^o^^^^o^o^o^) l

+ |xn
(x ,y ,t

Q
,t)

exp(-2DpC, )

- x
n
(x

Q ,y
,t

o
,t)| < s+ [2(1^+1)8] +D

1
|t-t|. It

follows that the sequence j'Xn
(x

Q ,yo
,

t

Q
,t )-X

Q
t is uniformly

equicontinuous in (x ,y ,t ,t).

Similarly the sequence ]yn
(x ,y ,t

Q
,t )-yJ is uniformly

bounded and uniformly equicontinuous.

It follows from well known arguments that a subsequence,

(n,^, of the positive integers exists having the properties listed

in Lemma (1,10).

Let x(x ,y ,t
Q
,t) = lim xn

(x ,y ,t
Q
,t) and y (x ,y ,t

Q
,t

)

k—5-co k

= lim y
n

(x
Q ,y

,t ,t) for -co < x
Q

< oo , -co < yQ
< co ,

k—>co k

< t < c, , and < t < c, .— o —
. J. - —x

Lemma (1.11) . Let (x
Q ,y

,t
o
,t) and (x ,yQ

,t ,t) be any points in

the domain of x and y. Let

S(t) =y[x(x
o> y

,t
o
,t)-x(xoS yo

,t
o
,t)]

H+[y(x
o ,yo

,t
o
,t)-y(x ,y ,t

o
,t)]^

and let s = /(x
Q
-x

o )

2
+(y -y

o )

2
+(t -t )

2
. Then
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exp(-2D pc, ) , , exp(2D pc)
S(t) < [2(D

1
+l)s]

c ± when s < s
Q

= ^g +± ]

(jt) * .

Also |x(x ,y Q
,t ,t)-x(x ,y ,t ,t)| < D

±
| t-t | and

ly(x
o ,yo

,t
o
,t)-y(x

o ,yo
,t

o
,t)| < D

1
|t-t| for < t, t < c^.

Lemma (1.11) follows easily from Lemma (1.7) and the fact

that (F , ) < D, for 1=1,2.
ni i '

Lemma (1.12) . x(x ,y ,t ,t) and y (x ,y , t ,t ) are uniformly con-

tinuous functions of (x .y -t , t) in their domainoo o

Lemma (1.12) follows easily from Lemma (1.11).

For (x ,y ,t ) in A, with y > and t > let yo be the

largest number such that y < t and y(x ,y ,t ,y ) - 0. If no

such Y exists, let v =0.
o ' o

For (x
Q
,0,t

o
) in >(S 1

with t > let yQ
= t if

4 (x ,t
Q

) > 0. If 4x
(x ,t ) < 0, let y be the largest number

such that yo
< t and y(x ,y ,t .y ) = 0. If no such yo exists,

let y = 0,
o

For (x
Q ,yo

,0) in Q 2
let Yq = 0.

We have associated a number y~ with each (x ,y ,t ) in £* , ,

o o Joo 1

We define functions a, p, and y with domain a) , by a(x ,y ,t )

= x(x
o ,y o

,t
Q ,Y ), P(x ,y ,t

Q
) = y(x ,yQ

,t
o ,Y ), and

Y ^ xo'^o
,-t

o^
= Yo*

Tben (a,p,y) is the most recent point before

time t = t where the curve [x(x ,y ,t , t ),y (x ,y ,t , t ) ,t ] enters

/l , as t increases excent possibly when p = and (a,0,y) is on

CL or C
2

„



-

-
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In the following we will let a = a(x ,y ,t ), a = a(x ,y",t ),° o o ,J o' o ' o o' J o* o '

Po
= PtVJTo'V.' Fo = PC 3

S)*y ^o >
- Yo

= ^VVV' and

"o
= Y(x ,y ^ ).

Lemma (1,13) . Let ( x iy »t ) ^e any point in Xy 1
such that

YQ
= or y > with ( ao » >Yo ) not on C, or Cp. Then

lira a = a lira 8 = p , and lira y = Yn .

k-^oo
n
ko

° k->oo n
ko

° k->oo n
k
o

°

Lemma (1.13) follows from the fact that for each (x ,y ,t )o

we have X^U ,J ^t) —> xU ,y ,tpl t) and 7^ a ^ *t) ~>
y(x ,yo

,t
Q
,t) uniformly in t as k —> co .

Lemma (1,11;) . a, (3, and y are continuous at points (x ,y ,t )

for which y = or y^ > with (a ,0,y ) not on C. or C .
o o o'o 1 2

Lemma (l.ll|) follows from the fact that x(x ,y ,t , t) and

y(x ,y , t ,t) are uniformly continuous.

Let h be the function with domain /d*, defined by

^V^o'V = VVV when Yo
> ° and ^WV = ^VfV

when y =0.
o

Lemma (1.1$) . Let (x
o ,yo>

t
Q

) be any point in A such that

yQ
* o or yQ

> with ( ao ,0,Yo ) not on C, or Cp. Then h is con-

tinuous at (x
o ,yQ

,t
o ) and j^^n^o^o' t

o )
= ^Wo'V'

Lemma (1.1$) follows easily using Lemraas (1.13) and (l.lij.)

and the definition of h.

Lemma (1.16). h is a continuous function of (x ,y ,t ) almost
1 o

everywhere on each plane t = constant. Also |h(x ,y ,t ) +
o o ,J o* o

X
2
(ax +b)| < 2M.



•
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The proof of Lemma (1.16) is similar to the proof of Lemma

(1.2) for extended h .

From Lemma (1.16) we see that

^ ]} gU,y;5/I)[h(4,'?,t)+\
2
(a^+b)]d5d'Z exists for each (x,y,t)

in /§ , . We define v to be the function with domain A? , whose

values are given by

v(x,y,t) =^ \ g(x,y;£,'?)[hUAt)+\2
(a£+b)]d4d>? .

Lemma (1.1 7 ) • v, v , and v are continuous. |v |
< I4.ll (1+ —5)X y *

*

and |v I < !j.M
2 (l+-^). For < s = 7(x-x) 2

+(y-y j* < r ,

X 2

|vx
(x,y,t)-vx (x,y,t)|

< -(52M
2
+ i^-)s log s and

^
/ 2

|v
ny

(x,y,t)-v
ny

(x,y,t)| < -(52M2 + i£§-)s log s.

The proof of Lemma (1.17) is the same as that of Lemma (1.3).

Let u(x,y,t) = v( x,y, t )-w(x,y,t )+ax+b for (x,y,t) in/:),.

Lemma (1.18) . u, u , end u. are continuous. |u I < D, and
1 x y xx
|u I < D

1
. When < s = y^-xp+ty-y) 2

< i , then

kx(x,y,t)-ux(x,y,t ) I < -D
2
s log s and |u (x,y,t )-u (x,y,t

)

|

< -DpS log s.

Lemma (1.18) follows from the definition of u.

Let (x,y,t) be any point in Aj t It is then clear that

lim g(x,y;£,t)[h U,*l,t) + X
2 (a£+b)]

k-^-co k

= gU,y;5/<'Hh(£,'?,t) + ^
2 (a^+b)] for almost all (£,'?) with ^ > 0,

|g(x,y;S/})[h (?,n,t) + X
2
(a£+b)]I < 2M|g(x,y,-£ f >/ ) | for all (£,£)n

k



.

.
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with 1 > and for all k, and g(x,y;€,4) [h,. (?,^,t )+\
2
(a£+b )] is

n
k

a measurable function of (£,4) for all k. Hence by the Lebesgue

convergence theorem we have lim u (x,y,t) = u(x,y,t). Similarly
k->co

n
k

lim u„ (x,y,t) = u(x,y,t) and lim u (x,y,t) = u (x,y,t).
k^-oo

n
kx

X k->co n
ky

y

Let F
1
(x,y,t) = -u (x,y,t) and P

2
(x,y,t) = u

x
(x,y,t) for

(x,y,t) in/5
1

and let P
1
(x,y,t) = -u (x,-y,t) and P

2
(x,y,t) =

u (x,-y,t) for (x,-y,t) in & . Then lim P (x,y,t) =P1
(x,y,t)

x x k->co
k
l

and lira F (x,y,t) = F p (x,y,t).
k-^oo V /

Lemma (1.19) . Let (x >yo
,t

Q
) be in XV ^ and choose t > t

Q
so that

y( x »y »^ »*) > ° f°r *- Q < t < t. Then the curve described by

[x(x
o ,yo

,t
o
,t),y(x

o ,yo
,t

o
,t),t] for yq

< t < t is the unique air

particle path of u through (x ,y , t ) •

Proof of Lemma (1.19

)

* Por fixed UoJ y o
,t

Q
) in M , let Z

fc
(£) =

^[x
n,

(x
o' yo'

to^ )
"x(xo^o' to^ )]2+Cyn

1
^o^o'V 5^WV^ )]

k
for < £ < c, . Then Z,(£,) ->• as k -> co for each £. Given £

o o
choose k„ so that k > k^ implies Zk (£) < j- . Then for k > k

Q

we have

Kj x
n (V5r

o'
to^ )^VUo )yo

,to^ ) ^ ]
"F

l
[x(X

o' yo^
to^ ) '

lc k k
y( x^»y^» tn>^)^i Io J,/ o' O'

" P
n

1/
X(XoJo ' to '?)j(Xo,y° ,to '" U1 '

+ |F
nkl

[x ( xo ,yo
,t ,?),y(x ,y ,t

o ,5),^]

" p
i
Cx (xo»yo ,to'^ ) ' 3r(xo»

3r
o'

t
o , ^ , ^ :i

'

< - D
2

Zk (£) log Zk (C)
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+ |Fn tx(x ,yo
,t ,€),y(x

o,y
,t ,§),€3

k1

- P
1
[x(x ,y ,t ,5),y(x ,y ,t ,C),^]| —> as k -^ oo

Thus lira P
n Cx (x

o ,y
,t

o ,$),y
(x

o ,yo
,t

o ,?),a
K—>-CO , 1 K K

k
= P

1
[x(x ,y ,t ,5),y(x ,y ,t ,4) J C] for each?, and

P
n tx

n ^ xo ,yo»
t
o'^ ) » yn

{x
o ,yo'

t
o» 5 } »^ is a measurable function

k1
k k

of ? and its absolute value is less than D, for each k and £.

Therefore by the Lebesgue convergence theorem

3c < x
o' yo'

t
o'

t) =
}
±rn x

n,
(x

o' yo'V t)
. k-^co k

=x +lim
\

Pn [x (x ,y ,t
Q ,?),y (x

Q,y
,t 4),C3d5

k->-co £ ,1k k

t °

= x
o

+
J

pi tx txo»yo*'
to^^ y( -x

o»yo fto'5, »5 ^ de •

t

Similarly we obtain
t

y(x
o' yo'

t
o'

t) =y
o
+

l

p
2
Cx < xo' yo'

t
o'' , '

y(x
o' yo'

t
o'£ , ' 53d* •

t
o

Thus x. and y. exist and

x
t
(x

o' yo
,t

o'
t) = p

i
[x ^ x » yo

,t
o
,t)

' y ^ xo ,y o'
t
o
,t ^ t ^ and

y t
(x

o' yo'
t
o'

t) = I?

2
U(x

o ,yo
,t

o
,t),y(x

o ,y o
,t

o
,t),t].

When (x , y ,t ) is in /u-, and y < t < t, we have
O O JL o — —

x
t
(x

Q ,yo
,t

o
,t) = -u

y
[x(x ,y ,t ,t),y(x ,y ,t ,t),t] and

yt
(x

o' yo
,t

o'
t) = ux Cx(xo' yo' t

o'
t, ' y<xo» yo'

t
o'

t)
»
t3, Prom the

inequalities in Lemma (1.18) it is clear that [x(x ,y ,t ,t),

y(x ,y ,t ,t),t] represents the unique air particle path of u

through (x ,yo
,t

Q
).
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Proof of Theorem I : On each air particle path of u, h by defini-

tion is constant except possibly at points where the air particle

path meets C, or Cp. Hence h is a pseudo-Helmholtzirn of u. Since

u and h satisfy (3) by the definition of u, then u is a weak

solution of (1). We now observe that u(x,0,t) = <|>(x,t),

h(x,0,t) =
\Jr_j (x,t) when (x,t) is in the domain of ty,,

h(x,y,0) = ^2
(x,y), |u

x
(x,y,t )-a | < D

]
_+a, |u (x,y,t)| < D^ and

|h(x,y,t)+X2 (ax+b) | < 2M.

To complete the proof of Theorem I we have yet to show that

u(x,y,t )-ax-b is bounded. We have

|u(x,y,t) - ax - b| = |v(x,y,t) - w(x,y,t)|

< -k- \\ |g(x,y;£,^ ) |2r!d5d^ + W (where W is an upper bound of |w|)

<j*>0

00* CO

< \ \ \ lg(x,y;?/<)|d£d^ + W

-co -co

00 CO 271 CO

< ~ \ ( |K(Xp)]dgdf + W = f~ j j
p|K(Xp)|dpd9 + W which is a

-co -co

constant.

Thus for all small enough c-, > there is a weak solution

with domain <&. satisfying the conditions of Theorem I.
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Part II

Getting Stronger Solutions by Strengthening Hypotheses

For the rest of this report we let u be a weak solution

constructed as in the proof of Theorem I, and we let M, W, D,

,

Dp, and c, be fixed numbers choosen as in the proof of Theorem I.

We also let v, P
1 , P

2 , 3c(x
Q ,y

,t ,t ), y(x
Q ,yo

,

t

Q
,t ), a, p, y, and

h denote the same functions as in the proof of Theorem I.

Theorem II , Let c|>, ty. , and tp satisfy the hypothesis of Theorem I

with the exception that (2.) and (3a ) are replaced by (2.) andA , „« ^k , -^ x^^™ UJ ,c
A

(3;).

(2») ty, is uniformly Holder continuous and \J/,(x,t)+X (ax+b)

is bounded.

(3A ) ^p is uniformly Holder continuous and \|/p(x,y)+X (ax+b)

is bounded.

Let (x >y ,t ) be any point in -$, such that p > or p =

with (a ,0,y ) not on C, or Cp. Then the second derivatives of u

with respect to x and y exist and are continuous at (x , y ,t )

and they satisfy /\u - X u = h. Thus h is the true Helmholtzian

of u at U ,y ,t
o
).

Theorem II is proved with the aid of several lemmas which

follow.

For (x »y ft ) In A)- and 6 > let

R 6 ~ !(x,y,t)|(x,y,t) ei^, U-x
Q | < 6, |y-yQ | < 6, and |t-t

Q
|<6-.

Let a
Q

= a(x ,y ,t*), p* = P(x*,y*,t*), and Y* = Y(x*,y*,t*).
J



.
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Lemma (2.1) . Let (x ,y ,t
Q

) be any point in^
1

such that pQ
> 0,

or =0 with (a ,0,y ) not on C, or C p . Then there are constants

H > and 6 > such that (x*,y*,t*) and (x
Q ,y

,t ) in R
6

implies

exp(-2D~c, ) .. exp(-2D? c n
)

Ur-aJ < H s
2 X

, IPq-PqI < H s *
L

, and

.<.
exp(-2D nc,; ,

—

-

j S~"Z—

?

*TZ—

2

hr*-7J < H s ^ x where s = /U^) + (yQ
-y )

+ ( t -t
o ) '

Proof of Lemma (2.1) .

Case I (p > 0). Since p is continuous at (x ,y ,t
Q ), we can

choose 6 small enough so that (x ,y ,TT ) in R
5

implies pQ > 0.

Then (x ,y Q,^
) in Rg implies y = 0, a

Q
= x(x

o ,yo ,?o ,0) , and

3 = v (x ,t ,t ,0). If we also choose 6 small enough so that the
o o o o

diameter of R 5
is less than s , then Lemma (2.1) follows easily

from Lemma (1.7 )•

Case II [p = 0, y > 0* and (a ,0,y«) is not on C, or C,l.r o o OO ± d.

Since y
fc

is continuous and yt
(x

o ,yo
,t

Q ,Y ) =
<l>x ( a »Y ) > (note

(a ,0,y ) is not on C n or C ), we can choose positive constants
v

o' ' 'o 1 2 '

6, tlf and e
2

so that yt
(x ,y ,£ ,t) > e

1
> for (x

Q ,yo ,^ ) in

R
5

and |t-Y
Q l

< Bg,

Since v is continuous at (x ,y . t ), we can choose 6 smallerooo
if necessary so that (x >y_,t ) in R

g
implies Y > and

'V^o 1 ^ e 2'

Wow let (x ,y ,t ) and (x ,y o
,t

o
') be in Rg. Assume without

loss of generality that yo
< Y « Tnen since y(x ,yQ

,t
o,Yo ) = Pq

o( Y*>o), we have y(x*,y*,t*,Y ) = yU^y*,t*,Y )-y(x*,y*,t* Y*)

(y -Y )yj.(x ,y ,y »t ) where t" is between xl and 7 . Since
'o o J t o ,J o' o* o o



I .

•
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Iv^-y
I < £o and Iy ~Y~1 < ^> it follows that |t"-Y^I < e ar*d00 — 2 ' ' o O — 2 O — 2

hence y(x*,y*,t*,Y ) = (V^t^o^c'V** 1 > ^(y^Y*) =

ei'~o"Yol*
Usins y^ »y »^o»^o^

=
^o

= 0("o>0 ^
we now have

' Y
o""

Yo' - e" l^xo' yo' to»^o^'y^o*'
?

o»^o*^o^* NoW choose 6 smaller

if necessary so that the diameter of R A is less than s . Then

,_ -•-. 1 exp(-2DpCT J

from Lemma (1.7) we have Iy«-Y„I < t~ [2(D,+l)s] x
. The

results for a and p follow in an obvious manner.

Case III (B = v =0 and (a . 0,y,J is not on C, or C ). As
o o o' ' o 1 2

in Case II we can choose positive constants 6, e, , and 6p so that

yt ( ^o ,yo , ^o
,t) - e

l
> ° for

**o' yo'^ ln R
6

and ^"Yo' - e 2»
so

that I Y-"Y~ I < £ o for (x" ,y\,^L) in R R) and so that the diameter00 — 2 O'^O'O 0'

of R R is less than s .

o o

Now let (x
o ,yo

/t
o

) and (x*,y*,t*) be in Rg. If y = Yq = 0,

our conclusion follows as in Case I. If yq
> and yo > 0> our

conclusion follows as in Case II. If y = ° a^d y'
Q

> 0, the con-

tinuity of y in Rr can be used to conclude that there is a

(x ,y ,% ) on the straight line segment from (x »y ,F ) to

»*- <*

(x ,y ,t*) such that Y(x >yQ
,t ) = but Y(x,y,t) > (hence

B(x,y,t) = 0) on the straight line segment between (x »y /E
Q

) and

(x ,y ,t ). Since B is continuous in Rg, it follows that

B(x ,y ."£ ) = 0. The methods used in Case II can be used to showr o* J o' o

that |y(x ,y j£ )~Y Io ,J o* o ' o

, exp(-2D ? c, ) „ P ,, P ^ ,, P •«exp(-2DpC
1

)

<i[2<D1+u] -

21
t(i -*o>

+
(?o-yo»

+(V*o» '

, exp(-2DpC, ) „ ^
< i [2(D1+l)s] . But |y -Y I

= Y = lY(X ,y ,t )-Y l

and our lemma follows.



i

i

:

.



35

Lemma (2.2) . Let (x ,y ,t ) be in ^
1

such that P Q
> or P Q

=

with (a ,0,yo ) not on C, or C
?

. Then h is uniformly Holder con-

tinuous in a neighborhood of (x ,y ,t ).

Proof of Lemma (2.2) . Using Lemma (2.1) and the fact that v|/. and

\|/ p are uniformly Holder continuous we can show that there are

-,k it it v

constants H > 0. 6 > 0, and < e < 1 such that (x .y -t ) and
' » ooo

(x
o ,yo

,t
Q

) in R
5

implies |h(x^,y^, t^)-h(x
Q ,yo

,

t

Q ) | < Hs
e where

s = \/( xo"
x ^

+^n -5r
o^

+ ^ t o~
t
o^ * Jt is then clear that there are

positive constants 6, < 6 and 6 such that (x .y .t ) in R» and
l ^ * o o* o o.

s < 6 implies that (x",y" t'
r

) is in R R . Hence for (x ,y ,t ) in
d. O

R
5

we have |h(x^,y
o
', t' )-h(x

Q ,yo ,
t
Q ) \ < Hs

e
for s < 6^. That is,

h is uniformly Holder continuous in Re .

°1

Proof of Theorem II . Let (x »y,t ) be in/', such that p > or

P = with (a ,0,yo ) not on C, or C~. For arbitrary (x,y,t ) in

/' , we have

(11. 1) v
x
(x,y,t

Q
) =-^]| gx

(x,y^/n[h(4/(,t
o
)+\

2
(a4+b)]d^dl

= ^ )( gx
(x,y^,v)[h(^,V,t

o
)-h(x

o ,y o
,t

o
)+aA

2
(^-x )]d4d^

(11. 2) v
y
(x,y,t

Q
) = ^ 'jj ( g

y
(x,y^,7)[h(?,1,t

o
)+X

2 (a^+b)]d4d^

Si J)
g
y
(x,y^/0[h(C, /(,t

o
)-h(x

o ,yo
,t

o
)+aX

2
(C-xo )]dCd'i

?.
>0

co

- [h(x
Q ,yo

,t
o
)+X

2 (ax
o
+b)]

| j
K(\v)d£ .

-co
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To get the second representation of v we added and subtracted

rhU
o ,y o

,t
o
)+X

2
(ax

o
+b)] ^ \ j gx

(x,y;£,>* )d£d1 to the first integral

of (II. 1), and then we observed that \ \ gx (x,y;£,'i )d£,d>i

ti>0

g„(x,y;^, ^)d^dV = 0. Vie obtained the second representa-

>l
>0

tion of v in a similar manner by observing that

CO

^J jgy
(x,y;?,1)dCdl = ^JJ^[K(Xp)+K(Xp)]d?d«z = -

|
J

K(Xv)d£ .

>i>0 *£>0 -co

Since h is Holder continuous at (x
Q >y

>t
Q ) , we could show

that differentiation with respect to x and y at (x,y,t )

= (x ,y ,t ) is permitted under the integral sign in the second

representations of (II. 1) and (II. 2). The resulting expressions

are also valid for (x,y,t) in some neighborhood of ( x »y » t )

since h is also Holder continuous in some neighborhood of

(x ,y ,t ). Hence for (x,y,t) in some neighborhood of ( x »y o >* )

we have

:n.3) v^u^t) =^-[ gxx(^y;S,Wh(£,^t)..h(x,y,t)+a\
2
(£-x)]d£d4 ,

^>0

:iI.I0 v
xy

(x,y,t) = ^ ^(gxy (x,y;?,^)[h(?/(.,t)-h(x,y,t)+aX
2 (?-x)]d?d^ ,

;il.5) v
yy

(x,y,t) =
^Jjgyy

(x,y|C, /7)[h(5,^,t)-l:(x,y
>
t)+a\ 2

(4-s)]d?d^

•— s CO

=$ \ -ft' (Xv)dE, if y >

P J -co
+ [h(x,y,t)+X^(ax+b)] <

1 if y *
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Since the Holder continuity of h is uniform in some neighbor-

hood of (x ,y ,t ), we can show with the aid of (II. 3), (II. k)

»

00 o

and (II. 5) that vxx , v , and v
yy

are continuous at (x
o ,y

,t
Q
).

2 2
Next we wish to show that Av - X v = h(x,y,t)+X ( ax+b ) at

points (x,y,t) where (II. 3), (II. I;), and (II. 5) are valid. To aid
co

f"¥ \v K '( Xv)d^ if y > °

us here we introduce w(x,y,t) =
<j

and

1 if y =

v(x,y,t) = ^L U g(x,y;C/i)d?d4 . We will first show that

w(x,y,t) = e"
Xy and v(x,y,t) = l(e"Xy-l)

.

X^

Replacing 4(5, t )-(a^+b ) by 1 in Lemma (1.1), we see w has

continuous bounded first and second derivatives with respect to x
_ o

and y for y > and Aw - X w = 0. Since w(x,y,t)
co

= M 1

-1- — k' (\>/z +y
2
)d£, we have w = and hence

it
J /g ? X

-co yz +y

w - X w = 0. Therefore w = c, e~ ' + c e y
. Since w is

yy 12
bounded, then c

?
= 0. Since w(x,0,t) =1, c, = 1 and w = e" y

.

Replacing h(£/t,t )+X
2
(a£+b) by 1 in (II. 1) and (II. 5) we

see that v = and v (x,y,t) = w(x,y,t) = e y
. Hence

v = —k e" * + v-.y + Vp. Since v is bounded, then v, = 0. Since

v(x,0,t) = 0, then v
?

= -| and v = i (e~
Ay

-l).
X X
p

We now have Av - X v

88

"Si U Ag( x»y;^,
/?)[h(?,'?,t)-h(x,y,t)+aX2 (C-x)] d^dl

+ w(x,y,t)[h(x,y,t)+X2 (ax+b)]

g(x,y;^,^)[h(5, /?,t)+X^(a^+b)]d?d^. Using the fact that-sĵ
>0
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As( x >y;£/<) = x &(x>y;ZA) v© have /\v- \ v

= [h(x,y,t)+X2 (ax+b)] [w(x,y, t )-\
2v(x,y, t ) ] = h(x,y,t )+X

2
(ax+b).

Since u = v-w+ax+b, then u has continuous second derivatives

with respect to x and y at (x_,y .t ), and Au(x_,y_,t )
-

o o o o o o

x2u(x
o' yo'

t
o

)
= h ( x 'y o '

t
o
)+x2(ax

o
+b) "°" x2(ax

o
+b) = h(x

o' yo'
t
o ) *

This completes the proof of Theorem II.

In our next theorem we assume that the prescribed values of

the Helmholtzian are constant in a strip along the curves C, and

C . We can then show that u , u , and u exist and are con-
d xx _».y yy

tinuous for all small enough t.

Theorem III . Let 4, ^-i a^d \|/, satisfy the hypothesis of Theorem

II. Let c|> satisfy a uniform Lipschitz condition with respect to

t. For the functions x,(t) and Xp(t) of (l
c ) in Theorem I let

d, = min x, (t), d ? = max x, (t), d-, = min x_(t), d, = max x p (t),1 0<t<c x 0<t<c x J 0<t<c d * 0<t<c eL

and assume dp < d,. Let (3r ) and (2R ) also be satisfied.

(3r ) For some positive number f and real numbers p, and Pp

we have dp+^d^-^, \|/p(x,y) = p, for d, -"^ < x < dp+2" and < y < f,

and tp(x,y) = p ?
for d,-'<r < x < d. +t and < y <'£-.

(2„) There is a positive number o* such that a~ < t and such

that (x ,0,t ) on C. implies i!/-(x,t) = p. when (x,t) is in the

domain of ty, and both |x-x |
< cr and |t-t | < <r (i=l,2).

Then there is a c
p

such that < Cp < c, , u has continuous

second derivatives with respect to x and y in k)~

= j(x,y,t ) | -co <x<co, y > 0, < t < c2 f
, and /\u-X u = h in

$
?

so that h is the true Helmholtzian of u in ^L.
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Theorem III is proved using the lemmas vhich follovj.

Choose IL so that |i (x, t ) -cL (x,t ) | : M, | t-t | for all (x,t)

and (x,t) in the domain of cj>.

Let O = gib 4 (x,t) where the greatest lower bound is taken
x

over all (x,t) such that <!> (x,t) > 0, l
x_x

l
> <J" or |t-t

Q
| > <j-for

each (x ,0,t ) on C
1

or Cg, and d
1
-( 2D

1
c+s

q
+ K) < x < d.+^c+s^fc

Then u> > 0.

Choose Co so that < Cp < c, , D,Cp < r-, D-iCp < ?r, and

c
2
(WD

1
+M

1
-D

1
D
2

log Dj^Cp) < ^ .

Lemma (3.1

)

» h is uniformly HBlder continuous in some neighborhood

of each point in £'p.

Proof of Lemma (3*1

)

» Let (x ,y , t ) be any point in>£p. If

B > or 3 =0 with (a , O.y ) not on C, or C OJ then h is uniformly
O 0*0 L d

Holder continuous in some neighborhood of ( x >7 tt ) ^>y Lem^a (2.2).

The only remaining case is the one in which 3=0 and ( ao » >Yo )

is on C. or Cp.

Case I [3 = 0, y > 0» an<3 ( ao » »Yo ) i s on C,]. Suppose

there is a point (x ,y ,t ) in /J ~ such that

s =7(x^-x
o

)
2
+(y

o
-y )

2+(t -t )^ < s
Q , y > 0, and either |a

Q
-x| ><r

or
| y -t | > <r for each (x,0,t) on C,. Then 3=0 and

'y (VVV z)l = l3r(x ,yo,¥o
,z)-y(x ,yo ,¥o,Y )| < dJz-yJ

< D,Cp < t- for < z < Cp. Thus for < z < c
?
we have

= |P
2
[x(x

o ,yo
,?

o
,z), y(x ,yo

,t ,z),z] -F
2 (%'°^o ) '

< |P
2
[x(x

o ,yo
,t

o
,z), y(x ,yo

,t
Q
,z),z] - P

2
[x(x

o ,yo
,t

Q
,z ),0,z]

|

+ |<L[x(x .y .T .z),z]-<L(a
ft,Yn )l
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k-o

< -D
2
ly(x ,y ,t ,a)| log|y(x

o ,y o
,t

o , Z )|+W|x(x ,y ,t
o , 2 )-ao

|+M
1
|z-Y l

(since |y(x
o ,y

,t
o
,z)| <£ and |4XX I

= !*„! < W)

< -D
2
DlC2 log D1c2+W|x(x ,y J ,2)-x(x ,y ,f ,Y )l+Ml |a-Y l

(since |y(x
o ,y

,t
Q

, z ) | < D^g)

< "D
2
D
1
c
2

log D
1
c
2
+VJD

1
|z-Y l

+ \ |z-Y I

< c
2
(WD

1
+M

1
-D

2
D
1

log D
x
c
2

) < ^ .

Also |a -o
l = l(a -X )+(x -x )+(xo-%)l < V 2

+s
o
+D

l
c
2

S °

that a > a -(2D,

c

+sJ > d, -(2D, c+s + fr) . Similarly
O — O 1 d O — L ± O

a < d, +2D, c+s +C and hence from the definition of cj we have
o - 14. 1

4x (vV ± w -

Since lyt
(x

o ,y o
,t ,z)-y

t
(x

o ,yo
,^ ,Y )l < $ for < z < c

2

and since
<l>x

(a
o , YQ ) > tJ , then yt

(x ,y »^ »z ) > yt
(x »y >^ »Y )- ^

= 4x
(a

Q ,"Y )-
I

> ^- f = % for < z < Og.

Since (a ,0,y ) is on C, we have either Iy "Yq I > ^~

a -a
I
> - by the_choice of (x >yo,TL).

Thus either
Y ~

- 2 (°^ <£l«° yt^o^o^o* z)dz
l

or

<T < Y -Y"o ' o
d£

Y,

I ly(x ,y ,^ .Y )-y(x ,y J ,Y )l - a ly(x ,y ,^ ,Y )l

= £ |y^o,yo,^ ,Y )-y(x ,y ,t
o,Yo )l

p exp(-2D?c,

)

^D [2(D
l
+1)s3 or <r < |a -a

Q |

= lx(x ,y ,T ,Y )-x(x ,y ,t ,Y ) I

< U(x
o »5F ^o^o )

-x(x
o'yo'

to^ )l + \xl* ,7 .* .r )-*l* ,7 ,t .r )\

exp(-2D c.) 2D, exp(-2D ?c,
)

< [2(D
1
+l)s]

d X
+D

1 lY -Yo l 1 (l^i )[2(D
1
+l)s]

From this we see that all small enough neighborhoods of ( x >yo »^ )

do not contain any such points (x J J ). Therefore for all small

enough neighborhoods of (x ,y , t ) we have ( xQ >J
>t' ) in the

neighborhood and Yq > implies h(x^,y^,t
o

) = ^ ( a^

,

y^ ) = P^«
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Now suppose there is a point (x
Q ,y

,t ) in 4^ such that

y = and s < s . Then < pQ
= F "P

< ly(V^o'VV^o^o^o'V l
+ l3r(5c ,y ,F

o,Y
)-y(x ,y ,t ,Y ) I

exp(-2D pc, )

< D
1 Iy -Y I+[2(D1

+1)s] * X
. Since ^ Iyo"Y I < D.^ < ^ >

then < p < f for all such (x
o ,yo

,t
Q

) near enough to UQ ,yo
,t

o
).

Also a
Q

= x(x ,yo ,7 ,Yo
)-x(x

o ,yo ,^ ,Y )+x(x ,yo ,^ , Y )

. , exp(-2D c n )

- x(x
o ,yo

,t
o ,Y

)+a
o

< D
1 Iy -V I+C2(D1

+1)s] 2 x + a
Q . Again

D-,
I
Y -Y I

< 2^ • Also a < dp since ( ao * >Yo ) is on C,. Hence

a < d~+t and similarly a
Q

> d
1-f for all such (x

o ,y
,t

Q
) near

enough to (x ,y„,t ). It follows that for all such (x .y ."E )ooo ooo
near enough to (x- tJ »b ) we have d-^-t < a

Q
< d

2+t , < P <t,

and hence h(5c
Q ,yo

,t
o

) = * 2
(a

Q ,P
) = p^.

Therefore in Case I h(x ,y ,t
Q

) = p 1
for all (x

Q ,y ,^ ) near

enough to (x ,y ,t ). Hence h is uniformly Htilder continuous in

a neighborhood of (x
o >yo

>b )

.

Case II [PQ
=0, y = 0, and (a

o ,0>Yo ) is on c
i^«

Since

a, p, and y are continuous at (x ,y ,t ), then for (x .y ,t ) in
* • ' ' o o o o

A) P near enough to (x >y ,t ) we have h(x ,y ,F ) = p,, and h is

uniformly Htilder continuous in some neighborhood of (x ,y »t ).

Similarly h is uniformly Httlder continuous in a neighborhood

of (x-
Q »y Q

>t ) when p = and ( ao >0>Yo ) is on Cp. This completes

the proof of Lemma (3.1).

Theorem III follows from Lemma (3.1) as Theorem II followed

from Lemma ( 2.2)

.

Next we want u , u , and u to be bounded at infinity.
xx' xy' yy J

This is accomplished in Theorem IV.
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1+2

Theorem IV . Let 4, <lh, and \J/p satisfy the hypothesis of Theor

III. Let 4 also satisfy (1D ).

(ln ) gib 4 (x,t) > where the greatest lower bound is taken

over the set of all (x,t) such that 4 (x
f
t) > and either |x-x \xr

or |t-t > cr for each (x ,0,t ) on C, or C .

o — o' * o 1 2

Then there is a c, such that < c, < c~ and u has bounded

second derivatives with respect to x and y in £)•>

=
j
(x,y,t ) | -co <x<co, y > 0, < t < c^ i

.

Let oj = gib (p (x,t) xvhere the greatest lower bound is taken

over the set specified in ln of Theorem IV. Then < ^ < uj.

»Let Co satisfy < c, < c^ and c, (WD, +M.j-D,Dplog 0,0^) < %

Again we prove several lemmas to aid us with the proof of the

theorem.

Lemma (Lj..l) . The HBlder continuity of h in (x,y) is uniform in

£3 = j(x,y,t)|{x,y,t) e & with x < d-
L
-2ir-D

1
c
3
-l or

x > di +2<r +D
1
Co+l or y > 2D,c-+lj- with respect to (x,y) and t.

Proof of Lemma (lj.1) . Let (x
Q ,y

,t ) be any point in ^ ^ and

suppose p = 0. We will show that then y.(x ,y ,t ,t) > % for

< t < Cy We have yQ
= y(x

o ,yo
,t

Q
, t

Q
)-y(x

Q ,yo , t
Q , Yq )

< DtI^q'YqI < D
i
c "3« Therefore since (x ,y ,t ) is in $ , we have

x^ < d, -2cr -D, c-,-1 or x > d, +2o_
+D, c-,+1. Henceo—l 13 — q. 13

a
o

= x(xo^o» t
o' Yo )

-x(x
o»y '

t
o»

t
o
)+x

o ^ D
l
c
3

+ x
o ± V 2"--1

a
Q
> d, +2S"+1, and thus $x ( a >ro

) > <£>• Then for < t < c*

have lyt
(x

o ,yo
,t

o
,t)-y

t
(x ,yo

,t ,Y )l

< |F
2
[x(x

o ,yo
,t

o
,t), y(x ,yo

,t
o
,t),t]- F

2
[x(x

o ,y o
,t

o
,t),0,t]|

+ 14 [x(x ,y ,t ,t),t]-4 (a ,y )|X o ,J o* o* '
Tx o''o '

or

we
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k3

< -D
2
ly(x

o ,y o
,t

o
,t)|log|y(x

o ,yo
,t

o
,t)| +W|x(x

o ,yo
,t

o
,t)-x(x

o ,yo
,t

o ,Y )|

+ M
1
|t-r

o l

< -D
2
D,c^ log D^c^+WD^Co+MnC^ < £y and hence

yt^o'V^^' ^ 3Tt
(x ,y ,t ,Y )- 2

=
*x

(a
o' Yo ) " 2 ^ 2 for

< t < c-.

Now let (x ,y ,t
Q

) and (x
Q ,y o ,^

) be in $ 3
with

s =V(x -x ) +(y -y ) +(t -t ) < s . Consider the case wherevv o o w o J o o o o v —

p = 0. When yo > Y , then "S = and < yq-Y
= | |° 2 d^
W

Y
Y

To

< i
f

yt <WV*^ = - ytx ,y ,t ,Y )

° _ exp(-2Dp c,

)

z ry(» .y ' t o'Y )-y(x ,y ,t ,Y )] < i [2<d1+i)s]

Y

When y < Y » then < YQ-Y
= Z ) % d^

Yo
Y

i = ) yt (w*o*€)a6 = " -^wW
L> - O

3 °
P exp(-2Dpc,)

< z Ey(vyo'fo'Y >-y(x ,y ,t ,Y )] <r [2(d1+ds]
Co LJ

P exp( -2DpC, )

Hence |y -Y I
< - [2(Dn +l)s] when P = and s < s .oo—— 1 *o o

Now consider the case where P > 0. If 6 =0 for some
o o

UQ ,yo
,t

o
) in ^ ^ with s < s

Q , we obtain
I

Y

"Y I

2
exp(-2D

2
c
1 )

< — [2(D, +l)s] as in the previous case. If jJ > 0, we
U) _ 1

have Y = Y = 0.

p
exp(-2DpC )

Thus |Y -Y I
< Z [2(D

1
+l)s] for s < s . Since

to

a
o ~ x(x

o» yo
,t

o ,Yo ) and Po
= y^ xo ,yo

,t
oYo^'

a similar result

follows for a and p. Since i|/, and typ are uniformly Holder con-

tinuous, we can easily obtain the conclusion for Lemma (lj.,1).
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Proof of Theorem IV. Using the integral representations given in

(II. 3), (II.lj.), and (II. 5) of the oroof of Theorem II; the fact

that h(£,>£, t)+A (a£+b) is bounded; and the result of Lemma (lj..l),

we could show that v , v , and v are bounded in jj\ -,. It fol-
xx xy yj 2>

lows that u , u , and u are bounded in ~jq ~. Since u , u

,

XX siy Jtf J AA Aj

and u are continuous in *\ by Theorem III, then u , u , and
yy j xx xy

u are bounded in the closure of /^ - $ ,. Hence u , u , and

u are bounded in fcK .

yy 3

We now come to our final existence theorem.

Theorem V . Let 4» t-j, and to satisfy the hypotheses of Theorem IV.

Let (}>, \{/, , and \|/ p
also satisfy the following assumptions some of

which are repetitions.

(1.) 4> <t i
and (}> are continuous and have continuous

JrL X AA

bounded first derivatives with respect to x and t. Also

^xxx^^xxx**' 10
' - Li^-xl

1
and Uxxt

(x,tMxxt (x, t ) | < Llx-xl
1

for all (x,t) and (x,t) in the domain of (J>.

n

(2.) \J/, , f, , and \|/,. are continuous. \j/, and ty, t
are

bounded and uniformly Htilder continuous.

(3A ) $2} ^2x*
£nd ^2v

are continuous
« ^px and ^2v are

bounded and uniformly Holder continuous.

(3g) ^(XjO) = ^ 2
(x,0) and

*lt
(x

> 0) =
2£ ^2x

(x » 0)
J J

Sy(x,0;£,4)*2(€,*)d€d4

co

- \ t2x
(x,0) i [X

2
c|,(C,0)-4xx (5,0)]K(Xk-x|)d4-ci)x

(x J 0)t2y
(x,0)

-00

for (x,0) in the domain of both ij/, and \|/p.
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Then u satisfies (lfA ), ikn) $ (^q)i and ikj)) in/v,.

(if..) u and its first and second partial derivatives with

respect to x and y are continuous, and they all have continuous

first partial derivatives with respect to x, y, and t.

(h!) (|r - u 4- * U #-)(Au -X2
u) = 0.

(i^) u(x,0,t) = 4(x,t),/\u(x,0,t)-X2u(x,0,t) = ^(x^)

when (x,t) is in the domain of \|/,, and /\u(x,y,0)-\ u(x,y,0)

= * 2
(x,y).

(if.D ) u(x,y,t )-ax-b and its first and second partial

derivatives with respect to x and y are bounded.

Again we break up the proof of the theorem into several

lemmas.

Let Jr and ^ be defined by -^(x,y,t) = -u (x,y,t) and

^ 2
(x,y,t) = ux (x,y,t) for (x,y,t) in^, and J^(x,y,t

)

= u (x,-y,t)-2u (x,0,t) and c?p(x,y,t) = 2ct> (x,t )-u
x
(x,-y,t ) when

(x,-y,t) is in/C*o» Then 3~-. and *-^ are continuous and have con-

tinuous first derivatives with resoect to x and y. For (x .y -t )a 000
in the domain of J?, and 3"~ let X(t) and Y(t) be functions such that

X(t
Q

) = x
Q , Y(t

Q
) = yQ , and £j£l = 5\[X(t ),Y(t),t] and $^±

= X[X(t),Y(t),t] for < t < Oy X(t) and Y(t) exist for

< t < c, since j?-\ and t? are continuous and bounded. X and Y

are unique since t-% and j~ have continuous bounded first derivatives

with respect to x and y. Since X(t) and Y(t) also depend on

(x ,y ,t ), we use the notation X(x ,y ,t _,t) for X(t) and

Y(x ,y ,t ,t) for Y(t). We also observe that X(x .y^.t .t) and
o o o o

Y(x ,y ,t ,t) have continuous bounded first derivatives since 7,0O0 J-

and -?p have continuous bounded first derivatives with respect to

x and y.
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Let (x ,v ,t ) be in ^L and let t vary in an interval con-
o '*

o

7 o 5

taining t such that [X(t )
,Y(t ), t ] is in A,. For such t we have

J^[X(t),Y(t),t] = P
i
[X(t),Y(t),t] for 1=1,2. Hence

x ( xo' yo'
t
o'

t) = x<'W t
o»

t) and Y(xo^o' t
o'

t) = y(x
o ,yo

,t
Q
,t)

for such (x ,y ,t
Q
,t). Therefore a

Q
= X(x

Q ,y
,t ,Y ) and

p = Y(x
o*y 'W for (x

'yo'
t
o ) in/S3-

Lemma (5.1) . a, P, and y have continuous first derivatives at

(x
o ,y o

,t
Q

) in/6^ if pQ
> or y > with (a

Q ,0,Yo ) not on (^ or

c
2
.

Proof of Lemma (5.1

)

. We will show that y has continuous deriva-

tives at the points mentioned. Since a = X(x ,y ,t ,y_) and

P = Y(x , y ,t ,y ), the conclusion regarding a and p follows from

the fact that X and Y have continuous first derivatives.

Case I (p > 0). Since P is continuous at (x ,y ,t ) , we can

choose a neighborhood R
fi

of (x ,y ,t ) such that (x ,y ,t ) in R
Q

implies p > 0. In such a neighborhood we have yq
= so that y

has continuous first derivatives at (x ,y ,t ).

Case II (y > with (a_,0,Yn ) not on C, or C p ). Since a and

y are continuous at (x ,y ,t ), we can choose a neighborhood Rg

of (x , y ,t ) such that (x ,y ,t ) in R
5

implies yo
> and

(a
Q ,0,Yo ) is not on C

1
or C

2
» Hence FQ = Y (x

o ,yo
,t

Q , yq ) = for

(VVV in R 6« Since VV^o'W = *x (W > ° for

(x ,y ,r ) in Re. we conclude from the implicit function theoremooo o

that y has continuous first derivatives at (x ,y ,t ).

Lemma (5*2) . h has continuous first derivatives in/6L.

Proof of Lemma (5.2) . The proof follows from Lemma (5.1) if Po
>0

or y >0 with (a .O.y^) not on C n or C since then h(x .y^,t )
' O 00 X d. OOO

- t1
(a

Q ,P
) or * 2

(a ,Y ).
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If 6 =0 and (a ,0,y ) is on C, or C OJ then h is a constant
"O O' ' O 1 d

in some neighborhood of ( x >yo > *-<-,)•

The remaining case is where P = YQ
= and ( ao >°>0)

is not

on C, or Cp. We note that a, p, and y are continuous at ( x >y >t )

and <}» (a ,0) f 0. Suppose there is a sequence A ( x ,

y

o * t )
| of

points in -$o such that Y(xn ,y ,t
Q

) = 0, xn
~x f 0, and xn -> x

Q

as n —> co . Then

°<VW-% .
»(«n.V*o.O)-X(Vy .to.O)

(x ,,.».,„) as
x -x„ *„-x« x ' o ,J o* o*no no o

P(x ,y ,t )-(3

n -> co ,
" — °

Y
° -> Yv (x ,y ,t ,0) as n -> co , and hence

x
n"

x
o

x
Q

o o o

h(x
n ,yo>

t
o
)-h(x

Q ,yo>
t
o ) _ »2

[a(x
n ,yo

,t
o ) > p(xn> y0>

t
o
)]-»

2
(a

o>
0)

x
n~

x
o

x
n"

x
o

~> X
x tx

o #yo
.t

O f 0,*2x(ao* 0)+Tat
(xo^o' t

o'
0),"2y

(a
o'

0) as n ~> °° *

o
2y'

Suppose there is a sequence \( xn >Y tt Q ) t of points in /j~

such that y(x ,y„,t ) > 0, x -x„ 5^ 0, and x_ -> x^ as n -> co . Thennoo 'no' ' n o

^o'Vy^yyo'V 3

=
Y^o^ >

to^(xn ,yo ,to )]-Y(xo ,y ,t
o ,yo )

x
n"

x
o

" x
n"

x
o

y(x ,y ,t )-y
= W^o'W where Yn 1« between Y( xn,y ,t

Q )

n o

and yQ
.

Also Y[x
n,yo

,t
o
,y(xn ,yo

,t
o
)] = P( xn,yo

,t
Q

) = and

Y[x
o ,yo

,t
o
,y(x

n,yo
,t

o )3
=
Y[vyo^o ,Y(xn ,yo

,t )]-Y&cn,y0>
t
o
,y(x

n,y
,t )]

X>-,~X« X«~X«no no
= - Y

x ^n^o^o'^n^o^o^ where x
n

is between x
n

and x
Q

.

o

Y(x_,y ,t )-y
Therefore \ ° ° W^o'V^n o

= " Y
x tVy '

t
o' Y(xn' yo' t

o
,] '

As n "* °°VwW
o

—> Y. (x ,y ,t ,y ) r 0« Therefore for n large enough we have
t o o o o



.

.



Y
t
(x

o' yo'W ^ and —
Yx tvyo^o'^^yo^o"

n V Xo,y°' to,0)
= ^=—7 3:

—

m—

t

—> -t—r——pn as n —*• 00 •

An
a(xn^o* t

o )
" a

o
X[xn>yo^o^ (xn^o^ t

o )3 -X(xo^o* t
o > Yo )

Also _^ = __
no no

Y| y "IT "t / " Y*

= V^,y°' to ' Y(Xn 'y°' to)] * "'v^o °VVWV
where x is between x and x and yn i s between y an^ "V( xn»y

»t )»

/ 4. \ Y (x ,y ,t ,0)a(x ,y ,t )-a x x ow o» o*
HenCe W ° - X

x (
xo^o'V 0) + V(an ,0l V V°>°>no o x o

as n -3>- 00 .

Let \j7.,(x,t) = \J/,(x,t) when (x,t) is in the domain of \Jr, and,

when (x,t) is not in the domain of ij/-,, define \L so that ij7, is

continuous and has continuous derivatives everywhere. Then

h(x
n» yo*

t
o

)
"h(xo^o^o )

=
t1

[a(x
n ,yo

,t
o
),Y(xn ,yo

,t
o
)]-?

1
(a

o> Y )

x
n"

x
o

"
X
n"

x
o

= ^V^V^o +
r(yy .t )-Y

x -x Y lx L n'

'

v n ,J o» o /J x -x y lt v o* 'nno no
(where a is between a(x ,y„.t^) and a and 7 i s between

n n'^o'o o n

Y<WV and Yo }

r*
Yx ^ xo ,yo

,t ,0 ^ "^

~*
j

X
x (V^o'V ^ % (a ,0)° V a

o'°> 0) *lx (V 0)

Y (x ,y ,t ,0)
y

x o ,J o* o*
°

$ (a ,0) *lt
(a

o>
0) ^ n -^ co.

Tx o s

Prom (3td) of the theorem we obtain

^lt^o' *
= ^lx^o'^y^o^'^""^^'^^^©' ^ Hence

h(x ,y ,t )-h(x ,y ,t )

2_2—2 2__2—2 > x (x ,y ,t ,0\|/ o (a ,0)x-x x v o* J o , o,y 2x v o'no o

+ Yx (x
o ,yo

,t
o
,0)\|f

2
(aQf 0) as n -> 00.
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We may now conclude that h (x ,y ,t ) exists andxo'^o'o
h
x

(x
o'^o'

t
o ) =Xx < xo»yo' t

o'
0) *2x

(a
o'

0,+Yx (xo>W 0) *2y (V 0)
o o o "

(we use h , h , and h. to denote the derivatives of h since hx
o yo o

was defined as a function of (x ,y ,t
Q )).

The continuity of h in //, follows easily using (3R ) of thex
o -

5

theorem.

Similarly we can show that h and h. exist and are con-
yo

t
o

tinuous

Lemma (5.3

)

» The first partial derivatives of h are bounded in

Proof of Lemma (5.3) . By examining the expressions for the first

derivatives of h we can easily show that the first derivatives

are bounded in any set such that if (x ,y ,t ) is the set and000
PQ

= 0, then 4x
(<* ,y ) > ^' Since the set of points (x ,y ,t )

for which p = and
<f>

(a ,y ) < £3 is a bounded set, and since

the first derivatives of h are continuous everywhere, it follows

that the first derivatives of h are bounded.

Lemma {$.}+) . (hp.) is valid in /a ?,

Proof of Lemma (5.'-j-) » We have already shown that u, u , u , u ,
" x y j&yi

u , and u are continuous in /S' ~, We have yet to show that

u., u. , and u. exist and are continuous in /v, and that u
,t tx &y j xx

u , and u have continuous first derivatives with respect to

x, y, and t in S -.

We could show that w and its first and second derivatives

with respect to x and y have continuous bounded first derivatives

with respect to x, y, and t using the same methods used to orove

Lemma (1.1),



•
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In a straight forward manner we can show that v. , v. , and

v. exist and are continuous since h. is continuous and bounded,
ty t

Hence we may conclude that u. , u. , and u. exist and are

continuous.

Since h has bounded first derivatives, h is Httlder continuous

in (x,y) where the Holder continuity is uniform with respect to

(x,y) and t. Hence, using (II. 3), (II. k) t and (II. 5) of the

proof of Theorem II, we can show that v , v , and v are

Holder continuous in (x,y) where the Holder continuity is uniform

with respect to both (x,y) and t. This can be shown with

arguments similar to those used in proving Lemma (1.3) for all

the integrals excepting the last. We can show that the last

integral has continuous bounded first derivatives with respect

to x and y so the result follows for the last integral also.

Since w , w , and w have bounded first derivatives with

respect to x and y in A* -,, then w , w. , and w are Holder con-
s> xx xy yy

tinuous in (x,y) where the Holder continuity is uniform with

respect to both (x,y) and t.

Since u = v-w+ax+b, it follows in A/, that u , u , and u
' 3 xx' xy' yy

are Holder continuous in (x,y) and that the Holder continuity is

uniform with respect to both (x,y) and t.



I

•

-

. •



51

Next we will show that the first derivatives of X(x ,y ,t ,t)

and Y(x ,y ,t ,t) with respect to x , y , and t are HBlder con-

tinuous in (x ,y ) and that the Holder continuity is uniform
o' o

with respect to (x
Q ,yQ ), t

Q , and t. Let (x ,y ,t
Q

) and (x ,y ,t
Q )

be any points in //', with s = J(x -x ) + (y *y
o ) • Let

Zl (t) = |X
x

(x
Q ,y

,t ,t)-X
x

(x ,y ,t ,t)| and Zg(t)

=
'
Y
x IVVV'^ (x

o
,y°,t ,t)|. Then X

x
(x

o ,yo
,t

Q
,t)

o o o

= 1 5
X
x U0) y ,V5)>lx [X(x ,y ,t ,5),Y(x ,y ,t ,5),5]d§

t °

t °

+
\

Y
x ^o'yo' t

o'
5)> ly

CX(xo^o' t
o'5) 'Y(xo'yo» to^ , '« ]d«- Then

t °
o

there are constants M and e (0 < e < 1) such that for s small

enough we have z, (t)
t

x

l([Xx
(x ,y ,t

o
,^X

x
(x ,yo

,t
o ,a]^lx [X(xo ,yo ,t ^),Y(x ^o

,t ^U]c?
A o o

r
+

j ^ (x .yo
.t .5)|>l3t

[X(3c ,y ,t ,e) 1Y(xo,y ,t
o>5),S]

o

-/
lx

[X(x
o ,y o

,t
o
,^),Y(x ,y ,t ^)^3j d? + etc.

|

t t

t_ t

<
|

J [MZl (^)+Ms
e
+Mz

2
(^)+Ms e

]d^| <H|j [z
1
(^)+z

2
(^)]d^+2Mc

t

Similarly z
2
(£) < m|( [z^S )+z

2 (£ )]d£ |+2Mc
3
s
e

. Let

t o

(t) =
1 1 [z

1
(^)+z

2
(^)d^|. For t > t

Q
we haveR

.

i p a -2H(t-fr_J _ -2M(t-t )

R (t) < UMc
3
s
E
+ 2MR(t), ^ R(t) e ° < i|Mc

3
s
e

e



.
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-2E(t-t ) . -2M(t-t ) 2M(t-t )

R(t) e ° < -2c
3
s
e
(e ° -1) , R(t) < 2c

3
s
e
(e ° -1)

< 2c
3
s
e
(e

2^c
-l). Thus z-^t) < "E (t )+2Mc

3
s
e
< 2Mc

3
s
e
e
2Mc

. We

obtain the same result when t < t . In a similar way we can show

that the other first derivatives of X and Y are Holder continuous

in (x ,j ) uniformly with respect to (x ,y ), t , and t.

Now we could show that in some neighborhood of a point

(x
o ,yo

,r
o

) the first derivatives of a(x ,y ,t
o
),p(x ,y ,t ), and

y(x ,y ,t ) with resnect to x -y^. and t are Htilder continuous inOOO * O ' O ' o

(x ,y ) where the HBlder continuity is uniform with respect to

(x
Q ,yo

) and t
Q
provided that p(x

o ,y ,?
o

) > or P(x ,yo
,t

Q
)

with [a(x
Q ,yo

,t
o
),0,Y(x

o ,yo
,^

o
)] not on C

1
or C

2
.

Next we could show that in some neighborhood of each point

in A'~ the first derivatives of h(g,^,t) are Htflder continuous

in (^j'V) where the HBlder continuity is uniform with respect to

(C,1 ) and t.

For an arbitrary point (x ,y ,t) we have

(5.^.1) v^U^t) = ^ }) Sx
(x,y;^,'?)[h^(?/(,t) + aX2]d?dn

t
>0

=
h. lUx ( x»y^^/Hh

c
(^/(,t)-.h

c
(x

o ,yo
,t)]dgd^,

^>0

(5.IJ..2) v
xy

(x,y,t) =
it [\ S

y
( x»y^/0[h

c
(C/(,t) + aX

2
]d?da

^>0

^>0
co

" h
^
(x

o' yo'
t) 5

J

K^v ^ d^ *
and
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(5.i+.6) v
yy

(x,y,t) =-^
jj

^(x fyj5 f1)^(W ft)«d*
/»>0

oo

- &
|
^K

1

Uv)[h(£,0,t)+X2 (a£+b)]d£d>7 .

-oo

Since bu. and h. are Htflder continuous in (x,y) uniformly with

respect to (x,y) and t for (x,y,t) in some neighborhood of

( x »y >t), we can differentiate under the integral signs with

respect to x and y at (x ,y ,t), and we can show that the resulting

derivatives are continuous at ( x >yo
»t).

We could show that we can differentiate under the integral

sign with respect to t in (II. 3), (II. ij.), and (II. 5) (contained

in the proof of Theorem II), and from the resulting expressions

we could show that v. , vtxv» an<* vtvv are continuous.

Pinallv it follows that u , u , and u have continuous
xx' xy' yy

first derivatives with resoect to x, y, and t. We remark that it

would also be possible to show that the first derivatives of u ,^ xx*

u , and u with respect to x, y, and t are Holder continuous in

(x,y).

Lemma (5«5) . (ij-g) is valid in/a-,.

Lemma (5»5) is obvious since h is constant along the air

particle paths of u.

We have previously shown that (lu) and (lu.) ar © valid, and

hence this completes the proof of Theorem V.
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Part III

Uniqueness

Uniqueness Theorem . Let cj>, t-i and typ satisfy the hypothesis of

Theorem V. Let u be any real valued function with domain /y o

such that (UA )» (^r)> ^C ^ '
and ^D^ are valid with u replaced by

u. Then u = u in A) ?»

Proof . Let h = Au ^ u. Prom (luj we see that u(x,y,t )-ax-b,

u„(x,y,t)-a, u (x,y,t), and h(x,y,t)+\ (ax+b) are bounded in /Q~ tx y j

and hence we can show that (3) is valid with u and h replaced by

u and h respectively. This result follows from

1

J
[A5 ~ X

2u + X
2
(a^+b)] g(x,y;€,1)d£<tt

-J
[hU^,t)+X2

(a£+b)]g(x,y;£,>2)d£d>, =|[g
d( 'I^"bi - (u-ag-b)§§]ds

where the double integration is over the region defined by

2 2 2
^ > 0, £ + /^ < R , and p < e, and the single integral is taken

along the boundary of the above region in the positive sense.

Letting R -> co and then e -a- we obtain (3) with u and h replaced

by u and H respectively.

Obtain functions vlr J^V, X, ¥, a, ]?, and y from u as Jr,, ^,
X, Y, a, p, and f respectively were obtained from u. Methods

similar to those used previously can be used to show that j-~ , ^o>

X, and Y have bounded first derivatives with respect to all their

variables. Choose D to be an upper bound in /j * of the absolute

values of/., 7^,, /., j~~ and the first partial derivatives of -A,,

3
2 ,

?"
1$ ^2 , X, X, Y, ?, and h.
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Assume u(x,y,t) j~ u(x,y,t) in/>,. Let c - sup t where the

sup is taken over all t > such that u(x,y,t) = u(x,y,t) for

(x,y,t) in/CL and < t < t. Possibly c =0. If c a 0, then

u(x,y,c") = u(x,y,c") follows from (3)» If c > 0, then

u(x,y,c") = u(x,y,c") follows from the continuity of u and u and

the fact that u(x,y,t) = u(x,y,t) for < t < c".

Assume c" < c,. Then we will arrive at a contradiction by

showing that there is an e > such that u(x,y,t) = u(x, y,t) for

c" < t < c"+e. It follows then that c" = c^, and Theorem VI is

proved.

We have shown that h is identically p. in some neighborhood

of each point on C. (i=l,2). Hence we can choose 6, > so that

h(x,y,c") = p. for |x-x.(c")| < 6, (1=1,2) and < y < 6,, and

also h(x,0,t) = p. when |x-x.(c")| < 5, (i=l,2) and c" < t < c"+6,.

Then we choose 6- > so that 6p < 6.. and |x. ( t )-x. (c ") | < -^

(1=1,2) for c " < t < c"+6p. Then h(x,0,t) = p. when (x,t) is in

the domain of \J/, if |x-x.(c")| < 6, (1=1,2) and c" < t < c'+6p.

Since u(x,y,t) = u(x,y,t) for < t < c", then

h(x,y,,c") = h(x,y,c"). Also h(x,0,t) = \J/,(x,t) = h(x,0,t) x^hen

(x,t) is in the domain of \J/,. Therefore h(x,y,c") = p. for

|x-x.(c")| < 6.. (1=1,2) and < y < 6^, and h(:-:,0,t) = p. when

(x,t) is in the domain of \J/, if |x-x.(c")| < 5.. (i=l,2) and

c < t < c"+6 p .

Let w" = gib
(J)

(x,t) where the greatest lower bound is taken

over all (x,t) such that 4 (x,t) 0, c" < t < c"'"+5„, and either
26

x "26, "
.,

d

x < x
1
(c") ji or x > x

2
(c") + —y- . Then w > 0.
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f 6
Choose e > so that e < 6 , 3D e (2D+1) < ~, 2D e < -y, and

t oT,ffi-,~ / t , 1 ^ / 1 j 2D+1 n 2Dc 112MDe(l+—«) (1+ z- )e < ? .

Let N(u-u) = l|ux
-u

x || + l|u
y
-u

y
|| with l|ux

-u
x l|

= sup |u
x
(x,y,t)-u

x
(x,y,t) | and ||u

y
-u ||

= sup |u (x,y,t )-u (x,y,t

)

where the sup is taken over all (x,y,t) in *'
, such that

it Jt

c ' < t < c "+e.

We now insert several lemmas.

Lemma (uT.l) . |x(x
Q ,yo

,

t

Q
, t )-X(xo ,yo

,t
Q
,t ) | < 3 e e

2Dc
N(u-u) and

'
7(x

o' yo'
t
o
jt) 'Y(x

o' yo'
t
o*

t)
l ^ 3 e e2D° IJ (u-u) for c* < t

Q < c'
::

"+e

and c " < t < c "+e.

Proof of Lemma (uT.l) . For any fixed (x ,y ,t ) with

< t
Q

< c*+e let
2l

(t) = |x(x
o ,yo

,t
o
,t)-X(x

o ,y
,t

o
,t)| for

< t < c +8 and z
2
(t) = |Y(x

o ,yo
,t

Q
,t )-Y(x

o ,yo
,t

Q
,t ) | for

c < t < c +e.

Then Zl (t) = |x
Q
+

j
^- 1

[X(x
o ,yo

,t
o ,?),

Y(x
o ,yo

,t
Q ,S

),£]d£

- x
o >1 [X(x o ,yo ,t o ,?), Y(x

o ,yo
,t

o
,C),?]d^|

< \]&mx ,J ,t ,V,*ix ,7 ,t 0$S),&^

+ ij p1
tX(x

o ,yo
,t ,?),Y(xoi yo

,t ,4)^]

->
1
[X(x

o ,yo
,t

o ,?),
Y(x

o ,yo
,t

o ,4),^]j d£

t
J

<D|j [z
1(C)+z 2

(5)3d^| + 3||u -u
||

|t-t
Q |

< 3e llu -u || + D|] [z
1
(?)+z

2
(4)]d^|. Similarly we obtain
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z
2
(t) < 3e llux

-u
x || + D|\ [z

1
(?)+z

2
(?)]d?| so that

t

Zl (t)+z 2
(t) < 3sN(u-u)+2D| j [z

1 (C)+z 2 (5)3d5|.

t

t
°

Let R(t) = h [z
1
(?)+z

2
(^)]d^| for o* < t < c'

:

+e. For t>t
(

to

we have R (t) = z
1
(t)+z

2
(t) < 3eN(u-u)+2DR(t )

,

-2D(t-t ) _ -2D(t-t )

R (t)-2DR(t) < 3eN(u-u), ^[R(t)e °
] < 3eN(u-u)e °

,

-2D(t-t )
% _ -2D(t-t )

R(t)e ° -R(t
Q

) < - |g N(u-u)[e ° -1], and

•5c 2D(t-t_) o_ ?T\n
R(t) < g N(u-u)[e ° -1] < ^ N(u-u)(e^c -l). Similarly we

obtain the same result when t < t . Therefore z.(t) < z(t)+z
?
(t)

< 3eN(u-u)+2DR(t) < 3ee
2Dc

N(u-u) for i=l,2.

Lemma (Tu.2) . |E(x.y.t ) -h(x.y. t) | : 6De(l+-^li)e 2Dc N(u-u)—————————

—

O O O O O O *~ V) «

for (x ,y ,t ) in w, with c < t < c +e.oo'o 5 — o —

Let (x >yD »t ) be any point in /~J~> with c" < t < c"+e. If

y > and t > c " let t, (t sub-boundary) be the largest number

such that c" < t, < t and Y{?i t y ,t ,t.) = °» If no such t
b

exists, let t, = c'.

If yQ
= 0, t

Q
> C*, and 4>x (vV > 0, let t

fe
= t

Q
. If

4 (x ,t ) < 0, let t, be the largest number such that c" < t, < t
X OOD — DO
and Y(x ,y ,t t, ) = 0. If no such t, exists let t, = c".

If t = c", let t, = c",
o * b

Let x
b

= X(x ,y ,t ,t
b ) and yb

= YU ,y ,t ,t
b
). Then

(xb ,yb ,t
fe

) is a point where the air particle path of u enters the

slab c" < t < c"+e.
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In a similar manner we obtain numbers x\, y, , and "E^ using

X and Y.

Consider the case where t, > c " and ^(x^t^) > to* Then for

c*< t < c'"'+s we have y
fe

= and |Y
fc

(x ,y ,t ,t )-Y
t
(x ,y ,t

Q
,t

b )

|

< |>2
[X(x

o ,yQ
,t

o
,t), Y(x

o ,yo
,t

Q
,t),t]

" ^2»(xofyo,t ,t), Y(x
o ,yo

,t
o
,t

b
),t]

|

+ l4x
[X(x

o ,y
,t ,t),t]-4

x
(x

b
,t

b )|

< 3D[|Y(x
o ,yo

,t
o
,t)-Y(x

o ,y o
,t

o
,t
b )| + |X(x

o ,yo
,t

o
,t)-x

b |
+ |t-t

b |]

< 3D[2D+1] |t-t
b |

< 3De (2D+1) < ^, and Y
t
(x0> y ,t ,t )

> Y
t
(x ,y ,t ,t

b )- % - "?• Therefore if *
D < t

b
we have

t
b .;.

t
b

o < VF
b

a h \ 4 d5 1 4- S
Y
tU ,y ,t ,S)dS

H r
b

= - 4 Y(x
Q ,y

,t
o
,t

b
) < -% [Y(x

o ,y
,t

o
,t

b
)-Y(x

o ,yo
,t ,t

b )|

< ~ e N(u-u). When t"
b

> t
b

we have yb
= and

t
b # t

b

< V*b = 5 1 ^ ** - 7} 1 V^o'V*^
fc
b *b

= |: Y(x
o ,yo

,t ,r
b

) = Jfc tY(x
o ,yo

,t
o
,t

b
)-Y(x

o ,yo
,t

o
,t

b )]

< £i e
2Dc

N(u-u). Hence |t, -t, | < ~ e
2Dc N(U-u). When t, > c*

and 4>x
(x

b
,t

b
) >& we now have |5(x

o ,yo
,t )-h(x ,y ,

t

Q ) |

= |K(x"
b ,yb

,F
b
)-h(x

b ,yb
,t

b )|
=

l
h(x

b J^b^b )
"h(x

b' yb»
t
b ) ' < since

K(x,y,c") = h(x,y,c") and h(x,0,t) = h(x,0,t) for (x,t) in the

domain of \|/, )

< D(|x
b
-x

b | + |yb
-y

b | + |V*b ' > < D^Wo>VV-X(xo^o>VV'

+D[|T(x
o ,yo

,t
o
,t

b
)-Y(x

o ,yo
,t oJ t

b )|

+
l
Y ( xo^o> to^b )

-Y(xo^o^ t
o'

t
b ) l ] +D»V tbl



.

.
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.
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< 6Dee
Dc

N(u-u) + 2D
2
|t
b
-t

b | + D|t
b
-t

b |

< 6Dee
2Dc

N(u-u) + D(2D+1) ~ e
2Dc

N(u-u) = 6Dz(l+Q$k) e
ZDc

N(u-u).

Similarly we obtain the same result when tb > c '' and

4x
(x

b
,t"

b ) > to .

When t
b

> c , t
fe

> c*"", 4x
(x
b
,t

b
) < (J'~ , and

<l>x
(x

b
,t
b

) < (j\

then h(x
o ,yQ

,t
o

) = p x
or p 2

and Mx ,yo
,t

Q
) = px

or p2
. Suppose

E(WV = P]_. Then x
b

= X(x
o ,yo

,t ,t
b
)-X(x

o ,yo
,t

o
,t

o
)

+ ^x .y ,t ,t )-X(x ,y ,t .^J-^ < D|t
b
-t

| + DlVV + x
b

-::-

2
l *

< 2De + x,(c ") +—r— < x, (c ") + 8, . Thus we must have h(x ,y ,t )=p,.

Similarly if h(x
o ,yo

,t
Q

) = p 2 , then h(x
o ,yo

,t
Q

) = p 2# Hence

|H(x
o ,yo

,t
o
)-h(x

o ,yQ
,t

o ) | = in this case.

Next v/e consider the case in which t, = c", t, > c" , and

cj>

x
(x
b
,t

b
) < lj\ Then H(x

o ,yo
,t

Q
) = p1

or p 2
» Assume

h(x
Q ,y

,t
Q

) = p-. Then x
b

< x-,(c")+6, as in the previous case.

Also x
b

= X(x
o ,yo

,t
o
,t

b
)-X(x

o ,yo
,t

o
,t

o
)+X(x

o ,yo
,t

o
,t

o )

> x^C*) --J--2D6 > X
1
(c*)-6

1 , and Yb = Y(x
Q ,yo , t Q

,t
b )

-Y(xo^o' t
o'

t
o
)+Y(xo^o' t

o'
t
o )

-Y(xo^o> t
o>
F
b
)+
yb ^ 2De+

yb

= 2De (since Y
b

= 0). Hence h(x ,yo
,t

Q
) h(x

b ,yb
,t
b

) = p,, and

|h(x
o ,y o

,t
o
)-h(x ,yo

,t
o ) |

= 0. We get the same result when

E(xo^o' t
o ) * P2*

Similarly when t
fe

> c , t
b

= c , and 4>x (xb
,t

b
) < (j , then

i
E <xo»y ' to )

-h(x
o'yo'

t
o ) i = °-

The only remaining case is the one where t, = t, = c • InDo
this case |h(x

o ,y o
,t

o
)-h(x

o ,yo
,t

o
)| = |h(x

b ,yb
,c""')-h(x

b ,yb
,c'

::

')
|

= lh(x
b ,yb

,c'"')-h(x
b ,yb

,c"'*')| < D( |x,
Q
-x

b !
+ |yb

-y
b I

)

= D[|X(x
o ,yo

,t
o
,c-

::

-)-X(x
o ,yo

,t
o
,c-

::

-)| + |Y(x
o ,yo

,t
o
,c^)

-Y(x
o ,yQ

,t ,c"'
:

*)|] < 6Dee 2Dc N(u-u) from Lemma (uT.l).

This completes the proof of Lemma (uT.2).
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We now continue the proof of our uniqueness theorem. Using

(3) with c" < t < c "+e we obtain |u (x,y, t )-u (x,y, t ) |^ X X

h \\ SJW,Z,1) [h(€,*,t)-h(S,'<,t)]d£d>L
|2% } J

ex
Jj>0

<^ (1 + ^r) e
2Dc

S(u-u) [j |g
JC
(*.yiM>|d€d*

^
^>°

< 121© e (l+-^li) (1 + i) e
2Dc

N(u-u) < i W(u-u) where we have

used ~
j] |gx

(x,y;5,^ ) |d^d1 < I).I1
2 (1+J^) from the proof of Lemma

/£>0
X

(1.3). Therefore ||u -uJ| < J N(u-u).X X ~" J)

Similarly ||u -u || < ^ IT(u-u), and hence N(u-u) < -^ N(u-u).

It follows that N(u-u) = 0, u (x,y,t) = u (x,y,t), and
X X

u (x,y,t) = u (x,y,t) for c" < t < c"+e. Hence u(x,y,t)

= u(x,y,t )+z(t ) for c" < t < c"+e and for some function z(t).

Since u(x,0,t) = 4(x,t) = u(x,0,t), then z(t) = and u(x,y,t)

= u(x,y,t) for c" < t < c"+e. But this contradicts the choice of
•::-

-:c- _ /
c . Hence c = c, and u = u in ^,,
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