

FLORA OF AUSTRALIA

Volume 1 Introduction

Contents of volumes in the Flora of Australia, the families arranged according to the system of A.J. Cronquist (1981).

Volume 1

Introduction

- Volume 2
- Magnoliales Winteraceae Himantandraceae Eupomatiaceae Austrobaileyaceae Magnoliaceae Annonaceae Myristicaceae
- Laurales Monimiaceae Idiospermaceae Lauraceae Hernandiaceae

Piperales Piperaceae

- Aristolochiales Aristolochiaceae
- Nymphaeales Nelumbonaceae Nymphaeaceae Cabombaceae Ceratophyllaceae

Ranunculales Ranunculaceae Berberidaceae Menispermaceae

Papaverales Papaveraceae Fumariaceae

Volume 3

Hamamelidales Hamamelidaceae

Urticales Ulmaceae Cannabaceae

Urticaceae M Fagales Balanopaceae Betulaceae Fagaceae

Casuarinales Casuarinaceae

Moraceae

Volume 4

Caryophyllales Phytolaceaceae Nyctaginaceae Aizoaceae Cactaceae Chenopodiaceae

Volume 5

Amaranthaceae Portulacaceae Basellaceae Molluginaceae

Caryophyllaceae Polygonales

Polygonaceae

Plumbaginales Plumbaginaceae

Volume 6

Dilleniales Dilleniaceae

Theales Ochnaceae Theaceae Actinidiaceae Elatinaceae Clusiaceae Volume 7

Malvales Elaeocarpaceae Tiliaceae Sterculiaceae Bombacaceae Malvaceae

Volume 8

Lecythidales Lecythidaceae

Nepenthales Nepenthaceae Droseraceae

Violales Flacourtiaceae Bixaceae Cistaceae Violaceae Tamaricaceae Frankeniaceae Passifloraceae Cucurbitaceae Datiscaceae

Salicales Salicaceae

Capparales Capparaceae Brassicaceae Moringaceae Resedaceae

Batales Gyrostemonaceae Bataceae

Volume 9

Ericales Epacridaceae Ericaceae Volume 10

Ebenales Sapotaceae Ebenaceae Symplocaceae

Primulales Myrsinaceae Primulaceae

Rosales Connaraceae Eucryphiaceae Cunoniaceae Davidsoniaceae Pittosporaceae Byblidaceae Grossulariaceae Crassulaceae Cephalotaceae Saxifragaceae Rosaceae Chrysobalanaceae

Volumes 11,12

Fabales Mimosaceae Caesalpiniaceae

Volumes 13,14,15

Fabaceae

Volumes 16,17

Proteales Elacagnaceae Proteaceae

Volume 18

Podostemales Podostemaceae Haloragales Haloragaceae Gunneraceae

Myrtales Sonneratiaceae Lythraceae Thymelacaceae Punicaceae Onagraceae Melastomataceae Combretaceae Trapaceae

Volume 19,20,21

Myrtaceae

Volume 22

Rhizophorales Rhizophoraceae

Cornales Alangiaceae

Santalales Olacaceae Opiliaceae Santalaceae Loranthaceae Viscaceae Balanophoraceae

Rafflesiales Rafflesiaceae

Celastrales Celastraceae Hippocrateaceae Stackhousiaceae Aquifoliaceae Icacinaceae Cardiopteridaceae Corynocarpaceae Dichapetalaceae Volume 23

Euphorbiales Euphorbiaceae

Volume 24

Rhamnales Rhamnaceae Leeaceae Vitaceae

- Linales Erythroxylaceae Linaceae
- Polygalales Malpighiaceae Tremandraceae Polygalaceae Xanthophyllaceae

Volume 25

Sapindales Melianthaceae Akaniaceae Sapindaceae Aceraceae Burseraceae Anacardiaceae Simaroubaceae

Volume 26

Meliaceae Rutaceae Zygophyllaceae

Volume 27

Geraniales Oxalidaceae Geraniaceae Tropaeolaceae

Apiales Araliaceae Apiaceae Volume 28

Gentianales Loganiaceae Gentianaceae Apocynaceae Asclepiadaceae

Volume 29

Solanales Solanaceae

Volume 30

Convolvulaceae Cuscutaceae Menyanthaceae Polemoniaceae Hydrophyllaceae

Lamiales Boraginaceae Verbenaceae

Volume 31

Lamiaceae

Volume 32

Callitrichales Callitrichaceae

Plantaginales Plantaginaceae

Scrophulariales Oleaceae Scrophulariaceae

Volume 33

Myoporaceae Orobanchaceae Gesneriaceae Acanthaceae Pedaliaceae Bignoniaceae Lentibulariaceae

Volume 34

Campanulales Sphenocleaceae Campanulaceae Stylidiaceae Donatiaceae

Volume 35

Brunoniaceae. Goodeniaceae

Volume 36

Rubiales Rubiaceae

Dipsacales Caprifoliaceae Valerianaceae Dipsacaceae

Volume 37,38

Asterales Asteraceae

Volume 39

Alismatales Limnocharitaceae Alismataceae

Hydrocharitales Hydrocharitaceae

Najadales Aponogetonaceae Juncaginaceae Potamogetonaceae Ruppiaceae Najadaceae Zannichelliaceae Posidoniaceae

Cymodoceaceae Zosteraceae

Triuridales Triuridaceae

Arecales Arecaceae

Pandanales Pandanaceae

Arales Araceae Lemnaceae

Volume 40

Commelinales Xyridaceae Commelinaceae

Eriocaulales Eriocaulaceae

Restionales Flagellariaceae Restionaceae Centrolepidaceae

Juncales Juncaceae

Volume 41,42

Cyperales Cyperaceae

Volume 43,44

Poaceae

Volume 45

Hydatellales Hydatellaceae

Typhales Sparganiaceae Typhaceae

Bromeliales Bromeliaceae

Zingiberales Musaceae Zingiberaceae Costaceae Cannaceae Marantaceae

Liliales Philydraceae Pontederiaceae Haemodoraceae Liliaceae

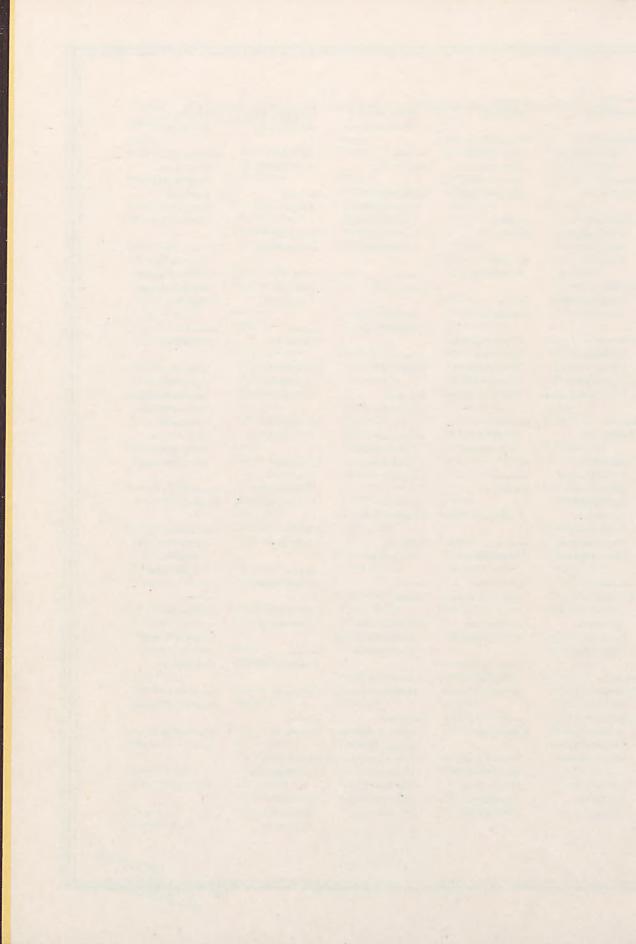
Volume 46

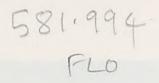
Iridaceae Agavaceae Xanthorrhoeaceae Hanguanaceae Taccaceae Stemonaceae Smilacaceae Dioscoreaceae

Volume 47

Orchidales Burmanniaceae Corsiaceae Orchidaceae

Volume 48


Gymnospermae


Pteridophyta

Volume 49 et seq.

Museum

Non-vascular plants

FLORA OF AUSTRALIA

George Bentham (1800–1884), author of *Flora Australiensis*, the only previous complete Australian Flora. Reproduced by courtesy of the Director, Royal Botanic Gardens, Kew.

BUREAU OF FLORA AND FAUNA, CANBERRA

FLORA OF AUSTRALIA

Volume 1 Introduction

Australian Government Publishing Service Canberra 1981

© Commonwealth of Australia 1981 ISBN 0 642 06652 3 (case bound) ISBN 0 642 06653 1 (soft bound)

EDITORIAL COMMITTEE

Sir Rutherford Robertson (*Chairman*) Barbara G. Briggs Hansjoerg Eichler Leslie Pedley James H. Ross David F. Symon Paul G. Wilson Alison McCusker (*Secretary*) *Executive editor*

Alexander S. George

Printed at Griffin Press Limited, Marion Road, Netley, South Australia.

CONTENTS

Contributors to Volume 1	vi
Floral emblems of Australia and its States	viii–ix
Map of Australia	х
Introduction	1
The background to the Flora of Australia A.S. George	3
The Australian flora: its origin and evolution B.A. Barlow	25
An introduction to the system of classification used in th Flora of Australia A. Kanis	e 77
Key to families of flowering plants H.T. Clifford	113
Glossary A. McCusker	169
Index	199

End papers

Front: Contents of volumes in the Flora of Australia, the families arranged according to the system of A.J. Cronquist (1981).

v

Back: Flora of Australia: Index to families of flowering plants.

CONTRIBUTORS TO VOLUME 1

Dr Bryan A. Barlow, Curator, Herbarium Australiense, Commonwealth Scientific and Industrial Research Organisation, P.O. Box 1600, Canberra City, Australian Capital Territory 2601.

Dr H. Trevor Clifford, Botany Department, University of Queensland, St. Lucia, Queensland 4067.

Mr Alexander S. George, Bureau of Flora and Fauna, Department of Home Affairs and Environment, P.O. Box 1252, Canberra City, Australian Capital Territory 2601.

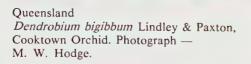
Dr Andrew Kanis, Herbarium Australiense, Commonwealth Scientific and Industrial Research Organisation, P.O. Box 1600, Canberra City, Australian Capital Territory 2601.

Dr Alison McCusker, Acting Director, Bureau of Flora and Fauna, Department of Home Affairs and Environment, P.O. Box 1252, Canberra City, Australian Capital Territory 2601.

FLORAL EMBLEMS OF AUSTRALIA AND ITS STATES

Australia (unofficial) Acacia pycnantha Benth., Golden Wattle. Photograph — J. G. & M. H. Simmons.

Northern Territory Gossypium sturtianum J. H. Willis, Sturt's Desert Rose. Photograph — J. R. Maconochie.



Western Australia Anigozanthos manglesii D. Don, Mangles' Kangaroo Paw. Photograph — A. S. George.

South Australia *Clianthus formosus* (Don) Ford & Vick., Sturt Pea. Photograph — A. S. George.

Victoria Epacris impressa Labill., Common Heath. Photograph —B. Fuhrer.

New South Wales Telopea speciosissima R. Br., Waratah. Photograph — A. D. Chapman.

Tasmania Eucalyptus globulus Labill., Blue Gum. Photograph — I. G. Holliday.

INTRODUCTION

The *Flora of Australia* is intended for use by professional botanists and other scientists, knowledgeable amateurs and students requiring botanical information. It will include all flowering and non-flowering plants known to be indigenous or naturalised in Australia but will exclude bacteria.

The geographical area covered by the *Flora* includes the six Australian States, the Northern Territory, the Australian Capital Territory, immediate offshore islands and Macquarie Island. Other Australian-administered territories, such as Lord Howe Island and Christmas Island, are excluded. The occurrence in those territories of species included in the *Flora* will be added to the notes on distribution. A complete Flora of those territories is proposed as a separate volume.

Nomenclatural coverage will comprise accepted names together with synonyms relevant to Australia, all with references to the original publication and type collections. Where necessary, new taxa and new combinations will be published in an appendix in the relevant volume. Significant references to families and genera will be cited. Author abbreviations follow the *Draft Index of Author Abbreviations compiled at the Herbarium, Royal Botanic Gardens, Kew* (HMSO, 1980). Journal titles are abbreviated in accordance with G. H. M. Lawrence et al., *Botanico-Periodicum-Huntianum* (Hunt Botanical Library, 1968), and other literature in accordance with F. A. Stafleu and R. S. Cowan, *Taxonomic Literature*, edn 2 (W. Junk, 1976–), except that upper case initial letters are used. The abbreviation 'Austral.', for 'Australia' and its derivatives, is used consistently except that this publication, *Flora of Australia*, is cited as 'Fl. Australia' in order to avoid confusion with *Flora Australiensis* ('Fl. Austral.').

Descriptions will be concise. They will be based on Australian material except where a broader view is necessary (especially in descriptions of families or genera) to avoid giving misleading taxonomic information. Distributional data will be given in both descriptive and mapped forms. A selection of up to five representative collections will be cited for each species. All herbarium sheets examined for the *Flora of Australia* will be so labelled. Verified ecological information and chromosome numbers will be included, and phytochemical information added if of special interest.

The system of A. J. Cronquist has been adopted for the arrangement of families. The sequence for those families occurring in Australia is included on the front endpapers of this volume and will be reproduced in all subsequent volumes. The families are listed alphabetically on the back endpapers as an index to volumes. Volumes will be issued out of numerical sequence, the order to be determined largely by the availability of specialist contributors or of recent revisions on which flora treatments can be based. Within families, genera and species will be arranged so as to show natural relationships as far as possible. Because the *Flora* will be based largely on existing knowledge, the standard of treatment will vary from group to group. For the same reason it will sometimes be necessary to make arbitrary decisions on points of taxonomy and nomenclature, for example, in this volume, the spelling of *Brachycome*.

A glossary defining botanical terms is included in this volume. Specialised terms used in certain groups of plants will be explained in supplementary glossaries in the relevant volumes.

Acknowledgments

Many people have co-operated to bring the *Flora of Australia* project to fruition. Botanists throughout Australia and in other countries have contributed, either individually or through their institutions, to planning the *Flora* and to the evolution of the format. Many have commented constructively on the chapters in Volume 1, especially the Key to Families and the Glossary.

Arthur. J. Cronquist, New York Botanical Garden, made available a draft of the latest version of his system of classification for use in planning the arrangement of families. He responded promptly to requests for advice in allocating genera to families. Robert. F. Thorne, Rancho Santa Ana Botanic Garden, and Rolf. M. T. Dahlgren, Botanic Museum of the University of Copenhagen, provided the latest information on their phylogenetic systems of classification for use in the chapter by Kanis. The Director, Royal Botanic Gardens, Kew, made available copies of portraits of Bentham, Lindley, Hooker and Mueller for the frontispiece and Figures 4–6. The portrait of Brown (Figure 2) is reproduced by courtesy of the Linnean Society of New South Wales. Colin Totterdell, Division of Plant Industry, CSIRO, provided photographs for Figures 1, 3, 7, 8, and 14–17. Elizabeth Kemp, Bureau of Mineral Resources, provided copies for Figures 9–13. Sue Craven prepared the map of Australia facing page 1. Helen Hewson prepared Figures 23–26.

The Key to Families of Flowering Plants in Australia is modified from Keys to the Families and Genera of Queensland Flowering Plants (Magnoliophyta) by H. T. Clifford and Gwen Ludlow, edn 2 (University of Queensland Press, 1978). Those keys were based on an unpublished key prepared by the late A. Cayzer. They have been used widely in Queensland but less so elsewhere in Australia. Comments on the key will be welcomed by the Executive Editor.

Special effort was needed to produce Volume 1 in time for the XIII International Botanical Congress in Sydney, August 1981. The assistance of the Commonwealth Government, especially the Department of Home Affairs and Environment and the former Department of Science and the Environment, is acknowledged for co-operation in achieving this goal. David Ride, the first Director of the Bureau of Flora and Fauna, and later Alison McCusker as Acting Director, have carried most of the administrative responsibilities in establishing the *Flora* program. Alison McCusker also assisted in editing Volume 1. The staff of the Bureau has enthusiastically undertaken its part in preparing the volume. Arthur Chapman assisted greatly in editing and proof-reading. John Busby developed typesetting procedures and typeset this volume, using facilities of the Bureau of Flora and Fauna and the Division of Computing Research, CSIRO. Wendy Riley and Geetha Sriprakash typed the manuscript. David Marshall and Jennifer Longstaff, Australian Government Publishing Service, assisted and advised with designing the book. Jennifer Longstaff designed the cover.

Sir Rutherford Robertson has given the *Flora* project support over many years. As a Fellow and former President of the Australian Academy of Science, he played a leading role in the initiatives that resulted in the establishment of the Bureau of Flora and Fauna to co-ordinate the Australian Biological Resources Study, of which the *Flora of Australia* project forms a major part. Further, as the first Chairman of the Editorial Committee, he has firmly guided the project during its first year.

THE BACKGROUND TO THE FLORA OF AUSTRALIA

A. S. George

History of the Flora of Australia Project

The project to write a *Flora of Australia* is the first of its kind in this country. Only one previous Australian Flora has been completed, *Flora Australiensis* (1863–1878), written by George Bentham who never visited Australia. The new *Flora* is the most exciting botanical project undertaken in Australia. It has had a long gestation and a difficult birth; its completion, like that of works such as de Candolle's great *Prodromus* (1823–1878) and Martius' *Flora Brasiliensis* (1840–1906), will be a major achievement of national and international co-operation.

Like all Floras, Bentham's *Flora Australiensis* was out of date as soon as the last volume was published. The seven volumes spanned 16 years, from 1863 to 1878, and were written entirely by George Bentham using the collections at Kew, the British Museum (Natural History) and Paris, as well as those sent on loan from Melbourne. During this period botanical work was expanding in Australia. Field collectors were active, many of whom were encouraged by Ferdinand Mueller, Government Botanist of Victoria. Mueller himself was in the heyday of a long and productive career. Botanists, both professional and amateur, were beginning to study the flora in other States. Bentham had planned a supplement but, in the preface to Volume 7 of *Flora Australiensis*, he wrote that it 'would entail more labour than at my age it would be prudent to undertake'; he was then 78. Instead, he encouraged Mueller to produce a complete census of the flora. Mueller accomplished this by 1882 and revised it in 1889.

State Floras, mostly based on *Flora Australiensis* with the addition of species discovered later, were issued over the succeeding years in all States except Western Australia, where a systematic census, prepared by the Government Botanist Charles Gardner, appeared in 1930–31. Most of these Floras were compiled by professional taxonomists appointed by State Governments or by universities. Because the botanists were few in number, demands on their time were such that they were often able to do little research. This problem, common to most botanists in Australia, is slowly being alleviated as more positions are created so that more people are available to share or assume routine responsibilities. By the 1900s, however, the first of many accomplished amateur taxonomists to contribute to the literature on the Australian flora had appeared on the scene. J. M. Black, a retired journalist, published *The Naturalised Flora of South Australia* in 1909, followed by his *Flora of South Australia* in 1922–29. The latter is currently in its third edition, revised by John Jessop, Chief Botanist of the State Herbarium of South Australia.

The first reference to a new national Flora appears to be that by Joseph Maiden, Government Botanist and Director of the Botanic Gardens, Sydney, in 1907. In his Presidential Address to Section D (Biology) at the eleventh meeting of the Australasian Association for the Advancement of Science, he suggested that each State issue supplements to *Flora Australiensis*, and went on to say:

The form of the new 'Flora Australiensis' (which cannot be published until Western Australia is more thoroughly explored botanically) will then fitly take the form of the most modern classification available, which, at the present moment, is of course that of

FLORA AUSTRALIENSIS:

A DESCRIPTION

OF THE

PLANTS OF THE AUSTRALIAN TERRITORY.

BY

GEORGE BENTHAM, F.R.S., P.L.S.,

ASSISTED BY

FERDINAND MUELLER, M.D., F.R.S. & L.S., GOVERNMENT BOTANIST, WELBOUERE VICTORIA.

VOL. I.

BANUNCULAÇEZ TO ANACARDIACEZ.

PUBLISHED UNDER THE AUTHOBITY OF THE SEVERAL GOVERNMENTS OF THE AUSTRALIAN COLONIES.

LONDON: LOVELL REEVE AND CO., 5, HENRIETTA STREET, COVENT GARDEN. 1863.

Figure 1. Titlepage of Volume 1 of George Bentham's Flora Australiensis (1863).

Engler, although even that fine arrangement need not be slavishly followed in every detail.

We in Australia suffer much through our geographical isolation from the great intellectual centres of the Northern Hemisphere. That is our misfortune, but we should not fail in our endeavors to advance knowledge of the botany of this continent, and potent help in this direction would be the issue of an 'Australian Flora' based on the most modern lines of taxonomic research, modified, indeed, by our own special knowledge of our own plants and their affinities.

Nine years later, however, Maiden acknowledged that a new Flora was some time off. In the preface to the *Census of New South Wales Plants* (1916), compiled jointly with Ernst Betche, he wrote that Bentham's *Flora Australiensis* 'is, and will long remain, the standard work on our flora. The greater one's experience with it, the more sincere is one's admiration of it'. This opinion has been echoed by most Australian taxonomists.

While the need for a new Flora was realised and occasionally mentioned, there seems to have been no attempt to fulfil that need during the first half of the 20th Century.

The period after the Second World War was a quiet one for the Flora proposal. The staff of botanical institutions were still preoccupied with routine work, preparation of State floras, and individual lines of research. With every year, however, the need became more urgent, yet still no firm action was taken.

At the 25th meeting of the Australian and New Zealand Association for the Advancement of Science (ANZAAS) in Adelaide, August 1946, a meeting of plant taxonomists recommended the formation of a Systematic Botany Committee. The meeting listed, under 'immediately desirable tasks', the 'preparation of floras, especially for some States'. Clearly there was no strong feeling about a national Flora. The Committee fostered communication among the taxonomic community by issuing a newsletter entitled the *Australasian Herbarium News*. In the first issue, of June 1947, William Hartley, then Senior Plant Introduction Officer with CSIRO, called for the establishment of a new Commonwealth Herbarium which could facilitate the preparation of a Flora (Hartley, 1947). He envisaged that the Flora would be prepared by many botanists from the States, with the Commonwealth Government funding replacement staff during their period of commitment.

William Hartley's appeal brought no positive response. The next meeting of ANZAAS, in Perth, August 1947, again urged progress with State floras. This attitude, as stated by Stanley Blake, a senior botanist with the Queensland Herbarium, persisted through subsequent meetings including the 31st at Melbourne in 1955, at which 'an attempt to do something more definite . . . met with little response' (Blake, 1960). The Australasian Herbarium News, during the eight years that it, was published, carried no further reference to a Flora.

The initial impetus to the campaign which finally led to the current *Flora of Australia* came from a newcomer to the Australian botanical scene, Hansjoerg Eichler. In 1957, less than two years after arriving from Germany to take up the position of Keeper in the State Herbarium of South Australia, Eichler recommended that his staff be permitted to undertake Australia-wide revisions which could be used towards a new *Flora of Australia*. This was a major change in policy; previously all States had largely confined research within their borders. Joseph G. Wood, then Professor of Botany at the University of Adelaide and Chairman of the Handbooks Committee of the Flora and Fauna of South Australia, immediately took up the suggestion for a national Flora and had it placed on the agenda for the 33rd ANZAAS Congress, held in Adelaide in August 1958. This time the topic aroused extensive discussion, during which it became clear that opinion was divided on the level of

detail that would be appropriate for a Flora. There was support on the one hand for a monographic approach, based on full revision of all groups, and on the other for a concise treatment based solely on existing published knowledge. Eichler proposed the creation of a central taxonomic unit with 10 botanists producing revisional studies for a Flora.

ANZAAS resolved to set up a Flora of Australia Committee 'to prepare estimates and detailed plans of the organization required for the preparation of a new Flora Australiensis'. Members of the Committee were R. T. M. Pescott (Convener), S. T. Blake, D. J. Carr, Hj. Eichler, L. A. S. Johnson, S. Smith-White and D. E. Symon. A meeting was held in Melbourne on 22-25 April 1959, at which Blake was elected Chairman. Following intensive debate, a report was prepared recommending that a monographic work be produced, to be called Flora of Australia. The Committee dismissed the concept of a Flora based only on existing published knowledge, as not serving 'any useful purpose' (Blake, 1960). The idea of a generic Flora was also rejected, first because it would hinder the preparation of a full Flora, and second, because the species should be better known before genera could be properly delimited. The report envisaged that the Flora would be produced over a period of about twenty years by a central organisation with a staff of fourteen taxonomists under the direction of an Editor-in-Chief. It suggested that the organisation might be at Canberra but that some of the taxonomists could be stationed at existing herbaria or universities.

The Committee estimated that the Australian flora contained over 15 000 species and that a monographic treatment would amount to 30 000 pages. The cost at 1959 rates was estimated at £70 000 (\$140 000) per annum for salaries, £15 000 (\$30 000) for equipment, an unspecified amount for 'normal running costs', and 'ample funds for field work and for travel within Australia and abroad'. The Committee, noting that at that time there were less than 20 workers in taxonomy in State and Commonwealth herbaria and about six in universities, of whom none could devote full time to their researches, stated that graduates would have to be trained, although the 'initial staff would consist largely of experienced taxonomists'.

The Committee's report was adopted by ANZAAS at the 34th Congress in Perth, August 1959. A delegation from ANZAAS in July 1960 presented the report to the Prime Minister's Department, which in turn referred it to the Australian Academy of Science. The Academy, recognising the need not only for a Flora but also for a similar study of the Australian fauna, recommended to the Prime Minister of the day, the Right Honourable R. G. Menzies, that a Museum of Australian Biology be established with the principal aims of conducting a biological survey of Australia and writing a 'comprehensive multi-volume Flora of Australia'. The Government at that time was unable to finance the museum, although it did not refute the need for such a development. Throughout the period leading to the final decision to proceed with a new Flora, the Academy continued to give strong support to the concept.

A facsimile edition of Bentham's *Flora Australiensis*, published by Asher and Reeve in 1967, drew international attention to the lack of a modern Flora (Stafleu, 1967). It also prompted John Beard, then Director of Kings Park and Botanic Garden, Perth, to suggest that a concise Flora be compiled along the lines of *Flora Europaea* (Beard, 1968). Beard considered that such a Flora could be written by a small group of botanists working in Canberra.

The 1960s saw great economic development in Australia, especially in agriculture, mining and industry. At the same time awareness of its effects on the environment became more widespread, leading to a great surge in concern for the natural environment. In the public and private sectors, the need for environmental surveys in both settled and remote areas placed great demand on the services of botanists and made even more apparent the lack of a national Flora. During the same period horticultural interest in the indigenous flora also increased markedly.

In April 1967 the Honorary General Secretary of ANZAAS wrote to the Prime Minister expressing regret at the lack of support for a new Flora and emphasising the importance of the project. The proposal was again referred to the Academy of Science which appointed a Flora and Fauna Committee to examine it.

While ANZAAS continued to promote the 'Flora of Australia' concept, the Zoological Subcommittee of the Academy's Flora and Fauna Committee in 1968 canvassed the various State museums and found general support for a Commonwealth biological survey. By that time, State herbaria also were willing to collaborate in producing a national Flora. The Flora and Fauna Committee released a report in October 1968 in which it proposed that an organisation, to be called a Biological Survey of Australia, be established (Anon., 1968). The report proposed that the Survey would initiate the production of a new Flora of Australia; it was still envisaged that the Flora would be monographic. The suggestion was made that existing herbaria in Canberra might form the basis of the botanical collections. At that time there were separate, small herbaria, in CSIRO, the Forest Research Institute, the Botanic Gardens and the Australian National University. The Committee considered that collaboration with herbaria in the States would be essential. Early in 1969 Sir Macfarlane Burnet, then President of the Academy, led a delegation to the then Minister for Education and Science, the Honourable J. M. Fraser, to press the claim for establishment of a Biological Survey of Australia.

In 1970 and 1971 events occurred that greatly stimulated discussion on a new Flora and led to the commencement of preliminary work for it. For the James Cook Bicentenary in 1970 William Stearn, a distinguished botanist with the British Museum (Natural History), was invited to address the Australian Academy of Science. During his address, Stearn referred to the conspicuous absence of a modern Australian Flora and to the urgent need to write one. He was later approached confidentially by Sir Maurice Mawby, a Fellow of the Academy, who discussed with him the possibility of raising private funds to help launch work on a new Flora. Stearn referred Sir Maurice to John Beard, then Director of the Royal Botanic Gardens, Sydney. Beard drew up a proposal for regional Floras to cover Australia in four phytogeographic regions— South-eastern, Tropical, Eremean and South-western; these Floras would be written in five years, possibly by staff in the various herbaria. Sir Maurice's offer to assist was conditional upon support for the project being received from both the Academy and the Australian botanical community.

In February 1971 a meeting was held in Canberra to discuss an Information Retrieval Base for the information on herbarium labels. The agenda included an item on possible actions to promote preparation of a new Flora of Australia. Beard presented to the meeting his proposal for regional floras and indicated that private funds might become available to begin the work. The presentation surprised most delegates since they had been unaware of these developments, but the meeting tentatively supported the proposal. Within weeks, however, alternative proposals were drawn up by groups of botanists in Adelaide, Canberra and Melbourne. The Adelaide group, headed by Eichler, circulated a questionnaire among Australian botanists to gauge opinion on several possible courses of action. From this there emerged general support for a preliminary work, an index of Australian plant names, which could be commenced with the funds likely to be made available as a result of Sir Maurice's initiative.

The 43rd ANZAAS Congress in Brisbane followed in May 1971, and the whole Flora subject was discussed. Three proposals were submitted to the Academy of

Science, for an Australian Plant Name Index, a Generic Flora of Australia, and a series of Handbooks for regions not covered by floristic works. The first would provide basic data for a new Flora, the second would be a valuable source of information on the flora as an expansion of the *Dictionary of Australian Plant Genera* (Burbidge, 1963), while the third would fill the gaps in the field of Australian regional floras.

The Academy in November 1971 set up a Standing Committee for a Flora of Australia under the chairmanship of David G. Catcheside, then Director, Research School of Biological Sciences, Australian National University. It consisted of an experienced, active taxonomist from each State and the Australian Capital Territory and six botanists from Australian universities. With general support from botanists for the Australian Plant Name Index, the Standing Committee decided to initiate the project, using the funds made available to the Academy through Sir Maurice Mawby. Nancy Burbidge was released from her duties as Curator of the CSIRO herbarium to lead the project, and Eichler took up the Curatorship. The Committee also discussed the format for a Flora and arranged the preparation of sample treatments. Thus important groundwork for a Flora was at last under way. Both the Academy and CSIRO had been instrumental in reaching this goal. The Academy continued to administer the project financially until 1976. CSIRO made available research and library facilities.

In May 1972 the Academy wrote to the then Minister for Education and Science, the Honourable J. M. Fraser, requesting reconsideration of the proposal to establish a Biological Survey. Further support for this proposal came in the same year from a House of Representatives Select Committee on Wildlife Conservation (Waterhouse, 1978).

During the 1970s active support for the project also came from an active amateur group, the Society for Growing Australian Plants. The Society, its members acutely aware of the need for accurate names and data on native plants used in horticulture, on several occasions urged the Government to begin writing the Flora.

The need for a biological survey had now become sufficiently important for the major Australian political parties to include it in their platforms for the Federal Election in 1972 (Ride, 1978). It seemed only a matter of time before the survey would be set up.

Communication and co-operation between Australian botanists received a boost with the formation in April 1973 of the Australian Systematic Botany Society. First proposed by a group of Victorian botanists, the Society rapidly gained a membership of over 200 and now (1981) has over 300 members. Local chapters were formed in the larger cities. The Society immediately began to play its part by preparing an index to current plant taxonomic research in Australia. In 1976 John Jessop, who had succeeded Eichler as head of the State Herbarium of South Australia, proposed that the Society co-ordinate and edit a Flora of Central Australia. Although there was concern that it might lessen support for a national Flora, the project went ahead, as it was felt that it could be completed before work on a national Flora commenced. Further, it was to be based primarily on published knowledge or that readily available from specialists. The Flora of Central Australia (Jessop, 1981), prepared by over 50 contributors in three years, covers a major geographical region of the continent but, with about 2 000 species, includes only ten per cent of the Australian flora. The project has played its part both in directing attention to the need for Floras and in giving many people experience in flora-writing.

A visit to Australia in 1973 by C. G. G. J. van Steenis, then Director of the Rijksherbarium, Leiden, focussed attention on the scope and organisation of flora-

writing through discussion of *Flora Malesiana*. Van Steenis strongly preferred a concise flora, but some of the senior local voices still wanted a monographic work.

The Australian Plant Name Index project commenced in April 1973 with the appointment as bibliographer of Penelope Hack, who was succeeded in January 1974 by Arthur Chapman. Nancy Burbidge directed this work and at the same time brought up to date her earlier list of taxonomic literature available in Australian libraries (Burbidge, 1951, 1978). She also planned three sample treatments for a Flora text, to be made available for discussion. These were undertaken by herself (Loranthaceae), Helen Hewson (Brassicaceae), and Ruurd Hoogland (Rhizophoraceae).

In 1973 the Government established the Interim Council of the Australian Biological Resources Study (ABRS). The Council's functions were:

(a) Initially to promote through grants to existing State and Commonwealth institutions:

- the collection and scientific description (taxonomy) of species of animals and plants throughout Australia;
- in-depth studies of the ecology of such species; and
- proper maintenance of collections.
- (b) After a few years of operations, to consider and make recommendations in relation to:
 - conduct in the longer term of taxonomic and ecological studies; and
 - housing, maintenance and display of national scientific collections (Waterhouse, 1978).

The Council was allocated \$750 000 for the first three years. On the botanical side grants were made for taxonomic and ecological studies and for the curation of collections.

A picture of the state of taxonomic knowledge of the Australian flora was built up, following an assessment by Nancy Burbidge in the early 1970s. Burbidge estimated that 25 families of seed plants were sufficiently well known to be written up for a Flora; 73 small families could also be written up without detailed research; 84 families required revision in most genera; 7 could be written up at a non-critical level; and 33 were of doubtful position (Burbidge, 1974). In 1978 a survey conducted by ABRS revealed that only 37 of the 222 flowering plant families recognised by Burbidge were being actively studied in Australian herbaria (Ride & McCusker, 1978). Although there was doubt as to the final format of the Flora, it was felt that a work based on current knowledge would quickly lose value and that a 'vigorous modern Bentham' was needed urgently to get on with the job (Ride, 1978).

The Interim Council of ABRS presented its report in 1975. The report was referred by the Government to an Administrative Review Committee and a Committee on Co-ordination of Support for the Collection of Data in the Flora and Fauna of Australia. The question of the location of ABRS within the Commonwealth Public Service was considered by the Science Task Force of the Royal Commission on Australian Government Administration. Recommendations from these committees were finally referred to the Interim Australian Science and Technology Council (ASTEC). Following the initial three-year operation of ABRS, its funding was continued in 1976–77, during which period the report of the Interim Council was passing through the above committees. In 1976 financial support for the Flora project, which up till then had been organised by Sir Maurice Mawby and the Australian Academy of Science, was exhausted. Following an approach by the Academy, the project was taken over by ABRS.

A note of frustration appeared in the report of the Systematic Botany Committee of ANZAAS in 1976: 'The time lost on the Flora project since concrete proposals for it were submitted in 1959 is of scientific concern: progress in all fields of botany

dealing with Australian plants . . . is severely hampered by the inadequacy of taxonomic knowledge . . . and the lack of a comprehensive work in which modern knowledge is made readily available'.

Further groundwork for a Flora was undertaken in 1976 by Paul Wilson, Senior Botanist with the Western Australian Herbarium, while on secondment to ABRS. He prepared a set of Guidelines for Contributors to a Flora which were widely circulated for comment among Australian taxonomists. Although prepared for a Flora which would be published in family parts, the Guidelines nonetheless contributed significantly to the format eventually adopted.

In its report for 1976–77, the Interim ASTEC recommended the establishment of a new body, the Institute of Australian Flora and Fauna (IAFF), to 'support and coordinate publication of a systematic series of regional floral handbooks'. It recommended that existing ABRS staff be incorporated into the new Institute. ASTEC saw the initial role of the IAFF, in relation to flora, as one of ensuring consistency in regional Floras, preparing and co-ordinating index volumes, and supporting taxonomic studies and handbooks. This would pave the way for the writing of a more complete Flora when appropriate funds became available. A further entreaty to the Government to continue funding ABRS and to commence a Flora came in December 1977 from the Committee of Heads of the Australian Herbaria.

The question of a biological survey of Australia, including the preparation of a national Flora, had now been under scrutiny for two decades. As a result of its investigations the Government, in 1978, formally established the Australian Biological Resources Study within the Department of Science. The preparation and publication of co-ordinating works on the flora were stated objectives. The introduction of a program to write a new Flora of Australia now seemed assured, but its timing, scope and format were still to be decided. The ABRS Advisory Committee was appointed by the Minister for Science and held its first meeting on 6-8 March 1979. It decided to recommend that a start be made immediately on a concise Flora of Australia. The Committee felt that the time needed to prepare a monographic Flora was unacceptable; the work must be completed within 30 years, and planned so that groups in urgent need of revision could be studied before the relevant volumes were issued. The Committee's recommendation was accepted by the then Minister for Science, Senator the Honourable J. J. Webster, who announced the project on 24 April 1979. Meanwhile, the scope and format were discussed at length among the taxonomic community. Support for a monographic treatment waned as the enormous time-scale involved became more apparent. An alternative proposal envisaged the publication of reprints of revisions in a standard format so that they could be bound in volumes; such a scheme might have been considered more thoroughly had not the Advisory Committee decided to commence the concise Flora.

At its second meeting on 4-5 October 1979, the Advisory Committee decided that the *Flora* would be based largely on current knowledge and 'would be produced in such a way as to be readily updateable'. It decided that, if possible, some parts should be published in time for the XIII International Botanical Congress in Sydney, August 1981.

In October 1979 a Flora Study Group was appointed, later to become the Editorial Committee for the *Flora of Australia*, under the Chairmanship of Sir Rutherford Robertson, Chairman of the ABRS Advisory Committee and Vice-chairman of ASTEC. The Study Group wasted no time in determining the scope, arrangement and format of the *Flora*. The initial choice lay between issuing volumes or family parts. The Committee quickly decided in favour of volumes. Several systems of classification were considered, the use of a phylogenetic system being preferred to any other arrangement because it would provide a definite framework and prevent groups from being neglected. The system of Arthur J. Cronquist (Cronquist, 1981), then at a late stage of revision, was chosen for the *Flora*.

The final administrative step of consolidation came in November 1979, when the Bureau of Flora and Fauna was established as a Branch in the Environment Division of the Department of Science and the Environment. A year later, the Division was transferred to the new Department of Home Affairs and Environment.

Current state of knowledge of the Australian flora

The Australian flora is still far from being adequately known. *Flora Australiensis* contained 8 125 species of vascular plants. In 1981 the number in the vascular flora is unknown but estimated to be about 18 000 species; in addition there are several thousand non-vascular species. A further significant increase will result from taxon-omic revisions and more thorough botanical exploration. A sample of genera and sections of genera that have been revised in Australia during the past 40 years shows that the average increase in species when such revisions are made is just under 50 per cent. The sample may not be representative in that workers may have selected genera known to contain large numbers of undescribed species, though it included revisions of genera in which few new species came to light, e.g. *Phebalium* (4 new species in a total of 45) and *Terminalia* (2 in 29).

Few parts of Australia have been fully explored botanically. New species and records continue to be turned up, even close to civilisation, and there are very large areas—thousands of square kilometres—where no work at all has been done. This applies especially to parts of the north and to Western Australia. Collecting in such regions will in general extend the range of known species, but new discoveries are certain to be made. Alien taxa continue to become naturalised at a steady rate. In an analysis of the Victorian flora, for example, Ross (1976) calculated that the rate of introduction of non-Australian species to that State had averaged five to six species per year over the previous 100 years. There is little doubt that the Australian flora will eventually be found to contain over 25 000 species.

Previous floristic works on Australia

The first Australian plants named under the binomial system were two species published in 1768 by N. L. Burman. It was the large collection made by Joseph Banks and Daniel Solander in 1770, however, which gave the first real insight into the Australian flora. Unfortunately the *magnum opus* planned by Banks and Solander was never published, and their collections were only partly studied by other botanists. Banks encouraged and sometimes sponsored collectors to visit the continent, the most important of these being Robert Brown. Brown's participation in the coastal survey by Matthew Flinders in 1801–1803, and his subsequent stay in New South Wales and Tasmania, resulted in a collection of several thousand species. Brown commenced a Flora of Australia but the first volume, published in 1810 (*Prodromus Florae Novae Hollandiae et Insulae Van-Diemen*), was so disappointingly received that he never completed the remainder. The *Prodromus*, arranged in a natural system, later came to be recognised as a milestone in taxonomic botany.

Early works on the Australian flora were written and published in Europe, and many were largely accounts of individual collections, e.g. Labillardière (1804–1806) and J. D. Hooker (1855–1860) based chiefly on their own collections, and Lehmann (1844–1848) based on the collections of Ludwig Preiss and to some extent James Drummond (see Annotated Bibliography). The Royal Gardens (later Royal Botanic

Figure 2. Robert Brown (1773-1858), author of *Prodromus Florae Novae Hollandiae* et Insulae Van-Diemen (1810) and other works on the Australian flora. Painting by H. W. Pickersgill, engraved by C. Fox; reproduced by courtesy of the Linnean Society of New South Wales.

PRODROMUS

FLORÆ NOVÆ HOLLANDIÆ

BT

INSULÆ VAN-DIEMEN,

EXHIBENS

CHARACTERES PLANTARUM

QUAS

ANNIS 1802-1805

PER ORAS UTRIUSQUE INSULÆ COLLEGIT ET DESCRIPSIT

ROBERTUS BROWN;

INSERTIS PASSIM ALIIS SPECIEBUS AUCTORI HUCUSQUE COGNITIS, SEU EVULGATIS. SEU INEDITIS PRÆSBRTIM

BANKSIANIS,

IN PRIMO ITINERE NAVARCHI COOK DETECTIS.

VOL. I.

LONDINI:

TYPIS RICHARDI TAYLOR ET SOCII.

VENEUNT APUD J. JOHNSON ET SOCIOS, IN COMETERIO SANCTI PAULI.

1810.

Figure 3. Titlepage of Robert Brown's Prodromus Florae Novae Hollandiae et Insulae Van-Diemen (1810).

Gardens) at Kew were associated with many early botanical collectors. By the 1850s Kew, under the direction of William Hooker, was becoming a major centre of botanical research. A series of colonial Floras was commenced there, *Flora Australiensis* (1863–1878) by George Bentham being an important contribution to this program. Ferdinand Mueller, the first resident plant taxonomist in Australia, had been keen to write an Australian Flora but was dissuaded by Bentham and Joseph Hooker. They considered that Mueller would be unable to do the work satisfactorily since he could not examine the historical collections housed in European herbaria. Mueller cooperated fully in the preparation of *Flora Australiensis* by making available to Bentham the entire collection of the herbarium in Melbourne (Daley, 1928).

As Government Botanist of Victoria from 1853 to 1896, Mueller developed the herbarium in that State into an institution of international importance. He encouraged collectors to travel to many parts of the continent; while he himself collected widely and produced a steady stream of taxonomic publications (for a bibliography of Mueller's works see Churchill, Muir & Sinkora, 1978). Mueller's botanical output has never been approached by later botanists in Australia. From his time onwards, how-ever, the writing of floristic works on Australia has been carried out chiefly in this country, but with much reliance on the historical material in Europe.

Flora Australiensis spawned a number of regional floras, many of which were for the most part extracted from the major work. With time and the great increase in new discoveries, the original work necessary to compile Floras increased, as shown in works such as Black (1922–1929) and Ewart (1930). Floras were produced for all States except Western Australia; that State still has no Flora, though it has produced three censuses (Gardner, 1930–31; Beard, 1965; Green, 1981). Only South Australia, Tasmania, Victoria and the Australian Capital Territory have Floras that are either recent or kept up to date with new editions. There are modern local Floras for the Sydney Region, North-eastern New South Wales, Western New South Wales and Central Australia, and a Flora of South East Queensland is currently in preparation.

Annotated Bibliography

The following bibliography lists in chronological order the most significant floristic works that have been written for Australia and major regions within it. Several early taxonomic works of interest are also included. Publication years differing from those on title-pages are given in square brackets.

Burman, Nicolaas Laurens (1768), Flora Indica. Haak, Leiden & Schreuder, Amsterdam.

Contains the first two Australian plants named under the Linnaean system—both described as ferns attributed to Java, but in fact species of *Acacia* (Mimosaceae) and *Synaphea* (Proteaceae) from south western Australia.

Linnaeus, Carl (filius) (1781), Supplementum Plantarum Systematis Vegetabilium, Generum Plantarum, et Specierum Plantarum. Braunschweig.

Contains descriptions of several Australian plants seen by Linnaeus in Banks' herbarium.

Smith, James Edward (1793)[-1795], A Specimen of the Botany of New Holland. Davis, London.

Descriptions of plants collected at Sydney by early settlers, chiefly John White.

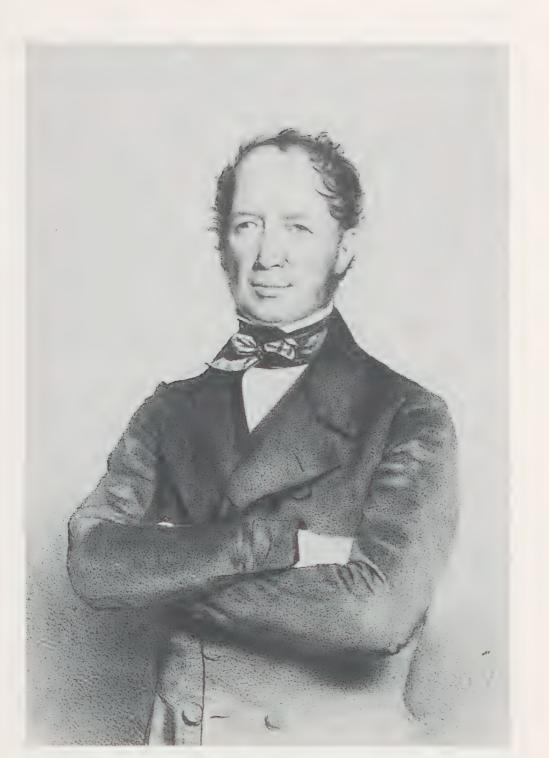


Figure 4. John Lindley (1799–1865), author of the names of many Australian plants. Portrait by J. H. Maguire, 1849; reproduced by courtesy of the Director, Royal Botanic Gardens, Kew.

Cavanilles, Antonio José (1800), Observaciones sobre el suelo, naturales y plantas del puerto Jackson y Bahía-Botánica, Anales de Historia Natural 1, 3: 181-245.

Descriptions of the plants collected at Sydney in March-April 1793 by Luis Née, a member of a Spanish expedition to the South Seas.

Labillardière, Jacques Julien Houtou de (1804-1806)[-1807], Novae Hollandiae Plantarum Specimen, 2 vols. Huzard, Paris.

Descriptions of plants collected by Labillardière and others in south-western Australia and Tasmania in 1792, arranged in the Linnaean sexual system.

Brown, Robert (1810), Prodromus Florae Novae Hollandiae et Insulae Van-Diemen. Taylor, London.

The first Flora of Australia, albeit incomplete, based largely on the extensive collections made by Brown himself during the Flinders Voyage (1801–1803) and afterwards in New South Wales and Tasmania. Only one of two projected volumes published. One of the first major works to be based on a natural system.

Candolle, Augustin Pyramus de (et al.) [1824-](1823-1873), Prodromus Systematis Naturalis Regni Vegetabilis. Treuttel & Wurtz, Paris.

One of the greatest botanical works, intended to cover the flowering plants of the world but eventually included only the dicotyledons. The principles of nomenclature used in the work became the basis for the *International Code of Botanical Nomenclature*.

- Lindley, John (1839-40), Sketch of the Vegetation of the Swan River Colony, Appendix to the first 23 volumes of *Edwards's Botanical Register*. Descriptions of the plants collected by early settlers at the Swan River, Western Australia.
- Lehmann, Johann Georg Christian (1844–1847)[-1848], Plantae Preissianae sive Enumeratio Plantarum, quas in Australasia Occidentali et Meridionali-occidentali annis 1830-41 collegit Ludwig Preiss. Meisner, Hamburg.

Almost a preliminary Flora of south west Western Australia, but without keys. Volume 2 also included many Drummond collections.

Hooker, Joseph Dalton (1855–1860)[-1859], The Botany of the Antarctic Voyage of H.M. Discovery Ships 'Erebus' and 'Terror', in the Years 1839–1843, under the Command of Captain Sir James Clark Ross, Vol. III, Flora Tasmaniae. Reeve, London.

The botanical results of the expedition's visit to Tasmania, together with an important essay on the Australian flora.

Harvey, William Henry (1858-1863), Phycologia Australica, or a History of Australian Sea-weeds, 5 vols. Reeve, London.

Colour plates and descriptions of the first major collections of Australian marine algae.

Mueller, Ferdinand Jacob Heinrich von (1858-1882), Fragmenta Phytographiae Australiae, Vols I-XII(part I).

A series containing descriptions of many new genera and species, comments on the status and relationships of many taxa, and notes on distribution.

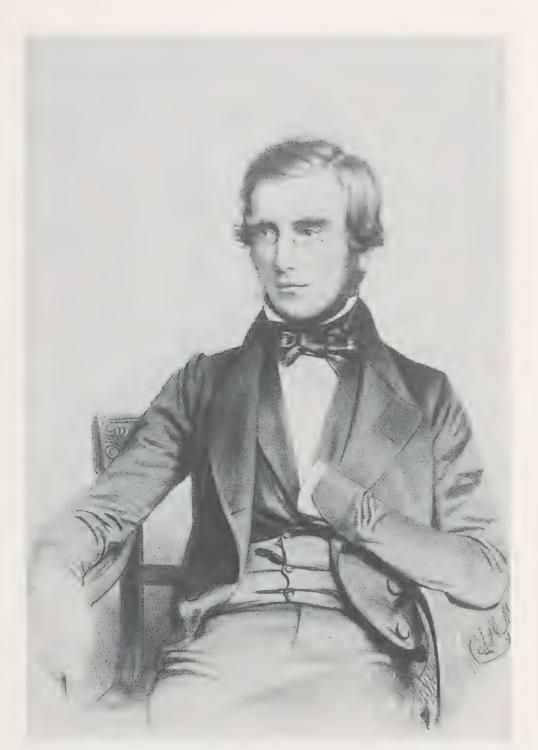


Figure 5. Joseph Dalton Hooker (1817–1911), author of *Flora Tasmaniae* (1855–1860) and of the names of many Australian plants. Portrait by J. H. Maguire, 1851; reproduced by courtesy of the Director, Royal Botanic Gardens, Kew.

Figure 6. Ferdinand Jacob Heinrich von Mueller (1825–1896), author of over one thousand papers and books on the Australian flora. Portrait from a photograph taken in 1865; reproduced by courtesy of the Director, Royal Botanic Gardens, Kew.

Mueller, Ferdinand Jacob Heinrich von [1862-](1860-1865), The Plants Indigenous to the Colony of Victoria, Vols I, II. Government Printer, Melbourne.

The first attempt at a State Flora in Australia.

Bentham, George (1863-1878), Flora Australiensis: a Description of the Plants of the Australian Territory. Reeve, London.

The standard Australian Flora for over a century.

Spicer, William Webb (1878), A Handbook of the Plants of Tasmania. Walch, Hobart.

A key to species, together with a systematic checklist and brief distributions, compiled by a clergyman. Arranged in the system of *Flora Australiensis*.

Woolls, William (1880), *Plants Indigenous in the Neighbourhood of Sydney*. Government Printer, Sydney.

A census of flowering plants and ferns with authorities, arranged in Mueller's system.

Tate, Ralph (1880), A census of the indigenous flowering plants and ferns of extratropical South Australia, *Transactions of the Royal Society of South Australia*, 3: 46–90.

A census with references to *Flora Australiensis* or Mueller's *Fragmenta*, and distribution in eight regions of the State. Arranged in Mueller's system. A supplement was issued in Vol. 4: 102–111 (1882).

Mueller, Ferdinand Jacob Heinrich von (1882), Systematic Census of Australian Plants with Chronologic, Literary and Geographic Annotations. Part I, Vasculares. Government Printer, Melbourne.

A census arranged in Mueller's own system which was based on Bentham's *Flora Australiensis*, together with original references, distribution by States, and the relevant references to *Flora Australiensis* and Mueller's *Fragmenta*.

Bailey, Frederick Manson (1883), A Synopsis of the Queensland Flora, Containing both the Phaenogamous and Cryptogamous Plants. Government Printer, Brisbane.A very concise Flora, without keys, arranged in the Bentham and Hooker system

and with a systematic index. Includes the ferns, mosses, lichens, fungi and algae, with family and generic descriptions and lists of species.

Mueller, Ferdinand Jacob Heinrich von [1886-](1885-1888), Key to the System of Victorian Plants, 2 parts. Government Printer, Melbourne.

Part I: A key with very short generic and specific diagnoses; includes a list of aliens.

Part II: A systematic list with distributions, illustrations.

Mueller, Ferdinand Jacob Heinrich von (1889), Second Systematic Census of Australian Plants, with Chronologic, Literary and Geographic Annotations, Part I, Vasculares. Government Printer, Melbourne.

A revision of the Census of 1882.

Tate, Ralph (1890), A Handbook of the Flora of Extratropical South Australia, Containing the Flowering Plants and Ferns. Education Dept., Adelaide.

An amplified key, covering 1 935 species, together with a list giving distributions. Arranged in the Bentham and Hooker system.

Moore, Charles & Ernst Betche (1893), Handbook of the Flora of New South Wales. Government Printer, Sydney.

Keys to families and genera, and amplified keys to species of flowering plants and ferns with brief generic descriptions. Based on Mueller's system.

McAlpine, Daniel (1895), Systematic Arrangment of Australian Fungi, together with Host-Index and List of Works on the Subject. Government Printer, Melbourne.

A census with original references, brief diagnoses, and distributions by States. Arranged in McAlpine's own system.

Bailey, Frederick Manson (1899-1902), The Queensland Flora, 6 vols. Diddams, Brisbane.

Based directly on *Flora Australiensis* with the addition of species described since that work and illustrations of some species. An index was issued in 1905.

Rodway, Leonard (1903), The Tasmanian Flora. Government Printer, Hobart.

A very concise Flora with many line drawings, covering 1 286 species (including aliens), based on the Bentham and Hooker system.

Diels, Ludwig & Ernst Pritzel (1904–1905), Fragmenta phytographiae Australiae Occidentalis, Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 35, 1: 55–662.

The results of extensive work in southern Western Australia, including the description of many new species.

Dixon, William A. (1906), The Plants of New South Wales. Angus & Robertson, Sydney.

Keys to families, genera and species of flowering plants and ferns, arranged in the Bentham and Hooker system.

Black, John McConnell (1909), The Naturalised Flora of South Australia. Privately published, Adelaide.

The first floristic work written in Australia on introduced plants, concisely covering 368 species with many line drawings. Arranged in the Bentham and Hooker system.

Ewart, Alfred James, assisted by James Richard Tovey (1909), The Weeds, Poison Plants, and Naturalised Aliens of Victoria. Government Printer, Melbourne.

Part I: described and discussed the more important poison plants and weeds; illustrated.

Part II: a census of 364 naturalised aliens and introduced exotics, with general distribution, country of origin and date of first record. Arranged in alphabetical order, but with a supplementary list of families arranged according to the Bentham and Hooker system.

Bailey, Frederick Manson (1909)[1913], Comprehensive Catalogue of Queensland Plants, both Indigenous and Naturalised. Government Printer, Brisbane.

A census with authorities and, for some species, supplementary notes; line and colour illustrations. Arranged in the Bentham and Hooker system.

Rodway, Leonard (1914–1916), Tasmanian Bryophyta, Vol. I, Mosses; Vol. II, Hepatics. The Royal Society of Tasmania. (First published as papers in Papers and Proceedings of the Royal Society of Tasmania).

Synopses of families and higher taxa; keys to species in genera with more than one species.

Maiden, Joseph Henry & Ernst Betche (1916), A Census of New South Wales Plants. Government Printer, Sydney.

A systematic census with bibliography of the original publication of each species and a reference to the description in *Flora Australiensis*. Arranged in the Engler system.

Ewart, Alfred James & Olive B. Davies (1917), The Flora of the Northern Territory, McCarron, Bird, Melbourne.

The only Flora yet issued for the Northern Territory. Adapted from *Flora Aust-raliensis*, with the addition of species described subsequently together with illust-rations and new locality records. Basically an expanded key, with descriptions only of the additional taxa. Includes also a tabular key to families.

Black, John McConnell (1922-1929), Flora of South Australia, Parts I-IV; 2nd edn, Parts I-III, 1943-1952, Part IV revised by E. L. Robertson, 1957, Supplement by Hansjoerg Eichler, 1965; Part 1, 3rd edn, edited by John Jessop, 1978. Government Printer, Adelaide.

A concise, original Flora with many illustrations, arranged in the Engler system. Third edition continuing.

Ewart, Alfred James (1930)[1931], Flora of Victoria. Government Printer, Melbourne.

A concise, original Flora with many line drawings, including about 2 200 indigenous species and 500 naturalised species. Arranged in the Engler System.

Gardner, Charles Austin (1930–1931), Enumeratio Plantarum Australiae Occidentalis: a Systematic Census of the Plants Occurring in Western Australia. Government Printer, Perth.

The first census of the Flora of Western Australia, arranged in the Engler system.

Cleland, John Burton (1934–1935), Toadstools and Mushrooms and Other Larger Fungi of South Australia. Government Printer, Adelaide.

Keys to families, genera and species, with concise descriptions and many illustrations. Covers *Basidiomycetes*, *Gasteromycetes*, *Heterobasidiae* and *Myxomycetes*. Classification modified from C. Rea (1922) and P. Clausen in Engler and Prantl (1928), some groups based on other authors.

Lucas, Arthur Henry Shakespeare (1936-1947), The Seaweeds of South Australia, Part I, Introduction and the Green and Brown Seaweeds; Part II, The Red Seaweeds (completed by F. Perrin, H. B. J. Womersley & J. R. Harris). Government Printer, Adelaide.

Keys, descriptions and black-and-white illustrations; arranged in the system of De Toni.

Gardner, Charles Austin (1952), Flora of Western Australia, Vol. 1, part 1, Gramineae. Government Printer, Perth.

The only part published of a proposed State Flora.

Blackall, William Edward & Brian John Grieve (1954–1980), How to Know Western Australian Wildflowers, Parts I-IV, IIIA; Parts I-III reprinted in one volume, 1974. University of Western Australia Press, Perth.

Illustrated keys to the flora of southern Western Australia.

Curtis, Winifred Mary (1956-1979)[-1980], The Student's Flora of Tasmania, Parts 1-4, 4A. Government Printer, Hobart.

A concise Flora with many line drawings. Arranged in the Bentham and Hooker system.

Flora of New South Wales (1961-1978). Government Printer, Sydney. Published as a Flora Series of Contributions from the New South Wales National Herbarium, and from 1971 as Flora of New South Wales.

An incomplete and now discontinued series, by various contributors, on a monographic basis. Based on the Engler system.

Willis, James Hamlyn (1962–1972)[1973], A Handbook to Plants in Victoria, 2 vols. Melbourne University Press, Melbourne.

A very concise State Flora in the form of an amplified key.

Beadle, Noel Charles William, Obed David Evans & Roger Charles Carolin (1962) [1963], Handbook of the Vascular Plants of the Sydney District and Blue Mountains. Privately published, Armidale.

Contains keys to families, genera and species, with generic diagnoses; includes Pteridophyta, Gymnospermae and Angiospermae. Systematic arrangement of families modified from Hutchinson (1926).

Burbidge, Nancy Tyson (1963), Dictionary of Australian Plant Genera: Gymnosperms and Angiosperms. Angus & Robertson, Sydney.

For each genus includes important bibliography, general distribution and number of species.

Beard, John Stanley (ed.) (1965), Descriptive Catalogue of West Australian Plants; 2nd edn 1970, as West Australian Plants. Society for Growing Australian Plants, Sydney.

A census of the flowering plants of Western Australia with brief notes on the habit, habitat and distribution, based on the collections at the Western Australian Herbarium.

Burbidge, Nancy Tyson & Max Gray (1970), Flora of the Australian Capital Territory. Australian National University Press, Canberra.

A concise illustrated Flora set out as amplified keys, arranged in the Engler system.

Beadle, Noel Charles William (1971-1976), Student's Flora of Northeastern New South Wales, Parts I-III. University of New England, Armidale.

A concise systematic Flora in the form of amplified keys, together with generic descriptions. Arranged in a modified Hutchinson system.

Beadle, Noel Charles William, Obed David Evans & Roger Charles Carolin (1972), Flora of the Sydney Region. A. H. & A. W. Reed, Sydney.

Revised, enlarged and illustrated edition of Beadle et al., (1962).

Chippendale, George McCartney (1972), Check list of Northern Territory plants, Proc. Linn. Soc. New South Wales 96: 207-267.

A census with abbreviated distributions, arranged in the Engler system.

Weber, William A. & Clifford M. Wetmore (1972), Catalogue of the Lichens of Australia, exclusive of Tasmania. Cramer, Germany.

An alphabetical list with references, synonyms and distributions in States.

Scott, George A. M., Ilma Stone & Celia Rosser (1976), The Mosses of Southern Australia. Academic Press, London.

The mosses of the region described or diagnosed, together with keys and many illustrations.

Costin, Alec B., Max Gray, Colin Totterdell & Dane Winbush (1979), Kosciusko Alpine Flora. CSIRO & William Collins, Melbourne.

Keys and descriptions for the vascular flora, together with descriptions of the plant communities and history of the region. Copiously illustrated in colour. Arranged in the Engler system.

Filson, Rex Bertram & Roderick W. Rogers (1979), Lichens of South Australia. Government Printer, Adelaide.

Keys and diagnoses for fruticose and foliose lichens to specific level, and for crustose lichens to generic level.

Catcheside, David Guthrie (1980), Mosses of South Australia. Government Printer, Adelaide.

Keys and descriptions, with line and colour illustrations. Arranged in the system of M. Fleischer.

Green, John William (1981), Census of the Vascular Plants of Western Australia. Western Australian Herbarium, South Perth.

A list of the native and naturalised flora of the State, with families arranged in the Engler system.

Jessop, John Peter (ed.) (1981), Flora of Central Australia. A. H. & A. W. Reed, Sydney.

A concise Flora of the arid regions of Australia, arranged in the Engler system.

Cunningham, Geoffrey McIver, William Edward Mulham, Peter Lindsay Milthorpe & John Holland Leigh (1981), *Plants of Western New South Wales*. Soil Conservation Service of New South Wales & Government Printer, Sydney.

Describes over 2 000 species, mostly illustrated in colour or black and white, with keys to some groups. Families arranged in the Engler system, the genera and species alphabetical.

1

Background

References

- Anonymous (1968), *Proposal to establish a Biological Survey of Australia*. Flora and Fauna Committee of the Australian Academy of Science.
- Beard, J. S. (1968), Towards a new Flora Australiensis, Austral. J. Sci. 31: 89-90.

Bentham, G. (1863-1878), Flora Australiensis, Vols. 1-7. Reeve, London.

Blake, S. T. (1960), A New Flora of Australia, Austral. J. Sci. 23: 173-176.

- Burbidge, N. T. (1951), Select List of Publications in Systematic Botany Available in Australia, CSIRO Division of Plant Industry, Divisional Report No. 14.
- Burbidge, N. T. (1963), Dictionary of Australian Plant Genera: Gymnosperms and Angiosperms. Angus & Robertson, Sydney.
- Burbidge, N. T. (1974), Progress towards a new Flora of Australia, CSIRO Division of Plant Industry, Annual Report 1973, 31-34.
- Burbidge, N. T. (1978), *Plant Taxonomic Literature in Australian Libraries*. Australian Biological Resources Study, Canberra.
- Churchill, D. M., Muir, T. B. & Sinkora, D. M. (1978), The published works of Ferdinand J. H. Mueller (1825-1896), *Muelleria* 4: 1-120.
- Cronquist, A. J., (1981) An Integrated System of Classification of Flowering Plants. Columbia University Press, New York.
- Daley, C. (1927), The history of Flora Australiensis, *Victorian Naturalist* 44: 63-69, 90-100, 127-138, 153-165, 183-187, 212-221, 271-278.
- Hartley, W. (1947), The functions of a Commonwealth Herbarium, Australas. Herb. News 1: 28-31.
- Jessop, J. P. (ed.)(1981), Flora of Central Australia. A. H. & A. W. Reed, Sydney.
- Ride, W. D. L. (1978), Towards a National Biological Survey, Search 9: 73-82.
- Ride, W. D. L. & McCusker, A. (1978), The extent and nature of programs in biological survey conducted primarily by State museums and herbaria, in Australian Biological Resources Study 1973-78. AGPS, Canberra.
- Ross, J. H. (1976), An analysis of the flora of Victoria, Muelleria 3: 169-176.
- Stafleu, F. A. (1967), The Flora Australiensis, Taxon 16: 538-542.
- Waterhouse, D. F. (1978), Report and recommendations made by the Interim Council of the Australian Biological Resources Study, in Australian Biological Resources Study 1973-78. AGPS, Canberra.

THE AUSTRALIAN FLORA : ITS ORIGIN AND EVOLUTION

B. A. Barlow

The plants of Australia — a unique flora?

From the time of their first discovery and study by European naturalists, the plants of Australia have been noted for their uniqueness, almost as curiosities of the Earth's vegetation. This feeling is reflected by the very name, Botany Bay, of Captain James Cook's landing site of 1770 where Banks and Solander enthusiastically made the first intensive plant collection of the continent. For the next half-century or so, the pages of botanical journals such as Loddiges' *Botanical Cabinet* and Curtis's *Botanical Magazine* were dominated by descriptions of strange new plants introduced into cultivation from New Holland. Even today the seemingly unusual features of the Australian flora are promoted, especially for the purposes of national and international tourism.

The 'uniqueness' of the Australian flora is of course a matter of interpretation. The flora is certainly unique in the sense that a very high proportion of its species are endemic to the continent. It is also distinguished by the fact that two large genera, *Eucalyptus* and *Acacia*, between them dominate almost all the plant associations of the continent. *Eucalyptus* has a very limited natural occurrence outside Australia, and most of the *Acacia* species in Australia belong to the phyllodinous group which is also almost confined to the region. In a broad sense, then, the special character or uniqueness of the Australian flora is generally expressed in terms of plant communities dominated by *Eucalyptus* and *Acacia*, and including other genera and species which do not occur anywhere else.

At a higher taxonomic level the uniqueness of the Australian flora virtually disappears. Almost all the angiosperm families in Australia occur widely elsewhere. Conversely, almost all the larger families of the world occur in Australia. In this sense, the Australian flora is simply a typical part of the world flora and the special character of Australian plants at lower taxonomic levels has to be explained in terms of the geographical and climatic conditions under which the continental flora has developed.

The early phytogeographers, floristic 'elements', and the invasion theory

A century of J. D. Hooker

It is not surprising that the recognition of a unique character in the Australian flora quickly led to questions and speculation on the origin of the flora. Since Australia is an island continent, how did this remarkable flora get here? Where did it come from, and when? The first major work on this topic, which provided the prime impetus for theories on the origin and evolution of the flora for a century to follow, nearly coincided, in fact, with the long-awaited publication of Darwin's *Origin of Species.* This work, by the eminent English botanist J. D. Hooker, took the form of an introductory essay to a Flora of Tasmania (Hooker, 1860). Hooker had an excellent general knowledge of the entire world flora, and had already acquired a detailed knowledge of the floras of India and Africa. In the introductory essay he analysed the floristic records not just of Tasmania, but of the whole of Australia. He integrated the unpublished records known to him with the published ones in a classical phytogeographical analysis in which the Australian flora was broken down into 'elements' based on taxonomic affinities with the floras of other regions. For example, Hooker pointed out that many Indian plant genera were represented in northern Australia, in comparable monsoon habitats, and that Malaysian rainforest genera were represented in the appropriate habitats of tropical eastern Australia. In temperate south-eastern Australia he recognised that the floras of cool rainforest and alpine habitats shared genera with both New Zealand and temperate South America. At the family level, he noted common representation in the floras of south-western Australia and South Africa.

Hooker thus identified three elements in the Australian flora, and it is not surprising that there is a strong ecological as well as taxonomic distinction between them. These were (1) an autochthonous (Australian) element consisting mainly of endemic or almost endemic taxa occupying temperate open forest, woodland and heath habitats and mainly xeromorphic in character, (2) an Indomalayan element represented in tropical and subtropical rainforest and monsoon habitats and showing taxonomic affinity with plants of similar habitats in the Indomalayan region, and (3) an Antarctic element represented in temperate rainforest and alpine habitats, characterised by Nothofagus and showing taxonomic affinity with plants of New Zealand and temperate South America in particular. Hooker also noted the presence of cosmopolitan plant groups, mostly herbaceous, and widely distributed within Australia. It can hardly be said that Hooker drew any firm conclusions as to the actual history of the Australian flora, but his phytogeographical analysis was certainly the basis of the theory generally accepted for the next century. This theory was based on the concept of colonisation of the Australian land mass by separate invasions of different floras, perhaps at different times.

The 'invasion' theory depended on several assumptions. First, it was assumed that the earth's geography was fixed, so that Australia's position relative to other continental land masses had not changed. It was noted, however, that changes in sea level and/or tectonic movements in the earth's crust could have created land bridges between Australia and other regions. Secondly, it was recognised, from the comparable plant associations in Australia and elsewhere, that whole plant communities had migrated together. In fact, there was relatively strong resistance to the idea of individual plant migration through long-distance dispersal. Thirdly, it was assumed that the flowering plants could not have arisen in Australia, and must therefore have been established in Australia as colonisers from outside. Reasons for this belief were rarely given, and one suspects that it may simply have been concluded that Australia was too insignificant a place to have been the ancestral home of the angiosperms.

The invasion theory for the origin of the Australian flora was compatible in some respects with the theories of the time for the origin of the Australian vertebrate fauna, dominated as it is by marsupials. The theories thus gained some strength from mutual support. For plants, the invasion theory was generally developed along the following lines.

The first angiosperm colonisers probably entered Australia in Cretaceous times (see Table 2). The fossil record showed that even though this may have been relatively early in the history of the angiosperms, the major flowering plant families had already differentiated. During this time Australia was connected to Asia by a much more extensive land bridge across what is now the Indonesian Archipelago, and the first angiosperm invasion probably came, therefore, from the north-west. The Indomalayan land bridge was thought to have broken up at the end of the Cretaceous period, over 50 million years ago (50 m.y. BP), leaving the Australian angiosperm flora of the time to evolve in isolation. Since the previous vegetation of the continent consisted of gymnosperms and lower land plants, the first angiosperm flora probably evolved under conditions of low competition, and therefore of low selection pressure, and underwent a period of rapid evolutionary diversification to occupy the broad spectrum of available habitats. Radiation in isolation thus gave rise to the diverse and unique autochthonous element with its high endemism. The autochthonous element came to be thought of as the oldest component of the Australian flora, and has been commonly referred to as the Palaeoaustralian element by biogeographers of the 20th century.

The Indomalayan and Antarctic (or Subantarctic) elements were thought of as the results of later angiosperm invasions of the region. The later invaders would have encountered an established and adapted angiosperm flora, and would have been confined by competition to habitats to which they were already well adapted. These two elements have thus persisted with much less change and, as a consequence, show a more obvious taxonomic affinity with their ancestral floras in other areas. The Indomalayan element was of course seen as the result of a later migration from the tropical north and west, perhaps over the same land bridge as existed for the first invasion. The Antarctic element was thought to have arrived over a land bridge from the south-east, perhaps now represented by the South Tasman Ridge and Macquarie Rise, at a time when Antarctica was free of an ice-cap and extensively vegetated by a southern temperate flora.

This interpretation of the history and relationships of the Australian flora was followed, in whole or in part, by a succession of authors. Tate (1888) applied it particularly to an analysis of the arid zone flora. Diels (1906), who had collected in Western Australia under the sponsorship of Engler, developed this approach rather precisely and concluded that the South West Botanical Province of Western Australia was the centre of origin of the Australian element. Perhaps the first author who seriously attempted to correlate botanical and geological histories of the Australian region, however, was Andrews (1916), who accepted the phytogeographical divisions of the flora and was the first to suggest that soil properties may have a bearing on distribution of Australian floristic elements. He suggested that scleromorphy, which characterises much of the Australian element, was an adaptive response to low levels of soil nitrogen and calcium. This idea has been extended by a number of later authors and is further discussed below.

Schwarz (1928) produced a phytogeographical analysis of the northern Australian flora and recognised most of the elements accepted by earlier authors with the exception of the Antarctic element. Like Hooker (1860), he drew attention to the close similarity at the generic and even specific level of some plant associations of India and northern Australia. This similarity has subsequently been documented by Specht (1958) and has assumed an important place in current biogeographical theories (see below).

The integration of soil and climatic data with plant distribution and evolution was further developed by Crocker and Wood (1947). Their attention, however, was focussed on the Australian element, its Tertiary history and the Recent cycles of aridity which have influenced the evolution and distribution of an arid zone flora. This topic is also discussed in more detail below.

The phytogeographically-based invasion theory culminated in the monumental work of Burbidge (1960) on the phytogeography of the Australian region. As a result of her very detailed analysis of the floristic composition of Australia's major vegeta-

tion zones, she accepted the idea of distinct floristic elements. She accepted that the autochthonous element may have been derived from an immigrant flora although she suggested alternatively that it may have 'developed from a pre- or early Cretaceous (Australian) flora of an unknown type'. She described north-east Queensland and Tasmania as important 'portals' for the Indomalayan and Antarctic elements respectively. While she accepted the idea of a later invasion of an Indomalayan flora from the north, and of an Antarctic element from the south, she did express doubts about the existence of a former land bridge southwards from Australia.

The impact of the Smith-White school of karyoevolution

The prolific and pioneering karyological studies of Smith-White (1948a, 1948b, 1950, 1954a, 1954b, 1955, 1959) generated theories of genomic evolution which made a major contribution to the invasion theory. His work covered major families of the flora, and particularly of the Australian element, including Myrtaceae, Rutaceae and Epacridaceae. Contemporary studies by Smith-White's students extended to Proteaceae (Ramsay, 1963), Casuarinaceae (Barlow, 1959), Goodeniaceae (Peacock, 1963), Loranthaceae (Barlow, 1963) and Lobeliaceae (James, 1963). At that time Smith-White accepted the idea that the angiosperms originated outside Australia, and that the Australian flora was derived from a number of immigrant stocks. He strongly supported the ideas that an ancient palaeoaustralian element had evolved in isolation under conditions of low selection pressure, and that the Indomalayan element was derived from a later immigration from the north. He was less inclined to accept the idea of a major Antarctic element, and particularly of an Antarctic land bridge, but did postulate that the alpine flora was derived partly by long-distance dispersal from South America and Antarctica.

In support of this theory, Smith-White (see especially 1954b, 1959) drew attention to recurring patterns of chromosome number variation in several of the families mentioned. In the woody families Myrtaceae, Rutaceae, Proteaceae, Epacridaceae and Casuarinaceae, and to a lesser extent in the herbaceous families Goodeniaceae and Lobeliaceae, he pointed out that groups which were endemic to Australia, or nearly so, exhibited considerable diversity in basic haploid chromosome number when compared with related groups distributed beyond the Australian region. The situation in families Myrtaceae and Rutaceae is summarised in Table 1. The patterns of change in different families were different, but it was generally found that different basic haploid numbers characterised genera rather than species. Within genera (or comparable supra-specific groups) basic numbers were usually constant but polyploidy occurred, rarely in the case of some woody families and frequently in the herbaceous ones.

Smith-White (1954b, 1959; see also review by James, 1981) thus postulated that in the evolution of these families an early genomic instability was later replaced by an extreme stability. Following the initial angiosperm radiation, outside Australia, in which the chromosome numbers of the various angiosperm families were established, there was a secondary cycle of change in the differentiating palaeoaustralian element after the first angiosperm colonisation of Australia. In this phase of expansion, under conditions of low competition and reduced selection pressures, 'genetic experiments, including experiments in structural change and chromosome number' would have been favoured. The karyological data were thus consistent with the phytogeographical theory for the origin of a palaeoaustralian element. During later phases in the history of the flora, including the entry of the Indomalayan element and the evolutionary responses to Tertiary climatic changes, only a third-order cycle of genomic evolution would have been possible. In this phase, under conditions of strong competition and high selection pressures, drastic genomic rearrangements were not tolerated and genomic evolution was limited mainly to euploid changes, within established genera, on basic chromosome numbers which were now fixed.

This mass of consistent karyological data undoubtedly supported the invasion theory at a time when emerging geophysical data were starting to cast greater and greater doubts upon it. The subsequent collapse of the three-element, three-invasion theory was thus a rather dramatic event in the history of phytogeography in Australia. It is noteworthy that a relatively simple reinterpretation of the karyological data, in terms of current principles of population genetics and by the original authors of the data, now adds an important element of detail to current ideas on the origin of the Australian flora.

The challenge to the invasion theory

There seems to have been little opposition, among the earlier phytogeographers, to the three-element invasion theory. Gardner (1944) opposed it only in the sense that floristic elements could not be distinguished at the family level. It seems that only Herbert (1932, 1935, 1950, 1960, 1964, 1967) consistently denied the theory on floristic and ecological grounds, although he was supported in part by Beadle (1966). Herbert argued the existence of an ancient palaeotropical flora which was already established in Australia at least as far back in time as the early Mesozoic. Through comparisons between modern plant associations, in respect of distribution and composition, he argued that floristic 'elements' were merely the result of climatic and edaphic 'sifting' of the ancestral flora. He strongly opposed the idea of migration

Table 1. Distribution of chromosome numbers in the Myrtaceae and Rutaceae (modified from Smith-White, 1959), shown as number of species for subfamilies, tribes and subtribes. Asterisks (*) indicate groups endemic to Australia or nearly so.

		Gametic chromosome number												
	6	7	8	9	10	11	12	13	14	16 32	17	18 27 36 54	19	22 44
MYRTACEAE														
Chamelaucoideae Chamelaucinae*	15	1	5	9		10				1		2		1
Other Chamelaucoideae						4								
Leptospermoideae						89								7
Myrtoideae						6								6
RUTACEAE														
Rutoideae Boronieae*		2	2	10		5	1	2	12	19	1	15	2	
Other Rutoideae				2								11	4	,
Aurantoideae				44								14		
Flindersioideae				4								2		

across land bridges, pointing out the need for suitable habitats within the bridge for migrating species and emphasising the sifting effect which such bridges would have on community structure. The current theories of Australian biogeography to some extent vindicate Herbert's views.

The main weakness in the invasion theory was of course the lack of geophysical evidence for the required land bridges. A Cretaceous land connection between Australia and south-east Asia was hypothetical, supported primarily by the existence of the present-day Indonesian Archipelago. The only evidence for an Antarctic bridge was the presence of submarine rises to the south and east of Australia, but there is nevertheless a broad gap of deep ocean between Australia and Antarctica. The other problem, discussed in more detail below, was that the fossil record of angiosperms in Australia, meagre though it was, produced no evidence that the autochthonous element was older than the Indomalayan or Antarctic. Assemblages containing plants of the latter stocks were recorded from widely dispersed sites in Australia extending back in time to the early Tertiary period, thus tending to support the idea of an ancient mosaic of vegetation as Herbert had envisaged it.

Plate tectonics and biogeography

Continental displacement and its implications

Continental displacement (continental drift) has existed as a valid explanation of world vegetation patterns for some time, and was preferred by such plant geographers as Cain (1944) and Good (1947). On theoretical grounds these authors were strongly opposed to long-distance dispersal and were attracted to the idea that whole floras could be exchanged across united continental masses. Nevertheless the theory remained in general disfavour primarily because it involved an element of circular reasoning in that the main supporting arguments came from plant distributions. More recently, discoveries of mid-ocean ridges, sea-floor spreading and palaeomagnetism have provided a geophysical basis for the lateral displacement of continental plates and have led to a ready acceptance of the theory of plate tectonics in biogeographical analysis.

For a land mass like Australia, which is relatively isolated geographically, the implications of continental displacement are very great. An immediate explanation is apparent, for example, for the existence of closely similar plant communities, with identical ecological relationships, in regions now separated by large ocean barriers. We can explain how a tree genus can occur in widely disjunct regions with the same genera of understorey plants in both regions, and with the same genera of parasites and predators. There is a general consensus that the current theory for the origin of the Australian flora, with its supporting evidence from the fossil record and from palaeoclimatic data, is quite consistent with the current models, from purely geophysical data, of the geographical history of the continental masses.

A brief account of the physical basis and biological consequences of continental displacement is given below, as a preamble to a general account of current theory on the origin of the Australian flora.

The theory of plate tectonics

The theory of plate tectonics, which forms the basis of all palaeogeography and of most modern biogeography, is quite simple and now lies very much in the realm of popular science. Its basis is the observation that earthquakes occur mostly in linear zones on the earth's surface, and that these zones enclose areas in which earthquakes do not occur. The aseismic regions of the earth's crust are called plates, and it is now known that it is the relative motion between these plates which causes deformation and earthquakes at their margins. A single plate often comprises both oceanic and continental regions, and the earth's surface is entirely covered by crustal plates in motion relative to each other.

There are three types of plate boundary. First, two plates may be moving apart. Material from below the crust upwells, often as massive outpourings of lava, and adds to the margins of the plates forming a ridge of young crustal material. Secondly, two plates may be colliding, in which case one plate may be thrust under the other, forming a deep trench, with the crustal material sinking back into the earth's mantle. Thirdly, two plates may slide past each other without formation or destruction of plate material, forming transform faults. Folded mountain belts parallel with the margins of plates are often the results of collisions, or simply 'bow waves' of continental movement.

The consequence of these processes is that through geological time the relative positions of the continents have changed as their plates have moved. In particular, there is evidence that at one or more times in the past the continents have been grouped into one or two supercontinents, and that these stages have been followed by rifting and separation of entire continental masses. Complementary evidence is available from a number of sources, including matching of continental margins and midocean ridges, tracing of polar wandering paths from palaeomagnetic studies, and the actual measurement of the rate of new crust formation.

Geography of the past

There is now general agreement on Australian palaeogeography, with current studies mainly resolving questions of detail. In the Jurassic (see Table 2) the southern supercontinent comprised what are now South America, Africa, Madagascar, India, Australia, Antarctica and New Zealand (Fig. 7). Rifting began in the middle/late Mesozoic with a separation of South America and Africa, progressing from north to south. Other relatively early separations included Madagascar and India, and also the late Cretaceous separation from Australia of New Zealand and the Lord Howe Rise. By early Tertiary time the southern lands may have had a configuration like that shown in Fig. 8, with Australia still joined to Antarctica on a broad front, and South America and Antarctica retaining their narrow connection.

Possible geographical relationships between Australia and Antarctica during the Tertiary period are illustrated by Crook (1981) and Kemp (1978, 1981). Rifting was initiated in the Palaeocene (Fig. 9), and by the middle Eocene had formed a wide gulf opening westwards (Fig. 10). Crook (1981) suggested that the first opening was a narrow seaway which completely separated the two land masses except for a possible residual contact at the south-western corner of Australia. A more widely accepted view, however, is that Australia and Antarctica remained joined by the South Tasman Rise (Fig. 10), and that the connection probably persisted until late Oligocene time, when Australia was entering lower latitudes (Figs 11, 12). The narrow land connection between South America and Antarctica was also maintained at least until this time (Jardine & McKenzie, 1972).

The northward movement of Australia continued through Miocene time (Fig. 13), and subsequently, at rates as high as 7.4 cm per year (Weissel & Hayes, 1974). The northern margin of the Australian Plate at that time was formed by what is now southern New Guinea. In the mid-Miocene, about 15 m.y. BP, the Australian Plate came into contact with the Sunda island arc system, forming the present New Guinean land mass and possibly also creating a relatively continuous land connection with south-east Asia (see page 46 for further details). The continued northward movement

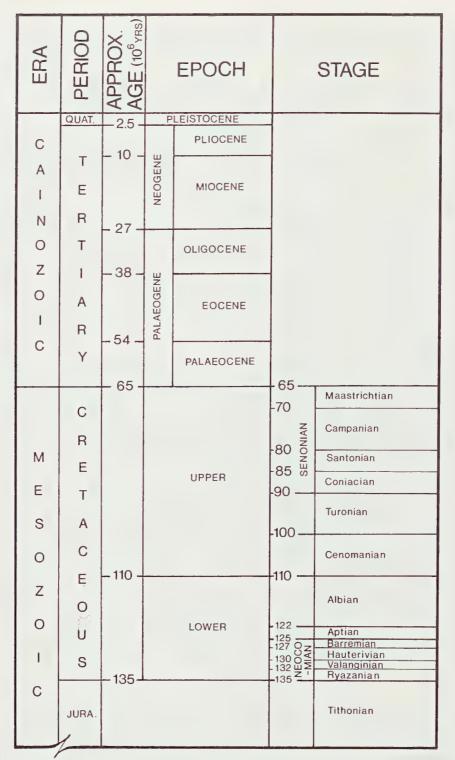


Table 2. Geological time scale since the Jurassic. (After Raven & Axelrod, 1974; reproduced by permission from Ann. Missouri Bot. Gard. 61: 559)

of the Australian plate has subsequently produced a disjunction from the Sundaland plate (Specht, 1981c), recreating an ocean barrier between the two.

Climates of the past

Palaeoclimates have been determined partly by palaeogeography and partly by the global climate, particularly the extent of polar ice-caps (Kemp, 1978). There is an element of circularity in the procedure for measuring palaeoclimates in the sense that palaeotemperatures, which are used to explain plant distribution, are determined from analysis of fossils, but these palaeotemperature data are determined mainly from oxy-gen-isotopic analysis of planktonic foraminifera and refer to the sea surface and bot-tom temperatures. They are thus remote from terrestrial fossil data, yet they do have considerable bearing on the interpretation of terrestrial palaeoclimates.

At the beginning of the Tertiary period, seas in high latitudes were much warmer than they are now, perhaps with surface temperatures of 18–20°C at latitudes higher than 60°S (Kemp, 1978). There is no evidence of an ice-cap on Antarctica at that time. The polar high pressure system would have been much reduced in intensity and extent, and a broad zone of westerly winds would have influenced southern Australia (Fig. 9). Further north, weak and erratic circulation patterns associated with warm sea surfaces would have resulted in deep inland penetration by rain-bearing winds. These conditions may have persisted through the Eocene, with water temperatures on the Campbell Plateau dropping from 20°C to 10°C and some glacial activity being

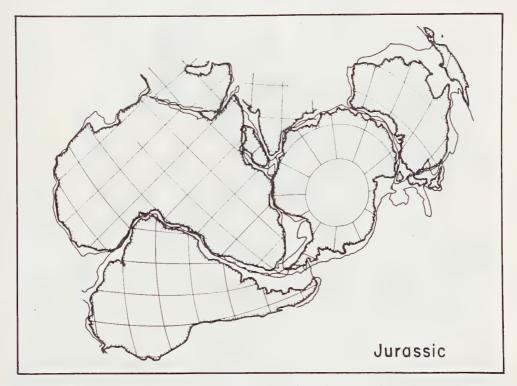


Figure 7. Fit of the Gondwana continents during the Jurassic, prior to breakup. (From Raven & Axelrod, 1974, after Smith & Hallam, 1970; reprinted by permission from Ann. Missouri Bot. Gard. 61: 540)

initiated in Antarctica (Fig. 10). However even these conditions were warmer than those of the present. The lowering of temperatures would have been associated with a lowering of precipitation.

The final separation of Australia and Antarctica in the Oligocene initiated circumpolar oceanic circulation, reducing heat transport from equator to pole and increasing the temperature gradient between those regions (Kemp, 1978). Sea surface temperature of the Campbell Plateau dropped to 6–7°C and probably nearly to freezing near Antarctica. The westerly wind systems would have extended further northwards as a result of these developments (Figs 11, 12). A simple explanation of the influence of conditions in Antarctica on the climate of Australia is given by Kemp (1981).

Figure 8. Reconstruction showing early Tertiary configuration of Gondwanan continents. Dots show active plate boundaries at that time. (From Jardine & McKenzie, 1972; reprinted by permission from *Nature* 235: 22. © 1972, Macmillan Journals Ltd.)

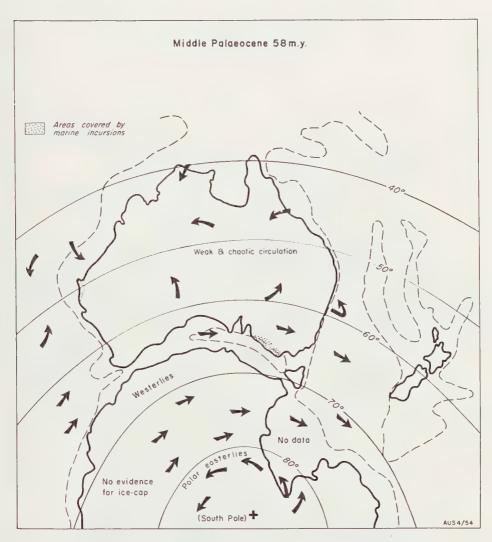


Figure 9. Palaeogeographical reconstruction of the Australian region for the middle Palaeocene (58 m.y. BP), with tentative atmospheric palaeocirculation indicated by heavy arrows. Shallow seas transgressing the present continental margin are shown in stipple. (From Kemp, 1978; reprinted by permission from *Palaeogeography, Palaeoclimatology, Palaeoecology,* 24: 180)

10

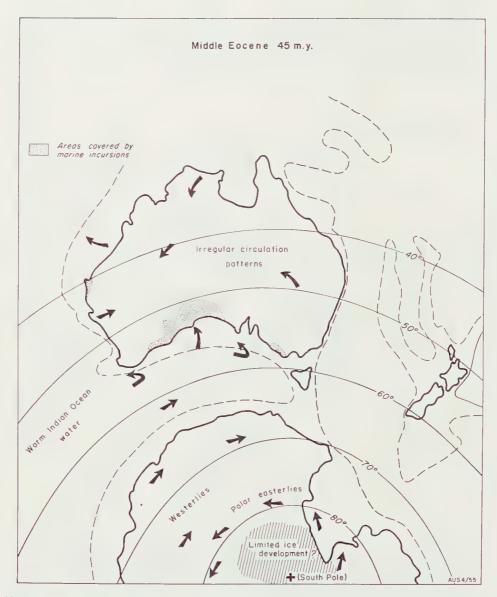
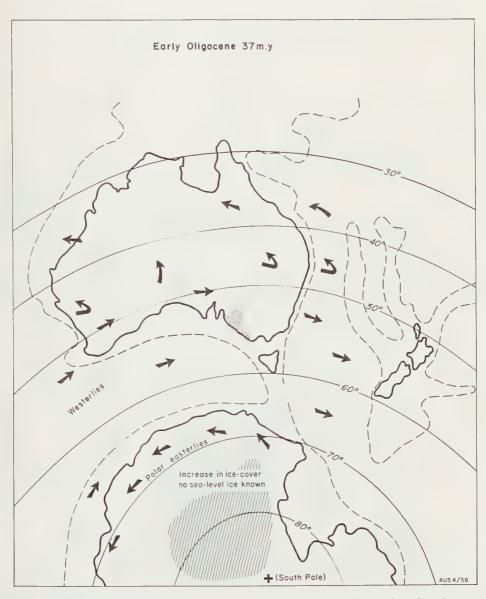



Figure 10. Palaeogeographical reconstruction of the Australian region for the middle Eocene (45 m.y. BP), with tentative atmospheric palaeocirculation shown by heavy arrows. Transgressive seas shown in stipple. (From Kemp, 1978; reprinted by permission from *Palaeogeography, Palaeoclimatology, Palaeoecology,* 24: 184)

Figure 11. Palaeogeographical reconstruction of the Australian region for the early Oligocene (37 m.y. BP), with tentative atmospheric palaeocirculation shown by heavy arrows. Transgressive seas shown in stipple. (From Kemp, 1978; reprinted by permission from *Palaeogeography, Palaeoclimatology, Palaeoecology,* 24: 192)

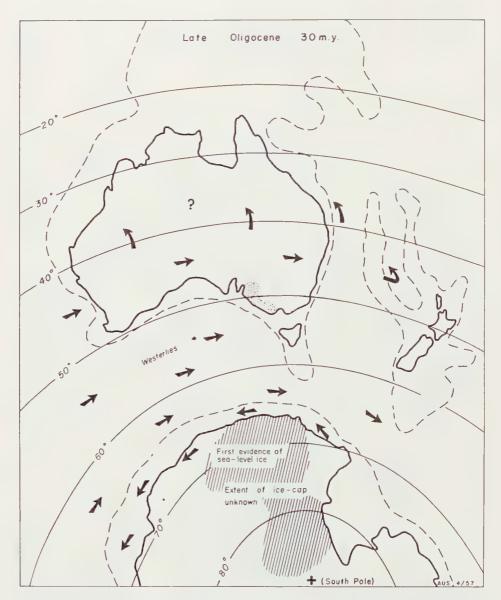


Figure 12. Palaeogeographical reconstruction of the Australian region for the Oligocene (30 m.y. BP), with tentative palaeocirculation patterns shown by heavy arrows. Transgressive seas shown in stipple. (From Kemp, 1978; reprinted by permission from *Palaeogeography, Palaeoclimatology, Palaeoecology,* 24: 193)

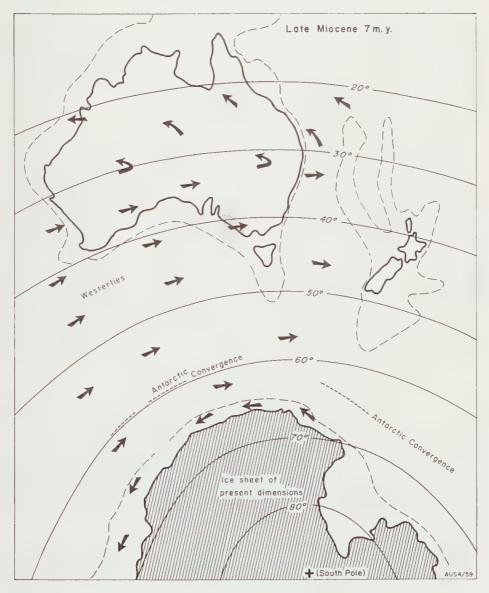


Figure 13. Palaeogeographical reconstruction of the Australian region for the late Miocene (7 m.y. BP), with tentative atmospheric palaeocirculation patterns shown by heavy arrows. Transgressive seas shown in stipple. (From Kemp, 1978; reprinted by permission from *Palaeogeography, Palaeoclimatology, Palaeoecology*, 24: 198)

By late Miocene time the Antarctic ice sheet had reached its present dimensions (Kemp, 1978). Atmospheric circulation increased in intensity, perhaps exceeding that of the present. In parts of Australia levels of precipitation would have fallen and the first onset of a general aridity may have occurred (Kemp, 1978; Bowler, 1981; see below). There is evidence of an ice-surge at the Pliocene boundary, about 5 m.y. BP (Kemp, 1978; Trusswell & Harris, 1981). This would have produced a lowering of temperatures in Australia and an increase in dry anticyclonic circulation. A Pliocene warming followed, then a second cooling in the late Pliocene. These cycles were part of a trend towards cycles of aridity which began in the middle Miocene and have become increasingly frequent up to the present time (Specht, 1981c). Late Cainozoic climates in Australia are discussed in more detail below.

Biological consequences of plate tectonics

The effects which continental displacement have had on plant distributions are obviously related to the dispersibility of the plants. Angiosperm dispersibility naturally covers a wide spectrum, but a surprising number of plant geographers have taken a narrow view of the effective limits of plant dispersibility. For example, the Hawaiian Islands have never been close to continental land and, since their origin, must have been colonised entirely through long-distance dispersal (Carlquist, 1966; Baker, 1967). There is no physical evidence to support the view that land bridges have been involved although a number of workers, including Croizat (1952) and van Steenis (1963), have argued their former existence. At least 272 immigrant ancestral species are required to explain the 2 000 indigenous species in the islands today (Fosberg, 1948).

At the other extreme are families or genera with very limited dispersibility, for which any zone of unfavourable territory represents an absolute migration barrier. They often prove to be strongly continental in their distributions. Groups close to this end of the spectrum include the Proteaceae (Johnson and Briggs, 1975), *Nothofagus* and the southern gymnosperms (Preest, 1963) and the Loranthaceae (Barlow, 1981a). In the latter case the family has not even recolonised Tasmania (see below), and Keast (1958) has shown that although the seeds are bird-dispersed the likely dispersal range is very small. Similarly, species dispersal for this family across Torres Strait has probably been mainly over continuous land (Barlow, 1972).

For many taxa with high dispersibility, the positions of the continents have little effect on distribution, and plate tectonics may be unimportant. Highly dispersible groups are well represented among coastal habitats and a number of cosmopolitan families are common in such habitats. For groups of moderate dispersibility, changes in the proximity of drifting land masses can obviously make or break migration routes. For groups of low dispersibility, migration only over continuous land can be postulated.

These and other consequences of plate tectonics have been well summarised by McKenna (1972). Epicontinental flooding on a world wide scale may have occurred in lowlands due to water displacement at times of spreading maxima, thus causing mass extinction which would have been followed by recolonisation and adaptation at times of reversal. Indeed there was a great spread of epeiric seas in the Australian region associated with the Cretaceous fragmentation of Gondwanaland (Coleman, 1980). The effects of continental rifting would be gradual but quite profound, with the first stage little more than a major extension of coastline (cf. the Red Sea). With widening of the rift, however, continental climates would be moderated and changes in oceanic circulation could lead to general changes in climate. Climatic changes would also be predicted where a drifting block moved through different climatic zones. These processes would obviously result in massive changes in plant habitats and thus in adaptation, extinction and/or migration. Separation of continental blocks would also be a major cause of disjunct distributions and the evolution of vicarious pairs of taxa.

Similarly, collision between continental plates would evoke a gradual rather than an abrupt biological response. Ecologically, marine habitats would be destroyed and new upland or alpine habitats created, again leading to extinctions and adaptation and colonisation respectively. Floristically, exchange between the approaching floras would commence with colonisation by the more highly dispersible taxa while the blocks were still well apart. Competition and adaptation would thus occur progressively even before contact, so that a massive 'invasion' of one biota into the area of another might be unlikely to occur as a single event. Upon actual contact, a filtered migration along a corridor might occur, followed by general exchange across a broad front when contact became extensive, and by colonisation of the new habitats created. Given the time periods involved, competition for niche space could remain high throughout a collision event.

McKenna (1972) also raised the possibility of drifting continental blocks ('Noah's Arks') resulting in a one-way transfer of biota from one area, through rifting, to another area on collision. Again, the collision effects would be gradual, with the Noah's Ark biota probably greatly modified even before collision occurred.

The implications of continental movements for the interpretation of fossil data are obvious, since fossil assemblages can be moved considerable distances from their place of formation. Additional geophysical processes which also make it necessary to consider the location and conditions of deposition include linear transform faulting and latitudinal tilting as a result of polar wandering. Lateral motion along the Alpine Fault in New Zealand, for example, is estimated to be 1 200 km (Griffiths & Varne, 1972).

The new biogeography of Australia

Age and origin of the angiosperms

The flowering plants are usually assumed to be monophyletic, largely because certain basic features such as double fertilisation and triploid endosperm are unique to the group and constant within it. A corollary to this theory is that the angiosperms have radiated from a single place of origin. However several authors have argued that there are several archetypes of the angiosperms and consequently have concluded that they are polyphyletic. For example Krassilov (1977) has suggested that three major Cretaceous angiosperm stocks, viz., Hamamelidales, Laurales and monocotyledons have been derived independently from three Mesozoic 'proangiosperm' seed plant groups respectively, viz., Dirhopalostachyaceae, Caytoniales and Czekanowskiales. Other authors, such as Cronquist (1968), have expressed some uncertainty and have described the various angiosperm features as 'having evolved separately in different lines'.

While the question of the origin of the angiosperms is still unresolved, there is no doubt that they had achieved a wide distribution well before the rifting and separation of the supercontinents. Monosulcate pollen, which is characteristic of the monocotyledons and of the Annonales and Nymphaeales among the dicotyledons, is known from Barremian (Lower Cretaceous) beds in Europe and North and South America (Raven & Axelrod, 1974). Tricolpate pollen, which is characteristic of all other dicotyledons, is also known from beds of similar age at several widespread localities, and an origin in western Gondwanaland has been suggested for this group

by Brenner (1976) and strongly supported on several grounds by Raven and Axelrod (1974). By mid-Cretaceous times angiosperms were widespread, their pollen had become more abundant in the record than fern spores and gymnosperm pollen, and a few modern families may have existed. By the end of the Cretaceous, numerous modern families and even genera were definitely present. Thus many present-day groups were present 90 m.y. BP when direct exchange between Africa and South America was still possible. All but the most recently derived families existed when direct migration between South America and Australia via Antarctica was still possible 45 m.y. BP (Raven & Axelrod, 1974). This interpretation bears out the conclusions on southern hemisphere plant distribution reached much earlier by Camp (1947, 1952).

Current evidence suggests that the angiosperms did not originate in Australia but reached the region by migration from other parts of Gondwanaland. The oldest known Australian angiosperm pollen flora significantly post-dates that of northern Gondwanaland and consists of monosulcate types of early Albian age (Dettmann, 1981). Tricolpate forms date from the middle Albian, and the sequential introduction of pollen types is later in Australia than in northern and western Gondwanaland. Dettmann (1981) has concluded that the introduction of angiosperms into Australia was an Albian event, c. 120 m.y. BP, and was perhaps 5 million years later than the inception of angiosperms in northern Gondwanaland and southern Laurasia.

The Gondwanan flora in Australia

The original angiosperm flora of Australia was presumably derived from immigration over broad fronts and probably already showed a wide range of ecological adaptation. Raven and Axelrod (1974) have suggested that a subtropical migration route from Africa to Australia via India may have persisted until middle-late Cretaceous times (Fig. 14), and that until the late Cretaceous there may still have been exchange between Australia and the rifting Madagascar and India. Even after this migration route was broken a south temperate route to Australia from South America via Antarctica remained, perhaps until the Oligocene (Raven, 1979). At this time there were forests of *Nothofagus* and southern gymnosperms, Proteaceae and Myrtaceae to at least 77°S latitude in Antarctica (Kemp & Barrett, 1975; Thomson & Burn, 1977).

A scenario is thus presented for an Australian flora at the beginning of the Tertiary period, with Australia still broadly connected to Antarctica but well separated from Africa, New Zealand and India. Climatic conditions were warm and moist; high rainfall was general in southern Australia and extended through the interior. Temperatures were high in northern and inland Australia (Wopfner et al., 1974) and warm $(20-25^{\circ}C)$ in southern Australia. The vegetation was more or less uniform structurally, with closed subtropical rainforest being more or less continuous. Some ecological zonation probably existed, with limited differentiation in floristic composition between the warmer and more temperate habitats. This is probably the only sense in which there has been a pan-Australian flora, a concept first proposed by Diels (1906) and later accepted by several authors after it was developed by Crocker and Wood (1947). The pan-Australian flora was Gondwanan rather than autochthonous as visualised by many of these authors. The southern beech Nothofagus was already widespread, as were plants referable to Araucaria, Podocarpus, Dacrydium, Anacolosa (Olacaceae), Cupanieae, Myrtaceae, Nipa and several Proteaceae.

Critical studies of a number of plant groups have further strengthened the argument for an ancient Gondwanan element in the Australian flora. Not unexpectedly, there is a strong Gondwanan character in certain Australian fern groups and in the gymnosperms (Page & Clifford, 1981). Ancient establishment in the Australian flora has also been postulated for the Myrtaceae, Proteaceae and Restionaceae (Johnson & Briggs, 1975, 1981), Loranthaceae (Barlow & Wiens, 1971; Barlow, 1981a), *Rhododendron* and *Vaccinium* (Specht, 1981c), and even for such an advanced and specialised group as the Poaceae (Clifford & Simon, 1981). Raven and Axelrod (1974) have listed many families in 15 orders, the ancestors of which may have reached Australia in Cretaceous times by a subtropical route from Africa. These include, among others, Goodeniaceae, Casuarinaceae, Epacridaceae and Pittosporaceae.

The Tertiary evolutionary history of the Australian flora has thus been one of differentiation from the original Gondwanan stock. The process occurred under conditions of increasing geographical isolation from the time of Australia's separation from Antarctica in the early Tertiary until its contact with the Sunda plate in the Miocene. It was in response to progressive climatic changes until, in the Miocene, conditions were established which were comparable with those of the present. The climatic changes, involving decreasing mean temperatures, increasing intensity of oceanic circulation and of atmospheric circulation, regional decreasing precipitation and increasing seasonality, would have resulted in an increase in the level of habitat differentiation. The earlier pan-Australian flora would have thus undergone differentiation into a spectrum of ecological associations.

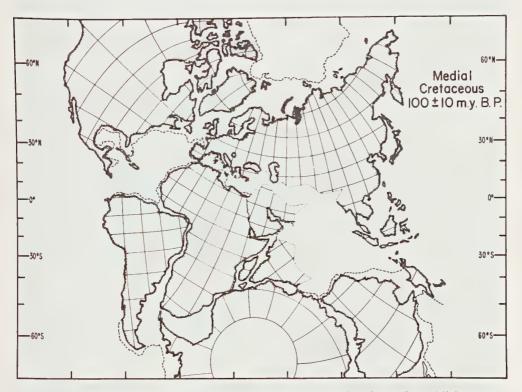


Figure 14. Conformation of the southern continents at the time of establishment of the Gondwanan flora in Australia. (From Raven & Axelrod, 1974; reprinted by permission from Ann. Missouri Bot. Gard. 61: 541)

The autochthonous element of the Australian flora thus emerges as the derived one rather than the most ancient one. It simply comprises those components of the flora which have undergone considerable evolutionary change, under conditions of geographical isolation, to produce typically Australian taxa with high levels of endemism. The so-called Indomalayan and Antarctic elements are now seen as comprising, at least in part, the present-day survivors of the Gondwanan flora which have been conservative in the evolutionary sense.

The major floristic composition of the Australian vegetation was thus laid down by the middle of the Tertiary period. It is Gondwanan in origin. It exists today as two components with a relatively strong ecological differentiation. One is the relictual component, consisting of taxa confined to moist habitats (usually closed forests), showing little evolutionary diversification, and showing a residual taxonomic affinity with the floras of similar habitats in the other southern lands. The other is the derived Australian (autochthonous) component, predominantly temperate and arid-adapted, showing massive evolutionary diversification from the more labile of the ancestral Gondwanan stocks and characterised by scleromorphy and high endemism. Nelson (1981) has termed this entire flora the Gondwanic element, and the two components the relict and autochthonous sub-elements respectively.

The flora has been moulded and added to by later geophysical and climatic events. Of major significance has been an apparent geographical isolation of the temperate floras of eastern and western Australia. It may have been initiated by marine incursions into southern Australia which were possibly continuous from late Eocene to mid-Miocene times (Nelson, 1981). The emerged sediments have since remained as dry land and form the limestones of the present Nullarbor Plain. Subsequent increases in aridity (Crocker & Wood, 1947; Raven & Axelrod, 1974) may have maintained an edaphic and climatic barrier between east and west to the present, with little interruption (Nelson, 1981).

The isolation is reflected in the high level of specific endemism in the flora of the south-west of Western Australia, estimated at 87 per cent by Beard (1969) and modified to 68 per cent by Marchant (1973a) and to 75–80 per cent by Hopper (1979). Generic endemism is low and there are many vicarious species pairs in eastern and western Australia. This is consistent with the imposition of isolation at a time when the major genera of the autochthonous sub-element were already widely established.

The extremely species-rich flora of the South West Botanical Province of Western Australia, with its high specific endemism, is attributed to its long history of development in geographical isolation, on a relatively stable land surface on which a mosaic of soil types has evolved. There is little to support the view of some floristic analysts that this richness indicates that the autochthonous flora originated in Western Australia. It has been shown by Hopper (1979) that the greatest species density occurs in the transitional rainfall zone between the mesic forest areas and the arid zone, and that a high proportion of the species are very local endemics within this zone. He concluded that in the more recent geological past conditions have been more favourable for speciation in this zone than in the more mesic and more arid zones. In particular, he has pointed out that recurrent climatic fluctuations would have generated greater stresses in the transitional zone and, coupled with the evolution of a mosaic of nutrient-deficient soils, would have produced disruptions in labile population systems ideal for rapid speciation.

The corollary to species richness is that many species have very small geographical ranges because of their geographical replacement patterns. This is true of Adenanthos, Stylidium, Darwinia, Eucalyptus, Banksia and Acacia (Nelson, 1981). In Stylidium, cross-compatibility between neighbouring populations of a species is often low (Farrell & James, 1979), indicating that selection for reproductive isolation between neighbouring populations is very high. This phenomenon may be associated with the maintenance of highly adaptive local biotypes under conditions of intense competition on nutrient-deficient soils.

As mentioned above, the karyoevolutionary data of Smith-White and others can be reconciled easily with the current view of the history of the Gondwanan element. Their studies revealed recurring patterns of chromosome number variation in which autochthonous groups showed greater diversity than non-endemic or extra-Australian ones, with polploidy apparently superimposed as a tertiary phase on extensive secondary dysploidy. In addition to the several groups cited above, subsequent studies have revealed comparable patterns in a number of other groups, including Restionaceae (Briggs, 1963), Papilionaceae (=Fabaceae) (Sands, 1975), Stackhousiaceae (Turner, 1966), Droseraceae (Marchant, 1973b), Stylidium (James, 1979) and Hibbertia (Stebbins & Hoogland, 1976). The dysploid changes can now be seen as devices which have conserved adaptive biotypes during the differentiation of the autochthonous sub-element; they have served to restrict gene pools, thus favouring diversification, but have led to a new stability in the derived groups. This explains why dysploidy is so characteristic of the generic rank or its equivalent. Further genetic conservation of adaptive biotypes has very frequently involved polyploidy, both in woody and herbaceous groups. As pointed out by James (1981), these changes illustrate the 'unceasing selection of conservative devices which ensure minimal departures from already tested adapted parental genotypes'. It is noteworthy that within this framework of genetic conservation a number of groups have evolved mechanisms which maximise genetic heterozygosity.

The parallel karyological patterns thus illustrate the condition under which the autochthonous sub-element has evolved—strong selection, under conditions of strong competition, for the maintenance of highly adaptive new biotypes as they have arisen under progressively changing environmental conditions. This pattern has been developed most strongly in the scleromorphic flora of nutrient-deficient soils, particularly under developing temperate conditions.

An expression of uniqueness—scleromorphy

The most striking aspect of the autochthonous element is its scleromorphy. Many of its major groups are characterised by relatively small, rigid leaves, by short internodes and by small plant size. There is a strong representation of such types in Australian Myrtaceae, Proteaceae, Rutaceae, Epacridaceae, Mimosaceae, Fabaceae and Goodeniaceae. It was generally assumed by earlier botanists that scleromorphy in the Australian flora represented adaptive responses to an increase in aridity, and in particular to the advent of mediterranean climate. An exception was Andrews (1916), who linked scleromorphy with soil properties and suggested that it was an adaptive response to low levels of soil nitrogen and calcium. More recently several authors have taken up the idea that scleromorphy is an adaptive response to nutrient deficiency (Beadle, 1954, 1966, 1968, 1981; Johnson & Briggs, 1975, 1981; Loveless, 1961; Specht, 1972). Its expression is accepted as a response to chemical constraints on growth and as a physiological process marked, among other things, by a reduction in the number of cells formed. Beadle (1954, 1968) suggested that soil phosphorus levels regulate soil nitrogen fixation and that phosphorus status is the basis of scleromorphy as a physiological adaptation.

Conditions favouring the evolution of scleromorphy in the Australian flora probably existed early in the Tertiary period. Specht (1981b) has pointed out that heath communities are part of the moist tropical ecosystem, forming a mosaic with closed

forest communities and occurring on deep infertile sandy soils. They share families and genera in common with rainforest. Beadle (1981) has suggested that scleromorphy began to differentiate at the margins of rainforest, proceeding along declining soil fertility gradients. This view was shared by Johnson and Briggs (1981), who discussed the evolution of scleromorphy in relation to their analysis of relationships in the Myrtaceae, Proteaceae and Restionaceae. They argued that the differentiation of scleromorphic taxa began at least in early Tertiary times in nutrient-deficient forest sites, possibly catalysed by climatic change, and that the process has continued through successive differentiations as the climate has been progressively modified. Because so much of the Australian land surface has undergone weathering continuously for a long time, poor soils are now the rule. Conditions favouring scleromorphic vegetation in Australia have therefore become progressively more widespread, resulting in an expression of scleromorphy not matched in other continental floras.

Scleromorphy may have been a pre-adaptation to mediterranean climate, so that the scleromorphic flora may have colonised the habitats where this climatic regime was established later in the Tertiary. The scleromorphic flora has, however, remained confined to low-nutrient soils even under increasingly dry conditions, not effectively spreading onto adjacent high-nutrient soils. Van Steenis (1979) has pointed out that this feature of scleromorphic communities may explain the very limited representation of an Australian floristic element in Malesia (see below).

The post-Miocene intrusive element

Another major event in the history of the Australian flora was its late-Tertiary contact with that of the Indomalayan region. The Miocene collision between the Australian plate and the Sunda arc brought together two rich floras which, until then, had been isolated from substantial direct exchange for a considerable period. The geological history of the north-western margin of the Australian plate has been very complex, however, and the way in which these two floras came in contact is not clear. It was suggested by Audley-Charles et al. (1972) that Timor and several other islands of the Outer Banda Arc, and even the eastern part of Sulawesi (Celebes), formed part of the north-western margin of the Australian plate through the Mesozoic and much of the Cainozoic. A more general view, however, is that Timor formed part of the margin of the Australian plate and that the other islands were part of the Outer Sunda Arc (Grady & Berry, 1977; Powell et al., 1981). Timor may therefore represent a limited exception to the suggestion by Raven (1979) that no part of Indonesia was ever part of Gondwanaland. Southern New Guinea also formed part of the north (Fig. 15).

In Miocene time the leading edge of the Australian plate collided with the Sunda Arcs, first involving the New Guinea margin of the plate, and later the margin further west (Powell et al., 1981). At this time the Sundaland plate was moving westwards, and as the Australian plate continued northwards the Sunda Arcs were contorted into the great fold which now accounts for the position of islands such as Sulawesi and Seram, north of the Inner Arc islands such as Sumbawa. These islands have probably increased to their present size as a result of the collision effects. With the continued westward rotation of the Sundaland plate since the collision occurred, the distance between Australia and these lands has subsequently increased again. The chronology of these events was interpreted similarly by Audley-Charles et al. (1972), but their interpretation differs in that they postulated the collision and rotation of the Outer and Inner Sunda Arcs as the margins of the Australian and Sundaland plates respectively (Figs 15–17).

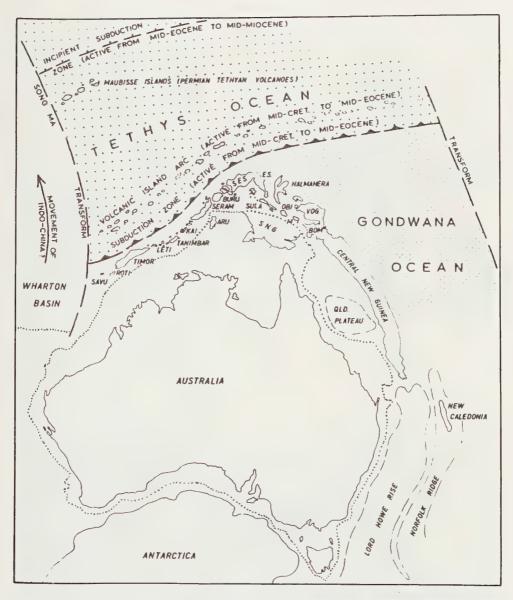


Figure 15. Reconstruction of part of Gondwanaland showing the position of New Guinea and eastern Indonesia during the late Cretaceous. The present-day outlines are shown for reference and have no palaeogeographical significance. The proposed position of the volcanic island arc is related to the northward drift of Australia-Antarctica initiated in the mid-Cretaceous. BOM = Bomberai; VOG = Vogelkop; M = Misool; E.S. = East Arm and S.E.S. = South-east Arm of Eastern Sulawesi; S.N.G. = South New Guinea province. (From Audley-Charles et al., 1972; reprinted by permission from *Nature Phys. Sci.* 239: 35-39. © 1972 Macmillan Journals Ltd.)

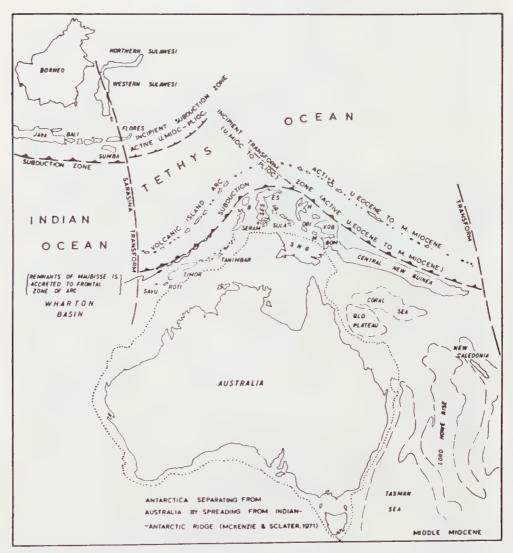


Figure 16. Reconstruction of Australia showing its relationship with Indonesia and part of Melanesia during the Middle Miocene. The present-day outlines are shown for reference and have no palaeogeographical significance. Note the opening of the Coral and Tasman Sea basins and the anticlockwise rotation of Central New Guinea, eastern Sulawesi, Buru and Seram. Northward-drifting Australia had separated from Antarctica. B = Buru; H = Halmahera; M = Misool; BOM = Bomberai; S.N.G. = South New Guinea province; S.E.S. = South-east Arm and E.S. = East Arm of eastern Sulawesi. (From Audley-Charles et al., 1972; reprinted by permission from Nature Phys. Sci. 239: 35-39. © 1972 Macmillan Journals Ltd.)

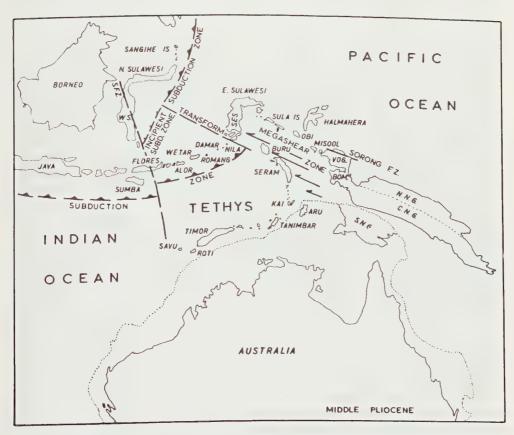


Figure 17. Reconstruction of northern Australian margin, New Guinea and eastern Indonesia during the middle Pliocene. Note progressive development of the island arc systems related to the northward drift of Australia. The present-day outlines are shown for reference and have no palaeogeographical significance. BOM = Bomberai; VOG = Vogelkop; N.N.G. = North New Guinea province; C.N.G. = Central NewGuinea province; S.N.G. = South New Guinea province; S.E.S. = South-east Armof eastern Sulawesi; W.S. = Western Sulawesi; S.F.Z. = Sarasina fault zone; SorongF.Z. = Sorong fault zone. (From Audley-Charles et al., 1972; reprinted by permissionfrom*Nature Phys. Sci.*239: 35–39. © 1972 Macmillan Journals Ltd.)

There are various interpretations of the formation of the present island of New Guinea. Audley-Charles et al. (1972) postulated a rotational movement which brought component blocks together on the northern margin of the Australian plate (Figs 16, 17). Simpler explanations involve northern New Guinea being an island arc beached and uplifted against southern New Guinea as the Australian plate moved north (Raven, 1979), or northern and southern New Guinea having been continuously in close proximity and eventually united by the uplift of a trough between them (Crook, 1981).

The present Indonesian Archipelago and the Papuasian region are therefore derived from a complex interaction between parts of the Australian plate and the Pacific and Sunda arc systems. Floristic exchanges as a result of this contact have occurred in both directions, resulting in a limited integration of the Gondwanan and Laurasian floras in the Malesian and western Pacific regions. Because such a diversity of primitive relictual angiosperms occurs in the area today, some authors have suggested it as the site of origin of the angiosperms (Takhtajan, 1969; van Steenis, 1971). The turbulent geological history of the area, and our present knowledge of the sources of its flora, make this idea clearly untenable (Schuster, 1976).

The so-called Australian element in the Sundaland region is highlighted by a few species in genera such as *Casuarina*, *Araucaria*, *Banksia*, *Grevillea*, *Acacia* and *Eucalyptus* (van Steenis, 1936). This element has been over-emphasised because of the distinctive nature of the species involved (van Steenis, 1950) and by the erroneous inclusion of genera such as *Casuarina* which have had a much longer history in the region. Nevertheless a number of Australian taxa have penetrated into Sundaland, including *Ptilotus* (Stewart & Barlow, 1976a), *Stylidium* (Erickson, 1958) and several grasses (Clifford & Simon, 1981). Van Steenis (1979) has listed 98 'eastern or south-eastern' species, with a variety of lifeforms, in the flora of the Lesser Sunda Islands, and of these 65 also occur in Australia, many of them in genera which are well developed in Australia. In the Loranthaceae the *Amyema* group of genera, with x=9 and large chromosomes, is Papuasian in origin but has spread and diversified in the Philippine and Sunda regions.

Few of the Australian taxa which have penetrated Sundaland have extended beyond it into south-east Asia or beyond (Specht, 1981c), presumably owing to the richness and stability of the Laurasian flora, and to the general lack of nutrient-deficient soils, to which much of the Australian flora is adapted (van Steenis, 1979). A few Australian grass genera have reached south-east Asia (Clifford & Simon, 1981). In *Dodonaea*, which has apparently had a long history in tropical and temperate Australia, one pioneering species complex has dispersed widely through south-east Asia and Africa, as well as to the New World (West, 1980); its lack of diversification indicates that this range extension is relatively recent.

Migration in the reverse direction has been more significant. New Guinea has been colonised predominantly from the Malaysian region following its elevation above sea level at the end of the Oligocene (Raven & Axelrod, 1972). Secondary exchanges from New Guinea, and direct immigration from Sundaland, have contributed a significant component of the Australian flora, especially in tropical ecosystems. This is reflected in the low frequency of endemic genera in Australia's tropical zone (14 per cent, Burbidge, 1960), compared with that of the temperate zone (46.6 per cent). Burbidge (1960) noted that a high proportion of the non-endemic Indomalayan genera in the tropical zone have only one or few species in Australia. This can be explained as a result of relatively recent immigration into a floristically rich region in which diversification has been restricted by stabilising selection. Burbidge's analysis showed that in the tropical zone there are 360 non-endemic genera represented by a single species in Australia and 320 genera represented by 2–5 species. It should be borne in mind, however, that the same data could support the existence of a Gondwanan component in the tropical flora, and the significance of such a component in the tropical flora should not be overlooked when Burbidge's data are considered.

In Loranthaceae, two groups of genera appear to have entered the Australian-Papuasion region as a result of the contact with the Indomalayan flora. The *Decaisnina* group of genera, with x = 12 and large chromosomes, is an excellent example of an Indomalayan stock in which one or a few species of several genera have reached the region (Barlow, 1981a). Only one genus, *Lysiana*, has originated in the Australian region and undergone a limited radiation into the temperate and arid zones. *Dendrophthoe*, with x = 9 and small chromosomes, is centred in South-east Asia and is represented by one widespread species extending from India to south-eastern Australia and by a few young endemics in New Guinea and northern and eastern Australia.

The late Tertiary elevation of mountain systems between Malaya and New Guinea has probably provided a dispersal route for cool temperate plants, and this dispersal route may have extended through eastern Australia. Long-distance dispersal between isolated highland regions has almost certainly been involved, as the Indomal-ayan lowlands have possibly remained continuously warm and humid (van Steenis, 1934a,b, 1936). A number of typically north-temperate genera may have been dispersed to the Australian region by this route and some have apparently undergone new radiations, especially in the New Guinean highlands (Raven & Axelrod, 1972). Genera in Australia which may have had this history include *Veronica, Euphrasia, Poa, Stellaria, Ranunculus, Ajuga, Viola* and some Apiaceae (Burbidge, 1960; Raven & Axelrod, 1972).

Because of the complex floristic history of the southern Asian region, the late Tertiary immigrant flora in Australia may have had diverse origins. In particular, the role of the Gondwanan flora of India may be relevant. The Indian plate rafted from Gondwanaland about 125 m.y. BP and collided with Asia in the middle Eocene, at least 50 m.y. BP (Raven & Axelrod, 1974; Powell et al., 1981). The crustal shortening and elevation of the Himalayas followed later, reaching a peak at the end of the Tertiary period although India is still moving northwards at 5 cm per year. Specht (1958, 1981c) has drawn attention to the strong relationship between the floras of sandstone habitats in monsoonal India and northern Australia, and suggested that these are vicarious remnants of the Gondwanan flora. Other floristic alliances, however, were eliminated as India moved through a succession of climatic regimes on its northward drift (Schuster, 1976). These could have included tropical and temperate southern stocks (Raven & Axelrod, 1974) and heathland flora (Specht, 1981c). India thus carried a reduced flora when it reached Asia, but some of its taxa have spread more widely in Asia (Raven & Axelrod, 1974; Specht, 1981c). Subsequently, with the opening of a direct migration route to Australia, some derivatives of this ancient Gondwanan stock may have re-entered Australia.

The Loranthaceae again provide a likely example of this sequence. While the family is undoubtedly Gondwanan, two generic alliances appear to have had a long history in Asia and one of them secondarily in Africa. These are the *Decaisnina* group of genera and the *Dendrophthoe* group, described above. It seems plausible that the ancestors of both groups reached Laurasia via India in early Tertiary times and underwent extensive secondary radiations there. The former group now comprises more than 100 species in South-east Asia and Indomalaya, while the latter is represented by about 100 species in Asia, the Middle East and southern Europe and by the entire loranthacean flora of Africa (about 300 spp.). As mentioned above, both

of these generic alliances have attained a limited representation in Australia as recolonisers since the Miocene.

The floristic implications for Australia of these events have been well summarised by Nelson (1981). In addition to the Gondwanic element defined above, he has also defined an 'Intrusive element' comprising plants which have entered Australia subsequent to its separation from Gondwanaland. Within this element he has recognised three sub-elements, namely (1) a tropical sub-element consisting of taxa of recent derivation from tropical South-east Asia, (2) a cosmopolitan sub-element of widely distributed genera and species, widespread in Australia especially in arid areas, and (3) a neoaustral sub-element of mainly temperate species derived by recent migration from the northern hemisphere. If the first of these sub-elements is to be viewed as strictly Laurasian, then perhaps we could add (4) an Indogondwanan sub-element, consisting of plants of ancient Gondwanan derivation which have reached Australia as part of the Intrusive element.

The integration of the Australian flora

The Australian flora thus emerges as an amalgum of taxa with diverse histories and potentials. It includes taxa the ancestors of which have been in Australia since the dawn of the age of flowering plants, and it includes a variety of recent colonisers, which in some cases have just established II foothold in Australia and in other cases have diversified at the expense of previous inhabitants. It includes taxa which are evolutionarily conservative, so that their relationships and origins are clearly evident, and it includes taxa which are evolutionarily labile, having diversified and adapted to occupy the spectrum of niches which have arisen through time. The changes which have occurred in the latter group have yielded a distinctive array of genera that are endemic to the region and unique in many aspects of their structure and function. From an integration of palaeobotanical, palaeoclimatic and geophysical evidence, the historical relationships of these components of the flora have now become clear.

While each of the elements and sub-elements of the flora tends to dominate in a particular ecological situation, there is nevertheless a significant integration of these floristic units within each major plant formation in Australia. Specht (1981a,b) distinguished 32 plant formations in Australia, and analysed the distributions of 1 285 genera represented in them. He concluded that almost every one of these formations contains a mixture of genera which belong to different floristic groups in terms of geographical distribution and relationships. That is, the modern Australian flora is differentiated into major plant formations which nearly always include representatives of several of the historical elements and sub-elements of the flora.

The integration of the floristic elements and sub-elements in the flora is illustrated by their growth and flowering rhythms. The flora can be divided into three broad thermal response groups (Nix, 1981; Specht, 1981b), based on the temperatures at which seasonal shoot growth is initiated. These growth rhythms correlate reasonably well with the accepted components of the flora, indicating that they have been retained through a considerable time and climatic sequence. The potential growing seasons of the three groups are within the temperature ranges of (1) > 25°C, (2) 15-25°C, and (3) 10-15°C respectively. Particular plant associations may include more than one of these thermal groups and some members of an association may thus be out of phase with the current climate of the region. Increasing seasonality of the climate has probably had a major role in the fluctuating interactions of these functional components of the flora, perhaps outweighing the effects of aridity *per sc* (Nix, 1981). Three thermal response groups in the herbaceous flora can also be distinguished in another way (Specht, 1981a,b). These are temperate C_3 plants, tropical C_3 plants and tropical C_4 plants, each with a distinctive response of biomass increment to mean daily temperature. Grasses with the C_4 dicarboxylic acid metabolism are perhaps more efficient photosynthetically than C_3 plants and are widespread in most open plant communities in Australia. Among the chenopods, C_4 species of genera such as *Atriplex* and *Maireana* are likewise dominant in arid situations (Parr-Smith, 1981; Specht, 1981b). The C_4 understorey plants have thus had an important role in the differentiation of plant communities in Australia. It is only in closed forests, wet freshwater swamps and montane habitats that C_4 herbs are replaced by those of the C_3 groups. In southern Australia, however, the native C_4 grasses, with a high, out-ofphase temperature threshold for shoot growth, are being replaced by introduced temperate C_3 grasses which are phenologically better adapted, attaining maximum shoot growth at lower temperatures much earlier in the spring.

The climatic events of the more recent past which have influenced the development of the Australian flora after its general character was established have been well documented. An excellent review by Galloway and Kemp (1981) summarises the effects of continental displacement, volcanism, temperature and sea level fluctuations, and their expression in terms of dune formation, vegetation shifts and speciation. Some aspects of this phase of vegetation history are discussed below in relation to the evolution of an arid zone flora, but there are some important general considerations which arise from the data.

In the Quaternary, climatic changes were generally more rapid and extreme than were general in the Tertiary and they have certainly affected Australian biogeography profoundly. This period represents only a small fraction of the time interval in which the Australian flora has developed, however, and the fluctuations appear to have been within the ecological tolerances already well established in the flora. Major vegetational changes indicated by pollen analysis may have been only local migrations of adjoining vegetation types. The record indicates, for example, that tropical rainforest returned to north-east Queensland only about 10 000 years ago after an absence of 70 000 years (Galloway & Kemp, 1981), but it may have been present not far away from the sites examined. Even today there are very steep environmental gradients in the region, with different vegetation types occurring only short distances apart.

This situation has probably existed at least since the early Pliocene. Pollen records suggest a transition from older rainforests, dominated by *Nothofagus* and southern gymnosperms, to open forest dominated by *Eucalyptus*, *Casuarina*, grasses and composites. Nonetheless records of wet forest plants at some sites throughout the epoch again suggest that the vegetation was a shifting mosaic of communities similar to those of the present.

A similar explanation for the history of alpine plants in Australia may be necessary. High mountains have been continuously absent through the Cainozoic (Galloway & Kemp, 1981) and alpine habitats have probably always been limited. They may have been repeatedly eliminated during thermal maxima, and alpine plants may have survived in refugial habitats such as stream banks. The rather disharmonic alpine flora may represent only the surviving remnants of earlier alpine communities.

Torres Strait and Bass Strait — land bridges of the recent past?

New Guinea — a floristic crossroads

A broad spectrum of views on the relationship of the Australian flora with that of New Guinea has been expressed, but there has been a progressive change of view as the palaeogeography and palaeoclimate of the Torres Strait region have become better understood. Van Steenis (1950) argued that Torres Strait was one of the principal floristic 'demarcation knots' of the Old World Tropics. He defined a demarcation knot in terms of the total number of genera which reached their distribution limits in the area concerned. For Torres Strait the demarcation knot was 984, comprising 644 Malesian and endemic genera in New Guinea which were absent from Australia and 340 Australian genera absent from New Guinea. Van Steenis used this concept to argue that New Guinea was part of the Malesian floristic region. The sharpness of the floristic transition across Torres Strait was also emphasised by Good (1960) who stated that of 1 350 indigenous genera in New Guinea, only 62 are Australian (in the sense that the bulk of the species are found in Australia).

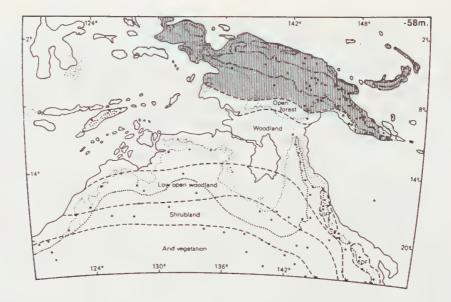
While the predominant view of the time was that the New Guinean and Australian floras are quite distinct, not all authors viewed Torres Strait as the boundary between the two. Because of the physiognomic and floristic resemblance of the open savannahs of western Papua and Cape York Peninsula, several authors treated southwestern Papua as part of the Australian floristic region (Good, 1963). On the other hand Herbert (1935, 1960) suggested that the rainforest of north-eastern Australia should be included in the Malesian floristic region.

On the basis of current views of late Tertiary and Quaternary palaeogeography the Torres Strait region is now seen as more of an ecological boundary than a geographical one. Following the regression of the sea in the early Tertiary, the northern margin of the Australian plate (including southern New Guinea) remained as dry land (Doutch, 1972). Thus when New Guinea began to assume its present form and relationship with Australia, there was no seaway between the two regions, and by Pliocene times most of New Guinea had emerged and formed the northern part of the Australian land mass. The seaway formed by the Arafura Sea and Torres Strait probably only came into existence in the Pleistocene and it has almost certainly been reestablished as a land link at least seven times through subsequent sea level fluctuations (Doutch, 1972; Galloway & Loffler, 1972; Galloway & Kemp, 1981). Torres Strait was most recently formed between 6 500 and 8 000 years ago, and except for a few channels is presently less than 10 metres deep (Jennings, 1972).

The relationship between the Australian and New Guinean floras must therefore be determined on the basis of climatic history. During the last glacial maximum the exposed Torres land bridge and the north of Australia would have been at least as arid as the Carpentaria region is today (Webster & Streten, 1972). Nix and Kalma (1972) have extrapolated from palaeoclimatic data to vegetation types through Quaternary time and have described a pattern of north-south shifts in arid and open woodland vegetation (Figs 18–21). They have pointed out that even if the hypothesis for their calculations is incorrect, there is no doubt that a core area of closed rainforest has persisted in New Guinea and a core area of arid and semi-arid land has remained in Australia.

Torres Strait may thus represent not so much a physical barrier to plant migration as a zone of strong ecological differentiation between the regions on either side of it. Most of the species which occur on both sides of the Strait grow in coastal lowlands and have presumably had access to suitable habitats for migration (Hoogland, 1972). On the other hand there are very few rainforest species common to both sides of the Strait; sclerophyllous species occupy an intermediate position (Webb & Tracy, 1972). This situation is consistent with the time periods during which their respective habitats have been isolated from exchange. In the main, then, the differences between the Australian and New Guinean floras are probably the result of the long climatic sifting of a single ancestral stock (Wace, 1972). Superimposed on this is the floristic effect of the Indomalayan element (i.e. the tropical sub-element of the Intrusive element in the Australian flora), which has become a major component of the New Guinean flora but which for purely climatic and edaphic reasons has not achieved the same dominance in the flora of northern Australia.

Tasmania — a living piece of Gondwana


The floristic history of Tasmania has been integrally bound with that of the rest of Australia. Tasmania was still part of the Australian mainland at least until the Oligocene or Miocene, when Bass Strait was first formed (Gill, 1962; Galloway & Kemp, 1981). The later Tertiary history is uncertain but it has been the rule, rather than the exception, for Tasmania, mainland Australia and New Guinea to form one land mass during the last million years. Bass Strait has been opened as a seaway at least eight times, the most recent being 13 500–12 000 years BP (Galloway & Kemp, 1981). The common floristic history is reflected by the analysis made by Burbidge (1960), which showed that there are no families of seed plants endemic in Tasmania. About 100 families occur in Tasmania out of about 215 in the whole of Australia. Only 28 of approximately 400 genera (7 per cent) and about 246 of 1 200 species (20 per cent) are endemic. There is therefore a high level of similarity, even at the present day, between the floras of Tasmania and the south-eastern mainland.

Because of its geographical position, its insularity and its relatively mountainous topography, Tasmania has continuously retained an environment similar to that which was widespread in Australia in early Tertiary times, and perhaps in Gondwanaland prior to its fragmentation (Nelson, 1981). Its flora is characterised by Gondwanan taxa such as *Gunnera*, *Caltha*, *Coprosma*, *Orites*, *Lomatia* and *Nothofagus*. The alpine flora of Tasmania, particularly, reflects the long climatic stability, and many of the endemic genera and species are found there. It also includes (in common with the Australian Alps) many genera, such as *Ranunculus*, *Epilobium*, *Euphrasia*, *Veronica*, *Mentha* and *Carex*, which have northern hemisphere affinities (Nelson, 1981) and which have undergone their only southern radiations in alpine habitats. As suggested above, these genera have reached Tasmania from the north along mountain migration routes, in some cases aided by long-distance dispersal.

Endemism is much lower in the autochthonous component of the Tasmanian flora. During the Quaternary there has been a broad, low, land connection between Tasmania and the mainland at the times of glacial maxima and sea level minima. This has allowed exchange between the lowland floras of the two regions.

The absence from Tasmania of so many families which occur elsewhere in southeastern Australia is probably due mainly to the small area of the island and its limited habitat diversity; most of the families now absent probably never occurred there. Some mainland groups, however, may have been eliminated from Tasmania during the climatic fluctuations of the Pleistocene and may not have successfully recolonised. Mistletoes (and mistletoe birds) are absent from Tasmania, probably having been eliminated by cold conditions during glacial times and subsequently prevented from returning by the Bass Strait sea barrier (Barlow, 1981a).

55

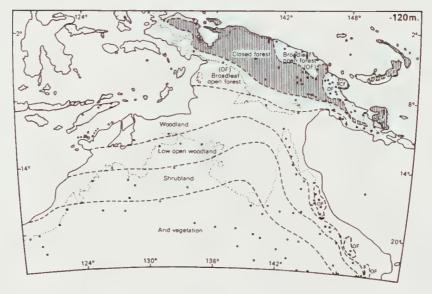


Figure 18 (above). Main structural vegetation types which might have occupied northern Australia, New Guinea and the intervening land about 20 000 years BP. See opposite for legend.

Figure 19 (below). Main structural vegetation types which might have occupied northern Australia, New Guinea and the intervening land about 17 000 to 14 000 years BP. See opposite for legend.

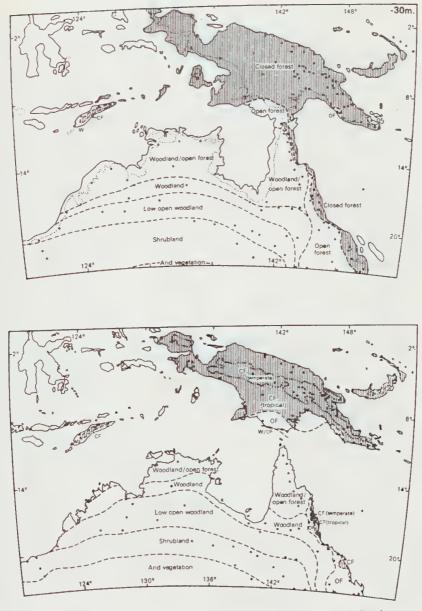


Figure 20 (above). Main structural vegetation types which might have occupied northern Australia, New Guinea and the intervening land about 8 000 years BP.

Figure 21 (below). Main structural vegetation types which occupy northern Australia and New Guinea at present.

Zenithal Equidistant Minimum Error Projection.

	Tropical/temperate junction Estimated coastline	Vegetation zone boundary 							
	Closed forest.	•	Observation station						

(After Nix & Kalma, 1972; reprinted by permission from *Bridge and Barrier* 88, 89. © Australian National University)

The dominant Australians — Eucalyptus and Acacia

Two genera, *Eucalyptus* and *Acacia*, dominate much of Australia's vegetation and contribute greatly to its general character. The history of the Australian flora is in large measure the history of these two genera.

Eucalyptus is not the largest Australian plant genus but it is certainly the most significant, both economically and biologically. The number of species is currently estimated at approximately 500 (Pryor & Johnson, 1981), almost all of which are endemic to Australia. Six Australian species extend to southern New Guinea and a seventh is endemic there. Only three species extend beyond Australia and the New Guinean mainland. One, *E. alba*, is widespread in northern Australia and southern New Guinea and extends to the Lesser Sunda Islands. The other two, *E. urophylla* and *E. deglupta*, are endemic to the Lesser Sunda Islands and New Britain-New Guinea-Sulawesi-Mindanao respectively. It is noteworthy that the total natural distribution of the genus *Eucalyptus* coincides approximately with the total extent of the Australian plate in late Tertiary times as suggested by Audley-Charles et al. (1972).

For phytogeographical reasons alone there can be little doubt that *Eucalyptus* is of ancient Australian origin, although the genus does not appear definitely in the fossil record until the Oligocene (Gill, 1975; Martin, 1981). The eucalypts are not particularly closely related to the scleromorphic shrubby Australian Myrtaceae, nor to arborescent groups such as Metrosideros (Pryor & Johnson, 1981), although they apparently share a common ancestry. Detailed studies indicate that the eucalypts may be a diverse group, with the floral operculum having been derived independently in several ways and with significant variations in ovule and seed anatomy as well as in inflorescence structure (Pryor, 1976; Pryor & Johnson, 1981). Because of other unifying factors such as the presence of regularly arranged sterile ovules, it is thought that the eucalypts may have had multiple origins from ancestral stocks which were closely related. This theory has important taxonomic implications, since it may be appropriate to reclassify the eucalypts into several distinct genera. Johnson (1976) has recognised nine such 'informal subgenera' in Eucalyptus s. lat., and Johnson and Briggs (1981) have argued that these groups deserve generic status. Such an approach is strongly supported by the distinct levels of crossability within and between these groups. For largely practical reasons outlined by Pryor (1976) and Johnson (1976), formal taxonomic delimitation of segregate genera has not been completed.

Eucalypts characteristically occur in open forest and woodland associations, and only a few species have been successful in rainforest margins or alpine habitats. In the arid zone they are relatively few and with rare exceptions confined to favourable situations such as stream lines and rocky outcrops. The genus is therefore often associated with the evolution of the scleromorphic autochthonous sub-element of the flora. Pryor and Johnson (1981), however, considered that *Eucalyptus* did not move into older scleromorphic communities until mid-Tertiary time.

The long history of the eucalypts is illustrated by a number of relict species of very limited distribution, and by a striking evolutionary convergence between species of different sections in eastern and western Australia, both in field appearance and in ecological requirements (Pryor, 1976; Pryor & Johnson, 1981). Eucalypts also illustrate the long history of evolution of the Australian scleromorphic flora with fire; the growth habit of these plants makes a major contribution to the flammability of the vegetation. Eucalypts characteristically have narrow pendulous leaves which allow light to penetrate to ground level, drying the copious leaf and bark litter which accumulates. Depending on weather conditions, fires may be confined to the understorey layer or may rage through the crowns intensified by the volatile oils in the leaves. Adaptations in eucalypts include woody capsules which release seeds after

fire, thick insulating bark, numerous buds which allow sprouting of large limbs even after intense scorching and, in most species, large woody rootstocks (lignotubers) which are very resistant to aridity as well as to fire. Some of these attributes are common to other genera of the Australian scleromorphic and arid vegetation. It has been suggested that the flammability of the vegetation is an adaptation which promotes rapid heat generation and rapid return to normal temperature, thus preventing destruction of dormant buds (Recher & Christensen, 1981).

Much of the Australian flora may have been pre-adapted to fire by virtue of its adaptations for aridity and nutrient deficiency (Specht, 1981b). Two adaptive strategies are evident; some species are fire tolerant, with the array of protective features mentioned above, while others are fire sensitive but produce large quantities of seed which accumulate either in the soil or in woody fruit and germinate after fire (Recher & Christensen, 1981). *Eucalyptus* and certain other genera (e.g. *Banksia*) have species which fall into each class (Gill, 1975; George, 1976). Long-term successional cycles in scleromorphic communities occur in response to fire (Recher & Christensen, 1981; Specht et al., 1958), with certain species in some cases reappearing in the community as a direct consequence of burning. Some eucalypts will not regenerate in the absence of fire, which may therefore play an important role in maintaining the structure of eucalypt communities in Australia.

The other enormously successful genus in Australia is Acacia, which with c. 835 species (Maslin & Hopper, 1981) is the largest in Australia. Acacia is well represented in the floras of Africa and tropical America but one characteristic section, *Phyl-lodinae*, dominates the Australian representation. In this section the leaves, which, in Acacia, are primitively bipinnately compound, are reduced in the adult state to expanded petioles, often vertically flattened. This scleromorphic feature is usually explained as an adaptation for aridity.

Acacia is known in the fossil record only since the beginning of the Miocene (Martin, 1981), but it undoubtedly has had a longer Tertiary history in Australia. Acacia species occur in nearly all plant formations, including closed forests, but they rise to community dominance in the woody floras of arid and semi-arid regions. In these situations Acacia tends to replace Eucalyptus as the dominant woodland genus of open habitats, with Eucalyptus confined to more favourable sites.

While Acacia is ecologically dominant in the arid zone, only 118 of the 835 species (14 per cent) occur there, and endemism to that region is low (Maslin & Hopper, 1981). In comparison, 336 species (40 per cent) occur in the South West Botanical Province of Western Australia, indicating a remarkable diversification within the scleromorphic ecosystems with mediterranean climate.

Acacia probably first radiated in Australia under the warm moist conditions of the middle Tertiary, with some sections later evolving rapidly in southern areas in response to aridity (Maslin & Hopper, 1981). At the present time the tropically derived groups in the arid zone are phenologically in phase with environmental conditions while the groups with southern connections are out of phase (Maconochie, 1979), and appear to be later arrivals.

Origin of the Australian arid zone flora

The arid zone and the derivation of its flora

The arid or eremean zone in Australia is generally defined in terms of the 250 mm (10 in.) isohyet. Thus defined, it comprises more than one third of the Australian land area. In addition, there are other floristic regions in Australia where seasonal aridity is significant. In monsoonal northern Australia, for example, there is a

Origin and Evolution

prolonged winter dry season of up to nine months. Burbidge (1960) recognised three large 'interzones' between the Eremean Zone and the other two floristic Zones, Temperate and Tropical. The interzones were characterised by seasonal aridity, and in some cases by heavy soils, and showed a significant representation of arid-adapted plants. In the broad sense, then, more than half of the land area of Australia at the present time is continuously or seasonally arid.

As a consequence, the relationships and evolution of the Australian arid zone flora have received considerable attention. The first studies were purely phytogeographical and generally formed part of the more extensive analyses described earlier. Tate (1888) coined the term 'Eremia', and distinguished two components, Endemic and Exotic, in its flora. Diels (1906) redefined the arid zone under its current spelling 'Eremea' and recognised a Northern Element and an Autochthonous Element in its flora; these correspond to the Exotic and Endemic Elements of Tate. The first of these groups has palaeotropical relationships while the second is purely Australian.

Diels (1906), in what might have been a separate exercise, also classified the flora of the 'Eremean Province' into components based on possible geographical derivations. These included a palaeotropical and cosmopolitan group, mainly in the north, and an Australian group and a littoral group, mainly in the south. Diels also showed an awareness of the overlap between temperate and arid floras in the south-west of the continent. His phytogeographical classification of the arid zone flora seems to have been taken up by Burbidge (1960) with little change. In her analysis she recorded 363 genera of seed plants in the eremean flora, of which 102 were endemic. Of the remainder, 91 genera were also represented in temperate Australia and 81 genera in the adjacent lowland tropics. The cosmopolitan element was represented by 89 genera which were further distributed throughout all regions of Australia.

In terms of phytogeographical analyses, then, there has been little controversy in explaining the derivation of the Australian arid zone flora. Most authors have concluded that it is a young flora, having arisen only after extensive arid conditions were established in relatively recent geological time. It was therefore derived by selection from the pre-existing, highly adapted, total Australian flora. Components of tropical lowland affinity and derivation dominate in the northern part of the Eremea (Burbidge, 1960) and components apparently derived from the autochthonous temperate element dominate in the southern part. The main difficulty has been in the explanation of the cosmopolitan component, including endemic genera in families such as Poaceae, Chenopodiaceae, Brassicaceae, Aizoaceae and Asteraceae, which are among the main constituents of the vegetation of all of the major world deserts. How did these colonisers cross extensive areas of unsuitable and fully occupied territory to become established in the young Australian arid zone?

The solution to the problem has generally been found in the fact that these cosmopolitan families and genera are also well represented in littoral habitats, where salinity and soil type may impose physiological conditions similar to those of deserts. Colonisation of the deserts by such groups may therefore have occurred from coastal habitats, especially in places where the arid zone extends to the coast. Burbidge (1960) placed great emphasis on this hypothesis and suggested that the progenitors of the Australian arid zone vegetation existed on the coastlines from Cretaceous times until the late Tertiary, when the first extensive arid areas were formed.

Age and climatic history

The arid flora is thus widely accepted as being a composite flora derived from adjacent, older plant communities as arid conditions overtook the continent. The major debates have centred on matters of detail. How recent is the arid zone flora? What types of genetic systems have operated in the selection of new biotypes from communities which were already highly adapted? Is there any evidence that the arid zone itself has been a major centre of species radiation for those genera which have colonised it?

Partial answers to these questions have emerged from a number of detailed studies, many of them very recent. The work which set the stage for many of these studies, however, was the celebrated paper by Crocker and Wood (1947). These authors argued that the eremean flora was ultimately derived from a pan-Australian Oligocene flora which existed under conditions of continental low relief, broad climatic zones and high rainfall. From a study of dune formation they postulated cycles of aridity alternating with pluvial phases. During the arid maxima there would have been 'wholesale destruction of native flora' coincident with both the formation of dunes and sand sheets and the retreat of the vegetation cover into refuges, probably in the inland mountain systems. As the climate again became more equable an arid zone vegetation was re-established by migration from the refuges, but only by the adaptively superior biotypes which remained. Migration routes would have been determined by soil type.

Crocker and Wood suggested that there might have been more than one such arid maximum in Recent (post-glacial) times. However they suggested that the last arid maximum, which they put at 10 000 years BP, was the major determinant of the present arid zone flora.

As a result of Crocker and Wood's work it was generally accepted that the arid zone flora of Australia was very recent in origin, having differentiated mainly through the sifting effects of cycles or aridity over the last 50 000 years. Other authors, notably Burbidge (1960), argued from the available fossil and climatological evidence that limited arid conditions may have arisen in the Pliocence (i.e. in the last few million years), but that the extensive occurrence of arid conditions was post-glacial in origin. This conclusion has only been questioned very recently. It should be noted, however, that Crocker and Wood did postulate the existence of an earlier arid flora before their 'Great Arid Period'. Crocker (1957) later suggested that there probably always was an arid zone in Australia, but that its size and position may have changed.

The theory of plate tectonics has provided a simple means of estimating the age of the Australian arid zone. If a steady northward drift of Australia from Antarctica is assumed, then Australia would have entered the subtropical arid belt in Miocene time. On this simplistic basis, the age of extensive aridity in Australia would be at least 15 million years, and it would have impinged on the Australian continent from the north (Beard, 1976).

Bowler (1981) has accepted the view that the present expression of aridity in the Australian landscape dates from events which began in Miocene time. He has, however, questioned the concept that aridity was initiated from the north by Australia's drift into dry subtropical latitudes. He has suggested, from palaeoclimatological evidence, that there has been a northerly displacement of weak sub-tropical anti-cyclonic pressure systems from winter latitudes near 50°S in the Miocene, with the present climatic pattern over Australia being initiated about 2.5 m.y. BP and subsequently intensifying. As a result, aridity would have overtaken the Australian continent from the south rather than the north, and equable, moist, summer rainfall conditions would have given way to seasonally dry conditons. With the continued northward movement of the pressure systems the moisture budget would then have increased again in southern Australia in the last 2.5 million years, leaving the interior with the reduced moisture budget. According to Bowler the present arid zone landforms have

Origin and Evolution

a time-frame of 700 000 years but the major wet-dry oscillations of the last 100 000 years have been most significant in determining the landscape.

Recently available palaeobotanical data do indeed suggest that open and perhaps arid plant communities have existed in Australia since the Miocene, whereas in the preceding epochs moist conditions may have prevailed. As described above, the pollen record for many widespread Eocene sites in Australia is consistent with the presence of rainforest types such as *Nothofagus*, *Podocarpus*, Araucariaceae, Cupanieae, *Anacolosa* and *Santalum*, together with an abundance of epiphytic fungi and a great diversity of ferns (Kemp, 1978). The evidence for high humidity at all of the known Eocene sites is very high. There is evidence of a general cooling during the Oligocene, although data are sparse. *Nothofagus* and *Dacrydium* are well represented but diversity in the pollen spectrum is much lower than that of the Eocene (Kemp, 1978), suggesting that cool temperate conditions prevailed. Warm conditions may have prevailed slightly longer in western than in eastern Australia, as tropical rainforest affiliates were present at least until the upper Eocene (Kemp, 1981; Hos, 1975).

As far back as the Eocene there is evidence of localised grassland formation. At the Hale River deposits in central Australia, grass pollen comprises 7 per cent of the total pollen count (Trusswell & Harris, 1981). In samples of Miocene age, grass pollen counts at some sites are as high as 10 per cent and *Casuarina* pollen is sometimes abundant, although cool temperate conditions are generally indicated by the frequent dominance of *Nothofagus* and *Dacrydium*. Lange (1978) recorded from near Woomera an assemblage of fruits assignable to *Eucalyptus*, *Leptospermum*, *Calothamnus*, *Melaleuca-Callistemon* and *Angophora*. The fossil record for the Miocene, while not giving clear evidence of extensive deserts similar to those of today, does indicate the expansion of open forest vegetation and, given the accepted bias of the fossil record towards wet environments, it seems likely that arid conditions were present in the Miocene and perhaps even earlier.

Critical evolutionary studies have led to similar conclusions about the ages of plant groups now common in the arid zone. Carolin (1981), partly from his studies in Caryophyllaceae, has suggested that there has been an arid region in Australia since the break-up of Gondwanaland early in the Tertiary, about 55 m.y. BP. Smith-White and co-workers (1970) have similarly suggested that the complex evolutionary history of *Brachycome* in Australia also favours the existence of some arid conditions throughout the Tertiary. Long evolutionary histories in the arid zone have likewise been suggested for *Triodia* (Jacobs, 1981) and *Calotis* (Stace, 1981). Conversely, significant differentiation has occurred in groups such as the swamp plants of the genus *Sowerbaea* (Stewart & Barlow, 1976b), which have a disjunct circumcoastal distribution. This suggests that a considerable time has elapsed since a former Australia-wide range was disrupted by aridity.

While parts of the eremean flora may therefore be older than formerly thought, this may not be true for all components. Carolin (1981) has maintained that the tropical lowland component may be a recent coloniser of the arid zone, Australia having been in the correct climatic position for this development only since the Pliocene. This view is consistent with the pattern for the onset of aridity in Australia suggested by Bowler (1981).

Even though there is now reasonable evidence for the evolution of an eremean flora in Australia over a period of at least 15 million years, and perhaps twice that period of time, there is remarkably little evidence that the arid zone has functioned as a major centre of species radiation. In an elegant analysis of relationships of *Acacia*, Maslin and Hopper (1981) have indicated that the nearest relatives of adapted arid zone Acacia species are mostly to be found in adjacent temperate areas. Numerous parallel lines of adaptation to aridity thus exist, rather than a single line leading to the explosive radiation of a new arid species group. A similar situation almost certainly exists in *Eremophila*, Australian Euphorbieae (Hassall, 1981), *Dodonaea* (West, 1981), Gnaphaliinae (Short, 1981), *Calotis* (Stace, 1981) and other plant groups. It is also paralleled by similar evolutionary patterns in vertebrate and invertebrate animal groups (Baverstock, 1981; Greenslade, 1981). The arid zone thus emerges as an area which has been colonised successfully by numerous biotypes selected from adjacent populations growing under more favourable conditions, not as a floristic zone in which internal evolutionary radiation has produced its own characteristic flora.

The most conspicuous group for which this generalisation does not apply is the Chenopodiaceae. Genera such as *Sclerolaena* and *Maireana* (previously known in Australia as *Bassia* and *Kochia* repectively) have apparently radiated widely in arid habitats. In *Atriplex* all the Australian species appear to be derived from a common specialised immigrant ancestral type, except for one coastal species which may be a separate introduction (Parr-Smith, 1981). Several species-clusters have evolved in arid and semi-arid Australia from this ancestral type, all with a distinctive ovule orientation and all with the C₄ dicarboxylic acid metabolism and Kranz anatomy.

The importance of recent cycles of aridity is not completely negated by the extension of the age of the arid zone into earlier Tertiary time. Even an adapted desert flora would have been greatly disrupted by periods of extreme aridity, and the present-day distribution of desert plants is clearly a result of climatic events of the last few thousand years. Cycles of aridity were originally thought to be associated with glacial cycles, such that glacial maxima were pluvial and interglacials were arid. This view is now outmoded (Galloway & Kemp, 1981), and in fact aridity seems often to be associated with lowered temperatures. The time of the last arid maximum in south-eastern Australia is now put at 17 500–16 000 years BP (Bowler, 1978). It may have been followed by a relatively pluvial phase culminating about 3 500 years BP (Gill, 1955), with conditions subsequently moving again towards aridity. In the drier periods the arid flora, especially of stony soils, may have been reduced to mountain refuges and peripheral habitats (Carolin, 1981), with subsequent recolonisation very much dependent on the adaptive potential and competitive abilities of the species involved.

Good evidence for episodic evolution in the arid zone is found in the work of Randell (1970) on the genus *Cassia*. The arid zone species of *Cassia* have been derived from tropical lowland ancestors and have undergone a significant radiation in the Australian inland, coupled with extensive polyploidy at the highest level known for this large pantropical genus. The known diploids occur in or near mountain systems in central and southern Australia which could have been refugia. The most recent range extensions on the arid plains have been by polyploid biotypes, and very extensive hybridisation has occurred where these colonisers have come together. Similarly in the *Eremophila glabra* complex (Ey & Barlow, 1972) diploid biotypes occur in mountain refugia and at the southern margins of the distribution of the complex, while tetraploid and hexaploid biotypes are widespread in the interior.

Dune systems in Australia at the present time are generally stabilised. The last period of widespread dune evolution probably coincided with the last glaciation (Galloway & Kemp, 1981). It extended an edaphic feature which has probably existed for 300 000 years and which has its own adapted plant associations, but it also increased the disjunctions between other associations of the interior. Randell and

Origin and Evolution

Symon (1977), for example, have drawn attention to the disjunct distributions in species of *Cassia* and *Solanum*, determined by the distribution of sand desert.

Mechanisms of evolution

The cytogenetic basis of biotype selection has been examined in a number of arid zone genera. The most common cytoevolutionary syndrome is undoubtedly polyploidy, which has been recorded in most of the genera in which broad surveys have been undertaken. It has been reported in 19 out of 69 taxa in *Eremophila* (Barlow, 1971). In *Cassia* (Randell, 1970) polyploidy was found to be very frequent, with the persistence of polyploid types with reduced sexual fertility achieved through an apomictic system based on adventitious embryony. Polyploidy has also been reported in *Solanum* (Randell & Symon, 1976), *Ptilotus* (Stewart & Barlow, 1976), *Atriplex* (Parr-Smith, 1981), *Brachycome* (Carter, 1978b; Smith-White et al., 1970), *Calotis* (Stace, 1978), *Euphorbia* (Hassall, 1977), *Hibiscus* (Menzel & Martin, 1980), *Goodenia* (Peacock, 1963), *Themeda* (Hayman, 1960), *Erodium* (Carolin, 1958) and *Brunonia* (Peacock & Smith-White, 1978). These genera show a variety of geographical patterns for the polyploid derivatives, and even in some cases the arid zone populations are the residual diploid ones.

Barlow (1969, 1981b) has pointed out that much of the polyploidy in the arid zone flora occurs at the infraspecific level and has thus occurred after the major period of species differentiation in the eremean flora. Polyploidy may be generally associated with the biotype selection which has accompanied the cycles of aridity in Quaternary time, as has already been suggested above for *Cassia* and *Eremophila*. Barlow (1971, 1981b) has also pointed out that in a number of cases the diploid races are found in Western Australia, with polyploids extending eastwards into the interior, suggesting that polyploids have replaced diploids in those areas where climatic fluctuations or stresses may have been greatest.

The role of polyploidy is thought to be one of genetic conservation of new adaptive biotypes (Barlow, 1981b; James, 1981). This is achieved through restriction of gene exchange between different ploidy levels and through its dampening effect on phenotypic segregation. Polyploidy thus allows a new biotype to maximise its production of genetically similar offspring.

Genomic changes other than polyploidy have been reported rarely for arid zone plants. Widespread aneuploidy has been reported in Gnaphaliinae (Asteraceae) by Short (cited by Barlow, 1981b) and in *Calotis* by Stace (1978), who pointed out that aneuploid reduction without compensating change in chiasma frequency may be a device which reduces genetic recombination to an acceptable level for biotypes which have adopted an annual or ephemeral habit. In *Isotoma*, structural change involving the accumulation of reciprocal translocations and a balanced lethal system has led to permanent hybridity (James, 1965, 1970). James has argued that this genetic system has been a response to inbreeding imposed by an increase in aridity in the species range.

Studies in *Brachycome* by Smith-White and colleagues have revealed remarkable cyogenetic adaptations. Extensive dysploidy, from n=2 to n=15, has occurred in parallel series from a base number of x=9 (Smith-White et al., 1970). Infraspecific genomic variation occurs in nucleolar organising regions, in timing of chromatin condensation and by interchange (Watanabe et al., 1975), and through supernumerary chromosomes (Carter & Smith-White, 1972; Carter, 1978a). The most exceptional work, however, has been in the *B. linearifolia* species complex, where a strong correlation has been discovered between change in genome constitution and altered ecological tolerances towards aridity. A diploid race (2n=8) occupies coastal habitats on

western Eyre Peninsula. Sympatric with it but extending further inland is a quasidiploid race with 2n = 10 in which there are two different additional chromosomes which are transmitted via the pollen (Carter et al., 1974). This race has a small zone of overlap with a third race, having 2n = 12, in which the additional chromosomes are present in diploid dose (Kyhos et al., 1977). Finally, the race occurring furthest inland is an apparent amphidiploid with 2n = 16, in which the constituent genomes have been derived by hybridisation of the third race just mentioned and a race of *B. dichromosomatica* with 2n = 4. The authors drew attention to a progressive increase in growth vigour of these races and suggested that the successive addition of chromosomes is associated with an increasing tolerance of arid conditions.

The cytogenetic patterns described above clearly illustrate the responses in genetic systems which are involved in adaptation to fluctuating environmental conditions, and particularly to aridity. Their significance under conditions of rapid change, as has occurred in the arid region of Australia in the Quaternary, may be especially great. However it has been pointed out by Barlow (1981b) that gross alterations in the genome are not essential for the conservation of differentiating biotypes, and that the incidence of such changes in the arid zone may be no greater than in other ecological situations or in other periods of time.

Pollination and breeding systems

Adaptation for arid conditions has involved some predictable shifts in the frequencies of the various pollination mechanisms. Keighery (1981) made a general analysis of the eremean flora of Western Australia in comparison with that of adjacent temperate and tropical regions. He reported a general increase in wind- and beepollination in the transition from temperate to eremean habitats. Bird-pollination declined dramatically, and pollination by non-flying mammals disappeared completely, even though both of these pollination syndromes are important in the Australian flora as a whole (Armstrong, 1979). In the latter case the shift is due to a general absence of the pollinators, but this is not true of nectivorous birds. Among entomophilous types there is a general decline in all pollinators except bees and bee flies. Keighery pointed out that these pollinator shifts are consistent with a shift to smaller flowers, which may be more economical with respect to nectar production and water conservation.

Keighery (1981) also noted a shift towards self-compatibility in the eremean flora. He suggested that the unpredictable environment of the arid zone has had a second effect in addition to restricting the diversity of pollinators and pollination syndromes. The second effect is a shift to self-compatibility as a 'fail-safe' reproductive system countering pollinator unpredictability, even though the species involved are generally adapted for outbreeding.

The Australian flora — a national heritage

The uniqueness of the Australian flora is clearly a matter of degree. As a whole, the flora can be seen primarily as part of an extensive southern hemisphere flora in which certain features are rather uniform. For example, its dominant temperate flowering trees are evergreen, whereas those of the northern hemisphere are mostly deciduous. This feature has been discussed by Axelrod (1966), who attributed the difference to the palaeoclimatic conditions under which northern and southern temperate floras evolved. The southern flora lacks the conifers which dominate cooler plant associations in the north. In respects such as this, the Australian flora is a typical sample of southern hemisphere vegetation.

Origin and Evolution

A closer study reveals the unique characteristics of the flora, extending to virtually all plant communities. Our arid zone is not matched in extent by any other desert region south of the equator. It has a unique combination of cosmopolitan and ancient Australian plants, many of which are susceptible to replacement by introduced aliens better adapted phenologically, and many of which cannot withstand intensive pastoral activity. It differs from other deserts in having very few succulent xerophytes; most of its woody plants are drought resisters with a physiological capacity to endure dehydration; and it has a beautiful ephemeral flora which is rarely seen and includes threatened species (Specht et al., 1974). The alpine habitat in Australia is very limited in extent, and carries a rare combination of ancient southern plants and adapted Australian ones distributed above a tree line which is remarkably low because of the lack of conifers or frost-hardy angiosperms in Australia. Elsewhere in eastern and south eastern Australia, and especially in south western Australia, the scleromorphic floras of poor soils and seasonal habitats are bewildering in their diversity; they are matched in diversity (but not in composition) only by the Cape flora of South Africa (Johnson & Briggs, 1981). As mentioned above, endemism in these floras is very high, so that numerous species are confined to very small areas.

Because of a growing community awareness of the special character of our plant associations, a number of effective conservation measures have been taken. Up to now, however, much of this action has been directed towards protection of selected communities in selected locations, often associated with spectacular scenery or with recreational sites. The conservation of whole floristic elements as a whole should be considered as a matter of principle, especially where we recognise them to be relict with a slender tenure on survival. This approach is already being made, for example, in Western Australia (Anon., 1974). Further action must follow as our understanding of the composition, history and relationships of the surviving natural plant communities continues to grow.

The need for this action can be illustrated by example. The temperate and subtropical rainforests of eastern Australia survive today in a number of isolated pockets scattered along the coast and ranges, and their total area has been considerably reduced both by logging and by clearing for pastoral activity. According to our former view of Australian biogeography, these communities would have been seen as modern invaders (in the sense of geological time) of the Australian flora-almost as prehistoric aliens supplanting our truly Australian vegetation. We now see these rainforests as the remnants, in Australia, of the ancient Gondwanan flora which covered the entire continent when it was still attached to Antarctica sixty million years ago. They are the surviving residue of the primitive stocks from which the bulk of the modern Australian flora has been derived. This residue comprises the taxa which have undergone the least evolutionary change and includes some of the most primitive genera of flowering plants still surviving in the world. These are the most ancient Australians still surviving. Perhaps, with such an understanding of the history of these forests and with awareness of their intrinsic beauty, we should consider, as a matter of national pride, conserving all that remains of them.

The Australian flora, as we see it today, thus tells the story of a hundred million years of history of Australia as a southern land mass. The alien plants which have become naturalised so widely since European settlement are legitimately included in the Australian flora. Their impact on the flora, however great, has nevertheless occurred almost instantaneously in terms of the long history of colonisation of the continent by plants.

References

- Andrews, E. C. (1916), The geological history of the Australian flowering plants, Amer. J. Sci. 42: 171-232.
- Anonymous (1974), *Conservation Reserves in Western Australia*, Report of the Conservation Through Reserves Committee to the Environmental Protection Authority (of Western Australia).
- Armstrong, J. A. (1979), Biotic pollination mechanisms in the Australian flora-a review, New Zealand J. Bot. 17: 467-508.
- Audley-Charles, M. G., Carter, D. J. & Milsom, J. S. (1972), Tectonic development of eastern Indonesia in relation to Gondwanaland dispersal, *Nature Phys. Sci.* 239: 35-39.
- Axelrod, D. I. (1966), Origin of deciduous and evergreen habits in temperate forests, *Evolution* 20: 1-15.
- Baker, H. G. (1967), Support for Baker's Law-as a rule, Evolution 21: 853-856.
- Barlow, B. A. (1959), Chromosome numbers in the Casuarinaceae, Austral. J. Bot. 7: 230–237.
- Barlow, B. A. (1963), Studies in Australian Loranthaceae, IV. Chromosome numbers and their relationships, *Proc. Linn. Soc. New South Wales* 88: 151-160.
- Barlow, B. A. (1969), Infraspecific polyploidy in *Eremophila*, Austral. J. Sci. 31: 431-432.
- Barlow, B. A. (1971), Cytogeography of the genus *Eremophila*, Austral. J. Bot. 19: 295-310.
- Barlow, B. A. (1972), The significance of Torres Strait in the distribution of Australasian Loranthaceae, in D. Walker, Bridge and Barrier: the Natural and Cultural History of Torres Strait, Publ. BG/3. Australian National University, Canberra.
- Barlow, B. A. (1981a), The loranthaceous mistletoes in Australia, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Barlow, B. A. (1981b), Cytogenetic systems in Australian arid zone plants, in W. R. Barker, P. J. M. Greenslade & P. R. Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.
- Barlow, B. A. & Wiens, D. (1971), The cytogeography of the loranthaceous mistletoes, *Taxon* 20: 291-312.
- Baverstock, P. R. (1981), Adaptations and radiations of mammals in arid Australia, in W. R. Barker, P. J. M. Greenslade & P. R. Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium Adelaide, May 1980. In press.
- Beadle, N. C. W. (1954), Soil phosphate and the delimitation of plant communities in eastern Australia, *Ecology* 35: 370–375.
- Beadle, N. C. W. (1966), Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly, *Ecology* 47: 992–1007.
- Beadle, N. C. W. (1968), Some aspects of ecology and physiology of Australian xeromorphic plants, Austral. J. Sci. 30: 348-355.
- Beadle, N. C. W. (1981), Origins of the Australian angiosperm flora, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.

- Beard, J. S. (1969), Endemism in the Western Australian flora at species level, J. Roy. Soc. W. Austral. 52: 18-20.
- Beard, J. S. (1976), The evolution of Australian desert plants, in D. W. Goodall, Evolution of Desert Biota. University of Texas Press, Austin.
- Bowler, J. M. (1978), Quaternary climate and tectonics in the evolution of the Riverina plain, south-eastern Australia, in J. L. Davies & M. A. J. Williams, Landform Evolution in Australia. Australian National University Press, Canberra.
- Bowler, J. M. (1981), Age, origin and landform expression of aridity in Australia, in W. R. Barker, P. J. M. Greenslade & P. R. Baverstock Evolution of the Flora and Fauna of Arid Australia, Symposium. Adelaide, May 1980. In press.
- Brenner, G. J. (1976), Middle Cretaceous floral provinces and early migrations of angiosperms, in C. B. Beck, Origin and Early Evolution of Angiosperms. Columbia University Press, New York.
- Briggs, B. G. (1963), Chromosome numbers in *Lepyrodia* and *Restio* in Australia, *Contrib. New South Wales Nat. Herb.* 3: 129–150.
- Burbidge, N. T. (1960), The phytogeography of the Australian region, Austral. J. Bot. 8: 75-212.
- Cain, S. A. (1944), Foundations of Plant Geography. Harper & Row, New York.
- Camp, W. H. (1947), Distribution patterns in modern plants and the problems of ancient dispersals, *Ecol. Monogr.* 17: 159-183.
- Camp, W. H. (1952), Phytophyletic patterns on lands bordering the south Atlantic basin, Bull. Amer. Mus. Nat. Hist. 99: 205-212.
- Carolin, R. C. (1958), The species of the genus *Erodium* L'Her. endemic in Australia, *Proc. Linn. Soc. New South Wales* 83: 92-100.
- Carolin, R. C. (1981), The development of the biogeography of arid Australia, in W. R. Barker, P. J. M. Greenslade & P. R. Baverstock, *Evolution of the Flora* and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.
- Carlquist, S. (1966), The biota of long-distance dispersal. I. Principles of dispersal and evolution, *Quart. Rev. Biol.* 41: 247–270.
- Carter, C. R. (1978a), The cytology of *Brachycome*. 8. The inheritance, frequency and distribution of B chromosomes in *B. dichromosomatica*(n=2), formerly included in *B. lineariloba*, *Chromosoma* (*Berl.*) 67: 109-121.
- Carter, C. R. (1978b), The cytology of *Brachycome*. II. The subgenus *Meta-brachycome*: a general survey, *Austral. J. Bot.* 26: 699-706.
- Carter, C. R. & Smith-White, S. (1972), The cytology of *Brachycome lineariloba*.
 3. Accessory chromosomes, *Chromosoma (Berl.)* 39: 361–379.
- Carter, C. R., Smith-White, S. & Kyhos, D. W. (1974), The cytology of *Brachycome lineariloba*. 4. The 10-chromosome quasi-diploid, *Chromosoma (Berl.)* 44: 439-456.
- Clifford, H. T. & Simon, B. K. (1981), The biogeography of Australian grasses, in A. Keast, *Ecological Biogeography of Australia*. W.. Junk, The Hague.
- Coleman, P. J. (1980), Plate tectonics background to biogeographic development in the southwest pacific over the last 100 million years, *Palaeogeography, Palaeo-climatology, Palaeoecology* 31: 105-121.

- Crocker, R. L. (1957), Past climatic fluctuations and their influence upon Australian vegetation, in A. Keast, *Biogeography and Ecology of Australia*. W. Junk, The Hague.
- Crocker, R. L. & Wood, J. G. (1947), Some historical influences on the development of South Australian vegetation communities and their bearing on concepts and classification in ecology, *Trans. Roy. Soc. S. Austral.* 71: 91–136.
- Croizat, L. (1952), Manual of Phytogeography; or an Account of Plant-dispersal throughout the World. W. Junk, The Hague.
- Cronquist, A. (1968), *The Evolution and Classification of Flowering Plants*. Nelson, London.
- Crook, K. A. W. (1981), The break-up of the Australian-Antarctic segment of Gondwanaland, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Dettmann, M. E. (1981), The Cretaceous flora, in A. Keast, Ecological Biogeography of Australia. W. Junk, The Hague.
- Diels, L. (1906), Die Pflanzenwelt von West Australien. Englemann, Leipzig.
- Doutch, H. F. (1972), The paleogeography of northern Australia and New Guinea and its relevance to the Torres Strait area, in D. Walker, Bridge and Barrier: the Natural and Cultural History of Torres Strait, Publ. BG/3. Australian National University, Canberra.
- Erickson, R. (1958), Triggerplants. Brokensha, Perth.
- Ey, T. M. & Barlow, B. A. (1972), Distribution of chromosome races in the Eremophila glabra complex, Search 3: 337-338.
- Farrell, P. G. & James, S. H. (1979), *Stylidium ecorne* (F. Muell. ex Erickson and Willis) comb. et stat. nov. (Stylidiaceae), *Austral. J. Bot.* 27: 39-45.
- Fosberg, F. R. (1948), Derivation of the flora of the Hawaiian Islands, in E. C. Zimmerman, Insects of Hawaii. University of Hawaii Press, Honolulu.
- Galloway, R. W. & Kemp, E. M. (1981), Late Cainozoic environments in Australia. in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Galloway, R. W. & Loffler, E. (1972), Aspects of geomorphology and soils in the Torres Strait region, *in* D. Walker, *Bridge and Barrier: the Natural and Cultural History of Torres Strait*, Publ. BG/3. Australian National University, Canberra.
- Gardner, C. A. (1944), The vegetation of Western Australia, J. Roy. Soc. W. Austral. 28: xi-lxxxvii.
- George, A. S. (1976), Biogeography of Banksia (Proteaceae), 47th ANZAAS Congress, Abstr. 179.
- Gill, A. M. (1975), Fire and the Australian flora: a review, Austral. For. 39: 4-25.
- Gill, E. D. (1955), The Australian arid period, Austral. J. Sci. 17: 204-206.
- Gill, E. D. (1962), Cainozoic, in A. Spry & M. R. Banks, The geology of Tasmania, J. Geol. Soc. Austral. 9: 233-254.
- Gill, E. D. (1975), Evolution of Australia's unique flora and fauna in relation to the plate tectonics theory, *Proc. Roy. Soc. Victoria* 87: 215-234.
- Good, R. (1947) The Geography of the Flowering Plants. Longmans Green, London.

- Good, R. (1960), On the geographical relationships of the angiosperm flora of New Guinea, Bull. Brit. Mus. (Nat. Hist.), Bot. 2: 205-226.
- Good, R. (1963), On the biological and physical relationships between New Guinea and Australia, *in J. L. Gressit, Pacific Basin Biogeography.* Bishop Museum Press, Honolulu.
- Grady, A. E. & Berry, R. F. (1977), Some Palaeozoic-Mesozoic stratigraphicstructural relationships in east Timor and their significance in the tectonics of Timor, J. Geol. Soc. Austral. 24: 203–214.
- Greenslade, P. (1981), Origins of the Collembolan fauna of arid Australia, in W. R. Barker, P. J. M. Greenslade & P. R. Baverstock, *Evolution of the Flora and Fauna of Arid Australia*, Symposium. Adelaide, May 1980. In press.
- Griffiths, J. R. & Varne, R. (1972), Evolution of the Tasman Sea, Macquarie Ridge, and Alpine Fault, *Nature Phys. Sci.* 235: 83-86.
- Hassall, D. C. (1977), The genus Euphorbia in Australia, Austral. J. Bot. 25: 429-453.
- Hassall, D. C. (1981), Historical development in the Australian Euphorbiaea (Euphorbiaceae), in W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.
- Hayman, D. L. (1960), The distribution and cytology of the chromosome races of *Themeda australis* in southern Australia, *Austral. J. Bot.* 8: 58-68.
- Herbert, D. A. (1932), The relationships of the Queensland flora, Proc. Roy. Soc. Queensland 44: 2-22.
- Herbert, D. A. (1935), The climatic sifting of Australian vegetation, ANZAAS Rep. 22: 349-370.
- Herbert, D. A. (1950), Present day distribution and the geological past, Victorian Naturalist 66: 227-232.
- Herbert, D. A. (1960), Tropical and sub-tropical rainforest in Australia, Austral. J. Sci. 22: 283–290.
- Herbert, D. A. (1964), Differentiation of paleotropical floras, Advancing Frontiers Pl. Sci. 1: 51-59.
- Herbert, D. A. (1967), Ecological segregation and Australian phytogeographic elements, *Proc. Roy. Soc. Queensland* 78: 101-111.
- Hoogland, R. D. (1972), Plant distribution patterns across the Torres Strait, in D. Walker, Bridge and Barrier: the Natural and Cultural History of Torres Strait, Publ. BG/3. Australian National University, Canberra.
- Hooker, J. D. (1860), Introductory Essay, Botany of the Antarctic Voyage of H.M. Discovery ships 'Erebus' and 'Terror' in the years 1839-1843, III. Flora Tasmaniae, Reeve, London.
- Hopper, S. D. (1979), Biogeographical aspects of speciation in the southwest Australian flora, Annual Rev. Ecol. Syst. 10: 399-422.
- Hos, D. (1975), Preliminary investigation of the palynology of the Upper Eocene Werillup Formation, Western Australia, J. Roy. Soc. W. Austral. 58: 1-14.
- Jacobs, S. W. L. (1981), Relationships, distribution and evolution of *Triodia* and *Plectrachne* (Gramineae), *in* W. R. Barker, P. J. M. Greenslade, & P. R.

Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.

- James, S. H. (1963), Cytological studies in the Lobeliaceae, Ph.D. thesis, University of Sydney, Sydney.
- James, S. H. (1965), Complex hybridity in *Isotoma petraea*. I. The occurrence of interchange heterozygosity, autogamy and a balanced lethal system, *Heredity* 20: 341-353.
- James, S. H. (1970), Complex hybridity in *Isotoma petraea*. II. Components and operation of a possible evolutionary mechnism, *Heredity* 25: 53-78.
- James, S. H. (1979), Chromosome numbers and genetic systems in the trigger-plants of Western Australia (*Stylidium*; Stylidiaceae), *Austral. J. Bot.* 27: 17-25.
- James, S. H. (1981), Cytoevolutionary patterns, genetic systems and the phytogeography of Australia, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Jardine, N. & McKenzie, D. (1972), Continental drift and the dispersal and evolution of organisms, *Nature* 235: 20-24.
- Jennings, J. N. (1972), Some attributes of Torres Strait, in D. Walker, Bridge and Barrier: the Natural and Cultural History of Torres Strait, Publ. BG/3. Australian National University, Canberra.
- Johnson, L. A. S. (1976), Problems of genera and species in *Eucalyptus* (Myrtaceae), *Pl. Syst. Evol.* 125: 155-167.
- Johnson, L. A. S. & Briggs, B. G. (1975), On the Proteaceae-the evolution and classification of a southern family, *Bot. J. Linn. Soc.* 70: 83-122.
- Johnson, L. A. S. & Briggs, B. G. (1981), Three old southern families—Myrtaceae, Proteaceae and Restionaceae, in A. Keast, Ecological Biogeography of Australia. W. Junk, The Hague.
- Keast, A. (1958), The influence of ecology on variation in the mistletoe-bird (*Dicaeum hirundinaceum*), *Emu* 58: 195-206.
- Keighery, G. J. (1981), Pollination syndromes and breeding systems of Western Australian arid zone plants, in W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, *Evolution of the Flora and Fauna of Arid Australia*, Symposium, Adelaide, May 1980. In press.
- Kemp, E. M. (1978), Tertiary climatic evolution and vegetation history in the southeast Indian Ocean region, *Palaeogeogr., Palaeoclimatol., Palaeoecol.* 24: 169-208.
- Kemp, E. M. (1981), Tertiary palaeogeography and the evolution of Australian climate, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Kemp, E. M. & Barrett, P. J. (1975), Antarctic glaciation and early Tertiary vegetation, *Nature* 258: 507-508.
- Krassilov, V. A. (1977), The origin of angiosperms, Bot. Rev. 43: 143-176.
- Kyhos, D. W., Carter, C. R. & Smith-White, S. (1977), The cytology of *Brachycome lineariloba*. 7. Meiosis in natural hybrids and race relationships, *Chromosoma (Berl.)* 65: 81-101.
- Lange, R. T. (1978), Carpological evidence for fossil *Eucalyptus* and other Leptospermeae (subfamily Leptospermoideae of Myrtaceae) from a Tertiary deposit in the South Australian arid zone, *Austral. J. Bot.* 26: 221-233.

- Loveless, A. R. (1961), A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves, *Ann. Bot. (London)*, n.s. 25: 168–184.
- Maconochie, J. R. (1979), Phenology of Central Australian arid zone plants, Symp. Biol. Native Austral. Pl., Perth.
- Marchant, N. G. (1973a), Species diversity in the south-western flora, J. Roy. Soc. W. Austral. 56: 23-30.
- Marchant, N. G. (1973b), Speciation in Drosera, Section Lamprolepis, ANZAAS 45th Congress, Sect. 12 Abstr.
- Martin, H. A. (1981), The Tertiary flora, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Maslin, B. R. & Hopper, S. D. (1981), Phytogeography of Acacia (Leguminosae: Mimosoideae) in Central Australia, in W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.
- McKenna, M. C. (1972), Possible biological consequences of plate tectonics, *Bio-Science* 22: 519-525.
- Menzel, M. Y. & Martin, D. W. (1980), Evidence for the presence of an intercontinental genome in the Australian hexaploid alliance of *Hibiscus* Sect. Furcaria, Austral. J. Bot. 28: 369-383.
- Nelson, E. C. (1981), Phytogeography of southern Australia, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Nix, H. A. (1981), Environmental determinants of biogeography and evolution in arid Australia, in W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, *Evolution of the Flora and Fauna of Arid Australia*, Symposium, Adelaide, May 1980. In press.
- Nix, H. A. & Kalma, J. D. (1972), Climate as a dominant control in the biogeography of northern Australia and New Guinea, in D. Walker, Bridge and Barrier: the Natural and Cultural History of Torres Strait, Publ. BG/3, Australian National University, Canberra.
- Page, C. N. & Clifford, H. T. (1981), Ecological biogeography of Australian conifers and ferns, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Parr-Smith, G. A. (1981), Biogeography and evolution in the shrubby Australian Atriplex (Chenopodiaceae), in W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.
- Peacock, W. J. (1963), Chromosome numbers and cytoevolution in the Goodeniaceae, Proc. Linn. Soc. New South Wales 88: 8-27.
- Peacock, W. J. & Smith-White, S. (1978), Cytogeography of *Brunonia australis* Sm. ex R. Br., *Brunonia* 1: 31-43.
- Powell, C. McA., Johnson, B. D. & Veevers, J. J. (1981), The Early Cretaceous break-up of Eastern Gondwanaland, the separation of Australia and India, and their interaction with Southeast Asia, in A. Keast, *Ecological Biogeography of* Australia. W. Junk, The Hague.

- Preest, D. S. (1963), A note on the dispersal characteristics of the seed of the New Zealand podocarps and beeches and their biogeographical significance, in J. L. Gressitt, *Pacific Basin Biogeography*. Bishop Museum Press, Honolulu.
- Pryor, L. D. (1976), The Biology of Eucalypts. Edward Arnold, London.
- Pryor, L. D. & Johnson, L. A. S. (1981), *Eucalyptus*, the universal Australian, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Ramsay, H. P. (1963), Chromosome numbers in the Proteaceae, Austral. J. Bot. 11: 1-20.
- Randell, B. R. (1970), Adaptations in the genetic systems of Australian arid zone Cassia species (Leguminosae, Caesalpinioideae), Austral. J. Bot. 18: 77-97.
- Randell, B. R. & Symon, D. E. (1976), Chromosome numbers in Australian Solanum species, Austral. J. Bot. 24: 369-379.
- Randell, B. R. & Symon, D. E. (1977), Distribution of *Cassia* and *Solanum* species in arid Australia, *Search* 8: 206–207.
- Raven, P. H. (1979), Plate tectonics and southern hemisphere biogeography, in K. Larsen & L. B. Holm-Nielsen, *Tropical Botany*. Academic Press, London.
- Raven, P. H. & Axelrod, D. I. (1972), Plate tectonics and Australasian biogeography, Science 176: 1379–1386.
- Raven, P. H. & Axelrod, D. I. (1974), Angiosperm biogeography and past continental movements, Ann. Missouri Bot. Gard. 61: 539-673.
- Recher, H. F. & Christensen, P. E. (1981), Fire and the evolution of the Australian biota, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Sands, V. E. (1975), The cytoevolution of the Australian Papilionaceae, Proc. Linn. Soc. New South Wales 100: 118-155.
- Schuster, R. M. (1976), Plate tectonics and its bearing on the geographical origin and dispersal of angiosperms, in C. B. Beck, Origin and Early Evolution of Angiosperms. Columbia Univ. Press, New York.
- Schwarz, O. (1928), Analytische Studie über die Beziehungen der Phanerogamenflora von Arnhemsland (Nordaustralien), Repert. Spec. Nov. Regn. Veg. Beih. 51: 59-113.
- Short, P. S. (1981), Breeding systems and distribution patterns of some Australian Gnaphaliinae (Compositae: Inuleae), in W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.
- Smith-White, S. (1948a), Cytological studies in the Myrtaceae II. Chromosome numbers in the Leptospermoideae and Myrtoideae, Proc. Linn. Soc. New South Wales 73: 16-36.
- Smith-White, S. (1948b), A survey of chromosome numbers in the Epacridaceae, *Proc. Linn. Soc. New South Wales* 73: 37-56.
- Smith-White, S. (1950), Cytological studies in the Myrtaceae III. Cytology and phylogeny of the Chamaelaucoideae, *Proc. Linn. Soc. New South Wales* 75: 99–121.
- Smith-White, S. (1954a), Cytological studies in the Myrtaceae IV. The subtribe Euchamaelaucinae, *Proc. Linn. Soc. New South Wales* 79: 21-28.

Origin and Evolution

- Smith-White, S. (1954b), Chromosome numbers in the Boronieae (Rutaceae) and their bearing on the evolutionary development of the tribe in the Australian flora, *Austral. J. Bot.* 2: 287-303.
- Smith-White, S. (1955), Chromosome numbers and pollen types in the Epacridaceae, *Austral. J. Bot.* 3: 48-67.
- Smith-White, S. (1959), Cytological evolution in the Australian flora, Cold Spring Harbor Symp. Quant. Biol. 24: 273-289.
- Smith-White, S., Carter, C. R. & Stace, H. M. (1970), The cytology of *Brachycome*. 1. The subgenus *Eubrachycome*: a general survey, *Austral. J. Bot.* 18: 99-125.
- Specht, R. L. (1958), The geographical relationships of the flora of Arnhem Land, in R. L. Specht & C. P. Mountford, *Records of the American-Australian Scientific Expedition to Arnhem Land*. Melbourne University Press, Melbourne.
- Specht, R. L. (1972), The Vegetation of South Australia. Government Printer, Adelaide.
- Specht, R. L. (1981a), Major vegetation formations in Australia, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Specht, R. L. (1981b), Ecophysiological principles determining the biogeography of major vegetation formations in Australia, in A. Keast, Ecological Biogeography of Australia. W. Junk, The Hague.
- Specht, R. L. (1981c), Evolution of the Australian flora: some generalizations, in A. Keast, *Ecological Biogeography of Australia*. W. Junk, The Hague.
- Specht, R. L., Rayson, P. & Jackman, M. (1958), Dark Island Heath (Ninety-Mile Plain, South Australia). VI. Pyric succession; changes in composition, coverage, dry wreight and mineral status, Austral. J. Bot. 6: 59-88.
- Specht, R. L., Roe, E. M. & Boughton, V. H. (1974), Conservation of major plant communities in Australia and Papua New Guinea, *Austral. J. Bot.* Suppl. Series No. 7.
- Stace, H. M. (1978), Cytoevolution in the genus *Calotis* R. Br. (Compositae: Astereae), *Austral. J. Bot.* 26: 287–307.
- Stace, H. M. (1981), Calotis R. Br. (Compositae), an old arid zone genus?, in W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.
- Stebbins, G. L. & Hoogland, R. D. (1976), Species diversity, ecology and evolution in a primitive angiosperm genus: *Hibbertia* (Dilleniaceae), *Pl. Syst. Evol.* 125: 139-154.
- Steenis, C. G. G. J. van (1934a), On the origin of the Malaysian mountain flora. 1. Facts and statement of the problem, *Bull. Jard. Bot. Buitenzorg* 13: 139–262.
- Steenis, C. G. J. van (1934b), On the origin of the Malaysian mountain flora. 2. Altitudinal zones, general considerations and renewed statement of the problem, Bull. Jard. Bot. Buitenzorg 13: 289-417.
- Steenis, C. G. G. J. van (1936), On the origin of the Malaysian mountain flora. 3. Analysis of floristic relationships. Pt. i. The Sumatran track, Bull. Jard. Bot. Buitenzorg 14: 56-72.
- Steenis, C. G. G. J. van (1950), The delimitation of Malaysia and its main plant geographical divisions, in C. G. G. J. van Steenis (ed.), Flora Malesiana, Series 1, Spermatophyta Vol. 1: lxx-lxxv. Noordhoff, Djakarta.

- Steenis, C. G. G. J. van (1963), Transpacific floristic affinities, particularly in the tropical zone, in J. L. Gressitt, *Pacific Basin Biogeography*. Bishop Museum Press, Honolulu.
- Steenis, C. G. J. van (1971), Nothofagus, key genus of plant geography, in time and space, living and fossil, ecology and phylogeny, Blumea 19: 65-98.
- Steenis, C. G. G. J. van (1979), Plant-geography of east Malesia, Bot. J. Linn. Soc. 79: 97-178.
- Stewart, D. A. & Barlow, B. A. (1976a), Infraspecific polyploidy and gynodioecism in *Ptilotus obovatus* (Amaranthaceae), *Austral. J. Bot.* 24: 237-248.
- Stewart, D. A. & Barlow, B. A. (1976b), Genomic differentiation and polyploidy in Sowerbaea (Liliaceae), Austral. J. Bot. 24: 349-367.
- Takhtajan, A. (1969), Flowering Plants, Origin and Dispersal. Oliver, Edinburgh.
- Tate, R. (1888), Presidential address, Austral. Assoc. Adv. Sci., Report 1: 317-319.
- Thomson, M. R. A. & Burn, R. W. (1977), Angiosperm fossils from latitude 70° S, Nature 269: 139-141.
- Trusswell, E. M. & Harris, W. K. (1981), The Cainozoic palaeobotanical record in arid Australia: fossil evidence for the origins of an arid-adapted flora, in W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, Evolution of the Flora and Fauna of Arid Australia, Symposium, Adelaide, May 1980. In press.
- Turner, B. L. (1966), Chromosome numbers in *Stackhousia* (Stackhousiaceae), *Austral. J. Bot.* 14: 165–166.
- Wace, N. M. (1972), Discussion on the plant geography around Torres Strait, in
 D. Walker, Bridge and Barrier: the Natural and Cultural History of Torres Strait,
 Publ. BG/3. Australian National University, Canberra.
- Watanabe, K., Carter, C. R. & Smith-White, S. (1975), The cytology of *Brachycome lineariloba*. 6. Asynchronous chromosome condensation and meiotic behaviour in *B. lineariloba* A $(n=2) \times B$. *campylocarpa* A (n=4), *Chromosoma (Berl.)* 57: 319-331.
- Webb, L. J. & Tracey, J. G. (1972), An ecological comparison of vegetation communities on each side of Torres Strait in D. Walker, Bridge and Barrier: the Natural and Cultural History of Torres Strait, Publ. BG/3. Australian National University, Canberra.
- Webster, P. J. & Streten, N. A. (1972), Aspects of late Quaternary climate in tropical Australasia, in D. Walker, Bridge and Barrier: the Natural and Cultural History of Torres Strait, Publ. BG/3. Australian National University, Canberra.
- Weissel, J. K. & Hayes, D. E. (1974), The Australian-Antarctic discordance, new results and implications, J. Geophys. Res. 79: 2579–2587.
- West, J. G. (1980), A taxonomic revision of *Dodonaea* Miller (Sapindaceae) in Australia, Ph.D. thesis, University of Adelaide.
- West, J. G. (1981), Radiation and adaptations of *Dodonaea* Miller (Sapindaceae) in arid Australia, *in* W. R. Barker, P. J. M. Greenslade, & P. R. Baverstock, *Evolution of the Flora and Fauna of Arid Australia*, Symposium, Adelaide, May 1980. In press.
- Wopfner, H., Callen, R. & Harris, W. K. (1974), The lower Tertiary Eyre Formation of the southwestern Great Artesian Basin, J. Geol. Soc. Austral. 21: 17-52.

AN INTRODUCTION TO THE SYSTEM OF CLASSIFICATION USED IN THE FLORA OF AUSTRALIA

A. Kanis

Floras and the classification of plants

Floras are works of reference about plants, arranged in systematic categories ('taxa'), of defined geographical areas. Because they vary in the amount of detail included as well as the size and complexity of the area covered, they can differ considerably in size and format. In handbooks and more comprehensive floras particular attention is given to the principal means of plant identification, viz. keys and comparable descriptions of taxa, largely based on morphological characters. The taxon most commonly recognised, and therefore emphasised in Floras, is the *species* ('kind' or 'sort'). In works of a critical nature, almost equivalent attention may be given to such infraspecific categories as *subspecies* and *varietas* ('variety'). No doubt this is for the practical reason that the information most frequently required is about species and subordinate taxa.

In accordance with general principles of classification, the basic taxonomic categories are grouped into larger units: from many rather concretely defined ones to fewer more generalised and therefore more abstract ones. The arrangement of individual plants and populations into larger categories, on the basis of degrees of similarity and of discontinuity in variation, results in a hierarchical system. The information presented in floras is arranged in accordance with such a system, because it facilitates comparisons if similar taxa are treated in close proximity.

Not all taxa that may be distinguished above the rank of species are of equal interest. Certain ranks are traditionally given greater prominence than others in floras, sometimes to the complete exclusion of intermediate ones. The next category of practical importance above species is that of *genus*. Although essentially more theoretical in concept, genera are often more readily recognised than their composite taxa. A generic name (always treated as a Latin singular noun though frequently of Greek or other derivation) forms the first part of a binary name which is given to every species. The second part is the so-called 'specific epithet', which is usually an adjective. To denote a subspecies or a variety a third element, usually a second adjective, is added to the name of the relevant species. As a result the very nomenclature of plants reflects a systematic arrangement, at least from the generic level downwards.

The present concepts of genus, species and variety can be traced back to the writings of the Swedish botanist Carl von Linné (1707–1778) better known as Linnaeus, although they were adapted and defined, rather than invented, by him. Many of the genera and subordinate taxa recognised by Linnaeus have since been widened or, more often, narrowed in their circumscription, but the great majority of these have survived to form the core of all subsequent systems of classification. For ranks above that of genus, Linnaeus deliberately used an artificial system of orders and classes based on a minimum of arbitrarily chosen floral characters such as the number of stamens and pistils ('sexual system'). He regarded this as the most practical solution for classifying the avalanche of new plants reaching scientists in his day from remote, newly explored parts of the world.

System of classification

The influence of the Linnaean system was so great that it largely discouraged the development and use of alternatives for over half a century. As knowledge of the world's flora increased, however, botanists became better equipped to design so-called 'natural systems'. These have been based on similarities and differences in as many characters as possible, both vegetative and reproductive. The recognition of 'natural orders' was strongly promoted in the latter part of the 18th Century by some French botanists, of whom Antoine Laurent de Jussieu (1748-1836) was the most influential. One of the very first floras in which genera were arranged by natural orders was also the first concerned with the Australian region, viz. Robert Brown's Prodromus Florae Novae Hollandiae et Insulae Van-Diemen (1810). During the 19th Century it became customary to replace the term 'natural order' by the alternative familia ('family'), first promoted by another Frenchman, Michel Adanson (1727-1806). Some families such as Apiaceae (Umbelliferae), Brassicaceae (Cruciferae) and Poaceae (Gramineae) were already recognised as natural groups by some of Linnaeus' predecessors and are therefore older than the formal category itself. Family names are of practical use because they can be remembered more easily, being rather fewer in number than their included genera. This advantage, however, is somewhat eroded by the trend to divide large 'traditional' families into more homogeneous but smaller ones. Attempts to place all genera in appropriate families have not been completely successful, but such problems as still exist will probably be solved eventually by modern methods of research.

For the last hundred years or so, the term *ordo* ('order') has been used for the rank above family in the hierarchical classification. Traditionally, orders have been given scant attention in floras. In other taxonomic literature, however, there has been an upsurge of interest in the arrangement of families and higher ranks within the Flowering Plants. Among the systems proposed more recently, there is an increasing similarity in the concepts of these taxa. As a result, orders may eventually take over the role of memory pegs from families.

The next major taxonomic category above order is that of *classis* ('class'). The question which group of taxa constitutes a class could be expected to be a subject of much controversy. In the Flowering Plants, however, there is a remarkable and long-standing agreement among botanists to recognise only two classes, sometimes regarded as subclasses, viz. *Liliopsida* (=*Monocotyledoneae*) and *Magnoliopsida* (=*Dicotyledoneae*). Flowering Plants as a whole, previously also known as *Angio-spermae*, or *Anthophyta s. str.*, are ranked sometimes as a *subdivisio* (Ehrendorfer, 1971), but more usually as a *divisio* ('division'), for which the modern name *Magnol-iophyta* has been introduced (Cronquist et al., 1966). This taxon in turn may be placed in subregnum *Embryobionta* (Cronquist et al., 1966), the next higher category, which is perhaps more widely known under the older name *Cormophyta*. Finally, the ultimate rank of *regnum* ('kingdom') traditionally accommodates all plants (*Vegetabilia* or *Plantae s. lat.*) as opposed to animals (*Animalia*).

The primary division of all organisms into plants and animals, as reflected in the traditional partitioning of biology into botany and zoology, is no longer regarded as satisfactory from a theoretical point of view. There appears to be a more fundamental difference between those organisms that lack a distinct cellular nucleus (*Prokaryota*) and those that do possess such an organelle (*Eukaryota*). The former group includes only the *Schizophyta* or Bacteria and Blue-Green Algae (=kingdom Monera, Raven et al., 1981). Modern authors prefer to divide the eukaryote organisms into a number of kingdoms or subkingdoms, some accommodating those traditionally regarded as plants. The *Protista s. lat.* (=*Protobionta* or *Thallophyta*) may include the auto-trophic Algae (=*Phycophyta*) as well as the heterotrophic Fungi (=*Mycophyta*). On the other hand, both *Protista s. str.* and (higher) Fungi may be treated as equivalent

taxa (kingdoms, Raven et al., 1981), possibly of the same rank as the Embryobionta, or plants in the narrow sense. Apart from the Magnoliophyta, the Embryobionta accommodates the following divisions (after Cronquist et al., 1966): Bryophyta (Mosses and Liverworts), Psilophyta (Whisk Ferns), Lycopodiophyta (=Lycophyta or Clubmosses), Equisetophyta (=Sphenophyta or Horsetails), Polypodiophyta (=Pterophyta or Ferns) and Pinophytina (=Gymnospermae). Traditionally, Magnoliophyta and Pinophyta have been treated together as Spermatophyta (=Phanerogamae or Seed Plants), whereas Embryobionta, excluding Bryophyta but including Pteridophyta (Ferns and Fern Allies), have been grouped together as Tracheophyta (Vascular Plants). In many floras the treatment is restricted to the Magnoliophyta or Spermatophyta. The Pteridophyta are often included in smaller floras of temperate regions, but otherwise are usually treated, like Bryophyta and Protobionta, in independent and specialised works. It is intended that the Flora of Australia will ultimately cover all plants known to grow naturally in the region except the Bacteria.

To illustrate what has been discussed in the preceding paragraphs, the hierarchy of taxonomic terms is presented in Table 3 with appropriate names at each rank for *Acacia pycnantha* Benth. From the family level downwards it is customary to provide the name of the original author(s) ('authority'), often in an abbreviated form, after the taxonomic name. These are often useful, particularly as different authors have sometimes used the same name inadvertently for different taxa at the same level, either as independently coined names ('homonyms') or as a result of misinterpretation ('misapplied names'). A name in brackets indicates an earlier author who may have used the same taxonomic name at a different rank in the hierarchy. In the case of an infra-generic name, the author may have used the second or third element of that name originally in combination with the name of another genus or species respectively.

The background of phylogenetic classification

When de Jussieu proposed a natural system for the classification of plants in his *Genera Plantarum* (1789), he probably did so as a true representative of the so-called 'idealistic morphologists'. It is unlikely that he considered the distinguishing characters of the respective groups of plants to be the result of an evolutionary process, as such hypotheses hardly entered scientific thought until the end of the 18th Century. Contemporary biologists saw it as their task to recognise the essential (or 'arche-typal') characters of taxa, thought to be obscured in Nature by a multitude of variants. In their opinion a natural system of classification of all creatures, should reflect the 'Grand Design' (in a theological or philosophical sense) fundamental to Nature.

The first theory to challenge the idea of immutability of species with some success was proposed by the Parisian professor Jean Monnet de Lamarck in his *Philosophie Zoologique* (1809). It was Charles Darwin's *On the Origin of Species by Means of Natural Selection* (1859), however, that profoundly changed biological and philoso-, phical thinking. Natural systems acquired a new dimension through evolutionary theories, and were increasingly regarded as models reflecting degrees of actual relationship through common descent. Species within a single genus were considered to have diverged from each other later and/or more slowly (and therefore to a lesser degree) than genera within a family. The same principle was believed to apply to other taxonomic ranks. A stepped hierarchical system cannot, however, adequately reflect all stages of gradual diversification at any one time. Therefore a decision to recognise a particular group as a distinct taxon at a particular rank will always be somewhat arbitrary. In certain groups, taxa at the specific level may be clearly iso-lated from each other by discontinuities in character variation, whereas relevant taxa

Table 3. Hierarchy of taxonomic categories: major ones in capitals, the most commonly used intermediate ones in lower case. The example shows the classification of the Golden Wattle. Names from subregnum down to divisio after Cronquist et al. (1966), from classis to familia after Cronquist (1981). The name for the subseries was not validly published as Bentham did not assign it to a particular rank at any time.

REGNUM (kingdom)	Eukaryota (Organisms of nucleate cells)
Subregnum	Embryobionta (Stem Plants)
DIVISIO (division)	Magnoliophyta (Flowering Plants)
Subdivisio	
CLASSIS (class)	Magnoliopsida (Dicotyledons)
Subclassis	Rosidae
ORDO (order)	Fabales (Leguminous Plants)
Subordo	
FAMILIA (family)	Mimosaceae R.Br. (1814)
Subfamilia	
Tribus (tribe)	Acacieae (Reichb.) Endl. (1841)
Subtribus	
GENUS	Acacia Miller (1754)
Subgenus	Acacia subg. Heterophyllum Vassal (1972)
Sectio (sect	ion) Acacia sect. Phyllodineae DC. (1825)
Series	Acacia ser. Uninerves Benth. (1864)
Subseries	[Acacia 'Racemosae' Benth. (1842, 1864)]
SPECII	ES (kind) Acacia pycnantha Benth. (1842)
Subsp	ccies
VAR	IETAS (variety) Acacia pycnantha Benth. var. pycnantha (1864)

of higher rank may be difficult to segregate and circumscribe. On the other hand certain genera may be easy to define and agree upon, but their subdivision into species may be difficult because relevant natural populations show overlapping ranges of variation in a number of characters. Such difficulties may well appear in floras through keys to identification that do not always give satisfactory results.

Darwin's ideas undoubtedly had an impact on the natural system of plant classification developed by George Bentham and Joseph Hooker. Published in their *Genera Plantarum* (1862–1883), this system was most influential until the beginning of the 20th Century. It is interesting to note that the only comprehensive flora yet completed for the Australian region as a whole, Bentham's *Flora Australiensis* (1863–1878), was one of the first great floras written in that period.

From the beginning of the 20th Century onwards, genetic research has provided a deeper insight into the nature of morphologically-based taxa, particularly at generic and subordinate levels. It has become clear that it is of limited use to recognise formal categories, such as subvarieties, forms and even subforms, as was fashionable in some 'schools' until quite recently. On the other hand, varieties and higher taxa, originally only recognised because of apparent similarities of of the constituent individuals ('phenotypes'), were usually shown to have a common genetic potential ('gene pool'). Encouraged by these results, botanists have attempted to provide definitions for the lower taxa, in particular the species, by using more objective criteria, e.g. the degree of fertility between individuals or populations. They have, however, failed to find any criteria that are suitable for universal application and it seems as yet impossible to remove subjectivity from taxonomic practice.

Theories on the evolution of life, as well as developments in other biological disciplines, have certainly influenced the thinking of taxonomists. Most plant taxa, however, are still recognised and defined primarily by gross morphological characters ('alpha taxonomy'). It is possible nowadays to test similarities and discontinuities by using additional criteria derived from such disciplines as anatomy, palynology, embryology, cytology, phytochemistry and genetics ('omega taxonomy'). Taxonomists usually take into account significant results from these areas of research when circumscribing taxa and designing systems of classification. If all taxonomic studies were made on such a comprehensive scale, however, it would slow down a more balanced accumulation of taxonomic knowledge over the widest possible front. A comprehensive system of classification even in a rather preliminary stage, is of more immediate use for urgently needed floras.

Natural and phylogenetic systems of classification

The question remains whether 'natural systems' can ever be improved to the point where they reflect adequately the course of the evolution of organisms ('phylogeny'). The following factors act counter to any attempts to achieve this aim:

(1) Inadequacy of the fossil plant record Although the fossil record is relatively good for some categories of organisms—mostly animal groups such as molluses and vertebrates—it is rather poor for others, particularly many plant groups. Consequently, direct evidence for the pathways of evolution is largely lacking in a group like the Flowering Plants and may never become available. Assumptions about past development must therefore be based mainly on evidence derived from living representatives. Unfortunately, some botanists have been tempted to present 'genealogical trees' in which all the key positions of the branching system are occupied by recent taxa. Such systems should be regarded as pseudo-phylogenetic. If one adopts the model of a phylogenetic tree, it is only justifiable to regard it as buried by the sands of time, with the living species just visible as extremities of the finest twigs (Fig. 22).

System of classification

(2) Convergent evolution If evolution were a process of continuing divergence only, one could expect to approach the phylogenetic ideal gradually by simply improving the traditional systems based on degrees of similarity. It is evident, however, that widely different groups can become more similar through convergent evolution, at least in a number of characters which may be conspicuous. To return to the imagery used above: it is probable that adjacent branch tips are more recent offshoots of a single larger branch than of those that are further apart. This assumption may not be confirmed, however, once the sand is removed, since twigs of different branches may have grown towards each other and may have become closer than twigs of any single branch developing either divergently or in parallel. Convergent developments have certainly caused misinterpretations in the past: e.g. the Magnoliopsida (Dicotyledons) with fused corolla lobes were formerly united as the subclass Sympetalae but are now regarded as a rather artificial group of families and orders of disparate origins. In other words, certain taxa have reached a similar stage in their evolution with regard to a few correlated characters, although they need not be considered by other criteria as closely related. To overcome the problem of classifying such artificial, often polyphyletic taxa ('grades'), numerical methods have been developed that enable us to assess as many similarities and dissimilarities as possible. When making such assessments, it is important to determine as far as possible which characters are 'primitive' and which are 'advanced', as only the latter can give positive indications of relative distances of relationships. The (re-)evaluation of taxa on this wider basis results in groups with a high probability of being monophyletic ('clades'). This approach appears to affect traditional systems more drastically at the higher levels where a greater degree of uncertainty has always existed.

In conclusion, it appears that the most improved 'natural system' of classification also provides the most probable model of actual evolution that can be deduced. One cannot clearly distinguish between 'natural' and 'phylogenetic' systems. A schematic presentation of a modern phylogenetic system of classification of the *Magnoliophyta* by the Swedish taxonomist Rolf Dahlgren (1980) is reproduced in Figure 22. In this diagram, the 'tips of the branches' have been grouped into larger units (orders and superorders) by cladistic methods. Their relative proximity is an expression of similarity or dissimilarity in a range of characters.

The system used in the Flora of Australia

As explained above, the nomenclature of plants itself imposes on Floras a systematic grouping from the generic level down, but a particular system is usually adopted for the placement of genera into families. The choice of a system does not necessarily determine the sequence of genera and families, since these may be arranged alphabetically or according to assumed relationships at any or all of these levels. A sequence according to degrees of similarity appears preferable, particularly in works which deal with many representatives of any one taxon. Taxonomic relationships would be best expressed in a multi-dimensional scheme, whereas the treatment in a book necessarily follows a more arbitrary linear sequence. In practice this does not appear to be a major disadvantage, while it could also be argued that any systematic arrangement of taxa in a Flora is primarily an expediency, theoretical considerations being of little interest to most users. Nevertheless, it would appear undesirable to choose a system that is clearly out of date.

The Editorial Committee for the *Flora of Australia* decided in 1979 that a sequential system should be adopted, so that the families could be assigned to particular volumes from the beginning. For the Flowering Plants their choice fell on the latest version of Arthur Cronquist's system then being prepared for publication (Cronquist, 1981), since it was thought that it would be the most modern published by the time the first volumes of the Flora were to appear. Cronquist's system, as relevant to Australia, is given on the front endpapers of this introductory volume, together with a schedule for the Flora. A systematic arrangement of taxa other than *Magnoliophyta* will be decided at a later date.

Current systems of Magnoliophyta

For readers interested in the latest developments in this field, a comparison is presented here of the most recent systems of classification designed to accommodate the whole of the subdivision *Magnoliophyta*. Such a discussion must be limited in scope in this introductory chapter. It is not warranted to compare systems that are of historical interest only and that have been discussed at length in other publications. As a starting point, the latest edition of Volume 2 of *A. Engler's Syllabus der Pflanzenfamilien* (Melchior, 1964) has been chosen. This work surveyed the more important systems from 1940 onwards, down to the level of order, and provided a comprehensive bibliography of relevant literature.

A comparison of modern classification systems of *Magnoliophyta* was published more recently in tabular form by Kenneth M. Becker (1973). Choosing Arthur Cronquist's systematic sequence (1968) as a basis he made a concordance down to family level of the systems of Armen Takhtajan (1966, 1968), Robert Thorne (1968), Hans Melchior (1964) and John Hutchinson (1959, 1969) together with the historically interesting one by George Bentham and Joseph D. Hooker (1862–1883). He also accounted for the additional families accepted by H. K. Airy Shaw (1966). A slightly modified version of Hutchinson's system has since been published posthumously (1973), while Takhtajan (1980) has also brought out a revised version. Both Cronquist and Thorne have prepared updated editions of their systems, and Dahlgren recently proposed a new system that has already appeared in two editions (1975, 1980).

The families of Flowering Plants after H. K. Airy Shaw

From its seventh edition onwards, H. K. Airy Shaw has revised J. C. Willis's A Dictionary of the Flowering Plants and Ferns (7th edn, 1966; 8th edn, 1973). He assigned most genera of the relevant taxa (including Gymnosperms!) to a family. Airy Shaw listed and described a relatively high number of segregate families and usually indicated relationships at that level as understood by him. He did not present an original system, however, as the families were consistently correlated with the higher categories of the now rather obsolete system of Adolf Engler in Syllabus der Pflanzenfamilien (7th edn, 1912).

Airy Shaw recognised 247 families of Flowering Plants that are known to be represented in Australia by indigenous species. Of these, 26 families (10.5%) were not recognised as such by Melchior (1964), Hutchinson (1973) or Cronquist (1981), including *Bambusaceae* and *Ternstroemiaceae*, which he regarded as of uncertain status. A further 24 families (9.7%) have been accepted by only one other of these authors and 16 (6.5%) by two of them. All 66 'controversial' families are listed in the first column of Table 4, adjusted to the left-hand margin. Their taxonomic positions as far as their Australian representatives are concerned—according to the other three authors are listed in parallel columns, with alternative positions indicated by indented names.

Compared with the systems of Dahlgren (1980), Takhtajan (1980) and Thorne (1981) (Table 8), 18 of the 26 families (7.3% of the total) were still recognised only by Airy Shaw. The other eight families were accepted by those three as follows: *Limoniaceae*, *Sambucaceae*, *Tetracarpaeaceae*, *Thunbergiaceae* (by Dahlgren),

Table 4. Families of Flowering Plants with representative taxa indigenous in Australia as recognised by four authors, but not regarded as distinct by all four. Alternative taxonomic positions of segregate families are shown by indented names, some queried (?), some highlighted (!).

chinson (1973) accounted for) ataceae Blume

H.K. Airy Shaw (1973)	J. Hutchinson (1
Aegialitidaceae Lincz.	(not accounted
Myrsinaceae	Acgicerataceae B
Amaryllidaceae J. St. Hil.	Amaryllidaceae
Anarthriaceae Cutler & Airy Shaw	Restionaccae
Apostasiaccae Lindley	Apostasiaceae Bl
Thymelaeaceae-Aquilarioideae	Aquilariaceae R.
Atherospermataccae R. Br.	Monimiaceae
Avicenniaceae Endl.	Verbenaceae
Bambusaceae Nakai (stat. dub.)	Poaceae-Ban
Barringtoniaccae Rudolphi	Barringtoniaceae
Baueraceae Lindley	Baueraceae
Bischofiaceae (Muell.Arg.) Airy Shaw	Euphorbiaceae
Blepharocaryaccae Airy Shaw	Anacardiaceae
Leguminosae-Caesalpinioideae	Caesalpiniaceae 1
Cartonemataceae Pichon	Cartonemataceae
(see 'Dicrastylidaceae')	Chloanthaceae H
Chrysobalanaceae R. Br.	Rosaceae(!)
Cleomaceae (Pax) Airy Shaw	Cleomaceae Hor
Cochlospermaceae Planchon	Cochlospermace
Costaceae Nakai	Zingiberaceae
Cuscutaceae Dumort.	Cuscutaceae
Cymodoceaceae N. Taylor	Zanichelliacea
Davidsoniaceae Bange	Cunoniaceae(
'Dicrastylidaceae', nom. illeg.	(see Chloanth
Donatiaceae Dostál	Donatiaceae
Dysphaniaceae Pax	Dysphaniaceae
Ecdeiocoleaceae Cutler & Airy Shaw	Restionaceae
Ehretiaceae Lindley	Ehretiaceae Mar
Elacocarpaceae DC.	Tiliaccae(!)
Emblingiaceae (Pax) Airy Shaw	Capparaceae

iniaceae R. Br.

uorbiaceae

haceae Hutch.

mataceae

ceae Horan. spermaceae Chloanthaceae)

ceae Mart.

chelliaceae oniaceae(!)

iberaceae

H. Mclchior ('Engler' 1964)	Plumbaginaccac-Staticcae Myrsinaccac-Acgiccratoidcac Amaryllidaccae	Restionaceae-Anarthricae Orchidaceae-Apostasicae	Thymelaeaceae—Aquilarioideae Monimiaceae—Atherospermatoideae	Verbenaceae—Avicennioideae Gramineae—Bambusoideae	Lecythidaceae—Planchonioideae	Javillagarrae Dauri Vincae	Anacardiaceae-Rhoideae	Leguminosae-Caesalpinioideae	Commelinaceae	Verbenaceae-Chloanthoideae	Chrysobalanaceae	Capparaceae-Cleomoideae	Cochlospermaceae	Zingiberaceae-Costoideae	Convolvulaceae-Cuscutoideae	Zanichelliaceae—Cymodoccae	Davidsoniaceae	Stylidiaccae—Donatioidcae	Dysphaniaceae	Restionaceae-Anarthrieae	BoraginaceaeEhretioideae		Capparaceae—Emblingioideae
A. Cronquist (1981)	Plumbaginaccae Myrsinaccae Liliaccae(!)	Restionaceae Orchidaceae	Thymelaeaceae Monimiaceae	Verbenaceae Poaceae	Lecythidaceae	Euphorbiaceae—('Bischoffieae')	Sapindaceae(?)	Caesalpiniaceae	Commelinaceae	Verbenaceae	Chrysobalanaceae	Capparaceae	Bixaceae(!)	Costaceae	Cuscutaceae	Cymodoceaceae	Davidsoniaceae	Donatiaceae	Chenopodiaceae(!)	Restionaceae	Boraginaceae	Elacocarpaceae	Polygalaceae(!)

cac-Bambuseae

siaceae Blume iaceae R. Br.

Potamogetonaceae-Potamogetoneae Caryophyllaceae-Paronychioideae Melastomataceae-Memecyloideae Nymphaeaceae--Nelumbonoideae Hernandiaceae-Gyrocarpoideae Umbelliferae-Hydrocotyloideae Butomaceae-Limnocharitoideae Potamogetonaceae-Posidonieae Saxifragaceae-Eremosynoideae Ranunculaceae-Helleboroideae Saxifragaceae-Escallonioideae Asclepiadaceae-Periplocoideae Campanulaceae-Lobelioideae Haloragaceae-Gunneroideae Centrolepidaceae-Trituricae Leguminosae-Mimosoideac Solanaceae-Salpiglossideae Plumbaginaceae-Staticeae Caprifoliaceae-Sambuceae Guttiferae--Hypericoideae Rutaceae-Flindersioideae Liliaceae-Luzuriagoideae Jiliaceae-Luzuriagoideae -eguminosae--Faboideae Phytolaccaceae-Rivineae Epacridaceae-Prionoteae Loganiaceae-Potalieac Rubiaceae---Naucleae Palmae-Nypoideae Flagellariaceae(?) Calycanthaceae Hippocrateaceae Molluginaceae Hypoxidaceae Piperaceae Lecaceae

Hydatellaceae Hamann (1976)

Grossulariaceae(!)

Saxifragaceae

Hernandiaceae

Rutaceae(?)

Fabaceae

Gunneraceae

Ranunculaceae

Hanguanaceae

Hippocrateaceae

Arecaceae-Phytelephantineae Rutaceae-Cusparieae Salpiglossidaceae Hutch. Petermanniaceae Hutch. Molluginaceae Hutch. Escalloniaceae R. Br. Petiveriaceae Agardh Helleboraceae Loisel Prionotaceae Hutch. Halorag(id)aceae Br. Melastomataceae Centrolepidaceae Plumbaginaceae Mimosaceae R. Br. Hypericaceae Juss. Lobeliaceae R. Br. Ruppiaceae Hutch. Nymphaeaceae Fabaceae Lindley Hernandiaceae Flagellariaceae Caprifoliaceae Illecebraceae R. Hippocrateaceae Eremosynaceae Idiospermaceae Butomaceae Hypoxidaceae Posidoniaceae Periplocaceae Vitaceae(!) Rubiaceae Piperaceae Apiaceae Philesiaceae Potaliaceae

Melastomataceae

Plumbaginaceae Campanulaceae

Limnocharitaceae

Lecaceae

Caryophyllaceae

Idiospermaceae

Liliaceae(!)

Clusiaceae

Apiaceae

Asclepiadaceae(?)

Piperaceae

Nelumbonaceae

Arecaceae

Rubiaceae

Molluginaceae

Mimosaceae

Phytolaccaceae

Smilacaceae

Posidoniaceae

Smilacaceae

Caprifoliaceae

Solanaceae

Ruppiaceae

Epacridaceae

Loganiaceae

Caryophyllaceae-Paronychioideae Flindersiaceae (Engler) Airy Shaw Leguminosae-Papilionoideae Campanulaceae-Lobelioideae Ranunculaceae-Helleboreae Leguminosae-Mimosoideae Solanaceae—Salpiglossideae Phytolaccaceae-Rivineae Epacridaceae-Prionoteae Aizoaceae-Mollugineae Hydrocotylaceae Hylander Idiospermaceae S.T. Blake Hanguanaceae Airy Shaw Limnocharitaceae Takht. Nelumbonaceae Dumort. Gyrocarpaceae Dumort. Escalloniaceae Dumort. **Junneraceae** Meissner Naucleaceae Wernham Eremosynaceae Takht. Peperomiaceae Wettst. Hypoxidaceae R. Br. Philesiaceae Dumort. Periplocaceae Schltr. Posidoniaceae Lotsy Centrolepidaceae imoniaceae Lincz. Memecylaceae DC. Ruppiaceae Hutch. ceaceae Dumort. Sambucaceae Link Potaliaceae Mart. Nypaceae Tralau Celastraceae Philesiaceae Guttiferae

Table 4 (cont.)

Sauraujaceae J. Agardh Thismiaccae J. Agardh J. Hutchinson (1973) Campanulaceae(!) Escalloniaceae(!) Vacciniaceae Gray Trimeniaceae(!) Siphonodontaceae Simaroubaccae Euphorbiaceae Loranthaceae Acanthaceae Polygalaceae Datiscaceae Rosaceae(!) Strychnaceae Aizoaceae Theaceae Spigeliaceae Smilacaceae Zosteraccae Sphenostemonaceae P. Royen & Airy Shaw Fernstroemiaceae Mirbel (stat. dub.) Cetramelaceae (Warb.) Airy Shaw Burmanniaceae-Thismieae Actinidiaceae-Saurauicae Ericaceae-Gaulthericae Xanthophyllaceae Gagnep. Siphonodontaceae Tardieu **Fhunbergiaceae Tieghem** Stylobasiaceac J. Agardh **Fetracarpacaceae** Nakai H.K. Airy Shaw (1973) **Fetragoniaceae** Nakai Zosteraceae Dumort. Stilaginaceae Agardh Sphenocleaceae DC. Spigeliaceae Mart. Strychnaceae Link Smilacaceae Vent. /iscaceae Miquel Surianaceae Arn.

A. Cronquist (1981) Aquifoliaceae(?) Burmanniaceae Xanthophyllaceae Euphorbiaccae Surianaceae(!) Saxifragaceae Actinidiaceae Sphenocleaceae Loganiaceae Acanthaceae Celastraceae Loganiaceae Datiscaceae Aizoaceae Ericaceae Theaceae Zosteraceae Smilacaceae Surianaceae Viscaceae

H. Melchior ('Engler' 1964)

Chrysobalanaccae(?)---Stylobasicac Saxifragaceae-Tetracarpacoideae Celastraceae-Siphonodontoideae Potamogetonaceae-Zosteraceae Acanthaceae-Thunbergioideae Polygalaceae-Xanthophylleae Theaceae-Ternstroemioideae Actinidiaceae-Saurauioideae Euphorbiaceae-Phyllantheae Simaroubaceae-Surianoideae Aizoaceae-Tetragonioideae Burmanniaceae-Thismicae Loranthaceae-Viscoideae Datiscaceae-Tetrameleae Ericaceae-Vaccinioideae Loganiaceae-Strychneae Loganiaceae-Spigelicae Liliaceae-Smilacoideae Aquifoliaceae(?) Sphenocleaceae

Ecdeiocoleaceae, *Stylobasiaceae* (by Takhtajan), *Emblingiaceae* (by Dahlgren and Takhtajan) and *Sphenostemonaceae* (by Dahlgren, Takhtajan and Thorne). Of the families not accepted by any of the other six authors discussed here, the following were originally proposed by Airy Shaw: *Anarthriaceae*, *Bischofiaceae*, *Blepharocaryaceae*, *Flindersiaceae* and *Tetramelaceae*.

Five of Airy Shaw's 'controversial' families were described by him and his collaborators as new taxa, whereas another five were raised by him to this rank for the first time. The remaining 56 families had been proposed before, some early in the 19th Century, but generally have not been accepted at that level. However, it is clear from the list of alternative taxa accepted by Melchior (Table 4) that most of these have been treated at some time as subfamilies or tribes. In the eighth edition of Willis' *Dictionary*, Airy Shaw included for the first time four families recently described, viz. *Aegialitidaceae*, *Idiospermaceae*, *Limoniaceae* and *Sphenostemonaceae*, whereas *Petermanniaceae*, accepted in the seventh edition, was relegated to *Philesiaceae*.

Table 4 is of wider interest because all four systems compared therein are relatively well-known through handbooks. Hutchinson is the only one who agreed with Airy Shaw in accepting the following eight families: Barringtoniaceae, Cartonemataceae, Chloanthaceae ('Dicrastylidaceae'), Cleomaceae, Periplocaceae, Potaliaceae, Spigeliaceae and Strychnaceae. Of the others accepted by Airy Shaw, Xanthophyllaceae has been supported as a distinct family only by Cronquist, Idiospermaceae by Hutchinson and Cronquist, Dysphaniaceae by Melchior and Hutchinson, and Sphenocleaceae by Melchior and Cronquist. Other families in the Table such as Hanguanaceae, that would appear to fall into any of these categories, were in fact supported by Dahlgren, Takhtajan and/or Thorne. On the other hand, Airy Shaw did not accept two families recognised by Melchior, Hutchinson and Cronquist, viz. Hippocrateaceae (which he referred to Celastraceae, as did Dahlgren, Thorne and Takhtajan) and Molluginaceae referred by him to Aizoaceae, (supported only by Thorne). Finally, it is noteworthy that Airy Shaw agreed with Melchior (as well as Thorne and Takhtajan) in maintaining Fabaceae s. lat. (=Leguminosae) as a single family, whereas Hutchinson and Cronquist (as well as Dahlgren) recognised Caesalpiniaceae and Mimosaceae next to Fabaceae s. str. as families in their own right.

J. Hutchinson's system

The first edition of John Hutchinson's *The Families of Flowering Plants arranged* according to a new system based on their probable phylogeny (1926, 1934) was unorthodox in many respects. The ultimate format of his system was reached in the second edition (1959), being only slightly updated in the posthumous third edition (1973). Although the author certainly considered contemporary developments in phylogenetic literature, his system can no longer be regarded as 'modern' as he relied largely on a personal, intuitive approach. His conclusions have not attracted many followers, but there is no doubt that his publications have done much to stimulate others.

Hutchinson ranked the Flowering Plants as a 'phylum', a term not acceptable under the International Code of Botanical Nomenclature, normally regarded as synonymous with Divisio. The Dicotyledones and Monocotyledones were classed as 'subphyla' and were subdivided into five 'divisions', the latter groups perhaps comparable with the subclasses of other authors. Within the Monocotyledones he recognised: (1) Calyciferae, with distinct whorls of sepaloid and petaloid tepals (many aquatic plants), (2) Corolliferae, with petaloid tepals only, and (3) Glumiflorae, without coloured tepals ('grass-like' plants). Most subsequent authors have regarded this subdivision as too artificial, but Hutchinson's ideas on the lower ranking taxa have

System of classification

usually been received more sympathetically. In some more recent systems (Dahlgren, 1980; Takhtajan, 1980) an even more radical treatment has been advocated for some of the 'corolliferous' orders through recognition of more segregate families.

Hutchinson's system has been criticised for the concepts of his 'divisions' in the Dicotyledons, viz. (1) Lignosae, covering the predominantly woody families, and (2) Herbaceae, containing the non-woody ones. Such a subdivision was promoted by some of Linnaeus' predecessors (e.g. Robert Morison, 1620-1683), but not again for at least two centuries. Modern authors regard this grouping as highly artificial, resulting in phylogenetically improbable 'grades' rather than scientifically desirable 'clades'. Hutchinson's approach resulted in wide separation of families and orders such as Magnoliales and Ran(uncul)ales, which are usually considered closely related. In some instances he split traditional orders, regarded as quite natural entities by others, enabling him to allocate relevant families to his two 'divisions'. Further examples of such pairs of woody versus non-woody taxa are: Capparales/Brassicales, Myrsinales | Primulales, Cunoniales | Saxifragales, Myrtales | Onagrales, Araliales | Umbellales (Apiales, s. str.), Verbenales/Boraginales and Rubiales/Gentianales. Nineteen other segregate orders are unique, as far as Australia is concerned, to his system. Hutchinson also used more traditionally formed names for the following orders: Graminales (= Poales), Guttiferales (= Clusiales), Leguminales (= Fabales), Palmales (= Arecales), Personales (= Scrophulariales s. str.). Of his world-wide total of 111 orders of Flowering Plants, 99 are represented in Australia by native taxa: many more than have been recognised in the other systems discussed here (Table 4).

According to the latest version of Hutchinson's system the number of families of Flowering Plants with indigenous representatives in Australia is 230. Like Airy Shaw, he accepted quite a number of mostly small, segregate families (Table 4), but between his 44 'controversial' ones (19.1% of his total) and Airy Shaw's 66 there were only 26 in common. Of these only eight families have not been accepted by any of the other five authors discussed above. Another eight families were recognised exclusively by Hutchinson, viz. Aquilariaceae, Helleboraceae, Illecebraceae, Petiveriaceae, Prionot-aceae, Salpiglossidaceae, Saurauiaceae and Vacciniaceae, while five families are supported only by Dahlgren, viz. Aegicerataceae, Hypericaceae, Lobeliaceae, Petermanniaceae and Thismiaceae. Of the five or six families proposed by himself, only Ruppiaceae was supported by Airy Shaw as well as by Cronquist and Takhtajan, whereas Molluginaceae was recognised by all except Airy Shaw and Thorne.

Five families, represented in Australia by segregates according to Airy Shaw's concepts, should themselves be listed as indigenous following Hutchinson's system, viz. Butomaceae (in lieu of Limnocharitaceae), Caprifoliaceae (in lieu of Sambuc-aceae), Cornaceae (for Corokia), Datiscaceae (in lieu of Tetramelaceae) and The-aceae (in lieu of Ternstroemiaceae). Six families have either been segregated since the second edition of his Families or replace larger ones as far as Australia is concerned: Idiospermaceae (1973, in lieu of Calycanthaceae), Dysphaniaceae (1973, next to Chenopodiaceae), Barringtoniaceae (1969, in lieu of Lecythidaceae), Cleomaceae (1969, away from Capparidaceae), Prionotaceae (1969, between Epacridaceae and Ericaceae) and Salpiglossidaceae (1969, near Solanaceae). Unfortunately, in 1973 he accepted Airy Shaw's replacement of the name Chloanthaceae by the illegitimate Dicrastylidaceae.

Hutchinson remained unique among modern authors in not recognising Chrysobalanaceae (in Rosaceae), Davidsoniaceae (in Cunoniaceae) and Elaeocarpaceae (in Tiliaceae), whereas he subsequently received support for including Leeaceae in Vitaceae (from Dahlgren and Thorne) and Sphenocleaceae in Campanulaceae (from Dahlgren, Thorne, and recently Takhtajan). Remarkable placings were Sphenostemon in Trimeniaceae, rather than the traditional Aquifoliaceae or the modern Sphenostemonaceae, and Tetracarpaea in Escalloniaceae (recently also by Takhtajan) rather than Saxifragaceae (Melchior, Cronquist, Thorne) or Tetracarpaeaceae (Airy Shaw, Dahlgren). The relatively recent Aegialitidaceae was not accounted for by Hutchinson, either directly or indirectly. Finally, Emblingiaceae was not mentioned in the various editions of the Families, but was placed under Capparaceae in his The Genera of Flowering Plants (Vol. 2, 1967) as well as, ambiguously, under Flacourtiaceae in his later Evolution and Phylogeny (1969).

A. Engler's 'Syllabus'

Adolf Engler's Syllabus der Pflanzenfamilien first appeared in 1892, under a different title (Engler, 1892). The system presented in this work had probably succeeded that by Bentham and Hooker as the most influential by the turn of the century. Engler updated his ideas in nine subsequent editions up to 1924, after 1912 with the assistance of Ernst Gilg. An eleventh edition, edited by Engler's successor Ludwig Diels, was published in 1936. The twelfth edition was thoroughly rewritten and appeared in two volumes, the first edited by Hans Melchior and Erich Werdermann (1954), the second only by Melchior (1964). This version was quite modern in that it took into account many contemporary ideas on phylogeny. Furthermore, the system presented was actually a team effort by several staff members of the Berlin herbarium rather than one man's synthesis. It may be regarded as conservative, however, rather than radical, even for the time of its publication. The second volume dealt only with the Flowering Plants (Angiospermae) which were ranked as a division ('Abteilung'). Of the two classes recognised, Dicotyledoneae and Monocotyledoneae, only the former was subdivided into two subclasses, viz. Archichlamideae (incl. Apetalae & Choripetalae) and Sympetalae (Metachlamydeae). These two subclasses have been regarded by more recent authors as artificial, polyphyletic taxa ('grades').

The Englerian system has been most influential at order level. A total of 62 orders was recognised world-wide, and of these 52 have indigenous representatives in Australia, a relatively low number (Table 5). Of the Australian orders 19 were further divided into 53 suborders, making a total of 86 suborders and undivided orders, which approaches Hutchinson's number of 99 more closely. Apart from maintaining relatively large concepts at the rank of order, Engler's system also preserved some traditional names discarded by subsequent authors, viz. Centrospermae (± Caryophyllales), Guttiferales (± Dilleniales & Theales), Myrtiflorae (Myrtales s. lat., incl. Haloragales, Lecythidales, Rhizophorales), Tubiflorae (± Callitrichales, Lamiales, Scrophulariales & Solanales), Umbelliflorae (± Apiales, Araliales and Cornales), Helobieae, Alismatales, Hydrocharitales & Najadales), Liliiflorae (Liliales s. lat.), Microspermae (Orchidales s. lat.), Principes (Arecales), Scitamineae (Zingiberales), Spathiflorae (Arales). Two of these, Myrtiflorae and Liliiflorae, have been reintroduced more recently for taxa of a higher rank, viz. superorders (Thorne, 1968 etc.; Dahlgren, 1980). Other large, heterogeneous orders in the Englerian system were Geraniales, Rosales, Rutales and Commelinales, whereas Sarraceniales and Papaverales have been replaced, as far as their Australian representatives are concerned, by Nepenthales and Capparales according to most subsequent authors.

According to Melchior's edition of the *Syllabus*, the total number of families of flowering plants indigenous in Australia was 200. Family concepts have been kept relatively large, so that many of Airy Shaw's and Hutchinson's segregate families have been recognised only as subfamilies or tribes. Of the 85 'controversial' smaller families in Table 4, Melchior accepted only 11 at that rank, and none of these could be regarded as highly controversial at the time. *Dysphaniaceae*, *Hippocrateaceae* and *Sphenocleaceae* were not recognised as distinct families by Dahlgren, Takhtajan or

System of classification

Thorne, *Hypoxidaceae* by Takhtajan or Thorne, and *Leeaceae* by Dahlgren or Thorne. As can be seen from the Table, Cronquist also rejected two of these families, as well as *Amaryllidaceae* (also by Thorne) and *Cochlospermaceae* (also by Takhtajan).

If Melchior's larger concepts are accepted, the following families should be regarded as indigenous in Australia instead of the segregates accepted by Airy Shaw and Hutchinson: *Calycanthaceae* (in lieu of *Idiospermaceae*), *Lecythidaceae* (in lieu of *Barringtoniaceae*) and *Saxifragaceae* (in lieu of *Baueraceae*, *Eremosynaceae* and *Escalloniaceae*). Melchior agreed with Hutchinson in regarding the inclusive families *Butomaceae*, *Caprifoliaceae*, *Cornaceae*, *Datiscaceae* and *Theaceae* as indigenous.

Of the seven systems discussed here, Melchior's was unique in not recognising either Petermanniaceae or Philesiaceae (both in Liliaceae-Luzuriagoideae), as well as Posidoniaceae and Zosteraceae (both as subfamilies in Potamogetonaceae). Melchior has been supported only by Hutchinson in rejecting Costaceae (in Zingiberaceae), Cymodoceaceae (in Zanichelliaceae), Gunneraceae (in Haloragaceae), Nelumbonaceae (in Nymphaeaceae) and Viscaceae (in Loranthaceae). The endemic genus Stylobasium was placed, somewhat unusually, in Chrysobalanaceae (cf. Rosaceae after Hutchinson) rather than the mono-generic Stylobasiaceae (Airy Shaw, Takhtajan), Surianaceae (Cronquist), or Sapindaceae (Dahlgren, Thorne).

Table 5. The number of families and higher taxa of *Magnoliophyta* with indigenous representatives in Australia according to seven recent authors.

	Thorne (1981)	Melchior (1964)	Cronquist (1981)	Takhtajan (1980)	Dahlgren (1980)	Hutchinson (1973)	AiryShaw (1973)
Classes	1	2	2	2	1	2 ('subphyla')	
Subclasses (+ undivided classes)	2	2 (1)	11	10	2	5 ('divisions')	
Superorders	26	-	—	27	30		
Orders	51	52	69	74	84	99	
Suborders (+ undivided orders)	53 (33)	53 (33)		55 (50)	_	_	
Families	190	200	215	219	234	230	247

A. Cronquist's system

The first version of Arthur Cronquist's system (1957) was restricted to the Dicotyledons, but an extended treatment later appeared as a book entitled *The Evolution and Classification of Flowering Plants* (1968). As stated above, the 1981 edition of his system has been chosen as the framework for the *Flora of Australia*. Although original in some respects, the system is mostly a synthesis and is somewhat conservative in its treatment of controversial groups such as the *Liliales s. lat.* He acknowledges both Engler's *Syllabus* and the ideas of Walter Zimmermann (1892–1980) and Armen Takhtajan as a basis for the development of his ideas.

Cronquist treats the Flowering Plants as Divisio Magnoliophyta, with two traditional classes under the modern names Magnoliopsida and Liliopsida. He has, however, abandoned the Englerian subclasses completely, adopting instead a break-down into eleven subclasses not unlike that of Takhtajan's system. In the Magnoliopsida he recognises: (1) Magnoliidae, (2) Hamamelidae, (3) Caryophyllidae, (4) Dilleniidae, (5) Rosidae, (6) Asteridae (one less than Takhtajan). The Liliopsida are subdivided into: (1) Alismatidae, (2) Arecidae, (3) Commelinidae, (4) Zingiberidae and (5) Liliidae (two more than Takhtajan, 1980). All these subclasses embrace so-called primitive as well as advanced orders and are presented as probable phylogenetic alliances ('clades'). Unlike Takhtajan and other modern authors such as Dahlgren and Thorne, Cronquist does not use the taxon 'superorder'.

According to Cronquist's latest system, the Flowering Plants are represented in Australia by 69 indigenous orders, an average number compared with other systems (Table 5). Three orders are recognised only by Cronquist, viz. Callitrichales, Lecythidales and Linales, and seven others have been supported by only one other author (Table 6). The traditional order *Plantaginales* has not been upheld by other modern authors such as Dahlgren; Takhtajan and Thorne. Cronquist has a relatively narrow concept of some orders, e.g. Gentianales (excl. Rubiales and Menyanthaceae), Geraniales (excl. Linales and Zygophyllaceae s. lat.) and Commelinales (excl. Restionales). Relatively large concepts are maintained for the Rosales (incl. Cunoniales, Saxifragales and Pittosporales p.p.), Sapindales (incl. Rutales and Zygophyllaceae), Scrophulariales (incl. Bignoniales and Oleales), Violales (incl. Cucurbitales, Passiflorales, Tamaricales and Cochlospermaceae), Cyperales (incl. Poales), Liliales (incl. Smilacales and several segregate orders of Hutchinson and Dahlgren), Najadales (incl. Zosterales) and Orchidales (incl. Burmanniales). In the 1981 edition of his system, he has replaced Araliales by Apiales and Polemoniales by Solanales, whereas 5 new orders have been added: Callitrichales, Hydatellales, Laurales, Nepenthales and Rhizophorales.

The position of the following families according to Cronquist's system is unusual: Austrobaileyaceae (in Magnoliales rather than Laurales), Balanopaceae (in Fagales rather than Balanopales), Balanophoraceae (in Santalales rather than Balanophorales), Boraginaceae (in Lamiales rather than Boraginales) Dichapetalaceae (in Celastrales rather than Euphorbiales), Droseraceae (in Nepenthales), Elaeagnaceae (in Proteales rather than Rhamnales or Elaeagnales), Gyrostemonaceae (in Batales), Nelumbonaceae (in Nymphaeales rather than Nelumbonales), Thymelaeaceae (in Myrtales rather than Thymelaeales) and Tremandraceae (in Polygalales, like Takhtajan, rather than Pittosporales).

The total number of Flowering Plant families indigenous in Australia is 215 according to Cronquist's latest system, approximately an average number (Table 5). Of the 85 'controversial' families listed in Table 4 he accepts 27: 14 in agreement with Airy Shaw, 5 with Hutchinson and 7 with both, whereas he adds only the very recently described *Hydatellaceae*. Of these 27 families, *Hippocrateaceae*, *Idiosperm*-

Table 6. An approximate concordance of subclasses (Roman numerals) and superorders (Arabic numerals) recognised in four current systems. Similarly named taxa in the respective systems do not necessarily cover the same orders and families and in some cases the discrepancies are considerable. Takhtajan's *Juglandanae* are represented in Australia by introduced species only. Dahlgren's superorder *Loasiflorae* does not occur in Australia and is not listed.

Cronquist (1981)	Cronquist (1981) Takhtajan (1980)		Dahlgren (1980)				
A. MAGNOLIOPSIDA	A. MAGNOLIATAE	I. Annonidae	I. Magnoliidae				
I. Magnoliidae	1. Magnoliidae						
	1. Magnolianae	1. Annoniflorae p.p.	1. Magnoliiflorae				
	2. Rafflesianae	3. Rafflesiiflorae	0 NI 1 10				
	3. Nymphaeanae	2. Nymphaeiflorae	2. Nymphaeiflorae				
	II. Ranunculidae	1.4.10	2 10				
	4. Ranunculanae	1. Annoniflorae p.p.	3. Ranunculiflorae				
II. Hamamelidae	III. Hamamelidae						
	5. Hamamelidanae	12. Hamamelidiflorae (10. Rutiflorae <i>p.p.</i>)					
	(6. Juglandanae)	(10. Kulmorae $p.p.$)					
III. Caryophyllidae	IV. Caryophyllidae	5. Chenopodiiflorae	4. Caryophylliflorae				
	7. Caryophyllanae	5. Chenopodiniorae	5. Polygoniflorae				
	8. Plumbaginanae	4. Theiflorae p.p.	or i orygonniorae				
IV. Dilleniidae	V. Dilleniidae						
Iv. Differinuae	9. Dillenianae	4. Theiflorae p.p.	8. Theiflorae				
	7. Differmation	8. Violiflorae	7. Violiflorae				
		(1976: Cistiflorae)					
			6. Malviflorae p.p.				
	10. Ericanae	4. Theiflorae p.p.	9. Primuliflorae				
			21. Corniflorae p.p.				
	11. Malvanae	9. Malviflorae p.p.	6. Malviflorae p.p.				
V. Rosidae	VI. Rosidae						
	12. Rosanae	13. Rosiflorae	10. Rosiflorae p.p.				
			11. Podostemiflorae				
	12.14	14 14 10 10	12. Fabiflorae				
	 13. Myrtanae 14. Rutanae 	 Myrtiflorae Rutiflorae 	14. Myrtiflorae 15. Rutiflorae				
	14. Kutanac	6. Geraniiflorae	15. Rutiflorae				
	15. Aralianae	18. Corniflorae	18. Araliiflorae				
	1.5. Attantation	10. 0011110100	21. Corniflorae <i>p.p.</i>				
	16. Celastranae	7. Santaliflorae	16. Santaliflorae				
			17. Balanophoriflorae				
	17. Proteanae	11. Proteiflorae	13. Proteiflorae				
Vl. Asteridae	VII. Asteridae						
	18. Gentiananae	15. Gentianiflorae	22. Gentianiflorae				
	19. Lamianae	16. Lamiiflorae	23. Lamiiflorae				
		17. Solaniflorae	20. Solaniflorae				
	20. Asteranae	19. Asteriflorae	19. Asteriflorae				

Table 6 (cont.)

Cronquist (1981)	Takhtajan (1980)	Thorne (1981)	Dahlgren (1980)
B. LILIOPSIDA	B. LILIATAE	II. Liliidae II.	Liliidae
VII. Alismatidae	VIII. Alism(at)idae		
	21. Alismatanae	22. Alismatiflorae	24. Alismatiflorae
VIII. Arecidae	X. Arecidae		
	27. Arecanae	23. Areciflorae	30. Areciflorae
	28. Aranae	24. Ariflorae	26. Ariflorae
		25. Typhiflorae	27. Liliiflorae p.p.
1X. Commelinidae	IX. Liliidae		
	24. Juncanae	26. Commeliniflorae p.p.	29. Commeliniflorae
	25. Commelinanae	26. Commeliniflorae p.p.	28. Zingiberiflorae
X. Zingiberidae			
	26. Zingiberanae	26. Commeliniflorae p.p.	28. Zingiberiflorae
XI. Liliidae			
	22. Triuridanae	21. Triuridiflorae	25. Triuridiflorae
	23. Lilianae	20. Liliiflorae	27. Liliiflorae p.p.

aceae, Sphenocleaceae and Xanthophyllaceae were not upheld by Dahlgren, Takhtajan or Thorne; Donatiaceae, Leeaceae, Limnocharitaceae and Ruppiaceae were supported only by Takhtajan; and Caesalpiniaceae, Fabaceae s. str. and Mimosaceae in that rank only by Dahlgren.

According to Cronquist the following families are indigenous in Australia and should not be replaced by segregates: *Bixaceae* (in lieu of *Cochlospermaceae*, supported by Takhtajan), *Grossulariaceae* (in lieu of *Escalloniaceae*), *Lecythidaceae*, *Saxifragaceae* (both in agreement with Melchior), *Caprifoliaceae*, *Datiscaceae* and *Theaceae* (all three in agreement with Melchior and Hutchinson). Compared with his edition of 1968, *Celastraceae* now includes *Siphonodontaceae*, but several segregate families are additional or replace others, viz. *Cabombaceae* (next to *Nymphaeaceae*), *Caesalpiniaceae*, *Fabaceae s. str.* and *Mimosaceae* (in lieu of *Leguminosae*), *Donatiaceae* (next to *Stylidiaceae*), *Gyrostemonaceae* (away from *Phytolaccaceae*), *Idiospermaceae* (in lieu of *Calycanthaceae*), *Viscaceae* (next to *Loranthaceae*), *Cymodoceaceae* and *Posidoniaceae* (next to *Zosteraceae*), *Hanguanaceae* (away from *Flagellariaceae*) and *Hydatellaceae* (away from *Centrolepidaceae*).

Cronquist's system is remarkable for not recognising Amaryllidaceae and Hypoxidaceae (both in Liliaceae, supported by Thorne), Cochlospermaceae (in Bixaceae, supported by Takhtajan) and Dysphaniaceae (in Chenopodiaceae, supported by Dahlgren, Takhtajan and Thorne). Noteworthy also is his placing of Baueraceae in Cunoniaceae (supported by Takhtajan), Blepharocaryaceae doubtfully in Sapindaceae⁴⁴ (rather than Anacardiaceae after Takhtajan and Thorne), Emblingiaceae in Polygalaceae (rather than Capparaceae), Escalloniaceae in Grossulariaceae and Stylobasiaceae in Surianaceae.

A. Takhtajan's 'Outline'

Since the early 1940s Armen Takhtajan has published some 20 contributions on the evolution and palaeogeography of plants. The majority of these, written in Russian, are not easily followed by most English readers, but a few major ones have appeared in other European languages. The first to be translated into English (1953) concerned a phylogenetic system for the higher ranks of the *Cormophyta*, in which

System of classification

the class Angiospermae was not subdivided beyond the subclasses Dicotyledones and Monocotyledones.

Takhtajan's first publication to have an impact outside the U.S.S.R. was Die Evolution der Angiospermen (1959). In that book he proposed an original grouping of orders into superorders (13 in the Dicotyledonae, 5 in the Monocotyledonae). Takhtajan used traditional names that had been used at the lower rank of order in the Englerian system. His ideas subsequently developed greatly and were presented in English under the title Flowering Plants, Origin and Dispersal (1969). In this book he treated Magnoliatae (Dicots) and Liliatae (Monocots) as classes, dividing the former into 7 subclasses and 15 superorders and the latter into 4 subclasses and 5 superorders. Besides recognising additional taxa between the ranks of class and order, he discarded all traditional names at these levels, choosing new ones based on generic names with standardised suffixes. This format was not changed significantly in the most recent Outline (1980), although the number of subclasses in the Liliatae were reduced by one (Commelinidae into Liliidae), and eight new superorders were added (5 in Magnoliatae and 3 in Liliatae) (Table 6). Of the new total of 28 superorders only the Juglandanae, a relatively small one, is not represented in Australia by native species. Takhtajan's subclasses were very similar to those of Cronquist, particularly in their respective systems of 1969 and 1968, a circumstance no doubt reflecting consultation between them. Takhtajan's superorders, on the other hand, probably influenced the development of the systems of Thorne and Dahlgren, who may well have provided him with some ideas in return. Takhtajan alone of these four authors used both ranks to indicate probable phylogenetic relationships ('clades').

Of the 74 indigenous orders recognised by Takhtajan, 15 segregates have not been adopted by Cronquist. Of these 15, three were unique to his system, viz. *Begoniales*, *Connarales* and *Smilacales*. On the other hand, 10 orders used in Cronquist's system were not recognised by Takhtajan (Table 7). In comparing Takhtajan's latest system with his previous version (1969), it appears that four orders were discontinued, viz. *Cucurbitales*, *Passiflorales* (both in *Violales*); *Hydrocharitales* (in *Alismatales*) and *Iridales* (now in *Liliales* and *Burmanniales*). Apart from some minor changes in the sequence of orders, there were five additional orders, viz. *Araliales*, *Balanophorales*; *Burmanniales*, *Hydatellales* and *Smilacales*.

The following families were remarkable for their placement in Takhtajan's system: Actinidiaceae (in Ericales rather than Theales), Boraginaceae (in Polemoniales rather than Lamiales), Datiscaceae (in Begoniales rather than Violales), Dichapetalaceae (in Euphorbiales rather than Celastrales), Frankeniaceae (in Tamaricales rather than Violales). Some families were notable for being transferred to other orders between the editions of 1969 and 1980: Cardiopteridaceae (from Santalales to Celastrales), Droseraceae (from Nepenthales to Saxifragales), Emblingiaceae (from Capparales to Sapindales), Malpighiaceae (from Geraniales to Polygalales), Nitrariaceae and Zygophyllaceae (from Geraniales to Rutales), Stylobasiaceae (from Rutales to Sapindales); Hanguanaceae (from Restionales to Liliales).

Takhtajan recognised 16 segregate families not recognised by Cronquist (Table 7) and no longer accepted 9 of Cronquist's families. Further, the following families have been synonymised by Takhtajan since 1969: Brunoniaceae (in Goodeniaceae), Cochlospermaceae (in Bixaceae), Gyrocarpaceae (in Hernandiaceae), Hippocrateaceae (in Celastraceae), Hypericaceae (in Clusiaceae), Lobeliaceae (in Campanulaceae), Saurauriaceae (in Actinidiaceae), Sparganiaceae (in Typhaceae), Sphenocleaceae (in Campanulaceae), Tetracarpaeaceae (in Escalloniaceae), Tetragoniaceae (in Aizoaceae). Finally, Takhtajan agreed with Cronquist in the recent acceptance of Viscaceae as a family distict from Loranthaceae.

R. F. Thorne's 'Synopsis'

Robert F. Thorne kindly allowed the use of the latest version of his system (1981) so that it could be discussed in this introductory chapter. He has written a number of earlier papers on relationships within certain groups of Flowering Plants as well as on general evolutionary problems. Thorne has published two papers on a phylogenetic classification of the angiosperms: the first was a synopsis with a brief introduction (1968), the second a much more elaborate treatment (1976). Thorne considers modern phytochemical research to be an important addition to morphological knowledge. His system is original in several respects, but there is a superficial resemblance to Melchior's 'conservative' one, as it does not follow the general trend of fragmentation of orders and families. He uses the ranks of suborder and subfamily to indicate distinction as well as close relationships between taxa. Thorne admits that his ideas are subject to constant change, which may explain why he has not yet published them more extensively. Although his system has great merit, its very instability renders it less suitable as a basis for a medium- to long-term project such as the *Flora of Australia*.

Thorne regards the Angiospermae (or 'Annonopsida') as a class, and consequently he treats the Dicotyledoneae ('Annonidae') and Monocotyledoneae ('Liliidae') as subclasses, which are immediately subdivided into 19 and 7 superorders respectively. The 26 superorders are comparable to those of Takhtajan and Dahlgren (Table 5). In Thorne's 1976 system the respective figures were 16 (without Nymphaeiflorae, Proteiflorae and Solaniflorae) and 5 (without Triuridiflorae and Typhiflorae). His earlier Cistiflorae has been renamed Violiflorae in 1981. Superorders in the various editions do not necessarily cover the same orders and families and sometimes there are considerable discrepancies. Changes have also been made in the linear sequence, reflecting the development of Thorne's ideas about probable phylogenetic pathways and the relationships of subordinate taxa. The most recent sequence is indicated by numbers in Table 6. Thorne has presented his system not only in a linear sequence, but also in a two-dimensional diagram as a present-day cross-section through an imaginary phylogenetic 'tree', showing the presumed relationships of taxa down to the level of order.

Of the orders recognised by Thorne, 51 are represented in Australia by native species. This is the lowest number for all seven authors discussed here and only about half that of Hutchinson (Table 5). It is, however, only slightly less than that of Melchior and, like the latter, Thorne emphasises the rank of suborder. He recognises a total of 86 suborders and undivided orders indigenous in the region, comparable with the numbers of orders in Dahlgren and Takhtajan. The following of Cronquist's orders are ranked by Thorne as suborders: Aristolochiales, Laurales, Piperales (in Annonales), Dilleniales, Lecythidales, Nepenthales (in Theales), Fabales, Sapindales (in Rutales), Haloragales, Rhizophorales (in Cornales), Linales, Polygalales (in Geraniales), Plumbaginales (in Primulales); Eriocaulales, Juncales (in Commelinales), and Orchidales (in Liliales). Some of Cronquist's smaller orders are accepted by-Thorne only at family level, viz. Batales (in Rutales), Callitrichales (in Lamiales), Plantaginales (in Bignoniales), Podostemales (in Rosales), Rubiales (in Gentianales); Cyperales, Restionales (in Commelinales), Hydatellales (familia incertae sedis) and Hydrocharitales (in Alismatales). By contrast, seven orders are recognised by Thorne (and others) but not by Cronquist (Table 7). Three of these have been recognised recently, viz. Balanophorales, Boraginales and Nelumbonales, whereas Oleales has been transferred from Santaliflorae to Gentianiflorae. Unusual names are Annonales (for Magnoliales s. lat.), Berberidales (for Ranunculales), Bignoniales (for Scrophulariales s. lat.) and Chenopodiales (for Caryophyllales).

larger ones are indic	ated by indented na	larger ones are indicated by indented names, some highlighted (!).	d (!).	ernauve positions for	ones are indicated by indented names, some highlighted (!).
Hutchinson (1973)	Dahlgren (1980)	Takhtajan (1980)	Cronquist (1981)	Melchior (1964)	Thorne (1981)
Agavales	Asparagales	Liliales	Liliales	Liliflorae	Liliales
Alismatales	Alismatales	Alismatales	Alismatales	Helobiac	Alismatales
Alstroemeridales	Asparagales(!)	Smilacalcs(!)	Liliales	Liliiflorae	Liliales
Amaryllidales	Asparagalcs(!)	Liliales	Liliales	Liliflorae	Liliales
Annonales	Annonales	Magnoliales	Magnoliales	Magnoliales	Annonales (incl.
					Magnoliineac)
(Apiales) $=$ Umbellales	Araliales	Araliales	Apiales	Umbelliflorae	Araliales
Apocynales	Gentianales	Gentianales	Gentianales	Gentianales	Gentianales
Aponogetonales	Hydrocharitales	Najadales	Najadales	Helobicae	Zosterales
Arales	Arales	Arales	Arales	=Spathiflorae	Arales
Araliales	Araliales	Araliales	Apiales	= Umbelliflorae	Araliales
= Palmales	Arecales	Arecales	Arecales	= Principes	Arcales
Aristolochiales	Aristolochiales	Aristolochiales	Aristolochiales	Aristolochiales	Annonales
Liliales	Asparagalcs(!)	Liliales	Liliales	Liliflorae	Lilfales
Asterales	Asterales	Asterales	Asterales	Campanulales	Asterales
Balanopsidales	Balanopales	Balanopales	Fagales(!)	Balanopales	Pittosporales
Santales	Balanophorales	Balanophorales	Santales(!)	Balanophorales	Balanonhorales
Chenopodiales	Capparales(!)	Sapindales	Batales	Batales	Rutales
Cumbitalac	X / : - 1 - 1				COMMINI,

Table 7. An alphabetical list of all orders of Flowering Plants in Australia. Alternative positions for segregate orders in (usually)

	AUSTOROCHAICS	Aristolochiales
Asparagales(!)	Liliales	Liliales
Asterales	Asterales	Asterales
Balanopales	Balanopales	Fagales(!)
Balanophorales	Balanophorales	Santales(!)
Capparales(!)	Sapindales	Batales
Violales	Begoniales	Violales
Ranunculales	Ranunculales	Ranunculales
Scrophulariales	Scrophulariales	Scrophulariales
Malvales	Violales	Violales
Boraginales	Polemoniales(!)	Lamiales(!)
Capparales	Capparales	Capparales
Burmanniales	Burmanniales	Orchidales(!)
Alismatales	Alismatales	Alismatales
Lamiales	Lamiales	Callitrichales
Campanulales	Campanulales	Campanulales
Capparales	Capparales	Capparales
Caryophyllales	Caryophyllales	Caryophyllales
Casuarinales	Casuarinales	Casuarinales

Berberidales s. lat. Bignoniales s. lat.

Ranunculales Tubiflorae

Violales

Cucurbitales

Berberidales

Bignoniales

Bixales

Boraginales

Brassicales

Violales

Malvales

Boraginales

Capparales Liliales Alismatales

Papavarales

Liliiflorae Helobiae

Tubiflorae

Violales

=Chenopodiales

=Centrospermae

Caryophyllales

Capparales

Casuarinales

Burmanniales

Butomales

Onagrales Campanales Casuarinales

= Papaverales

Campanulales

Tubiflorac

Casuarinales

Campanulales

Capparales

Lamiales

0	Ŭ	0	1	щ				Ŭ						
Theales Commelinales Sapindales	Cornales Violales	kosales Cyperales Dilleniales	Liliales Dipsacales	Ebenales Proteales(!)	Ericales Eriocaulales	Euphorbiales Fabales	Fagales Gentianales	Geraniales Campanulales	Haloragales(!) Liliales	Haloragales Hamamelidales Hydatellales	Hydrocharitales Liliales Najadales	Juncales Lamiales	Lecythidales	
Theales Commelinales Connarales	Cornales Violales	Saxifragales Cyperales Dilleniales	Smilacales Dipsacales	Javiitagaics Ebenales Elaeagnales	Ericales Eriocaulales	Euphorbiales Fabales	Fagales Gentianales	Geraniales Campanulales	Saxifragales(!) Liliales	Myrtales(!) Hamamelidalcs Hydatellales	Alismatales Liliales Najadales	Juncales Lamiales	Myrtales	
s Theales Commelinales Sapindales	Cornales Violales	Cunoniales Cyperales Dilleniales	Dioscoreales Cornales	Droserates Ebenales Elacagnales	Ericales Eriocaulales	Euphorbiales Fabales	Fagales Gentianales	Geraniales Goodeniales	Gunnerales Haemodorales	Haloragales Hamamelidales Hydatellales	Hydrocharitalcs Lilialcs Zosteralcs	Juncales Lamiales	Theales	20
(Clusiales) = Guttiferale Commelinales Dilleniales	Araliales Cucurbitales	Cunoniales Cyperales Dilleniales	Dioscoreales Araliales	sarracentates Ebenales Rhamnales	Ericales Eriocaulales	Euphorbiales = Leguminales	Fagales Gentianales	Geraniales Goodeniales	Onagrales Haemodorales	Onagrales Hamamelidales Juncales	Butomales Iridales Juncaginales	Juncales Lamiales	Lauraies Myrtales	
	suttiferales Theales Theales Tommelinales Commelinales Commentales Connarales Connarales	Theales Theales Commetinales Commetinales Sapindales Connarales Cornales Violales	Theales Theales Theales Commelinales Commelinales Commelinales Connarales Connarales Violales Violales Violales Saxifragales Cyperales Cyperales Dilleniales Dilleniales Dilleniales Dilleniales Dilleniales Commenties Commenties Cyperales	ThealesThealesCommelinalesCommelinalesSapindalesCommarlesCornalesConnaresCornalesCornalesViolalesCornalesCunonialesSaxifragalesCyperalesCyperalesDillenialesDillenialesDiscorealesDillenialesDiscorealesDipsacalesCornalesDipsacalesDiscorealesDipsacalesDiscorealesDipsacalesDiscorealesDipsacalesDiscorealesDipsacalesDiscorealesDipsacales<	ThealesThealesCommelinalesCommelinalesSapindalesCommelinalesCornalesConnarelesCornalesConnalesViolalesCornalesCunonialesSaxifragalesCyperalesDillenialesDillenialesDillenialesDinscorealesDillenialesDinscorealesSaxifragalesDinscorealesDillenialesDinscorealesDipsacalesEbenalesEbenalesElaeagnalesElaeagnales	ThealesThealesThealesCommelinalesSapindalesCommarlesSapindalesCommarlesCornalesConnarlesConnalesConnalesViolalesConnalesCunonialesSaxifragalesCyperalesSaxifragalesDillenialesDillenialesDinscorealesDippsacalesDinscorealesDippsacalesDissenalesEbenalesElacagnalesEricales <trr>EricalesEricales<trr>Erical</trr></trr>	ThealesThealesThealesCommelinalesSapindalesCommarlesSapindalesCommarlesCornalesConnarlesConnalesConnalesCunonialesConnalesCyperalesSaxifragalesCyperalesCyperalesDillenialesDillenialesDinscorealesDillenialesDinscorealesDillenialesDinscorealesDippsacalesDinseralesEbenalesEbenalesElacagnalesEricalesEricalesEnceaulalesEnceaulalesEuphorbialesEuphorbialesFabalesFabalesFabalesFabales	ThealesThealesThealesCommelinalesSapindalesCommarlesSapindalesCommarlesCornalesConnarlesCunonialesConnalesCunonialesConnalesCyperalesViolalesCyperalesSaxifragalesCyperalesCyperalesDillenialesDillenialesDinscorealesDillenialesDinscorealesDillenialesDinscorealesDillenialesDinscorealesDillenialesDinscorealesDinscalesEbenalesEbenalesEncaulalesEncaulalesEncoaulalesEncoaulalesEuphorbialesEuphorbialesFagalesFagalesFagalesGentianalesGentianalesGentianalesGentianalesGentianalesGentianalesGentianales	ThealesThealesThealesCommelinalesSapindalesCommarlesSapindalesCommarlesCornalesConnarlesConnalesConnalesCunonialesConnalesCyperalesSaxifragalesCyperalesSaxifragalesDillenialesDillenialesDinscorealesDillenialesDinscorealesDillenialesDinscorealesDippsacalesDinscorealesDippsacalesEbenalesEbenalesEncaulalesEricalesEricalesEricalesEricalesEricalesEncocaulalesEuphorbialesEuphorbialesEuphorbialesFagalesFagalesGontianalesGentianalesGondenialesCampanulalesGondenialesCampanulalesGondenialesCampanulales	ThealesThealesThealesCommelinalesSapindalesCommarlesSapindalesCommarlesCornalesConnarlesConnalesConnalesCunonialesConnalesCunonialesSaxifragalesCunonialesSaxifragalesCunonialesCyperalesDillenialesDillenialesDillenialesDillenialesDinscorealesSaxifragalesEbenalesEbenalesElacagnalesEricalesEricalesEricalesEricalesEricalesEncocaulalesEuphorbialesFagalesFagalesFagalesGentianalesGondenialesCampanulalesGunneralesCampanulalesGunneralesLilialesSaxifragalesCampanulales	ThealesThealesThealesCommelinalesSapindalesCommarlesSapindalesCommarlesCornalesCommarlesConnalesConnarlesCunonialesConnalesCunonialesConnalesCornalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesDillenialesDillenialesDiscocrealesDillenialesDiscocrealesDillenialesDroscralesEbenalesEbenalesElacagnalesEnceulalesEnceulalesEricalesEnceulalesEricalesEnceulalesEricalesEnceulalesEncoulalesEnceulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEncoulalesEuconorialesEncoulalesGondenialesCompanialesGondenialesCompanialesGondenialesCompanialesHaloragalesMyratellalesHydatellalesHydatellalesHydatellalesHydatellales	ThealesThealesThealesCommelinalesSapindalesCommelinalesSapindalesCommalesCornalesCommalesConnalesConnarlesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesConnalesDillenialesDillenialesDiscocrealesDillenialesDiscocrealesDillenialesDroscralesDillenialesDroscralesDillenialesDroscralesDillenialesDroscralesDillenialesDroscralesDillenialesDroscralesDillenialesDroscralesDillenialesDroscralesDillenialesDroscralesDillenialesDroscralesDillenialesEricales <t< td=""><td>ThealesThealesThealesCommelinalesSapindalesCommelinalesSapindalesCommarlesCornalesCommarlesConnalesConnalesCononialesConnalesCononialesConnalesConnalesConnalesConnalesConnalesConnalesSaxifragalesConnalesConnalesConnalesConnalesConnalesSaxifragalesConnalesConnalesDiscocrealesSaxifragalesEbenalesEbenalesElacagnalesElacagnalesEricalesFablesFablesFablesFablesFablesEricalesEricalesEricalesEricalesEricalesEricalesEricalesFablesEricalesFablesEricalesFablesEricalesFablesEricalesFablesEricales</td><td>ThealesThealesThealesCommelinalesSapindalesCommalesSapindalesCommalesCornalesCommalesConnalesConnalesConnalesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesConnalesSaxifragalesConnalesCyperalesDillenialesDillenialesDiscocrealesSaxifragalesElaeagnalesElaeagnalesEricalesEncocaulalesEricalesFagalesFagalesFagalesFagalesFagalesMyrtalesHydrocharitalesHydatellalesHydrocharitalesLilialesHydrocharitalesJuncalesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLaurales<!--</td--></td></t<>	ThealesThealesThealesCommelinalesSapindalesCommelinalesSapindalesCommarlesCornalesCommarlesConnalesConnalesCononialesConnalesCononialesConnalesConnalesConnalesConnalesConnalesConnalesSaxifragalesConnalesConnalesConnalesConnalesConnalesSaxifragalesConnalesConnalesDiscocrealesSaxifragalesEbenalesEbenalesElacagnalesElacagnalesEricalesFablesFablesFablesFablesFablesEricalesEricalesEricalesEricalesEricalesEricalesEricalesFablesEricalesFablesEricalesFablesEricalesFablesEricalesFablesEricales	ThealesThealesThealesCommelinalesSapindalesCommalesSapindalesCommalesCornalesCommalesConnalesConnalesConnalesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesCunonialesConnalesConnalesSaxifragalesConnalesCyperalesDillenialesDillenialesDiscocrealesSaxifragalesElaeagnalesElaeagnalesEricalesEncocaulalesEricalesFagalesFagalesFagalesFagalesFagalesMyrtalesHydrocharitalesHydatellalesHydrocharitalesLilialesHydrocharitalesJuncalesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLauralesLaurales </td

Theales Guttiferales s. lat. Centrospermae Ericales Commelinales Geraniales Ebenales Thymelaeales Commelinales Dipsacales Sarraceniales Campanulales Umbelliflorac Magnoliales Myrtiflorae Myrtiflorae Liliiflorae Commelinales Guttiferales Myrtiflorae Cucurbitales Tubiflorae Liliiflorae Gentianales Liliflorae Helobiae Helobiae Celastrales Geraniales Rosales Rosales Rosales Cyperales Rosales luncales agales

Chenopodiales s. lat. Zosterales Commelinales Commelinales Euphorbiales Rutales Geraniales Campanulales Commelinales Hamamelidales Hydatellaceae (stat. dub.) Commelinales Alismatales Rhamnales Annonales Dipsacales Rosales Gentianales Cornales Cornales Violales Rosales Celastrales Liliales Theales Rutales Theales Liliales Liliales Lamiales Cornales Ebenales Ericales Fagales

 Thorne (1981) Liliales Geraniales Annonales Geraniales 	Malvales Rutates Primulales Myrtales Myrtales Nymphacales Nymphacales Theates Santalales Oleales Myrtales Lilitates Pandanales Violates Primulales Primulales Primulales Rostes Solanales Commelinales Primulales Commelinales Primulales Commelinales Primulales Commelinales Primulales Commelinales Primulales Commelinales Primulales Commelinales	Polygonales Commelinales
Melchior (1964) =Lilififorae Geraniales Gentianales Magnoliales Rutales	Malvales Rutales Primulales = Myrtiflorae = Helobiae p.p. maj, Ramunculales Sarraceniales Guttiferales Guttiferales Santalales Oleales Myrtiflorae = Microspermae Pandanales Violales Violales Pandanales Violales Pandanales Plantaginales Plantaginales Plantaginales Plantaginales Plantaginales Plantaginales Plantaginales Plantaginales Rusales Plantaginales Plantaginales Plantaginales Plantaginales Plantaginales Rusales Plantaginales Plantaginales Plantaginales Rusales Plantaginales Plantaginales Rusales Rusales Rusales Plantaginales Plantaginales Plantaginales Plantaginales Plantaginales Plantaginales Rusales Plantaginales Rusales Plantaginales Rusales Plantaginales Rusale	Polygonales Liliiflorae
Cronquist (1981) Liliales Linales Gentianales Magnoliales Polygalales	Malvales Sapindales(!) Primulales Myrtales Nymphacales Nymphacales Nymphacales Theales Santalales Serophulariales(!) Myrtales Orchidales Pandanales Violales Pandanales Violales Pandanales Violales Pandanales Violales Pandanales Seales Pantaginales Polocetemales Solanales Polygalales	Polygonales Liliales
Takhtajan (1980) Liliales Geraniales Gentianales Magnoliales Polygalales	Malvales Rutales Primulales Myrtales Nepenthales Nymphaeales Nymphaeales Theates Santalales Oreales Myrtales Orchidales Pandanales Violales Liliales Piperales Saxifragales Saxifragales Piperales Pooles Pooles Pooles Polemoniales	Polygonales Liliales
Dahlgren (1980) Liliales Geraniales Gentianales Magnoliates Polygalales	Malvales Rutales Primulales Myrtales Zosterales Nelumbonales Theales Nymphacales Theales Santalales Oleales Myrtales Orchidales Phylidrale	Polygonales Pontederiales
Hutchinson (1973) Liliales Malphigiales Loganiales Magnoliales Malpigiales (see also Linales)	Malvales Meriales Myrsinales Myrtales Myrtales Myrtales Aristolochiales Ranales Ochnales Cochnales Olacales Loganiales Orchidales Pandanales Pa	Polygonales Liliales

Table 7 (cont.)

Zosterales Primulales Proteales	Rafflesiales =Berberidales Commelinales	Rhamnales Cornales Rosales	Gentianales Rutales	Santalales Rutales Rosales	Rosales = Bignoniales	Liliales Solanales Theales Violales	Theales Euphorbiales Malvales	Triuridales Typhales Urticales	Lamiales Violales Cornales Commelinales Zingiberales Zosterales
Helobiae Primulales Proteales	Aristolochiales Ranunculales Commelinales	Rhamnales Myrtiflorae Rosales	Gentianales Rutales	Santalales Sapindales Sarraceniales	Rosales = Tubiflorae <i>p.p. maj.</i>	Lutales Tubiflorac Ebenales Violales	= Guttiferales Thymelacales Malvales	Triuridales Pandanales Urticales	Tubiflorae Violales Rhamnales Commelinales =Scitamineae Helobiae

Commelinales Sapindales(!) Scrophulariales Nepenthales Rhizophorales Rhamnales Ranunculales Myrtales(!) Zingiberales Najadales Najadales Restionales Rafflesiales Rhamnalcs Malvales Sapindales Ebenalcs Lamiales Rosales rimulales Santalales Liliales Violales Triuridales Proteales Solanales yphales Theales Urticales Violales Rubiales Rosales

Scrophulariales(!) Commelinales Scrophulariales Zingiberales Najadales Gentianales Saxifragales Rhamnales Thymelaeales Ranunculales Najadales Restionales Saxifragales Smilacales Tamaricales Rafflesiales Rhamnales Myrtales Ebenales Malvales Lamiales Primulales Sapindales Triuridales Proteales Santalales **Typhales** Urticales Violales Theales Rosales Rutales

Asparagales(!) Scrophulariales Zosterales(!) Rhizophorales Eriocaulales Gentianales **Fhymelaeales** Ranunculales Cornales(!) Droserales lingiberales Saxifragales amaricales Rafflesiales Rhamnales Malvales rimulales Sapindales Lamiales Costerales **Triuridales** Solanales Santalales Proteales Poales ^ryphales Irticales Theales /iolales /itidales Rosales Rutales

Aponogetonales otamogetonales Aristolochiales **'hymelaeales** Rhamnales Zingiberales Sarraceniales = Personales Saxifragales amaricales Primulales Myrtales Juncales Rhamnales Sapindales Tiuridales 'erbenales **Ayridales** Liliales Styracales Santalales Solanales Proteales yphales Irticales /iolales Theales **Rubiales** filiales **Zanales** Rosales **Autales**

n

System of classification

Of the taxa ranked as orders by Takhtajan, but not by Cronquist or Thorne, the following are ranked as suborders by Thorne: *Balanopales* (newly in *Pittosporales*), *Begoniales* (in *Violales*), *Polemoniales* (in *Solanales*), *Saxifragales* (in *Rosales*), *Tamaricales* (newly in *Violales*); *Poales* (in *Commelinales*). Also, the following of Takhtajan's orders are recognised by Thorne only as families: *Connarales* (newly in *Rutales*, transferred from *Rosales*), *Elaeagnales* (in *Rhamnales*), *Thymelaeales* (in *Euphorbiales*); *Burmanniales* (in *Liliales*) and *Smilacales* (as subfamily in *Liliaceae*). Other changes at the level of order in Thorne's system between 1976 and 1981 not indicated above are the elevation of *Araliales* (from suborder in *Cornales*), *Celastrales* (from suborder in *Santalales*), *Typhales* (from suborder in *Arales*, also as a distinct superorder), and the introduction of the new name *Violales* (for *Cistales*, *Tamaricales* and the introduced *Salicales*).

Thorne recognises only 190 families with indigenous species in Australia, which is the lowest number for all systems discussed here (Table 5). As in the case of his orders, he regards a further subdivision of his families as important. Twenty seven families are accepted by Cronquist but not, or no longer, by Thorne (Table 8). On the other hand, Thorne accepts three families not recognised by Cronquist, viz. Baueraceae (next to Cunoniaceae, in 1981), Cochlospermaceae (next to Bixaceae, in 1981) and Sphenostemonaceae (new since 1976). Two other differences between the systems of Thorne and Cronquist are Thorne's placing of Blepharocaryaceae (in Anacardiaceae since 1976, rather than in Sapindaceae) and Stylobasiaceae (in Sapindaceae since 1976, rather than Surianaceae). Changes in Thorne's system at family level, not mentioned above, are the relegation of Gyrocarpaceae to Hernandiaceae (1976), the recognition of Nelumbonaceae (out of Nymphaeaceae, 1976); Costaceae (next to Zingiberaceae, 1981), Cymodoceaceae (next to Zanichelliaceae), Hydatellaceae (new in 1981) and the use of the name Juncaginaceae in preference to Scheuchzeriaceae (since 1976). Finally, Thorne agrees with Cronquist in relegating Amaryllidaceae and Hypoxidaceae to Liliaceae.

R. M. T. Dahlgren's system

Rolf Dahlgren's system is the most recent of those discussed in this chapter and in many ways the most modern. The first version appeared in 1975 followed by a thoroughly revised one in 1980. Dahlgren's approach is probably the most truly 'cladistic', since he has relied more on numerical methods and less on personal intuition. He has aimed for a 'radical' solution, although he certainly has not entirely broken with tradition. Groups that could be distinguished taxonomically were ranked—probably for prominence—as orders or families rather than as subordinate taxa, even though this often led to an otherwise regrettable inflation.

An interesting feature of Dahlgren's system is its presentation in a two-dimensional diagram (Fig. 22), representing a contemporary cross-section through an imaginary phylogenetic 'tree'. The superorders were shaped by the relative size of their constituent orders, and relative distances were based on ratios of similarities and dissimilarities in a number of characters. The principal diagrams of the successive editions were also used as 'base maps' to demonstrate the distribution of various characters throughout the Flowering Plants (e.g. sympetaly, as in Fig. 22).

Dahlgren treated Flowering Plants as a class (*Magnoliopsida*), divided primarily into Dicots (*Magnoliidae*) and Monocots (*Liliidae*), which were ranked as subclasses as in Thorne's system. His next division was into 24 superorders within the Dicots (only one, *Loasiflorae*, not represented in Australia) and 7 within the Monocots. These are comparable with the equivalent numbers in Takhtajan's and Thorne's systems (Tables 5 and 6), although there are major differences between the circumscrip-

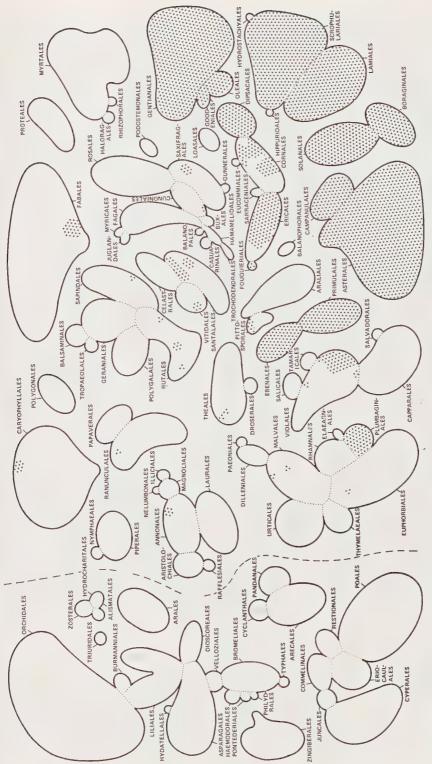


Figure 22. The orders of the Magnoliophyta (Flowering Plants), shown as clusters of superorders. The broken line separates the classes Liliopsida (Monocotyledons) on the left and Magnoliopsida (Dicotyledons) on the right. Shading indicates the occurrence of sympetalous flowers in orders (or parts thereof) of the latter class, showing that taxa similar in this respect may not be closely related. The diagram could be interpreted as a chronological cross-section (the present) through the branching system of an imaginary phylogenetic tree. (After Dahlgren, 1980; reproduced by permission of the author)

System of classification

tions of taxa by these three authors. In Dahlgren's latest system, the names of the superorders were given the suffix -*florae* (following Thorne, 1968, 1976) rather than the more widely applicable -anae of his first edition (in accordance with Takhtajan, 1969, 1980). It also presented additional superorders, viz. Fabiflorae (out of Rosanae), Podostemoniflorae (out of Saxifraganae), Polygoniflorae (out of Plumbaginanae) and Triuridiflorae (out of Lilianae). Newly synonymised superorders were: Campanulanae (in Asteriflorae), Dillenianae, Plumbaginanae p.p. and Thymelaeanae (under the new name Malviflorae), Hamamelidanae and Saxifraganae p.p. (in Rosiflorae), Rafflesianae (in Magnoliiflorae) and Typhanae (in Liliiflorae). The new name Santaliflorae covered many of the subordinate taxa of the previous Celastranae. Further alterations were proposed in the linear arrangement of the superorders, as well as in the circumsciptions of several similarly named ones.

Of the 105 orders of Flowering Plants recognised by Dahlgren, 84 are represented in Australia by native species: a relatively high number (Table 5). Some 25 of Dahlgren's indigenous orders are not recognised by Cronquist, whereas the latter recognises 10 orders that were not (or no longer) adopted by Dahlgren (Table 7). Like other authors, Dahlgren used the name Araliales for Cronquist's Apiales. Further, he recognised eight orders for the first time in 1980, viz. Annonales, (in Magnoliiflorae), Boraginales (in Solaniflorae), Rhizophorales (in Myrtiflorae), Vitidales (in Santaliflorae); Hydatellales, Phylidrales, Pontederiales (all in Liliiflorae) and Zosterales (in Alismatiflorae). Similarly, five orders were synonymised viz. Nepenthales (in Theales); Centrolepidales (in Poales), Najadales (in Zosterales), Stemonales and Taccales (both in Dioscoreales).

In the latest edition of his system (1980), Dahlgren recognised 234 families with indigenous representatives in Australia, the second highest number of the six systems discussed here, not far behind Airy Shaw's total. He accepted segregate families when there was doubt about the correct placement of the genera concerned, but changes in the second edition make it clear that he was content to synonymise such families once a more satisfactory position had been found. Thirty three families were recognised by Dahlgren but not by Cronquist (Table 8). Apart from the changes mentioned above, the following families were newly recognised by Dahlgren in 1980: Corokiaceae (in Cornales), Sonneratiaceae (in Myrtales), Thunbergiaceae (in Scrophulariales), Asteliaceae, Dasypogonaceae, Dianellaceae, Doryanthaceae nom. nud., Geitonoplesiaceae nom. nud., Hanguanaceae, Luzuriagaceae and Petermanniaceae (all in Asparagales) and Hydatellaceae (in Hydatellales?). The following were synonymised in 1980: Dysphaniaceae (in Chenopodiaceae), Gyrocarpaceae (in Hernandiaceae), Idiospermaceae (in Calycanthaceae), Lecaceae (in Vitaceae), Orobanchaceae (in Scrophulariaceae), Potaliaceae, Spigeliaceae and Strychnaceae (in Loganiaceae), Siphonodontaceae (in Celastraceae), Sphenocleaceae (in Campanulaceae), Stylobasiaceae (in Sapindaceae), Xanthophyllaceae (in Commelinaceae), Ecdeiocoleaceae (in Restionaceae) and Limnocharitaceae (in Alismataceae). Finally, in 1980 Dahlgren introduced Hypericaceae for Clusiaceae as used in 1975.

Concluding remarks

After the preceding discussions of seven authors and six systems, the following general remarks can be made:

1. The Flowering Plants still are subdivided primarily into Monocots and Dicots, although modern authors appear to be increasingly dissatisfied with these two as equivalent natural groups, the former taxon probably being regarded as the more homogeneous (see e.g. Dahlgren, 1980).

2. The traditional further subdivisions above the level of order, based on one or a few

related characters, have practically disappeared since Melchior's (1964). An original division into subclasses was developed by Cronquist and largely adopted by Takhtajan (Table 6). Thorne and Dahlgren only recognise Monocots and Dicots at that rank. Hutchinson's comparable 'Divisions' have generally been rejected as being too artificial. A division into superorders has been pioneered and developed by Takhtajan, whereas Thorne and Dahlgren have adopted similar approaches.

3. There is still a controversy between the 'conservatives' such as Thorne (and previously Melchior) and the 'radicals' such as Dahlgren (previously also Hutchinson and Airy Shaw) about the assignment of taxa to certain ranks. The former prefers the ranks of suborder and subfamily to indicate 'lesser' taxonomic differences, whereas the latter gives greater exposure to any relevant distinctions at the major ranks of order and family. Cronquist and Takhtajan occupy positions in the middle of this spectrum, although the latter—in other ways slightly more 'radical'—makes **u** more consistent use of all ranks available for subdivision (Table 5).

4. Dahlgren (1975a, 1980) and Thorne (1976, 1981) have produced a superior type of two-dimensional diagram, presented as a horizontal cross-section through an imaginary phylogenetic 'tree', to illustrate their systems of the recent Flowering Plants. Diagrams of a traditional format, looking more or less like vertical 'genealogical trees' of exclusively recent taxa (e.g. Hutchinson 1973, Takhtajan 1969), are open to misinterpretations of a pseudo-phylogenetic nature and should therefore be discouraged. The latter type is only acceptable if all recent taxa are placed at the tips of the branches, i.e. only allowing for a one-dimensional arrangement of these. It should be remembered, however, that even a two-dimensional diagram is less than ideal as a means to express relationships which are actually multi-dimensional in nature. Although Dahlgren in particular has reached a new level of sophistication (Fig. 22), it should be pointed out that some of his principles were previously applied by A. A. Pulle (1952), whose diagram—with circles of various sizes representing orders and some of their character-states—was reproduced by Melchior (1964).

5. A recent trend is the recognition by several authors of a greater or smaller number of segregate families (and orders) in the *Rosiflorae* (and the transfer of some of these taxa to *Araliiflorae* and *Corniflorae* by Dahlgren). Another tendency is the recognition of an increasing number of orders and families in the *Liliiflorae* by Takhtajan and particularly Dahlgren (as well as a large number of subfamilies by Thorne). Both developments were strongly influenced by the studies of Huber (1963, 1969). Further concepts subject to radical change are, e.g., those of *Violiflorae/Malviflorae* and *Rutiflorae/Geraniiflorae*, whereas the placing of several individual orders and families is equally not yet resolved to everyone's satisfaction. Although there is certainly much common ground between the four most recent authors discussed here, there are also diverging developments in their ideas about a number of groups and a consensus, even in general terms, is still some time off.

References

The following list provides not only more complete citation of references given in the text, but also a selection of additional books and papers relevant to Flowering Plant Taxonomy (asterisked *). Preference has been given to contributions of the last ten to fifteen years, although some older but still relevant ones have been included. Published proceedings of symposia have been listed under their general titles; some papers have been listed individually under the relevant author.

Adanson, M. (1763), *Familles des Plantes*, 2 vols. Vincent, Paris. Repr. (1966), with Introduction by F. A. Stafleu; Cramer, Lehre.

N

Table 8. Families of Flowering Plants with taxa indigenous in Australia as recognised by four authors, but not regarded as distinct at that level by all four. Alternative taxonomic positions of segregate families indicated by indented names, some queried (?), some highlighted (!).

A. Cronquist (1981)

Myrsinaceae

Liliaceae Liliaceae

Agavaceae

Orchidaceae Asclepiadaceae

Apiaceae

A. Takhtajan (1980)	Myrsinaceae	Agavaceae	Amaryllidaceae	Asphodelaceae(?)	Apiaceae	Orchidaceae	Asclepiadaceae	Asparagaceae	Asphodelaceae	Dracaenaceae	Cunoniaceae	Goodeniaceae	Fabaceae	Bixaceae	Colchicaceae	Escalloniaceae	Corsiaceae	Cuscutaceae	Xanthorrhoeaceae	Phormiaceae	Stylidiaceae	Doryanthaceae	Dracaenaceae	Ecdeiocoleaceae D. Cutler	& Airy Shaw	Boraginaceae	Emblingiaceae	Eremosynaceae	Escalloniaceae	Philesiaceae	Haemodoraceae
R.M.T. Dahlgren (1980)	Aegicerataceae Blume	Agavaceae Endl.	Amaryllidaceae J. St.Hil.	Anthericaceae J. Agardh	Apiaceae Lindley	Apostasiaceae Lindley	Asclepiadaceae R. Br.	Asparagaceae A.L. Juss.	Asphodelaceae A.L. Juss.	Asteliaceae Dumort.	Baueraceae Lindley	Goodeniaceae	Caesalpiniaceae R. Br.	Cochlospermaceae Planchon	Colchicaceae DC.	Corokiaceae nom. nud.	Corsiaceae Becc.	Cuscutaceae Dumort.	Dasypogonaceae Dumort.	Dianellaceae Salisb.	Stylidiaceae	Doryanthaceae nom. nud.	Dracaenaceae Salisb.	Restionaceae		Ehretiaceae Lindley	Emblingiaceae Airy Shaw	Eremosynaceae Takht.	Escalloniaceae Dumort.	Geitonoplesiaceae nom. nud.	Haemodoraceae R. Br.

Brunoniaceae DC.

Caesalpiniaceae

Cunoniaceae

Agavaceae

Liliaceae

Liliaceae

Xanthorrhoeaceae

Cuscutaceae

Corsiaceae

Saxifragaceae

Liliaceae

Bixaceae

Donatiaceae Dostál

Liliaceae

Agavaceae Agavaceae Grossulariaceae(!)

Haemodoraceae

Smilacaceae

Polygalaceae(!) Saxifragaceae

Boraginaceae

Restionaceae

P. Royen & Airy Shaw Sonneratiaceae Engl. & Gilg Xanthorrhoeaceae Dumort. Hanguanaceae Airy Shaw Thunbergiaccae Tieghem Tetracarpaeaceae Nakai Hypericaceae A.L. Juss. Petermanniaceae Hutch. Sparganiaceae Rudolphi Thismiaceae J. Agardh Phormiaceae J. Agardh (incl. Clusiaceae) Luzuriagaceae Dostál Molluginaceae Hutch. Philesiaceae Dumort. Potamogetonaceae Hypoxidaceae R. Br. Nitrariaceae Lindley Sphenostemonaceae Scrophulariaceae Limoniaceae Lincz. Mimosaceae R. Br. **Opiliaceae** Valeton Lobeliaceae R. Br. Sambucaceae Link Campanulaceae Calvcanthaceae Smilacaceae Vent. Surianaccae Arn. Polygalaceae Alismataceae Moraceae Link Celastraceae Sapindaceae Celastraceae Vitaceae

Stylobasiaceae J. Agardh Limnocharitaceae Takht. Siphonodontaceae Tard. Orobanchaceae Vent. Sphenostemonaceae Caprifoliaceae(?) Plumbaginaceae Campanulaceae Calycanthaceae Leeaceae Dumort. Ruppiaceae Hutch. Campanulaceae Simaroubaceae Burmanniaceae Escalloniaceae Acanthaceae Celastraceae Philesiaceae Philesiaceae Sonneratiaceae Hanguanaceae Molluginaceae Hypoxidaceae Clusiaceae Typhaceae Nitrariaceae Phormiaceae Smilacaceae Fabaceae Philesiaceae Opiliaceae Moraceae

Hippocrateaceae A.L. Juss. diospermaceae S.T. Blake Sphenocleaceae DC. Plumbaginaceae Aquifoliaceae(?) Zygophyllaceae Campanulaceae Limnocharitaceae Caprifoliaceae Surianaceae(!) Saxifragaceae Orobanchaceae Celastraceae Smilacaceae Smilacaceae Sonneratiaceae Molluginaceae Smilacaceae Sparganiaceae Clusiaceae Agavaceae Mimosaceae Smilacaceae Surianaceae Liliaceae Ruppiaceae Opiliaceae Moraceae Leeaceae

Liliaceae--Xanthorrhoeoideae Celastraceae--Hippocrateoideae Clusiaceae

Hanguanaceae

Scrophulariaceae-Orobanchoideae Calycanthaceae-Idiospermoideae Alismataceae-Limnocharitoideae Campanulaceae-Sphenocleoideae Celastraceae-Siphonodontoideae Plumbaginaceae-Staticoideae(?) Zygophyllaceae-Nitrarioideae Campanulaceae-Lobelioideae Caprifoliaceae-Sambucoideae Sapindaceae-Stylobasioideae Liliaceae-Luzuriagoideae(?) Liliaceae-Luzuriagoideae(?) Lythraceae-Sonneratioideae Aizoaceae-Molluginoideae 'yphaceae-Sparganioideae .iliaceae-Hypoxidoideae -iliaceae-Luzuriagoideae Fabaceae-Mimosoideae Liliaceae-Smilacoideae Urticaceae-Moroideae Olacaceae-Opilioideae Liliaceae-Agavoideae Vitaceae-Leeoideae Potamogetonaceae Sphenostemonaceae

Surianaccae Saxifragaccac—Tetracarpaeoideae Burmanniaceae—Thismioideae Acanthaceae—Thunbergioideae Polygalaceae Liliaceae—Xanthorrhocoideae

Xanthophyllaceae Gagnep.

Kanthorrhoeaceae

Xanthorrhoeaceae

Polygalaceae

Burmanniaceae

Acanthaceae

- *Beck, C. B. (ed.) (1976), Origin and Early Evolution of Angiosperms. Columbia University Press, New York.
- Becker, K. M. (1973), A comparison of angiosperm classification systems, *Taxon* 22: 19-50.
- *Bendz, G. & Santesson, J. (1973), *Chemistry in Botanical Classification*, Nobel Symposium 25. Academic Press, New York & London.
- Bentham, G. (1863-1878), *Flora Australiensis*, 7 vols. Reeve, London. Repr. (1967); Asher & Reeve, Amsterdam.
- Bentham, G. & Hooker, J. D. (1862–1883), *Genera Plantarum*, 3 vols. Reeve, London. Repr. (1965), with Introduction by W. T. Stearn; Cramer, Weinheim.
- Brown, R. (1810–1830), Prodromus Florae Novae Hollandiae et Insulae Van-Diemen, Vol. 1 & Suppl. 1. Taylor, London. Repr. (1960), with Introduction by W. T. Stearn; Engelmann(Cramer), Weinheim.
- *Clifford, H. T. (1963), Angiosperm hybrids in the Australian flora, Queensland Naturalist 17: 32-34.
- *Clifford, H. T. (1977), Quantitative studies of inter-relationships amongst the Liliatae, in K. Kubitzki (ed.), Flowering plants: evolution and classification of higher categories, *Pl. Syst. Evol.* Suppl. 1: i-viii, 1-416.
- *Clifford, H. T. & Stephenson, W. (1975), An Introduction to Numerical Classification. Academic Press, New York.
- *Corner, E. J. H. (1976), *The Seeds of Dicotyledons*, 2 vols. Cambridge University Press, Cambridge.
- Cronquist, A. J. (1957), Outline of a new system of families and orders of dicotyledons, Bull. Jard. Bot. État 27: 13-40.
- *Cronquist, A. J. (1960), The divisions and classes of plants, *Bot. Rev. (Lancaster)* 26: 426-482.
- *Cronquist, A. J. (1965), The status of the general system of classification of flowering plants, Ann. Missouri Bot. Gard. 52: 281-303.
- Cronquist, A. J. (1968), *The Evolution and Classification of Flowering Plants*. Mifflin, Boston, & Nelson, London.
- *Cronquist, A. J. (1969), Broad features of the system of angiosperms, *Taxon* 18: 188-193.
- *Cronquist, A. J. (1973), Chemical plant taxonomy: a generalist's point of view on a promising speciality, in G. Bendz & J. Santesson, Chemistry in Botanical Classification, Nobel Symposium 25. Academic Press, New York & London.
- *Cronquist, A. J. (1975), Some thoughts on angiosperm phylogeny and taxonomy, in J. W. Walker, et al., The bases of angiosperm phylogeny, Ann. Missouri Bot. Gard. 62: 515-834.
- *Cronquist, A. J. (1977), On the taxonomic significance of secondary metabolites in angiosperms, *in* K. Kubitzki (ed.), Flowering plants: evolution and classification of higher categories, *Pl. Syst. Evol.* Suppl. 1: i-viii, 1-416.
- Cronquist, A. J. (1981), An Integrated System of Classification of Flowering Plants, Columbia University Press, New York.
- Cronquist, A. J., Takhtajan, A. & Zimmermann, W. (1966), On the higher taxa of Embryobionta, *Taxon* 15: 129-134.

- Dahlgren, R. (M. T.) (1975a), A system of classification of the angiosperms to be used to demonstrate the distribution of characters, *Bot. Not.* 128: 119-147.
- *Dahlgren, R. (M. T.) (1975b), The distribution of characters within an angiosperm system I: some embryological characters, *Bot. Not.* 128: 181-197.
- *Dahlgren, R. (M. T.) (1977a), A commentary on a diagramatic presentation of the angiosperms in relation to the distribution of character states, *in* K. Kubitzki (ed.), Flowering plants: evolution and classification of higher categories, *Pl. Syst. Evol.* Suppl. 1: i-viii, 1-416.
- *Dahlgren, R. (M. T.) (1977b), A note on the taxonomy of the 'Sympetalae' and related groups, *Publ. Cairo Univ. Herb.* 7/8: 83-102.
- Dahlgren, R. M. T. (1980), A revised system of classification of the angiosperms, Bot. J. Linn. Soc. 80: 91-124.
- *Dahlgren, R. & Clifford, H. T. (in press), *The Monocotyledons: a Comparative Study*. Academic Press, London.
- Darwin, C. R. (1859), On the Origin of Species by Means of Natural Selection. Murray, London. Repr. (1950), with Forword by C. D. Darlington; Watts, London.
- *Davis, G. L. (1966), Systematic Embryology of the Angiosperms. Wiley, New York.
- *Davis, P. H. & Heywood, V. H. (1963), *Principles of Angiosperm Taxonomy*. Oliver & Boyd, Edinburgh.
- *Eames, A. J. (1961), Morphology of the Angiosperms. McGraw-Hill, New York.
- Ehrendorfer, F. (1971), in D. von Denffer et al., Lehrbuch der Botanik, 30th edn. Fischer Verlag, Stuttgart. Transl. (1976), as Strassburger's Textbook of Botany; Longman, London.
- *Ehrendorfer, F. (1977), New ideas about the early differentiation of angiosperms, *in* K. Kubitzki (ed.), Flowering plants: evolution and classification of higher categories, *Pl. Syst. Evol.* Suppl. 1: i-viii, 1-416.
- *Ehrendorfer, F. (1978), in D. von Denffer et al., Lehrbuch der Botanik, 31st edn. Fischer Verlag, Stuttgart.
- Engler, (H. G.) A. (1892), Syllabus der Vorlesungen über Specielle und Medicinisch-Pharmaceutische Botanik. Borntraeger, Berlin.
- Engler, (H. G.) A., assisted by Gilg, E. (1912), Syllabus der Pflanzenfamilien, 7th edn. Borntraeger, Berlin.
- Engler, (H. G.) A. & Diels, L. (1936), Syllabus der Pflanzenfamilien, 11th edn. Borntraeger, Berlin.
- *Erdtman, G. (1966), Pollen Morphology and Plant Taxonomy, Vol. 1: Angiosperms. Hafner, New York.
- *Erdtman, G. (1969), Handbook of Palynology: Morphology, Taxonomy, Ecology. Munksgaard, Copenhagen, & Hafner, New York.
- *Gibbs, R. D. (1974), *Chemotaxonomy of Flowering Plants*, 4 vols. McGill-Queen's University Press, Montreal.
- *Gornall, R. J., Bohm, B. A. & Dahlgren R. (M. T.) (1979), The distribution of flavenoids in the angiosperms, *Bot. Not.* 132: 1-30.

- *Green, J. R. (1909), A History of Botany 1860-1900: being a continuation of F.G. von Sachs History of Botany, 1530-1860. Repr. (1967); Russell & Russell, New York.
- Hamann, U. (1976), 'Hydatellaceae' a new family of Monocotyledonae, New Zealand J. Bot. 14: 193-196.
- *Hedberg, I. (ed.) (1979), Parasites as plant taxonomists, proceedings of a symposium held in Uppsala, 1978, Symb. Bot. Upsal. 22: 1-221.
- *Hegnauer, R. (1962-1973), Chemotaxonomie der Pflanzen, 6 vols. Birkhäuser Verlag, Basel.
- *Herout, V. (1973), A chemical compound as a taxonomic character, in G. Bendz & J. Santesson, Chemistry in Botanical Classification, Nobel Symposium 25. Academic Press, New York.
- *Heywood, V. H. (ed.) (1968), Modern Methods of Plant Taxonomy, Report of a Conference organised by the Botanical Society of the British Isles, 1967. Academic Press, London.
- *Heywood, V. H. (ed.) (1973), *Taxonomy and Ecology*, Proceedings of an International Symposium held at Reading, 1972. Academic Press, London.
- *Heywood, V. H. (1973b), Chemosystematics—an artificial discipline, in G. Bendz & J. Santesson, Chemistry in Botanical Classification, Nobel Symposium 25. Academic Press, New York & London.
- *Huber, H. (1963), Die verwandtschaftsverhältnisse der rosifloren, Mitt. Bot. Staatssamml. München 5: 1-48.
- Huber, H. (1969), Die samenmerkmale und verwandschaftsverhältnisse der liliifloren, Mitt. Bot. Staatssamml. München 8: 219-538.
- *Huber, H. (1977), The treatment of the monocotyledons in an evolutionary system of classification, *in* K. Kubitzki (ed.), Flowering plants: evolution and classification of higher categories, *Pl. Syst. Evol.* Suppl. 1: i-viii, 1-416.
- Hutchinson, J. (1926-1934), The Families of Flowering Plants, 2 vols. Macmillan, London.
- Hutchinson, J. (1959), *The Families of Flowering Plants*, 2nd edn, 2 vols. Oxford University Press, London.
- Hutchinson, J. (1964-1967), *The Genera of Flowering Plants (Angiospermae)*, 2 vols. Oxford University Press, London.
- Hutchinson, J. (1969), Evolution and Phylogeny of Flowering Plants. Academic Press, London.
- Hutchinson, J. (1973), *The Families of Flowering Plants*, 3rd edn. Oxford University Press, London.
- *Jeffrey, C. (1977), Botanical Nomenclature, 2nd edn. Arnold, London.
- *Jensen, S. R., Nielsen, B. J. & Dahlgren, R. (M. T.) (1975), Iridoid compounds, their occurrence and systematic importance in the angiosperms, *Bot. Not.* 128: 148-180.
- Jussieu, A. L. de (1789), Genera Plantarum secundum Ordines Naturales Disposita. Herissant, Paris. Repr. (1964), with Introduction by F. A. Stafleu; Cramer, Weinheim.

- *Kubitzki, K. (ed.) (1977), Flowering plants: evolution and classification of higher categories, symposium held in Hamburg, 1976, *Pl. Syst. Evol.* Suppl. 1: i-viii, 1-416.
- Lamarck, J. B. A. P. Monnet de (1809), *Philosophie Zoologique*. Dentu, Paris. Repr. (1960); Engelmann (Cramer), Weinheim.
- Linnaeus, C. (1751), *Philosophia Botanica*. Kiesewetter, Stockholm. Repr. (1966); Cramer, Lehre.
- Linnaeus, C. (1753), Species Plantarum, 2 vols. Laurentii Salvii, Stockholm. Repr. (1957-1959), Vol. 1 with an Introduction by W. T. Stearn; Vol. 2 with Appendix by J. L. Heller & W. T. Stearn; Ray Society, London.
- Linnaeus, C. (1754), *Genera Plantarum*, 5th edn. Holmiae Salvii, Stockholm. Repr. (1960), with Notes by W. T. Stearn; Engelmann(Cramer), Weinheim.
- *Mabry, T. J. (1973), The chemistry of disjunct taxa, in G. Bendz & J. Santesson, Chemistry in Botanical Classification, Nobel Symposium 25. Academic Press, New York & London.
- *Mabry, T. J. & Behnke, H. -D. (eds) (1976), Evolution of Centrospermous families, symposium held during the XII International Botanical Congress, Leningrad, 1975, Pl. Syst. Evol. 126: 1-106.
- Mendel, G. (1866), Versuche über pflanzen-hybriden, Verh. Naturf. Vereins Brünn 4: 3-47. Transl. (1958), in E. W. Sinnot, L. G. Dunn & T. Dobzhansky, Principles of Genetics, 5th edn. McGraw Hill, New York.
- Melchior, H. (1964), A. Engler's Syllabus der Pflanzenfamilien, 12th edn, Vol. 2: Angiospermen. Borntraeger, Berlin.
- Melchior, H. & Werdermann, E. (1954), A. Engler's Syllabus der Pflanzenfamilien, 12th edn, Vol. 1: Bakterien-Gymnospermen. Borntraeger, Berlin.
- *Metcalfe, C. R. (1960-1972), Anatomy of the Monocotyledons, 6 vols. Oxford University Press, London.
- *Metcalfe, C. R. & Chalk, L. (1950), Anatomy of the Dicotyledons, 2 vols. Oxford University Press, London.
- *Pankhurst, R. J. (ed.) (1975), *Biological Identification with Computers*, Proceedings of a Meeting held at Cambridge, 1973. Academic Press, London.
- Pulle, A. A. (1952), Compendium van de Terminologie Nomenclatuur en Systematiek der Zaadplanten, 3rd edn. Oosthoek, Utrecht.
- *Radford, A. E., Dickison, W. C., Massey, J. R & Bell, C. R. (1974), Vascular Plant Systematics. Harper & Row, New York, Evanston.
- Raven, P. H., Evart, R. F. & Curtis, H. (1981), *Biology of Plants*, 3rd edn. Worth *w* Publishers, New York.
- *Sachs, (F. G.)J. von (1875), Geschichte der Botanik vom 16. Jahrhundert bis 1860. Transl. (1890), as History of Botany (1530-1860). Clarendon Press, Oxford. Repr. (1967); Russell & Russell, New York.
- Shaw, H. K. Airy (1966), A Dictionary of the Flowering Plants and Ferns by J. C. Willis, 7th edn revised by H. K. Airy Shaw. Cambridge University Press, London.
- Shaw, H. K. Airy (1973), A Dictionary of the Flowering Plants and Ferns by J. C. Willis, 8th edn revised by H. K. Airy Shaw. Cambridge University Press, London.

- *Sneath, P. H. A. & Sokal, R. R. (1973), Numerical Taxonomy: the Principles and Practice of Numerical Classification. Freeman, San Francisco.
- *Solbrig, O. T. (1970), *Principles and Methods of Plant Biosystematics*. Collier-Macmillan, Toronto.
- *Sporne, K. R. (1976), Character correlations among angiosperms and the importance of fossil evidence in assessing their significance, *in C. B. Beck (ed.) Origin and Early Evolution of Angiosperms.* Columbia University Press, New York.
- *Stafleu, F. A., et al. (eds) (1978), *International Code of Botanical Nomenclature*, adopted by the XII International Botanical Congress, Leningrad, 1975. Bohn, Scheltema & Holkema, Utrecht.
- *Stearn, W. T. (1973), Botanical Latin: History, Grammar, Syntax, Terminology and Vocabulary, 2nd edn. David & Charles, Newton Abbot.
- *Stebbins, G. L. (1974), *Flowering Plants: Evolution above the Species Level*. Harvard University Press, Cambridge, & Arnold, London.
- *Stebbins, G. L. (1975), Deductions about transspecific evolution through extrapolation from processes at the population and species level, *in J. W. Walker* et al., The bases of angiosperm phylogeny, *Ann. Missouri Bot. Gard.* 62: 515-834.
- *Stebbins, G. L. (1976), Seeds, seedlings and the origin of angiosperms, *in* C. B.Beck (ed.) *Origin and Early Evolution of Angiosperms*. Columbia University Press, New York.
- *Steele, E. J. (1979), Somatic Selection and Adaptive Evolution: On the Inheritance of Acquired Characters. Wallace, Toronto, & Croom Helm, London.
- *Street, H. E. (ed.) (1978), *Essays in Plant Taxonomy*, dedicated to Emeritus Prof T. G. Tutin. Academic Press, London.
- *Swift, L. H. (1974), Botanical Classifications: a Comparison of Eight Systems of Angiosperm Classification. The Shoe String Press, Hamden.
- Takhtajan, A. (1953), Phylogenetic principles of the system of higher plants, Bot. Rev. 19: 1-45; transl. from Russian in Bot. Zurn. (Leningrad) 35: 113-135(1950).
- Takhtajan, A. (1959), Die Evolution der Angiospermen. Fischer Verlag, Jena.
- Takhtajan, A. (1969), *Flowering Plants: Origin and Dispersal.* Oliver & Boyd, Edinburgh.
- *Takhtajan, A. (1973), The chemical approach to plant classification with special reference to the higher taxa of Magnoliophyta, *in* G. Bendz & J. Santesson, *Chemistry in Botanical Classification*, Nobel Symposium 25. Academic Press, New York.
- *Takhtajan, A. (1976), Neoteny and the origin of flowering plants, in C. B. Beck (ed.) Origin and Early Evolution of Angiosperms. Columbia University Press, New York.
- Takhtajan, A. (1980), Outline of the classification of flowering plants (Magnoliophyta), Bot. Rev. 46: 225-359.
- *Tétényi, P (1973), Homology and biosynthetic routes: the base in chemotaxonomy, in G. Bendz & J. Santesson, Chemistry in Botanical Classification, Nobel Symposium 25. Academic Press, New York.
- Thorne, R. F. (1968), Synopsis of a putatively phylogenetic classification of flowering plants, *Aliso* 6: 57-66.

- *Thorne, R. F. (1974a), A phylogenetic classification of the Annoniflorae, *Aliso* 8: 147-209.
- *Thorne, R. F. (1974b), The 'Amentiferae' or Hammamelidae as an artificial group: a summary statement, *Brittonia* 25: 395-405.
- *Thorne, R. F. (1975), Angiosperm phylogeny and geography, *in* J. W. Walker et al., The bases of angiosperm phylogeny, *Ann. Missouri Bot. Gard.* 62: 515-834.
- Thorne, R. F. (1976), A phylogenetic classification of the Angiospermae, *Evol. Biol.* 9: 35-106.
- *Thorne, R. F. (1977), Some realignments in the angiospermae, *in* K. Kubitzki (ed.), Flowering plants: evolution and classification of higher categories, *Pl. Syst. Evol.* Suppl. 1: i-viii, 1-416.
- Thorne, R. F. (1981), Phytochemistry and angiosperm phylogeny: a summary statement, *in* D. Young & D. Seigler (eds), *Phytochemistry and Angiosperm Phylogeny*. Praeger Scientific, New York.
- *Valentine, D. H. (ed.) (1972), *Taxonomy, Phytogeography and Evolution*, Conference held at Manchester, 1971. Academic Press, London.
- *Vida, G. (ed.) (1972), *Evolution in Plants*, Symposium held at Tihany, Hungary, 1970. Akadémiai Kiadó, Budapest.
- *Walker, J. W. (1976), Comparative pollen morphology and phylogeny of the ranalean complex, in C. B. Beck (ed.), Origin and Early Evolution of Angiosperms. Columbia University Press, New York.
- *Walker, J. W., et al. (1975), The bases of angiosperm phylogeny, Symposium of the American Institute of Biological Sciences, Ann. Missouri Bot. Gard. 62: 515-834.

*White, M. J. D. (1978), Modes of Speciation. Freeman, San Francisco.

*Zimmermann, W. (1959), *Die Phylogenie der Pflanzen*, 2nd edn. Fischer Verlag, Stuttgart.

Opposite. Spring flora on a granitic slope of the Darling Scarp east of Perth, Western Australia, with Eucalypt woodland on the skyline. Photograph — A. S. George

Overleaf. Open forest of *Eucalyptus nitens* (Deane & Maiden) Maiden, near Bendoc, East Gippsland, Victoria. Photograph — R. D. Johnston

KEY TO FAMILIES OF FLOWERING PLANTS

H. T. Clifford

1	Embryo with 1 cotyledon; leaf venation usually convergent; leaf base usually sheathing; perianth	
	3- (occasionally 2- or 4-) merous	
	(monocotyledons) Embryo with 2 (rarely 1, 3 or more) cotyledons; leaf	838
	venation usually reticulate; leaf base rarely sheathing; perianth 4-5- (rarely 3- or more than 5-) merous (dicotyledons)	2
	Dicotyledons	
2	Flowers with at least one perianth whorl Flowers lacking perianth	3 820
3	Either one or both perianth whorls fused into a cap	4
	Perianth segments not fused into a cap	10
4	Leaves invested with peltate scales	Himantandraceae
	Leaves glabrous or, if indumentum present, not of	
_	peltate scales	5
5	Leaves gland-dotted Leaves not gland-dotted	Myrtaceae
6	Leaf base sheathing	6
0	Leaf base not sheathing	Epacridaceae 7
7	Leaves exstipulate	/ Eupomatiaceae
ŕ	Leaves stipulate	Eupomatiaceae 8
8	Tendrils present	Vitaceae
	Tendrils absent	9
9	Gynophore present; leaves usually alternate	Capparaceae
	Gynophore absent; leaves opposite	Eucryphiaceae
10	Perianth segments more than 6 (counting sepals and petals if both present)	
	Perianth segments 6 or fewer (counting sepals and	11
	petals if both present but not barks, scales or	
	plumes on fruit)	572
11	Corolla segments (or perianth segments) free	12
10	Corolla segments (or perianth segments) united	386
12	All or most flowers unisexual Most flowers bisexual	13
13		44
13	Ovary superior Ovary inferior	14
	ovary micror	40

N

14	Floating aquatics; leaves whorled, much divided Land plants; leaves alternate, opposite, or absent	Ceratophyllaceae 15
15	Gynoecium apocarpous	16
	Gynoecium syncarpous or carpel 1	18
16	(1) Climbers; leaves opposite	Rutaceae
	(2) Climbers (or plants spreading over the ground);	
	leaves alternate	Menispermaceae
	(3) Non-climbers, not spreading	17
17	Leaves gland-dotted	Rutaceae
10	Leaves not gland-dotted	Simaroubaceae
18	Leaves compound	19
4.0	Leaves simple or absent	25
19	Petals 4	20
	Petals 5	22
20	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	21
21	Stamens 3–5 in male flowers	Simaroubaceae
22	Stamens usually 8 in male flowers	Anacardiaceae
22	Stamens 5 in male flowers Stamens more than 5 in male flowers	Anacardiaceae
12		23
23	Stamens usually 8; style 1; stigma entire or lobed	Sapindaceae
24	Stamens 10; styles or stigmas more than 1	24
24	Ovary entire; stigmas glabrous	Anacardiaceae
25	Ovary lobed; stigmas plumose	Simaroubaceae
25	Leaves opposite Leaves alternate, clustered, or absent	26
26		27
20	Flowers strictly unisexual; shrubs or trees Flowers polygamous; trees usually with yellow sap	Euphorbiaceae
27	Climbers with tendrils	Clusiaceae
<i>4</i> 1	Tendrils absent	Passifloraceae
28	Twiners or lianes	28
20	Shrubs, trees or herbs, sometimes scrambling	29 30
29	Stipules absent; disc absent; petals smaller than	30
	sepals, entire, sometimes absent	Menispermaceae
	Stipules present; disc present; petals as long as or	spermaceae
	longer than sepals, emarginate	Dichapetalaceae
30	Latex present	Euphorbiaceae
	Latex absent	31
31	(1) Styles 3, distinct, simple or branched	Euphorbiaceae
	(2) Style 1 with 2 or more stigmas	32
	(3) Style and stigma 1 or stigma sessile	35

32	Male flowers with staminodes Male flowers without staminodes	Tiliaceae 33
33	Ovary 1-locular	Flacourtiaceae
55	Ovary more than 1-locular	34
34	(1) Seeds endospermic; carpels dry, falling entire;	
0.	leaves not succulent though often thick	Malvaceae
	(2) Seeds endospermic; carpels dry, dehiscent; leaves	
	not succulent	Euphorbiaceae
	(3) Seeds non-endospermic; fruit a succulent drupe; leaves succulent	Zygophyllaceae
35	Calyx segments free	Euphorbiaceae
35	Calyx segments united or calyx minute	36
36	Ovary 1-locular	37
50	Ovary more than 1-locular	39
37	Ovary stipitate	Capparaceae
	Ovary sessile	38
38	Leaves stipulate	Malvaceae
	Leaves exstipulate	Icacinaceae
39	Seeds endospermic; leaves not succulent	Aquifoliaceae
	Seeds non-endospermic; leaves succulent	Zygophyllaceae
40	(from 13)	
	Climber with tendrils	Cucurbitaceae
	Non-climbers	41
41	Herbs or undershrubs	42
	Trees	43
42	Petals 5	Apiaceae
	Petals 0, 2 or 4	Haloragaceae
43	Style 1	Hernandiaceae
	Styles two or more	Datiscaceae
44	(from 12)	
	Gynoecium apocarpous	45
	Gynoecium syncarpous or carpel 1	79
45	Flowers perigynous	46
	Flowers hypogynous	49
46	Leaves alternate or radical	47
	Leaves opposite	48
47	Sepals 5; stamens indefinite	Rosaceae
	Sepals 4; stamens 4 or 8	Crassulaceae
48	Perianth segments indefinite; carpels indefinite	Idiospermaceae
40	Sepals 4-5; petals 4-5; carpels 4	Crassulaceae
49	Stamens indefinite	50 58
	Stamens 10 or fewer	29

115

de la

50	Leaves peltate	51
	Leaves not peltate	52
51	Carpels embedded in receptacle	Nelumbonaceae
	Carpels not embedded in receptacle	Cabombaceae
52	Style 1 with 3-5 stigmas	Ochnaceae
	Styles (or stigmas when styles much reduced) as	
	many as carpels	53
53	Climbers	54
	Non-climbers	55
54	(1) Perianth segments 10-14	Austrobaileyaceae
	(2) Sepals 3; petals 6	Annonaceae
	(3) Sepals 4-5; petals 3-5	Dilleniaceae
55	(1) Perianth segments all petaloid; herbs	Ranunculaceae
	(2) Perianth segments all petaloid; shrubs or trees	Magnoliaceae
	(3) One or more whorls of perianth sepaloid	56
56	(1) Perianth spiral; leaves with peltate indumentum	Himantandraceae
	(2) Perianth $3 + 3 + 3$; indumentum, if present, not peltate	A
	(3) Sepals 5; petals 5; indumentum, if present, not	Annonaceae
	peltate	57
57	(1) Herbs; leaves usually much incised	Ranunculaceae
	(2) Trees, shrubs, or undershrubs; leaves entire to	
	distinctly incised	Dilleniaceae
	(3) Trees; leaves bipinnate	Mimosaceae
58	(from 49)	
	Style 1, stigmas 1 or more	59
	Styles (or stigmas when styles much reduced) free	
	from one another, as many as there are carpels	64
59	Leaves peltate	Tropaeolaceae
	Leaves not peltate	60
60	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	61
61	Leaves alternate	62
	Leaves opposite	63
62	Stigma simple	Ochnaceae
	Stigmas 3 or more	Simaroubaceae
63	Flowers 4-merous	Rutaceae
	Flowers 5-merous	Malpighiaceae
64	Leaves compound	65
	Leaves simple or absent	66
65	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	Simaroubaceae

66	Leaves opposite	67
	Leaves alternate, radical, clustered, or absent	69
67	Sepals 4; petals 4 Sepals 5; petals 5	Crassulaceae 68
68	Petals sessile or with short claws; leaves fleshy	Crassulaceae
	Petals with long claws; leaves not fleshy	Malpighiaceae
69	(1) Flowers 3-merous (usually sepals 6, petals 6,	
	carpels 6 or 3)	Menispermaceae
	(2) Flowers 4-merous	70 71
	(3) Flowers 5-merous	
70	Leaves fleshy; seeds lacking endosperm	Crassulaceae
	Leaves not fleshy; seeds endospermic	Saxifragaceae
71	Stamens united into one or more groups	72
	Stamens free	73
72	Carpels 2	Dilleniaceae
	Carpels 3	Malpighiaceae
73	Leaves not expanded at time of flowering	Anacardiaceae
	Leaves present at time of flowering	74
74	Leaves entire	75
	Leaves lobed or much dissected	Ranunculaceae
75	Carpels 5 or fewer	76
	Carpels more than 5	Ranunculaceae
76	Leaves fleshy	Crassulaceae
	Leaves not fleshy	77
77	Carpels usually 2-3	Dilleniaceae
	Carpels 5	78
78	Leaves stipulate; petals white	Simaroubaceae
	Leaves exstipulate; petals yellow	Surianaceae
79	(1) Petals 2	Polygalaceae
	(2) Petals 3	80
	(3) Petals 4	81
	(4) Petals 5	147
	(5) Petals more than 5, or whole perianth petaloid or sepaloid, sometimes in 1 whorl	347
80	Leaves simple	Polygalaceae
00	Leaves compound	Caesalpiniaceae
81	(1) Sepals 4, rarely 2–3	82
01	(1) Separs 4, failery $2-5$ (2) Separs 5	141
	(3) Sepals 6	145
82	Ovary superior	83
02	Ovary inferior	126

83	Leaves radical or alternate	84
	Leaves opposite or verticillate	104
84	Style 1, with 1 or more stigmas, or stigma sessile	85
	Styles more than 1, quite free from one another	Droseraceae
85	(1) Stamens 2	87
	(2) Stamens 3	Caesalpiniaceae
	(3) Stamens 4, alternating with petals	88
	(4) Stamens 4, opposite petals	86
	(5) Stamens 6	92
	(6) Stamens 7 or 8	93
	(7) Stamens 10 or more	100
86	Placentation basal or free-central	Myrsinaceae
	Placentation parietal	Brassicaceae
87	Leaves simple, entire or much divided	Brassicaceae
	Leaves compound	Caesalpiniaceae
88	Climbers with leaf-opposed tendrils	Vitaceae
	Plants without tendrils	89
89	Leaves simple or absent	90
	Leaves compound	Capparaceae
90	Herbs	Brassicaceae
	Shrubs or trees	91
91	Leaves with short, pointed lobes	Aquifoliaceae
	Leaves quite entire	Celastraceae
92	(from 85)	
	Stamens tetradynamous; leaves simple	Brassicaceae
	Stamens not tetradynamous; leaves usually compound	Capparaceae
93	Stamens free	94
	Stamens united	Meliaceae
94	Leaves simple or absent	95
	Leaves compound	97
95	Leaves entire or absent	96
	Leaves dissected	Sapindaceae
96	Petals glabrous	Tremandraceae
	Petals densely hairy inside	Olacaceae
97	Leaves 3-foliolate or palmate	98
	Leaves pinnate	99
98	(1) Ovules 1 in each loculus	Simaroubaceae
	(2) Ovules 2 in each loculus	Burseraceae
	(3) Ovules indefinite	Capparaceae
99	Ovules 1 in each loculus	Sapindaceae
	Ovules 2 in each loculus	Burseraceae

100	(from 85)	
	Flowers in heads or spikes; heads solitary or in racemes	Mimosaceae
	Flowers not in heads or spikes	101
101	Ovary borne on long stalk (gynophore)	Capparaceae
	Ovary sessile	102
102	Ovary 1–locular	Flacourtiaceae
	Ovary more than 1-locular	103
103	Anthers opening by longitudinal slits	Zygophyllaceae
	Anthers opening by terminal pores	Elaeocarpaceae
104	(from 83)	
	Leaves large, palmately lobed	Aceraceae
	Leaves otherwise	105
105	(1) Stamens 2	106
	(2) Stamens 4	107
	(3) Stamens 5-8	112
	(4) Stamens 10 or indefinite	123
106	Flowers in clusters, racemes, or panicles	Oleaceae
	Flowers solitary in leaf axils	Lythraceae
107	Leaves gland-dotted	108
	Leaves not gland-dotted	109
108	Style and stigma 1	Rutaceae
	Styles or stigmas 4	Cunoniaceae
109	Stamens hypogynous	111
	Stamens perigynous	110
110	Anthers opening by pores; anther-connective with	
	sickle-shaped appendages	Melastomataceae
	Anthers opening longitudinally; connective without	X (1
	appendages	Lythraceae
111	Style 1	Celastraceae
	Styles 4	Elatinaceae
112	(from 105)	al a
	Leaves simple or absent	113
	Leaves compound	121
113	Leaves entire, or with more than 2 lobes	114
	Leaves 2-lobed	Zygophyllaceae
114	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	115
115	Ovary half-inferior; margins of petals fringed with long hairs	Rhizophoraceae
	Ovary wholly superior; petals not fringed	116

116	Style and stigma 1	117
	Styles or stigmas more than 1	120
117	Flowers hypogynous	118
	Flowers perigynous	119
118	Leaves in whorls of 3-4	Tremandraceae
	Leaves in pairs, opposite	Rutaceae
119	Leaves with 2 or more conspicuous longitudinal veins besides midrib	Melastomataceae
	Midrib only conspicuous longitudinal vein	Lythraceae
120	Leaves with revolute margins; style 1, with 3 branches	Frankeniaceae
	Leaf margins not revolute; styles 2 or 4	Cunoniaceae
121	(from 112)	
	Stamens free	122
	Stamens united	Meliaceae
122	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	Zygophyllaceae
123	(from 105)	
	Flowers hypogynous, polygamous	124
	Flowers perigynous	125
124	Stipules absent	Clusiaceae
	Stipules present	Eucryphiaceae
125	Style and stigma 1	Lythraceae
	Styles more than 1	Cunoniaceae
126	(from 82)	
	Leaves gland-dotted	Myrtaceae
	Leaves not gland-dotted	127
127	Stamens indefinite	128
	Stamens 10 or fewer	129
128	Style and stigma 1	Lecythidaceae
	Style with 4 stigmas	Grossulariaceae
129	Leaves alternate or radical	130
	Leaves opposite or verticillate	135
130	Style 1, with 1 or more stigmas	131
	Styles several, free	134
131	Aquatic herbs with alternate, rosetted floating leaves	
	and opposite submerged leaves	Trapaceae
120	Trees, shrubs or herbs	132
132	(1) Stigma 1 (2) Stigmas 2	133
	(2) Stigmas 2(3) Stigmas 4	Alangiaceae
	(J) Sugnias T	Onagraceae

133	Ovary 1-locular	Combretaceae
	Ovary 4–locular	Onagraceae
134	Herbs; flowers very small Shrubs or trees; flowers above 6 mm in diameter	Haloragaceae Grossulariaceae
135	Style 1, with 1 or more stigmas	136
100	Styles several, free	Haloragaceae
136	Petals fringed with long hairs	Rhizophoraceae
150	Petals not fringed	137
137	Stamens 4	138
157	Stamens more than 4, usually 8	139
138	Aquatic herbs	Trapaceae
130	Shrubs	Grossulariaceae
120		010554141140040
139	Leaves with 2 or more longitudinal veins besides midrib	Melastomataceae
	Midrib the only longitudinal vein	140
140	Ovary 1–locular	Melastomataceae
140	Ovary 4–locular	Onagraceae
141	(from 81)	0
141	Ovary 1–2–locular	142
	Ovary 3–5–locular	144
142	Ovary adnate to one side of calyx-tube	Chrysobalanaceae
142	Ovary free	143
143	(1) Fruit a legume	Caesalpiniaceae
145	(2) Fruit globose, indehiscent	Xanthophyllaceae
	(3) Fruit a capsule	Zygophyllaceae
144	(1) Ovary usually 3-locular	Sapindaceae
1.4.4	(1) Ovary usually 5-locular (2) Ovary 4-locular	Elaeocarpaceae
	(3) Ovary 5-locular	Meliaceae
145	(from 81)	
145	Ovary open at top, with sessile stigmas	Resedaceae
	Ovary not open at top	146
146	Herbs	Lythraceae
140	Small shrubs	Saxifragaceae
147	(from 79)	
141	(1) Sepals 2	148
	(2) Sepals 3	152
	(3) Sepals 4	155
	(4) Sepals 5 or more, or calyx cup-like with indistinct	
	lobes, or entire in bud	156
148	Flowers actinomorphic	149
	Flowers zygomorphic	Caesalpiniaceae

149	Twiners	Basellaceae
	Non-twiners	150
150	Herbs	151
	Shrubs or trees	Lecythidaceae
151	Stamens 5 or fewer; perianth often scarious	Amaranthaceae
	Stamens usually more than 5; perianth not scarious;	
	leaves (and often stems) fleshy	Portulacaceae
152	Leaves simple or absent	153
	Leaves compound	Caesalpiniaceae
153	Leaf venation palmate	Caesalpiniaceae
	Leaf venation not palmate	154
154	(1) Stamens 5	Hamamelidaceae
	(2) Stamens 8	Polygalaceae
	(3) Stamens indefinite	Lecythidaceae
155	Stamens 8-10, free or united	Caesalpiniaceae
	Stamens indefinite, united	Lecythidaceae
156	Ovary superior	157
	Ovary inferior or semi-inferior	316
157	Style 1 with simple stigma, or stigma sessile	158
	Styles or stigmas more than 1	251
158	Leaves opposite or verticillate	159
	Leaves alternate, radical, or absent	178
159	Leaves gland-dotted	160
	Leaves not gland-dotted	162
160	Leaves simple	161
	Leaves compound	Rutaceae
161	Flowers hypogynous	Rutaceae
	Flowers perigynous or epigynous	Myrtaceae
162	Leaves simple	163
	Leaves compound	175
163	Leaves with 2 or more conspicuous longitudinal veins	
	besides midrib	Melastomataceae
	Midrib only conspicuous longitudinal vein	164
164	Stamens 10 or fewer	165
	Stamens indefinite	173
165	Flowers actinomorphic	166
	Flowers zygomorphic	171
166	Flowers perigynous	Lythraceae
	Flowers not perigynous	167
167	(1) Stamens 3	Hippocrateaceae
	(2) Stamens 5	Celastraceae
	(3) Stamens usually 10	168

168	Ovary quite superior	169
	Ovary half-inferior	Rhizophoraceae
169	Petals with narrow, pointed lobes Petals entire	Rhizophoraceae 170
170	Petals clawed; stamens unequal, usually united at base Petals sessile, shorter than sepals	Malpighiaceae Rhizophoraceae
171	Stamens 5, united; anthers connate round ovary Stamens 10	Violaceae 172
172	Ovary 1-locular; ovules 2 or more Ovary 2-3-locular; 1 ovule in each loculus	Fabaceae Malpighiaceae
173	Flowers hypogynous Flowers perigynous	174 Lythraceae
174	Ovary 1-locular Ovary 2- or more-locular	Mimosaceae Elaeocarpaceae
175	(from 162) Stamens 5 Stamens more than 5	Meliaceae 176
176	Stamens free Stamens united	177 Fabaceae
177	Ovary 1–locular Ovary 2– or more–locular	Fabaceae Zygophyllaceae
178	(from 158) (1) Stamen 1 (2) Stamens 2-4 (3) Stamens 5 (4) Stamens 6-9 (rarely 5-10) (5) Stamens 10 (6) Stamens indefinite	179 180 183 209 215 235
179	Leaves deeply notched and palmately veined Leaves quite entire and pinnately veined	Caesalpiniaceae Anacardiaceae
180	Leaves simple Leaves pinnate or bipinnate	**181 182
181	Leaf venation well-marked and palmate Leaf venation inconspicuous, or leaves absent	Caesalpiniaceae Olacaceae
182	 Stipules present; calyx oblique, of 5 segments; ovary 4-5-locular; fruit a capsule Stipules absent; calyx not oblique, of 5 free sepals; ovary 1-locular; fruit a legume 	Melianthaceae Caesalpiniaceae
183	Leaves simple or absent Leaves compound	184 202

184	Leaves bifid; venation palmate Leaves not bifid	Caesalpiniaceae 185
185	(1) Herbs	185
105	(2) Shrubs, trees or woody climbers; flowers	180
	actinomorphic or nearly so	188
	(3) Small shrubs; flowers zygomorphic	Violaceae
186	(1) Twiners with milky sap	Cardiopteridaceae
	(2) Twiners; sap not milky	Pittosporaceae
	(3) Plants more or less erect, not twining	187
187	Flowers actinomorphic	Byblidaceae
	Flowers zygomorphic	Violaceae
188	Climbers	189
	Non-climbers, more or less erect	190
189	Twiners	Pittosporaceae
	Climbers with leaf-opposed tendrils	Vitaceae
190	Stamens opposite petals	191
	Stamens alternate with petals	192
191	Each stamen more or less enclosed by small	
	hood-shaped petal	Rhamnaceae
	Stamens not enclosed by petals	Sterculiaceae
192	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	193
193	Base of calyx covered by several imbricate sepaloid bracteoles	Epacridaceae
	Bracteoles absent or not covering base of calyx	194
194	Sepals free	195
	Sepals united	198
195	(1) Ovary 1–2–locular	196
	(2) Ovary 3-locular	Celastraceae
	(3) Ovary 5-locular	Grossulariaceae
196	Ovules 1 per loculus	Corynocarpaceae
	Ovules 2-several per loculus	197
197	Ovary 1-2-locular; ovules few to many per loculus	Pittosporaceae
	Ovary 1-locular; ovules 2	Icacinaceae
198	Ovules 1 per ovary	199
	Ovules 2 or more per ovary	200
199	Anthers opposite petals	Opiliaceae
	Anthers alternate with petals	Icacinaceae
200	Ovary 1-locular	Icacinaceae
	Ovary 2- or more-locular	201
201	Ovary subtended by nectar-secreting disc	Celastraceae
	Ovary not subtended by nectar-secreting disc	Grossulariaceae

.

202	(from 183)	
	Climbers with leaf-opposed tendrils	Vitaceae
	Non-climbers or, if climbing, tendrils not	
	leaf-opposed or tendrils absent	203
203	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	204
204	Stamens 5, staminodes 5	205
	Stamens 5, staminodes absent	206
205	 Trees; leaves pinnate; ovary with 3 parietal placentas; fruit a long 3-angled capsule Woody climbers; leaves imparipinnate; ovary with 	Moringaceae
	2 collateral ovules; fruit 1-seeded (3) Herbs; leaves 2-foliolate or pinnate; ovary with	Connaraceae
	axile placentas; fruit usually with 2 or more seeds	Zygophyllaceae
206	Stamens free	207
	Stamens united	208
207	Ovary 1-locular; leaves bipinnate	Mimosaceae
	Ovary 3-5 locular; leaves pinnate	Meliaceae
208	Leaves pinnate	Meliaceae
	Leaves bi- or tripinnate	Vitaceae
209	(from 178)	
	Stamens free	210
	Stamens 9, united	Fabaceae
210	Leaves simple	211
	Leaves compound	213
211	Style arising from base of ovary	Rosaceae
	Style terminal	212
212	Fruit a legume	Caesalpiniaceae
	Fruit globose	Xanthophyllaceae
213	Ovary 1-locular, usually with more than 2 ovules	Caesalpiniaceae
	Ovary 2- or more-locular, with 1 or 2 ovules per loculus	214 مد
214	Disc present; stamens inserted within disc	Sapindaceae
	Disc absent	Akaniaceae
215	(from 178)	
	Flowers zygomorphic	216
	Flowers actinomorphic or nearly so	217
216	Posterior petal enclosed by the remainder, or absent	Caesalpiniaceae
	Posterior petal enclosing the remainder in bud	Fabaceae
217	Stamens united	218
	Stamens free	222

218	Climbers	Connaraceae
	Non-climbers	219
219	(1) Leaves simple	220
	(2) Leaves pinnate	Meliaceae
	(3) Leaves bi- or tripinnate; ovary 5-locular	Meliaceae
	(4) Leaves bipinnate; ovary 1-locular	Mimosaceae
220	Staminal tube long and narrow, surrounding style	Meliaceae
	Staminal tube short, open	221
221	Ovary free; stipules persistent	Sterculiaceae
	Ovary adnate to one side of throat of calyx; stipules caducous	Chrysobalanaceae
222	Leaves simple or unifoliolate	223
ha ha ha	Leaves compound	223
222		
223	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	224
224	Style inserted near base of ovary, hairy	Simaroubaceae
	Style terminal	225
225	Ovary and back of petals covered with scales; flowers in heads or clusters at end of branchlets	Rutaceae
	Not as above	226
226	Flowers perigynous; ovary enclosed in hypanthium; stamens borne on hypanthium, sometimes near	
	base	Lythraceae
	Not as above; flowers hypogynous	227
227	(1) Ovary usually stipitate; ovules several; sepals	
	united	Caesalpiniaceae
	(2) Ovary sessile; ovule 1; sepals usually free	Anacardiaceae
	(3) Ovary sessile, 5-locular; ovules 1 per loculus;	
	sepals free	Ochnaceae
228	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	229
229	Herbs	Zygophyllaceae
	Shrubs or trees	230
230	(1) Leaves bipinnate	Mimosaceae
	(2) Leaves pinnate; leaflets 2; venation palmate	Caesalpiniaceae
	(3) Leaves pinnate; leaflets more than 2 or, if 2,	•
	venation pinnate	231
231	Ovary 1-locular	232
	Ovary 2- or more-locular	233
232	(1) Stamens unequal; anthers dehiscing by pores	Caesalpiniaceae
	(2) Stamens equal; ovule 1	Anacardiaceae
	(3) Stamens equal; ovules more than 1	Caesalniniaceae

8

233	Ovary 1- or 3-locular, with 1 ovule (rarely 2) per loculus	Sapindaceae
	Ovary 4– or 5–locular, with 2 ovules per loculus	234
234	Trees or large shrubs; fruit not angular	Burseraceae
	Small shrubs; fruit prominently angular	Zygophyllaceae
235	(from 178)	
	Leaves gland-dotted	236
	Leaves not gland-dotted	237
236	Flowers hypogynous	Rutaceae
	Flowers perigynous or epigynous	Myrtaceae
237	Leaves simple, reduced to phyllodes, or absent	238
	Leaves compound	249
238	(1) Stamens free or only slightly united at base	239
	(2) Stamens united into 5 or 10 groups	Tiliaceae
	(3) Stamens united into a single group	248
239	Flowers small, in globular heads or obloid or	3.41
	cylindrical spikes; stamens much exserted	Mimosaceae
	Flowers not as above; stamens usually not exserted	240
240	Flowers hypogynous	241 246
	Flowers perigynous	
241	(1) Shrubs; leaves fleshy, entire	Zygophyllaceae
	(2) Shrubs, trees or climbers; leaves not fleshy; leaf margins entire, pinnately toothed or lobed	242
	(3) Small trees; leaves palmately divided into 5 or 7 lobes	Bixaceae
242	Calyx caducous	Bixaceae
	Calyx not caducous	243
243	Anthers dehiscing by terminal pores or slits	Elaeocarpaceae
	Anthers dehiscing longitudinally	244
244	Ovary 2- or more-locular	Tiliaceae
	Ovary 1–locular	245
245	Petals yellow, large	Dilleniaceae
	Petals not yellow, small	Flacourtiaceae
246	Ovary adnate to one side of throat of calyx	Chrysobalanaceae
	Ovary free or completely adnate to calyx	247
247	Stamens inserted with petals at rim of hypanthium; ovules 1 or 2 in the ovary	Rosaceae
	Stamens inserted on hypanthium below rim	
	(sometimes almost at base); ovules usually	Luthuassa
	numerous	Lythraceae
248	Anthers 1-locular	Malvaceae Bombacaceae
	Anthers 2-locular	Dombacaceae

.

249	(from 237)	
	Leaves pinnate or bipinnate	250
	Leaves palmate	Bixaceae
250	Petals valvate	Mimosaceae
	Petals imbricate	Caesalpiniaceae
251	(from 157)	
	Leaves simple or absent	252
	Leaves compound	307
252	Leaves opposite or verticillate	253
	Leaves alternate, radical, or absent	274
253	Stamens 10 or fewer	254
	Stamens indefinite	272
254	Styles or stigmas 5	255
	Styles or stigmas less than 5	261
255	Leaves opposite	256
	Leaves verticillate	257
256	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	258
257	Floating aquatic plants without roots	Droseraceae
	Plants not aquatic	Caryophyllaceae
258	Styles 5, free	259
	Style 1, with 5 stigmas	260
259	Ovary 1–locular	Caryophyllaceae
	Ovary 2–5–locular	Elatinaceae
260	Ovary 1-locular	Caryophyllaceae
	Ovary 3- or more-locular	Geraniaceae
261	Leaves palmately lobed	Aceraceae
	Leaves otherwise	262
262	Styles free	263
	Styles united, stigmas 2 or more	267
26 3	Climbers or twiners	Malpighiaceae
	Non-climbers, non-twiners	264
264	Leaves gland-dotted	Clusiaceae
	Leaves not gland-dotted	265
265	Mostly herbs; stems usually swollen at nodes	Caryophyllaceae
	Shrubs or trees; nodes not swollen	266
266	Petals much more than 2 mm long, distinctly clawed	Malpighiaceae
	Petals scarcely 2 mm long, sessile or nearly so	Cunoniaceae
267	Herbs, non-climbers, non-twiners	Caryophyllaceae
	Shrubs, trees, climbers or twiners	268

268	(1) Stamens 3	Hippocrateaceae
	(2) Stamens 5 or 6	269
	(3) Stamens 10	Malpighiaceae
269	Stamens opposite to and enclosed in petals Stamens opposite sepals	Rhamnaceae 270
270	Petals clawed, the claws cohering in an angular tube Petals sessile or if clawed, the claws free	Frankeniaceae 271
271	Petals sessile; stamens 5	Celastraceae
	Petals clawed; stamens usually more than 5	Malpighiaceae
272	(from 253)	
	Leaves in whorls of six	Cunoniaceae
	Leaves opposite	273
273	Juice resinous; stipules absent	Clusiaceae
	Juice not resinous; stipules present	Cistaceae
274	(from 252)	
	Stamens united, often forming a conspicuous staminal tube	275
	Stamens free or arising from margin of a small disc	283
275	Styles 2 or more, free	276
	Style 1, with 2 or more stigmas	280
276	Stamens 5, 10, or indefinite	277
	Stamens 8	Aizoaceae
277	Climbers	Linaceae
	Non-climbers	278
278	Leaves usually dentate or lobed, with stellate hairs	Sterculiaceae
	Leaves entire, glabrous	279
279	Stamens 10	Erythroxylaceae
	Stamens 4–5	Linaceae
280	Petals attached to base of staminal tube; staminal tube usually long; stamens usually indefinite (rarely 10 or fewer); stigmas usually 5	
	(occasionally fewer or up to 10); herbs, shrubs, or	ىم Maluanaa
	trees	Malvaceae
	Not as above	281
281	(1) Style branches (or stigmas) 2 or 3; stamens indefinite	Theaceae
	(2) Style branches (or stigmas) 2 or 3; stamens 10 or fewer	Linaceae
	(3) Style branches (or stigmas) 5	282

282	 Stamens 5 usually with alternating staminodes; herbs or shrubs; leaves often with stellate hairs 	Sterculiaceae
	(2) Stamens 5; staminodes 5; glabrous herbs; leaves	
	entire	Linaceae
	(3) Stamens 10, usually 3 or 4 without anthers(4) Stamens 10 or indefinite; staminodes sometimes	Geraniaceae
202	present; leaves often with stellate hairs	Sterculiaceae
283	(from 274) (1) Stamong 1, 2	204
	(1) Stamens 1–3(2) Stamens 5	284
	(2) Stamens 5 (3) Stamens 6–10	285 299
	(4) Stamens indefinite; flowers hypogynous	305
	(5) Stamens indefinite; flowers perigynous	Rosaceae
284	Flowers hypogynous	Tiliaceae
	Flowers epigynous	Donatiaceae
285	Climbers with axillary tendrils	286
	Non-climbers, or climbers without axillary tendrils	287
286	Corona present within corolla	Passifloraceae
	No corona present	Plumbaginaceae
287	Styles 2 or more, free	288
	Style 1, with 2 or more stigmas	292
288	Stamens opposite petals	289
	Stamens alternating with petals	290
289	Styles 5	Plumbaginaceae
	Styles less than 5	Rhamnaceae
290	(1) Leaves with conspicuous glandular hairs	Droseraceae
	(2) Leaves small, appressed to stem	Tamaricaceae
	(3) Not as in (1) or (2) above	291
291	Staminodes present; fruit a capsule	Linaceae
	Staminodes absent; fruit a drupe	Dichapetalaceae
292	Leaves small, appressed to stem	Tamaricaceae
	Leaves not appressed to stem	293
293	Stamens opposite petals	Rhamnaceae
	Stamens alternating with petals	294
294	(1) Herbs; stamens 5; staminodes absent	295
	(2) Herbs; stamens 5; staminodes 5	Geraniaceae
	(3) Shrubs or trees	296
295	Fruit a schizocarp	Stackhousiaceae
	Fruit a capsule	Saxifragaceae
296	Flowers hypogynous	297
	Flowers perigynous or epigynous	Saxifragaceae

297	Ovary 1-locular	Icacinaceae
	Ovary 2- or more-locular	298
298	Hypogynous disc present Hypogynous disc absent	Dichapetalaceae Grossulariaceae
299	(from 283)	
	Leaves peltate	Tropaeolaceae
	Leaves not peltate	300
300	Stamens 8, 6 of them attached to base of corolla	Polygalaceae
	Stamens all hypogynous or perigynous	301
301	Stamens 10, all with anthers	302
	Stamens 7-10; if 10, some without anthers	Geraniaceae
302	Style 1, with 2 or more stigmas	303
	Styles several, free	304
303	Flowers hypogynous; sepals free	Geraniaceae
	Flowers perigynous or epigynous; sepals united	Saxifragaceae
304	Herbs	Saxifragaceae
	Shrubs or trees	Anacardiaceae
305	(from 283)	
	Sepals valvate or united	306
	Sepals imbricate	Actinidiaceae
306	Petals deeply incised	Elaeocarpaceae
	Petals entire	Tiliaceae
307	(from 251)	
	Leaves alternate or radical	308
	Leaves opposite	314
308	Styles or sessile stigmas, free	309
	Style 1, with 2 or more stigmas	312
309	Herbs	310
	Shrubs or trees	311
310	Stamens 5	Droseraceae
	Stamens 10	Oxalidaceae
311	Styles 2; leaflets 2, occasionally one	Sapindaceae
	Styles more than 2, or if 2 the leaflets more than 2	Anacardiaceae
312	(1) Stamens 3; staminodes 2-5; style petaloid	Caesalpiniaceae
	(2) Stamens 5; staminodes absent	Anacardiaceae
	(3) Stamens 5, alternating with 5 usually scale-like	
	staminodes	Geraniaceae
	(4) Stamens more than 5	313
313	(1) Stamens 6-9; stigmas not plumose	Sapindaceae
	(2) Stamens 10; stigmas plumose	Simaroubaceae
	(3) Stamens indefinite	Bombacaceae

214	Leaves with 2.1 of the	a .
314	Leaves with 3 leaflets	Cunoniaceae
	Leaves with more than 3 leaflets	315
315	 (1) Herbs; style simple with 1–5 sessile stigmas (2) Herbs or erroll should with 5 should with 5 should be at all with 5 should be a	Zygophyllaceae
	(2) Herbs or small shrubs; style with 5 short stigmatic branches	Geraniaceae
	(3) Trees	Cunoniaceae
316	(from 156)	cunomaccae
010	Stamens 5	317
	Stamens more than 5	327
317	Stamens opposite petals	318
	Stamens alternating with petals	320
318	Parasitic shrubs (mistletoes)	Loranthaceae
010	Plants not parasitic	Lorantinaceae 319
319	(1) Leaves gland-dotted	Myrtaceae
017	(2) Leaves not gland-dotted; stamens attached to	Myrtaceae
	petals at their bases	Alangiaceae
	(3) Leaves not gland-dotted; stamens free from petals	Rhamnaceae
320	Leaves gland-dotted	Myrtaceae
	Leaves not gland-dotted	321
321	Herbs, non-climbing, non-twining	322
	Shrubs or trees, sometimes climbing or twining	323
322	Flowers in umbels or heads; styles or stigmas 2	Apiaceae
	Flowers not in umbels or heads; style and stigma 1	Onagraceae
323	Flowers in umbels	326
	Flowers not in umbels	324
324	Leaves compound	Araliaceae
	Leaves simple	325
325	Flowers in elongated spikes; indumentum stellate	Hamamelidaceae
	Flowers racemose or subsolitary; hairs simple or	
	glandular	Grossulariaceae
326	Fruit a schizocarp, separating into two flattened	
	mericarps when mature	Apiaceae
	Fruit a berry or drupe	Araliaceae
327	(from 316)	
	Leaves gland-dotted	328
	Leaves not gland-dotted	330
328	(1) Stamens indefinite	Myrtaceae
	(2) Stamens 10, alternating with staminodes	Myrtaceae
	(3) Stamens 10 or fewer; staminodes absent	329
329	Ovary 1-locular	Combretaceae
	Ovary 2- or more-locular	Mvrtaceae

.

330	Leaves alternate, radical, or absent	331 338
	Leaves opposite	
331	Leaves simple	333 332
	Leaves compound	Flacourtiaceae
332	Stamens 2 or 3 opposite each petal	Rosaceae
	Stamens indefinite, not regularly opposite petals	335
333	Style and stigma 1	335
	Styles or stigmas more than 1	
334	(1) Stamens 6, attached to petals	Alangiaceae Anacardiaceae
	(2) Stamens 10(3) Stamens indefinite	Rosaceae
005		336
335	Stamens 10 or fewer Stamens indefinite	Rosaceae
336	Herbs	Onagraceae 337
	Shrubs (sometimes climbing) or trees	Combretaceae
337	Ovary 1-locular	Grossulariaceae
	Ovary 2– or more–locular	339
338	Leaves simple or absent	346
	Leaves compound	Melastomataceae
339	Leaves with several conspicuous longitudinal veins	Melastomataceae 340
	Midrib the only conspicuous longitudinal vein	
340	Stamens usually 10, rarely up to 13	341 Punicaceae
	Stamens indefinite	
341	Style 1, stigmas 1 or 2	342
	Styles 3	345
342	Leaves unequal, one of each pair much larger than other; anthers with conspicuous appendages	Melastomataceae
	Leaves of each pair equal; anthers without	
	appendages	343
343	Ovary 1-locular	Combretaceae
	Ovary 2- or more-locular	344
344	Trees of sea-shores or salt creeks	Rhizophoraceae
	Plants not growing in salt water	Saxifragaceae
345	Petals sessile or with very short claws	Saxifragaceae
	Petals with slender claws	Malpighiaceae
346	Leaves petiolate	Cunoniaceae
	Leaves sessile	Saxifragaceae
347	(from 79)	
	Flowers with one or more long spurs	Ranunculaceae
	Flowers without a spur	348

348	 Sepals 2; style short or absent; stigmas usually confluent 	Papaveraceae
	(2) Sepals 2; styles several, free, or style 1 with	
	several free stigmas; plants more or less fleshy	Portulacaceae
	(3) Sepals more than 2, or whole perianth petaloid or sepaloid	349
349	Ovary superior	350
	Ovary inferior	370
350	Aquatic herbs with floating or submerged leaves	Nymphaeaceae
	Herbs (not aquatic), shrubs, or trees	351
351	Leaves alternate	352
	Leaves opposite or verticillate	366
352	Climbers	353
	Non-climbers	355
353	Tendril climbers	Passifloraceae
	Not tendril climbers	354
354	Branches spiny	Cactaceae
	Branches not spiny	Menispermaceae
355	One perfect stamen (much longer than the others) and usually 4 or more imperfect stamens	Anacardiaceae
	Perfect stamens 5 or more	356
356	Leaves simple or absent	357
	Leaves compound	365
357	Flowers hypogynous	359
	Flowers perigynous	358
358	Stamens hypogynous or inserted low in hypanthium	Lythraceae
	Stamens inserted on rim of hypanthium	Rosaceae
359	Herbs	360
	Shrubs or trees	361
360	Ovary open at top, with sessile stigmas	Resedaceae
	Ovary closed; style present	Amaranthaceae
361	Stamens 6–9	362
	Stamens 10 or indefinite	363
362	Plants spiny	Berberidaceae
	Plants without spines	Flacourtiaceae
363	Perianth segments $3 + 3 + 3$; styles indefinite	Magnoliaceae
	Sepals 5 or more; styles or stigmas 5 or fewer	364
364	Bracteoles present, merging into sepals	Theaceae
267	Bracteoles absent or small	Flacourtiaceae
365	Stamens 6	Berberidaceae
	Stamens 10	Mimosaceae

366	(from 351)	
	Leaves simple	367
	Leaves compound, with 3 leaflets (each pair looking like a whorl of 6 leaves)	Cunoniaceae
367	Ovary 3–6–locular	368
	Ovary 10–15–locular	Sonneratiaceae
368	Leaves with 5-7 conspicuous longitudinal veins	Melastomataceae
	Midrib the only conspicuous longitudinal vein	369
369	Stamens inserted on the hypanthium; anthers opening longitudinally	Lythraceae
	Stamens at base of hypanthium; anthers opening by terminal pores	Melastomataceae
370	(from 349)	
	Aquatic herbs	Nymphaeaceae
	Herbs (not aquatic), shrubs, or trees	371
371	(1) Leaves alternate or clustered	372
	(2) Leaves opposite	380
	(3) Leaves absent	Cactaceae
372	Branches spiny	373 374
	Branches without spines	
373	Plants fleshy, leafless	Cactaceae Punicaceae
	Plants woody, with leaves	
374	Plants parasitic (mistletoes)	Loranthaceae 375
	Plants not parasitic	
375	Leaves fleshy	Aizoaceae 376
	Leaves not fleshy	370
376	Leaves simple	Araliaceae
	Leaves palmate	378
377	Stamens (+ staminodes if present) indefinite	378
	Stamens less than 10	Punicaceae
378	Style 1, stigma 1 Stigmas indefinite, sessile on flat surface of ovary	Eupomatiaceae
		Alangiaceae
379	(1) Style 1, stigmas 2(2) Styles or stigmas 3-5	Flacourtiaceae
	(3) Stigma 1, sessile	Combretaceae
200	(from 371)	
380	Leaves fleshy; stigmas 5	Aizoaceae
	Leaves not fleshy; stigmas 1 or 2	381
381	(1) Petals absent; leaves gland-dotted	Myrtaceae
501	(2) Petals absent; leaves not gland-dotted	Sonneratiaceae
	(3) Petals present	382

382	Leaves with 5-7 conspicuous longitudinal veins Midrib the only conspicuous longitudinal vein	Melastomataceae 383
383	Sepals and petals each indefinite Sepals and petals each less than 10	Rhizophoraceae 384
384	Stamens less than 20 Stamens 20 or more	385 Punicaceae
385	Ovary 1-locular, with about 10 ovules Ovary 2-5-locular, with 1-2 ovules per loculus	Combretaceae Rhizophoraceae
386	(from 11) Flowers unisexual Flowers mostly bisexual	387 400
387	Leaves opposite Leaves alternate	388 391
388	Ovary superior Ovary inferior	389 Rubiaceae
389	Gynoecium apocarpous Gynoecium syncarpous or carpel 1	Monimiaceae 390
390	Fruit a berry Fruit 1-4 nutlets	Theaceae Lamiaceae
391	Perianth segments in 2 whorls Perianth segments in 1 whorl	394 392
392	Ovary inferior Ovary superior	Araliaceae 393
393	Stamens 6 or more in regular series around a disc-like axis; perianth shallow, cup-shaped, entire to slightly lobed	Gyrostemonaceae
	Stamens 1-many, not arranged as above; sepals evidently lobed	Euphorbiaceae
394	Sepals 4; petals 4 Sepals and petals each 5 or more	395 396
395	Climbers Non-climbers	Menispermaceae Ebenaceae
396	Ovary superior Ovary inferior	397 399
397	Stamens 5 in male flowers Stamens usually 10 in male flowers	398 Ebenaceae
398	Fruit a capsule Fruit a nut or drupe	Solanaceae Olacaceae
399	Placentation parietal Placentation axile	Cucurbitaceae Campanulaceae

a

400	(from 386)	
	Ovary superior	401
	Ovary inferior or half-inferior	544
401	(1) Stamens 2	402
	(2) Stamens 3	Olacaceae
	(3) Stamens 4	418
	(4) Stamens 5	463
	(5) Stamens more than 5	529
402	Ovary entire or slightly lobed	403
	Ovary divided into (usually 4) free or nearly free	. .
	segments	Lamiaceae
403	Flowers actinomorphic	404
	Flowers zygomorphic	409
404	Leaves simple or absent	405
	Leaves compound	Oleaceae
405	(1) Corolla-lobes 4	Oleaceae
	(2) Corolla-lobes 5	406
	(3) Corolla-lobes more than 5	Oleaceae
406	(1) Herbs	Scrophulariaceae
	(2) Shrubs or undershrubs	407
	(3) Climbers	Oleaceae
407	Flowers in long terminal spikes	Verbenaceae
	Flowers not in spikes	408
408	Style minutely notched at top	Oleaceae
	Style deeply divided into 2 branches	Verbenaceae
409	Bracteoles large, more or less covering calyx	Acanthaceae
	Bracteoles absent or small	410
410	Calyx divided into 2 lobes or segments	411
	Calyx divided into more than 2 lobes or segments	412
411	Leaves opposite	Verbenaceae
	Leaves, if present, alternate or radical	Lentibulariaceae
412	Leaves radical or alternate	413
	Leaves opposite	414
413	Ovary 1-locular; placentation parietal	Gesneriaceae
	Ovary 2-locular; placentation axile	Solanaceae
414	Leaves with viscid hairs	Pedaliaceae
	Leaves glabrous or hairs, if present, not viscid	415
415	Ovary 1–locular	Gesneriaceae
	Ovary 2- or more-locular	416
416	Seeds endospermic	Scrophulariaceae
	Seeds not endospermic	417

417	Fruit a capsule	Acanthaceae
	Fruit a drupe or divided into nutlets	Verbenaceae
418	(from 401)	
	Ovary apocarpous	Monimiaceae
	Ovary syncarpous or carpel 1	419
419	Flowers actinomorphic or nearly so	420
	Flowers zygomorphic	445
420	(1) Leaves alternate, bipinnate	Mimosaceae
	(2) Leaves alternate or absent in mature plant, not bipinnate	422
	(3) Leaves opposite or verticillate	432
	(4) Leaves radical	421
421	Sepals 4, free; petals 4, united	Plantaginaceae
1	Sepais 5, free; petais 5, united	Acanthaceae
422	(1) Corolla-lobes 3	Polygalaceae
422	(2) Corolla-lobes 4	1 oryganaceae 423
	(3) Corolla-lobes 5	423
423	Stamens alternating with corolla-lobes	424
423	Stamens opposite corolla-lobes	424
424		425
424	Twining plants Prostrate annuals	425 Boraginaceae
405		_
425	Leaves absent	Cuscutaceae
100	Leaves present	Cardiopteridaceae
426	Ovary 1-locular with several ovules	Myrsinaceae
	Ovary 2-locular with 1 ovule per loculus	Sapotaceae
427	Leaves absent	Cuscutaceae
	Leaves present	428
428	Leaves with viscid hairs	429
	Leaves glabrous or hairs, if present, not viscid	430
429	Seeds endospermic	Solanaceae
	Seeds non-endospermic	Pedaliaceae
430	Anthers connivent around the style	Solanaceae
	Anthers not connivent	431
431	Fruit a drupe	Myoporaceae
	Fruit a capsule or berry	Solanaceae
432	(from 420)	
	Ovary divided into (usually 4) separate segments	433
	Ovary entire or lobed	434
433	Style terminal	Verbenaceae
	Style gynobasic, rarely terminal	Lamiaceae
434	Sepals 4	435
	Sepals 5 or more, or calyx 2-lipped or truncate	440

435	(1) Ovary 1-locular, with 2 parietal placentas	Gentianaceae
	(2) Ovary 2–locular	436
	(3) Ovary 4-locular	Verbenaceae
436	Herbs	437
	Shrubs or trees	Loganiaceae
437	Leaves in whorls, usually of 3	Scrophulariaceae
	Leaves opposite	438
438	Ovary quite superior	439
	Ovary half-inferior	Rubiaceae
439	Capsule circumscissile	Plantaginaceae
	Capsule septicidal	Loganiaceae
440	Corolla 4-lobed	Verbenaceae
	Corolla 5-lobed	441
441	Leaves simple or absent	442
	Leaves compound	Bignoniaceae
442	Bracteoles large, more or less enclosing calyx	Acanthaceae
	Bracteoles absent or not enclosing calyx	443
443	Placentas axile	444
	Placentas parietal	Gesneriaceae
444	(1) Ovary 2-locular, with several ovules; herbs or	
	small shrubs	Scrophulariaceae
	(2) Ovary 2-locular, with numerous ovules; trees	Bignoniaceae
	(3) Ovary 4-locular, with 1 ovule per loculus	Verbenaceae
445	(from 419)	
	(1) Leaves all simple or reduced to scales	448
	(2) Leaves all compound	460
	(3) Leaves variable	446
446	Leaves opposite, the upper ones sometimes becoming	
	alternate	447
	Leaves mostly in whorls of 3	Bignoniaceae
447	Upper leaves simple, lower leaves compound; ovary 2- or 4-locular with 1-many ovules per loculus	Pedaliaceae
	Leaves very variable, simple or with 3–5 leaflets; ovary 2-locular with 2 ovules per loculus	Verbenaceae
448	Leaves reduced to scales; plants without chlorophyll	Orobanchaceae
	Leaves not reduced to scales; plants green	449
449	(1) Leaves radical	Scrophulariaceae
	(2) Upper leaves alternate, lower leaves opposite	450
	(3) Leaves all alternate	451
	(4) Leaves all opposite or verticillate	456
450	Ovary 2-locular	Scrophulariaceae
	Ovary 4-locular	Pedaliaceae

451	Calyx of 3 outer and 2 inner sepals, all free; petals 3, united	Polygalaceae
	Calyx of 5 free or united sepals in 1 whorl; petals 5, united	452
452	Ovary 2-locular	453
432	Ovary 4–locular	455 Myoporaceae
453	Herbs (sometimes climbing)	454
433	Shrubs or small trees	454
454		
434	Corolla actinomorphic or nearly so, usually spreading Corolla 2-lipped	Solanaceae Scrophulariaceae
455		~
455	Stigmas 2; fruit a capsule or berry Stigma 1; fruit a drupe	Solanaceae
450		Myoporaceae
456	Ovary divided into 4 nearly separate segments at maturity	Lamiaceae
	Ovary simple or lobed	457
457	(1) Ovary 1–locular; ovules numerous	Gesneriaceae
101	(2) Ovary 2–locular	458
	(3) Ovary 4-locular with 1 ovule per loculus	Verbenaceae
	(4) Ovary 8-locular with 1 ovule per loculus	Pedaliaceae
458	Bracteoles conspicuous, often more or less covering	
	calyx	Acanthaceae
	Bracteoles small or absent	459
459	(1) Undershrubs, shrubs or woody vines, rarely trees; ovules 1 or 2 per loculus	Verbenaceae
	(2) Herbs or small shrubs; ovules 2 or more per	
	loculus	Scrophulariaceae
	(3) Small or large trees; ovules numerous	Bignoniaceae
460	(from 445)	
	Climbers, usually woody	Bignoniaceae
	Shrubs or trees	461
461	(1) Leaves with 3 leaflets; fifth stamen represented by	
	a staminode	Bignoniaceae
	(2) Leaves with 3 leaflets; fifth stamen absent	Verbenaceae
	(3) Leaves with more than 3 leaflets	462
462	Ovules 2 per loculus; fifth stamen absent	Verbenaceae
	Ovules more than 2 per loculus; fifth stamen usually represented by a staminode	Bignoniaceae
463	(from 401)	
	Latex present	464
	Latex absent	471
464	(1) Leaves alternate	465
	(2) Leaves opposite or verticillate	470
	(3) Leaves absent	Ascleniadaceae

465	Twiners	466
	Non-twiners	467
466	Fruits winged Fruits not winged	Cardiopteridaceae Convolvulaceae
467	Flowers actinomorphic	468
	Flowers zygomorphic	Campanulaceae
468	Anthers connivent around or above stigma Anthers free	Apocynaceae 469
469	Stamens alternating with lobes or angles of corolla Stamens opposite corolla-lobes	Convolvulaceae Sapotaceae
470	Stamens lacking a coronal appendage; pollen grains single	Apocynaceae
	Stamens mostly with a coronal appendage; pollen grains cohering in tetrads or pollinia	Asclepiadaceae
471	Leafless parasites	Cuscutaceae
	Leafy plants	472
472	Gynoecium apocarpous or divided into 2 or more free segments	473
	Gynoecium syncarpous, the ovary entire or lobed, or carpel 1	477
473	(1) Leaves alternate or radical	474
	(2) Leaves opposite or verticillate	476
	(3) Leaves absent	Asclepiadaceae
474	Inflorescence a monochasial cyme, uncoiling as the flowers open Inflorescence not as above	Boraginaceae 475
475	Plants slender, creeping perennials, rooting at nodes	Convolvulaceae
415	Plants more or less erect	Boraginaceae
476	Perianth segments (calyx plus corolla) 10 or fewer	Apocynaceae
	Perianth segments about 15	Monimiaceae
477	(1) Leaves verticillate	480
	(2) Leaves opposite	481
	(3) Leaves alternate, in alternate pairs, or clustered	478
478	Leaves compound	479
	Leaves simple	496
479	Leaves stipulate	Mimosaceae
	Leaves exstipulate	Leeaceae
480	Shrubs or trees	Apocynaceae
	Floating herbs	Droseraceae
481	Flowers actinomorphic	482
	Flowers zygomorphic	494

482	Leaves simple	483
	Leaves compound	Bignoniaceae
483	(1) Style 1, with 1 or 2 stigmas	484
	(2) Style 1, with 3 branches	493
	(3) Style 1, with 4 branches	Polemoniaceae
	(4) Styles or style branches 5	Plumbaginaceae
	(5) Style 1, apex divided into many minute stigmatic branches	Nyctaginaceae
484	Inflorescence a monochasial cyme	
404	Inflorescence not a monochasial cyme	Boraginaceae 485
485	Anthers cohering about style	
405	Anthers quite free	486 488
486	Herbs	
400	Shrubs	Caryophyllaceae 487
487	Leaves opposite	
407	Leaves opposite	Apocynaceae Solanaceae
488	Stamens alternating with corolla-lobes	301anaceae 489
400	Stamens opposite corolla-lobes	Primulaceae
489	Ovary 1–locular	490
102	Ovary 2– or 4–locular	490
490	Stipules small, scarious	Caryophyllaceae
120	Stipules absent	Gentianaceae
491	Plants (including the inflorescence) densely covered	Gentianaceae
	with cottony or woolly hairs	Verbenaceae
	Not as above	492
492	Leaves all opposite, usually stipulate	Loganiaceae
	Leaves on non-flowering parts alternate, exstipulate	Solanaceae
493	Stamens free from corolla	Frankeniaceae
	Stamens epipetalous	Polemoniaceae
494	(from 481)	
	Leaves simple	495
	Leaves compound	Bignoniaceae
495	Ovary 4- or occasionally 2-locular	Verbenaceae
	Ovary 1-locular; leaves with viscid hairs	Pedaliaceae
496	(from 478)	
	Petals 3	Polygalaceae
	Petals 4 or 5	497
497	Style with indusium	498
	No indusium present	499
498	Corolla actinomorphic or nearly so	Brunoniaceae
	Corolla zygomorphic, usually split down one side	Goodeniaceae

499	Flowers zygomorphic Flowers actinomorphic	Solanaceae 500
	-	500
500	(1) Stamens free from petals	501
	(2) Stamens free from but usually detached with petals	Pittosporaceae
	(3) Stamens distinctly epipetalous, though sometimes	
	attached near the base of corolla-tube	509
501	Stigmas 1 or 2	502
	Stigmas 4 or 5	Plumbaginaceae
502	Stamens opposite corolla-lobes	503
	Stamens alternating with corolla-lobes	505
503	Nectar-secreting disc conspicuous, embedding base of ovary	Olacaceae
	Nectar-secreting disc absent	504
504	Ovary 1-locular with several ovules	Myrsinaceae
	Ovary 2- or more-locular with 1 ovule per loculus	Sapotaceae
505	Herbs	506
000	Trees, shrubs, climbers, or twiners	507
506	Leaves with glandular hairs; corolla segments only united in short ring at base	Byblidaceae
	Leaves not as above; corolla segments cohering to form a tube, but free right at the base	Stackhousiaceae
507	Calyx covered at base with usually numerous imbricate sepaloid bracteoles	Epacridaceae
	Bracteoles absent, or not covering base of calyx	508
508	Anthers versatile; ovules 1 or 2 in ovary	Olacaceae
508	Anthers versatile; ovules 1 of 2 in ovary Anthers not versatile; ovules more than two in ovary	Pittosporaceae
500		
509	(from 500) Inflorescence a monochasial cyme	510
	Inflorescence not a monochasial cyme	512
510	Style 1, with 1 or more stigmas	511
510	Style 1, with 1 of more stigmas Styles 2, free	Hydrophyllaceae
511	Fruit a capsule or berry	Solanaceae
511	Fruit a drupe or divided into nutlets	Boraginaceae
512	(1) Style 1, with 1 or 2 stigmas, or stigma sessile	513
512	(2) Style 1, with 3 stigmas	Polemoniaceae
	(3) Style 1, with 4 stigmas	527
	(4) Style 1, with 5 stigmas	Plumbaginaceae
	(5) Style 1, with 6–8 stigmas	Convolvulaceae
	(6) Styles 2, free	528
	(7) Styles 5, free	Plumbaginaceae
513	Stamens opposite corolla-lobes	514
	Stamens alternating with corolla-lobes	516

514	Herbs	Primulaceae
	Shrubs or trees	515
515	Ovary 1-locular, with central placenta Ovary 2- or more-locular	Myrsinaceae Sapotaceae
516	Leaves simple or absent from mature plant Leaves compound	517 525
517	Herbs, growing in marshes or in water	Menyanthaceae
	Herbs (not aquatic), shrubs or trees, sometimes climbers	518
518	Base of calyx more or less covered by imbricate bracts and bracteoles; bracteoles sometimes only 2Bracteoles absent, or not covering base of calyx	Epacridaceae 519
510		
519	Climbers, twiners, or prostrate plants Plants more or less erect	520
		521
520	Anthers connivent in cone around style, dehiscing by pores or slits; ovary 2-locular, usually with many ovules	Solanaceae
	Anthers not connivent; ovary 1-2-locular; ovules 2 or 4 per loculus	Convolvulaceae
521	 Herbs (sometimes coarse), usually annual; ovules or more per loculus 	Solanaceae
	(2) Coarse annuals; ovules 1 per loculus(3)Shrubs or small trees	Boraginaceae 522
522	(1) Ovary 1-locular	Monimiaceae
	(2) Ovary 2-locular	523
	(3) Ovary 3-locular	Solanaceae
	(4) Ovary 4–locular	524
	(5) Ovary usually 5-locular	Epacridaceae
523	(1) Ovules 1 per loculus	Myoporaceae
	(2) Ovules 2 per loculus	Boraginaceae
	(3) Ovules more than 2 per loculus	Solanaceae
524	Fruit a drupe or nut; ovules 1 per loculus	Boraginaceae
	Fruit a berry or capsule; ovules usually more than 1 per loculus	Solanaceae
525	Tendril climbers	Polemoniaceae
	Not tendril climbers but sometimes twiners	526
526	Leaves palmate	Convolvulaceae
	Leaves pinnate	Solanaceae
527	(from 512)	
	Usually annuals, with slender creeping or trailing stems; ovary 2-locular	Convolvulaceae
	Tall shrubs or trees; ovary 4-locular	Boraginaceae

a

528	(from 512)	
	(1) Each of the 2 styles divided into 2 branches	Convolvulaceae
	(2) Each style simple; ovary 2-locular, with	
	numerous ovules	Hydrophyllaceae
	(3) Each style simple; ovary 2-locular, with 2 ovules per loculus	Convolvulaceae
529	(from 401)	
	Latex present	Sapotaceae
	Latex absent	530
530	(1) Leaves simple or reduced to phyllodes	531
	(2) Leaves pinnatisect	Ranunculaceae 541
	(3) Leaves compound	
531	Gynoecium apocarpous	532 533
	Gynoecium syncarpous or carpel 1	
532	Style 1	Rutaceae Crassulaceae
	Styles as many as carpels	Crassulaceae
533	Perfect stamens alternating with staminodes (sometimes scale-like)	Sapotaceae
	Stamens all perfect	534
534	Stamens 10 or fewer	535
334	Stamens indefinite	539
EDE	Style 1, the apex divided into many minute stigmatic	007
535	branches	, Nyctaginaceae
	Styles or stigmas 5 or fewer, apex not as above	536
536	Stamens free	537
	Stamens united	Polygalaceae
537	Stamens free from corolla, hypogynous	Ericaceae
	Stamens epipetalous	538
538	Style and stigma 1	Solanaceae
	Styles or stigmas 2 or more	Ebenaceae
539	Ovary of 1 carpel, 1-locular; style and stigma 1	Mimosaceae
	Ovary syncarpous, mostly 3-5-locular; styles or stigmas 2 or more	540
540	Pedicel with a pair of bracts	Theaceae
	Pedicel lacking bracts	Actinidiaceae
541	(from 530)	
	Leaves bipinnate	Mimosaceae
	Leaves pinnate or 3-foliolate	542
542	Gynoecium apocarpous	Crassulaceae
	Gynoecium syncarpous or carpel 1	543
543	Style 1; ovary 1-locular	Mimosaceae
	Styles 3-5; ovary 3-5-locular	Oxalidaceae

544	(from 400)	
	Leaves opposite or verticillate	545
	Leaves alternate, radical, or absent	559
545	(1) Petals 4	546
	(2) Petals 5	549
	(3) Petals more than 5	557
546	Leaves simple	547
	Leaves compound	Caprifoliaceae
547	Stamens free from petals	548
	Stamens epipetalous	Rubiaceae
548	Ovary 1-locular	Grossulariaceae
	Ovary 2–5–locular	Campanulaceae
549	(1) Stamen 1	Valerianaceae
	(2) Stamens 4	550
	(3) Stamens 5	552
550	Flowers in heads surrounded by involucre of bracts	Dipsacaceae
	Flowers not in heads	551
551	Herbs	Gesneriaceae
	Shrubs	Caprifoliaceae
552	Plants parasitic (mistletoes)	Loranthaceae
	Plants not parasitic	553
553	Stamens epipetalous	555
	Stamens free from petals	554
554	Style expanded into an indusium	Goodeniaceae
	Style without indusium	Campanulaceae
555	Flowers actinomorphic	556
	Flowers zygomorphic	Caprifoliaceae
556	Leaves stipulate	Rubiaceae
	Leaves exstipulate	Caprifoliaceae
557	(from 545)	
	Style 1, stigmas 1 or 2 Styles or stigmas 2 or 5	558 Bubicases
550	Styles or stigmas 3 or 5	Rubiaceae
558	Plants parasitic (mistletoes) Plants not parasitic	Loranthaceae Rubiaceae
550	-	Rublaceae
559	(from 544) Plants parasitic (mistletoes)	Loranthaceae
	Plants not parasitic	560
560	(1) Stamens 2; gynandrous	Stylidiaceae
500	(2) Stamens 3	Cucurbitaceae
	(3) Stamens 4	Campanulaceae
	(4) Stamens 5	561
	(5) Stamens more than 5	569

.

561	Style expanded into an indusium Style without indusium	Goodeniaceae 562
562		563
304	Flowers actinomorphic Flowers zygomorphic, corolla-tube usually split down	505
	one side	Campanulaceae
563	Prostrate plants or climbers; tendrils large	Cucurbitaceae
	Non-climbers; tendrils absent	564
564	Stamens alternating with corolla-lobes	565
	Stamens opposite corolla-lobes	568
565	Ovary 1–locular	Menyanthaceae
	Ovary 2- or more-locular	566
566	Stems more or less succulent, hollow; flowers in	
	dense spikes	Sphenocleaceae
	Stems not succulent, solid; flowers racemose or axillary	567
567	Fruit a capsule	Campanulaceae
	Fruit a berry	Epacridaceae
568	(1) Herbs	Primulaceae
	(2) Trees or climbers; stigma 1	Myrsinaceae
	(3) Trees; stigmas 3	Alangiaceae
569	(1) Stamens 6	Alangiaceae
	(2) Stamens 10	Ericaceae
	(3) Stamens indefinite	570
570	Leaves persistent	571
	Leaves, if present, caducous	Cactaceae
571	Leaves gland-dotted	Myrtaceae
	Leaves not gland-dotted	Symplocaceae
572	(from 10)	
	Flowers unisexual	573
	Flowers mostly bisexual	647
573	Leafless stem parasite embedded in host; only the flowers emergent	Rafflesiaceae
	Not an embedded parasite (though sometimes leafless)	574
574	Leaves or scales in whorls of 3 or more	575
	Leaves or scales alternate, opposite, or absent	577
575	Aquatic herbs	576
	Shrubs or trees	Casuarinaceae
576	Ovary inferior	Haloragaceae
	Ovary superior	Ceratophyllaceae
577	Latex present	578
	Latex absent	580

578	Separate male and female flowers inside pear-shaped receptacle which opens by narrow aperture at top	Moraceae
	Not as above	579
579	Leaves stipulate; ovary 1-locular with 1 ovule	Moraceae
	Leaves exstipulate; ovary 2- or more-locular	Euphorbiaceae
580	(1) Perianth segments 2	581
	(2) Perianth segments 3	586
	(3) Perianth segments 4	595
	(4) Perianth segments 5 or more, or perianth obscurely lobed or truncate	614
581	Ovary superior	582
201	Ovary inferior	585
582	Climbers	Menispermaceae
202	Non-climbers	583
583	Ovary 1–locular; styles 2	584
205	Ovary 2–3–locular; styles 2 or 3	Euphorbiaceae
584	Leaves stipulate	Urticaceae
	Leaves exstipulate	Chenopodiaceae
585	Flowers minute, in heads, surrounded by involucre of bracts	Asteraceae
	Flowers not in heads	Gunneraceae
586	Ovary inferior	587
	Ovary superior	588
587	Herbs	Gunneraceae
	Parasitic shrubs (mistletoes)	Viscaceae
588	Succulent root parasites without chlorophyll, 5-10 cm high with scale-like leaves	Balanophoraceae
	Herbs, shrubs, or trees, not parasitic	589
589	Style or stigma 1	590
	Styles or style branches 2 or more	593
590	Stigma penicillate	Urticaceae
	Stigma not penicillate	591
591	Leaves simple	592
	Leaves compound	Sapindaceae
592	Leaves with 7-20 primary veins on each side of midrib	Myristicaceae
	Midrib the only prominent vein, if any	Santalaceae
593	Ovary 1-locular, with 1 ovule	594
	Ovary 2–3–locular	Euphorbiaceae
594	Leaves stipulate	Polygonaceae
	Leaves exstipulate	Amaranthaceae

a

595	(from 580)	
	(1) Leafless succulents, parasitic on roots	Balanophoraceae
	(2) Shrubs parasitic on stems (mistletoes)	Viscaceae
	(3) Plants not parasitic	596
596	Ovary or gynoecium superior	597
	Ovary inferior	612
597	Gynoecium apocarpous	598
	Gynoecium syncarpous or carpel 1	601
598	Styles free	599
	Styles 4, connate	Sterculiaceae
599	Leaves opposite	600
	Leaves alternate	Phytolaccaceae
600	Leaves simple	Monimiaceae
	Leaves compound	Ranunculaceae
601	Leaf terminating in a tendril or pitcher provided with	
	a lid	Nepenthaceae
	Leaf not terminating in a tendril or pitcher, or leaves	602
	absent	
602	Styles or stigmas penicillate	Urticaceae 603
	Neither styles nor stigmas penicillate	
603	(1) Style 1	605
	(2) Styles 2	Ulmaceae 604
	(3) Styles 3-6	
604	Placentation axile	Euphorbiaceae
	Placentation parietal	Flacourtiaceae
605	Leaves simple or absent	606
	Leaves compound	611
606	(1) Leaves alternate, without stinging hairs, or leaves absent	607
	(2) Leaves alternate, with stinging hairs	Urticaceae
	(3) Leaves opposite	Urticaceae
607	(1) Stamens 2 in male flowers	Thymelaeaceae
	(2) Stamens usually 4 in male flowers	608
	(3) Stamens 6 in male flowers	Lauraceae
	(4) Stamens 10 or indefinite in male flowers	610
608	Leaves not expanded at time of flowering; stigma sessile	Santalaceae
	Leaves present at time of flowering	609
609	Leaves stipulate	Urticaceae
	Leaves exstipulate	Phytolaccaceae
610	Ovary glabrous	Flacourtiacea
	Ovary with hooked bristles	Phytolaccacea

611	Leaves stipulate	Rosaceae
	Leaves exstipulate	Sapindaceae
612	(from 596)	
	Herbs	Haloragaceae
	Shrubs or trees	613
613	Fruit a nut	Fagaceae
	Fruit a capsule	Datiscaceae
614	(from 580)	
	Ovary or gynoecium superior	615
	Ovary inferior	643
615	Gynoecium apocarpous	616
	Gynoecium syncarpous or carpel 1	620
616	Leaves alternate	617
	Leaves opposite	Monimiaceae
617	Perianth segments 5	618
	Perianth segments 6	Menispermaceae
618	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	619
619	Ovules 1 per carpel	Phytolaccaceae
	Ovules 2 or more per carpel	Sterculiaceae
620	Leaves alternate, radical, or absent	621
	Leaves opposite	640
621	Climbers	622
	Non-climbers	624
622	Styles 3, free	Amaranthaceae
	Styles connate or united, stigmas 3	623
623	Stamens 2-5 in male flowers; plants monoecious	Euphorbiaceae
	Stamens about 8 in male flowers; plants usually	
	dioecious	Polygonaceae
624	Perianth segments 5, or perianth obscurely lobed or truncate	(25
	Perianth segments 6	625 637
625	Leaves simple or absent	
025	Leaves compound	626 635
626	Perianth shallow cup shaped, scarcely lobed; stamens	055
020	more or less sessile	Gyrostemonaceae
	Perianth more or less erect, clearly lobed; stamens	
	with filaments	627
627	(1) Style and stigma 1	628
	(2) Styles or stigmas usually 2 or 3	630
	(3) Styles or stigmas 8 or more	Phytolaccaceae

.

628	Ovary 1–locular	629
0.00	Ovary 3- or more-locular	Sapindaceae
629	Style terminal; ovule 1	Euphorbiaceae
02/	Style gynobasic; ovules 2	Surianaceae
630	Herbs	631
000	Shrubs or trees	632
631	Ovary 1–locular	Amaranthaceae
	Ovary 2– or more–locular	Euphorbiaceae
632	Ovary 1-locular with 1 ovule	633
	Ovary 2–3–locular	Euphorbiaceae
633	Leaf base sheathing	Polygonaceae
	Leaf base not sheathing	634
634	Leaves stipulate	Ulmaceae
	Leaves exstipulate	Chenopodiaceae
635	Herbs	Rosaceae
	Shrubs or trees	636
636	Leaves 3-folioliate	Euphorbiaceae
	Leaves pinnate	Sapindaceae
637	Slender creeping perennials	Polygonaceae
	Shrubs or trees	638
638	Perianth in 2 whorls each of 3 united segments	Ebenaceae
	Perianth segments usually all free .	639
639	Perianth segments in 1 series; style 1, entire or shortly lobed	Sapindaceae
	Perianth segments usually in 2 series; styles usually 3,	
	simple or divided	Euphorbiaceae
640	(from 620)	
	Style 1, with 1 or 2 stigmas	641
	Styles 2 or more	Euphorbiaceae
641	Woody climbers	Nyctaginaceae
	Shrubs or trees	642
642	Stamens 2 in male flowers	Oleaceae
	Stamens more than 2	Sapindaceae
643	(from 614)	A
	Leaves compound	Apiaceae 644
	Leaves simple	
644	(1) Style and stigma 1, or stigma sessile	Combretaceae 645
	 (2) Styles or stigmas 2 (3) Styles or stigmas 3, 8 	646
	(3) Styles or stigmas 3–8	Asteraceae
645	Fruit a cypsela	Apiaceae
	Fruit a schizocarp	Apraceae

646	Fruit a nut	Fagaceae
	Fruit a capsule	Datiscaceae
647	(from 572)	
	Latex present	648
	Latex absent	652
648	(1) Ovary 3-locular, superior	Euphorbiaceae
	(2) Ovary 1-locular, inferior	Asteraceae
	(3) Ovary not as above	649
649	Perianth in 1 series of 4 or 5 segments	651
	Perianth in 2 series; sepals 2; petals 4	650
650	Ovary superior	Papaveraceae
	Ovary inferior	Rubiaceae
651	Stamens 4; trees	Moraceae
	Stamens indefinite; mostly herbs	Papaveraceae
652	Ovary or gynoecium superior	653
	Ovary inferior	792
653	Gynoecium apocarpous	654
	Gynoecium syncarpous or carpel 1	667
654	(1) Perianth segments 2	Winteraceae
	(2) Perianth segments 4	655
	(3) Perianth segments 5	660
	(4) Perianth segments 6	662
655	Climbers	Ranunculaceae
	Non-climbers	656
656	Herbs	657
	Shrubs or trees	658
657	Leaves radical	Ranunculaceae
	Leaves alternate	Phytolaccaceae
658	Perianth segments united	Sterculiaceae
	Perianth segments free	659
659	Leaves stipulate	Magnoliaceae
	Leaves exstipulate	Monimiaceae
660	Leaves gland-dotted	Rutaceae
	Leaves, if present, not gland-dotted	661
661	(1) Leaves all alternate, or absent	Phytolaccaceae
	(2) Leaves radical, or radical and alternate	Ranunculaceae
	(3) Leaves opposite	Cunoniaceae
662	(1) Leaves mostly radical	663
	(2) Leaves all alternate	664
	(3) Leaves opposite	Monimiaceae
663	Leaf pitchers present	Cephalotaceae
	Leaf pitchers absent	Ranunculaceae

.

	(1) A supplie hashe with related house	Cabombaceae
664	(1) Aquatic herbs with peltate leaves(2) Woody climbers	Menispermaceae
	(3) Shrubs or trees, non-climbers	665
665	Stamens 8	Phytolaccaceae
005	Stamens indefinite	666
666		Annonaceae
000	Leaves distichous; receptacle short Leaves not distichous; receptacle elongated	Magnoliaceae
		magnonaccac
667	(from 653) (1) Perianth segment 1	Caryophyllaceae
	(2) Perianth segments 2	668
	(2) Perianth segments 2 (3) Perianth segments 3	670
	(4) Perianth segments 4	674
	(5) Perianth segments 5	719
	(6) Perianth segments 6	771
668	Stamens 5 or fewer	Chenopodiaceae
000	Stamens indefinite	669
669	Herbs or small shrubs	Papaveraceae
009	Trees	Winteraceae
(70		671
670	(1) Leaves alternate(2) Leaves opposite or verticillate	673
	(3) Leaves absent	Chenopodiaceae
671		672
671	Style 1	Amaranthaceae
	Styles 2 or 3	Vitaceae
672	Tendrils present	Caryophyllaceae
	Tendrils absent	
673	Stigma 1	Lythraceae
	Stigmas 3	Elatinaceae
674	Leaves alternate, radical, or absent	675
	Leaves opposite or verticillate	708
675	Style and stigma 1	676
	Styles or stigmas more than 1	701
676	(1) Stamens 2	678
	(2) Stamens 3	Rosaceae
	(3) Stamens 3, staminode 1	Proteaceae
	(4) Stamens 4	682
	(5) Stamens 5	Rosaceae
	(6) Stamens 6	677
	(7) Stamens more than 6	695
677	Fruit a berry	Lauraceae
	Fruit an achene	Rosaceae
678	Leaves simple or absent	679
	Leaves compound	681

679	Leaves radical or absent	Lentibulariaceae
	Leaves alternate	680
680	Herbs; perianth segments free Shrubs; perianth segments united	Brassicaceae Thymelaeaceae
681	Floating aquatics Rooted land plants	Lentibulariaceae Rosaceae
682	Plants usually climbers with leaf-opposed tendrils Plants without tendrils	Vitaceae 683
683	Leaves compound Leaves simple	684 686
684	Stamens epiphyllous Stamens not epiphyllous	Proteaceae 685
685	Fruit an achene Fruit a legume	Rosaceae Caesalpiniaceae
686	Leaves with stinging hairs Leaves without stinging hairs	Urticaceae 687
687	Stamens distinctly epiphyllous Stamens adhering to base of perianth, or free from it	688 689
688	Stamens same number as and opposite perianth segments and often sessile on them Stamens same number as and alternate with perianth	Proteaceae
	segments, or twice as many	Elaeagnaceae
689	Flowers in axillary spikes Flowers not in spikes	690 692
690	Leaves glabrous or with scattered hairs Underside of leaves white with close-set hairs	691 Urticaceae
691	Perianth segments united into 4-lobed floral tube Perianth segments not united	Opiliaceae Santalaceae
692	Perianth petaloid Perianth sepaloid	693 694
693	Stamens same number as and opposite perianth segments Stamens same number as and alternate with perianth	Proteaceae
	segments, or more numerous	Phytolaccaceae
694	Flowers ebracteate, in terminal racemes	Brassicaceae
	Flowers bracteate, in clusters, cymes, or heads	Urticaceae
695	(from 676)	
	Leaves simple	696
	Leaves compound	700
696	Herbs	697
	Shrubs or trees	698

8

697	Sepals 2, valvate, completely enclosing bud; ovules several in each loculus	Papaveraceae
	Sepals not as above; ovule 1 in each loculus	Phytolaccaceae
698	Stamens 10 or fewer	Thymelaeaceae
	Stamens indefinite	699
699	Leaves gland-dotted	Winteraceae
	Leaves not gland-dotted	Tiliaceae
700	Shrubs or trees	Caesalpiniaceae
	Herbs	Rosaceae
701	(from 675)	
	(1) Stamens 4 or fewer	702
	(2) Stamens 5–10	705
	(3) Stamens indefinite	707
702	Herbs, either aquatic or growing in wet places; leaves radical, floating or absent; sepals 2; petals united,	
	corolla 2-lipped	Lentibulariaceae
	Plants not as above	703
703	Leaves with ochrea	Polygonaceae
	Leaves without ochrea	704
704	Herbs or shrubs; leaves covered with mealy scales	Chenopodiaceae
	Trees	Ulmaceae
705	Style 1, stigmas usually 2	Sapindaceae
	Styles more than 1	706
706	Trees with irritant hairs; stipules reniform; fruit a large drupe	Davidsoniaceae
	Herbs without irritant hairs; stipules sheath-like; fruit	
	a small nut	Polygonaceae
707	Ovary 3- to 5-locular	Nymphaeaceae
	Ovary 1–locular	Papaveraceae
708	(from 674)	÷
	Style and stigma 1	709
	Styles or stigmas more than 1	716
709	(1) Stamens 2	710
	(2) Stamman 4	Lythraceae 712
	(3) Stamens 4(4) Stamens 8	Thymelaeaceae
710		Amaranthaceae
710	Stamens free from perianth, united into a cup at base Stamens adnate to perianth	Amarantiaceae 711
711	Annual herbs, frequently in moist situations	Lythraceae
/11	Small shrubs	Thymelaeaceae
712	Leaves with stinging hairs	Urticaceae
112	Leaves with stinging hairs	713

e

713	Stamens distinctly adnate to perianth Stamens free from perianth or attached at the very	714
	base of the perianth segments	715
714	Shrubs or trees	Proteaceae
	Herbs	Lythraceae
715	Herbs	Amaranthaceae
	Shrubs or trees	Santalaceae
716	(from 708)	
	(1) Stamen 1	Caryophyllaceae
	(2) Stamens 4 alternating with the perianth lobes	Aizoaceae
	(3) Stamens 4, opposite the perianth lobes	Santalaceae
	(4) Stamens more than 4	717
717	Styles 2	Cunoniaceae
	Styles 4	718
718	Stamens indefinte	Aizoaceae
	Stamens 8	Cunoniaceae
719	(from 667)	
	Leaves alternate, radical, or absent	720
	Leaves opposite or verticillate	757
720	Stamens 5 or fewer	721
	Stamens more than 5	740
721	Style and stigma 1	722
	Styles or stigmas more than 1	729
722	Climbers with leaf-opposed tendrils	Vitaceae
	Non-climbers, or climbers without leaf-opposed tendrils	723
723	Leaves simple or absent	724
	Leaves compound	Caesalpiniaceae
724	Flowers in clusters of 2–4, surrounded by	
	conspicuous coloured bracts	Nyctaginaceae
	Flowers not as above	725
725	(1) Stamens 2 or 3, with or without anthers, united at	
	base into a short cup	Amaranthaceae
	(2) Stamens 3; staminodes 5	Olacaceae
	(3) Stamens 5, all with anthers	726
726	Herbs or undershrubs	Amaranthaceae
	Shrubs or trees	727
727	Stamens alternate with perianth segments	728
	Stamens opposite perianth segments	Santalaceae
728	Ovary surrounded by nectar-secreting disc	Rhamnaceae
	Ovary not surrounded by nectar-secreting disc	Sterculiaceae

729	(1) Tendril climbers	730
	(2) Twiners, without tendrils	731
	(3) Not climbers or twiners	732
730	Tendrils axillary	Passifloraceae
	Tendrils terminating inflorescence	Polygonaceae
731	Perianth segments free; styles 3	Amaranthaceae
	Perianth segments united; style 1, with 2 short	
	stigmas	Rhamnaceae
732	Herbs	733
	Shrubs or trees	737
733	Ovary 1-locular, with 1-several ovules	735
	Ovary 3-5-locular, with several ovules in each	
	loculus	734
734	Flowers hypogynous; calyx free, divided to base or	
	nearly so	Molluginaceae
	Flowers perigynous; calyx entirely or partly adnate to ovary, or free but with a distinct tube	Aizoaceae
		Polygonaceae
735	Leaves with ochrea Leaves without ochrea	736
		Amaranthaceae
736	Flowers with 1 bract and usually 1–2 bracteoles	Chenopodiaceae
	Flowers without bracts or bracteoles	738
737	Stamens opposite perianth segments	738
	Stamens alternating with perianth segments	
738	Perianth segments free; tall shrubs or trees	Ulmaceae
	Perianth segments united; shrubs, usually small	Chenopodiaceae
739	Stamens 5; staminodes 5; ovary 5-locular	Sterculiaceae
	Stamens 5; ovary 2- or 3-locular	Rhamnaceae
740	(from 720)	
	Leaves simple or absent	741
	Leaves compound	755
741	Style 1	742
	Styles 2 or more, free	752
742	Stigma large, peltate	Surianaceae
	Stigma not peltate	743
743	Flowers in clusters of 3-5, surrounded by 3 large	B 1
	coloured bracteoles	Nyctaginaceae 744
	Flowers not surrounded by conspicuous bracteoles	
744	(1) Climbers	Polygonaceae
	(2) Herbs, non-climbers	745
	(3) Shrubs or trees	747
745	Stamens 10 or fewer	746
	Stamens indefinite	Molluginaceae

746	Flowers hypogynous Flowers perigynous	Polygonaceae Aizoaceae
747		
/-#/	Perianth segments united Perianth segments free	748 750
748	Leaves absent; stems flat and green Leaves present	Polygonaceae 749
749	Stamens 10 or fewer; stigmas 2 or 3 Stamens indefinite; stigma 1	Sapindaceae Elaeocarpaceae
750	Flowers small, in heads or spikes; stamens exserted Flowers not in heads or spikes; stamens usually not exserted	Mimosaceae 751
751	Seeds endospermic; stipules present, often caducous Seeds non-endospermic; stipules absent	Flacourtiaceae Lauraceae
752	 (1) Styles 2 (2) Styles 3 	Polygonaceae 753
	(3) Styles 5(4) Styles about 8	Aizoaceae Phytolaccaceae
753	Ovary 1–locular; ovule 1	Polygonaceae
	Ovary 3-locular; ovules several in each loculus	rorygonaceae 754
754	Flowers hypogynous; calyx free, divided to base or nearly so	Molluginaceae
	Flowers perigynous; calyx entirely or partly adnate to ovary, or free but with a distinct tube	Aizoaceae
755	(from 740)	
	(1) Leaves pinnate; stigma 1	756
	(2) Leaves pinnate; stigmas 2	Sapindaceae
	(3) Leaves bipinnate	Mimosaceae
756	Ovary 1-locular	Caesalpiniaceae
	Ovary 2- or more-locular	Sapindaceae
757	(from 719)	
	Style and stigma 1	758
	Styles or style-branches more than 1	763
758	Leaves gland-dotted	Myrtaceae
	Leaves not gland-dotted	759
759	Stamens free from perianth	760
	Stamens adnate to perianth	761
760	Perianth segments free	Amaranthaceae
	Perianth segments united	Nyctaginaceae
761	Opposite leaves unequal in size	Aizoaceae
	Opposite leaves equal in size	762
762	Stamens 10	Thymelaeaceae
	Stamens less than 10	Lythraceae

763	(1) Stamen 1	Caryophyllaceae 764
	(2) Stamens 2–5	768
	(3) Stamens more than 5	
764	Stamens free from perianth	765
	Stamens adnate to perianth	Aizoaceae
765	Ovule 1	767
	Ovules more than 1	766
766	Placentation free-central	Caryophyllaceae
	Placentation axile	Molluginaceae
767	Perianth segments scarious	Amaranthaceae
	Perianth segments herbaceous	Chenopodiaceae
768	Flowers hypogynous	769
	Flowers perigynous; stamens borne on calyx-tube	Aizoaceae
769	Herbs	770
	Shrubs or trees	Cunoniaceae
770	Ovary 1-locular; leaves opposite or verticillate	Caryophyllaceae
	Ovary 3-5-locular; leaves alternate, often clustered in	Aizoaceae
	axils so as to appear verticillate	Alzoaceae
771	(from 667)	772
	Leaves alternate, radical, or absent	772 787
	Leaves opposite or verticillate	
772	Sepals 2, often caducous; petals 4	773
	Perianth in 1 series or, if in 2 series, usually of 3 + 3 segments	774
773	Flowers actinomorphic; stamens numerous	Papaveraceae
115	Flowers zygomorphic; stamens 6	Fumariaceae
774	(1) Stamens 3	775
//4	(2) Stamens 5 or 6, sometimes with staminodes	777
	(2) Stamens 5 of 6, sometimes with stammodes (3) Stamens more than 6	781
775	Trees or shrubs	. 776
115	Climbers with leaf-opposed tendrils	Vitaceae
776		Lauraceae
//0	Styles 2–3	Euphorbiaceae
777	Plants without tendrils	778
///	Climbers with leaf-opposed tendrils	Vitaceae
770		Burseraceae
778	Leaves large, compound Leaves simple	779
		780
779	Perianth segments free	Ebenaceae
-	Perianth segments united	Polygonaceae
780	Leaves with ochrea	Euphorbiaceae
	Leaves without ochrea	Luphorbiaceae

781	Leafless parasitic twiners Non-twiners	Lauraceae 782
782	Style and stigma 1	783
	Styles or stigmas 2-3	786
783	Flowers with 1 or more long spurs	Ranunculaceae
	Flowers lacking spurs	784
784	Ovary 1-locular	Lauraceae
	Ovary 2- or more-locular	785
785	Leaves gland-dotted	Rutaceae
	Leaves not gland-dotted	Elaeocarpaceae
786	Perianth segments free	Polygonaceae
	Perianth segments united	Ebenaceae
787	(from 771)	
	(1) Stamens 3	Elatinaceae
	(2) Stamens 9, usually with 3 staminodes	Lauraceae
	(3) Stamens 10 or indefinite	788
788	Woody climbers	Monimiaceae
	Non-climbers	789
789	Leaves trifoliolate	Cunoniaceae
	Leaves not trifoliolate	790
79 0	Herbs	Lythraceae
	Shrubs or small trees	791
791	Carpels 2	Aquifoliaceae
	Carpels 4–15	Sonneratiaceae
792	(from 652)	
	Plants parasitic (mistletoes)	Loranthaceae
	Plants not parasitic	793
793	Leaves alternate, radical, or absent	794
	Leaves opposite or verticillate	809
794	Leaves gland-dotted	795
	Leaves not gland-dotted, or leaves absent	796
795	Stamens 10	Combretaceae
	Stamens indefinite	Myrtaceae
796	Perianth actinomorphic	797
	Perianth zygomorphic	808
797	(1) Perianth quite entire, or of 3 segments	Aristolochiaceae
	(2) Perianth segments 4	798
	(3) Perianth segments 5 or 6	800
798	(1) Stamens 2	Gunneraceae
	(2) Stamens 4	799
	(3) Stamens 5	Asteraceae
	(4) Stamens 6 or more	Aizoaceae

.

799	(1) Flowers in umbels	Araliaceae
	(2) Flowers in heads surrounded by involucral bracts	Asteraceae
	(3) Flowers not in umbels or heads	Santalaceae
800	Stamens 5	801
	Stamens more than 5	806
801	Anthers free	802
	Anthers united around style	Asteraceae
802	Herbs	Apiaceae
	Shrubs or trees	803
803	Style 1, with 1-2 stigmas	804
	Styles 2, free	Araliaceae
804	Stamens opposite perianth segments	Santalaceae
	Stamens alternating with perianth segments	805
805	Leaves simple and entire	Rhamnaceae
	Leaves compound or dissected	Araliaceae
806	Leaves simple	807
	Leaves compound	Araliaceae
807	Trees; stamens usually 10	Combretaceae
	Herbs or shrubs; stamens usually indefinite	Aizoaceae
808	(from 796)	
	Stigmas 1 or 2, each with indusium	Goodeniaceae
	Stigmas 3–6, without indusium	Aristolochiaceae
809	(from 793)	
	Leaves gland-dotted	Myrtaceae
	Leaves not gland-dotted	810
810	(1) Perianth segments 3	Rubiaceae
	(2) Perianth segments 4	811
	(3) Perianth segments 5	816
	(4) Perianth segments 6	818
811	(1) Stamens 2	Thymelaeaceae
	(2) Stamens 4; anthers not syngenesious	813
	(3) Stamens 4-5; anthers syngenesious	Asteraceae
	(4) Stamens 8	Cunoniaceae 812
	(5) Stamens indefinite	
812	Leaves simple	Myrtaceae Flacourtiaceae
	Leaves compound or unifoliolate	
813	Aquatic herbs	Haloragaceae
	Plants not aquatic	814
814	Leaves opposite	815
	Leaves in whorls of 4-8	Rubiaceae
815	Stamens alternating with perianth segments	Rubiaceae
	Stamens opposite perianth segments	Santalaceae

816	(1) Stamens 1	Valerianaceae
	(2) Stamens 5	817
	(3) Stamens indefinite	Aizoaceae
817	(1) Anthers syngenesious	Asteraceae
	(2) Anthers free, opposite perianth segments	Santalaceae
	(3) Anthers free, alternating with perianth segments	Rubiaceae
818	Leaves simple	819
	Leaves compound	Caprifoliaceae
819	(1) Stamens 3	Rubiaceae
	(2) Stamens 10	Portulacaceae
	(3) Stamens indefinite	Sonneratiaceae
820	(from 2)	
	Latex present	821
	Latex absent	822
821	Styles or stigmas 3 or more	Euphorbiaceae
	Style or stigma 1	Moraceae
822	Succulent herbs 5–10 cm high, parasitic on roots; leaves absent or scale-like	Balanophoraceae
	Plants not parasitic; leaves green if present	823
823		
043	Flowers mostly unisexual Flowers mostly bisexual	824
014	*	836
824	Climbers or twiners Non-climbers	825
0.05		826
825	Placentation apical	Cannabaceae
	Placentation basal	Piperaceae
826	Leaves alternate	827
	Leaves opposite	828
827	Leaves in whorls of 4 or more, or reduced to scales	829
	Leaves not as above	830
828	Aquatic herbs, usually non-littoral; seeds endospermic	Callitrichaceae
	Littoral shrubs; seeds non-endospermic	Bataceae
829	Shrubs or trees; leaves reduced to minute scales	Casuarinaceae
	Aquatic herbs; leaves entire or divided but not	
	reduced to scales	Haloragaceae
830	Plants monoecious	831
	Plants dioecious	833
831	Herbs or undershrubs; flowers in heads	Asteraceae
	Trees; flowers otherwise	832
832	Leaves serrate-crenate; deciduous	Betulaceae
	Leaves entire; evergreen	Euphorbiaceae
833	Leaves not dissected	834
	Leaves palmately dissected	Cannabaceae

834	Both male and female flowers in dense spikes	Salicaceae
004	Female flowers solitary or racemose; male flowers	
	solitary or in spikes	835
835	Male flowers in catkins; female flowers with involucre of bracts but no perianth	Balanopaceae
	Male flowers solitary or in open spikes; perianth shallow cup-shaped, inconspicuous	Gyrostemonaceae
836	(from 823)	
	Herbaceous plants, growing only on rocks in running water	Podostemaceae
	Land plants	837
837	Stamens 10 or fewer, usually 2-3	Piperaceae
	Stamens indefinite	Mimosaceae
	Monocotyledons	
838	(from 1)	
	Plants of marine or brackish habitats	839
	Plants of fresh-water or land habitats	845
839	Leaves ligulate	840
	Leaves eligulate	842
840	Plants of brackish habitats	Zannichelliaceae
	Marine plants	841
841	Leaf blade and sheath shed leaving a circular scar	Cymodoceaceae
	Leaf blade shed but sheath persistent and fibrous	Posidoniaceae
842	Leaves with 1–5 longitudinal veins	843
	Leaves with 7 or more longitudinal veins	Hydrocharitaceae
843	Leaves 1-3 per shoot	Hydrocharitaceae 844
044	Leaves 4 or more per shoot Carpel solitary; stigmas 2, filiform	Zosteraceae
844	Carpels 4–8; stigma 1, peltate	Ruppiaceae
845	Floating plants with one or more flat, leaf-like stems	
0.0	1-8 mm in diameter, cohering by their edges,	
	with or without roots hanging from the undersurface	Lemnaceae
	Plants not as above	846
846	Flowers unisexual	847
040	Flowers bisexual	869
847	Leaves opposite or verticillate	848
	Leaves alternate, radical, crowded at apex of stem, or	
	absent	850
848	Slender, twining land plants	Dioscoreaceae
	Aquatic or marsh plants	849

849	Perianth in male flowers absent or of one segment Perianth segments in male flowers $3 + 3$; stamens	Najadaceae
	3-9	Hydrocharitaceae
850	Leaves simple	851
	Leaves compound	868
851	Flowers closely packed in a dense, simple, unbranched spadix, with a usually convolute, coloured, or petal-like spathe arising from base Spathe sometimes present, but inflorescence not as above and often branched	Araceae 852
852	Trees or shrubs, rarely climbers; aerial stem woody	853
	Herbs (sometimes large, e.g. banana)	854
853	Perianth absent; trees, shrubs, or climbers	Pandanaceae
	Perianth segments $3 + 3$; climbers	Smilacaceae
854	Flowers inconspicuous, often minute, within imbricate bracts or scales, in heads or spikelets; perianth absent or of 1-8 scales or bristles, usually concealed within bracts	855
	Flowers otherwise	859
855	Flowers small in spherical androgynous heads 2-8 mm in diameter without conspicuous bracts; mostly marsh or aquatic plants Flowers in spikelets surrounded by glume-like bracts	Eriocaulaceae 856
856	Leaf-sheath with free margins, sometimes overlapping	857
	Leaf-sheath with connate margins	Cyperaceae
857	Leaves ligulate	Poaceae
	Leaves eligulate	858
858	Wiry plants with jointed stems Tiny, slender plants without erect stems	Restionaceae Hydatellaceae
859	Aquatic or marsh plants	860
	Land plants	863
860	Ovary inferior	Hydrocharitaceae
	Ovary superior	861
861	Plants dioecious	Hanguanaceae
	Plants monoecious	862
862	Flowers in cylindrical, terminal spikes	Typhaceae
	Flowers in globular, lateral heads	Sparganiaceae
863	Climbers	864
	Non-climbers	865
864	Ovary superior	Smilacaceae
	Ovary inferior	Dioscoreaceae
865	Ovary superior	866
	Ovary inferior	Musaceae

Key to families

.

866	Leaves large, pinnately or palmately divided (palms) Leaves otherwise	Arecaceae 867
867	(1) Fruit containing many small seeds(2) Fruit containing 3 large seeds	Juncaceae Liliaceae
	(3) Fruit a fleshy, thick-walled, 1–3–seeded drupe; leaves with many cross-nerves	Hanguanaceae
868	(from 850)	
	Ovary superior	Arecaceae
	Ovary inferior	Dioscoreaceae
869	(from 846)	
	Flowers closely packed in a simple spadix, usually with coloured spathe more or less enclosing it	Araceae
	Flowers not in spadix; inflorescence often branched; spathe sometimes present	870
870	Gynoecium apocarpous	871
	Gynoecium syncarpous or carpel 1	877
871	Land plants	872
	Aquatic or marsh plants	874
872	Woody plants; leaves compound, or pinnately or palmately divided (palms)	Arecaceae
	Small herbaceous plants; leaves, if present, entire	873
873	Saprophyte, lacking chlorophyll; leaves reduced to scales	Triuridaceae
	Tufted chlorophyllous herbs; leaves linear	Centrolepidaceae
874	(1) Perianth segments 2; stamens 6; carpels 3	Aponogetonaceae
8/4	(1) Perianth segments 2; stamens 6; carpels 5(2) Perianth segments 4; stamens 4; carpels 4	Potamogetonaceae
	(3) Perianth segments 3-6, rarely 4; stamens3-indefinite; carpels 3-indefinite	875
875	Perianth segments all similar in texture and colour	Juncaginaceae
	The two perianth whorls different in texture and/or colour	876
876	Gynoecium of 3 or more free carpels; fruits achenes	Alismataceae
	Gynoecium of about 6 free carpels; fruits follicles	Limnocharitaceae
877	Ovary superior or perianth absent	878
	Ovary inferior	909
878	Flowers inconspicuous, often minute, within imbricate bracts or scales (glumes), in spikelets; perianth absent or of 1-8 scales or bristles, usually	
	concealed within bracts	879
	Flowers otherwise	883
879	Leaves ligulate	880
	Leaves eligulate	881
880	Embryo visible through fruit wall	Poaceae
	Embryo not visible through fruit wall	Cyperaceae

Key to families

881	Stamen 1	882
	Stamens more than one	Cyperaceae
882	Small annuals; inflorescence simple Rhizomatous perennials; inflorescence usually	Centrolepidaceae
	branched	Cyperaceae
883	Perianth segments 4 or fewer	884
	Perianth segments 6 (rarely 5)	886
884	(1) Stamen 1	Philydraceae
	(2) Stamens 3	Xyridaceae
	(3) Stamens 4	885
885	Leaves alternate; twiners	Stemonaceae
	Leaves radical; inflorescence spicate	Araceae
886	Leaves simple or absent	887
	Leaves compound (palms)	Arecaceae
887	Stems woody; leaves broad (palms)	Arecaceae
	Not as above	888
888	Stamens 3 (rarely 2)	889
	Stamens 6 (rarely 5)	894
889	Inner perianth segments free	890
	Inner perianth segments united	Xyridaceae
890	Perianth segments all similar in texture and colour	891
	The two perianth whorls different in texture and/or colour	C
001		Commelinaceae
891	Stamens free from perianth	892
003	Stamens inserted at base of inner perianth segments	Haemodoraceae
892	Perianth segments petaloid	Liliaceae
002	Perianth segments sepaloid	893
893	Carpels free or almost free; stigmas sessile	Juncaginaceae
004	Carpels fused; style one, stigmas 3	Juncaceae
894	Leaf tips prolonged into tendrils Not as above	895 896
895	Corolla about 3 mm long	
093	Corolla about 10 mm long	Flagellariaceae Liliaceae
896	Perianth segments all similar in texture and colour	Emaceae 900
090	The two perianth whorls different in texture and/or	900
	colour	897
897	Much-branched leafy climbers	Smilacaceae
	Rosette or scrambling plants	898
898	Inflorescence spicate; glandular hairs present	Commelinaceae
	Flowers solitary or inflorescence cymose; if spicate	
	no glandular hairs	899

Key to families

899	Inner perianth segments fringed	Liliaceae
	Inner perianth segments not fringed	Commelinaceae
900	Perianth segments petaloid Perianth segments sepaloid	901 905
901	Aquatic plants, floating or rooted Land plants	Pontederiaceae 902
902	Coarse woody climbers; venation predominantly reticulate Non-climbers or, if climbers, the venation convergent	Smilacaceae 903
903	Inflorescence a tall woody spike Inflorescence otherwise	Xanthorrhoeaceae 904
904	Much-branched leafy climbers Not as above	Smilacaceae Liliaceae
905	Marsh or aquatic plants Land plants	Juncaginaceae 906
906	Climbers Non-climbers	Araceae 907
907	Style 1, simple Style branched, stigmas 3	908 Juncaceae
908	Inflorescence a tall woody spike Inflorescence otherwise	Xanthorrhoeaceae Liliaceae
909	 (from 877) (1) Flowers strongly gynandrous (2) Flowers only weakly gynandrous (3) Flowers not gynandrous 	Orchidaceae 910 911
910	Venation pinnate Venation convergent	Cannaceae Orchidaceae
911	Submerged aquatics; leaf lamina submerged or floating; styles or stigmas 6, each 2-lobed Not as above	Hydrocharitaceae 912
912	Leaves entire or with serrate margins	913
	Leaf lamina deeply dissected	Taccaceae
913	Climbing plants; leaves alternate with many longitudinal veins from midrib; veinlets reticulate Not as above	Smilacaceae 914
914	Venation obviously pinnate	915
	Venation convergent (middle vein sometimes stronger than others) parallel, or obscured by the thickness of leaf	919
915	Stamens 1-3	916
	Stamens 5	Musaceae

917 918	Ligule present at junction of leaf-sheath and lamina Leaves eligulate	916
Zingiberaceae Costaceae	Leaves 2-ranked Leaves more than 2-ranked	917
Marantaceae Cannaceae	Pulvinus present at junction of petiole (or leaf-sheath) and blade Pulvinus absent	918
920 923	Stamens 3 Stamens 6	919
921 922	Perianth segments united at base Perianth segments free	920
Burmanniaceae Iridaceae	Anthers with transverse dehiscence Anthers with longitudinal dehiscence	921
Haemodoraceae Iridaceae	Ovules 1-2 per loculus Ovules usually several per loculus	922
924 925	Plant a colourless saprophyte Plant chlorophyllous	923
Burmanniaceae Corsiaceae	Perianth actinomorphic Perianth zygomorphic	924
926 Bromeliaceae	Leaf margins entire Leaf margins serrate	925
927 Bromeliaceae	Perianth segments all similar in texture and colour The two perianth whorls different in texture and/or colour	926
Liliaceae 928	Flowers in umbels, rarely solitary on a leafless scape Flowers in simple or compound racemes	927
Liliaceae	Leaves narrow, up to 20 cm long, arising from an underground rhizome	928
Agavaceae	Leaves thick, fibrous, up to 2 m long, in tufts at base or apex of trunk-like stem	

GLOSSARY

Alison McCusker

This general glossary contains terms likely to be used frequently in the volumes of the *Flora* dealing with vascular plants. Specialised terms that are crucial to the understanding of individual family accounts, but not of wide application, will be explained and illustrated, where appropriate, in the relevant volumes.

Separate glossaries will be included in volumes dealing with the non-vascular groups (Volume 49ff.). However, where a word in the general glossary has a different application to non-vascular plants, its meaning in that context is included here.

It is the policy of the Editorial Committee to keep the use of technical terms within reasonable bounds so as to make it as easy as possible for the reader to consult the *Flora* without constant reference to the glossary. Simple explanations have been preferred to long and involved ones; the meanings given are believed to be accurate but are certainly not claimed to be complete. Words explained adequately, for botanical purposes, in *The Concise Oxford Dictionary* have generally not been included unless much more widely used in English in a different sense.

The glossary is also intended to guide the contributors to the *Flora*, who will number many before the project is completed, in the use of terminology. For that reason alternative spellings that are commonly used in the taxonomic literature are often not given.

abaxial: of the side or surface of an organ, facing away from the axis. cf. adaxial.

- abscission: the normal shedding from a plant of an organ that is mature or aged, e.g. a ripe fruit, an old leaf. adj. abscissile.
- **accessory fruit:** a fruit, or group of fruits derived from one flower, in which the conspicuous, fleshy portion develops from the receptacle and is shed with the true fruit(s) attached.
- accumbent: of the orientation of an embryo, with the radicle lying against the edges of the two cotyledons.
- achene: a dry, indehiscent fruit formed from a superior ovary of one carpel and containing one seed which is free from the pericarp (often applied, less correctly, to the one-seeded fruits of Asteraceae). cf. cypsela.

acicular: needle-shaped and stiff. Fig. 23.

aciculate: finely scored on the surface, as if scratched by a pin.

- acropetal: arising or developing in a longitudinal sequence beginning at the base and proceeding towards the apex. cf. basipetal.
- acrostichoid: of sporangia, densely covering the abaxial surface of the fertile frond, i.e. not in distinct groups; of ferns, having the sporangia arranged as above.
- actinomorphic: of flowers, symmetrical about more than one vertical plane. cf. zygomorphic.
- acuminate: tapering gradually to a protracted point. Fig. 23.
- acute: terminating in a distinct but not protracted point, the converging edges separated by an angle less than 90 degrees. Fig. 23.
- adaxial: facing towards the axis. cf. abaxial.

11

- adnate: fused to an organ of a different kind, e.g. applied to a stamen fused to a petal.
- adventitious: arising in abnormal positions, e.g. roots arising from the shoot system, buds arising elsewhere than in axils of leaves.

adventive: introduced recently, in particular since colonisation by man.

- aerenchyma: tissue incorporating large, gas-filled spaces interspersed with the cells in a characteristic pattern.
- aestivation: the arrangement of sepals and petals or their lobes in an unexpanded flower bud. cf. vernation. Fig. 25.
- aggregate fruit: a cluster of fruits formed from the free carpels of one flower.
- albumen: = endosperm.
- allopatric: of two or more species, having different ranges of distribution. cf. sympatric.
- alternate: of leaves or other lateral organs, borne singly at different heights on the axis; of floral parts, on a different radius, e.g. describing the position of stamens with respect to petals.
- anastomosis: fusion to form a network e.g. of veins in a leaf blade.

anatropous: of an ovule, inverted so that the micropyle faces the placenta. Fig. 25.

androdioecious: having bisexual flowers and male flowers, on separate plants.

androecium: the stamens of one flower collectively.

- androgynophore: a stalk bearing both the androecium and gynoecium of a flower above the level of insertion of the perianth.
- androgynous: having male and female flowers in the same inflorescence.

androphore: a stalk bearing the androecium.

anemophilous: pollinated by wind.

- angiosperm: a seed-bearing plant whose ovules, and hence seeds, develop within an enclosed ovary. cf. gymnosperm.
- annual: a plant whose life span ends within one year after germination.

annular: arranged in or forming a ring.

- annulus: a ring; *in ferns*, the elastic ring of cells, forming part of the sporangium wall, that initiates dehiscence.
- anterior: of floral organs, on the side of the flower farthest from the axis. cf. posterior.

anther: the pollen-bearing part of a stamen. cf. filament.

antheridium: the fertile organ of a male gametophyte or the male organ of a bisexual gametophyte, in which male gametes are formed.

anthesis: the time of opening of a flower.

anthocarp: a false fruit consisting of the true fruit and the base of the perianth, as in Nyctaginaceae.

antrorse: directed forwards or upwards. cf. retrorse.

apetalous: without petals.

apical: of a placenta, at the top of the ovary. Fig. 25.

apiculate: terminating in a short, sharp, flexible point. Fig. 23.

apocarpous: of a gynoecium, consisting of two or more carpels which are free from one another or almost so.

apomict: a plant that produces viable seed without fertilisation.

- **appendage:** a structure arising from the surface or extending beyond the tip of another structure.
- appressed: pressed closely against but not united with.
- aquatic: living in or on water for all or a substantial part of the life span (generally restricted to fresh/inland waters).
- arborescent: resembling a tree (applied to non-woody plants attaining tree height and to shrubs tending to become tree-like in size). cf. dendroid.
- **areole:** a space between the threads of a net; *in Cactaceae*, a cluster of hairs/ spines/bristles borne at the node of a leafless stem; *in Mimosaceae (for example)*, a distinct, oblong or elliptical area on the face of a seed, bounded by a fine line. adj. **areolate.**
- aril: a structure partly or wholly covering the testa of a seed and formed by expansion of the funicle. adj. arillate.
- aristate: having a stiff, bristle-like awn or tip. Fig. 23.
- aristulate: having a small awn.
- article: a segment of a jointed stem or of a fruit with constrictions between the seeds.
- articulate: jointed; having joints where separation may occur naturally; of a stem, having nodes.
- ascending: growing erect after an oblique or semi-horizontal beginning.
- asexual: not forming part of a cycle which involves fertilisation and meiosis.
- attenuate: tapering gradually.
- auricle: an ear-shaped appendage at the base of a leaf, leaflet or corolla lobe. adj. auriculate. Fig. 23.
- **autochthonous:** of the inhabitants of a region, original; earliest known; (applied to an element of the Australian flora rich in endemics and believed to have been evolving in Australia for a long period of time).
- autotrophic: independent of other organisms in respect of organic nutrition; able to fix carbon dioxide, by photosynthesis, to form carbohydrates.
- awn: a bristle-like appendage, e.g. on the tip or back of the lemma of a grass floret.
- axil: the angle between a leaf or bract and the axis bearing it. adj. axillary.

axile: on an axis; of a placenta, on the central axis of the ovary. Fig. 25.

- axis: a stem, (commonly used for the main stem of a whole plant or of an inflorescence).
- barbellae: short, straight, stiff hairs or barbs.
- basal: at the base; of a placenta, at the base of the ovary. Fig. 25.
- basifixed: attached at or by the base, e.g. of anthers, by the base of the connective.
- basipetal: developing, in sequence, from the apex towards the base. cf. acropetal.
- **basiscopic:** pointing towards the base (applied to the first lateral vein of a leaflet on the side nearer the leaf base).
- beak: a prominent terminal projection, especially of a carpel or fruit.
- **berry:** a fleshy or pulpy indehiscent fruit with the seed(s) embedded in the fleshy tissue of the pericarp. cf. **drupe**.
- biennial: a plant whose life span extends for more than one but less than two years after germination.
- bifid: divided, for about half the length, into two parts. cf. bipartite.
- bifoliate: of plants, having two leaves.
- bifoliolate: of leaves, having two leaflets.

bilabiate: two-lipped, e.g. of a corolla in which fusion of an anterior group and a posterior group of petals extends beyond the top of the corolla tube.

bilocular: having two cavities.

bipartite: divided, nearly to the base, into two parts. cf. bifid.

bipinnate: of leaves, twice pinnately divided. Fig. 24.

biseriate: arranged in two rows or whorls.

bisexual: bearing both male and female organs together, e.g. on the same gametophyte or in the same flower.

blade: the expanded part of a leaf or petal.

bole: the trunk of a tree, below the lowest branch. cf. canopy.

- **bract:** a leaf-like structure, different in form from the foliage leaves and without an axillary bud, associated with an inflorescence or flower.
- **bracteole:** a small bract-like structure borne singly or in pairs on the pedicel or calyx of a flower.
- **bulb:** a storage organ, usually underground, made up of a stem and leaf bases, the food reserves being stored in the inner, fleshy leaf bases.

bulbel: a bulb arising from another bulb.

- **bulbil:** a small, deciduous bulb (or tuber) formed in the axil of a leaf and functioning to propagate the plant vegetatively.
- **burr:** a rough or prickly propagule consisting of a seed or fruit and associated floral parts or bracts.

buttress: a flange of tissue protruding from the main outline of the base of a tree.

caducous: falling off early.

caespitose: growing in tufts.

- **callus:** a protruding mass of hardened tissue, often formed after an injury but sometimes a regular feature of the plant, e.g. on the labellum of some orchids and the axis of the spikelet of some grasses. adj. **callose**.
- **calyptra:** *in mosses*, a cap-like structure covering or partly covering the capsule and derived from the neck of the archegonium; *in a flower*, (= **operculum**), a cap covering the stamens and carpels in the bud and formed by fusion or cohesion of perianth parts.

calyx: the sepals of one flower collectively.

calyx-tube: a tube formed by fusion or cohesion of sepals. cf. hypanthium.

campanulate: bell-shaped.

campylotropous: of an ovule, orientated transversely, i.e. with its axis at right angles to its stalk, and with a curved embryo sac. Fig. 25.

canopy: the branches and foliage of a tree. cf. bole.

capitate: of an inflorescence, with the flowers unstalked and aggregated into a dense cluster; of a stigma, globose, like the head of a pin.

capitulum: a dense cluster of sessile flowers.

- **capsule:** a dry fruit formed from two or more united carpels and dehiscing at maturity to release the seeds.
- **carpel:** an organ (generally believed to be a modified foliar unit) at the centre of a flower, bearing one or more ovules and having its margins fused together or with other carpels to enclose the ovule(s) in an ovary, and consisting also of a stigma and usually a style.
- carpophore: in ferns, the stalk of a sporocarp; in a fruit, the stalk of a mericarp.

caruncle (= strophiole): an outgrowth of a seed coat, near the hilum.

caryopsis: a dry, indehiscent, one-seeded fruit in which the seed coat is closely fused to the fruit wall (characteristic of grasses).

cataphyll: a scale leaf associated with a vegetative part of a plant, e.g. rhizome, perennating bud.

catkin: a spike in which the flowers are unisexual and without conspicuous perianth.

caudate: having a narrow tail-like appendage. Fig. 23.

caudex: a thick, erect trunk, especially of cycads.

caudicle: a thread to which a pollen mass is attached in Orchidaceae and Asclepiadaceae.

- cauliflorous: see cauline.
- **cauline:** of leaves, borne on an aerial stem; of flowers or fruits, borne on old wood (= cauliflorous).
- **cell:** the basic unit of plant structure consisting, at least when young, of a protoplast surrounded by a wall.

centrifugal: directed, or developing, from the centre or axis outwards.

centripetal: directed, or developing, from the outside towards the centre or axis.

chaff: thin, membranous scales or bracts; thin, dry unfertilised ovules among the fully developed seeds of a fruit.

chalaza: the part of an ovule to which the end of the stalk (funicle) is attached.

chlorophyll: pigment(s) constituting the green colouring matter of plants and absorbing radiant energy in photosynthesis.

chromosome: a thread-like structure in the nucleus of a cell, containing a linear sequence of genes.

cilia: in unicellular plants, gametes, spores etc., minute hair-like protoplasmic protrusions whose movement confers motility on the cell; in higher plants, hairs more or less confined to the margins of an organ. sing. cilium; adj. ciliate.

cincinnus: a spirally curled cymose inflorescence.

circinnate (= circinate): spirally coiled, with the tip innermost.

circumsciss: (to) break open along a transverse line around the circumference. adj. circumscissile.

cladode: the photosynthetic stem of a plant whose foliage leaves are absent or much reduced. cf. phyllode.

cladophyll: a flattened, leaf-like photosynthetic stem not bearing leaves or scales. cf. **phylloclade**.

class: a major taxonomic rank, between order and division.

clavate: club-shaped.

claw: a narrow, stalk-like basal portion of a petal, sepal or bract.

cleistogamous: of flowers, self-pollinating and setting fertile seed but never opening.

clone: a set of organisms produced from one parent by vegetative reproduction.

coccus: one of the (usually 1-seeded) lobes of a distinctly lobed fruit, becoming separate at maturity. pl. cocci.

cochleate: coiled like a snail-shell.

cohesion: the sticking together of floral parts of the same whorl without organic fusion. adj. coherent.

cochlear: of the arrangement of corolla lobes in a bud, a variant of imbricate aestivation. Fig. 25.

collateral: situated side by side; adjacent and on the same radius of an axis.

- columella: the central axis of a moss capsule; *sometimes applied to* the central axis of fruits and cones.
- **column:** the lower part of an awn in grasses, when distinctly different in form from the upper part; (=gynostemium), a structure in Orchidaceae, Asclepiadaceae and Stylidiaceae, extending above the ovary of a flower and incorporating stigma, style and stamens.
- coma: a tuft of hairs. adj. comose.
- commissure: a join or seam; the interfacing of two fused carpels in an ovary.
- **compound:** of a leaf, having the blade divided into two or more distinct leaflets; of an *inflorescence*, made up of an aggregate of smaller inflorescences.
- **compressed:** flattened in one plane, either dorsally (bringing the front and back closer together) or laterally (bringing the sides closer together).
- conduplicate: folded together, with the fold-line along the long axis (e.g. of cotyledons in a seed).
- **cone:** *in gymnosperms and club-mosses*, a group of sporophylls arranged compactly on a central axis; (loosely) *in Casuarina*, a woody multiple fruit incorporating the bracts and bracteoles associated with the flowers.

connate: fused to another organ (or other organs) of the same kind.

connective: the part of an anther that connects the lobes.

- connivent: coming into contact; converging.
- contorted: see convolute.
- **convolute:** of the arrangement of corolla lobes in a bud, a form of imbricate aestivation in which each segment has one edge overlapping the adjacent segment, like a furled umbrella. Fig. 25.
- cordate: of a leaf blade, broad and notched at the base; heart-shaped. Fig. 23.
- corm: a fleshy, swollen stem base, usually underground, in which food reserves are stored between growing seasons.
- corolla: the petals of a flower collectively.
- corona: a ring of tissue arising from the corolla or perianth of a flower and standing between the perianth lobes and the stamens.
- cortex: the region of a stem or root surrounding the vascular cylinder but inside the epidermis.
- corymb: a racemose inflorescence in which the pedicels of the lower flowers are longer than those of the flowers above, bringing all flowers to about the same level.

cotyledon: the primary leaf (or one of two or more primary leaves) of an embryo.

crenate: with small, rounded teeth; scalloped. Fig. 24.

crenulate: minutely scalloped. Fig. 24.

crown: the part of a tree or shrub above the level of the lowest branch.

crustaceous: brittle; of marine algae, encrusted with calcium carbonate.

cryptogam: (literally) a plant whose sexual reproductive parts are not conspicuous; a plant that produces spores, not seeds, in its sexual reproductive cycle, e.g. ferns, mosses, algae. cf. phanerogam.

culm: an aerial stem, in grasses, sedges, rushes, etc., bearing the inflorescence.

cuneate: wedge-shaped. Fig. 23.

cuspidate: tapering into a sharp, rigid point. Fig. 23.

- cyathium: an inflorescence of unisexual flowers surrounded by involucral bracts, as in *Euphorbia*.
- cyclic: of floral organs, several borne at the same level on the axis; whorled. cf. spiral.
- cyme: an inflorescence in which each flower, in turn, is formed at the tip of a growing axis and further flowers are formed on branches arising below it.
- cypsela: a dry, indehiscent, one-seeded fruit formed from an inferior ovary.
- **cystolith:** a stalked structure growing from a cell wall into the cell cavity, encrusted with calcium carbonate.
- deciduous: falling seasonally, e.g. of the leaves or bark of some trees.
- decompound: more than once compound.
- decumbent: spreading horizontally but then growing upwards.
- **decurrent:** extending downwards beyond the point of insertion, e.g. of a lamina extending downwards to form a flange along the petiole.
- decussate: in pairs, with successive pairs borne at right angles to each other.
- **definite:** of a constant number; *of stamens*, twice as many as the petals or sepals, or less; *of an inflorescence*, ending in a flower or an aborted floral bud.
- deflexed: bent downwards.
- dehiscent: breaking open at maturity to release the contents.
- deltoid: triangular with the sides of about equal length. Fig. 23.
- dendroid: tree-like in form but not in size.
- dentate: toothed. Fig. 24.
- denticulate: finely toothed. Fig. 24.
- depressed: flattened as if pressed down from the top or end.
- determinate: of growth or branching, with a bud or flower terminating the growth of the main axis; of an inflorescence, see definite.
- diadelphous: having the stamens united into two groups, or all but one united in a group and one free.
- dichasium: a cymose inflorescence with opposite branching below the flower which terminates each axis. cf. monochasium.
- dichotomous: forking into two equal branches resulting from division of the growing ' point.
- diclinous: having the stamens and the carpels in separate flowers.
- dicotyledon: a flowering plant whose embryo has two (rarely more) cotyledons (seed leaves). cf. monocotyledon.
- didymous: borne in pairs; of anthers, having two lobes, with scarcely any tissue connecting them.
- didynamous: of stamens, four in number, two being distinctly longer than the other two.
- digitate: branching from the axis or stalk like the fingers of a hand. Fig. 24.
- dimorphic: of two different forms.
- dioecious: having the male and female reproductive structures on separate plants. cf. monoecious.
- diploid: having two of the basic sets of chromosomes in the nucleus. cf. haploid, polyploid.
- disc: a plate or rim of tissue, derived from the receptacle of a flower, occurring between whorls of floral parts.

- dissepiment: a partition (septum) within an ovary or fruit, derived by fusion of adjacent carpels.
- distal: remote from the point of origin or attachment. cf. proximal.

distichous: arranged in two rows on opposite sides of a stem and thus in the same plane.

diurnal: of flowers, opening only during daylight hours.

divaricate: widely spreading.

- division: the major taxonomic rank within the Plant Kingdom (in which the phylum is no longer generally recognised).
- dorsal: of a lateral organ, (relating to the side) facing away from the axis, i.e. the 'back'; of a thallus, facing away from the substratum. cf. ventral.
- dorsifixed: attached at or by the back.

dorsiventral: having structurally different upper and lower surfaces.

drupe: a succulent fruit formed from one carpel, having the seed(s) enclosed in an inner stony layer of the fruit wall. adj. **drupaceous** (which is often used to mean drupe-like but not strictly a drupe).

echinate: bearing stiff, stout, prickly hairs.

edaphic: pertaining to the soil.

elater: an elongated, spirally thickened, hygroscopic cell in the capsule of a liverwort, derived from sporogenous tissue and assisting in spore dispersal; an appendage to the spore of *Equisetum*.

elliptic: oval in outline, widest at the centre. Fig. 23.

emarginate: having a broad, shallow notch at the apex. Fig. 23.

embryo: a young plant contained within an archegonium or seed.

enation: an epidermal outgrowth.

endemic: having a natural distribution confined to a particular geographical region.

- endocarp: the innermost layer of the wall of a fruit; in a drupe, the stony layer surrounding the seed.
- endosperm: nutritive tissue in a seed, in angiosperms triploid and formed in the embryo sac after fertilisation, in gymnosperms haploid and derived from the sterile portion of the female gametophyte.
- entire: having a smooth margin, not dissected or toothed. Fig. 24.

entomophilous: pollinated by insects.

ephemeral: short-lived.

epicalyx: a whorl of bracts, just below a flower, looking like a second calyx.

epicarp: the outer layer of the wall of a fruit, i.e. the 'skin'.

epicormic: of buds, shoots or flowers, borne on the old wood of trees (applied especially to shoots arising from dormant buds after injury or fire).

epidermis: the outermost layer of cells of an organ, usually only one cell thick.

- epigeal: of germination, having the cotyledon(s) emerging from the seed coat and becoming photosynthetic. cf. hypogeal.
- epigynous: of floral parts (especially stamens), attached above the level of insertion of the ovary, and arising from tissue that is fused to the ovary wall. cf. hypogynous, perigynous. Fig. 26.

epipetalous: borne on the petals. Fig. 26.

epiphyllous: growing on leaves, e.g. applied to vegetatively propagated plantlets in some Crassulaceae.

epiphyte: a plant growing on, but not parasitic on, another plant (often loosely applied to plants, such as orchids, that grow on vertical rock faces).

eremean: pertaining to regions of low, irregular rainfall.

eusporangiate: of ferns, having sporangia with walls more than one cell thick. cf. leptosporangiate.

evergreen: bearing green leaves throughout the year.

exine: the outer layer of the wall of a pollen grain or spore.

exserted: protruding, e.g. of stamens with respect to a corolla tube.

exstipulate: without stipules.

extra-floral: of nectaries, not within the flower.

extrorse: of anthers, opening away from the centre of the flower.

facultative: of parasites, optional. cf. obligate.

falcate: sickle-shaped. Fig. 23.

family: a group of one to many genera believed to be related phylogenetically, usually clearly separable from other such groups.

farinaceous: containing starch grains; mealy; resembling flour.

fascicle: a cluster, adj. fasciculate.

fenestrate: having openings or translucent areas ('windows').

fertilisation: the union of male and female gametes.

filament: the stalk of a stamen; a thread one or more cells thick; in blue-green Algae, a trichome enclosed in a mucilaginous sheath.

filiform: thread-like. Fig. 23.

fistular: hollow throughout its length.

flaccid: limp; tending to wilt. cf. turgid.

flexuous (= flexuose): bent from side to side in a zig-zag form.

floral: belonging to or associated with a flower.

floret: a grass flower, together with the lemma and palea that enclose it (often applied to flowers in Cyperaceeae and Asteraceae).

flower: the sexual reproductive structure of the angiosperms, typically consisting of gynoecium, androecium and perianth and the axis bearing these parts.

foliaceous: leaf-like.

follicle: a dry, dehiscent fruit formed from one carpel and dehiscing along the line of fusion of its edges.

forb: a non-woody plant other than a grass, sedge, rush, etc. cf. herb.

free: not fused or united (with other organs).

free-central: a placentation in which the ovules are borne on a free-standing central placenta within the ovary. Fig. 25.

- frond: a leaf especially of a fern, cycad or palm; a leaf-like portion of a non-vascular plant (e.g. a foliose alga).
- fruit: the seed-bearing structure in angiosperms formed from the ovary after flowering.
- frutescent: becoming shrub-like (woody).

fruticose: shrub-like.

fugacious: falling or withering away very early.

funicle (= funiculus): the stalk of an ovule.

fusiform: spindle-shaped, i.e. narrower at both ends than at the centre.

- gamete: a cell or nucleus that fuses with another, of opposite sex, in sexual reproduction.
- gametophyte: a plant, or phase of a plant's life cycle, that bears gametes.

gamopetalous (= sympetalous): with the petals united by their margins, at least at the base.

- gamophyllous: having the leaves or perianth segments united by their margins, at least at the base.
- gamosepalous: having the sepals united by their margins, at least at the base.

geniculate: bent abruptly like a knee joint.

- genotype: the total complement of hereditary factors (genes) acquired by an organism from its parents and available for transmission to its offspring. cf. phenotype.
- genus: a group of species believed to be related phylogenetically and usually clearly separable from other such groups, or a single species without close relatives. pl. genera.

geophyte: a plant whose perennating buds are buried in the soil.

glabrescent: becoming glabrous.

glabrous: without hairs.

gland: a structure, within or on the surface of a plant, with a secretory function.

glandular: bearing glands; functioning as a gland.

glaucous: blue-green in colour, with a whitish bloom (as in the juvenile leaves of many eucalypts).

globose: nearly spherical.

glomerule: a small compact cluster. adj. glomerulate.

glumaceous: glume-like, tending to be chaffy or membranous in texture.

glume: a bract in the inflorescence of a grass, sedge or similar plant.

- grain: a fruit characteristic of grasses (= caryopsis); pollen grain, a microspore of a seed plant, or the partially developed gametophyte formed from it.
- gymnosperm: a seed plant with the ovules borne on the surface of a sporophyll. cf. angiosperm.
- gynobasic: of a style, arising near the base of the gynoecium, e.g. between the lobes of the ovary.
- gynodioecious: having bisexual flowers and female flowers, on separate plants.

gynoecium: the carpels of a flower collectively.

gynophore: a stalk bearing the gynoecium above the level of insertion of the other floral parts.

gynostemium: see column.

habit: the growth form of a plant, comprising its size, shape, texture and orientation.

habitat: the environment in which a plant lives.

- half-inferior: of an ovary, partly below and partly above the level of attachment of the perianth and stamens. Fig. 26.
- halophyte: a plant adapted to living in highly saline habitats; a plant that accumulates high concentrations of salt in its tissues.
- haploid: having a single set of chromosomes in the nucleus (i.e. having each gene locus represented only once).
- hastate: spear-shaped; of a leaf blade, narrow and pointed but with two basal lobes spreading approximately at right angles. Fig. 23.

haustorium: an absorbing organ through which a parasite obtains chemical substances from its host.

helicoid: coiled; of a cymose inflorescence, branching repeatedly on the same side.

herb: any vascular plant that never produces a woody stem. cf. forb.

herbaceous: not woody; soft in texture.

hermaphrodite: = bisexual.

heterogamous: producing flowers of two or more kinds with respect to their fertile organs, e.g. male and female or bisexual and female. cf. **homogamous**.

heteromorphous (= heteromorphic): of two or more distinct forms.

heterosporous: producing separate male and female spores. cf. homosporous.

hilum: the scar on a seed coat at the place where it was attached to its stalk during development.

hirsute: bearing coarse, rough, longish hairs. cf. villous.

hispid: bearing stiff, bristly hairs.

hoary: covered with a greyish layer of very short, closely interwoven hairs.

holotype: a single specimen designated by the author of a plant (or animal) name, at the time of original publication, as that to which the name shall apply; the 'voucher specimen' of a name.

homogamous: having flowers of only one kind. cf. heterogamous.

- homosporous: producing only one kind of spore in the sexual reproductive cycle, and hence one gametophyte which produces both male and female gametes. cf. heterosporous.
- host: an organism on which a parasite lives and by which it is nourished (also applied, loosely, to a plant supporting an epiphyte).

hyaline: translucent, almost like clear glass.

- **hybrid:** an offspring of genetically different parents (in a Flora, usually applied where the parents are of different species).
- **hygroscopic:** absorbing water and undergoing movements or changes brought about by changes in water content.
- hypanthium: a cup or tube bearing floral parts above the base, and often above the top, of the ovary of a flower, e.g. in many Myrtales.
- hypocotyl: the part of the stem of an embryo or young seedling below the cotyledonary node.
- hypogeal: of germination, having the cotyledon(s) remaining within the seed coat. cf. epigeal.

hypogynous: arising below the level of insertion of the ovary (often applied, loosely, to a *flower* in which the sepals, petals and stamens are inserted below the ovary). cf. **perigynous, epigynous.** Fig. 26.

imbricate: of perianth parts, having the edges overlapping in the bud. Fig. 25.

- imparipinnate: having an uneven number of pinnae, by virtue of having one terminal pinna. cf. paripinnate. Fig. 24.
- incised: cut deeply, sharply and often irregularly (an intermediate condition between toothed and lobed). Fig. 24.

included: enclosed, not protruding.

incumbent: of the orientation of an embryo, with the cotyledons lying face to face and folded downwards beside the radicle; of anthers, lying against the inner face of the filament.

- incurved: bent or curved inwards or upwards; of *leaf margins*, curved towards the adaxial surface.
- indefinite: variable in number; numerous; of stamens, more than twice as many as the petals or sepals; of an inflorescence, not terminating in a flower (i.e. having a continuing, terminal growing point).
- indehiscent: not opening at maturity.
- indeterminate (= monopodial): of growth, the condition in which the terminal bud persists and produces successive lateral branches.
- indumentum: the epidermal appendages, e.g. hairs or scales, collectively.
- induplicate: folded inwards so that the outer faces of the margins are in contact.
- indusium: tissue covering the sorus of a fern; the pollen-cup of Goodeniaceae.
- inferior: of an ovary, at least partly below the level of attachment of the other floral parts. cf. superior. Fig. 26.
- inflexed: bent sharply upwards or forwards.
- inflorescence: the group or arrangement in which flowers are borne on a plant.
- infraspecific: of lower taxonomic rank than species.
- insectivorous: catching, and ostensibly feeding on, insects.
- inserted (on): attached to; arising from.
- integument: a covering; one of the outer layers of tissue of an ovule.
- internode: the portion of a stem between the level of insertion of two successive leaves or leaf pairs (or branches of an inflorescence).
- interpetiolar: of stipules, between the petioles of two opposite leaves. cf. intrapetiolar.
- interrupted: of an inflorescence, having the flowers unevenly distributed along the axis, with conspicuous gaps.
- intramarginal: situated inside but close to the margin, e.g. of a vein in a leaf.
- intrapetiolar: between a petiole and the subtending stem. cf. interpetiolar.
- introduced: not indigenous; not native to the area in which it now occurs. cf. adventive.
- introrse: of anthers, dehiscing towards the centre of the flower.
- involucre: a group of bracts enveloping a condensed inflorescence; a layer of tissue enveloping particular structures, e.g. an archegonium in Bryophyta, sporangia in Hymenophyllaceae.
- involute: rolled inwards; of a leaf, with the margins rolled towards the adaxial surface.
- irregular: see zygomorphic.
- isolateral (=isobilateral): having structurally similar upper and lower surfaces.
- isotype: a specimen which is, or is believed to be, a duplicate of the holotype, i.e. part of the same collection.
- juvenile: of leaves, formed on a young plant and different in form from the adult leaves.
- karyoevolution: evolutionary change in the chromosome set, expressed as changes in number and gross structure of the chromosomes; (more broadly), evolutionary relationships between taxa as indicated by karyotype differences.
- **karyotype:** the gross morphology of the chromosome set, described in terms of number, length, centromere position, etc.

keel: a ridge like the keel of a boat; *in particular*, a boat-shaped structure formed by fusion of the two anterior petals of a flower in Fabaceae.

keeled: of leaves or bracts, folded and ridged along the midrib.

- labellum: a lip; in Orchidaceae, the distinctive median petal that serves as an alighting platform for pollinating insects.
- laciniate: slashed into narrow, pointed lobes. Fig. 24.
- lacuna: a gap or cavity.
- lamella: a thin, plate-like layer; middle lamella, the layer between the walls of two adjacent cells.
- lamina: the blade of a leaf.
- lanceolate: of a leaf, about four times as long as it is broad, broadest in the lower half and tapering towards the tip. Fig. 23.
- latex: a viscous fluid exuded from the cut surfaces of the leaves and stems of certain plants.
- leaflet: one of the ultimate segments of a compound leaf.
- **lectotype:** a specimen selected from among those cited with the original description to serve in place of a holotype where the holotype is missing or destroyed, or where no holotype was designated.
- **legume:** a fruit characteristic of the families Mimosaceae, Caesalpiniaceae and Fabaceae, formed from one carpel and either dehiscent along both sides, or indehiscent; *in particular*, such a fruit that is grown as an edible crop; a crop species in the family Fabaceae.
- lemma: the lower of two bracts enclosing a grass flower.
- **lenticel:** a loosely-packed mass of cells in the bark of a woody plant, visible on the surface of a stem as a raised powdery spot, through which gaseous exchange occurs.

lenticular: shaped like a biconvex lens.

lepidote: covered with small, membranous scales.

- leptosporangiate: of ferns, having sporangia with walls only one cell thick. cf. eusporangiate.
- liane: a climbing or twining plant (usually applied to woody climbers).
- **lignotuber:** a woody swelling below or just above the ground, containing adventitious buds from which new shoots develop if the top of the plant is cut or burnt (common in the shrubby eucalypts and in many other fire-tolerant Australian shrubs).

ligulate: bearing a ligule; strap-shaped.

- **ligule:** a strap-shaped structure; a membranous or hairy appendage on the adaxial surface of a leaf, especially in grasses, at the junction between sheath and blade; a small adaxial appendage near the leaf base in some pteridophytes; the corolla limb in ray flowers of Asteraceae.
- limb: the upper, free, spreading portion of a corolla or perianth that is connate at the base.
- linear: very narrow in relation to the length, and with the sides parallel. Fig. 23.

lithophyte: a plant that grows on the surface of unweathered rock.

loculicidal: of the dehiscence of a fruit, along lines coinciding with the centres of loculi. cf. septicidal.

loculus: an enclosed compartment within an organ e.g. an ovary, an anther. pl. loculi.

- **lodicule:** one of a pair of tiny scales in a grass floret, between the lemma and the fertile parts of the flower, which may be reduced perianth segments.
- **lomentum:** a legume having distinct constrictions or lines of abscission between the seeds and breaking into one-seeded segments when mature.
- lyrate: deeply lobed, with a large terminal lobe and smaller lateral ones. Fig. 24.

macrospore: = megaspore.

mallee: a growth habit in which several woody stems arise separately from a lignotuber (usually applied to shrubby eucalypts); a plant having the above growth habit.

marginal: occurring at or very close to the margin.

- **megagametophyte:** a plant body or cell lineage, formed by vegetative growth of the megaspore, that produces the female gametes of a heterosporous plant.
- megasporangium: the larger of the two kinds of sporangia produced in the sexual life cycle of a heterosporous plant.
- **megaspore:** the larger of the two kinds of spores produced in the sexual life cycle of a heterosporous plant, giving rise to the female gametophyte.
- megasporophyll: a specialised leaf upon (or in the axil of) which one or more megasporangia are borne.
- **meiosis:** the two-stage division of a diploid nucleus, occurring once in every sexual life cycle, in which gene recombination occurs and the number of chromosomes characteristic of the sporophyte plant is halved prior to the production of gametes.
- mericarp: one segment of a fruit that breaks at maturity into units derived from the individual carpels. cf. schizocarp.
- meristem: growing regions of a plant in which cells that have retained their embryonic characteristics, or reverted to them secondarily, divide to produce new cells.
- mery: the number of parts per whorl that characterises a particular flower (generally constant for the perianth whorls and less often for the whorl(s) of stamens also). adj. merous.
- **mesocarp:** the fleshy portion of the wall of a succulent fruit inside the skin and outside the stony layer, if any, surrounding the seed(s).
- **mesophyll:** photosynthetic tissue of a green plant; *of vegetation*, characteristic of moist habitats and with soft, fairly large leaves predominating; a leaf whose area is within the approximate range 20–180 square cm.
- microgametophyte: a plant body or cell lineage, formed by vegetative growth of the microspore, that produces the male gametes of a heterosporous plant.
- micropyle: a small canal through the integument(s) of an ovule, persisting as a pore in the seed coat.
- **microsporangium:** the smaller of the two kinds of sporangia produced in the sexual life cycle of a heterosporous plant.
- microspore: the smaller of the two kinds of spores produced in the sexual life cycle of a heterosporous plant, giving rise to the male gametophyte.
- microsporophyll: a specialised leaf upon (or in the axil of) which one or more microsporangia are borne.
- midrib: the central, and usually the most prominent, vein of a leaf or leaf-like organ.

monadelphous: of stamens, united by their filaments into one bundle.

monocarpic: flowering and fruiting only once during its life span.

monochasium: a cymose inflorescence with the branches arising singly. cf. dichasium.

monochlamydeous: of a flower, having only one whorl of perianth parts.

- monocotyledon: a flowering plant whose embryo has only one cotyledon (seed leaf). cf. dicotyledon.
- **monoecious:** having the male and female reproductive structures in separate flowers but on the same plant. cf. **dioecious.**
- monophyletic: derived from a single ancestral line. cf. polyphyletic.
- **monopodial:** of growth, with a persistent terminal growing point producing many lateral organs successively; of a stem, growing in the above manner. cf. sympodial.
- **monotypic:** containing only one taxon of the next lower rank (e.g. applied to a family containing only one genus). cf. **polytypic.**
- **morphology:** the form and structure of an organism or part of an organism; the study of form and structure.
- motile: actively moving; self-propelled.
- mucilage: slimy material exuded by certain plants or plant organs. adj. mucilaginous.

mucro: a sharp, abrupt terminal point. adj. mucronate. Fig. 23.

muricate: rough on the surface due to minute, hard outgrowths of the epidermis.

mycorrhiza: a symbiotic union between a fungus and a plant root.

- **naked:** of sporangia, not covered by an indusium; of seeds, exposed on the surface of a sporophyll (not enclosed within an ovary); of flowers, without perianth; of protoplasts or gametes, not bounded by a cell wall.
- nectary: a gland that secretes nectar. adj. nectariferous.
- **neotype:** a specimen selected to serve in place of a holotype where none of the material to which the name was originally applied is known to have been preserved.

nerve: a vein.

neuter: sterile (e.g. of flowers in which neither the androecium nor the gynoecium is functional in reproduction).

nocturnal: of flowers, opening only at night.

node: the level (transverse plane) of a stem at which one or more leaves arise.

- **nomen conservandum:** a name of a family or genus (or taxon intermediate between these two) that has been formally accepted as the correct name contrary to the usual principles of botanical nomenclature.
- **nomen illegitimum:** a name which, at the time of its publication, was superfluous (because the taxon to which it was applied had already been named) or had already been applied to another plant.
- **nomen nudum:** a name published without a diagnosis or description of the entity to which it applies, and without reference to either.
- nomen rejiciendum: a name rejected in favour of a 'nomen conservandum'.
- nucellus: the central tissue of an ovule, within which the megaspore mother cell is formed.
- nut: a hard, dry, indehiscent fruit formed from two or more carpels but containing only one seed.
- obconical: cone-shaped but attached at the narrower end.
- **obcordate:** of a leaf blade, broad and notched at the tip; heart-shaped but attached at the pointed end. Fig. 23.
- oblanceolate: similar in shape to lanceolate but attached at the narrower end.

obligate: of parasites, unable to survive without the host. cf. facultative.

- **oblique:** of a leaf or leaflet, larger on one side of the midrib than on the other, i.e. asymmetrical. Fig. 23.
- **obloid:** (a three-dimensional shape) with short, parallel sides and rounded ends, as if composed of two hemispheres linked together by a very short cylinder.
- **oblong:** having the length greater than the width but not many times greater, and the sides parallel. Fig. 23.
- obovate: similar in shape to ovate but attached at the narrower end. Fig. 23.

obsolescent: non-functional but not reduced to a rudiment.

- obsolete: reduced to a rudiment, or completely lacking.
- obtuse: blunt or rounded at the apex, the converging edges separated by an angle greater than 90 degrees. Fig. 23.
- ochrea: a sheath, formed from two stipules, encircling the node in Polygonaceae.
- ontogeny: the development of a single organism, i.e. the sequence of stages through which it passes during its lifetime.
- **operculum:** a lid or cover becoming detached at maturity by abscission; *in Eucalyptus (for example)*, a cap covering the bud and formed by fusion or cohesion of perianth parts.
- **opposite:** of leaves, borne at the same level but on opposite sides of the stem; of *floral parts*, on the same radius (as). cf. **alternate.**
- orbicular: circular or nearly so. Fig.23.

order: a taxonomic grouping of families believed to be closely related (sometimes a single family with no apparent close relatives).

- orthotropous: of an ovule, erect so that the micropyle points away from the placenta. Fig. 25.
- ovary: the basal portion of a carpel or group of fused carpels, enclosing the ovule(s).
- ovate: shaped like a section through the long axis of an egg, and attached by the wider end. Fig. 23.
- ovoid: egg-shaped (in three dimensions). cf. ovate.
- ovulate: with ovules.
- ovule: a structure in a seed plant within which one or more megaspores are formed and which develops into a seed after fertilisation.
- ovuliferous: bearing ovules (e.g. applied to scales in a megasporangiate cone in gymnosperms).
- palea: in a grass floret, the upper one of the two bracts enclosing a flower.
- palmate: of a leaf, divided into several leaflets which arise at the same point. Fig. 24.
- palmatifid: of a leaf, deeply divided into several lobes which arise (almost) at the same level. Fig. 24.
- **palmatisect:** a condition intermediate between **palmate** and **palmatifid**, with the green tissue of the lamina completely divided into several segments, but the segments not fully separated at the base. Fig. 24.

palynology: the scientific study of pollen.

panicle: a compound raceme; an indeterminate inflorescence in which the flowers are borne on branches of the main axis or on further branches of these.

paniculate: indeterminate and much branched.

papilla: a small, elongated protuberance on the surface of an organ, usually an extension of one epidermal cell. adj. papillose.

- pappus: a tuft (or ring) of hairs or scales borne above the ovary and outside the corolla in Asteraceae and possibly representing the calyx; a tuft of hairs on a fruit.
- parasite: an organism living on or in a different organism and deriving nourishment from it. cf. saprophyte, epiphyte.
- **paratype:** a specimen, other than the holotype, that was cited with the original publication of a name.
- parenchyma: plant tissue consisting of mature, living cells that are relatively unspecialised in function.
- parietal: attached to the margins of a structure; of placentation, having the ovules attached to placentas on the wall of the ovary. Fig. 25.
- **paripinnate:** having an even number of pinnae by virtue of having a pair in the terminal position. cf. **imparipinnate**. Fig. 24.

-partite: divided, almost to the base, into segments (commonly applied to a style).

pedicel: the stalk of a flower. adj. pedicellate.

peduncle: the stalk of an inflorescence; *in ferns*, the stalk of a sporocarp. adj. ped-unculate.

pellucid: transparent.

- **peltate:** of a leaf, having the stalk attached to the lower surface of the blade, not to the margin (also applied, in the same sense, to other stalked structures). Fig. 23.
- **pendulous:** drooping; of ovules, attached at the top of the ovary and hanging downwards from an apical placenta.

penicillate: pencil-shaped; tufted like an artist's brush.

- **penniveined:** with conspicuous lateral veins diverging from the midrib and lying approximately parallel to each other.
- **pentamerous:** of a flower, having five parts in each floral whorl (not necessarily including the gynoecium).
- perennate: maintain a dormant, vegetative state throughout non-growing seasons.

perennial: a plant whose life span extends over more than two growing seasons.

- **perfoliate:** of a sessile leaf or bract, having its base completely wrapped around the stem.
- perianth: the calyx and corolla of a flower, especially where the two are similar.

pericarp: the wall of a fruit, developed from the ovary wall.

perigynous: of perianth segments and stamens, arising from a cup or tube (hypanthium) that is free from the ovary but extending above its base. cf. hypogynous, epigynous. Fig. 26.

- perisperm: nutritive tissue in an angiospermous seed, formed from the nucellus. cf. endosperm.
- **persistent:** remaining attached to the plant beyond the expected time of falling (e.g. of sepals not falling after flowering).
- petal: a member of the inner whorl of non-fertile parts surrounding the fertile organs of a flower, usually soft and coloured conspicuously.

petaloid: like a petal; soft in texture and coloured conspicuously.

petiole: the stalk portion of a leaf.

petiolule: the stalk portion of a leaflet.

phanerogam: (literally) a plant with conspicuous reproductive parts; a plant reproducing by seeds. cf. cryptogam.

- **phenotype:** the physical characteristics of an organism; the outward expression of characteristics conferred on an organism by its genotype.
- **phloem:** the tissue in the conducting system of a plant through which metabolites (products of chemical reactions in the plant) are transported.
- **phylloclade:** a very leaf-like, photosynthetic stem of a plant whose true leaves are much reduced. cf. **cladophyll.**
- **phyllode:** a leaf whose blade is much reduced or absent, and whose petiole and rachis have assumed the functions of the whole leaf. cf. **cladode**.
- **phyllotaxy:** the arrangement of leaves on a stem (when spiral, often expressed quantitatively as the fraction of the circumference of the stem that separates two successive leaves).
- **phylogeny:** the evolutionary development of a plant group, i.e. its derivation from its ancestors and the relationship among its members. adj. **phylogenetic.**

phylum: a taxon of high rank, the major unit of classification. cf. division.

pilose: hairy, the hairs soft and clearly separated but not sparse.

pinna: a primary segment of the blade of a compound leaf.

pinnate: divided into pinnae; once-compound. cf. bipinnate. Fig. 24.

- pinnatifid: cut deeply into lobes that are spaced out along the axis (of the leaf). cf. palmatifid. Fig. 24.
- **pinnatisect:** dissected down to the midrib but having the segments confluent with it. Fig. 24.
- pinnule: a leaflet of a bipinnate leaf.
- pistil: a free carpel or a group of fused carpels.
- pistillode: a sterile pistil, often rudimentary.
- pith: the central region of a stem, inside the vascular cylinder.
- placenta: a region, within an ovary, to which ovules are attached.
- placentation: the arrangement of placentas, and hence of ovules, within an ovary. Fig. 25.
- plicate: folded back and forth longitudinally like a fan.

plumose: like a feather; with fine hairs branching from a central axis.

plumule: the portion of an embryo that gives rise to the shoot system (as distinct from the root system) of a plant. cf. radicle.

pod: a leguminous fruit.

pollen: the microspores of seed plants; the powdery mass of microspores shed from anthers.

pollen-sac: see sac.

- **pollination:** the transfer of pollen from the male organ, where it is formed, to the receptive region of a female organ, e.g. from anther to stigma.
- **pollinium:** a cohering mass of pollen grains, transferred as a unit in pollination. pl. **pollinia.**
- polygamodioecious: having bisexual and male flowers on some plants, and bisexual and female flowers on others.
- polygamous: having bisexual and unisexual flowers on the same plant.

polymorphic: having more than two distinct morphological variants.

polypetalous: with free petals. cf. gamopetalous.

polyphyletic: composed of members that originated, independently, from more than one evolutionary line. cf. **monophyletic.**

polyploid: having more than two of the basic sets of chromosomes in the nucleus. **polytypic:** containing more than one taxon of the next lower rank. cf. **monotypic**.

pome: a fleshy (false) fruit, formed from an inferior ovary, in which the receptacle or hypanthium has enlarged to enclose the true fruit.

posterior: of floral parts, on the side of the flower nearest to the axis. cf. anterior.

prickle: a hard, pointed outgrowth from the surface of a plant, involving several layers of cells but not containing a vein.

procumbent: trailing or spreading along the ground but not rooting at the nodes.

propagule: a structure with the capacity to give rise to a new plant, e.g. a seed, a spore, part of the vegetative body capable of independent growth if detached from the parent.

prophyll: a leaf formed at the base of a shoot, usually smaller than those formed subsequently.

prostrate: lying flat on the ground.

protandrous: having the male sex organs maturing before the female; of a flower, shedding the pollen before the stigma is receptive. cf. protogynous.

prothallus: a gametophyte body, especially in ferns and related plants.

protogynous: having the female sex organs maturing before the male; of a flower, shedding the pollen after the stigma has ceased to be receptive. cf. protandrous.

proximal: near to the point of origin or attachment. cf. distal.

pseudo-: false; apparent but not genuine.

puberulous: covered with minute, soft, erect hairs.

pubescent: covered with short, soft, erect hairs.

pulvinus: a swelling at the base of the stalk of a leaf or leaflet, often glandular or responsive to touch.

punctate: marked with dots.

pungent: ending in a stiff, sharp point; having an acrid taste or smell.

pyrene: the 'stone' (endocarp plus seed) of a succulent fruit. cf. drupe.

quincuncial: of the arrangement of corolla lobes in a bud, a variant of imbricate aestivation. Fig. 25.

raceme: an indeterminate inflorescence in which a main axis produces a series of flowers on lateral stalks, the oldest at the base and the youngest at the top. adj. racemose.

rachilla: the axis of a grass spikelet, above the glumes.

rachis: the axis of an inflorescence or a pinnate leaf; pl. rachises. secondary rachis: the axis of a pinna in a bipinnate leaf.

radical: of leaves, clustered at the base of the stem.

radicle: the portion of an embryo that gives rise to the root system of a plant. cf. plumule.

raphe: the part of the stalk of an anatropous ovule that is fused along the side of the ovule.

raphides: needle-like crystals that occur in bundles in the vacuoles of some plant cells.

ray: a zygomorphic flower in Asteraceae; a radial band of cells traversing the conducting elements in woody stems.

receptacle: the axis of a flower (= torus); *in ferns*, an axis on which sporangia arise. **recurved**: curved or curled downwards or backwards.

reflexed: bent sharply downwards or backwards.

regular: see actinomorphic.

reniform: kidney-shaped. Fig. 23.

replum: a longitudinal partition in an ovary, formed between parietal placentas.

resupinate: twisted through 180 degrees, e.g. as with the ovary of most Orchidaceae. **reticulate:** forming a network.

retinaculum: a hook-like structure to which another structure is tethered; *in Orchid-aceae and Asclepiadaceae*, the structure to which pollen masses are attached; *in Acanthaceae*, the persistent stalk of an ovule.

retrorse: directed backwards or downwards. cf. antrorse.

retuse: with a very blunt and slightly notched apex. Fig. 23.

revolute: rolled downwards or backwards.

rhachilla: = rachilla.

rhachis: = rachis.

rhizoid: a thread-like, unicellular absorbing structure, occurring in fern gametophytes and in some non-vascular plants.

rhizome: an underground stem, usually growing horizontally.

rhizophore: in Selaginella, a leafless stem that produces roots.

rhomboid: quadangular, with the lateral angles obtuse. Fig. 23.

root: a unit of the axial system of a plant which is usually underground, does not bear leaves, tends to grow downwards and is typically derived from the radicle of the embryo. See **adventitious**.

rootstock: a short, erect, swollen structure at the junction of the root and shoot systems of a plant.

rostellum: a beak-like upward extension of the stigma in Orchidaceae.

rotate: circular and flattened, e.g. of a corolla with a very short tube and spreading lobes.

rudimentary: poorly developed and not functional. cf. vestigial, obsolete.

rugose: deeply wrinkled.

ruminate: mottled in appearance, e.g. of bark, or of the food reserves in a seed.

runcinate: deeply lobed and with the lobes slanted away from the apex. Fig. 24.

runner: a slender, prostrate or trailing stem which produces roots and sometimes erect shoots at its nodes.

sac: a pouch or cavity; **pollen-sac:** a cavity, in an anther, in which pollen is formed; **embryo-sac:** a large, multi-nucleate cell in which an egg nucleus is formed and fertilised, and in which an embryo begins to develop.

saccate: pouched.

sagittate: shaped like an arrow-head. Fig. 23.

samara: a dry, indehiscent fruit with its wall expanded into a wing.

saprophyte: an organism deriving its nourishment from dead organic matter and usually lacking chlorophyll. cf. parasite.

scabrid (= scabrous): rough to the touch.

scale: a reduced or rudimentary leaf, e.g. surrounding a dormant bud; a thin flap of tissue, e.g. on the ventral surface of a liverwort thallus and at the base of a stamen in Simaroubaceae.

scandent: climbing.

scape: the stem-like, flowering stalk of a plant with radical leaves.

scarious: dry and membranous.

schizocarp: a dry fruit formed from more than one carpel but breaking apart into 1-carpel units when ripe.

sclerenchyma: mechanical tissue with heavily thickened cell walls.

scleromorph: a plant whose leaves (or stems, if leafless) are hard in texture, usually having thick cuticle and containing many fibres. cf. xeromorph.

sclerophyllous: with leaves stiffened by sclerenchyma.

- scorpioid: of a cymose inflorescence, branching alternately on one side and then the other. cf. helicoid.
- secund: with all the parts grouped on one side or turned to one side (applied especially to inflorescences).
- seed: a propagating organ formed in the sexual reproductive cycle of gymnosperms and angiosperms, consisting of a protective coat enclosing an embryo and food reserves.

segment: a part or sub-division of a divided organ; one of a group of similar organs named collectively, e.g. one petal = a segment of a corolla.

sepal: a member of the (usually green) outer whorl of non-fertile parts surrounding the fertile organs of a flower.

sepaloid: looking like sepals, e.g. of bracts, usually green and arranged in a ring beneath a flower.

septate: divided internally by partitions.

septicidal: of the dehiscence of a fruit, along lines coinciding with the partitions between loculi. cf. loculicidal.

septum: a partition. pl. septa.

seriate: in rows or whorls.

sericeous: silky; covered with silky hairs.

serrate: toothed, with asymmetrical teeth pointing forward. Fig. 24.

- serrulate: finely serrate. Fig. 24.
- sessile: without a stalk (when applied to a stigma, indicates that the style is absent, the stigma being 'sessile' on the ovary).
- seta: a bristle or stiff hair; *in Bryophyta*, the stalk portion of a sporophyte plant body. **terminal seta:** an appendage to the tip of an organ, e.g. the primary rachis of a bipinnate leaf in *Acacia*.

setose: bristly.

- shrub: a woody plant less than 5 metres high, either without a distinct main axis, or with branches persisting on the main axis almost to its base.
- siliceous: containing silica.

silicula: a short siliqua, not more than twice as long as its width.

- siliqua: a dry, dehiscent fruit formed from a superior ovary of two carpels, with two parietal placentas and divided into two loculi by a false septum between the placentas.
- simple: undivided; of a leaf, not divided into leaflets; of a hair or an inflorescence, not branched.

sinuate: with deep, wave-like depressions along the margin. cf. undulate. Fig. 24.

sinus: a notch or depression in the margin of an organ.

solitary: of flowers, borne singly, not grouped in an inflorescence.

sorus: in ferns, a discrete group of sporangia. pl. sori.

spadix: a spicate inflorescence with a stout, often succulent axis.

spathaceous: like a spathe; with a spathe.

- spathe: a large bract ensheathing an inflorescence.
- spathulate (= spatulate): spoon-shaped; broad at the tip and narrowed towards the base. Fig. 23.
- **species:** a taxon comprising individuals, or populations of individuals, capable of interbreeding to produce fertile offspring; the largest group of individuals between which there are no distinguishable, consistent differences in form or reproductive mechanisms.
- spike: an unbranched, indeterminate inflorescence in which the flowers are without stalks. adj. spicate.
- spikelet: a unit of the inflorescence in grasses, sedges and some other monocotyledons, consisting of one to many flowers and associated glumes.
- spine: a stiff, sharp-pointed structure, formed by modification of a plant organ, e.g. a lateral branch or a stipule.
- spinescent: ending in a spine; modified to form a spine.
- spinose: bearing spines.
- **spiral:** of leaves or floral organs, borne at different levels on the axis, in an ascending spiral. cf. cyclic.

sporangiophore: the stalk of a sporangium.

sporangium: a structure within which spores are formed. pl. sporangia.

- **spore:** a simple propagule, produced either sexually or asexually, and consisting of one or a few cells.
- sporocarp: a fruiting body containing sporangia.

sporogenous: of cells or tissues, in which spores are formed.

- sporophyll: a specialised leaf-like organ on which one or more sporangia are borne.
- **sporophyte:** a plant, or phase of a life cycle, that bears the spores formed during the sexual reproductive cycle.

spur: a tubular pouch at the base of a perianth part, often containing nectar.

stamen: one of the male organs of a flower, consisting typically of a stalk (filament) and a pollen-bearing portion (anther). adj. staminate.

- staminode: a sterile stamen, often rudimentary.
- standard: the posterior petal in the flower in Fabaceae.

stellate: star-shaped; consisting of star-shaped cells.

- stem: the main axis or a branch of the main axial system of a plant, developed from the plumule of the embryo and typically bearing leaves.
- stigma: the pollen-receptive surface of a carpel or group of fused carpels, usually sticky.
- stipe: a small stalk; *in ferns*, the petiole of a frond; *in algae*, the cylindrical basal portion of a thallus.
- stipitate: stalked; borne on a stipe; of an ovary, borne on a gynophore.

stipule: one of a pair of appendages at the bases of leaves in many dicotyledons.

stolon: a prostrate or trailing stem that produces roots at the nodes.

stoloniferous: having stolons; trailing over the soil surface and rooting at the nodes.

stoma: a pore; a pore in the epidermis of a leaf or other aerial organ, providing access for gaseous exchange between the tissues and the atmosphere. pl. stomata.

- stomium: a region of dehiscence, e.g. of an anther in flowering plants or of a capsule in mosses. pl. stomia.
- striate: striped with parallel longitudinal lines or ridges.
- strigose: with sharp, stiff hairs which are slanting rather than erect.
- strobilus: a 'cone' consisting of sporophylls borne close together on an axis.
- strophiole: = caruncle.
- style: an elongated part of a carpel, or group of fused carpels, between the ovary and the stigma.
- subulate: narrow and tapering gradually to a fine point. Fig. 23.
- sulcate: grooved; furrowed.
- superior: of an ovary, borne above the level of attachment of the other floral parts, or above the base of a cup (hypanthium) that is free from the ovary and bears the perianth segments and stamens. cf. inferior. Fig. 26.
- suture: a line of junction between two fused organs; a line of dehiscence.
- syconium: a multiple fruit with a hollow centre, e.g. in Ficus (fig).
- sympatric: of two or more species, having coincident or ovarlapping ranges of distribution. cf. allopatric.
- sympetalous: = gamopetalous.
- **sympodial:** of growth, without a single, persistent growing point; changing direction by frequent replacement of the growing apex by a lateral growing point below it; of a stem, growing in the above manner. cf. monopodial.
- synandrium: an androecium with the anthers of the stamens cohering. cf. syngenesious.
- syncarpous: of a flower, having two or more carpels, all fused together.
- syngenesious: of the stamens of one flower, fused together by the anthers e.g. in Asteraceae.
- syntype: one of two or more specimens cited by the author at the time of publication of a name for which no holotype was designated.
- taproot: the main, descending root of a plant that has a single, dominant root axis.
- taxon: a group or category, at any level, in a system for classifying plants or animals.
- tendril: a slender climbing organ formed by modification of a part of a plant, e.g.' a stem, a leaf or leaflet, a stipule.
- **tepal:** a perianth segment in a flower in which all the perianth segments are similar in appearance.
- terete: cylindrical or nearly so; circular in cross-section.

terminal: at the apex or distal end.

- ternate: in groups of three; of leaves, arranged in whorls of three; of a single leaf, having the leaflets arranged in groups of three. Fig. 24.
- terrestrial: of or on the ground; of the habitat of a plant, on land as opposed to in water, or on the ground as opposed to on another plant.
- testa: a seed coat.
- tetrad: a group of four; four pollen grains remaining fused together at maturity, e.g. in Ericaceae, Epacridaceae.
- tetradynamous: of an androecium, consisting of four stamens of the same length and two of a different length.
- tetramerous: of a flower, having four segments in each perianth whorl, and usually in each whorl of stamens also.

00

- thallus: the vegetative body of a plant that is not differentiated into organs such as stems and leaves, e.g. algae, the gametophytes of many liverworts, and Lem-naceae.
- thorn: a modified plant organ, especially a stem, that is stiffened and terminates in a pungent point.

throat: of a corolla tube, the top, where the tube joins the lobes.

- thyrse: a branched inflorescence in which the main axis is indeterminate and the lateral branches determinate in their growth.
- tomentum: a covering of dense, matted, woolly hairs. adj. tomentose.
- torus: see receptacle.
- trabecula: a transverse partition dividing or partly dividing a cavity.
- tree: a woody plant at least 5 metres high, with a main axis the lower part of which is usually unbranched.
- trichome: an unbranched epidermal outgrowth, e.g. a hair, a papilla; *in blue-green algae*, a single row of cells in a filamentous colony.

trichotomous: branching almost equally into three parts.

trifid: deeply divided into three parts.

trifoliate: having three leaves.

trifoliolate: of a leaf, having three leaflets.

trigonous: triangular in cross-section and obtusely-angled. cf. triquetrous.

trimerous: of a flower, having three segments in each perianth whorl and usually in each whorl of stamens also.

tripinnate: of leaves, thrice pinnately divided.

- triquetrous: triangular in cross-section and acutely-angled; with three distinct longitudinal ridges. cf. trigonous.
- truncate: with an abruptly transverse end, as if cut off. Fig. 23.
- tuber: a storage organ formed by swelling of an underground stem or the distal end of a root.
- tubercle: a small wart-like outgrowth.
- tuberculate: covered with tubercles.

tuberous: swollen; of roots, tuber-like.

turgid: swollen due to high water content. cf. flaccid.

type: a designated representative of a plant name.

umbel: a racemose inflorescence in which all the individual flower stalks arise in a cluster at the top of the peduncle and are of about equal length.

undulate: wavy, i.e. not flat. cf. sinuate. Fig. 24.

unifoliate: having one leaf.

unifoliolate: of a leaf, basically compound, but reduced to only one leaflet.

unilocular: of an ovary, anther or fruit, having only one internal cavity.

unisexual: bearing only male or only female reproductive organs.

united: fused together.

urceolate: urn-shaped.

utricle: a small bladder; a membranous bladder-like sac enclosing an ovary or fruit.

valvate: of sepals or petals in a bud, meeting edge to edge, not overlapping. cf. imbricate. Fig. 25.

- valve: a portion of an organ that has fragmented; of a capsule, the teeth-like portions into which the dehiscing part of the pericarp splits at maturity.
- vascular: specialised for conduction of fluids; vascular plants: plants containing specialised conducting tissues.
- vein: a strand of vascular tissue.
- velamen: a water-retaining outer layer of the aerial roots of some epiphytes, especially orchids.
- velum: a membranous covering; a veil.
- venation: the arrangement of veins in a leaf.
- ventral: of a lateral organ, facing towards the subtending axis; of a thallus, facing towards the substratum. cf. dorsal.
- vernation: the arrangement of unexpanded leaves in a bud. cf. aestivation.
- versatile: of anthers, swinging freely about the point of attachment to the filament, which is approximately central.

verticillate: arranged in one or more whorls.

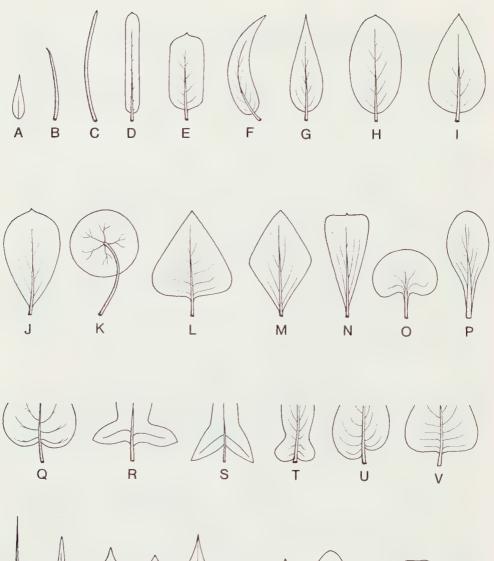
vesicle: a bladder-like sac or cavity filled with gas or liquid.

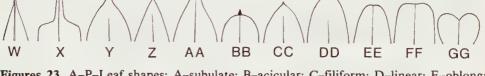
- vessel: a capillary tube formed from a series of open-ended cells in the waterconducting tissue of a plant.
- vestigial: reduced from the ancestral condition and no longer functional. cf. rudimentary.

villous: shaggy with long, weak hairs.

viscid: of a surface, sticky; coated with a thick, syrupy secretion.

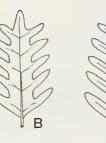
viscous: of a liquid, not pouring freely; having the consistency of syrup or honey.

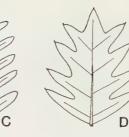

viviparous: of seeds or fruits, germinating before being shed from the parent plant.


whorl: a ring of leaves, bracts or floral parts borne at the same level on an axis.

- wing: a membranous expansion of a fruit or seed, which aids dispersal; a thin flange of tissue extended beyond the normal outline of a stem or petiole; a lateral petal of a flower in Fabaceae.
- **xeromorph:** a plant having structural features usually associated with plants of arid habitats (such as hard or succulent leaves) but not necessarily drought-tolerant. cf. **xerophyte**.

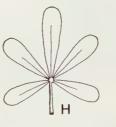
xerophyte: a drought-tolerant plant.

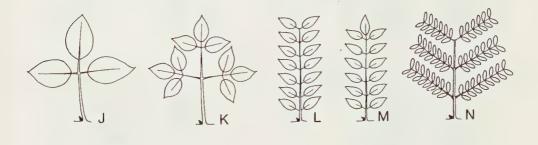

- xylem: the tissue, in a vascular plant, that conducts water and mineral salts from the roots to the leaves.
- **zygomorphic:** of a flower or calyx or corolla, symmetrical about one plane only, usually the plane that bisects the flower vertically. cf. actinomorphic.



Figures 23. A-P-Leaf shapes: A-subulate; B-acicular; C-filiform; D-linear; E-oblong; F-falcate; G-lanceolate; H-elliptic; I-ovate; J-obovate; K-orbicular and peltate; L-deltoid; M-rhomboid; N-cuneate; O-reniform; P-spathulate. Q-V-Leaf bases: Q-cordate; R-hastate; S-sagittate; T-auriculate; U-oblique; V-truncate. W-GG-Leaf tips: W-aristate; X-caudate; Y-acuminate; Z-acute; AA-cuspidate; BB-mucronate; CC-apiculate; DD-obtuse; EE-retuse; FF-emarginate; GG-obcordate.







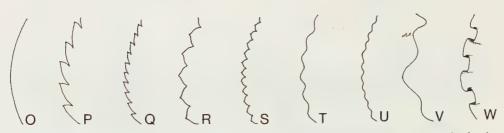


Figure 24. Division of leaves: A-lyrate; B-pinnatifid; C-pinnatisect; D-incised; E-laciniate; F-runcinate; G-palmatifid; H-palmatisect (= digitate); I-palmate; J-trifoliolate; K-ternate (strictly, biternate); L-M-pinnate (L-paripinnate, M-imparipinnate); N-bipinnate; O-entire; P-serrate; Q-serrulate; R-dentate; S-denticulate; T-crenate; U-crenulate; V-sinuate; W-undulate.

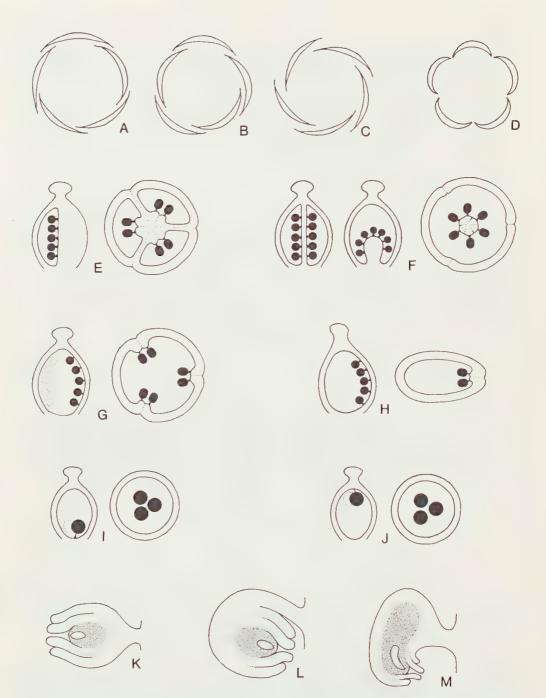


Figure 25. A-D-Aestivation: A-C-imbricate (A-cochlear, B-quincuncial, C-convolute); D-valvate. E-J-placentation: E-axile; F-free-central; G-parietal; H-marginal; I-basal; J-apical. K-M-Orientation of ovules: K-orthotropous; L-anatropous; M-campylotropous.

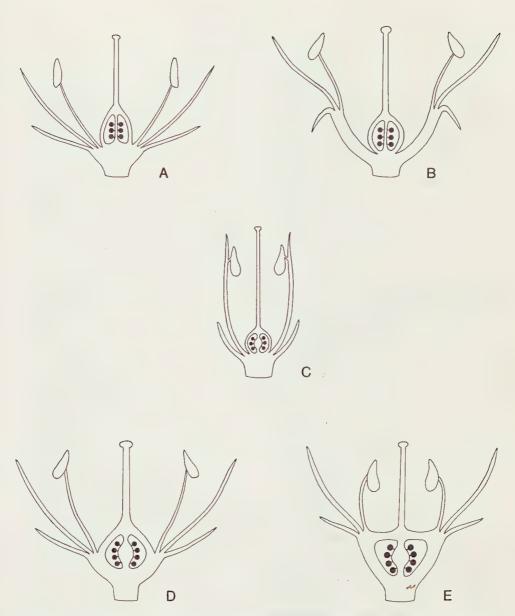


Figure 26. Positions of floral organs: A-perianth and stamens hypogynous, ovary superior; B-perianth and stamens perigynous, ovary superior; C-perianth and stamens hypogynous, stamens epipetalous, ovary superior; D-perianth and stamens epigynous, ovary half-inferior; E-perianth and stamens epigynous, ovary inferior.

INDEX

Acacia, 59 Airy Shaw, H. K., 83 Andrews, E. C., 27 Angiospermae, 78 Anthophyta, 78 ANZAAS, 5, 6, 7, 8, 10 Australasian Herbarium News, 5 Australian Academy of Science, 6 Flora and Fauna Committee, 7, 9 Standing Committee for a Flora of Australia, 8 Australian Biological Resources Study (ABRS), 9, 10 Advisory Committee, 10 functions, 9 Interim Council, 9 Australian flora alien species, 11 Antarctic element, 26, 27 arid zone, 59, 61, 62, 63 Australian element, 26, 27, 50 autochthonous element, 26, 44, 45 conservation, 66 dysploidy, 45 endemism, 44 eremean, 60 Gondwanan, 42, 44, 51, 55 Indomalayan element, 26, 27 invasion theory, 26, 29 karyoevolution, 28 pollination and breeding systems, 65 polyploidy, 45, 64 scleromorphy, 45 size, 6 state of knowledge, 9, 11 Tertiary immigration, 51 uniqueness, 25, 66 Australian and New Zealand Association for the Advancement of Science (ANZAAS), 5, 6, 7, 8, 10 Flora of Australia Committee, 6 Australian Plant Name Index, 8, 9 Australian Science and Technology Council (ASTEC), 9, 10 Australian Systematic Botany Society, 8

Bass Strait, 55 Beard, J. S., 6, 7 Bentham, G., ii, 4 Bentham, G. & Hooker, J. D., 81 Biological Survey of Australia, 7 Black, J. M., 3 Blake, S. T., 6 Bowler, J. M., 61 Brown, R., 12, 78 Burbidge, N. T., 8, 9, 27, 28 Bureau of Flora and Fauna, 11 Catcheside, D. G., 8 Class, 78 Committee of Heads of Australian Herbaria, 10 Continental displacement, 30, 31, 40, 41 Continental drift, 30 Convergent evolution, 82 Cormophyta, 78 Crocker, R. L., 27, 61 Cronquist, A. J., 11, 82, 91 CSIRO, 8 Dahlgren, R. M. T., 100 Darwin, C., 79 Dicotyledoneae, 78 Diels, L., 27, 60 Division, 78 Editorial Committee for the Flora of Australia, 10 Eichler, Hj., 5, 7 Embryobionta, 78, 79 N Engler, A., 89 Eucalyptus, 58 Family, 78 Flora Australiensis, 3, 4, 5, 6, 14, 81 Flora of Australia, 3, 10, 79, 82 see also Australian flora Editorial Committee, 10, 82 Flora of Central Australia, 8 Generic Flora of Australia, 8 Genus, 77

Gondwanan flora, 42, 44, 51, 55

Index

Hartley, W., 5 Herbert, D. A., 29 Hierarchy of botanical taxonomic classification, 77, 79, 80 Hooker, J. D., 17, 25, 26 Hopper, S. D., 44 Hutchinson, J., 87 Indomalayan land bridge, 27 Institute of Australian Flora and Fauna (IAFF), 10 Invasion theory, 26, 29 Jessop, J. P., 3, 8 Jussieu, A. L. de, 78, 79 Karyoevolution, 28 Kingdom, 78 Lamarck, J. Monnet de, 79 Land bridges, 27, 30 Liliopsida, 78 Lindley, J., 15 Linnaeus, C., 77 Loranthaceae, 51 McKenna, M. C., 40, 41 Maiden, J. H., 3 Magnoliophyta, 78, 79, 82, 101 Magnoliopsida, 78 Mawby, Sir M., 7, 8, 9 Melchior, H., 89 Monocotyledoneae, 78 Mueller, F. von, 3, 14, 18 Natural system of classification, 78, 81 Nelson, E. C., 52 New Guinea, 50, 54 Order, 78 Origin of angiosperms, 41 Palaeoclimate, 33 Palaeogeography, 31 Phylogenetic system of classification, 81 Phylogenetic 'tree', 81, 100, 101, 103 Plate tectonics, 30, 31

Regional Floras, 7, 8

Schwarz, O., 27 Sexual system of classification, 77 Smith-White, S., 28 Society for Growing Australian Plants, 8 South West Botanical Province, 44 Species, 77 Specific epithet, 77 Stearn, W. T., 7 Steenis, C. G. G. J. van, 9

Takhtajan, A., 93 Tasmania, 55 Tate, R., 27, 60 Taxon (taxa), 77 Thorne, R. F., 95 Torres Strait, 54

Western Australia, 44 Wilson, P. G., 10 Wood, J. G., 5, 27, 61

**

forde a sport optime Development N

813.

Flora of Australia - Index to families of flowering plants

	Volume		Volume		Volume
Acanthaceae	33	Campanulaceae	34	Ericaceae	9
Aceraceae	25	Cannabaceae	3	Eriocaulaceae	40
Actinidiaceae	6	Cannaceae	45	Erythroxylaceae	24
Agavaceae	46	Capparaceae	8	Eucryphiaceae	10
Aizoaceae	4	Caprifoliaceae	36	Euphorbiaceae	23
Akaniaceae	25	Cardiopteridaceae	22	Eupomatiaceae	2
Alangiaceae	22	Caryophyllaceae	5	Fabaceae	13.14.15
Alismataceae	39	Casuarinaceae	3	Fagaceae	3
Amaranthaceae	5	Celastraceae	22	Flacourtiaceae	8
Anacardiaceae	25	Centrolepidaceae	40	Flagellariaceae	40
Annonaceae	2	Cephalotaceae	10	Frankeniaceae	8
Apiaceae	27	Ceratophyllaceae	2	Fumariaceae	2
Apocynaceae	28	Chenopodiaceae	4	Gentianaceae	28
Aponogetonaceae	39	Chrysobalanaceae	10	Geraniaceae	27
Aquifoliaceae	22	Cistaceae	8	Gesneriaceae	33
Araceae	39	Clusiaceae	6	Goodeniaceae	35
Araliaceae	27	Combretaceae	18	Grossulariaceae	10
Arecaceae	39	Commelinaceae	40	Gunneraceae	18
Aristolochiaceae	2	Connaraceae	10	Gyrostemonaceae	8
Asclepiadaceae	28	Convolvulaceae	30	Haemodoraceae	45
Asteraceae	37,38	Corsiaceae	47	Haloragaceae	18
Austrobaileyaceae	2	Corynocarpaceae	22	Hamamelidaceae	3
Balanopaceae	3	Costaceae	45	Hanguanaceae	46
Balanophoraceae	22	Crassulaceae	10	Hernandiaceae	2
Basellaceae	5	Cucurbitaceae	8	Himantandraceae	2
Bataceae	8	Cunoniaceae	10	Hippocrateaceae	22
Berberidaceae	2	Cuscutaceae	30	Hydatellaceae	45
Betulaceae	3	Cymodoceaceae	39	Hydrocharitaceae	39
Bignoniaceae	33	Cyperaceae	41,42	Hydrophyllaceae	30
Bixaceae	8	Datiscaceae	8	Icacinaceae	22
Bombacaceae	7	Davidsoniaceae	10	Idiospermaceae	2
Boraginaceae	30	Dichapetalaceae	22	Iridaceae	46
Brassicaceae	8	Dilleniaceae	6	Juncaceae	40
Bromeliaceae	45	Dioscoreaceae	46	Juncaginaceae	39
Brunoniaceae	35	Dipsacaceae	36	Lamiaceae	31
Burmanniaceae	47	Donatiaceae	34	Lauraceae	2
Burseraceae	25	Droseraceae	8	Lecythidaceae	8
Byblidaceae	10	Ebenaceae	10	Leeaceae	24
Cabombaceae	2	Elaeagnaceae	16	Lemnaceae	39
Cactaceae	4	Elaeocarpaceae	7	Lentibulariaceae	33
Caesalpiniaceae	12	Elatinaceae	6	Liliaceae	45
Callitrichaceae	32	Epacridaceae	9	Limnocharitaceae	39

SURVET 581.994 17631

	Volume		Volume		Volume
Linaceae	24	Piperaceae	2	Surianaceae	10
Loganiaceae	28	Pittosporaceae	10	Symplocaceae	10
Loranthaceae	22	Plantaginaceae	32	Taccaceae	46
Lythraceae	18	Plumbaginaceae	5	Tamaricaceae	8
Magnoliaceae	2	Poaceae	43,44	Theaceae	6
Malpighiaceae	24	Podostemaceae	18	Thymelaeaceae	18
Malvaceae	7	Polemoniaceae	30	Tiliaceae	7
Marantaceae	45	Polygałaceae	24	Trapaceae	18
Melastomataceae	18	Polygonaceae	5	Tremandraceae	24
Meliaceae	26	Pontederiaceae	45	Triuridaceae	39
Melianthaceae	25	Portulacaceae	5	Tropaeolaceae	27
Menispermaceae	2	Posidoniaceae	39	Typhaceae	45
Menyanthaceae	30	Potamogetonaceae	39	Ulmaceae	3
Mimosaceae	11,12	Primulaceae	10	Urticaceae	3
Molluginaceae	- 5	Proteaceae	16,17	Valerianaceae	36
Monimiaceae	2	Punicaceae	18	Verbenaceae	30
Moraceae	3	Rafflesiaceae	22	Violaceae	8
Moringaceae	8	Ranunculaceae	2	Viscaceae	22
Musaceae	45	Resedaceae	8	Vitaceae	24
Myoporaceae	33	Restionaceae	40	Winteraceae	2
Myristicaceae	2	Rhamnaceae	24	Xanthophyllaceae	24
Myrsinaceae	10	Rhizophoraceae	22	Xanthorrhoeaceae	46
Myrtaceae	19,20,21	Rosaceae	10	Xyridaceae	40
Najadaceae	39	Rubiaceae	36	Zannichelliaceae	39
Nelumbonaceae	2	Ruppiaceae	39	Zingiberaceae	45
Nepenthaceae	8	Rutaceae	26	Zosteraceae	39
Nyctaginaceae	4	Salicaceae	8	Zygophyllaceae	26
Nymphaeaceae	2	Santalaceae	22	501 5	
Ochnaceae	6	Sapindaceae	25		
Olacaceae	22	Sapotaceae	10		
Oleaceae	32	Saxifragaceae	10		
Onagraceae	18	Scrophulariaceae	32		
Opiliaceae	22	Simaroubaceae	25		
Orchidaceae	47	Smilacaceae	46		
Orobanchaceae	33	Solanaceae	29		
Oxalidaceae	27	Sonneratiaceae	18		
Pandanaceae	39	Sparganiaceae	45		
Papaveraceae	2	Sphenocleaceae	34		
Passifloraceae	8	Stackhousiaceae	22		
Pedaliaceae	33	Stemonaceae	46		
Philydraceae	45	Sterculiaceae	7		
Phytolaccaceae	4	Stylidiaceae	34		
	-	Stynulaceae	54		

of Victoria

FLORA OF AUSTRALIA

The series *Flora of Australia*, planned to comprise approximately 50 volumes to be published over a 20-year period, is designed for use by persons with some botanical knowledge who require information on the names, characteristics, distribution and habitat of Australian plants.

George Bentham's *Flora Australiensis*, the only previous Australia-wide Flora, was written in England and published between 1863 and 1878. It contained 8125 species. The new *Flora*, written by many botanists, will describe all the native and naturalised plants of Australia, currently estimated to be over 20 000 species. Co-ordinated and edited by the Bureau of Flora and Fauna, Department of Home Affairs and Environment, it will contain keys for identification, colour and black and white illustrations and distribution maps.

This introductory volume contains chapters on the history and purpose of the *Flora* of Australia project, the origin and evolution of the Australian flora, and the systematic arrangement of plant families. It includes a key for the identification of families of flowering plants and a glossary of botanical terms.

Cover: *Helichrysum ayersii* F. Muell. and *Ptilotus obovatus* (Gaudich.) F. Muell., near the Cavenagh Range, central Western Australia (Photograph A. S. George).