TP 76-17

Floating Breakwater Field Assessment Program, Friday Harbor, Washington

by

B.H. Adee, E.P. Richey, and D.R. Christensen

TECHNICAL PAPER NO. 76-17 OCTOBER 1976

Approved for public release; distribution unlimited.

Prepared for

U.S. ARMY, CORPS OF ENGINEERS COASTAL ENGINEERING RESEARCH CENTER

> Kingman Building Fort Belvoir, Va. 22060

GB 450 ,T4 No 76-17 Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

> National Technical Information Service ATTN: Operations Division 5285 Port Royal Road Springfield, Virginia 22151

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

TP 76-17 TTTLE (and Subtitle) FLOATING BREAKWATER FIELD ASSESSME FRIDAY HARBOR, WASHINGTON	2. GOVT ACCESSION NO.	DEFORE COMPLETING FORM
TP 76-17 • TITLE (and Subtilie) FLOATING BREAKWATER FIELD ASSESSME FRIDAY HARBOR, WASHINGTON		3. RECIPIENT'S CATALOG NUMBER
FLOATING BREAKWATER FIELD ASSESSME FRIDAY HARBOR, WASHINGTON		
FLOATING BREAKWATER FIELD ASSESSME FRIDAY HARBOR, WASHINGTON	1	5. TYPE OF REPORT & PERIOD COVE
	NT PROGRAM,	Technical Paper 6. performing org. report numbe
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(8)
B.H. Adee E.P. Richey		DACW72-74-C-0012
<u>D.R. Christensen</u> 3. Performing organization name and address Ocean Engineering Research Laborat University of Washington	ory	10. PROGRAM ELEMENT, PROJECT, TA AREA & WORK UNIT NUMBERS
Seattle, Washington 98105		F31538
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Department of the Army	(OFDDE OG)	September 1976
Coastal Engineering Research Cente	r (CERRE-OC)	13. NUMBER OF PAGES
ALIIGINAN BULLAING, FORT BEIVOIR, VI 14. MONITORING AGENCY NAME & ADDRESS(1) differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADIA SCHEDULE
18. SUPPLEMENTARY NOTES		
18. SUPPLEMENTARY NOTES		
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary ar 	d identify by block number;	
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse aide if necessary and Breakwaters Floating breakwaters Friday Harbor, Washington 	nd identify by block number) Wave attenuatio) Wave reflection on Waves Wave transmission
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary ar Breakwaters Floating breakwaters Friday Harbor, Washington 	nd identify by block number) Wave attenuatio	Wave reflection Maves Wave transmission
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and Breakwaters Floating breakwaters Friday Harbor, Washington ABSTRACT (Continue on reverse side if necessary and A theoretical model for prediction water is presented along with a revide basic data for verifying the literature and from auxiliary labor 	d identify by block number; Wave attenuatio d identify by block number; ting the dynamic port on a field model. Addition ratory experimen	Wave reflection Maves Wave transmission behavior of a floating br experiment designed to pro al data were taken from th ts.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

prediction model was developed from two-dimensional, linearized solutions of the hydrodynamical equations formulated in terms of a boundary value problem for the velocity potential. Some nonlinear effects are considered. Results for the predicted transmission coefficients were in good agreement with laboratory and field data, and they showed how the influence of fixed-body transmission, and of sway, heave, and roll motions on the transmission coefficient changed with increasing values of the parameter, beam (width) to wavelength ratio. The shape of the curves predicting the mooring line forces as a function of the beam (width) to wavelength ratio (or of wave frequency) followed those for the measured responses, but predicted magnitudes did not agree closely with measured values.

The floating breakwater at Friday Harbor, Washington, was used as the field experimental platform; it was instrumented to record the incident and transmitted waves, mooring line forces, and the acceleration components of sway, heave, and roll. Ninety-five 17-minute records were obtained during the period 30 December 1974 to 5 May 1975. Statistical summaries of all data are presented with analyses of selected transmitted waves, transmission coefficients, and acceleration components. The summaries and analyses constitute a performance report of a particular floating breakwater as well as an input to the development of the theoretical model.

2

PREFACE

This report is published to provide coastal engineers with a basic analytical procedure in the evaluation of certain floating breakwater types as structures for protecting particular sites against wind waves. The work was carried out under the coastal construction program of the U.S. Army Coastal Engineering Research Center (CERC).

This report was prepared by Dr. Bruce H. Adee, Assistant Professor of Mechanical Engineering, Mr. Derald R. Christensen, Research Engineer, and Dr. Eugene P. Richey, Professor of Civil Engineering, of the Ocean Engineering Research Laboratory, University of Washington, Seattle, Washington, under CERC Contract No. DACW72-74-C-0012.

Special appreciation is extended to the port of Friday Harbor, Washington, for the use of the floating breakwater for the field assessment part of the study. Mr. Robert Hovey, Port Engineer, and Mr. Jack Fairweather, Port Superintendent, provided generous assistance with the numerous logistics problems in the installation and maintenance of the measuring equipment. The sensor monitoring and recording package was adapted from a design developed in a contemporary project sponsored by the University of Washington Sea Grant Program for monitoring two other floating breakwaters of a different type. Data from these two sites were used for comparative purposes in the analyses of the Friday Harbor breakwater.

Dr. D. Lee Harris, Chief, Oceanography Branch, was the CERC contract monitor for the report under the general supervision of Mr. R.P. Savage, Chief, Research Division.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

H. COUSINS

Colonel, Corps of Engineers Commander and Director

CONTENTS

	CONVERSION FACTORS IN C. CHETCHARY TO METRIC (CI)	age
	CONVERSION FACIORS, U.S. CUSIOMARY ID METRIC (SI)	/
	SYMBOLS AND DEFINITIONS	8
I	INTRODUCTION	9
II	THEORETICAL ANALYSIS.1. Linear Theoretical Model.2. Nonlinear Theoretical Model3. Results	12 13 19 22
III	FIELD DATA.1. Layout.2. Instrumentation3. Wind Data4. Waves5. Cable Forces.6. Motion Package.7. Data Acquisition System8. Data Processing and Analysis.	49 49 49 49 53 53 53 54
IV	COMPARISON OF THEORY WITH FIELD DATA FOR FRIDAY HARBOR BREAKWATER	64
v	CONCLUSIONS	71
	LITERATURE CITED	72
APPENDIX		
A	HYDROSTATIC RESTORING FORCES AND SPRING CONSTANTS	74
В	MOORING ANALYSIS	79
С	LINEAR HYDRODYNAMIC COEFFICIENTS	104
D	FLOATING BREAKWATER ANALYSIS	107
Е	DERIVATION OF PRESSURE TO SECOND ORDER FOR TWO PROGRESSIVE WAVES AT DIFFERENT FREQUENCIES	148
F	PHYSICAL PROPERTIES OF SEVERAL FLOATING BREAKWATERS	156
G	DATA SUMMARY SHEETS FOR FRIDAY HARBOR FLOATING BREAKWATER	160
н	INCIDENT AND TRANSMITTED WAVE SPECTRAL PLOTS	180

CON	T	ΕN	IT	S

APP	PENDIX-Continued	D
	I LOW-FREQUENCY SPECTRAL ANALYSIS OF FORCE DATA	Page 192
	J HIGH-FREQUENCY SPECTRAL ANALYSIS OF FORCE AND MOTION DATA	200
	K WAVE MEASUREMENT	218
	TABLE	
	Summary of anchor cable force statistics	61
	FIGURES	
1	Aerial view of Friday Harbor breakwater	11
2	A two-dimensional floating breakwater	14
3	Linear system representative of a floating breakwater	20
4	Filtered low-frequency seaward mooring line force, Tenakee, Alaska	21
5	Transmission coefficient for proposed Oak Harbor breakwater	24
6	Transmission coefficient for a rectangular breakwater	26
7	Transmission coefficient for a rectangular breakwater restricted to sway motion only	27
8	Transmission coefficient for a rectangular breakwater restricted to heave motion only	29
9	Transmission coefficient for a rectangular breakwater	30
.0	Transmission coefficient for Alaska-type breakwater model	31
.1	Transmission coefficient for rigidly fixed Alaska-type breakwater model	33
2	Transmission coefficient for Alaska-type breakwater, Tenakee, Alaska	34
13	Theoretically predicted transmission coefficient, Friday Harbor breakwater	36

CONTENTS

FIGURES-Continued

		Page
14	Theoretically predicted sway motion response, Friday Harbor breakwater	38
15	Theoretically predicted heave motion response, Friday Harbor breakwater	39
16	Theoretically predicted roll motion response, Friday Harbor breakwater	40
17	Seaward mooring line force for proposed Oak Harbor breakwater	42
18	Seaward mooring line mooring-force coefficient, Tenakee, Alaska	44
19	Recorded time series, Tenakee, Alaska	45
20	Theoretically predicted long-period sway response of Alaska- type breakwater, Tenakee, Alaska	46
21	Theoretically predicted seaward mooring line mooring-force coefficient, Friday Harbor breakwater	47
22	Theoretically predicted long-period sway response, Friday Harbor breakwater	48
23	General location map	50
24	Field experiment site location map	51
25	Instrumentation location plan, Friday Harbor breakwater	52
26	Instrumentation and recording package layout	55
27	Average transmission curves for Friday Harbor breakwater	59
28	Transmission coefficient for Friday Harbor breakwater	65
29	Sway acceleration response for Friday Harbor breakwater	66
30	Heave acceleration response for Friday Harbor breakwater	67
31	Roll acceleration response for Friday Harbor breakwater	68
32	Seaward mooring line mooring-force coefficient, Friday Harbor breakwater	70

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. c	eustomary	units	of	measurement	used	in	this	report	can	$\mathbf{b}\mathbf{e}$	converted	to	metric	(SI)
units a	as follows:													

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
ounces	28.35	grams
pounds	453.6	grams
	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.1745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

¹To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F - 32). To obtain Kelvin (K) readings, use forumla: K = (5/9) (F - 32) + 273.15.

SYMBOLS AND DEFINITIONS

A ₁ ,A ₂	Amplitudes of two incident waves
al	Amplitude of sway, heave, or roll motion for i = 1,2,3
В	Characteristic beam of breakwater
C _O	Body contour
C _T	Transmission coefficient
F _j (t)	Sway, heave, or roll exciting forces or moment for $j = 1,2,3$
KH _{ij}	Hydrostatic restoring-force coefficient for force in the jth direction due to motion in the ith direction
КМіj	Similar to KH_{ij} but due to the mooring system
k ₁ ,k ₂	Wave numbers of two incident waves
L	Incident wavelength
^m ij	Mass or moment of inertial when i = j, 0 when i \neq j
→ n	Unit interior normal to body surface
P(x,y,t)	Pressure
ř	Vector from center of gravity to a point on the body surface
α _i ,ἀ _i ,α _i	Sway, heave, or roll motion; speed or acceleration
δ	Phase angle
δ1,δ2	Phase angles for two incident waves
η(x,t)	Free-surface elevation
$\eta_{I}(x,t)$	Wave surface elevation for incident wave
$\eta_{\mathrm{T}}(\mathrm{x,t})$	Wave surface elevation for transmitted wave
λ_{ij}	Damping coefficient for force in the jth direction related to velocity in the ith direction
μij	Added-mass or inertial-force coefficient for force in the jth direction related to acceleration in the ith direction
ρ	Fluid density
φ	Velocity potential
ω	Frequency
ω1, ω2	Frequencies for two incident waves

FLOATING BREAKWATER FIELD ASSESSMENT PROGRAM, FRIDAY HARBOR, WASHINGTON

by B.H. Adee, E.P. Richey, and D.R. Christensen

I. INTRODUCTION

Floating structures for use in the attenuation of water waves were introduced by Joly (1905). Little was done with the concept until the Bombardon floating breakwater was deployed to form a harbor during the Normandy invasion of World War II. The use of mobile harbors for potential military applications provided the incentive for extensive work during the postwar years. Representative articles from this period include those by Minikin (1948) who discussed floating breakwaters in general terms, Carr (1951) who used basic mechanics to predict transmission characteristics, and the review of the performance of the Bom-Bardon by Lochner, Faber, and Penny (1948). In 1957, the Naval Civil Engineering Laboratory, Port Hueneme, California, began a concerted exploration of the existing knowledge of transportable units that could serve as breakwaters or piers. Results of the study are summarized in Naval Civil Engineering Laboratory (1961), which was an invaluable state-of-the-art assessment with particular emphasis on military uses under the rather severe site criteria of an incident wave with a 15-foot height, 13-second period, minimum water depth of 40 feet, inshore transmitted wave height of 4 feet, and tidal range of 12 feet. A sequel to the earlier study (Naval Civil Engineering Laboratory, 1971) surveyed concepts for "transportable" breakwaters, including over 60 in the "floating" category. Although no breakwater system was disclosed which would meet the stringent military site criteria and transportability requirement, these state-of-the-art reviews sparked renewed interest in the floating breakwater for nonmilitary applications. A review of developments in floating breakwaters was summarized by Richey and Nece (1974); Seymour (1974) introduced a new and innovative concept for wave attenuation using a system of tethered floats which may have application over a wide range of wave conditions.

Continually increasing pleasure boat ownership has nearly exhausted the available supply of moorage space in many areas. The need for additional moorage space in conjunction with escalating construction costs and more stringent environmental restrictions require careful scrutiny of alternatives to the traditional fixed breakwater and excavation techniques employed in marina construction. Productive time in weatherdependent, waterborne activities such as construction, logging, and cargo handling could be increased if protective floating, transportable breakwaters were used. Other uses in the control of shoreline erosion and in the emerging mariculture industry may also be found. The information on the performance of floating breakwaters, i.e., their wave attenuating characteristics, mooring line forces, and motions, is contained primarily in reports of laboratory scale model tests with monochromatic incident waves; the few exceptions are the early analytical work by Carr (1951) and the occasional piece of information from a fullscale test like that performed by Harris (1974). There is a need for a fundamental analytical procedure to predict the performance characteristics of floating breakwaters with arbitrary cross section when exposed to a given incident wave. This procedure could be used to systematically compare performance information available in the literature, to examine new design proposals, and either eliminate or reduce and systematize auxiliary experimental studies.

The development of the predictive procedure was the primary thrust of the project with the concommitant field assessment of a full-scale floating breakwater in operation at Friday Harbor, Washington (Fig. 1). The analytical model developed from the two-dimensional, linearized solutions of the hydrodynamical equations formulated in terms of a boundary value problem for the velocity potential. The model was refined progressively by comparisons with results already reported in the literature, by auxiliary laboratory tests, and by the results from the Friday Harbor field program, where measurements of incident and transmitted waves, mooring line forces, and acceleration in sway, heave, and roll were measured over a 6-month period.

Figure 1. Aerial view of Friday Harbor breakwater.

II. THEORETICAL ANALYSIS

In the analysis of complex systems such as floating breakwaters, there is a great need for model-scale experiments to predict their performance and provide data for the application of rational engineering design principles. Full-scale measurements are also extremely valuable in verifying scaling relationships and in providing confidence that the data obtained from smaller scale experiments are reasonable.

When one considers the myriad possible breakwater configurations which have been proposed to date and the different conditions which prevail at each potential breakwater site, the number of required model tests and the attendant expense are very large. To avoid this expense and also to permit parametric studies aimed at obtaining optimum breakwater configurations, a theoretical model was developed. The goal was to theoretically predict the performance which could be measured in laboratory studies or at prototype installations.

The initial restriction imposed on the theoretical model was to consider only two-dimensional conditions. Under this restriction the breakwater is assumed to be very long in one direction with long-crested waves approaching so that their crests are parallel to the long axis of the breakwater. At most breakwaters where the wave climate results from wind-generated waves, this condition would rarely be approached. However, experiments performed using a boat wake to generate incident waves on the beam and at an angle to a breakwater indicate larger breakwater motions and larger transmitted waves when the incident wave crests approach parallel to the long axis of the breakwater (Stramandi, 1975). As a design tool, a two-dimensional theory provides information on the worst conditions which might be expected to occur. In addition, the extensive two-dimensional wave-channel experiments provide the data needed to test the theoretical model.

Throughout the development of the theoretical model, every attempt was made to orient the model toward providing a useful tool applicable to realistic problems. To perform the calculations the user need only know the incident wave frequencies of interest, the contour of the breakwater cross section (catamaran- or trimaran-type cross sections are permitted), and the physical properties of the breakwater (these include mass, mass moment of inertia, and the static restoring-force coefficients).

The approach used here has been to employ the techniques which naval architects have developed to deal with ship motion problems. Mathematically, the hydrodynamic equations are formulated in terms of a boundary value problem for the velocity potential. Solution of this complete problem is presently impossible because the free-surface boundary condition is nonlinear. An approximate solution may be obtained if restrictions are imposed on the boundary value problem, and the procedure of linearization is applied. The restrictions limit the applicability of the solution to cases of small incident wave amplitude and small motion response of the breakwater.

When using the linearized theory which is presented here, one must be well aware of the limits of applicability which are imposed on the results in order to permit the formulation of a tractable mathematical problem. Care must also be exercised because these restrictions may exclude phenomena which occur in nature from appearing in the mathematical analysis. For instance, field observations clearly demonstrate the occurrence of mooring line force oscillations at periods greater than those which could be attributed directly to wind-generated wave excitation. Using a linearized approach, these long-period oscillations would not appear in the analysis. A theoretical model which includes nonlinear behavior of the system is required if these long-period oscillations are to be included.

A possible nonlinear mechanism for the transfer of wave energy to lower frequencies has been postulated and is presented to supplement the linear analysis.

1. Linear Theoretical Model.

The problems involved in theoretically predicting the performance of a two-dimensional floating breakwater are illustrated in Figure 2. Here an incident wave approaches the breakwater on the beam. A part of the energy contained in the incident wave is reflected, part passes beneath the breakwater, and some is lost through dissipation. Another part of the incident wave energy excites the motions of the breakwater. These motions are restrained by the mooring system. The oscillating breakwater in turn generates waves which travel away from the breakwater in the directions of the reflected and transmitted waves. The total transmitted wave is the sum of the component which passes beneath the breakwater and the components generated by the breakwater motions. The total reflected wave is composed similarly.

In completing the calculations, the information which is of most interest to the designer includes:

- (a) Total transmitted and reflected waves including their components.
- (b) Wave forces on the breakwater.
- (c) Motions of the breakwater.
- (d) Forces on the mooring lines.

For the two-dimensional breakwater, definitions for the motions are shown in Figure 2. Sway is defined as the oscillation perpendicular to the long axis, or along the x-coordinate axis. Heave is the vertical

Figure 2. A two-dimensional floating breakwater.

motion of the breakwater along the y-coordinate axis, and roll is the rotation about the long axis or the z-coordinate direction.

As long as the problem is linear, computing the performance of a floating breakwater may be separated into three parts:

(a) Formulate equations of motion,

Calculate hydrostatic forces and moments.

Evaluate hydrodynamic coefficients in equations of motion.

Compute exciting forces on breakwater.

Solve for the motions and motion-generated waves.

Compute forces in the mooring lines.

- (b) Solve for the waves diffracted by a rigidly restrained breakwater.
- (c) Sum components to obtain total reflected and total transmitted waves.

When combined, these parts of the calculation provide complete performance data for a two-dimensional breakwater.

a. <u>Breakwater Motions</u>. In deriving the equations of motion, Newton's law is used.

$$m_{ij} \ddot{\alpha}_{i} = \Sigma$$
 forces; (1)

here:

α = motion of the breakwater in sway, heave, and roll for
 i = 1,2,3, respectively. The dot above indicates differentiation with respect to time.

 m_{ij} = mass or mass moment of inertia when i = j and zero when i \neq j.

Expanding this equation to include the various forces in the summation yields:

$$m_{ij} \ddot{\alpha}_{i} = F_{j}$$
 (inertial) + F_{j} (wave damping)
+ F_{j} (friction) + F_{j} (hydrostatic) + F_{j} (mooring)
+ F_{i} (wave exciting)

The inertial force (or added-mass force) arises when the breakwater accelerates, which also accelerates the fluid around it. The motion-generated waves are moving away from the breakwater and result in the wavedamping term. A term representing the forces due to viscosity is included, but these forces are neglected in the analysis. Experience in ship motion analysis (Salvesen, 1970) has shown this to be acceptable for all motions but roll, where damping may make a more significant contribution than for sway and heave motions. At present, the main reason for neglecting the frictional forces is that they lead to nonlinear terms in the equations of motion, which make their solution far more complex. Hydrostatic forces arise because of changes in the displaced volume of the breakwater when it moves. In this analysis the mooring forces are modeled as simple springs with their contribution to the damping and inertial forces considered small in comparison to similar terms resulting from the breakwater motion. The wave exciting force results from the incident waves striking the breakwater.

If we neglect the nonlinear terms and assume that the fluid is inviscid, then the equations of motion describing the coupled sway, heave, and roll motions of the breakwater are of the form:

$$\sum_{i=1}^{3} \{(m_{ij} + \mu_{ij}) \ \alpha_{i} + \lambda_{ij} \ \alpha_{i} + (KH_{ij} + KM_{ij}) \ \alpha_{i}\} = F_{j}(t)$$
(2)
for j = 1,2,3.

The symbols are defined as follows:

- μ_{ij} = added-mass coefficient with the μ_{ij} α_i representing the added-mass force or moment in the jth direction due to acceleration in the ith direction,
- λ_{ij} = damping-force coefficient relating damping force or moment in the jth direction to velocity in the ith direction.
- KH_{ij} = hydrostatic spring constant relating the restoring force or moment in the jth direction to displacement in the ith direction.

KM_{ii} = similar to KH_{ij} but due to the mooring system.

 F_i = exciting force or moment in the jth direction.

In order to solve these equations, the physical mass and moment of inertia, added mass and damping coefficients, static spring constants, and the exciting forces must all be known. Mass and moment of inertia are computed directly from the specifications of the breakwater section. The KH_{ij} are derived directly from hydrostatic considerations in Appendix A, while approximate values for KM_{ij} are obtained by using a discretized approximation for the mooring line as described in Appendix B. Potential theory and the principle of linear superposition permit derivations for the hydrodynamic coefficients and forcing function μ_{1j} , λ_{1j} and $F_{j}(t)$.

Steady-state solutions of the form:

 $\alpha_{i}(t) = a_{i} \sin (\omega t + \delta_{i}) \text{ for } i = 1,2,3$ (3)

are assumed. Substitution of the assumed solution (eq. 3) into the equations of motion (eq. 2) yields a set of linear algebraic equations which may be solved for the unknown amplitudes and phase angles a_i and δ_i . Transfer functions, H_i , are then defined by the a_i and δ_i since the incident waves are assumed to be sinusoidal.

b. <u>Hydrodynamic Coefficients and Waves</u>. Potential theory is employed in computing the reflected and transmitted waves, hydrodynamic coefficients and the exciting forces. Under the assumptions of small incident waves, small breakwater motions and an inviscid fluid, the velocity potentials may be found and the problem subdivided using the principle of linear superposition. The total velocity potential:

 $\phi_{\text{total}} = \phi_{\text{incident}} + \phi_{\text{diffracted}} + \phi_{\text{motion}}^{(i)}$ for i = 1, 2, 3 (4)

is the sum of the incident wave potential, the diffracted wave potential and the potential resulting from forced sway, heave, and roll motions.

The incident wave potential is well known and may be expressed directly. Obtaining the diffracted wave and breakwater motion potentials requires the solution of boundary value problems. These problems and their solutions are described in Appendix C. Appendix D provides the computer program used to calculate breakwater performance,

When the velocity potentials have been obtained, the free-surface elevation at any position is found using the linearized free-surface boundary condition:

(5)

$$n(x,t) = -\frac{1}{g} \phi_t (x,0,t).$$

Here:

n(x,t) = free-surface elevation measured from stillwater level (y = 0),

g = acceleration of gravity,

 $\phi_t(x,0,t)$ = derivative of the velocity potential with respect to time evaluated at y = 0.

$$\eta_{\text{total}}(x,t) = -\frac{1}{g} \{\phi_{t \text{ incident}}(x,0,t) + \phi_{t \text{ diffracted}}(x,0,t)$$

+
$$\phi_{t \text{ motion}}^{(i)} (x,0,t)$$
}. (6)

The fluctuating component of pressure in the fluid and on the breakwater hull surface may be computed using Bernoulli's equation:

$$P(x,y,t) = -\rho \phi_{+}(x,y,t).$$
(7)

By computing pressures on the hull surface and integrating these around the contour, the forces on the breakwater may be computed. The force per unit length acting on the breakwater is then:

$$F(t) = \int_{C_0} P \vec{n} \, ds.$$
(8)

In this case,

F(t) = force on the breakwater, \overrightarrow{n} = unit interior normal vector on the hull surface,

 C_{o} = contour of breakwater cross section.

The rolling moment is:

$$M(t) = \int_{C_0} P \vec{r} \times \vec{n} \, ds, \qquad (9)$$

where,

 \vec{r} = the vector from the center of gravity to a point on the surface.

To compute the exciting forces on the breakwater in linear theory, the pressure due to the incident and diffracted waves is integrated over the hull surface. These forces and moments become:

$$F_{1}(t) = \{-\rho \int_{C_{0}} [\phi_{t} \text{ incident } (s,t) + \phi_{t} \text{ diffracted}(s,t)] \vec{n} ds \} \cdot \vec{1},$$

$$F_{2}(t) = \{-\rho \int_{C_{0}} [\phi_{t} \text{ incident } (s,t) + \phi_{t} \text{ diffracted}(s,t)] \vec{n} ds \} \vec{j},$$

$$F_{3}(t) = \{-\rho \int_{C_{0}} [\phi_{t} \text{ incident } (s,t) + \phi_{t} \text{ diffracted}(s,t)] \vec{r} \cdot \vec{n} ds \} \cdot k.$$
(10)

Hydrodynamic coefficients are found using the potential resulting from forced oscillation of the breakwater. In this case the pressure integrated over the surface has a component in phase with acceleration and a component in phase with velocity. The component in phase with acceleration is normally referred to as the added mass, while the component in phase with velocity is the damping.

The hydrodynamic coefficients shown in this section are derived in greater detail in Appendix C.

c. <u>Mooring Forces</u>. At the time the spring constants for the mooring lines are computed, mooring force coefficients are also calculated. These are:

 $\frac{\Delta F}{\Delta \alpha}$ = change in mooring line force per unit displacement in

i sway, heave, or roll when i = 1, 2, or 3, respectively.

The forces in the mooring lines may then be computed once the motions have been found.

Mooring Force =
$$\sum_{i=1}^{5} \left(\frac{\Delta F}{\Delta \alpha_{i}} \right) \alpha_{i}(t)$$

The description of the linear system is now complete. The block diagram in Figure 3 shows the relationships among the calculations which are required.

2. Nonlinear Theoretical Model.

Measurements taken at the Tenakee, Alaska, floating breakwater before this research program was begun indicated the presence of a longperiod oscillatory motion of the breakwater. These long-period motions were manifested most clearly in the measured mooring line forces. Looking at these, one can visually observe an oscillation with a period of about 60 seconds superimposed over the expected shorter period oscillations. Figure 4 shows the results of a spectral analysis of the seaward mooring line data after a low-pass filter has been applied (the technique for performing the spectral analysis is given in Section III of this report).

The linear theoretical model permits the system to respond only at the frequency of the incident wave. In order to explain the presence of these long-period oscillations, nonlinearities must be included in the analysis. To perform a mathematically complete analysis including all nonlinear effects is beyond the present state of the art. However, in the case of the floating breakwater, one can show that if two incident waves are considered and second-order terms are retained, then an exciting force is present at the difference between the frequencies of the incident waves. The complete derivation in Appendix E shows that the nonlinear pressure may be expressed as:

Linear system representative of a floating breakwater. Figure 3.

Figure 4. Filtered low-frequency seaward mooring line force, Tenakee, Alaska (record TK7-23).

$$P(t) = -\frac{\rho}{2} \{\omega_1^2 A_1^2 e^{2k_1 t} + \omega_2^2 A_2^2 e^{2k_2 y} - 2\omega_1 \omega_2 A_1 A_2 e^{(k_1 + k_2)y} \cos [(k_1 - k_2)x] - (\omega_1 - \omega_2)t + \delta_1 - \delta_2]\}, \qquad (11)$$

where,

 $\rho = \text{fluid density,}$ $\omega_1, \omega_2 = \text{incident wave frequencies,}$ $A_1, A_2 = \text{incident wave amplitudes,}_2 \\ k_1, k_2 = \text{incident wave numbers} = \frac{\omega_1}{g}, \frac{\omega_2}{g},$ $\delta_1, \delta_2 = \text{incident wave phase angles.}$

Combining this pressure with the pressure obtained from the linear theory and integrating over the hull would provide additional exciting-force terms at zero frequency and at the difference frequency. Carrying the nonlinear exciting-force terms back through the linear response analysis should provide a quasi-linear approach. While there is no reason to expect this to provide exact correlation with measured data, the quasilinear approach would at least permit the natural phenomena to enter into the mathematical analysis.

One would expect terms to appear in the second-order pressure (eq. 11) at twice the incident wave frequency and at the sum of the incident wave frequencies. Terms at twice each of the incident wave frequencies can be derived by applying the trigonometric relationships to the terms at zero frequency. While a term at the sum of the incident wave frequencies does not appear in the second-order incident wave potential, this term may result when the second-order potentials representing diffraction or forced oscillation in calm water are included.

A great deal more effort is required in this area to complete the analysis. There is also one other area where a nonlinear, or quasilinear, analysis should be investigated. This is in the roll-damping coefficient. Here, viscous effects seem to be important, and while the problem has not been dealt with within the present study, investigators have included a term proportional to velocity squared in the equation for roll motion.

3. Results.

The computer program given in Appendix D has been developed to

calculate the values of hydrodynamic coefficients, breakwater motions, and the wave field. Input variables include:

- (a) The body contour, ${\rm C}_{\rm O},$ represented by a series of points on the contour.
- (b) The physical properties of the body: mass, mass moment of inertia, and position of the center of gravity.
- (c) The mooring system spring constants.
- (d) The hydrostatic restoring spring constants.
- (e) The incident wave frequency, ω.

In this program the exciting forces and moments appearing in the equations of motion and the fixed-body parts of the transmitted and reflected waves are found by computing the forces, moments, and waves which result when a rigidly fixed body is struck by a sinusoidal incident wave of frequency ω . Motions are found by computing the steady-state solution to the three equations of motion. The hydrodynamic coefficients and the waves generated by the body motions are found by computing the forces, moments, and waves which result when the body is forced to oscillate in stillwater in pure sway, pure heave, or pure roll.

The physical properties used in the performance calculations for the various breakwaters are collected in Appendix F.

a. Wave Transmission. To assess the performance of a floating breakwater, one quantity which is commonly used is the transmission coefficient. This is simply the transmitted wave amplitude divided by the incident wave amplitude, $|\eta_T(x,t)|/|\eta_I(x,t)|$ for monochromatic incident waves.

(1) Proposed Oak Harbor Breakwater. At one time the Corps of Engineers was considering a marina and floating breakwater at Oak Harbor, Washington. Model experiments were carried out by Davidson (1971) to determine transmission characteristics and mooring forces. The breakwater itself had a catamaran-type cross section. A comparison between the theoretically predicted and experimentally measured transmission coefficient is shown in Figure 5. This figure as well as the others plotted in this section and Section IV were drawn using a CALCOMP plotter. The plotting program uses a parabolic fit to determine additional points between the given data. Varying numbers of data points were used to describe each curve depending on its behavior. Data points were closely spaced in regions where the theoretical predictions indicated large changes in curvature. Wavelength is calculated in all the figures using the relationship between wavelength and period for waves in deep water.

In this case, the results compare reasonably well except for the

predicted dip in transmission just above a B/L (beam/wavelength) of 0.2. There is also some difference at higher B/L ratios.

The theory predicts that the part of the transmitted wave which would result where the body is rigidly fixed is almost 1 for a B/L less than 0.1 and drops rapidly at higher B/L ratios to the point where it is of little consequence beyond 0.2. Waves generated by the breakwater motions play an increasing role for B/L ratios above 0.15. Heave motion is the major contributor to the transmitted wave in the very narrow band of B/L between 0.15 and 0.18 with a predicted heave resonance at a B/L of about 0.18. The dip occurs because the waves generated by heave and sway motions are almost 180° out of phase and cancel each other out. At B/L ratios above 0.25, sway motion assumes an increasingly dominant role. Roll motions are small throughout and generate only very small waves.

(2) <u>Rectangular Breakwater</u>. A breakwater of rectangular cross section with the same beam and draft as the proposed Oak Harbor breakwater was tested at the University of Washington by Nece and Richey (1972). Results for the water depth of 29.5 feet are shown in Figure 6.

Again the agreement is reasonable. Further experiments with this model have confirmed the existence of the trough at a B/L of 0.2. However, this phenomenon can be observed only for very small wave heights. For practical purposes, the dip may be smoothed over considerably. The major discrepancy is at the high B/L ratios where the theory shows considerably greater transmission than is actually measured in the model tests. Since the transmitted wave is almost totally a result of sway motion, the problem must lie in the wave predicted by this motion.

Over the entire range of wavelengths of interest, the predicted results follow the pattern previously discussed for the proposed Oak Harbor breakwater. The transmitted wave is almost completely a result of fixed-body transmission followed by regions of heave resonance, heave and sway cancellation, and finally, sway wave generation as the B/L increases.

It is interesting to note that there is very little difference between the open-well breakwater and the closed rectangle of the same overall dimensions.

(3) <u>Rectangular Breakwater Tested by Sutko and Haden</u>. In some recent experiments Sutko and Haden (1974) have examined the effect that restricting breakwater motions has on the transmission coefficient. They used a rectangular breakwater model with a beam-to-draft ratio of 1.5. Plexiglas end assemblies were used to restrict the breakwater motions.

Figure 7 shows the transmission coefficient when the breakwater is restricted to sway motions only. Here, the transmitted wave contains a component resulting from the fixed-body transmission and a component

Figure 6. Transmission coefficient for a rectangular breakwater.

resulting from the wave generated by the sway motion. At very low B/L ratios the fixed-body transmission is the more important component. At a B/L of about 0.1 both the fixed-body transmission and the sway-generated wave are of equal importance. At B/L ratios higher than 0.215, the wave generated by sway motion dominates. The agreement between theory and experiment is quite reasonable for this case.

A comparison when the breakwater is restricted to heave motion only is shown in Figure 8. There is clearly a discrepancy in this case between measured and theoretically predicted transmission coefficient near the B/L ratio of 0.13. As a matter of fact, the theory predicts a heave resonance in this region which does not seem to be supported by the measured data.

In examining the mechanism used to restrain the breakwater motion, it seemed possible that this apparatus was introducing damping into the system. To test this supposition, transmission coefficients were computed with the calculated hydrodynamic damping increased by an arbitrary amount. The major effect of increasing the damping was to decrease the transmission near the heave resonance region. With damping at three times the hydrodynamic value, the results were quite close to the experimental measurements. Increasing the damping beyond this had very little additional effect on the predicted transmission coefficient. The scatter which appears in the experimental data in this region is a further indication that some nonrepeatable effect may be influencing the experimental results. So long as the additional damping is included in the theoretical calculations, the results compare well with experimental measurements.

Figure 9 shows a comparison between model measurements when the model is unrestrained except by a horizontal mooring cable and the theoretically predicted results without mooring restraints. The theoretical results are characteristic of the rectangular breakwater with the dip in transmission near a B/L equal to 0.2. The pattern of interactions between motion-generated waves and fixed-body transmission is similar to the previous description. The agreement between these results indicates that the **theoretical** model may also yield the correct results when the model is free to heave only. At least further experimental investigation is warranted.

(4) <u>Alaska-Type Breakwater</u>. The State of Alaska has embarked on an ambitious program for constructing moorages using floating breakwaters. As part of a Sea Grant project the University of Washington has been studying the performance of this type breakwater. A theoretically predicted transmission coefficient and the transmission coefficient measured in model tests are shown in Figure 10. The model tests were conducted using very small incident waves (wave heights on the order of 0.2 to 0.3 feet at prototype scale). Results for larger wave slopes were not included in the figure but do show the same trends with lower values of transmission coefficient. Theoretical predictions without added damping and with double the hydrodynamic damping are shown in Figure 10.

Clearly the increased damping makes a significant difference in the results.

Some insight into the performance of this breakwater may be gained by following the theoretical results as a function of B/L. At very low B/L the fixed-body transmission dominates. The trough at a B/L of 0.4 comes mainly from the interaction of the roll-generated wave and the fixed-body transmission. For the next peak at B/L of 0.5 the rollgenerated wave dominates as the roll resonant frequency is encountered. The next trough at B/L of 0.65 is a result of all three motion-generated waves interacting with the fixed-body transmission making only a relatively small contribution to the transmitted wave. The following peak at B/L of 0.7 results from interactions among the motion-generated waves which are of about equal magnitude. At a B/L of 0.86 the heave-generated wave dominates again, but as B/L increases beyond this the effect of heave and roll are rapidly decreasing while sway motion is becoming the dominant wave-generating mechanism. In the region of B/L between 0.4 and 1.0, changing the physical properties of the breakwater can have a marked effect in shifting the peaks and troughs by altering the heave and roll resonant frequencies.

Experience with linear ship motion theory has shown that the worst agreement between predicted and measured motions occurs when rolling motions are considered (Salvesen, 1970). This discrepancy is often overcome by arbitrarily increasing the computed roll damping to compensate for the viscous damping which is neglected. As indicated in Figure 10, when damping is added the theory gives a better prediction where roll motion plays a significant role. This places a significant restriction on the theory requiring careful monitoring of predicted roll motion. Where the theory predicts large roll motion, additional damping will be required to obtain results comparable to measurements.

Figure 11 shows the predicted fixed-body transmission coefficient and the results of model tests. Agreement is quite close except at B/Lof 0.78. The peak in predicted transmission may be due to a resonance of the waves within the well of the catamaran breakwater. There is another peak near B/L of 1.4 indicating the presence of higher harmonic resonances as well. Model tests show at least a slight hump in this region suggesting that the theoretical prediction clearly overestimates the effect of this phenomena, but that this probably is occurring in real life.

For the data measured in the field, the transmission coefficient is defined as the square root of the transmitted wave spectral density divided by the incident wave spectral density. Figure 12 shows the transmission coefficient derived from the data obtained at the Tenakee, Alaska breakwater. The theoretically predicted transmission coefficient with the computed hydrodynamic damping doubled is also shown for comparison. Details of the technique used in the spectral analysis of the field data may be found in Section III.

It should be noted that the model for the Alaska-type breakwater was not built to the correct scale to represent the prototype. Further investigation of the physical properties of the prototype after the model tests were complete revealed that it was heavier than originally predicted. The physical properties used in making the theoretical calculations are correct for all the comparisons made in this report. However, care must be exercised in comparing the model test results and the field measurements directly. The physical properties for all the breakwaters discussed in this section are in Appendix F.

The first trough in the transmission coefficient curve results because the wave generated by roll tends to cancel the fixed-body transmission. The sway-generated wave is small but cancels a little bit of the heave-generated wave. The total transmitted wave is then almost in phase with the heave-generated wave at a slightly reduced amplitude. Complex interactions among the components of the transmitted wave continue to result in oscillations of the transmission coefficient up through a B/L of 0.9. At values of B/L above this, the transmitted wave is primarily a result of sway motion except for the peak at B/L equal to 1.4 which results from an increase in the fixed-body transmission. Considering the complexity of the breakwater response, the agreement should be considered to be reasonably good.

(5) Friday Harbor Breakwater. The computed transmission coefficient for the Friday Harbor breakwater is shown in Figure 13. As in the case of the Alaska breakwater calculations, the computations of wave-damping coefficients have been arbitrarily doubled to reduce the excessive calculated motions in the region of resonant motions. In this figure the spacing of data points varies. More points are used to specify the curve in regions of rapid change so that the plotted result accurately represents the theoretical prediction.

In Figure 13, the first trough in transmission coefficient at about B/L = 0.5 results from heave- and roll-generated waves canceling the fixed-body wave transmission. This transmission coefficient is well below the transmission coefficient which would be obtained with the breakwater rigidly restrained and only fixed-body transmission waves passing through. As B/L increases, there is a peak at about 0.7. At this point the heave-generated wave has almost vanished, and the fixed-body transmission is also small. The larger transmission coefficient is primarily the result of a roll-generated wave with a smaller component resulting from sway motion. The next trough at a B/L of 0.9 occurs as the heave motion-generated components. The fixed-body transmission is very small at B/L of 0.9. As B/L increases beyond 0.9 the transmitted wave is almost totally the result of sway motion of the breakwater.

At larger B/L ratios there are several oscillations in the

transmission coefficient curve. In this region one must be careful of the analysis because there are certain "irregular frequencies" or "John" frequencies where the approach adopted here breaks down mathematically (John, 1950). These are described with reference to the integral equation technique by Frank (1967). It is extremely difficult to predict where the first of these irregular frequencies will occur when the breakwater cross section is as complicated as the Friday Harbor breakwater. If this cross section were rectangular with the same exterior dimensions as the Friday Harbor breakwater, then the first irregular frequency would occur at $B/L \simeq 1.7$. In practice, one may watch for this mathematical phenomenon by checking the determinant of the matrix inverted to solve the system of equations. In fact, this does decrease in the region of B/L of 1.7 but does not indicate a singular matrix for the calculation in this region of B/L. Since this is beyond the frequency range of primary interest, it is best to simply view the results at B/L greater than 1.7 with extreme caution. The oscillations in the transmission coefficient in this region of B/L are probably the result of these irregular frequencies.

b. <u>Breakwater Motions</u>. In the wave channel experiments performed to date, there has been no attempt to compute the breakwater motions. While the transmission coefficient is the primary measure of breakwater performance, the motions may be very important to the designer, particularly if boats are to be tied to the breakwater. For the theoretical analysis, this is a critical intermediate step where extensive experimental measurements used for comparison would be invaluable.

Friday Harbor Breakwater. The theoretically predicted motions of the Friday Harbor breakwater are shown in Figures 14, 15, and 16. The motion response is almost the same as one would expect from an uncoupled spring, mass, dashpot linear system. The only unusual behavior is the null response in heave at B/L of about 0.75. This null occurs at a point where there is a phase shift in the "added-mass" force, a phenomenon which has been observed in experiments with catamaran-type cross sections (Lee, Jones, and Bedel, 1971), and is a result of resonant wave conditions within the open well of the catamaran.

c. Mooring Line Forces. In recent years a great deal of effort has been expended in understanding and predicting mooring line performance, particularly for moored ships and drilling rigs (e.g., American Society of Civil Engineers, 1971). While many of these analysis techniques could be applied to the moorings of floating breakwaters, this has not been done to date. There are also very few model-scale experiments in which mooring forces have been measured and only a few cases where good field data are available.

Two techniques for calculating the spring constants for mooring lines have been used. At first the catenary equations were applied to find the change in force per unit displacement. While this approach leads to a fairly simple algorithm for the calculation, there are a few problems. In several cases spring constants were needed when the mooring

line was too taut to allow it to become tangent to the bottom at the anchor. If this condition occurs, or as it is approached, the catenary equations no longer apply. For many full-scale installations, a combination chain and synthetic line anchor cable is used. This combination anchor cable presents problems in attempting to use the catenary equations.

Comparisons between the mooring line forces calculated using the catenary equations to predict spring constants showed poor agreement with measured results (Adee, 1975). While the general trends were reproduced, an increase in the predicted spring constants of about a factor of 4 would have been required to bring the theoretical prediction into agreement with the measured results.

To overcome the problems encountered in using the catenary equations, a system based on discretization of the mooring line and static equilibrium was developed. This method is described in Appendix B.

(1) <u>Proposed Oak Harbor Breakwater</u>. One of the few model tests in which mooring line forces were measured was performed by Davidson (1971) for the floating breakwater proposed for Oak Harbor, Washington. The model configuration with properties scaled to the prototype is included in Appendix F. The shape of this breakwater is basically an inverted bathtub with foam flotation.

Applying the theory to predict the mooring line force in the seaward anchor line at a water depth of 29.5 feet, one obtains the results shown in Figure 17. The mooring-force coefficient is defined as the amplitude of the force oscillation divided by incident wave amplitude times the weight per unit length of the breakwater. In this figure, the large range of the experimental results is directly related to incident wave amplitude. The smaller incident wave amplitude except at the beam to wavelength ratio of 0.49. Since the linear theory is mathematically correct only in the limit as wave amplitude tends to zero, one would expect the best correlation between theoretically predicted and measured results for small amplitude incident waves. The results shown in Figure 17 are consistent with this expectation. However, the very large difference in mooring line forces as incident wave amplitude increases indicates a highly nonlinear response.

A potential explanation for the nonlinear response observed in these experiments results from the condition of the mooring lines at the 29.5-foot water depth used for the model tests. Under these conditions, the mooring lines no longer maintain a catenary shape. When the initial tension in the mooring lines is increased to this level, they respond with very large changes in mooring line force for very small displacements of the breakwater. Consequently, small deviations in the planned positioning of the anchors will lead to large changes in forces in the mooring line. This condition clearly should be avoided in prototype installations where very large mooring line forces are to be avoided.

A second possible explanation of the nonlinearity results when the "drift force" on the breakwater is considered. If one carries the hydrodynamic analysis to second order, there are terms at zero frequency which yield a force on the breakwater in the direction in which the incident waves are traveling. This force has the same effect as increasing the initial tension in the mooring line and is proportional to wave amplitude squared. Increasing the initial tension tends to increase the spring constants of the mooring lines leading to larger oscillating forces as well.

(2) <u>Alaska-Type Breakwater</u>. Mooring-force coefficients theoretically predicted and measured for the Tenakee, Alaska, breakwater are shown in Figure 18. For the field data the mooring-force coefficient is obtained by taking the square root of the mooring-force spectral density divided by the incident wave spectral density and then dividing by the weight per unit length of the breakwater. Again, as with the Oak Harbor model experiments, there is good agreement, especially in predicting the peak in the curve near B/L of 0.65.

One important aspect of the mooring line problem which should not be overlooked is a comparison between the model-scale results and the field measurements. For the Alaska-type breakwater, all the measured results indicate the amplitude of oscillation in mooring line force is in the order of hundreds of pounds, not thousands of pounds, as was predicted for the Oak Harbor breakwater in the model-scale tests.

When the mooring line tension data recorded at Tenakee are plotted as a function of time as in Figure 19, one observes that there clearly are oscillations associated with the incident waves. However, there are also low-frequency oscillations which are of greater magnitude. A complete explanation of the origin of these low-frequency forces has not been developed. However, one possible explanation is that these forces are a result of breakwater oscillation at the sway resonant frequency. Since the spring constant for sway motion is very small, one would expect a long natural period. Theoretically predicted sway motion response for the breakwater is plotted in Figure 20. Predicted natural periods are 64, 37, and 29 seconds for tidal conditions of mean lower low water (MLLW), +10 and +20 feet, respectively. By applying a high-pass filter to the field data, one obtains the spectrum of force oscillation shown in Figure 4. Here, a peak is at a period of about 53 seconds (tide height = +7 feet). The predicted sway natural frequency is at 45 seconds when the tide height is +7 feet, which indicates that this explanation is plausible.

(3) <u>Friday Harbor Breakwater</u>. The predicted performance of a seaward mooring line on the Friday Harbor breakwater is shown in Figure 21 for a tide height of +5.33 feet. The Friday Harbor mooring lines are different than those at the other breakwaters. They are composed of a section of chain attached to the breakwater, followed by a length of nylon rope and, finally, another section of chains at the bottom. This particular tidal condition was chosen because it is the condition during record FH 7-8 used later for comparison.

Seaward mooring line mooring-force coefficient, Tenakee, Alaska (record TK7-23).

Alaska-type breakwater, Tenakee, Alaska.

Low-frequency predicted sway motion and resonance are shown in Figure 22 for MLLW, +5.33 feet, +10 feet, and +15 feet tide heights.

Figure 22. Theoretically predicted long-period sway response, Friday Harbor breakwater.

1. Layout.

The site of the floating breakwater instrumented in this study is located at Friday Harbor, Washington, on San Juan Island, just east of Victoria, British Columbia (Fig. 23). The breakwater is 25 feet wide, 904 feet long, anchored in approximately 40 feet of water, and was installed in October 1972. The structure is made of Polyolefin flotation tanks linked together by a matrix of large wooden timbers. It is laid out in an expanded L-shape, the inside angle being 115°, with the shorter leg (227 ft.) directed toward shore and the longer leg (627 ft.) toward magnetic north. The site itself is protected on three sides by San Juan and Brown Islands off the harbor entrance. This leaves an 0.25-mile-wide channel into the harbor with a northeasterly fetch of about 1.7 nautical miles. Southeasterly winds can also generate waves of importance parallel to the shorter leg where the fetch is about 1 nautical mile.

2. Instrumentation.

The shorter leg was instrumented in this study for two reasons: (a) the most frequent winds are out of the southeast, and (b) barges were to be tied to the longer leg during the winter months for added protection. However, the wave gages are positioned to give the proper incident and transmitted wave data for all relative wind directions (Figs. 24 and 25).

Four types of time-dependent data which are basic to describing the response of the breakwater were collected: (a) wind velocity and direction; (b) wave heights at key locations; (c) anchor cable forces; and (d) directional acceleration and angular motions of the breakwater. The locations of the measuring sensors are shown on Figure 25. Signals from the sensors were carried by underwater cable to the recording system which was located in a small building mounted near the center of the short leg.

3. Wind Data.

Windspeed and direction were measured by Weather Measure Corporation's W121 sensor. Some additional circuitry was required to record the windspeed, and the sensor was recalibrated to this circuit. The sensor was mounted on the breakwater at the intersection of the two legs at 20 feet above the water surface.

4. Waves.

Wave characteristics were measured at four locations with the second

Figure 23. General Location Map

Figure 24. Field experiment site location map.

Figure 25. Instrumentation location plan, Friday Harbor breakwater.

transmitted gage being used as a backup. Two spar buoys instrumented to measure wave elevation were located outboard of the breakwater and positioned so that one measured the incident wave field, and the other measured the incident plus reflected wave field. Two stationary gages were attached to pilings behind the breakwater to measure transmitted wave height. All four gages were of the resistance type. The spar buoys were used outside the breakwater to help reduce navigation hazards and because of the costs and logistics of placing stationary piling at these locations.

The buoys were made of two sections of PVC pipe, the lower section being 6 inches in diameter and 15 feet long, and the upper section of 3-inch diameter and 12 feet in length with the upper 8 feet wound with a resistance wire. Four feet were exposed above the water surface, and a 2.5-foot-diameter disc was attached to the bottom to damp vertical motions. The natural periods in heave and roll, respectively, are 18 and 14 seconds, well above the anticipated maximum wave period of about 4 seconds. See Appendix J for a complete description of the wave staff and buoy designs.

5. Cable Forces.

Anchor cable forces were measured using a bonded strain gage-type load cell that was placed in the anchor chains beneath the water surface. These cells and the associated electronics were designed and built for this project. They have an overall system accuracy of 0.75 percent of the designed or rated total load cell capacity over a temperature range of 10° Celsius (design load 12,500 pounds). These load cells employ a fourarm wheatstone bridge circuit which has two strain gages in each leg of the bridge and are self-temperature compensating. The units are 0-ring sealed and wired directly to the bridge amplifier circuitry mounted in the recording package.

6. Motion Package.

Breakwater accelerations were measured using three Kistler servoaccelerometers (Model 303T). One accelerometer, oriented horizontally, was mounted at the center of the breakwater to measure the sway acceleration. The other two were oriented vertically and mounted at opposite outboard edges of the breakwater to measure the vertical accelerations. The heave acceleration was obtained by taking the average of the signals from the two outboard accelerometers; the roll acceleration was obtained by taking the difference of these two signals and dividing by the distance between them. The accelerometer locations are indicated in Figure 25.

7. Data Acquisition System.

The data recording and electronic package was built around the Sea

Data Corporation's Series 610 four-track incremental digital cassette tape recorder. The complete package, which included all the electronic circuitry for the individual transducers plus the tape recorder, was housed in a watertight, 6-inch-diameter PVC cylinder 5 feet in length. The system was designed to be operated manually or in a completely automated mode, thus requiring only periodic tape changes (Fig. 26).

In its automatic mode, the system was activated when the windspeed reached or exceeded a preset value and stayed there for at least 1 minute. At this point, a single 17-minute sample of all the inputs was taken. Each 68 minutes following this, another 17-minute sample was recorded if the wind was still above its preset value; if not, the system was shutdown until the windspeed increased. Each 17-minute record consisted of 2,048 samples, taken at 0.5-second intervals, of all 13 channels plus a clock channel. Twenty-five of these records could be recorded on a single cassette tape.

8. Data Processing and Analysis.

The initial step in the data handling was to transfer the data from the individual cassettes to seven-track magnetic tape by means of the Sea Data reader. These tapes were then converted to a computer compatible format on the University of Washington's CDC 6400 computer. The histograms for all records plus the basic statistics, i.e., the minimum, maximum, mean values and standard deviations as well as the transmission coefficients based on these standard deviations, were then computed and tabulated (App. G). A digital filter, with a cutoff frequency of 0.05 hertz (Gold and Radar, 1969) was applied to the transmitted wave data prior to these tabulations to remove tidal drift. The transmission coefficients given in these summary sheets are a ratio of the standard deviations for the transmitted and the incident wave gages.

In the initial conversion, the data were checked for reader errors. These points were smoothed using a linear interpolation between the preceding and the following good data points. Following this, the data were checked for extreme values. Data points departing from the mean by more than five standard deviations were smoothed in the same manner as were the reader errors. In no case did the number of errors warrant elimination of a complete record (greater than six bad points). Record FH 11-1, however, had bad data for channels 3, 4, 5, 7, and 8. This record was run manually while calibrations were being made, and the affected channels were not connected properly at this time. The final edited data were then stored on magnetic tape.

The autospectra for all the wave data for all records were computed with a more complete analysis of the force and acceleration data applied to the more desirable events.

Digital filtering techniques were used prior to spectral analysis on all the wave and force data. The procedures used follow those given

Instrumentation and recording package layout.

by Gold and Radar (1969). The first step in the development of this filter function is to assume an ideal filter response function.

$$F_{k}(f) = \begin{cases} 1 , 0 \leq |f| \leq f_{c} \\ 0 , f_{c} < |f| \leq f_{n} \end{cases}$$
(12)
$$F_{h}(f) = \begin{cases} 0 , 0 \leq |f| < f_{c} \\ 1 , f_{c} \leq |f| \leq f_{n} \end{cases}$$

where f_c is the cutoff frequency, f_n the Nyquist frequency, and $F_{\ell}(f)$ and $F_h(f)$ are the ideal low-pass and high-pass filter response functions.

The ideal filter response function is then Fourier-transformed to the time domain, giving the impulse response function, which is truncated by using an appropriate window function and transformed back to the frequency domain giving a complex frequency response function. The number of points used in representing the filter function is allowed to vary and the resulting convolution with the original time series is accomplished by using the overlap-add method of convolving smaller series with larger ones. This allows for more economical filtering procedures.

This gives three variables to choose from in the final filter function design: the length or number of points used in the filter, the type of window used to truncate the impulse response function, and the number of points to be truncated.

This procedure is analogous to spectral estimation techniques except for the truncation of the impulse response function. The larger the number of points used in the filter function, the better the estimate. The smoother the window function, the broader the transition band. In addition, the ripple or Gibb's phenomena is reduced. Generally speaking, the more points that are truncated (set to zero) the better the resulting approximation. In practice, the actual number is determined experimentally by comparing results for different truncation values. This results in setting approximately 20 percent of the impulse response function to zero. The hanning window function was used with 128 points in the filter response function and 38 points being set to zero in the impulse response function. That is:

 $h(n\Delta t) = w(n\Delta t) h(n\Delta t)$

and

$$w(n\Delta t) = \begin{cases} \frac{1}{2} (1 + \cos \pi \frac{n-1}{45}), & 1 \le n \le 45 \\ 0 & , 45 \le n \le 83 \\ \frac{1}{2} (1 - \cos \pi \frac{128-n}{45}), & 83 \le n \le 128, \end{cases}$$
(13)

where $h(n\Delta t)$ is the impulse response function and $w(n\Delta t)$ is the hanning window function. The final filter response function is defined as:

$$F(f_n) = \sum_{n} \beta(n\Delta t) e^{-j2\pi n f_n \Delta t},$$

where $j = \sqrt{-1}$ and Δt is the constant time interval between samples.

The transition band or the frequency increment traversed by the cutoff of the filter function can be approximated by:

$$\lambda = \frac{10}{128} = 0.078$$

and the maximum stopband attenuation for the hanning window is 55 decibels. These values can only be achieved through proper filter design. The actual values for the filters used are $\lambda = 0.08$ and a maximum attenuation of greater than 55 decibels. The ripples in the passband for each filter used were below 0.01 percent. These values could be improved on by increasing the number of points used for the filter response function estimate. Also the stopband attenuation could be improved, at the expense of a wider transition band for a given size filter function by using the Blackman window function. However, the accuracy of the filter response functions used exceeds that of the measurements and is sufficient for this application.

After initial processing and prior to all spectral calculations a tapered cosine data window was applied to the first and last 10 percent of the data to reduce spillover of spectral energy to adjacent frequency points. For data stretching from n = 1 to n = N, the formulas for the data window are:

$$w(n\Delta t) \begin{cases} \frac{1}{2} (1 - \cos \pi \frac{n-1}{0.1N}) & \text{for } 1 \le n \le 0.1N \\ 1 & \text{for } 0.1N < n < 0.9N \\ \frac{1}{2} (1 - \cos \pi \frac{N-n}{0.1N}) & \text{for } 0.9N \le n \le N. \end{cases}$$
(14)

The data were then transformed directly using fast Fourier transformation procedures and smoothed by averaging adjacent raw spectral components. Initial sampling was performed at 0.5-second intervals with 2,048 samples per record, and 20 adjacent points averaged together in the autospectral calculations to get the final smoothed spectral estimates. This gives a frequency resolution of 0.0195 hertz with 40 degrees of freedom per spectral estimate.

All of the wave data was high-pass filtered, using the filtering techniques previously outlined with a cutoff frequency of 0.05 hertz. This was done to remove the tidal influence on the transmit5ed wave staffs and to eliminate any possilbe buoy motion in the incident wave records. Also the anchor cable force data were separated into a low-and high frequency signal using the same filtering procedures. For the high-frequency case this was done to remove the influence of the large low-frequency spikes in the spectra. A high-pass filter with a cutoff frequency of 0.1 hertz was used.

For a closer look at the low-frequency information in the anchor cable force data, a new time series was generated from the original record by sampling every eighth data point. To reduce aliasing of the higher frequency energy in the original signal, each record was low-pass filtered prior to this sampling using the filtering techniques previously outlined with a cutoff frequency of 0.2 hertz. The sampling of every eighth point of the original time series gives a sampling interval of 4 seconds, a Nyquist frequency of 0.125 hertz and a record length of 256 points or 1,024 seconds. Five raw spectral points were averaged together to give the final smoothed spectral estimates. This results in a frequency resolution of 0.0049 hertz with 10 degrees of freedom per spectral estimate.

A total of 95 records was recorded at the site from 1330 hours on 30 December to 3 May 1975. There were no known equipment failures or breakdowns except for one of the load cells going off scale at low tide on the first tape (FH 7, NW load cell channel 3). A complete summary of these events is given in Appendix G. Also, Figure 25 gives the relative locations of the individual transducers.

The wind direction in all cases is referred to the long leg, which has a north-south compass bearing (magnetic declination in this area is 23° east). There are two wind-direction windows of interest. For the long leg, the directions are approximately 50° to 95°; for the short leg, 130° to 160° (Figs. 24 and 25).

Two storm events were chosen for presentation and further analysis. These events cover records FH 7-6 through FH 7-12 and FH 11-8 through FH 11-14 (Apps. G and H). They were chosen because of their directions relative to the short and long legs, respectively, and because of their duration and magnitude. Both events lasted for over 7 hours with maximum windspeeds in excess of 35 miles per hour, with all the mean wind direction within or close to the desired wind-direction windows. Appendix H gives the pertinent wave spectra and transmission curves for the above two events.

The average overall response or transmission curves for the events within each wind-direction window and for all the recorded data, are given in Figure 27. These plots were obtained by averaging the square root of the ratio of the transmitted to the incident wave spectras for the records indicated for each curve. Therefore, they have the same frequency resolution of 0.0195 hertz.

A puzzling feature in all the transmission response curves calculated from field data is the rise at lower frequency to a value near one and then dropping off again. This can partially be attributed to a lack of

energy in the incident wave spectra at lower frequencies. This possibility can be backed up in part by data from two similar projects undertaken in the past 2 years on a styrofoam-filled concrete-type breakwater (Christensen and Richey, 1974). The first is located in relatively sheltered water while the second breakwater is located near the open ocean where swell becomes an influence and results in a much broader spread of spectral energy over the frequency band in question. The first breakwater showed similar response curves to Friday Harbor while the (see App. H., Figs. H-10 and H-11).

All of the anchor cable data showed a very dominant amount of energy at lower frequencies. Appendix I shows the results of the low-frequency analysis for three of the anchor cable force signals for record FH 7-8. The autospectra for the force gages show several large peaks in this lower frequency band (App. I, Figs. I-1, I-2, and I-3). The exact location of these peaks varies for different records, but in all records analyzed, the dominant amount of energy in the force spectra was contained in this lower frequency band of approximately 0.015 to 0.05 hertz. In most cases, however, a relatively dominant peak appeared in the 56to 63-second-period range. The anchor forces measured were all quite low; the largest range was only 628 pounds. The cables are spaced at 50-foot intervals.

The phase and coherency spectra for three of the force gages for record FH 7-8 are given in Appendix I (Figs. I-4 through I-7). They show a strong linear relationship between the gages on the same side of the breakwater and for the opposing gages. The forces in the two anchor lines on the same side were in phase; the two opposing were 180° out of phase. This indicates that the sway or roll motions are dominant in this frequency range. The accelerations at these lower frequencies were too small to be recorded and could not be used to help confirm which motion was involved. However, in the overall frequency range (0 to 1.0 hertz) the variances for sway and heave were two orders of magnitude greater than roll, which indicates that sway would have to be the dominant motion involved here.

The analysis of the complete frequency range for the force data for FH 7-8 is shown in Appendix J (Figs. J-2 through J-8). The data were high-pass filtered ($f_c = 0.1$) for these spectra. A comparison of the variances computed for the high- and low-frequency sections of the force spectra showed that over 90 percent of the energy in all cases analyzed was contained in the lower frequencies. A summary of the force data, without any filtering, for all the data collected in this experiment is given in a table.

The autospectra for the force gages (FH 7-8) are relatively spread out (see App. J, Figs. J-2, J-3, and J-4), with the outside force gages showing a greater response to the lower frequency incident wave energy than the inside gages. However, the outside and the opposing gages show relatively high coherency, with the outside gages being in phase and the Table. Summary of anchor cable force statistics.

175°380 164°**320** 121.660 131.140 116.920 150.100 112.180 135.880 176.960 214.880 173.800 232.260 176.960 107.440 262.280 257.540 172.220 188.020 192°750 137°560 145°350 105°860 58°460 58°460 211°720 267°020 69.520 176.960 278.080 304.940 410.800 153.260 88.480 .50°100 29.560 202.240 56.420 00°-200 190°260 350.760 37.460 274.920 290.720 306.520 to min. 36.340 SE
48.000

1280.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1081.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

1100.000

 96.000 64.000 48.000 16.000 \$0°000 Variations, max. NE (pounds) 200.000 64.000 272.000 500.000 628.000 560.000 SW 60,000 186,000 88,000 88,000 88,000 88,000 88,000 1172,000 1172,000 1172,000 1172,000 1172,000 1122,00 20.000 000°00 84°000 MN 79.507 52.121 92.043 142.024 114.642 17.545 96.340 193.091 278.098 162.782 173.785 197.821 283.358 191.569 130.431 116.288 109.471 193.378 118.011 93.127 78.933 69.665 8.724 154.788 172.246 382.881 119.696 121.875 99.722 47.053 81.354 64.331 76.554 148.562 61.505 91°162 73.252 82.578 105.899 129。846 119.112 37.499 90.272 195.538 94.187 SE Maximum values 23.927 2 22.988 1 35.680 43.842 27.454 1 29.720 31.920 42.344 66.357 43.045 47.802 20°758 i3.520 16.948 14.502 8.805 20.041 21.541 23.366 50.953 37.668 34.456 48.775 43.058 41.584 9.261 7.349 57.304 44.489 20.866 15.505 98°244 80.237 24.714 29.327 26.833 8.923 5°365 25.851 28.025 255° 62 32.545 26.357 26.247 NE (spunod) 130.442 30,896 161,896 145,297 445,297 445,297 259,791 259,791 259,942 397,524 397,524 199,67 112,24,199 112,24,102 112,24,102 112,24,102 112,24,102 112,24,102 112,24,102 112,24,102 112,24,102 112,462 112,4 142.958 173.777 99.019 141.354 111.779 142.372 198.810 222.018 292.927 212.446 98.716 121.439 240.434 164.064 242 ° 349 SW 57.895 75.580 75.580 15.646 40.508 51.649 7.793 72.790 46.319 66.110 33.703 33.703 24**.9**63 55.198 50.882 48.645 67.313 51.008 41.791 38.091 49.889 47.555 62.454 62.454 40.317 39.140 44.309 48.880 55.144 54.692 45.430 36.755 33.703 54 °065 23.655 36.082 36.962 45.004 57.927 55.551 61.489 42.474 26.399 88.545 08.727 39.096 27.655 225.378 225.378 25.726 24.075 332.725 33.727 33.782 33.782 55.777 55.777 61.033 61.033 27.538 46.791 48.214 47.411 52.033 38.895 26.267 24.107 31.875 49.404 11.112 53.237 76.751 32.891 24.474 27.526 9.000 9.000 3.144 21.074 25.271 32.035 6.494 4.763 38.205 32.184 0.339 36.055 21.849 20.752 31.996 6.077 SE 9.749 11.028 13.626 7.926 Standard deviations 4.026 6.930 15.340 19.570 14.441 12.534 14.292 15.615 9.615 7.594 8.112 11.192 9.177 8.396 8.942 10.086 7.077 8.323 11.023 6.039 16.823 1.080 8.997 6.131 6.941 4.051 11.194 14.872 13.652 13.652 12.471 12.471 20.600 16.246 10.432 10.536 10.916 13.595 9.620 8.438 14.847 .010 NE 10.425 66.479 99.539 141.836 67.053 50.773 23.773 23.773 50.283 45.376 40.774 30.255 42.001 56.483 31.378 38.920 55.706 50.908 33.948 32.971 51.877 655.078 895.078 895.078 895.0922 550.922 885.997 885.332 885.332 885.2569 62.609 40.827 54.314 82.334 71.200 47.441 41.588 16.865 73.711 62.127 76.333 pounds 9.811 51.506 36.806 39.646 68.463 SW 1.128 1.128 2.5.866 2.5.866 2.5.866 2.5.3866 2.5.3866 2.5.3866 2.5.386 2.5.534 2.5334 2.5334 2.5334 22.521 17.970 22.001 18.110 13.179 14.533 14.533 14.533 17.808 21.681 19.174 119.020 113.796 21.662 21.662 21.662 21.662 21.652 116.287 117.753 26.975 18.338 20.233 21.148 21.472 16.001 16.684 9.155 24.055 16.689 .000 2.057 18.688 23.966 24.306 19.813 10.657 M -19 -15 -16 -17 -18 -20 -16 -10 -12 1-1 9 P 1101 -13 5 11--18 8 1 о 1 7 -13 -14 ı 8 8 4 ł ł 1 I 1 ł ł ŧ FH9 CHERO CHE 6H H H H H 6H

Summary of anchor cable force statistics (continued) Table.

SE 110.600 230.680 26.861 124.820 279.660 292.300 212.000 160.000 304.000 262.000 262.000 310.000 274.000 72.000 56.000 128.000 146.000 100.000 159.000 154.000 154.000 262.000 262.000 262.000 160.000 160.000 160.000 1124.000 1124.000 132.000 to min. 200.660 151.680 202.000 186.000 146.000 196.000 170.000 182.000 212.000 296.000 176.000 140.000 316.000 338.000 NE 48.000 92.000 76.000 64.000 86.000 max. (pounds) Variations, SW 220.000 384.000 356.000 560.000 360.000 304,000 294,000 404,000 386,000 3966,000 3966,000 430,000 424,000 522.000 148.000 208.000 296.000 248.000 248.000 236.000 326.000 504.000 440.000 308.000 294.000 268.000 356.000 356.000 258.000 278.000 474.000 464.000 464.000 458.000 478.000 310.000 240.000 280.000 490.000 430.000 472.000 30.532 404.000 226.000 578.000 584.000 NE ST.980 22.458 57.980 45.548 150.064 32.201 136.193 36.108 80.267 9.151 9.151 67.476 73.974 48.563 34.845 34.845 85.847 103.876 87.406 55.024 98.391 102.581 88.238 49.158 80.787 83.695 129.148 208.183 123.866 109.746 1109.746 1123.528 1134.525 117.6612 82.612 82.841 117.6612 83.841 117.6612 83.841 117.662 899 1176.358 1187.256 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.5577 1187.557 145.447 134.101 199.855 107.207 77.077 153.687 100.631 170.487 d2.684 32.105 198.638 207.326 133.561 (pounds) SW NE 109.508 22.458 27.250 12.657 Maximum values 54.176 647.04 45.259 27.827 57.197 8.582 43.285 37.065 17.951 28.511 3.133 40.172 14.199 54.695 1.213 3.389 30.708 9.975 44.326 45.467 31.666 40.011 2.260 20.981 21.444 39.250 25°805 31.808 24.964 6.656 41.425 36.807 36.660 48.480 42.063 09.241 29.337 246.449 254.254 236.058 290.567 235.470 235.470 99.147 64.585 138.962 178.015 153.139 296.819 256.215 250.153 186.820 340.358 307.876 10.746 168.742 254.244 333.183 289.342 109.508 222.087 135.638 197.755 89.259 02.384 89.991 82.538 271.120 07.505 50.864 96.275 43.406 183.384 84.949 110.201 218.919 61.298 86.446 460.616 237.321 42.378 46.205 43.288 56.463 56.463 61.652 10.237 94.834 52.322 58.274 54.022 54.022 69.022 63.9955 63.9955 63.9955 75.995 75.993 1109.038 1109.038 1109.038 750.993 1109.228 56.9216 56.9216 56.9216 56.547 56.547 72.426 49.645 100.799 95.243 67.139 58.399 136.208 233.839 49.497 43.586 107.602 57.596 719.0256 719.049 716.648 710.19 56.828 93.124 56.107 48.012 63.307 55.361 83.843 17.977 36.615 32.035 27.186 3.632 22.265 22.265 3632 3632 42.955 37.841 28.550 33.448 32.883 30.352 29.896 37.728 53.663 46.228 48.061 53.710 44.982 50.437 111.4437 222.1124 26.1124 26.1237 26.1237 26.1237 26.1237 26.12437 26.1434 21.1245 21.1 16.088 26.120 23.689 29.630 30.246 53.806 53.668 58.518 61.259 4.938 Standard deviations 8.144 3.182 15.561 11.987 11.272 13.598 7.509 14.372 10.775 8.467 8.436 6.206 14.429 17.305 20.977 22.771 22.362 9.562 5.368 110.805 11.795 7.753 11.697 11.697 11.697 11.697 11.697 11.697 9.373 26.527 9.794 9.644 13.818 13.459 L7.216 19.146 16.219 3.017 10.659 3.612 17.150 12.488 39.879 12.540 4.784 (pounds) SW 78.380 59.094 36.519 53.094 51.751 54.756 52.260 32,860 62.139 46.342 50.725 61.374 66.432 9.909 90°018 54.967 56.817 63.906 68.262 93.910 7.068 7.342 87.205 68-446 94.688 21.354 5.685 43.195 26.324 44.187 7.993 83.770 69.811 66.572 54.227 47.133 4.717 73.194 8.112 47.125 40.460 111.057 114.883 96.943 14.200 24.902 21.917 18.545 3.957 24.742 21.037 27.303 22.882 24.054 28.009 30.270 35.451 34.954 39.062 13.971 13.971 18.660 28.223 30.135 35.103 24.136 19.667 51.112 22.067 22.328 24.406 28.525 22.653 19.137 14.011 26.255 36.376 29.763 25.076 24.012 40.126 19.434 0.252 38.769 23.462 21.781 23.151 FH10-4 FH11-5 FH11-5 FH11-5 FH11-5 FH11-6 FH11-6 FH11-6 FH11-12 FH12-6 FH12-6 FH12-6 FH12-7 FH12-7 FH12-7 FH12-7 FH12-7 FH12-7 FH12-12 FH12-13 FH12-14 FH12-15 FH12-15 FH12-16 FH12-18 FH12-18 FH13- 1 -22 -24 -25 FH12-11 FH10-FH13-FH13-FH13--H13--H13-FH13-FH9 FH9

outside leading the inside gage by approximately 180° over the frequency range of 0.25 to 0.37 hertz. This indicates that the forces are relatively uninfluenced by waves above approximately 0.37 hertz. This frequency range is also where the transmission curves rise to near unity. This agrees with the low-frequency analysis and suggests that the response is similar over the complete frequency range below 0.37 hertz.

The acceleration force, autospectral and cross-spectral analysis results, are also given in Appendix J for the higher frequency range for record FH 7-8. No dominant features were observed in the motion spectra. Their peak values and spread of energy with frequency appear to follow the general character of the incident wave spectra in all records analyzed. This implies that any natural frequencies in each of the motions is outside the range of significant incident wave energy. The crossspectral analysis shows a high coherency and zero phase shift between the heave and roll accelerations. In both the sway and roll, and the sway and heave accelerations, the sway acceleration leads by approximately 180° over the range of significant incident wave energy and then tapers to near-zero phase shift at higher frequencies. Also, the coherency is high enough over the incident wave energy band to imply near linearity between all three motions.

These conclusions are based on positive sway being outward from the short leg (south), heave positive up, and the positive roll to be clockwise around a positive axis pointing westerly toward shore.

IV. COMPARISON OF THEORY WITH FIELD DATA FOR FRIDAY HARBOR BREAKWATER

Although the Friday Harbor breakwater has a very complex geometry and does not respond as a rigid body to the incident wave excitation, it is important to draw some comparisons between the theoretical prediction of performance and the field measurements. In seeking a "typical event" from the enormous quantity of data gathered, the goal was to find a case where the wind was reasonably close to being on the beam of the short leg of the breakwater.

The one striking item which emerges from the data is the similarity of all the transmission coefficients examined. These curves seem identical no matter what the wind direction. This was not expected because there were barges tied to the breakwater along the entire long leg, while there were none along the shorter leg. A further investigation of the reasons for the similarity is certainly warranted.

The record selected for comparison with the theory was FH 7-8. Figure G-3 in Appendix G shows the incident and transmitted wave spectra and transmission coefficient. This record is also listed in the statistical summaries of Appendix F. The spectral analysis using a high-pass filter was performed as described in Section III.

A comparison of the theoretically predicted and measured transmission coefficient is shown in Figure 28. So long as the calculated hydrodynamic damping is doubled in the theoretical analysis, the results are quite good. As described in Section II, the peak in the transmission curve at a frequency of 0.95 hertz probably results from the "irregular frequency" phenomenon which occurs in this mathematical formulation.

Comparisons of sway, heave, and roll acceleration predictions with measurements are shown in Figures 29, 30, and 31, respectively. Here, the acceleration response has been nondimensionalized by multiplying by the beam or beam squared, as appropriate, and dividing by the acceleration of gravity times the incident wave amplitude.

In the case of sway acceleration, the theory overpredicts the values throughout the entire frequency range. The peak at 0.5 hertz appears in the correct location, but the measured values would need to be doubled to bring the curves into better agreement.

For heave acceleration the curves appear to be in closer agreement, at least above the frequency of 0.4 hertz. Below 0.4 hertz there seems to be little correlation.

Roll acceleration seems to show the worst agreement of all. Here again, the predicted accelerations are considerably higher than the measured values.

There are several possible explanations for the discrepancy between predicted and measured accelerations. In the field, even if the wind

were blowing directly on the beam of the breakwater, one would not find the condition of long-crested waves impinging directly on the beam of the breakwater. As a result, the breakwater is not excited uniformly along its entire length. Therefore, the breakwater itself provides restraint against motions which are excited in a local area. The construction of this particular breakwater is also quite flexible, which allows for considerable internal damping of the wave-excited motions. The barges tied to the long leg also serve to restrain the motion and provide additional damping.

There is a strong need, in this case, to provide laboratory data on the breakwater motions, which could be further correlated with the theory and the measured motions.

If one looks at the measured accelerations by themselves, a considerable resemblance in all three degrees of freedom appears. Further, if these accelerations are viewed along with the incident wave spectrum, considerable similarity appears again, suggesting that further investigation of the measurement scheme would also be welcome.

The final comparison to be made is between the theoretically predicted and measured mooring-force coefficient. The theoretical prediction and measured data for the seaward mooring line is shown in Figure 32. The correlation appears to be quite good in this case.

In looking at the time series of force on the mooring lines and the windspeed, one can observe a definite correlation between the wind gusts and increases in the mooring force. This is probably a result of the large barges tied to the structure which act almost as sails. If this is the case, the increase in tension caused by the mean wind on the barges needs to be accounted for. No attempt has been made to do this.

The most common method of presenting the spectral data obtained in the field uses a frequency scale rather than the nondimensional beam/ wavelength scale used in Section II. In this section the comparisons are made using a frequency scale. For the Friday Harbor breakwater (beam = 25 feet) the conversion is:

$$\frac{B}{L} = \frac{2\pi B f^2}{g} = 4.87 f^2$$

assuming deepwater waves.

V. CONCLUSIONS

Results for the predicted transmission coefficients were in good agreement with laboratory and field data, and they showed how the influence of fixed-body transmission, and of sway, heave, and roll motions on the transmission coefficient changed with increasing values of the beam to wavelength ratio.

The curves predicting the mooring line forces as a function of the beam to wavelength ratio (or of incident wave frequency) followed those for the measured responses. Care must be exercised in the analysis of mooring line forces because there is strong evidence of nonlinear behavior.

An extreme storm event did not occur during the sampling season at Friday Harbor, nor during two winter sampling periods on the Alaskan breakwaters; however, the anchor forces measured were about an order of magnitude less than anticipated.

The barges tied to the long leg of the breakwater did not noticeably affect the transmission coefficients above a frequency of about 0.3 hertz, since the curves for all incident directions were approximately coincident above that mean frequency. Below the frequency of 0.3 hertz, it appears that the barges may have reduced the transmitted energy somewhat.

The extension of the theoretical model to include second-order terms showed the presence of additional exciting-force terms at zero frequency and at the difference frequency of the incident waves. Additional work on the basic theoretical model is needed to incorporate these terms into the calculations for mooring forces. The most appropriate means of verifying the role of the second-order terms may be in a model basin, where breakwaters of simple cross section and incident wave spectra having only two or three components could be employed under controlled conditions.

LITERATURE CITED

- ADEE, B.H., "Analysis of Floating Breakwater Mooring Forces," Ocean Engineering Mechanics, American Society of Mechanical Engineers, New York, 1975.
- AMERICAN SOCIETY OF CIVIL ENGINEERS, "Berthing and Mooring Ships," Proceedings of a Nato Advanced Study Institute, Lisbon, Portugal, July 1965.
- CARR, J.H., "Mobile Breakwaters," Proceedings of the Second Conference on Coastal Engineering, Nov. 1951, pp. 281-295.
- CHRISTENSEN, D.R., and RICHEY, E.P., "Prototype Performance Characteristics of a Floating Breakwater," Marine Technical Report Series Number 24, 1974 Floating Breakwater Conference Papers, University of Rhode Island, Kingston, R.I., Apr. 1974.
- DAVIDSON, D.D., "Wave Transmission and Mooring Force Tests of Floating Breakwater, Oak Harbor, Washington," Technical Report H-71-3, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Apr. 1971.
- FRANK, W., "Oscillations of Cylinders in or Below the Free Surface of Deep Fluids," Report 2375, Naval Ship Research and Development Center, Bethesda, Md., Oct. 1967.
- GOLD, B., and RADAR, C.M., *Digital Processing of Signals*, McGraw-Hill, New York, 1969.
- HARRIS, A.J., "The Harris Floating Breakwater," Marine Technical Report Series Number 24, 1974 Floating Breakwater Conference Papers, University of Rhode Island, Kingston, R.I., Apr. 1974.
- JOHN, F., "On the Motion of Floating Bodies," Communications on Pure and Applied Mathematics, Vol. 3, 1950.
- LEE, C.M., JONES, H., and BEDEL, J.W., "Added Mass and Damping Coefficients of Heaving Twin Cylinders in a Free Surface," Report 3695, Naval Ship Research and Development Center, Bethesda, Md., Aug. 1971.
- LOCHNER, R., FABER, O., and PENNY, W., "The Bombardon Floating Break-ater water," *The Civil Engineer in War*, The Institution of Civil Engineers, Vol. 2, London, 1948, p. 256.
- MINIKIN, R.R., "Floating and Foundationless Breakwaters," *Engineering*, Dec., 1948, pp. 557-579.
- NECE, R.E., and RICHEY, E.P., "Wave Transmission Tests on Floating Breakwater for Oak Harbor, Washington," Technical Report No. 32, University of Washington, Charles W. Harris Hydraulics Laboratory, Seattle, Wash., Apr. 1972.

- SALVESEN, N., TUCK, E., and FALTINSEN, O., "Ship Motions and Sea Loads," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 78, 1970, pp. 250-257.
- STRAMANDI, N., "Transmission Response of Floating Breakwaters to Ship Waves," Masters Thesis, University of Washington, Seattle, Wash., 1975.
- SUTKO, A.A., and HADEN, E.L., "The Effect of Surge, Heave and Pitch on the Performance of a Floating Breakwater," Marine Technical Report Series Number 24, 1974 Floating Breakwater Conference Papers, University of Rhode Island, Kwngston, R.I., Apr. 1974.
- NAVAL CIVIL ENGINEERING LABORATORY, "Mobile Piers and Breakwaters An Exploratory Study of Existing Concepts," Technical Report 127, Port Hueneme, Calif., Apr. 1961.
- NAVAL CIVIL ENGINEERING LABORATORY, "Transportable Breakwaters A Survey of Concepts," Technical Report R-727, Port Hueneme, Calif., May 1971.

APPENDIX A

HYDROSTATIC RESTORING FORCES AND SPRING CONSTANTS

Hydrostatic restoring forces and spring constants are computed for the two-dimensional analysis under the following assumptions:

- (a) The body rotates about the origin of the coordinate system and all forces and moments are computed about that point.
- (b) The body has vertical sides in the region of its waterplane.
- (c) All motions are small.

1. Sway Motion.

In the horizontal plane the body is in neutral equilibrium. Therefore, there are no hydrostatic restoring forces and

$$KH_{11} = KH_{12} = KH_{13} = 0.$$
 (A-1)

2. Heave Motion.

Vertical displacement of the body results in a change in the buoyant volume of the body and consequently a change in the buoyant force on the body. Since this force must be perpendicular to the waterline, there is no change in the horizontal force as a result of vertical displacement and

$$KH_{21} = 0.$$
 (A-2)

If one considers a small vertical displacement, δy , there is a resulting change in volume:

 $\delta V = - \delta y A_w$ (for $\delta y + upwards$).

Here, A, is the waterplane area. The vertical force then is:

$$F = KH_{22}\delta y = -\rho gA_w \delta y$$

or

$$KH_{22} = \rho g A_{\mu} = \rho g [x_{b} - x_{a}].$$
 (A-3)

In this equation x_a and x_b denote the sides of the body as shown in the Figure in this appendix. Since the vertical force may be regarded as acting at the centroid of the waterplane area, x_c , the moment may be expressed.

 $M = K_{23} \delta y = -\rho g A_w x_c \delta y.$

Substituting for x_{c} and A_{w} yields:

$$KH_{23} = -\rho gA_w x_c = -\rho gA_w \frac{1}{2} [x_a + x_b] = \frac{1}{2} \rho g[x_a^2 - x_b^2].$$
 (A-4)

3. Roll Motion.

The analysis of roll motion-induced forces and moments is complicated by the fact that the body is assumed to rotate about the origin of the coordinate system and not the centroid of the waterplane.

The problem is illustrated in the figure. Here, line 2, the waterline after rotation through and angle $\delta\theta$ must pass through the intersection of the y' coordinate axis and the initial waterline. Equations for lines 1 and 2 may then be obtained.

Line 1: y = c.

Line 2: y = mx + b.

The slope of line 2 is:

 $m = \frac{\Delta y}{\Delta x} = - \tan \delta \theta.$

Line 2 must also pass through the point P so that:

$$x_p = + c \tan \delta \theta$$

and

$$y_n = c$$
.

These equations yield the relationship:

 $b = c(1 + \tan^2 \delta \theta).$

To find the force acting on the body as a result of the rotation, the net lost or gained volume is needed.

$$\delta V = \int_{x_a}^{x_b} (mx + b - c) dx$$
$$= \int_{x_a}^{x_b} [(-x \tan \delta\theta + c(1 + \tan^2 \delta\theta) - c] dx$$

$$= -\frac{1}{2} [x_b^2 - x_a^2] \tan \delta\theta + c[x_b - x_a] \tan^2 \delta\theta.$$

By applying the "small angle" approximation and neglecting terms of the order of $\delta\theta^2.$ Then,

$$\delta V \approx \frac{1}{2} [x_a^2 - x_b^2] \delta \theta$$

and the force is:

 $F \approx \frac{1}{2} \rho g [x_a^2 - x_b^2] \delta \theta.$

The x and y components of the force are:

$$F_x = F \cos \delta\theta \approx \frac{1}{2} \rho g [x_a^2 - x_b^2] \delta\theta \cos \delta\theta$$

and

$$F_y = F \sin \delta \theta \approx \frac{1}{2} \rho g [x_a^2 - x_b^2] \delta \theta \sin \delta \theta.$$

Again applying the small angle approximation one finds:

$$F_{\mathbf{x}} \approx \frac{1}{2} \rho g[\mathbf{x}_{a}^{2} - \mathbf{x}_{b}^{2}] \delta \theta$$

and

$$F_y \approx 0.$$

The hydrostatic spring constants coupling roll to sway and heave are then:

$$KH_{21} = 0$$
 (A-5)

and

$$KH_{32} = \frac{1}{2} \rho g [x_a^2 - x_b^2].$$
 (A-6)

To obtain the moment induced by roll motion compute:

Moment of Gained Volume =
$$-(\frac{1}{2}x_a^2 \tan \delta\theta)(\frac{2}{3}x_a) \approx \frac{1}{3}x_a^3 \delta\theta$$
,
Moment of Lost Volume $\approx \frac{1}{3}x_b^3 \delta\theta$

and

Moment of Original Volume = $Wy_b \delta \theta$.

In this formula,

W = weight per unit length

 $y_b = distance$ the center of buoyancy is below the center of gravity.

The total moment then is:

$$M = \frac{\rho g}{3} \left(x_b^3 - x_a^3 \right) \delta \theta + W y_b \delta \theta,$$

and the spring constant becomes:

$$KH_{33} = \frac{\rho g}{3} (x_b^3 - x_a^3) + Wy_b.$$
 (A-7)

Expressed in traditional naval architecture terminology, this reduces to:

$$KH_{33} = WGM, \tag{A-8}$$

where

GM = metacentric height.

4. <u>Collected Results.</u> $KH_{11} = KH_{12} = KH_{13} = KH_{21} = KH_{31} = 0$ $KH_{22} = \rho g[x_b - x_a]$ $KH_{23} = KH_{32} = \frac{1}{2} \rho g[x_a^2 - x_b^2]$ $KH_{33} = \frac{\rho g}{3} [x_b^3 - x_a^2] + Wy_b$. (A-9)

and

APPENDIX B

MOORING ANALYSIS

1. Purpose of the Program.

Computer program BRKMOOR computes the forces and moments imparted by a pair of mooring cables on a floating breakwater section. BRKMOOR also computes the changes in the mooring cable tensions and the springconstant values for the moorings as the breakwater moves in sway, heave, or roll.

2. Program Description.

Program BRKMOOR is written primarily in FORTRAN IV although FORTRAN II print statements are used.

The program consists of the main program BRKMOOR and the subroutines LINE2, CHAIN, NYLON, EQULIB, SPRING, and LTERPS.

BRKMOOR calculates the forces in a mooring cable by using a discretized approximation to the cable. The cable is divided into the number of segments specified in the input data. Each segment may be of a different material or size. Each segment is in turn divided into a specified number of sections. The cable is considered to be made of these sections with the weight of each section concentrated at the node at the bottom of the section. Connecting each node is a straight but elastic section.

The main part of the program specifies 15 different angles at the attachment, ranging from nearly vertical to nearly straight to the farthest reasonable anchor position. A first guess at a top tension is made.

LINE2 then sums down the cable computing forces and coordinates of each node starting with the initial angle and initial tension. The position of the end of the cable is compared with the specified water depth at the anchor. The initial tension is adjusted and the summation repeated until the cable ends at the proper depth. Control then returns to the main program.

LINE2 calls the subroutines NYLON or CHAIN to compute the strain of the cable section of the appropriate material. If other materials are used new subroutines should be written for strain computation, along with the appropriate calling expression in LINE².

At each angle the cable forces at the attachment and the anchor position are stored in arrays. EQULIB then computes the breakwater equilibrium position for the specified conditions.

SPRING is called by EQULIB. SPRING computes the change in mooring

cable tensions with breakwater displacement in sway, heave, and roll and the spring constants of the moorings on the breakwater.

LTERPS is a linear interpolation subroutine which computes the slop, $\frac{\Delta Y}{\Delta X}$, and the interpolated value of Y for a given X and an array of X $\frac{\Delta X}{\Delta X}$. UterPS is called by EQULIB and SPRING.

3. Type of Computer and Peripherals.

BRKMOOR was written for use on the CDC 6400 computer. It uses about 40,0008 words of memory. No peripherals other than the card reader and line printer are required.

4. Input Data.

The input to BRKMOOR is as follows:

Card #1 - Title card, Format (8A10). 80 alphanumeric characters max. Card #2 - Breakwater geometry card, Format (5F10.0). YCG = Vertical location of breakwater CG relative to water surface. XCAB(1) = x coordinate of cable #1 attachment to breakwater (the CG is at X = 0 and cable #1 is defined as the cable with its anchor in the +x direction). YCAB(1) = y coordinate of cable #1 attachment to breakwater. XCAB(2) = x coordinate of cable #2 attachment to breakwater. YCAB(2) = y coordinate of cable #1 attachment to breakwater. Card #3 - Number of desired conditions Format (12). (Also number of condition cards to follow) Card #4 - Condition cards, Format (4F10.0). (One card for each condition) FEXT = Force applied to the breakwater not due to moorings in x direction (could be due to wave action, tide, wind, etc. force in pounds). SEP = Anchor separation in horizontal direction (feet). TENS1 = Nominal tension in cable #1 (1b.). TENS2 = Nominal tension in cable #2 (1b.). It should be noted that only the following condition combinations are possible: SEP SEP+FEXT TENS1 TENS1+FEXT TENS2 TENS2+FEXT TENS1+TENS2

Card	#5 -	Tide Card, Format (I1,9X,5F10,0).
		NTIDE = Number of tide values to follow $(max = 5)$.
		TIDE = Tide position in feet relative to that at which
		the anchor depths are given.
Card	#6 -	Cable #1 Parameters, Format (I2,8X,2F10.0).
		NSEG = Number of different segments (types of cable ma-
		terials) from which the cable is constructed.
		DEPTH = Depth of water at the anchor (feet).
		BSLOPE = Slope of bottom in region of anchor (feet/feet).
Card	#7 -	Cable segment properties Format (15,5X,2F10.0,A10,F10.0).
		One card for each of the number of segments listed in card
		6 parameter NSEG.
		NSECT = Number of sections into which it is desired to
		divide the cable segment.
		ALSEG = The length of this cable segment.
		WPF = Weight per foot in water of the cable material in
		this segment.
		MATL = Material name (as the program now stands this
		must be CHAIN or NYLON (Name must begin in column
		31).
		DIAM = Diameter of the nylon rope or of the chain link
		in inches.
Card	#8 a:	nd #9 - Same as cards #6 and #7 only as applies to cable.
		π <u>ζ</u> ,

Table B-1 illustrates the input cards for a test case. All the read statements for the program are in the main program along with comments and explanations of input requirements.

5. Mathematical Procedures and Program Limitations.

The basic cable computations which take place in LINE2 require some explanation. As was stated previously, the weight of each cable section is corsidered to be concentrated at the bottom of the section. In order to find the shape of the cable, summations of forces are computed for static equilibrium at each node. At each node we know the tension in the cable section above the node as well as the angle of that section with the horizontal. Figure B-1 illustrates the cable about the ith node.

If the angle ϕ_i is taken to be the angle from the horizontal, then the angle ϕ_{i+1} can be computed as follows:

$$\phi_{i+1} = \tan^{-1} \left[\frac{T_i \sin \phi_i + W_i}{T_i \cos \phi_i} \right],$$
(B-1)

where $T_i = tension in section i,$

 W_i = weight of section i concentrated at node i.

0. 1. 01. 6	0.
06	
0. 58.02	
58.21	
36.	
42.	
54.	
36. 30.	
1	
01 7.167	
00030 29.33 .722 CHAIN	•25
01 7.167	
00030 29.33 .722 CHAIN	.25

Table B-1. Example input for program BRKMOOR.

This new angle is then used to compute the tension in the next section:

$$T_{i+1} = \frac{T_i \cos \phi_i}{\cos \phi_{i+1}} \quad . \tag{B-2}$$

LINE2 computes the angle and tension of each section starting from the top. At each section the angle is compared with the slope of the bottom. When the angle ϕ is parallel or more positive than the bottom then ϕ is set to the slope of the bottom.

The x and y coordinates of each node are computed.

$$X_{i+1} = X_i + L_{EXT_{i+1}} \cos\phi_{i+1}$$
(B-3)

$$Y_{i+1} = Y_i + L_{EXT_{i+1}} \sin \phi_{i+1}$$
, (B-4)

where

 $X_i = x$ coordinate of node i

$$Y_i$$
 = y coordinate of node i L_{EXT} = length of section when under tension.

At the last node the **y**-coordinate is compared with the depth of the anchor. If there is a difference the initial tension value is adjusted. Guesses at the first and second tensions are made. From then on a secant (discrete form of Newton Raphson) iteration method is used to compute the subsequent initial tension values. An error of 0.0001*depth is allowed. In most cases 4 or 5 iterations yield the desired accuracy. Some important values are printed for each iteration to aid in troubleshooting.

Within EQULIB and SPRING interpolation is required to find the values of tension forces and x coordinates which are between the points computed by BRKMOOR and LINE2. The linear interpolation routing LTERPS was chosen over higher-order interpolation schemes because of the asymptotic nature of the tension versus λ values. If values are requested beyond the ends of the computer arrays, they can be extrapolated, but a warning message will be printed by EQUILIB.

An iterative procedure is required within EQULIB if the anchor separation condition is selected. Again the secant iteration method is used. EQULIB prints out values at each interation which can aid in troubleshooting but which can normally be ignored.

Subroutine CHAIN computes the strain in a chain using the basic elastic properties of a steel bar with a total area equal to the area of both parts of the links, and a factor of 6 to allow for the deformation characteristics of the links. This factor of 6 came from a finite element computation.

Subroutine NYLON computes the strain in a nylon rope using a power-function fit of the form:

$$\varepsilon = AX^{\beta},$$

where

 ε = Strain, A = 0.02052,

 $\beta = 0.2237$,

$$X = \frac{T}{D^2}$$

T = Tension (pound), D = Diameter of rope (inches).

This function was determined using a least-squares power-function fit of experimental data provided by Sampson Cordage Works for their 2-in-1 nylon braided rope.

An experimental verification test was conducted as a check of the program. A chain was suspended from a spring scale. Measurements were made of the length of the chain, its weight and the tension in two geometrical configurations. The program gave computed values of the tension very close to those measured.

6. Flow Chart.

Figure B-2 illustrates the flow chart of BRKMOOR and its subroutines.

7. Program Comments and Glossary of Terms.

The program listing contains many comments which aid in following the logic of the program. The important variable names are explained as well as the input requirements.

8. Run Time and Memory Size.

BRKMOOR requires about 40 seconds on the CDC 6400 to compile and compute results for one value of the tide parameter. Each additional tide value requires about 30 seconds additional time. These values are for cables divided into 50 sections each. Time should be somewhat proportional to the total number of cable sections. The number of test conditions has much less effect on time than does the tide. As stated previously, a central memory of about 40,000 octal is required.

9. <u>Run and Card Deck Setup Procedures and Special Operation</u> Instructions.

In order to run the FORTRAN source program deck on the University of Washington CDC 6400, the following deck is required:

BMOOR, T40.	Job card
ACCOUNT	(Account no., password)
FORTRAN.	
LGO (LC=6000)	LC = line count value; depends on how many tides and conditions are run
7/8/9 FORTRAN DECK	
7/8/9	
DATA DECK	
6/7/8/9	

10. Sample Output Data.

Example output from program BRKMOOR is shown in Table B-2; a listing of program BRKMOOR is shown in Table B-3.

Figure B-2. Continued

NO

Figure B-2. Continued

IN THE FOLLOWING TABLES - X REL. TO CG, Y REL. TO WATER SURFACE

TEST CASE -- MEASURED CHAIN TEST 3/11/76

MODRING LINE NUMBER= 1 TIDE= -.000

Y	x	TOP TENSION	FORCEX	FORCEY
-7.167	24.605	5.202	.430	-5.184
-7.167	25.294	5.802	• 956	-5.722
-7.167	25.893	6.407	1.574	-6.211
-7.167	26.387	7.158	2.326	-6.770
-7.167	26.804	8.101	3.257	-7.417
-7.167	27.174	9.278	4.419	-8.158
-7.167	27.507	10.776	5.899	-9.019
-7.167	27.814	12.704	7.809	-10.021
-7.167	28.099	15.254	10.338	-11.216
-7.167	28.366	18.714	13.777	-12.664
-7.167	28.619	23.557	18.601	-14.454
-7.167	28.859	30.675	25.695	-16.755
-7.167	29.089	41.694	36.687	-19.809
-7.167	29.290	61.608	56.444	-24.690
-7.167	29,410	121.346	114.814	-39,276
-7.239	24.544	5.251	.434	-5-233
-7.239	25.258	5.848	.963	-5.768
-7.239	25.839	6.494	1,595	=6.295
-7.239	26.346	7.240	2.353	-6-847
-7.239	26.769	8,190	3,292	-7.499
-7.239	27,142	9.380	4.46B	-8.248
-7.239	27.477	10,900	5.967	-9,122
-7.239	27.790	12,833	7.888	=10,122
-7.239	28.077	15.417	10.449	=11.336
-7.239	28.347	18,906	13.010	-12.705
-7.239	28.602	22,805	19 707	-14 606
-7.230	28.844	21.005	25 071	-14.000
-7.239	20.077	42.115	27 058	-20 010
-7.230	20.277	62.505	57.244	-20.010
-7.230	20.205	125 036	118 205	-40 470
-7.095	24.658	5 140	110.505	
-7.095	25.229	5 757	048	-5 479
-7.095	25.045	6.327	1 555	-4 122
-7.095	26.427	7.090	2 201	-0.133
-7.095	26.820	8 016	2 . 301	-7.330
-7:095	27 205	0 179	5 + 6 2 7 2	-9.071
-7.095	27.526	10.657	5 932	-0.071
-7.095	27 927	12 579	7 722	-0.022
-7.095	28.122	15.085	10.224	-11 002
-7.095	28.384	19.509	12.624	-11:092
-7.095	28.634	22.214	19.020	-16 305
-7.095	28.874	20.353	25 425	-14 570
-7.095	20.102	50.373	27.727	-10.579
-7.005	20 202	40 739	50.502	-17.001
-7.095	20.424	117 975	111 520	-24.341
	670760	1110013	111030	-30+192

Table B-2. Example output from program BRKMOOR.

TEST CASE -- MEASURED CHAIN TEST 3/11/76

MOORING LINE NUMBER= 2 TIDE= -.000

Y	x	TOP TENSION	FORCEX	FORCEY
-7.167	-24.605	5.202	430	-5.184
-7.167	-25.294	5.802	956	-5.722
-7.167	-25.893	6.407	-1.574	-6.211
-7.167	-26.387	7.158	-2.326	-6.770
-7.167	-26.804	8.101	-3.257	-7.417
-7.167	-27.174	9.278	-4.419	-8.158
-7.167	-27.507	10.776	-5.899	-9.019
-7.167	-27.814	12.704	-7.809	-10.021
-7.167	-28.099	15.254	-10.338	-11.216
-7.167	-28.366	18.714	-13.777	-12.664
-7.167	-28.619	23.557	-18.601	-14.454
-7.167	-28.859	30.675	-25.695	-16.755
-7.167	-29.089	41.694	-36.687	-19.809
-7.167	-29.290	61.608	-56.444	-24.690
-7.167	-29.410	121.346	-114.814	-39.276
-7.239	-24.544	5.251	434	-5.233
-7.239	-25.258	5.848	963	-5.768
-7.239	-25.839	6.494	-1.595	-6.295
-7.239	-26.346	7.240	-2.353	-6.847
-7.239	-26.769	8.190	-3.292	-7.499
-7.239	-27.142	9.380	-4.468	-8.248
-7.239	-27.477	10.900	-5.967	-9.122
-7.239	-27.790	12.833	-7.888	-10.122
-7.239	-28.077	15.417	-10.449	-11.336
-7.239	-28.347	18.906	-13.919	-12.795
-7.239	-28.602	23.805	-18.797	-14.606
-7.239	-28.844	31.005	-25.971	-16.935
-7.239	-29.077	42.115	-37.058	-20.010
-7.239	-29.277	62.505	-57.26£	-25.050
-7.239	-29.395	125.036	-118.305	-40.470
-7.095	-24.658	5.160	426	-5.142
-7.095	-25.328	5.757	948	-5.678
-7.095	-25.945	6.327	-1.555	-6.133
-7.095	-26.427	7.080	-2.301	-6.696
-7.095	-26.839	8.016	-3.223	-7.339
-7.095	-27.205	9,179	-4.372	-8.071
-7.095	-27.536	10.657	-5.833	-8.918
-7.095	-27.837	12.578	-7.732	-9.922
-7.095	-28.122	15.085	-10.224	-11.092
-7.095	-28.386	18.508	-13.626	-12.525
-7.095	-28.636	23.314	-18.410	-14.305
-7.095	-28.874	30.353	-25.425	-16.579
-7.095	-29,102	41.256	-36,302	-19.601
-7.095	-29.303	60.738	-55.647	-24.341
-7.095	-29.426	117.875	-111.530	-38,152

-5.134E+00 -5.134E+00 DFYDY 1.346E+01 -1.346E+01 DFYDX 1.328E+01 -1.328E+01 DFXDY -4.781E+01 -4.781E+01 DFXDX .000LB. 58.020FEET -7.167 -7.167 ≻ -.000 L8. FORCE, FEXT= SEP= 58.0 29**.011** -29.011 ж EXTERNALLY APPLIED HORIZONTAL Horizontal anchor seperation, -18.766 -18.766 NOMINAL TENSION IN CABLE 1 = NOMINAL TENSION IN CABLE 2 = F۲ 32,933 -32,933 THE CONDITIONS -ž 000 CABLE NO. TIDE = H 04 FOR

TENSION

3.793E+01 3.793E+01 1.4203E+01 1.4203E+01 1.4203E+01 -1.4203E+01 DTDR DTDY -4.7919E+01 DTDX CABLE NO. -

FORCES AND MOMENTS ON BREAKWATER AT ECULIBRIUM DUE TC MODRING LINES

• 0000 -37.5323 .0000 EH# ES. HE =

SPRING CONSTANTS SWAY DIRECTION

9.56100E+01 KM11 =

KF12 = .0 KF13 ==2.65637E+01

SPRING CONSTANTS HEAVE DIRECTION

1.02676E+01 • K//21 = KP22 =

• KF23 SPRING CONSTANTS ROLL DIRECTION KM31 = -2.69150E+01

• KP32 =

KH33 = 1.02676E+01

Continued Table B-2.

RUNT VERSION FEB 74 B 13:04 04/09/76

PROGRAM ERKMOOR(INPUT, OUTPUT, PUNCH, TAPE5=INPUT, TAPE6=GUTPUT) С PROGRAM BRKMOOR COMPUTES THE FORCES AND SPRING CONSTANTS THAT A PAIR C C OF MOORING CABLES IMPART ON A FLOATING BREAKWATER SECTION C TNPUT C FIRST CARD--TITLE - 80 ALPHANUMERIC CHARACTERS С BREAKWATER GEOMETRY--С NUMBER OF TEST CONDITIONS C TEST CONDITIONS--ONE CARD FOR EACH SET C TIDE CARD--NUMBER OF TIDE CONDITIONS AND THE CONDITIONS С FOR FIRST CABLE--NUMBER OF SEGMENTS ANCHOR DEPTH AND BOTTOM SLOPE С FOR EACH OF ABOVE CABLE SEGMENTS -- CARD WITH SEGMENT PROPERTIES С REPEAT -- NUMBER OF SEGMENTS AND THEIR PROPERTIES FOR SECOND CABLE С С COMMON/ONE/NSEG(2), NSECT(2,5), WSECT(2,5), MATL(2,5), DIAM(2,5), 3 2 ALSECT(2,5) COMMON/TWO/WY(2,3), EX(2,3,20), FX(2,3,20), FY(2,3,20), TENS(2,3,20), 3 FEXT(9), SEP(9), TENS1(9), TENS2(9), NANGLE, NCOND, TITLE(8) 2 COMMON/FOUR/YCG, XCAB(2), YCAB(2), TIDE(5), ITIDF 3 DIMENSION WPF(2,5), ALSEG(2,5), PEPTH(2),BSLOPE(2),ALNOM(2) 3 PI=3.1415926535 3 C***READ & TITLE CARD -- 80 CHARACTERS MAX 5 READ 3, TITLE 12 3 FORMAT(8A10) 12 PRINT 16, TITLE 20 FORMAT(1H1,5X,8A10///) 16 C***READ AND ECHO THE BREAKWATER GEOMETRY 20 READ 5, YCG, XCAB(1), YCAB(1), XCAB(2), YCAB(2) 2 YCG=Y COORDINATE OF CG RELATIVE TO WATER SURFACE С 5 42 FORMAT(5F10.0) 42 OUTPUT, YCG, XCAB(1), YCAB(1), XCAB(2), YCAB(2) XCAB(I)=X COORD OF CABLE I ATTACHMENT RELATIVE TO CG С YCAB(I)=Y COORD OF CABLE I ATTACHMENT RELATIVE TO WATER SURFACE NOTE--CABLE NUMBER 1 IS THE CABLE WITH ITS ANCHOR IN THE +X DIRECTION C C***INPUT THE NUMBER OF DESIRED CONDITION CARDS MAX NUMBER=9 72 PEAD 10,NCOND 100 FORMAT(12) 10 C***READ AND ECHO DESIRED CONDITIONS 100 DO 17 ICOND=1,NCOND 102 READ 15, FEXT(ICOND), SEP(ICOND), TENS1(ICOND), TENS2(ICOND) 121 15 FORMAT(4F10.0) 121 OUTPUT, FEXT(ICOND), SEP(ICOND), TENS1(ICOND), TENS2(ICOND) 17 FEXT=EXTERNALLY APPLIED FORCE (HORIZONTAL DIRECTION) LB. C SEP =ANCHOR SEPERATION IN THE X DIRECTION FT. TENS1=TENSION IN CABLE 1 LB. С TENS2=TENSION IN CABLE 2 C LB. INPUT SEP, OR TENSI OR TENS2 CR BOTH TENSI AND TENS2 C C***READ AND ECHD TIDE CONDITIONS NTIDE=NUMBER OF TIDE CONDITIONS MAX=5 TIDE=TIDE POSITION RELATIVE TO NOMINAL DEPTH MEASUREMENTS FT. C 151 READ 20, NTIDE, (TIDE(I), I=1, NTIDE) 166 20 FORMAT(11,9X,5F10.0)

Table B-3. Listing of program BRKMOOR.

PUNT VERSION FEB 74 B 13:04 04/09/76

166	OUTPUT, NTIDE, TIDE
201	C LUUP THRUUGH THE IWU CABLES
201	UU 07 1=192 Catastroint the cade e dodedtes and botton and side
203	READ 22.NSEC(T).DEPTH(T).BS(DPE(T))
217	22 FORMAT(12+8X+2F10+0)
C	C NSEG NUMBER OF CABLE SEGMENTS OR MATERIALS
	C DEPTH= DEPTH OF THE WATER AT THE ANCHOR FT.
	C BSLOPE= SLOPE OF THE BOTTOM (FT RISE/FT)
217	PRINT 25
223	25 FORMAT(///5X)*I NUMBER SECTIONS SEGMENT LENGTH WT PER FOOT*
	2 4X* MATERIAL DIAMETER*/)
223	NS=NSEG(I)
226	DO 30 J=1,NS
	C***FOR EACH CABLE SEGMENT INPUT
	C NSECT(I) = NUMBER OF SECTIONS INTO WHICH CARLE SEGMENT I IS DIVIDED
	C ALSEGUITELENGIA UF LABLE SEGMENT 1 FI.
	C WFF(1)= WEIGHT FER FULLIN WATER OF CADLE SEGNENT I EDIFI
	C PATE-PATERIAL OF CADLE SEGNERT CITED VILON DE CHAIN
230	READ 40+NSECT(T+J) + AI SEG(T+J)+WEE(T+J)+ MATL(T+J)+DIAM(T+J)
264	40 FORMAT(15,5X,2F10.0,A10,F10.0)
264	30 PRINT 50, J, NSECT(I, J), ALSEG(I, J), WPF(I, J), MATL(I, J), DIAM(I, J)
326	50 FORMAT(X, 15, EX, 15, 8X, F10.2, 4X, F10.2, 9X, A10, 5X, F6.3)
	C+++FIND THE NOMINAL LENGTH OF THE CABLE, LENGTH AND WEIGHT OF SECTIONS
326	ALNOM(I)=0.
331	DD 60 J=1,NS
332	ALNOM(I)=ALNOM(I)+ALSEG(I,J)
343	ALSECT(I, J) = ALSEG(I, J) / NSECT(I, J)
357	CO WSECI(I)JJ=WPF(I)JJ=ALSECI(I)JJ
377	
511	Catal ODD THROUGH THE TIPE POSTTIONS
403	
105	C+++LOOP THROUGH THE CABLES
405	DO 150 I=1,2
406	PRINT 70
411	70 FORMAT(1H1,5X*NOTE-IN THE FOLLOWING TABLES X AND Y ARE MEASURED
	2RELATIVE TO THE CABLE ATTACHMENT#//)
	C DEY DIRECTION SEPERATION BETWEEN ANCHOR AND ATTACHMENT
411	D=DEPTH(I)+TIDE(ITIDE)+YCAB(I)
	C***COMPUTE INITIAL ANGLES TO BE USED
/ 71	C NANGLE=NUMBER UF ANGLES USED MAX=27
421	
423	PRIMIN-ASIRVU/ALMUNII//
443	
	C***COMPUTE A FIRST GUESS FOR THE INITIAL TENSION FOR STEEPEST ANGLE
444	ALSUM=0.
445	TZERD=0.
446	DAF=D+(ALNOM(I)-D)*BSLOPE(I)
456	NS=NSEG(I)
461	D0 90 J=1,NS
463	NSS=NSECI(I)]
470	DO AD K=19N22

RUNT	VEP	SICN	FE	B	74	B	1	31	04	04	100	9/7	6															
4	71			AL:	SUM	= AL	.su	M+	ALS	EC	то	ل و ا)															
4	77			ΙF	(AL	SUP	۰.	GT	. 0	AF) (30	то	95														
50	20	90		ΤZ	ERD) = T Z	ER	0+	WSE	CT	(1)	J)																
5	15	95		CO	NTI	NUE	-																					
		С	COM	PU	TE	THE	N	90	INA	L.	AND) P	ERT	UR	BEC	0 0	EPT	HS										
5	15	-		DR	EF=	D				-																		
5	17			DE	LD=	DRE	F/	10	0.																			
5	21			DP	LUS	=DR	EF	+D	ELC)																		
5	22			DM	INU	S=D	PE	F-	DEL	D																		
		C**	+L0	I D P	TH	ROU	JGH	T	HE	IN	IT	LAL	٨٨	IGL	ES													
53	24			DO	10	0 K	=1	۶N	ANG	LE																		
5	25			PR	INT	97	۶I	۶K	• N 4	NG	LE	TI	DEI	11	IDE)												
54	+1	4 7		FO	RMA	T(/	/X*	CA	BLE	N	UME	BER	*1	14		I	NTT	IAL	. AN	IGLE	E NO	י . נ	FI2	*	OF	*1)	2	
			2	• •		TID	B (*F5	• 2	11																	
54	+1			PH:	ION	IE=P	HI	ON	E + C	EL	PH1	1																
		C**	*L0	OP	TH	ROU	GH	T	HE	NO	MIN	1AL	DE	P 1	H A	١ND	PE	PTL	JR BE	0 0	EP.	THS						
54	43			DC	10	0 J	=1	э3																				
5	45			IP	RIN	T=0)																					
		C**	***	**	4 T C	SK	IP	T	HE	PR	INT	IIN	G C	١F	EA(:н	CAT	INA	PΥ	- 1	NSI	ERT	Α	GO	TO	11	11	
54	16			IF	(J	. E C	•	1)	IF	RI	NT:	1																
5	51	111	1	IF	(J	•EQ		1)	D=	DR	ΕF																	
5	55			ΙF	(J	• E Q	1.	2)	D =	DP	LUS	5																
5	51			IF	(J	• E Q	•	3)	D=	DM	INU	JS																
50	55			WY	(1,	J)=	YC	AΒ	(1)	÷D																		
5	75			00.	TPU	IT , J	۶κ	۶D و	• Y C	AB	(1)	I ø W	Y()	ل و	1) . F	PHI	ONE											
63	27			CAI	LL	LIN	! E 2	(1	۶P۲	110	NE	TZ	ERC	٦, ۱	,85	SLC	PE (1),	X y Y	', FC	RCE	اوX	=OR	CEN	۲,1	PRI	(T)	
6	+2			ΕX	(1,	JøK	()=	хc	AB (I)	- X4	+(-)	1)*	*1														
61	50			FX	(1,	J, K) =	FO	RCE	X*	(-)	-1)**	:1)														
6	74			FY	(1)	JøK	()=	FC	RCE	Y																		
70	33			TE	121	IJJ	۶K)=	TZE	RO																		
		С	WY(I,	j)=	YC	00	RD	OF	_ T	HE	AN	сно	IR	TD	NO	• 1	C A	BLE		ATA	R	SUR	FA(C E =	ORI	SIN	
		C	EX(D	JøK) = X	C	00	RD	OF	Ah	ICH		RE	LAI	IV	ET	сс	G	IF B	REI	1K WI	TE	R				
		C	TEN	5=	TEN	510	IN .	AT.	. A 1	TA	CHM	1EN	τ															
		C	+ *=	FUI	RCF	A 1	. A	11	ACE		NI	IN	X	01	REC	11	UN											
		6.0	+ Y =	FUI	KCE	A F	A	11	ACF	IME	NI	IN	Y	DI	REC	:11	UN											
1.	12	10	U	CUI	118	NUE																						
	14	U. 1 E.	2 E N	0 1	JF 1177	LAB	LE	L.	UUP	·																		
		1.5	0	00		NUE																						
7	20	10	2	EOI	T IN I	10	12	. 6	v + 1		THE				T 110		4.0.1	r e				**	~~				TO	
		10	٤,	TE	0 0			92	~	. 14	1710				THE		ADL	E 3	- ^	R C	.r. e	10	66	9 1	I K		10	NA
7	26		2	50	16	0 1	=1	5																				
7	26			DD.	TN T	10	2.	7 L	T 1 6																			
7	22	10	2	EN		77	5	¥.	9 4 1	•																		
7	22	10	5	PP	TNT	10	15.	<u>.</u>		SE (TT1	ne	,															
7	44	10	5	ED	DMA	τīž	11	5¥	* 8 6	inp	TNO	1 1	, TNE	N		ED	- *		*	**	n	* 5 /	. 2					
•	•••		Č 🤉		101	. +Y	÷1	41	. 1 .	IX.	RY.	*T	nρ	TE	NSI	I DN	*7 Y	* 5 6		¥*7	YAS		, E A	*/				
7	44		-	DO	12	0 1	=1	•3			0,1,1			16					in cic	· · ·	~ • •	UN			, 			
7	46			00	12	0 6	=1	•N	ANG	I F																		
7	47			PR	INT	11	0,	WY	(1.	3)	, E)	(I)	, J .	к)	• TF	INS	(1.	J . K) . F	XIT		K)	FY	σ	de	к)		
10	13	11	0	FOI	RMA	TIS	X.	5(FII	. 3	, 4)	01																
10	13	12	0	CO	NTI	NUE																						
10	20			PR	INT	12	5																					
10	23	12	5	FO	RMA	T(1	H1)																				
10	23	16	0	CO	ITA	NUE																						
10	25			CA	LL	EQU	ILI	в																				

Table B-3. Continued

RUNT VERSIEN FEB 74 8 13:04 04/09/76

	C END OF TIDE	LCOP
1026	400 CONTINUE	
1031	STOP	
1033	END	

RUNT VERSION FEB 74 8 13:04 04/09/76

15	0.1.4.7.1	SUBROUTINE LINE2(K, PHIONE, TZERO, DEPTH, BSLOPE, X, Y, FORCEX, FORCEY, IP COMMON/ONE/NSEG(2), NSECT(2,5), WSECT(2,5), MATL(2,5), DIAM(2,5), 2 ALSECT(2,5)
	C PU	E INFUL ID SUBRUULINE LINE
	C T7	FRONTIAL ANGLE OF CABLE
	C++50	BROUTINE LINE COMPUTES
	C TZ	FRO= TENSION AT CABLE TOP
	C FO	RCEX=FORCE IN X DIRECTION AT CABLE TOP
	C FO	RCEY=FORCE IN Y DIRECTION AT CABLE TOP
	C X=	HORIZONTAL SEPERATION BETWEEN TOP AND BOTTOM OF CABLE
	C Y=	VERTICAL SEPERATION BETWEEN TOP AND BOTTOM OF CABLE
	C***G	O DOWN THE CABLE SECTION BY SECTION COMPUTE TENSION, ANGLE,
	C E	XTENDED LENGTH, X AND Y COORDINATES
15		PI=3.14159
10		
21		
22		
23	152	NTTER=NTTER+1
25		TF(TP .EQ. 0) GO TO 153
27		IF(NDTE .EQ. 0) GO TO 153
31		PRINT 155
35	155	FORMAT(//5X+I J X Y TENSION LSECT+
		2 6X;+LEXT PHI-DEGREES FORCEY FORCEX+/)
35	153	Y=0.
37		
43		Nee-Nee(NA) Aut=Autone
27	159	
51	190	
56		DO 200 J=1.NS
57		PHID=PHI*180./PI
61		IF(MATL(K,I) .EQ. 5HNYLON)GO TO 165
67		IF(MATL(K,I) .EQ. 5HCHAIN)GD TD 160
75	160	CALL_CHAIN(DIAM(K,I),T,STRAIN)
105		GO TO 170
111	165	CALL NYLUN(DIAM(K, I), I), ISINAIN)
121	110	
145		V=VALEXITCUSITTI/
152		
156		TSIN=T+SIN(PHI)
162		IF(IP .EQ. 0) GO TO 185
170		IF(NCTE .EQ. 0) GO TO 185
172		PRINT 180, I, J, X, Y, T, ALSECT(K, I), ALEXT, PHID, TSIN, TCOS
231	180	FORMAT(X,215,8F10.3)
231	185	IFII .EQ. NSS .AND. J .EQ. NS) GO TO 200
247		SLOPE=(TSIN+WSECT(K,I))/TCOS
227		THISLUPE OUES BELUPE) SLUPE=BELUPE
202		T-TCOS/COS/DUT)
200	200	CONTINIE
302	200	FORCEX#T7ERD#COS(PHIONE)
311		FORCEY=TZERC+SIN(PHIONE)

RUNT VERSION FEB 74 8 13:04 04/09/76

320		OUTPUT#NITER#Y#X#TZERO
	C+++T	HE SECOND GUESS OF INITIAL TENSION IS COMPUTED
350		IF(NITER .GT. 1) GO TO 220
353		TZOLD=TZERO
354		TZERD=TZERD=ABS(DEPTH/Y)
365		YOLD=Y
367		T=TZERO
370		60 10 152
	C+++T	HE SUBSEQUENT INITIAL TENSIONS ARE COMPUTED USING SECANT ITERATIC
370	220	RELER=ABS(1.+Y/DEPTH)
402	_	IF(NOTE .EQ. 1) GO TO 300
405		IF(NITER .GE. MNITER .DR. RELER .LFCOO1) NDTE=1
424		DEROLD=DEPTH+YOLD
426		DERR=DEPTH+Y
430		T=TZOLD-DEROLD+(TZERO-TZOLC)/(DERR-DEROLD)
437		IF(T .LE. 0.) T=TZERO/2.
443		YOLD=Y
445		TZOLD=TZERO
446		TZERO=T
447		60 TO 152
447	300	RETURN
450	5.00	END

UNT VERSIEN FEB 74 B 13:04 04/09/76

		SUBROUTINE CHAIN(D, T, STRAIN)
6		PI=3.14159
7		E=30.E6
11		AREA=D+D+PI/2.
	С	C=ELONGATION FACTOR C=6 FCR OVAL CHAIN
14		C=6.
15		STRAIN=C+T/(AREA+E)
21		RETURN
22		END

UNT VERSION FEB 74 8 13:04 04/09/76

	SUBROUTINE NYLON(D, T, STRAIN)
6	$X = T / (D \neq D)$
10	A=.02052
12	B=,2237
13	STRAIN=A+X++B
20	RETURN
21	END

RUNT VERSIEN FEB 74 8 13:04 04/09/76

```
SUBROUTINE EQULIB
  2
            COMMON/TWO/WY(2,3), EX(2,3,20), FX(2,3,2C), FY(2,3,20), TENS(2,3,20),
           2
              FEXT(9), SEP(9), TENS1(9), TENS2(9), NANGLE, NCOND, TITLE(8)
            COMMON/THREE/X(2),F(2)
  2
            DIMENSION SEPDIF(3), FO(3)
  2
      C****EQULIB FINDS THE BREAKWATER EQUILIBRIUM POSITION
      C***LOOP THROUGT THE TEST CONDITIONS
            DO 100 IC=1, NCOND
  2
             TF(SEP(IC) .NE. 0.) GO TO 20
  4
             IF(TENS1(IC) .NE.0.)GD TO 10
 7
             IF(TENS2(IC) .NE.0.)GD TO 12
13
17
            PRINT 155
            FORMAT(//X+NO INITIAL CONDITIONS SPECIFIED+)
 23
       155
 23
             GO TO 100
      C***FOR THE CASES WHERE INITIAL TENSION IS GIVEN THE FOLLOWING IS USED
            T=TENS1(IC)
24
       10
27
             I=1
 31
             J=2
 32
             GO TO 14
             T=TENS2(IC)
 33
       12
            I=2
 36
 40
             .1=1
 41
       14
            DUTPUT, I, NANGLE, T
 57
             IF(T .GE. TENS(I,1,1)) GO TO 18
 70
             PRINT 16
74
            GO TO 100
75
       18
             IF(T .GE. TENS(I,1,NANGLE)) PRINT 17
111
       16
            FORMAT(//5X+GIVEN TENSION CLOSE TO OP LESS THAN WEIGHT OF VERTICAL
           2 MOORING LINE*/5X*NO FURTHER EVALUATION ATTEMPTED *//)
            FORMAT(//5X*GIVEN TENSION TOO GREAT FOR EVALUATION WITHOUT*
111
       17
           2 *EXTRAPOLATION*/5X*USE RESULTS WITH CAUTION*//)
            CALL LTERPS (I, 1, NANGLE, TENS, EX, T, X(I), DUMMY)
111
            DUTPUT, X(I), T
123
137
            CALL LTERPS (I, 1, NANGLE, TENS, FX, T, F(I), DUMMY)
151
            OUTPUT, F(I)
162
             IF(I .EQ. 1 .AND. TENS2(IC) .NE. 0) GO TO 12
             IF(TENS1(IC) .NE. 0 .AND. TENS2(IC) .NE. 0) GD TO 40
177
            F(J) = -F(I) - FEXT(IC)
214
224
            OUTPUT, F(J)
             CALL LTERPS (J,1,NANGLE, FX, EX, F(J), X(J), DUMMY)
234
            OUTPUT, X(J)
250
          NOTE--- F(I)=X DIRECTION FORCE ON CABLE I , X(I)=X CODED OF ANCHOR
      С
261
             GO TO 40
      C***FOR THE CASE WHERE ANCHOR SEPERATION IS GIVEN
          MAKE & FIRST AND SECOND GUESS AT FORCE
      C
262
       20
             TA = (NANGLE+1)/2
270
             EPS=SEP(IC) + .0001
274
            DO 30 II=1,2
275
            X(1)=EX(1,1,IA)
            F(1)=FX(1,1,1,IA)
305
315
            OUTPUT, F(1), II, FEXT(IC), SEP(IC), IA
344
             FO(II)=F(1)
351
             F(2)=-F(1)-FEXT(IC)
361
            DUTPUT, F(2)
371
            CALL LTERPS (2,1, NANGLE, FX, EX, F(2), X(2), DUMMY)
```

405		ASEP=X(1)-X(2)
413		SEPDIF(II)=SEP(IC)-ASEP
421		DUTPUT, II, IA, X(1), X(2), F(1), F(2), SEP(IC), ASEP, SEPDIF(II)
466		IF(ABS(SEPDIF(II)) .GT. EPS) GO TO 24
476		GD TD 40
477	24	IF(SEPDIF(II) .GE. 0.) GO TO 26
503		
505		GQ TD 30
505	26	IA=NANGLE
507	30	CONTINUE
	C+++(USE SECANT INTERPOLATION FOR THE SUBSEQUENT FORCE TRIALS
511		MN=20
513		DO 34 K=1, MN
514		FO(3)=FO(1)-SEPDIF(1)*(FO(2)-FO(1))/(SEPDIF(2)-SEPDIF(1))
540		IF(FO(3) .LE. 0.) FO(3)=FO(2)/2.
552		F(1)=FD(3)
557		F(2)=-F(1)-FEXT(IC)
567		DO 32 I=1,2
570	32	CALL LTERPS (I,1, NANGLE, FX, EX, F(I), X(I), DUMMY)
605		ASEP=X(1)-X(2)
613		SEPDIF(3)=SEP(IC)-ASEP
621		OUTPUT,K,X(1),X(2),F(1),F(2),ASEP,SEPDIF(3)
657		IF(ABS(SEPDIF(3)) .LE. EPS) GO TO 30
667		IF(K .EQ. MN) GO TO 36
672		FO(1)=FO(2)
677		FO(2)=FO(3)
704		SEPDIF(1)=SEPDIF(2)
711		SEPDIF(2)=SEPDIF(3)
716	34	CONTINUE
720	36	PRINT 37
724	37	FORMAT(/5X+MAX NUMBER OF ITERATIONS REACHED+/)
724	38	DO 39 I=1,2
726		IF(ABS(F(I)) .GT. ABS(FX(I,1,NANGLE))) PRINT 42
750	39	IF(ABS(F(I)) .LT. ABS(FX(I,1,1))) PRINT 43
775	42	FORMAT(//5X#ANCHOR SEPERATION TOO GREAT FOR EVALUATION WITHOUT EXT
		2RAPOLATINGUSE RESULTS WITH CAUTION*//)
775	43	FORMAT(//5X*ANCHOR SEPERATION TOO LITTLE FOR EVALUATION WITHOUT EX
		2TRAPOLATIONUSE RESULTS WITH CAUTION*//)
775	40	CALL SPPING(IC)
777	100	CONTINUE
1002		RETURN
1002		END
TAAC		

RUNT VERSION FEB 74 B 13:04 04/09/76

Table B-3. Continued

	SUBROUTINE SPRING(IC)
6	COMMON/TWO/WY(2,3),EX(2,3,20),FX(2,3,20),FY(2,3,20),TENS(2,3,20),
-	<pre>FFXT(9) SEP(9) TENS1(9) TENS2(9) NANGLE, NCOND, TITLE(8)</pre>
6	COMMON/THREE/X(2) - E(2)
6	COMMON/EDUR/YCG-YCAR(2), YCAR(2), TIDE(5), TIDE
4	
0	DIRENSION DEADARCHINE DEALENDEADARCHINE (CONTRACTOR)
,	
0	
	C****SUBROUTINE SPRING COMPUTES THE BREARWATER SPRING CONSTANTS
	C###COMPUTE THE SPRING CUNSTANTS FUR EACH CABLE
	C HORIZONTAL FORCE AT EQUILIBRIUM=F(I) FUR CABLE I
	C VERT FORCE AT EQUILIBRIUM=FV(I) FOR CABLE I
6	DO 14 I=1,2
7	00 12 J=1,3
10	CALL LTERPS (I,J,NANGLE,EX,FX,X(I),FXX(I,J),DF)
27	IF(J .EQ. 1) DFXDX(I)=-DF
35	CALL LTERPS (I.J. NANGLE, EX, TENS, X(I), T(I.J), DT)
54	TE(J = EQ = 1) DTDX(T) = DT
62	12 CALL LTERPS (T.J.NANGLE-EX-EX-X(T)-EXX(T.J)-D(J))
107	(1 - 1) = (1 - 1) = (1 - 2) = (1 -
122	
140	
140	FYNI/FTNNIFI DEWDYTNIFUEWYT 21_EVYTT21\//UVTT21\\//FT21\\+/_1 \
147	
1/4	DFXDT([]=(FXX(1)2)=FXX(1)3)//(WT(1)2)=WT(1)3)/+(=1.)
221	14 CUNTINUE
223	PRINT 16,TITLE
230	16 FORMAT(1H1+8A10)
230	PRINT 15,TIDE(ITIDE),FEXT(IC),SEP(IC),TENS1(IC),TENS2(IC)
261	15 FORMAT(///X*FOR THE CONDITIONS*/
	1 5X+TIDE = +F5.2/
	2 5X*EXTERNALLY APPLIED HORIZONTAL FORCE, FEXT= *F10.3*LB.*/
	3 5X*HORIZONTAL ANCHOR SEPERATION, SEP= *F10.3*FEET*/
	4 5X*NOMINAL TENSION IN CABLE 1 =*F10.3* LB.*/
	5 5X*NOMINAL TENSION IN CABLE 2 =*F10.3* LB.*//)
261	PRINT 18
265	18 EDRMAT(/5X+CABLE ND. EX+10X+EY+11X+1HX+11X+Y+9X*DEXDX+7X.
	2 *DEXDY#7X#DEYDX#7X#DEYDY#=5X=#TENSTDN#//)
265	
270	
210	
227	= CONTROL T + (12) C + (2) C
221	22 = ruspan(9x) 1194(2x) r10(3) (7(x)) (110) (1) (7(x)) (10) (10) (10) (10) (10) (10) (10) (1
	CATTNUM CALCULATE FURCES AND SPRING CUNSTANTS FUR THE BREARWATER
	C S=SWAT FUTION +X DIRECTION FEFT
	C H=HEAVE MUTION +Y DIRECTION
	C RERULL MUTION COUNTERCLOCKWISE RADIANS
	C FS=FORCES CAUSING SWAY DUE TO THE MODRING LINES
	C FHEFORCES CAUSING HEAVE DUE TO MOORING LINES
	C EMR=MOMENTS CAUSING ROLL DUE TO MOORING LINES
	C CHANGE YCAB TO BE DIST TO CG IN Y DIRECTION
337	YCAB(1)=YCAB(1)-YCG
345	YCAB(2)=YCAB(2)-YCG
352	FS=F(1)+F(2)
360	FH=FV(1)+FV(2)
365	ENR=FV(1) + XCAB(1) + FV(2) + XCAB(2) - F(3) + YCAB(1) - F(2) + YCAB(2)
	C***CALCULATE CHANGE IN TENSIONS WITH BREAKWATER MOTIONS

RUNT VERSION FEB 74 B 13:04 04/09/76 413 DD 26 I=1+2 DTDR(I)=DTDY(I)=XCAB(I)-DTDX(I)=YCAB(I) 414 26 432 PRINT 27 FORMAT(//5X*CABLE NO. DTDX*8X*DTDY*8X*DTDR*//) 435 27 435 DO 28 I=1,2 PRINT 29, I, DTDX(I), DTDY(I), DTDR(I) 440 28 461 29 FORMAT(9X, 11, 3(XE11.4)) SPRING CONSTANTS SWAY DIRECTION С KM11=(DFXDX(1)+DFXDX(2))*(-1.) 461 KH12=(DFYDX(1)+DFYDX(2))*(-1.) 471 KM13=(DFYDX(1)+XCAB(1)+DFYDX(2)+XCAB(2)-DFXDX(1)+YCAB(1)-DFXDX(2)+ 500 2 YCAB(2))*(-1.) SPRING CONSTANTS HEAVE С KH21=(DFXDY(1)+DFXDY(2))+(-1.) 530 KM22=(DFYDY(1)+DFYDY(2))*(-1.) 537 KM23=(DFYDY(1) * XCAB(1) + DFYDY(2) * XCAB(2) 546 2 -DFXDY(1)*YCAB(1)-DFXDY(2)*YCAB(2))*(-1.) SPRING CONSTANTS ROLL DIRECTION C KM31=(DFXDY(1) *XCAB(1)+DFXDY(2)*XCAB(2)-DFXDX(1)*YCAB(1) 576 2 -DFXDX(2)*YCAB(2))*(-1.) 626 KM32=(DFYDY(1)=XCAB(1)+DFYDY(2)=XCAP(2) 2 -DFYDX(1)*YCAB(1)-DFYDX(2)*YCAB(2))*(-1.) KM33=(XCAB(1)++2+DFYDY(1)+>CAB(2)++2+DFYDY(2) 656 2 +YCAB(1) ++ 2+ DFXDX(1) + YCAB(2) ++ 2+ DFXDX(2) -XCAB(1) + YCAB(1) + (DFYDX(1) + DFXDY(1)) 3 -XCAB(2) +YCAB(2) + (DFYDX(2) + DFXDY(2))) + (-1.) 4 PRINT 30, FS, FH, EMR 756 FORMAT(///5X*FORCES AND MOMENTS ON BREAKWATER AT EQULIBRIUM DUE * 767 30 2 *TO MOORING LINES*/10X*FS= *F12.4/10X*FH= *F12.4/10X*MR= *F12.4) 767 PRINT 32, KM11, KM12, KM13 1001 32 FORMAT(//5X+SPRING CONSTANTS SWAY DIRECTION+/10X+KM11 = +E12.5/ 10X*KM12 = #E12.5/10X*KM13 =*E12.5) 2 1001 PRINT 34, KM21, KM22, KM23 FORMAT(/5X*SPRING CONSTANTS HEAVE DIRECTION*/10X*KM21 = *E12.5/ 1013 34 10X+KM22 = +E12.5/10X+KM23 =+E12.5) 2 1013 PRINT 36, KM31, KM32, KM33 FORMAT(/5X*SPRING CONSTANTS ROLL DIRECTION*/10X*KM31 = *E12.5/ 1025 36 2 10X*KM32 = *E12.5/10X*KM33 =*E12.5//) PRINT 38 1025 1031 38 FORMAT(1H1) 1031 RETURN 1032 END

RUNT VERSIEN FEB 74 B 13:04 04/09/76

		SUBROUTINE LTERPS (I,J,N,X,Y,XX,YY,DYDX)
13		DIMENSION X(2,3,20),Y(2,3,20)
13		NMO=N-1
15		DO 10 K=1,NMO
16		L = K + 1
20		IF(XX .EQ. X(I,J,L)) GO TO 30
27		IF(ABS(XX) .LT. ABS(X(I,J,L))) GD TO 20
55	10	CONTINUE
60	20	$DYDX = (Y(I_2J_2L) - Y(I_2J_2K))/(Y(I_2J_2L) - X(I_2J_2K))$
111		YY=Y(I, J,K)+(XX-X(I, J,K))+EYDX
131		RETURN
132	30	IF(L .EQ. N) GO TO 20
134		M=L+1
136		$DYDX = (Y(I_*J_*M) - Y(I_*J_*K))/(X(I_*J_*M) - X(I_*J_*K))$
167		YY=Y(I,J,L)
176		RETURN
176		END

APPENDIX C

LINEAR HYDRODYNAMIC COEFFICIENTS

The linear theoretical model used in solving the floating breakwater problem has been discussed extensively by Frank (1967). He developed the approach to solving the boundary value problem which has come to be known as the "Frank close-fit method". The reader is referred to the original reference for a complete presentation of the method.

In this approach, the classical linear boundary value problem requires that Laplace's equation be satisfied throughout the fluid domain:

$$\nabla^2 \Phi(x, y, t) = 0 \text{ for } y < 0.$$
 (C-1)

The free-surface boundary condition is applied on the undisturbed free surface:

$$\Phi_{tt}(x,0,t) + g\Phi_{v} = 0 \text{ for } y = 0.$$
 (C-2)

The body-surface boundary condition requires that no fluid flow through the body surface:

$$\nabla \Phi(\mathbf{x},\mathbf{y},\mathbf{t}) \cdot \vec{\mathbf{n}} \Big|_{C_0} = \vec{V}_1(\mathbf{s}) \cdot \vec{\mathbf{n}}(\mathbf{s}).$$
 (C-3)

The bottom boundary condition for infinite depth is of the form:

$$\lim_{y \to \infty} \phi_y(x,y,t) = 0.$$
 (C-4)

In addition there is a radiation condition specifying that the waves travel away from the body.

Because the problem is assumed to be linear, the velocity potential may be decomposed and several boundary value problems considered. If this is done the total potential becomes:

$$\Phi = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 + \Phi_5. \tag{C-5}$$

Here,

 Φ_1 = potential representing pure sway motion in calm water, Φ_2 = potential representing pure heave motion in calm water, Φ_3 = potential representing pure roll motion in calm water, Φ_4 = potential representing the waves diffracted by a fixed body,

 Φ_{r} = incident wave potential.

Another velocity potential may be defined:

 Φ_{c} = potential for total fixed-body problem,

so that

 $\Phi_6 = \Phi_4 + \Phi_5$

Using this decomposition of the velocity potential, the boundary value problems may be expressed as:

$$\nabla^{2} \phi_{i}(x,y,t) = 0 \quad \text{for } y < 0,$$

$$\phi_{i}_{tt}(x,0,t) + g \phi_{i} = 0 \quad \text{for } y = 0,$$

$$\lim_{y \to -\infty} \phi_{i}_{y}(x,y,t) = 0,$$

(C-6)

and

$$\nabla \Phi_{i} \cdot \vec{n} \Big|_{C_{o}} = \vec{V}_{i}(s) \cdot \vec{n}(s) \text{ for } i = 1,2,3$$

or

$$\nabla \Phi_{i} \cdot \vec{n} \Big|_{C_{0}} = 0 \text{ for } i = 4,6.$$

These boundary value problems are solved directly using the Frank method which distributes singularities over the hull surface. These singularities satisfy the radiation condition, Laplace's equation, the freesurface boundary condition and the bottom boundary condition. To satisfy the body boundary condition requires the formulation of a set of linear equations whose solution reveals the strength of each singularity distributed on the body.

Once the velocity potential is found the pressure may be found from Bernoulli's equation:

$$P(x,y,t) = -\rho \Phi_{t}(x,y,t).$$
 (C-7)

The force on the body surface is:

$$\stackrel{\rightarrow}{F} = \int_{C_0} P(s) \stackrel{\rightarrow}{n}(s) ds, \qquad (C-8)$$

and the moment is:

$$M = \int_{C_0} P(s) \left[\overrightarrow{r} \times \overrightarrow{n} \right] ds.$$
 (C-9)

The added-mass and damping coefficients are found by considering the cases i = 1,2,3. The forces and moments computed using these potentials may be separated into components in phase with acceleration and velocity. The component in phase with acceleration yields the added-mass coefficients and the component in phase with velocity yields the damping coefficients. Exciting forces and moments are computed when the case i = 6 is considered.

Special Symbols for Appendix C.

- $\vec{n}(s)$ = unit interior normal vector to the body surface
- s = indicates arc length along body contour
- C = body contour
- P(s) = pressure on body surface
- $\vec{V}(s)$ = velocity of body surface
APPENDIX D

FLOATING BREAKWATER ANALYSIS

1. Purpose of the Program.

Computer program BRK2D performs a performance analysis for twodimensional floating breakwaters of arbitrary cross section. This analysis includes predictions of the hydrodynamic coefficients, the dynamics and mooring line forces.

Program Description.

Program BRK2D is written using both FORTRAN II and FORTRAN IV statements.

The program consists of the main program BRK2D and the subroutines COEFF, COMP, PHYSCL, POTOUT, DYNAMC, MORTEN, CPV, LNEQF.

The subroutines COEFF and COMP calculate the quantities needed to formulate the linear equations for the velocity potential. COMP calls on LNEQF to solve these linear simultaneous equations.

Subroutine PHYSCL calculates the physical quantities including added-mass and damping coefficients and surface elevations per unit amplitude of motion.

CPV is a subroutine which evaluates the Cauchy principal value integral in the Green function.

LNEQF is a packaged subroutine to solve simultaneous linear equations using the Gaussian reduction method.

3. Type of Computer and Peripherals.

BRK2D was written for use on the CDC 6400 computer. It uses about 55000_8 words of memory. No peripherals other than the card reader, line printer and card punch are required.

4. Input Data.

The first cards in the data deck are label cards for the output. These are shown in the example input in Table D-1 for the example and are not included here. Following these cards, the input for BRK2D is:

Card #1 - Title card, Format (8A10). 80 alphanumeric characters. Card #2 - Logical control card, Format (5110,615). N = Number of straight line segments used to fit the hull. NW = Number of points on the free surface where wave height is to be computed.

	NWAVEL = Number of wavelengths at which computations are
	ISYM = 1 for symmetric section.
	= Anything else for non-symmetric section.
	ISKIP = 1 Do not solve equations of motion,
	2 Do not solve potential problem (read in
	= Anything else solve potential problem and equa-
	tions of motion,
	LC = Number of body segments which represent spaces be-
	tween multiple hull configurations (1 to 5).
	JC = Designates the segment number for segments repre-
Card #3	- Parameter card Format (5E10 3 3A10)
Galu #5	AREA = Crossectional area of immersed body.
	B = Characteristic beam as specified by BTITLE.
	D = Distance below free surface to origin of users
	coordinate system (all motions are referred to that
	point).
	RUE = Fluid density.
	BTITLE = Specifies B.
Card #4	- Beam/wavelength specification, Format (10F8.5).
	BOL = Beam/wavelength ratios for computation (up to 10
	different ratios may be used).
Card #5	- Offset cards, Format (2F10.3).
	version of the program used here. N must be less than or
	equal to 23 because of dimension statements.
	R(1,I) = X-coordinate of offset point.
	R(2,I) = Y-coordinate of offset point.
Card #6	- Hydrostatic spring constants, Format (9F8.3).
	$RKHYD (1,1) = KH_{1,1}.$
	$RKHYD (1,2) = KH_{12}.$
	RKHYD $(1,3) = KH_{13}^2$.
	RKHYD $(2,1) = KH_{21}$.
	RKHYD $(2,2) = KH_{22}$.
	$R(HYD (2,3) = KH_{23},$ $R(HYD (3,1) = KH_{23},$
	$(3,1) = KI_{31}$ RKHYD (3,2) = KH ₃₂ .
	RKHYD $(3,3) = KH_{33}$.
Card #7	- Physical properties, Format (6F10.3,3F5.2,15).
	This is read in subroutine DYNAMC.
	AREA = Crossectional area.
	B = Characteristic beam.
	$\lambda_{0} = \lambda$ -coordinate of the center of gravity.
	RMASS = Mass per unit length of breakwater.
	RINERT = Mass moment of inertia per unit length of
	breakwater.

	DAMP(1) = Added damping in sway. In the equations of motion sway damping will be 1+DAMP(1) times the
	computed hydrodynamic damping.
	DAMP(2) = Added damping in heave.
	DAMP(3) = Added damping in roll.
	NPUNCH = 0, punch data cards containing computed trans-
	mission coefficient, motion response and mooring-
	force coefficient.
	= Anything else, do not punch data cards.
Card #8 -	Mooring spring constants, Format (9F8.3).
	This is read in subroutine DYNAMC.
	$RKMOR(1,1) = KM_{11}$.
	$RKMOR(1,2) = KM_{12}.$
	$RKMOR(1,3) = KM_{13}$.
	$KKMOR(2,1) = KM_{21}$
	$RMOR(2,2) - RM_{22}$
	$RKMOR(2,3) = KM_{23}$
	$RKMOR(3,2) = KM_{22}$
	$RKMOR(3,3) = KM_{77}$
Card #9 -	Mooring-line response parameters, Format (6F10.2).
	This card is read in subroutine MORTEN.
	DELT(1,1) = $\Delta F/\Delta \alpha_1$ for shoreward mooring line. This is
	the change in mooring line force per unit
	displacement in sway.
	DELT(1,2) = $\Delta F / \Delta \alpha_2$ for shoreware mooring line.
	DELT(1,3) = $\Delta F / \Delta \alpha_3$ for seaward mooring line.
	DELT(2,1) = $\Delta F / \Delta \alpha_1$ for seaward mooring line
	DELT(2,2) = $\Delta F/\Delta \alpha_2$ for seaward mooring line.
Natas	DELI(2,3) = $\Delta F/\Delta \alpha_3$ for seaward mooring line. The least 7 canda (#7, #8, and #0) provide the information
Note:	needed for the dynamic analysis. If it is desirable to
	needed for the dynamic analysis. If it is desirable to
	repeated with different input data. There is a limit of
	25 different sets of data. In the example data shown in
	Table D-1, there are 3 different conditions used.
	14010

5. Mathematical Procedures and Program Limitations.

The mathematics has been described in the report and Appendix C.

The main limitations are that at most 23 offset points may be used to describe the shape. This has been found to be very adequate for the configurations considered thus far. Little change in the results occurs when more than 15 points are used. Computer time increases about as the square of the number of points.

A listing of the program is given in Table D-2.

6. Flow Chart.

A flow chart is given in a figure of this appendix.

MU11/QM MU12/0M HU13/(04+8) MU21/QM MU23/(QM+B) MU22/QM MU32/(QM*B) MU31/(QM+B) MU33/(QM+8+8) LAMBDA12/QD LAMBDA11/QD LAMBDA21/QD LAM3DA13/(90+8) LAMBDA22/0D LAM8DA23/(QD+B) LAMBDA31/(QD#B) LAMBDA32/(QD+B) LAMBDA33/(QD+B+B) FY/QF FX/QF MZ/(2F*8) GEN BY SWAY/SWAY GEN BY ROLL/ROLL(RAD)*8 GEN BY HEAVE/HEAVE REFLECTED BY FXD BDY/"TA REFLECTED + INCIDENT/ETA INCIDENT/ETA TRANS BY FXD SDY/ETA BEAM/WAVELENGTH DIMENSIONAL FREQUENCY - 47 ADDED MASS OM = AREA*RDE DAMPING OD = AREA*PIE*W WAVE FORCES OF=AREA*ROE*ETA*W2PHASE REL TO ETA AT X=0 - DEG PHASE REL TO BODY MOTION - DEGWAVE FIELD - AMPLITUDE RATION POSITION - X/WAVELENGTH DIMENSIONAL POSITION - X SWAY AMPLITUDE/ETA HEAVE AMPLITUDE/ETA ROLL AMPLITUDE (RAD) * B/ETA GEN BY RESULTANT SWAY/ETA GEN BY RESULTANT HEAVE/STA TOTAL TRANSMITTED/ETA GEN BY RESULTANT ROLL/ETA TOTAL REFLECTED/ETA MOTION RESPONSE 17 MAY 1975 DAK HARBOR BREAKWATER - CORPS OF ENGINEERS TESTS 23 0 10 0 ٥ 1 12 1.9905 32. 2FULL BEAM 0.0 10.0 12.6 .429 .487825 .1 .159290 .180 .216311 .250 .280 .312208 .371 -5.0 0.0 -1.25 -5.0 -5.0 -2.50 -5.0 -3.75 -5.0 -5.60 -4.583 -5.00 -4.583 -3.75 -3.223 -3.75 -3.223 -2.50 -3.223 -1.25 -4.583 -1.25 -4.583 0.00 4.583 0.00 4.583 -1.25 3.223 -1.25 3.223 -2.50 3.223 -3.75 4.583 -3.75 4.583 -5.00 -5.00 5.0 -3.75 5.0 5.0 -2.50 5.0 -1.25 5.0 0.0 0.0 0.0 0.0 0.0 64.5 0.0 0.0 0.0 1165. 0. 0. 0. 0 12.6 10.0 0.0 -2.34 25.1 6?1. 0. 1 Ū. ?. 6?1. 0. 0. 0. ٥. Ű. ٥.
 0.0
 -2.34
 27.1

 -5.732
 10.21
 -3.372
 159.9

 007.
 1172.
 280.9
 1713.

 0.0
 -2.34
 25.1
 -5.6
 10.0 0. 12.6 166.2 -5.24 116.8 2.063 281.8 410.6 -1607. 1172. 1607. 1172. 25.1 621. 0.0 -2.34 -5.732 10.21 -3.372 159.9 2.053 1172. 280.9 1713. -1376. 10.0 166.2 1. 1. 1. 12.6 118.8 -5.24 281.8 -1607. -1376. 410.6

Table D-1. Example input for program BRK2D (Oak Harbor breakwater).

RUNT VERSION FEB 74 B 17:12 04/23/76

```
PROGRAM BRK2D (INPUT, OUTPUT, PUNCH, TAPE5=INPUT, TAPE6=OUTPUT)
      C***LATEST REVISION ***** 27 AUGUST 1975
      C***PROGRAM BRK2D COMPUTES THE FIRST-ORDER RESPONSE OF AN OSCILLATING
            CYLINDER ON OR NEAR THE FREE SURFACE OF AN IDEAL FLUID OF
      С
            INFINITE DEPTH
      С
            COMMON R112(25,25), RK56(25,25), POT(25,25), HOW(25,25), FF(25,6),
  3
           1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
           2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DELFB(3,10), HWB(25,6,10),
           3 DELW(25,6,10) , XOL(25,10)
            COMMON/ONE/X(25), Y(25), X8(25), Y8(25), ANG(25), DEL(25), VV(25)
  3
           1,FEIN(25), FIIN(25), RNURM(25,3), JC(5)
  3
            COMMON/ONE2/CC3(25), $$3(25)
            COMMON /TWO/ N.NNW, NWAVEL, ISYM, TSKTP, NC. PIE, GAMMA, M, TK, TP
  3
  3
            COMMON/THREE/ WAVEL(10), WN(10), BOL(10),IL
  3
            COMMON/SIX/XN(5), CN(5)
            COMMON /SEVEN/ AREA, R, D, RDE, GEE, RTTTLE(3), TITLE(8)
  3
            COMMON / EIGHT/LBLMU(3,3,3), LBLAM(3,3,3), L3LFB(3,3),L3LHW9(7,3),
  3
           1LBL(10,3), DEG(3,10)
  3
            COMMON /NINE/ LBLRAR(3,3), LBLHWR(5,3), LPLR(5,3)
  3.
            CGMMON/TEN/DELT(2,3), FOR(2,10), PHAS(2,10), FORND(2,10), PHASD(2,10)
  3
            REAL K
  3
            DATA KN/.263560319718,1.413403059197,3.59542577104),
                  7.035810005859.12.640800844276/
           1
  3
            DATA CN/.521755610593,.3986666811083..0759424496817,
                  .00361175867992..00002336997739/
           1
 3
            PIE=ATAN2(0.,-2.)
  7
            TP=2.*PIE
 10
            GAMMA=0.57721565
      C***BEGIN READING INPUT DATA AND PRINTING ECHD CHECK
12
       3000 FORMAT (6410)
      C*****KEAD LABLES FOR PRINT OUT
12
            PEAD 3000, (((LBLMU([, J_{PL}), L = 1,3), J = 1,3), I = 1,3)
36
            READ 3000, (((LBLAM(I,J)L), L = 1,3), J = 1,3), T = 1,3)
                           ((LBLFB(J_{J_{J_{L}}}), L = 1,3), J = 1,3)
63
            READ 3000.
            READ 3000,
                           ((LBLHWB(J_{J}L)_{J} L = 1,3)_{J} J = 1,7)
103
            READ 3000.
123
                          ((
                               LBL(J_{j}L)_{j} L = 1_{j}3)_{j} J = 1_{j}10)
143
            READ 3000,
                          ((LBLRAR(J_{2}L)) L = 1_{2}3) J = 1_{2}3)
            READ 3000) ((LRLH#R(J)L), L = 1,3), J = 1,5)
READ 3000, (LBLR(1,L), L = 1,3)
163
203
220
            READ 20, TITLE
226
         20 FORMAT (8A10)
226
            PRINT 30. TITLE
234
         30 FORMAT (1H1, SA10///)
234
            READ 50, N, NW, NWAVEL, ISYM, ISKIP, LC, JC
256
       50
            FORMAT (5110, 615)
      С
                  N = NUMBER OF STRAIGHT LINE SEGMENTS TO BE USED TO FTT
                     THE HULL ..... NOTE. THEPE MUST BE NHL DEESET POINTS
      ċ
      C
C
                  NW . NUMBER OF POINTS ON FREE SURFACE WHERE WAVE HEIGHT TS
                     TO BE COMPUTED.
                                      THIS IS IN ADDITION TO THE COMPUTATION OF
      С
                     WAVE HEIGHT 4.0 WAVELENGTHS ON EITHER SIDE OF THE BODY
      С
                     WHICH IS PERFORMED AUTOMATICALLY
      ċ
                  NWAVEL = NUMBER OF WAVELENGTHS AT WHICH COMPUTATIONS ARE TO
      С
                     BE PERFORMED
      С
                  ISYM = 1 FOR SYMMETRIC SECTION
      С
                       ANYTHING FLSE FOR NON-SYMMETRIC SECTION
```

Table D-2. Listing of program BRK2D

RUNT VERSION FEB 74 B 17:12 04/23/76 ISKIP = 1 DO NOT SOLVE EQUATIONS OF MOTION C = 2 DU NOT SULVE POTENTIAL PROBLEM (READ IN COFFS) Ĉ # ANYTHING ELSE SOLVE FOR COEFFICIENTS AND DYNAMICA С NUMBER OF BODY SEGMENTS WHICH REPRESENT FREE SURFACE BETWEET С Ċ CATAMAARAN HULS. SEGMENT NUMBERS SPECIFIED BY JC(5 NNW = NW + 2255 200 NC = N - LC262 NW1 = 25 - N - ? IF (NW .LT. D) NW = 0 264 IF (NW .GT. NW1) NW = NW1 267 PRINT 60, N. NW, NWAVEL, ISYM, ISKTP, LC, JC 271 315 60 FORMAT (1)X*NUMBER OF SEGMENTS =*+ T4// LUX*NUMBER OF FREE-SURFACE STATIONS =*+ 14// 10X+NUMBER OF WAVELENGTHS =+, T4// 2 10X*ISYM =*,14// 10X*ISKIP =*, T4// 3 10X*NC = *I5, *JC =* 515 /) READ 70, AREA, 8, D, ROE, GEE, (BTITLE(T), T = 1,3) 315 342 70 FORMAT (5F10.3, 3A10) AREA = CROSSECTIONAL AREA OF THMERSED BODY C B = CHARACTERISTIC LENGTH AS SPECIFIED BY BTITLE С D = DISTANCE BENEATH SURFACE OF DROGIN OF USERS COORDINATE С С SYSTEM (+). ALL MOTIONS REFERED TO THAT POINT AND BODY С SHAPE SPECIFIED IN THAT SYSTEM С ROE = FLUID DENSITY GFE = ACCELERATION OF GRAVITY C 342 PRINT 60, AREA, B, (BTITLE(I), I = 1.3), D, RDE, GEE FORMAT(10X #AREA = *, F10.3 //, 10X #B = #F10.3 .5X, 3410 367 80 2 //10X *D = * F10.3 // 10X *FLUID DENSITY =* F10.5// 10X*ACCELERATION OF GRAVITY =*, F13.3/) 7 IF(ISKIP .E2. 2) GO TO 303 367 372 READ 1CO. (BOL(1), [= 1, NWAVEL) 405 100 FORMAT (10F8.5) BOL = BEAM/WAVELENGTH RATIO FOR COMPUTATIONS С DO 60C I = 1, NWAVEL 406 410 600 WAVEL(I) = R/BOL(I) WAVEL(1) = DIMENSIONAL WAVELENGTH DF INCIDENT WAVES c 417 PRINT 110, (BOL(I), I = 1, NWAVEL) FORMAT (10X*REAM/WAVELENGTH RATIOS OF INCIDENTWAVES*//(20X10F11.5 433 115 1)) C*****INITIALIZE OUTPUT VARIABLES 433 DO 113 IL = 1+10 435 WN(IL) = 0.0 437 80L(IL) = 0.0 442 DC 114 I = 1,3 444 FB(1,1L) = 0.J DELFB(I,IL) = 0.0 45.) 455 $00 \ 114 \ J = 1,3$ 455 RMU(1, J, IL) = 0.0 RLAM(I) J IL) = 0.0465 474 114 CONTINUE 500 DO 112 I = 1, 25 501 XOL(I,IL) = 0.0DC 112 J = 1,6 505 507 HWB(1,J,IL) = 0.0 516 DELW(I,J,IL) =0.0 525 112 CONTINUE

RUNT VER	SIDN FEE /4 5 1/=12 04/23//5
531	112 CONTINUE
231	CANARA CONTINUE (R/WAVEL) AND NONDEMENSIONAL WAVE NO.
622	DO 156 L - 1. NAVEL
233	
234	$\begin{array}{c} OUL(1L) = O / WAVE(1L) \\ OUL(1L) = O / WAVE(1L) \\ OUL(1L) = O / WAVE(1L) \\ WAV$
541	112 WALLET IN AVECTLE
	C***KEAD IN OFFICIOUS
221	NDY = N + 1
203	
555	NTOP = NOPP + NW - T
557	N1 = N + 1 + NW
561	$READ \ 130, \ (RI(1,1),RI(2,1),I^{\pm}),NUP)$
603	130 FORMAT (2F10.5)
	C RI(1,I),RI(2,I) = DIMENSIONAL X, Y COORDINATE OF OPPSET
	C POINTS, RESPECTIVELY
603	IF (NW .LT. 1) GO TO 185
	C***READ IN ADDITIONAL PDINTS ON THE FREE SURFACE WHERE WAVE HEIGHTS
	C ARE TO BE COMPUTED. THU STORAGE LOCATIONS MUST BE LEFT BLANK
	C FUR THE POSITION 4 WAVELENGTHS FROM THE BODY
606	READ 13U, $(RI(1),RI(2),I)$, I=NUPP, NTOP)
	C RI(1,I),RI(2,I) = COORDINATES TE POINTS ON FREE SURFACE WHERE
	C WAVE HEIGHT IS TO BE COMPUTED. THIS IS TRUE FOR I .GT. N + 3
	C***NON-DIMENSIONALIZE OFFSETS
631	DC 18U I = NUPP,NTOP
633	X(I) = RI(I,I)/B
642	(13) Y(1) = -1.5E-08
647	185 CONTINUE
547	DR 190 I = 1.NUP
651	$Y_B(T) = PT(1-1)/B$
660	$y_{B}(1) = y_{1}(2,1)/8$
000	COMPUTE MIDDOTNT-ANGLE AND LENGTH DE STRATGHT-LINE SEGMENTS.
	CARRENAND COMPONENTS OF NOPAAL TO ROOM
471	
672	
676	V(1) = 0 (1) + (1) + (1) + (1)
705	
705	
717	
727	
132	
740	
141	22171=214(YUGA))
120	
(12	$U \in U(J) = SURT(1/2 + 2 + 1/1 + 2)$
1007	$RNDRM(J \rightarrow L) = -553(J)$
1015	$RNGRH(J \neq ?) = CC3(J)$
1023	PNORM(J > 3) = VV(J)
1031	200 CONTINUE
1034	PRINT 30, TITLE
1641	PPINT 250
1045	255 FORMAT (COX+CYLINDER GEOMETRY+///19X+DIMENSIMAL DEFSETS++
	1. 11X*NON-DIMENSIONAL OFFSETS*, 5X*MINPOINTS OF SEGMENTS*//
	2 6X*I*, 16X*X*, 9X*Y*, 19X*X*, 3X*Y*, 19X*X*, 9X*Y*, 9X*Y*,
	3 18X*SLOPE*, 4X*LENGTH*/)
1045	PRINT 270, (I,RI(1,I),RI(2,I),X8(T),Y8(T),Y(T),Y(I),ANG(T),
	1 DEL(I), I=1, N)
1113	270 FURMAT (X, IG, 4(10X2F10.3))
1113	NL = N + 1

Table D-2. Continued

QUNT VERSION FEB 74 B 17:12 J4/23/76 1115 PRINT 270, NL, RI(1,NL), RI(2,NL), X9(NL), Y9(NL) 1143 PRINT 281

```
1147
              FORMAT (//10X; *POSITIONS FOR WAVE HETGHT CALCULATIONS*/)
        281
         280 FORMAT (//)
1147
1147
              IF (NW .LT. 1) GJ TD 290
              PRINT 271, (I,RI(1,I),RI(2,I),X(I),Y(1),T=NUPP,NTOP)
1152
              FORMAT(X, 16, 2(10X, 2F10.3))
1204
        271
1204
              PRINT 280
1210
         290 M = N + Nw + 2
       C****TRANSFER TO COORDINATE SYSTEM IN FREE SUPEACE
              DO 285 I = 1.N
1213
              YB(I) = YB(I) - D/8
1214
             Y(I) = Y(I) - D/B
1222
        285
1233
              YB(NUP) = Y3(NUP) - U/B
           COMPUTE FACTORS OF I AND K INDEPENDANT OF FREQUENCY
       C
1242
              CALL COEFF
              YSURF = -1.0E - 08 + 8
1243
              START FREQUENCY ITERATION.
       C . . .
1245
              DO 301 1L = 1, NWAVEL
1247
              K = WN(IL)
       C ALL POTENTIALS INITIALIZED TO ZERN.
C*****FE(I,J) = NONDIMENSIONAL AMPLITUDE DE POTENTIAL AT POINT I DUE TO
       C*****MODE J. (ASSOSIATED WITH COS(WT) ). FT(I,J) IS SIMILAR TO FE(I,J)
       C*****BUT ASSOSIATED WITH SIN(WT). J = 1, 2. 7, 4. 5, 6 IMPLY RESPECTIVELY
       C*****SWAY, HEAVE, ROLL, DIFRACTED, INCIDENT AND DIFRACTED + INCIDENT
1252
              DO 1 I=1,25
              DB 1 J = 1,6
1253
1254
              FE(I,J)=0.
1261
              FI(I,J)=0.
1265
           1 CONTINUE
       C***ADD POINTS TO THE OFFSET ARRAY FOUR WAVELENGTHS FROM THE ORIGIN
              DN THE FREE SURFACE
       c
              X(N+1) = 4.0 * WAVEL(IL)/B
1271
              X(N+2) = -4.0 # WAVEL(IL)/B
1300
1307
              Y(N+1) = YSURF
1312
              Y(N+2) = YSURF
       C***COMPUTE INCIDENT WAVE POTENTIALS AND NORMAL VELOCITIES
1316
              D9 402 I = 1, M
1317
              D0404 IC = 1,5
              IF(I .EQ. JC(IC)) GO TO 402
        404
1320
              FY = EXP(K*Y(t))
1326
1335
              CKX = CDS(K * X(I))
1344
              SKX = SIN(K + X(I))
              IF(I .GT. N) GO TO 403
1353
              FEIN(I) = EY*(SS3(I)*SKX + CC3(I)*CKX)
1356
              FIIN(I) =-EY*(SS3(L)*CKX - CC3(I)*SKX)
1370
             FE(1,5) = EY*CKX*(1./K)
1403
        403
1414
              FI(I_{95}) = EY*SKX*(1_{1}/K)
1424
        462
              CONTINUE
1427
              AK = K/B
              WRF = SQRT(GEE*AK)
1431
              WF = WRF/TP
1436
1440
              WT = 1.0/WF
              PRINT 300. K, WRF, WF, WT, WAVEL(TL)
1441
         300 FORMAT (//, * WAVE NUMBER = K =*, F9.5. 5Y*CTRCULAR FREQUENCY =*,
1460
                  F9.5, 5X*FREQUENCY =*, F9.5, 5X*PERTOD =*, F10.5,
             1
```

RUNT VERSION FEB 74 8 17:12 04/23/76

		2 5X#WAVELENGTH =+, Fl(.4)
146Ŭ		TK=2,0/K
	С	FIRST-ORDER POTENTIALS ON CYLINDER ARE FIRST CALCULATED.
1462		CALL COMP(K)
	C	FIRST-ORDER PHYSICAL QUANTITIES ARE CALCULATED.
1464		CALL PHYSCL(K)
1465	301	CONTINUE
1471	1009	FORMAT (10F8.5)
1471		ISKIPI = 2
	C****	*PUNCH RESULTS OF POTENTIAL SOLUTION ON CARDS
1472		PUNCH 20, TITLE
1500		PUNCH 50, N, NW, NWAVEL, ISYM, ISKTPI, LC, JC
1522		PUNCH TU, AREA, B, D, RHE, GEE, BTITLE
1542		PUNCH 1009, (WN(IL),IL = 1,10), (BHL(TL), TL = 1,10)
1564		DG 310 I = 1,3
1566		PUNCH 1609 + (FB(1)IL)+ IL = I+IC)+ (DFLF4(1+IL)+ IL = 1+IC)
1613		DO 310 J = 1,3
1615	310	PUNCH 1009, (RMU(I,J,IL), IL= 1,10), (RLAM(I,J,IL), IL= 1,10)
1652		DD 320 I = 1, NN 4
1654		PUNCH 10099 (XUL(I)IL)/IL = 1/10)
1673		DO 320 J = 1,6
1572	320	PUNCH 10C9, $(4wB(I_{2}J_{2}IL), IL = 1.10)$, $(D^{2}LW(I_{2}J_{2}IL), IL = I_{2}J_{2})$
1730	303	CONTINUE
1730	116	CONTINUE
1730		CALL DYNAMC
1731	302	CONTINUE
1731		STOP
1733		END

Table D-2. Continued

	SUBROUTINE DYNAMC
2	COMMEN RI12(25,25), RK56(25,25), POT(25,25), HOW(25,25), FF(25,6),
	1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
	2RMU(3,3,10)+ RLAM(3,3,10)+ FB(3,10)+ DELFP(3,10)+ HWB(25,6,10)+
	$3 \text{ DELW}(25.6.10) \cdot \text{XOL}(25.10)$
2	COMMON/ONE/X(25).Y(25).XB(25).YB(25).ANG(25).DEL(25).VV(25)
-	1. EFIN(25). FIIN(25). RNURM(25.3). JC(5)
2	COMMON / TWO/ NANNUA NHAVELA ISYMA ISKIPA NCA PIEAGAMMAAMATKATP
2	COMMON/THREE/ WAVEL(10), WN(10), BOL(
2	COMMON/EDUP/PAP(3,10), OF P(3,10), HWP(25,3,10), DELWP(25,3,10),
5	
	3 YG. YG. PHASS. DINERT. DAMP(3)
2	COMMON ASEVENA AREA, B. D. RDE. GEE. BITTLE(3). TITLE(8)
2	COMMON (TEN/DELT(2,3), EOP(2,10), PHAS(2,10), EOPND(2,10), EHASD(2,10)
2	
2	
۷	r_{++++++} or potential chiefe to tevel = 2
5	F_{A}
27	1009 EDMAT(1069.3)
27	
21	P_{FA}
56	
60	$\frac{1}{10} = \frac{1}{10} $
115	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
117	$FEAD 1009.4 (YOU (T_A, T_L), T_L, x, 1.10)$
122	
135	120 PEAD 1, 30, (Hum/1, 1, 1), $T_{1} = 1, 10$, (DELW/1, 1, T), $T_{1} = 1, 10$
173	
173	CALL POTOUT
174	IF(ISKIP .EQ. 1) GO TO 140
- · ·	C#####READ DIMENSIONAL JYDROSTATIC SPRING CONSTANTS
177	READ 1448. $((RKHYD(I \cdot J), J = 1, 3), I = 1, 3)$
	C*****START LOOPING THROUGH DIFFERENT DYNAMIC CONFIGURATIONS
217	DO 140 K1 = 1,50
221	READ 1010, AREA, B, XG, YG, RMASS, PINERT, DAMP(1), DAMP(2), DAMP(?),
	1 NPUNCH
253	1014 FORMAT (6F10.3, 3F5.2, 15)
253	IF (E0F,5) 121, 122
256	121 STOP
260	122 CONTINUE
260	DU 5 K2 = 1,3
262	5 IF(DAMP(K2) \bullet EQ \bullet \bullet C \bullet Q) DAMP(K2) = 0 \bullet Q
	C XG,YG = COORDINATES OF THE CENTER OF SPAVITY OF THE BODY
	CNOTE. MOMENTS AND MOMENTS OF THERTIA ARE COMPUTED
	C ABOUT THE CENTER OF GRAVITY
	C DAMP ADDS CORRECTION FOR VISCOUS OP NONLINEAR DAMPING
	C****READ DIMENSIONAL MOORING SPRING CONSTANTS
272	READ 1008,((RKMOR(I,J),J=1,3),I=1,3)
312	1008 FDRMAT (9F8.3)
	C*****NONDIMENTIONALIZE SPRING CONSTANTS ,MASS, MOMNNT OF INERTIA
	C****AND CG COORDINATES
312	Q = AREA* ROE* GEE/8
316	$00 \ 130 \ I = 1,3$
317	$DO \ 130 \ J = 1,3$

Table D-2. Continued

RUNT VERSION FEB-74 8 17:12 04/23/76

```
IF(RKMOR(I,J) .EQ. -0.0) RKMOR(I,J) = 0.0
 320
             RKTB(I,J)= (RKHYD(I,J) + RKMOR(I,J))/0
331
             IF(I.EQ. 3 .OR. J .EQ. 3)RKTB(I,J) =RKTR(I,J)/B
346
        130
372
             RKTB(3,3) = RKT8(3,3)/8
             RMASSB = RMASS/(AREA*ROF)
402
             RINERB = RINERT/(AREA*RDE*8*8)
 406
             XGB = XG/3
412
 413
             YGB = YG/B
       C*****START WAVELENGTH LOOP
415
             00 150 IL = 1,10
             IF (IL .GT. NWAVEL) GD TO 160
 416
       C****SET VALUES IN NONDIMENTIONALIZED ALGEBRAIC EQUATIONS OF MOTION
             A(1.1) = RKTB(1.1) - WN(IL) + (RMASSB + RMU(1.1.1.1L))
421
             A(2,2) = PKTB(2,2) - WN(IL) * (RMASSR + PMU(2,2,IL))
 445
             A(3,3) = RKTB(3,3) -YGB*RMASSB -WN(TL) * (RTNERB + RMU(3,3,TL) +
 471
            1 (XGB**2 +YGB**2) * RMASSB)
             A(1,2) = RKTB(1,2) - WN(IL) + RMU(1,2,IL)
531
             A(1,3) = RKTB(1,3) - WN(IL) + (RMU(1,3,TL) -YGB*RMASSB)
552
576
             A(2,3) = RKTB(2,3) - WN(IL) + (RMU(2,3,TL) +XGB*RMASS5)
623
             A(2_{9}1) = A(1_{9}2)
633
             A(3,1) = A(1,3)
             A(3,2) = A(2,3)
 643
             DB 20 I = 1.3
652
654
             DD 10 J = 1.3
655
             A(I+3, J+3) = A(I,J)
666
             A(I,J+3) =RLAM(I,J,IL)*SQRT(WN(IL))
         ADD CORRECTION FOR VISCOUS DAMPING
       C
             IF (I .EQ. J) A(I, J+3) = (1.0 + DAMP(I))*A(I, J+3)
705
             A(I+3,J) = - A(I,J+3)
723
        10
736
             C(I) = FB(I,IL) + SIN(DELFB(I,IL))
 753
        20
             C(I+3) = FB(I,IL) * COS(DELFB(I,IL))
 771
             SCALE = 1.
 773
             NN = 6
       C*****SOLVE ALGEBRAIC EQS OF MOTION. B(?), B(?), B(3) = AMPLITUDES
       C****#DF COS(WT), 5(4), 8(5), 8(6) = AMPLITUDES OF SIN(WT) FOR SWAY, HEA
       C*****AND ROLL AT CENTER FO USERS COORDINATE SYSTEM.
774
             LL = LNEQF(6, NN, 1, A, C, SCALE, ERASE)
1005
             DO 30 I = 1,3
       C*****AMPLITUDE AND PHASE OF RESPONSE
             RAR(I,IL) = SORT(C(I)**2 + C(I+3)**2)
1006
             DELR(I,IL) = ATAN2(C(I),C(I+3))
1032
        30
1047
             DG 40 I = 1, NNW
             AW = 0.
1050
1051
             BW = 0.
             DO 50 J = 1+3
1052
        90
       C*****RESULTANT WAVE AMPLITUDE AND PHASE FOR SWAY, HEAVE ROLL.
             HWR(I.J.IL) = HWB(I.J.IL) + RAR(J.TL)
1054
1072
             DELWR([,J,IL) = DELW(I,J,IL) + DELR(J,IL)
             AW = AW + HWR(I,J, IL) * SIN(DELWR(T,J,TL))
1111
             BW = BW + HWR(I, J, IL) * COS(DELWR(T, J, IL) )
1132
        50
1155
             IF(XOL(I,IL).LT. 0.) GO TO 70
       C*****TOTAL REFLECTED WAVE (VECTOR ADDITION)
             AW = AW + HWB(T,6,IL) + SIN(DELW(T,6,TL))
1163
1204
             BW = BW + HWB(I,6,IL) = COS(DELW(I,6,TL))
1225
             GO TO 45
       C****TOTAL TRANSMITTED WAVE(VECTOR ADDITION)
```

RUNT VERSION FEB 74 B 17:12 04/23/76 1225 71. $AW = AW + HWB(I_{2}4_{2}IL) + SIN(DELW(I_{2}4_{2}IL))$ BW = BW + HWB(I+4+IL) * COS(DELW(I+4+TL)) 1246 1267 45 HWT(I,IL)=SQRT(AW**2 + BW**2) 1307 DELWT(I, IL) = ATAN2(AW, RW) 1317 40 CONTINUE GD TO 150 1321 C*****SET DUTPUTS FOR IL .GT. NWAVEL 1322 160 DO 170 I = 1,3 1324 RAR(1, IL) = 0.0 1330 170 DELR(I,IL) = 0.J 1337 00 180 I = 1,25 HWT(I,IL) = 0.0 1340 1344 DELWT(1, IL) = 0.0 1351 DO 180 J = 1,3 $HWR(I \bullet J \bullet IL) = 0.0$ 1352 180 1361 DELWR(I, J, 1L) = 0.0 1374 150 CONTINUE C***** OUT PUT DYNAMIC RESULTS 1376 CALL DYNOUT 1377 NMOR = 0 DO 139 IP = 1,3 1400 1402 DO 139 IQ = 1,3 1403 IF (RKMOR(IP,IQ) .EO. C.C) GO TO 139 1410 NMOR = NMOR + 1 1412 139 CONTINUE 1416 IF (NMOR .NE. O) CALL MORTEN IF (NPUNCH .NE. 0) GU TO 140 1421 PUNCH 2000 1423 1427 2000 FORMAT (#1111111111) PUNCH 2005, (SOL(IQ), HWT(1, IQ), RAR(1, IQ), PAR(2, IQ), RAR(3, IQ). 1427 1 IQ = 1,10)1466 2005 FORMAT (5F10.4) 1466 PUNCH 2000 1472 PUNCH 2010, (BOL(IQ), FORND(1, IQ), FORND(2, TO), IQ=1,10) 1517 2010 FORMAT (F10.4,2820.4) 1517 CONTINUE 140 1521 RETURN END 1522

RUNT VERSION FEB 74 8 17:12 04/23/76

	SUBROUTINE MORTEN
	C***SUPROUTINE MORTEN COMPUTES FORCES IN THE MODRING LINES
2	COMMON/FOUR/RAR(3,10), DELR(3,10), HWR(25,3,17), DELWR(25,3,10),
	2 HWT(25+14)+0F1WT(25+10)+RKHYD(3+3)+ PKMDP(3+3)+ PKTB(3+3)+
	3 XG. YG. RMASS. RINERT. DAMP(3)
2	COMMON (SEVEN/ AREA, A, D, ROF, GEE, BITTIS(3), TITIE(8)
2	COMMON/TEN/DELT(2,3), EUR(2,10), PHAS(2,10), EURND(2,10), PHASD(2,10)
2	
22	10 ERMAT (6510.2)
60	C DELT(),I),I),I),I),I) = 1,3 = CHANGE IN EDRCE IN SUDREWARD MODRING LINE
	C DEPTRIFYTETYS - DEPTRIFY OF THE AVE AND ROLL
	DELT(2-T)-T=1-3 = CHANGE IN EDDCE IN SEAWARD MODRING LINE
	C DEP UNIT DISPLACEMENT IN SWAY. HEAVE AND ROLL
22	CAR = 1_0/(DDF*GEF*AREA)
26	CONS = 180.0400S(-1.0)
22	0 - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2
36	
27	20 EDRMAT (////20Y#MODELNG LINE MODEL RESULTS#/)
37	IE (J EQ. 1) PRINT 18
45	TE (J. EQ. 2) PRINT 19
52	18 EDRMAT (30X#SHOREWARD MODRING LINE#/)
53	19 FORMAT (30X+SFAWARD MODEING LINE+/)
53	PRINT 30. (DELT($1,k$) $k = 1, 3$)
70	TO FORMAT (* CHANGE IN FORCE PER UNIT DISPLACEMENT IN SWAY. HEAVE*
	1 * AND ROLLS RESPECTIVELY =** 3510.4//)
	C+**COMPUTE FORCES IN MOORING LINES AND PHASE
70	DD 50 I = 1, 10
72	AA = RAR(1,T) + DELT(J,1)
103	AB = RAR(2,1) * DELT(J,2)
114	AC = RAR(3,I) * DELT(J,3)/B
126	TS = AA*SIN(DELR(1,I)) + AB*SIN(DELR(2,T)) + AC*SIN(DELR(3,T))
154	TC = AA + COS(DELR(1,I)) + AB + COS(DELR(2,I)) + AC + COS(DELR(3,I))
203	FOR(J,I) = SQRT(TS*TS + TC*TC)
215	PHAS(JJI) = ATAN2(TCJTS)
225	FORND(J,I) = CAB*FOR(J,I)
236	$PHASD(J_JI) = CONS*PHAS(J_JI)$
246	50 CONTINUE
	C4##PRINT RESULTS
250	PRINT 80, (FOR(J,I),[=1,10),(PHASD(J,T),[=],10),
	1. (FORND(J,J), I=1,10)
306	80 FORMAT (3X*MOORING LINE RESPONSE*/5X*FORCE AMPLITUDE/ETA*, 11×,
	1 10E10.3/5X*PHASE REL TO ETA AT X=7 - DFG *, 10F10.4//
	2 5X30HFORCE AMPLITUDE/ROE*G*AREA*ET4, 10E10.3)
306	1JO CONTINUE
310	RETURN
311	END

RUNT VERSION FEB 74 B 17:12 04/23/76

C THIS SUBBOUTINE CALCULATES THE PAPTS OF [IT.J] AND K(I.J) C WHICH ARE INDEPCOENT OF FACOURCY UNMERE K. COMMON R112(25,23), RK56(25,25), POT(24,25). HUW(25,25), FE(25,4), IFI(25,6), RI(25,25), RJ(25,25), RK(25,4), UL(25,4), 3 DELW(25,6,10), X0(25,10) C UMMON/DE/X(25), Y(25), X8(25), YB(25), ANG(25), OELF8(13,10), HWR(25,6,10), 3 DELW(25,6,10), X0(25,10) C UMMON/DE/X(25), Y(25), X8(25), YB(25), ANG(25), OELF8(13,10), HWR(25,6,10), 3 DELW(25,6,10), X0(25,10) C UMMON/DE/X(25), Y(25), X8(25), YB(25), ANG(25), OELF8(13,10), HWR(25,6,10), 1,FEIN(25), FIIN(25), RNDRH(25,13), JC(5) C UMMON/DNE/X(25), SS3(25) NZ = N/2 6 D0 L I = 1.H 10 IF(I.GT.N) GO TO 7 13 IF(IISYM .ES. 1 .ANO. I .GT. N2) GO TO 7 X11 = X(I) - XG(1) 44 Y11=Y(I)-YG(1) 45 Y21=Y(I)+YA(1) 53 PP1-ALOG(X11+*2+Y21+*2) 66 PQ1-ALOG(X11+*2+Y21+*2) 66 PQ1-ALOG(X11+*2+Y21+*2) 101 TP1=ATAN2(Y71.X11) 112 D0 L J = 1.N 112 X12=X(I)-XB(J+1) 113 PP2-ALOG(X12+*2+Y12+*2) 114 PQ2-ALOG(X12+*2+Y12+*2) 115 TQ2-ATAN2(Y22,X12) 116 YQ2-ATAN2(Y22,X12) 117 PQ2-ALAOG(X12+*2+Y12+*2) 118 PP2-ALOG(X12+*2+Y12+*2) 119 TP2-ATAN2(Y22,X12) 120 Y12=Y(I)-YB(J+1) 121 Q22-Y(I)-YB(J+1) 122 S3-S33(J) 222 S3-S33(J) 223 S3-S33(J) 224 Z3-S33(J) 224 Z3-S33(J) 225 A1-PPIE 237 IF(IZ)-I72 243 3, A2=TQ2-TG1 244 A1-PP2 245 A5-C3*(-XB(J+1)+XB(J)-Y12*0.5*PP2+X11*0.5*PP1 1+Y12*FP2-Y11*FP1+Y18*(J)-X12*TP2 1-Y12*0,5*PP2+X11*FP1+Y18*(.5*PP1 1+Y2*FP2-Y11*FP1+Y3*(YB(J)-Y12*TP2 1-Y2*0,5*PP2+X11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y3*(YB(J)-Y12*TP2 1-Y22*0,5*PP2+X11*TP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2-Y11*FP1+Y18*(.5*PP1 1+Y22*FP2 1-Y22*0,5*FP2+X11*FP1+Y18*(.5*PP1 1+Y22*FP2 1-Y22*0,5*FP2+X11*FP1+Y18*(.5*PP1 1+Y22*FP2 1-Y22*0,5*FP2+X11*FP1+Y18*(.5*PP1 1+Y21*FP2 354 Y11*Y2 354 Y11*Y2 355 Y11+Y2 355 Y11+Y2 355 Y11+Y2 355 Y1			SUBROUTINE COEFF
<pre>C UNICH TARE TNOEPE NOENT OF FREQUENCY NUMBER K. C OMMON KI12(25,25), RK56(25,25), PK1(25,45), UN(25,25),FE(25,6), IFI(25,6), R(1(25,25), RJ(25,25), RK(25,4), UL(25,4), ZRMU(3,3,10), RLAM(3,3,10), FB(3,10), DELFB(3,10), HWR(25,6,10), 3 DELW(25,6,10), XOL(25,10), VB(25), ABG(25), DEL(25), VV(25) L,FEIN(25), FIIN(25), RNA(25,3), VB(25), ABG(25), DEL(25), VV(25) 2 COMMON/ONE/ZC3(25), SS3(25) 3 DELW(25,6,10), NNAWAUEL, ISYM, TSXIP, NC, PIE,GAMMA,M,TK,TP 2 OMADIA/TWO/NNE/ZC3(25), SS3(25) 4 DO A I = 1.H 10 IF(15, N = 0.10, T 11 IF(15, N = 0.10, T 12 COMMON/DNE/ZC3(25), SS3(25) 6 DO A I = 1.H 13 IF(15, N = 0.1, AND, I = 6T, N2) GD TO 7 14 Y11=Y(11)=Y3(1) 15 Y11=Y(11)=Y3(1) 16 Y11=Y(11)=Y3(1) 17 P1=ALAG(X11+*2+Y11**2) 16 P01=ALOG(X11**2+Y11**2) 17 O1=ATAA2(Y11=X11) 18 Y11=Y(11)=Y3(1) 19 D1 J = 1.N 112 X12=X(11)=X1(1) 111 D0 I J = I.N 112 X12=Y(11)=Y8(1) 112 Y12=Y(11)=Y8(1)+11 112 Y12=Y(11)=Y8(1)+11 113 P2=ALOG(X12**2+Y12**2) 114 P2=ALOG(X12**2+Y12**2) 115 T01=ATAA2(Y12=X12) 116 T02=ALDG(X12**2+Y12**2) 117 TP2=ATAA2(Y12=X12) 118 T02=ALDG(X12**2+Y12**2) 119 T12=X12=X12=GT, 0. AND. F1 LIT, 0.) T01 = TP1 = TP 14 F(1FP2 = GT, 0. AND. F1 = GT, 0.) GD TD 6 15 (F(TP2 = GT, 0. AND. F1 = GT, 0.) T01 = TP1 = TP 15 C G3 = CG3(J) 15 3 A2=T02=TC1 15 3 A2=T02=TC1 15 3 A2=T02=TC1 15 3 A2=T02=TC1 15 45 A5C38(-F8(J+1)+Y8(J)=Y12*0,5*PP2*X11*0,5*PP1 1+Y12*D2=Y11*P1+Y18(J)=Y12*0,5*PP1 1+Y12*TP2=Y11*P1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*P1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*P1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*P1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18(J)=Y12*TP2 1+Y2*TP2=Y11*TP1+Y18*TP1+Y18*TP1+Y18*TP2 1+Y12*TP2=Y11*TP1+Y18*TP1+Y18*TP1+Y18*TP2 1+Y12*TP2=Y11*TP1+Y18*TP1+Y18*TP1+Y18*TP2 1+Y12*TP2=Y11*TP1+Y18*TP1+Y18*TP1+Y18*TP2 1+Y12*TP2=Y11*TP1+Y18*TP1+Y18*TP1+Y18*TP2 1+Y12*TP2=Y11*TP1+Y18*TP1+Y18*TP1+Y18*TP2 1+Y12*TP2=Y11*TP1+Y18*TP1+Y18*</pre>		с	THIS SUBROUTINE CALCULATES THE PARTS OF I(I.J) AND K(I.J)
<pre>2 COMMON R112(25,25); S); RK55(25,25); PDT(2*,25); HDT(2*,25), S, HEE(25,6); 1F((25,6), R((25,25), RJ(25),25), RK(25,4); PU(25,4); 2RHU(3;3,10), RLAM(3;3,10), FB(3,10), DELFB(3;10), HWR(25,6;10); 3 DELW(25,3,10), X(125), XR(25),YB(27), ANG(75); DEL(25), VV(25) 1,FEIN(25), FIIN(25), RNQRM(25,3), J2(5) 2 COMMON/ONE/X(25),SS3(25) 2 COMMON/ONE/X(25),SS3(25) 3 R = N/2 6 D0 L I = 1,M 10 IF(I,GT, N) 60 TO 7 13 IF(ISYM = 55, 1, ANNO, I = 6T. N2) 60 TO 7 14 X(I) - XR(1) 4 Y11=Y(I) - YR(1) 4 Y21=Y(I) + XR(1) 5 P1=ALOG(X11+*2+Y11**2) 6 6 P0(=ALOG(X11+*2+Y11**2) 7 01=ATAN2(Y21,X11) 11 D0 L J = 1,N 12 X12=Y(I) - KR(1) 13 P2=ALOG(X12**2+Y12**2) 14 Y22=Y(I) + KR(1) 15 T01=ATAN2(Y21,X11) 11 D0 L J = 1,N 12 X12=Y(I) - KR(1)+1 13 P2=ALOG(X12**2+Y12**2) 14 P2=ALOG(X12**2+Y12**2) 15 T02=ATAN2(Y22,X12) 16 CORRECTION FOR DISCONTINUITY IN ATAN2 4T PTE 17 IF(TP2, 4T, 0, ANNO, TP1 = 4TP1 + TP 18 P2=ALOG(X12**2+Y12**2) 19 T02=ATAN2(Y22,X12) 10 CORRECTION FOR DISCONTINUITY IN ATAN2 4T PTE 17 IF(TP2, 4T, 0, ANNO, TP1 = 4TP1 + TP 14 P(TP2, 4T, 0, ANNO, TP1 = 4TP1 + TP 15 T12=XAN2(Y22,X12) 15 C3 = CC3(J) 22 S3=S3(J) 23 A1=PTE 23 A2=T02=TG1 24 S3=S3(J) 24 S3=S3(J) 25 A1=PTE 26 A3 A2=T02=TG1 26 A2=T02=TG1 27 A1=F(T=J2,Z) 28 A3 A2=T02=TG1 29 A1=C3+T1+TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*0,S*PP1 1+Y12*TP2=Y11*TP1+Y1A=C,SPP2+X11*10,S*P02 1=Y22*0,S*P02+X11*T01+Y12*C,S*P02+X11*0,S*P01 1+Y22*0,S*P02+X11*T01+Y12*C,S*P02+X11*0,S*P01 1+Y22*0,S*P02+X11*T01+Y12*C,S*P02+X11*10,S*P02 1=Y22*0,S*P02+X11*T01+Y12*C,S*P02+X11*10,S*P02 1=Y22*0,S*P02+X11*T01+Y12*C,S*P02+X11*0,S*P02 1=Y22*0,S*P02+X11*T01+Y12*C,S</pre>		č	WHICH ARE INDEPENDENT OF FREQUENCY NUMBER K.
<pre>1 FI(25,6), RI(25,25), RJ(25,25), RK(25,4), R(25,4), 2 RHU(3,3,10), RLAM(3,3,10), FB(3,10), DLFB(3,10), HWR(25,6,10), 3 DELW(25,6,10), XDL(25,10) 2 CUMMON/ONE/X(25), YI(25), XB(25), YB(25), ANG(75), OEL(25), VV(25) 1 FEIN(25), FIIAR(25), RNAME(25,3), YB(27), ANG(75), OEL(25), VV(25) 1 FEIN(25), FIIAR(25), RNAME(25,3), YB(27), ANG(75), OEL(25), VV(25) 2 COMMON/ONE/Z(25), SS3(25) 2 N2 = N/2 6 OO A I = 1,M 10 FF(I G.T. N) GO TO 7 13 FF(ISYM sED, 1 AND, I G.T. N2) GO TO 7 24 N1 = X(I) - XB(1) 34 YII=Y(I)-YS(1) 35 PP1=ALOG(X11**2+Y21**2) 66 PQ1=ALOG(X11**2+Y11**2) 66 PQ1=ALOG(X11**2+Y11**2) 66 PQ1=ALOG(X11**2+Y11**2) 66 PQ1=ALOG(X11**2+Y11**2) 66 PQ1=ALOG(X11**2+Y12**2) 67 T1=ATAN2(Y12,X11) 10 OI 1 = 1,N 11 OO I 2 = N,N 112 X12=X(I)-YB(J+1) 124 Y22=Y(I)+YB(J+1) 131 PP2=ALAG(Y12**2+Y12**2) 144 PQ2=ALOG(X12**2+Y12**2) 157 TP2=ATAN2(Y12,X12) 150 CORRECTION FOR DISCONTINUITY IN ATAN2 4T PTE 157 TF(X1)=GT, O, AND, TP1 LT, O,) GO TO 6 157 (F(X1)=GT, O, AND, TP1 LT, O,) TP1 = TP1 + TP 158 A=PTE 159 A= CC3(J) 150 A= CC3(J) 151 A=PTE 152 A= CC3(J) 153 A=PTE 154 I= (FTP2-TIN*FP1)+S3(YB(J)-Y12*O,5*PP2+X11*O,5*PP1 157 A=PTAN2(Y12,X12) 153 A=PTE 154 I= (FTP2-TIN*FP1)+S3(YB(J)-Y12*O,5*P02+X11*O,5*PP1 157 A=PTAN2(Y12,X12) 158 A=PTE 157 A=PTAN2(Y12,Y12) 157 A=PTAN2(Y12,Y12)+T2=T12,Y12) 157 A=PTAN2(Y12,Y12)+T2=T12,Y12) 157 A=PTAN2(Y12,Y12)+T2=T12,Y12) 157 A=PTAN2(Y12,Y12)+T2=T12,Y12,Y12) 157 A=PTAN2(Y12,Y12)+T2=T12,Y12) 157 A=PTAN2(Y12,Y12)+T2=T12,Y12)+T2=T12,Y12) 157 A=PTAN2(Y12,Y12)+T2=T12,Y12)+T2=T12,Y12)+T2=T12,Y12) 157 A=PTAN2(Y12,Y12)+T2=T12</pre>	2	č	COMMON R112(25.25). RK56(25.25). PDT(25.25). HDW(25.25).FE(25.6).
<pre>2 APPL 2010 APPL 2010</pre>	-		1ET(25.6). DT(25.25). BJ(25.25). RK(25.6). BJ (25.6).
<pre>b DELW(25,4,20) , XQL(25,10) C DMMON/ONE/X(25), Y(25), XB(25), YB(25), ANG(75), OEL(25) , VV(25) L) FEIN(25), FIIN(25), RNAW/SN(25), J2(5) C DMMON/ONE/X(25), SS3(25) NZ = N/2 O D A I = 1,M O I F(I : GT. N) GO TO 7 F(I:SYM, ES. 1 : ANO. I : GT. N2) GO TO 7 XI = X(I) - XG(1) YI = X(I) - XG(1) + XZ(I) YI = X(I) - XG(I) + XZ(I) YI = X(I) - XG(I) + XZ(I) YI = XGI = XG(I) - XGI = YI = YI + TP YI = YI =</pre>			2PMI(3,3,10), PLAM(3,3,10), FB(3,10), DELEB(3,10), HWB(25,6,10),
<pre>2 COMMON/INE /X(25), Y(25), XB(25), YB(25), ANG(75), OEL(25) , VV(25) 1 JFEIN(25), FIIN(25), RNDRM(25,3), JC(5) 2 COMMON/INE /X(25) 3 JFEIN(25), FIIN(25), RNDRM(25,3), JC(5) 2 COMMON/INE /X(25) 4 D L I = 1,M 1 IF(I GT. N) GO TO 7 13 JF(ISYM .5Q. 1 .ANO. I .GT. N2) GO TO 7 26 X11 = X(1) - XB(1) 4 Y11=Y(1)-YB(1) 4 Y11=Y(1)-YB(1) 4 Y11=Y(1)-YB(1) 5 PP1=ALOG(X11**2+Y11**2) 6 PO1=ALOG(X11**2+Y11**2) 6 PO1=ALOG(X11**2+Y11**2) 6 PO1=ALOG(X11**2+Y11**2) 10 TF1=ATAN2(Y11,X11) 11 DO 1 J = 1,N 11 Z X12=X(1)-YB(J+1) 12 X12=X(1)-YB(J+1) 12 X12=X(1)-YB(J+1) 12 X12=X(1)-YB(J+1) 13 TF2=ATAN2(Y22,X12) 14 P2=ALOG(X12**2+Y22**2) 14 P2=ALOG(X12**2+Y22**2) 15 TT2=ATAN2(Y22,X12) 16 CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 17 IF(X11 .GT. 0OR. X12 .GT. 0.) TP1 = TP1 + TP 16 IF(TP2 .GT. 0ANO. TP1 .GT. 0.) TP1 = TP1 + TP 17 IF(X11 .GT. 0ANO. TP1 .GT. 0.) TP1 = TP1 - TP 27 6 C3 = CC3(J) 23 A1=PTE 24 2 A1=TP1-P22 24 2 A1=TP1-P22 24 3 A2=TC2TC1 25 A1=PT2-Y11=TP1+S3(YB(J)-Y12*0.5*PP2+Y11*0.5*P01 1+Y12*TC2-TC1]-S3(YB(J)-Y12*0.5*PP2+Y11*0.5*P01 1+Y12*TC2-Y11=TP1+TP1+S3(YB(J)-Y12*0.5*PP2+Y11*0.5*P01 1+Y12*TC2-Y11=TP1+TP1+S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*TC2-Y11=TP1+TP1+TP2 1-Y12*0.5*PP2+X11=TP1+Y1=6.5*P01 1+Y2*TC2-Y21=T01-S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*TC2-Y21=T01-S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*T02-Y21=T01-S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*T02-Y21=T01-S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*T02-Y21=T01-S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*T02-Y21=T01-S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*T02-Y21=T01-S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*T02-Y21=T01-S3(YB(J)-Y12*0.5*P02+Y11*0.5*P01 1+Y2*T02-Y21=T01-S3(YB(J)-Y12*T02 1-Y22*0.5*P02+Y11=T01+Y21*C.5*P01 1+Y2*T02-Y21=T01-S3(YB(J)-Y12*T02 1-Y22*0.5*P02+Y11=T01-Y21*C.5*P01 35 Y1=Y12 35 Y1=Y12 35 Y1=Y12 36 P1=P02 36 P1=P02 37 P1=P02 36 P1=P02</pre>			3 DELW(25.6.10) . YOU(25.10)
L FEIN(25), FIIN(25), RNORM(25;3), JC(5) 1,FEIN(25), FIIN(25), RNORM(25;3), JC(5) 2 COMMON /TwO/ NNNN, NWAVEL, ISYM, TSXIP, NC, PIE, GAMMA, M, TK, TP 2 COMMON/ONE2/CG125), SS3(25) 3 N2 = N/2 6 DD A I = 1,M 10 IF(I.GT. N) GO TO 7 13 IF(ISYM.EQ. 1.ANO.I.GT. N2) GO TO 7 26 X11 = X(I) - XB(1) 34 Y11=Y(I)-Y8(1) 34 Y11=Y(I)-Y8(1) 35 PP1=ALOG(X11**2+Y11**2) 66 PO1=ALOG(X11**2+Y11**2) 66 PO1=ALOG(X11**2+Y11**2) 66 PO1=ALOG(X11**2+Y11**2) 67 T01=ATAN2(Y11,X11) 105 T01=ATAN2(Y11,X11) 105 T01=ATAN2(Y12,X12) 101 Y12=Y(I)-Y8(J+1) 112 X12=X(I)-X8(J+1) 124 Y12=Y(I)+Y8(J+1) 125 T02=ATAN2(Y12,X12) 137 TP2=ATAN2(Y12,X12) 138 T02=ATAN2(Y12,X12) 139 T02=ATAN2(Y12,X12) 144 PO2=ALOG(X12**2+Y22**2) 157 TP2=ATAN2(Y12,X12) 150 T01=COG(X12**2+Y22**2) 151 T6(X11:GT.O.GND) F0 ISCONTINUITY IN ATAN2 4T PTE 157 IF(X11:GT.O.GND) F0 ISCONTINUITY IN ATAN2 4T PTE 158 IF(FT2:GT.O.GND) F0 R OISCONTINUITY IN ATAN2 4T PTE 159 C3 CG3(J) 253 SS3(J) 254 A3=F02=FC1 255 A3=F02=FC1 255 A3=F02=FC1 254 A3=A2=T02=FC1 255 A3=F02=FC1 255 A3=F02=YC1+F01+S3(YB(J)-Y8(J+1)-X12*F02 1+Y12=YF02=Y11=YF1+F1+Y1=0.5*P02+Y11=0.5*P01 1+Y2=YF02=Y1=F1]+S3(YB(J)-Y8(J+1)-X12=T02 1-Y12=Y0.5*P02+X11=T01+Y21=C.5*P02+Y11=0.5*P01 1+Y2=Y10=Y1=T01+S3(YB(J)-Y8(J+1)-X12=T02 1-Y12=Y0.5*P02+X11=T01+Y21=C.5*P01 1+Y2=Y10=Y1=T01+S3(YB(J)-Y8(J+1)-X12=T02 1-Y12=Y0.5*P02+X11=T01+Y21=C.5*P01 1+Y2=Y10=Y1=T01+S3(YB(J)-Y8(J+1)-X12=T02 1-Y2=Y0.5*P02+X11=T01+Y21=C.5*P01 1+Y2=Y10=Y1=T01+S3(YB(J)-Y8(J+1)-X12=T02 1-Y2=Y0.5*P02+X11=T01+Y21=C.5*P01 1+Y2=Y10=Y2 1=Y12=Y12=Y1=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12=Y2 1=Y12 1	,		COMMON/ONE/Y(25), Y(25), YB(25), ANG(25), DEL(25), VV(25)
<pre>2 COMMON /TWO/ NNNN, NWAYEL, ISYM, TSXIP, NC, PIE, GAMMA, M, TK, TP 2 COMMON /TWO/ NNNN, NWAYEL, ISYM, TSXIP, NC, PIE, GAMMA, M, TK, TP 2 COMMON /DNE2/CC3(25), SS3(25) 3 N2 = N/2 6 D0 I I = 1, M 3 IF(ISYM -SG. 1 - ANO. I .GT. N2) G0 T0 7 26 X11 = X(I) - XB(1) 4 Y11=Y(I)-Y3(1) 4 Y11=Y(I)-Y3(1) 5 PP1=ALOG(X11**2+Y11**2) 6 P01=ALOG(X11**2+Y21**2) 10 TP1=ATAN2(Y1, X11) 10 D1 J = 1, N 11 D0 J = 1, N 11 D0 J = 1, N 11 X12=XII)-YB(J+1) 12 X12=XII)-YB(J+1) 13 PP2=ALOG(X12**2+Y12**2) 14 P02=ALOG(X12**2+Y12**2) 15 TT2=ATAN2(Y12, X12) 16 CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 17 TP2=ATAN2(Y12, X12) 16 CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 16 IF(TP2 .GT. 0AND. TP1 .GT. 0.) TP1 = TP1 + TP 21 IF(TP2 .GT. 0AND. TP1 .GT. 0.) TP1 = TP1 - TP 23 G3 .S3S(J) 23 A1=PTE 23 J=SS3(J) 24 2 A1=TP1-TP2 23 A2=TC2=TC1 24 A1=TP1-TP2 23 A2=TC2=TC1 24 A1=TP1-TP2 23 A2=TC2=TC1 24 A1=TP1-TP2 23 A2=TC2=TC1 24 A1=TP1-TP2 25 A2=C3(J) 25 A1=PTE 26 A1=TP1E 27 IF(I-J)2, J3, 2 28 A2=TC2=TC1 29 A1=TP1=Y2+X11*TP1+Y11*0.S*PP2+X11*0.S*PP1 20 A1=TP1=Y2+X11*TP1+Y11*0.S*PP1 21 A1=TP2=Y11*TP1+Y11*0.S*PP1 21 A1=TP2=Y11*TP1+Y11*0.S*PP1 23 A2=TC2=TC1 24 X1=TP1=Y2+Y11*TP1+Y11*0.S*PP1 25 A2=C3=TC2=TC1 25 A5=C3*(-X8(J+1)+X8(J)-X12*0.S*PP2+X11*0.S*PP1 24 Y2*TC2=Y21*TC1)=S3*(-Y8(J)+Y8(J+1)=X12*TC2 25 A5=C3*(-X8(J+1)+X8(J)=X12*C0.S*PP2+X11*0.S*P01 25 A1=PTE 25 A1=TP1=Y2=Y11*TC1+Y2=Y2=TC2=S*P01 25 A1=TC2=TC2=TC1 25 A1=TC2=TC1 25 A1=TC2=TC2=TC2=TC2=TC2=TC2=TC2=TC2=TC2=TC2</pre>	6		LEFIN(25), FITN(25), RNORM(25,3), JC(5)
COMMON/ONE2/CC3(25),S53(25) NZ = N/2 OD A I = 1,M I F(I,SW, E50, I AND, I & GT, N2) GD TD 7 KI = X(I) - XB(I) YI = Y(I) - YB(I) YI = Y(I) - YB(I) YI = Y(I) - YB(I) YI = Y(I) - YB(I) PI = ALOG(X11**2+Y11**2) FP = ALOG(X11**2+Y11**2) FP = ALOG(X11**2+Y11**2) FP = ALOG(X11**2+Y11**2) TP = ATAN2(Y11,XII) TO I = 1,N XI = X(I) - XB(J+1) XI = XI = XII + XB(J) YI = Y(I) - YB(J+I) YI = Y(I) - YB(J+I) YI = YI = YII + YB(J+I) YI = YI = YII = YII + YB(J) - YI = YII + TP YI = YI = YII = YII = YII = TP YI = YII = YII = YII = YII = YII = TP YI = YII = Y	2		COMMON / TWO/ N. NNW. NWAVEL. ISYM. ISKTP. NC. PIE.GAMMA.M.TK.TP
<pre>N2 = W/2 6 D0 L T = 1.M 10 IF(I GT. N) G0 T0 7 13 IF(ISYM .E3. 1 .AND. I .GT. N2) G0 T0 7 26 X11 = X(I) - X6(1) 34 Y1=Y(T)-Y8(1) 41 x21 = X11 + X8(1) 42 Y21=Y(T)+Y8(1) 41 x21 = X11 + X8(1) 43 Y1=Y(T)+Y8(1) 44 x21 = X11 + X8(1) 45 Y21=Y(T)+Y8(1) 46 P0]=ALGG(X11*#2+Y11*#2) 66 P0]=ALGG(X11*#2+Y11*#2) 66 P0]=ALGG(X11*#2+Y12*#2) 101 TP1=ATAN2(Y1,X11) 105 T01=ATAN2(Y1,X11) 106 J1 = 1.N 112 X12=X(T)-X8(J+1) 124 Y22=Y(T)+Y8(J+1) 124 Y22=Y(T)+Y8(J+1) 125 T02=ATAN2(Y12,X12) 126 C0RRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 127 T02=ATAN2(Y12,X12) 128 C03(J) 129 C1 IF(TP2.GT. 0AND. TP1 .LT. 0.) T01 = T01 + TP 14 IF(TP2.GT. 0AND. TP1 .LT. 0.) T01 = T01 + TP 150 C3 = CC3(J) 151 A1=PTE 152 A1=PTE 153 A1=PTE 153 A1=PTE 154 Z1 Z1=Z1=Z1=Z1=Z1=Z1=Z1=Z1=Z1=Z1=Z1=Z1=Z1=Z</pre>	2		CDHMDN/ONE2/CC3(25) • \$\$3(25)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2		$N_2 = N/2$
<pre>10 IF(I + GT. N) GO TO 7 13 IF(ISYM +E3. 1 + AND. I + GT. N2) GO TO 7 26 X11 = X(I) - X6(1) 34 Y11=Y(I)-Y8(1) 45 Y21=Y(I)+Y8(1) 45 Y21=Y(I)+Y8(1) 46 P01+ALGG(X11+*2+Y21**2) 66 P01+ALGG(X11+*2+Y21**2) 101 TP1=ATAN2(Y11,X11) 105 T01+ATAN2(Y11,X11) 105 T01+ATAN2(Y11,X11) 106 Y12=Y(I)+Y8(J+1) 112 X12=X(I)-X8(J+1) 112 X12=X(I)-X8(J+1) 112 Y12=Y(I)+Y8(J+1) 112 Y12=Y(I)+Y8(J+1) 114 D0 1 J = 1+N 115 P2=ALGG(X12**2+Y22**2) 115 T02=ATAN2(Y22,X12) 116 T02=ATAN2(Y22,X12) 117 T02=ATAN2(Y22,X12) 118 T02=ATAN2(Y22,X12) 119 T02=ATAN2(Y22,X12) 120 IF(TP2 +GT. 0 + GT. 0 +</pre>	6		
<pre>13 IF(ISYM *EQ. 1 *AND. I *GT. N2) GD TD 7 26 X11 = X(I) - XG(I) 36 Y11=Y(I)-YG(I) 41 X21 = X11 + XG(I) 45 Y21=Y(I)+YG(I) 45 Y21=Y(I)+YG(I) 46 P01=ALOG(X11+*2+Y21**2) 66 P01=ALOG(X11+*2+Y21**2) 66 P01=ALOG(X11+*2+Y21**2) 67 T01=ATAN2(Y11,X11) 10 D1 J = 1,N 11 D0 I J = 1,N 11 D0 I J = 1,N 11 D0 I J = 1,N 112 X12=X(I)-XG(J+1) 124 Y22=Y(I)+YG(J+1) 125 Y12=Y(I)+YG(J+1) 126 Y22=Y(I)+YG(J+1) 127 P02=ALOG(X12**2+Y12**2) 128 T02=ATAN2(Y22,X12) 129 C CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 147 IF(TP2 *GT. 0. *AND. TP1 *GT. 0.) T01 = TP1 + TP 148 IF(TP2 *GT. 0. *AND. TP1 *GT. 0.) T01 = TP1 + TP 149 IF(TP2 *GT. 0. *AND. TP1 *GT. 0.) T01 = TP1 - TP 149 C C GORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 157 IF(X11 *GT. 0. *AND. TP1 *GT. 0.) T01 = TP1 + TP 158 A1=P1E 159 A1=P1E 150 A1=P1E 151 F1(I=J)2*3*2 153 A1=P1E 152 A1=P1E 153 A1=P1E 154 A5=C3*(-XG(J+1)+XB(J)-X12*0*5*PP2+X11*0*5*PP1 155 A5=C3*(-XG(J+1)+XB(J)-X12*0*5*P02+X11*0*5*P01 155 A1=P1E 156 Y12*Y02-Y21*T01)-S3*(-YB(J)+YB(J+1)-X12*T02 157 P02=X0*5*P02+X11*T0+Y1*0*5*P01 157 P1=72 153 Y11=Y12 153 Y11=Y12 155 Y11=Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y12 155 Y11=Y11=Y1 155 Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y11=Y1 155 Y11=Y1 15</pre>	10		IF(I GT N) GO TO 7
<pre>xi1 = x(1) = x8(1) xi1 = x(1) = x8(1) xi1 = x(1) + x8(1) xi = xi1 + x12 + x8(1) + x8(1) - x12 + x0 + x8 + x11 + x0 + x12 + x0 + x8 + x11 + x0 + x12 + x0 + x8 + x11 + x0 + x12 + x0 + x8 + x11 + x12 + x0 + x11 + x0 + x1 + x12 + x0 + x11 + x0 + x1 + x12 + x0 + x11 + x0 + x1 + x12 + x0 + x11 + x0 + x1 + x0 + x0</pre>	13		IF(ISYM - FO- 1 - AND I - GT- N2) GO TO 7
$ \begin{array}{c} 34 \\ 11 = Y(1) - Y_3(1) \\ 41 \\ 221 = X11 + X8(1) \\ 45 \\ 721 = Y(1) + Y_3(1) \\ 53 \\ PP1 = ALOG(X11 + 2 + Y21 + 2) \\ 66 \\ PO1 = ALOG(X11 + 2 + Y21 + 2) \\ 66 \\ PO1 = ALOG(X11 + 2 + Y21 + 2) \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 7$	26		$x_{11} = x_{(1)} - x_{(1)}$
$ \begin{array}{c} x_{21} = x_{11} + x_{8}(1) \\ x_{21} = x_{11} + x_{8}(1) \\ x_{3} = p_{1} = x_{10}(G(x_{11} + x_{2} + y_{21} + x_{2}) \\ for p_{1} = x_{10}(G(x_{11} + x_{2} + y_{21} + x_{2}) \\ for p_{1} = x_{10}(Y_{11}, x_{11}) \\ for p_{1} = x_{10}(Y_{11}, y_{11}) \\ for p_{1} = x_{10}(Y_{11}, y_{11}, y_{11}) \\ for p_{1} = x_{11}(Y_{11}, y_{11}, y_{11}) \\ for p_{1} = x_{11}(Y_{11}, y_{11}, y_{11}) \\ for p_{1} = x_{11}(Y_{11}, y_{11}) \\ for p_{1} = x_{11} \\ for p_{1} \\ for p_{1} \\ for p_{1} \\ for p_{1} $	34		$Y_{11} = Y(T) - Y_{3}(T)$
<pre>45 Y1=Y(1)+Y3(1) 53 PP1=ALGG(X11*#2+Y11*#2) 66 PQ1=ALGG(X11*#2+Y11*#2) 101 TP1=ATAN2(Y1,X11) 105 T01=ATAN2(Y2,X11) 101 D0 1 J = 1.N 112 X12=X(1)-X8(J+1) 120 Y12=Y(1)-Y8(J+1) 121 PQ2=ALGG(X12*#2+Y12*#2) 131 PP2=ALGG(X12*#2+Y12*#2) 133 T02=ATAN2(Y2,X12) 134 PQ2=ALGG(X12*#2+Y22*#2) 135 T02=ATAN2(Y2,X12) 135 T02=ATAN2(Y2,X12) 136 CORRECTION FOR DISCONTINUITY IN ATAN2 &T PTE 147 IF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 + TP 148 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 149 TF2 149 TF2 T2=T11+TP1+TP2 149 TF2 T2=T11+TP1+TP2 149 TF2 T2=T11+TP1+TP1+T1+T0+T2=T02 149 T12*0.5*PP2+X11*0.5*PP1 149 T2*102-T53+(Y8(J)-X12*0.5*PP2+X11*0.5*PP1 149 T2*102-T53+(Y8(J)-X12*0.5*PP2+X11*0.5*PP1 149 T2*0.5*P02+X11*01+Y21*C.5*PP1 149 T2*0.5*P02+X11*TP1+Y1+C.5*PP1 149 T2*0.5*P02+X11*TP1+Y1+C.5*PP1 149 T2*0.5*P02+X11*TP1+Y1+C.5*PP1 149 T2*0.5*P02+X11*TP1+Y1+C.5*PP1 149 T2*0.5*P02+X11*TP1+Y1+C.5*PP1 149 T2*0.5*P02+X11*TP1+Y1+C.5*PP1 149 T2*0.5*P02+X11*T01+Y21*C.5*PP1 149 T2*0.5*P02+X11*T01+Y21*C.5*P01 149 T2*0.5*P02+X11*T01+Y21*C.5*P01 149 T2*0.5*P02+X11*T01+Y21*C.5*P01 157 T01=T02 156 T01=</pre>	41		$x^{21} = x^{11} + x^{11}$
<pre>53 P1=AL0G(X11*#2+Y11*#2) 66 P01=AL0G(X11*#2+Y21*#2) 67 P1=ATAN2(Y11,X11) 101 TP1=ATAN2(Y21,X11) 105 T01=ATAN2(Y21,X11) 106 1 J = 1.N 112 X12=X(1)-YB(J+1) 120 Y12=Y(1)-YB(J+1) 120 Y12=Y(1)-YB(J+1) 121 P2=AL0G(X12*#2+Y12*#2) 122 Y(2)=X10G(X12*#2+Y12*#2) 123 T02=ATAN2(Y22,X12) 124 P02=AL0G(X12*#2+Y12*#2) 125 T02=ATAN2(Y22,X12) 126 C CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 127 IF(X11.6T.00R. X12.6T.0.) G0 T0 6 128 IF(X12.6T.0AND.TP1.LT.0.) T01 = TP1 + TP 124 IF(TP2.6T.0AND.TP1.GT.0.) T01 = TP1 - TP 125 C C CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 126 IF(X11.6T.0.AND.TP1.LT.0.) T01 = TP1 - TP 127 b C3 = CC3(J) 123 S3=S33(J) 123 A1=PIE 124 IF(TP2.4T.0.AND.TP1.GT.0.) T01 = TP1 - TP 124 IF(TP2.3.2 125 A1=PIE 125 A1=PIE 126 A3.A2=T02=TC1 127 IF(I-J)2,3.2 124 2 A1=TP1=TP2 14Y12*T02=Y11*T01+Y11*0.5*P02+X11*0.5*P01 14Y22*T02=Y21*T01-S3*(YB(J)-YB(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 14Y22*T02=Y21*T01-S3*(-YB(J)+YB(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 14Y22*0.5*P02+X11*T01+Y21*C.5*P01) 14Y22*0.5*P02+X11*T01+Y21*C.5*P01) 151 4 X11*X12 153 Y11=Y12 154 Y11=Y12 155 Y11=Y12 156 P1=PP2 157 P01=P02 151 T01=T02 152 A1=T02 152 A1=T02 152 A1=T02 153 Y11=Y12 154 A1=X12 155 Y11=Y12 155 Y11=Y12 156 P1=PP2 157 P01=P02 151 A X1=X12 152 A1=X12 153 Y11=Y12 154 A1=X12 155 Y11=Y12 155 A1=Y12 155 A1=Y12 155 A1=Y12 155 A1=Y12 156 A1=Y12 157 P01=P02 151 A X1=X12 155 Y11=Y12 155 Y11=Y12 156 A1=Y12 157 P1=P02 157 P1=P02 15</pre>	45		Y21=Y(T)+Y3(1)
66 PQ1=ALOG(X11*+2+Y21**2) 101 TP1=ATAN2(Y11,X11) 105 TQ1=ATAN2(Y21,X11) 111 D0 1 J = 1,N 112 X12=X(I)=XB(J+1) 120 Y12=Y(I)=YB(J+1) 121 X12=X(I)=XB(J+1) 122 Y12=Y(I)=YB(J+1) 123 Y2=Y(I)+YB(J+1) 124 Y2=Y(I)+YB(J+1) 131 PP2=ALOG(X12**2+Y12**2) 144 Y2=Y(I)+YB(J+1) 131 PP2=ALOG(X12**2+Y12**2) 145 TQ2=ATAN2(Y22*X12) 157 TP2=ATAN2(Y22*X12) 163 TQ2=ATAN2(Y22*X12) 164 CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 167 IF(X11.6T.0OR.X12.6T.0.) F01 = TP1 + TP 168 TQ2=ATAN2(Y22*X12) 169 CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 161 IF(TP2.cT.0AND.TP1.cT.0.) T01 = TP1 + TP 162 IF(TP2.cT.0AND.TP1.cT.0.) T01 = TP1 - TP 172 C3 = CC3(J) 232 S3=SS3(J) 233 A1=PTE 234 A2=T02-TG1 244 Z A1=FD1-TP2	53		PP1 = A(G(X)) + 2 + Y(1) + 2)
101 TP1=ATAN2(Y11,X11) 105 T01=ATAN2(Y21,X11) 106 T01=ATAN2(Y21,X11) 111 D0 1 J = 1,N 112 X12=X(I)=XB(J+1) 112 X12=X(I)=YB(J+1) 112 Y12=Y(I)=YB(J+1) 112 Y12=Y(I)=YB(J+1) 112 Y12=Y(I)=YB(J+1) 113 PP2=ALOG(X12**2=Y12**2) 114 P02=ALOG(X12**2=Y12**2) 1157 TP2=ATAN2(Y12,X12) 1163 T02=ATAN2(Y12,X12) 1164 P02=ALOG(X12**2=Y12**2) 1165 T02=ATAN2(Y2,X12) 1166 T0=TP1=TP1 1167 TF(X1.GT.OGT.NINUITY IN ATAN2 AT PTE 1167 IF(X1.GT.OGT.NINUITY IN ATAN2 AT PTE 1167 IF(X1.GT.OGT.NINUITY IN ATAN2 AT PTE 1167 IF(X1.GT.OGT.O.GT.O.GT.O.GT.O.GT.O.GT.O.GT	66		PO1=AI (G(X1)++2+Y21++2)
<pre>Tot=ATAN2(Y21,X11) Tot=XTAN2(Y21,X11) Tot=XTAN2(Y21,X11) Tot=XTAN2(Y21,X11) Tot=XTAN2(Y21,X11) Tot=XTAN2(Y11) Tot=XTAN2(Y</pre>	101		TP1 = ATAN2(Y11,X11)
<pre>Dif Dif J = 1,N Dif J = 1,N Dif J = 1,N Dif Dif J = 1,N Dif Dif J = 1,N Dif Dif Dif Dif Dif Dif Dif Dif Dif Dif</pre>	105		TO1 = ATAN2(Y21 - X11)
12 X12×X(I)-XB(J+1) 120 Y12×Y(I)-YB(J+1) 124 Y22×Y(I)+YB(J+1) 121 PP2*ALOG(X12**2+Y12**2) 124 Y22×Y(I)+YB(J+1) 125 Y22×XLOG(X12**2+Y12**2) 126 Y22×XLOG(X12**2+Y12**2) 127 Y2=ALOG(X12**2+Y12**2) 128 Y2=ALOG(X12**2+Y12**2) 129 CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 120 IF(XI).GT.OOR.X12.GT.O.) GO TO 6 121 IF(XI.GT.OO.ND.TP1.LT.O.) TO1 = TP1 + TP 122 CC3 123 S3=SS3(J) 123 S3=SS3(J) 123 S3=SS3(J) 124 ZATPI-TP2 127 GC3 = CC3(J) 128 S3=SS3(J) 129 S3=SS3(J) 121 ZATPI-TP2 14Y12*T02-TG1 14Y12*T02-TG1 <td>111</td> <td></td> <td></td>	111		
<pre>120 Y12+Y(I)-YB(J+I) 124 Y2+Y(I)+YB(J+I) 124 Y22+Y(I)+YB(J+I) 124 Y22+Y(I)+YB(J+I) 131 PP2+ALOG(Y12+2+Y12+*2) 144 PQ2+ALOG(X12+*2+Y12+*2) 157 TP2+ATAN2(Y12,X12) 163 TQ2+ATAN2(Y12,X12) 163 C CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 167 IF(X11 .6T. 00R. X12 .6T. 0.) GO TO 6 201 IF(TP2 .6T. 0AND. TP1 .LT. 0.) TP1 = TP1 + TP 214 IF(TP2 .LT. 0AND. TP1 .GT. 0.) TP1 = TP1 - TP 227 6 C3 = CC3(J) 232 S3=S3(J) 233 A1=PTE 237 IF(1-J)2,3,2 241 2 A1=TP1-TP2 243 3. A2=T02-TC1 245 A5=C3+(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*T02-TL1*TP1)+S3*(YB(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y1*0.5*P01 1+Y22*t02-Y21*T01)-S3(-Y8(J)+Y8(J)+T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 1+Y22*t02-Y21*T01)-S3(-Y8(J)+Y8(J)+T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X11*X12 354 Y21*Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 RI12(I,J) = A1 - A2</pre>	112		$x_{12} = x(T) - x_{B}(J+1)$
124 Y22+Y(I)+YB(J+1) 131 PP2=ALOG(X12*#2+Y12*#2) 144 PO2=ALOG(X12*#2+Y12*#2) 157 TP2=ATAN2(Y12,X12) 163 TQ2=ATAN2(Y12,X12) 164 PO2=ALOG(X12*#2+Y22**2) 167 TP2=ATAN2(Y12,X12) 168 TQ2=ATAN2(Y22,X12) 167 IF(X11 .ofr. 0oR. X12 .oft. 0.) GO TO .6 201 IF(TP2 .oft. 0ANO. TP1 .LT. 0.) TP1 = TP1 + TP 214 IF(TP2 .LT. 0AND. TP1 .LT. 0.) TP1 = TP1 - TP 227 6 C3 = CC3(J) 232 S3=SS3(J) 233 A1=PTE 237 IF(T-J)2,3,2 241 2 243 A.2=T02-TG1 A5=C3+(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1+Y1*G.5*PP1 1+Y12*T02-Y21*T01)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y1*G.5*PP1 307 A6=C3+(-X8(J+1)+X8(J)-X12*0.5*P02+X11*0.5*P001 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 1+Y2*T02 351 Y11=Y12 354 356 PP1=PP2 357 P01=P02 356 <td>120</td> <td></td> <td>Y12=Y(T)=YB(J+1)</td>	120		Y12=Y(T)=YB(J+1)
<pre>111 PP2+ALOG(X12**2+Y12**2) 144 PQ2=ALOG(X12**2+Y22**2) 157 TP2=ATAN2(Y12,X12) 153 TQ2=ATAN2(Y12,X12) 154 TQ2=ATAN2(Y22,X12) 157 TF2=ATAN2(Y22,X12) 157 TF2=ATAN2(Y22,X12) 158 CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 159 TF(TP2 + CT. 0. • AND. TP1 + CT. 0.) TP1 = TP1 + TP 159 TF1 = TP1 - TP 150 C3 = CC3(J) 151 C3 = CC3(J) 152 A1=PTE 151 TF(I-J)2,3,2 152 A1=PTE 152 TF(I-J)2,3,2 153 A1=PTE 153 A1=PTE 154 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 154 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 155 A1=PTE 155 A1=</pre>	124		Y22=Y(T)+YB(J+1)
144 PQ2=ALOG(X12*+2+Y22*+2) 157 TP2=ATAN2(Y12,X12) 163 TQ2=ATAN2(Y12,X12) 163 TQ2=ATAN2(Y12,X12) 164 CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 167 IF(X11.6T.00R.X12.6T.0.) G0 T0 6 201 IF(TP2.6T.0AND.TP1.LT.0.) T01 = TP1 + TP 214 IF(TP2.6T.0AND.TP1.LT.0.) T01 = TP1 - TP 215 C3 = CC3(J) 226 S3=SS3(J) 237 IF(1-J)2,3,2 241 2 A1=PT1-TP2 243 3.A2=T02-TG1 2445 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1 1+Y12*T02-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J)+Y11*0.5*P01 1+Y22*T02-Y21*T01+Y21*C.5*P01) 307 A6=C3*(-X8(J+1)+X8(J)-X12*0.5*P02+X11*10.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J)+Y10*12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X1*X12 353 Y11=Y12 354 Y21=Y22 356 P1=PP2	131		PP2=AI (G(X12++2+Y12++2)
137 TP2=ATAN2(Y12,X12) 163 TQ2=ATAN2(Y22,X12) 164 TQ2=ATAN2(Y22,X12) 165 C CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 167 IF(X11 .GT. OGN. X12 .GT. O.) GD TO 6 201 IF(TP2 .GT. OANO. TP1 .LT. O.) TP1 = TP1 + TP 214 IF(TP2 .LT. OAND. TP1 .GT. U.) TP1 = TP1 - TP 227 6 C3 = CC3(J) 232 S3=SS3(J) 233 S3=SS3(J) 234 A.2=TO2-TG1 245 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*G.5*PP1 307 A6=C3*(-X8(J+1)+X8(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 351 4 353 Y11=Y12 354 Y21*Y22 355 P01=P02 356 P01=P02 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2 <td>144</td> <td></td> <td>PO2=A1 (G(X)2++2+Y22++2)</td>	144		PO2=A1 (G(X)2++2+Y22++2)
133 TQ2-ATAN2(Y22,X12) C CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 167 IF(XII.GT.O.GR.X12.GT.O.) GO TO 6 201 IF(TP2.GT.O.AND.TP1.LT.O.) TO1 = TP1 + TP 214 IF(TP2.GT.O.AND.TP1.GT.O.) TP1 = TP1 - TP 227 G C C C C C C AND.TP1.GT.O.) TP1 = TP1 - TP 228 S3=SS3(J) 235 A1=PTE 241 2 A1=TP1-TP2 243 3.A2=TO2-TG1 A5=C C C C C C C C C C C C C C C C C C C	157		TP2 = ATAN2(Y12, X12)
C CORRECTION FOR DISCONTINUITY IN ATAN2 AT PTE 167 IF(X11.6T.00R.X12.6T.0.) G0 T0 6 201 IF(TP2.6T.0AND.TP1.LT.0.) T01 = TP1 + TP 214 IF(TP2.4T.0AND.TP1.CT.0.) TP1 = TP1 - TP 227 6 C3 = CC3(J) 238 A1=PTE 237 IF(1-J)2,3,2 241 2 A1=TP1-TP2 243 3.A2=T02-TC1 245 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*P01 1+Y2*T02-Y21*T01)-S3(-Y8(J)+Y8(J)+T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 1+Y22*T02-Y21*T01)-S3(-Y8(J)+Y8(J)+T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X11*X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 364 RI12(I,J) = A1 - A2	163		T02=ATAN2(Y22+X12)
167 IF(X11 GT. 0. OR. X12 GT. 0.) GO TO 6 201 IF(TP2 GT. 0. AND. TP1 LT. 0.) TP1 = TP1 + TP 214 IF(TP2 LT. 0. AND. TP1 GT. U.) TP1 = TP1 - TP 227 6 C3 = CC3(J) 232 S3=SS3(J) 235 A1=PIE 237 IF(1-J)2.3.2 241 2 A1=TP1-TP2 243 A.2=T02-TC1 245 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1) 307 A6=C3*(-X8(J+1)+X8(J)-X2*0.5*P02*X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X1=X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2		с	CORRECTION FOR DISCONTINUITY IN ATAN2 AT PIE
201 IF(TP2 .GT. 0AND. TP1 .LT. 0.) TP1 = TP1 + TP 214 IF(TP2 .LT. 0AND. TP1 .GT. 0.) TP1 = TP1 - TP 227 6 G3 = CC3(J) 232 S3=SS3(J) 233 A1=PTE 244 2 A1=TP1-TP2 245 A5=CO3(-XB(J+1)+XB(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(YB(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1 307 A6=CO3(-XB(J+1)+XB(J)-X12*0.5*P02+X11*0.5*P01 1+Y2*TP2-Y11*TP1)+S3*(YB(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*P02+X11*TP1+Y11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 351 4 353 Y11=Y12 354 Y21=Y22 356 P1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	167	-	IF(X11 .GT. 0OR. X12 .GT. 0.) GD TO 6
114 IF(TP2 *LT* 0. *AND* TP1 *GT* U*) TP1 = TP1 - TP 227 6 C3 = CC3(J) 238 S3=SS3(J) 239 A1=PIE 237 IF(1-J)2,3,2 241 2 A1=TP1-TP2 243 3, A2=T02-TG1 2445 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1 307 A6=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J)+Y11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J)+Y11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J)+Y11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J)+Y11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J)+Y11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J)+Y11*0.5*P01 1+Y22*T02-Y21*T01+Y21*C.5*P01) 351 4 X11*X12 353 Y11=Y12 354 Y21*V22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	201		IF(TP2 .GT. 0AND. TP1 .LT. 0.) TP1 = TP1 + TP
227 b C3 = CC3JJ 232 S3=SS3(J) 233 A1=PIE 237 IF(I-J)2,3,2 241 2 A1=TP1-TP2 243 3,A2=T02-TC1 1+Y12*TP2-Y11*TP1)+S3*(YB(J)-YB(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*G.5*PP1) 307 A6=C3*(-XB(J+1)+XB(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-YB(J)+YB(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X1=X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 RI12(I,J) = A1 - A2	214		IF(TP2 .LT. 0AND. TP1 .GT. U.) TP1 = TP1 - TP
222 S3=SS3(J) 235 A1=PTE 237 IF(I-J)2,3,2 241 2 A1=TP1-TP2 243 3.A2=TO2-TG1 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1) 307 A6=C3*(-X8(J+1)+X8(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X1=X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 RI12(I,J) = A1 - A2	227	ó	C3 = CC3(J)
235 A1=PIE 237 IF(1-J)2,3,2 241 2 A1=PI-TP2 243 3, A2=T02-TG1 2445 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1 307 A6=C3*(-X8(J+1)+X8(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-53*(-Y8(J)+Y8(J)+Y12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4, X1=x12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	232		S3=S3(J)
237 IF(I-J)2,3,2 241 2 A1=TP1-TP2 243 3, A2=T02-TC1 1+Y12*TP2-Y11*TP1)+S3*(YB(J)-YB(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*G.5*PP1) 307 A6=C3*(-XB(J+1)+XB(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-YB(J)+YB(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X1=X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	235		A1=PIE
241 2 A1=TP1-TP2 243 3. A2=TO2-TC1 245 A5=C3*(-X8(J)+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1) 307 A6=C3*(-X8(J)+1)+X8(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X11=X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 RI12(I,J) = A1 - A2	237		1F(I-J)2,3,2
243 3, A2=TO2-TG1 245 A5=C3*(-X8(J+1)+X8(J)-X12*O.5*PP2+X11*O.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*O.5*PP2+X11*TP1+Y11*O.5*PP1 307 A6=C3*(-X8(J+1)+X8(J)-X12*O.5*PQ2+X11*D.5*PO1 1+Y22*TO2-Y21*TO1)-53*(-Y8(J)+Y8(J)+X12*O.5*PO1 1-Y22*O.5*P02+X11*TO1+Y21*C.5*P01) 351 4 X11=X12 353 Y11=Y12 354 Y21=Y22 356 P01=P02 357 P01=P02 361 TP1=TP2 362 T01=TO2 364 R112(I,J) = A1 - A2	241		2 A1=TP1-TP2
245 A5=C3*(-X8(J+1)+X8(J)-X12*0.5*PP2+X11*0.5*PP1 1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*T01+Y11*0.5*PP1) 307 A6=C3*(-X8(J+1)+X8(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X11=X12 353 Y11=Y12 354 Y21=Y22 355 P01=P02 357 P01=P02 361 TP1=TP2 364 R112(I,J) = A1 - A2	243		3, A2=T02-TG1
1+Y12*TP2-Y11*TP1)+S3*(Y8(J)-Y8(J+1)-X12*TP2 1-Y12*0.5*PP2+X11*TP1+Y11*6.5*PP1) 307 A6=C3+(-X8(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X1=X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	245		A5=C3+(-XB(J+1)+XB(J)-X12+0.5+PP2+X11+0.5+PP1
1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1) 307			1+Y12*TP2-Y11*TP1)+S3*(YB(J)-Y8(J+1)-X12*TP2
307 A6=C3*(-X8(J+1)+X8(J)-X12*0.5*P02+X11*0.5*P01 1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X11=X12 353 Y11=Y12 354 Y21=Y22 355 P01=P02 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2			1-Y12*0.5*PP2+X11*TP1+Y11*0.5*PP1)
1+Y22*T02-Y21*T01)-S3*(-Y8(J)+Y8(J+1)-X12*T02 1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X11=X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	307		A6=C3+(-X8(J+1)+X8(J)-X12+0.5*P02+X11+0.5*P01
1-Y22*0.5*P02+X11*T01+Y21*C.5*P01) 351 4 X11=X12 353 Y11=Y12 354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 RI12(I,J) = A1 - A2			1+Y22*TQ2-Y21*TQ1)-S3*(-YB(J)+YB(J+1)-X12*TQ2
351 4 x11=x12 353 Y11=x12 354 Y21=x22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2			1-Y22*0.5*P02+X11*T01+Y21*C.5*P01)
353 Y11=Y12 354 Y21=Y22 355 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	351		4 X11=X12
354 Y21=Y22 356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	353		Y11=Y12
356 PP1=PP2 357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	354		Y21=Y22
357 P01=P02 361 TP1=TP2 362 T01=T02 364 R112(I,J) = A1 - A2	356		PP1=PP2
361 TP1=TP2 362 TQ1=TQ2 364 R112(I,J) = A1 - A2	357		P01=P02
362 TQ1=TQ2 364 R112(I,J) = A1 - A2	361		TP1=TP2
364 RI12(I,J) = A1 - A2	362		TQ1=TQ2
	364		$RI12(I_{J}J) = AI - A2$

 RUNT VERSICN FEB 74 9
 15:19 03/19/76

 372
 RK56(1,J) = A5 - A6

 377
 GJ TC 1

 400
 7 00 200 L = 1,N

 402
 RI12(1,L) = 0.0

 404
 LONTINUE

 405
 RITURN

 424
 END

		SUBROUTINE COMP(K)
	С	THIS SUBROUTINE COMPUTES THE COEFFICIENTS DEPENDENT ON K
	C	AND CALLS ON LNEOF TO SOLVE THE SIMULTANEOUS EQUATIONS
	č	FOR THE VELOCITY POTENTIALS FE(T.J.J.) AND FT(T.J.J.).FOR FE2
6	۰.	COMMON PT12(25,25), PK55(25,25), PDT(25,25), HDW(25,25), FE(25,6),
Ŷ		101/25.41. D1/25.251. D1/26.251. D1/25.41.
		$\frac{1}{1} \frac{1}{1} \frac{1}$
		2RHU(3/3/10// RLAN(3/3/10// PL(3/10// OCLEG(3/10// HWG(2)/0//0//
		3 DELW(25,6,10) , XUL(25,10)
6		COMMON/ONE/X(25),Y(25),XB(25),YB(25),ANG(25),DEL(25),VV(25)
		1,FEIN(25), FIIN(25), PNORM(25,3), JC(5)
6		CUMMON/ONE2/CC3(25), SS3(25)
6		COMMON /TWO/ NONNWO NWAVELO ISYMO ISKIPO NCO PIEDGAMMADMOTKOTP
6		DIMENSION A(50,50),8(50,4),ERASE(57)
6		REAL K
6		
12		
12		
10		
14	,	RR(1) = 0.0
21	6	RL(1, 12) = 0.0
27		$DO \ 4 \ IC = 1,5$
31	4	IF (I .EO. JC(IC)) GO TO 1
37		IF(ISYM .NE. 1) GD TO B
42		IF(I .GT. N2 .AND. I .LE. N) GU TO 9
55	8	$x_{11} = x_{(1)} - x_{9(1)}$
63		X21 = X11 +XB(1)
66		Y21 = Y(T) + Y3(T)
74		$P_{01} = A \left[\prod_{i=1}^{n} (X_{11} + x_{2} + Y_{21} + x_{2}) \right]$
107		$TOI = ATAN2(Y \ge 1 \cdot X \ge 1)$
113		CALL CPV(X11-Y21-E21-C11-S11-A911-A1011-K)
124		
1 2 4		
120		201-2011
121		
191		
132		DU / J=I+N
135		$x_{12} = x(1) - x_{B}(3+1)$
143		Y22=Y(I)+YB(J+1)
147		PQ2=ALOG(X12*+2+Y22*+2)
163		TQ2=ATAN2(Y22,X12)
167		S3=ES3(J)
172		C3=CC3(J)
175		CALL CPV(X12,Y22,E22,C12,S12,A912,A1012,K)
206		$DO \ 13 \ IC = 1,5$
211	13	IF(J . F9. JC(IC)) G0 T0 41
217		A3=A1011-A1012
221		
225		$A_7 = (2 + 3 + 2 + 2 + 3 + 2 + 2 + 3 + 2 + 2 + $
212		
245	F	AO = E Z T T T V (V + X T = ANG(J)) = E Z Z + T V (V + X T Z = ANG(J))
200	2	$\mathbf{R}_{1}(1,3) = \mathbf{C}_{0} + \mathbf{A}_{3} + \mathbf{R}_{1}(1,3)$
500		
303		$RI(1_{\mathcal{F}}J) = RI(1_{\mathcal{F}}J) - IP$
314	3	KJ(1)JJ = -IV = AA
322		$PUI(I_{J}J) = IK = A7 + RK56(I_{J}J)$
334		HDW(I,J) * -TK*PIE*Ač
342		DD 10 L = $1,3$
344		$RK(I_{J}L) = RK(I_{J}L) + POT(I_{J}J) + RNORM(J_{J}L)$

RUNT VERSION FEB 74 8 17:12 04/23/75

365	10	$P_{1}(T_{1}) = P_{1}(T_{1}) + HOW(T_{1}) + PNOPM(J_{1})$
302	10	Re(1) = Re(1) = Re(1) = Re(1) = Re(1) = Re(1) = R(1) = R
410		R(1, g, g) + R(1, g, g) = rein(g) + rein(g)
435		R[(1)4] = R[(1)4] = PEIN(3) + BW(1)37 = PIN(3) + DI(1)37
463	41	I = (J = N) 2 , $f = f$
466	2	X11=X12
470		Y21=Y22
471		PQ1=PQ2
473		101=102
474		A911=A912
476		A1011=A1012
477		C11=C12
501		
502		
502	7	
504		
507	•	
507	9	12 = 4 - 1 + 1
512		$00 \ 12 \ L = 1,3$
513		$RK(I_{F}L) = RK(I_{F}L) + (-I_{F}O) + L$
527	12	$RL(I_{I}) = RL(I_{S},L) * (-1,0) * *L$
545		DO 11 J = 1.N
546		DO 16 IC = 1,5
547	16	IF (J .EQ. JC(IC)) GO TO 11
555		J = N + J + 1
560		$PI(I_{j}J) = RI(IS_{j}JS)$
570		$RJ(I_J) = RJ(IS_JS)$
601		$RK(I_{9}4) = RK(I_{9}4) - FEIN(J) + FIN(J) + FIN(J) + OW(IS_{9}JS)$
627		$RL(I_{2}4) = RL(I_{2}4) - FEIN(J) + HOW(IS, JS) - FIIN(J) + POT(IS, JS)$
655	11	CONTINUE
660	1	CONTINUE
663	-	12 = 0
664	32	EO 22 T=1.N
666	• •	
667	1.4	
675	1.4	
477		L = L + L
701		
7/2		
702	2.1	
716	21	
729		
120		
730		
731	15	IF (J .EQ. JC(IC)) GO 10 22
737		$J_2 = J_2 + I_1$
741		JN = JZ + NC
743		A(I2, J2) = RI(I, J)
754		A(12,JN) = -RJ(1,J)
765		A(II,J2) = RJ(I,J)
776		$A(II_{J}JN) = RI(I_{J}J)$
1007	22	CONTINUE
1014		SCALE=1.
1015		$NN = 2 \pm NC$
1017		LL=LNEQF(50,NN,4,A,B,SCALE,ERASE)
1030		PRINT 27, SCALE
1035	27	FORMAT(//,5X,*DETERMINANT= *,1PE12,4)
1035		12 = 0
1035		DO 26 I = 1.N

RUNT VERSION FEB 74 B 17:12 04/23/76 DO 17 IC = 1,5 IF(I .E4. JC(IC)) GO TO 26 12 = 12 + 112 = 12 + NC 11 = 12 + NC DO 35 L = 1,4 FE(I,L) = 8(I2,L) 35 FI(I,L) = 8(II,L) 26 CONTINUE 29 RETURN END

Table D-2. Continued

	SUBROUTINE PHYSCL(K)
6	COMMON RI12(25,25),RK56(25,25), POT(25,25), HOW(25,25),FE(25,6)
	1FI(25.6), RI(25.25), RJ(25.25), RK(25.4), RL(25.4),
	2RMU(3+3+10)+ RLAM(3+3+10)+ FB(3+10)+ DFLF3(3+10)+ HWB(25+6+10)+
	3 DELW(25.6.10) • X0((25.10)
6	COMMON/ONE/X(25), X(25), XR(25), YR(25), ANG(25), DEL(25), VV(25)
0	1.66TN(25), 6TN(25), PNR0M(25,3), (C(5))
6	COMMON (TWO/ N.NNW, NWAVEL, ISYM, ISKIP, NC, PIE.CAMMA.M.TK.TP
é	COMMON (THESE WAVE) THE UNITED STATES TO TEST AND THE OWNERS AND THE TEST
0	COMMON TREET WAVELLIDTS WALKED DULLOTSTE
0	COMMUN /SEVEN/ AREAV 39 DV RUED GEED DITILETSID ITTLETO/
?	REAL N
9	
-	C#####MDDE 6 = INCIDENT + DIFRACIED PUTENTIALS
	FE(1,0) = FE(1,0) + FE(1,0)
23	$3 + I(I_{1}, 6) = FI(I_{1}, 6) + FI(I_{1}, 5)$
42	FACM = (B++2)/AREA
47	FACL = FACM*SORT(K)
53	FACF = FACM + K
55	DO 1 L * 1,3
56	DOI MI = 1,6
57	RA = 0.0
60	RM = 0.0
61	IF(M1 .E0. 4) GO TO 1
63	IF(M1 .EQ. 5) GD TO 1
	C*****INTIGRATE PRESSURE COMPONENTS OVER BODY
66	DD 5 I = 1, N
70	$RM = RM + FE(I_PM1) + RNDRM(I_PL) + DEL(T)$
104	5 RA = RA + FI(I,M1) * RNORM(I,L) * DEL(I)
123°	IF(M1 .GT. 4) GO TO 8
	C#####ADDED MASS AND DAMPING IN DIRECTION L DUE TO MOTION MI AT
	C****WAVELENGTH IL.
126	. RMU(LøMlø IL) = RM*FACM
136	RLAM(L,MI, IL) = RA+FACL
145	GO TO 1
	C#####WAVE FORCE AMPLITUDE AND PHASE IN DIRECTION M1 DUE TO
	C****INCIDENT WAVE AT WAVELENGTH IL
146	$\theta = FE(L) = SQRT(RM**2 + RA**2) * FACF$
166	DELFB(L, IL) = ATAN2(-RA, RM)
200	1 CONTINUE
205	IW = N + 1
207	IMAX = N + NNW
211	DO 30 I = IW, IMAX
213	DO 6 L = 1,4
	C****COMPUTE POTENTIAL AT FREE SURFACE POINTS USING GREENS THEORUM
214	$DC 4 J = 1_{P} N$
215	DO 10 IC = 1,5
216	10 IF(J .EQ. JC(IC)) GD TO 4
224	FE(I→L) = FE(I→L) + FE(J→L)*RI(I→J) →FI(J→L)*RJ(I→J)
255	$FI(I_{j}L) = FI(I_{j}L) + FE(J_{j}L) + RJ(I_{j}J) + FT(J_{j}L) + RI(I_{j}J)$
306	4 CONTINUE
311	$FE(I_{j}L) = (FE(I_{j}L) - RK(I_{j}L))/TP$
326	$6 F1(I_{J}L) = (FI(I_{J}L) - RL(I_{J}L))/TP$
	C*****MODE 6 = INCIDENT + DIFRACTED POTENTIALS
344	$FE(I_96) = FE(I_94) + FE(I_95)$
361	$FI(I_{2}6) = FI(I_{2}4) + FI(I_{2}5)$

RUNT VERSION FEB 74 8 17:12 04/23/76 375 II = I - NC*****NON DIMENTIONALIZE FREE SURFACE POSITION WITH WAVELENGTH XOL(II,IL) = X(I) * B/ WAVEL(IL) 377 410 DO 2 M1 = 1,6 C*****WAVE AMPLITUDE AND PHASE AT POINT II DUE TO MODE MI AT WAVELENGTH HWB(II,M1,IL) = SORT(FE(I,M1)**2 + FT(T,M1)**2) * K DELW(II,M1,IL) = ATAN2(-FI(I,M1), FE(I,M1)) 412 443 2 470 30 CONTINUE 472 7 RETURN 473 END

ø

		UBROUTINE POTOUT	
2		OMMON RI12(25,25), RK56(25,25), POT(25,25), HOW(25,25), FE(25,6),	
-	1	T(25,6), RI(25,25), RJ(25,25), RK(25,4), PL(25,4),	
	2	MU(3.3.10), RLAM(3.3.10), FR(3.10), OFLF9(3.10), HWB(25,6,10),	
	5	$0 \in [0 : 25, 4, 10]$, yell $(25, 10)$	
-	2	DELENIZIO JOIDI J AGELLIJIO. Demon Aturi I. NNU. Navel. ISYM. ISYM. DELENIZIO NE. DIE.GAMMA.M.TK.TP	
2		UMMUN //WU/ NyNNWA NWAVELY ISTAY INALAY TE FILI GARDAN STATE	
2		OMMON/THREE/ WAVEL(10), WN(10), SUC(10), IC	
2		OMMON /SEVEN/ AREA, B, D, RUE, GEE, STITLETS), TILLETS)	
2		OMMON / EIGHT/LBLMU(3,3,3), LBLAM(3,3,3), LBLFB(3,3),LRLHWR(7,3)	19
	1	BL(10,3), DEG(3,10)	
2	1001	DRMAT(//3X, 3A10, / (5X, 3A10, 10F10.4))	
2	1002	ORMAT (//3x, 3410, / (5x, 3410, 10F10.4 /5x, 3410, 10F10.4/))	
2	1002	DPMAT(5Y, 3410, 10F10.4 / 5X, 3410, 10F10.4 /)	
2	1005	0 PMAT (// 3Y, 3A10, 2Y, 10610.4/ 3Y, 3A10, 2Y, 10610.4)	
6	1004	URMAIN //3Ay SALUY CAY INITEET SAY SELEY CAY IN ISENT	
2		RINE 2000, BILLE	~
10	2000	URMAI (IHI) 2003 #NUNDIMENSIUNAL POIENTIAL CUEPTICIENTS# /// 200	^
	1	$* W = SQRT(G/B)_{0} W2 = G/B + 7 252 + 6 = +9 3410 7$	
	1	25X*G = ACCELERATION OF GRAVITE/	
	1	25X+ROE = MASS DENSITY OF FLUID*/	
	2	5X *ETA = INCIDENT WAVE AMPLITUDE */25X;*WAVEL = INCIDENT OR GE!	NE
	3	ATED WAVE LENGTH*//)	
10		0.9 IL = 1,10	
12	0	$F_{G}(1) = T(1) = SOPT((GFF + BO)(T(1))) / (TP + B))$	
22	*	F_{1} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
36	1	(101/2.K) = 1.21, (DE(1.T)) = 11.0)	
	*	(LOL(2)) = (-1) + (-1	
"		$(\mathbf{X}_{1}) = 1 = 1 + \mathbf$	
	1	$RMU(1_{2}J_{2}IL)_{2}IL = L_{2}IJ_{2}J_{2}J_{2}I = I_{2}J_{2}J_{2}$	
150		RINT 1CO1 (LBL(4)K))K = 1,3)) (((LBLAM(()J)K))K = 1,3))	
	1	$RLAM(I_9J_9IL), IL= 1_910), J = 1_93), I = 1_93)$	
221		10 1 I = 1,3	
223		0 1 IL = 1,10	
224	1	EG(1,1L) = 57.298 * DELFB(1,1L)	
241		$RTNT 1002$, $(LBL(5,K), K = 1,3)$, $((LBL^B(I,K), K = 1,3))$	
	1	$FR(I_{\bullet}II_{\bullet}) \bullet II = 1 \bullet 10) \bullet (IRI(5 \bullet K) \bullet K = 1 \bullet 3) \bullet (DFG(I_{\bullet}IL) \bullet IL = 1 \bullet 10)$	
	2		
204	2		
367			
320			
327		(E(1), IL) = 0.0	
334		(F(IL GI. NWAVEL) GU IJ 8	
337)EG(1,IL) =XOL(I,IL)+8/BOL(IL)	
353	8	CONTINUE	
355		PRINT 1002, (LBL(8,K), K = 1,3), (LBL(9,K), K = 1,3),	
	1	(XOL(I,IL), IL = 1,10), (LBL(10,K), K=1,3), (DEG(1,IL), TL=1,10))
436		$10 \ 3 \ 4 = 1.3$	
440		0 3 IL = 1.10	
441	3	EG(1,T1) = 57.298 + 0EIW(1,1,T1)	
460	5	b_{0} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
400	,	(1017.4) (120.1) (12	
		$(L_{0}(1), 1) = 1 = 0$ (Dec(3)(L)) $L = 1(1) = 1 = 1(1)$	
234		LF (AUL191) + 14-3-1 60 10 4	
54Z	-		
544	5	DEG(1,1L) = 57.298 = DELW(1,6,1L)	
561		PRINT 1003, (LBLHWB(7,K), K=1,3), (HWB(1,5,IL), IL = 1,10),	
	1	$(LBL(6_{9}K)_{9}K=1_{9}3)_{9}$ (DEG(1_9IL)_9 IL = 1_917)	
632		GO TO 2	
633	4	00 7 J = 1.3	

RUNT VERSION FEB 74 B 17:12 04/23/76

635 DO 7 IL = 1,10

DEG(J_IL) = 57.298 * DELW(I,J+3, TL) PRINT 1603,((LBLHWB(J,K), K = 1,3), (HWR(T,J,IL), IL = 1,10), 1(LBL(6,K), K=1,3), (DEG(J-3,IL), TL = 1,10), J= 4,6) 636 7 655

732 2 CONTINUE

735 RETURN

735 END

RUNT VERSION FEB 74 B 17:12 04/23/76

```
FUNCTION LNEQF(M, N, N1, A, 8, DTRMNT, Z)
      C.. SOLVES SIMULTANEOUS LINEAR EQUATIONS BY GAUSSTAN REDUCTION.
      C.. FORTRAN IV EQUIVALENT OF LNEQS.
            REAL A(M,M).B(M,M) ,Z(M).DTRMNT,RMAX,RNEXT,W.DOV
 12
12
            NM1=N-1
14
            DD 40 J=1,NM1
15
             J1 = J + 1
      C.. FIND ELEMENT OF COL J, ROWS J-N, WHICH HAS MAX ABSOLUTE VALUE.
17
            LMAX=J
20
            RMAX=ABS(A(J,J))
34
            00 8 K=J1,N
            RNEXT=ABS(A(K,J))
35
             IF (RMAX .GE. RNEXT) GO TO 8
 52
 55
            RMAX=RNEXT
57
            LMAX=K
60
          8 CONTINUE
            IF (LMAX .NE. J) GO TO 10
63
      C.. MAX ELEMENT IN COLUMN IS ON DIAGONAL
65
             IF (A(J,J)) 20,94,20
      C.. MAX ELEMENT IS NOT UN DIAGONAL. EXCHANGE ROWS J AND LMAX.
73
         10 DO 12 L=J.N
75
            W=A(J,L)
102
            A(J_{J}L) = A(LMAX_{J}L)
113
         12 A(LMAX,L)=W
124
            00 14 L=1+N1
125
            W=B(J,L)
            B(JoL)=B(LMAXOL)
132
143
         14 B(LMAX,L)=#
154
            DTRMNT = -DTRMNT
      C.. ZERD COLUMN J BELON THE DIAGONAL.
155
         20 Z(J)=1./A(J,J)
165
            DO 30 K=J1,N
167
            IF (A(K,J)) 22,30,22
175
         22 W=-Z(J)*A(K,J)
205
            00 24 L=J1,N
         24 A(K,L)=W+A(J,L)+A(K,L)
207
230
            DU 26 L=1,N1
231
         26 B(K,L)=W*B(J,L)+B(K,L)
252
         30 CONTINUE
255
         40 CONTINUE
257
            IF (A(N,N)) 42,94,42
265
         42 Z(N)=1./A(N,N)
      C.. OBTAIN SOLUTION BY BACK SUBSTITUTION.
275
            DO 50 L=1,N1
277
         50 B(N,L)=Z(N)+B(N,L)
315
            DO 60 K=1,NM1
316
            J=N-K
317
            J1 = J + 1
321
            DO 58 L=1,N1
322
            w=0.
323
            DO 56 I=J1,N
325
         56 W=A(J,I)+B(I,L)+W
342
         58 B(J,L)=(B(J,L)-W)+Z(J)
362
         60 CONTINUE
```

Table D-2. Continued

LNEQF

RUNT VERSION FEB 74 8 17:12 04/23/75

	C	EVA	LU	A	TE	DE1	ER	MIN	JANT	•
364		I	F	(DIF	MNT	()	70	74,	70

304		16	10	ERCHART F	101
366	70	00	72	J=1,N	

- 70 DD 72 J=1,N 72 DTRMNT=DTRMNT*A(J,J) 370
- 74 LNEOF=1 377
- RETURN 401

C.. SINGULAR MATRIX, SET ERROR FLAG. 94 LNEOF = 2

- 401
- DTRMNT=U. 403
- RETURN 404
- END 405

RUNT VERSION FEB 74 B 17:12-04/23/76

```
SUBROUTINE CPV(X,Y)E,CI,S1,A9,A10,K)
      C .... CAUCHY PRINCIPAL VALUE INTEGRAL.
 13
            COMMON /TWO/ NONNWO NWAVEL, ISYMO ISKIP, NCO PIE, GAMMA, M, TKOTP
            COMMON/SIX/XN(5),CN(5)
 13
 13
            REAL K
 13
            IF (Y .GE. 0.0) Y = -1.0E-08
 15
            IT=ATAN2(Y,X)
 24
            TH=PIE/2.+TT
      C....FOR NEGATIVE X, CORRECTION TO RANGE OF ATAN2.
            IF(X+LT+0+)TH=TH+TP
 27
            44=K*Y
 32
34
            E=EXP(AA)
 43
            BB=K*X
 45
            C1=COS(BB)
 54
            S1=SIN(BB)
 63
            R=K*SQRT(X**2+Y**2)
102
            SUM1=0.
103
            SUM2=0.
104
            IF(R.GE.10.)GD TO 13
107
            SUM11=0.
110
            SUM22=0.
111
            FAC=1.0
113
            SUM1C=1.
114
            SUM2C=1.
115
            SDLTH=0.
116
            CDLTH=0.
117
            ASSIGN 3 TO LDC
120
            IF(X.EQ.O.)ASSIGN 8 TO LDC
122
            RL=1.0
            00 1 L=1,100
124
125
            DL=L
126
            FAC=FAC+DL
130
            RL=R*RL
132
            DLFAC=FAC+UL
133
            DLTH=DL+TH
135
            A1=RL/DLFAC
137
            IF(ABS(CDLTH).LE.1.E-G7)GD TO 2
151
            SUM1C=A8S(A1/SUM1)
157
            IF(SUM1C.LE.1.E-05)G0 T0 7
165
          2 CDLTH≠COS(DLTH)
171
            SUM11=A1*CDLTH
172
            SUM1=SUM1+SUM11
174
          7 GO TO LDC, (3,8)
203
          8 SUM2C=0.
204
            GO TO 5
205
          3 IF(ABS(SDLTH).LE.1.E-C7)GD TD 4
217
            SUM2C=ABS(A1/SUM2)
225
            IF(SUM2C.LE.1.E-05)GD TO 5
233
          4 SOLTH=SIN(OLTH)
237
            SUM22=A1*SDLTH
240
            SUM2=SUM2+SUM22
242
          5 IF(SUM1C.LE.1.E-05.AND.SUM2C.LE.1.E-05)G0 T0 6
          1 CONTINUE
261
263
          6 C=GAMMA+ALOG(R)+SUM1
      C....DISCONTINUITY OF 2PIE IF X NEGATIVE IN ET FUNCTION.
```

RUNT VERSION FEB 74 8 17:12 04/23/76

271		IF(X.LT.C.)TH=TH-TP	
300		S=TH+SUM2	
302		A9=E*(C1*C+S1*S)	
306		Alu=E*(-C1*S+S1*C)	
313		60 TO 9	
	C	LAGUERRE QUADRATURE-FIVE	POINT
314	13	DD 14 I=1,5	
316		A = XN(I) + AA	
321		TERM=CN(I)/(A*A+BB+BB)	
330		SUM1=TERM*A+SUM1	
333	14	SUM2=TERM+SUM2	
337		F=1.	
340		IF(X.LT.U.)F=-1.	
343		A9=F*PIE*S1*E-SUM1	
347		A10=-F*PIE*C1*E+BB*SUM2	
353	9	RETURN	
354		END	

Table D-2. Continued

	SUBROUTINE DYNOUT
2	COMMON RI12(25,25), RK56(25,25), POT(25,25), HOW(25,25), FE(25,6),
	1FI(25,6), RI(25,25), RJ(25,25), RK(25,4), RL(25,4),
	2RMU(3,3,10), RLAM(3,3,10), FB(3,10), DELFB(3,10), HWB(25,6,10),
	3 DELW(25,6,10) , XOL(25,10)
2	COMMON /THO/ NONNHO NWAVELO ISYMO ISKIPO NCO PIFOGAMMADMOTKOTP
2	COMMON/THREE/ WAVEL(10) + WN(10) + BOI(10) + TI
2	COMMON/EDUR/RAE(3.1)).DELR(3.10). HWR(25.3.13). DELWR(25.3.10).
-	2 HWT(25.10) • DELWT(25.10) • RKHYD(3.3) • R(MDR(3.3) • RKTR(3.3) •
	3 XG. YG. RINEST. DAMP(3)
2	COMMON (SEVEN) AREA, B. D. ROF, GEF, BITTIE(3), TITIE(8)
2	COMMON INTELLED AREA 33 1 ALHURIS.31 INTELLET
2	COMMON / EFGHT/ALMI(3,3,3,3), IRLAM(3,3,3), IRLES(3,3), IRLES(7,3),
>	$1001 \text{ EDRNAT}(//3x_{*}, 3x_{1}), / (5x_{*}, 3x_{1}), 10510.4))$
2	1002 EDEMAT (//37, 3410, / 57, 3410, 10E10, 6 /57, 3410, 10E10, 6/))
2	1002 = 600001 (1734) = 3410 (7754) = 3410 (7754) (7754) (777) (7
2	1004 FORMAT(//32, 3410, 10, 10, 10, 10, 10, 32, 3410, 27, 10, 10, 4)
2	TOTAL TOTAL AND
22	2030 EDDMATINI, 20YEMPANATO MODEL DECKITEGALACIA 2. SVADAGETO 3.
55	COUL FORMATINE CONTUNATION DECEMBER 2. EVENESS $(2, 5)$ are an eveness $(2, 5)$ and $(3, 5)$ an
	2 ADDITION DANOTH ADDED THE STATE STATE (1637)
	JE AUDITIONAL DARFING ADDED IN SHAFFERDIE ENDALL EN HEAVE
22	DENT 2001//2009/11.1.1.1.1.2.2.1.2.2.1.2.2.2.2.2.2.2.2.
67	$= \frac{1}{2001} + \frac$
01	2001 FUNDATIN' SECTING CUNSTANTS KIL KIC KIC KIS KCL
67	74 UTUROSTATICTICASALIO.S V + UDURING+TICASTO.SVVV
71	0 DEC(1, 1) = CODT//CEE+DD//1) //TD+D//
111	7 $UCO(1)(L) = SWEIL(GETSULLLI) /(1995))$
* * *	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
1 5 4	L = L = L + 2
140	
141	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
174	$\frac{1}{2} = \frac{1}{2} $
110	$= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}$
	I (KAR(1))[L])[L = 1)[J]) (LUL(0)R)[K = 1)[J] (UEG(1)[L])[L]][[]]])
241	$c = 1_{13}$
261	
203	
204	$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$
301	PFINF IUJ2P (LBL(3PK)) K = 1P3) P (LAL(9PK)) F (LAL
262	I (AOL(1)I(1) IL = I)IO) (LBL(10)K) K= [13] (DEG(1)IL) IL= [13] O
302	
304	
502	= D[1] + D[1]
404	PRINI IJUJ3 ((LULHWR(J)R) = I + J) + (HWR([J]J]L) + [L = I + I(1)]
1.10	L (LBL(D)K) = L J J = (DEG(J)L) = L = [I D) = J = L J J
400	
100	DO > IL = I + IO
470 601	UEG(Z)IL) = 57.278 + DELWI(I) IL)
501	2 DE(1,1,1,1) = 2(-2.48 + 1)ELW(1,6,1,1)
510	$PKINI 10039 (LBLHWB(7)K) K=193)9 (YWB(T_7K_9)L)9 IL = 1,10)9$
	L (LBL(OpK) pK=1p3) p (DEG(1p1L) p IL = 1p13)
201	PFINI 1003, (LBL44R(4,K),K=1,3), (HWT(I,IL),TL = 1,13),
	1 (L8L(6,K), K = 1,3), (DEG(2,IL), IL = 1,10)

DYNOUT

```
RUNT VERSION FEB 74 B 17:12 04/23/76
    637
                    GU TO 2
   640
             4
                     DO 7 IL = 1,17
                    DEG(1,IL) = 57.298 * DELW(I,4,IL)
    642
             7
                    DEG(2,1L) = 57.298 * DELWT(I,1L)
    655
                    PRINT 1003, (LBLHWB(4,K),K = 1,3), (4WR(I,4,IL),IL= 1,10),
   670
                    \begin{array}{llllll(6,K), & K = 1,3), & (DEG(1,IL), & IL = 1,17), & (LBL4WR(5,K),K=1,3), \\ 2(HWT(I,IL), & IL = 1,10), & (LBL(6,K),K = 1,3), & (DFG(2,IL),IL=1,10) \end{array} 
  1005
             2
                    CONTINUE
  1010
1010
                    RETURN
                    END
```

```
Table D-2. Continued
```


7. Program Comments and Glossary of Terms.

The program listing contains many comments which aid in following the logic of the program. Descriptions of variables also appear where they are read into the program.

8. Run Time and Memory Size.

BRK2D requires about 70 seconds of central processor time on the CDC 6400 computer to compile and compute results for 10 different beam wavelength ratios. A central memory of about 55,000 octal is required.

9. Run and Card Deck Setup Procedures and Special Operation Instructions.

In order to run the FORTRAN source program deck on the University of Washington CDC 6400, the following deck is required:

BRK2D,CM55000,T100.	Job card
ACCOUNT	(Account No., password)
FORTRAN	
LGO(LC=6000)	LC = line count value
7/8/9	
FORTRAN DECK	
7/8/9	
DATA DECK	
6/7/8/9	

10. Sample Output Data.

Table D-3 is the output for the Oak Harbor breakwater. The input is given in Table D-1.

DAK HARBOR BREAKWATER - CORPS OF ENGINEEPS TESTS

17 MAV 1975

.25013 î BEAM/WAVELENGTH RATIOS OF INCIDENTWAVES 0 32,200 î NUMBER DF FREE-SURFACE STATIUNS = Ŷ FULL 3EAM NUMMER DF WAVELENGTHS = 10 ACCELERATION OF GRAVITY = FLUID DENSITY = 1.99353 î NUMBER OF SEGMENTS = 23 1.c = 12 12.600 10.060 •000 0 c = 41XSI = HXSI AREA = NC = 8 * • 0

Example output for program BRK2D (Oak Harbor breakwater) Table D-3.

.45733

•423ù∪

.37100

*31221

•28C34

.?1681

.19373

e15429

.10000

REQUENCY		COCCONSTANT AND A CONSTANT AND	Carcessee Carcessee		 4 4	<pre>></pre>		1000 1000 1000 1000 1000 1000 1000 100	F %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CIRCULAR FREQUENCY • 1.47773 FREQUENCY • .72639 PERIOD = 4.4.735 4AVELENGTH • 130. • CIRCULAR FREQUENCY • 1.73523 FREQUENCY • .24571 PERIOD • 3.50000 4AVELENGTH • 52. • CIRCULAR FREQUENCY • 1.93933 FREQUENCY • .30772 PERIOD = 3.242500 4AVELENGTH = 55.	A V 000000		00000 00000 00000		00 20 20 20 20 20 20 20 20 20 20 20 20 2	• • • • • • • • • • • • • • • • • • •			2020
CIRCULAR FAEQUENCY - 1,97933 FREQUENCY = .30272 PERIJD = 3.24254 44VELE46TH = 55.	32 (26+14 (85 (SIRCULAR FREQUENCY -	r; 7952.1	FREGUENCY = FREGUENCY =	€5324°	E = 011814	•••4.735	#AVELENGTH #AVELENGTH	 100,0000 52,7766
	1 t t	SIRCULAR FREQUENCY =	1.97833	FREQUENCY =	• 30272	PE3130 =	1 .2 9250	₩AVELc4GTH	= 17.02.

17 MAY 1975

DAK MAR338 BREAKWATER - CJ2P5 JF EVGIVEGRS TESTS

CYLINDER GEAMETOY

138

Table D-3. Continued

0ETERMINANT= 15.0907E+15

WAVE	4U43ER = K =	1.57483	CIRCULAR	FREQUENCY =	2.24899	FREQUENCY -	• 35794	PERIOD *	2.79378	#AVELFNGT∓ =	40.0700
	OETERMINANT *	30.53595+15									
WAVE	NU48ER ≈ K =	1.75929	CIRCULAR	FREQUENCY .	11046.5	FREQUENCY =	Ιυθίε .	= 001e3d	2.63957	#AVELENGTH =	39.7143
	DETERMINANT=	45*3555E+15									
HAVE	: NU49E2 * K ≖	1.96166	CIRCULAR	FREQUENCY =	13612.5	FREDUENCY =	,49006	PERI()0 -	2.56030	WAVELENGTH .	32.0299
	DETERMINANT=	54.4151E+15									
WAVE	NUMBER ≈ K =	2.33106	CIKCULAR	FREQUENCY =	2.73971	FREQUENCY -	,43694	Pez100 -	2.29337	AAVELENGTH -	26.4542
	DETERMINANT=	32+3082E+15									
WAVE	: NUM3ER ≈ K =	2.69543	CIRCULAR	FRÉQUENCY .	2.94609	FREQUENCY .	.45889	PERIUD .	2.13272	#AVELENGTH =	23+3100
	DETERMINANT.	12.98676+14									
WAVE	: NU49ER = K =	3.06549	CIRCULAR	FREQUENCY =	9°14163	FREDUENCY .	. 59000	- OCI234	2.36000	WAVELENGTH .	20*4982
	DETERMINANT=	19.14946+16									

Table D-3. Continued

139

NONDI4ENSIONAL POTENTIAL COEFFICIENTS

W = SAPT(6/8), WZ = 6/8 8 = FUL BEM 9 = CELLBATTON OF GRAVITY 60 = ASCELBATTON OF GRAVITY 60 = ASS DEVISITY OF FULUY FILA = INCIDENT OR GENERATED WAVE LENGTH

BEAM/WAVELENGTH DIMENSIONAL FREQUENCY - HZ	.1000 .2264	• 1593 • 2857	.1800 .3037	.2168 .3333	. 2500 . 3579	.2600 .3788	• 3122 •4000	.4360 •4360	.4290 .4689	• 487 • 500
3C#+A3A 1037/104 10400/2014 10400/2014 10400/1001 1037/104 1	7.370J 1.23090 1.23095 1.53095 1.50999 1.2248 1.2248	5.9465 0103 0103 0103 0103 0103 0103 0103 01303 01303 01303	5.4755 0000 0000 0000 0000 0000 0000 0000	4.9561 .000 .0015 .0015 .0015 .0000 .0000 .0000	4.3480 .0300 .03000 .05123 .05123 .0000 .0000 .46000 .0000 .3821	5.0504 .0504 .05000 .5476 .5476 .5476 .378 .378 .378 .378 .378 .378 .378 .378	5.6805 .6100 .0137 .0000 .0000 .0000 .0000 .2328 .3727	9.7945 9.7945 9.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	-53.1777 -53.1777 -0000 -7546 -7716 -7716 -7716 -7716 -0000 0000 -0000 0000 0000	
AMPING OD = AREA+RDE+W LAM90A17/00 LAM90A17/00*B) LAM90A12/00 LAM90A21/00*B LAM90A22/00 LAM90A23/100*B) LAM30A23/100*B LAM30A32/1(00*B) LAM30A32/1(00*B)	2,0190 .3524 .1590 .1590 .1590 .35491 .35491 .3491	3.7933 .0000 .6787 .6787 .0000 .1.3000 .1.3000 .0003 .0003	4.0288 .0000 - 7279 - 7000 - 20000 - 20000 - 20000 .1318	4,000 4,000 4,000 4,000 1,	3.9270 .0970 .7407 7407 2012 2012 2012 .7482 .7482 .7482	3.6660 .0000 .0113 .0113 .0100 .0100 .1224 .1200	3.2821 9.2926 -0.0905 -0.0915 -0.0915 -0.0915 -0.001 -0.001 -0.001	1.	34.5124 34.5124 1058 0000 0000 7141 0030	4 4 4 4 4 4 4 4 4 4 4 4 4 4
MÁVE FORCES OF=AREA*ROE*ETA*W2 FX/OF P145E REL TO ETA AT X=0 — DEG	4.4250 72.8793	5°4143 60°8041	5.4209 59.8750	5.2373 59.1117	4.9783 59.6297	4.7161 62.2586	4°4149 66°0442	3.6704 75.1616	86 *5835	4°59
FY/0F Phase rel to eta at X=0 - deg	1.2106 159.0771	3.1797 89.0067	2.4019 69. 602 5	1.5443 53.9553	1.1456 57.9583	.9150 59.5246	•7381 •2•4899	\$158 69.8752	•3661 79.1007	•25°
MZ/(QF*8) P44SE REL TD ETA AT X=0 - DEG	\$7530 72,5953	.0455 60.0131	• 9536 57,8515	。9325 56.6140	-9963 57-65C1	\$9630° 86398	• 8222 62=9679	*7784 69*9328	•1632 93.0317	•53 92.47
MAVE FIELD - AMPLITUDE RATIOS Position - X/MANELENGTA Dimensional Position - X	4°000	4.03P3 251.1143	4.0000 222.2222	4°0000 184°4425	4.0000 160.0000	4.0000 142.8571	4.0000 128.1197	4.0000 107.8167	4.0000 93.2401	4.00 81.99
GEN BY SWAY/SWAY Phase rel to body motion - deg	.3497 162.8661	.6473 150.7298	.7689 148,7587	.8919 147.8852	,9729 149,7450	151.6560	155°0695	•9433 162•2626	-175.4957	1.88
GEN BY HÊAVE/HEAVE Phase rel to body mutiom - deg	0929 79.2908	-, 3982 -, 3982	• 3258 -19,5930	*2499 -29*7700	-30,2551	.1830 -28.1815	•1688 -24.6664	.1399 -16.4918	.1154 -7.2745	°09 2°70

Y ROLL/ROLL(RAD)♦8 Rel to 600Y motion - 0£6	\$0507 162.8661	1215°,1215	•1359 148•7588	.1644 147.8853	• 1835 149*2451	°1988 151.6562	•2144 155•0697	•2494 152•2624	•175.4425	-175°9368
FXD BDY/ETA TO ETA AT X=0 - DEG	-26.3043	.4392 -111.8985	.1626 -124.4512	.0349 -63.8978	•22,2265	•16,4142	-17.2571	.U386 -31.5947	.1027 53.4327	-4°8102
- AMPLITUDE RATIOS - X/VAVELENGTH AL POSITION - X	-4+0000	-4+0003 -251,1143	-4.0000	-4.000	-4.0000	-142.8571	-128.1197	1918°101- 0000°5-	1092°E6	9966°18-
MAY/SWAY L TO BODY MOTION - DEG	-17.1409	.6803 -29.2782	•7688 -31•2483	.8919 -32.1218	°9729 -30°7620	1.0247 -28.3509	1.0543 -24.9375	• 444 • 6433	4°4957 4°5754	1。8978 4.0706
EAVE/HEAVE L TO BODY MOTION - DEG	.0929 79.2908	авяя 38яВ>	.3258 -19,5930	0017.05- 0042.	.2120 -30,2551	.1886 -26.1815	*1688 -24*5664	•16,491d	•1154 -7.2745	0190. 2,7097
JLL/RDLL(RAD)+9 L TO BODY MOTION - DEG	-17.1409	•1°15 -29°2782	•1389 -31.2482	.1644 -32,1217	.1835 -30.7619	.1988 -28.3507	°2144 -24,9373	•2494 -17•7445	.0121 4.5644	°2227
0 BY FXD BDY/ETA L TD ETA AT X∗3 — DEG	.1190 63.7635	.8153 149.0770	.9230 124.1707	°96491	°9529	\$9543 122.8550	\$9551 129.8806	.9546 145.6856	\$9576 170.5966	•9582 -174.8329
/ETA L TO ETA AT X=0 - DEG	1.6000	1.0000	1.0000	1+0000	1.0000	1.0000	1.0000	1.0000 6000	1.0000	1.0000
) + INCIDENT/ETA . To eta at x=0 - deg	1.0580	\$159 54.4563	\$9,3719	1.0148 56.2053	1.0024 56.8324	°9356 58.9639	.3292 52.1284	\$783 68.5420	.1660 70.5503	0977 -62.1498

				290 .4878 689 .5000	011 .1391 354 85.6525	1931 -88.8296	670 .7232 298 -93.9513	4,0000 4,0000 81,9966	1049 .2626 1665 -90.2859	107 °.0049 406 -86.1198	1081 .1611 1723 -269.8881	.027 .4.8132	986 -70.7104	1000 -4.33CD	1049 .2626 595 89.7210	167 .0049 1406 -86.1138	
				**	-35.8	1 -100.2	991.6	7 93.2	L -211.2	6 -107.5	3 -267.0	53.4	57.1	-93.2	9 -31.2	9 -107.5	
	521.000		33 000	.371. 4360	-91.545	-108.780	-92,240	4*0000 107*816	1212-01	-125.2726	137. 70.021	-31.594	•234 62•605	-107,816	-109.289	+125,272	
	ERTIA:	00 LAMDA3	2 K 000 1165	• 3122 • 4000	-91.329L	-114.4117	-91°7496	4.0000 128.1197	•2870 •2403	-139.0761	•1018 63.3201	-17.2571	.3477 60.JC27	-128.1197	-116.2666	-139.0781	
	100 IN	-110%	L K3 000	. 28ù0 , 3788	.3499 -91.1565	-115.2004	-91.5186	142°8571	.3586 60.4995	-143.3619	0856	-16,4142	.3728 59.2666	-142.8571	-119.5075	•143•3819	
	SS= 25.	422 IN	3 × 3	.2500	.4229 -90,9813	-112.5778	.3871 -91.3080	0000°4*1	•4115 58.2637	-142.8329	0710 57.9371	-22°2265	.3420 60.7136	-4+0000	4115 -121.7433	142.8329	
	340 MA	.00 LAMD	2 K2 500 +	.2169 .3333	-90.7227	1.3831 -99.8204	-91.4865	4.0000 184.4925	•4498 57.1025	-129,5904	•0549 56.7988	•0349 -63.8978	.1438 61.0959	-184.4925	-122.9045	-129°5404	GEM BY RESULTANT ROLL/FTA02880249 .0353 .0549 .0710 .0856 .1018 .137300811611
	rs2°	IN HEAVE-	t K2 000 64.	.1800	•90.5725	2,3789 -54,9607	•2613 •90.8892	4.0000 222.2222	.4579 58.1863	-74.5537	•0363 57•3696	-124.4512	-57.8773	-222,2222	-121.8207	.7750 -74.5537	
	000*	HDA11	0000 × 23	.1593	0555°06-	2.1755 -27.3538	-90°8,93	6*0000 251.1143	.4415 60.2648	.8349 -27.7620	0249 59.4795	-111.8989	-25.8277	-251.1143	-119°7422	.9349 -27,7620	
ESULTS	× G.•	00 LA	2 000 000	.1000 .2264	.7219 -90.2310	1.4444 -2.2345	-90°005 4747	0000*7	*252 *	1341°,	•0238 72•7756	-26.33470	•9995 -2.1888	0000 • 000 • 000 • -	-107.3719	°1341 77.0563	
IC MDDEL &	10.000	IN SWAY	1 000 ••••	Y - HZ	- 0	•O - DEG	/ETA =0 - DEG	RATIOS TH - X	/ETA =0 - DEG	E/ETA •9 - DEG	/ETA =0 - DEG	= 0 = 0EG	•O - DEG	RATIOS T4 - X	/ETA =0 - DEG	E/ETA =0 - DEG	PHASE REL TO ETA AT V=0 - DEG 77.4563 -27.7220 -74.5537 -129.5904 -142.8329 -143.3819 -139.0781 -125.2726 -107.5406 -85.1138 Gem By Resultant roll/eta .0288 .0743 .0363 .0549 .0710 .0716 .1018 .1173 .0081 .1611
DYNAM	8	NG ADDED-	Y Y	NGTH FREQUENCY	E De/eta eta at X:	UDE/ETA	DE(RAD)+8	MPLITUDE -	TANT SWAY	TANT HEAV	TANT ROLL	BDY/ETA	ITTED/ETA	MPLITUDE 1/4AVELENG	TANT SWAY	TANT HEAV	
	12.640	DNAL DAMPI	CONSTANTS TATIC G	EAM/WAVELE Imensional	ON RESPONS AY AMPLITU ASE REL TO	AVE AMPLIT ASE REL TO	LL AMPLITU Ase rel to	FIELD - A Sition - X Hensional	N BY RESUL Ase rel to	N BY RESUL Ase rel to	N BY RESUL ASE REL TO	ANS BY FXD Ase rel to	TAL TRANSM Ase rel to	FIELD - A Sition - A Mensional	N BY RESUL Ase rel to	PHASE REL TO ETA AT X=0 - DEG -107.3719 -119.7422 -121.08.07 -122.09045 -121.7433 -110.5015 -110.2666 -109.2699 -31.2595 69.7210 GEN R EGUTAN HEAVE/ETA 7.1341 -39437750 -3456 -12852 -14.13612 -0527 -0107 -0107 -0049 HASE REL TO ETA AT X=0 - DEG 77.050 -27.7620 -74.5537 129.49094 -14.26329 -14.3619 -139.0761 -125.2726 -107.4500 -66.1138 GEN BY RESULTART ROLL/ETA .0288 .0749 -0564 -0514 -0715 -071560 -0111 -0011 -0011 -0011 -0011 -0011 -0011 -0011	
	AREA=	ADDITI	SPRING HYDRDS MODRIN(86	NDTION Sult	HE	IC 8	PO D I	199 FH	PHL	PH	PH	D1 H	AVA PO D	H d	95 FH	
.1190 .9143 .9230 .9491 .9599 .9544 .9551 .9545 .9546 .9576 .7552 63.7635 149.0773 124.1707 117.2206 112.26520 122.6550 124.6606 124.63229 PHASE REL TO ETA AT X+0 - DEG -107.2314 -127.1274 -123.2044 -123.2042 -122.0649 -119.8649 -119.6664 -109.9853 -87.0653 -83.4911 REFLECTED BY FXD BDY/ETA PHASE REL TO ETA AT X=0 - DEG

				.4878 .5000	a5.8495	•93,9394	.7152 -93.7687	4.0000 81.9966	.2593 -94.4959	.0052 -45.2294	\$1593.7055	99560. -4.8102	6557°02-	9966°TE-	°2593 89°4110	•0.152 -86.2296	°1593
				.4290 .4689	-71.1733	-100°,3317	.6917 -91.2293	4.0600 93.2401	-240°6044	0110°. 117°6362	.0083 -265.6719	.1027 53.4327	.1C38 58.7840	-4.0000	+265°95- 7600°	-107.6062	10043
	21.000		3 000 800	.371v .4360	•1442 •90°595	-109.1711	-90.8574	107.816701	.1360 71.7u31	•0234 -125.6629	1505°T 1451	-31,5947	•2519 64.553i	-4,0000 -4,0000	1360°-108.3039	•Ú234 -125•6629	.1451
	ERTIA- 6	00 LAMDA33	2 K3 JOC 1165. J63 281.		.3641 -88.8640	-115.3728	.2035 -88.6553	4.0000 128.1197	•3206 66.2665	-134.7392	.1080 66.4144	-17-2571-	• 3852 63•5057	-4.0000	-113.7405	2965°°- 2965°°	.1060
	NI DOI	* -110%	000 2.	.2 PO.	.3955 -87.7094	4694°-	-87.4561	4.0C00 142.8571	.4053 63.9466	.0630° 143.9711	.0835 64.2001	-16.4142	.4200 63.9223	-4.0000 -142.9571	.4.353 -116.0603	0690° 0690°	.0895
	55= 25°	122 IN	901 578	.2500	.4819 -86.7460	-112.7051	-96.5531	4.0000 150.0000	6999. 67.4990	.142.9603	0720 52.6920	-22,2265	.3937 66.9047	-4.0309	-117.50e0	.1685 -142,9603	•0720
	140 MA	00 LAMDI	10 × 2	.216A .3333	.5776 -86.1074	1.5130 -98.0382	.3219 -85.7725	4,0000 4,0000	.5152 61.7778	.3781 -127.8082	.0529 62.1128	•63°6979	179°C441	-4.0030	-119.2292	-127.8082	°0529
	16= -2*	-BANE-	10.1 10.1 10.1	.1800 .3037	.7043 -97.2183	0110 °64-	•2186 -71.8097	4.0000 272.2222	\$1*5414 \$1*5404	.8145 -68.6701	16*6*92 50304	-124°4512	-39°5304	-222.2222	•5414 •119.4666	.8145 -48.6701	.0304
	CU0*	1 I I I I I	2000 ×2	. 1 993 . 2857	•87•266?	2.2183 -22.8265	11117 -21.0161	4°000 251.1143	\$5487 63.4525	.8512 -23.2247	.0135 129.7128	-111.9995	.8485 -15.7336	-4,7000	-115°5487	-23°512	°0135
ESULTS	×6-	00 LA	240 166.	•100J	.8185 -92.8642	1.6748 2.0115	1.4487 -95.3538	0000°**	.2862 94.0319	.1555 81.3023	.0879 67.5123	-26.3343	°9949 4°5843	-400.0000	-100.3050	.1555 81.3023	*0879
DYNAMIC MODEL R	00 8= 10.000	MPING ADDED- IN SWAY	NTS KII KI • 000 • 118-900 - =5	ELENGTH Mal Frequency - HZ	ITUDE/ETA . TO ETA AT X=3 - DEG	LITUDE/ETA . To eta at X=0 - Deg	ITUDE(RAD)+8/ETA . To eta at x=0 - deg	- AMPLITUDE RATIOS - X/MAVELENGTH IAL PUSITION - X	SULTANT SWAYJETA . To eta at X=0 - deg	SULTANT HEAVE/ETA . To eta at x=0 — deg	SULTANT RGLL/ETA . To eta at X=0 — Dêg	FXD BDY/ETA . To eta at x=0 = DFG	NSHITTED/ETA . To eta at X=0 — Deg	- AMPLITUDE RATIDS - X/WAVELENGTH 1al Position - X	SULTANT SWAY/ETA . To eta at x=0 - deg	SULTANT HEAVE/ETA . To eta at X=3 - Deg	SULTANT ROLLVETA
	AREA- 12.6	ADDITIONAL DA	<pre>SPRING CONSTA HYDROSTATIC Mudring</pre>	BEAN/WAV DIMENSIO	MOTION RESP Sway ampl Phase rel	HEAVE AMP P-IASE REL	RJLL AMPL Phase rel	WAVE FIELD Position Dimension	GEN BY RE Phase rel	GEN BY RE Phase rel	GEN BY RE PHASE REL	TRANS BY PHASE REL	TUTAL TRA Phase rel	WAVE FIELD POSITION DIMENSION	GEN BY RE PHASE REL	GEN BY RE PHASE REL	GEN BY RE

89,6985	.74.6329	.79.5632			-	.646E+01 175.6191	10-3461				.216E+01 10.1138	° 7445-02
- 96,6649	.9576 170.5966 -1	*9527 172*2029				7。544E+01 9。 -4。2163 -1	9.341E-02 I.				1.472E+02 2. -177.4415	1.823E-01 2.
-138.6019	.9546 142.6836	*9261 164.1860			00	Z.279E∻02 -4.8284	2.82 3E-01			60	3.135E+02 -176.6128	3.942E-ûl
-113.5926	°9551 129.8806	*807 159*7122			00-16J7.00	3。856E+02 -9。9398	4.775E-01			00 1713.00	5.251E+02 -176.3630	6.502E-01
-115,8069	.9543 122.8550	.8645 159.5332			00 410.60	4,481E+02 +14.6238	5°548E=01			000 280.90	6.660E+J2 -176.7023	я.247E ~01
-117.3149	.9529 118.2930	•8745 162•8662			r ==1376.00	4.557F+02	5.643E-01			Y = 1172.00	8°384E+C2 -176°5792	1°038E∢04
-117,8941	•9491 117.3206	°9367 177°3225			ESPECTIVELY	2.712E+02 -32.2325	3°358E-01			ESPECTIVEL	1,151E+03 -179,5353	1.426E+30
-103.0579	.9230 128.1707	•7619 •135•0236			10 87LL, RE	6.545E+02 69.8203	8°105E-01			4D RALL, R	1。482E+03 159。7943	l。AzsE+30
-50.2942	8163 149.0773	-110.3085		IC LINE	r, HEAVE AN	1.083E+03 45.3005	1°341E+00	10	LINF	IS HEAVE AN	1.352E+03 151.9942	1.674E+03
-112,4946	•1190 63.7635	.1029 -94.0142	DEL RESULT	WARD MODRIN	ENT IN SWA'	1.487E+03 22.5037	1.a41E*00	ספר מבּכּחר <u>ז</u> י	RD HOORING	ENT IN SWA	1°311E+03 154°4105	1.623E 00
• 0 • 056	ETA =0 - 0čG		C LINE MON	SHOREN	DISPLACEM	=0 = DEG	*AREA*ETA	G LINE MGI	SEAWAR	DISPLACEM	=0 - DEG	¢åRčå*ETÅ
iõ eta at X	BY FXD BDY/ TO ETA AT X	ECTED/ETA To eta at x	HOORIN		E PER UNIT	RESPONSE Itude/eta To eta at x	ETUDE/ROE*G	MOCRIN		E PER UNIT	RESPONSE Itude/eta To eta at x	ITUDE/205+6
E REL	ECTED E REL	L REFL			N FORC	C LINE	E AMPL			N FORC	G LINE E AMPL E REL	1dk⊽ 3
PHAS	REFL	TOTA			CHANGE I	MODRIN FORC: PHAS	FORC			CHANGE I.	HOORIN FORCI PHASU	FORC

			4878 • 5300	•1119 61.0574	•0561 -89.2259	-94.0733	4.0000 81.9966	•2112 •114.8790	.0052 -86.5162	-274°0101	.03999 -4.8102	•0771 •120°,7654	-4°000	\$5.1280	.0352 -86.5162	*1342
			•4290 •4689	•1019 •78•6415	•0954 •0954	•6908 -90.7043	1042 *56 0000*5	+0388 -254+0727	-106,9463	-266.1463	.1027 53.4327	.1044 54.1883 -	-4.0000	.0068 -74.0657	-106.9463	F800.
21,000		9003 0003	•3710 •4360	.1387 -84.5311	.1671 -107.8320	.5468 -31.7364	4*0000 107*8167	.1308 77.7315	-124.3738	•1364 80.5261	-31.5947	•2336 72•5741	-4,0000 -107,8167	-102.2755	-124.3736	.1364
IERTIA= 6	0. LAMDA33	.2 K3 000 1165. 063 281.	• 3122 • 4000	.2587 -71.6435	-111,9992	-92.2317	4.0000 128.1197	•2728 83.4260	•0544 -136.6656	•1053 62.8379	0429 -17,2571	.3248 75.6150	-4.0000 -128.1197	•2728 •95•5810	•0544 •136.6656	.1653
100 IN	KOLL− 1.	11 K3 000 5	• 280U • 3788	.3057 -66.2453	.4916 -11C.3550	\$281-102.3773	4 .0 000 142.8571	3132 85.4107	•136.5365	•1050 49.2789	•0448 −1¢•4142	.3248 78. 0 874	-4.0000 -142.8571	.3132 -94.5963	-136.5365	-1050
ISS= 25°	1422 IA	372 159	.2500	.3400 -62.4719	.7680 -103.0333	-109.7176	4.0000 169 .00 00	• 330 9 96.7731	.1629 -133.2884	°1148 39.5275	.0426 -22.2265	.2709 82.5810	-4.0300 -160.0000	.3308 -93.2339	.1629 -133.2984	.1148
1M 07E	1.00 LAME	200 H3	• 2168 • 3333	.3716 -59.6797	1.2591 -83.3707	\$053 -113.1534	4.0000 184.4925	.3315 88.2055	-110.1407	.1374 34.7319	.0349 -63.8978	.0857 71.7761	-4.0000 -194.4925	-91.8015 -91.8015	-110,14011-	.1374
YG= -2.	IN HEAVE÷	1 K2 090 64 732 10	.1800	-57.5115	1.3829 -35,9320	1.1093 -112.0633	4•0000 222•2222	.3157 91.2472	-55°5251	。1541 34.6955	-124.4512	•2964 -19•2820	-4.0000	.3157 -89,7597	•55,5251	.1541
.000	HDAIJ	3 K2 060 -5.	.1593 .2857	.432) -56.3210	1.1799-12.5403	1,3578 -100,13578	4.0000 251.1143	94°5939	-12,9391	\$919°15	-111°8988	-15,3732	-4.0003	-85,5999	-12:9391	.1564
#9X	- 1.00 LA	2 000 54,0 166.	•1000 •2264	-94.6025	1.5999 11.0451	2°4523 -61°0343	0000*005 0000	*2048 78*2636	•1436 90.3359	°1489 101.9318	-26.3043	.8970 3.6729	-4000 -450000	-101.7434	.1486 90.3359	.1489
000*01	IN SWAY	300 -5	2H - Y	=0 - DEG	=0 - JEG	/ETA =0 = DEG	RATIOS TH - X	/ETA :=0 = 0EG	'€/ETA '≈0 - DEG	/ETA *0 - DEG	930 - C .	=0 - DEG	RATIOS TH - X	/ETA (=0 - 0EG	re/eta :=0 - DeG	/ETA
8	NG ADDED-	118.	NGTH FREQUENC	E De/eta Eta at x	UDE/ETA ETA AT X	DE(RAD)*8 ETA AT X	MPLITUDE /WAVELENG POSITION	TANT SWAY	TANT HEAV Eta at X	TANT ROLL ETA AT X	BDY/ETA ETA AT Y	ITTED/ETA ETA AT X	MPLITUDE /WAVELENG POSITION	TANT SWAY Eta at X	TANT HEAV Eta at X	TANT ROLL
12.600	TIONAL DAMPI	NG CONSTANTS OSTATIC Ing	BEAM/WAVELE DIMENSIONAL	TION RESPONS Saay Amplitu Phase rel to	HEAVE AMPLIT Phasë rel to	ROLL AMPLITU Phase rel to	VE FIELD - A Position - X Dimensional	GEN BY RESUL Phase rel to	GEN BY RESUL PHASE REL TO	GEN BY RESUL PHASE REL TO	TRANS BY FXD Phase rel to	TOTAL TRANSM PHASE REL TO	VE FIELD - A Pjsition - X Dimensional	GEN BY RESUL Phase rel to	GEN BY RESUL Phase rel to	GEN BY RESUL
AREA	IDDI	SPRI HYDR Moor		D.			4						4			

DYNAMIC MODEL RESULTS

j −117.1690 -99.4609 -86.1399 -94.0032	3 °9551 °9546 °9576 °9586 3 129.8806 145.6856 170.5966 -174.8329	7 *8026 *697 *9538 *3752 * 155*6557 163*2463 172*2152 -177*7925			6900-1607.00V0	2 3.34284 92 2.17984w2 7.52 48401 4.6608491 2 -28.3381 -13.7787 -4.3807 -135.5978	1 4.138E=01 2.694E=01 9.317E=02 1.072E=01			9000 1713.CUCC	5 4.5955+02 2.9956+02 1.4716+02 4.9295+01 5 172.7051 177.2141 -177.8590 93.7362	1 5.690E-01 3.7J9E-01 1.421E-01 6.1U3E-02
-136.7286	.9543 122-8556	*7647 152.8944			3.012 600	3°5596+3; -38,4782	4.407E-01			036 280.5	5.511E+02 171.9765	6.824E-01
-140.4794	.9529 11.9.2930	154°9475			/ =-1376.0	3.242E+02 -51.4041	4 *015E-01			r = 1172.0	6.718E+02 171.4939	l0-361€°8
-145.2757	.9491 117.3206	\$6777 167,8642			SPECTIVEL	L.324F+92 -66.3177	1.639F-01			SPECTIVEL	8.790E+32 155.1982	1.0986+00
-143.3115	.9230 129.1707	-172, 9573			D ROLL, RE	3.809E+02 35.8873	4.716E-01			ם איורוי אוּ	9.529E+02 149.2268	1.1836+00
-136,3983	.8163 149.0773	-166.6A58		G LINF	, HEAVE AN	6.3485+02 10.4163	7.8575-01		LINE	, HFAVF AN	8.884E+02 143.5624	1.100E+07
-78.1752	0611° 0618°	•0946 •65•9434	JEL RESULTS	ARD MODRIN	NT IN SWAY	1。328£+03 16。5361	1.644E+00	DEL RESULTS	ND MODRING	ENT IN SWAY	L.1976+U3 143.6852	1.433E+00
PHASE REL TO ETA AT X=0 - DEG	REFLECTED BY FXD BDY/ETA Phásé rel to eta at X=D - Jeg	TOTAL REFLECTED/ETA PHASE REL TO ETA AT X+0 - DEG	HDORING LINE HDO	SHJRE	CHANGE IN FORCE PER UNIT DISPLACEME	MODRING LINE RESPONSE Force Amelyudeketa Phase rel to eta at x=3 - deg	FJRCE AMPLITUDE/RDE*G*AREA*ETA	MODRING LINE MON	SEAWAR	CHANGE IN FORCE PER UNIT DISPLACEME	MODRING LINE RESPONSE Force Amelitug/feta Phase rel to eta at x=0 - deg	FORCE AMPLITUDE/ROE+6+AREA+ETA

APPENDIX E

DERIVATION OF PRESSURE TO SECOND ORDER FOR TWO PROGRESSIVE WAVES AT DIFFERENT FREQUENCIES

Consider the problem of the nonlinear interactions of waves at two distinct frequencies traveling in the same direction. The complete boundary value problem is well known.

The Laplace equation,

$$\nabla^2 \phi = 0, \tag{E-1}$$

applies throughout the fluid below the free surface.

The boundary condition,

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial y} + 2\nabla \phi \cdot \nabla \frac{\partial \phi}{\partial t} + \frac{1}{2} \nabla \phi \cdot \nabla (\nabla \phi \cdot \nabla \phi) = 0, \qquad (E-2)$$

must be satisfied on the free surface, $y = \eta$. The boundary condition on the bottom is:

$$\lim_{y \to -\infty} \frac{\partial \phi}{\partial y} = 0$$
 (E-3)

for an infinitely deep fluid. In addition a radiation condition requiring the generated waves to travel away from the body is needed to ensure uniqueness of the solution.

In this formulation the x axis lies in the direction of incident wave propagation.

The difficulty in solving this boundary value problem stems from the nonlinearity of the free-surface boundary condition.

In order to "linearize" the free-surface boundary condition, expand the velocity potential, $\phi,$ in a Taylor series about the undisturbed free surface:

$$\phi(\mathbf{x},\eta,t) = \phi(\mathbf{x},0,t) + \eta \left[\frac{\partial \phi(\mathbf{x},\mathbf{y},t)}{\partial y}\right]_{y=0} + \frac{1}{2} \eta^2 \left[\frac{\partial \phi(\mathbf{x},\mathbf{y},t)}{\partial y}\right]_{y=0} + 0(\eta^3). \quad (E-4)$$

Also expand η and ϕ in power series:

$$\begin{split} &\eta(x,t) = \varepsilon \eta^{(1)}(x,t) + \varepsilon^2 \eta^{(2)}(x,t) + 0(\varepsilon^3), \\ &\phi(x,y,t) = \varepsilon \phi^{(1)}(x,y,t) + \varepsilon^2 \phi^{(2)}(x,y,t) + 0(\varepsilon^3). \end{split} \tag{E-5}$$

Substituing the expansion for $\boldsymbol{\varphi}$ into the free-surface boundary condition:

$$\varepsilon = \frac{\partial^{2} \phi^{(1)}(\mathbf{x}, \mathbf{y}, \mathbf{t})}{\partial t^{2}} + \varepsilon^{2} = \frac{\partial^{2} \phi^{(2)}}{\partial t^{2}} + g\varepsilon = \frac{\partial \phi^{(1)}}{\partial y} + g\varepsilon^{2} = \frac{\partial \phi^{(2)}}{\partial y}$$

$$+ 2\left[\varepsilon\left(\frac{\partial \phi^{(1)}}{\partial x} + \frac{\partial \phi^{(1)}}{\partial y} + \frac{\partial \phi^{(1)}}{\partial y} + \varepsilon^{2}\right) + \varepsilon^{2}\left(\frac{\partial \phi^{(2)}}{\partial x} + \frac{\partial \phi^{(2)}}{\partial y} + \frac{\partial \phi^{(2)}}{\partial y} + \frac{\partial \phi^{(2)}}{\partial y}\right)\right] \cdot$$

$$\left[\vec{1} = \frac{\partial}{\partial x} + \vec{j} = \frac{\partial}{\partial y}\right] \left[\varepsilon + \frac{\partial \phi^{(1)}}{\partial x} + \varepsilon^{2} + \frac{\partial \phi^{(2)}}{\partial z} + \frac{\partial \phi^{(2)}}{\partial z} + \frac{\partial \phi^{(2)}}{\partial y} +$$

on
$$y = \eta$$
.

Now use the Taylor expansion for $\varphi(x,\eta,t)$ and neglect terms of order ϵ^3 in the boundary condition:

$$\varepsilon \{ \frac{\partial^2 \phi^{(1)}(\mathbf{x}, \mathbf{0}, \mathbf{t})}{\partial \mathbf{t}^2} + \varepsilon \eta^{(1)}(\mathbf{x}, \mathbf{t}) \frac{\partial^3 \phi^{(1)}}{\partial y \partial \mathbf{t}^2} \} + \varepsilon^2 \frac{\partial^2 \phi^{(2)}}{\partial \mathbf{t}^2}$$

+ $g \varepsilon \{ \frac{\partial \phi^{(1)}}{\partial y} + \varepsilon \eta^{(1)}(\mathbf{x}, \mathbf{t}) \frac{\partial^2 \phi^{(1)}}{\partial y^2} \} + g \varepsilon^2 \frac{\partial \phi^{(2)}}{\partial y}$
+ $2 \varepsilon^2 [\frac{\partial \phi^{(1)}}{\partial \mathbf{x}} \frac{\partial^2 \phi^{(1)}}{\partial \mathbf{t} \partial \mathbf{x}} + \frac{\partial \phi^{(1)}}{\partial y} \frac{\partial^2 \phi^{(1)}}{\partial \mathbf{t} \partial y}] + 0(\varepsilon^3) = 0.$ (E-7)

Grouping terms by order:

First Order
$$\varepsilon$$
:

$$\frac{\partial^{2} \phi^{(1)}}{\partial t^{2}} + g \frac{\partial \phi^{(1)}}{\partial y} = 0 \quad \text{on } y = 0. \quad (E-8)$$
Second Order ε^{2} :

$$\frac{\partial^{2} \phi^{(2)}}{\partial t^{2}} + g \frac{\partial \phi^{(2)}}{\partial y} + \eta^{(1)} \frac{\partial}{\partial y} \left\{ \frac{\partial^{2} \phi^{(1)}}{\partial t^{2}} + g \frac{\partial \phi^{(1)}}{\partial y} \right\} + 2 \frac{\partial \phi^{(1)}}{\partial x} \frac{\partial^{2} \phi^{(1)}}{\partial x \partial t} + 2 \frac{\partial \phi^{(1)}}{\partial x \partial t} \frac{\partial \phi^{(1)}}{\partial x \partial t} = 0 \quad \text{on } y = 0. \quad (E-9)$$

Using the dynamic boundary condition on the free surface, one finds:

$$\eta(\mathbf{x},\mathbf{t}) = -\frac{1}{g} \left\{ \frac{\partial \phi}{\partial \mathbf{t}} + \frac{1}{2} \nabla \phi \cdot \nabla \phi \right\} \quad \text{on } \mathbf{y} = \eta.$$
 (E-10)

Substituting the expansions into this equation yields:

$$\varepsilon \eta^{(1)}(\mathbf{x}, \mathbf{t}) + \varepsilon^2 \eta^{(2)} + 0(\varepsilon^3) = -\frac{1}{g} \left\{ \frac{\partial \phi}{\partial \mathbf{t}} + \frac{1}{2} \nabla \phi \cdot \nabla \phi \right\}_{y=0}$$

$$-\frac{\eta}{g} \frac{\partial}{\partial y} \left\{ \frac{\partial \phi}{\partial \mathbf{t}} + \frac{1}{2} \nabla \phi \cdot \nabla \phi \right\}_{y=0} + 0(\eta^2).$$
(E-11)

Substituting for ϕ , the right-hand side becomes:

$$= -\frac{1}{g} \left\{ \varepsilon \frac{\partial \phi^{(1)}}{\partial t} + \varepsilon^2 \frac{\partial \phi^{(2)}}{\partial t} + \frac{\varepsilon^2}{2} \left[\left(\frac{\partial \phi^{(1)}}{\partial x} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 \right] \right\}$$
$$- \frac{\varepsilon^2 \eta^{(1)}}{g} \left\{ \frac{\partial^2 \phi^{(1)}}{\partial y \partial t} \right\} + 0(\varepsilon^3), \text{ on } y = 0.$$

First Order ε:

$$\eta^{(1)}(x,t) = -\frac{1}{g} \frac{\partial \phi^{(1)}(x,0,t)}{\partial t} .$$
 (E-12)

Second Order ϵ^2 :

$$\eta^{(2)}(\mathbf{x},\mathbf{t}) = -\frac{1}{g} \{\eta^{(1)} \frac{\partial \phi^{(1)}}{\partial y \partial t} + \frac{\partial \phi^{(1)}}{\partial t} \} - \frac{1}{2g} \{(\frac{\partial \phi^{(1)}}{\partial x})^2 + (\frac{\partial \phi^{(1)}}{\partial y})^2\}$$

on y = 0

 or

$$\eta^{(2)}(\mathbf{x},\mathbf{t}) = -\frac{1}{g} \left\{ -\frac{1}{g} \frac{\partial \phi^{(1)}}{\partial \mathbf{t}} \frac{\partial^2 \phi^{(1)}}{\partial \mathbf{y} \partial \mathbf{t}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{t}} \right\} - \frac{1}{2g} \left\{ \left(\frac{\partial \phi^{(1)}}{\partial \mathbf{x}} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial \mathbf{y}} \right)^2 \right\} \text{ on } \mathbf{y} = 0.$$
(E-13)

Using the first-order relationship above in the second-order boundary condition on the free surface (E-9), one finds:

$$\frac{\partial^{2} \phi^{(2)}}{\partial t^{2}} + g \frac{\partial \phi^{(2)}}{\partial y} = + \frac{1}{g} \frac{\partial \phi^{(1)}}{\partial t} \frac{\partial}{\partial y} \left\{ \frac{\partial^{2} \phi^{(1)}}{\partial t^{2}} + g \frac{\partial \phi^{(1)}}{\partial y} \right\}$$
$$- 2 \frac{\partial \phi^{(1)}}{\partial x} - \frac{\partial^{2} \phi^{(1)}}{\partial x \partial t} - 2 \frac{\partial \phi^{(1)}}{\partial y} \frac{\partial^{2} \phi^{(1)}}{\partial y \partial t} \qquad (E-14)$$

This solution results from the superposition of the velocity potentials for individual waves:

$$\phi^{(1)}(x,y,t) = \frac{gA_1}{\omega_1} e^{k_1 y} \cos (k_1 x - \omega_1 t + \delta_1) + \frac{gA_2}{\omega_2} e^{k_2 y} \cos (k_2 x - \omega_2 t + \delta_2).$$
(E-15)

Check the solution:

$$\begin{split} \nabla^2 \phi^{(1)} &= 0. \\ \lim_{y \to -\infty} \frac{\partial \phi^{(1)}}{\partial y} \to 0 \quad \text{because of exponential function.} \\ \frac{\partial^2 \phi^{(1)}}{\partial t^2} + g \frac{\partial \phi^{(1)}}{\partial y} &= -g \omega_1 A_1 e^{k_1 y} \cos (k_1 x - \omega_1 t + \delta_1) \\ -g \omega_2 A_2 e^{k_2 y} \cos (k_2 x - \omega_2 t + \delta_2) \\ +g \{\omega_1 A_1 e^{k_1 t} \cos(k_1 x - \omega_1 t + \delta_1) \\ +\omega_2 A_2 e^{k_2 y} \cos(k_2 x - \omega_2 t + \delta_2)\} = 0. \end{split}$$

Therefore, this is a solution.

Surface elevation then becomes:

$$\eta^{(1)}(x,t) = -\frac{1}{g} \frac{\partial \phi^{(1)}(x,0,t)}{\partial t} = -A_1 \sin(k_1 x - \omega_1 t + \delta_1)$$

- $A_2 \sin(k_2 x - \omega_2 t + \delta_2).$ (E-16)

To prepare for the second-order solution, construct the right-hand side of the free-surface boundary condition (E-14):

$$\begin{bmatrix} \frac{1}{2} & \frac{\partial \phi^{(1)}}{\partial t} & \frac{\partial}{\partial y} & \{ \frac{\partial^2 \phi^{(1)}}{\partial t^2} + g & \frac{\partial \phi^{(1)}}{\partial y} \} - 2 & \frac{\partial \phi^{(1)}}{\partial x} & \frac{\partial^2 \phi^{(1)}}{\partial x \partial t} \end{bmatrix}$$

- 2 $\frac{\partial \phi^{(1)}}{\partial y} & \frac{\partial^2 \phi^{(1)}}{\partial y \partial t} \end{bmatrix}_{y=0} = \frac{1}{g} \{ gA_1 \sin(k_1 x - \omega_1 t + \delta_1) \}$
+ $gA_2 \sin(k_2 x - \omega_2 t + \delta_2) \} \{ 0 \} - 2 \{ -\omega_1 A_1 \sin(k_1 x - \omega_1 t + \delta_1) \}$ (E-17)

$$- \omega_{2}A_{2} \sin(k_{2}x - \omega_{2}t + \delta_{2}) \times \{\omega_{1}^{2}A_{1} \cos(k_{1}x - \omega_{1}t + \delta_{1}) + \omega_{2}^{2}A_{2} \cos(k_{2}x - \omega_{2}t + \delta_{2}) \} - 2\{\omega_{1}A_{1} \cos(k_{1}x - \omega_{1}t + \delta_{1}) + \omega_{2}A_{2} \cos(k_{2}x - \omega_{2}t + \delta_{2}) \times \{\omega_{1}^{2}A_{1} \sin(k_{1}x - \omega_{1}t + \delta_{1}) + \omega_{2}^{2}A_{2} \sin(k_{2}x - \omega_{2}t + \delta_{2}) \} = 0.$$

Since this condition is homogeneous, the first-order potential is the solution to the second-order problem.

2. Second-Order Results.

The free-surface elevation will be modified when terms of second order are included:

$$\begin{split} n^{(2)}(x,t) &= \frac{1}{g^2} \left\{ \frac{\partial \phi^{(1)}}{\partial t} \frac{\partial^2 \phi^{(1)}}{\partial y \partial t} \right\} - \frac{1}{2g} \left\{ \left(\frac{\partial \phi^{(1)}}{\partial x} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 \right\} \Big|_{y=0} \\ &= + \frac{1}{g^2} \left\{ gA_1 \sin(k_1 x - \omega_1 t + \delta_1) + gA_2 \sin(k_2 x - \omega_2 t + \delta_2) \right\} \times \\ &\{A_1 \omega_1^2 \sin(k_1 x - \omega_1 t + \delta_1) + A_2 \omega_2^2 \sin(k_2 x - \omega_2 t + \delta_2) \right\} \\ &- \frac{1}{2g} \left\{ \left[- \omega_1 A_1 \sin(k_1 x - \omega_1 t + \delta_1) - \omega_2 A_2 \sin(k_2 x - \omega_2 t + \delta_2) \right]^2 \\ &+ \left[\omega_1 A_1 \cos(k_1 x - \omega_1 t + \delta_1) + \omega_2 A_2 \cos(k_2 x - \omega_2 t + \delta_2) \right]^2 \end{split}$$

or

$$g_{n}^{(2)}(\mathbf{x}, \mathbf{t}) = \omega_{1}^{2} A_{1}^{2} \sin^{2}(k_{1}\mathbf{x} - \omega_{1}\mathbf{t} + \delta_{1}) + \omega_{1}^{2} A_{1} A_{2} \sin(k_{2}\mathbf{x} - \omega_{2}\mathbf{t} + \delta_{2}) \sin(k_{1}\mathbf{x} - \omega_{1}\mathbf{t} + \delta_{1}) + \omega_{2}^{2} A_{1} A_{2} \sin(k_{1}\mathbf{x} - \omega_{1}\mathbf{t} + \delta_{1}) \sin(k_{2}\mathbf{x} - \omega_{2}\mathbf{t} + \delta_{2}) + \omega_{2}^{2} A_{2}^{2} \sin^{2}(k_{2}\mathbf{x} - \omega_{2}\mathbf{t} + \delta_{2}) \frac{1}{2} \{\omega_{1}^{2} A_{1}^{2} \sin^{2}(k_{1}\mathbf{x} - \omega_{1}\mathbf{t} + \delta_{1}) \\+ 2\omega_{1}\omega_{2} A_{1} A_{2} \sin(k_{1}\mathbf{x} - \omega_{1}\mathbf{t} + \delta_{1}) \sin(k_{2}\mathbf{x} - \omega_{2}\mathbf{t} + \delta_{2})$$

$$+ \omega_2^2 A_2^2 \sin^2(k_2 x - \omega_2 t + \delta_2)$$

$$+ \omega_1^2 A_1^2 \cos^2(k_1 x_1 - \omega_1 t + \delta_1)$$

$$+ 2\omega_1 \omega_2 A_1 A_2 \cos(k_1 x - \omega_1 t + \delta_1) \cos(k_2 x - \omega_2 t + \delta_2)$$

$$+ \omega_2^2 A_2^2 \cos^2(k_2 x - \omega_2 t + \delta_2).$$

Using the trigonometric relationships:

$$gn^{2}(x,t) = \omega_{1}^{2}A_{1}^{2} \sin^{2}(k_{1}x - \omega_{1}t + \delta_{1}) + \omega_{2}^{2}A_{2}^{2} \sin^{2}(k_{2}x - \omega_{2}t + \delta_{2})$$

$$+ \frac{1}{2} \omega_{1}^{2}A_{1}A_{2} \left\{ \cos[(k_{1} - k_{2})x - (\omega_{1} - \omega_{2})t + \delta_{1} - \delta_{2}] \right\}$$

$$- \cos[(k_{1} + k_{2})x - (\omega_{1} + \omega_{2})t + \delta_{1} + \delta_{2}] \right\}$$

$$+ \frac{1}{2} \omega_{2}^{2}A_{1}A_{2} \left\{ \cos[(k_{1} - k_{2})x - (\omega_{1} - \omega_{2})t + \delta_{1} - \delta_{2}] \right\}$$

$$- \cos[(k_{1} + k_{2})x - (\omega_{1} + \omega_{2})t + \delta_{1} + \delta_{2}] \right\}$$

$$- \frac{1}{2} \left\{ \omega_{1}^{2}A_{1}^{2} + \omega_{2}^{2}A_{2}^{2} \right\} - \omega_{1}\omega_{2} A_{1}A_{2} \cos[(k_{1} - k_{2}) x - (\omega_{1} - \omega_{2})t + \delta_{1} - \delta_{2}] .$$

Combining further:

.

$$g_{\Pi}^{(2)}(\mathbf{x}, \mathbf{t}) = -\frac{1}{2} \omega_{1}^{2} A_{1}^{2} \cos[2\{k_{1}\mathbf{x} - \omega_{1}\mathbf{t} + \delta_{1}\}]$$

$$-\frac{1}{2} \omega_{2}^{2} A_{2}^{2} \cos[2\{k_{2}\mathbf{x} - \omega_{2}\mathbf{t} + \delta_{2}\}] \qquad (E-18)$$

$$-\frac{1}{2} (\omega_{1}^{2} + \omega_{2}^{2}) A_{1} A_{2} \cos[(k_{1} + k_{2})\mathbf{x} - (\omega_{1} + \omega_{2})\mathbf{t} + \delta_{1} + \delta_{2}]$$

$$+\frac{1}{2} (\omega_{1}^{2} - 2\omega_{1}\omega_{2} + \omega_{2}^{2}) A_{1} A_{2} \cos[(k_{1} - k_{2})\mathbf{x} - (\omega_{1} - \omega_{2})\mathbf{t} + \delta_{1} - \delta_{2}],$$

which is the final form for the second-order term for free-surface ele-vation.

Now, turn to the equation for pressure which is necessary to compute the force on the body.

Take the pressure to be zero at the free surface. Then Bernoulli's equation may be written:

$$P = -\rho \frac{\partial \phi}{\partial t} - \frac{1}{2} \rho \nabla \phi \cdot \nabla \phi - \rho g y. \qquad (E-19)$$

Substituting the expansion for ϕ :

$$P = -\rho \left\{ \varepsilon \frac{\partial \phi^{(1)}}{\partial t} + \varepsilon^2 \frac{\partial \phi^{(2)}}{\partial t} + \frac{1}{2} \left[\varepsilon^2 \left(\frac{\partial \phi^{(1)}}{\partial x} \right)^2 + \varepsilon^2 \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 + gy \right\} + 0 \left(\varepsilon^3 \right).$$

Since $_{\varphi} ^{\left(2\right)}$ = 0, we can drop this term and proceed to separate the equation by order:

$$P^{(1)} = -\rho \frac{\partial \phi^{(1)}}{\partial t} - \rho gy \qquad (E-20)$$

and

$$P^{(2)} = -\frac{\rho}{2} \left[\left(\frac{\partial \phi^{(1)}}{\partial x} \right)^2 + \left(\frac{\partial \phi^{(1)}}{\partial y} \right)^2 \right].$$
(E-21)

Substituting the velocity potential into the equation, one finds: $P^{(1)} = -\rho g\{A_1 e^k 1^y \sin(k_1 x - \omega_1 t + \delta_1) + A_2 e^k 2^y \sin(k_2 x - \omega_2 t + \delta_2) + y\} \qquad (E-22)$

for the first order, and

$$P^{(2)} = -\frac{\rho}{2} \left\{ \left[-\omega_1 A_1 e^{k_1 y} \sin(k_1 x - \omega_1 t + \delta_1) \right]^2 + \left[\omega_2 A_2 e^{k_2 y} \sin(k_2 x - \omega_2 t + \delta_2) \right]^2 + \left[\omega_1 A_1 e^{k_1 y} \cos(k_1 x - \omega_1 t + \delta_1) + \omega_2 A_2 e^{k_2 y} \cos(k_2 x - \omega_2 t + \delta_2) \right]^2 \right\}$$

for the second order. Note that this is identical to part of the

equation for surface elevation. The second-order pressure may be reduced to:

$$P^{(2)} = -\frac{\rho}{2} \{\omega_1^2 A_1^2 e^{2k_1 y} + \omega_2^2 A_2^2 e^{2k_2 z} - 2\omega_1 \omega_2 A_1 A_2 e^{(k_1 + k_2)y} \cos[(k_1 - k_2)x - (\omega_1 - \omega_2)t + \delta_1 - \delta_2]\}$$
(E-23)

which indicates that the second-order pressure is composed of a component independent of time and at the "difference frequency".

This is surprising since the equation for the free-surface elevation (eq. 18) includes terms at twice the incident wave frequencies and at the sum of these two frequencies. Using trigonometric relationships the first two terms in equation (E-23) could be expanded to yield terms at twice the incident wave frequency. A term at the sum of the two incident wave frequencies may appear in the pressure computed using the velocity potentials representing wave diffraction or forced oscillation. It might also appear if the present analysis were carried to the third order. The derivation included here was intended to reveal the presence of a low-frequency component in the exciting force and has not been used to determine the other velocity potentials or carried beyond the second order.

List of Special Symbols for Appendix E.

A ₁ ,A ₂	=	Wave amplitudes
g	=	Acceleration of gravity 2
^k 1, ^k 2	=	Wave numbers, $\frac{\omega_1}{g}$, $\frac{\omega_2}{g}$, respectively
х,у	=	Cartesian coordinates (x-directed parallel to the direction of wave propagation, y-directed vertically upward)
δ ₁ ,δ ₂	=	Wave phase angles
η(x,t)	=	Free-surface elevation
φ(x,y,t)	=	Velocity potential
^ω 1, ^ω 2	=	Wave circular frequencies

APPENDIX F

PHYSICAL PROPERTIES OF SEVERAL FLOATING BREAKWATERS

- a. Physical Properties.
 - m = mass per unit length = 25.1 slug/ft
 - I = mass moment of inertia = 621 slug-ft²/ft
 - x = x-coordinate of center of gravity = 0.0 ft. (on centerline)
 - y_g = y-coordinate of center of gravity = -2.34 ft (below WL)

KH₂₂ = 64.5 lb/ft/ft
KH₃₃ = 1,165 ft-lb/ft

All other $KH_{ii} = 0$

b. Mooring Line Tension Response (change per unit displacement).

 $\frac{\Delta T}{\Delta x} = 1,170 \text{ lb/ft}$ $\frac{\Delta T}{\Delta y} = 281 \text{ lb/ft}$ $\frac{\Delta T}{\Delta \theta} = 1,710 \text{ lb}$

c. Computed Mooring Spring Constants (depth = 29.5 feet)

156

$$KM_{33} = 282. ft - 1b/ft$$

Rectangular Breakwater Tested by Nece and Richey (1972).

Physical Properties (at prototype scale). The cross section is a rectangle of beam 10 feet and draft 5 feet.

m = 100 slugs/ft I = 2,740 slug-ft²/ft x_g = 0.0 ft (on centerline) y_g = -1.0 ft (below WL) KH_{22} = 640 lb/ft/ft KH_{33} = 5,340 ft-lb/ft All other KH_{ij} = 0 All KM_{ij} = 0.

Rectangular Breakwater Tested by Sutko and Haden (1974).

Physical Properties of Model. The cross section is a rectangle of beam 0.333 feet and draft 0.222 feet.

m = 0.143 slug/ft $I = 0.023 \text{ slug-ft}^2/\text{ft}$ $x_g = 0.0 \text{ ft (on centerline)}$ $y_g = -0.123 \text{ ft (below WL)}$ $KH_{22} = 20.7 \text{ lb/ft/ft}$ $KH_{33} = 0.244 \text{ ft-lb/ft}$ $A11 \text{ other } KH_{ij} = 0$ $A11 \text{ KM}_{ij} = 0$ A1aska-Type Breakwater. $a. \quad Physical \text{ Properties.}$ m = 62.3 slug/ft

I = 4,234 slug-ft/ft x_g = 0.0 ft y_g = -1.3 ft (below WL) KH_{22} = 528 lb/ft/ft KH_{33} = 32,885 ft-lb/ft All other KH_{ij} = 0 b. Mooring Line Tension Response (change per unit displacement). $\frac{\Delta T}{\Delta x}$ = 97.0 lb/ft $\frac{\Delta T}{\Delta x}$ = 90.5 lb/ft

c. Computed Mooring Spring Constants (tide = +7.0 feet).

KM₁₁ = 3.0 lb/ft/ft
KM₁₂ = 0.245 lb/ft/ft
KM₁₃ = -9.23 lb/ft
KM₂₁ = 0.302 lb/ft/ft
KM₂₂ = 1.91 lb/ft/ft
KM₂₃ = -2.68 lb/ft
KM₃₁ = -9.52 lb/ft
KM₃₂ = -2.82 lb/ft
KM₃₃ = 88.9 ft-lb/ft

 $\frac{\Delta T}{\Delta 0} = -572$ lb

- 5. Friday Harbor Breakwater.
 - a. Physical Properties. m = 61.02 slugs/ft I = 4,160 slugs-ft³/ft

 $x_g = 0.0 \text{ ft (on centerline)}$ $y_g = -0.49 \text{ ft (below WL)}$ $KH_{22} = 884 \text{ lb/ft/ft}$ $KH_{33} = 55,610 \text{ ft-lb/ft}$ All other $KH_{ij} = 0$

b. Mooring Line Tension Response.

 $\frac{\Delta T}{\Delta x} = 222 \quad lb/ft$ $\frac{\Delta T}{\Delta y} = 25.0 \quad lb/ft$ $\frac{\Delta T}{\Delta \theta} = 657 \quad lb$

c. Computed Mooring Spring Constants (tide = +5.33 feet).

APPENDIX G

DATA SUMMARY SHEETS FOR FRIDAY HARBOR FLOATING BREAKWATER (WINTER 1975)

Appendix G contains a summary of all the data recorded at the Friday Marbor breakwater during the winter season of 1975. Seven tapes were recorded during this period, with a total of 95 records. The tapes are numbered in sequence from FH7-1 through FH13-8. The date of each tape is given along with the pertinent statistical data for each record in the tapes. The number of days and hours given for each record begins with the day and hour given for that particular tape.

All minimum and maximum values are measured from zero mean. The transmitted wave data were digitally high-pass filtered (cutoff frequency was 0.05 hertz) before these calculations to remove tidal draft.

- 1330 - 12/30/74) (FH7 SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (Max. and Min. Values measured From Zeru mean) sampling period = 500 ms Number of Sameles = 2047

13.028 .1032 12.965 444 ---13.102 -.593 -.242 -.523 13.044 -.430 13.029 HOR. S.VER. • 408 . 500 13.035 .1156 . 507 .1317 .423 -.423 .571 ACCELEROMETERS (FT/SEC/SEC) -.347 -.347 13.548 .297 -.249 13.743 -109 • 289 -•246 13.698 .0666 -.268 .204 13.680 13.681 .0626 13.399 .0218 **•0734** --342 REF. N.VER. .219 -.159 13.121 .0445 13.483 .9869 • 386 - 307 13.268 .0788 -.338 13.431 .0920 -256 13.463 -.334 46E. 13.227 .0701 4.648 .2035 --500 4.609 --501 --501 -209 -226 4.539 -.457 4.643 -.577 .1842 -.539 **1721** .695 .1622 4.634 ET. .766 -.540 4.034 .1626 4.080 .778 4.150 .802 -.452 4°024 INC. .297 -.317 4.118 .0848 -.487 -.487 4.058 .1687 E. TRAN 1 TRAN 2 1 .128 -.162 5.834 .0469 .204 -.156 4.908 .110 -.133 7.226 •181 -•296 7.509 -205 -176 4.994 .137 -.107 5.300 .0334 .0673 .0598 FT. .183 -.172 5.093 .0567 .135 -.153 5.990 .0444 -.196 •003 5.526 .0328 .113 -.137 6.938 .0385 -.176 7.630 .205 .0663 -.113 ۴. 90.27 193.09 -84.99 221.93 -128.83 952.01 61.033 904.88 27.538 17.55 -18.79 959.38 6.077 1025.22 38.205 SE LBS 96.34 -60.62 1374.02 966.06 278.10 -112.16 1027.13 55.777 47.80 -60.20 719.23 16.930 23.37 31.92 -16.08 42.34 -37.66 930.07 66.36 -53.64 867.82 43.05 874.81 11.194 856.26 4.026 14.051 Ч LBS 13.839 759.38 LOAD CELLS 30.90 -33.10 981.12 9.611 161.55 -110.45 325.98 -174.02 1161.24 65.078 445.25 1069.49 97.282 156.49 -95.51 990.82 50.922 R 1181.83 -226.86 1075.80 89.072 333.14 LBS 40.51 39.10 9.155 57.90 -78.10 .00 24.055 75.58 55.01 75.58 -12.42 1.63 .000 15.65 -.35 3.08 2.057 120°45 18°688 Đ LBS 699.91 11.8 51.7 -9.7-116.3 21.6 178.7 3.93 24.09 61.9 189.5 57.2 -68.8 172.9 14.72 ULIND 58.1 -57.4 109.9 27.87 60.7 -65.3 180.3 14.27 93.2 -95.8 178.5 19.63 -95.6 DIR. DEG. 14.1 -9.6 20.5 17.6 8.2 -5.6 16.2 2.89 -2.1 2.1 1.06 13.2 14.1 3.62 3.91 DNIM 8.1 -11.2 se. HPH MEAN Stdev MEAN STDEV MEAN MIN. MEAN STDEV STDEV STDEV NIN. MEAN HAX. HIN. MEAN MAX, MIN. "AX" NIN. **MAX**_P MAXP •19 • 45 .35 • 39 .34 TRANS. COEF. •27 TIME IN DAYS AND HOURS **m** – 0.0 0 8 222 **m m** ~ 2 in ø -N en i ÷

.0986

.1743

(FH7 - 1330 - 12/30/74) SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBUR FLDATING BREAKWATER (Max. and Min. Values Measured From Zero Mean) Sampling Feridd = 2047 Wumber of Samtles = 2047

	ß	ŝ		5	10			ŝ	11			5	12			2	13			S	14			ŝ	
TRANS. COEF.	•	,		.18				.16				• 20				•24				• 26				***	
			MAX.	NIN.	MEAN	STDEV	MAX,	•NIM	MEAN	STDEV	MAXs	MIN.	MEAN	STDEV	MAX,	•NIN•	MEAN	STDEV	MAX,	HIN	MEAN	STDEV	MAX,	.NIM.	
QNIM	• •	HdW	12.7	-8.1-	22.9	3.50	6 • 9	-6.1	22.8	2.89	12.4	-8.1-	22 °3	3.27	11.5	-8.4-	22.5	4°83	13.4	-11-0	20.3	4°54	13.1	-7.1	
ONIA	. YIU	DEG.	70.3	150.2	150.2	37.11	27.0	-67.5	160.9	14.06	47.8	109.7	161.4	23,39	62.5	126.5	167.7	24°85	58.3	-88.7	171.6	17,36	54.1	-82.4	
	Z	L B S	1 . 65	-4.35	00.	10.657	7.84	16	• 00	1.003	7.79	21	.00	1.128	26.40	-1.60	00.	5.488	86.55	-19.45	• 00	20.866	72.79	-99.21	
LDAD C		LBS	240.70	-212.21	1181.21	82.997	291.23	-204.77	1143.02	80.332	302.35	-177.65	1094.26	80.25ö	397.52	-238.48	1196.93	131.584	305.94	-214.06	1143.02	86 • 769	306.05	-117.95	
ELLS		L B S	50.05	-49.05	810.04	14.872	37.67	-42.33	733.83	13.652	34 . 46	-33.54	804.04	12.471	48.77	-47.23	732.67	110.01	43.06	56° 55-	808.64	15,340	41.58	-86.42	
L		L BS	16.2.1	-112.14	4104.56	162.04	173.79	-116.93	1147.23	48°214	197.82	-107.12	1087.69	47.414	283.36	-127.44	1176.63	82.184	195.54	-110.98	1102.61	52,033	191.57	-70.71	
	I KAN I	έT.	721	138	5.670	• 0395	.157	186	5.440	•0411	.161	159	2.279	.0428	.248	167	5.514	.0481	.163	183	3.196	.0483	.189	169	
WAVE 6	TRAN 2	FT.	101	140	5.452	•0422	.137	199	5.220	•0440	.142	170	5.062	e640°	.221	170	5.305	.0510	.148	155	6.015	•0486	.186	163	
AGE S	INC.	۶Ţ.	770 F	E+9*-	4.035	• 2216	1.188	732	4.047	.2521	.961	550	4.044	.2111	.962	626	4.094	.2037	• 904	504	4.102	.1891	.636	439	
	REF.	FT.	661	917	4.668	•2427	1.457	847	4.674	• 2939	1.043	596	4.655	• 2186	1.086	604	4.687	•2414	169.	529	4.689	.2138	.603	549	
ACCE	N.VER.	(FT		828	13.223	• 2034	.769	743	13.387	,1984	• 498	636	13.274	.1412	.474	174	13.221	• 1242	.322	308	13.257	.1000	.280	- 245	
LEROMET	HOR.	/SEC/SE		917	13.720	.1959	. 660	667	13.910	.1875	.542	357	13,822	.1118	.401	380	13.836	.1006	.306	- 272	13.767	.0821	.266	162	
ERS	S.VER.			-1.290	12.965	.3221	1.925	-1.797	12.964	• 3902	747.	- 860	12.957	.1840	• 662	776	12.959	.1763	.656		12.965	.1344	.318	274	

(FH7 - 1330 - 12/30/74) SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBUR FLOATING BREAKWATER (Max. and Min. Values measured from zero mean) Sampling Feitod = 500 ms Wimber de samples = 500 ms

F TANKS F TANKS CODE: VIND <wind< th=""> NW UDAD CELLS SF TANK Ref. NAVE GAERS S VIND<wind< th=""> NW UDAD CELLS SF FT <t< th=""></t<></wind<></wind<>
 VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND VIND
WIND WAVE GAGES ACCELEROMETI 5%. DIR. WW SW SE TRAN I TRAN Z N.VER. HOR. 8%. J112 LBS LBS LBS LBS LBS FT.
WIND LOAD CELLS SE TRAN I RAN Z LIC. R.F. NUE. MACELEROMETI DEG. LBS LBS LB LB FT. FT. FT. FT. HT.
LDAD CELLS NW SW LEAC FT. FT. FT. Rev
LGAD CELLS ACCELEROMETI SY ACCELEROMETI SY ACCELEROMETI SY ACCELEROMETI SY ACCELEROMETI SY ACCELEROMETI LBS LBS LBS FT. FT. FT. FT. (FT/SEC/SEC -109.07 39.26 13.440 13.896 993.14 105.25 -111 -117 -663 773 -270 -276 129.966 993.14 105.25 -1128 -1128 -437 -4426 13.440 13.896 993.144 105.25 9.195 9.069 4.066 13.440 13.896 129.966 993.14 105.25 -1128 -1496 4.740 13.896 129.968 993.14 105.25 -128 -437 -4426 -276 173.65 373 146.29 -1378 -4434 -512 -644 -4420 -326 129.988 84.27 1185.22 9.178 0.0520 1657 13.416 13.779 173.65 373 145.22 -55.93 -1378 -4434 -426 -326 1209.88 84.27 1185.22 8.776 8.652 4.160 4.770 13.316 13.779 1902.90 884.27 1185.22 8.776 8.652 4.160 4.770 13.316 13.779 1902.91 192.949 2.233 -4434 -553 -3128 13.617 1902.90 822.80 1022.348 7.214 7.0556 7.027 4.643 13.274 13.6105 1902.91 14.292 11.875 0.109 3.1193 11051 13.6065 254.314 14.202 231.877 0.0759 1630 1816 13.274 13.6105 1906.2314 14.202 231.877 0.0759 1630 1816 13.274 13.6105 1065.314 14.202 31.877 0.0759 1630 1816 13.274 13.6105 1065.314 14.202 31.877 0.0759 1733 1993 12055 11055 10759 13.649 222.144 10.000 5.437 5.227 4.0557 4.651 -4551 -4517 1064.200 20.494 1070.000 5.437 5.223 4.0517 4.651 13.649 222.144 10.000 5.437 5.223 4.0515 4.9512 9.429 1062.300 746.75 1.660 7.506 0.717 1597 1.3099 3.0755
LLS SE TRAN 1 TRAN 2 INC. REF. N. VER. HOR. LBS LUS FT. FT. FT. (FT/SEC/SE(- 187 LUS FT. FT. FT. (FT/SEC/SE(- 276 - 276 - 248 - 276 - 276 - 276 - 276 - 276 - 276 - 278 - 276 - 278 - 278 - 276 - 277 - 288 - 277 - 288 - 288 - 289 - 276 - 277 - 288 - 272 - 276 - 278 - 278 - 277 - 288 - 278 - 277 - 288 - 278 - 277 - 298 - 278
SE TRAN TRAN Z INC. Ref. ACCELEROMETI Lus FT. FT. FT. FT. FT. HOR. Lus FT. FT. FT. FT. FT. HOR. 130.43 -111 -017 .0663 .773 .276 .276 -127.11 -112 -117 .6663 .773 .276 .278 130.43 -111 .0117 .6663 .773 .276 .276 127.11 -112 -112 .0509 .4060 .456 13.479 .385 26.267 .0322 .0323 .151 .719 .0659 .276 288 130.505 9.196 .4150 .4790 .365 .367 .328 1185.52 8.776 8.672 .4160 .4730 .3214 .3277 1185.52 8.770 .655 .4160 .4750 .328 .0277 1185.52 8.770 .655 .4160 .4750 .328 .274 .328 10222
KAVE GAGES ACCELEROMETI FT. FT. FT. FT. HOK. FT. FT. FT. FT. HOK. •111 •117 •663 •733 •276 •276 •111 •117 •663 •733 •270 •276 •111 •117 •663 •733 •270 •276 •112 •117 •663 •733 •270 •276 •128 •137 •1655 1373 •270 •288 •120 •335 •1944 •1655 •1379 9207 •130 •335 •1494 •1655 •276 288 •130 •131 •165 •165 13.276 13.277 •130 •157 •160 •197 •1071 1027 •131 •747 •553 •13.017 •127 •288 •131 •757 •163 1312 13.017 •276 •396 •131 •157 •163 1816 •455 •4105 •396
<pre>WAVE GAGES WAVE GAGES FT. FT. REF. N.VER. HOR. FT. FT. FT. (FT/SEC/SE(-117 -6653 -733 -270 -276 -128 -4917 -4656 13-440 13896 9.069 4.000 4.656 13-440 13895 9.069 4.000 4.656 13-440 13779 9.057 4.160 4.730 13.316 137779 -522 -4720 -326 9.657 -544 -420 -326 9.657 4.160 4.730 13.316 137779 9.657 -512 -646 13.212 3.0127 9.653 -4450 -1659 13.218 13.077 9.659 11670 11955 0.1123 13.0127 9.659 -6491 -4564 -6553 -3496 -223 -4451 -4564 -6553 -3496 -223 -4451 -4564 -6553 -3406 -653 -4611 -4564 -6553 -4175 9.059 1173 1199 13.0151 13.0665 -223 -4611 -4564 -6553 -4176 -223 -4611 -4564 -6553 -3496 -223 -4651 -6450 -1126 13.0665 -233 -4601 -4564 -6553 -4106 -659 -6599 -3109 0.025 -4211 -6066 4.602 13.368 13.649 -373 -0795</pre>
IGES ACCELEROMETI LINC. REF. N.VER. HOR. FT. FT. (FT/SEC/SE(-663733270276 -437496 13.440 13.896 4.060 4.656 13.440 13.895 -1979659 13.410 13.895 -512544420326 -100 4.730 13.316 13.779 -167 4.65 13.440 13.228 -167 1.959 13.218 13.617 -1651051 1.0065 -161454553 13.617 -165 1.993 13.274 13.617 -165 1.912 13.288 -465457388 13.649 -161454553 13.612 -165 1.993 1.205 13.649 -161454553 13.612 -165 1.993 1.205 13.649 -461454553 13.612 -465457387417 4.057 4.650 13.205 13.649 -161454553 13.668 -461454553 13.668 -465 1.367 1.300326 -461454553 13.668 -465 1.309306 -461 1.455455 1.3006 -461 1.455455 1.3006 -461 1.455455 1.3006 -461 1.455455 1.3006 -461 1.455553 1.3006 -462 1.3006 1.3006 -462 1.3006 1.3006 -5009 1.2006 -5009 1.3006 -5009 1.3006 -5009 1.3006 -5009 1.3006 -5009 1.3006 -5009 1.3006 -5009 1.3006 -5000 1.3000 -5000 1.3006 -5000 1.3006 -5000 1.3006 -5000 1.3006 -5000 1.3000 -5000 1.3000
REF. N.VER. HUR. FT. N.VER. HUR. FT. N.VER. HUR. FT. CFT/SEC/SEC -496 13.440 13.895 4.655 13.440 13.895 4.655 13.440 13.779 4.730 13.314 13.779 4.730 13.314 13.779 4.730 13.314 13.779 4.643 13.274 13.617 4.643 13.274 13.617 4.644 13.274 13.617 4.649 13.274 13.617 4.640 13.288 13.668 4.640 13.668 4.
ACCELEROMET(N.VER. HOR. (FT/SEC/SE(276276 276276 13.440 13.896 13.440 13.895 13.440 13.895 13.440 13.896 13.440 13.895 13.440 13.895 13.440 13.895 13.440 13.806 553396 323328 13.274 13.617 13.274 13.617 13.274 13.617 13.278 13.649 324 451328 13.649 329 .0795 .0795 .0795
ERDMET(HUR. SEC/SE(/SEC/SEC) -2248 -2248 -2289 -2289 -2281 -2281 -2281 -2281 -2281 -2281 -3281 13.6517 13.5517 13.555

(FH7 - 1330 - 12/30/74) SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING AREAKWATER (Hax. and min. Values measured from zero mean) sampling period = 500 ms Number of samples = 2047

		8101	1221
R S & VEP	~	12.81	12.9
EROMETE Hor.	SEC/SEC	-241 -241 13.744 .0640	.111 061 13.820 .0143
ACCEL N.VER.	(FT/	•283 -•305 13•361 •0908	•184 -•488 13•546 •1152
REF.	FT.	-660 -640 4.677	.171 171 4.511
SES INC.	FT.	644 405 4.105 .1515	.179 128 3.880 .0369
MAVE GA(Tran 2	FT.	-234 -179 4.829 .0845	.380 140 1.619 .0303
TRAN 1	FT.	-262 -176 5.050	.083 070 1.881 .0170
SE.	LBS	78,93 -66,43 789,76 20,752	69.67 -36.19 581.92 11.112
S NE	r 82	35°50 -68°50 848°57 14°847	98.24 -17.76 787.14 20.600
LDAV CELL	LBS	157.81 -182.19 956.60 41.588	216.09 -15.91 799.53 16.865
MN.	LBS	54.07 -49.93 117.10 21.840	23.66 34 2.534
WIND DIR.	DEG.	51.0 -64.5 179.4 13.88	38.4 -245.1 -245.1 57.29
WIND SP.	HdH	9.1 -6.7 14.7 3.01	-1.4 -2.9 -24
TRANS. CDEF,		.55 MIN. STDEV STDEV	.46 MIN. MEN. MEAN Stoev
INE IN AYS ND	IDURS	80 80	00
ND. P	r	19	20

(FH8 - 2400 - 1/8/75) SUMMARY DF STATISTICAL DATA FOR FRIDAY HARGOR FLOATING BREAKWATER (Max. and Min. Values measured from zero mean) Sameling Fridd = 500 ms

(FH9 - 2400 - 1/8/75) SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (Max. and Min. Values neasured From Zero Mean) Sampling Period = 500 ms Number of Samples = 2.047

L GA	I	-	~	en	*	ŝ	ø
INE IN AYS VD	DURS	13	21 7	21 10	11	21	21
TRANS. COEF.		• 10	•15	•15	•12	•10	.15
		MAX, MIN. MEAN SIDEV	MAX, Min. Mean Stdev	MAX, MIN. MEAN STDEV	MAX, MIN. MEAN STDEV	MAX, MIN. Mean Stdev	MAX, MIN, MEAN STDEV
WIND SP.	нан	9.0 -7.7 16.7 3.49	7.1 -5.7- 16.3 2.37	6.1 -5.7 15.7 2.64	6.9 17.8 2.94	6.7 -5.9 17.7 2.57	7.5 -6.7 19.5 3.13
WIND DIR.	DE G.	55.8 -71.2 191.3 14.92	52°9 148°4 148°4 40°81	148.8 -44.2 44.2 44.14	194°1 -36°9 36°9 45°71	167.7 -23.7 23.7 34.64	172.1 -24.2 24.2 38.42
2	L B S	51.01 -72.99 832.60 18.110	36.08 -39.92 1031.91 13.179	36.96 -51.04 855.13 14.533	46.88 -59.12 767.12 19.735	55.14 -56.86 788.86 17.808	54.69 -69.31 813.31 21.681
LDAD CEL Sw	L BS	187.16 -104.84 935.54 50.773	72.69 -63.31 1215.33 23.756	132.15 -83.85 1027.85 36.725	159.88 -112.12 1012.12 50.283	142.96 -141.04 1009.04 45.376	173.78 -118.22 1062.22 51.506
LS NE	LBS	28.92 -31.08 758.91 9.177	32.36 -28.64 896.63 10.432	25.85 -30.15 782.20 8.396	21.54 -22.46 730.46 7.926	18.76 -21.24 737.24 7.724	28.03 -27.97 747.97 10.536
SE	LBS	99.72 -53.54 820.28 27.526	47.05 -41.43 1292.90 15.784	81.35 -40.31 10180.04 19.000	79.51 51.63 958.72 23.144	70.82 -46.10 964.70 22.556	91.16 -58.94 1045.21 27.655
TRAN 1	FT.	.136 134 5.236 .0245	-069 080 3.180 .0207	-073 059 6.147 .0202	-058 -069 4.489	-071 -071 4.703	-080 -095 5.441
HAVE GA TRAN 2	FT.	.134 142 5.378 .0246	.062 071 9.141 .0197	•063 -•075 6•223.	.057 063 4.634	.085 063 4.841 .0190	-064 -085 5.553
GES INC.	FT.	361 4.034 •1348	376 376 4.204 .1364	632 366 4.040 .1358	383 4.108 .1429	1.054 533 4.207 .2137	
REF.	FT.	387 5.033 .1455	378 378 5.152 .1379	-571 402 5.023	-691 -661 5.005 .1657	357 4.979 •1405	420 5.015 .1765
ACCEL N.VER.	(FT/	-246 -246 13.174	.471 371 13.321 .1301	.311 194 13.316	-312 -362 13.316 .1036	-294 211 13.325 .1021	-297 -377 13.324
EROMETE HDR.	SEC/SEC	-178 -162 13.831 .0650	-286 -308 13.892	-201 -224 13.893	-274 -235 13.904	-270 -239 13.908	330 330 13.914 .0881
RS S.VER.	~	-278 -314 12.834	398 398 12-919 -1158	-280 -313 12.918 .0836	306 306 12.912	-289 -303 12.909	-,459 -,387 12:908

•

(FH9 - 2400 - 1/8/75) SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAKWATER (MAx. AND MIN. WALUES HEASURED FROM ZERD HEAN) SAMPLING FERDID = 500 MS

Rt DF SAMPLES 2047 THE TRANS. YIN WINE MACE INC. MACE MACE <t< th=""><th>NO.</th><th></th><th>_</th><th></th><th>1</th><th>~</th><th></th><th></th><th></th><th>80</th><th></th><th></th><th></th><th>0</th><th></th><th></th><th></th><th>10</th><th></th><th></th><th>;</th><th>=</th><th></th><th></th><th></th><th>12</th><th></th><th></th></t<>	NO.		_		1	~				80				0				10			;	=				12		
TANN: TODE: YIND WIND YIND WIND YIND WIND WIND YIND WIND YIND YIND WIND YIND WIND YIND YIND YIND WIND YIND YIND WIND YIND	IN	DAYS	HDURS		;	21	16			21	17			21	18			21	2			33	77			21	22	
OUT UND UIND <	CDEF.					•14				.16				.16				-17				51.				.16		
VIND SP. NA SE TRAN 1 TRAN 2 TINC ACCELLENDIG ACCELLENDIG SS.VER. 7.9 1055 LBS LSS LS					HAX,	. HIN.	MEAN	STDEV	MAXA	B HIN.	MEAN	STDEV	MAX.	HIN.	MEAN	STDEV	HAX.	HIN	MEAN	STDEV	 MAX	· NIN ·	REAN	STDEV	MAXs	. HIN.	MEAN	SIDEV
WIND LUDAD CELLS SE TRAN 1 TRAN 2 INC. REF. N.VER. HOR. S.VER. 165.3 VB LBS LBS FT. FT. <td></td> <td>WIND SP.</td> <td>HdW</td> <td></td> <td>6°2</td> <td>-5.3</td> <td>17.2</td> <td>2 • 65</td> <td>10.0</td> <td>-6.7</td> <td>18.6</td> <td>3°08</td> <td>6.5</td> <td>-5.4</td> <td>17.3</td> <td>2.48</td> <td>5.9</td> <td>-6-0</td> <td>18.2</td> <td>2.29</td> <td>0 I</td> <td></td> <td>21.12</td> <td>2.69</td> <td>8.2</td> <td>-10.7</td> <td>22.3</td> <td>LESE</td>		WIND SP.	HdW		6°2	-5.3	17.2	2 • 65	10.0	-6.7	18.6	3°08	6.5	-5.4	17.3	2.48	5.9	-6-0	18.2	2.29	0 I		21.12	2.69	8.2	-10.7	22.3	LESE
LGAD CELLS SE TRAN I TRAN Z INC. REF. N.VER. AGCELEROMETERS 1BS LBS LBS FT. FT. <t< td=""><td></td><td>WIND DIR.</td><td>DFG.</td><td></td><td>165.3</td><td>-31.1</td><td>31.1</td><td>41°20</td><td>169.6</td><td>-23.4</td><td>23.4</td><td>35.43</td><td>163.9</td><td>-20.9</td><td>20.9</td><td>33.17</td><td>162.8</td><td>-25.3</td><td>25.3</td><td>37.61</td><td> 143.6</td><td>-10.5</td><td>17.2</td><td>28.57</td><td>111.7</td><td>-12.1</td><td>13.9</td><td>20.24</td></t<>		WIND DIR.	DFG.		165.3	-31.1	31.1	41°20	169.6	-23.4	23.4	35.43	163.9	-20.9	20.9	33.17	162.8	-25.3	25.3	37.61	 143.6	-10.5	17.2	28.57	111.7	-12.1	13.9	20.24
LGAD CELLS SE TRAN I TRAN Z TNC. RF. ACCELEROMETERS SW SE TRAN I TRAN Z TNC. RF. N.VER. HGR. S.VER. UBS LBS FT.		MN	L B.S		45.00	-51.00	895.00	19.174	45.43	-62.57	93 8° 57	19.020	38.76	-41.24	929.24	13.796	57.93	-50.07	870.87	16.768	50.00	-04 - 40	172.45	21.662	61.49	-62.51	714.51	18.304
LLS NE TRAN I TRAN 2 INC. REF. N.VER. HOR. S.VER. LBS FT. FT. FT. FT. FT. FT.SEC/SEC) 29.45 -94.02 -007 -106 -708 -701 -477 -441 -55.VER. 29.45 -94.02 -007 -108 -708 -6189 -511 -477 -441 -513 -0.414 -09305 5.728 5.704 4.083 5.068 13.318 13.907 12.901 10.916 20.376 -0278 5.704 4.083 5.068 13.318 13.907 12.901 21.55 -92.00 -007 -112 -078 -511 -479 -1571 -713 -441 -0713 -6172 4.291 5.105 13.317 13.907 12.908 12.55 -92.00 -007 -113 -099 5.075 13.307 12.908 -7170 25.53 -408 -007 -11949 -1571 -513 -408 -7170 25.54 -49.00 -007 -112 -099 5.072 13.307 12.908 17.46 1170-98 7.614 7.642 4.591 5.105 13.317 13.907 12.908 13.45 -93.30 -008 -008 -0490 -2155 -1577 -3104 2.170 25.54 -381 -908 -089 5.072 13.307 13.907 12.908 8.745 1170-98 7.614 7.642 4.591 5.105 13.317 13.907 12.908 8.745 1170-98 7.614 7.642 4.591 5.105 13.317 13.907 12.908 8.745 1170-98 7.614 7.642 4.591 5.105 13.317 13.907 12.908 8.742 1138.55 7.364 7.648 4.098 5.072 13.320 13.947 2.159 8.942 1138.55 7.364 7.648 4.098 5.072 13.320 13.134 1.144 8.740 5.0249 5.010 -008 -1174 0.4143 1.1444 0.8174 8.942 1138.55 7.364 7.648 4.098 5.072 13.321 1.1444 0.8174 8.942 1138.55 7.364 7.648 4.098 5.072 13.321 1.1494 1.1407 8.942 1.006,94 0.493 0.5310 4.095 5.072 13.331 13.9494 2.2011 724.72 1007.90 4.011 -130 4.909 1.104 0.913 1.1494 2.011 724.72 1007.90 4.011 -1007 -4074 5.008 0.8170 -6111 -14007 9.026 1.107790 4.0394 0.9394 0.9394 0.908 0.8170 -6111 -14007 724.72 120.2024 0.919 4.0996 0.9109 0.2048 0.8170 -6111 -14007 9.0200 1.2028 0.919 0.9198 0.8095 0.7208 0.9100 0.554 0.9006 0.5540 -0000 9.0200 1.2028 0.9199 0.9109 0.5005 -5022 0.9006 0.5040 0.5000 -0000 9.0200 0.1209 0.9199 0.9109 0.1004 0.5000 0.5000 -0000 9.0200 0.1209 0.9199 0.9109 0.1004 0.5000 0.5000 -0000 9.0200 0.1209 0.9199 0.9098 0.9090 0.5000 -0000 0.5000 -0000 9.0200 0.1200 0.919 0.9199 0.9180 0.1000 0.5000 0.5000 -0000 0.5000 -0000 0.5000 -0000 0.5000 0.5000 -500		LOAD CEI SW	LBS		99 - 02	-88.98	1072.98	38°806	141.36	-82.64	1164.64	40°774	111.78	-68.22	1168.22	30.255	142.37	-113.63	1073-65	42.001	 198.81	-141.19	1043.14	56.483	242.35	-193.65	1017.65	117.57
SE TRAN I TRAN 2 INC. REF. N.VER. HOR. S.VER. LBS FT. FT. FT. FT. FT. FT. S.VER. 92.12 -0097 -1006 -709 -781 -477 -441 -552 92.12 -0097 -1006 -709 -781 -477 -441 -552 92.03 -0077 -078 -511 -499 -512 -591 -749 10268.05 6.728 6.774 4.0883 50.088 -441 -713 -92.00 -0077 -1078 -0783 -5168 -4199 -122 -907 12907 <t< td=""><td></td><td>LLS NE</td><td>L BS</td><td></td><td>29.56</td><td>-30.44</td><td>798.44</td><td>10.916</td><td>32°55</td><td>-43.45</td><td>827.45</td><td>13°595</td><td>26.36</td><td>-33.64</td><td>817.64</td><td>8.942</td><td>29.72</td><td>-30.28</td><td>782.28</td><td>10.086</td><td>27.28</td><td>21 - 52 -</td><td>124.12</td><td>9.020</td><td>20.76</td><td>-31.24</td><td>699.24</td><td>B. 43H</td></t<>		LLS NE	L BS		29.56	-30.44	798.44	10.916	32°55	-43.45	827.45	13°595	26.36	-33.64	817.64	8.942	29.72	-30.28	782.28	10.086	27.28	21 - 52 -	124.12	9.020	20.76	-31.24	699.24	B. 43H
TRAN I TRAVE JAGES ACCELERDMETERS FT. FT. FT. FT. S.VER. .097 .106 .703 .947 .444 .5.VER. .097 .106 .703 .947 .444 .5.201 .097 .106 .708 .501 .477 .444 .5.912 .017 .0087 .511 499 .512 .1096 .123 .01242 .0236 .1068 .506 .441 .713 .512 .01242 .0236 .1068 .506 .441 .713 .512 .01242 .0301 .1949 .157 .1186 .123 .7130 .124 .0303 .0301 .1949 .2155 .1531 .13407 .2150 .1746 .1749 .1746 .1746 .1746 .1746 .1746 .1746 .1746 .1746 .1746 .1443 .13494 .12494 .2041 .0444 .2041 .0444 .2041 .1444 .0144 .0444 .0444 .0444 .0444 .0444 <td></td> <td>SE</td> <td>1.85</td> <td></td> <td>52.12</td> <td>-49.00</td> <td>1028.05</td> <td>20.376</td> <td>92°04</td> <td>-58.00</td> <td>1170.98</td> <td>25.726</td> <td>73.25</td> <td>-38.93</td> <td>1138.55</td> <td>17.901</td> <td>82.58</td> <td>-53.30</td> <td>1046.94</td> <td>24.075</td> <td>105.90</td> <td>-11-06</td> <td>1107.90</td> <td>32.725</td> <td>129.85</td> <td>-85.03</td> <td>1015.28</td> <td>38-300</td>		SE	1.85		52.12	-49.00	1028.05	20.376	92°04	-58.00	1170.98	25.726	73.25	-38.93	1138.55	17.901	82.58	-53.30	1046.94	24.075	105.90	-11-06	1107.90	32.725	129.85	-85.03	1015.28	38-300
WAVE GAGES TRAN 2 INC. REF. N.VER. HORE SS FT. FT. FT. (FT/SEC/SEC) *100 *781 *477 *441 *5.VER. *100 *783 5068 13.318 13.007 12.910 *099 *944 *181 *477 *441 *512 *100 *783 5068 13.318 13.007 12.910 *099 *994 *1680 *157 *1186 *1170 *099 *994 *168 *157 *1186 *1170 *099 *994 *105 13.317 13.007 12.008 *170 *1949 5.005 13.317 13.007 12.008 *170 *1949 *105 13.317 13.007 12.008 *170 *1949 *105 13.317 13.007 12.008 *170 *1949 *105 13.317 13.007 12.008 *170 *1072 *155 *157 *157 *1186 *1770 *094 *4058 5.072 13.317 13.007 12.008 *1094 *1058 5.072 13.327 *1044 *1144 *1406 *101 *1054 5.012 13.317 *13.407 12.0018 *1086 5.012 13.317 *1044 *1449 *1116 *059 *1016 *1049 *1044 *1449 *1116 *059 *1016 *1044 *1449 *1144 *2011 *1138 *2013 *1040 *2688 *0613 *1049 *2048 *0996 5.052 13.3117 *1049 *2048 *0998 *1829 *2788 *0810 *2168 *2041 *186 *1829 *2068 *0810 *2168 *2041 *2041 *186 *1829 *2688 *0810 *2168 *2040 *2048 *0998 *1829 *2780 *0810 *2048 *2041 *2041 *186 *068 *069 *060 *069 *060 *2060 *0600 *0000		TRAN 1	FT.		.087	077	6.728	.0242	.112	097	7.614	°0303	.087	098	7.364	• 0262	.104	960	0.636	.0293	 	- 120	4.855	0349°	.115	118	3.187	DOF0.
GES INC. REF. N.VER. HOR. S.VER. FT. FT. (FT/SEC/SEC) -769 -781 -477 -441 -542 -511499 -544 -408 -474 4.083 5.086 13.318 13.907 1.2910 -1949 -1531 -4107 1.2900 -1949 -1517 13.907 1.2908 -1949 2.155 1.157 113.907 1.2908 -450 -554 -618 -614 -713 -6459 5.072 13.377 -311 -713 -6459 5.072 13.377 -3146 -1170 -6499 5.072 13.377 -3146 -1124 4.098 5.072 13.377 -3146 -2113 -6499 5.072 13.301 13.907 2.2908 -6499 5.072 13.301 13.907 2.2908 -6499 5.072 13.301 13.907 2.2908 -6499 5.072 13.301 13.907 2.2908 -6499 1.104 -11494 -2101 -471 -6399 -3174 -2011 -1006 5.0272 13.311 13.904 2.2011 -0496 -310 -6110 -1406 -2012 13.311 13.904 2.2010 -6499 -5710 -5619 -2012 -0048 -2008 -1104 -11494 -2010 -10096 5.0278 13.311 13.904 2.2090 -6699 -2709 -552 -6410 -2600 -0600 -6609 -2600 -6600 -6600 -0600 -6609 -6600 -6600 -6600 -0600 -0600 -6609 -6600 -6600 -6600 -6600 -0600 -6609 -6600 -6600 -6600 -6600 -0600		WAVE GA TRAN 2	ET.		.106	078	6.734	•0236	°099	133	7.642	.0301	.096	084	7.408	• 0242	-094	105	6-510	.0305	•138	-•107	4.993	•0358	•098	-+099	3,383	- 0306
REF. N., VER. HORE S. VER. FT. (FT/SEC/SEC) -499 -534 -408 5.VER. -499 -534 -408 -474 5.068 13.318 13-907 12.910 5.068 13.318 13-907 12.910 5.068 13.318 13-907 12.908 -618 -533 -408 -613 5.162 13.317 13-907 12.908 -618 -513 -517 -614 5.055 13.317 13-907 12.908 -613 -614 -114 5.059 13.317 13-904 12.908 5.053 13.317 13-912 12.001 5.053 13.317 13-912 12.001 5.039 13.321 13-915 12.018 -613 -613 1.046 5.039 13.321 13-915 12.018 -613 -613 1.046 5.039 13.321 13-915 12.018 -613 -613 1.046 5.039 13.317 13-915 12.018 -613 -613 1.046 5.052 13.317 13-915 12.018 5.059 -603 1.046 5.050 -5532 -6136 -0106 5.050 -5532 -6136 -006 5.050 -5532 -6136 -006 5.060		GES INC.	FT.		. 769	511	4.083	.1680	\$\$6°	592	4.291	.194 9	.805	- 450	4.098	•1631	. 695	- 508	4.054	.1716	 606 .	474	4 .096	•1829	•926	- • 585	4.131	1800
Acceleronerers (FT/Sec/Sec) (FT/Sec/Sec) (FT/Sec/Sec) (FT/Sec/Sec) (FT/Sec/Sec) 534 534 646 441 533 648 641 253 253 648 641 253 648 641 253 648 641 253 641 253 641 253 641 264 253 641 264 264 264 641 264 264 264 641 264 264 641 264 264 264 641 264 264 264 641 264 264 264 641 264		REF.	FT.		.781	665 -	5.068	•1849	.866	618	5.162	•2155	.726	- 554	5.072	•1744	- 916	571	5.010	.2082	 1.104	688	5.052	•2278	.863	750	4.987	EL 16 .
EROMETERS HDR. S.VER. SEC/SEC) :SEC/SEC) .441		ACCEL N.VER.	(FT/	;	1240	534	13,318	• 1527	.646	-,533	13.317	.1575	674.	537	13.320	.1 443	.639	530	13.321	.1683	 .814	870	116.61	.1860	• 647	532	13.317	.1530
Ssver. Ss		ERDMETE	SEC /SEC		.441	408	13,907	.1186	.441	408	13.907	.1246	.361	498	13,902	•1134	.444	- 575	13.004	.1454	• 603	671	13,915	.1549	.438	496	13.910	1281
		εs Sever.			545°	474	12.910	•1530	°713	725	12.908	•1770	. 543	641	12.908	•1540	.878	814	110.01	-2101	 1.048	-1.067	016.21	•2169	.708	646	12.912	1737

(FH9 - 2400 - 1/8/75) SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAK#ATER (MAX, AND MIN. VALUES NEASURED FROM ZERO MEAN) SAMPLING FERIDD = 500 NUMBR OF SAMPLES = 2047

C. TIME D. IN DAYS	HDUR	13 2	14 2	15 2	16 2	17 2	Ia 2
COEF	s	10	н.			• 10	
		HAX, MIN. MEAN STDEV	MAX, MIN, MEAN STDEV	MAX. MIN. MEAN STDEV	MAX. MIN. MEAN STDEV	MAX, MIN. MEAN STDEV	HAX.
*IND SP.	HdW	9.0 -6.7 20.2 2.77	10.6 -6.4 21.2 3.59	7.9 -7.5 20.1 3.27	8.6 -6.2 14.2 3.12	8.3 -6.4 17.4 3.14	10.5
• NIU Dir.	DEG.	110.6 -11.5 13.0 20.10	158.9 -19.3 19.3 33.11	47.9 -4.9 6.6 8.58	170.7 -25.6 25.6 47.24	189.4 -18.5 18.5 38.72	187.0 -25.8 25.8
N	r 82	41.47 -54.53 702.53 16.287	41.79 -66.21 698.21 17.753	65.96 -58.04 742.04 26.975	38.09 -57.91 1105.91 18.338	49.89 -62.11 1074.11 20.233	47.56 -88.44 880.44
LOAD CE Sw	LBS	222.02 -113.98 929.98 62.127	292.93 -163.07 967.07 76.333	212.45 -134.55 947.55 68.463	98.72 -65.28 1241.28 31.378	121.44 -78.56 1266.56 36.920	240.43 -99.57 1067.57
LLS NE	185	16.95 -27.05 687.05 7.077	23.93 -28.07 680.07 8.323	22.99 -29.01 709.01 11.023	35.68 -44.32 936.32 16.039	43.84 -52.16 904.16 16.823	27.45 -36.55 756.55
S Е	۲BJ	119.11 -54.69 898.45 29.598	142.02 -90.24 952.44 38.727	114.64 -62.32 921.77 33.782	64°33 -43°11 1305°14 21°074	76.55 -53.01 1358.19 25.271	148.56 -53.6d 1047.44
TRAN 1	F1.	• 090 -•100 2•111	-116 089 2.240	-073 113 3.034	-074 081 081 0182	-080 -079 -079	-064 -083
WAVE GA TRAN 2	F1.	.101 101 2.348 .0254	-095 -092 2.473	-102 103 3.242 .0260	.064 056 9.745	-062 -076 9.656	•060 •090 •090
GES INC.	FT.	478 478 4.024	610 4.054 .1822	.756 447 4.054 .1579	.456 363 4.113 .1228	369 4.095 .1298	393
REF.	F1.	.949 536 4.952	- 746 - 687 4 951 • 1940	- 697 - 455 4 973 • 1685	559 388 5.060 .1336	500 500 -1511	-644 -644 5.027
ACCE	(fT	-536 -536 13.319 .1262	•475 367 13.319 1358	369 369 13.320 .1125	.306 368 13.319	.302 372 13.321 .1143	-202 -
. EPOMET Hok .	/SEC /SE	-359 -320 13.904	325 323 13.907 .1112	-238 -238 13.907	.280 314 13.896 .0791	-2645 -245 13.914	338 338
ERS S.VE	6	12.96	12:9	3 12-9		12.92	3 12.9

(FH9 - 2400 - 1/8/75) SUMMARY DF STATISTICAL WATA FOR FRIDAY HARBOR FLOAFING BREAKWATER · (Max. and Min. Values measured from Zeru Mean) Sampling Peridd = 500 MS WUMBER OF Samtes = 2.47

-252 -460 -252 -470 13.921 12.907 .0856 .1067 .200 -.307 12.913 .0675 --478 12-913 .1169 -537 -732 12.915 -960 -901 12.915 -.218 12.908 .1532 .538 HOR. S.VER. .205 **ACCELEROMETERS** (FT/SEC/SEC) -,429 -,250 13,919 .0874 •423 -•426 13•926 - 587 13.916 .1303 .182 -.243 13.912 .261 -.248 13.917 .0672 .1134 .0641 REF. N.VER. -468 -.354 13.312 .1145 .315 -.130 13.315 .0960 --205 --205 13-322 -0874 -.376 13.323 -632 -715 13.324 .1493 -629 -718 13.326 .1563 5.055 1.029 -.737 5.102 .2164 -693 -485 5.003 -524 -346 4.967 1200 .583 -.339 4.960 .1203 .743 -.614 1.126 5.108 .2373 FT. .690 -.411 4.058 .1588 -.444 4.143 .1943 -.606 INC. -.398 -.398 4.072 .1583 -553 -.318 4.017 • 434 -• 334 4•033 ***06*** 4.101 .861 εT. TAAN 1 TRAN 2 IN .123 -.128 7.309 .0360 4.816 .0220 -058 -058 4.298 •067 -•059 5.165 -0690 --069 6.388 .0228 .106 -.092 7.168 •075 ET. .103 -.118 7.261 .048 -.053 4.129 .0169 •070 •000°-6.298 .0240 .093 -.104 7.105 -077 4.658 .0227 2.022 .0166 FT. 37.50 -32.02 1144.09 36.615 136.19 -64.47 ŝ 94.19 61.50 -26.98 856.29 14.703 57.98 -52.02 921:06 -80.62 LaS 953.55 5°069 049.22 17.977 150.06 151.21 32.035 26.494 26.25 -21.75 729.75 8.997 -21.50 22.46 -25.54 785.54 32.20 -43.80 795.80 13.017 733.50 21.00 -19.00 755.00 8.144 45.55 -46.45 90.45 Ψ LBS 4.784 LOAD CELLS SW 130.44 -69.56 921.56 33.948 42.39 -83.61 971.61 -110.49 1056.49 32.860 237.32 -146.68 1130.88 62.139 222.09 -133.91 1125.91 54.967 164.06 -123.94 999.94 50.908 LBS 59.44 -88.56 924.56 24.902 56.46 -87.54 939.54 21.917 819.68 16.001 39°14 -44°86 860.86 14.684 43.29 -44.71 904.71 14.200 R LBS 62.45 -57.55 813.55 40.32 21.472 -59.68 9.7 57.9 -7.0-159.9 18.9 159.9 139.6 -81.5 81.5 65.59 148.8 -14.6 15.7 28.91 170.3 171.5 23°2 40°66 173.6 26.0 41.48 WIND DIR. 16.3 DEG. 36.97 6.8 -6.1 17.9 11.5 20.3 3.46 7.3 -7.4 15.5 2.87 7.8 -6.3 18.8 2.77 6.2 -5.4 16.3 2.33 2.47 QNIP MPH sp. MAX, MIN. Mean Stdev MAX, MIN. MEAN STDEV MEAN STDEV MAX, Min. Mean Stdev MEAN STDEV STDEV HAX, HIN. HAX, •NIM. NEAN MAX, •15 •15 .15 •14 .14 •15 TRANS. COEF. REC. TIME NO. IN DAYS AND Hours Nº1 25 10 192 122 17 23 54 19 2 22 23

	. VER.		1.210 1.159 2.918 2826
	ROMETER Hor. S	SEC/SEC)	-775 -838- 13.913 1
	ACCELE N.VER.	(FT/S	552 552 13.327]
-	REF.	FT.	589 5.082 .2218
1/8/75	SES INC.	FT.	733 598 4.093
2400 -	WAVE GAU TRAN 2	FT.	•101 •088 6.990 •0234
(FH9 -	TRAN 1	FT.	- 078 - 060 6.934 • 0215
ATER	SE	LaS	80.27 -71.41 1140.79 27.186
BREAK	NE	L 85	36.11 27.89 83.89 0.659
K FLDATING	DAD CELLS	L BS	35.64 32.36 20.36 6.342 1
ZERO MEAN	2	L BS	61.65 1 -66.35 -1 918.35 1 18.545 4
ED FROM	WIND DIR.	DEG.	31.9 103.4 160.3 20.23
FOR	WIND SP.	HdW	7.6 -6.8-1 20.0 1 2.41 2
FATISTICAL DATA VD MIN° VALUES FOD = 500 MS 1PLES = 2047	TRANS. Coef.		•11 MAX. •11 MIN. MEAN STDEV
RY OF S (Max. An ING PER) R OF SAN	IME IN AYS ND DURS		22 20
SUMMA	REC. T		25

.

(FH10 - 1345 - 2/9/75) SUMMARY DF STATISTICAL DATA FOR FRIDAY MARBOR FLOATING BREAKWATER (Max, and min. Values measured from zeru mean) Sameling Perion = 500 ms Number of Samples = 2047

NUMBER UP SAMPLES = 2047 REC. TIME TRANS.

ts • VER.	-	.165	12.948 •0443	•539	561	966.21	09-1-	.500	431	13.035	.1139	.420	342	13.032	,1063
ER OMETER HOR .	SEC/SEC1	.159	13.848 1	.415	519	15.9351	6111.	.326	351	13.935	*260°	.239	270	13.939	665 50°
ACCEL N.VER.	(FT/	.156	13.310	.560	450	*****71	.1300	• 4 4 8	\$6E-*-	13.416	.1355	.453	389	13.414	.1165
REF.	FT.	.115	4.965 .0266	.753	527	8/6.6	A671.	.907	501	5.045	,1864	.880	604	4.969	.2194
GES INC.	FT.	.155	3.980	.835	547	4.449	21670	°799	379	4.078	.1621	.717	358	3.981	.1519
WAVE GA Tran 2	FT.	•075	8.653 .0148	.558	213	2.034	00400	.128	329	6.819	°0398	.113	113	4.606	.0363
TRAN 1	FT.	- 157	d.611	.497	301	227.0	CB 4 0 *	.137	380	6.747	•0386	.124	112	4.355	.0350
S.	LUS	9.15	1035.99	79.67	-50.85	949.12	697.22	129.15	-150.51	1161.04	36.717	208.18	-84.12	973.00	42.955
LS NE	LBS	9.29	930.21	67.48	-48.08	SLO.33	196*67	54.10	-33.82	789.82	11.987	43.28	-40.72	791.55	11.272
LOAD CEL SW	L BS	10.75	1104.29	168.74	-111.26	07.166	671.00	197.75	-206.25	1102.25	61.374	389.26	-170.74	1039.06	78.380
M	L BS	10.24	1132.65 3.957	94.83	-91.17	14.044	241.42	52°32.	-67.68	892.12	21.037	93.12	-106.88	739.13	27,303
WIND DIR.	DEG.	54.4	184.9	63 . 6	- 66-	0.881	14.75	6.1.4	-61.0	181.0	12.26	45.3	-63.6	178.2	12.02
WIND SP.	Hdw	3.9		9.1	-13.7	0°2	3.16	8.9	-6.5	14.8	2.54	. 11.8	-7.4	16.4	3.30
		MAX,	MEAN STDEV	HAX,	WIN.	MEAN	SIDEV	MAXs	HIN.	MEAN	STDEV	MAX,	MIN.	MEAN	STDEV
COEF.		5			• 25				•24				•23		
NI	2 200	c	00		2	11			2	19			ŝ	21	
	c		-		2				en				4		

(FH11 - 0900 - 3/1/75) SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBOR FLDATING BREAKWATER (Max. AND Min. Values measured from Zero Mean) Sameling Feriud = 50047 Number of Sammels = 20047

C. TIME D. IN DAYS AND	HOURS	1	2 0 25	3 4 16	4 7 12	5 14	6 6 8
COEF.		5 °06	°10	.16	° 2 5	• 26	• 25
		MAX, Min. Mean Stdev	MAX, MIN, MEAN STDEV	MAX, MIN, MEAN STDEV	MAX. HIN. MEAN STDEV	HAX, HIN. HEAN STDEV	HAX. HIN.
WIND SP.	HdW	-2.4 -3.1 1.30	8.9 -5.8- 3.36	8.9 -7.8 19.6 2.90	12.3 -8.6- 18.2 3.98	8.9 -7.5 20.3 3.12	12.6
WIND DIR.	DEG.	128.3 -53.2 139.2 28.78	55.4 150.8 150.8 42.43	98.0 105.0 105.0 62.24	103.8 115.7 115.7 55.66	148.9 -52.4 52.4 48.10	151.0 -38.8
Z	L B S	4325.99 -36.01 1669.67 187.585	56.11 -67.89 903.89 22.494	48.01 -59.99 721.999 22,328	63.31 -78.69 920.69 24.406	58.27 -91.73 797.73 22.882	54.02 -67.98
LDAU CE Sw	LBS	8340.80 -71.09 2156.21 361.436	202.38 -157.62 1129.62 65.805	1002.01 1002.01 1002.01	182.54 -111.46 1125.46 53.350	271.12 -132.88 1032.88 59.094	246.45
LLS NE	LBS	120.04 -22.68 962.04 8.115	37°07 -36°93 808°93 13°598	17.95 -24.05 716.05 7.509	40°74 -45°26 827°26 14°372	28.51 -31.49 755.49 10.775	27.25-28.75
SE	LBS	19.86 -56.34 1082.54 7.520	123.67 -88.13 1124.13 37.841	109°74 -50°26 1046°26 28°550	122.53 -67.47 1137.47 33.448	134°52 -67°48 1087°48 134°52	117.61 -68.39 1056.30
TRAN 1	FT.	L.604 -5.417 7.584 .2352	.055 125 0.992	-0068 -084 -084	-148 -150 7.847	-119 -176 5.684	•169 •169
WAVE GA TRAN 2	۴ĩ.	7.637 -25.254 4.338 1.0975	。064 146 7.209 .0177	-091 -079 40540 0236	•147 -•128 8.100 •0406	-118 -155 6.041 .0366	.121 149 4.506
INC.	FT.	-274 -213 3.993	-831 -295 3-868	-563 -308 4.135	-254 4.107	-553 4.043 1364	- 251
₿Ę₽.	FT.	-309 -213 5.063 .0441	1.049 615 4.980 .2166	.628 293 5.119 .1339	759 368 5.219	.862 393 5.168 .1753	-694 330
ACCEL N.VER.	(F1)	.135 314 5.066	598 5.201 .1235	274 5.244 5.247	- 452 5.452 5.290 .1337	- 425 5.287 .1237	372
EROMETE HOR.	SEC / SEC	339 5.259	- • 490 5 • 405 • 1094	279 5.364 5.364	• 420 - 427 5 377 • 1113	-516 -331 5.382 .1047	• 267 • 267
ς S s • VER •	-	-166 -292 5.069 .0305	736 5.198 5.198	345 5 . 230 5 . 230	757 757 5.252 .1605	5 6 3 4 5 - 5 5 9 9 5 - 2 4 6 5 - 2 4 6 6 - 2 4 6 6 - 2 4 6 6 - 2 4 6 7 - 2 4 6 7 - 2 4 6 7 - 2	

- 090U - 3/1/75) (FH11 FRIDAY HARBON FLOATING BREAKWATER SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBON (Max. and min. Walues measured from Zerd Mean) Sampling feridd = 500 ms Wumber of Samples = 2047

1.648 -1.461 5.249 .3575 .427 -.418 5.218 .1092 -.585 5.248 .1368 5.249 -.754 5.250 1518 --655 5.251 -.686 HOR. S.VER. •669 • ACCELERONETERS (FT/SEC/SEC •528 --387 5.404 -1.052 5.392 5238 -.333 -.376 5.396 • 375 • 405 5• 388 • 0965 - 362 - 384 -361 -.384 5.402 .1104 1041° .0888 N.VER. -386 -320 5.259 .0956 -,543 -,543 5,314 ,1153 -.407 5.312 .1316 .469 -.472 5.311 .1212 .600 -.543 5.314 .1464 .835 -.912 5.314 .2267 REF. -.734 -.341 5.065 -.398 -.398 5.123 .781 -.396 5.120 .1583 -.371 5.171 -.435 5.158 1.195 FT. .824 -.328 4.079 1.006 -.350 4.050 .2137 -643 -202 3.953 .1338 -.270 -.270 4.020 -,323 4.101. -.325 4.101 .1709 INC. .1744 ۴T. WAVE GAGES •598 •233 7•388 •0625 -632 -266 8.353 .084 -.101 3.413 .116 -.122 5.977 .0341 .192 -.143 6.118 .0409 .184 -.172 6.385 .0442 N FT. TRAN .118 -.116 2.907 .0311 .127 -.153 5.745 .0401 .195 -.144 6.072 .0645 -.259 7.101 .0630 -.3640 -.364 8.011 -.118 -.119 5.602 .0347 .0432 FT. TKAN 82°84 -63°16 .076.01 37.728 187.48 -122.52 1206.81 ŝ LBS 1029.16 53.665 156.35 -105.05 1147.39 46.228 -114.73 29.896 124.01 -71.99 205.59 -98.41 1122.41 147.27 217.61 48.061 21.21 -22.79 710.79 33.13 -40.87 762.86 13.612 40.17 -45.83 749.83 16.206 45.26 -36.74 774.24 14.429 800.65 72.66 827.45 53.39 LBS 발 6.436 -42.61 LOAD CELLS 898.45 66.432 254•24 -141•76 1023•79 -192.82 1068.82 93.910 254.25 -175.75 1145.75 77.068 290.57 -199.43 1234.76 87.205 SW LBS -164.45 333.18 236.06 -187.94 206.49 77.342 201.55 68.262 114.20 -113.80 930.52 35.451 69.54 -64.46 688.46 23.151 64.00 -100.00 803.59 28.009 75.23 -100.47 786.47 34.270 76.09 -85.91 868.75 28.525 79.21 -88.79 912.49 30.270 ΝN L BS 172.1 112.1 -90.8 90.8 112.9 91°7 55°19 103.7 -13.4 15.4 198.4 -47.4 47.4 48.68 UIND DIR. 48.49 173.3 44.60 DEG. 18.97 50.7 -46.1 46.1 -10.6 -10.6 18.9 11.5 -8.7 22.8 10.9 10.7 -8.6 22.0 12.0 -9.2 19.4 3.58 40.0 -8.0 23.4 WIND SP. 4.16 3.59 23.8 HPH HIN. MEAN STDEV STDEV MEAN STDEV MEAN STDEV MEAN STDEV STDEV MAX, HIN. MEAN MAXP MAX, "AX" MAX, **NIN** MAX, MIN. HIN. .40 • 36 TRANS. COEF. 23 • 23 • 22 25 DAYS AND HOURS 10 1 0.10 0 1 o- ∞ 0.0 6 0 TIME REC. ~ œ **o** 2 Ħ 2

.2437

.0812

.0857

53.710

4.32

(FH11 - 0900 - 3/1/75) SUMMARY OF STATISTICAL DATA FOR FRIDAY HARBOR FLDATING BREAKWATER (Max. and Min. Values measured From Zero Mean) Sampling Period = 500 mS Wumber of Samples = 2047

HETERS DR. S.VEI	SEC)	337 1.4 392 -1.56 367 5.2 345 .31	985 1.5 049 -1.35 353 5.23
CELERDI R. HC	FT/SEC	114	006 140 -1.0
N.VE	0	1980	0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
REF	۴T.	1.19 52 5.249	1.17 5.24
GES INC.	FT.	- 985 - 398 4.122	1.097 388 4.113
HAVE GA Tran 2	FT.	.364 -364 8.993 .1081	.272 349 8.708
IRAN 1	FT.	451 389 3.837 .1015	.307 317 8.609 .0892
SE	LBS	163.28 -118.72 1192.33 44.982	153.69 -120.31 1214.26 50.437
LLS NE	LBS	80.71 67.29 903.97 22.771	59.98 -58.02 862.61 22.362
LOAD CE	F BS	235°47 -194°53 1241°07 68°446	309.13 -212.87 1215.72 84.688
n n	L BS	109.04 -104.96 981.86 34.954	110.99 -121.01 970.40 39.062
WIND DIR.	DEG.	128.1 -79.8 79.8 54.05	177.1 -57.2 57.2 51.46
NIND SP.	HdW	13.1 -7.5 21.9 4.03	-11.9 -11.9 21.6 4.70
* *, All		41 MAX, MAX, MEAN, STDEV	40 MAX, MEN, MEAN STDEV
COEL		•	•
IIN IN DAYS	HOURS	9 11	9 12
	-	13	14

(FH12 - 2230 - 3/20/75) RY DF STATISTICAL DATA FOR FRIDAY HARBUR FLDATING BREAKWATER (Max, and Min, values measured from Zero Mean) SUMMARY OF STATISTICAL DATA FOR SAMPLING PERIDD = 500 MS NUMBER OF SAMPLES = 2047

-.705 .549 -.431 5.231 -208 -208 5.234 .0653 -.874 5.234 -1.175 5.231 .2938 5.235 -.314 5.215 1.360 .1568 HOR. S.VER. ACCELEROMETERS (FT/SEC/SEC •193 •146 5•333 -.156 5,343 ,0508 - 352 5,369 -.691 5.369 -.517 5.365 5.365 -272 -270 5.355 .183 REF. N.VER. -.353 5.326 .1143 .215 -.222 5.329 .0585 .189 -.214 5.321 -.525 -.525 5.330 .1431 5.332 -491 -491 5.329 1370 •119 -.661 .615 .813 -.339 5.216 .1646 -.330 -.330 5.207 -.241 5.220 -.229 5.183 .780 5.172 .955 5.227 FT. .636 -.260 4.036 1449 .350 .738 -.286 4.087 .1513 4.179 4.152 -.272 -.272 4.201 .1084 -.275 WAVE GAGES TRAN 1 TRAN 2 INC. FT. 8.718 .0280 .114 -.094 8.207 .0270 •069 -•076 5•305 •0194 •046 -•056 6°799 。144 -。114 8.157 .0327 .163 -.194 8.746 •0484 .122 -.094 FT. • 086 • 080 -.147 -.102 8.516 .0288 7.988 •074 •083 5•990 •0179 6.513 .0159 9.542 e60° -.051 .0460 ۴T. ЗE 22,129 -58.59 1156.59 48.56 -23.44 34.85 -21.15 85.85 -42.15 55.02 -44.98 1120.98 15.326 87.41 L BS 11.443 1158.12 26.162 25.009 1007.47 013.15 11.137 103.68 -66.12 14.20 27.80 5.368 34.40 -39.60 843.60 10.805 -36.33 846.33 27.83 -22.17 836.17 7.753 44.33 -19.67 832.65 9:562 45.47 LBS 4.695 11.795 ¥ -48.53 850.53 31.67 8 LOAD CELLS 1111.04 107.50 -72.50 1116.50 26.324 99.15 -48.85 937.28 21.354 64°59 -43°41 178.02 19.909 138.96 +0.94-1179.99 43.195 153.14 -94.86 1174.86 39.018 LBS 949.42 46.85 -53.15 911.15 14.011 40.25 923.75 18.660 58.23 -75.08 935.08 19.137 Į LBS 62.20 -39.80 871.85 13.971 21.49 884.51 9.098 77.179 22.653 50.92 18.1 104.9 2.73 60.15 9.1 135.4 -7.3-115.4 13.1 95.2 -7.1-104.5 16.2 11.8 115.4 2.76 65.96 104.5 58.38 34.6 -14.4 140.0 -99.2 99 - 2 69 - 47 41.42 WIND DIR. DEG. 94.7 -6.2-104.9 151.9 -34.6 115.9 21.3 3.26 7.6 -6.5 20.6 2.93 7.2 -4.7 18.8 2.13 8.4 -5.7 12.8 2.62 8.6 ONIN SP. HGH MAX. MIN. MEAN STDEV NE AN S T DE V NEAN MEAN STDEV MEAN STDEV MEAN MIN. HAX. MAX, MIN. **MAX** •NIM. MAX, MIN. MAX, •19 .19 TRANS. COEF. .17 .14 •21 •24 REC. TIME ND. IN DAYS AND HOURS 0 1 00 00 0 -0 N 0 m ŝ ø 2 ŝ ٠

•0264

(FH12 - 2230 - 3/20/75) SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBOR FLDATING BREAKWATER (Max. And Min. Values Measured From Zeru Mean) Samuling Feridd = 500 m Number of Samules = 20047

LS LE RAN L FRAN 2 I	LBS LBS FT. FT. F	35.35 98.39 .073 .079 . -46.65 -59.61069080 - 840.65 1117.61 3.087 8.306 4. 11.697 22.201 .0221 .0226 .1	40.01 129.16 .125 .120 . -53.99 1122.84 8.439 - 823.99 1122.84 8.224 8.439 4. 14.696 32.887 .0288 .0285 .1	32.26 100.63 .105 .115 . -39.74 -53.37 -103 -096 - 841.74 1133.37 8.376 8.581 4 13.576 29.269 .0282 .0306 .1	54.69 170.49 .129 .148 . -59.31 -01.51 -127 -142 - 809.31 1177.51 8.147 8.365 4. 19.146 45.59U .0376 .0349 .1	57.20 142.45 .204 .246 . -46.80 -132.52 -178 -245 - 772.80 1192.55 7.338 7.655 4. 17.150 48.104 .0569 0.999 .2	38.58 168.48 .171 .198 .
LDAD CEL NW SW	LBS LBS	50.55 150.86 -77.45 -85.14 931.45 1107.14 19.667 36.519	72.43 196.27 -83.57 -129.73 907.57 1159.72 26.255 53.094	49.65 143.41 -72.35 -82.59 936.35 1138.59 23.462 44.187	100.80 296.82 -123.20 -175.18 893.20 1187.18 36.376 77.993	95.24 256.21 -100.76 -247.79 810.76 1205.79 29.763 83.770	67.14 250.15 -82.86 -189.85
WIND WIND SP. DIR.	MPH DEG.	10.2 138.0 -6.9 -17.1 1 18.4 18.2 V 3.20 27.26	10.4 114.0 -7.6 -16.3 1 22.1 16.8 V 3.33 22.59	9.0 108.0 -6.1 -88.3 19.2 88.3 EV 3.48 61.75	11.1 140.5 -9.5 -17.9 24.5 18.8 24.3 28.18	11.5 146.0 -12.9 -53.6 1 27.7 53.6	• 10.8 103.5 -8.5 -13.6

- 2230 - 3/20/75) (FH12 FRIDAY HARBON FLUATING BREAKWATER SUMMARY DF STATISTICAL DATA FOR FRIDAY HARBOM Max, and min. Values measured from Zero Mean) Sameling Ferido = 500 M5 Wunder of Samples = 2047

-190 -216 -218 -0585 -284 -257 -256 -226 。183 ---256 5.225 .0545 .183 -.188 0550 .803 -.718 5.180 .1779 . 604 - 545 5.176 HDR. S.VER. ACCELEROMETERS (FT/SEC/SEC) - 339 5.356 •0896 .169 -.170 5.357 .0486 .182 -.157 5.336 5.336 .186 -.187 5.408 .153 -.152 5.407 --467 --448 5,364 • 265 .171 -.198 5.406 5.280 .404 -.402 5.274 .1062 -278 -260 5.401 -177 -192 5,328 0539 5.406 N.VER. .466 -.475 .525 -.217 5.145 .1136 .286 -.149 5.054 .0657 .615 -.255 5.185 .1312 REF。 .843 -.309 5.085 .622 5.050 1453 .397 -.243 5.274 FT. 。349 -.163 4.094 .0894 .638 -.233 3.958 .1416 .367 -.273 4.254 .293 -.142 -.214 4.143 .1189 3.945 3.922 0613 INC. .625 -.194 .1018 FT. TRAN 1 TRAN 2 1 •089 •075 6.399 •0242 •122 -•118 5•046 •0364 .131 -.126 7.985 -468 -155 3.097 °0245 .094 -.102 3.672 .0291 °0357 °0338 -092 6.644 L 2.661 .0389 -.081 6.106 .0208 -095 -085 3.202 .135 -.116 7.768 .114 -.093 6.362 .0232 -136 -109 -0320 .504 -.181 0371 FT. 88.24 -51.76 1007.76 24.182 80.79 -43.21 919.64 26.088 83°70 -52°30 1078.31 82°68 -49°32 102.55 -62.42 1045.42 36.446 49.16 -58.84 960.82 20.837 LaS 071.32 ŝ 24.34 -36.66 788.66 25.81 784.19 20.98 -29.02 727.02 9.373 21.44 704.56 139.25 -66.75 964.82 39.879 109.24 795.57 L 8 S ШN LOAD CELLS .040.70 52.260 166.82 -91.18 1027.18 47.133 110.20 642.61 54.755 183.38 960°62 66°572 184°95 -109°05 867°05 54°227 851.69 218.92 161.30 -96.70 SW LBS 233.84 -112.16 833.51 51.112 49.20 -00.50 782.50 22.067 43.59 -68.41 778.41 19.434 693.60 21.781 136.21 1011.89 40.126 55.36 -64.64 726.64 58.40 -65.60 Ň LBS MAX, 13.5 110.9 MIN. -20.8-290.0 MEAN 20.8 290.0 STDEV 4.62107.69 8.1 120.5 -5.1-143.5 15.7 143.5 2.64 53.90 8∘7 109∘1 -7∘7∽143∘4 15∘7 143∘4 3∘35 59∘27 000 000 000 000 -8.2 9°3 12°01 -11.5-318.5 20.2 318.5 5.06103.60 ONIA 11.27 64.4 80°8 DIR. DEG. 4.36 20.1 13.9 12.0 -7.3 20.8 10.4 -8.5 WIND SP. HGH REAN MEAN STDEV MIN. " HEAN STDEV MEAN Stdev MIN. MEAN STDEV MEAN WIN. MAXP MIN. NAX, MAXP HIN. MAXs SAXS 。36 63 °20 • 23 TRANS. CDEF. •23 50 0 23 0 m 0 9 0 94 0 00 HOURS TIME ÷ DAYS REC. 57 10 2 14 16 5

.0467

0441

23.689

- 3/20/75) 2230 ŧ (FH13 (HAZ, AND MIN, VALUES HEASURED FRIDAY HARBOR FLDAIING BREAKWATER Sampling Period = 500 ms Number of Samples = 2047

1.119 -.808 5.000 --512 5.007 062°-5.015 5,003 --640 5.000 --441 --404 5-001 .570 .912 -.642 HOR. S.VER. ACCELEROMETERS (FT/SEC/SEC) .919 -.912 5.486 .1960 -507 -507 5.490 -2916 5-477 5-477 5.493 1.001 -.999 5.506 .2187 .684 -.672 5.485 .1432 -.951 . 880 -429 -479 5.516 1346 -.386 -.387 5.494 -.624 5.492 .1816 -.820 5.490 .2229 -,483 5.490 -.715 -.715 5.487 .1767 N.VeR. --462 5.338 .812 -.366 5.243 .1803 .651 -.322 5.173 .1428 5.246 1.105 5.360 .2435 .923 -.433 5.361 .1972 •936 .2124 -.440 REF. FT. .675 -.272 4.177 .1359 -500 -166 4.122 .1088 -.279 -.279 4.236 .932 -.348 4.303 .2117 -.253 4.250 .1575 --244 4.200 INC. FT. WAVE GAGES TRAN 2 II -2555 -2555 4,586 0491 .118 -.113 3.055 .0346 •176 --147 4.685 .0515 -211 -211 -211 -0641 .173 -.192 8.070 .0457 .165 -.165 9.407 .0476 FT. 3.519 .124 -.113 2.434 .0389 .191 -.178 - 250 - 228 - 926 .183 -.159 7.735 .0504 .171 -4.157 0549 0507 .170 -.377 9.161 ۴Τ. TKAN 132.10 -49.90 985.90 30.246 134.10 107.21 -68.79 1160.79 77.08 133.56 -66.44 1147.37 29.630 SE LBS 199°86 +1.96-1124.14 53.806 24.938 063.90 37.252 1204.92 31.81 -38.19 794.16 9.644 24.96 -37.04 727.04 10.994 36.66 -39.34 743.34 13.818 41.42 -50.58 770.58 17.090 36.81 -41.19 823.19 12.540 36.66 -35.34 873°34 13°459 ž L 8 S LOAD CELLS 340.36 -133.64 1141.38 74.717 307.888 -136.12 51.888.12 73.194 289.34 -160.66 1042.66 78.112 306.89 -171.11 1157.11 186.45 -123.55 1171.55 47.125 142.38 -97.62 1245.62 S L 85 96 . 543 40.460 107.60 -101.34 705.89 28.223 57.60 476.40 79.26 -90.74 520.74 0°135 71.05 -81.35 685.35 24.136 56.83 -67.17 787.17 24.240 N Las 578.95 35.103 76.65 12.8 76.4 -9.0-136.5 20.6 136.5 4.10 49.30 9.2 76.1 -7.2-136.8 20.7 136.8 3.69 46.94 11.3 86.0 -0.3-121.9 22.4 121.9 3.83 49.11 6.7 56.5 -5.5-151.4 19.6 151.4 2.67 36.45 127.2 -80.7 80.7 48.88 WIND DIR. DEG. 20.8 171.0 3.36 26.69 9.7 59.3 -12.4-130.4 9.0 19.0 19.9 QNIP sp. HPH MEAN STDEV MAX, Min. Mean Stdev MEAN STDEV STDEV MAX, MIN. MEAN STDEV MEAN MAX, MIN. HAX, HIN. NIN. "NIH MAXP MAXs • .35 • 32 .30 • 32 • 32 TRANS. CDEF. .37 REC. TIME ND. IN DAYS AND HOURS 50 \$ ® 40 59 53 42 2 ŝ ... 5 ÷
(FH13 - 2230 - 3/20/75) SUHMARY DF STATISTICAL DATA FOR FRIDAY HARBOR FLOATING BREAK#ATER (Max. and Min. Values Heasured From Zero Mean) Sampling Feriod = 500 ms Number of Samples = 2047

s. ver.	_	.551	463	5 • 026	.1363	1.140	-1.192	5.010	•2450
ACCELEROMETE N.VER. HOR.	SEC/SEC	.440	571	5.486	.1147	1.370	-1.308	5.512	•2559
	(F1/	• 386	454	5.494	°1153	863	916	5.486	•2075
R EF.	FT.	. 656	394	5°272	°1708	°891	415	5.267	.2069
GES INC.	FT.	.611	264	40272	。1696	°765	259	4°540	•1644
WAVE GA TRAN 2	FT.	°218	183	6°800	• 0572	•082	079	6°388	0234
IRAN 1	FT.	.198	167	6.385	•0551	.089	073	5.945	。0235
SE	LBS	198.64	-117.30	4137°36	58°518	207.33	-130.67	1168.67	61°259
.LS NE	LBS	48 • 48	-49.52	767.51	17.216	42 • 06	-43。94	741.94	16.219
LUAD CEL	L BS	346.20	-231,80	1135.77	111.057	460.62	-223.38	1193.38	114.883
.33 Z	LBS	91.92	-118.08	596.09	40°252	63。84	-114.16	548.46	38°769
WIND Dir.	DEG.	125.5	-123.6	123 .6	49°67	111.9	-125.7	125.7	48°06
e e se	Heh	13.8	-10.3	22 .8	V 4.74	10.4	-10.1	24.9	V 4.00
		MAX,	MIN.	HEAN	STDE	MAXP	•NIM ·	MEAN	STDE
TRANS, COEF.			• 35				.14		
TIME IN DAYS AND Hours			24			24 18			
ND.		٢			¢				

APPENDIX H

INCIDENT AND TRANSMITTED WAVE SPECTRAL PLOTS

Appendix H contains the incident and transmitted wave spectral plots along with the corresponding transmission response curve for 11 representative records. The data for the first nine were recorded at Friday Harbor, Washington, during the winter of 1975. Figures H-11 and H-12 were computed from similar data collected in Alaska during the winters of 1974 and 1975.

The original time series were high-pass filtered at a cutoff frequency of 0.05 hertz to remove tidal drift. Each series consisted of 2,048 data samples and were sampled at a period of 0.5 second for the Friday Harbor data and 0.44 second for the Alaska data,

The standard deviations and corresponding overall transmission coefficients for each of the Friday Harbor plots are given in Appendix $G_{\rm c}$

APPENDIX I

LOW-FREQUENCY SPECTRAL ANALYSIS OF FORCE DATA

Appendix I contains the low-frequency autospectral and cross-spectral plots for record FH7-8. The data were recorded at Friday Harbor, Washington, on 6 January 1975 at 0030 hours.

The original time series were low-pass filtered at a cutoff frequency of 0.2 hertz and every eighth data point used to generate a new time series. This gives 256 points with a sampling period of 4 seconds.

APPENDIX J

HIGH-FREQUENCY SPECTRAL ANALYSIS OF FORCE AND MOTION DATA

Appendix J contains the incident wave spectral plot along with the autospectral and cross-spectral plots for the force and motion data for record FH7-8. The data was recorded at Friday Harbor, Washington, on 6 January 1975 at 0030 hours.

The incident wave spectra was unfiltered. All the force and motion spectral data were digitally high-pass filtered at a cutoff frequency of 0.1 hertz. The autospectral data is plotted as a percent of the variance, i.e.,the total area under the spectra. Wave heights, forces, and motions were measured in feet, pounds, and feet per second square, respectively.

All spectra were computed from 2,048 data points sampled at 0.5-second intervals.

Phase between the southeast and southwest forces. Figure J-7.

Figure J-10. Sway motion spectra (FH7-8).

Figure J-12. Phase between heave and roll.

Figure J-16. Phase between sway and heave.

APPENDIX K

WAVE MEASUREMENT

1. Wave Staff Design.

A block diagram of the wave staff and associated electronic circuits is shown below:

The wave staff itself consists of a length of PVC tubing which is spirally wound with a resistance wire, such that when it is immersed in seawater, the electrical resistance varies in direct proportion to the length of the exposed staff.

The electronic circuits driving the wave staff consist of a fixed frequency square wave oscillator (having a precisely controlled output amplitude) driving a precision bilateral current source with an output current directly proportional to the input voltage. Thus, the wave staff is driven by a current source of constant magnitude, but one which changes direction with each one-half cycle of the square wave oscillator. The output of the wave staff then is a square wave voltage with a magnitude (peak to peak) that is directly proportional to the length of the exposed wave staff. This output is fed to a high input impedance voltage follower circuit which serves as a buffer between the wave staff and the ac detector circuit. The precision ac detector circuit uses two operational amplifiers in conjunction with two diodes to form a precision full-wave rectifier circuit that is capable of operating at very low input voltages. Ordinary diode detector circuits cannot operate on ac signals of peak magnitude less than the forward voltage drop of the diodes and produce large conversion errors unless the signal magnitude is large with respect to the diode voltage drop. A gain control has been incorporated in the detector circuit so that full-scale output can be set at any positive value up to +10 volts with a wave staff resistance of 300 ohms up to 3,000 ohms.

Alternating current is used to drive the wave staff to avoid both the corrosion effects that would occur if direct current were used and the dc offset which occurs as a result of the use of dissimilar metals in a conducting solution. The latter is eliminated by use of ac coupling in the output from the wave staff.

Bench tests of the wave staff electronic circuits were made using a 1,000-ohm variable precision resistor in place of the wave staff. The

circuit was adjusted to produce an output range of 0 to 10 volts with the resistor varied from 0 to 1,000 ohms. Linearity was determined to be 0.1 percent of full scale over this range.

Tests were also made to determine the effect of temperature on sensitivity and zero drift. A decrease in sensitivity was noted with decreasing temperature of about 0.03 percent of reading per °Celsius over the temperature range of 0 to 24°Celsius. A zero drift of 2 millivolts was also noted over the same temperature range. A +10 percent change in supply voltage from the nominal +15 volts produced no observable change in output. If we assume an operating temperature range of $\pm5°$ Celsius, the maximum error in the wave staff electronics due to the combined effects of nonlinearity and sensitivity variations with temperature is ±0.2 percent of reading. Since the primary interest is in a dynamic measurement of waves, the zero drift noted will have negligible effect on the experiment since temperature variations of any appreciable magnitude will only occur over long periods of time compared to the wave periods.

Further calibration tests were conducted using actual wave staffs of 1-inch diameter and 20-foot lengths, and 3.5-inch diameter and 8-foot lengths at various depths of immersion in saltwater. These tests were conducted from a dock at Shilshole Bay on Puget Sound. Because of ripples and waves on the water of the order of 1 inch (peak-to-valley) it was difficult to obtain a highly precise measurement. The output was recorded on a strip chart recorder and it was therefore possible to average these variations to some degree. The readout resolution of the strip chart (and accuracy) is about +1/4 of a minor division. Full scale across the chart is 50 minor divisions and, thus, the resolution is about 0.5 percent of full scale. Some nonlinearity is noted near full immersion (see calibration curve). Some offset was expected because of the finite resistance of the saltwater path in the ground return which is not taken into account during initial calibration of the wave staff unit. The initial calibration is made with the wave staff on the dock where full scale and zero are set by making actual contact between the ground wire and the wave staff resistance element at the corresponding ends. However, measurements were made of the resistance of the saltwater path to ground in the same location where the wave staffs were immersed and the value of resistance measured (on the order of 10 ohms) does not account for the offset observed at full immersion. In addition, the offset should occur at all readings and it does not. Therefore, it is believed that the nonlinearity observed is a result of some other phenomenon as yet undetermined. Both units produced highest accuracy near center scale with decreasing accuracy toward either end. Overall accuracy including end points is about +3 percent. If the range of operation is reduced so as not to use the last 1 foot on each end of the wave staff, the accuracy is improved to about +1 percent.

The output from the wave staff electronic circuit is fed directly into a voltage to frequency converter; the frequency output is then counted and stored on separate storage registers, once every 50 milliseconds. If an 8-bit register is used for the wave staff measurement, the maximum count that can be stored is 255; therefore, the sample time must be on the order of 25.5 milliseconds (maximum count divided by maximum frequency output from voltage to frequency converter). The wave buoys use an 8-bit register with a 32.5-millisecond sample time while the wave staffs use a 16-bit register with a 250-millisecond sample time.

The error due to gain instability and nonlinearity of the voltage to frequency converter is of such low magnitude that it can be neglected and the overall accuracy of the recording is essentially the same as given for the wave staff unit by itself (i.e., between +1 and +3 percent depending on the range of operation on wave staff).

2. Spar Buoy Design.

Spar buoys were used at two of the sites because of their advantage in handling and transport and because they minimized the placement difficulties due to navigational hazards, water depth, and tidal conditions. The spar buoys were made of two PVC pipes coupled together near the center of the buoy. The lower section is a 15 foot by 6 inch pipe filled with styrofoam. The top section is 12 feet by 3 inches wherein the upper 8 feet is wound with a resistance wire which measures wave elevation. The wave staff electronics are mounted inside the top section, above the waterline, with the remainder being filled with a wood core to add stiffness. The buoys also have a 2.5-foot diameter damping plate mounted on the bottom and are anchored using a dual point mooring system with the anchor lines attached at the center of drag on the buoy to prevent it from being pulled underwater in strong currents. One of these buoys was tested in the Puget Sound just north of Seattle. Its performance exceeded expectations both in terms of minimized response to the waves and accuracy of wave height measurement. Figure K-1 gives a sample of the output from the buoy's wave staff in saltwater for a plus and minus 1 foot excitation of the buoy in heave. This was accomplished by pushing the buoy up and down by hand. Some distortion results from this approach which shows up in the output of the accelerometer mounted at the center of the response of the buoy in heave and roll in calm water. The natural periods for heave and roll taken from these plots are approximately 18 and 14 seconds, respectively. These are well out of the range of the 3-to-4-second wave periods expected at the site. Visual observations of the buoy in waves in excess of 1.5 feet indicated no observable heave or roll motion, but some yaw about the anchor line caused by the current and wind. This motion resulted in less than a 1 foot variation from the buoy's horizontal position in calm water and appeared to have periods in excess of 30 to 60 seconds. For comparative measurements, the buoy was located about 30 feet from an existing four-gage array of 1-inch diameter Oceanographic Services, Inc. resistance wire wave staffs. A comparison of simultaneous output from the two wave staffs (buoy mounted and stationary) is shown in Figure K-4. The autospectras computed from data obtained from one of the stationary wave staffs and from the spar buoy, in a 25-miles per hour storm with

Figure K-1. Wave and acceleration data for par uoy.

Figure K-2. Spar buoy heave response.

Figure K-3. Spar buoy roll response.

Figure K-4. Wind wave data for spar buoy and stationary staff.

maximum wave heights in excess of 1.5 feet are shown in Figure K-5. These spectra were computed from simultaneous records of 20 minutes in length.

Figure K-5. Wave spectra from spar buoy and stationary staff.

Adee, B. H.

'ngton / by B. H. Adee, E. P. Richey...[et al.]. -- Fort Belvoir, Va. Floating breakwater field assessment program, Friday Harbor, Wash-: U.S. Coastal Engineering Research Center, 1976.

224 p. : ill. (Technical paper - U.S. Coastal Engineering Research Center ; no. 76-17) Also (Contract - U.S. Coastal Engineering Research Center ; DACW72-74-C-0012)

Bibliography : p. 72.

behavior of a floating breakwater, and a report on a field experiment This study presents a theoretical model for predicting the dynamic designed to provide basic data for verifying the model.

uation. 4. Wave reflection. 5. Wave transmission. I. Title. II. Richey, E. P., Joint author. III' Series : U.S. Coastal Engineer-1: Floating breakvaters. 2. Friday Harbor, Wash. 3. Wave atten-trion. 4. Vave reflection. 5. Wave transmission. 1. Title. ing Research Center. Technical paper no. 76-17. IV. U.S. Coastal Engineering Research Center. Contract DACW72-74-C-0012.

627 no. 76-17 .U581tp

.U581tp

Adee, B. H.

.ngton / by B. H. Adec, E. P. Richey ... [et al.]. -- Fort Belvoir, Va. Floating breakwater field assessment program, Friday Harbor, Wash-; U.S. Coastal Engineering Research Center, 1976.

Center ; no. 76-17) Also (Contract - U.S. Coastal Engineering Research 224 p. : ill. (Technical paper - U.S. Coastal Engineering Research Center ; DACW72-74-C-0012)

Bibliography : p. 72.

pehavior of a floating breakwater, and a report on a field experiment This study presents a theoretical model for predicting the dynamic 1. Floating breakwaters. 2. Friday Harbor, Wash. 3. Wave attendesigned to provide basic data for verifying the model.

II. Richey, L. P., Joint author. III' Series : U.S. Coastal Engineer-ing Research Center. Technical paper no. 76-17. IV. U.S. Coastal uation. 4. Wave reflection. 5. Wave transmission. I. Title. Engineering Research Center. Contract DACW72-74-C-0012.

Adee, B. H.

ington / by B. H. Adee, E. P. Nichey...[et al.]. -- Fort Belvoir, Va. : U.S. Coastal Engineering Research Center, 1976. Floating breakwater field assessment program, Friday Harbor, Wash-

Center ; no. 76-17) Also (Contract - U.S. Coastal Engineering Research 224 p. : ill. (Technical paper - U.S. Coastal Engineering Research Center ; DACW72-74-C-0012)

Bibliography : p. 72.

behavior of a floating breakwater, and a report on a field experiment designed to provide basic data for verifying the model. This study presents a theoretical model for predicting the dynamic

II. Richey, E. P., Joint author. III' Series : U.S. Coastal Engineer-1. Floating breakwaters. 2. Friday Harbor, Wash. 3. Wave atten-uation. 4. Wave reflection. 5. Wave transmission. I. Title. ing Research Center. Technical paper no. 76-17. IV. U.S. Coastal Engineering Research Center. Contract DACW72-74-C-0012. .U581tp 627 no. 76-17 .U581tp

Adee, B. H.

ington / by B. H. Adee, E. P. Richey...[et al.]. -- Fort Belvoir, Va. : U.S. Coastal Engineering Research Center, 1976. Floating breakwater field assessment program, Friday Harbor, Wash-

Center ; no. 76-17) Also (Contract - U.S. Coastal Engineering Research 224 p. : ill. (Technical paper - U.S. Coastal Engineering Research Center ; DACW72-74-C-0012)

Bibliography : p. 72.

behavior of a floating breakwater, and a report on a field experiment This study presents a theoretical model for predicting the dynamic designed to provide basic data for verifying the model.

II. Richey, E. P., Joint author. III' Series : U.S. Coastal Engineer-1. Floating breakwaters. 2. Friday Harbor, Wash. 3. Wave atten-ation. 4. Wave reflection. 5. Wave transmission. I. Title. ing Research Center. Technical paper no. 76-17. IV. U.S. Coastal Engineering Research Center. Contract DACW72-74-C-0012. uation.

.U581tp 627 no. 76-17 .U581tp TC203

.U581tp

no. 76-17

.U581tp

r, Wash- elvoir, Va. Research ng Research a dynamic a dynamic a dynamic a dynamic e atten- le. Doastal	.U581tp		elvoir, Va. Research ng Research e dynamic	experiment e atten- le. 1 Engineer- Coastal	.U581tp
Friday Harbc Fort Be Engineering al Engineering redicting the on a field e e model. U.S. Coastal. (on. 1. Titi (on. 1. V.U.S. (4-C-0012.	627		rriday maro - Fort Bu Engineering al Engineerin redicting th	e model. e model. ash. 3. Wav flon. I. Tit U.S. Coasta U.S. Coasta '. IV. U.S.	627
<pre>tent program, sy[et al.] </pre>	. 76-17		ment program, ey[et al.] h Center, 197 U.S. Coastal - U.S. Coast 1 model for p	and a report verifying th day Harbor, W äve transmiss III' Series : per no. 76-17 ract DACW72-7	• 76=17
feld assess E. P. Nich ing Research cal paper - o (Contract 12) theoretica ic data for ic data for ic data for ic data for ic data for iction - 5 Wi chical Pap	ou		. E. P. Rich E. P. Rich ing Researc cal paper - cal paper - 12) (Contract 12)	breakwater, ic data for irs. 2. Fri irs. 2. Wi tion. 5. W it author. fechnical pa	ou
B. H. Ades, B. H. Ades, La Engineer at Engineer (Techni (Techni (Techni) (Techni (T	.U581tp		breakwater i B.H.Adee, tal Engineer tal Engineer tal Technic . 76-17) Als CW72-74-C-00 phy : p. 72. ypresents a	a floating o provide bas Mave reflec (E. P., Joir ch Center, 7 c Research Ce	.U581tp
Adee, B. H. Floating Ington / by 1.0.5. Coasa 1.0.5. Coasa 2.4 p. 2.4 p.	TC203	Adee, B. H.	<pre>Floating ington / by : U.S. Coas 224 p. : Center ; nc Center ; DA Bibliogra This stud .</pre>	behavior of designed tc 1. Floati uation. 4. II. Richey, Ing Researc Engineering	TC203
or, Wash- elvoir, Va. Research ng Research e dynamic experiment e atten- il Engineer- Coastal	.U581tp		or, Wash- selvoir, Va. 3 Research ing Research ing Research	experiment ve atten- tie. al Engineer- Coastal	.U581tp
. Friday Harb Fort B . G Fort B . Engineering . Engineering . and field te model. Var . U.S. Cosste . U.V.U.S. 74-C-0012.	627		, Friday Hart 1 Fort 1 76. 1 Engineering tal Engineeri tal Engineeri tal Engineering th	t on a field ne model. Mash. 3. Wa sion. I. Ti : U.S. Coast 7. IV. U.S. 74-C-0012.	627
nent program, ev(et al.) (). Center, 19) U.S. Coasta - U.S. Coasta -	. 76-17		ment program ey[et al. h Center, 19 U.S. Coasta - U.S. Coast 1 model for	and a repor verifying ti day Harbor, lave transmis IIII' Series IPEr no. 76-1 ract DACW72-	76-17
E. P. Rich E. P. Rich E. P. Rich ing Researc cal paper - cal paper - o (Contract (2) - theoretica breakinater ic data for ic data for ic data for it author. t author.	ou		ield assess E. P. Rich ing Researc cal paper - cal paper - so (Contract)12) theoretica	breakwater, sic data for ers. 2. Fri ertion. 5. W it author. fechnical pa	ou
<pre>breakwater f 3. H. Adee, 3. H. Adee, 1. I. (Technic Teal Engineer 11. (Technic Teal) 11. (Technic Teal) 12. (Technic Teal) 13. (Teal) 14. (Teal) 15. (Teal) 15.</pre>	.U581tp		breakwater 1 breakwater 1 B. H. Adee. tal Engineer 111. (Techni c. 76-17) Als c. 76-17) Als c. 72-74-6-01 phy : p. 72. y presents a	a floating provide bas ing breakwate Wave reflec E. P., Join th Center. 5 Research Ce	.U581tp
<pre>e, B. H. ee, B. H. gton / by gton / by gton / by gton / by gton / by historia filtingra and or do and or do and</pre>	5	, В. Н.	oating on / by S. Coas 4 p. : er ; no er ; DA bliogra is stud	wior of gned tc Floati on. 4. Richey, Researc	e
Add : : : bel dee dee fin tit	TC20	Adee	F1 fngt : U. 22 Cent Cent Cent Th	beha desi 1. 1. II. II. Engi	TC20

