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NOTATION 

A Vector doublet strength of a singularity 

’ 
A Equivalent vector doublet strength of a moving singularity 

ao. Be, G2, Coefficients in the expansion of a potential in spherical 
harmonics 

as : we Coefficients in expansion for singularity equivalent to 
moving singularity 

F Net hydrodynamic force acting on surface § 

Ei Force on § in a moving system 

Fy ‘*‘Lagally force’’ on S 

FE, Additional force on S due to change of the flow with time 

F, Additional force on S due to a rotation of the body 

€ F, (v), F,@, F,@ Force integrals evaluated over S; 

F, (2), Fy y(%)s F,,(@) Components of Fi(2) parallel to the 2, y, z-axes 

i,j k Unit vectors parallel to the z, y, z-axes 

I,(Ps P+ 1) Integral appearing in F, (2) 

J,(P, pt 1) Integral appearing in M, (¢) 

M, Hydrodynamic moment acting on § 

Me Moment on § in a moving system 

M, ‘‘Lagally moment’’ on S 

M, Additional moment on S due to change of the flow with time 

M, Additional moment on § due to a rotation of the body. 

M,(¢), M, (z) Moment integrals evaluated over S;, 

M,(; M, y(2); M,,(¢) Components of M, (2) parallel to the 2, y, 2-axes 

m Momentum of a mass of fluid 

1103 Moment of momentum of a mass of fluid 

n Unit normal vector to a surface (directed inward to S, 

outward to S’) 



Fluid pressure 

Pressure in a moving system 

Associated Legendre function 

Fluid velocity 

Fluid velocity relative to the origin of a méving system 

Fluid velocity in the undisturbed stream 

-Position vector 

Position vector of the origin of a moving system 

Position vector of a point referred to a moving system 

Position vector of the centroid of the body 

Position vector of the singularity (z) 

Distance from the point (r, ) 

Radius of the sphere S, 

Position vector of a point referred to (F ;) 

Position vector of moving singularity referred to (r;) 

Surface of the body 

Control surfaces surrounding the system of singularities 

Sphere with center at (r,) 

Unit vectors in polar coordinate system 

Time 

Velocity of the origin of a moving coordinate system 

Velocity of a point fixed in the body 

Velocity of moving singularity relative to the body 

Space occupied by the body . 

Space between S and S’ and S*’ respectively 

Space within S’ and exterior to S” 



Space within S” and exterior to S’ 

Space occupied by a given mass of fluid 

Space occupied by S, 

Volume of S 

Rectangular coordinates 

Coordinates of the origin of a moving system 

Coordinates relative to a moving system 

Coefficients in the expansion of the potential of a con- 
tinuous distribution of singularities 

n(0) = 2; n(s)=1, s >0 

Space polar coaedinaces 

cos 6 

Mass density of the fluid 

Velocity potential of the undisturbed stream 

Velocity potential due to the presence of the body 

Net velocity sotential of the flow 

Potential of the velocity q,, 

Angular velocity of the body 
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ABSTRACT 

The force and moment on a body placed in an arbitrary steady potential 

flow were found by Lagally when the body can be represented by a system of 

singularities interior to the surface of the body. They were found to be simple 

functions of the strengths of the singularities and the character of the undis- 

turbed stream in the neighborhood of the singularities. In the present paper, - 

this result is rederived and extended to the case in which the body is subject 

to an arbitrary non-steady motion (including rotation) in a stream which is chang- 

ing with time. The force and moment are found to be the ‘‘Lagally force and 

moment’’ plus additional components. These additional components are given 

_ for the force as simple functions of the singularities used in establishing the 

boundary condition and of.the motion of the body, but an integration over the sur- 

face of the body is required for the moment. 

INTRODUCTION 

The determination of the force and moment acting on a body placed in a non-uniform po- 

tential flow of an ideal fluid has received considerable attention, the problem being of consid- 

erable importance in both aerodynamic and hydrodynamic applications. 

There have been two essentially different approaches to the question. In the first, the 

flow is assumed to be only slightly non-uniform, and the dynamic action is found in terms of 

virtual mass. Thus the problem is reduced to the case of motion in a uniform stream. Lord 

Kelvin! solved the important special case of the sphere as early as 1873, but G.I. Taylor’? 

“was the first to make an extensive study of arbitrary bodies. His analysis, which applied to a 

steady state system only, included some discussion of the moment. Tollmien developed a 

solution for the force and moment in terms of the ‘‘Kelvin impulses’”’ and extended the discus- 

sion of force to include the case of uniform translation in a steady non-uniform stream.* These 

results have been rederived by Pistolesi > who found an error in Tollmien’s formula for the 

moment, 

The second approach considers the boundary condition at the surface of the body to be 

established by means of a system of singularities within the body. The force and moment are 

then found in terms of the strengths of the singularities and the character of the basic stream 

in the neighborhood of the singularities. Hence, this method is not restricted to slightly non- 

uniform streams, but is limited to those cases in which a suitable system of singularities can 

be found which simulates the presence of the body. This is the approach used in the present 

paper. 

lReferences are listed on page 48. 
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Munk was the first to find the force acting on a body generated by sources.® Lagally 

apparently solved the problem independently about the same time.’ Since Lagally’s treatment 

was far more comprehensive and included a discussion of the moment, the statement of the 

force and moment in terms of the singularities has come to be known as ‘‘Lagally’s Theorem.’’ 

Glauert applied the method to the study of bodies in a converging stream in order to find a 

correction for the force on a body when tested in a wind tunnel with a pressure gradient.® 

Betz derived the force and moment with a somewhat iess mathematicai approach than Lagally 

and presented the results in a very convenient form.? Mohr discussed distributions of singu- 

larities over the surface of the body.1° Brard has recently attempted to extend Lagally’s meth- 

od to unsteady flows but was unable to present formulas of the same simple type as those 

which hold for the steady state case.!! 

It is evident that if a singularity distribution is known which establishes the boundary 

condition, the flow is completely determined, and, in principle, the force and moment can be 

immediately found by integrations over the surface. However, in addition to possible diffi- 

culties in performing the integrations, the fact that the pressure is a nonlinear function of the 

potential is a severe limitation. It is desirable to be able to superimpose known flows to ob- 

tain new flows and to obtain the resulting force and moment in some simple manner. For 

steady flows, Lagally’s theorem provides just such a formulation. 

In the present report, Lagally’s theorem is rederived for genera] singularities, and the 

analysis is extended to the case of non-steady streams and non-steady motions of the body (ro- 

tation as well as translation). The force and moment are found to consist of the steady state 

‘‘Lagally force and moment’’ plus additional components due to the changing flow. The addi- 

tional force is stated in simple form in terms of the strengths of the singularities and the mo- 

tion of the body, but the moment is found to require an integration over the surface of the body. 

However, in the latter case, the integrand is a linear function of the potential, permitting the 

Superposition of known flows. 

ASSUMPTIONS 

1. The velocity field is irrotational and has a velocity potential O(a, y, 2, t) 

2. If the body were not present, the stream would have a velocity potential 6, which we 

call the potential of the ‘‘undisturbed stream.”’ 

3, There are no singularities of the undisturbed stream in the region occupied by the body. 

4. The boundary condition at the surface of the body is satisfied by superimposing a sys- 

tem of singularities upon the undisturbed stream, such singularities falling within the region 

which the body would occupy. The potential of the system of singularities is designated by 

gp, Then 

=¢+¢, (1] 



EFFECT OF TRANSLATION OF AXES 

A point fixed in the body is selected as the origin of a moving system of coordinates; 

the axes remain parallel to a second system which is fixed in space (see Figure 1). The posi- 

tion vector of any point of space with 
2 

respect to the stationary system is 

designated by r and with respect to 

the moving systembyr,. The posi- 

tion vector of the moving originisr,, 

and its velocity is v,- The following 

relations hold: 

(e) m 

e-f =o, 

[2] 
Y= Ye = Ya 

Cae On im Figure 1 

where the subscript m refers to the moving system. 

The velocity of a fluid particle with respect to the moving origin is related to its abso- 

lute velocity by i 

ap SUVs 

where q,, is the relative velocity and q is the absolute velocity. Since v, is a function of time 

only, it satisfies the identity 

Moe ValNe oo) 

where 

(7) + oO ) Va Sy Or ewe yee MOeE 
BT gE ie DY m dz 

Therefore 

Gs 7) ae Ye OD) 

or, since 

oz, ie Um ‘e 02, an 

Ox Oy dz 

we have 

V_=V 



and 

a= V ,(® Savion i) 
* 

Hence q,, satisfies a velocity potential which we designate by ®,. It is related to ® by 

OG Yon Gop Y) = WG AU Upp Gay Y) e875 oT, [3] 

The pressure at any point, not considering the gravity field and an additive function of 

time, is 

1 a® 1 a® 
De ee Noes cpm g ala uc alka t Vl 82a [4] 

From Equation [3] 

9 Or, 0a, dv, Or, 

—= Vo, +-——+—- tr civnee 
at di Tat) WEEE ait Seana Gale 

But 
Oke e dt, ae 

at dt re 
so 

ao oo, av, 
2 SG) 0X7, at - ro+VoeVv [5] 

Bled vale wild OF etal eth tek aaa 

Substituting in Equation [4] and collecting terms, 

a® dv 1 m oO p=-+04,°4n+p—"-p—"t [6] 

in which a term containing v, - v, has been dropped. This is permissible, since v, is a func- 

tion only of time, and the net force or moment due to a constant pressure acting on a closed 

surface is zero. 

If the velocity field q,, were to be considered absolute rather than relative, and the 

pressure were calculated accordingly, we should have 

1 aor 
Pin Ge @ Gh? Sia at 

so we can write 

av 

De Boar, 1 Up (7] 

By means of this relation, the flow relative to the moving axes can be considered as if it were 

the actual flow, and the forces and moments so obtained can be converted to the true values. 

Thus, for the force exerted on a given surface S, 



dy 
Fi= [ Pm nde ~ | p(G2-1,) nde 

S S t 

where n is the inwardly directed unit normal to S. By Gauss’ theorem 

ee ) f(s ) a 
—2.r |ndo=- —2. a in o - Ue |) Oe 

s V 

and since 

where ¥ is the volume of §. Hence 

dy 
F.=F,,+9¥—2 [8] 

Similarly, for the moment about the origin of the moving system, 

dv 
MK, = { pt, xndo = | mtn xndo~p | (Se -1,) r, xndo 

S S S 

By Gauss’ theorem again, 

dv, dv, 
FF “Th r, Xndo= Mv x F Siifay| fees ar 

S 

and we have 

dv dv dv, dv 

r|(Fe-r0) “| mae ve ta ee mn)? arr 

since V x r= 0. Therefore 

dv, : dv, 4 dv, ) 
la of NU st) Che x r,, aT = 7 oe Uae 

V 

where ls is the centroid of the body relative to the origin of the moving system. Therefore 



avy 

Me = Ma +0 dt ) be 

Thus the problem has been reduced to the case of a body at rest in space or in rotation 

about some point fixed in space. This is the case which will be considered in the remainder 

of this paper. 

HYDRODYNAMIC FORCE 

We suppose the singularities generating the surface of the body to be enclosed at time 

t, by a control surface, S$’, which everywhere lies within S (see Figure 2). At present we 

Figure 2b 

Figure 2 

specify only that S’ possess a clearly defined normal at each point. This control surface is 

considered fixed with respect to S. The portion of the body between S and S’is designated by 

V’. The body being in rotation, the space occupied by V “changes with time, and we designate 

this region by V ‘(¢). In the following discussion we consider the particular set of fluid parti- 

cles which at time ¢, occupy the region V “(¢,). Since the fluid is also in motion, the region 

occupied by this set of particles is also a function of time, V (2). By definition then 

Vt,)= Vat.) 

but at any other time, in general 

V (ty )# V(t) 

The net force acting on this set of fluid particles at any time is d7/dt where ™ is the 

total momentum of the fluid in V(t). At time ¢,, then 



F.+F in 
Ss s dt 

t 
oO 

where F , is the net force acting on § and F, -is the net force acting on $’. Since 

1 a® 
F oH | pndo=—| [ee ° a= 9 nde 

S S 

and 

m =“ oqdr 

uy 
we have 

ae -{ Zola a) nda | 0 8-nao| tf ear] [10] 

S* Bo. Ge : Vy we) 

which is precisely the force in which we are interested. 

At a point fixed with respect to the body, 

gd _yo.y+98 [11] 

where v is the velocity of the point. As the origin is supposed stationary, and is also fixed 

with respect to the body, the point being considered is in the most general case in rotation 

about the origin, so 

V=@xr [12] 

where w is the angular velocity of the body. We have 

| p @ndo= | p28 ndo+| e(q° wxr)ndo 
ge ot Ss’ dt Se 

We can write 

| ptOnda-2 | e®ndo-- pon ge =e pPndo-w x onda: 
ge dt dt J, 57 dt dt Jo- 5’ 



since 

Then 

ta 

| p nde = 4 | pondo-ux | pondo+ | e(q-@xr)Nndo [13] 

5% GOs s s 

The last term of Equation [10], the time derivative of a volume integral whose bounds 

are changing, must be converted into a more convenient form. At the time ¢, + 52, the initial 

bounding surface § will still be a bounding surface, but it will have rotated by an amount 

w@ 5t about the origin. The surface of Vy which coincided with S” at time ¢, will have become 

some new surface, S’(see Figure 2a). The portion of the body between S and S”’ is desig- 

nated by V ”. At time Z, 

Mi(t,) = eq(t jar 

v(t) 
At time Ga ot 

M(t, +50) eq(t, +dt)dr 
v(t +8t) 

and 

sm- | pq(t, + dt)dr =f eq(t,)dr 

V °° (t+5t) V(t.) 

The two surfaces S’ and §” are considered fixed with respect to the body. The portion of 

the body interior to §’ and exterior $” is designated by V, and the portion interior to S” and 

exterior to S’ by V, (see Figure 2b). Then 

Vi Vie aie 

and 

om.- | pa(t, +8tdr -| eq (t,)dr 
V(t +t) V (t,) 

({ -| | eat, + du)dr 
Vi (t,t8t) V a(t ,+0t) 

[14] 



The velocity of a fluid particle on S’ relative to the body is 

q+Fx@ 

Therefore, the normal distance between S’.and §”, the amount the control surface is deformed 

relative to the body in time 67, is 

\(qq+rx@)-n| dt 

Accordingly, in the expression sor dM, we can write for dr 

dr=-(q+rx@)*ndtdo inV, 

dt =(q+rx@): Ndtdo inV, 

where do is taken on §% Then, since the portions of S$’ which bound V, and V, complement 

each other, 

(| -| J eat, + dear =F] of ar, + 8619") 
Vs (t,tdt) V(t, +8t) S“(t,+5e) 

+(F x we n)a(t, + 8¢)) a¢do 

Substituting this in Equation [14] and allowing 6¢ to approach zero, we have 

el padr - | pala n) do ~ [ BE eo Clue [15] 
Vie ne cis 

We can further reduce the volume integral which appears in [15], since 

padr=—o | odr =o | Ondo (16] 
v’ Vang S+S ” 

by Gauss’ theorem. The unit normal can be written 

By Green’s reciprocal theorem 
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since ® is regular through V’. Therefore, since 

r=ir+jy+ke 

we have 

) | Ondo=po peep || r(q°-n)do 

e on , 

Sig S+S S+S 

But on S we have the boundary condition 

q:n=wxr-n 

so 

{ paar = —o | ra xt ndo~pl r(q°n)doa 
Var s cl 

The first term on the right can be easily reduced. One form resulting from Gauss’ theorem is, 

(Reference 12, p. 52) 

[ om? bao = -/ [acy b+ V yal dr 

S V 

Using this, 

[ho xremdo | (rx w)dt =(" xw)¥ 
V & 

S 

since 

Ve(rx@)=@°(V xr)—r(V x w) =0 

and 

(rx@-V)r=rxe 

Therefore, 

/ pqdr =-1, x w0¥—o[ r(g°n)do 
Va s- 

Then 

uch =|- dw ey aes eds : 

dt | eee =| (1, «4 J+ ww) rw vo zp Bice [17] 



ial 

since 

SS Sp se mH 

dt & 

Summarizing, when we combine Equations [10], [13], [15], and [17], we have 

ee Jee *q)n-(q: maldo- 2 ola on) + on do 

if S 

=| afte ma~ (xu gn 6 x w)| do {18] 
5’ 

|r, x Sew, w) +t, (wm: w)| o¥ 

The first term in the above expression would sive the force if the body were not rotat- 

ing and the undisturbed stream were steady, i.e., the ‘‘Lagally force.’’ The second term is 

due to the change of the flow with time, and the last two terms arise when the body is in rota- 

tion. Since these various components will be discussed separately, we call them F,, F,, F,, 

respectively. 

= 
=| of 5c -q)n—-(q- na ds: [19a] 

Sale 

d ’ 

Be ele ee ein Ge oN [19¢] 

-[r, xau_s (r, e w)+T (o> w)|o# 

If the origin of the system of axes is taken to coincide with the centroid of the body, 

the last term of the expression for F, vanishes. 

The above forces are defined in terms of integrations over the control surface S’. Since 

S“ has not been specified, it is evident that the forces are independent of the particular choice 

of S’, as long as it satisfies the conditions necessary for the integrations to be carried out. 

\ THE ‘‘LAGALLY FORCE”, F, 

Initially, we suppose the singularities generating the body to be discrete, isolated, and 

fixed with respect to the body. Their locations are designated by the set of position vectors 

r,. For the control surface, we select a set of spheres S, with their respective centers at the 
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singularities and their radii &, chosen sufficiently small so that no.two spheres overlap. We 

designate by F, (i) the integral in F. evaluated over the sphere $,. Then 

F,=2F,@ [20] 

Since F, is independent of the particular choice of 4, F,(<) is independent of F,. 

We refer the region around the singularity at r, to a system of space polar coordinates 

with the origin at r, (see Figure 3). 

x—-2,=f cos 0 [21a] 

y-y,=F sin 6 cos X (21b] 

2-2, =R sin @ sin X [21c] 

Figure 3 

The quantities appearing in Equation [19a] may be written 

n=icos §+j sin @cos\+k sin sina [22a] 

--1[ro,n+0 1s Cattery nat OO SG rSA [23] 

iL peep on 
R sin? 0 

do = R2 sin Od@dX [25] 
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where 

o® P= ‘ Do = - 

oR a0 OX 

and Sg and s) are the unit vectors in the (# = const., A = const.) and (F = const., @ = const.) 

directions respectively: 

$9 =-i sin 0 +j cos @ cos ) +k cos @ sind [22b] 

S) = —j sin » +k cos d ‘(22c] 

The components of the force parallel to the i, j, k, directions become: 

Si 2 2 Cos OB ay2 F,,(@)=— a [- 2,4)? cos 0+ 02 es Oe oy 
a sin? 6 [26a] 

+2R,®, Op, sin o| sin 6d@dd 

9 27 7 

ry) -5| i - (R;®,)? sin? @ cos \ + o sin? @ cos \ + oR cos ) 

[26b] 

-2R.® ® sin @cos 6cosA+2RkR.0 0 sinA|dé@dx 
GO Tid 2) u n \ 

p 27 pT Re. 

0-51 | (#50, sin? @sind + 0g sin?9 sin A+ 0? sin d 
[26c] 

~ 2k, 2, Oy sin@ cos @sindX — AGO 2 cos sjaaan 

In the regiono <R < It; ~r,|, where r, is the position vector of the singularity nearest 

the potential is analytic, so it can be expressed as an expansion in spherical harmonics 

which converges throughout this region, 

co n 

® = s y R” P*(u)(aS cos sd + 6% sin sd) 

n=O s=0O [27] 

55 n 

+ y y BrP Nie (in) (as cos 5 +55 sin § )) 

n=O Ss=O 
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where p = cos 6, and the P*() are the associated Legendre functions. In this expansion, the 

first double summation, in which F appears to a positive power, represents the potential of the 

undisturbed stream combined with all the other singularities within S and outside S,, and the 

second summation, involving & to negative powers, represents the potential of the singularity 

atr,. The first summation is convergent for 0 S R < Ir; —r,|, and the second is convergent for 

all R > 0. 

The functions of ® which appear in Equation [26] are: 

co n 

R®, = > > nR” Ps (a° cos sd + 0S sin s }) 

n=O S=0O 

E [28a] 

oh ; S (n+ IR ™1) PS(aS cos sd + 6 sin sh) 

n=o Ss=O 

co n 

dPs ¢ 
Oy =- S S a 7 (a; cos sA + b> sins\)sin@ 

n=O s= 0 B 

as n Pps [28b] 

- y y R71)" 2 (G8 cos sd + BS sin sA)sin 9 
du n n 

n=0 SsS=o 

9 n 

®) =- sR” P* (aS sin sd — 6° cos s\) 

n=O s=1 

[28c] ree 
= ; S -(n41 sre: x sk ~\" Yps(as sin sd - 6° cos si) 

n=o s=l1 * 

When these are substituted in Equation [26], the resulting expressions become quite cumber- 

some. However, since F(t) is known to be independent of Ff, it is evident that the net co- 

efficient of fee must vanish unless ¢ = 0, so only the latter terms need be considered. A fur- 

ther reduction can be made by taking account of the integrations with respect to A since all 

terms contain products of the type 
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For F(z), a term must vanish unless this product is of the form sin? sd or cos? sd. For the 

other two components, there is an additional factor, cos\ or sind. Those terms with cos 

vanish unless the above product is of the form sinsA sin(s+1)A or cossAcos(s+1)A. Those 

terms containing sind vanish unless the product is sin sAcos(s+#1)A or coss\sin(s+1)X. 

The components can now be reduced to: 

Fi, =7p — ; = 5 oe Ge vr bad of |e tle PP Rag 1p 

Og COE 
n+1 

du ai (Le Se Past Pn Ge [29a] 

ahj29 dPs 
ee Bees Pala 42)|dy 

p p. 

co n—-1 

oP y y = ot Fy (2) = = (6) (GayGnae iia nn nO) anys +l) 

n=O |.S=0O 

[29b] 

n 

+ S n(s)(as thas + bstt BS) [x (el lens) 

sS=0 

co n-1 

. _ 7P 5 : 5 ‘ = 
Fy ,() “3 n(s)(a; +1 ae Gi Os an” *)1,(8, s+ 1) 

n=0oO sS=0O 

[29c] 

= y m(S\(G2., Os —b2 9 a*\ Tis + 1, 3) 

where 

7A) Se. GAS) Thy s>0 
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and 

‘ p pl 2 2 nas kK 
in(e, p+ 1)= | ae ane [= 42) (nV? + PLY F(a + DQP4D 

elt 

apPt! pty ape, 
+(n+1)(1 - p?) u(e? fn Pp lee <1 

+1 du n dp 

P pHi 
A dP aay n a= we} Gyn 

du du V Ue 

The convention is adopted in Equation [29] that 

bo = 6° =0 
n 

These integrals are evaluated in Appendix 1. The components of F, become 

P= 2np SS nisy(ah,, a + 08, peace 
n=O s=0O 

(ae [30a] 

(—°) n-1 

PiyO=—ne S| DS” aisles ae" + s,, e)@ee sD 
n=o s=o (n-~s-1) 

n 
[3 0b] 

-> n(s)(azsh ay + bytt 6,\@+ e+ 2)! 
(n-s)! 

co n-1 

F..(i) =-7e S ) 8 pst igs zs+t\ (nas + 1)! 
12(2) = , n( (a, sri “i n+1 a, @=25=0 ae 1)! 

[30c] 

eM enn Ga Brea, ae 
(n- ss)! 

These components must be evaluated at each singularity. Ff, is then given by Equation [20] 

The Equations [30] are bilinear forms in the coefficients of the expansion of the total 

potential, excluding the singularity, and coefficients of the expansion due to the singularity 

The bilinear character of these expressions has a number of important consequences 
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1. A singularity can be considered to be composed of a number of superimposed singulari- 

ties, (2, ), (i, ), (¢,) «+, and the forces F,(2, ), F, (2, ), F,(,) +++ determined independently. 

Then 

FL@=F)@)+F,G)+F,@G) + - 

2. Similarly, the potential excluding the singularity can be considered to be composed of 

a number of superimposed potentials, and the force due to the interference of each of these 

with the singularity can be determined separately and Fi@) found by addition. 

3. Consider the net force on the body due to the mutual interference of two of the singu- 

larities within S. By 2, these forces can be determined without consideration of the effects 

due to all other components of the flow. Instead of evaluating these forces separately Over 

the spheres S, and Sis let the integrals be taken over a larger sphere Si with its center at 

r, and R > Lie . The combined potential may be expanded in a form such as Equation [27] 

which will be convergent for R > Ir; -r ;|- However, since the combined potential must vanish 

at infinity, all of the unbarred coefficients must be zero. Since the integrals will have pre- 

cisely the same form as Equation [29], the components must be zero due to the bilinear nature 

of Equation [80]. 

4. In evaluating Equation [30], the unbarred coefficients may be determined for f,» the 

potential of the undisturbed stream only, rather than the total potential excluding the singu- 

larity at r,, since by 3 the net force due to the mutual interference of all the body generating 

singularities is zero. 

5. In the case of continuous distributions, we may suppose the region over which the 

singularities are distributed to be subdivided into small elements. The net potential Ad, 

oi the portion of distribution within the element A,7, containing the point r, can be written 

i) n 

Aid 5 = s s R{"*) Ps (u) (aS cos sd + BS sin sd) A,T 
n=O s=0oO 

which converges for all , greater than the maximum distance from the point r, to the bounds 

of A,r. This has the form of an isolated singularity at r;- Hence Equation [20] can be written 

F,= » POEs Oo Gao BR) We 

t 

If the number of elements is increased indefinitely, the dimensions of each approaching zero, 
—s Ty . . . 

then the coefficients a , B> will in general approach limits, and the sum becomes an inte- 

eral, 

F, =[F, (O(a, 0, a3, Bg)dr [20’] 
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The corresponding formulas for line distributions and surface distributions are immediately 

evident. 

THE FORCE F, 

The same general procedure is followed for F, as for F.- We again consider S” to be 

composed of a set of spheres surrounding the singularities, and define 

F,()=-£ | ofrg-m) +0n) do [31] 

so 

F, = 2F,@ [32] 

If we make the substitution 

r=r,+ R [33] 

[31] becomes 

F() =- p+ | Raa-nydo+t, | @- mao + | Ondo 
dt |-s S, Sh 

u L 

Remembering that these integrals are independent of f,, it can be seen from Equations 

[23], [25], and [28] that 

| R(q-n)do 
SF 

can involve only the coefficients aa, at @. These are the strengths of doublets with their Dl 
axes respectively parallel to the x, y, zg axes. The potentials of these doublets are 

a2 cos @ a!sin@cosA 6! sin @sindA 1 1 f 
Pole R2 2 R2 

If we regard these coefficients as the components of a vector, this vector will have the direc- 

tion of a single doublet equivalent to the three doublets, and its magnitude will be the strength 

of this ‘‘resultant’’ doublet. We designate this vector by A, and call it the vector doublet 

strength of the singularity. The potential and velocity field of a doublet in terms of its vector 

strength may be written 

(A) =A a= Ae [34] 
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and 

(A) = 25 (3(A - myn ~ Al = 3(A + RR _ =e 
A 

R? R3 

where n has the same meaning as in Equation [22a]. Then 

i Rq- mde =| 2A Rdo = 2) (A-R)ndo 

5; S; & Ri Js; 

and by Gauss’ theorem, remembering that n is directed outward 

| pea mao -2/ V(A+ R)dr 
Sj o V; 

-8n4 [36] 

Similarly, [ ®ndo depends only upon A, so 

S. 
t 

[ ondo-4 [ (A-Ryndo=42A (37] 
S R3 vs 3 
i t i 

by Equation [34]. The remaining ene | q°ndo depends only upon a and is simply the 

total flow from a source of strength a@°, so : 

[aendo= sna, [38] 

Sj 

: adr. 
Then, since re =-9;x@ 

a da? 
F.(i) = -479 | -@ (rf, x @) +1; Toe ah [39] 

The extension to continuous distributions is evident: 

—o 
Fy=~4np [| -age; xe) +152 dal adr {391 

t 
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THE FORCE F, 

We define 

F,@--| olrxw-nq-(rxw-q)n+ O(nxw)\lda [40] 

sf 
Then 

FF o-[t, <te- wt -w) rtgo- @)| o¥ [41] 

We can write 

[oft <o- ma -texw-an]do =| p(r x w) x (qxn)doa [49] 
S Sin 

i i 

and by substitution [33] 

= [ oltr, «0 x(a xm) + Rx) x(q xm)| do 

S i 

= ptr, xu) x | q <n do -| a(R x w- q)ndo 
Ss. S. 

UJ U 

since R xn =0 on S;. We evaluate these integrals separately, again taking advantage of the 

fact that they are independent of FR. It is easily seen from Equations [23], [25], and [28] 

that only the term with the coefficient a? can contribute to 

[, axnde 
u 

But this term represents a source, and for a source, q x n must vanish on §;. So 

| axndo =o [43] 
Sj 

The integral 

| (R xw-q)ndo 

Si 

can similarly be seen to involve only terms with coefficients a°, a!, and 61, namely the vec- 
Mi yi 1’ 1 9 1 9 M/ 

tor doublet strength A of the singularity. From Equation [35] 
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| (K xo -a)do=- 1 | (R -@ x A)ndo 

‘ Reds, 
i 

Using Gauss’ theorem (remembering that n is directed outward from S ,) 

| (R > w < Ande = | 

2 5 

V(R- wx A)dr 

U 
V 

-{ (oxA-V )tdr 

V; 

-| (w x A)dr 

Ve 
u 

areas lew x A) 
3 L 

and 

| (Rxw- q)nds-=-47(w x A) 

Si 3 L 

so 

[ p [exw mg~ (xu @nldo=Se lw <A) 

Ss t 

By Equation [37], the remaining term of Equation [40] can be written 

| O(n x w)ds-=-w «| ONGes an x A) 

Si. Ss. 3 
L u 

Combining Equations [44] and [46] we have 

F,(@) =0 

and 

Es ~-[1, x92 ott, a) +r, (a: o) |o¥ 

[44] 

[46] 

[47] 

[48] 
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HYDRODYNAMIC MOMENT 

Up to a certain point, the development for the hydrodynamic moment is exactly parallel 

to the development for the force. The net moment acting on a given mass of fluid is 

y-cdm& 
dt 

where? is the total moment of momentum of the fluid about the center of moments (in our 

case, the origin). Then 

Meee f ptr xn)do= { o(t x q)dr 

S+S ” Vy 

or 

M --| ple x n)dor | p(t xq)dr 
Ss 3’ dt V 

f 

which can be written 

| Ly iq aie xmdo-{ p @rxndo +S p(t x q)dr [49] 
5? s’ ot tay, 

The second term of Equation [49] can be rewritten as before 

i 022 x ndo~| p22 xm)do+/ e(q-wm xr)(rxn)do 
S Ss” dt g? 2 OG 

[50] 

-2{ pdr xn)do-w «| po(rxndo+| p(q-wxt)(r xn)do 

dt) oe Si Sis 

The last term of Equation 49] can be transformed to 

oh. ¢ p(r x adr { ptr ayia mddo + | p(w xr-n) (rx q)do (51) 

Vac Si Sin 
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which is analogous to Equation [15]. The volume integral can again be transformed into a 

surface integral, 

| pt xa@ar=o{ Tx 0)d7 =p | O(rxn)do [52] 

V V S+S’ 

With this step the correspondence between the two developments stops, for the surface inte- 

gral in Equation 62] cannot be transformed by means of Green’s reciprocal theorem, as was 

the surface integral in Equation [16]. 

Collecting the results in Equations [49], [50], 61], and [52], we have 

Ms -[ of Leas arm) -(g- mle xa)|do +8 pO(rxn)do 

G7 3s [53] 

+f p{lw xr mr xg) + @xw- Orn) +O[wx(xn))hdo 

Si ‘ 

This is again divided into three components; the first would be the moment if the flow were 

steady (Lagally moment), the second arises when the flow is changing with time, and the last 

is an additional effect due to rotation of the body: 

M, -{ | xa > q)(r x n) —(q- n)(r x @| do [54a] 
Ci 

mM, =-2[( polrxn)do [54b] 
2 TUG 

Nae || pon xr mle xg) + (tw A(t xn) + Olu x xmypdo [54c] 
52 

While the component M, cannot be reduced, it is a linear function of ©, allowing the 

superposition of solutions. It should be noted that the components M> M,. M, do not corres- 

pond exactly to the forces F,, F,, F, since the integral for the force corresponding to M, was 

broken up into two parts, one becoming part of F, and the other part of F,. 

THE “LAGALLY MOMENT”, M, % 

We again suppose the singularities to be discrete and isolated. The moment M, (2) is 

then 

mo-{ ofa apie xn) ~ (a: mir x a) do [55] 

Ss; 
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and 

M, == M,@ [56] 

Making the substitution [33], we have 

M,(i) =", x Fa+{ | 34 > q)(R x mn) —(q- n)(R x | do 
Ss; [57] 

=",x F@-| p(q-n)(R xq)do 

5; 

since Rx n=0. Again using polar coordinates, 

277 pT 

M,,(@%) = (, x F,@- i) =| | p R70) sin 6d6@dX [58a] 

oO Oo 

27 pa 

Myy@) = (r, x F.@)- j) f I pR? ey Pn sin 9 sin \ [5b] 

+ ®)®, cos 9 cos \] ddd 

27 rT 

M, ,(2) = (t, x F,@)- k) | | p Bale Dy®, sin @ cos d 

ete [58c] 

+ ®) ©, cos 6 sin Ald Oar 

The same procedure used in obtaining F(z) is followed. The integrals in the above expres- 

Sions then become 

27 pi oo) n 

2 , S a Re ip ( pR 2@_) sin 6d0dr=70 (a5 be - be as ) 

n=] s=1 

1 

| (2n + 1) (PS)? dp 
=1 

[59a] 
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27 pT 

i pk? (Op, sin Osind +), cos 6 cos \)dddX 
oO 

00 n-1 

7p 
2 a 

oe ee >. n(s)(a,71 6, - by tan) J,(s +1, 
8) [59b] 

n=1 S=0O 

n-1 

ar n(s) (a5 os*? fa bs as) JA(8; 34 1) 

s=O 

27 pt 

J { oR? (-O6@, sin 9cosA +) ©, cos @ sin A) dedn 

°° n—-1 

— S n(s) (as *} as 4 B*155 ) a (s + Il, 8) [59c] 

n=1 Ce) 
n~1 

= y n(s) (aS a8t1 4 bs St!) J, (8, 8 + 1) 
s=0 

where n(s) has the same meaning as before, and 

1 dpe [ps 
J,(8, 8£1) = + |nP* 7 -(n+ P+ er 

= Me du 

+ [nls £1) + s(n +] PS ps*1 4 —* 
ee 

Evaluating these integrals, (see Appendix 1), we find that 

te) n 

M, (2) = E x F,(i)- i - 2p , > (a5 BS - 68 aS )s ee [60a] 
n=1 s=1 

M, ,(2) = E xF,@- i] +e y S n(s)(ae*t bs 4 a8 a a (60b] 

_ pti gs)(n+ s+! 
n 

— bs qgstl 

Bie Daisey 
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2) n—-1 

My (= [tex Fy] + wp y S n(ai(as*t a 

n=1 s=o 

Ts “ Ts+1 ! + pst bog Gt = aE A ——, 
(n- 8-1)! 

[60c] 

The total moment is then given by Equation [56]. 

Since the expression for M,@) is a bilinear form of the same type as that for F,() 

the discussion of the latter applies equally well to the moment. Hence, for continuous distri- 

bution 

K, =f ROG bs, aS, BS dt [564 

THE MOMENT DUE TO ROTATION,M, 

We define the moment M,(z) to be 

M, (2) -{ ow xren)(rxq)t+(r xm? qy(r xn) + ®[w x ( xn) edo [61] 
Se 

and 

== M,() [62] 

The first two terms in the integrand can be reduced as a triple vector product, 

(rx w- n)(r xq) —(r x wo? Qv(r xn) =r x([(F x ww) x (qx n)] = (x) (r > gq xn) [63] 

since r> rx @=0. Making use of substitution [33], 

(rx wo) (t> q xn) =(r, x w)(r;- qxn)+(R xw)(r,>q xn) [64] 

But by Equation [43], | 

| (x ole, ax mdo= te, xe) { q xndo =0 [ 65] 

S; S; 

Also, since it is evident that | (R x w)(r; > q x n)dz- involves only A, we have, using 

S. 
U 

Equation [35] 
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il (R x w)(r;° axn)do--{ (R xe) (rr; - Axn) 22 
: S. RB 

S; i t 

-lw «| (r;xA+R)ndo 
BR; Si 

- Au x[ V (r; x A+ R)dr 

V. 
u 

~Anlw x (r; x A)] [66] 
3 

Using Equation [33], the last term of the integral in Equation [61] becomes 

| ®lw x (rx n)}do-=| ®[w x (r,x n)] do =@ (1 <{ ondo) 

S; S; S; 

since R xn =0. Using Equation [37], we have 

| ®[w x (r x n)]do = 47 [w x (tr, x A)] [67] 
S; 3 

Substituting these results in Equation [61], we have 

M, (4) = 0 [68] 

MOVING SINGULARITIES 

The cases which have been discussed so far are (1) discrete singularities which are 

fixed with respect to the body, and (2) continuous distributions of singularities. While these 

cases include the most important applications, flows exist which can be discussed in terms of 

discrete singularities moving within the body. In the present section, the analysis will be ex- 

tended to include this case. 

The control surface S, enclosing the moving singularity is taken to be a sphere with 

center fixed at r,(¢,}, the instantaneous position of the singularity at time ¢,. At the time 

t, + 6t, the singularity will have moved tor,(¢, + 5¢) or referred to the center of the control 

sphere R, (67). 
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Let the coefficients for the expansion of the potential due to the singularity about r,(¢) 

be a*, 6°. This potential may also be expressed as an expansion about r,(¢, ) which will con- 

verge for all |R| > |R,(5¢)|. Let the coefficients of this expansion be a> , 6) . The latter 

expansion is precisely of the form due to a singularity fixed at r,(¢,). If we find a= , 6% in 

terms of as, Ge, we may insert the values directly into the formulas for the force and moment. 

It is evident that 

PUR AEC). & G.)2 BS (t.) [69] 

Therefore, the formulas for the Lagally force and moment, which depend only upon the instan- 

taneous values of the coefficients, remain unchanged. Further, it is only necessary to deter- 

mine a° and A’, the source and doublet strength of the equivalent singularity, since the time 

derivatives of these quantities appear in the expression for F, (z) but no higher order terms 

appear. 

The potential about r,(¢) may be written 

@ A- [R -R,(62)] 
ht Ee 

R-R,OOl iR-R wo 
+ terms of higher order 

or, 

$i 1/2 3/2 
: 2 >-R-A: . — je ee R, Re) 4 R-A Se R, ) cs 

R R2 R3 R2 

Expanding by the binomial theorem and collecting terms, we have 

fo Pr(Aes a°R,) - R + terms of higher order 

RR? 

Therefore 

a “(t) = a%(t) [70] 

and 

A’=A+@R [71] 
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Differentiating, 

At time ts this becomes 

adh’ 
dt 

[el ao 
on a ie | . [72] 

where v, is the velocity of the singularity relative to the body. Equation [39] then becomes 

5 Xo) da° dA 
F,()=-400 [ae -4, x0) +8, <2 2h | (73] 

POTENTIAL OF THE UNDISTURBED STREAM, ¢, 

It has been seen that the coefficients a°, 6° need be determined only for ¢, the poten- 

tial of the undisturbed stream. In general, these coefficients can be found in terms of the po- 

tential and its derivatives at point r,;. Since ¢ is analytic in the neighborhood of r,, it can be 

expanded in a Taylor’s series about r,. 

ie 

dlr) = d(r,) +R -V )d(r;) ei (R-V)? db (r;) veal -v)3 P(E ;) + o+ 

where 

R-V= i = gop La - Cn (a =, ) 
( ae male Oy a ae 

= (cos 6 2. +sin 6 cos \ 2 +sin @ sind 2) R(n- V) 
Ox oy 021 

Hence, the expansion can be written 

p(r) = y = R™ (n-V )"A(r,) [74] 

Equating coefficients of R” in this expansion and the expansion of the potential in terms of 

Spherical harmonics, we obtain the system of identities 
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n 

iL (n- Vv)" d(r;) = > Pi(cos @)(a; cos sd + 68 sin 8A) [75] 
ni ie 

s=0O 

which permit the determination of a=, 5°. 

The solutions are most conveniently found in the form of recurrence formulas. Since 

[75] are identities, and the a>, 6° have explicit values in terms of the derivatives of 6, we 

can write 

= — (n-v ntl g = oe (cos @) (a7, cos sd + ome sin s i) 

n 

eae y P (cos 0@)[cos sd\(n -V Jae + sinsaA (n-V) 6°] 
n+1 

s=0 

(76] 

When the operations are carried out in tlis second form, it can be reduced to a sum of terms of 

the type A, cos sd, B, sin sd, which are linearly independent, so we may equate coefficients 

of the two forms. We have then the further system of identities, 

é asi gps oa (e) 
Ps ; EN eeu D/2A2 (KOS 6) Res 45 (3 Dey asim\g) | aa 
n+1 an 2(n+1) n ae n Be da 

[7a] 

Ot S+1 aosth 

EperistnG| a son el )] 

Oy Oy 

Ss 

Pau aoe 1_[opscosoo + 2 ef —_———— B ae 7(s — 1) sind 
a a 8 ~ XGp a 1) 

F) st] a pstt 

repos sina ( atid payee ) 
02 oy] 

- -1 das = 00% 

dz oy 

[77b] 

The special case in which s = n + 1 is easily solved, 

1 da” Oe 
n+1 qttl EAE eth n joe sin of a) 

nti ntl ~ 50, gy Yin Sf | we 
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and since 

Livi Qn + 2)! 
ae oe ayee © = (2n + 1) P" sing 

J a 0.6” 
n+l _ eda el OD Re (none py 2) 

an41 (2n + 1)(2n + 2) t Oy 02 [78a] 

Similarly 

gam 9b” 
prt = SUE cn)(22s n) 

Dol Gyan ey | ea wep [78b] 

The special case, s = 0, is also easily solved by setting 6=0. Since Pee (cos 0) = 1, 

(79] 

The identities of [77a] and [77b] can be transformed by means of the recurrence formula (see 

Reference 13, page 360) 

cos 6 P> = P*, — (n+ 8) sin 6 pest [80] 

We then have 

(adigy da; 

Pn sae pel Oe “a | 
; a —1 abst gas 

La {rs sino| nis - 0 (%2 On J Foe) 2 | 
mOGE 1) ay dz Or [81a] 

oastl a bstl 

Ucn sina ( Tey pte ) 
dy 02 

i Sn Cha a be 
POWMGE R= =) on). pr sino |qta ~10(22 lk | -2ta+ 0 | 
aL \ ia Caen) Aye ab) he 02 oy dx 

[81b] 
das gos 

a siaeisim of <n, St )} 

2 Oy 
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We shall prove by induction that 

t 
Bea Sit Neca hi [82a] 
Hoo Tee lL Bee 

m=—t 

tine a NO 
FNL ee Cane ith Oc [82b] 

We have already shown this to hold for ¢=0. Assume it to hold for all ¢< s and form<n 

when t=s. We first prove 

0 a> 1 
s-1 S-] da, eT) (2% nes ) [83a] 

dx (n+S8) Oy Oz 

By Equation [78a] 

das nls - 1) (es A are | _s-2) (ome : uo 
de (2s-1)2s \dxdy dx dz iS Oy 02 

Assume Equation [83a] to hold for 

da" Nadal Figs TY (a 2 a) 

dx (m+s) Oy dz 

Then 

JO a Ona | oS) (a aon) 
Ox (m+ 8s +1) BP (m + 8)(m +s +1) dx ay axdz 

Panes) (2¢ns1 2bnt1 
(m+s+1)\ oy 02 

Therefore, by induction, Equation [83a] holds. Similarly, 

0 bs i - Bee eA ee 0 
de (n+s) 02 dy 
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Substituting these results in Equation [81], we have 

eo) feo 2 vn). ty eh aas 
da Woe ree Une a 2(n + 1) neg eine Vases) De 

[84a] 
1 F) S+1 obst 

Ape dit sin 9 (“Cn ig atue ) 
Oy 02 

1 1 RO = abs 
OS Hho ae “a ap 6 n 
Bell n+l Tel *) RI ae ae oe 

[84b] 
s Ss 

+ P+! sin a(- oon. —) 
B 02 Oy 

The associated Legendre function P* is of the form 

c sin*@ f(cos @) 

in which f€cos 6) has the property that 

f(cos 0) # 0 

Hence, we can divide Equation [84] through by sin*@ and set @ equal to zero to find Once 

We make use of the recurrence relation 

2s cos 6 PS = sin 6 Pet + (n+ s)(n-s+ 1) sin 0 Rem [85] 

Then 

Ss +1 ps1 

cos o(—2 ) = J sin? (2 ). tal a es) ——_ } 
sin’ @/ 2s sinS*t! 6 28 sins lg 

from which 

( Pe ee oe d (n + 8)! [86] 

sin’ 6/9 9 O sin’ 16/4 4 2°s\(n- 8)! 
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since Po(1)= 1. Using this result in Equation [84], the relations [82] follow. Hence, by 

induction, these relations hold for all n. 

By Equations [78] and [82], a° 
n 

and 67 may be easily evaluated. Since a? = d(r,) and 

6° = 0, a; and 6° can be found by repeated use of Equation [78]. Then Equation [82] can be 

used to find a and 0°. 

The values of the coefficients a*, 6° are tabulated below for s <4. 

ye en Cae 5° =0 
n n' aa” n 

n—1 n-1 

ai-_?_ 9 _(¢,) eee es) 
(n+l)! da" (n+ 1)! da") 

n-2 4n—2 

an = 2 2 (pyy — P22) br _———_ = (2¢,2) 
(n+ 2)! aa"? (n + 2)! axe"? 

-3 
GS eee ES 3¢ ) p3 = 2 a” (34 fe 

“ (@nb oae® ee Hi OG sa Cae Be 

n—4 n—4 

a esas AGE A Biches NN 5S ae ee OI (C48, 
A ne ayicget = ee Oe Ua Teams eam tee A 

SOURCES AND DOUBLETS 

[87a] 

[87b] 

[87c] 

[87d] 

- 44222) [87e] 

When the singularity at r, is a source or doublet, the expressions for the force and mo- 

ment take particularly simple forms. Using the values for the coefficients given by Equation 

[87] we have the source 

FO = 4p ae ee | 
i Or 

i 

_, {a 
Fy) = 40a oo] 

t 

—,[9¢ 
TAO) = Sg Ca are 

L 

F(t) = -479 494, (r;) 

[88a] 

[88b] 
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where q .(r,) is the velocity at r, due to the undisturbed stream. Also 

~, da? 
F,(i) =-47p| a3 (r; xw) +1; a [89] 

t : [90] M,(@)=0,x FL@) 

For the doublet 

OAM OTE. a= WOcd GA) 8 Ee al 1 
F,si)= Ane] a eau il Ae ee 1 AOE [91a] 

we slate BEI Ags — a 
F,,(@) = 470 ar @ +a) a bt 2 {91b] 

y ae ady | dy? dy dz 

2 2 a2 
Fei) ~ do a? gee + ai ors. +6 as [91c] 

which can be conveniently written in vector form 

F (i) =~4 np (A v4, | “ 

Also 

eh dA 
F(t) = -4 Cae 

[92] 

: 

M, (= (r; x Fi@) >i) + tno (at “. b} **) 
[93a] 

‘, Saar Ty Opiates 
My y=, x FO j) + 4 no( 34 ae = [93b] 

, gp re) dd Og 
M,,@)=(t, x F,@)- k) + Ano (aj oe se) [93c] 

or 

M,@)=",xF,@ +470(q, x A); (93 4 
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CONCLUSION 

We have shown how the force and moment acting on a body with an arbitrary motion 

through a fluid subject to a time varying potential flow can be found if the body can be repre- 

sented by a system of singularities placed within the body. 

The force can be considered to consist of three components. The first, which would be 

the total force if the instantaneous flow were steady, is simply the ‘‘Lagally force.’’ This is 

found in terms of general singularities (Equations [20] and [30]). The second component de- 

pends upon the change with time of the singularity system generating the surface of the body. 

This force (Equations [32] and [89]) is found to be a function of the strength and orientation 

of the sources and doublets in the singularity system but not of the higher order singularities. 

The third component is the force which wouid be required to generate the given motion of the 

body in a vacuum, if the body were to have the same density as the fluid (Equations [8] and 

[48]). 

The moment similarly consists of the ‘‘Lagally moment’’ (Equations [56] and [60]) and 

additional components, but it has not been possible to resolve these additional moments in the 

same manner as for the force. They consist of two terms; the first, appearing in Equation [9], 

is simple enough, but the second requires the evaluation of a surface integral (Equation [54b]). 

However, the integrand is linear, so it is permissible to superimpose potential flows which 

satisfy the boundary conditions. 
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APPENDIX 1 

EVALUATION OF INTEGRALS IN F, AND M, 

REFERENCE FORMULAS 

The associated Legendre functions satisfy certain difference relations which are tabu- 

lated here for reference (Bateman, Reference 13, p. 360). 

Ga Be Wi So ce nies (ae ex = 0 [94] 

V1 = 12 Pst! = 28y PS - (n+ 8)(n—8 +1) J1-p2 PS [95] 

PS, =uPS+(n—s 41) J1— 2 ps [96] 

PS, =uPS + (n+ s)\V/1- p?Ps [97] 

V1 = 22 P+! = (n+ 8 + 1)pPS - (n- 8+ 1)P8,, [98] 

(ue ee (MnP! = Gas el) Pe [99] 

(1 =p?) : Z=(n+s)P>_, — uP), 
m 

We shall also need the following integrals: 

“<c 

| PPP dp =0 nem [101] 
= 

1 ! 

“1 2nt+1 (n - 8)! 

1 du 1 

i! pspt "9 set [103] 
-1 1- Lu 

1 du 1 (n+ s)! 
P 2 er ys 104. 

jv 1-y? 8 (n-s)! ae 



38 

i 2(n + 8 +1)! i peat se IU SSE. (oa 105 (re net H Ir (2n + 1)(2n + 3)(n - s)! ee 

The above formulas are also from Bateman, pp. 363-364. These relations are supplemented 

by certain additional integrals which will now be proved. 

1 d ( ‘e)! 
a EL (nm + S): 

1 PSs PSs = aoe : {106] 

©) | el eon © a@a oO 

This may be proved by induction. Call the above integral k, and assume [106] to hold for 

ete Then making use of [94] 

e 

1 d 1 d | ps pe fine (22 pes fame nl pops = A 
1 

n+] nl — pe n-S+ ~1 Ua eS inl” 

The first term on the right is easily integrated: 

2(n-s)+1 (n+ s)! 

s(2n +1) (n-s)! 
[107] 

1 d 1 

“esp | ep | pene 2 Dd ap n 
—| 7H -—1 (# all 

using Equations [102] and [104]. Then 

R= s)+ 1 (n + 8)! (n— s)(n+ 8)! _ (n+ s)! 

nn s(n —8 + 1)! s(n -s+1)! s(n-s)! 

so Equation [106] hoids for K, if it holds for Kk 
n—-1° 

to s: 

28)! 
pee Peeries 2)s/2 Pe = Seal (iis fre)? 

(2s + 2)! 
pa ten 2)\s/2 = 

[eas = peg ai 8 S74 wp = (28 + l)pPS 

and 

1 2 ! udp sb dp — (2s)! 
K, ete | Cla ~ B6 Ou 

[t is easily shown that it holds for n equal 
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from Equation [107]. Therefore Equation [106] holds for all n = s 

(2) 1 du 

= 0 [108] 

We make the substitution, using Equation [96] 

1 ee n-sil 
and Equation [108] becomes 

1 1 1 
PS ps dp 4 1 pstl pst1 pdu (ps+1)2 du =0 

n+l n fi ae n-s+l a5 arate heme den B 1 - p2 

by Equations [106] and [104] 

n+1lon Bias 

1 (8) i peril eo Ce 3 (n + s)! 

= l-yp 
(n - s)! [109] 

This is proved by substituting for V1 — fe P*, using [97] and integrating, using formulas [104] 

and [106]. 

1 
d - 1)! (4) i Pek, peels, SEN 5 as a) [110] 

-1 v1 - 2 (n-s+ 1)! 

-1 
Substitute for ¥1 - p? ie , using Equation [97], and integrate, using [104] and [106]. 

5 d 
( ) i] : PSs ps! ie =0 

= nontl fy _ 2 {111] 

Substitute for /1- yp? P*, using [98], and integrate, using [106] and [104]. 

6 1 
( ) Pspstl nor = oe Ags Ou {112] 

Doe net 4 [P52 2n+1 (n-s- 1)! 

Substitute for »P* , using [98], and integrate, using [102] and [111]. 

INTEGRAL IN F,, 

This integral which appears in [29a], is the following 
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1 GP? Gle2 u 
2 idaril, = io. eee, 2ps Ss [es mere ty I (Gl ne) es CHIPS (25 awe 

dPs dPs 
+ (n+ (es iia SP Fie Ja = Way 

To reduce the integrand, we have from [99] and [100]. 

2 dP? s Ss (US pe) De eS ae a [113] 

LETS s s (l-4yp ) ary Oe Baan NOE INES [114] 
m 

Multiplying these identities and reducing, we obtain, 

GPS dips dP® dP, Te ne n+i nies ns (RS n+1 _ ps ea 
u( m aa du HL alin n+1 dy 

[115] 

Lu + (n+ Duh Peay = 8 Pn Pee Ta 

Also, from [100] and [99], 

Ss Oe 1 2 S S PB; ama = 5[(n + 8 + 1) (P.) —(n + ID) pee le | 
HL Ll 

Ss dP, 1 S ps s 2 Pa a aT AIMCO ae UN) mle AS a os Ae Nee) 
u u 

so 

a/P= dP* 
oa ha 1 a [ms + DUPy +n — 8 + WP)? 

[116] 

=2(n +) Dip PSPs i 
no nti 

Substituting [115] and [116] in the integrand above, we have 
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: GIP Cee 
{ G@ 4 De ne es Ee SS yn ees ee 

-1 du du 1 HE 

s s 

+(ns 0(P3 dP at ~ Ps Fea) ar 
m 

1 [117] 

=| {( +D(n+ s+ 1)(P)? + (n+ W(n- 8 + 1)(PS,,)? 
il 

d 2(n + s + 1)! pie 2 S ps H ———— + 2s (n + 1) ] ee n+1 ub 2 (n — 8)! 
=i 

using [104] and [106]. This integration breaks down when s = 0, because s appears in the 

denominators of {104] and [106], but the result is still valid. The reduced form of the inte- 

gral for s = 0 becomes 

1 
2 2 du 

1 @ =(n+ f [nee 20 P 4 (PO GS 2) i 
1 

1-(1 — ,2 d 
= (is 0? ere (22) (223 (le fm) —, 

Lal We 2) Ms pa 

by [98]. Using [102], this reduces to 2(n + 1). 

INTEGRALS /,(s, s +1) 

These integrals, which were needed to evaluate MiG: and F’,_, were defined as 

1 

1,(8, 8 +1) =| {P2,, Pe*1[A -2)(n + 2+ sls $F (n+ DOs 41) 
11 

g sti i dPs 
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In [113] replace s with s +1 and multiply with [114] as before. We obtain, 

+ + dips dis et e 
a tl - Pyne (Ps. = Pees es) din On du dp 

—w(n+ 1)? Pstl ps -n-s+1Fl)(n +8 + 1)Pe1 ps 

(1 — p?) 

Substituting in 7, and reducing, we find that 

z d 
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n+1°n a 2 
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: s s-1 - dy I,(3 8-Y=@+e+0{ (Gere “(n= 9+ Fp Psst 
5 aie 

24n+s+ 1)! 

~(rm—s+1)! 

using Equations [108], [109], [110], and [111]. 

INTEGRALS J,(s, 841) 

These integrals appeared in the expression for My and M,,. They were defined as 
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using [99], this is immediately integrable, using [108], [109], [111], and |112]. We find that 
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APPENDIX 2 

SUMMARY OF FORMULAS 

In this appendix certain formulas which will be of use in applications are collected to- 

gether for convenient reference. For meaning of symbols and conditions of validity, reference 

must be made to the text. 

Transformation from Moving Axes to Fixed Axes 

dv, 
Ry i ON ee [8] 

dv 
M.=M, +e (". x 0) x [9] 

Lagally Force 

EF == h@ [20] 

F, (2) = 27 D D (8) (ny Gy + 4 oe [30a] 
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D 
(30b] 

+1 2)! 

ws nto) (a pon Oo yt eae 

Py O= ee s 5 "roi (e n+1 bee = OF 5 a?) fe a “= 

- 
[30c] 

3s Bl = 2)! 

i D100 (004 Bh Ont s)oesam) 

where 

H@)=28 7@ye to os 0 
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Force due to Changing Flow 

Fz =F 

nf dae 
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F, ~-|",% amg -w) +t (w «| ey 

Lagally Moment 
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Moment due to Changing Flow 

d 
M, =— O(r xn) d 

2 ZL F - 

Singularity Moving with Respect to Body 

a da? F,()=—4n0 [acty, -T; xw) +1; ae 2h) 

[32] 

[39] 

[48] 

[56] 

[60a] 

(60b] 

[60c] 

[54b] 

[73] 
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Coefficients in Expansion for Undisturbed Stream Potential 
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n 

n+1_ 1 0 an 06, fe 2 
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and in particular 
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Source 

F, (i) = -47p a8q, (;) (884 

where q.(r,) is the velocity at r, due to the undisturbed stream 
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: = da? 
F,(¢) = tno | 2, xw) +0; 2 [89] 

dt 

M,@)=";xF,@ [90] 

Doublet 

F(i)=~4 np | (A 7a.) [917] 

ee dA Fl) --4 1p Ee) 

M,@ =", x F,@) +470(q, xA); [937] 
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