## Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

A99.9

$$
\begin{aligned}
& F 7622 u f \\
& \text { c. } 2
\end{aligned}
$$

United States<br>Department of<br>Agriculture

Forest Service
Northeastern Forest
Experiment Station
Resource Bulletin NE-104
UTS

Forest Statistics for
Rhode Island - 1972 and 1985

David R. Dickson<br>Carol L. McAfee

## Abstract

A statistical report on the third forest survey of Rhode Island conducted in 1984 by the Forest Inventory and Analysis Unit, Northeastern Forest Experiment Station. Statistics for forest area, numbers of trees, timber volume, tree biomass, wildlife habitat, and timber products output are displayed at the state and county levels. The current inventory indicates that the state has approximately 404 million cubic feet of growing-stock volume or 25.6 million tons, net green weight of live trees, on 372,000 acres of timberland. For use in trend analysis, this report includes estimates derived from reprocessing the 1972 data using current methods and standards.

## Foreword

The third inventory of Rhode Island was under the overall direction of John R. Peters, Project Leader of the Forest Inventory and Analysis Unit. Eric H. Wharton assisted in the development and administration of the operating plan. Charles T. Scott was responsible for the design of the inventory and sample selection. David J. Alerich supervised the interpretation of aerial photos and collection of data. He was assisted by Joseph G. Reddan. Members of the field Staff were:

| William C. Blish | Patricia J. Lawler |
| :--- | :--- |
| Charles F. Brown IV | Ronald J. Olsen |
| Vernon G. Gray, Jr. | Ellen J. Schmidt |

David R. Dickson and Carol L. McAfee applied FINSYS (Forest INventory SYStem), a generalized data processing system, to the specific needs of the Rhode Island inventory and produced summary tables for the state and counties. Thomas W. Birch and Carol L. McAfee were instrumental in assuring that the area estimates were consistent with the two previous inventories. Anne E. Cane prepared the tables in this report for printing.

Robert L. Nevel, Jr., Richard H. Widmann, and Eric H. Wharton, with the assistance of Thomas G. Bourn, Rhode Island Division of Forest Environment, collected and compiled the data on timber products output and timber removals.

Carmela M. Hyland was responsible for administrative and secretarial services. Marie Pennestri typed the text for this report.

The Forest Inventory and Analysis Unit would like to thank the landowners of Rhode Island for their cooperation and assistance during this inventory.

# FOREST STATISTICS FOR RHODE ISLAND--1972 AND 1985 

The Authors

David R. Dickson, Forester, Forest Inventory and Analysis Unit, Northeastern Forest Experiment Station, USDA Forest Service, Broomall, PA.

Carol L. McAfee, Forester, Forest Inventory and Analysis Unit, Northeastern Forest Experiment Station, USDA Forest Service, Broomall, PA.

## CONTENTS

HIGHLIGHTS ..... 1
Forest Area ..... 1
Timber Volume ..... 1
Wildlife Habitat ..... 2
Biomass ..... 2
INTRODUCTION ..... 3
RELIABILITY OF THE ESTIMATES ..... 3
COMPARISON BETWEEN INVENTORIES ..... 4
INDEX TO TABLES ..... 4
State ..... 4
County ..... 6
Core Table Cross-Reference ..... 8
RESOURCE TABLES ..... 13
LITERATURE CITED ..... 84
APPENDIX ..... 84
Definition of Terms ..... 84
Log-grade Classification ..... 90
Tree Species of Rhode Island ..... 93
Relative Density, Relative Frequency, Importance Value, and Species Frequency of Lesser Woody Stems by Species, Rhode Island, 1985 ..... 94
Metric Equivalents of Units Used in this Report ..... 96

## Highlights

* The report contains both 1985 and updated 1972 tables.


## Forest Area

* Rhode Island, with 404,800 acres of forest land, is 60 percent forested. Forest area is unchanged since 1972.
* Ninety-two percent of Rhode Island's forest land, 371,700 acres, is classified as timberland (formerly known as commercial forest land).
* Area of timberland has decreased 7 percent between inventories.
* The area of sawtimber stands has increased over 56 percent since the 1972 inventory; sawtimber stands now total 167,500 acres or 45 percent of the timberland. An 82 percent decrease in the area of seedling and sapling stands has reduced these stands to 21,100 acres, or 6 percent of the timberland.
* Eighty-eight percent of Rhode Island's timberland is privately owned.


## Timber Volume

* Growing-stock volume is 404 million cubic feet, an average of 1,087 cubic feet per acre. This is a 19 percent increase over the 1972 inventory.
* Sawtimber volume is 860.5 million board feet, an average of 2,315 board feet per acre. This is a 36 percent increase over the 1972 inventory.
* Red oaks continue to be the dominant species in Rhode Island's forests. Northern red oak accounts for 16 percent of the growing-stock volume and 18 percent of the sawtimber volume. Other red oaks make up 26 percent of the growing-stock volume and 23 percent of the sawtimber volume.
* Red maple, with 22 percent of the growing-stock volume, retained its second place ranking while increasing its growing-stock volume by 47 percent to 90 million cubic feet.
* While white pine volumes are unchanged since the 1972 inventory, the total softwood growing-stock volume decreased 20 percent to 56 million cubic feet; the total softwood sawtimber volume decreased 11 percent to 176 million board feet.
* Average annual net growth of growing-stock volume in Rhode Island is 2.3 percent of the inventory.


## Wildlife Habitat

* Tree mast in Rhode Island is essentially an acorn resource, dominated by red oak species.
* White oak is the most common standing dead tree species; northern red oak is the second most common. These two species are also the most common dead tree species with observed cavities.
* Red maple is the most common live tree species with observed cavities.
* Blueberries (Vaccinium spp.) are the most common understory woody-stemmed species in Rhode Island.


## Biomass

* The net green weight of all live trees on timberland is 25.6 million tons or 68.9 tons per acre. Softwoods account for 2.5 million tons or 6.6 tons per acre; hardwoods account for 23.1 million tons or 62.3 tons per acre.
* Fifteen million tons, or 59 percent of the net green weight of all live trees, is in growing-stock material.
* 1.3 million tons of biomass is contained in salvable dead trees.


## Introduction

Under the authority of the McSweeny-McNary Forest Research Act of 1928 and subsequent acts, including the Renewable Resources Planning Act of 1974 and the Renewable Resources Research Act of 1978 , the USDA Forest Service conducts periodic forest inventories of all states to provide up-to-date information on the forest resource of the Nation. The initial inventory of Rhode Island's resources was conducted in 1952. The second inventory was carried out in 1972. This report presents the forest resource data from the third inventory completed in 1984. This inventory involved a cooperative effort of the Rhode Island Division of Forest Environment, the USDA Soil Conservation Service, and the Northeastern Forest Experiment Station.

The Forest Inventory and Analysis project of the Northeastern Forest Experiment Station conducted the inventory on all forest land, developed the resource tables, and prepared this report.

The sampling procedure used during the current resurvey utilized aerial photography, the remeasurenent of a sample of the ground plots established in the earlier inventories, and establishment of new ground plots. In Rhode Island this required remeasurement of 129 plots from the earlier inventories, classification of 2,542 points on aerial photographs into land-use and cubic-foot volume classes, and establishment of 95 new ground plot locations as a subsample of the photo points. The data collected were summarized using the FINSYS computer system developed at the Northeastern Forest Experiment Station.

The resurvey of Rhode Island's forest resources involved several associated studies and considerable analysis. Reports discussing the State's private forest-land owners and its primary forest products industry are being prepared. An additional report will also be published containing detailed 1985 biomass statistics.

The forest area, numbers of trees, timber volume, biomass, and wildlife habitat statistics shown in this report are but a summary of the information collected. Other information or additional summaries may be developed. For information about these, contact the Forest Inventory and Analysis Unit, USDA Forest Service, 370 Reed Road, Broomall, PA 19008 (phone 215-690-3037).

The four eastern Forest Experiment Stations have agreed to include a set of 25 core tables in each of their state resource bulletins. The format of any one of these tables will be identical for all 37 states in the Stations' territories. Rather than being grouped as a set, these core tables have been interspersed throughout this publication according to their level of data and content. A list of the core
table numbers and their corresponding numbers as presented in this publication follows the index of tables.

## Reliability of the Estimates

The data in this report were based on a carefully designed sample of forest conditions throughout Rhode Island. However, because the field crews did not measure every tree or every acre in the state, the data are estimates. The reliability of the estimating procedure can be judged by two important statistical measures: accuracy and precision. Among statisticians, accuracy refers to the success of estimating the true value, precision refers to the clustering of sample values about their own averages or to the variation among repeated samples. We are mainly interested in the accuracy of the inventory, but in most cases we can only measure its precision.

Although accuracy cannot be measured exactly, it can be checked. Preliminary tables are sent to other agencies and to outside experts familiar with the resources of Rhode Island. If questions arise, the data are reviewed and reanalyzed to resolve the differences. Also, great care is taken to keep all sources of procedural error to a minimum by careful training of both field and office personnel, frequent inspection of field and office work, and application of the most reliable inventory methods.

Because of the care exercised in the inventory process, estimates of precision afford a reasonable measure of the inventory's adequacy. The precision of each estimate is described by its sampling error. Sampling errors are given with several tables in this report. The others are available upon request.

Briefly, here is an example of how the sampling error is used to indicate reliability: The estimate of timberland for Rhode Island is 372,000 acres. Its sampling error is 2.4 percent, or 9,000 acres. This means that if there are no errors in the procedure and we repeated the inventory in the same way, the odds are 2 to 1 ( 66 percent probability) that the estimate would be between 363,000 and 381,000 acres $(372,000 \pm 9,000)$. Similarly, the odds are 19 to 1 ( 95 percent probability) that the estimate would be within $\pm 18,000$ acres. It is worth noting that the state estimates have the smallest sampling errors and therefore are the most precise or reliable. County estimates are less reliable. In Rhode Island for example, the sampling error for the state area tables is 2.4 percent; while the sampling error for Providence County is 3.2 percent. Thus, county level estimates are often considerably less reliable than state level estimates. In general, as the size of the estimate decreases in relation to the total, the sampling error, expressed as a percentage of the estimate, increases.

## Comparison Between Inventories

To evaluate the condition of the forest resource, it is useful to compare the current estimates with those from the previous inventory. However, for the comparisons to be valid, the procedures used in the two inventories must be similar. As a result of our ongoing efforts to improve the efficiency of the inventory, we have made several changes in procedures and definitions since 1972.

Because these changes make the direct comparison of the 1985 estimates with those published by Peters and Bowers (1977) inappropriate, data collected in 1972 have been reprocessed using the 1985 procedures and standards. Seven state-level tables containing the recalculated 1972 data have been included in this report. The tables provide area and volume data for comparison and trend analysis. They are printed in italic type to distinguish them from the current tables. Tables of recalculated data at the county level could not be provided because plots were selected at the state level in 1972; therefore, individual counties do not have enough plots to develop statistically sound data. The changes that have had an effect on the results of our computations follow.

The design used in this inventory, sampling with partial replacement, involved the establishment of new plots and the remeasurement of a sample of the previously measured plots. Thus, estimates, particularly those of small segments of a population, may vary from occasion to occasion, in part because of the change in the sample. For example, the area of a minor forest type may have been estimated at the previous occasion from only two or three plots; if those plots were not selected for remeasurement, the change from occasion to occasion would differ from the change based on a current sample that by chance did include those plots. The sampling errors presented in Table 57 should be used to determine the reliability of all estimates and particularly that of change in minor components.

A major change was made in the design of the plots established in 1984. In addition to the traditional data gathered to estimate forest area and tree volumes, information was collected to describe forest wildlife habitat, forest soils, and forest tree biomass.

New height and volume equations were developed for both growing stock and sawtimber (Scott 1979, 1981). These equations are derived by nonlinear regression techniques; in 1972 linear regression was used. The nonlinear method is used because it yields estimates with smaller errors between predicted and actual values.

Stand size is a classification of forest land based on the size of the trees that dominate an area, i.e., seedling/sapling, poletimber, sawtimber, or non-stocked. In the 1972 inventory only growing-stock trees were
considered in determining stand size; the 1985 procedure considers all live trees. This change caused a shift in acres among classes, especially between seedling/sapling and poletimber.

The procedures used to determine forest type have also been modified. In 1972, plots on which red maple made up the plurality of stocking were classified as elm/ash/red maple. In 1985, such plots were examined more closely and according to their moisture class and the other species present, were placed in either the red maple/northem hardwoods, red maple/central hardwoods or elm/ash/red maple type.

The basic building block for estimating forest area and timber volume has been changed from the state level or geographic unit level, to the county level. In the past, the statistics were developed at the unit or state level and prorated back to the county level on the basis of distribution of photo-interpretation points. Direct development of county-level data helps users interested in more precise local data, but can make comparisons with past county estimates developed by the proration technique uncertain. One of the prerequisites for developing direct county-level statistics is that a county must have at least 60,000 acres of timberland. Counties that do not meet this criterion have too few plots to allow reliable estimates. Such counties were grouped with neighboring counties to create a sampling base large enough to provide reliable estimates. Plots in Bristol and Newport Counties were combined with those in Washington County to provide such a base.

## Index to Tables

The following tables are divided into two major sections: (1) State, and (2) County.
Recalculated 1972 tables are printed in italic type.

## State Tables


Table No. Page
5. Area of timberland by stand-size class and ownership class, Rhode Island, 1985....... 17
6. Area of timberland by board-foot stand- volume class and ownership class, Rhode Island, 1985 ..... 18
7. Area of timberland by stocking class ofgrowing-stock trees and ownership class,Rhode Island, 198518
8. Area of timberland by forest-type groupand cubic-foot stand-volume class, RhodeIsland, 198520
9. Area of timberland by forest-type group and board-foot stand-volume class, Rhode Island, 1985 ..... 20
10. Area of timberland by forest-type group and green ton stand-volume class, Rhode Island, 1985 ..... 21
11. Area of timberland by forest-type group and stocking class of all live trees, Rhode Island, 1972 ..... 23
12. Area of timberland by forest-type group and stocking class of all live trees, Rhode Island, 1985 ..... 23
13. Area of timberland by forest-type group and stocking class of growing-stock trees, Rhode Island, 1972 ..... 24
14. Area of timberland by forest-type group and stocking class of growing-stock trees, Rhode Island, 1985 ..... 24
15. Area of timberland by forest-type group and basal-area class (all live trees), Rhode Island, 1985 ..... 25
Number of Trees16. Number of live trees on timberland byspecies and diameter class, Rhode Island,198526
17. Number of live trees on timberland by diameter class, tree class, and species group, Rhode Island, 1985 ..... 27
18. Number of trees ( $5.0+$ inches a.b.h.) on timberland by species and tree class, Rhode Island, 1985 ..... 28
19. Number of growing-stock trees ontimberland by species and diameter class,Rhode Island, 198529

## Hildlife Habitat

20. Number of all live nut- and fruit- producing trees on timberland by species and diameter class, Rhode Island, 1985 ..... 30
21. Number of shrubs and saplings on timberland by stand-size class, type of stem, and mast type, Rhode Island, 1985. ..... 31
22. Number of standing dead trees on timberland by species, condition class, and diameter class, Rhode Island, 1985............. 32
23. Number of trees (5.0+ inches d.b.h.) with observed cavities on timberland by species and condition class, Rhode Island, 1985 ..... 33
24. Number of seedlings, saplings, and shrubs on timberland by species and stand-size class, Rhode Island, 1985 ..... 34
25. Number of seedlings, saplings, and shrubs on timberland by species and forest-typegroup, Rhode Island, 198536
26. Number of seedlings, saplings, and shrubson timberland by species and browse-utilizationclass, finode Island, 198538
27. Number of trees ( $5.0+$ inches d.b.h.) withobserved cavities on timberland by species andpresence of cavities, Rhode Island, 1985..... 40

## Weight

28. Net green weight of all live trees on timberland by species and diameter class, Rhode Island, 1985 ..... 41
29. Net green weight of all trees ontimberland by class of timber and speciesgroup, Rhode Island, 198542
Volume
30. Net volume of all trees on timberlandby class of timber and species group, PhodeIsland, 198543
31. Net volume of all live, growirig-stock, andsawtimber trees on timberland by species groupand ownership class, Rhode Island, 1985...... 45
32. Net volume of growing-stock trees ontiniberland by forest-type group and stand-sizeclass, Rhode Island, 198546
33. Net volume of growing-stock trees ontimberland by forest-type group andbasal-area class (all live trees), RhodeIsland,198546
34. Net volume of growing-stock trees on
timberland by species and forest-type group,
Rhode Island, 1985 ..... 47
35. Net volume of growing-stock trees on timberland by species and stand-size class, Rhode Island, 1972 ..... 48
36. Net volume of growing-stock trees on timberland by species and stand-size class, Rhode Island, 1985 ..... 49
37. Net volume of growing-stock trees on timberland by species and cubic-foot stand- volume class, Rhode Island, 1985 ..... 50
38. Net volume of growing-stock trees on timberland by species and diameter class, Rhode Island, 1972 ..... 52
39. Net volume of growing-stock trees on timberland by species and diameter class,
Rhode Island, 1985 ..... 53
40. Net volume of growing stock in the sawlog portion of sawtimber trees on timberland by species and diameter class, Rhode Island, 1985 ..... 55
41. Net volume of sawtimber trees on timberland by species and diameter class, Rhode Island, 1972 ..... 56
42. Net volume of sawtimber trees on timberland by species and diameter class, Rhode Island, 1985 ..... 57
43. Net volume of sawtimber trees on timberland by species, size class, and standard-lumber log grade, Rhode Island, 1972. ..... 58
44. Net volume of sawtimber trees ontimberland by species, size class, andstandard-lumber log grade, Rhode Island,198559
Growth45. Average annual net change of growing-stock volume on timberland by species andcomponent, Rhode Island, 1971-8460
45. Average annual net growth and average annual removals of growing-stock volume on timberland by species, Rhode Island, 1971-84 ..... 61
46. Average annual net growth and average annual rewovals of sawtimber vclume on timberland by species, Rhode Island, 1971-84 ..... 61
47. Average annual mortality of growing- stock and sawtimber volume on timberland by species, Rhode Island, 1971-84 ..... 62
48. Average annual net growth and average annual removals of growing-stock volume on timberland by ownership class and species group, Rhode Island, 1971-84 ..... 63
49. Average annual net growth and average annual removals of sawtimber volume on timberland by ownership class and species group, Rhode Island, 1971-84 ..... 63
Timber Products Output
50. Output of timber products by product, softwoods and hardwoods, and source of material, Rhode Island, 1984 ..... 64
51. Output of roundwood products by product, softwoods and hardwoods, and source of material, Rhode Island, 1984 ..... 65
52. Timber removals from growing stock and sawtimber on timberland by component and softwoods and hardwoods, Rhode Island, 1984 ..... 67
53. Volume of unused residues from primary manufacturing plants by softwoods and hardwoods, type of residue, and industry, Rhode Island, 1984 ..... 67
Change
54. Change in area of timberland between inventories by stand-size class, Rhode Island, 1972-85 ..... 68
55. Change in volume between inventories, Rhode Island, 1972-85 ..... 68
Sampling Errors
56. Sampling errors for estimates in various state-level tables, Rhode Island, 1972 and 1985 ..... 70
County Tables
57. Land area by county and land class, Rhode Island, 1985 ..... 72
58. Area of timberland by ownership class and county, Rhode Island, 1985 ..... 72
59. Area of timberland by county and forest-type group, Rhode Island, 198573
60. Area of timberland by county and standsize class, Rhode Island, 1985................... 7
61. Area of timberland by county and cubicfoot stand-volume class, Rhode Island, 1985 .73
62. Area of timberland by county and green ton stand-volume class, Rhode Island, 1985... 74
63. Area of timberland by county and stocking class of growing-stock trees, Rhode Island, 1985
64. Area of timberland by county and productivity class, Rhode Island, 198574
65. Net volume of growing-stock trees on timberland by county and forest-type group, Rhode Island, 1985.75
66. Net volume of growing-stock trees on timberland by county and stand-size class, Fhode Island, 198575
67. Net volume of growing-stock trees on
timberland by species and county, Rhode
Island, 1985 ..... 76
68. Net volume of growing-stock and sawtimber trees on timberland by county and species group, Rhode Island, 198577
69. Net volume of sawtimber trees on timberland by county and forest-type group, Rhode Island, 1985.77
70. Net volume of sawtimber trees on timberland by county and stand-size class, Fhode Island, 198577
71. Net volume of sawtimber trees on timberland by species and county, Rhode Island, 198578
72. Number of all live nut- and fruitproducing trees on timberland by species and county, Rhode Island, 198579
73. Number of seedlings, saplings, and shrubs with observed browse and percent of total on timberland by species and county, Rhode Island, 1985 .79
74. Number of standing dead trees (5.0+ inches d.b.h.) on timberland by species and county, Rhode Island, 1985........................ 80
75. Index to land-use edge by type of land use and county, Rhode Island, 1985............. 81
76. Sampling errors for various county-level estimates, Rhode Island, 1985
Core Statistical
table table
1 Land area by county and land class, Rhode Island,198558
2
Area of timberland by county and stocking class ofgrowing-stock trees, Rhode Island, 198564
7 Area of timberland by forest-type group and ownership class, Rhode Island, 198559 . 4
8 Area of timberland by stocking class of growing-stock trees and ownership class, Rhode Island, 19857
9 Area of timberland by forest type, forest-type group, and stand-size class, Rhode Island, 1985 3
10 Number of live trees on timberland by species and diameter class, Rhode Island, 198516
11 Number of growing-stock trees on timberland by species and diameter class, Rhode Island, 198519
12 Net volume of growing-stock trees on timberland by species and diameter class, Rhode Island, 198539
13 Net volume of growing stock in the sawlog portion of sawtimber trees on timberland by species and diameter class, Rhode Island, 198540
14 Net volume of sawtimber trees on timberland by species and diameter class, Rhode Island, 198542
15 Net volume of growing-stock and sawtimber trees on timberland by county and species group, Rhode Island, 1985
Net volume of all trees on timberland by class of timber and species group, Rhode Island, 198530

| Core | Statistical |
| :---: | :---: |
| table | table |
| 17 | Net volume of all live, growing-stock, and sawtimber trees on timberland by species group and ownership class, Rhode Island, 1985.. |
| 18 | Average annual net growth of growing-stock and sawtimber volume on timberland by county and species group................................................................................ |
| 19 | Average annual removals of growing-stock and sawtimber volume on timberland by county and species group............Not available |
| 20 | Average annual net growth and average annual removals of growing-stock volume on timberland by species, Rhode Island, 1971-84................................... 46 |
| 21 | Average annual net growth and average annual removals of sawtimber volume on timberland by species, Rhode Island, 1971-84................................... 47 |
| 22 | Average annual mortality of growing-stock and sawtimber volume on timberland by species, Rhode Island, 1971-84......................................................... 48 |
| 23 | Average annual net growth and average annual removals of growing-stock volume on timberland by ownership class and species group, Rhode Island, 1971-84................................................................... . . 49 |
| 24 | Average annual net growth and average annual removals of sawtimber volume on timberland by Ownership class and species group, Rhode Island, 1971-84................................................................... . . . 50 |
| 25 | Net volume of sawtimber trees on timberland by species, size class, and standard-lumber log grade, Rhode Island, 1985..................................................... 44 |

## STATE TABLES


$B$

# Land area by land class, Rhode Island, 1985 




Table 2.--Area of timberland by forest type, forest-type group, and stand-size class, Rhode Island, 1972
(In thousands of acres) ${ }^{b}$

| Forest type and forest-type group | Stand-size class |  |  |  | All <br> classes |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawt imber | Poletimber | Sapling and seedling | Nonstocked |  |
| Red pine | 6.3 | 0 | 6.3 | . 0 | 12.6 |
| White pine | 19.0 | 9.7 | 0 | . 0 | 28.7 |
| White pine/hemlock | . 0 | . 0 | 6.1 | . 0 | 6.1 |
| White/red pine group | 25.3 | 9.7 | 12.4 | . 0 | 47.4 |
| Pitch pine | . 0 | 12.5 | 6.1 | . 0 | 18.6 |
| Hard pine group | . 0 | 12.5 | 6.1 | . 0 | 18.6 |
| Wh. pine/no. red oak/wh. ash | . 0 | 6.4 | 0 | . 0 | 6.4 |
| Eastern redcedar/hardwood | . 0 | . 0 | 6.1 | . 0 | 6.1 |
| Other oak/pine | 6.3 | 6.3 | 12.8 | . 0 | 25.4 |
| Oak/pine group | 6.3 | 12.7 | 18.9 | . 0 | 37.8 |
| Post, black, or bear oak | . 0 | 6.1 | 18.9 | . 0 | 25.0 |
| Chestnut oak | . 0 | 6.4 | 0 | . 0 | 6.4 |
| White oak/red oak/hickory | 12.6 | 12.6 | 6.1 | . 0 | 31.3 |
| White oak | 12.6 | 31.6 | 6.4 | . 0 | 50.6 |
| Northern red oak | 6.3 | 35.4 | 6.4 | . 0 | 48.1 |
| Scarlet oak | . 0 | 6.3 | 12.8 | . 0 | 19.1 |
| Red maple/central hardwoods | 31.6 | 31.7 | 6.5 | . 0 | 69.9 |
| Mixed central hardwoods | 6.3 | . 0 | 6.4 | . 0 | 12.7 |
| Oak/hickory group | 69.5 | 130.1 | 63.4 | . 0 | 263.0 |
| Black ash/Amer. elm/red maple | 6.1 | 6.1 | 0 | . 0 | 12.2 |
| Elm/ash/red maple group | 6.1 | 6.1 | 0 | . 0 | 12.2 |
| Red maple/northern hardwoods | . 0 | . 0 | 0 | . 0 | 0 |
| Northern hardwoods group | . 0 | . 0 | 12.5 | . 0 | 12.5 |
| Aspen | . 0 | . 0 | 6.1 | . 0 | 6.1 |
| Aspen/birch group | . 0 | . 0 | 6.1 | . 0 | 6.1 |
| All forest types | 107.2 | 171.1 | 119.3 | . 0 | 397.6 |
| ${ }^{a}$ The data on all 1972 tables have been reprocessed so as to be comparable to 1985 data. <br> ${ }^{\text {In }}$ Inis and other tables, a zero indicates that the data are negligible or the condition |  |  |  |  |  |

Table 3.--Area of timberland by forest type, forest-type group, and stand-size class, Rhode Island, 1985
(In thousands of acres)

| Forest type and forest-type group | Stand-size class |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawtimber | Poletimber | Sapling and seedling | Nonstocked |  |
| White pine | 12.5 | 4.5 | . 0 | . 0 | 17.0 |
| White/red pine group | 12.5 | 4.5 | . 0 | . 0 | 17.0 |
| Eastern redcedar | 3.3 | . 0 | . 0 | . 0 | 3.3 |
| Pitch pine | . 0 | 9.2 | . 0 | . 0 | 9.2 |
| Hard pine group | 3.3 | 9.2 | . 0 | . 0 | 12.5 |
| Wh. pine/no. red oak/wh. ash | 3.4 | 4.5 | . 0 | . 0 | 7.8 |
| Other oak/pine | 18.0 | 3.7 | . 0 | . 0 | 21.7 |
| Oak/pine group | 21.3 | 8.1 | . 0 | . 0 | 29.5 |
| Post, black, or bear oak | 9.6 | 29.4 | 6.8 | . 0 | 45.7 |
| Chestnut oak | . 0 | 2.2 | . 0 | . 0 | 2.2 |
| White oak/red oak/hickory | 10.2 | 11.8 | . 0 | . 0 | 22.0 |
| White oak | 6.8 | 18.8 | 3.4 | . 0 | 29.0 |
| Northern red oak | 16.1 | 29.3 | 4.7 | . 0 | 50.1 |
| Scarlet oak | 19.3 | 26.0 | . 0 | . 0 | 45.3 |
| Sassafras/persimmon | . 0 | 3.3 | . 0 | . 0 | 3.3 |
| Red maple/central hardwood | 27.2 | 26.8 | . 0 | . 0 | 54.0 |
| Mixed central hardwoods | 4.5 | . 0 | . 0 | . 0 | 4.5 |
| Oak/hickory group | 93.7 | 147.6 | 14.9 | . 0 | 256.1 |
| Black ash/Amer. elm/red maple | 17.5 | 5.5 | . 0 | . 0 | 23.0 |
| Elm/ash/red maple group | 17.5 | 5.5 | . 0 | . 0 | 23.0 |
| Sugar maple/beech/yellow birch |  | . 0 | . 0 | . 0 | 7.5 |
| Red maple/northern hardwoods | 11.8 | 8.1 | . 0 | . 0 | 19.9 |
| Northern hardwoods group | 19.3 | 8.1 | . 0 | . 0 | 27.4 |
| Gray birch | . 0 | . 0 | 6.2 | . 0 | 6.2 |
| Aspen/birch group | . 0 | . 0 | 6.2 | . 0 | 6.2 |
| All forest types | 167.5 | 183.1 | 21.1 | . 0 | 371.7 |

## Area of timberland by ownership class, Rhode Island, 1985



Table 4.--Area of timberland by forest-type group and ownership class, Rhode Island, 1985
(In thousands of acres)

|  | Ownership class |  |  |  |  |
| :--- | :---: | ---: | :---: | ---: | ---: | ---: |
| Forest-type group | National <br> Forest | Other <br> public | Forest <br> industry | Other <br> private | All <br> classes |
| White/red pine | .0 | 4.8 | .0 | 12.2 | 17.0 |
| Hard pine | .0 | 3.4 | .0 | 9.1 | 12.5 |
| Oak/pine | .0 | 3.4 | .0 | 26.1 | 29.5 |
| Oak/hickory | .0 | 26.3 | 4.4 | 225.4 | 256.1 |
| Elm/ash/red maple | .0 | 1.3 | .0 | 21.7 | 23.0 |
| Northern hardwoods | .0 | 6.0 | .0 | 21.4 | 27.4 |
| Aspen/birch | .0 | .0 | .0 | 6.2 | 6.2 |
| Total, all groups | .0 | 45.2 | 4.4 | 322.2 | 371.7 |

Table 5.--Area of timberland by stand-size class and ownership class, Rhode Island, 1985
(In thousands of acres)

|  | Ownership class |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | ---: |
| Stand-size class | National <br> Forest | Other <br> public | Forest <br> industry | Other <br> private | All |
| classes |  |  |  |  |  |
| Sawtimber | .0 | 29.2 | .0 | 138.4 | 167.5 |
| Poletimber | .0 | 16.0 | 4.4 | 162.7 | 183.1 |
| Sapling and seedling | .0 | .0 | .0 | 21.1 | 21.1 |
| Nonstocked | .0 | .0 | .0 | .0 | .0 |
|  | Total, all classes | .0 | 45.2 | 4.4 | 322.2 |

Table 6.--Area of timberland by buard-foot stand-volume class and ownership class, Rhode Island, 1985
(In thousands of acres)

|  | Ownership class |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | ---: |
| Stand-volume class <br> (board feet per acre) | National <br> Forest | Other <br> public | Forest <br> industry | Other <br> private | All <br> classes |
| $0-1,999$ | .0 | 17.5 | 4.4 | 173.8 | 195.7 |
| $2,000-3,999$ | .0 | 10.6 | .0 | 90.3 | 100.9 |
| $4,000-5,999$ | .0 | 8.1 | .0 | 31.6 | 39.7 |
| $6,000-7,999$ | .0 | 7.7 | .0 | 15.4 | 23.1 |
| $8,000-9,999$ | .0 | .0 | .0 | 10.2 | 10.2 |
| $10,000+$ | .0 | 1.3 | .0 | .9 | 2.2 |
|  | .0 | 45.2 | 4.4 | 322.2 | 371.7 |

Table 7.--Area of timberland by stocking class of growing-stock trees and ownership class, Rhode Island, 1985
(In thousands of acres)

|  | Ownership class |  |  |  |  |
| :--- | :---: | ---: | :---: | ---: | ---: |
| Stocking <br> class | National <br> Forest | Other <br> public | Forest <br> industry | Other <br> private | All <br> classes |
| Nonstocked | .0 | .0 | .0 | .0 | .0 |
| Poorly stocked | .0 | 2.8 | .0 | 30.6 | 33.5 |
| Moderately stocked | .0 | 11.6 | .0 | 104.5 | 116.1 |
| Fully stocked | .0 | 19.8 | 4.4 | 128.1 | 152.3 |
| Overstocked | .0 | 10.9 | .0 | 58.9 | 69.8 |
| Total, all classes | .0 | 45.2 | 4.4 | 322.2 | 371.7 |

Area of timberland by cubic-foot stand-volume
class (cubic feet per acre),
Rhode Island, 1985


Table 8.--Area of timberland by forest-type group and cubic-foot stand-volume class, Rhode Island, 1985
(In thousands of acres)

| Forest-type group | Stand-volume class (cubic feet per acre) |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 0- \\ 499 \end{array}$ | $\begin{aligned} & 500- \\ & 999 \end{aligned}$ | $\begin{aligned} & 1000- \\ & 1499 \end{aligned}$ | $\begin{aligned} & 1500- \\ & 1999 \end{aligned}$ | $\begin{aligned} & 2000 \\ & 2499 \end{aligned}$ | $2500+$ |  |
| White/red pine | 2.7 | . 0 | . 6 | 1.8 | 6.6 | 5.3 | 17.0 |
| Hard pine | . 0 | 12.5 | . 0 | . 0 | . 0 | . 0 | 12.5 |
| Oak/pine | 9.6 | 4.5 | 11.2 | . 0 | 4.3 | . 0 | 29.5 |
| Oak/hickory | 19.9 | 83.7 | 90.9 | 44.1 | 10.4 | 7.2 | 256.1 |
| Elm/ash/red maple | . 0 | 4.2 | 9.0 | . 0 | . 0 | 9.9 | 23.0 |
| Northern hardwoods | . 0 | 8.1 | 4.5 | 4.4 | 8.7 | 1.8 | 27.4 |
| Aspen/birch | 6.2 | .0 | . 0 | . 0 | .0 | . 0 | 6.2 |
| Total, all groups | 38.4 | 112.9 | 116.0 | $50 \cdot 3$ | -29.9 | 24.1 | 371.7 |

Table 9.--Area of timberland by forest-type group and board-foot stand-volume class, Rhode Island, 1985 (In thousands of acres)

| Forest-type group | Stand-volume class (board feet per acre) |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 0- \\ 1999 \end{array}$ | $\begin{aligned} & 2000- \\ & 3999 \end{aligned}$ | $\begin{aligned} & 4000- \\ & 5999 \end{aligned}$ | $\begin{aligned} & 6000- \\ & 7999 \end{aligned}$ | $\begin{aligned} & 8000- \\ & 9999 \end{aligned}$ | $10000+$ |  |
| White/red pine | 2.7 | 1.8 | 3.9 | $3 \cdot 3$ | 3.0 | 2.2 | 17.0 |
| Hard pine | 12.5 | . 0 | . 0 | .0 | . 0 | . 0 | 12.5 |
| Oak/pine | 14.0 | 11.2 | 4.3 | . 0 | . 0 | . 0 | 29.5 |
| Oak/hickory | 138.0 | 80.0 | 27.2 | 3.6 | 7.2 | . 0 | 256.1 |
| Elm/ash/red maple | 9.7 | 3.4 | 4.2 | 5.6 | . 0 | . 0 | 23.0 |
| Northern hardwoods | 12.5 | 4.5 | . 0 | 10.5 | .0 | . 0 | 27.4 |
| Aspen/birch | 6.2 | . 0 | . 0 | . 0 | . 0 | . 0 | 6.2 |
| Total, all groups | 195.7 | 100.9 | 39.7 | 23.1 | 10.2 | 2.2 | 371.7 |

Table 10.--Area of timberland by forest-type group and green ton stand-volume class ${ }^{a}$,

| Forest-type group | Stand-volume class (green tons per acre) |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-24 | 25-49 | 50-74 | 75-99 | 100-124 | 125-149 | 150-174 | 175-199 | $200+$ |  |
| White/red pine | 7.3 | . 0 | . 0 | . 0 | . 0 | . 0 | 9.7 | . 0 | . 0 | 17.0 |
| Hard pine | . 3 | 12.5 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 12.5 |
| Oak/pine | . 0 | 8.6 | 15.4 | . 0 | 5.5 | . 0 | . 0 | . 0 | . 0 | 29.5 |
| Oak/hickory | 6.7 | 50.2 | 90.1 | 85.8 | 15.1 | 8.2 | . 0 | . 0 | . 0 | 256.1 |
| Elm/ash/red maple | . 0 | . 0 | . 0 | . 0 | . 0 | 23.0 | . 0 | . 0 | . 0 | 23.0 |
| Northern hardwoods | . 0 | . 0 | 10.9 | 11.7 | 4.7 | . 0 | . 0 | . 0 | . 0 | 27.4 |
| Aspen/birch | 6.2 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 6.2 |
| Total, all groups | 20.2 | 71.3 | 116.5 | 97.5 | 25.3 | 31.2 | 9.7 | . 0 | . 0 | 371.7 |

ஸํ



Table 11.--Area of timberland by forest-type group and stocking class of all live trees, Rhode Island, 1972
(In thousands of acres)

| Forest-type group | Stocking class |  |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nonstocked | $\begin{aligned} & \text { Poorly } \\ & \text { stocked } \end{aligned}$ | Moderately stocked | Fully stocked | Over- <br> stocked |  |
| White/red pine | . 0 | . 0 | . 0 | 34.8 | 12.6 | 47.4 |
| Hard pine | . 0 | . 0 | 6.1 | 6.4 | 6.1 | 18.6 |
| Oak/pine | . 0 | . 0 | 6.4 | 25.4 | 6.1 | 37.8 |
| Oak/hickory | . 0 | 6.1 | 35.4 | 164.9 | 56.6 | 263.0 |
| Elm/ash/red maple | . 0 | 12.2 | . 0 | . 0 | . 0 | 12.2 |
| Northern hardwoods | . 0 | . 0 | 6.4 | . 0 | 6.1 | 12.5 |
| Aspen/birch | . 0 | . 0 | 6.1 | . 0 | . 0 | 6.1 |
| Total, all groups | . 0 | 18.3 | 60.3 | 231.5 | 87.5 | 397.6 |

Table 12.--Area of timberland by forest-type group and stocking class of all live trees, Rhode Island, 1985
(In thousands of acres)

| Forest-type group | Stocking class |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nonstocked | $\begin{aligned} & \text { Poorly } \\ & \text { stocked } \end{aligned}$ | Moderately <br> stocked | Fully <br> stocked | Overstocked |  |
| White/red pine | . 0 | 2.7 | . 6 | 1.8 | 11.9 | 17.0 |
| Hard pine | . 0 | . 0 | 6.6 | 5.9 | . 0 | 12.5 |
| Oak/pine | . 0 | 3.7 | . 0 | 22.4 | 3.4 | 29.5 |
| Oak/hickory | . 0 | 6.3 | 63.2 | 123.7 | 62.9 | 256.1 |
| Elm/ash/red maple | . 0 | . 0 | 4.2 | 2.2 | 16.6 | 23.0 |
| Northern hardwoods | . 0 | . 0 | 3.7 | 14.5 | 9.2 | 27.4 |
| Aspen/birch | . 0 | . 0 | 3.3 | . 0 | 2.9 | 6.2 |
| Total, all groups | . 0 | 12.7 | 81.7 | 170.5 | 106.8 | 371.7 |

Table 13.--Area of timberland by forest-type group and stocking class of growing-stock trees, Rhode Island, 1972
(In thousands of acres)

| Forest-type group | Stocking class |  |  |  |  | All <br> classes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nonstocked | Poorly stocked | Moderately stocked | Fully stocked | Overstocked |  |
| White/red pine | 0 | 0 | 24.9 | 22.5 | 0 | 47.4 |
| Hard pine | 0 | 0 | 12.5 | 6.1 | 0 | 18.6 |
| Oak/pine | 0 | 0 | 31.5 | 6.3 | 0 | 37.8 |
| Oak/hickory | 0 | 25.4 | 142.8 | 76.0 | 18.8 | 263.0 |
| Elm/ash/red maple | 6.1 | 6.1 | 0 | 0 | 0 | 12.2 |
| Northern hardwoods | 0 | 0 | 6.4 | 6.1 | 0 | 12.5 |
| Aspen/birch | 0 | 0 | 6.1 | 0 | 0 | 6.1 |
| Total, all groups | 6.1 | 31.5 | 224.2 | 117.0 | 18.8 | 397.6 |

Table 14.--Area of timberland by forest-type group and stocking class of growing-stock trees, Rhode Island, 1985
(In thousands of acres)

| Forest-type group | Stocking class |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nonstocked | Poorly stocked | Moderately stocked | Fully <br> stocked | Overstocked |  |
| White/red pine | . 0 | 2.7 | . 6 | 1.8 | 11.9 | 17.0 |
| Hard pine | . 0 | 3.3 | 3.3 | 5.9 | . 0 | 12.5 |
| Oak/pine | . 0 | 3.7 | 3.3 | 19.1 | 3.4 | 29.5 |
| Oak/hickory | . 0 | 19.6 | 99.6 | 97.9 | 39.0 | 256.1 |
| Elm/ash/red maple | . 0 | 4.2 | 2.2 | 13.2 | 3.4 | 23.0 |
| Northern hardwoods | . 0 | . 0 | 3.7 | 14.5 | 9.2 | 27.4 |
| Aspen/birch | . 0 | . 0 | 3.3 | . 0 | 2.9 | 6.2 |
| Total, all groups | . 0 | 33.5 | 116.1 | 152.3 | 69.8 | 371.7 |

Table 15.--Area of timberland by forest-type group and basal-area class (all live trees), Rhode Island, 1985
(In thousands of acres)

| Forest-type group | Basal-area class (square feet per acre) |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-49 | 50-99 | 100-149 | 150-199 |  |
| White/red pine | 2.7 | . 6 | 8.4 | 5.3 | 17.0 |
| Hard pine | . 0 | 12.5 | . 0 | . 0 | 12.5 |
| Oak/pine | 3.7 | 21.5 | 4.3 | . 0 | 29.5 |
| Oak/hickory | 24.7 | 161.9 | 63.7 | 5.8 | 256.1 |
| Elm/ash/red maple | . 0 | 6.4 | 12.4 | 4.2 | 23.0 |
| Northern hardwoods | . 0 | 12.6 | 13.0 | 1.8 | 27.4 |
| Aspen/birch | 6.2 | . 0 | . 0 | . 0 | 6.2 |
| Total, all groups | 37.3 | 215.5 | 101.9 | 17.1 | 371.7 |

Table 16.--Number of live trees on timberland by species and diameter class,

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1.0- \\ & 2.9 \end{aligned}$ | $\begin{aligned} & 3.0- \\ & 4.9 \end{aligned}$ | $\begin{aligned} & 5.0- \\ & 6.9 \end{aligned}$ | $\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$ | $\begin{array}{r} 9.0- \\ 10.9 \end{array}$ | $\begin{aligned} & 11.0- \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0= \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0- \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 21.0- \\ & 28.9 \end{aligned}$ | 29+ |  |
| Red pine | 0 | 0 | 22 | 202 | 68 | 58 | 22 | 0 | 0 | 0 | 0 | 0 | 371 |
| Pitch pine | 1,218 | 2,453 | 494 | 480 | 73 | 102 | 14 | 32 | 0 | 0 | 0 | 0 | 4,866 |
| White pine | 3,032 | 3,043 | 1,795 | 840 | 648 | 495 | 243 | 119 | 101 | 56 | 37 | 0 | 10,409 |
| Hemlock | 602 | 699 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,331 |
| Other softwoods | 1,476 | 598 | 17 | 153 | 103 | 44 | 29 | 12 | 0 | 0 | 0 | 0 | 2,434 |
| Total softwoods | 6,329 | 6,793 | 2,358 | 1,674 | 892 | 700 | 309 | 162 | 101 | 56 | 37 | 0 | 19,411 |
| Red maple | 25,572 | 11,364 | 5,593 | 3,947 | 2,098 | 1,262 | 605 | 246 | 150 | 15 | 50 | 26 | 50,927 |
| Sugar maple | 0 | 0 | 132 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 168 |
| Yellow birch | 752 | 0 | 579 | 286 | 238 | 100 | 19 | 34 | 0 | 0 | 0 | 0 | 2,009 |
| Sweet birch | 2,205 | 1,504 | 466 | 203 | 100 | 68 | 19 | 11 | 0 | 0 | 0 | 0 | 4,576 |
| Paper birch | 0 | 0 | 0 | 30 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 30 |
| Hickory | 3,430 | 0 | 637 | 338 | 132 | 76 | 22 | 9 | 0 | 0 | 0 | 0 | 4,645 |
| Beech | 598 | 827 | 247 | 58 | 101 | 55 | 11 | 31 | 42 | 0 | 0 | 0 | 1,969 |
| White ash | 0 | 0 | 583 | 269 | 235 | 165 | 160 | 27 | 29 | 51 | 0 | 0 | 1,519 |
| Aspen | 0 | 0 | 67 | 165 | 83 | 72 | 16 | 0 | 0 | 0 | 0 | 0 | 404 |
| Black cherry | 1,674 | 0 | 331 | 28 | 59 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 2,106 |
| White oaks | 5,229 | 3,428 | 3,514 | 2,094 | 945 | 305 | 334 | 77 | 64 | 51 | 30 | 3 | 16,075 |
| Northern red oak | 2,863 | 1,181 | 3,058 | 2,117 | 926 | 698 | 477 | 226 | 70 | 36 | 94 | 14 | 11,762 |
| Other red oaks | 4,434 | 3,572 | 5,265 | 4,023 | 2,301 | 1,432 | 689 | 220 | 78 | 20 | 35 | 3 | 22,073 |
| Elm | 0 | 0 | 88 | 0 | 29 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 132 |
| Other comm. hardwoods | 1,021 | 377 | 563 | 141 | 142 | 75 | 0 | 3 | 17 | 0 | 0 | 0 | 2,340 |
| Noncomm. hardwoods | 15,031 | 1,425 | 525 | 31 | 58 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 17,084 |
| Total hardwoods | 62,810 | 23,677 | 21,648 | 13,729 | 7,448 | 4,374 | 2,353 | 900 | 451 | 174 | 209 | 47 | 137,819 |
| Total, all species | 69,139 | 30,470 | 24,005 | 15,403 | 8,340 | 5,074 | 2,662 | 1,062 | 552 | 230 | 246 | 47 | 157,231 |

Table 17.-Number of live trees on timberland by diameter class, tree class, and species group, Rhode Island, 1985
(In thousands of trees)

| Diameter class | Growing Stock |  | Cull |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Softwoods | Hardwoods | Softwoods | Hardwoods |  |
| Seedlings | 15,727.9 | 871,889.4 | - | 144,894.0 | 1,032,511.3 |
| 1.0-2.9 | 6,328.6 | 47,779.0 | - | 15,031.3 | 69,138.9 |
| 3.0-4.9 | 6,793.3 | 22,252.4 | - | 1,424.5 | 30,470.3 |
| Total seedlings and saplings | 28,849.8 | 941,920.8 | - | 161,349.8 | 1,132,120.5 |
| 5.0-6.9 | 2,096.2 | 17,724.4 | 261.4 | 3,923.1 | 24,005.2 |
| 7.0-8.9 | 1,466.0 | 12,209.9 | 208.5 | 1,518.7 | 15,403.0 |
| 9.0-10.9 | - | 6,657.6 | - | 790.5 | 7,448.1 |
| Total poletimber | 3,562.2 | 36,591.9 | 469.9 | 6,232.3 | 46,856.3 |
| 9.0-10.9 | 819.2 | - | 72.9 | - | 892.1 |
| 11.0-12.9 | 700.3 | 4,009.9 | . 0 | 364.1 | 5,074.2 |
| 13.0-14.9 | 308.8 | 2,090.1 | . 0 | 263.0 | 2,661.9 |
| Total small sawtimber | 1,828.3 | 6,100.0 | 72.9 | 627.1 | 8,628.3 |
| 15.0-16.9 | 162.4 | 769.6 | . 0 | 130.3 | 1,062.3 |
| 17.0-18.9 | 92.9 | 420.5 | 8.4 | 30.3 | 552.1 |
| 19.0-20.9 | 55.6 | 149.2 | . 0 | 25.2 | 230.0 |
| 21.0-28.9 | 36.8 | 180.5 | . 0 | 28.6 | 245.9 |
| 29.0 and larger | . 0 | 36.7 | . 0 | 10.0 | 46.7 |
| Total larger sawtimber | 347.7 | 1,556.4 | 8.4 | 224.5 | 2,137.0 |
| All classes | 34,587.9 | 986,169.1 | 551.2 | 168,433.7 | 1,189,742.0 |


(In thousands of trees)

| Species | Tree class |  |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Preferred | Acceptable | All growing stock | Rough cull | Rotten cull | All live | Salvable dead | Nonsalvable dead |  |
| Red pine | . 0 | 349.8 | 349.8 | 21.7 | . 0 | 371.5 | . 0 | 86.9 | 458.4 |
| Pitch pine | . 0 | 1,084.7 | 1,084.7 | 110.5 | . 0 | 1,195.3 | 421.6 | 168.3 | 1,785.2 |
| White pine | 231.6 | 3,757.0 | 3,988.6 | 265.0 | 80.1 | 4,333.7 | 124.8 | . 0 | 4,458.5 |
| Hemlock | 29.8 | . 0 | 29.8 | . 0 | . 0 | 29.8 | . 0 | . 0 | 29.8 |
| Other softwoods | . 0 | 285.1 | 285.1 | 73.8 | . 0 | 358.9 | . 0 | 366.9 | 725.8 |
| Total softwoods | 261.4 | 5,476.6 | 5,738.0 | 471.1 | 80.1 | 6,289.2 | 546.5 | 622.2 | 7,457.9 |
| Red maple | 227.2 | 11,467.3 | 11,694.6 | 1,482.4 | 814.1 | 13,991.2 | 144.5 | 365.7 | 14,501.4 |
| Sugar maple | 29.8 | 137.9 | 167.7 | . 0 | . 0 | 167.7 | . 0 | . 0 | 167.7 |
| Yellow birch | 39.8 | 968.8 | 1,008.5 | 233.5 | 15.3 | 1,257.2 | . 0 | . 0 | 1,257.2 |
| Sweet birch | 41.7 | 734.3 | 776.1 | 38.6 | 52.9 | 867.6 | 54.3 | . 0 | 921.9 |
| Paper birch | . 0 | 29.6 | 29.6 | . 0 | . 0 | 29.6 | . 0 | . 0 | 29.6 |
| Hickory | 185.1 | 892.2 | 1,077.3 | 56.7 | 81.2 | 1,215.2 | 54.3 | . 0 | 1,269.5 |
| Beech | . 0 | 430.4 | 430.4 | 114.0 | . 0 | 544.4 | . 0 | . 0 | 544.4 |
| White ash | 193.3 | 1,097.6 | 1,290.8 | 143.5 | 84.4 | 1,518.7 | 133.1 | 104.0 | 1,755.8 |
| Aspen | . 0 | 272.9 | 272.9 | 34.6 | 96.5 | 404.0 | . 0 | . 0 | 404.0 |
| Black cherry | . 0 | 184.5 | 184.5 | 229.0 | 18.7 | 432.2 | . 0 | 53.0 | 485.2 |
| White oak | 148.1 | 6,166.6 | 6,314.7 | 426.3 | 676.7 | 7,417.8 | 1,266.6 | 958.2 | 9,642.6 |
| Northern red oak | 1,140.1 | 6,175.1 | 7,315.2 | 295.6 | 106.8 | 7,717.6 | 1,211.8 | 170.7 | 9,100.1 |
| Other red oaks | 794.3 | 12,076.1 | 12,870.3 | 849.2 | 347.6 | 14,067.1 | 384.6 | 278.5 | 14,730.2 |
| Elm | . 0 | 73.7 | 73.7 | 58.4 | . 0 | 132.1 | . 0 | 195.5 | 327.6 |
| Other commercial hardwood | ds 51.8 | 690.2 | 742.0 | 91.9 | 108.1 | 941.9 | 46.8 | 185.4 | 1,174.1 |
| Noncommercial hardwoods | .0 | . 0 | . 0 | 598.4 | 29.6 | 628.0 | 124.5 | 54.3 | 806.8 |
| Total hardwoods | 2,851.2 | 41,397.1 | 44,248.3 | 4,652.1 | 2,431.8 | 51,332.2 | 3,420.6 | 2,365.3 | 57,118.1 |
| Total, all species | 3,112.6 | 46,873.8 | 49,986.3 | 5,123.1 | 2,511.9 | 57,621.4 | 3,967.1 | 2,987.5 | 64,576.0 |

Table 19.--Number of growing-stock trees on timberland by species and diameter class, Rhode Island, 1985

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1.0= \\ & 2.9 \end{aligned}$ | $\begin{aligned} & 3.0- \\ & 4.9 \end{aligned}$ | $\begin{aligned} & 5.0- \\ & 6.9 \end{aligned}$ | $\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$ | $\begin{gathered} 9.0- \\ 10.9 \end{gathered}$ | $\begin{aligned} & 11.0- \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0- \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0- \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 21.0- \\ & 28.9 \end{aligned}$ | $29+$ |  |
| Red pine | 0 | 0 | 22 | 180 | 68 | 58 | 22 | 0 | 0 | 0 | 0 | 0 | 350 |
| Pitch pine | 1,218 | 2,453 | 465 | 399 | 73 | 102 | 14 | 32 | 0 | 0 | 0 | 0 | 4,756 |
| White pine | 3,032 | 3,043 | 1,563 | 764 | 619 | 495 | 243 | 119 | 93 | 56 | 37 | 0 | 10,064 |
| Hemlock | 602 | 699 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,331 |
| Other softwoods | 1,476 | 598 | 17 | 123 | 59 | 44 | 29 | 12 | 0 | 0 | 0 | 0 | 2,360 |
| Total softwoods | 6,329 | 6,793 | 2,096 | 1,466 | 819 | 700 | 309 | 162 | 93 | 56 | 37 | 0 | 18,860 |
| Red maple | 25,572 | 11,364 | 4,621 | 3,518 | 1,717 | 1,037 | 410 | 167 | 150 | 15 | 41 | 19 | 48,630 |
| Sugar maple | 0 | 0 | 132 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 168 |
| Yellow birch | 752 | 0 | 463 | 236 | 213 | 58 | 19 | 19 | 0 | 0 | 0 | 0 | 1,760 |
| Sweet birch | 2,205 | 1,504 | 466 | 112 | 100 | 68 | 19 | 11 | 0 | 0 | 0 | 0 | 4,485 |
| Paper birch | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
| Hickory | 3,430 | 0 | 552 | 310 | 132 | 64 | 9 | 9 | 0 | 0 | 0 | 0 | 4,507 |
| Beech | 598 | 827 | 147 | 58 | 101 | 55 | 11 | 31 | 28 | 0 | 0 | 0 | 1,855 |
| White ash | 0 | 0 | 450 | 190 | 235 | 165 | 160 | 27 | 29 | 36 | 0 | 0 | 1,291 |
| Aspen | 0 | 0 | 0 | 136 | 48 | 72 | 16 | 0 | 0 | 0 | 0 | 0 | 273 |
| Black cherry | 1,674 | 0 | 121 | 28 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,858 |
| White oak | 5,229 | 3,428 | 2,949 | 1,777 | 814 | 277 | 323 | 66 | 57 | 41 | 10 | 0 | 14,972 |
| Northern red oak | 2,863 | 1,181 | 2,891 | 1,969 | 891 | 667 | 456 | 226 | 70 | 36 | 94 | 14 | 11,360 |
| Other red oaks | 4,434 | 3,572 | 4,460 | 3,788 | 2,198 | 1,421 | 665 | 210 | 70 | 20 | 35 | 3 | 20,876 |
| Elm | 0 | 0 | 29 | 0 | 29 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 74 |
| Other hardwoods | 1,021 | 377 | 444 | 60 | 142 | 75 | 0 | 3 | 17 | 0 | 0 | 0 | 2,140 |
| Total hardwoods | 47,779 | 22,252 | 17,724 | 12,210 | 6,658 | 4,010 | 2,090 | 770 | 420 | 149 | 180 | 37 | 114,280 |
| Total, all species | 54,108 | 29,046 | 19,821 | 13,676 | 7,477 | 4,710 | 2,399 | 932 | 513 | 205 | 217 | 37 | 133,140 |

Table 20.--Number of all live nut- and fruit-producing trees on timberland by species
and diameter class, Rhode Island, 1985
(In thousands of trees)

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ | Sampling error (percent) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 5.0- \\ & 6.9 \end{aligned}$ | $\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$ | $\begin{array}{r} 9.0- \\ 10.9 \end{array}$ | $\begin{aligned} & 11.0- \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0- \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0- \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 21.0- \\ & 28.9 \end{aligned}$ | 29+ |  |  |
| Eastern redcedar | 0 | 119 | 103 | 44 | 29 | 12 | 0 | 0 | 0 | 0 | 307 | 87 |
| Hickory | 637 | 338 | 132 | 76 | 21 | 9 | 0 | 0 | 0 | 0 | 1,215 | 29 |
| Dogwood | 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 68 |
| Beech | 247 | 58 | 101 | 55 | 11 | 31 | 42 | 0 | 0 | 0 | 544 | 60 |
| Blackgum | 106 | 0 | 123 | 59 | 0 | 3 | 17 | 0 | 0 | 0 | 308 | 38 |
| Eastern hornbeam | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 100 |
| Black cherry | 331 | 28 | 59 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 432 | 79 |
| White oak | 3,514 | 2,093 | 945 | 305 | 334 | 77 | 64 | 51 | 30 | 3 | 7,418 | 13 |
| Scarlet oak | 3,550 | 1,921 | 1,280 | 783 | 333 | 89 | 46 | 0 | 20 | 0 | 8,022 | 19 |
| Pin oak | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 100 |
| Chestnut oak | 378 | 79 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 477 | 100 |
| Northern red oak | 3,058 | 2,117 | 926 | 698 | 477 | 226 | 70 | 36 | 94 | 14 | 7,718 | 15 |
| Black oak | 1,674 | 2,101 | 1,020 | 649 | 356 | 131 | 33 | 20 | 15 | 3 | 6,003 | 17 |
| Sassafras | 249 | 0 | 58 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 322 | 53 |
| Total, all species | 13,842 | 8,886 | 4,767 | 2,685 | 1,562 | 593 | 273 | 108 | 159 | 21 | 32,897 | 7.9 |
| Sampling error (percent) | 12 | 10 | 10 | 13 | 15 | 19 | 24 | 41 | 33 | 72 | 7.9 |  |

Table 21.- Number of shrubs and saplings on timberland by stand-size class, type of stem, and mast type, Rhode Island, $1985^{\text {a }}$
(In thousands of stems)

| Stand-size class and type of stem | Mast type |  |  | Other species | Total stems |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nuts | Other seeds | Berries |  |  |
| Sawtimber: |  |  |  |  |  |
| Shrubs | 1,582.7 | 330,371.6 | 1,479,424.6 | 554,974.7 | 2,366,353.6 |
| Saplings | 13,652.7 | 22,505.4 | 6,285.1 | . 0 | 42,443.2 |
| Total sawtimber | 15,235.4 | 352,877.0 | 1,485,709.7 | 554,974.7 | 2,408,796.8 |
| Poletimber: |  |  |  |  |  |
| Shrubs | 9,459.2 | 878,710.9 | 2,680,303.0 | 557,969.0 | 4,126,442.0 |
| Saplings | 15,463.8 | 30,430.5 | 4,473.2 | . 0 | 50,367.6 |
| Total poletimber | 24,923.0 | 909,141.4 | 2,684,776.2 | 557,969.0 | 4,176,809.6 |
| Sapling/seedling: |  |  |  |  |  |
| Shrubs | . 0 | 14,233.1 | 163,678.1 | 20,762.0 | 198,673.2 |
| Saplings | . 0 | 11,711.9 | 1,221.3 | . 0 | 12,933.2 |
| Total sapling/seedling | . 0 | 25,945.0 | 164,899.4 | 20,762.0 | 211,606.4 |
| Nonstocked: |  |  |  |  |  |
| Shrubs | . 0 | . 0 | . 0 | . 0 | . 0 |
| Saplings | . 0 | . 0 | . 0 | . 0 | . 0 |
| Total nonstocked | . 0 | . 0 | . 0 | . 0 | . 0 |
| Total, all classes | 40,158.4 | 1,287,963.4 | 4,335,385.3 | 1,133,705.7 | 6,797,212.8 |

[^0]

| Species | Intact top |  |  |  | Broken top |  |  |  | $\begin{aligned} & \text { Total } \\ & \text { all } \\ & \text { trees } \end{aligned}$ | Sampling error (percent) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Diameter class } \\ \text { (inches at breast height) } \end{gathered}$ |  |  |  | $\begin{gathered} \text { Diameter class } \\ \text { (inches at breast height) } \end{gathered}$ |  |  |  |  |  |
|  | $\begin{array}{r} 5.0- \\ 10.9 \end{array}$ | $\begin{aligned} & 11.0- \\ & 14.9 \end{aligned}$ | 15+ | Total | $\begin{array}{r} 5.0- \\ 10.9 \end{array}$ | $\begin{aligned} & 11.0- \\ & 14.9 \end{aligned}$ | 15+ | Total |  |  |
| Red pine | . 0 | . 0 | . 0 | . 0 | 86.9 | . 0 | . 0 | 86.9 | 86.9 | 100 |
| Pitch pine | . 0 | . 0 | . 0 | . 0 | 590.0 | . 0 | . 0 | 590.0 | 590.0 | 100 |
| White pine | 124.8 | . 0 | . 0 | 124.8 | . 0 | . 0 | . 0 | . 0 | 124.8 | 100 |
| Other softwoods | . 0 | . 0 | . 0 | . 0 | 366.9 | . 0 | . 0 | 366.9 | 366.9 | 100 |
| Total softwoods | 124.8 | . 0 | . 0 | 124.8 | 1,043.8 | . 0 | . 0 | 1,043.8 | 1,168.7 | 61 |
| Red maple | 100.1 | 44.4 | . 0 | 144.5 | 365.7 | . 0 | . 0 | 365.7 | 510.2 | 50 |
| Sweet birch | . 0 | . 0 | . 0 | . 0 | 54.3 | . 0 | . 0 | 54.3 | 54.3 | 100 |
| Hickory | 54.3 | . 0 | . 0 | 54.3 | . 0 | . 0 | . 0 | . 0 | 54.3 | 100 |
| White ash | 106.0 | . 0 | . 0 | 106.0 | 104.0 | 27.1 | . 0 | 131.0 | 237.0 | 71 |
| Black cherry | 53.0 | . 0 | . 0 | 53.0 | . 0 | . 0 | . 0 | . 0 | 53.0 | 100 |
| White oak | 893.0 | 68.5 | . 0 | 961.5 | 1,212.9 | . 0 | 50.4 | 1,263.3 | 2,224.8 | 30 |
| Northern red oak | 794.9 | 196.8 | 7.4 | 999.1 | 361.7 | 21.7 | . 0 | 383.4 | 1,382.5 | 41 |
| Other red oaks | 54.3 | 92.1 | 60.0 | 206.3 | 404.0 | 52.8 | . 0 | 456.9 | 663.2 | 33 |
| Elm | . 0 | . 0 | . 0 | . 0 | 140.5 | 55.0 | . 0 | 195.5 | 195.5 | 100 |
| Other comm. hrdwds. | 46.8 | . 0 | . 0 | 46.8 | 185.4 | . 0 | . 0 | 185.4 | 232.2 | 81 |
| Noncomm. hardwoods | . 0 | . 0 | . 0 | . 0 | 178.8 | . 0 | . 0 | 178.8 | 178.8 | 76 |
| Total hardwoods | 2,102.5 | 401.7 | 67.4 | 2,571.6 | 3,007.4 | 156.6 | 50.4 | 3,214.4 | 5,785.9 | 18 |
| Total, all species | 2,227.3 | 401.7 | 67.4 | 2,696.4 | 4,051.2 | 156.6 | 50.4 | 4,258.2 | 6,954.6 | 18.6 |
| Sampling error (percent) | 34 | 37 | 55 | 29 | 24 | 47 | 71 | 23 | 18.6 |  |

Table 23.--Number of trees (5.0+ inches d.b.h.) with observed cavities on timberland by species and condition class, Rhode Island, 1985
(In thousands of trees)

| Species | Live |  |  |  | Total live | Dead |  | Total dead | Total <br> all <br> trees | Sampling error (percent) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { No } \\ & \text { cull } \end{aligned}$ | Intact live top | Broken top | Dead top |  | Intact top | Broken top |  |  |  |
| White pine | . 0 | . 0 | . 0 | . 0 | . 0 | 124.8 | . 0 | 124.8 | 124.8 | 100 |
| Total softwoods | . 0 | . 0 | . 0 | . 0 | . 0 | 124.8 | . 0 | 124.8 | 124.8 | 100 |
| Red maple | 1,849.6 | 841.2 | 93.3 | 70.5 | 2,854.6 | 46.8 | 158.8 | 205.6 | 3,060.3 | 27 |
| Yellow birch | 235.2 | 93.7 | . 0 | . 0 | 328.9 | . 0 | . 0 | . 0 | 328.9 | 100 |
| Sweet birch | 223.2 | 54.3 | . 0 | . 0 | 277.5 | . 0 | 54.3 | 54.3 | 331.8 | 66 |
| Hickory | 72.7 | 54.3 | 54.3 | . 0 | 181.3 | . 0 | . 0 | . 0 | 181.3 | 65 |
| Beech | 116.4 | 27.1 | . 0 | . 0 | 143.5 | . 0 | . 0 | . 0 | 143.5 | 59 |
| White ash | 108.2 | . 0 | . 0 | . 0 | 108.2 | . 0 | . 0 | . 0 | 108.2 | 61 |
| Black cherry | . 0 | 26.6 | . 0 | . 0 | 26.6 | 53.0 | . 0 | 53.0 | 79.6 | 75 |
| White oak | 310.2 | 35.5 | 54.3 | 133.3 | 533.4 | 124.9 | 239.5 | 364.3 | 897.7 | 24 |
| Northern red oak | 574.7 | 76.0 | 27.1 | 46.8 | 724.6 | 111.2 | 149.0 | 260.2 | 984.8 | 30 |
| Other red oaks | 741.6 | 331.0 | . 0 | 79.9 | 1,152.5 | . 0 | 144.8 | 144.8 | $1,297 \cdot 3$ | 27 |
| Elm | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 55.0 | 55.0 | 55.0 | 100 |
| Noncomm. hardwoods | 108.6 | . 0 | . 0 | . 0 | 108.6 | . 0 | 54.3 | 54.3 | 162.9 | 52 |
| Total hardwoods | 4,340.4 | 1,539.7 | 229.0 | 330.6 | 6,439.6 | 335.9 | 855.7 | 1,191.5 | 7,631.2 | 15 |
| Total, all species | 4,340.4 | 1,539.7 | 229.0 | 330.6 | 6,439.6 | 460.7 | 855.7 | 1,316.4 | 7,756.0 | 15.1 |
| Sampling error (percent) | 18 | 26 | 48 | 39 | 16 | 38 | 29 | 25 | 15.1 |  |

Table 24.--Number of seedlings, saplings, and shrubs on timberland by species and stand-size class, Rhode Island, 1985
(In millions of stems)

| Species | Stand-size class |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ | Percent saplings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawtimber | Poletimber | Sapling and seedling | Nonstocked |  |  |
| Eastern redcedar | . 0 | 1.6 | 2.4 | . 0 | 4.0 | 30 |
| Pitch pine | 9.8 | . 0 | . 0 | . 0 | 9.8 | 50 |
| Eastern white pine | 6.3 | 2.7 | . 0 | . 0 | 9.0 | 28 |
| Total softwoods | 16.1 | 4.3 | 2.4 | . 0 | 22.8 |  |
| Red maple | 96.3 | 75.4 | 49.1 | . 0 | 220.7 | 17 |
| Sugar maple | 2.8 | . 0 | . 0 | . 0 | 2.8 | 0 |
| Other maple species | . 0 | 1.4 | . 0 | . 0 | 1.4 | 100 |
| Yellow birch | 4.3 | 6.5 | . 0 | . 0 | + 10.8 | 13 |
| Sweet birch | 11.0 | 2.7 | . 0 | . 0 | 13.8 | 20 |
| Gray birch | 12.4 | 17.2 | 3.8 | . 0 | 33.4 | 42 |
| Hickory species | 11.1 | 1.2 | . 0 | . 0 | 12.3 | 23 |
| American chestnut | 11.5 | 4.1 | 12.7 | . 0 | 28.2 | 0 |
| Flowering dogwood | 14.2 | . 0 | . 0 | . 0 | 14.2 | 22 |
| Hawthorn | . 0 | 2.5 | . 0 | . 0 | 2.5 | 0 |
| American beech | 18.0 | . 0 | . 0 | . 0 | 18.0 | 9 |
| White ash | 38.0 | . 0 | . 0 | . 0 | 38.0 | 0 |
| Blackgum | 15.0 | . 0 | 2.7 | . 0 | 17.7 | 0 |
| Eastern hophornbeam | 1.4 | 3.7 | . 0 | . 0 | 5.0 | 0 |
| Pin cherry | 4.9 | . 0 | . 0 | . 0 | 4.9 | 0 |
| Black cherry | 55.4 | 67.7 | 22.9 | . 0 | 146.0 | 2 |
| Chokecherry | . 0 | 17.7 | . 0 | . 0 | 17.7 | 0 |
| White oak | 103.0 | 122.8 | 2.6 | . 0 | 228.4 | 4 |
| Scarlet oak | 7.2 | 46.0 | . 0 | . 0 | 53.2 | 14 |
| Bear oak | . 0 | 1.4 | 1.4 | . 0 | 2.7 | 0 |
| Chestnut oak | . 0 | . 0 | 2.5 | . 0 | 2.5 | 0 |
| Northern red oak | 13.9 | 56.0 | . 0 | . 0 | 69.9 | 4 |
| Black oak | 33.3 | 52.8 | 27.1 | . 0 | 113.2 | 4 |
| Sassafras | 16.0 | 43.1 | 4.1 | . 0 | 63.2 | 7 |
| Total hardwoods | 469.7 | 522.1 | 129.0 | . 0 | 1,120.7 |  |
| Total trees | 485.7 | 526.4 | 131.4 | . 0 | 1,143.6 |  |

Table 24.--(Cont'd.) Number of seedlings, saplings, and shrubs on timberland by species and stand-size class, Rhode Island, 1985
(In millions of stems)

| Species | Stand-size class |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawtimber | Poletimber | Sapling and seedling | Nonstocked |  |
| Sheep laurel | 31.8 | 173.5 | . 0 | . 0 | 205.3 |
| Mountain laurel | 42.7 | 65.6 | . 0 | . 0 | 108.3 |
| Other evergreen shrubs | . 0 | 36.9 | . 0 | . 0 | 36.9 |
| Total evergreen shrubs | 74.5 | 275.9 | . 0 | . 0 | 350.5 |
| Alder | 1.5 | . 0 | . 0 | . 0 | 1.5 |
| Azalea | . 0 | 32.6 | . 0 | . 0 | 32.6 |
| Barberry | 41.2 | 34.2 | . 0 | . 0 | 75.3 |
| Sweetfern | 4.9 | 14.2 | . 0 | . 0 | 19.2 |
| Silky dogwood | . 0 | 8.2 | . 0 | . 0 | 8.2 |
| American hazelnut | . 0 | 9.5 | . 0 | . 0 | 9.5 |
| Beaked hazelnut | 1.6 | . 0 | . 0 | . 0 | 1.6 |
| Huckleberry species | 196.9 | . 0 | . 0 | . 0 | 196.9 |
| Witch-hazel | 42.1 | 20.4 | 10.1 | . 0 | 72.6 |
| Common spicebush | 13.9 | 51.9 | . 0 | . 0 | 65.8 |
| Bush honeysuckle | . 0 | 10.9 | . 0 | . 0 | 10.9 |
| Rubus species | 15.7 | 20.2 | 2.7 | . 0 | 38.6 |
| American elderberry | . 0 | 118.8 | . 0 | . 0 | 118.8 |
| Spirea species | 207.3 | 572.4 | 4.1 | . 0 | 783.8 |
| Blueberry species | 1,096.1 | 2,381.9 | 159.7 | . 0 | 3,637.7 |
| Maple-leaf viburnum | 70.1 | . 0 | . 0 | . 0 | 70.1 |
| Hobblebush viburnum | 1.2 | 16.8 | . 0 | . 0 | 18.0 |
| Wild raisin, witherod | 5.5 | 19.1 | . 0 | . 0 | 24.6 |
| Arrowwood | 23.3 | 9.0 | . 0 | . 0 | 32.3 |
| Other viburnum species | 15.7 | 9.3 | 1.2 | . 0 | 26.2 |
| Other deciduous shrubs | 555.0 | 521.1 | 20.8 | . 0 | 1,096.8 |
| Total deciduous shrubs | 2,291.8 | 3,850.5 | 198.7 | . 0 | 6,341.0 |
| All species | 2,852.1 | 4,652.9 | 330.1 | . 0 | 7,835.0 |
| Sampling error (percent) | 21 | 19 | 63 | 0 | 8.3 |

Table 25.--Number of seedlings, saplings, and shrubs on timberland by species

| Species | Forest-type group |  |  |  |  |  |  |  | All groups |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | White/ red pine | Spruce/ fir | Hard pine | Oak/ pine | Oak/ hickory | Elm/ash/ red maple | Northern hardwoods | Aspen/ <br> birch |  |
| Eastern redcedar | . 0 | . 0 | . 0 | 1.6 | . 0 | . 0 | . 0 | 2.4 | 4.0 |
| Pitch pine | . 0 | . 0 | . 0 | 9.8 | . 0 | . 0 | . 0 | . 0 | 9.8 |
| Eastern white pine | 3.8 | . 0 | . 0 | 2.5 | 1.4 | . 0 | 1.4 | . 0 | 9.0 |
| Total softwoods | 3.8 | . 0 | . 0 | 13.8 | 1.4 | . 0 | 1.4 | 2.4 | 22.8 |
| Red maple | . 0 | . 0 | 4.9 | 51.3 | 125.4 | 12.4 | 23.1 | 3.7 | 220.7 |
| Sugar maple | . 0 | . 0 | . 0 | 1.2 | 1.6 | . 0 | . 0 | . 0 | 2.8 |
| Other maple species | . 0 | . 0 | . 0 | . 0 | 1.4 | . 0 | . 0 | . 0 | 1.4 |
| Yellow birch | . 0 | . 0 | . 0 | . 0 | 10.8 | . 0 | . 0 | . 0 | 10.8 |
| Sweet birch | . 0 | . 0 | . 0 | . 0 | 5.8 | . 0 | 7.9 | . 0 | 13.8 |
| Gray birch | . 0 | . 0 | 4.9 | . 0 | 10.7 | 3.1 | 12.3 | 2.4 | 33.4 |
| Hickory species | .0 | . 0 | . 0 | . 0 | 12.3 | . 0 | . 0 | . 0 | 12.3 |
| American chestnut | .0 | . 0 | . 0 | . 0 | 28.2 | . 0 | . 0 | . 0 | 28.2 |
| Flowering dogwood | . 0 | . 0 | . 0 | . 0 | 12.7 | . 0 | 1.6 | . 0 | 14.2 |
| Hawthorn | . 0 | . 0 | 2.5 | . 0 | . 0 | . 0 | . 0 | . 0 | 2.5 |
| American beech | . 0 | . 0 | . 0 | . 0 | 3.2 | . 0 | 14.9 | . 0 | 18.0 |
| White ash | . 0 | . 0 | . 0 | 2.4 | 29.4 | 6.2 | . 0 | . 0 | 38.0 |
| Blackgum | .0 | . 0 | . 0 | . 0 | 17.7 | . 0 | . 0 | . 0 | 17.7 |
| Eastern hophornbeam | .0 | . 0 | . 0 | . 0 | 5.0 | . 0 | . 0 | . 0 | 5.0 |
| Pin cherry | .0 | . 0 | . 0 | 4.9 | . 0 | . 0 | . 0 | . 0 | 4.9 |
| Black cherry | .0 | . 0 | 27.0 | 21.1 | 75.9 | . 0 | 19.5 | 2.4 | 146.0 |
| Chokecherry | . 0 | . 0 | . 0 | . 0 | 1.4 | . 0 | 16.4 | . 0 | 17.7 |
| White oak | 1.3 | . 0 | 39.3 | 71.6 | 112.1 | . 0 | 4.1 | . 0 | 228.4 |
| Scarlet oak | .0 | . 0 | . 0 | 23.0 | 27.0 | . 0 | 3.2 | . 0 | 53.2 |
| Bear oak | . 0 | . 0 | . 0 | . 0 | 2.7 | . 0 | . 0 | . 0 | 2.7 |
| Chestnut oak | . 0 | . 0 | . 0 | . 0 | 2.5 | . 0 | . 0 | . 0 | 2.5 |
| Northern red oak | .0 | . 0 | 34.3 | 1.2 | 27.5 | . 0 | 6.8 | . 0 | 69.9 |
| Black oak | . 0 | . 0 | 4.9 | 6.0 | 102.4 | . 0 | . 0 | . 0 | 113.2 |
| Sassafras | . 0 | . 0 | 17.2 | . 0 | 44.4 | . 0 | 1.6 | . 0 | 63.2 |
| Total hardwoods | 1.3 | .0 | 134.9 | 182.9 | 660.2 | 21.6 | 111.3 | 8.5 | 1,120.7 |
| Total trees | 5.1 | . 0 | 134.9 | 196.7 | 661.6 | 21.6 | 112.6 | 11.0 | 1,143.6 |

Table 25.--(Cont'd.) Number of seedlings, saplings, and shrubs on timberland by species
and forest-type group, Rhode Island, 1985
(In millions of stems)

| Species | Forest-type group |  |  |  |  |  |  |  | $\begin{aligned} & \text { All } \\ & \text { groups } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | White/ red pine | Spruce/ fir | Hard pine | Oak/ <br> pine | Oak/ hickory | Elm/ash/ <br> red maple | Northern hardwoods | Aspen/ birch |  |
| Sheep laurel | 3.8 | . 0 | 4.9 | . 0 | 169.3 | . 0 | 27.3 | . 0 | 205.3 |
| Mountain laurel | . 0 | . 0 | 22.1 | . 0 | 86.2 | . 0 | . 0 | . 0 | 108.3 |
| Other evergreen shrubs | . 0 | . 0 | . 0 | . 0 | 9.6 | . 0 | 27.3 | . 0 | 36.9 |
| Total evergreen shrubs | s 3.8 | . 0 | 27.0 | . 0 | 265.1 | . 0 | 54.6 | . 0 | 350.5 |
| Alder | . 0 | . 0 | . 0 | . 0 | . 0 | 1.5 | . 0 | . 0 | 1.5 |
| Azalea | . 0 | . 0 | . 0 | . 0 | 32.6 | . 0 | . 0 | . 0 | 32.6 |
| Barberry | . 0 | . 0 | . 0 | . 0 | 41.2 | . 0 | 34.2 | . 0 | 75.3 |
| Sweetfern | . 0 | . 0 | . 0 | 19.2 | . 0 | . 0 | . 0 | . 0 | 19.2 |
| Silky dogwood | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 8.2 | . 0 | 8.2 |
| American hazelnut | . 0 | . 0 | . 0 | . 0 | 1.3 | . 0 | 8.2 | . 0 | 9.5 |
| Beaked hazelnut | . 0 | . 0 | . 0 | . 0 | 1.6 | . 0 | . 0 | . 0 | 1.6 |
| Huckleberry species | . 0 | . 0 | . 0 | . 0 | 196.9 | . 0 | . 0 | . 0 | 196.9 |
| Witch-hazel | . 0 | . 0 | . 0 | 6.3 | 66.3 | . 0 | . 0 | . 0 | 72.6 |
| Common spicebush | . 0 | . 0 | . 0 | . 0 | 38.3 | 13.9 | 13.7 | . 0 | 65.8 |
| Bush honeysuckle | . 0 | . 0 | . 0 | . 0 | 10.9 | . 0 | . 0 | . 0 | 10.9 |
| Rubus species | . 0 | . 0 | . 0 | . 0 | 12.2 | 6.2 | 20.2 | . 0 | 38.6 |
| American elderberry | . 0 | . 0 | . 0 | . 0 | 118.8 | . 0 | . 0 | . 0 | 118.8 |
| Spirea species | . 0 | . 0 | 9.8 | 38.0 | 736.0 | . 0 | . 0 | . 0 | 783.8 |
| Blueberry species | 11.4 | . 0 | 159.5 | 626.5 | 2,566.1 | . 0 | 266.9 | 7.3 | 3,637.7 |
| Maple-leaf viburnum | . 0 | . 0 | . 0 | 4.9 | 65.2 | . 0 | . 0 | . 0 | 70.1 |
| Hobblebush viburnum | . 0 | . 0 | . 0 | 1.2 | 2.8 | . 0 | 14.0 | . 0 | 18.0 |
| Wild raisin,witherod | . 0 | . 0 | . 0 | . 0 | 24.6 | . 0 | . 0 | . 0 | 24.6 |
| Arrowwood | . 0 | . 0 | . 0 | . 0 | 7.6 | . 0 | 24.7 | . 0 | 32.3 |
| Other viburnum species | . 0 | . 0 | . 0 | . 0 | 25.0 | . 0 | . 0 | 1.2 | 26.2 |
| Other deciduous shrubs | 1.0 | . 0 | . 0 | 101.4 | 933.3 | . 0 | 40.4 | 20.8 | 1,096.8 |
| Total deciduous shrubs | s 12.4 | . 0 | 169.3 | 797.4 | 4,880.7 | 21.6 | 430.3 | 29.3 | 6,341.0 |
| All species | 21.2 | . 0 | 331.2 | 994.1 | 5,807.4 | 43.3 | 597.6 | 40.3 | 7,835.0 |
| Sampling error (percent) | 96 | 0 | 100 | 49 | 12 | 100 | 54 | 100 | 8.3 |

Table 26.--Number of seedlings, saplings, and shrubs on timberland by species zation class, Rhode Island, 1985
(In millions of stems)

| Species | Browse-utilization class |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ | Sampling error (percent) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | None | Light | Moderate | Heavy |  |  |
| Eastern redcedar | 4.0 | . 0 | . 0 | . 0 | 4.0 | 72 |
| Pitch pine | 9.8 | . 0 | . 0 | . 0 | 9.8 | 100 |
| Eastern white pine | 9.0 | . 0 | . 0 | . 0 | 9.0 | 54 |
| Total softwoods | 22.8 | . 0 | . 0 | . 0 | 22.8 | 58 |
| Red maple | 218.0 | 2.7 | . 0 | . 0 | 220.7 | 23 |
| Sugar maple | 2.8 | . 0 | . 0 | . 0 | 2.8 | 71 |
| Other maple species | 1.4 | . 0 | . 0 | . 0 | 1.4 | 100 |
| Yellow birch | 10.8 | . 0 | . 0 | . 0 | 10.8 | 40 |
| Sweet birch | 13.8 | . 0 | . 0 | . 0 | 13.8 | 65 |
| Gray birch | 33.4 | . 0 | . 0 | . 0 | 33.4 | 46 |
| Hickory species | 12.3 | . 0 | . 0 | . 0 | 12.3 | 91 |
| American chestnut | 28.2 | . 0 | . 0 | . 0 | 28.2 | 54 |
| Flowering dogwood | 11.1 | 3.2 | . 0 | . 0 | 14.2 | 69 |
| Hawthorn | 2.5 | . 0 | . 0 | . 0 | 2.5 | 100 |
| American beech | 18.0 | . 0 | . 0 | . 0 | 18.0 | 66 |
| White ash | 28.6 | 9.4 | . 0 | . 0 | 38.0 | 69 |
| Blackgum | 17.7 | . 0 | . 0 | . 0 | 17.7 | 85 |
| Eastern hophornbeam | 5.0 | . 0 | . 0 | . 0 | 5.0 | 78 |
| Pin cherry | . 0 | 4.9 | . 0 | . 0 | 4.9 | 100 |
| Black cherry | 143.5 | 2.4 | . 0 | . 0 | 146.0 | 29 |
| Chokecherry | 17.7 | . 0 | . 0 | . 0 | 17.7 | 92 |
| White oak | 228.4 | . 0 | . 0 | . 0 | 228.4 | 26 |
| Scarlet oak | 53.2 | . 0 | . 0 | . 0 | 53.2 | 47 |
| Bear oak | 2.7 | . 0 | . 0 | . 0 | 2.7 | 68 |
| Chestnut oak | 2.5 | . 0 | . 0 | . 0 | 2.5 | 100 |
| Northern red oak | 69.9 | . 0 | . 0 | . 0 | 69.9 | 52 |
| Black oak | 113.2 | . 0 | . 0 | . 0 | 113.2 | 32 |
| Sassafras | 63.2 | . 0 | . 0 | . 0 | 63.2 | 39 |
| Total hardwoods | 1,098.1 | 22.6 | . 0 | . 0 | 1,120.7 | 15 |
| Total trees | 1,120.9 | 22.6 | . 0 | . 0 | 1,143.6 | 14 |

Table 26.--(Cont'd.) Number of seedlings, saplings, and shrubs on timberland by species and browse-utilization class, Rhode Island, 1985

| Species | Browse-utilization class |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ | Sampling error (percent) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | None | Light | Moderate | Heavy |  |  |
| Sheep laurel | 205.3 | . 0 | . 0 | . 0 | 205.3 | 32 |
| Mountain laurel | 108.3 | . 0 | . 0 | . 0 | 108.3 | 55 |
| Other evergreen shrubs | 36.9 | . 0 | . 0 | . 0 | 36.9 | 76 |
| Total evergreen shrubs | 350.5 | . 0 | . 0 | . 0 | 350.5 | 29 |
| Alder | 1.5 | . 0 | . 0 | . 0 | 1.5 | 100 |
| Azalea | 32.6 | . 0 | . 0 | . 0 | 32.6 | 100 |
| Barberry | 75.3 | . 0 | . 0 | . 0 | 75.3 | 71 |
| Sweetfern | 19.2 | . 0 | . 0 | . 0 | 19.2 | 79 |
| Silky dogwood | 8.2 | . 0 | . 0 | . 0 | 8.2 | 100 |
| American hazelnut | 9.5 | . 0 | . 0 | . 0 | 9.5 | 88 |
| Beaked hazelnut | 1.6 | . 0 | . 0 | . 0 | 1.6 | 100 |
| Huckleberry species | 196.9 | . 0 | . 0 | . 0 | 196.9 | 100 |
| Witch-hazel | 72.6 | . 0 | . 0 | . 0 | 72.6 | 48 |
| Common spicebush | 65.8 | . 0 | . 0 | . 0 | 65.8 | 49 |
| Bush honeysuckle | 10.9 | . 0 | . 0 | . 0 | 10.9 | 100 |
| Rubus species | 38.6 | . 0 | . 0 | . 0 | 38.6 | 57 |
| American elderberry | 118.8 | . 0 | . 0 | . 0 | 118.8 | 100 |
| Spirea species | 782.4 | 1.4 | . 0 | . 0 | 783.8 | 48 |
| Blueberry species | 3,613.3 | 12.3 | 12.0 | . 0 | 3,637.7 | 15 |
| Maple-leaf viburnum | 70.1 | . 0 | . 0 | . 0 | 70.1 | 83 |
| Hobblebush viburnum | 18.0 | . 0 | . 0 | . 0 | 18.0 | 79 |
| Wild raisin, witherod | 24.6 | . 0 | . 0 | . 0 | 24.6 | 58 |
| Arrowwood | 32.3 | . 0 | . 0 | . 0 | 32.3 | 76 |
| Other viburnum species | 26.2 | . 0 | . 0 | . 0 | 26.2 | 70 |
| Other deciduous shrubs | 1,096.8 | . 0 | . 0 | . 0 | 1,096.8 | 27 |
| Total deciduous shrubs | 6,315.3 | 13.7 | 12.0 | . 0 | 6,341.0 | 10 |
| All species | 7,786.7 | 36.4 | 12.0 | . 0 | 7,835.0 | 8.3 |
| Sampling error (percent) | 8 | 50 | 72 | 0 | 8.3 |  |

Table 27. --Number of trees (5.0+ inches d.b.h.) with observed cavities on timberland

| Species | Live trees |  |  |  | Dead trees |  |  |  | $\begin{gathered} \text { Total } \\ \text { all } \\ \text { trees } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Presence of cavities |  |  |  | Presence of cavities |  |  |  |  |
|  | One or more small | One or more large | Multiple large or small | Total live | One or more small | One or more large | Multiple large or small | Total dead |  |
| White pine | .0 | .0 | . 0 | .0 | 124.8 | .0 | . 0 | 124.8 | 124.8 |
| Total softwoods | . 0 | .0 | . 0 | . 0 | 124.8 | .0 | . 0 | 124.8 | 124.8 |
| Red maple | 1,339.1 | 1,012.0 | 503.5 | 2,854.6 | 46.8 | . 0 | 158.8 | 205.6 | 3,060.3 |
| Yellow birch | 211.8 | 70.2 | 46.8 | 328.9 | . 0 | . 0 | . 0 | . 0 | 328.9 |
| Sweet birch | 51.1 | 172.2 | 54.3 | 277.5 | 54.3 | . 0 | . 0 | 54.3 | 331.8 |
| Hickory | 54.3 | 127.0 | . 0 | 181.3 | . 0 | . 0 | . 0 | . 0 | 181.3 |
| Beech | 116.4 | 27.1 | . 0 | 143.5 | . 0 | . 0 | . 0 | . 0 | 143.5 |
| White ash | 26.4 | 66.8 | 14.9 | 108.2 | . 0 | . 0 | . 0 | . 0 | 108.2 |
| Black cherry | . 0 | 26.6 | . 0 | 26.6 | 53.0 | . 0 | . 0 | 53.0 | 79.6 |
| White oaks | 294.5 | 193.0 | 45.9 | 533.4 | 270.4 | 43.5 | 50.4 | 364.3 | 897.7 |
| Northern red oak | 479.2 | 115.3 | 130.1 | 724.6 | 153.5 | 37.9 | 68.8 | 260.2 | 984.8 |
| Other red oaks | 453.7 | 541.8 | 157.0 | 1,152.5 | 120.4 | . 0 | 24.3 | 144.8 | 1,297.3 |
| Elm | . 0 | . 0 | . 0 | . 0 | . 0 | 23.4 | 31.7 | 55.0 | 55.0 |
| Noncommercial hardwoods | 54.3 | 54.3 | . 0 | 108.6 | . 0 | 54.3 | . 0 | 54.3 | 162.9 |
| Total hardwoods | 3,080.8 | 2,406.3 | 952.5 | 6,439.6 | 698.5 | 159.1 | 334.0 | 1,191.5 | 7,631.2 |
| Total, all species | 3,080.8 | 2,406.3 | 952.5 | 6,439.6 | 823.4 | 159.1 | 334.0 | 1,316.4 | 7,756.0 |

Table 28.--Net green weight of all live trees on timberland by species and diameter class, Rhode Island, 1985

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1.0- \\ & 4.9 \end{aligned}$ | $\begin{aligned} & 5.0- \\ & 6.9 \end{aligned}$ | $\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$ | $\begin{gathered} 9.0- \\ 10.9 \end{gathered}$ | $\begin{aligned} & 11.0- \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0- \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0- \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $21+$ |  |
| Spruce/fir | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Red pine | . 0 | 9.5 | 120.7 | 71.8 | 76.5 | 55.2 | . 0 | . 0 | . 0 | . 0 | 333.8 |
| Pitch pine | 157.9 | 47.2 | 116.6 | 10.3 | 34.5 | 12.0 | 40.3 | . 0 | . 0 | . 0 | 418.7 |
| White pine | 99.9 | 187.1 | 255.9 | 264.6 | 158.7 | 128.1 | 147.4 | 139.1 | 202.5 | 84.8 | 1,668.1 |
| Hemlock | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Other softwoods | 7.2 | 6.1 | 15.4 | . 0 | . 0 | . 0 | 13.3 | . 0 | . 0 | . 0 | 42.0 |
| Total softwoods | 264.9 | 250.0 | 508.6 | 346.7 | 269.8 | 195.3 | 201.0 | 139.1 | 202.5 | 84.8 | 2,462.6 |
| Red maple | 942.3 | 824.7 | 1,084.8 | 914.7 | 688.7 | 631.0 | 170.3 | 185.9 | . 0 | 158.0 | 5,600.4 |
| Sugar maple | . 0 | 24.4 | . 0 | . 0 | 31.0 | . 0 | . 0 | . 0 | . 0 | . 0 | 55.4 |
| Yellow birch | 16.2 | 59.7 | 102.1 | 98.5 | 15.9 | . 0 | . 0 | . 0 | . 0 | . 0 | 292.5 |
| Sweet birch | 154.9 | 66.0 | 59.5 | 53.9 | 52.3 | . 0 | 31.5 | .0 | . 0 | . 0 | 418.2 |
| Paper birch | . 0 | . 0 | 18.8 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 18.8 |
| Hickory | 28.6 | 83.8 | 25.2 | 27.6 | . 0 | . 0 | 26.7 | . 0 | . 0 | . 0 | 191.9 |
| Beech | 106.9 | 59.0 | 43.3 | 120.3 | 95.4 | 29.9 | 104.2 | 176.6 | . 0 | . 0 | 735.7 |
| White ash | . 0 | 20.1 | 52.4 | 197.7 | 216.7 | 297.6 | 72.1 | 110.8 | 177.4 | . 0 | 1,144.8 |
| Aspen | . 0 | . 0 | 76.6 | . 0 | . 0 | 31.3 | . 0 | . 0 | . 0 | . 0 | 107.9 |
| Black cherry | 25.5 | 65.1 | 13.4 | 50.1 | 17.1 | . 0 | . 0 | . 0 | . 0 | 0 | 171.3 |
| White oaks | 340.0 | 432.7 | 648.0 | 529.2 | 304.4 | 299.3 | 133.4 | 133.9 | 229.7 | 93.6 | 3,144.3 |
| Northern red oak | 58.1 | 556.4 | 753.2 | 559.9 | 689.0 | 461.5 | 318.0 | 97.5 | 65.1 | 636.7 | 4,195.4 |
| Other red oaks | 311.5 | 884.7 | 1,313.8 | 1,267.4 | 1,191.2 | 883.7 | 322.9 | 79.0 | 110.0 | 69.3 | 6,433.5 |
| Elm | . 0 | 28.3 | . 0 | 32.3 | 25.8 | . 0 | . 0 | . 0 | . 0 | . 0 | 86.3 |
| Other cormm. hrdwds. | . 0 | . 0 | . 0 | 47.9 | 49.6 | . 0 | . 0 | 57.1 | . 0 | . 0 | 154.6 |
| Noncomm . hardwoods | 267.5 | 99.5 | . 0 | 24.1 | .0 | . 0 | . 0 | . 0 | . 0 | .0 | 391.1 |
| Total hardwoods | 2,251.7 | 3,204.4 | 4,191.1 | 3,923.8 | 3,377.1 | 2,634.3 | 1,179.1 | 840.9 | 582.2 | 957.6 | 23,142.1 |
| Total, all species | 2,516.6 | 3,454.4 | 4,699.7 | 4,270.4 | 3,646.9 | 2,829.6 | 1,380.0 | 980.0 | 784.7 | 1,042.4 | 25,604.6 |


| Class of timber | Species group |  |  |
| :---: | :---: | :---: | :---: |
|  | Softwoods | Hardwoods | All groups |
| Sawtimber trees: |  |  |  |
| Sawlog portion | 928.7 | 5,307.5 | 6,236.2 |
| Upper stem | 115.4 | 1,344.9 | 1,460.3 |
| Total | 1,044.2 | 6,652.3 | 7,696.5 |
| Poletimber trees | 481.6 | 6,946.7 | 7,428.2 |
| All growing stock | 1,525.7 | 13,599.0 | 15,124.7 |
| Rough cull trees ${ }^{\text {b }}$ | 60.8 | 885.6 | 946.4 |
| Rotten cull trees ${ }^{\text {b }}$ | . 0 | 412.5 | 412.5 |
| Salvable dead trees ${ }^{\text {c }}$ | 49.5 | 1,237.8 | 1,287.4 |
| Saplings ${ }^{\text {c }}$ | 264.9 | 2,251.7 | 2,516.6 |
| Stumps ${ }^{\text {d }}$ | 22.8 | 389.8 | 412.5 |
| Tops - growing stock | 566.1 | 5,106.7 | 5,672.8 |
| Tops - rough and rotten | 23.5 | 521.8 | 545.2 |
| All nongrowing stock | 987.6 | 10,805.8 | 11,793.5 |
| All classes | 2,513.3 | 24,404.8 | 26,918.2 |

[^1]Table 30.--Net volume of all trees on timberland by class of timber and species group, Rhode Island, 1985
(In millions of cubic feet)

| Class of timber | Softwoods | Hardwoods | All groups |
| :---: | :---: | :---: | :---: |
| Sawtimber trees: |  |  |  |
| Sawlog portion | 37.3 | 129.8 | 167.0 |
| Upper stem portion | 4.8 | 33.6 | 38.5 |
| Total | 42.1 | 163.4 | 205.5 |
| Poletimber trees | 14.2 | 184.3 | 198.5 |
| Total growing stock | 56.3 | 347.7 | 404.0 |
| Rough trees: |  |  |  |
| Sawtimber size | . 7 | 7.4 | 8.1 |
| Poletimber size | 1.4 | 12.7 | 14.1 |
| Total | 2.1 | 20.1 | 22.2 |
| Rotten trees: |  |  |  |
| Sawtimber size | . 0 | 3.1 | 3.1 |
| Poletimber size | . 3 | 6.2 | 6.5 |
| Total | . 3 | 9.3 | 9.6 |
| Total, all live trees | 58.6 | 377.2 | 435.8 |
| Salvable ${ }^{\text {a }}$ dead trees: |  |  |  |
| Sawtimber size | . 2 | 9.4 | 9.6 |
| Poletimber size | . 5 | 10.6 | 11.1 |
| Total | . 7 | 20.0 | 20.7 |
| Total, all classes | 59.3 | 397.2 | 456.5 |

[^2]Proportion of growing stock versus
nongrowing stock, Rhode Island, 1985


Table 31.--Net volume of all live, growing-stock, and sawtimber trees on timberland by species group and ownership class, Rhode Island, 1985

${ }^{2}$ International $1 / 4$-inch rule.

Table 32.--Net volume of growing-stock trees on timberland by forest-type group and stand-size class, Rhode Island, 1985
(In millions of cubic feet)

| Forest-type group | Stand-size class |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawtimber | Poletimber | Sapling and seedling | Nonstocked |  |
| White/red pine | 29.8 | 3.7 | . 0 | . 0 | 33.4 |
| Hard pine | 1.4 | 7.4 | . 0 | . 0 | 8.8 |
| Oak/pine | 22.6 | 5.8 | . 0 | . 0 | 28.4 |
| Oak/hickory | 122.7 | 139.2 | 6.4 | . 0 | 268.3 |
| Elm/ash/red maple | 23.7 | 5.3 | . 0 | . 0 | 29.0 |
| Northern hardwoods | 27.3 | 8.2 | . 0 | . 0 | 35.4 |
| Aspen/birch | . 0 | . 0 | . 7 | . 0 | . 7 |
| Total, all groups | 227.4 | 169.5 | 7.1 | . 0 | 404.0 |

Table 33.--Net volume of growing-stock trees on timberland by forest-type group and basal-area class (all live trees), Rhode Island, 1985
(In millions of cubic feet)

| Forest-type group | Basal-area class (square feet per acre) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-49 | 50-99 | 100-149 | 150-199 | classes |
| White/red pine | . 6 | . 8 | 15.4 | 16.8 | 33.4 |
| Hard pine | . 0 | 8.8 | . 0 | . 0 | 8.8 |
| Oak/pine | 1.1 | 18.2 | 9.1 | . 0 | 28.4 |
| Oak/hickory | 10.6 | 153.0 | 90.2 | 14.5 | 268.3 |
| Elm/ash/red maple | . 0 | 3.4 | 14.9 | 10.6 | 29.0 |
| Northern hardwoods | . 0 | 10.2 | 20.7 | 4.6 | 35.4 |
| Aspen/birch | . 7 | . 0 | . 0 | . 0 | . 7 |
| Total, all groups | 12.9 | 194.3 | 150.3 | 46.4 | 404.0 |

Table 34.--Net volume of growing-stock trees on timberland by species and forest-type group, Rhode Island, 1985

| Forest-type group |  |  |  |  |  |  |  | All groups |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | White/ red pine | Hard <br> pine | $\begin{aligned} & \text { Oak/ } \\ & \text { pine } \end{aligned}$ | Oak/ <br> hickory | Elm/ash/ <br> red maple | Northern hardwoods | Aspen/ birch |  |
| Red pine | 3.2 | . 0 | . 0 | . 0 | . 0 | . 0 | . 1 | 3.4 |
| Pitch pine | . 1 | 4.5 | 1.1 | . 6 | . 0 | . 0 | . 0 | 6.3 |
| White pine | 25.4 | . 3 | 9.5 | 6.9 | . 0 | 2.5 | . 0 | 44.5 |
| Hemlock | . 0 | . 0 | . 0 | . 1 | . 0 | . 0 | . 0 | . 1 |
| Other softwoods | . 2 | 1.4 | . 0 | . 0 | . 0 | . 2 | . 2 | 2.0 |
| Total softwoods | 28.9 | 6.3 | 10.6 | 7.5 | . 0 | 2.7 | . 3 | 56.3 |
| Red maple | . 7 | . 0 | 5.3 | 50.6 | 18.2 | 15.0 | . 0 | 89.9 |
| Sugar maple | . 0 | . 0 | . 3 | . 1 | . 0 | . 5 | . 0 | . 9 |
| Yellow birch | . 0 | . 0 | . 0 | 3.6 | . 2 | 1.1 | . 0 | 6.0 |
| Sweet birch | . 0 | 0 | . 4 | 1.7 | 1.3 | 1.3 | . 0 | 4.6 |
| Paper birch | . 0 | . 0 | . 3 | . 0 | . 0 | . 0 | . 0 | . 3 |
| Hickory | . 0 | . 0 | . 3 | 5.9 | . 0 | . 0 | . 2 | 6.4 |
| Beech | . 1 | . 0 | . 0 | . 3 | . 0 | 4.8 | . 0 | 5.2 |
| White ash | . 0 | . 0 | . 0 | 7.9 | 7.3 | . 6 | . 0 | 15.8 |
| Aspen | . 2 | . 0 | . 0 | 1.8 | . 4 | 1.0 | . 0 | 3.4 |
| Black cherry | . 0 | . 0 | . 0 | . 4 | . 0 | . 3 | . 0 | . 7 |
| White oak | 1.0 | . 4 | 1.4 | 33.4 | 1.3 | 2.3 | . 0 | 38.5 |
| Northern red oak | 1.3 | 1.0 | 2.2 | 58.2 | . 6 | 3.3 | . 0 | 66.3 |
| Other red oaks | 1.4 | 1.1 | 6.7 | 92.9 | . 0 | 2.5 | . 2 | 104.8 |
| Elm | . 0 | . 0 | . 0 | . 3 | . 5 | . 0 | . 0 | . 7 |
| Other hardwoods | . 0 | . 0 | . 0 | 3.8 | . 5 | . 0 | . 0 | 4.3 |
| Total hardwoods | 4.5 | 2.5 | 17.8 | 260.9 | 29.0 | 32.7 | . 4 | 347.7 |
| Total, all species | 33.4 | 8.8 | 28.4 | 268.3 | 29.0 | 35.4 | . 7 | 404.0 |

Table 35.--Net volume of growing-stock trees on timberland by species and stand-size class, Rhode Island, 1972
(In millions of cubic feet)

| Species | Stand-size class |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawt imber | Poletimber | Sapling and seedling | Nons tocked |  |
| Red pine | 8.6 | . 0 | 3.0 | . 0 | 11.6 |
| Pitch pine | 2.4 | 7.0 | 1.3 | . 0 | 10.7 |
| White pine | 30.0 | 11.7 | 3.6 | . 0 | 45.3 |
| Hemlock | . 5 | . 0 | . 3 | . 0 | . 8 |
| Other softwoods | . 0 | 1.5 | . 3 | . 0 | 1.8 |
| Total softwoods | 41.6 | 20.2 | 8.5 | . 0 | 70.3 |
| Red maple | 32.0 | 23.7 | 5.4 | . 0 | 61.0 |
| Sugar maple | . 0 | 1.9 | . 0 | . 0 | 1.9 |
| Yellow birch | 5.0 | 1.1 | . 0 | . 0 | 6.0 |
| Sweet birch | . 0 | 2.6 | . 0 | . 0 | 2.6 |
| Paper birch | . 0 | . 0 | . 3 | . 0 | . 3 |
| Hickory | 2.4 | 1.3 | . 0 | . 0 | 3.7 |
| Beech | . 5 | . 0 | . 0 | . 0 | . 5 |
| White ash | . 8 | 1.0 | . 0 | . 0 | 1.8 |
| Aspen | . 0 | . 4 | 1.0 | . 0 | 1.4 |
| Black cherry | . 5 | . 0 | . 9 | . 0 | 1.4 |
| White oak | 19.1 | 29.5 | 2.3 | . 0 | 50.8 |
| Northern red oak | 12.7 | 31.1 | 4.7 | . 0 | 48.5 |
| Other red oaks | 23.5 | 43.6 | 8.8 | . 0 | 76.0 |
| Elm | . 0 | . 5 | . 4 | . 0 | . 9 |
| Other hardwoods | 5.5 | 7.0 | . 0 | . 0 | 12.5 |
| Total hardwoods | 101.9 | 143.6 | 23.7 | . 0 | 269.2 |
| Total, all species | 143.5 | 163.8 | 32.2 | . 0 | 339.5 |

Table 36.--Net volume of growing-stock trees on timberland by species and stand-size class, Rhode Island, 1985

| Species | Stand-size class |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawtimber | Poletimber | Sapling and seedling | Nonstocked |  |
| Red pine | 3.2 | . 0 | . 1 | . 0 | 3.4 |
| Pitch pine | . 8 | 5.5 | . 0 | . 0 | 6.3 |
| White pine | 38.4 | 5.8 | . 3 | . 0 | 44.5 |
| Hemlock | . 0 | . 1 | . 0 | . 0 | . 1 |
| Other softwoods | 1.7 | . 2 | . 2 | . 0 | 2.0 |
|  | 44.1 | 11.6 | . 6 | . 0 | 56.3 |
| Red maple | 56.8 | 32.9 | . 1 | . 0 | 89.9 |
| Sugar maple | . 4 | . 5 | . 0 | . 0 | . 9 |
| Yellow birch | 4.3 | 1.5 | . 2 | . 0 | 6.0 |
| Sweet birch | 3.8 | . 8 | . 1 | . 0 | 4.6 |
| Paper birch | . 3 | . 0 | . 0 | . 0 | . 3 |
| Hickory | 3.4 | 2.8 | . 2 | . 0 | 6.4 |
| Beech | 5.0 | . 2 | . 0 | . 0 | 5.2 |
| White ash | 13.8 | 2.0 | . 0 | . 0 | 15.8 |
| Aspen | 1.7 | 1.7 | . 0 | . 0 | 3.4 |
| Black cherry | . 6 | . 1 | . 0 | . 0 | . 7 |
| White oak | 19.5 | 18.4 | . 5 | . 0 | 38.5 |
| Northern red oak | 30.0 | 34.6 | 1.8 | . 0 | 66.3 |
| Other red oaks | 41.0 | 60.1 | 3.7 | . 0 | 104.8 |
| Elm | . 7 | . 0 | . 0 | . 0 | . 7 |
| Other hardwoods | 2.0 | 2.3 | . 0 | . 0 | 4.3 |
| Total hardwoods | 183.3 | 157.9 | 6.5 | . 0 | 347.7 |
| Total, all species | 227.4 | 169.5 | 7.1 | . 0 | 404.0 |

Table 37.-Net volume of growing-stock trees on timberland by species and

| Species | Stand-volume class (cubic feet per acre) |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 0- \\ 499 \end{array}$ | $\begin{aligned} & 500- \\ & 999 \end{aligned}$ | $\begin{aligned} & 1000- \\ & 1499 \end{aligned}$ | $\begin{aligned} & 1500- \\ & 1999 \end{aligned}$ | $\begin{aligned} & 2000- \\ & 2499 \end{aligned}$ | 2500+ |  |
| Red pine | . 1 | . 0 | . 0 | . 0 | . 0 | 3.2 | 3.4 |
| Pitch pine | . 6 | 5.6 | . 0 | . 0 | . 0 | . 1 | 6.3 |
| White pine | 2.0 | 2.1 | 6.6 | 4.2 | 15.2 | 14.4 | 44.5 |
| Hemlock | . 0 | . 0 | . 0 | . 1 | . 0 | . 0 | . 1 |
| Other softwoods | . 3 | 1.7 | . 0 | . 0 | .0 | . 0 | 2.0 |
| Total softwoods | 3.1 | 9.4 | 6.6 | 4.2 | 15.2 | 17.8 | 56.3 |
| Red maple | .1 | 14.7 | 25.9 | 13.2 | 13.4 | 22.6 | 89.9 |
| Sugar maple | . 0 | . 0 | . 3 | . 6 | . 0 | . 0 | . 9 |
| Yellow birch | . 0 | . 7 | 1.4 | . 9 | 2.4 | . 6 | 6.0 |
| Sweet birch | . 0 | . 9 | . 6 | . 7 | 1.1 | 1.3 | 4.6 |
| Paper birch | . 0 | . 0 | . 0 | . 0 | . 3 | . 0 | . 3 |
| Hickory | . 2 | . 1 | 4.0 | . 4 | 1.7 | . 0 | 6.4 |
| Beech | . 0 | . 0 | 1.6 | . 1 | 3.5 | . 0 | 5.2 |
| White ash | . 0 | 1.6 | 2.9 | . 7 | . 8 | 9.8 | 15.8 |
| Aspen | . 0 | . 0 | . 5 | 2.5 | . 0 | . 4 | 3.4 |
| Black cherry | . 0 | . 3 | . 1 | . 0 | . 0 | - 3 | . 7 |
| White oak | 2.0 | 9.2 | 13.7 | 11.0 | 2.2 | . 4 | 38.5 |
| Northern red oak | . 6 | 12.1 | 24.4 | 15.6 | 10.4 | 3.3 | 66.3 |
| Other red oaks | 4.0 | 22.2 | 46.5 | 24.6 | 6.2 | 1.1 | 104.8 |
| Elm | . 0 | . 0 | . 0 | . 3 | . 0 | . 5 | . 7 |
| Other hardwoods | . 0 | 2.8 | . 2 | . 7 | . 7 | . 0 | 4.3 |
| Total hardwoods | 6.9 | 64.7 | 122.0 | 71.4 | 42.6 | 40.2 | 347.7 |
| Total, all species | 9.9 | 74.0 | 128.6 | 75.6 | 57.9 | 57.9 | . 404.0 |

Net volume of growing-stock trees by diameter
class, Rhode Island, 1972 and 1985

Table 38.--Net volume of growing-stock trees on timberland by species and diameter class, Rhode Island, 1972

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 5.0- \\ & 6.9 \end{aligned}$ | $\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$ | $\begin{gathered} 9.0- \\ 10.9 \end{gathered}$ | $\begin{aligned} & l 1.0- \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0- \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0- \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 21.0- \\ & 28.9 \end{aligned}$ | $29+$ |  |
| Red pine | . 4 | 5.1 | 5.1 | 1.0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 11.6 |
| Pitch pine | 2.1 | 3.2 | 2.5 | 1.7 | . 4 | . 4 | . 4 | . 0 | . 0 | . 0 | 10.7 |
| White pine | 4.0 | 5.0 | 4.2 | 6.2 | 7.4 | 8.7 | 2.2 | 2.9 | 3.5 | 1.2 | 45.3 |
| Hemlock | . 3 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 5 | . 0 | . 0 | . 8 |
| Other sof twoods | . 3 | . 7 | . 5 | . 0 | . 4 | . 0 | . 0 | . 0 | . 0 | . 0 | 1.8 |
| Total softwoods | 7.2 | 13.9 | 12.3 | 8.9 | 8.3 | 9.1 | 2.6 | 3.4 | 3.5 | 1.2 | 70.3 |
| Red maple | 14.0 | 12.6 | 9.9 | 8.0 | 4.6 | 3.2 | 4.8 | 1.3 | 2.6 | . 0 | 61.0 |
| Sugar maple | . 9 | 1.0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 1.9 |
| Yellow birch | 1.2 | . 9 | . 9 | . 9 | . 5 | . 5 | 1.1 | . 0 | . 0 | . 0 | 6.0 |
| Sweet birch | . 3 | 2.3 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 2.6 |
| Paper birch | . 3 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 3 |
| Hickory | 1.0 | 1.0 | . 4 | . 0 | . 5 | . 0 | . 0 | . 7 | . 0 | . 0 | 3.7 |
| Beech | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 5 | . 0 | . 0 | . 0 | . 5 |
| White ash | . 0 | . 0 | . 7 | . 0 | 1.1 | . 0 | . 0 | . 0 | . 0 | . 0 | 1.8 |
| Aspen | . 7 | . 0 | . 0 | . 4 | . 0 | . 3 | . 0 | . 0 | . 0 | . 0 | 1.4 |
| Black cherry | . 3 | . 0 | . 0 | 1.1 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 1.4 |
| White oak | 6.3 | 15.4 | 10.6 | 6.9 | 7.4 | 1.6 | 2.1 | . 0 | . 5 | . 0 | 50.8 |
| Northern red oak | 11.2 | 9.7 | 12.3 | 6.9 | 4.0 | 2.2 | . 9 | 1.4 | . 0 | . 0 | 48.5 |
| Other red oaks | 11.4 | 13.5 | 14.7 | 16.2 | 7.0 | 4.1 | 3.0 | 1.7 | 3.0 | 1.4 | 76.0 |
| Elm | . 0 | . 0 | . 5 | . 0 | . 4 | . 0 | . 0 | . 0 | . 0 | . 0 | . 9 |
| Other hardwoods | 1.6 | 3.2 | 4.3 | . 7 | 1.4 | . 0 | . 0 | . 0 | 1.2 | . 0 | 12.5 |
| Total hardwoods | 49.1 | 59.5 | 54.3 | 41.3 | 27.0 | 11.9 | 12.3 | 5.1 | 7.3 | 1.4 | 269.2 |
| Total, all species | 56.3 | 73.3 | 66.6 | 50.2 | 35.3 | 21.0 | 14.9 | 8.5 | 10.8 | 2.6 | 339.5 |

Table 39.--Net volume of growing-stock trees on timberland by species and diameter class, Rhode Island, 1985

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 5.0- \\ & 6.9 \end{aligned}$ | $\begin{aligned} & 7.0- \\ & 8.9 \end{aligned}$ | $\begin{gathered} 9.0- \\ 10.9 \end{gathered}$ | $\begin{aligned} & 11.0 \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0- \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0= \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 21.0- \\ & 28.9 \end{aligned}$ | $29+$ |  |
| Red pine | . 1 | 1.0 | . 8 | . 9 | . 6 | . 0 | . 0 | . 0 | . 0 | . 0 | 3.4 |
| Pitch pine | 1.2 | 2.0 | . 6 | 1.4 | . 2 | . 8 | . 0 | . 0 | . 0 | . 0 | 6.3 |
| White pine | 4.3 | 5.0 | 6.9 | 9.4 | 6.1 | 3.5 | 3.8 | 3.1 | 2.4 | . 0 | 44.5 |
| Hemlock | . 1 | . 0 | . 0 | .0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 1 |
| Other softwoods | . 1 | . 4 | . 4 | . 4 | . 4 | . 2 | . 0 | . 0 | . 0 | . 0 | 2.0 |
| Total softwoods | 5.7 | 8.5 | 8.7 | 12.1 | 7.4 | 4.5 | 3.8 | 3.1 | 2.4 | . 0 | 56.3 |
| Red maple | 11.8 | 20.3 | 16.9 | 16.3 | 8.8 | 5.0 | 5.1 | . 7 | 2.3 | 2.6 | 89.9 |
| Sugar maple | . 3 | . 0 | . 0 | . 6 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 9 |
| Yellow birch | . 9 | 1.6 | 2.1 | . 7 | . 3 | . 4 | . 0 | . 0 | . 0 | . 0 | 6.0 |
| Sweet birch | 1.2 | . 6 | 1.1 | 1.1 | . 4 | . 3 | . 0 | . 0 | . 0 | . 0 | 4.6 |
| Paper birch | . 0 | . 3 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 3 |
| Hickory | 1.4 | 1.9 | 1.5 | 1.1 | . 2 | . 3 | . 0 | . 0 | . 0 | . 0 | 6.4 |
| Beech | . 3 | . 4 | 1.1 | . 9 | . 3 | 1.1 | 1.1 | . 0 | . 0 | . 0 | 5.2 |
| White ash | 1.4 | 1.4 | 2.8 | 2.8 | 3.8 | . 8 | 1.3 | 1.5 | . 0 | . 0 | 15.8 |
| Aspen | . 0 | 1.0 | . 7 | 1.4 | . 3 | . 0 | . 0 | . 0 | . 0 | . 0 | 3.4 |
| Black cherry | . 3 | . 1 | . 3 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 7 |
| White oak | 7.2 | 8.8 | 7.1 | 3.9 | 6.2 | 1.7 | 1.7 | 1.3 | . 5 | . 0 | 38.5 |
| Northern red oak | 8.2 | 12.1 | 9.6 | 10.3 | 9.4 | 5.9 | 2.5 | 1.7 | 5.4 | 1.2 | 66.3 |
| Other red oaks | 12.7 | 21.4 | 22.6 | 22.2 | 14.0 | 5.7 | 2.5 | . 9 | 2.4 | . 4 | 104.8 |
| Elm | . 1 | . 0 | . 4 | . 3 | . 0 | . 0 | . 0 | .0 | . 0 | . 0 | . 7 |
| Other hardwoods | 1.0 | . 2 | 1.3 | 1.2 | . 0 | . 1 | . 6 | . 0 | . 0 | .0 | 4.3 |
| Total hardwoods | 46.8 | 70.2 | 67.3 | 62.8 | 43.8 | 21.2 | 14.6 | 6.1 | 10.7 | 4.2 | 347.7 |
| Total, all species | 52.5 | 78.7 | 76.1 | 74.9 | 51.2 | 25.7 | 18.5 | 9.2 | 13.1 | 4.2 | 404.0 |

Net volume of growing-stock trees by species,

Table 40. --Net volume of growing stock in the sawlog portion ${ }^{\text {a }}$ of sawtimber trees on timberland by species and diameter class, Rhode Island, 1985
(In millions of cubic feet)

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 9.0- \\ 10.9 \end{gathered}$ | $\begin{aligned} & 11.0 \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0- \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0- \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 21.0- \\ & 28.9 \end{aligned}$ | 29+ |  |
| Red pine | . 6 | . 8 | . 5 | . 0 | . 0 | . 0 | . 0 | . 0 | 2.0 |
| Pitch pine | . 5 | 1.2 | . 2 | . 7 | . 0 | . 0 | . 0 | . 0 | 2.7 |
| White pine | 5.8 | 8.2 | 5.5 | 3.2 | 3.5 | 2.9 | 2.2 | . 0 | 31.3 |
| Hemlock | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Other softwoods | . 4 | . 4 | . 4 | . 2 | . 0 | . 0 | . 0 | .0 | 1.3 |
| Total softwoods | 7.3 | 10.6 | 6.6 | 4.1 | 3.5 | 2.9 | 2.2 | . 0 | 37.3 |
| Red maple | - | 0 | 7.1 | 4.2 | 4.3 | . 6 | 2.0 | 2.2 | 32.4 |
| Sugar maple | - | . 4 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 4 |
| Yellow birch | - | . 5 | . 3 | - 3 | . 0 | . 0 | . 0 | . 0 | 1.1 |
| Sweet birch | - | . 8 | . 3 | . 2 | . 0 | . 0 | . 0 | . 0 | 1.4 |
| Paper birch | - | .0 | .0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Hickory | - | . 8 | . 2 | . 2 | . 0 | . 0 | . 0 | . 0 | 1.2 |
| Beech | - | . 6 | . 3 | . 9 | . 9 | . 0 | . 0 | . 0 | 2.7 |
| White ash | - | 2.1 | 3.1 | . 7 | 1.1 | 1.3 | . 0 | . 0 | 8.2 |
| Aspen | - | 1.0 | . 3 | . 0 | . 0 | . 0 | . 0 | . 0 | 1.3 |
| Black cherry | - | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| White oak | - | 2.9 | 5.0 | 1.4 | 1.4 | 1.1 | . 5 | . 0 | 12.4 |
| Northern red oak | - | 7.6 | 7.6 | 5.0 | 2.1 | 1.5 | 4.6 | 1.0 | 29.3 |
| Other red oaks | - | 16.3 | 11.4 | 4.8 | 2.1 | . 7 | 2.1 | . 3 | 37.8 |
| Elm | - | . 2 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 2 |
| Other hardwoods | - | . 9 | . 0 | . 1 | . 5 | . 0 | . 0 | . 0 | 1.5 |
| Total hardwoods | - | 46.2 | 35.5 | 17.8 | 12.4 | 5.2 | 9.1 | 3.5 | 129.8 |
| Total, all species | 7.3 | 56.8 | 42.1 | 21.9 | 16.0 | 8.1 | 11.3 | 3.5 | 167.0 |

[^3]Table 41.--Net volume of sawtimber trees on timberland by species and diameter class,
(In millions of board feet) ${ }^{a}$

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 9.0- \\ 10.9 \end{gathered}$ | $\begin{aligned} & l l .0- \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0- \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0- \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 21.0- \\ & 28.9 \end{aligned}$ | $29+$ |  |
| Red pine | 16.1 | 4.2 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 20.3 |
| Pitch pine | 8.7 | 6.1 | 1.5 | 1.6 | 1.7 | . 0 | . 0 | . 0 | 19.6 |
| White pine | 14.5 | 24.3 | 32.2 | 41.1 | 9.5 | 12.9 | 14.6 | 5.4 | 154.5 |
| Hemlock | . 0 | . 0 | . 0 | . 0 | . 0 | 1.5 | . 0 | . 0 | 1.5 |
| Other softwoods | 1.3 | . 0 | 1.5 | . 0 | . 0 | .0 | . 0 | . 0 | 2.7 |
| Total softwoods | 40.5 | 34.6 | 35.2 | 42.7 | 11.2 | 14.4 | 14.6 | 5.4 | 198.6 |
| Red maple | - | 24.7 | 17.9 | 12.2 | 18.4 | 5.6 | 11.0 | . 0 | 89.8 |
| Sugar maple | - | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Yellow birch | - | 3.6 | 2.3 | 1.8 | 5.0 | . 0 | . 0 | . 0 | 12.7 |
| Sweet birch | - | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Paper birch | - | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Hickory | - | . 0 | 2.2 | . 0 | . 0 | 3.4 | . 0 | . 0 | 5.6 |
| Beech | - | . 0 | . 0 | . 0 | 2.4 | . 0 | . 0 | . 0 | 2.4 |
| White ash | - | . 0 | 4.0 | . 0 | . 0 | . 0 | . 0 | . 0 | 4.0 |
| Aspen | - | 1.5 | . 0 | 1.2 | . 0 | . 0 | . 0 | . 0 | 2.8 |
| Black cherry | - | 4.5 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 4.5 |
| White oak | - | 28.1 | 32.8 | 7.5 | 9.1 | . 0 | 2.4 | . 0 | 79.9 |
| Northern red oak | - | 26.2 | 16.4 | 9.2 | 3.7 | 5.8 | . 0 | . 0 | 61.3 |
| Other red oaks | - | 63.3 | 31.2 | 17.1 | 14.4 | 8.8 | 13.8 | 6.5 | 155.1 |
| Elm | - | . 0 | 1.7 | . 0 | . 0 | . 0 | . 0 | . 0 | 1.7 |
| Other hardwoods | - | 3.3 | 5.4 | . 0 | . 0 | . 0 | 7.0 | . 0 | 15.8 |
| Total hardwoods | - | 155.4 | 113.9 | 49.0 | 53.0 | 23.7 | 34.2 | 6.5 | 435.6 |
| Total, all species | 40.5 | 190.0 | 149.1 | 91.8 | 64.2 | 38.0 | 48.8 | 11.9 | 634.3 |

$a_{\text {International }} 1 / 4$-inch rule.
${ }^{\text {a }}$ International 1/4-inch rule.
(In millions of board feet) ${ }^{\text {a }}$

| Species | Diameter class (inches at breast height) |  |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 9.0 \\ 10.9 \end{gathered}$ | $\begin{aligned} & 11.0- \\ & 12.9 \end{aligned}$ | $\begin{aligned} & 13.0- \\ & 14.9 \end{aligned}$ | $\begin{aligned} & 15.0- \\ & 16.9 \end{aligned}$ | $\begin{aligned} & 17.0- \\ & 18.9 \end{aligned}$ | $\begin{aligned} & 19.0- \\ & 20.9 \end{aligned}$ | $\begin{aligned} & 21.0- \\ & 28.9 \end{aligned}$ | $29+$ |  |
| Red pine | 2.6 | 3.9 | 2.8 | . 0 | . 0 | . 0 | . 0 | . 0 | 9.2 |
| Pitch pine | 1.8 | 4.9 | 1.0 | 3.7 | . 0 | . 0 | . 0 | . 0 | 11.4 |
| White pine | 22.1 | 37.4 | 27.6 | 16.5 | 18.7 | 16.2 | 12.1 | . 0 | 150.6 |
| Hemlock | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Other softwoods | 1.0 | 1.3 | 1.3 | . 9 | . 0 | . 0 | . 0 | . 0 | 4.5 |
| Total softwoods | 27.5 | 47.5 | 32.7 | 21.1 | 18.7 | 16.2 | 12.1 | . 0 | 175.8 |
| Red maple | - | 58.9 | 37.0 | 22.2 | 20.0 | 3.2 | 12.8 | 13.6 | 167.7 |
| Sugar maple | - | 2.1 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 2.1 |
| Yellow birch | - | 2.6 | 1.3 | 1.4 | . 0 | . 0 | . 0 | . 0 | 5.2 |
| iweet birch | - | 4.8 | 1.5 | 1.2 | . 0 | . 0 | . 0 | . 0 | 7.6 |
| Paper birch | - | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Hickory | - | 4.6 | 1.1 | 1.5 | . 0 | . 0 | . 0 | . 0 | 7.1 |
| Beech | - | 3.2 | 1.4 | 5.3 | 5.6 | . 0 | . 0 | . 0 | 15.5 |
| White ash | - | 10.2 | 14.9 | 4.0 | 6.5 | 6.8 | . 0 | . 0 | 42.3 |
| Aspen | - | 5.1 | 1.4 | . 0 | . 0 | . 0 | . 0 | . 0 | 6.5 |
| Black cherry | - | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| White oak | - | 15.1 | 26.3 | 8.0 | 8.5 | 6.9 | 3.1 | . 0 | 68.0 |
| worthern red oak | - | 39.0 | 39.1 | 26.2 | 11.8 | 8.4 | 27.9 | 5.5 | 157.9 |
| Other red oaks | - | 81.7 | 58.3 | 26.0 | 11.8 | 4.2 | 12.2 | 2.3 | 196.4 |
| Elm | - | 1.1 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | 1.1 |
| Other hardwoods | - | 4.2 | . 0 | . 4 | 2.7 | . 0 | . 0 | . 0 | 7.2 |
| Total hardwoods | - | 232.6 | 182.1 | 96.4 | 66.8 | 29.4 | 55.9 | 21.4 | 684.6 |
| Total, all species | 27.5 | 280.1 | 214.9 | 117.4 | 85.6 | 45.6 | 68.0 | 21.4 | 860.5 |

Table 43.--Net volume of sawt imber trees on timberland by species, size class, and (In millions of board feet) ${ }^{a}$

| Species | All size classes |  |  |  |  |  | >15" Diameter at breast height |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Grade 1 | Grade 2 | Grade 3 | Grade $4^{\text {b }}$ |  | grades | Grade 1 | Grade 2 | Grade 3 | Grade $4^{\text {b }}$ | All grades |
| Red pine | . 0 | . 0 | 20.3 | - |  | 20.3 | . 0 | . 0 | . 0 | - | . 0 |
| Pitch pine | . 0 | 1.5 | 18.1 | - |  | 19.6 | . 0 | . 0 | 3.3 | - | 3.3 |
| White pine | 1.0 | 6.1 | 86.5 | 60.9 |  | 154.5 | 1.0 | 2.2 | 40.3 | 40.0 | 83.5 |
| Hemlock ${ }^{\text {c }}$ | 1.5 | - | - | - |  | 1.5 | 1.5 | - | - | - | 1.5 |
| Other sof twoods | 2.7 | . 0 | . 0 | - |  | 2.7 | . 0 | . 0 | . 0 | - | .0 |
| Total softwoods | 5.2 | 7.6 | 125.0 | 60.9 |  | 198.6 | 2.5 | 2.2 | 43.7 | 40.0 | 88.4 |
| Red maple | . 0 | 4.2 | 56.6 | 29.0 |  | 89.8 | . 0 | 1.7 | 38.0 | 7.5 | 47.2 |
| Sugar maple | . 0 | . 0 | . 0 | . 0 |  | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Yellow birch | 2.0 | 2.2 | 7.9 | . 7 |  | 12.7 | 1.8 | 2.1 | 2.6 | . 3 | 6.8 |
| Sweet birch | . 0 | . 0 | . 0 | . 0 |  | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Paper birch | . 0 | . 0 | . 0 | . 0 |  | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Hickory | 1.5 | 1.9 | 1.3 | . 9 |  | 5.6 | 1.5 | .6 | . 6 | . 7 | 3.4 |
| Beech | . 0 | . 0 | 2.1 | . 3 |  | 2.4 | . 0 | . 0 | 2.1 | . 3 | 2.4 |
| White ash | .0 | . 0 | 3.2 | . 8 |  | 4.0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Aspen | . 0 | . 0 | 2.3 | . 4 |  | 2.8 | . 0 | . 0 | 1.0 | . 2 | 1.2 |
| Black cherry | . 0 | . 0 | 3.8 | . 7 |  | 4.5 | . 0 | . 0 | . 0 | . 0 | . 0 |
| White oak | . 0 | 10.1 | 46.1 | 23.8 |  | 79.9 | . 0 | 4.7 | 6.2 | 8.0 | 18.9 |
| Northern red oak | 2.4 | 3.6 | 44.7 | 10.7 |  | 61.3 | 2.4 | 2.2 | 10.3 | 3.8 | 18.7 |
| Other red oaks | 9.1 | 19.8 | 77.3 | 49.0 |  | 155.1 | 9.1 | 12.2 | 25.4 | 14.0 | 60.7 |
| Elm | . 0 | . 0 | 1.4 | . 3 |  | 1.7 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Other hardwoods | 4.3 | 2.5 | 5.9 | 3.0 |  | 15.8 | 4.3 | 1.5 | . 9 | . 3 | 7.0 |
| Total hardwoods | 19.2 | 44.2 | 252.7 | 119.6 |  | 435.6 | 19.1 | 25.0 | 87.1 | 35.0 | 166.2 |
| Percent of hardwood in each grade | 4 | 10 | 58 | 28 |  | 100 | 12 | 15 | 52 | 21 | 100 |

International 1/4-inch rule. $\quad$. For hardwoods, the volumes in this column are for construction logs. ${ }^{c}$ These species are not divided into standard-lumber grades.
Table 44.--Net volume of sawtimber trees on timberland by species, size class, and standard-lumber log grade, Rhode Island, 1985
(In millions of board feet) ${ }^{\text {a }}$
All size classes

|  | All size classes |  |  |  |  | >15" Diameter at breast height |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Grade 1 | Grade 2 | Grade 3 | Grade $4^{\text {b }}$ | All grades | Grade 1 | Grade 2 | Grade 3 | Grade $4^{\text {b }}$ | All grades |
| Red pine | . 0 | 3.4 | 5.9 | - | 9.2 | . 0 | . 0 | . 0 | - | . 0 |
| Pitch pine | . 0 | 1.9 | 9.5 | - | 11.4 | . 0 | 1.5 | 3.9 | - | 5.4 |
| White pine | . 0 | 42.6 | 76.7 | 31.3 | 150.6 | . 0 | 23.2 | 43.7 | 12.6 | 79.5 |
| Hemlock ${ }^{\text {c }}$ | . 0 | - | - | - | . 0 | . 0 | - | - | - | . 0 |
| Other softwoods | 4.5 | . 0 | . 0 | - | 4.5 | 4.5 | . 0 | .0 | - | 4.5 |
| Total softwoods | 4.5 | 47.9 | 92.1 | 31.3 | 175.8 | 4.5 | 24.7 | 47.6 | 12.6 | 89.4 |
| Red maple | . 0 | 9.2 | 101.8 | 56.7 | 167.7 | . 0 | . 0 | 37.1 | 21.3 | 58.4 |
| Sugar maple | . 0 | . 0 | . 1 | 2.0 | 2.1 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Yellow birch | . 0 | . 0 | 5.2 | . 0 | 5.2 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Sweet birch | . 2 | . 2 | 6.7 | . 5 | 7.6 | . 1 | . 1 | 2.3 | . 2 | 2.7 |
| Paper birch | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Hickory | . 0 | . 0 | 5.5 | 1.6 | 7.1 | . 0 | . 0 | 5.5 | 1.6 | 7.1 |
| Beech | . 1 | . 0 | 8.6 | 6.8 | 15.5 | . 0 | . 0 | 6.3 | 4.5 | 10.8 |
| White ash | 3.4 | 13.2 | 19.8 | 5.9 | 42.3 | 3.4 | 6.4 | 6.3 | 2.0 | 18.1 |
| Aspen | . 0 | . 0 | 5.5 | 1.0 | 6.5 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Black cherry | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| White oak | 3.6 | 12.9 | 27.0 | 24.5 | 68.0 | 3.6 | 7.4 | 13.0 | 7.1 | 31.1 |
| Northern red oak | 26.8 | 34.4 | 80.1 | 16.6 | 157.9 | 26.8 | 21.5 | 25.9 | 8.4 | 82.6 |
| Other red oaks | 1.6 | 31.4 | 105.7 | 57.7 | 196.4 | . 0 | 10.2 | 26.7 | 12.8 | 49.7 |
| Elm | . 0 | . 0 | . 9 | . 2 | 1.1 | . 0 | . 0 | . 0 | . 0 | . 0 |
| Other hardwoods | . 0 | . 0 | 2.9 | 4.3 | 7.2 | . 0 | . 0 | . 1 | 3.8 | 3.9 |
| Total hardwoods | 35.7 | 101.3 | 369.9 | 177.8 | 684.6 | 33.9 | 45.6 | 123.2 | 61.7 | 264.4 |
| Percent of hardwood |  |  |  |  |  |  |  |  |  |  |
| in each grade | 5 | 15 | 54 | 26 | 100 | 13 | 17 | 47 | 23 | 100 |

[^4]Table 45.--Average annual net change of growing-stock volume on timberland by
(In thousands of cubic feet)

| Species | Ingrowth | Accretion | Gross growth | Mortality | Cull <br> increment | Net growth | Removals | Net change |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| White pine | 172 | 949 | 1,121 | -173 | -158 | 790 | -857 | -67 |
| Other softwoods | 12 | 12 | 24 | -703 | -387 | -1,066 | 0 | -1,066 |
| Total softwoods | 184 | 961 | 1,145 | -876 | -545 | -276 | -857 | -1,133 |
| Red maple | 567 | 2,819 | 3,386 | -200 | -163 | 3,023 | -689 | 2,334 |
| Yellow birch | 68 | 97 | 165 | 0 | -23 | 142 | -147 | -5 |
| Sweet birch | 105 | 82 | 187 | -12 | -10 | 165 | 0 | 165 |
| Hickory | 136 | 269 | 405 | -47 | 0 | 358 | -139 | 219 |
| Beech | 384 | 0 | 384 | 0 | 0 | 384 | 0 | 384 |
| White ash | 368 | 769 | 1,137 | -8 | -1 | 1,128 | 0 | 1,128 |
| Aspen | 0 | 300 | 300 | -127 | -17 | 156 | 0 | 156 |
| White oak | 120 | 379 | 499 | -739 | -335 | -575 | -420 | -995 |
| Northern red oak | 652 | 2,018 | 2,670 | -77 | -68 | 2,525 | -1,080 | 1,445 |
| Other red oaks | 622 | 2,978 | 3,600 | -355 | -91 | 3,154 | -820 | 2,334 |
| Other hardwoods | 3 | 8 | 11 | -777 | 0 | -766 | -46 | -812 |
| Total hardwoods | 3,025 | 9,719 | 12,744 | -2,342 | -708 | 9,694 | -3,341 | 6,353 |
| Total, all species | 3,209 | 10,680 | 13,889 | -3,218 | -1,253 | 9,418 | -4,198 | 5,220 |

Table 46.--Average annual net growth and average annual removals of growing-stock volume on timberland by species, Rhode Island, 1971-84
(In thousands of cubic feet)

| Species | Net growth | Removals |
| :--- | ---: | ---: |
| White pine | 790 | -857 |
| Other softwoods | $-1,066$ | 0 |
| Total softwoods | -276 | -857 |
| Red maple | 3,023 | -689 |
| Yellow birch | 142 | -147 |
| Sweet birch | 165 | 0 |
| Hickory | 358 | -139 |
| Beech | 384 | 0 |
| White ash | 1,128 | 0 |
| Aspen | 156 | 0 |
| White oak | -575 | -420 |
| Northern red oak | 2,525 | $-1,080$ |
| Other red oaks | 3,154 | -820 |
| Other hardwoods | -766 | -46 |
| Total hardwoods | 9,694 | $-3,341$ |
| Total, all species | 9,418 | $-4,198$ |

Table 47.--Average annual net growth and average annual removals of sawtimber volume on timberland by species, Rhode Island, 1971-84
(In thousands of board feet) ${ }^{\text {a }}$

| Species | Net growth | Removals |
| :--- | ---: | ---: |
| White pine | 3,218 | $-3,530$ |
| Other softwoods | $-1,532$ | 0 |
| Total softwoods | 1,686 | $-3,530$ |
| Red maple | 6,739 | -438 |
| Sweet birch | 612 | 0 |
| Hickory | 312 | -195 |
| Aspen | 303 | 0 |
| White oak | 16,589 | $-1,136$ |
| Northern red oak | 5,309 | $-2,777$ |
| Other red oaks | 2,984 | $-1,973$ |
| Other hardwoods | 27,015 | -363 |
| Total hardwoods | 28,701 | $-6,883$ |
| Total, all species |  | $-10,413$ |

[^5]Table 48.--Average annual mortality of growing-stock and sawtimber volume on timberland by species, Rhode Island, 1971-84

| Species | Growing stock | Sawtimber |
| :---: | :---: | :---: |
|  | Thousand cubic feet | Thousand board feet ${ }^{\text {b }}$ |
| White pine | -173 | -680 |
| Other softwoods | -703 | -1,619 |
| Total softwoods | -876 | -2,299 |
| Red maple | -200 | -407 |
| Yellow birch | 0 | a |
| Sweet birch | -12 | 0 |
| Hickory | -47 | 0 |
| Beech | 0 | a |
| White ash | -8 | a |
| Aspen | -127 | 0 |
| White oak | -739 | -326 |
| Northern red oak | -77 | 0 |
| Other red oaks | -355 | -1,411 |
| Other hardwoods | -777 | -47 |
| Total hardwoods | -2,342 | -2,191 |
| Total, all species | -3,218 | $-4,490$ |

a Included in Other hardwoods
bInternational 1/4-inch rule.

Table 49.--Average annual net growth and average annual removals of growing-stock volume on timberland by ownership class and species group, Rhode Island, 1971-84
(In thousands of cubic feet)

| $\begin{aligned} & \text { Ownership } \\ & \text { class } \end{aligned}$ | Growth |  |  | Removals |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Softwoods | Hardwoods | $\begin{aligned} & \text { All } \\ & \text { groups } \end{aligned}$ | Softwoods | Hardwoods | All groups |
| Public | -148 | 1,726 | 1,578 | 0 | -561 | -561 |
| Private | -128 | 7,968 | 7,840 | -857 | -2,780 | -3,637 |
| Total, all classes | -276 | 9,694 | 9,418 | -857 | -3,341 | -4,198 |

Table 50.--Average annual net growth and average annual removals of sawtimber volume on timberland by ownership class and species group, Rhode Island, 1971-84.
(In thousands of board feet) ${ }^{\text {a }}$

| Ownership class | Growth |  |  | Removals |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Softwoods | Hardwoods | All groups | Softwoods | Hardwoods | All <br> groups |
| Public | 0 | 4,540 | 4,540 | 0 | 0 | 0 |
| Private | 1,686 | 22,475 | 24,161 | -3,530 | -6,883 - | -10,413 |
| Total, all classes | 1,686 | 27,015 | 28,701 | -3,530 | -6,883 | -10,413 |

[^6]Table 51. -Output ${ }^{\text {a }}$ of timber products by product, softwoods and hardwoods, and source of material, Rhode Island, 1984
(In standard units and thousands of cubic feet)

| Product and species group | Standard Units ${ }^{\text {b }}$ | Output from roundwood |  | Output from mill residues |  | Total output |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number of units | Thousand cubic feet | Number of units | Thousand cubic feet | Number of units | Thousand cubic feet |
| Sawlogs |  |  |  |  |  |  |  |
| Softwood | M board feet | 2,354 | 360 | 0 | 0 | 2,354 | 360 |
| Hardwood | $M$ board feet | 4,290 | 679 | 0 | 0 | 4,290 | 679 |
| Total | M board feet | 6,644 | 1,039 | 0 | 0 | 6,644 | 1,039 |
| Veneer |  |  |  |  |  |  |  |
| Softwood | M board feet | 0 | 0 | 0 | 0 | 0 | 0 |
| Hardwood | M board feet | 50 | 8 | 0 | 0 | 50 | 8 |
| Total | M board feet | 50 | 8 | 0 | 0 | 50 | 8 |
| Pulpwood ${ }^{\text {c }}$ |  |  |  |  |  |  |  |
| Softwood | Standard cords | 0 | 0 | 12 | 1 | 12 | 1 |
| Hardwood | Standard cords | 0 | 0 | 188 | 16 | 188 | 16 |
| Total | Standard cords | 0 | 0 | 200 | 17 | 200 | 17 |
| Other products ${ }^{\text {d }}$ |  |  |  |  |  |  |  |
| Softwood | $M$ board feet | 0 | 0 | 0 | 0 | 0 | 0 |
| Hardwood | ${ }^{M}$ board feet | 81 | 13 | 0 | 0 | 81 | 13 |
| Total | M board feet | 81 | 13 | 0 | 0 | 81 | 13 |
| ALL INDUSTRIAL |  |  |  |  |  |  |  |
| Softwood |  |  | 360 |  | 1 |  | 361 |
| Hardwood |  |  | 700 |  | 16 |  | 716 |
| Total |  |  | 1,060 |  | 17 |  | 1,077 |
| Fuelwood ${ }^{\text {e }}$ |  |  |  |  |  |  |  |
| Softwood | Standard cords | 807 | 65 | 47 | 4 | 854 | 68 |
| Hardwood | Standard cords | 93,547 | 7,484 | 267 | 21 | 93,814 | 7,505 |
| Total | Standard cords | 94,354 | 7,548 | 314 | 25 | 94,668 | 7,573 |
| ALL PRODUCTS ${ }^{\text {f }}$ |  |  |  |  |  |  |  |
| Softwood |  |  | 425 |  | 5 |  | 429 |
| Hardwood |  |  | 8,184 |  | 37 |  | 8,221 |
| Total |  |  | 8,609 |  | 42 |  | 8,650 |

$\mathrm{a}_{\mathrm{T}}$ The volume of wood received at manufacturing plants that used roundwood products.
Board feet is expressed on the International $1 / 4$-inch rule basis and standard cords is expressed on a rough wood basis (includes both roundwood and chips).
${ }^{C}$ A standard cord of pulpwood is equivalent to 85 cubic feet of solid wood.
Includes pallet stock.
${ }^{\mathrm{E}} \mathrm{A}$ standard cord of fuelwood is equivalent to 80 cubic feet of solid wood.
${ }^{\text {D }}$ Does not include 96,000 cubic feet of softwood and 265,000 cubic feet of hardwood residues used for agricultural bedding.

Table 52.--Output of roundwood products by product, softwoods and hardwoods, and source of material ${ }^{\text {, Rhode Island, } 1984}$
(In thousands of cubic feet)

| Product and species group | Growing-stock trees |  |  | $\begin{aligned} & \text { Rough } \\ & \text { and } \\ & \text { rotten } \end{aligned}$ | Salvable dead trees | Other sources | $\begin{aligned} & \text { All } \\ & \text { sources } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Poletimber | Sawtimber | Total |  |  |  |  |
| Sawlogs |  |  |  |  |  |  |  |
| Softwood | 0 | 285 | 285 | 41 | 2 | 32 | 360 |
| Hardwood | 1 | 564 | 565 | 54 | 7 | 53 | 679 |
| Total | 1 | 849 | 850 | 95 | 9 | 85 | 1,039 |
| Veneer |  |  |  |  |  |  |  |
| Softwood | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Hardwood | 0 | 7 | 7 | 0 | 0 | 1 | 8 |
| Total | 0 | 7 | 7 | 0 | 0 | 1 | 8 |
| Pulpwood |  |  |  |  |  |  |  |
| Softwood | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Hardwood | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other products |  |  |  |  |  |  |  |
| Softwood | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Hardwood | 0 | 12 | 12 | 1 | 0 | 0 | 13 |
| Total | 0 | 12 | 12 | 1 | 0 | 0 | 13 |
| ALL INDUSTRIAL |  |  |  |  |  |  |  |
| Softwood | 0 | 285 | 285 | 41 | 2 | 32 | 360 |
| Hardwood | 1 | 583 | 584 | 55 | 7 | 54 | 700 |
| Total | 1 | 868 | 869 | 96 | 9 | 86 | 1,060 |
| Fuelwood |  |  |  |  |  |  |  |
| Softwood | 0 | 6 | 6 | 17 | 19 | 23 | 65 |
| Hardwood | 86 | 543 | 629 | 1,979 | 2,188 | 2,688 | 7,484 |
| Total | 86 | 549 | 635 | 1,996 | 2,207 | 2,711 | 7,549 |
| ALL PRODUCTS |  |  |  |  |  |  |  |
| Softwood | 0 | 291 | 291 | 58 | 21 | 55 | 425 |
| Hardwood | 87 | 1,126 | 1,213 | 2,034 | 2,195 | 2,742 | 8,184 |
| Total | 87 | 1,417 | 1,504 | 2,092 | 2,216 | 2,797 | 8,609 |

${ }^{\text {Growing-stock }}$ trees, rough or rotten cull trees, and salvable dead trees are from timberland only. Other sources include trees less than 5.0 inches in diameter at breast height and tree tops and limbs from timberland, as well as any material from nontimberland or nonforest land such as fencerows, pastureland, and urban areas.

# Output of roundwood products by source of 

 material, Rhode Island, 1984

Table 53.--Timber removals from growing stock and sawtimber on timberland by component ${ }^{\text {a }}$ and softwoods and hardwoods, Rhode Island, 1984

| Component of timber removals | Growing stock |  |  | Sawtimber |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Softwoods | Hardwoods | All <br> species | Softwoods | Hardwoods | $\begin{aligned} & \text { All } \\ & \text { species } \end{aligned}$ |
|  | -------Thousand cubic feet-------- |  |  | -------Thousand board feet ${ }^{\text {b }}$------ |  |  |
| Roundwood products: |  |  |  |  |  |  |
| Sawlogs | 285 | 565 | 850 | 1,862 | 3,563 | 5,425 |
| Veneer | 0 | 7 | 7 | 0 | 44 | 44 |
| Pulpwood | 0 | 0 | 0 | 0 | 0 | 0 |
| Other products | 0 | 12 | 12 | 0 | 75 | 75 |
| Fuelwood | 6 | 629 | 635 | 38 | 2,317 | 2,355 |
| All products | 291 | 1,213 | 1,504 | 1,900 | 5,999 | 7,899 |
| Logging residues | 19 | 65 | 84 | 122 | 410 | 532 |
| Withdrawals | 89 | 305 | 394 | 245 | 748 | 992 |
| Total removals | 399 | 1,583 | 1,982 | 2,267 | 7,157 | 9,423 |

${ }^{2}$ Logging residue does not include material from tree tops and limbs. Land use change includes land sufficiently productive to be classified as timberland, but withdrawn from production through administrative designation, such as for wilderness or parks.

International $1 / 4$-inch rule.

Table 54.--Volume of unused residues from primary manufacturing plants by softwoods and hardwoods, type of residue, and industry, Rhode Island, 1984
(In thousands of cubic feet)

| Species group and type of residue | Lumber | Veneer | Other industries | $\begin{gathered} \text { All } \\ \text { industries } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Softwoods ${ }_{\text {a }}$ |  |  |  |  |
| Coarse ${ }^{\text {a }}$ | 3 | 0 | 0 | 3 |
| Fine | 3 | 0 | 0 | 3 |
| Total | 6 | 0 | 0 | 6 |
| Hardwoods |  |  |  |  |
| Coarse | 2 | 0 | 0 | 2 |
| Fine | 0 | 0 | 0 | 0 |
| Total | 2 | 0 | 0 | 2 |
| All species |  |  |  |  |
| Coarse | 5 | 0 | 0 | 5 |
| Fine | 3 | 0 | 0 | 3 |
| Total | 8 | 0 | 0 | 8 |
| ${ }^{a}$ Includes slabs suitable for chippin Includes sawdu chipping. | gs, trim <br> vings, | veneer <br> materi | $s$, and othe considered | terial <br> itable for |

Table 55.--Change in area of timberland between inventories by stand-size class, Rhode Island, 1972-85
(In thousands of acres)

| Stand-size class | 1972 | 1985 | Change | Change |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  | Percent |
| Sawtimber | 107.2 | 167.5 | 60.3 | 56 |
| Poletimber | 171.1 | 183.1 | 12.0 | 7 |
| Sapling and seedling | 119.3 | 21.1 | -98.2 | -82 |
| Nonstocked | .0 | .0 | .0 | 0 |
| All classes | 397.6 | 371.7 | -25.9 | -7 |
|  |  |  | - |  |

Table 56.--Change in volume between inventories, Rhode Island, 1972-85

| Species group | Growing-stock |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | 1972 | 1985 | Change | Change |
|  | $-0-M i l l i o n s ~ o f ~ c u b i c ~ f e e t ~$ |  | Percent |  |
| Softwoods | 70.3 | 56.3 | -14.0 | -20 |
| Hardwoods | 269.2 | 347.7 | 78.5 | 29 |
|  | 339.5 | 404.0 | 64.5 | 19 |

Sawtimber

|  | -- Millions of board feet |  |  | percent |
| :--- | :---: | :---: | :---: | :---: |
| Softwoods | 198.6 | 175.8 | -22.8 | -11 |
| Hardwoods | 435.6 | 684.6 | 249.0 | 57 |
| Total, all groups | 634.3 | 860.5 | 226.2 | 36 |

$a_{\text {International } 1 / 4 \text {-inch rule. }}$

$$
\begin{aligned}
& \text { Area of timberland by stand-size cläss, } \\
& \text { Rhode Island, } 1972 \text { and } 1985
\end{aligned}
$$


1985

Table 57.--Sampling errors for estimates in various state-level tables, Rhode Island, 1972 and 1985
(In percent)


## COUNTY TABLES



3

Table 58.--Land area by county and land class, Rhode Island, 1985
(In thousands of acres)

| County | Forest land area |  |  |  | Total forest | Nonforest | Total land area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Timberland | Productive reserved | Urban forest | Unproductive |  |  |  |
| Kent | 66.1 | 6.1 | . 0 | . 3 | 72.5 | 37.6 | 110.1 |
| Providence | 150.5 | 1.6 | 4.2 | 1.5 | 157.9 | 108.4 | 266.3 |
| Bristol/Newport/ |  |  |  |  |  |  |  |
| Washington | 155.2 | . 7 | . 0 | 18.6 | 174.5 | 124.1 | 298.6 |
| Total | 371.7 | 8.4 | 4.2 | 20.5 | 404.8 | 270.3 | 675.1 |

Table 59.--Area of timberland by ownership class and county, Rhode Island, 1985
(In thousands of acres)

| Ownership class | County |  |  | $\begin{aligned} & \text { All } \\ & \text { counties } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Kent | Providence | Bristol/Newport/ Washington |  |
| National Forest | . 0 | . 0 | . 0 | . 0 |
| Other federal | . 3 | . 0 | . 3 | . 6 |
| State | 8.3 | 8.9 | 17.0 | 34.2 |
| County and municipal | . 0 | 10.4 | . 0 | 10.4 |
| Total public | 8.6 | 19.3 | 17.3 | $-45.2$ |
| Forest industry | . 0 | 1.8 | 2.6 | 4.4 |
| Farmer | 2.7 | 14.2 | 12.9 | 29.8 |
| Miscellaneous private: |  |  |  |  |
| Individual | 43.0 | 101.0 | 87.8 | 231.8 |
| Corporate | . 0 | 7.1 | 19.1 | 26.2 |
| Other | 11.8 | 7.1 | 15.5 | 34.4 |
| Total private | 57.5 | 131.2 | 137.9 | 326.6 |
| All ownerships | 66.1 | 150.5 | 155.2 | 371.7 |

Table 60.--Area of timberland by county and forest-type group, Rhode Island, 1985
(In thousands of acres)

| County | Forest-type group |  |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { groups } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | White/ red pine | Hard pine | $\begin{aligned} & \text { Oak/ } \\ & \text { pine } \end{aligned}$ | Oak/ hickory | $\begin{aligned} & \text { Elm/ash/ } \\ & \text { red maple } \end{aligned}$ | Nort iern hardwoods | Aspen/ <br> birch |  |
| Kent | 3.0 | 5.9 | 9.6 | 33.3 | 5.6 | 8.7 | . 0 | 66.1 |
| Providence | 2.4 | . 0 | 11.0 | 121.0 | 4.2 | 5.6 | 6.2 | 150.5 |
| Bristol/Newport/ Washington | 11.5 | 6.6 | 8.9 | 101.8 | 13.1 | 13.2 | . 0 | 155.2 |
| Total, all counties | 17.0 | 12.5 | 29.5 | 256.1 | 23.0 | 27.4 | 6.2 | 371.7 |

Table 61.--Area of timberland by county and stand-size class, Rhode Island, 1985
(In thousands of acres)

| County | Stand-size class |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawtimber | Poletimber | Sapling and seedling | Nonstocked |  |
| Kent | 29.8 | 33.2 | 3.0 | . 0 | 66.1 |
| Providence | 52.4 | 80.0 | 18.1 | . 0 | 150.5 |
| Bristol/Newport/ Washington | 85.3 | 69.9 | . 0 | . 0 | 155.2 |
| Total, all counties | 167.5 | 183.1 | 21.1 | . 0 | 371.7 |

Table 62.--Area of timberland by county and cubic-foot stand-volume class, Rhode Island, 1985
(In thousands of acres)

| County | Stand-volume class (cubic feet per acre) |  |  |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 0- \\ 499 \end{array}$ | $\begin{aligned} & 500- \\ & 999 \end{aligned}$ | $\begin{aligned} & 1000- \\ & 1499 \end{aligned}$ | $\begin{aligned} & 1500- \\ & 1999 \end{aligned}$ | $\begin{aligned} & 2000- \\ & 2499 \end{aligned}$ | $2500+$ |  |
| Kent | 15.6 | 16.3 | 13.8 | 3.0 | 8.7 | 8.7 | 66.1 |
| Providence | 13.3 | 34.8 | 45.3 | 29.8 | 13.9 | 13.2 | 150.5 |
| Bristol/Newport/ Washington | 9.4 | 61.8 | 56.9 | 17.4 | 7.4 | 2.2 | 155.2 |
| Total, all counties | 38.4 | 112.9 | 116.0 | 50.3 | 29.9 | 24.1 | 371.7 |

Table 63.-Area of timberlanz by county and gre n ton stand-volume class, Rhode Island, 1985
(In thousands of acres)

Table 64.--Area of timberland by county and stocking class of growing-stock trees, Rhode Island, 1985
(In thousands of acres)

| County | Stocking class |  |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nonstocked | $\begin{aligned} & \text { Poorly } \\ & \text { stocked } \end{aligned}$ | Moderately stocked | $\begin{aligned} & \text { Fully } \\ & \text { stocked } \end{aligned}$ | Overstocked |  |
| Kent | . 0 | 3.7 | 17.6 | 32.7 | 12.2 | 66.1 |
| Providence | . 0 | 2.9 | 39.8 | 76.2 | 31.5 | 150.5 |
| Bristol/Newport/ Washington | . 0 | 26.9 | 58.7 | 43.4 | 26.1 | 155.2 |
| Total, all counties | . 0 | 33.5 | 116.1 | 152.3 | 69.8 | 371.7 |

Table 65.--Area of timberland by county and productivity class, Rhode Island, 1985 (In thousands of acres)

|  | Productivity class |  |  |  | (cubic feet/acre/year) |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Very good <br> $(120+)$ | Good <br> $(85-119)$ | Fair <br> $(50-84)$ | Poor <br> $(20-49)$ | All |
| County | .0 | 6.7 | 16.1 | 43.3 | 66.1 |
| Kent | 1.8 | 11.3 | 41.3 | 96.1 | 150.5 |
| Providence <br> Bristol/Newport/ <br> Washington | 2.2 | 6.6 | 26.8 | 119.5 | 155.2 |
| Total, all counties | 4.0 | 24.6 | 84.2 | 258.8 | 371.7 |

Table 66.--Net volume of growing-stock trees on timberland by county and forest-type group, Rhode Island, 1985
(In millions of cubic feet)

| County | Forest-type group |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | White/ red pine | Hard pine | $\begin{aligned} & \text { Oak/ } \\ & \text { pine } \end{aligned}$ | Oak/ hickory | Elm/ash/ red maple | Northern hardwoods | Aspen/ birch | $\begin{aligned} & \text { All } \\ & \text { groups } \end{aligned}$ |
| Kent | 8.5 | 5.7 | 3.2 | 26.0 | 8.3 | 14.7 | . 0 | 66.4 |
| Providence | 3.9 | . 0 | 16.5 | 150.3 | 10.6 | 6.8 | . 7 | 88.7 |
| Bristol/Newport/ Washington | 21.1 | 3.1 | 8.6 | 92.1 | 10.1 | 13.9 | . 0 | 48.9 |
| Total, all counties | 33.4 | 8.8 | 28.4 | 268.3 | 29.0 | 35.4 | . 7 | 404.0 |

Table 67.--Net volume of growing-stock trees on timberland by county and stand-size class, Rhode Island, 1985

| County | Stand-size class |  |  |  | $\begin{gathered} \text { All } \\ \text { classes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawtimber | Poletimber | Sapling and seedling | Nonstocked |  |
| Kent | 41.9 | 24.0 | . 5 | . 0 | 66.4 |
| Providence | 92.1 | 90.0 | 6.6 | . 0 | 188.7 |
| Bristol/Newport/ Washington | 93.4 | 55.5 | . 0 | . 0 | 148.9 |
| Total, all counties | 227.4 | 169.5 | 7.1 | . 0 | 404.0 |

Table 68.--Net volume of growing-stock trees on timberland by species and county, Rhode Island, 1985
(In millions of cubic feet)

| Species | County |  |  | $\begin{aligned} & \text { All } \\ & \text { Counties } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Kent | Providence | Bristol/Newport/ Washington |  |
| Red pine | 3.2 | . 1 | . 0 | 3.4 |
| Pitch pine | 3.7 | . 0 | 2.6 | 6.3 |
| White pine | 8.0 | 13.8 | 22.7 | 44.5 |
| Hemlock | . 0 | . 1 | . 0 | . 1 |
| Other softwoods | . 0 | . 2 | 1.9 | 2.0 |
| Total softwoods | 15.0 | 14.2 | 27.1 | 56.3 |
| Soft maples | 13.4 | 42.2 | 34.2 | 89.9 |
| Sugar maple | . 0 | . 4 | . 5 | . 9 |
| Yellow birch | . 7 | 4.0 | 1.3 | 6.0 |
| Sweet birch | 2.0 | 1.2 | 1.4 | 4.6 |
| Paper birch | . 0 | . 3 | . 0 | . 3 |
| Hickory | 1.1 | 4.2 | 1.1 | 6.4 |
| Beech | 3.4 | . 0 | 1.8 | 5.2 |
| White ash | 1.2 | 11.7 | 2.8 | 15.8 |
| Aspen | . 0 | 2.4 | 1.0 | 3.4 |
| Black cherry | . 0 | . 4 | . 3 | . 7 |
| White oak | 5.3 | 15.3 | 17.9 | 38.5 |
| Northern red oak | 11.3 | 45.0 | 10.0 | 66.3 |
| Other red oaks | 13.0 | 45.9 | 46.0 | 104.8 |
| Elm | . 0 | . 7 | . 0 | . 7 |
| Other hardwoods | . 0 | . 9 | 3.4 | 4.3 |
| Total hardwoods | 51.4 | 174.6 | 121.7 | 347.7 |
| Total, all species | 66.4 | 188.7 | 148.9 | 404.0 |

Table 69.--Net volume of growing-stock and sawtimber trees on timberland by county and species group, Rhode Island, 1985

| County | Growing stock |  |  | Sawtimber |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Softwoods | Hardwoods | All groups | Softwoods | Hardwoods | All groups |
|  | ---------Million cubic feet--------- |  |  | --------Million board feet ${ }^{\text {a }}$----------- |  |  |
| Kent | 15.0 | 51.4 | 66.4 | 41.2 | 126.0 | 167.3 |
| Providence | 14.2 | 174.6 | 188.7 | 41.7 | 326.1 | 367.8 |
| Bristol/Newport/ Washington | 27.1 | 121.7 | 148.9 | 92.9 | 232.5 | 325.4 |
| Total, all counties | 56.3 | 347.7 | 404.0 | 175.8 | 684.6 | 860.5 |

${ }^{\text {a }}$ International $1 / 4$-inch rule.

Table 70.--Net volume of sawtimber trees on timberland by county and forest-type group, Rhode Island, 1985
(In millions of board feet) ${ }^{a}$

| County | Forest-type group |  |  |  |  |  |  | $\begin{aligned} & \text { All } \\ & \text { groups } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | White/ red pine | Hard <br> pine | $\begin{aligned} & \text { Oak/ } \\ & \text { pine } \end{aligned}$ | Oak/ hickory | $\begin{aligned} & \text { Elm/ash/ } \\ & \text { red maple } \end{aligned}$ | Northern hardwoods | Aspen/ <br> birch |  |
| Kent | 26.1 | 9.5 | 7.0 | 46.9 | 23.8 | 54.0 | . 0 | 167.3 |
| Providence | 7.6 | . 0 | 43.7 | 279.2 | 23.0 | 13.6 | . 6 | 367.8 |
| Bristol/Newport/ Washington | 73.1 | 5.6 | 15.6 | 187.1 | 18.7 | 25.3 | . 0 | 325.4 |
| Total, all counties | 106.7 | 15.1 | 66.3 | 513.3 | 65.5 | 92.9 | . 6 | 860.5 |

[^7]Table 71. --Net volume of sawtimber trees on timberland by county and
stand-size class, Rhode Island, 1985
(In millions of board feet) ${ }^{\text {a }}$

| County | Stand-size class |  |  |  | $\begin{aligned} & \text { All } \\ & \text { classes } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sawtimber | Poletimber | Sapling and seedling | Nonstocked |  |
| Kent | 134.4 | 31.2 | 1.7 | . 0 | 167.3 |
| Providence | 259.1 | 95.9 | 12.8 | . 0 | 367.8 |
| Bristol/Newport/ <br> Washington | 272.3 | 53.1 | . 0 | . 0 | 325.4 |
| Total, all counties | 665.8 | 180.2 | 14.4 | . 0 | 860.5 |

[^8]Table 72.--Net volume of sawtimber trees on timberland by species and county, Rhode Island, 1985
(In millions of board feet) ${ }^{\text {a }}$

| Species | County |  |  | $\begin{aligned} & \text { All } \\ & \text { counties } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Kent | Providence | Bristol/Newport/ Washington |  |
| Red pine | 8.6 | . 6 | . 0 | 9.2 |
| Pitch pine | 6.1 | . 0 | 5.3 | 11.4 |
| White pine | 26.4 | 41.1 | 83.1 | 150.6 |
| Hemlock | . 0 | . 0 | . 0 | . 0 |
| Other softwoods | . 0 | . 0 | 4.5 | 4.5 |
| Total softwoods | 41.2 | 41.7 | 92.9 | 175.8 |
| Red maple | 43.8 | 71.7 | 52.1 | 167.7 |
| Sugar maple | . 0 | . 8 | 1.3 | 2.1 |
| Yellow birch | 2.7 | 2.0 | . 6 | 5.2 |
| Sweet birch | 5.8 | 1.2 | . 5 | 7.6 |
| Paper birch | . 0 | . 0 | . 0 | . 0 |
| Hickory | 1.5 | 5.6 | . 0 | 7.1 |
| Beech | 12.5 | . 0 | 3.0 | 15.5 |
| White ash | 2.5 | 37.0 | 2.8 | 42.3 |
| Aspen | . 0 | 5.1 | 1.4 | 6.5 |
| Black cherry | . 0 | . 0 | . 0 | . 0 |
| White oak | 9.2 | 24.3 | 34.5 | 68.0 |
| Northern red oak | 34.2 | 98.6 | 25.0 | 157.9 |
| Other red oaks | 13.8 | 77.6 | 105.0 | 196.4 |
| Elm | . 0 | 1.1 | . 0 | 1.1 |
| Other hardwoods | . 0 | 1.0 | 6.3 | 7.2 |
| Total hardwoods | 126.0 | 326.1 | 232.5 | 684.6 |
| Total, all species | 167.3 | 367.8 | 325.4 | 860.5 |

aInternational 1/4-inch rule.

Table 73.--Number of all live nut- and fruit-producing trees on timberland by species and county, Rhode Island, 1985
(In thousands of trees)

|  | County |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| Species | Kent | Providence | Bristol/Newport/ <br> Washington | All |
| Eastern redcedar | .0 | .0 | 22.2 | 22.2 |
| Hickory | 18.4 | 195.9 | 543.0 | 757.2 |
| Dogwood | .0 | .0 | 108.6 | 108.6 |
| Beech | 509.8 | .0 | 439.1 | 948.9 |
| Blackgum | .0 | .0 | 198.6 | 198.6 |
| Black cherry | $1,261.6$ | 107.5 | 642.7 | 750.2 |
| White oak | $1,736.6$ | $2,302.0$ | $3,463.3$ | $8,027.0$ |
| Scarlet oak | 84.2 | $2,073.9$ | $4,549.0$ | $8,359.4$ |
| Pin oak | $1,311.6$ | $6,308.7$ | 84.2 |  |
| Northern red oak | $1,139.6$ | $4,161.9$ | 993.5 | $8,613.8$ |
| Black oak | .0 | 152.7 | $1,302.5$ | 162.9 |

Table 74.--Number of seedlings, saplings, and shrubs with observed browse and percent of total on timberland by species and county, Rhode Island, 1985
(In thousands of stems)

| Species | County |  |  |  |  |  | Total browsed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kent |  | Providence |  | Bristol/Newport/ Washington |  |  |
|  | $\begin{aligned} & \text { Number } \\ & \text { browsed } \end{aligned}$ | Percent <br> of total | $\frac{\text { Number }}{\text { browsed }}$ | Percent <br> of total | $\frac{\text { Number }}{\text { browsed }}$ | Percent <br> of total |  |
| Red maple | . 0 | 0 | 2,730.7 | 3 | . 0 | 0 | 2,730.7 |
| Flowering dogwood | . 0 | 0 | . 0 | 0 | 3,165.4 | 22 | 3,165.4 |
| White ash | . 0 | 0 | 9,394.6 | 26 | . 0 | 0 | 9,394.6 |
| Pin cherry | 4,906.7 | 100 | . 0 | 0 | . 0 | 0 | 4,906.7 |
| Black cherry | . 0 | 0 | 2,442.6 | 3 | . 0 | 0 | 2,442.6 |
| Total trees | 4,906.7 |  | 14,567.8 |  | 3,165.4 |  | 22,640.0 |
| Spirea species | . 0 | 0 | 1,365.3 | 1 | . 0 | 0 | 1,365.3 |
| Blueberry speciess | 17,254.5 | 2 | . 0 | 0 | 7,083.5 | 1 | 24,338.0 |
| Total deciduous shrubs | 17,254.5 |  | 1,365.3 |  | 7,083.5 |  | 25,703.3 |
| All species | 22,161.2 |  | 15,933.2 |  | 10,248.9 |  | 48,343.3 |

Table 75.--Number of standing dead trees (5.0+ inches d.b.h.) on timberland by species and county, Rhode Island, 1985
(In thousands of trees)

| Species | County |  |  | $\begin{aligned} & \text { All } \\ & \text { counties } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Kent | Providence | Bristol/Newport/ Washington |  |
| Red pine | 86.9 | . 0 | . 0 | 86.9 |
| Pitch pine | 590.0 | . 0 | . 0 | 590.0 |
| White pine | . 0 | . 0 | 124.8 | 124.8 |
| Other softwoods | . 0 | . 0 | 366.9 | 366.9 |
| Total softwoods | 676.9 | . 0 | 491.8 | 1,168.7 |
| Red maple | . 0 | 363.9 | 146.3 | 510.2 |
| Sweet birch | . 0 | . 0 | 54.3 | 54.3 |
| Hickory | . 0 | . 0 | 54.3 | 54.3 |
| White ash | . 0 | 106.0 | 131.0 | 237.0 |
| Black cherry | . 0 | 53.0 | . 0 | 53.0 |
| White oak | 217.4 | 834.9 | 1,172.6 | 2,224.8 |
| Northern red oak | 254.0 | 1,011.7 | 116.8 | 1,382.5 |
| Other red oaks | 117.1 | 317.1 | 229.0 | 663.2 |
| Elm | . 0 | 195.5 | . 0 | 195.5 |
| Other commercial hardwoods | . 0 | 232.2 | . 0 | 232.2 |
| Noncommercial hardwoods | . 0 | 124.5 | 54.3 | 178.8 |
| Total hardwoods | 588.4 | 3,238.9 | 1,958.7 | 5,785.9 |
| Total, all species | 1,265.3 | 3,238.9 | 2,450.4 | 6,954.6 |

Table 76.--Index to land-use edge by type of land use and county, Rhode Island, 1985
(Edge hits ${ }^{\text {a }}$ per thousand acres)

| Land-use edge type | County |  |  | $\begin{aligned} & \text { All } \\ & \text { counties } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Kent | Providence | Bristol/Newport/ Washington |  |
| Forest - |  |  |  |  |
| forest | 8.8 | 7.0 | 10.0 | 8.6 |
| shrub | 2.6 | 1.8 | 2.4 | 2.2 |
| agricultural/ herbaceous | 1.5 | 3.2 | 6.0 | 4.1 |
| cultural | 10.9 | 11.7 | 8.2 | 10.1 |
| Shrub - |  |  |  |  |
| agricultural/ |  |  |  |  |
| nerbaceous | . 2 | . 6 | . 8 | . 6 |
| cultural | . 6 | . 7 | . 5 | . 6 |
| Agicultural/herbaceous cultural | . 8 | . 8 | 2.0 | 1.3 |
| Hedgerow | . 4 | . 5 | 3.1 | 1.6 |
| Transportation |  |  |  |  |
| Utility |  |  |  |  |
| right-of-way | . 9 | 2.9 | . 7 | 1.6 |
| Aquatic | 11.6 | 8.8 | 13.2 | 11.2 |
| All types | 55.9 | 48.7 | 61.8 | 55.6 |
| Number of edge plots | 16 | 38 | 41 | 95 |
| Number of edge hits | 501 | 1,036 | 1,418 | 2,955 |

Table 77.--Sampling errors for various county-level estimates, Rhode Island, 1985
(In percent)

| County | Timberland <br> area | Growing-stock <br> volume | Sawtimber <br> volume |
| :--- | :---: | :---: | :---: |
| Kent | 2.6 | 18.9 | 24.8 |
| Providence | 3.2 | 9.6 | 14.2 |
| Bristol/Newport/ | 4.8 | 9.9 | 16.5 |
| Washington | 2.4 | 6.6 | 9.9 |
| Total |  |  |  |

## APPENDIX

## Literature Cited

Brooks, Robert T.; Sykes, Karen J. 1984. Sampling land use edge from aerial photographs--1ine transect vs. circular patterns. Res. Note NE-321. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 6 p.

Peters, John R.; Bowers, Theresa M. 1977. Forest Statistics for Rhode Island. Resour. Bull. NE-49. Upper Darby, PA: U.S.
Department of Agriculture, Forest Service,
Northeastern Forest Experiment Station. 38 p.
Scott, Charles T. 1979. Northeastern forest survey board-foot volume equations. Res.Note NE-271. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 3 p.

Scott, Charles T. 1981. Northeastern forest survey revised cubic-foot volume equations. Res. Note NE-304. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 3 p.

## Appendix

## Definition of Terms

Acceptable tree. (a) Live sawtimber trees that do not qualify as preferred trees but are not cull trees. (b) Live poletimber trees that prospectively will not qualify as preferred trees, but are not now or prospectively cull trees.

Accretion. The estimated net growth on growing-stock trees that were measured during the previous inventory, divided by the number of growing seasons between surveys. It does not include the growth on trees that were cut during the period, nor those trees that died.

Agricultural/herbaceous land. Land with herbaceous plant cover, both grasses and/or forbs, including cropland, pasture land, and natural grass lands.

Aquatic edge. An edge condition created when a terrestrial land use abuts a lake, pond, river, stream, or major wetland.

Basal area class. A classification of forest land in terms of basal area (cross sectional area of a tree stem at breast height in square feet per acre) of all live trees of all sizes.

Board-foot. A unit of lumber measurement 1 foot long, 1 foot wide, and 1 inch thick, or its equivalent.

Board-foot stand-volume class. A classification of forest land in terms of net board-foot volume of sawtimber trees per acre.

Bog/Marsh/Swamp. Land that has less than 10 percent stocking with live trees; and which characteristically supports low, generally herbaceous or shrubby vegetation, and which is intermittently covered with water during all seasons; includes tidal areas that are covered with salty or brackish water during high tides.

Browse. Forage resource; defined here as current twig growth of woody-stemmed plants occurring between 1 and 8 feet in height.

Browse-utilization class. Four levels of browse use; none, light (1-10 percent available), moderate (11-40), and heavy (greater than 40 percent).

Cabin log. A relatively slender roundwood product that is cut to standard sizes; meets specifications of strength, straightness, and soundness; and is finished for use in constructing cabins, barns, and other buildings.

Cavity. A hollowed out space in a tree, either natural or faunal caused; frequently used as a nesting site or temporary refuge by many species of wildlife.

Coarse residues. Manufacturing residues suitable for chipping, such as slabs, edgings, and veneer cores.

Commercial species. Tree species presently or prospectively suitable for industrial wood products. Excludes species of typically small size, poor form, or inferior quality, such as hawthorn or sumac.

Condition class. Classification of trees based on live or dead and condition of top of the tree (i.e. intact, broken, dead).

Cord. See Standard cord.
County and municipal lands. Lands owned by counties and local public agencies or municipalities or leased to them for 50 years or more.

Cropland. Land that currently supports agricultural crops including silage and feed grains, bare farm fields resulting from cultivation or harvest, and maintained orchards.

Cubic-foot stand-yolume class. A classification of forest land in terms of net cubic-foot volume of all live trees per acre.

Cull tree. A rough tree or a rotten tree.

Cull increment. The net volume of growing-stock trees on the previous inventory that became rough or rotten trees in the current inventory, divided by the number of growing seasons between surveys.

Cultural land. Land with human development as the major land cover; includes industrial, commercial, and residential land uses.

Diameter at breast height (d.b.h.). The diameter outside bark of a standing tree measured at 4-1/2 feet above the ground.

Farmer-owned lands. Lands owned by farm operators, whether part of the farmstead or not. Excludes land leased by farm operators from nonfarm owners.

Federal lands. Lands (other than National Forests) administered by Federal agencies.

Fine residues. Manufacturing residues not suitable for chipping, such as sawdust and shavings.

Forest industry lands. Lands owned by companies or individuals that operate primary wood-using plants.

Forest land. Land that is at least 10 percent stocked with trees of any size, or that formerly had such tree cover and is not currently developed for a nonforest use. The minimum area for classification of forest land is 1 acre.

Forest type. A classification of forest land based on the species that form a plurality of live tree basal area stocking.

Forest-type group. A combination of forest types that share closely associated species or site requirements. The many forest types in Rhode Island were combined into the following major forest-type groups (the descriptions apply to forests in Rhode Island):
a. White/red pine--forests in which white pine, hemlock, or red pine make up the plurality of the stocking, singly or in combination; common associates include sugar maple, red maple, red spruce, balsam fir, and paper birch.

## b. Hard pine--forests in which eastern

 redcedar or pitch pine, singly or in combination comprise a plurality of the stocking; common associates include oaks, gray birch, red maple, and blackgum.c. Oak/pine--forests in which northern red oak or white ash, singly or in combination, make up a plurality of the stocking but where white pine contributes 25 to 50 percent of the stocking; beech, red spruce, and sugar maple are associates.
d. Oak/hickory--forests in which upland oaks, red maple (when associated with central hardwoods), or hawthorn, singly or in combination, make up a plurality of the stocking and in which white pine makes up less than 25 percent of the stocking; common associates include white pine, paper birch, red spruce, beech, hemlock, sugar maple, and red maple.
e. Elm/ash/red maple--forests in which black ash, elm, red maple (when growing on wet sites), willow, or green ash, singly or in combination, make up a plurality of the stocking: common associates include balsam fir, red maple, aspen, and white ash.
f. Northern hardwoods--forests in which sugar maple, beech, yellow birch, red maple (when associated with northern hardwoods), pin cherry, or black cherry, singly or in combination, make up a plurality of the stocking; common associates include balsam fir, red spruce, paper birch, hemlock, white ash, aspen, and basswood.
g. Aspen/birch--forests in which aspen, paper birch, or gray birch, singly or in combination, make up a plurality of the stocking; common associates include balsam fir, red maple, red spruce, white ash, and white pine.

Euelwood. Round, split, or chipped woody material (with or without bark) that is converted to household, commercial, or industrial energy.

Geographic unit. A county or a group of counties within a state that is large enough to provide an adequate sample that will yield statistically reliable estimates of timberland area, volume, and components of change.

Greenton. A unit of measure of green weight equivalent to 2,000 pounds or 907.1848 kilograms.

Green ton stand-volume class. A classification of forest land in terms of net green weight of the aboveground components of all live trees per unit area. It is usually expressed in green tons per acre.

Green weight. The weight of wood and bark as it would be if it had been recently cut. It is usually expressed in pounds or tons.

Gross growth. The sum of accretion and ingrowth.

Growing-stock trees. Live trees of commercial species classified as sawtimber, poletimber, saplings, or seedlings; that is, all live trees of commercial species except rough and rotten trees.

Growing-stock volume. Net volume, in cubic feet, of growing-stock trees 5.0 inches d.b.h. and larger from a 1 -foot stump to a minimum 4.0 -inch top diameter outside bark of the central stem, or to the point where the central stem breaks into limbs. Net volume equals gross volume, less deduction for cull.

Hardwoods. Dicotyledonous trees, usually broad-leaved and deciduous.

Harvested cropland. All land from which crops were harvested or hay was cut and all land in orchards, citrus groves, vineyards, and nursery and greenhouse products.

Idle farmland. Former cropland or pasture that has not been tended within the last 2 years and that has less than 10 percent stocking with live trees, (established seedlings or larger trees) regardless of species.

Improved/maintained pasture. Land that is currently used and maintained for grazing (not including grazed cropland).

Indian lands. (a) Lands held in trust by the United States or States for Indian tribes or individual Indians. (b) Lands owned in fee by Indian tribes whether subject to Federal or State restrictions against alienation or not.

Industrial and commercial land. Supply yards, parking lots, factories, etc.

Industrial products. All roundwood products except fuelwood.

Ingrowth. The estimated net volume of growing-stock trees that became 5.0 inches d.b.h. or larger during the period between inventories, divided by the number of growing seasons between surveys.

International $1 / 4$-inch rule. A log rule or formula for estimating the board-foot volume of logs. The mathematical formula is:

$$
\left(0.22 D^{2}-0.71 D\right)(0.904762)
$$

for 4 -foot sections, where $D=d i a m e t e r$ inside bark at the small end of the log section. This rule is used as the USDA Forest Service standard log rule in the Eastern United States.

Land area. (a) Bureau of Census: The area of dry land and land temporarily or partly covered by water, such as marshes, swamps, and river flood plains; streams, sloughs, estuaries, and canals less than $1 / 8$ statute mile wide; and lakes, reservoirs, and ponds less than 40 acres in area. (b) Forest Inventory and Analysis: same as (a) except that the minimum width of streams, etc., is 120 feet, and the minimum size of lakes, etc., is 1 acre.

Land-use edge. A condition created by the juxtaposition of two differing land uses.

Logging residues. The unused portions of growing-stock trees harvested or killed in the process of logging.

Manufacturing plant residues. Wood materials that are generated when round timber (roundwood) is converted into wood products. This includes slabs, edgings, trimmings, bark, miscuts, sawdust, shavings, veneer cores and clippings, and pulp screening. If these residues are used, they are referred to as plant byproducts.

Mast. Seed produced by woody-stewmed, perennial plants, generally refers to soft (fruit) and hard (nuts) mast.

Mining and waste land. Surface mining, gravel pits, dumps.

Miscellaneous private lands. Privately owned lands other than forest industry and farmer-owned lands.

Mortality. The estimated net volume of growing-stock trees at the previous inventory that died from natural causes before the current inventory, divided by the number of growing seasons between surveys.

National Forest lands. Federal lands legally designated as National Forests or purchase units and other lands administered as part of the National Forest System by the USDA Forest Service.

Net change. The difference between the current and previous inventory estimates of growing-stock volume, divided by the number of growing seasons between surveys. Components of net change are ingrowth plus accretion, minus mortality, minus cull increment, minus removals.

Net green weight. The green weight of woody material less the weight of all unsound (rotten) material.

Net growth. The change, resulting from natural causes, in growing-stock volume during the period between surveys, divided by the number of growing seasons. Components of net growth are ingrowth plus accretion, minus mortality, minus cull increment.

Noncensus water. Streams/rivers between 120 feet and $1 / 8$ mile in width, and bodies of water between 1 and 40 acres in size. The Bureau of the Census classifies such water as land.

Noncommercial forest land. Productive reserved, urban, and unproductive forest land.

Noncommercial species. Tree species of typically small size, poor form, or inferior quality that normally do not develop into trees suitable for industrial wood products.

Nonforest land. Land that has never supported forests, or land formerly forested but now in nonforest use such as cropland, pasture, residential areas, and highways.

Nonsalvable dead tree. A dead tree with most or all of its bark missing that is at least 5.0 inches in diameter at breast height and is at least 10 feet in height.

Nonstocked area. A stand-size class of forest land that is stocked with less than 10 percent of minimum full stocking with all live trees.

Other cropland. Includes cropland used for cover crops; legumes, soil-improvement.

Other farmland. All nonforest land on a farm excluding cropland, pasture, and idle farmland; includes farm lanes, stock pens, and farmsteads.

Ownership class. A classification of forest land based upon ownership and nature of business or control of decisionmaking for the land. It encompasses all types of legal entities having ownership interest in the land, whether public or private.

Pasture land. Includes any pasture land other than cropland and woodland pasture. Can include lands which had applied lime fertilizer, seed, improved by irrigation, drainage, or control of weeds and brush.

Pastured cropland. Includes rotation pasture and grazing land that would have been used for crops without additional improvement.

Piling (piles). Relatively slender structural roundwood products that are cut to the maximum length possible (within top circumference and other specifications of strength, straightness, and soundness) that when nearly buried in the ground provide vertical or lateral support for buildings, foundations, bridges, docks, and other structures.

Plant byproducts. Wood products, such as pulp chips, recycled from manufacturing plant residues.

Poletimber stand. A stand-size class of forest land that is stocked with at least 10 percent of minimum full stocking with all live trees with half or more of such stocking in poletimber or sawtimber trees or both, and in which the stocking of poletimber exceeds that of sawtimber.

Poletimber tree. Live trees of commercial species meeting regional specifications of soundness and form and at least 5.0 inches in d.b.h., but smaller than sawtimber trees.

Preferred tree. A high-quality tree, from a lumber viewpoint, that would be favored in cultural operations. General characteristics include grade 1 butt log (if sawtimber size),
good form, good vigor, and freedom from serious damage.

Productive reserved forest land. Forest land sufficiently productive to qualify as timberland, but withdrawn from timber utilization through statute, administrative designation, or exclusive use for Christmas tree production.

Primary manufacturing plant. A plant that converts round timber into wood products such as woodpulp, lumber, veneer, cooperage, and dimension products.

Pulpwood. Roundwood converted into 4- or 5-foot lengths or chips, and chipped plant byproducts that are prepared for manufacture into woodpulp.

Recreation site. Parks, campgrounds, playing fields, tracks, etc.

Removals. The net growing-stock volume harvested or killed in logging, cultural operations--such as timber stand improvement--or land clearing, and also the net growing-stock volume neither harvested nor killed but growing on land that was reclassified from timberland to noncommercial forest land during the period between surveys. This volume is divided by the number of growing seasons.

Rights-of-way. Highways, pipelines, powerlines, canals.

Rotten tree. A live tree of commercial species that does not contain at least one $12-\mathrm{foot}$ sawlog or two noncontiguous sawlogs, each 8 feet or longer, now or prospectively, and does not meet regional specifications for freedom from defect primarily because of rot; that is, more than 50 percent of the cull volume in the tree is rotten.

Rough tree. (a) The same as a rotten tree, except that a rough tree does not meet regional specifications for freedom from defect primarily because of roughness or poor form; also (b) a live tree of noncommercial species.

Roundwood oroducts. Logs, bolts, total tree chips, or other round timber generated by harvested trees for industrial or consumer uses.

Salvable dead trees. A tree at least 5.0 inches in diameter at breast height that has recently died and still has intact bark. The tree may be standing, fallen, windthrown, knocked down, or broken off.

Sampling error. A measure of the reliability of an estimate, expressed as a percentage of the estimate. The sampling errors given in this report correspond to one standard deviation and are calculated as the square root of the variance, divided by the estimate, and multiplied by 100 .

Saplings. Live trees 1.0 inch through 4.9 inches d.b.h.

Sapling-seedling stand. A stand-size class of forest land that is stocked with at least 10 percent of minimum full stocking with all live trees with half or more of such stocking in saplings or seedlings or both.

Sawlog. A log meeting regional standards of diameter, length, and freedom from defect, including a minimum 8-foot length and a minimum diameter inside bark of 6 inches for softwoods and 8 inches for hardwoods. (See specifications under Log-Grade Classification).

Sawlog portion. That part of the bole of a sawtimber tree between the stump and the sawlog top; that is, the merchantable height.

Sawlog top. The point on the bole of a sawtimber tree above which a sawlog cannot be produced. The minimum sawlog top is 7.0 inches dianeter outside bark (d.o.b.) for softwoods and 9.0 inches d.o.b. for hardwoods.

Sawtimber stand. A stand-size class of forest land that is stocked with at least 10 percent of minimum full stocking with all live trees with half or more of such stocking in poletimber or sawtimber trees or both, and in which the stocking of sawtimber is at least equal to that of poletimber.

Sawtimber trees. Live trees of commercial species at least 9.0 inches d.b.h. for softwoods or 11.0 inches for hardwoods, containing at least one 12 -foot sawlog or two noncontiguous 8 -foot sawlogs, and meeting regional specifications for freedom from defect.

Sawtimber volume. Net volume in board feet, by the International 1/4-inch rule, of sawlogs in sawtimber trees. Net volume equals gross volume less deductions for rot, sweep, and other defects that affect use for lumber.

Seedings. Live trees less than 1.0 -inch d.b.h. and at ?east 1 foot in height.

Shrub. Woody-stemmed perennial plant, generally with no well-defined main stem and less than 12 feet in height at maturity; defined by species.

Shrub land. Land with shrub and/or tree cover and an obvious herbaceous understory; average canopy height of less than 25 feet and crown closure of less than 70 percent.

Single-family/custom house. Single-family dwelling and the immediately adjacent managed land.

Snag. Standing dead tree, with most or all of its bark missing that is at least 5.0 inches in diameter and at least 10 feet tall (does not include salvable dead).

Softwoods. Coniferous trees, usually evergreen and having needles or scalelike leaves.

Stand. A group of forest trees growing on forest land.

Stand area class. The area, contiguous to the plot, that is of the same overall stand size and major type group (hardwood, softwood, or uniform mixture of both).

Stand-size class. A classification of forest land based on the size class (that is, seedlings, saplings, poletimber, or sawtimber) of all live trees in the area.

Standard cord. A unit of measure for stacked bolts of wood, encompassing 128 cubic feet of wood, bark, and air space. Fuelwood cord estimates can be derived from cubic-foot estimates of growing stock by applying an average factor of 80 cubic feet of solid wood per cord. For pulpwood, a conversion of 85 cubic feet of solid wood per cord is used because pulpwood is more uniform.

Standard-lumber log grade. A classification of the quality of sawtimber volume based on standard sawlog grades for hardwoods, white pine, and southern pine. (Note: In Rhode Island, red pine was graded using the southern pine guidelines. All specifications are shown under Log-Grade Classification).

State lands. Lands owned by the State or leased to the State for 50 years or more.

Stocking. The degree of occupancy of land by trees, measured by basal area and/or number of trees in a stand compared to the basal area and/or number of trees required to fully use the growth potential of the land (or the stocking standard). In the Eastern United States this standard is 75 square feet of basal area per acre for trees 5.0 inches d.b.h. and larger, or its equivalent in numbers of trees per acre for seedlings and saplings.

Two categories of stocking are used in this report: all live trees and growing-stock trees. The relationships between the classes and the percentage of the stocking standard are: nonstocked $=0$ to 9 , poorly stocked $=10$ to 59 , moderately stocked $=60$ to 99 , fully stocked $=100$ to 129 , and overstocked $=130$ to 160.

Strio mine. Area devoid of vegetation due to current or recent general excavation.

Stump. The main stem of a tree from ground level to 1 foot above ground level, including the wood and bark.

Timberland. Forest land producing or capable of producing crops of industrial wood (more than 20 cubic feet per acre per year) and not withdrawn from timber utilization. Formerly known as commercial forest land.

Timber products. Roundwood (round timber) products and manufacturing plant byproducts harvested from growing-stock trees on timberland; from other sources, such as cull trees, salvable dead trees, limbs, tops and saplings; and from trees on noncommercial forest and nonforest lands.

Timber removals. The growing-stock or sawtimber volume of trees removed from the inventory for roundwood products, plus logging residues, volume destroyed during land clearing, and
volume of standing trees on land that was reclassified from timberland to noncommercial forest land (See Table 53).

Top. The wood and bark of a tree above the merchantable height (or above the point on the stem 4.0 inches in diameter outside bark). It generally includes the uppermost stem, branches, and twigs of the tree, but not the foliage.

Tract/multiple family. Multiple individual residential units or attached units (e.g. apartment buildings, condominiums) and immediately adjacent managed land.

Transportation right-of-way. Land associated with highways and railroads.

Tree class. A classification of the quality or condition of trees for sawlog production. Tree class for sawtimber trees is based on their present condition. Tree class for poletimber trees is a prospective determination--a forecast of their potential quality when they reach sawtimber size ( 11.0 inches d.b.h. for hardwoods, 9.0 inches d.b.h. for softwoods).

Trees. Woody plants that have well-developed stems and are usually more than 12 feet in height at maturity.

Unproductive forest land. Forest land that is incapable of producing 20 cubic feet per acre per year of industrial wood under natural conditions, because of adverse site conditions.

Unused manufacturing residues. Plant residues that are dumped or destroyed and not recovered for plant byproducts.

Upper-stem portion. That part of the main stem or fork of a sawtimber tree above the sawlog top to a diameter of 4.0 inches outside bark, or to the point where the main stem or fork breaks into limbs.

Urban forest land. Noncommercial forest land within urban areas that is completely surrounded by urban development (not parks), whether commercial, industrial, or residential.

Utility right-of-way. Land associated with pipeline and electric transmission lines; identified only if vegetative cover differs from adjacent land use.

Veneer log or bolt. A rounaiwood product from which veneer is sliced or sawn that usually meets certain minimum standards of diameter, length, and defect.

Volume suitable for pulpwood. The sound volume (only rotten cull excluded) of growing-stock and rough trees.

Windbreak/hedgerow. Linear areas, less than 120 feet in wioth; with predominantly tree and/or shrub vegetation.

## Log-grade classification

## Mothods of determining scaling deduction.

## (Examples based on a 16 -foot $\log$ with 20 -inch scaling diameter)



Defect section (rule 1): Percent deduction $=\frac{4}{16}=25 \%$


Defect section (rule 2): Percent deduction $=\left(\frac{6}{16}\right)\left(\frac{60}{360}\right)=6-1 / 4 \%$


In practice sach olipse axis can be divided by $120-11$
Thus $\frac{8}{19}=.4 \frac{10}{19} \quad .5$, and (.4) (.5) $\left(\frac{4}{16}\right)=5 \%$
From: Grosenbsugh. L.R. 1952. Shortcuts for cruisers and scalers. U.S.
Dep. Agric. For. Serv. Sosth. For Exp. Sin. Occas. Pap. 126.

STANDARD GRADES FOR HARDWOOD FACTORY LUMBER LOGS

| Grading Factors |  | Log grades |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | F1 |  |  | F2 |  |  |  | F3 |
| Position in tree |  | Butts only | Butts \& uppers |  | Butts \& Uppers |  |  |  | Butts \& uppers |
| Scaling diameter, |  | 13-15 | 16-19 | $20+$ | $11+5$ |  | $12+$ |  | $8+$ |
| Length without tr | feet | $10+$ |  |  | $10+$ | 8-9 | 10-11 | $12+$ | $8+$ |
| Required clear cuttings ${ }^{\text {c }}$ of each of 3 best faces ${ }^{4}$ | Min. length, feet | 7 | 5 | 3 | 3 | 3 | 3 | 3 | 2 |
|  | Max. number | 2 | 2 | 2 | 2 | 2 | 2 | 3 | $\begin{gathered} \text { No } \\ \text { limit } \end{gathered}$ |
|  | Min. proportion of log length required in clear cutting | 5/6 | 5/6 | 5/6 | 2/3 | 3/4 | 2/3 | 2/3 | 1/2 |
| Maximum sweep \& crook allowance | For logs with less than $1 / 4$ of end in sound defects | 15\% |  |  | 30\% |  |  |  | $50 \%$ |
|  | For logs with more than $1 / 4$ of end in sound defects | 10\% |  |  | 20\% |  |  |  | $35^{\circ}{ }^{\circ}$ |
| Maximum scaling | deduction | 40\% ${ }^{\text { }}$ |  |  | 50\% ${ }^{\text {e }}$ |  |  |  | 50\% |

End defects although not visible in standing trees, are important in grading cut logs. Instructions for dealing with this factor are contained in Forest Prod. Lab. Rpt. D 1737.
${ }^{3}$ Ash and basswood butts can be 12 inches if they otherwise meet requirements for small \#l's.
'Ten-inch logs of all species can be \#2 if they otherwise meet requirements for small \#1's.
${ }^{\text {' }}$ A clear cutting is the portion of a face, extending the width of the face, that is free of defects.
${ }^{4}$ A face is $1 / 4$ of the surface of the $\log$ as divided lengthwise.
Otherwise \#1 logs with 41-60\% deductions can be \#2.
'Otherwise \#2 logs with $51-60 \%$ deductions can be \#3.
From: Vaughan, C. L., A. C. Wollin, K. A. McDonald, and E. H. Bulgrin. 1966. Hardwood log grades for standard lumber. USDA For. Serv. Res. Pap. FPL-63.

STANDARD SPECIFICATIONS FOR HARDWOOD CONSTRUCTION LOGS."

| Position in tree |  | Butt \& upper |
| :---: | :---: | :---: |
| Min. diameter, small end |  | 8 inches + |
| Min. length, without trim |  | 8 feet |
| Clear cuttings |  | No requirements. |
| Sweep allowance, absolute |  | 1/4 diameter small end for each 8 feet of length. |
| Sound surface <br> - defects | Single knots | Any number, if no one knot has an average diameter above the callus in excess of $1 / 3$ of $\log$ diameter at point of occurrence. |
|  | Whorled knots | Any number if sum of knot diameters above the callus does not exceed $1 / 3$ of $\log$ diameter at point of occurrence. |
|  | Holes | Any number provided none has a diameter over $1 / 3$ of $\log$ diameter at point of occurrence, and none extends over 3 inches into included timber. ${ }^{\text {b }}$ |
| Unsound surface defects |  | Same requirements as for sound defects if they extend into included timber. ${ }^{\text {b }}$ No limit if they do not. |
| End defects | Sound | No requirements. |
|  | Unsound | None allowed; log must be sound internally, but will admit 1 shake not to exceed $1 / 4$ the scaling diameter and a longitudinal split not extending over 5 inches into the contained timber. |

[^9]EASTERN WHITE PINE SAWLOG GRADE SPECIFICATIONS

| GRADING FACTOR | LOG GRADE 1 | LOG GRADE 2 | LOG GRADE 3 | LOG GRADE 4 |
| :---: | :---: | :---: | :---: | :---: |
| (1) MINIMUM SCALING DIAMETER (Inches) | $14^{1}$ | 6 | 6 | 6 |
| (2) MINIMUM LOG LENGTH (feet) | $10^{2}$ | 8 | 8 | 8 |
| (3) MAXIMUM WEEVIL INJURY (number) | None | None | 2 injuries ${ }^{\text {a }}$ | No limit |
| (4) MINIMUM FACE REQUIREMENTS | Two full length or four 50r; length good faces." <br> (In addition, log knots on balance of faces shall not exceed size limita. tions of grade 2 logs.) | No GOOD FACES RE Maximum diameter of log faces: <br> SOUND RED KNOTS not to exceed $1 / 6$ scaling diameter and 3 inch naximnum. <br> DEAD OR BLACK KNOTS including overgrown knots not to exceed $1 / 12$ scaling diameter and $11 / 2$ inch nlaxinuum. | QUIRED. <br> gh knots on three best <br> SOUND RED KNOTS <br> not to exceed $1 / 3$ <br> scaling diameter and 5 inch maximum. <br> DEAD OR BLACK KNOTS including overgrown knots not to exceed $1 / 6$ scaling diameter and $21 / 2$ inch maximum. | Includes all logs not qualifying for No. 3 or better and judged to have at least one-third of their gross volume in sound wood suitable for manufacture into standard lumber. |
| (5) MAXIMUM SWEEP OR CROOK ALLOW. ANCE (percent) | 20 | 30 | 40 | 662/3 |
| (6) MAXIMUM TOTAL SCALING DEDUC. TION (percent) | 50 | 50 | 50 | 662/3 |

After the tentative $\log$ grade is established from face examination, the $\log$ will be reduced in grade whenever the following defects are evident:
(7) CONKS, PUNK KNOTS, AND PINE BORER DAMAGE ON BARK SURI:ACE

Degrade one grade if present on one face.
Degrade two grades if present on two faces.
Degrade three grades if present on three or more faces.
(8) LOG END DEFECTS: RED ROT, RING SHAKE, HEAVY STAIN AND PINE BORER DAMAGE OUTSIDE HEART CENTER OF LOG:

Consider $\log$ as having a total of 8 quarters ( 4 on each end) and degrade as indicated below:
Degrade one grade if present in 2 quarters of $\log$ ends.
Degrade two grades if present in 3 or 4 quarters of log ends.
Degrade three grades if present in 5 or more quarters of $\log$ ends.
${ }^{1} 12$ and 13 inch logs with four full length kood faces are acceptable.
12 and 13 inch logs with four full length yood faces a
${ }^{2} 8$ foot logs with four full length good faces are acceptable.
38 foor No. 3 logs limited to one weevil injury
${ }^{4}$ Minimum $507_{r}$ length good face must be ar least 6 feet.
${ }^{3}$ Factors 7 and H are not cumulative (total degrade based on more serious of the rwo). No log to be degraded below grade fif net scale is at least one-third gross log scale.

From: Ostrander, M. D., and R. L. Brisbin, 1971. Sawlog grades for eastern white pine. USDA For. Serv. Res. Pap. NE-205.

## SOUTHERN PINE SAWLOGS

Grade 1. Logs with 3 or 4 clear faces. ${ }^{1}$ Code 1.
Grade 2. Logs with 1 or 2 clear faces. Code 2.
Grade 3. Logs with no clear faces. Code 3.
After the tentative log grade is established from above, the log will be degraded one grade for each of the following, except that no log can be degraded below grade 3.

1. Sweep. Degrade any tentative 1 or $2 \log$ one grade if sweep amounts to 3 or more inches and equals or exceeds one third ( $1 / 3$ ) the diameter inside bark at small end. This is the final grade if there is no evidence of heart rot.
2. Heart rot. Degrade any tentative 1 or 2 log one grade if conk, massed hyphae, or other evidence of advanced heart rot is found anywhere in it.
[^10]From: Shhroeder, J. G., R. A. Campbell, and K. C. Rodenbach. 1968. Southern pine sawlogs for yard and structural lumber. USDA Fins Serv. Res Pap. SE-39.

Tree Species of Rhode Island (as encountered on field plots)
Scientific Name $^{a}$ Common Name(s) Occurrence $^{b}$

## Softwoods

## Juniperus virginiana L.

Larix Mill.
Pinus resinosa Ait.
Pinus rigida Mill.
Pinus strobus L.
Tsuga canadensis (L.) Carr.
eastern redcedar c
larch $r$.
red pine c
pitch pine c
eastern white pine vc
eastern hemlock r

## Hardwoods

| Acer rubrum L. | red maple | vc |
| :---: | :---: | :---: |
| Acer saccharum Marsh. | sugar maple | r |
| Betula alleghaniensis Britton | yellow birch | c |
| Betula lenta L. | sweet birch | c |
| Betula papyrifera Marsh. | paper birch | r |
| Betula populifolia Marsh. ${ }^{\text {c }}$ | gray birch | r |
| Carpinus caroliniana Walt. ${ }^{\text {c }}$ | American hornbeam | r |
| Carya Nutt. | hickory | c |
| Cornus florida L. ${ }^{\text {c }}$ | flowering dogwood | r |
| Fagus grandifolia Ehrh. | American beech | c |
| Fraxinus americana L. | white ash | c |
| Eraxinus nigra Marsh. | black ash | $r$ |
| Nyssa sylvatica Marsh. | blackgum | c |
| Ostrya virginiana (Mill.) K. Koch ${ }^{\text {c }}$ | eastern hophornbeam | r |
| Populus grandidentata Michx. | bigtooth aspen | c |
| Populus tremuloides Michx. | quaking aspen | r |
| Prunus serotina Ehrh. | black cherry | c |
| Quercus alba L. | white oak | vc |
| Quercus coccinea Muenchh. | scarlet oak | ve |
| Quercus palustris Muenchh. | pin oak | r |
| Quercus Drinus L. | chestnut oak | c |
| Quercus rubra L . | northern red oak | vc |
| Quercus velutina Lam. | black oak | vc |
| Sassafras albidum (Nutt.) Nees ${ }^{\text {c }}$ | sassafras | c |
| Ulmus americana L. | American elm | r |

${ }^{a}$ Names according to: Little, Elbert L., Jr. 1979. Checklist of United States Trees (native and naturalized). Agric. Handb. 541. Washington, DC: U.S Department of Agriculture, Forest Service, 375 p.
${ }^{b}$ Occurrence is based on the proportion of the species among all live trees 5.0 inches d.b.h. or larger encountered on forest survey field plots: $\operatorname{vr}=\operatorname{very} \operatorname{rare}(<0.05 \%), r=\operatorname{rare}(0.05$ to 0.49\%), $c=$ common ( 0.5 to $4.9 \%$ ), and vc $=$ very common ( $\geq 5.0 \%$ ).
${ }^{c}$ Noncommercial species.

Relative Density ${ }^{a}$, Relative Frequency ${ }^{b}$, Importance Value ${ }^{c}$, and Species Frequency of Lesser Woody Stems by Species, Rhode Island, 1985

| Species | Relative |  | Importance Value | Species <br> Frequency |
| :---: | :---: | :---: | :---: | :---: |
|  | Density | Frequency |  |  |
| Eastern redcedar | . 11 | . 87 | . 49 | 8.00 |
| Tamarack | . 01 | . 22 | . 11 | 2.01 |
| Red pine | . 05 | . 22 | . 13 | 2.01 |
| Pitch pine | . 36 | 1.09 | . 72 | 10.01 |
| Eastern white pine | . 18 | 4.56 | 2.37 | 42.01 |
| Boxelder | . 02 | . 22 | . 12 | 2.01 |
| Red maple | 3.04 | 8.90 | 5.97 | 82.01 |
| Sugar maple | . 04 | . 66 | . 35 | 6.01 |
| Alder species | . 02 | . 22 | . 12 | 2.01 |
| Azalea species | . 41 | . 22 | . 32 | 2.01 |
| Barberry | . 94 | . 44 | . 69 | 4.01 |
| Yellow birch | . 15 | 2.17 | 1.16 | 20.01 |
| Sweet birch | . 20 | 1.74 | . 97 | 16.01 |
| Paper birch | . 01 | . 22 | . 11 | 2.01 |
| Gray birch | . 44 | 1.52 | . 98 | 14.00 |
| Hickory species | . 16 | . 87 | . 52 | 8.00 |
| Pignut hickory | . 03 | . 87 | . 45 | 8.00 |
| American chestnut $f$ | . 35 | 1.09 | . 72 | 10.01 |
| American bittersweet ${ }^{\text {f }}$ | - | - | - | 2.01 |
| Sweetfern | . 24 | . 44 | . 34 | 4.01 |
| Flowering dogwood | . 18 | . 87 | . 53 | 8.00 |
| Silky dogwood | . 11 | . 22 | . 16 | 2.01 |
| Hawthorn species | . 04 | . 22 | . 13 | 2.01 |
| American hazelnut | . 12 | . 44 | . 28 | 4.01 |
| Beaked hazelnut | . 02 | . 22 | . 12 | 2.01 |
| American beech | . 24 | . 87 | . 56 | 8.00 |
| White ash | . 59 | 1.96 | 1.27 | 18.01 |
| Black ash | . 02 | . 22 | . 12 | 2.01 |
| Teaberry ${ }^{\text {1 }}$ | - | - | - | 4.01 |
| Huckleberry | 2.45 | . 22 | 1.33 | 2.01 |
| Witch-hazel | . 90 | 1.96 | 1.43 | 18.01 |
| Sheep laurel | 2.55 | 2.82 | 2.69 | 26.01 |
| Mountain laurel | 1.35 | . 87 | 1.11 | 8.00 |
| Common spicebush | . 82 | 1.09 | . 96 | 10.01 |
| Bush honeysuckle ${ }_{f}$ | . 14 | . 22 | . 18 | 2.01 |
| Vine honeysuckle ${ }^{\text {f }}$ | - | - | - | 2.01 |
| Black tupelo | . 24 | . 87 | . 56 | 8.00 |
| Eastern hophornbeam | . 07 | . 44 | . 25 | 4.01 |
| Virginia creeper ${ }^{\text {² }}$ | - | - | - | 4.01 |
| Bigtooth aspen | . 01 | . 22 | . 11 | 2.01 |
| Quaking aspen | . 01 | . 22 | . 11 | 2.01 |
| Pin cherry | . 07 | . 22 | . 14 | 2.01 |
| Black cherry | 1.84 | 4.99 | 3.42 | 46.01 |
| Chokecherry | . 23 | . 44 | . 33 | 4.01 |

Relative Density ${ }^{\mathrm{a}}$, Relative Frequency ${ }^{\mathrm{b}}$, Importance Value ${ }^{\mathrm{c}}$, and Species Frequency of Lesser Woody Stems ${ }^{\text {e }}$ by Species, Rhode Island, 1985 (Continued)

| Species | Relative |  | Importance Value | Species <br> Frequency |
| :---: | :---: | :---: | :---: | :---: |
|  | Density | Frequency |  |  |
| White oak | 3.57 | 9.33 | 6.45 | 86.01 |
| Scarlet oak | . 86 | 4.99 | 2.93 | 46.01 |
| Scrub, bear oak | . 04 | . 44 | . 24 | 4.01 |
| Pin oak | . 01 | . 22 | . 11 | 2.01 |
| Chestnut oak | . 04 | . 22 | . 13 | 2.01 |
| Northern red oak | 1.46 | 7.38 | 4.42 | 68.01 |
| Black oak f | 1.68 | 6.95 | 4.32 | 64.01 |
| Poison ivy ${ }^{\text {f }}$ | - | - | - | 16.01 |
| Rubus species | . 48 | 1.52 | 1.00 | 14.00 |
| American elderberry | 1.48 | . 22 | . 85 | 2.01 |
|  | . 79 | 2.82 | 1.81 | 26.01 |
| Greenbrier ${ }^{\text {f }}$ | . 7 | - | - | 32.01 |
| Spirea species | 9.72 | 2.39 | 6.06 | 22.01 |
| American elm | . 09 | . 44 | . 27 | 4.01 |
| Blueberry | 45.09 | 8.68 | 26.89 | 80.01 |
| Viburnum species | . 29 | . 66 | . 47 | 6.01 |
| Maple-leaved viburnum | . 87 | . 87 | . 87 | 8.00 |
| Hobblebush viburnun | . 23 | . 66 | . 44 | 6.01 |
| Wild raisin | . 31 | . 87 | . 59 | 8.00 |
| Arrowwood | . 41 | . 66 | . 53 | 6.01 |
| Blackhaw | . 04 | . 22 | . 13 | 2.01 |
| Grape ${ }^{\text {f }}$ | . | . | . | 16.01 |
| Unknown deciduous shrub | 13.60 | 3.91 | 8.75 | 36.01 |
| Unknown evergreen shrub | . 46 | . 44 | . 45 | 4.01 |
| Unknown tree | . 02 | . 22 | . 12 | 2.01 |

${ }^{\mathrm{a}}$ (Total number of stems for a species/total number
of stems for all species) x 100 .
${ }^{\mathrm{b}}$ (Frequency of a species/total of frequencies of all species) $\times 100$. Frequency $=$ Number of plots
where a species occurs/total number of plots.
${ }^{c}$ Average of relative density and relative frequency
of a species.
${ }^{\mathrm{d}}$ (Number of plots where a species occurs/total
number of plots) x 100.
$e_{\text {Includes shrub and vine species and tree stems }}$
$\mathrm{f}^{\text {less }}$ than 5.0 inches d.b.h.
$\mathrm{f}_{\text {Not }}^{1}$ included in calculations of importance value.

```
Metric Equivalents of Units Used in This Report
1 acre = 4,046.86 square meters or 0.404686
                    hectares
1,000 acres = 404.686 hectares
1,000,000 acres = 404,686 hectares
1 \text { board foot } { } ^ { 2 } = 0 . 0 0 3 4 8 \text { cubic meters or 3,480}
    cubic centimeters
1,000 board feet }\mp@subsup{}{}{a}=3.3.48 cubic meters
1,000,000 board feet }=3,480\mathrm{ cubic meters
1 cubic foot = 0.028317 cubic meters
1,000 cubic feet = 28.317 cubic meters
1,000,000 cubic feet = 28,317 cubic meters
1 cord (wood, bark, and air space) = 3.6246
    cubic meters
1 cord (solid wood, pulpwood) = 2.4069 cubic
meters
1 cord (solid wood, other than pulpwood) =
2.2654 cubic meters
1,000 cords (pulpwood) = 2,406.9 cubic meters
1,000 cords (other products) = 2,265.4 cubic
    meters
1 inch = 2.54 centimeters or 0.0254 meters
1 \text { foot = 30.48 centimeters or 0.3048 meters}
Breast height = 1.4 meters above ground level
1 mile = 1.609 kilometers
1 \text { square foot = 929.03 square centimeters or}
    0.0929 square meters
1 square foot per acre basal area = 0.229568
    square meters per hectare
1 ton = 907.1848 kilograms
1,000 tons = 907.1848 metric tons
    a}\mathrm{ Although 1,000 board feet is theoretically
equivalent to }2.36\mathrm{ cubic meters, this is true only
when a board foot is actually a piece of wood with
a volume 1/12 of a cubic foot. The International
1/4-inch log rule is used by the USDA Forest
Service in the East to estimate the product
potential in board feet. The reliability of the
estimate obtained by conversion will vary with the
size of the log measure. The conversion given
here, 3.48 cubic meters, is based on the cubic
volume of a log 16 feet long and 15 inches in
diameter inside bark (d.i.b.) at the small end.
This conversion could be used for average
comparisons when accuracy of }10\mathrm{ percent is
acceptable. Because the board foot unit is not a
true measure of wood volume and because products
other than dimension lumber are becoming important,
this unit may eventually be phased out and replaced
by the cubic meter.
```

Dickson, David F.; McAfee, Carol L. 1988. Forest statistics for Rhode Island--1972 and 1985. Resour. Bull. NE-104. Broomall, PA: U.S. Department of Agriculture, Forest Service. 96 p.

A statistical report on the third forest survey of Rhode Island (1984). Findings are displayed in 77 tables containing estimates of forest area, numbers of trees, timber volume, tree biomass, and timber products output. Data are presented at two levels: state and county.

ODC (745) --905.2
Keywords: Forest survey, inventory, area, volume, biomass.

Headquarters of the Northeastern Forest Experiment Station are in Broomall, Pa. Field laboratories are maintained at:

- Amherst, Massachusetts, in cooperation with the University of Massachusetts.
- Berea, Kentucky, in cooperation with Berea College.
- Burlington, Vermont, in cooperation with the University of Vermont.
- Delaware, Ohio.
- Durham, New Hampshire, in cooperation with the University of New Hampshire.
- Hamden, Connecticut, in cooperation with Yale University.
- Morgantown, West Virginia, in cooperation with West Virginia University, Morgantown.
- Orono, Maine, in cooperation with the University of Maine, Orono.
- Parsons, West Virginia.
- Princeton, West Virginia.
- Syracuse, New York, in cooperation with the State University of New York College of Environmental Sciences and Forestry at Syracuse University, Syracuse.
- University Park, Pennsylvania, in cooperation with the Pennsylvania State University.
- Warren, Pennsylvania.

Persons of any race, color, national origin, sex, age, religion, or with any handicapping condition are welcome to use and enjoy all facilities, programs, and services of the USDA. Discrimination in any form is strictly against agency policy, and should be reported to the Secretary of Agriculture, Washington, DC 20250.


[^0]:    ${ }^{\mathrm{a}}$ The data in all wildife habitat tables except Table 20 are derived from new plots only.

[^1]:    a Includes bark and sound cull; excludes rotten cull.
    bBole portion of trees 5.0 inches d.b.h. and larger.
    CIncludes entire tree aboveground.
    dof all salvable dead and all live trees 5.0 inches d.b.h. and larger.

[^2]:    aIncludes noncomercial species.

[^3]:    aThat part of the bole of sawtimber trees between the 1 -foot stump and the sawlog top,
    including the portion of the forks large enough to contain a sawlog.

[^4]:    b CThese species are not divided into standard-lumber grades.

[^5]:    ${ }^{\text {a }}$ International $1 / 4$-inch rule.

[^6]:    ${ }^{a}$ International $1 / 4$-inch rule.

[^7]:    ${ }^{\mathrm{a}}$ International 1/4-inch rule.

[^8]:    ${ }^{\text {a }}$ International $1 / 4$-inch rule.

[^9]:    ${ }^{2}$ These specifications are minimum for the class. If, from a group of logs, factory logs are selected first, thus leaving only nonfactory logs from which to select construction logs, then the quality range of the construction logs so selected is limited, and the class may be considered a grade. If selection for construction logs is given first priority, then it may be necessary to subdivide the class into grades.
    ${ }^{6}$ Included timber is always square, and dimension is judged from small end.

[^10]:    1 A face is one-fourth of the circumference in width extending full length of the log. Clear faces are those free of: knots measuring more than one-half inch in diameter, overgrown knots of any size, holes more than one-fourth inch in diameter. The faces may be rotated if necessary to obtain the maximum number of clear ones.

