Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

THE FREEZING TEMPERATURES OF SOME FRUITS, VEGETABLES, AND FLORISTS' STOCKS

INTRODUCTION

There is an ever-increasing demand from persons interested in the growing, shipping, and handling of produce for exact data on the freezing points, or the temperatures at which actual ice formation takes place in various products.

The extent of damage due to the freezing of produce in transit naturally varies from year to year, but it is usually very heavy, aggregating frequently several hundred thousand dollars during a year. This in general applies not only to such products as apples and potatoes, most of which are grown in the North and harvested and shipped in the late fall and winter, but to products that are grown in the South and Southwest during the winter and shipped to northern markets. This latter group includes citrus fruits, strawberries, tomatoes, lettuce, string beans, cabbage, cauliflower, eggplant, etc. Cars of these food products often leave the shipping point under refrigeration and in 24 to 36 hours may pass into a zone of freezing temperatures. As they approach the more northern markets they may be exposed to temperatures ranging several degrees below their freezing point. Under certain conditions when harvested in warm weather some of these products are precooled-that is, rapidly cooled to a refrigerating temperature, either immediately before or directly after they are placed in the car for shipment, in order to delay maturity and consequent deterioration. Where precooling is practiced, it is, of course, essential to know the temperatures to which the product can be lowered with absolute safety.

[^0]It is of great importance to the commercial cold-storage man to know the exact freezing points of the fruits and vegetables which he handles. In some instances established commercial-storage practices have been changed after the exact freezing points of certain products have been ascertained. In most cases fruits and vegetables, other than dried or prepared products, when placed in cold storage are alive, and the problem is to keep them alive and healthy throughout their storage period. Since various fruits and vegetables freeze at different temperatures, there is more or less doubt in the minds of those interested as to the proper and safe temperatures at which to hold them in storage. One of the problems in the storage of many products is to hold them at a temperature low enough to slow down the life processes in order to prolong their storage life and yet not allow them to be damaged by actual freezing, which of course is likely to injure their keeping qualities or market value. With many products this storage temperature is only 1° or 2° above the actual freezing point. Of course some products, such as cherries, strawberries, peas, and lima beans, may be purposely kept in a frozen condition below freezing temperature, but this subject comes under the head of freezing storage and will not be discussed here.

It should be borne in mind nowever that freezing or freezing injury does not always occur when fruit or vegetable products are exposed to temperatures at or below their true freezing points. This is shown in the studies on potatoes reported in a previous publication, ${ }^{2}$ where tubers were cooled as much as $10^{\circ} \mathrm{F}$ below their freezing points without actually having become frozen and were again warmed up without apparent injury. The commonly known fact that some kinds of products may be actually frozen and then thawed out under certain conditions with no apparent injurious effects constitutes further evidence on this point. On the other hand, certain commodities such as tomatoes, bananas, and cucumbers are definitelv injured if stored at temperatures many degrees above their actual freezing points. This is usually termed chilling injury. It is evident therefore that temperatures just above the freezing point cannot be regarded as safe for all types or varieties of fruits and vegetables. It is also noticeable that there are variations in the freezing points of fruits and vegetables of the same variety and from the same lot, as is shown in the tables that follow. Furthermore, it is quite probable that different individuals of the same variety and strain when grown under different conditions will have somewhat different average freezing points. Attention is therefore called to the fact that the freezing points given in the following tables should be considered as danger points; that is, at or near these temperatures, either above or below them there is danger of injury by freezing if exposed for a sufficient length of time.

It has been found in some cases, as has been pointed out, that the freezing points of some varieties are liable to slight variations. These variations, however, are probably of more importance in the study of the exact causes and results of freezing injury than from the point of viev of the commercial cold-storage and produce man, for the variation of a fraction of a degree hardly warrants any change in the treatnent of the product.

[^1]The determinations of the freezing points of most of the commercial varieties of fruits, vegetables, and other plant materials have been made by the Bureau of Plant Industry in connection with its coldstorage investigations. This work is being continued.

Except where noted, the products reported upon were American grown and harvested at the usual state of maturity for commercial marketing. The method of determining freezing points has been described elsewhere. ${ }^{3}$

FREEZING POINTS OF FRUITS

Where several varieties of one kind of fruit were investigated the results are given separately to allow comparisions between varieties. The results are given in table 1. In table 2 these are summarized, and in addition there are listed the results of freezing-point determinations on a number of other fruits where only one representative variety of a kind was studied.

APPLES

Freezing-point determinations were made on a number of varieties of summer or early apples and of fall and winter varieties, most of the eastern-grown varieties being produced on the Arlington Experiment Farm, Arlington, Va. The tabulated results by varieties (table 1) show considerable varietal differences among both summer and winter apples. The average of all summer varieties is practically the same as that of winter varieties, the former being 28.4° while the latter is $28.5^{\circ} \mathrm{F}$. There is very little difference shown between the freezing points of eastern-grown and western-grown fruit.

Table 1.-Average and extreme freezing points of different varieties of certain fruits

Kind, variety, state of maturity, and place where grown	$\begin{gathered} \text { A ver- } \\ \text { age } \end{gathered}$	Extremes		Kind variety, state of maturity, and place where grown	$\begin{gathered} \text { A ver- } \\ \text { age } \end{gathered}$	Extremes	
		Minimum	Maximum			Minimum	Maximum
Apples, summer varieties, east-erh-grown:	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.		Apples, fall and winter varieties, western-grown:		${ }^{\circ} \mathrm{F}$.	
Yellow Transparent......-	27.7	27.3	28.2	Delicious.......-............	28.4	28.0	28.9
Red Astrachan.	28.6	28.2	28.7	Gano.	28.5	28.3	29.0
Early Ripe	29.2	28.8	29.5	Grimes Golden	28.6	28.3	29.0
Red June	29.6	29.3	29.7	Jonathan.	28.3	28.0	28.7
Schweitzer	27.4	27.3	27.4	Rome Beauty	28.9	28.7	29.4
Shoemaker	28.5	27.9	28.0	Esopus Spitzenburg	28.7	28.3	29.0
Benoni-	28.8	28.5	29.0	Winesap.-	28.2	27.9	28.3
Early Joe	27.8	27.6	28.5	A verage	28.5	28.2	28.9
Average	28.4	28.1	28.6	Apples, crab: Martha	26.7	26.6	26.8
pples, fall and winter v				Transcenden	27.5	27.2	28.2
ties, eastern-grown:				A verage	27.1	26.9	27.5
Baldwin-	29.0	28.8	29.4	Blackberries:			
Ben Davis	29.6	28.2	29.0	Early Harve	28.5	28. 3	28.7
Delicious	28.5	28.2	29.1	Jumbo.	29.1	28.7	29.3
Grimes G	29.0	28.8	29.0	Eldorado	29.2	28.8	29.5
Jonathan.	28.2	27.8	28.7	Crystal White	28.4	28.1	28.6
Paragon	28.5	28.4	28.5	Logan (loganberry)	29.5	29.3	29.7
Rambo.	28.5	28.3	28.9	Cherries, sour, mature, eastern-			
Stayman Winesa	28.5	28.0	28.9	grown:			
Winesap	28.2	27.9	28.7	Early Richmond.	27.9	27.6	28.3
Yellow Newtow	28.0	27.8	28.2	Montmorency	28.1	27.8	28.6
York Imperial	28.3	28.1	28.5	St. Medard	28.1	27.6	28.6
Average	28.5	28.2	28.8	Average	28.0	27.7	28.5

[^2]Table 1.-Average and extreme freezing points of different varieties of certain fruits-Continued

Kind, variety, state of maturity, and place where grown	$\begin{gathered} \text { Aver- } \\ \text { age } \end{gathered}$	Extremes		Kind, variety, state of maturity, and place where grown	Aver-	Extremes	
		Minimum	Maximum			Minimum	Maximum
Cherries, sweet, mature, east-ern-grown: Corey. Mary Hall	$\begin{aligned} & { }^{\circ} \mathrm{F} . \\ & 2 \pm .9 \\ & 2 \pm .5 \end{aligned}$	$\begin{gathered} { }^{\circ} F . \\ 23.9 \\ 24.5 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{F} . \\ & { }^{25.8} \\ & 24.6 \end{aligned}$	Grapes, European or vinifera type-Continued. Hensb Turki, South Africa. Rasin Blanc, South Africa.	$\begin{aligned} & { }^{\circ} F_{1} \\ & 26.1 \\ & 24.9 \end{aligned}$	${ }^{\circ} \mathrm{F}$. 2.9 ${ }_{2} .9$	$\stackrel{\circ}{\text { F. }}$. 28.5 25.8
	24.7	24.2	25.2	ne de	26.4	25. 6	27.2
Cherries, sweet, Californis: Black Tartarian, mature. Black Tartarian, immature. Bing, mature. re.......................				Warlinka,	25.6	24.4	26.8
	24.2	23.5	25.1	rica \qquad	25.5	25.2	25.8
	25.8 24.1	25.4 23.4	26.6 24.3				
	25.3	24.6	28.4		24	24	25.4
Average, matu	24.2	23.5	24.7	Argenti	23.2	22.4	24.
Average, immatur	25.6	25.0	26.5	South	25.8	25.1	26.5
Cranberries: ${ }^{1}$ Searl, Wisconsin. Gebhart Beauty, Wisconsin Mammoth, Wisconsin Metallic Bell, Wisconsin. Chipman, Massachusetts Perry Red, Massachusetts. Early Black, Massachu- setts. McFarlin, Massachusetts.				Or			
	28.	27.9	28.4	Washington Navel, Cali-			
	25. 3	25.0	29.9	fornia			
	25.6	$2 \pm .8$	2.8	Rind	27.4	26.9	28.7
	26.9	25.0	27.4	Valencia, California, fles	27.0	26.9	27.6
	27.9	25.6	28.0	Pineapple, Florida, flesh	27.7	27.6	27.
				Seedling, Florida, flesh	28.2	28.1	28.
	25.1	27.6	28.7	Temple, Florida, fles	28.6	28.3	28.8
	29.0	28.4	29.4	Valencia, Florida:			
McFarlin, Massachusetts . Shaw Success, Massachusetts.		24.6	25.	Fin	$\begin{aligned} & 28.3 \\ & 27.4 \end{aligned}$	27.9 26.9	28.9 28.1
Howes, Massachusetts Wales Henry, Massachu- setts.	28.2	27.5	25.4				
	27.0	26.6	27	Average:			
					28.0	27.	28.4
	28.7	27.9	28.0		27.	26	28.
Arerage.................	27.3	26.7	27.6	Peaches, hard ripe			
Grapes: American or euvitis type:				Elberta	29.7	29.5	30.3 30.0
				Sterens	28.6	28.2	28.9
Earl Concor	28	27.9	28.7	Edgemor	29.4	29.3	29.5
Ambrosia.	28.2	27.8	28.6	Williams	29.6	29.1	30.
Dracut Amb	27.9	27.8	28.1	Bilyeu.	28.9	28.3	29.
Moore E	28.3	28.1	28.	smocs	29.	29.	29.
Captivat	27.9	27.1	28.0	Salwey	29.6	29.1	29.
Campbe	28.0	27.8	28.0	Hiley.	30.	29.9	30.
Meri		28.4	28.	Carma	29	29	
Caco.	27.3	27.2	27.4	Champio	29.	28.7	29.
Catam		26.2				28.	28.
Concord....	27.2	27.2	27.2	J. H	29.6	29.1	30.
Delaware \qquad Arerage \qquad	24.6	21.2	25.4	Aver	29.4	29.0	29.7
	27.5	27.2	27.8				
Grapes, European or vinifera type:				ars:			
				Bartlett, soft	27.8	27.2	28.0
tYpe: Ohanez (Almeria), mature,				Beurre Bosc, hard	27.8	26.9	28.7
	25.6	25. 2	26.1	Anjou, hard ripe	26.9	26.4	27.1
Ohanez (Almeria), mature, Spain.				Anjou, soft ripe	27.2	26.7	27.9
	25.6	24.6	26.7	Kieffer, hard ripe	27.9	27.8	28.2
Ohanez (Almeria), immature, Spain				Kieffer, soft ripe	28.1	27.6	28.8
Ohanez (Almeris), mature, Argentina	26.1	25.1	27.2	Winter Nelis, hard ripe	27.2	27.1	27.5 28.1
	22.7	21.9	24.9				
Ohanez (Almeria), mature, South Africa.				Average, hard ripe	27.	27.2	28.0
	25.8	25.1	26.4	Average, soft ripe	27.7	27.1	28.2
Emperor, California.......	24.6	24. 1	24.8				
Emperor, Argentina.........	23.7	23.0	24.0	Plums:			
Emperor, South Africa..... Malaga	26.1	25.4	26.8	Damson, eastern grow	25.9	25.6	26.3
	24.6	24.6	24.8	Burbank, California.	29.3	29.0	29.8
	25.2	24.5	25.7	Wickson, California	29.5	29.2	29.
				Tragedy, California	27.2	26.8	27.
	25.0	24.5	25.8	Red June, eastern-grown	28.1	27.8	28. 4
Ribier...................SultaninaSeedless)	2	23.7	25.	Aver	28.0	27.7	28.3
	23.6	22.9	24.7				

1 This product is liable to be injured if stored at temperatures somewhat above its actual freezing point. For a discussion of the proper storage temperature see the following publications: Rose, D. H., WrigHT, R. C., and Whitemas, T. M. the commeacial storage of frutts, vegetables, and florists' stocks. U. S. Dept. Agr. Circ. 278, 40 pp. 1933.

Table 1.-Average and extreme freezing points of different varieties of certain fruits-Continued

Kind, variety, state of maturity, and place where grown	$\begin{gathered} \text { Aver- } \\ \text { age } \end{gathered}$	Extremes		Kind, variety, state of maturity, and place where grown	$\begin{array}{\|c} \text { Aver- } \\ \text { age } \end{array}$	Extremes	
		Minimum	Maximum			Minimum	Maximum
Raspberries:	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	Strawberries-Continued.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
Ranere (St. Regis)	30.4	30.1	30.5	Dorsett	29.8	29.5	30.1
Latham	29.8	29.7	29.8	Dunlap.	29.8	29.2	30.0
Chiof	30.0	29.0	30.1	Excelsior	29.9	29.3	30.
Potomac	30.7	30.6	30.9	Gandy.	29.2	28.8	29.5
Columbia	28.8	28.2	28.8	Glen Mary	30.1	29.5	30.
Average.	29.9	29.5	30.1	Klondike.	29.6	29.3	30.4 29.9
				Kellogg (Kellogg's Pride)	30.1	29.8	30.5
Strawberries:				Lupton.	28.8	28.8	29.
Big Late	30.0	29.2	30.0	Redheart	30.3	29.6	30.7
Joe (Big Joe)	30.0	29.8	30. 0	Sample	30.4	29.6	30.5
Blakemore--	29.9 30.0	29.7 29.8	30.5 30.4	Average	29.9	29.5	30.
Chesapeake	30.3	29.9	30.3				

Table 2.-Summary of average and extreme freezing points of fruits

Kind, variety, etc.	$\begin{gathered} \text { Aver- } \\ \text { age } \end{gathered}$	Extremes		Kind, variety, etc.	$\begin{array}{\|c\|} \text { A ver- } \\ \text { age } \end{array}$	Extremes	
		Minimum	Maximum			Mini- mum	Maximum
	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.		${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
Avocados, ${ }^{1}$ Collinson.	27.2	27.0		Citrus-Continued.			
Apples: ${ }^{2}$ Summer varieties	28.4	28.1	28.6	Tangerine, flesh- Satsuma, Owari,	$\begin{aligned} & 29.2 \\ & 28.2 \end{aligned}$	28.8 27.9	29.4 28.7
Fall and winter.	28.5	28.2	28.8	Coconuts: ${ }^{1}$			
Crab	27.1	26.9	27.5	Flesh	25.5	23.5	27.0
Bananas: 1				Milk	30.4		
Peel, immature	29.8	29.8	29.9	Cranberries ${ }^{1}$	27.3	26.7	27.6
Pulp, immatu	30.2	30.1	30.6	Currants.	30.2	30.2	30.2
Peel, mature	29.4	29.1	29.5	Figs, Mission, fresh, California	27.1	26.3	27.6
Pulp, mature	26.0	25.4	26.5	Gooseberries.	28.9	28.7	29.2
Blackberries: ${ }^{2}$				Grapes: ${ }^{2}$			
Black varieties	28.9	28.6	29.2	American type	27.5	27.2	27.8
White variety	28.4	28.1	28.6	European type	24.9	24.3	25.5
Logan (loganberry)	29.5	29.3	29.7	Mango, Faizanson ${ }^{1}$	29.8	29.7	30.0
Blueberry, Rubel.	27.4	26.9	27.9	Olives, fresh, ${ }^{1}$ green	28.5	27.7	29.4
Cherries: ${ }^{\text {2 }}$ - ${ }^{\text {Sour mature, eastern-grown }}$	28.0	27.7	28.5	Papaya-...-.-.-.	30.1 29.4	29.9 29.0	30.4 29.7
Sweet mature, eastern-grown-	24.7	24.2	25. 2	Pears, ${ }^{2}$ hard ripe.	27.7	27.2	28.0
Sweet mature, California.-.	24.2	23.5	24.7	Pears, ${ }^{2}$ soft ripe	27.7	27.1	28.2
Sweet immature, California--	25.6	25.0	26.5	Persimmon, Tan	28.3	28.1	28.6
Citrus: ${ }^{2}$				Pineapples, immature	29.1	28.7	29.8
Grapefruit, flesh ${ }^{1}$	28.4	28.0	29.0	Pineapples, eating ripe	29.9	29.6	30.2
Grapefruit, r	28.4	28.0	28.6	Plums ${ }^{3}$	28.0	27.7	28.3
Kumquat-	28.5	27.9	28.8	Quince	28.1	28.0	28.4
Lemon, flesh, ${ }^{1}$ California -	28.1	27.9	28.5	Raspberries ${ }^{2}$	29.9	29.5	30.1
Lemon, rind, California..	28.2	27.9	28.4	Strawberries ${ }^{2}$	29.9	29.5	30. 1
Lime, Persian ${ }^{1}$	29.3	29.1	29.5	Chestnuts, Italy	23.8	23.0	24.2
Orange, flesh ${ }^{1}$	28.0	27.8	28.4	Pecans, Schley	19.6	19.2	19.8
Orange, rind	27.4	26.9	28.2	Walnuts, Persian (English)	20.0	19.0	22.1

${ }^{1}$ See footnote 1, table 1.
${ }^{2}$ See table 1 for freezing points of different varieties.

CHERRIES

Freezing-point determinations were made on three sour and two sweet varieties of cherries grown on the Arlington Experiment Farm and two varieties of sweet cherries from California. Special interest is attached to the freezing points of the sweet varieties (table 1). Determinations were made on both fully mature black fruit of the two California varieties and on bright-red fruit which, although immature, is often shipped to eastern markets. The immature brightred cherries were quite sour, whereas the mature dark-red to black fruit was sweet and of good eating quality.

GRAPES
Results were obtained from 11 varieties of American grapes, labrusca type, and 7 varieties of European grapes, vinifera type, all American grown. While the average freezing point of the American grapes grown at Arlington Farm or at the National Agricultural Research Center, Beltsville, Md., was 27.5° F., it will be noted (table 1) that the freezing point of the Delaware variety, 24.6°, is considerably below that of the other varieties of both American and European types due probably to the greater sugar content. In addition, there were studied two varieties of vinifera-type grapes grown in Argentina and South Africa to compare with the same varieties grown in California, and also five other commercial varieties from South Africa. It will be noted that the American and South African grown Almeria grapes had about the same freezing point, while the same variety from Argentina froze at several degrees lower. On the other hand, the Emperor variety from South Africa froze at higher temperatures than those from either California or Argentina. The lowest freezing point was 22.7° in the Almeria from Argentina.

All the vinifera grapes studied came from commercial shipments on the market and were all American grown and mature except where noted.

ORANGES
The average freezing points of oranges grown both in California and Florida were determined.

PEACHES

Freezing-point determinations were made on 13 varieties of peaches commercially grown in nearby Virginia or Maryland. Peaches in the hard-ripe stage were utilized for these tests.

PEARS
Studies were made on five commercial varieties of pears, all California grown except the Kieffer variety. They were tested both in the hard-ripe or shipping-ripe stage of maturity and in the soft-ripe or eating-ripe stage.

PLUMS
Freezing points were obtained for three varieties of plums grown in California and purchased on the market and for two varieties grown at Arlington Farm. The variety with the lowest freezing point is Damson.

STRAWBERRIES

Freezing-point determinations were obtained for 16 varieties of strawberries grown at the Maryland Agricultural Experiment Station and at the National Agricultural Research Center. The greatest difference was found between Lupton, which froze at $28.8^{\circ} \mathrm{F}$., and Redheart, which froze at 30.3°.

BLACKBERRIES, RASPBERRIES. AND CRANBERRIES

Four varieties of blackberries, one of Logan blackberries (eastern grown), and five of raspberries were studied. Four of the varieties of cranberries frozen were grown in Wisconsin and eight in Massachusetts. Considerable differences were found in the freezing points of some of these varieties. While the McFarlin variety, for instance, froze at 29°, Shaw's Success froze at 25°.

MISCELLANEOUS FRUITS

A number of other fruits and berries were investigated, but only one variety was available in each case. The results are included in table 2 , covering the average freezing points of all the fruits studied. Three kinds of nuts were frozen, viz, Italian chestnuts, Persian (English) walnuts, and pecans.

FREEZING POINTS OF VEGETABLES

Although several different kinds of vegetables have been used in the freezing-point determinations, those on which the most extensive varietal studies have been centered are potatoes, sweetpotatoes, and tomatoes. These results are found in table 3.

Table 3.-Average and extreme freezing points of several different varieties of potatoes, sweetpotatoes, tomatoes, and certain other vegetables

Kind, state of maturity, and variety	$\begin{gathered} \text { A ver- } \\ \text { age } \end{gathered}$	Extremes		Kind, state of maturity, and variety	$\begin{aligned} & \text { A ver- } \\ & \text { age } \end{aligned}$	Extremes	
		$\begin{aligned} & \text { Mini- } \\ & \text { mum } \end{aligned}$	Maximum			Minimum	Maxi mum
Cantaloups, eating ripe: Rocky Ford, flesh.	$\begin{aligned} & { }^{\circ} F_{F} \text {. } \\ & 29.1 \end{aligned}$	${ }^{\circ} \mathrm{F}$. ${ }^{28.2}$	$\begin{aligned} & { }^{\circ} \mathrm{F} . \\ & 29.7 \end{aligned}$	Sweetpotatoes-Continued. Improved Big Stem.	$\begin{aligned} & { }^{\circ} F . \\ & { }_{28} .8 \end{aligned}$	$\begin{aligned} & { }^{\circ} F_{i} \\ & 28.3 \end{aligned}$	${ }^{\circ} F .$ $29 .$
Rocky Ford, rind	28.6	27.9	29.6	Nancy Hall	28.1	27.5	29.3
Tip Top, flesh	29.0	28.7	29.4	Mullihan.	27.6	27.5	27.9
Tip Top, rind	28.3	28.2	28.8	Pierson	28.7	28.0	28.7
Arerage, flesh	29.0	28.4	29.5	Porto Rico	28.3	${ }_{28}^{27.9}$	28.7
A verage, rind.	28.4	28.0	29.2	Pumpkin	29.0 28.4	28.7 28.3	29.1 28.6
Carrots:				Red Bermuda	28.2	28.0	28.6
Danvers	29.6	29.4	29.7	Red Jersey	28.5	28.3	28.8
Chantena	29.5	29.4	29.7	Southern Quee	28.6	28.2	28.8
Average	29.6	29.4	29.7	Triumph	28.4	28.3	28.7
Corn, sweet, milk				Yellow Belmon	28.6 29.0	28.5 28.3	${ }_{29.8}^{28.8}$
Crosby-	29.1	28.8	29.4	Yellow Strasburg	28.7	28.3	29.0
Country Gentl	29.1 28.0	28.6 27.9	29.4	Average	28.5	28.1	28.7
Golden Bant	29.6	29.2 29.9	29.8	Tomatoes, ripe: ${ }^{1}$			
A verage	28.9	28.6	29.2	Bonny Best	30.6	30.5	30.7
Lettuce:				John Baer	30.6	30.2	30.8 30.9
May Queen	30.5	30.4	30.6	Landreth	30.4	30. 3	30.7
Way Ahead	31.5	31.2	31.8	Marvel.	30.0	29.9	30.4
Prize Head	31.6	31.4	31.8	Bloomdale	30.0	29.9	30.5
Iceberg.	31.2	30.8	31.4	Red Rock	30.5	30.5	30.6
Averas	31.2	31.0	31.4	New Glo	29.8	29.6	30.4
Onions:				Greater Ba	30.3 30.6	30.1 30.2	30.6 30.8
Yellow Danv	30.1	29.6	30.2	Columbia.	30.3	30. 3	30.8
White Globe	30.2	29.7	30.4	Delaware Beauty	30.0	29.9	30.3
Texas Bermud	30.0	29.7	30.1	Livingston Globe	30.6	30.3	30.9
Peas:				Marglobe--......-	30.7	30.7	30.8
Early Alaska.	28.9	28.3	29.2	Livingston Acme .-......	30.7	30.4	30.7
Horsford Market Gard	30.9	30.7	31.0	Greenhouse varieties: Carter Sunrise...			
Laxtonian	30.2	30.0	30.6	Carter Sunrise	$\begin{aligned} & 30.6 \\ & 30.5 \end{aligned}$	$\begin{aligned} & 30.1 \\ & 30.4 \end{aligned}$	$\begin{aligned} & 30.8 \\ & 30.6 \end{aligned}$
Average	30.0	29.7	30.2	A ve	30.4	30.2	30.7
Potatoes: ${ }^{1}$				Tomatoes, green: ${ }^{1}$			
Triumph	29.2 29.7	29.0 29.6	29.3 29.7	Bonny Best...	30.6	30.4	30.8
Spaulding No. 4	29.3	29.2	29.3	Earliana.-	30. 2	29.8	30.6
Green Mountain	23.5	28.4	28.5	John Baer.	30.5	30.5	30.6
Gold Coin.	28.6	28.4	28.7	Red Rock	30.6	30.3	30.7
Rural New Yorker No	28.7	28.5	28.7	Stone-	30.1 30.6	${ }^{30.1}$	30.4
Russet Rural	28.3	28.3	28.5		30.6	30.5	30.8
Up-to-Date-	29. 1	29.1	29.1	Greenhouse varieties: Carter Sunrise			
Oregon White	28.7	28.6	28.8	Stirling Castle..	$\begin{aligned} & 30.3 \\ & 30.1 \end{aligned}$	$\begin{aligned} & 30.2 \\ & 29.9 \end{aligned}$	30.6 30.1
British Queen	29. 3	29.2	29. 3				
Garnet Chili	28.2	28.0	28.3	A verage	30.4	30.2	30.6
American Gia	29.6	29.5	29.7	Watermelons: 1			
Katahdin.	29.2	29.0	29.6	Dixie Belle, flesh	29.0	28.9	29.1
A verage.	28.9	28.8	29.0	Dixie Belle, rind	28.8	28.6	28.9
Sweetpotatoes: ${ }^{1}$				Irish Grey, flesh	29.4	29.0	29.8
Bis Stem.	28.0	27.5	28.7	Irish Grey, rind	28.8	28.5	29.1
Dooley	28.5	27.9	28.9	A verage, flesh.	29.2	28.9	29.4
Gold Skin	28.5	28.2	28.6	A verage, rind	28.8	28.5	29.0

[^3]
POTATOES

Freezing-point determinations were made on 13 different commercial varieties of potatoes.

SWEETPOTATOES

The results of freezing 17 more or less common varieties of sweetpotatoes are presented in table 3. The variety with the lowest freezing point was Mullihan, one of the less known varieties, which froze at $27.6^{\circ} \mathrm{F}$. The highest freezing points were found with Pumpkin and Yellow Jersey varieties, both of which froze at 29.0°.

TOMATOES

The freezing-point temperatures of 17 commercially grown varieties of tomatoes are presented in table 3. These tomatoes were all grown under the same conditions at Arlington Farm. Determinations were made on both field-ripened and mature-green tomatoes such as are usually shipped to distant markets. The lowest freezing point ($29.8^{\circ} \mathrm{F}$.) of ripe tomatoes was found in the New Glory variety. The Marglobe and Livingston Acme varieties both froze at 30.7°, the highest freezing point in any of the varieties studied. There was no difference in the average freezing points of ripe and mature green tomatoes.

SWEET CORN

Four varieties of sweet corn were studied, all in the milk stage. The freezing point varied considerably with the age of the product, and there was also considerable variation among varieties (table 3).

MISCELLANEOUS VEGETABLES

The freezing points of three varieties of onions, four of lettuce, two of carrots, two of cantaloups, two of watermelons, and three of peas are also given in table 3. The freezing points of several other kinds of vegetables where only one variety of each was studied are given in table 4, together with the average freezing point of all of the vegetables listed by varieties in table 3.

FREEZING POINTS OF FLORISTS' STOCKS

The freezing points of cut flowers, plants, bulbs, corms, and tubers that are commonly held in cold storage or shipped in quantities were similarly determined. The determinations made for 15 kinds of cut flowers, 8 of bulbs, corms, and tubers, and 10 of plants are presented in table 5. The freezing points of cut flowers were determined on petals alone, and of plants on leaves alone. The freezing points of the petals of cut flowers varied from $27.5^{\circ} \mathrm{F}$. in Easter lilies to 30.8° in the orchid. The leaves of rose and peony plants froze at lower temperatures than petals borne on the same stems, whereas leaves of Easter lilies froze at a higher temperature than the petals. The fronds of dagger ferns, which are commonly shipped in large quantities and stored during the winter, froze at the relatively low temperature of 23.6°. Holly leaves such as are used in large quantities in sprays or wreaths for Christmas decoration froze at 26.3°. The foliage of neither holly nor dagger fern was apparently injured by freezing, as is often the case with less hardy plant material. Asparagus plumosus foliage, which is shipped in considerable quantities, also froze at a relatively low temperature, 24.2°. The leaves of sansevieria plants, which are frequently shipped in large quantities for potting as ornamentals froze at the relatively high temperature of 31.0°. Among the
bulbs studied, tulips froze at 25.4°, and Paper White narcissus froze at close to 29°.
Table 4.-Summary of average and extreme freezing points of different vegetables

${ }^{1}$ See table 3 for freezing points of different varieties.
${ }^{2}$ See footnote 1, table 1 .
${ }^{3}$ This same group of varieties when vine ripened averaged $30.5^{\circ} \mathrm{F}$.
Table 5.-Average freezing points of certain cut flowers, bulbs, corms, tubers, and plants

Kinds	$\begin{aligned} & \text { A ver- } \\ & \text { age } \end{aligned}$	Extremes		Kinds	Average	Extremes	
		Minimum	Maximum			Minimum	Maximum
Cut flowers (petals):	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	Bulbs, corms, and tubers-Con.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.
Anemone.	28.1	28.0	28.2	Lily, Calla	27.5	27.5	27.5
Carnation	28.4	27.9	28.7	Lily, Regal	27.1	27.0	27.8
Chrysanthemum	28.4	28.0	28.7	Narcissus, Paper White:			
Gardenia.-	28.3	28.3	28.3	Dormant...-.-.-.-.	28.9	28.2	29.3
Gladiolus.	28.7	28.7	28.7	Sprouting	29.4	29.1	29.9
Heath (heather)	28.7	28.7	28.7	Narcissus, Sir Watk	26.1	25.8	26. 3
Hyacinth......	28.7	28.5	29.0	Tulip.-.-.----	25.4	24.9	25.4
Lily, Easter	27.5			Plants (leaves):			
Narcissus, Sir Watkin	30.1	30.0	30.9	Asparagus plumosus nanus_	24.2	23.5	24.8
Orchid (Cattleya)	30.8	30.1	31.1	Carnation_-.--------------	27.4	27.4	27.4
Peony --..-.-....	29.0			Chrysanthemum	28.7	28.7	28.7
Poinsettia	29.2	29.0	29.5	Fern, Oregon Dagger	23.6	23.6	23. 6
Ranunculus	28.6	28.2	28.9	Gladiolus.	26.8	26.8	26.8
Rose	30.4			Holly, eastern grow	26.3	23.9	27.0
Tulip_...--------	28.0	27.7	28.2	- Lily, Easter	29.2		
Bulbs, corms, and tubers:				Peony	28.4		
Dahlia	28.3	28.0	28.7	Rose	28.3		
Gladiolus	26.8	26.5	27.0	Sansevieria laurentia	31.0	31.0	31.0
Hyacinth	28.7	28.5	29.2				

SUMMARY

Freezing or freezing injury does not always occur when fruit or vegetable products are exposed to temperatures at or below their actual freezing points. Under certain conditions many of these products can be undercooled; that is, cooled to a point below the true freezing temperature of each and again warmed up without freezing and without apparent injury. Certain products under certain conditions may be actually frozen and afterwards thawed out without apparent injury, while, on the other hand, some products are injured by chilling if stored at temperatures well above their actual freezing points. Evidence seems to show that different individuals of the same variety and strain when grown under different conditions will have somewhat different freezing points, and that there are also some variations in the freezing points of products of the same variety and from the same lot. Sometimes this is due to different degrees of maturity.

In view of these facts; the freezing points given in this circular should be considered only as danger points at or near which, either above or below, there is a possibility of freezing injury if exposed for a sufficient length of time. The temperatures given are those at which it is unsafe to hold produce because of the danger of freezing.

The freezing points of 34 commercial kinds of fruits, 45 of vegetables, 15 of cut flowers, 8 of bulbs, corms, or tubers, and 10 of plants or florists' greens are given. Additional data are also given for a number of different varieties of these kinds.

ORGANIZATION OF THE LNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

This circular is a contribution from

 Division of Fruit and Vegetable Crops E. C. Auchter, Principal Horticuland Diseases.

11

[^0]: ${ }^{1}$ This circular is a revision of and supersedes Department Bulletin 1133, The Freezing Temperatures of Some Fruits, Vegetables, and Cut Flowers.

[^1]: Wright, R. C., and Taylor, G. F. freezing injury to potatoes when undercooled. U. S. Dept. Agr. Bull. 916. 15 pp., illus 1921.

[^2]: ${ }^{3}$ TAYLOR, G. F. SOME IMPROVEMENTS ON THE NEEDLE TYPE THERMOCOUPLE FOR LOW-TEMPERATURE work. Jour. Indus. and Engin. Chem. 12 797-798, illus. 1920.
 WRight, R. C., and Harvey, R. B. THE FREETING POINT OF POTATOES as determined by the thermoELeCtric method. U. S. Dept. Agr. Bull. 895, 7 pp., illus. 1921.

 Wright, R. C., and Taylor, G. F. See footnote 2.

[^3]: ${ }^{1}$ This product is liable to be injured if stored at temperatures somewhat above its actual freezing point.
 For a discussion of the proper storage temperature see publication cited in footnote to table 1.

