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NOTATION 

A Cross-sectional area of stressed material 

Influence or response coefficients (for certain cases 

these quantities will have a prime or a bar above them) 

B Lift constant of hydrofoil (equals Tbs p) 

b Semichord length of hydrofoil 

Inertia coefficients (for certain cases these quantities 

will have a prime or a bar above them) 

C Lift constant of hydrofoil (equals B (3b Soe 
cosh qk: a constant 

Pine Pio? Dor? a0 

© Internal damping constant; cos a2 

CHC Still-water damping constants (structural damping 

plus viscous damping at S = 0) 

¢c External damping constant 

External damping constant 

dx Thickness of beam slice (differential length) 

E Young's modulus of elasticity; lift constant of 

hydrofoil (cquals B (3 + e)’) 
EI Flexural rigidity of beam 

e A constant; base of natural logarithms (2.718.....); 

distance from midchord line to axis of rotation 

positive toward approaching stream 

F Force on beam 

Fr Oscillatory lift force on hydrofoil 

G Modulus of elasticity in shear; external moment or 

couple on beam positive in same direction of positive 

@ or 2¥. 
ox 

iv 



Equals G for shear modulus 

Distance from axis of rotation to effective center of 

mass of hydrofoil, positive when center of mass is 

displaced from axis toward the approaching stream, as 

in Figure 3 

Distance from axis of rotation to center of mass of 

rigid body, positive toward approaching stream, as in 

Figure 5 

Area moment of inertia of beam section about axis 

perpendicular to the plane of bending; effective 

moment of inertia of foil about axis through its 

center of mass and parallel to axis of rotation (used 

for foil not attached to beam) 

Effective moment of inertia of foil as just defined 

when foil is attached to a beam; similar moment of a 

rigid body 

Equals 15 + hom for foil attached to a beam 

y—-1 

Numerical factor dependent upon geometry of beam cross 

section; K <1 

Shear rigidity 

Elastic constants of structure connecting foil to beam; 

k is also the reduced frequency ee 

A constant in the lift formula assumed equal to 5 b- e5 

distance from effective center of mass of foil to lift 

line 

Length of beam 

Length of hydrofoil 

Total moment acting on cross section of beam material 

lying toward x = 0, taken positive in same direction 

as G or 6 

Moment due to bending of beam 



Moment due to shear warping of beam 

Total moment on hydrofoil about axis of rotation 

Effective mass of foil and of a rigid body, respectively 

(including virtual mass due to surrounding fluid) 

Shear force on beam taken positive with F and v 

2 af aaa V 
Equals =~ ie NIVGU SIL 6e : aVVi+e°-¢ 

E 

respectively 

Uniform speed of stream of fluid; sinh Ink 

Critical flutter speed 

Sin q,2 

Time 

Displacement of beam, positive in same direction as F; 

similar displacement of foil at axis of rotation 

Equals v at x = 0, or at line of attachment of foil 

Rectangular coordinates with x axis always parallel to 

the beam axis and y along a perpendicular principal 

axis 

When vibrations are due to bending flexibility only, 

(KAG =~) y is the equivalent rotation of a cross 
section of the beam about an axis perpendicular to the 

xy-plane due to bending and rigid-body motion; positive 

in direction of positive a 
x 

For a vibrating beam with finite bending and shear 

flexibility, y is no longer the slope of the beam but 

represents an equivalent rotation of the cross section 

about an axis perpendicular to the xy-plane. For the 

meaning of equivalent rotation, see Appendix A and 

Equation [A27] of Reference 11 

Bending strain; a number allowing for effect of varia- 

tion in E or shape of cross section 

Specific gravity of fluid 



D| 

1 Ppa 
Damping constant; equals — ——— (See Section 7) 

AZ PoA 

Equals ae angle of rotation of hydrofoil about axis 

of rotation lying in plane of foil and parallel to its 

length, positive in same direction as G, and measured 

from zero when both foil and beam are in their neutral 

positions 

Equals 3 at x = 0; local rotation of beam; angle of 

rotation of a rigid body; positive like 6 

+ iq); or 2 a8 ratio of length of any beam to standard 

beam 

Effective mass per unit length of beam (including an 
appropriate allowance for virtual mass of surrounding 

water) 

ue 
Equals to =a mite 

qe 

Density of fluid bathing the foil and density of pure 

water, respectively 

Bending stress; equals 
2KAG 

A number! allowing for the effect of a change of 

either beam density or cross-sectional area of beam 

Equals Go - iwe) 

Circular frequency of vibration 
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ABSTRACT 

Equations are developed for two-dimensional harmonic trans- 

verse forcing at any point of an undamped uniform beam having 

bending and shearing flexibilities and for harmonic end forcing 

of a uniform beam having also external and internal damping. 

Variations of beam influence and inertia coefficients with fre- 

quency are discussed for an undamped beam without shear warping. 

Equations are also developed for the determination of the 

flutter speed of a rigid hydrofoil flexibly attached to such a 

beam. The flutter process is illustrated by a detailed discus- 

sion of two simple cases of flutter. 

1. INTRODUCTION 

Sea trials of USS FOREST SHERMAN (DD 931) indicated that during a 

steady horizontal maneuver severe vibrations were transmitted by the 

rudders to the wall To anticipate the occurrence of severe vibrations 

and possible control-surface flutter within the range of ship operating 

speeds, the authors undertook a series of studies of the flutter 

phenomenon. A theory was advanced for treating the vibration character- 

istics of a control surface (e.g., rudder or diving plane) hull system 

subject to hydrodynamic forces on the control SwiERACESo 2” This theory has 

I References are listed on page 92. 
This theory has been applied to USS ALBACORE (AGSS 569) and to the motor 
gunboat PGM. The results for these two cases will be reported 

separately. 

* 



been shown to have some degree of veririeatione The method of determina- 

tion of the hydroelastic parameters for these control surfaces is given in 

References 5, 6, and 7. Methods for determining certain damping terms 

from observations, originally omitted from the flutter equations in 

Reference 2, can now be included and are given in Reference 8. Related 

studies of the static and dynamic loads on the rudder of a ship during a 

steady horizontal maneuver, which is also of interest in the treatment of 

flutter, were undertaken in References 9 and 10. 

The Bureau of Ships, recognizing the parallel need for the explora- 

tion of the possibility of the occurrence of flutter in hydrofoil craft, 

requested the David Taylor Model Basin to undertake a similar hydro- 

elastic study for these craft. To achieve this objective, in this report 

equations are derived for predicting the critical flutter speed of a 

rigid foil flexibly attached to a uniform mass-elastic (i.e., nonrigid) 

free-free beam immersed in a fluid moving with uniform velocity. The 

analysis includes the two-dimensional quasi-steady expression for 

hydrodynamic force and moment on the foil. The relative influences upon 

the vibrations, critical flutter speeds, and frequencies of the values of 

the various parameters of the beam-foil system are discussed in detail. 

Certain special cases are also considered. A survey of the work performed 

in this report is given in the Summary. 



2. HARMONIC END FORCING OF UNDAMPED UNIFORM BEAM WITH SHEAR WARPING 

Consider a uniform beam that is maintained in vibration by a trans-— 

verse force F and a couple G, acting in a principal plane containing the 

principal axes of all beam cross sections; see p. 188 of Reference 11. 

It will be assumed that F and G are both harmonic functions of the time; 

nonharmonic forcing is much more complicated. 

In developing the theory, F and G will be assumed to act at one end 

of the beam, taken as x = 0; generalization for other positions will be 

given later. Furthermore, F and G will be assumed to vary at the same 

frequency and in phase, so that 

F = A sin ut; G = B sin wt [la,b ] 

in terms of constants A and B. The resulting formulas can then be 

applied to a case in which the frequencies of F and G differ by first 

putting B = 0, then A = 0, and adding the two motions thus obtained. If, 

on the other hand, F and G have the same frequency but differ in phase 

(F = A sin wt, G = B sin(wt + $)),) it is readily seen in the same way that 

the general formulas are all valid as they stand (hence, for instance, in 

Equations [12a,b] v, and 8, are intermediate in phase between F and G). 

Let v(x, t) denote the displacement of the beam, positive in the 

same direction as F, and let G be positive in the same direction as 

positive dv/dx. F and G are assumed to be applied in such a way that 

significant distortton of the end of the beam, near x = 0, is avoided 

except for the normal distortions of cross sections accompanying bending 

and shear. Let the other end of the beam, at x = 2, be entirely free. 



The general harmonic case of a transverse force and couple acting 

on one end of the beam can be resolved into two sets of forces and couples 

like the set just described, with the two sets acting in perpendicular 

prinetpal planes. 

Although nonharmonte forcing is much more complicated, solutions to 

such forcing can be found using Fourier Series or Fourier Integral methods. 

Basic equations for the harmonic forcing are developed, including 

the shear-warping effect; however, rotary inertia is ignored because of 

its small effect in practice (see p. 187 of Reference 11). 

Let M denote the moment acting across any cross section on material 

lying toward x = 0, taken positive in the same direction as Gor 06, where 

@ denotes 3v/dx for convenience, P the corresponding shear force taken 

positive with F and v, and y the mass of the beam per unit length. Then 

the appropriate differential equations are as follows (see Equations [2.12] 

to [2.15] in Reference 11, where V = -P because V was taken positive 

toward negative v, and the Iz term is to be omitted) ; the reader can also 

find the basis for these equations in many texts on vibration theory: 

2 ap AP 9M 
HOUR bs 8 BO (Bade. 

at 

ov oY. M 

=—=y + 20P; == 2c,d 
Bip ISD a ame (Bea) 

alt 
Here Bo is written for the constant usually denoted by KAG, the shear 

rigidity, and this parameter as well as yu and EI are assumed untform 

along the beam. 



In harmonic vibration, Equation [2a] becomes: 

Ci ancl WOW Si eee 

An equation containing M alone is easily deduced, thus: 

Ly ELIA omen 
= 9x >? oo Way ye 5 

ox 

ov GP BO ON av Fe aoM 
Soa ORE See ie ol = Tar oj 

v ox x ax- ax° 

and, substituting this last expression for dy/ax in Equation [2d] and 

then substituting for v yields: 

ee ee eee 
EI wwe y 2 

ox OX 

or 

4 2 2 aM 4 fe oM ww [3a] 
2ouw — ~ - —— M=0 

axe Ox° ae 

* 

For convenience, introduce q and &, defined thus: 

2 
4 ww wu 2 

Qh as Fl >? Se A o = oEIq {4a,b] 

q 

aa XS 2 Cpa: : 
Then, substituting Mee sin wt and also 2oyw = 2q°& into Equation [3a], 

and dividing through by M, yields the following equation as the necessary 

and sufficient condition for ): 

4 4 og2 ex - gt =0 

Thus, by solving c = a6" & ot y ape + at and taking first the minus and 

then the plus sign before the radical and again extracting the square root, 

it is found that either A= + iq,> or A= 2 G56 where 

as = Vi +e ar (3 8 a, -aV Vive? - [5a,b] 

*Compare with equations in Appendix [D2] of Reference 11. 



All square roots are meant to be postttve. The values i = tel MelCladanto 

sin a4* and cos q,x as alternative real factors, whereas \ = =z Gl, leads to 

sinh 45x and cosh q5x: 

The following useful auxiliary formulas are easily obtained: 

e e 2 2 2 2 2 
aj + a5 = 2q Tet > a dae Ore 2a°E; ae al [6a,b,c] 

oe ae ae + : 1 2 1 oe 
She tata 3 a wr a = 2q! (i = BE) : [6d,e] 
sy) *SI5) 12 

Thus, in harmonic motion, M can be expressed in terms of the four 

independent solutions of Equation [3a] as follows: 

sin a,x + €, cos q,x + e3 sinh ox + €) cosh aX fival 

in which each coefficient cr is the product of sin wt and an arbitrary 

constant. Corresponding series for P, v, and dv/dx or 96 are easily 

obtained by substitution for M in equations previously written, 

differentiating the series for v to obtain 6. 

, At x= 2, P=M=0; whereas at x = 0, P = -F and M= -G, since F 

and G represent actions on material lying toward positive x from the 

terminal cross section and P and M represent actions toward negative x. 

# 
Thus, the boundary conditions for the present problem are (since 

P = -0M/dx): 

at x = 0 But F 9 M = -G 
ax 

at x = 2 ve 0) ; M=0 
x 

Substituting the series for M and then setting first x = 0 and then x = 2 

gives the four equations: 

* Compare with Equations [D8] of Reference 11. 



a@1 + %e3 = Tie Peo at cls -G [8a,b] 

cos g_.k - 1&5 sin q,% +) qe (cosh) qey q€), sinh q 2 = 0 [8c] 
sical 1 Oe 2 2 

e, sin q,% + €5 cos a, + e3 sinh qo2 + e) cosh qo2 = 0 [8a] 

These equations can now be solved for e. It appears to be more 

useful, however, to relate F and G to values of v and av/ax at x = 0, 

denoted, respectively, by Ma and 86° Since ww°v = EIqtv = 9°M/ax-, 

4 eu 3 
ine) We aM : EIq/e = o-M 

fe) 2) fo) 9 3 
ax /x = 0 2S) [set ©) 

or, substituting the series for M; 

4 2 2 
EIq YW. 2 eis + qe), [9a] 

3 
EIq "8, = -q]e) + a3e 3 [9b ] 

Solving Equations [8a,b] and [9a,b] for e gives: 

2 e 2 h + = a, (a; qn )e a5F - EIq’e 

2 2 LR) 4 
(ay ar a5 e, = 5S se EIq ie 

2 2 2 4 
+ = + an(ay + a5)e, = ajF + Elq 6, 

Pies: eel vie hot? 4 
(a5 + a, )e), = -a56 + EIq va 

These values of e may then be substituted into Equations [8c,d] and 

eae ‘ 2 F ‘ 
multiplied through for convenience by q, + ase Hereafter, it will also be 

convenient to shorten the notation by writing: 

s = sin a2 B ec = cos qa, ° S = sinh Ink g C = cosh Ink 



Then Equations [8c,da], taken in reverse order, may be written: 

\ S \ aj 95 (Come; oS 2 \tie @. = (3s + —<s\F + (qo + aoc) [10a] o \ao 4 | Ay 1 2 

4 4 
(q,8 + q,8)EIq Wy @ (C-c)EIq Q. = -(a§c + a5c)F + q195(a,5 = Qos )G [10d } 

Finally, these equations may be solved, for convenience, either for 

v. and 8, in terms of F and G, or for F and Gin terms of v . and 8° For fo) 

this solution, use may be made of Equations [6a-e]. Furthermore, besides 

2 
verifying that e + s° = 1 and ce - S =1, it can be easily verified that: 

(c+e)® = (Sec") = 2 (alee) [11a] 

2 2 5 2 
fe oe oes sic &e [11d ] 

The resulting alternative sets of formulas are: 

Yo 2 Og? © a1065 §. 2 a55F + 8.556 [12a,b] 

aL als 1 ) 1 
aj2- 5: Vite an S.C) Sees es 

IL 1 
Ae =-I58 > Aa Ss 6@))]] = zs 
12 De g FIq° 

Ge HES = Ea) = = jp. (Ca o sS - l-c ae, on Da Ze E EIq2 

Cop = ii. DSRS or SN sare 

Da =1- cC - E—sS 

* Compare with Equations [A67a,b] of Reference 11 with Y = r= 0. 



=| + ° = F Pons ” Pipisp © 2 Sane > alls [13a,b] 

Z V 2 Daa 1+eE tanec + q,cS) EIq 

2 
[sS + E(1-cC)] EIq 

2 
[(a#2e)sS - e(1-cc)] EIq° 

2 
1+e° (& SG so i cS) EIq 

ah qd 

o. Sis CC Pv 285 & Deo 

Here both q and & increase as w increases. ¢ is a dimensionless quantity 

and may serve as a relative measure of the effect of shear warping on the 

vibrations of the beam. The increase of & with tnereasing w means that 

the effect of shear warping increases with increasing frequency, as ts 

well known in other connections. 

Using a common terminology, the coefficients a B51> and a UL? “no? 09 

may be called influence coeffictents for forcing of the beam at one end. 

KE 

Similarly bp by5, D,..> and oe might be called inertta coeffictents. 
al 

Because of the factors SHIN Lt Gini cos q,£in the formulas, the values of 

both sets of coefficients, as w increases from 0, range in roughly cyclic 

fashion over all values between -~ and +™. 

These coeffictents may be of use tn treating the vibrations of a 

system composed of a untform beam attached at one end to another 

structure. 

* See pp. 9 and 180 of Reference 11. 

we WAS ue refer to the influence of forces in producing vibrational 
aL 

displacements; the b's to the effects of beam mass in making F and G 

ij 
necessary. 



3. HARMONIC END FORCING OF AN UNDAMPED 
UNIFORM BEAM WITHOUT SHEAR WARPING 

Because of the two independent parameters q and &€ in the formulas, 

the discussion of special cases is complicated. Accordingly, the varia- 

tion of the coefficients with w will be discussed in greater detail only 

in the case of —& = 0; that is, when shear warping is neglected. 

When € = O, the formulas become, with two useful additions: 

Woe ai F + aG 5 eae AyoF + a6 [lh4a,b] 

sC-cS 1 sS 1 

ial 1-cC EIq3 12 Ail laa BIg” 

sC+cS 1 d £ l+cC 1 ane ee Ng ok SS ENS oO pe 
= Elq > = 22 1-cC q i 22 2 ~ TES (er) ?ql 

Se Died, § © 2 Baad, ? Paats [15a,b] 

C+cS 3 ss 2 Da. 2 oe mee 8 ban = = - EIq 11 we 12 ~ “Bil 1+cC 

sC-cS 2 1-cC 2h byl = aeces eld sil Din Ba 5- Oe imines (EI) q 

The added formulas are obtained with the use of Formula [1lb]. It 

will be noted that when — = 0, a GL. Ereel 1) = Ip 
an 9 Ae a ABs 

As qg increases, sinh qg and cosh gg soon become large and nearly 

equal; for example, sinh 3 = 10.018, cosh 3 = 10.068. Hence, at least 

from q2 = 2n upward, the following simplified formulas may be sufficiently 

accurate; they are obtained by dividing numerator and denominator by C 

and then replacing S/C by unity, provided — = 0: 

10 



s-c 1 s 1 
EN he rere SV La ies CL he 

11% ¢-(1/C) pqq3 12 21 e-(1/C) ite 

Spector Pa, 2 eng hee (16) aera 
Sp - 7 (R/C) me >? Sivas ~ Be eC) ga2e0 

If also le| >> 1/C, the still simpler approximations become available: 

ee aL ee 

Baa 2 (een of oi) 2 @€ Se. 8 stem al 
11 2 EIq> nt2 eal te" 

a 1 2 ]h ars 
= QR + —-> _: Be ——————————— 

Bop = (tan a2 +1) FT7 3 8418507840 (enya! 

Several interesting cases are now discussed in the order of 

increasing q&%, assuming that & = 0. 

(a) Uniform rigid beam, q& << 1: Smallness of q may arise from 

smallness of etther 2 or w, the latter occurring in q. Then use may be 

made of the series (note that when & = 0, Gly SC q): 

cos qk n il} 

@ dl 4 
sin gf = at - Z(qt)>...3¢ 1 = 5(a2) + dy (ak) +: 

Be sal y 

sinh q% = qk + Hat) >... 50 cosh qk = 1 + =(a2) + ay ae n ul 

Keeping only the lowest power of qk: 

s: ‘ 4 i 
i eG Se Bs Lo es = (ql) 8 sS = (qf) 

os a2 3 
SCitcSu= eae: sc - cS = 3 (a4) 

: : : : 2 
In this case, it may be enlightening to return also to WW by sub- 

4 we 
stituting q = 2S Then, provided 4% << 1: 

EI 

11 



= = — 5 a = a = —_——_— = 5 

11 EIg'tg raft M2 2 mgt? moar 

sige C a ay Nyala 

220 Ig $23 ussur 

2 2 2 nt 3 2 
=a Qw b = — g . = Q 

nal Se TM OS ae a ae 

5 : J eS ae 
In Poa? uL is the total mass of the beam; in Pes 3 uX is its moment 

of inertia as a rigid body rotating about one end; in Pipe zoe? equals 

mass times distance from either end of the beam to the center of mass. 

The validity of Equations [15a,b] for F and G in this approximation is 

easily verified from elementary mechanics. Thus, when qf << 1, the beam 

behaves, as it should, approximately like a uniform rigid rod of length 

2 and mass uk, 

2 Dn eee 
As qk +0, a5? B15? pe and 811% - a5 all become infinite, 

2 whereas b__, b b and b Db - bd all go to zero. 
aly ela per in 22 12 é 

In the following discussion of other cases, the notation is often 

shortened by denoting the first fraction in each formula preceding the 

EI fraction by the symbol for the coefficient with a bar over it. For 

sC - cS =~ a CC. 
example , a = - <r ee Also, A= ep ee @pe alse OI SH aly 

a4 = GUE and A = - = ae AIB@ 2% |e] ss (A/C) , 

Baa, = tan q@ -1 and A = - 1. 

(bo) First "built-in" frequency: When gq = 0.5977 = 1.875, calcula- 

tion shows that cC = cos q% cosh q% = -l. This is the familiar frequency 

12 



equation for a uniform beam vibrating with one end built in and the other 

* 
end free. Calculation from the formulas following Equations [l4a,b] gives: 

S 35208. Gi. So l,i AS O = -2.069; op 31 21D 

The corresponding values of b Bio» and a, are all infinite. It 
2 

does not follow, however, from Equations [15a,b] that va and 8). are 

aa” 

necessarily zero. This would be the case if only one of these variables 

were present; for Equations [l4a,b] furnish finite values of ue and 6, to 

match any finite values of F and G. The ratio 84/V%o> however, is fixed 

and cannot be varied by changing F and G. For, since a= 0, 

2 
811859 - ayo = O and, hence: 

812 800 
PR ay aee =- 0.735 q 
11 12 

Thus, the ratio of the right-hand members of Equations [l4a,b] is -0.735 q 

for all finite values of F and G; it follows that ie = -0.735 q also. 

If, however, the ratio F/G = + 0.735 q, then F/G = - 85/8415 - Bno/B155 

so that a,,F +a,_G=a Ft a, 
3 EN ee 

ALT: 12 12 c 0 and Equations [lha,b] give Ue » =o 
2 

The beam is then vibrating as if it were built-in at x =0. If it 

actually is built-in, F/G or 0.735 q is the ratio of the reactions -F and 

-G on the supporting structure. 

Further illumination results from considering what happens when cC is 

merely very close to -1l. Then b bj, and db are finite but large so 
dal” 22 

that, in general, large forces are required to produce arbitrarily 

assigned values of ve and Oo: The same conclusion can be derived from 

* The equation cC = -1 is assumed to be exactly true, the value of qk 

being within 0.001 of that stated. Similarly, the same is assumed in 

other cases. 
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Equations [l4a,b] by noting that the result of solving [l4a] for F and 

substituting for F in [14>], or solving for G and substituting for G, is: 

: mine : : 
Since 841850 - B10 is almost zero when cC is close to -l1, moderate-sized 

F and G must leave Oi close to 855/814 and also to a /85- To produce 

considerably different values of 86/Vo requires large-sized F and G. 

(c) First sliding-end frequency: When qk,= 0.753n = 2.365, 

calculation shows that sC = - cS or (multiplied by cC) tan q% = - tanh q% 

and 

a5 = SsS58 8 Qi> = Oo (or 8 Ano = 0 

Also, b,, = 0. If F = 0, then Equation [14>] gives 6, = 0. The beam is 

then vibrating as if free to slide transversely (aida I? 2 ©)) Ere se S Os 

however, it is constrained against rotation. Also, in this case, Vi cite AG 

and -G or -V,/815 represents the reaction upon the constraining 

structure. Different vibratory motions occur if F is not zero. 

(a) As q2 passes through 7 or 3.142, a, passes through zero and 
12 

changes sign (because sin q% does), and i> does likewise. Thus, at 

Op Sain ae ES Eh 6 ii" and 8, =a,,G. Calculation gives: 
22 

SS bhi se 8... 2 0.017 's Aea= O82 
. 22 11 

(e) First pin-end frequency: At q%= 1.2500 = 3.927, tan qk = 

tanh q 2% and 

14 



The interesting special case at this value of q% is a pin-ended beam 

vibrating with G= 0, v. = 0, and F= 84/810" If G # 0, then 

Vo = - 0.946 G/(EIq°). 

(f) Second built-in frequency: As q& increases toward 1.57, c is 

negative but decreases numerically until cC = -l. Because of the huge size 

of S and C, c must be very small; cC = -l at q2 = 1.4950 = 4.695, with 

Ch= OR OMin SS) = (C=542 7 tol three! fileures).) and 

ar = 26.9 ; a5 Se OT sis Bas = 27.8 0) AU=)0 

whereas Boa 9 Dio» and Boo are all infinite. As in Case (b), it follows 

from 811855 - a = 0 that, in general, oN. is fixed at the value 

815/811> or here at - 1.017 q. If, however, either F = G = 0 or F/G = 

845/814 = + 1.017 q, then Vans oS as for a built-in beam. 

(@) A@gGhe ib0Ss 47523 Cs mia.Ss6,. Sa, = 55.6 
11 12 2] 

(to 3 figures), and A = 1. 

(h) First free-free frequency: At (very nearly) q% = 1.5057 = 4.730, 

eC = 1, as for free-free vibration. Now, finally, it is the turn of a and 

es Coats s 
A to become infinite. Also, bjjb55 - bio = 0, hence b1/%y0 = Dy o/o0> 

so that the right-hand members of Equations [15a,b], if not zero, are in 

the ratio bi 10> and, if G # 0: 

F b 
a elle (cot q& + coth q%) q = 0.982 q 

Bio 

a finite quantity. Thus, when a beam is forced so that F = 0.982qG, the 

beam amplitude remains finite! An attempt to force with F/G in a 

a) 



different ratio, or with either F or G alone, will result in infinite 

amplitudes of vibration. With F = G = 0, however, the beam may execute a 

free vibration with 

b 
8 
—2 = - T= _ 9.982 g 
Vv b 

© 12 

(i) At qt = 1.55n = 4.870: Enis Shpall ae = TOOr 3 ai 5.89, 

ane AES 1422, Ae qa increases further, the a's continue to decrease 

numerically. 

(3) Second slitding-end frequency: Just beyond q&’ = 1.75n or 

5.50, tan q2 = = tanh q& and a4 Ho 26022 ajo = oO. Ano = QO, and 

A =- 1.02. The general situation is as in Case (b). 

(k) At qt = 2n = 6.283: a eo 1.004, B15 = 05 Ap = 1.004, and 

- 1.008. >| u 

During each further 27 range of qk (2m < qe < lh, kn < qh < 6m, etc.), 

a cycle of zero and infinite values of as occurs similar to that in the 

range 0 < q% < 2m except that during the first quadrant of each em 

range, two additional points occur that have no analog in the first 2n 

range. Successive points of interest are now spaced almost exactly 1/4 

apart, and the peaks in the curve that contains the infinities become 

extremely narrow. 

The two additional points in the fifth quadrant and two other 

points illustrating the concentrated occurrence of large a's are as 

follows: 
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(1) Second ptn-end frequency: tan qk’ = tanh qf, qk = 2.251 = 7.07 

(within 0.01). Here s = c = 0.707, € = 588, a3 0, 85 = - OOK 

on = 2,00, and NS os 100 Caiiuin OO). 

(m) At qt = 2.4900 = 7.823: a), = BS. Bae 32.7, a5 = 33-7, and 

RS o 1.08. 

(n) Second free-free frequency: cC = 1; q2 = 2.500n = 7.601 

(within 0.001). Here a and a., are all infinite. In Wises, wacn iL? “Ae 20 

Case (g), finite amplitudes may occur only if neither F nor G vanisies 

and F/G = he = 1.001 q, or if F=G=0. 

(0) Third built-in frequency: cC = -1; hence qt = 2.500257 = 7.655. 

H = 12 a. 2A. as 6h = 64 A= ; ere C = 1290 and 811 = 855 Bo 2,5 645, and A = O (exactly) 

= }. 1 
To find q% and B)0> let eC = =<1; but C=>S, hence c = - 1290 = 

- 0.000775. Also c = -8, the slight angle beyond 2.5m or 7.85398, there- 

fore 8 = 0.000775 = 0.000247n and qk = 7.85398 + 0.000775 = 7.855 or 

om I plcOOOOs do IL 
. 5 SoS g- = (=) = - =(- S 6S. 2.500257. a), Se Ss (re ) 5 (-1290) = 645 

; Sy a peed is Nan en ve a any As zi Alternatively , B15 Takers sS = 5 S = 5 sinh 7.855 because cC = -l, 

BS ae Ny Soa 7665S 22 085D,) wk 7655 _ s=1. Hence, a), = 5 (e -e ) 52 = 1290 and 

Bio = 645. 

(9) Ae oO & 208i = 7.6659 © S W522. a = - 32.1, B15 S Shoe, 

B55 == 30.2, and A= - 0.95. 

Above q2 = 3, at least, curves representing Bi4> 15> and B55 lie 

close to those defined by an = tan qk -l, Qe = - tan q2, and 

iT 



B55 = tan q2+1. The effect of the small omitted term 1/C is chiefly to 

shift the position of the infinite values very slightly along the q2 axis, 

by 4qg = + 1/C, since, when q& << 1, cos qg - (1/C) = cos [qe + (1/C)]. 

At the free-free frequencies defined by eC = 1, resonance may be 

said to occur, since the beam can vibrate at these frequencies even if 

F=G=0. In the one-dimensional cases, an attempt to force at a reso- 

nant frequency necessarily results in an infinite amplitude. In a two- 

dimensional (or two degrees of freedom, (v,6@)) case like the case under 

discussion, however, and presumably in any multidimensional case, finite 

amplitudes will occur, provided the applied reactions are in certain 

ratios to each other. 

Conversely, at the built-in frequencies defined by cC = -1, there is 

"antiresonance.'' In a one-dimensional case of this kind, the forced 

amplitude cannot be budged from zero at the forcing point; however, in 

similar multidimensional cases, the amplitudes of displacement or 

rotation at the forcing point merely stand necessary in certain fixed 

ratios to each other, these ratios being independent of the ratios of 

the applied forces or moments. 

The detailed discussion of individual cases is greatly simplified 

when shear warping is neglected because then, in the formulas, only the 

single parameter q varies with frequency. If shear warping is included, 

the parameter € also varies and the variation of the coefficients 

becomes more complicated. It may reasonably be surmised, however, that 

in this case, also, the a's and b's will vary widely with frequency. In 

roughly cyclic fashion, the infinite a's will occur at the natural 
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free-free frequencies and the infinite b's at the frequencies for built-in 

* 
vibration. 

The presence of damping should replace the infinittes by finite peaks 

in the curves. 

* Practically speaking, the effect of shear is small below the first 

natural frequency, but must be considered beyond this frequency. 

iS) 



4. HARMONIC FORCING AT AN INTERMEDIATE POINT 

When the external harmonic force F and moment G act at an intermediate 

point instead of at the end of the uniform beam, the problem is more 

complicated but can be handled by a double application of the equations 

for forcing at one end. 

First the fundamental beam equations are generalized so as to 

include distributed forces and moments of respective magnitudes PS and Ge 

per unit length, acting on the beam in the same principal plane; see 

Figure 1. On a slice dx thick there is then a net force dP + Fy dx and a 

net moment dM + G,dx so that, after dividing through by dx, the equations 
1 

of motion become in place of Equations [2a,b]: 

2 
av 

eros ae O50 Tm [16a,b] 

Rotary inertia is omitted here. Equations [2c,d] and the elastic analysis 

leading to them require no change. 

Now let the external forces and moments act only on a very thin 

slice of the beam. See Figure 2, where the thickness of the slice is 

greatly exaggerated for clarity and at its faces, the common device of 

drawing the beam as separated is adopted. Let the values of the shear 

force P and moment M in the beam be P' and M' at the left side of the 

slice (toward negative x) and P", M" at the right side. Then the 

associated reactions on the slice are -P' and -M' at the left side but P" 

and M" at the right. 

20 



Figure 1 - Forces and Moments on a Beam 

: 2 tele 

a ‘ie De 

Figure 2 = Forces and Moments on a Beam Slice 
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Integration of Equation [l6a] through the slice gives: 

2 9 
9 Ee abe el] BE ace oll ae eee 
ae ox ; aL 

The first integral is negligible because of the thinness of the slice, 

whereas: 

Henee, the total extemal force is 

Ie a0 cy eM [17a] 

Similar treatment of Equation [16b] gives, since fPdx is negligible: 

Go we = iu" [17 ] 

Also, differentiation of Equation [2c], elimination of y by means of 

Equation [2a], and integration with respect to x give: 

| 2 ote) dx =| Sax + cof Ex 
x 

Here the M integral is negligible, whereas [ (96/ax)ax =I 6 Ol awineme 

9' and 9" denote the slope of the beam or 3v/9x at the left and right sides 

of the slice, respectively. Hence, using Equation [17a]: 

US Seat aie!) SS eeie [18] 

The equations for a beam forced at one end can now be applied to the 

two sections into which the beam has been divided. Let the lengths of the 

sections be %' and 2", so that 2' + 2" = 2, the total length. Let all 

quantities referring to the left or %' section be distinguished by one 

prime and those referring to the 2%" section, which extends toward positive 

x, by two primes. 

* Compare with Equation ({18] of Reference 12. 
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The quantities Vie: 86> F, and G in the forcing equations now have the 

respective values for the £" section: 

vy" =v 3 oe = Q" I je ae jou g @M ee mM" 

Here F" and G" are the negatives of P" and M", which act on the slice; and 

vy is the transverse displacement of the beam at the slice. 

The 2' section, however, is forced on the end (AA') facing posttive 

x. A beam whose forced end faces negative x, as in the previously 

developed theory, can be brought into the £' position by a rotation 

through 180 degrees about an axis parallel to F. This rotation, however, 

reverses the spatial directions of e. and G. Hence, for the %' section: 

vw SY 8 cme =O ales iV DY g G' = - M! 

(Note that G becomes -G by the rotation, but -G' = M'.) 

Substitution into Equations [17a,b] then gives: ” 

pe Po So Coo Glo el [19a,b] 

These equations relate the actual external force and moment F and G to the 

quantities which were denoted by F and G in the equations for forcing at 

one end as applied to the two sections. 

Now, likewise, let the b's for the g' and g" sections be distinguished 

by one or two primes. Then Equations [13a,b] of the general end-forcing 

theory become, for the two sections: 

0 = 0 +b! ig ja Sp? nay " 

PO Bre imac na YY ng ee 

G' =p! vtb! Q! ; q' = p" vy +b" ey 

Bal, 22 © al 22 © 

* Compare with Equation [19] of Reference 12 where G= 0. Note the use 

of two coordinate systems (Figures 7 and 8) in that reference. 
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In the formulas for b, £ is to be replaced by £' in calculating b> Dio» 

bv! dub esbutebyse cues Nemblensiaye 1! 5 1). 4 Ie beet. D1? an 50 ut by in calculating 1? Pye? Ps7? and op Thus, the 

quantities s, c, S, and C have different values for the two sections, but 

q and € are the same. Substituting oe = - 6' and 6. = 6", and then sub- 

stituting in Equations [19a,b] gives: 

( F +p" ) v-pbd' 6' +H" oe" b! 

dat 11 12 12 

CSS Se ap pe. OD es jh OP 

el al 22 22 

The difference 6" - 6' represents a jwmp in slope due to shear 

warping (a jump being naturally assumed positive from negative toward 

positive x). Thus, the beam has no definite slope where F and G are 

applied (if shear warping is not neglected). If at this point it is 

desired to treat interaction with another structure, so that a unique 

value of 6 is needed, perhaps the mean of 9' and 9" may be used, or 

§ = 5 (6' + 6") 

Then, replacing 9" - @' by -2oF as in Equation [18] yields: 

1 
Cees Ohne (e" - e' )= oto F 

't 1 " ' 
e =et 5 - o') =e@-ofF 

The last equations for F and G then become: 

Lo ait. Spe i) ws (ol. Si? wes (ie? © DY Ne [20a] 
! ol 12 ~ 12 ( i aa 1) 212 

Seiat ape irs @as (pt ob! lye (b?_ oP )6 [20d ] 
2 22 22 21 21 22 22 

The final formulas derived by solving these equations, first for F 

and G, then, alternatively, for v and 6, are: 

ek 



Feb... Yeb 82 Geb. wtb. 6 [2la,b] 
ult 12 21 22 

DD. Sl Gite My Sie wy eS ip! 
By alah a VIL b j2 12 12 

Dy BS aol & HM gig. (ol 4S py 
21 21 al an 22 a0) 

db S 0 eS + ob Tol. ow 
22 50 20 12! 20 Do) 

DD Slop! 2 bY 
b ( 12 12) 

(The absence of primes on bia and Pio after 0 is correct.) 

ie, 

V = 8))F + aG ; 8 = a,4F + a,,G [22a,b ] 

Dona ast a AaB a ee 

eae i Doe i dI> 

Deen = Pa > Pa 7 OUP g = WigINOR) = Band 

a9! = tol inf ot) 
all Tt ee 22 

= ) + " 

a 22 a P55, 

io} i) ' + ! 
(b Daa) 

+p! 

a ala DS) 
1 (me, 

ae t] mn W ’ ks w 

(D1, Dip) 5 boy? 
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The coefficients Biai> bio> b51> and Dov are inertia coefficients and &)4> 

Bio» 85)> and B55 are response coefficients for the beam of length & under 

forcing at a distance %' from either end. If 60 = 0, so that € = 0 also, 

then boy = bio and oat = Coe? 

As a check, if &' +0, Equations [2la,b] reduce to the end-forcing 

equations for the &%'" section or F = Dea v+ OF 6" and G=b" 6" + Dee Cie 

as they must do. This reduction is not obvious, for 6 and Dip Bio bo 

: " tt " t 
and P55 do not become, respectively, equal to 6 , bia Dio 9 boy and 

O55" Some algebraic juggling is necessary to establish the reduction. 



5. HARMONIC END FORCING OF A UNIFORM BEAM 
HAVING EXTERNAL AND INTERNAL DAMPING 

End forcing of an undamped uniform beam was considered previously in 

this report. The same problem will now be attacked with the beam subjected 

to both external and internal damping. 

Let the external damping be due to a uniform force per unit length of 

magnitude -cyav/dt, with wy denoting the mass per unit length of the beam, 

v its displacement parallel to a principal plane, and t the time. Here 

for convenience ta is written instead of the usual c. 

As in Reference 13, eG and 7, the internal damping is assumed to 

be due to a resistance to variation of the bending stress such that the 

instantaneous value of the stress is o = E(e + ndc/at), where E denotes 

Young's modulus, n a damping constant, ande the bending strain. (In 
¥ 

Reference 13, En was denoted by y.) Thus, the moment M, due to bending is: 

2 3 
M, = EI iG +7 2) 

ox ata x 

* From elementary beam theory, if c is the distance from the neutral 

surface to the fiber whose strain is — andp is the radius of curvature 
of the elastic curve at the section for which the bending moment is M, 

then 

2 3 
m= 2a ig (e +n H) = eri ten 2% 

c c ax dtox 

because 

1 5 1 : Se ee 8, 6 fe 5 ON ys eu 
e fo 2 e 2 

9x dt ox 



I being the areal "moment of inertia" of the cross section and x denoting 

the distance along the beam. 

In an actual beam there may well be resistance to variation of the 

shear strains also. Inclusion of such an effect as an independent para- 

meter, however, greatly complicates the theory. Accordingly, the 

resistance of the shearing stresses to time variation is assumed to be 

such that the moment M, due to variation with time of shear warping along 

the beam retains its usual value as stated on p. 175 of Reference 11, 

namely 

in terms of the shearing force P, the area of cross section A, a 

dimensionless constant K depending on the shape of the cross section, and 

the modulus of rigidity G where G = E/[2(1 + v)]. 

The total moment (or “bending moment") M then equals Mi + Mo As 

usual, P = - 3M/ax, but the equation of motion now reads 

Be AZ) ee 
is a= te 7 OU Be 

Thus the basic equations for the damped uniform beam can be written as: 

poe eM [23] 

ox 

2 3 2 
= PN, oy LN Bl 

MS at Bil | KING — 2 a 
ox ot ox ox 

2 2 
EE A Sin AS os GS [25] 

2 Pe) 2 
ot ox 

It is assumed that an external force F and an external moment G act 

on the beam at one end, where x = 0, in the same principal plane with v. 

28 



F and v are taken positive in the same direction, and G is positive in the 

direction of dv/dx viewed as a rotation @. Then, the boundary conditions 

for a beam of length & are: 

oe sce Os Mase, Ms l pes [26a,b] 

[26c,a] " wo = " fo) | iH} 1 ac) " fo) Eke 5< 

The final results of the investigation will be relations between Yo 

and 86> the values of v and of 6 or dv/dx at x = 0, and F and G. 

(a) Harmonic motion. This problem is solved only for the case in 

which all time-dependent variables vary harmonically with time at 

circular frequency w. In developing the solution, complex quantities are 

employed because of their algebraic compactness. Complex quantities are 

distinguished from real ones by adding a bar over the symbol. All time= 

dependent complex variables are assumed to vary with time in proportion 

to aoa (i VS 7aL) 5 

The complex analogs of Equations [24], [25], [26a,b,c,d] thus 

become: 

2 = 2 = 3 g°v EI M 
egies = ‘i } y aa 2 [27] 

x gtax 4 ase 

d°y ou Ov. OCM =a 2 On ae ——= £0 [28] 

ato WB ace 

ye ein Se ee si at x = ag Cox a [29a, 

oe 2Sokhe Mes Og m= [29c,d] 
ox 
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Here F and G can be expressed in terms of real amplitudes A and B as: 

F = Ae i @ 5 BS [29e ,f] 

Furthermore, Equations [27] and [28] can also be written more 

Lwt 
explicitly because of the assumed time variation as ee » thus: 

Sa at ea = ; av 3 
MUS tone (al ae ale) ey ee [27a | 

9x 9x 
o_ 

\ — M 
(- po + iwep) v +25 = 0 [28a ] 

aX 

An equation for M alone can also be obtained by differentiating 

Equation [28a] relative to x and substituting from the resulting equation 

for se in Equation [27a]. Slightly rearranged, the result is: 

mee Ee eM eG 

We es (Sls) Ose" x 

Now it is convenient to introduce the notation: 

ae wot ge 2 
mar OKAG 

AV) 

1 - i(ce/w) _ se | (J sonal t= én i (C/w) + wn 
1 + iwn BEE eh De ~ SD 

1+wn alo a) i 

The symbols e and g represent real quantities whose values can be read 

from the last member of the equation, and always g > 0. The equation ob- 

tained for M, multiplied through by ae (e - ig), then reads: 

4— 2— \ 2 
—— + 2&q (e - ig) 22 -q 
ox ox 

(e = ig) M= 0 [30] 
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(Here, the symbols q and & represent the same real quantities as in the 

section on the undamped beam; and, if e = 1 and g = 0, Equation [30] 

becomes the same as Equation [3a] in that section.) 

Basie solutions for Equation [30] must now be sought. Assume that 

iwt + Ax 
M varies as e Then Equation [30] divided through by M gives for 

>| 

4 2 ..\ 2 4 
A + 2tq (e - ig) A -q (e - ig) =0 

Solving as a quadratic in 1 ines 

+ j 2 
i= - eqe (e - ig) + (e2a" (e=ae\s + a (e = aT 

Since the square root indicated here has two possible values, each 

the negative of the other, plus or minus alternatives are indicated twice 

over, whereas < has really only two alternative values. It is conven- 

ient, therefore, to select a particular value of the square root, which 

will be denoted by a subscript + and will be defined presently. This 

square root is chosen so that when e = 1 and g = O it becomes the quantity 

ae Vi + ce occurring in the theory of the undamped beam. In this latter 

theory, it was found convenient to write NG = a when the positive sign 

in the plus or minus alternative was chosen but c =- at when the 

negative sign was chosen. Analoguously, the alternative values of ne 

obtained from the last equation are taken to be )°= - a, or as where: 

2 2 onic a 2 @ { e(e - ig) + [e - ig + fe (e = ig) y. \ [31a] 

ee : ; 2 Penoeli/2 
as = el eee = ae) ile = sta ee (estes ih [31b ] 

Sil 



An explicit expression for the square root occurring in Equations 

[3la,b] can be found from the general formula: 

2 ib V 2 
(a + iv)! = + (u+ =) : u= ° (2 + ae +d ) [32a,b] 

Here a and b are any two real numbers (except b =O if a < 0) and vo 

denotes, as usual, the positive square root of a positive real number. If 

M2 : ‘ : 
a < 0 and b = 0, (a + ib) Ee + iVja|. It will be convenient to denote 

1/2 
by (a + ip)! the value given by [32a] with use of the plus sign. 

2 1/2 
[Note that (a + int! (a + ib). =at+t+ib.] (at oy is a continuous 

function of a and b except for a discontinuous jump as b varies past zero 

with a < 0, the jump as b rises from negative to positive being readily 

2 
found to be from -iVlal toiVla] . [To verify [32a], solve [32b] for b 

and substitute in [32a] squared. ] 

Putting a = e and b = - g into Equations [32a,b] gives: 

1/2 i IL V 
(es ig), awc aa ws ( eae é ) [33a,b] 

Since for a damped beam g > O, no difficulty can occur ife < 0 (which is 

quite unlikely). 

Also, from Equations [32a,b] with a =e + ee (Ga - ge), 

b=-g(1+ Bee), the square root indicated in Equations [3la,b] has the 

value 

[le -ig+ Ee (@< amen = = SG 2¢°e) [34a] 
+ Ow 

where 

myat Ay eee) [3l] 
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Here, to lessen confusion, w is written in place of u but the lengthy values 

of a and b have not been inserted into Equation [34b]. 

For moderate damping, e > 0; in any case b < O and the formula holds 

ife>- (2S). Very likely, numerically greater values of negative e 

need not be admitted. If they are, the continuous values of the square 

root can be extended by choosing the negative sign in Formula [32a] and, 

hence, using the right-hand member of [34a] with signs reversed. 

2 1/2 
+ + 

ay and a, may now be found as (a5) 

replace the symbols a, b, and-.u in Equations [32a,b] by a, 8, and r, 

and (a5) For clarity, 

respectively. Substitute from Equation [34a] for the square root in 

Equations [3la,b] and then, in the brace in each of these equations, 

collect the real terms as a and the imaginary terms as if. Then Equations 

[32a,b] give: 

apza(r +i), atetws @=-e [e+ (1+ 2¢e)) [350,b,c] 

Gl = if : S 5 . S65 — i Gy ol Wn ee) fe twos 8 ge [-6 + 7{1 + 2 e)) [354,e,f] 

where in either case 

1 = 

r=Vi (aM + 6) 

and w is given by Equation [34b]. Here in both a, and a, a > 0 provided 

e > cope). For then in [34b], a=e+ Ee (e = e-)> ree > 0 so that 

we >a >Ee° and w > |Ee|. Otherwise it may be necessary again to extend 

the range of continuous values by reversing signs. 
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Without finding ay or Qo, however, the following useful relations can 

be inferred directly from the expressions given for ay and as in Equations 

[3la,b]: 

2 2,1/2 
a4 . a5 220 loo igs & (es ig J. [36a] 

as - 45 = 2ea°(e - ig) [360 ] 

—p-) -- 2 ye 
q}45 = 4 (esaels hen Ce. ao (eo ie) [36c] 

2 + 

That the square root of (e - ig) occurring in 4145 really is the one 

1/2 
denoted by (e - ig), can easily be verified by means of the argument 

from continuity, which holds also for the individual values of a, and 5: 

Also: 

= is 2 
a + as Ger (eo gS ee (6 5 anh) [36a] 

3 «(33 Fe Nia 
41 42 a 
Sp a = 2g? [1 + 2° (e - ig)] (e -ig)/? [36] 
Qo 4) an ae + 

In the further development of the analysis some relations among the 

exponential-trigonometric-hyperbolic functions are useful. A systematic 

list of some of the relations for sin iz, cos iz, sinh iz, cosh iz, 

onan ee, Sin (S257), Cos (se sp a7)ly Gein (se 247) 5 Gosia (Ces +y), 

sin (x + iy), cos (x + iy), sinh (x + iy), and cosh (x + iy) can be found 

in an elementary calculus textbook. Here z = x + iy, x and y being any 

real numbers or 0. 

con : ae =P =e 
The four possible values of X will then be, since AX = - qa) or Q5> 

= = = i + iq.x 
A= + iq, or *4,- The corresponding values of M are erie ey 9 

. a 5 gat n= 2 -ax 

eee ae elt dane eulie 45 ° 
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Further work will be simplified, however, as in the theory of the 

undamped beam, if combinations of these four functions are used such that 

two of them vanish when x = 0. The latter two combinations of the 

exponential factors are: 

ay igq.x S -iq,x pee ries eA ea caaaee 
5 (e- =a e a) 7 sinh iq,x = sin q)x; 

(ee SG ROS /b SS Sain qx (ira 

The general solution of Equation [30] may then be written thus: 

Mieeo* (a me ned GC so ect Sa wate (68) e ) Sina, x 5 COS qd, x 3 sin q, x , cosh 4x 3 

Here a, 900 4, are four adjustable constants, probably complex. 

Substitution for M from Equation [38] and from Equations [29e,f] for 

F and G in the boundary equations, Equations [29a,b,c,da], then gives the 

following four equations, after canceling out eit, 

dq+tdq=A; a+d=-B 39a ,b] 
Ta SB a ~Th 

| (je) d. sin q & + d_cos a2 + a, sinh Ane + dj, cosh Gok = [39¢] 
1 AL 2 

dja, 
cos a2 - dq. 

: ty + =z 

29, sin a,t d 
2 tt ee ane 
345 cosh qt da, sinh ak ) [39a] 

The treatment may now proceed formally just as for the undamped beam. 

Equations for the complex displacement v and the complex slope 8 (= dv/dx) 

are as follows (derived from Equation [28a]): 

2 pho. ca Oe | ie 
u (w - iwc) v = —=; uw = ane) @ 8 == 

Substitute here for M from Equation [38] and then let x > 0. Write vy and 
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~ Shuby = = _= int = eine 
8, for the values of v and @ at x = 0, and also Va Vine and Io = Goak 

in terms of complex amplitudes van and Bans Then, after canceling out 

et’ it is found that: 

2 OO sO -2-= 
- iwc) v = - Glos d 

1 tw ) ee The ooh 

2 ee -3- -3- 
= signe) S566. < Cel uw W Don q, 1 4, 3 

Baier tdi 2) aie, Une aeeeiaie 
(Note that 9. sin q, /9x SS Ge bin Gk = O when x = 0, etc.) These two 

equations and Equations [39a,b] are easily solved for the d's with the 

following results: 

a, (a +45) 2, = a5 A-u (um - tue) O 

(@2 + a2) 4, = - 2 B-u (u? - ive) ¥,, 

dp (a2 + &) d,- a A+u Ga - fac) ea 

(e+ 2) a =- a Bey (ue - iwc) ¥, 

The d's can now be eliminated entirely by multiplying Equations [39c,d] 

by (af + as) and then substituting in these equations the values of 

(ae + as)a, Pea given by the last four equations. Also, introduce the 
>) >) >} 

following notation: 

al " Jen (ae 5 Aes) sinh a2 

Q| TT s = sin a2 cosh ap! 

Cc = cos a2 

Then Equations [39c,d] divided by 9 become: 
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(o} 

-2 -2 
qq, _ q. SEN AN ao Lint 

= = S + me ae + (qqc + asc) on [hoa] 

Q Q I, qa, 

Bee may tee Ge Se 

(q,8 a,8) oa (Cc c) oa 

-2- =P fi Sa pane ay apa 
=a (q3C w age) * a345(a,5 = 18) = [40d ] 

These equations are easily solved formally for wee and Cn in terms 

of A and B. The determinant: of the coefficients of vis and 8 is: 
a 

BAIR REL, 28 LAY MON aN G5 
De= (Coser ss@sg -33(2- =) 

Be SR 

or, using Formulas (36b,c]: 

De 8 [ht = ee Sees (6 6 ae) [41] 
The results of this solution may be written in the form: 

ree % =| Q e BS ah =e D aa = 
QD q qd, 

+ =e ss yo te (2 > 6G) + 20,85 ]B } [42a] 

— 1 = —-— ga 7 224-8, (1 - &) + 0,881 
QD 

= g.sc + q,cS 42b Q, (@,86 + a,¢8) Bf [420 ] 

where, using Equations [36a - e]: 
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2 ee : 2 4 Palle 
A ah & ay & Ba Kos ales B= KS =) ats) Vi 

Q, = a4 - 45 = 2a (e - ig) 

== 5 ay 
Qip y Ades a° (e - ig) 

ane 2 1/2 2 
2s = aa (oe = de) [1 +2: (e - ig)] 

145 x 

Thus, the analytic solution of the complex problem is formally completed. 

(b) Real results. For practical use, real relations must now be 

inferred from the complex relations. 

The original equations requiring real solution were Equations [24], 

[25], and [26a,b,c,d]. As final results, relations between V, and 6, 

and the applied force F and moment G appear to be the most useful. 

For convenience, the complex Equations [42a,b] may be summarized 

thus: 

Yen, 2 Wedge Hela) BO (any @ Beja) B 

8 oq = (agg ia5)) A+ (ay, + dass) B 

the primed coefficients at ath? etc., being all real. Then 

Te = Tee! = (a), + ia},) here + (a), + ial.) Bee 

@, = 0,,¢ = (ai, + ia") Ae” + (a) + ial) Bet 

Here Vo and 6, are the values at x = 0 of v and @ (or dv/ax). 
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For v and 6 and also for M, expressions have been found that satisfy 

Equations [27a] and [28a] and, hence, also Equations [27] and [28]. But in 

Equations [27] and [28], all coefficients are real. Consequently, the 

real parts of v, 6, and M by themselves must satisfy these equations and 

must also be harmonic solutions of Equations [24] ana [25]. 

The real parts of the end displacements we and es must, therefore, 

represent v, and @, as functions of the time in a possible forced 
fo} 

vibration. Keeping only the real parts in both members of the last two 

formulas for Vo and 6, gives, since eek =NCOSMWitie een SHua GiGi: 

Wig O an A cos wt - ayy A sin wt 

+ a5 B cos wt - alo B sin ut [43a] 

6, = as5 A cos wt - a7 A sin wt 

+ es B cos wt - a5 B sin wt [43b ] 

Selecting real parts in Equations [29e,f] gives as the corresponding real 

external force and moment: 

F = A cos wt 3; G= Bcos wt 

Thus the displacement Me and slope oS produced by force actions 

proportional to cos wt alone contain terms proportional to both cos wt and 

sin yt when damping is present. Equations [43a,b] might be accepted as 

the final expressions for end displacement and slope produced by harmonic 

end forcing. 

If, however, interactions of the beam with attached structures are to 

be considered, it may be preferable to avoid explicit mention of sin wt and 

cos wt. 
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Note that: 

a a 
AL, Gls 12 Cle 

= a' F + —— — + a! 5 —= = Yo aa ae a1 56 maT {44a] 

"! 

851 dF Q5> aG 
= q! + —— — + g! —= ——— 8. a,F Rage 2.4,56 + a ae [4b ] 

The eight coefficients aa a3! oe ete., may be regarded as an extended 

set of influence coefficients for the damped beam under harmonic end 

forcing, corresponding to the four coefficients a (2 a ,a,anda 
ee eal 22 

for the undamped beam. As an alternative, inertia coefficients corres- 

ponding to b> Do? eo? and Lae for the undamped beam could be 

calculated. 

The following extension of the results is perhaps obvious. F and G 

have been assumed to vibrate in phase, but this restriction ts eastly 

removed. Let B= 0. Then the motion of the beam is excited only by F, 

and all formulas will obviously ‘hold if wt is replaced by (wt + @) in 

which a is an arbitrary phase angle. Similarly, if A = 0, only Gis 

active and wt may be replaced by (ut + 8), in which 8 is another arbitrary 

phase angle. Since the equations of motion are linear, these two motions 

and the exciting force actions ean be superposed. Hence, Equations 

[43a,b] will remain valid if the external force and moment are assumed to 

be 

F = A cos (wt + a) ; G=Bcos (ut + 8) 
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and provided that in Equations [43a,b] wt is changed to wt + a in all A 

terms but to wt + 8 in all B terms, a and 8 being independently arbitrary. 

Equations [44a,b] require no change. 

(c) Calculation of a' , a’ , etc. The coefficients a!_, etc., in 
11 dal 11 

Equations [43a,b] and [44a,b] can be calculated by evaluating the 

coefficients of A and B in Equations [42a,b] and separating real and 

imaginary parts. In preparation for this calculation, each complex number 

may be replaced by the sum of a real and an imaginary part. Write 

a S69 © 46% o@ Ss @ os 4—n 
q q, le 3 dq, qd, 14, 

in which a> etc., represent qr or q8/(2r) in Formulas [35a,d]; then 

and from Formulas [37m-p] applied to the definitions of s, c, S, C: 

= sin qa, cosh ay + i cos a, sinh ay 2 

c = cos a; 2 cosh ay - isin a; 2 sinh qa; 

ae- * ’ " ° ' * " S = sinh an cos Qn & + i cosh Qs & sin An & 

as ' " : : ' ° " C cosh an 2 cos q,% + i sinh qn & sin qn, & 
2] 

Similarly , Qo Qn? and Q), can be separated into parts by using Equations 

[33a] and [34a]. 

Denominators can be handled most conveniently by transferring i to the 

numerator. Write D = D' + iD", determining D' and D" from Equation [41]. 

Then: 
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Leama Dar DEy Des Seay 
= ' ‘pi To. 4pw = D JD) cp al)o) D iD p'2 a p'2 

av) 

apa Ane eo ANS eS PAM yt w + iwe 

Sane ~ QI BD 
oy mW (tr So sie) won (ay Se) 

The final calculation of Boo a etc., from the coefficients of A 

and B in Equations [42a,b] then requires only a massive process of multi- 

plication and collection of real and imaginary parts. Here, it does not 

seem worthwhile to elaborate the final expressions. 
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6. FLUTTER OF A RIGID FOIL ATTACHED TO A UNIFORM BEAM 

6.1 DERIVATION OF EQUATIONS OF MOTION 

A rigid foil attached to a uniform beam of length & will be considered 

in this section. The foil is assumed to be equivalent to a straight flat 

strip of rectangular shape, with length much greater than width, attached 

to the beam so that its length is perpendicular to a principal plane of 

the beam, with this plane being midway between the ends of the beam. In 

the undeflected position of foil and beam, the plane of the foil is 

assumed to pass through the principal axis of the beam. Elastic deflections 

of foil and beam, where they are connected, will be allowed but the 

affected part of the beam is assumed to be much smaller than the whole 

beam. The relatively small part of the foil that lies within the beam may 

be absent, being replaced perhaps by a through-shaft similar to the 

mounting of a pair of diving planes. 

There is a certain axis of rotation lying in the plane of the foil and 

parallel to its length about which relative rotation of foil and beam 

evokes only elastic moments G acting on the beam and -G on the foil. Let 

@ denote a small angle of rotation of the foil about the axis, measured 

from zero when both foil and beam are in their neutral positions; in 

addition, the local part of the beam itself, due to vibration and aside 

from distortions of the attaching structure, may be rotated similarly 

through a small angle ee The positive directions are assumed the same for 

8, one and G. The foil may also have a small translational displacement v 

perpendicular to its plane and the beam at the axis for Ge a small 
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displacement Vo? associated with a force F on the beam and -F on the 

axopLaLe Ikens Ws var and F be positive in the same direction. In terms of 

elastic constants kK and kK, of the connecting structure: 

1? & Tk (Wr 8 Cok, (@ = 6.) 

Figure 3 represents a section in the principal plane of the beam 

and shows positive values except where the associated symbol is preceded 

by a minus sign (as in -F). A heavy line represents a section through 

the foil plane; the foil itself, of width 2b, being perhaps reduced to a 

connecting structure here. The axis A in the foil plane and the axis a 

through the principal axis of the beam coincide when foil and beam are 

unde flected. 

Let beam and foil be immersed in a stream of fluid approaching at 

uniform speed S, as shown in Figure 3. Expressions for the resulting lift 

forces on the foil are adapted from Theodorsen's formulas for a uniform 

foil of infinite length vibrating harmonically. An approximation closer 

than the common steady-motion approximation is used (see p. 841 of 

Reference 4 (Appendix H)), the additional complexity being only moderate. 

In the case of ship rudders or control foils, Theodorsen's parameter 1/k 

or S/bw, in which b is the half-chord* length and w the circular frequency, 

is less than 1 (or at least < 2); then Theodorsen's functions” eA! Tongyel 

'G" may be replaced without great error by their values at S = 0 or 1/2 

and 0, respectively (see pp. 840-841 of Reference 4). The effects of 

certain other terms may be included in the effective mass m and the 

effective moment of inertia I, (taken about the effective center of mass); 

* Not to be confused with external force and moment respectively on beam. 
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Fluid reactions on foil 

= G Elastic reactions on foil 

ons on De oF 

Elastic react! 

Deflected beam axis 

Neutral axis for Gio, eee Neutral position of foil and 

beam axis 

2b 

Figure 3 - Forces on and Motions of a Beam-Foil System Immersed 

in a Moving Fluid 
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m and I, are further defined later. 

There remain then a total resultant lift force F. and a total moment 
L 
* 

Mg about the 6 axis whose magnitudes can be written 

} e ‘ 
F, = BS 6 - BSv + CSé [45a] 

M, = Wee) a HES & E88 [45b ] 

Here B, C, L, and E, are constants (defined below), L having the 

dimension of length. a and My are positive in the respective directions 

of v and 6; v = dav/dt and 8 = a0/dat. Since My denotes the total moment 

about the 6 axis, Be may be supposed (for concreteness of thought) to act 

through this axis, as drawn in Figure 3 (i.e., Theodorsen gives the total 

force F and total moment M about a certain axis. Hence, we cause no 

error if we arbitrarily assume F to act through the axis.) 

According to Theodorsen's calculations; 

2 
hoe. B =B(=b +e) BS qe 

P L 
: c=5 (2b +e); L= 

M|eR ff 

in terms of the density o of the surrounding fluid, the half-chord length 

b and length 2, of the foil, and the distance e that the axis of rotation 
fs 

or the @ axis lies ahead of the midchord line (here ahead means toward 

the approaching stream). The first two terms of M, may be regarded as 
8 

arising from a force equal to the first two terms of F_ acting at the 
L 

forward quarter-chord point. With these values inserted, Equations [45a,b] 

might be called the low-speed approximation to Theodorsen's expressions. 

For a derivation of the approximation, see Reference 4. In this reference 

it is shown that if e = b/2, Equations [45a,b] agree with the "Modified 

** These values of F_ and M, agree with those of Ea and My given, 

respectively, on pp. 841 and 842 of Reference }. 
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Theodorsen Analysis" described on p. 37 of Reference 14 by McGoldrick and 

Jewell. 

For greater generality, allowance is made for possible additional 

damping due to other causes by adding a force - eV acting on the foil along 

the same line as Fo and positive in the same direction, and also a moment 

- e586 about the 6 axis. Without too great a complexity, the more general 

expressions - en - C158 and — CoV - C8 could be Weeds but this was 

not thought worthwhile for the present purpose. 

Equations of motion may now be written for the foil. Let the effective 

center of the foil be at a distance h ahead of the @-axis, h being positive 

toward the approaching stream. The total effective mass of the foil 

(including virtual mass) will be denoted by m, and its total effective 

moment of inertia about an axis drawn through its center of mass and 

parallel to 6-axis by I): The displacement of its center of mass is 

v + h@ and the total upward force on the foil is - F - ev ap la: - F being ily? 

due to the attachment structure that exerts the force F on the beam. The 

total moment about a line drawn through the center of mass parallel to the 

6 axis positive in the same direction as @ is, similarly: 

ao @e c,,8 + M, oii (o  s c,v + F.) 

Hence 

m(v+h0) =-F- cv +F, 

1,6 =-G-c59+M,-h (os Po cna FL) 

A simpler solution, however, is to add h times the first equation to the 

second equation, thus obtaining for the second equation: 

* See p. 78 of Reference 3, for example. C14 Coo and Cyo> Co, are direct 

and cross damping constants, respectively. 
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hmv + (205 + hm) (Mewes ches cn6 + Mg: For brevity, write 

Then, inserting the expressions written previously for Fe and Mp: 

my + hmé + F + (ce) + BS) v - cSsé - BS-6 = 0 [46a] 

and 

hmv + 1.6 + G + LBSv + (c 
° 2 i 

5 a ES) 8 - LBS~6 = 0 [46d ] 

With these equations may be associated the F and G equations written 

previously, and also the equations furnished by beam-forcing theory for 

the response of the beam: 

F=k, (v-v,) 3; G=Ko (0 - 9) [47a,d] 

Vo = 82F + ayoG 3 8, = anF + annG [48a,b] 

Here a> Bio B51> and An are response coefficients to be calculated 

from the formulas for end forcing if the foil is attached at the end of 

the beam, otherwise from the formulas for forcing at an intermediate point. 

Thus are obtained six fundamental equations in the six variable 

functions of the time: v, 8, v_, 8 BR o> F, and G. At the critical flutter 

speed, all of these variables will vary harmonically at the same frequency 

but probably not in the same phase. It is only for such variation that the 

lift formulas are reliable. 

Equations involving only v and 6 as time variables are easily obtained 

by eliminating the other four variables. To shorten the notation write: 
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Then substitution for v, and 6, from Equations [48a,b] into [47a,b] gives: 

V, A, k5F + s5G = k,0 [49a,b] 

These equations may be solved for F and G in the form: 

DF = 5K) = a)5k,k58 [50a] 

DE ec An kK kev + s)k,8 [50b } 

D 8 8:8. = @ a. _k ik [50c] 
Le 12 2b dy 2 

Direct substitution for F and G from Equations [50a,b] into [46a,b] then 

gives as equations of motion, provided D # 0: 

mv + hmé + (ce, + BS) v - csé 

ep Bana D~ (sokyV - ayok)k58) - BS = 0 [51a] 

hmv + 1,0 + LBSv + (ec, + ES) ) 

=i 
+ + 6) - Oe= b Dp - (Ss -8,, kK KoV sk, ) LBS* 0 [51b ] 

Similar substitution for F and G in Equations [48a,b] gives, 

provided D # 0: 

coll ) 
s,) v + pola 6 ; 8, = Dla kv + (Qe D's, )8 [52a,b] Wa sured ie 211 

The special case D = O requires other methods as will be explained later. 
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6.2 CRITICAL FLUTTER SPEED 

For typical flutter to be possible, there must exist one or more 

values of the speed S at which a steady vibration of the foil and beam 

is possible in spite of existing damping actions. The lowest such speed 

is the critical flutter speed, which is the item of principal practical 

interest. 

To seek a critical flutter speed for the foil-beam system by the 

usual method, assume that in Equations [5la,b] v and @ are complex 

functions of the time proportional to er ut (a = Yi). Then v = iwv, 

v == wv, etc., and, after canceling one the remaining equations are 

linear in v and 6. Nonzero values of v or 6 are possible only if the 

determinant of the coefficients of v and 6 in these equations vanishes; 

ithatelsi it 

2 =i) : 2 al OFet ails 
[-wm + D sok, + iw(e, + BS)} [-w I, + D sk, 5 is < iw(c,, + EB S)] 

= (eaSiny 6 oa 
=i Aa ee Be 5 fads) (Gio o Dom. ek eb Aas) = O 

eli 2 

The real and imaginary parts of this equation must hold separately. The 

-2 
imaginary equation may be divided by iw if w # 0, and the D term that 

occurs in it may be simplified by means of Equation [50c], thus: 

—P BO. ea D (sjs,kjk, = By 5857 ks) = 7 I 
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As a result the following two simultaneous equations in ne 

are obtained: 

h 2 -l 
w'at, - a {D [ms.k +15 _k + hm (a,, + a5) kjk, ] 

2 Qe a 

+ (c) + BS )(c,, + ES) + [(h - L) m + LC] s*} 

all iss o Oe, le 2 + s_L) BSS = 0 + D ok D 
2 

-w. [e,I. + cm + (I il, Ae hLm) BS + hmCS + mE S| 

=i Sal: 
+ + + (c)s)k, c585k) D kK, (s La__k_) BS 

aL We al 

To RRS OM SRS oe MES SO 
= Cae Ore leaks 1 

and S 

[53a] 

[53b] 

In calculations, however, it may be more convenient when D is small to 

multiply the equations through by D, thus: 

2 
-w {ms ky + T sok, + hm (ayo + A5,) ky ko 

+ D (c, + BS) (c, 

-4 ahs 
+ Dw mI | + kk, -k, (a,jk5 + spl) BS" = 0 

c,s,k,+ Co8K, + k,, (s) + La, 5k, ) BS - a, ,k,CS 

2 
+ s_k_E_S - Dw [ej I, +c oki E,, m+ (I, - hLm) BS 

2 

+ hMCS + mE,S] - De, LBS“ = 0 

+ ES) +D [(h- L) m+ Lc ]Bs° \ 

[53c] 

[53a] 

It will be shown presently that Equations [53c,d] are valid even when 

D=0. 
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If a harmonic solution of the equations of motion, Equations [46a,b], 

exists when the stream speed is S, its circular frequency being w, then we 

and S must solve Equations [53c,d], or, if D # 0, Equations [53a,b]. 

Conversely, any solution of these equations in which a > O leads to a 

harmonic motion. 

The problem of finding such solutions is complicated by the fact that 

the parameters a4? a5? a 4° Oe and D all vary with w. In numerical 

computation, the only feasible procedure seems to be to assume successive 

values of i to calculate the paramaters for each value and then to 

attempt to find a value of S that satisfies both equations. Perhaps the 

work may be facilitated by rewriting the equations as quadratics in 3; 

perhaps for Equations [53a,b], with all coefficients reversed in sign for 

convenience, the following will result: 

2 2 
DS se) 1) S O Si teense =0) ha,b 
1 2 cae Fal Balt hadi [5 ] 

where 

b. 2 8 [ie > Ca Ie je +s k ) + uw (hm - Lm + LC + £,)] 
i AN ® Qh 

b, 2 a Cee + c,B) Brn illeeli 2 

ae 2 {pl b3 = - Dkk, + w )D [msjk, + I,s5k) 

+hm (a., + a_) k_k, J+ cc, $- ml ae 
12 2 eanling 2 2 ) 

e = c_LB 
iL 1 

o = = BOR (s, + La eS Goa kk 2 A SEAL WAL Pile ian? 

= } 
- + - hL B + hmC + mE E,Do's,k, + w [(I, m ) m dl 



Or where, to match Equations [53c,d] with signs reversed: 

2 
0) S + + - + 1 B [a,j k, Ls ,k, Dw (hm - Lm + LC EO] 

bo. = no (c_E_ + cB) 
} IL” IG } 

=i + + De Kk, mm) [ms k, Tsk, 

+ hm (a,, + a,,) kk, + Desc, ] = DmI jw 

e = De LB 
It 

ease (s) + La, 5k, ) kB + 8.) kj Koc = sk) EL 

+ w°D [ce = fia!) BS tee + mi, | 

2 
S56 oS + + mc CAS kK, c,8k w D (ec I, com) 

S must be a common root of both of the quadratic Equations [54a,b]. 

Two such equations can have a common root only for special values of the 

coefficients. If a common root exists, a simple formula is easily found 

by eliminating S-. thus, from Equation [54a,b]: 

2 2 
e, (b,S +b .S +b.) - by (e,S +e 5 3 S + e3) 

2 

(e,b, = B25) Sab. o Bde = @ [55] 

A general procedure for seeking a positive common root of Equations 

[54a,b] may now be given as follows: 
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If, at the w chosen in calculating the parameters , 1°, - bj e5% OF 

determine S from Equation [55] using the second form of the left member; 

and, if S > 0, test this value by substituting it into Equation [54a] if 

d # 0 or into Equation [54b] if ey #0. If the chosen one of Equations 

[54a,b] is satisfied, simple reasoning from Equation [55], using the 

first form of the left member, shows that the other one of Equations 

[54a,b] is also satisfied, so that S is a common root. If this procedure 

cannot be used, one of the following procedures is available. 

Its?” Goldy 2: 19 y>o 120 = O, then e153 - bie = 0 also, to satisfy Equation 

[55]; otherwise there is no common root. If b, # 0 and ey #0 ictetolelows 

that e = (e bande. = (e_/b bd and, of course, e_ = (e_/b Deo a ; ( La! 5 3 ( a! a! 3° > 5 Cy ( al! 4! a 

Thus the two Equations [54a,b] are proportional and have the same roots, 

which may be found by solving either equation provided it contains S. If 

either >) =0Oore_ = 0 but not both, one of Equations [54a,b] reduces to 

O = O and the other must be solved for S. 

Finally, if b, = e, = 0, Equations [S4a,b] are, at most, linear in S;: 

and S determined from one of these equations may be tested in the other 

equation. 

In the very rare case that D5 = D5 = De = cat = @ = e, = 0, steady 

vibration of the system may occur at the assumed w with any value of S. 

If one of these procedures does not yield a common root for Equations 

[S4a,b], then there is no common root and steady vibration cannot occur at 

the chosen w. Furthermore, for our present purpose any negative S is to 

be rejected. Usually no acceptable S will be found; by repeated trials, 

using interpolation wherever useful, the rare values of Ae at which an 
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acceptable S occurs must be ascertained. For a complete solution, the 

entire range of positive values of w must be explored (see the case of 

small ql discussed later). 

6.3 THE SINGULAR CASE: = 0, HENCE D = 0 
Sy 7 Sipe ne 

2 If a chosen value of w© makes D = O, the deduction given for 

Equations [53c,d] with corresponding values of by se e3 is not valid 

because at some stage it is necessary to divide by D. Equations [45a,b] 

through [50a,b] are all valid; but now Equations [50a,b] yield only the 

ratio v/®@ or 6/v, the two equations being obviously equivalent if S1> S5> 

Bio? and al are all nonzero. The same relations follow from Equations 

[51a,b] and [52a,b] if these equations are first multiplied through by 

D and D is then made zero. The relations that hold when D = 0 are, from 

Equations [50a,b]: 

S.7 SeaJk.6 9 ak ve 846 [56a,b] 

The difficulty may be overcome by choosing a different pair of 

variables from among v, 8, F, and G. When S$) # 0, a convenient choice is 

the pair v and G. From Equations [49a] and [56b]: 

s,F= kv - a,5k,G 5 s\6 = a,jkiv [57a,b ] 

Multiplication of Equations [46a,b] by Ss) and then elimination of @ and F 

by means of [57a,b] gives as equations of motion for the system in terms 

of v and G as variables: 
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m(s4 + Ay ,kyh) v+ [sy (c, + BS) - @5)k,CS] Vv 

Se (Lo @ BS“) v-a 1 ok G=0 
el a al 

to) a & (eis S ak (sjhm + a,)kjT, 1 1%) 

= fh jie LBS“v +s G=0 
2nd at 

t 
and if v and G are proportional to oie : 

2 2 {- ufm (Si) ee fe)  IR S Cool 

i a) (6 (@. s 2S) 5 a ke CS v-a sk G=0 
dL Jt 2a, ab 12) jal 

2 2 2 hm + Te BS Oe Cee Basle) oy 

+ iw [s, LBS + aK) (ce 

Equating to zero the determinant of the coefficients of v and G and 

dividing the imaginary part by iw yields: 

2 2 
s, [-w m (s, + Ay ,kjh) + Ky = 84k, BS ] 

2 2 
Sete ll (sola > a. tka it.) + a5,k, LBS" | iT] fo) 

PA Je ig ins > @ ik (@_ > iS) I) a © 
2a at CAlmelt 2 L 

Now multiply these two equations by kK» substitute into them 

a a kk =s.s_ from D = 0, and then divide the equations thus obtained 
We Pi 2 We 

by s, on the assumption that sj #0. Equations [53c,d] with D set equal 

to zero are the result. 
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This proof fails, however, if S15 O. Then, as a third alternative, 

@ and F may be used as variables. For the present purpose, it is assumed 

0 (since D = 0 and k._k, > 0). that s) = 0 and, hence, also that a_a = 
1 12D He 

Then Equations [49b] and [56a] give the formulas: 

Substitution from these formulas into Equations [46a,b], multiplied by So 

gives, if 0=<F« enue 

2 2 {-wm (a) ok, + sh) = SBS 

+ iwa k (c + BS) - iws CS] 6+s F=0 
IZ 2 1 ] 2 

2 2 
= + + = [-w (s,1, a, hm) ky S,LBS 

+ i + ES) +i = = ius , (c, E ) iwa, ,kLBS ] 0 a, koF 0 

and the usual procedure of setting the determinant equal to zero gives 

since a_a = 0 here all sigms being reversed: ( een i gn g 

2 2 -w [s5I, + s,hm (a15 + oo) Ko] 

+ s_L) BS" = 0 + - k 
BoD 7 8a (Banks * 8 

2 mp S S845 ,LBS + 85 (ce, + ELS) $85 1K5CS ) 

If now S5 # O and these equations are multiplied by k,/So; they become 

what is left of Equations [53c,d] in case D = 0 and Ss, = 0. 

Alef Sy Sa = 0, however, neither of these two proofs holds. Then 

again a = 0, and three further alternatives may occur. 
12791 

Dl 



If ajo = 0 but a5) # 0, Equations [49a,b] give v= 0, F= 8/a,,- 

Then [46a] requires hmu® = (1/a5,) 6 BEE aad also, to remove 0, CS = 0. 

If c #0, S = 0; if C = 0, any S may occur together with the proper w. 

Equation [46b] merely gives the value of G. 

ise a5, = O but B15 # 0, then Equations [49a,b] give 8 =0,G= v/a), 

From [46b], hmw> = 1/2155 LBS = 0. Equation [46a] gives F. 

Tf Qy5 = 85) = 0, then v = @ = O and, hence, by Equations [46a,b] 

F = G = 0; and by Equations [47a,b] in = Ge 3 Oo WSS eS Sg SOs = 

a,, = 0, there can be no harmonic vibration at the w for which these 
Ql 

parameters were calculated. 

Examination now shows that all of these conclusions as to w and S 

follow also from Equations [53c,d] when D = O and the parameters have the 

specified values. 

The general validity of Equations [53c,d] is thus established. 

6.4 DISCUSSION OF DAMPING EFFECTS 

Components of force or moment on the foil that are proportional to 

velocities have a damping effect, positive or negative. Included here are 

the force — e1v and the components - BSv and csé in Fro assumed to act 

through the @ axis, whose velocity is v. Then there are also the moment 

- e568 and the terms - LBSv and - E,S6 in Mao acting at the velocity 8. 

These forces and moments do work on the beam-foil system at the total 

rate (see Section 8.3 of Reference 3 and Appendix H of Reference }): 

[- (c, + BS) v + CS6] v + (-c56 - LBSY - £88) 8 
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or 

of) 2° ee) 
= (cy + BS) v~ + (C - LB) Sve - (c, + E,S) i) 

This expression may be positive or negative. If, however, the Theodorsen 

relations are used, namely: 

B= mebL 

3 ) a ( 1 2 
S = + = — = = _— C a(3» e glk aie errs ED B a +e] 

then C - LB = B (b + 2e), and the rate of work is: 

2 
°2 re) E 02 IL | 

So es c 8 = BS Ise S (> <> AS) s78) +( oa + e] is) 

i S2hhn 26) E (2 ) al 

=- cv C58 - B|i|v- 5 bte] 6 

With these values, therefore, if c, 20, ey 2 0, and BS > 0, there is 

no gain but, in general, a loss of energy from the beam-foil system during 

harmonic motion. Somehow, such a loss must be compensated for through 

work done by the BS“ terms in F, and Mp- 
L 

If s = 0, the Cy and C5 terms alone will cause a loss of energy unless 

Cy Sears 0; and when S = 0, the equations of motion are correct for any 

* 
type of motion (whether harmonic or not). Consequently any existing 

motion must die out unless maintained by additional forces. The same 

conclusion will probably hold at first as S increases from 0. Eventually , 

however, the rate of loss may decrease and become zero at a certain speed 

* The Theodorsen terms are derived only for harmontc motion. If, however, 

S = 0, the Theodorsen terms disappear and, in general, the equations of 

motion hold. General equations are needed to deal accurately with 

damped motion. 
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Sos and it may safely be assumed that the motion will then be harmonic. 

As S is increased above Sao it is almost certain that the damping will be 

negative, so that any vibration tends to build up. At one or more higher 

speeds, harmonic motion may again become possible; however, this is of 

little practical interest. Thus S the lowest value of S at which steady c? 

harmonic motion can occur, constitutes the critical flutter speed that 

must not be exceeded in practical operation. 

6.5 THREE SPECIAL CASES 

6.5.1 Damping Due to Lift Only (c, = Css 0) 

life Cen Cons 0, so that damping arises only from terms in Fh and My > 

then S may be canceled out of Equations [53b] and [53d] entirely because 

every term is then linear in S. Also, only the se term occurs now in 

Equation [53c] or [53a] but not in Equations [53b] and [53d]. These 

features open the way to the following simpler mode of solution: having 

a assumed a value of w and calculated a__,a and B55? calculate a? 
lines hme eae 

from either [53b] or [53d]; if this value of we agrees with w as assumed, 

then harmonic motion is possible at thisw, provided S has a value that 

satisfies either Equations [53a] or [53c]. This value is easily found. 

2 
If the two values of w do not agree or if S turns out to be zero or 

negative, then the assumed w must be rejected. 

6.5.2 Koil Rigidly Mounted on the Beam 

The equations may be adapted to the assumption of rigid mounting by 

letting k, > = and ky + >. Since s}/k, = (1/7) + al2 and s,/k, = (1/k,,) 
ial 

+ a55 and D/(Gz ik) = (s1S5 = 81080} Ky ko) /(kyko) the following reduction 
lier 
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formulas hold as k.k, > @ 
alier2 

ra sil tee ed 
> & 9 

ky alent kK, 2e 

aus SD 2a -a = @ a 2 Pk. Se 
Kk, fe) Il ez WA Sa lee 

The limiting forms of most equations become evident after suitable mani- 

pulations to make these formulas applicable, Equations [53c,d] being 

divided through by kjk,- 

Equations [46a,b] and [48a,b] require no change. Equations [47a,b] 

divided by k, or Kk, give v. = v and 6, = 6. In Equations [49a,b], [50a,b], 
it 

[51a,b], [53a,b,c,d], and [54a,b], the final effect is simply to replace 

D by Do» S$} by €)], and So by apo, and to erase ky and k, everywhere, the 
2 

term kk, in [53c] being replaced by 1. 

The equations do not seem, however, to be simpler in this case or 

modified in a mathematically interesting way. 

6.5.3 Low-Frequency Approximation 

In the theory of a uniform beam under forcing, as given in Section 2, 

formulas were found for a and a 
22 

ii? 210° 821? an terms of E, I, the 

length 2 of the beam, and two dimensionless parameters qk and & defined 

thus: 

\ 
- (2) aan 2o2e- = S [58a,b] : = = (a) 

EI eKAG, ae 

* 
Here wp is the effective mass of the beam per unit length, 

* wu includes the effect of virtual mass when the beam is immersed in a 

fluid. 
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E is Young's modulus, 

G. is the shear constant usually denoted by G, 

A is the area of the cross section, 

I is its area moment of inertia about its principal axis, and 

K is the usual shear-warping constant. 

If w is small enough, q&% and € will both be much less than unity. 

Shoaealal@ewisy 5 es Sa dl Erol § «—S al alse 

i (#2) *"° 
W << — 

ge vu 
5 w << 2KAG, /7yET [59a,b] 

The second limit on w is obtained upon substituting for q& in the 

expression given for &€ and setting the result << l. 

When € is so small, all shear effects in the beam may be ignored and 

the approximations derived in Section 3 for qk << 1 may be used, namely: 

le 2 = a,, = a,, =- = [60a,b,c] ° 2 eae b) 2) >) &) ial mone 1 mene 2 2 3u2 

Let w be small enough so that 

hk 12k 
2 

we << 1 : we << [61a,b] 
pL we 

Then, using the approximations for avn anda, la ea! >> 1 and 

lak, | >>aelt ence: 

After inserting the approximations into the formula: 

w= Se = Sipe ia 
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Upon substituting these approximations and also writing v for - aa 

and 6 for - n°@, Equations [50a,b] and 

approximate forms: 

[46a,b] divided by kk, take the 

a6 da Doo So 

F = uly + 1 432°6 ; C= 5 us vt 5 u07 [62a,b] 

00 ee 2) 0 e 

m'v + h'm'@ - BS 6 + Ker + BS) v - CS@ = 0 [62c] 

him'y + 1,6 = WESee = ss (ef, + EFS) 8 = 0 [62a] 

where ~ 3 

2 lus 
a Sim te MM. 9 Jali! 3 fot eS y= 2 i = I, + 3 [63a,b,c] 

Also, Equations [52a,b] become: 

ange ue-we 

Yoel & k 2k 
It ne 

22 Sie L-w 
8 = Ue este da 4 a Je 

Treated in the usual way (i.e., equating determinant to zero), Equations 

[62c,d] give as approximate conditions 

ae? {m'I'! i] ' 2 ie (alti) | mc 

- {h'm' + E, + L (@ o m?)]) BS” 2 © 

2 ' w [(e, + BS) I, 

+ c, LBS =0 

for harmonic vibration: 

oy, Se 

2 [6ha] 

+ (ce, + E,S) m' + h'm'CS - Lh'm'BS] 

[64d ] 

These equations are simpler than Equations [53a,b,c,d], especially because 

w affects the coefficients here only through the factor w . 

63 

= The final 



search for a useable S, however, is about as complicated. 

A useful minimum for uw can be obtained from Equation [64a] provided 

2 
the coefficients of S and S are not negative, namely: 

Jl 
we 2 ¢)¢, [m'I'e = (h'm')2] 

Otherwise, the determination of a minimum w is more complicated. 

In Section 3 it was remarked that the approximate values of a1? B55? 

>? and a are the same as the values for a slender uniform rigid rod of 2 21 

length 2 and mass uk forced at one end. For the rod, Ayo = 457° Thus the 

equations derived here for q& << 1 are applicable also to a foil attached 

at one end of such a rod. 

It is interesting also that the equations still hold if 2 = 0, which 

corresponds to removal of the beam altogether. Thus the foil may exhibit 

flutter all by itself. Usually, any low-frequency harmonic vibration of 

the foil that can occur with the beam attached can also occur without the 

beam, and at the same w and S, provided the mass of the foil is increased 

from m to m' and its moment of inertia from I to I'g, and provided h is 

changed to a value h' such that h'm' = hm + S wee. 

6.6 SIMILITUDE 

An interesting question is the relative influence of the various 

parameters of the foil-beam system upon the cricitcal flutter speed. 

Relevant fotl parameters are n, I> h, and L; the lift constants B, C, 

bewandine)i-sandic=andaica meal sion and E, (or the foil constants p2& T 5 f? 

there are the attachment elasticities ky and ky. The influence of the 

(on i= 



beam is represented by the values of 84> 80> 41> and B50° Apparently , 

in general, the relative influence of these parameters can be ascertained 

only by making extensive numerical calculations. A major source of 

difficulty lies in the possible variation of the a over all real values. 

A simple form of similitude, however, is readily discovered. In 

Section 2 formulas are given for forced vibration of a wniform beam when 

F and G vibrate at the same circular frequency w but perhaps in different 

phases (for example, F = A sin wt, G = B sin (wt + ¢)). The mode of 

vibration of the beam was shown there to depend upon two dimensionless 

parameters qk and & whose definitions, as given in Equations [58a,b], may 

conveniently be rewritten as follows: 

EI all 2] EI 1 2 

: -( 2KAG. +) ae) en -) = 2 (az) [65a,d] 

Here 2 denotes the beam length and q may have any positive value. The 

formulas obtained for the a5 can be written thus: 
al 

3 2 2 = g pis, Z —— Q = 
= ORR SCS = ay 10 S — ee = 66 ae) a a b &e > Sia gre Ba = Gn ce 8 Poo an => (166c c,d] 

where a ales a. ©, and Os are complicated functions of q% and € but are 
11 

* 
otherwise independent of the beam parameters. 

To obtain simple similitude, variation of q& and € must be avoided. A 

group of foil-beam systems that can vibrate at the same q&% and € will be 

compared, and the comparison will include only vibrations of these systems 

* To infer Formulas [66a,b,c,d] from those given below Equations [12a,b] in 
Section 2, q, and qo being defined there by Equations [5a,b], note that 
q 2% and q,% are functions of q&% and € and, consequently, the same is 

true of the functions s,c, 5, and C. Elsewhere, replace q ang ® by 

(q,2)/2 or (a,2)/2, and aoe q@ by multiplying EI by (qet2/e 
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at a chosen q% and €. 

To facilitate thinking, choose one system out of the chosen group as 

a reference system and indicate the quantities that refer to it by adding 

a prime. For any other system of the group write & = \L', EI = eat(EI)". 

Thus within the group: 

Qt, oS EI PEAY 

with A and e« denoting arbitrary numbers that equal unity for the reference 

system. The factor 4 is introduced here because, in a simple change of 

scale with all dimensions increased in ratio A, I = ne The factor 

thus represents the effect on EI of any change in the shape of the beam 

and perhaps in E. Then, from Equations [66a,b], among the beams of the 

chosen group: 

g a <a CG ==> 8 859 Cs [67a,b,c] 

To make & the same for all of the vibrations considered, the factor 

KAG, 2° /(EI) in Equation [65] must be the same for all beams. Hence, it must 

be that KAG, « ede. Also, p= pA in terms of the density ome of the beam 

material. Thus 
fe) A fe) tat es ae pk'G) KAG, 

! ' ! irs ' ! 1 1 

or 

fe) ' 1 

Ros PENG T= ale) : Se 
! Sy ' u oh KG, 

For the reference beam, tT = 1. Thus among the vibrating beams it must be 

that 

KAG, « e\- ee ts ae 5 He = [68a,b,c] 
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The variation of w is inferred from Equation [65b]. For any two beams 

made of the same material and with. cross sections of the same shape, so 

that KG, and t are the same, A« ane and I « ent, 

The validity of the fundamental Equations [46a,b], [47a,b], and [48a,b] 

for all beams must now be secured. Tentatively, the rule that all terms 

in a given equation must vary in the same ratio from one vibrating system 

to another will be followed. 

Equations [48a,b] read, for the reference system (denoted here by 

primes) and for any other chosen system, in view of Equations [67a,b,c]: 

! _— q ' q i] 5 q —_ 1 1 i q 

Ya = Saal” Gig’ 3 Yo = Gah Goa 

sail ay az apo Voi F+oe; Qe, = SP + Se 
on Eh eh eA edo 

Here it can be assumed that the time factor in F is the same for all beams 

(perhaps "sin wt"). Furthermore, since the amplitude of any vibration may 

be arbitrarily varied, it does no harm to assume that the amplitudes are 

such that (a) ,/e) F is the same for all beams and hence equal to asf’: 

Then F <« edAF'. Also, according to the general rule being followed, the 

second term (afer) G must then equal ere so that G = ance. It 

follows that the phase of G is the same for all beams (perhaps G ¢« ene 

sin (wt + ¢), ¢ constant). 

Thus v= We for the vibrations considered, but substitution for F and 

G gives on = Ob/A. Summarizing, among the chosen vibrating beams: 

2 
Peeks @Gesr 3 Yi Gi 3 80 « 1/) [684a,e,f,¢] 
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It should be noted that Nis is in the same phase on all beams, and so is 

8o> but these phases may differ from those of F and G. 

Consider next the beam-foil relations expressed by Equations [47a,b], 

which may be written: 

To make F/k, and C/k,, vary the same as Vv) and 85> respectively, assume 

Ky = Fk, © XG. “then 

Ricci 9 Kee ed 9) we vged ) 6 =e. 1 [een em) 

Turning now to the foil, assume that the values F', G', v', and 6! 

for the reference system satisfy Equations [46a,b] for a certain set of 

values of the foil parameters. Make these equations valid for all other 

systems of the group in such a way that all terms of each equation vary 

in the same ratio; that is, so that they are « F « eA in [46a] and 

« G« ed in [46b]. The necessary variation of the foil parameters and 

of S is found to be: 

D 
m TEX 3; hea 3 DUS 3 I «x TEA 

ec, «= en Volew ohne oh fae 83 co alfhe 

2 3 4 
B © Tene: Go Ten 8 ED = TEA 3 L«= > 

Ore, ator 35 G, etoyel EL have Theodorsen's values as stated following 

Equations [45a,b], then 

I) GK 2 ea ys Lp & terA/t 
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where ¢t is the specific gravity of the ambient fluid. 

Examples of the calculations leading to these expressions are: 

: ee 2 ss 2 2 ays : 
(a) Since v = - wv,mv « m v= (m/\°t) * 1; this is « eX if 

m« teh. I, is obtained similarly. 

(b) To make (c, + BS) v « ed, where v « wy « 1/(i\vYt), it is 
al 

necessary that (ce, + BS) « ene vt. This is most simply secured by making 

Cy « BS « aie YE o 

2 2 2 Palani os : 2 (c) To make BS 6 « ek, let BS « cd. Dividing this by BS « ed” vr 

gives S « 1/vt, and dividing S « lv into BS = ed°vT gives B« eel”. 

(d) If Theodorsen's values for the lift are used, 

Sp) pee Gans SS) Sau “yi co i 
NM Jw 

whence 

b= C/B - VE /B =X ; e = (C/B) - (3/2) b= X 

Also, pL, = B/(mb) « teA. Write p = cP,» & being the specific gravity of 

the fluid bathing the foil and Py the density of pure water. Then, P. 

being the same for all foils, 2, « ted/t. 
fe 

As a spécial case, if the systems actually differ only in scale, all 

linear dimensions varying as A, then e = t = 1 and the similitude just 

D 2 
described requires that m« > I, CIA on GN 5 Cy & a. Lepr, Be Nae 

Ca 3, E,, « 4 (orb «ea 2, « X), with S and ¢ remaining constant for 
fe 

all systems. Also, w = l1/d. 
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The general similitude described here might conceivably serve as 

the basis for a model test, although the limited variability of S is 

likely to be imeonvententen 

In practical cases the influence of shear warping tends to be small. 

It may be sufficiently accurate to omit this effect by letting K >= 

(hence — = 0). For this case write the relation u = (op A/o, A") u' in 

the form: 

Pb 

Thus te is replaced by n or t by n/e in all formulas, and 

Onk Ve. «\z ee 7 

Since € «= RI/2", € can easily be varied without affecting A or n; for 

example, by changing all linear dimensions of the cross sections parallel 

to the principal plane of the beam in a ratio r and the perpendicular 

dimensions in the ratio 1/r, thus A is left unchanged. Variation of S 

in any desired ratio can be effected in the same manner. 

preKGe 
* With gq invariant, T= aD! KG - Since p,, K, and G, cannot vary much, 

ie) e 

then the variation of S is limited. 
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7. TWO SIMPLE CASES OF FLUTTER 

The mathematical theory of flutter is so complicated in realistic 

cases that it is not easy to form intuitive ideas of the flutter process. 

For this reason a certain interest may attach to simple cases that are 

easily understood. It apprears that typical flutter can occur only if at 

least two degrees of freedom are coupled together; and commonly, but not 

always, there is a difference of phase between the two motions. 

Two relatively simple examples are described in detail. Although the 

theory given here might conceivably be roughly applicable to some actual 

problem, the principal aim in devising these cases has been to make them 

simple. 

In both cases a rigid foil is assumed to be immersed in a uniform 

stream, and for the lift F_ on the foil the simple steady-motion approxi- 
L 

e ° * 

mation is used: 

we = — BSv + BS“6 

In steady motion, 6@is conveniently assumed to represent merely a small 

inclination of the foil to the approaching stream and v, a slow 

perpendicular velocity of translation. This formula is known to provide 

a fair approximation also when 6 varies slowly, as is assumed here. Then 

@ must represent rotation about an axis parallel to the foil and perpen- 

dicular to the stream, while v may be regarded as denoting a displacement 

of a line on the foil located at the axis of rotation, v being 

* In Appendix H of Reference 4, it is shown that the effect of the 6 term 

is relatively small if pe is small. Hence, the 6 term is dropped here. 
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perpendicular to both the stream and the foil. The assumed axis of rotation 

may be displaced into any parallel position in the plane of the foil without 

affecting the motion provided an appropriate change is made in v. 

The foil is assumed to be attached to some structure but it is 

assumed to be so long that disturbance of the lift by the presence of the 

structure may reasonably be neglected. 

7.1 FOIL ATTACHED ELASTICALLY WITH DAMPING TO AN IMMOBILE BASE 

Let the foil be attached so that it can undergo displacements v and 

@ as described and, to simplify the formulas, locate the 6 axis so that 

the lift acts through it. When the foil is displaced, let an elastic 

force - k,v and a frictional force - c,v act on it along the same line as 
a a, 

F. and positive in the same direction. Also let an elastic moment - k,6 
L 

and a frictional moment - cn 6 act on it about the 6 axis and positive in 

the same direction as 6. 

Let the foil be so positioned that the lift acts at a distance L from 

the center of mass of the foil,” L being positive when the lift is dis- 

placed from the center of mass toward the approaching stream. Denote by 

m the foil mass and by I its moment of sonatas about an axis drawn 

through its center of mass and parallel to the 6 axis. See Figure 4 where 

directions are shown for positive v, Vv, OQ, Wy Fh and L. 

* With § terms present, no single location for action of Fy, was con- 

sidered. In the present case such a location is specified. L here 

is not the same as in Equation [45b]. 

** Note that here the moment of inertia of the foil is denoted by I 

instead of I,, to allow use of I, for a rigid body in Section 7.2. 
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Figure 4 — Forces on and Motions of a Foil 
Attached Elastically to an Immobile Base 
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Since the displacement of the center of mass of the foil is v - L6, 

then the equations of motion for the foil will be: 

Sane NE(s) eves Mee Nae une <a IE m (sp = it) sis SY 7 

I6 = - 6 - a - = ; + K, c,6 Ie ( KV civ a) 

The second equation may be simplified by subtracting from it L times the 

first equation. Then, inserting also the value of Fi the equations of 

motion take the form: 

my - Lmé + k,v + (c, + BS) v - BS“e@ = 0 [69a] 

(2.2 tom) 8 = tae > 0 C50 = 0 [69b ] 
2 

The v and 6 motions are thus coupled together inertially through the Lm 

terms. 

To search for harmonic motion, make the usual mathematical assumption 

. 2 te 

that ve 6 =< gas. Canceling en results in the equations: 

2 : 2 2 [-wom + k, + iw Kors BS)] v + (w Lm - BS”) @=0 [70a] 

imum; & flea (i Siam) ok. > tae] © S 6 [700 ] 
2 2 

Equating to zero the determinant of these two equations gives: 

= 358) ) lene Geo Sa) & k, + iwe,] + iw (c > (eocm an his 
aL alt 

2 Eien (ate = Ese) = © 
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Multiplying out, then equating to zero separately the real and imaginary 

parts and dividing the latter by iw, on the assumption that w # 0, yields: 

2 ie ba - wo [mk + (I + ern) k 
2 1 

2 
7 Gs (c) + BS) - LmBs ] + kk, = 0 [71a] 

=u" [(e, + BS)(I + ea) + cym] + (co) + 3S) Ik. > eile, = © [7lb ] 

The second equation can also be written 

(CHEB) picentcuk: 
Ae = pee a ee OMe ACD [71b! ] 

2 
+ ik 4p JE te m (c, BS ) ( m) @, 

In both equations all symbols denote positive quantities except that it 

may be interesting to try to make Cy > Co» kK) > Ky or S zero. Hence, 

Equation [71b] cannot require a negative value of oan 

Equations [7la,b] fix ne and S but, in general, an algebraic solution 

is not practical. Substituting ne from [7lb'] into [7la] and clearing of 

fractions gives a quartic equation in S, or a cubic if either is or k, is 
2 

zero (or both), so that the term k_k, disappears and Equation [7la] can be 
v2 

divided through by a 5 The most feasible method of numerical solution 

would probably be to assume a value of S, calculate aie by [71b'], and 

then calculate the value of the left member of [7la]. Successive 

approximation and interpolation would then be used in order to find the 

values of S for which Equation [7la] holds. 

The smallest positive value of S thus found will undoubtedly be a 

critical flutter speed, provided L # 0 so as to couple the v and @ motions. 
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If S = 0 but Equation [71b'] furnishes a positive value for ue then v and 

§@ will vibrate in a certain ratio, decreasing to zero with time if either 

Cc) > O or cy > 0. If, then S is made slightly positive, the term BSv will 

predominate over - BS“6 in Equation [69a] and will itself damp out the 

motion even if c = cy = 0. As S increases further, however, the damping 

effect may decrease because of the increase in the value of the - BS“ 6 

term until, finally, at a certain speed S. harmonic vibration may again 

become possible. Then Sa is the critical flutter speed. As S increases 

above See the vibration will probably become unstable. 

In special cases further conclusions can be drawn, and it is these 

conclusions that may give a certain interest to the case of a foil mounted 

on a rigid base: 

(a) Assure cy = 0 but kp > 0, L #0, and either S > 0 or c, > 0 or 
alk 

both. Then the factor Cy + BS can be canceled out of Equation Alig) I)e size 

is found when substituting for awe that Kk, disappears from [7la]; finally 

Equations [7la,b'] can be written: 

k 
we = —+ g BS“ 2 EOP ERAT oem 

IE ee Jeri IC op lim 
[72a,b] 

Inspection of Equations [69a,b] shows why this case is so simple. If 

RE= nee, GS velwe specified in Equation [72b], the two 6 terms in Equations 

[69a] cancel each other. Hence, if k, > 0, v must either be zero or 

execute a damped oscillation ending in zero. Or, if k, = 0, v must 
als 

ultimately reduce to a constant value since the only other possible 

ut 
solution of [69a] is then the nonharmonic solution v «= e "’, where 
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mS (cy + BS) me In either case, ultimately v = 0 and the term - Lmv 

in Equation [69b] disappears; and the v and @ equations are independent 

of each other. According to Equation [69b], © vibrates steadily with w, 

as given by Equation [72a]. 

(1S) ta ke = 0 and either oS 0 or kK, = 0 or both, and if also at 

least one of cy and S is positive, then We = 0 according to Equation [7lb'], 

and no harmonic vibration with w # 0 is possible. 

When k,, = 0 and c, = 0, solutions of Equations [69a,b] are easily 
2 

found in the form of finite series in powers of t. The simplest of these 

may be mentioned; namely,@ = a and, if k, #0, v= BS“a PS. 2 OW as? 
1 1 

2 
ik 2 @ bt GC wRES >O, ye ESmoum + 8B, where a and 8 are arbitrary 
a 1 ec, + BS 5 

constants and t denotes the time. If ct # 0, FL = — BSv + BS 6 = BS-a = 

Re thee SOF (eo, © BS)2 6 BS"a, ao thet BSP G ESea = c 
Jt al 

Thus, in either case, a steady lift on the foil serves to balance another 

1 v and Fo = cjV- 

force. 

(c) If L = 0, Equation [71a] does not contain BS* and it is more 

illuminating to return either to Equations [70a,b] or to the more specific 

equations of motion, Equations [69a,b], which now read: 

un : 
mv kv (ce, 

Ta Sk OS e.0 SO 
2) 2 

Now there are just two possibilities for steady harmonic vibration: 

* Here, this definition of u, is restricted to the case at hand and 

should not be confused with the definition of u generally used 

throughout this report. 
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(a) Osis Wo eis Ms S03 WS 58 20 

k 
Zoe 

(b) Cos OF k, > OF Wr = = 

Case (b) is not a typical flutter case since S may have any value, but 

it may serve to illustrate in a simple case a typical feature of flutter 

vibrations in that the term BS-6 forces a vibration of v in shifted phase, 

the energy abstracted by damping being furnished by the stream. This 

feature may be worth exploring in detail. 

By properly choosing the zero of time, 8 can be expressed thus: 

SC ain ws 2 Ue S k,/I 

where C denotes an arbitrary constant. The accompanying forced vibration 

of v can be written, in terms of amplitude factors a and 8 that remain to 

be found, as follows: 

v = aC sin wt + BC cos wt 

hence 

v = - wBC sin wt + waC cos wt 

as 2 
v=- pane sin wt - w BC cos wt 

When these expressions are substituted into the mv equation, the sin wt 

and cos wt terms must balance separately. Hence, after canceling out 

(Y Ein (he he (C Cos (he? 

2 2 A 
(5 - mw )a- (c, + BS) w8 = BS (for sin ut) 

(c) + BS) wa + (kK, Sim) BO (rope cos wt ) 
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Solving for a and 8 gives: 

where 

The phase angle of v relative to 6 is thus som (B/a) or - Seni 

ey, 
we, + BS) /(k) — mw Thts phase shtft enables BS76 to supply the energy 

aL 

lost from the fotl through the vy term. It may be worthwhile to verify this 

compensation. 

The rate of energy loss is (c_ + BS) We the rate of energy supply is 
ale 

32 ene 2 
WwW 20m, Were aac (a 

2 } 
BS Beane +a cos wt - 208 sin wt cos wt). The time 

average, over a cycle, of sin’ wt or cos“wt is 1/2, whereas sin wt cos wt 

e) averages zero. Hence, averages (1/2) wees (ae + B~), but ae 4 Ga 

pl (sae The average rate of energy loss is, therefore: 

= (ic, = ES) ees wo (asa) 

On the other hand, 

ev = - wBCo sin” wt + ricto sin wt cos wt 

Thus the rate of energy gain, or BS“ ev, averages: 

dL 

= 2 
= 5 wBC°BS* = = nee> De (ce, + BS) (BS-) 

This equals the average rate of energy loss. 

In coneluston, to have a typical flutter situation with a positive 

critical flutter speed, it is clearly necessary in the arrangement under 
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discussion that the center of mass of the foil does not lie on the axis 

of rotation; hence, that L # 0 and that, consequently, the v and 6 motions 

are mechanically coupled together. Furthermore, some elastic attachment 

WO) 1dXS INES aS MoCesSchay, Mines. Giese ie > @ Ofek, DS OZ alse Me 5 1 = 0, iy is 
2 

also necessary that the rotational motion be damped (c, > 0) to keep v from 

wandering off. 

7.2 FOIL ELASTICALLY MOUNTED WITH DAMPING ON A FREE RIGID BODY 

Let the foil be attached to a free rigid body so that it will tur 

about an axis fixed in the body, drawn parallel to the foil axis and 

perpendicular to the stream. Let the center of mass of the foil lie on the 

axis, and denote the distances from the axis to the center of mass of the 

bode and to the center of lift on the foil by h, and L, respectively. 

These three points are assumed to lie on a line that is parallel to the 

stream in the undisplaced position of the system, and Ay and L are 

positive toward the approaching stream. Positive directions are shown in 

Figure 5. 

Let the body have a principal axis of inertia at its center of mass 

parallel to the axis of rotation, and denote the masses of foil and eae 

by m and m, and their moments of inertia about their center of mass by I 

and I)» respectively. Assume that motion of the axis of rotation in the 

direction of the stream is somehow prevented. 

* ho and m, refer now to the rigid body, not the foil; hence the change 

of notation from h and m used in previous sections for the foil. 

80 



Figure 5 - Forces on and Motions of a Foil Elastically Mounted 

with Damping on a Free Rigid Body 

In Section 7.2 only (see notations) m and m, denote the masses of the foil and 

body and I and I, their moments about their centers of mass, respectively. 
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The motions of foil and body will then be two dimensional. Let v 

denote displacement of the axis of rotation in a direction perpendicular to 

the foil and to the stream and let 6 and 86 denote the small rotations of 

foil and body, respectively, about the axis. 6 and 84 are zero in the 

undisplaced position of the system and positive from a direction opposite 

to that of the stream toward positive v; see Figure 2. 

Assume that a spring and also an internal damping mechanism are 

present, exerting turning moments - k (6 - 84) are Gee 6.) on the foil 

and k (6 - 84) +c (6 = 8) on the body. Assume also an external damping 

force - Cy acting on the foil along the same line as the lift Foe 

In general, there is a force F, positive toward positive v, acting on 

the body at the axis and a corresponding reaction -F acting on the foil. 

The displacement of the center of mass of the body is v + no 8: 

The primary equations of motion for foil and body will then be: 

WQS sk (0 = OS © (0 > Bo) vb (= Chas im) mv =- F-cvtFe 
a 

a (oho yer, £60 Sk (0) Se (60) ohF 
e) lomme) [e) Oo fo) (oe) 

Eliminating F and inserting F, = - BSY + BS-6 gives: 

(m +m) ¥ + homé, + (c, + BS) v - BS“6 = 0 [73a] 

fe Nea be ‘ 2 
I6 +c (8 =6.) +k (0 0m) + L [(e, + BS) v - BS 6] =0 (73b ] 

2) . we se is be: ¥ ee ms 

(me. + hem.) @,-¢ (6 8.) k (6 -@.) +homv = 0 (73c] 

A more simple equation may be obtained by subtracting L times Equation 

[73a] from the sum of Equations [73b] and [73c], namely: 
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This last equation can be integrated at once as follows: 

2 at [hom eaipelival emits m,)] v+I60+ (0 ve JesaL h Lm, ) 6, =a + Bt 

where a and 8 are arbitrary constants and t denotes the time. A 

corresponding special solution of [73a,b,c] exists if c, = 0, namely: 

@=@ =y 3 v= 6 + ySt 

where y and 6 are constants which are easily expressible in terms of a 

and 8. This solution represents a steady lateral motion in which the 

foil does not disturb the eneame | By means of the integrated equation, 

it is possible to eliminate i). and thereby reduce the equations of motion 

from three to two. It seems simpler, however, to work with all three 

equations. 

In looking for harmonic motion, it is apparently less complicated to 

use as equations of motion Equations [73a] and [73c], with signs reversed, 

and Equation [74]. Assuming that in these equations v, 6, and 8, are 

Lot 
proportional toe , then canceling ge. and also dividing Equation [74] 

by -w-, gives the following result, provided a 53 O32 

* The foil does not disturb the stream because v = 6 represents a steady 

displacement with 6 = 0, whereas @ = y and v = ySt represent a steady 

motion in which the foil slips chordwise through the water thus: 

Le 
Z 

as seen by observer as seen by water 

v = YS 
+ 
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2 Z . } 
[-—w" (m + m,) + iw (cs + BS)] v - BS°6 - w ine. = 0 

whomy + (k + iwc) 6 + fos (ts nom) - k - iwe] 6, = 0 

[aon oi (> mi) yom So (Ge Shen Shim) 6. 6 O 
(ome) (e) (e) (0) (©) ©) © ie) 

The determinant of the coefficients of v, 6, and 8, in these equations has 

the value: 

(m + m,) + iw (ce. + BS)] (k + iwe) (I, + nom, = h Lm, ) 

D) ' 
I In -k- - + ( d om) iwe]{h m. L (m m,) 

“nee © wan mm (eS Amelia = mom) 
ome) (ome) 2° 0 O 

Beam (i Shen ohim) or fer (r & hon) ok © ame) 
(0) (©) fo) (ome) y' © oO (one) 

[-w"(m + m,) + iw (c, + BS)] 

Multiplying out and equating to zero separately the real part and the 

imaginary part divided by iw yields: 

wT [1, (m+ m) + hommy) - uf { E(T + Ig)(m + mg) + n2nmg] 

2 2 @ (ie, > BS)(e ee kin thn) ae IS Gf ella. = 1G (Gas a) 
oO 

+ wL (I, (m+ m,) + nomm) f= 0 [75a] 

-w° {(c, + BS) I (I, + hom) * c[(I + I5)(m + my) + nom] f 

F ) +k(c + BS)(I +I +h‘m -h Im 
a eo) [oume) Omm© 

on, provided ce > ONand cy teBsor sO; 
a 
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ete Sie oe Shen San) 6 use [nin 5 ih Ga om i) 
a e) (one) Oo oOo (oe) 2 Oo 

JS en GEE GGT OS UA. Go on en ee (7502 | 
(c + BS) I (I + mn )+e[(I1 +1 )(m+m) + hom ] 

a ° (ome) O ° © © 

* 
IC3¢ cc, = 0 and S = 0, Equation [75a] gives, as the natural frequency 

of vibration of the undamped system without the stream: 

By re I (m +m) 
Ww = Ww = ———.]) 

2 fo) I Te (m + m. ) + homm 

It should be noted that the mathematical complexity of Equations 

[75a,b] is no greater than that of Equations [7la,b] in the case of the 

foil attached elastically to an immobile base, although here three variables 

(v, 6, 6.) and three corresponding equations are involved as against two 

in the previous case. The reason for the simplicity here lies in the 

occurrence of the factor ie in all three terms of Equation [74]. It is 

not clear in what general class of systems this sort of reduction in 

complexity will occur. 

The smallest positive value of S for which both [75a] and [75b] are 

true will undoubtedly be a critical speed for the inception of flutter. 

At a lower speed any motion will be damped out due to the BSv term and, 

perhaps, other causes if S > 0; or, if S = 0, provided at least one of 

the constants c, and c is positive, 
a 

Thencase. ic) V0) ific —Onbuthce + sBSa> One Equataon [75b'] gives: 

6 tel hen Sch m 
H( fo) (oe) 22 [76] 

2 Is + aa 

€ ! 
all 

* ce, = O means c = O or ene O or both. 
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The necessary value of ge may be found most easily by rearranging 

Equation [75a], giving the value of the determinant as follows: 

2 2 2 2 -w (m+ m,){ (I, + hom, - Ihgm,) - Ilu” (1g + hom) - k)} 

a 2 + uTneMecear Think +4BSg laaenneme=) nun)! 
(e) ©) (e}) 6) (e) ORO) (0) ©) 

2 2 + [hom - L(m+m,)] {wk hom, - BS oo [w°(I, + hom.) - k]} = 0 

(Here the leading factors are the coefficients of v in the v, 6, 86 

equations, the coefficients of v having been chosen because they contain 

the only imaginary term when c = 0.) 

Now the value of i given by Equation [76] causes the first brace 

(i.e., the coefficient of en + m,)) to vanish. The second brace can 

be made to vanish by assigning the proper value to BS“. Then it is easily 

seen that the third brace also vanishes. For, the ratio of the first 

term in the third brace to the first term in the second brace, and the 

similar ratio of the second terms, are, respectively; 

2 (ir jam) a ik 
kg 2 ° oe) 
i 

1 on = Eyam 
Oo (ome) (6) {(C) 

But the vanishing of the first brace makes these fractions equal. Hence, 

the third brace is proportional to the second, so that if the second is 

made zero, the third brace also vanishes, and, consequently, the whole 

determinant is zero. 

The value of BS° obtained in this way, when c = 0 but c, + is} > 0, 189 
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[77] 
m - Llhm IG. Ai Yay 

fo) fe) ©) © 

Incidentally, it may be remarked that if the values of Re and of BS- 

given by [76] and [77] are substituted into the v, 6, and 6. equations with 

ec = 0, it is found that 

If Equations [76] and [77] yield positive values for ae and sam then S 

is the critical flutter speed for the system. Even if Gris 0, any motion 

at a smaller speed will be damped out by the - BSv term ain) ithe deity 

A critical flutter speed will not exist for all values of ho and L. 

In Equations [76] and [77], only h, and L can be negative. Hence to 

make aif? and Se, as given by these equations, positive, it is necessary 

that: 

ee + nom, 
It ap i + hom - Lh om, > @ 2 aa -L>0O 

fo) 

(The sign of a fraction is not changed if the fraction is inverted or if 

numerator and denominator are multiplied or divided by the same number. ) 

If h_ > 0, the second inequality requires that: 
(e) 

ae 
Ih Sie oP 

fe) hm 
(ome) 

and then the first inequality is satisfied also. Here, L may be positive 

or negative. 

If h, < 0, substitute h, = - |no|- Then 

QT 



IE ae aC I 

{joo —2 ne = bp 
fe) m |h | 

©’ © 

fe) 

ol im ae 
(o)" ©) 

with the left-hand inequality coming from the first of the basic inequalities 

>) and the right-hand inequality from the second. (Note that no°/|h| = [h, 

Thus . hy and L may both be positive, as drawn in Figure 4; if he < 0, 

L must be negative also. 
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8. SUMMARY 

A theory has been advanced for determining the vibrations, including 

flutter, of a hydrofoil craft. In general, the craft is treated as a 

rigid foil flexibly attached to a uniform mass-elastic free-free beam 

immersed in a fluid moving with wniform velocity. The hydrodynamic force 

and moment on the foil are represented by two-dimensional quasi-steady 

expressions. The sequence of steps undertaken in devising this theory is 

summarized as follows: 

1. In Introduction the background and objective of this report is 

discussed. 

2. In Section 2 influence and inertia coefficients are derived for 

a uniform beam that is maintained in harmonic vibration with two degrees 

of freedom by a transverse force F and a moment or couple G acting at one 

end of the beam and in the same principal plane of the beam. Shear 

warping of the beam is included but rotary inertia and damping are not. 

These coefficients are useful in treating the vibrations of a system 

composed of a uniform beam attached at one end to another structure 

(e.g., a foil). 

3. In Section 3, for convenience of analysis, the formulation for 

these coefficients is simplified by neglecting shear warping. Various 

interesting cases are discussed, in the order of increasing frequency, for 

the vibrations of a forced, undamped, uniform beam without shear warping 

and rotary inertia. 

4. In Section 4, the analysis is extended to provide formulas for 

these coefficients in the case where the external force F and the moment 
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G act at an tntermediate point instead of at an end of the uniform beam; 

shear warping is included but rotary inertia and damping are ignored. 

5. In Section 5, the analysis is further extended to include the 

effects of both external (Rayleigh) and internal damping, the latter being 

associated with bending strains; shear warping is included but rotary 

inertia is ignored. It is shown that the equations derived are valid 

even if the external force F and the moment G are not vibrating in phase. 

Formulations are developed from which the final calculation of the co- 

efficients can be made. The procedure for making these calculations is 

clearly indicated. 

6. In Section 6, flutter of a rigid foil flexibly attached to a 

uniform beam is considered, the entire system being immersed in a stream 

of fluid approaching at uniform speed. Expressions for the resulting 

lift forces and moment on the foil are adapted from Theodorsen's equations 

for a uniform foil of infinite length vibrating harmonically. An 

approximation closer than the common steady-motion approximation is used. 

For greater generality, allowance is made for still-water damping 

(structural plus fluid) as well as for hydrodynamic damping. Equations of 

motion for the foil are related (or coupled) to the equations previously 

derived for the response of the beam subject to harmonic loads; i.e., the 

coefficients previously derived for the beam and Hooke's law for the 

flexible connecting structure serve to couple the motions of the foil to 

the harmonic loads imposed upon it by the motions of the beam. A method 

is described for finding the critical flutter speed and frequency for this 

system, at which a steady vibration of the foil and beam is possible in 

90 



spite of existing damping actions. The effects of various damping 

terms are discussed and three special cases for which the determination of 

the critical flutter speed and frequency are of interest are treated. These 

cases occur for (1) damping which arises only from terms in the lift 

force and associated moment, damping due to friction in the surrounding 

fluid being excluded; (2) a foil rigidly mounted on a beam; and (3) a low- 

frequency approximation, in which shear effects in the beam may be ignored. 

For the latter case, it is shown that any low-frequency harmonic vibration 

of the foil that can occur with the beam attached can also occur without 

the beam and at the same frequency and stream speed provided certain simple 

changes specified in the text are made in the foil. In subsection 6.6, a 

simple form of similitude is described. The parameters of the foil-beam 

system are assumed to be changed in certain ratios with resulting changes 

in the frequency of vibration and in the critical flutter speed. The 

necessary restrictions on the ratios are specified in detail. The 

relations derived here may be of interest in designing a model to represent 

a much larger system. 

7. In Section 7, two simple cases of flutter are treated in order to 

reduce the mathematical complexity to a point where intuitive ideas of 

the flutter process are relatively easy to arrive at. The cases discussed 

are for (1) a foil attached elastically to an immobile base; and (2) a 

foil elastically mounted with damping on a free rigid body. 

For these cases various concepts, relatively simple equations, and 

criteria for flutter are presented; and methods are described for 

determining the critical flutter speed and frequency from these equations. 
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