

QP915 At9
 inthe City of 黄rmond

 亚ibrary

Digitized by the Internet Archive in 2010 with funding from
Open Knowledge Commons (for the Medical Heritage Library project)

```
NATIONAL ACADENY OF SCIENCES.
```


Volume VIII.

SIXTH MEMOIR.

AN EXPERINENTAL INQUIRY REGARDING THE NUTRITIVE VALUE OF ALCOHOL.

BY
W. O. ATWATER and F. G. BENEDICT.

Presented to the Academy by JOHA ※. BILLINGS.

$$
\begin{aligned}
& \text { QPq15 } \\
& A+9
\end{aligned}
$$

CONTENTS

Page.
Introduction 235
Purpose of the experiments 235
Questions actually studied. 236
Apparatus and methods of inquiry 236
Accuracy of apparatus and methorls 237
The experiments 238
General plan 238
The men who served as subjects of the experiments 239
Symptoms observed in experiments with atcohol 240
General description of individual metabolism experiments 240
List of metabolism experiments with and withont alcohol and grouping for comparison 240
Group A. Rest experiments Nos. 9 and 10. Experiments with ordinary diet and with alcohol diet. 242
Group B. Rest experiments Nos. 22 and 2t. Experiments with ordinary diet and with alcohol diet. 244
Group C. Rest experiments Nos. 26 to 28 . Experiments with ordinary diet and with alcohol diet. 245
Group D. Work experiments Nos. 11 and 12. Experiments with ordinary diet and with alcohol diet 246
Group E. Work experiments Nos. 29 to 31 . Experiments with ordinary diet and with alcohol diet 247
Group F. Work experiments Nos. 32 to 34 . Experiments with ordinary diet and with alcohol diet. 249
Group (G. Rest experiments Nos. 7, 13, and 14. Experiments with ordinary diet and with alcohol diet 250
Group H. Rest experiments Nos. 5 and 15 to 17. Experiments with ordinary diet and with alcohol diet 251
Group 1. Rest experiments Nos. 18 to 21. Experiments with ordinary diet and with alcohol diet 253
Digestion experiments 25.5
Discnssion of the results of the experiments. 256
Effect of alcohol upon the digestion of food 256
Proportions of alcohol oxidized and unoxidized 2.5
Metabolism of the energy of alcohol. 259
The protection of borly material by alcohol. 261
Protection of body fat 263
Protection of body protein. 264
Effect of alcohol npon the radiation of heat from the body 272
Rapidity of combustion of alcohol in the body 276
Alcohol as a source of heat in the body 277
Alcohol as a source of muscular energy 27
Summary of plan and results of the experiments 285
APPENDIX.
Data-Experimental methods 289
Metabolism experiments 289
Statistical letails of metabolism experiments 291
Experiment No. 1थ. Work with alcohol diet 291
Experiments Nos. 15-17. Rest with alcohol diet 305
Experiments Nos. 18-21. Rest. Nos. 18-20 with alcohol diet 317
Experiments Nos. 22-24. Rest. No. 22 with alcohol diet 330
Experiments Nos. 26-28. Rest. No. 27 with alcohol diet 342
Experiments Nos. 29-31. Work. No. 30 with alcohol diet 354
Experiments Nos. $32-34$. Work. No. 33 with alcohol diet 366
Page.
Statistical details of digestion experiments. 379
Details of digestion experiment-
No. 41 379
No. 42 379
No, 47 380
No. 48 380
No. 51 381
No. 52 381
No. 80 382
Nั. 81 382
Ñ. 82 383
No. 83 384
No. 84 384
No. 151 385
No. 155 385
No. 159 386
Tabular summaries of results of experiments. 387
Income and outgo of nitrogen, and gain or loss of protein and fat 387
Income and outgo of material and energy 390
Proportions of alcohol oxidized and unoxidized 392
Variations in daily excretions of nitrogen 393
Availability of nutrients and energy 395

AN EXPERINENTAL INQUIRY REGARDING THE NUTRITTVE VALUE OF ALCOHOL.

BY W. O. ATWATER AND F. G. BENEDICT.

IN'TRODUCTION.

The present report gives the details of a number of metabolism experiments with men, in which the effects of diet with and withont alcohol have been compared. ${ }^{a}$ The details of a number of digestion experiments, which form part of the same investigations, have also been included.

PURPOSE OF THE EXPERIMENTS.

The main purpose of the experiments has been to get light upon the effects of alcohol in the diet, with especial reference to the question of its nutritive value.

Food is used in the body to build and repair tissue and to furnish energy. Only the nitrogenous compounds (protein) of the food serve the first purpose; they also serve as a source of energy, but the main supply of energy is obtained from the fats and carbohydrates. The fuel ingredients may be burned at once or may be stored for future use.

Alcohol contains no nitrogen and therefore can not build or repair tissue; it is rather to be classed with the fats and carbohydrates, and if it has any food value, this must be as a fuel. It does not appear to be stored for any considerable time, but is disposed of soon after it is taken into the body.

Alcohol, howerer, differs from the protein, fats, and carbohydrates of food materials in that it may exert, and when taken in large enough doses does exert, an indirect action upon the brain and nerves and through them upon the nutritive and other processes to which the general term metabolism is applied. In this way its actual value may be either increased or diminished according as it aids or hinders digestion, or either accelerates or retards metabolism. We have then to consider not only its direct action as nutriment for the supply of energy, but also its indirect action upon the metabolism and ntilization of other food. In the experiments here

[^0]described the indirect action of alcohol has been studied only in so far as (1) through its influence upon the secretion of digestive juices or otherwise it has tended to increase or diminish the proportion of the other food digested, or (2) it has increased or decreased the metabolism of other food or body material.

The ulterior effects of alcohol do not come within the scope of this particular inquiry, which is limited to its use by the body as nutriment.

THE QUESTIONS ACTUALLY STUDIED.

It appears then that whatever value alcohol may have for nutriment must depend upon its ablity to serve as fuel for furnishing energy to the body. Accordingly the main question proposed for study is this: What is the ralue of alcohol for fuel and how does it compare in this respect with sugar, stareh, fats, and other nutrients of ordinary food materials? A collateral question is the effect of alcohol upon the proportions of nutrients digested from the food with which it was taken.

Experimental research has shown several ways in which the ingredients of ordinary food and body material serve as fuel. They are oxidized in the body; in the oxidation, their potential energy becomes kinetic and is thus made useful to the body; part of this kinetic energy appears as heat; another part appears as muscular work; in yielding energy by its own oxidation, food protects the material of the body and of other food from consumption. We have then to consider how alcohol compares with the ordinary fuel ingredients of the food in these ways.

It is clear that the main problem is that of the metabolism of energy in the body. Accordingly, while the experiments here described bear upon the use of alcohol in each of the ways just mentioned and upon collateral topies also, the fundamental question studied has been this: To what extent is the energy of alcohol transformed and utilized in the body like the energy of the nutrients, especially the fats and carbohydrates, of ordinary food materials?

In studying these questions we go down to one of the fundamental principles of material science. The plan of the whole inquiry is based upon the principle that the chemical and physical changes which take place in the body. and to which the general term metabolism is applied, occur in obedience to the laws of the conservation of matter and energy. That the law of the conservation of matter applies within the living organism, no one would question. It might seem equally certain that the metabolism of energy within the body takes place in accordance with the law of the conservation of energy. in experiments with men in the respiration calorimeter described beyond, the close agreement between the income and the outgo of energy in the body, under various conditions of work and rest, may be regarded as practically demonstrating that the law holds in the living organism. Such demonstration had, indeed, been approximated by earlier investigations, notably those of Rubuer with dogs.

APPARATUS AND METHODS OF INQUIRY.

The experiments here described were made with a respiration calorimeter especially devised for research of this kind. The apparatus serves to measure the materials received and given off by the body, including the products of respiration, and is thus a "respiration apparatus." It also serves to measure the heat given off by the body and hence is a form of calorimeter. To indicate this, twofold purpose it is called a "respiration calorimeter." The apparatus and methods of its use hare heen described elsewhere; " a brief deseription will suffice here.

- In the following bulletins of the Office of Experiment Stations of the Unitel States Department of Agriculture: No. 44, Report of Preliminary Investigations on the Metabolism of Nitrogen and Carbon in the Human Organism with a Re-piration Calorimeter of Special Construction, by W. O. Atwater, Ph. D., C. D. Woons, B. S., and F. f. Benenict, Ph. D.; No. 63, I escription of a New Respiration Calorimeter and Experiments on the Conservation of Energy in the Iluman Borly, by W. O. Atwater, I'h. D., and E. B. Ros.s, Ph. D., pp. 94; No. 69, Experiments on the Metabolism of Matter ami Energy in the Human Body, by W. O. Apwater, Ph. D., and F. G. Benedict, Ph. D., with the cooperation of A. W. Smitif, M. S., and A. P. Bmpant, M. S., pp. 112; No. 109, Further Experimente on the Metabolism of Matter and Energy in the Human Body, by W. O. Atwater, Ph. D., and F. G. Benedict, Ph. D., with the conperation of A. I'. Bryant, M. S., A. W. Smitir, M. S., and J. F. Snell, Ph. D.

The chamber of the apparatus is so arranged that a man may spend a number of days in comparative eomfort within it. It is lighted by a window, and is furnished with a folding ehatir, tahle, and bed, and. when the experiment inrolve- museular work, with a stationary bicycle also. The ehamber is rentilated by a measured current of air, smoples of which are taken for analys before it enters and after it leares the chamber. In this way the products of respiration are determined. Provision is also made for weighing. sampling, and analyzing all the food and drink. and the solid and liquid excreta as well. By conparing the chemical elements and compomes received by the body in food, drink. and inhaled air with those given off in the solid, liquid, and gaseons forms by the intestines. kidneys. lungs, and skin, it is possible to strike a balance between the total income and the total outgo of matter in the mans body. This serves as the measure of the metabolism of matter in the body.

In addition to this the metabolism of energy is also stndied. To this end it is necessary to determine the potential energy of the food and drink taken into the body and of the solid and liquid excreta given off by the body, as well as the amomes of energy given off in the form of heat. external musular work, and otherwise. The measurements of the potential energy of the food and exereta are made with the bomb calorimeter." The determination of the heat given off from the body is made by certain arrangements in connection with the respiration calorimeter. A current of water passing through a special coil of pipes su-pended in the chamber ahsorbs the beat that is generated within it, and by measuring the quantity of water that pasies through the coil and its rise in temperatmre the amount of heat absorbed mar be determined. To this is added the latent heat of the water vaporized within the chamber.

So delicate are the measurements of temperature that the observer sitting outside and recording the changes every two or four minntes immediately detects a rise or tall of even one one-hnadredth of a dearee in the temperature of the inner copper wall or of the air inside the chamber. If the man inside rises to more about, the increase in the heat given off from his body with this mnsenar work shows itself in a rise of temperature which is immediately detected.

In the work experiments the subject spends a certain portion of each day in muscular exercise upon an apparatus armanged as an ergometer, by which the amount of muscular work done may he measured. The ergometer consists of a stationary bievele connected with a dynamo by which the power which the rider applies to the pedals, and which is not changed to heat by the friction of the machine, is conrerted into an electric current. which is passed through an electric lamp and is in turn ehanged to heat. The ergometer is arranged to measure the amount of muscular work done, in terms of heat, by determinations of the anount of energy converted into heat be friction and the amounts of electric current generated and changed to heat.

From the energy of food, drink, solid and liquid excretory products, and body material stored or lost the net income of energy may be computed. The net ontgo is measured by the appatatns. By comparing these the balance of income and outgo of energy is found.

The data obtained as explained abore, taken in connection with what is known of the physiological processes that go on in the body, give more accurate information than can be otherwise obtained regarding the wars in which the food is used in the body and the quantities of food ingredients that are needed to supply the demands of the body for the rarions purposes of work and rest and the comparative outritive ralue of different food materials.

ACCURACY OF APPARATUS AND METHODS.

Two methods of testing the aceuracy of the apparatus are employed. By one method known amounts of heat are generated electrically within the chamber, and the heat is measured by the apparatus. In this way its accuracy as a calorimeter only is tested. By the second method known amounts of ethyl alcohol of known purity and composition are hurned completely within the ehamber, and the amounts of water, carbon dioxide, and heat resulting from the consustion of alcohol are determined by the apparatus. In this way it- accuracy both as a respiration apparatus and as a calorimeter is tested. In the arerage of five electrical tests the amount of heat
*For lescription of the bomb calorimeter see [. S. Dept. Agr., Otice Expt. Stations, Bul. 21, pp. 120-126, and Storrs Conn. Experiment station Report, 1897, p. 199.
meanured by the calorimeter was 100.01 per cent of the amount generated by the electric current. The averages of the results obtained in seventeen alcohol tests are summarized in the following table:

Summary of results of tests in which alcohol wus burned in the culorimeter.

[^1]The results thus indicate that the respiration calorimeter is an instrument of precision and that the determinations of carbon dioxide, water, and heat produced within the chamber of the respiration calorimeter are sufficiently accurate for experiments with the living subject.

THE EXPERIMENTS.

GENERAL PLAN.

For the subjects of the experiments men were selected who were in good health, had apparently normal digestion, and did not find the confinement in the chamber uncomfortable. A diet was chosen which provided materials as palatable and in as much variety as was consistent with convenient preparation, and with accurate sampling and analysis. The quantity and composition of the diet were generally such as to maintain the body nearly in nitrogen and carbon equilibrium under the conditions of the experiment, whether of work or of rest. In 13 of the experiments the diet included alcohol.

The alcohol amounted in general to about 72 grams ($2 \frac{1}{2}$ ounces) a day, or as much as would be contained in a bottle of claret or 3 or t glasses of whisky. In most cases pure (ethyl) alcohol, but in some whisky or brandy was used. It was mixed with either water or coffee, and was given in 6 small doses, 3 with meals and the rest at regular intervals between, in order to avoid as far as possible any effect upon the nerves. The alcohol supplied not far from 500 calories of energy. In the experiments without external muscular work, the total energy of the diet was about 2,500 calories, so that the alcohol furmished one-fifth of the total energy. In the experiments in which the man was engaged in more or less active muscular work, the total energy of the food was larger, averaging abont 3,900 calories, so that the alcohol furnished between one-seventh and one-eighth of the total energy of the diet.

In order that the subject might become accustomed to the diet and reach approximate nitrogen equilibrium with it before the experiment proper began, a preliminary digestion experiment of at least 3 days immediately preceded the metabolism experiment. Any change of diet found desirable or necessary was made during this period, and the preliminary experiment was continned until nitrogen equilibrium was supposed to be more or less nearly reached. In most cases the preliminary experiment continued 4 days. During this period the subject was, in general, engaged in his customary occupation, but conformed his muscular activity more or less to that of the coming experiment. Thus if it was to be a work experiment, he rode a bicycle or walked a considerable distance each day. If it was to be a rest experiment, he avoided all unnecessary exercise. For supper on the last day of this preliminary digestion experiment
ahout 3 of a gram of lampblack was taken in a gelatin capsule with the food, in order to mark the separation of the feces of the preliminary experiment from those of the metabolism experiment proper. The $-u b j e c t$ entered the chamber abont 7 oclock on the evening of the lant day of the preliminary digestion period and retired about 11 oclock. At about 10° clock in the morning the heat measurements were begum.

The night sojourn in the chamber sufficed to get the temperature of the apparatu- and its content- of carbonie acid and water into equilibrium, so that accumate measurements might begin at 7 oclock on the first morning of the experiment proper. In come cases the experiment continued only + days: in other cases the experimental period consisted of b or 9 succesive days spent within the apparatns, the entire period being dirided into 3 experiment: of 2 or 3 dars each with changes in the diet as hereafter explained. The determinations of carbon dioxide. water rapor, and heat were made in 6 -hour periods. so that complete data for an experiment showed the total amounts of these compounds given off from the body during the periods ending at 1 p. m.. i p. m.. 1 a. m.. and 7 a. m. of each day of the experiment. As noted beyond, the urine was also collected and its nitrogen content determined for corresponding periods.

The daily routine of the subject within the chamber was indicated by a procramme made up hefore the beginning of the experiment. A cops of the programme was furnished to the subject. who followed it with reasonahle closeness and other copie-were posted in consenient places outside the apparatus for the benefit of those who had the experiment, in charge.

Mnch care was necesarily taken in preparing the food materials selected for the diet and in taking samples for analysis. With the exception of milk and alcohol, the proper quantity of each kind of food. either for each meal or for the whole day. was put up in glass jars before the experiment began: and materials which might spoil during the course of the experiment. such as bread and meat. were thoroughly sterilized.

Speeial arrangement- were made by which the mixed milk from a detinite number of select cows was supplied for each experiment. But eren with this precaution, the milk was not entirely uniform in composition from day to day.

The handling of the alcohol was much siupler. A quantity sufficient for seveml experiments was procured and analyzed, and the proper amounts were drawn each day as needed.

As stated above, the separations of the feces for each experiment were made br means of lamplack. The total feces for each experiment were amalyzed. and the aremge per day used in the computation of results. It was assumed that when the food and exercise were so nearly uniform the undigested residues and metabolic products wonld not vary greatly from day to dar, and such irregularities as might occur would hardly affect the aremge for an experiment.

The urine was collected in 6-hour periods. and the amount. specitic gravity. and nitrogen determined for each period. Aliquot portions of the urine of the h-hour periods were taken for preparation of a composite sample for the day. and in like manner aliqnot portions of the composite sample of mine for each das mere taken for the preparation of a sample for the whole experiment or series of experiments. The nitrogen and heat of combustion were determined in the urine for each dar and in the composite for the whole experiment. The carbon and hydrogen were determined in the composite sample of urine for the whole experiment or series of experiments, and were divided among the different days in proportion to the amonnt of nitrogen. ${ }^{\text {a }}$

THE MEN WHO SERVED AS SUBJECTS OF THE EXPERIMENTS.

Three different men. E. O.. A. W. S.. and J. F. S., hare serred as subjects in these experiments. Each of these. when not sojourning in the apparatus. was engaged in work connected with the investigations. E. O. was a general assistant in the chemical laboratory a Swede by birth. who had been a number of rears in this countrr: he was $32-33$ rears old, and weighed about 155 pounds. Since boyhood he had been accu-tomed to the moderate use of alcoholic heverages. A. W. S. was a phrsicist, a natire of New England. 25 rears old. and weighed
about 155 pounds. J. F. S. was a chemist. a Canadian by birth, 29 years old, and weighed about 150 pounds. The last two had alwars been total abstainers. The subjects were weighed without clothing.

SYMPTOMS OBSERVED IN EXPERIMENTS WITH ALCOHOL.

In deciding upon the daily amount of alcohol and its dirision into doses, the purpose was to give the subjects as much as they conld well take without apparent nervous distnrbance. As abore stated. the quantity of absolute alcohol, about $2 \cdot$ grams per day, was divided into 6 nearly equal doses, of which 3 were taken with the meals and 3 between meals. It supplied about onefifth of the total energy of the diet in the rest experiments and about one-serenth in the rork experiments. On one or two occasions J. F. S. experienced a slight tingling in the earsimmediately after drinking the alcohol. On one occasion E. O. complained of a slight feeling of dullness. On one occasion A. W. S. thought he experienced a rery slight dizziness. Otherwise neither one was at any time awrare of any especial effect of the alcohol upon the sensations in any way. With the exception of the tingling in the ears noticed by J. F. S., it is not certain that any of the symptoms referred to were due to the alcohol.

As regards the effect of alcohol upon the body temperature and pulse rate in these experiments there is little to be said. The only observations made were those by the subjects themselves and the difficulty of accurately determining one's own normal pulse rate is well known. The observations of temperature were made with a clinical thermometer in the mouth or axilla br the usnal method. Which of course does not show the exact arerage internal temperature of the body. The data obtained with E. O. and A. W. S. were not sufficiently accurate and numerous to he decisive. The observations by J. F. S. were made at frequent intervals and with considerable care. The results imply a slightly decreased body temperature and increased pulse rate ir the experiments with alcohol diet as compared with those with ordinary diet, but the differences are not large.

The data as observed are recorded in the tables in the appendix.

GENERAL DESCRIPTIONS OF INDIVIDUAL METABOLISM EXPERIMENTS.

The data of the experiments with alcohol are giren in detail in the appendix berond. The results are smmmarized, and brief descriptions of the experiments are given on the following pages. The results of these experiments are here compared with those of similar experiments without alcohol. the details of which are published elsewhere, as indicated in Table 1, which follows.

LIST OF METABOLISM EXPERIMENTS WITH AND WITHOUT ALCOHOL, AND GROUPING FOR COMPARISON.

Of the metabolism experiments with men in the respiration calorimeter, 13 had for one of their objects the study of the nutritive value of alcohol. The details of 11 of these are giren in the present report; those of 2 others hare been published elsewhere. These 13 experiments are compared with a like number made with the same men, but without alcohol in the diet. Table 1 gives a list of these 26 experiments, with grouping for comparison and references to publications in which the details may be found.

Table 1．－List of the experiments，and grouping for comparison of results with and rithout aleohol．

Group．	No．	Date．	Dura－ tion．	Subjeet．	Nature of the experi－ ment．		Protein in foorl．	Energy in frod．	$\begin{aligned} & \text { Place of } \\ & \text { publiea- } \\ & \text { tion of de- } \\ & \text { tails. } \end{aligned}$
					Rest or work．	Ordinaryor al－ eohol diet．			
A			Days．				Cirams．	Calorick．	
	9 10	Jan．10－14， 1898 Feb．15－19， 1898		E．O．	Rest．．． Rest	Ordinary ．． Akohol	119 123	2， 717	$\left({ }^{\text {a }}\right.$（ ${ }^{\text {a }}$ ）
$\pm{ }^{\text {¢ }}$	24	Mar．19－22， 1899	3	．．do	Rest．．．	Ordinary	124	：， 061	（b）
	22	Mar．13－16，1899	3	do	Rest．．．	Akohol ．．	124	3，044	（c）
咸 C	26	Feb．14－17， 1900.	3	J．F．S	Rest．．．	Ordinary ．．	100	2,490	（b）
	28	Feb．20－23， 1900	3	do	Rest．	－－do	99	2， 489	（b）
	27	Feb．17－20， 1900	3	do	Rest．	Alcohol	95	2， 491	（c）
二 D	11	Mar．22－26， 1898	4	E． 0	Work	Orlinary ．－	124	3， 862	$\left({ }^{\text {b }}\right.$ ）
范	12	Apr．12－16， 1898.	4	do	Work	Alcohol	121	3， 891	（c）
\＆	29	Mar．16－19， 1900	3	J．F．S	Work	Ordinary	100	3， 487	（ ${ }^{\text {a }}$
5	31	Mar．22－25， 1900	3	do	Work	．．．do	100	3， 495	（b）
\cdots	30	Mar．19－22， 1900	3	do	Work	Alcohol	99	3，458	（ ${ }^{\circ}$ ）
F	32	Apr．20－23， 1900.	3	．．do	Work ．	Orlinary ．．	101	3， 487	（b）
	34	Apr．26－29， 1900	3	do	Work	．．．do	100	3， 493	（b）
	33	Apr．23－26， 1900	3	do	Work	Alcohol ．．．	100	3，486	（c）
	13	Nov．8－11， 1898	3	E．O．	Rest．．．	Ordinary ．－	117	2， 596	（b）
	14	Dec．20－24， 1898	4	．．．do	Rest．	－－do－	94	2，513	（b）
	7	June 8－12， 1897	4	do	Rest．	Aleohol	104	2， 462	$\left({ }^{\text {a }}\right.$ ）
	5	May $4-8,1897$.	4	．．．．do	Rest．．．	Ordinary ．．	119	2，655	（4）
	15	Jan．16－18， 1899	2	do	Rest．	Alcohol	109	2，653	（c）
	16	Jan．18－20， 1899	2	do	Rest．	．．do	109	2，653	（c）
	17	Jan．20－22， 1899	2	do	Rest．	do	109	2，653	（c）
	21	Feb．12－15， 1899.	3	A．W．S．	Rest．．．	Ordinary ．	97	2， 264	
	18	Feb．6－8， 1899.	2	．do	Rest．	Alcohol	97	2，776	（c）
	19	Fel．8－10， 1899.	2	do	Rest．	．．do	97	2，776	（c）
	20	Feb．10－12， 1899	2	．．．．do	Rest．	．．．do	97	2，776	（c）

[^2]The experiments are divided into groups，each group including experiments with and withont aleohol，but made with the same subject．In some groups there are only two experiments，one with alcohol and one with ordinary diet；in others there are more than one experiment either with or without alcohol．

More and less strictly comparable experiments．－In the first 6 groups，A to F ，inchsive，the experiments with and without alcohol were practieally duplicates in duration，musenar activity， and amonnts of protein and energy in the diet，the main difference being that a part of the fats and carbohydrates of the ordinary diet，enough to supply in general abont 500 calories of energy， was replaced by the isodymamic amount of alcohol．In the 3 groups， G to I ，which include a number of the earlier experiments，those with and without alcohol were not so nearly duplicates． In some instances the difference was umintentional，and was due to a difficulty in obtaining food materials of like composition at different times．In these cases it was not found practicable to complete the analyses long enongh in advance of the experiments to insure miformity of diet as regards amounts of protein and energy．Later，means were devised for putting up food materials in considerable quantities and preserving them by canning or cold storage，so that the amounts of protein and energy in the diet were made more nearly the same in experiments separated by longer or shorter intervals of time．Accordingly the experiments of groups A to F are designated as more directly comparable and those of Groups G to I as less directly comparable．

Order of arrangement of experiments with and without alcohol.-In these experiments two different orders of arrangement hare been obsersed. By one plan the experiments with and without atcohol are separated by a longer or shorter interval, and in each case the experiment proper, during which the subject is in the respiration calorimeter, is preceded by a preliminary period during which he is outside the chamber but has the same or nearly the same diet and exercise. The experiments of Groups A, B, D, G, and No. 5 of Group H belong to this class. Each of these experiments has continued in the majority of cases for 8 dars, the first half being deroted to the preliminary and the other half to the actual experimental period. In some instances, howerer. the preliminary period was only 3 days. One object of the preliminary period has been to bring the body as nearly into nitrogen equilibrium as practicable. The attempts to secure nitrogen equilibrium hy this means have not, on the whole, been successful, a circumstance to which more especial attention is called beyond.

By the other plan the experiments with and without alcohol follow one another without interruption, thus making really successive periods of a single experiment, or successive experinents of a series. Each such series is preceded by a preliminary experiment, during which the man is not in the chamber, but receires, at least during the latter part of the period, the same diet as in the experiment proper. At the end of the preliminary period the man enters the chamber and remains there during the several periods of the experiments proper. The transitions from one diet to another are thus immediate. The experiments of Groups C, E, F, and I and Nos. 15, 16. and 17 of Group H were of this sort. Since, however, No. 15 was preceded by a preliminary period, and the onls differences between Nos. 15. 16, and 17 were in the kind of alcoholic bererage-commercial alcohol, whisky, and brandy-these might be considered one experiment of the first kind.

Each plan has its adrantages and disadrantages. A reason for this is found in the fact that atcohol in moderate quantities appears to have, with some persons, especially with those unaccustomed to its use, a special effect upon nitrogen metabolism. It seems probable that this is exercised through the nerrous system, that it may for a short time tend to increase the excretion of nitrogen, but that it is, in some cases at any rate, only temporary, and disappears after a few days when the permanent effect manifests itself. Accordingly, there is a disadrantage in the second plan, in which the alcohol experiment proper is not preceded bs a preliminary period with alcohol diet, in that the persistent effect of the alcohol may not become manifest during the first days of its use in the experiment. Whether, when, or how much this factor may influence a giren experiment it is difficult to say.

On the other hand, there is a disadvantage in the first plan in that, as the experiments with and without alcohol are not consecutive, the body mar, during the interval between them. become changed in its capacity or tendency to respond to the different diets. The second plan has the corresponding adrantage that differences in the obserred results in two consecutive periods might be more clearly due to the diet and less influenced by changes in bodily condition; but here, again, we are dealing with uncertainties.

To some it might scem that the hest test of the effect of alcohol upon nitrogen metabolism would be found in experiments on the first plan, while others would consider those on the second plan more trustworthy. To the writers it seems that experiments on both plans are desirable. Of course the most desirable plan of all would be to continue the experiments through periods long enough to make sure that the normal action of the alcohol appears, and to alternate the alcohol periods with periods without alcohol. This plan ha been followed successfully in experiments upon the special question of the protection of protein by alcohol, as explained in the discussion of this subject heyond.
group a. experiments nos. 9 and 10. rest experinents with ordinary diet and with alcohol diet.
The 2 experiments in this group were planned to compare the effects of ordinary diet with thore of alcohol diet when the sulject did as little mental and muscular work as practicable. The subject, E. O., was the same as in a number of other experiments. The amounts of nutrients
and energy per day in the diet in both experiments were such as previous observation and experiment with the same subject had indicated to be sutticient but not excessive. Experiment No. 10 was as exact a duplicate as possible of experiment No. 9, exeept that part of the fats and carbohydrates of the ordinary diet of No. 9 were taken ont and were replaced in No. 10 by an amount of alcohol that was practically isodynamic with the fats and carbohydrates for which it was substituted, as explained below.

The preliminary digestion experiment preceding metabolism experiment No. 9 began with breakfast January 6,1895 , and continued t days. During this preliminary period the subject was engaged in his usual ocenpation as laboratory janitor, save that he had as little muscular exercise as practicable. His diet was essentially the same as during the period of actual experiment in the calorimeter.

The subject antered the respiration chamber on the evening of Jannary 9 , and experiment No. 9 began at 7 a. m. on January 10 and continued until 7 a. m. January 14 . During this period within the chamber his oceupation consisted of reading, writing, ete., but with very little muscular or mental actirity. The diet furnished 120 grams of protein and 2,717 calories of energy per day.

Between the close of experiment No. 9 and the beginning of No. 10 there was an interval of about 4 weeks, in which the subject was engaged in his usual oceupation as lahoratory assistant. The preliminary digestion period of No. 10 began with breakfast February 11, 1898, and continued 4 days. The subject had as little muscular exereise as practicable aside from his regular occupation. The dict during the preliminary period was practically the same as during the experiment proper.

The subject entered the respiration chamber in the evening of Fehruary 14, and the experiment proper began at $7 \mathrm{a} . \mathrm{m}$. February 15 and continned 4 days. The diet of the experiment. which furnished 123 grams of protein and 2,709 calorics of energy per day, differed from the diet of experiment No, 9 in that about 37 grams of fat and 45 grams of carbohydrates, supplying 520 calories of energy, were taken out of the ordinary diet and were replaced by 80 grams of commercial alcohol with $\$ 0.6$ per cent or 72.5 grams of absolute alcohol, having a heat of combustion of 512 calories. This, the amount of alcohol was very nearly isodynamie with the amounts of fats and carbobydrates which it replaced, and the total amonnts of protein and energy were practically the same in the diets of both experiments.

The following table summarizes the results of these two experiments. Detailed data of the experiments will he found in Bulletin 69 of the Office of Experiment Stations of the United States Department of Agriculture.

Table 2.-Simmary of results of metabolism experiments Nos. 9 and 10.
[Quantities per day.]

	Protein.	Fat.	Carbohydrates.	Alcohol.	Nitrogen.	Carbon.	Energy.
Experiment No. 9.				Grams.			
In total food	119.6	69.0	$3+1.8$,	19.1	261.6	2,717
In available food	111.7	64.9	329.7		17.8	235.6	2, 426
Actually metabolizerl	115.3	46.7	(329.7)		18.4	223.6	2,277
Heat measured							2,309
Gain (+) or luss (-) to body	-3.6	+18.2			-0.6	$+12.0$	+149
Erperiment Jo. 10.							
In total food	123.5	31.6	297.4	72.5	19.8	253.3	2, 709
In available food	114.9	27.9	288.4	71.4	18.4	227.5	2, 427
Actually metabolized	121.8	6.7	(288.4)	71.4	19.5	214.9	2,268
Heat measured ...							2,283
Gain (+) or loss (-) to body.	-6.9	$+21.2$			-1.1	$+12.6$	+159

GROUP 13. EXPERIMENTS NOS. $2 \pm$ AND 2Q, WITI NO. 23 FOR COMPARISON. REST EXPERIMENTS WITI ORDINARY DIET AND WITH ALCOIIOL.

The experiments of this group are a series of 3 carried out with E. O. in March, 1899. The purpose wals to compare the effects of alcohol with those of sugar upon the metabolism of nitrogen and cspecially of carbon and energy, when the subject had little muscular or mental activity. During this series the subject remained in the calorimeter 9 days and 10 nights without intermission, and each experiment continued 3 days and nights. The plan of the experiments was to give the subject a diet consisting of a so-called basal ration which was the same in all 3 experiments, and a supplemental ration which was different in each experiment. The basal ration given was as large as the average of the rations that had been used in the previous experiments with the stme subject. It furnished 123 grams of protein and 2,535 calories of energy per day. The supplemental ration consisted of alcohol in experiment No. 22 and sugar in experiment No. 2t, each in quantity sufficient to furnish a little over 500 calories per day, as explained below. In experiment No. 23 the basal ration alone was given.

The preliminary digestion experiment continued t days, beginning with breakfast on March 9 , the lampblack for the separation of the feces having been taken with the supper the night before. During this preliminary period the subject was engaged in his usual occupation as laboratory assistant, but had as little muscular exercise as practicable. For 3 days of this preliminary experiment the subject lived on the basal ration alone. On the fourth day 79.2 grams of commercial ethyl alcohol, with 90.9 per cent or 72 grams of absolute alcohol, were added to the dict. The alcohol was taken by the subject in coffee infusion, the total amount for the day being divided into 6 portions, one being taken at each meal and the other 3 portions between meals.

The subject entered the respiration chamber on the evening of March 12, and experiment No. 22 began at 7 o'clock in the morning of March 13 and continued until 7 a. m. March 16. During this experiment the diet consisted of the basal ration, supplemented each day by 72 grams of alcohol, its stated above. This amount of alcohol added 509 calories per day to the energy of the basal ration.

Experiment No. 23 began at 7 a . m . on March 16 and continued until 7 a. m. March 19. The diet in this experiment consisted of the basal ration alone without the alcohol, but at the request of the subject with the addition of a small amount of horseradish to add flavor to the diet.

Experiment No. 24 began at 7 a. m. March 19 and continned until 7 a. m. March 21. The diet in this experiment consisted of the basal ration and the horseradish, supplemented each day by 130 grams of cane sugar in the form of rock candy. The daily ration of candy was given to the subject each morning with breakfast, and he ate it as he felt disposed during the day. This amount of sugar added 515 calories per day to the energy of the basal ration, a similar amount to that added by the alcohol in experiment No. 22.

The following table summarizes the results of experiments Nos. 22 and 24 . The results of No. 23 are also included, although they are not strictly comparable with either 22 or 24 , because removal of the alcohol without replacement by any other material reduced the energy of the diet by about 500 calories. Detailed data of No. 22 will be found in the Appendix, pp. 330 to 342 and those of Nos. 23 and $2 t$ will be found in Bulletin 109 of the Office of Experiment Stations.

[̧uantities per duy.]

GROLP C. EXPERIMENTS NOS. $2 t, 20$, AND 27 . REST EXPERIMENTS WITH ORDINARY DIET AND WITH ALCOHOL DIET.

The series of experiments forming this group was carried out with J. F. S. in February, 1900. The purpose of the experiments was to obtain data concerning the relative power of isodynamic quantities of alcohol, sugar, and butter to replace one another in the diet, when the subject was at rest. During this series the subject remained in the calorimeter $!$ days and 10 nights, and each experiment continued 3 days and nights. The diet consisted of a hasal ration furnishing approximately 100 grams of protein and 1.982 ealories of energy per day, which was uniform in all 3 experiments, and a supplemental ration whieh was differed in the several experiments, being butter in No. 26, aleohol in No. 27 , and sugar in No. 28, the amonnt of each used being sufficient to furnish ahont 500 ealories of energy

The preliminary digestion experiment began with breakfast on February 10, and contimued 4 days. During this preliminary period the diet consisted of the basal ration supplemented by 63.5 grams of hatter, furnishing 0.1 of a gram of nitrogen and sos calories of energy; thus making a total of 100 grams of protem and 2,490 calories of energy in the daily diet.

The subject entered the respiration chamber on the evening of Fehruary 13, and experiment No. 26 began at $7 \mathrm{a} . \mathrm{m}$. February 14 , and continued 3 days. During this experiment the diet eomsisted of the basal ration smplemented by fat in the form of butter, as in the preliminary digestion experiment.

Experiment No. 27 began at 7 a. m. February 17, and contimed 3 days. During this experiment the diet consisted of the hasal ration supplemented by 79.5 grams of commereial ethyl alcohol with 90.6 per cent or 72 grams of athsolute alcohol supplying 509 calories of energy per day, so that during this experiment the daily diet furnished 99 grams of protein and 2.41 calories of energy. The alcohol was administered in sweetened water, and the mixture was consumed in 6 portions during the day, 3 with meals and 3 between meals.

Experiment No. 25 began at 7 a. m. February 20 , and continued 3 days. The diet during this experiment consisted of the basal ration smplemented hy 28 grams of sugar daily in the form of rock candy. The daily ration during this experiment thas furnshed 99 grams of protein and $2 . \operatorname{si} 9$ calories of energy. The total amount of rock candy for the day was supplied to the subject with his hreakfast, and be ate it from time to time during the day aecording to his taste.

Vol. - No. 6--2

The major portion of it was consumed at about the homs at which the alcohol had been taken in the previons experiment.

The following table summarizes the results of these 3 experiments. Detailed data of experiment No. 27 will be found in the Appendix, pages 342 to 353 , and those of experiments Nos. 26 and バ in Bulletin 109 of the Office of Experiment Stations.

Table 4.-Summary of results of metabolism experiments Nos. 26, 28, und 27.
[Quantities per day.]

	Protein.	Fat.	Carbohydrates.	Alcohol.	Sitrogen.	Carbon,	Energy.
Erperiment No. 26.				Grams.			Calories.$2,490$
In total food	99.6	94.8	247.2		15.9	233.2	
In available food	92.7	92.0	2 ± 0.5		14.8	212.8	2,256
Actually metabolized	96.2	67.6	(240.5)		15.4	196.1	2,043
Heat measured. -							2,085
Gain (-) or loss (-) to body.	-3. 5	+24.4			-0.6	+16.7	+213
Experiment No. 28.							
In total food	98.6	40.3	375.2		15.8	245.8	2, 489
In available food	90.8	36.3	369.9		14.6	224.9	2, 249
Actually metabolized	95.3	14.5	(369.9)		15.3	210.7	2,067
Heat measured.							2,079
Gain (+) or loss (-) to body	-4.5	$+21.8$			-0.7	$+14.2$	$+182$
Arerage Nos. 26, 28.							
In total food	99.1	67.6	311.2		15.9	239.5	2, 490
In available food	91.8	64.2	305.2		14.7	218.8	2,253
Actually metabolized	95.8	41.1	(305. 2)		15.3	203.4	2,055
Heat measured.							2, 082
Gain (+) or loss (-) to body	-4.0	$+23.1$			-0.6	$+15.4$	+198
Erperiment No. 27.							
In total food	98.6	40.3	247.2	72.0	15.8	229.5	2, 491
In available foot	91.6	38.2	240.1	71.1	14.7	208.9	2, 264
Actually metabolized	97.6	20.0	(240.1)	71.1	15.7	198.3	2, 125
Heat mensured .-							2,123
Gain (-) or loss (-) to body	-6.0	+18.2			-1.0	$+10.6$	$+139$

GRGU1' D. EXI'ERIMENTS NOS. 11 AND 12. WORK EXPERIMENTS WITH ORDINARY DIET AND WITII ALCOHOL DIET.

The two experiments in this group were similar to those in Group A, except that those in Group A were rest experiments, while those in Group D were work experiments; that is, they were planned to compare the effects of ordinary diet and of alcohol diet when the subject was engraged in active muscular work. The sulject. E. O., was the same in both groups. The work in these experiments was performed on the bicycle ergometer described on page 237 .

The ordinary dist in experiment No. 11 furnished 124 grams of protein and 3,862 calories of energy per day. The amomot of protein was nearly the same as in No. 9 , but in order to supply rnergy for muscular work the amount of energy in No. 11 was made to exceed considerably that in No. ! by an incerase in the amount of fats and carbohydrates in the diet.

The preliminary period of this experiment hegan with breakfast, March 18, 18:9, and contimed + days. During this time the subject was engaged in his usmal occupation, and took a con-iderable amome of exereise each day walking or riding a bicycle. On the evening of Mareh 21 he entered the respiration wamber, and the experiment proper began at 7 a . m. March 29 . and continned until 7 a. m. March 26 .

Experiment No. 12 was intendel to be as exact a duplicate as possible of experiment No. 11, exerpt that some of the sugar. starch, and fat was taken ont of the diet and replaced by an isodymamic amount of alcohol. The alcohol diet of this experiment furnished $121 \underline{a m m s}$ of protein and 3,591 calories of energy per day, as compared with $12 t$ grams of protein and 3,862
ealorics of energy per day in the ordinary diet of experiment No. 11. In consideration of the diffieulties in planning and regulating the diet so as to turnish exactly a definite quantity of protein or energy. the agreement of the two diets in regard to amome of protein per day i- rery satisfactory.

In order to obtain a palatable diet in experiment No. 12. considerably more fat wa- furnished than in experiment No. 11. consequently the carbobydrate- (sugar- and starehe-) bad to be reduced more than would he required for their replacement by the amount of alcohol used. The fat waincreased hy 30 grams, corre-ponding to abont 25 calories of energy, and the earbohydrat were decreased by 189 grams, corresponding to about \quad It calories. In the place of the materials left out of the diet 80 gram . of commercial alcohol. with $!6.5$ per cent or i2.t gram. of pure ethyl alcohol, furnishing 512 calories of energy. were given each day. In this way the energy of the alcohol diet of experiment 12 wa- made to agree rery satisfactorily with that of the ordinary diet of experiment No. 11.

The preliminary period of this experiment hegan with breakfast on April $\mathrm{s}, 1 \mathrm{~s} 9 \mathrm{~m}$, and continned + dars. during which the subject took considerable exercise in addition to his regular occupation. The diet during the preliminary period was the same as during the metabolism experiment proper. The subject entered the chamber on the erening of April 11: metabolism experiment No. 12 began at 7 a . m. April 12, and continued until 7 a. m. April 16 .

The following table summarizes the results of these experiments. Detailed data of experiment No. 12 will be found in the Appendix, pages 241 to 305 : those of No. 11 in Bulletin 109 of the Office of Experiment Stations:

Table 5.-summary of results of metaholism experiments Now. 11 aud 12.
[Quantities per day.]

	Protein.	Fat.	Carbohydrates.	Alcohol.	Nitrogen.	Carbon.	Energy.
Experiment .V. $11 . \quad$ firams girams firams dirams firams firams rituries.							
In total food.	124.1	129. 1	4×4.6		19.*	37.3 .5	3. N 22
In availahle fond.	110.0	120.1	4i2. 2		17.6	340.6	3,510
Actuallymetabolizer	113.0	1.79 .8	(4っこ.2)	--	18. 1	372.6	3,901
Heat measured.							3,932
Gain (-) or loss (-) to body	-3.0	-39.7			-0.5	-32.0	-391
Experiment Vo. 12.							
In total food.	120.6	$15 \times .5$	296.1	72.4	19.3	344.8	3, 801
In available foorl	112.8	152.0	290.4	70.9	1К.0	319.6	3, il4
Actually metabolizet	113.8	154.2	(290.4)	70.9	1*. 2	344.7	3. 929
Heat measured							3.92\%
Gain (-) loss (-) to body	-1.0	-32. 2			-0.2	-25. 1	-308

GROLP E. EXPERLMEXT- SO.. 24. 31. AND 30. WORK EXPERIMENTS WTTH ORDINARY DET AND WITII ALCOHOL DIET.
The series of experiments forming this group was carried out in Mareh. 1sun. They were made with the same subject. J. F. S.. as in Group (. and for the same purpose. namely, to study the relative replacing power of i-odynamic quatities of alcohol. sugar, and fat. During this series the subject remained in the calorimeter :s days and 10 night- withont intermiswion, and each experiment in the series continued 3 diys and nights. The experiment in Gronp E differ from those in Group C. however, in that the subject worked for s hours each day upon the bicycle ergometer. described on page 237 . As in the previon- series of experiment-referred to. there waa basal ration which was the same and a supplemental ration which was difterent in each of the 3 experiments. The basal ration was plamed to furnish approximately the ame amome of protein as in the series in Group C. with the addition of ahout 1.110 calories of energy ber day in order to furnish the extra energy required for the performance of the external muscular work and the general increase of hodily activity. It furnished ahout 100 grams of protein and from $2.9+4$ to 2.904 calories of energy per day in the different experiments.

The preliminary digestion experiment began with breaktast March 12,1900 , and continued + days. The diet during this period consisted of the basal ration supplemented by cane sugar, as in experiment No. 29.

The subject entered the respiration chamber on the evening of March 15, and experiment No. 29 began at 7 a. m. March 16 , and continned 3 days. During this experiment the diet consisted of the basal ration supplemented by 128 grams of cane sugar furnishing 507 calories of energy per day, as in the preliminary digestion period; the whole diet furnishing daily 100 grams of protein and 3,487 calories of energy. The daily amount of sugar in the form of rock candy was supplied to the subject each morning at breakfast, and he ate it at intervals during the day according to his taste.

Experiment No. 30 began at $7 \mathrm{a} . \mathrm{m}$. March 19, immediately at the close of experiment 29. The diet in this experiment consisted of the basal ration supplemented by 79.5 grams of commercial alcohol containing 90.6 per cent or 72 grams of pure ethyl alcohol in place of the sugar of experiment No. 24 . The alcohol supplied 509 calories of energy, and the whole ration in this experiment furnished 99 grams of protein and 3,458 calories of energy per day. The commercial alcohol used in this experiment was added each day to 795.5 grams of water sweetened with 25 grams of sugar from the basal ration. The total mixture, 900 grams, was divided into 6 portions which were taken with meals and between meals, as in other alcohol experiments.

Experiment No. 31 began at $7 \mathrm{a} . \mathrm{m}$. on the morning of March 22 , and continued 3 days. The diet in this experiment consisted of the basal ration supplemented by 63.5 grams of butter in place of the alcohol in the previous experiment. The butter furnished nearly 1 gram of protein and 511 calories of energy, so that the whole ration furnished 101 grams of protein and 3,495 calories of energy per day. The butter was consumed at meals with the rest of the diet.

The following table summarizes the results of these 3 experiments. Detailed data of experiment No. 30 will be found in the Appendix, pages 354 to 366 , and those of experiments Nos. 29 and 31 will be found in Bulletin 109 of the Office of Experiment Stations.

Table 6.-Summary of results of metabolism experiments Nos. 29, 31, und 30.
[Quantities per day.]

	Protein.	Fat.	Carbohydrates.	Alcohol.	Nitrogen.	Carbon.	Energy.
Experiment . - 29.				Grams.			Calorics.
In total frod	100. 1	106. 0	470.7	Grams.	16.0	333.6	3,487
In available fond	94.8	103.0	464.6		15.2	314. 1	3, 260
Actually metabolized	99.8	126.8	(464.6)		16.0	334.9	3, 515
Heat measured							3,589
Gain (+) or loss (-) to body	-5.0	-23.8			-0.8	-20.8	-255
Experiment No. 31.							
In total food	100.9	160.8	342.7		16.1	321.5	3,495
In available foord	95.8	158.1	336.7		15.3	302.5	3,275
Actually metabolized	98.1	174.0	(336.7)		15.6	315.8	3,439
Heat nieasured. .							3,420
Gain (+) or loss (-) to body	-2.3	-15.9			-0.3	-13.3	-164
A Mertige 2.1 rind 31.							
In total food	100.5	133.4	406.7		16.0	327.6	3,491
In available food	95.3	130.6	400.7		15.2	308.3	3,268
Actually metabolized	99.0	150.5	(400.7)		15.8	325.4	3,477
Heat measurel...							3, 505
Gain (+) or loss (-) to body	-3. 7	-19.9			-0.6	-17.1	-209
Eirluriment No. 80.							
In total frort	99.2	104.2	340.9	72.0	15.9	315.5	3, 458
In available fond	4-4.9	102. 1	336.2	71.2	15.2	296.6	3,24:
Actually metabolizer	108. 0	119.1	(336.2)	71.2	17.3	316.5	3, 479
Heat meastrial.							3,470
Gain (+) or lose (-) to borly	-13.1	-17.0			-2.1	-19.9	-237

GROLD F. EAPERIMESTS NOS. 32.34 AND 33. WORK EXPERIMENTS WITH ORDINALY ASD WITII ALCOHOL DIET.
The series of experiments forming this group was made in April. 1swo. The plan of the experments in this series was as nealy as posible a dupleate of that of the experiment forming Group E, the chief ditlerence being that in the series in (rroup, E the basal ration was -upplemented in the first experment hy sngar, in the second by akohol. and in the third by butter, whereas in the series in Gronp F the butter was used in the first experiment. alcohol in the second, and sugar in the third. Both series were work experiments in which the same sulject. I. F. S., spents homrs each day working on the bieyele ergometer. In earh series the sulbect remained 1 snecessive days within the calorimeter. and the whole inrestigation mas divided into 3 experiments of 3 days each, the different experiments being distingnished from each other hy changes in the smpplemental ration. The hasal ration in this series furnished 100 grams of protein and abont 2,976 calories of energy per day. The amount of energy in the hasal ration raried slighty in the successive experiments of the series. hecause of slight differences in the composition of the milk.

The preliminary digestion experiment began with breakfast April 16 and continued 4 days. The diet consisted of the basal ration supplemented with fat in the form of butter. as in experiment No. 32.

The subject entered the respiration chamber on the evening of April 19 and experiment No. 32 began at 7 a. m. April 20 and continued 3 days. The diet consisted of the basal ration supplemented by 63.5 grams of butter, furnishing 1 gram of protein and sto ealories of energr. The butter was consmed at meals with the rest of the diet. The total diet in this experiment supplied 101 grams of protein and 3,457 ealories of energy per day.

Experiment No. 33 hegan at 7 a.m. April 23 and continued 3 days. The diet in this experiment consisted of the hasal ration, supplemented by $7!.5$ grams of commercial alcohol with 50.6 per cent, or \boldsymbol{T} grams, of absolute alcohol. furnishing 504 ealories of energy. The commereial alcohol was added each day to 795.5 grams of water weetened with 25 grams of sugar, making 900 grams of a mixture which was divided into six portions (see p. 292), the larger of which were taken at meals and the smaller between meals and before retiring. The total diet in this experiment furnished 100 grams of protein and 3.486 calories of energy per day.

Experiment No. $3 \pm$ began at 7 a. m. April 26 and continued 3 days. The diet consisted of the hasal ration supplemented by 120 grams of cane sugar, furnishing 507 calories of energy. The daily amount of sugar was supplied to the subject each morning in the form of rock candy. which he ate at intervals doring the day according to his taste. The total diet in this experiment furnshed 100 grams of protein and 3.493 catories of energy per day.

The following table summarizes the results of these 3 experiments. Detailed data of experiment No. 33 will be found in the Appendix. pages 366 to 3 IS, and thove of experiments Nos. 32 and 34 in Bulletin 109 of the Otfice of Experiment Stations:

Table 7.-Siummary of results of metabolism erperiments . Fos. 32, 3f, and 3s.
[Quantities per day.]

	Protein.	Fat.	Carbohsdrates.	Alcohol.	Nitrogen.	Carbon.	Energy.
Experiment Jo. 32.				Grams.	Grams.	Grame.	catories.
In total food.	100.5	151.6	353.9		16. 1	320.0	3, 15
In available food	93.1	147.2	344.5		14.9	296.4	3, 206
Actually metabolized	98.1	182.1	(344.5)		15.7	325. 6	3, 513
Heat measured.							3, 56.5
Gain (+) or loss (-) to body	-5.0	-34.9			-0.8	-29.2	-347
Erperiment Mo. 3 ¢							
In total lood	99.7	99.3	477.9		16.0	335.7	3, 493
In available fond	92.4	94.4	$4 \% 0.1$		14.8	312.5	3. 241
Actually metabolized	104.3	129.4	(170.1)		16. 7	345.4	3. 629
Heat measured.							3, 587
Gain (+) or loss (-) to body	-11.9	-35.0			-1.9	--32.9	-385

Table 7.-Summary of results of metabotism experiments Nos. 32, 34, unt 33-Continued.

	Protein.	Fat,	Carbohydrates.	Alcohol.	Nitrogen.	Carbon.	Energy:
- kerrege Nos. 32 and 34.				Grams.			
In total food	100.1	125.5	415.9		16.0	327.8	3, 490
In available food	92. 8	120.8	107.3		14.8	304.4	3, 234
detually metabolized	101.3	155.8	(407.3)		16.2	335.5	3, 601
Heat measured.							3,576
Gain $(+)$ or loss (-) to body	-8.5	-35.0			-1.4	-31.1	-367
Erperiment No. 33.							
In total food	99.7	99.3	355.0	72.0	16.0	319.6	3, 486
In available foorl	92.4	95.0	346.9	71.3	14.8	295.7	3,227
detually metabolized	108.2	133.4	(346.9)	71.3	17.3	333.3	3, 669
Heat measured.							3,632
Gain (+) or loss (-) to body	-15.8	-38.4			-2.5	-37.6	-442

GROLP G. EXPERIMENTS NOS. 13,14 , AND 7. REST EXPERIMENTS WITH ORDINARY AND WITH ALCOHOL DIET.

While the 3 experiments in this group are all rest experiments and all with the same subject, E. O.. the ordinary experiments and the alcohol experiments were not planned to be exact duplicates of each other, and are therefore less exactly comparable than those in preceding gromps. For the sake of comparison with the alcohol experiment, No. 7, however, 2 ordinary experiments, Nos. 13 and 14 , were chosen in which the arerage of the amounts of protein and energy in the daily diet in the 2 experiments was practically the same as in the alcohol experiment. Since these experiments were made with the same subject and under conditions somewhat similar, the results may be compared in studying the effect of alcohol on metabolism.

Experiment No. 13 was intended to be as nearly as possible a duplicate of experiment No. 9. The ordinary diet in experiment No. 13 furnished 117 grams of protein and 2,596 calories of energy per day, which was 2 grams of protein and 121 calories of energy less than in No. 9. The preliminary period of No. 13 began with breakfast Norember 8,1898 , and contiuned 4 days, during which the subject had as little muscular exercise as practicable outside of his regular occupation as laboratory assistant. He entered the chamber on the evening of November 7, and the experiment proper began at $7 \mathrm{a} . \mathrm{m}$. November 8 . It was intended that the experiment -hould continue f days, but on the fourth day a leak occurred in the rentilating air pipe at such a point that the results for that day were destroyed; consequently the experiment is recorded as a 3-day experiment. While this was a rest experiment in general character, the subject was not so quiet thronghont the experimental period as he had been in earlier and was in later similar experiments.

Experiment No. 14 was carried out under much the same conditions as No. 13 , with the exception that in No. 14 the amount of protein in the diet was reduced from 117 to 94 grams per dar, and the energy from 2,596 to 2,513 calories per day. The preliminary digestion experiment began with Treakfast December 17, 1898, and coutinued 3 days. The subject entered the apparatus on the erening of December 19, and the experiment proper began at 7 . a. m. December 20 and continued 4 days.

The ayerage of the amounts of protein and tnergy in the daily diet of the 2 ordinary experi-ment-, 13 and 14 , was 105 grams of protein and 2,555 calories of energy.

The alcohol diet in experiment No. 7 furnished 104 grams of protein and 2,462 calories of energy per chy. The diet in this experiment included st grams of commercial alcohol, with 90.6 per cent, or Te.s grams, of pure ethyl akohol, which furnished 512 calories of energy per day. The preliminary digestion experiment began with breakfast. Jme $4,1 \mathrm{~s} 97$, and continned t days. The subject entered the chamber on the evening of Tune 7 , ind the experiment proper began at 7 p. In. Jumes and continued + days.

The following table summarize the result－of these experiments．Detailed data of experi－ ment No． 7 will he found in Bulletin 6\％，and those of No－ 13 and 14 in Bulletin 1u！of the Oftiee of Experiment Stations：

Quantitice per day．

	Prutein．	Fat．	Carlohy－ drater．	Aleohol．	Nitrogen．	Carlon．	Finergy
Erquerimut－ا\％\％， 13.				trame．		liran s．	celurio．s．
In total fornl	117． 1	8－：	270		1．．	24.5	2． $3: 4$
In available foorl	110． 2	-1.6	265.0		17.6	219.1	2． 20.10
Actually metabolized	121.9	54.7	（265． 0	－－－－	19.5	2057	$\cdots, 112$
Heat measured．							$\because .151$
ciain $(-)$ or loss（ - ）to berly	11.7	26.9			-1.8	-14.4	－1－6
Erjeriment－Jo．14．							
In total ioord	94.4	$=3.5$	－49．		15.1	239.0	－2． 513
In availalile foom	s9．0	78．5	256.6	－．．－．－．	14．2	219.4	2.289
f ctnally metabolized	101.4	54.4	（2，6．6）	－－－－－－－	16．－	207.3	$\stackrel{\square}{2} 131$
Heat measured							2.193
Gain（ - ）or loss（－）io brely．	－12．4	－24．4			－2． 0	-12.1	－15s
Aterigi，experiments \is：．13－1\％．							
In total food	105．s	－3．2	$2-0.0$		16.9	242.4	$\therefore .50 .5$
In available food	99.6	80． 2	275.8		15.9	219.5	$\stackrel{3}{29}$
Actually metabolize	111.7	54.5	（255，8）		17．8	206.3	$\because .12$
Heat measured．							2,112
Gain（－）or loss（ ） 10 body	12.0	－25．7			－1．9	－13．2	－1i2
Experiment－Vo．\％							
In toral food	114.4	が， 2	104）． 4	2.5	16． 7	215.6	$\therefore .462$
In available food	95.8	（i5．S	185．6	69.5	15．	197.1	－2．230
Actually metabolized	110．s	80． 1	（lッす。 ¢）	69.5	17.7	214.5	－ 434
Heat measured．							2,394
tain（ + ）or lose（ - ）to bouly	-12.0	－14．3			－1．9	-17.4	-204

GROEP H．EXPERIMENTS NOS．5．15－1\％．REST EXPERIMENTS WITH ORDINARY DIET AND WITH ALCOHOL DIET．

The experiments in Group H were all rest experiments with the same subject．E．O．One purpose of the 3 experiments with alcohol diet（Nos．15－17）was to compare the effect of alcohol when taken in different forms．as commercial alcohol．whi－ky，or hrandy．The experi－ ment with ordinary diet（No．5）has heen chosen for comparison with the 3 experiment with aleohol diet for the reason that．while the amount of protein was somewhat larger in the fomer than in the latter，the amount of energe was practically the same in both diet－．The experiments in this group are less comparable than those in Group－G and I hecanse of differences in the cireumstances under which the experiments were made．Experiment No． 5 was the first of the series of metabolism experiments in which the determinations of income and outgo of both matter and energy were made．The diet in this experiment wa－more raried than that in some of the later experiments，and the method of sampling were not satisfactory．which will account in part for the unsually ride discrepancies between the theoretical values for income and those actually found for outgo of energr．On the other hand．experiments Nos．15－15 were made at a later period when the apparatns and the methods of experimenting were much improved．

The preliminary period of experiment No． 5 began April 27.159 ．and continued adays．instead of 4 dars as usual．becanse unexpected circumstances delared the starting of the experiment proper．The subject entered the calorimeter at about $!$ o clock on the erening of May 3 and the experiment proper began at 7 a．m．May t ．and continned t dars．The diet in this experiment furnished 119 grams of protein and 2.655 calorie－of energy per day．

Each of the 3 experiment Nos．15－17．was of dars duration．and one followed the other without intermission and without the subject learing the respiration chamber，so that in a way
they constitute one long experiment. No attempt was made to obtain a separation of the feces for the different experiments. The usual separations. howerer, were made. the first between the pretiminary digestion experiment and the beginning of metabolism experiment No. 15, and the second at the close of experiment No. 17. The diet in these experiments consisted of a hasal ration which was the same in all 3 experiments, supplemented br alcohol in the form of pure ethrlalcohol in experiment No. 15. by alcohol in the form of whisky in experiment No. 16. and br alleohol in the form of brandy in experiment No. 17. The total diet including the alcohol furnished 109 grams of protein and 2.653 calories of energy per day.

The preliminary digestion experiment began Janury 12,1899 , and continned 4 dars as usmal. During this preliminary experiment the subject received the basal ration, and in addition to this i2. 5 grams of absolute ethyl alcohol, which was administered daily in coffee infusion sweetened with to grams of sligar.

The subject entered the respiration chamber on the evening of Jannary 15 and experiment 15 began at 7 a. m. Jamuary 16. During this experiment he received the basal ration supplemented by 79.8 grams of 90.9 per cent commercial alcohol. or 72.5 grams of absolute ethyl alcohol. in 775.2 grams of cottee infusion, the whole of which was sweetened with 45 grams of cane sugar. There was 900 grams of the mixture which sufficed for the whole day. This was taken at 6 intervals, the larger portions being consmmed with the meals and the smaller portions between meals and just before retiring.

Experiment No. 16 began at 7 a. m. January 18, and continued 2 days. The diet in this experiment consisted of the busal ration supplemented by 155.3 grams of whisky. with 45.5 per cent, or T2.5 grams, of absolute alcohol. This was mixed with 696.7 grams of water sweetened with $5+$ grams of sugar, and the whole divided into 6 doses and taken as before. The mixture was made with water rather than with coffee infusion, because it was thought the objection might he raised that the coffee might perhaps, to some extent, counteract the effiect of the alcohol. The whisky, sugar, and water were furnished to the subject. who mixed them at the usual hours within the apparatus. The amount of alcohol found in the air current was larger during this experiment than during the one preceding it, suggesting that some alcohol may hare been rolatilized as the whisky was ponred into the drinking cup and mixed with the water. The mixing was therefore done outside the apparatns in the next experiment. and the alcohol in the air current was again less than in No. 16.

Experiment No. 17 began at 7 a.m. January 20, and continued 2 dars, during which the subject received the baval ration supplemented hy 143.8 grams of brandy, with 50.4 per cent, or 72.5 grams, of absolute alcohol, per day. This amount was added to 711.2 grams of water and 45 grams of sugar, making a total of 900 grams of the mixture, which was administered in 6 portions, as in the previous experiments.

The following table summarizes the results of these \pm experiments. Detailed data of experiment. Nos. $15-17$ will be found in the Appendix, pages 305 to 317 ; those of No. 5 will be found in Bulletin 69 of the Office of Experiment Stations:

$$
\text { Table 9.-Summary of results of metabolism experiments Nos. } 5 \text { and 15-1\%. }
$$ [Quantities per day.]

[Quantitices jer day.]							
	Protein.	Fat.	Carbohydrates	Alcohol.	Nitrogen.	Carbon.	Energr.
				Grams.			
In total food	119.1		25.5		19. 1	2+5. 9	2,655
In availalle foor	108.8 113.0	89.0 96.8	-269.1)		17.1	${ }_{231.7}^{233.5}$	-
Actually metaholiz		96.8					2, $2,3,9$
Gain (+) or loss () to leoly	-4.2	-7. 8			-0.7	-8. 2	-98
Erpurimint No. 15.							
In total forer	10. 4	39.9	2.69	72.5	17.4	245.7	2, 653
In available forol	10\%.s	36.9	27.4	71.0	16.6	226. 1	2, 426
Actually metals,lized	97.8	33.1	(27.2.4)	71.0	15.6	290	${ }_{2}^{2}, 357$
Teat mien-ured							2,362
(rain () , or hese (-) to hooly.	+6.0	-3.8			-1.0	-6.1	+69

Table 9.-Niumatry of rosults of metalulism erperiments Vos. 5 and 15-1\%-Continued.
[Quantities per day.]

GROUP 1. ENPERIMENTS NOS, 21 AND 18-20. REsT EXPERLMENTA WITH ORDLNARY AND WITI ALCOHOL DIET.

The series of experiments comprising this group was carried ont in February, 1899. The purpose of the experiments with alcohol diet in this series was the same as that of experiments 15-17, namely, to determine whether there is any difference in the effect of alcohol when taken in different forms. Experiments Nos. 18-20 were somewhat similar in plan to Nos. 15-17, but were made with a different subject, A. W. S. The subject remained in the calorimeter 9 days without intermission. During the first 6 days of this period the 3 alcohol experiments, Nos. 18-20, were made, each of 2 days duration, as in experiments 15-17. These were followed by one experiment, No. 21 , of 3 days, in which the diet contained no alcohol.

As in the preceding series, the diet in experiments $18-21$ consisted of a basal ration which was the same in all the experiments, and a supplemental ration which was different in each. This basal ration furnished 97 grams of protein and 2,264 calories of energy per day. In experiments Nos. $18-20$ the basal ration was supplemented by commercial aleohol. whisky, and brandy, respectively, the quantity of each used being sufficient to furnish 72.5 grams of absolute alcohol per day. with a heat of combustion of 512 calories. The total diet in the alcohol experiments fun nished 47 grams of protein and $2,7 \pi 6$ calories of energy per day. In experiment No. 21 the alcohol was omitted, and the diet consisted of the basal ration alone.

The preliminary digestion experiment began with breakfast February 2 , and continued 4 days. During this period the diet was the same as in experiment No. 18 , and consisted of the basal ration and the alcohol in the form of commercial spirits, which was administered in coftee infusion, sweetened with sugar.

The subject entered the respiration chamber on the evening of February 5, and experiment No. 18 hegan at 7 a. m. February 6 , and continued 2 days. In this experiment the diet consisted of the basal ration, supplemented by 79.8 grams of commercial alcohol, with 90.9 per cent, or 72.5 grams, of absolute aleohol. The commercial spirits was mixed with 775.2 grams of coffee infusion, sweetened with 45 grams of eane sugar. The whole mixture made 910 grams. which was dirided into 6 portions, the larger of which were taken with meals, and the smaller between meals and just before retiring.

Experiment No. 19 began at 7 a. m. February 8, and contimerl 2 days. The diet in this experiment consisted of the basal ration, supplemented by 158.3 grams of whisky, with 45.8 per cent, or 72.5 grams, of absolute aleohol. The whisky was mixed with 696.7 grams of water,
sweetened with ts grams of canc sugar, the whole mixture forming !00 grams. which was administered as in experiment No. 18.

Experiment No. 20 began at \bar{i} a. m. February 10, and continned 2 days, during which the diet consisted of the basal ration, supplemented by 143.8 grams of brandy, with $50 . t$ per cent, or $i 2.5$ grams, of absolute alcohol. The brandy was mixed with 711.2 grams of water, sweetened with to grams of eane sugar. The whole mixture amounted to 900 grams, which was administered in 6 portions as in the previous experiments.

Experiment No. 21 began at 7 a. m. February 12, and continned 3 days. The diet in this experiment consisted of the basal ration alone, without alcohol. The results of this experiment are here giveu in comparison with 3 alcohol experiments beause it was a part of the same series and followed the alcohol experiments without intermission and without the subject leaving the respiration chamber. The results are hardly comparable with those of the alcohol experiments, however, since by the omission of the alcohol from the diet the amount of energy per day was reduced nearly one-fifth, while the amounts of protein, fats, and carbohydrates remained the same.

The following table summarizes the results of these t experiments. Detailed data of experiments Nos. 18-20 may be found on pages 317 to 330 in the Appendix. Those of No. 21 may be found in Bulletin 109 of the Office of Experiment Stations.

$$
\text { Table 10.-Summary of results of metabolism experiments Nos. 18, 19, and } 20 .
$$

[Quantities per day.]

	Protein.	Fat.	Carbohydrates.	Alcohol.	Nitrogen.	Carbon.	Energy.
Experiment No. 21.				Grams.			alurics.
In total food	96.9	72.4	250.1	(nam.	15.5	215.2	2,264
In available food	90.4	68.4	246.1		14.5	195. 4	2,038
Actually metabolized	96.0	93.3	(246.1)		15.4	217.4	2, 304
Heat measured.							2,279
Gain (+) or loss (-) to body	-5.6	-24.9			-0.9	-22.0	-266
Experiment Mo. 18.							
In total iood	96.9	72.4	250.1	72.5	15.5	253.0	2,776
In available food	90.4	68.4	246.1	69.5	14.4	232.0	-, 532
Actually metabolized	102.6	43.3	(246.1)	69.5	16.4	219.3	2,367
Heat measured....							2,485
Gain (+) or loes (-) to body	-12.2	+25.1			-2.0	$+12.7$	+168
Erperiment So. 19.							
In total foorl	96.9	72. 4	250.1	72.5	15.5	253.0	2,776
In available food	90.4	68.4	246.1	69.9	14.5	233.5	-2,550
Actually metabolized	90.4	33.3	(246. 1)	69.9	14.5	206.6	$\because, 2 \div 0$
Heat measured....							2,279
Gain (+) or loss (-) to body		+35.1				$+26.9$	+330
E.rperiment No.zo.							
In total forrl	96.9	72.4	250.1	72.5	15.5	253.0	2, 776
In available foorl	90.4	68.4	246. 1	69.7	14.5	233.5	2, 549
Actually metabolizerl	88.2	47.3	(246.1).	69.7	14.1	216.2	2, 339
Heat measured							2,303
Gain (-) or low (-) to borly	$+2.2$	$+21.1$			+0. 4	+17.3	+210
Irerage of 18, 19, cend an.							
In trital food	96. 9	72.4	250.1	72.5	15.5	253.0	2, 776
In available forrl	90. 4	6is. 4	246.1	69.7	14.5	233.0	$\because 2,544$
Actually metabrolizerl	83.7	41.3	(246.1)	69.7	15.0	214.1	$\stackrel{2}{2} 308$
Heat micavarerl							2,357
Gain (+) or lose (-) to borly.	3.3	-27.1			-0.5	$+18.9$	$+236$

DIGESTION EXPERIMENTS.

The data of the metabolism experiments above deseribed inelude statistics of the amounts of mutrients consmmed in the food and excreted in the feces. The difference between these amounts reprements the so-ealled digestible or arailable notrients. ${ }^{\text {a }}$ The amount of each nutrient thus male avalable divided by the amount in the corresponding food is here taken as the coefticient of availability.

Each metabolism experiment, therefore, induden a digention experiment: furthermore, each metabolism experiment or series of experiments was preceded hy a digestion experiment, generally of 4 days duration, during which the subject was ontside the respiration calorimeter, but had the sume diet, and as nearly as convenient the same amount of musular excreise, as in the metabolism experiment. We thus have for each metaholism experiment or series of metabolism experiments two corresponding digestion experiments. While the chief object of the preliminary experiment was to bring the body into approximate nitrogen equilibrium, the results, as bearing upon the arailability of the food, are of importance.

The portions of protein, fat, carbohydrates, and asb not made arailable are eliminated in the feces. The mavailable alcohol is eliminated throngh the kidners, lungs, and kin, and was determined in these experiments according to the method described beyond (p . 25 s).

In what has been said about the arailability of the different nutrients in food no reference has been made to the availability of the energy. While it is commonly believed that all of the energy of the available fats and carbohydrates is capable of use by the body. all of the energy of the protein can not be so ntilized. The nitrogen of the available protein is eliminated from the body in the form of mea, uric acid, and similar compounds, carrying with them a certain amount of energy. From the results of a considerahle number of determinations of the ratio of the heat of combustion of urine to the arailable protein it has been found that for each gram of the latter there is lost in the urine an arerage of 1.25 calories of energy. This amount must therefore be deducted from the energy of the arailable food in order to ohtain the arailable energy of the available protein. This is done by multiplying the number of grams of the latter by 1.25 . and deducting the product from the difference hetreen the total energy in the food and that in the feces. The difference gives the amount of arailable energy, which, divided by the total energy in the food constmed. gives the coefficient of arailability of the energy. ${ }^{\text {b }}$

The proportions of the different mutrient- digested and made arailable in any given cave depend upon the diet and the individnal. So far as concerns the diet, the wailability may vary with (1) the kinds. (2) the amounts of food materials. (3) the method of preparation, and (4) the accessories, including condiments. heverages, etc., and with the rest, alcoholic beverages. The same diet may be differently digested by different individati or by the same individual under different conditions of health, physieal activity. and nerrous strain.

The details of the digestion experiments with alcohol diet are given in Tables CV to CXVIII of the Appendix.

Table 11 compares the availability of food in diets with and without alcohol and the availability of the same diet with the same person- outside and inside the respiration chamber. In the tirst case the principal difference is that of diet, the alcohol being the chief factor: in the second case the differences are those of the phrsical and mental condition of the indiridual. The discussion of the effect of akohol upon availability of the mutrients of the diet is given on pages 256 to -25. hevond.

[^3]Table 11.-Summedry of coeficionts of axalubitity of mutrients and energy in pretiminary and catorimeter periorls aud with ordimury and alcohol diet.

	Protein.	Fat.	Caroohydrates.	Energy:
E.rperiments with E.O.				
Ordinars diet, average 6 experiments.	Per cent. 92.4	$\begin{aligned} & \text { Per ccrt. } \\ & 93.8 \end{aligned}$	Per cont. 97.9	Per cent. 90.6
Alenhol diet, average 5 experiments.	94.2	93.5	97.9	91.1
Preliminary period, average 12 experiments	92.5	93.7	97.7	90.7
Calurimeter period, arerage 12 experiments.	93. 2	94.1	97.9	90.9
Experiments with J. F. 心.				
Ordinary diet, average 6 experiments	93.4	95.8	98.1	92.7
Alcohol diet, average 3 experiments.	93.8	96.2	97.9	93.0
Preliminary periol, average 4 experiments	92.1	95.8	97.2	91.4
Calorimeter period, average 4 experiments	93.8	97.2	97.7	92.4
Average 12 experiments with ordinary fool	92.9	94.7	98.0	91.7
Average s experimente with alcohol.	94.0	94.5	97.9	91.8
Arerage 16 preliminary periods	92.4	94.2	97.6	90.9
Average 16 calorimeter periods..	93.3	94.9	97.8	91.3

DISCUSSION OF THE RESULTS OF THE EXPERIMENTS.

The special purpose of the experiments summarized on the preceding pages, in so far as they hare had to do with the mutritive action of alcohol, has been the study of the metabolism of the energy of alcohol and its consequent value for fuel as compared with isodynamic amounts of carbohydrates and fats. Incidentally, its effects upon digestion, the completeness of its oxidation, and its actron in protecting body fat and protein from oxidation have also been observed. The more important results may be disenssed under the following topics:

1. Effect of alcohol upon the digestion of food.

2 . Proportions of alcohol oxidized and unoxidized.
3. Metabolism of the energy of alcohol.
4. Protection of body material by alcohol.
a, Protection of body fat.
b. Protection of body protein.
5. Effect of aleohol upon the radiation of heat from the body.
6. Alcohol as a source of heat in the body.

7 . Alcohol as a source of muscular energy.

EFFECT OF ALCOHOL UPON THE DIGESTION OF FOOD.-DIGESTIBILITY VERSUS AVAILABILITY OF NUTRIENTS.

The term digestibility as applied to food has several meanings, which are not clearly distinguished in popular usage. It commonly refers to either the ease with which a given food material is cligested, or the time required for the process, or the extent to which the material "agrees" or " disagrees" with different persons, or its effects upon bodily comfort and health. These factors depend largely upon individual peculiarities, vary widely with different persons and with the chararter of the food, and are diffientt to measure.

The term digestibility is also used to designate the quantity or proportion of the food or of each of it- different ingredients-protein, fats, carbohydrates, and mineral matters-actually digested and absorbed in the passage of the food through the digestive tract. Only this latten factor of digetibility is romsidered in these experiments. To determine what amount of each nutrient is antually digented it is necensiry to know the ruantity that is taken into the body in food and the quantity that has escaped digestion and is excreted in the feces. The latter quantity is not easily determined, howerer, because the feces contain, besides those portions of the food that have
re-i-ted the action of the dige-tive juices. other material. the so-called metaholic productwhich are mainly the re-idue of the dice-tive juices. and which are not easily eeparated from the undige-ted portion of the fond. For thi- reason it i- dittienlt tu determine the actual digentibility of food or of it- aceral ingredient-.

The aralability of the food or of the eeveral ingredient- howerer, may he more accurately determined. By availahility i here meant the quantity or proportion that can be used for the huilding and repair of tiwue and the rielding of energy. The metabolic probuct-although derired originally from the digested food. are not used for either huilding material or fuel, and hence are not available in the sense in which the word i- here employed. Ther may, therefore he included with the undige-ted re-idne of the food and the -mall quantitie- of inte-tinal epithelium and other material, which make up the rest of the feces. and the amount of arailable nutrients mar he found by -uhtracting from the total ingredient- of the food the total corre-ponding ingredient in the feces. These have often been called the digestible rather than the arailable mutrient-. but the distinction here made is quite important.

The arailathility of the ingredients a- thu- determined in u-ually expresed by the percentage of the total amount of each in the food. Thi-percentage is called the coefficient of a a ailability. In the following table. which is a summary of a more detailed table given in the Appendix, the coefficient. of arailability of the protein. fats. and carbohodrates of the ordinary diet are compared with those of the alcohol diet. as actually found in the experiments. The arerage coefticients of arailability of the nutrient of food a- found in 93 pexperiments ${ }^{2}$ with healthy men with ordinary diet under rarion condition of work and rest are appended in the table for comparison.

Kind and number oi experiments.	Coethicients of availability.			
	Prokein.	Fat.	Carbohydrates.	Enerey.
Erperimente more it rectly comparuble.				
Without alcohol, Nos. 9.11.2ri and 2- 24 and 31.32 and 34-	$\begin{aligned} \text { Fer Crat } \\ y .2 . \\ \hline \end{aligned}$	$\begin{aligned} & \text { Pront. } \\ & \quad 94.9 \end{aligned}$	Por cozt. 97.9	Per cent. 41. 8
With alcohol, ડos, 10, 12, 2, 31, $33 . .$.	43.7	44.6	97.	4-2. 1
Experimente leas dir.ity compuralde.				
Withour alcohnol, Nos. 5. and 13 and 14.	92.6	94.1	95.1	90. 3
With alcohol, Sos. ${ }^{-7}$ and 15 to 17.	95.0	44.4	97.3	41.3
Average oi other otservarions.	43.0	9.5 .0	98.10	240.3

[^4]It thus appear- that the alcohol had little appreciable effect upon the availability of the other ingredient- of the diet: the coefticient of arailability of the butrients of the ordinary food were practically the same with and withont alcohol an part of the diet. The protein appears to have been slightly more arailable when the diet contained alcohol. The differencer. e-pecially in the more comparable experiment-. are le-- than might be found with different subject- moing the same ordinary fool, or with the same subject nsing the same food at different times and under different condition:.

The conclnsion from the results of these experiment- would be to the effect that alcohol in moderate amount tended to increase very slightly the arailability of the nutrients of the diet, expecially of the protein. In riew, howerer. of the fact that there are often marked differences in the avalability of the same diet with different person- and with the same person at different

[^5]times. eren this conclusion should he held with a degree of reserve. While it is statistically ralid for these experiments. the extent to which it would be true in general experience is by no means certain.

PROPORTIONS OF ALCOHOL OXIDIZED AND UNOXIDIZED.

The difference between the amonnt of alcohol taken iato the body in food and the amount given ofl unoxidized by the kidneys, lungs, and skin is taken as the amount oxidized in the body. For the determination of the amounts not oxidized in the body quantitative examination was made of the several excretory products for the presence of alcohol. No similar examination of the feces for alcohol was practicable: but. as it has heen found in other experiments ${ }^{\text {a }}$ that no alcohol was excreted throngh this chamel. even when considerable quantities were ingested, it was here assumed that the feces would contain no appreciable amount of the alcohol taken with the food.

The alcohol eliminated by the kidners would. of course, be found in the urine; that giren ott by the lungs and skin in the "drip" water collected from the surface of the system of cooling tubes. or it might pass out of the chamber as vapor in the air current and be condensed in the " freezers." in which a large part of the water is collected from the outgoing air, or it might eren pass throngh the freezers as rapor and be ultimately absorbed in concentrated sulphuric acid in an apparatus arranged for the purpose.

The determinations of the amounts of alcohol given off from the body unoxidized in experiment No. 7 were made according to the method described by Bodländer. ${ }^{\text {b }}$ This method, however. does not give results sufficiently accurate when the amounts of alcohol are as small as were found in these experiments. In the latter experiments a modification ${ }^{c}$ of this method was used, which has been shown to give very satisfactory results in the determination of extremely small quantities of alcohol.

The urine drip water, and freezer water were distilled several times morder to separate the alcohol and other volatile and readily oxidizable organic matters and to obtain them in a more concentrated form. The amonnt of organic matter (here designated as reducing material) in the distillates was then determined by the method mentioned above. The amount of reducing material in the air current mas estimated by passing the ontgoing air through bulbs containing concentrated sulphuric acid. and determining the amount of reducing material in the acid. The total amount of reducing material thes determined in the rarions excretory products was calculated as alcohol.

Other investigators ${ }^{d}$ have fonnd evidence that such redncing materials are excreted by the hody when no alcohol was ingested. In several experiments in which alcohol did not form part of the diet. examinations of respiratory and excretory products were made the same as when alcohol was given. and reducing materials were fond to be present. ${ }^{\circ}$ The average amount found in these experiments withont alcohol was, therefore, deducted from the total amount determined in the experiments with alcohol and the difference taken as alcohol excreted, as shown below:
17rahol ingested anrl exareted moridizerl.

Alcohol ingesterl, average 13 experiments	grams.. 72.3
Reducing material in excretory prolucts:	
When alcolw] was ingesterl, arerage 13 experiments	.grams. . 1.6
When no alcohol was ingesterl, averase 6 experimen	do...- . 3
. Alrohol excreted.	.grams.. 1.3
Total alcohol metabolized	...do.... 71
Do	- per cent . . 98.2

[^6]From Table ('XXII in the Appendix it will be observed that the quatities of aleohol eliminated by the lungs, skin, and kidneys raried fiom 0.7 to 2.7 grans, and areraged 1.3 grams per daty. These pumtities correspond to a range of from 1 per cent to 3.7 per cent and an arerage of 1.9 per cent of the total amont of alcohol ingented. We consider, therefore, that in general when alcohol is taken in small doses not more than 2 per cent is given off unoxidized. and the results of the later experiments indicate that this figure is really too large. Accordingly. the coefficient of arailability of alcohol is taken as !s per cent.

Comparing this with the coefticients of avalability of protein, fat, and carhohydrates in the diet with aleohol, as given in the Table 12.1 . 257 . it appears that the coefficient of availability of atcohol in these experiments was practically the same as that of the carbohydrates and larger than those of fats and protein of ordimary food. That is to say, it was found that 2 per cent or less of the total alcohol ingested in these experiments was given off moxidized by the hangs and skin. while on the areage about \simeq per cent of the carbohydrates. 5 per cent of the fats and $\overline{7}$ per cent of the protein of the ordinary diet appeared to be exereted moxidized.

The conclusion is that in these experiments the alcohol was more completely consumed than are the nutrients of ordinary mixed diet.

METABOLISM OF THE ENERGY OF ALCOHOL.

It was stated above that the experiments with men in the respiration calorimeter had shom a rery close agreement between the income and outgo of energy in the body, and that this was regarded an practically a demonstration that the law of the conservation of energy holds in the living organism. Up to April. 1900, the results of 30 snch experiments had been olstained. These corered, all told, 93 days: they were made with 4 different subjects, under varions conditions of diet and occupation. When the figures for individual days or for individual experiments are considered, there appears to be more or less disagreement between the figures for ineome and those of outgo energy, though the differences are inside the natural range of error in such physiological experiments. When the results of all the experiments are areraged together, howerer. the differences counterhatance each other, and the daily income, 2,718 calories, is found to be practically identical with the daily outgo. 2.716 calories. This agreement is in accordance with the law of the conservation of energy, and thus confirms the helief that this law governs the metaholism of energy in the liring organism.

In 13 of the 30 experiments referred to alcohol formed a part of the diet. The results of these experiments compared with those without alcohol imply very clearly that the lat of the conserration of energy holds as well with the diet containing alcohol as with the ordinary diet. This may be seen from Tahle 13 , which epitomizes the more detailed statistics given in Table CXX in the Appendis, and compares the arerages of the results of the rest and the work experiments in which aleohol formed part of the diet with those of similar experiments withont alcohol. Both those experiment- that are strictly comparable and those less comparable, as explained on a preceduge page. are here included.

Table 13.- Wetubulism of energy. Llerages of resulfs of experiments with ordinary and with alcohol lint.

Experiment- with and without alcohol.	Energy of net income. a	Energy of outgo measured as-		
		Heat.	Aluseular work.	Total.
more dheetly comparable.				
İest erperiments.				
Without alcohol: $\mathrm{Sos} 9,24,26$, and 28	$\begin{aligned} & \text { Calorics. } \\ & 2.190 \end{aligned}$	Calorics. 2,221	Calorics.	Caluries. $2,221$
With alcohol: Sos, 10, 22, 27	2, 191	2,221		2, 22 1
Work experiments.				
Without alcohol: Sos, 11, 29 and 31, 32 and 34	3, 660	3, 451	220	3, 671
With alcohol: Nos. 12, 30, 33............	3, 690	3, 461	215	3, 676

${ }^{\text {a }}$ Estimated energy of material actually oxidized in the body.

Table 13.-Metululism of energy. Amrages of results of experiments with ordinary und with alcohol diet-Continued.

[^7]The energy of net income given in the table above represents the energy of the material actually oxidized in the body, as determined from the energy of the food, of the excretory products, and of the body material stored or lost. The energy of ontgo is that given off from the body in the form of heat and external muscular work, as measured by the apparatus. According to the law of the conservation of energy, the income and the outgo must be equal. From the comparisons given in the table above it will be seen that, whether the diet did or did not contain alcohol, the outgo was sometimes greater and sometimes less than the income, but the difference in every case was far within the range of variation to be expected in physiological experiments of such nature as these, so that the results may be considered as showing practical agreement. If we counterbalance the variations by averaging the experiments in which alcohol formed part of the diet and those without alcohol, we get the following results:

Daily income and outgo of energy with and without alcohol.

| Diet. | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

When the diet contained no alcohol, the energy of the proteids, fats, and carbohydrates burned in the body, averaging 2,717 calories per day, was practically identical with the energy given off by the body in the form of heat, or heat and (the heat equivalent of) external muscular work, averaging 2,723 calories per day. When alcohol formed part of the diet the total energy of the proteids, fats, and carbohydrates burned in the body, added to the energy of the alcohol, averaged $2 . i t f$ calories per day, and the energy given off as heat, or heat and external musenlar work, areraged 2.752 calories per day. The total kinetic energy of outgo is equal to the total potential energy of income. whether it be with ordinary diet alone, or with ordinary food and alcohol.

To thene result, there can be but one interpretation. The energy which was latent or potential in the aleohol was wholly transfomed in the body, was actually given off from the body, and was exactly recovered ass heat or heat and moscular work. Otherwise, how did the body
dispose of the energy of the alcohol, and from what other sonme did it get an exandy equal amont to replace it!

The eromblusions, therefore, are:

1. The law of the conservation of energy obtained with the alcohol diet as with the ordinary diet.
\therefore. The potential energy of the alcohol oxidized in the body wat transormed completely into kinetie energy, and appeared cither as heat, or as muscular work, or both. To this extent, at any rate, it was used like the energy of the protein, fats, and carbohydrates of the foot.

THE PROTECTION OF BODY MATERIAL BY ALCOHOL.

General comsidrutions. Previoms experiments and their explunction. The belief was formerly quite general that aleohol has a specific phamacodyamic action in retarding the metaloolism of body material, both fat and proteid. As much of the earlier experimenting implied that akohol in moderate quantities tends to " prevent wante " or " conserve the tissues," and its oxidation in the body was not understond, this effect was maturally attributed to its action as a drug. Later, as the functions of the nonnitrogenous mutrients of food came to be better understood, and the fact that alcohol is oxidized as they are in the body became fully established, the view has become common that its effect in retarding or protecting metabolism is to be explatined by a mutritive rather than a pharmacodynamic action-that, in other works, it tends, by its own oxidation, to prevent the oxidation of other materials. This latter function of alcohol, howerer, hasbeen denied on two grounds:

1. The increased cireubation of the bood throngh the peripheral capilaries and the fall of body temperatnre which follows the ingestion of alcohol have led to the theoretical inference that the energy supplied to the body by the oxidation of the alcohol is lost by the extra radiation of heat it canses, so that it can not do the work of the fats and carhohydrates in protecting food or body material from consumption. This ground, howerer, is hatrdy tenable since, as shown berond, the fall of hody temperature with ordinary doses is rery small, and the amome of extra heat radiated is only a fraction of that supplied by the alcohol.
\because. The other ground for doubting the power of alcohol to proteet body material fiom consumption is that of direct experiment. That it may protect fat is generally conceded, but there are a number of reliahle experiments on record in which the replacement of the earbohydrates and fats of a ration by alcohol has been followed by an inereased elimination of nitrogen. This has been explained by the assumption that alcohol tends to increase rather than diminish the catabolism of protein in the body. On the other hand there is a considerable amount of experimental evidence to the effect that alcohol may and at times does serve as a protector of protein.

As explained in a review of the exprimenting upon this subject ${ }^{\text {a }}$ it seems to the that the conflicting results may be explained hy the hypothesis of two opposing tendencies of alcohol, the one phamatodynamic and the other nutritive. This riew makes the former a speeifie, and sometimes, if not always, temporary action of alcohol, by which it increases the catabolism of protein, while the latter aetion is that resulting from its oxidation. According as the latter or the former action predominates the alcohol may protect protein or fail to do so. In faror of this theory is the fact that it explains and harmonizes the results of previons experimenting and those of our own experiments also.

In considering the efheiency of alcohol for the protection of borly fat and protein it is important to distinguish between two questions. Does alcohol protect these materials at all? Is it equal in protecting power to the isodyamic amonnt of fats or of carbohydrates, or of a mixture of the two! The comparisons in these experiments are between nearly isodynamie amounts of alcohol and the other ingredients.

[^8]The eridence of the experiments here reported.-Although the present experiments were not planned for the study of these particular questions, they throw some light upon them. The details. in their bearing upon the protection or nonprotection of body protein and fat. are brought together in Table CXX in the appendix, and the average results are summarized in Table 14 herewith. which shows the amonnts of arailable protein and energy of the diet and the amounts of protein and fat gained or lost hy the body in the experiments with and withont alcohol.

Table 14.-Comparison of gains and losses of protein and fat in experiments with and without alcohol.

[^9]The grouping in Table $1+$ is on the same havis as in the corresponding table: in the preceding pages and in the Appendix.

When the fuel value of the diet is in excess of the needs of the body, the latter often, though not always, increases its store of material. Sometimes this increase is in the form of protein, sometimes fat, and sometimes both protein and fat. When the body requires energy in excess of that supplied by the food. it will draw upon its previously accumulated store of fat or protein, or both, for fuel. Along with the gains and losses of protein and fat are changes in the carbohydrater (glycogen), hat the total quantity of these smbstances in the tisucs is relatively small. The present methods of experimenting do not suftice for accurate measmement of the changes of glycogen. and it is commonly left out of account in discussions such as that in which we are now engaged.

PROTECTION OF BODY FAT

The figures for the individual experiments in Table CXX of the Appendix show in some cases a larger gain or smaller loss of fat without alcohol than with it; in other cases the results are reversed. When, however. the experiments are grouped together and the averages with and without alcohol are compared, it is clear that, except where the differences in fuel value of the diet were considerable, the differences of fat balmee are bardly large enough to be of consequence. Taking the experiments altogether, the figures of the tables, and especially those of Table 14 , show slight gains in fat both with and without alcohol, but the gain is slightly larger with the alcohol. Thus in Group I, in which the experiments are more directly comparable, the arerage gain in 9 experiments without alcohol is 1.1 grams, in 6 with alcohol 2.4 grams, making a difference in favor of the alcohol of 1.3 grams. In the less directly comparable experiments there is an average difference of 8.5 grams, and in Group IIl with all the experiments there is an arerage of 3.9 grams in favor of the alcohol. It is also to be noted that in general the total energy of the rations with the alcohol average somewhat larger than in those without alcohol. The figures for differences just cited are brought out more clearly in Table 17, beyond, in the discussion of the utilization of energy in the experiments with and withont alcohol. The comparison as there made in detail shows on the whole an advantage of the ordinary diet over that with alcohol, though the difference is very small, indeed.

A direct indication of the fat-protecting porer of alcohol is found in the series of experiments with E. O., Nos. 22, 23, 24 . These were practically three successive periods of 3 dars each. In all there was a basal ration with 116 grams available protein and 2.240 calories of available energy. To this ration was added-in the first experiment, alcohol: in the second. nothing; in the third, sugar. The alcohol and sugar each furnished about 500 calories of energy. With the alcohol there was a daily gain of 63 grams of fat; with the basal ration this was reduced to 9 grams: with the sugar it rose again to 60 grams per day. With the sugar there was a gain of 1.7 and with the alcohol a gain of 1.4 grams, while with the basal ration alone there was a loss of 1.6 grams of protein. Learing this slight gain or loss of protein out of account. the net gain of fat with the alcohol above that in the basal ration was 54 grams, which wonld make very nearly 500 calories. The net gain of fat with sugur was 51 grams. In this particular case, therefore. with isodynamic quantities of sugar and alcohol. the gain of fat was practically the same with both.

An even more striking illustration of the fat-protecting power of alcohol is fomd in experiments Nos. 1 s-21. with A. W. S. as summarized on page 329 berond. When alcohol was added to a basal ration of ordinary food, the body gained fat at the rate of $21-35$ grams per day ; but when the giving of alcohol was stopped and the body had only the basal ration, it lost 25 grams of fat per day.

A clearer demonstration of the power of alcohol to protect fat from comsmption would he hardly possible than that given in the experiments with E. O. and A. W. S., just eited.

We thas have two kinds of tests of the power of alcohol as compared with that of isodynamic amounts of carbohydrates and fats of the food for the protection of body fat. In every individual case the protecting power of the alcohol is manifest. In some instances it is slightly inferior and in others it is slightly superior in this respect, and on the arerage it is just about equal to the nutrients which it replaced.

So fur an we are aware these are the only experiments in which the power of alcohol to pro－ tect fats has heen determined hy direct y⿴囗十力 ment－on record which have seemed to indicate that alcohol has this power，we have found none which seem to us to imply the opposite．Fortmately this question，which is one of no little importance，thus seems to be so clearly settled as to require no further discussion．Such is not the case with the similar question regarding the power of alcohol to protect protein from consumption．

PROTECTION OF BODY PROTEIN．

A．regards the protection of body protein by alcohol，the results of the experiments are rariable．but on the whole the catabolism of protein，as measured by the amount of nitrogen excreted by the kidneys．was slightly larger in the experiments with than in those without alcohol．In discussing the effeet of aleohol upon protein metabolism，we most consider the variations from day to day in the amount of nitrogen excreted in the urine when alcohol forms a part of the diet．and compare them with the variations in similar experiments in which alcohol is not included in the diet．The data of the daily eliminations of nitrogen by the different suljects in experiments with and withont alcohol are summarized in Table CXXIII in the Appendix．

What especially concerns us here is the influence of the substitution of alcohol for a portion of the ordinary food upon the gain or loss of body protein．As this seems to depend largely upon the individual．it will be well to discnss the experiments with the three subjects separately．

Erperiments with E．O．With this subject there was a marked tendency to exerete more nitrogen in the mine on either the day before or the day after he entered the respiration chamber． This tendency was as noticeable in the experiments without as in those with alcohol．This varia－ tion in nitrogen excretion is independent of either the character of the food or the activity of the subject，and appears to be due to a peychic canse that is little understood．Since this rariation was often much larger than any which conld be attributed to the alcohol，we hesitate to assign to the latter any definite and uniform effect upon the metabolism of nitrogen．

It is to be noted that there is no experiment with E．O．in which an alcohol diet immediately preceded or followed a diet furnishing the same amount of energy from ordinary food materials without alcohol．There are however，a number of separate experiments which may be compared， as is done in Table 15.

Table 15．－Experiments mith E．U．－Gicins and losses of body protein chud fat with and without cleohol．

Table 15.-Experiments with $2:$ U.-Cintins chut losses of horly protein and fiat with und without alcohol-Contimued.

Fxperiments,	Total number of days.	Arerage put day.			
		In available focki.		(iain (+) or loss - -	
		Protein.	Encrgy:	Protein.	Fat.
1.EKW WIRECTLS COMP.ARABLE.					
Frist erberiments.					
Without alcohol, Nos. $13,14^{\text {n }}$.	7	frame. 99	Culorios. $2,294$	Grams. -12.0	firame. -25.7
With akcohol, No. T.........	4	99	2, 230	-12.0	-14.3
M'ERA(iE OF ALL ABUVVE.					
Without alcohol.	18	109	2), 760	-4.2	+16.0
With alcohol....	15	111	2.762	-4.6	+ 4.4

${ }^{2}$ Yos. 13 and 14 averaged as one experiment.
In the less directly comparable experiments Nos. 13 and 14 are grouped together as one. since the average quantities of protein and energy are the sume as in No. 7. The details, however, show that while the puantities of energy in the rations were the same in botb. No. 18 had 110 and No. 14 only 59 grams of protein. Nerertheles the results as regards gain or loss of body material were amost identieal. In each there was a loss of 12 grams of protein and in No. 13 there was a gain of 27 grams and in No. 14 a gain of 24 grams of fat. The experiments were to days apart. We lay especial stress upon this circumstance, beeanse it illustrates the futility of drawing final conelusions from a singlo experiment. In each of these cases the metabolism experiment was preceded by a period of 4 days with similar diet while the subject was ontside the calorimeter, but in neither case was nitrogen equilibrium ohtained. Neither one of these experiments, therefore, could be taken as a hasis for conclusion as to the quantity of protein required for either nitrogen equilibrium or constant elimination of nitrogen. A special reason for citing them here with No. $\overline{6}$ is that they were made with the same subject as the other experiments of the table.

The chief reliance is to be placed upon the more directly comparable experiments. In those in which the subjeet was at rest, the alcohol ration furnished 2 grams more protein and 16 less calories of energy per day than the nonalcohol ration. There was a larger loss of protein by 1.8 grams and a larger gain of fat by 3 grams with the alcohol. These differences are all rery small, but in so far as they go they imply that the alcohol was somewhat less effienent as a protector of protein than the fats and carhohydrates which it replaced. In the work experiments the alcohol ration supplied 3 grams more of protein and 104 calories more of energy than the other. With both there was a loss of protein, the amont being 3 grams per day withont and 1 gram per day with aleohol; but since the aleohol ration furnished 3 grams of protein more than the other, there remains a deficit of 1 gram of protein per day against the alcohol ration as compared with that without alcohol, and that notwithstanding the larger fuel ralue of the diet. Here again the alcohol ration is slightly inferior in protein protecting power.

Taking the rest and work experiments together. the aleohol rations. with an arerage of 3 grams of protein and 24 calories of energy per day more than the nomaleohol ration, show a greater loss of protein by 0.6 gram per day. On the other hand there is a slightly larger arerage gain of fat with the alcohol.

If we reckon the less comparable experiments in the general arerage, we have 111 gram , of protein with aleohol as against 104 grams withont it. While the quantities of energy are the same in both rations. The average loss of protein is $1 . \pm$ gram greater and the gain of fat 5.6 grams less with the alcohol: but of course much less stress is to be laid upon the less comparable experiments.

On the whole it is clear that in these experiments with this subject the alcohol was not as efficient as isodynamic quantities of fats and earbohydrates in protecting protein. Notwithstanding
the energy of the alcohol was actually larger than that of the fats and carbohydrates which it replaced. it did not equal them in protecting power. The difference is the more striking because of the slightly larger alverage quantities of protein in the alcohol rations. On the other hand, the differences between the amonnts of protein and energy in the alcohol as compared with the nonalcohol experiments are so slight as to imply only a slight inferiority of the alcohol in the protection of protein.

While the alcobol was not isodynamically equal to the carbohydrates and fats in protecting power, it would be going very far to deny that the experiments imply a positive protecting action. Not only were the differences in favor of the protecting porter of the carbohydrates and fats as compared with the alcohol very suall, but the quatity of energy supplied by the alcohol was large. To claim that the alcohol has no protecting power would be to assume that the same redaction of fats and carbohydrates in the rations without any replacement by alcohol would have resulted in no greater differences in protein protection. This is in the highest degree improbable.

In this connection the results of experiments Nos. $22,23,2 \pm$ above referred to are worthy of consideration. With the normal ration, plus alcohol, there was a gain of 1.4 grams of protein and 63 grams of fat per day: but when, in the period immediately following, the alcohol was removed, there mas a loss of 1.6 grams of protein and a gain of only 9 grams of fat.

Erperiments with A. W. S.-With this subject we have but one series of rest experiments. This consisted of a preliminary period of 4 days, followed by four experimental periods, during which the subject was in the respiration chamber. Throughout the preliminary and experimental periods there was a uniform basal ration of ordinary food, supplying about 90 grams of protein and 2.040 calories of energy. To this was added, in the preliminary period of t days, commercial alcohol, furnishing about 500 calories of energy. The nitrogen in the urine during the successive days was $12.2,16,19,16 . t$ grams; that is to say, there was a marked increase of protein catabolism during the whole period. The first three experiments proper were of 2 days, each. In the first of these periods commercial alcohol, in the second whisky, and in the third brandy was added to the hasal rations, the quantities being sufficient to furnish the same amount, about 200 calories, of energr. The daily quantities of nitrogen in the urine were 17.t, 15.t, $14 . \overline{7}, 14.2,13.8$, and 14.4 grams; that is to say, the rise in nitrogen excretion continued through the first day of the first period; thereafter it fell. During the fourth period of 3 days the basal ration was given without the alcohol. The nitrogen excretion was $14.5,16.2,15.4$ grams, thus showing an increase again. The natural inference is that with this subject, who had always been an abstainer, the rise in nitrogen excretion at first was due to the alcohol. The very erident fall after the fifth day implies that the action of alcohol in increasing the nitrogen was transitory, and that it had passed away at the end of the third period. The increase of nitrogen exeretion in the fourth period was apparently due to the reduction of the ration by the removal of the alcohol.

The average gains and losses of protein and fat for the separate periods may be tabulated as follows:

Periokl.	Days.	Alcohol added to basal ration.	Gain (+) or loss (-) grams per day,	
First	2	Commercial alcoho?	Protcin. -12	Fat. $+25$
Second	2	Whisky .-..........	-0	+35
Third	2	Prandy.	+2	+21
Fourth	3	None...	-3	-25

We thus have a gradual change from a loss of nitrogen to equilibrium and positive gain with the alcohol, and on its removal a positive loss. Writh the fat there is a coustant gain with the alcohol and marked loes on its removal.

While it would be unwise to gencralize from a single serics of experiments, the indications here point clearly toward three conclusions: (1) The alcohol at first caused an increase of
nitrogen metabolism and loss of body protein, but this effect was temporary: (2) thereafter the alcohol protected hody protein; (3) the alcohol protected fat throughoit.

Eirjuriments with I. F. S.-With the third subject there was opportunity to ohserve the immediate eflect produced upon nitrogen metabolism by the substitution of aleobol for a part of the ordinary nutrients of the diet. Three series of experiments were made. Earh included three periods of 3 days each. In each series the subject recrived the same banal ration throughout, but in addition thereto enough of either butter, sugar, or alcohol to furnish about 500 calories. In the first series the subject was at rest, and the order of addition was butter, aleohol, sugar. In the second series the subject was at work and received a larger diet, the order being sugar, alcohol. hutter. The third series was similar in all respects to the seeond exeept that the order was hutter, alcohol, sugar.

These experiments were thus better adapted than any of those previously discussed to show the immediate effect of the substitntion of alcohol for other nutrients in the diet, and in each ease it will he seen that this substitution resulted in a loss (or an increased loss) of hody protein, whieh loss continued through the 3 days of the alcohol period. The subject was unused to alcoholic beverages, and from what has already been said such a loss of protein during the first few days of the aleohol diet was to be expected from the results of other similar experiments. Whether this loss would have ceased on continuing the alcohol diet, as seems to have been the case with A. W. S., the experiments do not show.

Experiments with J. F. si-Giains and losses of lorly protein and fat with and without alcohol.

Thus all of the experiments with this subject would indicate elearly that for periods of 3 days the alcohol was inferior to either fat or earbohydrates as a protector of protein. It should be stated, also, that the loss of body protein with the alcohol was greater than the figures in the table would indieate, for the nitrogen elimination of the period preceding the alcohol was in each case slightly inereased by the entrance of the subject into the respiration chamber, while that of the period following the alcohol is increased hy the lag in the exeretion of the extra nitrogen metabolized under the influence of the aleohol. The lage would, of course, likewise prerent the effect of the alconol from becoming fully apparent in the first day of the alcohol period. Hence a better idea of the actual effect of the alcohol would probably be obtained by omitting from consideration the first day of each period. The average elimination of nitrogen thus becomes, in the fore periods, 15.5 grams, in the alcohol periods, 17.1 grams, and in the after period, 15.5 grams per day, showing a difference in favor of the ordinary nutrients of 1.6 grams of nitrogen, or 10 grams of protein instead of 6.2 grams, as shown in the preceding table.

It is also noticeable that the loss of body protein under the influence of alcohol was larger with this subject when at work than when at rest. The difference is not great and may be
simply accidental. It might. however be interpreted as indicating that the subject worked to better advantage on the ordinary diet than on the diet of which a part was alcohol. This would accord with the conclusions drawn by Chanean from experiments on dogs ${ }^{a}$ and by Parkes from extended observations on marching soldiers and workingmen."

Summary- - In interpreting these experiments tro things are to be considered. One is that the differences between the amounts of nitrogen excreted with and without alcohol are generally very small. The other is that there is good ground for the belief that with persons little accustomed to the use of alcohol it may have a tendency to increase nitrogen metabolism. Which may counteract, to greater or less extent, the tendency to protect protein, though, with some persons at least, this action appears to be temporar?. The results with the individual subjects may be briefly recapitulated as follows:

With E. O., who was accustomed to the use of moderate quantities of alcoholic beverages. the protein protecting power of the alcohol was apparent, but seemed to be somewhat inferior to that of fats and carbohydrates.

With A. W. S., an abstainer, there was an increase of nitrogen excretion during the first days after the beginning of the alcohol diet, with a resulting loss of body protein, but this action ceased after 5 or 6 days, and thereafter the alcohol apparently protected protein. though the experiments do not show how its efficiency in this respect compared with that of the carbohydrates and fats.

With J. F. S.. who was also an abstainer, there was, in each case, an increase of nitrogen excretion and loss of body protein during the 3 -day periods in which the alcohol replaced fat or sugar. There was thus a marked inferiority of alcohol in protecting potrer. The result is similar to that observed with A. W. S. during the first days with alcohol, but the experiments do not show what the effect of continuing the alcohol diet would have been, and they are, therefore, not decisive.

Taking the results of all the experiments together, it may be said that-

1. They offer no evidence to imply that alcohol can not protect protein. thongh they imply in some cases it may, at least for a time, fail to do so.
2. On the other hand, they give rery marked indications of its protein protecting power.
3. They imply clearly that in this respect it was in some cases nearly or quite equal and in others decidedly inferior to the isodynamic amounts of carbohydrates and fats which it replaced.

Other erperiments upon the protection of protein by alcolol. - It is clear that the experiments above described are not conclusive regarding the action of alcohol in protecting protein from consumption. They were not planned for the study of this subject. To make the results decisive the alcohol periods should be long enough to eliminate the more or less temporary action of alcohol as a drug: the a vailable energy of the ration of the nonalcohol periods should equal in some cases the total arailable energy of the alcohol ration. while in other cases it should equal only that of the ordinary food of the alconol ration, and finally, the experiments should be repeated with different persons and under different conditions. These facts we did not fully understand when the experiments were begun, nor wonld it have been practicable with the means at our disposal to make such experiments with men in the respiration calorimeter as would be needed tor the comprehensive study of the question. Experiments of from twenty to thirty consecutive days semm necessary for the most satisfactory results. For a man to spend so long a time in the respiation chamber of our apparatus would be, to say the least, very tedions, and the cost of such rxperiments, in labor and money, would have exceeded our available resources. Fortuntely, the result- ohtained by a number of other investigators. while our experiments were being madr and siner have done much to clarify the sitnation as regards the effects of alcohol upon protein metabolism.
(impt. rentl. Acad. A. Sc. Par. 132, 14, 655 and 110.
l'roc: Roy. Sor: 20 ($1871-i 2$), 402 , and monograph "On the issue of a spirit ration during the Ashantee canpagn, 1874 , "ele. London, 1875.

Referting to the abowe-maned meriew- of the -mbject, ${ }^{\text {a }}$ and "-pectially th that of Rowemam for detail and reference to the original memoir- it will -uthice here to smmarize the results. It appear- that:

1. A large number of arly experiment- have bronght conflicting result-. some implying the protection of protein he aleohol: athers the opposite. Of the former class those of Mogilianski are of especial interost. Of the latter those of Mimra. made under the direction of Van Noorden, and those of schmidt and of Schosneseitfen. under the direction of Rosemam, have been much ghoted. The general plan of experimenting followed ly these three investigators consisted in giving the suloject an ordinary diet for a time and oberving the nitrogen halance. Thereafter: during a periol of fonl to six dars. aleohol was used. In Miura's ease the alcohol wa-sub-tituted for carbohydrates in a diet which had been adeguate for maintaining nitrogen equilibrimm: hut with the alcohol the excretion of nitrogen increased and the body lost nitrogen. With schmidat. alcohol was added to a diet with which nitrogen equilibrium had heen maintained: the alcohol did not diminish the exretion of the nitrogen and the equilibrime continued. With schocneseiffen. alcohol wat added to an inadequate diet with which there was loss of nitrogen: the low contimed with the alcohol.

There experiment have fumished the chief basiv for the contention that alcohol can not protect protein. In Xiums case the increase of nitrogen excretion with the alcohol was as large, and. indeed, in one in-tance very slightly larger, than when the carhohydrate were removed and no alcohol was used in their place. Minra, and after him Rosemam and others. inferred that alcohol was mahle to protect protein from disintegration, and went so fir as to ascribe to it a positive disintegrating action and to apply to it the term "proteid poivon."
2. Neumann, in 1s:4. made experiment on a similar plan, save that the alcohol period was continued for sixteen days during which part of the fat of the nomal diet was replaced by alcohol. He found that during the first four days of the alcohol period there wan no evidence of protein protection: the nitrogen excretion was increased and was as large as daring another period when the ordinary ration was reduced and no alcohol wan ued in it- place. Thereafter the nitrogen excretion diminished, and dming the remaining twelse day: of the alcohol period it Wan the same as with the normal ration. When the aleohol was remored and nothing subatituted the exeretion of nitrogen inereased as before. Nemman concludes that in his own case the failure of the alcohol to protect protein at first was probably due to a specific though temporary action by which it tended to increase the disintegration of protein so that the temdency to protein protection was comteracted. Later this special action disappeared and the protecting action came into full play.

Nemman* - interpretation of his experiments was questioned by Rosemann. who has heen a mo-t rigorons opponent of the theory that alcohol can protect protein, and a keen critic of the experiment, which have seemed to faror this riew. He maintained the disintegrating. but questioned the protecting action of the alcohol, alleging defects in the plans of Nemmam's experiments. Semmann. Withont replying. repeated his experiment- in such ways as to meet Rosemanns objections. and found conclusise evidence of the protecting power of the alcohol. these later results being publi-hed early in 1900. In 1901, Chotzen, working under the direction of Rosenfeld, and in $1:+11$. Clopatt, each published result- of inquirie- which agreed with Nemmanns. Meantime Rosemann made several series of experiment- of his own, the outcome of which, to his surprise. clearly demonstrated the protecting porrer of alcohol, and contimed the views maintained by Semman. He has taken the pains to prepare an extensive smmary of the experimenting in this field. ${ }^{\text {b }}$ in which he assent- fully to the interpretation placed ly Neumamn. Rosenfeld. Chotzen. and Clopatt upon their experiments: believes that the protection of protein is shown by other experiments. as those of Dlogilian*ki: considers it fully demonstrated by hiv own experiments: and

[^10]comes to the definite conclusion that alcohol has a twofold influence upon the metabolism of protein, as previonsly suggested by Neumann. He is inclined to believe, with Neumann, that the disintegrating action is most apt to occur with persons little accustomed to the use of alcohol, and is of short duration, while in its action as a protector of protein it is analogons to the carbohydrates and fats, its influence being due to the utilization of its energy by the body. According to this riew, the results obtained by Miura and others, in whose experiments the alcohol periods continued only from four to six days, are explained by the disintegrating action of the alcohol, which counteracted the protecting action, so that the resultant effeet was an apparent failure of the alcohol to protect protein. With Neumann the alcohol periods continued after this disintegrating action ceased, and showed the more permanent protecting influence. The fact that in a number of the experiments the protecting influence was manifested from the start is explained by the absence or only partial action of the disintegrating tendency.

We hare, then, a clearly defined theory regarding the influence of alcohol upon proteid metabolisin. This theory assumes two different kinds of action of alcohol. In the one it is a direct protector of protein, and serves the body as food; in the other it tends to disintegrate protein, and acts as a drug. The belief in the first action follows as a corollary from the oxidation of alcohol in the body and the transformation of its energy. In undergoing these changes alcohol is similar to sugar, starch, and fat, which, by their own oxidation and consequent supply of energy to the body are able to protect the constituents of the food and of the body, including protein, from oxidation. That alcohol may and does protect protein is abundantly demonstrated by the experiments above cited.

The disintegrating influence of alcohol upon protein is less definitely proven. The theory is little more than a convenient hypothesis for explaining the failure of alcohol, under some circumstances, to protect protein. It is the only satisfactory hypothesis which has thus far been suggested. It is all the easier to accept because of the considerations that the breaking up of protein compounds in the body seems to be influenced, in some unexplained way or ways, by the nervous system, and this latter in turn is influenced byalcohol. In our own experiments, for instance, the excretion of nitrogen is apparently affected at times by the mental condition of the subject.

In large enough doses alcohol has a paralyzing effect, and may thus reduce general metabolism to a minimum and cause coma or even death. There is no proof that it can not, on the other hand. increase proteid metabolism.

The positive proof of the disintegrating action of alcohol upon protein is limited in amount. The experimental demonstration must be sought in cases in which more protein is broken down with alcohol than without it, the ration of ordinary food being otherwise the same in both cases. We have been able to find only three cases on record in which the amount of protein thus broken down with alcohol apparently exceeded by more than 0.1 gram of nitrogen per day the amount broken down withont alcohol. They are discnssed in the review above referred to. The first was in one of Niura's experiments, in which the excess with alcohol anounted to 0.5 gram of nitrogen (3.2 grams of protein) per day during an alcohol period of four days. The second was in one of Nemmamn's experiments, in which the excess during the first four days of an alcohol period of ten days was 0.9 gram of nitrogen per day. During the remaining six days of the same period the nitrogen excretion was less by 1.5 grams per day than in the corresponding period without alcohol. The third was in an experiment by Clopatt. During the first six days of an alcohol period of twelve days the nitrogen excretion exceeded that of a corresponding period without alcohol by 2 grams per day. During the remaining six days of the same alcohol period the nitrogen excretion was less by 1.4 grams per day than it was without alcohol.

It seems to the writers that in view of the unavoidable irregularities in the nitrogen balance in such experimenting these data are insufficient to demonstrate the disintegrating action of alcohol, but. taken in connection with the need of an explanation for the oceasional failure of alcohol to protect protein, they make the theory plausible.

Sources of mevtainty in this hind of experimenting. - One point wnich has hardly receired the attention it deserves in discussions of this kind is the uncertatinty of the nitrogen balance in any given case as a measure of the atual intluence of a given condition upon nitrogen metabolism. This has been emphasized elsewhere in the present memoir (see pp. 393 and 394). Differences which look large in a table of figures are often far inside the unavoidable variations in actual experimenting.

Even when the differences are significant the interpretation may be erroneous. A striking illustration of the danger of such error is found in the current discussion of the question we are now considering. For a number of years past writers upon this sulject have insisted most positively that alcohol, instead of being a protector of protein, is a protein poison. This theory is based almost wholly upon the experiments of Miura, Schmidt, and Schoeneseiffen. The experiments of Neumann, Rosenfeld-Chotzen, Clopatt, and Rosemann, not to speak of others, including our own, have shown that this theory was wrong and have given ns a very plausible hrpothesis. to explain why it was wrong.

We can not insist too strongly upon the danger of drawing positive conclusions from figures for nitrogen balance as a measure of protein protection by either alcohol or sugar or starch or fat. Certainty comes ouly with careful planning and execution and manifold repetition of experiments.

Incidentally, it is to be noted that the excretion of nitrogen in the urine is not necessarily an exact measure of the amount of proteid broken down in short periods, since the time between the disintegration of the protein and the appearance of the nitrogen in the wrine, the so-ealled nitrogen lag, varies widely. The longer the experimental period the less the eror from this souree.

Finally, there is the unsettled question as to how much of the protein metabolized is that of food and how mueh comes from organized tissuc.

Final conclusions regarding the inthence of alcoliol upon protein metalmism. - The experiments and considerations above cited seem to us to warrant the following conelusions:

1. The power of alcohol to protect the protein of food or body tissue, or both, from consumption is elearly demonstrated. Its action in this respect appears to he similar to that of the carbohydrates and fats; that is to say, in its oxidation it yiclds cnergy needed by the body, and thes sares otber substances from oxidation. In this way aleohol serves the body an food. Just how moderate quantities of alcohol compare with isodynamic amounts of sugar, starch, and fat in the power to protect protein from catabolism is not yet settled. Apparently it is in some cases equal, in others inferior, to these substances. It is by no means certain that the fats and carbohydrates are always equal to each other in this power.
2. Alcohol appears also to exert at times a special action as a drug. In large quantities it is positively toxie, and may retard or even prevent metabolism in general and proteid metaholism in particular. In small doses it seems at times to have an opposite influence, tending to inerease the disintegration of protein. This action, though not conclusirely demonstrated, is rery probable. It otlers a satisfactory explanation for the oceasional failure of alcohol to protect protein, the assumption heing that the two tendencies counteract each other. The only justification for ealling alcohol a proteid poison is found in this disintegrating tendener. This pharmacodynamic action of alcohol appears to he temporary and most apt to oecur with people little aceustomed to its use. The circumstances under whieh such action occurs can not now be fully defined.

Intuence of coffice upon protein metclontism in these experiments. - In some of these experiments alcohol was administered with coffee, in others with water. It might be thought that the presence of the coffee would interfere with the action of the alcohol. ${ }^{\text {a }}$ The figures give no support for this view, as is shown in the following tabular statement.
${ }^{\text {a }}$ See Woolbury and Egbert, A Physiologic Consideration of the Food Value of Alcohol, Jour. Am. Med. Assc., Mar. 31, 1900.
[Quantities per day.]

Kind and number oi experiments.	Days.	Sitrogen.			
		In food.	In feces,	In urine.	Gain (+) or los: to body.
I. With coffee:	1314	$\begin{array}{r} \text { Grams. } \\ 18.6 \\ 18.6 \end{array}$	$\begin{aligned} & \text { Grams. } \\ & 1.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { Grams } \\ & 1 \mathrm{~S} . \frac{2}{2} \\ & 17.5 \end{aligned}$	frams. -0.8 -0.4
- rerage + experiments with alcohol [$10,12,18,22]$					
- rerage 4 experiments without alcohol [9, 11, 21, 24]					
Increase (-) or decrease (-) with alcohol		0	-0.3	+0.7	-0.4
Without coifee:					
trerace 5 experiments with alcohol [(19, 20), 2̄, 30, 33] - rerage 7 experiments without alcohol [21, (26, 28), (29, 31), (32, 34)]	13	15.8	1.0	16.1	-1.3
	21	15.9	1.0	15.7	-0.8
Increase (+) or decrease (-) with alcohol		-0.1	0	$+0.4$	$\therefore 0.5$
Increase (-) or decrease (-) in presence of coff		+0.1	-0.3	+0.3	+0.1
III. Direct conpparison, alcohol with and without coffee:					
Experiments 15, 17, 18, alcohol given with coffee.	6	16.5	0.9	16.0	-0.4
Experiments 16, 19, 20, alcohol given without coffee	6	16.5	1.0	14.9	+0.6
Increase $\left(\frac{+}{+}\right.$) or decrease $(-)$ in presence of coffee...........		0	-0.1	+1.1	-1.0

This table comprises all of the experiments that are directly comparable. The experiments in which the alcohol was given with coffee are averaged together and compared with the corresponding nonalcohol experiments, and the figures in the third line of eategory I show the effects of alcohol in presence of coflee. Under II a similar comparison is made of the experiments in which no coffee was given, the third line of figures here showing the effects of alcohol when taken alone. By subtracting the third line of figures under II from the corresponding figures under I we obtain ralues which may be taken as showing the influence of the coffee. A more direct comparison of results with and without coffee is given under IIl. but the number of experiments compared is necessarily smaller, and therefore individual variations have relatively much greater weight. While the differences which could be attributed to the coffee are prohahly within the limits of experimental error, it would seem that if there is any effeet it is to inerease rather than to retard proteid metabolism.

EFFECT OF ALCOHOL UPON THE RADIATION OF HEAT FROM THE BODY.

A current theory maintains that althongh alcohol supplies heat to the body it also increases the radiation of heat from the hody, so that much or all the energy it supplies is wasted.

This theory is hased upon two kinds of evidence, which are well attested and make it rery plausible. One is the distension of the blood ressels which cause the flush of the skin when alcohol is taken. The other is the lowering of the temperatme of the body after the ingestion of alcohol. which is shown by many of experiments and is explained by the loss of heat.

Some writers even go so far as to clam that the extra heat radiation due to the distension of the peripheral ressels is greater than the heat supply from the oxidation of the alcohol. According to this riew, alcohol. instead of being a source of energy, is a cause of its loss to the hody.

The difliculty with the theory is the exaggeration of the influence of small quantities of alcohol in increasing heat radiation. While the temperature of the body has been found to fall considcrably after the ingention of large domes of alcohol, and especially under exposure to great cold, the eflect of ordinary doses i.s slight and often impereptible.

In the experiments here described the determinations of borly temperature were made with an ordinary clinical thermometer in the mouth and axilla, as elsewhere stated. This method.
whith is the on ordimarily followed, dons not give renult as acrarate as are to be desired. In some of the earlier experiments, especially with E. O. the whervations are of doubtul value. Steps have ben taken in this laboratory to dovise a thermometer and method of ohservation Which will show more aceurately the variatoms of intemal temprature of the body. ${ }^{\text {a }}$ Memwhile, as may be seen from the detaled figures, it is flear that the olservations do not imply that the borlily tomprotures with and without alcohol were greatly diflerent. This agrees with the resulte of other observations. b

The alcohol used in these experiments was equivalent to about \boldsymbol{T}^{2} grams of absolute alcohol per day taken in 6 doses. This is about the amont contaned in an ordinary bottle of wine with 10 per cent alewhol or 3 or \pm glases (6 or 8 ounces) of whisky.

If we use our own observations and the others junt referred to ats a basis, it would seem that the fill of body temperature produced by such amomets of alcohol might ordinarily auge from nothing to one-half of a degree centigrade. The heat which the borly of an average man would have to lose in order to reduce the temperature one-half of a degree might be roughly calculated as follows:

We may take the weight of the body of the aremge man at 148 poundr, or 67 kilon. The specitic heat of the body is not exactly known, but may be estimated at 0.83 . On this base a fall of temperature of one-half of a degree centigrade wonld correspond to $\frac{1}{2}(67 \times 15.83)$, or about 28 calories. Of the 72 grams of acohol, 18 or 99 per cent, or between 7 and 71 grams, would be burned in the body, and would yield at 7.1 calories per gram about 5 mor whes of heat. By this estimate, if the 62 grams of alcohol were taken in one dose and cansed a lowering of the body temperature by one-half of a degree. the 28 calories of heat wasted in the extra radiation due to the alcohol would be one-eighteenth the amount supplied by its combustion.

This method of calculating the amount of heat which the body must lose in order to produce a given fall of temperature is hardly correct. It wouh be so if we had to do only with a fixed amount of heat at the ontset and a fixed amount of loss. But, as a matter of fact, the hody is constantly gaining heat from the oxidation of material from within and constantly losing not only by outward radiation, but in other ways, as in the exhalation of air and water, rapor in respiration, in the excretions of the kidneys and intestine, and in the evaporation of water from the skin. The actual temperature depends upon the income and outgo of heat. The income depends upon the material oxidized in the body. The ontgo is regulated to a greater or less extent by processes which are not fully understood, but in which the nervous system is the important ageney.

Erpmimental inquiries.-Meanwhile we may consider the experimental evidence hearing directly upon the question of the radiation of heat with and without alcohol.

In a series of experiments by Reichert with dogs the effect of alcohol on the radiation of heat was tested. ${ }^{\circ}$ The experimental periods were however, only 5 or $t ;$ hours each, and there wans no complete comparison of the effects of different diets. The rate of heat radiation and the change of body temperature were carefully ohserved. The results implied a probable but at most very small increase of heat radiation as the result of administering alcohol.

[^11]The experiments with men in the respiration calorimeter here deseribed give extended data regarding both the consumption of fuel and the radiation of heat. The details are summarized in Table CXX in the appendix. The final outcome is simple and may be illustrated by two cases, (iroups A and D. In each there were two experiments, practically alike, save that one was with ordinary diet and the other with a diet in which part of the fats and carbohydrates were replaced by alcohol as above described. In Group A the subject was at rest, i. e., doing no external muscular work. The potential energy of the material burned in the body and the amounts of heat giren off in calories were practically the same, as is shown by the figures herewith. The differences in the results without and with alcohol are entirely within the limits of ordinary rariation:

Compurison of energy of materitl metabolized and heat given off per duy in rest experiments with and without alcohol.

Diet.	Energy of material burned.	Energy given off by the body as heat.
Without alcohol, experiment No. 9.. With alcohol, experiment No. 10.....	Calories. $\begin{aligned} & 2,277 \\ & 2,268 \end{aligned}$	Calories. $\begin{aligned} & 2,309 \\ & 2,283 \end{aligned}$

If the alcohol had caused increased radiation of heat, more heat would have been given off from the body and more fuel would have been required, and naturally more would have been burned in the alcohol experiment than in the other. Such, however, was not the case.

In the experiments of Group B the man was engaged for eight hours a day in active muscular work, driving a stationary bicycle. The amount of work was such that he burned enough fuel to yield in all 3,900 calories, and, as the food did not supply enough, he used up some of his store of body fat. The results of such experimenting imply that when the body has not enough food for its support and is forced to draw upon its reserve capital, it uses the materials economically. The energy given off from the body was in two forms-heat and extemal work. This work was practically the same in both experiments and is reckoned with the heat in the energy given off.

Comparison of energy of material metubolized and heat given off per day in work experiments with and without alcoliol.

Diet.	

Here again there was slightly more fuel burned per day with alcohol than without, though the difference was small, while the amount of heat given off was practically the same in the one case at the other. So fir as the disposal of the energy is concerned, the figures imply that alcohol was used as economically as the fat, sugar, and starch which it replaced, and that it cansed no increased radiation of heat.

We have, all told, 13 experiments with alcohol, covering 36 days. For purposes of comparison these have been grouper, as already explained (p. 241), with 13 experiments without akohol, covering 43 dars.

The subject in 5) of these groups, E. O., was a man who had been long aecustomed to the moderate use of alcoholic hererages. The subjects in the other four groups, A. W. S. and J. F. S., were two men who had always heen total abstainers.

The results are smmmarized in the table herewith, which is condensed from Table CXX of the appendix. The first column gives the figures for energy for material actually oxidized. The figure in the second colum show the relation between the averages of experiments with alcohol
and those without alcohol, the latter being taken as a basis (100 per cent). The corresponding values for total and proportional energy measured as heat in the two clasies of experiments are shown in the last two columns of the table. Thus, in the arerage of all the experiments without alcohol the energy of the material actually oxidized was 2,717 ealories. In the arerage of all the experiments with akcohol it was 2,746 calories. The latter was 101.1 per cent of the former. ${ }^{n}$

Table 16.-Comparism of mem!! of muterinl aridized and luent given offi in crperiments with and withont alcohol.
[Averages per day.]

There was slightly more fuel burned and more heat given off from the bodies of the men when they had alcohol in their diet than when they had the same amonnt of protein and energy in a diet without alcohol, but with conditions otherwise similar. The differences, however, were very small; in the more directly comparable experiments the excess of fuel burned with the alcohol diet, as measured in calories, was only five parts and that of heat given off only one part in 1.000 . In the less directly comparable experiments the differences were larger, but still small.

The quantities of total food were generally below rather than above the reqnirements of the body, especially is the work experiments, as may be seen from Table CXX of the Appendix. The general results of experiment imply that under sueb circumstances the body makes economical use of its food and its reserve supply of material. The fact, therefore, that under these conditions. the oxidation of material and radiation of heat were so nearly the same with the rations with and withont alcohol add still greater force to the comparison.

The conclusion is that in these experiments, with three different men at rest and at work, when 72 grams of alcohol per day taken in six doses and furnishing 500 ealories of energy replaced the isodynamic amounts of fats and carbohydrates, the alcohol caused no considerable increase in the amount of heat radiated from the body.

If the alcohol in these experiments had all been taken at one dose. it might have caused the eutaneous ressels to dilate, stimulated the sweat glands (?), and increased the circulation, and thas increased the heat radiation. If there had been enough to cause the ordinary symptoms of intoxication, and especially if it had sufficed to induce the comatose condition for which the expression "dead drunk" is used, and if the men had at the same time been exposed to serere

[^12]cold. the production of heat in the hody might have been retarded, and the radiation increased so as to lower the hody temperature by several degrees.

RAPIDITY OF COMBUSTION OF ALCOHOL IN THE BODY.

There is a popular impression that alcohol is burned in the body much more rapidly than ordinary food, and that in consequence not only is the energy resulting from its oxidation wasted. but derangements of bodily functions may result from the rapid combustion of the alcohol. The exact grounds for the belief or nature of the supposed disturbances we have not seen distinctly stated. Nevertheless. as the impression prevails to some extent, at least among physicians and phrsiologists, it seems to demand consideration.

Leaving out of account the unsettled question as to how soon after the ingestion of the alcohol its oxidation begins, the main problem is the rate of oxidation. If it is especially rapid, either one of two results may follow. The oxidation of other materials may go on as usual, in which case the total production of carbon dioxid and heat will be abnormally large: or the oxidation of other substances may be diminished so as to compensate for more or less of the oxidation of the alcohol, in which case the rate of production of carbon dioxid and heat may be little, if any. larger than withont the alcohol. The natural test will be found in the measurement of these rates of production. So far as we are aware no adequate tests of this character have thus far been made.

In examining the literature of the subject we hare not succeeded in finding any experimental proof that the rate of elimination of carbon dioxid or heat from the body is materially increased or decreased by moderate quantities of alcohol. Satisfactory tests would involve the measurement by short periods, as, for instance, hour by hour. Our own experiments were not planned for this purpose, and the measurements were made generally in six-hour periods. There was nothing in the observations to imply that the rate of production of either carbon dioxid or heat was materially increased either immediately after the ingestion of the alcohol or later.

Part of the heat given off from the body is carried away in water vapor given off from the lung- and skin, but the larger portion finds its way to the water current, by which it is carried out of the chamber. The rate of flow of this current and its rise of temperature in pasing through the chamber thus measure the rate of evolution of heat from the body other than that carried away by water rapor.

The observations of rate of flow and rise in temperature are made every few minutes, and thus show the rate of evolution of the larger portion of the heat.

We have taken the pains to calculate the erolution of heat for hourly periods for three series of experiments, in which the alcohol diet and ordinary diet were compared, riz, Nos. $22-24$. $26-20,20-31$. The calculations, however, hare been limited to the night periods between $7 \mathrm{p} . \mathrm{m}$. and 7 a. m., because the evolution of both carbon dioxid and heat is much more regular by night than by day, and any disturbance, such as might be caused by the rapid oxidation of alcohol. would be more easily detected in comparing the figures for the experiments with and without alcohol during the night periods.

The results of these comparisons are negative. There are practically no more irregularities or indications of disturbance in the alcohol than in the nonalcohol experiments. There is nothing in the figures which seems to us to indicate any appreciable tendency toward increase of heat production drring the first, second, or third hour after the ingestion of the alcohol. The figures are, indeed, so destitute of such indications as to hardly warrant their printing.

We are therefore led to the conclusion that in these experiments either the alcohol was not suddenly or rapidly oxidized, or if there was such rapid oxidation, there was a corresponding decrease in the oxidation of carbohydrates, fats, or protein.

It is interesting to note that this conclusion acrords with the other obervations. viz. those of the total heat production and the economy of the use of energy in the rations with or without alcohol. All of thes imply that the alcohol, carbohydrates, and fats simply replaced one another as sonres of energy: that an either was oxidized the others were proportionately spared.

ALCOHOL AS A SOURCE OF HEAT IN THE BODY.

In the rest experiments the heat given ofl from the body was equiralent to the total potential energy of the materials oxidized. This was as true in the experiments in which alcohol made part of the diet as in those with ordinary food exelusisely. The alcolon must therefore have contributed its full quota of heat as truly as did the starch or fat, and all it- potential energy was converted into heat within the body.

In the work experiments the same principle applies and it follows that unless all the potential energy of the aleohol was converted directly into that of external museular work part must have heen conserted into heat within the body. But the total energy of external muscular work was at most the equivalent of 2som calories, while the energy of the alcohol was about $5 \ldots$. Even if all the external work was done at the expense of the alcohol. there would remain $\because 0$ ealories which must have been transformed into heat within the body. But it is extremely improbable that the alcohol supplied all and the ordinary food none of the energy of external work. In so far. therefore, as the latter came from the ordinary food. more than 200 of the 5 colories of the alcohol must have reached the form of heat within the body.

We have to do here with the question: Of the total energy which was potential in the alcohol and was made kinetic by its oxidation. how much was transformed directly into heat and how much was first changed to the energe of mu-cular and other bodily work, internal and external. and wan afterwards transformed into heat? This involses two fundamental problems. One is the still unsettled physiological question as to whether the production of muscular energy in general is or is not a direct transformation of potential into mechanical energy. The other is the more specific question as to whether the energy of alcohol is like that of the ordinary nutrients of food in it- transformation into musular energy. Both will be referred to beyond in the discuswion of alcohol as a source of musenlar energy. Meanwhile it is safe to say that:

1. Unless all the potential energy of the alcohol was transformed directly into the energy of intermal work in the rest experiment- or into that of internal and external work in the work experiments, a supposition that seems highly improbahle, part must have been transtormed directly into heat in the body.
2. Whether the potential energy was first transformed into museular energy or not. the whole in the rest experiments and part at any rate in the work experiments reached the form of heat within the body.

The conelusion is that in all these experiments alcohol wan a source of heat for the body.

ALCOHOL AS A SOURCE OF MUSCULAR ENERGY.

frimome crusidemations.-The question whether or not the energy of alcohol is used for museular work is not yet definitely ansmered. The experiments thus far made do not provide means for tracing the energy of the alcohol through the changes it undergoes in the body, and finding how much of it becomes muscular energy. Nor is it easy to derise such experiments. The diffoulty is that the potential energy of the alcohol is transformed along with that of other materials oxidized, and there is no known way of separating the kinetic energy which comes from the alcohol from that which is supplied by the carbohydrate or fats or protein. While there is no evidence of any differences between the energy from the several sources. the absolute proof that no such differences exist is not yet at hand.

Back of this is the more fundamental question an to how muscular energy is produced. Concerning this two theories are held. One is that part of the potential energy of the food and body material oxidized is converted directly into the meehanical energy exerted by the musele. The other is that the contraction of the musele. by which its work is done. is due to heat. Aecording to this riew, practically all of the potential energy is first transformed into heat and a part afterwards appeas as musular energ. If the second riew is correct. it is hard to see how the heat derived from the oxidation of the alcohol should he in any way different from
the rest of the heat. If the muscular energy is the first product of the transformation of potential energy, it is conceivable that there might be some attribute of alcohol which would prevent its potential energy from being changed into mechanical energy. But there is nothing in the result: of experiment to imply any such difference between alcohol on the one hand. and sugar. starch, or fat on the other. The case regarding the transformation of energy is like that just referred to regarding the use of the energy after it is transformed. There is no eridence of any difference between alcohol and other nutrients in either respect. but there is no proof that the difference does not exist.

The most satisfactory method of study of this question as to whether alcohol can be a source of the mechanical energy exerted by the muscles is by measuring the amounts of different substances metabolized and the amounts of muscular work done. and thus getting light upon the comparative efficiency of the several substances as parts of a diet for muscular work.

If the experiment could be made with lean meat and alcohol in such a way that the body could obtain no other fuel than alcohol and protein, and the energy of the internal and external muscular work shonld be found to exceed that of the protein. it would be clear that the rest of the muscular energy must come from the alcohol. But as yet we have no means for measuring the internal work. and it would probably be difficult to find a man who conld do much external work day after day ou such a diet without drawing upon the store of material in his body.

For the present, therefore, we are limited to experiments in which other fuel is burned with the alcohol, and our conclusions must depend upon measmrements of (1) the energy supplied by each kind of fuel. (2) the energy given off from the body, and (3) the amount of muscular work performed.

Here again we meet a difficulty, namely, that of measuring the muscular work. We have to do with two kinds of work, external and internal. The external work is that which is performed outside of the body, as, for instance, the power which a man riding a bieycle applies to the pedals. This is capable of quite accurate measurement. Such measurements were made in the experiments here described. By internal work is meant that of circulation, respiration, digestion, etc. Thus a not inconsiderable amount of energy must be used for the moscular contractions of the heart by which the blood is pumped out through the arteries and back from the reins. It is held by some physiologists that a large portion of the total energy supplied by the food is used for this internal physiological work. At present no exact method is known for measuring the internal work of the body. It is transformed into heat before it leares the body and in the experiments with the respiration calorimeter it is collected and measured as part of the total heat given off. But this total heat includes also the heat which was produced in the body and not used for musenlar work, and no way has yet beeu found to distinguish between the heat which has and that which has not been used. and to measure the two quantitien of heat separately.

We know from measurements of the external muscular work that it represents at most a fraction, and generally a small fraction of the total energy transformed. It may be that in the case of a man doing a large amount of muscular lahor this external work added to the internal work would account for the larger part of the total energy transformed in the body.

The measurements of income of energy from the oxidation of ordinary nutrients and alcohol and of outgo of energy in the different forms of heat and external muscular work therefore do not answer the specific question as to how much of the energy provided ly the alcohol is used for either internal or external muscular work. or both.

Eemomy of utilization of the curroy of the motions with and without whenol.- We may nerertheless get some light on the question by putting it in another way: Is the total energy of the ration used as economically when part of it is supplied by alcohol as when the whole comes from ordinary food? The question may be approached in two ways, (1) by considering the differences in the amounts of avalahle energy in the diets with and without aleohol, and comparing these with the energy in the hody protein and fat gained or lost in the two cases. and (2) by
comparing the energy of material actually oxidized in parallel experiments with and without alcohol. The principtes here involved may be explained as follows:

The energy neaded and uwed by the bady. -The body requires and uses a certain amount of energy. This amount is larger when the man is at work and smather when he is at rest. The larger the amount of energy used, the more material will be metabolized to furnish it. If the arailable nutrients of the food exceed the amounts metabolized, the excess will be stored in the hody. Assuming the store of curbohydrates to remain constant, the body will gain protein or fat or both. Translating this last statement from terms of material to terms of energy, if the available energy of the food exceeds the energy metabolized, the amount of energy in the body will be increased by the storage of energy in protein or fat. On the other hand, if the arailable energy of the food does not supply the demand, the lack will be made up by drafts upon body protein or fat. We thus have two measures of the energy used by the hody. One is the gain or loss of hody protein and fat with a given amonnt of available energy in the food. The other is the total energy metabolized whether it be more or less than the available energy of the food.

Eimomy of utitization of energy. - We have distinguished between the energy needed and that actually metabolized. If the body uses the energy economically it does not metabolize more than it needs. But it does not always make the most economieal use of either material or energy. If it has more food than it needs, it may use this wastefnlly. Part of the excess of material, at times perhaps the whole, may be stored for future use, but often more or less of the excess is smply consumed and the energy wasted. On the other hand, if the food only equals the demand, and expecially if it falls short and body material has to be drawn upon, the body will probably make economical nse of the energy of both food and body material. This was the case in the experiments now under diseussion. When the men were at rest the food supplied but little more, and when they were at work it supplied less, than was actually needed. In these experiments, therefore, the two measmres just referred to, namely, the energy of body material gained or lost and the total energy metabolized, show how much the body uses when the energy is economically utilized.

To state the case in another way, either the energy of material gained or lost with the given diet, or the energy of the total material oxidized, gives a measure of the energy actually employed for economical nse. These quantities can be expressed in calories.

Comparative economy of energy of different materials. -This brings ns to the question at issue. Is the energy of alcohol equal, superior, or inferior in value to that of carbohydrates or fats or other nutrients of ordinary food as part of a diet for rest or for muscular work? Will a calorie of energy from alcohol go as far, farther, of not as far as a calorie from sugar, starch, fat, or protein in meeting the actual needs of the hody? The answer is to be sought in the experiments in which a diet of ordinary food is compared with a diet containing alcohol, the total availahle protein and energy of the food and the other conditions being the same in both experiments. The test will be found in the gains or losses of body protein and fat, and in the total energy metabolized in the two experiments. Any differences in either of these factors, to wit, (1) gains or losses of body material, or (2) energy metabolized, provided they are outside the limits of experimental error, must be attributed to the diet; that is to say, the alcohol in the diet. If the body gains or loses the same amount of material, or if it metabolizes the same amount of energy with both diets, a calorie of energy from one is equal to a calorie of energy from the other, and as a source of energy the alcohol is equal to the isodynumic amomnt of the carbohydrates or fats which it replaces. If the gain of material is less or the loss more, or if the total energy metabolized is larger with the alcohol. the latter is inferior as a source of energy, and vice rewa.

Erperimental risults.-Table 17 shows the differences between the available energy of the food in experiments with and without alcohol and the corresponding differences between the energy of body material gained or lost in the same experiments. The tigures in the fourth and sixth columns are computed from those in the third and fifth, respectively, using the factor 5.65 for the energy of one gram of protein, and $9.5 \pm$ for that of one gram of fat.

Table 17.-Comparison of gains and loses of hody protein and fat, and transformution of energy in experiments with (mad rithont alcohol.
[Quantitics per day.]

The hold-face figures in the last line of each group in the columns for protein and fat give the gain or loss of material and energy in the alcohol experiments as compared with those without alcohol. The plus sign indicates greater gain and the minus sign greater loss with the alcohol than without it.

So far as the available (digestible) nutrients of the food are concerned, the quantities of protein are about the same and the quantities of energy slightly larger with alcohol than without it. but with the body material, on the other hand, there was generally a little larger loss of protein and a little larger gain or smaller loss of fat in the experiments with alcohol.

The figures in the last column represent the energy of material actually oxidized; that is, the total energy metaholized in the two classes of experiments. The full-face figures show by the + sign: the excess of energy metabolized with the alcohol diet. The values are found by deducting the algebraic sum of the calories of energy gained or lost in protein and fat from the total available energy of the food as indicated by the letters and formule in the column headings. Thus in the first group we have an excess of $+8-(-20+12)=16$ calories of total energy metabolized in the alcohol as compared with the nonalcohol experiments. The same result is found hy comparing the total quantities of energy metabolized, numely, 2,925 without and 2,911 with alcohol. The variations in the amounts of body material gamed or lost and in the amounts of energy metabolized in the two classes of experments may be due to either of three canses:

1. Such experimental error's as irregularities in the daily absorption of the food from the alimentary canal, or variations in the amounts of carbohydrates in the hody which are here a-immed to be constant from morning to morning, or from experiment to experiment, or small errors in the estimates of gains or losses of protein and fat from the gains or losses of nitrogen
and carbon. These errors are burdly aroidable, hut on the whole they appear to counterbatance one another -o that their effect i - eliminated in the average of a considerable number of experiments.
2. Differences in the activity of the subjects in the two clasesof experiments. Then differanee are not easy to aroid. The man in the chamber may make more muscular effort on one day than on another in taking down his hed in the morning and in setting it up at night. or he mar more about more in caring for the food and excretory product- and we:ghing himelf and t e absorbers. In the work experiments there may be differences in the external musular work deopite the best efforts to make the amounts constant from day to dar. These differences in muscular activity. though small. may affect the metabolism of matter and energ.
3. The energy furnished by the alcohol mar not be as efticient, calorie for calorie, in meeting the demands of the hody as the energy from the materials which it replaces. It in hardly to be supposed that the experimental errors in categories (1) and (2) will be considerable. It is still less probable that they will be so concentrated in either the alcohol or nonalcohol experiments as to matrially affect the average results. If, therefore the differences between the figures for the experiments of the two clases are large and reasonably constant, it would seem fair to attribute them to difference in the actual ralue of the aleohol acompared with isodynamic amome of fats and carbohydrate.

The figure of Table 15 show difference to the disadrantage of the alcohol. The differences are, however, manly within the range of experimental error. ${ }^{\text {a }}$

In the more directly comparable experiments (Group I) the conditions with and without alcohol were closely similar. In Group II there were not inconsiderable differences hetreen the amount- of protein and energy in the diet. in the number of subjects. in the number of experiment., and in the amounts of musenlar exercise. These differences do not, in our judgment. destroy the value of the comparisons in Group II, though they do make the differences in result less decisive. The results of Group II are, therefore valuable as contirming those of Group I.

Guins and losses of lonly materind as indicative of the relative effectiveness of alcohol. - The differences in the gains or losses of protein and fat in the experiments with alcohol as compared with the other are slightly to the disadrantage of the alkohol. They thus imply that, calorie for calorie, the energy furnished to the body by the alcohol was less effective than that furnished by the carbohydrates and fats. These differences may be due to experimental error. but even if they are wholly charged to the alcohol they make it only slightly inferior to the nutrients which it replace. . The inferiority is found only in the work experiments; in the rest experiments there is practically no difference hetween the alcohol and the ordinary nutrients in effectiveners.

Amounts of energy metabolized as indicative of the relative effectiveness of alcolol.-The results here are similar to those found in the comparison of gains or loses of material. This is to be expected, since the two measures are really different expressions of the same fundamental fact. In the rest experiments the results with and without alcohol are practically identical. The inferiority of the alcohol is limited to the work experiments.

Eheroly of material metulolized in work experiments with and withunt ulcohol.-In the work experiments more material was oxidized than the food supplied, and the deficiencr was made up br drafts upon the previously accumulated store of body protein and fat. Under these circumstances the borly may be supposed to use the energy economically so as to make the draft upon

[^13]its capital as small as practicable. It would therefore seem that the amounts of material oxidized in the experiments with the two kinds of diet would give a somewhat critical test of the power of the body to utilize the energy of alcohol, either directly for musculax work or indirectly to save the energy of other materials for that work. We may, then, determine the relative efficiency of the alcohol in supplying energy in these experiments by comparing the amounts of energy in material oxidized. If the amounts are the same with and withont alcohol the inference is that the energy of the alcohol was utilized as effectively. so far as simply the economy of energy is concerned, as that of the fats and carbohydrates: but if more energy is metabolized with the alcohol we must conclude that it is inferior as a source of energy in a diet for muscular work. We may take, for instance, the pair of experiments Nos. 11 and 12. in which the man was at hard work. (See Table CXX, p. 390.) His body used, in No. 11, with ordinary diet, 3,901 calories of energy per day. The food digested and absorbed from the diet supplied 3,510 calories, and the body burned enough of its previously accumulated material, protein and fat, to supply the lacking 391 calories.

In the corresponding alcohol experiment, No. 12, enough of the fats, sugar, and starch of the previons diet to furnish about 500 calories of energy was taken out and replaced by sufficient alcohol to furnish approximately the same amount, 500 calories. It happened that the total energy in the alcohol ration was abont 30 calories the larger. Furthermore, the availability of the food proved to be slightly larger, so that the whole available energy of the alcohol ration was $3,61 \pm$ calories. The amount of work done and the other conditions were practically the same as in the previous experiment. The hody transformed 3,922 calories and in order to do so drew enough from its own store to furnish 308 calories.

According to these figures the body burned a trifle more material in the alcohol experiments than in the others-enough to furnish 3,922 instead of 3,901 calories of energy. But the alcohol diet furnished, with the alcohol, a somewhat larger amount of total energy, and furthermore a somewhat larger proportion of the nutrients of the ordinary food was digested, so that the body had 104 calories more of a vailable energy. The fact that it drew 83 calories less from its previonsly stored material in this experiment than in No. 11 indicates that it used its energy economically. In each of these two cases the daily amount of external muscular work measured was equiralent to not far from 200 calories. In the first experiment all of this came from ordinary food. It may be that in the second experiment likewise it all came from the reduced supply of the ordinary food, and that none of the energy actually transformed into muscular work came from the alcohol. There is, however, no reason to suppose that the body made any distinction between the energy from the alcohol and that from the other fnel. and even if it did so it made just as good use of the energy of the alcohol to meet its other needs as it did of the energy of the ordinary nutrients.

The test of the comparative economy of the two dicts so far as concerns the supply of energy in. found in the amount of energy of material oxidized. This was 20 calories, or about 0.6 per cent the larger in the alcohol diet. This is far inside the limit of experimental error. Indeed, the quantity of energy given off from the body as measured by the respiration calorimeter was 5 calorjes larger with the ordinary than with the alcohol diet. (See Table CXX of the Appendix.) Of course such differences have practically no significance in physiological experimenting.

The results of the experiments in their hearing upon the subject are summarized herewith:
Average amounts of energy in material oxidized.
[Calories per day.]
Groups.

It appears that in the more directly comparahle experiment the energy of material oxitized areraged the ame where the -ubject- were at rest. but wats about 1 per cent larger with the ahohol when the were at work. In the les- directly comparable experiments, in all of which the -uhject- were at rest. the arerage wan larger hy about \because pre cent with the alcohol diet. This is perhaps no more than was to be expeeted with the slight differences in the conditions of the experiments.

In this method of comparion by amount- of material and energe oxidized, as in the previons method, the differences were too small to be taken into acount in individual experiments, but appearing is they do in the areage of a number of experiments they are not without signifinace. The conelusion is that the energy of the aleohol diet was slightly lese eonomically weel than that of the ordinary diet, especially in the work experiments. This implies that the energy of the aleohol itself wa- lea ecomomically utilized than that of the fats and carbohydrates. lont the differeneses are -0 small as to be of little or no practical consequence.
 3.6 calories were metabolized with the ordinary and $3.69 t$ with the akohol ration. The relative rosts of mantaining the boty with the two rations were thas $3.664: 3.694=100: 110.5$ or ($!.21$: 1010 ; the difference of 30 calories being 0.8 per cent. Assuming the difference to he due wholly to the inferiority of the alcobol ration. its effectiveness, ealorie for calorie, would he 99.2 per cent of that of the ordinary ration, so tar as the energy is concerned.

The alcohol supplied 50 calories of energy, of which the 30 calories would represent 4 per cent. If we charge the deficit wholly to the alcohol, the latter wonld be, calorie for calorie. \dot{f} per cent less effertive than the fats and carhohydrates it replaced. In other words, the effectiveness of the alcohol as a soure of energy in the ration for muscular work in this case wonld be $4+$ per cent of that of the isodynamic amounts of carbohydrates and fats.

Caleulated in these mays the effectireness of the aleohol ration as eompared with the ordinary ration, and that of the alcohol as compared with earbohydrates and fats in the experiments of Groups I-III. would be as follow:

Percentugis uf rifectivencss nf emergy.

summury.-The conditions and results of these experiments and the inferences here dramn from them regarding alcohol as a soure of museular eurgy may be briefly summarized:

1. We hare here experments with ordinary diet compared with other experiments in which the conditions were similar except that carbohydrates and fats sufficient to supply our ealories of energy of the $2.200-3.600$ ealories in the daty ration were replaced by the isodymmie amount (about ive grams) of alcohol, the latter being taken in six doses. The conditions of work and rest were very nearly the same in the corresponding experiments, with and withont alcohol.

2 . The amonts of material and energy transformed in the experiments with alcohol were rery nearly the same as in the corresponding ones without aleohol. Where the ration was insuftieient to meet the needs of the body, and it had to draw upon its store of tat and protein to supply the lacking energy. the drafts were practioally the same with the ordinary as with the alcobol diet, so far as eoncerns the energy of the body material dramn upon.
3. The utilization of the energy of the whole ration was slightly less ceonomical with the alcohol than with the ordinary diet, especially when the subject- were at hard muscular work.
but the difference in fayor of the ordinary food was rery small indeed, hardly enongh to be of pratical consequence. From this it follows that the energy of the alcohol was utilized rery nearly or yuite as well as that of the other fuel ingredients which it replaced.
t. That the alcohol contributed its share of energy for muscular work is a matural hypothesis and rery probable, but not absolutely proven. The hypothesis that the energy of the alcohol was not so used, is not called for as an explanation of any fact observed in these experiments.

It should not be forgotten that the desirability of alcohol as part of a diet for muscular work is not decided by the narrower questions here discussed. There is a rery essential difference between the transformation of the potential energy of alcohol into the mechanical energy of muscular work and the adrantage or disadrantage of alcohol in the diet of people engaged in muscular labor. Even with the small doses in these experiments there mere indications that the subject- worked to slightly better advantage with the ordinary rations than with the alcohol. The results of practical tests on a large scale elsewhere coincide with those of general observation in implying that the use of any considerable quantity of alcoholic beverages as part of the diet for muscular labor is generally of donbtful value and often positively injurious. ${ }^{\text {a }}$ Aside from the question of the power of alcohol to protect protein and fat and supply energy to the body for varions useful purposes, there are the far weightier considerations of the general effect of alcohol upon the muscular and especially the nervous system and upon health and welfare. Upon these most serious hygienic, economical, and ethical problems the experiments here reported throw no special light.

[^14]
SEMMARYOF PLAN゙ AND RE-CLTS OF THE ENPERIMENTS.

 action of alcohol is concerned, was primarily to get light upon the way - by which it-potential energs is tran-formed and utilized in the hody. hat attention wa- aloo given to the effect- of alcohol upon the digention of the food taken with it, the proportion of alcohol that were oxidized and e-caped oxidation, and it-effect- upon the metaholi-m of carhon and nitrogen and the gain and loss of fat and protein in the hody:

The subject-were three young. healthy, active men who were ordinarily engaged in rather light work: one wa, a laboratory awistant, one a physiciot, and one a chemint in the chemical laboratory of Wesleran Eniversty, where the experiment- were made. The first. E. O.. a swede by hirth. had been accustomed from hiv routh to drink small yuantities of alcoholic beverages: the other two. A. W. S. and J. F. S.. had almay: been abotainers.

The re-ult- of experiment- with ordinary diet were compared with thow of experiments in which part of the fats and carbohedrate of the ordinary food were replaced by the isodyamic amount. about 72 gram- ($2 \frac{1}{2}$ ounces) of absolute alcohol. generally in the form of commercial alcohol, though in one experiment brandy and in another whisy wa- used. The amount of alcohol Ta, about as much av would be supplied in a bottle of claret. or blounce of whisky, or 5 ounces of hrandy.

The ordinary diet consisted of meat. milk, hread, cereal, butter, sugar, and the like. with. in some cases. coffee. The quantitie- were such as had been found to be sufficient, or nearly so. for meeting the demand of the body under the conditions of the experiments, whether of rest or muscnlar work. The method of preparation were such as to make the food palatable to the subject.

During the metabolim experiment- proper the subjects mere in the chamber of the respiration calorimeter, where they remained during period-rarying from 4 to 9 dars. The sojourn was made comfortable and the conditions seemed to he nomal. Each metabolism experiment or series of experiments in the respiration chamber was preceded br a period during which the subject had es-entially the same diet and nearly the same amount of muscular exercise outside the chamber. In these preliminary experiments the amounts. composition. and heats of combustion of the food. feces. and urine were determined. In the metabolism experiment: the determinations include besides these the water and carbon dioxide of the incoming and outgoing air current by which the chamber was rentilated, the heat given off from the bodr. and, in the work experiments, the heat equivalent of the muscular work done. In the alcohol experiments the determinations were made of the small amounts of alcohol excreted by the kiduers. lungs. and skin.

Accordingly the data of the metabolism experiments show the income and outgo of the bodr as expresed in terms of (a) nitrogen, carbon, and hrdrogen: (b) water, protein, fats, carbohrdrates, and mineral matter: (c) potential energy of food and unoxidized excreta, and (d) kinetic euergy of heat given off from the body and external muscular work performed. The accuracy of the apparatus and method were as-ured by burning alcohol within the chamber measuring the amount, of carbon dioxide. mater. and heat produced. Such tests were made generally between each two experiments or experimental series. Taking the theoretical amounts at $1(0)$, the arerage amounts found were carbon dioxid. 49.6; water. 100.6 ; heat. 99.9.

In the so-called "rest" experiment- the subject had no more muscular exercise than was involred in dressing and undressing. weighing himself, arranging his folding bed, chair, and tahle.
and caring for the food and solid and liquid excreta. His diversion was found in reading, writing. and occasional conversation by telephone with perwons ontside. In the "work" experi-ment- the sulbject engaged in the active muscular exercise of riding a stationary bicecle for eight hours or thereahouts per day. The wheel of the bicyele was belted to a dynamo conneeted with an clectric limp. so that the muscular porer which was applied to the pedals was converted partly into heat by friction but mainly into electrical energy and then into heat. The apparatus was calihrated so as to serve as an ergometer for measuring the external muscular work.

In interpreting the results in their bearing upon the physiological action of alcohol. it should be particularly noted that the whole amount of alcohol ingested per day was small and that furthermore it was taken in 6 doses, 3 with meals and 3 betreen meals. The object of the experiments was to study the action of alcohol under conditions ealculated to secure the minimnm of influence upon the nerrous system. With such small doses, the equiralent of a glass of wine each. and thus distributed, two of the subjects were able to detect practically no seusible effect of the alcohol, while the third, J. F. S., felt nothing more than at times a slight "tingling" in the ears. There was in some cases an apparent though slight quickening of pulse rate, but practically no lowering of body temperature was observed. In such freedom from nervous disturbance it was believed that the normal nutritive action would be best observed.

There is the more reason for emphasizing this last point, because in the majority of the published experiments with men and animals for the study of the effects of alcohol the quantities of the latter have been much larger. Doses of 1 to $1 \frac{1}{2}$ grams per kilogram of body have commonly been considered small, and those of 2 to 3 grams per kilogram hare been common and generally taken on an empty stomach. Often the amounts hare been such as to cause the srmptoms of drunkenness. In our experiments, on the other hand, the whole amount per day was oniy about 1 gram per kilogram body weight; the individual doses were only about one-sixth of a gram per kilogram. and half of them were taken with meals. This fact doubtless accounts for a not inconsiderable share of the differeuce between the results of our experiments and those found by a number of other investigators.

While the quantities of alcohol were small, the energy sufficed to make about one-fifth of the total energy of the diet in the "rest," and one-serenth of the total energy of the diet in the "rork" experiments.

It is to be especially noted that these experiments were not made to test the effects of alcohol upon muscular or nerrous activity or power, nor do they lead to any conclusions regarding the effect of alcohol when taken habitually or in large quantities.

The ubserved results. - The results, as shown by the statistics of the experiments, may be briefly stated as follows:

1. The quantities of alcohol eliminated by the lungs, skin, and kidneys raried from 0.7 to 2.7 grams. and areraged 1.3 grams per day (see p. 25s). This corresponds to an areragc of 1.9 per cent of the whole alcuhol ingested. Accordingly orer $9 s$ per cent of the ingested alcohol was oxidized in the body. There is. however, reason to believe that 99 per cent would more nearly represent the proportion actually oxidized.

2 . The experiments give data for comparing the arailability and f:el value of alcohol with those of the mutrients of ordinary food. The word "availability" as here applied to the ordinary nutrients. expresses the proportion which is digested and made available for the building and repair of tissue and the yiclding of energy. This proportion is the difference between the total amonnt and that excreted by the intestine. In like manner the available alcohol would be the difference between the total amount ingested and the amome excreted by the langs, skin, and kidneys. practically none being excreted by the intestine. The arailable energy of the ordinary mutrients is the total energy (heat of oxidation) less that of the material unoxidized. For fats, carbolydrates and alcohol it is the heat of oxidation of the total arailable material. For the protein it is the same. less the heat of oxidation of the unoxidized residue excreted by the kidneys. The arailable energy is taken as the measure of the fuel ralue. The following table compares the coefficients of availability and the fuel values of the protein, fats, and carbohydrates of ordinary
diet. a found by a considerable mmber of experiments. " with those of the alcohel as shown ly the experiment- here reported.

Table 1s.-Comparisun of acailability (digestibility) and fuel culute of mutrients of fiod in orelinury diet with thene of rilcahol.

	$\begin{aligned} & \text { Heat oi } \\ & \text { combustion } \\ & \text { per gram. } \end{aligned}$	Cuefficieuts of availabil-ity-		Fuel values.			
		Of material.	Wi enerxy.	Referren toavailable material.		Feferred to total material.	
				Per gram.	Ferpouna.	Per gram.	Per pound.
Protein	Calorics. 5. 65	Per cent. 42	$\begin{array}{r} \text { Ter cent. } \\ \hline 0 \end{array}$	Calories. 4. 4	Calorice. 2,000	Calorics. 4.0	Catorices. $1, \therefore 2$
Fats...	9. 40	95	95	9.4	4. 260	-. 9	4,040
Carhohydrates	4. 10	97	97	4. 1	1.860	4.0	1,820
Aleohol....	7.07	an	98	$\therefore 1$	3. 210	6.9	3. 140

The isodynamic values of alcohol, carbohydrates, and fats are thus in the ratios of $16.9: 4: 5.9$. and 1 gram of alcohol would be isodynamic with 1.73 gram: carbohydrate or 0. is gram of fats of ordinarr food materials.
3. The proportion- of food and of the sereral kinds of nutrients digested and made available for use in the body were practically the same in the experiments with and tho withont alcohol in the diet. The only difference worthy of mention was in the proportions of protein made available. These were rery slightly larger with the alcohol. but the difference was too small to be of practical consequence. In all the experiment., both those with and those without alcohol, the result. agree rers closely with those commonly found in digestion of food in ordinary mixed diet hy healthy men.
4. The potential energy of the alcohol was transformed into kinetic energy in the body as completely as that of the ordinary nutrients. The income and outgo of energy were equal in the experiments without alcohol; the same was true in the experiments with alcohol. In all the experiments the body obeyed the law of conservation of energy.
5. With the exception of the energy of the external muscular work in the work experiments, all of the energy of the food. inelnding that of the alcohol. left the body as heat, and must therefore hare been transformed into heat within the body. Part of this total energy must hare been used for the intermal mechanical (muscular) work: the energy thus used was therefore transformed into beat before learing the hodr.
6. The radiation of heat from the body was rery slightly greater with the alcohol diet than with the ordinary diet. but the difference was extremely small-enough to make only about 1 per cent of the whole energy metaholized and not orer 6 per cent of the energy of the alcohol.
i. The efficieney of alcohol in the protection of body fat from consmption was very erident. The losses of fat were no larger and the gains no smaller with the alcohol diet than with the corresponding diet without alcohol. In this respect there was no indication of any considerable difference betreen the alcohol and the nearly isodynamie amonnts of fats and carbohydrates which it replaced. This was the case in all the experiments.
s. The efficieucr of the aleohol in protecting body protein was evident. but it Was not fully equal in this respect to the isodynamic amounts of the ordinarr nutrients. The results, howerer, were not the same with the different subjects. With E. O., who had been accustomed to use alcoholic bererages, the differences betreen the alcohol diet and the ordinary diet in their apparent effects upon nitrogen metabolism were small. The figures showed a slightly larger output of nitrogen with the alcohol. but the differences were not large enough to be of especial significance. With A. W. S.. who was maceustomed to alcohol, its use in the place of other

[^15]nutrients resulted, at first, in an increased exeretion of nitrogen in the mrine and inferentially a greater catabolism of protein, but after 5 or 6 days the ontput of nitrogen fell to what seemed to he the amount with ordinary diet, and when the alcohol was remored and diet thus reduced there was an increase in the output. These results implied that the alcohol at first failed to protect protein but was afterward- able to do so. There was, howerer, but one series of experiments with this subject. With J. F.S.. also an abstainer, the alcohol periods covered only 3 days, during which there was in each case an increased nitrogen catabolism. On the whole these experiments accord with the belief that with some persons, especially those who are not accustomed to the use of alcohol. it may fail to protect protein: but this action in temporary and the more permanent inflnence is to protect protein.
9. That a part of the potential energy of the alcohol was transformed into the kinetic energy of muscular work these experiments do not prove, though they make it highly probable. They imply that, so far as the utilization of the total energy of the diet was concerned, there was a slight adrantage in economy in faror of the ordinary as compared with the alcohol diet, especially when the subjects were at hard muscular work, but the difference was inside the limits of experimental error and too small to be of practical consequence. On the average it was less than 1 per cent of the total energy and hardly reached 5 per cent of the energy of the alcohol. From this it follows that the energy of the alcohol was utilized nearly if not quite as well as that of the fats, sugar, and starch which it replaced.
10. We repeat that there is a rery essential difference between the transformation of the potential energy of alcohol into the kinetic energy of heat, or of either internal or external muscular work, and the usefulness or harmfulness of alcohol as a part of ordinary diet. Regarding this latter question the experiments bring no more eridence than they do regarding the influence of alcohol upon the nervous system or its general effect upon health and welfare.

APPENDIX.

The detail- of the experiment- deacribed above are set forth in the following pages, and include:

1. Kinds of experimental data and methods for obtaining them.
2. Statistical details of metabolism experiments with alcohol.
3. Statistical details of digestion experiments with alcohol.
t. Tabular summaries.

A lint of the experiment, with grouping for comparison, may be found in Table 1, on page 241 of the first part of this report. As there explained, the metabolism experiments here described in detail were made with alcohol as a part of the diet. They are compared with similar experiment- without alcohol, which have been described in detail elsewhere. Each metabolism experiment or series of metabolism experiments with or without alcohol not only included a digestion experiment, but was also preceded by such an experiment. The data of these digestion experiments are also given berond. The experiments without alcohol and two of those with alcohol have been described in detail elsewhere. In several instances the results are here summarized with the details of the aleohol experiments.

DATA.-ENPERIMENTAL METIODS.

METABOLISM EXPERIMENTS.

The larger part of the statisties of the metabolism experiments have to do with the income and outgo of material and energy.

Erperimentul dutn! of income.-These include statisties of the kinds. amounts. composition. and potential energy of food and drink. the volume of the rentilating current of air entering the chamber and the amount of carbon dioxide and water in that air. The food for each experiment was selected before the experiment began and the desired amounts for different meals were placed in suitable jars, ats deseribed on page 239 . Such of the amalytieal determinations as were necessary for the control of the diet. in order to insure the desired amount of protein and energy, were made previons to the beginning of the experiment.

Erperimentel duta of outgr.- These include statisties of the amount. componition, and heat of combustion of the unoxidized materials of feces and urine the ruantity of earbon dioxid and water in the air learing the chamber. and the total energy given off by the body in the form of heat and external muscular work.

Lppurretus and genemel methords uf inmpiry. -The respiration calorimeter and method of its use have been deseribed in detail in publications referred to on page 236. ${ }^{\text {a }}$ The methods of analysis of food. feces. and wine were, in the main, those adopted by the Asociation of Official Agricultural Chemists. ${ }^{\text {b }}$ hut with certain modifications which have been developed in this: laboratory: ${ }^{\text {c }}$ The heats of combustion were determined by use of the bomb calorimeter. ${ }^{\text {d }}$

[^16]Further descriptions of experimental methods are giren in connection with the descriptions of experiment 12 , beyond.

Cimposition of food materials and feces.-The figures for the analrses of the food materials and feces of the alcoholic experiments here described are giren in Tables I and II.

Table I.-Composition of food materials used in metabolism experiments Nos. 12, 15, 16, 17, 18, 19, 20, 22, 2\%, 30 , and 33.

$\begin{aligned} & \text { Labo- } \\ & \text { ratory } \\ & \text { So. } \end{aligned}$	Food material.	Experi- ment So.	$\begin{gathered} \text { Nitro- } \\ \text { gen. } \end{gathered}$	Carbon.	$\begin{aligned} & \text { Hydro- } \\ & \text { gen. } \end{aligned}$	Water.	$\begin{gathered} \text { Protein } \\ (-1 . x \\ 6.25) . \end{gathered}$	Fat.	Carbobydrates.	Ash.	Heat of combustion per gram determined.
			Peret.	Per ct.	Perct.	Perct.	Perct.	Perct.	Per ct.	Perct.	catories.
2860	Beef cooked	12	4.38	17.85	2.61	65.3	27.4	5. 6		2.5	2.000
3009	-....do	15-17	4.17	15.24	2. 29	69.2	26.1	2.6		2.2	1.682
3022	. do	18-20	4. 46	16.57	2.54	66.7	27.9	2.6		2.1	1. 827
3027	do	22	5.59	23.57	3.37	56.6	34.9	6.1		1.0	2. 633
3176	. do	27	5.41	19.55	2.70	62.5	33.8	2.8		. 9	2. 198
3186	. do	30	5. 72	20.89	2.99	60.3	35.7	3. 0		1.0	2.327
3205	do	33	5.13	18.55	2. 66	64.5	32.1	2.8		1.0	2.075
2858	Ham, deviled	12	2.93	36. 10	5.45	41.4	18.3	36.4		4.0	4. 366
2861	Butter......	12	. 08	63.81	10.14	10.9	. 5	86.4		2.2	7. 906
3003	-.... do	15-17	. 19	61. 90	10.40	10.3	1. 2	86.0		2.5	7.959
3021	do	18-20	. 21	66.23	10.55	8.7	1.3	87.5		2.5	8. 178
3029	. do	22	. 17	69.16	10.52	9.5	1.1	86.8		2.6	8. 027
317	--..-do	27	. 26	65.02	10.02	9.9	1.6	85.9		2.6	8.002
3187	-..--do	30	. 20	65.11	10. 44	9.2	1.3	86.3		3.2	8.048
3206	.-do	33	. 20	65.58	10.37	8.4	1.3	87.6		2.7	8. 210
2857	Milk, whole	12	. 49	6.57	1.00	87.5	3.1	4.5	4.2	. 7	. 798
3024 do	18-20	. 51	7.03	. 94	86.6	3.2	4.4	5.0	. 8	. 782
3190	. . do	30	. 64	8.00	1. 20	85.0	t. 0	5.4	4.8	. 8	. 900
3201	do	33	. 66	8.22	1.24	85.1	t. 1	5.2	4.8	. 8	. 904
3006	Wilk, skimm	15-17	. 65	4.61	. 66	89.5	4.1	. 1	5.5	. 8	. 468
3031	-...-do	22	. 58	4.11	. 59	90.7	3.6	. 1	4.8	. 8	. 409
3179	-do	27	. 67	4.63	. 63	90.0	4.2	. 3	4.7	. 8	. 462
2842	Maize breakfast foo	12	1.88	44.39	6.49	4.9	11.8	8.2	73.4	1.7	4. 437
3004	Cereal, parched	15-22	1.82	41. 39	6.17	6.1	11.4	. 6	80.4	1.5	4.056
3168 do do.	27	1.87	42.20	5. 94	5. 6	11.7	1.7	79.1	1.9	4.136
3193	. . do	30-33	1. 92	42. 72	6.30	4.1	12.0	1.4	80.5	2.0	4.202
2859	Bread	12	1.51	27.27	3.92	40.4	9.4	1.0	48.1	1.1	2. 663
2968 do	15-20	1.27	27.33	4.11	41.7	7.9	2.8	46.3	1.3	2. 710
3032	do	22	1.27	28.05	3.98	40.4	7.9	3.4	47.0	1.3	2. 889
3180	do	27	1. 42	27.76	3.99	39.3	8.9	1.6	48.9	1. 3	2. 803
3192	do	30	1.50	29.14	4.30	36.5	9.4	2.0	50.8	1.3	2.931
3204	do	33	1.38	28.27	4. 30	37.8	8.6	2.5	49.8	1.3	2. 869
3181	Gingersnap	27, 30	1.00	44.32	6. 61	4.1	6. 2	8.3	79.8	1. 6	4. 434
3207	---do	33	. 88	43.87	7.20	3. 7	5.5	7.2	81.6	2.0	4. $43 \pm$
3069	Horse-rad	17	. 20	4. 50	. 60	89.3	1.3	2	8.3	. 9	. 350
	Sugar	(3)		42.10	6. 48				100.0		3.960
	Alcohol	(b)		52.17	13.05						7. 069

${ }^{2}$ Used in all the experiments.
${ }^{\mathrm{h}}$ As pure ethyl alcohol.

Table II.-Composition of feces in metabolism experiments Nos. $12,15,16,17,18,19,20,22,27,30$, and 3.3.

LaboFatory No.		Experiment No.	Sitrogen.	Carbon.	Hydro gen.	Water.	$\begin{gathered} \text { Protein } \\ (\Sigma x \\ 6.25) . \end{gathered}$	Fat.	Carbohydrates.	Ash.	Heat of combustion per gram determineh.
			Per re.	Perct.	Fcret.	Perct.	Perct.	Perct.	Perct.	Perct.	Calaries.
2863	Feces	12	1.35	13.05	1.85	74.1	8.4	7.0	6.1	4.4	1.47.3
3008	. .do	15-17	1.57	14.85	2.07	68.3	9.8	5.6	8.6	7.7	1.675
303:	.do	18-20	1. 62	14.03	1.94	72. 6	10.1	6.3	6.3	4. 7	1.571
3035	. . do	22	1.59	14. 44	2.07	69.3	9.9	5.2	8.5	7.1	1. 610
3184	. .do	27	1. 53	12.26	1. 10	69.5	9.6	2.9	9.7	8.3	1.335
3196do	30	1. 43	13.53	1. 89	71.2	8.9	4.5	9.8	5.6	1. 487
3210	...-. do	33	1.37	13.22	1. 92	71.0	8.5	5.0	9.4	6.1	1. 45%

TABLE III.- Cmmosition of muteritls not included in Tubles I and II used in romnection with digestion axperiments.

Composition of coffice infusiom. - Coffee infusion was prepared by pouring boiling water over ground coffee and straining the infusion thas obtained. The nitrogen was determined in this infusion and found to amount to ahout 0.004 grams per liter - quantities too small to be taken into account. The coffee infusion is therefore reckoned simply as so much water.

STATISTICAL DETAILS OF METABOLISM EXPERIMENTS.

The details of the methods of conducting the experiments and of computing the results. as well as the statistieal tahles in which these results are presented, will be adrantageously given in connection with the description of one of the experiments. For this purpose we select No. 12. which is the first in consecutive order of those here described in detail.

EXPERIMENT NO. 12 - WORK WITII ALCOHOL DIET.
Subject.-E. O. laboratory assistant, 31 years of age and weighing, without clothing, about 71 kilograms (157 pounds).

Dceupetion during experiment. Work 8 hours a day upon a stationary hicyele belted to a small dynamo, thus making an ergometer as described on page $23 \overline{6}$. The roltage was measured and the current passed through resistance within the apparatus and thus transformed into heat and measured with the heat given off by the subject. Previous calibration showed the amount of work done in driving the bicycle.

Durution.-Preliminary period 4 days, heginning with breakfast April κ, 1s!s, and experiment proper 4 days, beginning at 7 a. m. April 12 and ending at 7 a. m. April 16 . The subject entered the respiration chamber on the evening of April 11 and thus spent 5 nights and 4 days within the calorimeter.

Diet.-Ordinary food furnishing 121 grams of protein and 3,379 calories of energr, and in addition $i 2.4$ grams of aleohol furnishing 512 calories of energy, making the total energy of the diet $3,8: 1$ calories. The alcohol was added to a sweetened coffee infusion. It was taken in is doses, 3 with the meals and the other 3 hetween meals and just before retiring. The coffee infusion was prepared in the usual manner, eare being taken to keep that given to the subject free from particles of coffee. To bot grams of infusion were added 50 grams of sugar and so grams of commercial ethyl alcohol containing 90.63 per cent absolute alcohol. The so grams of commercial aleohol thos contained 72.4 grams of absolute alcohol and 7.5 grams water. The diet was practically the same during both the preliminary digestion experiment and the metaholism experiment proper. The kinds and amounts of different food materials taken at each meal and the amounts of coffee infusion and water consumed at different times during the day are shown herewith.

Diet in metabolism experiment No. 12.
FOOD.

DRINK。

${ }^{3}$ Including 50 grams used in coffee infusion and alcohol.
${ }^{-}$Adderl to coffee infusion and taken as indicated below.

- Marle by adding 80 grams of 90.5 per cent commercial alcohol and 50 grams sugar to 800 grams coffee infusion. The mixture then contained 807.5 grams water, 72.4 grams absolute alcohol and 50 grams sugar.

Daily routine.-In order to make the conditions of the experiment on the different days as nearly uniform as practicable a daily programme was drawn up and one copy was given to the -ubject within the respiration chamber while others were posted outside for the use of those carrying on the details of the experiment. The routine in experime it No. 12 was as follows:

Irtily progrem-Mctabolism experiment No. 12.

7.06 a, m	Rise, pass urine, collect drip, weigh absorlers, weigh self stripped and iressed.
$7.45 \mathrm{a} . \mathrm{m}$	Breakfast, lrink 200 grams water.
$8.26 \mathrm{a} . \mathrm{m}$	Becin work.
$10.20 \mathrm{a} . \mathrm{m}$	Rest 10 minutes, drink alcohol, drink 200 grams water.
$10.30 \mathrm{a} . \mathrm{m}$	Begin work.
$12.30 \mathrm{p} . \mathrm{m}$	Stop work, drink 200 grams water.
$1.001 \mathrm{~m} . \mathrm{m}$.	lasw urine, collect trip, weigh absorbers.
$1.15 \mathrm{I} . \mathrm{mm}$	Dinner.

$1.50 \mathrm{p} . \mathrm{m}$	Begin work.
$3.50 \mathrm{p} . \mathrm{m}$	Stop work, rest 10 minutes, drink alcohol, drink 200 grams water.
4.00 p . in	Begin work.
$6.00 \mathrm{p} . \mathrm{m}$	Stop work.
$6.30 \mathrm{p} . \mathrm{m}$	Supper, change underclothes, weigh self stripped and dressed.
$7.00 \mathrm{p} . \mathrm{m}$	Pass urine, collect drip, weigh absorbers.
10.00 p . m	Take cover off food aperture, drink 200 grams water, retire.
$1.00 \mathrm{a} . \mathrm{m}$	Pass urine.

The subject weighed himself, with and without clothing, at about 7 a . m, and 7 p . m. each day of the experiment. He ohserved his pulse rate, after intervals of rest, and took his body temperature from time to time by means of a registered rinical thermometer. The body temperatures were measured sul, lingur. We do not think that great reliance can be placed upon observations for either pulse rate or temperature when made by the subject upon bimself under such conditions.

A hygrometer inside the whmber wan oberred two or three times each day in order to give data conerning the amount of water vapor within the calorimeter, but the figures are not used in the final computations of results.

These statistics noted by the subject within the calorimeter are recorded in a diary, together with any other information which he thinks may be of value in interpreting the results of the experiment.

The main facts in the diary of experiment No. 12 are shown in Table IV.
Table V recapitulates the record of work done on the ergometer. It is much less than would be required to propel a bicycle the number of miles indicated by the cyclometer.

Table IV.-simmery of diary-Metabolism experiment No. 12.

Date mind time.	Weight of subject.		Pulse rate per minute.	Tempera-ture.	Hygrometer.	
	Without clother.	$\begin{aligned} & \text { With } \\ & \text { clothes. } \end{aligned}$			Dry bulb.	Wet bulb.
Apr, 12, 7.00 a.m.	Kitograms. 70.9	Kilograme. 75. 09	64	${ }^{\circ} \mathrm{FS} .$	$\begin{aligned} & \circ{ }^{\circ} \mathrm{C} \\ & 21.5 \end{aligned}$	${ }^{\circ}{ }^{C}{ }_{16.4}$
12, $12.40 \mathrm{p.m}$			68	98.8	21.8	18.6
$12,7.00 \mathrm{p} . \mathrm{m}$.	71.7	75.38				
12, 9.45 p. m.			77	98.3	21.5	18.0
13,7.00 a. m.	71.09	74.82	56	96.1	21.4	17.4
$13,12.40 \mathrm{p} . \mathrm{m}$.			68	98.8	21.5	18.8
13,6.30 p.m.	71.40	74.96				
13, $9.45 \mathrm{p} . \mathrm{m}$.			71	98.4	21.5	18.0
14, $7.00 \mathrm{a} . \mathrm{m} .$.	70.56	74. 19	58	97.0	21.4	17.0
14, $12.40 \mathrm{p} . \mathrm{m}$.			70	49.0	21.4	18.8
14,6.30 p.m.	70.98	74. 50				
14, $9.45 \mathrm{p} . \mathrm{m}$.			73		21.5	17.8
15, $7.00 \mathrm{a} . \mathrm{m}$.	70.47	73.98	57	97.2	21.3	16.8
$15,12.40 \mathrm{p} \cdot \mathrm{~m} .$			72	97.0	21.7	19.0
$15,7.00 \mathrm{p} . \mathrm{m} .$	71.12	74.51				
15, $9.45 \mathrm{p} . \mathrm{m}$.			it	99.0	21.5	17.8
16, $7.00 \mathrm{a}, \mathrm{m}$.	70.31	73.98	60	96.4	22.0	18.4

Table V.-Record of work done-Metabolism experiment No. 12.

Table V.-Record of work done-Metabolism experiment No. 12-Continued.

Date and time.	Cyclometer reading."	Number of miles.	$\begin{gathered} \text { Actual } \\ \text { duration of } \\ \text { Work. } \end{gathered}$	Rate.	Heat equivalent.
Apr. 15, 8. $20 \mathrm{a} . \mathrm{m}$	168	36	Mins.	Watts.	Calories.
			120		
$15,10.20 \mathrm{a} . \mathrm{m}$	132			30	103.7
$15,12.30 \mathrm{p.m}$.	93				
$15,3.50$ p.m.	57			26	89.3
15,5.30 p. m	34	23	120		
		600	1,920		801.0

${ }^{\text {a }}$ The cyclometer was reversed.
Food and excreta.-The weight, composition, and heat of combustion of the food and feces in this experiment are shown in Tables VI and VII. The weights of the different elements and compounds are computed by use of the ralues for percentage composition of the different materials as shown in Tables I and II:

Table VI.-Weight, composition, and heat of combustion of foods-Metabolism experiment No. 12.

$\begin{aligned} & \text { Labora- } \\ & \text { tory } \\ & \text { No. } \end{aligned}$	Food material.	Weight per day.	Water.	Protein.	Fat.	Carbohydrates.	Nitrogen.	Carbon.	$\begin{gathered} \text { Hydro- } \\ \text { gen } \end{gathered}$	Heat of combustion.
2860	Beef	Grams. 175.0	Grams. 114.3	Grams. 47.9	Grams. 9.8	Grams.	$\begin{gathered} \text { Grams } \\ 7.67 \end{gathered}$	$\begin{aligned} & \text { Grams. } \\ & 31.24 \end{aligned}$	$\begin{array}{r} \text { Grams. } \\ 4.57 \end{array}$	Calories. 350
2 S 58	Deviled ham	50.0	20.7	9.2	18.2		1.47	18.05	2.73	218
2861	Butter	95.0	10.4	. 5	82.1		. 08	60.62	9.63	751
28.57	Whole milk	900.0	787.5	27.6	40.5	37.8	4.41	59.13	9.00	718
2859	Bread.	300.0	121.2	25.3	3. 0	144.3	4.53	81.81	11.76	799
	Maize breakfast food	60.0	2.9	7.1	4.9	44.0	1.13	26.67	3. 90	266
	Sugar	70.0				70.0		29.47	4.54	277
	Total	1,650.0	1,057.0	120.6	158.5	296.1	19.29	306. 99	46.13	3,379
	Aleohol	72.4						37.77	9.45	512
	Total						19.29	344.76	55.58	3,891

Table VII.- Weight, composition, and heat of combustion of feces-Metabolism experiment No. 12.

Laboratory No.		Weight.	Water.	Protein.	Fat.	Carbohydrates.	Nitrogen.	Carbon,	Hydrogen.	Heat of combustion.
2862		Grime. 370.0	Grams. 274.2	Grams. 31.1	Grams. 25.9	Grams. 22.6	Grams. 5.00	Grams. 48.29	Grams. 6.85	Calorics. $5+5$
	Average per day	92.5	68.6	7.8	6.5	5.7		12.07		136

The separations between the feces from the food consumed during the experiment and those from the food consmmed before and after were made by means of charcoal, as described on page 239. Intomuch as separations made in this way are at the best not as satisfactory as might be desired, no attempt was made to determine the excreta from the food on different days of the experiment. It is assumed that, when the food and exercise are so nearly uniform, the undigested residues and metabolic products would not rary a great deal from day to day. Eren if there were irregularities from day to day they would hardly he large enongh to affect rery greatly the arerage for the whole experiment.

The amount, specific gravity, and nitrogen of the urine for the different 6 -hour periods during the experiment are shown in 'lable VIll. and the carhon, hydrogen, water, and energy of
the daily urine in Table IX. The urine was also collected during the preliminary period of t dar: and during 12 hours following the experiment. Aliquot portions (from one-half to two-third-) in these b-hour periods were taken for the preparation of a composite sample of the urine for the day, and in like manner aliquot portions (about one-eighth of the total weight of urine) of the composite sample of the urine for $2 \pm$ hours were taken for the preparation of a composite sample for the whole period of the experiment. The nitrogen was determined in the urine for each dar and in the composite for t dars of the experiment. The quantities of nitrogen eliminated each dar. as determined from the 6 -hour periods and from the composite sample for the dar. do not always agree exactly. Such discrepancies may be due in part to small errors in the sampling of the composites, in part to errors in the amount of urine measured out for analrsis. and in part to errors in the analyses. Samples mere measured out for analyses in a calibrated $\check{\jmath}$-c. c. pipette, and it is possible that differences in the amount delisered from time to time might introduce slight errors in the results. It is assumed. where discrepancies exist, that the values obtained from the 6 -hour periods are the more accurate. and these latter are consequently used in the estimation of the nitrogen balance.

It is difficult to eraporate urine to dreness withont more or less decomposition of urea to ammonium carbonate. and consequent loss of energy. Accordingly. no attempt was made to determine the solid matter in the urine of indiridual dars. but a portion of the composite sample for the experiment was dried according to the manner described on page 239 and the residue used for the determination of carbon. hrdrogen. and heat of combustion. The heat of combustion is also determined in the composite samples of the fresh urine each day, as explained abore. The precautions taken to avoid error through loss of nitrogen, carbon, and energy during the process of drying of the urine hare been described in the publication referred to on page 239.

The nitrogen is determined in the fresh urine from day to day. but in order to obtain an approximate measure of the amount of carbon and hydrogen in the urine on the successive days of the experiment some computations are necessary. In making these computations it is assumed that the ratio of nitrogen to carbon. hydrogen or water-free substance will be the same for each indiridual day as for the \pm days. Thus, the amount of nitrogen in the urine of the first day of the experiment wa* 17.62 grams, and that for the whole experiment 71.56 grams. The carbon for the whole experiment was found by actual determinations to he 49.15 grams. The computations for the amount of carbon in the urine for the first day would then he as follorts: $71.5: 49.15:: 16.62: x(=12.05)$. This method of estimating the carbon and hrdrogen in the urine on the different days is manifestly more accurate than would be the case if the total quantity of carbon and hydrogen in the urine for the experiment were divided br the number of dars, as is done in estimating the daily excretion through the feces. We know that the quantities of nitrogen and carbon in the urine vary from day to day. and have an accurate measure of the rariation of the nitrogen, and, since the rariation in the nitrogen must insolve variations in the amount of carton united with this nitrogen in the form of mea and allied compounds, it does not seem inappropriate to take the rariation - in the nitrogen as a measure of the corresponding rariations in the earbon. Of conme there may be rarying quantities of non-nitrogenons compounds in the urine from day to dar, which would render the above method of estimation more or less inaceurate. It is probable. howerer. that the variations in nitrogen gire the fairest measure of the rariations in carbon and hydrogen. As a matter of fact. it has been found that the heat of combustion raries in clove relation to the nitrogen. Of course. the result- for the experiment as a whole are not affected by the subdivisions of the amounts for the individual days.

Table VIII.-Amount, specific gravity, and nitrogen of urine by 6-hour periods-Metabolism experiment No. 12.

Table IL.-Daily elimination of carbon, hydrogen, water, and energy in urine-Metabolism experiment No. 12.

Date.	Amount.	Carbon.		Hydrogen.		Water.		Heat of eombustion.			
				Per gram.	Total.						
1898.	Grams.	Per ct.	Grams.			Per ct.	Grams.	Per ct.	Grams.	Calories.	Calories.
Apr. 12 to 13.	1,093.0		12.05		3.30		1,025.9	0.112	123		
13 to 14.	1,334. 5		14.44		3.95		1,254. 1	. 108	145		
14 to 15.	1,069.6		10.70		2.93		1,010.0	. 115	123		
15 to 16.	1, 140.1		11.96		3.27		1,073.6	. 114	130		
Total.	4,637.2	1.06	49.15	29	13. 45	94.1	4,363.6	(.112)	${ }^{\text {a }} 521$		

[^17]Carbon dioxid and water of respiration and perspiration.-The determinations of carbon dioxid and water in the ventilating air current in this experiment are shown in Tables XI and XII, which follow. Table \mathbf{X} gives the total amounts of earbon dioxid and of water in the air of the chamber at the close of each period and the gain or loss during the period. Differences in the amounts in the chamber at the beginning and end of a given period--" residual "amounts, as they are here termed-indicate whether the ventilating air current has removed more or less cartoon dioxid and water than was actually exhaled ly the subject during the corresponding period. For instance, if a change from rest to work is made during a given period, the quantities of carbon dioxid and water given off will be increased, and the air remaining in the chamber at the end of the periox will contain a larger amount of these products than was present in the air of the chamber at the begimning. This inerease must be added to the amount actually
found in the rentilating air current in order to ohtain the actual amount exhaled during the interval. On the other hand when the transition is made from a period of con-iderable activity to one of rest. there i- a gradual dimmution of the puantity of mithal carlon dioxid and water in the air of the chamber. Thi- residual carbon dioxid i- carred out in the rentilating air current during the period. hut was actually given off during somp preceding period. The total amount measured mu-t. therefore he diminished by the difference in the yuantities of residual carbon dioxid at the hegimning and end of the period. Furthermore, with the increased water content of the air consequent upon increased musenlar work, the amount of water acenmulated by condensation upon the water strstem or "absorber" may be gradnally increaved. Indeed, the amount of water thas condensed in periods of active work is apt to be so large that a portion gradually drips from the trough or shields beneath the water srotem into the "drip flask" suspended at the end of the shields. This water is called "drip." The weight of the mater sratem or absorbers also increase through the condensation of moi-ture which does not run off into the drip. On the other hand. with the change from work to rest. the meight of the absorbers diminishes beeause of evaporation of some of the moisture condensed thereon during the precious period.

In order to determine the actuat amount of carbon dioxid and water rapor in the air of the chamber at the elose of each period. samples of the air are drawn and the quantitie of carhon dioxid and water determined. At the same time the aboorbers are weighed and the drip collected. The data thus obtained. shown in Table \mathbb{X}. serve for correcting the amounts of carbon dioxid and water found in the rentilating air current, as shown in Tables. XI and XII berond.

In experiment No. 12 drip wan not weighed at the end of each period, but was poured into a bottle and the total amount for each 24 hour pawed out at the close of the day and weighed. We hare, therefore, no measure of the amount of drip in the different periods. It is altogether improbable that the amount was uniform from period to period, but in lack of any indication as to how it should be subdivided, the amounts hare been apportioned equally among the four periods of the dar. While this may introduce some error in individual period, it does not affect the aceuracy of the figures for the whole day.

Table X.-Comparison of residual amounts of carbon dioxid and whter in the chember at the lrginning and end of each jerion and the consapourding grin or lose-Metubolism experiment No. 1?.

Date.	End of perionl.	Carbon dioxid.		Water.				
		Total amount in chamber.	Gain $(+)$ or loss -) over preceding period.	$\begin{aligned} & \text { Total } \\ & \text { amount of } \\ & \text { caror re- } \\ & \text { maining } \\ & \text { in chamm- } \\ & \text { ber. } \end{aligned}$	Gain + 1 or toss 1-) over preceding leriod.	Change in weight of aburber. Gain (+) or loss $1-1$.	Drip from absorbers.	Total amount (+1 or lost 1-) period.
$\begin{gathered} 1 \times 95 . \\ \text { Apr. } 12-13 . \end{gathered}$		Grams. 24.3	Grame.	Gram. 40. $\overline{1}$	Gram*.	Grams.	Grams.	Grame.
	$1 \mathrm{P} . \mathrm{m}$	93.6	-14.3	55.4	-17.	-296	191.5	49.3.2
	$7 \mathrm{p} . \mathrm{m}$	71.5	-2. 1	57.6	- .	- 166	191.6	24.8
	1 a. m.	31.4	-40. 1	56.6	-1.0	- 34	191.6	156. ${ }^{\text {c }}$
	T a. m	30.5	- . 9	51.:	-5.1	-34	191.6	152.2
	Tutal.	----	- 1.2		± 10.5	- E^{2}	766.3	$\bigcirc 2.8$
13-14..	1 p.m.	99.5	-69.0	61.9	-10.7	-112	298.0	420.7
	ip.m.	79.0	-20.5	64.9	$\begin{array}{r}10.0 \\ \hline-3.3\end{array}$	- 9	298.0	292.0
	$\frac{1}{1}$ a. m m. m .	31.4 26.9	-4.3 -4.8	54.6 51.5	-3.3	- 25	297.9 297.9	$\begin{aligned} & 265.16 \\ & 25: .1 \end{aligned}$
	Total.	-3.6		-. 6	-53	1,191. s	1.245.4
$1+15$.	1 p.m.	s.. -	-61.3	60.2	+8.1	- 7	251.3	335.7
	Tp.m.	74. 4	-13.8	63.5	-3.6	- 11	251.3	265.5
	1 a. m .	25.1	-4:3 3	56.0	-7.8	- 81	251.2	162.4
	7a. m.	$\because 7$	- - 0	50.7	-5.3	- 81	251.2	164.9
	Tutal.	1. . -	-.......	-1.1	- it	1,005.0	929.9

Tible ‥-Compurison of resietual umounts of earbon dioxid and water in the chamber, etc.-Continued.

Date.	End of period.	Carbon dioxid.		Water.				
		$\begin{gathered} \text { Total } \\ \text { amount in } \\ \text { chamber. } \end{gathered}$	$\begin{gathered} \text { Gain (}+ \text {) } \\ \text { or loss } \\ \text { preceding } \\ \text { period. } \end{gathered}$	Total amount of vapor re- maining in cham- ber.	Gain (+) or loss (-) over preceding	Change in weight of absorbers. or loss $(-)$.	Drip from absorbers.	$\begin{aligned} & \text { Total } \\ & \text { amount } \\ & \text { gained } \\ & \text { lost or } \\ & \text { during }(-) \\ & \text { deriod. } \end{aligned}$
1595.$15-16 .$	1 p. m \qquad p. m. 1 a.m. \qquad 7 a. m. \qquad	Grams. 81.5 32.1 30.2 27.4	$\begin{array}{r} \text { Grams. } \\ +54.4 \\ -49.4 \\ -1.9 \\ -\quad .8 \end{array}$	$\begin{array}{r} \text { Grams. } \\ 61.1 \\ 61.4 \\ 54.3 \\ 50.6 \end{array}$	$\begin{aligned} & \text { Grams. } \\ & +10.4 \\ & +\quad .3 \\ & -7.1 \\ & -3.7 \end{aligned}$	$\begin{aligned} & \text { Grams. } \\ & +110 \\ & +106 \\ & -36 \\ & -36 \end{aligned}$	$\begin{aligned} & \text { Grams. } \\ & 233.0 \\ & 233.0 \\ & 232.9 \\ & 232.9 \end{aligned}$	Grams. 353.4 339.3 189.8 193.2
	Total \qquad Total for 4 days.		$+\quad .3$		- . 1	+144	931.8	1,075. 7
			-1.9	-.......	$+9.9$	+175	3,894.9	4,079.8

The determinations of carbon dioxid in the ventilating air current in this experiment are given in detail in Table XI. This table shows the total ventilation in liters during each 6 -hour period, and the quantity of carbon dioxid in the incoming air and in the outgoing air. The difference between the carbon dioxid in the incoming and outgoing air, corrected for changes in the amount of residual carbon dioxid, gives the amount actually exhaled by the subject. Threeelevenths of this amount is taken as the quantity of carbon.

The letters in the column headings of these tables serve to indicate how the quantities in the different columns are obtained.

Table XI.-Record of carbon dioxid in ventiluting air current-Metabolism experiment No. 12.

The quantity of water exhaled hy the subject in the different periods of the experiment ate shown in Table XII. Unlike the earbon dioxid, the major portion of the water exhated is condensed either within the chamber as drip, upon the surface of the ahsorbers, or in the "freezer" cans, which are immersed in a brine tank eooled to ahout - $\because 0$ C., and through which the ventilating air eurrent passes. Table XII shows the amonnt of water in the ingoing air, the amount in the outgoing air not condensed in the freezers, and the correction for water remaning in the chamber. The final column of the table shows the total water of respiration and perapiration during the different periods of this experiment.

Table XII.-Record of water in ventilating air curron-Metalwhism experiment No. 12.

Heut measurements.-The details of the measurements of heat given off by the subject during the experiment are too extensive to be given here. Those for each hour of the day and night, as recorded, till a page of a notebook sheet 22 by 29 cm. For a detailed deseription of the appliances for determining the amount of heat carried out by the water enrrent and for avoiding gain or loss of heat from the apparatus except where it can be determined, reference may be made to an earlier publication on this subject. ${ }^{a}$ As has already been explained (see p. 237), the larger part of the heat given off by the subject is carvied away in the water current, whose temperature as it enters and leaves the apparatus is determined at intervals of from 2 to t minntes, and whose quantity is measured in cylinders holding 10 liters each. The arerage difference in temperature between the ineoming and ontgoing water multiplied hy the mumber of kilograms of water which has passed through the chamber gives the momber of catories of heat removed during the time. Since, however, the specific heat of water varies at different temperatures, it
is our custom to reduce all these measurements of heat to the calorie at $20^{\circ} \mathrm{C}$. To this end it iss necessary to multiply the number of calories of heat remored in the water current at the mean difference of temperature between the incoming and ontgoing current by the mean specific heat of water for that range. The product gives the corrected heat measured in terms of calories at 20^{2} C. or C^{-20}. These corrected ralues appear in the first column of Tible XIII. For a more detailed discrission of this subject see page 55 of Bulletin 63. above referred to.

The heat measured in terms of C_{20} does not represent all of the heat given off by the subject during a gireu period, but must be corrected for changes in temperature of the calorimeter and for the heat introduced or removed by articles of food and drink taken into or remored from the chamber. and for the heat required to raporize the excess of water given off in the outgoing as compared with the incoming air cmrrent; i. e.. latent heat of vaporization of water given off from the lungs and skin.

The temperatures of the inner walls of the calorimeter are obserred at the beginning and end of each period. If these walls are warmer at the end than at the beginning of the period, some heat has been absorbed. If they are cooler. some heat has been added to the air of the chamber. For a rise in temperatnre of 1^{2} C. it has been found that the walls absorb 60 calories of heat, and rice rersa, in cooling 1° they give up 60 calories of heat. The changes of temperature are, howerer, kept so nearly constant as to rary rarely more than a tenth of a degree between the beginning and end of any period.

The temperature of the drink is taken immediately before it is passed into the chamber, and corrections are made for heat introduced by the hot coffee, or required to bring the cold water to the temperature of the chamber. The temperature of the food is brought as nearly as possible to that of the chamber before being sent in to the subject, so that little or no heat is added to or remored from the apparatus in this way. The corrections for temperature of food and drink and the dishes containing them are shown in column d of Table XIII.

From the best data arailable it appears that 0.592 calorie of heat is required for the raporization of one gram of water at the temperature of $\mathrm{C}^{\circ}{ }_{20}$. Water which condenses on the absorbers and is removed as drip gives up this latent heat of raporization within the chamber and it is measured by the water current. The water which passes out from the chamber in the form of rapor in the rentilating air current carries ont, however, a considerable quantity of latent heat. The amount of water raporized is found by taking the algebraic difference between the total excess of water in the outgoing air, as shown in column g of Tabie XII, and the gain or loss of water rapor in the air of the chamber, as shown in the fourth column of Table \mathbf{X}. The amount of water thus vaporized multiplied by 0.592 , the heat of vaporization of 1 gram , gives the total heat removed by the raporization of water within the chamber.

The heat carried away in the water current, as measured in terms of $\mathrm{C}^{\circ}{ }_{2 n}$, corrected for change in temperature of calorimeter and for temperature of food and drink introduced into the chamber, added to the amonnt removed in the water rapor, gives the total heat determined, as shown in colmmn y of Table XIII.

Table XIII.-Simmary of ealorimetric measurement:-Metabolism experiment No. 12.

Table N111.-Summary of merimetrio morantements-Metabolism expriment No. 12-Contimuenl.

Elimination of unoridized alcolol. -The urine, freezer water, and air current were tested for alcohol or products of incomplete oxidation of alcohol by the method referred to on page 258 above. The results obtained in this experiment are shown in Table XIV. It will be observed that 95 per cent of the alcohol taken with the food was apparently oxidized in the body. Inasmuch, howerer, as it has since been found ${ }^{\text {a }}$ that even when alcohol forms no part of the diet there is a considerable amount of organic material in the urine, drip water, and ventilating air current which is capable of redueing the chromie acid employed, it is probable that the actual elimination of moxidized or incompletely oxidized alcohol is considerably smaller than is indicated by the figures in the table.

Table NIV.-Alcohol ingested and exereted-Metabolism experiment No. 12.

Late.	Alcoholingested.	Alcohol excreted, including other redneing material calculated as alcohol.					Alcohol metabolized in body.				
		In nrine (distillate).	$\begin{aligned} & \text { In drip } \\ & \text { (distil- } \\ & \text { (late). } \end{aligned}$	in freezer water (distillate).	$\begin{gathered} \text { In sir } \\ \text { current. } \end{gathered}$	Total.					
1895. Experiment No. 13.											
April 12-13	72.4	0.12	0.06	0. 06	1.02	1.26	71.1	98.2			
13-14	72.4*	17	. 15	. 04	1.07	1. 43	71.0	95.1			
14-15	72.4	. 29	. 36	. 03	1. 40	2.01	70.4	97.2			
15-16	72.4	. 11	. 10	. 03	1. 02	1. 26	71.1	95.8			
Total	249.6	. 62	. 67	. 16	4.51	5.46	283.6			
Average fer day	72.4	. 16	. 17	. 04	1.13	1. 49	70.9	97.9			

[^18]The experimental data recorded in detail in the preceding tables can be summarized in "derived" tables showing the balance of income and outgo of matter and energ'y, the amounts of materials excreted under different conditions and at different times of the day, and other points of interest.

Jitrogen und carbon bulunce.-The daily income and outgo of nitrogen and carbon in this experiment are summarized in Table XV. The quantities of nitrogen and of carbon in the food, feces, and wrine are derived respectively from Tables VI-VIII, the quantity of carbon in the respiratory products from Table XI, and the alcohol eliminated from Table XIV.

Vitrogenous muterials and water of perspiration collected in clothing. -It will be noticed that the figures in column c of Table XV , nitrogen in urine, differ slightly from those given in Table VIII. The subject changed his underclothing each night. The gain in weight of the underelothes from the time they were sent into the chamber until they were sent out was taken as water absorbed, and the amount thus removed is added to that in column e of Table XVI, "Water in respiratory products." The underelothes taken out were extracted with distilled water, which was afterwards evaporated nearly to dryness, the residue made up to a given volume, and the nitrogen determined by the Kjeldahl method. The nitrogen thus given off amounted, in this experiment, to 0.96 gram for the 4 days. This amount has been divided equally between the different days of the experiment and added to the amount of nitrogen in the urine. The sums are given in column c of the following table:

Table XV.-Income aml outgo of nitrogen and carbon-Metabolism experiment No. 12.

Date and period.	Xitrogen.				Carbon.					
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(k)
	In food.	$\underset{\substack{\text { In } \\ \text { feces. }}}{\text { cec. }}$	$\begin{gathered} \text { In } \\ \text { urine. } \\ \text { (n) } \end{gathered}$	$\begin{gathered} \text { Gain } \\ (++) \text { or } \\ \text { loss }(-) \\ a-(b+ \\ c) . \end{gathered}$	In food.	$\underset{\text { feces. }}{\text { In }}$	$\underset{\text { In }}{\text { In }}$	In re-spiratory products.	In al-eliminated.	$\begin{aligned} & \text { Gain } \\ & (+) \text { or } \\ & 1088(-) \\ & c-(j+ \\ & g+h+i) . \end{aligned}$
	Givame.	Grams.	Grams.	Grams.	Grams.	Grams.	Grams,	Grams.	Grams.	Grame.
	19.3	1.3	17.9	$+0.1$			12.1	348.8	0.7	- 29.0
	19.3	1.2	21.3	-3.2	344.8	12. 1	14.4	358. 6	. 7	- 40.4
	19.3	1.3	15.9	+2.1	344.7	12.1	10.7	339.1	1.0	-18.2
	19.3	1.2	17.7	+.4	344.8	12.1	12.0	332.8	. 7	- 12.8
Total	77.2	5.0	72.8	$-.6$	1,379.0	48. 4	49.2	1,378.7	3.1	-100.4
Average fer day..	19.3	1.3	18.2	$-.2$	344.8	12.1	12.3	344.7	. 8	-25.1

${ }^{a}$ Including nitrogen of perspiration. The nitrogen thus given off amounted to 0.96 gram for the four days, and ha* been divided equally between the different days of the experiment and added to the amount of nitrogen in the urine.

IIydrogen butance.-The income and ontgo of hydrogen and water upon the different days of this experiment are shown in Table XVI. The figures are collated from the previous tables. The values for water of respiration and perspiration have been increased by the amount absorbed by the underelothing on each day, and therefore differ from the corresponding values as found in the last column of Table XII. The water thus absorbed by the underclothing and removed from the apparatus amounted to $63,10,12.3$, and 7 grams, respectively, on the successive days of the experiment. The apparent loss of water is shown in column f of the table. The quantities in this column are always negative, since the water given off in the respiratory products is derived not only from the water taken into the sristem with food and drink but also from the oxidation of hycdrogen and organic compounds. When, therefore, we consider the income and outgo of water, the body is apparently losing becalme of the oxidation of hydrogen within the body to form water. The figures of column f, therefore, represent water apparently but not actually lost from the body. The fuantities in columns $\%, 7$, and $;$ of Table XVI represent the amounts of hadrogen in organic combination in the food, feces, and urine, and the values in column l show the apparent gains of hydrogen. The guantities in this column are always positive, owing to the
fact that the most of the hydrogen in organic combination in the food is eliminated, not in organie combination in the feces and urine, hat in the form of water in the urine or respiratory products. In other words, the figures in column $/$ apparently represent hydrogen gained by the body in organic compounds, but for the most part actually represent hydrogen given off as water. The total gain or loss of hydrogen for the experiment is calculated by adding together the hydrogen apparently lost as water, column f, and the hydrogen in organic combination apparently gained, column 7. This total gain or loss of hydrogen is shown in column n. There was in this experiment a gain of hydrogen on the first day and a loss on the three following days, making an arerage loss for the experiment of 20.8 grams per day.

It shonld he said, howerer, that the determinations of water and consequently of hydrogen are less satisfactory than those of nitrogen, carbon and energy.

Table IVI.—Income and outgo of water and hydrogen. Metabolism experiment Jo. 12.

Estimuted greins and losses of body protein and fiet. -From the data summarized in Tables XV and XVI we may compute the gain or loss of protein, fat, and water on the successive days of the experiment. These computations are shown in Table XVII. If nitrogen is gained or lost, a corresponding gain or loss of protein is assmmed. Protein componnds are here assmmed to contain on the average 16 per cent of nitrogen, 53 per cent of carbon, and 7 per cent of hydrogen. Accordingly, the gain or loss of protein is computed by multiplying the gain or loss of nitrogen by 6.25 , and is shown in column 3 . Whatever protein is gained or lost must, by the above assumption, contain 53 per cent of carbon and 7 per cent of hydrogen. The amounts of carbon and hydrogen in the protein graned or lost in the successive days of this experiment, as thms computed, are shown in columns d and h. The algebraic difference between the total carbon gained or lost and that in the protein gained or lost gives the amount of carbon gatined or lost in other compounds, namely, fat, glycogen, etc. It is probable that the amount of glycogen in the body at the time of rising, $7 \mathrm{a} . \mathrm{m}$., does not differ greatly from day to day, and the assumption is here made that all of the gain or loss of carbon abore that in the protein gained or lost comes from change in the amount of body fat. It is assumed that arerage body fat contains 76.5 per cent carbon ${ }^{\text {a }}$ and the amount of fat gained or lost is consequently computed by diriding the ralues in columme by .765 , as is shown in column f. Assuming, as before, that there has been no change in the body content of glyeogen, the algebraic difference between the total hydrogen gained or lost and that in the protein and fat gained or lost is assumed to represent the hydrogen gained or lost in the form of water.

[^19]These latter values are shown in column k of the table. The corresponding amomes of water are shown in column 7.

So far from claming that these assumptions and the calculations hased upon them are correct, we are pernaded that they must he more or less erroneons: but until determinations can be made of the income and outgo of oxygen, we can hardly be warranted in making other assumptions than those stated abore. It is our present belief that the largest errors are in the figures for water. The experimental data are recorded in such detail in prerious tables that modifications in the method of computing the nitrogen, carbon, and hydrogen balance, and the gain or loss of lody material can he made at any time shorld results of later researeb indicate that such modifications were desirable.

Table IVII.-Gain or loss of protein (N: $\times 6.25$), fat, and water. Metabolism experiment No. 12.

Date and period.	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(k)	(l)
		$\begin{aligned} & \text { Protein } \\ & \text { gained } \\ & \text { (}+ \text { ort or } \\ & \text { lost }\left(\frac{-}{a}\right) \end{aligned}$	Total carbon gained (+) or lost (-).	$\begin{aligned} & \text { Carbon } \\ & \text { in pro- } \\ & \text { tein } \\ & \text { gained } \\ & \text { (tot or } \\ & \text { lost }(-) \\ & \text { b } \times .53 \text {. } \end{aligned}$	$\begin{gathered} \text { Carbon } \\ \text { in fat, } \\ \text { etc., } \\ \text { gained } \\ \text { (}+ \text {) or } \\ \text { lost }(-) \\ c-d . \end{gathered}$	$\begin{gathered} \text { Fat } \\ \text { gained } \\ 1+\text { or } \\ \text { lorst }(-) \text {. } \\ e \div .765 . \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { hydro- } \\ \text { gen } \\ \text { gained } \\ \text { (t) or or } \\ \text { lost }(-) . \end{gathered}$	Hydro- gen in pro- tein gained $(+$) or lost, $b \times .07$.	Hydro- gen in fat gained $(++$ or lost $(-)$ $f \times .118$.	Hydrogen in ete. gained (+) or $\left(\frac{1}{(h}+i\right)$.	$\begin{gathered} \text { Water } \\ \text { gained } \\ (+) \text { or } \\ \text { lost }(-) \\ k \times 9 . \end{gathered}$
1898.April $12-13,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.$13-14,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.		Grams.					6rams.	Grams. 0.0	Grams.	Grams.	
	+0.1	+0.6	- 29.0	+ 0.3	-29.3	-38.3				+28.5	
	-3.2+2.1	-20.0	-40.4	-10.6	-29.8	- 39.0	$\begin{aligned} & +24.0 \\ & -53.7 \end{aligned}$	-1.4	-4.6	-47.7	
		+13.1+2.5	$\begin{array}{r} -18.2 \\ -12.8 \end{array}$	$\begin{array}{r} +7.0 \\ +1.3 \end{array}$	$\begin{aligned} & -25.2 \\ & -14.1 \end{aligned}$	$\begin{array}{r} -32.9 \\ -18.4 \end{array}$	$\begin{array}{r} -53.7 \\ +\mathbb{1} 1.3 \end{array}$	+. 9	$\begin{array}{r}-3.9 \\ -2.2 \\ \hline\end{array}$	$\begin{array}{r} +14.3 \\ -13.9 \end{array}$	
16-17, 7 a . m. to 7 a . m.	$+.4$						$\begin{array}{r} +11.3 \\ -15.9 \end{array}$	+. 2			$\begin{aligned} & +125.1 \\ & -125.1 \end{aligned}$
Total	-. 6	-3.8	-100.4	-2.0	-98. 4	-128.6	-34.3	$-.3$	-15.2	-18.8	-169.2
Arerage per day	. 2	- 1.0	-25.1	- . 5	-24.6	-32.2	-8.6	$-.1$	-3.8	-4.7	- 42.3

Balance of energy. - The income and outgo of energy are shown in Table XVIII. The figures for heats of combustion of food and unoxidized materials of feces and urine are taken from Tables VI. ViI, and VIII, respectively. The ralues in column d, heat of combustion of alcohol eliminated, are derived from the corresponding values in the fifth column of Table XIV by multiplying the total alcohol unoxidized, as there given, by the heat of combustion per gram, 7.067 calories. As explained on page 258 , small quantities of organic matter in the rentilating air current were reckoned as alcohol, hence the figures in colnmn d somewhat orerstate the heat of combustion of the alcohol given off unoxidized. The values in column e are obtained by multiplying the number of grams of protein gained or lost by the heat of combustion of one gram of protein, which is taken as 5.65 calories. The estimated beat of combustion of fat gained or lost, as shown in colnmn f, is computed for the different days from the corresponding values in Table XVII upon the supposition that each gram of fat has a heat of combustion of :9.5 calories, ${ }^{a}$ which has been found to be not far from the arerage for one gram of various animal fats. The estimates of column g are the heats of combustion of the food eaten less the algebraic sum of the heats of combustion of food, feces and body material gained or lost. To put it in another way, they are the heats of combustion of the food eaten and of body material lost less the heats of combustion of feces. urine. and body material stored. They may be said to represent the net income of energy to the body. The net outgo is measured directly by the apparatus, and is shown in column /, of Table XVIII. The net income averages in this experiment 5 calories per day lew than the net outgo. On different days of the experiment the net outgo varied from 25

[^20]Table XVIII.-Income and outgo of energy.-Metrhelixme ryprimut .Viv. 1~.

Date and periox.		(b)Heat oi combun tion of ieces.		$\begin{aligned} & \quad(d) \\ & \\ & \text { Heat of } \\ & \text { combus. } \\ & \text { tivn of } \\ & \text { aleohol } \\ & \text { elimi- } \\ & \text { nated. } \end{aligned}$		(f) Ertimated heat of combus. tion of fat gained (ot or lost $(-)$.	19) Estimated energy of material oxidized in the borly $a-$ $(b+c+a$ $+e+f)$.	(h) Heat determined.	$\begin{gathered} (i) \\ \text { Heat de- } \\ \text { termined } \\ \text { greater } \\ \text { (+1or } \\ \text { less }(-) \\ \text { than esti- } \\ \text { mated } \\ h-g . \end{gathered}$	$\begin{aligned} & (k) \\ & \text { Heat de- } \\ & \text { termined } \\ & \text { greater } \\ & \text { lte) or } \\ & \text { less }(- \text { neti- } \\ & \text { mated } \\ & i \div g . \end{aligned}$
Apr. 12-13, 7 a. m. to i a. m	$\begin{gathered} \text { Culorics. } \\ 3,841 \end{gathered}$	Calorics. 136	Culorics. 123	Calorit 8. 9	$\begin{gathered} \text { Calorice. } \\ +\quad 4 \end{gathered}$	$\begin{array}{r} \text { Calorir. } \\ -\quad 360 \end{array}$	Culorices. $3,979$	Culorics. 3,954	Calorifs.	$\begin{aligned} \text { Per cent. } \\ -0.6 \end{aligned}$
13-14, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	3, 891	136	145	10	-115	- 367	4,082	4,094	$+12$	+0.3
$1+15,7$ a. m. to 7 a. m	3, 391	136	123	14	+ 75	- 309	3, 852	3, 85.2	0	0.0
$15-16,7$ a.m. 10 ' t . m	3, 891	136	130	9	+ 14	- 173	3,755	3, 810	-35	$+0.9$
Total	15,564	544	521	42	- 22	-1,209	15, fiss	15, 710	-22
- rerage per day	3, $\times 41$	136	130	11	- 6	- 302	3,922	3,927	+ 5	-0.1

EXPERIMENTA NOS. $1 . \mathfrak{Z}-17$-REST. WITH ALCOHOL DIET.
Subject.-E. O.. who was the subject of No. 12. His weight without clothing was about is kilograms (156 pounds).

Occupation during experiment.-Reading, writing, etc., with as little mental and muscular actirity as was compatible with comfort.

Dicration.-Preliminary period 4 days, beginning with breakfast January 12, 1899. The series of experiments Nos. $15-17$ began at 7 a. m., January 16 , and ended at 7 a. m., January 22 . The whole period was thus 6 days, of which 2 days were giren to each cxperiment. The subject entered the respiration chamber on the evening of January 15 . The total time spent in the chamber was thus 7 nights and 6 days.

Diet.-Ordinary food furnishing, per day, 109 grams of protein and 2,141 calories of energy, and in addition $i 2.5$ grams of absolute alcohol, furnishing 512 calories of energy, making the total energy of the diet 2,653 calories. The alcohol was taken in 6 doses, 3 with the meals and the other 3 between meals and just before retiring.

In experiment No. 15 commercial ethyl alcohol was added to a sweetened coffee infusion, as in experiment No. 12. To T75.2 grams of coffee infusion were added 45 grams of sugar and 79.8 grams of 90.9 per cent commercial ethyl alcohol, making a total of 900 grams of the mixture. containing ise.s grams of water.

In experiment No. 16 whisky containing $45 . \delta$ per cent ethyl alcohol by weight was nsed. Instead of adding the whisky to the coffee infusion it was taken with sugar in water. The whiskr and sugar were added to the water by the subject within the calorimeter, in the proportion of 155.3 grams whisky, 45 grams sugar, and 696.7 grams water, making a total of 900 grams, containing 782.5 grams of water and 72.5 grams absolute alcohol, as in experiment No. 15 . An apparent increase in the alcohol found in the rentilating air current during experiment No. 16 led us to beliere that some alcohol might be eraporated during the admixture of whisky and water in the apparatus, and in the following experiments the mixture of alcohol with coftee or water was prepared outside, as had been done in all cases previous to No. 16.

In experiment No. 17 the alcohol was administered in the form of brandy, containing 50.4 per cent alcohol by weight. To 711.2 grams of water were added 45 grams of sugar and 143.5 grams of brandy, thus furnishing the same amount of water and alcohol as in the previous experiments. The alcohol in the whisky and brandy was determined by the usual method of distillation and determination of the specific gravity of the distillate. ${ }^{\text {a }}$

[^21]Diet in metabolism experiments Nos. 15-17.
FOOD.

	Breakfast.	Dinner.	Supper.	Total.
	Grams.	Grams.	Grams.	Grams.
	5	10		160 30
Milk, skimmed	300	260		
Bread	55	100	155	310
Parched cereal..	30			30
Sugar	12		${ }^{\text {a }} 45$	57

${ }^{\text {a }}$ Used in coffee infusion and alcohol.
DRINK.

${ }^{\text {a }}$ Contains 72.5 grams absolute alcohol and 45 grams sugar.

Daily routine.-The general routine of the experiment was as follows:

Daily programme-Metabolism experiments Nos. 15-17.

$7.00 \mathrm{a} . \mathrm{m}$.	Rise, pass urine, weigh self stripped, collect drip, and weigh absorbers.	$6.30 \mathrm{p} \cdot \mathrm{~m}$	Supper. Pass urine, collect drip, and weigh ab-
7.45 a . m.	Breakfast.		sorbers.
$10.30 \mathrm{a} . \mathrm{m}$	Drink 200 grams water.	$10.00 \mathrm{p} . \mathrm{m}$	Drink 200 grams water, weigh selt
1.00 p.m	Pass urine, collect drip, and weigh absorbers.		stripped, take cap off food aperture, retire.
$1.30 \mathrm{p} . \mathrm{m}$	Dinner.	$1.00 \mathrm{a} . \mathrm{m}$	Pass urine.
3.30 p. m	Drink 200 grams water.		

The main facts recorded in the diary kept by the subject during the experiment are shown in Table XIX:

Table NIX.-Summary of diary-Metabolism experiments Nos. 1.5-17.

Table XI..-Summary of diur!-Miquholism prppriments Nos. 15-17-I'ontinued.

Detuiled stutistics of income and outgo.-The weight, composition, and heat of combustion of food, feces, and urine are shown in Tables XX to XXIII. The gross income of nitrogen, carbon, hydrogen, and energy in the food and drink did not rary from day to day, and the outgo of each in the feces was assumed to be uniform in all the 6 days of the 3 experiments. Inasmuch as the diet was identical in the different experiments, with the exception of the substitution of whisky and brandy for the commercial cthyl alcohol, this assmmption regarding the feces is probably within the limits of experimental error. The elimination of nitrogen in the urine was quite constant during the 6 days within the respiration chamber. During the 4 days of the preliminary period it amounted to $11.7,16,13.4$, and 10.4 grams, respectively. The wrine of the daily eomposite samples decomposed before the heat of combustion could be determined. The heat of combustion of the urine for each day has therefore been compited from that of the composite sample of the 6 days, according to the method employed for computing the carbon and hydrogen on the different individual days from the total carbon and hydrogen eliminated in the urine duriug the experiment.

Table MX. - Weight, composition, and heat of combration of foods-Mitaholism experiments Nos. $15-1 \%$.

$\begin{gathered} \text { Labora- } \\ \text { tory } \\ \text { No. } \end{gathered}$	Fond material.	Weight per day.	Water.	Protein.	Fat.	Carbohy drates.	$\begin{aligned} & \text { Nitro- } \\ & \text { gen. } \end{aligned}$	Carbon.	$\begin{aligned} & \text { Hydro- } \\ & \text { genn } \end{aligned}$	Heat of eombustion.
3009	Beef	Grams. 160	Crams. 110.7	Grams. 41.7	Grams. 4.2	cirams.	Grams. 6.67	Grams. 24. 38	Grams. 3.66	Colorics. 263
300%	Butter	30	3.1	. 4	25.8		. 06	18.57	3.12	239
3006	Milk,	950	850.3	38.9	1.0	52.3	6. 18	43. 79	6. 27	445
2968	Brearl	310	129.3	24.5	8.7	143.5	3.94	84.72	12. 74	840
3004	Cereal, parched	30	1.5	3.4	2	24.1	. 55	12.42	1. 55	12:
	Sugar.	57				57.0		$2+.00$	3.69	226
	Tota	1,537	1,095. 2	108.9	89.9	276.9	17. 40	207. 88	31. 33	2, 141
	Alcohol.	72.5						37.82	9.46	512
	Total						17. 40	245. 70	40.79	2, 6.53

Table XX1.-Weight, composition, and heat of combustion of feces-Metubolism experiments . Vos. 15-1\%.

Labora tory No.		Weight.	Water.	Protein.	Fat,	Carbohydrates.	$\begin{aligned} & \text { Nitro- } \\ & \text { g gel. } \end{aligned}$	Carbon.	$\begin{aligned} & \text { Hydro- } \\ & \text { gen. } \end{aligned}$	Heat of combustion.
3008	Total for 6 days	Grams. 315.5	Grams. 215.5	Grams. 30.9	Grame. 17.7	Grams. 27.1	Frams. 4.95	Grams. 46.85	Grams. 6.53	Calurice. 528
	Average per day.	52.6	35.9	5.1	3.0	4.5	. 82	7.81	1.09	88

Table NIII.- Imount, specific gravity, and nitrogen of urine by six-hour periods-Metabolism experiments Nos. $1 \overline{5}-17$.

Table XXIII.-Daily elimination of carbon, hydrogen, water, and energy in urine-Metabolism experiments Nos. 15-17.

There was hut very little change in the weight of the absorbing system inside the apparatus during the experiment, and the drip from the system was very slight, so that little correction has to be made for variations in the weight of the absorbers. The details of the determinations of carbon dioxid and water are as follows:

Table IXIV.-Comparison of residual amounts of carbon dioxid and water in the chamber at the beginning and end of each period, and the corresponding gain or loss-Metubolism experiments $\mathrm{Vos.}_{\text {15-17 }}$ 15.

Date.	End of period.	Carbon dioxid.		Water.				
		$\begin{aligned} & \text { Total } \\ & \text { amount } \\ & \text { in cham- } \\ & \text { ber. } \end{aligned}$	Gain (+) or loss $(-)$ over preceding period.	$\begin{aligned} & \text { Total } \\ & \text { amount } \\ & \text { of vapor } \\ & \text { remain- } \\ & \text { ing in } \\ & \text { chan. } \\ & \text { ber. } \end{aligned}$	Gain (+) or loss $(-)$ over preced period.		$\mathrm{Drip}_{\text {from }}$ absorbers.	
$\begin{gathered} 1899 . \\ \\ \\ \\ \\ \\ \\ \\ \hline \end{gathered} 6$	$7 \mathrm{a} . \mathrm{m}$.	Grams. 31.4	$\begin{aligned} & \text { Grams. } \\ & +1.0 \end{aligned}$	$\begin{array}{r} \text { Grams. } \\ 32.9 \end{array}$	$\begin{array}{r} \text { Gram8. } \\ +0.5 \end{array}$	Grams.	Grams.	Grams.
	$1 \mathrm{p} . \mathrm{m}$.	37.5	$+6.1$	38.8	$+5.9$	$+5$	3	$+13.9$
	$7 \mathrm{p} . \mathrm{m}$	39.1	+ 1.6	41.4	+2.6	-8	3	-2.4
	1 a . m.	25.2	-13.9	47.3	+5.9	+1	3	+9.9
	$7 \mathrm{a} . \mathrm{m}$	26.4	+1.2	38.6	-8.7	+1	3	-4.7
	Total.		-5.0		$+5.7$	- 1	12	+16.7
17-18	1 p. m.	33.3	$+6.9$	40.1	$+1.5$	-13	3	-8.5
	$7 \mathrm{p} . \mathrm{m}$.	40.5	$+7.2$	41.7	+1.6	-3	3	+1.6
	1 a.m.	27.4	-13.1	49.1	+7.4	$+5$	3	$+15.4$
	$7 \mathrm{a} . \mathrm{m}$	31.2	+ 3.8	43.2	-5.9	$+5$	3	+2.1
18-19	Total		$+4.8$		$+4.6$	-6	12	$+10.6$
	1 p. m..	35.2	+4.0	42. 1	-1.1	$+4$	3	+ 5.9
	$7 \mathrm{p} . \mathrm{m}$.-.	40.7	+ 5.5	47. 1	$+5.0$	+ +5	3	+13.0
	$\frac{1}{1}$ a. m....	28.4	-12.3	45.8	-1.3	-3	3	1.1 .3 -1.4
	7 a. m.	25.5	- 2.9					-5.4
19-20	Total		-5.7		-3.8	$+4$	12	+12.2
	$1 \mathrm{p} . \mathrm{m}$.	42.1	+16.6	41.6	$+2.2$	+11	3	$+16.2$
	7 p. m.	44.1	+2.0	45.0	$+3.4$	+14	3	$+20.4$
	$1 \mathrm{a} . \mathrm{m}$.	29.5	-14.6	46.2	+1.2	- 8	3	-3.8
	$7 \mathrm{a} . \mathrm{m}$.	27.7	- 1.8	41.3	-4.9	-8	3	-9.9
20-21	Total		+2.2		$+1.9$	+9	12	$+22.9$
	$1 \mathrm{p} . \mathrm{m}$.	38.9	+11.2	39.2	-2.1	-9	3	-8.1
	$7 \mathrm{p} . \mathrm{m}$.	38.4	- . 5	42.5	$+3.3$	$+17$	3	$+23.3$
	1 a . m..	29.3	-9.1	48.6	$+6.1$	-11	3	-1.9
	$7 \mathrm{a} . \mathrm{m}$.	27.7	-1.6	40.1	-8.5	-11	- 3	-16.5
21-22	Total.				-1.2	-14	12	-3.2
	$1 \text { p. m. . }$	38.3	+10.6	40.1		+11	3	$+14.0$
	p. m..	38.9	$+.6$	+2. 2	$+2.1$	+14	3	+19.1
	$1 \text { a.m. }$	26.2	-12.7	42.9	$+.7$	-19	3	-15.3
	$7 \mathrm{a} . \mathrm{m}$.	30.1	+ 3.9	38.4	-4.5	-19	3	-20.5
	Total		$+2.4$		-1. 7	-13	12	-2.7
	Total for 6 days		-1.3		$+5.5$	-21	72	$+56.5$

Vol. 8-No. 6-6

Table XXV.-Record of carbon dioxid in ventilating air murrent-Metabolism experiments Nos. 15-17.

Table NXVI.-Record of unter in ventilating air current-Metabolism experiments Nos. $15-1 \%$.

Table XXVII summarizes the results of the calorimetric measurements during this experiment.

Table XXVII.-Summary of calorimetric measurementw-Metabolism cxperiments Nos. 15-1\%.

Elimination of moxidizel alcohol.-As has been explained on page 258 there may be a considerable amount of reducing matter in the ventilating air current when alcohol does not form a part of the diet. The determinations of the quantity of reducing matter in the air current during these experiments were made in the manner previously described, and the amounts are all reckoned as alcohol, although it is not believed that this is the case. It seems probable that the increased elimination of reducing matter in the air current on the 2 days of experiment No. 16 is due to the mixing of the whisky and water within the chamber by the subject, as already mentioned. According to the figures in Table XXVIII the subject actually metabolized 97.9 per cent of the alcohol in the diet during experiment No. 15, 96.6 per cent in experiment No. 16 , and 97.9 per cent in experiment No. 17 .

Table NXVIII.-Alcohol ingested and excreted-Mftabolism experiments Nos. 15-17.

Date.	Alcohol ingested.	Alcohol excreter, including other reducing material calculated as ulcohol.				Alcohol metabolized in body.	
		$\begin{aligned} & \text { In urine } \\ & \text { (distillate). } \end{aligned}$	$\begin{gathered} \text { In freezer } \\ \text { water } \\ \text { distillate). } \end{gathered}$	In air cur- rent.	Total.		
1899.							
Jan. 16-17 $17-18$	$\begin{array}{r} \text { Gram. } \\ 72.5 \\ 72.5 \end{array}$	Grams. 0.10 . 17	Grams. 0.03 .03	Grams. 1.35 1.40	$\begin{aligned} & \text { Grams. } \\ & 1.48 \\ & 1.60 \end{aligned}$	Grams. 71.0 70.9	$\begin{array}{r} \text { Per cent. } \\ 97.9 \\ 97.8 \end{array}$
Experiment No. 16.							
Jan. 18-19	$\begin{aligned} & 72.5 \\ & 72.5 \end{aligned}$.15 .23	$\begin{array}{r} .04 \\ .02 \end{array}$	$\begin{aligned} & 2.13 \\ & 1.62 \end{aligned}$	$\begin{aligned} & 2.32 \\ & 1.87 \end{aligned}$	70.2 70.6	96.8 97.4
Experiment No. 17.							
Jan. 20-21	72.5	. 12	. 04	1.53	1. 69	70.8	97.7
Total	435.0	. 77	. 19	9.30	10.26	424.7	----.
Average per day.	72.5	. 13	. 03	1. 55	1. 71	70.8	97.7

Balance of income and outgo of mutter and energy.-The income and outgo of nitrogen, carbon, hydrogen, and energy in these experiments are shown in Tables XXIX to XXXII. It will be noticed that the subject was nearly in nitrogen and carbon equilibrium. The amount of water consumed was $1,382.5$ grams, 600 of which were contained in drinking water and 782.5 in coffee infusion or water with which the alcohol was mixed. The agreement between the estimated euergy of materials oxidized in the body and the heat actually deternined in these experiments was rery close, the rariations being so small as to lie far within the limit of experimental error.

Table XXIX.-Income and outgo of nitrogen and carbon-Metabolism experiments. Nos. 15-17.

Table NXX.-Income und outgo of unter rad hydrogen-Metabolism experiments Nos. 15-1\%.

Date and period.	Watcr.					
	(a)	(b)	(c)	(d)	(e)	(f)
	In foort.	In clrink.	In fecer	In urine.	In respiratory products.	Apparent loss $a+b-$ $(c+d+e)$.
1899.						
Experiment Jis. 1.5.				Grams.		Grams.
Jan. 16-17, i a. m. to i a. m...... 1і-18, 7 a . m. to 7 a . m......	1,095. 2	1,3*2. 5	35.9	1, +26. 4	910. 9	$+104.5$
Total for 2 days	2, 190.4	$2,765.0$	71.3	3,623.5	1,877.6	- 617.5
	1,095. 2	1,382. 5	3 35. 9	1,811.8	938.8	- 308.8
Experiment Vo. 16.						
Jan. 18-19, 7 a. m. to 7 a. m...... 19-20, 7 a a. m. to 7 a a. m.....	1,095.2	1,382. 5	35.9	1,813.9	947.1	- 319.2
	1,095. 2	1,382.5	35. 9	1,876.2	896.6	- 331.0
Total for ? davs Average per day	$2,190.4$	2, 765.0	71.	3, 690.1	1.843. 7	- 650.2
	1.095.2	1,382.5	35.9	1,845. 0	921.9	325.1
Experiment No. 17.						
Jan. 20-21, 7 a. m. to $7 \mathrm{a} . \mathrm{m}$ 21-2n, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$			35.9	1,903.2	903.6	- 365.0
	1,095.2	1,382.5	35.9	2, 026.6	89.4	- 464.2
Total for 2 days Average per day	2, 190.4	2, 765.0	71.8	3, 929.8	1,783.0	- 829.2
	1,095.2	1,382.5	35.9	1,964.9	891.5	- 414.6
Total for 6 days. Average per day	6,571.2	8, 295.0	215.4	11, 243.4	5,504.3	-2.096.9
	1.095. 2	1,352.5	35.9	1, 873.9	917.4	- 349.5

Hydrogen.

Date and period.	In ford.	In feces.	(i)	(k) Inalcohol eliminsted.	(l) Apparent $\operatorname{gain}_{(h+i+k)} g-$	(m) Loss from water $f \div 9$.	$\begin{gathered} (n) \\ \text { Total } \\ \text { gain }(+) \\ n \mathrm{r} \\ \operatorname{loss}(-) \\ l+m . \end{gathered}$
$\begin{array}{r} 1899 . \\ \text { Experiment Yo. } 15 . \\ \text { Jan. } 16-17,7 \text { a.m. to } \overline{1} \text { a. m...... } \\ 1 /-18,7 \text { a. m. to } 7 \text { a. m...... } \end{array}$	$\begin{array}{r} \text { Grams. } \\ 40 . \\ \hline 10 . \end{array}$$40 .$	$\begin{array}{r} \text { Grams. } \\ 1.1 \\ 1.1 \end{array}$	firams.3.03.5 3. 2	$\begin{array}{r} \text { Grams. } \\ 0.2 \\ .2 \end{array}$	$\begin{aligned} & \text { Grams. } \\ & +36.5 \\ & +36.3 \end{aligned}$	$\begin{aligned} & \text { Grams. } \\ & +11.6 \\ & -\quad 50.2 \end{aligned}$	$\begin{aligned} & \text { Grams. } \\ & +48.1 \\ & -+3.9 \end{aligned}$
Total for 2 days	81.6	2.2	6.2	4	+ 72.8	-68.6	$+4.2$
Arerage per day	40.s	1.1	3.1	. 2	+ 36.4	-34.3	+2.1
Experiment So. 16.							
Jan. 18-19, ${ }_{\text {19, }} \mathbf{7}$ a. m.	$\begin{aligned} & 40.8 \\ & 40.8 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.1 \end{aligned}$	$\begin{array}{r} .3 \\ .2 \end{array}$	$\begin{array}{r} +36.4 \\ +36.4 \end{array}$	- 35.5	$\begin{array}{r}+\quad .9 \\ -\quad .4 \\ \hline\end{array}$
Total for 2 dars Arerage per day	$\begin{aligned} & 81.6 \\ & 40.8 \end{aligned}$	2.2	6.1	. 5	+ 72.8	- 72.3	$+.5$
		1.1	3.1	. 2	+ 36.4	- 36.1	+ . 3
Experiment Do. 17.							
Jan. 20-21, 7 a. m. to 7 a. m....... 21-22, $7 \mathrm{a} . \mathrm{m}$. to 7 a . m.......	$\begin{aligned} & 40.8 \\ & 40.8 \end{aligned}$	1.11.1	3.1	. 2	$\begin{array}{r} +36.4 \\ +36.4 \end{array}$	-40.5	- 4.1-15.2
Total ior 2 days Average per day	$\begin{array}{r} 81.6 \\ +0.8 \end{array}$	2.2	6.2	. 4	+ 72.8	-92.1	-19.3
		1.1	3.1	2	+ 36.4	-46.1	-9.7
Total for 6 dars...........Average per day	$\begin{array}{r} 244.8 \\ 40.8 \end{array}$	6.6	18.5	1.3	$+218.4$	-233.0	-14.6
		1.1	3.1	2	$\bigcirc 36.4$	- 38.8	-2.4

Table MXXI.—Guin or loss of protein $(N \times 6.25)$, fut, and water-Metabolism experiments Mos. $15-17$.

Table NXX11.-Income rind outgo of energy-Metabolism experiments Nos. $1 \tilde{j}-17$.

	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(k)
Date and period.	Iteat of combins- tion of food eaten.	$\begin{aligned} & \text { Heat of } \\ & \text { combus } \\ & \text { tion of } \\ & \text { feces. } \end{aligned}$	Heat of comburs tion of urine.	Heat of combus tion of alsohol nated.	Estimated combuss tion of protein gained lost (-).		Estimaterl energy of material in the bordya- $\begin{gathered} (b+c+c)+ \\ c+f) . \end{gathered}$	Heatdetermined.	nleat deter- mined greater (+ or les $(-)$ than es- timnted, $h-g$.	
1899.										
Experiment Mo. 15.										
Jan. 16-17, 7 a. m. to 7 a. m	$\begin{aligned} & \text { fatories. } \\ & 2,653 \end{aligned}$	$\begin{gathered} \text { Calories. } \\ 88 \end{gathered}$	$\begin{gathered} \text { Calories. } \\ 123 \end{gathered}$	$\begin{gathered} \text { Calories, } \\ 10 \end{gathered}$	$\begin{gathered} \text { Calories. } \\ +54 \end{gathered}$	$\begin{gathered} \text { Calorics. } \\ +\quad 8 \end{gathered}$	$\begin{aligned} & \text { Culorics } \\ & 2,370 \end{aligned}$	ralorirs. 2,382	$\begin{gathered} \text { Calories. } \\ +12 \end{gathered}$	$\begin{array}{r} \text { Per cent. } \\ +0.5 \end{array}$
17-18, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	2,653	88	132	11	$+15$	+63	2,344	2,343		
Total for 2 day	5, 306	176	255	21	+ 69	$+71$	4, 714	4,725	+11	
Average per day	2,653	88	128	11	$+34$	$+35$	2,357	2,362	$+5$	$+.2$
Experiment Mo. 10.										
Jan. 18-19, 7 a. m. to 7 a. m.	2,653	88	124				2,325	2, 308		$-.7$
$19-20,7$ a. m. to 7 a.m.	2,653	88	128	15	+ 32	+ 43	2,347	2,356	+ 9	$+.4$
Total for 2 days	5, 306	176	252	31	+82	+93	4,672	4,664	- 8	
Average per day	2,653	88	126	15	+ 41	+47	2,336	2,332	-4	-. 2
Experiment No. 1%.										
Jan. 20-21, 7 a.m. to 7 a. m	2, 653	88	128	12	+32	$+126$	2, 267	2,248	-19	. 8
$21-22,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	2,653	88	128	9	$+36$	+81	2,311	2, 304	- 7	-. 3
Total for 2 days	5,306	176	256	21	+68	$+207$	4,578	4,552	-26	
Arerage per day.	2,653	88	128	10	$+34$	$+104$	2, 289	2,276	13	-. 6
	15,918	528	763	73	$+219$		13,964	13, 941		
Average per day...	2,653	88	127	12	$+37$	+62	2,327	2,323	-4	. 2

EXPERIMENTS NOS. $18-21$. -REST. NOS. $18-20$ WITH ALCOHOL DIET.
Sulject.-A. W. S., a physicist, who was associated with these inrestigations. He was 25 years of age and areraged about 70 kilograms (154 pounds) in weight.

Occupation during experiment.-Reading, writing, etc., with as little mental and muscular activity as practicable.

Duration.-The preliminary period began with breakfast, February 2, 1899, and continued 4 days. On the evening of the fourth day the subject entered the calorimeter, and experiment No. 18, the first of the series, commenced at $7 o^{\circ}$ clock the following morning, February 6 , and continued 2 days. It was followed by Nos. 19 and 20 of 2 days each. A fourth experiment, elsewhere described, ${ }^{\text {a }}$ No. 21, in which the alcohol was omitted from the diet. followed No. 20 immediately and contimued 3 days. The subject thus spent 10 nights and 9 days in the chamber.

Dict.-Ordinary food furnishing 97 grams of protein and $2,26+$ calories of energy per day, in addition to 72.5 grams of absolute alcohol furnishing 512 calories of energy; making the total energy of the diet 2,776 calories per day. In experiment No. 18 the alcohol was furnished in ordinary commercial alcohol, in experment No. 19 in whisky, and in experiment No. 20 in brandy. The plan of the experiment was thus practically the same as that of the previous series of experiments. Nos. 15-17. The alcohol was taken as usual in 6 doses, 3 with the meals and the other 3 between meals and upon retiring.

In experiment No. 18, 775.2 grams of coffee infusion were sweetened with 45 grams of sugar, and 79.8 grams of 90.9 per cent commercial alcohol were then added. In experiment No. 19, 158.3 grams of whisky containing 45.8 per cent alcohol by weight was added to 696.7
grams of water, sweetencd with 45 grams of sugar. In experiment No. 20, 143.8 grams of brandy containing 50.4 per cent alcohol by weight was added to 711.2 grams of water, sweetened with 45 grams of sugar. It will be noticed that the coffee infusion was used only in the first of the series of experiments. The reason for use of the coffee infusion was to cover up the taste of the commercial ethyl alcohol, which was somewhat obnoxious to the subject.

The kinds and quantities of food served at each meal and the quantity of drink at different periods were as follows:

$$
\text { Diet in metabolism experiments Nos. } 18-21 .
$$

FOOD.

${ }^{3}$ Used with the coffee infusion or water and alcohol in experiments 18-20.

DRINK.

Time.	Experiment 18.		Experiment 19.		Experiment 20.		$\underset{21 .}{\text { Experiment }}$
	Alcohol and sweetened coffee infusion. ${ }^{a}$	Water.	$\begin{gathered} \text { Whisky } \\ \text { and } \\ \text { sweetened } \\ \text { water.^ } \end{gathered}$	Water.	$\begin{gathered} \text { Brandy } \\ \text { and } \\ \text { sweetened } \\ \text { water.a } \end{gathered}$	Water.	Water.
Breakfast	Grams. 300		Grams. 300	Grams.	Grams. 300	Grams.	Grams. 300
$10 \mathrm{a} . \mathrm{m}$		200		200		200	200
Dinner.	300		300		300		300
- $3.30 \mathrm{p} . \mathrm{m}$		200		200		200	200
Supper-	300		300		300		300
10.30 p. m		200		200		200	200
	${ }^{\text {a }} 900$	600	${ }^{\text {a }} 900$	600	${ }^{\text {a }} 900$	600	1,500

${ }^{a}$ Contained 72.5 grams alcohol and 45 grams sugar.
Daity routine.-The general plan of the experiment was practically the same as in the previous experiments, and is shown in the following schedule:

Duily programme-Mctebolism experiments Nos. 18-20.

The statisties of the diary kept by the subject are summarized in Table XXXIII.
Table XXXIIt.—Siumary of diary-Metubolism experiments Nos. 18-20.

Detailed stutistics of income and mityo. - The usual statistics of income and outgo of matter and energy are shown in Tables XXXIV to XLVI, which follow. The diet was the same during the series of experiments Nos. 18-20, except in the form of alcohol taken. It supplied 97 grams of protein and 2,776 calorics of energy per day. In experiment No. 21 , which immediately followed, the diet was the same, with the exception that no alcohol was administered, so that the total energy of the food was only 2,264 calories.

No separation of the feces was obtained between the beginning of the preliminary period and the end of experiment No. 21, in which the subject had what may be called the basal ration without the alcohol. It was necessary, therefore, to assume a miform amount of feces from the food from day to day. While this may introduce a slight error in the results of the 3 experiments with alcohol, Nos. 18-20, such crror can hardly be large enough to affect serionsly the computed results of the experiments.
T.ble XXXIV.-Weight, composition, cend heat of combustion of foods-Metabolism erperiments Nos. 18 -21.

$\begin{aligned} & \text { Labora- } \\ & \text { tory } \\ & \text { No. } \end{aligned}$	Food material.	Weight per day.	Water.	Protein.	Fat.	Carbohydrates.	Nitrogen.	Carbon.	$\begin{gathered} \text { Hydro- } \\ \text { gen } \end{gathered}$	Heat of combustion.
3022	Beef	Grams. 160	Frams. 106.7	Grams. 44.6	Grams. 4. 2	Grams.	Grams. 7.14	Grams. 26.51	frams. 4. 06	Calorics. 292
3020	Butter	30	2.6	. 4	26.3		. 06	19.87	3. 16	245
3024	Milk, whole	750	649.5	24.0	33.0	37.5	3.83	52.72	7.05	587
2968	Bread.	310	129.3	24.5	8.7	143.5	3.94	84.72	12. 74	840
3004	Cereal, parched	30	1.8	3.4	. 2	24.1	. 55	12.42	1.85	122
	Sugar	45				4.5		18.95	2.92	178
	Total Feb. 12 to 14 Alcohol	$\begin{array}{r} 1,325 \\ 72.5 \end{array}$	889.9	96.9	72. 4	250.1	15.52	215.19	$\begin{array}{r} 31.78 \\ 9.46 \end{array}$	$2, \frac{264}{512}$
	Total Feb. 6 to 12						15.52	253.01	41.24	2,776

Table NXMV.— Weight, composition, and heat of combustion of feces-Metabolism experiments Nos. $18-21$.

Laboratory No.		Weight.	Water.	Protein.	Fat.	Carbohydrates.	Nitrogen.	Carbon.	Hydrogen.	Heat of combustion.
3033	Total for 13 days	Grame. 831.7	Grams. 603.8	Grams. 84.0	Grams. 52.4	Grams. 52.4	Grams. 13.47	Grams. 116.69	Grams. 16. 13	Calories. $1,307$
	Average per day	63.9	46.4	6.5	4.0	4.0	1. 04	8.98	1.24	100

In these investigations the elimination of nitrogen in the urine on the first day inside the apparatus has frequently been larger than that of the preceding and following days. Sometimes this increase occurs 1 or 2 days before the subject enters the respiration chamber. On the t days of the preliminary period preceding this series of experiments the nitrogen in the urine amounted to $12.2,16,19$ and 16.4 grams, respectively On the first day of experiment No. 18 the nitrogen in the urine amonnted to 17.4 grams, but it dropped to 15.4 grams on the second day, and varied between 13.9 and 14.7 on subsequent days. In experiment No. 21 , when the energy of the diet was reduced, the excretion of nitrogen again increased. The elimination of nitrogen with and without alcohol has been already referred to.

Table XXXVI gives the detailed statistics of the quantity of urine and its nitrogen content in the successive 6 -hour periods of this series of experiments. The statistics for experiment No. 21 , in which no alcohol was given, show the total quantity of urine and nitrogen for the individual days, but not for individual periods. These daily amounts are given for the sake of comparison with those of experiments 18-20.

Table XIXIVI.-Imount, specific gravity, and nitrogen of urine by 6-hour periods-Metabolism experiments Nos. 18-20. a

Date.	Period.	Amount.	Specific gravity.	Nitrogen.	
Feb. $\begin{array}{r}1899 . \\ 6-7\end{array}$	Experiment Mo. 18.	Grams.		Per cent.	Grams.
	7 a. m. to 1 p.m.	$325 . \pm$	1. 022	1.47	4. 78
	$1 \mathrm{P} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$	441.7	1. 018	1.21	5.34
	$7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$	265.5	1.027	1.14	3.03
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	299.8	1. 021	1. 41	4. 23
	Total	1,332. 4			17.38
	Total by composite	1,332.4	1. 019	1.31	17.45
	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$.				
	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$.	690.3	1. 011	. 71	4.90
	71].m. to 1 a, m.	194. ${ }^{\text {a }}$	1.017	1.08	2. 10
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	225.9	1. 024	1.59	3.59
	Total	2,001.3			15. 40
	Total by composite	2,001.3	1.013	. 78	15.61
	Experiment No. 19.				
	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m} .$.	609.8	1.012	. 70	4.27
	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$.	387.6	1.018	1. 07	4. 14
	${ }^{7} \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$.	155.8	1. 020	1. 36	2.12
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	337.7	1.017	1.23	4.15
	Total	1,490.9			14.68
	Total by composite	1,490.9	1.015	. 97	14.46
$9-10$.	Ta.m. to $1 \mathrm{p} . \mathrm{m}$.	569.8	1.011	. 72	4.10
	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$.	664.7	1.012	. 66	4.39
	Tp.m. to 1 a. m.	262.8	1.013	. 87	2.29
	1 a . m. to 7 a. m	237.5	1.020	1. 44	3.42
	Total	1,734.8			14. 20
	Total by composite.	1,734.8	1.013	. 82	14.22

[^22]Table X.XVI.-Amount, specific gravit!, and nitroyen of urine by 6 -hour priods, ets. -Continned.

Table NXXV11.-Daily eliminution of carbon, hydrogen, water, and energy in urine-Metabolism experiments Nos. 1S-20."

[^23]The details of the measurements of carbon dioxid and water in the ventilating air current are shown in Tables XXXVIII to XL, which follow. The total amounts of carbon dioxid and water eliminated each day in Experiment No. 21 are also added for comparison.

Table NXIV1II.-Comparison of resictual amounts of carbon dioxid and water in the chamber at the beginning and end of euch period, and the corresponding gain or loss-Metabolism experiments Nos. 18-20.

Date.	End of period.	Carbon dioxid.		Water.			
		$\begin{gathered} \text { Total } \\ \text { amount } \\ \text { in } \\ \text { chamber. } \end{gathered}$	Gain (+) loss (-) over preperiod.	$\begin{aligned} & \text { Total } \\ & \text { amount } \\ & \text { of vanor } \\ & \text { remain- } \\ & \text { ing in } \\ & \text { chamber. } \end{aligned}$	$\begin{aligned} & \text { Gain }(+) \\ & \text { or }(+) \\ & \text { loss }(-) \\ & \text { over pre- } \\ & \text { ceding } \\ & \text { period. } \end{aligned}$	$\begin{gathered} \text { Change } \\ \text { in } \\ \text { weight } \\ \text { of ab- } \\ \text { sorbers. } \\ \text { Gain }(+) \\ \text { or } \\ \text { loss }(-) . \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { amount } \\ & \text { gained } \\ & \text { (}+ \text { oort } \\ & \text { lost }(-) \\ & \text { during } \\ & \text { the } \\ & \text { period. } \end{aligned}$
1899. Feb. $6-7$ $7-8$	$7 \mathrm{a} . \mathrm{m}$	Grams. 29	Grams.	Grams. 35.0	Grams.	Grams.	Grams.
	$1 \mathrm{p} . \mathrm{m}$	42.6	+13.6	46.4	+11.4	+2	+13.4
	$7 \mathrm{p} . \mathrm{m}$	41.8	-1.3	42.1	-4.3	+2	-2.3
	1 a. m.	37.2	-4.1	46.2	+4.1	+1	+5.1
	$7 \mathrm{a} . \mathrm{m}$.	31.5	-5.7	39.3	-6.9	+1	-5.9
	Total		$+2.5$. .--....	+ 4.3	$+6$	$+10.3$
	$1 \mathrm{p} . \mathrm{m}$.	39.6	+8.1	40.8	+1.5	-1	$+.5$
	$7 \mathrm{p} . \mathrm{m}$.	31.3	-8.3	44.5	$+3.7$	-1	+ 2.7
	1 a. m.	30.1	-1.2	41.0	-3.5	- 1	-4.5
	$7 \mathrm{a} . \mathrm{m}$.	26.4	-3.7	35.6	-5.4	- 1	-6.4
	Total		-5.1		-3.7	-4	--7.7
8-9	$1 \mathrm{p} . \mathrm{m}$.	39.2	$+12.8$	41.8	+6.2	+2	+8.2
	7 p.m.	38.9	- 1.3	41.1	-. 7	+2	+1.3
	1 a. m.	26.8	-12.1	38.0	-3.1	+1	-2.1
	$7 \mathrm{a} . \mathrm{m}$.	26.3	- . 5	33.6	-4.4	+1	-3.4
9-10	Total		- . 1		-2.0	$+6$	+ 4.0
	$1 \mathrm{p} . \mathrm{m}$.	37.5	+11.2	39.3	$+5.7$		
	$7 \mathrm{p} . \mathrm{m}$	40. 1	+ 2.6	38.2	-1.1	-1	-2.1
	1 a. m.	30.3 29.9	-9.8 -0.4	39.7	+1.5 +3.3	-1 -1	+ .5
	$7 \mathrm{a} . \mathrm{m}$	29.9	-0.4	36.4			- 5.3
Total			$+3.6$		$+2.8$	-5	-2.2
10-11	$1 \mathrm{p} . \mathrm{m}$.	37.5	$+7.6$	39.1	$+2.7$		$+5.7$
	$7 \mathrm{p} . \mathrm{m}$.	42.8	+ 5.3	40.9	$+1.8$	+2	+3.8
	$1 \mathrm{a} . \mathrm{m}$.	30.4	-12.4	39.3	-1.6	+2	+ . 4
	7 a. m.	35.5	+5.1	36.1	-3.2	+2	-1.2
11-12	Total		+ 5.6		-. 3	$+9$	$+8.7$
	$1 \mathrm{p} . \mathrm{m}$.	40.8	$+5.3$	43.5	$+7.4$		+ 7.4
	7 I . m .	42.8	+ 2.0	39.3	-4.2		-4.2
	1 a . m.	30.9	-11.9	41.6	$+2.3$		+2.3
	$7 \mathrm{a} . \mathrm{m}$	32.7	$+1.8$	38.1	-3.5		-3.5
	Total		- 2.8		$+2.0$		$+2.0$

Table: MNXIN. - Record of carbun dioxiel in rentilating air current-Metelelism experiments . Nos. 18-202.

[^24]Table N゙L.-Record of water in ventiluting uir current-Metabolism experiments Nos 18-20. a

Date.	Period.		Water in incoming air.		Water in outgoing air.			(g)Total ex-cess waterin ontyoring air,$f-c$.	Correction for water re-maining in chamber.	
			Perliter.	(c) Total, $a \times b$.	(d) Amount condensed in freezcrs. freezers.	(e) Amount not condensed in freezers.	(j) Total, $d+e$			
$\begin{array}{r} \text { Feb. }{ }^{1899 .} 6-7 \\ \\ \\ \\ \\ \\ \\ \end{array}$		Liters. 25, 745 26, 362 27, 245	$\begin{array}{r} M g \\ 0.825 \\ .769 \\ .799 \\ .812 \end{array}$	Grams. 21.5 19.8 21.1 22.1	$\begin{gathered} \text { Grams. } \\ 200.5 \\ 201.8 \\ 210.5 \\ 196.9 \end{gathered}$	$\begin{array}{r} \text { Grams. } \\ \text { 55.0 } \\ 37.4 \\ 41.2 \\ 37.3 \end{array}$	$\begin{gathered} \text { Grams. } \\ 245.5 \\ 239.2 \\ 251.7 \\ 234.2 \end{gathered}$	$\begin{aligned} & \text { Grams. } \\ & 224.0 \\ & 219.4 \\ & 230.6 \\ & 212.1 \end{aligned}$	Grams. +13.4 +2.3 +5.1 -5.9	Grams. $\begin{aligned} & 237.4 \\ & 217.1 \\ & 235.7 \\ & 206.2 \end{aligned}$
	Total	105. 421		84.5	809.7	160.9	970.6	886.1	$+10.3$	896.4
	$7 \mathrm{a} . \mathrm{m} .-1 \mathrm{p}$.	25, 795	. 825	21.3	192.2	38.1	230.3	209.0	$+.5$	209.5
	$1 \mathrm{p} . \mathrm{m} .-7 \mathrm{p} . \mathrm{m}$	25,908	. 820	21.2	212.0	37.2	249.2	228.0	+ 2.7	230.7
	$7 \mathrm{p} . \mathrm{m} .-1 \mathrm{a} . \mathrm{m}$	26, 924	. 790	21.3	213.0	40.2	253.2	231.9	-4.5	227.4
	$1 \mathrm{a} . \mathrm{m} .-7 \mathrm{a} . \mathrm{m}$.	27, 122	. 797	21.6	193.8	37.9	231.7	210.1	-6.4	203.7
	Total	105, 749		85.4	811.0	153.4	964.4	879.0	- 7.7	871.3
8-9	$7 \mathrm{a} . \mathrm{m} .-1 \mathrm{p} .1$	26, 792	. 812	21.8	195.3	38. 2	233.5	211.7	+8.2	219.9
	$1 \mathrm{p} . \mathrm{m} .-7 \mathrm{p} .1$	26,010	. 811	21.1	195.1	36.1	231.2	210.1	+ 1.3	211.4
	7 p. m. -1 a .	27,593	. 775	21.4	191.6	41.8	233.4	212.0	- 2.1	209.9
	1 a. m. -7 a. n	27,999	. 719	20.1	184.4	40.0	224.4	204.3	-3.4	200.9
9-10	Total	108, 394		84.4	766.4	156.1	922.5	838.1	+ 4.0	842.1
	7 a. m. -1 p. m.	26, 388	. 738	19.5	184.3	35.8	220.1	200.6	+ 4.7	205.3
	1 p. m. -7 p.m	26, 150	. 747	19.5	173.6	34.6	208.2	188.7	-2.1	186.6
	7 p. m.-1 a. m	27,647	. 758	20.9	192.4	44.7	237.1	216.2	$+.5$	216.7
	1 a. m, -7 a. m	28,015	. 685	19.2	185.7	35.5	221.2	202.0	-5.3	196.7
	Total	108, 200		79.1	736.0	150.6	886.6	807.5	-2.2	805.3
10-11	7 a. m. -1 p. m.								$+5.7$	201.3
	1 p. m. -7 p. m.	26, 228	. 703	18.4	194.6	35.4	230.0	211.6	+ 3.8	215.4
	$7 \mathrm{p} . \mathrm{m} .-1$ a.m.	27, 422	. 645	17.7	195.6	42.7	238.3	220.6	$+.4$	221.0
	1 a. m. -7 a. m	28, 046	. 555	15.5	179.3	36.0	215.3	199.8	-1.2	198.6
11-12	Total	107, 446		69.5	748.1	149.0	897.1	827.6	+8.7	836.3
	$7 \mathrm{a} . \mathrm{m} .-1 \mathrm{p} . \mathrm{m}$	26,132	. 559	14.6	191.2	35.8	227.0	212.4	$+7.4$	219.8
	$1 \mathrm{p} . \mathrm{m} .-7 \mathrm{p} . \mathrm{m}$	26, 157	. 645	16.9	188.5	35.7	224.2	207.3	-4.2	203. 1
	$7 \mathrm{p} . \mathrm{m} .-1$ a. m	27, 966	. 697	19.5	193.8	45.6	239.4	219.9	+2.3	222.2
	1 a. m.-7 a. m	28, 443	. 723	20.6	189.1	37.5	226.6	206.0	-3.5	202.5
	Total	108, 698		71.6	762.6	154.6	917.2	845.6	$+2.0$	847.6
$\begin{aligned} & 12-13 \\ & 13-14 \\ & 14-15 \end{aligned}$	7 a. m. -7 a. m	109, 063		81.1	755.4	150.1	905.5	824.4	-3.1	821.3
	7 a. m. -7 a. m	109, 064		84.9	795.9	149.4	945.3	860.4	-2.0	858.4
	7 a. m. -7 a. m	107, 982		84.3	833.5	146.7	980.2	895.9	+ 1.7	897.6

${ }^{2}$ No. 21 included for comparison.

The calorimetric measurements tor experiments $18-20$ are given in detail, and those for experiment 21 summarized, in Table XLI.

Table XLI.-Sictumetry uf calorimetric mensurements-Metabolism experiments Nos, 18-z0.0

Date.	Period.	$\begin{gathered} \text { (a) } \\ \text { Heat meas- } \\ \text { nred in } \\ \text { terms of } \\ \text { (oso. } \end{gathered}$	Change of temperature of ealorimeter.	(c) Capacity correction of calorimcter, $b \times 60$.	$\begin{gathered} (l) \\ \\ \text { Correction } \\ \text { due to telu- } \\ \text { perature } \\ \text { ofori and } \\ \text { dishes. } \end{gathered}$	(r) Water vaporized equals amount exhaled, less amount condensed in chamber.	$\begin{gathered} (f) \\ \\ \text { heat used } \\ \text { in yapori- } \\ \text { zation of } \\ \text { water, } \\ e: 0.592 \text {. } \end{gathered}$	(g) Totalheat deter$\underset{c}{\operatorname{mined}, a+}$,
$\text { Feb. }{ }^{1899 .}$	E.rporiment So. 18. 7 a. m. to $1 \mathrm{p} . \mathrm{m}$...... 1 p.m. to 7 p. m...... $7 \mathrm{p}, \mathrm{m}$. to 1 a. m...... 1 a. m. to 7 a. m	Culorice. 713.7 522.7 491.0 308.5	Degrees. $\cdots+0.09$ -.02 -.05	Calories +5.40 -1.20 -3.00	Cuturios. $\begin{array}{r} 5.5 \\ +\quad 8.5 \end{array}$	Grams. 235.4 215.1 234.7 205. 2	Calorics. 139.4 127.3 139.0 121.5	Calories. 858.6 663.9 628.8 427.0
	Total	2,035.9	- . 02	$+1.20$	$+14.0$	s90. 4	527.2	2,578.3
	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$. 1 p. m. to 7 p. m. p.m. to 1 a. m. $1 \mathrm{a} . \mathrm{m}$, to $7 \mathrm{a}, \mathrm{m}$.	$\begin{aligned} & 549.4 \\ & 525.6 \\ & 75.1 \\ & 262.9 \end{aligned}$	$\begin{aligned} & +.05 \\ & +.03 \\ & +.14 \\ & -.25 \end{aligned}$	$\begin{aligned} & +3.00 \\ & +1.80 \\ & +8.40 \\ & -15.00 \end{aligned}$	P +8.2 +9.3	$\begin{aligned} & 210.5 \\ & 231.7 \\ & 228.4 \\ & 204.7 \end{aligned}$	$\begin{aligned} & 124.6 \\ & 137.2 \\ & 135.2 \\ & 121.2 \end{aligned}$	$\begin{aligned} & 735.2 \\ & 673.9 \\ & 618.7 \\ & 369.1 \end{aligned}$
	Total	1, 563. 0	$-.03$	- 1.80	$+17.5$	875.3	518.2	2,396.9
8-9		$\begin{aligned} & 540.0 \\ & +97.2 \\ & 432.3 \\ & 296.4 \end{aligned}$	$\begin{array}{r} +.11 \\ +.01 \\ -.03 \\ +.03 \end{array}$	$\begin{array}{r} +6.60 \\ +\quad .60 \\ +1.80 \\ +1.80 \end{array}$	+ +7.1 +7.5	$\begin{aligned} & 217.9 \\ & 209.4 \\ & 208.9 \\ & 199.9 \end{aligned}$	$\begin{aligned} & 129.0 \\ & 124.0 \\ & 123.7 \\ & 118.3 \end{aligned}$	$\begin{aligned} & 680.7 \\ & 629.3 \\ & 554.2 \\ & 416.5 \end{aligned}$
	Total	1,765.9	$+.12$	+ 7.20	$+12.6$	836.1	495.0	2,280. 7
9-10		$52 \mathrm{s}$. 446.3 470.3 335.3	$\begin{array}{r} +.04 \\ \mp .05 \\ +.06 \\ -.02 \end{array}$	$\begin{array}{r} +2.40 \\ -3.00 \\ +3.60 \\ -1.20 \end{array}$	$\begin{array}{r} 6.2 \\ +9.4 \end{array}$	$\begin{aligned} & 206.3 \\ & 187.6 \\ & 217.7 \\ & 198.7 \end{aligned}$	$\begin{aligned} & 1 \because 2.1 \\ & 111.1 \\ & 128.9 \\ & 117.6 \end{aligned}$	659.1 563.8 602.8 451.7
	Total	1,780.3	+-. 03	$+1.80$	$+15.6$	810.3	479.7	2,277.4
10-11	7 a. m. to $1 \mathrm{p} . \mathrm{m}$. ${ }_{7} \mathrm{p} \cdot \mathrm{m}$. to 7 p . m . $7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$. $1 \mathrm{a} . \mathrm{m}$. to 7 a. m.	$\begin{aligned} & 5 \because 2.9 \\ & 483.4 \\ & 477.7 \\ & 310.0 \end{aligned}$	$\begin{array}{r} +.01 \\ +.02 \\ -.03 \end{array}$	$\begin{array}{r} +\quad .60 \\ +1.20 \\ -1.80 \end{array}$	+6.1 +7.8	198.3 213.4 219.0 196.6	$\begin{aligned} & 117.4 \\ & 126.3 \\ & 129.6 \\ & 116.4 \end{aligned}$	647.0 618.7 605.5 $426 .+$
	Total	1,794.0	0.0	0.0	+13.9	827.3	489.7	2,297.6
11-12	7 a. m. to $1 \mathrm{p} . \mathrm{m}$. 1 p. m. to $7 \mathrm{p} . \mathrm{m}$. $7 \mathrm{p} . \mathrm{m}$, to $1 \mathrm{a} . \mathrm{m}$. $1 \mathrm{a} . \mathrm{m}$. to 7 a . m.	$\begin{aligned} & 549.1 \\ & 461.1 \\ & 460.2 \\ & 312.9 \end{aligned}$	$\begin{aligned} & +.01 \\ & \pm .02 \\ & +.06 \\ & -.04 \end{aligned}$	$\begin{array}{r} +\quad .60 \\ -1.20 \\ +\quad 3.60 \\ -2.40 \end{array}$	$\begin{array}{r} +11.9 \\ +10.4 \end{array}$	$\begin{aligned} & 219.8 \\ & 203.1 \\ & 222.2 \\ & 202.5 \end{aligned}$	$\begin{aligned} & 130.0 \\ & 120.3 \\ & 131.6 \\ & 119.9 \end{aligned}$	$\begin{aligned} & 691.6 \\ & 590.6 \\ & 595.4 \\ & 430.4 \end{aligned}$
	Total	1,783.3	+. 01	$+.60$	+22. 3	847.6	501.8	2,308.0
12-13	7 a. m. to 7 a. m	1,718.s	$-.02$	-1.20	+22.4	821.3	486.2	2,296.2
13-14	$7 \mathrm{a} . \mathrm{m}$. to 7 a. m	1,737.4	-.02	-1.20	$+16.9$	860.4	509.4	2, 262.5
14-15	$7 \mathrm{a} . \mathrm{m}$. to 7 a a m	1,801.5	$+.03$	$+1.80$	$+18.8$	896.6	530.8	2, 347.9

${ }^{\text {a }}$ No. 21 included for comparison.
The determinations of reducing material in the rentilating air current were made according to the method followed in the preceding experiments (see p. 25s). The analytical data are shown in Table XLII. It will be noticed that the amount of reducing material, reekoned as

Vol. S-No. 6-7
alcohol, found in the air current on the first day of the series of experiments, February 6-7, is considerably larger than on the 3 days following. This may be due in part to the fact that the subject had taken with him into the chamber an atomizer containing an alcoholic solution of encalyptol, of which reagent, however, only a very small amount was used on the first day, and none thereafter. It will also be observed that the amount of reducing material in the air current during the 3 days of experiment No. 21 , in which alcohol did not form a part of the diet, was considerable. Attention has already been called to the fact that what is reckoned as alcohol in the air current consists to a greater or less degree of reducing matter ordinarily present in the respired air, whether the subject consumed alcohol or not. Later experiments indicate that this amount of reducing material may be equivalent to as much as 0.4 of a gram of alcohol per day (see experiments 26,28 , and 30 beyond). That the amount of alcohol and other reducing material should be so large during the 3 days of experiment No. 21 is rather surprising. During the 4 days of the preliminary period and the 6 days of experiments Nos. 18-20, 725 grams of absolute alcohol had been taken. It may be that there was a certain lag in the elimination of alcohol not oxidized by the body. That there could be any large amount of alcohol remaining in the body seems altogether improbable, both from physiological considerations and from the results of experiments which have been made concerning the amount of alcohol which may be found in the tissues of the body. If there were a lag in the elimination, we do not know how long it would continue. In later experiments, Nos. 22. 27, and 33, no such lag was observed. The figures for reducing material in the alcohol on the 3 days of experiment No. 21 are not as trustworthy as those of the previous days, owing to certain analytical irregularities. The figures in column 5 of Table XLII show the total excretion of alcohol on the arbitrary assumption that one-half the average amount of reducing material found in experiment No. 21 was actually alcohol. While it is believed that these amounts represent more than the actual elimination of alcohol, they have been used in the computations of the income and outgo of carbon and energy in the following tables:

Table XLII.-Alcohol ingested and excreted-Metabolism experiments Nos. 18-20. ${ }^{\text {a }}$

Date.	Alcohol ingested.	Alcohol excreted, including other reducing material caleulated as alcohol.				Total excretions, correctedfor possible lag.	Alcohol metabolized in body.	
		In urine distillate).	In freezer water (distillate).	In air current.	Total.			
$\begin{gathered} 1899 . \\ \text { Experiment No. 1S. } \end{gathered}$ Feb. 6-7 \qquad	$\begin{array}{r} \text { Grams. } \\ 72.5 \\ 72.5 \end{array}$	$\begin{array}{r} \text { Grams: } \\ 0.09 \\ .18 \end{array}$	$\begin{gathered} \text { Grams. } \\ 0.0 \ddagger \\ .03 \end{gathered}$	$\begin{gathered} \text { Grams. } \\ 2.03 \\ 1.56 \end{gathered}$	$\begin{array}{r} \text { Grams. } \\ 2.16 \\ 1.77 \end{array}$	$\begin{gathered} \text { Grams. } \\ 3.20 \\ 2.81 \end{gathered}$	$\begin{array}{r} \text { Grams. } \\ 69.3 \\ 69.7 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 95.6 \\ 96.1 \end{array}$
	72.5	. 10	. 04	1.53	1.67	2.71	69.8	96.3
	72.5	. 14	. 04	1. 22	1. 40	2.44	70.1	96.7
Feb, Erperiment No. 20.								
	72.5	. 13	. 05	1.23	1. 41	2. 45	70.1	96.7
Feb. $\begin{array}{r}10-11 \\ 11-12\end{array}$	72.5	. 15	. 05	2.05	2.25	3.29	69.2	95.5
Total	435.0	. 79	. 25	9.62	10.66	16.90	418.2
Average per day......... Erperimenl No. 21.	72.5	. 13	. 04	1. 60	1.78	2.82	69.7	96.1
Feb. 12-13.		. 11	. 05	1.68	1. 84			
13-14.		. 13	. 07	1. 80	2.00			
14-15.		. 19	. 07	2. 14	2. 40			

Balance of income and outgont matter and emergy: The income and outgo of nitrogen, carbon, hydrogen. and energy in these experiments are shown in Tables XLIII to XLVI.

Table NLILI.-Income and nutgo of nitrogen and carbon-Mrtubolism experiments Los. 18-20."

- No. 21 included for comparison.

Table NLIV.-Income and outgo of water and hydrogen-Metubolism experiments Nos. 18-21.*

Date and period.	Water.					
	(a) In food.	(b) In drink.b	(c) In feces.	(d) In urine.	(e) In respiratory produets.	(j) Apparent loss $a+b$ - $(c+d+e)$.
1899. Experiment Jo. 18. Feb, 6-7, 7 a. m. to 7 a . m - -8.7 a. m. to 7 a. m..........	$\begin{array}{r} \text { Grams. } \\ 889.9 \\ 889.9 \end{array}$	$\begin{aligned} & \text { Grams. } \\ & 1,398.2 \\ & 1,384.8 \end{aligned}$	Grame. t6. 4 46. $\frac{1}{4}$	Grams. 1,269.3 1,945. 4	$\begin{aligned} & \text { Grams. } \\ & 896.4 \\ & 8.1 .3 \end{aligned}$	$\begin{aligned} & \text { Grams. } \\ & +\quad 76.0 \\ & -\quad 585.4 \end{aligned}$
Total for 2 davs . Arerage per day	$\begin{array}{r} 1,759.8 \\ 889.9 \end{array}$	$\begin{aligned} & 2,783.0 \\ & 1,391.5 \end{aligned}$	$\begin{aligned} & 92.8 \\ & 46.4 \end{aligned}$	$\begin{aligned} & 3,214.7 \\ & 1.607 .3 \end{aligned}$	$\begin{array}{r} 1,767.7 \\ 8 \times 3.9 \end{array}$	$\begin{aligned} & -512.4 \\ & -\quad 256.2 \end{aligned}$
Experiment So. 19. Feb. ${ }_{9-9,9}$ i a. m. to 7 a. m............ $9-10,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	$\begin{aligned} & 889.9 \\ & 889.9 \end{aligned}$	$\begin{aligned} & 1,354.3 \\ & 1,383.8 \end{aligned}$	$\begin{array}{r} 46.4 \\ 46.4 \end{array}$	$\begin{aligned} & 1,437.6 \\ & 1,6 \times 3.3 \end{aligned}$	$\begin{aligned} & 8+\frac{2}{8} .1 \\ & 805.3 \end{aligned}$	$\begin{array}{r} 51.9 \\ -\quad 261.3 \end{array}$
Total for 2 days Average per day	$\begin{array}{r} 1,779 . \mathrm{S} \\ 889.9 \end{array}$	$\begin{aligned} & 2,768.1 \\ & 1,384.1 \end{aligned}$	$\begin{aligned} & 92 . \mathrm{s} \\ & 4.6 .4 \end{aligned}$	3, 120.9 $1,560.5$	$\begin{array}{r} 1.647 . \frac{4}{823.7} \end{array}$	$\begin{array}{r} -\quad 313.2 \\ -\quad 156.6 \end{array}$

- Yo. 21 included for comparison.
${ }^{\circ}$ During the 9 days of these experiments 25.5 grams water was evaporated irom the hygrometer, or an average of 3.2 grams per day, which is here added to the drink.

Table NLIV. - Income and outgo of water and hydrogen-Metabolism experiments Mos. 18-21 ${ }^{\text {a }}$.-Continued.

"No. 21 included for comparison.
${ }^{4}$ During the! days of these experiments 28.5 grams water was evaporated from the hygrometer, or an average of 3.2 grams per day, which is leere adrled to the drink.

$\frac{\text { Ihateame periond. }}{\text { Experiment No. } 18 .}$

Feb. 6-7, 7 a. m. to 7 a. m \bar{i},, 7 a . m. to $\overline{\mathrm{a}} \mathrm{a} . \mathrm{m}$

Total for 2 dars.
Average per day
Erperiment To. 19.
Fel. 8-9, 7 a.m. to 7 a. m
9-10, 7 a. m. to 7 a a. m
Tutal for 2 dave
Average per day
Experiment No. so.

Feb. 10-11, 7 a. m. to 7 a. m
11-12, 7 a.m. to 7 a.m
Total for 2 days.
Average per day
Average per day (experiments $18-20$)
Erperiment To. 21.
Feb. 12-13, 7 a. m. to 7 a. m

$13-14,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$

14-15, 7 a. m. to 7 a. m

$\ldots .$.
(a)
Nitrogen
gained $(+)$
or lost $(-)$ gai or

Grams.	Girams.
.	-2.9
-1.0	-18.1
-3.9	-24.4
	-2.0
	-12.2

(c)

irams.
+6.9

Grame

Gram

\square

Date and period.

> 1 s 99.
> Erperiment No. 18

Feb, 6-7, 7 a. m. to 7 a. m
7-8, 7 a. m. to 7 a. m
Total for 2 days
Average per day
Experiment To. 19.
Feb. 8-9, 7 a.m. to 7 a. 11 .
9-10, 7 a. m. to 7 a.m
Total for 2 days
Arerage ber day
Experiment No. 20.
Feb. 10-11, 7 a. m. to 7 a. m
11-12, T a. m. to 7 a. m
Total for 2 days.
Average per day
Arerage per day (experiments 18-20)
Erperiment Mo. 21 .
Fel. 12-13, 7 a. m. to 7 a. m $13-14,7$ a. m. to $7 \mathrm{a.m}$
$1+-15,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$

Average per day
${ }^{\text {a }}$ No. 21 included for comparison.

Table MLV1.-Income and outgo of energy-Metabolism experiments Vos. 18-20.a

${ }^{n}$ No. 21 included for comparison.
EXPERIMENTS NOS. $22-24$-REST. NO. 22 WITH ALCOHOL DIET.
Sulject.-E. O., who served as the subject of experiments Nos. 12, 15-17, and 18-20, deseribed above. His weight was about 72.5 kilograms (160 pounds).

Occupation drring experiment.-Reading, writing, etc., with as little mental and muscular activity as possible.

Durution.-The preliminary period of 4 days hegan with breakfast, March 9,1899 , and the sulject entered the respiration chamber on the evening of March 12; experiment No. 22 beginning at 7 oclock on the morning of March 13 and continuing 3 days. This experiment was the first of a series of three (Nos. 22-24), each continuing 3 days; the subject, therefore, remained in the respiration chamber 10 nights and 9 days, the series of experiments ending on the morning of March 22.

Diet.-One especial object of the experiments of this series was to study the relative replacing power of alcohol and sugar in the diet. The latter consisted of what may be called a basal ration of ordinary food to which was added a supplementary ration of either sugar or alcohol.

The basal ration furnished 123 grams of protein am :..n3. calorie of energy per day. To this
 contained te grams of aholute alcohol and furnished smatorie of energy. In experiment No. 23 the suhject had 30 grams of horseradish, fumishing 11 calories of energy per day, and in experiment No. 24.30 grams of boreeradi-h, furnishing 11 calories of energy, and 130 grams of cane sughr, fmonshing 315 calorie of energy. Learing the small quantities of horse-radish out of accomnt, the eliet of experiment 2.2 supplied the hasal ration plus alcohol. No. 23 the hasal ration alone, and No. $2 t$ the basal ration plns an amount of surar isodynamie with the aleohol of No. 2.2 . In experiment No. 2.2 the alcohol was taken in the usual if doses. 3 with and 3 between meals and upon retiring. It was prepared hy adding 9.2 .2 grams of 9.9 per cent alcohol to 780.8 grams of cotfee infusion sweetened with 40 grams of sugar. This mixture thus contained io grams of aboolute alcohol. to grams of sugar, and TES grams of water. The kincls and quantities of food served at each meal and the quantities of drink at different periods were as follows:

Diet in meteloblism experiments Jos. aj-3i.
FOOD-BASAL RATION

	Breakfast.	Dinner.	supper.	Total.
Beef.	Grams. 75	Grams. $\%$	Grams.	Grams. 150
Butter	15	20	20	55
Mitk, skimmed	350	390	390	1,130
Bread	55	100	155	310
Parched cereal.	45			45
Sugar ${ }^{3}$.	40			40

- L"sed with the coffee infusion and aleohol in experiment No. 22. FOOD-StPPLEMENTAL RATION.

Alcohol (90.9 per cent) . do..... 99.2

Sugar................................... .. 10. . 130.0
DRINK.

	\qquad Corfee inínsion, sugar, and alcohol.		Experiments Nos. 23and 24 .	
			Coffee initusion.	Water.
Breakfast	Grams. 175		Grame. 263	
$10.30 \mathrm{a} . \mathrm{m}$.	120	200		200
Dinner	175		263	
$2.30 \mathrm{p} . \mathrm{m}$.	125	200		200
Supper	175		262	00
$11.00 \mathrm{p} . \mathrm{m} .$	125	200		200
	a 90	${ }^{\text {b }}$ b 00	\%-85	${ }^{6} 60 \mathrm{C}$

[^25]Daily routine.-The general routine of the experiment is indicated bre the following schedule:
Duily progrum-Metabolism cxperiments Nos, 22-24.

Table XLVII summarizes the more important statistics in the diary kept br the subject during the series of experiments.

Table XLVII.-Summary of dinry-Metabolism experiments Jos. 23-24.

Date and time.	Weight without clothes.	Pulse rate per minute.	Temperature.	Hygrometer.	
				Dry bulb.	Wet bulb.
1899.					
Mar. 13, 7.00 a. m	72.42	60	97.6	20.6	15.8
13, $3.30 \mathrm{p} . \mathrm{m}$		72	97.8	20.2	16.2
13, $11.30 \mathrm{p} . \mathrm{m}$		61	97.2	20.4	16.2
$14,7.00 \mathrm{a} . \mathrm{m} \ldots$	73.07	59	97.0	20.4	15.1
14, $3.25 \mathrm{p} . \mathrm{m} . .$.		70	98.0	20.0	15.2
$14,11.00 \mathrm{p} . \mathrm{in}$.		70	98.4	20.6	15.8
15, $7.00 \mathrm{a} . \mathrm{m}$.	72. 86	60	97.2	20.0	14.8
15, $4.15 \mathrm{p} . \mathrm{m}$.		68	97.8	20.0	15.2
$15,11.00$ p. m		69	98.6	20.4	16.2
Experiment To. 23.					
16, $7.00 \mathrm{a} . \mathrm{m}$.	72.89	56	97.0	20.2	15.3
$16,3.30 \mathrm{p} . \mathrm{m}$		76	98.9	20.0	15.4
$16,10.45 \mathrm{p} . \mathrm{m}$.		65	98.4	20.4	16.0
$17,7.00 \mathrm{a} . \mathrm{m}$.	72. 67	58	97.0	20.4	15.1
$17,3.30 \mathrm{p} . \mathrm{m}$.		70	98.0	20.0	15.2
$17,10.50$ p. mm		66	98.0	20.2	15. 4
18, $7.00 \mathrm{a} . \mathrm{m}$	72. 70	56	96.8	20.3	14.6
18, $3.40 \mathrm{p} . \mathrm{m}$.		66	97.6	20.2	15.0
18, 10.50 p. m		66	98.3	20.1	15.2
Erperiment No. 24.					
19, $7.00 \mathrm{a.m}$	72.68	60	96.9	20.2	14.6
$19,3.30$ p. 11.		64	95.5	19.8	14.6
$19,10.50$ p. m.		69	9 s .8	20.2	15.0
20, $7.00 \mathrm{a} . \mathrm{m}$.	72.70	5.	97.0	20.0	14.8
$20,4.00 \mathrm{P} . \mathrm{m} \ldots$		73	94.0	20.2	15.4
$20,10.50 \mathrm{p}, \mathrm{m}$.		71	99.0	$20 . \frac{1}{4}$	15.6
$21,7.00 \mathrm{a} . \mathrm{m} .$	72.97	56	96.6	20.2	15.0
$21,3.50 \mathrm{p} \cdot \mathrm{~m}$		69	49.2	20.2	15. 2
$21,10.00 \mathrm{l} . \mathrm{m}$.		70	99.4	20.6	16.0
$\geq 2,7.00 \mathrm{a}, \mathrm{m}$...	72.90	60	97.8	20.8	16.8

Detailal statistics of income omul outyo.-The quantitie- of nutrients in the hasal ration and the quantities in the supplemental ration in the different experiments of this series are shown in Table XLVIII. No attempt was made in this experiment to obtain a soparation of the feces between experiments 22 and 23 . since it was beliesed the amount of such excretion during the alcohol experiment wonld not differ materially from the amount in the following experiment in which alcohol was not used but in which the diet was otherwise the same, with the exception of the small amount of horse-radish. It is our experience that too frequent separation of the feces renders the line of demareation less accurate. The separation of the feees was, howerer, made between experiments 23 and 24 . The data of amount and composition of the feces of the two experiments are given in Table XLIX.

Table XLV111.- Weight, composition, and heat of rombustion of foods-Metabolism experiments Nos. 22-24.

Table MLIX.- Weight, composition, and heat of combustion of feces-Metabolism exppriments Mos, 2.2-24.

Labora Tors		Weight.	Water.	Protein.	Fat.	Carbohydrates.	Nitrugen.	Carbon.	Hydro-	Heat of combustion.
3035		Grams. 425. 7 70.9	$\begin{aligned} & \text { (irams. } \\ & 29 \overline{2}, 0 \end{aligned}$	Grame.	Grame.	Grams.	Grame.	Girams.	Grame.	Culorices,
	Total, experiments 22 to 23.			$+2.1$	$\stackrel{20.1}{4}$		6.71	61.47	8. 41	68.5
	Average per day.		49. 2	7.0	3.7	6.0	1.13	10. 25	1.47	114
3036	Total, experiment 24	270.0	204.4	24.5	13.2	14.6	3.91	31. 43	4. 46	347
	A verage per day....-......-	90.0	68.1	8.2	4.4	4.9	1. 30	10. 48	1. 49	i16

The following table gires the data for the amount and composition of the urine. In previons experiments the urine was collected in 6-hour interrals throughout the day. Inasmuch. however, as the subject at times found it difficult to get to sleep again after emptying the bladder at 1 σ° clock in the morning, the urine was collected at $11 \mathrm{p} . \mathrm{m}$. . immediately before retiring. instead of $1 \mathrm{a} . \mathrm{m}$., as in the previous experiment. The day is thus subdivided into two periods of 6 hours, one of 4 , and one of 8 hours.

During the first 3 days of the preliminary digestion period, the subject eliminated $17.3,11.8$, and 14.6 grams, respectively, of nitrogen in the urine. During these days alcohol did not form a part of the diet. On the third day of the preliminary period, which was the first day upon which alcohol was added to the diet, the elimination of nitrogen in the urine amounted to 13.7 grams. It will be noticed that after the subject entered the apparatus the amount of nitrogen in the urine was larger in amount, but remained quite uniform throughout the whole series of experiments. As has preriously been remarked, it is not infrequently the case that an increased elimination of nitrogen takes place when the subject enters the respiration chamber. This may account for the increase in the present case. Another explanation of the increase would be to assume that it was caused by the presence of alcohol in the diet. It is noticeable, however, that it did not take place until the subject entered the calorimeter, a day after alcohol was added to the diet, and that it continued throughout the 9 days of the sojourn in the respiration chamber, during but 3 of which alcohol was a part of the diet. The urine was not collected after the close of the experiments.

Table L.-Amount, specific gravity, and nitrogen of urine, by 6-hour periods-Metabolism experiments Nos. 22-24.

Date.	Period.	Amount.	Specific gravity.	Nitro	
$\begin{array}{r} 1899 . \\ \text { Mar. } 13-14 . \end{array}$$14-15$	Experiment To. 22 . $7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m} . .$. $1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$. $7 \mathrm{p} . \mathrm{m}$. to 11 p. m. 11 p. m. to $7 \mathrm{a} . \mathrm{m}$.	$\begin{array}{r} \text { Grames. } \\ 356.6 \\ 377.6 \\ 268.5 \\ 356.7 \end{array}$	$\begin{aligned} & 1.022 \\ & 1.024 \\ & 1.021 \\ & 1.018 \end{aligned}$	Per cent. 1.27 1.38 1.51 1.36	Grams. 4. 53 5.21 4.05 4. 85
	Total	1,359.4	1.019	1. 40	$\begin{aligned} & 18.64 \\ & 19.04 \end{aligned}$
	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$. $1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$. 7 p.m. to $11 \mathrm{p} . \mathrm{m}$ $11 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	671.6 776.8 617.5 310.8	1. 009 1.007 1.007 1018	$\begin{array}{r} .62 \\ .52 \\ .99 \\ 1.45 \end{array}$	4.16 4.04 6.11 4.51
	Total Total by composite	2,376.7	1.011	. 80	$\begin{aligned} & 18.82 \\ & 19.01 \end{aligned}$
15-16...	$7 \mathrm{a} . \mathrm{m}$, to $1 \mathrm{p} . \mathrm{m} .$. $1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m} .$. 7 p.m. to 11 p. m. $11 \mathrm{p} . \mathrm{m}$. to 7 a . m.	$\begin{aligned} & 514.9 \\ & 629.9 \\ & 493.2 \\ & 633.5 \end{aligned}$	$\begin{aligned} & 1.009 \\ & \text { 1.007 } \\ & 1.018 \\ & 1.012 \end{aligned}$.68 .48 .96 1.04	3.50 3.02 4.73 6.59
	Total Total by composite	2,271.5	1.012	. 80	$\begin{aligned} & 17.84 \\ & 18.17 \end{aligned}$
$\begin{aligned} & 16-17 . . \\ & 17-18 . . \\ & 18-19 . . \end{aligned}$	Esperiment No. 23.				
	Total, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	2,299. 1			18. 80
	Total, 7 a. m. to $7 \mathrm{a} . \mathrm{m}$	2,280.0	1. 012		19.61
	Total, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	1,996.2	1.013	.-.....	18.47
	Experiment - Jo. 24.				
19-20..	Total, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	2, 225.5	1.014		19.45
20-21.	Total, 7 a. m. to $7 \mathrm{a} . \mathrm{m}$	1,870.9	1. 013		18.07
21-22.	Total, 7 a. m. to $7 \mathrm{a} . \mathrm{m}$.	1,861.5	1.014		17.26

Table LI.-Daily elimination of carbon, hydrogen, water, and encrgy in urine-Metabolism experiments Nos. 22-24.

Date.	Amount.	Carbon.		nydrogen.		Water.		Heat of combus-			
				Per gram.	Total.						
1899.	$\begin{aligned} & \text { Grams. } \\ & 1,559 .+ \\ & 2,376.7 \\ & 2,271.5 \end{aligned}$	Perct.				Pcr ct.	$\begin{array}{r} \text { Grams. } \\ \begin{array}{c} 3.52 \\ 3.55 \\ 3.37 \\ 3 . \end{array} \end{array}$	Perct ct.	$\begin{aligned} & \text { Grame. } \\ & 1,295.2 \\ & 2,31.8 \\ & 2,210.0 \end{aligned}$	Calories.	Calorirs. 140133
Ex											
Mar. 13-14.			$\begin{aligned} & 12.01 \\ & 12.12 \end{aligned}$		Pra.						
${ }_{15-16}$											
10-16.			11.49								
Experiment No. 23.											
Mar. 16-17..	2, 299.1	12. 11	\ldots	3. 55		2,234. 3		140		
	2, 280.0		12. 62		3. 70		2, 212. ${ }^{\text { }}$		146		
	1,996.2		11.90		3.49		1,932.5		137		
Experiment No. 24.											
Mar. 19-20.	2,225.5		12.53		3.67		2,158.5		145		
20-21.	1,870.9		11. 64		3.41		1,808.6		134		
21-22.	1,861.5		11.11		3.26		1,802.0		128		
Total, 9 days..	18,540.8	. 58	107. 53	. 17	31.52	96.9	17, 965.3	6. 067	1,242		

The results of the determinations of carbon dioxid and water in the ventilating air current are given in Tables LII-LIV. These statistics are given in detail for the first 3 days of the series and are summarized by days for the following 6 days, in order to serve as a basis of comparison of the results with and without alcohol as a part of the diet.

Table LII.-Comparison of residual amounts of carbon dioxid and water in the chamber at the beginning and end of each period, and the corresponding gain or loss-Metabolism experiment No. 22.

Date.	End of period.	Carbon dioxid.		Water,		
		Total amount in chamber.	Gain (+) or loss (-) over preceding pe riod.	Total amonnt of vapor remaining in chamber.	Gain (+) or loss (-) over preceding period.	Total amonnt gained (+) or lost (-)during the period.
$\begin{array}{r} 1899 . \\ \text { Mar. } \quad 13 \\ 13-14 \end{array}$		Grams. 28.6	Grams.	Grame. 38.6	Grams.	Grams.
		36.4	$+7.8$	47.4	$+8.8$	+8.8
		37.7	+1.3	47.0	$-.4$	$-.4$
		27.1	-10.6	45.7	-1.3	-i. 3
		26.2	- . 9	42.4	-3.3	-3.3
			-2.4		+3.8	+3.8
14-15		39.3	$+13.1$	41.9	$-.5$	$-.5$
		37.6	-1.7	40.6	-1.3	-1.3+1.9
			-8.9-4.1	$\begin{aligned} & 42.5 \\ & 36.0 \end{aligned}$	-6.5	
		$\begin{aligned} & 25.7 \\ & 24.6 \end{aligned}$				-6.5
	Total		-1.6		-6.4	-6.4
15-16	$1 \mathrm{p} . \mathrm{m}$.	36.8	$+12.2$	38.6	+2.6	2.6 +2.9
	$7 \mathrm{p} . \mathrm{m}$	41.9	+5.1	41.5	+2.9	$+2.9$
	$1 \mathrm{a} . \mathrm{m}$	30.2	-11.7	42.3	$+.8$	$+.8$
	7 a. m	24.5	-5.7	35.2	-7.1	-7.1
	Total	-....-....	- . I		$-.8$	$-.8$

[^26]Table LIIl.- Record of curbon dioxid in ventilating air chrrent-Metabolism experiments Mos. 22-24.

Table LIV.-Record of water in rentiluting uir current-Metabolism experiments Nos. 23-24.

The summary of the calorimetric measurements during this series of experiments is shown in Table LV. The results of experiments Nos. 23 and 24 are summarized by days, and those for experiment No. 22, in which alcohol formed a part of the diet, are summarized by 6 -hour periods.

Table LV.-Summary of calorimetric measurements-Metabolism experiments Nos. 22-24.

		(a)	(b)	(c)	(d)	(e)	(f)	(g)
Date.	Period.	$\underset{\substack{\text { Heat } \\ \text { meansurcd } \\ \text { in terms } \\ \text { of } \mathrm{C}_{27} \text {. }}}{ }$	Change of temperature of calorimeter.	Capacity correction of calorimeter $b \times 60$.	Correction due to temperature of food and dishes.	Water vapor- ized equals total amount exhaled less amount condensed in cham- ber.	Heat used in vaporization of $e \times 0.592$.	$\begin{aligned} & \text { Total heat } \\ & \text { deter- } \\ & \text { mined } \\ & (a+c++d \\ & +f) . \end{aligned}$
	Experiment No. 22.							
$\stackrel{1899 .}{\text { Mar. } 13-14}$	$7 \mathrm{a} . \mathrm{m}$. to 1 p	Catories. 547.4	Degrees.		$\begin{aligned} & \text { Calories. } \\ & -1.1 \end{aligned}$	Grams. 237.0	Calories. 140.3	$\begin{aligned} & \text { Calories. } \\ & 686.6 \end{aligned}$
	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$	486.1	-0.03	- 1.80	+ 3.2	241.8	143.2	630.7
	$7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$	413.4	$+.02$	+1.20		$25+.9$	150.9	565.5
	$1 \mathrm{a} . \mathrm{m}$, to $7 \mathrm{a} . \mathrm{m}$	280.6	$+.07$	+4.20			148.5	
	Total	1,727.5	$+.06$	$+3.60$	$+2.1$	984.6	582.9	2,316.1
14-15	$7 \mathrm{a} . \mathrm{m}$. to 1 p.m.	504.1	-. 06	- 3.60	-0.6	221.8	131.3	
	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$.	488.7	$-.03$	-1.80	+ 4.5	212.8	126.0	617.4
	$7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$	427.7	$+.01$	+ 6.60		224.9	133.1	$561 . \frac{1}{1}$
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	267.7	$+.04$	+ 2.40		202.6	120.0	390.1
	Total	1,688.2	$-.04$	- 2.40	$+3.9$	862.1	510.4	2,200. 1
15-16	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$	475.2	$+.03$	+1.80	-1.8	199.6		593.4
	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$	518.3	-. 05	-3.00	+ 5.4	210.0	124.3	645.0 595.4
	$7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$	454.3 310.8	-. 01	-9.60 -9.00		$\begin{aligned} & 239.4 \\ & 209.8 \end{aligned}$	141.7	$\begin{aligned} & 595.4 \\ & 426.0 \end{aligned}$
	Total	1,758. 6	$-.18$	-10.80	$+3.6$	858.8	508.4	2,259.8
	Experiment No. 23.							
16-17	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	1,711.0	+. 14	+8.40	-41. 4	884.3	523.5	2,201.5
17-18	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	1, 700.3	$+.01$	+ . 60	-47.3	830.5	491.6	2, 145.2
18-19	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	1,750:4	$-.06$	-3.60	-44.1	807.0	477.8	2,180. 5
19-20	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	1,737.8	+. 09	+5.40	-48.4	879.4	520.6	2,215. 4
20-21	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	1,752. 7	$-.07$	-4.20	-46.1	879.0	520.3	2, 222. 7
21-22	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	1,851.5	$+.04$	+ 2.40	-44.6	962.3	569.7	2,379.0

The determinations of alcohol in urine and freezer water, and of reducing material reckoned as alcohol in the rentilating air current, were made in the usual manuer. The results are shown in Table LVI. It will be noticed that there was a considerable amount of reducing material in the air and urine on days in which alcohol did not form a part of the diet, equivalent on an arerage to 0.37 of a gram of alcohol per day. It is of course possible that this reducing material may have been alcohol that had been retained in the system and was slowly eliminated. This, however, seems improbable, especially in view of the fact that the results are no larger than hare been found in later experiments in the ventilating air current when alcohol had not formed a part of the diet for a long period. To be strictly accurate, the total amounts of alcohol excreted on the different days of experiment No. 22 should be reduced by a certain amount representing the arerage excretion of reducing material not alcohol. lnasmuch, however, as this was a matter still under investigation no such correction was made in this experiment, and the results were computed on the supposition that atl the reducing material in the air current was alcohol, although from later investigations it seems cuite certain that this is wrong. The error, however, would probably not exceed 0.3 or 0.4 of a gram of alcohol, corresponding to 2 or 3 calories of energy per day.

Table LYI.-Alcohol ingested und excrefed-Metabolism experiment No. 22.

Balance of income and outgo of matter and energy.-The usual summary of the income and outgo of nitrogen, carbon, hydrogen, and energy may he found in Table LVII.

Table LV1l.-Income aml outgo of nitrugen and carbon-Metabolism experiments Nos. 22-24.

Table LVIII.-Income umd untgo of water und hydrogen-Wetrabolism experiments Nos. 22-2\%.

${ }^{\text {a }}$ Compre weight of urine eliminaterl on this day with that on sucereding days.

Table LIN.- (icin or loss of protein ($N \times 6.25$), fut, und wuter-Mpluholism crpriments Nos. 22-24.

${ }^{n}$ Compare weight of urine eliminated on this day with that on succeeding days.
Vol. 8 -No. 6-- 8

Table LK.-Income and outgo of cnery-Metabolism experiments Nos. 23-3.

Date and period.	$\quad(a)$Heat of combus- tiono of food eaten.eat	$\begin{aligned} & \text { (b) } \\ & \text { Heat of } \\ & \text { combus- } \\ & \text { tion of } \\ & \text { feces. } \end{aligned}$	$\begin{gathered} \text { (c) } \\ \text { Heat of } \\ \text { combus- } \\ \text { tion of } \\ \text { urine. } \end{gathered}$		$\quad(c)$ Estimated hent of comibus- tion of protein gained (+) or lost $(-)$.	$\quad(f)$ Estimated heat of eombus- tion of fat gained gane (+) or lost (- l.	$\begin{aligned} & \quad(g) \\ & \text { Estimated } \\ & \text { energy of } \\ & \text { material } \\ & \text { oxidized } \\ & \text { in the } \\ & \text { body } a-(b \\ & +e+d+e \\ & +f) . \end{aligned}$	(h)		$\begin{gathered} (\mathrm{l}) \\ \text { Heat de- } \\ \text { termined } \\ \text { greater } \\ \text { (t) or less } \\ \text { (}) \text { than } \\ \text { estimated } \\ i \div g . \end{gathered}$
1899.										
Experiment No. 23.	Cr	Colonies,	Calories.		Calorics.	Culories.	Calories.	Calories.	Calories.	Per cent.
Mar. ${ }^{\text {13-14, }}$ 7a.m. to $7 \mathrm{a} . \mathrm{m}$.	3, 044	114	139			+ 583	2, 196	2,316	$+120$	$+5.5$
$14-15,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	3,044	114	140	14	-8	+ $+\quad 653$	2, 131	2,200	+ 69	+3.2
15-16, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	3,044	114	133	20	+32	+ 531	2,214	2, 260	+ 46	+2.1
Total for 3 days	9, 132	342	412	46	+24	$+1,767$	6,541	6, 776	+235	
Arerage per day.	3, 044	114	138	15	+ 8	+ 589	2,180	2, 258	$+78$	+3.6
Experiment No. 23.										
Mar. 16-17, 7 a . m. to $7 \mathrm{a} . \mathrm{m}$.	2, 5 ± 6	114	140		- 4	+ 63	2,233	2, 202	-31	-1.4
17-18, 7 a . m. to $7 \mathrm{a} . \mathrm{m}$.	2, 546	114	146		-32	+ 141	2,177	2, 145	- 32	-1.5
18-19, 7 a . m. to $7 \mathrm{a} . \mathrm{m}$.	2, 546	114	137	----...	+ 8	$+\quad 48$	2, 239	2, 181	- 58	-2.6
Total for 3 days	7,638	342	423		-28	+ 252	6, 649	6,528	-121	
Average per day	2, 546	114	141		-9	84	2, 216	2,176	- 40	-1.8
Experiment No. 24.										
Mar. 19-20, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	3,061	116	145		-32	+ 684	2, 148	2,215		+3.1
20-21, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	3,061	116	134		+18	+ 579	2,214	2,223	a $+\quad 9$	+. 4
$21-22,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	3,061	116	128		$+43$	+ 421	2,353	2,379	+ 26	+1.1
Total for 3 day	9, 183	348	407		$+29$	+1,684	6,715	6,817	+102	
Average per day.	3,061	116	136		+10	+ 561	2, 238	2,272	$+34$	+1.5

EXPERIMENTS NOS. 26-28-REST. NO. 27 WITH ALCOHOL DIET.
Sulject.-J. F. S., a chemist, 29 years of age. His weight with underclothing was about 64 kilograms (1t1 pounds).

Occupation during experiment.-Reading, writing, and miscellaneous observations within the apparatus, with as little muscular activity as was practicable.

Duration.-This experiment was the second of a series of 3 experiments, each continuing 3 days. The series was preceded by a preliminary period of t days, beginning with breakfast February 10, 1900. The subject entered the calorimeter on the evening of February 13. The first experiment of the series, No. 26, began at 7 a. m. Februry 14 ; the second, No. 27 , at 7 a. m. February 17, and the third, No. 28, at $7 \mathrm{a} . \mathrm{m}$. February 20. The whole period of the metabolism experiments was thus 9 days.

Pirt.-A basal ration of ordinary food furnished 99 grams of protein and 1,982 ealories of energy per day. To this was added in experiment No. $26,63.5$ grams of butter, furnishing 1 gram of protein and 505 calories of energy; in experiment No. $27,79.5$ grams of 90.6 per cent alcohol, furnishing 509 calories of energy, and in No. 28,128 grams of cane sugar, furnishing 507 calories of energy per day. The protein and energy was thus practically the same in each of the 3 experments of this series. In experiment No. 27 the 79.5 grams of commercial alcohol, contaning 72 grams absolute alcohol, was added to 792.5 grams of water sweetened with 15 grams of sugar. The alcohol was taken in 6 doses, as indicated in the following schedule. The kinds and quantities of food in the hasal ration, as served for each meal, the character and amome of the supplemental ration in the different experiments, and the quantity of drink consumed at different periods of the day were as follows:

- Csed in alcohol and water in experiment No. 27. FOOD-SLPPLEMENTAL RATION.
Experiment No. 26. - 63.5 grams butter were added to basal ration.
Erperimont Mo. 2% - 72 grams absolute alcohol were added to basal ration.
Erperiment Yo. 28.-128 grams sugar were added to basal ration.
DRINK.

- Contains 72 grams aboolute alcohol and 15 grams sugar.

Daily routine.-The general rontine of the experiment was as follows:
Duily proyranme-Metrbolism experiments Nox. 26-28.

6.50 a. m	Take pulse and temperature	$6 \mathrm{p} . \mathrm{m}$	Supper.
7 a . m	Rise, pass urine, weigh self dressed, weigh absorbers	$6.50 \mathrm{p} \cdot \mathrm{~m}$	Take pulse and temperature. Pass urine, weigh self dressed, weigh
$7.45 \mathrm{a} . \mathrm{m}$	Breakfast. Drink 100 grams water.		absorbers.
$10 \mathrm{a} . \mathrm{m}$	Drink 200 grams water.	$9 \mathrm{p} . \mathrm{m}$	Drink 300 grams water.
$12.50 \mathrm{p} . \mathrm{m}$	Take pulse and temperature.	10.20 p .1	Take pulse and temperature.
$1 \mathrm{p} . \mathrm{m}$ -	Pass urine.	10.30 p.	Retire.
$1.15 \mathrm{p} . \mathrm{m}$.	Dinner.	$1 \mathrm{a} . \mathrm{m}$	Pass urine.
$3 \mathrm{p} . \mathrm{m}$	Drink 200 grams water.		

Table LXI sumuarizes the most important statisties in the diary kept by the subject. The -ubject weighed himself with clothing twice each day. The reasons for not removing all the clothing in weighing were two: It was desirable to aroid the muscular work involved in dressing and undressing; it has also been found that the sudden increase of radiation of heat from the skin when the elothing is remored canses a decided rise in the temperature inside the chamber, and thus disturbs the accuracy of the heat measurements to some extent. There was extremely little muscular exercise and no sensible perspiration. Heuce the differences in weight from time to time must represent very nearly the changes in body weight. The determinations of pulse rate were made, of course, by the subject himself, when either sitting or reclining, after several minutes rest. The measurement at $6.50 \mathrm{a} . \mathrm{m}$. . however, was made before rising from bed.

The temperature was determined by a mercury thermometer placed in the axilla. As has already been stated, it was found that the thermometer reached as high a point in 10 minutes as in 15 or 20 minntes. The most of the temperatures, therefore, were made after the thermometer had been in place about 10 minutes. It was our belief at the outset that the body temperatures as thus taken are not perfectly accurate, and this belief has been confirmed by observations with an electrical rectal thermometer, since devised for continuous and accurate observations of interual body temperature. ${ }^{\text {a }}$ While these axillary determinations of body temperature are not entirely accurate, the later observations with the electrical thermometer lead us to believe that the daily curves for the two are nearly parallel.

In previons experiments an hygrometer had been placed in the chamber, and readings with dry and wet bulb were taken at freqnent intervals. Inasmuch, however, as these readings were not used in the computations of results, and it is desirable in rest experiments to avoid all unnecessary exertion, even that of rising and reading the hygrometer, these observations were not made in the experiments of 1900 .

Table LXI.-Summary of the diary-Metabolism experiments Nos. 26-28.

Date and time.	Weight with clothes.	Pulserate per minut	Temperature.	Date and time.	Weight with clothes.	$\begin{gathered} \text { Pulse rate } \\ \text { per } \\ \text { minute. } \end{gathered}$	Temperature.
1900.				1900-Continued.			
- Experiment No. 26.	Kilograms.		${ }^{\circ} \mathrm{F}$.	Experiment No. 26-C't'd.	Killograms.	70	${ }^{\circ} \mathrm{F}$.
Feb. 14,7 a. $\mathrm{m} \ldots$.		78	97.8 98.3	$\begin{aligned} & \text { Feb. } 15, 10.15 \text { p. m......... } \\ & 10.20 \text { p. m..... } \end{aligned}$			97.5
$10.27 \mathrm{a} . \mathrm{m}$.		67	98.1	Feb. 16, 6.55 a.m.		71	
$12.27 \mathrm{p} . \mathrm{m}$		64		$7 \mathrm{a} . \mathrm{m}$...	64.01	82	98.1
${ }_{12.53}^{12.33 ~ p . m . ~}$		61	97.8	8. $8.40 \mathrm{a} . \mathrm{m}$.			98.3
$1 \mathrm{p} . \mathrm{m}$.			97.9	$9.30 \mathrm{a} . \mathrm{m}$.		79	
$2.27 \mathrm{p} . \mathrm{m}$.		77	98.5	$9.37 \mathrm{a} . \mathrm{m}$.			2
. $3.47 \mathrm{p} . \mathrm{m}$.			98.5	$10.31 \mathrm{a} . \mathrm{m}$		76 72	
$5.30 \mathrm{p} . \mathrm{m}$.		67	9.5	$11.30 \mathrm{a} . \mathrm{m}$.			98.2
$5.45 \mathrm{p} . \mathrm{m}$.			98.7	$12.27 \mathrm{p} . \mathrm{m}$.		70	
${ }_{8} .17 \mathrm{p} . \mathrm{m}$.	64.88			$12.30 \mathrm{p} . \mathrm{m}$.			98.1
$8.13 \mathrm{p} . \mathrm{m}$ $8.30 \mathrm{p} . \mathrm{m}$.			97.6	12.58 p.m.		71	98.2
$9.29 \mathrm{p} . \mathrm{m}$		64	97.7	2.01 p.m.		80	98.2
$10.15 \mathrm{p} . \mathrm{m}$.		64		$2.30 \mathrm{p} . \mathrm{m}$.		79	98.2
Feb. 15, $6.50 \mathrm{a} . \mathrm{m}$.		69	99.1	$3.35 \mathrm{p} . \mathrm{m}$.		81	98.3
${ }_{7.34 \mathrm{a} . \mathrm{m} \text {. }}$	64.18			4.05 p.m.			98.2
$7.39 \mathrm{a} . \mathrm{m}$.			98.3	${ }_{4.30} .2 \mathrm{p} . \mathrm{m}$.			98.2
$8.33 \mathrm{a} . \mathrm{m}$.		82	98.5	$5.30 \mathrm{p} . \mathrm{m}$.		75	98.5
9.28 $9.30 \mathrm{~m} . \mathrm{m}$.		80		$5.43 \mathrm{p} . \mathrm{m}$.			98.7
$10.33 \mathrm{a} . \mathrm{m}$		71	98.3	$6.42 \mathrm{p} . \mathrm{m}$.		0	98.
$10.46 \mathrm{a} . \mathrm{m}$			98.5	$7 \mathrm{p} . \mathrm{m}$	64.73	77	98.5
$11.30 \mathrm{a} . \mathrm{m}$		70	98.1	$7.34 \mathrm{p} . \mathrm{m}$.		75	
12.37 p. n		68	98.4	$7.50 \mathrm{p} . \mathrm{m}$			98.3
$12.54 \mathrm{p} . \mathrm{m}$.		68		8.26 p . m.		71	
${ }_{1}^{1} .59 \mathrm{pr}$. m			98.2	8.30 p. m.			97.8
$2.28 \mathrm{p} . \mathrm{m}$		81	98.5	$10.19 \mathrm{p} . \mathrm{m}$.		65	
$3.35 \mathrm{p} . \mathrm{m}$.		77	98.2	$10.22 \mathrm{p} . \mathrm{m} . .$.			97.1
$4.30 \mathrm{p} . \mathrm{m}$.		16	98.1	Experiment No. 2\%.			
$5.30 \mathrm{p} . \mathrm{m}$.			98.0				
		69		Feb. 17, $6.55 \mathrm{a} . \mathrm{m}$.		69	
6.30 p m.	64.87	69 68	98.2	$7.31 \mathrm{a} . \mathrm{m}$.	64.07	8.	
$7.30 \mathrm{p} . \mathrm{m}$		75	98.1	$7.35 \mathrm{a} . \mathrm{m}$.			97.8
$8.30 \mathrm{p} . \mathrm{m}$		67	97.6	$8.32 \mathrm{a} . \mathrm{m}$.		89	
$8.54 \mathrm{p} \cdot \mathrm{m}$.		70		8.38 a.m.			97.9
9.3. 9 mo		67	97.5	${ }_{10} 9.32 \mathrm{a} . \mathrm{mm}$.		97	98.1
$9.35 \mathrm{p} . \mathrm{m}$			97.4	10.30 a .			98.3
9.51 p.m.			97.6	$11.30 \mathrm{a} . \mathrm{m}$		87	97.9

Table LXI.-Summar!! of thi diary-Metabolism experiments Nos. 26-88-Continued.

Date and time.	Weight with elothes.	Pulserate per minute.	$\begin{aligned} & \text { Temper- } \\ & \text { ature.; } \end{aligned}$	Date and time.	Weight with elothes.	Puiserate per minute.	Temperature.
1900-Continued.				1900-Continued.			
Experiment No. $27-\mathrm{C}^{\prime} \mathrm{t}^{\prime} \mathrm{d}$.				Erperiment No. z^{\prime} - $\mathrm{Cl}^{\prime \prime} \mathrm{t}^{\prime} \mathrm{d}$.			
Fel. $17,12.30$ p. m	Kilograms.	80	${ }^{\circ} \mathrm{F} \mathbf{9 7 . 8}$	Feb. 19, 10.31 a. m	Kilngrams.	91	${ }^{\circ}{ }_{5 .} 98.2$
Ip. 11		77	97.8	11.27 a.m		81	
1.41 p .11.		80		$11.30 \mathrm{a} . \mathrm{m}$			98.0
1. 49 p .11 m			98.0	12.30 p .1 m		73	97.7
${ }_{2} \mathrm{p}$. m .			98.1	$12.56 \mathrm{p} . \mathrm{m} \ldots$		7	
2.10 1. m .			97.9	12.59 l 1. ml .			98.1
2.27 p. 11.		90		1.33 p.m.		S1	
$2.30 \mathrm{p} . \mathrm{m}$.			97.8	$1.37 \mathrm{p} . \mathrm{m}$.			98.1
$2.59 \mathrm{p} . \mathrm{m}$ -		91		2.30 p .17.		92	98.3
$3 \mathrm{p} . \mathrm{m}$.			97.9	$3.30 \mathrm{p} . \mathrm{m}$.		93	98.2
3.27 p .11.		96		$4.30 \mathrm{p} . \mathrm{m}$		88	
$3.30 \mathrm{p} . \mathrm{m}$.			98. 1	$4.46 \mathrm{p} . \mathrm{m}$.			98.2
$4.27 \mathrm{p} . \mathrm{m}$		94		$5.30 \mathrm{p} . \mathrm{m}$.		78	98.2
$4.30 \mathrm{p}, \mathrm{m}$.			98.2	$6.29 \mathrm{p} . \mathrm{m}$.		81	
$5.27 \mathrm{p} . \mathrm{mm}$.		83	48.1	$6.33 \mathrm{p} . \mathrm{m}$..-			98.2
$5.43 \mathrm{p} . \mathrm{m}$.		83		6.59 p. nı		85	
$5.46 \mathrm{p} . \mathrm{m}$			98.1	$7 \mathrm{p} . \mathrm{ml}$.	64.49		98. 1
$6.30 \mathrm{p} . \mathrm{m}$.		84		$7.30 \mathrm{p} . \mathrm{m}$		90	
6.34 p.m.			97.7	$7.35 \mathrm{p} . \mathrm{m}$.			97.6
$6.46 \mathrm{p}, \mathrm{m}$.			98.1	8.27 l 1. m .		83	97.6
$6.58 \mathrm{p} . \mathrm{m}$.		87	98.0	$9.30 \mathrm{p} . \mathrm{m}$		76	97.3
$7 \mathrm{p} . \mathrm{m}$.	64.55			$9.42 \mathrm{p} . \mathrm{m}$.			97.5
7.30 p .11.		90	97.7	$10.19 \mathrm{p} . \mathrm{m}$.		74	97.3
$7.45 \mathrm{p} . \mathrm{m}$.			97.8				
8.27 p. m...		84		Exprrimput Mo. 28.			
8.30 p.m.			97.5				
8.54 1. m.		83		Fel) 20,6.5̄ a. m		72	
$8.55 \mathrm{p} . \mathrm{m}$			97.5	7 a.m	63.71		98.1
4.2sp.m.		79		7.32 a.11.		88	
$9.35 \mathrm{p} . \mathrm{m}$.			97.3	$7.35 \mathrm{a} . \mathrm{mm}$.			98.4
$9.46 \mathrm{p} . \mathrm{m}$.			97.3	8.30 a. m		91	
$10.16 \mathrm{p} . \mathrm{m}$		73		8.31 a. 111.			98.1
$10.21 \mathrm{p} . \mathrm{m}$.			97.1	$9.30 \mathrm{a} . \mathrm{ml}$		99	98.7
Feb. 18, $6.55 \mathrm{a} . \mathrm{m}$.		72		$10.30 \mathrm{a} . \mathrm{m}$.		84	98.4
$7 \mathrm{a} . \mathrm{m}$-.--	63. 75		98.1	11.30 a. m		81	98.2
$7.30 \mathrm{a} . \mathrm{m}$.		82		$11.36 \mathrm{a} . \mathrm{m}$		Ts	
$7.34 \mathrm{a} . \mathrm{m}$.			97.9	12.27 p) m		70	
8.40a.m.		90	98.2	$12.33 \mathrm{p} . \mathrm{m}$			98.1
$9.30 \mathrm{a} . \mathrm{m}$ -		9	98.4	12.57 p . m.		70	
10.27 a .1 m		90		$12.59 \mathrm{p} . \mathrm{m}$.			98.1
$10.30 \mathrm{a} . \mathrm{m}$.			98.3	$1.52 \mathrm{p} . \mathrm{m}$.		81	
$11.31 \mathrm{a} . \mathrm{m}$.		82	97.8	1.57 p . m			98.3
$11.55 \mathrm{a} . \mathrm{m}$.			98.1	$3.34 \mathrm{p} . \mathrm{m}$.		81	98.2
$12.27 \mathrm{p} . \mathrm{m}$		75		$4.30 \mathrm{p} . \mathrm{m}$.		79	98.1
$12.30 \mathrm{p} . \mathrm{m}$ -			98.1	$5.32 \mathrm{p} . \mathrm{m}$.		71	
$12.55 \mathrm{p} . \mathrm{m}$.		75	98.3	$5.41 \mathrm{1} . \mathrm{m}$.			98.0
$1.42 \mathrm{p} . \mathrm{m}$.		83		$6.35 \mathrm{p} . \mathrm{m}$.		$7{ }_{7}$	98.0
1.50 p. m .			98.1	$6.40 \mathrm{p} . \mathrm{m}$.			98.1
2.25 p 1.m.		90		6.57 p .11 m		78	
2.30 p. m..			98.4	$7 \mathrm{p} . \mathrm{m}$.	64.32		98.1
3.28 p.m..	.-....	90		7.30 l . ml .		88	97.8
$3.30 \mathrm{p} . \mathrm{m}$.			98. 4	8.28 p.m.		72	
4.30 p 1. m.		90	98.3	$8.30 \mathrm{p} . \mathrm{m}$.			97.7
$5.32 \mathrm{p} \cdot \mathrm{m}$.		78		$9.30 \mathrm{p} . \mathrm{m}$.		67	
5.40 p .11 m .			98.3	$9.32 \mathrm{p}, \mathrm{m}$.			97.3
6.27 p.m..		80		$10.18 \mathrm{p} . \mathrm{m}$		67	
6.30 p . m.			48. 1	10.20 P , m.			97.2
$6.56 \mathrm{p} . \mathrm{m}$.		Hl		Feb. 21, 6.55a.m..		73	
6.58 1. m.			98.0	7a.m...	63. 83		98.1
$7 \mathrm{p} . \mathrm{m}$.-	16.37			$7.29 \mathrm{a} . \mathrm{m}$.		87	
$7.30 \mathrm{p} . \mathrm{m}$		87	97.7	$7.30 \mathrm{a} . \mathrm{m}$.			98.1
$8.34 \mathrm{p}, \mathrm{m}$.		80	97.7	$8.29 \mathrm{a} . \mathrm{m}$		92	
$9.29 \mathrm{p} . \mathrm{m}$.		72	97.4	8.30) a. m.			98.3
10 p . m ..			97.4	$9.30 \mathrm{a} . \mathrm{m}$.		101	98.3
$10.25 \mathrm{p} . \mathrm{mm}$			97.2	$10.30 \mathrm{a} . \mathrm{m}$.		87	
$10.28 \mathrm{p} . \mathrm{m}$.		71		10.33 a. m			98.4
Feb, 19, 7 a. 111...		75	\% 1	$11.27 \mathrm{a} . \mathrm{m}$		is	
$7.31 \mathrm{a} . \mathrm{m}$		85	97.8	$11.31 \mathrm{a} . \mathrm{m}$			97.9
$8.30 \mathrm{a} . \mathrm{m}$		90	98.0	$12.31 \mathrm{p} . \mathrm{m}$		7	98.1
$9.30 \mathrm{a} . \mathrm{m}$.	- .	96	98.2	$1 \mathrm{p} . \mathrm{m}$.		73	

Table LN1.-Summary of the diary-Metubolism experiments Nos. 26-25-Continued.

Date and time.	Weight with clothes.	Pulse rate minute.	Temper- ature.	Date and time.	Weight with clothes.	$\begin{gathered} \text { Pulse rate } \\ \text { per } \\ \text { minute. } \end{gathered}$	Temperature.
1900-Continued.				1900-Continued.			
Experiment No. 28-C't'd. Feb. 21, 1.54 p.m	Kilograms.			Experiment No. 28-C't'd. Feb. 22, 10.29 a. m	Kilograms.		${ }^{\circ} \mathrm{F}$.
$2.01 \mathrm{p} . \mathrm{m}$.			98.2	$10.30 \mathrm{a} \mathrm{~m} \text {. }$			98.4
$2.27 \mathrm{p} . \mathrm{m}$.		93		$11.36 \mathrm{a} . \mathrm{m}$		82	98.0
$2.34 \mathrm{p} . \mathrm{m}$.			98.5	$12.27 \mathrm{p} . \mathrm{m}$.		$7 \pm$	
${ }_{3.54} .52 \mathrm{p} . \mathrm{m}$.		86	98.2	${ }_{12.55} 12.30 \mathrm{p} . \mathrm{m}$		70	. 2
$4.35 \mathrm{p} . \mathrm{m}$.		76		12.58 p.m.			98.2
$4.52 \mathrm{p} . \mathrm{m}$.		79	98.2	$2.07 \mathrm{p} . \mathrm{m}$.		83	
5.28 p.m.		75	98.5	$2.15 \mathrm{p} . \mathrm{m}$.			98.6
${ }_{6}^{6.32}$ p.m.		77		${ }_{2}^{2.30} \mathrm{p} . \mathrm{m}$ -		84	
${ }_{7}^{6.59 \mathrm{p} . \mathrm{m} .}$	6.6	79	98.2	${ }_{2}^{2.50} \mathrm{p} . \mathrm{m}$.			98.4
7 fr \% p.m.		81	97.7	$3.29 \mathrm{p} . \mathrm{m}$.		88	98.4
$7.41 \mathrm{p} . \mathrm{m}$.			97.9	$5.30 \mathrm{p} . \mathrm{m}$.		73	
$8.27 \mathrm{p} . \mathrm{m}$.		79		$5.37 \mathrm{p} . \mathrm{m}$.			98.2
8.30 p.m.			97.7	$6.30 \mathrm{p} . \mathrm{m}$ -		73	98.4
$9.27 \mathrm{p} . \mathrm{m}$ -		73		${ }_{7} .57 \mathrm{p} . \mathrm{m}$ -	64.77	76	98.1
Feb. ${ }^{22,} \begin{array}{r}9.52 \\ 6.55 \\ \text { a.m.m. }\end{array}$			97.6	7.27 p.m.		74	
Feb. $22,6.55 \mathrm{a} . \mathrm{m}$.		69		7.31 p.m.			97.7
${ }_{7}^{7 \mathrm{a} . \mathrm{m}} \mathrm{7} .36$	63.85		98.1	8.32 p.m.		72	
$7.36 \mathrm{a} . \mathrm{m}$ 7.40 am 8		85		$8.42 \mathrm{p} . \mathrm{m}$.			97.5
8.28 am		93	97.9	${ }_{9.30}{ }^{\text {p p.m. }}$		66	97.3
8.33 a.m			98.3	$10.20 \mathrm{p} . \mathrm{m}$		70	97.1
9.27 am. 9.30 ma.		95		Feb. 23, 6.55 a . m .		76	
$9.30 \mathrm{a} . \mathrm{m}$.			98.2	$7 \mathrm{a} . \mathrm{m}$.	64.05		98.1

Detuiled statistics of income and outgo.-The quantities of nutrients in the basal ration, which was the same in all 3 experiments, and the quantities in the supplemental ration in the different experiments of this series are shown in Table LXII. The feces were determined for each experiment in order to obtain data concerning the relative digestibility of the food with the different supplemental rations.

Table LNII. - Weight, composition, and heat of combustion of foods-Metabolism experiments Nos. 26-28.

Table LAIII.-Weight, composition, and hect of combustion of feces-Metaholism experiments Jiss. 26-28.

Labora No.		Weight.	Water.	Protein.	Fat.	$\begin{aligned} & \text { Carbur } \\ & \text { hydrater } \end{aligned}$	$\begin{gathered} \text { Xitrou- } \\ \text { gen. } \end{gathered}$	Carbon.	$\underset{\substack{\text { Hydro- } \\ \text { gen. }}}{\text { and }}$	$\begin{aligned} & \text { Heat of } \\ & \text { combus- } \\ & \text { tion. } \end{aligned}$
31^3	Erperiment No, ~ッ\%. Feces ior 3 day:		$\begin{gathered} \text { Ciramis. } \\ \text { Binl. } \end{gathered}$	$\begin{gathered} \text { Grame } \\ 20.6 \end{gathered}$	(irames)	${ }^{\text {Grams }}{ }_{20.1}$	$\begin{gathered} \text { firnmis } \\ 3.26 \end{gathered}$	$\begin{aligned} & \text { Crames } \\ & 2 \cdots .33 \end{aligned}$	$\begin{array}{r} \text { irames, } \\ 3 .+1 \end{array}$	${ }^{\text {calorices\% }} 317$
	A rerage per day	is. 8	53.0	6.9	\because	6.7	1.09	4.4	1.14	106
3104	Feces ior 3 days	218.9	152. 1	21.0	6.3	21.2	3.35	26.84	2.41	292
	I rerase per day	73.0	50.7	7. 0	2.1	T. 1	1.12	- 45	. 80	97
3153	Feces ior 3 days	219.9	155.2	23.3	19.1	16.1	3. it	29.93	4.02	335
	Arerase per da	73.3	51.7	-.	4.0	5.3	1.25	9.95	1.34	112

The urine was collected and the nitrogen determined in the usual 6 -hour periods each day. No attempt was made to dry composite samples of the urine for each experiment for the determinations of carbon and hydrogen, but aliquot portions were taken from each days urine for the preparation of a 9 divs" composite sample, which should represent the urine for the total series of experiments. The heat- of combustion of the composite sample for cach day were, howerer. determined. Statisties of the urine for experiment No. 27 are given in detail. by thour periods, and those of experiments Nos. 26 and $2 S$ in which alcohol did not form a part of the diet. are summarized by dars. for comparison.
Table LNIV.-Amount, specific gravity, and nitrogen of urine, hy 6 -hour periods-Metaholism experiments Nos. 26-2s.

	Date.	Period.	Amount.	Speecife gravity.	Sitrogen.	
Feb.	$\begin{aligned} & 1900 . \\ & 1 \pm-15 \\ & 15-16 \\ & 16-17 \end{aligned}$		$\begin{aligned} & \text { Grams. } \\ & 1,216.5 \\ & 1,526.1 \\ & 1,3+10.4 \end{aligned}$	$\begin{aligned} & 1.021 \\ & 1.0175 \\ & 1.0155 \end{aligned}$	$\begin{gathered} \text { Per cent. } \\ 1.38 \\ .99 \\ 1.08 \end{gathered}$	16. 63 15.08 $1+4$ 14. +
		-a. m. 1 Experiment Lio. $2 \sim$.				
	1%	ia.m. to $\frac{1}{\text { p. m.................... }}$	38.5 586.2	1.0175	.94	3. 56 4.09
	1 C 18	- p. m. to 1 a. m.	269.0	1. 021	1.38	3. 71
	15	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	297.0	1.018	1.09	3. 24
		Total	1,5:0.7	...		14. 60
		Total lyy composite	1,520. 7	1.017	. 96	14.60
	18	Ta.m. to $1 \mathrm{p} . \mathrm{m} .$.	537.9	1.014	79	4.25
	15	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{P} . \mathrm{m}$.	44.6	1. 016	97	4.32
	18-19	- p.m. to 1 a. m.	281.3	1.021	1.41	3.97
	19	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	17.6	1. 0245	1. 33	2.99
		Tutal	1, 436. 4-.	15.53
		Total by composite	1, +36.4	1.018	1.08	15.51
	19 19	$\overline{\mathrm{j}} \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$.	291.0	1. 0215	1.4	4.28
	19	$1 \mathrm{p} . \mathrm{ms}$ to ${ }^{-1} \mathrm{p} . \mathrm{m}$.	+13.0	1. 015	1. 03	4.87
	19-20	$\begin{aligned} & \mathrm{r} 1 \mathrm{~m} . \mathrm{m} . \text { to } 1 \mathrm{a} \cdot \mathrm{~m} . \\ & 1 \mathrm{a} \cdot \mathrm{~m} . \text { to } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 310.9 \\ 219.9 \end{array} \end{aligned}$	$\begin{aligned} & \text { 1. } 019 \\ & \text { 1. } 0215 \end{aligned}$	1.36	+. 23 3.40
		Total	1,294.2			16.7s
		Total by composite	1,294.2	1.018	1. 30	16. 82
		Experiment No. 28 . is m. to is n				
	21-29	- a. m. to $\overline{\text { T a a m. }}$	1, 24ㄴㅇㅡ․ 3	1.017	1.15	15.90
	22-23	¢ a. m. to $\overline{7} \mathrm{a} . \mathrm{m}$.	1,202. 5	1.01.	1. 2	14.65

Table LXV.-Daily elimination of carbon, hydrogen, and wuter in the urine-Metabolism experiments Nos. 26-28.

Tables LXVI-LXVIII show the quantities of carbon dioxid and water found in the ventilating air current in this series of experiments. These statistics are given in detail for the 3 days of experiment No. 27 , in which alcohol formed a part of the diet, and are summarized by days for experiments Nos. 26 and 28.
TABLE LXVI.-Comparison of residual amounts of carbon dioxid and water in the chamber at the beginning and end of each period, and the corresponding gain or loss-Metabolism experiment No. 27.

Date.	End of period.	Carbon dioxid.		Water.a		
		$\begin{aligned} & \text { Total } \\ & \text { amount in } \\ & \text { chamber. } \end{aligned}$	$\begin{aligned} & \text { Gnin (+) or } \\ & \text { loss (-) over } \\ & \text { preeeding } \\ & \text { period. } \end{aligned}$	Total amount of vapor remaining in chamber.	Gain (+) or loss (-) over preeeding period	Total amount gained (+) or lost (-) during the period.
$\begin{array}{ll} \text { Feb. } 1900 . \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{array}$	$7 \mathrm{a} . \mathrm{m} . .$.	Grams. 23.0	Grams.	Grams. 31.4	Grams.	Grams.
	1 p. m....	33.1	$+10.1$	37.1	$+5.7$	$+5.7$
	$7 \mathrm{p} . \mathrm{m}$	37.8	$+4.7$	38.6	$+1.5$	$+1.5$
	$1 \mathrm{a} . \mathrm{m}$	23.6	-14.2	34.8	-3.8	-3.8
	$7 \mathrm{a} . \mathrm{ml}$	27.0	+ 3.4	33.3	-1.5	-1.5
		--------.	$+4.0$		+1.9	$+1.9$
	1 p . 1 n	31.0	$+4.0$	37.2	$+3.9$	$+3.9$
	7 l . m -....	36.5	$+5.5$	37.8	+0.6	+0.6
	1 a. m....	24.1	-12.4	35.3	-2.5	-2.5
	7 a . 11.	25.3	+1.2	31.0	- 4.3	-4.3
			-1.7		-2.3	-2.3
	1 p . m.	31.0	$+5.7$	37.1	+6.1	+6.1
	$7 \mathrm{p}, \mathrm{m}$.	39.1	+8.1	39.0	$+1.9$	$+1.9$
	1a.m.	23.0	-16.1	35.5	-3.5	-3.5
	7 a .111	26.4	+ 3.4	32.9	-2.6	-2.6
			+ 1.1	.	+1.9	+1.9
		--.-......	$+3.4$.-.-.........	$+1.5$	

Table LXV11.-Record of carhon diorid in rentilating air murrent-Metabolism experimerts. Nos. 26-28.

Date.	Period.	(a)	Carbon dioxid.						(h) Total weight of carbon exhaled, $g \times$ 곤
			In ineoming air.		In outgoing air.	$\begin{gathered} (e) \\ \text { Total ex- } \\ \text { eesin } \\ \text { outgoing } \\ \text { gir. } \\ d-c . \end{gathered}$		(g) Corrected amonnt exhaled byֻ subject, $f+f$.	
			(b) Per liter.	$\begin{aligned} & (c) \\ & \text { Total, } \\ & a \times b \text {, } \end{aligned}$					
	Experiment Vo. 26.	Liters.	14.	Grams.	Grams:	Grame,	Gram.	Grams.	Grams.
	7 a.m.to 7 a.m	116, 602		64.1		11.6	+ 3.1	-11.	194.9
	Ia.m. to 7 a.m	118, 158		65.7	795.9	730.2	-2.7	727.5	148.4
	T a. m. to 7 a. m	119, 112		67.7	782.0	714.3	$+0.4$	714.7	144.9
	Experiment .1\%.								
17	$\overline{\mathrm{a}}$, m. to 1 p. m.	29, 540	0.567	16. s	217.6	200.8	$+10.1$	210.9	57.5
17	1 p. m. to 7 p.m.	27,207	. 610	16.6	215.5	195.9	$+4.7$	208.6	55.5
17-18	$7 \mathrm{p} . \mathrm{m}$. to 1 a.m.	-24, 540	. 561	16.6	206. 3	189.7	-14.2	175.5	47.9
18	$1 \mathrm{a} . \mathrm{m}$, to $7 \mathrm{a} . \mathrm{m}$.	26, 762	.5.4	15.9	146.2	130.3	+3.4	133.7	36.5
	Total	115,049		65.9	785.6	719.7	+ 4.0	723.7	197. 4
15	$7 \mathrm{a} . \mathrm{m}$. to 1 p . m	$2 \mathrm{~S}, 762$. 559	16.1	290.5	204.7	+4.0	205.7	56.9
18$18-19$19	$1 \mathrm{p} . \mathrm{m} . \mathrm{t}, 7 \mathrm{l}$].m	2, 76	. 551	15.s	214.5	195.7	+5.5	204.2	5.7
	$7 \mathrm{p} \cdot \mathrm{mm}$ to 1 d. m	29, 540	. 537	15.9	206	190.3	-12.4	17.9	4 4. 5
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	29,540	. 548	16. 2	14.5	131.3	+1.2	132.5	36.1
19	Tota	116, 604		¢¢. 0	789.0	725.0	-1.7	723.3	197.2
19	$7 \mathrm{a} . \mathrm{m}$, to $1 \mathrm{p} . \mathrm{m}$	27, 208	. 548	14.9	209.5	194. 6	-5.7	900.3	$5 \pm .6$
19$19-20$	$1 \mathrm{p} . \mathrm{m}$. to ${ }^{\text {i p }} \mathrm{p}$ m	27,985	. 575	16.1	218.5	202.4	+ 8. 1	210.5	57.4
	$7 \mathrm{p} . \mathrm{m}$. to 1 a.m	29, 540	. 573	16.19	200.1	203.2	-16. 1	187. 1	51.0
20	$1 \mathrm{a} . \mathrm{m} .107 \mathrm{a} . \mathrm{m}$	2s, 622	. 551	15.8	149.2	133.4	+ 3.4	136.8	37.3
	Total	113, 495		63.7	797.3	733.6	+ 1.1	734.7	200.3
20-21	Erperiment - Mo, 28.								
	T a.m. to 7 a.m	112, 717		64.3	840.3	776.0	-2.3	773.7	211.0
21-202	¢a.m.to i a.m	105, 830		67.6	843.3	775.7	± 4.8	Tino. 5	212.8
22-23	T a.m. to ${ }^{\text {- a m m }}$	111, 162		66.4	830.6	764.2	-0.2	764.0	205.3

Table L.XV111.-Record of urater in ventilating air current-Metubolism experiments Nos. 26-28.

Date.	Period.	Ventilation Sumber oiliters of air.	Water in ineoming air.		Water in ontgoing air.					$\xrightarrow{\text { (i) }}$
			(b) ${ }_{\substack{\text { Per } \\ \text { liter }}}$	(c) $\substack{\text { Total, } \\ a \times b .}$	$\begin{aligned} & (d) \\ & \text { Amount } \\ & \text { con- } \\ & \text { densed } \\ & \text { in } \\ & \text { freezers. } \end{aligned}$	$\begin{gathered} \text { (c) } \\ \text { Amount } \\ \text { not con- } \\ \text { densed in } \\ \text { freezers. } \end{gathered}$	(f) $\substack{\text { Total, } \\ d+e .}$			
$\text { Feb. } \begin{array}{r} 1900 . \\ 1+-15 \\ 15-16 \\ 16-1 i \end{array}$		$\begin{aligned} & \text { Sikere. } \\ & 1116,602 \\ & 115,1 \mathrm{EN} \\ & 119,712 \end{aligned}$	Mg.	Grams. 97 9.1 101. 97.8		$\begin{aligned} & \text { Grame } \\ & 169.6 \\ & 15.4 \\ & 173.3 \end{aligned}$		Grams, 831.8 507.9 810.4	$\begin{aligned} & \text { Grams. } \\ & -1.7 \\ & -1.3 \\ & -0.9 \end{aligned}$	$\begin{gathered} \text { Grams. } \\ \text { S-9.1 } \\ 506.6 \\ \mathbf{5 0 9 . 6} \\ \hline 9.5 \end{gathered}$
	Ecperiment No. 2%.									
$\begin{array}{r} 17 \\ 17 \\ 17-14 \\ 18 \end{array}$	${ }_{7} \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$	29, 540	-	24.2	18.9	4.5	226.4	202. 2	-5.7	207.9 210.9
		20, 29	.820		19.3 .7		-29.9	205.4	-1.5	201.6
	1 a m. to $7 \mathrm{a} . \mathrm{m}$	2s, 6 62	-	23.5	166.4	39.0	20.4	181.6	-1.5	180.1
	Tutal	115, 049		94.8	723. 7	164.7	493. 4	79x.6	-1.9	800.5
$\begin{array}{r} 18 \\ 18 \\ 18-19 \\ 19 \end{array}$	7a.m.to 1 p. m	2s, 66	. 817	23.5	194.5	43.6	23 S .1	214.6	+3.9	218.5
	1p.m.to ${ }^{\text {p p. m }}$..	20, 6 62	- 800	23.0	194.5	41.0	23.5	212.5	$+0.6$	213.1
		$\begin{aligned} & 29,540 \\ & 29,540 \end{aligned}$. 110	24. 23.6	172.0	43.8 39.4	229.3 $2+11.4$	19i. 8	- -2.3	183.5
	Total	116. 604		94. 3	$i+6.5$	16\%. ${ }^{\text {a }}$	$91+3$	צ0.0	-2.3	\$17. 7

Table LXVIII.-Record of water in ventilating air current-Metabolism experiments Nos. 26-28-Continued.

Date.	Period.	(a) Ventilation. Number of liters of air.	Water in incoming air.		Water in outgoing air.			$\begin{gathered} (g) \\ \\ \text { Total ex- } \\ \text { cess water } \\ \text { in out- } \\ \text { going air, } \\ f-c . \end{gathered}$	Correction for water re-maining in chamber.	Totalwater ofrespira-tion andperspira-tion.$g+h$.
			(b) Per liter.	(c) Total, $\substack{\text { a } \\ \text { a } \\ \text {, }}$	(d) Amount densed in freezers.	\qquad Amount not condensed in ireezcrs.	(f) $\begin{gathered}\text { Total, } \\ d+e .\end{gathered}$			
	Experiment No. 27Continued.									
$\text { Feb. }{ }^{1900 .}{ }_{19}$	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$	Liters. 27, 208	$\begin{array}{r} M g . \\ .810 \end{array}$	Grams. 22.0	$\begin{gathered} \text { Grams. } \\ 184.3 \end{gathered}$	Grams. 39.6	$\begin{gathered} \text { Grams. } \\ 223.9 \end{gathered}$	Grams. 201.9	$\begin{aligned} & \text { Grams. } \\ & +6.1 \end{aligned}$	Grams. 208.0
19	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$	27,985	. 826	23.1	191.2	38.2	229.4	206.3	+1.9	208.2
19-20	$7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$	29,540	. 837	24.7	195.2	45.9	241.1	216.4	-3.5	212.9
20	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	28, 762	. 819	23.6	173.3	39.0	212.3	188.7	-2.6	186.1
	Tota	113, 495		93.4	744.0	162.7	906.7	813.3	+1.9	815.2
20-21	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	112, 717		94.8	769.8	163.7	933.5	838.7	-2.1	836.6
21-22	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.-...	108, 830		90.2	742.4	156.9	899.3	809.1	$+4.7$	813.8
22-23	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	111, 162		97.9	730.7	159.9	890.6	792.7	-2.1	790.6

The heat carried away by the water current and the latent heat of vaporization of water in this series of experiments are shown in Table LXIX. As in the previous tables, the data are summarized for experiments Nos. 26 and 28 and given in detail for experiment No. 27, in which alcohol formed a part of the diet.

Table LXIX.-Summary of calorimetric measurements-Metabolism experiments Nos. 26-28.

The determinations of alcohol in urine and freezer water and of reducing material reckoned as alcohol in the air current were made in the nsual mamer. and the results are given in Table LXX. It will be observed that there was an elimination of redncing material equivalent to an arerage of 0.32 gram of alcohol per day on the 6 day of experiment- Nos. 26 and 28 . This amonnt has been deducted from the values obtained in experiment No, 27 , and the difference is taken as a measure of the alcohol excreted moxidized. It will likewise be observed that there is here no indication whatever of any lag in the elimination of alcohol from the body as was apparently indicated by the results ohtained in experiments Nos. 18-20.

Table LXX.-Alcohol ingested and excreted-Metubolism experimend No. 2%.

${ }^{\text {a }}$ Equals total reducing material excreted less 0.32 grams of reducing material not alcohol, the average for the days on which no alcohol was consumed.

Batance vf income and outgo of matter aml energy. -Tables LXXI to LXXIV summarize the income and ontgo of nitrogen, carbon. hydrogen, and energy according to the plan adopted in previous experiments.

Table L.N.II.-Income and outyo of nitrogen and carbon-Metabolism experiments Nos. 26-28.

Date and periol.	Nitrogen.				Carben.					
	(a)	(b)	(c)	(d)	(e)	(j)	(g)	(h)	(i)	(k)
	In food.	In feces.	In urine.	$\begin{aligned} & \text { Gain }(+) \\ & \text { or lots }(-) \\ & a-(b+c) . \end{aligned}$	In food.	In feres.	In urine.	In respiratory products.	$\begin{aligned} & \text { In aleohol } \\ & \text { elimininat } \\ & \text { ed. } \end{aligned}$	$\begin{aligned} & \operatorname{Gain}(+) \\ & \operatorname{col} \operatorname{los}(-) \\ & c-h f+g \end{aligned}$
1900.										
Experiment Mo. abi. $^{\text {a }}$										
Feb. $1 \pm-15,7 \mathrm{a} . \mathrm{m}$. to 7 a . m.	Grams. 15.9	$\begin{gathered} \text { Grames. } \\ 1.1 \end{gathered}$	Grams. 16.6	$\begin{gathered} \text { Grams. } \\ -1.5 \end{gathered}$	Grams. 233. 2	Grams. 9.4	Grams. 11.9	(irams. 194.9	Firams.	$\begin{aligned} & \text { Grams. } \\ & +17.0 \end{aligned}$
15-16, 7 a.m. to 7 a . m.	15.9	1.1	15.1	-. 3	233. 3	9.5	10.8	195.4		$+14.5$
	15.9	1.1	14.4	- . +	233.2	9.4	10.4	194.9		$+18.5$
Total	47.7	3.3	46. 1	-1.7	699.6	28.3	33.1	5ss. 2		$+50.0$
Average jer day.	15.9	1.1	15.4	$-.6$	233.2	9.4	11.0	196.1		+16.7

Table LXXI.-Income and outgo of nitrogen and carbon-Metubolism experiments Nos. 26-2s-Continued.

Date and period.	Nitrogen.				Carbon.					
	(n)	(b)	(c)	(d)	(e) In food.	In feces.	(g) In urine.	$\begin{array}{c\|} (h) \\ \begin{array}{c} \text { In respir } \\ \text { atory } \\ \text { prodncts. } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} (i) \\ \text { In alcohol } \\ \text { eliminat- } \\ \text { ed. } \end{array}$	$\begin{gathered} (k) \\ \text { Gain }(+) \\ \text { or loss }(-) \\ \epsilon-(f+g \\ +h+i) \end{gathered}$
	In food.	In feces.	In urine.	$\begin{aligned} & \operatorname{Gain}(+) \\ & \operatorname{Or} \operatorname{loss}(-) \end{aligned}$ $a-(b+c) \text {. }$						
1900.										
Experiment No \sim^{\prime}										
Feb, 17-18, 7 a. m. to $7 \mathrm{a} . \mathrm{m}$.	15.8	1.1	14. 6	+. 1	229.5	8.9	10.5	197. 4	0.5	+12.2
18-19, 7 a. m. to $7 \mathrm{a} . \mathrm{m}$.	15.7	1.1	15.5	-. 9	229.5	9.0	11.1	197.2	0.4	+11.8
19-20, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	15.8	1.1	16.8	-2.1	229.5	8.9	12.0	200.3	0.4	+ 7.9
Total	47.3	3.3	46.9	-2.9	688.5	26.8	33.6	594.9	1.3	$+31.9$
Average per day....	15.8	1.1	15.7	-1.0	229.5	8.9	11.2	198.3	. 5	$+10.6$
Feb. 20-21, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	15.8	1. 2	15.9	-1.3	245.8	10.0	11.4	211.0		$+13.4$
21-22, 7 a. m. to $7 \mathrm{a} . \mathrm{m}$.	15.7	1.3	15.2	$-.8$	245.8	10.0	10.9	212.8		+12.1
22-23, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	15.8	1.2	14.7	$-.1$	245.8	10.0	10.5	208.3		$+17.0$
Total	47.3	3.7	45.8	-2.2	737.4	30.0	32.8	632.1		$+42.5$
Average per day....	15.8	1.2	15.3	$-.7$	245.8	10.0	10.9	210.7		+14.2

Table LXXII.-Income and outgo of water and hydrogen-Metabolism experiments Nos. 26-28.

Date and perion.	$\begin{gathered} (a) \\ \\ \text { Nitrog.al2 } \\ \text { gained } \\ 1+1 \text { or } \\ \text { lost }(-) . \end{gathered}$			(d) Carbon in pro- tein gained lot or luit $(-)$ $b \times .53$.			(g)Total hy- drogein gainell $1+$ or lost $(-)$.				$\begin{gathered} \text { (l) } \\ \\ \text { Water } \\ \text { gained } \\ (+ \text { or } \\ \text { lost }(-) \\ k \propto 9 . \end{gathered}$
1900. Enperiment No. 26. Felb. 14-15, 7 a. m. to 7 a. m.. 15-16, 7 a.m. to $7 \mathrm{a} . \mathrm{m}$. 16-17, 7 a.m. 107 a . m..	Grams -1.8 -.3 $+\quad .4$	Grams -11.2 -1.9 +2.5	$\begin{array}{r} \text { firams. } \\ +17.0 \\ +14.5 \\ +18.5 \end{array}$	$\begin{array}{r} \text { Grams. } \\ -5.9 \\ -1.0 \\ -1.3 \end{array}$	$\begin{array}{r} \text { fircmas. } \\ +22.9 \\ +15.5 \\ +17.2 \end{array}$	$\begin{array}{r} \text { frams. } \\ +30.1 \\ +20.4 \\ +22.6 \end{array}$	Grams. +8.0 -24.4 -2.9	$\begin{array}{r} \text { Grams. } \\ -.8 \\ -.1 \\ +\quad .2 \end{array}$	Girams. +3.6 +2.4 +2.7	$\begin{array}{r} \text { Grams, } \\ +\quad 5.2 \\ -26.7 \\ -\quad 5.8 \end{array}$	Grams. $+\quad 46.8$ -240.3 -52.2
Total......... Average per da	$\begin{array}{r} 1.7 \\ -\quad .6 \end{array}$	$\begin{array}{r} 10.6 \\ -\quad 3.5 \end{array}$	$\begin{array}{r} +50.0 \\ +16.7 \end{array}$	$\begin{aligned} & -5.6 \\ & -1.8 \end{aligned}$	$\begin{aligned} & +55.6 \\ & +18.5 \end{aligned}$	$\begin{array}{r} +73.1 \\ +24.4 \end{array}$	$\begin{array}{r} -19.3 \\ 6.4 \end{array}$	$\begin{array}{r} -7 \\ -.2 \end{array}$	$\begin{array}{r} 8.7 \\ +2.9 \end{array}$	$\begin{array}{r} -27.3 \\ -\quad 9.1 \end{array}$	$\begin{array}{r} -245.7 \\ -\quad 81.9 \end{array}$
E											
$\begin{array}{r} \text { Feb. } \begin{aligned} & 17-18,7 \mathrm{a} . \mathrm{m} . \text { to } 7 \mathrm{a} . \mathrm{m} . . \\ & 18-19,7 \mathrm{a} . \mathrm{m} . \text { to } 7 \mathrm{a} . \mathrm{m} . \end{aligned} \end{array}$. 1	$+\quad .6$ -5.6	12.2 +11.8	+.3 -3.0	+11.9 +14.8	+15.6 +19.4	$\begin{array}{r}19.8 \\ -12.2 \\ \hline\end{array}$	-. 4	+1.9 +2.3	-21.7	$\begin{array}{r} 195.3 \\ -126.9 \end{array}$
19-20, 7 a. m. to 7 a. m. .	2.1	13.1	+ 7.9	6.9	$+14.8$	$1+19.5$	$+4.2$. 9	$+2.3$	+ 2.8	+ 25.2
Tota	2.9	-18.1	+31.9	-9.6	+41.5	+54.5	-27.8	--1.3	$+6.5$	-33.0	$\begin{array}{r}297.0 \\ \hline 99.0\end{array}$
Average per day	-1.0	6.0	$+10.6$	-3.2	+13.8	+18.2	9.3	. 4	+2.1	-11.0	99.0
Feb. ${ }^{2} 0-21,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m} .$.							$\begin{array}{r} 2.5 \end{array}$				105.3 $+\quad 4.5$
$\begin{aligned} & 21-22,7 \mathrm{a} . \mathrm{m} . \text { to } 7 \mathrm{a} . \mathrm{m} . . \\ & 22-23,7 \mathrm{a} . \mathrm{m} . \text { to } 7 \mathrm{a} . \mathrm{m} . \end{aligned}$	$\text { 二. } .8$	$\begin{array}{r} 5.0 \\ -\quad .6 \end{array}$	$\begin{array}{r} 12.1 \\ +17.0 \end{array}$	$\begin{array}{r} -2.7 \\ -.3 \end{array}$	$\begin{aligned} & +14.8 \\ & +17.8 \end{aligned}$		$\begin{array}{r} +2.5 \\ +15.0 \end{array}$	-. 3	$\begin{array}{r} +2.3 \\ +2.7 \end{array}$	$\begin{aligned} & + \\ & +12.3 \end{aligned}$	10.5 +110.7
Tot	-2.2	-13.7	$+42.5$	-7.3	$+49.8$	+65. 4	$+31.3$	-. 9	$+7.7$	+24.5	$+220.5$
Average per day	-. 7	4.5	$+14.2$	-2.4	+16.6	+21. 5	$+10.4$	$-.3$	$+2.5$	$+8.2$	$+73.5$

Table LXXIV.--heome and outgo of energy-Metabolism experimonts Non. : : 28 - 28.

Date and period.		(b) Heat of combustion or feces.	$\begin{aligned} & (c) \\ & \\ & \text { Heat of } \\ & \text { eombus- } \\ & \text { tion of } \\ & \text { urine. } \end{aligned}$	${ }_{\substack{\text { Heat of } \\ \text { coub } \\ \text { tion } \\ \text { tion of } \\ \text { alcomol } \\ \text { elimil } \\ \text { nated. }}}$				(g) Heat determined	Heat determined greater (+) or less (-) than estimated	
									$\begin{gathered} (h) \\ f-g . \end{gathered}$	$\begin{gathered} (i) \\ h \neq f . \end{gathered}$
$1900 .$ Experiment Vo. 26.										
	Culories. 2,490	Catories. 106	Cadories. 125	Caloric	$\begin{gathered} \text { Culorices. } \\ -64 \end{gathered}$	$\begin{gathered} \text { Calaries } \\ +287 \end{gathered}$	$\begin{aligned} & \text { Calorises, } \\ & 2,0.36 \end{aligned}$	${ }_{2}$ Catiores	Caiories.	Per crat. +2.0
	2,490	106	125		-11	$+195$	2, 075	2, 100	+ 25	$+1.2$
	2,490	106	135		+ 14	+216	2,019	2, 078		+2.9
Total Average per day ...	7,470	318	385		-61	$+698$	6, 130	6, 255	+125	
	2,490	106	128		20	+233	2,043	2, 085	+ 42	$+2.0$
Erperiment No. 27.										
Felb. 17-18, 7 a. m. to 7 a. m. 18-19, 7 a.m. to 7 a. m, 19-20, 7 a. m. to 7 a. m.	2, 491	97	111	碞		+149 +185	$\stackrel{\text { a }}{\sim}$	2,116 2,126		
	2,491 2,491	${ }_{97}^{97}$	121	5	$\begin{array}{r}\text { - } \\ -72 \\ -70 \\ \hline\end{array}$	185 +186	$\xrightarrow{2,114}$	$\stackrel{\stackrel{2}{2}, 126}{2,128}$	$\begin{array}{r}10 \\ -12 \\ \hline\end{array}$	+.6
Total A verage per day	7, 473	291	372	8		$+520$	6, 376	6, 370	,	1
	2, 491	97	124	6	- 35	+174	2, 125	2, 123	2	
E.rperiment No. 28.										
Feb. $20-21,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$. $21-22,7$ a. 11 . to 7 a. m_{-} 22-23, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	2, 489	112	119		- 47	$+222$	2,083	2,097		
	2, 489	112	133		- 29	+185	$\stackrel{1}{2,088}$	2,065	-13	
	$\stackrel{2}{2}, 489$	112	132		- 3	$+217$	2,031			
$\begin{aligned} & \text { Total } \\ & \text { Average per day } \end{aligned}$	7, 467	336								
	2,489	112	128		-26	+208	2,067	2, 079	+ 12	

EXPERIMENTS NOS. 29-31—WORK. NO. 30 WITH ALCOHOL DIET.

Subject.-J. F. S., who served as the subject of the previous series of rest experiments Nos. 26-28. His weight with underclothing was about 64.5 kilograms (142 pounds).

Occupation during experiment.-Work, 8 hours a day, upon a stationary bicycle arranged as an ergometer, as described on page 237 .

Duration.-This experiment was the second of a series of 3 , each of which continued 3 days. The preliminary period continued 4 days, beginning with breakfast March 12, 1900. On the evening of the fourth day, March 15 , the subject entered the calorimeter. The first of the 3 series of experiments, No. 29, began at 7 a. m. March 16, and continued until 7 a. m. March 19 , when experiment No. 30 began and continued until 7 a. m. March 22, and in turn was followed by experiment No. 31, which continned until 7 a . m. March 25 . The subject therefore remained in the respiration chamber 9 days and 10 nights.

Diet.-The object of this series of experiments was to study the relative replacing power of isodynamic quantities of sugar, alcohol, and fat, when the subject was at active exereise. There was a basal ration, as in the previons series, which was practically the same in the 3 experiments, the only difference being that due to slight rariations in the composition of the milk consumed. It furnished, approximately, 100 grams of protein and from 2,949 to 2,984 calories of energy per day in the different periods. To this ration was added, in experiment No. 29, 128 grams of cane sugar per day, furnishing 507 calories of energy. In experiment No. 30 the supplemental ration consisted of 72 grams of absolute alcohol per day, furnishing 509 calories of energy. In experiment No. 31 the supplemental ration consisted of 63.5 grams of butter per day, furnishing 1 gram of protein and 511 calories of energy.

To 795.5 grams of water sweetened with 25 grams of sugar were added 79.5 grams of 90.6 per cent commercial alcohol containing 72 grams absolute alcohol. This alcohol mixture was taken with and between meals in experiment No. 30 as in previous experiments. The sugar in experiment No. 29 was likewise taken with and between meals, but the butter in experiment No. 31 was consumed with the rest of the food in approximately equal portions at breakfast, dinner, and supper. The same amount of water was given in the drink on each day of the experiment and amounted to 1,250 grams per day. In experiment No. 30,803 grams of this water was furnished by the alcohol mixture. The kinds and quantities of food served at each meal and the quantities of drink at different periods of the day were as follows:

Diet in metabolism experiments Nos, 29-31.
FOOD-BASAL RATION.

${ }^{5}$ Laten on parched cereal in experiments Nos. 29 and 31; added to water and alcohol in experiment No. 30.

[^27]Diet in metabolism experiments Nos. 29-31.
DRINK.

	$\substack{\text { Experiment } \\ \text { Vo. } 29 .}$ Water.	Experime	No. 30.	$\begin{aligned} & \text { Experiment } \\ & \text { No. } 31 \text {. } \end{aligned}$
		Alcohol and sweetened water.	Water.	Water.
Breakfast	Grame. 150	Grams. 175	Grams. 75	Grams. 150
$10.15 \mathrm{a} . \mathrm{m}$.	200	100	\%	200
Dinner	200	175	75	200
$4 \mathrm{p} . \mathrm{m}$	200	100	75	200
Supper	150	175	75	150
$9 \mathrm{p}, \mathrm{m}$.	200	100	72	200
$10.20 \mathrm{p} . \mathrm{m}$	150	75		150
Total	1,250	${ }^{2} 900$	447	1,250

${ }^{n}$ Contained 803 grams water, 25 grams sugar, and 72 grams alcohol.
Daily routine.-The general routine of the series of experiments is indicated in the following schedule:

Daily programme-Metabolism experiments Nos. 29-31.

6.50 a m	Take pulse and temperature.	4	Stop work. Drink 200 grams water.
$7 \mathrm{a} . \mathrm{m}$	Pass urine, weigh self dressed, col-	$4.15 \mathrm{p} . \mathrm{m}$	Begin work.
	lect drip and weigh absorbers.	6.15 p .	Stop work. Change underelothing.
7.30 a. m	Breakfant. Drink 150 grams water.	$6.20 \mathrm{p} . \mathrm{m}$	Supper. Drink 150 grams water.
$8.15 \mathrm{a} . \mathrm{m}$	Begin work.	$6.50 \mathrm{p} . \mathrm{m}$	Take pulse and temperature.
10.15 a. m	Stop work. Drink 200 grams water.	$7 \mathrm{p} . \mathrm{m}$.	Pass urine, weigh self dressed, col-
$10.30 \mathrm{a} . \mathrm{m}$	Begin work.		lect drip and weigh alsorbers.
$12.30 \mathrm{p} . \mathrm{m}$	stop work.	$9 \mathrm{p} . \mathrm{m}$	Drink 200 grams water.
$12.50 \mathrm{p}, \mathrm{m}$	Take pulse and temperature.	$10 \mathrm{p} . \mathrm{m}$	Take pulse and temperature.
1 p. m..	Pass urine, collect drip and weigh absorbers.	$\begin{aligned} & 10.10 \mathrm{p} . \mathrm{m} \\ & 10.20 \mathrm{p} . \mathrm{m} \end{aligned}$	Arrange bed. Drink 150 grams water.
1.25 p. m	Dinner. Irink 200 grams water.	$10.30 \mathrm{p} . \mathrm{m}$	Retire.
$2 \mathrm{p} . \mathrm{m} .$.	Begin work.	$1 \mathrm{a} . \mathrm{m}$	Pass urine.

Table LXXV summarizes the more important statisties in the diary kept by the subject. The pulse rate was observed during periods of both work and rest. The observations of body temperature could not be made as frequently as in the previous series of (rest) experiments, but were frequent enough to afford basis of comparison between the different experiments of this series.

Amount of work done. -The total number of miles registered by the eyclometer on different days of the series of experiments and the heat equivalent of the work done each day are shown in Table LXXVI. As has already been pointed out, the amount of work done could hardly have been as large as would be required to propel a bicycle the number of miles recorded by the cyelometer. It will be ohserved that there was but little difference in the arerage amounts of work done in different days in the different experiments of this series.

Table LXXV.-Summary of the diary-Metabolism experiments Nos. 29-81.

Date and time.	Weight.	Pulse rate per minute.	Tempera- ture.	Date and time.	Weight.	Pulserate per minute.	Temperature.
Experiment No. 29. Mar. 16, 7 a. m........	Kilograms. 63.85	71	${ }^{\circ}{ }_{F} .$	Experiment No. 30-C't'd. Mar. 20, 7 p. m.	Kilograms. 64.80	72	97.3
Mar. 16,9 a. m......		90		8p.m........		77	
$10 \mathrm{a} . \mathrm{m}$		85		$8.09 \mathrm{p} . \mathrm{m}$.			
11 a . m.		87		$9 \mathrm{p} . \mathrm{m}$.		74	
12 m		90		$9.07 \mathrm{p} . \mathrm{m}$			97.2
$1 \mathrm{p} . \mathrm{m}$.		79	98.5	$10.10 \mathrm{p} . \mathrm{m}$		73	96.8
$3 \mathrm{p} . \mathrm{m}$.		101		Mar. 21, $6.55 \mathrm{a} . \mathrm{m} . .$.		64	
\pm p. m.		108		- $7 \mathrm{a} . \mathrm{m}$.	64.34		97.7
$5 \mathrm{p} . \mathrm{m}$.		102		9 a. m		99	
6 p.m.		88		$10 \mathrm{a} . \mathrm{m}$		93	
$7 \mathrm{p} . \mathrm{m}$.	64.78	83		11 a. m		88	
$9 \mathrm{p} . \mathrm{m}$.-		82	98.2	12 m		81	
Mar. 17, 7 a. m...	64.76	66	97.4	$1 \mathrm{p} . \mathrm{m}$.		70	98.1
9a. m...		92		$3 \mathrm{p} . \mathrm{m}$.		101	
10 a. m.-		96-	$4 \mathrm{p} . \mathrm{m}$.		102	
$11 \mathrm{a} . \mathrm{m}$. $12 \mathrm{~m} .$.		94	-.........	$5 \mathrm{p} . \mathrm{m}$.		95	
12 m.		94	98	$6 \mathrm{p} . \mathrm{m}$ -	64.60	89	97.8
${ }_{3}^{1} \mathrm{p} . \mathrm{m} . \mathrm{m}$.		74	98.4	8 p ¢ m .-.	64.60	76 80	97.5
$4 \mathrm{p} . \mathrm{m}$		98		$9 \mathrm{p} . \mathrm{m}$.		69	97.0
$5 \mathrm{p} . \mathrm{m}$.		93		$10.15 \mathrm{p} . \mathrm{m}$		74	97.0
6 p. m...		94		Experiment No. 31.			
7 p. m... $8.08 \mathrm{p} . \mathrm{m}$	65.12	77 76	97.9	Mar. 22, 6.55 a. m ...	64.09	65	
$8.12 \mathrm{p} . \mathrm{m}$			97.6	$7 \mathrm{a} . \mathrm{m}$			97.6
$9 \mathrm{p} . \mathrm{m}$.		75	97.4	$9 \mathrm{a} . \mathrm{m}$		93	
$10 \mathrm{p} . \mathrm{m}$.		69		$10 \mathrm{a} . \mathrm{m}$		87	
10.10 p.m			96.9	$11 \mathrm{a} . \mathrm{m}$		90	
Mar. 18, 7 a. m....	64.76	65	97.3	12 m .		87	
9 a.m..		88		$1 \mathrm{p} . \mathrm{m}$		67	97.8
$10 \mathrm{a} . \mathrm{m}$.		93		$3 \mathrm{p} . \mathrm{m}$		99	
$11 \mathrm{a} . \mathrm{m}$		91		4 p.m.		93	
12 m		92		5 p.m.		97	
$1 \mathrm{p} . \mathrm{m}$.		69	98.0	6 p.m.		93	
$3 \mathrm{p} . \mathrm{m}$.		91		6.55 p. m		71	
\pm p.m.		95		$7 \mathrm{p} . \mathrm{m}$.	64.55		
$5 \mathrm{p} . \mathrm{m}$.		95		$8 \mathrm{p} . \mathrm{m}$		76	97.5
${ }_{7}^{6}$ p.m.		93		$9 \mathrm{p} . \mathrm{m} . .$.		70	97.0
$7 \mathrm{p} . \mathrm{m}$..	64.96	79	97.8	$10.12 \mathrm{p} . \mathrm{m}$		67	96.5
$8.15 \mathrm{p} . \mathrm{m}$		74		Mar. $23,6.55 \mathrm{ar}$ m		68	97.6
$8.23 \mathrm{p} . \mathrm{m}$			97.4	$7 \mathrm{a} . \mathrm{m}$	64.24		
9.15 p. m.		77	97.2	9 a. m		100	
$10.20 \mathrm{p} . \mathrm{m}$.		66		$10 \mathrm{a} . \mathrm{m}$		92	
10.25 p. m.			96.4	11 a.m		89	
Experiment To. 30.				12 m.		89	
Mar. 19, 6.55 a. m	64.59	66		$3 \mathrm{p} . \mathrm{m}$		97	
$7 \mathrm{a} . \mathrm{m} .$.			97.6	$4 \mathrm{p} . \mathrm{m}$		94	
$9 \mathrm{a} . \mathrm{m}$.		97		$5 \mathrm{p} . \mathrm{m}$		89	
$10.35 \mathrm{a} . \mathrm{m}$		91		$6 \mathrm{p} . \mathrm{m}$		90	
$11 \mathrm{a} . \mathrm{m}$		89		7 p.m	64.68	$7 \pm$	97.6
$1 \mathrm{p}, \mathrm{m}$.		69	98.2	8 p.m		75	97.5
$3 \mathrm{p} . \mathrm{m}$.		88		$9 \mathrm{p} . \mathrm{m}$.		68	
4 p. m.		87		($10.10 \mathrm{p} . \mathrm{m}$		66
5 p. m....		93		Mar. $24,6.55$ p. m	64.38	65	
6 p . 1 m .		93		$9 \mathrm{a} . \mathrm{m}$.		89	
$7 \mathrm{p} . \mathrm{m}$	65.05	78	97.7	$10 \mathrm{a} . \mathrm{m}$		95	
8 p. in..		74	98.0	$11 \mathrm{a} . \mathrm{m}$		86	
9 p .111.		75	97.4	12 m .		88	
$10.10 \mathrm{p} . \mathrm{m}$		72	97.3	12.55 p.m		68	
Mar. $20,6.55 \mathrm{a}$ a m .	64.48	66		$1 \mathrm{p} . \mathrm{m}$...			97.8
$7 \mathrm{a} . \mathrm{m} .$.			97.8	$3 \mathrm{p} . \mathrm{m}$.		98	
$9 \mathrm{a} . \mathrm{m}$.		101		\pm p.m.		98	
$10 \mathrm{a} . \mathrm{m}$.		91		5 p . m .		91	
$11 \mathrm{a}, \mathrm{m}$.		87		6 p. m.		90	
12 m.		85		7 p.m. .-.......	64.90	76	97.4
12.55 p . m		68		$8 \mathrm{r} . \mathrm{m}$.-.		73	97.3
1 p . m....			97.4	${ }^{9} \mathrm{P} . \mathrm{m}$ -		71	
$3 \mathrm{p} . \mathrm{m}$.		95		$9.04 \mathrm{p} . \mathrm{m}$			96.9
$4 \mathrm{p} . \mathrm{m}$.		92		$10.05 \mathrm{p} . \mathrm{m}$		66	
5 I . m .		92		$10.10 \mathrm{p} . \mathrm{m}$			96.7
$6 \mathrm{p} . \mathrm{m}$.		8.5		Mar. 25, 6.55 a. m	64.49	68	97.9

Table LXXVI.-Record of work done-Metebotism experiments Nos. 29-31.

Date and time.	Cyclometer reading.	Number of miles.	Actual duration of work.	Rate.	Heat equivalent.
1900.					
Experiment No. 29.			Minutes.	Watts.	Catorics.
Mar. 16, $8.15 \mathrm{a} . \mathrm{m}$.	666.0 687.5	21.5	120	42.0	72
$12.30 \mathrm{p}, \mathrm{m}$	708.4	20.4	120	39.7	68
$4 \mathrm{p} . \mathrm{m}$...	729.8	21.4	120	39.5	68
6.15 p.m.	751.1	21.3	116	37.7	62
Total .		85.1	476		270
Mar. $77,10.15$ a.m..	772.3	21.2	116	35.5	59
12.30 p.m.	795.9	23.6	120	37.0 +19.4	63 50
+p.m.....	813.1	17.2	83	+2.4 39.0	50
6.15 p.m.	837.9	24.5	120	39.0	67
Total		86.8	439		239
Mar. 18, 10.15 a. m.	861.8	23.9	120	36.5	62
$12.30 \mathrm{p} . \mathrm{m}$.	885.0	23.	120	35.7	61
$4 \mathrm{p} . \mathrm{m} \ldots$	906.9 930.4	21.9 23.5	120 120	37.4 40.0	64 69
$6.15 \mathrm{p} . \mathrm{m}$.					69
Total		92.5	480	256
Experiment No. so					
21ar. 19, 10.15 a. m...	947.9	17.5	96	40.5	55
$12.30 \mathrm{p} . \mathrm{m}$.	969.2	21.3	128	35.5	65
$4 \mathrm{p} . \mathrm{m}$...	986.8 $1,006.7$	17.6 19.9	120	34.0 37.2	58 65
$6.15 \mathrm{p} . \mathrm{m}$.	1,006. 7				6
Total		76.3	464		243
Mar. 20, 10.15 a.m.	1,026.8	20.1	120	35.7	61
$12.30 \mathrm{p} . \mathrm{m}$.	1,047.8	21.0	120	36.9	63
$4 \mathrm{p} . \mathrm{m}$.	1,068.3	20.5	120	36.2	62
6.15 p.m.	1,088.3	20.0	120	38.2	66
Total		81.6	480	252
Mar. 21, 10.15 a. m.	1,109.6	21.3	120	37.4	64
$12.30 \mathrm{p} . \mathrm{m}$.	1,131.4	21.8	120	36. 2	62
$4 \mathrm{p} . \mathrm{m}$.	1,152.8	21.4	120	37.0	63
$6.15 \mathrm{p} . \mathrm{m}$.	1,173.2	20.4	120	36.5	63
Total		84.9	480		252
Mar. 22, 10.15 a. m...	1,194. 4	21.2	120	37.4	64
12.30 p.m.	1,218.0	23.6	120	38.7	66
$4 \mathrm{p} . \mathrm{m}$.	1,240.9	22.9	120	39.0	67
$6.15 \mathrm{p} . \mathrm{m}$.	1,262.9	22.0	120	37.0	63
Total		89.7	480	-......	260
Mar. 23, 10.15 a.m.	1,289.7	26.8	120	37.2	64
$12.30 \mathrm{p} . \mathrm{m}$.	1,306. 8	17. 1	120	37.0	63
t p.m...	1,329.9	23.1	120	37.4	64
$6.15 \mathrm{p} . \mathrm{m}$.	1,351.4	21.5	120	34.4	59
Total		88.5	480		250
Mar. 2t, 10.15 a. m..	1,375.8	24.4	120	37.0	63
12.30 p.m.	1,400.7	24.9	120	35.7	61
4 p.m...	1,423.7	23.0	104	35.7	53
$6.15 \mathrm{p} . \mathrm{m}$.	-1,447.4	23.7	120	34. 9	60
Total		96.0	464		237

Vol. s-No. 6--9

Intuilud stutistics of income and outgo.-The quantities of nutrients in the basal ration which was the same except for the slight differences in the composition of the milk already mentioned, and the quantities in the supplemental rations in the different experiments of this series, are shown in Table LXXVII. The outgo of matter and energy in the feces during the snccessive experiments of this series is shown in Table LXXVIII.

Table LXXIII.-Weight, composition, and heat of combustion of foorls-Mitabolism erperiments Niss. 29-31.

$\begin{aligned} & \text { Labo- } \\ & \text { ratory } \\ & \text { No. } \end{aligned}$	Food material.	Weight per day.	Water.	Protein.	Fat.	Carbohydrates.	Nitrogen.	Carbon.	$\begin{gathered} \text { Hydro- } \\ \text { gen. } \end{gathered}$	Heat of combustion.
3186	Beet $\begin{aligned} & \text { Basal ration. }\end{aligned}$	$\begin{gathered} \text { Grams. } \\ 5 \mathrm{~S} \end{gathered}$	Grame. 35.0	Grams. 20.7	Grams. 1. 7	Grams.	$\begin{array}{r} \text { Grams. } \\ 3.32 \end{array}$	Grams. 12.12	Grams. 1. 73	Calories. 135
3187	Butter	47	4.3	. 6	40.6		. 09	30.60	4.91	378
3192	Bread.	300	109.5	28.2	6.0	152.4	4.50	87.42	12.90	879
3181	Ginger smaps	75	3.1	4.7	6.2	59.9	. 75	33.24	4.96	333
3193	Parched cerea	75	3.1	9.0	1.1	60.4	1.44	32.04	4.72	315 99
		580	155.0	63.2	55.6	297.7	10.10	205.94	30.84	2,139
3189	Milk, whole	900	760.5	36.9	50.4	45.0	5.94	73.80	11.34	841
	Total basal ration	1, 480	915.5	100.1	106.0	342.7	16. 04	279.74	42.18	2,980
	Loaf sugar.	128				128.0		53. 89	8.29	507
	Total ration, 1 day..	1,608	915.5	100.1	106.0	470.7	16.04	333.63	50.47	8,487
3190	Milk, whole.	900	765.0	36.0	48.6	43.2	5.76	72.00	10. 80	810
	Total basal ration	1,480	920.0	99.2	104.2	340.9	15.86	277.94	41.64	2,949
	Alcohol	72						37.56	9.39	509
	Total ration, 1 day ..	1,552	920.0	99.2	104.2	340.9	15.86	315.50	51.03	3,458
3191	Milk, whole.	900	760.5	36.9	50.4	45.0	5.85	74.25	11.34	845
3187	Total hasal ration.	1, 480	915.5	100.1	106.0	342.7	15.95	280.19	42.18	2,984
	Butter Total ration, 1 day..	63.5	5.8	. 8	54.8		. 13	41.34	6.63	511
		1,543.5	921.3	100.9	160.8	842.7	16.08	321.53	48.81	3,495

Table LXXVIII.- Weight, composition, aml heat of combustion of feces-Metabolism experiment 10. 29-31.

$\begin{aligned} & \text { Labo. } \\ & \text { ratory } \\ & \text { So. } \end{aligned}$		Weight.	Water.	Protein.	Fat.	Carbohydrates.	Nitrugen.	Carbon.	Hydrogen.	Heat of combustion.
3195	Erperiment No. 89. Feres for 3 days	$\begin{aligned} & \text { Girams. } \\ & 177.0 \end{aligned}$	Grame. 123.7	Grams. 15.9	$\begin{array}{r} \text { firame. } \\ 9.0 \end{array}$	Grems. 18.2	$\begin{array}{r} \text { Girams. } \\ 2.55 \end{array}$	$\begin{aligned} & \text { Grams, } \\ & 25.01 \end{aligned}$	Grams. 3.6	Calorics. 279
	Arerage per day	59.0	41.2	5.3	3.0	6.1	. 85	8.34	1.2	93
3196	Erperiment Wo. 30.	2.7	101.6	12.7	6.4	14.0	2.04	9.3	2.7	212
	Average per day..	47.6	33.9	4.3	2.1	4.7	. 68	6.44	. 9	71
	E.rperiment No. 31. Feres for 3 days	160.1	108. 1	15.2	8.2	18.1	2.43	24.32	3.4	272
	Average per day..	53.4	36.0	5.1	2.7	6.0	. 81	8. 11	1.1	91

The amount and composition of the mine in this experiment is shown in Tables LXXIX and LAXX. The statisties are shown for 6-hour periods in experiment No. 30, in which alcohol formed a part of the diet, and for day periods in experiments Nos. 29 and and 31 without alcohol. The heat of combustion of the urine was determined in the composite sample for each day, but the carhon and hydrogen were determined only in a composite for the total 9 days of this series of experiments.

Table LXXIX.-Imumt, specific grarit!, and nitrogen of wine by f-hour periods-Mitabolism erperiments as, 29-31.

Date.	Period.	Amount.	Specifie gravity.	Nitrogen.	
	Experiment No. 29.				
1900. Mar. 16-17	$7 \mathrm{a} . \mathrm{m} . \mathrm{to} 7 \mathrm{a} . \mathrm{m}$.	firams. 694.9	1. 034	Per cent. 2.19	Grams. $15,24$
17-18	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	777.2	1.031	2.07	16. 11
18-19	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	890.8	1. 030	1. 79	15.97
	Total		.-.....		47.32
19	$7 \mathrm{a} . \mathrm{m}$ to $7 \mathrm{p} . \mathrm{m}$	247.0	1.029	1. 71	4. 22
19	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$	358.3	1.026	1. 35	4.84
19-20	$7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$	196.8	1.031	2.02	3.98
20	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	165.2	1.031	2.18	3. 60
	Total	967.3			16.64
	Total by composite	967.3	1. 029	1.74	16.83
20	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$	309.5	1.027	1.47	4.55
20	$1 \mathrm{p} . \mathrm{m}$, to $7 \mathrm{p}, \mathrm{m}$	320.7	1.027	1.55	4.97
20-21	$7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$.	254.6	1. 025	1. 80	4.58
21	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.				3. 70
	Total	1,056. 7			17.80
	Total by composite	1, 056. 7	1.027	1. 69	17.86
21	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$	355.3	1.021	1. 28	4.55
21	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$	409.5	1.020	1.18	4.83
21-22	$7 \mathrm{p} . \mathrm{m}$. to $1 \mathrm{a} . \mathrm{m}$	217.5	1. 026	1. 89	4.11
22	1 a . m. to $7 \mathrm{a} . \mathrm{m}$.	154.2	1. 028	2. 19	3.38
	Total	1,136.5			16.87
	Total by composite	1, 136.5	1.02:	1.47	16. 70
22-23	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	812.3	1.030	1.98	16.05
23-24	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	790.5	1. 030	1.93	15. 24
24-25	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	880.0	1.030	1.71	15. 0 2
	Total .				46.31

Tabse LAXI.-Duty eliminution of curbon, hydrogen, cund urater in wint-Metrbotism erperiments Jos. 89-31.

The quantities of carbon dioxid and water in the rentilating air current are given in Tables LXXXI to LXXXIII. These statistics are giren in detail for experiment No. 30 in which alcohol was used, and summarized for the other two experiments of the series.

Table LXXXI.-Comparison of residual amounts of curbon dioxid and rater in the chamber at the beginning and end of ench perioul, and the corresponding gain or loss-Metabolism experiment No. 30.

Date.	End of period.	Carbon dioxid.		Water.				
		$\begin{gathered} \text { Total } \\ \text { amount } \\ \text { in } \\ \text { chamber. } \end{gathered}$	Gain (+) or loss (preceding period.	$\begin{gathered} \text { Total } \\ \text { of vant } \\ \text { of vanor } \\ \text { remaining } \\ \text { in } \\ \text { chamber. } \end{gathered}$	$\underset{\substack{\text { Gain }(+) \\ \text { or lose }(-)}}{\text { loser }}$ precering period.	Change in weight absorbers. Gain $(+)$ or loss $(-)$ \qquad	$\begin{gathered} \text { Drip }{ }_{\substack{\text { rom } \\ \text { absorbers. }}} \end{gathered}$	Total amount gained (+) or lost (-) dnring the period.
$\begin{array}{ll} \text { Mar. } & \\ & 1900 \\ & 1 \\ & \\ & 2 \\ & 2 \end{array}$	¢ a . m.	Grame. 26.8	firams.	Grams. 48.1	Grams.	Grams.	Grams.	Grams.
	${ }_{7} \mathrm{p} \cdot \mathrm{m}$.	79.6	+52.8	53.4	$+5.3$	+152	140.0	+297.3
	${ }^{1} \mathrm{p}$. m .	84.4	+4.8	57.2	+3.8	+ 11	367.4	+382.2
	1 a . m.	23.9	-60.5	52.6	-4.6	- 77	32.4	- 49.2
	7 a. m	31.9	+8.0	48.8	-3.8	- 7	24.3	- 56.5
	Total.		$+5.1$		$+.7$	+	564.1	+573.8
	$1 \mathrm{p} . \mathrm{m}$.	76.6	+44.7	55.9	$+7.1$	+162	170.0	$+339.1$
	$7 \mathrm{p} . \mathrm{m}$.	${ }^{63.5}$	-13.1	51.3	-4.6	- 26	365.1	$+334.5$
	$\frac{1}{7} \mathrm{a} . \mathrm{m} . \mathrm{m}$.	27.2 25.7	-36.3 -1.5	51.5 47.3	$+\quad .2$ +4.2	-78 -79	23.1 17.0	- 54.7 -66.2
	Total.		-6.2		-1.5	- 21	575.2	+552.7
	1 l 1. m.	71.8	+46.1	53.2	+5.9	+188	155.0	$+348.9$
	7 l 1. m.	70.7	-1.1	5.3	-. 9	+ 10	359.4	+368.5
	$1 \mathrm{a} . \mathrm{m}$.	25.7	--45.0	47.1	-5.2	-101	34. 4	- 71.8
	$7 \mathrm{a} . \mathrm{m}$	26.4	+ . 7	45.2	-1.9	-102	22.0	-81.9
	Total.	.	+ . 7		-2.1	5	570.8	$+563.7$

${ }^{n}$ Including alse the perepiration in underdothes.
"The drip was eollecterl and weigher but once a day. The volume was roughly observed at 1 p. m., $7 \mathrm{p} . \mathrm{m}$. anl i a.m. and this volume taken as a rough approximation to the actual weight of drip for the different periods The small amount of drip ohserverl at $7 \mathrm{a} . \mathrm{m}$. was divided equally between the two night periods.

Date．	Perionl．	（id） Ventila－ tion．Num－ berof liters of air．	Water in incoming air．		Water in ontgoing air．			$\begin{aligned} & \quad(f) \\ & \\ & \text { Total ex- } \\ & \text { cess, water } \\ & \text { in out. } \\ & \text { going air, } \\ & f-c . \end{aligned}$	(h) Correw tion or tiater re－ waining ma in chamber．	Total water of respira－ tion andperspira－ tion， $y+h$.
			（b） Per liter．	（c） Total， $a \cdot b$ ．	$\begin{gathered} (d) \\ \text { Amount } \\ \text { condensed } \\ \text { in } \\ \text { freezers. } \end{gathered}$	（1） Amount not eon－ densed in freezers．	$\begin{gathered} (f) \\ \text { Total, } \\ d+c . \end{gathered}$			
$\begin{aligned} & 1900 . \\ & \text { Mar. } \quad 16-17 \\ & 17-18 \\ & 18-19 \end{aligned}$	Erperiment No．as．	$\begin{aligned} & \text { Litery } \\ & 100,386 \\ & 110,385 \\ & 105,831 \end{aligned}$	Mg．	fricams． 41.1 92,6	$\begin{aligned} & \text { (irtums. } \\ & 1,025.5 \\ & 092.5 \\ & 1,033.9 \end{aligned}$	$\begin{aligned} & \text { Girams } \\ & 176.7 \\ & 179.4 \\ & 175.6 \end{aligned}$		firams． $1,112.4$ $1,050.8$ $1,116.7$	$\begin{aligned} & \text { tirame } \\ & +55.5 .1 \\ & +3.8 .1 \\ & -619.8 \\ & -619.8 \end{aligned}$	1，667．5 1，439．4 ，7310．5
	7a．m． 11 \％a．m．．									
	$7 \mathrm{a} . \mathrm{m}$. to 7 a．m．									
	Erperiment Nis． 30.									
19	$7 \mathrm{a} . \mathrm{m}$. to 1 l 1．m．	2． 2,658	0．970	24.9		44． 3	283.8	255.9	297.3	555． 2
19	${ }_{1}^{1} 1$ ，m．tor 7 1，m．	25.6 .53	． 969	－4．4	257.1	40． 1	297.2	22.3	＋352．2	65.5
19－20	7 l 1．m．to 1 l i．m．	27,204	． 439	25.6	256.5	45.5	302.0	276.4	－49．2	227.2
20	$1 \mathrm{a}, \mathrm{m}$ ．to 7 a ．m．．	27.20 s	． 875	23.8	253.7	［35． 7	292.4		56.5	212.1
	Tutal	105． $5 \cdots$		99． 2	1,1006 ，s	168.6	1，1\％5． 4	1，070．2	-573.8	1，biso． 0
20	7a．m．to 1 p．m．	25.12 .83	． 977	2．） 1	250.6	41.8	292.4	265.3	－339． 1	6066.4
20		27， 20.8	－sy？	24.3	270.5	42.6	313.1	2SK．	334.5	623.3
20－21		$\because 7,208$	． 814	20.1	2 aj 6.1	45.2	301.3	274.2	int． 7	224.5
21	$1 \mathrm{a} . \mathrm{m}$. to 7 al ． m ．	27,208	7－1	21.2	261.8	37.7	299.5	ご心荈	（iti． 2	212.1
	Total	10， 271	－．－－．．．	12.7	1，039．0	163.3	1，2316， 3	1，113．${ }^{\text {i }}$	5．52． 7	1，66t6， 3

Table LCXXIII.-Record of water in rentilating air current-Metabolism experiments. Nos. 29-31-Continued.

Date.	Period.	(a) Ventilation. Xumher of liters of air.	Water in incoming air.		Water in outgoing air.			(g) Total excess water in outgoing air, $f-c$.	$\begin{aligned} & (h) \\ & \\ & \text { Correce } \\ & \text { tion for } \\ & \text { water re- } \\ & \text { maining } \\ & \text { in } \\ & \text { chamber. } \end{aligned}$	Total water of tion and perspira$g+h$.
			(b)	(c)	(d)	(e)	(f)			
			Pcr liter.	$\begin{aligned} & \text { Total, } \\ & a \times b \text {, } \end{aligned}$	Amount condensed in freezers	Amount not con freezers.	$\begin{aligned} & \text { Total, } \\ & d+e . \end{aligned}$			
$\begin{array}{lr}1900 . \\ \text { Mar. } & 21 \\ & 21 \\ & 21-22 \\ & 22\end{array}$	Experiment No. 29Continned.	Liters. 26, 430	$\begin{aligned} & \mathrm{Mg} . \\ & .828 \end{aligned}$	Grams.	Grams.			$\begin{gathered} \text { Grams. } \\ 268.3 \end{gathered}$	$\begin{gathered} \text { Grams. } \\ +3+8.9 \end{gathered}$	Grams. 617.2
	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m} .$.	26, 430	. 816	21.6	268.1	39.8 38.8	306.9	285.3	+348.9 +368.5	653.8
	$7 \mathrm{p} . \mathrm{m}$. to 1 a a. m.-	27,985	. 782	21.9	253.3	43.3	296.6	274.7	- 71.8	202.9
	$1 \mathrm{a}, \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m} .$.	27,985	. 767	21.5	249.9	37.4	287.3	265.8	-81.9	183.9
	Total	108, 830	86.9	1,021. 7	159.3	1,181.0	1,094.1	$+563.7$	1,657.8
	Experiment No. 31.									
22-23	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m} .$.	106,497		87.2	994.4	156.4	1,150.8	1,063.6	$+573.8$	1,637. 4
23-24	$7 \mathrm{a} . \mathrm{m}$. to 7 a . m..	108, 051		90.3	999.0	160.3	1,159.3	1,069.0	+521.1	1,590.1
24-25	7 a . m. to $7 \mathrm{a} . \mathrm{m}$..	108,830		88.7	1,015.0	162.6	1,177.6	1,088.9	+566.0	1,654.9

Table LXXXIV summarizes the calorimetric measurements in experiments Nos. 29 and 31, and gives the details of these measurements in 6-hour periods during experiment No. 30 .

Table LXXXIV.-Summary of calorimetric measurements-Metabolism experiments Nos. 29-31.

The alcohol. or reducing material equivalent to alcohol. Was determined in the nrine and freezer water of each day of experment Yo. 3 n, and on the 3 days of the preceding and following experiments. Nos. $-3!1$ and 31. respectively. The amount of reducing material in the air corrent on each day of the 9 days of this series of experiment- was also determined. Table LXXXV summarize theae deteminations. The determinations of the reducing material in the urine on the first day of experiment No. 29 wa- lost, wo that we can only estimate the total reducing material on that day. It was. however. probahly not far different from the second and third days of this experment. The areage elimination of reducing material per day from all sourees in experiments No: 244 and 31 amounted to the equiralent of 0.32 gram of alcohol. In the third from the last column of Table LNXXV is given the total outgo of alcohol in experiment No. 30, which amounts to 0.76 gram per day. This value is obtained by subtracting from the 1.09 grams of total alcohol and reducing material equivalent to alcohol the 1.33 gram of reducing material determined during the experiment- in which alcohol did not form a part of the diet. The total alcohol metabolized in the body was 9.9 per cent of that ingested.

Table LXXXV.-Hcolul ingisted and exereted-Methbulism expmriment Nos. 29-31.

[^28]Butance of income und outgo of matter and energy. - The income and outgo of nitrogen, carhon, hydrogen, and energy in the different experiments of this series are shown in Tables LXXXVI to LXXXIX.

Table LXXXVI.-Income and autgo of nitrogen and carbon-Metabolism experiments Nos. 29-s1.

Date and period.	Nitrogen.				Carbon.					
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(k)
	In food.	in feces.	In urine. ${ }^{2}$	$\begin{aligned} & \operatorname{Gnin}(+) \\ & \text { Grloss }(-), \\ & a-(b+c) . \end{aligned}$	In food.	In feces.	In urine.	In respiratory prod- uets.	$\begin{aligned} & \text { In alcohol } \\ & \text { elimina- } \\ & \text { ted. } \end{aligned}$	$\begin{gathered} \text { or loss }(-), \\ e-(f+g, \\ +h+i) . \end{gathered}$
$1900 .$										
Experiment No. 29.									Grams.	
Mar. 16-17, 7 a. m, to 7 a . m. $17-18,7 \mathrm{a}$. m. to $7 \mathrm{a} . \mathrm{m}$. 18-19, 7 a. m.to 7 a, m.	Grams.	$\begin{array}{r} \text { Grams. } \\ 0.9 \end{array}$	15.4	$\begin{array}{r} \text { Grams. } \\ -0.3 \end{array}$	333.6	8.3	10.8	Grams. 338.7	Grams.	Grams.
	16.1	. 8	16.3	-1.0	333.7	8.4	11.4	323.3		-9.4
	16.0	. 9	16.2	-1.1	333.6	8.3	11.3	342.7		-28.7
Total	48.1	2.6	47.9	-2.4	1,000.9	25.0	33.5	1,004. 7		-62.3
Average 1 day	16.0	. 8	16.0	$-.8$	333.6	8.3	11.2	334.9		-20.8
Experiment No. 30.										
Mar. 19-20, 7 a. m. to 7 a. m. $20-21,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$. 21-22, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	15.9	. 7	16.8	-1.6	315.5	6.4	11.8	322.3	. 4	-25.4
	15.8	. 6	18.0	-2.8	315.5	6.5	12.6	312.6	. 4	-16.6
	15.9	. 7	17.1	-1.9	315.5	6.4	11.9	314.6	. 4	-17.8
Total	47.6	2.0	51.9	-6.3	946.5	19.3	36.3	949.5	1.2	-59.8
A verage 1 day... Experiment No. 31.	15.9	. 7	17.3	-2.1	315.5	6.4	12.1	316.5	. 4	-19.9
Mar. 22-23, 7 a. m. to 7 a.m. 23-24, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$. $24-25,7 \mathrm{a} . \mathrm{m}$. to ${ }^{7} \mathrm{a} . \mathrm{m}$.	16.1	. 8	16.3	-1.0	321.5	8.1	11.3	313.1		-11.0
	16.0	. 8	15.4	$-.2$	321.6	8.1	10.8	316.6		-13.9
	16.1	. 8	15.2	$+.1$	321.5	8.1	10.6	317.8		-15.0
Total	48.2	2.4	46.9	-1.1	964.6	24.3	32.7	947.5		-39.9
A verage 1 day......	16.1	. 8	15.6	$-.3$	321.5	8.1	10.9	315.8		-13.3

${ }^{\text {a }}$ Nitrogen in perspiration, 0.2 gram per day, is included in this column.
Table LXXXYII. - Income and outgo of water and hydrogen-Metabolism experiments Aos. 29-31.

Date and period.	Water.						Hydrogen.						
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(k)	(l)	(m)	(n)
	In foorl.	$\underset{\text { drink. }}{\mathrm{In}}$	$\underset{\text { feces. }}{\text { In }}$	$\underset{\text { nrine. }}{\text { Ln }}$	$\begin{gathered} \text { In respi- } \\ \text { ratory } \\ \text { prod- } \\ \text { nets. } \end{gathered}$	$\begin{gathered} \text { Appar- } \\ \text { cat loss, } \\ a+b-+ \\ (e+d+ \\ e) . \end{gathered}$	$\underset{\text { food. }}{\substack{\text { nn }}}$	$\underset{\text { feces. }}{\text { In }}$	$\underset{\substack{\text { In } \\ \text { urine. }}}{ }$		$\begin{gathered} \text { Appar- } \\ \text { ent } \\ \text { gain. } \\ \frac{g(h+}{i+k) .} \end{gathered}$	$\begin{gathered} \text { Lrss } \\ \text { from } \\ \text { Water, } \\ f \div 9 . \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { gain(+) } \\ \text { or lose } \\ (-)_{1, l}^{l+} \\ m . \end{gathered}$
Erperiment Nis, 39.													
Mar. 16-17, 7 a. m.	firams. 975. 5	firams.	Grams. 41.2	firams. $6+1.0$	firams. $1,667.5$	firams. $18 \mathrm{t}$.	rirams.	Grams 1.2	Grams. 2.9	firams.	$\begin{aligned} & \text { Grame. } \\ & 46.4 \end{aligned}$	$\begin{array}{r} \text { firamas. } \\ 20.5 \end{array}$	$\begin{aligned} & \text { Crams. } \\ & +25.9 \end{aligned}$
$\begin{array}{r} 17-18, \\ 70 \\ t, \\ 7 \end{array}$	915.5	1,250.0	41.3	720.3	1, 439.4	35.5	50.5	1.2			+6.3	3.9	+42.4
	$915 . \overline{5}$	1,250.0	11.2	83-1. 3	1,736.5	446.5	50.5	1.2	3.0		46.3	49.6	-3.33
Tortal	$2,746.5$	3,750.0	12:3, 7	2, 195. 6	$4,843.4$	646, 2	1.51. 5	3.16	8.9		139.0	74.0	+ (i5). 0
Average 1 day..	(315, 5	1,250.0	41.2	731.9	1,614.5	223.1	50.5	1.2'	3.0		46.3	24.6	$+21.7$

Irate sad Ireriod.	Water.						Hydrugen.						
	In fond.		$\begin{aligned} & \text { In } \\ & \text { feew. } \end{aligned}$	$\begin{gathered} d \\ \text { In } \\ \text { urine. } \end{gathered}$	In reopiratory proti-	$\begin{aligned} & \text { Appar- } \\ & \text { ent } \\ & a-b- \\ & c-1+ \end{aligned}$		$\begin{gathered} h \\ \text { In } \\ \text { fece } \end{gathered}$	i	k	t	m	"
									$\begin{gathered} \text { In } \\ \text { nrine } \end{gathered}$		$\begin{aligned} & \text { Appar- } \\ & \text { ent } \\ & \text { gain. } \\ & \text { go } \begin{array}{c} \text { n- } \\ i-k . \end{array} \end{aligned}$	$\begin{gathered} \text { Lnos } \\ \text { from } \\ \text { water. } \\ j \div 9 . \end{gathered}$	
19000.													
Enperiment So. 30.													
	$\begin{gathered} \text { Girame. Gma. } \\ 920.01,250.0 \end{gathered}$		Gmine 33.9	fimms. 908.5	frams. I, 050.0	tirame. 420.4	Gmis.	Grams.			Gramz.	Grame. $+6.9$	Grams.
20-21. - a. m.	920.01 .250 .0		33. N	993.5	1.6506. 3	523.9	51.0	0.9	3.3		45.	5S. 2	-11.5
to \% a. m.	920) 0	. 250	33.91.076. S 1. 65\%. 6			598.5	51.0	0.9	3. ${ }^{-}$	1	26.	B6. 5	-19.7
Total	2.750 .0	3. 750.0	101.6:	979. 1	4.974. 1	1, 5+4.	153.0	2.7	9.6	. 3	140.4	171.6	-31. 2
Aterage 1 day.	920.0	. 250.0	33. 4	493.0	1. กัプ. 0	514.4	51.0	0.9	3. ${ }^{\text {a }}$. 1	46.)	57.2	-10.4
Experimen No. 31.													
Mar. 2-23. i a. m.													
, to ${ }^{-1 .}$ m.	921.31 .250 .0		36.0	7.25 .61 .633 .4		$25 \% 7$	4.3.	1.1	3.0	44.7		2 S .6	-16.1
to 7 a m.	921.31 .250 .0		36. 1	-35.61.590.1		191.5	18.:	1.2	2.9	4.7		21.3	-23.4
$\begin{aligned} & 1+20 . \\ & \text { to } \text { a. m. } \end{aligned}$	921.3	, 250.0	3ti. 10	-2 6 ¢. 9	1. Rist. 9	346.5	4. ${ }^{\text {a }}$	1.1	2.5		+4.9	3 s .5	-6. 4
Totaldrerage 1 day..	$\begin{array}{r} 2.763 .93 .-50.0 \\ 921.31,250.0 \end{array}$		$\begin{array}{r} 105.12 .319 .14 .5 \cdot 2 . \frac{1}{4} \\ 36.0 \\ 1.3 .01 .52 \% .5 \end{array}$			$\begin{aligned} & -9.5 .7 \\ & 265.2 \end{aligned}$	$\begin{array}{r} 145.4 \\ 4.8 \end{array}$	3.41.1	3.8		134. 3	ss. 4	+4.5.9
				44.8	29.5					-15.3			

Thble LAXXIN.- Imom curl outgo of rnergy-Metalolism experiments Nos. 29-31.

	(a)	(b)	(c)	Heat of combns-tion of aleohol elimi-	(d) Estimated - heat of	Estimated heat of combus fat gained lost $(-)$.	$\begin{aligned} & \text { Estimated } \\ & \text { energy of } \\ & \text { meterial } \\ & \text { oxidized } \\ & \text { in the } \\ & \text { body, } \\ & a-(b+c+ \\ & m+d+e) . \end{aligned}$	Heat determined.	Heat determined greater (+) or less (-) than estimated.	
Dateand period.	$\begin{gathered} \text { Heat of } \\ \text { combustion } \\ \text { of food } \\ \text { eaten. } \end{gathered}$	Heat of combnstion of feces.	combustion of urine.		tion of protein gained (+) or lost (-).				$\begin{gathered} (h) \\ f-g . \end{gathered}$	$\begin{aligned} & (i) \\ & h \div f . \end{aligned}$
1900.										
Experim+ut No. 29.										
Mar. 16-17, 7 a . m. to $7 \mathrm{a} . \mathrm{m}$.	$\begin{array}{r} \text { Calories. } \\ 3,487 \end{array}$	Catorics. 93	Calorice. 134	Calories.	$\begin{gathered} \text { Calorics. } \\ -\quad 11 \end{gathered}$	$\begin{gathered} \text { Calories. } \\ -\quad 291 \end{gathered}$	Calonics. 3,562	Calories. $3,669$	$\begin{aligned} & \text { Calories. } \\ & +\quad 107 \end{aligned}$	Calnries. $+\quad 3.0$
$17-1 \mathrm{~s}, 7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{mm}$.	3, 487	93	134		35	- 76	3,371	3, 430	$+\quad 59$ $+\quad 5$	+ 1.7
18-19,7a. m. to $7 \mathrm{a} . \mathrm{m}$.	3, 487	93	134		- 39	- 314	3,613	3, 669	+ 56	- 1.5
Total	10, 461	279	402		85	-681	10,546	10,768	+ 222	
Average 1 day	3,487	93	134		- 28	- 227	3,515	3, 589	+ 74	+ 2.1
Experiment No. 30.										
Mar. 19-20, ${ }^{\text {a a m. to }}$ 7a.m.	3, 458	71	136	5	- 57	- 252	3,555	3,516	- 39	1.1
20-21, 7 a . m. to $7 \mathrm{a} . \mathrm{m}$.	3, 458	70	142	5	- 99	- 92	3, 432	3, 443	+ 11	+ .3
$21-22.7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$ -	3,458	71	142	6	- 67	- 144	3,450	3,452	+ 2	+ .1
Total	10, 374	212	420	16	- 223	- 488	10, 437	10, 411	- 26	
Average 1 day	3, 458	71	140	1	- 74	- 163	3,479	3, 470	- 9	. 3
Experiment No. 31.										
Mar. 22-23, $7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	3, 495	91	132			- 96	3, 403	3,429		+ . 8
23-24, 7 a . m. to 7a. m.	3, 495	90	129		- 7	- 165	3, 448	3, 413	- 35	- 1.0
$2+25,7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	3,495	91	128		+ 3	- 192	3, 465	3, 417	- 48	1.4
Total	10, 485	272	389		- 39	- 453	10,316	10,259	- 57	
A verage 1 day	3, 495	91	129		- 13	- 151	3, 439	3, 420	- 19	. 6

EXPERIMENTS NOS. $32-34$-WORK. NO. 33 with ALCOHOL DIET.
Suliject.-J. F. S., the same as in experiments of the two previous series, Nos. 26-31. His weight with underclothing was about 66.5 kilograms ($145 \frac{1}{2}$ pounds).

Oconpation during enperiment.-Work, s hours a day, upon a stationary bicyele, as in the previons series of experiments.

Duretion.-This experiment was the second of a series of 3 , each of which continued 3 days. A preliminary period of 4 days preceded the first. The series was intended to be as nearly as possible a repetition of the previous series, Nos. $29-31$, with the exception that the order in which the supplemental materials were added to the basal ration was butter, alcohol, sugar, while in the previous series the order was sugar, butter, alcohol. The preliminary period began with breaktast April $16,190 \%$, and the subject entered the respiration chamber on the evening of April 19. The first experiment of the series, No. 32 , began at 7 a. m. April 20: the second, No. 33, at 7 a. $2 \mathrm{~m} . ~$ April 23 , and the third, No. 34, at 7 a . m . April 26 . The subject thus spent 9 days and 11 niglits within the respiration chamber.

Dict.-As hats already been indicated, this series was a duplicate in reverse order of the previons series. There was a basal ration differing slightly in the different experiments on account of differences in the composition of the milk. This ration furnished approximately 100 grams of protein and 2, ast calories of energy, or pratically the same as in the previous series. To thi hasal ration were added: In No. 32, 63.5 grams of butter per day, furnishing 1 gram of protein and ons calories of energy: in No. 33, 79.5 grams of 90.6 per cent alcohol, furnishing 72 frams of abolute aleohol and 5ot catories of energy per day, and in No. ity, 12s grams of cane sugar, furnishing sur alories of pherg. The total ration therefore in this series of experiments furni-hed 10% grams of protein and 3 .t!oralories of energy per day. The alcohol was taken in if doses, al lusual. and the shgar was also taken at frequent intervals, hat the butter was consumed
in ahont equal portions at breakfast, dimner, and supper. The total amount of water in the drink on each day of the series of experiments amounted to $1,2.20$ grams. The kinds and quantities of food served at each meal and the gnantities of drink at diflerent periods of the day were as follows:

Diet in metnbolisn erperimeruts Nos. 3~-34.
FOOLOBASAL FATION.

	Breakfust.	Linner.	Supper.	Total.
Beef	tirame.	Grams. 58	Grams.	Grame. 58
Butter	9.0	17	9.0	35
Bread	75.0	150	75.0	300
finger snaps	25.0	25	25.0	75
Parched cerea	37.5		37.5	75
Sugar ${ }^{\text {a }}$	17.5		17.5	35
Milk, whole	340.0	340	340.0	1,020

${ }^{2}$ Eaten on parched cereal in experiments Nos. 32 and 34 ; mostly added to water and alcohol in experiment No. 33.

FOOD-SUPPLEMENTAL RATION

Experiment No. 32, Ipril 20-22.-Sixty-t wo grams butter added to basal ration. This amount also mupplemented the ration during the preliminary period.

Experiment No. 33, Ipril $23-25$. Seventy-two grams absolute alcohol daily. This was supplied in 79.5 grams of 90.57 per cent alcohol, which was made up to 900 grams with the addition of 25 grams sugar and the rest water.

Experiment No. 34, 4 pril $26-28$. -The basal ration was increased by the addition of 128 grams of cane sugar.
DRINK.

	Time.	Experiment No. 32.	Experime	No. 33.	Experiment No. 34.
		Water.	Alcohol and sweetened water. *	Water.	Water.
Breakfast		Grams. 150	${ }^{\text {ce. }} 175$	irame, 75	rrams. 150
10.15 a. m		200	100	75	200
Dinner		200	175	75	200
$4 \mathrm{p}, \mathrm{m}$		200	100	75	200
Suppper		150	175	75	150
$9 \mathrm{p} . \mathrm{m}$ -		200	100	72	200
10.20 p. m		150	75		150
Tota		1,250	900	447	1,250

${ }^{\text {a }}$ Contained s03 grams water, 25 grams sugar, and 72 grams alcohol.
Duily rontim. - The general plan of the series of experiments was identical with that of the previons series, and is shown in the following schedule:

Inil! programme.-Metubolism experiments Nos. 32-34.

$6.50 \mathrm{ar} . \mathrm{m}$	Take pulse and temperature.
$7 \mathrm{a} . \mathrm{m}$	Pass urine, weigh seli dressed, collect drip, and weigh absorbers.
$7.30 \mathrm{a} . \mathrm{m}$	Breakfast, irink 150 grams water.
$8.15 \mathrm{a} . \mathrm{mm}$	Begin work.
$10.15 \mathrm{a} . \mathrm{m}$	Stop work, drink 200 grams water.
$10.30 \mathrm{a} . \mathrm{m}$	Begin work.
12.30 p .11	Stop work.
$12.50 \mathrm{l}, \mathrm{m}$	Take pulse and temperature.
$1 \mathrm{p} . \mathrm{m}$.	Pass urine, collect drip, and weigh absorbers.
$1.25 \mathrm{p} . \mathrm{m}$	Dinner, crink 200 grams water.
$2 \mathrm{p} . \mathrm{m}$.	Begin work.

$4 \mathrm{p} . \mathrm{m}$
$4.15 \mathrm{p} . \mathrm{m}$
.15 p....... Begin work.
6.15 p. 1 m Stop work, change underclothing.
$6.20 \mathrm{p} . \mathrm{m} \ldots$.... Supper, drink 150 grams water:
$6.50 \mathrm{p} . \mathrm{m} \ldots .$. Take pmlse and temperature.
7μ m.......... Pans urine, weigh self dressed, collect drip, and weigh absorbers.
9 p. m. Drink 200 granis water.
$10 \mathrm{p} . \mathrm{m}$. Take pulse and temperature.
$10.10 \mathrm{p} . \mathrm{m}---$ -
$10.20 \mathrm{p}, \mathrm{m} \ldots$.... Drink 150 gram . water.
$10.30 \mathrm{p}, \mathrm{m} \ldots$ Retire.
1 a. 111 Pass urine.

The more important statistics in the diary kept by the subject are summarized in Table XC. Frequent determinations of both pulse rate and body temperature were taken.

Table XC.-Simmary of diar!-Metabolism enperiments Nos. 32-3才.

Date and rime.	$\begin{aligned} & \text { Weight } \\ & \text { With } \\ & \text { clothes. } \end{aligned}$	Pulserate per minute.	Temperature.	Date and time.	$\begin{aligned} & \text { Weight } \\ & \text { with } \\ & \text { clothes. } \end{aligned}$	Pulse rate minute	Temperature.
1900.				1900.			
Experiment - Vo. 32.				Experiment Yo. 3.3- $\mathrm{C}^{\prime} \mathrm{t}^{\prime} \mathrm{d}$.			
Apr. $20,6.55 \mathrm{a} . \mathrm{m}$		66		Apr. 23, $2.05 \mathrm{p} . \mathrm{m}$	кuograms.	97	F.
$7 \mathrm{a} . \mathrm{m}$.	66.19		97.8	$3 \mathrm{p} . \mathrm{m}$.		100	
$9 \mathrm{a} . \mathrm{m}$.		S\%		$4 \mathrm{p} . \mathrm{m}$		102	
$10 \mathrm{a} . \mathrm{m}$.		83		$5 \mathrm{p} . \mathrm{m}$.		102	
$11 \mathrm{a} . \mathrm{m}$.		85		$6 \mathrm{p} . \mathrm{m}$....		97	
12 m .		82		$7 \mathrm{p} . \mathrm{m}$-........	65. 74	76	97.7
$12.55 \mathrm{p} . \mathrm{m}$.		6.5		sp.m...............		74	97.5
$1 \mathrm{p}, \mathrm{~m}$			97.	$9 \mathrm{p}, \mathrm{~m} .$		75	97.2
$2.05 \mathrm{p} . \mathrm{m}$		93		$10.10 \mathrm{p} . \mathrm{m} .$		72	97.0
$3 \mathrm{p} . \mathrm{m}$.		90		Apr. 24, 6.55 a.m..		65	
$4 \mathrm{p} . \mathrm{m}$.		85		7 a.m....	65. 27		97.8
$5 \mathrm{p} . \mathrm{m}$.		83		$9 \mathrm{a} . \mathrm{m}$.		109	
$6 \mathrm{p} . \mathrm{m}$.		84		10 a. m.		102	
$7 \mathrm{p} . \mathrm{m}$.	66.95	22	97.8	11 a.m.		96	
8 p.m.		69	97.7	12 m.		95	
$9 \mathrm{p} . \mathrm{m}$.		64	97.1	$1 \mathrm{p} . \mathrm{m}$.		72	97.9
10p.m...		62	96.6	$2.07 \mathrm{p} . \mathrm{m}$		98	
Apr. $21,6.55 \mathrm{a}$ a m		64		$3 \mathrm{p} . \mathrm{m}$.		102	
$7 \mathrm{a} . \mathrm{m} .$	66. 36		97.8	$4 \mathrm{p} . \mathrm{m}$		108	
$9 \text { a.m... }$		91		$5 \mathrm{p} \cdot \mathrm{~m} .$		104	
$10 \mathrm{a} . \mathrm{m} .$		88		$6 \mathrm{p} \cdot \mathrm{~m} \ldots$		100	
$11 \mathrm{a} . \mathrm{m}$.		89		7 p.m.	65.69	Is	97.7
12 m .		90		8 p. m		is	97.6
$1 \mathrm{p} . \mathrm{m}$.		67	98.0	$9 \mathrm{p} . \mathrm{m}$ -		75	
2.15 p. 11.		94		9.04 p.m.			97.1
$3 \mathrm{p} . \mathrm{m}$.		96		$10.10 \mathrm{p} . \mathrm{m}$		71	
$\pm \mathrm{p} . \mathrm{m}$.		97		$10.15 \mathrm{p} . \mathrm{m}$.			96.7
5 p.m.....		97		Apr. $25,6.55 \mathrm{a} . \mathrm{m}$.		69	
$6 \text { p.m.... }$		85		7 a.m	65.13		97.7
$7 \text { p.m..-- }$	66.27	74	97.9	$9 \mathrm{a} . \mathrm{m} .$		109	
$8.08 \mathrm{p} \cdot \mathrm{~m}$		73		$10 \mathrm{a} . \mathrm{m}$		102	
$8.15 \mathrm{p} . \mathrm{m}$.			97.5	$11 \mathrm{a} . \mathrm{m}$--		101	
$9 \mathrm{p} \cdot \mathrm{~m}--$		67	97.1	12 m .-.		100	
$10.05 \mathrm{p} \cdot \mathrm{~m} .$		66		${ }_{2}^{1} \mathrm{p} . \mathrm{m}$...		74	97.9
$10.12 \mathrm{p} . \mathrm{m}$			96.6	$2.05 \mathrm{p} . \mathrm{m}$		102	
Apr. $29.6 .55 \mathrm{a} . \mathrm{m}$.		68		$3 \mathrm{p} . \mathrm{m}$.-		112	
7 a.m..	65. 83		97.7	\pm p.m.		107	
9 a. 112....		101		$5 \mathrm{p} . \mathrm{m}$.		104	
$10 \text { а. m ... }$		96		${ }^{6}$ P. m .		105	
$\begin{aligned} & 11 \mathrm{a} . \mathrm{m} . . . \\ & 12 \mathrm{~m} \end{aligned}$		92		$7 \mathrm{p} . \mathrm{m}$.	65.47	76	
$12 \mathrm{~m} . \ldots$		95		$8 \mathrm{p} . \mathrm{m}$		76	97.8
$1 \mathrm{p}, 111---$		68	97.7	$9 \text { p. m }$		78	97.6
$2.05 \mathrm{p} . \mathrm{m} .$		100		10. 10 p.m		is	97.2
31.m.		103					
$4 \mathrm{p} \cdot \mathrm{ml}$		104		Enperiment Sir. 34.			
$5 \mathrm{p} . \mathrm{m} . .$.		102					
		100		Apr. $26,6.55 \mathrm{a}$ a m		68	
$7 \mathrm{l}, 111$	65.59	79	97.7	$7 \mathrm{a} . \mathrm{m}$.	64.94		97.7
- 19.1m.		if	97.5	$9 \mathrm{a} . \mathrm{m}$.		106	
$9 \mathrm{p}, \mathrm{m}$.		71	97.3	$10 \mathrm{a} . \mathrm{mm}$		102	
10.10 1. m.		67	96.9	$11 \mathrm{a} . \mathrm{m}$.		96	
				12m-----		97	
				1 p .11.		66	97. 7
				2.151 .17.		95	
Apr. 23, 13.5.5 a. m .		6.9		$3 \mathrm{p}, 11-\ldots$		919	
$\text { T a. } 11 . \ldots .$	(i5. 21		97.7	$\pm \text { p. } 1 \text {....... }$		97	
! ${ }^{\text {a }}$. 11.		102	$5 \mathrm{p}, \ldots 1 .$		98	
4, (12 a, m.		104		E1. 11.		92	
119 t . 11.		9.9		7p.11............	(i5. 44	-	97.7
11 a .111.		415		*p.1n..		it	47.6
12 11..		9.5		911.17.		72	97.4
$1 \mathrm{p}, \mathrm{m}$.		71	4. 0	10.10 1. m		6:	$44^{4} 2$
$1.57 \mathrm{p} . \mathrm{L}$.	.-.	73	Apr. $27,6.55$ a. 13.		(i5)	

hate and time.	Wcight elothew elothes	l'ulnerate per minute	Temperature.	Date and time.	$\begin{aligned} & \text { Wight } \\ & \text { with } \\ & \text { elothes. } \end{aligned}$	I'ulserate per minute. minute.	Temper- ature.
1900.				1900.			
Experiment $\operatorname{No.~} 3 \boldsymbol{z}-\mathrm{C}^{\prime} \mathrm{t}^{\prime}$ d.				Experiment Vo. $34-\mathrm{C}^{\prime} \mathrm{t}^{\prime}$ 'd.			
Apr. ${ }^{\text {a }}$, 7 a.m.	(12. 09		97.6	$A_{\mathrm{I}} \mathrm{r} .2 \mathrm{se}, 4 \mathrm{a} . \mathrm{m}$		104	
$9 \mathrm{a} . \mathrm{m}$.		103		10 a. m		98	
$10 \mathrm{a} . \mathrm{m}$.		98		II a.m		90	
$11 \mathrm{~m} . \mathrm{m}$.		100		12 m .		93	
12 m .		! ${ }^{\text {d }}$		$1 \mathrm{p} . \mathrm{m}$		66	97.8
$1 \mathrm{p} . \mathrm{m}$.		71	48.3	$2.05 \mathrm{p} . \mathrm{m}$		96	
$2.051 . \mathrm{m}$		100		3 p . m .		97	
3 p . 11.		99		$4 \mathrm{p} . \mathrm{ml}$.		102	
$4 \mathrm{P} . \mathrm{m}$.		94		5 p. 111.		99	
$5 \mathrm{p}, \mathrm{m}$.		100		6 F . m .		97	
$6 \mathrm{p} \cdot \mathrm{m}$.		97		$7 \mathrm{P} . \mathrm{m}$	(iñ. 37	73	97.0
$7 \mathrm{p}, \mathrm{m}$.	63.34	73	97.7	S 1 , m.		75	97.5
$8 \mathrm{p} . \mathrm{m}$.		38	97.5	$9 \mathrm{p} . \mathrm{m}$		67	97.4
$9 \mathrm{l} . \mathrm{m}$.		71	97.5	$10.10 \mathrm{p} \cdot \mathrm{m}$		69	97.3
$10 \mathrm{p} . \mathrm{m}$		68	97.3	Apr. ${ }^{\text {99, }}$ 6.5̄ ${ }^{\text {a.m. }}$		69	
Apr. 28, $6.55 \mathrm{a} . \mathrm{m}$		67		$7 \mathrm{a} . \mathrm{m}$..	64.92		97.7
$7 \mathrm{a} . \mathrm{m} .$.	64.98		97.9				

Amont of worthe dome. The total number of miles registered by the eyclometer and the heat equivalent of the work done each day are shown in Table XCI.

Date and time.	Cyclometer reading.	$\begin{aligned} & \text { Number } \\ & \text { (if } \\ & \text { miles. } \end{aligned}$	Actual duration of work.	Rate.	Heat equivalent.
1901.					
Erperiment No. 32.			Minuts.	Hatts.	Calories.
Apr. ${ }^{\text {a }}$, $10.15 \mathrm{a} . \mathrm{m} .$.	1,510. ${ }^{\text {1, }}$	16.8	120	18.8	32
$12.30 \mathrm{p} . \mathrm{m}$.	1,54t.5	19.3	120	$\underline{21.0}$	36
$\ddagger \mathrm{p} . \mathrm{m}$.	1,562. s	16.3	120	16. 7	29
$6.15 \mathrm{p} . \mathrm{m}$ -	1,579.1	16.3	120	17.4	30
Total		68.7	480	127
Apr. 21, 10.15 a.m.	1,599.2	20.1	120	21.0	36
$12.30 \mathrm{P} . \mathrm{m}$	1,626.0	26.8	120	25.8	4
$\pm 1 . \mathrm{m}$.	1,654. 0	28.0	120	30.5	52
$6.15 \mathrm{p} \cdot \mathrm{m}$	1,681. 7	27.7	120	29.6	51
Total		102.6	480	-	183
Apr, 22, $10.15 \mathrm{a} . \mathrm{m}$.	1,711.6	29.9	120	36.2	6^{2}
$12.30 \mathrm{P} . \mathrm{m}$	1, 744.6	33.0	120	47.4	81
$\pm \mathrm{p} . \mathrm{m}$	1,774.5	29.9	120	35.1	65
6. 15 p. 111	1,806.1	31.6	120	40.0	69
Total		124.4	45^{0}	.-.....	277
Erperiment No. 33.					
Apr. $23,10.15$ a.m.	1,825.3	19.2	120	20.6	35
$12.30 \mathrm{p} . \mathrm{m}$.	1,854. 1	28.8	120	23.9	41
tp.m...	1,880.8	26.7	120	26.6	+15
6.15 L 1. m .	1,908.2	27.4	120	27.5	± 7
Total		102.1	(x)	169

Table NCI.-Record of work done-Metabolism experiments Mos, š-3ィ-Continued.

Detailed statistics of income and outgo. -The quantities of nutrients in the basal ration and the quantities in the supplemental rations for the different experiments are shown in Table XCII. The outgo of matter and energy in the feces during the different experiments is shown in Table XCIII.

Table XC11.- Weight, composition, and heut of combustion of foods-Metabolism experiments Nos. 32-34.

$\begin{aligned} & \text { Labora- } \\ & \text { tory } \\ & \text { No. } \end{aligned}$	Food material.	Weight per day.	Water.	Protein.	Fat.	Carbohy- drates.	Nitrogen.	farbon.	$\begin{aligned} & \text { Hydro- } \\ & \text { gen. } \end{aligned}$	Heat of combustion.
	Brasal ration.									
3205	Beef		37.4	18.6	1.6	frams.	2.98	10.76	1.54	
3206	Butter	35	2.9	. 4	30.7		. 07	22.95	3. 63	287
3204	Bread.	300	113.4	25.8	7.5	149.4	1. 14	84. 81	12.90	861
3207	finger snaps	75	2.8	4.1	5.4	61.2	. 66	32.90	5. 40	333
3193	Parched cereal	75	3.1	9.0	1.1	60.4	1.44	32. 04	4. 73	315
	Sugar	85				35.0		14. 74	2.27	139
		578	159.6	57.9	46.3	306.0	9.29	198. 20	30.47	2,055

$\begin{aligned} & \text { Laburra- } \\ & \text { infy } \end{aligned}$	Foul material．	Weight per lay．	Water．	Frotein．	Fat．	Carbohy： drate：	Nitnuen	cartma．		Fient ： ti． 11 ．
3200	EXPERIMENT So， 32. Milk．while．．．．．．．．．．．．．．．．．	Gratin． $1,020$	fimms	$\begin{array}{r} 6 \cdot \mathrm{~ms}, \\ 41 . \end{array}$	51.0	$\begin{aligned} 6 \text { sen } \\ 47.0 \end{aligned}$	$\begin{aligned} 1, n & \therefore 1 \\ 11 & -3 \end{aligned}$	$\begin{aligned} & \text { Firn } 2, \\ & -1 .(n, 9 \end{aligned}$	$\begin{aligned} & \text { anme } \\ & 12.14 \end{aligned}$	423
	Tutal hasal ration supplemental ration．	1，548	1.030 .7	$9 \times .7$	97.3	373．9	16． 02	2－9， $2 \cdot 1$	42． 11	2．4゙5
3201	Butter	62	5.2	\checkmark	54.3	．－．－．．．．	． 12	40． 66	6． 43	509
	Total ration ior 1 day－	1.660	1.035 .9	100.5	151.6	353.9	16.14	319.95	49.04	3.487
	Milk，whole．．．．．．．．．．．．．．．．．	1，0：20	＊から． 0	41．5	53.0	49．0	6． 33	23．-4	12.65	929
	Total basal ration supplemental ration．	1，598	1.027 .6	99.7	94.3	35．5． 0	15．） 02	2×2.04	43.12	2.977
	Alcohol	$\because 2$						37.56	9.39	509
	Total ration for 1 lay－	1.670	1．027．6	99.7	99.3	355.0	16.02	319.60	52.51	3.486
3202	Milk．whole \qquad Total hasal ration \qquad Supplemental ration． Sugar \qquad	1，020	－69．0	41.8	53.0	43.9	6． 73	83． 64	12.34	431
		1，598	1，023．6	99.7	99.3	349.9	16．02	281.84	42． 81	2， 9.96
		129				12న． 0		53． 89	－． 29	505
	Total ration for 1 day．	1.726	1.028 .6	99.7	99.3	47\％．9	16.02	335.73	51.10	3.493

Table XCIII．－Weight，compoxition，and heut of combustion pif porv－Metahmlism experimenta Jin．S2．S．3．St．

Table XCIV shows the quantity of urine eliminated on different days, and the quantity of urime and nitrogen in the urine for each 6-hour period of experiment No. 33. The heat of combustion of the urine was determined in the composite sample for each day and the carbon and hydrogen in the composite for the total 9 days of the series.
T.able ICIV.-Imouts, specific gravity, and nitrogen of urine-Metabolism experiments Nus. 32-34.

Date.	Period.	Amount.	Specific gravity.	Nitrogen.	
$\text { Apr. } \begin{gathered} 1900 \\ 20-21 \\ 21-2 . \\ 22-23 \end{gathered}$		$\begin{aligned} & \text { Grams. } \\ & 1,237.6 \\ & 1,487.9 \\ & 1,104.1 \end{aligned}$	$\begin{aligned} & 1.021 \\ & 1.018 \\ & 1.024 \end{aligned}$	Per cent. 1.28 1.01 1.38	$\begin{array}{r} \text { Grams. } \\ 15.90 \\ 14.94 .94 \\ 15.20 \end{array}$
	Total				46. 04
	Experiment Mo. 83.				
Apr. $23-4$	a a.m. to 1 p ¢ m. . $1 \mathrm{p} . \mathrm{m}$. to p. m..	256.7 +25.4	1.025	1.59 1.10	4.08 4.68
	$7 \mathrm{p} . \mathrm{m}$. to 1 a.m.	239.6	1.025	1.77	4.24
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	167.4	1.026	1.99	3.33
	Total	1,089.1			16. 33
	Total by composite	1,089. 1	1. 024	1.50	16.34
Apr. 24-25.	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$.	328.1	1.022	1.28	4. 20
	$1 \mathrm{P} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$.	347.6	1.023	1.40	4.87
	$7 \mathrm{p} . \mathrm{m}$. to 1 a. m.	319.2	1.021	1.51	4.82
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	151.0	1.028	2.17	3.28
	Total	1,145.9			17. 17
	Total by composite	1,145.9	1.024	1.51	17.30
Apr. 25-26.	$7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$	262.5	1.025	1.66	4.36
	$1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$.	337.2	1.024	1.48	4.99
	$7 \mathrm{p} . \mathrm{m}$. to 1 a . m .	242.1	1. 026	1.91	4.62
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$.	147.8	1.030	2. 25	3.33
	Total	989.6			17.30
	Total by composite	989.6	1.026	1.75	17.32
	- Experiment No. 34.				17.02
Anr. $26-27$.	$7 \mathrm{a} . \mathrm{m}$. to 7 a. m.	851.4	1.030	2.00	
27-28.	7 a. m. to 7 a. m.	909.0	1.026	1.74	15.86
$28-29$.	$7 \mathrm{a} . \mathrm{m} .107 \mathrm{a}$. m	1,095.4	1.024	1. 46	
	Total.				48.92

Table XCV.-Duily climinution of curbon, hytrogen, and uuter in urine-Metubolism experiments Nos. 32-34.

Date.	Amount.	Carbon.		Hydrogen.		Water.		Heat of combustion.			
				Per gram.	Total.						
1900.		Pcr cent.				Fer cent.		Per cent.	Grams.	Calories.	Calorics.
Apr. 20-21	1,237.6	Por	11.35		3.13		1,179. 7	0. 104	129		
21-22	1,487.9		10.67		2.95		1, 433. 4	. 076	113		
22-23	1,104. 1		10.85		3.00		1,048.7	. 105	116		
Total			32.87	----...	9.08	---.--..	--...-.		358		
23-24	1,089. 1		11.66		3.22		1,029.6	. 115	125		
24-25	1, 145.9		12. 26		3.38		1,083.3	. 113	129		
25-26	989.6		12.35		3.41		926.6	. 134	133		
Total			36. 27		10.01				387		
$26 ;-27$	851.4		12. 15		3.36		789.4	. 154	131		
$27-28$.	909.0		11. 32		3.13		851.2	. 137	125		
29.29.	1,095. 4		11.45		3. 16		1,036.9	. 112	123		
Total			34.92		9.65				379		
Total 9 days.	9,910.0	1.05	104.0t;	. 29	25.74	94.64		(.112)	1,124		

Tables XCVI to XCVIII show the results of earbon dioxid and water in the ventilating air current. These statisties are given in detail for experiment No. 33 , in which alcohol formed a part of the diet, and summarized for the other 2 experiments of the series. Similar statisties of the heat measurements are given in Table XCLX.
 buch period, tul the correspmaliny guin or loss-1 Iftabolism experiment No. ss.

Inte.	End of perion.	fartun dioxid.		Wuter.				$\begin{gathered} \text { Total } \\ \text { anomont } \\ \text { gained (}+ \text {) } \\ \text { or loot (} \\ \text { durink the } \\ \text { period. } \end{gathered}$
		$\begin{aligned} & \text { Total } \\ & \text { unsunt in } \\ & \text { chamber. } \end{aligned}$	$\begin{gathered} \text { fain (}+ \text {) or } \\ \text { loss (-1over } \\ \text { preceding } \\ \text { perioul. } \end{gathered}$	Total amoluat of vapor remaining in "hamber.	$\begin{aligned} & \text { Gain (}+ \text {) or } \\ & \text { lass }(- \text { over } \\ & \text { reperding } \\ & \text { period. } \end{aligned}$	Change in weight of absorlecrs. ${ }^{n}$ Ginin (t) or luss (-).	Drip from absorbers.	
${ }^{19000 .}$	$7 \mathrm{a} . \mathrm{m}$	$\begin{aligned} & \text { (irams } \\ & \stackrel{2}{7}, 0 \end{aligned}$	circtims.	tirthus. +15.7	fircms.	firame.	rirams.	firams.
	$1 \mathrm{p} . \mathrm{m}$	82.5	-5.8.	53.2	+6.5	14%	171.7	+325.2
	$7 \mathrm{p} \cdot \mathrm{m}$	80. 2	-2.6	52.1	-1.1	- 9	424.9	+ 414.8
	$1 \mathrm{a} . \mathrm{m}$	29.5	-50.7	45.5	-3.6	- it	31.0	-46.6
	$7 \mathrm{a} . \mathrm{m}$	28.5	-1.0	48.1	$-.4$	-83	31.0	- 42.4
	Total.		$+1.5$		+1.4	9	658.6	$+651.0$
	$1 \mathrm{p} \cdot \mathrm{m}$	84.4	-55.9	54.5	$+6.4$	$+172$	263.4	+441.8
	$7 \mathrm{l} . \mathrm{m}$	so.s	-3.6	52.3	-2.2	-28	434.3	$+404.1$
	$1 \mathrm{a} . \mathrm{m}$	28.9	-51.9	48.8	-3.5	- 76	19.0	-60.5
	$7 \mathrm{a} . \mathrm{m}$	27.0	-1.9	46. 4	-2.4	76	19.0	- 59.4
	Total		-1.5		-1.7	- k	735.7	$+726.0$
	$1 \mathrm{p} . \mathrm{m}$.	85.7	$+58.7$	54.7	48.3	+186	241.0	$+415.3$
	$7 \mathrm{l}, \mathrm{m}$	85.7		53.0	-1.7	- 4	471.0	+465. 3
	$1 \mathrm{a} . \mathrm{m}$	$\cdots 7.6$	-58.1	49.8	-3.2	- 82	24.0	-61.2
	$7 \mathrm{a} . \mathrm{m}$	26.0	-1.6	46.0	-3.8	-82	24.0	- 61.8
	Total	.-.	-1.0		-. . 4	- 2	760.0	+757.6

Date.	Period.	(a) Ventilation. Number of liters of air.	Carbon dioxid.						
			In ineoming air.		(il) In outgoing air.	(e) Total excess in outgoing $\stackrel{\text { air, }}{\text { d }}-\mathrm{c}$.	tion for Hmotant remainchamber	(g) Corrected amount exhaled by subject $e+f$.	
			(b) Per liter.	(c) $\underset{u}{\text { Total, }}$					
1900.	Experiment No. 32.	Litcre.	My.						
Apr. $\begin{array}{r}20-21 \\ 21-22\end{array}$		107,275	M,	66.1	1, 145. 8	1,079.7	+ +6	1,080. 3	294.6
	$7 \mathrm{a} . \mathrm{m}$, to $7 \mathrm{a} . \mathrm{m}$	105, 542		66.2	1,273.4	1,207.2	+2.8	1,210.0	329.9
21-22	$7 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	106, 320		63.4	1,359. 1	1,295. 7	-3.4	1,292.3	352.4
23-24									
	7 a. m. to 1	2.n, 97	0.583	15.1	383.8	368.7	+00. 8	$42+.5$	115.8
	$1 \mathrm{p} . \mathrm{m}$. to 71 l . m	25, 175	. 593	14.9	+62.9	448.0	- $\because 6$	45.4	121.5
	$7 \mathrm{p} . \mathrm{m}$. to 1 a. m	26, 430	.609	16.1	258.9	242.8	-50.7	192.1	52.3
	$1 \mathrm{a} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$	26, 430	. 600	15.9	158.5	142.6	-1.0	141.6	38.6
$24-25$	Total	103, 987		62.0	1,264. 1	i, 202. 1	$+1.5$	1,203. 6	328.2
		25.175	. 598	15.1	406.6	391.5	+55.9	447.4	12.3
		26, 730	. 558	14.9	477.6	462.7	-3.6	459.1	125.2
		27, 20x	. 581	15.8	248.7	232.9	-51.9	181.0	49. $\frac{1}{7}$
		27, 208	. 642	17.5	154.1	136.6	- 1.9	134. 7	36.7
	Total	106, 321		63.3	1,2ヵ7.0	1,223. 7	-1.5	1,222. 2	333.3

${ }^{a}$ Absorbers not weighed between $i \mathrm{p} . \mathrm{m}$. and 7 a a. m . The change in weight during this time is divided eijually between the two periods.

Vol. 8 -No. 6- 10

Table XCVIII.-Record of uater in ventilating air current-Metabolism experiments Mos. 32-34.

${ }^{\text {a }}$ Including 4.8 calories during each day period generated by the electric current used to magnetize the fields of the dynamo.

The alcohol, or reducing material equivalent to alcohol, given off from the body in different ways was determined in the usual mamer, and the rexult appear in Table C. The usual correction is made for the total amount of reducing material in the urine, drip, freezer water, and air current, as found in experiments Nos. 32 and 34 , in which alcohol did not form a part of the diet. It will be observed that about one-third of the total reducing material in experiment No. 33 mnst be considered as due to other compounds than the unoxidized alcohol. As in the previons series of experiments, there was no indication of a lag in the elimination of unoxidized alcohol.

Table C.-Alcohol inglested and excreted-Metaholism experiments Nos. 33-s4.

${ }^{3}$ Equals total reducing material excreted less 0.32 gram of reducing material not alcohol, the average for the days on which no alcohol was consumed.

Table C.-Mcohol ingested and excreted-Metabolism experiments Mos. 32-34-Continued.

${ }^{\text {a }}$ Equals total reducing material excreted less 0.32 gram of reducing material not alcohol, the average for the days on which no alcohol was consumed.

Batance of income and outgo of matter and energy.-From the preceding statistics are computed the income and outgo of nitrogen, carbon, hydrogen, and energy on the different days of each of this series of experiments. The results of these computations are shown in Tables CI-CIV.

Table CL.-Income and outgo of nitrogen and carbon-Metabolism experiments Nos. 32-34.

" Nitrogen in perspiration, 9.4 grams per day, is included in this column.

Table CII.-Income mud outgo ui water and hymbugen- Metermbism exproments Nies. 32-3\%.

Table CIII.-Gain or loss of protein ($I^{7} \times 6.25$), fat, and water-Metabolism erperiments Nos. 32-3ł.

Table CIV.-Income and outgo of energy-Metabolism experiments Nos. 32-34.

STATISTICAL DETAILS OF DIGESTION EXPERIMENTS.

A- has already heen explained. each metabotism experiment or series of experiments was preceded by a digestion experiment and each metaholism experiment ineludes a digestion experiment The results of those digestion experiments in which alcohol formed a part of the diet are detailed herewith. Those of the corresponding experiments without alcohol are given in connection whth the description of the latter, as elsewhere published." The results of the digestion experiment with and withont aleohol are summarized beyond.

The weights of the different food materials, as shown in the first columm of Tables CV-CVIII, together with the figures for percentage, composition, and heat of combustion, as shown in Tables I-III abore. suttice for the computations of the nutrients and energy in the food and feces. In computing the protein from the nitrogen, the factor 6.25 has been used for all animal foods and 5.71 for the regetible foods used in the experiments. ${ }^{\text {b }}$. The total organic matter as shown in the tables is the sum of the organic constituents-protein, fat, carhohydrates, and alcohol.

DETAILS OF DIGESTION EXPERIMENT NO. 41 .

This was preliminary to metabolism experiment No. 7. legan with hreakfast June 3, 1897, and continued 5 days. The diet was the same in kind and practically the same in the relative amounts of the different ingredients as in the following metaholism experiment. The subject was E. O., the laboratory assistant who served in a large number of the experiments here recorded. His weight at the beginning of the experiment was not recorded: at the end it was without
 but did a- little muscular work as practicable, in order that the conditions of exercise should not difter greatly from those in the following rest experiment in the respiration apparatus. The result of the experiment are shown in Table CV.

DETAILS OF DIGESTION EAPERIMENT No. 42.
This experiment followed immediately after No. 41 and formed a part of metaholism experiment No. 7. It began with breakfant June s. 1s9s, and continued 4 days. The subject, E. O., weighed withont clothing 66.7 kilograms (147 pounds) at the beginning and if kilograms ($1 \frac{1}{5} 5 \frac{1}{2}$ pounds) at the eud of the study. The subject had as little museular activity as was practicable during the experiment. The details are given in Tahle CVI.

Table CV.-Detuils pf digestion experiment No. 41 (preliminary to metabolism erperiment No. \%).

LaboraNo. sample.		$\begin{gathered} \text { Weight } \\ \text { oi } \\ \text { materiat. } \end{gathered}$	Totalorganie matter	Nitrogen.	Protein.	Fat.	Carbohydrates.	Alcohol.	Ash.	Heat of combustion mined).
279.5	Beef, fried	Grams. $\$ 50$	Grams. 274	Grams. 34.7	Grams. 217	Grams. 57	Grams.	Grams.	Grames. 11	Calorits. 1,709
2796	Beet, dried.	125	34	4.8	30	4			9	199
2798	Eggrs, boiled.	72	138	11.5	72	66			5	1,028
$2 \mathrm{C01}$	Butter	is	6.5	. 2	1	64			3	595
2 COO	Milk	2,85	351	16. -	101	13.	112		20	2,133
$\because 804$	Breal, rye	750	120	10. 1	58	4	358		12	1, 662
2786	sugar...	2.5	2.5				225			891
2797	Beans, baked	62.5	169	6. 2	39	6	124		12	786
	Pears, cannel	750	145	. 3	\because	4	13.		2	577
	Alcohol......	363	363					362.5		2, 566
	Total	7,360	$\stackrel{2}{2}$, 4	St	520	343	958	362.5	76	12,346
2×09	Feces	40)	96	7.7	45	22	26		19	632106590
	Alcohol excretel unoxidizerl.		15					15		
	Urine.									
	Imount availabl		2, 073	76.3	472	321	932	347.5	57	11,018
	Coefticients of availability..		Per cent. 94.4	Per cemt. 90.8	$\begin{gathered} \text { Por cent. } \\ 90.8 \end{gathered}$	$\begin{array}{r} \text { Per rent, } \\ 93.6 \end{array}$	Per cent.	Per tent. 95. 4	rer cemt.	$\begin{array}{r} \hline \text { Ter cent. } \\ 89.2 \end{array}$

- See page 2t1.
${ }^{\text {b }}$ See discussiun oi nitrogen lactor for protein. ITwiter and Bryast, Repl. Storrs (Conn.) Expt. Sta.. 1899, p. 76.

$\begin{gathered} \text { Labora- } \\ \text { tory } \\ \text { xample. } \\ \text { sample } \end{gathered}$		$\begin{gathered} \text { Weight } \\ \text { of ofrial. } \end{gathered}$	Totalorganic matter.	Nitrogen.	Protein.	Fat.	Carbohydrates.	Alcohol.	Ash.	Heat of combustion (determined).
2795	Beef, fried	Grams. 67.5	Frams. 217	Grams. 27.5	Grame. 172	Grams. 45	Grazas.	Grams.	Grams. 9	Calorics. 1,357
2796	Beef, dried	100	27	3.8	24	3			7	160
2798	Egys, boiled.	564	108	9.1	57	51			4	803
2801	Butter	60	52	. 2	1	51			2	476
2800	Milk.	2, 300	281	13	81	110	90		18	1,707
2804	Bread, rye	600	336	8	46	4	286		10	1,490
2756	Sugar..--	180	180				180			713
2797	Beans, baked.	500	135	5	31	5	99		10	628
	Pears, canned	600	116	. 3	2	3	111		1	461
	Alcohol..	290	290					290		2,050
	Total	5, 869	1, 742	66.9	414	272	766	290	61	9,845
2810	Feces	198	47	3.5	22	10	15		10	$\begin{array}{r} 84 \\ 490 \end{array}$
	Alcohol excreted moxi- dized		11.9					11.9		
	Urine. -									
	Amount available		1,683. 1	63.4	392	262	751	278.1	51	8,968
	Coefficients of availability-		$\begin{array}{r} \hline \text { Per cemt. } \\ 96.6 \end{array}$	$\begin{aligned} & \text { Per cent. } \\ & 94.8 \end{aligned}$	Percent. 94.7	$\begin{array}{r} \text { Per crnt. } \\ 96.3 \end{array}$	Per cent. 98.1	$\begin{gathered} \text { Per ceat. } \\ 95.9 \end{gathered}$	$\begin{array}{r} \text { Per cemt. } \\ 83.6 \end{array}$	Per cent. 91.1

DETAILS OF DIGESTION EXPERIMENT NO. 47.
This experiment began with breakfast February 11. 1898, and continued 4 days. The diet was the same in kind and practically the same in amount as in metabolism experiment No. 10, which immediately followed and of which this experiment formed the preliminary period. The subject, E. O., weighed without clothing 67.4 kilograms ($148 \frac{1}{2}$ pounds) at the close of the studr. His weight at the begimning was not recorded. He was engaged about the lahoratory in his usual occupation, but aroided muscular exertion so far as practicable. Table CVII gives the details.

DEtAILS OF DIGESTION EXPERIMENT NO. 48 .

This experiment, which formed a part of metabolisn experiment No. 10. began with breakfast February 15, 1898, and continued t days. The subject. E. O.. weighed without clothing 67.4 kilograms at the beginning and 67.6 kilograms (149 pounds) at the end of the experimental period. Table CVIII gives detailed results.

Table CVII.-Details of digestion experiment No. 47 (preliminary to metabolism experiment No. 10).

$\begin{gathered} \text { Lah. } \\ \text { 夫o. } \\ \text { sample. } \end{gathered}$		$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { material. } \end{gathered}$	Total organie matter.	Nitrogen.	Protein.	Fat.	Carbohydrates.	Alcohol.	Ash.	Heat of combus. tion mined).
2839	Beef	Grams. 1, 0s0	Grem.s. 329.0	Grama. 16.9	firams. 293	Girums. 36	Grams.	Grams.	Grams. 21	Calories. 1, 961
2843	Putter	t0	53.0			53			1	479
2845	Milk, skimmed	3, 000	261.0	14.9	93	3	165		24	1,206
28.4	Bread...-	500	288.0	6.7	38	1	249		7	1,277
2842	Maize breakfast food.	200	187.0	3.8	23	16	148		3	887
2840	Wheat breakfast foorl	200	182.0	3.5	20	3	159		4	810
2841	(inger snaps	240	293.0	2.2	13	15	195		7	1,019
	Sugar	280	280.0				280			1,109
	Alcuhol	290	290.0					290.0		2,050
	Total	5, 850	2,093.0	Tr. 0	480	127	1,196	290.0	67	10,798
2847	Feces . .-.	267	59.0	4.1	25	10	24		12	360
	Alcoholexareted unoxidized Crine.		4.4					4.4		31 569
	Amount availabl		2,029.6	74.0	45.5	117	1,172	2×5.6	5.5	9,538
	Coefficients of availability .-	...	$\begin{array}{r} \operatorname{Itr} c r n t . \\ 97.0 \end{array}$	$\begin{array}{r} \text { per cent. } \\ 94.9 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 94.8 \end{array}$	$\begin{gathered} \hline \text { Per cent. } \\ 92.1 \end{gathered}$	$\begin{array}{r} \text { Per cent. } \\ 98.0 \end{array}$	$\begin{aligned} & \text { Per rent. } \\ & 98.5 \end{aligned}$	$\begin{array}{r} \hline \text { Per rent. } \\ 82.1 \end{array}$	Per ernt. 91.1

$\begin{gathered} \text { Lab. } \\ \text { Nun, } \\ \text { sample. } \end{gathered}$		$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { material. } \end{gathered}$	Total organic. matter.	Nitrogen.	1rotein.	Fat.	farbohy: drater.	Alerihol.	1. h .	lleat of comblis tiont deter
28:39	Beet	tirams. 1, 0K0	$\begin{aligned} & \text { Graums } \\ & 3 \geq 9.9 \end{aligned}$	$\begin{gathered} \text { Grams. } \\ +16.9 \end{gathered}$	tirctis. 293	Gramis: 36	firters.	(i)ams.	firams. 21	riclorics. 1, ! 131
2843	Butter	60	53.0			5.3			1	479
2 2st	Milk, sk	3, 000	264.0	15.8	99	3	162		24	1,242
2×4	Bread.	500	28.0	6. 7	35	1	249		6	1,277
2 C 42	Maize lreakfant food.	200	187.0	3.8	23	16	14.4		3	857
2840	Wheat breakfast food	200	1*2. 0	3.5	20	3	159		4	810
2 S 41	Ginger snaps	240	2\%3. 0	2.2	13	15	19.5		7	1,019
	Sugar .-....	2 SO	280.0				280		.	1, 109
	Aleoho	290	290.0					290.0		2,050
	Total	5, 850	2,096.0	78.9	486	127	1,193	290.0	67	10, $\times 34$
2848	Feces	351	S.5.0	5.4	34	15	36		17	507
	Alcoholexcreter unoxidizert Urine		4.4					4. 4		818
	Amount availal		2, 006. 6	73.5	452	112	1,157	24.3. 6	50	9, 731
	Coeffirients of availability .		$\begin{array}{r} \text { Per ecnt. } \\ 95.7 \end{array}$	$\begin{gathered} \text { Per crint. } \\ 93.1 \end{gathered}$	$\begin{array}{r} \text { Per crut. } \\ 93.0 \end{array}$	Per cent. 88. 2	$\begin{array}{r} \text { Per cent. } \\ 97.1 \end{array}$	$\begin{aligned} & \text { Per rent. } \\ & 98.5 \end{aligned}$	$\begin{array}{r} \text { Perernt, } \\ 74.6 \end{array}$	$\begin{array}{r} \text { Per cint. } \\ 89.8 \end{array}$

DETAll. OF DIGEATION EXPERIMENT NO. 51.
This study was preliminary to metaholism experiment No. 12 , with the same kinds and amounts of the different food materials. The subjeet, E. O. was engaged in his usual laboratory work, but in addition took considerable muscular exercise on the bicycle and otherwise, in order to make the conditions of muscular activity not greatly different from those in the following metabolism experiment. The study began with breakfast April s. 1898 , and contimed 4 dars. The subject weighed, without "lothing, 70.5 kilograms (155.4 pounds) at the beginning and 70.1 kilograms (154.5 pounds) at the end of the study.

DETALLS OF DIGESTION EXPERIMENT NO. 5:.

This experiment, which formed a part of metabolism experiment No. 12, began with hreakfast April $1 \underset{2}{ } 1898$, and continned 4 days. The subject, E. O., weighed, without elothing, 70.4 kilograms (156.3 pounds) at the begiming and 70.3 kilograms (155 pounds) at the end of the study. He worked 8 hours a day upon a stationary bicyele within the chamber of the calorimeter.

Table CIX.-Tetails of digestion experiment No. 51 (preliminery to metaholism experiment No. 12).

Table C..-Detuils of digestion experiment No. 52 (part of metabolism experiment No. 12).

$\begin{gathered} \text { Lab. } \\ \text { yo. } \\ \text { sample. } \end{gathered}$		$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { material. } \end{gathered}$	Tutal organic matter	Nitrogen.	Protein.	Fat.	Carbohydrates.	Alcohol.	Ash.	Heat of combustion mined).
$2 \sim 66$	Beef	$\begin{aligned} \text { Grams. } \\ 700 \end{aligned}$	$\begin{aligned} & \text { Grams. } \\ & 231.0 \end{aligned}$	$\begin{array}{r} \text { Grams, } \\ 30.7 \end{array}$	Grams. 192	Grams. 39	Grams.	Grams.	Grams.	Calories. $1,400$
2-61	Butte	380	330.0	0.3	2	328			8	3, 004
2×5	Milk	3, 600	425.0	17.9	112	162	151		25	2,873
2 S 59	Bread	1,200	702.0	18.1	103	12	587		13	3,196
2842	Maize breakfast food.	240	224.0	4.5	27	20	177		4	1,065
2858	Deviled ham	200	110.0	5.9	37	73			8	873
	Sugar	280	280.0				280			1,109
	Alcohol	290	290.0					290.0		2,050
	Total	6,890	2,592.0	77.4	473	634	1,195	290.0	76	15,570
2863	Feces	370	79.0	5.0	31	26	22		16	
	Alcoholexcreted unoxidized Urine.		6.0					6.0		553
	Amount available.		2,507.0	72.4	442	608	1,173	284.0	60	14,430
	Coefficients of availability..		Per cemt. 96.7	$\begin{array}{r} \text { Per cent. } \\ 93.5 \end{array}$	Per cent. 93.4	Per cent. 95.9	$\begin{array}{r} \text { Per ccnt. } \\ 98.2 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 97.9 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 78.9 \end{array}$	Per cent. 92.7

DETAILS OR DIGESTION EXPERIMENT NO. SO.
This experiment formed the preliminary period to the series of metabolism experiments Nos. 15-17. It began with breakfast January 12, 1899, and continued 4 days. The subject, E. O., as in prerions experiments here reported, was engaged in very light work about the laboratory. Hi , weight at the end of the study, without clothing, was 70.9 kilograms (156 pounds). The alcohol during this period was taken in the form of commercial alcohol in sweetened coffee infusion, as in metabolism experiment No. 15. In metabolism experiment No. 16 the alcohol was taken in the form of whisky, and in No. 17 in the form of brandy.

detalls of digestion experiment no. 81.

This experiment, which formed a part of the series of metabolism experiments Nos. 15, 16, and 17, hegan with breakfast January 16, 1899, and continued 6 days. The subject, E. O., weighed, without clothing, 70.9 kilograms at the beginning and 70.1 kilograms (154.5 pounds) at the end of the experiment.

Table CNI.-Deteils of digestion experime.at No. So (preliminury to metabolism experiment No. 15).

Labora- tory So. sumple.		$\begin{aligned} & \text { Weight } \\ & \text { of } \\ & \text { of erinal. } \end{aligned}$	Total matter matter	Nitrogen.	Protein.	Fat.	Carbohydrates.	Aleohol.	Ash.	Heat of combustion mined).
3009	Beei	Grams. 640	$\begin{aligned} & \text { Grams. } \\ & 184 \end{aligned}$	$\begin{array}{r} \text { Grams, } \\ 26.7 \end{array}$	$\begin{gathered} \text { firams. } \\ 167 \end{gathered}$	Grams. 17	Grams.	Grams.	Grams.	Calorics. 1,076
3003	Butte	120	104	2	1	103			3	955
3005	Milk, skimmed	3, 450	334	22.1	138	3	193		31	1,611
3004	l'archerl cereal	120	111	2.2	13	1	97		2	487
2968	Brear	1,240	707	15.7	89	35	583		16	3, 360
	Sugar	204	204				204			808
	Alcohol	290	290					290		2,256
	Total	6,064	1,934	66.9	408	159	1,077	290	66	10,553
3007	Feces	185	556.8	3.2	20	13	22	6.8	14	
	Alcoholexcreted unoxidizerl									$\begin{array}{r}48 \\ 485 \\ \hline\end{array}$
	Amount available		1,872.2	63.7	388	146	1,055	283.2	52	9,637
	Coefficients of availability..		$\begin{array}{r} \text { Per ecnt. } \\ 96.8 \end{array}$	Per cont. 95.2	$\begin{array}{r} \text { Per cent. } \\ 95.1 \end{array}$	Pcr cont. 91.8	ler cent. 98	$\begin{array}{r} \text { Per cent. } \\ 97.6 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 78.8 \end{array}$	$\begin{array}{r} \text { ICr cent. } \\ 91 . \end{array}$

Table CXII.—Intuils of digestion experiment Lio. 81 (purt of metabolism raperiments Aose, 15, 16, and 17).

		Weight $\stackrel{\text { ot }}{\text { material. }}$	Total organic matter	Nitrogen.	Protein.	Fat.	Carbohy: drates.	Alcohol,	Ash,	$\begin{gathered} \text { Hent oi } \\ \text { cumblins- } \\ \text { tions } \\ \text { (deter- } \\ \text { mined). } \end{gathered}$
3009	Beef	Grams. 960	Grams. 275	Grams. 40.0	Grams. 250	Grams. 25	Grams.	Grams.	Grams. 21	ratorice $1,615$
3003	Butter	180	157	3	2	155			5	1, 433
3006	Milk, skimmed	5, 700	55.3	37.5	234	6	313		46	2, 667
3004	Parched cereal	180	166	3.2	1s	1	147		3	730
2968	Breal	1,860	1,060	23.5	134	52	874		24	5,040
	Sugar	342	342				342			1,354
	Alcoliol	435	435					435		3,075
3008	Total Feces A lcohol excreted unoxidized Urine.	9,657	2,988	104.5	63 K	239	1,676	435	99	15,914
		316	$\begin{aligned} & 76 \\ & 10.3 \end{aligned}$	5	31	18	27	10.3	24	52973759
	Coefticients of availability.-		2,901.7	99.5	607	221	1,649	424.7	75	14,553
			$\begin{gathered} \text { Per cent. } \\ 97.1 \end{gathered}$	$\begin{array}{r} \text { Per cent. } \\ 9.5 .2 \end{array}$	per cent. 95.2	$\begin{array}{r} \text { Per cent. } \\ 92.5 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 98.4 \end{array}$	$\begin{aligned} & \text { Per cent } \\ & 97.6 \end{aligned}$	Per cem. 75.8	$\begin{aligned} & \text { Per cent. } \\ & 91.5 \end{aligned}$

DETAILS OF DIGESTION EXPERIMENT NO. 82.
This experiment was preliminary to and formed a part of metabolism experiments Nos. 18-21. The subject was A. W. S., a physicist. He was engaged in the investigations of which this experiment forms a part. The study began with breakfast February 2,1899 , and continued t days outwide the apparatus. During the following 9 days, beginning with February 6 , the subject was inside the respiration chamber. It was the intention to subdivide the 13 days covered by this digestion experiment into three separate experiments, comprising the 4 preliminary days prevons to the time when the subject entered the respiration calorimeter; the 6 days in the calorimeter in which alcohol formed a part of the diet, either as commercial alcohol, whisky, or brandy: and the 3 days of experiment No. 21 in which alcohol was omitted from the diet. Unfortumately no satisfactory separation of the feces was obtained hetween the preliminary period and the end of the experiment No. 21 . The whole time is therefore included in one digestion experiment. The body weight of the subject at the begimning of the period was 72.4 kilograms, and at the end 72.7 kilograms (160.3 pomds). During the preliminary days very little muscular work was done, and during the sojourn in the apparatus practically no exercise was taken. The kinds and daily amounts of foods were the same during the 4 preliminary days, and the 6 days of metabolism experiments Nos. 18-20, except that alcohol was taken in the form of commercial ethylatcohol in the preliminary period and in No. 18, whisky in No. 19, brandy in No. 20. In experiment No. 21 the alcohol was omitted from the diet.

Tible CXIII.-Dhtuils of digextion experiment Vo. δ_{2} (preliminury to and pert oi metaboïsm experiments Nos. 18-21).

$\begin{aligned} & \text { Labora- } \\ & \text { yory } \\ & \text { yample. } \end{aligned}$		Weight of material.	Total or- ganic matter.	Nitrogen.	Protein.	Fat.	Carbohydrates.	Alcohol.	Ash.	Heat of combustion (determined).
3022	Beef	$\begin{aligned} & \text { Grams. } \\ & 2,0,0 \mathrm{o} 0 \end{aligned}$	Grams. 634	Grams. 92. 9	Grams. 5 S1	trams. 53	Grams.	Grams.	Grams. 43	Calories. 3,500 3,15
3021	Butter	390	$3+1$. 7	4	337			10	3,148
3023-1	Milk.	9,750	1,232	49.6	310	430	492		78	7,658
3004	Parched cereal	390	1, 360	7.2	41	2	317		6	1,582
2968	Bread.	4, 030	2,297	50.9	290	113	1, 894		52	10,921
	Sugar	585	585				585			2,317 5,331
	Alcohol	725	725					725		
	Total	17.950	6,174	201.3	1,206	985	3,288	725	189	34,757
3033	Feces .-......................	832	$\begin{array}{r} 188 \\ 045 \end{array}$	13.5	84	52	52	24.5	39	1,307 173
	Alcoholexcreted unoxidized Urine									
	Amount arailable.	17, 118	5,961.5	187.8	1,142	883	3,236	700.5	150	31,850
	Coefficients of availability .		$\begin{array}{r} \text { Per crint. } \\ 96.6 \end{array}$	$\begin{aligned} & \text { Per cent. } \\ & 93.8 \end{aligned}$	$\begin{array}{r} \text { Per cent. } \\ 93.2 \end{array}$	Per cent. 94.4	Per rent. 98.4	$\begin{gathered} \hline \text { Per cent. } \\ 96.6 \end{gathered}$	$\begin{aligned} & \text { Per cemt. } \\ & 79.4 \end{aligned}$	Per cent. 91.6

DETAILS OF DIGESTION EXPERIMENT NO. 83.
This experiment began with breakfast March 9,1899 , and continued 4 dars. It was preliminary to the series of metabolism experiments Nos. $22-24$, and was made with the same sulject. E. O.. who served in the majority of the digestion experiments here described. The diet during the first 3 days contained no alcohol. On the last day 72.5 grams of absolute alcohol were added in the form of commercial ethyl alcohol. The subject was engaged in his usual work about the laboratory and performed rely little manual labor. His weight, without clothing, was 72.4 kilograms (159.6 pounds) at the close of the experiment.

DETAILS OF DIGESTION EXPERIMENT NO. 84 .

The experiment began with breakfast March 13. 1899, and continued 6 days, forming a part of metabolism experiment Nos. 22 and 23 , details of which are given above. Alcohol formed a part of the diet on the first 3 days (metabolism experiment No. 22) while on the last 3 days (metabolism experiment No. 23) only the basal ration was eaten. The subject, E. O., weighed, without clothing, at the beginning of the experiment 72.4 kilograms and at the end 72.7 kilograms (160.3 pounds). He had as little muscular activity during the series of experiments as was prarticable.
T.able CXIV.—Detaits of rigestion experiment No. 88 (pretiminary to metabolism experiment No. 22).

Labora- tory So. sample.		$\begin{aligned} & \text { Weipht } \\ & \text { of } \\ & \text { material. } \end{aligned}$	Total matter.	Nitrogen.	Protein.	Fat.	Carbohydrates.	Alcohol.	Ash.	Heat of combustion (deter- mined).
3027	Beef	frams. 600	$\begin{aligned} & \text { Gramb. } \\ & 246.0 \end{aligned}$	frams. 33.4	Grame. 209	Grams. 37	Grams.	Grams.	Grams. B	Calories. $1,580$
3029	Butter	220	193.0	. 3	2	191			6	1, 766
3031	Milk, skimmed	4,590	384.0	26.1	163	4	217		36	1,849
3004	Cereal, parched.	180	166.0	3. 2	18	1	147		3	730
3032	Bread	1,240	723.0	15.7	89	42	592		16	3,483
	Sugar.	160	160.0				160			634
	Aleohos	72	72.0					72.0		509
30159	Horse-radiuh	(18)	9.0	. 2	1		8		1	37
	Total	7, (196)	1,953.0	78.9	+122	275	1,124	72.0	68	10,588
3034	Feres . Ikroholexrreter unoxidized	267	$\begin{array}{r} 64.0 \\ 2.2 \end{array}$	4.6	29	15	20	2.2	19	417 16
	Urine...									566
	Imount a vailable.	. . ${ }^{\text {a }}$	1. 586.8	74.3	45.3	260	1,104	69.8	4.9	9,589
	Cieflicionts of availability-.	Per sent. (13). 1	$\begin{aligned} & \text { Per comt. } \\ & 14.2 \end{aligned}$	per cont. (1). 1$)$	$\begin{array}{r} \text { Prerant. } \\ 94.5 \end{array}$	$\begin{aligned} & P \mathrm{ken} \mathrm{~cm} . \\ & 98.2 \end{aligned}$	$\begin{array}{r} \text { Per rent. } \\ 97.0 \end{array}$	$\begin{aligned} & \text { Por ernt. } \\ & 72.1 \end{aligned}$	Pricout. 910.5

$\begin{gathered} \text { Labora- } \\ \text { Lory } \\ \text { sample. } \end{gathered}$		$\begin{gathered} \text { Weight } \\ \text { maturin. } \end{gathered}$	Total organic matter	Nitrugen.	Itotcin.	Fat.	CarbohyIrntes	. ${ }^{\text {a }}$ eohol.	Ash.	$\begin{aligned} & \text { Heat of } \\ & \text { (rombus- } \\ & \text { fison } \\ & \text { (r)eter- } \\ & \text { mined } \end{aligned}$
3027	Beef	Circtus.	$\begin{aligned} & \text { tirams, } \\ & 369.0 \end{aligned}$	$\begin{aligned} & \text { cirams } \\ & 50.2 \end{aligned}$	$\begin{gathered} \text { Crames } \\ 314 \end{gathered}$	(irame:	tiram*.	firams.	(irams. 9	$\begin{aligned} & \text { Culorics. } \\ & 2,370 \end{aligned}$
3029	Butter	330	290.0	7	4	2 26			8	2, 64:
30:31	Milk, skimmed	(6, 7×10	576.0	39.0	$\because 44$	7	325		5-4	2, 773
3004	Cereal, parched	270	$\because 49.0$	5.1	2 S	1	$\because \because$		t	1, 195
3032	Bread	1, stio	1,0st.0	23.5	13.4	63	857		24	5, 225
	susar	- 41	240.1				240			950
	Alcohol	$21+5$	216.0					216		1, 5 ± 6
3069	Horse-ratish	40	8.0	\because	1		7		1	34
	Total	10,685	3,032. 0	118. 6	725	41:	1,67!	2115	100	16, 622
3035	Feces Alcoholexcreted unoxidized U'rine.	426	100.0	6.7	12	22	34		30	$\begin{array}{r} 6 \times 6 \\ 47 \\ 854 \end{array}$
			6.6					6.6		
	Amount available		2,925, 4	111.9	683	3910	1, 九143	209.4	70	15,035
	Corefficients of availability.		Provat. 9ti. 5	$\begin{array}{r} \text { Pcrant. } \\ 94.4 \end{array}$	$\begin{array}{r} \text { Prent. } \\ 9+.2 \end{array}$	$\begin{array}{r} p, r c o n t . \\ 4 \pm .7 \end{array}$		$\begin{array}{r} \text { Per crut. } \\ 9 \% .0 \end{array}$	$\begin{array}{r} \text { Perctat. } \\ 70.0 \end{array}$	Percent. 90.5

DETAILS OF DIGEATION EXPERIMENT NO. 151.
This experiment formed a part of metabolism experiment No. 27 in series $26-28$. studying the comparative effects of fat, alcohol, and sugar in the diet. The subject. J. F. S., was a chemist engaged in the investigation here reported. His weight, in underelothing, was fit. 1 kilograms at the begiming and 63.7 kilograms (140.4 pounds) at the end of the study. The experiment began with breakfast Fehruary 17, 1!\%o, and continued 8 days.

Table CIVI.-Intails of digestion exprimont No. 151 (jurt of metabolism expriment No. 2\%).

		$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { material. } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { orgninic } \\ & \text { minter. } \end{aligned}$	Xitrogen.	Protein.	Fat.	Carbohydrates.	Alcobol.	Ash.	Heat of combustion mined).
3176	Beef	Grams. 255	Grams. 93.0	Grame. 13.8	Grams. $\times 6$	Grams. 7	Grame.	Grame.	Grame. \because	Calories. 560
3177	Butter	90	78.0	2	1	77			2	720
3179	Milk, skinmed	3,000	276.0	20.1	126	9	$1+1$		24	1,386
3180	Bread	600	356.0	8. 5	49	10	297		8	1,682
3181	Ginger snaps	180)	170.0	1.8	10	15	145		3	798
3168	Parched cereal	150	140.0	2.8	16	3	121		3	620
	Sugar	45	45.0				4.5			178
	Alcohol	216	216.0					216.0		1,526
	Total	4,536	1,374.0	47. 2	288	121	749	216.0	42	7,470
3184	Feces	219	48.0	3.4	21	6	21	-	18	$\stackrel{292}{19}$
	Alcoholexrretedunoxilized Urine.							-. 1		334
	Amount availall		1, 323.8	43. s	267	115	is	213.3	24	6, 8.8
	Cocfficients of availability ..		Per ernt. 96.3	Per cemt. 92.8	$\begin{aligned} & \text { Per cent. } \\ & 92.7 \end{aligned}$	$\begin{array}{r} \text { Per cent. } \\ 95.0 \end{array}$	Per ernt. 47. 2	Per cent. 98.7	Per coul.	$\begin{gathered} \text { Percrne. } \\ 91.4 \end{gathered}$

DETAILA OF DIGESTION EXPERIMENT NO. 1侖.
This experiment formed a part of metabolism experiment No. 30, the seeond of the series of experiments Nos. 29-31 for the purpose of studying the relative etfect of sugar, alcohol, and fat in the diet during periods of work. It hegan with breakfast March 1:5, 19010, and continued 3
day:- The subject was J. F. S. His weight, in underclothing, was 64.6 kilograms at the leginning and fit. 1 kilograms ($1+1.3$ ponuds) at the end of the experiment.

Table (CV11.-Details of digestion experiment No. 155 (part of metabolism experiment No. 30).

$\begin{aligned} & \text { Labora- } \\ & \text { sory } \\ & \text { somple. } \end{aligned}$		$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { material. } \end{gathered}$	Total organic matter.	Nitrogen.	Protein.	Fat.	Carbohydrates.	Alcohol.	Ash.	Heat of combustion mined).
3186	Beef	Grame. 174	$\begin{array}{r} \text { Grams. } \\ 67.0 \end{array}$	Grams. 10.0	Grams. 62	Grams. 5	Grame.	Grame.	Grams.	Calorics. 405
3187	Butter	141	124.0	. 3	2	122			5	1,135
3190	Milk	2, 700	384.0	17.3	108	146	130		22	2, 430
3192	Bread.	- 900	560.0	13.5	77	18	465		12	2,637
3151	Ginger snaps	225	213.0	2.3	13	19	181		\pm	998
3193	Parched cereal	225	211.0	4.3	25	3	183		5	945
	Sugar.	75	75.0				75			1 297
	Alcohol	216	216.0					216.0		1,526
3196	Total Feces Alcohol excreted unoxidized Urine.	4,656	1,850.0	47.7	287	313	1,034	216.0	50	10,373
		143	$\begin{array}{r} 33.0 \\ 2.3 \end{array}$	2	13	6	14	2.3	8	21316343
	Amount available.		1,814. 7	45.7	274	307	1,020	213.7	42	9,801
	Coefficients of availability...........		$\begin{gathered} \text { Per cent. } \\ 98.1 \end{gathered}$	$\begin{array}{r} \text { Per cent. } \\ 95.8 \end{array}$	Per cent. 95.5	Per cent. 98.1	$\begin{array}{r} \text { Per cent. } \\ 98.6 \end{array}$	$\begin{array}{r} \text { Pcr cent. } \\ 98.9 \end{array}$	Per cent. 84	Per cent. 94.5

details of digestion experiment no. 159.

This experiment, which began with breakfast, April 23,1900 , and continued 3 days, formed a part of the series of metabolism experiments Nos. 32-34, studying the relative effect of fat, alcohol, and sugar in the diet during periods of work. The subject was the same as in the two preceding experiments here described. His weight, in underclothing, was 65.2 kilograms at the beginning and 64.9 kilograms (143.1 pounds) at the end of the investigation.

Table CXVIII.-Detnils of digestion experiment No. 159 (part of metabolism experiment No. 33).

$\begin{gathered} \text { Lab. } \\ \text { So. } \\ \text { sample. } \end{gathered}$		Weight of material.	Total matter.	Nitrogen.	Protein.	Fat.	Carbohydrates.	Alcohol.	Ash.	Heat of combustion nined).
3205	Beef	Grame. 174	Grams. 61.0	Grames. 8.9	Grams. 56	Grams. 5	Grams.	Grams.	Grams.	Calories. 361
3206	Butter	105	93.0	. 2	1	92			3	862
3201	Milk	3,060	432.0	20.2	126	159	147		24	2,766
3204	Bread.	900	548.0	12.4	71	23	454		12	2,582
3207	(iinger snajs	22.5	212.0	2.0	11	16	185		5	998
3193	Parcherd cereal	22.5	211.0	4.3	25	3	183		5	945
	Sugar	105	10.5				105			416
	Alcohol	216	216.0					216.0		1,526
	Total	5,010	1,878.0	48.0	290	298	1,074	216.0	51	10,456
	Fecers	259	59.0	3.5	22	13	24		16	375
	Alohol excreted, unoxidized IViue							2. 2		$\begin{array}{r}16 \\ 385 \\ \hline\end{array}$
	Amonnt availab		1,816.8	4.5	268	28.5	1, 0.50	213.8	35	9,730
	Conflicients of a vailability .		Per cemt. 96.7	$\begin{aligned} & \text { Per rout. } \\ & 92.7 \end{aligned}$	Per cent. 92.4	$\begin{aligned} & \text { PLr crnt. } \\ & 95.6 \end{aligned}$	$\begin{array}{r} \text { Per cent. } \\ 97.8 \end{array}$	$\begin{array}{r} \text { Per crut. } \\ 99.0 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 68.6 \end{array}$	Per crmt. 93. 1

TABULAR SUMMARIES OF RESULTS OF THE EXPERIMENTS.

The following tables summarize the more important results of the experinents.

INCOME AND OUTGO OF NITROGEN AND GAIN OR LOSS OF PROTEIN AND FAT.
The data which bear immediately upon the nitrogen and carbon balance, and the gains and losses of protein and fat, with and without alcohol in the ration, are brought together in Table CXIX. The method of grouping was explained above, page -

Table CNIX.-Income and outgo of nitrogen and carbon and gain or loss of protein and fut, in experiments with and withoud alcohol.

:タス MEAOLRS OF THE NATIONAL ACADEMI OF SCIENCES.
T.able CEIX.- Income and outgo of nitrogen and carbon and gain or loss of protein and fat, etc.-Continued.

(iROTPS E-F.
A verage, $29+31,32+34$, ordinary diet Average, 30, 33, alcohol liet...................... $12100130412 \ldots .3,4901$ f. 0 1.016.0-1.0-6.1327.710.211.2330.4-24.1-27.5
\qquad $6100 \quad 10234872.03,4721 t .0 \quad 1.017 .3-2.3-14.5317 .6$ \&.912. 1

Table CXIX.-Income and outgo of nitrogen and cerfon und gain or lake of prodein ind fiut. te.-C'ontinutyl.

No. 13, E. O., ordinary diet.................... diet...................... Average, $13,1+\ldots \ldots$.
No. -, E. O., alcohol diet.

GROCP H.

No. 5. E. O.. ordinary diet..
No. $15, \mathrm{E}, \mathrm{O}$, alcohol diet......................
Nu. 16, E. O., aleohol diet,$\ldots .$.
No. 17, E. O., alcohol diet..
-rerage. $15,16,1 \div \ldots$.
Classification, serialnumbers.
and subjects of experi:
ments.

311 i of $270 \ldots 2,59618.71 .119 .5-1.9-11.7245 .511 .115 .1 \ldots \ldots 205.2-14.4-26.9$
$\pm 94 \quad 33290 \ldots 2,51315.1 \quad .916 .2-2.0-12.4239 .0 \quad 7.412 .2 \ldots .000 .3-12.1-24.4$
7105 क6 $280 \ldots .25016 .9$ 1.017. $-1.9-12.02+2.4$ 9.313.6.....206.3-13.2-55. 4104 68 $19172.52,46216.7 \quad .91 \% .7-1.9-12.0215 .6$ 6. 713.3 1.5214.5-17.4-14.3
$+11995276 \ldots 2,65519.1$ 1.71s. $1-7-4.2245 .913 .811 .6 \ldots 231.7-8.2-7.8$

 6109 to 27. 72.52 .65317 .4 . $15.6-1.1-6.4245 .7 .811 .0 .9217 .6-8.4-6.6$ (iRote I.
̌. 21. A. W. S., ordinary diet vo. 19, diet.......................
Vo. 20, A. WV.... aleohol diet........................
Arerage. 1s. 19, 20....... GROLP (G-I.

Average, $13-14,5,21$,
 Average, $\overline{6} 15$ to 1% is to 20 , alcohol diet. 16103 60239 -2.52, $63016.5 \quad .916 .1-.5-3.0239 .1$ 万. $211.31 .3215 .4-3.3-6.5$ GROTPS A-I.

Average, 9, 24. $26-2 x$. 11. $29-31,32-34,13$ -14. 5,21 , urdinary diet
Average, $10,20,27,12$,
$30,33,15$ to 17,15

$$
\text { Vol. }=- \text { No. } 6-11
$$

Tible CXI compares the available protein and energy, the gain or loss of body protein and body fat, and the energy of material oxidized in the body and that measured as heat and museular work in the various groups of experiments with and without alcohol. The available protein is the difference between the protein in the food and that in the feces, while the arailable energy represents the energy of the food less the energy of the feces and (dry matter of) wrine. The energy of the material oxidized in the body represents what may be called the net income, while the energy measured as heat and muscular work may be called the net outgo.

Table CXX.-Material and energy supplied and metabolized in experiments with and without alcohol.
[Quantities per day.]

Classification, serial numbers, and subjeet of experiments.	Available protein.	A vailableenergy.	Gain (+) or loss (-) of body material.		Energy of material oxidized in the body.	Energy measured as-		
			Protein.	Fat.		Heat.	$\begin{aligned} & \text { Museular } \\ & \text { Work. } \end{aligned}$	Total.
Experiments with and without alcohol more strictly comparable.								
P A.					Calories.		Calories.	Calories.
No. 9, E. O., ordinary diet.	112	2, 426	-3.6	+18.2	2,277	2,309		2,309
No. 10, E. O., alcohol diet.		2,427	-6.9		2,268			
GROUP B .								
No. 24, E. O., ordinary diet	115	2, 809	+1.7	$+59.7$	2,238	2,272		2, 272
No. 22, E. O., alcohol diet -	117	2,777	+1.4	$+62.7$	2, 180	2,258		2,258
GROL'PS A AND B. Average 9,24, E. O., ordinary diet \qquad A verage 10, 22, E. O., alcohol diet.								
	114	2,618	-1.0	$+39.0$	2, 258	2,291		2,291
	116	2,602	-2.8	+42.0	2, 224	2,270		2,270
No. 26, J. F. S., ordinary diet	93	2, 256	-3.5	$+24.4$	2,043	2,085		$\stackrel{2}{2}, 085$
No. 28, J. F. S., ordinary diet	91	2,249	-4.5	$+21.8$	2, 067	2,079		2,079
Average 26, $28 \ldots$	92	2,253	-4.0	$+23.1$	2,055	2,082		2,082
No. 27, J. F. S., alcohol diet	92	2,264	-6.0	$+18.2$	2, 125	2, 123		2,123
grocts A, b, AND c.								
A rerage 9, $24,26+28$, ordinary diet	106	2, 496	-2.0	$+33.7$	2, 190	2, 221		2,221
Average 10, 22, 27 , alcohol diet	108	2,459	-3.8	$+34.1$	2, 191	2, 221		2,221
Work Expemmexts.								
GROUP D.								
No. 11, E. O., ordinary diet	110	3,510	-3.0	-39.7	3, 901	3, 746	186	3, 932
No. 12, E. O., alcohol dliet	113	3, 614	-1.0	-32.2	3,922	3, 727	200	3,927
(iROLP E.								
No. 29, J. F. S., ordinary diet	95	3,260	- 5.0	-23.8	3, 515	3,334	255	3, 589
No.31, J. F.S., ordinary diet	96	3,275	-2.3	-15.9	3, 439	3,171	249	3, 420
A verage 29, 31	96	3,268	-3.7	-19.9	3,477	3, 25.3	252	3, 505
No.30, J. F. S., alcohol diet	95	3,242	-13.1	-17.0	3,479	3,321	249	3,470
GROCP F .								
No. 32, J. F. S., ordinary diet	93	3,226	-5.0	-34.9	3,573	3, 369	196	3, 565
No. 34 , J. F. S., orrlinary diet	92	3,241	-11.9	-35.0	3, 629	3,337	250	3, 585
A verage 32,34.	93	3, 234	-8.5	-35. 0	3, 601	3,353	223	3,576
Ňo. 33, J. F. S., alcohol diet.	92	3,227	-15.8	-38.4	3, 669	3, 435	197	3,632

PROPORTIONS OF ALCOHOL OXIDIZED AND UNONIDIZED.

In the experiments in which alcohol formed part of the diet the mrine, drip, and freezer waters and outgoing air current were examined for the presence of alcohol, or the products of incomplete oxidation of alcohol, according to the method discussed on page 258. The determinations were made by the amount of reduction of a standard sulphuric-acid solution of chromic acid. The materials thas found were called reducing materials. and the total amounts were calculated as alcohol.

In 6 of the later experiments in which alcohol did not form part of the diet the same tests were made in the excretory and respiratory products as indicated above, and considerable quantities of reducing material were found. These were likewise calculated as alcohol. The arerage daily amount eliminated in each of these experiments and the arerage of the results of all 6 are shown in Table CXXI.

Table CXXI.-Avcrage daily elimination of reducing material by lungs and kidneys in experiments in which alcohol did not form a part of the diet.
[Quantities expressed in alcohol equivalent.]

In the average of all 6 experiments the reducing material determined was found equivalent to 0.32 of a gram of alcohol per day. Accordingly, from the total amount of reducing material determined in the alcohol experiments, 0.3 gram was subtracted in estimating the amount of alcohol excreted moxidized. This is shown in Table CXXII, which summarizes the data for the excretion of unoxidized alcohol in the different experiments. The figures in column d show the total amount of reducing material, calculated as alcohol, which was found in the distillates from the urine and the water condensed in the chamber and the freezers, and more especially in the air current. From each of the values in column $d 0.3$ gram is subtracted, as explained abore, to obtain the values in column e, which represent the amount of alcohol excreted unoxidized. The difference between the alcohol ingested, column a, and that excreted, column e, represents the amount actually metabolized, column f. The latter amount divided by the amount ingested shows the per cent metabolized, column a.

It will be noticed that the ralues for alcohol metabolized in the body in experiments 7 to 22 are slightly larger in Table CXXII than they are in the tables giving the details of these experiments on preceding pages. This is due to the fact that in the detail tables the total amount of reducing material, as found in the experiments, was taken as the measure of the alcohol excreted in the experiments specified, whereas in the summary table the arerage amount of reducing material found has been deducted from the total reducing material in all the experiments alike.
 furt of the diet.

TARLATIONS LN DAILY EXCRETION OF NTtROGEN.
In the course of these experiments it has been found rery difticult to ohtain a uniform excretion of nitrogen in the urine from day to day, eren with uniform conditions of food, rest, and work. In studring the effect of alcohol upon nitrogen metabolism these rariations should be considered. Table CXXIIl shows the daily nitrogen content in the urine in experiments with and withont alcohol. It also shoms the elimination of nitrogen on the days of the preliminary period which always preceded an experiment in the calorimeter, und during which the subject had rery nearly the same diet as in the following experimental period. In many cases the amount of nitrogen in the urine varied greatly from day to day, this rariation being especially marked in the preliminary period. This may posibly he due in part to differences in amounts of external musenlar work performed on different dars, but the general results of experiments on the effects of muscular activity upon nitrogen metabolism imply that when the work is not severe and the -upply of energy is sutticient the ontput of nitrogen is not greatly increased. It seems more prohable that the canse may be in part psychic. We have had occasion to note an increase of nitrogen excretion after mental excitement, and not infrequently such inerease has occurred on the day before or the day after the subject entered the respiration chamber for an experiment. This was especially the case with E. O.. with whom there was a notable increase in the excretion of nitrogen on the day hefore entering the chamber in experiment: $5,6,7,12.13$, and 14 , and on the day after in experiment- $10,11.15$. and $2 \cdot 2$. Something of the same kind appears with A. W. S. in experiment 1s, with the exception that the increase wasobserved on the seeond dar of the preliminary period. continued for a fer dars. and. with the exception of a slight rise on the day after entering the calorimeter. greatly decreased in amount during experiments 18 to 20. With J. F. S.. on the other hand. there was as a rule comparatively little difference in the nitrogen eliminated on different dars of the preliminary period. and a rery slight. although regular. increa-e on the dar following his entrance into the calorimeter.

The figures in the last four column- of the table shom the arerage elimination of nitrogen during different period, with and withont alcohol as part of the diet. The pronounced difference in some experiments betmeen the elimination of nitrogen in the preliminary period and the calorimeter period i of interest $a \leq$ indicating that the enexplaned variations are much greater than anr which mar be hrought about by the addition of alcohol to the diet. This is one of the facts which lead u, to hesitate to attribute to the alcohol ant definite and uniform effect upon the metabolism of nitrogen.

One thing has impressed us，not only in these experiments but in others，the results of which we have studied．It is that the daily nitrogen balance is a much less reliable indication of the effects of diet．or of drugs，or of muscular work，or of medical treatment than is commonly supposed．${ }^{\text {a }}$
Table CNXIII．－Comparison of daily climination of nitrogen in the urine when alcohol did and did not form a part of the diet．
［Figures in bold face indicate days in which alcohol formed a part of the diet．］

Experiment andsubject．		Nitrogen in urine，pre－ liminary period．				Nitrogen in urine，calorimeter period．									Nitrogen in urine， average．			
															苞	Calorimeterperiod．		
		高 登 空												$\begin{aligned} & \text { 空 } \\ & \text { 去 } \\ & \text { 品 } \end{aligned}$		家完家		
E．O．	Gms．	Gms．	Gms．	Gme．	Gms．	Gms．	Gms．	Gms．	Gms．	Gms．	Gins．	Gms．						
Experiment Nos． 13 and $14 . .$. ．		15.3	16.0		20.2			16.9	16.5						17.2	17.8	17.7	
Experiment No． 7.			19.1	15.9	18.5	19.6	17.8	16.2	17.3						17.8	17.7		17.7
Experiment No．		17.4	22.1	20.1	17.9	18.7	18.8	18.3	17.9						19.4	18.4	18.4	
Experiment No． 10.	19.8	17.6	20.5	12.3	14.2	19.7	20.6	19.4	18.1						16.2	19.5		19.5
ExperimentNo． 11.	19.9	12.5	11.7	13.6	13.8	17.5	17.1	18.3	19.4						12.9	18.1	18.1	
Experiment No． 12.	19.3	10.1	15.4	13.8	18.3	17.9	21.3	15.9	17.7						14.4	18.2		18.2
Experiment No． 5	19.1	17.2	17.6	14．2	23． S	20.3	17.4	17.2	17．4						18.2	18.1	18.1	
Experiment Nos． $15-17$	17.4	11.6	16.0	13.9	10.4	15.1	16.2	15.2	15.7	15.7	15.6				13.0	15.6		15.6
Average 13 and 14，9，11， 5.	18.8	15.6	16.9	16.3	18.9	19.2	17.7	17． 7	17.8						16.9	18.1	18.1	
$\begin{aligned} & \text { Average } 7,10, \\ & 12,15-17 \ldots, \end{aligned}$	18.3	13.1	17.8	14.0	15.4	18.1	19.0	16.7	17.2						15.4	17.7		17.8
$\begin{aligned} & \text { Experiment } \mathcal{N o s .} \\ & 22-24 \end{aligned}$	19.8	17.3	18． 8	14.6	13.7	18.7		17.8	18.8	19.6	18.5	19.4	18.1	17.3	16.1	18.5	18.6	18.4
A．W．S．																		
Experiment Nos． 4a－4c．．．．．．．．．．	15.3	15.0	15.6	14.3	14.4	14.6	14.1	13.1	13． 7	12．6	11.9	12.4	13.	11.7	14.8	13.0	13.0	
$\begin{aligned} & \text { Experiment Nos. } \\ & \text { 18-21........... } \end{aligned}$	15.5	12.2	16.0	19.0	16.4	17.4	15.4	14.7	14.2	13.8	14.4	4.5		5.4	15.9	15.0	15． 4	15.0
J．F．S．																		
Experiment Nos．	15.9	16.6	15.9	15.7	16．0	16.6	15.1	14.4	14.6	15.5	16.8	15．9	15.2	14.7	16.0	15.4	15.3	15.6
Experiment Nos． 29－31	16．0	13.9	15.5	15.0	14.8	15.4	16.3	16.2	16.8	18.0	17.1	16.3		15．2	14.8	16.3	15． 8	17.3
Experiment Nos． $32-34$.	16.1	15.0	15.5	15.6	15.1	16.3	15.3	15.6	16.7	17.6	17.7	17.4		16． 4	15.3	16.6	16.2	17.3
Average $26-34 .$.	16.0	15.2	15.6	15.4	15.3	16.1	15.6	15.4	16.0	17.0	17.2	16.5	15.6	15.4	15.4	16.1	15.8	16.7

－My own confidence in the results of the experiments of a few days＇duration as indications of the influence of any such agencies upon nitrogen metabolism was much shaken by the experience of Dr．C．F．Lavgworthy and myself in collating and comparing the results of experiments on these subjects in the course of the preparation by ourselves of Bulletin 45 of the Office of Experiment Stations of the United States Department of Agrienlture，A Digent of Metabolism Experiments in which the Balance of Income and Outgo was ohserved．The tables of this volume inchute summaries of 2,299 experiments with men and 1,362 with animals，in which the nitrogen balance was studied．The very dear impression left upon my own mind is that a not inconsiderable share of the conclusions reached by the authors of this very large amount of painstaking inquiry must be held subject to revision in the light of inquiries in which the experimental periods will be longer and the determinations more detailed．－W．O．A．

AVALLABILITY OF NETRIENTS AND ENEIGY.

Table CXXIV compares the coetticients of arailability of protein. fat, carbohydrates, and energy in experiments in which alcohol did and did not form a part of the diet. These experiment: are compared according as the ordinary diet and alcohol diet were more or less comparable and aceording to the character of the experiment, whether rest or work.

Table CAIIV.-Cweficients of arailability of nutrients and cnergy in diet with and without alcohol.

Table CXIIV.-Coefficients of artilability of nutrients and energy in diet with ant without alcohol-Continued.

Table CXXV summarizes the results of experiments with the same subject and the same diet before and after entering the calorimeter and averages the results for all the experiments.

Table CXIV.-Comparison of gains or losses of nitrogen, and of coefficients of availability in the preliminary periods outside the calorimeter and the experimental periods inside.
[Quantities per day.]

$\begin{aligned} & \text { Metab- } \\ & \text { olism } \\ & \text { experi- } \\ & \text { ment } \\ & \text { 久o. } \end{aligned}$	$\begin{aligned} & \text { Digest } \\ & \text { experi- } \\ & \text { ment } \\ & \text { \o. } \end{aligned}$		Dura-	Nitrogen.				Coefficients of availability.				
				$\begin{aligned} & \ln \\ & \text { food. } \end{aligned}$	$\begin{gathered} \text { In } \\ \text { feces. } \end{gathered}$	$\underset{\text { urine. }}{\text { In }}$	$\begin{aligned} & \text { Gain } \\ & \left(\begin{array}{c} +) \\ \text { los or } \\ \text { (-). } \end{array}\right. \end{aligned}$	$\begin{aligned} & \text { Pro- } \\ & \text { tein. } \end{aligned}$	Fat.	$\begin{aligned} & \text { Car- } \\ & \text { bohy- } \\ & \text { drates. } \end{aligned}$	$\begin{aligned} & \text { Aleo- } \\ & \text { hol. } \end{aligned}$	$\underset{\text { Ergy- }}{\text { En- }}$
5		Experiments with ordinary diet.	$\begin{array}{r} \text { Days. } \\ \hline \end{array}$	Grams. 19.2	Grams.$1 . \pm$	Grams. 18.2	$\begin{aligned} & \text { Girams. } \\ & -0.4 \end{aligned}$	Perct. 92.7	$\begin{aligned} & \text { Pcrct. } \\ & 94.0 \end{aligned}$	$\begin{aligned} & \text { Per ct. } \\ & 98.0 \end{aligned}$	Per ct.	Per ct.90.0
		REST EXPERIMEXTS.										
	137	Preliminary period										
	138	Calorimeter period	4	19.1	1.7	18.1	-0.7	91.3	93.9	97.7		89.6
\star		Preliminary period	4	20.1	1.8	14.2	+4.1	91.3	94.4	97.4		89.9
	\{ 44	Calorimeter period	4	20.8	1.3	19.5		94.0	95.6	98.2		90.8
4	f 45	Preliminary period	1	18.9	1.7	19.4	-2.2	90.9	92.1	95.8		88.5
	146	Calorimeter period	4	19.1	1.3	18.4	-0.6	93.5	93.9	96.5		89.7
13	\{ 76	Preliminary period	4	20.1	0.8	18.1	+1.2	96.7	96.3	98.9		93. 1
	\{ 77	Calorimeter period		18.7	1.1	19.5	-1.9	94.0	93.2	98.1		90.0
14	7	Preliminary period	3	15.1	1.2	16.7	-2.8	92.3	93.4	98.5		91.1
	79	Calorimeter periorl	4	15.1	0.9	16.2	-2.0	93.8	95.3	98.7		91.9
25	f $1+7$	Preliminary periorl	4	17.6	1.0	16.6		94.2	96.8	97.7		91.8
	f $1+8$	Calorimeter jueriod	3	17.7	1.0	16.4	+0.3	94.5	97.4	97.4		91.8
26	f 149	Preliminary perion	4	15.9	1.7	16.0	--1.8	89.0	94.1	95.7		88.4
	(150	Calorimeter perion	3	15.9	1.1	15.4	-0.6	93.1	97.2	97.3		91.1
		I e erage preliminary periods		18.1	1.4	17.0	-0.3	92.4	94.4	97.4		90.1
		A Perage calorimeter periods		15. 1	1.2	17.7	-0. K	93.5	95.2	97.7		90.7
Hork experiments.												
;	39	Preliminary periorl	4	19.1	1.9	12. ${ }^{\text {c }}$	-4.4	90.1	95.3	97. 6		91.2
	140	Calorinseter jerrisd	+	19.1	1.5	16.5	+1.1	92.0	96.9	98.3		92.6
11) 49	1'relininary perion]	+	19.9	1.9	12.9	$+5.1$	90.6	93.2	97.8		91. 7
	150	Calorimeter ${ }^{\text {a }}$ perion	4	19.8	2.2	18. 1	-10.5	88.7	93.0	97. ${ }^{\text {a }}$		90.9
24	f 15.3	Preliminary jeriow	t	15.9	0.9	14.8	+0.2	94.5	96.4	ss. 7		93.8
	11.54	(alorimuter perion	3	16.0	0.8	16.0	-0.8	94.6	97.2	9\%. 7		94.1
32	f 157	I'reliminary jurion	t	15.9	1.5	15.0	-0.6	90.6	95.7	96.8		91.5
	1158	Calorimetor perior	3	16.1	1.2	15.7	-0.8	92.8	97. 1	97.4		92.7 920 98
		Average predminary proors		17.7	1.5	13.9	+2.3	91.5	95. 2	97.7		92.0 92.6
		Average calorimeter jerior.		17.7	1.4	16.6	-0.3	92.0	16, 1	98.0		92. 6

 the culorimeter ant the enperimental periods insild-C'ontinnet.

$\begin{aligned} & \text { Metab- } \\ & \text { olism1 } \\ & \text { experi- } \\ & \text { מuent } \\ & \text { So. } \end{aligned}$	$\begin{aligned} & \text { Digent } \\ & \text { experi- } \\ & \text { ment } \\ & \text { So. } \end{aligned}$		Duration.	Nitrogen.				Cocfficents of availability.				
				$\begin{gathered} \mathrm{In}_{\mathrm{focod}} . \end{gathered}$	$\ln _{\text {feees }}$	$\begin{gathered} \text { In } \\ \text { urine. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { (ain } \\ (+ \text { or } \\ \text { fosy } \\ \text { (} \left.-)^{2}\right) . \end{gathered}\right.$	$\begin{aligned} & {\left[\begin{array}{l} {[\mathrm{r}(2)} \\ \text { tein. } \end{array}\right.} \end{aligned}$	Fat.	far- bohy drates	Alco- hol.	$\begin{aligned} & \text { En. } \\ & \text { erky. } \end{aligned}$
7		Eiperiments with aleohol diet.	Days.	Grams 16.8	Grams.	$\begin{gathered} \text { Gram. } \\ 17.8 \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Gramas } \\ -2.5 \end{gathered}\right.$		$\begin{aligned} & \text { Perct. } \\ & 93.6 \end{aligned}$	$\operatorname{Prrct} .$$97.3$	per ct.95.9	$\begin{gathered} \text { Per Ct. } \\ 89 . \geq \end{gathered}$
		Preliminary period						90.8				
	1 42	Calorimeter period		16.7	0.9	17.7	-1.9	94.8	95.3	98.1	45.9	91.1
10	f 47	Preliminary periorl		19.5	1.0	16. 1	+2.4	94.9	92.1	98.0	98.5	91.1
	48	Calorimeter period		19.8	1.4	19.5	-1.1	93. 1	88.2	97.0	98.5	89.8
15	80	Preliminary period		16.7	0.8	13.0	+2.9	95.2	91.8	98.0	97.6	91.4
	81	Calorimeter period		17.4	0.8	15.6	+1.0	95.2	92.5	98.4	97.6	91.5
22	\} 83	Preliminary period		19.7	1.2	16.1	+2.4	94.2	94.5	98.2	97.0	90.5
	(84	Calorimeter period		19.8	1.1	18. 4	+0.3	94. $\frac{1}{4}$	94.7	97.9	97.0	90.5
		A verage preliminary periods		18.2	1.1	15.8	+1.3	93.8	93.0	97.9	97.2	90.6
		Average calorimeter periods.		18.4	1.0	17.8	-0. 4	9 9. 4	92.9	97.9	97.2	90.7
12	$\left\{\begin{array}{l}51 \\ 512\end{array}\right.$	IIork experiments.	 4 4 \ldots									
		Preliminary period		19.6	1.8			90.8	94.2	97.0	97.9	91.3
		Calorimeter period-		19.3	1.3	18.2	-0.2	93.5	95.9	98.2	97.9	92.7
		Average preliminary periods in all above experiments with ordinary diet		18.0	1.4	15.9	$+0.7$	92. 1	94.7	97.5		91.0
		Arerage calorimeter periods in all above experiments with ordinary diet		17.9	1.3	17.3	-0.6	92.9	95.5	97.8		91.4
		Arerage preliminary periods in all above experiments with alcohol diet		18.5	1. ${ }^{\prime}$	15.5	+1.7	93.2	93.2	97.7	97.4	90.7
		Average calorimeter periods in all above experiments with alcohol diet		18. 6	1.1	17.8	-0.3	94.2	93.5	97.9	97.4	91.1

The figures for the availability of alcohol in the preliminary period are based upon the awimption that the excretion of unoxidized alcohol was the same during the preliminary period an during the following period when the subject was within the chamber of the respiration calorimeter. It will be observed that while the diet was practically the same in the preliminary a* in the calorimeter period, the enefficients of arailability are quite different. Sometimes the subject appeared to digest the food more thoroughly during the preliminary period and some-time- more thoronghly during the period spent within the respiration chamber. In both the rost and work experiments withont akohol the avalability of the motrients and energy of the diot Was slighty less in the preliminary period than in the subsequent experiment in which the sulbject was within the respiration chamber. In the rest experiments in which alcohol formed a part of the diet there was 120 pronounced difference in the coefficients in the two cases, hut in the one instance in which there was preliminary and calorimeter period with work the coetheient. of arailability in the former period were noticeably less than in the latter.

Taking all the experiments into consideration it would seen that there was, as a rule, a quite noticeable ditference in the proportions of the food which were actually made arailable for we in the body in the preliminary as compared with the calorimeter periods. a difference which wa- not noticeably affected by the presence or absence of alcohol in the diet.

Vol. s-No. 6---1:2

COLUMBIA UNIVERSITY LIBRARY

This book is due on the date indicated below, or at the expiration of a definite period after the date of borrowing, as provided by the rules of the Library or by special arrangement with the Librarian in charge.

DATE BORROWED	DATE DUE	DATE BORROWED	DATE DUE

[^0]: a The inquiry was undertaken at the instance of the Committee of Fifty for the Investigation of the Drink Problem. The experimental work was done in the chemical laboratory of Wesleyan University. A large share of the expense was borne by the committee of fifty although contributions were also received from the Elizabeth Thompson and Bache funds and from private individuals. The experiments were parallel with others of similar character, which are conducted under the auspices of the United States Department of Agriculture. These latter experiments form a part of a general inquiry regarding the food and nutrition of man, which is authorized by Congress and prosecuted in different parts of the United States. The special inquiry into the nutritive action of alcohol was made possible by the generosity of Wesleyan University, which offered to the committee of fifty the use of laboratory and other facilities that have been made available to the Department of Agriculture and the Storrs Experiment Station for nutrition inquiries.

 The investigation has been pursued with the active cooperation of a number of gentlemen, including especially Mr. A. P. Bryant, under whose direction the computations of the results have been made, and Mr. A. W. Smith, Dr. O. F. Tower, and Dr. J. F. Snell, all of whom have been intimately associated with the elaboration of the apparatus and methods. Mr. Smith and Dr. Snell served as subjects in several of the experiments reported beyond, though the subject of the larger number was Mr. E. Osterberg.

 The details of the experiments without alcohol and of two of those with alcohol, Nos. 7 and 10, have been published in bulletins of the United States Department of Agriculture as stated beyond.

[^1]: "Aiter the completion of the later experiments a slight leak was found in the "valve box" through which the outgoiny air current passed on its way to and from the "freezers," and by which water, condensed on the outside, may have entered. There is every reason to believe that the quantity of water actually found was thus made too large hy a fraction of 1 per cent. In the average of the first nine experiments the amonnt of water found was 100.6 per cent of that required. As an alcohol check test was generally made between each two metabolism experiments or series of experiments we have a means of knowing when the leak began to effect the results and the amount of the error introduced. See Bulletin 109 of the Office of Experiment Stations, above referred to.

[^2]: ${ }^{\text {a }}$ U．S．Dept．Agr．，Office Expt．Stations，Bul．69，on＂Experiments on the Metabolism of Matter and Energy in the Human Body，＂by W．O．Atwater，F．G．Benedict，and Aswociates．
 ${ }^{\text {b }}$［T．S．Dept．Agr．，Office Expt．Stations，Bul．109，on＂Further Experiments on Metabolism of Matter and Energy，1898－1900，＂by Atwater，Benedict，and Associates．
 ${ }^{c}$ The present memoir．

[^3]: ${ }^{3}$ For further discussion see page 256 beyond, and Repts. storr (Conn.) Agr. Exp. Sta., 1suth, p. 163, and 1697, p. 154.
 ${ }^{\text {b }}$ For further discussion of this subject see ATwater and Brysts, Rept. Storrs (Conn.) Agr. Exp. Sta., 1899, p. 96. See alon discussion by W. O. ATwater in Bul. 49 of the [. . . Dept. Agr., (lfice of Experiment stations, Proceedings of the Association of American Agricultural Colleges and Experiment stations, 1900, p. 112.

[^4]: * Arailability oi energy hasel upon average proportions and amounts of nutrient iound in dietaries of $3-$ iamilies oi iarmers, mechanics, and profesional men and 15 college boanding cluhs in ilfferent parts wi the ['nited states. See article by A. P. Briant on "- ome Results of Dietary studies. Yearhook [.. .. Dept. Agrieulture, 1845. p. 439.

[^5]: - See Atriter and Bryait, Availability and Fuel Value of Food Materials, Rept. stors (Conn.) Expt. Sta, 1599, p. 73.

[^6]:
 "Low. cit.
 "see brexenict and Nomris on "The Determination of Small quantities of Alcohol," Jour. Am. Chem, Soc., 20 (1895). 1. 23!
 compestion oi expirell air and its efiect upon animal life." Smithsonian Contributions to Knowledge, NXIX (189%), No. !n: $\%$

 See Table ('NII in the -1 mendix.

[^7]: ${ }^{\text {a }}$ Estimater energy of material actually oxidized in the body.
 ${ }^{b}$ In this average the muscular work of the work experiments is clistributed over both the work and the rest experiments, which is of course not strictly logical.

[^8]: " Report of Physiological Subcommittee of Committee of Fifty for the Investigation of the Liquor Problem, Boston, Houghton, Miftlin \& Co. (In press at the time of this writing.) See also a more detailed review of the subject by Rosemann. Der Einfluss des Alkohols auf den Eiweissstoffwechsel; Arch. f. d. ges. Physiol., Bu. 86, 1901, 1 1 . 307-503.

[^9]: "When two or more similar experiments are grouped together, the group is counted as experiment in drawing the averase. Experiments thus treated are put in parenthesis in the second cohmen; thes. (15 to 17).

[^10]: ${ }^{s}$ Rosemann interprets two of our experiments, Sos. 7 and 10 , the onty ones then published, as not showing the protection of protein: an interpretation trom which we should not diseent. since SN. T was exceptional, and two experiments coukl harfly suffice for the establishment of the principle.

 - see page 26 il.

[^11]: ${ }^{2}$ F. G. Benedict and J. F. Snelf, Eine nenc Methode um Körpertemperaturen zu messen. Archiv. f. d. ges. Physiologie 85, p. 492 (1901).
 "The results of the most reliable observations are well summarized by Penbere (S.chaefer's Physiology, I, s:0) in the following statements:
 "Varicus ohservers lave found that alcohol taken in ordinary quantities as a beverage causes a slight depression, generally less than half a degree, in the temperature of healthy men. On the other hand, poisonons doses may cause a fall of 5° or 6°-in fact, many of the lowest temperatures recorded in man have heen observed in drunken persons exposed to cohl. See Davy, Phit. Trems., London, 1850, p. 444; Licitexfels and Fröhlichi, Benhischriften d. K. Aliul. d. Hissensch., Wien, 1852, Bd. iii, Abth. 2, S. 131; Lallemand, Perris, and Duroy, 'Tu ròle de l'aleoul et des anesthésiques dans l'organisme,' Paris, 1860; (Oqle, S\%. George's Mosp. Rip., London, 1stit, vol. i, 1. 233; Rivger and Rickirds, Lemcet, London, 1866, vol. ii, p. 208; Cuny Buovier, Ireh. f. d. ges. Physiol., Bomn, 1869, Bd. ii, S. 370; Godrrix, 'De l'aleool, son action physiologique, ses applications thérapeutiques,' 1864; Werkeming, Deutsches Arch. f. Klin. Med., Leipzig, 1s77, Ded. xix, S. 317; Zuntz, Fortsch?, d. Med., Berlin, 18si; (ieppelit, Iirh. f. exper. Path. u. Pharmakol., Leipzig, Bı. xxii, 36; Parkes and Wollowicz, Pror. Roy. Goc. Lontom, 1sio, vol. x viii, p. 362 , found that alcohol in ordinary quantities had no effect on the temperature of a healthy man."
 ${ }^{c}$ Therapeutic Gazette, February, $1 \times \% 0$.

[^12]: - A difference so small as this is well inside the range of unavoidable errorin single experiments. It is only where a large number of such experiments are areraged that differences of one or two parts in one hundred could probably be regarded as significant.
 ${ }^{5}$ Including heat equiralent of external mutcular work in the work experiments.
 ${ }^{\circ}$ Of amount oxidizel without alcohol.

[^13]: ${ }^{\text {a }}$ The differences between the results with and without alcohol are in all cases small. Considering them from the ordinary mathematical standpoint, they are, of course, noticeable; but in such physiological experimenting as this the unavoidable errors of individual experiments are considerable, and it is only when a large number of such experiments are averaged that differences of one or two parts in one hundred could properly be regarded as significant. Indeed, in this whole discussion there is danger of being misled by the figures in the tables unless one constantly recalls the lact that the range oi unavoidable variation is wide. When, however, the averages of large numbers of experiments show a constant difference on one site or the other, it may be permissible to use such differences for conchsions and generalizations. On the whole, it might seem that in these experiments the results were sufficiently numerous to imply a slight inieriority of the alcohol in respect to the economy of the nse of energy: but this inierence rests upon the rather questionable assumption of the absolute equality of all conditions other than the presence or absence of alcohol in the diet.

[^14]: ${ }^{\text {a }}$ For a summary of results of experiments upon various phases of this subject by different investigators, see article by Prof. J. H. Abel in the Report of the Physiological Subcommittee of the Committee of Fifty for the Investigation of the Drink Problem. (See page 261 of this memoir.)

[^15]: a See discussion of this subject by Wr. O. Atwater and A. P. Bryant in the Report of the Storrs (Conn.) Experiment Station for 1899, from which the figures ior ordinary nutrients in the table are taken.

[^16]: ${ }^{\text {s }}$ Bulletins 4,63 , 69, and 109 of the Office of Experiment Stations of the C. S. Dept. Agr.
 ${ }^{5}$ see Bulletin 46, revised, of the Division of Chemistry, U. S. Dept. Agr.
 See L. s. Dept. Agr., Office of Experiment Stations, Bul. 4, p. 22; Bul. 69, p. IS, and Report of storrs (Conn.) Expt. Sta., 1891, p. 47. The methods for the determination of carbon and hydrosen in use in this laboratory are dex ribed in detail by F. (i. Bexedsct in Elementary Organic Analysis, The Chemical Publishing Co., on page 51 oi which the apparatus is pictured.
 ${ }^{d}$ The bomb calorimeter and accessory apparatus used have heen described $l \boldsymbol{y} \mathbb{W}^{*}$. U. ATwater and associates in Bulletin 21 of the Office of Experiment Stations oi the L. \therefore. Dept. Agr., 1. 123 , and in the Reports of the Norrs (Conn.) Expt. Sta., 1s94, p. 133, and 1897, p. 199.

[^17]: a The heat of combustion of the urine was determined in the composite sample for each day and in the total composite for four days. The total heat of combustion of the urine for the experiment, as determined in the latter sample, was 0.112 calorie per gram, or a total of 519 calories.

[^18]: ${ }^{a}$ See Table CXIII.

[^19]: a Iheterminations of the percentage of carbon in borly fat made in this laboratory by F. G. Bexedict and E. Osterbert in 1900 , published in rol. t of the American Journal of Physiology, page 74 , average 76.08 per cent. The value 0.761 was therefore used insteat of 0.765 in computations of fat gained or lost in later experiments, beginning with No. 26.

[^20]: A beterminations of the heat of combustion of human body fat mate in this laboratory by F. Gi. Bexenct and
 leat oi combnation of boly fat in nearly 9.5 c calories fer gram. This value was used in the computations of later
 (Comm.) Dxperiment Station for 1839, p. 93.)

[^21]: - see Method: of Analysis, [. S. Dept. Agr., Division of Chemistry, Bulletin $\ddagger 6$ (revised), p. 57 .

[^22]: "No. 21 inclnderl for comparison.

[^23]: ${ }^{\text {a }}$ No. 21 summarized for comparison.

[^24]: 2 No. 21 included for comparison.
 Sample lost; carbon dioxid assumed to be the same in amount as the average in preceding and following periods.

[^25]: - Contains io grams absolute alcohol and 40 grams sugar.
 ${ }^{\text {b }}$ The subject did not always drink the full schedule allowance of coffee and of water. The actual amount of water consumed each day is shown in the second column oi Table LVIII.

[^26]: ${ }^{\text {a }}$ In these experiments there was no change in weight of absorbers and there was no drip.

[^27]: E.rperiment No. 29, Murch 16-18.-128 grams of cane sugar daily in the form of loaf sugar, taken with and between meals. This amount also supplemented the basal ration during the preliminary experiment March 12-15.

 Esperiment No. 30, March 19-21.-72 grams absolute alcohol taily. This required 79.5 grams of 90.57 per cent alcohol, which was made u_{p} to 900 grams with the addition of 25 grams sugar and the rest water.

 Erperinent No. 31, March 22-24.-The additional energy during this experiment was furnished by 63.5 grams butter.

[^28]: ${ }^{\text {a }}$ Equals total reduciug material exereted less 0.33 gram of reducing material not alcohol, the average for the days on which no alcohol was consumed.
 ${ }^{5}$ Not determined.

