б

U.S. DEPARTMENT OF AGRICULTURE. DIVISION OF CHEMISTRY.

BULLETIN

No. 30.

EXPERIMENTS

with
$S T B A B E A B N$

IN

$$
1890
$$

BY

HARVEY W. WILEY,

Chemist of the U. S. Department of Agriculture and Director of the Department Sugar Experiment Stations at Schuyler, Nebraska; Runnymede (Narcoossee P. O.), Florida; and Sterling and Medicine Lodge, Kansas.

PUBLISHED BY AUTHORITX OF THE SECRETARY OF AGRICULTURE.

WASHINGTON:
GOVERNMENT PRINTING OFFICE. 1891.

U.S. DEPARTMENT OF AGRICULTURE.

 DIVISION OF CHEMISTRY.
BULLETIN

EXPERIMENTS

with
 SUGAR BEETS

IN

1890.

BY
HARVEY W. WILEY,
Chemist of the D. S. Department of Agriculture and Director of the Department Sugar Experiment Stations at Schuyler, Nebraska; Rumimede (Narcoossee P. O.), Florida ; and Sterling and Medicine Lodge, Kansas.

PUBLISHED BY AUTHORITY OF THE SECRETARY OF AGRICULTURE.

WASHINGTON:

GOVERNMENT PRINTING OFFICE 。

$$
1891 .
$$

$$
\operatorname{cog}_{1} 2
$$

PREFATORY NOTE.

> U. S. Department of Agriculturf, Division of Chemistry, Washington, D. O., March $28,1891$.

SIR: I submit for your inspection and approval the mannseript of Bulletin No. 30) of the Chemical Division, containing a record of the experiments made by the bepartment in 1890 with sugir beets.

The work of the Department recorded in this bulletin consists chietly of analyses of samples of beets grown in many different States. In addition to this work, a few culture experiments, on a small scale, were carried on under the supervision of the Department. A chemist from this Division was also stationed at the Cimand Island Sugar Factory, in Nebraska, and data of the greatest value were secured at that place.

Special sturies of the whole subject of the growth of the sugar beet and the manufacture of sugar therefom were published in Bulletin No. 27. In Fiamers' Bulletin No. 3 hare been published full instructions for the culture of the sugar beet. The data contaned in these two bulletins are supplemented by the facts recorded in the present one, which show further that beets of fine quality and well suited for manufacturing purposes can be grown in the United States.

So conchusive have been the results obtained as to fully justify the action of the Department in establishing a culture station at Schuyler, Nebraska, for the more exact study of the conditions of the most successful methods of growing sugar beets in this comntry.

Respectfully,

> II. W. Wiley,
> Chemist.

Hon. J. M. Rusk,
Secretary of Agriculture.

TABLE OF CONTENTS.

Pame.
Experiments with shear beets in 1290 \%
I'urchase and distribution of seeds 7
Experiments at fictories R
Financial returns to beet-growers 8
Analytical data from varions Stafes 11)
Experiments with sugar beets in Wisconsin 415
Experiments with sugar beets at Fort Scott, Jiallsins 60
Analyses of beets at the Agricultural Experiment Sration of Minnesota 60
Experiments with sugar beets at Topeka, Kansas 610
Experiments with sugar beets at Medicine Lodge, Kansas 61
Eflect of soil on beet prombetion 71
Culture of the Klein W:azlehener original \therefore
Systematic study of the dillerent varieties of sugar beets in Sixony 7.
General conclusious. 75
Appendix-Notes on sugar-beet culture in France and Geranany. By Walter Maxwell 81

EXPERINENTS WITH SUGAR BEETS IN 1890.

PURCHASE AND DIS'IRIBU'TION OF SEEDS.

From Mr. Henry T. Oxnard, the Department purehased 3 tons of sugar-beet seed, of which the greater portion was the rariety known as the Klein Wanzlebener, grown bs Dippe Brothers, of Quedlinburg. In addition to this, however, smaller quantities of the White Improved Vilmorin were purchased, together with the varieties of beets grown by Lemaire, Simon Legrand, Florimond, and Bulteat Desprez. These. different varieties were put in one-ponnd packages and sent to orer one thousand different persons who had made special inquiry for them. Accompanying these packages were directions for preparing the soil and planting and culticating the beets. Directions were also sent for harvesting and sampling the beets and for seuding samples to the Department for analysis. Nearly one thousand samples of beets were received by the Department, of which the analyses were made and the results communicated to the farmers sending them. In addition to this work a large number of the beet plots were personally inspected by agents of the Department, and particular inquiry was directed to a large number of farmers in regad to the methods of cultivation which they had pursued.

Only in a few instances were the directions of the Department followed out to the letter. In most cases the planting and cultivation of the beet seed were conducted according to such methods as the agriculturist might hit upon at the time. From the information gathered it was found that the chief variation from the instructions was in the preparation of the soil. In very few cases was a subsoil plow used and most of the beets which were sent to the Department were evidently grown in soil of insufficient depth. In some cases, where the exact directions for cultivation were carried out, the character of the beets received showed by contrast with the others the absolute necessity of employing the best methods of agriculture for their production.

It was not thought best the first year to make any effort to obtain from the farmers the exact yield of their beets per acre. The difficulty of securing such information is almost insurmountable. In the first places the amount of land under cultivation is usually gressed at, and in very few cases are exact measurements made. The results, therefore,
at hest are only estimates mulesa the ahsolute control of measurements and weights can he secured. It was thonght best, therefore, to depend for estimatesof yield upon the actual quality of the beets produced, since it is well known that about to, 0, bo beets of fair quality can be produced upon an acre. It is therefore fair to presume that the sieh per acre would be, within ordinary limits, the weight of the average beet sent for analysis multiphied by $40,0: 00$. When, however, it is necessary to speak of the beets weighing over one pound the rule no longer holds goond, as it would be evilently impracticable to grow 40,000 beets of such a size upon an acre. It is fair, howerer, to estimate the yield "1mon beets weighing atome 1 porm at 40,000 per acre or 20 tons. It is not meant by this that a sield of 20 tons can be obtained by farmers at the begiming, for this is not the case; it is only exceptionally that such a yield can be secured. When, however, the exact methods of beet culture are thoronghly understood and the method of fertilizing and preparing the soil stulied, it will not be difficult, with favorable climatic comblitions, to secure a yield of beets equal to 20 toms per acre.

EXPERIMEN'IS AT FACTORIES.

By the courtesy of the managers of the emmpany the Department was prermitted to station a chemist at crand Island, who had charge of the sampling of the beets as they came to the factory in wagons or carloands. Nearly three thousand analyses of samples were made and the full tabulated reports of these analyses will be found following. The mopmetors of the factory were soncomaged by the season's work that they have decided to erect another large factory at Norfolk, Nebraska, and at the ('hino Ranch in southern California, and work on these factories is now going on.

Mamufaturing experiments, on a small seale, with sugar beets, were also carried on during the season just past at Medicine Lolge, Kansas. Ahout sol acres of beets in all were harrested for the factory, and a summary of the work done will be given in another place.

FINANCIAL RETURNS TO BEET-GROWERS.

In general, the following remarks may be made concerning the last seasonis work in the heet-sigar industry, from a commercial point of riew, in Nebraska and Kansas.

The summer in hoth localifies was exceptionally dry. For this reasom and macemut of lack of knowledge among the farmers in regard to the promer methons of raising beets the average crop was very short. In Nommaka the exact tomage can not he known, butprobably it would not areage mope than ? or 3 tons of beets per acre; in Kansas the areage rems to have heen somewhat higher. In many cases farmers obtanmed 10 and even 1.5 tons of beets per acre, showing that even in adrerse conditions of season a reasonably large crop may be harvested when all other conditions necessary to the proper growth of the crop are attended to.

As might well be expecterl from the small yield, the farmers in general were dissatisfied with the seasou's work. It is not reasouable to expect satisfaction from a crop of so low an average when the labor of growing it is so great; but while the farmers are dissatisfied it must be confessed that a great deal of this dissatisfaction must be attributed to their own lack of knowledge of the suloject or to their disinclination to put upon the beet fields the proper amount of labor aud culture at the proper time. Instead of being therefore deterred from continning the production of sugar beets, it would seem wiser on the part of the farmers to study carefully the methods of agriculture pursued by those who made a success of beet culture, and to imitate those methods during the coming season. The fact should not be forgotten, however, that even with the poor results obtained the beet crop was uniformly better than the arerage of other crops in the same locality.

It would be useless to hold out to the farmer the hope of financial reward from a beet crop which would average only 3 tons per acre; but if from this acre he conld produce 10 to 15 tons of beets then his venture would prove financially successful. In order that the manufacture of beet sugar should become an established commercial success, the factories and the farmers must work in harmony. The method pursued in France and in Germany wonld probably be best suited to bring about this resuit. In those countries the beet growers themselves are usually shareholders in the factories, and thus participate in the prolits. It is probable that the annual dividends of German and French beet sugar factories do not fall below 10 per cent net on the capital invested. The farmer, therefore, who has even a small interest in such a factory secures a handsome protit on his invested capital. At the same time he has a rote in the board of directors and is personally interested in the success of the factory. In many factories of Europe the stock is thus held by the beet-growers. If, on the other hand, the whole of the factory be owned by the capitalists, then there is a canse for continual conflict between the interests of the farmer and the interests of the maunfacturer, although this conflict is perhaps more in theory than practice. Even if the factory be owned exclusirely by the capitalists, it is to their interest to work in harmony with the farmers, in order that they may secure a crop of sufficient magnitude to render the operation of their factory profitable.

It perhaps, however, would be unavoidable at the begiming of the industry that a feeling of animosity shonld exist between the beetgrower and the manufacturer. After a few years the prices to be paid for beets and other agreements with the farmers will donbtless be adjusted on a scale of equity and satisfacton to all concerned. In case farmers have no money to put into beet-sugar factories thes might take shares of stock and pay for them with beets dming the first and second years ; in this way they would secure a financial interest in the company, own their shares of stock, and pay for them from the proceeds of the field without investing in ready cash. By arlopting some such plan
as this it might be possible to get every beet-grower within reach of the factury to become himself interested as a stockholder.

ANALYTICAL DATA RELATUNG TO BEETS GROWN FROM SEED PURCHASED BY THE DEPARTMENT.

Tho samples of beets which were sent to the Department in response to the reduent alroady noted were immediately analyzed and the results of the amalyses commmicated to the growers of the beets. Returns were reecivel from a great many States, but principally from Nebraska and Minnesota.

The data obtamed follow arranged alphabetically by States and connties:

CALIEORNTA.

Namo of grower.	$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Variety.	When recoived.			岂		-	
Los ingeles Curuty.									
University of Cali-	7616	Excelsior	Sept. 27	$\begin{aligned} & \text { P.ct. } \\ & 16.3 \end{aligned}$	$\begin{aligned} & P . c t . \\ & 15.5 \end{aligned}$	84.5	18.1	P.ct. .90	$\begin{array}{r} G r^{\prime} m_{8}, \\ 407 \end{array}$
() orma $^{\text {a }}$	7617	Imperial	Sept. 27	14.9	14.2	80.5	15.1	. 99	372
lio	7618	Imperial Imp	Sept. 27	13.9	13.2	82.2	12.4	1.12	397
Uo	7619	Vilmuitu.	Sept. 27	16.8	16.0	87.0	17.9	. 94	352
Average				15.5	14.7	81.6	15.9	. 99	332

COLORADO.

COLORADO－Continued．

Name of grower．	$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Variety．	$\text { When } \begin{gathered} \text { Wheceived. } \end{gathered}$			宫		立	
Pueblo County．				P．ct．	P ct			Pet	Groms．
Pueblormand of Trate	8171		ズパ． 8	11.4	10.8	76.5	8.8	1．30	515
Do．	8178		Nット． 8	15.5	14.7	8\％．9	13.3	1.17	650
Ho．	817！		Now． 8	15.9	15.1	$8 \pm .1$	14.0	1．12	580
$1)$	8180		Nuv． 8	15.4	14．6	83.7	14.3	1．08	485
Do	8181		Х心r． 8	12.3	11.7	77.9	7.8	1.57	545
Do	5182		Now． 8	10.6	10.1	70.2	10.3	1.03	690
Aserage				13.5	12.8	79.2	11.4	1.21	578
San Mriguel County．									
C．F．Truax	8264	Vilmorin	Nov． 17	9.5	9.0	65.5	7.5	1．26	875
Do	8265		Ner． 17	11.3	10.7	66.1	7.4	1． 53	765
A verage．．				10.4	9.9	65.8	7.5	1．40	820
Tuma County．									
II．Hitcheock ． Do ．．．．．	$\begin{aligned} & 7871 \\ & 7872 \end{aligned}$	Klein Wanzlehener	Oct． 15 Oct． 15	$\begin{array}{r} 12.6 \\ 8.2 \end{array}$	$\begin{array}{r} 12.1 \\ 7.8 \end{array}$	$\begin{aligned} & 75.9 \\ & 63.1 \end{aligned}$	$\begin{array}{r} 10.4 \\ 6.8 \end{array}$	$\begin{aligned} & 1.21 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 720 \\ & 425 \end{aligned}$
Average				10.4	9.9	69.5	8.6	1.21	573
County unknown．									
C．W．Zepp	8055	Simon Legrand．．	Oct． 29	15．7	14.9	79.7	12.1	1.30	333
Arerage				17．4	16.5	79.7	12.7	1.37	213

CONNECTICU＇I＇．

IDAHO．

ILLINOIS．

INDIANA.

INDIANA-Continued.

IOW A

IOWA-Continued.

KANSAS.

KANSAS-Continued.

MARILAND.

Prince George's County.									
Maryland Agricultural Experiment	7882	Vilmorin.	Oct. 16	12.3	11.7	82.0	15.2	. 81	43
Station. Do...	7883	Simon Legrand Whit	Oct. 16	14.2	13.5	88.2	16.5	. 86	480
		Improved.							
Du.	7884	Bulteau Desprez Rich-	Oct. 16	8.6	8.2	72. 3	7.7	1.12	413
Do.	7885	Florimond Desprez Richest.	Oct. 16	8.3	7.9	74. 1	8.7	. 95	433
Do	7885	Klein Wanzlebener ...	Oct. 16	10.8	10.3	81.8	10.9	. 99	445
	7984	Vilmorin.............	Oct. 25	10.4	9.9	77.0	9.6	1.08	265
	7985	Simon Logrand White Imploved.	Oct. 25	7.9	7.5	70.2	7.3	1.08	355
Do.	7986	Bulteau Desprez Rich. est.	Oct. 25	10.2	9.7	75.6	9.6	1.08	335
	7987	Florimond	Oct. 25	11.1	10.6	82.2	12.9	. 86	425

MARYLAND-Continued.

Name of grower.	$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Variety.	$\begin{aligned} & \text { When } \\ & \text { received. } \end{aligned}$			E	Saline coofti- cient.	雭	$\begin{aligned} & \text { Arerage weight } \\ & \text { of beets. } \end{aligned}$
Prince (icorge's County-Continued.									
Maryland Ayricul. thal Experiment station.	7988	Klcin Wanzlebener ...	Oct. 25	9.3	8.8	73. 8	9.4	. 99	540
10.............	80:7	Dipje's Vilmorin	Oct. 29	15.9	15. 1	90. 4	19.6	. 81	3
	80:8	Simon Legrand White improved.	Oct. 29	13.2	12.5	82. 5	11.5	1.17	300
Do	8059	Bulteau Desprez IRichest.	Oct. 29	8.6	8.2	73.5	8.0	1.08	580
1)	8060	Florimonl Dosprez Richest.	Oct. 29	10.0	9.5	76.9	8.9	1. 12	3.0
Do	8061	Klein Wanzlebener	Oct. 29	11.1	10.6	78. 2	10.5	. 39	380
D	8097	Dippe's Vilmorin	Nor. 1	10.5	10.0	69.0	6.9	1. 53	330
	8098	Simon Legrand White Improved.	Nov. 1	12.5	11.9	8 fi .8	12.1	1.03	320
Do.	8099	Bulteau Dosprez Richest.	Nov. 1	10.5	10.0	77.8	9.7	1.08	435
Do.	8100	Florimond Desproz	Nov. 1	8.3	7.9	66.9	7.7	1.08	335
Do	8101	Klein Wanzlebener ...	Nor. 1	13.3	12.6		13.4	. 99	168
Do	8140	Lippe's Vilmorin.	Nov. 5	14.6	13.9		21.5	. 68	155
Do	8141	Simon Legrand White Improved.	Nov. 5	14,5	13.8		24.6	. 59	195
Do	8142	Bulteau Desprez lich- est.	Nov. 5	12.7	12.1		16.5	. 77	153
Do	8143	Florimond Desprez Richest.	Nov. 5	12.6	12.0		18.5	. 68	163
$1{ }^{1}$	8144	Klein Wanzlehencr ...	Nov. 5	13.2	12.5		16.3	. 81	140
1	8161	Dippe's Vilmorin	Nov. 7	13.2	12.5	81.6	$1 \times .3$. 72	198
Do	8162	Simon Legrand White Improred.	Nov. 7	13.6	12.9	81.4	18.9	. 72	170
10	8163	Bultean Desprez IRichest.	Nov. 7	11.5	10.9	8゙. 2	13.4	. 86	137
$1)$	8164	Florimond Dosprez Richest.	Nor. 7	12.5	11.9	8:3	17.4	. 72	183
1)	8165	Klein Wanzlehener .	Nor. 7	13.4	12. 7		15. 6	. 86	120
	8200 8201	Dippe's Vimmorin ${ }^{\text {S }}$ S.... Simon Legrand White	Nov. 12 Nov. 12	15.4 14.1	14.6 13.4		$\begin{array}{r} 26.1 \\ 19.6 \end{array}$	$\begin{array}{r} .59 \\ .72 \end{array}$	170 135
		Simon Legrand White Improved.							
Di	8202	Bultean Desprez Richest.	Nor. 12	12.6	12.0		15.6	. 81	136
Do	8203	Florimond Despraz Richest.	Nov, 12	14.9	14.2		23.6	. 63	103
Do	8204	Klein Wanzlebener	Nov. 12	13.3	12.6		18.5	. 72	173
Do	8224	Vilmorin...	Nor. 15	13.1		811.8	12.8	1. 08	605
Do	8225	Simon Legramd White Improved.	Nor. 15	11.0	10.5	78.0	9.8	1.12	760
Do	8226	Bulteau Desprez Lich. est.	Nov. 15	10.4	9.4	76.5	8.6	1. 21	830
Do	8227	Flotimond Desprez liichest.	Nov. 15	9.8	0.3	74.8	10.3	. 95	645
1)	8228	Klein Wanzlobener	Nov. 15	10.7	10.2	76.5	11.4	. 94	370
$1)$	829	Dippos Vilmorin	Nov. 15	15.1	14. 4	83. 9	15.3	. 95	385
10	8230	Simon Legrand White Improved.	Nov. 15	14.3	14.2	83.2	16.4	. 90	285
Do.	8231	Bulteau Desprez IRich-	Nov. 15	13.7	13.0	83.5	14.4	. 95	275
Do	8232	Florimond Desprez lichest.	Nov. 15	7.9	7.5	(6). 9	8.8	. 90	530
$1{ }^{1}$	8233	Klein Wanzlobener	Nor. 15	12.1	11.5	7s. 6	10.8	1. 12	255
D_{1}	8834	Dippos's Vilmorin	Nov. 15	13.4	12.7	8.3.	16.5	. 81	330
Do	8235	Simon Legrand White Improved.	Nov. 15	14.3	13.6	81. 5	15.0	. 35	122
Do.	8236	Bulteau Desprez lichest.	Nov. 15	12.1	11.5	82. 3	14.1	. 86	163
1 O	8237	Florimond Desprez Richest.	Nov. 15	11.0	10.5		15.3	. 72	125
IV,	8238	Klein Wanzlebener	Nov. 15	14.9	14.\%		19.4	. 77	100
Do	8239	Dippe's V ilmeriu.....	Nov. 15	13.0	12. 1	¢3. 3	14.4	. 90	450
	8240	Simon Legrand Whito Improved.	Nor. 15	0.9	9.4	75.6	11.1	. 90	305
Do	8241	Bulteau Desprez IRichest.	Nov. 15	12.2	11. 6	75.8	10.4	1.17	390

MARYI, AND-Continued.

Name of grower.	$\begin{gathered} \text { Surial } \\ \text { No. } \end{gathered}$	Variety.	$\begin{aligned} & \text { When } \\ & \text { reccired. } \end{aligned}$			\%	$\text { Salime coelli- } \underset{\substack{\text { ifent. }}}{ }$	$\stackrel{\square}{4}$	
Irince Georue's Cornty-C'ontinued.									
Maryland AcriculHimb Expreriment	8242	Florimond Desprez Richest.	Nov. 15	$\begin{aligned} & P \cdot c t . \\ & 10.9 \end{aligned}$	$\begin{aligned} & P . c t . \\ & 10.4 \end{aligned}$	76.3	11.0	$\begin{array}{r} P . c t . \\ .99 \end{array}$	Gr_{335}
Station. Io. \qquad	824.3	Kl-in Wanzlehener	Nov. 15	13.1	12.5	84.0	12.7	1.03	305
Do	8244	1)ippe's Vilmorin	Nuv. 15	11.0	13.3	90.3	19.4	. 72	145
Do	8245	Sjuon Legraud White Improved.	Nov. 15	14.2	13.5		19.7	. 72	155
Do.	8246	Bultean Desprez Rich-	Nov. 15	11.4	10.8	87.7	18.1	. 63	350
Do.	8247	Florimond Desprez Richest.	Nor. 15	11.2	10.6	80.0	14. 5	. 77	205
D	8248	Kleiu Wanzlebener ...	Nov. 15	13.2	12.5		17.1	. 77	25
		Yilnorin	Nov. 15	15.4	14.6	82.8	24.4	. 63	
	8251)	Simen Le, grand White Improved.	Nor. 15	12.6	12.0	77.8	12.7	. 99	380
Do.	8251	Bulteá Desprez Richest.	Nov. 15	13.7	13.0	81.1	17.8	. 77	240
Do.	8253	Florimond Desprez Richest.	Nov. 15	11.8	11.2	79.2	12.4	. 95	220
Do	8253	Klein Wanzlebener	Nov. 15	12.3	11.7	78.4	15.2	. 81	34.5
	825.	Dippe's Vilmorin - ...	Nor. 15	15.1		86.3		. 77	$\because 45$
	8:55	Simon Logrand White Improved.	Nov, 15	12.7	12.1	76.9	14.1	. 90	260
Do	.8256	Bulteau Desprezİich.	Nor. 15	11.4	10.8	75.5	9.7	1.17	460
Do.	8257	Florimond Desprez Richest.	Nor. 15	8. 0	7.6	68.4	7.4	1.08	445
	8258	Klein Wauzlebener	Nor. 15	12.9	12.3	76.8	14.4	. 90	190
	8.25;		Nor. 15	12. 0		78.4	13.9	. 86	200
1	82! 0	Florimond Desprez Richest.	Nor. 15	12.3	11.6	73.5	12.3	. 99	240
	$\bigcirc+38$	Dippe's Vilmorin - . .	Dec. 4	22.0	21.0		34.9	. 63	90
D	8139	Buitean Dosprez Richest.	Dec. 4	18.4	17.5		23.9	. 77	40
Do	8410	Florimond Desprez....	Dec. 4	20.0	19.0		27.8	. 72	58
1	8441	Klein Wanzlehener	Dec. 4	19.8	18.8		22.0	. 90	63
10	8442	Dippe's Vilıoriu.....		19.9	18.9		20.9	. 95	375
	8443	Simon Legrand White Improred.	Dec. 4	17.6	16.7	91.2	19.6	. 90	213
Do	8444	Bulteau Desprez Richrest.	Dec. 4	17.8	16.9	84.8	19.8	. 90	16
Do	8445	Florimond Desprez	Dec. 4	13.6	12.9	83.4	12.6	1.08	238
Do	8146	Kleiu Wanzlebener ...	Dec. 4	17.4	16.5		17.6	. 99	$1 \cdot$
Aserage				12.9	12.3	79.7	15.1	. 90	416
J. II. Trilliams Do.	$\begin{aligned} & 8175 \\ & 8170 \end{aligned}$	Sugar heet Extra Ecli	Nov. 8 Nov. 8	$\begin{array}{r} 10.0 \\ 8.9 \end{array}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 69.4 \\ & 60.1 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 1.21 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 415 \\ & 253 \end{aligned}$
Arimage				9.5	9.0	64.7	8.0	1.19	334

MASSACHUSETTS.

MICHIGAN.

MINNESOTA.

MTNNESO'TA-Contimmed.

Nimo of grower.	$\left[\left.\begin{array}{c} \text { Serial } \\ \text { No. } \end{array} \right\rvert\,\right.$	Variety.	$\begin{aligned} & \text { When } \\ & \text { received. } \end{aligned}$		$\begin{aligned} & \dot{0} \\ & 0 \\ & \stackrel{0}{5} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	忘	Saline coeffl- cient.	需	
Dakota County. II. W. Kıeh \qquad Do.	8110 8111		Nor. Nov. 	$\begin{aligned} & I_{1}^{2} . c t . \\ & 16.7 \\ & 14.0 \end{aligned}$	$\begin{aligned} & l^{\prime} \cdot c t . \\ & 15.9 \\ & 13.3 \end{aligned}$	$\begin{aligned} & 81.4 \\ & 77.8 \end{aligned}$	14.3 9.0	$\begin{aligned} & \text { P.ct. } \\ & 1.17 \\ & 1.4 \pm \end{aligned}$	$\begin{array}{r} G_{r} r^{m s} . \\ 400 \\ 333 \end{array}$
Averago				15.3	14.6	81.1	11.6	1.31	367
Faribault County.									
$\begin{aligned} & \text { C. II. Culver } \\ & \text { j) } \end{aligned}$	$\begin{aligned} & 8459 \\ & 8460 \end{aligned}$		Dec. Dec. ${ }^{6}$	$\begin{array}{r} 9.6 \\ 10.9 \end{array}$	$\begin{array}{r} 9.1 \\ 10.4 \end{array}$	$\begin{aligned} & 66.2 \\ & 63.0 \end{aligned}$	6.3 5.2	$\begin{aligned} & 1.53 \\ & 2.11 \end{aligned}$	880 865
Average				10.3	9.8	64.6	5.8	1.82	873
Fillmore County.									
1)r. C. II. Robbin 1).f. 'Ter......	7112 8114	Simon Legran Brabant....	Oct. Nov. 13	9.7 14.2	$\begin{array}{r} 9.2 \\ 13.7 \end{array}$	$\begin{aligned} & 50.0 \\ & 83.2 \end{aligned}$	5.9 15.2	1.64 .95	1,262 390
Arerage				12.0	11.4	74.6	10.5	1.30	826
Goodhue County.									
Edward A. Donmell William Hagman J. G. Stearms. (ieotge) IV. Judd Mrs.James Guero li. P.'1hacher	7788 8125 8188 8189 8190 8116		Oct. 11 Nor, 4 Nov, 10 Nov: 10 Nus, 10 Xov. 24	$\begin{array}{r}16.9 \\ 8.2 \\ 10.5 \\ 8.9 \\ 11.7 \\ 12.7 \\ \hline\end{array}$	$\begin{array}{r}16.1 \\ 7.8 \\ 10.0 \\ 8.5 \\ 11.1 \\ 13.1 \\ \hline 10.1\end{array}$	86.7 63.1 75.1 63.6 64.4 73.4	$\begin{array}{r}18.2 \\ 5.5 \\ 9.0 \\ 7.4 \\ 7.9 \\ 7.8 \\ \hline\end{array}$	r 1.93 1.48 1.17 1.25 1.48 1.62	947 1,025 9331 815 8190 8.0 520
				11. $\%$	10.9	71.1	9.3	1.32	6\%5
Ifennepin County.									
Olaf Johnson .	7948		Oct. 22	14.7	14.0	92.5	14.9	. 93	780
ILans Burlingame	7949		Oct. 22	12.5	11.9	69.4	8.2	1. 53	940
Georce Dawthwaito	8132	Klein Yanzlebener	Nov. 4	9.4	8.9	68.6	7.5	1. 26	1, 560
100	8133	Florimond Desprez	Nov: 4	9.7	9.2	69. 8	7.5	1.30	576
P'oter Weinand.....	8151			16.5	15. 7	79.3	153	1. 08	817
Willian H. Loveriv.	8171	Klein Wanzlebener	Nov. 8	15.6	14.8.	87.2	15.8	. 99	(00)
Average				13.1	12.4	77.8	11.5	1. 19	1,216
Moustun County.									
Herman Perlerson	7620	Klein Wanzlebener	Sept. 20	13.7	13.0	80.6	12.7	1.08	510
Isante County.									
Ganlbey © Anterson.	8190		Nก\%. 11						1,445
N. A. Ahlstrom.	7790	Klein Wanzlebener.	Oct. 11	9.8	9.3	68.0	6. 6	1.48	1,9:5
	7791	Simon Lugrand ..	Oct. 11	10.8	10.3	75.5	8.9	1.24	1,500
Averago				10.5	10.0	70.5	8.1	1.33	1,623
Le Sucur County.									
J.C.Swain Do.	7799 7793		$\begin{array}{cc} \text { Oct. } & 11 \\ \text { Oct. } & 11 \end{array}$	$\begin{aligned} & 11.8 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 11.2 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 74.2 \\ & 71.9 \end{aligned}$	$\begin{array}{r} 8.8 \\ 13.6 \end{array}$	$\begin{array}{r} 1.34 \\ .81 \end{array}$	500 515
Avorage				11.4	10. 8	73.2	11.2	1.08	508
Lincoln County.									
A.J.Crain Du	$\begin{aligned} & 810! \\ & 810.5 \end{aligned}$	Klein Wanzlebener.... Florimond Desprez Richest.	$\left\lvert\, \begin{array}{cc} \text { Nov. } & 3 \\ \text { Nov. } & 3 \end{array}\right.$	$\begin{aligned} & 13.2 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.1 \end{aligned}$	$\begin{aligned} & 73.7 \\ & 72.6 \end{aligned}$	$\begin{array}{r} 10.0 \\ 9.3 \end{array}$	$\begin{aligned} & 1.21 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 1,513 \\ & 1,173 \end{aligned}$
				13.0	12.3	73.2	10.4	1. 26	1,343
Syon County.									
Audrew De Suttor Do. Averago...............				$\left\lvert\, \begin{aligned} & 13.7 \\ & 17.6 \end{aligned}\right.$	$\left\|\begin{array}{l} 13.0 \\ 16.7 \end{array}\right\|$	$\begin{aligned} & 72.5 \\ & 83.8 \end{aligned}$	$\begin{array}{r} 9.7 \\ 11.5 \end{array}$	$\begin{aligned} & 1.44 \\ & 1.53 \end{aligned}$	500 480
		15.7	14.3	78.2	10.6	1.49	400		

MINNESOTA-Continued.

MINNESOTA-Continuerd.

MISSOURI.

Bates Coienty.									
Jacob Blocher	7900	Whitn Silesian	Oct. 17	9.1	8.7	66.9	8.4	1. 08	500
Do	7301	Fronch Sugar	Oct. 17	8.4	8.0	66.7	7.8	1.08	700
Averago.				8.8	8.4	66.7	8.2	1.08	600

NEBRASKA.

Antelonve County.									
F. It ' Irowbrilgo	73 f 6		Sept. 23	16.1	15. 3	82.1	16.9	. 95	241
Do......	7367		Sept. 22	15.9	15.0	81.5	16.7	. 93	226
Do	7368		Sopit. 22	16.6	15.8	88.8	16.1	1.03	176
	736!		sept. 22	18.8	17.9	81.8	18.3	1.03	119
C. A. Hathaway	767%	Florimond Desproz	Oct. 4	13.1	12.4	75.2	9.8	1. 31	455
Do	7673	Kluin Wanzlebener . .	Oct. 4	14.1	13.4		9.0	1.55	200
Do	769.4	Florimom! Desprez litehust.	Oct. 4	10.3	9.8	70.9	7.6	1.36	885
	7675	Kluin Wanzl-bener ...	Oct. 4	16.0	15. 3		13.6	1.18	265
E. L, Henoway	7697	-..tho.	Oct. ${ }^{6}$	14.3	13.4	77.3	11.1	1.29	755
Do..	7698	Florimond Despr	Oct. 6	12.2	11.6	77.7	10.3	1.18	410
N. Cosby	7725		Oct. 7	13.3	12.6	70.4	12.2	1. 1.09	250
Do. .	7729	Improved White	Oct. 7	9.0	8.6	72.0	8.4	1.07	382

NEBRASKA－Continued．

Name of grower．	$\left\lvert\, \begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}\right.$	Variety．	When received．	$\begin{aligned} & \stackrel{4}{0} \\ & \underset{3}{3} \\ & . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		合	$\begin{aligned} & \text { Saline coeff } \\ & \text { cient. } \end{aligned}$	$\begin{gathered} \text { an } \\ \text { a } \end{gathered}$	
Antelope County－ Continued．				P．ct．	P ct			？ct．	
C．E．Hen	7732	Klein Wanzlebener	Oct． 8	7． 7.9	P．ct．	63． 4	4.8	P．ct． 1.64	$\begin{array}{r} r^{\prime} m s . \\ 920 \end{array}$
Do ．．．	7733	Florimond Desprez	Uet． 8	9.2	8.7	65.3	6.4	1． 45	540
C．M，W	7742	Klein Wauzlebener	Wet． 8	10.9	10.4	63.7	7.0	1．56	440
Do．．	7743	Florimund Deszre\％．	Oct． 8	12.1	11.5	65.7	5.3	2.28	430
James Lewel	7751		Oct． 9	10.6	10.1	50.2	7.8	1.36	357
Do	7752		Oct．！	11.9	11． 4		8.8	1． 21	170
George	7863		Oct． 14	10.7	10．2	68.2	11.5	． 93	491
W．H．Corme	7997	Florimond Despre	Oct． 25	16.5	15.7	86.1	16.7	． 99	380
I）	7998		Oct． 25	10.3	9.8	76．8	13.5	1.08	280
Carl liol	8086		Oct． 31	14.6	13.9	78.1	13.0	1.12	380
Do．	8087	Simon Legrand	Oct． 31	13.9	13.2	79.8	12.9	1.08	520
Do	8088	Klein Wamz	Oct． 31	13.6	12.9	80.5	14.3	． 9.3	565
Do	8089	Iesprez	Oct． 31	12.5	11.9	73.6	9.0	1.39	490
Do	8090	Lemaire	Oct． 31	14.6	13.9		11． 2	1.30	350
Do	8091	Lane＇s Imp	Oct． 31	13.1	12.5		9.4	1． 34	320
E．Aliam	8109	Vilmori	Nov． 3	16.7	15.9	81.7	10.0	1． 67	400
K．C．Edwards	8115		Nov． 3	14.4	13.7	81.4	12.9	1.12	458
Averare				13．2	12.5	74.7	10.2	1． 26	419
Banner County．									
Wm．Eve	7392	French	Sept． 24	10.8	10.3	66.2	8． 3	1． 30	710
Do	7393	ro	Sept． 24	11.4	10.8	68.3	10.6	1.08	693
Thos．H．Wilson．	8026	Vilmori	Oct． 27	14.0	13.3	76.9	9.7	1.44	435
Average．				12.1	11.4	70.4	9.5	1.27	612
Blaine County．									
H．Heith	8051	Klein Wanzlehenct	Oct． 29	14.6	13.9	78.1	11.6	1． 26	610
Do．	8052	Flurimond Desprez．	Oct． 29	11.9	11.3	74.4	9.4	1． 26	550
Average				13.3	12.6	76.3	10.5	1.26	584
Boone County．									
C．D．Dean	7819	Desp	Oct． 13	0.1	8． 6	68． 6	6.3	1．45	350
Do．	7820	Lenaire	Oct． 13	8． 1	7.7	65.3	5.5	1.48	435
Anton Ankl	78.1	Simon Leg	Oct． 13	13.3	12． 6	72.2	10.3	1． 30	685
Do.	78ご	Lemaire	Oct． 13	13，3	12． 6	71.6	12.7	1.05	995
Lewis L	78.3		Oct． 13	12.8	12.2	73． 6	10.3	1． 24	820
Do．	7824	Simon Lemrand ．－	Oct． 13	11.4	10． 8	67.8	10.2	1． 12	500
Do．	78.5	Klein Wanzlebencr	Oct． 13	14.3	13． 6	88.3	11.7	1．22	820
10	78．6	Desprez．	（）et． 13	10.7	10.2		7.8	1.34	515
Do．	78．7	Lemai	Oct． 13	10.1	9．6	67.3	6． 9	1． 46	720
J．B．（ireen	$78 \div 8$		Oct． 13	7.6	7.3	57.6	4.3	1．77	445
Do．	78.9	Simon Legrand．	Oct． 13	8.8	8.3	62.8	4.9	1．78	545
Do	7830	Klein Wauzlebener	Oct． 13	9.5	9.0	65.9	5.9	1． 60	735
J．E．Gruen	7831	Desprez．．．．	Oet． 13	8.7	8． 2	65.4	5.3	164	485
T.U. Whllian	$783 \geq$	－	Oct． 13	11.9	11.3		10.8	1． 18	225
Do．	7833	Simon Legrand．	Oct． 13	14.2	13.5		11.5	1．23	340
Do	7834	Klein Wanzlobenor	Oct． 13	8.9	8.5	71.2	8.2	1.09	645
130	7835	Desprez	Oct． 13	8.1	7.7	62.3	4．4	1．80	410
Do．	7836	Lemaire	Oct． 13	11.7	11.1	75.0	10.9	1． 07	58.5
G．M．Limard	7837		Oct． 13	10.7	10.2	68.2	10．0	1．07	725
I）	7838	Simon Legrand．	Oct． 13	10.3	9.8	66.0	9.0	1.15	765
$1{ }^{1}$	78.9	Klein Wanzlebener	Oct． 13	13.3	12.6	76.8	10.1	1． 21	765
Do	7840	Despprez	Oct． 13	11.7	11.1	74.7	15.0	． 78	740
110.	7841	Lemaire	Oct． 13	12.0	11.4	81.1	12.0	1.00	640
M．G．Curtis	7842		Oct． 13	12.3	11.7		10.5	1．17	280
Do．	7843	Simon Legrand．．．．	Oct． 13	13.2	12.5		10.5	1． 26	270
Do．	7844	Klein Wanzlebe	Oct． 13	10.8	10.4		7． 1	1． 53	365
${ }_{\text {D }}$ Do．	7845	Despre	Oct． 13	12.4	11.8		8.2	1． 51	165
H．H．Howar	7846		Oct． 13	11.4	10.8	72.2	8.5	1．34	510
Do．	7817	Simon Legrand ．．．．	Oct． 13	8.8	8.4	62.3	5． 9	1． 50	590
Do	7848	Klein Wanzlebener	Oct． 13	8.2	7． 8	63.5	5． 6	1． 46	630
Ed Do．．．．．	7849	Desprez	Oet， 13	9.2	8.7	64.5	12.5	－74	670
Ed．Popper	7850		Oet． 13	9.9	9．4	70.7	8.1	1． 23	595 405
Do.	78.1	Sisuon Legramal ．．．．	Oct． 13	11.4	10.8	76.5	11.5	． 99	405
Do．	7852	Klein Wauzlebenor	Oct． 13	10.1	9.6	71.2	9.0	1． 12	455
Do．	78.33	Desprez．	Oct． 13	9.6	9.1	63.2	7.9	1．24	790
Do．	7851	Lemaire．	Uct． 13	7.0	6.6	62.1	5．L	1． 37	620
Averago．				10.7	10.1	69.2	8.7	1． 29	550

NEIBRASKA－（iontinued．

Name of grower．	$\left\lvert\, \begin{gathered} \text { Suriai } \\ \text { No. } \end{gathered}\right.$	Variety．	When received．			第		安	
Sox lutte County．				P．ct．	$P . c t$ ．			P．ct．	Gras．
A．S．Darling	7746	Vilmorin ．．．．．．．．．．．．．	Oct． 9	12.9	12.3	72.5	9.3	1．39	885
1）0	765	K）cin Wauzlobener．．．	Oet． 10	14.4	13.7	76． 2	10.6	1．39	820
1．W．Tracy	7801	．．．．do．．．．．．．．．．．．．．．．	Oct． 11	15.0	14.3	68.5	10.0	1． 0	407
M．W．Nye	7803	Florimoni	Oct． 11	10.3	9.8	69.1	7.4	1.40	513
J．A．Heist	7803	Klein Wanzlebener ．．．	Oct． 11	14.7	14.0	69.4	10.1	1．45	650
II．W．Axtel	8009	Klein Wanzleb onor， Dippe＇s．	Oct． 27	9.7	9.2	74.0	8.0	1.21	785
A rerage				12.8	12． 3	71.6	9.2	1.39	666
W．II．Carey	7868	Desprez	Oct． 10	10.6	10.1	69.7	7.0	1.51	350
Butler County．									
Elizabet	7668	Lemaire Legrand	Oct．	12.6	12.0	68.9	10.9	1.16	260
	7609	do	Oct．	14.0	13．3		11.8	1.19	230
Average．．				13.3	12.7	68.9	11.4	1.18	245
Chase County．									
E．J．Letger	774		Oct． 8	10.5	10.0	70.5	8.4	1． 25	1380
1）．）	7745 8012	Florimond Desprez，	Oct． Oct． O29	12.1 10.0	11.5 9.5	63.5 66.2	9．2	1.31 1.21	725 860
		lichest．							
	8013	Klein Wanzlebener	Oct． 29	11.5	10.9	69.7	7.5	1．53	855
Peter Jones	8114	Florimond Desprez	Oct．2！	13.9	13．2	73.5	9.4	1.46	708
	8215	Klein Wanzleloner	Oct．2！	13.7	13.0	74． 1	9.5	1.44	（i7．
Lizzic Jon	8：06	Florimond Desprez	Nor． 14	14.3	13.6	74.9	9.7	1.46	510
	8307	Klein Wanzlebener	Nov．1t	13.9	13.2	72.4	7.9	1． 75	630
Averago．				12.4	11.7	70.6	8.7	1.43	796
Cherry County．									
John Denuing	7376	Vilmorin	Sept． 24	9.0	8． 6	55． 2	4.5	2.00	455
Lo	737		Sept． 24	9.7	9.2	65． 8	5.2	1.85	60.5
A verage				9.4	8.9	60.5	4.9	1.92	530
Cutfux County．									
11．入1．Kıomp	7880		Oct． 15	10.3	9.8	65.3	6.6	1． 57	1，025
Do．．．．．．	7881		Oct． 15	10.9	10.4	70.3	6.9	1． 57	850
John Schmat	8001	Klein Wanzlebrner	O．t． 25	13． 6	12.9	77.3	11.2	1．21	500
J．B．Mantia	8010	Dippo＇s Vilmorin．．．．．．	Oct． 27	15.4	14.6	81.9	14.3	1． 08	523
12.	8011		Oct． 27	13.0	12.4	75.1	10.0	1． 30	6886
Josephir	81：0	Florimond Desprez	Nov． 4	11.3	10.7	62.4	5.2	2． 16	500
	8131	K lem W：matehener	Nos． 4	12.4	11.8	6it． 7	7.3	1.71	510
小rata				12.4	11.8	71.3	8.8	1.51	661
Cuming County．									
Uriah Brumer	7907	Klein Wanzlohencr	Oct． 18	10.8	10.3	67.9	8.3	1．30	475
Do．	7108	Florimond Desproz	Oct． 18	10.9	10.4	71.7	8.7	1.26	910
Average				10.9	10.4	69.8	8.5	1.28	692
Custer County．									
W．O．P＇orter．	7663	Vilmorin	Oct． 3	7.9	7.5	60.8	6． 0	1.32	565
110．．	7615		Oct． 3	8.8	8.1		5.4	1． 63	305
J．D．Maskell	7679		Oct． 4	7． 4	7.0	61.7	5． 5	1.35	575
	7680		Oct．	5.6	5.3	52． 3	2.9	1.96	575
Average．				7.4	7.0	58．2	5.0	1.56	550
Dawes County．									
12．1．Gres	7974	Florimond Desprez ltichest．	Oct． 24	10.4	9.9	69.3	7.2	1.44	246
1)o	7975	Klein Wanzlebener ．．．	Oct． 24	16.2	15.4	73.7	8.4	1.93	290
W．J． 1030 ke		Vilmorin White．．．．	Oct．$\because 9$	13.7	13.0	77.9	9.5	1.44	340
Arorage				13.4	12.7	73.3	8.3	1.60	258

NEBRASKA-Continnod.

NEBRASKA-Continued.

NEBRASKA-Continned.

NEBRASKA-Continned.

NEBRASKA-Continued.

NBIBKASKA－Contimerl．

Name of grower．	$\begin{aligned} & \text { Serial } \\ & \text { Nu. } \end{aligned}$	Tariets：	$\begin{aligned} & \text { When } \\ & \text { recoived. } \end{aligned}$		$\begin{aligned} & \stackrel{0}{0} \\ & \text { U } \\ & \text { a } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	盛	Saline coeffi－ cient．	雲	$\begin{aligned} & \text { A rerage weight } \\ & \text { of beet. } \end{aligned}$
Yort County．				P．ct．	P．ct．			P．ct．	Gr＇ms．
1）．M．Reeder．	8063		Oct． 30	9.8	9.3	62.0	7.3	1.35	620
$\mathrm{D}_{0} 0 . . .$.	80166	Simon Legrand．	Oct． 30	13.9	13．2	73.9	10.3	1.35	450
Do	5．067	Klein Wanzlebe	Oct． 30	14.4	13.7	75.8	11.1	1.30	590
Do	8008	Desprez．．．．．	Oct． 30	14．7	14.0	75．0	13． 1	1.12	5.30
Do．	8069	Lemaire．	Oct． 30	11.1	10.6	68.9	10.3	1.08	560
Henry Smith	8417		Nov． 24	16.4	15.6	78.5	11.1	1.48	445
Do．	8418		Nov． 24	15． 4	14.6		9.5	1．62	210
Do．	8419 8120		Nov． 24 Nov． 24	14.6 12.0	13.9 11.4	72． 6	8．8	1.66 1.75	230 350
Average				13.6	12.9	79.4	9.8	1.41	443

NEW YORK．

Genesce Cownty． A．I．Lemley Do． \qquad ） \qquad	8261 8262 8263	Florimond White Red Top． Lane＇s or French Red Top ．． Vilmerin Red Top．	$\begin{aligned} & \text { Nov. } 17 \\ & \text { Nov. } 17 \\ & \text { Nov. } 17 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 15.0 \\ & 12.8 \end{aligned}$	10.0 14.3 12.2	$\begin{aligned} & 73.9 \\ & 83.3 \\ & 8.1 \end{aligned}$	$\begin{array}{r} 9.7 \\ 18.5 \\ 14.7 \end{array}$	1.08 .81 .86	$\begin{aligned} & 2,500 \\ & 1,210 \\ & 1,485 \end{aligned}$
A verago				12.8	12.2	79.4	14.3	． 92	1，732
Oneida County．									
Henry Branstater． ！o．	$\begin{aligned} & 7875 \\ & 7876 \end{aligned}$	Simon Legraud ．．．．． Florimond Desprez．	Oct． 15 Oct． 15	$\begin{array}{r} 11.9 \\ 11.5 \end{array}$	$\begin{aligned} & 11.3 \\ & 10.9 \end{aligned}$	$\begin{aligned} & 78.2 \\ & 70.3 \end{aligned}$	$\begin{aligned} & 10.6 \\ & 11.2 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 1.03 \end{aligned}$	400 445
Averaye				11.7	11.1	78.8	10.9	1.08	423
Warren County．									
$\begin{aligned} & \text { F. II. Cramb... } \\ & \text { Do......... } \end{aligned}$	$\begin{aligned} & 8216 \\ & 8: 17 \end{aligned}$	Elorimond Desprez． Klein Wanzlebener．	Nov． 14 Nov． 14	$\begin{array}{\|l\|} \hline 15.3 \\ 13.8 \end{array}$	$\begin{aligned} & 14.5 \\ & 13.1 \end{aligned}$	$\begin{aligned} & 87.0 \\ & 81.7 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.8 \end{aligned}$	$\begin{array}{r} .90 \\ \mathbf{1 . 0 8} \end{array}$	610 675
Averame				14.6	13.8	84.5	14.9	． 99	643
Tates County．								－	
	$\begin{aligned} & 7964 \\ & 7965 \\ & 7966 \end{aligned}$	Dippe＇s Vilmorin．．． Florimond Desprez Simon Legrand ．．．．．	Oct． 24 Oct． 24 Oct． 24	$\begin{aligned} & 12.3 \\ & 10.7 \\ & 12.9 \end{aligned}$	$\begin{aligned} & 11.7 \\ & 10.2 \\ & 12.3 \end{aligned}$	$\begin{aligned} & 72.4 \\ & 67.7 \\ & 75.0 \end{aligned}$	$\begin{aligned} & 11.4 \\ & 16.1 \\ & 14.3 \end{aligned}$	$\begin{array}{r} 1.08 \\ 1.04 \\ .90 \end{array}$	405 465 540
Average				12.0	11.4	71.7	13.9	10.1	470

NORTH DAKOTA．

Burleigh County									
John Yegen	7635		Sept． 29	10.9	10.4	70.3	7.8	1.39	453
Cass County．									
J．I．Fuller．	7617		Oct． 1	13.7	13.0	72.9	4.5	1.62	550
Do．	7618	K）cin Wanzlebener	Oct． 1	13.2	12.5	74.2	10.2	1． 29	575
M．Wroodhull	7521		Oct． 6	8.3	7.9	－59．2	1．6	1． 80	1，102
G．N．Smith	8425	Klcin Wanzlebener	Nor． 15	16.2	15.4	79.0	11.7	1．39	760
	8126	Dippe＇s Vilmorin．．	Nor． 15	17.1	16.3	86.8	14.1	1． 21	695
I roraze				13.7	1\％，（\％	75.5	0.0	1.56	736
Dickey County．									
Charles Stekl．	7991	Florimond Desprez．．．．	Oct． 25	10.5	10.0	67.3	6.3	1.66	1，0．0
	7992	K゙loin Wanzlebener ．．．	Oet． 25	12.7	12． i	73.4	8.8	1.44	1， 070
Average				11.6	11.0	70.4	7.6	15.5	1，060
Morton County．									
Joseph Miller．．．．．	7761	Brabant	Oct． 10	14.5	13.8	73.9	8.1	1． 79	508

NORTE DAKOTA-Continned.

Name of grower.	$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Variety.	When receired.			感	$\begin{aligned} & \text { Saline coeiti- } \\ & \text { cient. } \end{aligned}$	-	
Nelson County. James Lawer	7683		Oct. 4	$\begin{aligned} & P . c t . \\ & 14.3 \end{aligned}$	$\begin{aligned} & P . c t_{0} \\ & 13.6 \end{aligned}$	74.1	9.9	$\begin{aligned} & P . c t . \\ & 1.45 \end{aligned}$	Gr'ms.
I. J. O	7612	Klein Wanzlebener	Sept. 27	10.9	10.4	70.8	8.1	1.35	80.5
Do	7613	. .lo.	Sept. 27	12.6	12.0	73.7	9.9	1.35	$8: 5$
Do	7614	Florimond Desprez	Sept. 27	9.4	8.9	67.6	7.5	1. 26	8:0
Do.	7615 do.................	Sept. 27	10.6	10.1	73.1	8.8	1. 21	725
Average				10.9	10.3	71.3	8.6	1.29	794
Henry Straub	8198	Vilmori	Nov. 11	22.1	21. 0		18. 3	1. 21	220
	8199	...-do .	Nov. 11	21.6	20.5		18.4	1.17	215
A verage.				21.9	20.8		18.4	1. 19	218
J. J. Nierling	7792	Klein Wanzlebener...	Oct. 11	13.2	12.5	77.6	10.5	1.26	570
G. von Steinwehr	7600		Sept. 24	10.5	10.0	69.1	8.1	1.30	1,022
Do	7601		Sept. 24	10.3	9.9	70.1	8.1	1. 39	796
P. Herbranulson	7926	Klein Wauzlebener	Oct. 20	13.8	13.1	78.4	12.3	1.12	1,26.3
Bure Bureson	7953	...do.	Oct. 23	20.6	19.6	84.1	17.0	1. 21	397
Wm. Carson	7957	- . do	Oct. 23	16.7	15.9	73.6	8.8	1. 81	2×8
N. F. Griswold	7958	. . du	Oct. 23	18.6	17.7	79.1	12.2	1. 51	490
C. Cranston	8210		Nov. 14	17.8	16.9	82.4	12.5	1. 43	650
Average.				15.5	14.7	76.7	11.3	1.31	701

OHIO.

OREGON．

Name of grower．	$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Varioty．	$\begin{gathered} \text { When } \\ \text { received. } \end{gathered}$	Sucrose in juice.		觘	Saline coeffi－ cient．	㖊	$\begin{aligned} & \text { A rerame weight } \\ & \text { of beet. } \end{aligned}$
Jackson County． F．ス̌．Musty Do	$\begin{aligned} & 8128 \\ & 8129 \end{aligned}$		Nov． 28 Nov． 28	$\begin{aligned} & P . c t . \\ & 15.3 \\ & 16.4 \end{aligned}$	$\begin{aligned} & P . c t . \\ & 14.5 \\ & 15.6 \end{aligned}$	$\begin{aligned} & 72.2 \\ & 74.5 \end{aligned}$	9．1	$\begin{gathered} \text { P.ct. } \\ .68 \\ .95 \end{gathered}$	$\begin{array}{\|r\|r\|} \hline\left(i r^{\prime} m s .\right. \\ 610 \\ 510 \end{array}$
Average				15.9	15.1	73.4	14.2	． 82	560

PENNSYLVANIA．

Darephin County．									
E．IT．Leib	8285	Green Top	Nov． 19	8.8 8.9	8.4	74.6	7.0	1.26	1，014
	8：86	Red Top	Nor． 19	8.9	8.4	78.8	9.0	． 99	1， 404
Average				8.9	8.4	76.7	8.0	1． 13	1，209
Lancaster Counly．									
F．Mr．Weaver	7363	Klein Wanzlebencr ．	Sept． 18	6． 8	6.5	63.5	6． 6	1． 03	1，067
$1) \mathrm{O}$	7361	Lemaire．．．．．．．．．．．．．	Sept． 18	6． 3	6.0	83． 2	5.6	1． 12	362
Do．	7365	Florimoud Desprez．．．．	Sept． 18	10.3	9.8	78.0	12． 0	． 86	380
2．Wingenratl	7633	Klein Wanzlebener ．．．	Sept， 29	8.6	8.2	74.1	8.7	． 99	537
D）	7637	Florimond Desprez	Sept． 29	9.8	9.3	73.7	9.5	1.03	560
Frank staulfer	774	Dippo＇s Vilmorin．	Oct． 9	6． 9	6.6	65.1	8.4	． 82	445
Do．．．．．．．．	7750	－1．	Oct． 9	6． 6	6.3		7.0	． 94	610
I rera				9.3	7.5	72． 8	8.3	． 97	S6
Philatelyhia County．									
N．Bat	8111	Whito Sugar	Nov． 24	10.9	10.4	75.2	9.0	1． 21	1，225

SOUTH DAKOTA．

Brookings County．										
Sunth Dakota Auri． cultmat Fiperi－	8116	Bultran Desprez Rich－ est．	Nov．	3	15． 7	14.9	84.0	14.5	1.08	570
ment Station． 1） 0 \qquad	8117	Dippe＇s Vilmorin	Nov．	3	15.9	15． 1	84.1	18.5	． 87	390
$1)$	8118	Oxnarl Factory．	Nov．		17.8	16.9	91．3	20.7	． 86	$3 \geq 8$
1）	8119	Pajarro Valley，Cal	Nov．	3	14.4	13.8	76． 6	13.3	1．00	418
1 ）	$\cdots 120$	Flomimond Desprez ．－	Nor．	3	13.0	12.4	85.0	7.8	1.67	585
Do．	8121	Klein Wanzleben¢r ．．	Nov．	3	15．2	14.4	86.4		Lost．	556
Do	8122	Simon Legrand White Improved．	Nov．		14.2	13.5	87.1		Lost．	451
Δ verage					15． 2	14.4	84.9	14.9	1.10	472
Brown County．										
Andrew lallwer	8135	Klein Wanzlebener．	Dec．	1	17.2	16.3	80.4	14.7	1.17	205
Davilson County．										
Salem brimer	7－7．1		Oet．		10.7	10.2		5.9	1． 80	821
11．C．Mreston	Nus2		Oct．	31	15.8	15．0	78． 6	13． 1	1． 21	790
A verago					13.3	12.0	72.3	9.5	1.51	806
Grant County．										
D．W．I）iqus ．．．．．．． Hymle County．	8043		Oct． 2	8	11.6	11.0	73.0	7.4	1.57	856
Jno．C．Stoner．	7661	Simmin Lecrand	Oct．		13.2	12.5		13.1		
1）0．．．．．．．	7662	．．．．do ．．．．	Oct．	3	13.7	13.0	78.7	11.1	1.23	795
Do	7961		Oet．	23	14.6	13.9	76．0	14.8	93	445
D0 ．．．．．．．．．．．．．．	710		Oct．	\％	$1: 3.3$	12.6	81.1	11.0	1.21	5111
Average					13.7	13.0	78.8	12.5	1.11	619

SOUTH DAKOTA-Continued.

TEXAS.

Scurry County. W. M. Sawfer Do	$\begin{aligned} & 8024 \\ & 802 . \end{aligned}$		$\begin{array}{ll} \text { Oct. } & 27 \\ \text { Oct. } & 27 \end{array}$	$\begin{array}{r} 9.9 \\ 11.0 \end{array}$	$\begin{array}{r} 9.4 \\ 10.5 \end{array}$	$\begin{aligned} & 67.3 \\ & 71.4 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 8.2 \end{aligned}$	$\begin{aligned} & 1.44 \\ & 1.35 \end{aligned}$	1,150
Average				10.5	10.0	69.3	7.6	1.39	1,072

VIRGINIA.

WASIIINGTON.

Name of grower.	$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Varicty.	When received.			完		荘	
Lewis County. W. J. Hoyne	8436		Dec. 2	P.ct. 16.0	P.ct. 15.2	84.2	14.2	$\begin{aligned} & P . c t . \\ & 1.12 \end{aligned}$	$G r_{450}$

WISCONSIN.

WYOMING.

Table showing beets having from 15 to 18 per cent. sucrose.

Name of grower.	$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	State.	County.	Variety.	$\begin{aligned} & \text { When } \\ & \text { received. } \end{aligned}$	Sucrose in juice.	Sucrose in beet.	Purity.	Saline cuerii. cient.	Ash.	Average weight of beets.
University of California.	7619	California	Lns Angeles	Vilmorin	Sept. 27	Per ct. 16.8	Per ct. 16.0	87.0	17.9	Per ct.	$G r$. 352
Do....................	7616du	-. do......	Excelsior	Sept. 27	16.3	15.5	81.5	18.1	. 90	407
C. S. Crandall	8035	Colorado	Larimer	Bulteau Desprez	Oct. 27	16.0	15.2	86.0	16.9	. 05	395
	8036	do	do	..do	Oct. 27	15.5	14.7	84.7	16.3	. 90	460
Do	8038	do	do	Klein Wanzlebenr	Oct. 27	15.9	15.1	86.0	16.7	. 95	805
${ }^{1} \mathrm{DO}$.	8039	do	do	Florimond Desprez	Oct. 27	16.2	15.4	814	18.0	. 90	475
H. R. Rhone.	と073	do	Мела	Notgiven.	Oct. 30	15.2	14.4	86.4	13.0	1.17	453
Pueblo Board of Trade..	8178	d	1'uebldo	Nov. 8	15.5	14.7	82.9	13.3	1.17	650
Do.	8179	do	. . . do	. . do	Nov. 8	15.9	15.1	84.1	14.0	1.12	580
${ }_{\text {D }}^{\text {Do. }}$	8180	do	\cdots..do	- ${ }^{\text {a }}$ -	Nov. 8	15.4	14.6	83.7	14.3	1.08	485
C. WV. Zepp	8055	\cdots	Tuma	Simon Legrand	Oct. 29	15.7	14.9	79.7	12.1	1. 30	333
E. McAllister	8266	1llinois	Will	French Riche-t	Nor. 17	15.9	15.1	85. 0	16.1	. 99	600
F. H. Crumb	$8: 16$	\ldots do	Warren	Florimond De:prez	Nov. 14	15.3	14.5	87.0	17.0	. 90	610
J. A. Fellers	775	lowa.	Black Haw	Klein Wanzlebener	Oct. 10	15.3	15.1	81.5	18.1	. 88	625
R. Hoff	7892	. do	Welister	Vilnorin	Oct. 16	15.9	15.1	95.2	18.3	. 81	320
Do.	8173	. ${ }^{\text {do }}$	do		Nov. 8	17.6	16.7	91.1	25.9	. 68	520
August Bo	8021	.do	Carroll	do	Uet. 27	15.5	14.7	85.2	14.4	1.08	213
G. B. Lord	7811	Kansas	Johnvon	Vilmorin	Oct. 13	16.8	16.0		12.2	1. 38	180
A. L. Bandy	8041do	Hamilton	Klein Wanzlebene	Oct. 28	15.7	14.9	89.2	13.8	1.12	$7: 0$
O. Corle.	8433	. ${ }^{\text {do }}$	Barber	Not given]ec. ${ }^{\text {J }}$	17.8	16. 9	84.8	17.3	1.03	140
Maryland Agricultural	8057	Maryla	Prince	Dippe's Vilmor	Oct. 29	15.9	15.1	90.4	19.6	. 81	383
Experiment Station. Do.	8200		do		Nov. 12		14.6				
Do	8229	.do	10	do	Nov. 15	15.1	14.4	83.9	15.9	. 95	
Do	8249	. do	do	do	Nov. 15	15.4	14.6	82.8	24.4	. 63	555
Do	8:54	. do	do	do	Nov. 15	15.1	14.4	86.3	19.6	. 77	245
D	8143	do	do	Simon Legrand	Dec. 4	17.6	167	91.2	19.6	. 90	213
Do	8444			Sulteau Desprez Ri	Dec. 4	17.8	16.9	84.8	19.8	. 90	163
D Do.	8446	\therefore - do		Klein Wanzlebener	Dec. 4	17.4	16.5		17.6	. 99	125
W. H. Tunney \& C	8139	Massachusett	Suffolk	Not give	Nor. 5	16.8	16.0	83. 8	17.0	. 99	350
J. P. Devernport.....	8284	Michigan.	Muskego	Kussian	Nor. 19	16. 4	15.6	89.1	17.2	. 95	
Dr. E.J. Howe	7696	...do	Ionia	Lpmair	Oct. 6	17.7	16.8	81.7	21.6	. 82	387
J. S. Lawson	8047	do	Macomb	Klein Wanzleb	Oct. 29	16.8	16.0	89.8	28.5	. 59	680
Do D (${ }^{\text {debert }}$ Glover	8048	do	do	Simon 1	Oct. 29	15.5	14.7	85.2	18.0	. 86	705
Robert Glove	7606	Minnesota	Wilkin	Dutch	Supt. 24	15.4	14.6	80.6	15.6	. 99	447
John Hunter	7659	do	Anoka	Not given	Oct. 2	15.9	15.1	81.1	17.2	. 93	680
Leonhard Z	7707		...do	- ...do	Oct. 6	16.3	15.5	82.3	18.3	. 89	387
E. A. Dounell	7788		Carver	Klein	Oct. ${ }^{\text {Oct. }} 11$	15.8	15.0	81.0 86.7	15.2	1. 04	503
W. H. Budd	7877	do	Martin	do	Oct. 15	15.0	14.3	85.2	13.9	1.08	730
Peter Weinand	8151	. do	Hennepi	Not rive	Nor. 6	16.5	15.7	79.3	15.3	1.08	847
W. H. Loverin	8171	. do	...do	Kleiu Wauzl	Nov. 8	15.6	14.8	87.2	15.8	. 99	600
Simon Huntington.	8007	do	Cotton	Florimond Desprez.	Oct. 27	15.6	14.8	72.9	10.8	1.44	675

$\frac{\dot{n}}{\infty}$	
$\begin{aligned} & = \\ & = \\ & = \end{aligned}$	
	 2
	 f
$\begin{aligned} & \text { E } \\ & = \\ & = \\ & = \end{aligned}$	
-	
$\frac{\underset{y y}{*}}{\frac{8}{3}}$	
苞	

⿷匚⿳丨コ丨卜丿丶丶	
- No Nos निंलिय नiल	
 	nt．thenctmocti $\rightarrow \underset{\sim}{\infty} \mathfrak{\infty}$

Cのザッレ5000 	

－$-\infty$ Nनल Host 	
	¢लッHtNewtog

 नं

Table showing brets having 18 per cent. sucrose and orer-Continued.

Name of grumer.	$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	State.	County.	Variety.	$\begin{aligned} & \text { When } \\ & \text { received. } \end{aligned}$	Sthrost in julce	Sherome in beet.	Purity.	Saline corfticient.	Ash.	$\begin{aligned} & \text { A verate } \\ & \text { weight } \\ & \text { of beets. } \end{aligned}$
						Perct.	I'er ct.			Perct.	$G r$.
Bure Bureson	79.3	North Dakota.	Traill	Klein Wanzlebene	Oct. 23	20.6	13. ${ }^{\text {d }}$	81.1	17.0	1. 21	397
N. Y friswold	79.8do .	..do	$\ldots \mathrm{l}$. ${ }^{\text {d }}$	(1ct. 23	18.6	17.7	79.1	12. 2	1.51	430
Henry Straub.	8198	do	Sarcent	Vilmorin	Nov. 11	22.1	$\underline{21.0}$		18.3	1.17	215
$10_{0} \ldots \ldots \ldots$	8199	- do...			Nor. 11	19.8	18.8		16.9	1.17	3:5
Heny S I'arker	-054	Wy yming	Laramio	Not give	Oct. 3	19.8	18.8				

Table showing yield of beets of different weights per acre, etc.

Weight of bett.	Weight of beet.	Field per acre	$\begin{aligned} & 8 \mathrm{prer} \\ & \text { ceut. } \end{aligned}$	$9 \text { per }$ rent.	10 per cent.	11 jet cent.	12 per cent.	13 per cent.	14 per cent.	15 per ceut.	16 per cent.	$\begin{aligned} & 17 \text { per } \\ & \text { cent. } \end{aligned}$	18 per cent.	$\begin{aligned} & 19 \text { per } \\ & \text { cent. } \end{aligned}$	$20 \text { per }$ ctint.	$\underset{\text { ceut. }}{21}$	$\begin{aligned} & 22 \text { per } \\ & \text { cent. } \end{aligned}$
Grammes	Ounces.	Tons.	563	634	704	774	845	915	986		1,126	1,197	1,267	1,338	1,408	1,478	1,549
S00	7.06	8.80	1,126	1, 267	1,408	1,519	1,690	1, $8: 30$	1,971	2,112	2, 253	2,394	2, 534	2,675	2, 816	2, 957	3, $0: 18$
$3(1)$	10. 59	13.20)	1, 6x0	1, 901	2,112	2, 323	2,534	2,746	2,957	3,168	3,379	3,590	3, 802	4, 013	4, $2 \cdot 2$	4, 435	
400	14.12	17. 611	2, 253	2, 534	2, 816	3,098	3,379	3,661	3, 942	4. 223	4, 506	4,787	5,169	5,350	5, 632	5,914	
50	17.65	22.00	2,816	3,168	3, 520	3,872	4, 2:4	4,576	4,9:8	5, 280	5, 632	5,984	6.336	5, 688	7, 040		
600	21.18	26.40	3, 379	3, 802	4, $2 \underline{2} 4$	4, 616	5, 016	5,491	5,914	6,336	6,758 7885	7, 8181	7, 611 8,870				
700	24	30.80	3, 942	4,435	4,928	5, 4×1	5.914 6.758	6,406 7,322 8.208				$\begin{aligned} & 8,378 \\ & 9,574 \end{aligned}$	8,800				
800 900	- 31.87	35. 20	4, 506 5,069	5,069 5,702 5,782	5,633 6,336	6,135 6,970		7, 8.232	7,885 8,870	8,448 9,504	9, $\mathbf{9} 011$ $\mathbf{1 0 , 1 3 8}$						
900 1,000	31.77 35.30 35	39.60 44.00	5,069 5,632	5,703 6,336	6,336 7,010	6, 970 7,744	7,603 8,448	8. 237 9,152 102	8,880 9,856	9, $\mathbf{1 0 , 5 6 0}$	10,138						
1,100	38.83	48.40	6, 195	6, 970	7,744	8,518	9,293	10, 067	10,842								
1,200	42. 36	52.80	6,758	7, 603	8,448	9,193	10, 138	10,982									
1,300	45. 89	57.20	7, 322	8,237	9,152	10,067	10,982										
1,400	49.42	61.60	7,885	8,870	$\begin{array}{r}9,856 \\ \hline 10\end{array}$	10,842											
1,500	52.95	66.00	8,448	9,504	10,500												

figures under the several per cents of susar in the beets give roughly the quantity of sugar which would be obtanned per acre, with the rield and in huess indicated. To get the total sugar per acre, tualtiply the per cent in each case by 2, ve0, and by the yield per acre in tons. Thus the total su gar produced per acre for a beet haring 14 per Che yield in tons is based on the supposition that 40 , 000 plants grow upon each acre. This rule conld be applied to beets up to 700 grammes in weight, but abore that plete the table on the one plan. ber, but 80 per cent may be taken as a fair average yield.

In the preceding summary of the beets sent from Nebraska are not included those which were examined at the Grand Island Sugar Factory under the direction of the Chemical Division, but only those which were sent directly to the Department at Washington for examination. In addition to these two sets of analyses large numbers of samples were examined in the laboratory of the Agricultural Experiment Station at Lincoln.

The following table contains the results of the analyses made by Mr. H. E. L. Horton at Grand Island, Nebr., on samples of beets delivered for manufacture:

Name.	Post-otice address.	$\begin{gathered} \text { No. of } \\ \text { sam- } \\ \text { ples. } \end{gathered}$	age of beet	Total solids indica ted by brix spindle	Sucrose in juice.	Purity coetticient.
			ms.	Pr.ct.	Pr.ct.	
Anderson, E.C.	Dannebrog, Howard	1	204	20.3	17.1	84.2
duton, Conral	Palmer, Merrick Co	3	130	18.6	16.0	66. 7
A ppel, Christ	Dannebrog, Howard	1	189	20.1	17.9	89. 1
Asterhold, W	Grand Island	9	251	20.2	16.5	8.2
Aye, Pete		4	204	19.7	16.4.	82.8
Barnard, Alfir	Alda,		273 419	-20.6	17.5	87.9
arick, Willia	do		131	20.0	16.6	83.0
Barth, Fritz	Grand Island	12	173	19.3	16.3	81.0
Baumann, Euo		3	$2 \cdot 1$	20.2	16.9	83.8
Baumann, Ren	St	2	209	19.5	16.5	885
Backkora	St M	1		19.1	16.3	
Bame, E.	uyler, Cold	1	242	19.6	16.7	
Beekmann, A	Grand 1sland		351	19.0.		80.0
Becker, Fritz	do		${ }_{124}^{232}$	23. 19.9	20.1 16.7	85.9 83.9
Berry, Geory	Seward, Sewa	2	280	19.7	16.7	¢. 8
Bern, Frielrich	Grand 1sland	9	255	19.5	16.3	
Bemis, A . H	Sewara, sewar		334	18.1	14.9	
Bell, D. E .	Chapman, M	12	294	19.3	16.0	83.4
Beberniss, Fri	Grand 19land	15	212	20.5	17.3	84.4
Belville, Josep	Chapman, Mer	7	203	18.6	15.8	
Bejer, Karl	Grand Island	10	273	18.7	15.9	
Blaine, H. M			21.9	19.8		86.9
Blunk, Ad		15	218	${ }^{20.1}$	17.4	78.1
Boose, Johan	Grand Island	12	188	218.5	10.4.	
Boek bolm, Carl	Cairo, Hall Co	7	182	19.6	16.3	81.4
Boersen, Henry	Grand 1mland	12				
Bruckner, R.	Nantasket, Buffa		267	20.5	17.7	6. 3
$\xrightarrow{\text { Brannan, }}$ Brachmann, D	Central City, Mer		217	$\underline{29.1}$		\%
${ }^{\text {Brachmann, }}$ Brandt, David	St. Libory, How	4	245	90.4	17.4.	87.0
Brassch, Adolph	Grand Island		2:3	19.2	15.6	
Bruckmann, E		5	302	18.9	15.5	
Buckow, Frit	do	1	542	19.5	5	
Burman, Os	Alda, Halico.	1	178	${ }^{18.4}$	${ }^{16.1}$	8 81.4
Buhmann, Hury	St. Libors, Howard	1		193	16.7	
Buell, H. G	Cbapman, Merri	5	199	18.8	15.5	83.
Buchholz,	Grand Island		178	18.2	15.3	
dillke, J			287		. 0	
${ }^{\text {buxing, }}$ Er		2	229	18.9	15.8	
Case,	Clarks, Merric	1	${ }_{160}^{334}$	$\because 0.0$	15.5	8.9
Carter, Fr.	St. Paul, Howard Co		160	${ }_{22.7}^{18.2}$	18.1	
Carlsen, N. T	Danuebrog, Howard				16.6	
Campbell, J. M	Cairo, Hall Co	2	240	20.0	15.9	9.2
Clad, Jno. E. R	Chapman, Merrick		322	23. 8	18.8	8.5
Class, Frank	Ravenda, Buffalo Co		160	20.5	${ }^{16.4}$	
Clarks Sugar and Beet Co	Clarks, Merr	1	187	${ }_{2}^{23.2}$	19.1	\%
Cranivisur, John	Columbus, Platte Co		280	5	18.4	85.6
Craig, C., E. and			279	18.8	15.5	8.
Cushman, I. B	Chapman, Merrick Co	13	269	18.8	15.6	83.0
Cunningham,	Wood River, Hall Co	6	230	19.3	16.4	
Daniels, A.P	Clarks, Merrick Co		207	19.8	10.6	

Name.	Post office address.	$\begin{array}{\|l\|} \text { No. of } \\ \text { sain- } \\ \text { ples. } \end{array}$	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { weight } \\ \text { of beet. } \end{gathered}$	Total solids indica. ted by Brix spindle.	Sucrose in juice.	Purity coeft cient.
	Grard Island	1	Grams. 335	$\begin{array}{r} \text { Pr, ct. } \\ 18.4 \end{array}$	$\begin{array}{r} \text { Pr.ct. } \\ \text { 15. } \end{array}$	83.7
1)ammar, (\%)	- . .do	1	217	19.7	17.3	87.8
1)avil, M. ${ }^{\text {c }}$	Broken Bow, Custer Co	,	339	22.1	17.6	79.6
1)aberkon, Karl	Gramd Island	4	173	18.8	15.9	86.0
1)e Moss, W. T.	Shelton, Hall Co	1	164	23.4	21.0	89.3
Detlet, S	Grand Island	8	138	20.2	16.7	81.9
Detlef, Cristen	.do	4	265	18.9	15.5	81.
1) е-ichmam, Са	do	22	306	19.4	16.4	84.5
1)ichl, E	Cairo, Hall Co	1	146	20.5	16.8	81.9
Diekmann, Peter	st. Libory, Howard Co	4	277	19.4	16.6	86.7
Dorgensen, Saren	Dannebrog, Howard Co	1	228	19.5	16.2	83.1
Dohms, Carl .	Grand Island	9	178	18.7	15.4	8\%. 4
Dobrinske, Aug	. ${ }^{\text {d }}$ do	8	332	20.6	17.5	84.6
Drake, Leroy	Shelton, Buffalo	1		19.3	17.0	88.1
1)utton, Jas. H	Chapman, Merrick	2	198	20.9	17.6	83.8
Düuermann, C. II	Grand Island	18	251	20.4	17.3	85.1
1)unermann, G	do	12	197	19.3	15.8	84.0
Fickholf, H	. 10	,	219	19.7	16.1	8\%. 7
Elstermeur, Ca	${ }^{1}$	1	173	22.3	18.2	81.7
Emnis, Martin	do	1	271	17.7	15.0	84.7
Enders, Casper	St. Libory, Howard	2		20.3	16.6	81.6
Erozim, Chas	Ravenna, Buffalo Co	1		23.0	18.5	80.5
Erickson, Jacul	Nysted, Howard Co	1		18.2	11.6	80.2
Erickson, Neldo	1	390	20.7	17.4	84.1
Ernstmeser,	Grand Island	5	224	19.6	15. 6	80.1
Erozim, A niul	Karenna, Buffialo	2		19.6	15.9	85.4
Ewoldt, Cay	Grand Island	1	409	$1{ }^{5} .3$	11.9	77.7
Ewold, B		11	259	17.3	14.1	81.5
Ewold, Clans	do	2	443	18.2	14.5	80.0
Ewing, Joln	Wood Riv	4	180	19.0	16.5	83.4
Falldorf, Fred	Grant Island	11	206	18.6	155	8.21
Falles, W, IL	.do	2	125	20.7	17.8	85.3
Fay, Peter.	St. Liborr, How	1	212	18.3	15.4	84.1
Farnham, D.	Central City, Merrick	1	98	19.9	16.7	83.9
Fisher, Joln	Ravenua, Buffulo Co	1	232	19.8	16.1	81.3
Fishburn, W. 1	Grand Island	8		19.8	15.8	79.3
Fischer, Jul.	do	6	234	20.1	17.7	89.9
Flörke, Heinz	do	7	275	19.7	16.4	83.5
Folson, James	do	5	211	19.4	16.1	83.0
Foulk, Geo.	St. P’aul, Howard Co					
Frauen, Jos	St. Libory, Howard	1	234	20.0	17.1	85. 5
Frey, J. S	Boelus, İoward Co	1	193	20.0	16.7	83.5
Frauen, 1'aul	Lockwood, Merrick	10	331	19.1	16.1	83.7
Franz, Fred	Alda, Hall Co	3		20.0	17.0	87.6
Friend, Johin.	Grand Island	,	191	19.9	16.8	84.5
Frank, Jacub	do	11	271	20.0	16.6	84.0
Gallup, Heury A	Alda, İall Co	5	131	19.0	15.7	82. 6
Gatwerth, Erbs	Duncan, Platte	1	212	18.7	15.9	84.4
Gallup, Heary	Alda, Hall Co	1	163	19.5	16.1	82.5
Gehrt, Peter	Nantasket, Butfalo C	1	210	18.3	15.5	84.7
Gerard, A.	13ellwoor, Butler	1	270	21.5	18.4	85.6
Geisinger, Felix	Grand Island	10	263	19.6	15.3	81.6
Giese, Henry.	do	6		17.8	18.0	83.0
Glaggner P'aul	do	4	240	20.9	17.8	85.2
Gottschalk, Frit	Fremont, Dodg	1	414	17.5	13.4	76.4
Goehring, Rich	Grand Island	14	218	19.5	16.9	85.1
Goehring, lichard	do	3	151	19.6	16.2	87.3
Goetsche, Christ	do	4	119	21.5	18.2	83.8
Gosda, Herman		2	204	18.4	15.6	84.7
Grant, Jas,	St. Libors, II	1	303	18. 2	14. 6	80.2
Grotzky, Claus	Merrick Co.	5	179	18.5	15.3	83.1
Grozch, Julins	Grand Island, IIall Co	6	180	19.3	16.0	83.2
Gremlie, Jacou	隹	4		17.2	15.1	87.2
Grotzky, Claus		2	144	20.3	17.6	86.8
Grumpecht, Car	Shelton, Buffalo	1	142	18.5	14.1	76.2
Gutzow, Henry	Grand Island	1		21.0	19.9	
Griinther Bros.	liavenna, Bulfalo	1	255	18.7	15.2	81.2
Maldemann, J. T	Alda, Hall Co..	1	78	19.8	16.6	83.9
Hanuibal, P. M	1)amelorog, Howard C	1	211	19.2	16.3	84.9
Ham, Ненгу	Granl Island	1	236	16.8	12.6	75.0
Hansen, I'eter	Wanndrog, Mowrard Co	1	$2: 1$	17.1	11.8	69.0
Hamilton, T. M	Warner's Addition	5	194	17.9	14.5	81.0
Hand, John.	Sewad, Soward Co....	2	294	18.9	15.5	81.6
Harris, 'T. R	Mampette, Hamiton Co	1	138	20.3	16.7	83.1
Ham, Moses ${ }_{\text {Hamilton, }}$	St. Michael, Butfalo Co.	,	215	18.3	14.2	72.1
Hamilton, T. H	Grand Island	24	410	18.9	15.9	81.1
Hanssen, Gils	Wido.	11	257	19.9	16.7	84.1
Напвеп, Jens.	Dannebrog, Howard Co.		254	18.7	15.8	84.7

Name.	Post-office address,	No. of sam. ples.	$\begin{gathered} \text { A ver- } \\ \text { age } \\ \text { weight } \\ \text { of beet. } \end{gathered}$	Total sulidm indicated by Brix spindle.	Sucrnse	Purity coefticient.
	Grand Island	10	Grams.	P'r.ct.	Ir.ct.	87.6
Hamlin, J.	Seward, Seward Co..........	2	151	19.2	$\begin{aligned} & 18.4 \\ & 15.7 \end{aligned}$	81.78.58383.4
Hansjosten, Pet	Chapman, Merrick	$\begin{array}{r}6 \\ 5 \\ \hline\end{array}$	278	19.4	16.2	
Hansen, Jens .	Boelus, HowaGrand Island		285	20.3	16.9	
Hansjosten, Jahn				19.419.2		83. 2
Hasman, Ernst and Fritz.	.do	25	241		15.6 16.4	81.9 84.6
Henrikson, M...........	Dannebrog, Howard	11	246	20.0	16. 2	
Henrikson, L. H	Boelus, Howard Co		343 236	18.8	15.5	
Hermanson, Martin	Dannebrog, Howard	1		20.620.9	17.518.1	
Hegeman, O. R.	Buckley, Jefferson Co	1				$\begin{aligned} & 81.9 \\ & 86.6 \end{aligned}$
Heusel, 1 m m .	Shelton, Buffalo Co	1	135 232 178	21.0	18.1 17.7	84.3
Hume, Heim.	Grand Island		178	18.7	11.7	78.6
Hessel, Josepl			227	$2 \mathrm{c}, 0$	15.9	
Hein, Claus..	Fremont, Dodge			20.5	17.518.9	82.0 85.4
Hein, Mathias	Chapman, Merrick		227 192	22.4		85.4 84.3
Heinz, Nich	Pleasant Add., Hall C		266	19.1	18.9 16.4	84.3 85.9
Helkrey, Jay	Norfolk, Madison Co	3 3 3	488	19.0	15.8	83.28.2
Hillis, Jno. \&	Doniphan, Hall Co		317292	19.5	15.816.316.3	
Horak, John	Sherman Co	1				$\begin{aligned} & 82.8 \\ & 81.5 \end{aligned}$
Housew orth, Mor	Fremont, Dodge Co	1	324	20.0 20.1	17.2	85.690.2
-Houten, J.D. van	Norman, Kearney C	1	204	21.5	19.4	
Hohmav, Caspar	Grand Island.	9	$13 t$	19.6	16.0	90.2 81.6
Honeywell, G. W	St. Paul, Howard C	2	310	21.020.6	18.517.4	81.6 88.3
Hunter, C. H.	Seward, Seward Co	1	130			88.3 84.5
Hund, G. \& B	Cairo, Hall Co	3	260	20.6 19.5 19	15.6	83.1
Husch, Peter	Grand Island	9	212	19.7	16.816.9	85.386.2
Janssen, Pete	Rockvile, Sherman	1		19.619.2		
Jacob, Georg	St. Paul, Howard Co	2	1396		16.9	86.280.0$8+5$
Jensen, Chirist	Dannebrog, Howard Co		324 143	16.8	14.2	
Karp, Chas.	St. Michael, Buffalo Co	1		20.621.2	17.3	$8+.5$ 83.9 86.9
Karstel, George	St. Libory, Howarì Co	1	286		18.316.3	86.386.4
Ketter, A. B.	...do	2	321	18.9		
Kent, M	Grand Island	1	${ }_{217}^{219}$	20.6	16.3 18.1	86.4 87.8
Keïhı, H. F.	Dannebrog, Howari	1		20.2 198 8	16.016.3	89. 5
Ketteler, A. H	St. Libory, Howard Co		289			
Kunson, Ch.	Boelus, Howard	1	270	19.8 20.8	17.2	82.58.780.780.38.3
Keineh, M. E	Cairo, Hall Co.	1	211	20.020.7	17.3	
Kingsley, 0.	Clarks, Merrick Co	3	$\begin{aligned} & 164 \\ & 354 \end{aligned}$			
Klase, Rob	Doniphan, Hall			16.119.0	14.114.8	
Kleive, E	Grand Island		206			8 76.8 7 810.7
Kleio, Ernst	...do		339	21.8	16.7	
Klingenberg, H	Chapman, Merrick Co			18.519.7	15.9	83.779.6
Klunker, Fred	Sheiton, Buffalo Co.		360			
Knipphals, Ch	Grand Island		221	19.7	15.8	8.3.
Kosch, Vincent	Boelus, Howard Co		215181	21.2	17.9	
Kolar, Joseph	Ravenna, Buffalo Co	1		20.0	16.8	84.1 Si. 0
Kozel, Anton	Ravenna, Buffalo Co	2	373	21.2	17.5	2. 5
Kühler, Osca	Grand Island	11	240	20.2	17.6	87.1
Kroeger, Hans	do	1	169	20.8	17.3	83.2
Kroeger, Rad	...do		219	20.4	17.2	83.7
Kruse, Henry		15	252	19.1	16.0	83.4
Kraemer, Peter	Merrick Co	25	276	18.4	15.0	81.4
Krekuke, Jul	Alda, Hall Co	4	277	19.9	16. 6	85.8
Eroeger, Fred	Grand Island	,	286	19.2	15.7	81.8
Kroeger, Michae	do	21	283	20.6	18.8	8.3. +
Kuhlman, W. M		1	186	19.7	15.6	79. 1
Kuhner, Karl	Philips, Hamilton Co	5	204	18.0	15.0	83.3
Kundsen, B	St. Libory, Howard Co	1	180	17.7	14.6	82.4
Kutschkan,	Grand Island	3	151	21.0	17.5	83.4
Lamsen, John	Dannebrog, Howard	1	110	19.2	15. 6	81.3
Lange, Henry		12	351	18.5	15. 6	
Lange, H..	Grand	11	170	20.4	17.8	86.8
Lassen, Conrad	...do	5	290	17.5	14.3	83.9
Leppin, Wm	do	12	168	19.5	16.2	83.6
Leppin, Christ.	do	11	161	22.8	18.6	<-2. 9
Linden, John P	do	5	277	17.2	14.0	81.1
Lilienthal, H	do	17	247	19.2	16.1	
Linelstrom, M.J	Boelus, Howard	1	187	21.0	17.8	44.8
Lopmann, Wilhelm	Grand Island.	11	175	20.3	36.5	81.2
Long, T. M.	St. Michael, Buffalo Co	1	101	19.9		
Lübs, Henry	Alda, Hall Co	5	261	21.5	18.3	81.9 83.4
Luth, Fred	Graud Island	5		20.1	16.5	
Lübbe, Claus	Wo	19	284	19.5	16. 5	85.4
Lyons, Miles	Wood River, Hall Co	1	261	21.0	16.9	
Marshall, John	Columbus, Platt Co.	1	237	18.7	16. 6	
Martin, David	Central City, Merrick Co	1	274	20.1	16.7 14.8	88.8
Marshal, Thos. F	Columbus, Platt Co	1	207	18.2 19.7	16.4	83.3
Madson, P. Cb	Dannebrog, Howard Co	1	388 269	19.5		
Marshal, Jos	Columbas, Platt Co.	1	269	19.5	10.1	82. 6

Name.	Post-office address.	No. of samples.		Total solids indica. ted by Brix spindle.	Sucrose in juice.	Purity contricient.
Marlin, J. B	Schuyler, Colfax	2	Grams. 374	$\begin{array}{r} \text { Pr.ct. } \\ 20.7 \end{array}$	Pr.ct. 16.7	80.5
Martin, J. L	Chapman, Merri	3	360	18.8	15.7	83.3
Mckee and II. B. Wray.	Alda, Hall Co	5	200	19.8	16.6	82.5
MeDaniel, W. R	Cairo, Hall Co	1	151	20.5	18.5	90. 2
McLoin, R	Fremont, Doige Co	1	271	18.8	15.7	3.4
McIntosh, W.	Rockville, Sherman Co	1	117	20.2	16.8	83.1
Mettembricl	(irand Islaud	13	211	19.0	15.9	83.3
Melson, L.	1)annebrog, H	1	138	20.2	16.7	82.7
Mildenskein,	Grand Istand.	6	195	18.8	15.5	82.2
Millard. C.E	0 Neill, Holt Co	$\stackrel{2}{2}$	278	20.3	16.3	81.6
Mitchell, Rob	Grand 1sland.	13	2:38	18.4	15.0	82.1
Mohe, John		4	313	19.8	16.9	84.4
Morse, Mare	Clarks, M	4	270	20.4	16.7	82.3
Moody J. L	Scotia, Greeley	2	274	18.8	15.6	82.7
Mohr, Peter	Grand Island	11	285	19.1	16.2	84.5
Moore, P'. C.	Central City, Merrick Co		407	20.0	16.0	80.0
Morris, C. H	Chapman, Merrick Co	1	160	23.5	18.2	
Murey, Gorde	Cairo, Hall Co		231	20.5	17.5	. 4
Mürller, Ludwig	Chapman, Mer	4	193	17.9	14.8	83. 5
Muhl, Peter	...do	2	219	22.1	18.5	83.9
Me. Mullen, R	Grand Island	11	265	18.6	15.4	3. 2
Myers, John	Shelton, Hall	1	272	23.7	20.2	5.2
Natrike, Carl	Grand Island	15	321	18.6	15.6	83.3
Navy, Wenze	laverna, Butfialo Co	2	249	21.7	17.8	82.3
Neubert, Johan	Grand Island	13	254	18.8	15.3	81.5
Neubert, 3 chn	do	3	164	20.4	17.1	85.3
Nerills, M. T	Wood River, H	1	273	21.4	17.9	836
Nelson, N	Dannelirog, How	1	264	19.8	17.0	85. 8
Nieturerer, Christian	Grand Istand	4	246	21.6	18.7	86.4
Nietfeld, Wm	do	7	307	19.2	16.1	8.9 9
Nissen, Chr	do		192	20.0	17.0	81.2
Nietfeld, Henr	do	,	203	21.0	17.4	8\%.8
Nichnls, H. W	St. Paul, How	1		21.8	18.7	85.8
Nietfeld, Frit	Grand Island		161	19.7	16.6	84.3
Noack, Ernst	Shelton, Buffalo C	2	111	21.2	17.6	83.0
Norris, C. E.	Ravenna, Buttalo	1	283	20.1	16.7	830
Ohermeser 11	Grand Island	11	196	18.8	15.4	82.
Ohlmann, Fred	Shelton, Butfalo	1	282	23.4	21.3	8 8.0
()1tmann, Johm	Grant Island	9	2.77	20.9	17.3	82.9
()1wner, Fred	Nysted, Howar	6	247	19.9	16.3	82.6
Onist, J. D.	Shelton, Buffalo	1	327	23.2	19.2	8.7
Orndorff, Pete	Alda, Hall Co	1	189	20.2	16.2	
Pabl, Hans..	Grand Island,	3	208	20.2	17.4	85.8
Panstian, G	. .do	12	284	20.1	16.5	82.0
Peters, C. T	St. Liborr, Howard Co		211	19.8	16.9	85.9
Petzald, Lou	Grand Island, Hall Co	4	343	20.4	17. 1	83.6
Peters, C. T	St. Libory, Howard C	3	29.	20.3	168	$8 \div .6$
Peterson, W.	Fremont, Dodge Co	1	412	17.7	14.7	79.6
Peterson, H.	Daunebrog, Howard Co	1	1×9	19.2	15. 5	
Pitrek, Chas	Ravenna, Butfalo Co	2	173	21.2	17.4	83.1
Piafer, Henry	Grand Island, Hall Co	6	174	20.2	16.9	83.6
Pickett, James	Ravenna, Buffalo Co		145	18.4	14.4	78.8
Pitrick, John	Ravenna Butfalo Co	1	170	20.1	15.7	
Pohl, Jacob.	Grand Island. Hall Co	4	333	20.5	17.3	84.0
Polenz, Julius	Ravenna, Buffalo Co	1	367	18.6	15.7	
Prudy, H. G., and Launhorn.	Lawrence, Nuckolls	6	265	20.8	17.6	84.6
I'uchert, Chas	Ravenna, Bulfalo Co	1		20.5	15. 5	
livehler, II.	Grand Island, Hall Co	5	115	22.3	183	83.5
Rapp, L. F	Broken kow, Custer Co	1	403	19.4	15.1	77.8
Kawmussen,	Danntbrog, Howard Co,	1	140	19.5	16.5	
Lammert, Mathias	Grand Island, Hall Co	6	253	18.5	15.3	83.7
Rasmussey, H. С	Chapman, Merrick Co	5	234	17.7	14.4	81.3
Rein, Olsen	St. Libory, Howard Co	2	191	17.1	14.5	84.9
Reher, Chr	Grand 1sland, Hall C	17	310	18.6	15.5	83.1
lipmio, Freal		,	139	18.6	15.4	$8 \% 1$
Reher, John Fred	..do	13	194	20.1	17.5	87.0
Reid, J. H., and Son	Columbus. Platto Co	1	243	20.2	17.4	86.1
Reyn ${ }^{\text {r, }} \mathrm{H}$	Broken Bow, Uuster C		236	23.5	19.2	81.7
Richardson, D	Alda, Hall Co	3	217	19.5	16.1	84.4
Ritterbush. 11	Grand Island, Hall Co	2	$26:$	19.9	16.5	83.1
Mizue, $1 . J$. . do	3	114	20.4	17.5	85.7
Richter, Aug	Doniphan, Mall Co	1	4112	18.8	15.9	84.6
Rieff Menry	Grand Island, Hall Co	1	337	21.3	18.9	83.7
Liowe, 1)	Fremont, Domise ('o		419	18.4	14.6	79.2
Rosk, Frank	St. Libory, Howard Co	2	290	18.6	16.1	87.2
Rosenkalter, Carl	Grand Island, Hall Co	13	171	19.8	16.5	83.1
Rosswick, Henry	Cairo, Hall Co	2	205	18.7	14.9	80.0
Roby, Gustav ..	Grand Island, Hall Co	8	297	19.5	16.4	82.9

Namo.	Post-oflice aldress.	$\begin{aligned} & \text { No. of } \\ & \text { salur- } \\ & \text { ples. } \end{aligned}$	$\begin{gathered} \text { Avrr- } \\ \text { age } \\ \text { weight } \\ \text { of beet. } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total } \\ \text { solids } \\ \text { indica- } \\ \text { ted by } \\ \text { Brix } \\ \text { spindle. } \end{array}$	Sncrose in juice.	$\begin{aligned} & \text { Purity } \\ & \text { eooili. } \\ & \text { cooil. } \\ & \text { cient. } \end{aligned}$
Vocke, Herman II	Grand Island, Hall		Grains.	Pr.ct.	$p_{r_{r}} \text { ct. }$	
Voss, Hans.	do	18	261	19.1	15.7	82.6
Vose Heinrich			149	18.6	15.3	83.0
Walter, Aug	Paimer, Menrick C		S30	$\stackrel{20.6}{ }$	18.4	.
Waters, Georgo.	Starks, Merrick Co		${ }_{121}^{147}$	20.8 18.8	17.1 15.7	888.
Wayner, Traugot	Grand Island, Hall	5	354	18.1	14.5	80.1
Wagner, Chirist.	St. Libory, Howard	11	${ }_{223} 3$	18.9	15.7	83.4
Ward, ©.E. \& Co	Belvidere, Thay	2	279	19.9	16.3	79.8
Wents \& Wieman	Schurler Colfa	11	478	17.2	13.9	77.6
Wegner, Herman	Grand Island, Ifall Cod		253	19.7	16.2	81.5
Werner, Frauz 13		11	268	19.8	17.0	86.2
W eiss, Fred			235	18.9	15.1	79.9
Weinhold, Paul and Wever H.	do	6	190	20.3	17.6	86.5
Weller, Conrad	.do					
Wheeler, Jase	Bromfield, Manitom		213			85.9
Wilt, Heinrich G	Rrand 1stamd, Hall	1	416 101	${ }^{20.6}$		88.9
Wiene, Bernt.	Bromfield, E:milton Co					
Wissink,	St. Libomy. Howarth			17.7	15.4	87.0
Wienhake, Heimich	Gramd Leland, hald	3	205	19.6		
Windiolph, Adam....						${ }^{83.6}$
Willians, IT. T. ami	Alda, Hall Co	3	278	19.7	16.1	61.6
Wines, E.J	Grand Island, Hall	17	260	19.6	16.6	84.2
Wikelmio,	Cuapman		195	18.3		
Windol	Grand Islana, H	19	193	19.3	16.2	8.4
Will, Wm.	Columbus Platie C		280	18.3	15.2	82.8
Witt, Wilheln	Alda, Hall Co.	3	161	19.2	15.5	82.8
Woodworih, T.	Chapman, Merrick		141	19.5	15.9	
ulf, Withelin	Grand Island, Hall C	8	208	18.7	14.8	79.5
Yessen, Peter.	Chapman, Merrick Co		271	19.2	16.4	85.6
			200	18.5	14.7	74.0
		1	333	20.0	16.5	83.9
俍ke,	Ravenna, But		148	19.5	16.0	${ }_{78}^{82.0}$
eleny, Jos	Nimberg, Bu		335	21.4	18.8	78.
lanke, E	Grand Island,		243	19.4	16.1	84
Tamsen, Fritz....	Alda, Hall	6	197	19.9	15.7	78.
Means			233.9	19.6	16.3	83.2

Total number of samples, $1,866$.
CHARACTER OF BEETS DELIVERED TO THE GRAND ISLAND FACTORY.
Through the courtesy of Mr. H. T. Oxnard the Department was allowed to establish a laboratory in the sugar factory at Grand Island for the purpose of obtaining iuformation in regard to the character of the beets entering iuto manufacture. In all about three thousand samples of beets were examined, a sample having been taken from every wagombad and every carload of beets delivered to the factory. These samples were taken in such a way as to give as nearly as possible the average character of all the beets worked. A large number of beets was taken from each sample, and after they had been properly cleaned and dried their average weight was taken. The beets were then rasperd, the juice expressed, and an analysis made on the expressed juice. The total solid matter was determined by a specificgravity spindle, and the percentage of sucrose in the juice was estimated by the polariscope. The purity efficient was determined by dividing the percentage of sucrose in the juice as indicated by the polariscope by the percentage of total solids as indicated by the spindle.

AVERAGE WEIGHT OF BEETS.

The average weight of all the beets examined was 238.9 grammes. This small size of the beet was doubtless due to the extremely dry season. The dronght throughout the region covered by the sugar-beet fields was the most severe perhaps that has ever been known in the State of Nebraska. Ordinary crops such as corn were almost total failures, and it is a matter of encouragement to mote that in such a season the beets, although not making an average yield, set did fairly well. On the whole, howerer, it must be confessed that the results from an agricultural point of view were disappointing; lut this disappointment must be chiefly attributed to the exceptionally severe drought already mentioned.

It is also doubtless true that in the practice of the new system of agriculture which is required for the proper proluction of sugar beets many failures were made, and perhaps rery few of the farmers practiced that form of agriculture which was best suited to the suil and the season. In a soil which is apt to be dry, as in Nebraska, too much attention can not be paid to the importance of loosening the ground to a good depth. Deep plowing, followed by deep subsoiling, together with such harrowing and other treatment of the surface as will produce a perfect tilth, are absolutely essential to the production of a profitable crop.

The remarkably high percentage of sucrose shown in the juice is an evidence of the fact that the soil and climate of Nebraska are favorable to the production of a beet rich in crystallizable sugar. It must, however, not be forgotten that the extremely high percentage of sucrose in the juice is probably a reciprocal of the small size of the beet due to the dry season. Had the season been favorable to the production of a beet of a verage size, with a tonnage of from 15 to 20 per acre, the percentage of sucrose in the beets would doubtless have been less. This is well illustrated in the data obtained in the Department from the analysis of sugar beets sent from Nebraska. It is evident from the character of the samples which were receised by the Department that the farmers have selected the larger beets to be sent on for analysis. It is seen by comparison of the respective sizes of the beets received for analysis by the Department with those received for manufacture at Grand Island that the beets sent on for analysis were about three times the size of those manufactured into sugar. It will also be noticed that in the beets received for analysis by the Department the percentage of sucrose is low as compared with those which entered into manufacture at (xiand Island. It would therefore hardly be just to claim that beets as rich as those manufactured at Grand Island during the past season can be grown in quantities of from 15 to 20 tons per acre. It is not a matter of surprise that many of the farmers who greir beets are discouraged at the results of the first year's work. The phanting and cultivation of the sugar beet, as is well known, are matters which require
great labor and expense, and when, therefore, an unfarorable season cuts the crop very short, it is but natural that the farmer should be discontented. It is, however, difficult to sce how he could have done better with any other crop, and the fact that in many instances even with the present dry season the farmers of Nebraska were able to grow 10 or eveu 15 tons per acre, shows that with proper cultivation and proper attention in other ways to the growing crop the evils which attend a severe drought can bo greatly mitigated if not altogether aroided. It is not the purpose of the Department to encourage farmers to engage in an industry which does not give promise of success; but it will be a matter of regret to every one who desires to see the success of the sugar industry if the discontent which naturally attends a very unfavorable season should be sufficient to deter farmers from continuing the cultivation of a crop which under ordinary conditions promises so fair a field as sugar beets. It would be wiser ou the part of the farmers to continue the cultivation of the sugar-beet until it has been demonstrated at least that eren with favorable jears it is not profitable. In that case it would be necessary to cease the cultivation of a crop which afforded no prospect of financial success.

EXPERIMENTS WITH SUGAR BEETS IN WISCONSIN.

Extensive experiments were carried on in Wisconsin during the season of 1591 by the Department in cö̈peration with the agricultural experiment station under direction of Prof. W. A. Henry.

The general directions for the work were given by the Department, but all the details thereof were left to the supervision of Professor Henry.
The results of the work were encouraging, and its data, arranged by F. W. Woll, chemist of the station, will be found following:

Seeds of the following six varieties of sugar beets were receivel from the U. S. Department of A griculture in the beginning of May: Dippe's Vilmorin, Dippe's Klein Wanzlebener, Simon Legrand's White Improved, Bultean Desprez Richest, and Lemaire's Richest. About 3 acres of land were prepared at the experiment farm for beet culture, and divided up, between the rarieties in proportion to the quantity of seed on hand. Arrangements were further made with five farmors living in different parts of the State to grow three of the varieties, viz: Simon Legrand's White Improsed, Bulteau Desprez Richest, and Dippe's Klein Wanzlebener, on a piece of land, 3 square rods for each variety; to send samples of the beets grown at different times for examination of sugar content, and to report the results as regards culture and yield. Notice was given in the newspapers that a supply of sugarbeet seed was on hand for distribution among farmers who would investigate the adaptability of their soils for sugar-beet culture, with the obligation to send samples of the beets grown for analysis. In this way, samples of beets from seventy farmers were received and analyzed;
about half of these receired their seed from the station, and the majority of the rest received seed directly from the U. S. Department of Agriculture.

First are given the results of the beet culture at the station, then those of the culture at substations, and finally the results of examinations of beets grown by farmers in different parts of this State.

SUGAR-BEET CULTURE AT WISCONSIN AGRICULTURAL EXPERIMENT

 STATION, SEASON 1890.Two plats, $1 \frac{1}{3}$ and $1 \frac{1}{2}$ acres, were set apart for sugar beets during the spring of 1890. Potatoes had been grown on Plat A the preceding year; on Plat B clover was grown the preceding year, and the land plowed that fall; the soil was a light clay, a portion of Plat B being a sandy luam. The beets were planted in rows 20 iuches apart on Plat A, with beets every 8 inches in the row, the following varieties were planted on May 27 on this plat: Dippe's Klein Wanzlebener, Simon Legrand's White Improved, Bultean Desprez Richest, and Dippe's Vilmorin. On the other plat (Plat B) the beets were planted in rows 30 inches, with beets every 10 inches in the row; the following varieties were planted in this way on May 28: Florimond Desprez Richest, Lemaire's Richest, and Dippe's Vilmorin. The seed of the last variety was divided between the plats, so as to determine the influence of different thickness of planting ou the yield of beets.

The beets received the very best treatment during their period of growth that the circumstances would allow. The heary rains in the begimuing and middle of June made cultivation impossible for a time, and gave the weeds more of a start than they would otherwise have had. The cultivation was done partly by a harrow tooth cultivator, or by a wheel hoe and shovel attachment with shields, or by hand. The weeds in the rows between the beets could not be reached in any other than by a hand hoe. The features of the growing season were plenty of rain in May, June, August, and October, with a temperature somewhat below normal during May, August, and September, and higher than normal in June. The main meteorological data for the season are given in the following table:

Meteorological data for summer, 1890, for Madison, Wis.
[From observations made at Washburn Observatory.]

Month.	Temperature.				Rainfall.	
	Max.	Min.	Mean.	Mean normal.	1890.	Normal.
May	${ }^{\circ} \mathrm{F} \mathrm{F}_{84}$	${ }^{\text {-F. }}$	${ }^{\circ} \mathrm{OF}$.	${ }^{\text {OFF. }} \mathrm{F}$.	Inches.	Inches.
June	93	50	70.6	67.2	7. 78	4.42
July.	91	54	71.7	72.7	1.81	4. 19
Angust	93	46	66.1	69.4	4.23	3.28
September	83	36	57.4	61.0	2.62	3. 35
October...	69	25	48.2	48.5	4.59	2.87
Total.					25.00	21. 75

Samples of the beets grown were taken every week from September 5 on. Three to four beets of every variety of what seemed average size were mulled and the average sugar content in the same ascertained by the polariscope. While it is not believel that the beets sampled in every case represented exactly the stage of growth of each variety at the time, the analysis may indicate in a general way the increase in sugar content and in the purity of the juice of the heets. The following table gives the results of the weekly examinations of each plat. The arerage weight of the beets sampled is also given:

Plat A.
[Distance betwoen rows, 20 inches; between beets in the row, 8 inches. 1

Date.	Dippe's Vilmurin.			Bulteau Desprez.			Klein Wanzlebenpr.			Simon Legrand.				
			$\begin{aligned} & \text { Purity coeffi- } \\ & \text { cient. } \end{aligned}$			$\begin{aligned} & \text { Purity coeffi- } \\ & \text { cient. } \end{aligned}$			$\begin{gathered} \text { Purity coeffi- } \\ \text { cient. } \end{gathered}$					
	Grins.	P P.ct.		Grms.	$P . c t$.		Grms.	P ct.		Grms.	P.ct.		P.ct.	
Sept. 5	452	11.87	78.2	239	10.79	73.4	355	11.77	77.5	476	11.81	82.9	11.56	78.0
15	551	12.91	86. 6	578	12.72	80.2	482	13.02	83.4	591	12.51	77.7	12.74	82.0
22	453	15. 291	85. 31	631	13.87	83.1	472	14.74	83.3.	640	13.38	82.6	14.27	83.6
30	401	15.78\|	86. 9	604	15.27	84.1	409	14. 06	82.7	495	15.38	84.7	15. 12	84.6
Oct. 7	535	17.64	85. 6	574	14.85	83.9	588	16.14	83.7	388	16. 68	871	16.33	851
16	670	${ }^{*} 15.43$	8 8. 5	561	15.52	86.1	480°	14.33	84.8	900	14.60	84.2	14.97	84.9
23	419	16.01	85.0	324	16.03	87.2		15.92	87.7	506	16.15	83.8	16.03	85.9
30	566	16.76	86.3	567	14.81	83.9	407	16.39	82.2	686	15.74	83.2	15.93	83.9

*A sample taken October 17 gare 16.37 per cent of sugar; purity coefficient, 84.9 ; average weight of beets, 527 grammes.

Plat B.
[Distance between rows, 30 inches; between beets in the row, 10 inches.]

Date.	Dippe's Vilmorin.			Lemaire's richest.			Florimond Desprez Richest\|			Aver- age sucrose in juice.	Parity coefficient.
	$\begin{gathered} \text { Arur- } \\ \text { age } \\ \text { weight } \\ \text { of beets. } \end{gathered}$	$\begin{gathered} \text { Sucrose } \\ \text { in } \\ \text { jnice. } \end{gathered}$	Turity coefficient.	$\begin{array}{\|c\|} \text { Arer. } \\ \text { age } \\ \text { weight } \\ \text { of beets. } \end{array}$	$\begin{gathered} \text { Suerose } \\ \text { in } \\ \text { juice. } \end{gathered}$	Purity coeflicient.	$\begin{gathered} \text { Arer- } \\ \text { age } \\ \text { weight } \\ \text { of boets. } \end{gathered}$	Sucrose in juice.	Purity coefficient.		
	Grams.	Per ct.		Crams.'	Perct.		Grams.	Percent.		Per ct.	
Sopt. 9	528	13.08	76.9	963	10.76	79.5	656	10.05	71.7	11.30	76.0
15	493	12. 17	80.1	637	9. 88	74.3	792	10.14	72.5	10.73	75.6
22	388	16.05	87.3	713	14.09	85.8	672	11.45	79.5	13.86	84.2
30	403	17.32	84.9	576	14.37	83.8	1, 107	13.44	82.9	15. 04	83.9
Oct. 7	512	16. 10	81.9	712	14.56	83.5	612	12: 59	79.5	14.42	83.0
16	612	17.30	81.8	1,049	14.52	80.0	887	13. 80	81.6	15,21	82.1
24	540	15.57	84.7	731	14.98	83.2	886	12.83	78.7	14.45	82.2
Nov. 1	588	15.74	86.0	1,031	16.32	82.8	905	14.84	82.4	15.63	83.7

Perfectly representative samples were not always secured, as will be seen, but the analyses show nerertheless in a general way the change in the sugar content of the juice and its purity with the advance of the seasom. The last series of determinations for both plats were made at harvesting time; the results given for this State (November 1) are the arerages of three samples of beets, of four each, taken from different parts of the plat, the beets being average sized and, as nearly as could be, representative ones. The beets reached full maturity, as may bo
inferred from the above table, from September 30 to October 7; after that time the percentage of sugar in the beets remained about stationary. As regards the possible yield at that early period we have no data to judge from except that the weights of the beets sampled might indicate that there was no material increase after that period.

As the varying percentages found at the different periods doubtless stand in a definite relation to the rainfall, we give below the days on which rain fell at this place between Septenber 1 and November 1:

Rainfall at Madison, Wis., September and October, 1890.

DATA OBTAINED AT HARVESTING TIME.
[October 30 to November 1.]
The area taken up by each variety and the jield of beets as ascertained at harvesting time are given here:

Variety.	Area grown.	Yield.	Sugar in the juice.
Plat A:	Sq. feet.	Pounds.	Percent.
Dippe's Vilmorin	2, 170	3,040	16.76
Bulteau Desprez Richest	8,352	11,804	14.81
Simon Legrand	26, 375	27, 866	16.39
Klein Wanzlebener	28,750	25,650	15.74
Plat B:			
Dippe's Vilmorin	13,311	11,920	15.74
Lemaire's Richest.	22, 264	21, 006	16.32
Florimond Desprez Richest	20,685	24, 844	14.84

A good deal of dirt adhered to the beets as they were weighed. In order to ascertain the yield per acre of washed beets, a basketful of each load of beets was taken out and weighed, each variety being kept by itself; when all loads from each variety had been taken from the field, the beets taken out were all carefully washed, dried, and weighed. In this way the percentages of dirt adhering to the beets were ascertained, as follows:
Plat A: Por cent.
Vilmərin .. 24.79
Bulteau Desprez... 15.70
Simon Legrand .. 13.10
Klein Wanzlebener ... 12. 11
Plat B:
Vilmorin .. 24.23
Lemairө.. 15.70
Florimond Desprez 10.5%
25243-Bull. $30-4$

Basing calculations on these figures, we obtain the following sields per acre of washed beets of each variety:

Field of washed bects.

Plat A (bects 20 by 8 inches apart): Pounds.
Vilmorin 40, 420
Bulteau 51,900
Simon Legrand 39, 930
Klein Wanzlebener 34,150
Plat B (beets 30 by 10 inches apart):
Vilmorin 29, 430
Lemaire 34, $6: 30$
Florimond Desprez 46, 710

The data on hand are insufficient to determine the actual yield of sugar per acre in case of each variety. On the supposition that all varieties coutained approximately the same percentage of juice, they would rank as follows as regards their sugar-producing capacity: 1. Lultean Desprez; ... Vilmorin (plat A); 3. Florimond Desprez; 4. Simon Legrand ; テ̃. ǨleinWanzlebener; 6. Lemaire; 7. Vilmorin (plat B).

QUANTITY OF TOPS OBTAINED FRON BEETS.

The tops from a number of beets were weighed separately when the first determination was made, September 5, and also at harvesting time, to obtain some data as regards the proportionate increase of the beet root with the period of growth, and also the relation of leaves to roots with the different varieties.

Proportion of washod roots to leaves.
Plat A: Roots: leaves as 100 :

November 1... 34
Bultean Deprez, September 5 .. 13:
Oetober 31 .. 17
Simon Legrand, September 5... 6
October 30 .. 23
Klcin Wanzlebener, September 5... 79
November 1.. -
Plat B:

November 1... 37
Lemaire, September 9 ... 79
November 1... 36
Florimond Desprez, September 9 .. 66

As has always been found, the moportion of leaves is larger in the earlier stages of growth. Between the different varieties there is some difterence, Inaltean Jesprez and Simon Legrand White Improved containisg a smaller proportion of leaves at the time of harvesting than the other varieties.

Summing up the discussion of the work for the last season it is noticed that the yield of sugar beets obtained as well as their sugar content was rery satisfactory; the season could not be considered favorable to sugar-beet culture on account of the heary rains in the fall. When, in spite of this, crops were secured of 15 to 25 tons per acre of beets, containing a good percentage of sugar, it would seem that the question whether or not sugar-beet culture may prove profitable can not be answered in any other way that the afiirmative.

WORK DONE AT SUB-STATIONS.

Five sub-stations were established in different parts of the State to study the adaptability of the different regions to sugar-beet culture. The names of the farmers who undertook the work with their addresses are F. W. Roberts, Woodworth, Keuosha County ; Paul M. Peirce, Germania, Marquette County; Fred. Burton, Janesville, Rock County; L. F. Noyes, Hudson, St. Croix Connty; A. L. Grengo, Colgate, Waukesha County.

Of these stations three lie in the southern portion of our State, viz: Woodworth, near Lake Michigan; Janesville at about the same latitude in the inner part of the State; and Colgate about 20 miles west of Milwankee. Germania lies in the central portion of the State, about 50 miles north of Madison; Hudson lies in the northwestern corner of the State, about 10 miles east of St. Paul (at 45° latitude).

Directions were sent to select a small piece of land, about 3 square rods, of a kind that would be favorable to a good crop of potatoes; to give the beets good cultivation, and to keep careful notes as regards labor spent and method of planting and cultivation. The following rarieties were sent to each sub-station: Bultean Desprez Richest, Simon Legrand's White Improved, and Dippe's Kleiu Wanzlebener. The data as to the kind of soil, time of planting, etc., are given in the following table:

Data concerning sub-stations.

Name of suldstation.	Kind of soil.		$\begin{aligned} & \text { Previous } \\ & \text { crop } \\ & \text { on land. } \end{aligned}$	Date of planting.				Date of harresting.
Woodrorth. Kenosha Co		Sq.ft. 797	Potatoes .-		In. 18	In.	Hrs.	Oct. 28
Germania, Marquette Co.	Loam	550	Plover -.	May 19	18	-6	45	Oct. 28
Janesville, Rock Co	Black luam...	817	Pasture...	May 15	20	6	37	Oct. 28
Hualson, St. Croix Co	Black sandy .	817	Oats	May 19	18	(*)	20	Oct. 29
Colgate, Waukesha Co.	Clay loam...	1,221	Timothy ..	May 31	18	8	54	Nov. 16

[^0]In order to study the development of the beets at each place, during the fall four samples of each variety grown were secured from each station between the middle of September and the date of harvesting. On the arrival of the samples at the station they were weighed and the juice polarized. The results of the examinations are given in the following table.

Sugar bects from substations.

1. FROM F. W. ROBERTS, WOODWORTE, WIS.

2. FROM PAUL M. PEIRCE, GERMANIA, WIS.

Sept. 23	325	12. 04	80.8	463	12.70	80.1	381	13.93	91.7
Oct. 7	248	12.98	831	546	13.41	82.8	555	13. 84	85.4
" 18	682	13.58	85.7	428	13.05	82.2	796	13. 27	81.9
Nov. 4	722	13. 79	83.2	783	13.68	83.2	832	15.50	84.7

3. FROM FRED. BURTON, JANESVILLE, WIS.

4. FROM L. F. NOYES, HUDSON, WIS.

Sept. 23.	197228	13.1414.81	78.278.8	179	13.71	82.8	208	13.91	85.3
Oct. 6					14. 13	82.1		14.86	
20	186	14.80	79.6	179	16.12	79.9	158	16.83	84.
Nov.	203	12. 99	75.5	232	13.60	79.0	243	15.44	83.5

5. FROM A. L. GRENGO, COLGATE, WIS.

Sept. 26	504	14.92	86.0	491	14, 69	85.4	605	15. 10	83.4
Oct. 9	667	16.25	81.4	761	15.07	80.0	1, 040	14.42	81.5
- 18	632	12. 53	80.7	925	12.77	80.0	1,046	12.51	79.5
Nov. 12	829	17.14	84.5	791	15.95	87.4	1,047	14.95	83.2

It would seem from this table that the beets did not improve materially at any phace as far as sugar content and purity of the juice are concerned after the begiming of October. At the Janesville Substation the beets seem to have been as mature and rich on September 25 as at any time later on. At the Fmblson Station the beets never grew large (weighing on the average not more than half a pound apiece), and they seem to have been about as far advanced when the first sample
was taken as later on; the light yield is explained by the cold wet weather at Eudsou when the seed was planted, causing the seed to rot ; potatues planted there at the same time also rotted.
The mean temperature and rainfall at ist. Paul duriug the past season and normally were as follows:

Meteorological data for St. Paul, Minn., May to October, 1890.

The other stations produced beets of average size, with a good to fair percentage of sugar. The yields of beets at the different places may be seen from the following table, and also the estimated field per acre:

Sugar beets from substations.

In judging these results, it must be remembered that the area grown was small, and hence the yield per acre must be taken only as an indication of what might be reached under sery farorable conditions. The yield found at the Colgate substation is higher than that of any of the other stations, going even up to 38 tons in case of Bulteau Desprez Richest and following closely with the other rarieties. The yield of beets as well as their richness may be pronounced satisfactory in all cases except in case of the Hudson station, where the yield was very light, for reasons already stated. The climatic conditions of the four Southern statious probably did not vary very much from those of Madison, which have been previously given.

As it was deemed of some interest, the weights of leares were ascertained at harvesting time along with those of the beets. In the following table are giren the percentage weights of leaves, calculated on weight of beets:

Relation between tops and beets at substations.

Substation.	Balteau Desprez Richest.	Simon Legrand White Imp.	Dippa's Klein Wanzlubener.
	Weight of beet root: weight of tops as 100 :		
Germania, Marquette Co	67	60	50
Wuodworth, Kenosha Co.	55	52	63
Janesville, Rock Co	54	70	67
Hudson, St. Croix Co	40	34	41
Colgate, Waukesla Co	55	59	58
Average.	54	55	56

EXAMINATION OF BEETS FROM FARMERS IN DIFFERENT PARTS OF THE STATE.

It remains to give an account of the work done during the past season in analyzing sugar beets grown by farmers in different parts of the State, the seeds having been mostly obtained, either directly or indirectly, from the U. S. Department of Agriculture. Realizing the importance of the sugar-beet problem and the widespread interest in its solution, this station had notices published in all newspapers in the State offering to analyze free of charge beets grown anywhere in the State. As a result, 70 farmers in 28 counties of the State sent in samples of sugar beets for analysis. The results are given in the following table, along with such information about the beets as it was possible to obtain-variety, soil, time of planting and harvesting, etc.:
Sugar beets in Tisconsin, season 1890, arrangel alphabetically according to counties.

Sugar beets in Fisconsin, stason 1*90, arrunged alphabetically according to counties-Continned.

91418.60160986 .5 Barnyard ma－

	16 720 LI 700 95 700 95 100 95 700			pozite －ロ op
reot Spars	08＇7d9	8 8 ＇IdV		
	$2 \quad 130$	08 StIV		ITOIX
ऽияәप＞วr⿺𠃊	61 $7^{\circ} \mathrm{O}$	8 －${ }^{\text {anf }}$		отu！！
ор	¢ $\quad 10$	OT ounp	－19dx＇t u！8uoos！ M	8，өjubuer
O1	91 $7^{2} 0$	$06 \triangle 8 / \mathrm{L}$		
op	$91 \cdot 700$	81 イセJ		$\underset{\text { ueut }}{\substack{\text { u!uowit }}}$
	31 900	85 SbIV	 पगार 	
－－－meor Spurs	35.730	6I SeIf	Э ¢	
во［ પวॄ！я	¢1 ${ }^{\circ} \mathrm{O} 0$	8I SbIV	op	＇ tramis
	$87^{\circ} 0$	85 AbIK	op	－xesnc letiodur
	$9 \quad 700$	9 Cr		dixis，oue＇T
				－\％${ }^{\text {cons }}$
－wrol Крues	¢I ${ }^{\circ} \mathrm{O}$	¢I ¢rix	＂ордя ixiag＂α 	
	$8 \quad 790$	も¢ SEIN	－Iadx＇s u！suonsid 	A
	$97 \quad 700$	9L Sejn		IuIs，0日ET
บ צִセ⿺𠃊	$81 \quad 700$	I ounf		
－Kepo Spues	$8 \quad 100$	\angle ounf		！
 ＇ロロロ	$6 \quad 700$		－uotzels quotu！	แxowi！Λ
\triangle ¢ues সor⿺廴	$61 \quad 700$	1 Sv⿺𠃊	－Jədscg misuoosidi	өx！purt
	9\％${ }^{\text {\％}}$－ 0	gi Serk		
op	83 ＇70	03 AEIK	өाओ[no!n̄	－
	$86^{7} 70$	$00^{\text {a }}$ SrIL		
＇mвоІ				
ऽрпе8 भов｜я	\＆ 30 N	t ounf	－Iodx＇⿹弋 प！suoos！ 41	өxpreurat
－op ${ }^{\text {－}}$	96700	0¢ өun¢	op	vosuas］
－AbID	$96{ }^{7} 00$	of ounf		［e！xədmI

Sugar beets in TVisconsin, season 1-990, arranged alphabeticnlly according to counties - Contimued.

The above aualyses of sugar beets grown in this State during the last season have a very wide range, viz, from 6.39 to 18.79 per cent of sugar in the juice; of the 95 analyses given in the above table, 19 come below 10 per cent of sugar, 56 come above 12 per cent, 38 above 13 per cent, and 16 above 15 per cent of sugar in the juice. But very few of the farmers who sent in beets for analysis had previously had any experience in growing beets; besides this some of the beets were grown tor stock food, with no intention of testing their sugar-producing capacity. Bearing this in mind, it would seem that the showing is a very creditable one ; where grown for sugar, and where goud care was bestowed, the beets contained a high percentage of sugar. As regards the gield, but very few and uncertain data were obtained, most of the farmers having grown only small plats, from which an estimated yield was reported.

Of the different portions of the State, the eastern region scems better adapted for sugar-beet culture than the western, as far as the data on hand will enable us to judge about the matter. Judging from the data obtained, which are of course rery limited, it may further seem that three regions may prove especially well adapted for the culture of sugar beets of the localities from which beets were received during the past season, viz, the comutry around Ner IIolstein, Calumet County, (latitude about 44°) ; around South Germantorn, Washington County, and around Kewaunee, Kewaunee County (latitude $44.5 \circ$). The arerage of all analyses from New Holstein was found to be the very high figure of 17.83 per cent of sugar in the juice; the average for South Germantown was 13.51 per cent, and for Kewaunee 13.85 per cent (of the fourteen samples received from this locality, twelve came above 12 per cent, and seven above 14 per cent of sugar in the juice). Also other localities may prove well adapted for sugar-beet culture, which have not yet been investigated outside of our substations, $e . g$., the counties of Rock, Jefferson, Waukesha, Washington, Milwaukee, and Ozaukee, in short the whole eastern portion of the State.

A continued study of this subject may disclose other sections where sugar-beet culture may be conducted successfully. The work has just been entered upon. From what has been done at this experiment station and at substations in different parts of the State, it is known that good crops of beets can be grown of a good quality. While the results reached so far would indicate that Wisconsin may prove well adapted for the culture of sugar beets, the work must be repeated for several seasons before the question can be considered as fully settled.

EXPERIMENTS WITH SUGAR BEETS AT FURT SCOTT, KANSAS.

Quite a mumber of samples of beets was analyzed at Fort Scott with the following results:

In the juice.

Dato.	Total solids.	Sugar.	Purity.	Dato.	Total solids.	Sugar.	Purity.
	Per cent.	Per cont.			Per cent.	Per cent.	
Sept. 26	Per cent.	Per cone.		Nov. 1	15.0	12.2	81.3
Oct. 8	13.13	9. 6	73. 11	Nov. 1	15.4	12.8	83.1
Oet. 15	15.5	11.5	74.2	Nov. 1	16.8	12.2	72.6
Oct. 18	18.17	13.7	75.4	Nov. 1	15.7	11.7	74.5
Oct. 18	13.81	10.25	74.1	Nov. 1	16.6	13.7	82.5
Oct. 23	13.54	9.5	70.9	Nov. 1	15.7	12.9	82.2
Oct. 23	15.17	12.5	82.4	Nov. 1	19.1	16.7	87.4
Oct. 31	14. 85	11.5	77.4	Nov. 1	14.4	11.1	77.7
Nov. 1	15.8	13.25	83.8	Nov. 1	14.0	10.6	75.7

A few of these samples showed good qualities for sugar making, but the most of them had too low a content of sugar and purity to be of any value for the manufacture of sugar.

ANALYSES OF BEETS AT THE AGRICULTURAL DEPARTMENT STATION OF MINNESOTA.

Prof. D. F. Harper, chemist of the station, has furnished me with the following analyses of beets made at that station.
The character of the beets for sugar-making purposes is fairly good:

Varieties.	Brix.	Sugar.	Purity.
	Percent.	Per cent	
Dippe's Vilmorin	17. 10	14. 01	81.93
Bult. Desprez's Richest	16.02	14.07	87.89
Simon Legrand's White Improved	17. 60	14. 83	84.26
Vilmorin's Whito Improved......	15.00	12.17	81.13
Vilmorin...	15.95	12.42	77.87
Gregory Whito Sugar	15.90	12.53	78.93
Lane's Improved. ...	15. 86	11.15	73.45
Vilmorin's White Improved.	13.72	10.96	79.86
Dippe's Kleın-Wanzleboner	15.92	13.04	81.91
Excelsior	15. 55	12.26	78.84
Florimond Desprez's Riches	17.24	13.42	77.84
Improved Imperial	14.48	11. 45	79.07

EXPERIFENTS WITH SUGAR BEETS AT TOPEKA, KANSAS.

Quite a quantity of beets was brought to the factory at Topeka, and an experimental run was made with them. The number of tons of beets used was 22. The juice from the samples of beets entering the battery was found to contain 15.36 per cent. of total solids and 9.30 per cent. of sugar.

It will be noted by the above figures that the quality of the beets was worthless for sugar-making purposes.

61

EXPERIMENTS WITH SUGAR BEETS AT MEDICINE LODGE, KANSAS.

In addition to the analyses and control of the sorghum sugar work extensive examinations were made of the beets growing in the locality of Medicine Lodge.
The season was a peculiar one for beets. At the commencement of the rains on the 2Sth of August the beets were searcely at all dereloped and were regarded as a total failure. After the rains coumenced the beets grew rapidly and continued to grow vigoronsly through the months of September and October. About the middle of November the harrestiug of the beets was commenced and continued until December. At that time the beets had reached a fair size and developed a high content of sugar. Two hundred aud sixty-one wagonloads were brought to the factory and large samples were taken from each of these loads and subjected to analysis. The means of 261 analyses follow:

In the juice.

\qquad
Sucrose81.04

Four hundred and elereu miscellaneons analyses of the beets from different plots in the ricinity of Medicine Lodge were made with the following mean results:

In the-juico.

The fresh chips entering the battery had a mean sucrose content in the juice of 13.90 per cent, much less, as will be noted, than that represented by the analyses from the different loads.
The diffusion juices show a content of 10.45 per cent sucrose, and a purity of 81.2.

The working of the beets with the sorghun-sugar machinery was extremely slow, and either from this cause or from the method of liming, which was very heary withont any subsequent use of carbonic acid, the clarification and boiling of the juices became a matter of great difficulty, and they suffered in this process rapid deterioration; for instance, the purity of the clarified juice was only 78.8 and of the sirup' i8.3, while the mean purity of the massecuites showed the enormons depression represented by the difference between 78.8 and 59.4. The actual canse of this remarkable deterioration in boiling is not well understood. The juices boiled with the greatest difficulty, it being almost impossible to prevent them from foaming in the pan. The semi-
sirups also, after standing for a time, deposited a large quantity of mucus or viscous material, and this would lead to the supposition that a pernicions femmentation of a viseons or mannitic nature was the cause of the great loss of sugar during the boiling operations.
It is evident at once that the attempt to make beet sugar without appropriate apparatus must he regarded as fintile. Beets of the quality of those delivered at the Nedicine Lodge factory, if they had been properly and promptly manufactured, would have yielded almost 250 pounds of sugar to the tom; instead of this the sield was extremely small, the separation from the massecuite very difficult, and the whole manufacturing process disappointing.

In regard to the probability of producing beets in the locality of Merlicine Lodge, I am still of the opinion, expressed in Bulletin No. 27, 1hat it is a locality too far south to expect the successful culture of the sugar beet. In using the term "too far south" it is not meant in an absolute sense, but too far south from the zone of the probable beet industry as indicated in the map given in Bulletin No. 27. The actual growing seasoal at Medicine Lodge, it will be noticed, was not during the summer, but in the autumn after the rains fell and the weather had become cool. Had tire early part of the season been wet enough to secure a grow th of the beets it is hardly probable that they rould hare shown the high content of sugar which ther did. The splend results obtained at Medicine Lorlge in the working of sorghum cane would seem to indicate the course which the sugar industry should follow in that locality. Everything indicates that the culture of sorghum sugar will prove a success while there is little to encomage the further derelopment of the beet-sugar industry in that locality.

ANALYSES OF BEETS AT MEDICINE LODGE.

The following analyses show the character of the beets examined at Medicine Lodge during the months of November and December, 1890. As has been stated, the character of the season at Medicine Lodge was peculiar. On september 25 the beet erop was a total failure. Owing to the extremely dry summer the beets had not grown and were but little larger than a cigar. After that date copious rains with other faworable climatic conditions induced a rapid growth and produced by November a smal! erop of beets of exceptional richness in respect of sugar content. The data will illustrate in full the character of the juice of the beets. The general data of the season precede the details in the tables.

Analyses of beets-General data.

	Total sulits.	Sucrose.	Purity.
Exhausted chips	1. 20	. 25	
Fresh chips	17.31	13.90	80.3
Ditfusion juico..	12.84	10.45	81.2
Claritied juice	13. 65	10.80	78.8
Semi-sirup ...	43.00	31.95	78.3
Ma*secuite	86.90	51.64	59.4
Marc................ per cent..	5.11		
Press cako		1.53	
Extraction		98.1
Dilutiou		27	
Sugar		87.0	
Beets workedtons.		293	
Hat restcal acres.		70	

Date.	Fresh chips.			Diffusion juice.			Clarified juice.		
	Solids.	Sucrose.	Purity.	Solids.	Sucrose.	lurity.	Solids.	Sucrose.	Purity.
Nov. 23	Per cent.	Per cent.	80.37	Per cent.	Per cent.	76.02	Per cent.	Per cent.	
Nov. ${ }_{24}$	17.03	14.20	83.52	13.03	10.11	79.82	14.07	12.43	*88.43
25	17.62	13.92	79.92	12.67	10. 86	85.21	13.24	10.99	82. 86
$\because 6$	17.17	13, 70	80.14	12.87	11.03	84.97	13.73	11.37	82.51
28	17.27	12.96	44.98	12.93	11.01	84.83	13.84	11.43	82. 60
Dec. 2	18.09	14.11	78.39	11.99	10.22	85.43	14.00	10.67	75. 72
	17.03	13.96	81.81	13.00	10.30	79.11	14.07	10.68	75. 69
	17.00	13.97	81.83	12.97	10.67	82.21	13.82	10.99	78. 92
6	17.25	14.38	83.16	13.31	10.14	76.82	12.45	9.38	75.23
Means.	17.31	13.90	80.31	12.84	10.45	81.26	13.65	10.80	78.86

* Sorghum sugar melted in juice.

Date.	Semi-sirup.			Exhausted chips.		Press cake.
	Solids.	Sucroso.	Purity.	Solids.	Sucrose.	Sucrose.
	Per cent.	Per cent.		Per cent.	Per cent.	Per cent.
Nov. 23	44. 17	32.16	72.91	1. 20	. 23	1. 62
	46.19	41.19	* 89.38	1.32	. 30	1. 57
2.5	42.11	29.11	69.98	1.16	. 23	1.55
26	43.76	29.16	67.93	1.19	. 22	1.42
28	44.11	31.11	70.55	1.27	. 24	1. 48
Dec. 2	39.24	29.12	74. 28	1.22	. 26	1. 46
	39.90	29.13	73.00	1.19	. 24	1.49
5	42.27	31. 11	71. 32	1.22	. 24	1.64
6	46.00	35. 46	77.09	1.16	.30	1.54
Mean ..	43.00	31.95	74.30	1.20	. 25	1.53

* Sorghum sugar added.

Date.	Massecuite.			Sugar.(sucrose)
	Solids.	Sucrose.	Purity.	
Dec. 1	Perct. 87.14	Perct. 51.02		Per ct. 86.8
Dec. 8...	86.70	52.: 6	60.27	872
Mean	86.92	51.64	59.42	87.0

Miscellaneous analyses of beets.

[In the juice.]

Date.	Solids.	Sucrose.	Purity.	Description of samples from-
July 1516172024	Percent.	Per cent.		
	20.50	16.83	82.02	J. H. McCracken.
	21.53	16. 77	76.82	M. Best.
	21.53	16.54	76.53	Hy. Hinze.
	19. 87	15.75	79.23 80.43	P. B. Cole.
Aug. 1	14.50	15.29 9.45	65.33	Mullen; tops destroyed by wel worms.
	17.73	13.45	73.44	J. H. McCracken.
	17.03	13. 60	80.03	George Mawson.
	14.20	10.81	76.11	Neligh, Nebraska.
Sept. 1	11.00	7. 10	64.14	K. Lammerman.
	17.10	13.87	74.90	Hy. Hinze.
	15. 63	11.95	76. 25	S. B. Hunt; from middle of plot.
	15. 10	15.70	78.75	S. B. Hunt; from ontside of plot.
	15. 23	11.14	73.52	Neligh, Nebr.
	12.13	8.15	66.93	L. Clovis, Wanzlebener,
	13.03	8.40	64.97	L. Clovis, Vilmorin.
10	15.03	11.25	74.70	George Mawson.
10	13.00	9.25	70.80	M. Best.
10	13.47	9.30	70. 10	Do.
10	17.53	13. 20	75.42	A. R. Moore.
11	15. 83	11.60	73.40	T. Bennings, Wanzlebencr.
11	16.00	11.80	73.80	T. Bennings, Vilmorin.
15	12.20	7.90	6 1. 98	K. Lammerman.
15	14.17	11.95	83.39	W. W. S. Suoddy.
15	9.57	7.15	74.73	G. H. Moore.
15	14.17	8.20	58.16	K. Lammerman.
18.	16.93	12.55	73.95	A. L. Duncan.
18	15. 80	12.00	75.90	John D. Eleming.
18.	16.00	11.15	73. 62	O. Coyle.
20	13. 80	9.45	68.11	W. Helget.
21	17.43	13.05	75.25	A. R. Moore.
23	17.80	11.05	60.72	J. H. McCracken.
25	17.67	9.10	55.02	Osborn.
25	17.37	10.40	60.18	E. Wennet.
25	17.63	9.95	57.69	Dolubs Bros.
25	15.87	8.90	55.39	L. Clovis, Wanzluboner.
25	17.03	9.83	56.86	Do. Vilmorin.
25	16.00	10.95	68.03	Mallen; tops dostroyed by web worms.
27	18.37	11. 75	63.85	W. Schmidt.
27	18.37	12.65	69.48	A. W. Smith.
27	18.63	12.25	66.30	George Heydenrick.
27	20.30	12. 15	59.35	A. R, Moore.
27.	18.07	12.60	69.27	Do.
Oct ${ }^{30}$	17.87	10.95	62.21	C. H. Blackford.
Oct.	16. 09	11.60	68.78	A. W. Smith.
	18.10	13.05	72.10	IIy. Hinze.
	21.43	16. 85	78.00	J. H. McCracken.
	18. 63	12.55	67.64	W. Helgot.
	17.20	12.00	69.86	Osborn.
	19.60	13.45	68.62	D Do.
	17.47	11.20	63.67	T. Beunings, Wanzlebener.
	17.53	11.70	66.14	'T. Bennings, Vilmorin.
	17. 80	10.70	59.92	J. B. Cool.
	18. 60	12. 80	67.69	Tico.
	18.37	13.90	74.01	A. W. Smith; dark groumd.
	17. 54	13.60	78.70	O. Coylo ; non-alkali soil.
	15.83	12.05	75.90	O. Coyle; alkali soil.
	17.80	12.75	71.20	A. L. I)nncan.
	15.10	11.70	78.75	J. H. Mc Cracken.
	17.37	12. 75	73.99	P. B. Cole.
	15.20	13. 50	69.00	M. Best.
	20.67	15. 85	73.76	Do.
	19.10	12. 20	62.03	Hy. Hinze.
	19.77	14.80	72.21	M. H. Sparks.
	19.10 16.87	12.20 10.80	62.03 63.26	F. F. Mullen; tops destroyed by web wolms.
	16. 87	10.80	63.26	Oshorn.
	16. 83	10.55	62. 16	J. D. Flemming ; arerage size.
	16.30	9.90	59.38	J. D. Flemming ; large beets.
	18. 37	11. 75	64.49	J. I). Flemming ; small beets.
	18.40	10.75	63.39	A. I. Duncan.
	16, 00	11.40	71. 88	K. Lammerman.
	17.8;	11. 15	63.13	Geo. Hoydenrick.
	18.60	11.75	63.51	Do.
	18. 17	12. 15	66.00	W. sclimidt.
	16.97	10.85	59.56	L. Clovis.
	15.83	8.75	54.11	Do.
17.	20.97	13.20	63.07	A. W. Smith.

Miscellancous analyses of beets-Continued.

$25243-$ Bull, $30-5$

Miscellancons analyses of bects－Continuod．

1 1at．	Solids．	Sucrose．	Purity．	Description of samples from－
Nぃど，1！．	Percent． 20.70	Percent． 1535	71.10	O．Coylo ；110n－alkali soil．
12	15．811	12.00	75． 30	O．Coylo ；alkali soil．
$1:$	17．ภi1	12． 75	71.28	Do．
$1:$	17.93	14．70	8 8． 10	O．Coyle；non－alkali soil．
12	19．60	13． 65	76.45	Hunt．
1.3	19．6．3	15．90	81.12	Smitl．
$1: 3$	$\because 1.20$	17． 10	83． 60	Do．
13	18．93	14．00	71.09	Rice．
13	21． 23	16.95	83.91	Schmidt．
13	19.77	16． 17	81.73	1）Do．
13	16． 69	12． 3.5	74． 60	K．Lammerman．
11	19.17	14． 1.5	75． 26	J．H．McCracken．
11	－1． 83	11.45	79.09	Mullen．
11	19．5：	11．fio	74.87	M．Best．
11	19，$\times 3$	15． 2.5	76.76	Geo．Hejilenrick．
11	211． 41	15．80	75．34	Do．
14	is． 73	14．40	77.101	${ }^{2}$ ²，13．Cole．
11	19．） 617	11． 60	74． 30	Mullen．
11	21． 80	16．15，	77.61	A．W．Smith，roots．
16	21.20	16.75	79． 11	George Mawson．
11	15． 17	11．90）	77.90	K．Lammerman．
16	17．77	13．20	71.60	T．Bennings，Wanzlebener．
16	18．53	13． 80	74.60	＇T．Bennings，Vilmorin．
17	18.59	11．31）	78.410	Rice．
17	19.87	16． 00	80.80	J．B．Cool，roots．
17	18．77	1．4．5．5	77.50	J．B．Cool，tops．
17	21．20	17． 10	80.66	J．D．Fleming．
17	20．83	16． 41	78.41	Do．
17	21.27	18．45	87． 03	O．Coyle，non－alkali．
17	18.89	11．45	76.60	O．Coyle，alkali．
17	20.93	16．50	79.00	Beet pile．
17	15．10	11.70	78． 75	K．Lammerman．
17	17.107	15． 35	78.25	Beet pile，roots．
17	119．00	14.70	78．30	Beet pile，tops to above．
17	17.51	13．75	78．73	K．Lammorman．
17	15．43	11．10	78.35	Unilerwoot．
18	17.17	13．75	78.75	Horn．
18	15． 65	11.95	76.25	Beet pile，one yellow beet．
18	17.40	13．6．7	78．25	Beet pile，one very large beet，weight $7 \frac{1}{1} \mathrm{lbs}$ ．
18	16.93	12．55	73．95	Rice．
18	18．77	15． 40	8゙＂． 40	A．W．Emith．
18	19．50	16． 160	82． 01	170.
18	19． 60	15．90	81.01	W．Schmidt．
18	17.82	13． 65	76.45	Hy．Hinze．
$\begin{aligned} & 18 \\ & 18 \end{aligned}$	18.87 20.81 10.	13.50 15.30	7．1．18	A．I．Moore．
18	21．84	15．90	7281	Blackford．
19	119．46	14．95	71.38	Osborn．
19	20．0．3	15． 00	74.88	Reet pile，well shaped beets．
19	211． 23	15． 40	76．63	Beet pile，well shaped heets．
19	20． 37	15．35	74．73	Beet pile，well shaped beets．
19	17．07	13.35	78.35	Beet pile，imperfect beets．
19	20．71	15．35	74.01	O．Coyle．
19	19．10	15． 90	8：3．20	Do．
19	19． 10	11．7）	76． 20	A．12．Moore．
19	19.7	15． 60	49． 20	J．D．Floming．
19	1．21	15．90	$8^{8} \mathrm{C}, 010$	V Do．
（1）	21． 21.3	17．29	80． 790 790	Beet pile，selected．
－	19.74	15．65	79．20	Beet pilo，selected．
－11	\cdots	16． 710	8．3． 2	Geo．Heydenrick，selecled．
21	$\because 1.77$	17． 63	81.33	A．W．Smith，selectel．
＂1	17．Sil	12.75	71．2，	Attica，Harper County，Kans．
－1	17．$: 17$	11．	6is． 40	Do．
$\because 1$	21.33	16．70	78． 40	O．Coyle，non－alkali soil．
$\underline{1}$	19.8	11． 110	75． 10	O．Coylo，alkali soil．
2	16．6\％	12． 5.5	74． 70	lico． M．Best．
21	15．77	14． 5 5	77． 50	S．IS．Hnnt．
\because	19．63：	15．90	81．12	E．Wennet．
22	18．33	14.05	77.03	Do．
22	18．59	13．5．5	73.97	Hy．Hinze．
\％	1\％33	13．35	72.73	M．H．Sparks．
2	20．23	16． 20	80． 19	A．L．Duncan．
2	18.93	14．00	74.69	J．H．McCracken．
	19．47	15． 10	72.70 79.20	L．Clovis．

Miscellaneous analyses of hects-Continued.

Date.	Solids.	Sucrose.	Purity.	Description of samples from-
	I'er cent.	l'er cent.		
Nov. 22	20.93	16.50	79. 00	Do.
22	18. 89	14.45	76. 60	Dobls 13ros.
23	21.27	18.45	87.02	A. W. Smith.
22	20.83 21.20	16.40 17.10	78.84 80.66	J. D. Fleming.
22	17.77	13. 85	78.00	G. H. Moore.
22	18.07	14.10	76.35	Underwood.
22	18.33	14.60	79.80	Beet pile.
22	20.60	16. 65	80.82	Do.
22	19. 13	15.00	78.50	Do.
22	17.73	13. 45	73.44.	Do.
22	20.29	15. 60	76.85	J. B. Cool.
23	18.70	13.80	73. 79	Do.
22	22. 00	16.80	76.36	Do.
22	19.00	14.90 13.50	78.40 74.18	Geo. Heydenrick.
22	17.83	13. 65	76.45	13o. do.
22	19.60	15.90	81.04	A. R. Moore, large beets.
22	19.50	16.00	82.01	A. R. Moore, small beets.
22	18. 77	15. 40	82.40	Mullen.
22	16. 93	12.55	73.95	Mullen, very large bects.
23	17.40	13.65	78.25	Load, roots.
23	15.63	11.95	76.25	Load, top of root.
23	19.47	14.65	75.26	Do.
	20.83	16. 25	79. 09	Load, root.
	19.83	15.45	76.76	Do.
23	19.53	14. 60	74.87	Load top of root.
23	18. 77	14. 30	76. 45	Bect pile, large yollow beet.
24.	20.93	16. 40	78.00	O. Coyle, nou-alikali soil.
24	19.70	15.65	79.20	O. Coyle, alkali soil.
24	20.40	15. 80	78.30	J. D. Fleming.
	20.30	15. 00	78. 70	Do.
24	19.00	14.25	75.25	Blackford.
24	20.80	16.15	77.64	E. Wennet.
24	21.77	17.65	81.33	W. Helget.
24	19.67	14.60	74.50	A. W. Smith.
24	20.17	15. 55	77. 60	A. R. Moore.
24	19.57	14.83	76. 38	Mullon, roots.
24	18. 23	14.00	76. 90	Mutlen, top of root.
24	19.33	14.80	76. 70	J. H. McCrackeu.
	20.83	16. 70	80.29	Mr. Hinman, taken from pile.
	18.70	14.05	74.88	Osborn.
25	21. 70	17.40	81.31	W. Schmidt, high, red grount.
25	18. 63	13. 40	73.80	W. Schmidt, low, dark ground.
25	21.43	16. 80	78. 62	Hartzell, dark loam.
25	18.33	14. 60	79. 80	Selected samples, beet pile, roots.
25	17. 77	13.45	73.44	Selected samples, beet pilo, tops.
	22. 00	16. 80	76.36	Selected samples, beet pile, roots.
	20.29	15. 60	76.85	Selected samples, beet pile, tops.
25	17.40	13.65	78.25	Selected samples, beet pile, roots.
	15. 63	11.95	76.25	Selected samples, beet pile, tops.
25	18.51	14. 45	77.80	Solected samples, beet pile, roots.
	17. 69	13.25	71.26	Selected samples, beet pile, tops.
	17.77	13.80	78.00	Selected samples, beet pile, roots.
	15.88	12. 00	78.00	Selected samples, beet pile, tops.
	19. 27	16. 20.	81.67	Sclected samples, beet pile, mots.
	20.70	15. 35	74.01	Selected samples, beet pile, tops.
	18.13	13.65	74.20	One large beet, A. W. Smith, weight 5 pounds 10 ounces.
	17.80	12.75	71.28	Red and pink beets, pile.
	20.93	17.35	82.81	Selected samples, pile, average weight 9 onnces.
26	19.63	15.90	81.12	Selected samples, pile, average weight 1 :3 ounces.
	19.77	15.60	79. 20	Transplanted beets, Coyle.
	21.17	16.70	79.14	Selected samples, load of Coyle.
26	21.57	17.25	80. 23	Do.
26	18.83	16.15	85.90	Do.
26	21.23	18.35	86.93	Do.
	22.22	16.10	72.49	Do.
	21.12	13.50	63.91	Yellow beets, pilo.
26.	20.87	15.20	72.83	Marson.
26	19.13	14.70	76.95	McCracken.
	10.03	5. 60	55. 83	White tablo beet.
	19.70 18.73	15.65	79.20	Pile, root.
	21.13	17. 50	82.94	Pile, root.
	20.40	16.35	80.14	Pilo, top.
	17.77	13.80	78.00	Pile, root.

Miscellaneous analyses of beets-Continued.

Load tests.

[In tho juice.]

Date.	Solids.	Sucrose.	Purity.	Date.	Solids.	Sucrose.	Purity.
	Per cent.	Per cent.			Per cent.	Per cent.	
Nov. 14	17.77	13. 85	78. 00	Nov. 19	15. 83	11. 60	73.40
15	18.07	14.10	78.35	19	15. 47	12. 40	80.50
17	18.33	14.60	79. 80		17.80	13.40	75.30
17	20.60	16.65	80. 82		17.80	13.45	75.35
17.	19.13	15. 00	78.50	19	20.63	15.00	77.76
17	17.73	13.45	73.44	19	19.67	15. 00	76. 53
17	20.29	15. 60	76. 85	19	19.51	14.60	74. 81
17	18.70	13. 80	73. 79	19	19.71	15. 37	77.40
17	22.00	16.80	76.36		17.38	12. 40	71. 68
	19. 00	14. 90	78.40		18.29	14.00	76.90
17	18. 27	13.50	74.18	19	16. 73	12.25	73.65
17	17.82	13.65	76.45		19.63	15. 20	77.60
17.	19.00	15.90	81.04		19.63	15. 00	76.53
17	19. 50	16.00	82.01	19.	20.33	16. 65	81. 89
17	18.77	15. 40	82.40		17.50	13. 00	74.30
17	16.93	12. 55	73.95	19	17.40	12. 75	73.99
17	17.40	13.65	78.25	19	17.77	13.40	75.70
17	15. 63	11. 95	76.25	19	18. 17	13.65	75.10
17	19.73	16. 10	81.63	19	16.93	12.05	71.31
17	16. 60	13.05	78.30		15. 03	11.25	74.70
17.	17.93	14. 70	8.2. 10	20	18. 30	14.15	77.05
18.	18. 21	15. 70	86.25	20	19. 77	14.90	75. 66
18.	19.30	15. 60	80.80		21. 03	16.15	76.79
18.	20.93	17.25	83. 89		18, 77	14.05	74.98
18	20.39	16. 25	79.69	20	18.51	14.35	77.30
18.	19. 90	16.15	81.15		19. 11	15.00	78.50
18	19.38	16. 90	87.20	20	19. 00	14.50	76.30
18.	19.10	14. 70	76.95		20.27	16. 20	79.92
18.	21.50	16.40	76. 28		17. 13	12.35	72.35
	17. 69	13.30	75.55	20	18.27	13.60	74.73
18.	18.21	14.75	80.80	20	17. 80	12.70	71.28
18	17. 77	14.30	88. 18	20	17.50	14.20	81.10
18.	17. 80	12. 75	71. 28	20	17.80	12.85	71. 91
18	17. 10	12.87	74.90		17.79	13.25	74.60
18	19.63	16.00	81.51		19.13	14. 60	76. 40
18.	19. 10	15. 90	83.20	20	16. 53	13. 35	80.60
18	17. 69	13. 25	71.26		20.37	15.60	76.95
18	18.51	14.45	77.88		19.17	15. 10	79.05
18	19.97	16. 00	80.12	20.	17. 67	13. 40	76. 10
18	15.80	12. 00	75.90		19.63	15.25	77. 60
18	17.77	13.80	78.00	20	19.93	15.00	75. 50
18.	18.33	14. 60	79.80	20	19.77	15. 10	76. 44
	18.33	14.20	77.60	20	18.80	14.35	76. 05
	18.57	14.55	78.40	20	16.00	12. 15	75. 65
18	20.70	15. 35	74. 01	20	20.40	16.15	79.16
18	18.63	14.20	76.30	20	19.73	15. 25	77. 20
18.	19.27	16. 20	84.07	20	18.37	14.60	79.80
18.	17.77	14.70	83.00	20	17. 53	13. 00	74.85
19	20.00	15.60	78.00		20.37	15.35	76. 12
19.	18.03	14. 10	78.35	20	20.17	16. 00	79.32
19	17. 47	13. 75	78.73		19.03	14.50	76.30
19	17.54	13. 60	78. 70		17.71	14. 95	84.20
19.	19.00	14. 70	78.30	20	19. 27	15. 35	79. 20
19	17.07	13.35	78.25	20	18.00	14.10	78.90
19	15. 10	11.70	78.75		17.39	12. 50	72.83
19.	18. 27	14. 80	81.30	20	17.78	14. 30	81.40
19.	20.17	15.20	75.62	20	16.41	12.10	73. 75
19.	16. 00	11.90	74.35	20	10.47	14. 20	73.70
19.	16. 60	11. 80	73. 80	20	18. 60	14. 20	76. 30
19.	16.53	12. 15	73.35	20	18.40	13.95	75. 55
19.	18.33	14. 20	77.60	20	19.10	14.55	76.40
19	17.53	13.20	75. 42	20.	18.27	14. 50	79. 70
19.	17.57	13.20	75. 40		18.43	13.75	75.00
19	18. 20	14.70	80.80	20.	18.83	14.00	74.48
19	19.37	15.30	79. 30	20	16. 30	12. 40	76. 10
19	19.60	15. 70	80. 60	21	17. 27	13.95	81.40
19	18. 70	15. 10	80.70	21	19.81	16. 20	81.79
19	13. 37	14.95	85.80 81.46	21.	20.33 18.80	15.90 14.40	79.31 77.10
19	17.53	13. 35	75.00	21	19. 37	15.40	80.30
19	17.40	13.40	77.00		20.33	16.40	80.67
19	19. 11	14.60	76.42	21.	21.00	16.35	77.86
19	18.74	14. 10	75. 60	21	20.40	15.70	79.80
	18.03	15.00	83. 30		18.80	14.95	77. 80
19	18.43	14. 00	76.20 76.50		16.80	12. 90	77.40 81.30
	16.93	12.50	73.95		20.37	15.40	75.87

Lond tests-Continmed.
[In the juice.]

Date.	Solids.	Sucrose.	Purity.	Date.	Solids.	Sucrose.'	Purity.
Nov. 21		Per cent. 16. 10 13.:37 13. 65 15. 80 13. 05	75.94		Per cent.20.4721.5719.6319.5719.80	Per cent.	
						15.2517.25	74.5080.23
			?1. 216				
			72.73			14.93	76.02
			¢0.30			15. 20	77.90
			75.85			15. 40	77.80
		15. 10	78. 6.5		21.20	16.75	79. 11
		14.75	85. 4.5		19.90	16.05	80, 69
		17.15,	78.6775.16		19.60	16. 05	8.2. 00
		14.00			16.40	11.90	73.20
		14. 80	$\begin{aligned} & 75.16 \\ & 76.70 \end{aligned}$		15. 47	11. 90	77.90
		14.80	$\begin{aligned} & 76.70 \\ & 74.00 \end{aligned}$		19.90	15.35	76.88
		13.710			17. 77	13. 20	74.60
		14. 25	$\begin{aligned} & 7 \because 65 \\ & 75.95 \end{aligned}$		18.17	14.15	77. 90
		16. 15			19. 77	16. 17	81.73
		17.65	$\begin{aligned} & 75.64 \\ & 81.3: \end{aligned}$		19. 57	15. 55	79.50
		14. 60			19. 67	15.40	78.60
		15.55	$\begin{aligned} & 74.50 \\ & 77.60 \end{aligned}$		19. 03	15. 50	81.60
		14.8 .5			19.93	15. 20	76. 38
		14. 10	76.38 76.90		18. 53	13. 80	74. 60
		14. 80			20.13	16. 10	80.19
		16. 70	76.70 819.29		18.83	16. 15	85.90
		14. 05	71. 8s		19.87	16. 00	80. 80
		15. 90			18.57	34. 50	78.40
		15.45			19.87	16.00	80.80
		14. 10	$\begin{aligned} & 77.25 \\ & 75.27 \end{aligned}$		20.50	16. 15	78. 53
		15. 85			19. 63	15.40	78.60
		13. 75	$\begin{aligned} & 83.20 \\ & 75.80 \end{aligned}$		18. 70	14. 65	78. 10
		14.90	75. 20		19. 70	15.40	78. 20
		14.60	74. 87		18. 13	14.45	79.60
		14. 60	$\begin{aligned} & 7.26 \\ & 78.010 \end{aligned}$		20.23	16. 95	83. 91
		14.20			21.33	16.70	78.40
		15.05	$\begin{aligned} & 78.10 \\ & 78.30 \end{aligned}$		19.23	14.40	75. 00
		16. 25	76.29		17.77	13. 90	78. 55
		14.10	77. 90		16. 67	12. 55	74. 10
		14.311	-6.15		18.77	14.55	77.50
		15. 50	75.92		19.63	15.90	81.12
		14. 30	76.45		18.33	14.05	77.03
		14.20	$\begin{aligned} & 74.79 \\ & 80.55 \end{aligned}$		18.57	13. 55	72. 39
		17.40			18.73	13.65	72. 73
		15. 60	$\begin{aligned} & 80.55 \\ & 76.85 \end{aligned}$		20. 23	16. 20	80.19
		15.70	$\begin{aligned} & 76.85 \\ & 77.32 \end{aligned}$		18.93	14.00	74.09
		15.25	74.50		19.47	14. 10	72. 70
		14.6.3	75. 26		19.77	15.60	79. 20
		16.45	79. 19		20.93	16. 50	79.10
		15.25	76.76		18.89	14.45	76. 60
		14. 60	7.4. 8776.45		21.27	18.45	87.02
		14.30			20.83	16.40	78.84
		16. 40	$\begin{aligned} & 76.45 \\ & 78.00 \end{aligned}$		2120	17.10	80. 66
		15.65	$\begin{aligned} & 78.00 \\ & 79.20 \end{aligned}$		20.73	16.60	80.00
		15. 81	$\begin{array}{r} 79.20 \\ 78 \end{array}$		21. 03	18. 00	85. 71
		15.00	$\begin{aligned} & 78.30 \\ & 7.70 \end{aligned}$		17.83	13.40	75. 30
		14.411	$\begin{aligned} & 78.70 \\ & 77.00 \end{aligned}$		21.37	17.90	84.03
		15.25			20.10	16.65	8‥ 83
		15. ${ }^{\text {(1) }}$	76.38 8.29 8.90		19. 00	15. 30	81.00
		15.91)	59.90 79.20		22. 00	16.05	72.95
		15.35	77. 70		21.80	16. 05	73. 63
		17. $\because 0$	-0. 110		18.97	15. 05	79.40
		17. 510	$\begin{aligned} & 81.77 \\ & 80.14 \end{aligned}$		19.90	15.70	79. 30
		16. 75			20. 00	15. 80	79.00
		15. 60	$\begin{aligned} & 00.14 \\ & 50.60 \end{aligned}$		22.76	18.50	81. 50
		17. 51	!3. 60 2. 94		19. 51	16. 20	81.79
		17.54)	2.94		18.03	15.00	8.30
		15. 04	6. 14C0. 110		21. 07	18.40	87. 62
		17. 25			24. 37	19.50	80. 25
		16.35	80.1481.31		18.30	15. 50	84. 70
		17.40			22.37	18.40	82.51
		16.0.5	81.31 82.22 8.21		22. 37	18.40	8.3. 51
		16.70	$\begin{aligned} & 7314 \\ & 76.81 \end{aligned}$		21. 60	18.30	8. 72
		15.4.5			18.73	15.50	82.90
		1.5 120 125 15	77.811 78.18				
		15. 7.5	79. 811		18.52	15.12 19.50	81.04 88.18
		15.4.5	77. 0		15.10	11.60	71.26
		14. 50	75. 91				

Composition of ash of beets grown at Merlicine Lodge, Kansas.
DESURIPTION OF SAMPLES.

No. of sample.	Description.	Grown by-	Kind of soil.
8432	$\left\{\begin{array}{l}\text { Necks of beets .. } \\ \text { Roots }\end{array}\right.$	\} Mr. Fleming...	Upland reds soil.
8433	$\left\{\begin{array}{l}\text { Neeks of beets } \\ \text { Roots }\end{array}\right.$	\} O. Coylo	bottom alkali soil.
8134	$\left\{\begin{array}{l}\text { Necks of } \\ \text { Koots... } \\ \text { Leaves. }\end{array}\right.$	$\} A \cdot W \cdot \text { Smith }$	Bottom land; not alka line.

Table of amulyses of ush of beets and beet leaves, groven at Medicine Lootge, Liansas.
ASH, SOLUBLE IN BOILING WATER.

ASH, INSOLUBLE IN BOTLING WATER.

CO_{2}	4.07	6. 36	8.28	7.99	6.95	3.95	3.37
SiO_{2}	36. 74	19.21	23. 56	12.49	35.96	9.31	55. 86
$\mathrm{Mn}_{3} \mathrm{C}$	1.21	1.31	0.74	1.54	0.74	1. 10	0.41
CaO	12.76	13. 82	23.21	23.11	11.02	14. 82	12. 36
$\mathrm{P}_{2} \mathrm{O}_{5}$	7.66	10. 74	14.48	16. 03	16.81	20.10	6. 59
$\mathrm{Mg}(1)$	22. 58	38.27	21.44	37.53	15. 51	38.28	15.01
$\mathrm{Me}_{2} \mathrm{O}_{3}$	6. 70	4.88	4.73	0.76	5. 80	4. 60	3.40
K2()	5. 60	3.30	2.07	1. 22	3. 05	4.35	3.20
$\mathrm{Na}_{2} \mathrm{O}$	2. 54	1.50	1.04	0.33	2.25	1.63	1.95
Tot	99.86	99.39	99. 58	101.00	98.09	98.14	102.15

TOTAL, SOLUBLE AND INSOLUBLE ASII COMBINED,

CO_{2}	12.07	17. 19	16. 33	23. 67	14.07.	21.32	9.35
	12.17	13. 05	2.90	2.15	9. 60	9.26	9.41
SO_{3}	5.43	2.12	6. 74	3.74	7.05	1.55	6. 89
$\mathrm{P}_{2} \mathrm{O}_{5}$	3.51	4.36	6. 58	4.74	7.52	8.78	3.31
$\mathrm{K}_{2} \mathrm{O}$	34.55	37.17	40.21	46. 43	35.43	43.97	10.11
$\mathrm{Na}_{2} \mathrm{O}$	8. 86	10.84	2.25	1.91	5. 39	2. 95	22.40
SiO_{2}	11. 64	4.14	8.27	3. 48	12.85	2.05	26.14
$\mathrm{MH}_{3} \mathrm{O}$	0.36	0.27	0.25	0.39	0. 24	0. 24	0.14
CaO	3. 83	2.81	7.83	5.89	3.59	3.15	6.03
Mg O	6.77	7.77	7.23	9. 57	5.48	8.19	7.02
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	2.01	0.99	1.59	0.19	0.99	0.98	3.18
Total.	101. 20	100.71	100.18	102.16	102. 21	102.44	103.98
Corrected for	98.46	97.77	99.53	101. 67	100.04	100. 35	101. 62

EFFECT OF SOIL ON BEET PRODUCTION.

Not only the climate but also the soil affects profoundly the quality of the beets grown. This is well illustrated by the experiment of Briem, published in Austro-Hungarian Journal of the Sugar-Beet Industry and of Agriculture, vol. 17, p. 571.

Briem chose two typical soils for a comparative trial, near each other, in order to secure identical climatic conditions. The mother beet from
which the seeds were obtained was a Vilmorin improved, which contained 19.86 per cent sugar. The seeds were planted in the two soils under precisely similar conditions and received the same culture. The one soil was rery poor, with a gravelly subsoil. The other was a rich garden soil, on which a pond had once stood,

The beets which were produced were so different that even an expert Would not have admitted that they came from the same seed. The poor soil gave a small beet, which soon reaclied the term of its regetation, while the rich soil furnished a beet resembling those raised for forage and which at the time of harrest was still in full vegetation. A tabular view of the results is instructive:

Description.	Weight of root.	Sugar.
Mother beet	Grams. 298	l'er cont. 19.86
Beet from poor soil	160	14.57
Beet from rich soil.	876	13. 61

That a race of beets introduced into a new country derelops new characteristies has long been known, but the above shows in a striking mamer the part that the soil itself may take in these transformatious.

CULTURE OF THE KLEIN WANZLEBENER ORIGINAL.

In a letter from the proprietors of the sugar factory at Klein Wanzlebei, some interesting data have been communicated concerning the original Klein Wanzlebener beet, from which all the different varieties of this family have been derived. The methods of selection of beets for seed production are described as follows:

For the prodnction of our heet seed, which is carried on by us exclusivels, we use none hut the full-grown beets, having never been able to satisfy ourselves with regard to the use of small beets. Althongh this method of cultivation would be much more profitable it has always appeared to us to be contrary to all laws of nature, and the seed from such imperfect beets is certainly more subject to degeneration than that from full-grown, mature beets. Variations of form cau never be safely detected in these dwarf beets, while the mature heets are chosen with the greatest certainty by their external appearance.
The selection of the mother beets on the field and before siloing is male with the greatest care. Only those fields are used for this purpose which have been planted with seed from beets which were polarized and whose actual sugar content has been determined by the alcohol-extraction method. All beets which are defective in growth are rejected.
The process of selection commences in November, after all the beets have been harvested, and continues until the middle of April.

The work is carried on in three laboratories. In Laboratory I the beets are asforted ly means of a solution of salt. About nine-tenths of all the beets reserved for sembelection are rejefted in this laboratory, and only about 100,000 beets are transferred to Laboratory II.

The per cent of sucrose in the jnice of these beets is now determined in Lahoratory II by the polariscope, the figure thus obtained being always considerably reduced so as to allow for variations. Tho actual sucrose content of these polarized beets-haily about $150-200$-is determined in Laboratory III les the aleohol method, so as to have a check on the polarization, and to avoid errors which might be caused by the presence of optically active bodies. Only those beets whose high sugar content is definitely proved by the last method are chosen for cultivation. These are again assorted, the finest specimens being planted in the spring for the production of extra fine seed. This seed, of which we can only furnish limited quantities, is therefore obtaiued from high polarizing beets without an intervening generation. We do not, however, consider that the careful selection of mother beets by their sugar content insures satisfactory restalts. If the choice of mother beets by polarization were the only condition necessary to obtain good results, every large estate would be able within a few years to raise a beet satisfactory in all respects. This is, howover, impossible, as the heet is, more than any other plaut, subject to sudden degeneration, which is explained partly by the history of its development and partly by insufficient transmitting of those qualities which distinguished the mother beet.
Very often external conditions, such as locatiou aud fertilization, exercise at times a deteriorating influence and cause o poor quality of beet, such as is not a natural variation of the family and is uot hereditary.
For these reasons it, is absolutely necessary, if we wish to raiso a beet of constant high quality, to observe the experimental crops for a number of years, both as to their external appearance and chemical properties.
The fact that the beet is a biennial plant renders this method of selection proportionally more difficult.
The cultivation by families, together with the most consciontious individual cultivation, has been the fomdation of our work for more than 30 years. It insures certain success to the growers of our original beet, an individual superior both in quality and quantity: in short, results such as the varieties introduced in Germany during the last ten years are unable to gnaranty as tho proof of their constant high quality, which can only be determined by careful observations extended over many years, is wanting.
As a transfer of the beet into other conditions of climate and soil may cause a deterioration in the second generation, the statement that the seed was obtained from our finest quality of beet is not a certain guaranty of success.

Some interesting data in regard to the operation of the sugar factory are also communicated, this being one of the companies which carries on both the manufacture of sugar and the production of sugar-beet seed. As will be seen from the data communicated the object is to produce not only a rich beet but one of large size, so as to secure as large a yield as possible of sugar per acre.
The data in regard to the operations of this factory follow :
[Sugar Factory Klein Wanzleben, successors to Rabbethge \& Giesecke Stock Company at Kleju Wanzleben.]

We beg permission to send the following data for general information concerning our house:
Our capital is 2,700,000 marks. Our stockholders are under no obligations to raise or furnish beets.
Our plant consists of a raw-sugar factory, which diffuses about 7,000 humbrectweight heets per day, and a molasses desucration factory, which is capable of working up about 1,000 hundred-weight of molasses. A large farming estato is connected
with the factory. The beet-singar factory diffuses during the campaign about 500,000 hundred-weight beets. The yield in the campaign of 1890 was:

	Per cent.
First product	11. 32
Second product abont	1.40
Third product about.	. 20
Total.	12.92

Our estate comsists (exeluding a large area which is planted with wheat, oats, etc.) of alont 5,000 morgen of heets, hoth purchased beets and seed heets (4 morgen $=1$ hectare ; 1 English acre $=$ about $1 \frac{1}{2}$ morgen) .

The yield of $18-9$ was reduced by the poor results on certain strips of land, but nevertheless the average yield was 207.4 hundred-weight per morgen, some strips yielding as high as $\because \sim 4$ hmmbed-weight. The crop of 1890 will gield about 200 hun-dred-weight per morgen.

A rery important hanch of our farm is the improvement of beet seed, which wo have ongaged in for the last thirty years.

The mother beets are chosen from the plats by eareful methorls of selection. In 1-s 9-90 wo examined 2, TNO, 300 heets, of which 3,043 , that is, about one per thousand, were chosp for purposes of enltivation. The extensive work of selection occupies our experts from January to Λ pril, and visitors to our laboratories are always welcome. We are always pleased to give all information desired.

Our united farming and manufacturing interests soon proved to us the necessity of cultivating bets according to the yield of sugar per morgen, and we found the cultivation of our original Klein Wanzlehener leet, which unites a high yield per morgen with a high sugar content, as most profitable.

We desire to point out that we have adopted the name Original Klein Wanzlobener beet seed, as varieties of this beet have appeared of late which aro offered under such names as "improved, containing a high percentage of sugar," ote, and which, in many cases, are not equal to the Klein Wanzlebener beet. The above name also provides a means of distingnishing between our original beet and these varieties.

We will he glad to furnish directions for the intronuction of the leet, its cultivation, the methods of panting our Original Klein Wanzleboser beet, and samples of the seed.

Klein Wanzleben, February, 1890.

SYSTEMATIC STUDY OF THE DIFFERENT VARIETIES OF SUGAR BEETS IN SAXONY.

Professor Maereker of Halle has, for several years, collated the data in regard to the different varieties of sugar beets grown in Saxony; arranged in respect of their improvement in sugar percentage and in yield of siggar per acre. Nine reports have already been issued on this subject, containing data on all the different varieties of sugar beets grown in Saxony and especially on the different branches of the Vilmorin and Klein-Wanzlebener families of beets.

From Professor Maercker's ninth report the following table has been compiled, showing the character of some of the different varieties of beets investigated :

Contparative mean results of Professor Maerker's experiments in 1888.

	Singar in the beet.	Sugar in the juice.	Purity quotient.	Yield of beets per acro.	Yield of sugar per aere.	No. of beets per acre.
Sugar beets of Vilmorin origin :	Perct.	Per ct.		Pounds.	Pounds.	
Gebr. Dippe's zuckerreichste Elite	15.96	18.15	87.70	25,942	4, 141	34, 773
Heine-Emersleben vorbesserto Viln	15.70	17.81	87.70	27, 702	4,349	33,894
Schreiber \& Sohn Original	15.49	17.87	87.10	26,752	4,145	34, 461
Knoche-Wallwitz, Vilmorin	15. 48	17.90	88. 23	29, 128	4,509	31, 677
Mette Vilmorin...	15. 37	17. 67	87.80	27,262	4,189	35, 251
Strandes Vilmorin	15.22	17. 37	87.30	25,274	3, 816	34,738
Schlitte-Aumilhle Vilm	15. 04	17.20	87.40	27, 262	4,101	34, 253
Grasshoff-Quedlinburg Vilmorin	14.82	17. 05	88.40	28, 019	4,154	31, 482
Means	15.39	17.63	87.71	27, 174	4, 180	34, 566
Sugar beets of Klein-Wanzlebener origin :						
Gebr. Dippe's verbesserte Klein-Wanzlebener						
Knoche-Wallwitz Klein-Wanzlebene	15.53	17. 48	87.30	31,064	4.822	4,909
Kortum-Soudershausen Klein-Wanzlebene	15. 44	17.61	88.20	28, 670	4,428	34,525
Klein-Wanzlebener Original.	15. 38	17. 44	88. 73	32, 965	5,071	35, 163
Heine-Emersleben Klein-Wanz	15. 36	17.56	88.70	32, 102	4,933	35, 048
Nen-Querfurter Rübe.	15. 21	17.24	88.80	31,768	4,831	36, 059
Grasshoti:Quedlinburg Klein- W anzle	14. 91	16.71	88.30	29,374	4,379	34,266
Bramne-Bieudorf Klien-Wanzlebener	14.85	17.01	88.10	32, 894	4,884	35, 446
Schreiber \& Sohn Klein-Wanzlebene	14.71	16. 62	87.80	33, 686	4,956	37, 200
Rimpan-Schlanstedt Klein-IVanzlehen	14.69	16. 75	87.60	33, 950	4,988	35, 222
Wilke Gr.-Möhringen Klein-Wanzlebener	14. 56	16.67	88. 20	33,422	4,866	35, 170
Ziemann-Quetlinburg Kloin-Wanzlebenor	14. 43	16.44	87.80	34,109	4,475	36, 133
Strandes-Zehringen Klein-Wanzlebener	14. 40	16. 64	87.40	33, 810	4,870	35, 971
Means	15.00	17.08	88. 13	32, 278	4,836	35,482
Sugar beets of other strains:						
Bestehorn-Belitz Dividenden	15.15	17. 88	87.70	2S,670	4,344	34, 936
Mette Specialitait	14.78	16. 60	87.70	32, 877	4,859	34, 955
Branne-Biendorf Kreuzung	14.71	16.90	88. 04	33, 264	4,893	3f, 912
Schlieckman-Auleben Specialität	14.38	16.35	87.80	33, 352	4,796	34,349
Means	14.76	16. 93	87.81	32,050	4,724	34,787

GENERAL CONCLUSION.

The result of the analyses at Grand Island and other places show that beets of high sugar content and great purity can be grown in many parts of the Uiited States. The average size of the beets, however, in many places is too small to assume that their culture would prove profitable. It would be far better for all interests to grow beets averaging from 600 to 700 grammes in weight, even if the percentage of sugar should drop one or two points. The eanses of the small crop at Grand Island have already been set forth, and it is not necessary to repeat them here. The Department has organized an experimental station for the culture of the sugar beet at Schuyler, Nebraska, and it is confidently expected that rich beets with high tomage can be produced.

In a critical study of the data given above there are many points of interest. In judging of the character of a beet for sugar-making
purposes three factors must be taken into consideration. First of all, the beet must be large enough to make its growth profitable to the farmer. Experience has shown that a beet which weighs about 600 grammes, that is a little over 1 pound, is best suited to secure the interests of both the farmer and the manufacturer. Therefore, in all cases attempts should be made to grow beets as uniformly as possible of that weight. Having once established the average weight of the beet, the next point to be considered is its content in sugar. In the data given the percentage of sugar is reckoned on the weight of the beet itself and not upon the extracted juice. Sugar beets contain on an average about 5 per cent of mare and 95 per cert of juice. Therefore if the analysis is made upon extracted juice, the number obtained must be multiplied by 0.95 to give the percentage of sugar in the beet.

The question may arise as to how poor a beet can be in sugar aud still be profitable for sugar making. This of course is a question which has to be determined by a comparison with many economic problems, the study of which can not be introduced at the present time. In general, however, it may be said that the limit of profit in mannfacture will be reached when the percentage of sugar in the beet drops to 12 , although it is possible under certain conditions for factories to work cconomically and profitably on beets having a lower percentage of sugar than that indicated.

With the present degree of perfection in the production of rich sugarbeet seed, and with the knowledge of the scientific principles of agriculture which should guide the beet-grower, it is possible, I think, to show that heets can be produced, under favorable soil and climatic conditions, which will contain on an average 14 per cent of sugar. The farmer, therefore, should not be satisfied if his results fall below this standard.

It will be easy to sce, by comparing the averages given in the above tables, how many of the beet-growers have succeeded in growing plants which will average 600 grammes in weight and contain 14 per cent of sugar.

In addition to these tro factors, however, a third must be taken into consideration, namely, the purity of the juice. By the purity of the juice, or, as it is expressed in the tables, the coefficient of purity, is meant the ratio of pure erystallizable sugar in the juice to the total solids therein. For instance, if in 100 parts of solids there are 80 parts of pure erystallizable sugar, the coefficient of purity of that juice is said to be 80 . The number 80 may be taken as a fair average which should be attained in this country. In the older beet-growing countries a much higher degree of purity can be obtained than this. The degree of purity of the juice is influenced chiefly by the amount of salts which are represented in the analysis by the ash obtained on the ignition of the sample. In soils highly impregnated with mineral substances, such as are often found in our western conntries, the percentage of ash will be
found very high, and there will be a corresponding depression of the purity coefficient. In lands, however, which have been long cultivated, and scientifically treated from an agricultural point of view, the percentage of ash in the beet will be diminished and the purity coeflicient correspondingly raised. The ash of the beet consists largely of phosphoric acid and potash, and these two substances are essential to the proper growth of the beet. It is therefore not expectel that the ash of the beet shall be reduced below a certain content, otherwise the growth and maturity of the plant will be retarded. It will not be possible in the space which is at our disposal here to discuss each of the series of data oltained by these analyses, but the above remarks are made for the purpose of euabling auyone who is interested in any particular series or analysis to discuss it intelligently and determine from the numbers given the value of the beets produced for sugar-making purposes. At the present time, for the purpose of fixing a standard of comparison, I would say that the typical sugar beet for sugar-making purposes should weigh 600 grammes, contain 14 per cent of sugar, and have a purity of at least 80. With such raw material at his disposal in sufficient quantity, the manufacturer cau not fail of success, provided he be supplied with the latest and most improved forms of machinery.

It may also be of interest in counection with the data above given to discuss some of the particular qualities of the beet separately. In general the mistake is made by those not acquainted with the principles of the growth of the sugar beet and manufacture of beet sugar of judging of the possibilities of success by the percentage of sucrose in the beet alone. The danger of relying solely upon this constituent of the beet is at once manifest from the considerations above mentioned. Nevertheless, as it is often done, I have collected into tabular form from the analyses given all of the sugar beets showing from 15 to 18 per cent of sugar in the juice, which were analyzed by the Department at Washington during the past season. In another table have been collected all the beets in the juice of which more than 18 per cent of sugar was found. In the case of Minuesota 3 samples of beets were found in which the percentage of sugar was more than 18 ; in the State of Indiana, 1 sample; in Iowa, 1; in North Dakota, 4; in Maryland, 5 ; in Colorado, 1 ; in Wyoming, 1; in Nebraska, 13. Of heets showing a percentage of sugar from 15 to 18 in the juice the following number's of samples were found: In Illinois, 3 ; in Minnesota, 15; in Nebraska, 36; in Maryland, 8 ; in Iowa, 4; in Wyoming, 2'; in Colurado, 9; iu North Dakota, 4; in Massachusetts, 1 ; in Wisconsin, $\ddot{-2}$; in California, 2; in South Dakota, 6; in Michigan, 4; in Kausas, 3; in Washington, 1; in Oregon, 2; in Virginia, 2.

The production of beets containing from 15 to 18 per cent of sugar is not unusual, and such beets may be regarded as strictly normal in constitution, but possessing a particularly high content of sugar. When, however, the content of sugar in the beet exceeds 18 per cenu
it must be regarded at the present time as something abnormal aud due to pecular conditions affecting the particular locality, or even the particular phant itself. Such beets are usually extremely small in size, and the richness of their sugar content has been acquired at the expense of normal growth. In other cases the effect of a particularly dry season preceding the time of harvest or other very peeuliar conditions may affect the sugar content. In many other cases, from the wilted condition in which the beets have been received, it must be admitted that a portion of the water which they contained has dried out between the time of harvest and the time of analysis, thus increasing the apparent percentage of sugar in the beet. It will donbtless be possible hereafter, when the beet has been more fully developed by careful selection, to produce beets normally which contain more than 18 per cent of sugar, but to expect at the present time the production of such beets on a large scale would be unreasonable, and such an expectation would not be realized. Even when we consider the other class, namely, those containing in their juice from 15 to 18 per cent, we must conless that it would be unwise to look for a production of beets on a large scale containing so large a percentage of sugar. In many of the cases of beets of this class the high sugar content must be ascribed primarily to some of the conditions mentioned for the class above 18 .

When, howerer, the tables are further studied, and the remarkably low percentages of sugar are noticed which were sometimes found, it must be confessed that in these cases the abnormally low content of the sugar is also due to the abnormal growth of the beet. In some cases these beets are of abnormal size, weighing 2,000 grammes or over, aml to this extraorlinary growth must be attributed to a certain extent the low content of sugar. In general, it has been found that when beets exceed 600 grammes in weight it is difficult to maintain their sugar content at a high standard. When, therefore, the beets become immensely overgrown it is always accompanied with a falling off in content of sugar. In the cases, however, of the small beets which have shown a low content of sugar, the result must have been due to defective conditions of soil and climate, or to defective methods of planting and cultivation, or to premature harvesting.

When we consider the varying qualities of beets which have been grown from the same seed, we are at once struck with the immense importance of the factors of soil, climate, and cultivation, in the production of the sugar beet. In the fact that the seed of the Klein Wanzlebener variety of beet in the hands of different farmers will show a variation of from 6 to nearly 20 per cent of sugar, it must be confessed that we have in soil and climatic conditions, and in methods of cultivation, a more potent means of influencing the sugar content of the beet than is found in the germ of the seed itself.

It can only be expected that a sugar-beet seed which is high bred will be able to reproluce its kind when it bas become fully acelimated and has received in its new condition the same scientific treatment and selection which it had in its original home. The great hope, therefore, of uniform production of sugar beets high in sugar-producing power in the United States must be found in the establishment of culture stations where different varieties of beets can become fully acclimated, and where they can receive the same careful scientific culture and selection which have brought them up to their present state of excellence in Europe.

APPENDIX.

NOTES ON SUGAR-BEET CULITURE IN FRANCLE AND GERIANY.

By Walter Maxwell.

These notes are not intended to be a report upon the sugar-beet industries of France and Germany, nor in any measure a statement of the actual present condition of the sugar-growing industry of Europe, but rather as a short recoid of observations made during a tour through some parts of those countries, and more especially as a repetition of conversations held with certain distinguished authonities.

It will be found that the statements of several of the anthorities have already been given in certain of the sugar journals, and are not new ; however, it will be of value to repeat these opinions, and particularly in connection with the circumstances under which they were made.

The statements of the authorities cited were made in reply to precise questions, and I have endeavored to reproduce them exactly as they were gisen.

CLIMATE.

Prof. A. Girard, of the Conservatory of Arts and Industries, Paris, whose studies of the sugar beet are well known, made the following observations:
"The greatest number of our beet sugar factories are established in that part of France extending from the center to the north and passing through the eastern provinces, where the climate is a temperate one; where the yearly amount of rainfall during the growing season is favorable to an even development of the beet, and where the summer lasts just long enough to mature the roots before the frosts set in. That part of France has been considered the best and the only part adapted to the cultivation of the sugar-beet. Until lately it has been held that bects could not be grown with any measure of success in the south of France, on account of the hot, dry weather which prevails during the summer and the heary rains in autumn, which cause a second or delayed growth. That opinion has now changed, and two factories ate well established in the south-Beaufort, Department de Vaucluse,

82

which produces 10,000 bags of sugar, and Laudun, Department du Gard, thus showing that with proper cultivation, fertilizers, and irrigation the culture of the beet in that part of France is also possible."

Respecting the action of climate upon beets and beet seeds grown in the north and in the sonth of France, respectively, M. Henri Vilmorin, Paris, said:"
"The influence of climate on the characteristics of the seed of a given variety of beet is not perceptible if only exerted for one year. We had seed grown from the same batch of stock-seed in the north and south of France, and no difference whatever was observed in the features of the roots. The seed from the south, however, was generally of a brighter color, drier, and of a slightly stronger growth."

Although it is held that given climates are specially adapted to culture of the sugar beet, in the words of Professor Girard "the results of more recent experiments, and particularly where the conditions of growth have been largely within experimental control, indicate that it must not yet be said where the beet can not be successfully grown."

SOIL.

"Is there anything to be added to or taken from the opinions of Chaptal, Vivien, or Basset in respect to the soils most or only adapted to the growth of the sugar beet?"

In reply to this question Girard said: "It would take a long time to detail all the kinds of soil which are or can be made suitable to the culture of the sugar beet, since with peculiar culture, the right fertilizers and chemicals, good beets may be grown wherever mangolds succeed. However, it is still held that the kinds of soil which are of a light rather than too compact a texture, containing a given amount of calcareous matters, or having a chalky subsoil, with good natural or artificial drainage, should give the best results. It is well known that fresh soils from old forests or virgin prairies, which are not only acid but also contain an excess of undecomposed organic matter, are unfit for the sugar beet. Lands on which sheep have been fed are likewise in an unsuitable condition to follow with beets for sugar purposes. But this, in some measure, depends upon the variety of beets to be grown. If a soil is full of nitrogenous matter it is, in general, not in a condition in which most beet varieties will grow and form sugar. It has been shown, however, that certain varieties will thrive in sucl unfavorable (generally) conditions, and this is a matter for special consideration."

Late in September of 1890 a visit was made to the farm and factory of MM. E. Dufay \& Co., Cherry-Cossigny, Department of the Seine et Marne. The farm is comprised of some 700 acres, with an annual acreage of beets of about 170 acres. Contracts, which run on with a good understanding from year to year, are made with the large and well-to-do farmers in the immediate neighborhood, whose supplies bring
up the total annual acreage of beets worked by the Dufay factory to about 2,000 acres.

In the course of our conversation upon the nature of Chevry-Cossigny soils and of soils adapted to growing sugar beets, M. Dufay gave me the following data showing the relation of the clay and sand in the soils generally of his farms:

In 1,000 parts of soils.

Clay	707	674	673	629	681	658	680	609
Sand	292	326	327	371	319	340	320	391

M. Dufay said: "I consider a soil which is composed of about twothirds clay and oue-third sand to be well suited for the sugar beet."

But M. Dufay's knowledge of his soils was not limited to the relative amounts of clay and sand of which they are composed. He furnished some equally precise data showing the relative quantities of nitrogen, phosphoric acid, potash, and lime in the soils of his farms, whose clay and sand composition has been given :

In 1,000 parts of soils.

Nitrogen.	. 96	. 97	. 99	. 94	. 98	. 80	. 94	. 83
Phosphoric acid	1. 50	1. 75	1.75	2.15	1.35	1. 80	1. 15	1. 95
Potash.	1.53	2.29	1.91	1.96	2. 39	2.53	2.82	3. 11
Lime	7.20	10.50	8.50	9.90	8.20	9. 70	7.20	. 50

M. Dufay said further: "A soil may be said to be well adapted chemically for the culture of the beet when the constituents spoken of are present in the following proportions:
"In 1,000 parts of soil-1 part of nitrogen, 1 part of phosphoric acid, $2 \frac{1}{2}$ parts of potash, 30 parts of lime.
"My soils are deficient in lime by two-thirds, and I have to add lime continually. The presence of constituents which act against the formation of sugar, such as the alkali salts, is too small to be observed."

CULTIVATION, FERTILIZATION, AND SEEDING.

With the general principles of cultivation of soils for growing sugar beets we are abundantly supplied on all sides. It is, though, of more interest and special value to know just how certain authorities manage, and what are their ways and methods, who are well known by their great success. It is specific knowledge that we want, and the actual facts from men who, during a length of years, have got great results.

Early in September I went over the farms of Messieurs Vilmorin, Audrieux \& Co., at Verrières, near Paris. The farms comprise some 120 acres, which are exclusively used for horticultural and agricultural experiments.

Going over the plots, which were bearing the experimental sugar beets, I put some questions to the practical farm manager and care-
fully took his replies. These data should be of very special interest, as we are speaking of the act nal management of the plot of the "Improved Vilmorin" for the year 1890, which is the latest in the series of trials dating from the year 1850.
"What is the soil of this plot, and does the soil vary much over your farm?"

The manager replied: "Just here it is a deep) sandy earth and in places almost a samd. In other places it varies from a sandy to a heavier loam. We have no chemical analyses of our soils.
"Athongh the land lies flat, the naturat drainage is in general enough; only in places has it been necessary to put in tile drains, as the beet doess not renuite a dry earth. It is on the whole a dry surface soil lying upon a subsoil of more than average moisture."
"Now, how has this plot been cultivated from the first up to the present?"
"Last October the land was plowed to at depth of 10 inches, and after this plowing superphosphate of lime was added at the rate of 28 grams per square metre. Alter sowing the fertilizer the land was replowed, and to a depth of 16 incles, and left in that condition till the following April.
"At the latter part of April the land was replowed rery deeply, scuffed, harrowed, and rolled until the soil was in a fine state, and the seed was put in."
"What was your mode of light cultivation?"
"As soon as the plantlets were out of the gromed far enough to show the rows the hand hoe was used, not coming too near the plants. When the plants had four leaves the thiming ont of the plants in the rows commenced. The plants were left 4 inches apart in the row at the first thiming. After the plantlets had grown so far that the roots were almost as thick as the thumb a second thimning took place, which left the plants as they stand-either 8 or 12 inches apart, according as it was determined. In the thinning process care was taken to leare the most promising plants.
"The ground was frequently hoed during the early season of growth to keep down the weeds and to open up and keep porous the surface. The hoeing was done exclusively by hand, no horse implement being used.
"If it is found, as it was this rear, that the plants appear weakly, and the young leaves are of a yeilow color, a second quantity of fertilizer is added, composed of equal quantities of superphosphate of lime and uitrate of soda, and at the rate of about 30 grammes per square metre.
"It is seen that no fam-yard manure was applied to the land for beets. Usually it is given to the preceding crop, in order that the excess of organic matter may be used up; yet a certain amount remains when the bects are plantel. Our method of fertilization is usually as I have given it to you?"
"What rotation, or rotations, do you follow with the land which is used for your seed beets?"
"Our mode of cropping is not a fixed oue. This crop of 'mother" beets is growing after the following rotation of crops: 1886 , beets; 1887, peas; 1888, wheat; 1889, potatoes (heavily manured); 1890, beets.
"Another rotation which has been followed is, beets, wheat, potatoes, peas, beets. In every case our rotation allows of three years of other crops between the crops of beets."

The practical example of cultivation which has been given applies to the growing of beets exclusirely for seed or propagation uses. It will be of value to recite some notes taken from the system of a practical farmer and sugar manufacturer, whose beets were grown for factory purposes.

Dufay made the following remarks to my questions concerning his system of cultivation, fertilizing, and general management:
"Immediately after the harvesting of the grain crop where beets are to follow in the coming year, the ground is broken up about 4 inches deep with the plow, harrowed, and rolled with a 'croshill.' Almost immediately fine farm-yard manure is added, varying from S tons to 16 tons per acre, according to the known condition of the soil, and the ground is plowed to a depth of from 8 inches to 12 inches, and in this state left until the spring. I must here insist upon the need of deep plowing for sugar-beets. Where the less quantity of farmyard manure is used the deficiency is made up sometimes by the use of cot-ton-seed meal, applying about 1,000 pounds per acre, which is done in December, or at the time of deep plowing.
"In the spring, beginning even in March, we commence getting the seed bed ready. Since these operations depend solely upon the nature of the soil, the weather, aud other circmustances, a direct rule can not be given. A practical man acts and does just what is best at the time, and a man who is not practical can not carry out a rule. But in a few words, in preparing the soil for the seed of the sugar-beet the end to be reached is to get the earth, chemically and mechanically, into a completely homogenous state; for only in this condition can we count upon a sure harvest of sugar-yielding beets."

In speaking somewhat in detail of the nature and quantity of artificial or chemical fertilizers which M. Dufay applies in addition to the farmyard manure meutioued, he furnished the following formula from his memoranda:

	Δ.	B.	C.
	J.l.s.	Lhs.	I.bs.
Sup, phos. lime	1,000	750	1,500
Potass, chloride	1, 625	425	425
Amm. sulphate	375	250	250
Nitrate of soda.	850	375	375
Sulphate of lime	500	125	125
	3,350	1,925	2,675

The mean cost per acre of the quantities of these fertilizers is about 60 franes (\$12).
The cost per acre of producing the year's crop was given as follows:
Farmyard manure $\$ 28.00$
Fertilizers 12.00
Spreading manure 60
Spreading fertilizers 25
F゙irst plowing 1. 60
Harrowing and rolling after plow 64
Plowing and subsoiling 4.60
Two scalifyings 2.00
Two harrowings 64
Two rollings. 64
Cost of seed 3.00
Sowing of seed 80
Harrowing and rolling again 64
Three times hoeing with horse 2.40
Hoeing ly hand 4.80
Harvesting by hand 4.00
Harvesting by machine 1.60
Carting to factory 2.40
Total 70.61

To the figures stated are still to be added the rent of land and taxes, $\$ 9.40$, making a total of $\$ 80.01$.
M. Dufay added: "The average per acre is from $12 \frac{1}{2}$ to 18 tons. The content of sugar year is 16 per cent of the weight of the beets and 16 per cent in the juice. If my crop averages in any sear only 12 per cent of sugar in the beets, then it nearly pays the cost of production. Every pound above 12 per cent. is profit. This year we shall do very well. The only varicties of beets grown by me are the 'Improved Vilmorin' and 'Desprez,' aud the seed is obtained each season direct from those firms."

The cost of production per acre given ly M. Dufay is high. An approximate estimate of cost, expressed during conversation with a member of the Trotha Bros.' factory, Halle, Saxony, was lower; but the details were not given with such precision as to be worth stating. A general estimation of the cost per acre, furnished me by M. G. Durean, Paris, though somewhat lower, was about the same as the figures in the Dufay statement.

The question of intensive culture, or high farming, which lies at the very root of success in sugar-beet growing, will be spoken of later and in comnection with some other considerations.

SEED BREEDING.

In the course of conversation and communications with such anthor. itative sources as Messrs. Dippe Bros., Rickmanu (formerly Rabbethge \& Giesecke), and M. Henri Vilmorin, no very specifie data were obtained which have not already been communicated through the journals. A
conversation, however, which was held with M. Henri Vilmorin, and which sets forth the principle and emphasizes the main features of the Vilmorin system of seed breeding, has a value that deserves to be repeated; and more especially in the light of the opinion and comments expressed by Professor Maercker, Halle, Saxony. Maercker said: "It must be admitted fully and by all that the Vilmorin firm had led the way in the improvement of the beet for sugar purposes. In the 'Improved Vilmorin' we had the first great representation of what could be done in the direction of increasing the sugar-forming quality of the beet."
M. Vilmorin spoke as follows: "The experiments for the improvement of the sugar-beet were commenced at Verrières in 1850, by my father. The object held in view was the formation and fixing of a race containing a higher per cent of sugar and a more even composition than the races then in use.

Several methods of selection were successively tried. First, dipping the roots in liquids of great specific gravities. This system was unreliable in the case of the whole roots in consequence of the presence of air cavities in the neck, which made some roots float which should have sunk; and in the use of small pieces or sections of beets fermentation of the liquids was induced, or strong endosmotic effects altered the results.
"Finally, it was found to be more exact to take a small cylindrical piece from the beet and to ascertain the specific gravity of the juice from the pulp. This was done by means of weighing a silver button in the juice. The roots were numbered in each individual and the richest in sugar kept for seed; and the same process was applied to the beets grown from the seed of the previously selected roots or ' mother beets.'
"The process stated was followed till 1872, and the 'Improved Vilmorin may be said to have been formed by that system of selection, the roots giving juice of the highest specific gravity being held to be the richest in sugar. The office of the polariscope is now added to the above process."
M. Vilmorin continued: "I consider it the most important point in the selection and growing of beets for seed that the roots be grown under such conditions that they freely and fully develop all their good and bad qualities. The system of growing beets for seed on very rich land, but very thickly together, is a great error, as this process hinders the formation of lateral roots, and at the same time greatly increases the content of sugar in the roots, so that they are made to appear of a better form and of a higher sugar quality than they really are. Now, in order to secure a perfectly just appreciation and proof of our 'Improved' beets, they are growu on exactly the same principle and by the same method as beets that are growis for the factory."

The method of cultivation and general management of the plot of "mother" beets on the Vilmorin farm is given on an earlier page, and exactly as received from the practical manager.

In speaking of the system of selection, M. Vilmorin continned:
"Only roots of perfeet shap" and weighing not less than 600 grammes are tested in the laboratory. Wach single root is numbered, which number remains quite legible even after the root has been planted and borne seed.
"The seed of each individual root is harvested separately and kept ly itself in a paper bearing the same number that was upon the root.
"The next year a trial is made with a small sample taken from each palaer and the bulk of the seed is still kept back till after the roots grown from the sample have been tested.
"This is practiced as a precantion against the possibility of the progeny from a good beet falling far below the accepted standard of quality, which is a rare thing, but by no means unknown, even after long breeding in one line.
"After the previous test, all such beets as have not given satisfactory results are thrown away, and the seed from which such underquality beets were grown left mused. Of comse the season and certain other circumstances have to be borne in mind in selections of each year, as in some years roots with 16 per cent of sugar may be relatively better than certain roots containing 20 per cent in some other years. To ascertain, however, the influence of the weather, some good lots of seed have been tested several years in succession and with a vier to establishing the variation and error due to climate.
"All the seed that has been proved by the first year's test to be up to the standard of quality is sown the next year, and very thin and carefilly, and from it a crop is grown more than a thousandfold the weight of the original seed.
"It is thus seen that any and all seed of the 'Improved Vilmorin' has come from stock-beets weighing not less than 600 grammes, all of which were for successive generations perfect in slape, color, proportion of sugar, and purity of juice; and only once has it occurred, and when the seed was grown for commercial use, that the seed was raised from beets of less size than 600 grammes.
"By the system of severe and unflinching constancy of selection that I hate described to you, the 'Improved Vilmorin' beets have been bronght to their present high standard of fixed economic qualities.
"The more marked characteristies of our beets are the harduess of flesh, which is at least equal to that of a Swedish turnip, the dull white and rongl, rather smooth skin. The leaves, which are numerous, are strong and of a dark-green color, which, in the fall, like the foliage of most beets, droops down around the root."

SOME OMARACTERISTICS OF CERTAIN VARIETIES.

No effort was made to obtain information in general on the number, and constantly increasing number, of varieties which are being put upon the market. Our attention was directed only to one special characteristic, which is found to be the property of some varieties more than of others, viz, the capability of a beet to resist such unfarorable outward conditions of growth as climate, unfitness of soils for beets in general, in consequence of the presence of excesses of undecomposed nitrogenous matter. We shall give the statements of authorities direct on particular phases of this inquiry.
Franz Schindler, professor in Riga, said: "All the three types, Vilmorin's Improved White, Vilmorin's Early Rose, aud the Improved (with Vilmorin) Klein-Wanzlebener, developed exactly their proper characteristics as well in Kwassiz, Moravia, as in the neighoorhood of Riga, Russia, although the latter place is about a thousand miles farther north than the former. And all three types remained true not only in point of sugar content and other biological qualities, but also in anatomical structure. The climate of the two places is extremely different, and, moreover, the beets were grown in Kwassiz in an excellent beet land and under correct cultivation, while at Rigat they were raised on a saudy soil rich in vegetable mold and largly manned with stable manure.

Now, it has been found by Deherain, in France, and also by Schindler and de Proskometz in Russia that "the Vilmorin beets contain a higher proportion of fibrous to cellular tissue than any other types of sugar beets, and the amount of sugar being corelative with the fibrous tissue the higher sugar coutent is easily understood."

From notes sent by MM. Jacquemart and Delamotte, sugar growers and manufacturers at Quessy, Department Aisne, "beets of the 'Improved Vilmorin' were grown comparatively on the same field with doses of nitrogen amounting respectively from 372 to 75 pounds per acre. The drought interfered with the action of the manure, but it was seen that the beets grown with the double allowance of nitrogen were of better quality than the others."

The value, respectively, of the types and kinds of beets is regulated by other conditions than the content of sugar-such as the production by weight per acre, etc. I'rofessor Macreker said: "For a time the 'Improved Vilmorin' almost entirely substituted the Klein-Wanzlebener in Saxony on account of its high content in sugar. It has been found, however, that the 'Improfed Vilmorin' does not produce the weight per acre, and has not succeeded as well with us under certain indifferent conditions as the Improved Klein-Wanzlebener. Consequently in our district (Halle and Magdeburg) the Improved Vilmorin has been replaced largely by a cross between the Improved Vilmorin and the EleinWanzlebener, which cross very specially combines the richness in sugar

90

of the former variety with the greater productiveness by weight of the Klein-Wanzlebener."
There are two fundamental conomical conditions which control very largely the varieties of beets which shall be grown, in addition to the climatic and soil conditions, of which we have already spoken. Those conditions are: The system of taxation obtaining in each district or comntry. If the taxes are levied on the weight per acre of the roots, then it is specially advantageous to have the largest quantity of sugar contained within the smallest weight of raw produce or beets. If the tax is upon the manufactured product, the condition does not exist in the same form. The second fundamental condition regulating the variety of beets to be grown is devolving upon the consideration as to whether the beet crop is being grown exclusively for the sugar without secondary purposes, or whether the beet crop, as well as being grown as a direct source of profit in the form of sugar, is cultivated as part of a large and general rotation of cropping. Upon farms where live stock and the providing of food for such is an essential item in the economy, the difference between 20 tons and 35 tons per acre of beets is to the farmer a weighty consideration and often a decisive condition.

The substance of the observations made to me by many sound authorities on the relative and particular merits of respective varieties have inclined me to the following conclusion : As a variety for the highest and most concentrated production of sugar, for the withstauding of the unfavorable effects of certain climates and soils, and for use in new soils and such as are not habituated to the growth of the beet plant, no better beet can be adopted than the Improved Vilmorin. And again, as an all-round valuable beet, suitable to the farmer as a source of direct profit and as part of his system of mixed and general agriculture, as well as to the manufacturer of the sugar, the Improved Klein Wanzlebener is spoken of with unhesitating recommendations.

ECONOMICAL CONSIDERATIONS.

Many conrersations were held with well-known authorities in France and Germany upon features of the sugar-beet industry that may be termed more specially economic. The substance of what was obtained will be given as the result of a conversation with Professor Maercker on some of the economic features of the industry. In conclusion will he given a conversation held with M. Tisseraud, permanent secretary of the department of agriculture of the Goverument of France.

Professor Maercker, in reply to questions, made the following remarks: "Owing to the very nature of the manufacture of sugar from beets, in which large and costly machinery plants are necessary, it is not possible for small owners or holders of land to grow beets and to make sugar therefrom on their own farms. The acreage of beets grown by such farmers individually could not pay for the investments necessary to the manufacture.
"There was only one of two courses by which it was possiblo to introduce beet culture among farmers generally, and as a great and general industry. The first method by which it could be done was by the farmers contracting with the large growers and owners of factories to grow a given acreage of beets and deliver the same to the factories under giveu conditions, as is the system in France. A second system was the uniting of the farmers among themselves aud thus forming manufacturing companies (Actien Fabriken). The articles of these corporations or companies require that each member shall supply a given acreage or weight of beets to the factory, and according to conditions fixed upon by the board of control.
"With the founding of the latter system, which is the prevailing one with us, the growing of beets by the great farming class in the beet districts became solidly established. It was the opening of a new era of agricultural prosperity when the industry was made to prevail. The small owners and farmers, whose farms are comprised generally of from 50 acres to 120 acres, and quite exceptionally reaching 250 acres, became manufacturers of sugar as well as growers of the beets by accepting a direct interest in the owning and conducting of the factories."

In reply to the question "Have the owners of large private factories or the companies paid the best? And which system has done most for the industry?" Professor Maercker replied: "The undertakings of the large owners (gross Herren) are conducted with method and have the advantage of large capital, but there is not the degree of enterprise and care of detail characteristic of the companies (klein Herren) as represented by the farmers.
"The 'klein Herren,' being practical farmers, are well up in thorough and economical culture. They enter into the industry with the care and enterprise which their smaller conditions have always forced upon them; and as regards the technical or mannfacturing part of the industry the companies composed of the farmers have shown an intelligence, ingenuity, and enterprise which has placed them in adrance of their competitors of the 'large system.' The companies were the first to introduce improved methods of extracting the sugar from the beets, such as the diffusion method.
"Our farmers are in good circumstances, which have been improved with their general system of agriculture by the introduction of the sugar-beet industry. They are rich and free."

The German has most decided features of advantage over the French system. In Germany the growers of the beets are the manufacturers, and they reap a gain in the growth of the beet and the production of the sugar.

The system of farmers supplying beets under contract to large factories always places the growers at some measure of disadvantage; and where factories are large and isolated in wide districts, and the factory owners have little interest in the general agricultural interests, the result to the farmer may be, and is often, calamitous."

To M. Tisserand, who is the permanent secretary of the department of agriculture of France, and who is not ouly conversant with the sugar-beet industry of France, but of whom it may be said that he holds French agriculture in his right hand, we have to express our obligations, not only for the general candor and copionsuess with which he replied to our inquiries, but also for a very special politeness in causing certain data for the current year (1890), which had not at that time been publishen, to be furnished to us in manuscript.

The following observations were made in reply to certain carefally prepared questions which were put to the secretary in the order in which his remarks proceed:
"The very nature of the cultivation of the beet tends to make it an industry more adapted to growers, if not essentially on the large seale, at least who are not small in the sense that our peasants are, who cultivate from 5 to 10 , or even from 20 to 30 acres. The culture of the sugar beet, if it is to be a success for the making of sugar, must be done well. The grower must be a man of capital, who can invest liberally per acre in the form of modern implements, of abundant labor, both manual and anmal, at the right season, and who cau purchase largely and with judgment of chemical manures, such as superphosphates. The soil must be plowed deeply and cultivated thoronghly, which means good implewents and horses ; it must be kepti in clean condition, which means much labor; and it must be well fertilized with costly manures, which means a large outlay. Now, these conditions of the successful culture are not within the compass of our small peasant farmers. The larger farmers, i. e., such as ocenpy enough land to bear investment in implements, labor, and manures, are capable of growing beets with as great success as the owners and holders (tenants) of the large tracts which exist in the districts where our sugar industry is making the greatest progress."
"What is now the tendency in France in respect to the 'large 2 's. small' system of beet culture?"
"The tendency is toward obtaining large tracts of land, where the leavy investments, in labor, implements, and manures, of which I have spoken, can be made most remunerative, and the facilities for mannfacture of sugar are most complete. In the northern departments of France, where the culture is on the large system, the industry is expanding and gaining the most ground."
"What has been the effect of legislation upon the development of the sugar-beet industry, agriculturally, and also through the beet industry, upon your agriculture in general?"
"Before the year $188 t$ the farmers who grew beets to supply the factories had no interest in producing beets of high quality and with a large content of sugar. The law, as it at that time existed, made it most advantageous to the farmers to produce weight or quantity, as it was not merely the same to them in the price per ton that they ob-
tained. They also grew a much larger weight per acre for sale and had a correspondingly larger amount of pulp for feeding their cattle. The manufacturers, on the other hand, were being ruined by the operation of the law of that date. (See the law hefore 1884.) The law of 1854, however, altered these conditions. Under this law it became necessary to grow beets with a higher content of sugar, which not ouly were worth manufacturing, but which were found to be equally worth growing by the farmers, as the sugar factories were able to pay the growers $\$ 6$ to $\$ 7$ a ton instead of $\$ 4$ to $\$ 5$, as had been formerly paid. This change in the law affecting the sugar industry bronght about the great improvement in the culture of the beet which has occurred in the last few years. In the first place, the improvement of the seed has taken the lead in consideration, and varieties have been produced and grown which were very rich in sugar. In the second place, the modes of cultivation have been improved and the application of chemical fertilizers increased up to the standard of the most intensive culture or high farming, all of which conditions are the essential factors of success in grow. ing sugar beets."
"Are you of opinion that the successful growing of beets for a sugarmaking purpose is only possible where 'intensive culture' or high farming obtains?"
"That is strictly the case. Sugar beets pay better than any other agricultural crop for high culture, and they cau be made to pay only where 'high farming' is practiced. If you grow beets, grow the best that high culture can produce. Unless you farm well, have land in high condition, with liberal manuring and abundant labor, dou't attempt to grow beets. Grow wheat, potatoes, or what you like, but don't grow beets. * * * We are not only increasing our productions in comparison with former periods, we are holding our place in competition with the world."

U. S. DEPARTMENT OF AGRICULTURE DIVISION OF CHEMISTRY
 BULLETIN
 No. 33

 EXPERIMENTS

 EXPERIMENTS

 SUGAR BEETS

 SUGAR BEETS
 IN

 1891

 1891
 BY

 HARVEY W. WILEY

 HARVEY W. WILEY
 Chemist of the U. S. Department of Agriculture and Director of the Depurtment Suldur Experiment Stations at Schuyler, Nebraska; Runnymede (Nareossee P. O.), Florida; and Sterling and Medicine Lodge, Kansas
 > WITH THE COLIABORATION OF

 WITH THE COLIABORATION OF

 WITH THE COLIABORATION OF
 Dr. WALTER MAXWELL, Prof. W. A. HENRY, and others

PUBLISHED BY AUTHORITY OF THE SFCRETARY OF AGRICULTURE

WASHINGTON

GOVERNMENT PRINTING OFFICE

$$
1892
$$

U. S. DEPARTMENT OF AGRICULTURE DIVISION OF CHEMISTRY

EXPERIMENTS

SUGAR BEETS

IN

1891

BY

HARVEY W. WILEY

Chemist of the U. S. Department of Agriculture and Director of the Department Sugar Experiment Stations at Schuyler, Nebraska; Rumymede (Narcoossee P. O.), Florida; and Sterling and Medicine Lodge, Kansas
with the collaboration of

Dr. WALTER MAXWELL, Prof. W. A. HENRY, and others

PUBLISHED BY AUTHORITY OF THE SECRETARY OF AGRICULTURE

W ASHINGTON

GOVERNMENT PRINTING OFFIOE

TABLE 0F CONTENTS.

Page.
Letter of transmittal 5
Experiments conducted by farmers in different parts of the comntry 7
Directions for taking samples of sugar beets for analysis 7
Model for description of sample of sugar beets 8
Report of analysis of sample of sugar beets 9
Summary of results by States and counties 12
Arizona 12
Arkansas 12
California 12
Colorado 12
Connecticut 14
Georgia 15
Idaho 1.)
Illinois 1.)
Indiana 17
Indian Tervions: 19
Iowa 19
Kansas 30
Keutucky : 2
Maryland 32
Michigan ;2
Mimesota (3)
Missouri 37
Montant 10
Nebraska 11
Nevada 14
New Hampshire 45
New Jersey 15
New Mexico 45
New York 46
North Dakota 16
Ohio 17
Oklahoma 19
Oregon 49
Pennsylvania 51
South Dakota 51
Tennessee 58
Texas 59
Virginia 59
Washington 61
Wisconsin 62
Wyoming 7.
Notes on the analyses of beets from the different States and Territories 77
Singar beet experiments in Wisconsin in 1891 90
Beet-sugar experiment station at Schuyler, Nebr 112
Report of assistant in charge 118
Miscellaneous 152

LETTER OF TRANSMITTAL.

U. S. Department of Agriculture, Division of Chemistry, Washington, D. U., Hebruary 27, 1892.

STR: I have the honor to transmit herewith, for your inspection and approval, the manuscript of Bulletin No. 33, being a record of the experiments conducted by me, under authorization fiom you, on the culture of the sugar beet and the manufacture of sugar therefrom during the season of 1891.

Respectfully,
H. W. Wiley,
Chemist and Director of Beet Sugar Station.

Hon. J. M. Rusk, Secretary of Agriculture.

EXPERIVENTS WITII SUGAR BEETS IN 1891.

The experiments conducted by the Department of A griculture during the seasou of 1891 may be divided into three classes: (1) Culture of the sugar beet conducted by farmers in different parts of the comntry; (z) culture of the sugar beet conducted by the Agricultural Experiment Station of Wisconsin and numerons farmers in Wiseonsin, under the direction of the Agricultural Experiment Station of that State, by anthority of the Secretary of Agriculture; (3) experiments comblucted at the beet-sugar experiment station of the Department located at Schuyler, Nebraska.

EXPERIMENTS CONDUCTED BY FARMERS IN DIFFERENT PARTS OF THE COUNTRY.

To meet the numerous demands for samples of sugar-beet seed received by the Department, $5 \frac{1}{2}$ tons of the best rarieties of sugar-beet seed were purchased. Four tons of this consisted of equal portions of Kleinwanzlebener seed, grown by Dippe Brothers, of Quedlinburg, Germany, and Vilmorin's improved beet seed, grown by Vilmorin, Andrieux et Cie., of Paris, France. The other ton and a half consisted of Desprez, Lemaire, and Simon Legrand varieties, obtained from Mr. Henry T. Oxnard.
The beet seed was put up in packages averaging nearly 13 ounces each, making 15,000 packages. These were widely distributed, being sent to about $\overline{5}, 000$ addresses. Many of those requesting several packages of seed made a subdistribution of them; so it is but fair to suppose that between 7,000 and 8,000 farmers received seed directly fiom the Depantment of Agriculture for experimental purposes.

Accompanying each package of seeds was a Farmers' Bulletin No. 3, containing full directions for the planting and cultivation of the beets. There were also sent to each one receiving a parkage of seed directions for taking samples of sugar beets for analysis and forwarding them to the Department. These directions were as follows:

DIRECTIONS FOR TAKING SAMPLES OF SUGAR BEETS FOR ANALYSIS.
U. S. Department of Agriculture, Washington, D. C., July 1, 1 S91.
When the beets appear to be mature (September 15 to November 15, according to the latitude and time of planting) and before any second growth can take place, select an average row and gather every plant along a distance which should vary as follows, according to the width between rows:

From rows 16 inches apart, gather 75 feet; from rows 18 inches apart, gather $66{ }_{3}^{2}$ feet; from rows 20 inches apart, gather 599_{5}^{5} feet; from rows 22 inches apart, 543 feet; from rows 24 inches apart, gather 50 feet.

The nmmber of beets growing in the row, of the length ahove mentioned, must be counted. The tops are then to be removed, the heets carefnlly washed free of all dirt, wiped with a towel, and weighed. Where the row is not long enough to meet the conditions, take enough from the adjacent row or rows tomake up the required length. The number of beets harvested multiplied by $43 \% .6$ will give the total umber per acre. The totad weight of beets harvested maltiplied by 435.6 will give the yield per acre.

Rows of average excellence must be selected; aroid the best or poorest. Throw the beets promiscuonsly in a pile and divide the pile in two parts. This subdivision may be continned until there are about ten beets in a pile. Of these ten select two of medinm size. Be careful not to select the largest or smallest. Wrap the beets carefully in paper and put your name thereon. Sew the beets up in a cotton bag, attach the inclosed shipping tag thereto, and send by mail.

Fill out blank describing beet, inclose in the envelope, and sew up in bag with beets.

No beets will be analyzed which are not sampled as described above and properly identified.

Miscellaneous analyses of samples without accurate description are of no value.
It is but just to the farmer aud the Department that samples should be taken with the precantions required.

Blamks are seut to each one for two sets of samples. From two to four weeks should elapse between the times of sending the two sets of samples.

If additional analyses are required other blanks will be sent on application, but not more than four analyses can be made for any one person, except in special cases.

A model, showing how blanks should be filled out, is inclosed.
H. W. Wiley, Chemist.

There was also sent a blank for describing the samples taken, a copy of which, tilled in, follows:

MODEL FOR DESCRIPTION OH SAMILE OF SUGAR BEETS.
Variety Kleinwanzlebener.May 2, 1891.
Date harvested
November 5, 1891.
Character of soil...... black prairie loam; in cultivation for twenty years, chiefly in corn; level, tile-drained; last crop oats
Chamater of cultivation.......plowed November, 1830, right inches deep, subsoiled six inches; duytwice with disk harrow May 1,1889 ; rolled; seed planted with hand drill one-half inch deep; loed by hand May 16 ; thimmed May 29 and 30 ; plowed with horse hoe May 28 and June 8, 16, 24, and July 3; no fertilizers used
Width between rows .. 18 inches.
Number of beets harvested. ... 88
Total weight of beetsharvested... 80 pounds.
Weather.......May, dry; June, copious rains; July, fine growing weather; August, hot and dry; September, dry until 24th, when a heavy rain fell.
State
Iowa.
Post-office ... Hanover, Buena Vista County.
Name....-.. Robert Simpson.
The samples of beets for analysis began to be received in the Deputment in Aum゙ust and continued to arrive until February, 189\%. The totalnumber of samples received for analysis, Januaty 1,1892 , was $1,605$.

It is therefore seen that of the 5,000 original persons to whom packages were sent over 32 per cent responded by sending samples for examination. As soon as each sample of beets was analyzed a returu was made to the sender in the following form:

REPORT OF ANALYSIS OF SAMPLE OF SUGAR BEETS.

> U. S. Department of Agriculture,
> Division of Chemistry, Washington, D. C., October 24, 1891.

From Clareuce Reed; post-office, Vernonili; State, Oregon; varicty, Kleinwanzlebener; number, 2 ; serial number, 15838 :

Average weight of beets: Grams, 275; ounces, 9 .
Sugar: Per cent in beets calculated from per cent sugar in juice, 15.67.
Sugar: Per cent in juice, 16.5.
Yield: Tons per acre, 17.

* Coefficient of purity, 83.9. †Probable yield of sugar per acre from a crop of 17 tons: pounds, 4,036.

Respectfully,

One of the most striking features in regard to this method of conducting experimental work is found in the fact that it is amost impossible to secure compliance with directions. It is evident at once that the value of experimental work depends upon the care with which it is done and the accuracy with which the directions prescribed are followed. It is not to be wondered at that farmers, busy with their other occupations, failed to comply with the minute directions necessary to secure the greatest advantage in experimental work.

Very few of the blanks were returned properly filled out. In many cases the data which were returned were palpably erroneous. In one instance a yield of 99 tons per acre was reported, and in a great many cases the yield per acre was so great as to show inaceuracy on the part of the measurement of the land or the weighing of the beets. In making out returns for such reported phenomenal yields the theoretical quantity of sugar per acre given was always questioned. We are accustomed to look with suspicion upon any yield of sugar beets which exceeds 25 tons per acre. While it is not impossible to secure a higher yield than this, and of beets of good saccharine quality, yet it is so rare as to throw doubt upon miscellaneous data showing an excess of that yield.

Another point which makes the returns obtained less valuable is found in the fact of the length of time which necessarily elapsed between the harvesting of the beets aud their reception at the laboratory.

[^1]Nearly all the samples received were from distant States, requiring for packages of this kind from three to eight days in the mails. Although the beets were in most rases well wrapped according to direction, our experiments have shown that they must have lost a considerable quantity of moisture by evaporation during their long transit. The data, therefore, showing the content of sugar in the juice would be uniformly too high for normal beets. It is estimated that not less than 10 to 15 per cent should in general be subtracted from the yield of sugar to express the nomal percentage of sugar in the beets as originally harvested.

On account of the great number of samples received it was impracticable to determine the content of sugar directly in the beet pulp, either by cold instantaneous diffusion or by aleohol extraction. Recourse was had to the simpler method of calculating the quantity of sugar in the beet from the percentage of sugar found in the juice. This quantity was obtained by multiplying the percentage of sugar in the juice by 95 on the assumption that the beet contained 95 per cent of juice and 5 per cent of pulp. It is possible that, for the reasons above mentioned, this result is also too high, inasmuch as the beets having dried out would probably contain a larger percentage of pulp than that mentioned. At any rate the numbers give for all practical purposes the percentage of sugar which the beets contaned and it was not intended that the analyses should be scientifically accurate. The comparisons among the beets received from different parts of the comntry must be considered just, with the exceptions before noted that some of them being longer in transit than others would suffer a greater loss of water. For this reason it would be expected that beets received from Washington and Oregon would show an apparently higher content of sugar than beets of equal original richmess received from Maryand or Virginia.

The work of the Department has certainly resulted in great good in interesting people in all parts of the country in the problem of sugarbeet culture. The secretary of Agriculture has, howerer, decided not to make as large a distribution of sugar-beet seed in the manner practiced during the past two years, but to concentrate his efforts in the development of a sugar-beet station, in which practical illustrations can be given of the very best methods of sugar-beet culture and the selection of mothers for the production of a high grade of seed.

In arranging the analyses of the samples of beets which have been sent in, they have been collected together by Statesand in the Statesby comties. The counties have been arranged alphabetically and all the samples from each comity considered together and an average of the data from each county has been obtained. The averages for the States are made by samples, which gives the mean composition of all the beets in the state. In regard to the data by States it must be remembered that they can not be taken to represent actually the possibilities of each State in the growth of sugar beets. In the first place, the results of a single year

11

of culture, however carefully it may be conducted, could not be conclusive in regard to the possibilities of any one State or locality in the production of beets. In the second place, it must be understood that the farmers of different States may not have followed exactly the same method of smmpling beets. In some of the cases, at least, where the general average of the State seems to run low it is found that the average weight of the beet was far above that which is required of a beet of high saccharine strength.

The results, therefore, must be simply regarded as tentative, showing in general where beets of fine quality can be produced, but not in any way deciding on the comparative ability of the several States for the production of rich beets.

The results of the aualytical work arranged by States and counties are given in the following tables:
Summary of results by States and counties.

Serial No.	Name of grower.	Comaty	Variety.	$\begin{aligned} & \text { Date } \\ & \text { receired. } \end{aligned}$	Sucrose in-			Purity.	$\begin{aligned} & \text { Yield } \\ & \text { beets per } \\ & \text { acre. } \end{aligned}$	Probable yield sucrose per acre.	A verage weight of beets.	
					$\begin{aligned} & \text { Total } \\ & \text { solide. } \end{aligned}$	Juice.	Beet.					
$\begin{aligned} & 15003 \\ & 15164 \end{aligned}$	Josiah Harbert . Charles D. Poston	Maricopa	Klein wanzlebener	Aug. 12Oct.5	$\begin{array}{r} \text { Per ct. } \\ 16.03 \\ 13.08 \end{array}$	$\begin{array}{r} \text { Per ct. } \\ 7.10 \\ 9.07 \end{array}$	$\begin{array}{r} \text { Per ct. } \\ 6.75 \\ 8.62 \end{array}$	44.4 69.3	Tons.	Pounds.	$\begin{array}{\|cc\|} \text { Grams. Ounces. } \\ 1,415 & 50 \\ 1.480 & 52 \end{array}$	
	Average of State				14.56	8.09	7.69	56.9			1,448	51

Summary of results by States and counties-Continued.

GEORGIA.

Summary of results oy States and counties-Continted..

Su:nmary of rebults by States and counties-Condinned.
INDIANA-Contintued.

15399	. .do	.do	K!ein wanzlebener	Oct. 15	15. 55	9.36	8.89	60.0			500	18
	A verage				15.05	10.35	9.83	69.0	i7. 6	2,481	765	27
$\begin{aligned} & 15477 \\ & 15478 \end{aligned}$	$\begin{aligned} & \text { Jos. W. Mills } \\ & \text { Jacob im. Barker. } \end{aligned}$	Randolph.	$\begin{aligned} & \text { German } \\ & \text { French } \end{aligned}$	$\begin{array}{ll} \text { Oct. } & 16 \\ \text { Oct. } & 16 \end{array}$	$\begin{aligned} & 14.58 \\ & 14.68 \end{aligned}$	$\begin{aligned} & 11.28 \\ & 11.34 \end{aligned}$	$\begin{aligned} & 10.72 \\ & 10.77 \end{aligned}$	$\begin{aligned} & 77.4 \\ & 77.6 \end{aligned}$			8	${ }_{26}^{29}$
	Average				14.63	11.31	10.75	77.5	790	28
$\begin{aligned} & 15132 \\ & 15501 \\ & 16282 \end{aligned}$	C. A. Porter	Shelby	Kleinwanzlebener	$\begin{array}{ll} \text { Oct. } & 1 \\ \text { Oct. } & 7 \\ \text { Nov. } & 9 \end{array}$	${ }_{15}^{15.65}$	${ }^{11.81}$	11. 22	${ }_{7} 7.4$				
	…..do				15.77 17	11. 15	13.44	${ }_{79} 73.7$			1,080 620	$\begin{array}{r}38 \\ 22 \\ \hline\end{array}$
	Average				16.27	12.43	11.81	76.2	.-......	857	30
15831	Mrs. T. C. Bailey.	Tippecanoe.	Bulteau Desprez..	Oct. 24 Nov. 16	14.75	11.50	10.93	77.9	510	18
16443164441694169971	Frederick Haupertz	Wabash			18.23	$\overline{15} .70$	14.92	86.0			880	
	W.H. Bent		Kleinwanzlebener .do \qquad	$\begin{aligned} & \text { Nov. } 16 \\ & \text { Nov. } 16 \\ & \text { Nuv. } 19 \end{aligned}$	18.73	12.50 14.60	${ }_{1}^{11.88} 18.87$	${ }_{8}^{91.1}$				${ }_{43}^{14}$
do	do	German A	$\begin{aligned} & \text { Nov. } 19 \\ & \text { Nov. } 19 \\ & \text { Nov. } 19 \end{aligned}$	17.53	14.60	13.87	83.3			1,230	44
16498 1049	Warren Bigler	d,	$\underset{\text { French }}{\text { German }}$ A		20.03	12.0	11. 40	59.9			1,040	37
$\begin{aligned} & 16499 \\ & 16554 \\ & 16555 \end{aligned}$	Banuer Mocowen.			$\begin{aligned} & \text { Xov. } 19 \\ & \text { Nov. } 23 \\ & \text { Nov. } 23 \end{aligned}$	15.83 18.91	11.3	10.74 13.30 18	${ }_{71 .}^{71.4}$	10.3	1,996	670 610	${ }_{20}^{24}$
do				${ }_{23.54}^{18.91}$	18.5	17.58	70.1	13.5	1,501	440	${ }_{16}$
$\begin{aligned} & 15380 \\ & 15381 \end{aligned}$	Average				18.17	14.15	13.45	77.4	11.9	1,749	808	30
	George R. Clayton	White		$\begin{array}{ll} \text { Oct. } & 14 \\ \text { Oct. } & 14 \end{array}$	$\begin{aligned} & 18.37 \\ & 19.47 \end{aligned}$	$\begin{aligned} & 14.52 \\ & 15.40 \end{aligned}$	$\begin{aligned} & 13.79 \\ & 14.63 \end{aligned}$	$\begin{aligned} & 79.0 \\ & 79.6 \end{aligned}$	19.8	$\begin{aligned} & 4,380 \\ & 2,899 \end{aligned}$	$\begin{aligned} & 625 \\ & 405 \end{aligned}$	${ }_{14}^{29}$
	Average				18.92	14.96	14.21	79.3	16.9	3.610	515	18
	Average for State				15.97	12. 32	11.64	76.9	14.0	2,416	79	27
INDIAN TERRITORT.												
16580	Arthur E. Wilson	Chickasaw	Eleinwanzlebener .	Nov. 27	15.99	13.05	12. 40	81.6	20.9	3,816	1,215	43
IOWA.												
${ }_{15}^{15273}$	M. Geide..	Allamakee.	French	Oct. Oct. cor	14.2	11.0 11.0	${ }_{10.5}^{10.5}$				1.635	59 53
15634	Enoch Miller		French	Oct. 20	14.5	11.1	10.6				${ }^{1.635}$	26
	C. Barn	do	German	Oct. ${ }^{\text {Oct. }} 20$	16.6 16.0	${ }_{12}^{13.7}$	${ }_{12.1}^{12.7}$	${ }_{79}^{80.5}$			1,615	${ }_{33}^{57}$

Serial Ni．	Natne of grower．	Countr．	Tariety．	$\begin{aligned} & \text { Date } \\ & \text { received. } \end{aligned}$	Tutal solinls	Sucrose in－		i＇mity	$\begin{gathered} \text { Y: Sal } \\ \text { low-in: } \\ \text { arre. } \end{gathered}$	Probahle －沙！ 1 － －wase per ale．	weinit at lueds．	
						Juier．	F．，					
						Per ct．	Per ct．	Per ct．	Tons．	Pounds．	Grams	Ounces．
10：3	C．Barmame	Allamakee	German	Oct． 23	149	10．60	10.10	21.4			1，315	46
150：	．．．．th，	．．．．．do	Fricuch	Oct． O．t． O3 23	14.9 16.1	11．40	10.80 13.90	76.4 8.15			1． 345	$\begin{aligned} & 48 \\ & 26 \end{aligned}$
1－i－1．	Sta．-1 hinber	do	German	Oct． 24	17.8	14．40	13．60	81.3			880	31
15823	．．．．．．do		French	Oct． 24	17.4	13． 60	12.90	78.0			830	29
1587	3．A．Carlson	do	German	Oct． 26	15.0	9． 40	8.90	6.2			1，14）	40
1 $\cdot \cdots \cdots$	da	． d_{0}	French	（hit． 26	15.4	106	（11．）（i）	63.6			1．140	37
10145	C．J．f．New－ll	．${ }^{\text {din }}$	（ietman	ミov． 5	15.5	11． 317	（1．9 3	－1． 9			1.3	$\therefore 4$
1 light		din	French	天ins． 5	15.1	11.30	111． 71	it．：			1．	$16 i 6$
16227	Landelin Haas	do	．．do	Nov． 6	22.8	19． 20	18． 20	84.0			720	25
16228 16398	Wi．．to ．．．	do	German	Nov． 6	21.9	18.30	17．40	83.6			560	20
16399	W n ．Lus	do	French	Nov． 14	$\begin{array}{r} 21.5 \\ 21.0 \end{array}$	18.30 18.40	$\begin{aligned} & 17.40 \\ & 17.40 \end{aligned}$	85.0 87.5			1． 120	40 33
	A wesage				1ti． $3-$	13．32	12.64	汭，			1.151	$41)$
15in	II．R．Pierer	Atuluhon	Kleinwanzlebener	supt． 16	12． 2	8.27	－． 5 ＋	65． 0			1．93in	63
1：12\％	Jus．Sthwhart	1．－nton	Vilmorin Improvel	S．pt． 29	14.3	111． 20	9． 70	71.7	22． 2	$\because .35$	－1）	$\because 3$
13073				（1．t． 20	16.1	11．81）	11． 20	73.1			tins	21
15886	Wm．Rinder	do	Kleinwanzlebener	Oet． 26	17.5	14． 20	13.50	81.0			970	34
1	Wm．B．دueller	do	Fruwh．．．．．．．．．	1）．t． 26	15．4	1．3．50	11． 931	81．3	25	4，355	50	30
$\begin{aligned} & 15165 \\ & 15166 \end{aligned}$	Wm．B．Mueller	do	Vleinwanzlebener	Oct． 5	14.4	9． 40	8.90	65.3			950	34
			Vimmorin	Oct． 5	14.1	9.30	9． 00	68.7			1.050	37
	Areage				15.3	11.3	10.7	73.4	23.6	3.547	＊5\％．	31
$\begin{aligned} & 15: 26 \\ & 16095 \end{aligned}$	A．T．Nurris	Mlark Hawk		（1）．t．29	14.98	11． 75	11． 16	－ 4			＋：9）	15
	J．M．Uverman		Freach	Nor． 2	1\％．31	13． 25	12． 59	76.5			1．36）	43
	Averag				16． 15	12.51	11．$*$	7.5			840）	32
$\begin{aligned} & 15514 \\ & 16627 \\ & 16141 \\ & 16142 \\ & 16224 \end{aligned}$	F．G．Bennett	Buone．	Vilmorin	Oct． 17	16． 29	13． 58	12．961	83.4	13.7	2． 6.59	44.5	
	Jacoh sichlierhel		Kleinwanzlelener	Nor． 14	20． 23	17.35	16．48	85.8	15.9	4． 1159	56.$)$	$\because 15$
			Vilmorin Improved	ミov． 3	19.7	14． 20	13． 49	81.8	21.0	3． 631	415	15
	13．I．Moxley		Vinorin improved	Nur． 6	1\％．59	15.10	14.35	85.8			805	23
	Average				18.23	14.90	14.15	81.9	17.4	3． 350	5.59	20

21

$\underset{\sim}{\infty}$	\cdots	$1{ }^{\text {cos }}$	泬	ミ	\％			4			23	1：5		
ぶった	팡	霉商	\％	 rim	$\underset{\sim}{90}$				$\stackrel{8}{\circ}$	1会等示	\％	$\left\lvert\, \begin{gathered} \overrightarrow{0} 0 \\ -0 \\ -1 \end{gathered}\right.$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	3
$\begin{aligned} & \overrightarrow{\mathcal{E}}=0 \\ & \text { in } \end{aligned}$	$\begin{gathered} 8 \\ 0 \\ \vdots \\ 3 \end{gathered}$			交 $\vdots \vdots$			$\left\lvert\, \begin{gathered} i, 3 \\ i .3 \\ =i \end{gathered}\right.$					$\begin{aligned} & \text { 合 } \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 翤 } \\ & \text { en } \end{aligned}$	12
$\ddot{\omega}_{0}^{\infty}$	$\begin{array}{\|c} \overrightarrow{~+~} \\ \stackrel{i}{i} \end{array}$						$\left\|\begin{array}{l} c \\ \vdots \\ \vdots 1 \end{array}\right\|$	交 $\vdots \vdots \vdots \vdots$		交 $\vdots \vdots \vdots$		$\stackrel{0}{3}$	$\left\lvert\, \begin{gathered} 0 \\ \dot{8} \end{gathered}\right.$	
$\begin{gathered} 00 \\ \dot{\omega} x \\ \hline \end{gathered}$	$\underset{\stackrel{3}{\circ}}{\stackrel{3}{2}}$	$\begin{aligned} & \therefore 0 \\ & \dot{\infty}+\dot{\infty} \\ & \mid=0 \end{aligned}$	$\stackrel{r}{\infty}$	150：200 	$\begin{gathered} \infty \\ \infty \\ i=1 \end{gathered}$		$\left\lvert\, \begin{array}{c\|c} 10 & 0 \\ \text { i- } & 0 \\ 10 \end{array}\right.$	00サ15つー0 	$\begin{aligned} & 0 \\ & \approx \\ & \approx \end{aligned}$		㫛	$$	$\left\lvert\, \begin{aligned} & \vec{i} \\ & \vec{i} \end{aligned}\right.$	0 0 in 0 1
$\begin{aligned} & \text { 이오 } \\ & \text { 퍽 } \end{aligned}$	$\begin{aligned} & \overrightarrow{3} \\ & \underset{\sim}{-} \end{aligned}$	$\begin{aligned} & \infty 0 \\ & \infty \\ & 0 \end{aligned}$	$\underset{\sim}{\infty}$	「が官年 から－ision	$\begin{aligned} & 18 \\ & =1 \\ & =1 \end{aligned}$	®isisi mi			－		\％		穴	ㄷ．
$\begin{aligned} & \text { Ron } \\ & 10 \\ & n i m \end{aligned}$	$\begin{aligned} & \tilde{B} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & \dot{1} \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { io } \\ & = \\ & \hline \end{aligned}\right.$	 －©		 	$\begin{aligned} & \text { Fi } \\ & \stackrel{0}{-1} \end{aligned}$	$\begin{aligned} & \text { БREO } \\ & \text { Soinco } \end{aligned}$	18，		a － $\stackrel{1}{4}$	\％
$\begin{aligned} & \text { in } \\ & \text { sis } \\ & \text { con } \end{aligned}$	$\begin{aligned} & \infty \\ & x \\ & \vdots \\ & \end{aligned}$		$\begin{aligned} & \vec{~} \\ & \underset{\text { ศָ }}{ } \end{aligned}$	ざでに号た 	$\begin{aligned} & \text { 83 } \\ & 10 \\ & 10 \end{aligned}$		$\begin{array}{l\|l} \text { in } & \infty \\ 0 & \infty \\ 0 & 0 \end{array}$	-6in	$\begin{aligned} & 10 \\ & 0 \\ & 7-1 \end{aligned}$		$\stackrel{\square}{\sim}$		® a －1	
$\begin{aligned} & \text { ผิ고 } \\ & \text { ثٌ̈ } \end{aligned}$							$\stackrel{\sim}{\sim}$ $\stackrel{6}{6}$	 no 008		붑ㅇ․․․․ ثنٌ				$\begin{array}{ll} \text { al } & \text { 8 } \\ \stackrel{4}{0} & 8 \\ 0 & 6 \end{array}$

Buchanan．	Fleinwanzlele．ter ．． Viluorin Imaroved．
Buena Vist	Vilnorin Kleinwanzlefoner
	French ． ．i．．．．do． （icrman． ．．．．．．du ．
Calhom …．．．do． 10. ．．．．．．．do．	White conical Kleinwanzlebener Vilmorin Impored du
	Tilmorin Improved Vilmorin Improved． do German French Kleinwanzlebener Vilmorin Improved
Cedar ．．．．．．．．．do do	Kleinwanzlebener ．．．．．．do Vilmorin Improved Champion
$\begin{aligned} & \text { Cherokee } \\ & \text {......do. } \end{aligned}$	French ．．．．．． 10
Clarke	Conical
Clay	Vilmorin

15791	Wm．A．Rogers
16006	A．M．Binglam．．
	Arerage
16453	L．Traub
16＋54	
	Average
15083	J．A．Landes
150127	F．B．Cheney
15093	Andrew Gludery．
161\％	do
15051	Frank Beal
	Averag
15014	F．E．Hamilton．
16491	J．C．Frick
$16 \mathrm{Fa}, 6$	
16600	E．E．Johnson
	Arexage
16382	S．B．Alspar
15107	E．Gingery
$15: 19$	do
1576	S．Carver
1596	．．．．．．do
1526	J．M．Leh
16576	do
15247	R．White
	Arerame
15418	C．L．Schiele
15639	G．W．Barclay
15640	
15641	
	Average
16089	H．Graff
16450	do
	A rerage
15310	G．I．Armitage
16599	J．Schmil

IOW A-Continued.

Scrial No.		Conntr.	Variety.	Date received.	Total solids.	Sucrose in-		Purity.	Yield beets per acre.	Probable yield sucrose per acre.	Arerage weight of beets.	
	Name of grower.					Juice.	Beet.					
16600	J. Schmidt	Clay	Kleinwanzlebener	Nov. 29	17.8	$\begin{gathered} \text { Per ct. } \\ 14.8 \end{gathered}$	$\begin{array}{r} \text { Per ct. } \\ 14.00 \end{array}$	$\begin{array}{r} \text { Per ct. } \\ 82.9 \end{array}$	Tons.	Pounds.	$\underset{730}{\text { Grams }}$	Ounces. 26
	Aver				17.3	14.05	13.30	80.9	25	4,475	670	24
15005	F. E. Ma	Clayton	Kiteinwanzleberer	Aug. 25	15.39	9.10	8. 65	59.0			765	27
16035ll:		- dor	Sept. 14	16. 29	13.15	12.50	80.7			1, 2480	44
16×55	J. W. X.smith	.dı	do	Nov. 7	16.35 16.57	12.40 13.10	11.80 12.40	75.9 78.8			980 500	18
	Arerase				16.15	11.94	11.34	73.6			871	31
15451	C. (I Im-ha	Crawford	Kleinmanzl berner	Oct. 16	13.28	9.34	8.87	70.3	17.6	1,983	1,610	57
15919	A. F. lond . .	. d_{1}	Conical	Oct. Dec.	13.62 19.24	9.50 15.15	9.02 14.40	$\begin{aligned} & 69.8 \\ & 78.8 \end{aligned}$			1,030 1,030	36 36
16634	H. Kionekamp	do	German	ec. 7	19.24							
	A verame				15.38	11.33	10.76	73.0	17.6	1,983	1,293	43
15177	L. L. Feather	Iallas	Vihmorin Improved	Oct. 6	17.37	14. 46	13.74	83.2	16.7	3,440	490	17
1.146	-...do....do	Kleinwanzlebener	Oct. 13	15.02	12. 34	11.72	82.2	16.7	2,906	690	24
15419	J. H. Conley	. do	Vilmorin	Oct. 15	15.65	10.50	9.98 19.69	66.9	24.2	$\stackrel{2}{2,914}$	520	, 19
15420dodo	. ${ }^{\text {do }}$	Oct. 15	17.37	13. 28	12.62	73.6 79	12	2,004	415	15
15421	do	...do	Kleimwanzlebener	Oct. 15	17.17	13. 69	13. 00	79.8 73.5			520	18
15819	do	. . do		Oct. 24 Oct. 24	17.27	12.70 11.60	12.09 10.02	73.5 72.3	24	3,800	815	
15022	do	. do	Kleinwanzlebener	Oct. 24	15.95 15.75	11.60 11.30	10.02 10.73	72.3			640	23
15879	du	. . . do	Vilmorin Improve	Oct. 26	15.75 18.27	11.30 13.90	10.73 13.21	71.7			670	24
16851 16254	do	...do	Vilmorin	Nov. 7	17.27	13.90 14.20	13.21 13.49	76.1 80.0	24.2 10.9	4, $\mathbf{2}, 121$	740	26
16254 1525	- do. dododo	Kleinwanzlebener Vilmorin	Nov. 7 Nov. 7	17.17 16.87	14.20 12.60	13.49 11.97	80.0 74.7	12.9	1,937	740 660	23
1525 15638	W. A. Ulim.	do	Kleiowanzlebener	Nov. 20	16.89	13.50	12. 83	80.0	12	1,93	755	27
157	Geo. IRoberts	.do do do	Oct. 22	18. 39	14.25	13.54	77.5			420	15
1576 it	Lindsley Willis	do	-...do	Oct. 23	13.95	10.00	9.50	71.7	,		765	27
$15 \% 69$	T. T. Jones ...	do	Vilmorin	Oct. 23	14.45	11. 25	10.69	77.8			910	32
15×78	Adelbert Thornburg ${ }^{\text {do }}$	Tleinwanzlehener	Oct. 26	15.05	10.55	9.92	70.1 81.6			595 570	21
15084	Truman Buck do	Vlmoria Improved	Oct. 26	17. 71	14. 50	13. 77	81.6			670	23
15.924	Martin O. Malleydo	Kleinwamzlebenor	Oct. 27	16.22	12. 30	11.69	75.8			640	23 24
15770	W. Pepper	. . dodu	Oct. 23	16.48	13.45	12.78	81.7	17.4	3,282	660	24
	Arerage				16.47	12.65	11.96	76.3	17.6	2,978	638	23
16350	J.s.stark	Davis		Nov. 10	181	10.8	10.2	59.5			6111	22

Summary of results by States and counties-Continued.

	Name of grower.	County	Tariety.	$\begin{gathered} \text { Date } \\ \text { received. } \end{gathered}$	Total solids.	Sucrose in-		Purity.	Yield beets per acre.	Proliable viether sacrose per acre.	A verare weight of beets.	
$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$						Juice.	Beet.					
15685	A. C. Pryor	Harrison	Kleinwanzlebener	Oct. 21	13.90	$\begin{gathered} \text { Per ct. } \\ 10.20 \end{gathered}$	Per ct.	Per ct. 73.3	Tons.	Pounds.	Grams. 1.441	Ouncer.
156 inti	dodo	Oct. 21	15. 10	9. $\times 1$	9.:0	53. A			1,.110	\%
15687	A. D. Hoyer	do		Oct. 21	14. it	11.30	10. 70	79.7				24
16094	Frank Brewster			Wct. ${ }^{\text {cos }}$	1.5. 60	12.20	11. 60	7*. 5			57.5	20
	F.H.Ludwig.		Kleinwanzlebener	Nov. 2	13.50	8.30	7.89	61.2			1,540	54
	1 reraque				14. 113	9.52	9.04	67.9	1.24.	$: 7$
15350	A. O. Olson	Humboldt	Kleinwanzlebener	Nov. 13	16.11	12.66	11.98	78.6	21.5	:3. 496	.110	18
16192	J. T. Montgomery	Ida	Kleiuwanzlebener	Nov. 5	15.30	11.4)	10. . 0	73.9		1. 605	5
$\begin{aligned} & 15568 \\ & 15573 \\ & 16197 \\ & 16198 \end{aligned}$	Henry scluadt	Iowa	Kleinwanzlebener	Oct. 19	15. 77	12. 55	11.92	79.6	17	2. 90:	410	14
			French	Oct. 19	15.47	12.85	12.21	83.1	18.1	3, 310	390	14
		dio	Kleinwanzlcbener	Nov. 5	16.43	12. 50	11.88	75.9	17.2	2,790	530	19
			French	Nov. 5	14.53	11.25	10.69	77.3	19.2	2,857	735	26
	Averag				15.55	12. 29	11.68	79.0	17.9	2, 966	514	18
$\begin{aligned} & 15550 \\ & 16290 \\ & 15572 \\ & 16092 \end{aligned}$	J. W. Preston	Jaspe	French									
	P. F.Johinson.		Imuroverl conical	Nov. 9	16.75 10.54	$\text { 11. } 00$	11.31 6.41	71.0 6.4 6			$\begin{array}{r} !660 \\ 1.110 \end{array}$	3
	P.F.Johnson. Rev.		Improved conical	Oet. ${ }^{\text {Vov. }} 19$	10.54 17.31	$\begin{array}{r} 6.75 \\ 13.70 \end{array}$	6.41 13.02	64.4 79.1			1.110	31
15975	Average				14.34	10. 19	9. $6 \times{ }^{\circ}$	io. 1		,	1. 101	3
	W. E. Pearson	Jefferson		Oct. 10	17.60	14.10	13.50	86, :3			:	13
16641	W. S. Jamieson	Le	Kleinwanzlebener	Dec. 21	17.27	12.35	11.73	71.4		72	25
$\begin{aligned} & 15237 \\ & 15238 \\ & 15643 \\ & 15239 \end{aligned}$	David Wild	Linn	Kleinwanzlebener	Oct. 9	13.03	9.62	9.14	74.0			96.5	:4
				Oct. 9	16. 93	12.61	11.98	74.2			440	16
	do	,		Oct. 20	16.60	13.40	12. 70	80. 9			4×4	17
	Wm. Koss		Buiteau Desprez	Oct. 9	17.0%	12. 88	12. 23	75.7			93	3
15239	Average				15.90	12.13	11.51	76.2	A.	496	18
$\begin{aligned} & 15152 \\ & 16137 \end{aligned}$	A. L. Whitten	Lucas	Kleinwanzlebener	Oct. 3	18. 60	14.80	14.00	79.8		2. 629	49.3	17
				Nov. 3	19.47	15.05	14.30	77.3	19.6	3.908	423	17
	Average				19.04	14.93	14.15	78.6	16.3	3. 268	490	17

－motom צ゙ざも
 ぶ $\infty+\infty$
8 28®\％ sicico 0°
 ブํํํํํํํ
 11

 －ーズデ

 비ํ운우
氝皆多思
 Klein wanzlebener ． Kleinwanzlencal ．．．

\author{

Viluorin
Vilmoriv．
German
German
－7．．．do．
Kleinwan German

투ㅇㅜㅢ 융品

\qquad 3 W．A．Bryan ．．． Jno．D．Thomas
Wm．Pickerall． Clark Tertell．
J．Hull s．L．sherinan．
 Average
 Stewart Bosworth \qquad
\qquad先

IOWA-Continued.

Serial No.	Name of grower.	Comety.	Variety.	$\begin{aligned} & \text { Date } \\ & \text { received. } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { solids. } \end{gathered}$	Sncrose in-		Purity	$\begin{aligned} & \text { Yield } \\ & \text { beets per } \\ & \text { acre. } \end{aligned}$	Probable Fich sin crose per .ar	Arcrase weight of beets.		
						Juice.	Leet.						
		Jarshal				Perct.	Per ct.	Perct.	Tons.	Poundx.	Grams	Ounces.	
${ }_{1} 15349$	J. Mr Rhodes	Tarsido.	Vilmerin	Oct.Oct.Oct.Oct.OfO	13.20 15.50	12. 40	11.60 7.80 8.80	${ }_{6}^{80.0}$			$\begin{aligned} & 24 \\ & 14 \\ & 14 \\ & 26 \end{aligned}$	
15567	J. A. Tallman	d,	German		12. 12.10							
${ }_{15636}^{1534}$	George Whitton W. H. Stacy	da	Kıeinva	$\begin{array}{lll}\text { Oct. } \\ \text { Oct. } & 19 \\ \text { Oct } & 19 \\ \text { Oct. } & 20\end{array}$	15.5014.30	8.20 8.60	8.20	68.0 80.7			$\begin{aligned} & 7.25 \\ & 455 \end{aligned}$	26 16 16	
15644	,	do	. ${ }^{\text {do }}$	Oct. 20		${ }_{11}^{12.50}$	11.90	78.880.2	$\begin{aligned} & 13.3 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 3,0,31 \\ & 2,467 \\ & 2,567 \end{aligned}$	1,230	$\begin{aligned} & 24 \\ & 43 \end{aligned}$	
15645	Josiah Dillo			${ }_{\text {Oct. }}^{\text {Oct. }} \mathbf{2 0}$	14.80 15.70	11.90 11.80	11.3011.20				-		
${ }_{16095}^{15727}$	A. T. Birchard	du	Vlexiurinazzlelener		16. 10	11.8011.801.80		80.2 74.9 73	$\begin{aligned} & 15.0 \\ & 17.0 \end{aligned}$				
163317	do	dodo	Nov. ${ }^{2}$	17. 17.60		${ }_{12}^{11.20}$	778		86		
16309	do			Now.		13.10 14.50	13.80	82. 6			63.3		
16310	40	do		Nor. 9	18.70117.10	15.50 13.10	14. 70	82.876.9	….................		$\begin{aligned} & 36,0 \\ & 6 i f 15 \end{aligned}$		
16311	10		Yilumorin			15.1017.20	14.40 16.30 1			$\begin{aligned} & 3,1 \\ & 5 \times 10 \end{aligned}$		
16381	do	. d (.....do .	Nov. 13	${ }_{21}^{20.20}$			74.9 78.8 78	20.3				
16546	d.		Klein wanzlebener .	Nov. ${ }^{23}$	19.00	13. 30	12. 60	77.8 78		4,	510		
15922	W. F. Haslet				16. 40	10.10	9. ${ }_{\text {9. } 70}$	$\begin{aligned} & 66.4 \\ & 62.6 \\ & 76.7 \end{aligned}$	$\begin{aligned} & 93.1 \\ & 21.8 \end{aligned}$	$\begin{aligned} & 3,519 \\ & 3,957 \end{aligned}$	$\begin{aligned} & 5119.5 \\ & 699 \end{aligned}$		
$160+6$ 16088	Nathan Kirk	do	Klcin wanzlebener								$\begin{aligned} & 807 \\ & 7405 \\ & 705 \end{aligned}$	$\begin{aligned} & 17 \\ & 25 \\ & 16 \end{aligned}$	
15977	Benj. E. Shirk				19.40	15. 40	14.60	79.0					
	Average				16. 10	12.15	11.54	75.1	16.93	2. 872	593	\because	
15921	G. W. Moon.			22	14.42	11.25	10. 69	78.0		1,375)	43	
16043	T. H. Moore	Manma	Kleinwanzlel, ${ }^{\text {ener }}$	$\begin{aligned} & \text { Oct. } 31 \\ & \text { Oct. } 31 \\ & \text { Oct. } 31 \\ & \text { Nov. } 23 \end{aligned}$	$\begin{aligned} & 17.30 \\ & 17.20 \\ & 15.50 \\ & 12.90 \end{aligned}$	$\begin{aligned} & 12 . \\ & 11.60 \\ & 10.50 \\ & 10.50 \\ & 9.10 \end{aligned}$	$\begin{aligned} & 11.80 \\ & 11.00 \\ & 10.00 \\ & 18.60 \end{aligned}$	$\begin{aligned} & 71.8 \\ & 67.66 \\ & 68.0 \\ & 70.1 \end{aligned}$			$\begin{aligned} & 900 \\ & 880 \\ & 885 \\ & 600 \end{aligned}$		
16044	W. S. Wade												
16545	John Wilsun..												
	verag				15.73	10. 00	10.35	69.4	84	28	
$\begin{aligned} & 15918 \\ & 16090 \end{aligned}$	$\begin{aligned} & \text { C. C. Plalter ... } \\ & \text { Peter Erickson } \end{aligned}$	Montromery	Vilmorin	$\begin{aligned} & \text { Oct. } \\ & \text { Nov. } \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 14.42 \\ & 17.31 \end{aligned}$	$\begin{aligned} & 10.25 \\ & 13.25 \end{aligned}$	$\begin{array}{r} 9.74 \\ 12.59 \end{array}$	$\begin{gathered} 71.1 \\ 76.5 \end{gathered}$			13	
											870		
	Averagedo			15.83	11.75	11.17	73.8					
15030	Samuel Hallock.	Museatine	French	$\begin{aligned} & \text { Sept. } 14 \\ & \text { Nov. } 13 \end{aligned}$	13.3018.80	$\begin{array}{r} 9.40 \\ 15.30 \end{array}$	$\begin{array}{r} 9.00 \\ 14.50 \end{array}$	${ }_{81}^{70.3}$					
16379		du	German										

	－	
¢		ค่

\＃	$\begin{aligned} & \text { RM } \\ & \text { nin } \\ & \text { in } \end{aligned}$	\pm
๕	まっ	
\％	¢上	
	今心	

Summary of results by States and counties-Continued.

SerialNo.	Name of grower.	Countr.	Variety.	$\begin{aligned} & \text { Date } \\ & \text { received. } \end{aligned}$	Total solids.	Sucrose in-		Purity.	$\begin{gathered} \text { Yield } \\ \text { beets per } \\ \text { acre. } \end{gathered}$	Probable yrela sucrose pe	$\begin{gathered} \text { Average } \\ \text { weight of 1jeets. } \end{gathered}$	
						Juice.	Beet.					
				Sept. 25 sept. 28 Oct. 16 Oct. 16 Oct. 16 Oct. 16 Oct. $2 \frac{2}{2}$ Uct.		Per ct 6.89	$\begin{gathered} \text { Per ct. } \\ 6.54 \\ 9.86 \end{gathered}$	$\underset{\text { Per ct. }}{60.0}$	Tons.	Pounds.	Grams.	Ounces.
$\begin{aligned} & 15099 \\ & 15111 \end{aligned}$	R. Wohlgemuth. Mrs.J. A. Woods	Polk...	Klefinwanzlebener Vilmorin Improved		$\begin{aligned} & 11.48 \\ & 15.47 \end{aligned}$	6.89 10.38		60.0 66.6	16.3 22.8	li,1,157 2,064 1	$\begin{aligned} & 850 \\ & 30 \end{aligned}$	37
					15.79	12.90	12. 23	81.1	2?. 8	+,108		11
15449	Paul Fisher		French		15.68	12.10	${ }^{11.50}$	77.2			515	
15450			Diamond		16. 08	12.40	11. 78	77.1			610 2:2	
15152 15453 1	…..d 10		(icrman		15.59 16.29	${ }_{13}^{12.75}$	12.11 12.95	81.9 83.5	21.6	3,866	$\begin{aligned} & 370 \\ & 460 \end{aligned}$	
15454		do	Vilmorin		16.79	${ }^{13.93}$	13. 23	83.9			485	
15455		do	Lanes Imperial		13.28	9.95	9.45	74.8			470165	$\begin{aligned} & 17 \\ & 23 \\ & 37 \end{aligned}$
15731	Robt. Fullerton		Kineranzlebener		14.38	10.45	${ }_{9} 108$	71.9				
15920	J. B. Campbell	dodo.		10.74	12.35	11.75	73.7			925	33 27
	Average				15. 22	11.58	11.00	75.4	20.9	2,799	624	23
15035	G. Rablee	ttawa	German	Sept. 15	12.95	9.54	9.06	73.7			4,840	171
$\begin{aligned} & 15082 \\ & 154 \% \end{aligned}$	L. D. Cromm		Klcinvanzleterer	Stipt. ${ }_{\text {Ste }}$	12.84	9.17	8.71		20.9	2,345	$\begin{aligned} & 2,300 \\ & 1,565 \end{aligned}$	${ }_{55}^{81}$
					15.88	11.48	10.91	72.3				
	Average				14.36	10.33	9.81	71.9	20.9	2, 345	1,933	68
15122	A.F. Schoening	Scott	Bulteau Desprez	Sept. ${ }^{29}$	21.59	16. 59	15. 76	76.3			510	15
151512	C.J. Barr		Vilmorin Mmprove	Sept. ${ }^{\text {Sen }}$	${ }_{17.27}^{17.89}$	14.41	13.70	80.6 83.4	17.2	3,547		
15130			Vilmorin Improved	Oct. 1	15.67	13.04	12. 39	83.2	19.0	3,534	490	17
15216			Sultean Desprez	Oct. 8	14.18	10. 26	9.75	72.3	13.0	1,647	1,100	39
15217	do		Yilmorin Impro	Oct. 8	14.98	11.43	10.86	70.0			\%	\cdots
15276	Leo Traeger.		Vilmorin	Oct. 10	14.08	13.55	10.03	74.8			\%,	-
1527			Keinwanziebener	Oct. 10	17.69	11.10	12.84	76.0			-0,	\cdots
15267	J. K. Pope	10	Crench	Oct. 10	15.28	10.22	$\stackrel{1}{9.71}$	66.8			T**	\because
15422	J. R. Port		Bulteau Despr	Oct. 15	14.67	12. 20	11.58	83.0			1,840	6
15513	James Djer		Lanes Imirriai	Oct. 17	${ }_{16.39}^{12.68}$	14.45	-8.66	78.9				5
15974	B. $\mathrm{H} . \mathrm{Lage}$.		Bulteau Desin	Oct. 29	14.23	9. 00	${ }_{8.55}$	63.2			67,	
15730	Juachim (ineltzu			Oct. P_{2}	17.19	13.25	12.59	77.1	. 9	3. 6	1,225	析
15975	Fritz Jur			Oct. 29	19.03	15. 10	14.35	79.5				00
15978	Wm. Steinhoff			Oct. 29	16. 23	12.70	12.07	78.3			100	

玆		突	
菏			
会		\bullet	

| 십 |
| :--- | :--- |
| 영 |
| 영 |

 18
∞
9
9

－

G 딕Nㄱㄱ
$\stackrel{\leftrightarrow}{8} \stackrel{H}{8}$

い青 \vdots 風ニ

$\vec{\square}$
틀菦 若 安

 Wiaren．．．．．
Webster．．．．
Winnebago．
．．．．．．do
0900000000

茿

OLr．I日AF

	$\begin{aligned} & 19 \\ & \varsigma_{1} \\ & 18 \\ & \end{aligned}$		$\begin{aligned} & 3 \% 1 \\ & 063 \\ & 0213 \\ & 710 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { N } \\ & \text { 第 } \end{aligned}$		$\begin{aligned} & t= \\ & \infty \\ & 10 \\ & -1 \end{aligned}$	$\begin{aligned} & \vec{x} \\ & \underset{y}{x} \end{aligned}$	會管第

Summary of results by States and counties-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	County.	Variety.	Date received.	Total solids.	Sucrose in-		Purity.	$\begin{gathered} \text { Yield } \\ \text { beets per } \\ \text { acre. } \end{gathered}$	Probable yield sucrose per acre.	Average weight of beets.	
						Juice.	Beet.					
$\begin{aligned} & 15917 \\ & 16130 \\ & 16136 \end{aligned}$	James A. Smith W. C. Morton.	$\begin{gathered} \text { Wright } \\ \cdots \cdots \cdot .{ }^{\text {do }} \text {. } \end{gathered}$	Kleinwanzlebener Vilmorin	$\begin{array}{lr} \text { Oct. } & 27 \\ \text { Nov. } & 3 \\ \text { Nov. } & 3 \end{array}$	13.42	$\begin{array}{r} \text { Per ct. } \\ 9.85 \end{array}$	Per ct. 9.36	Perct. 73.4	Tons.	Pounds.	Grams. $1,165$	Ounces. 41
do . ${ }^{\text {do.... }}$				16. 65	13.60 14	13.93	81.6 80	24.6 18.3	4. 681	470	17
	A verage Average of State.				16.11	12.72	12.08	78.5	21.5	4,197	685	24
					16.32	12. 46	11.82	75.7	17.27	2,914	833	30

German Fr-nch	$\begin{array}{ll} \text { Nov. } 7 \\ \text { Nov. } & 7 \end{array}$	19.27 16.65	$\begin{aligned} & 13.0 \\ & 10.9 \end{aligned}$	12.35 10.36	67.5 65.5			470 510	17 18
		17.96	11.95	11.36	66.5		.	490	13
	Sopt. 16	20.22	15.58	14.80	7.0			1,220	43
Imperial.	Oct. 27	13.42	9.35	8.88	69.7			1. 470	52
German............. Kleinwanzlebener	Nov. 4	15. 22	10.85	10.31	71.3		.	1,780	63
	Oct. 26	15.85	11.25	10.69	71.0	915	32
Vilmorin	Nov. 12 Nov. 16	$\begin{aligned} & 21.99 \\ & 16.97 \end{aligned}$	$\begin{aligned} & 16.00 \\ & 12.65 \end{aligned}$	$\begin{aligned} & 15.20 \\ & 12.02 \end{aligned}$	$\begin{aligned} & 79.8 \\ & 74.6 \end{aligned}$			$\begin{aligned} & 465 \\ & 765 \end{aligned}$	16 27
		19.48	14.33	13.61	73.7			615	22
Bulteau German. Freuch .	Oct. 12	14. 28	10.58	10.51	74.1	17.4	2, 439	560	20
	Nov. 3	15.25	11.15	10.59	73.1			675	24
	Nov, 13	17. 27	11. 70	11. 12	67.7			1. 160	41
	Nov. 13	18.29	13.50	12.82	73.8			790	$\because 3$
		16.94	12.12	11.51	71.5	875	31

ミ13	に！		\％	$\overrightarrow{-1}$		3		103			∇	$\Re \\| \mathfrak{F}$
$\begin{aligned} & \text { 设妾 } \\ & \text { sin } \end{aligned}$	$\left\|\begin{array}{c} \text { 合 } \\ \underset{\sim}{1} \end{array}\right\|$		嫓	8	萋	\％	\％	桼会	20		${ }_{0}^{0}$	$\stackrel{8}{8} \\| ⿻ 日 禸$
					$\begin{aligned} & \text { 笭 } \\ & \text { si } \end{aligned}$	$\begin{gathered} \text { an } \\ i \\ i \end{gathered}$	$\begin{aligned} & \infty \\ & i= \\ & i \\ & i \end{aligned}$	B				｜rom
					$\begin{aligned} & 12 \\ & \stackrel{2}{2} \end{aligned}$	일	\％i	\cong	3		；	$\begin{array}{cc} \substack{-\vdots \\ \vdots \\ \vdots} \end{array}$
$\begin{aligned} & 0=1 \\ & \infty 80 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 10 \end{array}\right\|$	$\begin{aligned} & 10100 \\ & \text { cition } \end{aligned}$	15	๕	$\begin{aligned} & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \vec{i} \\ & \hat{i} \end{aligned}$	$\begin{array}{ll} 0 \\ 8 \\ 8 \end{array}$	$\begin{aligned} & \text { ino } \\ & \text { ㄷo } \end{aligned}$	$\begin{aligned} & 9 \\ & 8 \\ & 8 \end{aligned}$	 	$1 \begin{aligned} & 1 \\ & \end{aligned}$	$\begin{array}{l\|l} 109 \\ 90 & 01 \\ \hline 8 \end{array}$
$\begin{aligned} & 8,7 \\ & \infty \\ & 0 \end{aligned}$	$\left\|\right\|$	$\begin{aligned} & \text { MNㅏN } \\ & \text { ciom } \end{aligned}$	$\left\lvert\, \begin{aligned} & 18 \\ & \infty \\ & \infty \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \overrightarrow{\mathrm{E}} \\ & \dot{\mathrm{~s}} \end{aligned}$	$\stackrel{\propto}{\underset{~}{\dot{1}}}$	8 11 11	$\begin{aligned} & E \\ & \text { e } \end{aligned}$	$\begin{aligned} & 8 R \\ & =\infty \end{aligned}$	$\stackrel{\infty}{\underset{\sim}{\infty}}$	 	$\begin{aligned} & \text { B1 } \\ & \stackrel{O}{-} \end{aligned}$	$$
๔్ oir	\mid	แ๓ก cios	$\left.\begin{array}{\|c\|} \hline-1 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & 18 \\ & 0 i \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{8} \\ & \hdashline \end{aligned}$	$$	$\begin{aligned} & \text { 太 } \\ & \stackrel{\Delta}{-} \end{aligned}$	$\begin{aligned} & \text { 둥 } \\ & \text { 붕 } \end{aligned}$	$\begin{aligned} & \mathbb{A} \\ & \stackrel{y}{\circ} \end{aligned}$	 	$\left\lvert\, \begin{aligned} & \infty \\ & -\dot{=} \end{aligned}\right.$	8 19 ∞ 0
ल ベ・ㅜㅜ	$\left\|\begin{array}{l\|} \infty \\ \infty \\ \infty \\ \text { si } \end{array}\right\|$	$\begin{aligned} & \text { Fixt } \\ & \text { ヘixis } \end{aligned}$	$\begin{aligned} & \overline{\hat{i}} \mathbf{0} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \infty \end{aligned}$	$\begin{aligned} & - \\ & \stackrel{\omega}{\Phi} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \pm \\ & \pm \end{aligned}$	$\begin{aligned} & \mathrm{SO}=0 \\ & \mathrm{Ein} \end{aligned}$	$\begin{aligned} & 29 \\ & \vdots \\ & \hline \end{aligned}$	 	$\begin{aligned} & \infty \\ & \stackrel{y}{\circ} \\ & = \end{aligned}$	
ao				๓	คึ	$\stackrel{\square}{\square}$	\bigcirc	－19				다
边苋				$\begin{aligned} & \dot{6} \\ & 4 \end{aligned}$	灾	$\begin{aligned} & \stackrel{3}{\circ} \\ & \stackrel{\circ}{n} \end{aligned}$	$\begin{aligned} & +\mathrm{S}_{0} \end{aligned}$	ثٌ نٌ		 		ث்
						$\%$						
		$\begin{gathered} \text { 를 } \\ \text { 은둔 } \end{gathered}$		贸			들					$\stackrel{\vdots}{\underset{\sharp}{\#}}$
									复			
				$\begin{gathered} \text { B } \\ \text { Bun } \end{gathered}$	边	$\begin{aligned} & \text { oi } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \end{aligned}$					$\begin{aligned} & \text { en } \\ & \stackrel{1}{\mathbf{o}} \\ & \hline \end{aligned}$

Summary of results by States and counties-Continned.
KENTUCK

$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Name of gower.	Counts.	Variety.	$\begin{aligned} & \text { Date } \\ & \text { received. } \end{aligned}$	Total solids.	Sucrose in-		Purity.	$\begin{gathered} \text { Yield } \\ \text { beeto per } \\ \text { acre. } \end{gathered}$	Probable cruse xuacre.	Averare weight of beets.	
						Juice.	Beet.					
16031	T. S. Maberley	Marlison		Oct. 31	11.14	$\begin{array}{r} \text { Per ct. } \\ 6.00 \end{array}$	$\begin{gathered} \text { Per ct. } \\ 5.70 \\ 5.70 \end{gathered}$	$\begin{gathered} \text { Per ct. } \\ \text { ine. } \end{gathered}$	Tons.	Pounds.	$\underset{1,465}{\operatorname{Gramb}_{1}}$	Ounces.
$\begin{aligned} & 16+8181 \\ & 16+82 \end{aligned}$	C. A. Purdy		$\begin{aligned} & \text { French } \\ & \text { German. } \end{aligned}$	$\begin{aligned} & \text { Nor. } 18 \\ & \text { Nov. } 18 \end{aligned}$	$\begin{aligned} & 16.77 \\ & 16.17 \end{aligned}$	$\begin{aligned} & 11.75 \\ & 11.05 \end{aligned}$	$\begin{aligned} & 11 . \overline{16} \\ & 10.50 \end{aligned}$	$\begin{aligned} & 70.1 \\ & 68.3 \end{aligned}$		$\begin{aligned} & 547 \\ & \hline 876 \end{aligned}$	19 31
	A verage				16.47	11.40	10.83	69.2	712	25
	I wriage of state				14.69	9.60	9. 12	63.7		$96 \overline{3}$	34
Marrland.												
$\begin{aligned} & 16,937 \\ & 16030 \end{aligned}$	$\begin{gathered} \text { II. I } \text { Alo } \\ \text { ne. } \end{gathered}$	Irime ataurge	Vilmorin Laues.	Dee. ${ }^{\text {Pre }}$	$\begin{aligned} & 11.82 \\ & 10.70 \end{aligned}$	$\begin{aligned} & 8.90 \\ & \text { 6. fiv } \end{aligned}$	$\begin{aligned} & \text { 8. } 4.5 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 75.3 \\ & 61.7 \end{aligned}$			370	13 13
	A verage				11. 26	7.75	7.36	68.5	\ldots		451	$1{ }^{16}$
Mithiliche												
	J. R. Diblle W. H. Schul. \qquad			$\begin{aligned} & \text { Nov. } 6 \\ & \text { Nov. } 23 \\ & \text { Nov. } 23 \end{aligned}$	$\begin{aligned} & 15.58 \\ & 22.94 \\ & 23.34 \end{aligned}$	$\begin{aligned} & 11.60 \\ & 19.60 \\ & 19.25 \\ & 20.75 \end{aligned}$	$\begin{aligned} & 11.02 \\ & 18.02 \\ & 19.71 \end{aligned}$	$\begin{aligned} & 74.5 \\ & 83.9 \\ & 88.9 \end{aligned}$				-3
	Average.....				20.62	17.20	16.34	82.4	568	20
$\begin{aligned} & 15744 \\ & 1615+ \\ & 16479 \end{aligned}$	Leonard C. Roach R. A. Polley E. L. Hursley	$\begin{aligned} & \text { Barry. } \\ & \text { …....do } \end{aligned}$	Bultan Desprez	$\begin{aligned} & \text { Oct. } 22 \\ & \text { Nor. } 3 \\ & \text { Nov. } 16 \end{aligned}$	$\begin{aligned} & 13.31 \\ & 16.35 \\ & 15.95 \end{aligned}$	$\begin{aligned} & 10.25 \\ & 11.70 \\ & 12.07 \end{aligned}$	$\begin{array}{r} 9.74 \\ 11.12 \\ 11.45 \\ 11.45 \end{array}$	$\begin{aligned} & 72.5 \\ & 71.5 \\ & 75.5 \end{aligned}$			$\begin{gathered} 1.500 \\ \substack{1900 \\ 950 \\ \hline \\ \hline} \end{gathered}$	[4t
	Average				15. 20	11.34	10.77	73.2	1,123	40
$\begin{aligned} & 16269 \\ & 16595 \end{aligned}$	$\begin{aligned} & \text { T. H. McGraw } \\ & \ldots . . . \text { do } \end{aligned}$	Ray...	Lane's Imperial Vilmorin.	$\begin{aligned} & \text { Nov. } 7 \\ & \text { Nov. } 29 \end{aligned}$	$\begin{aligned} & 12.95 \\ & 23.59 \end{aligned}$	$\begin{array}{r} 9.50 \\ 18.25 \end{array}$	$\begin{array}{r} 9.05 \\ 17.33 \end{array}$	$\begin{aligned} & 73.4 \\ & { }_{2} \end{aligned}$	21.4	5,109	$\begin{aligned} & 825 \\ & 490 \\ & 490 \end{aligned}$	29 17
	Average				18. 27	13.88	13. 19	75.4	21.4	5,109	658	23

33

$\stackrel{\text { 29 }}{-}$	$\begin{aligned} & 8.8 \\ & \text { Hig } \\ & \text {-in } \end{aligned}$	$\begin{aligned} & \text { 令 } \\ & \hdashline- \end{aligned}$	¢	운		－		5		$\underset{\infty}{-1}$		∞	8	18		$\begin{gathered} 9 \\ \cdots \\ -1 \end{gathered}$	A응	会
							$\begin{aligned} & \text { 1-9 } \\ & \text { an } \\ & \text { min } \end{aligned}$	－	交 \vdots		！				交			
				ต่			$\begin{aligned} & \text { Nion } \\ & \text { はis } \\ & \hline 10 \end{aligned}$	$\begin{array}{r} \infty \\ \underset{\sim}{\circ} \end{array}$										
$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & 0 \\ & B \\ & i \end{aligned}$	$\begin{aligned} & \text { nos } \\ & \text { ios } \end{aligned}$	$\begin{gathered} 9 \\ 10 \end{gathered}$	$$	$\left\lvert\, \begin{gathered} \infty \\ \infty \\ \infty \end{gathered}\right.$	$\infty \infty$	$\frac{9}{\infty} \frac{1}{\infty}$		$\stackrel{\mathrm{E}}{\mathrm{E}}$	$\left\lvert\, \begin{aligned} & 10 \\ & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}\right.$	$\begin{gathered} \pi \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \infty 0 \\ & \text { Hici } \end{aligned}$	$\begin{aligned} & \text { ci } \\ & \text { ti } \end{aligned}$	$\begin{aligned} & \text { mat } \\ & \text { R8i } \end{aligned}$	$\stackrel{N}{1}$	$\left\lvert\, \begin{gathered} \operatorname{mit} \\ 0, \hat{i} \\ 0, \mathrm{t}^{2} \end{gathered}\right.$	处
$\begin{aligned} & \text { T0 } \\ & \text { si } \end{aligned}$	$\begin{aligned} & \text { ほごぎ } \\ & \text { ごっ } \end{aligned}$	$\begin{gathered} 8 \\ \vdots \\ \vdots \end{gathered}$	$\begin{aligned} & \text { Br } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\underset{\sim}{c}$		－	$\begin{aligned} & 8-1008 \\ & \text { Min min } \end{aligned}$	$\stackrel{\square}{8}$		$\begin{aligned} & 7 \\ & \text { 구 } \end{aligned}$		$\begin{aligned} & \mathfrak{\infty} \\ & \mathfrak{\sim} \end{aligned}$	$\begin{aligned} & \text { A18 } \\ & \text { cio } \end{aligned}$	$\stackrel{e}{\stackrel{0}{1}}$		$\begin{gathered} \mathrm{t} \\ \mathrm{ti} \\ \stackrel{i}{\mathrm{i}} \end{gathered}$	$\begin{aligned} & \text { EN } \\ & \text {-in } \end{aligned}$	－
$\begin{aligned} & \text { R19 } \\ & + \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \hdashline \end{aligned}$	$\begin{aligned} & 65 \\ & 63 \\ & \text { aig } \end{aligned}$	$\begin{aligned} & 7 \\ & \underset{\sim}{i} \end{aligned}$		$\stackrel{1}{\text { a }}$		$\begin{aligned} & 7 \\ & \stackrel{20}{2} \end{aligned}$	ジッジッ゙	$\begin{aligned} & 5 \\ & \stackrel{y}{\text { in }} \end{aligned}$	$\begin{aligned} & 89 \\ & 015 \\ & 1010 \end{aligned}$	$\begin{gathered} 8 \\ 0 \\ 7 \end{gathered}$		$\begin{gathered} \stackrel{9}{\tau} \\ \underset{\sim}{c} \end{gathered}$		$\begin{gathered} \stackrel{\circ}{\varrho} \\ \stackrel{1}{2} \\ \stackrel{i}{2} \end{gathered}$	$\begin{aligned} & 198 \\ & 10 \% \\ & 101 \end{aligned}$	¢
$\begin{aligned} & \mathscr{8} \\ & \underset{=}{2} \end{aligned}$	$\begin{aligned} & \text { Wop } \\ & \text { din } \\ & \text { din } \end{aligned}$	$\begin{aligned} & 0 \stackrel{0}{20} \\ & \stackrel{10}{2} \end{aligned}$	$\begin{aligned} & 105 \\ & 05 \\ & 0.5 \end{aligned}$	－	$\begin{aligned} & \underset{\sim}{\sim}=1 \\ & \text { an } \end{aligned}$	¢		¢		$\begin{aligned} & \vec{E} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \infty=0 \\ & \infty=0 \\ & =0 \end{aligned}$			8		$\begin{gathered} 8 \\ \stackrel{8}{0} \\ \hline-1 \end{gathered}$		－
$\begin{aligned} & \text { 合 } \end{aligned}$	ส゙®				$\begin{aligned} & 80 \\ & 8 \\ & 8 \end{aligned}$							！	익익 تٌ نٌ					\vdots

Calhoun ．．．
Charlevoix
．．．．．．do

苞

Summary of results by States and countics-Continued.
MICHIGAN-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	County.	Variety.	Date received.	Total solids.	Sucrose in-		Purity.	$\begin{aligned} & \text { Yield } \\ & \text { beets per } \\ & \text { acre. } \end{aligned}$	Probable yield sucrose pris acre.	$\begin{gathered} \text { A rrage } \\ \text { weight of beets. } \end{gathered}$	
						Tuice.	Beet.					
15647	Marcus Wightman.	Newaygo .	Vilmorin.	Oct. 20	16.09	$\begin{array}{r} \text { Per ct. } \\ 13.00 \end{array}$	$\begin{gathered} \text { Per ct. } \\ 12.35 \end{gathered}$	$\begin{array}{r} \operatorname{Pr} \mathrm{rct} . \\ 80.8 \end{array}$	Tons.	Pounds.	$\underset{387}{\text { Gramms. }^{\prime}}$	Ounces. 14
$\begin{aligned} & 1602 \cdot 2 \\ & 16649 \end{aligned}$	Wm. H. Barry	Oceana	Vilmorin Improved	Oct. 30 Dec. 21	$\begin{aligned} & 17.89 \\ & 16.67 \end{aligned}$	$\begin{aligned} & 14.00 \\ & 13.77 \end{aligned}$	$\begin{aligned} & 13.31 \\ & 13.08 \end{aligned}$	$\begin{aligned} & 78.2 \\ & 82.5 \end{aligned}$	11.87	2,312	$\begin{aligned} & 625 \\ & 480 \end{aligned}$	22 17
	A verage				17.28	13. 89	13.20	80.4	11.87	2,312	553	20
$\begin{aligned} & 15469 \\ & 15470 \end{aligned}$	Jno. Witt	Osceolado	German. French	$\begin{array}{ll}\text { Oct. } & 16 \\ \text { Oct. } & 16\end{array}$	18.99 15.89	16.45 15.97	$\begin{aligned} & 15.63 \\ & 15.17 \end{aligned}$	$\begin{array}{r} 86.6 \\ 84.6 \end{array}$			$\begin{gathered} 231 \\ 5 \div 0 \\ 50 \end{gathered}$	31 18
	Average				18. 94	16. 21	15.40	85.6			7115	25
$\begin{aligned} & 16410 \\ & 16411 \\ & 1641 \\ & 16442 \end{aligned}$	Jacob Barense	Ottawa	German	Nov. 14	13.75	11. 10	10.55	80.7			S(x)	28
	Jno. Leeshouts.			Nov. 14	19.17 17.53	16.15 13.35	15.34 12.68	81.2 76.2			880	30
	Geo. Ohlmann		Vilmorin	Nor. 16	13.63)	8.45	8.03	63.5			660	23
	Average				16.022	12.26	11. 65	76.2			79.5	23
$\begin{aligned} & 16172 \\ & 16173 \\ & 16174 \end{aligned}$	Terre Berker	Saginav	Klcinwa	Nor. 4	14.52	11.50 16.50	10.93 15.67	75.6 .6			1,970 1,240	70 44
	H. 11. Yomman:										2,060	73
	Average				15. 79	12.02	11.42	74.8		1,757	62
15983	Wm. W.Teal	St. Jos:ph	Vilmorin	Oct. 29	15.53	11.30	10. $7: 3$	T2. 8		.	1,273	43
$\begin{aligned} & 15369 \\ & 15939 \\ & 15960 \\ & 16468 \\ & 16469 \end{aligned}$	Michavl fates	Van buren	French	Oct. 13	11.42	8.49	8. 065	74.5	17.4 16.6	1. 921	${ }_{5}^{565}$	29
	Jas...io G. Babbitt			Oct. ${ }^{\text {a }}$	14. 75	11.40	10. 83	77.3			1,015	$: 6$
	J. P. Bewley ..		Freneh	Nov. 16	15. 15	11.35	10.78	74.9			1,570	55
			German.	Nuv. 16	17.37	12.50	11.88	720			1,120	
	Average				15.07	11. 24	10.c8	74.7	17.0	2, 28.5	1,007	36
	Δ verage of Stato				16.91	13.31	12.64	78.0	17. 20	3,444	906	32

MINNESOTA．

\oplus	\％\％	1%	8			${ }^{\circ}$	คส		｜®ลัロコ	요	다앖	1 181	だっ	is			¢ニ
等	OR	$\left\lvert\, \begin{gathered} \stackrel{\mathrm{g}}{9} \\ -1 \end{gathered}\right.$		砉	On in	哭	等发	㽣		管	융․․ 7	8	Sis		，	－	
					高	－		$\stackrel{\infty}{\sim}$		$\xrightarrow{\text { ® }}$							
						$1-$	¢카	0	（\％ocor	$$		\vdots					
$\stackrel{\circ}{\circ}$	$\begin{aligned} & 100 \\ & \text { RO } \end{aligned}$	0	\％	$\stackrel{H}{c}$		$\left\|\begin{array}{l} 10 \\ i \\ i \end{array}\right\|$	a8	$\left\lvert\, \begin{aligned} & 0 \\ & \vec{E} \end{aligned}\right.$	$\begin{aligned} & 00-1 ल \\ & i=0 \in \infty \end{aligned}$	$\stackrel{\square}{3}$	Be	｜ri	ros	3	E	8	
$\begin{gathered} \text { nin } \\ \stackrel{n}{7} \end{gathered}$			\％	$\begin{aligned} & \infty \\ & \infty \\ & =\sim \end{aligned}$		$\left\|\begin{array}{c} \text { 힉 } \\ \stackrel{9}{9} \end{array}\right\|$		$\begin{gathered} \stackrel{8}{\circ} \\ \stackrel{-}{+} \end{gathered}$		$\mid 8$	$\begin{aligned} & \text { 9.8 } \\ & \text { mix } \end{aligned}$	$\left\lvert\, \begin{aligned} & 8 \\ & \mathfrak{n} \\ & \end{aligned}\right.$	$\begin{aligned} & \text { B. } \\ & \text { Co } \end{aligned}$	$\stackrel{+}{*}$	$\stackrel{1}{\circ}$	$\stackrel{5}{\circ}$	
8		$\stackrel{\text { ®－}}{\text { ¢ }}$	$\stackrel{8}{8}$	遌		$\left\|\begin{array}{c} \infty \\ \underset{\sim}{\infty} \\ \hline \end{array}\right\|$	$\begin{aligned} & \text { woy } \\ & \text { sin } \\ & \text { sin } \end{aligned}$		온도웅 ビビベン	$\left\|\begin{array}{c} i \\ \dot{\sim} \\ \underset{\sim}{2} \end{array}\right\|$		$\left\lvert\, \begin{aligned} & \infty \\ & \\ & \end{aligned}\right.$	$\begin{aligned} & 88 \\ & \infty \times 0 \\ & \infty<9 \end{aligned}$	¢	\cdots	$\stackrel{18}{\circ}$	
$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { 웅형 } \\ & \text { Bin } \end{aligned}$	$\left\|\begin{array}{c} \text { s. } \\ \text { und } \end{array}\right\|$	¢	$\stackrel{\rightharpoonup}{J}$		$\left\lvert\, \begin{aligned} & \ddot{m} \\ & \stackrel{\ddot{n}}{=} \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \\ & \hline \end{aligned}\right.$		$\begin{gathered} 9 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\left\|\begin{array}{c} \text { ח2 } \\ \stackrel{\sim}{7} \end{array}\right\|$	$\begin{aligned} & \text { \%ix } \\ & \text { and } \\ & \hline 10 \end{aligned}$	\pm	$\stackrel{\text { ¢ }}{\square}$	¢	
$\begin{aligned} & \cong \\ & \stackrel{m}{6} \\ & \stackrel{6}{4} \end{aligned}$			莒								$\begin{aligned} & \text { se } \\ & 60 \\ & 0.0 \end{aligned}$				$\begin{gathered} \text { 会 } \\ 0 \end{gathered}$	䒨	
$\begin{aligned} & \text { 岂 } \\ & \text { ix } \\ & \text { in } \end{aligned}$													둘․․ \vdots 品			$\underbrace{0}_{u}$	
感 号	总		สु่	$\begin{aligned} & \text { © } \\ & \text { A } \\ & \hline \end{aligned}$												碞	$\begin{gathered} \text { eqog } \\ \text { and } \end{gathered}$
			$\begin{aligned} & Z \\ & 0 \\ & 0 \\ & \text { K } \end{aligned}$	$\begin{aligned} & \vdots \\ & \text { 苟 } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & \dot{9} \\ & \text { 昆 } \\ & \text { E } \\ & 4 \end{aligned}$		$\begin{aligned} & \text { 昆 } \\ & \text { E } \\ & \text { 岁 } \end{aligned}$	물 易 0 0	$\begin{gathered} \vdots \\ \vdots \\ \text { 告 } \\ \frac{4}{4} \\ 4 \end{gathered}$		$\frac{5}{4}$			
	䟲管学		$\stackrel{\rightharpoonup}{\oplus}$	荡							苞蔦				잉	网	

Summary of results by States and counties-Continued.
MINNESOTA-Continued.

Serial No.	Name of grower.	Countr.	Variety.	Date recerived.	Total solids.	Sucrose in-		Purity.	$\begin{aligned} & \text { Tield } \\ & \text { beets per } \\ & \text { acre. } \end{aligned}$	Probable yield sucrose per acre.	Average weight of beets.	
						Juice. 1	Beet.					
$\begin{aligned} & 16,6.31 \\ & 16 ; 6,2 \\ & 16633 \end{aligned}$	T. C. Hopkins I. Whepler W. Haskins	Mower	German -...do French	$\begin{array}{lc} \text { Dee. } & 7 \\ \text { Dec. } & 7 \\ \text { Dec. } & 7 \end{array}$	19. 54	$\begin{array}{r} \text { Per ct. } \\ 16.70 \end{array}$	$\begin{aligned} & \text { Per ct. } \\ & 15.86 \end{aligned}$	Per ct. 85.9	Tons.	Pounds.	$\underset{970}{\text { Grams. }}$	Ounces.
					21.74	17.40	116.53	80.0			${ }_{880} 8$	31
					20.44	15. 20	14.45	74.3			670	24
	Average				19.61	15. 40	14.63	78.4	30	705	25
$\begin{aligned} & 15415 \\ & 15688 \end{aligned}$	Arthur Simpson	Murray	Kleinwanzlebener	Oct. 15 Oct. 21	13.15	9.98	9.48	75.6			730	26
					14.61	10.50	9.97	71.9			735	26
	Average				13. 88	10. 24	9. 73	73.8		733	26
$\begin{aligned} & 16396 \\ & 16412 \end{aligned}$	D. T. Mitchell	Polk	Kleinwanzlebener . Vilmorin Improved	$\begin{aligned} & \text { Nor. } 14 \\ & \text { Nov. } 14 \end{aligned}$	$\begin{aligned} & 20.67 \\ & 19.17 \end{aligned}$	$\begin{aligned} & 17.05 \\ & 15.40 \end{aligned}$	$\begin{aligned} & 16.20 \\ & 14.63 \end{aligned}$	$\begin{aligned} & 82.5 \\ & 80.3 \end{aligned}$	$\begin{aligned} & 24.4 \\ & 20.7 \end{aligned}$	$\begin{aligned} & 5,958 \\ & 4,38 \times \end{aligned}$	$\begin{aligned} & 820 \\ & 890 \end{aligned}$	39 31
	Averaga				19.92	16. 23 \|	15.42	81.4	22.6	5, 173	855	30
15783	Simon Swensou.	Pope		Oct. 23	16.47	12.75	12.11	77.4	235	8
$\begin{aligned} & 1612 ; \\ & 16125 \\ & 16602 \\ & 16693 \end{aligned}$	Wm. Carncross.	Sible	Kleinwanzlebener Vilmorin Improved German French	$\begin{aligned} & \text { Nov. } 2 \\ & \text { Nov. } 2 \\ & \text { Nov. } 30 \\ & \text { Nov. } 30 \end{aligned}$	14. 29	10.20	9. 70	71.3	17.6 9	2, 077	770 815	
	Geo. B. schrupp				19.13	14.10	13.39	73.7	13.0	2,317	750	${ }_{26}^{29}$
					19.83	14. 70	13.97	74.1	12. 6	2, 354	740	26
$\begin{aligned} & 15367 \\ & 15655 \end{aligned}$	Average.............		Sulteau Desprez.	$\begin{array}{ll} \text { Oct. } & 13 \\ \text { Oct. } & 20 \end{array}$	17.44	12. 73	12. 09	73.0	16.5	2, 533	769	27
	D. T. Wheaton. G. W. Smitten				$\begin{aligned} & 12.42 \\ & 13.68 \end{aligned}$	$\begin{array}{r} 8.84 \\ 10.05 \end{array}$	$\begin{aligned} & 8.40 \\ & 9.55 \end{aligned}$	$\begin{array}{r} 71.3 \\ 73.5 \end{array}$	24.4	2,635	$\begin{aligned} & 375 \\ & 950 \end{aligned}$	12 34
$\begin{aligned} & 15656 \\ & 16494 \end{aligned}$	Peter Klug	Waseca			13.05	9. 45	8.98	72.4	24.4	2. 635	663	24
			$\begin{aligned} & \text { Tilmorin.............. } \\ & \text { Vilmorin Improved. } \end{aligned}$	$\begin{aligned} & \text { Oct. } 20 \\ & \text { Nov. } 19 \end{aligned}$	15.39	12.60	11.97	81.9	20.7	3,662	600	21
					17.30	13.60	12.92		20.9	3,827		22
	Averago				16.36	13.10	12.45	80.2	20.8	3,746	608	22
	Average of State				17. 12	13.03	12.38	75.7	18.5	3,251	806	29

MISSOURI.

Summary of results by States and counties-Continued.

Summary of results by States and counties-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	N゙ame of grower.	County.	Variety.	Date received.	Total solids.	Sucrose in-		Purity.	Yield beets per acre.	Probable yield sucrose per acre.	Arerage weight of beets.	
						Juice.	Beet.					
	M. Kercher	Custe	French		14. 65	Per ct. 10.69	Perct. 10.15	Per ct. 73.0	Tons.	Pounds. 2, 141	Grains.	Ounces. 26
15384	Chas. L. Mckia	Custer	French	Oct. 21	13. 41	10.69 9.95	9.45	74.2			1,005	37
15738	Wm. Strong ...	do	do	Oct. 22	13.48	9.65	9.16	71.5			2. 300	81
15740do	(d)	Giolden Tankara	Oct. 22	11.68	8. 50	8.07	72.9			1, 6661	59
16175	Wm. B. S. Higgins	. .do	French	Nov. 4	13.32	8.15	7.75	61.2			1,410	50
16176 do do	do	Nov. 4	16. 52	11.85	11.26	72.4			690	24
	Average				13.84	9.80	9.31	70.9	16.0	2. 141	1,300	46
15089	Theorlore J. Lynde	Gallatin	Kleinwanzlebenc	Sept. 24	18. 06	15.18	14. 42	84.0			360	13
15090	do	do	- do	Sept. 24	18.46	13.88	13.19	75.1			450	16
15366	- do	. do	. do	Oct. 13	16.12	12.19	11.57	75.7			420	15
16200	do	do	do	Nov. 5	16. 13	12. 10	11.50	74.9	17.2	2. 673	$4: 31$	1.5
15607	Ella B. Lyni	do	. do	Oct. 19	16. 27	13.15	12.48	80.8	18.3	3,303	255	9
15608do	do	. do	Oct. 19	16.67	13.45	12.78	80.7	18.3	3,406	295	8
15609	C. H. Waterman	dio	German	Oct. 19	16. 77	13.00	12. 35	77.4			6iP5	29
15610	Wm. W. Wvac	do		Oct. 19	14.25	9. 70	9. 28	67.6			680	24
$15 \% 30$	Jno. W. Williams	. do	Kleinwanzlebener	Oct. 24	19.67	14.40	13. 68	73.2			$4: 10$	15
15833	M. V. Hufìman.	do		Oct. 24	17.27	14.00	13.30	81.0			1,400	49
15834	Wm. F. Rea.	. do		Oct. 24	15.95	11.50	10.93	71.8			1,040	37
15916	Mary A. Black	. do	Kleinwanglebener	Oct. 26	18.37	14. 10	13.40	76.7	17.2	3,191	460	16
15907do	-do	-.....do	Oct. 26	20.07	14.50	13.78	72.2	17.2	3,191	530	19
16057	John L. Wortman	- do	. do	Oct. 31	19.67	15.90	15.11	80.8			475	17
16059	Samuel Hobbs	...do	. do	Oct. 31	19.47	16.00	15.20	82.2			400	14
16117	Wm. Blarn.	. do	do	Nov. 2	17.61	13.75	13.06	70.1			770	27
16118	Theo. Norman	do	do	Nov. 2	19.01	13.60	12.92	71.5			490	17
16119	Jno. B. Bean	. do	. do	Nov. 2	18.01	13.50	12.83	75.0			920	33
16149	Thomas J. Lemon	. . do	. do	Nov. 3	19.67	16. 00	15. 20	81.4	15.5	3,463	425	15
16150	James H. Lemon	- do	do	Nov. 3	19.67	16.30	15.49	82. 9	17.6	4,080	480	17
16151	J.D.Jones.	do	. ${ }^{\text {do }}$	Nov. 3	19.67	15.60	14. 82	79.8	20.0	4,270	830	29
16201	Alphonse Bodgly	. do	.-... do	Nov. 5	21.27	16. 50	15.68	77.6			210	7
16202	J. A. MeElroy	dor	do	Nov. 5	19. 47	15. 15	14.49	77.8	25.0	5, 050	340	12
16245	Henry O. Gant	- do	do	Nov. 7	19.77	15. 50	14.73	78.4	22.9	4.772	610	29
16318	Lewis Lay.	do	. do	Nov. 10	19.17	16. 20	15.39	84.5	12.9	3,028	930	33
16.319	Geo. Comfort	.do	do	Nov. 10	21.07	18. 50	17.58	87.8			230	8
16529	Hugh C. McElroy	. do	. do	Nov. 20	19.97	15.60	14. 33	78.1	25.0	5,215	320	11
16590	Joseph A. Pease	. do		Nov. 29	23.67	18.90	17.28	76.9			750	26
15427	J.H. Nixon	do		Oct. 15	14.45	9.94	9.44	69.0			470	17

41

16058	Manhattan Malting Co	.do	French	Oct. 31	20.47	17. 15	16.39	83.3	20.0	4,898	830	29
	Average				18.54	14.48	13.75	77.6	19.0	3,888	559	20
$\begin{aligned} & 15739 \\ & 15741 \end{aligned}$	$\begin{aligned} & \text { Quang. Hing \& Co } \\ & \text { _u...do } \end{aligned}$	Lewis and Clarke....	Kleinwanzlebener Vilmorin Improved	$\begin{aligned} & \text { Oct. } 22 \\ & \left\lvert\, \begin{array}{l} \text { Oct. } \end{array}\right. \end{aligned}$	$\begin{aligned} & 19.39 \\ & { }_{20.09} \end{aligned}$	$\begin{aligned} & 15.80 \\ & 16.75 \end{aligned}$	$\begin{aligned} & 15.01 \\ & 15.91 \end{aligned}$	$\begin{aligned} 81.5 \\ 83.4 \end{aligned}$	3.8 3.8	$\begin{aligned} & 839 \\ & 909 \\ & \hline \end{aligned}$	650 410	23 14
	Average				19.74	16.28	15.46	82.5	3.8	874	530	19
$\begin{aligned} & 15832 \\ & 15835 \end{aligned}$	Ray F. Moon. .	Missoula	$\begin{aligned} & \text { Vilmorin } \\ & \text { Kleinwauzlebener } \end{aligned}$	$\begin{array}{ll} \text { Oct. } & 24 \\ \text { Oct. } & 24 \end{array}$	$\begin{aligned} & \hline{ }^{212.67} \\ & 20.77 \end{aligned}$	$\begin{aligned} & 16 \\ & 16.80 \\ & 160 \end{aligned}$	$\begin{aligned} & 15.96 \\ & 15.67 \end{aligned}$	$\begin{aligned} & 77.5 \\ & 79.9 \end{aligned}$	24.0	5,126	$\begin{aligned} & 930 \\ & 640 \\ & 640 \end{aligned}$	${ }_{23}^{33}$
	Average				21.22	16.65	15.82	78.7	24.0	5,126	785	28
15691	Geo. H. Casey .	Silver Bow	Kleinwanzlebener	Oct. 21	16.61	12.10	11.50	72.9	22.2	3,357	470	17
	A verage of Stato				17.99	13.93	13. 23	76.8	17.6	3,495	675	25
NEbraska.												
$\begin{aligned} & 15505 \\ & 15507 \end{aligned}$	Herman Th. Glampo...	Antelope	Kleinwanzlebener Vilmorin\qquad	$\begin{array}{ll} \text { Oct. } & 17 \\ \text { Oct. } & 17 \end{array}$	$\begin{aligned} & 14.88 \\ & 15.29 \end{aligned}$	$\begin{aligned} & 11.75 \\ & 1: 29 \end{aligned}$	$\begin{aligned} & 11.16 \\ & 11.68 \end{aligned}$	79.0 810			$\begin{aligned} & 685 \\ & 745 \end{aligned}$	${ }_{20}^{24}$
	Arerage				15.09	12.02	11.42	79.7		705	25
$\begin{aligned} & 15508 \\ & 15509 \\ & 16624 \end{aligned}$	Wm.F. Reed		French	$\begin{array}{ll} \text { Oct. } & 17 \\ \text { Oct. } & 17 \\ \text { Dec. } & 77 \end{array}$	15.08	11.89	11.30	78.8 61.6 81.0			1,550 1,810 13	55 64
	E. C. Carter				17.74	14.90	14.15	84.0				
	Average				14.50	11.12	10.57	74.8		1,398	60
$\begin{aligned} & 16170 \\ & 16171 \end{aligned}$	A. W. Civish	Boshutte		$\begin{aligned} & \text { Nov. } \\ & \text { Nov. } \end{aligned}$	$\begin{aligned} & \frac{22}{22.04} \\ & 20.44 \end{aligned}$	$\begin{aligned} & 18.00 \\ & 16.15 \end{aligned}$	$\begin{aligned} & 17.10 \\ & 15.34 \end{aligned}$	$\begin{gathered} 81.7 \\ 79.7 \end{gathered}$	-		$\begin{aligned} & 820 \\ & 8600 \end{aligned}$	31 30
	Average				21.24	17.08	16.22	80.4			${ }^{76}$	31
$\begin{aligned} & 16299 \\ & 16199 \\ & 16665 \\ & 16626 \end{aligned}$	A. A. Hotchins		French Klein wanzlebener French Desprez	$\begin{array}{ll} \text { Nov. } & 6 \\ \text { Nov. } & 5 \\ \text { Dec. } & 7 \\ \text { Dec. } & 7 \end{array}$	${ }^{20} .89$	16. 30		78.0			1,710	
	Mark W. Bailey				17.57	12.80 16.00	12.15 15.20	73.8 81.3			615 360	${ }_{13}^{22}$
					18.74	15.90	15.10	84.9			340	12
	Average.				19.19	15.25	14.49	79.3			756	41
$\begin{aligned} & 16591 \\ & 15993 \\ & 16109 \\ & 16297 \end{aligned}$	L. Haumont		Kleinwanzlebener Vilmorin Improved French	$\left\|\begin{array}{l\|l\|} \text { Nov. } 29 \\ \text { Oct. } & 21 \\ \text { Nov. } & 4 \\ \text { Nov. } & 9 \end{array}\right\|$								
	M. W. Who Snder				- 16.4 .3	13.00 11.20	12.35 10.65 18.95	79.1 65.0	9.6	1,885	${ }_{7}^{575}$	20 26
	Jos. Jelinek				15. 35	11. 50	${ }_{10.93}$	74.9				${ }_{35}$

Summary of results by States and counties-Continued.
NEBRASKA-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	County.	Variety.	Date. received.	Total solids.	Sucrose in-		Purity.	Tield beets per acre.	Prohable yield sucrose per acre.	Average weight of beets.		
						Juice.	Beet.						
$\begin{aligned} & 16298 \\ & 16417 \end{aligned}$	Tos. Jelink k	Custe	German..............	$\begin{aligned} & \text { Nov. } 9 \\ & \text { Nov. } 14 \end{aligned}$	15.65 19.07	$\begin{gathered} \text { Per ct. } \\ 11.50 \\ 13.50 \end{gathered}$	$\begin{gathered} \text { Per ct. } \\ 10.93 \\ 12.83 \end{gathered}$	$\begin{array}{r} \text { Perct. } \\ 73.5 \\ 70.8 \end{array}$	Tons. $\cdots \cdots 7.9$ 17.9		$\begin{gathered} \text { Grame. } \\ 1,1 \in 0 \\ 1,270 \end{gathered}$	Ounces. $\begin{aligned} & 42 \\ & 45 \end{aligned}$	
	Average				16.90	12.42	11. 8.1	73.6	14.8	2. 634	903	32	
$\begin{aligned} & 15016 \\ & 16167 \\ & 16168 \end{aligned}$	C. A. Elfistedt ... T. G. Fickensher		Whito Bultean Desprrz.. Klein wanzlebener	$\begin{array}{ll} \text { Sept. } & 8 \\ \text { Stut. } & 4 \\ \text { Nov. } & 4 \end{array}$	15.31 ${ }_{\text {12. }} \mathbf{8 2}$	$\begin{array}{r}11.91 \\ 8.25 \\ \\ \hline\end{array}$	11.31 7.84 9	77.9 64.4			430 1.665	15 59	
					14.42	10.01	9.50	70.0			1.410	50	
	Arerage				14.18	10.06	9.53	70.8	1.16 x	41	
$\begin{aligned} & 15051 \\ & 15895 \end{aligned}$	Geo. Kermetz	Dodge		Sept. 19 Oct. 20	$\begin{aligned} & 19.11 \\ & 17.37 \end{aligned}$	$\begin{aligned} & 10.5 .5 \\ & 13.00 \end{aligned}$	$\begin{aligned} & 10 \\ & 12.35 \\ & 0.35 \end{aligned}$	87.4 74.8			$\begin{aligned} & 2.2+0 \\ & 1.000 \end{aligned}$	44 45	
	Arerage				14.74	11.79	11. 20	81.1			1.120,	40	
16390	Anton Kramse	Fillmor		Nov. 13	13.35	9. 80	9.31	73.4		$\underline{2.230}$	79	
$\begin{aligned} & 15425 \\ & 15475 \end{aligned}$	A. J. Cole	Furnas	Vilmorindo	Oct. 15 Oct. 16	12.15 15.08	8. 40 8.89	7.98 8.45	68.8 $5 \times .9$			1.360	49 59	
$\begin{aligned} & 15646 \\ & 15956 \end{aligned}$	H. Montgomery		German	Oct. 16 Oct. 20	16.09	13.00	12.35	81.8			1387	14	
	Peter Frfzur			Oct. 28	16. 65	12.00	11.45	72			1,310	46	
15957	Arerage		Frencia		15.45	10.65	10.02	69.0			1,420	516	
				15.08	10.59	10.05	69.9			1. 236	41		
15365	K. A. sclmmidt	Gag		Vilmorin Improved	Oct. 13	13.92	10.5.)	10. 0 ?	75.3			960	2.4
$\begin{aligned} & 16049 \\ & 16050 \end{aligned}$	C. F. Klein	Harla	Tilmorin	$\begin{array}{ll} \text { Oct. } & 31 \\ \text { Oct. } & 31 \end{array}$	13.8 .5	8.80	8.3 G	64.3			1.640	55	
					15.65	11.40	10.83	75.4			1,480	53	
	A verage				14.75	10.10	9.60	69.9			1.560	5	
$\begin{aligned} & 15893 \\ & 15894 \end{aligned}$	James Grant................ Howard			$\begin{array}{ll} \text { Oct. } & 26 \\ \text { Oct. } & \boxed{0} \end{array}$	$\begin{aligned} & 18.17 \\ & 18.47 \end{aligned}$	$\begin{aligned} & 14.85 \\ & 15.70 \end{aligned}$	$\begin{aligned} & 14.12 \\ & 14.95 \end{aligned}$	$\begin{aligned} & 81.7 \\ & 85.0 \end{aligned}$			$\begin{aligned} & 830 \\ & 510 \end{aligned}$	19	
	Arerase				18.32	15. 28	14. 54	83.4			670	24	
15029	Martin Black	Jefferson	Kleinwanzlebener	Sept. 14	10.79	6. 05	5. 75	56.0	1.850	65	

	｜\％	จ	욱ํ	${ }_{\sim}^{\infty}$		1 ｜\％							${ }^{\infty}$		\％	9	\％	＊		\pm	
\％		管	咢等	5	为		暏	躴號言	$\stackrel{\text { 号 }}{\square}$		永			筺	路	xic i	景藘	\％	部证品		
	－	\％						\％	－								（ixied	a	응붕	－	
	acc	\bigcirc			$\stackrel{\square}{\square}$	1		号	$\stackrel{\circ}{\text { ¢ }}$								$\stackrel{10}{10}$	FI	¢	9	
$\stackrel{\text { ¢ }}{ }$	－	$\stackrel{\square}{\circ}$	－o	\％	\bigcirc	\％	$1{ }^{\circ}$	（0yti	\％		\％		：－	¢่	？	¢ฺ	－	F	8¢ ¢ ¢	＋	
$\stackrel{9}{9}$		$\begin{gathered} g \\ q \end{gathered}$		$\begin{array}{\|c\|c\|} \substack{9 \\ \mathfrak{\sim}} \end{array}$	\％		48		$\underset{\sim}{*}$		8		7			8				$\stackrel{8}{3}$	
$\bar{\varpi}$		$\left\|\begin{array}{c} \infty \\ \dot{a} \\ \dot{a} \end{array}\right\|$		$\begin{aligned} & 7 \\ & y \end{aligned}$	\％	$=1$		$\underset{\sim}{\sigma_{i}^{\infty} \otimes \infty}$	$\begin{aligned} & \text { m } \\ & \text { did } \end{aligned}$					8		－		$\begin{gathered} \underset{\sim}{\underset{2}{2}} \end{gathered}$		F	
\vec{a}		$\left\|\begin{array}{l\|} \substack{9 \\ \underset{\sim}{2} \\ \hline} \end{array}\right\|$		$\left\|\begin{array}{c} \infty \\ 9 \end{array}\right\|$	$\stackrel{8}{8}$	$\because \\|$			문				5	E	$\begin{aligned} & \text { mog } \\ & \text { join } \end{aligned}$	¢				－	
薄					¢	\％	F				888		䫆		¢\％						

15043	D．Douglas	Jolnnson	Bulteau Desprez．
15317	F．J．Kingsbury	Keya Paba	Eleinwanzlebener
15319	．．．．．－do．．．．．．．．．	．．．．．．do ．．．．．	Vilmorin Improved．
15839	S．H．Chalker．	．．．．．－do	German．．．．．．．．．．
	Average．．．－．．．．．．．．．．．．．		
15318	Harves S．Norton	Knox	Bulteau Desprez
15947	Daniel Tenney．	．do	Kleinwanzlebener
	Arerage．．．．．．．．．．．．．．．．．		
15073	J．H．Hassinger ．．．．．．．．．．．	Logan ．．．．．．．．．．．．．．．．．－－－	Vilmorin Improved ．
16391	J．L．Ritchey－．－．．．．．．．．－．．．	Madison	Freuch
15042	M．L．Herrington ．．．．．．．．．．．	Pawnee	do
15075	Wm．Taylor	Ihelpa	German
15916	．．．．．．do ．．．．．	．．．．．．dv	French
15994	David L．Jones ．．．．．．．．．．．．．．．．	．．．．．．do	Vilnorin Improved．
	Average ．．．．．．．．．．．．．．．．．．		
15424	Mrs．Lizzie Elwood	Red Willow	Kleinwanzlebener
16478	E．T．Libbee	Richardson．	Vilmorin Improved．
16047	Wm．Toekring	Saline	French
16048	．．．．．．do	－．－．．do	German
	Arerage		
15154	J．S．Kiff	Sheridan	French
16029	．．．．．．do	－．．．．do	．．．．．．do
	Arerage		
15506	S．（r．Swigart	Sherman	German
16120	T．M．Burke	．．－．．do	Kleinwanzlebener
16121	．．．．．．．do	．．．．do	Tilmorin Improvied
	Arerage		
15110	Oscar A．Garton	Sioux	German
15191	B．F．Thomas	do	Bulteau Desprez．
\＄5948	H．T．Merriam	．－ 10	Kleinwanzlebener
	Arerage．		

Summary of results by States and counties-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	Connty.	Variety.	Date received.	Total solids.	Sucrose in-		Purity.	Yield beets per acre.	Prohable yield sucrose per acre.	Average weight of beets.	
						Juice.	Beet.					
15084	Christian Hekeler	Valley	Tilmorin Improved............	Sept. 24	19.16	Per ct. 14. 21	Per ct. 13.50	Per ct. 74.2	Tons.	Pounds.	Grams. 840	Ounces. 30
1536315364	Frank Grusel.................	Webster.......	Kleinwanzlebener . Vilmorin	Oct. 13 Oct. 13	12.92	10.05	9.55 10.50	77.3 775			870 855	31 30
do				14.32	11.09	10.52	1.5				
15784	J. F. Miller Average of State	Sork		Oct. 28	13.62	10.57	10.04	77.4			863	31
			Kleinwanzlebener		17.37	13.65	12.97	78.6	16.6	3, 053	629	2
					16. 22	12.37	11.67	75.3	13.2	2,351	975	35

NEW HAMPSHIRE.

Summary of results by States and counties-Continued.
NEW YORK.

OHIO.

OHIO-Continued.
Summary of results by States and counties-Continued.

Summary of results by States and counties-Continued. OREGON-Continual.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Nemo of grower.	Cowntr.	Variets.	$\begin{aligned} & \text { Date } \\ & \text { received. } \end{aligned}$	Total	Sucrose in-		Purity.	$\begin{gathered} \text { Yield } \\ \text { beets per } \\ \text { acre. } \end{gathered}$	Probable yield sucrose per	Averageweight of beets.		
						Jnicr.	Beet.						
$\begin{aligned} & 1.518 \\ & 10.189 \\ & 16.55 \\ & 165 \end{aligned}$		$\begin{aligned} & \text { Clackamas } \\ & \ldots10 .10 . . . \end{aligned}$	Kieinwanzlebener	$\begin{aligned} & \text { Oct. }{ }^{6} \text { Now. } \\ & \text { Nov. } 19 \\ & \text { Nov. } 23 \end{aligned}$	$\begin{array}{r} 22 . \\ 16 . \\ -15 \\ -15 \\ \hline 15 \end{array}$	$\begin{gathered} \text { Per et. } \\ 19.88 \\ 14.55 \\ 12.25 \\ \hline \end{gathered}$	$\begin{gathered} \text { Per ct. } \\ 18.88 \\ 13.82 \\ 11.64 \\ \hline \end{gathered}$	$\begin{array}{r} \text { Per ct. } \\ \text { s.7. } \\ \text { sti. } \\ 7 \pi .11 \end{array}$	$\underset{\substack{\text { Tons. } \\ 165 . \vdots}}{\substack{15 .}}$	$\begin{array}{r} \text { Townits. } \\ 4,993 \end{array}$	$\begin{gathered} \text { Grams. } \\ 5+10 \\ 10.0 \\ 1,1 \% \\ \hline \end{gathered}$		
					$1 \% .47$	15. 56	14.78	*4. 2	16.7	4.993	5:4\%	21	
${ }_{16}^{18838}$	Clarener Rewd	Colnu	Kleinvanzlebener	$\begin{aligned} & \text { Oct. } 24 \\ & \text { Nov. } \quad 3 \\ & \text { Nov. } 10 \end{aligned}$	$\begin{array}{r} 19.67 \\ \mid 19.67 \\ 16.17 \end{array}$	$\begin{aligned} & 16.50 \\ & 15.50 \\ & 13.90 \\ & 13.90 \end{aligned}$	$\begin{aligned} & 15.67 \\ & 14.82 \\ & 13.21 \end{aligned}$	$\begin{aligned} & 8.9 \\ & 79.9 \\ & 860.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 20.0 \\ & 11.5 \end{aligned}$		$\begin{aligned} & 2071 \\ & \frac{2030}{5 i n} \end{aligned}$	10 19 19	
16317	J.C.Johnsw												
						18. 50	15.30	14.56	81.7	16.2	:, 3.54	546	19
16.69	J. M. Perkins.		Kleinwanzlebencr Vilmorin Klciuwanzlebener		16.3117.3117.7119.3117.51	$\begin{aligned} & 13.100 \\ & 14.50 \\ & 14.6 .5 \\ & 16.80 \\ & 1=8.85 \\ & \hline \end{aligned}$	13.3513.7713.9215.9613.16	$\begin{aligned} & 80.8 \\ & 80.8 \\ & 83.0 \\ & 800.0 \\ & 87.0 \\ & 79.1 \end{aligned}$				(e\%	
(16570,	Math Kerrıam												
${ }_{16571}^{1672}$	Juon B. Fox												
16573	Average		Vilmorin Iuproved										
					17.633	14. 56	13. 53	-2. 6			860	:0	
15149	W.L. Tower	Donglas	German	$\begin{array}{ll} \text { Oct. } & 3 \\ \text { sept. } 15 \end{array}$	$\frac{21.03}{20.0 \overline{37}}$	17.74	16.85	4.:3	-	340	$\stackrel{12}{12}$	
15032	Edward Albright	Jackson				15. 94	17.99	83.9	17.8	4, -84	:70	$\because 0$	
15117	J. f . Sterensm	Lane	Vilumin Improwal.		$\begin{aligned} & 15.67 \\ & 1 \times .69 \\ & 17.17 \\ & 170.68 \\ & 17.99 \\ & 15.35 \end{aligned}$	$\begin{aligned} & 12.15 \\ & 14.65 \\ & 1.9 .95 \\ & 17.50 \\ & 1.510 \\ & 12.67 \end{aligned}$	$\begin{aligned} & 11.54 \\ & 13.36 \\ & 13.25 \\ & 16.63 \\ & 14.35 \\ & 12.05 \end{aligned}$	$\begin{aligned} & 7 \pi .5 \\ & \hline 7.7 \\ & \hline 71.2 \\ & 8+6 \\ & 83.9 \\ & 83.9 \\ & 8.5 \end{aligned}$	6. 5	1,049	115$i 46.5$47523023151,100	$\begin{array}{r}4 \\ 20 \\ 17 \\ 8 \\ 89 \\ 99 \\ \hline\end{array}$	
1615 2	H. C. Perkins.												
15905	J. H. Crow		French						11.8	2,995			
16356	C.J. Doid												
16648	Lafayette Martis												
	Averace				17.49	14.24	13.53	8.54	9.2	2, 018	550	20	
16126	John Wither	Lim		Nor. 2 Oct. 14 Oct. 19	17.8	14. i,	13.12	79.5		180	$\underline{6}$	
$\begin{gathered} 15335 \\ 15606 \end{gathered}$	Jacob Paber J. Voorhees. Average	Mario			$\begin{aligned} & 16.17 \\ & 1.87 \end{aligned}$	$\begin{aligned} & 1.2 .35 \\ & 14.55 \end{aligned}$	$\begin{aligned} & 11.73 \\ & 13.73 \end{aligned}$	$\begin{aligned} 7.2 \\ \times 7.7 \end{aligned}$	20.3	4,332	1,3655	${ }_{20}^{48}$	
					10.52	13. 40	12. 73	81.1	20. 3	4.3\%2	962	34	

$-$ -

PENNSYLVANIA.

PENNSYLVANIA.												
16445	W. W. Claypool	Armstrong Butler \qquad Lackawanna \qquad	Vilmorin Improved Erfurt Giant Red French	Nov. 16 Nov. 16 Nov. 14 Nov. 14	$\frac{16.03}{19.67}$	$\underbrace{11.85}_{16.35}$	$\frac{11.26}{15.53}$	73.9	780	21
16463	I. N. Meals.							83.1	16.3	3,798	490	17
16418 16419	T. F. Penman				$\begin{aligned} & 17.95 \\ & 24.17 \end{aligned}$	$\begin{aligned} & 12.00 \\ & 20.65 \end{aligned}$	$\begin{aligned} & 11.40 \\ & 19.62 \end{aligned}$	$\begin{aligned} & 66.9 \\ & 85.4 \end{aligned}$			650 366	23 12
	A verage				21.06	16. 32	15. 51	77.5	508	18
16030	Frank E. Shaunon	Venango	Bulteau Desprez	Oct. 30	15.08	11.00	10.45	72.9	21.8	2,998	1, 060	37
$\begin{aligned} & 15340 \\ & 15241 \end{aligned}$	G. W. Bauer	Warren.	German. French	$\begin{array}{ll} \text { Oct. } & 9 \\ \text { Oct. } & 9 \end{array}$	$\begin{aligned} & 15.53 \\ & 17.03 \end{aligned}$	$\begin{aligned} & 12.58 \\ & 13.42 \end{aligned}$	$\begin{aligned} & 11.95 \\ & 19.81 \end{aligned}$	$\begin{aligned} & 81.0 \\ & 78.9 \end{aligned}$	8.7	1,519	$\begin{aligned} & 640 \\ & 400 \end{aligned}$	23 14
	Average				16.28	13.00	12. 38	79.9	8.7	1,519	520	19
	Averago of State.				17.78	13.98	13.29	78.7	15.6	2,772	626	22

SOUTH DAKOTA.

도ํ뚱

15776	A. H. Hall	Anrora	Desprez	Oct. 23	16.35	11.50	10.93	73.0		785	28
15778			French	Oct. ${ }^{23}$	14.55	10.25	9.74	76.4		80	
15874	Geo. E. Babcork		Kleinwauzlebener	Oct. ${ }^{26}$	${ }_{\text {l }}^{16.65}$	112.00	${ }_{10.65}^{11.45}$	72.1 63.8		${ }^{950}$	34 59

Summary of results by States and counties-Continued.
SOUTH DAKOTA-Continued.

53

舟

[^2]
Summary of results by States and counties-Continued.
SOUTH DAKOTA--Continued.

$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Name of grower.	County.	Variety.	$\begin{aligned} & \text { Date } \\ & \text { received. } \end{aligned}$	Total	Sucrose in-		Purits	$\begin{gathered} \text { Yield } \\ \text { beets per } \\ \text { acre. } \end{gathered}$	Probable yield su crose pe acre	Average weight of beets.	
						Juice.	Beet.					
$\begin{aligned} & 15813 \\ & 1648 \\ & 16606 \end{aligned}$	Geo. Z. Richards Andrew Craig.	Butte	$\begin{aligned} & \text { Oxnard } \\ & \text { Dexsrez } \end{aligned}$	$\begin{aligned} & \text { Oct. } 24 \\ & \text { Nov. } 16 \\ & \text { Nov. } 30 \end{aligned}$	$\begin{array}{r} 20.67 \\ \begin{array}{l} 30.67 \\ 30.03 \\ \hline 21.03 \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Per.ct. ct. } \\ 15.70 \\ 15.80 \\ 17.70 \end{gathered}$	$\begin{gathered} \text { Per. ct. } \\ 14.96 \\ 15.01 \\ 16.81 \\ 16.81 \end{gathered}$	$\begin{gathered} \text { Per. ct. } \\ 76.00 \\ 78.90 \\ 84.10 \end{gathered}$	Tons.	P'ounds.	Grame.4.40475640	
	Average				20.58	16.40	15.58	79.60			450	10
16051	Mfyron T. Wolvert	Camplell	Bulteau Desprez	Oct 31	17.27	13.25	12. 59	76.60	13.3	2.314	645	23
1515015500	Jesse E. Nale	Charles Mix	Frunch German	$\begin{array}{lr} \text { Oct. } & 3 \\ \text { Oct. } & 17 \end{array}$	18.83	15. 64	14.86	83. 00	17.2	3,836	330	12
					20.79	16.56	15. ¢2	79.70	11.9	2,693	315	
	Average				19.56	16.10	15.34	83. 40	14.55	3, 264	322	11
${ }_{\substack{1 \\ 162168 \\ 1620}}$	John Jones	Clark	Frencl	Oet.	16. 28	11.42	10.85	70.10			670	4
	A. Grover				17.67	13.80	13.11	78.10			400	14
	Average				16.98	12. 61	11.97	74.30			535	19
15197	N. (t. Swausou		KleinwanzlebenerVilmorin	Sept. 29Oct. 9Oct. 99Oct. 27Oct. 27	17. 69	13. 34	12. 67	71. 70			315	
15528	L. A. Anderson				${ }_{16.93}^{18.13}$	${ }_{13.10}^{14.32}$	${ }_{12.46}^{13.61}$	${ }_{77}^{78.60}$			76.5	27
15927	R.S.Gaylord				16.34	13.35	12. 69	81.70			1,030	86
do				15.54	12.50	11.88	80.40			1,320	47
	A verage				16.93	13.32	12.65	78.90		843	30
15457	Peter I 1 appire	Codington Custer	Whit	Oct. 16	15.28	11.48	10.91	75.10			630	22
15872	John Twining		Bulteau Desprez	Oct. 26	20.97	15.25	14.50	72.70	16.1	2,904	390	14
16052	Thomas Scholicld	Davieson		$\begin{array}{lr} \text { Oct. } & 31 \\ \text { Oct. } & 31 \\ \text { Nov. } \end{array}$				81.00				
16246	J.C. Clapham Averare				17.77 19.17	13. 65	12.97	$\begin{array}{r}76.80 \\ 83.20 \\ \hline\end{array}$	13.7	3, 118	1,290	$\stackrel{46}{23}$
		do			18.03	14.45	13.73	80.10	13.7	3,118	1,050	37
15679	Joshua (rower August Krause. E. O. Esget	$\begin{aligned} & \text { Day ...d. } \\ & \cdots \cdots \cdots . d c \end{aligned}$	German French Kleinwanzlebener	$\begin{array}{ll} \text { Oct. } & 21 \\ \text { Nov. } & 4 \\ \text { Nov. } & 5 \end{array}$					13.0	2,813		13
16164 16189					18. 18.24	13.70 12.05	13.01 11.42	75.10 73.30	13.0	1,968	440 525	16 19

Summary of results by States and counties-Continued.

SerialNo.	Name of grower.	County.	Variety.	$\begin{gathered} \text { Date } \\ \text { received. } \end{gathered}$	Total solids	Sucrose in-		Purity	$\begin{gathered} \text { Tield } \\ \text { beetsper } \\ \text { acre. } \end{gathered}$	$\left.\begin{array}{\|l\|l} \text { Proballe } \\ \text { yield su- } \\ \text { crose erer } \end{array} \right\rvert\,$	Average weight of beets.	
						Juice.	Beet.					
16559	I. A. Tillery	Jerauld		Nuv. 44	17.53	Per ct.	Per ct.	Per ct.	Tons.	Pounds.	$\underset{580}{\operatorname{Grams}}$	Ounces.
	W. A.P	Kines	Desspre	Oct. 10	13.28	7.66	7.28	57. 60			1,150	41
	Walter Thornbe			Oct. ${ }^{\text {Oct. }}$	${ }^{15.68}$	${ }_{13}^{10.73}$	10. 19	68.30		3 4'8	1,000	35
	F. W. Collins.		kiein wanzlelene	Oct. 22	${ }_{17.90}^{17.77}$	13.05	12. 40	766. 30	19.6	3,4-8	700	25
	I) M. Maxam	do	.do	Oct. 26	20.27	15.75	15.01	77. 70			420	15
	W. H.French			()ct. 26	15.65	11.45	10.88	73.20			725	26
	J. S. French		\%	Us:t. ${ }^{\text {ck }}$	18.37	13.50	12. 83	73.50			515	
	I verage				16.97	12. 21	11.60	71.90	19.6	3,428	709	25
	Wm. Whitmer	Lake	French	Sept. 29	14.87	9.97	9.47	67.10			630	
	Tichat		Gierman.	Scpt. 29	${ }^{16.54}$	11.79	11. 20	71.20				3
	Michard Lawle Fred. Kruger		Vilmurin lumroved	(1)t. ${ }^{\text {act }}$	${ }_{14.68}^{14.85}$	11. 11.89	10.73	${ }^{73} 30$			1,265	4
	J. J. Kramer	do	Kleinwanzlebener	Oct.	17.09	14.28	13.57	83.40	16.4	3,313	330	11
	F. 1) (iilbert				18.43		13.17		13.0	2, 1343		
	Henry H.Jlones	do	(ierman	Oct. ${ }^{3}$	17.11	13.15	12. 49				910	3
	Mr M. Daily	do	Frencla	Oct. 10	16. 19	12. 61	11.98	77.80			460	16
	Dr.J.R. ${ }^{\text {a }}$			Oct. 10	14.58	10.96	10.41	\%.00			1.43,	
			French		19.14	14.s)	13.78	75.80	19.6	3,693	330	\ldots
	H. P. Sniit	do	Vilmorin	Oct. 13	16. 91	12.46	11.85	73.30			450	16
	F. D, Fitts	\%	Klein wanzlebene	Oct. ${ }^{13}$	16. 11	12. 35	11.74	76. 70				30
	T.i. 0 dell			\%et.	16.03	11. 55	10.97	72.10	17.8	2nn	570	
	B. C.Kemed		Klein wanzlebener	Oct. 14	19.17	14.00	13.30	7.290	17.	,20-	585	4
	F. L. Heteley	do	French	Oct. 15	17.77	13.21	12.55	74.30			460	
	Wm. Vanderl		K)einwanzlebsent	Oct. 15		14.56	13.83	75. 40			440	16
	D.T. Sc				17.59	13. 61	12. 93	77. 40			490	
	do		French	Nov. 3	16.77	12.85	12. 21	76. 60	23.5	4,277	450	16
	Harry W. Fintzel				15.38	11. 61	11.03	75.50	22.9	2,927		${ }_{18}^{14}$
	Jos. C . Welling	do	Oct. 19	15.55	11.40	11. 83	73.30			775	27
	D. Mckinnon		French		14.65	11.25	10.68	76.80				
	Malcolm L. Clark		Kleinwanzlebener	Oct. 19	14.85	10.50	9.98	70. 70	22.4	2, 859	720	25
	, incrillay			Oct. 19	12.45	8, 65	8.22	69. 50				
	M. L. Guerker			Oct. 19	14.85	10.00	9. 50	63.30	24.4	2,	665	23

0

-	

皆

 Win. Englehardt
 James Nailor, jr .
J. T. Stowell......
Jno. R. Reeve....
A. H. (irent......
O. Wright...... Average....
James Salisbury.
Simon Desginger Average .

Summary of results by States and counties-Continued.
SOUTH DAKOTA-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Serial } \\
\text { No. }
\end{gathered}
\]} \& \multirow[t]{2}{*}{Name of grower.} \& \multirow[t]{2}{*}{County.} \& \multirow[t]{2}{*}{Variety.} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Date } \\
\& \text { received. }
\end{aligned}
\]} \& \multirow[t]{2}{*}{Total solids.} \& \multicolumn{2}{|l|}{Sucrose in-} \& \multirow[t]{2}{*}{Purity.} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Yield } \\
\& \text { beets per } \\
\& \text { acre. }
\end{aligned}
\]} \& \multirow[t]{2}{*}{Probahle yield sucrose per acre.} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Arerage weight of beets.}} \\
\hline \& \& \& \& \& \& Jıพ่се. \& Beet. \& \& \& \& \& \\
\hline 15966 \& Julius Liebig. \& Spink. \& French \& Oct. 26 \& 22.78 \& \begin{tabular}{l}
Per ct. \\
17.70
\end{tabular} \& Per ct 16.82 \& \[
\begin{gathered}
\text { Perct. } \\
\hdashline \because .
\end{gathered}
\] \& Tons. \& T'oundr. \& \[
\begin{array}{r}
\text { Grams. } \\
420 \\
417
\end{array}
\] \& \begin{tabular}{l}
Ounces. \\
15
\end{tabular} \\
\hline 15~6\% \&do \&do \& . \(1 . .\). do \& Oct. 26 \& \(\because 1.17\) \& 16. 5.5 \& 15.72 \& 78.20 \& 17.11 \& 3, \(\mathrm{ni}^{\text {a }}\) \& 417 \& 15 \\
\hline 16341 \& J. and C. B. Ward \& do \& Bultean Desprez \& Nov. 11 \& 19.19 \& 13.25 \& 12. 59 \& 669, 110 \& \& \& 400
460 \& 14 \\
\hline \({ }_{16458}\) \& M. Connor \& \& Kleinwauzlebener \& \(\stackrel{\text { Nov. }}{\text { Nov. } 16}\) \& 20.09 \& 10.50 \& 13.711
9.98 \& 79.20
66.20 \& 6.1 \& 72 \& 460
605 \& 16
21 \\
\hline \& Arerage \& \& \& \& 19.81 \& 14.50 \& 13.78 \& 72.60 \& 71.55 \& 2, 250 \& 460 \& 16 \\
\hline 15460 \& Frank Goddard \& Sully \& Klein wanzlebeneer \& Oct. 16 \& 20.79 \& 15.50 \& 14.72 \& 74.60 \& \& \& 250 \& 9 \\
\hline 15775 \& Dr. S. B. Tenny \& Turner \& Desprez \& Oct. 23 \& 14.55 \& 12.00 \& 11.40 \& 82.50 \& 17.4 \& 2, 954 \& 440 \& 16 \\
\hline 15181 \& O.R.Spencer \& Union \& Frencl \& Oct. 6 \& 11.65 \& \({ }^{7.65}\) \& 7.20 \& 66.00
69.60 \& \& \& 1,52010 \& 54
40 \\
\hline \& Average \& \& \& \& 13.81 \& 9.3 \& 8.90 \& 67.80 \& \& \& 1.342 \& 47 \\
\hline 15146 \& Jacob Thaser. \& Walworth \& \& Oct. \({ }^{2}\) \& 12.58 \& x.:3 \& 7.95 \& 66.60 \& \& \& \(\underline{80}\) \& \(?\) \\
\hline 1.54 .56
15.461
1 \& N. P'. Sunderland
Wm. H. Sunderland \& \& French \& Oct.
Oct.

16 \& 18.29
18.89 \& 13.8.5 \& 13. 13.818 \& 75.70
76.10 \& 12.0
8.7 \& 2. 15414 \& 1810 \& ${ }_{6}^{8}$

\hline 15498 \& F. A. Shaw \& \& French \& Oct. 17 \& 16.18 \& 11. $\times 1$ \& 11.22 \& 73.00 \& \& \& 548 \& 19

\hline \& Average \& \& \& \& 16.48 \& 12. 10 \& 11.49 \& 71.60 \& 10.35 \& 1. 813 \& 303 \& 11

\hline 15970 \& James Counell. \& Tankton \& French \& Oct. 29 \& 18.03 \& 13. 65 \& 12.92 \& 75.70 \& \& ... \& 830 \& 29

\hline \& Average of State. \& \& \& \& 17.41 \& 13.11 \& 12.45 \& 75.30 \& 16.74 \& 2,958 \& 613 \& 22

\hline
\end{tabular}

$\begin{aligned} & \text { Y8 } \\ & \text { i8 } \\ & \text { in } \end{aligned}$	8	O
G\%	$1 ?$	ถु
ف่	t-	-

∞	8	π
0	0	
0	0	1
		1

¢	8
ロค่	$\stackrel{9}{9}$

Summary of results by Siates and counties-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	County.	Variety.	$\begin{aligned} & \text { Date } \\ & \text { received. } \end{aligned}$	Total solide.	Sucrose in-		Purity.	$\begin{gathered} \text { Yield } \\ \text { beets per } \\ \text { acre. } \end{gathered}$	Probable rield sucrose per acte.	A verage weight of bects.	
						Juice.	Beet.					
						Per ct.	Per ct.	Per ct.	Tons.	Pounds.	Grams.	Ounces.
$\begin{aligned} & 15901 \\ & 16556 \end{aligned}$	H. (r. I.apham O. K. Lapl:am	Augusta	Bulteau Desprez	Oct. ${ }^{26}$ Nor.	${ }_{21.93}^{15.35}$	10.70 17.20	10.17 16.34	69.7 78.4			510 73	
16618			Diamond	Dec. 7	17.04	12.40	11.78	72.5			270	10
16619	do		Vilmorin Improved	Dec. 7	16. 24	13.40	12. 74	82.5			420	15
16620	do	do	Bulteau Desprez.	Dec. 7	14.72	17.80	11.21	80.1			550	19
16621	do		Lane's Imperial	Dec. 7	13.72	10.15	9.65	73.9			420	15
1515.5	E. W. Crosly	do	Vilmorin lmuroved	Oct. 3	14.67	10.80	10. 26	73.6			760	27
15156	do		Diamond.	Oct. 3	14. 37	10.82	10.27	75.3			195	
15157			Bulteau Desprez	Oct. 3	13.17	9.78	9.29 8.99	74.4			610	${ }_{29}^{22}$
15158	John Pe		Lane's Imperi	${ }_{\text {Oct. }}{ }^{\text {Oct. }}$	12.87	11.47	8.99 9.66	72.6			600	$\stackrel{29}{29}$
15401do	do	Lane's Imperial	Oct. 15	12.75	9.57	9.10	75.4			630	22
15402	. do	do	Bulteau Desprez	Oct. 15	15.77	13.31	12.65	84.2			620	22
1540%	. ${ }^{\text {do }}$	do	Diamond	Oct. 15	15.67	12.57	11.93	80.0			270	10
15602	Wm. C. Mitchell	do	Vilmorin	Oct. 19	16.37	12.75	12.11	77.9			370	13
15603do	do	Bulteau Desprez	Oct. 19	15.35	11.40	10. 83	74.3			195	7
16209	Chas.Lighthear		Vilmorin Improved	Nov. 5	15.33	11.90	11.31	77.6			510	18
16210	\ldots....do	do	Diamond	Nov. 5	16.93	12.05	11.46	71.2			230	8
16211	do	do	Bulteau Desprez	Nov. 5	17.37	13.50	12. 83	77.7			560	20
16212	do		Lane's Imperial	Nov. 5	14.33	9.65	9.17	67.3			610	22
16337	T. O. Greiner		Bulteau Desp	Nov. ${ }^{6}$	19.89	15. 20	14.45	76.4			100	4
16368	F.C. V. Brown			Nov. 13	13.07	9. 20	8. 74	70.4			665 535	32
16370			Lane's Imperial	Nor. 13	17.49 15.67	11. 30	12.83	77.2 72.1			535	19
	Average				15. 37	11.85	11.06	75.7			500	18
15011	J. B. McLanghlin	Fauquier	Kleinwanzlebener	Sept. 3	13.32	10.10	9.59	75.8			790	
15012	-...do		Vilmorin Improved	Scpt. 3	13.22	10.16	9.65	76.9			505	18
15026 15027	do Jno. L. Koulstone		Vleinwanzlebener	Sept. 14 sept. 16	12.39 10.19	9.38 8.49	8.91 8.06	75.7 83.3 8	16.55	1,592	460 490	17
15036	Mrs. S. M.Joh		Vilmorin	Sept. 16	9.82	6. 16	5.85	62.7	20.0	1, 320	560	20
15037	do		K) cinwanzle beacr	Sept. 16	11.22	7.39	7.02	65.8	19.6	1,635	740	26
1503 K	Mrs. Lucy F. Embery	do	Vilmorin	Sept. 16	11.02	8.32	7.90	75.5	20.9	2,249	730	26
15039	do	do	Kleinwanzleberner	Sept. 16	12.42	9.80	9.31	78.9	20.9	2,771	730	26
	A verage				11.70	8.73	8.29	74.3	18.50	1,929	626	22
15009	WinchesterSugar Com	Frederick		Aug. 31	17.47	11.63	11.05	66.5				30
15053	. .do	. d do	Germ	Sept. 19	14. 21	10. 50	9.97	73.7			1,750	62

Summary of results by States and counties-Continued.
WASHINGTON-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	County	Variety.	Date received.	Total solids.	Sucrose in-		Purity.	Yield beets per acre.	Probable yield sucrose per acre.	Arerage weight of beets.	
						Juice.	Beet.					
$\begin{aligned} & 165.3 \\ & 160540 \end{aligned}$	Henry schutze	Sterens..	Kleinwanzlebener French	$\begin{aligned} & \text { Nor. } 21 \\ & \text { Nor. } 21 \end{aligned}$	$\begin{aligned} & \frac{21}{21} .11 \\ & 93 \end{aligned}$	$\begin{array}{r} \text { Per ct. } \\ 17.25 \\ 19.60 \end{array}$	$\begin{gathered} \text { Per ct. } \\ 16.39 \\ 18.62 \end{gathered}$	$\begin{array}{r} \text { Perct. } \\ 85.8 \\ 95.2 \end{array}$	Tons.	Ponends.	$\begin{array}{r} \text { Grams } \\ 380 \\ 190 \end{array}$	Ounces. 13 7
	Average				20.52	18.43	17.51	90.5	285	10
$\begin{aligned} & 16306 \\ & 16307 \end{aligned}$	A.N. Thornton	Whateom	Tiluorin Improven Kleinwanzlebener	Nov. Nov.	$\begin{aligned} & 18.47 \\ & 1 \times .57 \end{aligned}$	$\begin{aligned} & 16.25 \\ & 16.80 \end{aligned}$	$\begin{aligned} & 15.44 \\ & 15.96 \end{aligned}$	$\begin{aligned} & 88.0 \\ & 30.5 \end{aligned}$			$\begin{aligned} & 525 \\ & 455 \end{aligned}$	19 16
	A verage				18.52	16.53	15.70	89.3		490	18
$\begin{aligned} & 15694 \\ & 15695 \end{aligned}$	Frank Ryder	Whitman	German. French	$\begin{array}{ll}\text { Oct. } & 21 \\ \text { Oct. } & 21\end{array}$	$\begin{aligned} & 19.23 \\ & 16.63 \end{aligned}$	$\begin{aligned} & 15.75 \\ & 13.25 \end{aligned}$	$\begin{aligned} & 14.96 \\ & 12.59 \end{aligned}$	$\begin{aligned} & 81.9 \\ & 79.7 \end{aligned}$			$\begin{aligned} & 34.5 \\ & 575 \end{aligned}$	12 20
	Arerage				17.93	14.50	13.78	80.8		,	460	16
	A verage of State				18.34	15. 23	14.47	83.9	8. 17	1. 511	524	18

WISCONSIN

Hi H. ÜO	

Summary of results by States and counties-Continued.

						Sucro	in-		riold	Probable		
$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	County.	Variety.	$\begin{gathered} \text { Date } \\ \text { received. } \end{gathered}$	solids.	Tuice.	Beet.	Purity	beets per acre.	crose per acre.	$\begin{aligned} & \text { Aver } \\ & \text { weighto } \end{aligned}$	of beets.
						Per ct.	Per ct.	Perct.	Tons.	Peunds.	Grams.	Ounces.
16145	D. Lasky	Columbia	K1pinwanzlebener	Nov. 3	18. 87	15.05	14.30	85. 1	20.9		675	24
16.502	Thomas Anderam			Nov. 19	16. 50	11.30	10.74	$\begin{array}{r}68.3 \\ 74.8 \\ \hline\end{array}$			333	12
15915	Chas. J1. Johnson.		Kleinwanzlebener	Oct. 27			12.98					
	Avrage				15. 97	11.35	10.80	71.5	20.4	3. 327	694	25
1:493	George J. Schostlier.	Crawforl	Kleinwanzlebener	$\begin{array}{ll}\text { Oct. } & 17 \\ \text { Oct. } & 19\end{array}$	17.09 12.44	13.69 7.20	13.01	86.0 57.9	13.1	2,644	860 3,266 1,468	
15.15	Albert Swateh... H. C. Wachter...			Oct. Oct. Och	12.44	7. 20 9.00	6.81 8.55 8.8	57.9 72.9			3,266	115 66
15631	C. C. Piekett.			Oct. 20	12. 28	7.60	7.22	61.9			1,433	51
	Ar				13.54	9.37	8.91	69.7	13.1	2.644	1. 5.57	66
15970	E. A. Wright	1)ane	Germa	Oct. 10	16. 08	11.81	11.22	73.3			1,010	36
15374	E. Evans			Oct. 14	15.15	10.89	10.34	72.1			(33.5 613	12
15.539	J. C. Camnon			Oct. 19	14.35	10.85	10.31	75.7			${ }_{6}^{613}$	29
15845	J. R. Henderson	do	Kleinwanzlebener	Oct. 26	17.37	12.20	12.09	73.1			597	21
16037	R. Williamson.		German	Oct. 31	20. 67	16.55	15.72	80.0			5	18
16214	W. J. Radke.			Nov. 6	16. 28	13. 40	11.78	76.2			670	24
16239	W. H. Panli		Kleinwanzlebener	Nov. 7	23.77	19.00	18.05	80.0			415	15
15702	L. A. Halverson.		German	Oct. 22	16.18	12.25	11.64	79.7			260	
	Arerage				17.48	13.24	12.64	76.3		553	21
15255	William Kube	Dodge	Vilmorin Improved	Oct. 10	18. 59	14.03	13.43	75.4			300	11
15960	. . do			Oct. 10	12.48	8.71	8.27	69.6			640 1.970	23 70
15479	James Woodro	do	Kleinwanzlebener	Oct. 16	13.38	8. 89	8. 45	66.4			1,970	70
15482	J. C. Lieske	do		Oct. 17	17.09	14.22	13.51	83.2			330	12
15489	Ludwig Somerfeld			Oct. 17	14.08	7.03	6.68	49.9			697 757	$\stackrel{29}{27}$
156.4 15789	A. C. Becker -...	do	german	Oct. Oct. 23	15.68 16.37	12.20 13.30	11.60 12.64	77.8 81.3			1, $\begin{array}{r}757 \\ \hline\end{array}$	40
15966	Theo. Wedemeyer	do	兂	Oct. 29	18. 03	14.65	13.92	81.2			+17	15
16034	Frank Holz	do	German	(0et. 31	12.75	8.10	7.70	63.5			1,825	64
15432	O. R. Jones		Kleinwanzlebener	Oct. 16	12.58	9.53	9. 05	75.8			5.33	19
15437	George Reklan	do		Oct. 16	14.08	10.34	9.82	73.4			1,013	36
155688	Charles Discher.	do		Oct. 21	14.41	10.65	10.12	73.2			1,707	60
16544	C. C. Deitz \& Sons			Nov. 23	18.77	15.42	14.65	82.1			780	23
15794	Jno. Bachuber ${ }^{\text {do }}$	French	Uct. 24	17.17	13. 25	12. 59	77.2			945	33

9						ค丧	！	¢1ำำスำ\％		\％	マヲ
$\stackrel{\text { ® }}{-}$	융		馬		$\left\|\begin{array}{c} 9 \\ \stackrel{8}{-} \\ -1 \end{array}\right\|$		R		$\begin{gathered} \infty \\ \stackrel{n}{8} \\ \rightarrow-1 \end{gathered}$		
		$\|$일 of \vdots 	$\left\|\begin{array}{c} \frac{9}{9} \\ 9 i \end{array}\right\|$	商涼	喜						
		\overbrace{i}^{∞}	$\begin{gathered} 9 \\ \text { تi } \end{gathered}$	∞	$\begin{aligned} & 0 \\ & \dot{\infty} \end{aligned}$						
$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$			$\left\|\begin{array}{c} 8 \\ 8 \\ \infty \\ \infty \end{array}\right\|$	 	$\left.\begin{array}{\|l\|} \hline 0 \\ i \\ i \end{array} \right\rvert\,$	88울ํํํํํ 	$\begin{aligned} & 3 \\ & \stackrel{3}{2} \\ & \hline 1 \end{aligned}$	Rำ웅․․․ 	－	\％	
	$\left\|\begin{array}{c\|} \infty \\ \infty \\ \underset{\sim}{0} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { owiond } \\ \text { sinin in } \end{gathered}\right.$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~m} \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 0.0 \\ 0 \\ 0 \end{array}$	 	$\stackrel{\text { a }}{\substack{2 \\ \#}}$	上第三象菅 - जcisx	－	－	
$\stackrel{\stackrel{\otimes}{\infty}}{\stackrel{\Delta}{-}}$	7		$\begin{aligned} & R \\ & \infty \\ & m \end{aligned}$	 	$\begin{aligned} & \infty \\ & =1 \\ & \Rightarrow \end{aligned}$	 	－		8	\％	$\begin{aligned} & \text { R=3 ? } 8 \\ & \text { cinisio } \end{aligned}$
$\begin{gathered} \text { R } \\ \underset{\sim}{\circ} \end{gathered}$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{\infty}{9} \\ & \stackrel{\leftrightarrow}{4} \end{aligned}\right.$		$\left.\begin{array}{\|c\|} \hline 8 \\ \\ \hline 1 \end{array} \right\rvert\,$	 	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{\infty} \end{array}\right\|$		号		\％	$\stackrel{+}{4}$	
¢		ตจัตสส 		 				 		－ ＋ －	
								品			
$\stackrel{\square}{\sim}$						$\begin{aligned} & \text { 牶 } \\ & \text { 울 } \\ & \text { z } \end{aligned}$					
$\begin{aligned} & 3 \\ & \text { A } \\ & \text { O } \end{aligned}$			$\begin{aligned} & \dot{8} \\ & \text { 㳦 } \\ & \text { 4 } \end{aligned}$				\vdots \vdots \vdots ¢ ¢ ¢ 4 4	U	曷	乭	
		 19864		 o． $33-5$						당	

Summary of results by States and counties-Continued.
WISCONSAN-Continued.

Summary of results by States and counties-Continued.

						\cdots		
¢ర్రిస్	$\frac{9}{91}$	$\stackrel{Y}{3}$	 न \quad－i	10		$\frac{n}{8}$	－$-\quad i$	
	突	$\\| \begin{gathered} \substack{e \\ 0 \\ 0 \\ 8} \end{gathered}$	$\stackrel{9}{7}$	$\stackrel{9}{7}$	$\stackrel{\underset{8}{8}}{\stackrel{3}{5}}$	$\stackrel{\text {－}}{\sim}$		
	$\begin{aligned} & 10 \\ & 9 \\ & 107 \end{aligned}$	$\underset{\substack{\infty \\ \underset{\sim}{2} \\ \hline}}{ }$	：	$\stackrel{ }{-}$		\bigcirc	जึं	
$\begin{aligned} & 888 \\ & \text { Bix } \\ & \text { Hision } \end{aligned}$	$\left\lvert\, \begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}\right.$	$\begin{aligned} & 9 \\ & 9 \\ & 2 \end{aligned}$	 	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{x}{x} \\ & x \end{aligned}\right.$	 	号		
	$\begin{array}{\|c} \circ \\ \underset{\sim}{\circ} \\ \hline \end{array}$	$\underset{\sim}{-1}$	 	$\begin{aligned} & \overrightarrow{0} \\ & \overrightarrow{-} \end{aligned}$		$\stackrel{7}{7}$	 	
	E	$\begin{aligned} & 5 \\ & = \\ & \hline \end{aligned}$	 	$\begin{aligned} & 1 \\ & 0 \\ & 9 \end{aligned}$	 	8 -1 -1	 	
O్రిగిత్రి	－8	$\begin{aligned} & 8 \\ & \stackrel{\circ}{-} \end{aligned}$	 	5	 	－	 	
ぃก⿺𠃊		$\stackrel{\square}{1}$						
		ت巳	880000000000400		8808000008,		 	

Kileinwanzlebener

尽：：

 a
3
3
$=1$
4 e
a
0
0
4
a
a
E
a
a
d

을응

 อฺฺยะะาロロ

우ํํํํํํํํํํㄱ

Summary of results by States and countics－Continued．

$\begin{aligned} & \text { St-vial } \\ & \text { No. } \end{aligned}$	Name of grower．	County．	Variety．	Date received．	Total solids．	Sucrose in－		Purity．	Yield beets per acre．	Probable yield su－ crose per acre．	Average weight of beets．	
						Juice．	Beet．					
						Per ct．	Perct．	Per ct．	Tons．	Pounds．	Grams．	Ounces．
15523	К．Кreutzin ri	Outagamic．		Oct． 19	13.95	9．60	9.12	68.80			1，640	
15704	Cimrad Bochl． r ．	．．．．．ilo ．．．		Oct． 22	14.58	11． 11	10.55	76． 10			603 933	
15712	（ ieor，A．Phillipi	． 10	Kleinwanzlehener	Oct． 22	15.09	12． 55	11.93	83.11	18.0	3，218		$\begin{aligned} & 33 \\ & 44 \end{aligned}$
1550，	Joshma Bull．．．	．do	\cdots－．．．do	Oct． 23	14． 85	10.80	10.26	72.70 72.10			1,240 597	$\begin{aligned} & 44 \\ & 21 \end{aligned}$
15844	C．Thiessanhlı－11	do	German．．．．．．．．．．	$\begin{array}{ll}\text { Oct．} & 26 \\ \text { Oct．} & 6\end{array}$	17.37 16.37	12.70 13.05	12.09 12.40	73.10 79.70	24.3	4，053	597 690	$\begin{aligned} & 21 \\ & 24 \end{aligned}$
$158.4!$	－ 0 arph Peter	do	Vleinwanzlebever	Oct． 26	16． 37	13.05 12.50	11．40	79.80 77.80	24.3	4,053 4,053	690	21
15心．	fieo．Ireyer	du	Kleinwauzlebener	Oct． 26	15.85	11.70	11． 16	73.80			557	20
15～が1	C．Thitersanhus－n	．do	French ．	Oct． 26	17.47	13.50	12.83	77.30			1， 200	42
1612！	Hans Wiechert	． 10		Nov．${ }^{2}$	17.01	13.25	12． 59	77.60			1780	28
16449	E．Nickti．	．．do	German	Nov． 16	18.17	14.05	13.35	77.30				47
	Arerage				15.88	12.13	11.52	76． 20	19.99	3， 609	$8: 6$	29
15308	Jno．G．Buch	Ozankee	Tilmorin Improve	Oct． 12	20.39	15．37	14． 60	75.40	19.2	3,802 4,312		9 10
15：309	－．．．．．do．．．．．．	．．．．．do	Kleinwanzlebener	Oct． 12	19.59	15．35	14． 58	78． 40	20.9	4，312	270 568	10
15667	Wm．Liesenhers	．do	Vilmorin．．．．．．．	Oct． 21	19． 23	16． 20	15．39	84.30	20．0	4,684 3,208	568 570	20
15857	Chas．Murller	． 10	Kleinwanzlebener	$\begin{array}{lr}\text { Oct．} & 26 \\ \text { Oct．} & 9\end{array}$	15.95 15.23	12.90 10.78	12.27 10.24	80.90 70.9			570 775	20
$15: 5$	Jos．Fleissnor	． 10		Oct． 9	15． 23	10.78	10.24	70.9				
	Average				18.08	14． 12	13.42	78.00	19.1	4，002	487	17
15.339	Fred．Pittman	Pepin．		Oct． 13	16．41	13.93	13.23	85.00			890 650	31
15526	Anton Faast．．	．．．．．．ilo	Kleinwenzlehrener	Oct． 19	15． 05	11．60	11．02	77.10 79.90	11.9	1，826	650 773	23
15851	A．Rohrscheib	do	－${ }^{\text {a }}$ ．${ }^{\text {dodo．}}$	Oct． 26	15．35	15． 15	11． 54	79． 20	17.0	2，805	773 503	27 18
16264	John Wi	do	Vilmurin ．．．．．．．	Oct． Nov．	17.97 18.17	$\begin{aligned} & 15.10 \\ & 14.25 \end{aligned}$	$\begin{aligned} & 14.35 \\ & 13.54 \end{aligned}$	$\begin{aligned} & \text { 84. } 00 \\ & 78.40 \end{aligned}$	16.1	3，494	503 720	18 25
	Average				16.59	13． 41	12.74	80.74	15.0	2，708	707	25
15233	（i．F．Weis	Pierce		Oct． 9	16． 03	11.81	11.22	73． 80			55.5	20
$15 \div 57$	．．do	．．．．．do		Oct． 10	15．68	11． 29	10.72	72.00			510	20
	Arerage				15.86	11.55	10.97	72.90			57.3	20
15392	Joel A．Marhle	Polk		Oct． 15	16.65	12.08	11.48	72.80			463	16
15.398	Tames Tilson	Portage	White	Oct． 15	11.85	8.08	7.68	68.50			340	12
15617	A．P．Andrews	．．．．．do	German	Oct． 20	14． 18	10.50	9.98	73.30			4i0	17
15908	Wm．Giese．．．	．do	．．．．．do	Oct． 27	13．60	10.70	10.17	78.70	15.3	2， 209	1，010	

	ลิ\｜					$1 \overrightarrow{0}$
禺禺品				19		$\underbrace{\circ}_{0}$
	¢			8 0 \cdots		을
	$\stackrel{\infty}{\infty}$	\square		10	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\square} \end{aligned}$	－8．80
©웅가 संखi้웅	$\mathfrak{7} 1897$ 		 	8	 	
				\circ \cdots \cdots \cdots		G1 $\stackrel{1}{4}$
			－	स	gis issig $\text { 家 } 00$	¢
잉心． ボャップ				$\stackrel{\text {－}}{\substack{\text {－} \\ \text {－} \\ \text {－} \\ \hline}}$		\％
$\begin{aligned} & \text { Non } \\ & \text { +0.0 } \\ & \text { OBZ } \end{aligned}$	© 옥 ट्ठ 0	 0000亿品	 8000080 080000444		のロッダかにの 	\vdots
药			$\begin{aligned} & \text { 采 } \\ & \text { 若 } \\ & 0 \end{aligned}$ 			
（1）우ㅇㅜㅜ						
dion						

Summary of results by States and counties-Continued.

				8		\％	
 －ifi		发		안		\％	
绶		－				交	:
+i		$\stackrel{\bullet}{-1}$					$: \stackrel{\rightharpoonup}{\mathrm{m}}$
		$\begin{aligned} & 8 \\ & \underset{\sim}{8} \end{aligned}$	 	$\begin{array}{\|l} 8 \\ \mathbf{i} \\ \mathbf{i} \end{array}$	 	－	
かのジニジッジッ		$\begin{aligned} & 9 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	 	$\left\lvert\, \begin{aligned} & \text { g } \\ & \underset{\sim}{2} \end{aligned}\right.$		$\stackrel{10}{7}$	
		$\begin{aligned} & 8 \\ & \underset{\sim}{2} \end{aligned}$	 	$\begin{aligned} & \text { oi } \\ & \text { oid } \end{aligned}$		$\stackrel{x}{x}$	
 		$\begin{aligned} & \overrightarrow{1} \\ & \stackrel{3}{2} \end{aligned}$	 	$\begin{aligned} & 8 \\ & 18 \\ & 108 \end{aligned}$		$\left\lvert\, \begin{aligned} & 80 \\ & 80 \\ & 2 \end{aligned}\right.$	
	aracoseg				ก		
しOOOZは	花		0000000 亿玄				
	边苾						
웅웅욱의의							
		啠		$\begin{aligned} & 0 \\ & \text { in } \\ & \text { Ei } \\ & 4 \\ & 4 \end{aligned}$			
			 		 Hinirion od		

Summary of results by States and counties-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	County.	Variety.	$\begin{gathered} \text { Date } \\ \text { received. } \end{gathered}$	Total solids.	Sucrose in-		Purity.	$\begin{gathered} \text { Yield } \\ \text { beets per } \\ \text { acre. } \end{gathered}$	Probable yjeld sucrose per acre.	Arerage weight of beets.	
						Juice.	Beet.					
						Per ct.	Perct.	Per ct.	Tons.	Pounds.	Grams	Ounces.
16322	Tohn Gebhardt	Washington	Germar	Nor. 10	19.17	15.50	14.73	80. 90			$\begin{aligned} & 617 \\ & 447 \end{aligned}$	16
16323	G7eorgre	do	German	Nor. 10	17.47	13.20	12.54	75. 60			863	31
16327			French	Nor. 10	17. 37	13.25	12.59	76.30			600	21
15962	M. L. Barney		German	Oct. 29	17.03	13. 20	12.54	77. 50			677	24
	Ave				17.43	13.57	12.90	77.23	13.1	1,597	773	27
15180	John E. Hughes	Waukrsha		Oct. 16	12.95	9.23	8.77	71.30			950	34
$15: 13$	$\cdots \mathrm{c}$. ${ }^{\text {do }}$	do		Oct. 8	14.88	10.58	10.05	71.10 61.60			$\begin{array}{r}950 \\ 1.483 \\ \hline\end{array}$	34 59 5
15518	S. A. Baird.	lo	Imperial	Oct. 19	14.05	8.65	8. 22 9.8	61.60 70.70			1,483	52
15520 15699	W. T. Jeffrey			Oct. 22	12. 18	10.35 8.10	9.83 7.70	66.50			1, 153	41
15856	James Bias		Kleinwanzlebener	Oct. 26	15. 97	13. 20	12. 54	82.70			937	33
16066	A. J. Fraser	do		Nov. 2	16.81	13. 00	12. 35	77.40			1,300	46
16268	Frank I'eardon		Kleinwanzlebener	Nov. 9	18. 15	12. 30	11. 69	67.80			570	20
16401	${ }^{\text {J J J J Friney }}$	do		Nor. 14	17.57	13.35	12.68	76.00				24 31
15841	Magnus Andree			Oct. 26	17.77	14.10	13.40	79.30 86.10			890 950	31
15944	Wohn We Wolf		Kicin	Oct. 20	14.48	9.85	9.56	68. 10			1,330	44
15638 15614	John Wright ...			Oct. 20	17. 79	14.65	13.92	8:3. 40			720	26
16:324	J. Greif		German	Nov. 10	16.55	11.90	11.31	71.90			657	23
16325		do	French	Nov. 10	17.15	11.70	11.12	68.20			623	22
	Average				15.79	11.64	11.07	73.40			943	33
15299	P. L. Van Epps.	Waupaca		Oct. 12	15. 28	11.56	10.97	75. 50			910	32
15831	Aug. Kussmanndo		Oct. 13	13.93	10.49	9. 96	74.90			1,020	$\stackrel{36}{8}$
15548	Fred Bohlman	do		Oct. 19	14. 85	11. 70	11.11	78. 8.9			210	
15553	F. E. Koller	do	White	Oct. 19	15. 87	12.45	11.82	78.50			910	32
15625	H. W. Kirkholfer	do	German	Oct. 20	14.28	10.50	9.98	73.50			517	18
15755	George Williams.	do		Oct. 23	15. 05	11.40	10. 83	75. 80	15.4	2.281	377 73	13
15800	H. J. Leed	do	(ierman	Oct. 24	17.27	14.40	13.68	83. 20			733	26
15961	August Pidde	do		Oct. 29	15. 53	11.75	11.16	75.70			1, 2910	46
16038	R. H. Hall.....	do	German	Oct. 31	17.17	14.15	13.44	82. 40			- 500	18
16067	Daniel Marshall			Nov. ${ }^{2}$	16.49	11.75	11.16	70.93			1,000	\%
16072	William Brehnuer	. . do	Imperial	Nov. 2	17.31	13.00	12. 35	7.). 10			480	17

Summary of results by States and countics-Coutinued.
WYOMING-Contiuned.

$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Name of grower.	County.	Variety.	$\begin{array}{\|c} \text { Date } \\ \text { received. } \end{array}$	Total solids.	Sucrose in-		Purity.	$\begin{aligned} & \text { Yield } \\ & \text { beets per } \\ & \text { acre. } \end{aligned}$	Probable field sucrose per acre.	Average weight of beets.	
						Juice.	Beet.					
15740	J. D. ParkerThomas A.C. E. Lincold		French Vilmorin Kieinwanzlebener	Oct. 22 Oct. 13 Oct. 31 Oct. 3i	15.38	$\begin{gathered} \text { Per ct. } \\ 12.00 \end{gathered}$	$\begin{gathered} \text { Per ct. } \\ 11.40 \end{gathered}$	Perct. 77.9	Tons. 13.5	Pounds. $2,163$	$\underset{320}{G r a m s .}$	Ounces. 10
$\begin{aligned} & 15330 \\ & 16061 \\ & 16062 \end{aligned}$						11.86 14.00	11.27 13.30	77.5 70.8 78.8	18.7	3, 677	730 470	26 17
					21.47	15.75	14.96	73.3	18.7	3, 700	480	17
	Average				18.85	13.87	13.18	73.9	18.7	3. 689	560	20
15689	J.S. Meyer	Fremont	French German French Vilmorin Kleinwanzlebener	Oct. 21 Oct. 21 Oct. 20 Sept. 23 Nov. 4 Nor. 4	16.73	13.50	12. 8.3	80.7	18.9	3,456	425	15
15690	Simeon Morgridge	Johnson Laramie			18.13	14.00	13.30	37.2	,		625	22
$\begin{aligned} & 15658 \\ & 15074 \\ & 16165 \\ & 16166 \end{aligned}$	Wheatland Exp. Farm R. M. Walker A. C. Hubbard du				16.99 $1 \div .61$	13.7 9.8 1	$\begin{array}{r}13.02 \\ 9.38 \\ \hline 1\end{array}$	80.7 72.5	20.5	3. 887	1. $\begin{array}{r}240 \\ \hline\end{array}$	$\stackrel{9}{4}$
					19. 44	15. 10	14. 25	77.2	13.9	2, 761	$\xrightarrow{245}$	${ }_{10}^{9}$
					19.24	13.50	12.83		11.5			10
	Δ rerage Geo. A. Becker \qquad Average of State \qquad	Sheridan			17.32	13.02	12.37	75.2	15.3	2,839	479	17
15383				Oct. 14	18.17	14.54	13.81	80.0	10.7	2, 135	180	6
					18.18	14.19	13.48	78.1	11.1	2,130	369	12

NOTES ON THE ANALYSES OF BEETS FROM THE DIFFERENT STATES AND TERRITORIES.

Arizona.-Only two samples were received from this Territory. They were both very much overgrown, being about three times as large as the normal beet should be. As would be expected the content of sugar was very low, the average of the two samples being 7.69 per cent.

Arkansas.-Only two samples were received from this State. In the first one the beets were of a normal size, weighing 18 ounces, nevertheless the content of sugar was very low. In the second the beets were very much overgrown, averaging 62 ounces.

California.-Eight samples were received from this State. The average size of the beets was entirely too large, being 48 ounces. The average percentage of sugar in the various samples was 11.06. The highest percentage of sugar was 13.35 , with a beet weighing 23 ounces, and the lowest was 8.35 in a beet weighing 62 ounces. The average yield per acre as reported was 14.2 tons, showing a theoretical yield of sugar of 2,188 pounds.

Colorado.-The number of samples from this State was forty-seven, representing ten counties. The average percentage of sugar as found in the samples was 13.0 , and the average weight of the beets 26 ounces. Some of the samples gave phenomenally high percentages of sugar; especially is that true of the samples from Yuna County, which, however, were very much undergrown, averaging only 6 ounces. The county making the best showing, all things considered, is Arapahoe, where the average content of sugar in the beet was 14.27 , and the average weight of the beet 21 ounces. No better agricultural result than this could be desired, in so far as the size of the beet and the content of sugar are concerned.

Connecticut.-Five samples were received from the State of Connecticut. The mean content of sugar was 10.77 , and the average weight of the beets 27 ounces.

Georgia.-Two samples were received from the State of Georgia, both from Clarke County. The average content of sugar in the two samples was 11.03 , and the average weight of the beets 12 ounces.

Idaho.-One sample was received from Idaho; it had a content of sugar of 12.73 , and a weight of 15 ounces.

Illinnis. -Thirts-six samples were receised from the State of Mlinois, representing fourteen combies. The average content of sugar was 11.33 . and the average weight of the beet ras 32 ounces. The best showing among the connties was mate by Lee. which showed an arerage content of 13.61 of sugar in the beet, and an arerage weight of heet of 34 nunces. This is a remarkably high content of sugar consilering the size of the beet pronduced. All the samples firm this county showed high results. Annther comuty showing excellent realts was Cook, where the average content of sugar was 13.4 amb the average weight of beet 44 ounces. It is rery rare to see so high a sugar content with a beet of suc̣ size.

Indiam.-Serenty-nle samples were received from the State of Indiana. representing eighteen counties. The average montent of sugar for the samples for the whole of the State was 11.6 t , and the arerace meight of the beets -8 ounces. Ammg the counties Wabash has the best results. showing 13.4. per cent of sugar in the beet, with an average weight of 30 numes. All the samples except one receivel from that comety showed gomi results. The highest sugar was $13 . \mathrm{is}$. obtainen in Clinton County. from which. however, only two samples were received. This would make it rather unfair th emmpre it with the other counties sending a larger number of samples. Kosriusko Connty also made a gron showing, with an arerace percentage of 11.93 of sugar in the leet. from 16 samples, being the largest mumber received from any one country in the State.

WORK CONDUCTED BY THE AGRICULTURAL EXPERLMENT STATION OF LNDLANA.

Frof. H. A. Huston, elamist of the Experment Staton of Imilans. emplucted an extmsire series of experimeats with sugar her is during the season of 1 dal , the results of Which are printed in Bulletin No. 39 for April, 1892.

A large number of samples of seads was swat to farmers in different parts of the
 of sughr in the juice of the heets amd their mean avetage weight in ounces are as follows:

$$
\begin{aligned}
& \text { Sugar in the juice, per cent... } 12.8 \\
& \text { Weight of beets, onnces.. } 20.7
\end{aligned}
$$

Sixty-six sumples of heets grown on the expetionental farm of the station wrere alsn examinem and fonnd to fortain 12.4 por cent of sugar in the juice. The averace weight of the lonts is mot given in these samples, with the exception of six, amd so no comparison can be made.
 matince tots in all parts at the state on that all the different characteristins of the
 which can be grown upon it.

A table is given of the relative amount of sugar in three trpical sizes of beets:

 ounces of sugar,

Ninety-six small beets weighing 40 pounds contained 5 pounds and 10 ounces of sugar.

A table is also given showing the influence on the size of the beets and the amount of sugar present in them from planting at different seasons.
In the summary it is said that the results of the last year certainly justifies the station to continue the experiments with sugar beets in Indiana, and are favorable to the establishment of a beet-sugar industry in the state. There seems to be little doubt that beets with a guod percentage of sugar and with sufficiently pure juice can be grown. The fertility of Intiana lands is well enough known to insure an abundant yield when proper methods of cultivation are followed. The geographical location of the state; its position in the center of a group of large markets; its cheap fuel, gas, petrolemm, and coal; its relatively pure waters; its highls efficient transportation facilities by land and water, all favor the introduction of the industry.
A valuable report on diseases affecting the sugar beet is introduced by Prof. J. C. Arthur and Miss Katherine E. Golden.

Iova.-Three hundred and twenty-two samples were received from the State of Iowa, representing sixty-one counties. The mean content of sugar in the simples was 11.52 and the mean weight of the beets 30 ounces. From Marshall County were received thirty-four samples, showing an average content of 11.54 of sugar in the beet and an average weight of $\because 1$ ounces. From Muscatine County were received thirty-three samples, showing 14.10 per cent of sugar in the beet and an average weight of 26 ounces. This is a magnificent showing, and indicates that in this county the beets must have been cultivated in accordance with the directions sent, or that the soil of the connty is especially suited to the growth of the sugar beet. There is only one sample among the whole number that can be considered as poor, while many of them are above the average in richness. It can not be that, among so many samples, good results are due to accident. Thirtyone samples were received from Scott County, showing an average of sugar in the beet of 12.63 and an average weight of 29 ounces. This is also a most encouraging result. Nineteen samples were received from Dallas County, showing an average of 11.96 of sugar in the beet and an average weight of 23 ounces. This is also an encouraging result. Eighteen samples were received from Allamakee County, showing an average content of sugar in the beet of 12.64 , and an average weight of beet of 40 ounces. This must also be regarded as a high content of sugar, considering the excessive size of the beets. The abore comprises all the counties sending a large number of samples. Many of the counties sending a smaller number of simples show excellent results, but of course the greater reliance must be placed on those counties trom which the larger number of samples was received.

It will be interesting to compare these results with those obtained at the experiment station at Ames. This institution distributed large quantities of seed, received chiefly from the Department of A griculture, and hal samples sent directly to the laboratory at the station for examination, where they were analyzed by Prof. G. E. Patrick. Experi-
ments were made upon the station grounds with different varieties, which yielded the following results:

The experiment station field consisted of 1.3 acres. The cost of cultivation and harvesting was $\$ 51.25$, or at the rate of $\$ 39.42$ per acre.

The bects were grown in rows 23 inches from ceuter to center and the plants were thinned to 8 inches apart in the rows. The chief conclusions drawn from the experimental work at the station were as follows:
(1) Early planting gave the greatest tonnage and the most sugar per acre.
(2) Very large beets did not sugar well.
(3) Subsoiling gave the best-shaped beets and the highest per cent of sugar in November, needing the least trimming.
(4) Cutworms destroyed most of our early plantings, but did not affect the later plantings.
(5) Per cent of sugar was affected by second growth in October or by absorbing moisture from the rains after long drouth, or both.
(6) Yield per acre has much to do with the profitableness of the crop; and
(7) While our highest analysis came from beets averaging 13 ounces, trimmerl, and fielding 12.32 tons per acre, our largest yield of sugar per acre came from bects averaging 21 ounces, trimmed, and yielding 28.163 tons per acre.
(8) Clay soil gave us the highest per cent of sugar and comparatively higher purity and the lowest tonuage per acre.
(9) Three plats fertilized with lime, nitrogen, phosphoric acid, and potash, gave no evident benefit.
(10) The average per cent of sugar was 14.14, and the average yield about 20 tons an acre, and the cost of growing and harvesting $\$ 39.12$ an acre. The highest sugar in beets, per acre, was 7.299 pounds.

The foregoing comments on the work were taken from the bulletin of the station No. 15. From the same bulletin, also, the following extracts are taken, relating to the experiments made by the farmers in the different parts of the State of Iowa.

In all 502 samples were received, and fifty-one counties were represented. The average percentages of sugar in the beets as analyzed at the Iowa Experiment Station laboratory, were as follows:

County.	$\begin{aligned} & \text { Per- } \\ & \text { centago. } \end{aligned}$	County.	Per. centage.
Dickinson	12.89	Mitchell .	12.10
Allamakeo.	12. 13	Chickasaw.	13.21
Plymouth.	10.29	Buena Vista	10.34
Pocahontas	8.89	Wright.....	13.22
Fayette.	12,45	Clayton.....	11.80
Ida	9.50	Sac	9.94
Webster	11.04	Hamilton ...	11.31
Hardin	11. 77	Grundy	11.76
Black Hawk	11. 03	Carroll.	12. 08
Greene.	9.73	Boone....	9.58
Story	10. 57	Linn....	10.76
Shelby	8.32	Guthrie.	6.91
Dallas	11.57	Polk..	11.35
Jasper	10.82	Warren.	10.89
Marion	10.51	Poweshiek	11.89
Cedar	11. 50	Scott.	13. 44
Cass ...	10. 50	Warren	11. 5.3
Mrahaska	7.65	Keokuk	8.87
Montgomery	9. 26	Adams	12.20
	12. 04	Page....	9. 74
			7.51

On account of the large number of samples received from Muscatine County the analyses are divided into three groups. The first group contained 53 samples and had a mean percentage of sugar in the beet of 11.96 . The second group contained 61 samples and had a mean percentage of sugar in the beet of 12.29 . The third group contained 96 samples and contained a mean percentage of 13.64 of sugar in the beet. This is also a remarkable showing, and corresponds with the results obtained on the beets from this county analyzed in the laboratory of the Department of Agriculture, where 31 samples showed an average of 14.11 per cent of sugar. Certainly no further evidence than this will be needed to convince anyone that the county of Muscatine, in Iowa,

$$
19864-\mathrm{No}, 33-6
$$

jutsing at least by one season's work, is extremely well adapted to the production of sugar beets of high quality.

In regard to the tables the following remarlis are found in Bulletin $15:$

The average results for different counties show in some instances wide differences in quality of the beets. But wide differences are also found between the beets grown on difierent farms in the same county, and even between those of different plats or fields of the same farm. Some of these differences may be, probably are, dne to the soil itself, but without doubt very many are due to the modes of preparing the soil and cultivating the crop. Therefore it is not safe to assume that the relative adaptability of the different counties to the heet-sugar industry is truly, or even aprproximately, represented by the results of a single year's investigation-and this is of course especially true of those comtics from which but few samples were received.

It is true the results of the State as a whole do not indicate as high an arerage quality of heet as is reported from somo States in the drier regions furthor we.t and northwest; but on the other hand the average yield of beet per acre is in Iowa very much larger than is possible in those States, without irrigation. Therefore, even should this indication regarding quality be in future rerified (it is now only an indication), that difference would probahly be more than balanced by the superior yided per acre possible with the soil and climate of Iowa. It is gencrally asserted, and dountless with truth, that for profitable sugar manufacture there is required an average duality of heet ropresented ly a sugar content of at least 12 per cent (on the beet) and a purity coefficient of nearly 80 or upwards. But quality of beet is not all. Plainly, the yield of beets per acre is an equally inportant factor in determining profit.

Iransus.-Thirty-six samples were received from the State of Kansas, representing seventeen combties. The mean results for the whole State were, sugar in the heet, 10.69 , and average weight of beet, 33 ounces. The comoties showing good results were Harvey, two samples averaging 3.61 of sugar in the beet, with an average weight of 22 ounces; and Edwads Combty, one sample with 14.5 per cent of sugar in the beet and with an averase weight of 43 ounces. This is a very high result cousidering the size of the beet.
experiments with beets at the sorghum experiment station, sterling, kansas.

An acre and a half was planted in heets, of the Vilmorin and Kleinwanzlebener varieties. The land was plowed in the fall; in the spring it was plowed and also subsoiled to a depth of 12 inches. The seed was planted April 15, in rows 18 inches apart, at the rate of 15 pounds per acre. The expense of growing the beets, including rent of land at $\$ 3.50$ per acre, labor at $\$ 1.50$ per day, seed at 2.5 cents per pound, and the expense of harvesting, not including hanling the beets, was $\$ 72$.
The beets yielded 17 tons per acre of clean, topped beets. The average per centage of sugar in the beets, when harvested, was 11.97. The purity was 80. Assuming that the beets were worth $\$ 3$ per ton, the crop was worth, at a factory, $\$ 76.50$. It is beliesed that hy planting in 30 -inch rows, using a horse cultivator instead of performing all the lahor hy hand, and having experience in beet growing, the expense could be lessened and the profit could be increased. On this point the conclusions of the Wisconsin Experiment Station appear correct.
hentucliy.-Threr samples were received fiom the State of Kentucky, representing two combties. The arerage perentage of sugar in the beets was 9.12 and the average weight of the beets 34 ounces.

Marylund.-Only two samples were received fiom this State, both from Prince George Comity. The mean content of sugar was 7.36 per cent and the mean weight of the bects 16 ounces.

Michigun.-Fifty samples were received from the State of Michigam, representing twenty-one comuties. The average percentage of sugar in the beets was 12.64 and the average weight of beet 32 ounces. The results from the State are very encouraging. Allegan Comity leads the list of counties with a percentage of sugar in the beet of 16.34 and an average weight of beet of 20 ounces, obtained from three samples. Osceola County comes next with an average percentage of sugar in the beet of 15.40 and an average weight of beet of 2.5 ounces. Next comes Gratiot with four samples, with an average of 14.36 per cent of sugar in the beet and an average weight of beet of 20 onnces. The number of samples from any one comuty is not large, yet ou the whole the results show that Michigan is particularly well adapted to the growth of sugar beets of high quality.

Extensive experiments were conducted in Michigan by Dr. R. C. Kedzie, chemist of the Agricultural Experiment station, during the season of 1891. The results are publisherl in Bulletin 82 of the Michigan Agricultural Experiment station.

The tabulation of the results is made by districts. The western distriet, consisting of five comties, reporterl an average of 15 tons of beets per acre, with a sugar pereentage in the juice of 14.23 . The southeastern district, cousisting of four comnties, reported an average of 16.5 tons per acre and an average percentage of sugar in the juice of 13.52. The central district, consisting of four connties, reported all average of 13 tons per acre and 14.33 per cent of sugar in the juice. The northeastern district, consisting of three countics, reported an average of 15 tons per acre and 13.29 per cent of sugar in the juice.

Dr. Kerlzie states that from the standpoint of the manufacturer the outlook is promising. An arerage of noarly 14 per cent of sugar and a coofficient of purity of abowe 80 rembers the prospect of making sugar at a prolit extremely flattering. He advises investors to be slow about establishing a sugar factory and to consider all the problems connected therewith bofore investing their money. This is certainly very good advice.

It is :unnonced that the station will not undertako further experiments in the distribution of boet seed and the investigation of the sulject of sugar-making, aul this is certainly a sulpect of rogret. With such promisiug results as have been obtainot by 1)r. Kelzie, there are certainly very good reasons for going ahead and making a thorough study of the State in regard to its sugar-producing properties.

The total number of samples examined was 229, and the mean results of the average weight, werage percentage of sugar in the juice, and average coefficient of purity are as follows:

Grams. Ounces.
Averare weight of beets
992.2535

Per cont sugar in juice... 1379
Purity coefficient 86.30
These results are certainly of the most encouraging character. The content of sugar is remarkably high when the overweight of the beets is taken into consideration.

Mimesotu.-Forty-one samples were received fiom the state of Miunesota from eighteen counties. The average per cent of sugar in the beet was 12.38 , average weight of 29 ounces. The county showing the
highest results was Polk, averaging 15.42 per cent of sugar in the beet and 30 ounces in weight. Next on the list comes Goodhue County with four samples, averaging 15 per cent of sugar and 20 ounces in weight. Next Faribault, with four samples, averaging 12.42 percentage of sugar and 27 ounces in weight.

Missowi.-Sixty-seven samples were received from the State of Missouri. The average percentage of sugar in the beet for the whole State Was $10.4^{\prime 2}$, and the average weight of beets 20 ounces. The best result is reported from Caidwell County, showing $15 . \not 11$ percentage of sugar in the beet and a weight of 12 ounces. The next best result is from Kinox County, four samples with an average of 13.36 per cent of sugar in the beet and an average weight of 9 ounces. This must not be considered a very high content of sugar for beets so greatly undergrown. The low result in this State as a whole is due to the belated samples sent by the State Experiment Station. These samples were not received until late in January and some of them were in a very poor condition. Especially hard on the State average are the results of Nos. 16670 and 16671, comprising samples of beets wholly unfit for any use.

Quite remarkable, however, is the result reported from Livingston County. One sample weighing 64 ounces contained 11.96 per cent of sugar. On the whole it appears that had the beets grown in Missouri been cultivated under proper scientific conditions so as to keep the size down to the normal, the content of sugar in them would have compared favorably with that of any other State.

Montana.-Forty-one samples were received from this State, representing five counties, of which Gallatin County furnished thirty. The average content of sugar for the State was 13.23 , and the average weight of the beets 25 ounces. Gallatin County, with thirty samples, shows an ayerage content of sugar in the beet of 13.75 and au average weight of beet of 20 ounces. This is certainly a most excellent result. The highest percentage in the samples is found in those from Missoula County, containing 15.82 per cent of sugar in the beet and having an average weight of 28 ounces. There were, however, only two samples from this county. The next best result is also from a county which furnished only two samples, Lewis and Clarke County, showing an average content of sugiar in the beet of 15.46 , and an average weight of beet of 19 ounces.

Vebraslar-The number of samples received from Nebraska was sixtytwo, representing twenty-nine counties. The average content of sugar in the beet for the whole State was 11.67 and the average weight of the beet 35 ounces. Among the counties showing the highest results may be mentioned Richarison, one sample having 15.82 per cent of sugar and a weight of 13 ounces. Howard County, two samples, averaging 14.54 per cent of sugar and 24 ounces in weight. Boxbutte County sent two samples showing $16.2 \cdot$ per cent of sugar and an average weight of 31 ounces. Saline County, two samples, showing 14.21 pef
cent of sugar and an arerage weight of 30 ounces. From some of the comuties in Nebraska very poor samples of beets were received, and these tend to lower the average of the whole state. In many of the comuties the results compare favorably with those from any part of the country.
experlmental work conducted by the experment station of nebrasta on SUGAR BEETS.

Conducted by Profs. Nicholson and Loyd.

[Abstract of results in Bulletin 21 of the Nebraska Station.]

The work mas divided into two sections, viz, the first sectinu conducted on the experimental farm of the station, and the second section conducted by distributing seeds to varions localities throughout the state and aualyzing the samples received from the different growers.
Phenomenal yields were obtained on the station plats.
Plat A yielded 34 long tons per acre with a sugar content of 14.8 per cent.
Plat B yielded 31 long tons per acre with 13.0 per cent of sugar.
Plat C yielded 31.3 long tons per acre with 13.5 per cent of sugar.
Plat D yielded 30.5 long tons per acre with 14.2 per cent of sugar.
Plat E yielded 30.8 long tons per acre with 12.9 per cent of sugar.
Another series of experiments was made to test the value of agricultural implements, and a third series to determine the effect of fertilizers. Bone dust, kainit, nitrate of soda, gnamo, and phosphate were used singly and in mixtures withont any appreciably good effect upon the sugar content or tounage of the beets. The average yield in tons per acre from these various plats was 15.5, and the arerage content of sugar 13.3 per ceut. The arerage cost per acre of the different plats harvested and placed in the silo varied from $\$ 32.75$ to $\$ 29.14$.
As a resule of the whole study it was fonud that the newer ground not subsoiled yielded ou the average abont 13 tons of topped beets per acre; whilst the same gromud, that had been thoroughly stirred to a depth of 16 inches, gave an average yield of nearly 16 tons to the acre; while on the older ground, that which for a long time had been under thorongh cultivation, and had been thoroughly subsoiled, the average yield rose to 31.5 tons.
It was foum that in rainy weather in the autumu that by lonsening the beets in the row and allowing them to remain withont harvesting, the sugiu was preserved better than if they were not so loosened. Comparative experiments showed that with leets loosened in the row and left standing the average percentage of sugar was 13.9, while in those which had not been loosened it dropped to 12.8 .
In the second series of experiments, viz, those in which seeds were sent to the farmers, eighty-eight samples were received from the farmers, the average weight of which was ed. 74 ounces, and the average percoutage of sugar (presumably in the juice) reported from the analyses was 13.09 .

Vevadu.-Eighteen samples were received from this State, from three comuties of which one, Washoe, furnished fifteen. The average percentage of sugar in the beet for the State was 17.2 and the average weight of beet 11 ounces. Washoe County, which practicaily farnished all the samples from the State, also leads in the quality of the beets obtained. The numbers representing their quality are almost phenomenal with the exception of the average weight, which is only about what it should be. This doubtless accounts for the fact that the beets were so exceptionally rich. The fifteen samples from this county showed an
average pereentage of sugar in the beet of 18.02 and an average weight of 9 ounces.

New Hampshire.-Only one sample was received from this State, which contained $11.6 t$ per cent of sugat and weighed 19 ounces.

New Jersey.-Only one simple was received from this State, which contained 7.33 per cent of sugir, with a weight of 17 ounces.

New Mexico.-Seventeen simples were received from the Territory of New Mexico, showing an average content of sugar of 13.8 and an average weight of 28 ounces. Eddy County, which furnished the largest number of samples, also leads the list in regard to quality, showing an average of 14.45 per cent of sugar and a weight of 27 ounces. This result is exceptionally fine aud shows that the possibilities of the production of beets of high saccharine richness is very flattering.

New York.-Four samples were received from the State of New York, and the average content of sugar was 11.ns and the average weight 32 ounces. Three comities sent samples. The best sample was received from Genesee County, with $13.0 \pm$ pereentace of sugar and a weight of 23 onnces. Lrie sent two samples with an average content of sugar of 12.25 and an average weight of 33 ounces.

North Dakota.-There were received by the Department from North Dakota eleven samples from six counties. The mean percentage of sugar for the State was 11.84 , and the mean weight of the beets 23 ounces. The best results by counties were from McIntosh.

Bulletin No. 5 of the Experiment Station of North Dakota, issued in February, 1892, contains an account of the results with sugar beets in that State during the season of 1891.

Seed of the standard varieties of sugar beets was distributed to different parts of the State and one hundred and forty-four samples were received for analysis. In general it may be salid that the samples were somewhat overgrown, as will be seen from the average weight. The percentage of sugar in the juice and the purity are also rather low; lower thau would be expected, in fact, for that locality.

Mr. E. F. Ladd, who conducted the amalyses, makes the following summary of the results:
(1) The one humbed and twenty-nine samples of beets analyzed gave an arerage sugar content (sucrose) of 11.43 per cent.
(2) Many of the samples of heets sent for analysis were harvested before the sugar in the beets was fully formed; in other words, before the beets were ripe.
(3) In many cases the beets had not received proper treatment and much of the root grew above ground.
(4) In many iustances the ground was not plowed to sufficient depth, not more than 6 inches deep, leaving a hard, impenetrable subsoil below, and the beets grew prongy and of ill shape-such as would be rejected at the factory.
(5) To grow sugar beets for the factory the land should be plowed to a depth of 8 to 10 inches; the beets grow well in the ground, for the part above ground is of inferior quality and generally rejected at the factory.
(6) The large beets are not the leest for sugar. Beets weighing above 3 pounds have a less per cent of sugar than the smaller beets.
(7) For the present it is my belief that for the most of North Dakota other industries will be fomd more profitable for both mantacturer and famer than the sugarbeet industry.

It will be seen from the conclusions which he reaches and which are justly based upon the analyses made, that he is not disposed to favorably cousider that the sugar beet has a promising future in North Dakota. I am inclined to the opinion, however, that with more scientifie methods of culture the results obtained in North Dakota will prove much more encouraging than those secured in the last year.

From the data given in the bulletin as printed the mean figures of the samples analyzed are as follows:

$$
\begin{aligned}
& \text { Average weight of beets in grams....................................... . . . } 822.90 \\
& \text { Per cont sugar in juice.. . . . 11.36 } \\
& \text { Purity coefficient } \\
& 74.00
\end{aligned}
$$

Ohio.-Sixty-sixsamples were received from the State of Ohio, representing twenty counties. The average content of sugar in the beets from the whole of the State was 11.33 and the average weight of the beets 31 omnces. Morrow County is best on the list with samples, showing $16.4 t$ per cent of sugar and an average weight of 22 ounces. Hancock County furuished rich samples, four in number, averaging 16.32 per cent of sugar in the beet and 19 ounces in weight. One of the samples, No. 26614, received from Ohio, deserves sperial mention on aceombt of its high content of sugar and its high purity. It contained 20.19 per cent of sugar with a purity of 87.1 . Trumbull County sent six samples, with an average of sugar in the beet of 13.12 and an average weight of 25 ounces. Ashtabula County sent two samples with an average content of sugar of 13.19 and an average weight of 25 onnces. The largest part of the samples were from Erie County, which fumished eighteen, with an average content of 11.5 of sugar and having an average weight of 32 ounces. Many of the samples from Erie County Were of exceptional richness, but others were as exceptionally poor, which pulled down the average to the number given.

Olifhomu.-One simple was received from the Ternitory of Oklahoma, very much overgrown, showing only 6.37 per cent of sugar.

Oregon.-Thirty-five samples were received from the State of Oregon, containing an average percentage of 13.8 of sugar and with au average weight of 23 onnces. Samples were received from fourteen comenties. The richest sample was received from Jackson County, showing 17.99 per cent of sugar with a weight of 20 onnces. The next best results were from ('lackamas County, three samples averaging' 14.78 per cent of sugar with an average weight of 21 ounces; Columbia County, three samples with an average per cent of sugar of 14.56 and an avorage weight of 19 ounces; Coos County, five samples, showing an areage of 13.83 per cent of sugar with an average weight of 30 nunces, and Lane ('omnty, six samples, showing 13.53 per cent of sugar and averaging 20 onnces in weight. The samples from Oregon are
uniformly rich in quality, and if they truly represent the capabilities of the State, there certainly is a bright future for the beet-sugar industry on that portion of the Pacific coast.

SUGAR BEETS AT OREGON EXPERIMENTAI, STATION.
Experiments were conducted by the Experiment Station of Oregon during the year 1891 on the culture of sugar beets and the analysis thereof, and the results obtained are issued in Bulletin No. 17 of the Oregon Agricultural Experimeut Station.

The standard varieties of sugar-beet seed were obtained and distributed to farmers in different parts of the State. A circular showing the best methods of cultivation was also sent out with the beets for the guidance of the farmers. Accompanying the report is a valuable contribution to the study of the climate and soil of tho State in regard to the production of the sugar beet, and that portion of the State which is supposed to be most favorable to it is marked on a map. Tables showing the amount of rainfall in different parts of the State are also given. It is noticed that, in general, the spring rains lasted until quite late, thereby causing delay in the time of planting. Almost the whole of the planting was done in May, while in ordinary seasons a good portion of it could have been accomplished in April.

The number of samples analyzed was 95 . The results are certainly encouraging and show that the sugar beet has great possibilities in the State. The report was prepared by G. W. Shaw, chemist, aud Dumont Lotz, assistant chemist. In the conclusions which they draw from the analyses they sta te that the investigations havo progressed far enongh to indicate that there are sections in the State maturally adapted to the culture of the sugar beet, and these sortions are noticed by shaded lines on the map. It is not suggested that the farmors should give up other crops to grow sugar beets, but that they should combine beet growing with the regular farm Work.

An extended plan for experiments to be made in 1892 is also given.
The mean data from the analyses reported are as follows:

$$
\begin{aligned}
& \text { Average weight of beets in grams... *608. } 50
\end{aligned}
$$

Pemsyluania.-Seven samples, showing an average content of 13.29 of sugar and an average weight of 22 ounces, were received. Five counties were represented. The highestresult was obtained from Butler County, one sample showing 15.53 per cent of sugar and weighing 17 ounces. Lackawanna Connty, with two samples, showed a sugar content of 15.51 and an average weight of 1 is ounces. The results from Pennsylvania are also of a most encouraging nature, although the number of Samples is entirely too small to enter into a general comparison.

South Dakota.-Two hondred and two samples were received from the State of Sonth I)akota, showing an average content of sugar of 12.45 and an average weisht of 22 ounces. Forty-five counties furnished samples, of which Brown County furnished forty-nine, showing an average content of 13.76 of sugar and an average weight of 17 ounces. The county furnishing the next largest number of samples was Lake, from Which twenty-nine samples were receised, showing an average content of 11.04 of sugar and an arerage weight of 23 onnces. The richest

[^3]beets received from South Dakota were from Faulk County. In general, the character of the beets from Sonth Dakota is of a high order, the State showing remarkable facilities for produciug beets of great saccharine strength.

Tennessec.-Five samples were received, showing au average content of 8.77 of sugar and an average weight of 20 ounces. The richest beet received from Tennessee was from Davidson County, and showed 14.82 per cent of sugar and weighed 11 ounces. The rest of the samples from that State were of a poor quality.

Texus.-Ten samples were received from the State of Texas, showing an average content of sugar of 10.31 and an average weight of 23 ounces. Samples were received froun seven counties. The richest sample was received from Mason County, with a content of sugar of 13.92, but weighing only 5 ounces.

Virginia.-Seventy-two samples were received from the State of Virginia, of which 33 were from Augusta County and 29 from Frelerick County. The average for the State is 11.12 per cent of sugar and 21 ounces the average weight. On the whole, the best results were obtained from Frederick County, with 29 samples showing 11.93 per cent of sugar in the beet and an average weight of 95 ounces. The average for Augusta County, with 33 samples, was 11.06 per cent of sugar in the beet and an average weight of 18 ounces.

Washington.-Eleven samples were received from the State of Washington, from six comties. The average content of sugar in the beets from the State was 14.47 and the average weight 18 ounces. The richest samples, two in number, were from Stevens County, showing an average of 17.51 per ceut of sugar and averaging in weight only 10 ounces. The two samples from Whatcom County showed au average content of 15.70 of sugar and an average weight of 18 ounces. With the exception of two, Nos. 15263 and 15264 , all the samples received from the State of Washington were of a high saccharine strength.

Wisconsin.-Four humdred and fifty-one samples were received from Wisconsin, representing sixty counties. The average content of sugar in the beets for the whole State was 11.05 and the weight of the beets 26 ounces. The richest beets were received from Ozankee County, five samples showing an average of 13.42 per cent of sugar and averag. ing 17 ounces in weight. Jefferson Comity, with niueteeu samples, showed an average content of sugar of 13.08 with an average weight of 24 ounces. One very poor sample is found in this county, viz, No. 15443. Marquette County furnished five samples with an average of 13.06 per cent of sugar and an average weight of 12 ounces. There is also one very poor sample from this county, viz, No. 15174. In general the results from Wisconsiu are more reliable on account of the large number of samples which was sent. Where so many causes enter to disturb the accuracy of the data oltained, as is the case in experimental work of this kind, the greater the number of samples which can be obtained the greater the reliability of the results.

This experimental work in Wisennsin was supplementerl also liy an extensive series of experiments caried on hy the Agricultural Experiment Station of the state, umber the anspises of the Department of Agriculture. The following datagive the results of these experiments:

SUGAR BEET EXPERIMENTS IN WISCONSIN IN 1891.

By F. W. Woll.

LETTLR OF TLANSMITTAT.
Madison, Wis., February S; 1892.
Dear Sir: I transmit herewith our report of beet-sugar investigations for this State during the season of 1891 .

The report shows that we distributed a thomsiand pounds of seed among 850 farmers in the sprog. In the fall $37: 3$ sample lots of heets were received at the station grown from the seed distributed in the spring. Had not a dronght of almost unknown severity prevailed during the growing season, a much larger number of farmers would have sent in samples, as we received scores of letters from parties who had received sced, stating that they had beeu unable to grow any beets. The results of these analyses show 7.12 as the lowest per cent of sugar, highest 23.52 , the average for the 373 samples being 12.5 , with an armage estimated yield of beets of over 15 tons to the acre.

At this station 2 acres of beets were grown, with every prospect in the spring of marked success, as the soil was well adapted to the roots and the stand of young plants remarkably even and uniform. The drought, however, cut the yield down to a little more thau 14 tons for the 2 acres. Had there been a normal amount of rainfall, the yield would have been not less than 50 tons from the same plat.
Eleven varieties were planted in the station plat. The report shows the average per cent of sucrose in the beets grown by us to have been 15.5 per cent, with 13.27 per cent and 17.56 per cent as lowest and highest limit.
Much interest has been awakened in this State by the study of the sugar-beet plant carried on by this station under your direction, and I think it would be very unfortmate if the work were dropped at this time. While some other States have gone ahead faster than Wisconsin in the establishment of beet-sugar factories, I believe we have really lost nothing in the apparent delay, for we are leaming the capacity and possibilities of our soil and climate, and our farmers are gaining knowledge of the requirements essential to successful cultivation of the beet plant. We reoblect the fitilure of two sugar-bont factories many years ago and are desirnus of mot repeating surh results. This does not mon that the people are indifferent and lack comfidenco in this direction, but rather that they would move cantionsly and be sure at each step of the ground occupied.
Trusting that this report may in some measure bear evidence that the confidence you have reposed in us was not misplaced, I am,

Very respectfully,
IIon. J. M. Rusk,
Sccretary of Agriculture.

The report of the work done by this station during the jear of 1891, in regard to the culture of sugar beets, will be discussed under two general headings: (1) Repert of experiments at this statim; and (2) report of analyses of beets from farmers in different parts of the State.

A piece of land of very nearly 2 acres was set apart in the spring for sugar beets. The plot slopes somewhet to the west, and is light clayey loam, becoming more sandy at the east cut. As a consequence, the castern portion is considerably drier and would suffer more in case of a drought, which also proved true during the past season, as the sunmer of 1891 was exceedingly dry. The meteorological data for this place for the months May-October, inclusive, are given in the following table. For the sake of commarison the total rainfall for the same months last year, and also tho normal rainfall (average for two years) are given in the table.

Meteorological data May to October, 1891, for Madison, Wis.*
RAINFALL IN INCHES.

* From Olservations made at Washburn Observatory.

TEMPERATURE OF。

	May.	June.	July.	Aug.	Sept.	Oct
Maximum temperature	78.0	88.0	86.0	92.0	90.0	83.0
Miрiшит.	32.0	44.0	48.0	46.0	35.0	19.0
Mean	56.0	67.2	66.6	68.4	67.0	45.4
Meau normal	57.8	67.2	72.7	69.4	61.0	48.5

It will he noticed that the precipitation for 1891 for the summer months was ouly 11.(12 inches, or about half of normal and less than half of last year's, during the same months. Up to July 7 the prospects for a large yield were most promising. Bef ween July 7 and August 26 there was not more than one good rain, and as a result the heets suffered greatly from the drought from this time on. Angust, September, and October all being very dry, the growth of the beets was checked, and a small field of heets, to some extent abmormally rich in sugar, was the result. May, July, Angust, and October were colder than the normal, while September was considerably Wamer. With a proper supply of moisture there is, however, little doubt but what a good crop of beets would have been harvested.

VARIETIES PLANTED.

The following eleven rarieties were planted on May 26 and 27: Le Maire's Riehest, Simon Ledizando, Vilmorin, Kleinwanzlehen, Bultean Desprez, Desprez B. © R., La Plus Liche, F. Kroemer, O. B. S. \& Co., French, (ierman. The first uine varie ties were obtained from Oxhard Beet Sugar Co., (frand Island, Neln., and the two last varieties from the United States Sugar Experiment Station at Schuyler, Nebr. In all, 183 rows were planted. The length of each row was 190.6 fect, and the distance between each row 30 inches; the seed was planted thicker than last year; a fter last thiming the beets stood 4 to 6 inches apart in the rows. From 14 to 22 rows were plauted of each variety, these being planted in the order given above, starting from the west end of the plot. The plot was cultivated on June 10 and 11 with wheel hoe, June 15 with narrow tooth single cultivator, June 22 to 26 the plants were thimed and hoed and a horse cultivator run through the rows. At this time the plants were about 3 inches high. The horse cultivator was run through the rows again ou July 2, 14, 31 , and the weeds in the rows were destroyed by hand hoeing July 20 to 23 and August 1. The harvesting was done by plowing a furrow close up to the beets; after thus laying them bare they were easily pulled and thrown in a pile. After all beets were thrown in piles they were topped and drawn by team to the farm root-cellar, after having tirst been weighed. A basketful of each load was takeu out to be washed and the per cent of dirt adhering to the beets thus obtained.

The following gives the time spent in growing the rrop of beets, and also the cost, estimating the wages for a man 10 cents an hour, for man and horse 15 cents, and man and team 25 cents per hour:

$$
\text { Cost of growing a crop of bects from a } 2 \text {-acre field. }
$$

\qquad
Plowing and preparing the land (allowed).
$\$ 2.00$
Planting and cultivating the crop:
304 hours' time for one man
22 hours, man and horse 3.30
Harvesting and hauling the crop:111 hours' time for one man11. 10
28 hours for man and team 7.00

T'otal

53.80

From this field we obtained a little more than 14 tons of washed beets (as we shall see presently), which would make the total cost of growing and harvesting a ton of beets $\$ 3.76$, illowing the tops, which yielded mose than 4 tons from the phat, to pay for rent of land, the cost of seed, and wear of machindry. Last year our beets yielded more than 20 tons per acre on average. This yield may be cousidered slightly above average for grood land and cultivator; but if we take 15 tons as au average yield per acre we get the cost of raising and harvesting 1 ton of sugar beets 中骨. 46 , assuming 2 the cost of harvesting and hanling the beets double the amount charged in the above table. The average price per of beets during the past season was, in Nebraska, $\$ 3.50$, in: California $\$ 1$, in Utah $\$ 4.50$. With the average price of $\$ t$ paid for the beets the net income from one acre would be $\$ 23$. Doubtless the cost of growing the arop could be considerably reduced by growing the heets on a larger scale, and by the application of machinery that will suceessfully pull the weeds in the rows between the beets. (On the other hand, the cost of hauling the beets would be larger with a greater distance to the factory -an item that would easily swallow up all protit if the distance is too great.

EXAMINATION OF IBEETS GROWN AT UNIVEIRSITY FAIRM.

The berts wore sampled and analyzed september 26, 1891, and also at harvesting time, October 26. Three beets were selected for analysis, washed and dried, a quarter section of each beet cut and grated toyether, the pulp put in a bag, and the
juice pressed out. The specific gravity of this was then observed, and the clarified juice polarized. At harvesting time two or three different samples of each variety were taken, and the results averaged. The sugar in the beets was determined in these samples by the alcohol method of Tollens-Rapp-Degener (Koenig, Unters. landw. wicht. Stoffe, 1891, p. 436). The results of the analyses are given in the following table:

Sugar beet season, 1801.
SAMPLES TAKEN SEPTEMBER 26.

Name of variety.	Averace weight of beets.	Solids in juice.	Sugar in juice.	Purity coefticient.	Sugar in the beets.
Le Maire's Richest	pounds. 1.32	Percent. 19.05	Percent. 15.71	82.5	Fer cont.
Simon Lefirande..	. 88	19.64	16.45	83.8	
Vilmorin	. 77	20.54	17.26	84.2	
Kleinwanzlebener	. 62	21.82	18.75	85.0	
Bulteau Desprez.	. 82	22.62	19.47	86.1	
Desprez.	. 50	21.05	17. 67	84. 00	
La Plus Richo	. 75	22.40	19.37	86.6	
E. Kroemer	. 55	23.00	19.44	84.5	
O. B.S. \& Co	. 48	22.40	18.38	82.0	
French	. 43	23.05	28.43	88.6	
German.	. 55	24.15	20.59	85.3	

SAMPLES TAKEN AT HARVESTING TIME, OCTOBER 26.

Le Maire's Richest	1.28	19.72	16.97	86.1	14.54
Simon LeGrande.	1.08	18.52	14.99	81.0	13.27
Vilmorin	. 71	21. 07	17.95	85.2	15.63
Kleinwanzlcbener	. 69	21.77	18.78	86.3	15.70
Bulteau Desprez.	. 61	20.69	16.84	81.4	15.67
Desprez.	. 73	21.38	17.28	80.8	14.87
La Plus Riche	. 57	22.23	18. 24	82.0	15.50
F. Kroemer	. 49	29.79	19.35	84.9	15. 99
O. B. S. \& Co	. 53	22.25	17.81	80.0	15.61
French	. 70	21.25	17.37	81.7	16.17
German	. 37	23.86	20.53	86.1	17.56
Average of anaryses, October 26	. 71	21.41	17.83	83.3	15. 50

The analyses of the samples taken September 26 agree as well as could be expecterl with those of the samples taken at harvesting time. The latter samples were taken from the harvested beets when a good idea could be obtained of the average size of each variety. It may be said, in general, that the quality of the beets did not improve after September 26, and it is not likely that the yield was increased perceptibly during the month of October, owing to the extreme dryness of the soil. The beets were very small, averaging ouly about 11 ounces for all the varicties. The average per cent of sugar (sucrose) in the juice at harvesting time was 17.83 per cent, ranging from 14.99 to 20.53 per cent. The average sucrose in the beets was 15.50 per cent, with 13.27 per cent and 17.56 per cent as lowest and highest limit. By dividing 15.50 by 17.83 we find that the beets contained 86.9 per cent of juice on an average, showing that the dry season produced beets with unnaturally high sugar content and with a low percentage of juice.

It will be noticed that the percentages of sugar increase as we go down in the table-that is, with the beets growing farther east on the plot. We saw that the soil was drier and perhaps also poorer in the eastern part of the field than in the western, and the beets were smaller in size and richer in sugar tho farther east we go in the field. As a rule, size and sugar content of the beets stand in inverse ratio to one another.

The following tahle will give the necessary data with reference to yield of bects and of tops from the plat and the estimated yield of beets and of sugar per acre:

Ficld of bects and of tops.

No. of rows.	Name of varicty.	Beets from plot.	Topss from plat.	Dirt on beets.	Washed beets per acre.	Sugar per acre.
22	Le Mairo's Richest	Pounds. 4,8.8	Pounds. $1,570$	Fer cent.	Pounds. 17, 651	Pounde. $2,566$
18	Simon LeGraudo .	4, 204	1,334	4.4	10, 473	1,390
16	Vilmorin	2,994	654	9.7	15, 494	2, 431
14	Kleinwanzlebener	2,80t	1,008	13.1	15,960	2,506
14	Bulteau Desprez	2,624	772	14.7	14, 663	2,298
20	Desprez	3,534	768	8.9	14,758	4, 195
18	La llus Riche	2,780	632	13.3	12, 280	1,903
16	F. Kroemer.	2,188	504	12.5	10,973	1,755
16	O. B. S. \& Co	2,355	568	12.4	11,745	1,883
14	French	1,945	466	12.4	12,284	1,986
15	German	1,701	460	14.8	8,860	1,555
	Total from plat, 1.945 acr Average per acre......	31,957	8,736		14,677	2, 267

The beets yielded a little more than 7 tons to the acre and a little more than 1 ton of sugar to the acre. Last year under favorable conditions of weather the yield was 15 to 26 tons per acre, with an estimated yield of 2 to $3 \frac{1}{2}$ tons of sugar per acre. Owing to the extreme dromght, the like of which according to the testimony of many old settlers has not been scen for a generation with us, the beets yielded less than a half crop. The yield of 7 tons to the acre may therefore be considered the very lowest returns which will be obtained where good cultivation and care are bestowed on the beets with us.
No comparison can be made between the different varieties as regards quality or yield, the differeneo between the different parts of the field being greater than that between the different varieties. The varieties being under the most favorable conditions (on the lowest ground, which contained most moisture) gave the largest yields per acre of both beets and sugar.

BEETS FLOM FARMERS IN DIFFERENT PARTS OF TLE STATE.

One thonsand pounds of imported white imperial sugar-beet seed was bought hy the station last spring from the Menomonee Falls sugar Company, and distributed in pound packages to 851 farmers, requesting them to keep notes ats to the growth and cultivation of the beets and to formard samples of the beets grown for analysis to this station in the fall. Owing to the drought, the beets did not do well with a large mumber of farmers, and many paid but littlo attention to them as a consequence; in all, 373 samples of beets were received and analyzed by the writer. Twenty samples were forwarded by mistake to the U. S. Department of Agriculture in Washingtom, I). C., and analyzed hy their chemists. Of the farmers receiving sugar-heet seed from us, 33 reported failure of the crop, and four wrote they did not plant the seed. The samples analyzed were all from the White Imperial seed sent out, exeept where otherwise stated. The 373 samples came from fifty-nine comnties in the state, making only nine counties that were not represented,

Most portions of the State suffered greatly from the dronght, although not all as much as the central part. The following table will give an idea of the distribution of rain during the summer months at 17 weather-service stations in different parts of the State. The table is condensed from data fumished by Mr. W. L. Moore, forecast official, Milwakee, Wis., to whom credit is due for the favor:

Rainfall May to October, inclusive, 1501 , in inches.

Name of station.	County.	May.	June.	July.	Aug.	Sept.	Oct.	Total.	Normal mecipitation.
Prairie du Chien.	Crawford	1. 65	2.95	1.76	2.32	1. 73	1.82	12. 23	
Madisom	Itane	1.42	33. (in	2. 64	1.41	38	1.49	11.02	1.7
Ean Claire	Eau Claire	2.00	5. 40	2.20	1. 70	1. 70	3. 10	15.47	
Fond du La	Fond du Lac.	. 44	2.73	2.94	2. 17	. 58	1. 63	10.49	
Watertown	Jetjerson	1.83		2.25	1.47	. 48	2.06	*8. 09	
Kenosha.	Kenosha.	1.52	4.27	3.67	1. 62	. 72		*11.80	
Lincoln	Kewannee	. 8.3	3.12	1.85	3. 63	1. ${ }^{2}$		*11. 81	
La Crosso.	La Crosse	. 69	5.62	2.93	1.48	1.77	1.87	14.35	23.
Manitowoc	Manitowoc	. 29	3.73	2.16	2.42	. 76	1.70	11.06	19.7
Milwaukee	Milwaukee	1.47	4.98	3.57	2.83	. 18	1. 66	14. 69	19.8
Appleton.	Outagamie	. 01	5. 20	5. 20	1. 45	. 69	1.43	13.98	
Jamessille	Rock	21	5.19	3. 23		18	2.35	${ }^{11} 11.15$	
Hammond	St. Croix	1. 19	7. 61	2. 73	2. 20	1. 48	1.9\%	17. 19	
Shawano	Shawano	. 11	2.95	1.70	2. 79	1.13	1.23	9.91	
Medtord	Taylor.	. 46	3.54	2.27	2.08	2. 60	3.20	14. 15	
Hillsborn	Fernon	. 11	3. 47	\cdots	1. 36	1. 04	- 0 0,	11. 59	
Centralia.	Wood	. 37	3. 46	$\because .85$	3.48	$\because .25$	1.52	13.96	

* Total for four months.

We gire here the results of the amalysis of sugar beets made by the U. S. Department in Washington. The heets were forwarder during the first days of October and must have been harvested between September 15 and 25 .

Analyses of sugar beets grown in Wisconsin, 1801. Analyses made by U. S. Department of Agricullure, Washington, D. C.

$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Name.	Post-offico.	County.	$\begin{array}{\|c} \text { Arer- } \\ \text { ago } \\ \text { weight } \\ \text { of } \\ \text { beets. } \end{array}$	$\begin{aligned} & \text { Sugar } \\ & \text { in } \\ & \text { juice. } \end{aligned}$	$\begin{aligned} & \text { Singar } \\ & \text { in } \\ & \text { beets. } \end{aligned}$	Purity*	Variety.
				Ounces.	Pr.ct,	Pr.ct.	Cocffi cient.	
15\%38	Auc. Kreamer	Green Bay	Iromn	331	9.44	8.97	83.5	Imıerial.
15907	E. T. Jixilorf.	Dorchester.	Clark	$12 \frac{1}{3}$	12.88	12.22	74.9	Kloinw:inz leben.
15:208	do	do	.do	12	15. 42	14.65	83.1	Do.
15201	John Michler	Doylestow	Columl	179 ${ }^{\text {a }}$	8. 15	7.65	61.7	Do.
$15 \% 60$	W'm. Kube	Richwood.	Dodge	$21 \frac{1}{3}$	8.78	8.27	69.6	Imperial.
15230	Jas. Zeller	Calumetville	Fond du Lac	$30 \frac{1}{3}$	11.34	10.77	77.7	Do.
15969	1. Lammmorr	Montfort	Grant.	15^{3}	12.61	11.98	80.0	Do.
15206	It. R. Roberts	Monroe	Green	$14 \frac{2}{3}$	12. 59	11.96	77.3	French.
15209	Henry Osborn	Brooklyn	. . do	16	11.61	11.02	76.0	Kloinwanzleben.
15202	J. C. Joomis	Alma Center	Jackson	$32 \frac{3}{3}$	11. 32	10.75	76.6	Do.
15971	Jacob Reth	Ahnapee	Kewaunce	$6 \frac{1}{3}$	13.26	12. 60	77.5	German.
15173	L. Vanghan	Unity..	Marathon.	$10 \frac{1}{3}$	15.65	14.87	82.4	Eleinwanz. leben.
15174	Z. G. Taylor	Packwankee	Marquetto	20	10. 20	9.69	65.0	Do.
152325	W. E. Volk	Oconto Falls	Oconto ...	$21{ }^{\frac{2}{3}}$	13.37	12.76	78.6	Do.
15.55	G. F. Wiesema	Olivet.	Pierce	19	11. 29	10.72	72.0	Imperial.
15169	A. Anstin	Janesville	Fiock	$60{ }^{2}$	9.17	8.71	70.1	Do.
15.111	E. Hubbell ...	- do	- . do	14,	12. 89	12. 29	72.9	Do.
15453	Thos. Matelie	Elk Creek	Trempealeau	$34 \frac{2}{3}$	7.38	7.10	65.3	Do.
153236	M. J. Warner .	-ivilo.	-.do	$16 \frac{1}{3}$	12.24	11.62	77.3	Do.
15213	Jno. E. Hughes	Wales	Waukesha	317	10.58	10.05	71.1	Do.
				$2: 1$	11.51	10.93		

*i. e., the ratio of sugar to the other solids in the juice of the beet.
As will be noticed, nearly all the analyses come rery low, only two samples analyzing above 15 per cent of sugar in the juice, and only nine out of twenty above 12 per cent. Doubtless the early date at which the beets were harvested will largely explain their iuferior
quality. No further data are on hand as regards soil, period of growth, or yield of beets from an acre of land.

We shall now give the analyses of samples of sugar beets made at this station during the past fall, along with such additional information as to the culture of the beets as it has been possible to gather. The analyses are arranged alphabetically aceording to counties and according to post-offices within each county. The data for each county are averaged so as to give the average size of the samples received from each county, the yiclds of beets, solids and sugar in the juice, and the purity coefficients.
Sugar bects in Wisconstn, season of 1891, arranged alphabetically according to counties.

19864-No. 33-7

Nio．	Name of grower．	Post－sidic．	County	Time of planting	Time of harvest． \qquad ing．	Soil．	Average weight of beets．	I in lid per acre．	Solirls in juic＇e．	Sugar in juice．	$\begin{aligned} & \text { Puity } \\ & \text { curti- } \\ & \text { ciont. } \end{aligned}$	lidinarks．
$2{ }^{2}$	M．Surasin．． Ph．Rhr－ingha	Cliplon＋w Fall ．alo	（hipurwa	May May M	Oct．${ }_{\text {Oct．}} 8$	Sandy Samil Soam	$\begin{array}{r} \text { Pounds. } \\ 3.10 \\ 4.0 . \end{array}$	l＇onmis．	$\begin{array}{r} \text { Per cent. } \\ 13.3-2 \\ 1.1 .653 \end{array}$	Per cent． 9．9： 11.7	$\begin{aligned} & 71.8 \\ & 3.1 .0 \end{aligned}$	［＂mmannrel． Hog manure．
	Averag						2.99	15．3：30	14．97	11．181	73．	
27	F．Muther	P＇urtiss	11．11k	May 10	Oct． 10	Sandy claty．．．	1． 107	6． 11.0	16．\times－	14．112	м：3，	Stork mannure．
2	F．W．Kalepp	Dorehester	．．slı	May 13	Oct． 15	Blark hımus	1． 20		17.45	1：3．31	78	I）o．
29	Matt．Wיrls．	Neillsvill．	． d／1	May $2: 3$	Oct． 10	Sandy loam	1.93	32，6， 0	15.15	12．34	－゙ロ． 11	Crmanmued．
30	1．Ramula！！	．．．slo．	－M11	May $\because 1$	Oet．12	Loam	1． 4.7	：11．120	17．：3．	14． 31	ご，	I） 0.
31		storlincr	．．llı	May 7	Sept． 23	Sandy clay．	1．7x		14．	111． 79	74．11	Do．
	Arerab						1． 49	41． 2 （i3）	16． 25	12．3：	79.5	
S	K．1．K．mow	（0）1mbhus	（＇olmmbia		Nus． 5	（＇lay	4． ご $^{\prime \prime}$		17．40	11． 29	18.8	I：nnravd mannre．
：$: 3$	Th．Intr－vent		．．do	May	Wer． 20	Rlark soil	， 11	1．921	17． 2	11． 27	65.4	1mmanmuml．
： 1	J．［1．limal．11	Fall River	． 110	May 10	Oct． 16	Samly	\because	$1 \because, ~ v i r)$	15．9！	10．97	69.11	I）
：i．）	F Hopkins	L，＋rils．．．．	．．lı，	May 11	Oct． 11	Prairie	$\because 17$		15．m	$1 \ddot{\square}$	77.4	Batnyand manure
\because	Ch．Schlee	Portage	do	May 1t	Oct．16	sambly	，8：3	［11， 8.41	（2）．14	1．5． 70	78.11	
37	J．L．（＇urtis．	Poymitt－．	．ilo	June 5	Oct． 9	Clay	$\because 17$		14.811	11.711	79.3	
							$\because 14$	A． $2+11$	119．8：	12．：30	$7 \because 8$	
38	A．Snatek．	Eastman	Crawford	May 21	Oct． 13	Red clay．	8113	44， 5131	11． 7.7	7.61	64.7	Hog manuro．
$3: 1$	C．C．Pickett	Hurlburt	．．dos	June 1	Oct．13	Black liona	\cdots		13．18	A．sl	1iti． 9	
411	11．Wrachter．	Prairie dı Chie	． 10	May 20	Oct． 15	Simity loam	4． $3:$	？2，sin	$1 \geq 9 .$	！1．sio	7ii．：	［1m 1 ．1
41	1i．J．simuetier	．．do．．．．．．．．．	．do ．	May 9	sept． 20	Clay：	1． T	1－1006	1s． 14	14．14	77.6	Do．
	Ar＊ッ！						4．36	80， $3: 3$	14.01	11109	$\because 0$	
4．2	L．A．Halvorson．	Adsit	I）amr	May 17	Oet．12	Limht（ lay	1． 6.5	$\because 1 .: 3+1$	13．13	12．9）	71． 2	Do．
43	（ \therefore 1．Johnion．．．	Brooklyn	．．．ils	May 15	Oct． 20	Hlack soil	1． 8.3	$1^{11} .1069$	i－．．） 29	19．＊＊；	内i．\because	Parmsard mannre．
4	J．C．（＇ammmi	Hanerville	．Ala	May 15	Oet．1：3	sindy	$\because 11$	4：3， 63 ；	15．40	11． 3 \％	77.7	Stock mantire．
45	E．Evans．	MeFarland	．．lo	May 23	Oct． 1	Slack loam	． 8		17．4．	14.56	83．：	C＇mbanmmied．
413	R．Williamson	Mardinon	． 11	May 10	Oct． 7	Clay	$\therefore 10$	2－3， 110	15．18	11． 26	74． 2	Do．
47	W．H．P：mulli．	．． 10	． 10	May 12	Oct． 15	Ihark loanm．	． 9	$\because 6.4110$	2．1． 81	15．	715	Do．
48	I．Sachtien ．．．	d／1	． 110	May 30	Oct．23	Clay．	1．93	1！ 1.310	1～．2．2	14． 3	79． 4	Horse manure．
49	H．stoppluwerth	\cdots－${ }^{\text {do }}$ ．	．do	May 16	Nor． 5	Heavy clay	4．：$: 1$	：31， 160	16． 2 s	13． 48	S．${ }_{\text {S }}$	
510		Marsiall	．．do	May 3	Nov． 3	13lack soil．．．	1．311		17．18	12.4	72．4	
51	L．Lawnence．	Midilleton	．do	June 3	Oct．${ }^{20}$	Sandy loam．．．	1． 27	（ $: 3,411$	1ti． 16	10． 99	69.6	T＇mmanmred
5	J．R．Mintersion	liley ．．．．	．（1）	May 24	Oct． 10	Clay ．．．．．．．	1． 15		17.01	1\％．6\％	80．\because	

\＆oㅇ

 Cow manure，Horse manure．
Do．
Unmanured．
Barnyard manure．
Unmanmerl．
Stock mamure．
Stock manure．
Barnyard manure．
Horse manure．
 －
 01
0
0
 0
8
0
0
 E

 	H	

に む二 siossigoso	$\xrightarrow{\substack{\text { si }}}$	
1		

2
2
 \qquad
15

	8	$\begin{aligned} & \text { जSE } \\ & \text { ESE } \end{aligned}$

$\begin{aligned} & 8 \\ & \stackrel{8}{5} \\ & \stackrel{1}{5} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 10 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$		7 7 7
$\begin{gathered} \overparen{\sim} \\ \sim \end{gathered}$	12		$\left\lvert\, \begin{aligned} & 0 \\ & 8 \\ & 6 \end{aligned}\right.$

 \qquad
\dagger Beets considerably wilted

Sugar bects in Hisconsin, season of 1831, arranged alphabetically acrording to counties-Continned.

101

No．	Nimme of ¢rewer．	Iost－othice．	（＇ounty．	Time of planting．	Timu of havest－ ing．	Suil．	$\begin{aligned} & \text { Arrage } \\ & \text { wightht } \\ & \text { of beets. } \end{aligned}$	Yieldi per acre	solids in juice．	surar in juice．	$\begin{aligned} & \text { Purity } \\ & \text { corfti- } \\ & \text { cicnt. } \end{aligned}$	Lemarlis．
147	H．Brennecke	Antimo	Langlate	May 20	Oct． 10	Sandy loam	Pounds． 1． 60	I＇ounde． 48,120	$\begin{array}{\|r} \text { Per cent. } \\ 15.85 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 12.91 \end{array}$	81.4	Unmanured．
148	Thos．Mart	Merrill	Lincoln	May 30	Oct． 12	Clay loa	． 68	16， 355	17.00	14.90	83.5	Horse manure．
149	F．W．Rad	Kiel	Manitowo	May 10	Oct． 23	Saud	． 63	9，600	18.10	14． 47	80.0	
150	A．Bleser	Manitowoc	．．．．to ．．．	May 15	Oct． 4	Black loam	1.48	9，	15． 40	11.99	77.9	Unmanured．
151	H．C．Koclı．．．．		do	May 8	Sept． 15	Sandy loam	． 98		18． 50	14．79	79.9	D0.
	W．Wedencamp	．．．do	do	May 26	Oct． 5	Loam．．．．．．	5.70		17． 22	13． 74	79.9	Baruyard manure．
153 154	B．Doolan ．．．．．	Maple Gro	－．．．do	May 15	Oct． 3	Sandy loam	2． 63	27,000 16,000	15． 22.	11．70	76.9	Do．
155	J．Thielke	School Hill	do	May ${ }^{\text {May }}$	Oct． Oct． Oct	Light soul	1． 50 4.40	16，000	14．05	10.82 10.43	71.9 71.2	stable manure． Do．
156	Max Bochm	Tans．．．	do	May 15	Oct． 5	Black loam	3.85	40，511	13．70	9.80	71.5	Do．
157	J．lieznicek			May 30	Oct． 12	Gravel．	1．20		16.15	12.52	77.6	Unmanured．
							2.49	$\cdots 3$	15． 44	12．	79.3	
15\％	James firaham	Colby	Marat	May 23	Oct．	Clay loam	71	31.302	15． 11	11.54	76.4	Ashes．
159	Th．Wrhmmath	Ieminy	dr	1：ay 15	Oct． 15	11ark sul	1． x		14．7．\％	11． 4.4	70.7	Mamurei．
16 iv		Hithter．	do	\ay	Oct．	Loamm	$\because 114$		16．72	12． 47	74．	Barndard manare．
162	A．Priest	Mosince	do	May 25	Oct． 16	Loant	1． 10	73， 130	16．34	12.52	76.7	Unmanured．
16：3	L．Spinder	Rozellvill	do	May 4	Oct． 8	Sandy clay	1． 70	15，990	14． 70	11． 73	79.8	Stable manure．
164	F．Fe\％he：	W：はいいい	do	May 12	Oet．${ }^{\text {d }}$	131wh mil	1．115		19．10	15．95	－ 3.5	
$1{ }^{165}$	A．Baeseman	Wein		May 11	Oct． 26	Clay．．．	1.03		17.88	13． 21	73.9	
166	F．Batunam			May 10	Oct． 30	，	73		18.78	14.24	75.9	Unmanured．
	Average						1.25	32,106	16.55	12.67	76.5	
167 168	J．J．O＇Leary H Trefficr	Peshti	Marine	May 10 May	Oct．14	Sandy l	3．32	57，064	13.45	8.59	63.8	Stable manure．
	Arerage						3． 26	57，064	13． 59			
169	H．L．Mrome	W：amat	Milい：at	May	Oet．	simely loan	1． 29	33，6if1	1－13	12.15	67.	Barnyard manure．
170	F．A．Meissner	Cashon	Monr	May 16	Oct． 12	Clay	82	61， 44 t	18.82	16． 15	8．5． 8	Stable manure．
171	A．Boetther．．	Kirly	． c （1）	dune 20	Oct． 10	Sandy loam	1.68	3，150	14.0	10.00	71.3	
$17: 3$	A．G．Aylesworth	Leon．．．	do	May 20	Oct． 23	Loan	1． 85	25， 210	14． 70	11． 30	76.9	Horse manure．
174	Willian Sclumitz	¢ortama		May 19	Oct． 13	Clay	1． 25	26， 448	15．93	12.91	81.2	Unmanured．
17\％	A．Schlaver，sr	Sparta．	do	June 4	Oct． 19	－Lordo	${ }_{2}^{1.58}$		13． 286	10．94	71.6 68.2	Do．
176	Roswell Smith	．．do	do	May 24	Oct． 19	． 316	3.75	16，988	16.72	12． 41	74.2	Do．
17%	\％K．Davis	T．do	do	May 20	Oct．－ 4	Samly	1.45	24，000	19．95	13．32	70.0	Baruyard manure．
178	F．Kemmow ．	Toma		May 8	Oct． 1	Loani	1.90		16.80	14．21	84.6	Do．
179	E．G．Kinne．．	．．．do	do	May 29	Oct． 9	Simdy loam	1.48	．．．．．．．．．	15．52	11． 69	75.3	Unmanured．

3anyard mantate
D\％．
Do． Do． Mamured．
范

 Stable manure．
Tmmanued． Stable manure．
Comamured．
Vumanured．
Do．

 \qquad $\left\lvert\, \begin{aligned} & \because \\ & \ddots= \\ & i=1\end{aligned}\right.$

$\begin{aligned} & \text { SO } \\ & =\mathbf{0} \\ & =\mathbf{i} \end{aligned}$	
	戌
感き	
$\begin{aligned} & \text { 曷 } \\ & -x \end{aligned}$	気 －$_{11}^{5}$
たにき	
べできi	

118 숭 1 ．

$\therefore 18$
$\infty=1$

 Ontazamic ミニン ニ

ショミ

Warman Millis
L－10：
sриие
$\begin{aligned} & \text { Appleton } \\ & \text { Berher'... } \end{aligned}$
Inaugert．
New London
$\begin{aligned} & \text { Seymmir. } \\ & \text {-rto } \end{aligned}$
Shior torr．
Crattou
saukvild．
Arkansaw
1 11：and
d10
sceola

$\begin{aligned} & 180 \\ & 1: 1 \end{aligned}$	B．How watah L．1）．IV Y：
18：	A．smott
18：	J．S．Harvey
184	A．W．Boettcher．
18.5	fos．Woulier
146	James Bedore，jr
187	Titnes Tafora ar．
180	A．Kirchmer
189	（＇arl Birr
190	E．J．Martimatr
191	A．Dudtru
192	J．V．Herriman
193	J．A．Schweinmw
	A veram．
194	E．Gardmer
195	A．Beeher
196	C．Bochler
197	J．P＇．Hinz．
198	C：Kreutabors
199	H．Wiekert
200	G．Brever
201	H．W．Kickhofer
202	Jushua Bull
203	E．Nickel
204	1）．M．Tormy
20.5	M．H．True．
206	W．D．Barnes
	Arrage
207	（Thas Mucher
208	F．Musbach
209	Jos．Flcinzm\％
	Arerate
210	F．Pittman
211	A．Fiallst
212	A．J．Viazk
218	J．Wisinger
	Areras
214	J．O．Marber

104

ค์										
$\stackrel{\infty}{\infty}$	$\left\|\begin{array}{l} \dot{Q} \\ \dot{心} \end{array}\right\|$	\rightarrow か－000－小r 	$\begin{aligned} & \text { स } \\ & \text { सी } \end{aligned}$		$\begin{aligned} & \infty \infty \\ & \text { Nis } \\ & \hline \end{aligned}$	－ 50 にーッが だきだぎぐに	$\begin{aligned} & \mathrm{o} \\ & \text { in } \end{aligned}$	 	が	
$\begin{aligned} & \text { © } \\ & \text { © } \\ & \text { ci } \end{aligned}$	$\left\|\begin{array}{c} 3 \\ 3 \\ 3 \dot{3} \end{array}\right\|$		$\begin{aligned} & 8 \\ & 180 \\ & 109 \end{aligned}$		$\begin{aligned} & =10 \\ & \text { تí } \end{aligned}$	がッジシ	$\begin{aligned} & \mathbf{o} \\ & \text { Si } \end{aligned}$	 	$\stackrel{-}{\square}$	
$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & に \\ & 0 \\ & \hdashline \end{aligned}$		$\begin{array}{\|l\|l} \underline{6} \\ 0 \\ 0 \end{array}$				$\begin{aligned} & \infty \\ & \hline-8 \\ & -1 \end{aligned}$	 	¢	$\begin{aligned} & \mid{ }_{10}^{x} \text { 엉 } \\ & \text { Sin } \end{aligned}$
$\stackrel{\bigcirc}{\square}$	$\left\lvert\, \begin{gathered} \hat{0} \\ 1 \\ 0 \\ \hat{8} \end{gathered}\right.$		$\begin{aligned} & \text { H } \\ & 0 \\ & 80 \end{aligned}$			웅구ㅂㅜㅜ웅 	$\begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{0} \end{aligned}$		－	
$\begin{aligned} & \mathrm{A} \\ & \text { अ } \end{aligned}$	$\begin{aligned} & 0 \\ & 18 \\ & -1 \end{aligned}$		$\stackrel{\rightharpoonup}{9}$		$\left\|\begin{array}{c} \mathbb{N} \infty \\ -\infty \\ -\infty \end{array}\right\|$	－inisinisi	$\begin{aligned} & \infty \\ & \sim \\ & \hline \end{aligned}$	 	－	$\cos _{-i}^{\infty} \underset{\sim}{\infty}$
			）							
¢				9ㅣㄱํㅜㅜㅜ						¢1－0
$\stackrel{ே}{0}$										
8				－98						욱
ஜ゙			；		害			 		
$\stackrel{\square}{\square}$									ל	$\begin{gathered} \text { cose } \\ \text { Hin } \\ \hline 10 \end{gathered}$
$\stackrel{\square}{c}$	亠		¢ \vdots \vdots \vdots		先					
								 	发	
$\stackrel{\infty}{9}$		の9．		佥に	萵					ぶฒ゙っ

No．	Name of grower．	Iか，whlic．	＇ounts．	Time of planting．	Time of hamest． シ1゙に	roil．	A veram wright of beets．	$\begin{gathered} \text { licild } \\ \text { IMrere. } \end{gathered}$	Solids in juice．	Sugar in 	$\begin{aligned} & \text { l'urity } \\ & \text { con-fli- } \\ & \text { cient. } \end{aligned}$	liemant．s．
20.5	（iew sichuhant	Little Bhack	＇1，！	May 8	（k．1． 13	Black clay	Pounts． 1.67	Pounds． $37,000$	l＇er cent． 18．8：	Per cent． 15．（1）	810	I＇nmanared．
2xili	Ferd Lindow	Merdford．．．	．．il．	May 10	（rat） 7	Sandy clay	1.91		17．11	1：6\％	79.15	Cithe mamure．
20	F．Helwig	d，	110	June 10	（18） 6	Loam．．．．．	$1 . \mathrm{im}$		1．i． \mathbf{c}_{1}	12．$\frac{18}{}$	81，\％	I＇musamueal．
2\％	Fral．Mamer	ds）	do	May	（1） 1.8	Clay	1． 20	23，200	16． 45	1：2．：31	81.9	Stable m，mume．
2 Ca	F．H．Welmam	（l）	d，	May is	W．t．12	santy loam．	1． 67	9．714	15.98	12．7	81.11	
$2: 11$	F．L．Dietrich．．	d，	d．	11：19 14	Wet． 15	Heary clay ．．．	2.92		12．83	¢	61.19	Catile mamure．
291	Jos．Erbem ．		du	May 1：，	（1．1．${ }^{7}$		1.73	9，600	15．72	1：3\％	81.9	Do．
$2: 93$	Jos．Recinolt	Whithery	1.	11：4 ：${ }^{19}$	Oct． 13	sandy loam．．．	.88 1.08		17.00 17.12	$\begin{aligned} & 11515 \\ & 1: 3,41 \end{aligned}$	$\begin{aligned} & 8.5,8 \\ & 70,1 i \end{aligned}$	1 mbamured．
293	K．F．Willener		（1）	May	Oct． lict． R	－．．．do	1.08	57，60	17.12 17.111	$\begin{aligned} & 13: 46 \\ & 1: 2.464 \end{aligned}$	$\begin{aligned} & 7 \mathrm{sin} .14 \\ & 71.4 \end{aligned}$	Fistile mathare． Do．
	1ヶッルーツ						1.54	17， 505	16．39	12.81	78．：	
	13．Tollefiom	Eleva		1．1．） 1.5	O．t． 15	Clay ．．．．．	1.98		15.90	19.21	76.5	S1raw mamure．
2en	1．11．11،11－－：1	Froncheill	．．dn ．．．	May	11．t． 27	Mild loam	． 58	24，75\％	17.85	1．i． 13	4.9	［＇manmued．
297	． 10	．d ${ }^{\text {d }}$	d，	Ma，	Oct． 27	．．．．ds	1.13	41， 216	18.48	15．57	4.3	Barny ：ad manare．
	Averen						1.23	34， 984	17．78	11．	－1． 3	
29.4	I．T．Rrinktun	（10．0n Vatley	Vッヶッ＂	11：4－	Nor： 15	Heary elay ．	3． 6.5	13，200	15． 56	11．411	7：\％	
3099	J．P．Riluy	Hilsimı	du1	May ${ }^{\text {Ma }}$	011 10.1 10	Clay ．．．．．．．．	1.115 1.38		15．75	110.12	194．	
301	A．H．Rolfie．．．	にowhtm	d，	May 16	61 1.1	Clay loam．	2． $2: 3$		13.50	9，	沙，	Barnyatal manure．
3ッ－＇	M．F．Hopkin	．．．do	d．	May 11	Oet． 14	．．．dı．．．．	1．．．）	26， 3.1	16． 28	1：． 19	\cdots	Umminured．
30：3	P．M1．Riand．1！		d，	May 12	（1）1． 15	Clay	1．92	$\cdots 1$	15． 811	12 sil	－1．：	Do．
304	Edgar Fioo．	Vallay		Jmie 1	（1）1． 27	Sandy loam	1．13		18．06	14． m	$\triangle 1.8$	1）
30.5		．．．．li＇	d，	． 1 alie 1	11.1	．．．dei	1．82		15． 86	11．79	$71 .: 1$	［ O ．
306	F．C．Clark	Victory	d，	May	W．t． 17	Heary clay	\cdots	38， 000	16． 8 \％	11．	io． 1	
\because	Hanry（lath．．．			May	On．t．it		1．5． 0	30， 000	18．： 3	14． 310	A11．${ }^{2}$	110.
302	F．H．Вн－lıин：	du	d，	June ${ }^{\text {\％}}$	（k）t． 31	Clay loam	1．is	2．2， 860	16． 38	13． 36	\therefore	10.
	A ver：ge						1.146	25，511	16． 13	12.19	I． 6	
309	A．W．Arwoorl．	Heary Irainie．	Walworlh	Mity 20	Oct． 31	Irairje loam．．	1．$\because 2$	18．610	20． 18	16．at	23.1	1） 0.
3111	（i．V．Werhs	L．joms	do	May 1.5	Oct． 14	Black muck	3． 3	85，375	14．15	11．26	7i．	$1) \mathrm{o}$
311	H．Larson	Sharma	do，	Mat 2 \％	Oct．2t	Clay loam	1． 111	18， 070	21.82	1． 27	83	1 ）
312	13．Lester		do	11：4 ：$: 1$	（bat． 20	Healy clay．	2－	46． 200	17.96	1：i 37	i4． 4	1 \％．
313	W．\％ohrlat	Vienna		May 12	Oct．1ti	11： 1 ，suil．．．	2． 31		15． 40	11． 10	i 1	1 ki ．
314	J．B．心mith．．	Whitewater	do	May 20	Oct． 14	Samay loam ．．．	2． 3.	34， 944	15． 4 V	11．（i）	7． 1	－

108
Sugar bcets in Trisconsin, season of 1531, arranged alphabctically according to counties-Continued.

109

We give below extracts from the remarks with which the different farmers accompanied the description of the beets sent in for analysis by them. The figures refer to the numbers in the preceding table:
3. Seed did not come up for a month after planting, June 14.
13. This variety does not yield as well as No. 12 , but seems to mature earlier.
14. Cutworms ravaged beets badly when they came up first.
16. No rain from April 25 to June 14, and none from July 1 to September 30, to wet the ground more than about au inch; in fact it has been the driest season that the oldest settler has seen.
19. Some insects or bugs hard on heets and rutabagas by side of them in the spring.

23,24 . Only one row harvested, hence the excessive yield.
30. I think in a good growing season I could get as many again from the same ground.
35,64 . The seeds lay in the ground for about four weeks before coming up.
54. Last crop grown on land wheat; the field was not manured for four years.
58. Harvested a great many beets that weighed 9 to 10 pounds.
62. Not more than two-thirds of a crop.
79. Cutworms destroyed fully one-half the plants.
80. Had the season been more favorable and they had received proper care and cultivation, the yield would have been three times as great.
81. The crop was nearly destroyed by cutworms.
85. This is not more than half a crop.
89. The like of the drought not seen in the State since 1865.
90. No rain for about three months to wet the ground.
92. I would rather plant potatoes and sell them at 25 cents a hushel and buy my sugar than to raise sugar beets.
97. Time expended planting, cultivating, and harvesting plat (one twenty-fourth acre), tweuty-eight and one-half hours. (This would equal an expense of $\$ 4.56$ per ton of beets, valuing one hour lahor for one man 10 cents, and the yield of beets 15 tons per acre; see further under No. 247.)
100. Some of the beets were entirely stripped of leaves by a black bug.
101. The beets seem to stand drought much better than other roots. Had turnus, carrots, etc., on same ground, and they are worthless. My cow relished them and gave a good flow of milk.
120. I think I could raise 40 tons per acre in good season.
143. I think I can raise 1,200 bushels to the acre.
154. It was too dry for the seed to spront until June 15, and then iusects gnawed the plants off. The plot was only half covered with beets.
156. Had some beets of 9 pounds weight.
160. There is not more than half the yield there would be in an ordinary season.
162. Judging from the very bad season here for this kind of crop, I think they would he a very profitahle crop to raise for any purpose that they can be used for.
167. Several beets weighed 9 to 10 pounds.
191. The seed did not germinate for nearly a month after planting, and then so unevenly that a careful transplanting could not produce an even stand.
193. Never had such weather in the last ten years.
199. Seed came up about June 25.
225. Beets are better than other roots for cows giving milk. They keep throngh the winter as good or better than potatoes.
235. Can be grown as well as potatoes, but, like everything else, the labor beats the balance sheet.
242. I have no doubt but that beets can be profitably grown if the rows are put far enough apart so the greater part of the work can be done with a horse.
217. It required 22 hours 35 minutes time for one man to plant, hoe, cultivate, thin, dig, top, and put in the cellar. Size of plat, 4,620 square feet. (This would
equal an exprense of $\$ 1.42$ per ton of beets, assuming cost of lahor and yich as under No.97.)
261. Obtained first preminm at the comity fair for the heets.

262 . Beets were searcely up by duly 4 ; growth began about September 1.
266. Not more than 10 per cent of seed germinated, on account of season being so dry.
205. Cutworms killed a good share of the beets.

302 . There was 1 pound of tops to 10 pounds of beets.
309. The season was unfavorable for most crops, nearly all summer being very dry. Com did not do more than half.
311. I noticed a black bug an inch long from the middle of July to the last of August, which iujured the leaves of the beets considerably. I have frequently noticed the same bug on potatoes. If you send me seed for next season I think I shall do cousiderably better, having leamed some by experience.
317. During the hot weather in Augnst swams of hack bugs, one-half an inch in length, went for the tops in places, making a clean sweep as far as they went, eating the tender part of the leaf, leaving nothing but the limb. The bugs remained about three weeks; the damage retarded the growth of the beets for a short time, but they recovered eutirely from the injury and most of them are quite large now.
Am satistied sugar beets would do well in this neighborhood. * * * My experience this year shows they are determined to grow in the soil here no matter how long the dronght or how many hags they have to contend with.
330. For growing beets manne gear before phating, to have manure well rotted. 342. The season being very dry the seed did not come up until June $2 \overline{5}$.

The seed being of good quality made a good stand. Had the season been favorable the yield could have been at least one-half more. Considering the very dry season I think sugar beets withstand the drought hetter than the Yellow Tankard mangel planted along side of them, the beets being deeper rooted.
351. The season has been the driest that I erer experienced in Wisconsin. It is really wonderful that I got as good a crop as I have harvested.
352. I think a common season ought to donble the yield.
353. The seed lay in the ground six weeks before germinating. With the same growing weather as in 1890 should have hat twice the amome, for my land was far better than last year.
365. It has been an extremely dry season. Consider them almost a total failure.

From the tables of analyses we deduct the following statements:

est amalysis, 1891	7. 12
Highast	-3.is
Average of 373 analy	12. 56
Average estimated y	31, 090

The average per cent of sugar in the juice for this year came at 12.56. This may be considered a fair average, although there is evitently considerable room for improvement. The average for Germany during the past season is estimated at 12.55 per eent. Last year the bects analyzed at this station (93 in all) a araged 12.46 per cent of shar in the juice. Only eleven famers sent in beets both years; the average of the samples fumished by these were, in $1890,11.85$ per cent; in 1891, 14.30 per cent of shgar in the juice, or 2.45 per cent increase in 1891. This would tend to show that the main reason for the rather inferior quality of beets grown by many farmers lies in their unaequintance with the sugar beet and its enlture; excepting the eleven famers who furnished samples both years, there were only a rery few who had had any previons experience in growing sugar beets. Another reason lies in the fact that the farmers are apt to send in the largest beets grown, thinking that the larerg beets they can grow the better; doubtless the andyses given in the above table are
lower in a large number of cases than truly representative samples would have shown.

Fifteen counties fumished beets analyzing ou the average above 13 per cent of sugar in the juice; beets analyzing on the average above 14 per cent were received from the following comties: Door, Green, Jefferson, Lincoln (only one analysis), lepin, Racine, Sauk, Trempealean, and Washington. These counties do not belong to any single section of the State, but are seattered all aromed, in the western, sonthern, and northeastern portion of the State. This would imdicate that successful sugar-beet culture with us is more a question of skill in growing than a question of soil. In any part of the State there is soil well adapted to sugar-beet culture; what is wanted is farmers who mulerstand the cnltivation of the beets, and enongh of them within a limited area to furnish a sufficient quatity of beets to supply a beetsugar factory with 200 to 300 tons of beets daily for a campaign of abont three montlis. This means the product from not less than 1,500 acres of land in an average year. Whenever these conditions are present, beet-sugar factories will be established in our midst; capital will doubtless be ready to invest as soon as there is any prospect of successful outcome. But it would be simply throwing away a fortune to enter upon the melertaking with no certainty of the supply of beets. A morlern beet-sugar factory will cost at least $\$ 150,000$; before beginning on the enterprise all conditions must therefore be carefully studied; the question of supply of beets is perhaps the most important of these. 'The results of the work done by this station during the past three years indicate that Wisconsin can grow beets in sufficient quantity and of good percentage of sugar; if this is correct, manfacturing of beet sugar will be a success with us when enough beets can be obtained to supply a beet factory.

Wryominy.—Fifteen samples were reeniverl fom this State, of whirh ? came from Albany Comety. The mean ments fiom this county show 14. Be 2 per cent of sugat in the heet, with an arerage weight of 7 ounces. The best results, all things considerem, from the state are from Crook Comuty, althongh only three samples were sent, showing 13.75 per cent of sugar and an average weight of 16 ounces.

In closing these remarlis on the data obtained from the different States and Terifories, it may he well to call attention to the fact of the remarkable extent of the area in the Uniterl states in which sugar beets of fair richness ran bu grown. In bulletin 27 , from theoretieal comsiderations, a may was givell showing practically where in the Finter States berts of exceptional dichoness could be grown. It the time of the phblication of this map it was distinctly stated that there would be dombtless many localities without the bomblaries of the proposed area in which exeathent beets could be protured. The experiments, which have now bern camied on for two years, show that the limits of bret-ralture for sumbaking purposes are even wider than those intimated before.

Beets of fail quality have herol grown as tar south as Texas, and it is now helieved that on most of the high plateats of the central western purtion of the Whited States berotent me ean be practieed with protit, especially where irrigation is possible. On account of the value of hands whish are medamed by irrigation it is highly meeessaty that some (rop) shonk be grown which will pay for the intemsive culture, and nuthing better than the sugar beet ean be recommended for this pur-
pose. It has been thoronghly demonstrated by the experiments carried on by this Department, that sugar-beet culture is possible in this country, and it only remains for the farmers of the country to indicate a willingness to grow the beets to secure the rapid development of our beet-sugar industry. The education of the farmers in this direction will doubtless be slow, but there is no reason to doubt its success. There is abundant capital in the country waiting to embark in the manufacturing part of the industry whenever it can be assured of a sufficient quantity of raw material for its operations.

BEET SUGAR EXPERIMENT STATION AT SCHUYLER, NEBR.

Impressed with the necessity of securing in this country experimental tests of the most scientific methods of cultivating sugar beets and producing seed therefrom, I was directed by the Secretary of Agriculture in autumn of $\mathbf{1 8 9 0}$ to visit Nebraska and other States with the intention of selecting a site for the establishment of such an experimental station.
The reasons which led to the selection of Nebraska as the State in which this station should be established were the fact that already a beet-sugar factory had been erected in that State and others were in process of erection, and that in its soil and climate it seemed to present a favorable locality in which to try the experiments, which, when finished, might prove of the greatest advantage to all parts of the comntry. The location of the station on the Pacific Coast would have placed it too far away to secure the personal control on the part of the Department which seemed to be necessary to success, while, had it been established farther east and nortl, it would not have so well represented all the points of soil and climate of the northern central portion of the country, in which the farmers seem to be most interested in beet-culture. Mauy localities were found in the State of Nebraska, and, as a result of persomal inspection, two sites were favorably recommended for the location of the experiment station. The first of these was near Norfolk, in the northeastern part of the State. At this place a beet-sugar factory was in course of construction, and the people not only of the town but of the whole country were thoroughly aronsed to the importance of a careful study of the beet-sugar industry. A favorable location was also offered for the establishmeut of the station at a distance of about a mile and a quarter from the location of the beet-sugar factory. The second place recommended was near the town of Schuyler, where two or three different plots of ground were offered, each of which seemed to possess some advantages. The Secretary finally selected Schuyler as the site, leaving the particular location in the vicinity to be determined afterward. The work therefore which is carried on at Schuyler must not be taken to represent the interests of Nebraska alone. Those interests are amply provided for by the excellent investigations of the State

113

station at Lincoln. Our work is to be taken for the advancement of the beet-sugar industry in general, and it has been carried on in a locality as nearly central as possible.

The plat of land which was finally selected was, in general, the best adapted to the purpose. No piece of laud conld lie more favorably for an experimental station. It has a gentle slope toward the south, and yet is practically level, but with a sufficient difference in altitude between its southern and northern portions to give excellent natural drainage, and yet not sufficient to produce washing during heary rains. The soil is a deep sandy loam, and the only objection to it was that it was practically a virgin soil. Part of it had never been plowed, but the whole of it had been closely pastured for several years, so it was not exactly of the nature of the virgin prairie. The only fear entertained in selectthis piece of land was that the beets would grow to a remarkable size amd be deficient in sugar content. This, however, as will be found in consulting the experimentaldata, was prevented by close planting, which kept the beets down to below normal size and secured in them a normal development of saccharine matter.

Being unable to give my personal supervision to the work of the station, it was placed in charge of Mr. Walter Maxwell, who brought to his work a large experience in farming and a thorough comprehension of the nature of the problems to be investigated. The scope and extent of the work was thoroughly explained to Mr. Maxwell before his departure to take charge of the station, and the thoroughness with which he carried out the instructions in the conduct of the work will be more clearly perceived by a perusal of his report, which follows.

During the planting season I spent some time at the station, and also dluring the analytical season.

Seed of the best European varieties was especially imported for the purpose of starting the crop for the first year, and in all cases an excellent stand was secured, although the conditions for germination were somewhat unfavorable. At the time of planting, the earth was remarkably dry, and continued so until near the end of May, after which time a period of exceptional humidity prevailed, accompanied by repeated and heavy rainfalls.

In spite of these unfavorable climatic influences, however, a good stand was secured in all the plats from planting 15 to 20 pounds of seed per acre. The general scope of the work may be outlined as follows:

In the first place, it was proposed to thoroughly prepare the soil in the best approved mamer. Fortunately, on account of the land having been closely pastured, the sod was plowed without difticulty. The plow Was followed by a subsoiler and the soil thus loosened to a depth of from 15) to 17 inches. No difficulty whatever was experienced in securing a perfect tilth of the surface and an excellent seed berl. Not willing, however, to trust the first year's experiments to a soil so wholly 19864-No. $33-8$

114

virgininits nature, anadditional plat of land was rented which had been several years in cultivation, and this was prepared in the same manner for the reception of the seed. A beet of uniform size and proper shape, with a single tap root, can mot be secured milil the gromed is loosened to a sufficient depth to allow the normal growth of the plant. If the tap root strikes a hard piece of earth at a depth of from 7 to 9 inches, it is naturally deflected in its course, or extra roots are formed and the beet becomes misshapen and temds to grow above the surface of the soil. There is, therefore, in beet culture an absolute necessity of securing a soil loosened to a sufficient depth to allow the tap root to penetrate easily from 15 to 17 inches.

Attention should also be called to the methods of planting and the times of phanting. It was decided to illustrate the effect produced by planting at different periods, begimning as early in the season as practicable and continuing until late in the spring. By reason of the peculiar climatic conditions, however, which have been mentioned, namely, the very dry April and May, the full effect of this experiment could not be determined, as the beets practically all started to grow at the same time, near the end of May. It will be necessary, therefore, to repeat such experiments as these in regard to time of planting for several years in order to determine fully the effect of early and late planting on the erop as a gemeral rule. It will be fomed, no doubt, that there are many soils where carly planting will prove more advantageons, while, on the contrary, many others will be found where the late planting will be the most successful. In the absence, therefore, of any experimental data of a reliable nature on this matter it will be best for sugar-beet planters who are raising beets for commercial purposes to practice early, medium, and late planting in order that they may have at least a portion of their crop suited to the season, whatever it may prove to be.

In such a climate as Schuyler there is, of course, a liability to late frosts as well as early freezes, so that all these matters should be taken into consideration in regard to the time of planting.

In regard to the manner of planting, I think it sufficiently demonstrated that nothing is superior to the method of drilling which we practiced. We found that it was an casy matter to determine the number of pounds of seed dropped per acre ly tying a bag under the nose of the drill and ruming it back and forth over a hard road throngh a distance whielh would correspond to one-eighth or one-quarter of an acre. The bag which had secured the seed which was deposited by the drill was then removed and the amount of seed weighed. By this method we had no difficulty whatever in adjasting the drill to plant any duantity of seed required. If the experience of one season should prove of any value, then the amomt of seed which we used during the past season, namely, about 17 pounds per acre, was entirely sufficient.

In regard to the depth of planting also great care should be exercised. We endeavored to have the seed deposited about 1 inch under
the surface of the earth. The beet plant, on germinating, is extremely delicate and will not force itself through a deep layer of earth; especially is this true if, subsequent to the planting and before the appearance of the plant above the ground, a heavy rain should fall, packing the earth down firmly on the seed. If one could be assured of the ocetrrence of very dry weather for a considerable period atter planting, then deprositing the seed at a greater depth would be advisable, but it would be extremely dangerous puactice to follow in a country where rains are likely to oceur at any time. In localities where irrigation is practiced the amount of seed employed could be easily controlled, and in this case the seed could be deposited to a greater or less depth, according to whether the soil might be more or less moist.

The object of the work in cultivation was to show in a practical way how to secure a good stand of good, healthy beet plants at as nearly as possible even distances in the rows and to illustrate the method of culture. With the sugar beet the method of culture is essentially a superficial one; no deep plowing and stiming of the ground is required. On the contrary, the principles of beet culture look to a sufficient stirring of the ground to break up, the capillary comection between the surfare portions and the parts below to secure the proper tilth and pulverization of the surface and to prevent the grow th of weeds and grass. These are the points which are to be secured, and any method of cultivation which accomplishes these ends will be sutficient for beet culture.

When the rows of beets are planted only from 12 to 15 inches apart, as in the case of some of our experiments, hand-hoe culture is the only practicable method. The rows are too near to permit the use of horsepower. When the rows are 18 inches apart, and greater distances, culture by means of horse hoes and cultivators is, of course, more ecouomical than hand-hoe culture. Any good garden horse hoe which will stir the surface of the soil and at the same time protect the young plants from being covered up will be found useful in beet culture. In this respect it is but fair to call attention to the fact that culture of beets by steam or electric plowing may perhaps in the future be found to be the most economical. By the use of steam plows greater care can be exereised and greater or less speed can be imparted to the plow and absolute immunity from tramping the beets secured. This, however, is a matter for the future; meanwhile we may avail ourselves of the means of cultivation which can be procured. Quite a number of hand cultivators and horse cultivators and hoes were purchased fiom lifferent implement dealers, and all of them, so far as we have been able to try them thoroughly, proved to be of a satisfactory nature.

Comected with the culture work, careful meteorological observations were conducted, in order that the climatic influences could be as thoroughly studied as possible. This leads to the observation that intercontinental areas, subjected as they are to great vicissitudes of climate, will perhaps not prove as favorable to beet-culture as the marine lit-

116

toral portions of the country. The influence of the sea water in modifying the climate of arljacent agricultural regions is too well known to need elucidation, and the extraordinarily favorable results reported from the Pacific coast with the beets grown by farmers in general are illustrations of this fact. So, also, the vicissiturles of climate are well known without consulting the meteorological data kept by the station at Schnyler during the past season. Prolonged periods of drought in such climates are followed by heavy and repeated rains; cold and hot days follow each other in rapid succession, not only in the springe and autumn, but even in the middle of the summer. It is thus rendered important to be able to be in a measure independent of climatie conditions: and therefore the proper preparation of the soil for the seed bed and the careful cultivation of the plants are more important factors in growing beets in interontinental weas than in localities where the climatic conditions are more equable.

A striking illustration of such changes may be cited by refering to the fact that we had seareely secomed the berets selected as mothers in the silos at Sohnyler, early in November, hefore the temperature fell below 02 F . By reason of these extremes of climatic conditions, also, it would be proper to call attention to the fact that the silos for preserving the mother beets during the winter satson must be constructed with grat care. It will be necessary to wait until the spring in order to determine how sucressful we were in preserving the beets during the winter which is just passing. Three diflerent silos were made, varying in the principles of construction, in the hope of determining which of the methods of preservation would powe more successful. The attendant left in charge of the silos during the winter was also instructed to Wateh carefully the forecasts of the weather aud add extra covering to to the silos whenever the temperature was expected to be extremely low. In the same way care was directed to be paid to ventilating the silos in perionls of high temperature, which ocetir frequently, even during the winter, in that locality.

The suchess which attended these efforts at scientifie culture were well attested by the magnificent appearance of the fields of beets during the latter part of the summer and as they approached maturity. The plots were seen to be absolately free of weeds and grass, and in no place, in looking over the field, could the ground be seen. The beet leaves formed a complete covering and presented in every respect at most satisfactory appearance.

An ontline of the principles moterlying the analytieal perion of the experiments will indicate the general line of work.

First of all it was proposed to determine the yield in cleaned and topped beets per acre--that is, beets ready to send to the factory-for eath period of manting and for earlo vaiation in the width between the rows, and the momber of beets per acre. To secure this a carefully measured portion of each plot, merer the comditions above mentioned,
was harvested, prepared as if for the factory and carefully weighed. At the same time the saccharine richmess of each sample was to be determined. For this purpose no selection was made in regard to the beets, but each one was taken as it grew in the row intil a certain number was selected, and each of these beets was analyzed separately. In the same plat an additional number of samples was taken in groups of ten, and each sample of ten beets was submitted to a separate examination. In this way the character not only of the individual beets was determined, but also the general chanacter of the whole plat, being takent ingroups of ten. Orer 100 analyses per day were mate from the time of the beginning of the harvesting, early in September, until the close of the analytical work in November. The results of theseanalyses are sufficiently set forth in the tables which accompany the report, and the details will not be mentioned here.

Attention, however, should be called to the fact of the great variation which will be noticed in individual beets, amonnting to even as much as 2 or 3 per cent, in the quantity of sugar which they contain. It may be stated, therefore, that the results are given upon the composition of the expressed juice, as with so large a number of analyses it was impracticable to determine the sugar in the pulp of the beet itself. Inasmuch as the beets, however, were all submitted to amalysis directly after they were harvested, so that no opportunity was given for loss by evaporation, it may be assmed that the percentage of sugar in the juice multiplied by 95 will give approximately the total quantity of sugar present in the beets.

In addition to the analytical work a careful selection was made of the different varieties of beets to be preserved as mothers. For this purpose the whole of the remaining plat, atter the analytical data were obtained, was harvested and the beets selected for mothers which showed a normal size of from 500 to 600 grams and a perfect outline. All beets varying from normal size were rejected, as likewise were all of irregular surface, multiple roots, or deformed beets of any description. These beets were very carefully harvested aud handled, the leaves only being cut away without injuring the attachment of the leaves to the stems of the beet, and were carefully preserved in silos.

In order to determine the character of the beets preserved in the silos, representative samples of mothers were taken for analysis and their weight and content of sugar determined. Another portion of exactly similar beets, as nearly as possible, was carefully weighed and separately peserved in the silo. The object of this was to determine in the spring the loss in weight which the beets might have experieneed during the winter, and then, by determining the sugar in the samples thus preserved, any changes which the beets might have undergone in the silo can be determined. This, then, can be used as a standard in julging of the character of the mother beets wheu analyzed for plauting.

It is the purpose of the Department to continue the experimental work with beets, should Congress grant money for that purpose, during the coming season on the following general principles:
The entire number of plats (thirty) in the experimental field will be so divided as to bring each plat into beets once in four years. The remaining plats will be planted in ordinary crops, so as to secure a trial of the principle of rotation. The begimning of this has already been inangurated and a number of the plats has been planted in fall wheat and rye, while an additional number will be planted in maize, oats, spring wheat, and other crops during the coming spring. All of the plats have been properly fall-plowed and prepared for the spring planting, and those plats which are to be planted in beets have been thoroughly subsoiled. At the proper time it is proposed to open the silos and examine the mothers which they contain, first, in regard to the way in which they have been preserved; second, in regard to the loss of weight of the test samples of mothers, and, third, to subject each of the beets so preserved to analysis, rejecting all which fall below a given standard and planting the remainder for the production of seed of a high grade.

It is seen from the above outline of the work that it has been organized on the best approved principles for the illustration of the most scientife methods of producing beets. Not only will the work be valuable for the data which we obtain, but especially so for serving as a sample of what such work should be, which may be a guide not only to the firmers of the country who propose to enter beet culture, but also to those who may undertake the production of sugar-beet seed of high grade to supply the planters of the country. It is perfectly well understood that the farmers themselves will not be able to grow high-grade beet seerl, on account of the great cost of analytical work which it involves, and if we produce our own seed in this combtry it will have to be done in the way indicated in the outline above given.

REPORT OF ASSISTANT IN CHARGE.

The further details of the experimental work are fomd in the report of the assistant in charge, Mr. Walter Maxwell, which follows:

Division of Chemistry,

> U. S. Department of Agriculture, Trashington, D. C., February 26, 1592.

Sir: I beg to submit to you a retailed report of the work accomplished by the sugar-hect expriment station of the Department of Agriculture at Schuyler, Nehr., in the year 1891.

Very respectfully,
Walter Maxwell, Assistant in charge.
Prof. H. W. Wiley, Director.

INTRODUCTORY。

The Department sugar beet experiment station, Schuyler, Colfar County, Nebr., is located near the junction of the narrow shell Creek Valley with the broad plain through which the Platte River runs. The station is located 6 miles in a direct line north of the Platte River, and under the south slope of the terminating line of hills which separates the shell Creek and Platte valleys. The situation is thus protected against the action of the north, northwest, and northeast winds, and has an ample exposure to the south, west, and east.
The station farm consists of thirty 1 -acre plats and 1 acre of roads and borders.
Two tracts of land were offered for the use of the experimental station, including the one selected and a tract of equal size having a north exposure. In favor of the latter tract was the circumstance that it had been under cultivation for three years, while the selected tract at the beginning of this year was practically virgin prairie. Although the condition of the soil in the field exposed to the north appared to bo in a much more favorable state than the soil of the selected field for the immerdiate culture of beets, the equal richness and physical properties of the soils of the two fields and the climatic advantages of the field with the sonth exposure caused the selection of the latter as the location of the actual exprimental station. However, as the new and crude state of the soil of the station field gave some doulbt concerning the results of the first year's work, it was decided to grow beets in both the stated fields and provide against a failure in case the station field was too crude for immediate heet culture. To guard against confusion, the two fields will be designated: Field A, station field with south exposure; Field B, field with north exposure.

SOIL.

The soil of the station farm appears to he uniform with the prairie soil of the Platte Valley. It is a dark loam to a depth of $2 \frac{1}{2}$ feet, resting upon a mixture $1 \frac{1}{2}$ feet thick of clay and sand, and gradually going down to a pure sand at a depth of 5 feet, which meets the normal water level at a distance from the surface of $8 \frac{1}{2}$ feet. It is a loose, easy-working soil, highly sensitive to variations in the temperature of the air, but very resistant of the action of the extremes of moisture and drought.

The chemical analyses of the soils gave the following results. No. 1 indicates the surface layer, 6 inches, and No. 2 the second 6 inches of the soils:

CUltural season.
The work of preparatory cultivation began April 9, in Field B.
The late date at which it was recided to establish the station where it is now located prevented the adoption of the most advisable plan of cultivation, and the
work which should hare been done in the fall was not entered upon until late in the spring.

April 9, 4 acres in Field B, which in the past year had been planted with com, were plowed lightly and harrowed, and the cornstalks and roots, the latter being turned out ly the plow, were gathered up and hauled off. Rains prevented any further operations until April 22, when plowing and subsoiling began. The gronnd, which had been freed from all cornstalks and roots, and which laid quite level, was plowed to a depth of $9 \frac{1}{2}$ inches with an ordinary plow and the subsoiler followed to a further depth of 6 inches, so that the soil was broken up to a depth of 15 inches. The width of furoi- taken by the plow was not more than 10 inches, in order to be sure that the lower soil was perfectly stirred by the subsoiler, the share of which was 9 inches broad. The land plowed each day was harrowed and dragged in the evening, to present it drying in a lumpy state and to lessen the loss of moisture.

April 26 , the temperature of the soil in Field B was still too low for planting the seed, and it was left a few days, and 4 acres selected in Field A were plowed and subsoiled and treated further in the same way as had been done in Field B.

April 29 , the seed bed of Field B, which had been quickly prepared by harrowing and dragging twice, and finally rolling after a third harrowing, had a temperature of $51^{\circ} \mathrm{F}$. and the seed was put in.

Althongh the ground had plowed well, and each day's way was got down modcrately fine with the harrow and drag, the condition of the seed bed was not satisfactory. There were no large clods, lut instead of a thoronghly pulverized soil, such as can only be produced by the action of frost, the surface was made up of small clots or particles, rather than a mass of fine, moist mold.

The seeds were planted with a horse drill, taking one row. In the first place the gronnd was marked ofl in rows with a common wooden marker, making five lines at a time. The seed drill followed in each of the lines or rows left by the marker. The drill was set to deposit the seed $1 \frac{1}{2}$ inches deep. The seed was planted at the extreme depth on account of the extremely drying weather which had set in, with a prospect of lasting for some time. After drilling the seed in rows at a distance of 17 inches ap:art the gromad was again timm rolled, in order to induce the rising of the moisture of the soil to the seed bed. The surface of the soil had become decidedly dry, and finere was not moistmre enough in the seed bed to produce immediate germination.

Six varieties of seed were planted, including-
(1) Dippe Bros, Kleinwanzlebener.
(2) Vilmorin White Improved.
(3) Desprez \& fils and Bultean Desprez.
(4) Lemaire père et soeur.
(5) Ferd. Knauer.
(6) Klein wanzlebener (Elite).

The average amonnt of seed planted per acre was 17.6 pounds, the drill, with the same sized distributing wheel, delivering 18 pounds of the Klemwanzlebener and Elite varieties, 17.2 ponuds of the Vilmorin aud Desprez, and 17.5 pounds of the Lemaire and Knaner varieties.

On May 5 and 6 the gromnd in Field A was prepared in the same way as in Field B, and on those days the seed was put in. The seed bed in Field A was in exactly the same state as in Field B-neither rough nor in that state of moist and pulverized mold which is essentially desirable. The seed was planted $1 \frac{1}{2}$ inches deep, and in rows 18 inches apart. The temperature of the seed bed was $49.1^{\circ} \mathrm{F}$. on the first day of planting-May 5 . The amonnt of seed planted per acte was 16.5 pounds. The six varieties already specified were planted in Field A.

The special purposes of the planting of the large plats of the varieties of beets stated were, in the first place, to observe the results obtained from the soils and climate of the situation muder the application of the best wethod of beet culture;
further, to mote the behavior of the specified and well-estah ished European rarieties in new conditions of soil and climate; and finally, to produce and select beets of each of the named varieties for propagation uses. It may be found that the known varieties can not sustain the high standard of their characteristies in the new conditions to which they are being submitted, in which case it is considered that it will be possible and necessary to breed from the old varieties, by select crossing, new varieties which will he better adapted to the comditions and able to mantain at high standard of excellence.
In addition to the work on the large plats already described, a more minnte phan of experimentation was laid out and contined tophats each 4 square rods in size, upon which three series of experiments were conducted:
(1) Distance experimeuts, or experiments with the purpose of observing at what distance the phants must be placed from each other to ohtain the maximm results, expressed in weight of beets and sugar per acre. In the No. 1 plat the rows were placed only 12 inches from each other. In the other five plats the distances between the rows were respectively $14,16,18,20$, and 22 inches.
(2) Fertilizer experiments, or experiments in order to observe if any, and what, effects were produced by the applation of ranging amomis of superphosphate to the beets in the virgin soil of Field A. The fertilizer was applied-

> Plat 1............................ 1 pound per rod, or 160 pounds per acre.
> Plat $2 . .$. 1.5 pounds per rod, or 240 pounds per acre.
> Plat 3........................... 2.0 pounds per rod, or 320 pounds per acre.
> Plat 4.......................... 3.0 pounds per rod, or 480 pounds per acre.
> Plat 5.......................... 4.0 pounds per rod, or 610 pounds per acre.
(3) Time experiments, or experiments for the purpose of showing the results of early and later planting, and to indicate the most advinable fime for planting in such soil and climate. The planting of the plats was done as follows:

The preparation of the soil and seed bed of the small experimental plats was conducted in the same way as in the example of the larger plats. The seed was put in With a hand drill, the nse of the horse drill bei gimpracticable. The planting of the No. 1 series was done on May 11; of the No. 2 series on May 12 and 13 ; and of the No. 3 series as already given.

May 15, light cultivation was commenced in Field B. A part of the seed of most of the varieties had gemminated and the planthets were out of the ground sufficiently to mark the rows. Although the ground was still practically free from weeds, tlathoeing was commenced, hoes with 8-inch blades being usded, and the gromad between the rows was thoroughly hoed up to $1 \frac{1}{2}$ inches of the plantlets. Most of the laborems were green, and had not seen a beet field before; but a short time was enough toshow them the difference hetween taking long strokes and merely seraping the top, and short strokes, by which the surface of the soil was thoroughly mover to a depth of $1 \frac{1}{2}$ to 2 inches. Also the need of kecping so far from the rows as not to disturb the plantlets.

A very notable difference was obseryable in the six varieties in respect of the apparent vitality of the seed, as indicated hy the per cent of seed which actually germinated. The "Vilmorin" variety not only came up one to two days before the other varicties, but almost the whole of the seed of that variety came up together. Next tuthe "Vilmorin" the "Elite"indicated the greatest vitality and soundness. Other of the varieties not only required more time to make a first appearance, but the seed kept eoming up for five weeks even after a heavy rain, which indicated that seed of various ages had been put together in the samples. The actual comparative
vitality of the seed of the respective varieties is giren in the following table, and shows the number of seeds out of one hundred which grew-

Per cent.
(1) Elite, after 9 da̧̦ . 12

(4) Desprez, after 9 days .. 88

(6) Kleinwanzlebener, after 9 days 90

By May 2is the plats in Field B, also in Field A, had heen thoromghy flat-hom, and some part of the former field a second time.
May 26, "thiming out" commeneed in Field B. The Vilmorin variety, as already stated, had come up almost perfeectly and nearly all the plantlets were large enongh for "thiming." Not more than one-half of the seed of the other varieties had germinated, and, as a consequence, the "thinning out" had to be done twice, which not only increased the expense of that operation, but the plantletis were destined to he and remain of two sizes, the early plants from the first germination, and the later which germinated after the rains, and the evil of two sizes was to be seen thronghout the season in the circmmstance that the carly plants made too large lieets and the late plants too small.
From April te to June little rain fell, and not only was there no rainfall, lut every day was warm, and the heat was accompanied hy south winds, the velocity of which ranged from 15 to 20 miles per hour. The continnous drouth had a bad effect upon the early stage of the crop, which was planted in at soil quite unable, in consernence of the spring cultivation, to rosist such a contimous spell of dry weather. At that period the future of the crop appeared threatened. On Jume 22 inches of rainfell, and the aspect immediately began to change.
The temperature of the soil during the germination season, and for the time included between May 1 up to the end of June, appears in the following table:

Field A.				Field 13.		
Date.	Seed bed.	$\begin{aligned} & \text { C-inch } \\ & \text { deep. } \end{aligned}$	12-inch deep.	Seedl bed.	©-inch deep.	12-iuch deep.
Mean of- May.						
First week.	49.5	50.0	50.0	49.5	52.0	52.5
Second week	59.0	57.0	55.0	57.0	55.5	53.5
Third week.	69.0	64.0	56.0	68.0	62.0	55.0
June.						
First week..	58:0	59.0	61.0	55.0	57.0	58.5
Second week	66.0	62. 0		64.0	62.0	60.0
Third week.	Not taken	74.0	69.5	Nottaken	72.0	68.0
Fourth week	. . do	76.0	73.1		73.5	72.5

Before learing the planting and germination period of the cultural season it will be suecially in phace to include certain particular observations upon the nature of the climate and the comparative adaptability of the soil to given elimatic conditions. It has already been said that from April 22 until June 2 no rain fell. In such respect this has hem an ahomal year. The nomal rainfall for the month of May would he enough for coltural purposes were other physical conditions favorable. In pont of tact, the rainfall for the month of May in the State of Nebraska is equal to or excereds the rainfall for the same month in the heet-growing districts of Europe. And again, the temperature of the State of Nehraska does not vary materially in the mean from the temperature of the Enropean combries, although the distribution of the temperature of Nebraska is subject to very much greater fluctuations. There is,
however, a factor in the climatics of that part of the Western and Northwestern and Southwestern States which appears to be much more potent than the considerations of temperature and raintall, aud that is the winds of those regions. That factor reduces any comparative statements of the temperature and rainfall of the State of Nebraska and the beet regions of Europe to a small value. A comparison of the Western States with the States on the Atlantic border in respect of the rainfall and temperature is upset by the same prevailing factor. The mean temperature for the month of May in Nebraska and the beet districts of Germany does not vary more than 1 to 2 degrees, being about $59^{\circ} \mathrm{F}$ in Nebraska and 58° in the European country. The actual effect, however, of the temperature of Nehrasia, borne as it is upon the south wind at a high daily velocity (it is notable also that the wind rises with the sun, attains its maximum velocity in the midday, and moderates or goes quite down with the setting of the sun), is much greater than in localities where the air is generally in a more stagnant condition.
Again, the action of those winds upou the evaporation of moisture from the soil is very great. The seed bed, which at smmise is soft and moist, a fiter noon is dried out 1 to 2 inches, and the soil is actually hard and remains so until after sundown. The evaporation process occurs to such an intense degree that the rainfall of a moist aml still atmosphere, of one-half to 1 inch per week in that season, would have a much smaller effect in the intense conditions of which we have spoken.

And yet, notwithstanding the comditions of which we have spoken, and which at first sight appeared unfaworahle, the growth and vigorous apparance of the beet plants of the first germination were ummistakable. The plants not only looked vigorons, hut they grew rapilly. That circumstance directed attention to the nature of the soil, for it appared very evident that an adapability in a high degree existed of the soil to the characteristics of the climate.
Following the observation stated, experiments were comducted with the purpose of ascertaining the power of the station soil to absorb moisture, both by eapilliarity and from the air; and, further, the capability of the soil to retain the moisture already absorbed. In order that the results of such experiments should be apparent they had to be made comparative, and samples of soil were obtained from the experimental stations of La Fayette, Ind., and College, Md., which samples were sent to us through the courtesy of Prof. Huston of the former and Maj. Alvord of the latter station. About 30 pounds of soil were contained in each sample sent to us, which represented the surface soils of the respective stations to a depth of 9 inches. A corresponding sample was taken of our own station soil. The samples were each pulverized, but not sifted, and laid very thinly upon boards exposed to the sun for several days until they were thoronghly sun dried. When quite dry, smaller samples were taken from each of the original ones and put into zink forms made for the purpose. The "forms" or vessels were 9 inches deep by 2 inches square. The bottoms were finely perforated, and hefore putting the soil into them square pieces of linen were damped and laid at the bottom inside in order to prevent any particles dropping through the perforations made for the capillary passage of water. When completed and filled with soil, care being taken that the latter should not be too loose or too compressed in the vessels, the latter were placed in a tub containing water one-half inch deep for twenty-four hours, or until each sample had taken up its maximum quantity of water. The sun-dried soils, with the vessels, were weighed before being put into the tub and immediately after being taken out, any drops attaching to the vessels being wiped off. The quantity of water taken up, or the absorptive power (by capillarity) of each soil, was thus determined.

Having thus come at the absorptive power of each soil, the next step was to determine the relative power of the soils to retain the water they had taken up under the same conditions.

A double series of vessels and samples of each soil were used, one part of which were placed under a normal exposure, i.e., the vessels were put out in the field and
exposed to every change of weather, day and night, whilst the second part were kept in the barn, and thus kept from the sun and any rainfall. The data observed in the experiments are expressed in the following tables:
1.-Table showing the relative absoriptive powers of the soils.

II.-TABLES SHOWING The relative retigntive powers of the soils.
(a) Series of samples placed in the barn.

Samples of soils.	Per cent of water, of own weight of the samples, in the soils on-							
	July 13.	July 20.	July 27.	Alıg. 3.	Aug. 10.	Aug. 17.	Aug. 24.	Aug. 31.
	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.	Per cent.
Marylaud, No. I	26.6	25.4	17.7	16.1	13.4	11.3	9.8	8.1
Indiana, No. III	27.3	23.4	20	18.5	15.6	13.7	12.2	10.6
Station, No. V.	33	26.6	22.5	20.4	16.8	14. 2	- 12.2	12.5

(b) Series of samples placed in normal exposure.

Samples of soil.	Per cent of water, of own weight of the samples, in the soils on-							
	July 13.	July 20.	July 27.	Ang. 3.	Aug, 10.	Aug. 17.	Aug. 24.	Aug. 31.
	Per cent.	Per cent.	Percent.	Per cent.				
Maryland, No. I	25.6	10.5	14.4	9.0	7.2	7.9	8.9	7.8
Indiana, No. IV.	27.4	14. 3	18.2	12.5	9	9.6	12.2	10.4
Station, VI	32.9	16. 3	20	14.9	10.3	10.8	21.5	20

If the results of the station samples are taken as expressing 100 , the relative capillary and retentive powers are as follows, based upon the data observed on August 31 :

	Soils.	Capillary or absorptive power.	Retentive power (in the slatile).	Retentive power (normal exposure).
Station soil		100.0	100.0	100.0
Indiana.		82.7	84.3	52.0
Maryland.		78.7	64.8	39.0
-				

Table I shows the great resorbtive power of the station soil, which means its great capillarity, as the moisture was taken up by capillary action.

Table II, series (a), indicates certain very important facts in the station soil, viz: First, that a portion of the very high per cent of water taken np by absorption is very rapidly given off, after which the rate of evaporation contimes very gradual down to 12.2 per cent, when, on reaching that minimum, it commences reabsorbing
moisture from the air, whilst the Indiana and Maryland soils continue to lose in weight.
Series (b), of Table II, where the soils were placed in normal exposure, similar results are observed. The per cent of moisture in the station soil is constantly higher than in the other soils, and toward the end of Augnst, when the Maryland and Indiana soils had hecome practicably insensible, the station soil was still highly sensitive in taking up and in retaining the moisture which it had received, as is shown by the data tabulated on August 31.
The data set forth in the tables illustrate the striking adaptability of the Nebraska soils to the Nehraska climate. They show the peculiar capahility of those soils to withstand the usually bad effects of an excess of either rain or drought. They further inticate that, should the strong winds exereise an influence disturbing to the balance of the other climatic conditions, temperature, and rainfall, that influence appears to be effectually neutralized by the signal properties of the soil.
The "thiming out," it was said, commenced May 26. The plants were taken when they had four well-developed leaves. It appears very undesirable to disturh the young plantlets until they have reached the size stated. The rootlets have too frail a hold of the ground, and premature disturbance may more or less detach the plantlet from its soil connection.
The laboress employed were chiefly men who had never seen a beet field. Occasionally an old workman came who as a lad had been in the beet fields of Germany or Bohemia. The thiming out of the beets is the most particular operation of the cultural scasnon, and with such laborers the work not only proceeded very slowly, but it was only possible at the beginning under constant practical supervision. Each man had to he shown, and repeatedly shown, until he could olserve all the small points in the work. Small hoes with 3 -inch blades were used, hat the nervousness of the men, fearing they would not be able to manage the strokes, caused them at first to rely too much upon their hands.

In the hands of expert workmen the hoe not only enables more work to be done, but the work is done better. Not merely is the ground removed around and between the plants which are left, but the actual separation of the plants thimed out from the plants left is done with less damage to the latter when the hoe is used. A skillful workman will separate a hunch of plants hetter with the hoe than with the hand, excepting where there are very many small plants together. He will quickly with his practiced eye and hand separate the best plant, and by a manipulation of the hoe, slightly press the soilabont it, and in the same act cut ont the surplus plants, and in such a way that the standing plant remains even more firmly in its place than before. such skillfulness requires much practice to acquire. Thimning out with the hand is apt to do more damage to the standing plants unless one hand is used to hold tho stauling plant, while the surplus plants are pulled out with the other haml ; but that is an endless method. The ultimate form of the beet, and possilily other comblitions, are directly affected by the act of thinning ont. If the plants which are to staml are disturbed hy the removal of the surplus plants so that the tap-ront is severed from the soil at the point of the root, by which act the root-cap may also be injured or separated from the ront, then instead of developing one tap-root with a system of very-minute, fine, and fibrous root growth, several prongs will be put out and the form of the heet is wholly distorted. For example: Ten plants were drawn out of the soil with great care, and withont apparently leaving any portion of the root in the ground. Those plants were replanted and grew to average sized beets. Each one of the ten beets, however, developed no tap-root, but instead several prongs or fingers, varying from two to five in mumber, and the natural form of each beet was distorted.
The "thinning out" of Fields B and A, the first time over, was finished June 11. On June 2, a strong rain fell, which brought away the seed still lying in the ground very
rapidly on account of the high temperature of the soil. The plants grew very quickly atid the "thiming out" of all the plats; fucluding the small experimental plats, was completed Junè 18.
The growth of the beets after the rain of June 2 and following days was phenomenal. This rapid growth, and the heavy and frequent rains, made the further acts of cultivation very difficult to do. In Field B the rows were only 17 inches apart, and the plants from the second period of germination being so far behind the early plants it was not practicable for the use of the horse hoe. The beets were hoed twice over after the final "thiming out," including the whole space between the rows and around the plants, and any "double plants" were separated. This work contimued up to July 6 , when the beets were "rowed up," that operation being done with the broad-blate hoes, the soil being hoed up on each side of the beets level with the top of the neck of the same. In that form, the beets hidden in soil and a trench made between the rows, the work was ended. In Field A, where the rows were 18 inches aphatt, horse labor was used in the light cultivation. After the thiming out, tho horso hoe was thed three times over, at such periods when the rains allowed. The beets were hoed twice with hand hoe anougst the plants and finally hoed up, the same as in Fiold 18.
The cultivation of the small experiment plats was conducted in a way similar to what has ireen described. On those plats the seed came up thick and evenly. There was a full plant. The plants were thimed out exactly 6 inches apart in the rows, the distances being regnlated by a 6 -inch measure which the man carried for the purpose, the whole work on those plats' being done by one skilled man. The plants were left about 6 inches apart in the fors on the large plats, but the same degree of exartness was not attained as mpon the small plats. Further hoeing twice over and the final hoeing up completed the work on the small plats.
July 12 the cultural work of the season was done. The beets covered the whole ground, and, as far as cultivation could exercise an effect, there was no obstacle in the way of their progress.

The crop was now left to the climatie conditions, as it was advanced beyond reach of danger from other sources. And it will be in place here to observe the almormal conditions of weather extending over the cultural season. It has been seen that litthe rain fell during the whole month of May, and normally the latter half of that month receives the usual spring rains, which continue into early June, and which are in the highest degree farorable to the cultural seasou of that preriod. On Jume 2 the first good rain fell since early in April. When the rains legan they fell in torrents. In the month of June 12 inches were recorded, or nearly half an inch daily. On the 2 th and 25 th 8 inches fell in thirty-two hours. On the latter date the beets were not visible, the water standing from 6 to 8 inches deep over the whole tract of Field A. No immediate damage occurred to the crop, hat the continnous dull weather, with a high atmospheric humidity (78.7 for June), frepuent rains, and comparatively little sum, which conditions continned throngh July, cansed eventually an unfaroraher appearance. On July 25 it was observed that in the lower parts of the plats, where the deep green of the leaves had gone over into a sickly brown-yellow, the beets had commenced rotting. The deay commenced at the neck, on account of the moisture which was constantly resting on the foliage, for it was seldom dry. The decaying continued mutil the first week of Augnst, when a period of dry weather, with hot winds, set in and saved the further damage of the crop. The decayed beets were dur up as soom as they were detected, but others which had merely commenced rotting recovered and put forth a second growth of foliage. The sugar content of those beets, however, remained abnormally low.
A tahle of the rainfall and temperature for May, June, July, August, September, and October is given, expressed in weekly means:

Dato.	May.		June.		July.		August.		September.		Octobet.	
	Rain:	Teimp.	Rain.	Temp:	Rain.	Temp.	Rain.	Temp.	Rain.	Temp.	Raith.	Temp.
	In.	\bigcirc	In.	\bigcirc	In.	-	In.	\bigcirc	In.	\bigcirc		
First week..	0.14	50.8	2. 63	61.8	3.16	67.7		76.0		62.4	3.25	43.6
Second week.	0.0\%	62.2 60.8	1. 04	69.8	0.20	69.9	0.60	73.1	0.27	64.5 74.0	0.52	48.8
Thiril week.	0.57 0.45	60.8 6.4	0.21 7.64	69.1 73.6	1.47 1.88	79.7 69.4	1.54 0.08	68.3 63.3	057	74.0 59.7	0.15	51.5 46.4
Mean rain ..	1.38		11. 54		6.71		2.22		0.81		3.92	
Mean temperature		59.0		68.4		69.9		70.2		65.1		47.6

Total rainfall for the given six months ...inches.. 26.61
Normal rainfall (for northern Nebraska) six mouths.. 12. 49
Total units of heat for the given six months........ .. . 11, 651
Normal units (for northern Nebraska) six months 11; 518
The total heat mits for the given six months are almost identical with the nomal quantity found for northern Nehaska. The distribution, however, as we have in another place shown, was tery far from the nomal; May and september being sereral degrees too warm, and July, even in a greater degree, too cold.

ANALYTICAL SEASON.

The work of testing the beets analytically; in order to learn the results of the cultural season, opened early in September:

The station laboratory was completed and ready for use September 10.
The analytical work of the laboratory was condncted by T. C. Trescot, U. S. Department of Agriculture, assisted by C. B. Edson and others.
September 12 a general view of the crop was taken, expressed by the mean of several analyses of beets from each field, with the following results:

	Sucrose in juice.	Purity.
Field A.	Per cent.	77.1
Field B.	14.3	82.0

September 14 and 15 each of the six varieties in Field 13 was examined, and the mean of ten analyses of each variety gave as follows:

Variety.	Sucrose in juice.	Purity.
	Per cent.	
Kıauer	14.6 15.7	82.0 80.3
Lemaine-	13.2	77.0
Desprez	13.8	81.3
Vilmorin	14.3	
Kleinwanzlebener	14.7	

It is seen from the polariscope readings that the sugar present in the juice was very satisfactory. The juices, however, still appeared "green," and the general appearance indicated that, if the sucrose were approaching its maximum, there was room for improvement in the condition of the juices. The beets, moreover, had not fully taken on the mellow, golden-green color of the leaves indicative of maturity.

Analyses were made with ten beets selected from No. 1, small plat, on September 15, the mean of which gave 13.8 per cent sucrose in the juice.

Nou further work was done in the laboratory for another week, it appearing desirable to leave the beets alone, as they were gradually improving.

September 21 work commenced again in Field B, and upon a large seale. The beets of certain varieties appeared to have reached a state of maturity which made it possible to arrive at conclusions concerning the actual results of those varieties
expressed in weight per acre, the content of sucrose in the juice, and the total sield of sugar per acre, which data form the ultimate purpose and end of the work.
The work of determining the weight of beets per acre was done by selecting a given number of 3 square rods, according to the size of the whole plat, and ascertaining the weight of each square rod from the several parts of the plat and taking the mean as representing the 160 -part of an acre. The details of selecting the square rods and the weighing of the beets were as follows: A wooden square made of light wood, was dropped down upon the place selected. That frame iuclosed exactly 1 square rod. Every beet was taken up inside the square and none ontside, so that each measmement was essentially precise. The heets were thoronghly cleaned ; the tops, including the neek, were cut off with any coarse lateral roots, and weighed immediately. As already said, the mean of the square rods thus weighed upon each plat was taken as the acre unit.
The method of sampling a plat for determining the per cent of sucrose in the juice and the yield of sugar per acre was as follows: The length of the plats in Field B was between 30 and 40 rods, consequently the breadth of the plats was very small and the number of rows of beets few. Where the number of rows to a plat was less than 20 one average row was selected, and where the number excected 20 to the plat two average rows were selected. The selected rows were taken up in the following order : Either one humdred or two hundred beets, as decided mon, were selectedin twenties from either five or ten different places in the rows, the places being so farapart as to give an actual average of the beets in the rows. Those beets were taken immediately to the laboratory and analyzed. Each one of those two hundred beets was analyzed individually, in orter to afford not only an average, but also to observe the seale of variation in weight and sugar content of the single beets. In the next place, the whole of the beets remaining in the selected rows were taken up and brought direct to the laboratory and analyzed in "tens," i. e., the juice of ten beets already weighed and ground up, was expressed and one polariscope reading made. From the individual beets the weight and sugar content of each one were found; and from the beets analyzed in tens the average weight, sugar content, and purity were obtained. The number of beets analyzed daily was from one hundred upwards, even to nine hmudred daily, where the work was done in tens.

The weight of beets per acre (the samples being prepared for the scales in the manner already described) of the several varieties was as follows:

Field B.

Variety.	Date.	Pounds per square rod (mean of 3 square rods).	Pounds per acre.	*Tons per acre.
Elite.	Sept. 21	257.0	41,120	20.56
Knauer	Sept. 23	266.0	42,560	21. 28
Lemaire	Sept. 24	293.2	46,912	23.49
Desprez	Oct. 6	330.3	52,848	26.42
Vilmorin.	Oct. 7	322.2	51, 553	25.80
Kleinwanzlebener	Oet. 8	307.5	49, 200	24.60

- All tons - 2,000 prounds.

Field A.

Varicty.		Date.	Pounds per square rot (mean of 3 square rods).	Pounds per acre.	Tons per acro.
Elite.		Oct. 13	226.3	36, 240	18.10
Knaner		Oct. 13	220. 8	35,:328	17.7
Lemaire		Oct. 15	229.7	36,750	18.4
Desprez		Oet. 15	266.3	42,608	21.3
Vilmorin		Oct. 19	- 263.3	42, 128	21.1
Kleimwanzlebener		Oct. 19	281.0	44,960	22.5

The varieties "Elite" and "Knaner," in Field B, which were weighed first, aut which were also the first to be tested on a large scale in the labotatory, appeared to have reached their maximmm maturity. The Lemaire variety in the same field did not appear so thoronghly ripe, and the other varieties were still further off. Consequently, after September 24 the beets were left alone mitil October 6 , no weighings or analyses being made during that interval.
The varieties in Field A were quite matne at the time the weighings were mate.
The weighings given represent the maximum vield per acre of each of the varieties in hoth fields. The utmost precision was observed in each operation, and the results are given as being exact. Moreover the weighings were practically confirmed by the number of tons actually hanled from the fields when the whole of the beets were gotten up.
The analytical work, commeneing September 21, began in Field B on the varicty "Elite." The plat of that variety was comparatively small, so that 100 beets wree analyzed individually and 800 in "tens," making 900 beet.s totally that were taken to represent the sugar value of the varicty. The analytical data of the "inclividuals" are given in Table I. No selection of the beets was made, each one being takeu seriatm in the rotw. The mean of aualysis of 100 beets was 15.6 per cent of sugar in the juice. The data obtained from the analysis of the 800 beets in "tems" are given in Table II.
The results of the analyses of the "Elite" rariety, September 21, were: Mean sucrose in juice, 15.7 per cent; mean purity, 84.6 per cent. The variety analyzed next in order was the "Knauer." From that variety 100 "individuals" and 620 in "tens" were analyzed. The mean percentage of sucrose in the juice of the 100 beets analyzed separately was 15.7 . (The full table is omitted to economize space.)
The analyses of the 620 beets in "teus" are given in Table III.
The results of the "Knaner" variety, September 2?, were: Mean sucrose in juice, 15.4 per cent; mean purity, 84.9.

September 25 the "Lemaire" variety was examined; 100 beets were taken for individual analysis and 600 for analyzing in "tens."
The 100 "individuals" gave the following results: The mean percentage of sucrose in the juice of the 100 separate beets was 13.9 .
The 600 in "tens" gave the results recorded in Table IV.
The average results of the two sets of analyses the "Lemaire" variety on September 25 and 26 were: Mean surose in jume, 13.8 per cent; mean purity, 81.2 per went. The "Lemaire" beets were not so mature as those of the "Elite" and "Knaner" varieties, and as the condition of the remaining varieties appeared still further from maturity no further analytical work was dom antil October 6 . The weather of the previnus ten or formeen days had heen highly favorable, and the less matured varioties were still improving.

From the eussation of the analytical work on September 26 up to the rerommeneement of the same, heavy rains fell. About 4 inches of rain were registered during that interval, an abmormally heary precipitation for that season. The uomal rainfall for October in that part of the State is very little more than 1 inch. Following the perion of hot weather (the twelve days from September 13 to 25 , the mean of the daily maximun temperature was precisely 90) , and falling upon soil whose temperature was over 70°, the effects were likely to he mfavorahle and perhaps disastrous.

Octoler 6 work was resumed in Field B, and upon the "Desprez" rarinty; 200 bents were analyzed individually, and the mean result of the analyses was: Sucrose in the juice, 13.5 per cent.

At the time (October 6) stated no beets of the Desprez variety were analyzed in "tens."

October 8 the Vilmorin variety was further examined, 200 heets being analyzed individually, showing a mean percentage of sugar of 13.8 ,

Octoher 10 the Kleinwanzlehener variety was tested. One hundred beets were analyzed as "individuals," and the mean results showed 14.7 per cent of sugar.

A notable effect of the heavy rains and previous hot weather is ohservable in the sucrose readings of the last three varieties of beets aualyzed. The falling off in the sucrose was seen by comparing the readings on the given dates.

Analyses of those varieties were not made immediately before the rains, i. e., about September 26 ; otherwise, if a comparison were made with the "Elite" aud "Knauer" varieties, and it besupposed that the three former had made a similar increase in sucrose that the two latter rarieties had done between September 15 and 25 , then the actual falling off in sucrose in consequence of the rains would be much greater, which doubtless was the case.

Field B was left alone after the work already described, a sufficient number of beets of each variety being left for further analytical examination at a later period in the season, in order to observe whether any of, or all, the varieties recovered the loss in sucrose before the season closed.

October 13 an examination of the varieties upon a large scale commenced in Field A. The work was conducted the same as in Field B, and does not require any further comment.
Variety "Elite," 100 beets were amalyzed as "individuals," and 200 were tested in "tens." The mean results of the individual analyses showed 14.8 per cent of sugar. The 200 beets analyzed in "tens" gave the results recorded in Table V.
The mean results of the analyses of the "Elite" variety, October 13, were: Mean sucrose in juice, $\mathbf{1 4 . 5}$ per cent; mean purity, 84.6 per cent.

October 14 the "Knauer" variety was tested. The mean result of the analysis of 100 individuals gave 14.8 per cent of sucrose in juice.

The results of the analyses of 200 beets in "tens" are recorded in Table VI.
The mean results of the two sets of analyses of the "Knauer" variety, October 14, were: Mean sucrose in juice, 14.8 per cent; mean purity, 88 per cent.

October 15 the "Lemaire" variety was examined.
One hundred "individuals" were analyzed separately, showing mean sucrose in juice, 14.2 per cent.

Two hundred beets were analyzed in sets of "tens," and the results are shown in T'able VII.
The mean results of the two sets of analyses of the "Lemaire" variety, October 15, were: Mean sucrose in juice, 14.1 per cent; mean purity, 83.5 per cent.

October 16 the "Desprez" variety was analyzed.
One bumired brets amalyzed "individually" gave the following mean result: Sucrose in jnice, 14.8 per cent.
Two humdred leeets amalyzed in "tens" gave the results recorded in T'ahle VIII.
The arerage results of the two sets of analyses of the Desprez variety October 16 were: Mean sucrofe in juice, 14.4 per cent; mean purity, 84.6 per cent.
October 17 the Vihmorin variety was examined. One hundred beets analyzed separately gave the following mean result: Per cent sucrose in juice, 14.8.
Two hundred of the same variety analyzed in "tens" gave the results recorted in Table IX.

The average resulls of the two sets of analyses of the Vilmorin variety, October 17, were: Mean sucrose in juice, 14.6 per cent; mean purity, 84.9 per cent,

131

October 19 the Kleinwanzlebener variety was examined. One hundred "individuals" were analyzed and gave the following mean results: Per cent sucrose in the juice, 14.8 per cent.

Two humdred beets of the same variety, analyzed in "tens," gave the results recorded in Table X.

The average results of the Kleinwanzlebener variety October 19 were: Mean sucrose in juice, $\mathbf{1 4 . 5}$ per cent; mean purity, 82.8 per cent.

The analysis of each variety in both fields upon a very broad scale set forth the condition of the beets and the sugar value of the crop at the stated periods. The amalysis, when put in comparison with the examinations made in September, show the action of the climatic conditions-the falling off of the sucrose in conserpuce of the rains, and the comparative capabilities of the varteties to recover their lost sucrose value.

The varieties in each field were gone over again and their condition determined after an interval of fourteell days The examination recommenced in Field B. The "Elite" and "Knaner" varieties were not examined further, as they had attained full maturity and their maximum values were ascertained before the rains set in. The varieties "Lemaire," "Desprez," "Vilmorin," and "Kleinwanzlebener" remained in the ground in sufficient number to allow of a further thorough examination of their condition.

The purpose of the repeated analyses of the varieties at the given intervals was, in the first place, to observe the approach of each toward maturity and to determine the precise period wheu each variety had attained its maximum value, and, further, to note the specific effect of the great heat, followed by the rains, by observing the degree of the sucrose depreciation consequent on the "second growth" and to what extent the beets recovered their loss in sugar.

October 20 the "Lemaire" variety was reëxamined. One hundred "individuals" gave the following mean results: Sucrose in juice, 14.1 per cent. Eighty beets, in "tens," gave the results recorded in Table XI.

The average results of the "Lemaire" variety, October 20, were: Mean sucrose in juice, 14.6 per cent; mean purity, 88.5 per cent.

October 21 the "Desprez" variety was retested. One hundred "individuals" gave the following mean result: Sucrose in juice, 14.1 per cent. (See Table XII.)
Three humbred and eighty beets in "tens" gave results recorded in Table XII bis.
The average results of the " Desprez" variety, October 21, were: Mcan sucrose in juice, $\mathbf{1 4 . 1}$ per cent; mean purity, 87.7 per cent.

October 22 the Vilmorin variety was reëxamined. Fifty "individuals" were analyzed and gave the following meau results: Sucrose in juice, 12.8 per cent.
Six hundred and sixty beets of the same variety, analyzed in "tens," gave the results recorded in Table XIII.
The average results of the Vilmorin variety, October 22, were: mean sucrose in juice, 13.4 per cent; mean purity, 85.8 per cent.

October 23 the Kleinwanzlebener variety was reïxamined. Fifty "individuals" analyzed gave the following mean results: sucrose in juice, 14.1 per cent.
Six hundred and twenty beets, analyzed in "tens," gave results recorded in Table XIV.

The average results of the Klein-Wanzlebeu variety, October 23, were: mean sucrose in juice, 14.1 per cent; mean purity, 83.8 per cent.
On completing the reëxamination of the varieties in Field B, the work of the following week was given to a complete investigation of the coudition and results of the experiments on the small plats. It will be convenient, however, to bring in at this period the data obtained from the reëxamination of the varieties in Field A, in oriler that the observations upou the large plats in Fields A and B mav be brought to a conclusion.

The reiesamination of the varictics in Field A commenced October 31, and in the following order:
October 31 the "Elite" variety was analyzed and gave the following data:
Two hundred beets were analyzed in "tens," and the results are recorded in Table XV.

The average results of the analyses of the Elite variety, October 31, were: mean sucrose in juice, 14.2 per cent; mean purity, 83.9 per cent.
November 2 the " Knaner" variety was reëxamined. Two hundred beets, analyzed in "tens," gave the results recorded in Table XVI.
The average results of the analyses of the "Kuauer" variety, November 2, were: mean sucrose in juice, 13.2 per cent; mean purity, 82.1 per cent.
November 2, the "Lemaire" variety was reëxamined; two hundred beets were analysed in "tens," and gave the results recorded in Table XVII.
The mean results of the analyses of the "Lemaire" rariety, November 2, were: mean sucrose in juice, 12.6 per ceut; mean purity, 80.0 per cent.

November 2, the "Desprez" variety was reëxamined. Two hundred beets were analysed in "tens," and gave the results recorded in Table XVIII.

The average results of the analyses of the "Desprez" variety, November 2, were: mean suerose in juice, 12.6 per cent; mean purity, 80.9 per cent.
November 2, the Vilmorin variety was reeisamined. Two huudred beets, analysed in "tens," gave the results recorded in Table XIX.

The average results of the inalyses of the "Vilmorin" variety, November 2, were: mean sucrose in juice, 13.1 per cent; mean purity, 83.6 敒 cent.
November 2, the "Kleinwanzlebener" variety was reëxamined. Two hundred beets were analysed in "tens," and gave the results recorded in Table XX.
The mean results of the analyses of the "Kleinwanzlebener" variety, November 2, were: mean sucrose in juice, 13.0 per cent; mean purity, 79.7 per cent.
The per cent of sherose in the juice and the purity of the several varieties at the different periods are shown in the following résume:

Ficld 18.

Variety.	Date.	Sucrose in juice.	Purity.
Elite	Sept. 15 Sept. 21	Per cent.	
		14.6	82.0
Knauer		15.7	84. 6
	Sept. 15	15.7 15.4	80.2
Lemairo	Sept. 15	13.2	77.0
	Sept. 20	13.8	81.2
	Oct. 20	14.6	88.5
Desprez	Sept. 15	13.8	81.3
	Oct. ${ }^{6}$	13.5	
	Oct. 21	14.1	87.7
Vilmorin	Sept. 15	14.3	
	Oct. 8	13.8	
	Oct. 22	13.4	85.8
Kleiuwanzlebener	Sept. 15	14.7	
	Oct. 10	14.7	
	Oct. 23	14.1	83.8

Fie? A.

The observations attaching to the varieties in F'ield B show that the "Lemaire" and "Desprez" varieties made improvement in October atter the bad effects of the rains had abated. The "Vilmorin" and "Kleinwanzlebener" varieties, which were nearer maturity than the two former varieties at the time that the rains fell, never recovered their lost ground, but continued to fill off in sucrose. The weather, however, Was very unfarorable to a recovery from the effects of the "second growth" consequent on the rains. Although there was very little rain after the first week in October, the weather was ungenial. Thonights were frosty and the days very changeable and raw, and not in any degree favorable to a gradual maturity of the beets, if considered in comparison with the general tone of the tall weather in the beet districts of Europe.

In Field A, no analytical data was obtained immediately before nor immediately after the rains, but the table indicates clearly the period in October when the varieties had reached their maximum value, aud that later there was a notable falliug of both in the sugar content and the purity of the juices, or, in other words, the beets were at the best for sugar-making purposes in the first half of October, and that by the end of the month they had falleu of in value for the factor not less than 15 per cent considering the decreased purity of the jnices in connection with the actual loss of sucrose in the beets.

If an analysis of the respective behaviors of the varieties be attempted any very conclusive data can hardly be established; nevertheless it is ohsorved in Field B that the "Elite" and "Knauer" varieties came first to maturity. Again, in respect of the property to resist and recover from the unfavorable climatic conditions, the "Lemaire" and "Desprez" varieties appeared to excel the "Vilmoriu" and "Kleinwanzlebener" varieties; but, as it has already been said, that lifference in fitvor of the two former varieties might be wholly owing to their being farther from matmrity at the time that the rains fell. In Field A, the behavior of the varieties was so very uniform that there is not room for safe comment in favor of any one.

More exact conclusions may be established of the actual values of the varieties by comparing the weight per acre with the sugar contained in the beets of each variety. In doing that the highest average sucrose reading will be used with the weight per acre in order that the maximum value expressed in the yield of sugar per acro may be given. The following tables set forth the comparative values of the varieties:

134

Field 1 B.

| Variety. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Ficld A.

Variety.	Weight per acre.	Sucrose iu beets.	Sugar per acre.
Elite.	Tons. 18.1	I'er cent 13.8	Pounds. 5; 001
Knauer	17. 7	14.11	4,945
Lemaire	18.4	13.4	4,924
Desprez	21.3	13.7	5,837
Vilmorin	21.1	13.9	5,855
Kleinwanzlebener.	22.5	13.8	6, 204

In order to come at the volume and value of production of the respective varieties this season, aml to obtain an indication of the comparative valne and adaptability of the varieties to the soil and climate in which they have been grown, the mean of each variety in tield. A and field B will be given, expressed in the weight of beets per acre, the surar per acre, and the purity of the juices, from which collective data a precise estimate may be formed of the value of each variety, both to the grower of the beets and the manufacturer of the sugar.

Mean of field A and field B.

Variety,	Weight per acre.	Sugar per acre.	Purity of juices.
Elite	Tons. 19.33	Pounds. 5, 564	84.6
Knaner	19.49	5,613	86.4
Lemaire	20.94	5,698	86.0
Desprez.	23.85	6, 459	86.2
Vilmorin	23.45	6, 407	85.4
Kleinwanzlebener	23.55	6,521	83.3

The analysis of the varieties does not require further comment. The almost identical values of the "Kleinwanzlebener," "Desprez," and "Vilmorin" varieties are very notable. The other varieties form a secoud class in respect of the actnal money value per acre.
It may be of interest to add a comparison of the results obtained by the Department beet station with those of a station in Europe, where the work is conducted with the same care and accuracy. The Chapelle agricultural station, France, affords the data for such a comparison published in the official bulletins of this year. The data of the Chaprelle station represent the mean condition and results of several experimental plats at the soveral periods stated, and the statement of the Department station gives the mean condition of all the varieties and plats at almost corresponding periods in the season at Schuyler.

Stations.	Date.	Weight of bects per acre.	Sugar per acre.
Chapelle (France)	Sept. 9Oct. 7	Tons.	Pounds. $3,014$
		14.86	4,18:
	Nov. 18	16. 30	4,919
	Sept. 15	21.77	5,790
Schuyler (Nobr.).	Oct. 15	21.77	6, 060
	Nov. 2	21.77	5,398

135

The exact weight of each plat on the Schuyler station was not obtained upon all the dates given, but certain plats were weighed September 12 and 15 and October 26 , and the weight of beets per acre was found to be constant. The sugar content on September 15 indicated that the maximum growth had been attained, although there was room for improvement in the state of maturity of the juices.
A comparison of the data given of the two stations suggests the dissimilar climatic conditions attending the maturing season in the respective countries. In France the beets mature slowly and late into the fall. In Nebraska the season is early, prompt, and sooner over.

SMALL PLATS.

The results of the experiments conducted upon the small plats will now be examined.
It was explained in the early part of the report that those experiments consisted of three series, having the following purposes:
(1) The determination of the distances that the beets should be planted apart from each other in order to obtain the maximum production, expressed in woight of beets and sugar per acre.
(2) The observing of the effects (if any) of varyiug quantities of phosphate fertilizers upon the yield of beets and sucrose.
(3) To indicate the time when it may be most advisable to plant the beet seed in the conditions which obtain in the district where the station is located.
It must he previonsly observed that the analytical work upon an exhaustive seale was not commenced upou those small plats until a week after the beets were at their best. As a consequence the total value of the results of the plats as indicated by the content of sucrose present in the juices will appear low, and it is certain that the sucrose in the juices of all the plats, excepting Nos. 14 and 15 , was lower by 1 per cent at the time of analyzing than it was a week before. The plats Nos. 14 and 15 were very late in maturing, not having been planted until June.

FILST SERIES.
The weight of beets per acre of each plat will tirst be given. The beets on each plat were planted exactly 6 inches apart in the rows. The distance between the rows was different upon each plat, thus showing a varying scale of the number of beets to the acre.

The sugar content of the juices of the plats is given in the following tables:
Plat No. 1.-Sixty beets were analyzed individually and gave the following mean results: Per cent sucrose in juice, 13.8.

Sixty beets analyzed in "tens" gave the results recorded in Table XXI.
The average results of the analyses No. 1 Plat were: Mean sucrose in juice, 13.7 per cent; mean purity, 80.8 per cent.

Plat No. 2.-Sixty individuals analyzed the following mean result: Sucrose in juice, 13.1 per cent.

Sixty beets analyzed in "tens" gave results recorded in Table XXII.

The average results of the amalyses of No. 2 Plat: Nean sucrose in juice, 13.1 per cent; mean purity, 82.7 per cent.
Plat No. 3.-Sixty individuals analysed gave the following mean results: Sucrose in juice, 14 per cent.

Sixty beets analyzed in "tens" gave results recorded in Table XXIII.
The mean results of the analyses of No. 3 Plat were: Mean sucrose in juice, 13.5 per cent; mean purity 80.9 per cent.

Plat No 4.-Sixty individuals analyzed separately gave the following mean result: Sucrose in juice, 13 per cent.

Sixty beets analyzed in "tens" gave the results recorded in Table XXIV.
The mean results of the analyses of No. 4 Plat were: Mean sucrose in juice, 12.9 per cent; mean purity, 80 per cent.

Plat No. 5 .-Sixty individuals amalyzed separately gave the following mean result: Sucrose in juice, 13.5 per cent.
Sixty beets analyzed in "tens" gave the results recorded in Table XXV.
The average results of the analyses of No. 5 Plat were: Mean sucrose in juice, 13.0 per cent; meau purity, 77.7 per cent.
Plat No. 6.-Sixty "individuals" analyzed separately gave the following mean result: Sucrose in juice, 12.8 per cent.

Sixty beets analysed in "tens" gave the results recorded in Table XXVI.
The arerage results of the analyses of No. 6 Plat were: Mean sucrose in juice, 12.9 per cent; meau purity, 80.5 per cent.

The value per acre of each of the plats, expressed in weight of beets and sugar per acre, was as follows:

	Plat.	Distance between the rows.	Weight of boets per acre.	Sugar per acre.
		Inches.	Tons.	Pounds.
No. 1.		12	24.0	6, 240
		14	20.2	5,009
3.		16	17.5	4,480
4.		18	15.8	3, 855
5.		20	15.4	3,788
		23	14.0	3,416

It must be said, by way of comment upon the comparatively low weights per acre of the beets, that the small plats suffered the most excessive effects of the heavy rains of June and July becanse of the gronnd lying lower than the large plats near by. Moreover, the rows ram from east to west instead of from north to south (the form of the plats made the other direction impracticable), and that was specially disadvantageous in the wet season.
It was observed that the individual beets were very little larger on the plats where the rows were 22 inches apart than on the plats where the rows were only 12 inches distant from each other. The beets in the rows, however, were planted ouly 6 inches apart on all the plats, and that circumstance controlled the comparative uniformity of the size of the beets througbout, the distance between the plants in the row being a more important factor than the distance between the rows in deciding the size of the bect.

SECONI SERIES.

The five following plats were devoted to observing the effect of phosphorous fertilizers upon the production of weight of beets and sugar per acre.
The fertilizer experimenten with was a slag phosphate. The application of the fertilizer was at the time of planting the seed. The results may serve to indicate that those soils do not require any aid from artificial fertilizing agents.

The results will be given in brief in the following table:

	Plats.	Fertilizer per acre.	Weight of beets per acre.	Sugar per acre.
No.		Pounds. 160	Tons. :6. 3	Pounds. 4, 192
		240	16.7	4,141
		320	15.6	3,900
		480	15.4	3,912
		640	14.5	3,699
		(*)	15.8	3,855

* Nonfertilized plat.

THIRD SERIES.
The following four plats were used for the purpose of observing the results obtained from beets planted at different periods.

The plats Nos. 14 and 15 did not suffer so much from the heavy rains; otherwise the conditions were equal. The results are given in brief in the following tablo:

During the analytical season experiments were conturted for the purpose of ascer. taining-
(1) The loss of weight in the beets from evaporation when exposed for varying lengths of time.
(2) The aetion upon the surerose contained in the beet when the latter is removed from its connection with the soil.

It has been clamed that when beets are taken up out of the soil and stored a further increase of sucrose takes place in the organism, and more lately it has been stated that if the beets are disturbed by an implement sumberently to break the root connection with the ground, the beets being left in the soil, an increase of sucrose takes place. There does not appear to be anything in the organism of the beet to induce such an expectation.

The evaporation experiments were made in two series:
(1) With beets fastened up in a bag and kept from the sun and wind.
(2) With beets moder normal exposure to air and sun.

Table of first serics.

Date.	$\begin{array}{\|c} \text { Maxi- } \\ \text { mum air } \\ \text { temper- } \\ \text { ature. } \end{array}$	(1) Weight of beet.	Loss.	${ }^{(2)}$ Weight of beet.	Loss.	(3) Weight of beet.	Loss.	(4) Weight of beet.	Loss.
Oct. 12	- 53	Grams. 1,283	Per cent.	Grams. 618	Per cent.	Grams. 753	Per cent.	Grams.	Per cent.
Oct. 13	63	1,242	3. 2	620		725	3.8	$40 \pm$	5.3
Oct. 14	52	1,188	7.3	592	8.8	703	6.7	381	10.6
Oct. 15	52	1,166	9.2	579	10.7	691	8. 3	370	13.2
Oct. 16	76	1,136	11.5	563	13.2	676	10.3	358	16
Oct. 17	65	1, 111	13.4	550	15.2	660	12.4	350	17.9
Oct. 18	59	1,085	15.5	538	17	650	13.7	329	22.8
Oct. 19	$6 \% .5$	1,055	17.8	518	20.1	631	16.2	315	26.1

Table of second series.

Date.	Maxi- mama temper- ature.	(1) Weight of beet.	Loss.	(2) Weight of beet.	Loss.	$W_{\text {eight }}^{(3)}$ of beet.	Loss.	${ }^{(4)}$ Weight of beet.	Loss.
Oct. 12	$\stackrel{0}{53}$	Grans.	Per cent.	Grams. 661	Per cent.	Grams. 503	Per cont.	Grams. 580	Per cent.
Oct. 13	63	661	8.8	592	10.5	457	9.2	5.37	7.5
Oct. 14	52	620	14.4	512	18	418	16.9	501	13.7
Oct. 15	52	592	18.3	516	2	411	20.3	473	18.5
Oct. 16	76	570	21.3	493	25.5	375	25.5	456	21.4
Oet. 17	65	548	24.4	468	29.2	366	27.3	435	25
Oct. 18	59	526	27.4	447	32.4	351	30.3	416	28.3
Oct. 19	67.5	505	30.3	426	35.6	335	23.4	396	31.8

If the me:a loss of weight be taken of the individual beets each day, as shown by the two tables, a ratio of ovaporation may be determined, and a standard of correction established approximately oxact, to be applied in tho analysis of boets which have been some time out of the ground.

First series, ratio of evaporation.		Second series, ratio of evaporation.	
	Per cent.		Per cent.
Loss of weight for one day.	.. 4.2	Loss of weight for one day.	-. 9
two days	. 8.5	two days	.. 15.7
three days	- 10.4	three diays	- 19.8
four days	- 12.8	four days	-. 23.4
tive days..	-. 14.7	five days.	-. 26.5
six days.		six days. seven days	$\begin{aligned} & 29.6 \\ & \hline-\quad 32.5 \end{aligned}$

In addition to the observations conducted with individual beets, an experiment was made with a square rod of beets in the middle of a large plat. The beets were got up and the tops removed exactly as though propared for the finctory and then left lying on the ground with a normal exposure to the air and sun.

Third series.

Weight of 1 square rod of beets.	Ratio of evaporation.	
Pounds.	Loss of weight for-	Percent.
Original weight-........... 267.5	I'wo days	.. 15.6
	Four days	.. 21.9
Third weight 209	Six days.	- 28.3
Fourth weight................................ 192		. 3

Upon the thid day of exposure rain fell, consequently the evaporation was somewhat retarded.

It will be umderstood that the "loss of weight" for the given periods means the loss in per cent of the weight of the heet and not the per sent of water evaporated of the original water contained in the beet. The per cent of water lost wonld be greater than the numbers given.

As the "loss of weight" implies the loss of weight of the beet, the per cent of loss means an equal per cent gitin in the reading of the sucrose, and the correction should be as follows:

A beet which reads 15 per cent of sucrose, but which has lost 20 per cent of its original weight, should be read: Sumose in juice, 15 per cent less; loss of weight in beet, 20 per cent; actual sucrose in juice, 12 per cent.
In proceeding to a consideration of the second proposition, viz, "the action upon the sucrose present in the beet consequent upon breaking the connection of the latter with the soil," the data obtained in the evaporation experiments are of the first valueIt may, in the first place, be indicated that any apparent increase of sucrose in a beet which has had its taproot broken, or which has been in any way detached or
lonsened in its comection with the soil, is due wholly to a loss of weight in the lieet by evaporation, and a proportional relative increase in the per cent of solids in the same. If a beet is disturbed sufficiently to break the taproot and the hundreds of small fibrous rootlets, even if it is not lifted out of the soil, the leaves rapidly wilt and in time the flesh of the beet becomes soft. The simple explanation is that the evaporation of water from the surface of the beet, which proceeds without intermission during the whole period of growth, continues after the breaking of the connection of the beet with the soil, but the connection with the soil being broken, the beet is no longer able to take up fresh water from the earth to replace the amount lost by evaporation. Consequently the beet loses weight, and an apparent increase of sucrose takes place, the latter being solely due to the decrease of water in the organism and a corresponding increase of solid matters.
There is another phase to the question under consideration. Does a loss of sucrose, through decomposition, take place in the heet after it is taken ont of the soil and stored either under the surface of the ground in pits or silos or in any other way? Actual experiment conld be the only means of deriving an answer to the proposition.

At the time that the beets of each of the varieties were gotten up for analysis and for the selection of mother beets for propagation use, a certain portion of the latter class were placed in small pits in the ground about 9 inches under the surface and well protected with moist earth. A part of the beets was placed in the pits with the tops on, and the other part the tops were cut off 1 inch from the neck hefore they were stored. The beets were kept in the gromed in those pits from October 15-19 to November 6, when they were taken out and put in the permanent silus for the winter. At the same time a further number of beets was left in the ground till a later date and then gotten up and analyzed fresh in order to compare with the beets placed in the pits. The results were as follows:

Field B.

Variety.	Fresh beets.				Stored beets.			
	Date.	Sucrose in juice.	Date.	Sucrose in juice.	Date.	Sucrose in juice.	Date.	Sucrose in juice.
Des	Oct. 6	Per cent.	Oct. 21	Per cent.	Oct. 6	Per cent. 13.5	Nov. 6	Per cent. 12.3
Vilmorin	Oct. 8	13.8	Oct. 23	13.4	Oct. 8	13.8	Nov. 6	12.2
Kleinwanzlebener -	Oct. 10	14.7	Oct. 23	14.1	Oct. 10	14.7	Nov. 6	13.4

Field A.

Variety.	Fresh beets.		Stored beots.	
	Date.	Sucrose in juice.	Date.	Sucrose in juice.
Elite.	Oct. 13	Per cent. 14.5	Nov. 6	Per cent. 12.7
Knaner	Oct. 14	14.8	Nov. 6	11.6
Lemoire	Oct. 15	14.1	Nov. 6	13
Desprez	Oct. 17	14.4	Nov. 7	12.5
Vilmorin	Oct. 18	14.6	Nov. 7	12.9
Kleinwanzlebener	Oct. 19	14.5	Nov. 7	12.5

In comparing the results of the "fresh" and "stored" beets it must be remembered that the latter had lost some water by evaporation, so that the sucrose should have been higher in the juices of the stored beets than in the juices of the fresh beets. It is thus seen that the actual decrease and loss of sugar in the stored beets was greater than is indicated in the table given.

An experiment was made with individual beets, also with the purpose of observing if there were a decrease in sucrose contained in the beets after removal of the latter from the soil. The experiment was made as follows:
Twenty beets were taken fresh from the soil, the tops removed, washed, and dried. Each beet was cut into equal halves and the halves marked No. 1 and No. 2. No. 1
of each of the twenty beets was immerliately weighed, the juice expressed and the sucrose determined in the latter. The No. 2 halves of the beets were also weighed immediately and afterwads laid non a hoard with the cut surfaces upward and remained thens for fivediys, when they were reweighed, in order to ascertain the loss of weight by evaporation. After reweighing, the No. 2 lalves were immediately analyzed and the actual sucrose contained in the juice of each half determined.

Having determined the sucrose contained in the No. 1 half of each of the beets, and having firther determined the loss of weight in cach of the No. 2 halves, it was possible to obscrve whether a decrease of sucrose had taken place or not. The per cent increase of sucrose in the juices of the No. 2 halves should be exactly erual to the per cent decrase in the weight of the beets, if no loss of sucrose had taken place.

Instead of the data belonging to each beet being given, the mean data will be given of the No. 1 and No. 2 series.

Beets.	Mean of lirst weights.	Mean of second weights.	Mean of sucrose in juices.	Loss of weight of beets.	Increase of sucrose iu juice.	Loss of sucrose.
No. 1 halves	I'ounds.	Pounds.	Per cent.	Percent.	Per cent.	Per cent.
No. 2 halves	345	248	18.4	28.2	19.2	9

If the jnices of the No. 2 halves had gone up in sucrose in the exact proportion per cent that the beets had decreased in weight, those juices would have contained 20.2 per cent instead of 18.4 per cent which was actually found. The difference between 20.2 per cent and 18.4 per cent gives the loss of 9 per cent of the original content of sucrose in the beets.

The data obtained from the experiments with large numbers of beets of six varieties, and the ohservations made with the halves of the individual beets, indicate that a loss of surose takes place when the beets are removed from their normal connection with the soil.

In reviewing gencrally the characteristics of the season, and the result of the experimental work of the station, we have to observe the following:

The late date upon which it was recided to establish the station at its present lueation did not permit of the best advised plan of cultivation, and delayed the conducting of fanm operations till April, which should have been performed in the preceding fill.

The cultural season was marked by the widest extremes of climatic conditions. The plating period was a continuance of drought, lasting from April 20 to Jume 2 . At the end of the dry period a succession of weeks of rains followed, which were abnormal when compared with the usual precipitation for the months of June and July. The abnormal comditions accompanied the development of the season to its end. The steady and continuous heat common to the months of July and Angust was, in the most part, postponed till the middle of September; and the extreme heat of the latter mouth was followed again by rains which amomed to more than twice the normal precipitation for that period. The results of the work of this seasim have been achieved under the influence of climatic conditions unasually unfavorable.

Experiments conducted comparatively with the soils of Maryland, Indiana, and Nemasha indieated the peruliar adaptability of the soil to the climate in the latter State, which fact may be found to obtain equally for the other States.

The general results of the analytical season are found to be satisfactory both in respect of the weight of beets and yield of sugar per acre. In such respect the resints of the Schuyler Station compare satisfactorily with the work of corresponding stations in Europe.

The observations made upon the results of the six varieties used in the experimental work of the station, have resolved those varieties into two classes, in respect
of the actual inoney ralue per acre of their products, viz, the first class including the "Kleinwanzlehener," "Desprez," and "Vilmorin" varieties, whose values are uniform. The "Lemaire," "Elite," and Knaner" have also an approximately equal value, which, however, is much below that of the three former varietios.
The experiments conducted with the view of ohserving the results of early and late planting indicated that early planting may be expected to give the highest money value yield per acre. That conclusion, indicated by the experiments upon the small plats, is supported by the actual results obtained in Field B in comparison with Field A, the beets in the former field having been planted several days earlier than the other, and the rate of development continued fourteen days in advance of the beets in the latter field.
The fertilizer experiments indicate that the soil of the station farm contaius all the coustituents of plant food in abondance, and that artificial aid can not he given to the growing plant with any apparent advantage.
In respect of the distances that the beets should be placed from each other, or the number of plants given to an acre, the experiments on the No. 1 series of the small plats have shown conclusively that the money value of the crop was greatest where the greatest number of heets were placed upon the acre. The economic consideration, viz, the greater cost of raising an acre of beets planted closely together is very secondary in comparison with the greater money value of the product. Instead of the distances at which beets should be planted between the rows being regulated by the consideration of implements which have heon invented for the cheap cultivation of the crop, the character of the imprements should be adapted to the highest value and advantage of the crop.
The means of analyses indicating the condition of the beets at the periods when the tests were made show that the crop generally, and particularly in Field B, where the beets were planted early. had reached a high condition, in respect of the weight of the beets and the sugar content of the juices, on September 15. Further, that certain of the varieties had reached a maximum value by September er, and that all of the varieties were at their best by October 15, and after that date the coutent of sucrose began to fall awar. Those observationsindicate the time when, in a normal season, the harvesting and handling of the beets by the factories should commence in that part of Nebraska. The past season has been an abnormal and late one, and it is apparent that with a moderately carly planting season (April 20 to May 1), and proper cultivation, a crop should be ready for the factory commeneing September 1. The period of maturity depends upon the beet as well as the time of planting and cultivation, and in such respect it is iudicated that if the three varieties are used, which have been fomed to be the best this year, it would be advisable to plant them in the following order: "Vilmorin," "Kleinwanzlebener," "Desprez," and they will mature most advantageonsly in that order for the factory. In view of the early date in the season that the factories may have to suspend olerations on account of frost, an "early season" is of the greatest importance. Commencing September 1 , a three months' factory season is almost assured, and that would euable a factory with a capacity of 300 tons per das to work up about 30,000 tons of bects by December 1 , or the product of 3,000 acres at 10 tons per acre.
The experiments made in order to determine the loss of weight by evaporation, and to ascertain the effect of evaporation with the removal of the beets from the earth upon the snerose contained in the beet have indicated that no gain occurs in the sucrose content of the beet, hut that an actual loss of sugar takesplace if any length of time is allowed to transpire between the raising of the beets from the soil and the handling of them in the factory. It thus appears of advantage to the grower and the manufacturer that the beets should not only be harvested at the period of their maximum sugar value, but that they should be handled by the factory as nearly as possible as they come fresh from the field.

Table I.-Analyses of one hundred Kleinwanzlebener Elite sugar beets.
[Date: September 21.]

No.	Average weight beets.	Sucrose in juice.	No.	Average weight beets.	Sucrose injuice.	No.	Average weight beets.	Sucrose injuice.	No.	Average weight beets.	Sucrose injuice.
	Grams.	Per ct.		Grams.	Perct.		Giams.	Per ct.		Grams.	Per ct.
1	231	16.8	26	650	15.9	51	602	15.8	76	401	16.8
2	380	12.2	27	223	16.0	52	484	15.1	77	272	15.8
3	766	11.8	28	288	15.0	53	412	14.8	78	343	15.5
4	738	14.0	29	482	13.7	54	537	14.0	79	342	18.9
5	736	13.2	30	96	16.4	55	814	10.0	80	709	12.7
6	742	12.6	31	409	16.4	56	418	15.6	81	346	14.0
7	341	13.5	32	565	14.3	57	343	18.4	82	350	16.6
8	411	13.5	33	625	18.0	58	377	17.6	83	858	14.2
9	255	14.6	34	770	13.7	59	679	13.9	84	625	15.7
10	564	12.7	35	367	15.8	60	519	15.5	85	250	17.0
11	292	15. 2	36	725	13.9	61	931	13.5	86	228	17.8
12	149	13.0	37	189	13.5	62	470	16.7	87	328	15.8
13	145	15.0	38	502	13.8	63	370	16. 7	88	432	15.4
14	412	13.6	39	538	14.5	64	439	16.5	89	265	17.6
15	254	14.6	40	636	16.4	65	243	17.6	90	359	16.0
16	224	16.0	41	325	18.1	66	239	17.0	91	296	14.0
17	395	13.4	42	489	16.9	67	278	16.2	92	220	15.2
18	140	17.0	43	473	16.7	68	195	15.5	93	240	15.2
19	212	13.0	44	281	14.5	69	279	18.2	94	510	17.2
20	1,124	12.2	45	241	17.3	70	306	15.9	95	497	15.3
21	-171	16.8	46	294	17.7	71	431	14.4	96	522	13.8
22	229	16.0	47	354	16.8	72	565	15. 0	97	360	17.8
23	598	14.0	48	379	14.1	73	349	15.7	98	165	18.7
24	227	17.2	49	167	15.8	74	360	17.2	99	120	18.6
25	219	17.8	50	390	- 13.6	75	177	16.7	100	119	20.4

Table II.-Fariety Kleimoanzlebener Elite, analyzed in eighty groups of ten beets each.
[Date: September 22.]

No.	Average weight. beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Arerage weight. beets.	Solids in juice.	Sucrose in juice.	Purity.
1	Grams. 472	17.4	Per cent. 13.5	78.1	42	Grams. 192	19.3	Per cent. 17.0	88.1
2	(398	18.4	14.9 14.9	81.0	43	192 29	18.3	15.4	84.2
3	579	17.8	14.1	79.2	44	357	20.2	16.9	83.7
4	422	18.4	15.1	82.1	45	261	17.8	14.4	80.9
5	378	18.8	15.3	81.4	46	346	18.7	15.9	85.0
6	454	18.4	14.5	78.8	47	331	18.8	15.8	84.0
7	410	18.9	15.1	80.0	48	331	19.8	16.9	85.4
8	396	18.4	14.9	81.0	49	348	18.7	15.4	82.4
9	404	18.4	14.4	78.3	50	303	18.7	15.4	82.4
10	363	17.9	16.3	91.0	51	303	18.7	15.5	82.9
11	394	19.2	15.5	80.7	52	341	19.3	16.9	87.6
12	430	19.0	15.6	82.1	53	363	18.4	15.5	84.2
13	387	19.0	15.3	80.5	54	346	18.4	15.1	82.0
14	344	19.3	16.1	83.4	55	274	18.7	15.8	84.5
15	406	18.6	15.3	82.3	56	335	18.6	15.7	84.4
16	359	19.1	15. 6	81.7	57	342	18.4	15.6	84.8
17	337	19.6	16.6	84.7	58	341	19.2	16.8	87.5
18	291	19.7	16.7	84.8	59	317	18.2	15.2	83.5
19	307	18.9	14.6	78.5	60	279	19,3	16.3	84.5
20	483	17.9	14.4	80.4	61	299	19.2	16.2	84.4
21	421	18.7	15.8	84.4	62	241	19.1	16.1	84.3
22	354	18.3	15.3	83.6	63	327	18.7	15.3	81.8
23	421	19.5	16.1	82.6	64	286	18.5	15. 1	81.6
24	331	19.1	15.3	80.0	65	271	17.8	15.3	87.1
25	467	18.4	16.0	87.0	66	217	19.3	16.6	86.0
26	298	19.3	16.1	83.4	67	238	18.5	16.7	90.3
27	330	19.6	16.5	84.2	68	262	19.6	17.5	89.2
28	292	18.3	15.1	82.5	69	332	18.6	15.8	84.9
29	252	18.7	15.7	84.0	70	296	18.8	15.5	82.4
30	328	18.6	15.6	83.9	71	364	18.7	15.4	82.4
31	319	18.8	15.8	84.0	72	341	18.6	15.0	80.6
32	363	19.0	16. 0	84.2	73	281	19.2	16.1	83.9
33	318	18.6	15.4	82.8	74	311	18.2	15.0	82.4
34	271	18.7	15.9	85.0	75	285	19.5	16.8	86.2
35	307	19.1	16.7	87.4	76	358	19.3	16.1	83.4
36	337	18.2	15.1	83.0	77	394	17.9	14.6	81.6
37	246	19.0	16.0	84.2	78	382	19.3	16.3	84.5
38	231	19.6	17.4	88. 8	79	329	18.1	15.0	82.9
39	325	18.5	15.6	81.3	80	234	18.9	16.3	86.2
40	311	19.8	16.7	84.3					
41	238	19.0	16.9	89.0	Mean			15.7	84.6

Table III.--Showing analysis of sixty-two sets, of ten beets each, of the Ferdinand Knauer variety.
[Date: September 24.7

No.	Average weight beets.	Solids in juice.	Sucros8 in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in jaice.	Purity.
1	Grams. 471		Percent.			Grams. 262		Percent.	
2	471 372	18.7	15.5 15.1	81.9 81.2	33	262 272	19.0 18.9	16.0 16.4	84. 28
3	360	18.0	15.0	83.3	35	379	18.6	15.8	84.9
4	451	18.8	15.2	80.8	36	264	18.2	14.8	81. 3
5	469	17.2	14.1	82.0	37	256	19.1	16.1	81.3
6	372	18.0	15.0	83.3	38	323	18.7	15.8	84.5
7	503	16.5	13.0	78.8	39	308	18.5	15.3	82.7
8	353	18.4	15.6	84.8	40	325	18.0	15.5	86.4
9	326	18.2	15.3	84.1	41	268	18.3	14.9	81.0
10	505	17.2	13.9	80.8	42	266	18.8	15.7	83.5
11	371	18.1	15.6	86.2	43	405	15.8	14.4	91.1
12	503	17.9	14.9	83.2	44	393	17.9	14.5	81.0
13	400	17.3	14.5	83.8	45	314	18.0	15.4	85.6
14	412	17.8	15.0	84.3	46	255	18.1	15.5	85.7
15	393	18.5	15.8	85.4	47	360	18.7	15.8	84.5
16	419	17.9	15.0	83.8	48	347	18.2	15.8	81.8
17	499	17.8	15.0	84. 3	49	314	17.6	15.8	89.8
18	328	17.4	16.0	92.0	50	333	18.0	15.3	85.0
19	284	17.8	15.0	84.3	51	332	17.4	14.5	83.3
20	392	18.9	15.8	83.6	52	489	16.4	12.3	75.0
21	313	18.7	15.4	82.4	53	319	17.5	15.0	85.7
22	164	18.4	15.8	85.9	54	282	16.9	14.3	81.6
23	287	18. 1	14.8	81.8	55	333	18.5	14.7	79.5
24	206	19.7	16.2	82.2	56	317	17.3	13.8	79.8
25	275	18.1	14.9	82.3	57	374	17.8	14.3	80.3
26	250	17.4	14.3	82.2	58	364	17.7	14.0	79.1
27	251	18.2	14.4	79.1	59	362	18.4	15.6	84.8
28	281	18.6	15.5	83.3	60	359	18.6	15.2	81.7
29	256	18.6	15.5	83.3	61	374	17.4	14.0	80.5
30	272	17.5	14.4	82.3	62	551	17.5	13.8	78.9
31	186	19.2	17.3	90.1					
32	279	18.5	15.5	83.8	Mean.			15.1	84.9

Table IV.-Showing analyses of beets in sixty sets, of ten beels each, of the Lemaire variety.
[Date: September 26.]

No.	Average weight, beets.	Solids in jnice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in jnice.	Purity.
1	Grams. 538		Per cent.			Grams,		Per cent.	
1	538 415	17.2	13.3 13.7	77.3 80.1	32 33	634 320	17.1 17.5	13.3	77.8
3	343	17.2	14.1	82.0	34	325	17.5	14.0	80.0
4	657	17.1	13.3	77.8	35	507	17.1	13.9	81.3
5	492	16.4	13.0	79.3	36	535	16.9	14.2	84.0
6	422	17.7	14.5	81.9	37	290	17.4	14.4	82.7
7	542	16.8	13.5	80.4	38	488	17.5	14.2	81.1
8	461	16.9	14.3	84.6	39	514	16.9	14.0	82.8
9	465	16.5	13.4	81.2	40	286	17.7	14.9	84.2
10	504	17.7	14.1	79.7	41	371	17.5	14.0	80.0
11	351	18.4	14.7	80.0	42	374	17.4	14.4	82.7
12	417	17.9	14.5	81.0	43	370	17.8	14.5	81.5
13	485	17.0	13.7	80.6	44	331	18.4	15.3	83.2
14	438	17.4	13.9	79.9	45	287	17.9	15. 1	81.4
15	486	16.4	13.4	81.7	46	278	15.5	12.0	77.4
16	527	17.5	14.1	80.6	47.	377	17.4	14.0	80.5
17	338	16.1	14. 2	88.2	48	388	16.5	13.5	81.8
18	499	17.5	14.3	81.7	49	375	17.7	14.0	79.1
19	493	16.7	13.4	80.2	50	387	17.3	14.6	84.4
20	423	17.6	15.1	85.8	51	338	17.8	14.3	80.3
21	314	16.3	13.3	81.6	52	359	17.6	14.7	83.5
22	327	17.3	14.3	82. 6	53	371	17.4	13.9	79.9
23	383	17.8	14.7	82.6	54	365	15.9	14.7	92.5
24	540	16.7	13.0	77.8	55	484	17.1	14.4	84.2
25	517	17.8	14.0	78.7	56	398	17.0	13.4	78.8
26	517	17.6	14.2	80.7	57	384	16.9	13.1	77.3
27	354	16.7	13.7	82.0	58	365	15.9	13.3	83.6
28	313	17.3	13.7	79.2	59	372	16.9	13.3	78. 7
29	452	17.2	14. 1	82.0	60	244	16.6	13.9	83.7
30	559	17.0	13.8	81.2					
31	361	16.7	13.1	78.4	Mean			13.8	81.2

Table V.-Showing analyses of twenty sets of ten beets each of the Fileimuanzlebener Elite variety.
[Date: October 13.]

No.	Arerage weight beets.	Solide in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.
		Grams.	Per cent.			Grams.		Per cent.	
1.	289	16.9	14.7	87.0	12	349	16.8	14. 3	85.1
2	278	17.1	14. 6	85.4	13	334	16.1	13.8	85.7
3	287	16.6	13.2	79.5	14	314	16. 5	14.0	81.8
4	205	17.0	12.6	74.1	15	259	15.7	14.3	91.1
5	344	17.0	13.9	81.8	16	310	16. 2	13.4	82.7
6	355	16.4	14.5	88.4	17	203	16.3	13.0	79.8
7	278	16. 2	13.9	85.8	18	143	17.2	14.9	86.6
8	299	17.0	14.0	83. 4	19	267	16.9	14. 5	85.8
9	309	16.6	13.7	82.5	20	162	16.8	15.3	91.1
10	372	16.3	14.6	89.6					
11	364	16.5	13.8	83.6	Mean.			14.1	81.6

Table VI.-Showing analyses of twenty sets of ten beets each of the Ferdinand Kinauer variety.
[Date: October 14.]

No.	Average weight. beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Average weight bects.	Solids in juice.	Sncrose in julue.	Purity.
1	Grams.	16, 4	Per cent.	75.6	12	Grams.	17.0	Per cent.	90,6
2	382	16.3	12.8	78.5	13	217	17.5	15.1	86.3
3	323	16.6	14.0	84.3	14	221	16.8	15.5	92.3
4	366	16.3	14.3	87.7	15	229	15. 8	14.5	91.8
5	355	16.7	15.1	90.4	16	245	16.8	14. 2	84.5
6	330	17.2	14.7	85.5	17	188	16. 5	14.8	89.7
7	267	17.6	15.7	89.2	18	235	15.7	13.9	88, 6
8	233	17.7	16.1	01.0	19	278	17.3	15. ${ }^{\text {b }}$	90.2
9	361	16.4	14.5	88.4	20	228	17.0	15.0	88. 2
10	251	16.8	16.6	98.8					
11	254	17.0	15.3	90.0	Mean.			14.8	88.1

Table VII.-Showing analyses of twenty sets of ten beets each of the Lemaire varicty.
[Date: October 15.]

No.	Arerago weight beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Arerage weight beets.	Solicls in juice.	Sucrose in juice.	I'urity.
	Grams.		Percent.			Grams.		Ier cent.	
1	378	17.2	15.2	88.4	12	354	16.4	13. 1	79.9
2	356	16.9	13.9	82.2	13	358	15.8	12. 9	81.6
3	358	17.0	14.0	82.3	14	364	16.4	1:1.5	83.3
4	374	17.2	14.4	83.7	15	333	16.8	13. 4	79.8
5	351	17.2	14.4	83.7	16	447	16. 3	13.2	81.0
6	392	17.1	15.0	87.7	17	286	16.3	14. 2	87.1
7	471	16.6	13.9	83.7	18	$29 t$	16.6	13.9	83.7
8	321	16.6	13.7	82.5	19	312	16.4	14.3	87.2
9	323	16.2	13.4	82.7	20	161	16.8	14.0	83.2
10	367	16. 6	13.9	83.7					
11	369	15.5	12.9	83.2	Mean.			13.9	83.5

Table, VIII.—Shoming analyses of trent! sets of ten herts acth of the Desprez variety.
[Date: October 16.]

No.	Arerage weight leents.	Solitls in jatice.	Sucrose in juice.	Purits.	No.	Average Treight beets.	Solids in juice.	Sucrose in juice.	Purity.
1	Grams. 341	16.3	Per cent. 13.7	81.0	12	Grams. 298	16. 4	Per cent. 13.6	82. 9
2	354	16.1	12.9	80.1	13	374	15.6	13.5	86.6
3	366	17.6	11. 7	83.5	14	337	16. 1	14.4	89.4
4	575	16.6	13.7	82.5	15	333	15.7	13.9	88.5
5	446	16.3	13.2	81.0	16	339	15.5	13.4	86.5
6	515	16.5	14.9	20.3	17	318	16.5	14.0	84.8
7	363	16.8	13.3	79.2	18	309	16.5	13.8	83.6
8	373	17.1	13.4	78.4	19	253	16.5	14.8	89.7
9	461	15.8	13.1	82.9	20	174	17.9	16.1	89.9
10	343	16.2	13.0	80.2					
11	292	16.8	14.8	88.1	Mean.			13.9	84.6

Table IX.-Showing analyses̆ of henty sets of ten beets cach of the Desprez variety.
[Date: October 17.]

No.	Average weight beets.	Soliris in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in , inice.	Sucrose in beets.	Purity.
	Grams.	15.8	Per cent. 13.1			Grams.		Per cent.	
1	427	15.8 15.7	13.0 13.1	82.3 83.4	12	321 348	17.1	14.0 15.2	81.9 88.4
3	339	16.7	14.3	85.6	14	565	17.2	14.0	81.4
4	324	16.4	13.7	83.5	15	299	16.7	14.2	85.0
5	425	16.7	11. 4	86.3	16	317	17.1	14.7	86.0
6	370	16.6	13.7	82.5	17	309	17.2	15.4	89.5
7	314	16.2	13.5	83.3	18	330	17.7	15.7	88.7
8	312	17.0	13.8	81.2	19	2s:3	16.9	14.9	88.2
9	279	16.1	14.3	88.8	20	205	17.2	14.6	84.9
10	507	17.1	14. 1	84.2					
11	366	17.3	14.3	82.6	Mean			14.3	84.9

Tabie X. -Showing amalyses of twenty sets of ten beets each of the Kleimwanzlebener Elite variety.
[Date: October 19.]

No.	Areange weislit. buets.	Solites in iulce.	Sucrose in , ルic».	Piurity.	No.	Average weight. luets.	Solids in juice.	Sncrose in juice.	Purity.
	Grams.		Per cent.			Grams.		Per cent.	
2	396	17.4	15.5 14.3	88.6 8.2	12	361 468	16.9 17.1	13.2	78.1 86.5
3	392	16.9	13.5	79.9	14	381	18.4	15.4	88.7
4	506	16.9	13.0	76.9	15	330	16.7	14.2	85.0
5	396	17.7	14.7	83, 11	16	357	18.0	15.0	83.3
¢	52.3	16.2	12.8	79.0	17	377	16.5	13.9	84.2
7	362	18.1	15.1	83.4	18	384	17.7	14.5	81.9
8	335	17.8	15.0	84.3	19	334	18.0	15.0	83.3
9	378	17.9	14.9	83.2	20	403	18.2	16.0	87.9
10	396	16.6	13.2	79.5					
11	379	16.7	13.9	83.2	Mean			14. 4	82.8

1986.1-No. 33-10

Table XI.-Showing analyses of eighty beets in sets of tens of the Lemaire variety.
[Date: October 20.]

No.	Average weight beots.	Solids in juice	Sucerose in juico.	Purity.	No.	Average weight heets.	Solides in juice.	Sucrose in juire.	Purity.
	Grams.		Per cent.			Grams.		Percent.	
1	347	16.3	14.9	91.4	6	277	16.0	14.0	87.5
2	320	16.7	14.1	84.4	7	256	16. 6	15.5	93.4
3	304	16.3	14.4	88.3	8	165	16.7	14.1	84.4
4	264	17.0	15.0	88. 2					
5	270	16.5	15.0	90.9	Dean.			14.6	88.5

Table XII.-Showing analyses of one hundred beets of the Desprez variety.
[Date: October 20.]

No.	Average weight beets.	$\left\|\begin{array}{c} \text { Sucrose } \\ \text { in } \\ \text { juice. } \end{array}\right\|$	No.	Arerage weight beets.	Sucrose in juice.	No.	Arerage weight beets.	Sucrose in juice.	No.	Arerace weight beets.	Sucrose in juice.
	Grams.	Per ct.		Grams.	I'er ct.		Grams.	Per ct.		Grams.	Perct.
1	566	15.5	9	242	15.3	17	314	15.8	25	382	15.5
2	292	14.7	10	412	15.5	18	346	12.9	26	132	17.0
3	292	15.2	11	519	14.9	19	365	16.6	27	240	15.5
4	394	16.0	12	299	16.4	20	418	15.0	28	213	13.9
5	483	16. 2	13	499	14.9	21	718	14. 2	29	187	14.3
6	170	10.9	14	287	13.4	22	368	16.1	30	343	13.2
7	275	14.5	15	279	15.5	23	292	16.0			
8	347	12.6	16	162	15.2	24	475	14.2			

[Date: October 21.]

31	200	14. 6	49	597	14.0	67	447	13.0	85	607	15. 7
32	328	14.2	50	499	14.6	68	805	15.3	86	411	14.9
33	426	14.2	51	350	13.1	69	691	9.9	87	272	14.1
34	377	11.8	52	327	14.7	70	489	12.9	88	434	13.3
35	281	9.6	53	270	13.0	71	625	12.9	89	437	14.9
36	730	12.9	54	284	17. 4	72	632	12.8	90	289	14.1
37	324	15.0	55	309	16.6	73	215	12.7	91	396	11.0
38	639	14.5	56	304	14.8	74	183	18.2	92	217	16.1
39	444	13.2	57	376	12.3	75	457	15.0	93	150	13.0
40	400	13.8	58	225	14.4	76	191	15.8	94	627	11.2
41	298	14.0	59	442	15.1	77	320	14.9	95	126	14.6
42	630	13.0	60	200	13.9	78	270	14.3	96	186	7.5
43	496	15.1	61	287	12.2	79	226	12.2	97	359	11.8
44	270	15. 0	62	153	14.2	80	265	12.9	98	271	13.6
45	359	14.8	63	211	14.5	81	337	12.8	99	280	13.9
46	495	11.5	61	307	14.0	82	899	12.2	100	529	16.0
47	270	12.3	65	1,023	12.7	83	318	13.0			
48	197	12.9	66	466	14.6	84	427	13.6	Mean		14.1

Table XII, bis.-Showing analyses of thirty-eight sets of ten beets each of the Desprez variety.
[Date: October 21.]

N \%.	Average weight beets.	Solirls in juice.	Sucrose in juice.	Purity	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.
	Grams 369	15.7	Percent. 12.9	86.0	21	Grams. 323	16.4	Per cent.	n0. 2
2	$\begin{array}{r}369 \\ 386 \\ \hline\end{array}$	15.6	12.9	86.0 90.4	23	323 342 351	16.4	14.8 14.0	8.5 .4
3	376	16.5	15.7	95.1	23	351	16.4	14.0	85.4
4	386	15.4	13.2	85.7	24	321	15.5	13.3	85.8
5	386	15.9	13.8	86.8	25	372	16.1	14.2	88.2
6	368	16.3	13.7	84.0	[26	343	15.8	13.3	84.2
7	380	15.4	13.0	84.4	27	338	16.2	15. 3	93.8
8	398	15.6	13.7	87.8	28	353	15.3	13.0	85.0
9	378	15.6	13.9	89.1	29	339	15.6	13.9	89.1
10	323	15.7	14.9	94.9	30	370	14.4	12.5	86.8
11	359	15.8	13.5	85.4	31	351	15.8	13.6	86.0
12	386	15.9	14.7	92.5	32	35.5	15.9	14.6	91.8
13	271	16.4	14.7	87.8	33	319	14.9	13.3	89.3
14	318	16.0	14.5	90.6	34	373	15.9	14. 4	90.6
15	351	15.8	13.7	86.7	35	335	16.1	14.0	87.0
16	476	15.5	13.7	88.4	36	352	16.4	14.6	82.9
17	411	16.0	13.8	86.2	37	470	15.3	12.4	81.0
18	380	15.9	13.7	86.1	38	366	15.6	14.5	93.0
19	312	15.6	13.0	83.3					
20	298	16.2	14.0	86.4	Mean			14.0	87.7

Table XIII.-Showing analyses of sixty-six sets of ten beets each of the Filmorin rariety.
[Date: October 22.]

No.	Arerage weiglit beets.	Solids in julce.	Sucrose in juice.	Purity.	No.	Average weiglit beets.	Solids in juice.	Sucrose in juice.	Purity.
	Grams.		Percent.			Grams.		Per cent.	
1	372	15.4	12.4	80.5	35	536	16.0	- 13.3	83.1
2	382	15.5	13.3	85.8	36	464	16.3	13.9	85.3
3	368	16.7	13.8	82.6	37	340	16.3	13.0	79.8
4	381	15.6	13.1	84.0	38	343	15.4	13.2	85.7
5	390	16.1	13. 2	82.0	39	384	15.3	13.9	84.3
6	363	16.0	15.0	93.7	40	365	16.0	14.3	88.8
7	384	15.9	13.6	85.5	41	396	15.5	13.2	85.2
8	389	14.7	12.6	85.7	42	377	16. 1	13.4	83.2
9	356	16.1	15.0	93.2	43	384	15.1	13.3	88.1
10	368	16.4	14. 2	86.5	44	386	16. 1	14.0	87
11	331	15.7	13.0	82.8	45	385	15.5	12.2	78.7
12	758	16. 3	14. 1	86.5	46	317	16.6	13.9	83.7
13	351	16.6	15.5	93.4	47	359	14.7	13.4	91.2
14	355	16.4	13.7	83.5	48	359	15.2	12.0	78.9
15	366	15.5	13.2	85.2	49	296	15.7	13.2	81.1
16	377	15.5	13, 6	87.7	50	233	16.0	14.0	87.5
17	366	15.4	12.4	80.5	51	353	16.4	14.0	85.4
18	352	16.2	14.2	87.7	52	292	16.0	14.7	91.0
19	341	16.0	14.6	91.3	53	335	15.8	13.7	86.7
20	362	15. 8	13.8	87.3	54	357	14.5	13.2	01.0
21	342	15.2	13.6	89.5	55	353	16.0	13.9	86.9
22	315	15.3	13.4	87.6	56	328	15.7	13.2	84.1
23	363	15.9	12.8	80.5	57	309	16.2	14.1	87.0
21	357	16.2	14.0	86.4	58	290	16.5	13.9	84.2
25	361	16.8	13.8	82.1	59	372	16.9	14.8	87.6
26	321	16.5	14.0	84.8	60	392	15.9	13.2	83.0
27	371	16.1	14.8	91.9	61	195	17.1	15.2	88.9
28	376	15.7	13.4	85.4	62	284	15.5	14.3	92.3
29	321	15.3	13.0	85.0	63	243	15.4	12.2	79.2
30	291	15. 7	13.0	82.8	64	238	16.3	13.6	83.4
31	410	15.9	13.5	84.9	65	243	16.4	15.0	91.5
32	350	16.5	14.8	89.7	66	185	17.0	14.5	85.3
33	495	15.6	13.0	83.3					
34	366	15.0	12.8	85.3	Mean		10.0	13.4	85.8

Table XIV.-Showing amalyses of sirty-two sets of ten bects each of the Keimwanzle bener variety.
[Date: October 23.]

No.	Arerage weight beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.
	Grams.		Per cent.			Grams.		Per cent.	
1	361	15.4	14.4	93.5	26	452	11.6	13.0	78.3
2	396	15.4	12.3	79.9	27	459	16.9	14.1	83.4
3	397	16.8	14.6	86.9	28	443	15.9	13.4	84.3
4	383	16.8	14.8	88.1	29	379	17.4	14.9	85.6
5	397	16.3	14.7	90.2	30	397	17.0	14.5	85.3
6	386	17.4	15.0	86.2	31	387	16.8	14.7	87.5
7	390	16.0	12.9	80.6	32	589	17.0	14.3	84. 1
8	394	16. 4	14.9	90.9	33	390	17.1	14.4	84.2
9	379	16. 7	14.3	85.6	34	361	16.3	13.2	81.0
10	394	16.7	14.2	85.0	35	369	16.6	13.3	80.1
11	387	17.2	13.9	80.8	36	373	16.8	13.8	82.1
12	371	16.5	13.9	84.2	37	394	16.9	14.7	87.0
13	374	16.4	14.8	90.2	38	384	16.7	13.7	82.0
14	664	17.0	13.6	80.0	39	396	16.9	14.2	84.0
15	439	16.6	13.7	89.5	40	386	17.4	14.5	83.3
16	441	15.3	12.2	79.7	41	383	17.2	14.9	86.6
17	459	14.6	12.0	82.2	42	378	17.1	14.4	84.2
18	360	16.5	13.9	84.2	43	377	16.0	14.2	88.8
19	562	16.1	13.0	80.7	44	549	16.8	13.9	82.7
20	475	16.3	13.2	81.0	45	352	17.4	14.9	85.6
21	451	17.2	14.5	84.3	46	371	17.0	14.5	85.3
22	503	16. 0	13.3	83.1	47	374	17.9	15.2	84.9
23	463	16.3	13.4	82.2	48	366	16.5	13.7	83.0
24	527	17.3	14.9	86.1	49	383	17.6	14.3	81.2
25	459	16.5	13.6	82.4	50	374	17.6	14.8	84.1

[Date: October 24.]

51	356	17.0	13.9	81.8	58	326	16.4	13.4	81.7
52	340	16. 6	14.0	84.3	59	318	16. 9	14.3	84.6
53	324	18.0	14.5	80.6	60	358	16.2	13.0	80.2
54	379	16.7	13.8	82.6	61	360	16.4	13.9	84.8
55	355	17.3	14.0	80.9	62	409	17.1	14.4	84.2
56	349	16.7	13.9	83.2					
57	360	16.9	14.1	83.4	Mean			14.1	83.8

Table XV.—Showing analyses of twent!y sets of ten beets cach of Kleimwanzlebener elite variety.
[Date: October 31.]

No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solits in juice.	Sucrose in juice.	Purity.
1	Grams. 454	16.5	Per cent. 13.4	81.2	12	Grams. 357	16.2	Per cent. 13.9	85. 8
2	289	16.9	13.9	82. 4	13	333	16. 6	14.3	86.1
3	325	17.2	14.5	84.3	14	297	17.4	14.4	82.7
4	344	17.4	14.8	85.1	15	302	16.9	14.1	83.5
5	351	16.9	14.0	82.8	16	304	17.1	14.4	84.2
6	357	16.8	13.2	78.6	17	296	17.0	14.3	84.1
7	341	17.9	14.8	82.7	18	274	17.4	14.4	82.7
8	347	15.9	13.7	86.1	19	221	17.3	15.0	86.7
9	256	16.2	14.4	88.9	20	239	17.1	13.7	80.1
10	369	16.2	14.3	88.3					
11	371	17.1	14.0	81.9	Mean			14. 2	83.9

TABLe XVI.-Showing analyses of twenty sets of ten beets each of the Ferdinand Knauer variety.
[Date: November 2.]

No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.
	Grams.		Percent.			Grams.		Percent.	
1	386 386	15.6		76.9 81.0	12	387 394	15.7	13.1 13.4	83.4 82.2
3	386 375	16.3 1	13.2	81.0 82.6	14	394	16.3	13.4	82.2 82.3
4	363	14.6	11.7	80.1	15	290	16.4	13.7	83.5
5	370	14.8	11.6	78.4	16	246	17.5	14.8	84.6
6	394	15.1	11.7	77.4	17	290	17.3	14.4	83.3
7	416	16.4	13.5	82.3	18	224	16.2	13.8	85.2
8	355	15.8	12.9	81.6	19	170	16.6	14.4	86.7
9	315	16.5	13.2	80.0	20	140	15.7	13.9	88.5
10	317	17.1	14.2	83.0					
11	360	15.9	12.5	78.6	Mean			13.2	82.1

[Date: November 2.]
Table XVII.-Showing analyses of twenty sets of ten bects each of the Lemaire variety.

No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.
1	Grams. 370	15.5	Per cent. 12.9	83.2	12	Grams.	15.8	Per cent.	79.1
2	387	16.0	12.8	80.0	13	380	15.8	12.7	80.4
3	318	16.0	13.8	86.2	14	565	15.5	11.9	76.8
4	389	15.7	12.6	80.3	15	380	15.2	12.2	80.3
5	379	16.9	13.3	78.7	16	370	16.3	13.5	82.8
6	529	15.5	12.4	80.0	17	349	15.8	12.0	75.9
7	376	15.0	12.0	80.0	18	361	14.3	11.3	79.1
8	535	15.3	11.2	73.2	19	391	16.3	13.7	84.0
9	330	15.7	13.2	84.1	20	663	15.3	12.2	79.7
10	342	15.8	12.6	79.7					
11	358	15.9	12.7	79.8	Mean.	.-.		12.6	80.0

Table XVIII.-Showing analyses of twenty sets of ten beets cach of the Desprez variety.
[Date: November 2.]

No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	A verage weight beets.	Solids in juice.	Sucrose in juice.	Purity.
1	Grams. 382	15. 5	Per cent. 12.7	81.9	12	Grams. 502	15.3	Per cent. 12.0	70.4
2	350	15.9	13.3	83.6	13	339	15.4	13.1	85.1
3	392	15.7	12.0	76.4	14	371	15.6	12.7	81.4
,	301	15.9	13.0	81.8	15	391	16.2	12.6	77.8
5	556	14.8	11.5	77.7	16	559	15. 1	12.2	80.8
8	389	16.4	13.8	84.1	17	383	15.0	11.5	76. 6
7	382	15.3	12.4	81.0	18	379	15.8	12.8	81.0
8	373	15.4	12. 6	81.8	19	395	14.9	11.9	79.9
9	481	16.0	12. 8	80.0	20	389	15.5	13.0	83.9
10	466 341	16.2 15.6	13.4	82.7 83.3				12.6	80.9

TABme XIX. - Showing analyses of twemy sets of ten beets each of the Tilmorin variety.
[Date: Nov̌mber 2.]

No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.
	Grams. 465	15.1	Per cent. 11.8	78.1	12	Grams. 210	15. 5	Per cent. 13. 2	85.2
2	329	15.7	13.7	87.3	13	248	16.1	13.7	85.1
3	361	15.3	12.8	83.7	14	317	15.8	13.5	85.4
4	326	15.2	12.5	82. 2	15	365	15.3	13.0	8.7 .0
5	446	15.2	12.4	81.6	16	360	15.3	12.4	81.0
6	382	15.3	12.5	81.7	17	351	15.8	13.3	84.2
7	382	$1^{\prime}, 8$	13.2	83.5	18	334	15.7	13.6	86.6
8	298	16.0	13.0	81.2	19	261	15.9	13.5	84.9
9	347	15.7	12. 6	80.3	20	267	17.0	14.3	$8+.1$
10	286	15.1	13.3	88.1					
11	236	16.3	13.7	84.0	Mean.			13.1	83.6

Table XX.-Showing analyses of twenty sets of ten beets each of the Kleimwanzlebener variety.
[Date, November 2.]

No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity
1	Grams. 354	16.8	Percent.	76. 8	12	Grams. ${ }_{369}$	17.1	Per cent.	82.4
2	366	16.3	12.5	76.7	13	546	16. 7	13.3	79.6
3	509	15.8	11.8	74.7	14	5203	16.1	13.0	80.7
4	510	16.1	11.9	73.9	15	393	16.5	13.2	80.11
5	358	16.8	13.9	82.7	16	575	16.7	12.9	77. 2
6	367	16. 2	12.4	76.5	17	374	16.8	13.4	79.8
7	360	15. 5	11.9	76.8	18	367	16.6	13.9	83.7
8	379	15.8	12.3	77.8	19	302	16.8	13.8	82.1
9	36.5	16. 6	13.4	80.7	20	385	16.5	13.8	83.6
10	555	15.6	12.2	78. 2					
11	559	15.8	12.9	81.6	Mean.			13	79.7

Table XXI.-Showing analyses of six sets of ten bects each of Plat No. 1.
[Date: October 26.]

No.	Average weight beets.	Solirls in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.
	$\underset{281}{ }$	16.8	I'er cent.	80.9	5	Grams. 283	16.7	Per cent.	81.4
2	227	16.3	13.5	81.8	6	288	16.0	12.7	79.4
3	269	17.3	14. 1	81.4					
4	331	16.6	13.9	79.5	Mean		13.5	80.8

Table XXII.-Showing analyses of six sets of ten beets cach of Plat No. 2.
[Date: Octoler 26.]

No.	Average weicht bewts.	Solids in јиіст.	Sucrase in juice.	Purity.	No.	Average weight. bects.	Solids in juice.	Sucrose in juice.	Purity.
	Grams.	16.2	Per cent. 13.4	8.2	5	Grams.	15.7	Per cent. 13.4	85.4
2	226	16. 7	13.7	82.0	6	224	15.4	13.0	84.4
3	248	16.2	12. 8	79.0					
4	241	15.0	12.1	80.7	Mean.			13.1	82.7

Table XXIII.-Showing analyses of six sets of ten beets each of Plat No. 3.
[Date: October 27.]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No. \& Average weiglit beets. \& Solids in juice. \& Sucrose in juice. \& Purity, \& No. \& Average weight beets. \& Solids in juice. \& Sucrose in juice. \& Purity.

\hline \multirow[b]{5}{*}{$1 . .$.

$2 . .$.
$3 .$.

$4 .$.} \& \multirow[t]{5}{*}{\[
$$
\begin{array}{r}
\text { Gramg. } \\
243 \\
303 \\
250 \\
273
\end{array}
$$

\]} \& \multirow[b]{5}{*}{\[

$$
\begin{aligned}
& 15.8 \\
& 16 \\
& 15.8 \\
& 16.3
\end{aligned}
$$
\]} \& \multirow[t]{5}{*}{Per cent.

12.3
12.7
12.6

13.7} \& \multirow[b]{5}{*}{| 77.8 |
| :--- |
| 79.4 |
| 79.7 |
| 81 |} \& \& Grams. \& \& Per cent. \&

\hline \& \& \& \& \& 5. \& 253 \& 16.4 \& 13.4 \& 81.7

\hline \& \& \& \& \& \& 210 \& 15.6 \& 12.9 \& 82.7

\hline \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& Mean. \& \& \& 12.9 \& 80.9

\hline
\end{tabular}

Table XXIV.-Showing analyses of six sets of ten beets each in Plat No. 4.
[Date: October 27.]

No.	Average weikht beets.	Solids in juice.	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity.
	Grams. 250	16.4	Per cent. 12.9	78.7		Grams. 285	15.5	Per cent. 12.9	83.2
2.	282	16.5	13.5	81.8		221	15.7	12.6	80.3
	303 289	16.0	12.2	76.3	Ier			128	80
	203	16.0	12.8	O. 0				12.8	80

Table XXV.-Showing analyses of six sets of ten beets each from I'lat No. 5.
[Date: October 28.]

No.	Average weight beets.	Solids in juice.	Sucrose in juice.	Purity,	No.	$\begin{aligned} & \text { Arerage } \\ & \text { weimht } \\ & \text { beets. } \end{aligned}$	Solids in juice.	Sucrose in juice.	Furity.
	Grams.		Per cent.			Grams.		Percent.	
1.	350	16.6	12.8	77.1	5.	343	15.7	12,4	79
2.	357	16.4	12. 6	76.8		282	15.9	12.2	76.7
	355 377	15.3	12.2	79.7					
	377	16.6	12.8	77.1	Mean.			12.5	77.7

Table XXVI.-Showing analyses of six sets of ten beets each from Plat No. 6.
[Date: October 28.]

No.	Arerage weight beets.	Solids in juice	Sucrose in juice.	Purity.	No.	Average weight beets.	Solids iu juice.	Sucrose in juice.	Purity.
	Grams.		Per cent.			Grams.		Per cent.	
1.	${ }^{2} 43$	16.4	13.6	82.9		293	15.4	12.2	79.2
2	$\stackrel{255}{288}$	16.5	13. ${ }^{3}$	80, 6		243	15.7	12.5	79.6
	325	16.6	13.6	81.9	Mean.			12.9	80.5

MISCELLANEOUS.

PROCESS FOR THE PRODUCTION OF SUGAR-BEET SEED BY CUTTINGS.

Andreas Nowoczek, of Kaaden, Bohemia, has patented a process in Germany for the production of improved sugar-beet seed by cuttings from the mother beet. The process cousists in taking the buds from the axis of the leaves aud cutting them out with as little as possible of the Hesh of the beet adhering thereto. These buds are treated with an antiseptic to prevent them from decay and to prevent the gromad worms from eating them. The material chosen for the antiseptic is powdered charcoal. These buds are planted in beds and produce beets of average size which, it is claimed, have all the properties of the mother beet from which they were taken. The beets as produced cau be planted for seed in the usial way. It is claimed for the process that the excellent qualities of the mother beet are much better preserved by this method than by the usual method of planting it for seed directly.

LETTER FIKOM MIR. HENRY T' OXNARD ON THE PROSPECTS OF THE BLET-SUGAIR INDUSTIR IN TIEE UNITED STATES.

Grand Island, Nebr., November 7, 1891.
Dear Sir: I esteem ita pleasure and an honor to be able to write a ferv words briefly regarding the developmont of the beet-shgat industry and the condition in which it exists in the United States to-lay. The beet-sugar intustry has become well established in Europe only withiu the last half century, and has hecome a great factor in the world's sugar supply within the bast fifteen years, so that to-day more sugar is produred from beets than from all the other somar-produring plants of the world combined. This result, has been brought, about within the last fifty vears by the (iovermments of Europe, rhiefly (iermany and France, subsidizing and encouraging the production of sumbe towh sum extent as forminish the priee of that article atleastone-lualf whatit was ten years ago. The United States, as Jou well know, has, within the past year, hy wise provision of the MrFinley bill, offered a bounty of 2 rentsperpound for a limited period for all sugar produced in the Uninted states, and by following the example of Germany and France can soon hope to become independent of the rest of the world for the supply of its sugar, thereby keeping at home some hundreals of millions of dollars sent abroad anmually to eurich the firmers and manufacturers of foreign countries. The 2 cents given in the shape of a bounty by the United States Government takes the place of the 2 cents which formerly existed as a tariff on the importation of sugar. The result of this legislation is, that the price of sugar since the law went into effect has fillen 2 cents per pound, the consumer paying just 2 cents less than a year ago, and at the same time the development of the home industry has not been siarificed, but encouraged, and that is not the only advantage we shall derive, as each fictory, similar the one we have built here, means an outlay of about half a million dollars, and the United states will require ahout a thonsand of surh factories to supuly it with sugar in 1900 . The building of these factories will start np the coal and iron mines as well as the ma-
chine shops all over the United States, giving employment directly to thousands, and give a far greater impetus to our national prosperity than could be obtained in any other channel. We will also give our farmers an opportunity to diversify their crops, and we all know the advantage to be derived from that source. Under the old tariff the industry mever thrived, but with the stimulus of the bounty, within the past eight months, beet-sugar factories have started or are about to bo started all over the United States. At least twenty States are, in my opinion, well adapted to the sugar beet. We have the soil, climate, and capital necessary to become the greatest sugar-producing comntry in the world, and as soon as we have acquired the knowledge of the industry which will enable us to compete successfully with those countries of Europe, with the aid of the stimulus given by our last Congress, we can hope to lead the world in the production of sugar in the next filteen or twenty years.

But the supply of the home article is not the only advantage to be gained. I refer to the effect of the beet crop on the soil. Properly carried on the cultivation of the sugar beet is greatly beneticial to all other agriculture. The deep and careful cultivation which the beet requires sreatly improves the laml, the soil heroming thereby deepened and the disiutegration and solution of the mineral constituents greatly accelerated. The tap root of the beet descends to a great depth, loosening the soil which most other plants fail to reach. The nourishment thus obtained passes partly into the leaves and is left with them on the groumd at the time of harvest, and to-day in Europe the farmers are anxious to plant beets, as they find their next crop grown on the same soil is increased 33 per cent. The pulp, after the sugar is removed, makes an excellent food for fattemins cattle, and can bo sold to the fimmers for little or nothing after paying them liberally for the privilege of extracting the sugar.

We have in operation this fall three beet-sugar factories, each with a capacity of 300 tons of beets daily, besides which each factory uses about 50 tons of coal and 40 tons of limestone daily, sponding in the immediate neighborhood of the factory each and every dar upwards of $\$ 2,000$ amongst the farmers for the heets and laborers working in the factory, keeping that amonnt at home which formerly fonnd its way to the pockets of the European farmers and laborers. This large sum is distributed in the community immediately surrounding each one of our factories, and the result has been to build up the towns where our factories are located as well as the surrounding farming district; these towns in turn build up the State. Since the establishment of our factories in each community where situated the demand for labor has so far exceeded the supply that not a single iudividual wishing to work has lacked the opportunity of tinding remmerative employnent either in the fichd or factory. The Oxnard Beet Sugar Company, located at Grand Island, Nebr., was built and operated for a short time last year, working very satisfactorily. This year our company has built two new factories, locating them at Norfolk, Nebr, and Chino, Cal. Both of these factories commenced operations for the first time this year and are now turning out a standard grade of fine white grannlated sugar which sells readily in competition with the sugars offered by the large refinecies. We expect to manufacture $9,000,000$ pounds of gramulated sugar in our three factories this year. Besides ours there are three other beet-sugar factories at present in operatiou, and the number will be largely increased next jear, spreading all over the northern and central portion of the Ünited States. It is with pleasure that I can inform yon, after a very carefnl study of the subject aud practical trial of same, that a most brilliant future and speedy development awaits this new industry.

I remain, very sincerely aud respectfully yours,
Heniey T. Oxnard.
Hon. J. M. Rusk, Secretary of Agriculture.

INDEX.

A.
Fage.
Absorptive porver of soils, table showing 124
Analytical data, arrangement of 10
methods 10
at the Schuyler Station 116
Arizona, analyses of beets from 12
notes on beets from 7
Arkansas, analyses of beets from 12
notes on beets from 77
B.
Beet analyses, miscellaneous 150,151
notes on 77
cultural season 119
Beet-mothers, selection of 117
Beet seed, production of, by cuttings 152
Beet-sugar industry, prospects of 152
Beet-sugar season, length of 141
Beets analyzed in Wisconsin, remarks on 109
analyses of various varieties of 129
experiments with, in Wisconsin, 1891 90
distances between rows of 115
grown in Wisconsin 97
loss of weight of, by evaporation 138
methods employed in the examination of 10
thinning out of 125
variation in individual 117
Beet seed, depth of planting 114
methods of planting 114
quantity of, required per acre 114
source of, used in experiments 7
varieties of, planted at Schuyler Station 120
C.
California, analyses of beets from 12
notes on beets from 77
Colorado, analyses of beets from 12
notes on brets from 7
Connecticut, analyses of beets from 14
notes on beets from 77
Cultural season for beets 119

D.
Page.
Desprez beets, analyses of, in groups of ten $145,146,147$
average results of 130
E.
Edson, Mr. C. B., analytical work of 127
Elite beets, analyses of, in groups of ton 144
F.
Fertilizer experiments 121
G.
Georgia, analyses of beets from 15
notes on beets from 77
H.
Henry, Prof. W. A., letier from 90
Huston, Prof. H. A., experimonts conducted by 78
I.
Idaho, analyses of beets from 15
notes on beets from 77
Illinois, analyses of beets from 15
notes on beets from 78
Indiana, analyses of beets from 17
notes on beets from 78
Indian Territory, analyses of beets from 19
Iowa, abstracts from station bulletin 81
analyses of beets from 19
beets from, analyzed in Statə laboratory 80
notes on baets from 79
K.
Kansas, analyses of beets from 30
experiments with beets at Sorghum Station, Sterling 82
notes on bee's from 82
Kedzie, Dr. R. C., experiments conducted by 83
Kentucky, analyses of beets from 32
notes on beets from 82
Kleinwanzlebener beets, averuge results of 131,132
Kleinwanzlebener Elite bsets, analyses of, in groups of 150one hundied
Knaur bsets, analyses of, in groups of ten142
L.
Ladd, Mr. E. F., analyses by 86
Lemaira beets, analyses of, in groups of ten $143,144,146,149$
Letter of transmittal 5
Lloyd, Prof. Rachel, experiments conducted by 85
157
M.
Page.
Maryland, analyses of beets from 32
notes on beets from 83
Maxwell, Mr. Walter, report of 118
Meteorological observations at Schuyler 115
Michigan, analyses of beets from 32
Experiment Station, notes on beets analyzed at 83
notes on beets from 83
Minnesota, analyses of beets from 37
notes on be :ts from 83
Missouri Agricultural Station, analyses of beets by 37
analyses of beets from 37
notes on beets from 84
Moisture, absorption of, by soils 123
Montana, analyses of beets from 40
notes on beets from 84
N.
Nehraska, analyses of beets from 41
Experiment Station, abstract of results obtained at 85
notes on beets from 84
Nevada, analyses of beets from 44
notes on beets from 85
New Hampshire, analyses of beets from 45
notes on beets from 86
New Jersey, analyses of beets from 45
notes on beets from 86
New Mexico, analyses of beets from 45
notes on beets from 86
New York, analyses on bents from 46
notes on beets from 86
Nicholson, Prof. H. H., experiments conducted by 85
North Dakota, analyses of beets from 46
O.
Ohio analyses of beets from 47
notes on beets from 87
Oklahoma, analyses of beets from 49
notes on beets from 87
Oregon, analyses of beets from 49
noles on beets from 87
Station, experiments by 88
Oxnard, Mr. Henry T., letter from, in regard to beet-sugar industry 152
P.
Patrick, Prof. G. E., experiments conducted by 7)
Pennsylvania, analyses of beets from 51
notes on beets from 88
S.
Samples difficulty in securing compliance with instructions in regard to_ 9
directions for taking 7
model for description of 8
Page
Sampling. method of 128
Schuyler Experiment Station, analytical work at 127
description of 113, 119
general scope of work at 113
Nebraska, experiment station for beets at 112
Station, experiments with small plats 135
results, comparison of, with similar data from Chapelle, France 134
Seed, beet, methods of planting 114
quantity of, required per acre 114
Shaw, Mr. G. W., experiments of 88
Soil of Schuyler Station farm 119
preparation of, for beet experiments 113
temperatures 120
Soils, absorption of moisture by 123
table showing the absorptive power of 124
retentive power of 124
South Dakota, analyses of beets from 51
notes on beets from 88
Sugar-beet seed, production of, by cuttings 152
Sugar beets. (Sec Beets.)
experiments with, in 1891 7
Summary of results by States and counties 12
T.
Taproot, apparent increase in sucrose through the breaking of 139
Tennessee, analyses of beets from 58
notes on beets from 89
Texas, analyses of beets from 59
notes on beets from 89
Trescot, Mr. T. C., analytical work of 127
V.
Vilmorin beets, analyses of, in groups of ten 147, 150
average results of 130, 131
Virginia, analyses of beets from 59
notes on beets from 89
W.
Washington, analyses of beets from 61
notes on beets from 89
Wisconsin, analyses of beets from 62
meteorological conditions in 91
notes on beets from 89
remarks on beets grown in 109
Woll, Mr. F. W., experiments of, in Wisconsin 90
Wyoming, analyses of beets from 75
notes on beets from 111 111

BULLETINS OF THE DIVISION OF CHEMIISTRY,

U. S. DEPARTMENT OF AGRICULTURE.

No. 1. Au Investigation of the Compositior of American Wheat and Corn. Edited by Clifford Richardson. 1883. Pp. 69. (Out of print.)
No. 2. Diflusion: Its Application to Sugar Cane, and Reoorl of Experiments with Sorghum in 1883. Edited by E. W. Wiley. 1884. Pp. 36. (Out of print.)
No. 3. The Northern Sugar Industry: A record of its progress during the season of 1883. Edited by H. W. Wilcy. 1884. Pp. 120. (Out of print.)

No. 4. An Investigation of the Composition of American Wheat and Corn. (Second report.) Edited by Cliffurd Richardson. 1881. Pp. 98 . (Out of print.)
No. 5. The Sugar Industry of the United States. Edited by E. W. Wiley. 1885. Pp.224. (Out of print.)
Ňr. 6. Expmiments with Dillusiom and Carbomatation at Ottawa, Kans. Campaign of 1885. Edited by H. W. Wiley. 1885. Pp.20. (Out of print.)
No. 7. Methods of Analysis of Commercial Fertilizers. (Proceedings of the Association of Official Agricultural Chemists, September 1 and 2, 1885.) Edited by Charles W. Dabney. 1885. Pp. 49. (Out of print.)
No. 8. Methods and Machinery for the Application of Diffusion to the Extraction of Sugar from Sugar Cano and Sorghum, and for the use of Lime and Carbonic and Sulpharous Acids in Purifying the Diffusion Juices. Edited by H. W. Wiles: 1886. Pp. 85. (Out of print.)
No. 9. Third leport on the Chemical Composition and Physical Properties of American Cereals, Wheat, Oats, Barley, and Ryo. Edited by Clifford Richardson. 1886. Pp.82. (Out of print.)
No. 10. Principles and Methods of Soil Analysis. Fidited by Edgar Richards. 1886. P'p.66. (Out of print.)

No. 11. Report of Experiments in the Manufacture of Sugar at Magnolia Station, Lawrence, Lae, Season of 1885-'86. (Second report.) Edited by Guilford L. Spencer. 1886. Pp.26. (Out of print.)
No. 12. Methods of Analysis of Commercial Fertilizers. (Proceedings of the Third Annual Convent tion of the Association of Ofticial Agricultural Chemists, August 26 and 27, 1886. Edited by CliffordRichardson. 1886. Pp.59. (Out of print.)

No. 13. Food Adulterants.
Part First. Dairy Products. Edited by H. W. Wiley. 1887. Pp. 132.
Part Second. Spices and Condiments. Edited by Clifford Richardson. 1887. Pp. 130.
Part Third. Fermented Alcoholic Beverages-Malt Liquors, Wine, and Cider. Elited by C. A. Crampton. 1887. Pp. 140. (Out of print.)
Part Fourth. Lard and Lard Adulterations. Edited by H. W. Wiley. 1889. Pp. 151.
Part Fifth. Baking Yowders. Edited by C. A. Crampton. 1889. Pp. 63.
Part Sixth. Sugar, Molasses, and Sirup, Confoctions, Honey, and Beeswax. Edited by If. W. Wiley. 1892. Pp. 255.
Part Seventl. Tea, Coffee, and Cocoa Preparations. Edited by Guilford L. Spencer. 1892. Pp. 155.
Part Eighth. Canned Foods. (In preparation.)
Part Ninth. Bread, Flour, and Meal. (In preparation.)
No. 14. Record of Experiments at Fort Scott, Kans., in the Manufacture of Sugar from Sorghum and Sugar Canes in 1886. Edited by H. W. Wiley. 1887. Pp. 64.
No. 15. Report of Experiments in the Manufacture of Sugar at Magnolia Station, Lawrence, La., Season of 1886-'87. (Third report.) .Edited by Guilford L. Spencer. 1887. Pp. 35.

No. 16. Methods of Analysis of Commercial Fertilizers, Feeding Stuffs, and Dairy Products. Adopted at the Fourth Annual Convention of the Association of Official Agricultural Chemists. August 16, 17, and 18, 1887. Edited by Clifford Kichardson. 188\%. Pp. 80. (Out of print.)

No. 17. Fiecord of Experiments Condacted by the Commissioner of Agriculture in the Nanufacture of Sugar from Sorghum and Siggar Canes at Fort Scott, Kans., Rio Graule, N. J., and Lawrence, La., 1857-as. Edited by II. IV. Wiley. 1888. Pp. 118.
No. 18. Surar-producing Plants: Record of Analyses made by Authority of the Commissioner of Agriculture under direction of the Chemist, 1857 -' 88 (Sorghum-Fort Scott, Kans., Riu Grande, N. J.; sugar Caue-Lawrence, La.), together with a stuly of the data collected ou Sorghum and Sugar Cane. Edited by H. W. Wiley. 1888. Pp. 132.
No. 19. Methots of Analysis of Commercial Fertilizers, Cattle Foods, Dairy Prolucts, Sugar, and Fermented Liquors. (Atopted at the Eifth Ammal Courention of the Association of Oticial Agricultural Chemists, held at the U. S. Department of A griculture A ugust 9 and 10, 1888.) Editel by Clifford Richarison. 1888. Pp. 96. (Out of print.)

U. S. DEPARTMENT OF AGRICULTURE
 DIVISION OF CHEMISTRY

BULLETIN
No. 36

EXPERIMENTS

With

 in
 1892
 BY

HARVEY W. WILEY

Chemist of the U. S. Department of Ayricullure and Director of the Department Sugar Experiment Stations at Schuyler, Nebraska; Rumymete (Narcoossee P.O.), Florida, and Sterling and Medicine Lodge, Lansas

with the collaboration of
Dr. WALTER MAXWELL
Assistunt in Charge of the Schuyler Station

published by authortty of the secretary of dgricultule

WASHINGTON
government printing office
189.3

CONTENTS.

fage.
Sugar-heet seed distributed 7
Results of analysis of beets received 7
Arkansas 8
California 8
Colorado 8
Idaho 11
Illinois 12
Indiana 12
Iowa 13
Kansas 14
Kentucky 15
Michigan 15
Minnesota 16
Missouri 17
Montana 18
Neloraska 18
Nevada 19
New Mexico 19
New York 20
North Carolina 20
North Dakota 20
Ohio 21
Oregon 22
Pennsylvania 23
South Dakota 23
Tennessee 25
Virginia 25
Washington 25
West Virginia 26
Wisconsin 26
Wyoming 27
Data obtained from the several States 28
Remarks on analyses 29
Work done at the Department Station at Schuyler, Nebr 34
Experiments in the production of beet seed 35
Experiments in beet culture 37
Analytical data 39
Report of assistant in charge 43
Cultural season of the beet crop 48
An insect visitation 51
Analytical work of the season 54
Cost of production 67
Summary 68
The sugar beet web-worm 68

LETTER OF TRANSMITTAL.

U. S. Department of Agriculture, Division of Chemistry, Washington, D. C., December 31, 1892.

SrR: I have the honor to transmit, for your inspection and approval, the manuseript of Bulletin No. 36 of the Division of Chemistry, being a report on the experiments with sugar beets, conducted by your authority under my direction, during the season of 1892 .

Pursuant to your directions, in accordance with my request the Entomologist, Dr. U. V. Riley, has supplied me with his report on the sugar-beet web worm, as prepared by him for the Annmal Report of the U. S. Department of Agriculture for 1862, which is of special interest in connection with the present bulletin.

Respectfully,
H. W. Wiley,

Chemist.

Hon. J. M. Rusk,
Secretary of Agriculture.

EXPERIMENTS WITH SUGAR BEETS IN 1892.

Following in the line of the work of last year, sugar-beet seed of high grade imported from Europe was distributed to persons who had asked for samples. The distribution was made in the early spring of 1892. Four thousand pounds of seed were distributed in 8,159 packages, which were sent to 2,316 addresses, making an average of nearly four packages to each address. Each package was accompanied with printed instructions for preparing the soil, planting the seed, and cultivating the beets. Printed directions were also sent for taking samples for analysis, accompanied with shipping tags for franking the samples to the Department laboratory. Special duplicate shipping tags were sent to the persous who received seed in Nebraska, with the request to send duplicate samples to the experiment station at Lincoln for examination.

SUGAR-BEET SEED DISTRIBUTED.

The number of packages sent to each State and the number of persons to whom sent in each State and Territory are given in the following list:

State.	Packages distribnted.	Persons receiving seed.	State.	Packares distrib. uted.	Persons receiving seed.
Alabama	2	2	Montaua	96	13
Arizona.	11	2	Nebraska	730	93
Arkansas	64	63	Nevada	45	1
California	203	29	New Hampshire	3	3
Colorado	600	65	New Jersey...	2	2
Connecticut	26	2	New Mexico	4	4
District of Columb	30	1	New York	92	24
Florida.	2	4	North C'arolina	4	4
Georgia	2	2	Nortl Dakota	186	42
Idaho..	28	9	Ohio	1,103	335
Illinois	467	212	Oklahoma	8	8
Indiana	713	168	Oregon	112	24
Indian Territory	1	1	Penns ylvania	9	9
lowa	598	204	South Carolina	13	4
Kansas.	261	141	South Dakota	322	72
Kentucky	5	5	Tennessee	4	4
Louisiana	1	1	Texas.	43	14
Maine.	4	4	Utah	61	2
Maryland	6	6	Vermont	6	6
Massachusetts	6	3	Virginia	114	21
Michigan	579	178	Waslington	191	46
Minnesota	614	232	West Virginia	39	7
Mississippi	3	3	W isconsin	664	223
Missouri ...	60	23	W yoming . .	31	7

The samples for analysis began to arrive at the laboratory in the latter part of September and continued to be received until the 20th of December, when further work in analysis of samples was suspended for the purpose of tabulating and classifying the results.

RESULTS OF ANALYSIS OF BEETS RECEIVED.

In the following tables are given the results of the analyses of the samples by counties and States, together with the average composition of the samples received from each State:
ARKANSAS.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Nante of grower.	Post-ottice.	County	Time of harvest. ing.	Yiclldper acre.	$\begin{gathered} \text { Date } \\ \text { received. } \end{gathered}$	No. of beets.	Arerage weight.	Total solids.	$\begin{aligned} & \text { sugar in } \\ & \text { beets. } \end{aligned}$	I'urity.	Sugar, yieldper acre.
17090	Mrs. R.J. Cawood	Rogers	Benton	Nov. 3	Tons.	$\begin{aligned} & \text { 1892. } \\ & \text { Nov. } \end{aligned}$	2	Ounces. 5	Percent. 15.8	Percent. 10. 78	71.8	Pounds.
$\begin{aligned} & 16850 \\ & 16851 \end{aligned}$	$\begin{aligned} & \text { J. A. Harr } \\ & \text {.....do. } \end{aligned}$	Fairmont	Prairie	$\begin{array}{ll} \text { Oct. } & 1 \\ \text { Oct. } & 1 \end{array}$		Oct. 10 ()et. 10	1	$\begin{aligned} & 17 \\ & 1: 3 \end{aligned}$	$\begin{aligned} & 14.9 \\ & 15.1 \end{aligned}$	$\begin{aligned} & 8.11 \\ & 9.32 \end{aligned}$	57.3 64.9	
	Iverage							15	15.0	8.72	61.1	
	Average of State							12	15.3	9.41	64.7	

CALIFORNIA.

. $\%$ $+$

COLORADO.

$\begin{aligned} & 170: 6 \\ & 17026 \end{aligned}$	David Pirkins Wm. Claussen	Abbott Newton	Arapahoe	$\text { Oct. } 10$$\text { Oct. } 27$		Oct.Nov.Non		$\stackrel{2}{2}$	$\begin{aligned} & 42 \\ & 36 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 15.7 \end{aligned}$	$\begin{aligned} & 16.74 \\ & \text { 11. } 49 \end{aligned}$	$\begin{aligned} & 70.4 \\ & 77.0 \end{aligned}$
	Average								39	20.4	14.12	73.7
$\begin{aligned} & 168.39 \\ & 16840 \\ & 16935 \end{aligned}$	(i. F. Breninger	Table Rock			11. 761	Oct. Oct. Oct.	$\left.\begin{array}{r} 3 \\ 3 \\ 3 \\ 24 \end{array} \right\rvert\,$	22		$\begin{aligned} & 19.0 \\ & 19.9 \\ & 18.9 \end{aligned}$	$\begin{aligned} & 14.07 \\ & 14.66 \\ & 13.18 \end{aligned}$	$\begin{array}{r} 7 \times .0 \\ 77.6 \\ 73.4 \end{array}$	$\begin{array}{r} 2.331 \\ 2.505 \\ 2.130 \end{array}$
					12.197								
					12. 196				$\begin{aligned} & 12 \\ & 13 \end{aligned}$				
A verage					12. 051				12	19.3	13.97	76.3	2.302
16833	Colorado Agricultural Experiment Station. do\qquad	Fort Colii	Larime	Sept. 27	7.620	Oct.	3	21	3	20.5	15. 40	79.0	1.673
16834				Sept. 27	10.450	Oct.	31	2	8	19.5	14. 78	79.7	2. 222

\qquad

$$
\dot{\sim} \dot{\sim}
$$

促

 $\stackrel{2}{2}$
\qquad periment istation．

Average． F．A．Huntley
 E
0
0
0家 0

1o．
 응응 ${ }^{R}$
 \qquad
 N
ジヴず

COLORADO-Continued

	 2
	 \pm
-	
تٍ	
	(名

illinois.

Serial No.	Name of grower.	Post-office.	County.	Time of harvesting.	acre. Vield per	Mate received.	No. of beets.	Arerage weight.	Total solids.	Singar in beets.	Purity.	Sucrar rield per acre.
	Frank D. Gariner	(hampaign	Champaign	Nor. 4	Tons,	1892. Nov. -	2	Ounces.	Per cent.	Per cent.	7.7	Pounds.
17072 dio	-....do -.do ...	Nov. 4	8.712	Nov. 7	2	9	16.4	12.52	80.4	1,584
17208	do	. 110	. dio	Not. 19	7.950	Nov. 2.	2	8	17.8	12. 63	74.7	1.355
17209	. do	. do	. do	Nov. 19	7.950	Nor. 25	2	${ }^{\text {® }}$	$20.1 i$	15.86	81.0	1,844
	Average				8.767			8	17.6	13.15	78.5	1,599
16944	Eli C.Fisk	Havana	Mason	Oct. 21	12.132	Oct. 25	3	17	12.3	8. 20	70.2	1,259
16945dodo	.. do	Oct. $\quad 21$	12. 132	Uet. 25	1	\because	12. 7	8.89	73.7	1, 436
16946	. . do	. do	do	Oct. 21	12. 132	Oct. 25	5	17	13.1	8.88	71.4	1,390
17029	. 10	. do	do	Oet. 28	15. 630	Nov. 1	4	9	13. ${ }^{1}$	7.80	62.2	1, 369
17030	. . ilo	. .do	. do	Or.t. 28	12. 197	Nov. 1	4	17	16.3	12. $0 \times$	77.6	2, 0.54
17031	. .do	. . do	. do	Oct. 28	12.632	Nov. 1	4	19	15.2	10. 81	74.9	1,847
17032	. do	do	do	Oct. 28	8. 712	Nut. 1	2	18	14.6	10.37	74.8	1,21?
170:33	. do	. . do	do	Oct. 28	8.712	Nor. 1	\because	16	15.6	10.5:2	71.0	1,174
17112	. dodo	. . do	Nov. 5	9.148	Nov. 9	5	18	14.0	9.88	74.3	1. 213
17113	. do	. do	do	Nov. 5	9.148	Nov. 9	5	18	13.8	9.33	71. 2	1. 098
17162	. do	. do	do	Nor. 5	10.890	Nov. 17	6	14	14.5	10.37	75.3	1. 53.5
17163	. . ${ }^{\text {do }}$. do	do	Nor. 5	10.8901	Nox. 17	6	19	14.3	10.05	73.9	1. 459
	Average				\%1. 196			17	14.1	9.77	72.9	1,421
1705.	Howard Carl	Joliet	Will	Nov.	11.979	Nov. 5	2	14	17.6	13. 29	79.5	$\because, 286$
1722.2	Floyd smith	Harrison	Winnebago	(k.t. 28	21.018	Dece. 10	2	11	18.4	13.61	77.9	4,023
	Average of State				11. 246			15	15. 3	10.93	75.2	1.653
				IANA.								
16816	W. A. Horrall, M. D	Washington	Daviess	Sept. 15		Sept. 24	2	23	11.9	7. 6.5	66.9	
16837	R. D. Stotts...	Enclid.. do	Sept. 25	15.246	Oct. 3	2	11	17.5	10.98	66.1	1,997
	Average				15. 246			17	14.7	9.32	66.5	1, 997

13

17044	James M. Lewis	Vilas, Owen County,	(ireen.	Oet. 31	12.415	Nov. 3	1	4	18.5	13.47	76.6	2,312
$\begin{aligned} & 17200 \\ & 17201 \end{aligned}$	Rev. Edward W. Fisher	Correton				Nov. 21 Nov. 21	3 3	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 15.7 \end{aligned}$	$\begin{aligned} & 10.54 \\ & 10.51 \end{aligned}$	$\begin{aligned} & 69.4 \\ & 70.4 \end{aligned}$	
	ara							7	15.9	10.53	69.9	
17133	A.D. Ogborn	Newcastle	Henry	Oct. 25	16.335	Nov. 12	2	10	19.9	14. 21	75.2	3,149
$\begin{aligned} & 16890 \\ & 16801 \\ & 16999 \\ & 16976 \\ & 16977 \\ & 16978 \\ & 16979 \end{aligned}$	Andrew Gietl............. do Nelson Morris (Chicago	Rensselaer...........O..dro.............	Jasp	Sept. 2 sept. Oct. Oct. 24 ()et. 24 Oct. 24 Oct. 24	16.30014.8008.0008.0008.0408.0008.000	Sept. 12 Supt. 12 Oet. 19 Oet. 26 Oct. 26 Oct. 26 Oct. 26	11301111	$\begin{array}{r} 13 \\ 7 \\ 8 \\ 14 \\ 10 \\ 16 \\ 17 \end{array}$	$\begin{aligned} & 10.8 \\ & 15.7 \\ & 16.0 \\ & 18.6 \\ & 17.4 \\ & 18.2 \\ & 16.4 \end{aligned}$	$\begin{array}{r} 3.99 \\ 10.55 \\ 12.18 \\ 14.75 \\ 13.77 \\ 14.77 \\ 12.89 \end{array}$	$\begin{aligned} & 38.9 \\ & 70.7 \\ & 80.1 \\ & 85.8 \\ & 83.8 \\ & 8.3 .2 \\ & 82.4 \end{aligned}$	4561,9921,4031,891$1,65 \pm$1,8211,541
	Average				10.157		.	12	16.2	11.85	75.4	1,533
$\begin{aligned} & 16929 \\ & 16930 \\ & 17004 \end{aligned}$	$\begin{aligned} & \text { W.J. Mummah } \\ & \cdots \text {....do } \end{aligned}$	Warsay	Kosciusko	Oct. Oet. 12 Oct. 24		$\begin{array}{ll} \text { Oct. } & 29 \\ \text { Oct. } & 23 \\ \text { Oct. } & 31 \end{array}$	2222	$\begin{aligned} & 17 \\ & 25 \\ & 18 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 14.0 \\ & 16.3 \end{aligned}$	$\begin{array}{r} 10.75 \\ 9.71 \\ 11.09 \end{array}$	$\begin{aligned} & 7.4 .5 \\ & 73.0 \\ & 71.6 \end{aligned}$	
	Averag							20	15.2	10. 52	73.0
16820	Yames M. Lewis	Vilas (See Green Co.)	Owen	Sept. 2	Sept. 26	1	$\overline{21}$	11.7	6. 82	61.3	$=-$
17134	Alpha Langston		Wayne	Oct. 28	$\frac{\cdots \cdots \cdots}{11.510}$	Nov. 12	1	18	19.6	13.41	72.0	
	Average of state	Dublin						14	16.1	11.23	72. 5	18.1920
row W .												
17110	W.J. Grunewald	Blairstown	Bentun	Oct. 22		Nor. 9 Nov. 9	5 8	41 14	$\begin{aligned} & 14.6 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 10.65 \\ & 10.02 \end{aligned}$	$\begin{gathered} 76.8 \\ 75.4 \end{gathered}$	
								$\because 8$	14.3	10.34	76.1
16987	Knud Bodholt	Newell	luena Vist	Oct. ${ }^{\text {J }}$		Oct. 29	1	42	15. 8	12.04	80.2
16841	Adam Scholl	Muray	Clar	Oct. 1		Oct.	2	20	10.5	5.53	55.4
16986	J. W. Stewart	Illyria	Fayette	Oct. 24	10.454	Oct. 29	2	18	16.2	12.71	82.6	1.9\%)
16847	A. Snyder.	Ceuter Point	Linn	Oct. Oct. 18		Oct. 88 Oct.	$\frac{9}{2}$	$\begin{aligned} & 30 \\ & 42 \end{aligned}$	$\begin{aligned} & 13.7 \\ & 15.8 \end{aligned}$	$\begin{array}{r} 9.94 \\ 11.62 \end{array}$	$\begin{aligned} & 76.4 \\ & 77.4 \end{aligned}$	
	ve							36	14.8	10.78	76.9

14

LOWA-Continue d.

$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Name of grower.	Post-office.	County.	Time of harvesting.	Tield per acre.	Date received.	No. of beets.	Average weight.	$\begin{aligned} & \text { Total } \\ & \text { solids. } \end{aligned}$	Sugar in beets.	Purity.	acre. $\begin{gathered} \text { Sucar, } \\ \text { firld per } \\ \text { acre. } \end{gathered}$
16886	Eugene A. Hoge	James	Plymouth	Oct: 10	Tons. 10.890	Oct. it	2	Ounces. 36	Per cent. 13.3	Per cent. 10. 19	80.7	Pounds. $\text { 1. } 615$
$\begin{aligned} & 17024 \\ & 17025 \end{aligned}$	B. T. Seaman	Davenport	Scott	$\begin{array}{ll}\text { Oct. } & 25 \\ \text { Oct. } & 26\end{array}$	$\begin{aligned} & 18.000 \\ & 21.000 \end{aligned}$	$\begin{array}{ll}\text { Oct. } \\ \text { Oct. } & 31 \\ \text { Oct }\end{array}$	$\frac{2}{2}$	13 18	$\begin{aligned} & 15.4 \\ & 16.1 \end{aligned}$	$\begin{aligned} & 10.43 \\ & 10.91 \end{aligned}$	$\begin{aligned} & 71.3 \\ & 71.3 \end{aligned}$	$\begin{aligned} & 2,416 \\ & 2,948 \end{aligned}$
	Average				19.500			15	15.8	10. 67	71.3	2,682
17205	Ole Throndson	Callender	Webster	Nov.		Nov. 23	2	6	20.3	16. 20	84.0	
	A rerage of State				15.056			24	15.1	10.93	76.2	2. 240

17214	H. H. Grover	Eldorado	Butler	Nov. 15		Dec. 3	2	20	19.8	12. 58	66.9	
16900	Thos. B. Clark	Pfeifer .	Ellis..	Oct. 13		Oct. 18	2	61	14.1	9.36	70.9	
16807	P. W. Conyers	Garden City	Finney	Sept. 16	13. 700	Sept. 21	1	11	15. 8	9.57	68.1	1,611
16808 do do do....do	Sept. 16	13.700	Sept. 21	1	12	18.2	13. 46	77.6	2, 5k4
17005	. do	do	do	Oct. 20	13. 70	Oct. 31	2	34	15.5	10.80	73.3	2, N
	Arerage				13. 700			19	16.5	11.50	73.0	2,098
16860	Thomas Brown	Salem	Jewell	Oct. 8	12.197	Oct. 12	1	38	15.4	10. 99	75.1	1,817
16861	. do	do	. do	Oct. 8	13. 068	Oct. 12	1	37	16.0	11.57	76.1	2,075
	Averag				12.638			37	15.7	11.28	75.6	1,946
16829	F. L. Frazey	Nickerson	Reno	Supt. 26	19.300	Sept. 29	1	36	15.7	11.17	74.2	$\bigcirc, 887$
168:4	$\ldots d$	do	du	Sept. 26	18.000	Sept. 29	1	36	16.4	11.41	73.2	2,714
	Average				18.650			36	16.1	11.29	73.7	2,800
16827	T. K. Davis	Wherry	Rice	Sept. 27		Sept. 30	1	34	14.9	10. 59	74.8	
16828	 do	do	Sept. 27		Sept. 30	1	37	10.9	6.67	63.4	
16830 16831	Joseph Hanschild	do	do	Sept. 28		Oet. 1	1	4.3	13.3	9.58	75.3	
16831		.do	d	Sept. 28		Oct. 1	1	21	13.5	9.44	73.6	
	Average							34	13.2	9.07	71.8
17089	Michael Streckfus	Salina	Saline	Nor. 1		Nuv. 7	2	28	20.6	15.59	79.7	$\ldots \ldots$.

15

MICHIGAN-Continued.

$\begin{aligned} & \text { Surial } \\ & \text { No. } \end{aligned}$	Name of grower.	Post-otlice.	County.	Time of harvesting.	Yiehl per acre.	Date received.	No. of beets.	Avorage weight.	Total solids.	Sugar in beets.	Purity.	Sugar, yield por acre.
$\begin{aligned} & 17164 \\ & 17165 \end{aligned}$	Elliston Warner.	Quincy	Branch	$\begin{array}{ll}\text { Oct. } & 24 \\ \text { Oct. } & 24\end{array}$	$\begin{aligned} & \text { Tons. } \\ & 6.643 \\ & 8.657 \end{aligned}$	$\left\|\begin{array}{c} 1892 . \\ \text { Nov. } 17 \\ \text { Nov. } 17 \end{array}\right\|$	1	$\begin{array}{r} \text { Ounces. } \\ 11 \\ 14 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 15.6 \\ 14.5 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 11.03 \\ 10.14 \end{array}$	74.4 73.6	Pounds. $\begin{array}{r} 984 \\ 1,165 \end{array}$
	Average				7. 650			13	15.1	10.59	74.0	1.075
$\begin{aligned} & 17069 \\ & 17070 \end{aligned}$	Asa W. Slayton	Graud lapids.	Kent	Oct. Oct. 27	$\begin{aligned} & 18.622 \\ & 20.745 \end{aligned}$	Nov. $\begin{aligned} & \text { Nov. } \\ & \text { Nor }\end{aligned}$	$\stackrel{3}{2}$	$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 17.4 \\ & 18.7 \end{aligned}$	$\begin{aligned} & 13.35 \\ & 14.84 \end{aligned}$	$\begin{array}{r} 80.7 \\ 83.6 \end{array}$	$\begin{aligned} & 3,6 \div 0 \\ & 4,639 \end{aligned}$
	A verage				19.684			20	18.1	14.20	82.1	4,130
171.99	Franz, Zoche	Washington	Macomb	Nor. 1		Nov. 16	2	18	17.8	13.09	77.4
$\begin{aligned} & 17067 \\ & 17068 \end{aligned}$	J. M. Longyear	دarquett	Marquett	$\begin{array}{ll}\text { Oct. } & 38 \\ \text { Oct. } & 28\end{array}$	$\begin{aligned} & 24.611 \\ & 24.611 \end{aligned}$	Nov. Nus.	$\frac{2}{2}$	$\begin{aligned} & 23 \\ & 34 \end{aligned}$	$\begin{aligned} & 19.3 \\ & 20.1 \end{aligned}$	$\begin{aligned} & 15.63 \\ & 16.48 \end{aligned}$	$\begin{aligned} & 85.2 \\ & 86.3 \end{aligned}$	5. 91 ; (6, 360
	Average				24.611			29	19.7	16.06	85.8	6,138
17132	Gro. Minkel	Mecusta	Mecosta	Nov. 7		Nov. 12	2	23	18.1	14. 69	85.4
17041	E. A. Ellis	Bridgeport	Saginaw			Nov.	3	4	18.6	14.80	83.8	
	Average of state				16. 720			19	17.8	14.11	83.1	3,796

17059	Gillbert (ruttersin	Lake Crystal	Blue Earth	Oct. 22	Nor. 5	2	26	16.4	10.85	69.6	
$\begin{aligned} & 16952 \\ & 16353 \end{aligned}$	W. D. Tiass	Carser	Carver	Oct. 20 Oct. 20	Oct. ${ }^{\text {Oct. }} 25$	$\stackrel{2}{2}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.6 \end{aligned}$	$\begin{aligned} & 11.54 \\ & 12.19 \end{aligned}$	$\begin{aligned} & 78.4 \\ & 8: 3 \end{aligned}$	
	Avrage						22	15.6	11.87	80.:3	
16926	('arl Johnuan	Chisago City	Chis:a<	Oct. 18	Oct. 22	2	20	17.3	13.13	79.8	
$\begin{aligned} & 17225 \\ & 17226 \end{aligned}$	$\begin{gathered} \text { C. B. Kittuedge } \\ \text {.................... } \end{gathered}$	Glyndon	Clay	Oct. 10 Oct. 10	Dec. 19 Dec. 19	$\stackrel{2}{2}$	$\begin{aligned} & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 16.16 \\ & 17.30 \end{aligned}$	$\begin{aligned} & 81.8 \\ & 85.1 \end{aligned}$	
	Average						26	21.1	16. 73	83.5	

16312 16855	F. C. Meade .jr.	Alexandria	Donglas \cdots	Sept. ${ }_{\text {S }}$	$\begin{array}{r} \text { 6. } 9010 \\ 12.2196 \end{array}$		4	14 13	$\begin{aligned} & 16.9 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 13.91 \\ & 14.40 \end{aligned}$	$\begin{aligned} & 8.3 .3 \\ & 86.6 \end{aligned}$	1,496 2,667
	Average				9.548			14	17.2	14.16	84.5	2,097
16852	W. E. Poe	Cannon Falls	Goorlhue	Oct. 6	15.246	Oct. 10	2	15	14.2	9. 49	70.3	1,836
$\begin{aligned} & 17144 \\ & 17145 \end{aligned}$	$\begin{aligned} & \text { J. E. Bosworth } \\ & \hdashline \text { a. do } \end{aligned}$	Money Creek	Houston	$\begin{aligned} & \text { Oct. } 28 \\ & \text { Oct. } 28 \end{aligned}$	$\begin{aligned} & 19.536 \\ & 16.932 \end{aligned}$	$\begin{aligned} & \text { Nov. } 14 \\ & \text { Nov: } 14 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 43 \\ & 29 \end{aligned}$	$\begin{aligned} & 16.9 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 12.31 \\ & 13.40 \end{aligned}$	$\begin{aligned} & 76.7 \\ & 85.4 \\ & 8 \end{aligned}$	3,329 3,495
	A verage				18.234			36	16.7	12.86	81.1	3,412
17060	C. W. Sargent	Woolstock	Pipestone	Oct. 20		Nor. 5	2	43	10.6	5.89	58.5	
16983	Herman Prahl.	Renville	Renville	Oct. 25	.	Oct. 29	$\stackrel{\square}{-}$	27	17.1	12. 6.3	77.7
17150	Hans Halverson	Tyrol	Stearns	Nov. 2	Nov. 15	2	4	15.6	10.42	70.3	
$\begin{aligned} & 16887 \\ & 16888 \end{aligned}$	Milo Canıp	Morris	Sterens	$\begin{array}{ll} \text { Oct. } & 10 \\ \text { Oct. } & 10 \end{array}$	$\begin{aligned} & \text { 19. } 601 \\ & 19.601 \end{aligned}$	$\begin{array}{ll} \text { Oct. } & 14 \\ \text { Oct. } & 14 \end{array}$	${ }_{1}^{1}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 13.30 \\ & 14.23 \end{aligned}$	$\begin{aligned} & 80, \\ & 80.1 \\ & 80 . \end{aligned}$	3.763 $4,6+4$
	A verage				19.601			14	17.9	13.77	81.2	3.95
17109	Axel Kap	Eagle Benu	Todd	Oct. 6	Nov. 9	4	29	16.4	11.78	75.6	
16982	(*)	Lake City	Wabasha		,	Oct. 29	10	19	18.1	14.18	80.3	
$\begin{aligned} & 16954 \\ & 16955 \end{aligned}$	C. P. Lundstad. O. O. Varholdt	Lawndale	Wilkin	$\begin{array}{ll} \text { Oct. } & 20 \\ \text { Oct. } & 20 \end{array}$		$\begin{aligned} & \text { Oct. } 25 \\ & \text { Oct. } 25 \end{aligned}$	${ }_{1}^{1}$	$\begin{aligned} & 37 \\ & 36 \end{aligned}$	$\begin{aligned} & 15.3 \\ & 16.4 \end{aligned}$	$\begin{aligned} & 12.16 \\ & 12.89 \end{aligned}$	83. 82.	
	Average							37	15.9	12. 53	83.2	
$\begin{aligned} & 17045 \\ & 17046 \end{aligned}$	B. M. Sacreiter do	Utica	$\begin{gathered} \text { Winona } \\ \ldots \end{gathered}$	$\begin{aligned} & \text { Oct. } 20 \\ & \text { Oct. } 20 \end{aligned}$		$\begin{aligned} & \text { Nov. } 4 \\ & \text { Nov. } 4 \end{aligned}$	${ }_{1}^{1}$	$\begin{aligned} & \hline \hline 51 \\ & 57 \end{aligned}$	$\begin{aligned} & \hline 14.0 \\ & 12.9 \end{aligned}$	$\begin{aligned} & 8.20 \\ & 7.38 \end{aligned}$	$\begin{aligned} & 61.6 \\ & 60.2 \end{aligned}$	
	A verage				\ldots		.	54	13.5	7.79	60.9
	A verage of State				15.716		.	29	16.4	12.17	78.1	2.966
				OURI.								
16998	W.T. Tummond	Kirksville	Adair.		Oct. 29	2	47	13.9	8. 94	67.7	...
17187	Melchior Regh	Concordia	Latayette		Nov. 21	11	18	12.9	7.4	5.91	
	Average of State.							33	13.4	8.09	63.4	

NEW MESICO.

NEW YORK

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of erower.	Post-atice.	Countr.	Time of harresting.	Yield per acre.	$\begin{gathered} \text { Date } \\ \text { rerived. } . \end{gathered}$	No. of bects.	A verage weight.	Total solids.	Sugar in beets.	Purity.	surar yield par arre.
17294	M. F. Pierson.	Soneca C'astle	Ontario	Nov. 5	Tons. 19.602	1892. Dec. 19	2	Ounces. 10	Percent. 1.0	Per cent. 16. 92	84.8	Pounds. 5.1151
1706:5	E. S. Strrling	Eagle Harbor	Urle	Oct. 20		Nov.	2	31	18.15	15.03	3i.) 1	
17223	Alphonse Friedrick.	Baldwins, L. I	Queens	Oct. 30		Dec. 15	2	31	18.5	15.22	86.6	
16356	Damiel A. Lymm	Imanchport	Yates	Oct. 6	11.102	Det. 10	2	16	17. ${ }^{\text {a }}$	14. i 4	87.5	2.549
	A verage of stat.				15.352			22	189	15. 43	85.9	3,815,

NORTH CAROLINA.

$\begin{aligned} & 16825.5 \\ & 16526 \end{aligned}$	C. N. Snowhour	Salem.		$\begin{aligned} & \text { Sept. } 27 \\ & \text { Sept. } 27 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 4.600 \end{aligned}$	$\begin{aligned} & \text { Sept. } 30 \\ & \text { Sept. } 30 \end{aligned}$	$\frac{2}{2}$	4	${ }_{13.5}^{12.2}$	$\begin{aligned} & \text { 8. } 69 \\ & 9.99 \end{aligned}$	$\begin{gathered} 75.0 \\ 71.7 \end{gathered}$	$\stackrel{293}{595}$
	Averase				3.550			4	12.9	8.99	73.4	425
NORTH DAKOTA,												
$\begin{aligned} & 17019 \\ & 17073 \end{aligned}$	Whlliam A. Mctean.	Tower City	Cass	$\begin{array}{\|cc\|} \text { Oct. } & 13 \\ \text { Oct. } & 13 \end{array}$		$\begin{aligned} & \text { Oct. } 31 \\ & \text { Хרor. } \end{aligned}$	$\stackrel{2}{2}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 182 \\ & 20 \end{aligned}$	$\begin{aligned} & 16.53 \\ & 16.45 \end{aligned}$	$\begin{aligned} & 78.2 \\ & 76.6 \end{aligned}$
	A verage							28	20.4	14.99	77.4	\ldots
16819	George Oliver.	©rary	Ramsey	sippt. 20	sept. 26	1	21	15.9	11.26	i4.5	-........
16943	H. L. Van Ornum	Forman	Sargent.	$\begin{array}{\|ll\|} \text { Oct. } & 18 \\ \text { Oct. } & 12 \\ \text { Oct. } & 12 \end{array}$	\ldots	$\begin{cases}\text { Oct. } & 24 \\ \text { Oct. } & 19 \\ \text { Oct. } & 19\end{cases}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	20	16. 4	11.69	75.0
$\begin{aligned} & 16917 \\ & 16: 100 \end{aligned}$	Roger Allin	Graiton	Walsh		$\begin{aligned} & 22.216 \\ & 292.2516 \end{aligned}$			$\frac{17}{27}$	$\begin{aligned} & 16.3 \\ & 16.8 \end{aligned}$	$\begin{aligned} & \hline 12.06 \\ & 12.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 78.8 \\ & 37.0 \end{aligned}$	$\begin{aligned} & 3,812 \\ & 3,828 \end{aligned}$
	Average				22.434		...	25	16.6	12.12	77.9	3,820
	A verage of Statr.				22.434			24	17.7	12.86	76.5	3, 820

OHIO.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& 17197 \\
\& 17198
\end{aligned}
\] \& H. G. Cartmell Solomon Pence \& \begin{tabular}{l}
Springfield \\
Eagle City.
\end{tabular} \& Clarke \& \begin{tabular}{|c|c|}
Nor. \\
Oct. \\
\hline
\end{tabular} \& \& Nov. 21
Nov. 21 \& \begin{tabular}{l}
3 \\
3 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 17 \\
\& 27
\end{aligned}
\] \& \[
\begin{aligned}
\& 14.9 \\
\& 14.8
\end{aligned}
\] \& \[
\begin{array}{r}
9.33 \\
10.69
\end{array}
\] \& \[
65.9
\] \& \\
\hline \& Arerage \& \& \& \& \& \& \& 22 \& 14.9 \& 10.01 \& 71.0 \& \\
\hline 17217 \& W. P. Wolf \& Wilmington \& Clinton \& Nov. 18 \& \& Dec. 5 \& 5 \& 15 \& 19.4 \& 14.15 \& 76.8 \& \\
\hline 16963 \& D. S. Gilmore \& Wilson's Mills. \& Cuyahoga \& Oct. 24 \& \& Oct. 26 \& 1 \& 21 \& 13.8 \& 10.17 \& 77.5 \& \\
\hline \[
\begin{aligned}
\& 17036 \\
\& 17037
\end{aligned}
\] \& Fred Whitcomb E. P. Ames. \& Winameg \& Fulton \& \[
\begin{aligned}
\& \text { Oct. } 25 \\
\& \text { Oct. } 24
\end{aligned}
\] \& 19.820 \& \(\stackrel{\text { Nov. }}{\text { Nov. }} \stackrel{2}{2}\) \& \[
{ }_{2}^{2}
\] \& \[
\begin{aligned}
\& 17 \\
\& 21
\end{aligned}
\] \& \[
\begin{aligned}
\& 16.7 \\
\& 16.2
\end{aligned}
\] \& \[
\begin{aligned}
\& 12.69 \\
\& 13.00
\end{aligned}
\] \& \[
\begin{aligned}
\& 80.0 \\
\& 84.4
\end{aligned}
\] \& 36.34 \\
\hline \& Average \& \& \& \& 19.820 \& \& \& 19 \& 16.5 \& 12.85 \& 82.2 \& 36.34 \\
\hline 16844
16845 \& H. A. Andrews \& Findlay \& Hancock. \& Sept. 28 \& 11.326 \& Oct. 5 \& \& 18 \& 15.7 \& 10.74 \& 72.1 \& \\
\hline \[
\begin{aligned}
\& 16845 \\
\& 16920
\end{aligned}
\] \& Jacol Zeller \& Mount Cors \& d \& Sept. 28
Oct. 14 \& 6.752 \& \(\begin{array}{lr}\text { Oct. } \& 5 \\ \text { Oct. } \& 20\end{array}\) \& 2
3
3 \& 25
17 \& 14.4 \& 9. 68 \& 70.7 \& 8.35 \\
\hline 16921 \&do \& \& \& Oct. 14 \& \& Oct. 20 \& 3 \& 17 \& 16. 8 \& 12. 21 \& 70. 5 \& \\
\hline 17010 \& Geo. W. Brown \& McComb \& \& Oct. 20 \& \& Oct. 31 \& \(\stackrel{3}{2}\) \& \[
\begin{aligned}
\& 18 \\
\& 41
\end{aligned}
\] \& 17.8 \& 14.02 \& 84.0 \& \\
\hline 17038 \& Paul R. Bierdemar \& Findlay \& \& Oct. 31 \& \& Nov. \({ }^{2}\) \& 2 \& 16 \& 18.5 \& \& 76. 7 \& \\
\hline 17119 \& John Nelson. \& MeComb \& do \& Nov. 2 \& \& Nov. 11 \& \({ }_{2}\) \& 18 \& 16.5
20.2 \& 15.30 \& 79.7 \& \\
\hline 17199 \& do \& do \& do \& Nov. 17 \& \& Nov. 21 \& \& 29 \& 16.7 \& 12.50 \& 78.8 \& \\
\hline \& Average \& \& \& \& 9, 039 \& \& \& 23 \& 16.8 \& 12.42 \& 77.8 \& 12.08 \\
\hline 16940 \& Fred Gehringer \& Napoleon \& Henry \& Oct. 19 \& \& Oct. 24 \& 2 \& 27 \& 15.1 \& 10.93 \& 76.2 \& \\
\hline 17111 \& A. F . Tompkin \& Bellevue \& Huron. \& Oct. 26 \& \& Oct. 31 \& \& \& \& \& \& \\
\hline \[
\begin{aligned}
\& 17160 \\
\& 17161
\end{aligned}
\] \& F.E.Fitch. \& \& \& Oct. 29 \& 13.939 \& Nov. 16 \& \(\stackrel{\sim}{2}\) \& \({ }_{25}^{25}\) \& 15.8 \& 11.71 \& 78.0 \& 2, 297 \\
\hline \& \& \& \& Oct. 29 \& \& Nov. 16 \& 2 \& 37 \& 18.0 \& 13.22 \& 77.3 \& \\
\hline \& Average \& \& \& \& 13.939 \& \& . \& 32 \& 16.9 \& 12. 83 \& 79.7 \& 2.297 \\
\hline 16964 \& Conrad Spanner \& Ironton \& Lawrence \& Oct. 5 \& \& Oct. 26 \& 2 \& 15 \& 13.8 \& 8.53 \& 65.1 \& \\
\hline 16853 \& R. C. Bradford \& Dayton \& Montgome \& Oct. 3 \& \& Oct. 10 \& \& 11 \& 14.3 \& 10. 60 \& 78.1 \& \\
\hline 17687 \& Samuel Benner \& Miamishur \& \& Oct. 10 \& 17.142 \& Oct. 12 \& \(\stackrel{2}{2}\) \& 10 \& 14.4 \& 9.63 \& 70.4 \& 2, 098 \\
\hline 17013 \&do \& \& do \& \& \& Oct.
Oct

31 \& $\stackrel{2}{2}$ \& 19 \& 16.8 \& 12. 18 \& 76.3 \&

\hline 17014 \& Samuel Benner. \& dis \& do \& Oct. ${ }^{\text {a }}$ \& 18.513 \& Oct. 31 \& $\stackrel{2}{2}$ \& 17 \& 13.1 \& 11. 18 \& $\stackrel{64.6}{ }{ }_{7}$ \&

\hline 17015 \& Capt. D. W. Youn \& \& do \& Aug. 9 \& 18.010 \& Oct. 31 \& ${ }_{2}$ \& 21 \& 12.7 \& 1.18
8.52 \& 70.7 \& 2, 695

\hline 17074 \& P.J. Meng \& \& \& Sept. 10 \& \& Oct. 31 \& 2 \& 30 \& 13.3 \& 9. 28 \& 73.4 \&

\hline \& \& \& \& Oct. 29 \& \& Nov. 7 \& 2 \& 19 \& 18.5 \& 13.47 \& 76.6 \&

\hline \& Averase \& \& \& \& 17.87\% \& \& \& 18 \& 14.9 \& 10.36 \& 73.2 \& 2,397

\hline 169012 \& S. Curtis \& Pagetown \& Morrow \& Oct. 3 \& \& Oct. 19 \& \& \& \& \& \&

\hline 16914 \& \& \& \& Oet. 31. \& \& Oct. 19 \& 1 \& 30 \& 15.6 \& 10.49 \& 64.9 \&

\hline
\end{tabular}

OHIO-Continued.

TENNESSEE.

WASHINGTON

$\begin{aligned} & 17 \Omega 20 \\ & 17222 \end{aligned}$	John Peters H. T. Hudson	Waterville	Douglas $\cdots d o . ~$	Oct. 26	13.939	$\begin{array}{ll}\text { Dec. } & 7 \\ \text { Dec. } & 7\end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 21 \\ & 16 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 19.8 \end{aligned}$	$\begin{aligned} & 12.50 \\ & 16.24 \end{aligned}$	$\begin{aligned} & 68.6 \\ & 86.3 \end{aligned}$	3.527
	Average				13.939			19	19.5	14.37	77.5	3, 52\%
17027	John R. Reaves	Spokane	Spokane	Oct. 25	13.068	Nor. 1	1	12	23.2	15. 78	71.6	2, 666
17028	\cdots - ${ }^{\text {do. }}$			Oct. 25	13. 068	Nor. 1	1	20	$\underline{23.8}$	13.69	66.1	$\xrightarrow{2} 135$
17091	E. H. Morrison.	Fairfield		Oct. 25	17. ${ }^{1 / 9}$	Nor. ${ }^{8}$	2	9	28.7	+2. 98	84.3	6, 244
17166	John R. Reaves	Spokane		Nov. 11	17. 424	Nov. 17	1	25	18.9	13.72	76.4	3,297
17167do			Nor. 11	17.424	Nov. 17	1	28	20.9	14. 70	74.0	3,419
	Arerage				15. 769			19	22.7	16.17	75.0	3, 552
$\begin{aligned} & 17057 \\ & 17058 \end{aligned}$	Henry Schatze	Calispell	Sterens	Oct. 22 Oct. 22	$\begin{aligned} & 15.572 \\ & 16.335 \end{aligned}$	Nor. Nov. S	$\stackrel{2}{2}$	${ }_{11}^{9}$	19.4 18.8	15.25 14.88	$\begin{array}{r} 82.7 \\ 83.3 \end{array}$	$\begin{aligned} & 3,547 \\ & 3,656 \end{aligned}$
	Average				15. 954			10	19.1	15.07	83.0	3, 602

WASHINGTON-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	Post-oftice.	County.	Time of harvesting.	Yield per acre.	Date received	No. of beets.	Average weight.	Total solids.	Sugar in beets.	I'urity.	Sugar. yield per acre.
16898 16947 17066 17148 17149				Oct. 10		$\begin{gathered} 1892 . \\ \text { Oct. } \quad 17 \end{gathered}$	2	Ounces.	Percent. 17.7	Per cent. 13.38	80.5	Pounds.
	M. Schuldhis.	Uniontowndo .	Oct. 16		Oct. 25	5	17	17.5	12.41	74.6	
	F.J. Mahomey	Trkoa	do	Oct. 1.5		Nov. 7	$\stackrel{2}{7}$	25	19.8	15. 04	80.0	
	Conrad Tuschaff.	Uniontown		Nov. 6		Nov. 15	5	34	18.5	11.72	70.5	
do		.d.	Nox. ${ }^{6}$	18.513	Nov. 15	5	34	16.0	10.96	72.1	2. 640
	drerage				18.513			24	17.7	12. 70	75.5	2.640
	A verage of State.				14.320			18	19.9	14.52	76.8	3,313
West virginia.												
$\begin{aligned} & 17168 \\ & 17169 \end{aligned}$	J. T. Bishop.	Martinsburg	Berkeley			$\begin{aligned} & \text { Nov. } 18 \\ & \text { Nov. } 18 \end{aligned}$	5	$\begin{aligned} & 17 \\ & 11 \end{aligned}$	$18 . \frac{2}{16.5}$	$\begin{aligned} & 1187 \\ & 10.71 \end{aligned}$	6s. 7 68.3	
	Average							14	17.4	11. 29	68.5	

WISCONSIN

16870	Henry Harbican.	Big Patch .	Grant	Oct. ${ }^{7}$		Oct. 14	1	$\underline{98}$	15.0	11.00	78.5	
16810	J. W. Whitehead	Twin Crav	Green	Sept. 18	13.700	Sept. 22	$\stackrel{3}{2}$	7	17.5	13.40	80.1	ㄴ, 10,2
16811do			Sept. is	13.000	Sept. 22	\because	9	17.0	11.94	73.9	$\stackrel{3}{-1065}$
	Average				13.350			8	17.3	12.67	77.0	$\xrightarrow{2} 360$
16901	Egbert J. Cahl -	Markesam	Freen	Oct. 13		Oct. 19	2	10	13.7	8. 6 i'	69.2	\ldots
17104	Frank Williams	Highlan	Iowa	Oct. 24		Nor. 8	2	64	16.1	11.11	T2. 6	
17009	J. W. Johnson	Manstom	Junea	Oct. 27		Oct. 31	2	31	18.6	14.71	83.2	
$\begin{aligned} & 16848 \\ & 16549 \end{aligned}$	W. B. Bell	Dobbston	Langlade	Sept. 25 Sept. 25	$\begin{aligned} & \text { 12. } 632 \\ & 15.464 \end{aligned}$	$\begin{array}{ll} \text { Oct. } & 8 \\ \text { Oct. } & 8 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	$\begin{aligned} & 18.1 \\ & 20.1 \end{aligned}$	$\begin{aligned} & 13.06 \\ & 14.50 \end{aligned}$	$\begin{array}{r} 75.9 \\ 75.9 \end{array}$	$\begin{aligned} & 2,261 \\ & 3,0 \div 1 \end{aligned}$
	Averat				14.048			17	19.1	13.78	75.9	2.0

28

DATA OBTAINED FROM THE SEVERAL STATES.

Before proceeang to diseuss the data in the preceding tables, attention should be called to the fact that in previous reports of this kimd some dissatisfaction has been expressed in some States on accome of the poor showing of the samples therefiom. In former reports attention has been particularly called to the fact that the data obtained by this method of experimentation are not wholly reliable and in all cases do not truly represent the capabilities of any locality for beet-sugar production. It is true that a large number of data received from a given state will indicate in a general way whether or not that State is capable of producing a good sugar beet, but where the number of data is limited it may be that the agricultural conditions under which the samples were produced were so poor, or the seasou so exceptional, as to prevent a fair judgment of the capabilities of the soil and climate. On the other hand, the enlture which the samples received may have been so tine and the seasonal conditions so favorable as to produce a beet far above the ayerage which could be produced in the whole State.

Again, the losis of moisture during transportation, or the failure of the farmers to send their beets in as some as harvested, may tend to reduce the amonnt of water present in the beet and to raise correspondingly the quantity of sugar therein. Inasmuch as the analyses are made on the expressed juice, this wonld tend to show always an inereased amount of sugar over that present naturally in the beets.

All these disturbing influences must be taken into consideration in judging the datat which have been recorded. This has beeu said in general explanation so as to forestall any criticisms which may be made of the data obtained.

To illustrate more particularly what is meant, attention is called to the instance, say, of Colorado and Montana. From the State of Colorado one hundred and twenty-three samples were received for analysis and from the State of Montana only one sample. Any comparison, therefore, between the average results of the two States would be simply absurd. While one hundred and twenty-three samples from Colorado, showing, as they do, tine possibilities of sugar-beet culture, indicate that the state of Colorado is capable of producing beets of high quality, the single sample from Montana, whether it proved exceptionally poor or exceptionally fine, could have been no criterion by which the capabilities of the State for beet-sugar production could be judged.

In connedion with the tentative results which have been obtained by this kind of work should be taken the characteristics of the soil and climate of each locality, and by putting the two together a fairly good idea can be formed of the possibilities of beet-sugar production.

The reader should carefully bear the above explanation in mind, both in looking over the data in the tables and in reading the remarks thereon which follow.

REMARKS ON ANALYSES.

Arkansas.-Number of samples received, 3. The average size of the samples was 12 ounces, and the content of sugar in the beet 9.41. Although Arkansas is farther south than the general experience indi. cates as a locality for the successful growth of sugar beets, the fact that sugar beets can be grown not ouly in Arkausas, hut in other Southern States, shows the capability of the wide distribution of this plant. There is probably not a state in the Union where sugar beets can not be grown successfully, at least for cattle feeding, and where they can not be grown with a fair content of sugar. It is true that with beets of the richness indicated above it would not be profitable to manufacture sugar. In other words, it would not be profitable in competition with beets of higher quality, yet large quantities of sugar could be made, even from such beets.

Californin.-Although California is the most promising State for the manufacture of beet sugar in the United States, in so far as the present determination has extended, yet the number of samples received therefrom at the laboratory was very small. Three factories were in operation in California during the past season, viz, the old factory at Alvarado and the factories at Watsonville and Chino. The amount of sugar made at each one, as imbicated by the returns filed in the Office of Internal Revenue, is as follows:

[^4]The beets which were received from the State were of fair size and showed a high content of sugar. In this comection, however, it must be remarked that the beets were long in transit and must have lost a considerable quantity of water. They were somewhat wilted and shriveled in appearance when received. Such beets, of course, would indicate a higher percentage of sugar than they would really contain in a fresh state, and the same remark may be applied to the beets shipped any distance by mail or to beets which have been exposed any considerable time to the air after harvesting, before the determination of the sugar.

Colorado.-Colorado furnished a large number of samples, showing a greatinterest among the farmers of that state in the culture of the sugar beet. In regard to the content of sugar shown by these samples, the remark made with reference to Calitomia must also be made here, viz, that the amome of sugar indicated on analysis is higher than that actually present at the time of harvesting, on account of the loss of water during transportation. Nevertheless, the beets which were received from Colorado must be considered as in every way typical. The average size was just about what a typical sugar beet should have, and the content of sugar and the purity of the juice were in every sense satisfactory.

The experience which has been gained in Colorado and other central Western States situated in the high plateans of the Rocky Mommains, is such as to lead to the greatest encouragement to the beet-sugar industry in those regions. Especially where irrigation can be practiced, and the elimate thas he absolutely controlled, the results from all those localities are of the highest significance. Irrigated land is of course of much higher value, other things being equal, than that which is not. irrigated, and hence would be suited to the growth of a crop which would yield high returns. If irrigated land be worth from $\$ 100$ to \&200 per ace it should he planted in a crop which would yield a net profit of from $\$ 10$ to 820 . It is difficult to sep how an ordinary cerceal crop could be made to yield regularly so high an interest on the investment. In the case of sugar beets it would be easy to secure a crop with an a erage net profit of the amome mentioned above. The study, therefore, of the results from Colorado is of untsinal interest for the reasons above stated.

Idaho.-Only one sample was received from this State. This sample was very much overgrown, the beets being quite double the size of typical heets. Nevertheless the percentage of sugar was very fair although the purity was very low. The beets came, as might be expected, in a badly wilted condition.

Illinois.-The samples from Illinois, "ighteen in number, indicate a beet of only fair quality but of very nearly typical size. Eridenty, if we regard the conditions of culture as about the same in the different localities, the soil and climate of Illinois are not so well suited to the production of a rich sugar beet as the soil amb climate of Colorado.

Indiunu.-Ther soil and climate of Indiana and Illinois are very similar in quality and the number of samples received from each state was the same, viz, 1s. The Indiana samples, however, are slightly richer insugar than those from Illinois. The samples from both states, however, came in a shriveled condition, showing that they had been harrested for some time before being sent in for examination; hence the usual corrections must be made for this cause.

Iora.-Eleven samples were received from this State, having about the composition of those of Illinois and Indiana.

In gencral it must be said that such results ase indicated in these tahles must be taken for what they are worth aud not as typical of what each state can do.

The larger the number of samples, the greater the valute which can be placed upon the data. For instance, Colorado with one hundred and twentr-three simples would give much more reliable data than Iowa with eleven samples, especially when we consider that in the report of last year Iowa showed a much larger number of samples and the results were so much better than those indicated by the data of the present season.

Konsas.-Kamsas has a perouliarly hot and dry climate, not suited to the conditions of typical beet growth. Nevertheless even in Kankas sugar heets of high sugar content can be prorluced, as has been indicated by experiments in former years. Eighteen samples were received fiom this state aud these samples were considerably overgrown, being almost one-half larger than typioal beets. The average percentage of sugar in the samples received from the State is fairly goorl, as indicated in the tables.

Kentucky.-Two samples were received from Kentucky and these were of poor quality. It would be extremely unjust to judge of the possibilities of heet production in Kentucky fiom the samples received.

Michigan. -Thirty-seven samples from the State of Michigan showed an average of rather full size, but with a fine content of sugar. The general results of all the experiments indicate that Michigan is a State pecularly well suited to the production of rich sugar beets.

Minnesotu.-Twenty-two samples from the State of Minnesota showed that the arerage size of the beets was very much above the normal, while the sugar content was fairly good considering the overgrown condition of the beets examined.

Missomi.-Only two samples were received from this State and these were double the normal size. It would be wholly unjust to judge of the possibilities of Missouri for beet growing by two such samples. There is every reason to believe that the northern part of the State es pecially is well suited to the growth of beets of high grarle.

Montunt- The single sample from Montana (somewhat overgrown) is quite insufficient to give any idea of the possibilities of the State. Montana, being one of the States of high altitude, would doubtless, in proper cirromstances, be able to grow beets as rich as those produced in Colorado.

Nohraska-Two beet-sugar factories have been in operation in Ne. hraska during the year, viz, at Grand Island and Norfolk. The number
of pounds of sugar made, as indieated by the returns on file in the Office of Internal Revenue, is as follows:

	1892.	1891.
Crand Island	$2,110,100$	$1,415,800$
Norfolk..	1,698, 400	1,318,700

Fifteen samples only were received tor analysis in the laboratory, and these were somewhat overgrown, but entained a very high percentage of sugar. The experience of four years has now demonstrated the fact. that beets of high sugar content can be grown in Nebraska, and wifh poper agricultural eonditions with a fair tomage per acre. The study of the data ohtained at the experimental station of the department in Nebraska will be giveu in another part of this report.

Nevadu.-Nine samples from the State of Nevada indicated a beet of rather small size, but with a phenomenally large content of sugar. Ne. vada, with proper irrigation, will dombtless be one of those States in which the culture of the sugar beet will flourish.

Now Mexim.alileven samples from the Territory of New Mexico showed a beet rather above the average size, but with an extremely high content of sugar. New Mexico also belongs to the region of high plateans, which under proper agricultural comditions can be made to produce a phenomenally rich beet.

New York.-Only four samples were receiver fiom the State of Nem York. These showed a beet rather above the average size, but with a very high content of sugar.

The capabilities of the calture of the sugar beet are well presented by comparing the data on the State of New York with those from the high plateaus of the Rocky Mountain region. No two climates could be more unlike than those of the Rocky Mountain plateans and the State of New York, and yet the character of the beets produced in each locality is about the same. Attention has been called in these reports to the advantages of the northern part of New York for beet culture, and while it would be unfair to judge of the capabilities of the State on the analysis of four samples, yet they are sufficient to indicate the character of the beets which can be grown.

North Curolinu.-Only two samples were received fiom this State, and therefore no judgment could be formed of a definite nature concerning it. The samples were very small in size and had a very low content of sugar.

North Dakota.-Six samples only were received from this State, showing beets rather overgrown, but with a fair content of sugar.

Ohio.-Forty-two samples were received from the State of Ohio, showing an average beet above the normal size and with a fair content of sugar. More interest has been shown in Ohio during the past season in regard to the sugar beet than ever before, and attention is called to
the fact that esperially in the northern part there are rast areas suitable to the culture of beets, and the climate of northern Ohio is certamly favorable to the production of a high-grade beet.

Oregon.-Eight samples from the State of Oregon showed a beet of average size and fine sugar content, suitable to the economical and protitable production of sugat. Oregon evidently shares with the rest. of the P'acific coast those special advantages for heet culture which have abrarly been demonstrated practically in the State of Cabifornia.

Pennsylvania.-Only two samples were received fiom this state. They were rather small in size and showed only a morlerate content of sugar.

South Dakota-Whirty samples firom the State of South Dakota showed an average beet above the normal size and with a fair content of sugar. South Dakota has so nearly the same advantages for the morluction of beets as Nebraska that the remarks applied to one State may also be justly applied to the other. The ouly danger to be feared in beet production in South Dakota would be the arlvent of an early frost, which would not give sufficient time for the farmer to properly harvest and protect his crop.

Temessec-One sample from 'Temessee shows a beet below the average size aud with a low content of sugar.

Virginia.-Nix samples from the State of Virginia showed an average beet rather below the normal in size, but with a fair content of sugar.

Whahington.-Fourteen samples from the State of Washington showerl a beet of full mormal size aud with a very high coutent of sugar. Washington, in common with the rest of the Datific slope, shows especial advantages for beet culture.

West Virginin.-Two samples from the State of West Virginia show a beet almost of normal size and with a fatir content of sugar.

Wistonsin.-The number of samples received fiom Wisconsin during the past season was much less than usual, due to the faret that the Dupartment did not have the valuable eooperation of the Wisconsin State Experiment Station. The State, however, has heen so fully exploited in previous experiments that a contination of them is hatrlly neressary to show the great capabilities of it for bert sugar production. Twelve samples of beets showed an arerage considerably above the normal in weight and with a fair percentage of sugar.

Wyoming.-From the State of Wyoming three samples were receiverl. They were only about half normal size, but extremely rich in sugar. Wyoming possesses the general advantages which have been indirated for Colorado, and on the irrigated lands of the State sugar leets of ifpieal size and high sugar content can be easily grown. The elevated plateaus of Wyoming, when properly irrigated, would doubtless prove more profitable for beet culture than for any other crop.

Uteh.-The Territory of Utah has high plateaus capable of irrigation which are well smited to beet culture. One beet-sugar factory is oper-

13610 -No. 36-3
ated in the Territory, locater at Lehi. It is the only factory which at this date ($)$ erember 31,189) has made a full report of its operations to the Commissioner of Internal Revenue. This report follows:

The Utah Sugar Company.

[Season of 1892-'93.]
Date of emmmencing operations (commenced on sirup of previons year, operating five days), September $1,1892$.

Date of commencing operations on beets of this year, September 26, 1892.
Date of final closing, November 19, 1892.
Actual time that the whole of the machinery was in operation, thirty days and four hours.

Ruming time, not including the five days first mentioned, thirly-seven days.
Number of employés at factory proper, 110.
Quantity of beets consumed, 9,816 tons.
Acres of beets consumed, 1,090 .
Yield in tons of beets per acre, 9 .
Average per cent of sugar extracted from beets, $7 \frac{1}{3}$.
Average per cent of sucrose in beets, 11.
Total amount of sugar made, $1,473,500$ pounds.
Sugar made per tou of beets, 150 pounds.
Sugar made per acre of beets, 1,350 pounds.
Molasses left over from season of $1892,70,603.72$ galions.
Estimated sugar in molasses left over for further treatment, 183,958 pomils.
Resirlue of molasses from season of 1891 worked over in 1892 , held in tanks, 50,063 grallons.

In averaging the per rentum of sugar extracted from beets, the sugar extracted from last year's molasses is included, as the same amount of sugar is left over this season in process of mannfacture.

Sugar extracted from last year's molasses, 131,800 pounds.

WORK DONE AT THE DEPARTMENT STATION AT SCHUYLER, NEBR.

The work at the Department station at Schuyler during the present year was carried on for the purpose of determining the best methods for the production of the beets and for a comparative trial of the different standard varieties of beets grown from imported seed.

The rotation work of the station was also inaugurated by the growing of different crops in such a way as to bring once in four years each plat of ground into culture with beets. Wheat and oats were taken as the best crops for begiming the rotation, and some very interesting rotation experiments were made of antumnal-grown wheat, which yielded large crops and at remunerative rates. The experiments in growing wheat sown in the antmmn were of particular interest in that locality, where the greater part of the wheat is sown in the spring. It is the intention to prosecute the rotation experiments not only in such a way as to prepare the land thoroughly for the growth of beets, but also incidentally to illustrate the best crops for the locality and the best methods for the culture thereof.

In special work of this kind there is a tendency to overlook the importance of this incidental work. In the growth of sugar beets for com-
mereial purposes there is perhaps no agricultural problem of greater importance than the proper preparation of the land and the proper rotation of crops in order to secure a perionlie growth of berts, not only of high tonnage but rich in sugar. More particular attention in succeeding years will be given to this branch of the work.

The importance of this work is especially true for an agricultumal eommmity such as that in which the station is situated. It is ar communty in which the fertilization of the soil is a problem which has entirely escaper the attention of the farmer. Blessed with a virgin soil of the greatest richmess the farmer has contimed heretofore to harvest his large ropss without concerning himself resperting the continual drain which he is making upon his soil.

It has been said in Enope that a beet-susar factory in any locality is a true agricultural experiment station, and as a result of establishing these factories every branch of agriculture has been immensely benefiterl. Other rops, such as cereals, potatoes, and grasses, have been made to yield far greater returns as the result of the experiment lesions taught by the beet fields. It is hoped that some such instruetion as this may result from the conduct of a beet-sugar experiment station organzed upon the plan of the one at Shayler. In the mganization of the station and in the original plan for its operation this point was held eonstantly in riew, and as long as the station remains under its present management it will be the purpose to eary out its work on the lines originally laid down, modifying them from time to time as the exigencies of the circumstances may require and as the experience gained by the work may indicate.

The work of the station last year was under the personal supervision of Mr. Walter Maxwell, who was assisted in the chemical work by Mr. T. O. Tresent. The detailed statement of the work at the station will be found in the report of Mr. Maxwell, which is made a part of this bulletin.

Expertiments in tire production of beet seed.

The work of the season commenced during the last week of Mareh. The weather was so severe up to that time as to prechule any possibility of successful investigation. The silos, in which the beets designed for propagation of seed had been preserved throngh the winter, were opened on the 26th of March. On the 5th of Λ pril the work of analyzing the mother beets commenced.

Each of the beets was subjected to separate amalysis, a conical piece being bored out of each one of them diagonally in such a way as to secure a sufficient amount of pulp for chemical examination without interfering in any way with the vitality of the bect. Each varicty of beets was examined separately. These beets, as indicated in the last report, were selected by physical appearance during the harvest of the preceding year. Those beets which had perfect form and were of the
full teight were selected and preserved. At the time the beets were preserved a sufficient number was taken to form an idea of the character of the whole lot, and this sample was subjected to analysis.

Another selected portion, representing an average sample, was carefully weighed before being deposited in the silo. On the opening of the silos these weigher portions were reweigherl, thus showing the actual gain or loss of weight in the beets dhoing their coufinement under ground.

Another arerage sample similar to the one analyzed the preceding fall was also subjected to amalys, thus determining the loss of sugar during the winter.

These two sets of data, viz, the loss of sugar and the gain or losis of weight, together form the data for the corrections to be applied to the analysis of the mother beets so as to express the data arising therefrom in figures which would have been obtained had the amalyses been made at the time the mother beets were siloed. The reason for this kiud of work is at once apparent.
The object of the amalysis of the mother beets is to classify them for the produrtion of seed of different grades. It is therefore necessary to know just what the original condition of the mother beet was in order to know its tendency to produce oftspring of a given kind. It would manifestly he unfair to gauge the beets for sugar-produciug purposes from the condition in which they are found in the spring, inasmuch as the beet would tend to produce the same character of seed as would have been indicated by its original analysis at the time of storing. Any incidental deterioration during the winter would simply effect the content of sugar and not the potency of the parent to reproduce a seed of a given strength.

The dimensions of the silos in which the beets were preserved, the methods of their structure, and other data connected with the storage of the beets during the winter will be found in the appended report.

The mother beets were analyzed at the rate of fow hundred and fifty a day, and only those which were analyzed during the day were taken out of the silo and prepared for analysis.

In regard to the classification of the beets, the following résume may be given: Each beet was numbered on analysis, and at the close of the day's work they were sorted into classes arcording to the results of the analytical data. Three grades were marle of the beets of each variety.

The poorest grade, numbered 2 , ${ }^{\circ}$ oonsisted of all those beets which, reduced to the condition in which they were at the time of storing, containerl from 12 to 16 per cent of sugat in the juice. Of the whole momber of mother beats examined 3,0567 were included in this classification.

The No. 1 grarle comsisterl of those beets which on the same basis contained from 16 to 18 per rent of sugar. Of the whole number of mothers analyzed 830 fell in this grade.

The highest grade ronsisted of those beets of extra quality containing is per cent of sugar and above. Of this grade a total of thirtyeight was obtained.

The actual loss of sugar in the mother beets firm the time of storing, October 15, 1891, to the mening of the silos in April, 1892, was 2.85 per rent, as determined on the average of earch variety. On the analysis, therefore, of the mother beet $2 . \mathrm{S}_{5}$ per rent was added to the content of sugar actually obtained in orfer to restore it to its normal romposition at the time of harvest. In this way the classification above made was obtained.

The vitality of the mother beets was almost perfect, not more than 20 out of $\pm, 435$ failed to grow and produce seed. The cultivation received was simply keeping the weeds down and the ground loose by hand hoeing, of which the crop received three cultivations.

The harvesting of the seed commenced on August 5 on some parts, which were prematurely ripened by the hot weather. The harvesting was finished on the 24th of August, and, as a whole, resulted in the production of seed of tine appearance, great vitality, and exrellent yield. The total area under cultivation for seed was 98.3 square rods. The total yield of seed was 595 pounds, ω^{-}at the rate of 968 pounds per acre. At 15 cents per pound the value of the seed per alcre would therefore be $\$ 145.20$.

The interesting part of the seed-production work will come during the next season, when the home-grown seed will be compared directly with that of foreign importation. It is confidently believed that the seed produced in the locality will have superior qualities in respect of vitality and prepotency over the imported seeds.

At the present time no organized effort has been made in this country to grow high-grade beet seed on a large scale to supply the demands for home consumption. During the past season about 15,000 acres of beets were cultivated in this country. At 15 pounds per acre the amount of seed required to plant this area was 225,000 pounds, aud, at 15 cents a pound, the value of this seed was $\$ 33,750$. Already the item of beet seed is one of considerable importance, and in common practice it may be said that the expense of beet seed for each acre, when properly planted, will be about $\$ 2$. A great increase in the acreage, therefore, sown to beets would soon create a demand for high-grade seed of home production, which would justify a reasonable amount of capital in entering into the business on a large scale.

EXPERIMENTS IN BEET OULTURE.

The preparation for the crop of 1892 was commenced in October, 1891. The land which was to be planted in beets on the following spring was at that time carefully plowed, and subsoiled to a depth of 16 to 18 inches. The surface of the soil was thus exposed to weathering during the winter. The preparation of the seed bed was commenced on the 24th of April.

38

The plats designed for the reception of the heet seed were pulverized with a disk harrow to a depth of 4 to 5 inches, and afterwards an ordinary 2 -horse harrow was deawn twice over them. After hoeing, the plats were rolled and the seed was then put in with a drill to a depth of firom one-half to one inch, and the gromed rolled a second time.

The varieties of beets planted were Vilmorin's Improved, Dippe's Kleinwanzlebener, Desprez, Lemaire, Kleinwanzlebener Elite, and Original Kleinwanzlebener. The Knaner variety of seed which was planted in 1890 was not planted in the season of 1892 because the beet seeds ordered from Europe did not reach the station in time. Before planting the seed a test was made of its vitality in a germinating fiame. The vitality of the different varieties of seed ranged from 36 to 96 per cent. Some of the seads had become moist in transportation across the orean, and the low vitality is perhaps due to this canse.
The first planting was made on the 30th of April and the planting Was continued until the 4 th of June at various intervals. Details of the planting and cultural work of the season will be found in the report following.

One of the most interesting parts of the work carried on, from a practical point of view, was the determination of the actual expense of growing, harvesting, and delivering to a distance of 3 miles one ance of beets. Accurate accome was taken of every hou's work done on this plat, which was charged for at full rates for labor aud team. No charge, however, was made for the general supervision.

The ravages of the raterpillar, which will be referred to in detail later on, unfortmately cut the yield of this test acre down to a very low point, and, as will be seen by the details of the work, the artnal expense incured was a little greater than the actual cash reerived for the beets. This, however, would not have turned out in this way except for the damage done to the crop by the caterpillar mentioned.

The yield of this acre, which was taken for the experiment, was considerably lower than that of any other plat, but had it been only equal to that of the other plats, there would have heen a handsome profit.
Specimens of the injurious insert were submitted to the Entomologist for identification. The methorls of treatment suggented by him for destroying the insects were also tried.

In general, it may be said that the agricultural work for the seasom of 1892 was fairly satisfactory in spite of the many adverse conditions which were encountered. The production of a crop averaging nearly 16 toms per acme is certaimly satisfactory, especially when, as shown by the details of the work, the production of each ton of beets above 13 per are is almost clear protit. There is no reason to doubt the ability of good farmers to produce a crop of equal tomage when growing beets for the factory.

It is true that farmers in some cases may have been misled by statements concerning the probitableness of beet growing. Extreme cart:
is exercised in the published reports of this Department to avoid mistakes of this kind. On the other hand, discouraging data wre not reported by the Department, as has been alleged in some quarters, for the sake of discouraging the industry, but simply for the purpose of presenting to the farmer the actual facts in the case. There is no business, agricultural or otherwise, which can be conducted with uniform success. Failures are always possible and always probable, and the fact that some people fail in a business is no argument whatever against the possibility of others being successful therein.

It is the object of the Department in publishing these cultural data to lay before the farmer who desires such information aceurate data on which to base the estimates of his work. It is therefore the purpose of the report not only to be scientifically accurate, but also to present practical information which can be at once utilized by the farmer who does not have the time or the means to make such experiments for himself.

ANALYTICAL DATA.

The work of analyzing the beets grown during the season of 1892 was commenced on the 1st of September. The condition of the crop on September 1 was hardly such as to wamant the beginning of the analytical work. It was far from maturity and in many cases had not recovered from the insect ravages of the suminer.

In the publication of the analytical data a departure has been made from the course pursued the last year, in omitting altogether the individual analyses and all analyses by groups of tens or otherwise. The analytical data which are of value are those which are the means of the analyses of any given variety at any given time. Inasmuch as the talbular statements of individual aualyses take up an immense amount of space, without subserving any further practical result than to secure a permanent record of the analyses, it has been thonght best in the interest of the ecomomy of space to suppress them. Each individual analysis made, however, rematins on record on the books of the Department, so that it will not be lost in case it is desired to consult any particular series of results.

The method of examination was based essentially upon that used last year. At each period of examination each plat of beets was gone ower in regular order and a definite number selected for analysis. These selections were made in such a way as to represent accurately the average coudition of the (rop). The whole number of plats was thus gone over and the results tabulated before a second examination was commenced. An effort was made to go over the whole of the plats each week, so as to get a complete weekly record of the progress of the crop toward maturity, and also of the period at which it reached its maximum content of sugar, both in the juice and per acre, and finally toward the end of the season to determine the deterioration to which the crop would be subjerted on being left too long in the ground or being sent too tardily to the factory.

Twier during the amalytical examinations a measmed area of each plat was harvested, so that the average weight of the beets could be determined and the average yield per acre at that time be calculated. The results show that upon the whole there was little variation in the actual content of sugar per acre. In other words, that as the content of sugar in the juice increased the weight of the beet diminished, and vice versa.

The beets of last year, as well as of this, were miformly smaller than the average best sugar beet should be, being only a little over half the size which should be expected of the normal beet. In other words, the bents averaged only a little over 225 grams in weight, whereas a beet areaging 500 grams in weight would, fiom an aglicultural point of view, be far more desirable, while as respects its content of sugar it might show a little less in the juice, but still it would be sufticiently rich for all practical purposes.

A glance at the weights of the beets in the different seasons should be supplemented by a study of the meteorological data, because the varying weight of the average beet was largely a factor of warm and moist weather and dry and cold weather; the dry and cold weather tending to diminish the weight of the beet, and the warm, moist weather tending to increase it.

It is seen, therefore, that there was a minimum in the weight of the beet at the begimning of the season, and that the first maximum was reached along about the end of September, followed by a second minimum near the middle of October and a second maximum near the 1st of November.

In regard to the sugar content of the juice, we find that it was lowest at the middle of November and reached a maximmm about the middle of October, showing a gradual decrease in richness until the 18th of November, when the analytical work ceased.

In respect of the purity of the juice, we tind it following closely the sucrose content of the juice, showing a minimum purity about the 15 th of September and a maximum near the midlle of October.

The practical result of this is that the most profitable time for the firmer to harvest his beets in the locality in which these experiments were made, and the most profitable time for the factory to purchase them is about the middle of (october. Practically, of course, it is impossible for all of the beets to be delivered at a factory at this time, and there must be some loss both from too early harvesting and too late harvesting, and from keeping the beets in silo until they can be manufactured.

The analytical data gave also some valuable information in regart to The maximum yield of sugar per arere; in other words, the actual sugar produed per acre loy each variety at the period of its maximum sugar content.

The Vihmorin Improved variety produced 3,900 pomuls per acre.

The Desprez variety produced 4,368 pounds per acre.
The Lemaire variety produced 4,614 pounds per acre.
Dippe's Kleinwanzlebener variety produced 4,800 pounds per acre.
The Kleinwanzlebener Elite variety produced 5,120 pounds per acre.
The Original Kleinwanzlebeuer variety produced 5,989 pounds per acre.

The difference in the amount of sugar per acre consists chietly in the tonnage yielded by each variety and not so much in the varying content of sugar. Nevertheless the Original Kleinwanzlebener not only had the largest tomage per acre, viz, $\mathbf{1 8 . 6}$, but also the highest content of sugar in the juice, viz, 16.1.

The means for all six varieties were as follows:
Mean tonnage per acre ... 15.8
Mean percentage of sugar in juice ... 15.1
Mean yield of sugar per acre .. 4,800
The mistake should not be made of supposing that the amount of sugar per acre mentioned above is what would be obtained in merchantable form. This represents the actual yield of sugar per acre as grown in the field.

The mean purity of the juice for all the varieties was 79.6.
Had the beets been manufactured by the best approved methods the yield of sugar per acre would have been, approximately, 3,200 pounds.

The comparison of the analytical data obtained duriug the seasons of 1891 and 1892 shows that in 1891 the mean yield of all the varieties per acre was 21.7 tons, containing 6,060 pounds of sugar; and for 1892 the mean yield of all varieties was 15.8 tons per acre, containing 4,800 pounds of sugar.

Interesting observations were also made on the effect of different methods of preserving beets as respecting their content of sugar. The loss in weight which beets undergo, when transmitted through the mails, has already been noticed. In a special experiment of this kind it was found in a case of a certain number of beets sent from the station at Schuyler to the Department laboratory in Washingtou, that the loss in weight was accompanied by a corresponding increase in the percentage of sugar in the juice. In other words, when beets are carefully wrapped as indicated in the directions for transmitting to the Department and sent throngh the mails they suffer no appreciable loss of sugar within the three or four days necessary for their transmission. On the other hand, it has been shown that wheu beets were harvested and exposed to the sunlight at a time of rather high temperature not only was there a greater loss in weight in four days amounting to as much as 37 per cent, but that also there was an actual loss in the amount of sugar contained in the beets. This loss amounted to about 29) per cent in the time mentioned. When the beets were kept in a shed, the loss in weight was also considerable, due to evaporation, but the loss in sugar was considerably less. When, however, beets were
kept in cold storage or in moist earth the temperature of which was below 40 , it was fomd that there was practically no loss of sugar during a period of over twenty days. There was a slight loss of moisture in the beets kept in cold storage and a corresponding increase in the amount of sugar in the juice.

In the beets kept in the moist, cold earth at a temperature below 40 but not low enough to freeze them, there was neither losis of weight nor sugar.

The conclusion to be drawn from these interesting experiments is of a practical nature, namely, that in the preservation of beets an attempt should be made to keep them covered with moist earth and at a temperature which should not be allowed, if possible, to rise above 400 .

The idea presents itself here in a very forcible way whether or not it would be profitable for beet-sugar factories to provide cold-storage cellars for the preservation of their beets, in which the temperature could be so regulated as not to be allowed to rise above 40° or fall below $3 \sum^{\circ}$. In such a cold-storage cellar the beets could be kept probably for two or three months without any appreciable loss of sugar.

The loss of sugar in beets after they are harvested is doubtless due to the vital processes going on in the organism of the beet. In other words the beet is living off of itself, no longer being connected with the earth and air in such a way as to draw any nomishment from either source. This vitality of the beet is almost completely checked when it is kept at a low temperature and in a dark place, but it is stimulated to the highest extent when it is exposed to a high temperature and a bright light. In other words, the exdusion of heat and light from the organism of the beet will tend to arrest almost completely all the vital action and thus preserve the sugar which nature has stored in the beet as a source of food supply in secondary growth.

The general result of the season's work has shown, tirst, the effect of the season on the crop, showing as the work has done this year that in the seasonal condition of 1892, even with more favorable culture than was received in 1891, the crop was much less per acre. In the second place, the season's work has shown the danger which may be encountered in this country from an entirely new pest in the form of a caterpillar which is liable to attack the erop in the middle of summer. In the third place, the work has shown pactically the best method of storing the beets in order to preserve their sugar content at its maximum. In the fourth place, the method of producing a high-grade beet seed has been thoroughly worked ont and the seed produced in this way preserved for future propagation. In the fifth place, the actual cost of producing an acre of beets, when labor is paid for by the day, has been worked out in its minutest detail and the numbers given represonting the expense in dollars and cents, may be taken to indicate the maximum cost of the production of an acre of sugar beets by the method indicated. Although the experiments showed, in the given
case, that the actual cost of the beets in money was greater than the actual cash received therefor, yet it was shown that upon the whole station, had it been cultivated in the same way, there would have been a net profit of over $\$ 10$ per acre.

These reliable data can not fail to be of the utmost interest to the farmer, chabling him to thoroughly foresee the probable cost of the production and the probable income which he will receive from a crop of sugar beets.

REPORT OF ASSISTANT IN CHARGE.

The details of the experimental work at this station are given in the report of Mr. Walter Maswell, assistant in charge, which is as follows:

U. S. Department of Agriculture, Division of Chemistry, Washington, D. C.

SIR: I beg to submit to you the second annnal report of the work of the U. S. Department of Agriculture sugar beet experiment station at Schayler, Nebr., in the year 1892.

Very respectfully,
Walter Maxwell, Assistant in charge.

Prof. H. W. Wiley, Divector of Station.

The work of the season of 1892, at the sugar heet experiment station, began the last week of March.
On March 26 the silos, in which the beets intended for propagation uses had been preserved through the winter, were examined.

April 5, the work of analyzing the beets which had been preserved in the silos was begun. Mr. T. C. Trescot assisted in the analytical work.
The mode of selection for the mother beets was by examining all of each variety grown at the time of harvesting and taking out from the whole every individual beet whose properties came within the standard of conditions required.
The standard conditions were that the beet shonld be of the form typical of each variety and of the size approved for propagation purposes. The beet should have a more or less tapering and elongated form, according to the type of the variety, and one lealing tap root, which is a graduation of the body of the beet to a point, and and the body of the beet should be free from coarse side ronts and inequalities of surface. The foliage system should rest closely upon the borly of the beet and without a long and coarse-fleshed neck. In respect of thesize, no beet was selected which weighed less than 500 grams or more than 800 grams.

The silos in which the mother beets were preserved were constructed upon a plan embracing precautions against the great fluctuations and lowness of temperature which prevall in this part of Nebraska, and also provision for sufficient ventilation and air replacement in the silos. Each silo was 18 feet long, 5 feet deep, and 6 feet broad at the surface, the breadth tapering to 4 feet at the floor. Over the whole a solid frame roof was placed, which supports a covering of soil $2 \frac{1}{2}$ feet thick. Veutilation is secured by six ventilators which are placed three feet from each wher, and which rest with lower ends upon the floor of the silo, the upper end protruding one foot above the covering of soil upon the roof. Along, and underneath the foor of the silo an air channel runs, of about a cubic foot in space, which is comected at each end of the silo with air shafts, which, as the ventilators carry off through the roof
the unwholesome and heated air from the interior of the silo, replace the bad air with fresh air from outside. The six ventilators are let into the air channel rumning under the floor of the silo; consequently as the hot and foul air passes off the replacement with fresh air is immediate and complete. The ventilators are opened and closed as the degree of temperature of the air requires. The beets in the silo were packed in moist sand, each layer of beets being interlaid with an inch layer of sand and not being allowed to touch each other. The use of moist sand was made in compliance with the principle of siloing which includes the securing of a low temperature, in order that growth shall mot proceed, and a moist atmonphere, which prevents a loss of moisture from the beet by evaporation; in brief, that the normal conditions of the organism may remain unchanged during the period of storage. The beets were laid up to within 6 inches of the ground surface, the space between the last layw and the roof of the silo being left racant, the air space acting as a protection against low temperature and also for ventilation.

In order to olserve the operation of the mode of siloing with respect to the loss of weight, and incident changes in the arganism of the beet, as a conseruence of its vitality and of evaporation, a given mmber of heets, whose weights had been taken, were placed in the middle of the silos and tags attached to each beet bearing the weight. In the spring those beets were reweighed and the change in weight ascertained. Out of ten beets phaced thas in the silo only three could be relied upon, the tags upon the others having herome so saturated ly the moisture that the numbers were no longer legible. The results olitained with the three beets were as follows:

Date.	No. 1 beet.	No. 2 beet.	No. 3 beet.	$\begin{gathered} \text { Total } \\ \text { weight. } \end{gathered}$
November 2 April 8	Grams. ${ }_{797}^{800}$	Grams. 780	Grams. $\begin{array}{r} 781 \\ 768 \end{array}$	Grams. $\begin{aligned} & 2,339 \\ & 2,345 \end{aligned}$

There is a difference of behavior olserved by the individual beets, but the total result shows a gain of 6 grams in weight, which indicates that no change had taken place, practically, in the water contents of the beets.

The beets had already commenced to shoot at the time that the silos were opened, small, yellow leaves appearing on most of those which were exposed to the faint light admitted through the ventilators. A small loss of sugar was, without dount, cansed by the premature growth which would have been preveated by removing the beets three week carlier from the silos and placing them in the earth, the temperature of which was little aloove the freezing point. The only modification that could have been made with advantage in the control of the silos and mode of preservation was the remoral of the beets from the silos in the early part of March instead of the second week in April. The moving of the dense mass in which they were packed and placing the roots in single layer in the cold earth 1 foot from the surface would have deferred eron the initial degree of growth which had ocemred until the periond of "planting ont," which is the latter part of April and early May.

In the work of analysis just so many beets as were required for one day (the mean day's work was 450 leets) were taken out of the silo in the morning, the silo being at once closed up and the light shut out. The sample was taken out of each beet with an anger-Jike sampling matchine, the sample consisting of a cone of the size of a man's fore-finger. The pulp is obtained in a finely comminuted condition. The coue or sample is taken from the beet in a diagonal line, the borer entering the beet at its lower end and passing diagonally through towards the top, eare being taken that the outer riml of the heet is mot punctured and broken through by the instrument. The latter precaution was obswed in order that the beet, when phatedout in the gromal, shall present an intact surface to the weather comditions, and in particular that rain water shall not be able to run into the root.

The sample, is bromght into a hand-press and the juice enmpletely expressed. In the extracted juice the sugar content is determined by means of the polariscope.

Each beet is sampled and its richness in sugar determined according to the method given, and the sugar content is made the hasis of a division and classification of the beets into grades, which are distingnished from each other by their less or greater richness in sugar. The actual method of classification which was followed is seen from the following details. Lach beet is numbered. The juice expressed was placed in a beaker, marked with the same number. The number of the juice was retained through each process of the analysis, and intil it was reeorded in the book of analyses, with the per cent of sugar that it contained. The beets were then classified acording to the data obtained.

After the classification of the beets, which had made up the work of the day, they were immediately placed in the earth, in pits 1 foot deep, and covered with soil to a height of $1 \frac{1}{2}$ feet. Each grade of each variety was carefully placed to itself, and the beets were laid in the pits with the heads downwards, in order that they should rest upon the floor of the pit, whose temprature was still nearly at freezing point, and protected from the increasing heat of the mid-day April sun. In those pits the beets remained until taken out for immediate planting.

In stating the analytical results, in the first place, a table will be given showing the actual sugar content of the beets of each variety as they came out of the silos and the mode of variation of the sugar content between the minimum and maximum. Afterwards, the sugar content of the beets at the time of removal from the silos will be compared with the amount of sugar present in the beets at the time that they were taken out of the soil in the previous autumn (October) and at the time when they were placed in the silus for the winter (November).

Table giving the sugar content of the beets of each variety, and the mode of rariation of the sugar content between the minimum and maximum.

Variety.	9 per cent.	10 per cent.	11 per cent.	12 per cent.	13 per cent.	14 per cent.	15 per cent.	16 per cent.	17 per cent.	Total beets.
Vilmorin's Improved	38	161	268	295	170	50	4			986
Dippo's Kleinwanzlebener -	37	115	196	245	211	53	8	1		866
Desprez.	144	337	331	243	78	10	3			1,146
Lemaire.	44	93	127	99	59	8	3	1		434
Knawer	58	166	169	128	79	32	4	2		638
Kleinwanzlebener Elite ...	32	72	93	76	50	30	8	3	1	365
Rejected beets, or such as contained less than 9 per cent of sugar....................... ${ }^{\text {a }}$. ${ }^{\text {a }}$, 435										
										4,880

The data contained in the above table give the content of sugar in the beets at the time of their removal from the silos in April. The normal and real sugar content and standard of quality of those beets was the per cent of sucrose found in them by analysis in the previous autumn, and when the crop was at its period of maximum value. But the data in the table given, placed in comparison with the known sugar routent of those beets last october, show the loss of sugar which hat taken place between the date of harvesting the beets in the autumn and removal from the silos in the spring. And these data are of the first valus in studying the results ohtained by different morles of atumen and winter preservation, and of observing the period when the greatest loss of sugar takes place.

The mother beets were not placed in the silos at the time of harvesting the crop; they were put into small pits in the field as soon as they were removed from the soil, and they remained in those pits three weeks, after which they were transferred to
the silos for the winter. The following table shows the content of sugar in the heets of each variety as indicated by analysis on the given dates:

Variety.	1891.		1892.
	October 15.	November 6.	April 10.
Vilmorin's Improved.	Percent. 14.6	Per cont. 12.9	l'er cent. $\text { 11. } 90$
Dippe's Kleinwanzlebener	14.5	12.5	12. 12
Desprez.........	14.4	12.5	11.12
Lemaire.........	14. 14.8		11.44
Knauer ...l...........	14.8 14.5	11.6 12.7	11.37 11.86
Means.	14.5	12.5	11.65

The alowe tahle shows that the sugar content of the mother heets had fallen, hetween the dates of Octoier 15, 1891, aul 1 pril 10, 1892, 2.85 per rent. It is likewise ohserved that the chief loss of sigar took place hetween (betober 15 and November 6, the reason of which circumstance will be discussed on a later oceasion and in relation with certain other data on the subject.

It has heen shown by the latter tahle that practically a loss of 3 per cent (2.85 per cent) of sugar had takeu place in the mother beets hetween the time of harvest in the antumn and the dates of their removal from thesilos in thespring. That amount requires to ho added to the sugar content of each beet analyzed in the spring, in order that the normal and real ruality shall he understood, and that the actual quality of the several grades, which were planter for the production of seed, shall be clearly establishem upon the normal sugar content of the beets at the period of maturity in the previous autumn. It is very evident that the sugar content of the heet at the time of full development and ripeness is the actual expression of its standard of dquality, since the comtent of sugar found in the beet in the spring is wholly dependent upon the mode of preservation which has been adopted, and it is possible to treat the beets in a way which would cause a loss of more than one-half of the sugar contained.

The beets of each variet. were resolved into three grades of quality, distinguished from each other loy the sugar content. The following table gives the normal sugar content of the beets of each grade, with the mumber of beets of each grade planted:

Variety.	Extra quality beets containing from 18 to 20 per cent.	No. 1 grade beets containing from 16 to 18 per cent.	No. 2 grade beets contaiuing from 12 to 16 per cent.
Vilmorin's Improved.		220	762
Dippe's Kleinwanzlebener	9	264	593
Desprez..	3	88	1,055
Lemaire .	4	67	- 363
Knamer .	6	111	521
Kleinwanzlebener Elite	12	80	273
Total.	38	830	3,567

The sefting out of the mother leets was done on May 4,5 , and 6 . The rarieties were planted at points on the station field of extreme distance from each other in order to prevent the action of insects in hybridizing. The beets were planted in rows 3 feet apart, with a distance of 2 feet between the beets in the row. The planting was done by hand, the beets being set into the ground at a depth which left the head of the beet level with the surface. The soil was pressed moderately around the beet as it was placed in the hole, care being taken not to damage or break off the young shoots which were making an appearance.

Extromely farorable weather for the mother beets sneccedell the time of setting out, and the roots took an almost immediato hold of the gromm. In ten days the foliage was 6 inches high, and there were not more than tweuty heets out of the 4,435 planted which did not grow and produce seed.
The ground around the beets was kept clean and loose hy hand-hoeing, the operation being repeated three times during the season of growth.
The progress of growth was steady and strong up to July 15, at which date the vigor of the crop and the " seed-stand" were magnificent. After that date a period of extremely high temperature set in, which continued almost without a respite up to the end of August, and, with the high temperature, a minimum rainfall was recorded, which combined conditions of weather produced a premature and somewhat irregular ripening of the seed. It was estimated that the seed would he reads for gathering ahout Angust 15 ; hut, in conseguence of the conditions of the weather described, a first portion of the prematurely ripened was collected on Angust 5 . The first collection was small and somewhat dried up, but had an almondant vitality. The second collection, made from August 12 to 16, was seed of excellent size, weight, and quality. The third and last collectiom, mate from Angust 20 to 21, was good and of perfect maturity, but hardly so hright in appearance as the second enllection.

The seed was gathered hy hand, being stripped from the branches of the stamb. By making three several collections all the seed was oltained in a perfect rondition of maturity. When gathered, the seed was laid out in the sun upon boards and pieces of burlap and thoroughly dried, after which it was separated from particles of leaf and branch by use of a winnowing machine. The winnowing or cleaning process not only blew out all dust, leaves, and shreds of branches, but the seeds of undersize, underweight, and imperfect matarity were also separated, thus producing a sample of seed of excellent appearance, and sound and high quality. The seed from each grade of mother heets of each variety was collected, cleaned, weighed, and preserved separately. The extra quality grade will bo used exclusively upon the experiment station in further high-class experimentation. No. 1 grade will also he used, in some portion, by the station for experimental purposes. No. 2 grade, which may be considerel as seed of an ordinary commercial quality, will be distributed or sold for the production of beets for factory use.

The actual results ohtained with the six varieties used in the production of seed are shown in the following table, in which the area of ground planted and the weight of seed collected are given:

Variety.	Area.	Weight.	Yield per acre.
Vilmorin's Improved.	Rods. 20	Pounds. 117	Pounds. 936
Dippe's Kleinwanzlebener	20	128	1, 024
Desprez.	24	92	613
Lemaire.	10.3	66	1,056
Knauer	15.0	126	1,344
Kleinwanzlebener Elite	9	66	1,173
Total.	98.3	595	1,025

[^5]A record of the cost of production of the seed was not made. Such an estimate or record would be of an extremely complicated character; including the cost of the production of the mother beets in the previous year, the expenses of siloing, analyzing, and classifying the mother bects, in addition to the cost of cultivating aud harresting the seed. Nerertheless, such an estimation of the cost of seed production will be made in the immerliate future.

These experiments, which represent the finst endeavor to produce sngar-heet seen by the strict methods of selection and culture which are practiced in Europe, and whith have hrought the Emopean varieties to their present standard of excellence amb value, are a trustworthy, although an initial, indication of what it may be possible to acemplish in the soil and climatic ponditions of the region in which the station is locaterl. However, mothing more can be stated with assurame mitil the home-grown seed has produced at least one generation of progeny, and it is found that the beets grown from the seed are equal in size and coutent of sugar, and the seed produced from those beets equal in quality to the seed imported from Europe and the heets grown therefrom. So far, the intications are full of promise of success.

CUITURAL SEASON OF THE BEET CROP.

The cultural season of the beet crop of 1892 was begun in October of 1891 . The plowing and subsoiling of the land intended for planting in berts were done in the thirel week of october, and comprised the antumal preparation for the next year's crop.

With the exception of three acres which had prodnced heets in 1891 , the whole of the remaining portion of the station field had been lat to fallow in the summer of that year. The gromd was virgin prairie, which had not produced a crop, and it was essential, in the first place, that a mode of treatment of the soil should be adopted b, which the excess of undecayed organic matter would be most rapidly changed and reduced to the measure not inimical to sugar-beet production.

Breaking up the gromed to a depth of 9 inches, in May, 1891, and a method of fallowing wheh kept the soil in motion and exposed to the action of the air and sun during the course of the summer, was a means of cansing the most rapid oxidation and decay of the vegetahle matter, and of converting the superabundance of organic nitrogen into inorganic forms, eapable of being utilized for plant nutrition. An analysis of the soil had shown that the nitroneu present in the soilat a depth of 12 inches was as great as the amount found in the upper 6 inches, and for that reasou the fallowing was conducted to a depth of 9 inches, in order that the largest possible mass of soil should be exposed to the action of the air.

In October the land of nearly the whole of the station was in the condition produced by such a course of fallowing. The plats selected for hearing beets in the following season were again plowed and to a depth of 10 inches, and subsoiled to a depth of 6 inches, thus securing the stirring of the soil to a depth of 16 inches. The width of furow taken by the plow was 10 inches, or a width no greater than could be moved by the share of the subsoiler. In such a way the land was laid up for the winter, and was not touched again until the season of preparation in the following spring.

The work of preparing the soil for the reception of the seed was commenced in the spring on April 24. The act of preparation of the seed bed was delayed later than was desirable by the wet condition and low temperature of the soil. It is, however, more advantageons and better practice to delay the operations if the condition of the ground is not satisfactory.

The labor in the spring preparation of the seed bed was reduced to a minimum by the work of heavy cultivation which had been done in the autumn, and the fine state of pulverization of the soil which had been wrought by the action of frost during the winter. The actual preparation for plating was made in the first place by moving the gromed to a depth of 5 inches with a disk harrow; afterwards a twohorse harrow was put twice over, when the ground was rolled down and the seed putin. After drilling in the seed with a one-row horse drill, the ground was rolled a seeond time. The details in the work of preparation and light coltivation of the gromed were in the most part identical with the same in 1891, the latter being described in full in the report of that season.

The rarieties of heets grown upon the station in 18.9 werp the Vilmorin Improved, Dippe's Kleinwanzlebener, Desprez, Le Maire Pere et Soner, Kleinwanzleben Elite, and the Original Kleinwanzlebener. The variety Ferd Knamer, which was one of the six varieties grown in 1891, was replaced in 1892 by the original Kleinwanzlebener, owing to the circumstance that seed of the former varicty could not he procured in time for planting.

Before planting, the quality of the seed of the six varieties was tested hy special geminations, which were conducted in the station lahoratory, and the degree of vitality observel is given in the following table, which states the rate as well as the measure accomplished by each variety.

Fitality of secd.
[One hundred seeds of each variety were planted; date of planting, April 27.$]$

The notable features in the germination are the high vitality of the Vilmorin variety and the extremely low germinating power of the Desprez.

April 30 the first seed was planted. One acre was drilled with seed of the Vilmorin Inproved variety. The ground was in the finest condition of tilth, the seed bed being a mass of fine moist mold, and the temperature of the soil was $54^{\circ} \mathrm{F}$.

Heavy rains immediately followed the first planting, and all further planting was delayed until May 20. The rains were accompanied with extremely low temperature, which caused a lowering of the temperature of the soil of 12° from the date of planting the first seed on April 30 . The colduess of the ground delayed the germination of the seed, and the plantlets of the seeds sown on the last day of April were not visible along the rows until May 18 , which was nearly twice the length of time ocenpied by uormal germination. Fiom May 20 the temperature of the air rose rapidly, and an equally rapid response was seen in the state of warmth of the soil.

The action of temperature upon germination was well illustrated during the period of planting, and some ohservations of interest are given in the following table:

Variety.	Date of planting.	Mean temperature of soil.		Date of appearance of plants.	
		Days.	-		
Vilmorin's Improved . .	Apr. 30	18	46	May	18
Desprez...............-.	May 20	10 9	56 60	May	29
Lemaire.	26	7	60	June	3 2
Kleinwanzlebener Elite	26	6	61.5	June	1
Original Kleinwanzleboner	31	5	64	June	

Flat-hoeing was begun May 27, upon the plat phauted on April 30. The ground was extremely soddened and caked by the heavy rains that had fallen during Maty and the hot sun at the latter part of the month. By hoeing, the plants were re-$13610-$ No. $36-4$
leased from the encrusted condilion of the surface, and they made a rapid growth, so that on June 8 they were large enough for thinning out.

The later-planted plats made a rapid growth; and, with the exception of the plat planted with the Desprez variety, all were a full and regular stand. In such respect, the season of 1892 was much more advantageous than the seasou of 1891 . In 1891 the period of germination was extremely dry, and the plants came up at two different times. The planting season of 1892 was very moist, and all the seed germinated simultaneously.

The work of thinning ont commenced June 8. Several of the workmen who had heen employed upon the station in 1891 applied for further service, and they were reëmployed. Those men were already fairly well acquainted with the nature of the operation, and not only was the difficulty of training green hands very much lessened, but the amome of lahor accomplished daily by each man was very greatly increased and the cost of the operation proportionally reduced.

The saving in time and expense which was effected by the greater skill of the workmen in the operation of thiming out the beets was the least important indication of increased expertness. The work was done in a precise, clean, and effective manner, and with a minimum of damage to the standing plants. Special experiments conducted last year showed that an unskillful handling of the plantlets in the process of thimning out may produce results of a disastrous charactor. It was seen that when the plants which are left standing are unduly disturbed in their connection with the soil, by the act of removing the surplus plants, not only the growth but the form and sugar content are later most materially affected. Those experiments were repeated in the season of 1892 , and with results of a still more emphatic charactor. Plantlets which had been roughly handled were afterwards taken out of the ground and examined under the microscope. It was observed in each of thiry examples that the end of the taproot of the plantlet was ruptured and the rooteap was displaced. Further, a given number of such plantlets were replanted in a row parallel with another row of plants which had been thinned out with particular care, and the two rows were allowed to grow, under conditions in every other respect analogous, until the period of maturity, when the plants of each row were taken up, examined, weighed, and the sugar contents determined. In the tirst place, the beets from the row which was manipulated with great care at the time of thinning out, were perfect in form, without excoption. The beets, however, from the transplauted, and more or less injured, plautlets exhibited an extreme degree of deformity. Amongst ten of those beets eight had failed to develop a taproot, and in place thereof three to five coarse prongs or fiugers had grown out. The beets were utterly deformed, and withont any points of resemblance to the other beet:s grown by the side of them. The weights and sugar contents of the respective beets were as follows:

	$\begin{aligned} & \text { Number } \\ & \text { of beets. } \end{aligned}$	Weight of beets (maean of 10 beets).	Sugar content.	Purity of juice.
Deformed beets..... Correctly formed bee	10 10	$\begin{array}{r} \text { Grams. } \\ 358 \\ 324 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 11.6 \\ 15.0 \end{array}$	Per cent. 74.4 79.7

It is seen that while the well-formed beets were of an excellent quality, the deformed heets were helow the standard (in sugar content and purity of the juice) required for mannfacturing purposes. And the results of those experiments urge a stild more emphatic insistence upou care and a correct mode of manipulation being practiced in the operation of thiming out the beets. If the success of a crop can not be wholly assured by care and expertness in the work of thinning out, its prospert and value will he deciderlly ruined hy ignorance and neglect at that particular period in the history of the plant.

Thinning out of all the plats was completed on Junc 18. The work was accomplished, in all respects, in an almost perfectly satisfactory way. The distance between the rows, upon all the plats, was uniformly 18 inches. The distance between the plants in the row was, in the early-planted plats, x inches, and in the late-planted plats, 9 inches. The plants appeared to he of one uniform size, and the distribution over the ground showed the utmost attainable regularity.
About five days after the operation of thinning out the horse hoe was passed over all the plats. The ground, however, was particularly free from weels, which was, in part, owing to the fallowing of the previons summer, and likewise to the circmo stance that the ground was thoroughly moved by the ham and horse hoes as soon as the plantlets were visible in the rows. One day's labor, employed before the weeds have gotten a stroughold of the groumd, will save the labor of several days later in the season. After the first time horse-hoeing, the hand hoe followed amongst the plants, every stray weed heing cut out, the ground thoroughly removed, and the "double plants" drawn out which had heen overlooked in the operation of thinning out. The hand-hoeing was again followed by the horse hoe, the operation being f wice repeated at intervals of one week. The ground at the end of those operations was not only free from weeds, the surface, to a depth of 3 inches, was in a state of great fineness, looseness, and porosity, which condition favored a ready cireulation of air in the upper layer, and prevented the rapid escape of moisture from the lower soil.

The operation required to complete the work of cultivation was the "soiling ul," The foliage of the beets, as well as the root development, were too far advanced to allow of further work being done either with the horse or hand hoes, excepting the act of drawing up the loose soil from between the rows around the plants in the rows. That operation was performed between July 7 and 13 . Upon the latter date the cultural perion of the season closed (with the exception of some detail work conducted on certain very small plants, which will be spoken of later and in relation with the results obtained).

AN INSECT VISITATION.

The high condition of promise which the plats of all varieties exhibited in the middle of July, when the cultural work closed, was not maintained very long. On July 20 it was ohserved that a caterpillar had appeared uron the foliage of the beets, and in very threatening numbers. Although the visitation of those insects was extremely localized, and the sphere of their operations confined to patches of small area, yet the total damage was very great. Efforts were made to destroy the eaterpillars before they could get into the gromel to prepare for the production of a second generation. Preparations of Patis green were applied with sprinkling cans, the whole of the attacked portions of the plats being treated. Also Persian insect powder and white hellebore were tried, but the difficulty of applying insecticides in the form of a dry powder, and particularly in the presence of the winds which are nsually blowing in Nebmaska, rendered the application of substances in solution or suspension a more convenient and likewise a more effective operation. Paris green in suspension (one teaspoonful to one gallon of water) was applied to all the plats which were attacked, and evidently with a very considerable effect. Twentyfour hours after the application of the insecticide great numbers of the caterpillars were lying dead upon the ground. Unfortunately, however, the application of the Paris green was not made until a great number of the insects had left the leaves and gone into the gromad, there to go through the stages of metamorphosis previons to their reappearance in the winged form as moths.

In the meantime communications were being conducted with the Division of Entmology at the U. S. Department of Agriculture, Washington, D. ('., concerning the character of the visitation, the natural history of the species, and the mode of lessening the ravages or destroying the insect. On Angust 5 a communica-
tion mas received from Mr. L. O. Howard, acting Entomologist, in which he said: "The matter is a very interesting one, and the insect is new to us. It seems to be a near relative to the so-called garden webworm (Eurycreon rantilis) which did great damage to cotton, corn, and many garden vegetables in Kansas, Colorado, Nebraska, Indiau Territory, and northern Texas in 1885. It is a different species, however, and I find no account of it in the literature of ecomomic entomology. It is quite likely that another generation will appear this summer unless your remedial measures have been extremely effective. The record of your experiments is very interesting, and there is no question but that the Paris green treatment is the best, everything considered. It would be desirable for you to determine the amount of Paris green which can be applied in solution without burning the foliage of the sugar beet, as this point has not heretofore been definitely ascertained."

C'ertain experimental data had already been obtained upon the question of the strength of solution of Paris green required to effectually destroy the insects in great numbers; and certain general, but no specific, observations had been made in order to determine the strength of solution that could be applied without damage to the beets. It was found that a solution containing one teaspoonful of Paris green to 1 gallou of water was effective in destroying all insects that were upon the upper surface of the leaves, and which ate of the sprinkled material. Many of the caterpillars, howrver, were upon the underside of the leaves, where they were protected from the insecticide applied, and, moreover, continued to feed upon the epidermis of the under leaf with complete immunity from its action. For the reasons indicated in the above remarks the application of insecticides can be only partially effective.

There is further the consideration of damage done to the crop by the application of insect-destroying substances. Where a solution of Paris green of the strength already given was applied and an overdose fell upon certain leaves those leaves were burnt through into holes, or turned brown in the places where the arsenical mixture lorged. However, a solution of the strength stated did not do an appreciable amount of damage, either to the foliage or the roots.

The intimation made by Mr. Howard, that a second generation of the insect might be expected to appear during the summer, caused a most careful daily attention to be given to the matter. The caterpillars of the first generation had wholly left the beets on August 1. On August 8 a number of gray-colored moths was observed. By the fillowing day the number of those moths appeared to have increased a thousandfold. If the foliage of the beets was disturbed they rose in cloud-form, and they were generally distributed over the greater portion of the plats.

About 100 of those moths were caught, inclosed in a box, and sont to the Department at Washington. In speaking of them, Mr. Howard said:
" In my last letter I hazariled the guess that the insect would prove to belong to the genus Eurycreon, and that it would be closely allied to the common garden web worm of Kansas, Nebraska, and other Western States-Eurycreon rantalis. The moth you sent is Euryerem slictalis. Please wateh the cygs which it is depositing upon the beet leaves, and send us larve which may hatch from them."

The leaves of some bects were examined under the microscope and the eggs of the moths ohserved. The eggs were deposited in minnte groups, and exelasively upon the maderside of the leaves. On Augnst 20 the eggs were noticed to he hatching out, and numerous caterpillars of a very minute size were already upon the leaves. On the following day it appeared as thongh the whole crop were infested and doomed to ntter destruction. Tpon some plants 150 inseets were deposited and were consuming the foliage at an extreme rate. No time was lost in the effort to destroy the second generation before it got a complete hold of the crop. Arsenicals were applied by sprinkling, the solution containing one teaspoonful of Paris green to a gallon of water. All the plats were treated with the insecticide, and at the rate of theee pounds per acre. When the Paris green solution had been upon the crop only about eight hours a heavy rain began falling, which washed every trace of the
material from the leaves down into the neek of the heets or into the ground, and the application was without effect. The crop had already been treated twice with the arsenical, and where it had become deposited in considerable quantities in the necks of the beets the indications were that a further application could not be made without direct damage to the crop, and rendering it possibly untit for manufacturing purposes. Consequently, no further attempt at destroying the insects was made with Paris green. Powdered quicklime and also soot were scattered over the patches which were the worst affecterl, but without ans perceptible effect. It was likewise attempted to cross the rows with a light roller, and thus crush the caterpillars, but the latter appeared able to bear the operation with less destruction than the beets. Nothing could be done to stop the ravage of the insects. Had the rain not fallen so soon after the treatment with Paris green the appliration womld rery probably have been in a great measure effectual. As it was, no good was done, and nothing was considered of any possible value in the situation.
The caterpillars followed their natural course, and until the greater portion of the foliage of the crop was eaten down to the ground, only the northern ends of "ertain plats, bearing four different varieties, escaping the attack. But the ends of those plats were fortunately not in the least attacked by the second generation of the insect, althongh they suffered somewhat lightly from the ravage of the first generation, and they afford the data required to form a comparatire estimate of the damage wronght by the visitation. Those data are shown in the following table, which is the record of the weights of the varieties upon a given date, and likewise of the weights of the portions of the plats which suffered from and those which escaped the attack.

Variety.	Date.	Yield jer acre of insect-dam aged beets.	$\begin{aligned} & \text { Tieli per } \\ & \text { acre of } \\ & \text { undamaged } \\ & \text { beets. } \end{aligned}$
Desprez.	Oct. 15	Tons. 10.9	Tons. 16.8
Lemaire.	15	10.9	15.8
Kleinwanzlebener Elito.	15	9.8	16.1
Original Kleinwanzlebener	15	10.4	18.6
Mean.		10.5	16.8

The difference shown in the two columns of the table indicates the actual loss in weight per acre of the beets of those varieties, cansed by the insect visitation upon the station crop.
The visitation was observed in portions of the beet districts of the Grand Island and Norfolk beet-sugar factories. I was instructed to visit and inspect the beet fields of those districts, and to report upon the condition of the crop and the extent and ravages of the insect attack. Frequent inspections of the attacked fields in the districts specified were made, oltaining further data upon the nature of the visitation, and making such suggestions to the growers as had any appearance of value. The work of inspection was extremely facilitated through the active aid and courtesy extended by the Oxnard Beet-Sugar Company and the enterprising gentlemen in its service.
The climatic conditions prevailing at the time of the first visitation, and extending through the whole period, embracing likewise the appearance and duration of the second generation, were of an extreme character. An abnomally high temperature marked all that part of the season of which we have spoken, and the rainfall for June and July was unusually small. These data require to be considered in comnection with the appearance of the insects and with the question of a probable reenrrence of the visitation in the coming season. (By direction of Secretary Rnsk, that portion of the Entomologist's annual report referring to this insect pest is appended to the present report.)

54

The elimatic conditions prevailing during the rultural season of 1802 are given in comparison with the data for 1891, and wilh the momals for the district of the experiment station:

Rainfall.

	Tear.	May.	June.	July.	Ang.	Sept.	Oct.	Totals.
		Inches.	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
184\%		fi. fi^{2}	0.50	2.50	3.36	0.28	1. 00	14.26
1591		1. 3 \%	11.59	6.71	2.22	0.84	3.92	26.61

The mean rainfall of the northom and sonthern districts of Nebraska for the same
 september, 1.57 inches; ().toher, 1.50 inches; total, 16.30 inches.

Temperature.

	Year.	May.	Jıue.	July.	Aug.	Sept.	Oet.
182\%		55.3	66.6	75.00	72.85	66.56	56.3
1851		59.0	6 6. 4	69.90	70. 20	65. 10	47.6

The climatic conditions of the cultural season of 1892 were characterized by a temperature considerably above the nomal, and a rantall not only little more than one-half of the rainfall of the cultural season of 1891 , but very considerably below the normal precipitation. It is further ohserved that during the monthsof June and Juls, when the rhief precipitation of the year takes place, the rainfall was phenomenally small. The rains of Jume and July are a chief factor in the development of a normal vegetation, and when that factor is irregnlar the measure of regetable growth will vary in a similar way.

ANALYTICAL WORK OF THE SEASON.

The work of analyzing the beets was begun on September 1 , with the assistance of C. B. Edson, of the station laboratory. On September 5, 'I. C. Trescot took charge of the polariscope and comducted the analytieal work mill the close of the season.

The condition of the crop on September 1 was in no measure what it should have been at that period in the season. In the place of the old foliage, which had been almost wholly consumed by the caterpillars, an absolutely new growth was in the stage of half development, so that the plats more nearly resembled their appearance on the last day of June than what they should have been on the date spoken of. The destruction of the old foliage not only ramsed a check in the growth of the ronts; the sugar content of the heets was kept alomemally low, and by the production of the new set of leaves the sugar content was reduced to a still lower point. It was in the midst of the conditions of that period that the work of analysis was begun.

The mode of determining the results and value of the plats of each variety was by ascertaining the weight of beets per acre, and the content of sugar in the beet, and calculating from these factors the yicld of sugar per acre.

The determination of the weight of beets per acre was conducted strictly according to the method adoped last fear, and which is given in finll detail in the report
of 1891, contained in Bulletin 33, Division of Chemistry, U. S. Department of Agriculture. In the season of 1892 , however, the weight of the crop was taken twice, on September 15 and Octoher 15 , the latter datereprosenting the period when the weight was at the maximum and growth had reased. Each time when the weight was ascertained, the methol consisted of taking up preciscly 1 square rod of beets, which measure was determined by the use of a wooden frame 1 square rod in dimensiou. When the frame was laid down on the place selected, all the heets inside the sfuare were gotten up, thownghly cleaned, topped, and weighed, and the weight of the square rod taken as the unit of the acre.

The weights per acre of the six varieties grown are given in the following table:

Variety.	September 15.	October 15.
	Tons (per acre).	Tons (per acre).
Vilmorin's Improved	10.3	12.5
Dippe's Kleinwanzlebener.	12.3	13.3
Desprez...	16. 5	16.8
Lemaire	15.1	15.8
Kleinwanzlebener Elite	15.7	16.0
Original Kleinwanzlebener	15.6	18.6
Mean	14.25	15.8

The weights given in the column under date of October 15 indicate the maximmm weight per acre of each variety, and in that portion of the plats which suffered the least from the insect ravage. The attack of the caterpillars upon the ground planted with the Vilmorin's Impowed and Dippe's Kleinwanzlehener varieties extended over the whole of those plats, and such is the precise explanation of the lower rield in comparison with the other four varieties. It is seen that an increase of weight was made het ween the middle of September aud October 15 , which ohservation is confirmed by the increased weight of the individual beets which gradually took place during that period.

As it has already been said, the work of testing the beets in the laboratory was hegrun on September 1. The mode of conducting the examination of the varieties Was somewhat different from the procedure in the analytical season of 1891. There were six varieties grown. Commencing with the Vilmorin's Improved on September 1, the other varieties followed in the order in which they are recorded in the table of the weight determination. By giving one day to the examination of a variety the whole week was required for the testing of the six varieties. In such order, each variety was examined upon the same day every week, the work being continued without intermission from the first week of September until the second week in Norember. By such a mode of examination, aud chemical control of the crop, the relative conditions of the varieties at the time of beginning the analytical work, the behavior of each variety under the fluctuating climatic conditions, and the rise of earh toward its maximum value, with the gradual decline from the maximum, as the season approached the close, were clearly established.

In preparing the samples for analysis the method arlopted last year was strictly followed. In order to obtain a reading or test of a variety nerer less than 100 beets were taken, aud the usual mubber was 200 beets. Those beets were taken in "twenties" from five different parts of the selected row in the plat. Each "twenty" was taken consecutively, large and small, as the heets were standing, and in no case was a sample taken by selecting individual beets from difterent places in the row or selected parts of the plat. When taken $m p$ the heets were immediately taken to the laloratory and washed, dried, and weighed without any delay. The 200 beets were not all taken up in the morning, but only one half of that number, and the second hundred was gotten up after the tirst part was analyzed and recorded. The ob-
ject of those precantions was to allow no time for loss of weight in the beets before the juice was expressed, and thus avoid obtaining too high polariscope readings. All beets and samples of beets were analyzed in their normal condition, or in the exact state in which they left the soil, consequently the analyses of the station laboratory are correct readings of the actual sugar containell in the crop upon given dates. The errors procerding from analyses which are made with heets that are more or less dried out will be considered in a later part of the report.
The beets, which had already been washed, dried, and weighed, were at once ground up, and the juice expressed from the pulp. The first hundred heets each day were analyzed individually, and the juice from each one was expressed with a small hand-press and the use of small filtering bags. The beets of the second humdred were always gromid up in "tens," and the juice from each "ten" olotained in one sample, the expression of the juice being acomplished by the use of a highpower screvz-press.

The question conerning the relative richness in sugar of the first and secom portions of the juice expressed from a sample of beets is not yet generally decided. An experiment was made by the station laboratory, 100 beets being used for the purpose, and the pmip of 10 beetrgoing to one analysis. The relative sugar content of the first and second expressions are given in the following table. The first half of the juice was obtained ly expressing with the hand, and the second half hy the heary screw press, cach portion beiug, as it is designated, an exact half of the total juice capable of being expressed.

Number of beets.	First half of juice.			Second half of juice.		
	Brix.	Sucrose.	Purity.	Brix.	Sucrose.	Purity.
10.	Degrces. 18.8	Per cent. 14.6	Per cent. 77.6	Degrees. 18.7	Per cent. 14.8	per cent. 79.1
10.	19.4	15.6	80.4	18.9	15.5	82.0
10.	17.3	14.0	80.9	17.4	14.1	81.0
16.	18.1	13.7	75.7	17.2	13.8	80.2
10.	16.8	13.4	79.8	16.7	13.0	77.8
10.	19.0	14.9	78.4	19.0	15.0	78.9
10.	18.4	14.6	79.3	18. 4	14.9	81.0
10.	18.9	14.4	76.2	18.7	14.8	79.1
10.	18.5	14.1	76.2	18.7	14.7	78,6 79.9
10.	19.9	15.8	79.4	19.4	15.5	79.9
Means	18.5	14.5	78.4	18.3	14.6	79.8

The table shows that the juice of the second expression was not only slightly richer in sucrose but notably higher in purity than the juice of the first half.
It has been stated that of the 200 beets analyzed each day, 100 were tested individually, and the second 100 by grinding 10 beets together, expressing the juice from the whole pulp, and taking one sugar reading of the whole. The object of handing a given number singly was to observe the degree of rariation in the weight and sugar content of the individual heets. But the reasons for analyzing in bulk, as it may be termed, where a number of beets are analyzed collectively, are several and important. It is known that small beets are usually richer in sugar than large ones. When 100 beets are analyzed individually the sugar content of each is recordect. In ohtaining the mean sugar content. of the 100 beets, the small beets not only comint for as much as the larger ones, they bear somewhat more towards the result hecanse of the greater richness in sugar. The proportion, by weight, of the small bets to the ageregate weight of the crop, however, is in the opposite direction. A crop composed at the rate of 100 beets weighing 200 grams and 100 beets weighing $4(x)$ grams indicates that the larger heets compose two parts in three of the whole crop, and the smaller beets only one part in three of the same. It will thus be observed that if the yicld of sugar per acre be calculated from the weight of beets per acre and the mean shgar content of the individual beets, the result
will be too high. That error is corrected by analyzing in bulk, or taking the mean sugar reading of ten or twenty beets which have all been ground up together. If the smaller beets are richer in sugar ther yield a less ruantity of pulp and juice, and only influence the actual sugar reading in the exact relative proportion. C'onserfuently, the sugar rearlings of beets which have been analyzer in bulk furnish the actual sugar content of the crop; and when the mean of those readings is taken in calculation with the weight of beets per acre the exact yield of sugar per acce is given. The only exception to the statement that "the smaller beets are richer in sugar than the larger, occurs in the early part of the season, and before the crop has reached maturity. The larger beets mature somewhat earlier than the smaller ones, and in the first period of the ripening season it is found that the larger beets give a higher sugar reading in the mean than the small bepts; but that difference is quite reversed in the end.

Having explaned the mode of ohtaining the samples of beets in the field, the preparation of the beets for grinding, and the method of securing a juice whose sugar content is, as nearly as possible, a true reading of the richness in sugar of the crop, the analytical data relating to each variety will be given, extending from September 1 to the close of the analytical season. The development, history, and results of each variety will be recorded in a separate table, in which the mean weight of the beets, the mean sugar content, and the mean purity of the juice will be given for each week from the opening to the close of the work. The means found in the tables, and which are accepted as showing the actual condition of the variety upon the given dates, are based upon the data obtained from the analysis of 200 beets.

Filmorin's Improved Variety.

Date.	Number of beets.	Weight of beet.	Brix.	Sucrose.	Purity.
		Grams.	Degrees.	Per cent.	Per cent.
Sopt. 1	Mean of 200 beets	226	15.3	12.4	
15.	Mean of 200 beets	225	14.1	11.7	81.0
22.	Mean of 200 beets	252	15.3	11.6	74.5
29	Mean of 200 beets	241	16.9	13.5	78.5 80.8
Oct. 6	Mean of 200 beets	230	17.8	15.1	83.0
13.	Mean of 200 beets	222	18.2	15.2	83.2
20.	Mean of 200 beets	242	17.8	14.6	80.2
27	Mean of 200 beets	240	17.7	14.8	80.5
Nov. 5	Mean of 100 beets	256	16.0	13.0	81.2
	Mean of 100 beets	243	16.7	13.2	80.4

The behavior of the Vilmorin's Improved variety was peculiar. The peculiarities, however, are more apparent than real, and are wholly traceable to the action of the insect attack. It is seen that on September 1 the sugar content in the jnice was 12.4 per cent. From that date until September 22 the sugar in the juice went down. With the apparent loss of sugar a very noticeable increase took place in the weight of the beet, which rose from 216 grams to 252 grams.
From the time that the caterpiliars disappeared from the plat, which was about the first three days of September, the beets developed a new crop of foliage, and very rapidly. With the appearance of the fresh foliage a new period of assimilation and growth began, which gradually added weight to the beets. The new growth and the increment of weight of the beet appeared to have been made, in some measure, at the expense of the suger contained in the beet. That result, however, was ouly in appearance. As a matter of fact an increase had occurred in the actual quantity of sugar present in the organism, although the sugar content of the juice had decreased. That result may be determined by a comparisou of the weights and sugar conteuts of the beets on September 1 and 22 , respectively. On September 1 the meau weight of the beets of the plat was 216 grams. The sugar coutent of the juice upon that date was 12.4 per cent, which shows that the beet at that time con-
tained 26.78 grams of sugar. On September 22 the mean weight of the beets of the same plat or crop was 252 grams. The sugar content of the juice was 11.6 per cent, or 29.0 grams of sugar, which is a gain of 2.2 grams of sugar during the interval of time considered. The increass of the total weight of the beet, however, had been out of all proportion greater than the increase in the weight of the sugar in the beet. and that circumstance reduced the proportion of the sugar relative to the other comstituents of the organism. The chief increase had been made in the water present in the beet, and that caused the sugar and other soluble solids to be contained in a more dilute solution in the juice. The table shows that the Brix reading of the juices on September 1 was 15.3 ; but on September 15 only 14.1, indicating that a large amount of water had been taken up by the beet.

From September 22 to October 13 the table shows a rapid and notalle iucrease in the sugar richness of the beet, but at the same time a slight falling off in the weight of the beet during the same interval. The increase of sugar was in part actual, and also in part only apparent, and was owing to a concentration having taken place in the juice of the beet by the loss of water. During that period the temperature of the air and soil was extremely high, and the loss of water from the beet by evaporation was greater than could be made up by capillarity. Some of the beets were quite soft from loss of moisture. If the observations are carried on mitil October 20 a decrease in the sugar content of the juica but a rise in the weight of the beet are observed; and these coincident circumstances are explained by a notable lowering of the temperature of the air and a fall of one-third of an inch of rain. On October 27 the sugar in the juice had risen two-tenths of 1 per cent, but the weight of the beet had slightly fallen. On November 5 a very notable fall had occurred in the sugar content of the juice-trom 14.8 to 13 per cent-but a corresponding rise had taken place in the weight of the beet. Now, during the preceding week, 1 inch of rain had fallen, and the temperature had come down to a daily mean of 40 degrees.

If the relative weight of the beet and the corresponding sugar contents are viewed during the period from september 1 to November 5, the behavior of the organism in relation to its sugar content is observed as follows:

Weight and sugar contents.

Date.	Weight of beet.	Sugar in the juice.	Sugar in the beet.
$\begin{aligned} & \text { Sept. } 1 . \\ & \text { Oct. } \\ & \text { Nov. } \\ & \hline \end{aligned}$	Grams. $\begin{aligned} & 216 \\ & 252 \\ & 222 \\ & 256 \end{aligned}$	Per cent. $\begin{aligned} & 12.4 \\ & 11.6 \\ & 15.2 \\ & 13.0 \end{aligned}$	Grams. 26.78 29.00 33. 28

The data contained in the table show that there was a gradual increase in the weight of sugar contained in the beet from September 1 to November 5, and that on the latter date the actual weight of sugar to the acre was greater than at any previous time. The data further indicate that the sugar content of the beet is a more constant factor and less liable to fluctuations under the influence of elimatic rhanges than has been duly considered. The indication emphatically suggested by the observations recorded is that the sugar content of the organism is practically an invariable factor, and that the constituent of the heet which is the factor chiefly subject to fluctuation is the water content, the variability of which is cansed and controlled by the temperature of the air and soil, and the rainfall.
A more exhanstive analysis has been made of the data belonging to the "Vilmorin's Improved" variety than will be attempted with the tables of data of the varieties yet to be recorded, for the particular reason that the Vilmorin's lmproved plat was selected and controlled with the special purpose of establishing the cost of pro-
duction of the crop. Consequently each detail was observed with a care and accuracy which conld not be extender to all the plats in the field. For example, in determining the mean weight of the beet each week, when the variety was analyzed, the removal of the top and neck was always in the same exact proportion. The topping and necking of the other varieties was not always done by the same individual, nor the same proportion of neck always removed. And again, in the case of the Desprez variety, it was fomd in the first analysis that too small a portion of the beet had beell ent oft" as "neck" before taking the weight, on account of the coarseness of that variety; and in the following week more of the neek was removed, which lowered the mean weight recorded. Nevertheless it will hee fomend that each of the varieties exhilit the nature, mode, and degree of fluctuation from week to week, which were observed in the example of the Vilmorin's Improved variety.

Dippe's Kleinwanzlebener Fariety.

	Date.	No. of beets.	Weight of beet.	Brix.	Sucrose.	Purity.
Sept.		Mean of $\begin{gathered}\text { Heets } \\ 50 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 . \\ 200 \\ 200 . \\ 200 \\ 200 . \\ 100 . \\ 100 .\end{gathered}$	$\begin{array}{r} \text { Grams. } \\ 236 \\ 301 \\ 271 \\ 271 \end{array}$	$\begin{array}{r} \text { Degree. } \\ 15.0 \\ 14.8 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 12.0 \\ 11.7 \\ 12.5 \end{array}$	Per cent.$\begin{gathered} 79.3 \\ 7 \end{gathered}$$76.0$
				15.8		78.8
				17.0	13.8	80.9
			292	18.7	14.8	77.8
Oct.			291	19.5	16.0	80.1
			279	19.9	16.0	79.5
			291	19.0	15.0	79.8
			306	19.1	15.3	79.4
Nov.			322	18.3	14.4	78.7
			329	17.5	13.9	78.1

Desprez Fariety.

Sept. 3.	Meau of 50.	422	12.5	8.8	70.7
10.	200.	404	13.6	9.6	73.8
17.	200.	418	14.7	10.7	71.3
$0{ }^{24}$	200.	420	15.2	11.4	71.8
Oct. 1.	200.	448	15.5	12.2	74.1
	200.	401	17.2	13.0	75.0
15.	200	384	17.4	13.0	73. 1
22	200.	385	16.9	12.5	71. 8
\bigcirc	200.	390	16.0	11.8	71.1
Nov. 5.	100.	390	16.3	12.3	72.6
	50.	377	16.2	12.0	73.9

Lemaire Tariety.

Sept. 5.	Mean of $50 \ldots \ldots .$.	285	12.9	9.1	73.3
12.	200.	274	14.0	10.8	75.6
19.	200	286	15.7	11.8	75.8
26.	200............	282	17.4	12.9	75.2
Oct. 3	200.............	275	17.6	13.8	75.4
10.	200...........	288	17.9	14.2	76.4
17.	$200 . . .$.	260	19. 1	14.6	76.9
		270	18.7	14.0	75.1
31.	200.	256	18.3	13.5	72.5
Nov. 5.	200.	265	17.6	13.1	74.9
18.	100.	272	16.9	13.1	77.4

Kleinwanzlebener Elite Variety.

Sept. 6	Mean of 50.	269	13.6	10.2	74.9
13.	200.	267	14.7	11.7	78.0
20	200	280	16.1	12.2	75. 6
27	200.	291	17.2	13.5	77.6
Oct. 4	200	288	18.0	14.0	77.0
11.	200.	265	18.8	15.2	81.1
18.	200	266	17.5	14.3	78.0
$\checkmark 25$	200.	275	17.4	13.2	74.7
Nov. 1	200	261	17.6	14.0	79.9
	100.	248	17.7	14.2	80.1
		252	17.3	14.0	80.4

Original Kleinwanzlebener Fariety.

	Date.	No. of beets.	Weight of beet.	Brix.	Sucrose.	Purity.
		Bects.	Grams.		Percent.	Per cent.
Sept. 7		Mean of 50 ..	309	14.3	11.0	77.4
14		200	311	15.7	12.7	78.6
21		200	306	18.2	14.3	79.2
28		200.	326	18.6	14.7	77.8
Oct. 5		200.	316	19.8	15.7	77.7
12		200	320	19.5	16.1	80. ${ }^{\text {a }}$
19		200.	314	20.8	15.9	76.3
26		200.	301.	20.0	16.1	78.9
Nov. 2		100.	320	19.4	14.5	75.3
5		100.	333	19.2	14.7	76.3
18		100.	320	18.2	14.4	79.2

It will be remembered that in the tests made to determine the vitality of the seed of the varieties planted, the Desprez variety showed a erominating power of only 36 per cent. That circumstances affected the history of the variety during the whole season. The crop was not more than two parts in three of a full stand. The development of the organism was irregular, and the beets when mature were extremely coarse, and the sugar content and purity of the juice remained abomanty low. In the season of 1891 the Desprez varioty gave the largest weight per arre, with the highest sugar content and purity of juice amongst the six varieties grown. It must thus be considered that the poor results olotained in 1892 with that variety are in a great measure ownes to the small degree of vitality of the sample of seed, which sample was the only one of that variety available at the time of planting.

The higher yield per acre of the "Original" Klemwanzlehener was, in part, owing to the circumstance that the varinty was totally exempted from either of the suces. sive insect attacks on one portion of the plat.

The following table gives the weight per acre of beets, the highest sugar content in the juice, with the yield of sugar per acre of each variety:

Variety.	Weight per acre.	Sucrose in juice.	Sugar per acre.	Purity.
Vilmorin's Improved	Tons. 12.5	Per cent. 15.6	Pounds. 3,900	Per cent. 83.2
Dippe's Kleinwanzlebener	15.0	16.0	4,800	80.9
Desprez..........	16.8	13.0	4,368	75.0
Lemaire	15.8	14.6	4,614	77.4
Kleinwanzlebener Elite	16.0	15.2	5,120	81.0
Original Kleinwanz'ebener	18.6	16.1	5,989	80.2
Means	15.8	15.1	4,890	79.6

A comparison of the seasons of 1891 and 1892 indicates as follows:

	Season.	Mean weight of crop of all varieties per acre.	Mean sugar per acre of all varieties.
$\begin{aligned} & 1891 . \\ & 1892 . \end{aligned}$		Tons. $\begin{array}{r} 21.7 \\ 15.8 \end{array}$	Pounds. $\begin{aligned} & 6,060 \\ & 4,800 \end{aligned}$
Mean		18.8	5,430

The mean results of the seasons of 1891 and 1892 , obtained upon the Nebraska station, are given in eomparison with the mean of results of tho same seasons recorded at the Capelle station, France:

Stations.	Beets per acre.	$\begin{aligned} & \text { Sugar per } \\ & \text { acre. } \end{aligned}$
Capello (France)..... Schuyler (Nebraska).	Tons. $\begin{aligned} & 17.5 \\ & 18.8 \end{aligned}$	Pounds. $\begin{aligned} & 5,360 \\ & 5,430 \end{aligned}$

The data from the French station represent the mean condition of the crop in all the experimental fields on November 18, 1891, and November 1, 1892, as stated in the weekly bulletin of that station.

The causes of the smaller yield per acre of the crop in 1892, in comparison with the crop of 1891, upon the Nelraska station, have been already fully eonsidered in parts of the report treating of the climatic conditions and the iusect attack.
A series of experiments was made upon small plats, exclusively managed by hard labor, in order to observe the results oltained with a varying number of plants to the acre, or of thick and thin planting.
The following table gives the data recorded:

Date.	Plat.	Number of beets to the acre.	Weight per acre.	Sucrose in juice.	$\begin{aligned} & \text { Sugar per } \\ & \text { acre. } \end{aligned}$
Oot. 11	A.....	65, 300	Tons. 13.2	Per cent. 16.6	Pounds. $5,043$
11		56, 000	12.2	17.6	4,296
11		49,000	14.3	16.0	4, 599
11	D....	43, 500	11.8	15.9	3,753
11	E.	39, 200	10.5	16.0	3,34

The only notable characteristics of the plats of the given series are the small yield of beets and the extreme richness in sugar. It is, however, clearly shown that the thick planting gave the largest yield of sugar to the acre.

A plat of 4 square rods was planted, the rows being placed 36 inches apart. Upon one-half of the plat the plants treve left. 6 inches apart in the row, which gave 29,000 plants. Upon the other half the plants were left 12 inches apart in the row, giving 14,500 plants to the acre.

The results obtained were as follows:

Date.	Plat.	Number of beets per acre.	Weight per acre.	Sucrose in juice.	Sugar per acre.
Oct. 11. 11.	First half . . Second half	$\begin{aligned} & 29,000 \\ & 14,500 \end{aligned}$	Tons. $\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	Per cent. 15.0 12.9	Pounds. $\begin{aligned} & 3,150 \\ & 2,967 \end{aligned}$

It is observed that althongh the second half of the large beets yielded the greater weight per acre, the part of the plat bearing tho smaller beets yielded the largest weight of sugar per acre. Moreover, the small beets not only contained 6 per cent more sugar to the acre than the larger leets, the amount of sugar that could be olitained by manufacture from the smaller beets was very much greater because of the greater purity of the juices in comparison with the juices from the large beets.

	Per cent.
P'urity of juice of small beets	79.7
Purity of juice of large beets	75. 6

During the analytical season of 1891, a series of experiments was made in order to ascertain the loss of weight by evaporation when the beets were exposed, at varying temperatures, to the action of the atmosphere different lengths of time.

In the season of 1892 not only were the experiments upon evaporation and loss of weight contimed, those experiments were conducted in order to embrace a study of the prollem, viz: The cause of decomposition and loss of sugar in the beet after removal from its normal connection with the soil.

Much attention has beeu given to the question of the loss of sugar by several distinguished French scientists, and the opinions of those gentlemen upon "the loss of weight and richness of the beet" may be noted as follows: M. Pellet says "All that
is known is that there is a certain loss, and esperially an alteration of tissue in the beet." M. Blim says: "The loss is important. But for want of precise information we can not estimate the loss." M. Pagnoul says: "The loss can not spring alone from the spronting." M. Martin says: "Veutilators in silos increase the respiration aul loss of sugar lyy letting in the oxygen of the air." In opposition to M. Martin, MM. Battut, Beaudet, Desprez, Salo, and Pierrot state that " moving the beets in the silos and letting in the cool air is of utility." The statements that have been quoted are taken from a translation from the Bulletin de l'Association des Chemists de France et de Colonies.
The opinions cited do not touch the question of the primary cause of the loss of weight and sugar in the beet, but are rather statements concerning the chemical changes, which, by the action of a given cause or canses, are observed to take place in the organism of the heet. It is the canse of those chemical changes with which we are coucerned, and a knowledge and control of the external conditions which disturl) the normal condition of the beet. And meder this head there is "no precise information" to enable "us to estimate the loss" of which we speak.
The series of experiments carried out at the station in the season of 1892 was for the purpose of studying the problem stated.
The loss of sugar was studied in association with the loss of weight of the beet, in certain known conditions of temperature of the air and soil. The normal weight of the beet, or its weight when removed from the soil, was the basis of all comparisons and calculations of changes olserved to have occurred after its removal from the soil.
On October 3, a square rod of beets of the Vilmorin's Improved variety was gotten up, cleaned, topped, and weighed immediately, and all was completed in fifteen minutes. Before weighing, every particle of soil was removed and the tops were cut off close to the neck, but the neck was not removed. The square rod of beets was weighed at the time of getting up and laid about on the ground again, and reweighed every twenty-four hours for the following four days.
The results of the weighings were as follows:

From October 3 to 7 the daily mean temperature of the air was 68°, the mean maximum temperatures for the given days being ! 10 , which was ahormally high for that period. The rays of the sun were not intercepted by clouds during the four days. Moreover, a wiud of high velocity prevailed on each day named. It was observed that under the action of the sun and wints, such as has been deseribed, the beets lost by evaporation no less than 37.5 per ceut of their weight.

The sugar content of the beets of the said plat containing the square rod at the fime of the original weighing was (mean of 200 heets) 15.1 per cent; the sugar comtent of the heets upon the last day of weighing (mean of 200 heets) was 17.1 per cent.

It is seen that although the beets lost no less than 37.5 per cent of their weight during the stated period the polariscope reading of the juice of the withered beets was only - per cent higher than the reading of the juice of the fresh heets. A great loss of sugar had taken place. The second polariscope reading, instead of being
17.1 per cent, should have heen 21.2 per cent had no loss of sugar taken place. The following table shows the proportion of loss:

		Sucrose in juice.	Sugar in beets.
Oct. $\begin{aligned} & 3 \\ & \\ & \\ & \end{aligned}$	1 square rod $=152$ po 1 square rod $=95$ pou Difference.	Per cent. $\begin{aligned} & 15.1 \\ & 17.1 \end{aligned}$	Pounds. $\begin{aligned} & 22.95 \\ & 16.24 \end{aligned}$
			6.71

Loss of sugar in four days equals 29.24 per cent.
Even after allowing for the abnormally high temperature recorded during the period of the experiment, the loss of sngar that had taken place was so enormous as to lend doubt to the result notwithstanding the care that had been observed in all the details. The experiment was repeated, and in the following manner: One hundred and fifty beets were gotten up of the Vilmorin's Improved variety and divided into 3 fifties, each of the same weight, 2 pounds. One fifty was analyzed immediately after weighing. Another fifty was left lying on the field, and the third fifty was laid upon a board in the barn, and exposed to the air, but shaded from the sun.
The table following gives the results:

	Date of aualysis.	Weight of beets.	Loss of weight.	Sucrose in juice.
Oct. 8 (fresh beets)		Pounds. 25	Per cent.	Per cent. $\text { 16. } 2$
11 (shed beets)		20	20.0	19.6
11 (field beets)		19.5	22.0	18.3

The actual changes in the sugar content of the shed beets and the field beets are shown as follows:

It is seen that the "shed beets," during the seventy-two hours that they lay exposed to the air, lout shaded from the sun, lost 20 per cent of their weight and 3.2 per cent of sugar. The "field heets" lost "! per cent of their weight and 12.1 per cent of sugar. The mean temperature during the three days that the experiment lasted was 58.6°, or 10° less than prevailed in the first experiment, which difference of temperature accounted for the smaller loss of weight and sugar, as shown in the latter experimeut. A striking feature in the last experiment is the circumstance that the shed beets lost almost the same proportion of their weight as the field beets, hut their loss in sugar was only one-forrth of the loss in the field beets. It is thus modicated that the action of the sum was a chief eause of the greater loss of sugar in the field beets. The latter observation was illustrated by an earlier experiment, which was conducted as follows:

Exactly 210 beets, of the original variety, were gotten up and prepared for analysis. The mean weight of the 210 beets was 326 grams. Before analyzing, 10 beets were selected from the number, and the mean weight of the selected beets was 325 grams, or the mean of the whole. The 10 beets were each wrapped closely in thick
paper and all put in a mail hox, which was tightly fastened up and sent to Washington for analysis in the laboratory of the Department of Agriculture. On arrival at the Department laboratory the beets were immediately reweighed and analyzed individually and the results sent to the station at Schuyler.

The following table gives the results:

Date.	Number of beets.	Weight of beets.	Loss of weight.	Laboratory.	Sucrose in juice.	Sugar in beets.
Sept. 28 Oct. 2.	$\begin{array}{r} 200 \\ 10 \end{array}$	Grams. 326 289	Per cent. 12.0	Schuyler... Washington	Per cent. 14.7 16. 6	Grams. 47.9

The latter experiment was made merely as a practical test of the condition of the leets after shipment to Washington. The results, however, provide an opportune illustration and support of the circumstances indicated in the preceding experiment, viz, that the beet may lose weight by evaporation, under certain conditions, without a loss of sugar taking place, and that the action of sunlight is a potent factor in causing the decomposition of sugar.

The experiments which have been recorded furnish the most precise data, showing that the decomposition and loss of sugar in the organism of the beet, after its removal from the soil, are caused by heat, and particularly by the action of the sun, and that the rate of decomposition and loss is in proportion to the degree of temperature. The apparently greater loss in direct sumlight is probably no more than can be accounted for by the difference between the temperature in the shade and in the sun, which difference could amount to 30° when the temperature of the air is 90°.

Having observed the action of high temperature upon the organism of the beet and shomn that the loss of sugar is in proportion to the degree of temperature, it appeared of particular moment and value to observe the intluence of low temperature, and to oltain, if possible, data which might conduct to a mode of storage and preservation of the leets after their removal from the soil that wonld prevent the great decomposition and loss of sugar which has always been known to occur.

It was decided to store a given number of beets in the ground, the temperature of the soil and the air being recorded, and to place an equal number of beets, in all respects the same as the first lot, in a refrigerator, where the temperature could be maintained approximately at ice temperature. On October 12, when the beets were placed in the earth, the refrigerator had not heen delivered, and the cold-storage test could not be run simultaneonsly with the earth test. It was not material, however, as the conditions of each mode of storage were regulated and recorded rigidly and have the same value. In the earth-storage test the results observed in the instaluce of six varieties will be givell. The beets were gottell up, the tops removed within 1 inch of the neek of the beet, and placed in pits in the earth immediately. The laying in was done by placing a row of beets in a slanting position, with the root on the ground. Between cach row a layer of fine soil was placed, and before covering up the beets the soil about them was made moist with water. The covering of soil was 1 foot deep, and the mean temperature of the soil at the time of storing was 63°.

The following table shows the results of storing in earth at the given temperature of the soil $\left(63^{\circ}\right)$ for a mean period of twenty-one days:

Varieties.	Fresh beets.		Stored beets.	
	Date.	Sucrose in juice.	Date.	Sucrose in juice.
Vilmorin's Improved.	Oct. 13	Per cent. 15.3	Nov. 3	Per cent. 11.4
Dippe's Kleinwanzlebener	14	16.0	3	13.5
Desprez	15	13.2	4	10.8
Lemaire	17	14.6	4	10.4
Kleinwanzlebener Elite...	11	15.2	4	13.6
Original Kleinwanzlebener	12	16.1	4	13.1
Mean		15.1		12.1

The behavior of the beets in earth storage in the seasons of 1891 and 1892 is seen as follows:

Mrean of all varieties.	Temperature of soil.	Date.	Sucrose in juice.	Date.	Sucrose in juice.
Season 1891. Season 1892.	$\begin{aligned} & 51.5 \\ & 63.0 \end{aligned}$	Oct. $\begin{array}{r}15 \\ 15\end{array}$	Per cent. $\begin{aligned} & 14.6 \\ & 15.1 \end{aligned}$	Nov. $\begin{array}{r}6 \\ 4\end{array}$	Per cent. $\begin{aligned} & 12.6 \\ & 12.1 \end{aligned}$

It is seen that in the same length of time the beets in 1891, with a soil temperature of 51°, lost 2 per cent in sugar, whilst in 1892 , with a soil temperature of 63° the loss was 3 per cent. It must also be considered that the beets had possibly lost a little in weight, in which case the sugar content should appear higher rather than lower. The loss above consequently, was probably somewhat greater than the table indicates.

Storing beets when the soil temperature is above 50° is an undesirable practice. In the uncertain climate of Nebraska it is imperative in order to he safe, as a warm spell may be suddenly followed by a very great fall of the thermometer. On October 20, 1892, the day temperature was 71°, and in the uight of October 23 the thermometer went down to 15° (F.). Many beets were frozen too badly to keep.

The experiment conducted in order to establish the results and value of cold storage as a mode of preserving beets after removal from the soil was carried out as follows:

On October 2^{2}, 150 beets of the original variety were gotten up, the tops removerl to within 1 inch of the neek, washed, and dried. Immediately on being dried the beets were divided into three "fifties" by selecting the largest beet and rummms down to the smallest and placing a beet by rotation to each of the three lots, thas obtaining a division of the whole into three parts practically identical in weight. and quality. After the division each fifty was weighed and the weights recorded. One tifty was immediately analyzel and the sugar content and purity of the juiee ascertained. A second fifty was placed in the earth at a depth of 1 foot. These heets were laid in and interlaid with soil, so that they did not touch each other, and hefore being covered up the soil and heets were made moist by sprinkling with ice water. The temperature of the soil on October 27, when the leets were put in the soil, was 43°, which was further lowered by the ice water. The third fifty was phamed in an ice chest or refrigerator. Before being put in the beets were made moist and rolled in earth, in order that the surfaces should be placed as nearly as was possible in normaleonditions. Very little earth, however, could be made to adhere to the beets, and the portion that did adhere did not do so in the manner that the soil particles are attached by the root fibers in the natural condition. The temperature of the refrigerator was 41° at the time the beets were put in, and 32° when

$$
13610-\text { No. } 36 \text { - } 5
$$

they were taken ont. The chest was closed and unt opened again, except at the top fur putting in ice, until November 18, upon which date the beets were removed from the earth and the refrigerator and analyzed.

Before analyzing, the beets were washed, dried, and reweighed. The weights before and after storage were as follows:

The analyses of the beets of each fifty are recorded in the following table. The beets were analyzed in tens, five readings being made in the analysis of each lot:

Fresh beets analyzed Oct. 27.			Earth-stored beets analyzed Nov. 18.			Refrigerator beets analyzedNov. 18.		
Brix.	Sucrose in juice.	Purity.	Brix.	Sucrose in juice.	Purity.	Brix.	Sucrose in juice.	Purity.
Degrees.	Per cent.	Percent.	Degrees.	Per cent.	Per cent.	Degrees.	Per cent.	Per cent.
20.2	15.2	75.3	20.0	16.5	82.5	22.5	17.8	79.2
19.6	14.8	75.4	19.9	16.1	81.4	22.0	16.8	76.4
20.5	16.5	80.5	18.6	15.0	80.6	21.8	17.6	80.7
21.1	16.1	76.3	20.5	16.0	78.0	21.0	15.3	73.0
21.8	16.8	77.1	19.8	15.8	79.8	21.0	16.8	80.0
20.6	15.9	76.9	19.7	15.9	80.4	21.6	16.9	77.9

It is secu by the table that the earth-stored beets gave precisely the same sugar reading after tweuty-two days as the fresh beets did. The refrigerator beets gare a reading of 1 per cent higher than the fresh leets. It was seen, however, that the refrigerator beets had lost 6 per cent in weight, which mould cause the sugar content of the beets to appear 6 per cent greater, providing the actual sugar content had not altered. Now, if 6 per cent be deducted from the polariscope reading, 16.9 per \cdots nt, the result is 15.9 per cent, which shows that the sugar content had remained constant. The following table illustrates the actual results:

Date.	Beets.	Weight of beets.	Sucrose in juice.	Sugar in beets.
$\begin{aligned} & \text { Oct. } 27 . \\ & \text { Nov. } 18 \\ & 18 \end{aligned}$	Fresh beets. Earth-stored beets. Refrigerator beets	Pounds. 30.5 30.5 28.5	Per cent. $\begin{aligned} & 15.9 \\ & 15.9 \\ & 16.9 \end{aligned}$	Pounds. 4.8 4.8 4.8

It is now possible to gire a tabular comparison of the beets which were stored in the earth on October 15 and the beets placed in cold storage, for it must be understood that the temperature of the soil on October 27 was about the same as the temperature of the refrigerator. Also, ice water was adder to the soil before it was laid wer the hets in the ermand, thus securing a still lower temperature, and a proper segree of moisture, which was not possible in the refrigerator. Further, the tem?Mrature of the snil after Dctober 27 went gradually down to 350 , thus securing the fatme temperature as prevaled in the refrigerator with the favorable soil humidity.

It was shown that the earth-stored beets lost no weight, whilst the refrigerator beets lost 6 per cent.

Year.	Beets.	Temperature of the soil.	Date.	Sucrose in juice.	Date.	Sucrose in juice.	Loss of sugar.
$\begin{aligned} & 1891 . \\ & 1892 . \\ & 1892 . \end{aligned}$	Mean of all varieties do Cold storage	$\begin{aligned} & \circ \\ & 51.5 \\ & 63.0 \\ & 35.0 \end{aligned}$	$\begin{array}{ll}\text { Oct. } & 15 \\ \text { Oct. } & 15 \\ \text { Oct. } & 27\end{array}$	Per cent. 14.6 15.1 15.9 15.	Nov. 6 Nov. 4 Nov. 18	Per cent. 12.6 12.9 15.9	Per cent. 13.7 19.9

The experiments that have been recorded indicate that the primary cause of the: decomposition and losis of sugar in the beet after its removal from the natural comnection with the soil is heat. The depreciation in sugar has been shown to be in proportion to the degree of temperature. High temperature causes a rapid and great luss of sugar, whilst at a low and constant temperature the beet can be preserved without any loss in the sugar content.

Cold-storage silos for the preservation of beets for propagation uses are thus to be atviser, and particularly as we have no data to refute the reasonable supposition that heets whose organism has undergone the chauge which is implied by the lows of 20 per cent of sugar-i. e., of one of the constituents -are not in as good a condition to produce seed as though the normal state of the organism had been maintained. Cold storage is equally to be advised in connection with factories as a principle, but the large seale of the operatious may prevent its application.

COST OF PRODUCTION.
The cost of production of an acre of beets upon the station field is shown in the following statement:

Cost of production of 1 acre of beets.

1891.

Oct. 1. Light plowing $\$ 1.68$
25. Deep plowing 2.00
2. Subsonl plowing $\stackrel{.1}{10 \%}$
1892.
Apr. 28. Disk harrowing 1.33
29. Harrowing (twice, at 17 cents) 0.34
30. Rolling 0.17
30. Cost of seed (17 pounds, at 15 cents) 2.55
30. Drilling seed 0.52
30. Jobling (1. 17
Jume 2. Horse horiug (1) 62
8-10. Thinning out (sixty-five hours, at $12 \frac{1}{2}$ cents) 8. 12
17. Hand hoeing amongst plants (fifty hours, at $12 \frac{1}{3}$ cents) 6.25
21. Horse hoeing 0.62
27. Horse hoeing 11. 62
30. Horse hoeing 0.62
July 7. Soiling up (twenty-nine hours, at (121 cants) 3. 62
30.28Oct. 15. Getting up, beets (by hamd)
$\$ 13.50$Oct. 15. Transport (at 50 cents per ton)
6. 00
Oct. 15. Rent of lame $2 . \mathrm{in}$

The items of the ahore table express the actual enst of production of a given acre of beets, each detail being strictly recorded.

The acre plat selected for the expense control was the particular one most ravaged by the insects, and the yield was the lowest of all the plats.

The weight of beets grown upon the said acre was 12.5 tons. The price per ton whatned for the beets was $\$ 1$. Therefore, 12.5 tons, at $\$ 4$, equals $\$ 50$; cost of production, $\$ 52.28$; loss, $\$ 2.28$.

The yield per acre of all the plats grown was 15.8 tons; 15.8 tons, at $\$ 4$ per ton, equals $\$ 63.20$; cost of production, $\$ 52.28$; profit per acre, $\$ 10.92$.

In considering the cost of production, as shown by the station records, it must be understood that each act of labor was purchased at market prices. Teams were hired at day prices, as were also the men. But accepting $\$ 52.28$ as the total cost of producing an acre of beets by the best methods of culture, and with the purchase of all labor, that sum can be taken as a basis of calculation by the farmer.

SUMMAARY.

In reviewing the records of the work in the season of 1892 , we have to observe the following:

The first attempts made for the production of home-grown seed were successful. The yield and quality of the seed were satisfactory; and yet the indications were that, in a season of normal climatic conditions, the results of production would be notably greater.

The cultural season was marked by extreme departures from the normal in respect of elimatic conditions. Great drought and high temperature prevailed during the period of maximum growth, which caused a smaller weight of beets per acre than would generally be produced. The dry period and high temperature, however, cansed a great richness of sugar in the beet, and a satisfactory yield of sugar to the acre.

An insect attack wrought great ravage in the crop, which reduced very notably the results of production per acre.

The experiments conducted in order to determine the cause of decomposition and loss of sugar in the beets in stomge indicated that the primary cause of ioss is high temperature, and that a system of cold storage siloing would prevent the loss.
The cost of production per acre of beets was $\$ 52.28$, and the inean value per acre of all the varieties $\$ 63.20$, giving a profit of $\$ 10.92$ per acré.

THE SUGAR-BEET WEB WORM.*

(Loxostege slicticalis Linn.)

Order LEPIDOPTERA; Family Botide.

The present season has been marked by the appearance in very injurious numbers in parts of Nebraska of a comparatively new enemy to the sugar beet. Our first intimation of its apparamee was through the Division of Chemistry of the Department. In connection with its work upon beet sugar this division has established a station at Schuyler, Colfax County, Nebr., and in the middle of July one of the expremental phats at the station was suddenly attacked by a multitude of small caterpillars, which riddled the leaves and oerasioned considerable alarm. The fact was at one reported to the Department, and the alvice sent, to spray with Paris green

[^6]or London purple, was anticipated by an assistant, Mr. C. B. Edson, who was temporarily in charge during the absence of Mr. Walter Maxwell. Later communications from Mr. Maxwell gave as the history of the outbreak and its treatment. It seems that the caterpillars were first noticed on July 22, aud when Mr. Maxwell re-
 being found.
The suddenness of the attack is well indicated by a report which Mr. Edson prepared for Mr. Maxwell. On the morning of July 21 a few holes were observed on the leaves. These were attributed to one of the little leaf beetles. The next morning the farm foreman reported worms on the beets, and examination showed that four plats were more or less infested. In the afternoon one plat was seriously damaged and by night half of its foliage was destroyed, the remaining three plats being also quite serionsly damaged. Paris green, Persian insect powder, and white hellebore were applied to a limited number of plants late in the evening. The Paris green was applied in the proprorion of one teaspoonful to a gallon of water, and the insect powder and white hellehore were sprinkled as powiters hy hand orer the beet tops. The next morning it was estimated that the Paris green had killed 10 per cent of the worms on the plants to which it had been applied, the Persian insect powder 50 per cent, and the white hellebore none. On account of lack of facilities for distributing the powder on a large seale, the Paris green solutiom was thon sprinkled over plat A in the morning and plat B in the afternoon, 6 pounds of the green heing used on 2 acres in the same proportion as in the preliminary experiment of the night before. In the evening the mulner of woms had apparently inwerased at least 20 per cent, according to Mr. Eisnu's statement, except upon plat A. where the Paris grem was heginning to operate. On the morning of the 2tth the work of the caterpillars on plats A and B was checked, but not stopped. Fifty per cent of the insects were dead upon plat A and less upon plat B. Check plats were still being injured. In the evening a comparatively small number of healthy caterpillars could be found upon the plats treated with Paris green. The next morning on no plant could more than one or two worms be found and many were entirely free. The untreated plats, however, were in much worse condition than the evening before. At noon more P'aris green was secured, and one of the mintreated plats was sprinkled. July 27 the damage was over.

Mr. Eilson in his report calls attention to the extreme activity of the caterpillars and their seemiugly incessant work. They chose the top leaves first, lut when thesu, were exhausted they worked toward the bottom and eventnally ate the stem and foot-stalk of the leaf. When two caterpillars met they would strike vicionsly at each other with their heads a number of times, and frequently the caterpillar struck the leaf in the same way when unmolested. The efficacy of the Paris green treatment was abudantly proved, but the caterpillars were nearly full grown at the time of the first application and disappeared within a very few days eren upon the untreated plants.

Mr. Lawrence Bruner, who has paid particular attention to the insects injurions to the sugar beet, gave some study to this species. From his report it appears that a few of the caterpillars were noticed during the smmmer of 1891 uron beets growing in the vicinity of Grand Island. Norfolk, and some of the adjoining towns which supply beets for the two factories in Nebraska. The present summer they again made their appearance in these same localities as well as at the Government station at Schnyler. More damage was done at the latter point than at any of the others. After the disappearance of the destructive brood a special inspection of the beet plats at the State Experiment Station at Lincoln resulted iu the finding of a numher of specimens of the caterpillar, and a little later it was fomm that at Norfolk. Pipe Center, and Gemoa a number of fields had been stripped of their leaves. Other lecalities where beets were planterl for the first season were visited, and while the worms were fond they were in mnch smaller numbers than where beets had heers
grown last season. The following facts were gathered by Mr. Bruner from conversation with various persons interested in the cultivation of the beets:

The weh worms were most abundant at a distance from sheltered localities bordering groves, and were most numerous upon high wrouml, hilltops, and slopes rather than upon the flat ground. They were never plentiful on a jiece of ground planted to beets for the first time, unless it aljoined one that was cultivated in beets the year before. They were more abundant in the middle of large fiedds than in small ones, and also in fiells that were allowed to run to pigweed (Amarantus spl.) the proceding year than in fields where these weeds were kept down. Sandy soil was apparently more favorable to their increase than heavier soil.

LIFE HISTORY.

The life history of the insect has been followed throngh mily a part of the season, int there are certainly two ammal generations, and probably three if not four. The July brood is a short-lived one, and but two weeks are required between the maturity of the catwrillars transforming the latter part of July and the apparance of the moths, which couple and soon lay eggs for another generation. The caterpillars of the July brood transform to chrysalids almost immediately after eutering the ground. Such, however, was not the case with the caterpillars of the last broot. With this the chrysalis state is normally not assumed for some time, and probably not until the ensuing spring. Cocons received September 19 from Mr. Ldson, at Schuyler, Nebr., contained larva which were full grown but somewhat shrunken, and these at the date of writing (Derember 5) are still in the larval condition. Mr. Bruner. however, in brechling-cage experiments, finds that some of the Anust brood issue as moths during september and ()etober, and he suggests that it is barely possible that there is another set of materpillars produced by these stragelers during the fall if the weather permits, but, as alrealy shown, the majority of the Augnst brood remained unchanged motil the following spring. From the larvir of the injurions brood received July 28 and Angust 2 the moths issued Angust 6, x, and 12, while August 1.5 moths were received from Schusler tonether with beet leaves bearing eggs.
The eggs are pale yellow, faintly rugnse or indistinctly facetted, slightly polished, somewhat iridescent, almost circular and very flatly couvex, and are deposited either singly or in a row of from two to five or more, in the latter case overlapping each other like scales.
The young larvie are whitish in color with polished black head and piliferons spots. The full-grown larve are rellowish white with a broad back medionlorsal stripe, and a still broader subdorsal stripe, the tiro fine lateral lines being also black. The piliferous warts are pale with a black ring, and the head is yellowish or marbled with black. The hibernating caterpillars make a burrow beneath the surface of the ground, but line it with silk, constructing an inner cocoon which is long, slender, slightly curved, and about three times as long as the larva itself. A somewhat similar cocoon, but a little over half the length, is constructed by the midsummer brood.

This insect is a close ally of the so-called garden web worm, which was treated in the report of the Entomologist in the Annual Report of the U. S. Department of Agriculture for 1885 on pages 265-270. The moth is somewhat darker in general effect; the caterpillar is also darker, and the preponderance in the longitudinal markings shows a decided difference from the normal form of the ordinary garden web worm. It also differs in the apparent absence of the spinning habit in the immature larve.
It is one of the insects which, during my early visits to Kansas, and particularly in 1873, was not uncommonly fonud on Amaronus blitum, and was reared to the imago from lave upon this plant.

INDEX.

A.
Prem
Analytical data at the Schnyler Station 57, 514
from the various States, comparison $\because 8$
methods $39, .7$
Arkansas, analyses of bepta from x
remarks on beets from 29
B.
Bect-mothers, selection 3.5, $1: 14$
setting out 14
sugar contents 1.5, 4is
Beets, cost of prouluetion 63
cultural season 4.8
preservation 65
rariability of water contents. 5.
varieties grown at the Schuyler Station Sx. 1!
rield per acre 5.5. 60
Beet seed, amonnt required per acre 37
distribution 7
effects of temperature on germination 49
experimonts in production 3.
source of, used in experiments 7
vitality 4
yield per acres $\therefore 7.17$
Beet-sugar factories in (alifornia 24
Nehnaska :31
Utah 33
C.
California, analysies of beets from 8
beet-sugar factorios in 29
remarkis on beets from 29
Cold storage of beets, experiments 15.3
Colorado, analyses of bects from x
remarks on beets from :i)
Cost of beet seed for one acre 37
Cost of production of shtiar lieets $1: 7$
Culture of beets, experiments at the Schuyler Station 37
D.
Desprez beets, analytical data 59
yibld of shg:ar per acre 41, b ?
Dippe's Kleinwanzlebener beets, analytical data)!
yield of sugir per acre 41. (i)
E.
Page
Elson, C. B., analytical work 54
Entomologist, report on the sugar-beet web worm 68
G.
Germination of beet seed, eflects of temperature 49
H.
How:mel, L. О., "ommmиi"ation from 5
I.
IRahn, analyes of beets trom 11
mmarks om bects fom iii)
Illinois, analyses of beets from 12
tharks on beets from 30
Indiallat, analyses of beets from $1:$
remarks on beets from 30
Insert risitation in
Iowa, analyses of beets from 1:3
remarks on beets from 31
J.
Juice, relative richuess of different portions 56
K.
Kansas, analysm of heets from 14
remarks on leets from 31
Kentucky, analyses of beets from 15
remarks on beets from 31
Kleinwanzlebener Elite beets, analytical data 59
yield of sugar per acre 41.60
L.
Lemaire beets, analytical data 59
yield of sugar per acre 41, 60
Letter of trausmittal 5
Loss of sugar in beets, cause 61
in cold storage 65
silo 46
on exposure to heat ani light 41, 62
weight of beets during transit throngh the mails 64
in silo 44
M.
Maxwell, Walter, report 43
Meteorological conditions at the Schnyler Station 53, 54
Michigan, analyses of heets from 15
remarks on beets from 31
Minnesota, analyses of beets from 16
remarks on heers from 31
Missouri, analyses of beets from 17
remarks on beets from 31
Montana, analyses of beets from 18
remarks on leets from. 31
N.
Page
Nebraska, analyses of beets from 1.5
beet-sugar factories in 31
remarks on beets from 31
Nevada, analgses of beets from 19
remarks on beets from 32
New Mexico, analyses of beets from 18
remarks on beets fiom 32
New York, analrses of beets from 20
remarks on beets from 32
North Carolina, analyses of beets from 20
remarks on beets trom 3.
North Dakota, analyses of beets from 21
remarks on beets from 32
Number of plants per acre, importanco of 61
O.
Ohio, analyses of beets from 21
remarks on beets from 32
Oregon, amalyses of beets from 22
remarks on beets firm 3:)
Original Kleinwanzlebeuer beets, analytical data 60
rield of sugar per arre 41, 60
P .
Pennsylvania, analyses of beets from 23
remarks on beets from 3:3
Preservation of beets by cold storage 65
S.
Schuyler Experiment Station, analytical data obtainerl at 59
results, comparison with similar data from Chapelle, France 60
work done at 34
Silos, construction 43
Soil, preparation for reception of beet seed 48
South Dakota, analyses of beets from 2.3
remarks ou beets from :3
Sugar-beet web worm, ravages 51-53
report of Entomologist 6.8
Sugar, protuction per acre 40, 60
Summary of work at the Schuyler Station 42,68
T.
Taproot, results of injury ตก
Tennessee, analyses of beets from 25
remarks on beets from $3: 3$
Thinning out of beets 51)
Trescott, T. C., analytical work 35, 54
Paga
Vilmorin's improved beets, analytical data 57
yield of sugar per acre 40, 60
Virginia, analyses of beets from 25
remarks on beets from 35
Vitality of beet seed 49
W.
Washington, analyses of beets from 25
remarks on beets from 33
Web worm of the sugar beet, ravages 51-53
report of Entomologist 68
West Virginia, aualyses of beets from 26
remarks on beets from 33
Wisconsin, analyses of beets from 26
remarlss on beets from 33
Wyoming, analyses of beets from 27
remarks on beets from 33
Y.
Yield of beets per acre at Schuyler 55.60
sugar per acre at Schuyler 40, 60

U. S. DEPARTMENT OF AGRICULTURE DIVISION OF CHEMISTRE

BULLETIN
No. 39

EXPERIMENTS

WITH

SUGAR BEETS

IN

$$
1893
$$

BY

HARVEY W. WILEY

Chemist of the U.S. Department of Agriculture and Director of the Deprartment Sugar
Experiment Stations at schuyler, Nebraska; Runnymede (Narmossee P. O.), Florida, and Sterling and Medicine Lodge, Kinasas

WITH THE COLLABORATION OF
DR. WALTER MAẊWELL
Assistant in Charge of the Schuyler Station

PUBLISHED BY AUTHORITY OF THE SECRETARY OF AGRICULTURE

WASHINGTON

GOVERNMENT PRINTING OFFICE
1594

bULLETINS OF THE DIVISION OF CHEMISTRY,

U. S. DEPARTMENT OF AGRICULTURE.

No. 1. An Investigation of the Composition of American Wheat and Corn. Edited by Clifford Richardson. 1883. Pp. 69. (Out of print.)
No. 2. Ditfusion: Its Application to Sugar Cane, and liecord of Experiments with Sorghum in 1853. Ldited by H. W. Wiley. 1884. Pp. 36. (Out of print.)
Nu. 3. The Northern Sugar Industry: A record of ite progress during the season of 1883. Editurl by H.W. Wiley. 1884. Pp. 120. (Ont of print.)
No. 4. An Investigation of the Composition of American Wheat and Corn. (Second report.) Editerl by Clifford Richardson. 1884. Pp. 98. (Out of print.)
No. 5. The Sugar Industry of the United States. Edited by H. W. Wiley. 1885. Pp. 224. (Out of print.)
No. 6. Experiments with Diffusion and Carbonatation at Ottawa, Kans. Campaign of 1885. Edited by II. W. Wiley. 1885. Pp. 20. (Out of print.)
No. 7. Methots of Analysid of Commercial Fertilizers. (Proceedings of the Association of Othicial Agricultural Chemists, September 1 and 2, 1885.) Edited by Charles WV. Dabuey. 1855. P'p.49. (Out of print.)
No. 8. Methods and Machinery for the Application of Diffusion to the Extraction of Sugar from Sugar Cane and Sorghum, and for the nse of Lime and Carbonic and Sulphurous Acids in Purifying the Diffusion Juices. Edited by H. W. Wiley. 1886. Pp. 85. (Ont of print.)
No. 9. Third Report on the Chemieal Composition and Physieal Properties of Ameriean Cereais, Wheat, Oats, Barley, and Rye. Edited by Clifford Richardson, 1886. Pp. 82. (Out of print.)
No. 10. Principles and Methods of Soil Analysis. Edited by Edgar Richards. 1886. Pp.66. (Out of print.)
No. 11. Report of Experiments in the Manufacture of Sugar at Magnolia Station, Lawrence, La., Soason of 1885-'86. (Second report.) Edited by Guilford L. Spencer. 1886. Pp. 26. (Out of print.) No. 12. Mrethods of Analysis of Commercial Fertilizers. (Proceedings of the Third Annual Conrention of the Association of Ofticial Agricultural Chemists, August 26 and 27, 1886. Edited by Clifford Richardson. 1886. Pp. 59. (Out of print.)

No. 13. Food Adulterants.
Part First. Dairy Products. Edited by H. W. Wiley. 1887. Pp. 132.
Part Second. Spices and Condiments. Edited by Clifford Richardson. 1887. Pp. 130. (Out of print.)
Fart Third. Fermented Alchoholic Bererages-Malt Liquors, Wine, and Cider. Editel by C. A. Crampton. 1887. Pp. 140. (Out of print.)
Part Fourth. Lard and Lard Adulterations. Edited by II. W. Wiley. 1889. Pp. 154.
Part Fifth. Baking Powders. Edited by C. A. Crampton. 1889. Pp. 63.
Part Sixth. Sugar, Molasses aud Sirup, Coufections, Honey, and Beeswax. Edited by H. W. Wiley. 1892. Pp. 255.
Part Seventh. Tea, Coffec, and Cocna Preparations. Edited by Guilford L. Spencer. 1592. Pp.155.
Part Eighth. Canned Vegetables. Edited by K. P. Mcelroy. 1893. Pp. 165.
Part Ninth. Bread, Flour, and Meal. (In preparation.)
No. 14. Record of Experiments at Fort Scott, Kans., in the Manufacture of Sugar from Sorghum and Sugar Canes in 1886. Edited by H. W. Wiley. 1887. Pp. 64.

No. 15. Report of Experiments in the Manufacture of Sugar at Magnolia Station, Lawrence, La., Season of 1880-'87. (Third report.) Edited by Guilford L. Spencer. 1887.' Pp. 35.

No. 16. Methods of Analysis of Commercial Fertilizers, Feeding stuffs, and Dairy Producta. Adopted at the Fourth Annual Convention of the Association of Otticial 1 grieultural Chemists, August 16, 17, and 18, 1887. Edited by Clifford Richardson. 1887. Pp. 80. (Out of print.)

No. 17. Record of Experiments Conducted by the Commissioner of Agriculture in the Maunfacture of Sugar from Sorghum and sugar Canes at Fort Scott, Kans., Lio Grande, N. J., and Lawrence, La., 1887-'88. Edited by H. W. Wiley. 1888. Pp. 118.

No. 18. Sugar-produring Plants: Feeord of Amatyses made by Authority of the Commissioner of Agriculture under disection of the Chemist, 1857-bs' (Sorghm-Fort Soott, Kans., Kio Gramde, N.J.; Sugar Cane-Lawrence. La.), together with astuly of the data collected on Sorghumand Sugar Cane. Edited by H. W. Wiley. 1888. Pp. 132.

No. 19. Methots of Analysion of (emmereial Fentilizers, Cattle Foots, Datiry Producta, Sugar, and Fermented Liquors. (Adopted at the Fifth Anmual Convention of the Association of Official Agricultural Chemists, held at the (1. S. Iepartment of Agriculture, August 9 and 10, 1888.) Edited by Clitford Richardson. 1888. 1pp.96. (Out of print.)

U. S. DEPARTMENT OF AGRICULTURE DIVISION OF CHEMISTRY
 BULLETIN
 No. 39

 EXPERIMENTS

 EXPERIMENTS
 WITH

 SUGAR BEETS

 SUGAR BEETS
 IN

 1893

 1893
 BY

 HARVEY W. WILEY

 HARVEY W. WILEY
 Chemist of the T. S. Department of Agriculture and Director of the Department Sugar Experiment Stations at Schuyler, Nebraska; Rumymede (Narcoossee P. O.), Florida, and Sterling and Medieine Lodge, Kansas

 witil the collaboration of

 witil the collaboration of
 DR. WALTER MAXWELL
 Assistant in Charge of the Sehuyler Station

PUBLISHED BY AUTHORITY OF TYE SECRETARY OF AGRICULTURE

$\bar{\vdots} \quad$| 1, |
| :--- |
| \vdots |

WASHINGTON
GOVERNMENT PRINTING OFFICE
1894

$$
5^{T-2,}
$$

$=-2$

LETTER OF TRANSMITTAL.

U. S. Department of Agriculture,
Division of Chemistri, Washington, D. C., January 13, 1894.

Sir: I transmit heremith, for your inspection and approval, the mauuseript of Bulletin 39 of the Division of Chemistry. This bulletin contains the results of the miscellaneous experiments in the culture of sugar beets in various parts of the United States, and of the experiments is the same line of work conducted by the Department at Schuyler, Nebr., during the season of 1893.

Respectfully,

H. W. Wiley, Chief of the Division of Chemistry and Director of the Experiment Station at Schuyler

Hom. J. Sterling Morton, Secretary of Agriculture.

CONTENTS.

PAGE.Work of the sear 7
Sugar-beet seed distributed 7
Sugar-beet analyses at Worll's Fair 8
Unsatisfactory results of experiments 8
Results of analyses of beets received 9
Alabama 10
Colorado 10
Idaho 10
Indiana 10
Iowa 10
Kansas 10
Louisiana 10
Michigan 10
Minnesota 12
Moutana 12
Nebraska 14
North Carolina 14
Noríh Dakota 14
Pemnsylrania 14
Virginia 14
Washington 14
Wyoming 20
A limited distribution of high-grate secels 22
Relation of irrigation to sugar-beet culture 22
Experiments at Grand Junction, Colo 22
Meteorological statistics 23
Analyses of beets grown on different soils 24
Need of experiments in irrigated regions 25
Beet-sugar statistics 25
Experiments at Schuyler, Nebr 26
The selection of "mother leets" 26
Siloing sugar beets-results 27
Arrangement of the silo 27
Increased weight of beets 27
Analyses for determining sugar content 28
The production of seed 29
Yield and quality of seed 30
Cost of producing beet seed 30
Experiments in beet culture 30
Analytical data 32
The growth of beets at different altitudes 34
Unfavorable climatic conditions of Nebraska 35
Special experiments in sugar elaboration 35
Experiments at Schnyler, Nebs.-Continued. race.
feneral considerations 36
Report of assistant in charge 37
Method of storing beets. 38
Effect of storage on weight of beots 38
Chemical analyses 39
Effect of storage on sugar content 39
Planting mother beets 40
Yield of sced-value 40
Cultural season of the bect crop 41
Damage by dust storms 42
Native and imported plants compared 42
Influence of climatic conditions 43
Analytical work of the season 43
Beet production on the bottom lands 48
Comparative productions of home-grown and imported beet sced 49
Spectial experimeuts 51
Conclusions 56

EXPERILIENTS WITII SUGAR BEETS IN 1893.

WORK OF THE YEAR.

In harmony with the provisious of the act of Congress for experiments in the improvement of sugar-producing plants and the mannfacture of sugar therefrom, and by direction of the Secretary of Agriculture, the work of the Department in this direction was continued in two distinct lines.

The first of these consisted in the distribution of beet seed to those interested in the culture of the beet, as indicated in the report of last year. The Department having made no purchase of beet seed for distribution, Mr. H. T. Oxnard kindly donated for its use a sufficient amount of the best imported seed.

SUGAR-BEET SEED DISTRIBUTED.

The number of packages of seed sent out was 2,428 , and the number of persons to whom sent, 348. The number of packages sent to each of the different States and Territories receiving seed was as follows:

Packages.			Packages.
Alabama		Nebraska	... 120
Arizona	1	Nevada	50
Arkansas	32	New Jersey	10
Califoruia	347	New Mexico	52
Colorado.	202	New York	90
Connecticut.	1	North Carolis	5
Delaware	10	North Dakota.	
Florida	3	North Dakota.	4
Georgia	200		88
Idaho	4	Oklahoma	8
Illinois	17	Oregon	6
Indiana	83	Pennsylvania	3
Iowa.	62	Rhode Island	3
Kansas	12	South Dakota	176
Kentucky	3	Tennesseo	15
Louisiant	111	Texas.	4
Maine	1	Virginia	33
Maryland	13	Washington	250
Michigan	43	West Virginia.	1
Minnesota	69	Wisconsin.....	219
Mississippi	14	Wyoming	12
Missouxi	27	Wyoming	12
Montana	2	Total	. 2.428

The number of packages of seed distributed was far less than in previons years, and the number of samples received for analysis was correspondingly diminished. The total number of samples received at the Chicago laboratory was 199, and the total number of samples received at the Washington laboratory was 84.

Accompranying each package of seed there was sent a copy of Farmers' Bulletin No. 3, which contains detailed instructions for preparing the land, planting the seed, and cultivating the beet.

SUGAR-BEET ANALYSES AT WORLD'S FATR.

Arrangements were also made for taking samples for analysis, and these samples were sent chiefly to the chemical laboratory of the Department at the World's Columbian Exposition. As has already been indicated, one of the chief features of the chemical laboratory at the Exposition was the arrangement for the analysis of beets. In addition to this the Chicago laboratory was nearer to the localities in which the beets were chiefly grown, so that they could be sent for analysis in a shorter time than if forwarded to Washington. It was thought, also, that it would be an excellent illustration of the practical work of the laboratory to have the analyses made where they could be viewed by those interested. The wisdom of this course was apparent from the fact that at all times when analyses of beets were in progress large numbers of intelligent observers were watching the work. The questions which they asked showed that they were interested in the process and were receiving valuable instrnction from observing it. Some of the samples of beets, however, were sent to the laboratory at Washington for examination.

UNSATISFACTORY RESULTS OF EXPERIMIENTS.

The general results of the work this year were somewhat discourag. ing as compared with previous years. Throughont a great part of the beet-growing region the summer was excessively dry, and large numbers of total failures were reported.

In former reports attention has been called to the fact that the present method of experiment is unsatisfartory, and the reasons therefor have been fully set forth. The farmers are so busy with other work that, as a rule, they are not able to give the proper attention to the experimental details. They do not have the time to properly prepare the soil for beet culture nor tho they give the growing beet proper attention. When the time for harvesting comes they are usually engaged in other farm work, so that the beets are not harvested at the proper time nor are proper data obtained by means of which any accurate estimate of the yield per acre can be determined. The analytical data, therefore, of such work are usually fragmentary and far from teaching any valuable lesson in regard to the industry itself. In general, how-
ever, the data bear out those of previous years in showng the areas in this country where the best beets can be grown. It is in these regions that the development of the industry must be expected.

There is probably not a State or Territory in the Union which is not capable of growing a fair article of sugar beets. Even in the far south beets of fair sugar content have beeu produced and with good tomage; but when the competition of the world is to be met, with the price of sugar as low as it is now, only those parts of the country where the soil aud climate are especially fiavorable can be expected to compete successfully with the beet-sugar iudustry already firmly established in older countries. The sole valuable lesson, therefore, of the promisenous distribution of beet seed is in the fact that as a rule those regions best suited to the growth of the sugar beet will gradually be outlined, and intending investors led to the proper localities for the establishment of factories.

The great success of the beet-sugar industry on the Pacific coast leads to the conclusion that if the northern part of the eastern and central portions of our country is to become the seat of a great sugar industry, every possible advantage must be taken of soil and location in order to compete successfully with the beet fields of California, Washington, and Oregon.

RESULTS OF ANALYSES OF BEETS RECEIVED.
In the following table are given (by counties and states) the results of the analyses of the samples received from each State:

Table of analyses of beets grown in different parts of the
alabama.

Scrial No.	Name of grower.	Post-office.	County.	Variety.	Time of planting.
1	H. L. Oliver .	Calera	Shelby....		

COLOIRADO.

IDAHO.

INDIANA.

17250	Snead Thomas	Marion	Grant	Kleinwanzlebener	May 10
	John Hains.	Pendleton	Madison	Knauer's Imperial	May 20
17328	Chas. F. Muth	Morristown	Shelby		

IOWA.

KANSAS.

| 59 | H. G. Lamson.......... | Girard............ | Crawford | Knaner.................. Apr. 15 |
| :---: | :---: | :---: | :---: | :---: | :---: |

LOUISIANA.

46	John J. Bailey	Shreveport	Caddo		May 17
175				Vilmorin's Richestdo

MICHIGAN.

11

United States from seed distributed by the Department.
ALABAMA.

Time of harvesting.	Character of soil.	Remarks by growers.		Average weight.	Total solins.	Sucrose in-		$\begin{aligned} & \mathrm{Pu} \\ & \text { rity. } \end{aligned}$
						Juice.	Beets.	
				Grams.\| 0 Oz.	3.31	$\begin{array}{r} \text { Perct. } \\ 6.2 \end{array}$	$\begin{array}{r} \text { Per ct. } \\ 5 \cdot 9 \end{array}$	$66 \cdot 7$

colorado.

Oct. 25				535	19		$18 \cdot 7$	17•8	83.7
Sept. $2=$	Reddish coarse sand					19.33		16.2	$88 \cdot 1$
Oct. 6	Sandy clay loam.	Irrigated land	2	360	12.5	$19 \cdot 67$	$14 \cdot 9$	$14 \cdot 2$	$75 \cdot 7$
do		Hail destroyed tops	2	325	11.5	$21 \cdot 67$	$17 \cdot 4$	$16 \cdot 5$	$80 \cdot 2$
do	do	duy 8	2	467	16.5	$20 \cdot 33$	15.9	$15 \cdot 1$	- 4
- \quad do	do	do	2	226	8	$19 \cdot 23$	$14 \cdot 6$	13.9	$76 \cdot 1$
do	do	10	2	354	$12 \cdot 5$	$20 \cdot 53$	16.8	16	81.4
do	do	do	2	339	12	$16 \cdot 50$	$11 \cdot \frac{1}{4}$	$10 \cdot 8$	$69 \cdot 1$
Oct. 7	do		2	474	17	$12 \cdot 10$	8.7	$8 \cdot 3$	71.9
...do	do	do	2	1,160	41	$13 \cdot 61$	$7 \cdot 5$	$7 \cdot 1$	$55 \cdot 1$
				$\begin{aligned} & 395 \\ & 262 \end{aligned}$	\}Sam	les too	wall f	analy	

IDAHO.

Oct. 10	Black loam	Beets frozen once.	1	1,797	63.5	$14 \cdot 70$	11.4	10.8	77.5
Oct. 6do		1	2,589	91.5	13.50	$10 \cdot 1$	$9 \cdot 6$	$74 \cdot 8$

INDIANA.

IOWA.

Oct. 30	Sandy loam	Used for truck farm'g		165	$5 \cdot 5$		15.6	$14 \cdot 8$	$72 \cdot 9$
do				220	$7 \cdot 5$		$15 \cdot 2$	$14 \cdot 4$	81.3
lo	do	Used for truck farm'g		285	10		$13 \cdot 3$	$12 \cdot 6$	74
		season dry		$5: 5$	$18 \cdot 9$		$1+\varepsilon$	$14 \cdot 1$	81.3
Oct. 24			2	587	21	16.07	$12 \cdot 1$	11.5	$75 \cdot 1$
Nov. 6	Black prairie loam..	Season dry		915	$32 \cdot 3$		11	$10 \cdot 5$	71

KANSAS.

LOUISIANA.

MICHIGAN.

Sept. 22	Black swamp muck	Tile drainage; no			$15 \cdot 36$	$9 \cdot 9$	$9 \cdot 4$	$64 \cdot 3$
			83.5	29		$16 \cdot 1$	15\%	$82 \cdot 2$
			1,565	55		78	$7 \cdot 4$	61.9

Table of analyses of beets grown in different parts of the United

MICHIGAN-Continued.

Serial No.	Name of growor.	Post-office.	County.	Variety.	Time of planting.
17263 17264	J. II. Coon, care of McGraw \& Co.	I'ortsmouth..	Bay	Vilmorin's Imperial ..	May 20
17265				French sugar red top.	
17266				Florimond Desprez...	do
17267		do		Knauer's Imperial....	
17268					do
$\begin{aligned} & 17269 \\ & 17270 \end{aligned}$	Owen Hawkin	do		French sugar red top-	May 25
17271		do		Fikrimond Desprez...	.do
17272		do	do	Vilmorin's Imperialdo
17273	G. W. Green	do	do	French sugar red top.	June 4
1727 t		do		Fnatuer's Imperial. do ..
17275	do	do		İkinwanzlebener.	do
17276		do		Fhorimond Desprez.	
17277	d1	do		Vilmorin's Imperial	(1)
17278				Vilmorin's Richest .	.do
17279				Dippe's Imperial	do
17280	Berth Bros	do		Kleinwanzlebener	May 29
17281	Robert Nivens	do			Tune 6
17282	Lobder	do		do	May 26
17283	John H. Potter			do .-.-...........	May 29
$1728 \pm$	Hopkins \& Bartlett	do	do	,	May 21
17285	II. Lambrecht.	do	10		June 3
17286	John Currion.	do	do	Vilmorin's Richest ...	May 10
17287	C. B. Chatterfield farm	do	...do	Kleinwanzlebener	May 21
17288	John Lunteu.		. . .do	.do	May 20
17289	H. P. Matts .	10		Vilmorin's Imperial ..	May 19
17290	F . Fischer	do		Kleinwanzlebener	May 18
17291	Joseph H. Potter	do	. . do	Vilmorin's Imperial ..	May 29
17292	William Merritt				June 2
17293	J. Currion			Kleinwanzlebener	May 18
17294	J. Lunden		do	Vilmorin's Imperial ..	May 20
17295	A. 13. Henry			Kleinwanzlebener	June 3
17296	Wm. Merritt			. do	June 2
17297	II. Lambrecl			Vilmorin's Imperial	Juna 3
17298	H. P. Matts .			Florimond Desprez.	May 19
17299.	Ed. Lambrecht	. . do		Kleinwanzlebener	May 26
17300	Bird Shuler.			Dippe's Kleinwauzled. ener.	June 18
17301	C. B. Chatterfield farm	do	do	Florimond Desprez...	May 21
17302	Hopkins \& Bartlett.			French sugar red top-	
17303	Berth Bros			Vilmorin's Imperial..	May 29
17304	J. Curriou			Dippe's Kleinwanzlel. ener.	May 10
17305	McGraw's farm		do	Klcinwanzlebener	June 10
17306	H. P. Matts	do	do		May 19
17307	Bird Shnler.				June 18
17308	Robert Niren			Florimond Desprez.	June 6
17309	C. B. Chatterfield farm	do	d	Vilmorin's Imperial	-do
17310	J. Currion.				May 10
17311	Lewis Knight			Kleiuwanzlebener	May 29

MINNESO'A.

8	Perry E. Reynolds.	West Concord	Dodge	Knaner No. 1	May 27
128	Riler Mantor.	Mantorville		Lemaire No. 2	May 16
171	-...dn				
74	John Euckley	Minneot	I you	Knater	May 17

MONTANA.

185	Julius C. Martin......	Evans	Cascade	Lemaire	May 12

States from seed distributed by the Department-Continued.
MICIIGAN-Continued.

Time of harvesting.	Character of soil.	Remarks by growers.		Average weight.		Total solids.	Sucrose in-		$\underset{\text { rity. }}{\mathrm{Pu-}}$	
						Juice.	Beets.			
Nov. 2	Sandy loam..		2	$\text { Grams. }_{475}$	$\begin{gathered} O z \\ 16 \cdot 5 \end{gathered}$			$\begin{array}{r} P e r ~ e t . \\ 13 \cdot 1 \end{array}$	$\begin{array}{r} \text { Per ct. } \\ 12.4 \end{array}$	77.5
	do		2	490	173		10	9.5	69	
	do		$\stackrel{2}{2}$	450	16			$15 \cdot 2$	${ }_{83} 8.8$	
do	do		2	400	14		$15 \cdot 8$		$85 \cdot 4$	
do	do		2	405	$14 \cdot 5$		$14 \cdot 8$	$14 \cdot 1$		
do	do		2	450	16		13.5	$12 \cdot 8$	$82 \cdot 3$	
do	do		2	480	$16 \cdot 9$		13.5	$12 \cdot 8$	84^{-4}	
do	do		2	520	18.5		15.1	$14 \cdot 3$	$86 \cdot 3$	
do	do		2	435	$15 \cdot 2$		$14 \cdot 9$	$14^{\circ} 2$	$89 \cdot 2$	
Nov. 4	do		2	400	14.		14.6	$13 \cdot 9$	$85 \cdot 4$	
.. do.	do		2	355	$12 \cdot 5$		17.3	16.4	87.4	
do	do		2	510			$14 \cdot 4$	$13 \cdot 7$	$84 \cdot 7$	
do	do		2	515	17-8		16	$15 \cdot 2$	$81 \cdot 2$	
do	do		2	435	15		$16 \cdot 3$	15.5	$85 \cdot 3$	
do	do			425	15		17.2	16.3	$86 \cdot 9$	
Nov. 6	.do		2	410	$14^{4} 4$		14.9	14.2	$83 \cdot 2$	
Nov. 1	. do		2	464	$16 \cdot 4$			14.3	$83 \cdot 3$	
Oct. 25	. . do			374	$13 \cdot 2$		14.6	$13 \cdot 9$	81.6	
Nov. 1	Clay loam	At Collins' farm	2	425	14.9		13.7	13	88.4	
Nov. 7	Sandy loam		,	485	17-i		$14 \cdot 8$	$14 \cdot 1$	91.4	
Nov. 1			$\stackrel{3}{2}$	420	$14 \cdot 8$		13	$12 \cdot 3$	$79 \cdot 3$	
Oct. 28	Clay loam			430	15-2		13.5	$12 \cdot 8$	$82 \cdot 3$	
Nov. 4	- ..do		,	310	$10 \cdot 9$		17	16.3	$88 \cdot 1$	
Nov. 1	. \cdot do		2	403	$14 \cdot 1$		16	$15 \cdot 2$		
Nov. 5	Sandy loam		$\stackrel{2}{2}$	416	$14 \cdot 7$		$13 \cdot 5$	12.8	83.8	
Nor. 4			2	406	14-3		15.6	14.8	$84 \cdot 3$	
Nov. 2	Loamy clay		2	404	14.3		15.5	$13 \cdot 8$	$85 \cdot 8$	
Nov. 7	Sandy loam		2	442	$15 \cdot 6$		13.7		83.5	
Nov. 6			2	44	$15 \cdot 7$		15	14.3	83.3	
Nov. 9	Loamy clay		$\stackrel{2}{3}$	429	$15 \cdot 1$		12.7	$12 \cdot 1$	85.8	
Nor. 5	Sandy loan.		a	367	$12 \cdot 9$			$12 \cdot 3$	$86 \cdot 1$	
Nov. 6	do		$\stackrel{2}{2}$	408	$14 \cdot 4$		11.7	$11 \cdot 1$	${ }^{80} \cdot 7$	
Oct. 28	Loamy clay		${ }_{2}^{2}$	529 394	$18 \cdot 5$ $13 \cdot 8$		$12 \cdot 7$	Lost.	81.9	
Nov. 4	Sandy loam		2	428	$15 \cdot 1$		$14 \cdot 2$	13.5	87.1	
Nov. 3	- . ${ }^{\text {do }}$		2	356	$12 \cdot 6$			15.2	$86 \cdot 9$	
Nov. 8	...do	Oxnard's seed	2	449	$15 \cdot 9$		15.8	15	86.8	
Nov. 1	Loamy clay.		2	449	$15 \cdot 8$			Lost.		
..do	Sandy loam		$\stackrel{2}{2}$	358	$12 \cdot 6$		$15 \cdot 4$	$14 \cdot 6$	$85 \cdot 1$	
Nov. 4	Loamy clay		$\stackrel{2}{2}$	330 313	11			Lost.		
					13.2					
	Sandy loam		2	370	13		$15 \cdot 3$	14.5		
Nov. 8	- . . do			360	$12 \cdot 7$		$15 \cdot 7$	$14 \cdot 9$	$85 \cdot 8$	
Oct. 25	do		2	283				Lost.		
	do		2	460	$16 \cdot 2$		12.91	$12 \cdot 3$	797	
Nov. 7			${ }_{2}^{2}$	455	16.1			Lost.		
Oct. 29	.do		2	431	$15 \cdot 2$		12.9	$12 \cdot 3$	$80 \cdot 6$	

MINNESOTA.

MONTANA.

| Oct. 4 | Black loam | 2 | 431 | 15 | 20.04 | 15 | $14 \cdot 3$ | 75 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table of analyses of beets grown in different parts of the United

NEBRASKA.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	Post-office.	County.	Variety.	Time of planting
104	U. S. Experiment Station.	Schuyler...	Colfax	Desprez No. 2	
105					
163	Fred Maseberg	Thedford	Thoma	Vilmorin's Improved Imperial.	May 5

NORTH CAROIINA.

NORTH DAKOTA.

167	T. N. Orum	Lisbon.	Ransom.	May 19

PENNSYLVANIA.

| 45 | J. A. McGranaban | Kennard......... | Mercer | Kleinwanzlebener May 30 |
| :--- | :--- | :--- | :--- | :--- | :--- |

VIRGINIA.

WASHINGTON.

31	J. O'Keefe	Asotin	Asotin.		May 10 May 15
156	do	do	do	Kleinwanzlebenor.	May 12
157		10	do	do	
129	M. Pietozjeki	Dayton	Columbia		May 11
165	H. T. Hudson	Waterville	Douglas.	Kleinwanzlebener	Apr. 4
166	do	10	do	Dippo's Ǩleinwanzleb. ener.	Apr. 16
17318	Geo. W. Elliott	Ellensburg	Kittitas		June 5
17319	Harry Waldon	do	. . do		May 26
34	David T. Hain.	Latah.	Spokane		May 25
36	B. F. Copler	do	- . do		May 18
37	Roncisco J. Ibav	do	(1)		June 1
38	Geo. W. Copelan	do	do		May 20
164	Chest. (riftord .	do	. 10		- . do .
41	E. H. Morrison	Fairfield.	. 10	Vilmorin's Richest	June 4
42 do	. ${ }^{\text {do }}$	do	Florimond Desprez...	$\ldots d o . .$
43 do	(i)	. d lo	Knauer's Imperial. . . .	June 3
44- do	- do	- do	Kleinwanzlebener	June 4
183do	d11	do		
184 do	. 10	do	Knaver's Imperial.	
190 du	. do	. de	Vilmorin's Ruchest	
191 do	.do	do	Florimond Desprez.	

States from seed distributed by the Department-Continued.
NEBRASKA.

Time of harvesting.	Character of soil.	Remarks loy growers.	$\begin{aligned} & \dot{5} \\ & \dot{0} \\ & \dot{8} \\ & \vdots \\ & 0 \\ & \dot{8} \\ & \dot{4} \end{aligned}$	Average weight.		Total solids.	Sucrose in-		$\begin{gathered} \text { Pu- } \\ \text { rity. } \end{gathered}$	
						Juice.	Beets.			
			2	Grams. 552	$\begin{gathered} O z . \\ 19 \cdot 5 \end{gathered}$		14.09	$\begin{array}{r} \text { Perct. } \\ 9.3 \end{array}$	Per ct.	$65 \cdot 9$
Oct. 6	Black sandy loam		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 312 \\ & 418 \\ & 665 \end{aligned}$	$\begin{aligned} & 11 \\ & 15 \\ & 23 \cdot 5 \end{aligned}$	$\begin{aligned} & 13 \cdot 69 \\ & 15 \cdot 19 \\ & 17 \cdot 40 \end{aligned}$	$\begin{aligned} & 8 \cdot 5 \\ & 10 \cdot 7 \\ & 14 \end{aligned}$	$\begin{array}{r} 8 \cdot 1 \\ 10 \cdot 2 \\ 13 \cdot 3 \end{array}$	$\begin{aligned} & 62 \cdot 1 \\ & 70.4 \\ & 80.5 \end{aligned}$	

NORTH CAROLINA.

NORTH DAKOTA.

Oct. 19	Black sandy loam ..	Last crop wurzel.	Mangel-	2	615	27	$18 \cdot 19$	$14 \cdot 7$	14

PENNSYLVANIA.

VIRGINIA.

WASHINGTON.

Sept. 15	Gray loa	Irrigated				$15 \cdot 46$	11.8	11.2	$78 \cdot 1$
Sept 5	Sandy loam	Raised on farm of L. M. Troyer.				$19 \cdot 86$	$16 \cdot 4$	$15 \cdot 6$	$82 \cdot 4$
Oct. 6	Gray loam, some alkali.	Irrigated every two weeks.	1	948	$33 \cdot 5$	$17 \cdot 17$	$13 \cdot 1$	$12 \cdot 4$	$74 \cdot 8$
do		. . . do	1	1,274	45	$15 \cdot 67$	$11 \cdot 2$	$10 \cdot 6$	$71 \cdot 3$
Oct. 2	Sandy bottom land..	Cultivated twice	2	906	32	$12 \cdot 46$	$8 \cdot 3$	$7 \cdot 9$	$66 \cdot 4$
Oct. 10	Decomposed volcanic rock.		1	396	14		$14 \cdot 8$	$14 \cdot 1$	
do			1	283	10		$15 \cdot 7$	$14 \cdot 9$	
Oct. 25				613	21.5		$17 \cdot 4$	16.5	$86 \cdot 6$
Nov. 9	Black sandy loam			345	12		16.5	$15 \cdot 7$	$75 \cdot 8$
Sept. 26	Black loam	No cultivati				16.41	$13 \cdot 6$	12.9	83
Sept, 25						15:81	12	11.4	
Sept. 26						17.91	$14 \cdot 6$	$13 \cdot 8$	8: 21
Sept. 20	Loam					$18 \cdot 11$	14.8	$13 \cdot 9$	$81 \cdot 7$
Oct. 10	Prairie loam		2	1,967	695	$16 \cdot 50$	11.8	11.2	71.5
Sent. 28	Black prairie loam					$18 \cdot 60$	15	$14 \cdot 3$	$80 \cdot 7$
-. .do	. . . do	Natural drai				$17 \cdot 11$	$12 \cdot 4$	11.8	$72 \cdot 5$
. . do	. 10					$19 \cdot 60$	$15 \cdot 3$	$14 \cdot 5$	$78 \cdot 1$
do	. . .lo					$19 \cdot 10$	$14 \cdot 9$	$14 \cdot 2$	$77 \cdot 9$
Oct. 15				1,076	38	$17 \cdot 05$	11.9	$11 \cdot 3$	
.. do ...			$\stackrel{2}{2}$	$9+2$	33	17.94	$13 \cdot 7$		
...do...			2	573	20	$18 \cdot 15$	14	13.3	76.9
.. . do...			2	672	23	13.90	9.6	$9 \cdot 1$	$68 \cdot 5$

Table of anatyses of beets grown in different parts of the United
WASHINGIOON-Continued.

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Name of grower.	Post-office.	County.	Varicty.	Time of planting.
192	E. H. Morrison.	Fairfield	Spokane	Kleinwanzlebener .	
193	do	do	. . do	Florimond Desprez	
194	do	do		Kleinwanzlebener	
195					
196	do	do	-	Vilmoni Amelioree	
197	do	do		Kleinwanzlebener.	May 29
198				Vilmoni Amelioree Florimond Desprez	
199	C. R. Burns	Spokane		Florimond Desprez Kleiuwanzlebener	$\text { May } 16$
178	A. Lefevre.	Medjcal Lake		Knauer's Inperial	May 16
182	Henry Hashagen.	. do_{0}	do	- do.	May 15
55	D. F. Lucas	Chewelal	Steven	Kleinwanzlebener	May 6
181	Dr. N. G. Blalock.	Walla Walla.	Walla Walla		Apr. 23
6	F. A. Craig.	Tekoa	Whitman	do.	May 16
11	William Button O. N. Sparks	do		do	May 10
12	Thomas Hill...	do			May 1
15	D. C. Sparks.	do		do	May 9
16	William Hoar.	do	do	do	May 15
17	Aiden Page...	. do	do	do.	May 2
18	D. A. Hoftmann.	do			June 1
19	C. R. Sparks .-	do			May 20
20	Henry Mustoo				May 5
21	B. E. Wilson.				May 16
23	J. A. Sanders	.do	do	do	May 30
24	K. T. Sparks.	do			May 28
25	George Erwin	do	do	do	May 30
26	J. Sparks	do		. . . do	June 1
27	John Erwin, ar	,	do	d	May 30
28	William Erwin	.do		do	June 2
29	John Erwin...				June 3
30	John McDonald .	.do		.do.	June 1
51	J. Ritzloff.	do			May 20
52	A. B. Luper	do	dodo.	May 23
53	James Lindsay	do			May 15
54	Daniel Johnson				May 27
65	Henry Westermann.	do	do	do	May 22
60	G. T. Smith	do		do	May 12
67	Wm. Hart ...				May 19
68	S. G.Jamison				$\begin{aligned} & \text { May } 30 \\ & \hline \text { May } 2 \end{aligned}$
69	'thomas Warwick			-	May 2
70	Dan Calland	do		do	May 16
71	K. Tylor				May 3
72	William Warwick	do		do	May 9
73	A. J. Sharrod				May 20
75	E.J. Moak.			do.	May 29
76	David Jones	do	do	do	do
77	П. H . Noble				May 9
78	Joseph Bertholff	do			May 28
79	Wm. McBride	do		10	May 27
80	Gus. Willoughby				May 26
81	Wm. Franklin..	do	ilo....	June 1
82	Juhn Westermann.	do		lo	May 1
83	Davirl Bertholf	do	10	do	May 27
84	William Sennott	. ${ }^{\text {do }}$		do	June 2
85	James Carbery	do	. . do	.do	May 11
86	James Bertholf				May 30
97	Peter Carnpbell		do	.do	May 28

States from seed distributed by the Department-Continued.

WASHINGTON--Continued.

Table of analyses of beets grown in different parts of the United

WASHINGTON－Continued．

Serial No.	Name of grower．	Post－0flice．	County．	Varicty．	Time of planting．
98	James Campbell．．	Tekoa	Whitman ．	Kleinwanzlebener	May 19
107	John Scho	do	do	do	May 30
108	John Fenn	do	do	do	do
109	Bon Carl．	．do	do	do	May 18
110	N．B．Welton	do	－．．do	－do	May 28
111	Joab Robertson．．	do	．．．do	．${ }^{\text {d }}$	$\text { May } 31$
112	George Prettiman	．．do	．．do	－－do	May 28
113	J．Romine	do	do	do	$\text { May } 21$
114	Grant Palmer	do	． 10	．do	$\text { May } 26$
115	F．S．Cornell	do	．do	do	May 23
116	D．W．Bridgeman	．do	．do	－do	May 27
117	Knute Ericson．．．	do	．do	．	Juиย 1
118	A．B．Walker	－do	．do	do	May 24
11.9	A．B．Willard	．．do	．．do	－．．．．．do	May 28
120	R．T．Smiley	．．do	．do	．．．do	$\text { May } 24$
121	J．A．Gunn．	do	－ 10	do	May 28
122	William Breen	do	． 10	．${ }^{\text {do }}$	May 29
123	W．B．Smith．	. do	do	． 10	May 31
124	John Conger．	．．do	do	d	May 23
125	John England	．do	．do	．－do	May 19
126	d．N．Hoftman	. do	do	．．do	May 24
130	G．R．Winslow	．do	． 10	．－．do	May 18
131	G．T．Huffrman	- do	．．do	－．．．．do	May 29
132	Cornelius Kole	. . do	．．do	．．．do	May 20
133	O．R．McDonald	do	do	－do	May 30
134	William Click	do	do	do	June 1
135	J．B．Sampter	． do	do	． 1	May 19
136	John Stevens	．do	． 10	．．do	$\text { May } 30$
137	A．Godrlard．	．do	． 10	do	－do．．．
138	A．J．Bancroft	．do	do	－．．do	
139	H．D．Kay	．do	. do	－．．．do	May 26
140	Austin Footor	．do	. do	－．．．．do	May 30
141	Ed．Trammill	- do	do	－－－do	May 24
142	George Steen．．．．	do	do	－．do	May 29
143	Alexander＇Lomblin	. do	. dlo	．．．do	May 28
144	J．S．Young	- do	. do do	May 22
145	Matt Fountain	. do	．do	－．．do	$\text { May } 20$
146	J．T．Whaley．．	10	do	．．．do	May 21
147 148	O．C．Daley	do	．do	...d	$10 .$
148 149	James Storey．	.do	do	－－do	May 28
149	Thos．Balkow	do	．do	．．．do	May 20
150	I．Batyles．	do	do	．．．．．． 10	May 25 May 23
152	Henry Howard	do	．do	．．．do	May 28
153	Chas．H．Strope	do	do	du	May 26
154	C．Strope	do	．do	do	May 20
155	James＇Jyson－．－．			－－．do	May 28
13	F．J．Deerimghoff	Uniontown	．do	Elite No．	May 19
168	．．．．．．do ．．．．．．．．．．	．．．do	do	Desprez	．． 10.
169	．．．．．do	．．do	． 10	Elite No．	．．．do
170	．．．．．． 10	． 111	．${ }^{\text {dilo }}$	Dippe．	．．do
172	．．．．．do	du	． 110	Knauer	．．do
173	．do	do	．${ }^{\text {lo }}$	Lemairo	．．do
171	．．to	do	－do	Desprez No． 2	．．do
176	．．．．do	do	．．do	Ḱleinwanzlelsener	．．do
177	．．．．．do	d10	. . do	Lemaire	－．do
179	．．．．．dl	－da．	$\text { . . } 10$	Elite No． 2	．do．．．
103	Sardis I．Brockway	Rosalia	．do	Elite	May 13
95	Geo．1＇．Tolton．．．．	. . . do	－ilo	German sigar beet	May 10
96 1.8	Evan Prddicord	Palouso	．do	．．．．．．du	$\begin{aligned} & \text { Apr. } 20 \\ & \text { June } 12 \end{aligned}$
	F．M．Teffries	do	．．．do		
17：3ご，		do	．．．ilo		
17：3こ2c	．．．．．．do	do	．． 10		
17325	C．J．Rumens	do			June 3
17259	Geo．Ruedy	Colfax	．．lo	Kleinwanzlehener．	
1709	．．．．．do ．．．．	dı	． 10	Vimorin＇s Riehest．	
172が1	I．．．．．do	do	do	Knaner＇s Imperial．	
17320	J．＇1．Edge	Palouso．	．do		June 1

States from seed distributed by the Department-Continued.
WASHINGTON-Continued.

Time of harvesting.	Character of soil.	Remarks by growers.		Average weight.		Total solids.	Sucrose in-		$\begin{aligned} & \text { Pu- } \\ & \text { rity. } \end{aligned}$	
						Juice.	Beets.			
		No fertilzer nor irrigation. Land cultivated 9 years.	1	Grams. 877			16.76	$\begin{gathered} \text { Per ct. } \\ 11.8 \end{gathered}$	$\left\|\begin{array}{c} \text { Per ct. } \\ 11 \cdot 2 \end{array}\right\|$	$70 \cdot 2$
Oct.	Bla									
Oct. 9	Grass lands.........		1	976	34.5	17.92	$14 \cdot 3$	13.6	$79 \cdot 9$	
Oct.	Black loose loam....		1	877	31	16.01	11.5		$71 \cdot 9$	
Oct. 9	Black prairie land..	No cultivation..........		283 283 60		1......	11.4			
do		In wheat 5 years No cultivation.	1	608	21.5	$17 \cdot 13$	11.611.2	$\begin{aligned} & 10 \cdot 8 \\ & 11 \end{aligned}$	$\cdots 7.9$	
do				$\begin{aligned} & 495 \overline{4} \\ & 481 \end{aligned}$	$\begin{aligned} & 17 \cdot 5 \\ & 17 \end{aligned}$	15.93		110.6	$70 \cdot 4$	
do	Prairie land, moist.- Black loam	No cultivation. Land cultivated 13 years.	1			$15 \cdot 23$	97 7		$63 \cdot 8$	
	do	years. In wheat 3 years....	1	538	$11 \cdot 5$	$\begin{aligned} & 16 \cdot 96 \\ & 17: 86 \end{aligned}$	13.2	12.	$69 \cdot 4$$74 \cdot 2$	
do	Black fertile	Ground very ha			23					
do	Prairie land	Reets not cultivated.	1	651325			$16 \cdot 4$	$15 \cdot 6$		
do	Black prairie loam..				11.5	17.66		10.5	$63 \cdot 2$	
do	Deep black prairie soil.	No cultivation........	1	382	13.5	$18 \cdot 53$	$13 \cdot 9$	$13 \cdot 2$	$75 \cdot 1$	
do	Cultivated prairie ..	Ground very hard Wheat 8 rears Beets cultivated once	1	906	32	16.94	$13 \cdot 6$	$12 \cdot 9$	$80 \cdot 5$	
do	Black prairie loam..			509	18		$14 \cdot 7$	13.8		
				849	$\begin{aligned} & 30 \\ & 25.5 \end{aligned}$	17.70	$1+5$		-17.9	
do			1	722			${ }_{1: 8}^{12}$	12.4	$77 \cdot 7$	
do					$\begin{array}{r} 25 \cdot 5 \\ 5 \cdot 5 \end{array}$	16.5. 51				
do	Black rolcanic soil..\| No cultivation........			184	14		$12 \cdot 6$		1764	
do	Pramie lamiBunting prairie lani.Buncli grass land...				6.5	16.54	$\begin{aligned} & 16.4 \\ & 10.4 \\ & 15 \cdot 2 \end{aligned}$	15.6		
do		Cultivateil once.....	1	255396	${ }_{14}^{9}$		$14^{4} 4$	\ldots	
	Prairie land	In wheat 6 years..... No cultivation.					${ }_{12}^{15}$	$14 \cdot 3$	74	
				1,571	$55 \cdot 5$	$\begin{aligned} & 16 \cdot 16 \\ & 17 \cdot 48 \end{aligned}$		11.4		
	Prairie land Deep black	In wheat 12 years ... Beets arew slowly	1	170	23		$13 \cdot 7$$16 \cdot 3$	13.	$78 \cdot 2$	
	Deep black	Beets grew slowly...					$\begin{aligned} & 15 \cdot 5 \\ & 15 \cdot 8 \end{aligned}$		
	Bnnch grass land...	Cultivatod once; ground hard. No cultivation.......	1	$\begin{aligned} & 195 \\ & 310 \end{aligned}$	7		16.6			
do					$15 \cdot 5$		$14 \cdot 6$	13.9		
	Black volcanic loam.d. do	1	$\begin{array}{r} 449 \\ 310 \end{array}$		16.46				
t. 10	Rolling prairie land. Blackloam, rolcanic.				11		12.6	12	1897 $\ldots \ldots$	
do .-	Prairie land	No fertilizer..........		$\begin{aligned} & 1,259 \\ & 1,090 \end{aligned}$	44.5	$15 \cdot 17$	10	$9 \cdot 5$	$65 \cdot 8$ 69.1	
...do	Black voleanic soil		1	1,863	$30 \cdot 5$	$13 \cdot 97$	9.8	$8 \cdot 3$	70	
.. do	Black prairie loam		1	1,401	49•5	$13 \cdot 67$	$8 \cdot 5$	$8 \cdot 1$	$62 \cdot 1$	
. . do	Loose prairie land			538	19	$14 \cdot 07$	8	$7 \cdot 6$	$56 \cdot 7$	
. . do	Black prairie loam		1	736	26	$15 \cdot 07$	11	$10 \cdot 5$	$72 \cdot 8$	
	...do		1	835	$29 \cdot 5$	14.97	$11 \cdot 3$	$10 \cdot 7$	$75 \cdot 4$	
do	Prairie land		1	920	32.5	16.47	$11 \cdot 6$		$710 \cdot 3$	
. . do	Black clay loa	No	1	736	26	$16 \cdot 27$	11.5	$10 \cdot 9$	$70 \cdot 5$	
	Prairie lan		1	552	19 -5	13.47	$3 \cdot 6$	$9 \cdot 1$	$71 \cdot 1$	
	Black rolcanic lo		1	821	29	$15 \cdot 17$	11.9	$11 \cdot 3$	7×3	
	Mlack rolcanic		1	1, 090	$38 \cdot 5$	$15 \cdot 47$	$10 \cdot 7$	$10 \cdot 2$	69	
-..do	Prairie loam			${ }_{7} 8$	155	16.37	11.4	10.8	- 3	
	Fine prairie la		1	651	23	15-77	$10 \cdot 6$	$10 \cdot 1$	67.1	
	Voleanie loam		1	467	16.5	16.97	$13 \cdot 4$	$12 \cdot 7$	$78 \cdot 8$	
	Black loam,clay sub. soil.		1	368	13	$19 \cdot 27$	$13 \cdot 3$	$12 \cdot 6$	68.9	
do	Black loam		1	495	$17 \cdot 5$	18.77	$15 \cdot 4$	14 *6	81.9	
Sept	- $\mathrm{Bl}^{\text {dock }}$		1	580	$20 \cdot 5$	$14 \cdot 27$	$10 \cdot 3$	9.8		
Sept. 18	Black prair	No fertilizer				$20 \cdot 58$	$13 \cdot 5$	$12 \cdot 8$	$65 \cdot 6$	
Oct. 15				764	27	$17 \cdot 49$	$13 \cdot 1$	$12 \cdot 4$	$74 \cdot 8$	
-..do	Black prairie	do	2	538	19	$18 \cdot 29$	14.8	$14 \cdot 1$	$80 \cdot 8$	
. .dodo		2	708	${ }_{28} 25$	18.59	14.5	13.8 12.7	78	
	Black bottom land.		2	884	31	16.98	13.4	$12 \cdot 7$	78.8	
	Yellow prairie loam.		2	779	$27 \cdot 5$	$17 \cdot 87$	$14 \cdot 5$	$13 \cdot 8$	$81 \cdot 1$	
do	Black prairie soil...		2	729	$25 \cdot 5$	18.08	$14 \cdot 3$	13.6	$78 \cdot 9$	
do	Yellow prairie loam.	No fe	2	820	29	16.79	$13 \cdot 2$	$12 \cdot 5$	$78 \cdot 5$	
	Black prairie soil..	.do	2	580	$20 \cdot 5$	18.98	15.9	$15 \cdot 1$	8:3.6	
Oct. Oet.	Black prairie loam	do	${ }^{2}$	2, 0:0	72	$14 \cdot 86$	$9 \cdot 3$	$8 \cdot 9$	$63 \cdot 4$	
Oet. 1	Black soil.		1	778	$27 \cdot 5$	20.56	$15 \cdot 9$	$15 \cdot 1$	77.1	
			1	1,160	41	$14 \cdot 56$	8.3	$7 \cdot 9$	$56 \cdot 9$	
Oct. 6	Black mould, yellow clay subsoil.		2	1,479	52	$14 \cdot 87$	$10 \cdot 2$	$9 \cdot 7$	$68 \cdot 4$	
Nov. 5	Side hill			1,010	$35 \cdot 6$		12	$11 \cdot 4$	67	
				1,122	46		$13 \cdot 7$	13	72	
Nor. 16				1, 180	$41 \cdot 5$		$12 \cdot 2$	11.6	$68 \cdot 3$	
	black soil			$8: 7$	29		$14 \cdot 6$	$13 \cdot 9$	$76 \cdot 8$	
				630	22		13.7	13	75	
				8.50	30		$12 \cdot 9$	$12 \cdot 3$	79	
Nov. 8		od turned in Apri		990	35		$14 \cdot 5$	$13 \cdot 8$	78.4	

Table of analyses of beets grown in different parts of the United
WASHINGTON-Continued.

$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	Name of grower.	Post-office.	County.	Varicty.	Time of planting.
17321	D. W. Tweitmeyer....	Palonse.	Whitman.		May 20
17336	H. M. Haskel, by H.				1stweek
60	J. M. stout.......	Yakima	Yakima	Kleinwanzlebener	Apr. 26
160		do	do	do	do

W YOMLNG.

56	F. J. Niswander..	Laramio...	Albany	Vilmorin's La plus	May 13
57				Knatuer.	
58				Dippe's Kle:nwanzlebener.	do
17251	Alfred Bridger	Sibyleo	do	Vilmorin's Richest....	June 2
	J. D. Parker...	Saratoga.	Carbon	Kleinwanzlebener Imperial.	May 10
35			do	Improved Bulteau....	do
63		du	do	Vilmorin's Richest. .	June 3
64		do	do	Improve dKleinwanzlebener.	May 9
17255		do	do	Vilmorin's Richest....	
17256	lo	. . do	do	Improved BulteauDesprez.	
47	Sundance Expt. Farm.	Sundanco.	Croo	Dippe's Kleinvanzlebener.	May 18
48	do		do	Vilmorin's Richest....	..do
49	do	do		Klein wanzlebener	do
50		do		Improved ButeauDesprez:	do
186				Vilmorin's Richest. .	May 17
187				Improved BulteauDesprez.	
188			do	Improved Kleinwanzlebener.	May 18
180			do	Dippe's Kleinwanzlebener.	May 17
100	J. S. Meyer (Lander Experiment Station).	Lander	Fremo	Vilmorin's Richest	May 5
101		do		Knauer's Imperial.	do
102				Dippe's Kleinwanzlobener.	do
159			do	Improved Bulteau.	May 10
1729		Whitelani			May
39	M. R. Johmson	Whiteland	Laramie	Vilmorin's Richest	
40	do	do	do	Knaner's Imperial.	. do ...
17312	do		do	Kleinwanzlebener	Apr. 24
$17: 315$	dı			Bulteau.........	Apr. 25
17016	do	do	. do	Vilmorin's Richest	
2	John F. Lowis	Sheridan	Sheritan	Improved Bulteau.	May 8
	do	do	do	Desprez	
5	do	do	do	Kleinwanzlebener	do
9		do	do	Desprez Bulteau..	. . do
10 to $^{\text {a }}$			Klein wanzlebever	
127	John Astle	Afton	Uinta	Desprez No. 2	May 20
16750	Mark Mauley.	Mountain Viow	...do	Kleinwanzlebener	May 10

States from seed distributed by the Department-Continued.
WASHINGTON-Continued.

Time of harvesting.	Character of soil.	Remarks by growers.		Average weight.		Total solids	Sucrose in-		$\begin{aligned} & \mathrm{Pu} \\ & \text { rity. } \end{aligned}$	
						Juice.	Beets.			
	Black, sulisoil clay..			Grams. 1. 254	$\underset{14}{0 z}$			Perct. $13 \cdot 4$	Perct. $12 \cdot 7$	
1stweek	Black loam			1.126			$14 \cdot 1$	$13 \cdot 4$	$73 \cdot 8$	
in Nov. Oct. 2	Gray sandy loam, some alkali	No fertilizer	1	877	31	20.08	17.8	16.9	88.5	
Oct. 13^{*}	Gray sandy loam, considerablealkali.		2	524	18.5	17.50	$15 \cdot 8$	15	$90 \cdot 2$	

WYOMIING.

Oct. 3	Gravel loam	Irrigated by furrow				$17 \cdot 52$	$13 \cdot 8$	$13 \cdot 1$	$78 \cdot 8$
do					$16 \cdot 96$	$12 \cdot 9$	$12 \cdot 3$	$75 \cdot 9$
..do	...tio	do				$17 \cdot 36$	$13 \cdot 2$	$12 \cdot 5$	$75 \cdot 0$
Oct. 12				530	19		$16 \cdot 6$	$15 \cdot 7$	$71 \cdot 1$
Sept. 25	Light sandy clay	Irrigated 3 times				$20 \cdot 60$	$16 \cdot 8$	16	81.5
do.	do	Flooded 3 times.				$21 \cdot 10$	17.7	16.3	83.9
Oct. 6	do	Irrigated 3 times	1	1,344	$47 \cdot 5$	18.64	$1 \stackrel{3}{3} \cdot 8$		
do			1	1,330	47	1y 68	16%	$15 \cdot 9$	$84 \cdot 8$
Oct. 16	Sandy loam	In culture 3 years ; ir-		310	11		$22 \cdot 5$	21.4	$86 \cdot 1$
do	...do			347	12		21	$20 \cdot 1$	$82 \cdot 7$
Sept. 25	Decomposed reddish					$19 \cdot 50$	$14 \cdot 1$	13.4	$72 \cdot 3$
. . do	do					$21 \cdot 77$	$15 \cdot 7$	$14 \cdot 9$	72
do	do					$23 \cdot 66$		$17 \cdot 1$	76
do	do				Too	mall fo	analy		
Oct. 14	do			297	$10 \cdot 5$	22.92	$17 \cdot 8$	16.9	87.8
. ${ }^{\text {do }}$. .			2	226	8	$24 \cdot 21$	$17 \cdot 5$	$16 \cdot 6$	$72 \cdot 3$
	do		2	389	13.5	$21 \cdot 33$	$16 \cdot 2$	$15 \cdot 4$	76
..do	do		2	382	13.5	$19 \cdot 74$	$14 \cdot 5$	$13 \cdot 8$	7:3 $\cdot 7$
Oct. 3	Red sandy loan	Irrigated 3 t	3	377	13	$20 \cdot 86$	16.2	$15 \cdot 4$	$77 \cdot 4$
...do	...do	do	3	481	17	$20 \cdot 26$	16.4	$15 \cdot 6$	
			3	406	14	$20 \cdot 16$	$15 \cdot 9$	$15 \cdot 1$	78.7
Oct. 13	Black sandy loam	Irrigated twice	4	810	38.5	19	$15 \cdot 8$		$83 \cdot 1$
				657	$23 \cdot 5$		$15 \cdot 7$	14.9	$85 \cdot 4$
Sept. 25	Sandy loa	Irrigated 7 times; no fertilizer.					$18 \cdot 6$	17.7	86.9
do	do					$20 \cdot 90$	$17 \cdot 8$	16.9	$85 \cdot 1$
Oct. 4	Red clay loz			293	10		$22 \cdot 3$	21.2	86.4
Oct. 5		Season rather dry		263	9		$22 \cdot 9$	21.8	$89 \cdot 1$
				239	8.5		$22 \cdot 7$	$21 \cdot 6$	$86 \cdot 1$
Aug. 8	Black loam, with	Irrigated 3 times				$17 \cdot 70$	$13 \cdot 8$	13	78
Sept. 7		Irrigated 4 times				$20 \cdot 74$	17.9		$86 \cdot 3$
do		do				19:98	$17 \cdot 2$	16.3	$86 \cdot 1$
do	do	. do				$21 \cdot 94$	18	$17 \cdot 1$	82
						$22 \cdot 44$	17.7	16.8	78.9
Oct. 1	Brown gravel loam.		2		21	$16 \cdot 69$	$13 \cdot 6$	$12 \cdot 9$	$81 \cdot 5$
Oct 2	Sandy loam			575	20		$13 \cdot 9$	$13 \cdot 1$	72.4

ム LIMITE] 1)ISTRIBUTION OF HIGM•GRADE SEEDS.

It is not believed that further experiment with the promiscuous distribution of seed will be of any practical benefit. Nevertheless, there is a large number of farmers applying each year for samples of seed, and incidentally some good can be done by supplying them with what they need. It is not necessary to enter into an argument here that the farmer will not be able on his own motion to secure beet seed of high grade. He can not be sure that the sugar beet seed offered by dealers is anything more than the seed of the common beet; he does not know the address of the growers of beet seed of established reputation; eveu if he did, the cost and trouble of securing 2 or 3 pounds from abroad would be so great as to deter him from making the attempt. It seems, therefore, proper that as long as the Department is engaged in the distribution of seeds, it should send to those who inquire for them small samples of the highest grade beet seed which can be produced. While most of the samples will be productive of no great good, yet now and then one may reach a locality where it will excite interest, and possibly do much toward the fature development of the industry. In addition to this it must not be forgotten that the cost of sending out a few thousand packages of beet seed is very small, and the chemical analyses are secured without expending a single dollar over the usual cost of conducting the laboratory. If the farmers receiving these gifts of the Department would learn the single lesson of appreciating the scientific agriculture which has made the sugar beet possible, it would be an ample repayment of the whole cost of distribution.

RELATION OF IRRIGATION TO SUGAR-BEET CULTURE.

In former reports attention has been called to the probable practical value of irrigated lands for the production of sugar beets. The high fixed charges which must necessarily attach to all irrigated lands render it imperative that some crop should be grown capable of intensive culture and of yielding large financial returns. There is no crop which offers so many advantages of this kind as the sugar beet. The growth of potatoes or vegetables for home market, or of any crop of this kind usually porluced by intensise culture, must necessarily be restricted to a limited area, but the comparatively momited expansiveness of the market for sugar renders it possible to devote practically all of the invigated lands which are likely to be recovered in many years to the production of the sugar beet.

An interesting report of the growth of the sugar beet on irrigated land has been received from the Mitehell Drug Compauy, of Grand Junction, Colo. The report is accompanied by the following letter from Mrr. C. E. Mitchell:
I take the liberty to forward you the tabulated results of my experiments with sugar beets in this valley duriug tho past season. The analyses were all made by the

Lehi-Utah Beet Sugar Factory and the three carloads sold were bought by them. The yield where any sort of care had been taken of the crop has averaged 15 tons; beets were planted in rows 24 inches apart; cost of crop loaded on car about $\$ 55$ per acre. There seems to be no difference in results when crop is rightly handled, from seed sown on heary adobe soil or in the best sandy loam. All our crops, as the weather report shows, are dependent entirely on irrigation, and absolutely under the farmer's control in this respect. I am laboring with a view to getting capital to establish a plant here. I think I have all necessary points as regards cheap fuel, lime rock, etc., fully covered, and can show conclusively how money in a plant here can be made to pay good intereston capital invested. I have a theory that having the growth of the plant under our control and the large number of clear days and even temperature we have from August 10 to November 15, we have an exceptional climate for producing a beet rich in sagar and high in purity. Shall be glad to furnish you with any information as to my work that I can, and to receive suggestions from you. The seed used was the white variety and obtained from the Lehi factory.

METEOROLOGICAL STATISTICS.

Following is a summary of the weather data in Grand Junction, Colo., during the year:

October, 1833.

	Inches.
Total precipitation.	$0 \cdot 8$
Mean temperature..	$52 \cdot 8$
Cloudy days	2
Clear days	
Fair days	

Total precipitation 0.8

Mean temperature..................... $52 \cdot 8$
Cloudy days 2

Fair days 7

ANALYSES OF BEETS GLOWN ON DIFFERENT SOILS.
Sugar beets were grown by the various farmers in the neighborhood of Grand Valley, and the report of the analyses of samples from each of these is given in the following table:

Results of experiments in the growth of sugar beets in Grand Falley, Colorado.
[About 50 acres were under cultivation, embracing a variety of soils.]

Name.	Planted.	$\begin{array}{c\|} \text { First } \\ \text { sampling. } \end{array}$	Polar.	Purity.	$\begin{array}{\|c\|} \text { Second } \\ \text { sampling. } \end{array}$	Polar.	Purity.
Currie	Apr. 20	Sent. 27	Per cent.	Per cent.		Per cent.	Per cent.
${ }^{2}$ P. A. Rice	A.do ...	- do...	13	76.5	.-do ...	13.6	$78 \cdot 6$
A. A. Miller	..do....	Sept. 19	$10 \cdot 2$	72.3	do	$14 \cdot 1$	81.8
Indian Schoo	Apr. 26				Oct. 19	${ }_{11 \cdot 1}^{16}$	${ }_{70.9}^{84}$
A. J. MeCun	Apr. 22	Sept. 27	$\begin{aligned} & 10 \\ & 13 \cdot 4 \end{aligned}$	$\begin{array}{r} 67 \cdot 1 \\ 76 \cdot 1 \end{array}$	Oct. Oct. Oct cel	${ }_{15}^{11.7}$	${ }_{85}^{70 \cdot 9}$
C. W. Stuele	A 1 rr. 26						
Eugene Allis	Apr. 28				Oct.	16.5	81-3
W.H.Benkit	May 3	Sept. 27	12	$74 \cdot 1$	Nov. 4	14	$78 \cdot 3$
Porter	do	(1).t. ${ }^{2}$	12.8				
W. D. Spence	May	Sept. 27	$11 \cdot 5$	71.4	Oct. 31		78.5
N. Poftenberge	May 8	Sept. 19	$\stackrel{11}{11 \cdot 6}$	73.5	Oct. 16	14.7	
W. F. Sherw		Sept. 27	$9 \cdot 5$	${ }_{67} 67$	Oct. 25	12.6 10.4	${ }_{76} \cdot 5$
Joe Simith.	day				.	$14 \cdot 8$	$83 \cdot 9$
John Vangn	May 10	Scpt. 27	$12 \cdot 4$	$72 \cdot 1$			
M.: S. Clarke	May 11				Oct. 31	$12 \cdot 3$	$77 \cdot 2$
J. C. Sulli ran	May 12				Oct. 31	$12 \cdot 3$	
Frank Leach.	May 15	Sept. 19	$12 \cdot 7$	76.4	Oct. 25	15.	
C. N. Cox.	May 23	Sept. 27	10.4	$69 \cdot 3$		17.2	15
Frank Rich	- do .a.	do ...	$11 \cdot 6$	70	...do	17	84.5
W.E. Renick	May 25	Sept. 19	$12 \cdot 3$	77.7		$11 \cdot 6$	68.9
John Pengh	May 26		11	$75 \cdot 3$..do	$12 \cdot 3$	74.7
Jack O'Keefo	May 30	Sept. 27	11				
d. A. Layton		do	10.9 13.4	${ }_{71} 69$			
${ }_{\text {Smith Bres }}$ Ars.	May 15	do	$13 \cdot 4$	$74 \cdot 9$		$\begin{aligned} & 16.1 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 83 \cdot 7 \\ & 73 \cdot 8 \end{aligned}$
rhmes							

Note.-A. A. Miller and Ed. Bravier shipped a car November 20, which ran 16.2 per cent; 85 purity. Poffenberger and Joe Smith shipped a car November 15 , which ran $15 \cdot 7$ per cent; 84 purity. Frank Leach shipped November 20, ran 15 per cent; 84 purity.

These results all show that if the seed were planted earlier, say about March 15, and the crop only watered sufficiently to prevent its drying up, most excellent beets would be ripe for manufacturing purposes by October 15 . In every case where the last analssis has shown purity less than 80 we find that the crop was irrigated from two to three or four times, some having lad water as late as August 20. None of these beets had any cultivation to speak of. One or two fields only were cultivated twice, a few had one cultivation, but most of them were not touched after thinning, and in only a few cases was the thinning done with any degree of care.

It will be observed in many cases that the analytical data show beets extremely poor for sugar-making purposes. A beet juice in which the
purity falls below 80 needs radical improvement before it can be recommended commercially for the production of sugar. In several instances of the beets examined from the fields in the Grand Valley we find a purity below 80 . These soils are undonbtedly rich in alkaline substances and, therefore, could not be expected at first to give a beet with exceptionally high purity. Again, the whole relation of water furnished by irrigation to beet culture needs to be elaborated by careful experimental control, such as can not be secured under the direction of the farmer.

NEED OF EXPERIMENTS IN IRRIGATED REGIONS.

In view of the magnitude of the interests involved a recommendation for the establishment of an experimental station for beet culture in an irrigated region ought to carry great weight with Congress. In fact, it is highly desirable that the experimental results which are so necessary to the proper development of the industry should be obtained under conditions varying as widely as possible. The production of beets in a climate as fickle and capricious as that of Nebraska is well illustrated by the experimental station at Schuyler. The production of beets without irrigation and without rain in the valleys of California should also be the subject of experimental study.

For a proper study of the develnpment of the beet-sugar industry under the varying climate of the United States, at least four experimental stations are necessary. The one in Nebraska is sufficient for the conditions which obtain in Nebraska, the two Dakotas, and to a limited extent in Iowa and Minnesota. A station in an irrigated valley would illustrate the necessary steps in the development of the industry in all of the elevated plateans of the arid region embraced in Utah, Colorado, Nevada, Montana, New Mexico, and Arizona. A station on the Pacific coast in one of the sonthern coast valleys of California would serve to study the conditions there obtaining. For the large area represented by northern New York, northern Ohio, northern Indiana, northern Illinois, sonthern Wisconsin, and the whole of Michigan, a separate station would be necessary.

BEET-SUGAR STATISTICS.

The quantities of beet sugar made in the United States during the past few years are as follows:*

1887	Pounds. 600,000
1888	. 4, 000,000
1889	6,000,000
1890	8,000,000
1891	12,004, 838
1892	27, 083,288
1893	$t 43,953,264$

[^7]The crop in 1893 was made in the following localities:

Virginia	Pormds 43, 995
Grand Island, Nebr	1,835, 900
Norfolk, Nelbr.	4, 107, 300
Utah	3, 877, 100
Alameda, Cal	4,486,572
Watsonville, Cal.	15, 539, 010
Chino, Cal.	15, 063, 357

There are in the United states seren beet.susar laciories representing an investment of nearly $\leqslant, 000,000$. Tributary to these factories there are at least 24.000 acres of the best agricultural lands. The cost of cultivating all this land if placed in beets would be 8960,000 . Much of this land is, howerer, used for rotation, and therefore the the cost of cultivation is less.

The total mumber of tons of beets manufactured into sugar during the past year, in round numbers, was about 200.353 . The arerage price paid the farmers for this material was \&4.50 per ton, amounting, in romid numbers to $\% 900,000$. The $44,010,000$ pounds of sugar made was worth :3 cents a pound, making a total ralue of $\$ 1,320,000$. The aserage bounty received was uearly 2 cents a pound, making approximately sationou. The total ammont of money received for the sugar producel was therefore, approximately, $\% 2,180,000$.

EXPERIMEITS AT SCHUYLER, NEBR.

The experiment station at Schuyler. Nebr., established for the purpose of improving the sugar beet and demonstrating the most approved methods of its cultivation, was continued during the growing season of 1893.

THE SELECTION OF "MOTHER BEETS."

During the previous antum the difierent standard varieties of beets, as harvested from the experimental plats, were carefuliy culled for the selection of mothers. In the first selection of mother beets, as has been statel in previons reports, the general appearance of the beet only is considered. A plat of beets having been harvested, a skilled workman is assigned to the task of collecting those which seem to be especially fitted for the murpose of producing seed during the coming year. Beets are solected that are perfect in form. with lomg and tapering tap roots, sinooth exterior. aml about 1 pound in weight. These beets are collected, care lofing taken not to bruise them. and they are at once placed in moist earth mutil the time comes for siloing for the winter. The tops of these beets. which are to be preserved for growing are cut in such a way as mot to interfere with the buds at the neck, a part of the stem of the leaf being left on the beet.

ERRATA.

The siloing of the beets should not be undertaken until late in the fall when it becomes necessary to protect them from injury by frost. It is bighly important that the temperature of the silo do not rise at any time above $45^{\circ} \mathrm{C}$. A higher temperature than this induces growth and a consequent loss of saccharine content.

ARRANGEMENT OF THE SILOS.

The beets preserved over the winter at the station were siloed in the following way: They were placed in the silos in a diagonal position, with the tops uptrard, and carefully packed with moist sand. The silos were so arranged as to be easily ventilated. In the bottom of each silo, at the time the beets were placed therein, was placed a half ton of ice in large pieces, for the purpose of rapidly cooling the temperature of the silo below the growth point. The drainage of the silo was so arranged that the water from the melting ice would not touch the beets. At the closing of the silos on the 5th of November the temperature, as indicated by thermometrical observations, was $43^{\circ} \mathrm{C}$.; on the 20th of December the temperature was $4 \because 0$ C., and on the 21 st of March, the date at which the silos were opened, the temperature was $39.2 \circ$ C. These observations show how miform the temperature of he silos was kept, and at such a point as to prevent to the largest extent any evaporation from the beets or any growth thereof.

The total number of beets placed in the silos was 6,378 . When the silos were opened on the 21st of March the beets were found to be in excellent condition; there had been, in point of fact, an increase of weight rather than a loss. This was determined by placing in each silo a given number of carefully weighed beets. These same beets on the opening of the silos were taken out and at once reweighed. Any change in weight would, of course, be revealed by this duplicate weighing.

LNCREASED WEIGHT OF BEETS.

An illustration of the increase in weight mentioned is given by the following experiment:

The weight of ten beets siloed on the th of November, 1892, was 4,840 grams. The weight of this same lot of beets on the 27 th of March, when they were removed from the silo, was 5,400 grams; increase 560 grams, or 11.5 per cent. This increase was due to the fact that at the time of siloing the beets they had become wilted from excessive drouth. The antumn at the station had been particularly dry, and the beets at the time of harvest were in a partly wilted state. These bects, being carefully packed in moist sand and kept at a low temperature, absorbed moisture during the winter with the increase of weight noticed. Ordinarily there would be a decrease of weight in siloed beets, but in the

28

present conditions the reverse was true. Of the 6,378 beets which were siloed in November, 1892, 6,370 were found in perfect condition when the silos were opened, only eight beets having been spoiled. This is a most remarkable showing and indicates the care with which the siloing was done.

ANALYSES FOR DETERMINING SUGAR CONTENT.

The mother beets, when taken from the silos, are subjected to analysis in the manner described in previous reports. Each beet, after weighing, is turned over to the analyst, who by means of a proper machine removes a cylindrical section diagoually throngh the beet, thas securing a sufficient quantity for analysis without in any way injuring the beet for germinating purposes. The beet pulp thus secured is subjected to pressure and the juice obtained is analyzed. Inasmuch as the average mare or fibrous portion of the beet pulp amounts to about 5 per cent, the percentage of sugar in the beet is easily calculated by multiplying the percentage found in the juice expressed by 0.95 .

The beets were divided by analysis into three classes: The first class included all those beets containing not less than 12 per cent nor more than 15 per cent of sugar; the second class, those beets which contained from 15 to 18 per cent of sugar; and the third or elite class, those beets having over 18 per cent of sugar. The number of beets falling in each classification as a result of the analysis for each variety is found in the following table:

Varietics.	$\begin{aligned} & \text { No. } 1 \text { grade: } \\ & \begin{array}{c} \text { Sucrosenc } 18 \\ \text { per cent } \\ \text { and up. } \\ \text { wartls. } \end{array} \end{aligned}$	No. 2 grade Sucrose 15 to 18 pe cent	No. 3 grado: Sucrose 12 cent
Original Kleinwanzlebener			
Dippe's Klcinwanzlebeuer		483	1,176
Vilmorin's Improyed	8	660	781
Lemaire...............	0	0	476
Desprez-..............	7	210	${ }_{224}^{168}$
Total	56	1,758	3,276

These perentages of sugar were deterained by taking the analytical data obtained and calculating therefrom the content of sugar which the beets had at the time of harvest. These data for this calculation indicated the analyses at the time of harvest, at the time of storage, and at the time of opening the silos. As a result of the analyses, 5,091 beets were accepted for the production of seed and 1,179 were rejected.

Although the conditions of storage, as indicated above, were the most favorable, yet it must not be forgotten that the vital action of the beet in the silo is not altogether destroyed, but only reduced to a certain minimum. As long as the beet is alive there must be still some action of vitality, and this can ouly depend upon the consumption of the store of plant food which has been accumulated in the beet itself.

Therefore, even in the favorable circumstances in which the beets were placed, and at a temperature of say $40^{\circ} \mathrm{C}$., there was during the duration of the storage sufficient vital action to diminish to a certain extent the total percentage of sugar in the beets. This was determined by analysis of average samples of beets at the time of storage and at the opening of the silos.

Making correction for the increase in weight due to the absorption of moisture during the winter, it was found that the average content of sugar in the beets of all varieties at the time of storage was $12 \cdot 0$; the average at the time of opening the silos had been reduced to $11 \cdot 6$, showing a loss of $0 \cdot 4$ per cent of sugar during the winter.

Some of the varieties lost more sugar than others. For instance, in Vilmorin's Improved there was apparently a gain of $0 \cdot 1$ per cent of sugar during the winter, while in the Desprez variety the content of sugar had not changed nor had it appreciably changed in the Elite Kleinwanzlebener variety.

At the time of the harvest of the beets on the 10th of October the arerage content of sugar therein was $15 \cdot 1$; at the time of their storage in silos it was 12 , and at the time of opening in the spring it was $11 \cdot 6$ per cent. There had been, therefore, a total loss of sugar from the time of harvest of $3 \cdot 4$ per cent. This gave a total loss of sugar from the time of harvest to the time of analysis of 23 per cent; of which 20 per cent, in romed numbers, occurred between the 15th of October and the 4 th of November (the time the beets were placed in silo), and 3 per cent, in round numbers, from the time they were placed in the silo until their analysis in the latter part of March.

THE PRODUCIION OF SEED.

After the analysis and classification of the mother beets the planting was accomplished by setting them in ground which had been properly prepared. Planting was commenced on the 28th of April and completed on the $2 d$ of May, the different grades being carefully separated in the plats. Special care was taken in this respect in regard to the No. 1 grade (the highest grade) so that they could be sufficiently distant from all other varicties to prevent any contamination by the distribution of the pollen in the fertilization of the seed. Of the 5,091 mother beets which were planted, less than 20 failed to grow, showing a remarkable vitality.

The weather during June was abnormally dry, with a high temperature, but this dry weather did not seem to affect the growth or stand of the plant. There was also another season of dry weather during the latter part of July and the first of Angust, the temperature being very high caused the seed to mature somewhat early, and thus reduced the quantity of yield. The quality of the seed, however, as indicated by its brightness and weight, was most excellent.

The following data give an idea of the amount of seed obtained in comparison with the yield of seed during the season of 189.. In that year the area planted to mother beets was 98.3 square rods, and the weight of seed obtained 595 pouds, giving a yield per acre of 968 pounds. In 1893 the area planted to mother beets was 113 square rods, and the weight of seed obtained 610 pounds, giving a yield per acre of 863 pounds.

On accomnt of the high quality of the seed it was sold to the Oxnard Beet Sugar Company at a price far in excess of that paid for the best imported seed. The sum received for the seed was at the rate of $\$ 172.60$ per acre. In regard to the sale of the seed, reference is made exclusively to the seed of the lowest grade. The high-bred seeds of grades No. 1 and No. 2 were reserved for use in experimental work.

COST OF PRODUCING BEET SEED.

The geueral result of the tro seasons' work in the production of seed is of the most satisfactory character. It has been shown that seed of the finest quality can be produced, and the germination of the home-grown seed has showed its high vitality. The fact that a practical beet-sugar manufacturer was willing to pay from 5 to 7 cents more for the lowest or third grade of seed than he would for the best imported seed shows in what esteem this seed was held for practical purposes. It is demonstrated that by proper care beet seed can be produced in this comitry on one acre of ground planted thereto of a value of at least $\$ 150$. The actual cost of the production of this seed can not be inferred from the cost of its production in the small may in which it was grown. The extreme care exercised in preventing the varietics from mixing, making it necessary to plant in small plats at great distances, and the extra care and labor which such supervision required, would of course increase the cost greatly beyond that which would be incurred in the production of seed in a purely commercial way. The great point which has been demonstrated by these experiments is the fact that seed can be produced of the value of at least $\$ 150$ per acre, that this seed is bright and clean and of high germinating power, and, as will be seen further on, will produce a better erop of beets for sugarmaking purposes than the best imported varieties.

It remains for future experimental work to develop to the fullest extent the soil, and the climatic and cultural conditions affecting the arclimatization of the high-bred sugar beet of Europe to the couditions obtaining in this country.

EXPERIMENTS IN BEET CULTURE.

The preparation of the plats for planting was commenced in the autumn of 1892. Each plat was thoroughly plowed and subsoiled to the depth of 18 inches in October, and the surface of each plat placed
in proper tilth. The spring of 1893 found the ground in excellent condition, the surface having been thoronghly pulverized by the frost. The soil, however, in the spring was not thoroughly saturated with water, on account of the extremely dry autumn and the failure of the winter's snows to furnish sufficient moisture on melting to thoroughly saturate the undersoil. This did not apply particularly to the suface of the soil, which was moist enough, but to the water reserve below the subsoil and upon which the subsoil and the soil would be compelled to draw in case of another dry season. The preparation of the plats for planting was finished in April and the seed, both of foreign and domestic production, thoroughly tested in regard to its vitality. The planting commenced on the 10th of April and continued at iutervals for six weeks.

Careful observations in regard to the germination of the seed showed that as a rule the home grown seed appeared above ground from one to two days in advance of the corresponding imported varieties. In all cases, in order to secure proper tests, the home-grown and imported seeds were planted side by side, not only at the first but at all subsequent plantings.

On April 22 the temperature feli to $133^{\circ} \mathrm{C}$., and this winter temperature put a decided check to the operations of the station and of necessity injured greatly the plantings which had been made previous thereto. By reason of this abnormally cold weather the close of April found vegetation in rather a discouraging condition. For the sake of economy only 5 acres were planted in beets in the spring of 1893 , instead of 8 acres, which was the originally intended area for the proper rotation of the station crops. In spite of these discouraging circumstances, however, all the plats presented an even appearance by the begiming of June. On the 7th of June a great dust storm swept over the district. The wind came up from the southwest at $4: 30 \mathrm{p} . \mathrm{m}$., and at 5 oclock nearly every young beet plant had been cut off close to the ground. Only one acre of the total area planted escaped total destriction, and this was so badly damaged in places that the aftergrowth was very slow, and the final crop the poorest on the station.

The most serious result of this storm, together with another one which came on the 9th of June, was the total destruction of the plants which had been started from the first or highest grade of home-grown seed. The comparative tests were therefore made with the secoud grade of seed instead of the highest.

All the plats injured were replanted by the 15 th of June. The rate of germination of the sced planted at this period was quite in contrast with that of the earlier plantings. The plants from the home-grown seed were visible above ground in seventy-two hours, while those of the imported seed were first visible after one humdred and twenty-four hours, being a conclusive proof of the superior vitality of the homegrown seed.

The cultivation of the phats was more satisfinetory than that of any previons years, becallee the laborers emplosed were the same who had been empleyed in former seasons and their ancquantance with the methods of beet culture was, therefore, more thorough.
The meteorologital conditions for the growing season are summarized in the following table:

Obserrations.	Jay.	June.	July.	Augnst.	September.
Temperature.	\bigcirc	\bigcirc	-	\bigcirc	0
Means for 1803.	58.4	72.2	$75 \cdot 0$	$70 \cdot 7$	$65 \cdot 1$
Means for 189\%	$55 \cdot 3$	$66 \cdot 6$	$75 \cdot 0$	72-8	$66 \cdot 5$
Means for 1891	$59 \cdot 0$	68.4	689.9	$70 \cdot 2$	$65 \cdot 1$
	1. Hes.	Ineres.	Inches.	Inches.	Inches.
Rainfall 189\%	4 6.6 102	$1 \cdot 5$	\square	$2 \cdot 61$ $3 \cdot 36$	$0 \cdot 28$
Rainfall 1 cy	$1 \cdot 35$	$11 \cdot 59$	$6 \cdot 71$	$2 \cdot 23$	0.84

Fortunately the insect ravages which produced such disastrous effects on the crop of 18:? were entirely absent during the season of 1893. The cultivation of the crop and its laying by followed in due order, and on the the of september the first of the analytical work in the examination of the new crop was commenced.

ANALYTICAL DATA.

As a result of the first series of examinations in the begiming of September it was fomb that the home grown seed had produced a greater weight of beets per acre while they had the full equivalent of sugar content.

Compared with the crop of 1892 the data are as follows:
The mean weight of all rarieties of beets in 1sw, in the begiming of September, was $27!$ grams and the sugar content $10 \cdot 6$ per cent. At the same seasom in 1893 the mean weight of the heets was 389 grams and the mean sugar content $11 \cdot 6$ per cent. It is thas seen that in both the weight of the beet and the content of sugar the crop of 1893 at this season was superior to that of 1892 .

On september $2 x$ as determined by experiment, the mean weight of all home grown varicties per acre was $13 \cdot 5$ tons. containing $15 \cdot 8$ per cent of sugar, or 4.266 punds per acre. The mean weight of the imported varieties per acre was $13 \cdot 3$ toms, containing 15 per cent of sugar, or 3,990 pounds per acre.

The datagiven almose were obtained upon beets planted during April and llay. It may be of interest to compare these data with those ohtaned from beets planted later. The beets on which the following observations were mate were plated on the 1-th of June, and on the ground where the previons eally planting had been destroyed by the windstorms. This planting, as has already been mentioned, germinated in an musually short time, and the subsequent growth was rapid and uninterupted. As perfect cultivation as possible was given to
the erop, and the surface of the soil was liept in good tilth dhring the entire growing season. On the first of September the plats presented a splendid appearance, althoush the beets were far from mature After the first of September the extremely hot and diy weather began to affect the late-planted heets, and it was obsirwed that they were ceasing to increase in weight. Small plats were suhjected to inrigation in order to determine whether any difference would be observed bet ween the irrigated and non-irrigated beets. At the time of the harvent of the beets, a month later, it was ohserved that the surface irrigation had not penetrated to a depth of more than 6 inches, and below that depth the soil was dry and hard.

The late-planted plats were examined analytically only once, and as each variety did not contain more than a few hundred beets, most of which it was desirable to keep for seed, it was mot thought wise to take a large number for examination, nor to repeat the analytical work. A time for analysis was therefore selected when it was supposed the beets had approximately reached their maximum of value in weight and sugar content. The results obtained for the different varieties were extremely flattering. The highest sugar content was found with the Elite Kleinwanzlebener, namely, $16 \cdot 4$ per cent, with a purity of sl. J , and all the other varieties approximated closely these figures, except in one instance. The varieties were all grown from domestic seed produced mon the station. The weight of the beets, however, was rather low, being only about two-thirds of the normal weight of a perfect sugar beet, showing that the excessively dry weather of September had prevented them from attaining full growth. The weight per acre and the sugar per acre of each of the late-planted plats are giveu in the following table:

Table showing yield per acre of sugar derived from different varieties of bects.

Varieties.	Seed.	Date.	Weight square rod.	Yield per acre.	Sucrose.	Sugar per acre.
Elite Kleinwanzlebener			Pounds.	Tons.	Per cent.	Pounds.
Vilmorin's Improved	H	Sept. 28	150		10.4	4,513
Dippe's Kleinwanzleben	H	do	161	12.8	$15 \cdot 4$	3,912
Lemaire	H	.. do	178	14.2	$15 \cdot 3$	4,348
Knaner.	H	. . do	190	$15 \cdot 2$	$16 \cdot 3$	4. 955
Desprez	H	. . do	178	$14 \cdot 2$	$15 \cdot 2$	4,316
Original Kleinwanzlebener	I	do	143	$11 \cdot 4$	16.0	3,661
Lemaire	I	do	190	15.2	14.0	4,690
Means of varieties from home-grotrn seed.				13.5	$15 \cdot 8$	4,266
Means of varieties from imported seed				$13 \cdot 3$	15.0	3,990

Two of these experiments were also duplicated with imported seed, namely, those marked "I" in the table above. The low yield per acre was without doubt due to the severe drought.

There was an apreciable increase in the yied per acre of the irrigated plats without any appreciable decrease in the content of sugar. 15096-No. 39-— 3

The mean yicld per acre of the irrigated beets was $16 \cdot 2$ tons; the mean percentage of sugar in the beets, 15.3 per cent, and the mean yield of sugar per acre, 4,954 pounds. The irrigation, therefore, had increased the yield of sugar per acre, in round numbers, 700 pounds.

THE GROWTH OF DEETS AT DIFFERENT ALTITUDES.

A series of experiments wats also made in comection with the work at the station in growing beets on the bottom lands of the Platte River. Iferetofore it has been considered impracticable to grow beets on this soil, subject as it is to overflow in the spring and being of an extremely sandy nature. The level of the surface of this soil is very little above that of the river, so the water line through the greater part of the year is very near the surface of the soil. These lands, of course, would be expected to produce a gool showing only during an excessively dry year, as during the season of 1893 . The spring of 1893 being immolerately dry, allowed the lowlands to be worked and beets to be planted early in May. The germination was rapid, and the beets grew without hindrance up to the time of maturity. On September 23 the beets were analyzed, and at the same time a similar number of beets grown by the same farmer, in the same manner and from the same seed, but upon dry soil lying higher. The comparison of the two harvests is shown by the following data: Grown on the lowland-Mean weight of beets, 523 grams; mean percentage of sugar, 13.5 ; mean purity, $8 \% .8$. Grown on the dry upland-Mean weight of beets, 381 grams; mean percentage of sugar, 11; mean purity, 68.3. In this instance it is seen that the difference is wholly in favor of the beets grown upon the lowlands. The mucertainty of the possibility of the cultivation of these lands, however, in the spring makes this experiment only a matter of interest in showing the necessity for a moderate supply of moisture during the growing season.

The table-lands of Nebraska are not capable of supplying a definite amount of moisture from the subsoil to a growing crop, especially to one which requires so much water for its nourishment as the sugar beet. In this respect they are quite difierent from the lands of the Chino Valley, California, in which crops of beets are often grown, receiving their water soldy from subterranean soures. The practical lesson learned from this experiment does not indicate the continuous availability of the bottom lands of the Platte for beet-growing, but the necessity of a deeper and more thorongh working of the subsoils of the uplands in order to increase the store and availability of the capillary water of the soil. Nevertheless, in this comection it may be well to speak of the fact that the Standard Cattle-Feeding Company, of Ames, Nebr., planted duriug the last year about 500 acres of beets on what is practically bottom lands. The yield obtained per acre was quite satisfactory and the content of sugar was also high. I regret that the officers of the company are not willing to have the data published in detail, but I am permitted to say that the results of the experiment were satisfactory both from
an agricnltural point of view and financially, the beets having been delivered to a factory and a fair profit realized from them.

UNFAVORABLE CLIMATIC CONDITIONS OF NEBRASKA.

The climatic conditions that have attended the three years' experiments which have been conducted at Schnyler lead to the conclusion that the climate of Nebraska, in respect to its variations in temperature and rainfall, is not well suited to production of uniform crops of sugar beets. The variations in temperature are phenomenal; even during the summer very cold and very hot days may succeed each other in quick succession. The variations in rainfall are no less marked. At one time of the year excessive precipitation is likely to occur, followed naturally by excessive drought. All of these excesses of climate are without doubt injurious to the growth of a plant which has been developed under such even conditions as have characterized the grow th of the sugar beet in Europe during the past seventy-five years. The plain deduction from these data is that the sugar bect, esperially in such a climate as that of Nebraska, will undergo some changes, due to the effect of its environment, to accommodate itself to such changed conditions. Even after only two years of growth in the conditions there obtaining the domestic beet shows undoubted marks of superiority.

One encouraging feature of the problem is found in the fact that in spite of these great variations in temperature and precipitation, and chiefly with imported seeds for the production of the plants, we have been able to grow in three seasons, differing very widely in climatic conditions, crops of beets fairly satisfactory in both yield per acre and sugar content. This result shows that with the highest skill in agriculture aud proper acclimatization a country, even with such a variable
 of these excesses of scasonal changes.

SPECIAL EXPERIMENTS IN SUGAR ELABORATION.

In addition to the general experiments which have been outlined above a number of special experiments in the production of sugar beets was also carried on at the Schuyler Station, as has been the custom in previous years. These experiments will be found fully described in the report of Mr. Maxwell, which follows. Attention will be called to only one of them here.

The interesting observations noted by Mr. Maxwell, the assistant in charge, in regard to the function of moisture in the storage of beets will be found in detail in his report. The results of these experiments are convincing to Mr. Maxwell of the formation of an additional quantity of sugar in the beets after storage. The special report justly calls attention to the fact that this conviction is in opposition to the accepted theories in regard to this matter. It is not desired, therefore, to cite these experiments for the purpose of committing the Department to any definite statement in regard to this question. The whole science of
regetable physiology and chemistry teaches that sugar is elaborated in the leaves of the beet plant by the condensation of formyl aldehyd, which is produced by the action of the chlorophyl cell upon earbon dioxid and water. The beet itself has always been regated simply as a store-house in which the elaborated sugar is conserved for the futme use of the plant.

It is not at all impossible that sugar elaboration may go on in the rellular substance of the beet itself, although such an assumption is contrary to the generally accepted theories of vegetable rhemistry. The experiments are so few in number that judgment must be reserved in regard to the matter until they may be repeated under varying conditions. In such cases the fimal determination of the question can mot be made upon an analysis of the expressed juice alone, but must he determined by the estimation of the quantity of sugar in the beet itself without expression. In other words, the relation of the mare or pulp, of the beet to the question under consideration must also be taken into account as well as the content of sugar in the juice alone.

It seems improbable in the present light of vegetable physiological chemistry to suppose there is any elaboration of sugar in such circumstances. The fact of the increase in the purity of the juice would lead to a supposition, however, that some of the materials already present in the juice are couverted in some way into sucrose. That any formation of sucrose in the beet itself during storage in moisture can be secured by the condensation of carbon dioxid and water is beyond the just expectation of the accomplishments of physiological vegetable action.

GENERAL CONSIDERATIONS.

So many letters are addressed to the Department of Agriculture making inquiry in regard to the prospects of the beet-sugar industry in the United States that it seems proper to say a few words here on this subject.

The cultivation of the sugar beet is a style of agriculture so strange to American farmers as to require specific instruction and experience in order to sureessfully accomplish it. For this reason it is not difficult to foresee that any attempt by American farmers to plunge at once into extensive beet culture until they have learned its principles and practice must end disastrously. The great obstacle to the spread of the beet-sugar industry in the United States is without doubt an agricultural one. The experiments which have been conducted by the Department at Schuyler and the results of an immense amount of work done at the varions agricultural experiment stations in the different States, together with the practical work accomplished by the seven active beetsugar factories in the United States, have demonstrated beyond any possible doubt the fact that beets of a reasonably high sugar content ran be produced over wide areas and in quantities approximating those produced in the beet fields of Europe.

In so far as the manufacturing is concerned the conditions are practically identical, althongh it must be admitted that in some parts of the country the conditions are more favorable and in others less favorable than in Europe. As an instance of more favorable conditions the experience of California may be cited. On account of the mild winters in that locality it is not found necessary in any case to silo the beets, and unless exposed to the danger of second growth they can be allowed to remain in the ground until the time for mannfacture arrives. There is thus a considerable diminution of the expense of manufac-ture-an expense which comes from the labor of harvesting aud siloing the beets and protecting them from frost.

On the other hand, the conditions in Nebraska are distinctly less favorable for manufacture than in Europe. In the climate of the former the access of winter is often sudden and early. It is not unusual for the thermometer to reach the zero point in November. It therefore becomes absolutely necessary that the harvest of the beets should be fully accomplished perhaps not later than the 20th or 25th of October. The whole excess of beets not manufactured at that time must therefore be preserved, and this preservation is an expensive operation in a climate where so severe a degree of frost must be expected. Then, again, the periods of cold may be separated by periods of great warmth. In this case another danger arises; the high temperature which the silos may attain at that time induces growth, or, if the buds makng the growth possible are all removed, at least deterioration. Taking all parts of the country together it may be said that the conditions of manufacture, including the abundance of fuel and its cheapness and the other factors active in determining the cost of production, are as favorable as in Europe. There is one exception to this, of course, and that is in the matter of labor, the cost of which in this country is double, sometimes triple, that paid in Europe for similar service.

During the past year nearly $45,000,000$ pounds of beet sugar have been produced in the United States.

REPORT OF ASSISTANT IN CHARGE.

The details of the experimental work at the Schuyler Station are contained in the report of Dr. Walter Maxwell, assistant in charge, which is as follows:

> U. S. Department of Agriculture, Division of Chemistry, Washington, D. C., December :0, 1893.

SIR: I beg to snbmit to you the third annual report of the work of the U. S. Department of Agriculture sugar beet experiment station at Schuyler, Nebr., for the year 1893.

Very respectfully,
Walter Maxivelia, Assistant in Charge.
Prof. H. W. Wiley, Director of Station.

The sugar beet experiment station commenced the work of the season of 1893 in the first week of March, the farm foreman, Goorge Selzer, opening up the laboratory on the $2 d$ day of the month. Preparations were made in the laboratory for conducting the analysis of the "mother heets." The abuormal and continnous low temperature, however, prevented the silos heing opened until March 21, on which date the chemical work began.

METHOD OF STORING BEETS.
The mode of storing the mother beets in November, 1892, was varied from the method described in full detail in my report of last year only by the circumstance that at the time of closing the silos fully onc-half ton of ice was placed in each silo for the purpose of lowering the temperature. 'The ice was placed in such a way that it was not in immediate contact with the beets, and in order that the water should run directly into the ventilating chaunel underlying the floor of the silo:
Upon inspection, the beets were found in a condition in every particular satisfactory. No visible growth had transpired, and the flesh of the roots was apparently more solid than it was at the time of storing.

EFEECT OF STORAGE ON WEIGHT OF BEETS.

In order that the character of the preservation, with respect to the loss or increase of weight by heating and evaporation, could be ganged, and likewise for the purpose of tixing the standard, which is hased upon the water content, for determining the propurtion of loss in sherose, a given number of beets was washed, dried, and weighed and placed in an arerage position in the silos at the time of storing, and on reopening, those beets were washed and reweighed immediately. The effect of storage upon the weight of the roots is shown in the following table:

Grams.
Weight of 10 selected beets March 27, 1893 .. 5, 400
Weight of 10 selected beets November 4, 1892 4, 4, 840
Increase of weight during the tern of storage... 560
Per cent of increase.. 11.5
The occasion of the great increase of weight in the beets which had taken place, as shown by the table, is found in the two following main causes: At the time of storing in the preceding antumn the beets were in an abnormally wilted condition, owing to the extreme heat and dromght which prevailed previous to their removal from the soil. The roots thus, at the period of entering the silos, contained less than the normal amount of water, amd being interlaid by layers of cold, moist sand, as described in the last year's report, the moisture equivalent was regained. Further, the placing of ice in the silos at the time of closing lowered the temperature, and reduced the possible mensure of evaporation, which is shown ly the themometrical readings in the following table:

Degrees C.
Temperature of the silos November 5 43
Temperature of the silos December 20 .. 42
Temperature beet juices March 21 $39 \cdot 2$
Not only could no evaporation take place with the silos maintained at such a low temperature, and the beets packed in moist samd, hut the reason is likewise furnished why nogrowth had begun. At the degree of temperature which the juices gave on the opening day of the analytical work ($39 \cdot 2^{\wedge}$) sprouting could not occur. During the winter of 1 s 91, no change had taken place in the weight of the loeets, but a notable grow th had ocemred, which was due to a higher temperature prevailing during the term ofstorage in the silos, and also to the circumstance that the opening of the silos did not take place mitil three weeks later in the following spring. The effect of storage upon the sugar content will be seen from the tables of analytical data.

As already stated, the chemical work began on March 21, and was concluded April 8; 6,370 beets being analyzed, against 4,740 analyzed in the spring of 1892. The number of beets contained in the silos was 6,378 , showing that only 8 beets in the total number stored had suffered decay.

The classification of the beets was based mon the analyses, the sugar content resolving the individuals of each variety into the grades of quality shown in the following table:

Variety.	No. I grade (sucrose 18 ner cent upwards). ap, aras)	No. II grade (sucrose 15 to 18 per cent)	$\begin{aligned} & \text { No. III grade } \\ & \text { (sucrose } 12 \\ & \text { to } 15 \text { per } \\ & \text { cent). } \end{aligned}$
Original Kleinwanzlebener	Beets. ${ }_{36}$	Beets. 465	Beets. ${ }_{448}$
Dippe's Kleinwanzlebener			1,176
Vilmorins ${ }^{\text {c }}$ Improved..		600	${ }_{486} 78$
Demprez.			${ }_{\text {ck }}^{476}$
Elite Kleinwanzlebener	7	210	224
	57	1,758	3,276

The following statement gives the proportion of the beets analyzed which was eligible for propagation uses:
Number of beets of all grades accepted for seed production..................... 5, 091
Number of beets of all grades rejected for seed production...................... . 1, 179
Total.. . . 6, 370

EFFECT OF STORAGE ON SUGAR CONTENT.

The effect of storage upon the sugar content is observed by comparing the relative proportions of sucrose found in the average samples of each variety at the time of siloing and when the beets were taken out for analysis. The increase of weight in the bects, which it has been shown had taken place during the term of storage, has to bo included in the consideration, and the 11.5 per cent, which was the precise ratio of the increment, must be added to the sucrose readings in order that the comparison between the autumn and spring readings may be exact and the actual loss of sugar determined.

The following statement furnishes the sucrose readings of each variety, as recorded in November, 1892, and the spring readings of the varieties, plus the equivalent of the weight increment:

	Varietics.	Sucrose Nov. 4.	Sucroso Mar. 21.
Original Kleinvanzlebener.		Per cent. $13 \cdot 1$	Per cent. $12 \cdot 8$
Dippe's Kleinwanzlelener.		13.5	$12 \cdot 0$
Vilmorin's Improved.		11.4	11.5
Lemaire		$10 \cdot 4$	10.0
Desprez		$10 \cdot 8$	$10 \cdot 8$
Elite Kleinwanzlebener		$12 \cdot 6$	$12 \cdot 5$
Means		$12 \cdot 9$	$11 \cdot 6$

From the table it is seen that nearly one-half of 1 per cent is the difference between the sugar content of the siloed beots in the autum and in the following spring.
Those beets, however, at the time of their removal from the soil on and about October 10,1892 , containel $15 \cdot 1$ per cent of sucrose; so that during the total inter-
val of time between their removal from the soil in the previons antum and the date of analysis in the spring, the polariscope readings had fallen 3.5 per cent, which gives a meau loss in the total sugal of all the varieties of 23.1 per cent; 19.9 per cent of which ocemred between Oetober 15 and November 4 , and 3.2 per cent during the time that the beets were closed up in the silos from November 5 to March 21.

It is seen from the table that tho varieties did not pass throngh the term of winter storage with equal advantage. This feature of the results requires further investigation, both with respect to its accuracy and to the cause, if it is found to be accurate. The matter of the loss of sugar which transpired in the antumn, and before the beets were placed in silo, is fully discussed in my roport for 1892. The loss, however, of only $3 \cdot 2$ per cent of the total sugar during the term of storage, the almost complete immunity from decay, and the solid condition of the beets when taken out of the silos, justify the conclusion that the mode of preservation in use is in all respects satisfactory.

PLANTING MOTHER BEETS.

The planting of the mother leeets was done hetween the dates A pril 28 and May 2. The methot of the previous year was departed from in two respects: The No. 3 grade beets of all varieties were planted on the same plat; the No. 2 grade were placed at extreme points of distance on the station, whilst the No. 1 grade, or "Extra Quality," were planted in selected spots 1 mile distant from each other and from the station. The station was enabled to observe this great care in placing the varieties of No. 1 grade a great distance from each other through the courtesy of Messrs. Wells \& Nieman, upon whose ranch two varieties were planted, and of Mr. Fuller, of the Maxwellian Rauch, whose interest in the work cansed him to offer any part of his land, and likewise an excellent plat in his private garden, for the purpose.

The planting was done in every way satisfactorily, and the beets very soon exhibited their great vitality. Of the 5,091 beets planted less than 20 failed to grow; and notwithstanding the dry weather, with high temperature, which provailed during the month of June, which is normally moist and growing, the growth was not affected, the "stand" of each plat reaching an excellent development.

The high temperature of the latter part of July and of the first days of August, during which time practically no rain fell, caused the seed to mature prematurely, and reduced the bulk of the yield, certain "stands" actually drying out, whilst the seed generally did not attain its possible size. The quality, however, as indicated by the brightness of the seed and the weight, was excellent. Had rain fallen in moderate propoltion during the early part of the maturing season the yield per acre would probably have been greater by 30 per cent. The seed was all collected by August 31.

YIELD OF SEED-VALUE.
The following data give the actual seed obtained in comparison with the pield of 1892:

Season.	Varieties.	Area.	Weight of seed.	Yield per acre.
$\begin{aligned} & 1893 . . \\ & 1892 . . \end{aligned}$	Seed of all tarieties	Rods. $113 \cdot 0$ $98 \cdot 3$	$\begin{array}{r} \text { Pounds. } \\ 610 \\ 595 \end{array}$	Pounds. 863 968

The yield per acre is a little lower this season than in 1892.
Arrangements were made with the president of the Oxnard Beet Sugar Company for the purehase of the seed at the sum of 20 cents per pound, which gave the seed erop a value of $\$ 172.60$ per acre.

The seed of all varicties of the No. I and No. II grades has been retained, howr ever, in order that it may be availithle should the work of the station be resumed in the spring of 1894.

CULTURAL SEASON OF THE BEET CROP.
The work of preparing the ground for the beet crop of this year was begun in the antumn of 1892. All surface cleaning was done in August; deep plowing and subsoiling, as described in my prevjons reports, were completed in October, and the so-called heavy and preparatory cultivation accomplished before the frosts of the late antumn came on.

In the spring the ground was in excellent condition; the frost having thoronghly pulverized the soil of the plats plowed in the preceding fall. One feture, however, was not satisfactory, which was the water reserve of the soil. The preceding summer had been dry and hot, and the rainfall common to the month of October was extremely small, consequently the water reserve of the soil at the begiming of winter was at the minimm, which was not remedied during the winter mouths. It was thus apparent that if another hot and dry summer shond follow, with the water reserve of the soil so low in the spring, the results of the drouth would be increasedly disastrous. It will be seen later that these results were realized.

The preparation of the plats for early planting was hequn on April 9, and on the following day one acre of beets was planted, the seed bed being a mass of fine, moist earth in good tilth, and the soil temperature reading $55^{\circ} \mathrm{C}$.

All the seed was tested and the vitality proved by germination which was conducted in boxes in the laboratory. The following table shows the germinating power of each lot of seed planted, and the vitality of the "home-grown" seed in comparison with "imported" of the same varieties.

Planted May $23-100$ seeds.	May-			June-						
Number of plantlets visible on	29	30	31	1	2	3	4	5	6	7
Vilmorin Improved (home-grown)	8	50	89	94	95	97	97	97	97	97
Dippe's Kleinwanzlebener (home-grown)	1	22	62	78	82	85	87	88	90	91
(imported).		7	27	53	66	75	78	80	85	87
Elite Kleinwanzlebener (home-grown)	1	30	61	71	76	80	82	\&3	84	89
(imported)		4	23	44	56	60	67	69	76	78
Knaver (home-grown)	13	59	81	85	87	87	87	87	87	88
(imported)...	2	21	51	71	78	83	83	85	86	87
Lemaire (home-grown)	13	55	83	85	87	87	87	87	87	87
(imported)	9	48	83	90	96	96	96	96	97	97
Desprez (home-grown).	-	47	79	85	90	92	93	94	95	95
Mette's Specialität (importert)		12	35	58	77	79	8.	81	87	88
Mette's Rosa Elite (imported).		21	50	71	75	76	77	77	77	78
Demesmay (imported).......	2	4	19	44	57	63	66	69	69	69

The notable feature of the germination tests is the uniformly high germiuating power of the home-grown varieties and the rapidity with which the plantlets appeared above the ground. It is seen that the native seed is from one to two days in advance of the imported of corresponding varieties in breaking the surface of the soil. An exception occurs among the imported in the instance of the Lemaire, but even with that varicty the home-grown seed came up more rapidly, although not so high a percentage grew. The observations recorded in the above table were confirmed in the field, the home-grown seed coming up one to two days earlier than the imported, and being ready in advance for "thinning out."

On April 15 two more acres were planted. The howe-grown and imported seeds of each variety were planted side by side, all conditions being equal. By this mode of planting the results would be comparative, and the value of the home-grown seed exactly tested.

On April 22 the minimum thermometer registered 13°, a phenomenally low temperature for that season. With the low temperature, strong winds previlled, the latter
comtiming after the temperature rose. At the close of April the aspect of vegetation generally was very discouraging.

Only 5 acres were planted in beets instead of 8 acres, as in former years, the extent allowed to each variety being lessened. Under instructions, the cultivation and expenditures were relucerl to the lowest scale compatible with the purpose of efficiently conducting the experiments.

Damage by dust storms.

All the plats which had been planted presented a perfect appearance at the heginning of June. On June 7 a terrible dust storm swept over the district. The wind came up from the southeast at $4.30 \mathrm{p} . \mathrm{m}$., and at 5 o'clock nearly every young beet plant had been cut off close to the ground. The prospect was bad. The damage wronght by the storm was of wide extent, hundreds of acres of excellent stands of beets being utterly destroyed in the beet districts of Norfolk and Grand Island,

When the storm had passed by only 1 acre of beets remained which presented any kind of appearance. This plat was left standing; the plants, however, were so fatally damaged in places that the after-grow th was very slow, and the final crop the poorest on the station. It is advisable where the plants are damaged ly such storms to plow up the gromd and replant, the results will more than compensate the expense of extra cultivation.

On June 9, a second storm occured which cut off' certain other small experiments conducted with the "extra quality" home-grown seed. The whole of the plants from the No. 1 grade seed was lost, and the comparative tests were confined to plantings of No. 2 grade, home-grown, with seed of the same varieties imported direct from France and Germany.

On June 15, only 3 acres of beets were in progress of growth. The last acre was replanted upon the plat where the storm had destroyed the planting of an earlier dare. This acre was planted with 6 varieties of home-grown and 2 varieties of imported seed. The rate of germination was extraordinary. The plantlets of the home-grown seed were visible in the row serenty-two hours after planting, which is probably the shortest time on record required by the beet seed to develop into apprarance above the gromed. The imported seed planted at the same time was visible in the rows atter one hundred and twenty-four hours, or two days later. This is the most conclusive example of the greater vitality and germinating power of the native seed.

In speaking of the disaster caused by the dust storm, it may be noted that the lands which were lying with very compact and fine surfaces, caused by sudden rains or rolling, were most subject to the action of tho wind. Lands which had been recently worked, and were not so flat, dicl not "blow," or extremely little, and the small clods protected the heet plants. As a provision against such stoms, it thas appears advisable to pass the cultivator along the rows as som as the plants appear, even if no weeds have come up, if only to protect the plant against that danger.

On very light sand soils nothing will avail against the winds, but on such lands beets should not be planted, aud for other well-known reasous in addition to the danger of blowing.

Native and imported plants compared.

The thinning out of the plants was done satisfactorily, the laborers being those who were trained to the work in the two previons seasons. On the early planted plat the beets were placed 8 inches apart in the row; in the next plat, or May planting, 9 inches were left between the plats, while on the plat planted on June 12 the plants were set 1 foot apart, the distance between the rows, on all plats, being uniformly 18 inches.

Following the thiming ont, hand-hoeing and cultivation with the horsehoe were continued until the plants were too large to be further worked withont damage. The early planted plats were laid by about July 12, but work was coutinued in the
latest plat until July 28, when all work among the plants ceased. At this time the prospect was excellent. All the varicties made a gool appearance, yet the greater vitality and rapidity of growth shown by the home-grown seed in the stage of germination was still maintained. The plants from the native seed produced a more abundant foliage system and the roots were apparently correspondingly better developed than were those from the imported seed of the same varieties. The question of the most vital interest at that period was, Will the greater promise of the product from the home-grown seed be maintained to the end?

Influence of climatic conditions.

From the time of laying by the crop to the time of maturity the matter is wholly in the hands of the climatic conditions. At the beginning of the season I observed that should even a moderately dry season occur, with the low water reserve of the ground which in the spring existed, the result would be disastrous. That condition did follow. The rainfall of June was less than one-half of the normal for the month and the weather conditions of June are almost decisive. The precipitation in July was quite insufficient to make up for the deficiency of the previous month and to resist the high temperatures of that season. The first half of August was wholly without rain and the precipitation for the month was below the normal, while with September the drought became chronic, no rain occurring in the month until the night of the 29th. And, with the small rainfall, the midsummer was characterizell by very high temperatures, June and July each having a mean record of several degrees above the normal for those months.

Weather conditions.

Observations.	May.	June.	July.	August.	September.
Temperature.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Means for 1893	$58 \cdot 4$	72.2	$75 \cdot 0$	$70 \cdot 7$	$65 \cdot 1$
Means for 1892	$55 \cdot 3$	$66 \cdot 6$	$75 \cdot 0$	72.8	$66 \cdot 5$
Means for 1891	$59^{\circ} 0$	68.4	$69 \cdot 9$	$70 \cdot 2$	$65 \cdot 1$
	Tuches.	Inches,	Inches.	Inches.	Inches.
Rainfall, 1893.	$4 \cdot 27$ 6.62	1.64 0.50	$4 \cdot 69$ $2 \cdot 50$	$2 \cdot 61$	2.03 0.98
Rainfall, 1891.	1 -38	11.59	6.71	$2 \cdot 22$	0.84

From these data it is seen that the temperature of this season, during the most vital period, was much above the temperatures recorded in the two previous years. And the rainfall for the five months tabulated was wholly inadequate as a supplement to the low-water reserve of the ground existing at the begiming of the yanr. The rainfall of 1891, badly distributed though it was, was the amomit of precipitation most favorable to the beet crop in Nebraska.
Happily, I have no statement to make concerning insect ravages during the closing season. A few individuals of the worm which wronght the great damage reported last year were observed in the middle of July, but the number was quite insiguificant; and no second generation was observed to appear.

ANALYTICAL WORK OF THE SEASON.

On September 4 the first samples of beets were analyzed. Excepting the lateplanted plats, the crop was sampled and tested, and the weight and sugar content ascertained in correspondence with the mode of control practiced in 1892.
Before giving a table of the results observed at the opening of the analytical season it must bo remarked that certain early plantings of home-grown varieties of seed were wholly destroyed by the dust storm of June 8, and a comparison with the product of the imported seed of those varieties can not be made. In the later planting the comparison will be possible.

The following table represents the condition of the crop from the given varieties of home-grown and imported seed in the tirst week of September:

Varieties.	Seed.	Date.	Num. ber of beets.	Mean weight of beets.	Brix.	Sucrose.	Purity.
Oriminal Kleinwanzlebener	I*			Grams. 300	Per cent.	Per cent.	Per cent.
Viluorin Improved	I	...do....	50	275	$16 \cdot 1$	12.5	77.6
Elite Kleinwanzlebener	H \dagger	Sept. 5	50	396	15.4	12.0	$77 \cdot 9$
	I	...do	50	387	$15 \cdot 0$	10.9	72.6
Knaner	H	...do	50	521	$14 \cdot 8$	$10 \cdot 6$	$71 \cdot 6$
	I	- . ${ }^{\text {do }}$	50	443	$15 \cdot 3$	$10 \cdot 9$	$71 \cdot 2$
Lemaire	H	Sept. 7	50	358	$16 \cdot 6$	$11 \cdot 9$	71.5
	I	...do	50	341	$15 \cdot 8$	$10 \cdot 8$	$68 \cdot 3$
Desprez	H	- do.	50	420	$16 \cdot 1$	11.8	$73 \cdot 3$
Mette's Specialität................	I	Sept. 8	50	335	$17 \cdot 0$	$12 \cdot 4$	$73 \cdot 0$
Vilmorin Improved (second plant	I		50	359	18.4	$13 \cdot 8$	75.0
Mette's Rosa Elito.	I	do	50	391	$14 \cdot 8$	$10 \cdot 2$	69.0
Mean of imported seed.				354		11.5	
Mean of home-grown seed.				424		$11 \cdot 6$	

*Imported.
†Homegrown.
The above table shows the condition of the crop at the beginning of September. It is seen that the home-grown seed ropresents a greater weight of beets per acre and a full equivalent in the sugar content. It will be of interest to compare the given condition of the crop of this year with that of 1892 at the same date:

	Weight of beets.	Sucrose.
Mean of all varieties, 1893.	$\begin{array}{r} \text { Grams. } \\ 389 \end{array}$	Per cent. 11.6
Mean of all varieties, 1892.	279	10.6

It is thus shown that the crop of this season was in a highly satisfactory condition, in comparison with the crop of 1892 , in the first week of September.

As has already been stated, extreme dronght prevailed during the greater part of Angust and through the month of september, the effects of the absence of rain being intensified by the high temperatures. It was most apparent that the beets had not only ceased to increase in weight, but that they had less weight than two weeks previonsly. Also, the behavior of certain of the varieties, with respect to their sugar content, was perplexing, and the indications for the results of the season far from promising. These peculiarities will be better seen from the table which represents the second analytical review of the condition of the crop:

From this tahle it is seen that certain of the varietics gave a higher polariscope reading thau in the previous week. The gain, however, was not wholly actual. A decrease in weight had occurred, caused by evanoration, under the action of the hot dry weather, and the ratio of solids in the beet had risen in proportion to the withdrawal of water.
It is observed, moreover, that, notwithstanding the derrease of weight of certain of the varieties, the per cent of sugar found in the juice was less than in the previons week. This is a phenomenon which had not been encountered in previous experimentation. Its discussion will be deferred to a later stage of the report, and in connection with specific experiments treating of the matter.
The following table records the data obtained in the third inspection of the varieties:

Varieties.	Seed.	Date.	Number of beets.	$\begin{gathered} \text { Mean } \\ \text { weight of } \\ \text { beets. } \end{gathered}$	Brix.	Sucrose.	Purity.
	$\begin{gathered} \mathrm{I} \\ \mathrm{I} \\ \mathrm{H} \\ \mathrm{I} \\ \mathrm{H} \\ \mathrm{I} \\ \mathrm{H} \\ \mathrm{I} \\ \mathrm{H} \\ \mathrm{I} \\ \mathrm{I} \\ \mathrm{I} \end{gathered}$	Sept. 21 $\ldots . d \mathrm{do}$	5050	Grams	Per cent.	t.	Per cent.
				${ }_{317} 29$		13.7	76.0
Elite Klejuwanzlebencr		Sept. 22	50	522	16.7	$12 \cdot 9$	78.6
Knauer		...do	50 50	517	15.7 15.5 18	11.6 11.6	$74 \cdot 8$
		...do.	50	459	16.6	$12 \cdot 6$	$75 \cdot 8$
Lemaire		Sept. 25	50	362	$17 \cdot 6$	11.6	65.8
Desprez		...do ${ }^{\text {a }}$....	50 50	${ }_{397}^{333}$	17.8	${ }_{12}{ }^{12} 8$	$\stackrel{69.9}{ }$
Metie's Specialitat		do.	50	311	17.9	$12 \cdot 5$	69.8
Vilmorin Improved (second plant- ing		. d .	50	353	$18 \cdot 5$	$13 \cdot 2$	$71 \cdot 3$
Mette's Rosa Elite..............			50	${ }^{329}$	16.5	10.2	61.8

This table shows that, comparatively, no increase in the sugar content of the beets had taken place during the interval of the week. A specific loss of sucrose is recorded in certain of the varieties and with a falling off in the bulk of the beets. The fourth weekly chemical analysis of most of the varieties will be given, which brings the report forward to the culminating period of those inimical conditions.

Variety.	Seed.	Date.	Number of beets.	$\begin{gathered} \text { Mean } \\ \text { weight } \\ \text { of beets. } \end{gathered}$	Brix.	Sucrose.	Purity.
				Gram.	Per cent.	Per cent.	Per cent.
Original Kleinwanzlebener-....... Vilmorin Improved	$\frac{1}{1}$	Oct. ${ }^{\text {O }}$	50 50	$\begin{aligned} & 302 \\ & 300 \end{aligned}$	$\begin{aligned} & 15 \cdot 7 \\ & 16 \cdot 3 \end{aligned}$	$\begin{aligned} & 11.6 \\ & 12.7 \end{aligned}$	74.0 77.9
Lemaire............	H	Oct. 3	50	387	16.2	$11 \cdot 6$	$71 \cdot 6$
Do	1	...do	50	372	$16 \cdot 7$	$12 \cdot 2$	73.0
Desprez	H	. .do	50	397	16.7	$12 \cdot 5$	$74 \cdot 8$
Mette's Specialität.	I	do	50	333	$17 \cdot 2$	$12 \cdot 2$	$70 \cdot 9$
Vilmorin Improved (sccond planting)	I	do	50	352	$16 \cdot 9$	$12 \cdot 1$	
Mette's Rosa Elite	I	do	50	369	$15 \cdot 1$	$9 \cdot 8$	$65^{\circ} 0$

Certain of the varicties were not examined in the fourth week, owing to the small number of beets remaining, many having been destroyed in June by the dust storm, and the remaining few were held back for the final review in the following week.

The loss of sugar, indicated by the table and which had occurred during one week, is appalling. Neither is there any increase in the weight of the beet which in any way can account for the loss. There is a direct disappearance of a large bulk of sugar per acre, and the cause is found in the continuance of high temperature and absence of rain. Rain fell on September 29, but that was too late; the damage was already done. The same cause anted upon the beets, althongh in the ground, and the same
results followed as are set forth in my experiments of last year, treating of eraporation and loss of sugar under the action of high temperature after the beets were removed from the gromid. In the example under discussion, however, the beets were still in the ground, and not fully exposed to the greatest heat of the sun, and it was not to be expected that the sun's action would do more than merely dry ont the heets to some degree. The drought had been of long duration, and the water reserve of the ground was extremely low to begin with; by September 15 , the beets had shrmek in size to such extent that the finger conld be thrust down between the beet and the soil around it, whereas two weeks earlier the soil was adheriug close to the sides of the beet and firmly pressing around it. Moreover the foliage had dried up so that nothing but a tuft of young leaves on the head of the beet was remaining, and thus the sun struck with an unbroken force upon the organism. Until the rain of September 29 fell the prospect was quite alarming. Instead of approaching the normal sugar content and purity of juice indicative of maturing, those characteristics were diminishing, and it actually appeared as though the organism of the beet was falling in pieces. The climatic conditions, of which I have spolen, and their action upon the beet appear to have occurred in Europe this year. Robert Hennig, in his weekly letter from Berlin to the Louisiaua Planter, remarks, "A most extraordinary circumstance is observed during this hot weather, viz, that the sugar in the juice does not increase." If the sucrose in the juice did not increase, the total sugar in the beets was falling away, because the weight of the beets was shrinking which should have made the sucrose in the juice rise. Mr. Hennig does not note this.

So far the tables given and the olservations made upon them have related to the plats which were planted in April and May. At this juncture it will be well to produce data setting forth the behavior of the plats planted a month later and note the comparative action of the climatic conditions upon those beets.

The late beets were planted June 12, and upon the ground where two previous plantings had been destroyed by the wind storms. The plat was planted with six varieties of No. 1 grade home-grown seed and three grates of imported seed, all the conditions being equal. It has already been remarked that this planting germinated in an unusually short time, and the aftergrow th was uninterrupted and rapid. The best cultivation was given to the plats, the ground being absolutely without a weed, and it was being constantly moved by hoeing and cultivating. On September 1 it was estimated that the plats would weigh 14 tons to the acre, and having been so extremely late planted they had yet almost two months for further growth. Up to the date spoken of, September 1, their growth was not abated, and the appearance of the foliage was vigorous and of a deep green color. After the date noted the progress stopped, and it was apparent that even those late-planted plats could not endure any more of the drought.

When it was observed that the heat and continued drought were beginning to affect the late-planted plats and that they were at least ceasing to make weight, an experiment, on a small scale, was made in order to see what actual aid could be given by surface-watering, and what the difference would be between the watered and unwatered at the end of four or six weeks if the natural drought continued. To this purpose a brealth was selected across the whole plats and includiug all the varieties. From September 1 forward, each day, a little before sunset, all the beets upon the selected breadth were watered by means of sprinkling cans, ahout 60 buckets of water being supplied daily. When, a month later, the beets were dug up it was found that the water supplied had never gone into the ground deeper than 6 inches, and below that depth the soil was dry and hard. The action of the watering had been much less effectual than good seasonable rains would have been.

These late-planted plats were only analyzed once, because each variety did not contain more than a few hundred beets, most of which it was desirable to keep for seed production in the following year. Consequently the time of analyzing was
when it was supposed the beets had approximately reached their maximum of value in weight and sugar content. The following table gives the results:

Variety.	Seed.	Date.	Number of beets.	Mean weight of beets.	Brix.	Sucrose in juice.	Purity.
Elite Kleinwanzlebener	H	Sept. 28	20	Grams. 317	Per cent.	$\begin{array}{r} \text { Per cent. } \\ 16.4 \end{array}$	Per cent. $81 \cdot 5$
Vilmorin Improved	II	-. do	20	297	$20 \cdot 5$	$16 \cdot 3$	$80^{\circ} 0$
Dipue Klcinwanzlcbener	H	. . . 10....	20	294	$20 \cdot 7$	15.4	$74 \cdot 4$
Lemaire..................	H	... dio...	20	290	$20 \cdot 2$	$15 \cdot 3$	$75 \cdot 7$
Knauer	H	. . do	20	810	20.0	$16 \cdot 3$	81.5
Desprez	H	- . do	20	298	$20 \cdot 0$	$15 \cdot 2$	$76 \cdot 0$
Orisinal Kleinvanzleber	I	. . do - . -	20	265	$22 \cdot 0$	16	$72 \cdot 7$
Lemaire..................	I	...do	20	300	$19 \cdot 3$	14	$72 \cdot 5$

It is seen that the beets had not attained to more than two parts in three of a normal size. The sugar content of every variety, however, was excellent, and the purity of the juices of several was fairly satisfactory. Although the drought harl stopped the growth, the heat had not begun to exhibit its action in the depreciation of the sugar content.

It will be of interest at this place to give the weights per acre of each of the late planted plats, which, with the sugar content, will furnish the actual weight of the sugar per acre:

The weight per acre of all the varieties was low. In the month of August and even to September 1 , it was estimated that the plats would attain a yield of approximately 18 tons. The result is almost 5 tons short of that estimate. That the estimate was not immoderate, and that it would have been realized with normal conditions of weather, is indicated by the results obtained where the watering was conducted.

The following table gives the weight per acre of the watered beets, the sucrose in the juice, and the sugar per acre, in comparisun with the weight of beets and sugar per acre of the unwatered plats:

Comparison of beets grown on watered and unwatered plats.

Variety.	Watered beets.			Unwatered beets.	
	Weight per acre.	Sucrose.	Sugar per acre.	Weight per acre.	Sugar per acre.
Elite Eleinwanzlebewer	Tons. $16 \cdot 3$	Per cent. $15 \cdot 6$	Pounds. $5,241$	Tons. $13 \cdot 7$	Pounds. 4,513
Vilmorin Improved...	14.0	15.6	4,281	12.0	3,912
Dippe Kleinwanzlebener	$15 \cdot 1$	14.4	4,348	12.8	3,967
Lemaire.	17.0	15.0	5, 100	$14 \cdot 2$	4,348
Knauer	$16 \cdot 6$	- 16.2	5,376	$15 \cdot 2$	4,935
Desprez....................	$18 \cdot 3$	+14.6	5,643	$14 \cdot 2$	4,316
Original Kleinwanzlebeneı	16.2	$15 \cdot 4$	4,989	$11 \cdot 4$	3,661
Means.	16.2	$15 \cdot 3$	4,954	$13 \cdot 4$	4,238

The comparative columms of this table set forth very clearly the action of the dry weather upon the yield of beets and sugar. The watered beets have produced at the rate of over 700 pounds of sugar per acre in excess of the mean production of the mivatered plats. Consequently, it is quite reasonable to calculate that had rain fallen in moderate proportion during August and early September, the weight of beets would have been increased some 5 tons, and the sugar 1,000 pounds per acre. The same results of the drought were observed in a field of 50 acres grown liy the Oxnard Beet Sugar Company in the immediate vicinity of the experiment station.

The effects of the great heat and drought lead me to consider at this place a question of great signifieance to beet culture in Nebraska. Hitherto the planting of beets on the bottom lands of the Platte Valley has been considered impracticable. Those lands lie very little above the normal flow of the river, the water level in places not excecding 2 to 3 feet from the ground surface. In the spring, and particularly during the season when the work of early cultivation should he in progress, parts of those lands are frequently under water, and any acts of cultivation are impossible. In very dry seasons, however, all cultural work can be aceomplishod upon the lowlands as effectually as on the upper lands. This year has furnished an example, which was conducted under the direction of the station. Gottfried Huso, one of the laborers upon the station during certain parts of the year, received seed from me and planted several rows of beets upon a low-lying pateh of gromed within the precincts of the town of Schnyler. The spring was moderately dry, which allowed the ground to be worked, and the beets to be planted early in May. The germination was rapid and the beets grew without hindrance or setback up to the time of maturity. On September 23, those heets were analyzed, and at the same time a similar number of beets grown by the same man, and from the same seed, but upou dry, light soil, was analyzed. The following are the results:

	Weight of beets.	Brix.	Sucrose.	Purity.
Moist ground. nry ground.	Grams. 523 381	$\begin{array}{r} \text { Per cent. } \\ 16.3 \\ 16.1 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 13.5 \\ 11.0 \end{array}$	Per cent. $82 \cdot 8$ 68.3

The results are worthy of much consideration. The beets on the dry-sand soil were dried ont, the leaves had parched and withered. The moist-land heots had still, at the time of analysis, a full foliage, and were not even yet mature. The latter undoubtedly constituted a yield of 24 tons and with not less than 6,400 pounds of sugar per acre; while the production of the sand ground did not exceed 2,500 pounds of sugar to the acre. The results of the moist ground were obtained upon land which in the gear 1891 was under water during the whole months of Jume and July. (food surface drainage and thorough cultivation, with a farorable season for the first crop, enabled a practical man to reach the results of which I have spoken.

BEET PRODUCTION ON THE BOTTOM LANDS.
The importance of the matter in consideration ranses me to go outside the work directed hy the station in order to consider an experiment upon a large seale of heet production on the hottom lauds. The Standard Cattle Company, whose large enterpriso is located at Ames, Nebr., in the current season planted 500 acres of beets on certain parts of their ranch, comprising some 6,000 acres. The elevation above the river of different parts of the tract may slightly vary, but the whole is comprised of so called bottom lands. The resident director of the company, R. M. Allen, has carried ont an extensive and excellent system of surface drainage by means of open dit hes, the smalles cross ditchesemptying into the larger ones, which carry the water off to the river. As a result of the drainage, aded by fiworable spring
time, 500 acres of land were gotten into a condition for planting. The plants srew well from the beginning, and when the dry, hot season set in they still maintained the fresh appearance and growth. A satisfactory yield was obtained and the beets were delivered in good coudition to the factory.

In view of the suceess that has been cited the question of beet culture upon the bottom lands should be reconsidered. The normal rainfall of the region, in combination with the high temperatures and drying winds, makes it very desirable that the ground should possess one factor which may act as a gatue when those climatic conditions are specially adverse. The nomal season in Nehraska is somowhat reficient in moisture for beet colture, and wet years, such as 1891 , are rare. It is thus prohable that upon well selected, well drained, and properly cultivated wround, taking the seasons in the mean, the bottom lands may be uniformiy the most reliable for beet production in that State. The indispensable condition is, howerer, that it system of removing readily the surface water, such as has been carried out by Mr. Allen, must be adopsted. Without such drainage lreet culture on those lands remains impracticable.

I would suggest that an experiment also be mato next season in growing seed upon the bottom lands. The unfavorable factor in seed production upon the upper bottoms and uplands has been the dryness of the soil at the time of maturing the seed. Tho moisture of the bottom lands will probably control that disadvantage, whilst the Nebraska sun will secure excellent maturity on any land.

COMPARATIVE PRODUCTIONS OF HOME-GROWN AND LAPORTED VARIETIES OF beET SEED.

The taking of the weights per acre of all the varieties was conducted October 6 , and by the method described in my previous reports. The final chemical examination of the beets was made October 12 , after an interval of some ten days from the previous analytical review. In the following table the last sugar reading of the crop is given, after which the weights of the varieties will be compared, and the Jield of beets per acre, with the sugar content, will make it possible to state the results of each variety, and the comparative productions of the home-grown and imported varieties of seed.

Variety.	Sced.	Date.	Number of beets.	Weight of beets.	Brix.	Sucrose.	Purity.
Oriminal Kleinwanzlehen	I	Oct. 11	50	Grams.	Per cent.	Per cent. $12 \cdot 9$	Percent.
Viluorin Inproved.	I	.do.	50	312	17.4	$14 \cdot 1$	81.0
Elito Kleinwanzlebener	II	do	50	467	$17 \cdot 8$	14-1	$79 \cdot 1$
	I	...do.	50	391	$17 \cdot 5$	$13 \cdot 3$	75.0
Knauer	H	Oct. 12	50	489	$17 \cdot 1$	$13 \cdot 6$	$79 \cdot 5$
	I	...do.	50	452	17.9	$14 \cdot 0$	$78 \cdot 2$
Lemaire.	H	...do	50	387	$17 \cdot 0$	$13 \cdot 2$	$77 \cdot 6$
	1	do	50	382	17.0	$13 \cdot 1$	77 -0
Desprez.	H	. 10	50	391	17.9	$14 \cdot 2$	$79 \cdot 3$
Metto's Specialität................	I	... do	50	321	$17 \cdot 7$	$14 \cdot 0$	$79 \cdot 0$
Vilmorin Improved (second planting)	I	...do	50	355	17.7	13.9	78.5
Mettos Rosa Elite.	I	...do....	50	366	$15 \cdot 7$	11.7	74.5

These maximum sugar readings of the early planted plats are very low. The beets never recovered from the action of the drought and heat which has been already duly discussect.

15096-No. $39 — 4$

The following tahle gives the weight per acre of the given varieties grown from home-grown and imported seed:

Varicty.	Seed.	Date:	Pounds per square rod rod.	Yield per acre.
Original Kleinwanzlebencr	I	Oct. 6	$143 \cdot 0$	Tons. 114
Vilmorin Improved........	I	...do	190.0	$15 \cdot 2$
Elite Kloinwanzlebener .	H	-. do....	286.0	$22 \cdot 9$
Do.................	I	.. do	$253 \cdot 0$	$20 \cdot 4$
Knauer.-.	H	...do....	287.0	23.0
Do..	I	...do....	265.0	21.2
Lemaire ...	H	...do....	235.0	18.8
Do.	I	...do	201.0	16.0
Desprez.	H	. . do.	$247 \cdot 0$	$19 \cdot 7$
Mette's Specialitatt.	I		184.0	$14 \cdot 7$
Vilmorin Improved (second planting)	I	. . do	207.0	16.5
Mette's Rosa Elite	I	do	$230 \cdot 0$	18.4

Tons.
Mean of varieties from home-grown seed ... $21 \cdot 1$
Mean of varieties from imported seed... 17 . 9
A further table, embracing the weight per acre and the sucrose in the juice, will furnish the yield of sugar per acre of each variety:

Variety.	Seed.	Weight per acre.	Sucrose in juice.	Sugar per acre.
		Tons.	Per cent.	Pounds.
Original Kleinwanzlebener Vilmorin Improved.	I	115.4	$12 \cdot 9$ $14 \cdot 1$	
Elite Kleinwanzlebener	H	22.9	$14 \cdot 1$	6,453
Do...	I	$20 \cdot 4$	13.3	5,426
Knawer..	H	$23 \cdot 0$	$13 \cdot 6$	6,256
Do.	I	$21 \cdot 2$	$14 \cdot 0$	5,936
Lemaire.	H	18.8	$13 \cdot 2$	4,963
Do.	I	16.0	13.2	4, 192
Desprez.	H	$19 \cdot 7$	14.2	5,594
Mette's Specialität.	I	$14 \cdot 7$	$14 \cdot 0$	4,116
Vilmorin Improved (second plantin	I	16.5	$13 \cdot 9$	4,587
Mette's Rosa Elite.	I	$18 \cdot 4$	11.7	4,305

Mean yield of sugar per acre from home-grown seed, 5,814 pounds.
Mean yield of sugar per acre from imported seed, 4,472 pounds.
The mean of production of the imported seed is specially lowered by the results of the Original variety, which were reduced by the action of the dust storm in Jume. The mean results of the Elite, Knauer, and Lemaire varieties are the most strictly comparative and conclusive, and are as follows:

Pounds per acre.
From home-grown seed of those varieties 5, 891
From imported seed of those varieties. .. 5, 185
The production of sugar per acre from the home-grown seed on the early-planted plats was 706 pounds, or 12 per cent greater than that of the imported seed of the same varieties, under correspouding conditions of soil, climate, and culture.

The mean of the results of the early aud late planted plats is shown by the following table:

Time of planting.	Weight per acre.	Sucrose in juice.	Purity of juice.	Sugar per acre.
May planting. June planting	Tons. $19 \cdot 5$ $13 \cdot 4$	$\begin{array}{r} \text { Per cent. } \\ 13.7 \\ 15.4 \end{array}$	78.0 76.8	$\begin{array}{r} \text { Pounds. } \\ 5,538 \\ 4,128 \end{array}$
Means.	16.4	$14 \cdot 5$	77.4	4,833

A further table gives the comparative results of the three seasons during which the station has existed:

Season.	W eight per acre.	Sucrose in juice.	Purity of juice.	Sugar per acre.
$\begin{aligned} & 1891 . \\ & 1892 . \\ & 1893 . \end{aligned}$	Tons. $21 \cdot 7$ $16 \cdot 4$	Per cent. $14 \cdot 6$ $14 \cdot 5$	$\begin{aligned} & 85 \cdot 2 \\ & 79 \cdot 6 \\ & 77 \cdot 4 \end{aligned}$	Pounds. 6, 236 4, 800 4,833
Means .	$18 \cdot 0$	14.7	$80 \cdot 7$	5,290

If the results of the Schuyler Station for the three seasous be compared with the mean results of the sugar-beet station of the French Goverument at Cappelle, France, for 1891 and 1892, they appear as follows:

Station.	Weight of beets per acre.	Sugar per acre.
Cappelle (France) Schuyler (Nebraska)	Tons. $17 \cdot 5$ $18 \cdot 0$	Pounds. $\begin{aligned} & 5,366 \\ & 5,290 \end{aligned}$

The table giving the results of the station during the three seasons shows that the mean results of this season are almost identical with those of 1892. Both seasons, however, are far behind the very excellent crop of 1891, when the tonnage, sugar per acre, and the purity of the juices were most satisfactory. The conditions which conduced to the very superior results of the crop of 1891 have been fully discussed under the heading of Special Experiments.

SPECIAL EXPERIMENTS.
During the analytical seasons of 1891 and 1892 certain special experiments were conducted with the purpose of determining the loss of weight of the beet by evaporation, and the canse of the loss of sugar which takes place in the organism, particularly during that interval of time between the remoral of the beets from the soil and the period of storage in the silos. By means of those experiments it was shown conclusively that high temperature, and particularly the action of stroug sunlight, are the primary causes of the decomposition of the sucrose, and that a system of cold storage would effectually protect the organism against such a change in its constituents and the resnlting loss of sugar. Those experiments afforded such conclusive data that it has not been considered necessary to continue the experimentation along that particular line this season.

I, however, conducted a series of experiments in order to obtaiu light upon one other highly important question. It has beeu, and is still, maintained, and by very noteworthy authorities, that excessive moisture falling upon the beets, either before or after their removal from the soil, canses a decrease or loss in the content of sugar and a signal depreciation in the quality of the beet. The observations made in the experiments of last year and which are found in the report showed conclusively that the fall in the sucrose content of the juice after rains was invariably accompanied by a corresponding, or even greater, increase in the weight of the beet. These observations caused me to doubt wholly the accepted conclusions concerning the action of moisture upon the sugar content. Moreover, there does not appear, physiologically, a probable expectation that such action would transpire. There is, on the other hand, reason for supposing that a deficiency of moisture would retard the formation of sucrose; first, becanso a normal water content is essential to the elaboration and transport of the constituents in the organisin; and further, an
excess of water is indispensable to the formation of the carbohydrates. Scientifically speaking, we have in these considerations the explanation of the decrease of sugar which took place this year in September, of which I have already exhaustively spoken.
This year the specific olject was to observe the action of water upou the organism of the beet. The season was peculiarly favorable to the purpose. The experiments were commenced at the period when, as previously related, the beets were depreciating under the influence of drought and heat. The experiments were conducted by taking up a given number of beets, dividing the number into two or more identical parts, and analyzing one part immediately and placing the other part under the action of excessive moisture until analyzed after a definite lapse of time. The work of dividing the oriminal number of beets into identical halves was conducted according to the method used last year, and which was based upon the physiological constant that I had observed, viz: Any two or more lots of beets takeu from the same plat and containing the same number of individuals and having the same weight will contain the same total solids aud sucrose. Without some such constant, comparative tests would he strictly impracticable, as there would not be a standard of comprarison. The constant, whose principle I have expressed, afforded the standard required.

In the examples to be given the beets were taken fresh from the soil, washed and dried and divided into two parts, and each part weigherl. One part was analyzed at once and the other part treated as will be explained.

Experiment I.

One hundred and fifty beets were dug up and, after washing, were divided into three "fifties." No. 1 "fifty" were weighed and analyzed directly. No. 2 were weighed and afterwards laid out in the field under normal exposure. No. 3 were packed in a tub with sand and soaked with water, also a large block of ice being laid upon the packed beets, which kept down the temperature, the water overflowing as the ice melted. The weights of the respective parts were identical, each "fifty" weighing exactly 41.5 pounds.

No. 1.-Analysis of fresh beets.

	Number of beets.	Brix.	Sucrose.
Mean of-		Per cent.	Per cent.
10 beets.		$19 \cdot 9$ 19%	15.0 14.6
10 beets.		$20 \cdot 7$	$15 \cdot 8$
10 beets.		$19 \cdot 5$	14.0
10 beets.		$19 \cdot 7$	$14 \cdot 8$
Means		$19 \cdot 8$	$14 \cdot 8$

The mean purity was 74.2 .

No. 2.-Analysis of exposed beets.

The mean purity was 73.7 .

No. 3.-Analysis of soaked beets.

	Number of beets.	Brix.	Sucrose.
Mean of-		Per cent.	Per cent.
10 beets.		18.4	14%
10 beets.		$18 \cdot 6$	$14 \cdot 4$ $14 \cdot 0$
10 beets.		18.1	$14 \cdot 0$
10 beets.		18.5	$14 \cdot 3$
Meaus		$18 \cdot 3$	$14 \cdot 1$

The mean purity was 77.
The following table presents an analysis of the results of the three separate analyses:

Beets.	1. Weight.	2. Weight.	Variation of weight.	Brix.	Sucrose.	Content of sugar.
Fresh beets	Pounds. $41 \cdot 5$	Pounds.	Per cent.	$\begin{gathered} \text { Pr.ct. } \\ 19.8 \end{gathered}$	Per cent. $14 \cdot 8$	Pounds. $6 \cdot 14$
Exposed beets	41.5	$34 \cdot 0$	Loss, 19.05	$22 \cdot 9$	$17 \cdot 1$	5.08
Soaked beets	41.5	$44 * 0$	Gain, 6.02	$18 \cdot 3$	$14 \cdot 1$	$6 \cdot 20$

These data not only indicate the actual results, but also the ease with which the indications could be misunderstond. Althongh the exposed beets give a much higher polariscope reading, an actual loss of 6 per cent of the total sugar had occurred. On the other hand the polariscope reading of the juices from the soaked beets was notably lower, yet those beets had more than maintained their sugar content. It may also be remarked that the moistened beets which had taken up 6.2 per cent of their own weight of water gave a juice of much higher purity, being 3 per cent higher than the fresh beets. In the polariscope tabe the juices of the moistened beets read with great ease, whilst the others were difficult to read.
The results of the given experiments were not only satisfactory, but they were striking, from the circumstance that a slight appreciation was observed in the sncrose content and a notable one in the purity. With such a result from placing the beets for seventy-two hours in soaked sand it was determined to experiment with a further number actually submerged in water.

Experiment II.

One hundred beets were dug up, washed, and divided into two identical parts. The first fifty were weighed and analyzed directly. The second fifty were weighed and placed in a tub of water whose temperature was kept at $40^{\circ}-42^{\circ}$ by addition of ice, the tub being placed in one of the silos. The submerged beets remained in the water for precisely seven days. When taken out they were dried and reweighed and immediately analyzed. The following are the results:

No. 1.-Analysis of fresh beets.

	Number of beets.	Brix.	Sucrose.
Mean of-		Per cent.	Per cent.
10 beets.		$\begin{aligned} & 17 \cdot 4 \\ & 18 \cdot 4 \end{aligned}$	$\begin{aligned} & 12 \cdot 0 \\ & 12 \cdot 6 \end{aligned}$
10 beets.		. 18.6	13.4
10 beets.		$19 \cdot 0$	13.4
10 beets.		$19 \cdot 2$	$14 \cdot 3$
Means.		18.5	$13 \cdot 1$

The mean purity equals $70 \cdot 8$.

No. 2.-Analysis of submerged beets.

	Number of beets.	Brix.	Sucrose.
Mean of-		Per cent.	Per cent.
10 beets.		16.4	12.7 13.7
10 beets.		$16 \cdot 7$	$13 \cdot \mathrm{l}$
10 beets.		16.6	$12 \cdot 1$
10 beets		16.5	$13 \cdot 0$
Means		16.5	$12 \cdot 9$

The mean purity equals 78.2 .
Analytical comparison of the results.

Beets.	1. Weight.	2. Weight.	Variation of weight.	Brix.	Sucrose.	Content of sugar.
Fresh beets. Submerged beets	$\begin{array}{r} \text { Pounts, } \\ 34.5 \\ 34.5 \end{array}$	Pounds. 40.0	Per cent. Gain, 15.9	$\begin{array}{r} P r . c t . \\ 18.5 \\ 16.5 \end{array}$	Per cent.	Pounds. $\begin{aligned} & 4 \cdot 51 \\ & 5 \cdot 16 \end{aligned}$

This table states that the submerged bects took up water during seven days' submersion to the extent of $15 \cdot 9$ per cent of their weight, and that the actual sugar content was increased $14 \cdot 2$ per cent.
In the first place, in consequence of the results obtained, I am obliged to reconsider an olservation stated in my report of 1891, in which it is doubted that the beet can increase its sugar content after removal from the soil. These experiments indicate that such an increase has certainly occurred in beets under the conditions in which those examples under consideration were placed. The appreciation in the purity of the juices is also not less notable than the increase in the sucrose. The increment of weight was expected, and particularly considering the wilted condition in which the fresh beets were found. The results are extraordinary. They were, however, conducted with the most extreme care, every act of manipulation in the analysis being performed by me personally, which enables me to vonch for the greatest attainable accuracy.
At the time that the above experiment was completed the beets were suffering to a final degree from the influence of the dry soil and hot sum. A third experiment was mate of the same nature as the two already tabulated, but the latter was carried out in the field. In a given plat of beets a certain row was selected and a length of the row including exactly 100 heets was marked off. To those 100 beets 250 gallons of water were given, the loose soil raked up close to the beets to prevent the sun baking the moist surface, and the beets were left for 7 days. At the end of that time those hects were dug up, washed, weighed, and analyzed. At the same time 100 beets comprised within the same length of a paralled row, this row Leing separated from the watered row by five intervening rows, were taken up, washed, weighed, and analyzed, and the following are the results:

Experiment III.

Unwatered beets.	Brix.	Sucrose.
Mean of -	Per cent.	Per cent.
10 beets... 10 beets...	18.4	$14 \cdot 1$
10 beets...	18.4 18.3	13*3
10 beets.	$18 \cdot 3$	$13 \cdot 7$
10 heets..	$19 \cdot 3$	1.4 .0
10 beets.	$19 \cdot 3$	$13 \cdot 8$
10 beeis..	$18 \cdot 9$	$13 \cdot 0$
10 beets.	$19 \cdot 2$	$13 \cdot 7$
10 beets.	19.0	$13 \cdot 3$
10 beets.	$19 \cdot 1$	$12 \cdot 8$
Means.	$18 \cdot 8$	13.5

The mean purity was 71 .8.

The mean purity was $77 \cdot 2$.

Comparison of the results.

Beets.	Weight.	Variation of weight.	Brix.	Sucrose.	Content of sugar.
Unwatered beets Watered beets ..	Pounds. $78 \cdot 5$ $88 \cdot 5$	Per cent. Gain 127	$\begin{array}{r} \text { Per cent. } \\ 18.8 \\ 16.6 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 13.5 \\ 12.8 \end{array}$	Pounds. $10-59$ $11 \cdot 32$

The experiment furnishes results identical with those obtained in the two preceding experiments. It must he observed, however, that in the last experiment the data are not as strictly comparative. The parallel rows from which each 100 beets were taken were apparently similar, but there may have been a small difference in the weight and sucrose content at the time that the beets were watered. No difference, however, could have existed which would have amounted to oven 10 per cont of the difference found at the time of analysis. It is most evident that the excessive quantity of water added to the 100 beets (250 gallons, which was $2 \frac{1}{2}$ gallons to each beet) not only caused a great increment of weight, but also an immediate formation of sugar, and the appreciation in the purity of the juices is very striking. In each of the experiments it is shown that the presence of excessive moisture raised the purity coefficient most notably, and in the last two experiments 7 and 8 points, respectively. This observation is strictly in accord with the general observations relating to the crops of each season since the station has been in operatiou. In 1891 the whole cultural season was very wet (see table of the climatics for the three seasons), and at the time that the beets were harvested the ground was saturated with moisture, the rainfall for October of that year being four times greater than the normal. The crop of that season averaged 21.7 tons per acre; the average sucrose in the juice was 1.6 per cent, and the mean purity of all varieties was orer 85. In 1892 the crop was notably lighter and the sucrose in the juice higher, owing to the dry season, but the mean purity was less than 80 , the soil, mode of culture, and the seed being the same.

In the series of special experiments conducted at tho station results have been obtained which are more or less in direct opposition to certain accepted beliefs. Last year the experiments showed that not only no gain but an actual loss, and a very notable loss, of sugar occurs when beets are exposed to atmospheric influences after their removal from the soil; the special canses of that loss being strong suulight and high temperatnre. Again, the results of experimentation during this year have indicated quite conclusively that, in an abnormal season, when the beets are depreciating in sugar content and quality, under the influence of high temperature and a dried-out soil, the depreciation can be checked and the conditions reversed by a timely application of water. Further, the observations of this year have shown
that beets can be placed in soaked sand or even submerged in water at a given temperature for a term of seven days, and not only is there no depreciation found, but, with the increment of weight, an inerease in the sugar content of the beet and a very notable appreciation in the purity of the juices are observed.

In placing the results of these experiments on record it is desirable and very appropriate that the views which stand in opposition to these results and the noteworthy authorities by whom those views have been held be kept in recollection. A revision of the theories which have been held in relation to the questions under dischssion should only be consilered when the data supporting some other view are sufficiently conclusive and important to make such a revision imperative.
before leaving this part of the report the importance of shipping the beets directly to the factory as soon as they are dug up should again be urged upon the beetgrowers: I submitalso, for the consideration of the factory owners, the results which have been obtained bearing upon the action of excessive moisture in relation to the preservation of the leets. The practice of dumping humdredsamb, at times, thousands of tons of beets in dry sheds, where they may lie from a week to ten days hefore being worked up by the factory, is known to cause fermentation, loss of sugar, and difficulties in mamfacture which it is desiralbe to a void. I am impressed with the belief that those large masses of beets would be, at any temperature, better preserved by submersion, and would also be in a better condition to be handled in the factory. And in the event of a freeze, which in November may be very serere but of short duration, submersion would be the most perfect mode of preservation.

CONCLUSIONS.

A review of the work of this season and of the results of the seasons of 1891 and 1892 iudicates the following conclusions:

Native seed has been produced of excellent quality aud high germinating power. The yield per acre, owing to the extreme drouth which prevailed during the maturing season of this year, as likewise in 1892, was lower than would be obtained with an increased rainfall. An experiment in growing seed upon well-selected tracts on the bottom lands of the Platte Valley is recommended.

The comparative experiments in which home-grown seed was planted by the side of imported seed of the same varieties, and under the same conditions of soil and cultivation, have shown the greater vitality and productiveness of the native sced, the latter yielding 706 pounds, or 12 per cent, of sugar more to the acre than the seed imported from France and Germany.

Attention has been directed to the highly satisfactory results which have been obtained in growing heets upon certain tractsof bottom land in the Platte Falley, where an excellent system of surface drainage has heen adopted in preparing the land for beet culture.

Sperial experiments couducted during the seasons of 1891, 1892, and 1893, were devoted to the study of influences cansing loss of weight and sugar in the beet and to modes of preventing such loss. It has been found that high temperature and direct sumlight are the main canses of the deromposition of sugar in the organism, and that storing at low temperature prevents such decomposition. Moreover, the experiments of this season have indicated that excess of moisture is not an immediato cansib of depreciation of quality in the beet, and that, under given conditions, sub)mersion of the inets in water for a limited length of time may he found an excellent mode of preservation.

I NDEX.

A.

Page.

Alabama, analyses of sugar beets 10, 11
Analyses of sugar beets. 39
Analytical data 32, 33
work 43-45
B.
Beet mothers, selection 26
sugar statistics 25,26
Beets. (See Sugar beets.)
Bottom lands, beet production on 48
C.
California lands, comparison with Nebraska table-lands 34
Classification of beets 39
Climatic conditions, influence. 43
of Nebraska 35
Colorado, analyses of sugar beets 10, 11
results of experiments in Grand Valley 24
Conclusions resulting from experimental work 56
Cultural season of beet crop 41
D.
Dust storms, damage 42
E.
Experiments at Schuyler, Nebr. 26
in the loss of weight of beets by evaporation 51-54
H.
Home-grown and imported varieties of beet seed, comparative production 49-51
seeds, compared with foreign 44

I.
Itaho, analyses of sugar beets 10, 11
Imparted and home-grown varieties of beet seed, comparative production 19-51
seed compared with native 42
Indiana, analyses of sugar beets 10, 11
Iowa, analyses of sugar beets 10, 11
Irrigated and non-irrigated plats, comparison of beets grown 47
regions, need of experiments 25
Irrigation experiments, Grand Junction, Colo 22
in sugar-beet culture 22
K.
Page.
Kansas, analyses of sugar beets 10, 11
L.
Loss of weight in beets by evaporation 51-54
Louisiana, analyses of sugar beets 10, 11
M.
Maxwell, Dr. Walter, report 37
Meteorological conditions 43
summary 32
Michigan, analyses of sugar beets 10-13
Minnesota, analyses of sugar beets 12, 13
Mitchell Drug Company, experiments 22-24
Montana, analyses of sugar beets 12, 13
Mother beets, methods of analysis 28
planting 40
selection 26
N.
Native seed, comparison with imported 42
Nebraska, analyses of sugar beets 14, 15
table-lands, comparison with Califoruia lands 34
unfavorable climatic conditions. 35
North Carolina, anajyses of sugar beets 14, 15
North Dakota, analyses of sugar beets 14, 15
P. 14,15Peunsylvania, analyses of sugar beets
S.
Schuyler, Nebr., experiments 26
station, report 37
Seed production 29
yield and quality 30
value 40
Siloing sugar beets, results 27
Silos, arrangement 27
Storage, effect ou sugar content 39
Sugar-beet crop, cultural season 41
culture experiments 30-32
relation of irrigation to 22
experiments, unsatisfactory results 8
industry, general considerations regarding 36, 37
mothers, methods of analysis 28
planting 40
production on bottom lands 48
seed, comparative production of home-grown and imported varie- ties 49,51
cost of producing 30
distribution 7
high-grade, distribution 22
home-grown compared with foreign 44
production 29
yield and quality 30
value 40
Page.
Sugar beets, analyses 9-21, 39
at World's Fair 8
effects of storage on weight 38
experiments in loss of weight by evaporation 51-54
from Alabama, analyses 10, 11
Colorado, analyses 10, 11
Idaho, analyses 10, 11
Indiana, analyses 10, 11
Iowa, analyses 10, 11
Kansas, analyses 10, 11
Louisiana, analyses 10, 11
Michigan, analyses 10-13
Minnesota, analyses 12, 13
Montana, analyses 12, 13
Nebraska, analyses. 14, 15
North Carolina, analyses 14,15
Nortl Dakota, analyses 14, 15
Penusylvania, analyses 14, 15
Virginia, aualyses. 14,15
Washington, analyses 14-21
Wyoming 20, 21
grown from native and imported seed, comparison 42
on bottom lands 34
watered and unwatered plats, comparison 47
growth at different altitudes 34
increase in weight in silos 27
method of storing 38
siloing, results 27
yield of sugar in different varieties 33
elaboration, special experiments 35
statistics 25,26
V.
Virginia, analyses of sugar beets 14,15
W.
Washington, analyses of sugar beets 14-21
Wyoming, analyses of sugar beets 20, 21

PUBIICATION GUSPEMDED FROX

1894-1896 INCLUSIVE.
U. S. DEPARTMENT OF AGRICULTURE. DIVISION OF CHEMISTRY.

EXPFERIIIENTS WITII SLCGAR BRETSS IN 1897.

BY

HARVEY W. WILEY.
Chemist of the United States Department of Agriculare.

W ASHINGTON:
GOVERNMENT PRINTING OFFICE.
1598.
cupy 2

U. S. DEPARTMENT OF AGRICULTURE. DIVISION OF CHEMISTRY.

BY

HARVEY W. WILEY,
Chemist of the United States Department of Agriculture.

WASHINGTON:
GOVERNIENT PRINTING OFFICE.
1898.

$$
\begin{aligned}
& 5 \frac{2}{2}= \\
& =5 \\
& 43
\end{aligned}
$$

LETTER OF TRANSMITTAL.

U. S. Department of Agriculture, Division of Chemistiry, Washington, D.C., April 21, 1898.

SIR: The bulletin herewith presented as No. j2 of the Division of Chemistry comprises the portion of the report which was prepared by the Chemist of the Department for the Special Report on the Beet Sugar Industry of the United States, submitted by you to the President of the United States and by him transmitted to Congress, and published as Document No. 396 of the House of Representatives at the second session of the Fifty-fifth Congress. It is deemed advisable to secure the publication of this part of the report as a bulletin of the Chemical Division in order to preserve the continnity of the reports on the sugar industry of the United States as bulletins of that division. No changes have been made in the text, nor in the illustrations accompanying it, from the document mentioned above.
H. W. Wiley, Chief, Division of Chemistry.
Hon. Jailes Wilson, Secretary.

CONTENTS.

Page.
References in Annual Report of the Department of Agriculture to matters relating to the beet-sugar industiy 12
List of bulletins issued by the Division of Chemistry relating in whole or in part to sugar heets 1 1:
I'lan of investigations for 1897 16
('limatology 21
Other eonditions 23
Map of thermal belt 3
Changes in the new maps 24
Triple isothermal lines 24
Beet zone 25
Ammal rainfall 25
Study of particular localities 27
North Carolina and West Virginia 27
Eastern shore of Maryland 27
Delaware 28
New ITrsey 28
('ommecticut 29
Massachusetts 29
New Hampshice and Vermont $4!9$
New York 30
Pennsyivania :31
Ohio 31
Michigan 32
Indiana 32
Illinois 32
Wisconsin 3"
Minnesota 33
Iow: $3: 3$
North and South Dakot: 34
Nelraska 3i5
The arid regions 35
lata from different States. 37
Data olbtained in the laboratory of the Department of Agriculture 40
Cantions regarding the value of data 41
Study of the analytical data 56
Arizon: 56
Report ley R. H. Forbes, chemist 56
Arkansas 61
Californial 60
('olorado 61
Report by William P. Headden, chemist 63
Study of the analytical data-Continued. Page.
Itaho 64
Illinois 68
Iudiana (6)
Report by H. A. Huston and J. M. Barrett 70
Iow: 72
Kans:as 71
Kentucky 76
Maryland 77
Michigan 78
Minnesuta $\times 1$
Report by Harry Snyder, chemist s:
Missouri 83
Montan: 85
Nebraska St
Report by H. H. Nicholson Ki
Nevarla 87
New Jersey K
Experiments by James 13. Vredenburgh K9
New Mexico 90
Report by C. 'T'. Jordan, special agent 90
New York 93
Report by W. S.Jordan, director of experiment station at Goneva. 91
Report by I. P. Roberts, director of experiment station at Ithaca 916
Elevations of regrion of New York suited to beet culture 98
North Dakota 19
North Carolina. 919
Ohio. 100
Oklahoma 103
Report by G. E. Morrow, director 103
Oregon 103
Report by G. W. Shaw 104
I'ennsylvania 108
Rhode Island 110
South Carolina 110
Sonth Dakota 110)
Texas 112
Tennessee 113
Vermont 121
Report by Joseph L. Hills, director 125
Virginia 11 t
Report by William B. Alwood, vice-director 11.1
Washington 115
Report by Elton Fulmer, chemist 116
Wiscomsin 119
Wyoming 123
Influence of temperature on the quality of sugar beets 12.
Sugar beets as cattle food $1: 8$
Use of beet pulps as cattle food 129
Diftusion pulps or exhausted cosettes 130
Feeding experiments with beet pulp. 131
Beef cattle. 131
Oxerl 131
Mileh cow: 131
Sheep $1: 2$
Experiments made with eves 132
Experiments by Andouard and Dezaunai $1: 2$7
Page.
Summary of data collected in previons years 134
Notes on preceding table 140
Investigation in seed production 141
Tonnessee 1.4
Report by Charles W: Vanderford 145
lientucky 145
Indiana 146
Iowa 146
Report by C. F. ('urtiss 147
Wisconsin 147
Analyses made in laboratory of Department of Agriculture 150
New lork 155
Data of each variety 156
Vilmorin's La Plus Riche 156
Vilmorin's Improved Schuyler seed 156
Vilmorin's lmproved 156
Demesmay 157
Yilmorin's Improved Elite, grown by Dippe Bros 157
High Grade Commercial Kleinwanzlebener 157
Original Kleinwanzlebener (Hollanci) 157
Kleinwauzlebener Elite 157
Classification of the beets of all varieties 158
Preservation of mother beets 158
Growth of seed from mothers ahove described 158
Necessity of seerl development 158

ILLUSTRATIONS.

P'age.Plate 1. Map showing isothermal lines of $68^{\circ}, 69^{\circ}, 70^{\circ}$, and $71^{\circ} \mathrm{F}$, for themonths of June, July, and August, and mean temperatures for thesame months at other points in the State of New York and partsof adjacent intates on the East22
2. Map showing the probable areas suited to beet culture in the United States 24

REPORT OE THE CHEMIST.

H. W. Wiley.

LETTER OF SUBMITTAL.

> U. S. Department of Agriculture, Division of Chemistry, Washington, D. C., March 2, 1898.

Sir: I submit herewith for your consideration the mannseript containing the data of recent investigations on the growth of sugar beets aud the manufacture of sugar therefrom.

Respectfully, H. W. Wiley,
Chief of Dicision of Chemistry.
Hon. James Wilson,
Secretary of Agriculture.

PREFATORY NO'IE.

The investigations conducted by the Department of Agriculture for many years in the study of sugar-producing plants and methods of manufacturing sugar in the United States were suspended by order of Secretary Morton in 1893. In resuming the study of this subject by order of Secretary Wilson, it is important that citations to the work already done be presented. The student of the subject will be able from these citations to have a general idea of the scope of the work which has been accomplished, and will be guided in further research by the data contained in the brief résumé which will be appended. It is not possible in such a list of citations to refer to the work which has been done by the agricultural experiment stations nor by private indi. viduals. A collection of the titles of all accessible works in English relating to the subject of the sugar beet has been issued by the library of this Department as the library bulletin for June, 1897, entitled References to the Literature on the Sugar Beet, Exclusive of Works in Foreign Languages.

In the résumé of citations given below are first noted the publications which have been made in the ammal reports of the Department of Agriculture, and afterwards a list of the special bulletins relating to beet sugar will be fomnd. Many important papers have been published in the ammal reports, which students of the beet-sugar industry might wish to consult. It is interesting to know that as early as 1867 Dr. Antisell, at that time the Chemist of the I epartment, pointed out the probability that an area or belt suited to the culture of the beet might he mapped out. He gave also some of the probable data which would be used in determining the limits of this belt. The annual report for 1868 contains a reference to the fact that Henry Clay visited Europe and made a study of the beet sugar industry on the Continent, and presented the results of his studies in a speech delivered in the Congress of the United States. Careful search of the records has not been able to discover this report in print.

It is to be regretted that many of the agricultural reports are entirely out of print, and the same is true of the greater part of the bulletins which have been issued on the subject of beet sugar. It will therefore not be possible for the Superintendent of Public Documents to supply the bulletins which are marked out of print to those who may desire to secure them.

Following the résume of the work already done is given an account of the investigations conducted under the supervision of the Chemical Division of this Department during the year 1897.

REFERENCES IN ANNUAL REPORTS OF TIIE DEPARTMENT OF AGRICULTURE TO MATIERS RELATING TO THE SUGAR-BEET INDUSTRY.

1862. 536. Relative to the composition of beet juice.
1. 32. Report of Thomas Antisell, Chemist, Department of Agriculture.

Dr. Antisell iudicates the following as the probable "beet belt," based ou temperature conditions:
"The northern limit of the beet culture is doubtful. On the plains of Russia it is grown where the isocheimal line is 10°. If this would hold good on this continent, there is no prortion of the United States too cold for its culture. This vast extent of comentry is naturally divided into two regions, viz: (1) The middle division of the temprate zone of the United States, lying between parallels 39 and 43, comprising Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, Ohio, Indiana, Illinois, Iowa, Nebraska, southeru Idaho, with an area of 453,000 square miles, is favorable to beet culture, the mean annual temperature varying between 47^{\prime} and $53^{\circ} \mathrm{F}$; (2) the district hetween parallels 36° and 39°, embracing the borler States, Delaware, Maryland, Virginia, West Virginia, Kentucky, Tennessee, Missurri, with Kansas, Colorado, Utah, Nevada, and northern California, possessing an area of 675,000 square miles and a mean annual temperature of 58° to $60^{\circ} \mathrm{F}$., is also favorahle to the heet; so that a belt of country 7 wide in latitude and with an extent of $1,129,000$ square miles is open to this industrial art."

In experiments in beet culture on the Department grounds the maximum percentage of sugar in the juice is given for each variety :

Variety.	Number of tests.	Per cent of sugar.
White Silesian:		
Red top.	12	6.97
Green top	110	7. 20
White Magdeburg	12	7.74
Improved IVhite Imperial	11	7. 3t
Beta Imperialis:		
No. 1.........	12	6. 70
No. 2.	12	7. 40
Vilmorin's Improved.	12	7.40
Castlenandry Yellow.	12	8.00

1867. 48. Methods of sugar manufacture in Europe.
1. 158. Report of Theodore Gennert to the Commissioner of Agriculture. A general article on the statistics and manufacture of beet sugar.
1. 164. Notes on the manufacture of beet sugar in Europe.

In 1867 the Department sent nine rarieties of seed to Chatsworth, Ill., for trial, with the following results:

Polarization.
No. 1...................................... 11.90
2....................................... 10. 95 No. 7..................................... . 11.98
3...................................... 12.59
4...................................... 12. 21
5...................................... 11.57
6.
6.
13.52

Polarization.
8..................................... . 13.67
9..................................... 13.25

Average 12.10

Mention is made in this article that while in Europo Henry C'lar took much interest in the beet-sugar industry and afterwards, in a speech in Congress, predicted great results from the introduction of the industry into the United States.
1869. 334. A revierv of the manufacture of sugar in Europe.
1869. 345. A letter included in the above review. It reviews the manufacture in Europe and mentions trials made in the United States. The first attempt to produce beet sugar in this country, mentioned in this review, was by John Vanghn and James Ronaldson, Philadelphia. Seed was imported and beets were grown, but no factory was built.
1870. 98. Report of the Chemist on Beet Sugar. He states that the returns of the growth of sugar beets in this country have not yet shown an approach to that amount of sugar which is yielded by the growth of France and northern Germany. Beets grown at Chatsworth, Ill., from seeds supplied by the Department of Agriculture contained from 9.31 to 11.24 per cent of sugar.
1870. 215. Progress of the beet sugar industry in Europe. A brief statistical article.
1870. 210. Largely historical. Three establishments were in operation-Chatsworth, Ill., Alvarado, Cal., Sauk County, Wis. Capacity of the Chatsmorth factory, 50 tons of beets per day.
1872. 154. Report of Ryland T. Brown, Chemist, United States Department of Agriculture. Following are some of the chief points mentioned:
The experiments of Havid L. Child, at Northampton, Mass., 1838, are prohably the earliest recorded in this country.
The factory of Bonesteel and Otto, at Fond du Lac, Wis., 1867, had a capacity of 10 tons of beets per day; capital, $\$ 12,000$.

Analyses of beots grown on the experimental farm of the University of Virginia, 1872, viz:

1872. L:1. April, 1872 , the legislature of New Jersey passed an act, operative for ten years, exempting beet-sugar factories from taxation.
1873. 108. A brief report by the Statistician.

The two California factories produced an estimated total of 750 tons of sugar during 1873.
1873. 287. Relatire to the capacity and product of the Alvarado factory. Capacity, 7,000 tons of beets per anuum.
1875. 512. A résumé of a German report on the composition of sugar beets.
1876. 153. Statistics of the production of sugar in varions countries. Mention is made in this article of a factory at Soquel, Santa Cruz County, Cal. The State Agricultural Society of California reported in 1874 that the production of beet sugar in the State amounted in 1870 to 500,000 pounds; in 1871 to 800,000 pounds ; in 1872 to $1,125,000$ pounds, and in 1873 to $1,500,000$ pounds.
1876. 266. Statistics of the yield of beet sugar, by countries.
1877. 213. A brief statement as to soils suitable for beets.
1877. 579. German statistics.
1878. 117. Aualysis of a sample of beet-root sirup.
1879. 67. Areport on the analysis of seven sugar beets received from various parts of the comntry. The percentage of sugar in the juice ranged from 8.9 to $\mathbf{1 4 . 3}$, the latter sample being from Oswego, N. Y.
1879. 181. General sugar statistics.
1880. 9. Report of the Commissioner of Agriculture. A report of the condition of the Maine Beet Sugar Company aud a statement of the experiments in Delaware were made. Capacity of the Maine factory, 150 tons per day. In 1877 the State legislature of Délaware appropriated $\$ 300$ as premiums to farmers for crops of sugar beets, and in $1878 \$ 1,500$ were appropriated for the same purpose. Imperfect experiments were made in 1878 by the Delaware Beet Sugar Company. The total crop amonnterl to 350 tons of roots, yielding an average of 9 per cent of sugar. A new factory was built by Colwell Brothers, of New York, costing $\$ 30,000$; with a eapacity of 60 tons of roots per day of twenty-four hours. The company dicl not make rumning expenses, but the experiment was enconraging.
1880. 619. A letter from E.H. Dyer urgiug a bounty law.
1881. 675. Statistics of sugax production. Statistics of domestic sugar are given in brief. Beet sugar was made successfully for three successive seasons in California in one factory. The Maine factor?, which was in operation for three seasons, produciug in one year $1,200,000$ pounds and in another $1,000,000$ pounds of sugar, was obliged to suspend operations for want of beets, which the farmers thought they could not grow at the prices offered, namely, $\$ 5$ to $\$ 6$ per ton.
1881. 22. Report of II. W. Wiley to the Commissioner of Agriculture on the Northcrn sugar iudustry in 1883. This is an abstract of data given in Bulletin No. 3 of the Division of Chemistry.
1884. 529. Yiold of beet sugar in Russia.
1886. 341. Analyses of sugar beets grown in various parts of the country. Most of these samples contained very little sugar, with one exception. This sample contained 18.84 per cent, and was from Menominee, Mich. The highest percentage of sugar in the other samples was 11.71. Twenty-eight tests were made.
1889. 140. Cultivation of the sugar beet. Report of the Chemist.
1890. 167. Experiments with sugar beets. Abstract of a report published in full in Bulletin No. 27 of the Division of Chemistry.
1891. 150. Experiments with sugar beets. Abstract of a report published in full in Bulletin No. 30 of the Division of Chemistry.
1891. 156. Laws relatiug to taxation and bounties in varions countries.
1892. 128. A résumé of experiments with sugar heets. Full details of this work are published in Bulletin No., 36 of the Division of Chemistry.
1892. 467. Statistics of beet-sugar production for the year 1892:

Pounds.

Western Beet Sugar Company.. 11, 390,921

Norfolk Beet Sugar Company ... 1, 698, 400
Total .. 27, 083,322
In 1891 these factories produced a total of $12,00 t, 838$ pounds.
18!3. 175. Experiments withsumar beets. 'This is an abstract of a roport published in full in Bulletin No. 39 of the Division of Chemistry.
1893. 184. Growth of beets at different altitudes.

LIST OF BULLETINS ISSUED BY THE DIVISION OF CHEMISTRY RELA'IING IN WHOLE OR IN PAR' TO SUGAR BEETS.

Bulletin No. 3, Division of Chemistry, Department of Agriculture. The Northern Sugar Industry; edited by H. W. Wiles, 1884 ; pp. 118 (out of print). Pages 24 to 29 of this report relate to the beet sugar industry.
lniletin No. $\overline{\text { I }}$, livision of C'hemistry, Department of Igriculture. The Sugar Industry of the United States; edited by II. W. Wiley, 1885; pp. 224 (out of print).
Part second of this report, including pp. 73 to 136 , inclusire, 12 plates, relates to the beet-sugar industry.
Imlletin No. 27, Hivision of Chemistry, Department of Agriculture. The Sugar Imbustry: Culture of the Sugar Beet, and Manufacture of Beet Sugar; edited by H. W. Wiles, 1890 ; pp. 262 (out of print).

Julletin No. 30 , Division of ('hemistry, Jepartment of Agriculture. Vixperiments with Sugar Beets in 1890; edited by H. W. Wiley, 1891; pp. 93 (out of print).
Bulletin No. 33, Division of Chemistry, Department of Agriculture. Experiments with Sugar Beets in 1891; edited by H. W. Wiley, 1892; pp. 158 (out of print).
Julletin No. 36 , Division of Chemistry, Department of Auriculture. Experiments with Sugar Beets in 1892; edited by H. W. Wiley, 1893; pl. 74 (out of print).
Bulletin No. 39, Division of Chemistry, Department of Agriculture. Experiments with Sugar Beets in 1893; by Harvey W. Wiley, with the collaboration of Walter Maxwell, 1894; pp. 59.

MISCELIANEOUS IBULLETINS AND REPORT.

Special Report No. 28, United States Department of Agriculture. Report on the Culture of the Sugar Beet and the Manufacture of Sngar Therefrom, in France and the Uniter States; by Wm. McMurtrie, 1880; pp. $29 \pm$ (out of print).
Firmers' Bulletin No. 3, I'nited States Department of Agriculture. C'nlture of the Sugar Beet; by H. W. Wiley, 1891; pp. 24 (out of print).
Farmers' Bulletin No. 5., Uuited States Department of Agriculture. The sugar Beet: Culture, Seed Development, Manufacture, and Statistics; by H. W. Wiley, 1897; pp. 48.

PLAN OF THE INVESTIGATIONS FOR 1897.

On the 11th day of January, 1897, the following letter was addressed to the Secretary of Agriculture:
Sin: Numerous inquiries for sugar-beet seed have come to this division instead of to the seed division, amd I ammale to give any definite answer to our correspondents in respert of the policy of the Department regarding the distribution of the seeds in duestion. I would be glad to know if it would be possible for the Department of Aericulture to provide a few thonsand packages of high-grade beet seed which combl he distributed to impuising famers. There is a widespread interest in this country in the sugar-beet industry, and it appears to me that a part of the money voted by Congress for the distribution of seeds could be very profitably used in supplying experimenters with the hest quality of sugar-heet seed. Farmers can not he certain in buying heet seeds from dealers that they are getting anything more than the ordinary quality of garden seeds. The guaranty of the Department, bowever, that they are securing high-crade sugar-bect seeds would be of great advantage.

I am now engaged in a revision of Varmers' Bulletin No. 3, to be used in supplying the information which is so largely asked for respecting the culture of the sugar beet and the maunfacture of sugar therefrom. It would be of interest to make a statement in this bulletin in regard to the possibility of securing the soeds from the Department. An early reply to this inquiry will be appreciated.

I am, respectfully,

H. W. Wiley, Chief of Division.

The honorable the Secretary of Agriculture.
In reply to this request, in the following letter the information was conveyed that no funds were available for the purchase of beet seeds:

> United States Department of Agriculture, Office of the Assistant Secretary, Washington, D. C., Jamuary $13,189 \%$

Tenf: sif: : The Secretary has hanced me your letter of the 11 th instant, ealling his attention to the advisability of distributing some sugar-heet seed in connection with the present Cougressional seed distribution.

If this matter had been mentioned in time it would have heen possible to purchase a supply of heet seed. As it is now, however, the whole appropriation for the purchase of seed is exhausted. There is not a dollar left with which sugar-beet seed could be purchased. If you will bring the matter up early next June it will be possible to include sugar-beet seed in the distribution of the following year.

Very truly, yours,
Chas. W. Dabney, Jr., Assistant Secretary.
Dr. 11. W. Wiley, Chemist.
All further attempts to reestablish the investigations looking to the introluction of the sugar-beet industry in the United states, which had heen suspended during four years, were therefore deferred to a wait the action of the new Administration.

Immediattely after secretary Wilson assumed the duties of his office, arrangements were marle for a renewal of the investigations, but that date was entirely too late to purchase seeds directly from the growers in Eurone; therefore armagements were marle with the Oxnard Beet Shan' ('ompany, which kindly olfered to donate the quantity of seed required for the purpose. As rapidly as possible the seeds were sent
to different parties in the United States iuterested in the subject, special attention being given to distributing the seed in those localities where the theoretical conditions for the production of sugar were the best. Packages were sent directly to the addresses of parties in different parts of the country, and large quantities of seed were distributed through the media of agricultural experiment stations, boards of trade, business men's associations, and others interested particularly in the culture. It is impossible, therefore, to determine the number of persons who were actively engaged in the work during the year.

In so far as possible the cooperation of the agricultural experiment stations was secured, it being deemed advisable to conduct the experiments in each State under the direct anspices of the state anthorities. It was ouly wheu such cooperation could not be secured or where preference was shown for direct communication with the Department of Agriculture, and in miscellancons cases, that the experiments were conducted directly under the auspices of the Department. Copies of Farmers' Bulletin No. $\tilde{5}^{2}$, containing directions for planting and cultivating the crop, were sent to every person directly interested in the experiments, as well as to many others.
The promischous method of insestigation which has been practiced during this and preceding years is fanlty and unsatisfactory. In former reports the objections to such investigations have been outlined. In Bulletin No. 27 of this division (on pages 6,7 , and 8) is found a number of statements relating to the general conduct of experimental work, which are still pertinent. Inasmuch as this bulletin is out of print, it will be found of interest to repeat these statements here:
It must be understood that the object of this bulletin is not to give a complete treatise urou the culture of the sugar heet and the manuacture of shar therefrom, luit simply to indicate, for the information of those interested, the general principles of this industry. One especial object which will be kept in view is to prevent those intending to engage in this industry from going wroug in the begimning and squandering their money and time in battling with problems which science has already met and overcome. It is further hoped that the careful study of the data presented will prevent any mistakes from being made which would end in financial disaster and which are so apt to attend the early history of every industry.

There will probably be found for many years to come in the United States more enthusiasm than knowledge connected with the sugar beet, and the result of this will be, unless great eare is taken, that many ventures will be made which may result in tinameial disaster, disaster which could have been avoided by a thorough comprehension of the findamental priuciples of the industry.

In so far as the manufacture of sugar from the matured beet is concerned, we are able to start at the present time with the accumulated knowledge and experience of threc-quarters of a century of investigation. So perfect have the processes of manufacture become that nearly all of the sugar which is stored in the beet can be secured in merchantable form and by comparatively inexpensive methods. By the tem inexpensive, however, it must be understood th th the actual processes of manufacture are denoted and not the cost of the machinery. The various processes for the extraction of the sugar from the beet, the best methods of clarifying the juice aud of evaporating it and for separating the sugar from the molasses, are thoroughly
Н. Doc. 396-2
well understond amil are no longer legitimate subjects for public experiment. The great problem in this country is the agricultural one. The selection of suitable soil, the finding of the proper climatic conditions, and instruction in the method of planting, cultivating, and harvesting the beets, are all matters of vital importance. Without a careful study of these suljects, and without the proper knowledge thereof, it is a hopeless task to attempt to introduce successfully the beet-sugar industry into this country.

One of the great dangers to le avoided is the formation of hasty conclusious in regard to the proper localities for the production of the sigar beet. Often withont any study whatever of the climatic conditions or of the character of the soil, efforts are made to build large and expensive factories, which as often have to be abandoned on account of having been wrongly located. The studies which have been made heretofore in regard to climatic conditions have been of such a nature as to locate, in a general way, the areas in the United States suitable for the culture of the sugar beet.

It has been found in general that the coast valleys of California, and probably large areas in Oregon and Washington, certain parts of the Dakotas and Nebraska, localities in Minnesota, Iowa, Wisconsin, and Michigan, parts of northern Minois, Indiana, Ohio, and New York present favorable conditions for sugar-leet culture; but in the regions thus broadly intimated there aro certain restricted areas most snitable to the sugar beet, and it is only these restricted areas to which we must look for success. The fact that in one locality, for instance in Nebraska, good sugar berts can be produced would be no warrant whatever for assuming that all parts of that state were erpually suitable for this purpose, aud this remark may be applied to every one of the States mentioned above.

Sugar beets have also been raised in other sections in the United states, notably in New England, New Jersey, Delaware, and Kansas, and while there may be areas in the New England states whero beets can be successfully grown, it must be admitted that the States last named stand in the second rank of beet-sugar producing localities. In Kansas, during the last year, as will be shown in the body of this report, sugar beets were grown and a considerable fuantity of sugar manufactured therefrom. This, however, does not show that hansas will be able to compete with more favorable States in the production of beet sugar.

In general, it may be said that the summers in Kausas are too hot to expect the production of a sugar beet uniform in its nature and containing a high percentage of sugatr.
If the sugar-beet industry is to succeed in this country, the success must come from sharp competition with the same industry in older countries, where its condifions are hetter understood and where the localities suited to it have been selecterd by long and often costly experience. It must also compete with the sugar-caue industry, both of this country and of tropical comntries, and for this reason we can only expect it to survive in those regions where soil and climatic conditions, proximity to fuel, cheapness of labor, and other favorable environments are found.
It is to be hoped that the mistakes which have so long threatened the sorghmmsugar industry with destruction may he avoided with the sugar beet. Calm judgment and sober reason must not give way to enthusiasm and extravagaut expectations. All conditions of suceess must be carefully studicd, all the difficulties in the way of success must he intimately investigated and surmounted, and ample capital, coupled with judicions perseverance, must be enlisted in its behalf.

For the proper ercetion and completion of a beet-sugar factory not less than twelve months shonld be allowed, and even in this time it can only be properly accomplished under experienced technical control.

In Bulletin No. :30 (on page $\overline{\text { fon }}$) the following observations are found:
Only in a fer instances were the directions of the Department followed out to the letter. In most casés tho planting and cultivation of the beet seed were conducted according to such methods as the agriculturist might hit upon at the time. From the information gathered it was found that the chief variation from the instructions was in the preparation of the soil. In very fow cases was a subsoil plow ased and most of the beets which were sent to the Department were evidently grown in soil of insufficient depth. In some cases, where the exact directions for cultivation were earried out, the character of the beets received showed by contrast with the others the absolute necessity of employing the best methods of agriculture for their production.

In Bulletin No. $3: 3$ (on page 9) the following statement is made:
One of the most striking features in regard to this method of conducting experimental work is found in the fact that it is almost impossible to secure compliance with directions. It is evident, at once, that the value of experimental work depends upon the care with which it is done aud the accuracy with which the direetions preseribed are followed. It is not to bo wondered at that farmers, busy with their other oechpations, failed to comply with the minute directions necessary to secure the greatest advantage iu experimental work.

Yery few of the hlanks were retumed properly filled out. In many cases the data which wore returned were palpably croneous. In one instance a yield of 99 tons per acre was reported, and in a great many cases the reported yield per acre was so great as to show inaceuracy on the part of the neasurement of the land or the weighing of the beets. In making ont returns for such reported phenomenal yields the theoretical quantity of sugar per acre given was always questioned. We are aceustomed to look with suspicion upon any yield of sugar beets which exceeds 25 tons per acre. While it is not impossible to secure a higher yield than this, and of beets of good saccharine quality, yet it is so rare as to throw doubt upon miscellaneous data showing an excess of that yicld.

Another point, which makes the returns obtainerl less valuable, is found in the fact of the length of time which necessarily elapsed between the harvesting of the beets and their reception at the laboratory. Nearly all the samples received were fom distant States, requiring for packages of this kind from three to eight days in the mails. Althongh the beets were in most cases well wrapped, accorling to directions, onr experiments have shown that they must have lost a considerable quantity of moisture by evaporation during their long transit. The data, therefore, showing the coutent of sugar in tho juice would be uniformly too high for normal beets. It is estimated that not less than 10 per cent should be subtracted from the mumber for sugar to express the normal percentage of sugar in the beets as originally harrested.

In I;ulletin No. 35 (on page 2S) the ideas outlined above are somewhat expanded in the following words:

Bofore proceeding to discuss the data in the preceding tables, attention should bo called to the fact that in previous reports of this kind some dissatisfaction has been expressed in some States on account of the poor showing of the samples therefrom. In former reports attention has been particularly called to the probability that the data obtained by this method of experimentation are not wholly reliable and in all cases do not truly represent the capabilities of any locality for beet-sugar production. It is true that a large number of data received from a given State will indicate, in a general way, whether or not that State is capable of producing a good sugar beet, but where the number of data is limited, it may be that the agricultural conditions mnder which the samples were produced were so poor, or the season so exceptional, as to prevent a fair judgment of the capabilities of the soil and climate. On the
other hand, the culture which the samples received may have been so careful and the seasonal conditions so favorable as to produce a beet far above the average which conld be produced in the whole State.

Again, the loss of moisture dhring transportation, or the fathere of the farmers to send their beets in as soon as harvested, may tend to reduce the amount of water present in the heet and to raise correspondingly the quantity of sugar therein. Inasmuch as the analyses are made on the expressed juice, this would tend to show always an increased amount of sugar over that present naturally in the beets.

All thes disturbing influences must be taken into consideration in judging the data which have been recorled. This has been said in general explanation so as to forestall any criticisms which may be made of the value of the data obtained.

To illustrate more particularly what is meant, attention is called to the instance, saty, of ('olorado and Montana. From the state of Colorado one hundred and twentythree samples were received for analysis, and from the State uf Montana only one sample. Any comparison, therefore, leetween the average results of the two sitates would be simply absud. While one hundred and twenty-three samples from Coloralo, showing, as they do, fine possibilities of sugir-boet culture, indicate that the State uf ('olorado is capable of producing heets of high quality, the single sample from Montana, whether it proved exceptionally poor or exceptionally fine, could have been no criterion by which the capabilities of the State for boet sugar could be jutged.

In connection with the tentative results which have been obtained by this kind of work should be considered the characteristios of the soil aud climate of each locality, ansl hy putting the two together a fairly good idea can he formed of the possibilities of bect-shgar production. The reader should rarefully bear the above explanation in mind, both in looking over the data in the tables and in reading the remarks thereon which follow.

In Bulletin No. 39 (on page s) in commenting on the results of the year's work, the following statements are made:

The general results of tho work this year are somewhat discouraging as compared with previons years. Thronghont a great part of the beet-growing region the summer was excessively dry, and large numbers of total failures were reported.

In former reports attention has bern called to the fict that the present method of experiment is unsatisfactory, and the reasons therefor have been fully set forth. The farmers are so busy with other work that, as a rule, they are not able to give careful aftention to the oxperimental dotails. They do not have the time to suitably propare the suil for beet culture, nor do they give the growing beet proper attention. When the time for harvesting comes they are usually engaged in other farm work, so that the beets are not harrested at the right time, nor are data obtained by means of which any accurate estimato of the yield per acre can be determined. 'The analytical data, therefore, of such work are usually fragmentary and far from teaching any definite lesson in regard to the industry itself. In general, however, the data hear out those of previous yoars in showing the areas in this comatry where the best bocts can be grown. It is in these regions that the development of the industry must be expected.

There is probably not a State or Territory in the Union which is not capable of growing a fair article of sugar beets. Even in the far South beets of fair sugar content hare been prodnced, and with good tomnage; but when the competition of the world is to be met, with the price of sugar as low as it is now, only those parts of the combtry where the soil and climate are especially favorable can be expected to compete suceessfully with the heet-sumar industry already firmly established in older cometries. 'The sole valuable lesson, therefore, of the promiscuous distribution of bret seed is in the liact that, as a rule, those regions best suited to the growth of the sugar heet will gradually lue outlined, and intending investurs led to the proper localities for the establishment of factories.

The great success of the beet-sugar industry on the Parific coast leads to the conclusion that if the northern part of the eastern and central portions of our country is to become the seat of a great sugar industry, every possible allyantage must he taken of soil and location, in order to compete successfully with the beet fields of California, Washington, and Oregon.

The experience of the past season, as will be seen from the data iu the following pages, has served only to give additional point to the observations made in previous bulletins.

The sugar-beet industry in this country has now reached a point where it is incumbent upon the National Government to secure a complete and accurate agricultural survey of the country in respect of growing beets. The competition in sugar making is now so keen that only those localities where natural conditions are best will, in the end, be found sustaining the industry. If we depend upon costly experiment to delimit these localities, hundreds of thousands of dollars will be wasted in the attempt. At a comparatively small expense, the Department of Agriculture will be able to have made careful and accurate surveys, based upon experimental data, to point out the regions where the sugar industry is most likely to succeed. This, howerer, can not be done by the promiscuous kind of experimentation which the Department has been compelled heretofore to pursue. Up to this time a sufficient scientific interest in the matter has not been aroused among the people to secure the kind of a survey which is necessary. Now, howerer, the conditions have changed. The agricultural experiment stations in most of the States are thoroughly aroused in this matter. They are willing, with the cooperation of the Department, to undertake an agricultural survey of their respective localities. In addition to this, intelligent men, either in their capacity of private eitizens or as representatives of boards of trade, or of business men's associations, are ready to supervise, in limited districts, series of experiments which will give satisfactory answers to the questions which must be answered before the sugar-beet industry is fully established. It will therefore be the object of the Department in subsequent work, espe. cially that of 1898 , to secure in each locality interested in the matter, a few carefully conducted experiments. To this end it is urged that the experiment stations in the various states arrange with 2., 50, 100, or more representative farmers, who can be relied upon to do good work, to grow plats of beets in size of not less than half an acre.

CLIMATOLOGY.

It is evident that one of the first things to be consilered, after the soil itself, in connection with the sugar beet industry is the climate. The sugar beet is a plant very susceptible to climatic conditions. At the beginning of its growth the beet plant is peculiarly helpless. It can not lift, in passing from the germ to the new plant, the lightest clod. A rain which packs the surface of the soil immediately after germination will sometimes prevent the plant from reaching the light.

After the plant is estahlished it regnires a considerable quantity of water for its proper grow this water must be supplied either by the ratutall of the locality, by irrigation, or by the subsoil. High temperatures extending over long periods of time are permbiarly injurions to the storing of sugar in the taber. While high temperatures may not diminish the tomage yelded by a fied, nor apparently prolnce any injurous effecte, in so far as the external appearance of the mature piant is concernerk, it will be foumd as a rule, that plants grown under such comditions of temperature are less rich in sugar than others srown in a mider rlimate. Sine the prometion of sugar in the leaf of a phant is a joint fumetion of the chlomphyll cells and smalight, it is fomed that the high northern latitudes, where the summer days are exceptionally long and the nights correspmolingly short, temd toproduce, other conditions being the same, a beet rich in sugar. The chmatie conditions of this countryare so different from those of Europe as to render of little value the seneral conclusions which experience has drawn from the effect of climate, in the beet sugar prowneing countries of Emrope. on the sugar content of the beet itself. Nevertheless, it is seen that in burpe the great centers of the beet sugar imblustry are in regions far to the north, in fact, so far north as to make it impracticable ever to expect, in this embitry: to estahlish the centers of the industry on the same paraliels of latitude. When it is considered for a moment that the great cap. 1als of Europe-St. Petershurg. Lombon, and berlin-are situated 1 , 4 bin). Sit) and 9 ! 0 miles. respectively: noth of Whathatom, and yet in pros perons agrieultural commonities the ahowe statement hoes not create sumprise. The ricissitules of elimatic comditions in: morthern Enope are also less markerf than they are in the I'nited states. Thonghout Hhe beet growing area of Europe it is expected that the summers will be mild. They are not attended with many days of excessive heat. Spring comes carly and pormanently; the antum comes showly and late. In France and Belgium a severe frost is not experted in May. nor is it anticipated that ice of a monsiderable thickness will fominoctober. The summer days in these hecalities are emsiderably honger than even in the mone nowthern portions of our cometre and at least an hom longer than in the whers of our greatest agricultmal prosperity: We fimd, therefore, so great a deviation in their climatic conditions that we can not apply with rigidity in this conntry the males respecting the climate dedued fom the experience of European comatries. With those rules applicable in this comutry, it would be easily demonstrable that the great center of the sugar heet industry on this continent would be in G:amala, and mot in the United states. We have, therefore, had to depend son far lately on theory in the applieation of the principles of climatology in the culture of the sugar beet in the United States. The experimental data which have been at our disposal have been fragmentaryandas has ahrealy heen moted, have mot ieen secmed in the systematic way rlesinable. The result is, even to day, that many of our theories

CORRECTIONS.
For Plate I read Plate II.
For Plate II read Plate I.
in regard to climate are not yet substantiated by facts. In the light of the data at hand, in the publication of previous reports it has heen assmmed that the beet-sugar zone of the United States would be fomed located over an area of which the southern limit would be marked by the mean isotherm of $71^{\circ} \mathrm{F}$. for the summer months of June, July, and Angust. While this temperature is considerably higher than the mean temperature of the European beet-sugar areas for the same period of time, it has almays been evident that the beet area of the U'nited States would neeressarily be situated farther sonth than the like area of Europe. There are two reasons which make this location imperative. In the first place, the more northern latitudes not only have late springs. but even after the spring is once established the ocemrence of a heary frost is not unusual. In the second place, these same latitules have short autumns, and the occurrence of heavy frosts in late October or early November are not at all mexperted. As a result of this, the season for the growth and harvest of the beet is too short if we should apply for the mean summer temperature the same rules as obtain in Europe. It is evident, however, that the assumption of the mean isothem of 71° for June, July, and August as the southern limit of the heet-sugar area is based upon so many independent conditions as to render it only useful as a working basis.

OTIIER CONDITIONS.

In connection with the temperature must he considered the rainfall, the contom and the mature of the soil, the possibility of imsation, the abundance of subsoil moisture, the proximity of coal, limestone, and water, price of labor, fateilities for distribution and transportation, and many other matters which are important in a diseussion of the subject. It is further evident that the tracing of a single isothermal line and the arbitrary addition thereto of a certain width of land on either side do not give eren the proper theoretical thermal hasis for a careful stury of climatic conditions.

MAP OF THERMAL BELT.

For this reason, the present report is supplied with a new map (PlateI), which has been kindly prepared by the Weather Bureat at our rerpuest, in which the isothermal lines for June, July, and Anginst have been traced with greater care and from data extending over a longer period of time. ${ }^{1}$

The result of these new studies has been to change from former maps, in some cases slightly and in some cases consirlerably, the position of The mean isotherm of 70 for the three summer months named. This change, as will be seen by consulting the new map, is most marked in

[^8]the case of the State of New York, where in former maps the mean isotherm of 70 was traced in a line ruming almost directly west from Albany to Buffalo.

CHANGES IN TIIE NEW MAP.

In the new map the influence of the Allegheny Momitains on tempera ture has been more rarefully studied, and as a result there has been a considerable deflection of the isotherm of 70 to the sonth and sonthwest. The general trend of this isotherm from Albany is in a southwesterly direction until the Allegheny Mometains are crossed, where it turns in a westerly direction until it reaches its former location practically in the neighborhood of Cleveland, Ohio. The position of this isotherm from this point westward is so nearly the same as that of the other map as to require no particular mention. The State of New York, howerer, especially that portion of it lying between Albany and Buffalo, has peculiar thermal conditions, and these are shown in a special map of that State (Pl. II). A considerable area of the State with a mean summer temperature of 70 is found in the northwestern part in the neighborhood of Rochester, while between this area and the continnous isotherm of 70°, as tracel upon the map, is a considerable space of tervitory where the mean summer temperature is considerably below 700. This area, however, corresponds more neaty to the heet areas of northern Europe than any other portions of our country. The temperature and other climatic conditions in this area are more uniform by reason of the morlifying effects of the (ireat Lakes on the winds whish blow from the west and northwest. The experimental data which have been collected show, therefore, that this area, although in many cases the mean summer temperature is below 70 , is peculiarly suited to the production of beets of a high sugar content. The comparatively mild springs and antumns also favor the planting and harvesting of the beet, so that the conditions of this area are as favorable to the production of beets of the proper grade as those areas lying immediately contiguous to the mean isotherm of 70°.

TRIPLE ISOTHERMAL LINES.

As a single isothermal line passing across the country affords a very narrow basis for study, it has been deemed advisable in the map herewith presented to take as the nuelens of the isothermie sugar zone not mereiy the isntherm of 70°, hat that belt of territory, varying in width, which is bommed by the isotherms of 69° upon the north and 71° upon the sonth. The isotherm of 700 is fomd between these t wo, usually occupying the center of the belt, or nearly so, but sometimes approaching more nearly the one or the other. If, now, we add to the outside of the belt of irregular width, thus outlined by the two isotherms mentioned, on the south a strip) of country of varging width and on the morth an area bommed by the limit of dangerons frosts, this area will
为

Map showing the probable Areas sulteo to Beet Culture.

is
01
h
I.
01
S1
11
is
te
7
11
tı
ri
b
b
tl
1)
N]
Si
1)
tr
11
practically include the whole of the United States which, from theoretical conditions of temperature, is best suited to the growth of sugar beets of a high saccharine content.

BEE'I ZONE.

The shaded portions of the mar, herewith presented indicate in a general way this area. No attempt has been made to extend this lateral shading west of the Missouri River. The paucity of data for the western part of the country, in connection with the extreme vicissitudes of climate, renders of little value any extension of the thermal belt.

ANNUAL RAINFALL.

Comnected with this study, the ammal precipitation is of the utmost importance. There has therefore been marked upon the map, in the area covered by this belt, the mean precipitation, in inches, from 50 to 40 , from 40 to 30 , and so on down to the least recorded quantities of rainfall in the far western arid regions.

The mean amual precipitation is, of course, of importance in determining the relations of the different regions to the water supply and the need of irrigation. It is also important to know the mean precipitation for the months during which the chief growth of the crop and the harvest take place, namely, for April, May, June, July, August, September, and October. The mean precipitation for each of these three months, as furnished by the Weather Burean for the localities mentioned, is indicated in the following tables:

Montlvly arerages of rainfall, April-October.

Stations.	Lati. tule.	Longiturle.	Eleration.		Apr.	May.	June.	July.	Aug.		Oet.	Total.
MASSACHUSETTS.												
Amberst	4222	7232	235	61	3.1	3.9	3.7	4.5	4.4	3.4	3.9	26.9
Boston.	4221	7104	12	79	3.8	3.7	3.2	3.6	4.3	3.4	3.8	25.8
Fall River	4142	7109	259	22	3.9	4.0	3.1	3.5	4.4	3.3	4.5	26. 7
Fitchburg	4236	7150	433	32	2.9	3.8	3.3	3.7	4.3	3.2	4.1	25.3
Lowell...	4239	7117	104	42	3.6	3.7	3.3	3.8	4.4	3.3	3. 8	25.9
Nety Bedford	4139	7056	100	83	3.6	3.8	3.0	3.1	3.9	3.3	3.7	24.4
Springfield	4205	7235	70	47	3.2	4.2	3.8	4.5	4.5	3.4	4.2	27.8
Taunton	4154	7105	30	29	3.6	3.3	2.5	3.5	4.2	2.8	3.8	23.7
Worceste	4216	7149	473	43	3.7	4.1	3.1	3.8	4.5	3.5	4.4	27.1
CONNECTICUT.												
Martford	4145	7240	38	27	3.0	3.6	3.0	4.1	4.6	3.2	3.9	25.4
New Haven.	4118	7256	10	45	3.3	3.9	3.1	4.5	4.6	3.8	3.8	27.0
New London	4121	7205	8	26	3.7	3.6	3.2	4.0	4.7	3.4	4.4	27.0
Middletown	4133	7239	37	33	3.4	3.8	3.5	4.3	4.8	3. 6	4.1	27.5
Southington	4135	7251	152	26	3.1	3.2	2.8	3.9	4.6	2.9	3. 6	24.1
Wallingford	4127	7249	73	35	3.6	4.2	3.6	4.2	5.0	3.6	4.2	28.4
NEW YORK.												
Albany	4240	7345	32	69	2.8	3.6	4.1	4.2	4.0	3.5	3.5	25.7
Butlalo	4253	7853	587	27	2.5	3.4	3. 5	3.2	3.2	3.3	3.6	22.7
Cooperstown	4242	7457	1,300	43	2.6	3. 6	4.1	4.3	4. 1	3.4	3.3	25.4
Gouverueur	4425	7535	423	21	2.1	2.7	2.7	2.8	2.3	3. 1	3.4	19.1
Ithaca.........	4227	7630	375	36	2.2	3.4	3.7	3.5	3.0	3.0	2.9	21. 7
New York City	4043	7358	52	61	3.4	4.0	3, 8	4.0	4.7	3.4	3.6	26.9
Nortl Salem...	4120	7334	361	23	3.4	4.4	3.5	4.0	4.1	3.1	4. 1	26. 6

Monthly averages of rainfall, April-October-Continued.

Sutions.	Latitude.	Longitull.	Elevation.	$\begin{aligned} & \text { um. } \\ & \text { ruf } \\ & \text { ars. } \end{aligned}$	$\Delta \mathrm{Lr}$.	May.		uly.	1119.	Sept.	Oet.	Total.
NEW YORK-cont'd.	-	0										
Ostrego	4329	7635	335	26	2.1	2.8	3.4	3.1	2.6	2.8	3.3	20.1
Palermo	4320	7622		42	2. 3	2.8	3.3	3.3	2.7	3.2	3.4	21.0
liochester	4308	7742	494	27	2.5	3.3	3.3	3.0	3.0	2.4	2.9	20.4
Utica..	4306	7513	473	41	2.7	3.5	4.3	4.7	3.5	3.5	3.5	25.7
NEW JERSEY.												
Atlantic City	3929	7425	13	23	3.3	3.1	3.0	3.5	4.3	3.2	3.2	23.6
Lambertville	4023	7457	75	25	3.3	4.4	3.8	4.4	4.9	4.3	3.6	28.7
Newark	4045	7410	13	52	3.5	4. 0	3.5	4.4	5.0	3.8	3. 6	27.8
New Brunswick	4030	7427	48	43	3.7	3.9	3.9	4.7	4.9	3.8	3.4	$2 \times .3$
Southi Orange	4045	7415	141	26	3.3	3.2	3.6	4.9	5. 2	4.0	3.7	27.9
Trenton.	4014	7445	33	24	3.7	4.1	3.9	5.5	5.3	4.0	4.0	30.5
Tineland	3929	7501	97	25	3.3	3.9	3.3	4.3	4.9	4.0	3.4	27.1
PENNSYLVANIA.												-
Bloomin	4123	7509		25	3. 2	4. 0	4.1	5.0	4.9	3. 1	3. 6	27.9
Dybery	4138	7518	1,100	25	2.5.	3.4	3.1	4.6	3.8	2.8	3.3	23.5
Erie.	4207	8005	686	23	2.5	3.8	3.9	2.8	3.3	4.0	4. 1	24.4
Gettysho	3949	7715	621	24	3.5	4.0	3.5	3.4	3. 6	3. 0	3.1	24.1
Marrisiourg	4016	7653	320	25	3.0	4.6	4.4	4. 2	3.9	3.6	3.3	27.0
Pittsburg.	4022	7959	745	54	3.0	3.5	3.6	4.0	3.4	2.9	2.8	23.2
Philadelphia	3953	7510	32	72	3.4	3.8	3.8	4.0	4.3	3.5	3.2	26.0
MARYIAND.												
Tallimore	3917	7637	68	26	3.4	3. 8	4.0	4.7	4. 0	3.9	2.9	26.7
Cimberland	3939	7845	639	24	2.5	3.4	3.8	3.4	3.2	2.8	2.3	21.4
Emmitsbur	3943	7720	498	12	3,5	4. 6	3.9	3. 4	3.:3	3.8	3. 8	26. 3
Frederick.	3924	7724	415	15	3.7	4.4	4.6	3.5	2.7	3.7	2.5	25, 1
OHIO.												
Cloveland	4130	8142	582	41	2.7	3. 5	3. 9	3. 1	3.1	3.6	9. 8	23.0
Columluas	3958	8300	812	17	3. 2	4. 2	3.5	3. 2	3.2	2. 6	4. 6	22.5
Marietta	3930	8126	611	69	3.3	3.9	4.1	4.4	3.9	3.1	3.1	25.8
North Lewisbr	4011	$83 \quad 35$	1,030	25	3.1	3.9	4.0	4.4	3.3	3.2	2.2	24.1
Steubenvill	4025	8041	663	39	3.4	3.9	4.0	4.0	3.9	3.5	3.1	25.8
'Tolerlo.	4140	$8: 334$	579	26	2.2	3.4	3.4	3.1	2.7	2.4	3.4	19.6
Wamseon	4136	$8+07$	767	33	3. 0	4.2	4.1	3.4	2.7	2.6	2.6	22.6
Westerville	4001	8246	850	35	3.0	3.4	3.8	3.9	3. 3	3.1	3.1	${ }^{23} 2.6$
INIHANA.												
Ancola	4136	8500	1,052	11	2.9	4.5	3. 7	2.7	2. 7	3. 8	2.3	22. 6
Columbia Cit	4109	8530	863	16	3.4	4.5	4.1	3.2	\because	3.9	1.9	23.7
Connersville	3940	8503	844	14	3. 7	4.4	4.3	3.4	2. 7	2. 6	2.2	22. 3
Farmland..	4011	8510	1,040	14	3.4	4.7	4.0	2.8	3.5	3. 6	2. 0	$2 \pm .0$
Fort Wayn	410.5	8507	815	13	3.2	3.9	3. 8	4.9	3.4	3.9	3.0	25.4
Indianapoli	3946	8610	753	27	3. 6	4.0	4.5	4.2	3.3	3.1	2.8	25.5
Lafayette.	4028	8654	667	16	3.7	4.8	4. 2	3.7	3.5	2.7	2.2	$2+.8$
Logansport	4045	8622	586	19	3.5	5.0	4. 2	3.9	2.9	3.1	3.5	24.1
Манzу…	3937	8523		13	3.5	4.2	4.5	2.2	2.7	3.1	2. 5	22.7
Richmoner	3951	8153	850	26.	3.6	4. 3	3.9	3.5	3.9	4.1	2.8	26.1
Suiceland	3948	8518	1,063	28	2.9	3.8	4.1	4.1	3.3	3.1	2. 2	23.8
Whash.	$40 \quad 18$	8549	698	10	2.9	4.2	4. 6	3.4	3.0	2.5	3.6	24.9
ILIINOIS.												
Athens	3957	$894 \overline{7}$	800	16	4.1	4. 8	5.7	3.4	3.0	3.3	2.5	25.8
Angusta	4012	3057	674	19	4.0	4.1	4. 1	4.8	3. 6	4. 1	2.9	27.6
Anrora	$41 \$ 7$	8808	6.48	92	3. ${ }^{\text {a }}$	4.0	3.8	3.3	3. 4	3.2	2.9	23.8
Chicago	4152	8738	589	30	3.0	3.7	3.7	3.4	2.9	3.0	2.7	23.4
Elmira	4110	8949	50.5	17	3.2	4.1	4.1	3.2	3. 6	3.3	2.1	23.6
(ialeslurg	4056	9022	756	12	2.9	3.5	4. 19	3.7	4. 2	4. 1	-3. 6	25.0
(irneseot	4127	9000	845	11	2. 7	3.1	3.8	2.9	3.0	3.6	2.7	21.8
Havana.	4018	$90 \quad 05$	475	11	3.5	3.6	4.2	4. 6	2.5	3. 8	2.2	24.4
Monnepin	4116	8921		13	3.0	3. 7	4. 1	3.0	$\stackrel{\text { ¢. } 8}{ }$	3.6	2.7	21.9
Marengo.	4215	8837	819	45	2.8	3.9	4. 3	3.7	3.7	3. 8	2.4	24.6
Mattoon	$39+9$	8824	737	15	4.2	5.0	4.8	3.9	3.4	3.9	3.8	27.0
Oswego	4140	8823	670	16	3. 0	3.9	4. 0	3.1	3. 0	2.8	$\because .8$	22.6
Ottava	4122	8848	688	25	2.9	4. 0	3. 6	3.6	2.9	2.9	2.3	2:. 2
Peoria.	4042	8936	452	41	3.2	3.8	3. 7	4.0	3.0	3.5	2. 5	23.7
Philo	3959	8808	771	11	3.8	4. ${ }^{2}$	4.2	2.7	2.1	3.3	1.7	$2 \pm .0$
Tontiale	4054	8840	600	6	2.2	3.2	3. 2	2.2	1.5	1. 7	1.5	15.5
Rockford	4215	8905	730	22	3.3	4. 0	4. 8	3. 6	3. 2	2. 4	3.2	24.5
Tinck Island Arsenal	4132	${ }_{9}^{90} 38$	528	14	2. 7	3.9	3. 9	3.7	3.3	3.2	1.6	$\stackrel{29.3}{97}$
Sandwich.............	4131	8832	656	17	3.7	4.6	4.3	4.5	4.5	3.5	2.5	27, 6

Monthly averages of rainfall, April-Ochober-Continued.

Sections.	Latitude.	Longi. tude.	Eleration.	Number of years.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Total.
MLLTNOLS-contimmed. $0^{\text {a }}$,												
Springfield	3948	8939	614	17	3.7	5.0	4.4	2.8	2.4	3.2	2. 7	24.2
Sycamore.	4200	8842	800	15	3.6	4.3	5.0	3.6	2.9	3.0	3.1	25.5
Watseka	4048	8745	640	7	3.7	5.6	3.7	3.0	2.4	2.9	2. 6	2\%.9
Winnebago	4217	8912	861	18	3.2	4.0	4.1	3.5	3.9	3.6	2.3	23.9
Wyanet.	4130	8945	750	11	3.8	4.6	4.5	4.2	4.7	4. 8	2.4	29.0
WISCONSIN.												
Peloit	4230	8911	741	30	2.9	3.2	4.0	3.5	3.6	3.4	2.5	23.1
La Crosse	4349	9115	637	24	2.4	3.3	4.5	4. 0	3.2	4.2	2.3	23.9
Madison	4305	8924	857	28	2. 6	3.5	4.5	4.0	3.1	31	2.6	23.4
Manitowoc	4407	8746	593	33	2.4	2.6	3.6	3.5	3.2	3.0	9.6	20.9
Milwaukee	4302	8754	591	53	2.8	3.4	3.8	3.2	2.7	3. 0	3.2	21.1
michigan.												
Detroit	4220	8303	580	46	2.6	3.1	3.8	3.6	2.6	3.0	2.6	21.3
Grand Haven	4305	8618	593	25	2.6	3.4	3.8	2.8	2.7	3.6	3.2	22. 1
Grand İapids	4257	8540	604	14	2.8	3.6	4.2	$\bigcirc .4$	2.4	3.4	2.5	21.3
Kalamazoo.-	1220	8538	770	20	2.6	4.4	4.5	3.2	2.6	3.2	2. 8	23.3
Lansing	4244	8432	836	33	2.4	3.4	4.0	3.1	2.7	2.9	2.5	21.0
Port lurou	4300	8226	584	22	2.1	3.4	3.5	2.4	2.6	2.6	2.8	19.4

STUDY OF PARTICULAR LOCALI'IES.

North Carolina and West Virginia.

The elerated areas of the mountain regions of North Carolina and West Virginia afford conditions of temperature and precipitation which are favorable to the growth of sugar heets. The rough and momtamous character of this portion of the combtry, however, fresents mechanical difficulties in cultivation of sufficient magnitude to warrant the statement that the beet industry on a large scale is not likely to be established within it. A protion of the region speceitied has a mean ammal rainfall of more than 50 inches, while the most of it is supplied with a rainfall of t timehes. It is not probable, on alecomit of the consideration mentioned above, that the beet-sngar industry, on a seale of any magnitude, will ever be established in the regions specified.

Eastern Shore of Maryiand.
The isotherm of $\mathbf{i c}$ enters Maryland at a point about the center of the Atlantic coast of the eastern shore, and runs north hey nothcast almost to Ponghkeepsie, N. I. It is evident, therefore, that the temperature conditions of this region are similar to those on or south of the isotherm of 71 in other parts of the country, although here in this area the region lies to the west of this isotherm. Judged lyy this factor, and also by the mean ammal rainfall, which is 40 inches for this locality, the cultivation of the sugar beet might be success. finly inaugrated along the Atlantic coast of the eastern shore: in fact, practically over the whole of the southern portion of the eastern shore of Maryland. The character of the soil in this locality is mostly sandy, and its natural fertility has been considerably diminished by long years
of cultivation. There is no reason to doubt, however, the fact that with proper fertilization and cultivation the requisite degree of fertility for the production of sugar beets could be secured. The general tendency in this region is in the direction of a too high temperature and too few hours of sunshine. The above observations apply also to Accomac County, Va.

DELAWARE.

The observations which have been made in regard to the eastern shore of Maryland also apply to the eastern region of Delaware. On account of the ravages of the "yellows" among the peach orchards of southern Delaware, it might be worth while for the agricultural experiment station to make a careful survey of the southeastern portion of the State with reference to the possibility of producing sugar beets of the reunisite degree of saccharine strength. The surface of the soil is generally level; a good deal of it is of a samdy nature, and so far as its physical properties are concerned, it may be regarded as favorable to beet growth.

New Jersey.

The mean isotherm of $71 \circ$ degrees passes northward almost parallel to the Atlantic coast of New Jersey, and at varying distances therefrom. The part of New Jersey lying between this isotherm and the seacoast is mostly composed of sandy soils, reasonably level. There are no mechanical difticulties of any magnitude connerted with the culture of the bect, and the problem of fertilization of the soil is one which is easily solved. The same observations in regard to possibilities of beet culture may be made of this region of New Jersey as have been made in respert of Maryland and Delaware. This general observation relating to the whole may be added:

We have in this area a mean summer temperature of 71°. In no place does it reach the isotherm of 70 . The whole region may therefore be regarded as representing that of a maximum temperature compatible with beet culture. It may he further said that the culture of the beet should only be pushed south and beyond the isotherm of $71{ }^{\circ}$, where peouliar natural advantages, independent of thermal factors, are afforted. These nitural advantages consist of exceptionally fertile soil, favorable contour of the surface, cheapmess of fuel, facilities for transportation, ete. A large portion of the region which has been mentioned is devoted to truck farming for the markets of large cities, and it is doubtful if this remunerative form of agriculture could be replaced sucressfully with sugar-beet culture in competition with more northern localities, where richer beets can be produced. Nevertheless, the possible production of fairly good berts in the region indicated must be admitted from the point of view of temperature and precipitation alone.

It will be observed that, both in respect of precipitation and temperature, the whole of Connecticut may be regarded as lying in the beet belt. From theoretical considerations, therefore, it conld be predicted that beets grown in C'omecticut would show a satisfactory content of sugar aud possess a high purity. So favorable are the theoretical conditions in that locality that it would be advisable for the agricultural experiment stations of the State to make a systematic agricultural survey of the possibilities of growing beets. The valley of the Comecticut River affords a fertile field of experiment where the mechanical conditions of culture and the uatural conditions of the soil are factors which favor success. There are large areas of the State, however, so broken in contour as to render the possibilities of beet culture unpromising, but wherever large bodies of fairly level land with good fertility can be found it is fair to presume that the culture of the sugar beet would be attended with success. Conditions which obtain in Comecticut are also found in the State of Rhode Island, althongh a portion of that State lies north of the isotherm of 69°. As will be seen farther along, however, in discussing the conditions of growth in New York, there are many localities in the Uuited States north of the isotherm of 69° where beets fiourish; in fact, it may be said that the possibilities of growing beets north of the isotherm of 690 , where reasonably mild antumns can be expected, are much better than sonth of the isotherm of 71°.

Massachusetts.

The valley of the Comecticut, in the State of Massachusetts, loubtless affords as fine facilities for heet culture as in the State of Connecticut. The greater part of the State lies north of the isotherm of 69°. As in the case of Comecticut, there are donbtless many regions in this State north of the isotherm of 69° where, owing to the mild autumns, the sugar beet may be expected to grow satisfactorily for sugar-making purposes. A large part of the State is unfitted, by reason of its contour and the nature of the soil, for the culture of beets, but at least the Connecticut Valley and similar stretches of soil might be used to good advantage for this purpose.

New Hampshire and Vermont.

These States, lying north of the isotherm of 69°, will have to contend in the growth of beets with the shorter growing season and less heas for the three months of June, July, and August for forcing the beets to maturity. Nevertheless, it is doubtless true that for a distance of 100 miles, or even more, north of the isotherm of $69{ }^{\circ}$ beet culture could be practiced with success on account of the longer summer days. Samples of beets received from Vermont and analyzed in this laboratory show
favomble contents of sugar, and high purities. Those grown also at the experiment station of Vermont, as will be seen farther on, afford encouksing datar. The thing to be feared in these localities is not inabilit! to grow a beet rich in susar, but the possibility of being able to harest and secore it poprely hefore the advent of winter. These areas do not engoy the immonity fon sudden rhanges of temperature, due to the lake breeres, which is chatacteristic of the great plan of the State of New York between Albany and Buttalo.

New Yomk.

In this State we have a remarkable variety of ther hal conditions. The mean isotherms of (69) and 70^{-5} pass in a southwesterly direction trom Albany into the state of L'emsylvania, following, in general, the trend of the ranges of the Allegheny Mountans. The influence of these high altitudes is seen in forcing these isotherms to the south. The sontheastern portion of the State of New Vork lies, therefore, within the belt of isotherms peculiarly lavorable to beet culture, with the exception of the valley of the findson from a point a few miles above ['onghkepse to the month of the river. This valley, including the eity of New lork, has a higher temperature than that deemed most suitable to beet culture. As this valley is, however, matited hy reason of its rontour to the culture of beets, the above fact is of little importance. P'assing to the west of Alhany, the mean smmer temperatmes for the three months of June, July, and Angust are considerably below the standards which have been mentioned matil the region immediately east of lochester is reached, where again we find a mean isotherm of 70°, and about Palmyra of almost 71°. SouthWest of this the mean temperatures of the stmmer are again below ti9? Nevertheless, a farly satistactory atricultural survey of this region has shown that it is capable of producing beets of high quality ; and the effects of the lake breezes upon the climate have donbtless much to do with this (ondition. For instance, in regions in this area where the mean smmmer temperature is helow be the atumms are far more mild than in the similar regions in Mimesotio, so that the months of October and November ean both be relied upon with great certanty for secmring the hanest of the beets. As has been before mentioned, we have in this region a nearer approach to the conditions of beet growing in northem Emope than in any other place in the United States. 'Ihis whole region, therefore, mast be considered and included in the anea of our country where the theoretical conditions, and where the actual conditions, of temperature and precipitation favor the production of a best of high saccharine content. If we should leave out of the calkulation the southern deflection of the isotherms of $6!+$ and Fo 0^{-}. due to the $A p p a l a c h a n$ system, and connect directly the area, in the neighborhoud of Rochester, where these temperatmes obtain, with Alhany, meghecting the intermediate temperatmes, we should have the isutherms occupying practically the same position in this new map that
they were made to ocompy in the former maps finnished hy the Signal Office for this Jepartment. In the absence of definite information on the subject, it is fair to presume that the former maps were made in this way, and this accomots for the discrepancy in the position of the isotherm of 70 fomd in these maps amd in the one now presented. Abundant experimental data go to show that the total area of the State of New York south of Saratoga is well suited to the growth of beets, wherever the physical conditions of conten ane faromble and the soil suitable. The map of the beet area has therefore been extended so as to include this region in the beet belt.

Pennsylvania.
A large portion of the State of Pennsylvania, from the themal point of view alone, is well suited to the growth of beets. The pusition orechpied by the belt of teritory included between the isotherms of 699° and 712, however, in the State of Pemsylvania indicates an area which, for physical reasons, is mostly unsuited to beet culture, as it covers prineipally the montanous region of that State. The northwestern pat of the state, especially the portion bordering on Lake Erie, has the same favorable conditions for beet culture as are found in the great valley of the State of New Lork; and the principal development of the industry in that State, for the physical reasons mentioned above, must be looked for in that seetion. South of the isutherm of 71 there may be farorable regions in the southern and eastern prions of the State, but the altitude has pushed the isotherms too far south to look for the best results in the southwestern part of the State, on accome of the shorter days due to the more southern latitude. Where conditions of contour and fertility of soil are favorable, the whole portion of l'ennsylvania north and west of the isotherm of 71 may be regarded as farorable to beet culture. The precipitation immediately west of the Allegheny Momenans is not so great as on the east, hut there is an area in the extreme northwestern part of the state where the mean average precipitation is nearly the same as that east of the momitains, namely, between 40 and 50 inches.

Oifo.

The northeastern and northern parts of Ohio are well sitnated for beet culture. In general, the contour of the land is latorable, leing reasonably level, and the soil is fatily fertile. The conditions in these localities are fairly comparable with those in the State of New Fork, except that the mean temperature is higher, the mean isotherm of oto rumning in a northwesterly direction across the northern pat of whio and entering the lake near Sandusky. It is probable also that to a considerable distance south of the isotherm of 71 , goorl beets can be grown, but where so large an area is found with more faroring climatie conditions, it is not well to push the industry too far south until more favorable localities are fully exploited.

Micimgan.

A large part of the sonthern peninsula of Michigan is directly in the heart of the beet belt. The contour of the soil is also favorable, being reasonably level, with an average fertility, and the data which have been secured in actual experiments in those regions are of the most encouraging kind. There seems to be no doubt of the fact that this locality is anong the best in the United States for beet culture, and the modifying influence of the lake on the autmmal climate must not be lost sight of.

Indidna.

The northern comnties of Indiana, especially the northwestern, are situated in the beet area, and it is probable that the culture of the beet may be extended southward, as in the case of Ohio, as far as Fort Wayne and Lafayette, although it is not advisable for intending investors to locate in the more sonthern areas until the more northern have been fully exploited. The agricultural survey of the northern part of the State, undertaken by the experiment station at Lafayette, in conjunction with the work of this Department, will indicate finally with more accuracy than a mere theoretical map the most favorable conditions of culture. Great interest has been manifested in Iudiana in the extreme southwestern portion, near Evansville, in the culture of the beet, and, as will be seen in the following data, many samples have been secured from that portion of the State. In many respects this region is most favorable to beet culture, particularly on account of the facilities for transportation, cheapness of fuel, and the fertility of the soil. The mean summer temperature, however, is so high as to cause grave doubts conceruing the future success of beet growth in that locality.

The soil in northern Indiana is much like that of Michigan-sandy, reasonably level, and fairly fertile-and there is reason to believe that an industry profitable both to the farmer and manufacturer may grow up in that part of the country.

Idilinois.

The northern part of Illinois is in the beet-sugar belt, and the conditions in respect of contour of the surface and fertility of the soil, facilities and cheapness of transportation, etc., are excellent for the singar-beet industry. The character of the soil in northern Illinois, however, is quite different from that of northern Indiana and the southern peninsula of Michigan. It is mostly a prairie soil, dark and moderlaid with clay, so that the physical conditions of culture are probably not so favorable as in the other sections just named.

Wisconsin.
Sonthern Wisconsin occupies a most favorable position for beet culture, and the data which have been obtained from that State by the agricultural experiment station at Madison, in conjunction with the
work of this Department, are favorable, and show great possibilities of suceess for the industry in that region. We begin to notice here the effects of the southwestern breezes in foreing northward the inotherms of 70 and 69°, and these hot breezes cut olf from the culture of the beet large areas where soil and other conditions are extremely favorable. The same remark should be applied to the belt of conatry inmediately south of the isotherm of 71° that has heretofore been made, namely, that there are doubtless many sections where the successful culture of the beet may be secmed. This is dependent upon local conditions which must be determined by caretul agricultural surveys in the future.

Minnesota.

The deflection in a northwesterly dinertion of the isotherms of $70{ }^{\circ}$ and 69 includes in the sugar-beet area a large portion of the State of Minnesota, especially the sontheastern portion. Here there is no guestion of the growth of the erop and the production of beets of high sacelarine qualities. The great point to be feared in this locality is the early approach of winter, and this is true of all the eis montane western regions. We find here a drop in the rainfall from an anmal average of 30 to 40 inches to one of from 20 to 30 inches. We therefore meet here a greater possibility of suffering from a dry seasou than in the regions of the East. As a rule, however, the quantity of rainfall during the growing season is sufficient for the production of a good crop.

> Iowa.

A remarkable detlection of the inotherms of 699^{3} and 70 is noticed in passing from Mimesota to Iowa. Not only are these isotherms deflected towad the sonth, but they actually take a backward comse toward the east, so that their direction fir a cousiderable distance is east of south. This brings the theoretical beet belt, so far as temperature is concerned, almost throngh the center of the state of lowa. The well-known fertility of the soil of this State, with the generally level chatacter of the surface, shows that the agrientural possibilities for the growth of sugar beets are great. In the greater part of the State the raintall reaches 30 inches per ammm, but in the northwestern part the appoach to the arid region is show by a dropping off of the average raimall, so that it is between 20 and 30 inches. Nevertheless, experience shows that, as a rule, a sufficient rainfall is provided in all parts of the State for the growth of ordinary agricultural crops. The isotherms of 69° and 700 , after passing partly across the State of Lowa, take a sudden turn toward the north and west and pass out of the State again into Minnesota, where they reach a more northern latitude than Minneapolis. With the exception of the sonthwestern comities of Iowa it is fair to presume that almost the whole of the area of the State, in so lir as thermal conditions and raniall are concerned, is Н. Doc. 396-3
snited to the growth of beets. Of course, in this matter, it should be remembered, that local conditions of soil, transportation, finel supply, and other lactors must he taken into consideration. Iowa also occupies a position where there is no tempering inthence of the northwestern winds, so that it begins to feel the rigors of the winter at an earlier date than is experienced on the same isotherms east of the Great Lakes.

Nortil and Soutil Dakota.

The eonditions which prevail in North aud South Dakota are somewhat mique. From the highest position attained in Mimesota, at the border line between that State amd North and South Dakota, the isotherm of 69, turns again east and south and suffers a considerable deflection, due donbtless to the lower altitude of the Red liver Valley. Passing, howerer, into Dakota the isotherms are rapidly pushed northward hey reason of the hot southwest winds which are so often experienced in the summer time in those localities. For these reasons the isotherm of 69 reaches almost as far north as Bismarck, and the isotherm of 70^{-}is only a few miles south of it. From this point the isotherms of 69^{-}and 70 run alnost due south from North Dakota entirely across the State of Sonth Dakota and into Nebraska. The most farorable beet-susar belt, in so far as the temperature alone is concerned, would be the area bounded by the isotherms of 71 and 69 degrees, oceupying a belt of considerable brealth ruming moth and south through South Dakota into North Dakota, aud southeast through North Dakota back into South bakota. The depmession due to the Missomi River canses an area of higher temperature to rextend in a northwesterly direction into south Dakota. This area, although perhaps not so favorable to beet growth as the other, is still situated in a fertile country, and donbtless has many advantages for growing beets not possessed by the higher lands to the east and west of it. There is no (puestion of the ability of both the regions within the area sperified to grow beets of fine saccharine strength. Abmedant experimental data have been secured from both the sitates to substantiate this statement. Gation, however, must again be given in regard to the sudden advent of the winters, especially in North Dakota, where sometimes in October, and usually in November, temperatures approaching zero or even below \%ero, degrees F'ahrenheit, are observed. These sudden lialls of temperature would prove disastrons to the beet harvests, and hence tend torestrict to a certain degree the spread of the industry in that country. Again, attention should be called to the fact that the whole of the areas in the two Dakotas, where the thermal conditions are best suted to bect culture, has an average amual rainfall of ouly from 15 to 2) inches. The danger of drought and the possible shortage or loss of the erop from that source are therefore increased, and we begin to approath an area where artificial imesation must be looked to in many seakoms. I'robably, howerer, in the magority of seasoms the rainfall in this vicinity would be suficient to secure a good crop.

NebriskA.

A study of the position of the isntherms shows that the best part of the State of Nebraska, both as resperts soil and raintall, has an a merage temperature of more than 71° Nuring the summer months. The most favorable conditions of temperature are fomd almost in the center of the State over an area of somewhat irregular shapre and ocenpying a position where the extreme distance separating the isotherms of 71^{2} and 690 is the greatest of any in the comery. In Nebraska the two isotherms of 690 and 70 run almost parallel, but the is. therm of 712 runs first in a southeasterly direction, then almost south, and finally almost due west, forming a stomach-shaped area occmping a portion of Dakota and the central portion of Nebraska. The agricultural and analytical data which have been obtaned in Nehaska are very extensive, and it will be observed that both of the sugar fantories which have been establisherl in that sitate are south of the limit of 71 . It has been observed also, by those who have had aceess to the analytical data of these two factories, that the salcelarine entents of the beets which have been delivered to them have not been emtal to those of beets grown in more fivvorable localities in the Uniter states. On the other hand, the insufficiency of the rainfall in the central and western portions of the State renders less certain the growth of sugar beets, and tends to crowd the sugar factories and the sugar industry into the wetter and more fertile portions, in spite of the fact that the temperature is higher.

The Ario Regions.

It will now be necessary to trace the theoretical sugar beet belt, so far as thermal conditions are concerned, by states thronsh the arid regions. There is so little of the area embraced in this belt which is subject to irrigation, that it is understood at once that the possible beetsugar industry of that region must be confined to the most farmable localities. It is interesting to see, however. how the elevation producel by the Rocky Mountain range defleres the isotherms which have been traced in a generally westerly direction up to this point so far to the south. P'assing from Nebraska, the isotherm of TU runs in a south westerly direction to a point sonthwest of Denver, whence it turns in a southeasterly direction to New Mexico, thence ahmost due south to near the Mexican border. Being dellected to the west, it ascemds on the other side of the Rocky Mountain range in a general northerly and westerly direction, passing in a northwesterly direction throngh I tah, thence turning west and south in Nevada, being deflecterl again to the south by the Sierra Nevada range of monntains, which it crosses, patssiug from Nevada into California, whence it passes northward again along the western slope of the Sierat Nevada Mombaims until it comes near the coast line in the northern part of California. Thene the isotherm of 70° is deflected southward, almost parallel with the comst line, until it passes into lower Califormia. It is seen that all the coast
valleys of California are included in the thermal belt most favorable to beet culture. The greater part of the area included in the themal belt which has just been traced across the arid region is totally masuited, on accome of the momatanous and rongh region of the surface, for agricultural uses. It is therefore evident that it is only in isolated places, where the surface of the land is smonth and irrigation can be practiced, that leet culture can be established. In comnection with the thermal helt, the map shows that the mean aremge raintall in many cases does not exceed 5 inches per annum.

In addition to the contimons belt thas marked out, there are some areas of varying temperature which demand attention, as, for instance, the elliptical area bonded by the isotherm of Tom in daho, of which Boise City is the center, and another area bounded loy the isotherm of 70 , within which an isotherm of 71° is fomd, in the state of Washington. There is also one locality in Montana, on the lellowstome River, where the average summer temperature is 71°.

In so far as thermal conditions are concenerd, vast areas of the arid regions could he devoted to beet culture if the other comditions of culture were farable. The differences of elevation of the phateans canse numerous sudden changes of temperature, so that there are dombtless many localities not marked on the map, where the mean summer temperature is almost identical with that which has been already mapped ont. By reason of the meagerness of data, experimental and otherwise, relating to this whole region west of the Missomi River, the shading showing the probable extension of the beet area beyond the borders of the basic thermal belt has been omitted. The general dischission of this thermal belt, accompauied as it is by the chart of pre(ipitation, is not necessary at this point. In genemal, in comnection with: this study, the remarks which are made in lubletin No. $\because \quad \overline{\text { I }}$, on page 169, and repeated in Farmers' Bulletin No. 52, may be recalled with profit:

The mistake must not be made of supposing that all the region included within the boundaries of this zone is suitable for beet culture. liivers, hills, and mountains occupy a large portion of it, and much of the rest would be excluded for various reasons. In the western portion, perhaps all but a small part of it would be excluted by monntains and drought. Begimning at a point midway between the one hundredth and ono hundredth and first meridian, as indicated by the dotted line, beets conld be grown only in exceptional places without irrigation. On the Pacific coast only that portion of the zone lying near the occan will be found suitable for beet culture.

On the other hand, there are many localities lying outside the indicated belt, both north and south, where doubtless the sugar beet will be found to thrive. The map, therefore, must be taken to indicate only in a general way those localities at or near which we should expect success to attend the growth of sugar beets in the most favorable conditions other than temperature alone.

The present map (Plate 1) gives in greater detail than ever before the houndaies of this thermal belt, by reason of the fact that the
obserrations of the Weather Burean have been more mumerons, and have been compiled in a more systematic mamer. It would be idle to assert that subsequent observations of the Weather Bureau may not change in a marked degree the boundaries of the helt which has been mapperl. It is also quite true that the agricultural survers which will be conducted by the several states will locate definitely, heyond the limits already outlined, the areas where successiful beet colture will be practiced. I may venture the prediction, however, that these areas will be contignons to the \%one which is alreally mapped ont, and that the future beet-sugar industry of the Unitell states, when it whall have reached a magnitude sufticient to supply to our people a large part of the sngar they consme, will be loeated almost entirely within the areas which have thins been traced.

DATA FROM DIFFEIRENT STATES.

Two methorls of collecting the data from states have been pursued. In the first place, those receiving seeds directly from the lepartment of Agriculture were supplied with Farmers Bulletin No. Jo, giving instructions for preparing the soil, and planting and coltivating the beets. Each person was also supplied with a series of blanks for the purpose of obtaining cultural and climatic data, and for securing as great aceuracy as possible in the reports which were made. The data blanks used are represented in the following forms:

United States Department of Agriculture, H'ashington, D. C., August 15, 189\%.

Directions for Taking Samples of Suqar Beets for Anatysis. Prepared by H. Wr. Wiley, Chief of Division of Chemistry.

When the leets appear to be mature (September 15 to November 15, according to latitule and time of plantiug) and before any second growth can take place, select. an average row or rows, and gather every plant along a distance which should vary as follows, according to the width between rows:
From rows 16 inches apart, length 75 From rows 22 inches apart, length 54 feet. feet.
From rows 13 inches apart, length $66 \mid$ From rows 24 inches apart, length 50 feet. feet.
From rows 20 inches apart, length 59 From rows 28 inches apart, length 4299 feet. feet.

The beets growing in the row, of the length above mentioned, are counted. The tops are removed, leaving about an inch of the stems, the beets carefully washed free of all dirt and wiped with a towel. Where the row is not long enough to meet the conditions, take enongh from the adjacent row or rows to make up the required leugth. Rows of average excellence must be selected; avoid the best or poorest. Throw the beets promiscnously in a pile and divide the pile into two parts. This subdivision, of one-half each time, is continned until there are about ten beets in a pile. From these ten select two of medinm size. Be careful not to select the largest or smallest.

From all of the rest of the buets. satre these two. the neehs are removed with a sharp knite at the point indiatarl iny the dotted lime in the ligno (fig. 1). The berets, including the two saved as anmple, are then weigherl.

Tig. 1.-Illustration for removal of top of beet.
The number of beets harvested moltiplied by 435.6 will give the total number per acre. The total weight of heets harvested multiplied by 435.6 will give the yield per aere.

Wrap the two sample heets carefully in soft paper, and write your name legibly thereon. The beets must lie perfectly dry. Fill out the blank describing the heets, inclose it in the envelope, and sew it up in the hag with the beets. Attach the inclosed shipping tag to the hag and send the packago hy mail.

No beets will he analyzed which are not. sampled as described above and properly identified.

Miscellaneous analjses of samples without accurate description are of no value.

Blanks are sent to each one for two sets of samples. From two to four weoks should clapse between the times of sending the two sets of samples.

If atditional anals-
ses he desired, other hanks will be sent on application, but not more than four :malyses can the mado for any one person, except in special cases.

A model, showing how blanks should be filled ont, is inclosed.
[Model B.]

U. S. DEPARTMENT OF AGRICULTURE,

Model for Describing Sample of Sugar Beets. Prepared by II. W. Tilex, Chief of Division of Chemistry.
Variety: Fleinwanzlebener.
Date planterl: May 3, 1887.
Date thinned: June 3, 1897.
Date harvested: November $\overline{\text { b }}, 1897$.

Character of soil: Black prairie loam; in cultivation for 20 years, chiefly in corn; level, tile-drained; last crop, oats; no fertilizer was used; baruyard manure applied in 1895.
Character of cultivation (dates, implements, etc.): Plowed November, 1896, 8 inches deep, subsoiled 6 inches; harrowed with disk harrow May 1, 1897; rolled; seed planted with hand drill one-half inch deep; plants up May 16; stand excellent; hoed hy hand May 22; plowed with horse hoe May $2 x$ and June x, 16,24 , July 3,10 , and 17.
Length of row harvested (feet) : 66.
Width between rows (inches): 18.
Number of bects harvested: 88.
Total weight of beets, less necks and tops (pounds) : 88.
Weather for each month: May, dry; June, copious rains; July, fine growing weather; Angust, hot and dry; September, dry until the "4th, when a heary rain fell.
State: Iowa.
Post-oftice: ILanover, Buena Vista County.
Date: November 17, 1897.
Name: Robert Simpsou.
Note.- Heets will not he analyzed unless accompanich with description as above.
It is evident that in promiscuous experimentation of this kind, even when directions are closely followed, and when all the operations are conducted in accordance with the directions in Farmers' Bulletin No. Sy, and the procedure described in the blanks for taking samples faithfully followed, the data are still of an unsatisfartory nature. For instance, when a plot of beets has been liarvested and quartered until the two beets required for a sample have been selected in accordance with directions, we still have an uncertainty prevailing as to whether the two beets correctly represent the whole lot. In fiact, it is well known that the variations in the character of heets grown side iny side are very great, far more so than is the ease with sugar canes. As an illustration of this, the following analyses, giving the weight and sngar content of every beet grown in a row at the experiment station of Kentucky, is sufficient evidence:

Analyses of all the beets in a row, Fentucky station.

Serial No.	$\begin{aligned} & \text { Weiglit } \\ & \text { after } \\ & \text { topping. } \end{aligned}$	Sucrose in beets.	$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Weight } \\ & \text { after } \\ & \text { topping. } \end{aligned}$	Sucrose in bects.	$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Wreight } \\ & \text { atter } \\ & \text { topping. } \end{aligned}$	Sucrose in beets.
1985	Ounces. 27	I'er cent. 7.7	2009	Ounces.	Per cent. 8. 2	2033	Ounces. 10	Per cent. 8.1
1986	25	9.9	2010	4	9.3	2034	10	7. 2
1987	24	10.4	2011	1	9.9	20.35	$12 \frac{1}{2}$	9.1
1988	24	10.6	2012	1	10.5	2036	11	9.0
1989	20	8.6	2013	2	9.6	2037	11	9.8
1990	20	7.9	2014	33	10.9	2038	9	8.8
1991	28	6.7	2015	$3 \frac{2}{2}$	9.9	2039	9	7.1
1992	31	9.0	2016	34	8.2	2040	8	9.7
1993	18	10.4	2017	27	7. 0	2041	11	8.9
1994	24	9.0	2018	20	9.3	2042	8	9.3
1995	53	4.8	2019	8	11.9	2043	9	6.9
1996	19	8.2	2020	16	6. 2	2044	8	10.4
1997	33	2.6	2021	22	8.0	2045	7	9.4
1998	16	9.9	2022	15	6.8	2046	5	8.2
1999	2	10.7	2023	20	9.8	2047	4	8.4
2000	2	8.8	2024	26	9.0	2048	5	8.6
2001	2	9.6	2025	16	9.4	2019	4	8. 7
2002	13	8.9	2026	18	9.7	2050	4	10.5
2003	8	9.6	2027	18	66	2051	4	9.3
2004	12	11.0	2028	15	8. 6	2052	3	10.7
2005	6	10.5	2029	11	9.3	2053	2	12.2
2006	3	11.1	2030	17	4.9	2051	12	10.6
2007	5	10.6	2031	12	6. 8	2055	1	9.9
2008	13	10.2	2032	12	6.9	2056	$1 \frac{1}{2}$	11.2

The sreat variations which exist, both in size and quality of beets, are most strikingly shown by the above figures. The rariation in size extends from 1 to $\overline{3} \cdot \dot{\prime}$ ounces, and in sugar content from 2.6 to 12.2 per rent. When, however, it is considered that all overgrown and undergrown beots are referted in taking the samples, and only those of medinm size and perfect form selected, it is evident that the chances of the sample representince farly the average of the whole lot are very much improved. Even eranting this, however, it is unsatisfactory to depent mon the amalysis of two or three samples alone for determining the chanacter of the whole plot. It is evident, howerer, that on accomit of the mature of the method of insestigation and the undesirability of humening the mails with too many samples, it is impartionble to do better than has been done in this matter. 'The analyses of all of the samples which were sent to the Department of A griculture from each of the states and Territories are given in the tables which are fomad farther along. For convenience of reference, the analyses are tabulated by counties in each case.

The second method of collecting data was through the cooperation of the asticultural experiment stations. To facilitate this, the Secretary of Agrienture appointed the directors of these stations special correpondents of the bepartment for distributing the seed and collecting the beets for analysis. The analyses were made by the chemists of the sereral stations, and they are given below, grouped under the Farious states. Where the coopreation of the agrientural experiment stations was secured, the reports are given by the director or officer in rharge. Inasmuch as the details of these amalyses are published by the varions stations, including the mames and residences of the persons who grew the beets, in the present report only the areages of the amalyses hy romaties or sections, together with such observations as have semed desirable, are given. The reports of the directors and other ofticers in rharge contain much interesting material, and in some cases are given without abbreviation.

DATA OBTAINED IN TIIE LABORATORY OF THE DEPARTMENT OF AGRICULTURE。

The amalytimal data obtained during the season of 1897 in the Department of Agriculture have been classified as follows:

The data obtained from ead state or Territory collerted by connties or sortions and the general average for cach county are as follows:

The analytical tables showing the data of the lopartment samples fombin the names of the states and comties arranged alphabetically. The name of each eommty is followed hy a symbol in the shape of a sinare to designate the position of the comnty in the state. The plain sprame shows that the combty is situated in the central portion, while a straisht line attached to the center of the top of the square shows the combty is in the northern part of the state; attached in a diagonal
direction to the upper right-hand corner, that it is in the northeastern portion of the State; attached to the center of the right side, shows it is in the eastern portion of the State; attached to the lower right-hand corner, that it is in the sontheastern portion; attached to the eenter of the lower side of the square, that it is in the southern pant ; to the lower left-hand corner, in the sonthwestern; to the center of the lefthand side of the square, in the western part, and to the upper left-hand corner, in the northwestern.

The tables also state the number of samples receised from each county, the arerage weight of the samples in onnces, the average per cent of sugar in the beet, the areage purity coeflicient of the juice, and the maxima and minima percentages of sugar in the juice and the coefficients of purity.

In many eases the quantity of juice was too small to compute the purity in the usual way, and in others the low percentage of sugar rendered the ascertainment of the purity meneessary. These two reasons account for the omission in many instances of the number express. ing the purity of the juice.

CAUTIONS REGARDING THE VALUE OF THE DATA.

It is highly important that the persons using the analytical data contaned in the following tables be cantioned in regard to the value which should he attached thereto. It is evident, in the first place, that samples which have been grown in such a promiscrous way as those received by the Inepartment, in so many different characters of soil, under so many different climatie conditions, and with such rariable culture, water supply, and fertilizing materials, must lack that miformity of value which should characterize scientitie data in weneral. Attention has already heen called, moreorer, to the fact that the few samples of beets which have been sent can not be regarded as exactly representing the whole mass of which they originally formed a part. The variations in individuals are so great under practically identical conditions as to render somewhat doubtful data which are based upon a few samples alone. For instance, in the romparison of different States in respect of sugar-prolucing qualities, it may be that one State is represented by perhaps less than so samples, while others may have 500 or 1,000 . In such cases the average of the 50 samples does not in any way present such eonvincing data as the arerage of 1,000 . The greater the number of samples examinet, the more nearly will the disturbing influences of individuals be eliminated. When it comes to a comparison of the counties in the several States, the same remarks are true. In many instances a county may be represented by a single sample. It may be that the sample is extremely good or extremely poor. In neither case is it representative. It would be majust, therefore, to compare a county with one sample with another from which jo, 100 , or 200 samples have been received. Even in the averages representing
the samples from a single county or locality care must be taken not to be misled. The samples may include, for instance, a very small beet with an exessive sugar content, or a very large one with a deficient sugar content. In ease only two or three samples constitute the whole number, the intuence of these abmormal samples is raised to a maximum. As an illustration of this, the analysis of samples from 'linton Comenty, Ill., may he eited as a type of many others. Three samples were received from this comuty, the average weight of which was $1: 3$ omees, and the a wage sugar content 15.5 per cent. One of these samples, however, weighed only 4 omees, and had the abomal sugar content of 21.2 per cent. It is evident. therefore, that the aremge prementage of sugar in the three samples is rery much higher than it would have been had they all been normal in size.

Amother point must not he forgotten, and that is, granting that the samples of any locality are representative, they represent only one season. That seasom may have been peeuliarly farorathe or unfarable, and hemee no section should be indged by the results of a single years experiment. The reader who wishes to stridy critieally the data which follow must take all these facts into consideration, and the judgment which he may form in regard to any particular section must he sub) jest to the rectifications indicated by the variable factors mentioned above.
Table showing mean analyses and maxima and minima of the beets cxamined in the chrmical laboratory of the Enifel States Depurtnent of Ayricullure durin!! $1 \times)_{i}^{2}$, arranged alphetbetieally ly! states and countics.

State.	Comnty,	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { samples. } \end{aligned}$	Arrat- =			Maxima.			Minima.		
			Weight.	Sugar in the beet.	Purity coefficient	Weight.	Sugar in the beet.	Purity coefticient	Weight.	Singar in the beet.	Purity coefticient
Kinn:as Arerages, etc \qquad Cluad Douglas Lane \square Mont gomery Morris a- \square Sellgwick \square Woodson W yaudotte \qquad			Ounces.	Ier cent.		Ounces.	P'er cent.		Ounces.	Percent.	
		2	26	12.7	80.4	28	13.3	80.8	23	12.1	79.9
		$\stackrel{2}{2}$	11	16.2	84.5	11	17.8	85.3	10	14.6	83.6
		2	15	11.2		21	15.7		8	6.6	
		1	34	11.5	70.4						
		1	29	13.8	70.8						
		1	35 48	10.8 9.4	73.5						
		41	$\because 7$	11. 4	73.8	110	17.s	- $3 .:$	-	6.18	65.7
Sentuchy... $\left\lvert\, \begin{aligned} & \text { Daviess }- \text { - } \\ & \text { Favette } \\ & \text { Henry } \\ & \text { ¢ }\end{aligned}\right.$		1	9	15.7	83.3						
		4	19	11.2	68.5	21	13.3	72.5	17	9.5	65.0
		1	10	11.1							
		(i)	16	11.9	71.5	$\because 1$	15. 7	A3. $:$	9	9.5	65. 1
Maryland.	Aunt Arundel	4	\% 3	7.7	73. 8	26	10.5	80.3	19	3.2	67.2
	Baltimore ¢	3	21	9.8		38	11.1		8	8.9	
	Frederick	2	20	13.5	82.9	24	13.7	83.2	15	13.2	837
	Harford \square..	4	13	13.8	78.9	16	15.7	82.7	7	11.6	76.6
	Montgomery	4	23	11.9	85.0	35	14.6	85.4	18	8.6	84.5
	Prince ${ }^{\text {cheorge }}$	3	16	12.9	81.9	26	13.6	85.7	11	12.6	79.7
	T'albot W- $^{\text {Pro.. }}$	3 5	15 18	11.2	78.9 73.5	19	12.9	81.8	10	9.3	75.9
	Washington Wiconico ■	5 1	18 32	11.8 9.0	73.5	25	15.6	77.1	12	8.0	66.8
Arerages rete		$\because 9$	19	11.4	79.1	$3{ }^{-}$	15.7	85. 7	7	3.2	66.8
Michigan..	Allegan 口	3	62	6.8		82	9.9		50	4.1	
		$\stackrel{2}{1}$	1.8 26	13.7 8.9	21.2	$2 \pm$	14.4	85.4	12	13.1	77.0
		1	19	15.2	83.7						
	Bay	5	24	14.2	80.5	40	16.2	83.7	16	13.2	74.6
	Calmom	8	17	15.8	83.2	32	16.9	89.8	$1:$	15.1	79.8
	Delta \square	2	17	16.4		24	20. 2		110	12. 5	
	Dickinson \square	2	18	14.1	81.4	18	14.1	81.4	17	12.7	75.6
	(ienesee \square	1	$\because 8$	14.6	81.4						
	Huron ㅁ..	3	19	15.3	81.9	24	16.2	8.9	16	14.	81.0
	Isabella $\square .$.	5	24	13.3	82.2	26	16.4	86.8	20	8. 2	85.7

		2 1 3 1 1 1 1 1 399 3 1 1	$\begin{array}{\|c\|} 24 \\ 35 \\ 13 \\ 14 \\ 14 \\ 20 \\ 16 \\ 9 \\ 20 \\ 20 \\ \cdots 3 \\ 20 \\ 20 \end{array}$	$\begin{aligned} & 16.7 \\ & 16.5 \\ & 16.8 \\ & 15.5 \\ & 15.5 \\ & 17.4 \\ & 17.0 \\ & 11.6 \\ & 14.8 \\ & 14.6 \\ & 12.3 \end{aligned}$	$\begin{aligned} & 78.9 \\ & 83.9 \\ & 80.8 \\ & 87.1 \\ & 84.1 \\ & 83.7 \\ & 81.0 \\ & 77.2 \\ & 8.3 .3 \\ & 81.9 \end{aligned}$	$\begin{gathered} 29 \\ \cdots 14 \\ \cdots \cdots \\ \cdots \cdots \\ \cdots \cdots \\ \hline 37 \\ 36 \end{gathered}$	19.0 18.6 18.6 $\ldots \ldots$. $\ldots \ldots$. 19.6 16.6		18 10 10 \cdots. \cdots \cdots 16 16	14.3 13.3 $\ldots \ldots$. $\ldots \ldots$. $\ldots .$. 9．8 10.4	72.2 76.3 78.3 $\cdots \cdots$. $\cdots \cdots$ 67.9 78.5
Averages，etc		450	$2 \cdot$	14.7	81.1	8：	20.2	9.0	9	4.1	67.9
Minnesota	Aitkin \square C．．．．．．．．．．．．．			${ }_{15}^{11.5}$	$\begin{aligned} & 79.7 \\ & 84.8 \end{aligned}$	51	15.4	81.7	10	6.9	77．6
	Carlton 마－．．．．．．．．．．．．	${ }_{3}^{1}$	14 20	15.0 12.2	84． 75 7.2	28	13.2	77.3	25	11.1	71.5
	Dodge［1．	1.1	24	13.0	77.0 8.3	28	15． 6	86.3	15	12．3	75． 0
		15	23.	11.7	76.1	36	13.8	83.5	16	7.7	72． 7
	He－nn－pin ${ }^{\text {a }}$	1	4.	1：3．3	79.4						
	Mower \square	1	19	13．2	6.8						
		\ddagger	－3	14.9	$5-1$	30	16.0	8：3	14	13.5	82．0
	rolk 口 ．．．	1	8	17.7							
	Redwood 口	1	311	12． 11	（1）． 9						
	siout	1	14	10.9	73.5						
	Stearns \square	9	$2!$	12.7	79.8	48	15.9	83.1	20	10.4	72．${ }^{\text {d }}$
－ verages，ete		$4!$	$\because 7$	11.0	79．${ }^{\text {a }}$	51	17.7	S6． 3	8	6.9	67.5
Missouri	Adair	1	2.		74.5	38	13.9	77.6	14	3． 9	71．
	Atchisun \square.	5	53	10.6	73.3	59	13．0	75.2	24	6.3	
		7	15	15.3	76.4	28	18.6	82.0	8	11.0	68.2
	Barton 口	3	27	15.3	77.3	34	16.5	77.9	22	13.5	76.4
	Bates－	1	12	10.5	62.5						
	Bentor व．．．．．．．．．．．．．．	5	16	15.5	77.1	$\begin{aligned} & 33 \\ & 12 \end{aligned}$	$\begin{gathered} 18.8 \\ 12.6 \end{gathered}$	78.8	10	$\begin{array}{r} 13.0 \\ 9.5 \end{array}$	i4．9
	bomne 口．．．．．．．．．．．．．．	1	14	15.6	67.8						
	Buchanan ロ．．．．．．．．．	2	30	11.0		43	13.7		16	$8:$	
	Caldwell 口 ．．．．．．．．．．．	7	25	11．${ }^{\text {2 }}$	5	41	12．6	76． 7	12	$9 . .1$	
	Calliway \quad ．．．．．．．．．．．．	5	19	9.9	71．0	？	14． 6	1s，	10	1． 1	7． 7
	Camblen：$\square . \ldots \ldots . .$.	$\stackrel{2}{2}$	14	13．8	76.5	14	！．！	1．．${ }^{\text {a }}$	13	6．1i	
	Cape Girardeau प．．．．	6	27	11.8	－7．1；	4	14．．	2t．	4	8.1	T1． 1
			$1!$	11.9	6f．\because	$\because 1$	13．3	77.8	16	9.15	55． 1
	Cudar 口．．．．．．．．．．．．．．		17	11． 6		： 3	13：9		${ }^{6}$	$7 \times$	
	Chariton ゅ ．．．．．．．．．．．．	5	17	31.7	$\begin{aligned} & 75.8 \\ & 7 \times .9 \end{aligned}$	－8		79.1 83.0	${ }_{8}^{10} 8$	13.1	74

Statt．	Comuts．	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { samples. } \end{aligned}$	Averages．			Maxima．			Minima．		
			Weight．	Sugar in the beet．	l＇mity coefticient	Weight．	sugarin the beet．	l＇urit！ coefticient	Weight．	－Hzar in the beet．	Purity comblicient
			Ounces．	Percent．		Ounces．	Per cent．		Ounces．	Per cent．	
	Clinton \square.	0^{1}	\because	\％．8							
	Cooper ${ }^{\text {Crawford }}$－	$\because 1$	16 9	10.0 11.3	72.1	39 10	12.8	77.0	$\frac{2}{8}$	7.0 10.7	68.6
	Dade 口．．．．	\because	14	13.1		17	13.6		11	12.6	
	Dallas \square.	$\underline{3}$	10	11.9		10	12.3		10	11.4	
	Daviess \square	2	21	14.8	78.0	$\bigcirc 6$	15.9	82.3	15	13.6	73.7
	Dekalb \square	4	31	10.6	69.6	45	11.6	72.5	12	9.9	6.6
	Douglas \square	3	8	15.3	79.4	10	17.1	83.2	4	13.2	77.1
	Franklin 마	6	23	12.8	72.5	37	17.2	83.2	12	9.8	68.7
	Gasconade 만	10	23	11.0	72.4	31	15.5	78.5	16	7.0	65.9
	Gentry b	5	28	12.3	73.2	64	14.7	79.0	13	10.4	69.1
	Greeley ${ }^{\text {G }}$	8	17	11.3	73.2	28	16.7	83.7	8	7.6	57.8
	Grundy	3	23	11.0	72.3	28	11.8	73.0	17	10.2	71.3
	Harrison	4	12	14.5	77.9	17	16.4	8t． 2	5	12.3	74.2
	Henry－	8	18	11.9	71.5	37	17.9	7.4 .1	3	8.9	69.3
	Hickory	1	20	11.4	70.9						
	Molt \square	8	31	12.3	79.1	54	14.3	83.7	11	6． 7	74.0
	Howard \square	3 5	16 24	11.8 11.2		－3	14.9 15.3	82.0	$\stackrel{\square}{16}$	5． 7	75.8
	Howell ${ }^{\text {a }}$ Irmi．	5 1	24 3 4	11．2	18.9	35	15.3	82.0	16	5.	10.8
	Jatkson－－	1	6s	19.7	70．：						
	Jasper $口$	3	33	12． 1		38	14.3		28	10.7	7．） 6
	Tefferson 마	6	16	12.3	75.0	24	14.4	79.9	10	10.9	72.6
	Knox \checkmark－	1	36 10	10.3	67.9					11.3	
	Laclede $\square^{\text {a }}$	6	10	12．0	74． 5	5	14.1	80.0	111	19．0i	6 6s． 3
	Lawrence p	10	18	10.2	72． 5	26	14．2	79.1	11	6． 2	6：3．：
	Lewis \square	1	20	10.5	6.71						
	Lincoln 마	2	14	11.8	7－5	14	19	76． 6	$1:$	11．2	6 s ． 3
	Limn 号	3	15	12.9	74． 8	18	15.2	75.6	12	11.11	14． 7
	MeDonald \square	1	21	13.3	8．，．3			，			－
	Macon 立	1	10	14.2	72.3					－	．
	Marion \square	2	15	10.0		15	11.4		1%	8.	
	Mercer	1	44	11.5	75.5						
	Miller \square ．	2	17	12.5	71.3	17	15.4	82.2	17	9.7	60.4
	Monitean \square	1	10	12． 1	74.3						
	Monroe \square	3	19	12.0	69.8	20	13.1	71.1	17	10.8	68.5
	Montgomery ㅁ－	8 8	16	8.8	69.2	26	11.4	75.4	9	3.6	59.5
	Murgan $\square . .$.	1	11	9.3							

 during 1S9\％，arranged alphabetically by States and connties－Continued

	Cuminty	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { samples. } \end{aligned}$	Averages．			Maxima．			Minima．		
state．			Wrimht．	sugar in the beeet．	I＇urity coefficient	Weight．	Sugar in the beet．	$\left\lvert\, \begin{gathered} \text { Purity } \\ \text { coefficient } \end{gathered}\right.$	Weight．	Sugar in the heet．	Purity coeflicient
Nevada．	Esmeralda \square	2	Ounces． 25	$\begin{array}{r} \text { Per cent. } \\ 17.5 \end{array}$	81.1	Ounces．	Per cent.	81.8	Ounces，	$\begin{array}{r} \text { Per cent. } \\ 17.3 \end{array}$	80.4
	Humbolit	10	21	18.8	83.1	34	20.8	84.5	8	16.3	82.2
	Lander \square	1	10	20.3	85.5						
	Lyon－ם．．	3	19	17.6	79.6	20	18， 0	80.1	19	16.9	79.0
	IV ashoe－．．．	4	$\begin{array}{r} 10 \\ 8 \end{array}$	18.2		15	20．0		4	17.1	
	White Pine ㅁ－		8	16.0	75.4						
Averaces，cte		21	18	18.3	81.4	34	20.8	8．5． 5	4	16.0	75.4
New Jersey	Atlantic 口	2	24	14.8	81.9	38	17.6	87.2	10	12.0	76.5
	Burlington \square	1	17	18.7	83.7						
	Camden Cu ，	2	22 9	12.9	80.0	28 9	14.1	82.2	16	11.6	77． 7
	Cumberland	$\stackrel{2}{7}$	9 17	15.8 13.3	79.2	9 22	16.2 14.9	83.0	－9	15.4 9.8	67.8
	Mercer	7	20	11.5	79.3	34	13.6	83.1	13	8.6	76.2
	Ocean \square	8	8	16.4	86.3	11	18.5	90.1	5	12． 6	82.5
	Warren \square	2	20	14.9	87.6	24	15.6	88.6	16	14.2	86.6
Arerages，etr		31	16	14.2	81.4	38	18.7	90.1	5	8.6	67.8
New Mexico	Mora \square	3	13	17.2	82． 0	14	18.5	86.2	11	16.5	78.2
New Sork	Albany 마	2	19	14.0		19	16.0		19	12.0	\cdots
	Broome ${ }^{\text {P }}$	4	22	15.1	82.8	29	16.1	87.1	15	12.8	76.6
	Cattaraugus \square	15	18	15.1	81.9	28	17.6	86.7	8	11.8	73.0
	Chautauqua 口	45	21	16.6	82.7	48	20.0	86.2	10	10.2	75.0
	Chenango 口	3	16	15.4	78.7	20	15.5	83.8	13	15.3	70.8
	Columbja	1	20	14.7	81.5						
	Dutchess \square	4	16	17.3	85.1	18	22.6	89.1	13	14.5	82.7
	Erie－\square ．．．．．	37	19	15.9	83.9	39	19.2	90.6	5	9.7	66.6
	Fulton $\square^{\text {－}}$	2	24	15.4	83.6	26	16.6	84.4	21	14.1	82.7
	Herkimer	1	16	16.5	78.9						
	Lewis 市．	2	21	13.9	77.8	22	14.3	79.4	20	13.4	76． 2
	Livingston－	3	20	16.8	79.8	25	18.2	83.9	16	14.4	76.7
	Madisun \square ．	3	14	17.3	78.1	20	20.2	81.3	8	15.0	74.8
	Monroe－\square	3	23	13.1	79.8	27	15.9	85.2	21	13.1	72.7
	Niagara－口．	9	28	14.5	81.9	38	16.6	88.7	16	12.1	76.6
	Oneida \square Ono．	22	14	13． 6	81.8	67	17．2	88.2	6	9．7	71.2
	Onondaga （intario $-\square$.	7 22	17 17	17.5	83.2	25	19.5	83.4	9	15．5	82.1
	（hatario		1.	15.0	83.4	20	10.8	87.8	13	12.5	73.5

| $\\|$ |
| :--- | :--- |
| i_{1} | ¢.9

 $\|$

0
$=1$
$=1$
1 $|$

${ }_{\infty}^{\infty}$

: i: $=0$: ictLe $=\overline{0}$

\vdots
Cherokee 口.
Mecklenburg \square.
New Hanover \square. New Hanover \quad ㅁ..
Lowan $-\square \ldots . . .$.

\qquad

$$
\begin{array}{r|r|r}
& \begin{array}{l}
\text { Maxim: } \\
\begin{array}{l}
\text { Purity } \\
\text { pefticient }
\end{array}
\end{array} & \text { Weight. }
\end{array} \begin{aligned}
& \text { Sugar i } \\
& \text { the bee }
\end{aligned}
$$

$$
\underset{\text { Purity }}{\text { Potent }}
$$

$$
\begin{aligned}
& \text { Sugar in Purity } \\
& \text { the beet. coefficient }
\end{aligned}
$$

$$
\begin{array}{c:c|c|c}
\infty & = & 0 & \infty \\
\vdots & \vdots \\
\vdots & &
\end{array}
$$

siate．	County	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { samples. } \end{aligned}$	Weight．	Averages Sugar in the heet．	$\begin{aligned} & \text { Purity } \\ & \text { coefticient } \end{aligned}$	Weight．	Maxima． Sugar in the beet	Parity coetticient	Weisht．	Minima． Sugar in the beet．	$\begin{aligned} & \text { Purity } \\ & \text { enefficient } \end{aligned}$
Virurint	Fairfax ${ }^{\text {b }}$	$\stackrel{3}{3}$	Ounces．	lit cent. 12． 4	79.9	Ounces． 31	Per cent． $1: 4$	83.3	Orences． 19	$\begin{array}{r} \text { Per cent. } \\ 1 \because .4 \end{array}$	76.5
	Fluvanna ${ }_{\text {Goochlaml }}^{\text {a }}$ ．	$\stackrel{1}{2}$	19	11.17	78.5 75.4	14	14.0	75．8	－	13.4	74.9
	Hanover \square ．．．	1	23	13． 1	73.3						
	Henrico 口 ．．．．．	$\underline{1}$	24	${ }^{6.1} 7$							
	James City ㅁ․ ． King William	1	－	13．4	81.8 80.9						
	Loudoun ${ }^{\text {b }}$ ．．．．	1	7	15.4	73.7						
	New Kent ${ }^{\text {－}}$ ．${ }^{\text {a }}$	1	13	12.3	73.3						
	Northampton 0	4	\cdots	11.6	77.5	21	12． 5	79.4	16	10.9	76．2
	Orange $\square^{\text {a }}$	1	21	15． 5	76.4						
	Warren म ．．${ }^{\text {Pr }}$ ．	5	31	10.9	73.0	49	14.7	76．	22	6.3	69.2
	Wy the 口．	1	2	12．2							
Iterasis，ete．		34	21	11.6	76．2	49	15.5	83.3	\because	6.3	65.4
Wanhiugton．	Chehallis－	4	48	7.9		66	9.8		36	5.8	．．．．．．．．．．．
	Clarke 口	1	23	13.5							
	King－－．	$\stackrel{3}{1}$	－	11.8	81.18	32	11．9	83．0	17	11.6	79.1
	Lincoln［－．．．	5	18	14.6	74.0	25	19.9	81.0	9	9.1	67.0
	Pirrce－ロ．	1	33	13． 0	81.4						
	Sau Juan 口	1	18	14.4	78.3						
	Skagit ${ }^{\text {W }}$ ．	6	26	12． 7	76.4	48	15.3	83.4	16	9.9	
	Yakima ロ．．	11	－18	$\begin{aligned} & 11.3 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 77.5 \\ & 87.0 \end{aligned}$	25	$\begin{aligned} & 1 \because .9 \\ & 19.1 \end{aligned}$	$\begin{array}{r} 83.3 \\ 89.7 \end{array}$	130	15．0	
1 werages，ete．		34	27	13.7	80.7	66	19．9	89.7	9	5.8	67.0
West Virginia	（irant \square		53	13.5	83.0						
	Hardy ${ }^{\text {a }}$	1	20	11.9	69.1						
	Monroe $\square^{\text {a }}$	9	18	16.6	81.8	30	18.9	88.8	$\underline{6}$	13.13	75.3
	Morgau ${ }_{\text {Summers }}$	$\stackrel{1}{1}$	8 16	$\begin{aligned} & 14 . \\ & 12.3 \end{aligned}$		8	14.5		1	14.1	
1 verages，etc．		14	19	15.4	80.4	53	18．9	$8 \times .8$	6	11.9	69.1
Wisconsin	Ashland b		20	12.7	7．5． 2						
	（＇lark \square ．．．．．．	． 1	14	13.9	85.4						

		$\begin{array}{r} 31 \\ 1 \\ 1 \\ 1 \\ 3 \\ 1 \end{array}$	$\begin{aligned} & 11 \\ & 34 \\ & 32 \\ & 8 \\ & 34 \\ & 20 \end{aligned}$	$\begin{aligned} & 16.4 \\ & 12.7 \\ & 11.5 \\ & 17.2 \\ & 15.4 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 81.8 \\ & 78.7 \\ & 71.4 \\ & 86.9 \\ & 8.9 \\ & 73.6 \end{aligned}$	$\begin{array}{r}21 \\ \ldots .6 \\ \hline-38\end{array}$	19.5 $\ldots \ldots$. 15.9	88.2 $\ldots . . .1$ 83.9	5 \cdots -9	13.4 $\ldots .$. 15. 15.	80.5 $\cdots . .$. .. 80.9
Averages, etc		42	15	15.8	83.3	38	19.5	86.9	5	11.5	71.4
Wyoming\qquad Averages, etc		5 6 9 1	12 20 20 20	$\begin{aligned} & 18.7 \\ & 18.7 \\ & 17.8 \\ & 17.1 \end{aligned}$	$\begin{aligned} & 86.7 \\ & 8.7 \\ & 8.2 \end{aligned}$	26 26 26 60	$\begin{aligned} & 22.3 \\ & 2: .7 \\ & 24.3 \end{aligned}$	$\begin{aligned} & 92.1 \\ & 87.2 \\ & 86.3 \end{aligned}$	6 13 13	$\begin{aligned} & 12.9 \\ & 12.0 \\ & 15.6 \end{aligned}$	77.3 70.2 77.7
	Fremont 口	1	24	12.5	72.0						
	Johnson 号.............	3	26	11.3	76.1	33	13.4	76.9	14	9. 1	75.
	Laramie п............	4	17	16.0	83.3	24 13	17. 19	86.9	9	14.7	79.5
	Sheridan ¢	3	12	17.9		13	19.6			16. 2	
		34	19	17.:	82.3	611	24.3	92.1	5	9.1	70.2

In further elucidation of the data contained in the preceding tables a brief discussion of them for each State is appended, supplemented by a summary of those secured by the experiment stations in the several States.

Arizona.

The samples from Arizona consist of one from Apache ('ounty, and six from the agricultural experiment station in Pima County. In the foregoing tables the averages of weight are given to the nearest ounce to avoid the fractions of an ounce, which would necessarily increase the space required for printing. Inasmuch as the weight of the cut beet is so easily varied ly a slight difference of the position of the knife in cutting, it is evident that this method of estimation is practically sufficient.

In the analytical data obtained from Arizona, as will be seen by referring to the preceding data, the mean weight of the beets examined was 23 ounces and the mean percentage of sugar in the samples 9.3 . On account of the poor quality of the beets, the purity of the juices was not determined. The highest observed percentage of sugar in the beet was 12 and the lowest 7.6.

The following report of his investigations and observations in regard to the sugar beets grown in Arizona, during the season of 1897, was made by Robert H. Forbes, chemist of the Agricultural Experiment Station of Arizona.

RESULTS OF EXPERLMENTS WITH SUGAR BEETS IN ARIZONA FOR 1897.
By R. H. Forbes, Chemist.

[^9]inevitably end in disaster．The sugar heet is no exception to the well－known mule that plants，which have been developed through cultivation，if neglected or allowed to run wild，quickly return to their former primitive condition．
Because of the unusual facility with which the sugar beet returns to its former unprofitable condition，it is erident that beet culture is a high art，and in this coun－ try the more intelligence is reruired in its treatment hecause the comditions are in many ways unnsual，and the rules which are successfinly applied in other comntries must be changed or modified here．
In a general way，however，we may insist that deep aud thorough preparation of the soil，careful irrigation，and repeated cultivations and hoeings as long as the crop will permit are no less essential here than elsewhere．
The effect of climate is also perceptible in our analyses．Samples have been received from St．Johns，St．Joseph，Holbrook，Duncan，Buckeye，Thatcher，Skull Valley，Tombstone，Taylor，Fort Thomas，and other more cle wated or more northerly points．Almost withont exception，the beets from these plares were much above the average in richess and purity．The richest samples we have as jet reccived cane from St．Joseph and contained 16.3 per cent of sugar in the juice，with a purity of $81 ; 17$ samples received from the above places averaged 12.37 per cent of sugar in the juice，with a purity of 75.5 ．

In order to make the comparison more rigid，we select the Kleinwanzlebener variety only from among them，and find that 7 samples average 12.4 per cent sugar， with a purity of 76.3 ，as against 10.22 per cent sugar and a purity of 67.82 for this same variety in Salt River Valley．
Knowing the great influene of temperature upon the composition of the heet，it is difficult to lay these differences to any other cause than the cooler temperature of these higher and more northerly localities．

It is a matter of regret that arable land is so scarce in these parts of the Territory． Our observations，however，may guide us in obtaining better results in warmer localities，and in this way：Most of the Salt River Valley plantings were made in March and April，so that almost from the start the plants were subject to the hot summer weather，the temperature throughout the months of June，Juls，Angust， and September being much above the point generally regarded as most favorable to sugar beets．Now，it is possible that hy planting earlier in the year a cooler temperature may be secured for the first three or four months of the life of the plants．Of course the risk from frost will be increased，but that there is some possi－ bility of success in the plan is suggested by the fact that on June 14 we analyzed a sample of beets from Fowler Brothers，near Phonix，which gave 15.2 per cent of sugar in the juice，with a purity of 76 ．The seed for this lot was planted Feb－ ruary 12 and the beets were probably not mature．

We can not safely draw conclusions from a single instance，hat the high percentage and purity in this extremely early sample are suggestirn of the possible advantage in early planting．

Selecting the Kleinwanzlebener beets received from the northern places and com－ paring them with those olitained from Phonix，Glemtale，Tempe，and Mesa，in the Salt River Valley，we obtain the following results：

Showing effect of climate．

Kleinwanzlebener：
From more northerly or elerated localities， 14 samples．．．
From Salt River Valley， 18 samples．

Average －weight of beets．	Sugar in juice．	Sugar in beets．	Purity co efficjent．
$\begin{gathered} \text { Ounces. } \\ 18 \\ 18.2 \end{gathered}$	$\begin{array}{r} \text { Per cent. } \\ 13.35 \\ 10.48 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 12.35 \\ 9.69 \end{array}$	78.8 69.5

The average mean monthly temperatures for Phœnix，Prescott，and Fort Thomas during several years past are shown in the following table．Phœ⿱㇒日勺心㇒ is in the Salt River Valley，Prescot．represents the cooler northern part．s of the Territory from
which heets were received, and Fort Thomas is in the fertile, irrigated portion of Graham County, in Southeastern Arizona.

	Mean temperature.											
	Jin.	Fibl	Mar.	1 pr	May.	June.	Iuly.	Ang.	sept.	Oct.	Nov.	bec.
	${ }^{\circ} \mathrm{F}$.	${ }^{\text {F }}$.	${ }^{\circ} \mathrm{F}$.	F.	${ }^{1} \mathrm{~F}$	${ }^{\circ}$	${ }^{\circ} \mathrm{F}$	F.	F.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
Phoenix	49	54	61	67	74	82	90	88	80	70	61	55
Prescott	34	38	44	51	59	66	74	72	65	54	42	39
Fort I'homas	47	48	55	61	70	79	86	83	75	62	49	44

Finally, as to the soil, it is much more difficult to trace any connection between the quality of beets produced and the numerous varieties of soil, for which this region is famous and on which they lave been grown. Fortunately, however, we have recently eompleted the analysis of a series of twenty representative salt River ralley soils and certain general characteristics of the soils of this region have been determined.

From a chemical point of view the following statements may be made about five of the most important soil constituents, viz, potash, lime, nitrogen, phosphoric acid, and humus.

Potash is everywhere present in abundant quantities. We have found from 0.47 to 1.96 per cent in our samples, the lower figure being ample for a fertile soil.

Lime also is present in great sufficiency, the samples showing from 057 to 4.2 per cent.

Nitrogen, however, is deficient almost overy where, the average for the series being 0.018 per cent, and in only two instances rising above 0.10 per cent, which is considered to be a needful amount to insure nitrogen fertility.

This deliciency probably afferts the richmess of sugar beets less than it does their size. It is well known that an excess of nitrogen produces beets of an enormons size, but of very poor quality. In one instance we received a beet weighing 5 pounds, which had been grown on heavily manured and abmulantly irrigated soil. The sample gave only 1.7 per cent of sugar in the juice, with a purity of 23 . This result was prohithly due, in part at least, to excessive nitrogen.

The small average size of the beets received, however, points to a poverty of nitrogen in the soil for this crop. This will hold for other crops as well as beets, and I an told that in wne case near here two neighhoring orange orchards were planted, one on virgin mesa soil, the other on plowed alfalfa ground. It is stated that the latter orchard has prospered far more than its neighbor. This was doubtless due to the nitrogen which alfalfa and other leguminous crops contribute to the soil. In selecting beet ground. therefore, other things being equal, it would be well in this region to choose that which has previously been in alfalfa.

In stipport of this view I would state that Dr. Claflin's samples were grown on ground that had previously been in alfalfa, so that his excellent record may have been due in part to this cause.

Ihosphoric acid is usually present in sufficiency, though never very abundant. In some cases a serious lack of phosphoric acid has been noted. The average for the valley is 0.13 per cent. It is stated that the effect of phosphoric acid in beet culture is to increase the sugar and hasten maturity. It is supplied to advantage in connection with nitrogen, this combination tending to increase the size of the beets and also maintain their richness.

This desirable combination of nitrogen and phosphorie acid is fombl in guanos and in home suphrphosphates, and it is probable that the application of these fertilizers will, so far as beet culture is concerned, greatly improve the soils of this region. The question of cost, of course, enters here, but it is one which must in any ease soon be solved. At Chino, Cal, with an exceedingly fertile soil, the need of commercial dertilizers is already felt, after the lands having been eropped for five or six years.

Barn mauure is of value for beets only after other crops have been arown on the land, and the manure thereby thoronghly incorporated with the soil. If appliest just before plauting the beet seed, it will prove injurious both to the stand of plants and the quality of the product.

Humus, or vegetable matter, is deficient in all arid soils, our own among the number. Humus and lime are valuable largely because they impart better tilling qualities to the soil, give it greater water-holding power, and lessin the tendeney to hardness when dry. Humus results from barn manure, and the application of this material with suitable precantions should be beneficial.

As to alkali and its effect upon beets, it may be said that when the plants are once established in thrifty growth they will stand more alkali than most other crops. It has been observed also at Chino that the quality of the beets is not impaired by alkaline ground. It is probable, however, as a matter of opinion, that young plants are injured lyy the crust formed on the surface of the soil through the action of alkali, and this may account in part for the exceedingly poor stand of plants obtained in most of the experiments this year. Almost without exception, the reports state that the seed did not come up well or that the young plants died. This difficulty may possibly be overcome by planting earlier in the year, by using mora and better seed. and by taking more care to keep the surface soil loose during the germination of the seed and the first weeks of plant growth. Salt River Valley is not exerssively alkaline; much less so, it is stated, than the Pecos Valley in New Mexico, where wee culture is now attempted.

So much for the result of one season's experimental work. The lessons we have learned are: (1) That here as elsewhere sugar beets must be grown with the utmost care; (2) that the cooler portions of the Territory, so far as observed, produce better beets than the warmer localities, and that experiments should be mate as to what early planting will do in these warmer localities; (3) that the Kleinwanzlebener variety, so far as yet known, yields the best results in Arizona; and (4) that the soils of the valley stand in need of nitrogen and organic matter, possibly phosphoric acid also, and that previous occupation of the ground with alfalfa or other means of fertilization should be secured.

Though many of the results are unfavorable, the occasional successes that have been secured show that there is ample reason for a continuance of the work.

If, during the next year, a half dozen first-class farmers of this valley will each put in an acre of Kleinwanzelehener heets early in the year, on ground that has heen in alfalfa, and will care for them as they ought to lee cared for, I believe that we may have something much more favorable to report on this subject.

Further details of the above experiments with beets are published in Bulletin No. 26 of the Arizona experiment station, issued in December, 1897.

The poor results obtained in Arizona are somewhat surprising, although in general it may be said that the climate of Arizona is too warm for securing the best results. The remarks made by Mr. Forbes in regard to careful culture should be given due consideration. The probabilities are, however, that inasmuch as the beets in Arizona were all grown with irrigation, the application of the water was of such a character as to prevent, in some respects, the development of the highest saccharine content. It may be remarked in general, in regard to the beets grown with irrigation, that much is yet to be learned in regard to the manner of supplying the water, the time at which it is to be applied, and the quautity which is to be used. It would be expected that the ideal conditions of moisture could be secured by irrigation, and yet in practice the results have not been the most encouraging.

This has been true in regard to the growth of beets in Utah and New Mexico muler irrigation. There is no factor comected with the sugarbeet industry which is of more practical interest than a careful study of the conditions under which irrigated beets should be grown. The fertile soils of the arid regions are undoubtedly able to produce large (rops of beets under irrigation, when the proper conditions are understood. Complaints have also been made in respect of the effects of alkali upon beets in these soils, and also of insect pests. It is important that a study be made of the bacteria, molds, and insect pests of sugar beets, together with the effects of the alkali. After allowing for all these conditions, however, it must be confessed that the Arizona data are somewhat disappointing, and muless great improvement can be made there is little prospect of the industry being established on a secure foundation in that region.

Arkangas.

Arkansas liess so far sontio of the heet belt as to make a disenssion of the possibilities of beet growing in that vicinity muecessary. Only two samples were received from the State, and as might be expected, these do not show any very favorable qualities. A few general remarks may be made about growing beets in warmer climates than those best suited to obtaining the highest grade of beets, namely:

First, that it is quite possible to get fine harvests of beets with favorable tounage per acre,

Second, that it is possible to grow beets containing quantities of sugar which would have made them valuable for manufacturing purposes several years ago, before the beet reached its present high state of development, and

Thind, that such beets could probably be grown with great profit for stock-feeding purposes in all these localities. The full value of the beet and beet pulp will be diseussed in a separate portion of this report.

The arerage weight of the two samples received from Arkansas was 18 ounces, and the average content of sugar in the beet 11.3 per cent.

California.

Galifornia is recognized as the principal beet sugar prodncing State in the Enion. Only one sample of beets was received from this State, and it had a weight of 26 ounces and contained $16 . \mathrm{S}^{\prime}$ per cent of sugar. All of the coast valleys of California are favorably situated, in respert of temperature, for the production of sugar beets, and the same may be said of certain lands, the limits of which are not yet well defined, in other parts of the State. Even in the Sacramento Talley, as far inland as the point of jumetion with the San Joaquin River, where the temperature is higher than that considered best for beets, it has been fomm that good beets can be grown. In experiments conducted on Union Island, near Stockton, Cal., (luring the years 1854-85, under direction of the chief chemist of the I epartment of Agriculture, very
encouraging results were obtained, hoth in the quantity and the character of the beets produced. These beets were wrown upon the reclaimed lands of the delta of the San Joaquin at its junction with the Sacramento River. The lands were protected from overflow by strong levees, but the conditions were not theoretically the most favorable for the production of high-grade beets.

Unfortunately, however, large portions of the coast lands, by reason of their contour, are not well suited to the cultivation of beets. On page 90 of Bulletin No. 5 of the Division of Chemistry, published in 1885, the following observation is marle: "In the interior and eastern divisions of California only the high Sierra regions have a temperature low enough for beets, and in that locality there is no land adapter to beet culture. The beet region of California, therefore, is confined to the coast valleys." This statement may have to be moditied to some extent by reason of the data mentioned above from Union Island. These observations are corroborated by the analyses made by Director Hilgard, during 1897, of beets grown in Sacramento County. This locality adjoins Union Island, where the experiments conducted ly the Deparment of Agriculture were made. The average size of the beets examined by Director Hilgard was satisfactory, and the content of sugar in the beets was a little over 16 per cent, with a high purity reaching almost 85 for a whole series of analyses. These data show that in the Sacramento Yalley, at least where the temperature is somewhat higher than that regarded as most favorable, beets of fine sugar-producing qualities can be grown. After a careful personal study of the climatic and soil conditions in California, made in 1884, it is stated on page 100 of Bulletin No. 5 of the Division of Chemistry that there are in California about 5,830 square miles of land suitable to beet culture, provided the whole of it could be supplied with a sufficient quantity of water. Even if only one-third of this area should be found eventually fit for the culture of beets, it would be possible for the State of California alone to produce nearly 500,000 tons of beet sugar and still practice a proper rotation of crops. In view of the fact that the beet-sugar industry has been so carefully studied in California, both by the agricultural experiment station and by those engaged in the manufacture of sugar, it is not necessary here to dwell further upon the possibilities of its exteusion in that State.

Colorado.

The uumber of samples received from the State of Colorado at the Department of Agriculture was 174. The average weight of the beets received was 20 ounces, the mean percentage of sugar in the beet 13.6 , and the mean purity 76.7 . The conditions which obtain in Colorado are so different from those of the Eastern States as to warrant a detailed discussion of the data. This, horever, in the present condition of affairs, would be somewhat premature. It is advisable to wait until a more thorough agricultural survey of the State be made, under the immediate supervisiou of the agricultural experiment station. When
the analytical table of the data received from Colorado is consulted, it is seen that most remarkable differences exist in the returns from the different counties. Since in most cases only a very few samples have been received from any given county, it is not fair to make any judgment of the possibilities of any one county from data of so limited a nature. The great variations in altitude in the State, causing sharp differences of temperature, must also be takeninto consideration. In addition to this, it is fair to presume that the samples have all been grown under irrigation, and it is impossible, in such data as ate collected from the farmers, to determine with any certainty what the proper conduct of the irrigation should be. In general, the data are entirely satisfactory, especially in respect of content of sugar. As regards the mean purity of the juices, the data are somewhat unsatisfactory, since it falls more than three points below the minimum of good beets. This may be due to the great amount of mineral salts which the soils of Colorado contain, and to the well-known property of the sugar beet of absorbing these salts from the soil. For this reason, it may be suggested that in many cases cultivation of the sugar beet could be advantageously practiced, not alone on account of the protit in the beet itself, but becanse of the improvement in the soil which would result from the extraction of the alkaline materials. Among the counties where the samples have been somewhat numerons and the results most encouraging may be mentioned Boulder, lying to the northwest of Denver and mostly within the favorable thermal area, where the average content of sugar in the beet was orer 15, and the purity nearly 81 . This most favorable result was obtained with exceptionally large beets, the average weight of which was 31 ounces. This fact makes the data even more valuable and suggestive.

Another comnty where the data were extremely favorable, although the number of samples was only two, is Delta, a county lying within the theoretical thermal area, and where the average size of the samples Was 20 ounces, the average content of sugar over 17 , and the purity 80.5 .

Another favorable result may be reported from Garfield County, although the average size of the beets is a little low. The mean percentage of sugar in the beets was 16.6 , and the purity s:3.2. This county also lies mostly in the thermal belt.

In contrast with the above should be cited the returns from Logan Comenty, showing not only small beets, but exceptionally low contents of sugar and purities. Logan Connty, nevertheless, is contained almost wholly within the thermal belt, which is most farorable to the growth of heets. The poor results obtained must therefore be due to causes which are not made known.

Ipon the whole, the data from Colorado are exceedingly encouraging and lead to the beliof that there are many parts of that State where, with proper conditions of tillage and irrigation, the sugar beet industry may be established with profit.

In connection with the work done by the Department of A griculture,
it is interesting to consider the report of the director and chemist of the agricultural experiment station of Colorado at Fort Collins:

BRIEF REPORTS REGALDING SUGAR DEET EXPELIMENTS FOR THE YEAK 1897, AT TIE COLORADO STATE AGRICULTURAL COLLEGE.

Chemical section.
The work of the chemical department on sugar beets can be summarized briefly as follows:

We began taking weekly samples on September 2. The varieties represented were Vilmorin, two plots; Kleinwanzlebener, two plots; Leon Brand, ${ }^{1}$ one plot; aud Imperial, one plot. The amount of sugar in the beets was determined from week to week. Wo did not find a very rapid increase as the season advanced until the beets approached maturity, when we observed a sudden increase of abont 3.5 per cent. Our samples varied greatly in their sugar content, but agreed in indicating that the crop in this country was not sufficiently matured to yield marketable beets before the middle of October. The average of the beets analyzed subsequent to this date, debarring one lot, the most of which were grown under unfavorable conditions, and a few samples which were clearly unmarketable beets, is 14 per cent, the range being from 10 per cent to 18.25 per cent of sugar. The coefficient of purity has ranged from 70 to 89 , and has averaged 80.7 . We believe tho average percentage of sugar given to be high enough, but the coefficient of purity- 80.7 -is lower than the actual coefficient rather than higher. ${ }^{2}$

Respectfully submitted.

William P. Headden,
Station Chemist.

Agricultural section.

> (From Report of the Director.)

In a general way it can be said that the results of this season's work are very favorable to the establishment of the beet-sugar iudustry in Colorado. The following figures are to be judged in the light of the statements that come from all the beetsugar manufacturing States of the Uniou, that the season of 1897 was especially unfavorable to the industry. If in this poor year Colorado can make such a good showing, what may we expect of her in ordinary or favorable years?

The above report of the chemist of our Experiment Station gives the figures for the beets raised on the College Farm. But few analyses were made here of beets raised elsewhere, since the dailure to get into our new chemical huilding last fill left the Chemical Department in poor shape for doing much ontside work.

Practically all the analyses of Colorado beets not grown at Fort Collins were made in the Chemistry Iivision of the Department of Agrienlture at Washington. It has seemed best to give here merely a summary with reference to our local conditions.

For the purpose of sugar-beet raising Colorado may be divided into tive sections:
(1) The valley of the South Platte and its tributaries.
(2) The divide south of Denver, and the plains region where beets are grown without irrigation.
(3) The valley of the Arkansas River.
(t) The valley of the Grand River.
(5) The San Luis Valley.

All these, except the second, use irrigation. There are two features of the raising of sugar heets that require special study-namely, the quality of the beets when they are ripe and the time of the year when they reach that degree of ripeness. The
${ }^{1}$ This variety is unknown to me.-H. W. W.
${ }^{2}$ It is not clear what is meant by this expression.-H. W. W.

Carlier in the season they reach a profitable degree of sugar and purity the longer season the factory will liave to manufacture the crop, and the larger the amount of crol, that can be handled by a factory of a given size.

Many tests were made of sugar beets dug in September, but ouly a few showed beets snited for use in sugar making. Nevertheless, the fact that a few samples, even by September 18 , exceeded 12 per cent sugar and a purity of 80 , shows that when oux furmers are more used to growing sugar beets they can bring them to maturity several days, and probably two weeks, earlier than the average crop of 1897. With the first days of October the crops ripened rapidly.

The following table presents a summary of the season of 1897 , with reference to the ynality of the beets, and the time of ripening in different parts of Colorado:

Nection of State.	Samples dug between Oct. 1 aud 10.		Samples dug between Oct. 10 and 15.		Samples dug after Oct. 15.	
	Sugar.	Purity co efficient.	Sugar.	Purity coefficient.	Sugar.	Puritycoefticient.
	Per cent.		Per cent		Per cent.	
The valley of the South Platte.	14.1	80.7	14.6	81.1	15.4	81.1
The divide and the plains	12.5	73.7	15.1	80.6	14.8	78.3
The valley of the Arkansas			13.1	77.9	15.3	81.9
The valley of the Grand.	16.3	83.6				
The San Luis Valley ...	13.7	79.2	12.4	78.5	14.8	80.3

IDAIIO.
The number of samples received at this laboratory from the State of Laho was only seven, representing two comties. The average weight of the beets received was 21 ounces, the average content of sugar therein $15 . \mathrm{F}^{\prime}$ per cent, and the average purity 79.4. Botin in respect of size of the heets and content of sugar the results are very encouraging. The a rerage coefferient of purity is almost up to the minimum standard, and donbtless fould be improved later on. The alkalinity of the soil, whirh has heen mentioned in comection with the lowering of the arerage in Colorado, is doubtless active in Idaho. There are large areas in Idaho where the thermal conditions are favorable, but they are detached from the main thermal belt crossing the continent. There are two centers of thermal conditions in Idaho which serve as muclei for determining the conditions most favorable. One of these lies almost wholly in the State, and Boise City may be regarded as the renter of it, and the other extends into the western and northern part of the State from the state of Washington. In general, it may be said that the thermal conditions in Idaho, if they alone are to be cousidered, are sufficiently favorable for the culture of the beet, in so far as the growing season is concermed. The data obtained, while meager, are sufticiently encouraging to warrant a more thorongh survey of the State, and also the belief that the conditions for the suceessful establishment of the sugar industry may be found wherever the character of the soil, in respect of contonr and fertility, and the facilities for irrigation and other factors favorable to the growth of the sugar beet and the manufacture of sugar can be secured. The report of the chemist of the station contans much valuable information in respect of the sugar-beet industry in the State of Idaho, and is herewith appended:

RESULTS OF EXPERIMENTS IN IDAHO.

In the first place, the results of the past season are quite disappointing and unsatisfactory, due to several causes which will be eliminated largely in the reperiments of next year.

The climatic conditions of Idaho are quite varied, the growing season opening several weeks ealler in South Idaho, aloug the snake River and in the boise Basin, than aloug the Clearwater or in North Idaho. The seed furnished gratis to this station by the Department of Agriculture arrived late, and before it could be dis-tributed-May 4 to June 2-the seasun was well advanced, hence the seed that was planted either failed of germination, or the young plants were killed by severe climatic changes of heat and drought, or of cold and wet soil, which latter condition prevailed in the Palouse region. Much of the seed sown in our station plats failed to grow. The stand was irrogular, weak, and of poor quality, so that the tonnage per acre could not be estimated with any degree of reliability. It is therefore omitted from the tables.

Seed was mailed to 114 farmers, representing 41 difierent sections of the State, yet samples of beets for analysis were received at this Department from only 20 farmers, representing 13 localities. This apparent apathy on the part of onr farmer frients is explainable in part: In many cases the seed ciid not reach its destination, or when planted it failed to germinate, or the young plants were destroyed by insectis or jack rabbits. In a few cases there was not sufficient interest manifested in the experiment to induce proper cultivation of the young plants, therefore no samples worthy of shipment were grown.

Sugar-beet growing is a new industry to the American farmer, and he has yet to learn that the ordinary farm methods are not always applicable and sufficient to grow and mature a typical sugar beet. The Idaho rancher is not an exception. He has yet to learn the value of intensive methods, from the preparation of the seed bed to the marketing of his crop. The neglect to plow deeply, to pulverize finely, to place the seed with care, to thin the plants judiciously, to cut out the weeds, withal to cultivate and hoe the growing plauts regularly, resulted in partial or entire fuilure of the experiment. The sugar beet is a thoroughbred, and must be given care in keeping with its regal characteristics if high sugar content amb purity are to be attained. The successful sugar-beet grower has learned that the sucrose is practically hoed into the root. This knowledge and its application our farmers evidently were not in possession of, or the number of samples forwarded would have been greatly auginented. It is a matter of education, however, which will be overcome in time hy the dissemination of information through the press, the station bulletin, and closer competition induced ly immigration from older States, where better methods of farmiug prevail.

The 41 samples analyzed averaged in sugar content 15.17 per cent; in purity, 87.55 . The 20 samples grown hy the station gave in sugar 1528 per cent; in purity, 92.55 . The 21 samples grown else where averaged 15.07 per cent of sugar, and $8 \times .78$ in purity The highest and lowest results gave 19 and 10.2 per cent in sugar; and 95.10 and 81.81 purity, respectively.

OTIEE SUGAR BEET DATA NOT HITIIERTO GIVEN TO THE GENERAL PUBLIC.
During the fall of 1894,192 analyses of sugar beets were made by the Station, which gare an average of 13.7 per cent of sugar and a purity of 76.08 degrees. Some of the samples were large, others had been frozen, still others were immature, while a few varieties were not at all adapted to our soil and climate. This reduced an otherwise much higher average. Excluding about 20 samples, the remainder, 55 samples of Vilmorin's Improved gave an average of 11.77 per cent of sugar and a purity of 75.55 degrees.

Forty-four samples of Kleinvanzlebener beets averaged 14.16 per cent of sugar with a purity of 82.80 .

Thirty samples of Imperial averaged in sugar 14.1 per cent, in purity, 80.42 .
Н. Doc. $396-\overline{0}$

Ten samples of French Red Top gave an arelage of 13.6 per cent of sugar with a purity of 82.70 .

The average of 10 samples of Lane's was 13.44 per cent of sugar with a purity of 81.69.

Eight samples of New Danish gave an average of 13.83 per cent of sugar and a purity of 81.81 .

The highest and lowest percentages of sugar in each variety were as follows:

	Variety.	Highent.	Lowest.
		Per cent.	Per cent.
Vilmorin's.....		16. 6	14.4
Kleinwanzlebener		19.6	14.6
Mette.		18.4	14.6
Imperial		18.2	10.6
Lame's		15.7	10.6
Red Top		15.9	-10.7
Danish		15.2	10.8

The places represented in the experiment were the University of Idaho, Cour d'Alene, Sand l'oint, Moscow, Keurlrick, Lenville, I'rinceton, Cornwall, Genesee, substation at Grangeville, substatiou at Idaho Falls, sulostation at Nampa.

The average yield thronghont the State was estimated at 20 tons per acre. ${ }^{1}$

ANALYSES OF BEETS GROWN IN 1895.

The experiments in sugar beets for 1895 were covered by 342 analyses of beets grown by the University of Idaho and hy farmers residing near (irangeville, Nampa. Moscow, Weippe, Volhme, Palouse, Spokane Bridge, Westlake, Starner, Newport, Salmonn, and Paris.

The average sugar content of the crop was 15.19 per cent; coefticient of purity, 79.91. In the analyses were included 15 samples of red or table beets. These 15 contained an average of $\mathbf{1 3 . 7 5}$ per cent of sugar in the juice and a coefficient of purity of 75.57 .

Soveral analyses were mate for the purpose of determining what bearing, if any, the size of the sample beet had upon the sugar content and purity. Anong others I select four varieties, and submit the results withont comment:

VLLMORIN'S IMPROVED.

	Size.	Weight.	Sugar in beet.	Puritycoeflicient.
		Ounces.	Per cent.	
1. Large..		21.4	14.02	
2. Medium		${ }_{7}{ }^{15} 2$	14.31	81.26
3. Small..		7.8		78,58

FLORIMOND DESPREZ.

1. Larme	28.7	14. 35	83.95
2. Medim	16.5	14.46	84.00
3. Small	10.7	14.10	80.25

LANE'S IMPERIAL.

1. Large	24.1	13.62	80.92
2. Medium	13.3	13.69	82.17
3. Small	8.0	13. 38	82.07

KLEINWANZLEBENER.

ANALYSES OF BEETS GROWN IN 1896.

The work of the year was confined very largely to the station, and consisted of a special effort in the way of growing typical sugar beets. The effect of deep and shallow plowing, regular cultivation, fertilization, and irrigation, as compared with the average treatment given the root under natural conditions as to soil, moisture, and cultivation, was noted. The seed bed was prepared and the seed sown from the 21 st to the 30 th of May. Very heavy rains prevailed on June 5 and again on June 9. All of the seed had germinated by June 11 . The average per cent of stand June 5 was 10.7; June 24 it was 29 ; one month later it had reached 61.8 per cent. The crop was harvested and analyzed during October. The number of aualyses made was 60 ; the per cent of sucrose in juice was 14.18 ; coefficient of purity, 77.30 ; yield per acre, 48,510 pounds.

The sugar-beet experiments connected with this station during 1894, 1895, 1896, and the inauguration of the work of $18: 97$ were under the direction and control of the Agricultural Department, the chemist heing responsible only for the analytical data. In July, 1897, under the redistribution of the powers of the station stati, the rather unsatisfactory data thus collected were assigned to the chemical department for compilation and publication, together with the power of supervision of such experiments in the future.

METEOROLOGICAL RECORD.

The better to understand the possibilities of the sugar-beet industry in the Palonse comitry of Idaho, as well as other experiments that may hereafter he undertaken by thestation upon the "university farm," the following meteorological datat are included in this report. We are under obligations to P'rof. J. E. Bonebright, meteorolowist of the station, for the results tabulated:

Table 11.-Meteorological record for Moscow.

Month.	Maximum tem perature.	Minimum tem perature	A verage temperature.	$\begin{aligned} & \text { Humid- } \\ & \text { ity. } \end{aligned}$	Rainfall.	$\begin{aligned} & \text { Days } \\ & \text { fair. } \end{aligned}$	Days clear.	Days cloudy.
1894.	-	-	\bigcirc	Percent.	Inches.			
April	76.0	25.0	47.40	76.0	1.38	8	7	15
Juye	8.4 .0	32.0	6.2. 00	74.0	1.23	3	19	9
July	93.0	40.0	78.00	65.0	. 12	2	29	0
August	96.0	34.0	70.50	46.0	. 25	3	26	2
September	85.0	32.0	58.80	72.0	. 89	2	25	3
October.	74.0	28.0	40. 40	85.0	3.70	9	9	13
April	76.0	26.0	48.10	70.0	1.30	5	12	13
May	81.0	30.0	51.90	68.0	2.17	2	22	7
June.	96.0	33.0	59.40	52.0	. 41			
July	92.0	41.0	72.70	38.0	. 90	1	29	1
August	94.0	33.0	74.50	47.0	. 32	3	26	2
September	84.0	28.0	49.80	70.0	3.33	2	20	8
October.	74.0	21.0	46. 10	72.0	Trace.	2	27	2
1896.								
pril	68.0	26.0	42. 53		. 57	12	10	8
May	84.0	31.0	46.50	85.5	3. 60	4	13	14
June.	92.0	34.0	61.10	61.7	2.21	0	30	0
July	97.0	14.0	70.41	55.6	. 17	0	30	1
August.	93.0	38.0	67.17	55.4	1.33	0	26	5
September	85.0	30.0	54.65	72.2	. 81	0	22	8
October.	76.0	28.0	46.33		1.07	2	17	12
1897.								
April	63.1	36.5	49.70	72.2	. 40		19	11
May.	78.8	38.8			1. 20	0	21	10
June	65.6	46.0	53.80	77.4	2.72	0	25	5
auly..	82.0	48.5	70.00	45.4	. 85	0	26	5
Augnst.	81.6	46.1	71.50	40.3	. 35	0	30	1
September	69.9	38.4	59. 20	77.6	1. 67	0	22	8
October.	66.4	36.4			1.10	3	22	6

Illinois

The samples received from the State of Illinois by the Department of Agriculture were 32 in number. The average weight of the samples was 17 ounces, percentage of sugar 13.1, and the purity 75.5. Twelve of these samples were from the northern, s from the central, and 12 from the southern belt.

When judgeal by the few samples analyzed by the Department of Agriculture, it is seen that llinois presents an exception to the established rule, inasmuch as the beets grown in the northern belt are inferior to those grown in the central belt. The data, however, are not numerous enongh to base any certain conclusions non them, and the usual rule is established from the more numerous analyses conducted by the agricultural experiment station, as will be seen farther along. Summarized, the result.s obtained at the Department of Agriculture from the northern, central, and sonthern belts in Illinois are as follows:

Summary of analyses of sugar beets from Illinois.

[Compiled from analyses of the United States Department of Agriculture.]

At the agricultural experiment station of Illinois, at Urbana, 312 samples of beets were rereived and analyzed. The following summary shows the analytical data and the distribution of the samples by counties:

Summary of analyses of sugar beets from Illinois, by counlies.

Comity					County.				
nomthern belt.		Oences.	Perct.		central belt.		Ounces.		
Stephensou.	1	20	10.7	70.0	Kankak	8	21	12.9	79.3
Winnebago	2	18	13.4	75.8	Henderson	1	22	9.2	711.8
McHenry	1	19	15.1	84.3	Kinox	4	20	11.0	\%5. 1
Carroll	4	20	13.8	81.4	Stark	1	10	14.4	75.
Whitesid	6	23	13.9	79. 2	Peoria.	4	24	13.0	83.1
Ogle	3	23	12.6	74.6	Marshall	1	18	14.3	8:!
Lee	8	16	13.8	80.6	Woodford	1	23	13.3	8.1
Dekalb	7	2	13.4	78.3	Livingstor	3	17	14.0	8: 1
Dupag	1	21	15.6	82.2	Iroquois	50	20	11.3	75.3
Cork	3	24	14.3	82.7	Hancock	1	17	10.6	64.0
Inock Isla	1	16 ,	14.9	82.5	Fulton	1	17	11.2	77.1
Heury	6^{6}	18	12.7	78.3	Tazewell	2	20	12.3	78.8
Ibureau	3	33	10.5	76.5	McLear		24	12.0	77.6
Lasalle	31	22	13.1	76.4	Ford	1	24	10.8	77.0
Kendall	2	14	13.8	82.8	Adams	4	17	12.4	75.5
Grundy	1	18	13.9	80.2	Mason	25	19	11.1	75.7
Will.	23	28	12. 9	74.6	Logan.	4	29	9.8	69.6
Mercer	1	17	12.6	79.7	Dewitt	1	27	13.8	81.7

Summary of analyses of sugar beets from Illinois, by counties-Continued.

County.					County.		$\begin{aligned} & 0 \\ & 50 \\ & =0 \\ & 5.0 \\ & 0.0 \\ & y= \end{aligned}$		$\begin{aligned} & \dot{E} \\ & \text { E } \\ & \text { E } \end{aligned}$
CENTRAL BELTcontinued.					CENTRAL BEIT continued.				
		Ounces.	Perct.				Ounces	I'eret.	
Macon	1	18	8.0	64.9	Clark	4		13.6	73.9
Piatt.	2	20	12.7	81.0					
Champaign	10	21	11.7	79.6	SOUTHERN BELT.				
Vermilion	2	19	11.3	75.2					
Pike	1	10	9.6	69.4	Ethinglam.	1	10	12.6	74.6
Scott	1	10	9.7	64.3	Madison :	15	21	10.3	74.0
Morgan	4	22	10.3	74.3	Bond...	1	18	10.3	80.8
Sangamon.	2	17	11.2	76.8	St. Clair...	11	21	12. 3	77.7
Christian.	2	19	11.8	76.5	Washington.	1	16	11.9	75.2
Shelby.	3	21	10.9	71.9	Jefferson..	1	14	12.1	85.0
Donglas	3	24	11.2	77.5	Wavne	1	16	14.3	77.0
Edgar.	2	16	12.1	74.9	Clay...	1	15	11.8	68.3
Calhoun	2	14	9.4	72.1	Edwards	1	15	8.7	58.7
Greene	3	14	8.5	68.3	Jackson.	2	17	10.8	73:8
Macoupin	6	17	11.6	72. 2	Saline..	3	10	9.3	68.9
Montgomery	5	11	13.0	76.9					

The average weight of the beets received was 20 ounces, the mean percentage of sugar therein 11.9, and the mean purity 76.t. Distributed geographically into northern, central, and southern sections, we find each of the sections represented by the number of samples of the mean arerage composition indicated in the following summary:

Summary of analyses of sugar beets from Illinois.
[Compiled from the experiment station report.]

Here we see the regular rule illustrated, and the beets derived from the northern are superior in every respect to those from the central and southern belts. It is evident, however, judged by the data obtained during the present year, that lllinois is not so well adapted to the growing of high-grade beets as some of the States to the east of it. Nevertheless, it is quite certain that, with proper rrainage, scientific cultivation and fertilization, and good culture, high-grade beets can be grown in many of the northern counties of Illinois, and it rould prob)ably be safe to say that for a distance of 100 miles from the boundary between Wisconsin and Illinois the sugar-beet industry could be successfully established where the conditions of soil and factors favorable to manufacture are suitable.

Indiana.

One hundred and three samples were received at the Department of Agriculture from the State of Indiana, representing several different
parts of the State, but mostly from the northern portions. The largest mumber of samples, however, from any one county was from Vanderburg, in the extreme southwestern part of the State. The average size of the beets from Indiana was small, the percentage of sugar in the beet fair, and the purity a little below the minimum for good beets. In general, the best beets were grown in the northern portion of the State, near or in the thermal beet belt, although a feew samples received from the central and castern parts of the state were very satisfactory. Among the combies furnishing the largest number of samples may be mentioned Henry, in the central easteru part of the State, from which 8 samples were received, having an average weight of 17 ounces, containing 13.1 per cent of sugar, with a purity of ix.5. The averages for Henry County in sugar and purity were almost exactly those for the whole state. Three samples from Marion Comity, in the central portion of the state, show excellent results, both in percentage of sugar and in purity, and haring an average size of a pound. The best results are reported from Stark County, in the northwestern portion of the State, where the percentage of sugar was 15.7 and purity 81.8. The beets, however, from this region were small, the average size being only 12.5 onnces. The beets received from the agricultural experiment station were very much undergrown, the average weight being less than 7 ounces. The percentage of sugar in the beets was good-15.1-and the purity also alove the minimum. The canses of the poor yield of beets are discussed farther on in the report of the chemist of the station. The largest number of beets from any one county was received from Vanderburg, namely, 40 samples. The people of this county have been particularly interested in the industry, and especially to Mr. H. Cordes are we indebted for the large number of samples received. In spite of the very fertile soil and other favorable conditions of culture, the beets had an average size of only 14 ounces, and both the percentage of sugar in the beet and the purity were below the minima. In general, it may be said of Indiana that the northern portions of the State, where the character of the soil is favorable, are best suited to the culture of the sugar beet, namely, those portions either lying in the area of farorable thermal ronditions, or extending to a varying distance to the south thereof and covering the greater portion of the northern part of the state. The central counties of the State, judged by the fer samples receiverl, may also be expected to grow beets of fair quality. A more careful agricultural survey of the state is needen, and the data above are supplemented by the more valuable data collected by the awricultural experiment station under the supervision of the chemist, Mr. H. A. Huston.

NOTES ON SUGAR BEETS RAISED IN INDIANA IN 1897.
(From Report of H. A. Huston.)
The early part of the season was fairly favorable to the growth of the crop. In many "aves, however, the beets were planted quite late and were much below normal sire when the dronght came on in Augnst. From the middle of Augnst until the
end of the usual growing season very little rain fell．This tended to produce beets of high sugar content and small size．The popular interest in the subject has been much greater than in previous years and a much better return than usual was secured from the seed sent out．
At three points in the State parties are now engaged in placing contracts for sufficient acreage to insure a tbree years＇supply of beets for a 300 －ton factory． Reports from these localities indicate that the required acreage will be secured．
Nearly all farmers who have raised experimental crops of beets for the past few years report that they believe the crop would be a profitable one at $\$ 4$ per ton．This estimate is based solely on their own experience with the crop．

The total number of samples analyzed at the agricultural experiment station of Indiana was 205 ．Arranged by counties，the following table gives the most important data connected with the analyses：

Tests of sugar beets grown in Indiana in 1897 under the direction of the Indiana agricul－ tural experiment station．H．A．Huston and J．M．Barrett．

County．	$\begin{aligned} & \stackrel{+}{3} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \text { E0 } \\ & 0 \\ & 0 \\ & 4 \end{aligned}$		Average purity．	$\begin{aligned} & \text { Number of beets by } \\ & \text { counties. } \end{aligned}$	County．		$\stackrel{H}{0}$ 픙 む． 8 4	－Sq！ind os̊bioa	
	Ozs．					Ozs．			
Lake \square－	51	8.3	68.0	1	Grant \square	12	13.6	70.1	2
Porter \square ．	12	13.7	84.0	2	Jay 마．．．．	26	13.3	79.5	2
Laporte \square	22	9.0	64.3	1	Fountain－	31	10.1	68.6	1
St．Joseph b	24	13.0	85.0	6	Clinton	18	13.2	83.2	4
Elkhart \quad b	12	14.8	83.6	7	Boone	13	13.6	82.0	5
Lagrange－	12	16.6	87.4	1	Tipton	20	13.5	82.3	11
Starke \square	14	14.1	85.0	28	Madison	33	9.2	70.2	1
Newton口	11	13.7	96.4	1	Randolph	24	12.9	79.0	3
Jasper \square	2	17.9	84.4	1	Parke－．	8	10.2	56.7	1
Allen \square ．	23	13.5	82.4	21	Marion	17	12.7	83.5	1
Benton－	31	11.2	79.6	3	Hancock	28	14．0	87.4	4
White \square	20	10.3	66.0	1	Henry 마	19	12.9	78.0	12
Cass	17	12.1	77.2	4	Morgan	14	13.9	82.8	3
Wabash	14	12.0	77.8	4	Greene \square	12	12.8	81.4	3
Huntington \square	25	11.8	78.0	19	Jackson	8	10.0	72.8	2
Warren－	18	12.2	83.0	1	Vanderburg	15	10.6	77.7	36
Tippecanoe－	15	12.5	84.6	8					
Carroll \square ．	11	12.4	82.0	5	Averages，etc	17.8	12.6	80.7	205

As will be seen above，nearly all the counties represented are in the northern part of the State．Only a few counties are represented in the central and southern portions of the State．Making an average of the results from the different counties by sections of the State，it is seen that they vary considerably，as is shown in the following summary：

Summary of results．

	Average weight．	Average per cent of sugar in juice．	Average purity coefficient．	$\begin{aligned} & \text { Number } \\ & \text { beets. } \end{aligned}$
	Ounces．			
Northern bel	18.9	13． 3	81.9	97
Central belt．	18.5	12.9	80.7 78.0	67
southern belt	14.2	10.7	78.0	41

It is seen that there are considerable areas in the northern part of the State where both soil and climatic conditions are extremely favorable to the culture of the sugar beet. The proximity of these comes to Chicago insures a market for all the products of the factory. In many cases these connties are situated in or near the gas area of the State, so that fuel is comparatively cheap. All of them are within easy distance of the great coal fields of Indiana, and the supply of water and limestone is abmudant. It is evident, therefore, that all the conditions favorable to the growth and mannfactme of the beets exist in the northern part of the State of Indiana, and there is no reason to doubt the speedy foundation and healthy growth of the industry in that locality.

Iowa.

The thermal comlitions for the growth of beets in Iowa are favorable over almost the whole of the State from north to south. The southern comnties are probably a little too warm for the best results, and the northern counties too much exposed to severe cold weather during harvest time.

One hundred and thirty samples of beets were sent directly from Iowa to the Department of Agriculture for analysis.

In the results as tabulated by counties it will be observed that a great many of the counties are represented by a single sample, and therefore it is not possible to base any conclusions on the work done in respect of the possibilities of growth of beets in such comnties. Benton County sent 6 samples, with an average weight of 16 ounces; 13.8 per cent of sugar in the beet, with a purity of 76.9. Clinton County furnished 5 samples. The beets were very small, averaging only 11 ounces. The content of sugar was high, namely, 16.8 per cent, and the purity low, 75.8. Greene County sent 39 samples of good size, namely, 21 ounces; rather low content of sugar, namely, 12.7 per cent, and a low purity, namely, 76.3. Guthrie County seut 6 samples of good size, namely, 23 ounces; rather low content of sugar, 12.5 per cent, with a purity of 78.8 . The averages for the 130 samples from the State are as follows: Weight, 18 ounces; sugar in beets, 13.3 per cent; purity, 73.7.

Under the direction of the agricultural experiment station of the State, in cooperation with this Department, a large number of samples of seed was distributed, and 64% samples of beets sent to the station for analysis. Following is an abstract of the report of Prof. C. F. Curtiss, director of the Iowa station:

Total number of samples analyzerd, 642.
One and seven-tenths per cent of the samples contained 17 per cent or more of sugar; $7: 3$ per cent of these had a purity coefficient of 80 or above, and 50 per cent of these samples weighed 14 ounces or above.

Four and three-tenths per cent of the samples contained 16 per cent and over of sugar and less than 17 per cent; of these samples 86 per
cent had a purity coefficient of 80 degrees or above, and ".9 per cent weighed 14 ounces or above.
Twenty-two and three-tenths per cent of the samples coutained 14 per cent or over of sugar and less than 16 per cent; of these samples 50 per cent had a purity coefficient of 80 or above. and 62 per cent weighed 16 ounces or above.

Forty-one and four-tenths per cent of the samples contained 12 per cent and over of sugar and less than 14 per cent; of these samples 14.7 per cent had a purity coefficient of 80 or above, and 69 per cent weighed 16 ounces or above.

Sixty-nine and three tenths per cent of the total number of samples contained 12 per cent or more of sugar.
The above percentages are based on the weight of the juice.
The mean weight of the samples received at the Iowa station was 19 ounces, the mean percentage of sugar in the beet 12.4 , and the mean purity 76.6 . The results by comties are given in the following table:

Analyses of sugar beets grown in Iowa and analyzed by the Iowa agricultural experiment station.

County.	Average weight per root.	Sugar.	Purity coefficient.	County.	Average weight per root.	Sugar.	Purity coefficient.
	Ounces.	Per cent.			Ounces.	Per cent.	
Adair.	19	13.40	77.45	Johnson	20	12.54	76.98
Adams	21	13.26	75. 30	Jones	17	14.05	77.52
Allamakee	20	14.26	78.87	Keokuk	23	14.06	76.46
Apranoose	8	16.11	82. 80	Kossuth	25	12.55	77. 24
Audubon.	16	13.09	78.30	Linn.	17	12. 08	74.02
Benton	21	13.30	76.68	Louisa	10	12. 65	74.54
Blackhawk	17	13.98	79.64	Lyon	19	14. 07	79.33
Boone	17	13.33	76. 81	Matison	18	12. 55	74.31
Bremer	14	11.24	78.71	Marion	21	12.86	74.66
Buchanau	15	14.24	76.25	Marshall	22	12.51	74.85
Buena Vista	19	13.62	77.70	Mills	19	12.94	76.94
Butler...	13	10.77	74.45	Mitchell	20	12.37	76. 21
Callomm	12	15. 80	81.46	Monona	27	13. 86	80.87
Carroll	22	12. 34	75.51	Montgomery	25	12.33	76.52
Cass.	22	12.03	75.34	Muscatine..	24	14.44	80: 93
Cedar	21	12.56	74. 48	O'Brien.	16	14.38	92.77
Cherokee	19	13. 34	77.01	Osceola.	14	14. 16	81.48
Chickasaw	15	13.34	75.54	Pase	23	12. 56	74.22
Clay.	17	12.08	74.06	Palo Alto.	22	12. 88	106. 85
Clayton	23	13. 48	78. 47	Plymouti	26	12. 49	79.39
Clinton	17	15. 81	78.97	Pocahontas	20	11. 76	78.46
Crawford	23	10.55	68.24	Polk.	$\because 2$	12.96	76.09
Dallas	23	13. 46	79.33	Pottawattam	19	13. 04	78.13
Davis.	14	15. 78	73.94	Poweshiek	20	12.87	77.52
Decatur	12	14. 14	79.27	Ringgold	17	12. $5 \frac{1}{4}$	75.58
Delaware	18	13.23	75. 76	Scott	16	13. 73	76.59
Dickinson	21	12. 81	75.16	Shelby	34	13. 43	78.58
Dubuque	17	14. 14	69.76	Sioux	28	12. 44	73.79
Fayette.	17	14.62	80.33	Story	22	12. 30	76.51
Floyd.	24	12. 77	75.01	Tama.	17	12.55	77.04
Franklin	17	12, 62	73.23	Taylor	11	11.82	70.39
I'remont	19	12. 15	71. 37	Union	15	13.98	76.54
(ireene	19	13.04	77. 42	Wapello	19	13.70	76.74
Grundy	23	12. 00	73.91	Warren	20	13. 62	75.79
Guthrie	22	12. 60	74.98	Washington	21	13. 84	77.81
Hamilton	21	12.58	75. 24	Wayne..	13	15. 15	70.92
Hancock	18	11. 92	75.84	Webster	18	12. 57	76.14
Hardin	19	12.88	77.01	Winnebag	22	12. 21	76.87
Harrison	17	12. 65	76.57	Winneshiek	19	13.57	76.42
Henry	26	14.24	78.64	Woodbury	20	12. 72	74.34
Howard	18	13. 33	77.48	Worth ...	18	13.34	78.77
Ida.	21	12. 79	77.49	Wright	15	12.22	75.48
Jasper	23	13.06	76. 86				
Jetrerson	12	12. 36	76. 27	Average	19	12.98	76.56

The results contained in the above table are not as satisfactory as would be expected from the-location of Iowa in respect of thermal and other climatic influences. The poor results obtained are due either to the seasonal influences, which might have been particularly bad for the season in question, or to some unsuitability of the soil or climate to the production of high grade beets. In general, it has heen observed that soils particularly rich in humus and of a black color do not produce as high-grade beets as sandy and somewhat lightercolored soils. The character of the subsoil and of the stratum underlying it must also be taken into consideration before we can have an idea of the condition of aeration of the soil and the possibilities of the roots of the beets extending to the proper depth. It is fortunate that the agricultural experiment station of Iowa will continue these experiments in a more careful manner and muder more efticient control of the station or some of its representatives. It is evident that with the possible exception of the southern tier of counties a large portion of the state of Iowa with favorable soil conditions should produce beets of high saccharine strength. The canses which have depressed both the content of susar and the coeflicient of purity should be carefully investigated.

Kansas.

Several years ago extensive experiments in growing beets in Kansas were made at Medicine Lodge, and accounts of the work are given in former bulletins on this subject. At that time it was stated, in discussing the results, that the climate of Kansas was particularly unfavorable to beet culture. The extremely dry weather to which much of the State is lrequently subjected, in conjunction with the hot winds which sweep over the vast plains almost every year from the southwest, renders the growth of the beet extremely precarious. At times excellent beets can be grown; in fact, beets of fine character were produced at the time mentioned at Medirine Lodge. It is not to be expected, however, that from year to year beets of high grade can be grom in sufficient quantities to warrant the building of factories in the State. Nevertheless, considerable interest is taken in the work by the farmers in rarions parts of the State, and also by the agricultural college and experiment station. Forty-one samples were received by the Department of Agriculture. The average si\%e of these samples was rather laree, namely, 27 onnces. The sugar content was low, 11.4 per cent, and the purity quite low, 73.8 . While it is evident that large quantities of sugar can be made from beets of this character, it is also plain, without argument, that such a ruality of beets would not be able to compete with those grown in more favorable localities.

The agricultural experiment station of Kansas, in cooperation with the $]$) partment of A grieultwe, also conducted a series of experiments and received for analysis 157 samples. A detailed report of this work
will be found in the bulletins of the agricultural experiment station of Kansas, and the following summary sufficiently indicates the character of the results obtained. The number of samples analyzed was 1.5. The average net weight of the beets receivel was 17 ounces; the average content of sugar in the beets, 11.9 per cent, and the average coefficient of purity of the juice, 77 . The percentage of the whole number of beets containing 13 per cent of sucrose or over was 15.2. The percentage of beets containing 13 per cent of sugar or over, having a coefticient of purity of the juice of 80 per cent or over, was 67 . The percentage of beets containing 13 per cent and over of sugar and weighing 16 ounces or more, net, was 42 .
The analyses made at the agricultural experiment station of Lansas have been consolidated and tabulated by counties. The table of analyses follows:

Summary of ancilyses of beets from Kansas.
[Compiled from report of experiment station.]

County.		关				County.	$\begin{aligned} & \text { Number beets in } \\ & \text { samples. } \end{aligned}$			uṭ aveins ous	
			Ozs.	Perct.					Ozs.	Per ct.	
Allen	10	1	14	10.64	72.0	Lyon	14	2	16	13.29	79.5
Atchison	17	2	17	12.61	79.5	Marion	33	6	16	11. 23	71.8
Barber.	14	2	12	14.91	72.5	Marshall	49	5	25	12. 20	79.4
Barton	4	1	34	10.35	74.0	McPherson	7	1	7	13. 08	76.0
Bourbon	8	1	5	13.88	75.0	Montgomery	21	3	15	11. 39	74.6
Brown.	10	1	21	11. 29	81.0	Morrin.....	14	2	15	14.01	74.5
Butler	22	4	18	10.86	70.8	Nemaba	48	4	23	10.30	74.2
Chase	6	1	14	11.61	77.0	Osage.	20	4	16	12.17	77.2
Cheyenn	10	1	17	12. 14	79.9	Osborne	10	1	16	12.39	70.0
Clay ...	37	3	28	11.21	78.0	Ottawa	27	4	22	12.90	78.9
Cloud.	93	9	20	11. 65	79.2	Pawnee.	8	1	4	8. 52	70.0
Cofliey	4	1	20	15. 13	78.0	Phillips	21	2	19	12.16	79.5
Crawford	12	1	14) 21	13.87	82.0	Pottawatom	30	3	16	12. 20	83.6
Do.	3	1	28) 21			Pratt	14	2	8	12.19	75.0
Dickinson	20	4	17	12.29	77.0	Rawlins	8	1	16	9.57	73.0
Doniphan.	15	1	24	13.67	84.0	Reno	18	2	12	13.78	79.5
Douglas.	11	2	20	12.48	77.5	Republic	49	4	18	10.69	74.5
Edwards	6	1	12	11. 12	71.0	Rice.	6	2	14	11. 71	74.5
Elk.	14	2	21	14.04	83.0	Riley		3	21	8.98	70.3
Ellsworth.	5	1	17			Rools	21	2	16	13.39	80.5
Finney	6	1	19	14.14	74.0	Rush	10	1	20	11. 88	77.0
Franklin	6	1	16	11. 86	77.0	Russell	12	3	10	11. 49	71.0
Geary -	6	1	13	9.51	70.0	Saline	16	2	9	15.78	84.0
Graliam	31	3	18	12. 83	76.0	Sedgwick	12	2	12	11. 23	74.0
Grant.	6	1	16	15.47	78.0	Sliawnee	$2!)$	3	15	12.19	77.3
Harvey	6	1	5			Sheridan	20	2	$2!$	11. 59	78.5
Do.	6	1	14	12.83	78.0	Smith.	10	1	28	11. 12	78.0
Jackson	14	1	20	11. 17	73.0	Sumner	7	1	18	13.38	76.0
Jefterson	6	1	15	11.8:	76.0	Waubaunsee.	23	-	1.$)$	12.14	77.5
Jewell .	40	4	19	11.12	77.3	Wallace	6	1	19	11.58	760
Johnson.	14	2	18	14. 23	83.0	Washington	99	10	27	10.79	75.2
Labette	3	1	20	8.76	67.0	Wichita ...	6	1	14	11. 24	79.0
Lane.	26	2	4	10. 17	68.5	Wilson	36	5	14	13.12	81.0
Leavenworth	22	4	12	12. 75	79.0	Woodson	10	1	7	14. 32	73.0
Lincoln.	16	3	28	11. 38	79.6	WYandotte..	4	1	14	11.11	75.0
Logan.	10	1	19	11. 40	76.0						

The data obtained at the Kansas station corroborate in every respect those secured at the Department of Agriculture. It is evident that
fairly good beets can be grown in Kansas, and there are doubtless seasons when exceptionally rich beets might be securen. In general, however, it may be said that there is no immediate prospect of the successful establishment of the sugar-beet industry in that State, unless it might be in some of the extreme western or northwestern counties, where irrigation might be practicen, and where the altitude is sufficiently high to secure a lowering of the temperature. One of the great canses of danger, howerer, is found in the hot southwest winds, which frequently blow over the State with disastrous consequences at the period when the (rops are growing most rapidly. It will be seen that in many instances individual analyses oltained in Kansas are extremely satisfactory, as for instance, in Elk Connty, where tro samples, including 14 different bects, showed an average weight of 21 ounces, an average content of sugar in the juice of $1 t$ per cent, and an average purity of 83 . Auother sample is found in Saline County, where 16 beets, forming two samples, showed a sugar content of 15.5 per cent in the juice, with an average purity of st. In this case, however, the beets were very much under size, the arerage weight being only 9 ounces. When, however, the diata received from the counties are compared with similar data from the State of New York, the discrepancy observed is so great as to indicate, without further elucidation, the proper locality where the first development of the sugar-beet industry should be looked for.

In the light of our previous experiments, it must be evident that high-grade sorghum, developed from carefully selected seeds, has a better prospect in Kansas of being a profitable sugar-producing plant than the sugar beet.

KENTUCKY.

Only a few samples, with the exception of those sent by the experiment station, have been received from Kentucky. This State being situated far south of the theoretical sugar-beet belt, it is not to be expected that the results of the analyses would be particularly encouraging. The mean weight of the six samples received was 16 ounces, the mean percentage of sugar 11.9, and the purity 71.5. The six samples included four from the experiment station. The beets received were small, and the percentage of sugar only a trifte muder the minimum which is advisable for profitahle sugar making. The purity, however is excessively low, and this seems to be characteristic of beets grown too far south, the purity coefficient usually falling in a more rapid proportion than the content of sugar.

Large numbers of samples were received from the experiment station in addition to those analyzed above, which were grown upon the specrial plot, which will be mentioned later on, and under the most favorable conditions of culture. The beets which were sent to the Department were of good size and mostly of a favorable shape, but the analytical data were very disappointing, falling a great deal lower than
was expected. Nine simples of White Improved Imperial Elite, planted May 8 and harvested December 9 , had an average weight of $3: 3$ ounces, with 4.9 per cent of sugar. Three samples of original Kleinwanzlebener had an average weight of 23 ounces, with 10.8 per cent of sugar. Sixteen samples of Vimorin's Improved had an average weight of 2.5 ounces, with 6.4 per cent of sugar. Thirty-nine samples of the Demesmaty variety had an average weight of 29 ounces, with i. 3 per cent of sugar. All of these beets were somewhat overgrown, but not suftiriently so to account for the extremely low percentage of sugar. A large additional number of samples had been selected for analysis, but the results of the preceding analyses were so discomaging as to render the further prosecution of the analytical work unnecessary. 'This sul). ject will be mentioned again when the experiments in the specially cultivated plots with high grade seeds are discussed.

Maryland.

All the analyses of the samples of beets grown in Maryland were made in the laboratory oif this division, the agrientural station at College Park not having undertaken any work of this kind. The whole number of samples received from the State was 29 . The mean size of the beets was 19 ounces, the mean percentage of sugar in the beets 11.1, and the mean purity of the juices 79.1. In respect of size, the samples from Maryland are about the mean. The purity of the juice is almost up to the minimum standard, but the percentage of sugar in the beet is about 0.6 less than is advisable for manufacture.

In regard to climatic conditions, as has been before intimated, the State of Maryland occupies a somemhat peculiar position. There is a considerable area along the eastern shore, next to the ocean, where the average summer temperature is 71°. In the western part of the State, after a long deflection to the north, the isotherm of 70° may again be found. Lying immediately south of the isotherm of 71°, in the northern portion of Maryland, are found some very fine valley lands where the conditions of culture may be considered favoiable. These lands are underlaid by limestone, which in many cases comes to the surfare. Theoretically they are a little too warm for the most successful culture, but lying so near the favorable thermal belt there may be reasonable hopes of successful culture in many localities. In the western portion of the State, where the thermal conditions are favorable, we find the mountain ranges, and the low temperature of the summer is due to the high elevation. The quantity of table lands upon the tops of the momtains, however, is not sufticiently great to warrant the expectation of the founding of a great industry. There is no doubt, however, of the possibility of growing very rich beets on these table lauds. In general it may be said that the State of Maryland is not very favorably situated for the culture of sugar beets, but there are circumscribed localities
within the state where it is desirable to conduct further experiments. lt is therefore earnestly hoped that the agricultural experiment station of the state will make a more careful agricultural survey of the possibilities of the culture of sugar beets therein.

Michigan.

The southern peninsula of Michigan is favorably situated for the culture of sugar beets, both in respect of thermal conditions and rainfall. The soil is also for the most part well suited to sugar-beet culture. In going northward, however, it becomes more sandy until finally the pine regions are reached, where a soil without fertilization would not be sufticiently rich to produce large crops. The well-known tendency of a sandy soil, with proper meteorological conditions, to produce beets of a high purity is well illustrated in the samples which have been received from Michigan. In all, 450 samples from the state were sent to this laboratory for analysis, 400 of them being from Saginaw County and grown under the supervision of Messis. Wiggins \& Lenders.

In regard to the results from particular counties, attention should be called to the fact that the samples fiom Allegan were all enormonsly orergrown, the average weight of the beets being 62 ounces and the corresponding content of sugar aud the coefficient of purity low. The results from C'alhoun County, in the southern part of the State, are particularly farorable, the average weight of the samples being 17 ounces, average content of sugar in the beet 15.8 , and the average purity 83.2. The greater part of the samples having come from Saginaw County, the average data for this county are almost the same as those of the State, with the exception that the purity is cousiderably higher. The average composition of the 400 samples from Saginaw County was as follows: Average weight, $2 \mathscr{2}$ ounces; sugar content in the beet, 14.8 per cent, and purity, 83.3 . For the whole State- 450 samples-the average weight was 2.2 onnces, average sugar content 14.6 per cent, and average purity 81.1 .

The agricultural experiment station of Michigan, in cooperation with the Department of Agriculture, also made an extensive series of investigations, a résumé of which is given below:

IRESULTS BY COUNTIES OF THE CULTIVATION OF SUGAR BEETS IN MICHIGAN IN 1897.

The following tahle is given containing the numbre of samples sent the station from each county, the average per cent of sugar in the juice, and coefficient of purity of all samples sent. Feed was distributed in sixty-right counties, aud from the table below it will be seen that samples have been received from sixty-four of them. The average per cent of sugar in the juice of beets of the whole State, when grown on the proper kind of soil and from the right kind of seed, is 16.40 , and the coefticient of purity is 84. An average of 16.40 per cent of sugar for the whole State, far exceeding the hest districts in France and (ermany, is both surprising and gratifying.

These data are obtained hy omitting from the table the analysen of samples which were known to have been grown under unfavorable conditions.-H. W. W.

Analyses of sugar beets grown in Michigan and analyzed by the Michigun agricultural experiment station.

Five samples from Oceana County are not included in results of analyses, because they were dried and damaged by keeping.

Interesting data in resiard to rost of culture were obtained at the Michisan station. The plats were planted on the Sth of May, and harvested on the bth of October. After throwing the dirt away from the beets by a plow they were pulled by hand and the leaves and stems removed. Owing to the deep subsoiling and thorongh preparation of the gromme, the beets were found wholly embedded in the soil, none of them having been pmshed above the surface. The average weight of the beets before the removal of the necks was about $2 \cdot 1$ pounds. The following table wives the total labor, calculated to 1 acre, required for growing and harvesting the beets:

	$\begin{aligned} & \text { Man and } \\ & \text { team. } \end{aligned}$	Man.
Plowine and sulsuiliner	Hours. 12. 06	Hours.
Hatrowing	3. 7	
Marling	. 80	
Plantins.		3.
Cultivatin!	15. 10	
Thiming ath hocines		75.90
Harvesting. ${ }^{\text {d }}$	4. 60	1:30. 75
'rotal.	36.15	209.90

The hand labor in harvesting was performed by boys at S cents an hour. The work of hoeing and thimning was performed by men at $12 \frac{1}{2}$ cents an hour. The cost of team work is computed at 2.5 cents an hour for man and team. On the above basis, the total cost of planting, cultivating, and harvesting an acre of heets at the Michigan Experiment Station was se!.4!. The yield per acre, the percentage of sugar in the juise, and the purity for cach variety grown are shown in the following table:

Full details of all the experiments condneted in Michigan by the aspoultural experiment station are found in Bulletin No. 150 of that station, issued in December, 1s97, by Director U. 1). Smith and Chemist R. U. Kedzie.

The study of the two sets of data secured at the Department of Agrienlture and by the agricultural experiment station of Michigan is sufficient to demonstrate the fact that the southern peninsula of Michigan has great possibilities for the development of the sugar-beet industry. When it is remembered that the most of those who grew the samples had had no previous experience in the matter, that no systematic fertilization was attempted, and that in many instances the soil was
improperly prepared, the remarkably favorable results obtained are the more convincing. It is evident that all the sonthern portion of the Southern Michigan Peninsula, in conjunction with the northern part of Indiana, forms an area in which the future will see a remarkable development of the sugar-beet industry.

Minnesota.

Forty-nine samples from the State of Minnesota were received for analysis at the laboratory of the Department of Agriculture. The mean weight of the samples received was $\because 4$ ounces, the mean percentage of sugar in the beet 11, and the mean purity coefficient 79.2.

Great variations are shown in the samples received from different parts of the State. One of the best series of results was obtained from Freeborn County, in the sonthern part of the State, from which twelve samples were received, having an average weight of 20 ounces, an average content of sugar in the beet of 14.1 per cent, and an average coefficient of purity of 82.3 .

Another good series of samples, thongh less in number, was from Ottertail County, in the western part of the State, from which four samples were received, having an average weight of 23 ounces, a mean content of sugar in the beets of 14.9 per cent, and a mean coefficient of purity of $8 \pm .1$. The general average from the State was lowered by a large number of very poor samples, which evidently had been grown under extremely unfavorable conditions.
The period of growth in Minnesota, while a little short, is nevertheless favorable from other considerations, esjecially in the southern and eastern portions of the State. Toward the northwestern portion of the State the rainfall is somewhat uncertain, and the antumn is perhaps a little too cold. As has been intimated before, the chief difliculty in Minnesota in the establishment of the beet-sugar industry is not in securing a proper growing seasou, but in having a sufficient time to properly harvest and protect the beets. The sudden, and often early, advent of winter in the northern and western portions of the State will be the canse of difficulties of a serious nature in the harvesting and siloing of the beets. These are factors which intending investors will do well to carefully consider. In general, the conditions of growth are so favorable as to warrant the careful study of the soils of the state by the agricultural experiment station with a view to selecting those localities where the conditions of culture are most favorable. In a State of such rast area it is far better to determine those restricted sections where the conditions are most favorable rather than try to establish the industry indiscriminately in every portion of the State.

In cooperation with the Department of Agriculture, the agricultural experiment station of Minmesota conducted an extensive series of culture experiments in various parts of the State. The general results of the experiments are indicated in the report of the chemist of the station, which follows.
H. Doc. $396-6$

EXPERIDENTS CONDUCTED BY THE AGRICULTURAL EAIERIMENT STATION OF MNNESOTA.

The seed from which the beets were grown was ohtained from a variets of somees. Some procured seed from the stock which the legislature directed the State treasnrer to purchase. Ahout 100 pounds of seed were obtained from the United States Department of Agriculture and distributed hy the experiment station. Some serd was ohtained direct from (iermany, while a few obtained seed from seed dealers and other sources. As a rule, the seed was of good quality. Only a few instances of poor seed were reported. There was but little difference as to the quality of the beets produced by the seed furnished hy the State aud by the Department of Agriculture. At the experiment station the arerage of fonr plots of Kleinwanzlebener beets grown
 average of four plots of Kleinwanzlebener berts grown from Whited states Department of Agriculture seed gave 17.4 per cent sugar and a purity coefficient of 87.8.

The past season has not been one particularly favorable to the production of the highest quality of beets. It has been the most unfavorable season in nine years. As a whole, however, the results have been satisfactory, and I consider them of unusual value, hecanse they indicate the quality of the beets which are produced in an unfavorable rather than a favorable seasou.

At the experiment station the average of those plots which were grown under normal conditions gave a sugar content of 17.4 per eent and a purity cocfficient of 87.3.

There is one factor in our favor which I think has been overlooked in considering desirable locations for sugar-beet factories, and that is, we have never lost a sugarbeet crop from hot, dry winds, which occasionally occur in some of the prairie States.

About three hundred samples of beets have been tested during the season. In many cases the results were lower than they would have been if the beets had heen properly cultivated. In one of the tables the results are given of some of the beets which have been grown under abnormal conditions. In one case twenty-five minutes' time was spent on a quarter acre of beets, while in another case the seeds were planted five inches. These results, while they possess no value as indicating the quality of sugar heets which may he produced in a locality, are nevertheless valuable, becanse they emphasize the importance of the right lind of cultivation for sugar-beet production.

Sugar beets grown at the Minnesota Experiment Station.

	No. plot.	$\begin{aligned} & \text { No. } \\ & \text { Tests. } \end{aligned}$	Sugar.	Purity coellicient.	Average weight.
Highest results: Rows 18 inches apart and beets 4 inches in row			$\begin{array}{r} \text { Per cent. } \\ 18.5 \end{array}$	$\begin{array}{r} \text { Per cent. } \\ 92.5 \end{array}$	Ounces. 12.8
Lowest results: Rows 30 inches apart and beets 10 inches in row			14.2	78.0	18.4
A verage of rows:					
24 and 30 inches apart and beets 4 to 6 inches in row. 24 and 30 inches apart and beets 6 to 10 inches in	8	16	16.0	86.1	15.1
row	8	16	15.8	85.5	14.9
14 and 18 inches apart and beets 8 and 10 inches in row	8	16	15.9	85.4	14.1
14 and 18 incles apart and beets 4 and 6 inches in row	8	16	17.4	87.3	11.6

The cultivation of the beets was under the supervision of the Agricultural Division. The analyses were all made by the chemist of the station.

The analytical data obtained are summarized from the details of the chemist's report in the following table:
Total number of analyses reported.. 143
Average weight of the beets (ounces) ... 17
Average per cent of sugar in the juice.. 13.8
Average coefficient of purity .. 81.8

The classification of results is made in several portions, namely, analyses of miscellaneous samples from the State at large and analyses of special samples from definite localities. In the analyses of miscellameons beets collected from different parts of the State, with the exception of those specially mentioned below, thirty four samples were examined. The mean weight of the beet is not given in this table of analyses. The mean percentage of sugar in the juice is 14.25 and the mean purity coefficient 82 .

Sixteen samples grown at Mankato, Minn, showed an average weight of 21.9 ounces, a mean percentage of sugar in the juice of $1 \rightleftarrows .8$, and a purity coefficient of 80.2 .

Ten samples grown at Winton and Stockton had an arerage weight of 17.1 ounces, contained 13.7 per cent of sugar in the juice, and had a purity coefficient of 81.9 .

Eighty three samples grown at Albert Lea had an average weight of 16.6 ounces, contained 13.8 per cent of sugar in the juice, and had a purity coefficient of 82.1.

In general, it will be observed that the results obtained on the samples sent directly to the station were better than those secured at the lab. oratory in Washington. Upon the whole, the results of the work done at the experiment station are eminently satisfactory, especially as they were accompanied with the statement of the director that the conditions were the most unfavorable, for the development of a crop of sugar beets, which had been known in the State since the commencement of the experiments in this direction, in 1888.

The results of the analyses of the beets grown at the station are extremely satisfactory. The average weight of the beet, to be sure, is somewhat low, but this doubtless was due to an unfavorable growing season. The mean percentage of sugar in tie beets grown in different plots is exceptionally tine, and the coefficient of purity in one instance is higher than could reasonably he expected with the best kind of culture. Only in one of the plots cultivated on the station are the results unsatisfactory, and in this case it is the coefficient of purity especially which has fallen below the standard.

Missultr.

Very extensive experiments were made in Missouri, about 4,000 samples of seed having heen distributed, and over (600 returns made. There were sent directly to the Department of Agriculture $3: 4$ samples, detailed analyses of which are found in the pre eding tables. The average weight of the samples received was 20 ounces. The mean percentage of sugar in the beet was 11.7 and the mean purity 73.5 . Many individual samples from the State show excellent qualities, but reliable judgment, as intimated before, can only be based upon large numbers of analyses. Among the comities furnishing beets of high quality may be mentioned Barton, in the southwestern part of the State. Three samples were received from this comity, all of them of
rather large size and fine content of sugar, the mean size bemg 27 ounces, the mean content of sugar in the beet 15.3 per cent; only the purity in all cases was a little low, the mean being 77.3. Benton Cominty, in the center of the State, also showed good results, five samples having an average weight of 16 ounces, an average sugar content of 15.5 per cent, and an average purity of 77.1 . The best single sample received was from Pulaski Comity, in the center of the State, the percentage of sugar being 18.3 , the purity 86.1 ; but the weight was low, namely, ouly 12 ounces.
Two hundred and ninety-nine samples of beets were sent directly to the agricultural experiment station of Missouri and analyzed in the laboratory of that station. The mean results, by comuties, obtained on analysis are giveu in the following table:

Summary of analyses of bects grown in Missouri.
[From Report of Missouri Experiment Station.]

Of the whole number of samples, the percentage of those containing 13 per cent or more of sugar in the beet was 24 ; the percentage of these beets with a sugar content of 13 per cent or over having a purity coefficient of 80 or over was 83 ; the percentage of the number of beets containing 13 per cent of sugar which had a purity coefficient of 80 or over and weighing 16 ounces or over was 68.

The average percentage of sugar in the beet for the whole number of samples examined at the station was 11.1. The average coefficient of purity $7 t .9$, and the average weight in ounces 2.). A tabular comparisnn of the mean results obtained by the Missouri station and in the laboratory of the Department will he interesting:

As will be seen above, there is a remarkable agreement between the mean results obtained in the two laboratories. The arerage size of the samples received at Washington was smaller than that of the beets analyzed at the agricultural experiment station of Missouri, and this is doubtless the cause of the slightly increased mean percentage of sugar obtained in the laboratory of the Department of A griculture. A general study of the results obtained leads to the inevitable conclusion that Missouri is not very favorably situated for producing loets of the highest quality. It is possible to secure, in some instances, results which are exceptionally favorable, but that such results could be secured eontimonsly, and from season to season, is not probable. The data show that the whole State of Missouri belongs in the same category, in respect of growing rich sngar beets, as the southern parts of the States of Ohio, Indiana, and Illinois. Even the northern comnties of Missouri are too far south to give the best results. It is evident, however, in so far as yield is concerned, that Missouri is probably the equal of any State in the Union for growing beets of fine size and large tonnage per acre. Unless exceptional conditions favorable to manufacture are found in the State, it is not probable that the sugar-beet industry will gain a foothold for some time in competition with the more favorable localities farther north and east.

Montana.

Only four samples were received from the State of Montana at the laboratory of the Department of Agriculture. The average weight of the samples was ${ }^{2} 0$ ounces, the mean percentage of sugar in the beet 14.4, and the mean purity coefficient of 77.8 .

Analyses were also made by the agricultural experiment station of Montaua. Fifteen aualyses were made of samples grown on the
grounds of the station．The average weight of the samples was 14.8 ounces，the mean percentage of sugar in the beet 16.2 ，and the mean coefficient of purity of the juice 81.9 ．Thirty samples grown in the Gallatin Valley had a mean weight of $2=2$ ounces，a mean content of sugar in the beet of 13.7 per cent，and a mean coefficient of purity of 76．4．Eight samples grown at Livingston had an average weight of 24.7 ounces，with a mean sugar content of 13.5 per cent in the beet， and a coefficient of purity of 74.3 ．Nine samples from Kalispell had a mean weight of ：3⿱丷三心夊 ounces，a mean content of $1: 3$ per cent of sugar in the beet，and a mean coefticient of purity of 76.2 ．Four samples of beets from Missoula had an average weight of $3 \geq$ ounces，a mean per－ centage of sugar in the beet of 12 ，and a mean coefficient of purity of 73．6．Four samples of miscellaneous origin had an average weight of 2：3 onnces，an average sugar content in the beet of 12.7 per cent，and a coefficient of purity of 74 ．The whole number of samples analyzed by the agricultural experiment station of Montana was 70 ，with a mean weight of 23 ounces，a mean content of sugar in the beet of 14.7 per cent，and a mean coefficient of purity of 77.

The results obtained at the experiment station show what can be done by careful culture，and indicate that Montana，under proper con－ ditions，is capable of producing a fairly good sugar heet．The data in general are sufficiently encouraging to warrant the agricultural experi－ ment station of the State in making a more thorongh and careful agri－ cultural survey of the possibilities of beet production．
nebraska．
Thirtern samples grown in Nebraskat were received at the Depart－ ment of Agriculture for analysis．The mean weight of the samples received was 29 ounces，the mean percentage of sugar in the beet 13.9 ， and the mean purity coeflicient 76.9 ．The studies which have been made in Nebraska have been so thorough in previous years that it would not be advisable to make any deductions from so small a mumber of samples as was analyzed．In connection with the work done at the Department， the following report of the chemist of the agricultural experiment sta－ tion of Nebraska may be considered：

RESULTS OF EXPEREMENTS IN NEBRASKA．

We distributed seed to 433 persons．Of these 158 responded，either by sending beets or written communication，or both．Of the 158,106 returned samples of beets for analysis； 52 roported failure to secure crop．Of the 52 reporting fail－ ures， 11 said that the seed failed to grominate； 14 ascribed failure to dry weather； $2 t$ ※atre various reasons for failure， 13 stating that the crop was destroyed by erasshop）－ pers；I lust their cop ly rason of stock incursions，and 7 through general neglect．

P＇utting these figures in the form of percentages： 36.4 per cent of those receiving seed responded in some way； 67 per cent of those who reported to us sent beets for analysis； 26.9 per cent of failuxes were attributed to dry weather； 26.5 per cent of failures wero attributed to poor seed； 25 per cent of failures were cansed by grass－ hoppers； 7.7 per cent of failures were cansed by cattle； 13.4 per cent of failures were caused by general neglect．

The results of analyses showed an average of 12.34 per cent of sugar in the juice
with a purity coefficient of 75 . The highest per cent of sugar in juice was 16.8 with a purity of 78.5 . The lowest was 4.6 per cent with a purity coefficient of 45 .
Beet seed was sent into sisty-seven comnties and beets were received from thirtysix counties.

The average results obtained agree very closely with those secured in the laboratory of the Department of Agriculture.
so long a time hats elapsed since sugar-beet growing was commenced in Nebraska on a large scale that it is possible to form some idea of the adaptability of that State for beet growing. The soils of Nebraska are mostly very fertile, with a failly level surface, and are well suited in this respect to beet cuiture. The climatic conditions, as will be seen by consulting the map, are somewhat variable, and the raiufall in parts of the state is scant and in all parts of it very uncertain in respect of distribution. Periods of extremely wet weather are apt to alternate with long droughts. Hot winds may be expected over many parts of the State during the period of most rapid growth, and these winds are extremely injurious to all kinds of vegetation. The winters are apt to come on early and with severity, rendering the harvesting seasou somewhat precarious. There is no doubt of the fact that good beets can be grown under favorable conditions in Nebraska, but the uncertainties of the season are such as to indicate that there will not be a very rapid expansion of the industry in that state until more favorable areas have been thoroughly exploited. For details in regard to Nebraska the reports of the agricultural experiment station of Nebraska, at Lincoln, may be consulted. For about eiglit years this station has been engaged in the study of this question, and has published numerous and valuable bulletins, many of which can still be obtained by applying to the director of the station.

Nevada.

A large portion of the State of Nevada, in fact the whole of the northern and western parts, lies within the thermal area suitable to beet culture. Twenty-one samples of beets were received at the Department of Agriculture from Nevada, the average weight of which was 25 ounces, the average content of sugar in the beet 16.6 per cent, and the average coetficient of purity 81.1 . These samples all came from the parts of the State lying within the favorable thermal area. The agricultural experiment station of Nevada, at Reno, also made an investigation of the possibilities of growing beets in that State, and has submitted a report on the subject. In all, twenty-two samples were received at Reno for analysis, the average weight of which was 25 ounces, and the average content of sugar 16.9 per cent, the purity not being given. These data show a remarkable agreement with those obtained by the Department of Agriculture. The beets were grown entirely under irrigation. Some of them, however, received only one irrigation and others as high as five.

The results obtained at the station itself were in the highest degree satisfactory. The total number of samples grown and analyzed at the
station was ten, the mean weight of the beets was 19 ounces, and the mean percentage of sugar 18.9, purity coefficient not given.

Mr. Stubls, the director of the station, in submitting his report, states that he distributed 90 pounds of the seed received from the Department to thirty farmers residing in fifteen comities. Only five of the thirty farmers sent samples for analysis. One reported failure from stock breaking into the field and destroying the crop; one, failure from lack of water, and one stated that the samples of seerls sent him did not arrive. Mr. John Harrison reports that there are 20,000 acres of land in a single body such as he used for growing his beets.

All the samples sent to the Department of Agricluture by Mr. Harrison, ten in number, were from Humbohlt Comity; the average weight of the samples was 21 ounces, the mean content of sugar in the beets 18.8 per cent, and the mean coefficient of purity 83.1 . It is evident that, if such beets as these can be grown in that locality, the 20,000 acres of land suitable to beet culture would suffice to maintain a large factory, which must of necessity prove eminently successful if fuel, limestone, and water can be had in sufficient abundance and sufficiently cheap, to operate it. The cultural results in Nevada are of the highest significance. This State, which is deroted chiefly to mining, has very small agricultural interests, hut if a few areas capable of irrigation, like that at Lovelocks, in Humboldt Comity, can be found, Nevada should become a beet producing State. The establishment of this agricultural industry could not fail to be of immense benefit to the Commonwealth. There is no other state in which the reports are more favorable, although it may be said that the number of samples is not sufficiently large to carry absolute conviction. Nevertheless, the uniform excellence of the samples can not be the result of accident, but, must have been due to the favorable intluences of soil and climate. The agricultural experiment station of this state will do well to make a more carefni survey, and especially to map out the localities where the contour of the State is suitable to beet culture and where water can be obtained.

New Jersey.

As has been before stated, New Jersey is traversed from the south toward the north by the mean isotherm of 71 for the three summer months. A portion of it is therefore within the theoretical thermal belt for beet growing. In general, it may be said, however, that the temperature will be found a little too warm to secure the best results. On the other hand, the soil of New Jersey is of a sandy nature, suited to the growth of a beet with a high purity.
The data which have been collected during the season from New Jersey are encouraging. The whole number of samples recenved firom the State was 31 , the average weight 16 ounces, the mean content of sugar in the heet 14.2 per cent, and the coefficient of purity 81.4. Essex and Mereer comities carch furnished seven samples; the results in Eissex Comity were fairly good, but in Mercer County were poor. Ocean

County furnished eight samples, with a high average percentage of sugar and purity coefficient, but with a weight only half the normal.
No investigations were made by the experiment station of New Jersey, but Mr. James B. Vredenburgh, of Jersey City, conducted some very careful experiments at Freehold, in Monmouth County. The following report of Mr. Vredenburgh is interesting and contains valuable data.

results of experiments in new delisiey.

May in, 189%. - I had onerparter ane clover sod plowed and prepared for planting. May 22.-I had planted four kinds of beet seed, viz, a strip of 111 by 2 feet 9 inches or seven one-thousandths of an acre in imported Vilmorin.

A similar strip in imported Kleinwanzlehener; a similar strip in Covermment seed, and the balance of the quarter acre in cattle beets.

I fertilized the whole plot equally with 300 pounds of phosphate. I weeded the beets twice, cultivated them five times, and gathered them November 1.

I had one of each kind analyzerl each week, commencing August 3, by an expert chemist, the result of which I herewith inclose :

Varieties.	Weight.	
	When gathered.	Without tops.
The Vilmorin.	Pounds. 258	Pounds. 239
The (iovernment	${ }_{2}^{276}$.	-
The Kleinwanzlehener	236	$\because 2$

The Vilmorin, therefore, produced at the rate of $17 \frac{1}{2}$ tons to the acre, without tops; the Government, is tons to the acre without tops; Kleinwanzlehener, 15 tons to the acre without tops.

It will be seen that by far the hest result came from the Vilmorin, the purity of the juice in the analysis of November 1 being 88.20 .
This latter result was from an average of three beets, one small, one middle size, and one large.

The cost of the labor, fertilizer, etc., on the one-quarter acre was about $\$ 15$.

Resuits on farm at Freehold, Monmouth County.

Date.	Marked.	Weight of the beet.		I'ercentage of sugar.		Purityeo efficient.
		With top on.	With top cut off.	In the beet.	In the juice.	
1897.		Pounds.	Pounds.			
Aly. 30	No mark	1. 171	1. 088	10.45	11. 30	80.14
30 do	1. 381	1.161	11.15	12. 50	83.30
Sept. 8	. . . do	1. 481	1. 168	11.75	12.55	79.40
8	. do	1. 251	1.000	11.85		
15	Government	2. 093	1. 545	9. 80	10. 60	80.60
15	Kleinwanzlebener	1. 704	1. 329	11. 40	12.00	83.90
15	Vilmorin....-...	1.724	1.311	12.40	13. 10	81.50
20	No mark (Jack)	0.587	0.505	14. 30	15. 60	83. 40
27	(ioverument	4.391	2.923	10.40	11.25	81.50
27	Klenwanzlebencr	4. 491	3.000	10. 10	10. 35	77.24
27	Vilmorin...	4. 292	3. 058	9.90	10.55	78.47
Oct. 4	(iovernment	2. 097	1. 700	12. 40	13. 25	84. 30
4	Kleinwanzlebener	1. 633	1. 225	12.00	13.10	82.40
4	Vilmorin..	1. 876	1. 479	13.80	14. 10	86.10
14	Gravernment	1. 662	1.474	11.50	12. 75	80.20
14	Kloinwanzlebentr	2. 234	1. 770	12.30	12.75	81.70
14	Vilmorin.	1. 706	1. 474	14.20	15.65	84.10
20	Covernment	1.583	1. 373	13.50	14. 50	82.00
20	Kleinwarzlebener	2. 415	3. 037	11. 90	12.70	81.90
20	Vilmorna.	2. 150	1.715	14. 30	14.95	83.50
Nov. 1	Gosernment	2.31:	1. 757	12.40	13.50	78.00
1	Kleinwanzlebener	1. 380	1.000	13.10	13.80	83.10
1	Vilmorin..	1.270	0.958	14.30	15.35	88.20

Excluding the analyses made before the 20th of September, which would be anterior to the manufacturing season, and including all of those made after that date, we find that the sixteen samples analyzed had an average weight of 27 ounces, a mean content of sugar of $\mathbf{1 2 . 5}$ per cent, and a mean purity of 82.3 . These data, obtained by Mr. Vredenburgh, in conjunction with those secured from the analyses of the samples forwarded to Washington, indicate the possibilities of successfully establishing the industry in the State on the lands which are particularly suited thereto. As before stated, however, the danger from a slightly too high temperature must be expected, and while good beets, capable of yielding high percentages of sugar, and with high purities, may be grown in New Jersey, it is scarcely probable that they will reach as high a grade as those grown farther north.

New Mexico.

Only three samples grown in New Mexico were received at this laboratory for analysis. These were all grown in Mora Comity by the La Cueva Ranch Company. The average size of these samples was small, but the content of sugar and the coefficient of purity of the juice were high. In connection with this work the report of the director of the agricultural experiment station will be found of interest.

RESULTS OF EXPERIMENTS IN NEW MEXICO.
'TABLe 1.-Analyses in the chemical luboratory of the New Mexico Experiment Ntation prior to October 25, 1897.

Locality.	Number of samples anaIyzed.	Average weight of beets.	Average per cent sugar in the juice.
New Mexico Agricultural Experiment Station, Mesilla Park:		Pounds.	
Harvested Sept. 15......-.....................-----.....................	31	1.21	11.02
Harvested Oct. 14.	31	1.53	12.47
Blue Water:			
Harvested Sopt. 8.	4	1.38	10.50
Harvested Sept. 30	4	1. 63	12. 70
Albuquerıue...-	3	1.73	13.16
Santa Fe.........	7	1. 06	14. 10
Cerro..	3	1.04	17.03
Dorsey	1	1. 60	12. 60
Chapliam.	1	1.60	15. 10
Tularosa..	2	1.98	11. 20
Anthony	1	1.18	11.50
Maxwell City .	3	2.77	14.15
Hatch........	1	2.35	11.50
Socorro..	1	. 48	15. 50
Lordsburg	1	. 55	16. 20
Blossburg.	1	3.55	10.80
Aztec Subexperiment Station	1	1.85	14. 60
Averages, etc.	96	1.61	13.18

Table 2.-Inalyses in the chemical laboratory of the Tew Thexico Fixperiment Station between October 25 and November 15, 189%.

Locality.	County.	Number of samples analyzed.	Average weight.	Average per cent sugar in the juice.
Aztec Subexperiment Station	San Juan	5	Pounds. 1.5	16.8
Farmington	do	6	1.9	17.6
Jewett.		1	1.9	13.5
Blue Water.	Yalencia.	4	3.5	10.6
Perea...	Bernalillo	2	2.7	125
Las Vegas.	San Miguel	1	2.8	13.5
East Lasvegas		1	3.2	15.1
P'ine Spring	Lincoln	1	1.5	13.5
Raton.-	Colfax	2	2.1	13.1
Maxwell City	do	,	1. 7	15.3
Dorsey.......	do	1	1.1	15.4
Wagonmound		1	1. 6	13.9
Match ...	Dona A na	1	1. 7	16.5
Santa Fo	Santa Fe.	5	1. 0	15.9
Hobartlo ..	1	1.9	14.9
Lacueva	Mora.	6	1.1	17.6
Cerro.	Taos.	1	1.5	18.6
Averages, etc.		40	1.7	15.3

Table 3.-Analyses in the chemical laboratory of the New Mexico Experiment Ntation between November 15 and December 20, 1897.

Locality.	County.	Number of samples analyzed.	Average weight.	Average per cent sugar in the juice.
New Moxico Agricultural Experiment Station, Mesilla Park. Harvested Nov. 16	Duna Ana	31	Pounds. 1.7	13.9
Harvested Dec. 15.		27	1.6	13.9
Sample came in not marked.		1	1.5	17.4
Watrous.......	Mora	1	. 8	13.0
Lacuera		$\stackrel{2}{1}$	1.1	15.6
Los Lunas Blue Water	Valencia	1	2.5	14.5
Blue Water.	do	4	1.2	13.8
Roswell...		3	1.7	13.8
Hagerman.	Eddy	3	1.2	13.5
Santa Fe.	Santa Fe	3	. 8	18.0
Espanola-	San Juan	5	1.6	14.1
Jewett...........................	San Juan	1	2.2	13.0
Las Vegas Subexperiment Station	San Miguel	1	1.6	17.6
Averages, etc		83	1.6	14.1

Our work is still in an incomplete condition, as we have not bad time to estimate the coefficient of purity and consider some other points in connection with theso analyses. I beg to call your attention to the fact that nearly all of the beets analyzed here were grown hy farmers who had had no previous experience in growing leets, and whose habits of farming are extremely loose. We can say definitely that if these beets had been grown under such conditions as would be expected to oltain upon a wellregulated farm, the results would have been very much more satisfactory. We know that the conditions uncler which the most of the samples grew on the station farm here were not of the most satisfactory kind, as we are trying experiments on time of planting, time of harvesting, variety testing, deep and shallow plowing, different modes of irrigation, ete. It is now established beyond a donbt that New Mexico can grow large crops of sugar beetw, containing a very high percentage of sugar.
Located at Eddy, in the southeastern part of the Territory, there is already established a sugar-beet factory, doing a successful and profitable business.
In the horthern portious of the Territory coal is comparatively cheap, and the
completion of a railmat now in process of building will very materially cheapen coal in the southern part of the Territors.

Limestono seens to be scattered pretty well thronghout the Territory, and whilu we have not had time to go fully into this subject, the few analyses that we have made indicato that the Tervitory athords limestone of a very good grade. We have just taken a survey of the limestone and waters of the sugar-beet districts. The 'furstion of water is engaging our attention, too; and wo believe that water of fatrly grood quality can be secured.

There is a lively interest taken in sugar-beet work in all parts of the Territory, and from the tables herewith inclosed the most favorable locations can easily be selected. P'articular attention should ho called to the lio (irande Valley, especially the northern portion, and the Animas Valley. This latter has an extensive and aboudant supply of very good water, but at present no railroad. This valley seoms to be a very promising section for the production of sugar beets. See Aztec and Farmington in the tables.

The soils of the Territory rontain, I think, about the average amount of nitrogen and phosphoric acid and about the usual amount of potash. They have a decided advantage over the suils in the rainfall districts, beranse the fertility is largely liept ul hy the plant fond enntained in the imigating water, and nearly all that once wets on the soil romains, as very little, indeed, is lost by leaching and drainage.

We expect to publish a bulletin about the lst of February, giving our results in detail.

The analyses which were mate by the chemist of the agricultural experiment station of the samples received by him are classified in accordance with the time at which they were made. Ninety-six analyses made prior to Ortober 25 showed all average weight of the samples of 26 onnces, with an arerage content of sugar in the beet of 12.5 per cent. The purity coefficient of the juice is not given.

Forty samples analyzed between the sith of October and the 15th of November harl an average weight of 27 ounces, with an average content of susar in the beet of 14.5 per cent, the purity coeflicient not being stated.

Eighty-three samples analyzed between November 15 and December 20 harl an average weight of 26 ounces, and an average content of sugar in the beet of 13.4 per cent. The purity was not given.

It is evident that there are many localities in New Mexico where the conditions of temperature are most favorable to the growth of beets. There are also large areas of fairly level land which are capable of irrigation. Wherever the temperature of these regions is sufficiently low to permit the proper development of the heet. and where sufficient water for irrigation can be secured, there is reason to believe that the industry may be established and prove to be fairly protitable. While the summer days in New Mexico are not so long by an hour or more as in the regions farther north, the amount of sumshine which the growing beet will receive is practically as great as in more northern localities, becanse of the comparative absence of clondy and rainy days. The remarks which have already been mante in regard to the growth of beets on irrigated areas apply to New Mexico. This is a subject which demands the most rareful seientific study, and the work which is now doing by the agricultural experiment station of the Territory is certain
to bear excellent fruits in the near future. New Mexien is provided with a beet-sugar factory in the extreme southwestern portion of the Territory, and thus a practical demonstration of the possibilities of beet growing can be made. It is difficult to secure definite data from this factory, but from the meager reports received it is believed that the season's work has not been so successful as had been expected from the results obtained during the preceding year. Accounts have been received of a mold or fungus attacking the beets, and it is also evident that the true principles of irrigation have not yet been thoroughly worked ont. There should not, however, be anything discouraging in accidents of this kind, as the conditions, upon the whole, are such as to warrant the expectation of final success.

New York.

On January 16, 1894, in addressing the New York Farmers Club on the subject of beet sugar, I used the following words:

The plateans of the great West subject to irrigation are especially suited to the production of sugar beets. The same is true of the lands of certain portions of Nebraska and Dakota, of Iowa, Minnesota, and Wisemsin, of northern Ilhnois, Indiana, Ohio, and New York. Recently, in phssing over the valley of the fienesce River, I was particularly struck with the quality of the soil and its suitability to beet culture. The valley of the Genisee is only a type of hundreds of thousands of acres in New York which could be profitably devoted to beet culture.

At that time practically no experiments had been made to determine the suitability of the soil and climate of New York for producing highgrade beets. In fact, not until the last year has any systematic attempt been made to ascertain the capabilities mentioned above. In the spring of 1896 , in conversation with a committee of the board of trustees of the agricultural experiment station at Geneva, I urged upon them the desirability of studying the capabilities of New York for beet production. In 1897 the Department of Agriculture, in cooperation with the experiment stations at Geneva and Ithaca, conducted a series of investigations throughout the State of New York, which las given data of extraordinary interest and importance.
The climatic conditions, as respects temperature and rainfall, affecting the State of New York have already been discussed. It has been seen that there are two areas in which the thermal conditions are particularly favorable, separated by a large area where the mean summer temperature is less than 69 . It has already been pointed out, however, that a lower temperature than 699° is still highly favorable to the production of beets of superior excellence if coupled with conditions which permit their maturity and harvest in time to avoid the severe frosts of winter. These conditions exist in a marked degree throughout the whole of the region in New York lying between the Hudson River on the east and the Great Lakes on the west, excluding the extreme northern portion, where the altitude and momtainons character of the country preclude the possibilities of beet culture. The
whole of the area named, therefore, where the contour is favorable and the character of the soil suitable may be regarded as a prospective area of sugar-beet culture.

SAMULES IRECEIVED AT THE DEPARTMENT OF AGRICULTURE.
From the seed distributed to farmers in different parts of the State, 205 samples of beets were received at the Department of Agriculture for analysis. The mean weight of these samples was 21 ounces, the mean percentage of sugar in the beet 15 , and the mean coefficient of purity $8: .4$. Every comnty in the State reporting results showed favorable data. The comities having the largest number of samples of course gave data which are the most instructive.

Cattaraugus Comity supplied 15 samples, with a mean weight of 18 ounces, a mean percentage of sugar in the beet of 15.1 , and a mean coefficient of purity of 81.9 .

Chautanqua County furnished 45 samples, with a mean weight of 21 ounces, a mean sugar content in the beet of 16.6 per cent, and a mean coefficient of purity of 82.7 .

Erie County sent 37 samples, having a mean weight of 19 ounces, a mean content of sugar of 15.9 per cent in the beet, and a mean coefficient of purity of 83.9 .

Oneida County was the source of 22 samples, with a mean weight of 14 ounces, a mean sugar content of 13.6 per cent, and a mean coefficient of purity of 81.8.

Ontario County furnished 22 samples, having a mean weight of 17 ounces, a mean content of sugar in the beets of 15 per cent, and a mean coefficient of purity of 83.4 .

Yates County supplied 15 samples, having a mean weight of 23 ounces, a mean sugar content of 12.7, and a mean coefficient of purity of 79.6 .

The uniformly good properties of so large a percentage of samples collected in the promiscuous way made necessary by the method of the experiments show beyoud question the favorable auspices under which they must have been grown.

In addition to the special plot work on high-grade beets which was conducted under the supervision of the cieneva station, cooperative work by the Department of Agriculture, in conjunction with the farmers of the State, was also carried on. From the whole number of packages of seed distributed by the station, 135 samples of beets were received for analysis, and the results obtained, without distinction of locality, are shown in the following report of Director Jordan:

RESULTS OF EXIERIMENTS IN NEW YORK.

> The number of samples reported is 135 , which came from a sufficient number of points in the state tomake them fairly representative of the conditions prevailing.
> I make no report to yon of the production, because in most instances, whenever the tonnage was reported, the figures appeared to us to he unreliable because of the methods used in reaching them.

Kleinwanzlebener.

Beets con- taining sugar.	Number of sam- ples.	Average per cent sugar in beet.	Coeffi- cient of purity.	Average weight of one loeet.
Per cent.				
$11-12$	4	12	76.5	Ounces.
$12-13$	11	13	75.4	18
$13-14$	10	13.8	80	14
$14-15$	11	14.7	80.3	17
$15-16$	15	15.8	84.3	14
$16-17$	11	16.5	85.3	16
$17-18$	13	17.6	85.2	14
$18-19$	3	18.5	85.9	13

Vilmorin Improved.

Number of samples.	Arerage per cent sugar in beet.	Coeffici- ent of purity.	Average weight of one beet.
3			
5	11.7	75	Ounces.
9	12.8	76.7	16
8	13.8	82.4	19
17	15.8	83	16
9	16.6	82	16
6	17.8	87.5	15
2	18.6	85.4	18

My chief anxiety with regard to the development of the sugar-heet industry in New lork is that farmers shall not reach unwarranted conclusions concerning the profits of their side of the work. I have no reason to helieve that the industry will prove more protitable to our farmers than the production of several crops which we are now growing. I recognize, of course, the benefits of adding to our list of crops another one which will have a ready cash market.
There appears to be a move all over the sitate for the establishment of factories at desirable centers, and promoters are already in the field who are, as a rule, urging the farmer to invest in beet sugar-factory stock. I am very much afraid that there will be serious misdirection of capital, which will not only cause the farmer to lose money, but seriously disappoint him in regard to the benetits from growing sugar beets. My judgment is that the matter should be discnssed by those who take the lead in the matter in the most conservative way, and both farmers and business men should be severely cautioned to proceed slowly and only after extended and careful investigation.
A carefully grown crop of sugar beets yielded on the experiment station farm this season at the rate of $16 \frac{1}{2}$ tons per acre, carrying 15.2 per cent sugar in the beet and 16 per cent in the juice. No dependence should, in my judgment, be placed upon the reports of yields of 25 and 30 tons per acre of high-grade beets in this State.

In studying the report of Director Jordan we see that of the Kleinwanzlebener variety only four samples out of the whole number fell below the minimum of $1:$ per cent of sugar in the beets, and of the Vilmorin variety only three. This is without doubt a remarkable showing of excellence, in so far as the content of sugar is concerned. The caution of Director Jordan to proceed carefnlly in this matter, and with a due study of the factors, is perfectly in harmony with the tenor of the reports which have been issued by the Department of Agricul-
ture, on the subject of beet sugar, from time to time during the past fifteen years, and is deserving of careful consideration, hoth by intending investors and farmers. Our reports have constantly dwelt upon the danger of misdirected enthusiasm and failure to study properly all the fartors entering into any enterprise connected with the mannfacture of sugar.
The agricultural experiment station of Cornell University, at Ithaca, also cooperated with the Department in the experimental work in New York. Four hundred and twenty-five samples were received for analysis at the experimentstation at Ithaca. The data obtained on analysis, arranged by comnties, are given in the report of Director Roberts. In this report the percentage of sugar in the juice of the beet only is given, the mean being 16.9. Converting this number into terms of the sugar in the beet, the percentage becomes 16.1 , which is one point higher than the mean percentage of sugar in the samples from New York analyzed by the Department of Agriculture. The coefficient of purity, 83.5, obtained at the Ithaca station is only a little over one point higher than that secured from the analyses by the Department of Agriculture.

Director Roberts, in his report, estimates that the mean yield per acre obtained in the State of New York was 17 tons, but as his estimate is made upon the returns made by the farmers, many of which are evidently too high, it is not final as a source of deductions in regard to the average yield which may be obtained. It is not at all likely that an average yield of 16 tons per acre could be obtained, even by the best culture.

The counties furnishing the data with the most weight are Broome, Chantanqua, Erie, Genesce, Monroe, Steuben, and Wayne. Chantanqua County, especially, is to be regarded on arcount of the mean data being based upon 122 separate samples, in which the mean percentage of sugar in the juice was 16.5 , and the mean coefficient of purity, 83.5 . The next highest number is furnished by fenesee Connty, where the mean percentage of sugar in the juice from 62 samples is 16.6 , and the coefficient of purity, $8 \pm .9$. Monroe, with 59 samples, showed a mean sugar content in the juice of 17.2 per cent, and a mean coefficient of purity of 83.9 . Erie County, with 38 samples, gave a mean content of sugar in the juice of 17.9 per cent, and a mean coefficient of purity of 86.3 . Wayne County furnished 27 samples, having a mean content of sugar in the juice of 16.7 per cent, and a mean coefficient of purity of $8 \% .9$. Broome County sent 25 samples, containing 16.2 per cent of sugar in the juice, with a coefficient of purity of 81.5 ; and Steuben County furnished 24 samples, containing 16.2 per cent of sugar in the juice, with a coefficient of purity of 82.6 . Following is the report of Prof. Roberts:

[^10]the plats was inspected by an officer of this station and observations made as to the general conditions found.
The season was a favorable one, and in nearly all cases the beets made good growth, and that the per cent of sugar was satisfactory will be shown by the table of analyses given later.
It is safe to say that the citizens of New York State, both capitalists and farmers, are thoronghly awakened to the importance of the sulbeet of the mannfacture of sugar from beets. During the season one factory has been in successful operation at Rome, N. Y. Other factories are contemplated, and at the present time agents are in France negotiating for machinery to be used in a large factory to be erecterl the coming season.

Officers of this station attended eight meetings of farmers and capitalists to wive information and advice as to the alvisability of locating factories in certain sections of the State. Abundance of capital is ready to be invested once the success of the industry is assured. Farmers feel that in the raising of sugar beets a new avenue is open for them, and in most parts of the State favorable for the growth of beets they are heartily favoring the new enterprise.

When the varions experimental plats were harvested, agents from this station personally superintended the taking of the samples and the calculations of yield on 178 of the plats. To those farmers whose places we were unable to visit directions were seut as to how the samples should be taken and the yield estimaterl; so it is believed that this report of results is a fair statement of what can be done in New York state in the way of raising sugar beets.

The necessity now seems to be the education of the farmers in the system of intensive culture necessary for the successful raising of the beets. The farmers appreciate the importance of this instruction, and are eager to learn. It is safe to predict that the manufacture of sugar from beets is to be one of New York's prominent industries in the near future.

The following report is furnished by our chemists, summarizing the results by comnties:

Report of sugar-beet experiments in New York, 1897.

County	Sugar in juice.	Purity coetlicieat of juice.	Total number of satiples analyzed.	County.	Sugar in juice	$\begin{aligned} & \text { Purity } \\ & \text { coellicient } \\ & \text { of juice. } \end{aligned}$	Total number of samples analyzed.
Albany	Per cent. 17. 25	86.6	1	Oneida.	Per cent. 16, 16		
Broome	16. 23	81.8	25	Onondaga	17. 40	86. 6	
Cattaraugus	16.94	84.5	15	Orleans	17. 20	86.1	3
Cayuga	17. 34	84.3	10	Oswego	14. 45	76.1	
Chautaugua	16. 83	83.5	122	Saratoga.	20.25	86.6	
Erie.	17.93	86.3	38	Schuyler	16. 26	79.7	
Genesee	16. 62	82.9	62	Seneca.	16. 58	83.2	
Herkimer	13. 85	79. 2	1	Steuben	16. 24	82. 6	24
Jefferson	16.16	81.0	3	Tioga.	18.73	82.7	2
Livingston	19.25	85.6	1	'Tompkins	17.49	83.1	8
Monroe.	17. 22	83.9	59	Wayno	16.74	82.9	27
Montgomery	15. 08	79.3	3				
Niagara.....	17.31	83.4	7	\triangle verage	16.89	83.5	425

From the foregoing data, the conclusion is inevitable that the State of New York stands among the first in the Union in its capabilities of producing beets with a high content of sugar and a high purity. The meager data at hand also show that a fair tomage per acre can be secured. It is evident that with proper fertilization and rotation of crops the fertility of the soil can not only be maintained, but even increased, so that it is not mureasonable to expect, under the best con-
H. Doc. $396-7$
ditions of culture, that the mean tomage per acre produced in the State of New York will he quite equal to that of the best sugar regions of Germany. Judging by the data obtained from a single season alone, there is no sugar-beet producing country of Europe that can compete with the State of New York in the richness of its beets. If a factory, constructed on the best approved modern principles, and with every facility for converting the whole of the sugar into marketable form, could be supplied with such beets as were grown in the State of New York during the season of 1897, it would be capable of placing upon the market 240 pounds of pure gramulated sugar for every ton of 2,000 pounds of beets entering into manufacture. When, in addition to these facts, are considered the cheapness of fuel, the abundance of labor, the proximity of markets, and the importance of the dairy indus. try in its relations to the refuse of the factory as a feed, it is seen that there is no place in the United States which offers more favorable inducements for the development of the industry.

ELEVATION OF REGIONS OF NEW YORK SUITED TO BBET CULTURE.
A rontour map of the State of New York, showing the elevations above tide water, is found in the fifth annal report of the meteorological bureau and weather service of the sitate for 1893. The elevation in the region of the Catskills in some places reaches an altitude of 3,000 feet. Immediately west of this mountainous region, and extending to Binghamton on the south and almost across the State through the south central portion, there is a large area in which the average elevation is 1,000 feet. In the sonthwestern portion of the State there is a considerable area the elevation of which is 1,500 feet. The region of the Adirondacks and the northeastern portion of the State has various elevations, but as these regions are probably too far north for successfal beet culture they do not interest us here. Starting from Albany with an average elevation of 100 feet and following the course of the New York Central Railway, we pass throngh an area a large portion of which is below 500 feet in elevation. From Rome through Syracuse and as far west as Lyons the average elevation is less than 500 feet, with the exception of small areas. From Lyons to Buffalo the average elevation is above 500 and less than 1,000 feet. Inmediately along the shores of Lake Ontario the average elevation is less than 500 feet. Passing to the sonth near lochester, along the Genesee Valley, is a considerable ara below 500 feet in elevation.

An interesting description of the physical contour of the State is given in the report mentioned above as taken from the work of Prof. Arnold Guyot. This description is as follows:

[^11]The mass of the state is a triangular tahle-land clevated 1, ,of or 2,000 fret ahove the nevan, and may le considered the northeastern extremity of the platean which, in this latitude, forms the western half of the Appalachian system. The natural limit of this belt toward the west and north is the large depression of Lakes Erie and Ontario, and which continues down the course of the St. Lawrence River to the ocean. In the east the table-land is terminated by the deep valley occupied by Lake Champlain and the Hudson River, while sonthward the highlands extend without interruption into Pennsylvania. The eastern edge along the Ifudson and Champlain valleys is formed by a series of mountain chains more or less isolated from each other, and bearing the highest summits in the State. They are: The Highlands, which cross the Hudson at the limit of the coast region; the Shawangunk and Catskill mountains, on the western bank of the river, and the system of the Adirondarks, covering the territory between the st. Lawrence and Champlain valleys. Within this eastern wall the true mountain chains cease, but the remainder of the plateau is indented by numerons valleys, the bottoms of which are generally several hundred feet below the common level, and which are neparated by high ridges. A remarkable feature is the deep trausversal eut which forms the valley of the Mohawk and Lake Oneida, opening a channel from the low country of the Lake region to the Ifudson valley, and thas dividing the main platean into the distinct masses of the Appalachian and Adirondack systems.

A subdivision of the central or Appalachian highlands is due to the deep chamel of Seneca Lake, extending from the plains bordering Lake Ontario southward to the valley of the susquehama. The two sections of the highlands thins separated are here designated as the eastern and western phateans, the formor extending from the central lakes to the Hudson Valley, and the latter westward from the central lakes to the depression of Lake Erie.

North Dakota.
Only four samples were received from North Dakota, the average weight of which was 28 ounces, and the mean percentage of sugar in the beet 10.\%. On account of the low content of sugar, purity coefticients were not computed.

No report has been received from the director of the North Dakota station in regard to any work which has been cardied on by that station. The data of the four samples received are likely to be mislearliug, as it is evident that North Dakota is capable of producing very much better beets than are indicated by the data in the analytical tables.

North Carolina.

By consulting the map it may be seen that there are many localities in North Carolina where the thermal e whlitions are favorable for the growth of high grade beets. It is doubtful, however, whether upon the summits of the Allegheny Mountains, where these conditions exist, a sufficient area of suitable soil could be secured to warrant the expectation of establishing successfully a beet-sugar industry in that State.

Only seven samples were received from North Carolina by the Department of A griculture. The mean weight of these samples was 23 onnces, aud the mean percentage of sugar in the beet 9.1. On account of the
low polarization of the samples, it was not deemed necessary to make a computation of the coefficient of purity.

No analyses were made at the laboratory of the experiment station of North Carolina during the year, althongh the director of the station has been much interested in the work, and proposes to continue it another season.

Оніо.

Sixty-eight samples of heets grown in Ohio were received at the Department laboratory for analysis. The mean weight of these beets was 22 onnces, the mean content of sugar 13.5 per cent, and the mean coefficient of purity, 79.1. (irouped by belts into northern, central, and southern, the character of the beets grown in Ohio and analyzed at the Department of Agriculture is shown in the following table:

Summary of analyses of beets from Ohio, by belts.

It will be seen from the above that the northern belt of the State produced the best beets, both in content of sugar and purity, and in this respect the data obtained by the Department corroborate in every particular those secured by the Ohio Experiment Station mentioned below. It is evident, from a consideration of the two sets of datat, that the northern portion of Ohio offers favorable inducements, both for the culture of the beet from an agricultural point of view and by reason of cheapmess of fuel and the facilities of transportation from the mannfacturing point of view. It is evident, however, that the central and sonthern parts of the state, as is the case with Indiana and Illinois. should not be exploited with the purpose of investing money in the beet sugar industry until the available localities in the northern regions are entirely occupied.

- With the cooperation of the Department of Agriculture, the agricultural experiment station of (Ohio distributed a larse quantity of seed to farmers in that State, and from the seed so distributed 60 samples of beets were forwarded to the station and analyzed. The results of the analyses by comties are given in the following table:

Summary of results of sugar-beet investigation for Ohio, 1897.

County.				Purity coeflicient.	County		$\begin{aligned} & 3 \\ & 0 \\ & 3 \\ & 30 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$		
Ashland	4	Grams. 8:31	Per ct. 12.7			7	Grams.	Peret.	
Ashtabula	2	679	14.9	82.8	Medina	${ }_{6}$	9, 9	12. ${ }^{1} 9$	77.5 76.2
Auglaize..	9	1,128	14.4	77.0	Mercer	11	1,119	13.2	77.2
Belmont.	1	660	16. 6	86.9	Miami	12	773	12.6	75.9
Champaig	1	825	13.2	77.6	Montgomery	3	755	11.8	73.5
Clark	11	610	14.1	78.7	Muskingum.	5	566	14. 4	78.2
Columbiana	1	610	18. 4	83.6	Ottawa.	13	694	15.7	78.8
Coshocton	4	860	12.9	72.9	Pauldin	9	802	15.6	80.0
Crawford.	7	1,095	13.8	77.1	Perry	1	127	19.1	80.9
Cuyahoga	4	894	12.9	75.5	Pickaway	1	710	16.5	81.6
Darke.	44	464	13. 3	76.9	Pike	1	545	14.)	77.8
Defiance	23	851	13. 7	77.9	Portage	2	1, 554	9.3	a69. 7
Delaware	4	5.59	14.9	79.3	Putnam	19	958	13.1	76.5
Erie.	1	1,406	15.0	80.6	Richland	2	496	16.6	83.4
Fairfield	5	599	12.8	74.9	Ross	31	697	13.5	76.6
Fayette	2	620	14.6	78.9	Sandusky	3	812	14.8	79.6
Franklin	5	524	15. 3	80.0	Seneca.	10	762	14.8	77.5
Fulton	24	1,065	14.1	79.2	Shelby	8	607	14.0	80.0
Geanga	6	694	16.3	84.8	Stark.	8	712	15.3	80.8
Greene	11	1,285	9.9	66.8	Summit	28	684	14.7	80.2
Hardin	4	796	12. 1	74.2	Tuscaray	4	865	14.8	79.1
Henry	33	810	15.3	80.9	Union.	2	1,077	15.9	80.6
Highland	1	840	13. 2	68.4	Van Wer	21	1,064	12.5	73.1
Hocking	1	1,521	7.2	a 59.0	Wa̧no.	97	787	13.9	80.7
Holmes	6	680	13.6	81.0	Willian	3	979	16.2	80.2
Huron	1	303	16.0	76.1	Wood	26	777	14.4	78.3
Knox	4	642	15.9	81.9	W. y ando	1	605	15.1	79.8
Lake.	5	789	14.9	82.7					
Lickin	11	564	11.9	74.9	Southern section	69	892	12.8	75.3
Logan	2	779	12.8	80.0	Middle section..	146	924	13.9	78.0
Lorain	1	520	16.0	81.9	Northern section.	392	834	14.3	79.4
Lucas.	32	889	14.3	78.5					
Madison.	5	711	14.3	76.8	Entire State.	b607	867	14.0	78.7

a Not included in average of State.
b Some samples were reccived without name and address of grower.
It will be observed from the above table that the number of samples analyzed was 607 . Only 554 , howerer, of these samples figure in the averages for the State, the others having been rejected for computing purposes by reason of certain abnomalties which they presented. The Ohio results are exceedingly encouraging from every point of view, with the exception of purity alone. The average weight of the beets was 867 grams, equivalent to 30.6 ounces. The average per cent of sugar in the expressed juices was 14 per cent, equivalent to 13.3 per cent in the beet, and the average coefticient of purity of the juices was 78.7. The most interesting grouping of the samples is shown at the end of the table, particularly so because in the State of Ohio the most favorable theoretical thermal conditions prevail only in the northern comties. The grouping of the total number of samples into three portions, representing the northern, central, and southern sections of the State, shows in a convincing manner the effect of thermal conditions on the sugar content of the beet. 'The northern counties furnished 392 samples, with an arerage weight of 834 grams, equivalent to 29.4 ounces, with
an arerage percentage of 14.3 per cent of sugar in the juice, equivalent to $13: 6$ per cent in the heet, with an average coefficient of purity of 79.4 . The middle section furnished 146 samples, with an average weight of 924 grams, equivalent to 32.6 ounces, with a mean content of sugar of 13.9 per cent in the juice, or 13.2 per cent in the beet, and a mean coeflicient of purity of is. The sonthern section furnished 69 samples, with an average weight of sivams, equivalent to 35 ounces, a mean percentage of $1 \because .8$ per cent of sugar in the juice, or 12.2 per cent in the beet, and a mean coefficient of purity of 75.3 .

It is seen by the alove that there is marked improvement, both in the percentage of sugar and the purity of the juice. in the beets in Ohio as we advance from its southern to its northern border.

The results of the work of the experiment station of Ohio have already heen published as lubletin No. 90 of that station, and interesting details comected with the above data can be found therein. The bulletin also contains interesting maps, showing isothermal lines and comblitions of precipitation in the State. The remarks of the authors of the bulletin, namely, Mr. A. I). Selby and Mr. L. M. Bloomfield, on the general character of the results are interesting and are found below:

Taken as a whole, these analyses seem to indicate that beets of good quality may be grown in most comnties of the middle and northern sections of ohio, and, further, that many portions of the sonthern section may he alapted to sugar-beet growing, althongh on the whole less promising than more northerly districts. The analyses from F'ayette, l'ickaway, Ross, Pike, and Perry comnties appear encouraging. The sugar content in lioss County is decidedly reassuring, though the purity is slightly below the standard. Judging hy the samples, this might have heen greatly improved by more careful culture and better selection of typical specimens. The unfavorable results in Greene and Montgomery counties are not taken to indicate what may really be done in these counties. For the southern section, and particularly the valley districts, further trials should be made. Close planting should be practiced on rich lands.

For the middle section, as a whole, good sugar beets may apparently be grown when growers have learned what to avoid in planting and culture. The low averages in samples from Mereer, Hardin, and Coshocton counties may not certainly be taken as conclusive evileure of conditions unfaromble to sugar-beet culture. Those reported from sandy soils in Mercer County show a fair purity. The results from belmont, Muskingum, and Thscarawas comities point to better things in the eastern counties than previonsly anticipated. More trials in this region another year are certainly warranted by these analyses.
As anticipated from previous trials, it is the northern section which makes the most favorable showing as a whole. Samples were received from every county of the northern section except Trumbull, Mahoning, Hancock, and Allen. A sample was received from Columbiana County after the tables had been completed. While the lake shore district shows to good advantage here, the comnties situated along the sammer isothermal of $70^{\circ} \mathrm{F}$. are butsligntly, if at all, inferior, though represented by a much larger number of samples. Ottawa County gives a low purity with a high sugar content, 15.7 per cemt. It will be noted that a large number of samples is not conducive to extremely high averages in the tables.

In fact, practically all the counties of the State show a rather high sugar content, 14 per cent in juice when all are averaged, and it is to the coefficient of apparent purity that we must direct our attention to discover differences. Under all the circumstances an average purity of 78 and above may be taken as fairly satisfactory for the present year's analyses.

It is to be borne in mind, when these results are considered, that the percentages were obtained for the most part in comparatively fresh samples, from which only the leaves had been removed. Topping the beets, as for factory use, was not encouraged, owing to the risk of water loss by evaporation. This has led, possibly, to lower percentages than where beets were topped and sent considerable distances by mail. While the actual sugar content would be but slightly, if at all, reduced by loss of water, the apparent sucrose per cent would be changed.

Oklaimoma.

Only one sample of beets was received at the laboratory of the Department of Agriculture from Oklahoma. The average weight of the beets composing the sample was 10 ounces, the mean percentage of sugar in the beets 11.8, and the coefficient of purity, 72.5. The director of the agricultural experiment station has submitted the following report of the analyses of 21 samples, showing a mean percentage of sugar in the juice of 12 , and in the beet of 11.4 , and a mean coefficient of purity of 65.3 . The mean coefficient of purity as obtained at the experiment station of Oklahoma is phenomenally low. These data, taken in connection with the climatic conditions which prevail in that Territory, are sufficient to indicate that there is no prospect of establishing a beet-sugar industry in Oklahoma.

RESULTS OF EXPERLMENTS IN OKLAHOMA.

Seed and culture directions were sent to farmers in each county, and the number of requests for seed quickly exhausted the available supply. But twenty-four reports were received and twenty-one authentic samples examined. of the three total failures reporterl, one is stated as due to tlood, another to drought, and the third to hail. The yield, judging from the ragne and indefinite reports which I have been able to secure, varied greatly. It seems that in many cases the seed was sown too far apart in the drills and that but little regard was paid the culturedirections sent out. In general, a poor stand was seeured, and the majority of those reporting are not enthusiastie as to the prospects of the sugar-beet industry in Oklahoma.
I inclose a tabular statement of the results of analyses of beets. The low coefficient of purity of the juice is especially noticeable.

Analyses of sugar beets grown in Oklahoma Territory, 1897.

County.	Sugar in juice.	Coefficient of purity.	County.	Sugar in juice.	Coefficient of purity.
	Per cent.			Per cent.	
Canadian	9.3	53.1	Logan.	9.3	58.1
Do	13.0	66.3	OkTahoma	14.0	78. 6
Do	10.1	69.7	Pawnee	12.2	68.5
Cleveland	13.0	74.3	P'ayne.	17.7	72.5
Custer	13.9	68.1	Do	11.9	54.3
Fartield	12.6	67.3	Do	11.8	64.3
Kingfisher	14.9	66.2	Do	11.8	63.1
Lincoln ...	10.8	73.0	Do	8.4	52.1
Do.	10.8	57.7	Pottawatomie	12.8	61.2
Do	13.9	81.8			
Do	10.1	60.1	Average	12.0	C5. 3
Logan.	9.6	68.6			

Oregon.

No samples of beets were recsived at the Department from the State of Oregon during the season. Previous analyses of beets received from that State have shown uniformly a high content of sugar and a
high coefficient of purity. The agricultural experiment station of Oregon for several years has devoted a great deal of time and attention to the study of the sugar-beet industry in that State and published valuable reports on the subject. Mr. G. W. Shaw has prepared a résumí of the work of the station and of the Department, which contains the summaries of the work done, with various comments on the data obtained. This report is given below.

IRESULTS OF FXPERIMENTS IN OREGON.

In his notes on the analyses of heets for the season of 1891, Dr. H. W. Wiley, chemist of the linited sitates Inpartment of Agriculture, said: "The samples fiom Oregon are uniformly rich in quality, and if they truly represent the capabilities of the state there is certainly a bright future for the sugar-beet industry on that portion of the Pacific coast." This was said relative to a series of 33 analyses made at the Unitedstates Department of Agriculture, which gave the following average results: weight, 644 grams; sugar in the juice, $\mathbf{1 4 . 5}$ per cent; purity, 82.2.

It was to obtain a devided answer to the frestion, " loos Oregon possess the rerpisite comditions for the manuficture of sugar from beets?" that the writer, as chemist of the Oregon Experiment Station, began a series of experiments with beets in 1891, which were continum in 1892 and again in 1897 . The results of these investigations are here brielly set forth, more detailed account of which may lee had by applying to the station for Bulletin No. 44.

The sugar heet does not differ from other plants in requiring certain conditions of climate and soil to give favorable results. In foreign countries both of these questions have heen pretty satisfactorily suttled, hut in some parts of the United states the plant sems to thrive umber very different conditions than obtain in foreign conntries. Notally is this true concerning the rainfall, as is illustrated in the case of California and Utah, as well as in the experimental culture in Oregon, as will appear later; heuco foreign countries can not be taken as representing the only conditions under which the root will thrive. However, it does there thrive and these conditions can by no means be ignored. It also thrives, and that splendidly, in our own ('alifomia, hence her conditions can not be disregarded in a consideration of this question. Let us examine Oregon's condition of climate and soil that, if possible, we may obtain some a priori ideas on these lines.

The season for the growth of beets may be divided into three periods-that of germinating, that of plant formation, and that of sugar storing. The following is at comparative table showing the temperature avorages for (iermany and certain parts of Oregon during these periods:

Average temperature for periods of growth.

	Average temperature.			
Period of growth.	Foreign.	Eastern Oregon.	$\begin{aligned} & \text { Willam- } \\ & \text { ette } \\ & \text { valley. } \end{aligned}$	Southern Oregun.
First	49.1	56.0	52.5	53.3
Second	63.3	65. 0	64.4	64.5
Third.	56.3	64.5	63.3	54.8

Taking as a hasis lur. Me.Murtrie's meãn isotherm for shmar-heet culture at 70 for June, July, and August, Dr. Wiley, in his report upon beet culture, gives a map of the Unitedstafes, showing 100 miles on earh sideof this isotherm, within which area favorable results may be looked for.

It is in the rainfall of the State that we find the greatest seeming deriation from those portions of the world which are taken as typical beet-producing regions. This seeming difference should not be considered as a too serious drawback, nor would it appear so to those acruainted with all the conditions. The a verage amount of rainfall does not differ much from that of the beet-growing regions of other countries, yet it is not so evenly distributed. It must be borne in mind, however, that the soils of Oregon are much different with respert to their retentiveness of moisture, and that for all our crops the necessary moisture nearly all falls during the "wet season," and for this reason we do not usually consider the monthly rainfall as hearing so close relation to the crops as it does in most other states, hat rather are wont to consider the seasonal precipitation as the more important factor. In this respect ours is similar to the condition which obtains in our sister State, California, in which the leet industry has reached a high state of development.

Champion and l'ellet consider phosphoric acid as an indispensable base for the formation of sugar in the heet. They classify the order in which the plant food is indispensable as follows: (1) Phosphoric acid, (2) lime, (3) nitrogen, (4) potash.

It is foreign to our purpose to discuss, at this time, the soils of Oregon to any length, but in connection with the last statement I desire to direct attention to the fact that the soils of Oregon are well-yes, aloundantly-supplied with phosphoric acid; that they surpass those of France in lime and equal them in potash. Below are contrasted analyses of some of the French sugar-heet soils with those of the uatural divisions of this State and those of California. These results, I think, speak for themselves, and need no further comment.

Average comparative composition of soils.

Analysis of fine earth.	France.		Oregon.			California.
	Somme.	Nord.	Eastern.	Willamette Valley.	Southern.	
Insoluble matter	81.80	82.50	66.59	65. 18	62.45	67.88
Soluble silica			13.12	5.02	8.74	8.96
Potash ($\mathrm{K}_{2} \mathrm{O}$)	. 06	14	. 43	. 23	. 34	. 64
Sorla ($\mathrm{Na}_{2} \mathrm{O}$)	. 09		1.22	. 18	. 21	. 28
Lime (CaO)	. 51	. 42	1.22	. 83	2.22	1. 08
Magnesia (MgO)			. 75	. 79	. 80	1.49
Manganese ($\mathrm{Mn}_{3} \mathrm{O}_{4}$)			. 10	. 08	. 25	. 06
Tron ($\mathrm{Fe}_{2} \mathrm{O}_{3}$) ${ }_{\text {Alumina }}\left(\mathrm{Al} \mathrm{O}_{3}\right.$)	2.88 7.24	2.18 8.62	10.69	16.45	15.35	15.02
Sutphuric acid (SO_{3})			. 04	. 03	. 01	. 05
Phosphoric acid ($\mathrm{P}_{2} \mathrm{O}_{5}$)	. 09	. 08	. 14	. 21	. 13	. 08
Carhonic acid (CO_{2}) 40	. 70				
Water and organic matter	5. 60	4.84	6. 21	10. 77	9.52	4.40
Other matter	1.85	1. 52				
Humus.			1.44	1.63	2. 25	. 75

Measured, then, by the foreign conditions as to temperature and the California conditions as to rainfall, and with a soil amply supplied with all the elements necessary to produce almundant rrops, Oregon wonld certainly seem favored with all the requisites for success in beet culture.

The analyses made at the station during the season of 1891-92 may be summarized as follows:

County averages for 1891.

County.	No.	Sugar.	Purity coefficient.	County.	No.	Sugar.	Purityco. efficient.
Benton	39	12. 30	74.12	Marion	1	15. 99	78.38
Clackamas	7	14.55	77.30	Polk	1	14.72	78.08
Columbia	1	13.74	79.42	Union	3	15. 84	79. 89
Douglas.	9	12.99	73.45	W ashington	11	13. 96	78.79
Jackson	3	18.93	80.99	Yamhill	1	10.73	76.64
Lane: .	16	14. 32	79.95				
Linn.	5	13.54	79.91	Average.	.	14. 13	78.08

An examination of the results reveals that the analyses had a wide range, viz: From 6.77 per cent to 22.44 per cent sugar in the juice. Of the 95 analyses made, 8 fell below 10 per cent; 76 showed over 12 per cent, and 37 over 14 per cent sugar. An average of 81 analyses for the Willamette Valley shows 13.76 per cent sugar and a purity coefficient of 77.89 ; the average heet weighing a little over $1 \frac{1}{4}$ pounds, while an average of 10 analyses of beets from sonthern Oregon showed 13.38 per cent sugar with a little larger beet. But this does not really show the capabilities of this section of the State, as will appear later, for there were quite a number of immature beets included in this average.

Experiments of 189.3.-For the investigations of 1892 the following varieties were used, Insprez's Early Rose, Vilmoriu's Improved, Kleinwanzlebener, and White Imperial, all of which are favorite kinds, the first heing much used in ('alifornia. Infortunately the seed was delayed in reaching us, so it could not be distributed to the farmers as early as it should have been to secure the best results. Had the seed reached us in the time, it could have been put into the ground in April, for at that time there was favorable weather for seeding, hut by the time the seed had been distributed cold weather set in and continned till May, after which the weather becane very dry, rendering the couditions for a fair trial very unfavorable.

The rainfall for the season was below the normal and reports all read "very dry," "extraordinarily dry," "weather very unfavorable." In fact, nearly all the beets in the eastern portion of the State failed to mature, and in many instances the seed failed to germinate. So far as the season's climate is concerned, then, the experiments were greatly handicapped and we were "in pursuit of knowledge under difficulties."

The cultivation for this season was the same as for the previous year, except that the rows were placed 20 inches apart.

Owing to the disturbed condition of the experiment, the results are doubtless poorer than would have heen the case had the seasou heen one of more nearly nomal ronditions. Still, the results confirm the conclusions of the previous yoar, that oregon pussesses the conditions necessary for the proluction of excellent beets for the purpose of beet-singar manufacture.

Expressed by counties the averages are as follows:
Averages for 1892 by counties.

County	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { analyses. } \end{gathered}$	Average for 1892.	Purity coefficient.	County.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { analyses. } \end{gathered}$	Average for 1892.	Purityco eflicient.
Benton	17	12.80	86.50	Polk	5	14.50	73. 30
Clackama	1	15.10	87.83	Union.	7	19.80	87.33
Douglas	9	15. 20	81.15	Washingtou	10	15. 50	78.79
Jackson	1	15.00	84.74	Yamhill	,	13. 70	82. 83
Lane..	2	15. 20	84.05	Josephine	2	15.70	88.00
Lincoln	,	16. 20	83.00	Wasco.	1	21.10	90.50
Linn...		17.10	73. 74	Malheur	1	20.20	84.90
Marion	2	13.80	74.60				

The average of all analyses for the State was 15.7 per cent sugar in the juice, with a purity coeficient of $7 \times .0 x$, against 13.75 per cent and a purity of 77.57 for the previous season. Ont of the 6 analyses made, only 11 indicated less than 12 per cent sugar in the juice, and 41 samples indichted over 14 per cent, the oxtremes being 9.4 per cent and $23 . \rtimes$ per cent. The average for the different natural divisions of the State were as follows:

Per cent.
Willamette Valley, 44 samples... . . . 14.7

Southern Oregon, 10 samples....... .. 15.1

While from 1893 to 1897 no definitely outlined experiments have leen conducted, yet the station has furnished more or less seed to various parties who have sent the beets to be analyzed. In other cases heet seed has been furnished ly other parties, and analyses have been made in all cases when beets were forwarded to the station. The average of the results of 23 analyses made since 1892 shows 15.05 per cent sugar in the juice and a purity coefficient of 89.8 .

Arerage of all results.-Let us now collect the results to 1897 which have been thus separately set forth. In the same tahle I beg to include the averages from analyses made at Washington, D. C., by the United sitates Department of Agriculture. These last-mentioned results really indicate a little too liish, probably alout 10 per cent, on account of the time that necessarily elapsed between harvesting and analyzing, which would result in a loss of water.

Expressed by counties the averages are as follows:
Average of all analyses for each county.

County	Number of : tualyses.	Average of analyses made at station.	Purity: coeflicient.	Number of amalyses.	Average for United States Itepartment of Agriculture.	Puritycoethicient.
Benton	42	12. 57	79. 63	5	14.34	82.8
Clackamas	8	15.62	78. 76	3	15. 36	84.2
Columbia	1	13.74	79.42	3	15. 30	81.7
Coos...	0			5	14. 56	82.6
Douglas	18	14.10	77.98	1	17.74	84.3
Jackson	4	17.93	81.00	1	18.94	83.9
Lane...	18	14.42	80.19	6	14.24	85.4
Lincoln ${ }^{1}$. .						
Linn.....	6	14.13	73.43	1	14.15	79.4
Marion	4	15.17	74.60	2	14. 15	81.1
Polk..	16	14.54	74.10	1	12. 10	79.8
Union	30	18. 61	85.10	2	14.35	81.8
Washington	2	15. 29	80.98	3	12.49	80.7
Yamhill --.	7	12.87	82.76	0		
Josephine	2	15.70	81.21	0		
Wasco...	1	21.10	90.50	0		
Malheur	1	20.20	83.44	0		
Sherman.	0			1	13.55	72.2
Umatilla.	0			1	15.12	80.9
Multnomah.	1	16.90	76.80			

${ }^{1}$ Averaged with Benton County.
If we omit from the average those beets which were immature or overgrown, the averages for the State will be:

	Sugar.	Purityco efficient.
Season of 1891	14.3	78.2
Season of 1892	15.9	81.4
Since 1892.	15.0	84.8
Mean	15.0	81.5

Ihring the season jast ended, 1897-98, the oxperiments were continued, but were limited for the most part to those portions of the state which seemed to offer not only the best conditions for growing beets, but also presented other favorable economic conditions, for unless the requisites for the manufacture of sugar can be had as well as the beets, it is useless to expeml labor in an attempt to shot that we can grow good beets. In these experiments the conditions were not particularly favorable-indeed, were adverse, inasmuch as the ground was entirely prepared in
the spring and the seed was lato. The results obtained in the localities selected are given below :

Prnnsylvania.

Fifty-nine samples of heets grow in Pennsylvania were receiver at the Department of Agrieulture laboratory for analysis. The mean weight of the beets in the samples was 18 ommer, the mean content of sugar in the beet 13.8 per eent, and the mean roefficient of purity, 79.5 . The size and sugar content of the samples received from the whole State were satisfactory, but the coefificient of purity falls a little below the minimum standard.

The samples received may be divided, for the purposes of study, into two sets, namely, those from comnties lying in and north and west of the favorable thermal belt, and seeond, the counties lying south and east of that belt. Collected by counties, the samples divided according to the above classification show the following data:

Counties of I'ennsylvania above and below isothermal line \% 0°.

It will be seen that the 31 samples coming from the counties lying in and to the north and west of the faromble themal belt have an average weight of $\because 1$ omeses, a mean content of sugar in the beet of 14.8 per cent, and a mean coefticient of purity of 78.9 . The 28 samples coming from combies lying sonth and east of the favorable thermal belt have a mean weight of 15 ounces, a sugar content in the beet of 12.7
per cent, and a mean purity of 79.8. With the exception of the coefficient of purity, the influence of the more favorable thermal conditions is easily distinguished.

Of the counties in Pemsylvania furuishing the most data may be mentioned Allegheny, with 13 samples, having an average weight of 18 ounces, a mean content of sugar in the beet of $1: 3.8$ per cent, aud a mean purity of 77 . Cumberland County, in the southern part of the State, sent 20 samples, having a me:n weight of 1^{2} ounces, a mean content of sugar in the beet of $12{ }^{2}$ per cent, and a mean purity of 79.6 . Erie Comnty sent 7 samples, having a mean weight of "S ounces, a mean content of sugar in the beet of 15.s per cent, and a mean purity of 82.5 . The samples from Erie Comey are decidedly the most favorable, and this is to be expected, since Erie County has conditions of soil and climate which are entirely analogous to those pervading the New York area from Albany to Buffalo.

Attention has been called before to the mountainous character of a large part of the State of Pennsylvania, even where favorable thermal conditions prevail. It is evident, however, that in the northern and western portions of the State, where saitable soil can be foumd, the culture of the sugar beet may be introduced under the most favorable conditions, and with every prospect of success.

EKIPERIMENTS CONDUCTED BY THE AGRICULTURAL ENIEIRMENT STATION.
The agricultural experime:t station of Pemnsylvania cooperated with the Department of Agriculture in the investigation of the beet-sugar work, and has published the results of its work in IBulletin No. 40 of that station. For details of the analytical work and of the observations made by the director of the station the reader is referred to the bulletin mentioned. In discussing the aualyses I irector Armsby says:

Of the 69 samples reported upon in the ahove tahle, 55 (or 80 per cent) showed over 12 per cent of sugar in the beet. Thirty-four aamples (or 49 per cent) showed a coefficient of purity of over 80 . Thirty-two out of the total number (or 46 per cent) showed over 12 per cent of sugar and also a purity coefficient of over 80. In view of the fact that practically all of the beets were raised by farmers who had had no experience in the culture of this plant for sugar, the results must be regarded as decidedly favorable so far as the quality of the beets is concerned.

In 40 cases ont of the whole umbler we have data regarding the average weight of the beets. Of these 40 samples, 14 (or 35 per cent) weighed between 0.80 and 1.35 pounds, 18 (or 45 per cent) were below 0.80 pound in weight, and 8 (or 20 per cent) were above 1.35 pounds. It thus appears that, as a rule, the size of the beets was rather small.

Thirty-four of the experimenters reported the yield of beets. In most cases the yield wascalculated from that of a comparatively small area, and in many cases there is evidence that the results may be considerably in error. Taking them as they stand, however, 10 (or 29 per cent) reported a yield of wer 15 tons per acre, 2 (or 6 per cent) a yield of hetween 10 and 12 tons per acre, and 17 (or 50 per cent) a yield below 10 tons per acre. It thus appears that while, as stated above, the general quality of the beets was good, the yield was rather small.

As stated above, 32 of the samples showed more than 12 per cent of sugar with is purity coefficient of more than 80 . Of these 32 experiments, 7 (or 22 per cent) reported a yield of over 10 tons per acere, 4 (or 13 per cent) a yield of between 8 and 10 tons per acre, 7 (or 22 per cent) a yield of less than 8 tons per acre, while 14 (or 44 per cent) did not report the yield. These figures confirm those given above in showing that the yield was, as a whole, rather small.

Rhode Island.

()nly "3 samples were received from Rhode Island, and no deductions of any value can be made from such limited data. The average weight of the beets composing the samples was 21 ounces, the mean percentage of sugar therein 11.9 , and the mean purity 74 ?. These data of course are far from encouraging, but there are reasons for supposing that the climate of Rhode Island is favorable to the production of a much richer beet. The available area for cultivation in beets in Rhode Island is small, and it may not be worth while to prosecute the experimental work. Nevertheless, it is suggested that it might be profitable for the agricultural experiment station of Rhode Island to study the subject to a greater extent.

Soutil Carolina.

Thirteen samples were received at the Department of Agriculture from South Carolina. The mean weight of the samples was 17 ounces, the percentage of sugar in the beet 9.9 , and the mean purity 79.9. These data, t:iken into consideration with the latitude and thernal conditions, indicate that there is no prospect of South Carolina becoming a sugar-producing State.

South Dakota.

Only 5 samples of beets grown in South Jakota were received at the Department for analysis. The mean weight of the beets composing these samples was 17 ounces, the mean content of sugar in the beet 15.1, and the mean purity coefficient 83.2. These data are favorable, but too meager for the basis of any definite conclusions.

EXPERIMENTS BY THE AGRICULTURAI, EXPERIMENT STATION OF SOUTH DAKOTA.
Extensive investigations in cooperation with the Department of Agriculture were carried on by the South Dakota station during the past season. The whole number of samples analyzed at the South Dakota station was 337 . For convenience of classification they are grouped according to the different regions in the State, and by counties in the regions as is shown in the following table:

Averages by counties and regions.

[From report of Jas. H. Shepard, Chemist of Experiment Station.]

Hegion and county.	$\left\lvert\, \begin{gathered} \text { Number } \\ \text { of } \\ \text { samples. } \end{gathered}\right.$	Tons per acre.	Per cent stand.	Average weight.	Sugar in beets.	Purity co ofticient.	Ash in the juice.
BIG STONE LAKE REGION. Roberts County Grant County. Region averages	3		$\begin{aligned} & 90 \\ & 71 \end{aligned}$	Grams.387397	$\begin{array}{r} \text { Percent. } \\ 15.3 \\ 13.9 \end{array}$	$\begin{aligned} & 88.0 \\ & 87.5 \end{aligned}$	0.85.90
		$\begin{aligned} & 24.6 \\ & 16.4 \end{aligned}$					
		20.5	81	392	14.6	87.8	88
Codington County	14542624	15.7	60	473423	12.9	85.189.2	.87.60
Deual County		8.523.1	8385				
Kingsbury County				359	14.0	86.2	1. 00
Moody County.		14.116.6	79	431	14.2	87.881.2	1.15
Lake County				424			
Brookings County		19.8	74	455	13.4	86.786.1	.881.08
Minnehaha County		20.2	77	423	15.2		
Regiou averages	16.9		76	427	14.0	86.0	. 95
Wer sioux river region.							
Lincoln County	10182218	16.4	81	402	15.0	81.885.1	1.171.12
Turner County.		18.2	5580	437333	14.519.5		
Hutchinson County		19.5				88.4	1. 20
Bonhomme County		17.5	77	449	15.4	87.2	
Clay County ..		30.5	88	470	14.7	86.2	.99 1.95 1.03
Yankton County		$\begin{aligned} & 19.7 \\ & 19.3 \end{aligned}$	77	498388	14.615.2	86.088.5	1.03.81
Union County.			79				
Region averages	20.2	77	425	15.6	86.6	1.06
central james river region.							
Miner County.	4792	$\begin{aligned} & 21.5 \\ & 14.2 \\ & 30.1 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 47 \\ & 64 \\ & 81 \\ & 75 \end{aligned}$	$\begin{aligned} & 329 \\ & 373 \\ & 470 \\ & 423 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 15.5 \\ & 14.8 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 84.6 \\ & 87.4 \\ & 86.4 \\ & 89.0 \end{aligned}$	2.06.92.911.03
Sanborn County							
Davison County							
McCook County.							
Region averages	--........	22.1	67	399	14.9	86.9	1.23
Marshall County.	31923108513222		90	322	13.7	85.681.7	.761.06
Brown County		${ }^{15.1}$	61100	$\begin{aligned} & 364 \\ & 314 \end{aligned}$	13.318.3		
McPherson County						85.3	1.731.18
Edmunds County		17.7	75	349	15.1	81.388.3	
Day County..		14.5	75	367	13.9		+.91
Clark County		22.8		3.1	13.9	87.2	1.081.09
Spink County		19.1	75	362	15.5	89.186.8	
13eadle County		33.6	77	475	14.5		1.09
Faulk County.		12.8	50	304488	18.014.6	89.584.788	1. 1.00
Hyde County.		14.3					
Hand County		11.8	90	259	16.8	81.4	1. 27
Region averages		18.8	78	360	15.2	85.8	1.04
UPPER MISSOURI RIVER REGION.							
Campbell County	22413	12.3	$\begin{aligned} & 55 \\ & 95 \\ & 59 \\ & 90 \\ & 55 \end{aligned}$	$\begin{aligned} & 427 \\ & 389 \\ & 409 \\ & 525 \\ & 399 \end{aligned}$	$\begin{aligned} & 17.7 \\ & 14.9 \\ & 15.9 \\ & 14.3 \\ & 14.8 \end{aligned}$	89. 2 84.8 88.0 86.7 85.3	1. 201.111. 121.121.09
Walworth County		16.6					
Potter County		17.2					
Sully Comnty.		12.5					
Hughes County		8.3					
Hegion averages							
CENTRAL Missouri river reGION.							
Jerauld County	6277523	11.0	$\begin{aligned} & 76 \\ & 85 \\ & 75 \\ & 73 \\ & 70 \\ & 85 \end{aligned}$	$\begin{aligned} & 290 \\ & 379 \\ & 375 \\ & 394 \\ & 286 \\ & 394 \end{aligned}$	$\begin{aligned} & 15.3 \\ & 16.3 \\ & 16.2 \\ & 16.6 \\ & 16.4 \\ & 14.8 \end{aligned}$	84.5 84.3 82.4 86.7 87.8 83.2	1.281.171.381.10.991.25
Buffalo County.		44.0					
Brule County		17. 2.					
Aurora County.		14.7					
Douglas County		16.8					
Charles Mix County..........		23.9					
Region averages......		21.3	77	336	15.9	84.8	1. 19

Acerages by counties and regions-Continued.

Region and eomity.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { samples. } \end{aligned}$	Tons per acre.	Percent stami.	A verage weight.	Sugar in beets.	Purityrocfficient.	Ashin the juice.
WHITE RIVER REGION.						-	
Presho County	1	45.0		Grams. 421	$\begin{array}{r} \text { Per cent. } \\ 14.9 \end{array}$	83.1	. 90
Pratt County..	1	33.0	100	445	14.3	82.0	1. 07
Gregory County.	1			263	16.4	80.8	1. 22
Region averages.		39.0	100	376	15. 2	82.0	1.06
black hills regions.							
Mearle County	10	16.1	75	401	16.8	82.1	1. 19
Pennington County	5	9.5	79	330	16.4	82.7	1.48
Custer County	1	10.0	80	67	14.8	78.0	. 47
Fall River Comnty	4	15.4	90	325	15.9	83.7	-1.35
Rogion averages.		12.8	81	281	16.0	81.6	1.12
BUTTE REGYON.							
Harding County	4		35	343	20.7	86.0	1. 30
Butto County .	4	33.8	78	471	16. 5	89.4	1.18
Region averages.		33.8	57	407	18. 6	87.7	1.24
State averages		21.9	77	383	15.5	- 85.6	1.09

From an inspection of the above data it is seen that the results of the experiments conducted by the station are quite encouraging. The mean average weight of the bects analyzed was a little below the normal, 383 grams, equivalent to 13.5 ounces. The mean content of sugar in the beets was 15.5 per cent, and the mean purity coefficient 85.6 . The data for yield per acre are probably ureliable, as many reports of tonnage are given which are evidently erroncous, as, for instance, in Presho Comity, where a yiehl of 45 tons per acre is reported, and in Pratt Connty, 33 tons per acre, a quantity of beets which is not to be expected under the most favorable circumstances of growth. In so far as producing a crop of beets rich in sugar is concerned, the conditions in South Dakota seem to be extremely favorable. Attention, however, should be callen to former statements that the farmers of this state will have to contend with the great difficulty of an carly and sudden coming of winter. If, therefore, the industry should secure a hold, this will be the most important point in the agricultural part of the work to be considered, namely, the harvesting and preserving of the crop for manufacturing purposes. The high purity coefficients which obtain in South Dakota are especially encouraging. There is no other State which-has equaled south Dakota in the purity of the juices of the beets. There is abundant reason found in the data published above to encourage the agricultural experiment station of the State to continue its work of investigation, and to attract the favorable attention of intending investors.

Texas.

The northwestern portion of Texas reaches an altitude where the thermal conditions become more favorable to beet production. Itis not to be expected that the southern and western portions of the State will ever be seriously considered for this purpose.

Eleven samples were received from Texas at the Department of Agriculture laboratory, having an average weight of 2! ounces, at mean content of sugar in the beets of 12.6 per cent, and a mean purity of 76.5 . All the counties represented were in the northern and western portions of the State except McLeman, which is in the center. There is reason to believe that on the high plateaus in the northwestern portion of the State, where irrigation is possible, the culture of the sugar beet might be introduced with considerable prospects of success.
A few analyses were made by the agricultural experiment station of Texas, and these are given below:

REVIEW OF THE WORK DONE BY TIE AGRICULTURAL EXPERIMENT STATION OF TEXAS.

All of the seeds that we received for distribution in this state during the past season came to hand too late for proper planting in a State so far south as Texas. For this reason the dry season prevented a fair growth of the beets at an important period in their development, and the crops waited for the fall rains to develop sizo. These fall rains were accompanied by a small per cent of sunshine, resulting in a low sugar content. These conclusious are based upon the fact that where beets were planted late and irrigated, the sugar content was higher than when samples were grown by late fall rains and then sent us for analysis. Of couse the extreme western portion of the State produced beets of high sugar content.

Results of experiments in Texas.

Tennessee.
Seventeen samples of beets were received at the laboratory of the Department of Agriculture from Tennessee, of which eight were from the agricultural experiment station at Kuoxville. The mean weight of the beets received was 11 ounces, the mean percentage of sugar 10.8, and the mean purity 71.9. The mountainous regions of Temnessee are probably favorably situated in regard to thermal conditions for the H. Doc. $396-8$
growing of beets, but the contour of the comntry will prevent any extensive planting of this crop. Middle and western Temnessee are evi dently too warm for successful beet culture.

Virginia.

Thirty-four samples grown in the State of Virginia were received at the Department of Agriculture for examination. The mean weight of the beets composing these samples was 21 ounces, the mean content of sugar in the beets 11.6 per cent, and the mean purity 76.2 .

Virginia lies almost entirely south of the region where thermal conditions are most favorable to beet culture. It is only in the seacoast counties, where the temperature is moderated by the sea breezes, and in the mountainous counties, where the altitude is great enongh to lower the temperature, that good results can be expected. A great deal of interest has been manifested in the State in regard to the building of factories, but it is evident that intending investors as well as farmers should stop to consider the matter very seriously before investing their money and their labor in this enterprise.

A fer anaiyses received from Virginia show favorable results, as for instance, the sample from Carroll County, weighing 15 ounces, and containing 15.4 per cent of sugar in the beet. There is little in the data, however, to encourage the belief that Virginia is a favorable region for beet growing.

Investigations were also made by the agricultural experiment station of Virginia, but only to a very limited extent. The data obtained on analysis, together with the observations of the official in charge of the investigations, are found in the following report:

INVESTIGATIONS BY TIE AGRICULTURAL EXPERIMENT STATION OF VIRGINIA.
Before stating the results of the analyses made at this station I think it best to make some comments upon the work attempted this season. In the first place, it was fuite late before we concluded to undertake the distribntion of seeds and then by the time they reached us from the Department of Agriculture the season was so far advanced that a considerable number of persons to whom the seeds were distributed failed to plant them. This, of course, disturbed the experiment to a considerable extent. Another disturbing factor was the extreme drought which prevailed during the latter part of the season over this state in general, which resulted in many cases in practically destroying the crop. As a consecuence, our results are not what we could wish. After much correspondence with those to whom seed was distributed, we concluded to analyze only samples representing fairly well the tide-water and limestone sections of the State. The results of these analyees follow:
sample No. 1. From W.J. Phillips, Accomac County, Va. Weight of whole beet, 372 grams. Per cent of sugar, 16.11.

Sample No. 2. From Henry Jones, Suffolk, Nansemond County, Va. Weight of whole beet, 1,325 grams. Per cent of sugar, 4.17.

Sample No. 3. From L. T. Bannes, Bonlevard, Now Kent County, Va. Weight of whole beet, 581 grams. Per cent of sugar, 14.64.
sample No. 4. From T. A. Eller, Atkins, Smyth County, Va. Weight of whole beet, 760 grams. Per cent of sugar, 9.61.

Sample No. 5. From experiment station. Weight of whole beet, 584 grams. I'er cent of sugar, 13.63.

The first three samples represent the eastern section of the State and the last two the limestone section. We endeavored to secure sixteen samples covering more perfectly the geologic areas of the State, but from the causes above mentioned we failed to procure proper samples.

Dr. Mebryde desires me to say that if the Department wishes us to aid in the conduct of this work the coming year wo will be pleased to do so, and that the work will be taken in haud in proper seasou and the growing experiments arranged on a muh hotter phan, so as to secure reliable samples from the differnt sections of the State.

Experiments in the growth of beets in Virginia during sis were also made by the State hoard of agrionlture, and are described on page 206 of the ammal report of the board for the year 18:\%. One handred and eight samples were analyzed during September and Octoler. It is stated in this report that these samples varied in saccharine strength from S.5 to 17.1 per cent; thirty-five of them wre below 12 per eent, and seventy-three showed a saccharine value of from $1 \geq$ to 17.1 per cent, with a coefficient of purity of from 79 to ss.. , or a succharine average of 14.7 per cent, and an arerage purity coefficient of sit, which is equivalent to 250 pounds of raw sugar per tou of beets.

The data obtained hy the State boand of agriculture are more favorable than those secured hy the Department of Agrieulture or hy the experiment station at llaclisburg. It is hardly probable, however, that the map which acoompanies the report of the state board of agriculture will be regarled as a final judgment in regard to the localities in Virginia suitable to the growth of beets of the different qualities noted. A much larger series of experiments, extending over a greater number of years, will be neressily to definitely determine that point.

Wasilington.
Thirty-four samples of berts grown in the state of Washington were received at the Department of Agriculture for analysis. The mean weight of the beets received was 27 ounces, the mean perrentage of sugar 13.7, and the mean purity coeflicient 80.7.

The agricultual experiment station of the State of Washingtou for many years has conducted carefnl studies in regard to the possibilities of producing sugar in that State. During the past year 60 samples of beets grown in Washington were analyzed at the laboratory of the agricultural experiment station. The mean weight of the beets analyzed was 23 ounces, the mean pereentage of sugar in the beets 13.6 , and the mean coefficient of purity 75.7 . Of the whole number os per cent contained over 12 per cent of sugar, and is per cent weighed more than 16 ounces. The reports of the director and chemist of the station are given below.

Summary of analyses of beels from Washington.
[Compiled from report of experiment station.]

County.	Number of sam- ples.	$\begin{gathered} \text { Net } \\ \text { weight } \\ \text { beets. } \end{gathered}$	$\begin{aligned} & \text { Sugar } \\ & \text { in } \\ & \text { beets. } \end{aligned}$	Coefficient of purity.	County.	Number of samples.	$\begin{gathered} \text { Net } \\ \text { weight } \\ \text { beets. } \end{gathered}$	$\begin{aligned} & \text { Susar } \\ & \text { in } \\ & \text { beets. } \end{aligned}$	Coefticient of purity
		Ounces.	Perct.				Ounces.	Perct.	
Clarko	1	29	14.3	77.7		10	15	12.1	71.4
l'ierce.	7	25	12.0	73.7	Clallam	1	54	14.3	77.4
Lincoln	20	17	15.8	79.2	Whitman	2	46	14.2	76.3
Kitsap	2	22	12.3	70.9	Klickitat.	2	26	12.4	74.5
Skagit	8	33	12.5	72.9 75.6	Δ verages, ete	60	33	13.6	75.7
Whatcom	3	25	11.8	80.4	Averages, eto.				

RESULTS OF EXPERIMENTS IN WASHINGTON.
I have the honor to report as follows:
The appointment was male so late in the summer that it served only the purpose of providing for the free transportation of beets to this point for analysis, consequently the report must necessarily deal with facts of an earlier date chielly, if it is to be of any value as an indication of the adaptability of the soil and climate of the State of Washington to the culture of sugar beets. Permit me to say that we regarded our experimentation as practically complete before the beginning of this year. In conserfence of this fact it had been amounced early in the season that no distribution of seed would be made. At a later period some seed was obtained from the Department of Agriculture. The planting season in Washingtou begins very early considering the latitude, and the seed was received too late for general use. sieed was, however, supplied to those reduesting it, and in the main these rerquests were from localities not so well adapted to the culture of sugar beets, so that the results of this year's planting can in no way be taken as representative.

The Washington state Experiment station began the investigation of this problem through its chomical department in the spring of 1891, and conducted it with the greatest thoroughess through that and the two succeeding seasons, making moro than 3,000 analyses. Beets were mised in both small and large plats. The results were so uniform as to demonstrate the peculiar adaptahility of this region to the culture of sugar heets. These results aro given in Bulletins 15 and 26 of the State experiment station. I submit herewith the report of Professor Fulmer, of the department of chemistry, relative to the results of this year. I might mention the fact that l'rofessor fulmer was for some time chemist of a lueet-sugar factory in Nehraska, and is particularly well fitted for dealing with this subject. The results thus far obtained in the state show a percentage of sugar of about 15 , and a purity of nearly 84 .

Pullman, Wasif., January 6, 1898.
Dear Sik: In compliance with your request I hand you herewith a tabulated statement of the analyses mado in the station laboratory of beets grown from seed furnished ly the United Ntates Department of Agricnlture. The data presented are far from heing complete. The vory important item of "variety of seed" is entirely omitter, hecause in almost all cases the variety indicated by the grower of the heets was not at all in harmony with the characteristics exhibited by the samples. For example, beets with pink skins were often marked "Kleinwamzlebener," which is a pure white variety. It is quite clear to my mind that the lack of harmony between the character of the beets and the names they bore was due to the seed sent out by the Government boing at mixed seed.

Parties sending in beets for analysis failed in most cases to send any data concerning the time of planting, thinning, and harvesting; character of soil; amount of cultivation, ete. On afeome of this great lack of reliable data, the meager results obtained are of little value.

I wish to direct your attention to the fact that this kind of experimental work with sugar beets in our state is at this time a nseless expenditure of time and energy. During the past four years this station has made over 3,000 analyses of sugar beets grown in all partio of the state, and under all conditions of temperature and rainfall. The details of these analyses, and of the field experiments, have been published in full in Bulletins 15 and 26. The raising of high-grado beets in this State has been fully demonstrated to be a practical snecess, and we helieve any further experimentation with small plats is wholly unnecessary.

The uniformly excellent results that we have obtained in the past are in striking contrast to the very poor outcome of this year's test. We believe the low sugar content and purity exhibited by the beets this year is due to several causes:
(1) The seed from Washington was received altogether too late in the spring for distribution in time for early planting. In most sections of the State the seed should be planted not later than the middle of April.
(2) Nearly all of the samples were grown in sections of the State that have not heretofore shown any special adaptability to sugar-beet culture.
(3) We believe the seed was of poor quality. In support of this assertion I wish to call your attention to the samples that were raised at ('ressent, in Lincoln ('ounty. Heretofore this section has always produced high-grade beets. The samples sent in by William Adam, P. Carstens, and the first two of W. B. Warren were grown from Government seed, and gave a very low sugar content and purity. The samples of Wollweber, and the last three of Warren, were grown from seed raised at Crescent last sear, and gave most excellent results. These facts and the very general poor quality of samples leads me to regand the seed furnished as an inferior quality.

The inclosed results do not do justice to our State, and I wish to protest against their publication as an index of the character of beets that can be raised here.

Yours, very respectfully,

> Elton Fulmer, Chemist Experiment Station.

Director E. A. Bryan,
Pullman, Wash.
In regard to the report of the chemist, attention should be called to the fact that he is evidently mistaken in regard to the quality of the seed sent by the Iepartment of I griculture. This seed was, of course, not of the direct moduction from high-grade mother beets, but was the ordinary commercial seed which was imported by the Oxnard Company for distribution among their beet growers. It was the same seed which was sent to Michigan and to New York, which produced in those States the excellent results which have been recorded in previous portions of this report. In orer 2,200 analyses of beets which were marle in this laboratory during the past season, only about 25 samples were received which had a pink skin, and in most cases these were marked with different names. It is possible, however, that a few seeds of this kind may have been mixed in with the large lot of commercial seeds which were imported into this country. The Department of Agriculture neither purchased nor packed the seeds which were dis-
tributed, so that the possible armixture of other varieties can not be positively denied.

With the exception of the excessive rainfall on some of the coast areas, it has been demonstrated that the State of Washington is well suited to the growth of beets of a high grade. An extended report on the possibilities of Oregon and Washington for beet production was made in Bulletin No. 5 of this Division, the investigations, which were published in 185., having been marle in the antumn of 188t. A description of the toprographical features and climate of western Washington is given on pages $10: 3-104$ of that bulletin. The conclusions which I derived from a study of the conditions at the time are given on page 105 in the following words:
"In view of the preceding description I an inclined to lrelieve that in Washington Territory and Oregon, soil and climate are very favorable to the growth of a sugar beet of high sacelarine strength.
"The mildness of the winter is, thomeh to a less degree than in California, favorable to the season of manufacture. With a wise and careful cucomagement of the industry I have no hesitation in saying that the prospects for the development of an indigenous sugar industry in tho extremo northwestern part of our country are decidedly bright. It is a field worthy the attention both of experimenters and capitalists."

Investigations which have been made subsequent to this period have abundantly verified the predictions given ahove. The chemist of the station, in the results of his work for 1897 , says that the data are not so favorable as were obtained in preceling investigations, but, as he says, the beets analyzed came from parts of the State less favorable to beet culture than did those samples which had previously been examined. The data obtained by analyses of beets received at the Department from Oregon are decidedly favorable. The average size of the beets, 27 ounces, shows the possibilities of a large yield, while both the content of sugar and the purity coefficient are favorable to the production of large quantities of sugar from the beets produced. The thermal conditions which prevail in Washington are noticed in another place. The coast region is cooler than the mean temperature of 69° for the summer months, but, as has been remarked before in more than one place, this is not unfavorable to the production of high-grade beets; on the contrary, rather promotive of it. The mild autumns, especially in the western part of the State, afford ample opportunity for the complete harvest and care of the beets. In considering the data which have been obtained through a long series of years, therefore, it is safe to say that there are extensive areas in the State of Washington which invite the careful consideration of intending investors in the beetsugar industry.

Wisconsin.

Forty-two samples of beets were received at the laboratory of the Department from Wisconsin, of which number 31 were grown in Dane Cominty, representing the beets grown by the agricultural experiment, station. It is evident, that the mean results of the samples from Wisconsin are influenced in a marked degree by those obtained from the agricultural experiment station. These mean results therefore represent a higher quality of beets than would have been grown in the promischous manner already referced to. The mean weight of the beets grown in Wisconsin was 15 ounces, the mean content of sugar therein was 15.8 per cent, and the mean purity 83.3. The small mean size of the beets is due chiefly to the 31 samples received from the agricultural experiment station, of which the average weight was only 11 ounces. With the exception of 1 sample from Outagamie County, which weighed only 8 ounces, the other samples were of good size. Especially is this true of the 3 samples received from Racine County, the mean weight of which was 34 ounces, the mean content of sugar 15.4 per cent, and the mean purity 82.6.

The data obtained by our analyses are encouraging, but, on account of the small number of samples, not convincing. Therefore the following report of the results of the analyses marle at the agricultural experiment station will show more conclusively the influence of the character of the soil and climate of Wisconsin on the quality of sugar beets.

```
FXPERIMENTS CONDUCTED BY THE AGRICULTURAL EXPEIRIMENT STATION OF
    WISCONSIN.
```

Three classes of experiments were conducted ly the agricultural experiment station of Wisconsin during the year 1597. An elaborate report of these experiments has already been printed as Bulletin No. 64 of that station. The following interesting summaries represent the principal data obtained:

The three methods were the following:
First method.-A general distribution of seed was made promisenously to farmers in the State who desired to experiment. In all, 13,766 packages were distributed. Each package contained directions for planting and cultivating the beet. One thousand six hundred and sixty-three samples of beets grown under these auspices were received at the station for analysis. The quality of the beets, together with the analyses of beets grown in 1890, 1891, 1892, and 1897 , with a summary for the four years, is shown in the table on page 120.

Results of analyses of sugar bects grown on Wisconsin farms duriny 1590-1592 and 1897.Averages by counties.

County.	1890-1892.				1897.				Summary for four years.			
			8. E. E. E.			$\begin{aligned} & \text { A } \\ & \text { H. } \\ & \text { H. } \\ & \text { En } \\ & \underset{\sim}{z} \end{aligned}$	$\begin{aligned} & \text { 8. } \\ & \text { تू } \\ & \text { B. } \\ & \text { Bin } \\ & 0 \end{aligned}$					
		P.ct.	P.ct.	Tons.		P.ct.	1	Ton		P.ct.		Tons.
Adams	3	11.99	76. 1	9.3	6	13.67	75.5	10.2	9	13.11	75.9	9.8
Ashlani					5	11.42	74.2	3.0	5	11.42	74.2	3.0
Barron	3	12. 74	77.0	17.7	15	12.94	74.3	12.0	18	12.90	74.7	14.1
Baytie					1	10.96	73.5	16.5	1	10.96	73.5	16.5
Brown	4	10.75	74.9	17.9	101	13.12	75.5	14.0	105	13.03	75.5	14.3
Buffalo	9	13. 48	77.4	15.9	8	12. 96	75.3	11.2	17	13.24	76.4	13.0
Burnett					2	12.92	75.0	18.0	2	12.92	75.0	18.0
Calumet	8	16.67	82.6	14.7	48	12.61	72.4	11.8	56	13. 19	73.8	12.1
Chippew	13	12. 72	77.5	23.6	34	12.18	74.2	11.7	47	12.25	75.2	15.1
Clark.	7	14.15	81.4	10.9	61	11.97	74.9	11.7	68	12.19	75. 6	11.6
Columb	19	12. 28	74.7	15.5	30	12.68	71.8	13.4	49	12.53	72.9	14.2
Crawfo	4	10.09	72.0	15.3	2	12. 09	72.3	9.7	6	10.76	72.1	13.1
Dane	14	12.98	76.7	14.4	44	13.51	71.3	12.7	58	13.37	72.6	13.2
Dodye	13	11.77	76.2	20.7	47	12.86	71.8	12.5	60	12.62	73.0	13.8
Door	3	14.59	80.0	21.4	15	15.11	77.4	10.0	18	15.02	77.7	13.0
Dougla					8	13. 92	78.8	16.7	8	13.92	78.8	16. 7
Dann.	13	12.49	79.8	11.5	26	12.97	73.7	12.6	39	12.86	75.6	12.2
Eau Cla	10	11.70	76.0	14.0	63	10.70	73.8	11.0	73	10.84	74.1	11.5
Fond du L	10	12.13	74.1	11.0	38	12.04	71.2	16.6	48	12.07	71.7	15.1
Forest	1	9.64	72.5	6. 0	1	11.31	70.2	15.0	2	10.47	71.3	10.5
Grant	9	10.24	69.3	13.2	26	12.21	71.2	13.0	35	11.74	70.5	13.0
Green	6	12.84	77.5	15.2	4	10.16	65.5	14.0	10	11.77	72.7	15.0
Green	1	11.31	78.1		13	12. 06	72.9	11.5	14	12.01	73.2	11.5
Iowa	7	11. 32	74.9	27.8	1	10.40	70.2	12.0	8	11.20	74.3	22.5
Iron					1	9.96	64.7	15.5	1	9.96	64.7	15.5
Jackson	1	7.79	65.6		64	11.57	77.4	10.6	65	11.51	77.2	10.6
J etierso	23	13.96	79.0	17.5	13	13. 55	72.8	15.0	36	13.81	76.8	16.5
Juneau	6	13. 04	76.0	25.3	9	12.34	72.9	6.2	15	12.63	74.1	13.2
Konosh	1	12.71	78.1	21.8	13	14.31	74.2	15.0	14	14. 19	74.5	15.7
Kewau	30	13.58	77.1	35.1	74	13.38	75.4	14.2	104	13.44	75.8	16.8
La Cross	10	12. 58	76.1	15.2	60	12.75	80.6	12.5	70	12.72	79.9	13.0
Lafayet	4	12.27	77.0	26.4	6	10.47	66.3	9.4	10	11.19	70.6	16.0
Langlade	1	12.91	81.4	24.1	15	11.51	70.8	11.0	16	11. 59	72.1	12.0
Lincoln.	3	17. 43	85.9	13.1	7	13. 09	75.9	4.5	10	14.39	78.9	10.9
Manitowo	16	12. 61	80.4	16.4	49	13.42	74.9	14.4	65	13.22	76.3	14.8
Marathon	9	12.67	76.5	16.1	44	11. 99	72.3	12.4	53	12. 10	73.0	12.9
Marinette	2	8.77	64.5	28.5	27	13.23	76.6	9.5	29	12.92	75.7	10.9
Marquett					15	13.19	77.7	8.0	15	13. 19	77.7	8.0
Milwaukee	6	15. 51	83.4	19.8	14	14. 17	77.7	15.2	20	14.57	79.4	18.4
Monroe	16	12.32	76.2	12.3	24	12.36	73.1	11.4	40	12.31	74.3	11.8
Oconto	12	13.76	80.7	13.5	11	15.48	79.6	17.4	23	14.56	80.2	15.1
Oneida					4	13.78	75.5		4	13. 78	75.5	
Outagam	14	11.48	75.2	23.6	63	13.06	75.4	15.0	77	12.77	75.3	16. 6
Ozaukee	5	13.14	79.0	20.7	17	14.00	75.7	11.1	22	13.81	76.5	13.0
Pepin	5	14.71	79.1	11.9	4	11.82	73.7	23.5	9	13.43	76.6	17.7
Pierce					12	12.56	73.2	15.0	12	12.56	73.2	15.0
Polk	1	11.09	75.4		5	11.90	72.6	17.3	6	11.76	73.0	17.3
Portag	8	12.02	75.1	12.5	33	13.12	73.2	8.3	41	12.91	73.6	9.3
Price					7	10.43	67.2	11.0	7	10.43	67.2	11.0
Racine	4	14. 27	80.6	10.5	17	13.75	75.3	14.3	21	13.85	76.3	13.9
Richland	9	11. 34	79.6	12.9	15	10.61	68.7	15.3	24	10.88	72.8	14.4
Rock	17	12. 96	76.7	11.4	36	13.97	73.5	15. 1	53	13.64	74.5	14.0
St. Cro	8	12. 55	74.7	19.9	18	12.11	72.2	13.3	26	12.24	73.0	15.3
Sauk	8	9.67	71.5	23.8	23	12.78	72.4	13.0	31	11.98	72.2	14.8
Sawyer	1	10.69	73.8	26.1					1	10.69	73.8	26.1
Shawano.	7	12.53	76.3	16.9	28	13.35	75.0	8.2	35	13.19	75.3	10.4
Sheboygan	27	11. 71	74.3	16.8	55	12.96	78.0	15. 1	82	12.55	76.8	15. 6
Taylor	15	13, 61	78.9	8.8	10	10.87	70.6	13.6	25	12.52	75.5	11.0

It will be noticed that the table includes the analyses of 527 samples collected during the years 1890-91-92, together with the 1,663 collected in 1897 , or a total of 2,190 samples. In the discussion of the analytical data Mr. F. W. Woll, who has compiled the report, makes the following interesting observations:

Nixty-eight of the countios of the state are represented in the sugar-beet analyses male during the past soason. Brown connty leads with 101 samples of beets,

Kewannee heing second with 74 samples. Ten counties furnished 50 or more samples each. The highest a verage for the sugar in the juice, 11 samples analyzed, was obtained for Oconto County, namely, 15.48 per cent with a purity coefficient of 79.6, followed ly Door County, which gave 15.11 per cent sugar in the juice, purity 77.4, as the average of 15 samples. The average sugar couteut of the juice of the beets was above 12 per cent in case of 49 counties, above 13 per cent in case of 26 counties, and above 14 per cent in case of 8 counties.
Adaptability of different parts of the State to sugar-bect culture.-A close study of the results given in the preceding tahles will he of interest, and is necessary in order to pronerly understand the situation of the question of sugar-bect culture in onr sitate. The table indicates what an investigation continued throngh four growing seasons has revealed as to the adaptability of the soil in different parts of the State to the culture of this crop. In case of a few counties, especially the extreme northern ones, the number of analyses made is not sufficiently large to warrant our drawing definite conclusions as to the quality of leets there grown, hut in the large majority of counties the number of analyses is ample to be considered a true representation of what beets grown in the respective comties will show when raised by famers who have no special knowledge of the reguirements of the sugar beet as to culture, soil, etc.

If the averages of the sugar contents for the various counties, as given in the last table, he marked on a Wisconsin map, and the comties whose averages rome, say, above 13 and above 14 per cent of sugar in the jnice be shaded, it will at once be noticed that the counties producing the richest leents are those lying cast and southeast of the Wisconsin River, and those in the northwestern comer of the state along the Mississippi and St. Croix rivers, from Buffalo Conuty and north. The Lake Shore region is shown to be peculiarly well adapted to the culture of sugar beets; all counties producing heets with an average content of sugar in the juice ahove 14 per cent in the past season's analyses borter on Lake Michigan or are adjacent to counties bordering on this lake.

Mr. Woll is also of the opinion that those soils of the State which have been derived from limestone are best suited to the growth of sugar beets. He makes the following comment in regard to the sugar content of the beets:

Sugar content of leets.-The table shows that the average prer cents of sugar in the juice for the years given were as follows: 1890-1892, 12.76 per cent; $1897,12.67$ per cent, or an average of 13.70 per cent for the years $1 \times 90-1 \times 97$, the last figure being the mean of nearly 2,200 analyses. The usual minimum standard for beets adapted to factory purposes is 12 per cent sugar in the beet. Since beets contain about 95 per cent of juice, this will correspond to $\frac{12}{95}=12.63$ per cent of sugar in the juice. Onr average therefore exceeds this minimum figure by a small fraction of 1 per cent.

The influence of the character of the soil upon the weight, sugar content, and purity of the beets is summarized by Mr. Woll in the following statements:

In the sections of our state where exclusive grain raising has given way to diversified farming, dairying, stock raising, or market gardening, the land is usually in a good state of fertility, and a sufficient amont of barnyard manure is produced every year so that no artiticial fertilizers need be purchased. But where grain raising is still continued as the sole reliance of the farmers, there is no hope for sugarbeet culture until the system of farming is changed, and the manure produced by the stock kept is carefully saved and applied, or commercial fertilizers are purchased for the beet tields.

Secomil methorl.-The second line of investigations conducterl by the experiment station consisted in the establishment of substations in different parts of the state. As was mentioned in a previous part of this report, this is hy far the most hopefnl manner of conducting an agricultural survey of the State for the purpose of determining its suitability for the growth of sugar heets. In all, $3: ;$ farmers who took charge of this substation work made complete reports to the central station. The average expense per acre reported hy :32 of these was \$25.7.3. One report, showing an expense of s94. $3+$ per acre, was excluded from the average. The average yield per acre, as reported from the $3: 3$ stations, wats 29,850 pouncls, or 14.9 tons of 2,000 pounds each per acre. This yield includes only " 27 returns, since 6 of the substations failed to return the yield per acre. The lowest yield per acre reported was $i f$ tons, and the highest $24 . \mathrm{S}^{2}$ tons. The average result of the analyses of the samples from the different sulstations is shown in the following table:

	Weight of beets.	Sugar in juice.	Purity coeflicient.	Woight of beets.	Sugar in juice.	Puritycoellicient.
	Pounds.	Ier cent.	Per cent.	l'ounds.	Percent.	Per cent.
Average for 23 substations in southern half of State (30 and 31 samples, respectively)	1.17	13.58	80.0	1.79	15.35	79.0
Average for 13 substations in northern half of State (17 and 15 samples, respectively)	1. 42	13. 35	81.7	1.59	14.97	82.5
Average for 36 substations (47 and 46 samples, respectively)	1.26	13.49	80.6	1. 72	15. 22	80.2

For the first attempt at collecting data by a complete agricultural survey, the above results may be regarded as exceedingly encouraging. With larger experience on the part of the farmers in charge of the experiments, however, much more valuable and convincing data might be obtained.

Thirl method.-The third class of experiments conducted by the Wisconsin station cousisted in investigations at the station farm itself. For the details of these experiments Bulletin 64 may be consulted. The following is a summary:

The tield selected for the experiments was divided into two portions. The eastern half had been a meadow contimously since it came into cultivation up to 1895, when rape was grown thereon, followed by a (rop) of peas in 1896 . The western half of the fieh had been plowed only once during the past twenty years, when it was cultivated in Imdian corn. It had heen pastured during the past ten years until 1896 , when it was planted to rape and the rape eaten off by sheep. The beet crop did not do well on this field, the whole northwestern portion of it, after the 1st of August, showing no increase in the srowth of the beets, the foliage turning yellow and the plants dying away to a large extent. The fied was plowed 6 inches deep on May 7, aml plowerl again 12 inches deep on May 20. About four-fifths of it
was subsoiled to a depth of 6 inches. The agricultural analytical data obtained from this field are given in the following table:

Yield of beets and of sugar per acre, main fiehd.

	Name of seed.	Eastern half.				Western half.			
		Tield of heet from plat.	Yield of herets per acre.	Sugar in the bcet.	Sugar per acre	$\begin{array}{\|c\|} \text { Yield } \\ \text { of low ts } \\ \text { from } \\ \text { plat. } \end{array}$		in the beet.	Sugar per acre.
	Kleinwanzlebener, N	Pounds. $3,422$	Pounds. $24,010$	$\begin{array}{r} \text { Per ct. } \\ 12.72 \end{array}$	Pounds. $3,059$	$\begin{gathered} P^{\prime} \text { ounds. } \\ 2,874 \end{gathered}$	Pounds. $25,0: 30$	Per ct. $\begin{aligned} & \text { fer ct. } \\ & 15.80 \end{aligned}$	Pounds. 3. 950
2	Desprez, Men	2, 826	22, 060	11.71	2, 543	3,122	30,230	13.71	+1,14
3	Klein wanzlebener, Agnew	3, 053	21, 450	10.96	2, 352	2,301	32, 120	15.17	4,873
4	Kleinwanzlebener, Hoerning	2,875	20,160	15.04	3, 038	1, 299	20,210	17. 06	3,448
5	Vilmorin Improved	2,221	15, 610	14.68	2,291	1,308	15, 030	14.28	2,141
6	Vilmorin Kleinwauzlebene	2,473	17,380	10.65	1,850	2,728	23, 770	14.98	3,561
7	Vilmorin Firench.	2,485	17, 460	11.26	1,966	2, 701	23. 540	13.58	3, 196
8	Kloinwanzlebener, Floto*	2,258	15, 860	14.24	2,259	1,472	12, 820	14.05	1,801
9	Desprez White, No. 2^{*}.	2,081	14, 620	10.95	1,602	1,429	12, 460	14.38	1,790
10	Desprez White, No. 213 ,	2, 108	14. 810	15. 05	2,228	1,408	12, 270	11. 71	1,436
11	Wernich's Kleinw., Floto	2, 111	14, 840	15. 65	2,320	1,236	10,760	13.62	1,467
12	Demesmay**	1,321	15,510	14. 23	2,207	799	11, 600	10.28	1,193
13	Kleinwanzlebener, Neb. (2) *	887	20, 760	15.83.	3,287	355	10,300	10.75	1,058
	Arerages, etc	30, 121	18,043	13.22	2,385	23, 032	18,472	14.18	2,620

* Not includerl in average for western half.

The cost of cultivating this field is given as follows:
Cost of growing an acre of sugar beets. - A careful account was kept thronghout the season of the labor done on the 3 -acre beet field; valuing labor as previously given, we have the following summary:
Plowing and preparing the land
\$12. 42
Planting.. 1. 70
Cultivating, hoeing, thinning and transplanting... 51.63
Harvesting and placing in cellar .. 31.60
Total
97.3

This sum, $\$ 97.35$, or $\$ 32.45$ per acre, does not include the cost of seed or rent of land. It is nearly *t higher than the corresponding figure obtained as the awore for 28 substations; the greater cost with us is easily accounted for by the weedy condition of the western half of the field, as well as by the fact that the harvesting of our leets was a comparatively slow and diffienlt job, since the different lots and varieties had to be harvested and kept separately.

In addition to the work summarized above the station took part in the growth of high-grade beets on special plats under the supervision of the Department. The results of these experiments are given in another place.

Wyoming.

Thirty-four samples of beets grown in Wyoming were received at the Department of Agriculture for analysis. The mean weight of the beets received was 19 ounces, the mean content of sugar in the beet 17.2 per cent, and the mean purity 83.3 . These data are exceptionally fine, and show that, in so far as the production of a crop is concerned, Wyoming will be able to compete with any State in the Union. The thermal conditions which prevail in the State are extremely irregular, the low valleys having warm and the high plateaus cool summers. It
is evident that only on the plateans, where the land is reasonably level, and where irrigation can be practicen, will it be possible to grow, with absolute certainty, a crop of beets of high saccharine strength.
Among the counties of Wyoming the two which furnish the most data are Converse and Big Horn. Converse Comnty lies in the southeastern part of the State and Big Horn in the northwestern. In the beets from Converse County the average weight was 26 ounces, the mean content of sugar 17.8 per cent, and the mean coeticient of purity, 82.2 . Big Horn County furnished six samples, of which the average weight was 20 ounces, the mean content of sugar 18.7 per cent, and the mean coefficient of purity 82.2 .

When these analyses were made, showing such fine results, we wrote at once to the parties to see if we could uot get a quantity of the beets for mothers in producing beet seed. The reply was made that they had all been frozen, and therefore no samples could be furnished. This reply to our inquiry indicates the chief difficulty to be encountered in Wyoming in introducing the beet industry, namely, the sudden advent of cold weather and the severity of the early winters in that locality. In Big IIorn Comity some of the altitudes are 10,000 feet, and the whole county has a very great elevation. In the southeastern portion of the state the altitude generally reaches 7,000 feet. It is evident, therefore, that these high elevations give cool summers and favor the early advent of winter.

Another point to be considered is the momtainous character of the State, which, of course, precludes the possibility of culture over extensive areas. In low valleys protected by mountain ranges, if from 15,000 to 25,000 acres of land in a body could be secured, it seems probable that the industry of beet growing might be introduced with every probability of success. The temperature conditions, howerer, of Octo ber and November should be most carefully considered, as it would donbtless be necessary, even in the most favored valleys of Wyoming, to have the beets securely protected by the middle or end of November. This short harvesting season can mot help but add a great deal to the cost of production, and hence must he taken into consideration.

In that part of the comutry also the question of the supply of water is a very important factor', and must not be lost sight of, as not only will water be required for the growing of crops, but also in immense quantities for manufacture.
The data at hand only permit us to study the composition of the beet itself, and surely Wyoming is to be congratulated on having produced, judged from the limited number of samples supplied, an excellent quality of beets.

Vermont.

Only $\&$ samples of beets from Vermont were received at the Department of Agriculture and these were of very high quality. The mean weight of the samples received was 22 ounces, the mean content of sugar in the beet 14.2 per cent, and the mean coellicient of purity, s4.1.

At the agricultural experiment station of Vermont 32 samples were received. The average weight of the beets received at the experiment station was 17 onnces, the mean percentage of sugar in the beet 16.3 , and the mean purity $84 . \Xi$. In reporting the results of the experiments the director of the station makes the following observations:

IRESULTS OF EXPERLMENTS IN VERMONT.

One humdred persous guaranteed at the outset of the season to grow the crop and ship us samples. We had returns from twenty-seven. The remaining serenty-three, however, were not so much at fault as was the Weather Bureau. The weather throughout the State during the months of May, June, and July and the first part of August was execrable, there being several times the normal rainfall. In alniost every case of not sending samples the report was that the crop was drowned out. It strikes me as somewhat doubtful whether the results obtained in the twentyseven cases reported are truly representative of what might be expected under normal conditions of weather. The percentages of sugar certainly run quite high. I find that several of the growers sent their samples to Washington. I should be gratified, if it were possible, to receive the statement of the analyses, as we may wish to make some use of the sugar-beet data ourselves, which, as I understand, we are at liberty to do.

The majority of those who made a failure of the work this year expressed their desire to try agaiu next year.

Of 32 beets analyzed at the agricultural experiment statiou of Vermont the number containing from 12 to 14 per cent of sugar was 2 ; the number containing from 12 to 14 per cent of sugar and weighing 16 ounces or over was 1 ; the number containing more than 14 per cent of sugar was 28 ; the number containing more than 14 per cent of sugar and weighing 16 ounces or more was 12 .

It is seen from the above data that the only limitations upon the growing of beets in Vermont are the extent of the area suitable to the culture of the beets and the length of the growing season. It is evident, in so far as growth is concerned, that such a season as that of 1897 is capable of producing beets of the highest grade, but the growing seasou includes properly the season of harvest and preservation of the beets. The high northern latitude of Vermont and the early and severe winters must be taken into consideration in this particular. Vermont is also a mountainous country, and the areas of level land are not proportionately so great as in most of the States which have been considered for beet growing. Where bodies of from 15,000 to 25,000 acres of level and fertile land can be fomed with the antumnal conditions favorable for the harvest and preservation of the beets, there is no reason to doubt the possibility of successtully establishing the beetsugar industry.

INFLUENCE OF TEMPERATURE ON THE QUULITY OF SUGAR BEETS.
The influence of temperature and other climatic conditions upon the growth of beets is discussed under the head of special experiments in growing beets from high-grade seeds. It will be interesting, however, to compare the deductions from that disussion with those from data
obtained from certain parts of the comntry where favorable conditions exist for making this comparison. The States of Ohio, Indiana, and Illinois are sitnated in a peenlianly favorable manner for a study of this kind. Each of these States has a portion of its area in the theoretical thermal belt and a large portion of its area outside of that belt. In each of these states, therefore, the data received from the varions comuties were classilied into three portions, namely, the northern, the central, and the southern belts.

The following is a tabulation of the data from each one of these sections in the three States:

Nelation of latitude to development of sugar content.

	Northern belt.			Central belt.			Southern belt.		
	Average weight of beets.	Sugar in beets.	Purity coetficient.	Average weight of beets.		Purity coetticient.	Average weight of boets.	$\begin{aligned} & \text { Sugar } \\ & \text { inl } \\ & \text { beets. } \end{aligned}$	Purity coetticient.
Ohio	Ounces. 29.4	Perct. 13.6	79.4	Ounces. 32.6	P'er ct. 13.2	78.0	Ounces. 35.0	Per ct. 12. 2	75.3
Indiana	18.9	13.3	81.9	18.5	12.9	80.7	14.2	10.7	78.0
Illinois.	22.0	13.2	79.3	20.0	11.5	75.4	19.0	11.1	74.7

The data in the above table have a peculiar value in establishing, by experimental results, the validity of the scheme employed in the construction of the theoretical thermal belt suitable to the growing of beets. In every one of the States mentioned there is a gradual deterioration in the quality of the beet, both as respects its sugar content and its purity, in passing from the northern to the southern belt of the State. It may be said that the difference between the two extreme areas is not very great, and that for this reason it would be advisable to establish factories indiscriminately in one or the other of the belts, according to more or less favorable local conditions, aside from the sugar content of the beet. The fallacy of this statement, however, will be evident to anyone who studies carefully the conditions of manufacture. An increase of 1 per cent in the sugar content of the bect means an increase of 20 pombls per ton in the amount of sugar manufactured, without any corresponding increase in the expense of manufacture. In other words, the cost of extracting the sugar from a ton of beets which would yield 180 pounds would be just as great as that attending a ton of beets which would yield 200 pounds of sugar. But the additional value of the 20 pounds of sugar manufactured might in many instances determine whether the business would be conducted at a profit or a loss. The ahove assmmption is true on the supposition that the coefticient of purity remains the same in each case. When we consider in addition to the loss of the sugar, the depreciation in the purity of the juice, the discrepancy between the sections becomes all the greater. Not only is the loss attending the lower shgar content of the beet to be considered, hut also the additional loss
which is coupled with the lower purity. In other words, a ton of beets with a coefficient of purity of 80 , which would yield 200 pounds of sugar by the ordinary processes of manufacture, would yield very much less than this if the purity coefficient should fall to 76 , and would yield very much more if it should rise to s. $\%$. The data obtained in the above table afford convincing proof of the fact that it is not sate to push the manufacture of beet sugar too far south of the theoretical thermal belt, unless the depreciation in the sugar content and purity of the beet is compensated for by some remarkable local factors, in the way of cheapness of manufacture, which will make good the loss due to the low content of sugar and the low purity of the juice. These figmer, obtained in this miscellaneons way, are fully corroborated by the careful experimental data obtained in the culture of high-grade leets at the six stations which are mentioned in another place. From exactly the same seeds, planted in exactly the same way and cultivated in the same manuer, exceptionally high-grade beets of fine sugar content and high purity were obtained from the Now York station, gool beets were grown at the Wisconsin station, fairly good beets at the Iowa station, beets with a fairly good content of sugar but diminutive in size on accomnt of the drought at the Indiana station, beets of good size and very low content of sugar at the Kentucky station, beets of only minimum content of sugar and very small size at the Temessee station. These results are such as should be studied carefully by intending investors who desire to place their money where the certainty of return is the greatest. With such magnificent areas open to cultivation as are found in the States of New York, northwestern Pemssylvania, northern Ohio, northern Indiana, and southern Michigan, it would not be wise for men of capital to select localities which the figures at hand indicate are less favorable to the production of high-grade beets. The data which have been obtained from New York and from Michigan indicate that with the best principles of culture, with good fertilization and skilled oversight, beets can be grown over wide areas fully equal in sugar-producing power to those which are grown by the skilled farmers of Germany. On the other hand, it is quite certain that if the area of culture be pushed to the south, so as to fall entirely without the limits of the thermal belt, the same fertility of soil, the same fertilization, and the same care in culture will produce beets less rich in sugar, with a lower purity, and yielding less sugar per tou than those grown in the localities first mentioned.

As to how far the successful growth of the sugar-beet industry can be pushed north of the limit of 69°, it may be said that the only coudition to be considered in this matter is the possibility of producing and ripening a crop and harvesting it before the rigors of winter set in. The culture of the sugar beet may be very successfully practiced in localities where the mean summer temperature falls eren as low as 64°,
provided the latitude is far enough north to get sufficient sunshine to mature the beets before the frosts of autumn. If the autumn be mild and merge gradually into winter, the limit of successful culture will be found where the freezing weather of winter cuts short the time repuired for the harvesting and siloing of the crop of beets. In the light of the data at present available, therefore, the sonthern limit of the sugar-beet belt may be regarded as the isotherm of 71° for the three summer months, occasionally pushing 50,75 , or even more miles south of this line, where exceptional conditions of soil and manufacturing facilities are presented. The facts of the case, however, warrant the statement that the safer plan will be not to push south of the isotherm of 71° so loug as equally favorable conditions of soil and manufacture are obtainable north of this line of demarcation. It is deemed wise to dwell particularly upon this subject, because of the fact that so many people living south of the isotherm of 71° are vitally interested in this matter and so eager to have the industry established in the neighborhoods in which they live. The conclusions which have been drawn are not meant to discourage experimental work in areas widely remote from those mentioned. It is ouly just, however, to call attention to the fact that investments of large amounts of capital which result disastrously do more to deter the successful establishment of an industry than a much larger number of successful investments favor it. For instance, in the State of Wisconsin we have an illustration of the financial failure of an attempt to manufacture beet sugar, and as a result of this failure it will be difficult to induce capital to look for investment in Wisconsin in the sugar-beet industry, although the conditions in that State are exceedingly fivorable to success. Had it not been for the failure of the factory projected at Menominee Falls, it is quite certain that other capital would be invested in the State at the present time, and instead of the industry being in a stagnant condition it would be advancing on the road toward success. It is extremely important that no mistakes be made from a financial point of view, and that every precaution to avoid these mistakes be observen. When subsequent experimentation shall have demonstrated that there are areas outside, and especially south of the theoretical belt, equally as well suited to the growth of beets sufficiently rich in sugar as those which have been mentioned, it will be time enough to ask capital to seek investment in those localities.

SUGAR BEETS AS CATTLE FOOD.
Thonsands of farmers in varions parts of the comntry are growing beet.s in an experimental way and have no opportunity to dispose of their product to sugar factories. These farmers may, nevertheless, find the growing of small quantities of sugar beets profitable by using the product for cattle food, Following is an anelysis lately made in
this laboratory of a sample of sugar beets received from a locality such as is mentioned above:

Composition of fresh beet pulp.

The sample in question contained 73.57 per cent of water and 26.13 per cent of dry matter. The analyses of hundreds of samples of beets in this laboratory show that the average content of fiber, usually called "marc," is about 5 per cent. In the process of analysis all this mare is dissolved except that which is entered above as crude fiber, namely, 1.53 per cent. The difference between this and the 5 per cent average content of mare, namely, 3.47 per cent, shows the quantity of carbohydrate matter not sugar contained in the 20.93 per cent of total sugars and carbohydrates. The quantity of sugar in the sample analyzed was, therefore, 17.46 per cent. Practically all, however, of the carbohydrates, except those represented by the crude fiber, are digestible, so that the soluble mare has practically the same food value as the sugar itself. The ratio of the proteid matter to the digestible carbohydrates plus fat multiplied by $2 \frac{1}{4}$, is 9.59 . This ratio shows that the food is particularly a fattening one, and could be used to great advantage in preparing fat stock for market. The analysis also indlicates that the food, to secure the best results for all-round sustenance, should be fed with some highly nitrogenous ration in order to secure a smaller ratio between the two groups of mutrients. It may be said with perfect confidence that it will be far more profitable for the farmer to grow sugar beets at 12 tons per acre for cattle food than other root crops, such as turuips and ruta-bagas, which will yield double that quantity per acre. The food value of these crops does not depend upon the gross tonnage, but upon the actual nutrients which they contain. Sugar beets contain, as is seen, over 20 per cent of their weight of actual nutrients, while turnips and radishes may contain only from 6 to 12 , per cent.

USE OF BEET PULPS FOR CATTLE FOOD,

The residue from beet factories, in the form of the beet pulp, is also a valuable cattle food. In this country no carefully controlled feeding experiments have been conducted with this material, but the question has been studied most thoronghly in Europe, and the data obtained can be used for our guidance. There is practically no difference in chemical composition between the beet pulps obtained in H. Doc. 396- 9

Europe and in this country, so that the deductions to be drawn from the feeding experiments in that country can be applied with perfect safety to similar work here. At many of the factories in this country practical feeding tests have been made, and with favorable results. IIaving heard that successful experiments in feeding cattle and sheep had been conducted at the factory of the Pecos Talley Beet Sugar Company, I addressed a letter to the manager of that factory, and received the following reply:

Eddy, N. Mex., February 21, 1898.

Dgar sir: I have your letter of the 14 th. Shortly before the close of our campaign, Mr. A. J. Crawford, a large sheep owner of this section, looked into the question of feeding beet pulp to sheep, and finally decided to try a bunch of 500 iambs as an experiment. 'These lambs were the culls of' his tlock, and when hrought to the feeding pens at the factory were in very poor condition. In a few days they took to the pulp very readily, and are now eating 7 to 10 pounds of pulp per day each, with sufficient hay (alfalfa) as roughening. They have picked up wonderfully during the time they have been here, and Mr. Craw ford tells me that they are now the best looking of any he has. He is so well satisfied with the result of his experiment that ahout a week ago he brought in 2,000 ewes with the intention of feeding them on the pulp during the lambing season. Yon, of course, are aware that the pulp is a great milk producer, and loy feeding it Mr. Craw ford will be able to carry both ewes and lambs through in good shape until the grass comes, and, of course, thereby prevent the loss which he would otherwise have to stand of the many ewes and lambs which would die on the range.

When the lambing season is over and we see how the sheep come through I shall be wlad to write gou fully. Mr. Crawford is anxious to make a contract for all our next year's pulp, and I have no doubt that the feeding of sheep on pulp in this valley will become quite an industry.

Yours, truly,
Mr. H. W. Wiley,
Division of Chemistry, Washington, D. C.
It is evident from the above that these prartical experiments in feeding, although not controlled by actual chemical analyses, have been eminently successful, and it is not at all unlikely that within a few years our beet factories will be able to contract in advance for all the pulp which they can possibly produce. To illustrate more clearly the value of the pulp and its value for feeding purposes, the following extracts, taken from standard European authorities, are published:

DIFFUSION PULPS OR EXHAUSTED COSSETTES.
The following table contains an average of analyses made by Messrs. Vivien, Lacas, Duvin, Durot, and Dupont as at commission of experts in France:

Extensive tests in feeding pulps have been made at the Francières sugar house of M. Gallois. The following animals were used: (1) Beef cattle, (${ }^{\prime}$) oxen, (3) milch cows, (4) sheep, (5) ewes. Before begimning the tests, these animals were all gradually accustomed to the change from their customary ration to that of diffusion pulp.
(11) Beef cuttle.-Twelve beeves each received every day, in three
 grams of linseed oil cake and 3 kilograms (6.6 lbs .) of chopped alfalfa. Their weight increased an average of 1.004 kilos (2.214 lbs .) per day. If we consider the value of the meat as 0.95 franc (80.19), that of the oil cake 0.25 franc (80.005), and that of the alfalfa 0.08 franc (80.016) per kilogram (2.2 lbs.), we find that the feeding value of the diffusiou pulp, was 6.58 franes ($\$ 1.316$) per 1,000 kilograms ($2,205 \mathrm{lbs}$.).
(1) Oxen.-Four oxen each received the following ration per day: 57.5 kilograms (106.8 lbs.) of diffusion pulp mixed with 5 kilograms (12 lbs .) of alfalfa and 1 kilogram (2.2 lbs.) of linseed-oil cake. These catthe decreased somewhat in weight in the first fifteen days, and did less than the usual amount of work, but in the second fifteen days they had entirely recovered. The trial continned two and a half months. In making a calculation analagous to that above, the value of the diffusion pulp was 4.5 fraucs ($\% 0.956$) per 1,000 kilograms ($2,205 \mathrm{lbs}$.).
(c) Milch corcs.-The test with milch cows lasted thirty days. Two cows were employed-one Flemish and the other Dutch. Before the tests the cattle were fed on dry alfalfa with a small quantity of beet pulps produced by the hydraulie press method. The cows were each given, per day, 45 kilograms (99.2 lbs.) of diffusion pulp with 2 kilograms (t.4 lbs.) of alfalfia. The tests demonstrated that the diffusion pulp is more advantageons as regards lactation than in the production of tlesh.

Cous fed on dilfusion pulps.

Dato.

Cow No. 1.	Cow No. 2.
8.00	7.00
7.50	8.00
7.50	8.00
7.50	8.00

From these tests it was shown that the milk of the cows fed from diffusion pulp contained an average of 7.68 per cent of cream. The butter produced from this milk did not have the peculiar disagreeable odor which is present in that from cows fed on press pulps.
(d) Nhrep,-In this test twenty merino sheep were fed on diffusion pulp. The following table shows the result of this test and the rations fed per animal:

Weight:	Kilos.			
April 4	948	$=2,085.6$		pountls.
April 26	1,008		217.6	pounds.
Total increase	60	=	132.0	pounds.
Increase per sheep per day	0.137		. 3	pounds.
Average rations per head:				
Pulp	5.4	$=$	11.8	pounds.
Linseed-oil cake	. 2	$=$		pounds.
Chopperl allialfir.	. 5	$=$	1.1	pounds.

It was not necessary to make other additions to the diffusion pulp, since the sheep ate it with avidity. With the aid of these figures we may calculate the value of the pulp as follows:

The sheep gatnel per day 0.137 kilogram (.3 Ib.) in meat, which at 1 frane ($\$ 0.20$) per kilo (2.2 lbs.) equals 0.137 frauc ($\$ 0.027$). They consumed a ration, exclusive of the pulp, costing 0.09 franc, therefore the value of the 5.4 kilos (11.9 lbs .) of diffusion pulp was 0.047 ($\$ 0.01$), or 8.70 francs $(\$ 1.74)$ per 1,000 kilograms (2,205 lbs.).

Experiments mule with ewes.-The ewes were obtained from a flock from which the lambs had just been separated. In feeling the ewes, to which a somewhat larger ration was given, the value of the pulp was found to be 6.03 frances ($\$ 1.206$) per 1,000 kilograms (2,205 lbs.). Taking all of these elements into account, the experts estimated definitely the value of 1,000 kilograms ($\because, 2,2,5$ lbs.) of diffusion pulp to be 5.55 francs (\$1.11). They also demonstrated that diffusion pulps keep perfectly.

Not taking into account 'questions of transportation, ete., the value of (liffusion pulp, was estimated at 6.10 francs ($\$ 1.22$) per 1,000 kilograms (2,205 lbs.). Basing a conchusion upon the chemical analysis of the pulp, a value of $6.4 \pm$ frames ($\$ 1.2 S S$) was obtamed, as compared with the 6.10 francs ($\$ 1.2 \cdot 2$) per 1,000 kilograms ($2,205 \mathrm{lbs}$.) giveu by experiments.

EXPERIMENTS BY ANDOUARD AND DÉZAUNAI.

(Sucrerie Belge, Vol. 12, No. 7.)

In tests in feeding difusion pulp to milch cows this pulp was given in a ration, tirst of 27 kilograms (59.5 lhs.) and later 55 kilograms (121.3 lbs.) per day, and produced immediately an increase of approximately 32 per cent in the yield of milk. It appeared, however, to be withont influence on the richness of the milk in casein and mineral matter, but produced an increase in the yield of butter of 12.t per cent, and in that of the sugar of 24.63 per rent over the previons proportions of these constituents. It, however, gave the milk a less agreable taste and a
certain predisposition to an acid fermentation. The butter, therefore, would probably not be of excellent quality.

Analyses of diffusion pulps before ensilage.*

Diffusion pulps after having been stored in the silos.*

| Constituents. |
| :--- | :--- | :--- |

* Sachs' Revue Universelle des Progrès do la Fabrication du Sucre, 1, 428.

Analysis of diffusion pulps, by Pellet.

Maercker (Sucrerie Belge, vol. 11, page 4ft) determined that siloed pulps, in addition to losing water, also lost a considerable portion of their dry matter. This is shown in the following statement of the analysis of pulps which were siloed for five months, in which time they lost the following percentages:

Thirty-seveu and eight-tenths of nitrogen free extract, 25.5 of nitrogenous matter and 29.6 of the fiber which they contained: The pulps gained, on the contrary, in fat, owing to the lactic and butyric fermentations. The losses were due to decomposition, aud not to entrainment, in the moisture lost.

Analyses of diffusion pulp, by Vicien.*

| Constituents. |
| :--- | :--- | ---: | ---: | ---: | ---: |

Analyses of diffusion pulp, by Pellet.*

Constituents.	Pressed pulp.	Dry material.
Water	Per cent.	Per cent.
Orgavic matter	9.95	89.50
Soluble inorganic matter	. 57	5.13
Insoluble inorganic matter	. 60	5.40
	100.00	100.00
Acidity (expressed as acetic acid)	1.01	9.08
Total nitrogen..	. 147	1.32
Insoluble nitrogen (at the boiling point of water	. 111	

* Sachs' Revue Universelle des Progrès de la Fabrication du sucre, 1, 429.

The pulps diminished in weight in the silos, the diffusion pulps losing 6 per cent per month. At the same time there was a diminution in the weight of the dry matter, approximately 1 per cent of the diffusion pulp.

It is evident from the above data that the value of the pulp from beetsugar factories, especially in thickly settled comtries and in those regions where the dairy interests are prominent, will prove of no inconsiderable advantage in the successful introduction of the beet sugar industry and its rapid advancement. Beet pulps form a wholesome and mutritions, though a somewhat poorly balanced ration. Their chief mutriment is found in the carbolydrates, composing the mare of the beet and including the mextracted sugar, and in the proteid nitrogenous matters, and a large percentage of these is easily digested. While beet p mp is not suitable for the entire food of the animal, it can be mate a principal part thereof, varying its proportions with the nature of the effect desired to be produced. Experience has shown that it is especially relished by dairy cattle, produces an abmedant supply of milk, and where properly preserved and fed, it can be used in great abundance without imparting to the milk, butter, or cheese any unpleasant flavor.

SUMMARY OF DATA COLLECTED IN PREVIOUS YEARS.

In order to present data covering as wide a field as possible, and including the experiments of several seasons, the following table has
been compiled from the reports of the Division of Chemistry and from the bulletins of the various State experiment stations:

Analyses of sugar beets grown in various States.
[A compilation of the analytical data ohtained at the varions State experiment stations for the years 1888 to 1897, inclusive, and at the United States Department of Agriculture for the years 1884 to 1897, inclusive.]

State.	Analyses by the United States Department of Agriculture.					Analyses by the State experiment stations.			
	Year.	Num ber of ples.	$\begin{gathered} \text { Aver- } \\ \text { aye } \\ \text { weight. } \end{gathered}$	$\begin{aligned} & \text { Sugar } \\ & \text { in } \\ & \text { beet. } \end{aligned}$	Purity coetticient.	Num. ber of sam- ples.	$\begin{gathered} \text { A rer- } \\ \text { age } \\ \text { weight. } \end{gathered}$	$\begin{aligned} & \text { Sugar } \\ & \text { in } \\ & \text { beet. } \end{aligned}$	Purity coefticient.
Alabama	1893		Ounces.	$\begin{array}{r} \text { Per ct. } \\ 5.9 \end{array}$	66.7		Ounces.	Perct.	
Arizona .	$\begin{aligned} & 1891 \\ & 1897 \end{aligned}$	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 51 \\ & 23 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 56.9 \\ & 70.4 \end{aligned}$	157		a 8.1	61.8
Average		9	29	9.0	67.4	157		8.1	61.8
Arkansas .	$\begin{aligned} & 1891 \\ & 1892 \\ & 1897 \end{aligned}$	2 3 2	$\begin{aligned} & 40 \\ & 12 \\ & 18 \end{aligned}$	$\begin{array}{r} 6.4 \\ 9.4 \\ 11.3 \end{array}$	$\begin{aligned} & 58.8 \\ & 64.7 \\ & 71.5 \end{aligned}$				
Average		7	22 ।	9.1	65.0	.-.		
California	$\underset{1888}{1884}$	71	19	13.7	85.3	5		10.7	
	1889					14	19	12.1	77.7
	1890	8	48	14.7	84.6 75.8	18	17	10.7 $b 13.0$	73.0
	1892	4	14	14.7	77.6			$b 14.0$	
	$1,9.3$ 1894							614.0 $b 15.0$	
	1895							¢ 15.0	
	1897	1	26	16.8				614.0	
Arera		88	21	13.6	85.3	37	18	11.2	75.1
Culorado	1888							9.9	
	1889					37		10.2	
	1890			12.5	76.1	73	25	11.0	83.0
	1891	51 170	18	14.8	76.1 7	$\begin{gathered} 4 \\ 16 \end{gathered}$		* 13.5 $* 13.8$	79.3 80.6
	1893	18	17	13.2	74.9				
	1897	174	20	13.6	76.7	12		14.3	79.7
Average		442	20	13.9	78.4	142	25	11.5	82.1
Commecticut	1890	2	14	9.7	76.1				
	1891	5	27	10.8	77.3				
Average		7	23	10.5	77.0				
Georgia.....	1891	2	12	11.1	64.9				
Itaho	1890		4	8.0	68.3				
	1891 1892	1	15 34	12.7	74.9				
	1893	2	78	10.2	76.2				
	1894					192		13.7	76.1
	1896					60		14.2	77.3
	1897	7	21	15.5	79.4	41		15.2	87.6
Average		13	30	13.8	77.6	635		14.6	80.2

[^12]Analyses of sugar beets grown in various States-Continued.

Analyses of sugar beets grown in various States-Continned.

[^13]Analgses of sugar beets grown in varions States-Continued.

State.	Analyses by the United States Department of Agriculture.					Analyses by the State oxperiment stations.			
	Year.	Number of samples.	$\begin{gathered} \text { Aver- } \\ \text { ago } \\ \text { weight. } \end{gathered}$	$\begin{gathered} \text { Sugar } \\ \text { in } \\ \text { beet. } \end{gathered}$	Purity coctitcient.	Numher of sam- ples.	$\begin{array}{\|c\|} \text { A ver- } \\ \text { age } \\ \text { weight. } \end{array}$	$\begin{aligned} & \text { Sugar } \\ & \text { in } \\ & \text { beet. } \end{aligned}$	Purity coetilicient.
New York.	18*9		Ounces.	Perct.		6	Ounces.	$\begin{array}{r} \text { Per ct. } \\ 9.9 \end{array}$	
	1890	10 4	15 32	12.1	78.0				
	1892	8	22	15.4	85.9				
	1893 1897	225	21	15.0	82.4	$\begin{array}{r} 29 \\ 562 \end{array}$	$\begin{array}{r} 38 \\ a 16 \end{array}$	$\begin{aligned} & 12.9 \\ & 15.9 \end{aligned}$	83.2
Average		247	21	14.8	82.2	591	20	$15.7 \mid$	83.2
North Carolina.	$\begin{aligned} & 1892 \\ & 1893 \\ & 1897 \end{aligned}$		4	9.0 4.1	73.4 59.1 7				
Average									
		11	16	9.1	74.6	
North Dakota	$\begin{aligned} & 1890 \\ & 1891 \\ & 1892 \\ & 1893 \\ & 1897 \end{aligned}$	24	25	13.4	71.2	9		13.8	
		11	23	11.8 12.9	73.2	129	29	10.9	73.9
		2	27	14.0	80.7				
		,	28	10.5	81.2				
Average		52	25	12.8	73.9	138	29	11.1	73.9
Ohio	$\begin{aligned} & 1890 \\ & 1891 \\ & 1892 \\ & 1897 \end{aligned}$	15 66	26 31	9.8 11.3	76.0 73.5	24		9.8	
		102	17	14.2	80.2				
		68	22	13.8	79.1	554	31	13.3	78.7
Average .		251	23	13.1	77.9	578	31	13.2	75.7
Oklahoma	$\begin{aligned} & 1891 \\ & 1897 \end{aligned}$	1	48	6.4	53.3				
		1	10	11.8	72.5	21		11.4	65.3
Average		2	29	9.1	62.9	21	11.4	6.3. 3
Oregon.	$\begin{aligned} & 1890 \\ & 1891 \\ & 1892 \\ & 1893 \\ & 1894 \\ & 1895 \\ & 1896 \end{aligned}$			15.1	73.4		$b 26$	11.2	
		35 12	34 19	12.7 14.2	81.1 80.2	$\begin{aligned} & 98 \\ & 65 \end{aligned}$	$\begin{aligned} & 22 \\ & 27 \end{aligned}$	12.6 14.4	75.4
						23		14.3	c89.8
Arerage		49	30	13.2	80.6	223	24	13.1	81.3
Pemusylvania	$\begin{aligned} & 1890 \\ & 1891 \\ & 1892 \\ & 1893 \\ & 1897 \end{aligned}$	10		8. 0	73.8				
		8		13.3 10.8	78.7 75.8				
		1		11.0	78.9				
		59	18	13.8	79.5				
Average		85	19	12.8	78.4			
Ihorle Tsland.	1897	2	21	11.9	74.2				
South Carolina	$\begin{aligned} & 1892 \\ & 1893 \\ & 1894 \\ & 1897 \end{aligned}$					3	19	5.8	54.7
						15	$\begin{aligned} & 15 \\ & 23 \end{aligned}$	4.9 5.9	
		13	17 \|	9.9	79.9				
A verage		13	17	9.9	79.9	89	22	5.7	54.7

a Average weight of 137 samples.
b Arerage weight of 2 samples.
c Averages for 1893 to 1896 , inclusive.

Analyses of sugar beets grown in various Sates-Continued.

[^14]Analyses of suyar beets grown in various States-Continued.

NOTES ON IPRECEDING TABLE.
In a fem instances analyses reported to the stations by sugar companies or organizations designed for the promotion of the sugar industry have been included. It is noticeable that in many States but few analyses have been made. In view of this fact, it is well to be cantions in accepting the results of these few analyses as being representative of the beets grown in the State.

The reports from the State of California are especially incomplete. Most of the analyses reported are from data obtained in the laboratory of the Chino Valley Beet Sugar Company. In view of the fact that California has several very large and very successful factories, we do not regard the data included here of great value in judging of the State as a producer of high-grade sugar beets. We have data of factory averages obtained in California representing in some cases more than 100,000 tons of beets, showing that the state produces beets of very high sugar content. Factory averages have been reported this year higher than 15 per cent of sugar in the beets. It will be noticed that in most instances the results obtained by the Department of Agriculture corroborate those obtained in the stations.

A notable exception to this is in the tabulation of the results obtained with beets grown in the State of Washington. The Department of Agriculture, however, has only made about one-tenth as many analyses of Washington beets as the station. The average of the results of the large number of Washington beets analyzel shows that this State is destined to be a large producer of sugar.

In many cases the averages are based on very incomplete data, and therefore must not be considered strictly representative of all the results inchuled. In figuring the general averages each ammal average is weighted in proportion to the number of samples it represents.

INVESTIGATIONS IN SEED PRODUCTION.

The second line of experiments carried on by the Department of Agriculture during the season of 1897 was devoted especially to the culture of high-grade beets in cooperation with a few of the agricultural experiment stations. The localities selected for the experiments were such as would represent as wide a range as possible of climatic conditions, and be compatible with the time at the disposal of the Chemist of the Department for doing the work, and with the duantity of high-grade seeds on hand. It was not deemed advisable to go into the arid regions with these experiments, becanse it was not possible, in the short time at our disposal, to make proper preparations for the conduct of our work. Under anthority of the Secretary of Agriculture the Chemist of the Department made arrangements with the following experiment stations to conduct the work under as nearly as possible identical conditions, except those pertaining to climate:
The agricultural experiment station of New York, at Geneva.
The agricultural experiment station of Indiama, at Lafayette.
The agricultural experiment station of Wisconsin, at Madison.
The agricultural experiment station of Iowa, at Ames.
The agricultural experiment station of Kentucky, at Lexington.
The agricultural experiment station of Tennessee, at Knoxville.
In order that the experiments might be conducted on plots of equal area, each director of the stations mentioned above was furnished with

Fig. 2-Plot for guidance in planting sugar beets.
a diagram showing the manner in which it was thought most advisable to plant the different varieties of seeds. The diagram shown in figure 2 was accompanied by the following descriptive letter:

> United States Depairtaent of Agriculture, Division of Chemistry, Washington, D. C., April $23,189 \%$.

DEAR SiR: For the sake of having complete miformity in the comparative teste of high-gramle beet seeds, I send herewith a diagram for the purpose of grading you in the preparation of the plots aud in the planting of the seed. The object of this diagram is to secure the planting of the high-grade seed in the interior smaller plots $A B$, each one of which has ahmost exactly the area of 500 square feet. If preferred the
size of the interior plots may he varied so as to make each of them exactly one onehundredth of an acre, namely, 43 . 6 square feet. I think it would be better, however, to keep the interior plots All each 500 square fert, as they fit the rows as indieated by the horizontal line, allowing exactly 14 rows in the plots, of a total length, including hoth interior plots, of about 47.6 feet. The interior plots $A B$ are surrounded by a borter CCCC, which is to bo planted with the high-gratle commercial seeds which I shall send you. The end plots D D are to be planted with the same kind of high-grade commercial seeds as CCCC, but these end plots are not necessary to the success of the experiments. The object of the border CCC(? is to surround the high-grade seeds AA with heets grown under the samo conditions, so that the exterior rows of the plots AA may be subjecterl to the normal conditions of beet growth, which would not be the case if such small plots were left unprotected. The scale of these plot's is 1 inch $=12$ fect. I think it is important that the soil of the plots be prepared in aceordance with the directions contained in Bulletin No. 52 , a copy of which I transmit herewith. The plowing and suhsoiling shonld loosen the ground to a depth of not less than 16 , and, better, to a depth of 18 inches, and the surface of the soil, after plowing aud subsoiling, should bo reduced to perfect tilth.

I am now awaiting the remainder of the high-grade seeds, which I expect in a few days. There will be two varieties of the high-grade seeds, one to be planted in ['lot A and tho other in Plot B. All the seeds sent yon will bo plainly marked, so that no mistake can be made. The quantity of seed required for plots A and B will be about 5 ounces. I think it hest that the interior plots A and B at least should ho planted by hand. The number of seculs in the 5 ounces being known, they should be planted in groups at intervals of 9 iuches; that is, in such a wiy as to secure one good, vigorons plant at about every 9 inches in the row after thinning. Five ounces of seerl will contain approximately 5,000 seeds, and in the two plots A and B there will be sxa hills, which gives approximately nearly 6 soeds to a hill. In this case the planting would be accomplished as follows: Six seeds placed in the row at distances of 1 inch apart followed by an interval of 3 inches, then argin 6 seeds at intorvals of 1 inch, and so on. This grouping is shown in the following line:

Of course the spacing will vary according to the number of seeds to be planted.
If there be anything in connection with the diagram that you do not understand please let me know.

Respectfully,
H. W. Wiley, Chief of Division.

The high-grade seeds furnished for planting the above plots were as follows:
(1) The Vilmorin Improved, grown at the experiment station of the United States Department of Agriculture at Schuyler, Nebr., in 1893. This station was abolished in the autumn of that year by Secretary Morton, and the principal part of all the high-grade seeds on hand was sold to the Oxnard Beet Sugar Company, of Grand Island, Nebr. A small portion of each variety was retained, however, in the hope that at some day the experiments might be reestahlished. When subjected to a germination test, however, of all the varieties which had been preserved, only the Tilmorin Improved showed unimpaired vitality. All the other varieties grown at Schuyler showed a vitality too low to warrant planting.
(2) Original Kleinwanzlebener, grown by Kiihn \& Co., Naarden, near Amsterdam, Holland. These seeds were from specially analyzed mothers, showing the very highest qualities for seed production.
(:3) High-grade commercial seed, grown by F. I emesmay, Cysoing, France. These seeds were not grown from specially analyzed mothers, but represented the high-grade commercial seeds produced at that place.
These three varieties were furnished for planting in Section B. There were also sent at the same time some of the high-grade commerdial Kleinwanzlebener and Vilmorin's La Plus liehe for planting sections COCO and DI), as indicated in the diagram. These seeds were sent to the various stations sperified above on the "4th of April, 1897. The high-grade seeds which were to be used in planting Section A had not yet been received, and were not forwarded at that time.

The seeds ordered from Emope did not arrive until May 15, and were sent at once to the several stations on that day. In addition, seeds were received from August Rioilker it Sons, representing I)ippe Brothers, at New York, and from Martin Crashofi, of Quellinburg. These seeds were also sent for planting the margins of the plot indicated above.

In the general instructions given to the directors of the stations it will be noticed that all the details of the work were left to be decided by them at the proper time, as any directions for time of planting, etc., would be but futile. Each one of the directors undertook to do the work strictly in accordance with the instructions provided in so far as the preparation of the land, planting, cultivation, and harvesting of the samples were concerned. The Chemist of the Department visited three of the stations during the season and conferred personally with the directors in regard to the progress of their work. The other directors were communicated with only by letter.

In the analytical work samples were selected according to instructions and sent to the Department of Agriculture, and others were analyzed in the laboratories of the collaborating experiment stations.

On May 6, the high-grade seeds not yet having arrived from Europe, I sent to each of the stations for phanting Section A some high-grade seeds grown by Martin Grashoffi, of Quedlinburg, obtained from Mr. Jellinek, an agent of the grower in this comntry. I suggested that Section A be planted with this seed, and then if the other seed expected from Germany came in time the plants could be dug out and the section replanted. The name of the seeds sent for planting Section A was White Improved Imperial Elite, which were produced by a cross of another variety with the Kleinwanzlebener. Directions for planting the seeds according to the plot were furnished each director.

The additional quantity of high-grade sugar-beet seed ordered from Dippe Brothers, Quedlinburg, Germany, was received and distributed to the stations on the 17th of May. In most cases the beets in Section A which were previously planted were not dug out, but the new seeds were planted in other localities.

The conditions of growth varied greatly in the different localities during the seasou. At the New lork station the spring was backward and cold, and the planting and first development of the beets were
delayed. The subsequent conditions were favorable to good growth. The beets received no backset, and reached a fair maturity by the 1st of October. The autumn was mild and cool, and dry euough to prevent second growth, so that the beets could be left in the ground with perfect security until late in November.
At the Indiana station less farorable conditions obtained. A poor stand of the beets was secured in many instances where a perfect stand was secured at the New York station. The early leaves were badly eaten by an insect, and this prevented the early rapid development of the plant. Subsequently a period of extreme drought set in, lasting for nearly two months-during July aud August. The result of all these unfavorable conditions was practically a complete failure of the crop, so that even in the case of the beets which were secured there were evidences of arrested development. The general result of the experiment was exceedingly discouraging.

At the Wisconsin station the field which was selected for the growth of the beets was not particularly well suited to the purpose. It had not been under previous cultivation for many years, and a portion of it, as is seen in the report of the director, suffered severely from various causes. The special plots which were cultivated in the high-grade seeds gave fairly good results, as will be seen farther on, and the beets produced were of good size, fair shape, and fine quality.

At the Iowa station fairly good seasonal conditions prevailed, and the character of the beets produced on the specially prepared plots was satisfactory.

At the Kentucky station the beets obtained a good start, and grew well for the greater part of the season. They were slightly retarded by dry weather at one period of their growth, but on the whole reached a fair stage of maturity without untoward accidents. The beets which were harvested in September and October showed a higher content of sugar than those that were left later in the ground, and this is probably due to the secoud growth, which was produced by the warm climate of that locality. The sugar content was exceedingly low, and the data secured from the station show conclusively that Kentucky is not in the list of possibilities as a sugar-producing State in so far as beets are concerned.

The data from Tennessee are extremely meager, and no definite conclusions can be drawn from those at hand.

In the study of the data received, it will be convenient to begin with the most southern station, namely, Tennessee, and then continue with the Kentucky, Indiana, Iowa, Wisconsin, aud New York stations in the order named.

Tennessee.

The results obtained at the Temessee station were extremely masatisfactory. On account of the poor quality of the beets, only one sample was sent for analysis, which was harvested on the 25th of September. These beets were so small as to hardly deserve the name, and no attempt

Was made to determine the purity of the juice. It is evident, fiom an inspection of the table which follows, that there was nothing in the result of the experiment to justify a further examination of the beets produced.

The cause of failure in Tennessee has been reported by the secretary of the station in the letter giveu below, and therefore no further explanation need be made here of the failure to attain even fairly satisfactory results.

The Agricultural Experiment Station
of the University of Texnessee, Tnoxcille, February 15, 1897.

Dear Sir: A reference to plat sent you May 26, 1897, will explain the following: Sugar beets grown from seed sown May 19, 20, 1897, were lifted when properly ripe, tops removed and put into separate piles on the ground close by, and covered with earth. In this condition the various lots remained until takeu up to be woighed on 13 th of this month. Roots found in good order, and are now heing fed to our cows. The weights of the several lots were as follows:

Plat.	Variety ant from wheuce received.	Area.	Wreight.
Sublivision N.	Vilmorin's Improved White, from P. Henderson \& Co., New York.	$S t \cdot \frac{f t}{880}$	$\begin{gathered} \text { Pounds } \\ 175 \end{gathered}$
Subdivision J	Kleinwanzlebener Elite, Dippe Brothers, from Depart ment.	589	54
Suldirision D	Vilmorin's, la plus rich, from Dopartment	1,568	280
Subdivision C	High grade Kleinwanzlebener, from Department.........	1, 642	369
Subutivision d	Mente Ober Wurst, Quedlinburg, Dippe Brothers, from Department.	448	64.5
Sublivision B (2 rows).	Original Kleinwanzelebener (Hulland), from Department.	64	16.5
Subdivision B (3 rows).	Vilmorin's Improved (Schuyler, Nebr.), from Department.	96 988	12
Subdivision E (trian. gle).	White Improved Lmperial Elite (Grashoff), from Department.	288	56 124.5
		$20 \pm$	124.5
		5,796	1,115.5

8,715 pounds per acre.
A miserably poor yield.-Soil prepared in best manner; germination good; when first leaves were formed an excellent stand. A few days after an incursion of flea beetles destroyed almost every plant in an irregular strip across the whole plat; this was done between the hours of $11 \mathrm{a} . \mathrm{m}$. and $3 \mathrm{p} . \mathrm{m}$., in one day. Cultivation was well and thoroughly done, but the planting was much too late. A plat of Vilmorin's Imirroved White grown near the farm building, the seed for which was planted April 1 , gave us a very heavy yield. These were planted for table use and for stock feed; ing, and were purposely grown to make feed stuff, not for sugar.

Very respectfulls, yours,
Chas. F. Vanderford, Secretary.
Dr. H. W. Wiley,
Chief Dicision of Chemistry, U. S. Department of Agriculture, Washingiton, D. C.
The details of the analytical data are found in the accompanying table of data.

Kentucky.
Special care was takeu by the director of the station at Lexington to secure satisfactory results. During the early part of the season the beets grew exceptionally well and presented a fine appearance. The H. Doc. $396-10$
guantity produced was fairly good, although the beets were somewhat irregular in size, some of them being quite large and others quite small. The sugar content of the beets and the purity of the juice were both extremely low. The first series of samples mas analyzed on the $28^{*}+1$ of September, and a second set of samples from two of the varieties was analyzed at a later date. The original Kleinwanzlebener (Holland) seed was represented by thirty-seven heets in this se:"nd sample, the average size of which was small and the sugar content medium. The White Improved Imperial Elite was represented in the second sample by forty-eight beets, also extremely small, and with a low content of sugar. The final harrest of the beets resulted in securing three barrels of beets of fine size and shape, but when these beets were perforated for analysis it was found that the content of sugar was low, falling, in some cases, as low as 2 per cent. The sugar content in general was so small that it was not deemed worth While to report it, as the beets were utterly worthless for seed production. The depressing influence of climate on the character of the beets is illustrated in a most striking manner by a comparison of the results obtained from beets grown in Kentucky and in Geneva, N. Y., from the same seeds, and under as nearly as possible identical conditions of culture.

Indiana.

The unfortunate seasonal conditions which obtained at the experiment station at Lafayette have already been mentioned. The result of the prolonged drought during the growing season was a diminution of the weight of the beets to such an extent that for practical purposes they were useless. For this reason the data obtained are of little valuc. On account of the inferior character of the beets, no attempt was made to select any of them for mothers for the subsequent production of seed. The analytical data comnected with the special plot work in Indiana are found in the tables following.

Iowa.

Only one set of samples was receised from the plots grown in Iowa, the sample of the Demesmay having been harvested on the 25th of September and all the other samples on the 13 th of November. The average size of the beets received was small, the percentage of sugar only fair, and the purity mot up to the minimum standard. The seasonal influences at Ames mere therefore evidently inferior in sugarbroducing dualities to those which obtained in New York. The final harvest of beets was not forwarded to the Department for the purpose of selecting mothers by reason of a misunderstanding whereby the different varicties were mixed in such a way that the separation of them was impracticable. A general statement in regard to the special
plot work done at Ames is contained in the following letter from Director Curtiss:

AMES, IOWA, Itmmary $25,1898$.

Dear Sir: Replying to your inquiry enncerning the test of high-grade sugar-bect seed furnished by your Department, will say that twe have forwarded joutwo samples of the Vilmorin's Elite from the plats grown according to your instructions, and have lately had four report of the last sample. The heets from these plats were analyzed by Dr. Weems, of our chemistry section, with the following results :

These samples and the one forwarded to jou gare substantially the same results and were harvested November 11. The first sample sent jou was taken earlier and was probably immature. The past season was ruite backward here, and the beet crop correspondingly late in maturing. Owing to a change in our fieldeexperiment department during the past rear, the beets from these plats were, through a misunderstanding, thrown together instead of being kept separate after the analyses were made, and we will not be able to distinguish between varieties in testing these beets and carrying on future work along this line. We very much regret that this mistake has occurred, as we would like to continue the work of developing high-grade beets for seed production. We will be glad to cooperate with you again during the coming season if yon can furnish 118 more seed.

Very truly, jours,
C. F. Curtiss.

Dr. H. W. Widey;
Trashington, D. C.
The analytical data derived from the analyses of beets sent from the Iowa station to this laboratory are of little value. Only one set of samples was received, namely, of the Demesmay variety, harrested on the 25th of September, and of the three varieties harvested on the 13 th of November. With the exreption of the Vilmorin Elite, which was received on the $22 d$ of November, the analytioal data are not satisfactory. In the case of the variety just mentioned the sugar content and the purity were satisfactory, but the heets were very much under size. It is evident that the data obtained in the past season do not fairly represent the capabilities of Iowa, either for the production of good commercial beets or for the growth of beets for seed-producing purposes. The analytical data obtained on analysis of the saniples received at the Department are found in the table given farther on.

WISCONSIN.

Complete details of experiments with high-grade beet seeds, grown muder the auspices of the Department of Agriculture, are found in the

Wisconsin report, contained in Bulletin No. 64 of that station. details are so valuable as to warrant their reproduction in fill:

FXPERIMENTS WITH HIGII-GRADE SUGAR-BEET SEED.

Thesc experiments were, as already stated, conducted under the anspices of tho Lnited States I) prartment of Agriculture. In a letter received in the early part of April last, the chief chemist of the Department, Dr. H. W. Wiley. reguosted this station to cooprrate with the Department in growing a number of rarieties of beets from high-grade seed furnished by them, giving the beets the best of conditions in respect to subsoiling, preparation of the seed bed, and cultivation. Some of the kinds of scod sent were prodnced hy the highest possible scientific culture from specially analyzed beets, which were stated to arerage 19 per cent of sugar. According to the directions received, the fovermment plat was surrounded on all sides.by our regular beet field and was located in the sontheastern quarter of our matin field. The different kinds of sced received and planted by hand on May 22 were as follows:

I'ut . L.-Dipue lirothers, Vilmorin Elite R I, from Dippe Brothers, Quedlinburg, Germany.

Plat B.-1. Oxiginal Kleinwanzlebener, grown by Kiibu, Naarden, Holland. 2. Vilmorin Improved, grown at United States Nugar beet Station at Schuyler, Nebr. 3. Demesnay sugar-beet seed, grown by F. Demesmay, Cysoing (Nord), France.

Plat C.-High-grade Commercial Kleinwanzlebener.
Plat D.-High-grade Commercial Vilmorin's Improved " La Plus Riche."
White Improved Imperial Elite, grown by Martin frashotf', Quodliuburg, (iermany.
Dippe Brothers, Kleinwanzlebener Elite W I, from Dippe Bros., Quedlinburg, Germany.

The plats were arranged, as suggested by Dr. Wiley, in the following manner: Plats A and B, each 21 by 24 feet, were placed in the middle and were surromnded by a border, $\mathrm{CC}, 67$ feet long aud $9 \frac{1}{2}$ feet wide; the plats D^{1} and D^{2} were placed at the east and west ends of the C plat, being 21 by 40 feet. South and north of the whole plat three rows were run 110 feet long, in which were planted the varietics given in the preceding statement, White Imperial being planted in the sunth three rows, anh Kluinwanzlehener Elite in the north three rows. The rowe were 18 inches apart. The offort was to have one good vigorous beet plant at about every 9 inches in the row after thinning.

The germinations of the seed planted in this experiment, as well as of that planted in our other trials, wero determined by Professor Goff, and are given on pages $300-$ 301 of our Fourtcenth Annual Report. It will be seen that the germinative power of the different kinds of seed was very good, with the possible exception of the Schnyler, Nebr., seed, which was old, and the Dippe Brothers' Vilmorin Elite seed. The average germination of the seed was 167 per cent, ranging from 1105 to 231 per cent, the latter result being obtaned with the White Improved Imperial Elite.

The first samples of the beets raised on the Government plat were taken September 20 ; :mothor sample was taken september 27 . and after that time every fomenter days until the beets were harvested, on November 5 . In sampling the beets four bests were dug of each kind. Two of these were forwarded to Washington, D. C., to the Department of Agriculture, and the other two retamed for analysis in our own laboratory.

The results of the analyses mate by the writer are given in the following table. The C^{1} samples were taken sonth of the A and B plats and the C : silmples north of these plati. In the same manuer the D' and D: samples were taken from the plats east and west, respectively, of the central plats.

Main field, Gorernment plat.

Varietr	Date of sam. pling.	Por cent root of mhole plant.	Weight of beets.	Analysis of juice.		
				Specific gravity.	Sugar.	Purity coetticient
Imperial Elite	$\begin{aligned} & \text { Sept. } 20 \\ & \text { Sept. } 27 \\ & \text { Oct. } 11 \\ & \text { Oct. } 25 \\ & \text { Nor. } 5 \end{aligned}$	$\begin{array}{r} 70 \\ 70 \\ 78 \\ 80 \end{array}$	Pounds. $\begin{array}{r} 0.21 \\ .40 \\ .40 \\ .58 \\ .83 \end{array}$	$\begin{aligned} & \text { 1. } 0755 \\ & \text { 1. } 033 \\ & \text { 1. } 0834 \\ & \text { 1. } 0858 \\ & \text { 1. } 0740 \end{aligned}$	Per cent. 14.44 17.92 17.04 16.35 14.35	$\begin{aligned} & 79.1 \\ & 80.5 \\ & 85.0 \\ & 79.4 \\ & 80.1 \end{aligned}$
Arerage			. 48	16. 02	80.8
Tilmorin La Plus Riche, D_{1}	Sept. 20 Sept. 27 Oct. ${ }_{25}$ Nor.	$\begin{aligned} & 73 \\ & 73 \\ & 72 \\ & 82 \end{aligned}$	$\begin{array}{r} .34 \\ .80 \\ .98 \\ .95 \\ 1.20 \end{array}$	1. 0882 1. 0923 1. 0895 1. 0860 1. 0882	$\begin{aligned} & 16.96 \\ & 17.58 \\ & 17.93 \\ & 16.40 \\ & 16.53 \end{aligned}$	$\begin{aligned} & 80.4 \\ & 79.9 \\ & 83.8 \\ & 79.5 \\ & 78.3 \end{aligned}$
Aterage			. 85		17.08	80.4
High-grade Eleinwanzlebener, $\mathrm{C}_{1} \ldots \ldots$.	Sept. 20 Sept. 27 Oct. 11 Nor. 5	$\begin{aligned} & 73 \\ & 70 \\ & 59 \\ & 78 \end{aligned}$	$\begin{array}{r} .37 \\ .55 \\ .50 \\ .50 \\ 1.13 \end{array}$	$\begin{aligned} & 1.0325 \\ & 1.0898 \\ & 1.0870 \\ & 1.0810 \\ & 1.0845 \end{aligned}$	$\begin{aligned} & 16.45 \\ & 17.21 \\ & 16.15 \\ & 14.35 \\ & 16.90 \end{aligned}$	$\begin{aligned} & 83.0 \\ & 80.0 \\ & 77.5 \\ & 73.6 \\ & 83.5 \end{aligned}$
Arerage.			. 61		16. 21	79.5
Vilmorin Improved. Nebr., B...........	Sept. 20 Sept. 27 Oct. ${ }^{11}$ Oct. Nor. 5	$\begin{aligned} & 70 \\ & 76 \\ & 80 \\ & 91 \end{aligned}$.75 .45 1.13 .75 .71	1. 0725 1. 0810 1. 0848 1. 0857 1. 0800	$\begin{aligned} & 15.06 \\ & \text { 16. } 70 \\ & \text { 17. } 01 \\ & 15.86 \\ & 15.71 \end{aligned}$	$\begin{aligned} & 85.7 \\ & 85.7 \\ & 83.6 \\ & 77.2 \\ & 81.5 \end{aligned}$
Arerage			. 76		16. 07	82.7
Original Kleinwanzlebener, Holland, B .	Sept. 20 sept. 27 Oct. 11 Oct. 25 Nov. 5	68 67 73 73	.45 .20 .40 .30 .35	1.0860 1.0446 1.0935 1.0880 1.0920	$\begin{aligned} & 16.63 \\ & 18.57 \\ & 17.95 \\ & 17.34 \\ & 18.65 \end{aligned}$	80.7 82.4 80.6 74.5 81.8
Arerage..			. 37	...	17.83	81.0
Dippe's Kleinwanzlebener...............	Sept. 20 Sept 27 Oct. 11 Oct. Nor 5 Nor.	64 68 71 71	$\begin{array}{r} .70 \\ .90 \\ .93 \\ .50 \\ .95 \end{array}$	1. 0695 1. 0836 1. 0917 1. 1017 1. 0812	$\begin{aligned} & 14.57 \\ & 17.11 \\ & 18.17 \\ & 21.45 \\ & 16.42 \end{aligned}$	$\begin{aligned} & 86.3 \\ & 85.2 \\ & 83.0 \\ & 85.2 \\ & 84.0 \end{aligned}$
Arerage			. 80	.	17.54	84.7
Tilmorin's La Plus Riche, $\mathrm{D}_{2} \ldots \ldots . .$. . .	Sept. 20 Sept. 27 Oct. 11 Oct. 25	67 72 73 78	1.03 1.15 1.23 1.35	1.0785 1.0800 1.0868 1.0917	16.13 16.90 17.56 18.88	90.6 83.6 81.4 86.3
A rerage			1.19		17.37	86.1
High-grade Kleinwanzlebener, $\mathrm{C}_{2} \ldots \ldots$.	Sept. 20 Sept. 27 Oct. 11 Oct. 25	72 65 75 82	$\begin{array}{r} 1.05 \\ .70 \\ .70 \\ 1.30 \end{array}$	1.0850 1.0842 1.0885 1.0940	$\begin{aligned} & 17.94 \\ & 16.70 \\ & 17.57 \\ & 19.18 \end{aligned}$	$\begin{aligned} & 87.9 \\ & 83.6 \\ & 83.0 \\ & 85.7 \end{aligned}$
Arerage.			. 94		17.85	84.8
Demesmar Improred, B	Sept. 20 Sept. 27 Oct. 11 Oct. 25 Not:	$\begin{aligned} & 76 \\ & 81 \\ & 78 \\ & 89 \end{aligned}$	$\begin{array}{r} \hline .80 \\ .93 \\ 1.10 \\ .85 \\ .93 \end{array}$	$\begin{aligned} & \text { 1. } 0655 \\ & \text { 1.0695 } \\ & \text { 1. } 0678 \\ & 1.0798 \\ & 1.0690 \end{aligned}$	$\begin{aligned} & \text { 13. } 23 \\ & \text { 1. } 19 \\ & 12.85 \\ & 15.95 \\ & 13.66 \end{aligned}$	$\begin{aligned} & 82.8 \\ & 79.8 \\ & 77.9 \\ & 83.0 \\ & 81.4 \end{aligned}$
Aterage			. 92		13. 84	81.0
Dippe Vilmorin, A......................	Sept. 20 Sept. 27 Oct. ${ }^{11}$ Nov. 5	63 73 73 82	$\begin{array}{r} .62 \\ 1.00 \\ 1.10 \\ 1.03 \\ \text { 1.75 } \end{array}$	$\begin{aligned} & \text { 1.0790 } \\ & \text { 1.0852 } \\ & \text { 1.0895 } \\ & \text { 1.0920 } \\ & \text { 1.0827 } \end{aligned}$	$\begin{aligned} & 16.05 \\ & 16.86 \\ & 17.49 \\ & 18.34 \\ & 16.91 \end{aligned}$	$\begin{aligned} & 84.3 \\ & 82.5 \\ & 81.7 \\ & 83.6 \\ & 85.1 \end{aligned}$
Average 90		17. 13	83.4

We notice that the per cent of sugar in the juice but rarely came over 18 in case of the different rarieties, the average ligures ranging from $13.8 \pm$ per cent (1)emesmay) to $17 . \mathrm{Na}_{5}$ per cent (High -grade Commercial Kleinwanzlelsener, C_{2}) ; the purity of the beet juice was good, viz, lowest 79.5 (High-grade Commercial Kleinwanzlebener, C_{1}), highest 86.1 (Vilmoriu La Plus Riche, D_{2}).
The average results of the analyses of these beets obtained by the Department of Agriculture and in this laboratory are given below:

Determinations made by-	Number of Polariscope analyses. method.		Alc. extraction method.	Purity coetficient.
Enitedstates Department of A gricultu	38 (31)	16. $\because 7$		84.7
Wisconsin Experiment Station...	38 (31*)	16.09	15.13	82.0

Number of determinations of purity of juice.
While the agreement is as good as could be expected between the results obtained by the polariscope method, the purity coefticient differs rather more than allowable in duplicate samples. The two sets of analyses differ in this way, that the Department of Agriculture samples were always analyzed at least several days after our aualyses were made, since the latter were always finished within twenty-four hours from the time of sampling. In single instances, variations occurred between the Department of Agriculture and our analyses of 3 per cent of sugar in the juice and of over 7 per cent purity, owing to differnees in the stage of maturity of the beets analyzed; it is evident that no absolutely correct itea of the sugar content of the beets in a certain plat or field can be obtained by pulling and analyzing two single beet roots, even if these do appear to be at about average stage of maturity.

The yield of beets from the plat, obtained at harvesting, November 5, aud the calculated yield of beets and of sugar per acre, are shown in the following table:

Field of beets and of sugar, (iorernment plat.

Name of variety.	Tield of beets.		Average weiglit of beets.	Sugar in the beet.	Sngar per acre.
	From plat.	Per acre.			
Intuerial Elite	Pounds. 273. 3	Pounds. $24,210$	Pounds. 0.45	Per cent. 13. 63	t'ounds. 3,300
Vilmorin La Plus Riche	1, 167.3	28,290	. 64	15.70	4,441
Hisl-grade Commercial Kleinwanzlelemer	1,170.0	30,660	. 56	16. 05	4,920
Dippe Lrothers IKleinwanzlebener Elite	311.7	34,380	. 66	15.60	4,995
Dippe Brothers Vilmorin Elite.	336.6	29,090	. 58	16.06	4,672
Demesmay	234.4	31, 520.	. 61	12.98	4,092
Vilmorin. Schuyler, Nebr	76.7	30, 940	. 59	14.92	4,616
Original Kleinwanzlebener, Holland	26.0	15,730	27	17. 72	2,788
Averages, ete	3,595, 0	28,103		15.04	4,228

The average yield of beets per acre obtained was over 14 tons, or about 5 tons more than the sield obtained from either half of the main tield. The average calculated yield of sugar per acre was 4,228 pomeds, the lowest yield being obtained in case of Original Kleintranzlehomer, Holland (2,788 pounds), which variety plainly suffered most from the dronght, and the highest in case of Dippe's Kleinwanzlebener Elite (4,995 pounds).

ANALINES MADE AT THE LABORATORY OF THE DEPARTMENT OF

 AGRICULIURE.Samples of beets from the high-grade plots were sent from time to time to the laboratory of the Department of Agriculture for analysis, and finally all the remaining beets of proper size were forwarded for
examination. The following table contains the analyses of the samples received from the various stations of the thee separate harvests of beets, ranging from the last of September to the last of October, together with the analyses of all the samples of the high-grade beets harvested in the middle of November:

Table showing analyses of beets of hiyh grade from experiment stations of Tennessee, Kentuchy, Indiana, Iowa, Wisconsin, and New Fork.

KNON COUNTI, TENN.
[Experiment Station, Knoxville.]

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$	Variety.	Time of planting.	Time of harresting.	Date received.	Num. ber of beets.	Average weight.	Sugar in the beets.	Purity coetticient.
		1897.	1897.	1897.		Ounces.	Terct.	
200	White Improved Imperial Elite.	May 24	Sept. 25	Sept. 27	2			
201	Kleinwanzlebener Elite.	...do ...			2	7	10.7	
203	Original Kleinwanzlebener (Dippe Brothers) ...	May 18	do ..		2	3	12.5	
204	Original Kleinwanzlebener (Holland)				4	1	12.5	
206	High grade Kleinwanz-品				2	6	12.0	
202	Vilmoring ${ }^{\text {co }}$ La Plus						12.0	
205	Vilmorin s Improved			do	5	1	13.2	
207	Demesmay...........	do	10	do ...	3	1	13.5	

FATETTE COUNTY, KY.
[Experiment Station, Lexington.]

TIPPECANOE COUNTY, IND.
[Experiment Station, Lafayette.]

Table showing analyses of beets of high grade from experiment stations of Tennessee, Lientucky, Indiana, Iowa, Wisconsin, and New York-Continued.

STORY COUNTY, IOWA.
[Experiment Station, Ames.]

DANE COUNTY, WIS.
[Experiment Station, Madison.]

[^15]Table showing analyses of beets of high yrade from experiment stations of Tennessee, Kentucky, Indiana, Jova, Hisconsin, and New Jork-Continued.

DANE COUNTTV, WIS-Continued.

$\begin{aligned} & \text { Nirial } \\ & \text { No. } \end{aligned}$	Yariets.	Time of planting.	Time of harvest. ing.	Date received.	$\begin{aligned} & \text { Num- } \\ & \text { ler of } \\ & \text { beets. } \end{aligned}$	Arerage weight.	$\begin{aligned} & \text { Sugar } \\ & \text { in th... } \\ & \text { beets. } \end{aligned}$	Puritr coetiocient.
223	Vilmorin's "La Plus	1897.	1897.	1897.		Ounces.	Perct.	
871	Riche"....	May 22		Sept. 29	$\stackrel{2}{2}$	18 16	14.9	83.4
1462	. ${ }^{\text {do }}$	do		Oct. 27	2	12	17.9	88. 2
22.4	do	dn		Sept. 29	2	13	14.3	85.2
875	do	do		Oct. 12	2	8	19.2	
1467	do	do		Oct. 27	2	10	19.0	8 8. 4
1915	do	do	Nov. 3	\ov. 17	236	15	17.7	86.7
	A verages \dagger					15	17.7	86.8
${ }^{2920}$	Demesmar.	May 22		Sept. 29	,	12		84. 8
1470dodo ...		Oct. 12	$\stackrel{2}{2}$	12	15. 0	83.5
1914	do	do	Nov. 2	Nors. 17	91	13	136	81.0
	Averages \dagger.					13	13.6	81.1

ONTARIO COUNTX, N. I.
[Experiment station, Genera.]

[^16]Table showing analyses of beets of high grade from experiment stations of Temnessee, Kientucky, Indiana, Iowa, IIsconsin, and New York-Continued.

ONTARIO COUNTY, N. Y.-Continued.

Not included in averaging the purity coeflicients.
In figuring the averages, each analysis is valued in proportion to the weight of the sample it represents.

Hischssion of aboce dutu.-No further discussion of the analytical data contained in the above table is necessary, except in the ease of the samples received from Wisconsin and New York. These samples were exeptionally fine. By an mfortmate misumberstanding all the beets received from Wisconsin were reduced to pulp for the purpose of getting an werage sample for analysis. The selection for mother beets was, therefore, confined to the samples from New York.

WISCONSIN.

Almost miformly good results tere obtained in these experiments. The Original Kleinwanzlebener (Holland) seed produced beets, however, too small fis all practical purposes, althongh the sugar content and purity were high. The largest beets and thos of the highest purity were produced by the Vilmorin La Dlus Riche seed. The Demesmay seed which were used were only the commercial articie, and were not grown from sipecially amalyzed mothers. It is not surprising, therefore, to see that they produced a crop which was the poorest of all in sugar content.

The particular analyses of the most importance are those which were made on the beets received November 17, and harvested on the ${ }^{\text {and }}$ of November. These practically represent the beets at their full maturity, as it is not probable that they would improve in guality in the climate of Madison after the 1 st of Norember. The analyses also represent the greatest nmmber of beets, and therefore are the most reliable. The largest number of beets of proper size and shape were produced by the Vilmorin La Plus Riche seed, and the
smallest by the Oriqiual Klemwamzebener. The beets gromin from the Schuyler seed are of particular interest becanse they represent the link of union between the experiments which were discontinued bey the Department in 1893 and remaugurated in 1897 . The arerage size of the beets produced by the Schnyler seed is somerhat small, but the content of sugar and the parity are satisfactury. Upon the whole, the effect of high-grade seed and high culture are most distinctly marked. It is ouly necessary to compare the results obtained in the experiments with these high-grade seeds with those secured in the State at large to show the possibilities of beet production in Wisconsin. With sach data before the investigator, it is evident that he must be convinced of the fact that it is possible, with proper conditions of seed and culture, to produce a grade of beets of the highest quality in Wisconsin.

New York.

Most satisfactory results were obtained from the experimental work in the State of New York at Geneva. Two sets of samples were received from the station, representing intervals of about two weeks in harvesting, the first set of samples having been harvested on the 2 ith of September and the second on the 14th of October. It will be noticed that a marked improvement was secured by postponing the harvest for two weeks, showing that as a rule it is not to be expected that the season for manufacturing in New Tork should begin before the middle of October. The above table includes, also the final harvest, which was mate much later in the season, viz, October $\div 9-30$, and shows even a greater improvement. The beets from the final harvest were all sent to Washington, and were carefully selected for seed production. The data obtained in this selection are given as the thisd in the series of analyses. The samples which were grown at the New York statiou were from seeds of two different qualities: First, commercial seeds, as represented by the Demesmay White Imperial and highgrade commercial Kleinwanzlebener; and, second, seeds grown directly from high-grade mothers, represented by the Vilmorin La Plus Riche, the Vilmorin Improved (Schuyler), and the Original Kleinwanzlelener. The average size of the beets selected for analysis was not guite 20 onnces; the sugar content in most cases was high, and the purity extremely satisfactory. After leaving the beets unharvested until the end of October they were found to have increased their content of sngar very markedly, as will be shown in the table of analyses for the selection of mothers. The eucouraging data obtained at the New York station suggests that if the Department should reestablish its experiment stations for the production of high-grade seeds one of them should be placed in this locality.

In the analysis of the beets to be selected as mothers for producing seeds no attempt was made to determine the coefficient of purity, as the amount of pulp removed was only sufficient to determine the
percentage of sugar directly therein. It is evident, homever, that the purity coefficients of all the different rarieties would not lave heen diminisher hy perfect maturity, so that they may be regarled as fully emal to the average in each case. In fact. it would be fair to assume that the averages of the final harest of the most matme bects were slightly above those taken for the arerage of the three analytical periods of the season. In the discussion of the data obtained by the analysis it must be remembered that the arerages in all cases are made upsuln the total weight of the material entering into the analysis. Not only is this true of each individual sample, but also of the aremge analyses of the samples. It is evident that this is the one exact method of obtaining arerage results, and it is only the averages obtained by such a method that have a convincing ralue.

data of eacil variety.

The White Improved Imperial Elite, grown from commercial sects §ave beets of fair commercial quality. An average weight of 18 ounces, With a content of 15.2 per cent of sugar in the beets and a coefficient of purity of $s 1.3$, would insure a large yield in a well-built and welloperated factory. From the complete harvest, 174 beets were found of the required size, shape, and sugar content to warrant saving for the production of seed. It is evident, however, that this seed would he only of a medium grade commercial quality, and not suited to the improvement of the beet.

Tilmorin La Plus Riche.-This plot gave excellent results throughout. The arerage size of the beets was the largest of any of the plots grown. The purity coefficients were excentionally high, and the sugar contents most satisfactory. Two hundred and seven beets gromn on this plot, having an average treight of 20 omoes and a mean content of sugar of 18.3 per cent, were selected for seed production. It is evident that the coefficient of purity of this selection must have been at least 86 . These mothers will therefore produce seeds of the highest quality, which can subseruently be planted, growing beets for the production of seeds of exceptional properties.

Tilmorin Improrct, Schuyler Seed.-This variety is chietly of interest now because it represents the continnation of the work in seed production which was discontinued four years ago. The seeds evidently have lost in vitality by their long lieeping, and the product, therefore, is not as satisfactory as could have been desired. The average sugar content is not exceptionally high, but the purity is excellent. The beets produced from these seeds in another year will doubtless develop some exceptionally high-grade mothers, and thas the strain will be continued. This plot represents the sole surviving result of the three years' experiments at Schayler, commenced in 1890 . Thirty-two beets, with an arerage weight of 18 ounces and an areage content of sugar of $15 . \overline{6}$ per cent were put aside for seed production. It is seen, from an
inspection of the table, that the coefticient of purity of this lot was 57 or more. It therefore renresents the highest grade of purity of any of the lots.

Vilmorin Improced.-This is a commercial seed, used for plantiug around the central plots, and has produced a crop of only fair commercial value.

Demesmay.-This is also a commercial seed, obtained directly from the growers in the north of France, and, as will be seen from an inspeetion of the table, produced a crop of excellent commercial value.

Tilmorin Improced Élite, gromen by Dippe Brothers.-This seed represents the improvement in the strain of the Vilmorin beet when cultivated according to the highest scientifie principles in Germany. Sixty four beets grown on this plot, having an average weight of 19 ounces, were selected for mothers. The mean content of sugar in these beets was 18.1. It is evident, also, that the purity was at least sha per cent. This harvest, therefore, represents a very high grade quality of mothers for coutinuing the improvement.

High gronle Commercial hleinnanzlebencr.-This variety of seed rep. resents the highest grade of commercial seeds ofeed to the market. The results of culture show that the temency of this seed to produce rich beets is extremely well marked. Two hundred and twenty-four beets grown on this plot, with an arerage weight of 18 ounces, were selected as mothers. The mean content of sugar in these beets was $17 . \mathrm{s}^{\text {per }}$ cent, and the purity, as seen by the table, is evidently high. These high-grade commercial seeds, therefore, produce a strain of beets almost as valuable for sugar production as the specially high grade seeds from analyzed mothers.

Original hleimomilebentr (Itollund.)-This variety of seed represents the Kleinwanzlebener type as cultivated to the highest degree in Holland. The tendency in that comntry seems to be to the production of a beet of small size and exceptionally high sugar content. Only a few of these high-grade seeds were planted, and this, together with their small size, accounts for the fact that only seven were selected. The mean weight of the seven was 1 s ounces, the mean content of sugar therein 19.2, and the coefficient of purity evidently 86 or orer. This variety produced the highest content of sugar of ayy cultivated, but on account of the small size is less to be recommended for general cultivation in this comntry than some of the other varieties.

Fle inworlebener Elite.-This variety represents the specially selected seeds grown by Dippe Brothers, at Quedlimburg. The beets grow to a fine si\%e, are of good shape, and have excellent qualities to recommend them to the maunfacturer. Two hundred and eleven of these beets, having an average weight of 20 ounces, were selected as mothers. The mean content of sugar in these beets was 18.7 per cent, and the coefficient of purity, as will be seeu by the table, good.

CLASSIFICATION OF THE BEETS OF EACI VARIETY.
It will be interesting to study the distribution of the beets of eark rariety according to sugar content. This can be done by means of the following table:

Variety.	Number of beets liaving contents of sugar from-				Maximum polariza. tious of individual beets.	Minimum polarizations of iudividual beets.
	$15 \text { to } 16$ per cent.	16 to 17 per cent.	17 to 18 per ceut.	18 per cent and above.		
White Improred Imperial Elite ...	65	20	23	4	Per cent. 19.6	Per cent. 11.6
Vilmorin La Plus Rijeria	7	16	32	94	19.4	13.4
Vilmorin Improved, Schuyler Seed..	4	8	5	3	18.8	12.4
Demesmay............................	11	14	5	40	22.0	9.6
Vilmorin Improved Elite (Dippe Brothers)	1	4	5	47	21.6	10.6
High Grade Commercial Klein wanzlehener	19	30	64	107	29.0	13.6
Kleinwanzlebener (Iolland)	0	1	9	50	$2 \because .2$	18.4
Kleinwauzlebener Elite...............	6	15	24	16.5	22.0	14.6

PRESERVATION OF THE MOTHER BEFTS.
The spares in the beets cansed by the removal of the diagonal core for analysis were illed with cotton saturated with formalichyd. The heets thus prepared were plared in silos, where they will remain until March.

GROWTII OF SEED FIOM THE MOTIERS ABOVE DESCRIBED.
Since the pollen of the beet is easily transported, it is necessary that each rariety of seed be gromin in phots entirely removed from any danger of fertilization from other localities. In order to secure this, one of the rarieties preserved will be planted, throngh the courtes. of Mr. William Saunders, superintendent of the garden and grounds, in the Department garden at Trashington and arrangements have been made with the following experiment stations to grow one varicty each of the remaining heets, viz: Maryland; Ithaca and Geneva, N. Y.; Michigan, Wisconsin, and Iowa. As soon as practicable in the spring the silos will be openel and the beets formarded to the stations above named for tramsplanting.

The beets of each rariety of different degrees of strength should be planted as far removed as possible from the other classes. For instance, the beets in the grade of 20 per cent of sugar should be planted far enough from other grades of the same variety to prevent intermising of the pollen. In this tray the strain of excellence can be best preserved. The beets which have been saved for mothers are to be divided into classes representing different degrees of saccharine strength, and each of these classes phanted separately to produce high grade seed for fiture use.

NECESSITY OF SEED DEVELOPMENT.

It is highly important for the rapid and safe progress of the beetsugat industry in this comtry that attention should be paid to the production of high-grade seeds. We have in the Conited states such great differences in soils and climatic conditions as to render it evident that
a single station for the production of seeds would not be sumicient. Beets of different qualities should be developed in different localities. The eharacter of beets best suited to the fields of New York and Wisconsin, for instance. would not be the ideal plant for the semiarid regions of Nehraska. On the other hand, it is evident that beets gromn in an arid region. as, for instance, Chino and other valleys of California, without irrigation and with sumely any rainfall should have a longer tap root than those grown in localities where rainfall is abundant or irrigation is practiced. It seems plain, therefore, that three if not four, stations should be estahlished, and in order that this work may be conducted under uniform methords these stations should he established and maintained by the Department of Agriculture.

One of these stations shonld be located in an area of arerage lamfall and ordinary meteorological conditions as presented, for instance, by the States of New York and Michigan.

The second station should be established in a locality where a deticient rainfall is to be experted, and where the vicissitudes attending meteorological changes are the greatest. as, for instance. in Sonth Dakota or Nebraska.

The third station should be established in a region where irrigation is practiced, as, for instance, in Colorado, New Mexico, or Utah.

A fourth station should be deroted to the development of a beet best suited to arid regions where irrigation is not practiced, as, for instance. in the coast valleys of Ualifornia.

It is only by a careful, systematic. and scientific development of heets suited to these different localities that we can expect to promote in the most firorable manner the development of the beet sugar industry in the Cnited States. It is evident that the continuation of the experi. ments which have been conducted by the Department of Agriculture for so many years in the analysis of heets and in the delimitation of areas suited to beet culture should now be supplemented by a more rigid scientific attempt to develop beets of characteristios hest suited to the four typical localities which have been specified above. The maintenance of a small experiment station entirely competent to accomplish this work in each of the localities mentioned wonld not require a very great outlay of money and rould result in the greatest possible good to the industry.

S'AATISTICS OF AMERICAN BEET-SUGAR PRODUCTION.
The information contained in the following table has been obtained through the courtesy of the beet-sugar factories:

[^17][^18]Shatistics of indicidual factories for the year 1897.

a $\$ 3.50$ per ton for 12 per cent beets, and 25 cents per ton for each per cent above 12 . The Chino factory employed a saccharate process.
blied beets, $5 \frac{1}{2}$ to 12 per cent sugar; white beets, 13 to 17 per cent sugar. Averago aualysis not reported.
$c \nmid 31.200$ pounds raw sugar are includet.
d Not reported.

REMARKS ON THE BEET-SUGAR STATISTICS FOR 1897.

The past season was not very favorable to the production of beets in several localities in Caifornia and in New Mexnco and Utah. Insufficient rain in California at the time of planting resulted in a smaller acreage being planted to beets and in a swall yieh of roots per acre. The great shortage in the crop reduced the quantity of sugar produced in Califormia below that of the previous year, notwithstanding the fact that the new factory at Los Alamitos was operated and that at Chino increased its output.

The tirst New York beet-sugar factory was somewhat monfortuate in the varieties of beets selected. The red beets contained very little sugar, and undoubtedly decreased the output below what it sbould have been under favorable conditions. The white beets were of satisfactory sugar content. As may be noted by an examination of this report of the experiments made in the State of New York during the past seasom, that State is capable of producing beets of very great richess.

The shortage in the output of sugar is to some extent clue to a decreased acreage at Lehi, ITtah, and at Watsonville, Cal., these two factories having a larger crop in 1896 than they could work to advautage. In 1896 the factory at Watsonville produced nearly 20,000 short tons of sugar from approximately 150,000 tons of beets, and the past year $14,5 s^{5}$ short tons from 110,875 tous of beets. The total promection fior the comtry shows an increase of approximately 5,000 tons in 1897 over that of 1896 . The increase in the output of sugar next season, should more favorable conditions prevail in California, will be rery large, sinee cight new factories, having a daily capacity of approximately 6,700 tons of beets, will be in operation.

The output is reported in the tables in pounds of gramulated sugar, since lout one fictory marketed raw sugar. The quantity of raw sugar produced does not materially modify the statistics of the production.

IN DEX.

A.
Page.
Agricultural surveys, importance 21
plans proposed 21
Analyses of sugar beets, cautions regarding study 41
Arid regions, meteorological conditions 35
Arizona, analyses of beets 43
discussion of data 56
experiment station report 56
Arkansas, analyses of beets 43
discussion of data 60
B.
Beet pulps. (See Sugar-beet pulps.)
seerl, source and quality 117
sugar industry, conditions to be considered 23
statistics 160
zone 25
Beets. (See Sugar beets.)
Bibliography of Department publications relative to beet sugar 12
Bloomfield, L. M., report 102
C.
California, analyses of beets 43
discussion of data 60
Cattle food, use of sugar beets 128
Climatology 21
Colorado, analyses of beets 43
discussion of data 61
experiment station report 63
Connecticut, meteorological conditions 29
Cossettes, exhausted. (See Sugar-beet pulps.)
Curtiss, C. F., report 72
D.
Data obtained in the Department of Agriculture 40
Delaware, meteorological conditions 28
E.
Experimental work, comments, in early bulletins of Division of Chemistry 17
Experiments in 1897, correspondence 16
plan 17
feeding beet pulps. 131

F.

Page.
Forbes, R. H., report 56
Fulmer, Elton, report 116
(i.
Goetz, A. S., letter relative to beet pulps 130
H.
Headden, W. P., report 63
Huston, H. A., report 70
Itlano, analyses of beets 44
discussion of data 64
experiment station report 65
Illinois, aualyses of beets 44
data from the experiment station 68
discussion of data 68
meteorological conditions 32
summary of analyses $6 \times$
Indiana, analyses of beets 4.
beets for seed production 146
discussion of data 69
experiment station report 70
meteorological conditions 32
Iowa, analyses of beets 45
beets for seed production 146
discussion of data 72
meteorological conditions 33
Isothormal lines 24
Jordan, W. H., report 94
K.
Kansas, analyses of beets 45
discussion of data 74
summary of analyses by the experiment station 75
Kentucky, analyses of beets 46
leets for seed production 145
discussion of data 76
II.
Map of the thermal belt, discussion 23, 24
Maryland, analyses of beets 46
aliscussion of data 77
eastern shore, neteorological conditions 27
Massachusetts, meteorological conditions 29
Meteorological conditions 27
Michigan, analyses of beets 46
discussion of data 78
metoorological conditions. 32
résumé of the experiment station report 78
Page.
Minnesota, analyses of beets 47
discrission of data 81
moteorological conditions 33
report of the experiment station 82
summary of data from the experiment station 82
Missouri, analyses of beets 47
discussion of data 83
summary of data from the experiment station 84
Model for describings sugar beets 38
Montana, analyses of beets 49
discussion of data 85
summary of data from the experiment station 85
N.
Nebraska, analyses of beets 49
discussion of data 86
meteorological comlitions 35
report of the experiment station 86
Nevada, analyses of beets 50
discussion of data 87
report of the experiment station 88
New Hampshire, meteorological conditions 29
New Jersey, analyses of beets 50
discussion of data 88
experiments in Monmouth County 89
meteorological conditions $\because 8$
New Mexico, discussion of data 90
report of the experiment station 90
New York, analyses of beets 50
discussion of data 93
meteorological conditions 30
wrography 98
regions suited to beet culture 98
report of the Cornell University experiment station 96
report of the State experiment station 94
resumé of analytical data 9)
North C'arolina, analyses of beets 51
diseussion of data 19
meteorological conditions 27
North llakota, analyses of heets 51
discussion of data 99
meteorological conditions 34
O.
Ohio, analyses of beets 51
discussion of data 100
meteorological conditions 31
report of the experiment station 102
summary of analyses 100
by the experiment station 101
Oklahoma, analyses of beets 52
diseussion of clata 103
report of the experiment station 103
Gragon, report of the experiment station 104

P.

Page.
Pennsylvania, analyses of beets.. 52
discussion of data ... 108
meteorological conditions... 31
summary of analyses ... 108
Pulps. (See Sugar-heet pulps.)
R.

Rainfall, annual .. 25
table of averages... 25
Rhode Island, analyses of beets .. 52
discussion of data 110
Roberts, I. P., report... 96
s.

Seed development.. 158
growth from selected seed ... 158
production, investigations .. 141
plan of experiments ... 141
stations, location 159
Sellof, A. D., report. .. 102
Shaw, G. W., report ... 104
Shepard, J. H., abstracts from report... 111
South Carolina, analyses of beets.. 52
discussion of data 110
South Dakota, analyses of beets.. 53
discussion of data.. . . 110
meteorological conditions .. 34
summary of analyses.. 111
Statistics of beet-sugar production.. 160
Sugar-beet belt, as mapped by Dr. Antisell ... 12
pulps, analyses 134
before and after siloing................................... 133
composition.. 129
and feeding tests.. 130
feeding experiments in New Mexico 130
use for cattle food... 129
beets as cattle food.. 128
compared with other root crops........................... 129
cautions in using the analytical data 41
cost of cultivation in Wisconsin.. 123
directions for taking samples 37
topping ... 38
from high-grade seed, analyses by the Department 150
discussion of data. 154, 156
influence of temperature on the quality 125
summary of analyses ... 135
susceptibility to climatic conditions 21
table of analyses by the Department. 43
rield in Wisconsin 123

Tennessee, analyses of beets 53
beets for seed production ... 144
Texas, analysis of beets ... 53
Page.
Texas, discussion of data 112
report of the experiment station 113
Thermal belt 23
U.
Utah, analyses of beets 53
V.
Vermont, analyses of beets 53
discussion of data 124
meteorological conditions 29
report of the experiment station 125
Virginia, analyses of beets 53
discussion of data 114
report of the experiment station 114
Vredenburgh, James B., experiments 89
W.
Washington, analyses of beets 54
discussion of data 115
report of the experiment station 116
West Virginia, analyses of beets 54
meteorological conditions 27
Wisconsin, analyses of beets 54
beets for seed production 146
cost of cultivation 123
discussion of data 119
experiments at sulbstations 122
with high-grade seed 148
influence of the Menomince Falls failure 128
investigations by the experiment station 119
meteorological conditions 3:
table of analytical data 120
yield of beets 123
Woll, F. W., report 120
Wyoming, analyses of beets 55
discussion of data 123

BULLETINS OF THE DIVISION OF CHEMISTRY-Continued.

No. 20. Record of Experiments conducterl by the Commissioner of Agriculture in the Manufacture of Sugar from Sorghum at Rio Grande, N.J.; Kenner, La.; Conway Springs, Douglass, and Sterling. Kans., 1888. Edited by H. W. Wiley: 1889. Pp, 162.

No. 21. Report of Experiments in the Manufacture of Sugar by Diffusion at Magnolia Station, Law. rence, La., season of 1888-'89. Edited by Guilford L. Spencer. 1889. Pp. 67.

No. 22. Record of Experiments at Des Lignes Sugar Experiment Station, Baldwin, La., during the season of 1888. Fdited by C. A. Crampton. 1889. Pp. 36. (Out of print.)

No. 23. Record of Experiments at the sugar Experiment station on Calumet Plantation, Pattersuns ville, La. Edited by Hubert Edson. 1889. Pp. 42. (Out of print.)

No. 24. Proceedings of the Sixth Anuual Convention of Association of Official Ayricultural Chemists, held at the U. S. Department of Agriculture September 10, 11, and 12, 1889. Edited by H. IV. Wiley: 1890. Pp. 235. (Out of print.)

No. 25. Special Report on the Extent and Character of Food Adulterations. Edited by A.J. Wedderburn. 1890. Pp. 61.

No. 26. Kecorl of Experiments in the Proluction of Sugar from Sorghum in 1889, at Cedar Falle, Iowa; Rio Graule, N. J.; Morrisville, Va.; Kenner, La.; College Station, Mri.; and Conway Springs, Attica, Medicine Lodge, Ness City, Liberal, Arkalon, Meade, Mimeela, and Sterling, Kans. Edited by H. W. Wiley: 1890. Pp. 112.

No. 27. The Suçar-beetIndustry: Culture of the Sugar Beet and Manufacture of Beet Sugar. Edited by H. W. Wiley: 1890. Pp. 262
No. 28. Proceedings of the Seventh Annual Conrention of the Association of Official Agricultural Chemists, held at the U. S. National Museum August 28, 29, aud 30, 1890. (Methods of Analysis of Commercial Fertilizers, Foods, and Feeding Stutls, Dairy Products, Fermented Liquors, and Sugars.) Edited by H. W. Wiley. 1890. Pp. 238. (Out of print.)

No. 29. Record of Experiments with Sorghum in 1890. Edited by H. W. Wiley. 1891. Pp. 125.
No. 30. Experiments with Sugar Beets in 1890. Edited by H. W. Wiley. 1891. Pp. 93. (Out of print.)
No. 31. Proceedings of the Eighth Annual Convention of the Association of Official Agricultural Chemists, held at the U. S. National Museum, Washington, D. C., Angust 25, 26, and 27, 1891. Ellited by H. W. Wiley. 1891. Pp. 253. (Out of print.)
No. 32. Special Report on the Extent and Character of Food Adulterations, including State and other laws relating to Foods and Bererages. Edited by A. J. Wedderburn. 1892. Pp. 174.
No. 33. Experiments with Sugar Beets in 1891. Edited by H. W. Wiley. 1891. Pp. 153.
No. 34. Experiments with Sorghum in 1891. Edited by H. W. Wiley. 1891. Pp. 132.
No. 35. Proceedings of the Ninth Annual Convention of the Association of Official Agricultural Chemists, held at the U. S. National Museum, Washington, D. C., August 25, 26, and 27, 1892. Edited by H. W. Wiley. 1892. Pp. 266.

75

1 4. .

BULLETINS OF THE DIVISION OF CHEMISTRY-Continued.

No. 20. Record of experiments conilucted by the Commissioner of A griculture in the Manufacture of Sugar from Sorghum at. Rio Grande, N. J.; Kenner, La.; Conway Springs, Douglass, and Sterling Kans., 1888. Edited by H. W. Wiley. 1889. Pp. 162.

No. 21. Report of Experiments in the Mamufacture of Sugar by Diffusion at Magnolia Station, Law rence, Lai, season of 1888-'89. Edited by Guitford L. Spencer. 1889. Pp. 67.
No. 22. Iecord of Experiments at Des Ligues Sugar Experiment Station, Baldwin, La., during the season of 1838 . Eilited by C. A. Crampton. 1889. Pp. 36. (Out of print.)
No. 23. Record of Experiments at the Sugar Experiment Station on Calunet Plantation, Pattersonville, Lat. Editell by Huhert Edson. 18s9. 1'p. 43. (Out of print.)
No. 24. Proceedings of the Sixth Aunual Convention of Association of ()ficial Agricultural Chemists, beld at the U. S. Department of Agriculture September 10, 11, aud 12, 1889. Edited by H. W. Wiley. 1890. Pp. 235. (Out of print.)

No. 25. Special Report on the Extent and ('haracter of Food Adulterations. Edited by A. J. Wedderburn: 1890. Pp. 61.

No. 26. Record of Experiments in the Protuction of Sugar from Sorghum in 1889, at Cedar Falls, Iowa; Rio Grande, N. J.; Morrisville, Va.; Kenner, La.; Colleger Station, Md., and Couway Springs, Attica, Medicine Lodge, Noss City, Liberal, Arkalon, Meade, Minneola, and Sterling, Kaus. Edited by II. W. Wiley. 1890. Pp. 112.

No. 27. The Sugar-beet Industry: Culture of the Sugar Beetand Manufacture of Beet Sugar. Edited by H. W. Wiley: 1890. Pp. 262.

No. 28. Proceerlings of the Seventh Annual Convention of the Association of Official Agricultural Chemista, held at the U. S. National Museum Angust 28, 29, and 30, 1890. (Mothods of Analysis of Commercial Fertilizers. Foods, aml Feeding stuffs, Dairy Products, Furmented Liquors, and Sugars.) Edital by H. W. Wiley. 1890. PP. 238. (Out of print.)
No. 29. Record of Experiments with Sorghum in 1890. Edited by H. W. Wiley. 1891. Pp. 125.
No. 30. Experiments with Sugar Beets in 1890. Edited by H.W. Wiley. 1891. Pp. 93. (Out of print.)

No. 31. Proceedings of the Eighth Annual Conveqtion of the Association of Official Agricultural Chemists, held at the U. S. National Museum, Washington, D.C., August 25, 26, and 27, 1891. Edited by I. W: Wiley. 1891. Pp: 253. (Out of print.)

No. 32. Special report on the Extent and Character of Food Adulterations, including State and other laws relating to Foods and Beverages. Ndited by A: J. Wedderburn, 1892. Pp. 174.
No. 33. Experiments with Sugar Beets in 1891. Edited by H. W. Wiley. 1892. Pp. 158.
No. 34. Experiments with Sorghum in 1891. Edited by H.W. Wiley. 1892. - Pp. 132.
No. 35. Proceedings of the Ninth Annual Convention of the Association of Official Agricultural Chemists, held at the U.S. National Mnseum, Washington, D. C., August 25, 26, and 27, 1892. Edited by H. W. Wiley. 1892. 'Pp. 266. (Out of print.)

No. 36. Experiments with Sugar Beets in 1892. Edited by H. W. Wiley. 1893. Pp. 74. (Out of print.)

No. 37. Rocord of Experiments with Sorghum in 1892. Edited by H. W. Wiley. 1892. Pp. 100. (Out of print.)
No. 38. Proceedings of the Tenth Annual Convention of the Association of Official Agricultural Chemists, held at the Art Institute, Chicagu, Ill., August 24,25 , and 26,1893 . Edited by H. W. Wiley, 1893. Pp. 232.

43

[^0]: * Simon Legrand, 16 inches; Klein Wanzlebener, 12 inches; Bultean Desprez Richest, 20 inches. Sced did not all grow, hence the great distance between beets in the row.

[^1]: *The coefficient of purity is the per cent of sugar in the total solids of the juice of the beet.
 \dagger This number is only approximate, and shows the quantity of merchantable sugar which might be expected per acre from the yield, as reported by you, if manufuctured by the best approved modern process.

[^2]: Simou Morkit.
 J. I. Smith.
 WIM. Crasth
 W. H. Andre

[^3]: * Excluding one beet weighing 10 pounds.

[^4]: * Up to December 18, 1892, at which time there was still two weeks' work, whiell would bring the total up to near $10,000,000$ pounds.

[^5]: The actual yield from 98.3 rods of collected, cleaned, and weighed seed was........... pounds.. 595

 Value of 595 pounds, at 20 cents per pount $\$ 119.00$
 Value per acre... 193. 60

[^6]: - Alsame shets from report of Entomologist in Ammal Report of the Secretary of Agriculture for 1892.

[^7]: * By courtesy of Commissionct of Interual Revenue.
 \dagger Returns to February 1, 189t-one factory still in operation.

[^8]: ${ }^{1}$ Data supplied, through the courtesy of Mr. Willis S. Moore, chief of the Weather Bureau, by Mr. A. J. Henry. The map was drawn by the draftsmen of the Bureau under Mr. Henry's direction.

[^9]: Briefly stated, the average for 157 analyses of beets from all over the Territory is 8.56 per cent of sugar in the juice, with a purity of 61.8 . At first glance these are discouraging figures indeed, but taken as they stand they are misleading, and their true significance can only be gotten at by examining the whole series of analyses for differences due to tho eftect of such important factors as care and skill in growing, different kinds of soil, differences of climate found in varions localities and at different times of the year, and the variety of beets planted.

 In order to show the results of careful cultivation upon the quality of the beets, I have divided the samples received from Salt River Valley into three lots.

 The first lot consists of 13 samples grown hy I)r. Clatlin on the experimental substation grounds near Phonix. These beets were given the most excellent care. The second lot consists of 24 samples obtained from 12 growers near Jhenix, filendale, and Mesa. These beets received a fair amount of care during growth, but on the a verage irere probably not as carefully attended to as Dr. Claflin's 13 samples. The third lot consists of 60 samples from the same lowalities, hut which were cared for scarcely at all excepting for an occasional irrigation. The results speak for themselves. Dr. Claflin's 13 samples averaged 11.23 per cent of sugar in the juice with a purity of 68.3 . The 21 cultivated samples from other growers averaged 9.42 per cent of sugar in the juice, with a purity of 66.3 . Tho 60 neglected samples gave 8.35 per cent of sugar in the juice, with a purity of 53.4 .

 These figures confirm the well-known fact that intelligent and skillfal care is essential in beet culture; more so, I dare say, than in the production of any other great staple, and careless or ignorant treatment of our vegetable thoroughbred will

[^10]: The 500 pounds of sugar-beet seed sent us by the Department of Agriculture were distributed to wer 300 farmers of the state, with directions as to preparation of the soil, planting, and cultivating. During the growing season, the larger part of

[^11]: The following ontline of the orography of New York is substantially as given hy Prof. Arnold Guyot. Further details are exhibited loy the accompanying relief map.

[^12]: * The sign * indicates that the number given is $0.95 \times$ per cent of sugar reporterl since it was doubtful whether the per cent of sugar was expressed in terms of the weight of the juice or that of the beet though probably the former.
 a Analyses of Kleinwanzlebener only show: 32 samples, sugar 11.8, purity 73.6 .
 b From report made on the total crop by the Chino Valley Beet Sugar Company.

[^13]: * The sign * indicates that the number given is $0.95 \times$ per cent of sugar reported siuce it was doubtful whether the per cent of sugar was expressed in terms of the weight of the juice or that of the beet, though probably the former.
 a Average weight of $2 \because 9$ samples.
 b Average weight of 88 samples.
 c Analyses reported Ly the Standard Cattle Company.
 d Averages for 1893 to 1896 , inclusive.

[^14]: *The sign * indicates that the number given is $0.95 \times$ per cent of sugar reported since it was doubtful whether the per cent of sugar was expressed in terms of the weight of the juice or that of the beet, though probably the former.
 a Report made on total crop by Utah Sugar Company, 1891-1896.
 b Average weight (net) estimated from average gross weight.

[^15]: * In figuring the arerages, each analysis is valned in proportion to the weight of the sample.

[^16]: * Not included in areraging the purity cocficients.

 In tiguring the arerages, each analysis is valued in proportion to the meight of the sample it represents.

[^17]: Statistics of the production of beet sugar in the United States for the year 1897.

[^18]: Niumber of factories in operation

 Aproximate average price paid for beets... \& 10
 Approximate average per cent of sugar in the beets... 14.49
 Total pounds of granulated sugar made... $90,060,470$
 Total poumls of raw sugar mate.
 431.201

 Gramulated sugar obtained per cent beets .. 11.56
 Raws shear obtained ler cent beets ...
 Total sugar obtained per ton (2,000 pounds) of beets... 232.4

