Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

DEPARTMENT OF THE IN'TERIOR.
UNITED STATES ENTOMOLOGICAL COMMISSION.

Buleetin No. 6.

GENERAL INDEX

AND

SUPPLEMEENT

TO) THE
NINE REPORTS

ON THE
INSECTS OF MISSOURI.

BI

CHARLES V. Riley, M. A., Ph. D.
WASHINGTON:

GOVERNMENT PRINTING OFFICE.

$$
\text { Manch 24, } 1981 .
$$

[^0]
ORDER OF MATTER.

1. Introdection.
2. Table of Contents.
3. Corrections.
4. Notes and Additions.
5. Descriptions of New Species and Varieties.
6. List of Descriptions of Adolescent States.
7. List of Descriptions, mostly amplified, of Species not new.
8. List of Illustrations by Reports.
9. Classifed List of Illu'strations.
10. General Index.
11. Index to Food-plants.

INTRODUCTION.

The present Bulletin has been prepared in response to frequent suggestions from those having occasion to use the nine Annual Reports on the Insects of Missouri, made by me, as State Entomologist, to the State Board of Agriculture, during the years 1868 to 1877, inclusive. These Reports contain a good deal of matter anent the Cotton Worm, the Chinch Bug, the Rocky Mountain Locust, and other insects which the Commis. sion has studied, and were published, as required by law, in the Annual Reports of said State Board of Agriculture for the years mentioned. That method of publication was always regretted by myself and by many others, inasmuch as the reports of the Board were generally volumes of such bulk as to delay publication and render mailing expensive. By virtue of the fact that they were distributed only to members of the State legislature and to State societies, access to them by persons outside the State of Missouri was extremely difficult ; while the State printing and press-work were, as a rule, of a very unsatisfactory character. To avoid some of these difficulties it was my habit to have about 300 separate copies of the entomological portion printed on better paper, at my own expense, for distribution to correspondents both at home and abroad, and it is through these, principally, that the Reports have been accessible outside the State.

The demand for the Reports and the manner in which they have been used and commended by subsequent writers can but be gratifying to the author, who feels that whatever of commendation they deserve is due to the fact that they embody results of original investigation. They contain some matter that, with present light, he would expunge, and the earlier volumes, more particularly, contain imperfections which no one appreciates more fully than himself. Many of these are attributable to isolation from other working entomologists at the time, as well as to the almost absolute dearth of entomological works of reference in ans of the libraries of Saint Louis.

The general plan of the Reports, which were addressed to the intelli-
gent cultivator of the soil rather than to the naturalist, is set forth in the following passage from the introduction to the first:

Fully aware that I write for those who, as a rule, are unversed in entomology, I have endeavored to treat of each insect with as little of the nomenclature of science as is consistent with clearness of expression. Yet, as much that is of scientific interest, such as descriptions of new species, must necessarily be inserted, I have had such descriptions printed in a type of smaller size than the text, so that it can be skipped if desirable, at the time of reading, and easily referred to for comparison, with specimens which one is desirous of naming. I have also endeavored to illustrate, as far as possible, the insects of which this report treats, believing that good illustration forms the basis of successful teaching in a science with which the general husbandman is not expected to be acquainted; for the eye conveys to the mind, in an instant, what the ear would fail to do in an hour. The practical man cares little to what genus or family an insect belongs, so long as he can tell whether it be friend or foe. He must become familiarized with the insects about him without having necessarily to overcome scientific detail and technicality.
I have made no effort at a systematic arrangement of the insects treated of. Indeed, that were useless for the purpose in view; but, in order that the reader may refer the more readily to any particular insect which interests him, I have separated them into three series-Noxious, Beneficial, and Invoxious-and attached a very full index. For the benefit of those who are making a study of entomology, I have also given, with each species, the Order and Family to which it belongs, in parenthesis under each heading.

So far as possible, I have used a common name for each insect, knowing that the scientific name is remembered with greater difficulty, and is, consequently, distasteful to many. But as popular names are very loosely applied, and the same name often refers to different insects, in different localities, a great deal of confusion would ensue without the scientific name, which is, therefore, invariably added, for the most part, in parentheses, so that it may be skipped without interfering in any way with the sense of the text.

In order to add value to this general index, I have brought together tables of contents of the nine volumes and given corrections and some notes and additions. I have also reproduced the descriptions of new species, and added a list of descriptions of adolescent states, of descriptions of species not new, of illustrations by reports, of illustrations by classification, and of food-plants.

The Reports were independently paginated, and the separate copies were often distributed before the Agricultural Report was off the press. The date of publication and distribution is given for each in the tables of contents. The nomenclature of the Reports is retained in this Bulletin, the synonomy being indicated in the notes and additions and with the reproduced descriptions. The name of the author of the species and not of the genus was always given as authority, and in the later Reports I endeavored to indicate whether or not the insect was described moder the generic name which it bears, by adding the authority without a comma when the specific name is coupled with the generic name under which it was first published - e.g., Phycita nebulo Walsh — but placed it in parentheses when a different generic name was used than that under which the insect was first described - e. g., Acrobasis nebulo (Walsh) except where the whole name tras already in parentheses when a comma same plan is adopted throughout this Bulletin.

It had always been my intention to publish a tenth volume and to end the decade with a review of, and general index to, the whole series. Indeed, an appropriation for the tenth year's work was made and the tenth report would have been duly issued had I not been called at the time to my present work for the General Government. This Bulletin is, in a measure, the fulfilment of that intention, and is issued in the hope that it will render the Reports more serviceable to the student of insect life and to those having to deal with insects injurious to agriculture.

My thanks are due to Messrs. E. A. Schwarz and W. H. Patton, agents of the Commission, for aid in its preparation.
C. V. R.

Washington, D. C., Merch 1, 1881.

TABLES OF CONTENTS.

Neither of the first five volumes contained a table of contents, the plan of giving such having been adopted with the sixth. Most of these tables are, therefore, prepared for this Bulletin, while those of the Sixth and Seventh Reports are amplified. Those of the last tro volumes are reproduced as ther were originally made.

REPORTI.
[Submitted December 2, 1868: published March, 1869.]
Introductory
..... Pare.

NOXIOLS INSECTS.
The Bark-lice of the Apple-treenot numerous enough to do material damage, i
The Oyster-shell Bark-lutiseDifference in the scales of the two species, i - Introduction of the Oyster-shell Bark-louse from Europe and its spreal in the United States, 8 -Precautionary measures to prevent its introdnction into Missouri, 8-Its habits studied by different observers in 1867, 9 - Seasonal noteson the development of the insect, 10 - Only one amnual brood in Mis-souri, 12 -Formation and nature of the scale, 12 - Rare occurrence ofmales, 14 -Difference of opinion among observers as to the mode ofgrowth of the scale, 14-Difficulty of explaining the spread of theinsect from one tree to auother, 15 - Its occurrence upon other kinds oftrees, 15 -Natural enemies, 16 - Artificial remedies, 16 - Examinationof young trees before planting. 16 - Washing with alkalies, etc., 17 -Scrubbing the branches with a stifi brush, 1 i - Fumigating, 17 - Ap-plication of sheep-manure, 17 - Washes in general inetrective, 17 - Theinsect can most successfully be fonght during three or four days of theyear only, 18.

The Periodical Cicada

Its singular life history, 18 - Seventeen aud thirteen year races, $19-$ The two races not distisct species, 19 - Two distinct forms occurring in both broods, 20 - Season of their apprarauce and disappearance, 22 - Natural history and transformations, 22 - Ele rated chambers of the pupa, 22 - The larrie frequently occurring at great depth in the ground, 24 - The operation of emerging from the pupa, 24 - Only the males are capable of singing, 24 - Trees in which the females deposit their eggs, 24 - Mode of oviposition, 24 - The newly hatched larva, 25-The W ou the wings of the Cicada, 2. 26 - The sting of the Cicada, 20-Wide-spread fear of the insect on ac-

The Periodical Cicada-Continned.

count of its supposed stinging powers, 26-Explauations of the sting, 27 - Injury caused by the insect, 29 - by the larva, 29 - by the imago, 29 - Fruitless attempts to stop the injury, 30 - Chronological table of all well-ascertained broods in the United States, $30-$ The insect will appear during tho next 17 years somewhere in the United States every year except in 1873, 41 - Number of broods that will appear in the next 17 years in the different States, 42.

Apple-tree Borers

Tife Round-hladed Apple-tiree Borfr
It is more numerous in trees on high land than on low ground, 42-Extent of its injury, 43 - Its larva, 43-Appearance of the imago, 43 - The hole made by the young larya, 44 - It remains nearly three years in the larva state, 44 - Its pupa state, 44 - Remedies, 45 - Alkaline washes, 45 - Killing the larva by hot water, 45 - Cutting out the larva, 46.
The Flat-headed Apple-tree Borer
Differences between it and the foregoing species, $\mathbf{4 6}$ - Habits of the beetle, 47 - Amount of injury caused by it, 47 - Parasite attacking it, 47 Remedies, 47.
The Peach Borer
Its nature, 47 -Differences in the sexes, 48 -Remedies, 48 - The mounding system the best remedy, 48-Testimony as to the value of the mounding system, 48-Other remedies, 49.

The Plum Curculio

Difference of opiuion among authors on some points in its uatural history, 50 - Reasons for this difference of opinion, 51 - Facts in its natural bistory, 52-It causes the spread of the peach-rot, 52-Fruit trees attacked and those not attacked by it, 53- It may hiberuate as larva or pupa, but does geuerally as imago, 53-Mode of egg-laying, 54-It has one annual brood, 55 - Walsh's experiments to show that it is twobrooded, 55 - Natural remedies, 56 - No parasites known to infest it, 56 -Enemies, 57; The Pennsylvania Soldier-beetle, and its larva, 57 ; Lacewing-larva, 57; The Subangular Ground-beetle 58; Ground-beetle larva, probably of the Pennsylvania Ground-beetle, 59-Hogs as Curculio destroyers, 59 - Artificial remedies, 60 - Jarring the trees the most effectual method, 60 - Dr. Hull's Curculio catcher 60 - Lessons for the fruit-grower from the account of the Curculio, 6%.

The Codling Moth or Apple Worm

It is commou wherever apples are grown, 62 -Description of the insect in its different states, 63-Its life-history, 63-Other fruits attacked by it, 64 -Remedies, 65 -Picking up the fallen fruit, 65 -Entrapping the worms the best remedy, 66 - Trimble's hay band system and how to apply it, 66 - Attracting the moth by fires, 67.

Cut-worms

The natural history of twelve distinct species, 67 - Definition of the term "Cut-worm", 67 - Habits of Cut-worms, 67 - Their natural history briefly given, 68-Difficulty of breeding them in captivity, 69 - Climbing Cut-worms, 69 - Injury done by them to orchards, 69 - Fruit trees and shrubs they attack, 70 - They attack large trees, 71.

The Variegated Cut-worm

The full-grown larva, 72 - The eggs, 72 - Habits of the larva, 72 - Cutworm moths deposit their eggs on the leaves and not on the ground, 73 - The imago, 73 - Description of the insect as larva, pupa, and imago, 74.
Cut-worms-Continued. Page.
The Dark-sided Cut-worm. it
General characters of the larva, 71 - Hahits of, and injury done by it, 75 - Descriptiou of the imago, 75 ; of the larva and chrysalis, 76.
The Climbing Cet-wory
Injury done by the larva, 77 - General characters of the larva, 77; of the moth, 78 - Description of the larra, 73; of the imago, 78.
The W-marked C'et-worm 79
General characters of the larra. 79 - Plants it attacks, 79 - Characters of the moth, 79 - Description of the larra and chrysalis, 79.$3 ;$
The Greasy Cut-womy
The larva very variable in coloration, 80 - Its injury to tomato and to- bacco plants, 80 - General characters of the moth, 80 - Description of larva, chrysalis, and imago, 81.-11
The Western Striped Cut-wory
Resemblance of its larva to that of the Corn Rustic, 81 - General charac- ters of the worm and moth, 82 -Description of the larva, 82.
The Dingy Cut-worm-2
Difference between it and the foregoing species, , 2-General characters
Difference between it and the foregoing species, , 2-General characters of pupa and imago, 82 - At least three species of our Cut Worms are difficult to distinguish, 83 - Description of larva, chrgsalis, and inago, 83.
The Glassy Cut-worm
-3
Habits and general characteristics of the larva, 83-Characteristics of the moth, 84-Description of larva and chrysalis, 84.
The Speckled Cut-wormCharacteristics and habits of the insect, 34 - Description of larra, chrys-alis, and imago, 85.
The Small White Bristly Cut-woryHabits of the worm, $4 i$ - Characteristics of the moth, 86 -Descriptionof larva, chrysalis, and imago, 86n
Other Cut-worms -9
Fitch's account of the Corn C'ut-worm and the Yellow-headed Cut-worm, 87.
The Wheat Cut-worm-7
Injury caused by it, 87 - Description of the larva, 88 .
Remedies agalnst Cut-worms-1
Natural enemies, 89 ; Microgaster milituris, ± 9; Paniscus geminatus, 89 ;The Spined Soldier-bng, -3 ; The Cnt-worm Lion, 89 - Other enemies,90 -Artificial remedies for climbing cut-worms, 90 ; for common fieldcut-worms, 91 .
insects infesting the Potato 91
General remarks, 91 - Nunner of species affecting the Potato, 92.
The Stalk-borer
Habits of the larva and imago, 92 - Remedy, 93.
The Potato Stalk-weevil蹋
9:Its geographical distribution, 93 - Its habits, 93 -Remedy, 95.
The Potato- or Tomato-woran(4)
It cannot sting with its horn, 95 - Its chrysalis, 95 - How the imago dif- fers from the Tobacco-worm Moth, 95 -Remedies and parasites, 96.
Blister-beftles$: 17$The Striped Blister-beetle, 96 - The Ash-gray Blister-beetle, 97 - TheBlack-rat Blister-beetle, 94 - The Black Blister-beetle, 98 -- The Mar-gined Blister-beetle, 98--Synonymical remarks, 98-Remedies for Blis-ter-beetles, 99 .
Insects infesting the Potato-Continued.
The Three-Lined Leaf-beetle99Merdigerous habit of the larva, 99 - It has two annual broods, 100 -Other notes on the habits of the insect, 100 .
The Cucumber Flea-beetle. 101
The Colorado Potato-beetle 101Its past history and future progress, 101 - Its native home, 101 - Itsgradual spread eastward, 102 - Its coufusion with the Bogus ColoradoPotato-beetle, 103 - How the two species differ in habits, 104 ; in theirlarral states, 104 ; in the egg-state, 105 - Description of the larva ofDoryphora juncta, 106 - Differences in the imagos of the two species, 106-Habits of the Colorado Potato-bectle, 107 - When it appears and dis-appears, 107 - Number of eggs laid by each female, 107 - Food-plants,107 - Singular fact that D. juncta has not acquired the habit of attack-ing the Potato, 108 - Natural remedies, 109 - Complicated economy ofnature, 109 - Decrease in the number of Potato-beetles on account ofincrease in the number of parasites, 109 - The Colorado Potato-beetleparasite, 111 - Its general character and habits, 111 - Description ofLydella dosyphorx, 111 - Ladybirds and their larvie, 112-The SpinedSoldier-bug. 113 - The Common Squash-bug erroneously considered anenemy of the Potato-beetle, 113 - The Bordered Soldier-bug, 114 - TheMany Banded Robber, 114-The Rapacious Soldier-bug, 114-TheVirginia Tiger-beetle, 115-The Fiery Ground-beetle, 115 - Blister-beetles, 115 - The larvie not touched by fowl, 115-Artificial remedies,116-Ineffectiveness of mixtures tried, 116 - Killing the beetle early inspring, 116 - Pincers for crushing the insect, '116-Benson's machine,116 - Proper choice of varieties of potatoes, 117 - The pest will over-run the Eastern States, 117 - Carelessness in transmitting specimens ofthe beetle, 11%.
The Apple-root Plant-louse

Three distinct kinds of rots affecting the roots of Apple-trees, 118 - The
Root-louse the cause of one of these rots, 118 - The cause of the other
rots still hidden, 119 - The Root-louse especially injurious in southerly
latitudes, 119 - It occurs also on other parts of the tree besides the root,
120 - Description of the winged louse, 120 - Fitch's description of the
winged form refers to another species, 120 - The Root-louse belongs
to the genus Eriosoma, 121-Natural enemies, 121; Chalcis-fly, 121;
The Root-louse Syphus-fly, 121; Scymmws cercicalis, 122-Artificial
remedies, 123.
The Wooly Elm-tree Louse 123
Its general appearance and habits, 123 - Description of the winged form, 124,
Insects Injurious to the Grape-vine 124
The New Grape-root Borer 124Reports on the damage caused by it, 124-Description of the larva, 126 -It belongs probably to the Cylindrical Orthosoma, 126 - Former ac-counts of the natural history of this beetle, 127 - Its injury known forseveral years, 127 - Remedies, 128.
The Grape Curculio 128Nature of the damage done br it. 122 - Its larra, 128 - The perfect beetle,129 - No injury done by it in $1868,129$.
The Grape-Seed Curculio 129General appearance of the maggot, 129 - Mr. Saunders' account of thedamage done by it, 130 .
Insects Injurious to the Grape-vine-Continued.
The Grape-cane Gale-curculio.The Gall cansed by it, 131 - The larva, 131 - Its transformation, 131 - De-scription of the beetle, $1: 32$ - Differences between it and a closely alliedspecies, 132 - The Gall caused by the punctures of the female beetle,132-Remedy, 132.
The Grape-vine Fidia 132
It is very injurious in Missouri, 132 - Hathits of the beetle, 132 -Reme- dies, 133.
The Grape Fruit-wory $1: 3 ;$
Amount and extent of the injury cansed by it, 133-Characteristics of the larva, 134 - Transformations, 134 - Description of larva, chrysalis and imago, 135 - Remedies, 135.
The Eight-spotted Forester 136
Characteristics of the larva, $\mathbf{1 : 3 6}$ - It is not numerous enough to cause serious injury, 136 - Other caterpillars resembling it, 136.
The Grape-vine Pléme
Work of the larva, $1: 37$ - Its habits and characteristics, $1: 37$ - The moth, 137 - Remedy, 138.
The Snowy Tree-crichet
Characteristics of the insects, 138 -It is injurious, 13 - Nature of the injury caused by it, 138 - Remedy, 139.
The Raspberry Geometer $1: 39$
Habits of the larva, 139-I'arasite attacking it, 139 -Characteristics of the moth, 139 - Description of the larva, 139; of the imago, 140 .
The Gooseberry Fruit-wormAcconuts of the injury cansed ly it, 140 - Hahits of the worm, 140 - Themoth, 141 -Remedies, 141 - Description of larva, chrysalis, and imago,141.
The Strawberry Leaf-rollerExtent and nature of the damare cansed hy it, 142 - Hablits of the insect.142 - Accounts of its injur in Indiana amilllinois. $142-$ Remedy, 143 -Description of the imagn amo larva, 14%.
The White-marked Tussock-moth140
Page.
Tine Seed-corn Maggot 154Accounts of damage caused by it, 154 - The maggot, 155 - Transforma-tion 155 - Description of the imago, 155-Remedr, 155-Habits ofAnthomyia larve, 156.
The White Grub 156Account of the damage cansed by it, 156 - Injury done by the perfect in-sect, 157 - Résumé of its life-history, 15% - Remedies, 157 - Regularityin the appearance of the leetle, 158 - Accomnts of the fungus infestingthe White Grub, 158.
The American Meromyza 159Nature of the damage caused by it, 159 - Characteristics of larva, chrys-alis and imago, 160 - Enropean Diptera with similar habits, 160 -Remedies, 161.
The Sheep Bot-fly or Head-maggot 161
The insect ia its difterent states, 161 - Its larra, 162-Pupa, 162 - Char- acteristics of the imago, 162 - Fatal results of the presence of the mag- got in the head of the sheep, 163 - Rabbits attacked by gad-fly, 164 - Testimony regarding the viriparous luabits of the Bot-fly, 164 - Reme- dies, 165.
Insect enemies of the Honey-bee 166
THE BEE-MOTH OR WAX-WORM 166General appearance of the moth, 166 - There are no moth-proof beehives, 166 - Habits of the worm, 167 - How its presence in the hive maybe recoguized, 167 - Prerention and remeds, 16%.
The Bee-hiller. 168It is an Asilid Hy, $168-\mathrm{Mr}$. Thompson's aceount of the $\mathrm{H} 5,168$ - How itcaptures and kills bees, 163 - No remedy known, 168.
BENEFICIAL INSECTS.
The Rear-horse, alias Camel-cricket, aliu. Devil's Riding-horse. 169
Its food, 169 - How it grasps its prey, 169 - Difference in the sexes, 170 - The larva, 170 - The egg-mass, 170 - The mode of egg-laying, 170 - Voracious disposition of the Mantis, 171 - Its beneficial influence, 171 - Tachina-parasite of the Mantis, 171.
INNOXIOLS INEECTS.
The Solidago Gall-moth 173
Gall caused hy Trypeta solidaginis, $1 \% 3$ - Gall produced by the Solidago Gall-moth, 173 - Its natural history, 173 - Plovision of the larva for its protection within the gall, 174 - Previous account of the gall, 174 - Gall caused by Cockylis hilarana on Artemisiu campestris, 175-Description of the Solidago Gall-moth as larva, chrysalis, and imago, 175-Para- sites attacking it, 175; the Inflating Chalcis, 176; Eurytoma bolteri, 1. sp., 176; Hemiteles (?) cressonii, n. sp., 177 ; Microgaster gelechie n. sp., 177; other parasites, 178 - Oberea larvie intruding the gall, 178.
The Knotweed Geometer 179
Its natural history, 179 - Description of larra aud chrysalis, 179. 180
Work of its larva on thistle-heads, 180 - Description of the larva, chrys- alis, and imago, 180.
REPORTII.
[Submitted December 2, 1869; published March, 1870.]
Preface
NOXIOUS INSECTS.3
Report of the Committee on Entomology of the State Horticultural Society5
Noxious insects less injurious in Missouri in 1×69 than usnal, 5-The ArmyWorm and the Grain Plant-louse considerably injurious in Missouri in1869, 5 - The Chinch Bug and the Codling Moth less injurious, 6-Aspecies of Thrips destroying great mumbers of the Curculio, 6-Eggs ofthe Apple-tree Plant-lonse destroyed by insect foes and birds, 6-Ac-cording to Dr. Hull the "scal" in apples is caused by the Apple-treePlant-louse, 7 - The Pickle Worn doing great damage during 1869, 7 -Importance of preventing the introduction of iujurious insects, 7 - Cul-tivation causes insects to multiply unduly, 8-More attention paid inEurope to injurious insects than in this country, 8 .
Imported Insects and Native Americax Insects
\qquad
The imported Currant-worm much more injurions than the native, 8Other instances showiug the greater destructiveness of imported insect enemies than of their mative representatives, 9 -Almost all our worst iusect pests and pernicious weeds have been introduced from Eluope, 10 - Few American insects and plants have become naturalized in Europe, 11 - The American fanna and flora not so highly improved and developed as in Europe, 12-Australian fauna still more "old-fashioned" than America, 12-The parasites of injurious insects are not imported with the insects themselves, 13 -Government aid should be solicited to exterminate recently imported injurious insects, 13 - But little attention given so far by our Goverument to assist the study of economic Entomology, 14 - Danger of introducing the Oyster-shell Bark-louse into Missouri, 15 -Immunity of the Pacific States from cuany of our fruit insects, 15.
It is the most injurious of all insects infesting grain, 16 - Its past history, 17 ; it was known in South Carolina in Revolutionary times, 17 ; it was injurious in Missouri as early as 1854, 17; noticed in Illinois in 1840, 17; it was very injurious in Missouri in 1868, 17; but hardly noticed in 1869, 17 - Probable reason why it was not noticed in Missouri in former times, 18 - Why it is not injurions in Massachusetts and New York, 18 -Its natural history, 18 - The pupa state in the different insect Orders, 18-Time rerpuired for different insects to complete the cycle of development, 19 - The Chinch Bug is two-brooded in Missouri, 19 - Its winter quarters, $20-$ Its rapid multiplication, $20-\mathrm{Dr}$. Shimer's acconnt of its uuptial flights, 21 -It deposits the eggs underground on the roots of the plant, 21-The egg, 22-Dimorphous forms of the Chinch Bug, 22 - Its destructive powers, 22 - Acconnt of its appearance in immense nunbers, 23 - Heading off the marching Bugs by a barrier of pine boards, 23-Heary rains destructive to the Chinch Bug, 24-Moisture injurions to the egg, 24 - The Chinch Bug is always worse in a dry season than in a wet one, 24-Dr. Shimer's theory on epidemic disease affecting the Chinch Bug, 25-Camnibal foes of the Chinch Bug, 25; several species of Ladybirds, 25; the Weeping Lacewing, 26; How the
The Chinch Bug-Continued.Lacewing larva seizes its prey, 26; The Insidions Flower-bug, 2r; theCommon Quail, 28 -Amount of damage done by the Chinch-bug, 28-Remedies, 28 - Burning in winter the old corn-stalks and other deadstuff on aud near the fields, 29 - Mixing winter rye among spring wheat,29 - Intercepting the marching Bugs by fence-boards, 29-Sowinggas-lime, 30 - Other remedies, 30 - Bogus Chinch Bugs, 31 - Severalspecies of Heteroptera confounded with the true Chinch Bug, 31-The smell emitted by the Half-winged Bngs, 32 - The Insidious Flower-bug, 32 - The Ash-gray Leaf-bug and its injury to grape-vines, 33-The Flea-like Negro-bug, 33; injury caused by it to raspberry, straw-berry, and garten flowers, 34 - Two other species of Negro-bug, 35-Recapitulation of the natural history of the Chinch Bug, 36 .
The Army Worm
Four distinct caterpillars designated as Army Worms in this country, 37.37
The Tent-caterpillar of the Forest
It cannot properly be called an Army Worm, 37.
The Cotton Worm
Historical data on the injury caused by it, 38 - The egg, 38 - The wormand its habits, $39-$ Mr. Lyman's incorrect account of its development,39 - The moth and its habits, 40 - Its hibernation, 40 - Remedies, 41.
The Southern Grass-worm
It resembles in habits the veritable Army Worm, 41.
The True Army WormIts past history, 41 -Rev. Powers' account of its invasion in the NewEngland States in 17\%0, 42 - Accounts of later invasions previous to1861, 43 - Years of its appearance in Illinois, 43 - The invasion of theyear 1861, 44 - Its appearance in Missouri in 1869, 44 -Its sudden ap-pearance and disappearance, 45 -Reason for the apparently suddenappearance, 45 -Army Worm years are wet with the preceding yeardry, 46 - Reason for the increase and decrease of the number of worms,46 - Its natural history, 47 - Previous accounts of its natural bistory,47 - When the eggs are laid, 47 - Where they are laid, 48 - Misciirectedinstinet in insects and birds, 48-Exceptions to the normal habit of theWorm, 48-Color of the Worm, 49-The chrysalis and imago, 49-Parasites, 50 ; The Red-tailed Tachina-Ay, 50; Its beneficial work, 50 ;It infests also other insects, 50 ; Walsh's description of the fly, 51 ; Ithas been re-described as Exorista OstenSackenii, 51; The Yellow-tailedTachina-fly, 51 ; Description of the fly, 51; The Glassy Mesochorus,52; The Diminished Pezomachus, 52; The Military Microgaster, 52 ;The Purged Ophion, 53; The Army-Worm Ichneumon-fly, 53-Habitsof the Army Worm and suggestions for its destruction, 53-Burninggrass meadows in winter or early spring, 54-Plowing late in the fall,54 - The marching of the Worms, 54 -Plants they prefer, 54 - Theybecome beneficial by devouring the chess in the fields, 55 - Ditching,55 - Description of the insect as larva and imago, 56.
56
Insects infesting the Sweet-potato 57
Tortoise-beetles
Tortoise-beetles
The Clubbed Tortoise-beetle affects the Irish Potato, 56 - Its general ap-pearance, 57 - Characteristics of Tortoise-beetles, 57-Merdigeroushabits of Tortoise-beetles and others of the same family, 58-Generalappearance of the larvæ, 58-Their dung parasol, 59 - Larval molts,59 - Egg of Tortoise-beetles, 60-The chrysalis, 60 - Habits of andinjury done by the beetles, 60 - Remedies, 61.37374141 habits of Tortoise-beetles and others of the same family, 58 - General appearance of the larvæ, 58-Their dung parasol, 59 - Larval molts, 59 - Egg of Tortoise-beetles, 60 - The chrysalis, 60 - Habits of and injury done by the beetles, 60 - Remedies, 61.
Insects infesting the Sweet-potato-Continued. Page.
The Two-striped Sweet-potato Beetle 16
It seems to be confined to that plant, 61 - The larva and the use of its fork, 61 - Its pupa and imago, 61.
The Golden Tortoise-beetle 62
Food-plants and characteristics of the larva, 62 -Brilliant color of the beetle, 62.
The Pale-thighed Tortoise-beetle 62
It is hardly distinguished from the foregoing species, 62.
The Mottled Tortoise-beetle 63
Characteristics of the beetle, 63 - of the larva, 63.
The Black-legged Tortorse-beetle 63
Characteristics of imago and larva, 63.
The Pickle Worm 64
Other insects infesting cucurbitaceous vines 64The Squash Borer, 6i-It seems to be confined to the Eastern States, 64 -The Striped Cucumber-beetle, 64 - Injury done by the beetle, 64 ; by thelarva, $65-$ The larva and pupa, $65-$ Number of annual generations,65 - Remedies, 66 - Extent of the injury caused by it, 66 - The 12 -Spotted Diabrotica, 66 .
The Pickle Worm 67
Characteristics and description of the worm, 67 -Its habits, 67 - Charac- teristics of the moth, 68 - Accounts of injury done by the worm in Mis- souri and Illinois, 69 ; in other portions of the country, 70 - It was not known before as injurious, 70-Remedy, 70,
Insects injurious to the Grape-vine 71
The Eog Caterpillar of the Vine. 71The egg, 71 - Characteristics of the larva, 71 - Its habits when about totransform, 72-The chrysalis and imago, 72-It is one-brooded Northand two-brooded further South, 72 - It is very injurious, 73 - The Mi-crogaster parasite and its development, 73 -Habits of caterpillar in-fested with the parasite, 73.
The Achemon Spiinx 74
Appearance and habits of the larva, 74 - The chrysalis, 75 -The insect is single-brooded, 75 - The moth and its issuing from the pupa shell, 75 - No parasites known, 76.
The Satellite Sphinx 76
How to distinguish its larva from that of the foregoing species, 76-De- velopment of the larva, 76 - Variations in color of the larva, 77 - Its position when at rest, 77 - The moth, 78.
The Abbot Spilinx 78
Its distribution, 78 - The larva varies much in color, 78 - The chrysalis and imago, 79.The Blue Caterpillars of the Vine79The Eight-spotted Forester, 80 - Larva previously mistaken for it, 80 -habits and characteristics of the larva, $80-$ Harris's description of thelarva, 81 - The moth, $81-\mathrm{Mr}$. Andrews' account of its ravages, $81-$Remedies, 82.
The Beantiful Wood Nymph, 83-Characteristics of the moth, 83-Close resemblance between the larva of this and the foregoing species, 83 The differences pointed out, 83 - Development of the insect, 83 .
The Pearl Wood Nymph, 83-It greatly resembles the Beautiful Wood Nymph, 83 - Its probable larva, 84 -Practical importance of distinguishing these closely allied species, 84 .
Insects injurious to the Grape-vine-Continued.
The American Procris.
Work of its larva, 85-Description of full-grown larva, 80 - The moth, 86 - It is not very destructive, 86 - Two annual broods of the insects, 86 - Parasite of the American Procris, 87.Page.
The New Grape-root Borer
Correction of opinion formerly expressed, 87.87
The Broad-necked Prionus, 87 -Duration of the larva state, 87 -Itstransformation, 88 - It bores also in Apple roots, 88 - Great damagedone by the borer, 88 - No good remedy known, 88.
The Tile-horned Prionus, 89-How it differs from the foregoing, 89 - Itsoccurrence on prairie land, 90 - Small dimorphous male form, 90 - Thelarva subsists also upou the roots of herbaceous plants, 90 -Practicalconsiderations, 91.
The Grape-seed Maggot
The Grape-seed Curculio larva of the first report is that of a Hymenopte- rous insect, 92 -The perfect insect is closely allied to the Joint-worm Fly, 92-Mr. Saunders' account and description of the imago, 93.85
The Canker Worm
The eggs, 94 - The larva and larval changes, 95 - Importauce for the or-94chardists to recoguize the true Canker Worm, 95-The Imported Elmleaf-beetle mistaken for it, 95 -Description of the larva, 96 -Its food-plants, 96 - The chrysalis. 96 - Only one annual brood in the latitudeof Saint Louis, 97 - The moth and its varieties, 97 - It is less injuriousin Missouri thau in the Eastern States, 97 - Remedies, 98 - Classifica-tion of remedies proposed, 98 - The trough and bandage systems, 99 -Muriate of lime as remedy, 100 - Jarring the tree, 101 - Late fall plow-ing, 101 -Summer plowing, 102-Efficieney of hogs, 102-Enemies,102; Birds, mite aud parasites, 102; Ground-beetles, 103; The FraternalPotter-wasp, 103.
Cabbage Worms104
The Southern Cabbage Butterfly 104Its geographical range, 104 - Injury caused by it in Missouri, 104-De-scription of the larva, 105-The chrysalis and imago, 105-Habits andother food-plauts, 105.
The Potherb Butterfy, 105 - It is a Northern species, 105 - It will very likely never occur in Missouri, 106 - Geographical range of insects principally influenced by temperature, 106 - Isentomic lines, 106 - Southern insects found near Saint Louis, 106.
The Imported Cabbage Butterfly, 106 - Amount of damage caused by it in Canada, 107 -Its spread westward, 107 - It will uudoubtedly spread to St. Louis, 107 - The insect in Europe, 107 - History of its introduction, 107 - The insect in its different stages, 108 - Its food, 108 - Remedies, 109 - Parasites, 109.
The Cabbage Plusia 110
Characteristics and habits of the larva, 110 - Its transformations, 111 - Remedies, 111 - Description of larva, chrysalis and imago, 111 - A simi- lar worm occurring on thistles, 112.
The Zebra Caterpillar 112
Habits and characteristics of the larva, 112 - The chrysalis and the moth, 113 - Two annual broods, 113 - Food-plants, 113.
The Tarnished Plant-bug113Injury caused by it to various trees and plants, 114 - It is a very varia-ble species, 114 - Its development, 114 - No effective remedy known,115 - Preventive measures, 115.

TABLE OF CONTENTS TO REPORT III.

The Philenor Swallow-tail Page.Its food-plant, 116 - Damage done by it, 116 - Characteristics aul devel-opment of the larva, 116 -Description of the larva, 117 - The pupa,117 - The imago, 117 - Prevention, 118.
The Cottonwood Dagger119General appearance of the larva, 119 - Two anuual broods, 119 - Chrys-alis and moth, 119 - Larve of other species belonging to the genusAcronycta, 119 - Parasites, 120 - Description of larva and imago, 120 -Characters and habits of other species of the same genus, 121.The Missouri Bee-killer121The true scientifi name of the Nebraska Bee-killer, 121 - Wing-veins ofthe genera Asilus, Promachus and Erax, 122 - Description of the Mis-souri Bee-killer, 122-How to destroy the flies, 123-Habits and life-history of Asilus-flies, 123 - Description of larva and pupa of EraxBastardi (?), 124-Synonymical notes on the imago, 124.
INNOXIOUS INSECTS.
The Goat-weed Butterfly 125
Its geographical distribution and position in classification, 125- Its food- plant, 125 - Habits of the larva, 126 - Larval changes, 126 - Conform- ity in the color of the larva with that of the leaves, 127 - Description of the full-grown larva, 127 - Transformation of the larva to chrysalis, 127 - The two sexes of the imago, 127 - Hibernation, 128.
The Black Breeze-fly 128Breeze-flies beneficial in the larva state, 128-Tormenting power ofBreeze-flies, 123 - Their mode of tlight, 129 - Our knowledge of theirlarval character and lrabits, 129 - General characters of the larva ofthe Black Breeze-fly, 129 - It is semi-arquatic, 129 - Walsh's descriptionof the larva, 130 - Habits and food of the larva, 130 - Its transforma-tions, 131 -Discription of the pupa, 131 -Probable habits of Breeze-fly larvæ on the Western prairies, 132.

Galls made by Moths

The False Indigo Gaile-moth 13%The gall and its structure, 132 -General appearance of the larva aud themoth, 133 - Description of larva and imago, 133.
The Mis-named Gall-Motif134Is it a true gall-maker or an inquiline?, 134 - Walsh's description of thelarva, 134 - Description of the imago, 134 - Generic characters, 134-Reasons why the insect is an intruder and not a gall-maker, 134-Enumeration of the known gall-making moths, 135-How the gall isformed, 135.
REPORTIII.
[Submitted Decomber 2, 1870; published April, 1871.]
Preface 3
NOXIOUS INSECTS.
Snout-beetles5The whole regetable kingdom and every part of each plant serve as foodfor insects, 5 -Eummeration of insects affecting the different parts ofthe Apple-tree, 5 - Other food-habits of insects, 7 - Vast extent of thescience of entomology, 8 - Beauty and simplicity of classification in en-tomology, 8-Each family distinguished by its general appearance, 8-Unity of habits in each family, 9-Distinguishing characters ofSnout-beetles, 9 - Their larrie, 10 - They are among the most injuriousbeetles, 10 - Ingurions Snout-beetles in Europe, 11.

It is single-brooded, 11 - Experiments to prove this fact, 12 - It hiberuates as beetle, 13 - Form of the egg, 13 - Feeding habits of the beetle, 13 - Creaking noise produced by it, 14 --Stridulation in other insects, 14 - It is nocturnal rather than diurnal, 14 - Habits of the beetle at night, 14 - Remedies, 15 - The Ransom Chip-trap process, 15 ; explanation of the process, 15 ; it is not so successful as anticipated, 15 ; it is not a new discovery, 16 ; number of Curculios caught by it, 16 ; its success dependent on the character of the soil, 17 ; directions for using the process, 17 ; more experiments needed, 17 - Offering premiums for collecting specimens, 17 - Absurdity of the application of Paris Green for the Curculio, 18 - Jarring by machinery, 18 - The Hull Curculio-catcher defective in several respects, 18 - The Ward Curculio-catcher, 20 ; how it could be improved, 20 ; rules for using the machine, 21 - Curculio-catcher invented by Claxton \& Stevens, 22 - Hooten's Curculio-catcher, 22 ; its adrantages and mode of operation, 24 - Two true parasites of the Plum Curculio, 24-The Sigalphus Curculio parasite, 24; Fitch's account of it, 25; Walsh's doubt about its being parasitic on the Curculio, 25; experiments and observations proving that it is a parasite of the Curculio, 25 ; its development and frequent occurrence around St. Louis, 25 ; it attacks also other soft-bodied larvæ, 26 ; points in its natural history, 26 ; its position in the system, 27 ; description of the imago, larva, pupa, cocoon and of the var. rufus, 27 - The Porizon Curculio parasite, 28 ; how it differs from the foregoing, 28; description of the imago, 28 - Importance of the work of these parasites of the Curculio, 29 - Artificial propagation and distribution of parasites, 99.
The Aprle Curculio
How it differs from the Plum Curculio, $30-$ Its uatural history, $30-$ Foodplants, 30 - The punctures it drills into the fruit, 31 - The egg, 31 - The larva and its habits, 31 - The larva transforms within the fruit, 32Amount of damage it does, 33 - How its work in the fruit can be distinguished from that of other insects, 33 - It is very injurious in Southern Mllinois and parts of Missouri, 33 - It is less injurious to apples than the Plum Curculio, 33 - Injury done by it to pears, 33 - The rot in apples principally produced by it and by the Plum Curculio, 34 - Season of its appearance, 34 -Remedies and preventive measures, 34 - Description of larva and pupa, 35 .
The Quince Curculio
Its food-plants, 35 - It is very injurious to the quince in the East, 36 - Dr. Trimble's account of the damage done by it, 36 - How the beetle differs from the two preceding Curculios, 36 - Its transformations and habits, 37 -Its puncture on the fruit, 37 - It hibernates in the larva state, 37 Its larva mistaken by Dr. Fitch for that of the Plum Curculio, 38 - The imago state lasts only two months, 38 - It does not attack the Apple, 38 -Remedies, 38 - Description of the larva and pupa, 39.
The Plum-gouger
How it differs from the preceding species, 39 - Injury caused by it, 39 -Food-plants, 40 - It is often mistaken for the Plum Curculio, 40 - Season of its appearance, 40 - Holes bored by it in the fruit, 41 - The larva lives within the kernel of the fruit, $41 \rightarrow$ Remedies, 41.
The Strawberry Crown-borer
Distribution of the insect, 42 - Injury done by it, 42 - Habits and characters of the larva, 43 - Habits of the beetle, 43 - Remedies, 43 -Parasite, 44 - How the larva differs from that of the Grape-vine Colaspis, 44 - Dascription of the imago and larva, 44.
Snout-beetles-Continued. Page.The Pea-weevilInsect enemies of the garden pea, 44 - Characters of the Bruchides, 45 -Habits of other species of Bruchide, 45-Frequent occurrence of its larvain green peas, 45 -Characteristics of the beetle, 46 - It is in all proba-bility an indigenous North American insect, 46 - The beetle does notsting the peas, 46 -The eggs are fastened by the female bectle on theoutside of the pod, 47 - The larva and its habits, 47 - Its transforma-tions, 47-Remedies and preventives, 48-Examination of peas in-tended for seed, 48 -Coucerted action necessary to exterminate theinsect, $48-$ Mr. Sannders' account of the occurrence of the Pea-weevilin Cauada, 49 --Other preventive measures, 49 -Birls destroying theinsect, 50.
The Grain Brechu's
Its introluction from Europe, 50 - How it diffirs from the Pea-weevil, 50

- Curtis' account of its labits in Europe, 51.
- Curtis' account of its labits in Europe, 51. Tife American Bean-weevil
Food-plants, 52 - Its geographical distribution, 52-Accounts of damage done by it in New York and Pemngylvania, 52 - It has only lately be- come injurions, 53 - Habits of the larva and beetle, 54 -The proper nomenclature of the species, 54 - Description of the imago, 55 - Its differences from allied species, 54 - Note on descriptions based upon in- dividual variations, 56. 52
The New York Weevil 57
Damage caused by it to fruit trees, 57 - Former cleseriptions of the insect,57 - Its breeding habits, 57 - The Pear Blight not caused by the beetle,58.
The Imbricated Snout-beetle
Injury done by it to vegetation, 58-Its natural history still unkuown, 58 - General appearance of the beetie, 58.
The Corn Sphenophoru'sDamage caused by it to corn plants, 59 - Characteristics of the beetle, 59-Its larval history still unknown, 59-Probable habits of the larva,
59- Walsh's description of the imago, 59. The Cocklebur Sphenophores44
Insects injurious to the Grape-vine-Continued.The Common Yellow Bear68How the young larve differ from the mature larva of the Grape-vine Plume,68 - Food-plants, 68 - Color variations in the larvæ, 69 - The chrysa-lis, 69 - The imago, 69 - Parasites, 69 - Remedy, 69.Tine Smeared Dagger70
The larva is polyphagous, 70 - Characters of larva, pupa, and imago,70 - Remedy, 70 - Parasites, 71 - Description of imago and larva, 71;of the pupa, 72.
The Pyramidal Grape-vine Worm72Distinguishing characters of the Worm, 72-Its food-plants, 72 - Its trans-formations, 72-It is single or double-brooded according to latitude,73 - Its closely allied congener in Europe, 73 - Remedies, 73 - Descrip-tion of the larva, 73 ; of pupa and imago, 74 - How 't differs fromAmphipyra pyramidea, 74-Description of larva and imago of the Spat-tered Copper Underwing, 75.
The Grape-root Borer75
Its distribution, 75 -Distinguishing characters of the larva, 76-Itstransformation, 76-Characters of the moth, 76-Description of theimago and its sexual differences, 76 - Work of the larva on grape-roots, 77 - Remedies, 77.
Tine Spotted Pelidxota37It is usually not injurious, 78 -The larva and its habits, 78 - The beetle,78 - Description of the larva, 78.
The Grape-vine Flea-beetle73
It is well-known to the grape-grower in Missouri, 79 - Its distribution and food-plants, 80 -Hibernation, 80 -Damage done by the beetle in spriag, $80-$ The eggs, $80-$ Damage caused by the larve, 80 ; their transformation, 80 -Remedies, 80 -Description of the larva and pupa, 81.
The Grape-vine Colaspis
Fitch's account of the insect, 82 - Varieties of the beetle, 82 - The larra in all probability attacks sometimes that of the Leaf-foldex, 82 - It lives on the roots of the Strawberry, 82 - Larva of the European Colaspis barhara, 82-Difference in habits of Larve of allied species, 83 - Singular characters of the larva of the Grape-vine Colaspis, 83 - Work of the larva on Strawberry roots, 83 -Remedy, 84-Description of the larva, 84 .
The Grape-Leaf Gall-Louse
Its lifc-history not yet fully studied, 84 - Previous accounts of the insect by Fitch, Shimer, and Walsh, 85 - The root disease in France, 85-The Phylloxeravastatrix recognized as the cause of this disease, 85 - Identity of the gall-louse with the root-inhabiting insect, 86 - The American and European insects are identical, 86 - Remedies tried in France, 86 - The disease directly caused by the Phylloxera, 87 - Injury done by the Phylloxera in Missouri, 87 - Forming of the gall, 87 - Propagation of the lice and multipiication of the galls, 88 - The gall-lice descend in the latter part of the season to the roots, 88 - Change of the insect after passing from the leaves to the root, 88 - Questions still to be settled in the life-history of the Phylloxera, 85 - Rare occurrence of the winged. form, 89 - The insect can be transported from one place to another on roots, 89 - It hibernates on the roots, 89 - Grape-vines that should be planted, 89 - Number of indigenous species of the Grape-vine, 90 -Grape-vines which are most seriously infested with the Grape leaflouse, 90 - Danger in planting the Clinton among other grapes, 91 - In-
Insects injurious to the Grape vine-Continued.

The Grape-Leaf Gall-lousie.

sects acquiring different food-habits as illustrated in the Apple-maggot and the Pine-leaf Scale, 92 - The different forms of the Grape leaflouse, 93 - Discussion on the proper place of the insect in the classification, 93 - On Dr. Shimer's proposed new families Dactylospharida and Lepidosaphide, 93-Objections to Fitch's specific name vitifolia, 95Identity of the European with the American insect, 95 - The Appleroot louse is identical with the Wooly Aphis, 95-The Gall-inhabiting form of the Phylloxera identical with the root-inhabiting type, 96 Characters of the genus Phylloxera and its place in the system, 96.

The Colorado Potato-beetle again

Its onward march, 97 - It invades the Dominion of Canada, 97 - How it crossed Lake Michigan, 97 - It will probably spread through Ontario unless preventive measures are taken, $98 \rightarrow$ Excellent chance to prevent its spread in Canada, 98- The Paris green remedy, 99 - It is efficient if judiciously applied, 99 - It does not affect the tuber, 99-Natural checks to the increase of the Potato-beetle 100 - The Great Lebia destroying the larvæ, 100 - Bogus experiments, 100 - The trne Remedy, 101 - How to prevent the insect from becoming too numerous, 101 - Plauting early varieties of potatoes, 101.
The Codling Moth again 101

Hay-bands around the trunk of the tree more effectual than rags placed
in the fork, 102 - The Codling Moth is single-brooded in the more north
ern countries, but double-brooded in the latitude of St. Louis, 102 - Sex
ual differences of the moth, 103 -Sexual characters in the genera Ar
gynnis and Grapta, 103 - The Codling Moth also infests peaches, 103.
The Corn Worm alias Boll Worm 104
Its geographical range, 104 - Injury done by it to corn, 104 - It attacks tomatoes and other plants, 105 -Food-plants of the Stalk-borer, 105- The egg of the Corn Worm, 105 - Mr. Glover's account of the habits of the Boll Worm, 106 - The larva is very variable in color, 107 - Its trans- formations, 107 - Number of annual broods, 107 - Amount of damage done by it, 107 - Remedies, 108 - Attracting the moth by sweets, 108 - Heard's moth-trap, 109.
The Fall Army Worm 109

Reports of its appearance in 1870, and how it was generally mistaken for
the True Army Worm, 109 - It was also mistaken for the Boll Worm,
111-Injury caused by it, 111 - How it diffors from the True Army
Worm, 112-It is a very variable species in the imago state, 113 - The
Spiderwort Owlet-moth, and how it differs from the Fall Army Worm
moth, 113 - Number of annual broods and time of appearance of the
Fall Army Worm, 114 - The eggs and how they are deposited, 114
Preventive measures, 115 - It is never injurious during two consecutive
years, 115 -Parasitic checks, 116 -Description of the imago, 116; of
the varicties and the earlier states, 117.

IThe Apple-tree Tent-caterpillar, or American Lackey-moth

The web-nests of the caterpillar and importance of their destruction, 118 - The egg-mass, 118 - The caterpillar and its habits, 119 - Transformations of the iusect, 119 - The imago very variable in color, 119 -Food-plants of the caterpillar, 120 - Remedies, 120 - Parasites and enemies, 120.
Page.
The Tent-caterpillar of the Forest 121
The egg-mass and hom the eggs are deposited by the female moth, 121 - Derelopment of the larra, 122 - Fitch's descriptions of the full-grown larva, 123 - Confusion arising from want of uniform rule in describing larve, 123 - The cocoon, 124-The chrysalis and the moth, 124-The web spun by the caterpillar, 124 -Mr. Ferris's observations on differ- ences in habits, appearance, and food-plants of the caterpillar, 125 - Phytophagic rarieties or species, 127 - Food-plants of the caterpillar, 127 - Its destructive powers, 127 -Remedies, 128 - Natural enemies and parasites, 128 -Summary, 129. 130
The Fall Web-worm
It is often mistaken for the Tent-caterpillars, 130 - It feeds upon almost every kind of trees and shrubs, 130 - The web spun by the worm130 - General appearance of the worm, 130 - The chrysalis and imago,131 - Number of annual broods, 131 - Plants it prefers, 131 - How itdiffers from the Tent-caterpillar, 132-Remedies, 13: - Description of
the larra, 132.
The Blue-spangled Peach Worm 132
Winter retreat of the larra, 132-General appearance of the larva, 133 - Chrysalis and imago, 133-Callimorpha vestalis Packard synonymous with C. fulvicosta, 133-Food plants, 134 - Description of the larva, 134.
The Ash-gray Pinion 134
Food plants of the larya, 135 - Transformations of the insect, 135-Char- acters of the moth, 135-Description of larva and imago, 135-Re- marks on allied species, 136.
BENEFICIAL RNSECTS.
The Glassy-winged Soldier-bug 137
It press upon different species of leaf-hoppers, 137 - Its larva and pupa, 138-How it seizes its prey, 138-Coloration of the insect, 138-It was never observed before to attack the leaf-hoppers of the Grape-rine, 139 - Habits of the Phytocoridee, 139.
INNONIOUS LISECTS.
The White-lined Morning Sphinx 140
Resemblance of the Moth to a Humming bird, 140 - Interest attached to the study of Lepidopterous larre, 140 - Larval variations in the same species, 141 -Foodplants of the larra, 141 - The light and dark colored forms of the larva, 142-Its geographical range, 142 -Parasite, 142.
Two of our Common Butterflies 142
The Archippes Butterfly 143 143Synonjmy of its specific name, 143-Its geographical distribution, 143 -Characters of the Danaider, 143 -Sexual differences, 143 - Food plants,144 - Hibernation, 144 - Two annual broods, 144 - Description of theegg, 144 - The larra and its larral changes, 145 - How the horns of thelarva become longer at each moult, 145- The full grown larva, 146 -Interest attached to the metamorphoses of insects, 146 - How the larvabecomes a chrysalis, 147 - The hardened chrysalis, 147 - Duration ofthe chrrsalis state, 147 - The issuing of the butterfly, 148 - Protectivecolors of insects, 148 - Nauseous odor of the Archippus Butterfly in allits stages, 149 - The Tachina-parasite of the Archippus larva, 149- Act-ion of the parasitized larva, 149 - How the Tachina larva and otherinsectschina-fly, 150 -Difficulties of the study of the Tachinarice, 150 - Twoforms occurring in Tachina archippivora, 150 - The Butterfly often con-gregating in immense swarms, 151 - Probable reasons of this assem-bling in swarms, 15%.
Two of our Common Butterflies-Continned.
Mimicry as illestrated by these two butterflies, with some remarks on the theory of natural selection
The Disippus Butterfly ... Distinguishing characters of the Nymphalida, 153 -Food plants and geo- graphical range, 153 - The egg, 153 - Description of the egg, 154 - Development of the larva, 154 -Description of the mature and young larva, 154 -The insect hibernates as young larva, 155 -Case prepared by the larva for its winter quarters, 155-Molifications of the case, 156 - Peculiar habit of the autumnal larva, 156 - Parasites, 157 - Ta- china-fly, 157 - The Disippus eger-parasite, 157 - The Disippus Micro- gaster, 158. 153Conformity of color between auimals and their surroundings, 159 - Defi-nition of the term " mimicry," 160 -Pungent odor possessed by theDanaide, 160 - Their mode of tlight, 160 - Protection they derive fromtheir peculiar odor, 161 - Pieride and Danaide in the Valley of the Ama-zon, 161 - Mimetic forms of Pierider, 161 - Explanation of the origin ofmimetic forms, 162-Mimicry between the Archippus and DisippusButtertlies, 163 - The Ursula Buttertly, 163-Its caterpillar and chry-salis undistinguishable from those of the Disippus, 163-Its imago hasno protective color, 164 - Mr. Bennett's objections to the theory of Nat-ural Selectiou producing mimetic forms, 165-Mr. Scudder's objections,166 - Discussion of Mr. Scudder's arguments, 167 - Mr. Murray's ob-jections to the connection between mimetic resemblances and NaturalSelection, 170 - Natural Selection not the only power producing mim-icry, 171 - Reasons for discussing in this Report the theory of NaturalSelection, 172-Natural Selection involves belief in the doctrine ofEvolution, 173-Darwinism is neither irreligions nor atheistic, 174.
Page.
REPORTIV.
[Submitted December 2, 1871; published April, 1812.]
Preface3
NOXIOUS INSECTS.
Notes of the Year5
Tine Colorado Potato-beetle :

Its injuries in 1871, 5 - Its appearauce in great numbers in early spring, 5 - Exorbitant price of Paris green, 6 - Natural enemies of the beetle very abundant, 6 - Diminution in numbers of the beetle later in the season, 7 -Causes of such diminution, 7-Damage caused by the Potatobeetle in Missouri, 7 - It invaded Canada in 1870, 8 - The Three-lined Potato-bectle mistaken for it in New York and Massachusetts, 8 -Its further spread eastward irresistible, 8-Slow spread of the insect in the South, 9 - Its present extent northward, 9 - It spreads but does not leave the districts already invarded, 9 - It is not injurious to potatoes in Colorado at a certain altitude, 10 - New food-plants, 10 - It feeds upon cabbage, 11 - Its hiberuation, 11 - Objections raised against the use of Paris greeu, 11 - Paris green is an efficient remedy and now in general use, 12 - Box for dusting Paris green, 12 - Mixing the poison with diluents, 12 - No serious cases of poisoning have come to knowledge, 13 Autidote for Paris green, 13 - Other applications, 13 - Messrs. Saunders's and Reed's experiments with various substances, 14 - Experiments with decoctions of various plants, 15 -Air-slacked lime as a remedy, 15 -Mechanical means, 15 -Squire's Brushing machine, 15-Creighton's
Notes of the Year-Continued.Improved Patent Insect Destroyer, 15-Disadvantage of all mechanicalmeans, $16-$ A simple and effective way of brushing off and killing thebugs, 16 - Natural enemies increasing, 16 - Chickens acquiring a tastefor eggs and larre of the beetle, 16 - Spiders are among its enemies, 17-The 15-Spotted Ladybird and its larva, 18-The Icy Ladybird, 18 -The Ring-banded Soldier-bug, 19 - The Dotted-legged Plant-bug, 19 -The Spined Soldier-loug and its earlier states, 20 - The Nebraska Bee-killer, 21 - The Kansas Bombardier-beetle, 21 -Rove-beetles of thegenera Philonthus and Quedius, 21.
The Codling Moth again22
Time of jear that the first moths appear, 22-Time required for development, 22-Proper time to apply the baudages around the tree, 22It attacks peaches, 22 - Best kind of bandages, 23-Wier's Apple-worm It attacks peaches, 22 - Best kidd of bandages, $23-$ wier's Apple-worm
Trap, 23 -Advantages and disadvantages of the trap, 24 - Overestimating the value of Wiex's trap, 25-Jarring, 25-Mr. Chapin's method of knocking down the wormy apples, 26 - When this operation should begin, 26-Fires, lights and bottles of liquid not to be recommended as a remedy, 27 - Worthlessness of Todd's book "The Apple Culturist," 28-Natural enemies, 28-The Pennsylvania Soldier-beetle and its larva, 28 - The Two-lined Soldier-beetle and its larva, 29 -Description of the larva of Telephorus bilineatus, 30-Summary, 30.
The Preiodical Cicada.. Reproduction, with corrections and additions, of the Chronological table of Broods I to VI from Report I, 31.
The Grape-vine Colaspis again.

The Colorado Potato-beetle.
 The Colorado Potato-beetle.

Improved Patent Insect Destroyer, 15-Disadvantage of all mechanical bas, 16 A for, 16 dar 17 -The 15-Spotted Ladybird and its larva, 18-The Icy Ladybird, 18 The Ring-banded Soldier-bug, 19 - The Dotted-legged Plant-bug, 19 The Spined Soldier-bug and its earlier states, 20 - The Nebraska Beekiller, 21 - The Kansas Bombardier-beetle, 21 -Rove-beetles of the genera Philonthus and Quedius, 21.

Redescription of the larva from well-preserved specimens, 34.
The Harlequin Cabbage-bug.
It was not known in Missouri prior to 1870, 35 - Its geographical range and color variations, 35 - Insect enemies of the cabbage plant, 35 Dr. Lyncecum's account of its habits and injury caused by it in Texas, 36 - Its appearance in Missouri in 1870, 36 - The egg, 37 - The larva and pupa, 37 - Several annual broods, 37 - The mature bug, 37 - Injury caused by it, 37 -Its congener in Europe, 38.

The Rascal Leaf-crumpler

Its proper scientific name, 38 - It is hardly noticed in summer time, 38 Injury caused by it, 39 -It hibernates as larva, 39 - Habits of the larva, 39 - The larval case, 39 - Characteristics of the moth, 39 -Food plants, 39 -Remedies, 40 -Natural enemies, 40 -LeBaron's description of Tachina phycite, 40 -Limneria fugitiva, 41 -Description of imago, lar va and chrysalis of the Rascal Leaf-crumpler, 41-Description of the variety nebutella, 42.

The Walnut Case-bearer

Other case-bearers enumerated, 42 - The case of the Walnut case-bearer, 42 - Differences between the moth and that of the Rascal Leaf-crumpler, 43 - Natural enemies, 43 - Description of Perilitus indagator, 43.

The Apple-leaf Skeletonizer

Its work on the leaves of Apple trees, 44 - The worm and the chrysalis, 44 - Appearance of the moth, $45-\mathrm{Mr}$. Hammond's account of the iujury caused by the worm, '45-The European Acrobasis consociella, 45Remedies and parasites, 45 -Description of imago, larva and pupa, 46.

The Green Apple Leaf-tyer

It occurs almost always in company with the foregoing, 46 - Characters and habits of the worm, 46 - The Chrysalis, 47 - Description of imago, larva and chrysalis, 47.
The Lesser Apple Leaf-folder Page.
Its larva and pupa closely resembles those of the foregoing species, 47 - Mr. Wier's account of its habits, 48 -Remedy, 49.49It is not very injurious in Missouri, 49 - Account of damage caused by itin New York, 50 - The worm and its habits, 50 - Its transformations,50 - Season of the appearance of the moth, $50-$ Remedies, $50-\mathrm{Hab}-$its of Bucculatrix thuiella, 51 - Description of larva and pupa of theApple-leaf Bucculatrix, 51.
The Apple-twig Borer 51
Its frequent occurrence in Missouri, 51 - Characters of the beetle, 52 -The holes made by it in the twigs, 52 - The holes are made only forfood and protection, 52 - The insect breeds probably in the sap-wood offorest trees, 52 - The larva of Sinoxylon bassillare mistaken for that ofthe Apple-twig Borer, 52 - Remedy, 53.
Insects injurious to the Grape-vine53
The Red-shouldered Sinoxylon 53
Characteristics of the insect as imago, larva and pupa, 54-Damage doneby it to grape-vines, fruit trees and Hickory, 54-Description of thelarva and pupa, 54.
Grape Disease 55
The Grape-leaf Gall-louse 55Its scientific name, 55 - The law of priority, 55 - European grape-vinesvalneless in the eastern U. S., 55-Deterioration of some of our nativevines, 56 - Climatic reasons for the failure of European vines, 56 -The principal cause of this failure is the Phylloxera, 56 - Furtherproof of the identity of the American with the European insect, 57 -Reasons for the identity of the Gall-louse with the Root-louse, 57-Further facts respecting the habits of the Root-lonse, 58 -Undergroundforms, 58 - The young lice and their habits,59-Hibernation, 59-The pupa, 59 -The winged female, 59 -Susceptibility of differentvines to the attacks of the louse, 60 - Classification of the North Amer-ican grape-vines accorting to their practical importanoe, 60 - Synop-sis of the True Grape-vines of the U. S., by Dr. George Engelmann,60 -Difficulty of separating the cultivated varieties of grape-vine,61 - Importance of a proper classification of cultivated grape-vines,62-Importation into Europe of resisting American vines, 62-Enum-eration of the cultivated varieties and their susceptibility to the dis-ease, 63 - No variety is entirely exempt from the attacks of the root-louse, 64 -American vines which resisted the root-louse in Europe,64 - Means of contagion from one vine to another, 64-The spread ofthe root-lice from one vine to another, 64 - Transportation of the louseupon the roots of seedlings and cuttings, 64 -Spread of the disease inFrance, 64 -The winged female of the root-louse and her function,65 - The vernal leaf-gall, 65 - Preference of the winged Phylloxera forthe Clinton grape and its allies, 65-Power of flight of Phylloxera ca-ryafolic, 66 - Deposition of the eggs upon the leaf, 66 - Probable rea-sons why the injuries of the Phylloxera are greater in Europe than inAmerica, 66-Outward and more visible effects of the root-disease,67 - Practical suggestions, 67 - No need to destroy the Clinton vines,67 - Influence of soil on the intensity of the disease, 67 - Remedies,68 - Destruction of the gall-lice, 68 - Destruction of the root-lice, 68 -Results of experiments in France with various substances, 68 - Irriga-tion and submersion, 69 -Résumé of the insect's history, 69 - No needof unnecessary alarm, 70.

BENEFICIAL INSECTS.

Silkworms 72The Morus multicaulis fever and its reaction, 72-Increasing attention lately given to silk-culture in America, 72-North America well adapted to the raising of silk, 73 -General outlines of the natural history of the eight species of Silkworms treated of in this Report, 74.

Tie Mulberry Silkworm

Its past history, 75 - Earliest silk-culture in China and India, 75 - Its introduction into Europe, 76 - Value of silk produced in France, 76 The "Silk Supply Association" in England and its objects, 76Countries exporting raw silk, 77 - The name given to silk by different nations, 77 - History of the Mulberry Silkworm in America, 77 - Its introduction and failure of earlier efforts, 77 - Renewal of silk-culture within the past decade, 7%-Silk manufacture in the United States, 78-Fayorable prospects for raising silk in this country, 78-Silkgrowing in California, $79-\mathrm{Mr}$. Prevost's "California Silk-grower's Manual," 79 - False statements and exaggerations in Prevost's book, 79 - Sale of Californian Silkworm eggs, 80 - Disastrous effect of the Franco-Prnssian war on the egg trade, 81 - Success of silk-culture in California dependent on the ability to reel the silk, 81 - Silk-culture in Kansas, 82-Mons. Boissière's silk establishment and its chances of success, 82 - Silk-growing in Missouri, 83-The fall season in Missouri eminently propitious for rearing silkworms, 84 -Natural history of the Silkworm, 84 - Races of the Silkworm produced by domestication, 84 Effects produced on the insect by domestication, 85 - The egg, 86 Larva and larval changes, 86 - Cocoon, chrysalis and moth, 87 - No insect parasite of the silkworm in Europe; 87 - The "Uji" disease in China and Japan, 87 -Diseases of the Silkworm, 88; The Muscardine, its effect and cause, 88; The Pébrine disease, its symptoms and cause, 89; Nature and origin of these diseases, 90 -Other diseases of the Silkworm, 91 - Best varieties or races, 90 - Different forms of cocoons produced by different races, 92 - How best to rear silkwornis, 92 Rearing a very simple process, 92 -Character of climate of the Japanese silk districts, $93-$ Keeping the eggs during the winter, 93 - Hatching of the eggs, 93 - Room and building for the rearing of the worms, 93 The feeding net or fillet, 94 -Importance of carrying all the worms simultaneously through their moults, 94-Regularity of feeding, 95Regulating the temperature, 95-Cocoonery, 96 - Choking the chrysalis, 96 - Egg-laying, 97 - Selecting and fastening the cocoons for breeding purposes, 97 - Treatment of the female moths after copulation, 97 Preservation of the eggs, 97 -Reeling, 98 - Great skill required to accomplish the work properly, 98 - Classification of raw silk, 98 - Preparing the cocoons for reeling, 98 -Objects of and manipulations in reeling, 99 -Best food for the worms, 100 -Varieties of the Mulberry, 100-Cultivation of the Mulberry, 100 - Osage Orange as silkworm food, 100 - Introduction of the Osage Orange into France, 100 - Experiments in America with feeding silkworms on Osage Orange, 101 Advantages and disadvantages of the Osage Orange, 102.

The Cecropia Silikworm

Changes made in its scientific generic name, 103-General appearance of the moth, 103 -Fitch's explanation of the specific name, 104 - Food plants, 104 -The cocoon, 104 -Value of its cocoon as compared with that of the Polyphemus moth, 105 -How the moth issues from the co-

The Cecropia Silkworm.

coon, 105 - The moth immediately after hatching, 106 - The egg, 106 - Description of the larval changes, 105 - Strange habit of birds of using the empty cocoon as a storehouse, 107 - The Cecropia worm cannot be classed as an injurious insect, 107-Samia columbia ought to be considered a variety of cecropia, 107-Parasites, 107 -The Long-tailed Ophion, 107 ; its mode of oviposition, 108; habits of its larva, 108-The Cecropia Tachina-fly, 108; how it affects its vietim, 108; its larva and imago, 109-The Mary Chalcis-fly, 109; how it escapes from the cocoon of the moth, 109 ; description of the imago, 110-The Cecropia Cryptus, 110 ; its habits, 110 ; description of the two sexes, 111 ; how it differs from the allied species, 111.
it differs from the allied species, 111.
The Alianthus Silikworm...
Difference between the silkworms of the Castor-bean and Ailanthus, 112 Introduction of the Ailanthus silk worm into Europe, 113 - Ailanthiculture in Europe, 113 - Its introduction into America, 114 - Disadvantages of the Ailanthus silk worm, 115 - Its acclimatization in America and Australia, 115-Value of the cocoon, 115-Mr. Forgemol's device for unwinding the cocoon, 116 - Natural history of the Ailanthns silkworm, 117 - The egg and mode of egg-layiug, 117 - Larval changes, 117 Pupation, 118 - The imago and its variations, 118 -Food plauts, 118 Directions for raising the worms, 119 - A good word for the Ailanthus tree, 120.

The Promethea Silkworm

Value of the cocoon, 121 - Mode of egg-laying, 121 - Larval changes, 121 -How the cocoon is fastened to the twig, 122-Striking sexual difference in the moth, 122-Callosamia angulifera ought not to be cousidered as a different species, 122-Food plants of the worm, 123-Natural enemies, 123.
The Luna Silkworm
The beautiful appearance of the moth, 123 -The cocoon, 124-Foodplants, 124 - Larval changes, 124 - Season wheu the imago issues, 12% - No parasites of the worm known, 125 - Actias selene probably identical with luna, 125.

> The Polyphemus Silkworm ...
> Mode of egg-laying, 125 -The egg, 126-Food-plants, 126 - Larval changes, 126 - The cocoon, 126 - Mr. Trouvelot's account of the issuing of the moth, 127 - Wonderful vitality of the chrysalis, 127 -Characters of the moth and its variations, 128 - The broad antenne of the male moth mistaken for a third pair of wings, 123 - Difticulty of reeling the cocoon, 129 - Number of annual broods, 129 - Parasites, 129 .
The Yama-Maï Silkworm
Its native home and food-plaut, 130 - Its introduction into Europe and
Australia, 130 - Attempts at raising it in America, 130-The egg and
how it should be kept over winter, 131 - Climate most farorable for the
worm, 131 - The worm and its resemblance to the leaf, 132 -Food
plants, 132-Larval changes, 132-The cocoon and the value of its silk,
133-The moth and its habits, 183 - Difficuities of rearing the worm,
133 - Mr. Adams's account of rearing the Yama-maï Worm in Japan, 134
The Uji parasite, 136.

Tile Perny Silkworm

Its native home, 137 -How it differs from the preceding, 137-Larval changes, 137 - The cocoon and its silk, 137 - The moth, 137 - Its culture in Chinia, 138 - The Tusseh Silkworm, 138.
Silkworms-Continued.
Summary
Successful silk culture possible in this country, 138 - Comparative value of the different species of silkworms, 138.
Page.
INNOXIOUS INSECTS.
The Horned Passalus139Its frequent occurrence in old \log s, 139 - The noise produced by the beetle,139 - It occurs only in decaying wood, 140 - The larva and its excep-tional character, 140 - Description of the larva, 140 - Previous descrip-tions of Passalus-larva, 141 - Description of the pupa, 141.
The Great Leopard Moth141Characters of the larva, 141-Food-plaits, 142-Hibernation and trans-formations, 142-The inago, 142-The larva able to resist extremecold, 143 -Description of the larva, 143.
The Isabella Tiger Moth14Characters of the larva, 143-Food-plants', 143-Cocoon and chrysalis,143 - The moth, 144-The popular name "Fever-worm" in the South,144 - No parasite known of this and the preceding species, 144.
The Acorn Moth Habits of the larva, 144 - Characters of larva and moth, 145 -Description of imago, larva and pupa, 145.

REPORT V.

[Submitted December 2, 1872 ; published A pril 18, 1873.]

Preface

Entomology, its Relations to Agriculture and ifs Advancemett... Definition of Entomology, 5-The term "insect," 5-The four Subkingdoms of the Animal Kiuglom, 6-Characteristics of insec's, 7 - Classification of insects, 8 -Hymenoptera, 9 - Coleoptera, 10 -Lepidoptera, 11-Hemiptera, 12-Diptera, 13-Orthoptera, 14-Neuroptera, 14Osculant and aberrant groups, 15-Importance of entomology as a study, 17 - Ecouomic importance of entomology, 18 -Relation of inseets to Agriculture, 18-Damage inflicted by insects to Agriculture and Horticulture, 19 - Progress of economic entomology, 19-Economic entomology in Europe, 19 - Insects in America much more injurious than in Europe, 21 - State entomologists and entomologists in public positious in the United States, 21 - How to counterwork noxious insects, 23-Prevention, 24 - Checking the spread of injurious insects, 24Cure, 25-Modification of Dr. Hull's Curculio-catcher, 25 - Encouragement of the natural enemies of injurions insects, 26 - Duties of a State Entomologist, 27 - Annual report, 27 - Correspondence and other duties, 28-How to collect, preserve and study insects, 29 - Appliances for collecting, 29 - Use of the umbrella, 29 - The knapsack, 30 - The hand-net, 30 - The frame of the net, 30 - The bag of the net, 31 - Use of the sieve, 31-Sugaring, 32-Attracting moths by light, 32-How to kill insects, 32-The cyanide bottle, 32-Use of chloroform, 33Entomotaxy, 34-Insect pins, 34-How to pin insects, 34-How to mount small insects, 34 -Spreating board, 35 -Drying box, 36 -Insect boxes and cabinet, 37 - Mr. Lintuer's boxes for Lepidoptera, 38Substances for liniug insect boxes, 40 -Preserving insects in the collection, 41 -Relaxing specimens, 41-Breeding insects, 41-Breedingcage, 42 - Note-book of the collector, 43 - How to transmit insects, 44 - Text-books, 44.

NOXIOUS INSECTS.

Notes of the Year Page. 46
The Codling Moth
Experiments with Wier's Apple-worm trap, 46 - Value of different mate-rials for bandages, 47 -Jarring, 48 - Occurrence of the Apple-worm inCalifornia, 49 - Euemies and parasites, 44 - The Ring-legged Pimpla,49 - The Delicate Long-sting, 50 - Other enemies, 51 - Efficiency ofthe Spined Soldier-bug, 51 -False doctrines for exterminating the Cod-ling Moth, 51.
Tre Colorado Potato-beetle 52
Its comparative harmlessness in 1872,52 - New food-plants, 52 - Its pro- gress eastward up to 1872, 52-Experiments with Paris green, 53 - New enemies, 53 - The Rust-red Social Wasp, 54 - The Rose-breasted Gros- beck, 54 .
The Apple-twig Borer
It attacks also pear twigs, 54 - It has been bred from grape-canes by Ir. Shimer, 54.
Egg of the Horned Passalus55The egg, 55-The newly hatched larva, 55-Rapid development of theinsect, 55.
Egg of the Common May beetle: 55
Description of the eggs and how they are deposited, 55.56
Characteristics of the eggs and where they are deposited, 56.56
Correction of the figure given in Report III of the egg-belt, 56 .
Counterworking the Tobacco Worm56
Mr. White's method of planting the Jamestown Weed among the potatoes and poisoning the blossoms thereof, 56 .
The Grape Phylloxera37
Its popular name, 57 - Accounts of the unusual mortality among grape.vines in the spring of 1872,57 - Causes of this mortality given in theaccounts, 59 - Excessive drouth and overbearing, 60 - The Phylloxerais the true cause, 60 -Actual proof of the Phylloxera having causedthe mortality among grape-vines, 61 - Influences that favored the in-crease of the lice in 1872, 61 - Importance of a full understanding andmanagement of the Phylloxera, 62-Its range in North America, 62 -Its spread in Europe, 63 - Inconstancy in the habits of the gall-lice,63 - The leaves of Clinton vine no longer affected by the gall-lice since1871, 63 - Method of formation of the leaf-gall, 64-Relative immunityof American vines in Europe, 64 - Propagating American varieties fromcuttings, 65 -Appreciation of American vines in Europe, 66 - Carelessstatement published as to the immunity of Labrusca-vine, 66 - Graftingthe grape-vine, 67 - New theories, 67 - The Phylloxera is the true causeand not the effect of the disease, 67 - Mr. Laliman's theory that the in-sect has always existed in Europe, 68 - Oidium Tuckeri of Europe andAmerica identical, $69-\mathrm{Mr}$. Saunders's account of the presence of OidiumTuckeri in Anerica, 70 - Means of contagion of the disease from one vineto another, 69 -Flying capacity of the winged Phylloxera, 70 - Themale louse, 71-Remedies, 71-Efficacy of carbolic acid and soot,71-Value of submersion or irrigation, 72 - Sprinkling with quick-lime,ashes, etc., 72-Mr. Lichtenstein's experiments to allure the lice, $72-$Experiments with carbolic acid, 73.
Page.
73
The Oyster-shell Bark-louse of the Apple
Its occurrence in Missouri, 74 - Its appearance in Luray County, Missouri, 74-Mr. Hanan's account of 1ts spread, 75 - Its occurrence in Southern Missouri, 76 -Its occurrence in Mississippi and Georgia, 78 - Its ap- pearance in Kansas, 79 - It is double-brooded in the South, 79 - The wasy secxetion of Homoptera, 80 - The newly hatched louse, 80-The larval scale, 81 -Development of the female scale, 81 - Growth of the male scale, 82 -The male louse, 83 -Rare occurrence of the winged male, 84 - Agamic multiplication, 85, - Mode of spreading, 85 - Food- plants, 86-Varieties of the Apple tree preferred by it, 86 - Enemies
and parasites, 87 ; Mites, 87 ; Aphelinus mytilaspidis and Dr. Le Baron's
account of its habits, 88 - Easy transportation and introduction of
the Aphelinus, 90 -Remedies, 90 -Application of oily substances, 90

- Bibliographical and Descriptive, 91 - The generic name, 91 -Signo
ret's classification of the Coccide, 92 - Specific name, 92 -Characteris
tics and habits of three allied species, 93-A new name necessary for our
apple-tree species, 94 -Description of the eggs and the winged male,
95 ; of the metle and female scale and of the female louse, 96 .
The Pine-leaf Scale-insect
Nature of the malady cansed by it, 97 - Natural history of the insect, 98-The male, 99 - There are two annual broods, 99 - It is confined to the Pines proper, 100-Natural enemies, 100; The Twice-stabbed Ladybird, 100; The Painted Ladybird and description of its larva, 101 -Remedies, 101 - Stripping the old leaves, 102 -Application of pow- dered and liquid substances, 102.
The Hickory Bark-borer
Accounts of the damage caused by it in Missouri, 103-Habits of the Euro- pean Scolytus destructor, 104 - Various kinds of Hickory attacked by the Hickory Bark-borer, 105-Its natural history, 105 - Natural enemies, 106-Descriptions of the Three-banded Spathius, 106 - Mr. Cresson's description of Bracon scolytivorus, 106 - Remedies, 107 -Description of the imago, 107 -Is it different from Scolytus 4 -spinosus? 107.103
The Rose Chafer
Great damage caused by the beetle in 1872, 103-Remedy, 109 - Harris's account of its natural history, 109.108
The False Chinch-bug 111
It was not known as injurious before 1872, 111 - Accounts of injury done by it, 111 - How it differs from the true Chinch-bug, 112 - Its probable natural history, 112-Description of imago, larva, and pupa, 113- Variation in the imago, 113 -Its great abundance in the Fall of 1872, 114.
Insects injurious to the Grape-vine 114
The Grape-vine Apple-Gall 114
The breast bone of Gall-gnat larve, 114 - The gall mistaken for an apple, 114 - Form of the gall, 115 - Haliits of the larva, 116.
The Grape-vine Filbert-Gall 116Appearance of the gall, 116 - Larva of the gall-maker, 117.
The Grape-vine Tomato-gall 117
Its curious resemblance to a tomato, 117 - Various shapes assumed by it, 118- The larva, 118 - Enemies of the larva, 118.
The Grape-leaf Trumpet-gall 11εCharacteristics and occurrence of the gall, 118.

	Pag
Eggs in and on canes and twigs. Probable eggs of the Jumping Tree-cricket, 119 - The egg-punctures on grape-cane, 119 - Characters of the egg, 119 - General appearance of the crickèt, 120.	
Eggs of the Snowy Tree-cricket, 120-Trees and shrubs attacked by this cricket, 120 - The egg, 120 - Habits and natural history, 120 - Injury done by it, 121 - The eggs mistaken by Fitch for those of the Buffalo Tree-hopper, 121.	
Egg-punctures of the Buffalo Tree-hopper, 122-Development of the larra, 121 - Characters and habits of the perfect insect, 122-Eggpunctures of some unknown Tree-hopper, 122.	
Egg-punctures of the Frosted Lightning-hopper, 122-Development and babits of the insect, 122.	
Egg-punctures probably of Orchelimum glaberimum, 123-The egg, 123Characters and habits of the imago, 123.	
Eggs of the Oblong-winged Katydid, 123 - They have been mistaken by Harris for those of the Broad-winged Katydid, 123-Ovipositors and modes of egg-laying in the three Katydids occurring in Missouri, 124 - Increase in thickness of Katydid eggs before hatching, 124.	
The Potato-worm falsely considered as a stiuging caterpillar, 125 -General harmlessness to man of insect larve, 125-Stinging caterpillars in Europe and North America, 126 - List of such larvas in U. S., 126-Description of larva and chrysalis of Acronycta xylinoides, 126.	
The Buck Moth or Mata Moth.. Flight and characteristics of the moth, 127 - The egg and mode of egglaying, 128 - Appearance of the full-grown larva, 129 - Larval changes, 129 - Color variations of the larva, 130 - Habits of the young larva, 130 - The sting of the larva, 131 - The pupa, 131 - Issuing of the moth, 132 - Irregularity and retardation in development, 132; the species benefits thereby, 132 - Food plants, 132 - Natural enemies, 132.	
The Io Mo	13
The male and female moth, 133 - The eggg, 134 - The larra and its urticating power, 134 - Larral changes, 135 - Pupation, 135 -Food plants, 136 - Parasites, 136.	
The Green-striped Maple-worm....	
Account of its occurrence in great numbers in Kansas, 137 - Injury done by it to Soft maples, 138 - The egg, 138-Larval changes, 138 -The chrysalis, 139 - The imago, 139 - Natural enemies, 139 - Description of Belvoisia bifasciata, 140 - Remedies, 141.	

INNOXIOUS INSECTS.

The Hellgrammite Fly e... 143
The eggs, 143 - Respiratory apparatus of the larva, 143 -Habits of the
larva when about to transform, 143 - The pupa, 144-Sexual difference
in the imago, 145.
The Goat-weed Butterfly 145

The egg, 146 - Habits of the larra, 146 - Larval changes, 146 - Transformation, 147 - New food-plant, 147 - Simulation of the color of the food-plant by the larra, 147 - Two annual broods, 148 -Hibernation of the imago, 148 - Natural enemies, 149.
Page.On a new genus in the Lepidopterous Family Tineidæ with remarks onthe fertilization of YuccaGeneric characters of Promuba, 150 - Description of Pronuba yuccasella,151 - Plants requiring the aid of insects for fertilization, 152-Fertili-zation of Orchids, 152 - Eructification of Yucea, 153-Yuccas must relyon insects for fertilization, 153 - Insects frequenting Yuccas, 154-Di-urnal and nocturual habits of Pronuba, $154-$ How the female mothfertilizes the plant, 154 - Oviposition, 155 - The larva within the youngfruit, 155 -Description of the larra, 155 -Only a small percentage offruit not infested by the larva, 156 - The larva leaves the capsule andenters the ground for hibernation, 156 - Mutual adaptation of plantand insect, 156 - The moth doubtless occurs wherever Yuccas growwild, 157 -Easy transportation of the cocoon, 158-Further factsregarding the fructification of Tucca filamentosa and gloriosa, 158-Yuccas seeding in Europe, 159 - Range of the insect, 159 - Mr. Stain-ton's opinion on the characters of the Yucca moth, 160.
REPORT VI.
[Submitted December 2, 1873; published March, 1874.]
Table of Contents 3
Preface 6
NOXIOUS INSECTS.
Notes of the Year9
The Codlijg Motit 9Failure of the apple crop in $1873,9-$ Dr. LeBaron's observations on thehabits of the worm, 9 -Proportion of worms leaving the fruit beforeit falls, 10 -How it affects pears, 10 -Time and method of using ban-dages, 10 - Westward spread of the insect, 10.
The Colorado Potato-beetle 11
How it has affected the price of potatoes, 11 - New food-plants, 11 - Its progress eastward during 1873, 12-Improved methods of using Paris green, 13 - Device for jarring off the longs, 14 - European publications on the insect, 15 -Danger of its introduction into Europe, 15-Pre- cautionary measures to be taken in Europe, 16.
The Cotron Worm
Paris green suggested as remedy, 17 - Address before the National Agri-17cultural Congress, 17 - Mr. Glover's summary on experience with Parisgreen, 19 -Experiments with the poison, 19 - Johnson's Sprinklingmachine, 20 - Patents on Paris green, 20 - The Royall misture, 21 -Hibernation of the insect, 22-Natural enemies, 23-Geographicalrange, 23 - Position of the moth when alighting, 24.
The Canker Worm.24Dr. LeBaron's summary of remedies, 24-Mr. Milliken's experience with therope and tin trap, 25 - The Paris green remedy, 26 - A new trough, 26 -Birds which destroy the morm, 27 - Mr. Mann's observations on the in-sect, 23 - Two species have hitherto been confounded, 28 - The EnglishSparrorv and the increase of the White-marked Tussock-moth, 29.Insects injurious to the Grape-vine.30
The Grape Pimlloxera. 30The term "Phylloxera", 30-Bibliographical history, 30-Characters ofthe genus and its position in the system, 33-Biological history, 33-Different forms which the insect assumes, 33-The gall-inhabitingform, 34-The root-inhabiting form, 38-Balbiani's discorery of the
true sexual individuals and the winter egg of Phylloxera quercus, 41 The winter egg not essential to the winter life of the Grape Phylloxera, 42-Polymorphisin in Phyllosera, 43-Conclusive proof of the identity of the root- and gall-lice, 44 -Practical considerations, 44 - The more manifest and external effects of the disease, 44 - Mode of spreading, 45-Swarming of winged specimens of Phylloxerc caryefolice, 45Power of flight in the Grape Phylloxera, 45 - Spread of the disease through the winged females, 46 - Susceptibility of different vines to the disease, 46 -Practical importance of knowing the more resisting and more susceptible vines, $\mathbf{4 6}$ - List of the cultivated species and varieties of vines indicating their relative susceptibility to Phylloxera, 47 - Prophylactic means of coping with the disease, 43 -Grafting the more susceptible onto the roots of resisting vines, 48 - Other preventive measures, 50 - Natural enemies, 50 - Insect enemies of the gall-louse, 50 - Enemies of the root-louse, 52-The Phylloxera mite, 52-Different forms assumed by mites in their development, 52 - Hoplophora arctata, 53 - Peculiarities of the Oribatide, 54 - Direct remedies, 55 - Submersion a perfect remedy, 55 - Application of pure insecticides without satisfactory results, 56-Range of the insect in America, 57- Injury caused by it in America, 58-Reasons why the insect is more injurious in Europe, 59 -False theories, 60 - The Phylloxera is the cause and not the effect of the disease, 60 - It is a native American insect and has been imported into Europe, 62 - It is peculiar to the Grape-vine, 63 - The American Oak Phylloxera and its natural history, 64 - Conclusion, 65. Appendix and Notes to the Article on Grape Phylloxera...........

Diagnosis of Phylloxera vastatrix, 66-Influence of the iusect's puncture, 67 - The supposed male of the gall-louse, 67 - The non-cultivation of the Clinton grape, 67 - Transient nature of the leaf-galls, 68 - Constancy of the differences between the forms assumed by the insect, 63 -Supposed sexual individuals, 68 - Number of generations annually produced, 69 - Number of molts, 69 - Transplanting root-lice on to the leaves, 69 - Nature of the swelling on the roots produced by Phylloxera, 70 - The true Grape-vines of the United States, by Dr. G. Engelmann, 70 - Exceptional instances where the European Vine has succeeded in America, 76 - Grafting the more susceptible onto the roots of the resisting varieties, 78 -Deseriptions of Tyroglyphus phylloxerce and Hoplophora arctata, 81 -Efficacy of inundating the vineyards, 82 -Facts showing that the disease of Grape-vines in America is principally caused by Phylloxera, 82-Description of Phylloxera rileyi, 86-The true sexual individuals and the winter egg, 86.
The Blue Caterpillars of the Vine..

1. The Grape-vine Epimenis, 87 - Habits and characters of the Iarva, 87 - Description of larva and chrysalis, 88.
2. The Beautifnl Wood Nymph, 88 - Characters and food plants of the larva, 88 - The moth and the egg, 89 - Description of the egg and larva, 89 - Of the chrysalis, 90.
3. The Pearl Wood Nymph, 90 -Its larva almost undistinguishable from that of the foregoing species, 90 - Food-plant, 91-Distinguishing characters of the moth, $91-\mathrm{Mr}$. Lintuer's description of the larva, $92-\mathrm{Mr}$. Lintner on the difference between the larva of Eudryas grata and \boldsymbol{E}. unio, 93.
4. The Eight-spotted Forester, 94—Description of the larva, 94 ; Chrysalis and imago, 95.

> Insects injurious to the Grape-vine-Continued.

Tife Blue Caterpillars of the Vine-Continued.
Summary, 95 -Comparison of the larve of these four species, 95 Remedies, 96.
The Red-legged Ham-beetle ..
Its popular name, 96 -It has been the cause of an interesting law-suit, 96 ; Entomological information necessary to a just verdict, 98 - Another case before a jury requiring botanical knowledge, 98 - Injury caused by the beetle in St. Louis, 99 - The eggs, and how they are deposited, 99 - The larva and its habits, 99 - The pupa, 99 - Prevention, 100 Other species associated with it, 100 - Habits of other species of Clerider, 101 - How Mecrobia ruficollis saved the life of Latreille, 101 - Description of the larva of Corynetes rufipes, 101 -Description of the pupa, 102.
The Clover-hay Worm
Its geographical distribution, 102 - It has probably been imported from Europe, 101 - Its past history and accounts of damage caused by $i t$, 102-Its natural history, 105-Remedies, 105-Description of larva and chrysalis, 103; of the imago, 107-Its allied congener, Asopia olinalis, 107.
The Legged Maple Borer ..
The burrows of the larva, 108-Appearance of the moth, 108-Remarks on the nomenclature of the species, 108 - Injury caused by it to maples, 109 - It attacks only trees already injured by some cause or another, 109 - Remedies, 110 - Description of imago, larva and pupa, 110.
The Raspberry Root-borer.
Work of Oberea perspicillata in canes of Raspberry and Blackberry, 111 Injury caused by the Root-borer, 111 - Geueral appearance and habits of the worm, 112-Description of imago and larva, 113.
The Northern Brenthian.
Its occurrence and distribution, 113 - Characteristics of the beetle, 114 Fighting habits of the males, 114 - How the male assists the female in ovipositing, 115 - How much time is required for the transformations of the insect, 115 - Habits of the larva, 115-Description of the larva, 115 ; of the pupa, 116 - Real position of the Brenthians in the system, 116 - The specific and generic names, 116 - How another larva has been mistaken for that of the Northern Brenthian, 117 - Description of this larva, which evidently belongs to the Tenebrionidæ, 118.
The Jumping Sumach-beetle
Sumach industry in Europe and America, 118-Species of sumach possessing economic value, 119-Appearance and habits of the beetle, 119 - The egg-masses, 120 - Development and habits of the larva, 120 - Transformation, 120 - The two annual broods, 120 - Injury caused by it to the sumachs, 121 - Geographical range, 121 - Remedies, 121 Description of larva and pupa, 121 - Variations of the beetle, 122.

BENEFICIAL INSECTS.

Abstract

The Unadorned Tiphia or White Grub Parasite Other enemies of the White Grub, 123 - Cocoon and larva of Tiphia, 123 - It is undoubtedly a parasite of the White Grub, 124-Characters of the genus Tiphia, 124 - Habits of Tiphia femorata, 124 - Habits of the Tiphia larva, 124-Characters of the Unadorned Tiphia, 125-Beetle parasitic upon it, 125 -Description of larva and imago, 126 - The species has been described under three different names, 126.

INNOXIOUS INSECTS.

Page.
The Dominican Case-bearer 127
Characters of the beetle, 127 - Mode of oviposition, 128 -Oriposition of Chlamys plicata, 128 - The young larva and its food habits, 129-The case of the larva, 129 - Characters of the larva, 130 - Time required for its development, 130.
The Yucca Moth 131Its natural history completed, 131 - Description of the chrysalis, 131-Hatching of the chrysalis, 132-Method of oviposition, 133-Oviposi-tion is followed by pollination, 134 - The egg in the young fruit andthe embryo larva, 134-It is the only insect that can well fertilize theYuccas, 135.
Hackberry Butterflies 136
The European Purple Emperor, 136 - Insufficient former account of their earlier states, 136 - Species of Celtis in Missouri, 137.
The Eyed Emperor 137
The full-grown larva, 137 - Habits of the larva, 138 -Pupation, 138-The imago, 139 - The egg and the young larva, 139 -Two annual broods, 139 - Hibernation of the young larva, 140.
The Thwny Emperor 140
How it difters from the Eyed Emperor, 140 - The egg, 141 - Larval changes and habits, 141 - Egg parasite, 142.
Bibliographical 142
The generic name, 142-The specific names of the two species, 143 - Fabricius's original description of Lycaon and Herse, 144 - Other species of the genus in the United States, 145 - On the validity of Alicia, 145 - Descriptions of the earlier states of both species, 146 - Their popular names, 148 - The scientific specitic names, 149.
Katydids 150
General considerations, 150 - Spring in Europe and America, 151 - Stridu- lating noise produced by crickets and grasshoppers, 152 -Sounds inaudi- ble to man, 152-Grasshoppers, Katydids, Locusts, 153 - Habits and general appearance of our Katydids, 154 - They oviposit above ground, 154, - Their ovipositors not rudimental, 155.
The Angular-winged Katydid 155
It is the most common species in Missouri, 155 - General character of the insect, 155 - The eggs, 155 - Erroneous statement concerning the egg, 156 - How the female deposits the eggs, 156 - Number of eggs laid by the female, 158-Hatching of the larva, 158-Food of the larva, 158- Changing from the pupa to the perfect state, 159 - Its song, 159 - It is capable of domestication to a certain degree, 160 - Description of the immature states, 161 - Natural enemies, 162 - The Back-rolling Wonder, an egg-parasite, 162 - Curious habit of the female Antigaster, 162- Description of Antigaster mirabilis, 163-Striking sexual differences, 163.
The Narrow-winged Katyidid 164
Distinguishing characters, 164 - Method of oriposition, 165 - The egg, 165 - Its song, 165 - Deseription of larva and pupa, 166.
The Broad-wingiel Katydid. 167
It is the true Katydid, 167 - Distinguishing characters, 167 - Mode of oviposition as observed in confincment, 167 - Mr. Jaeger's erroncous statement regarding the oriposition, 168 - Its song, 168.
The Oblong-wincele Katyoid169It has not yet been found in Missouri, 169-Distinguishing characters,169 - The eggs not jet known, 169 - Abuormal female specimen, 169.
REPORT VII.[Submitted at time of publication, April, 1875.\}
Page.
III
Table of Contents VII
NOXIOUS INSECTS.
The Colorado Potato-beetleIts gradual spread eastrvard, 1 - It reached the Atlantic during the jear1874, 1 - Injuries done during the jear 1874, 2-Alarm about it inEurope, 3 - Prohibiting the importation of American potatoes by Euro-pean governments, 3 -The insect probably introduced into Europein the perfect form, 3-It would doubtless thrive in Europe if im-ported, 4 -Its ravages exaggerated and underrated, 5 -On the safetyand advisability of the use of Paris green, 8-Past experience withthe poison, 10 -Influence of Paris green on the plant and on the soil,11-Influence of the green on man indirectly through the soil orthrough the plant, 13 -The beetle eats as well as the larva, 14 - Itpasses the winter as imago, 14 - New food-plants, 14 - New means ofdestruction, 15 -The Gray Sprinkler, 15 - The proper scientific nameof the beetle, $\mathbf{1 6 - M r}$. Carrière's ridiculous statements, 17.
The Chinch Bug19Its disastrous work in 1874, 19 - Circular distributed among farmers, 19 -Appearance and transformations of the Chinch Bug, 20 - The short-winged form, $20-$ Description of the Chinch Bug and its earlier states,21 -Its past history in America, 22-Its past history in Missouri, 22-Destructive powers of the Chinch Bug, 24-Its injuries in 1874, 24-Its injuries in Missouri in 1874, 25 -Food-plants, 26 -Time requiredfor the complete development of various insects, 27 - Number of an-nual broods, 27 - Its rapid increase, 28 - Where the eggs are laid, 28 -Flight of the Chinch Bug, 29-Its migrations on foot, 30 -Heavyrains destructive to it, 30 - Direct remedies, 31 - Irrigation, 31 - Pre-ventive meásures, 32-Burning, 32-Rolling, 33-Manuring and earlysowing, 34 - Mixing seed, 34 -Preventing the migration of the bugsfrom one field to another, $3 \tilde{5}$-Importance of winter work and com-bined action, 36 -Other possible remedies, 37 - Abstaining from thecultiration of grains, 38-Natural enemies, 38; Ladybirds, 39 ; Lace-wing fly and habits of its larva, 40 ; The Insidious Flower-bug andthe Many-banded Robber, 41 - Birds destructive to the Chinch Bug, 41 -Discussion of other proposed remedies and preventive measures, 41-The Chinch Bug injurious to stock, 43 - Prognosticating, 44-Unneces-sary fears, 44 - Bugus Chinch Bugs, 45-The False Chinch Bug, 46-The Insidions Flower-bug and the Asl-gray Leaf-bug, 47 - The Flea-like Negro-bug, 48 - Recapitulation, 49.
Appendix to the article on the Chinch Bug51List of correspondents who replied to the circular, 51 -Questions an-swered by correspondents, 52 - Answers given ly correspondeats, 53.
Extent of its ravages in fruit and shade trees, 71 - Its natural history, 72 -Natural enemies, 73 - Chaleid larva, 74 - The Cherished Bracon, 75 -The Useful Labena, 75 - Ants, 76 -Remedies, 76 - Keeping young trees vigorous and healthy, 77-Coating the trunks and larger branches with soap and other greasy substances, 77 - Scraping, 78 - Wrapping wire gauze around the trunk, 79 - Cutting out the newly-hatched larva, 79.

Abstract

Canker Worms Confusion regarding the two species of Canker Worms, 80 - Distinguishing characters of the Spring Canker-worm, 80 -Description of egg, larva and chrysalis of Anisopteryx vernata, 82 - How the Fall Cankerworm differs from the preceding, 83-Description of egg, larva, and chrysalis of Anisopteryx pometaria, 84 - Practical importance of distinguishing the two species, 85 -Comparative deseription of the Spring and Fall Canker-worms, 86 - Couclusion, 88 - Extracts from the original essay on the Canker Worm by W. D. Peek, 89.

Completion of its natural history, 90 - The true sexual individuals discovered, 91 - Epitome of the life-history of the Grape Phylloxera, 91 Different forms presented by the species, 93 -Its power to change its labit, 93 - Specific identity of the gall- and root-louse, 94 - Untrustworthy experiments made by the Department of Agriculture, 95Proof of the identity of the two forms, 95 -The gall-louse is but a transient form, 96 - Where do the winged females lay their eggs? 96 The winged female lays the egg wherever she is carxied by the wind, 97--Particular part of the vine chosen by the winged female for laying her eggs, 98 - The true sexual individuals, 98 - Injury done loy Phylloxera in America during the year 1874, 99 - Range of the insect in America, 101 - Does it occur in South Carolina and Georgia? 102-The Pbylloxera in California, 103-Injury done during the year 1874 in France, 103 - Its spread in Europe, 104 - Direct remedies, 105 - Natural enemies, 106 - Susceptibility of different varieties of grape-vine, 103 -Grafting as a means of counteracting the work of Phylloxera, 108 - Underground grafting, 109 - Methods of grafting above ground, 112 - Roots to use as stock, 115 - Varieties to graft, 116-American grape-vines abroad, 116.
Appendix to the article on Grape Phylloxera
Synopsis of the American species of the genus Phylloxera, 117-The American Oak Phylloxera, 118; Its natural history, 119 -Description of Phylloxera rileyi and the different forms presented by it, 119 - Further points in its life-history, 120.
The Rocky Mountain Locust.
Its natural history, 121 - Method of egg-laying, 121 - The egg, 122 The newly-hatched locust and its development, 122 - Where the eggs are laid by preference, 123 - The invading swarms are formed by a single species, 124 - Differences between the Rocky Mountain and the Redlegged Locusts, 125 -Mr. Thomas's description of the Red-legged Locust, 126 - Variations, 126 - Measurements of Caloptenus femur-rubrum, 127 - Description of Caloptenus spretus and of its larva and pupa, 129 Measurements of Caloptenus spretus, 130 - Summing up the difference between the two species, 132 - Chronological history, 132 - Locust invasions in the Old World, 132-Accounts of earlier locust invasions in America, 133 - Chronological history of the Rocky Mountain Locust, 134 - Earlier invasions, 135 - Data regarding the invasion of 1867, 137 - The invasion of 1873,141 - The invasion of 1874,143 - The invasion of 1874 in Missouri, 144 - Questions addressed to correspondents in each county in Missouri regarding the locust, 144 - Summary of the answers given by correspondents, 145 - The invasion of 1874 in Kansas, 148 - in Nebraska, 151 - in Iowa and Minnesota, 153 - in Colorado, 154 - in Dakota and Manitoba, 155 - Flight and ravages of a locust swarm, $\mathbf{1 5 6}$ - Food plants, 158 - Time of appearance of invading
The Rocky Mountain Locust-Continued. swarms, 160 - Eastern limits of locust invasions, 161 - Native home of the species, 162 -Explanation of the migratory instinct, 164 -This locust cannot thrive in the Mississippi Valley, 164- It is a subalpine insect, 165 - What injury may be expected in Missouri in 1875, 166Ravages of migratory locusts in the Atlantic States, 167 - Description of the Atlantic Migratory Locust, 169 - Differences between Caloptenus spretus, differentialis and atlanis, 170 - Injury from other, non-migratory, locusts, 171 - The Differential and Two-striped Locusts, 173-Enemies and parasites, 174 - Birds destroying locusts or their eggs, 174 - The Silky Mite, 175 - The Locust Mite and Dr. LeBaron's description thereof, 176 - The Anonymous Tachina-fly, 178-The Common Flesh$\mathbf{f l}_{y}, 180$ - Remedies, 181 - Classification of protective measures, 181 Natural agencies, 181 - Destruction of the eggs, 181 - Destruction of the young wingless locusts, 182 - Driving off the winged locusts, 184 Further suggestions, 185 - Locusts as food for man, 186 - The popular and scientific names of the insect, 187 -Prairie tires vs. the Rocky Mountain Locust, 189.
Appendix to the article on the Rocky Mountain Locust
Letters of three correspondents from Texas and Kansas regarding Locust invasions, 191.

REPORT VIII.

[Published May, 1876.]
Preface III
Table of Contents V
NOXIOUS INSECTS.
The Colorado Potato-beetle1
Damage during the year, 1 - Abundant in Atlantic States, 1 -Swarming on Coney Island, 2 - Injuring Egg-plant, 2-Its scientific name, 2Additional enemies, 3-Eaten by the Crow, 3-Remedies, 3-Cost of applying Paris green, 3 -Preparing the poison, 3-Use of straw as a protection, 4-Machine for sprinkling, 4-Machine for brushing off the insects, 4 - Experience with Paris green, 5-Experiments of Profs. R. C. Kedzie and Wm. McMurtrie show that it may be used with safety, 6 Trial of other remedies, 6 - The insect's native home, 8-The theory that it came from the Rocky Mountain Region essentially correct, 10 Poisonous qualities of the insect discussed, 10.
Canker Worms12
Two species long confounded, 12 - They differ generically; new genus (Paleacrita) proposed for one, 13-The two compared in all stages, 13, 14 - Characters of the genus Faleacrita, 17 -Distinguished as Spring and Fall Canker-worms, 17 - Practical considerations from their differences of habit, 18 - Stunting the larvæ does not produce male moths, 19 -Traps recommended, 20, 21.

The Army Worm

Its generic name, 22-The term "Army-Worm" applied to various insects, 23-Past history of the Army Worm, 24-Known since 1854 in Missouri, 27 - It followed the 1871 conflagration around Peshtigo, Wis., 28 -Its history in 1875 ; very general all over the country, 28,29 -Its history in Missouri in 1875, 30 - Sexual differences, 30 - Sexual organs illustrated, $30,32-$ Natural history of the species, 32-Illustrated in all states, 32, 33 - It occurs in Europe, Asia, New Zealand, and Austra-
lia, 34 - Description of the egg, 34 - Where the eggs are laid, 34 - Conclusions drawn from structure, 36,37 - When the eggs are laid, 40 -In what state does the insect hibernate?, 43 -Habits of the Worm, 45Why it escapes detection when young, 45 - Why it travels in armies, 46 - Time of its appearance, 46-Are there one or two broods?, 47 The Fall Army-worm, 48-How distinguished from the real Army Worm, 48 - Plants preferred by the Army Worm, 49 - Its sudden appearance and disappearance, 50 - It swarms during wet preceded bs very dry seasons, 51 - Its natural enemies, illustrated, 52-Remedies, 54 - Philosophy of winter burning, 54, 55 - Prevention, 55 - Summary of the leading facts concerning it, 56 .

The Rocky Mountain Locust

Previous experience in spring 1867, 57 - Predictions verified, 58 - General outlook in spring of 1875,60 - Extent of country ravaged, 60 -The outlook in Missouri, 61 - Country ravaged often as bare as in midwinter, 61 -Account by counties, 62-Atchison County, 62-Andrew County, 62 - Benton County, 63 - Barton County, 63 - Bates County, 63 - Buchanan County, 64 - Caldwell County, 64 - Cass County, 64 Clay County, 67 - Clinton County, 68-Dade County, 68 -DeKalb County, 69 -Gentry County, 69 - Hickory County, 69 - Holt County, 69 - Henry County, 69 - Jackson County, 69 - Johnson County, 72 Lafayette County, 73 - Nodaway County, 73 - Newtou County, 73 Pettis County, 73-Platte County, 73-Ray County, 74-Saint Clair County, 75 - Vernon County, 76 - Condition of things in other States, 76-Kausas, 76 -Nebraska, 79 - Iowa, 81 - Minnesota, 81 - Colorado, 84 - Dakota, 85 -Montana, 87 - Wyoming, 88 -Texas, 88 -Indian Territory, 88 - Manitoba, 89 - Damage done in Missouri, 89 - Destitution in Missouri, 91 -Address of Relief Committee from Saint Louis Merchants' Exchange, 93 - C'ases of starvation, 94 - The Governor's proclamation, 95 - The locusts not a divine visitation, 97 - Natural history; Mode of molting illustrated, 98 -Habits of the unfledged young, 100 Directions in which the young travel, 101 - Rate at which they travel, 102- They reached but a few miles east of where they hatched, 102Not led by "Kings" or "Queens," 103 - The species taken for such, illustrated, 103,104 - The exodus in 1875,104 -Time of leaving of the winged insects, 104 - Direction taken by the winged insects, 105 - Destination of the departing swarms, 106 - Native home of the species, 109 - Views previously expressed contirmed, 110 - Conditions of migration, 112 - Conditions which prevent the permanent settlement of the species in Missouri, 113-Modification of the species by climatic conditions, 114, 155 - Defiuition of the species, 114-How distinguished in all stages from species most nearly allied, 117-Experience in spring of 1875,118 - Contrast in summer and fall, 119 - No evil without some compensating good, 120-Injury to fruit and fruit trees, 121 -Food plants, 121 -Only one kind of plant not touched under all circumstances, 121-Changes that followed the locusts, 121-The widespread appearance of a new grass, ordinarily unnoticed, 122 - Appearance of large Worms, 123 - The Locusts did not return in the fall, 124-Natural enemies, 124-Remedies against the unfledged insects, 125-Artificial means of destroying the eggs, $1: 25$ - Various means of destroying the unfledged young, 126 - They are within man's control, 126 , - The proper ditch to make, 128-Machines used in Colorado, 129-Best means of protecting fruit trees, 130 - How to avert locust injuries, 131 - Pre-

The Rocky Mountain Locust-Continued.
vention, 131 - Legislation, both national and local, 133-Bills before the Forty-fourth Congress, 133 - Need of a National Entomological Commission, 133 - The bounties offered in Minnesota, 138 - The requisites of a good bounty law, 133, 139 - How a bounty law would work, 140 - Suggestions, 140 - Lessons of year, 142 - Locusts as food for man, 143-They have been used from time immemorial, and are used extensively at the present day, 145 -The Rocky Mountain species quite palatable, 146 - Mode of preparation, 147 - False opinions and predictions, 148 - Unnecessary alarm caused by other species, 148 - Injuries of native species in 1875, 150 - Locust flights in Hinois in 1875, 151 - They were composed of local species, 152, 153-Explanation of these flights, 154 - Locust prospects in 1876,155 - No danger from them in Missouri, 156.

The Grape Phylloxera

The injuries not great in Missouri in 1875, 157 - Completion of its natural history, 157 - Where the winged female lays her eggs, 157, 161 - The sexed individuals illustrated, 158-Description of the true female, 159 - Description of the impregnated egg, 159, 162-Practical considerations growing out of these latest discoveries, 163 - Decortication of the bark to destroy the impregnated egg, 163-The insect may be imported from one country to another on cuttings as well as rooted plants, 163 - Best time to attack the root-lice, 163 - Phylloxera ravages in California, 163-Great destruction around Sonoma, 164-Need of action by the State authorities, 164 - Occurrence of Phylloxerw in the Southern States, 164 - Report of Committee appointed by the American Pomological Society, 165-Its occurrence in Georgia, 166, 167-American Grapevines in Europe, 167 - Large demaud for our vines, 167 - The American vines flourishing in Southern France where the European varieties perish, 167 - The orders for some varieties exceeded the supply, 168 Probable future demand, 168.

INNOXIOUS INSECTS.

The Yucca Borer

The only North Americau Butterfly whose larva has the boring habit, 169 - The arbitrary nature of classificatory divisious, 170 - Butterflies and Moths not easily separated, 170 - Biological history of the species, 171 - Illustrations of all states, 171, 17z-Habits of the larva, 171, 172, 181 - Mode of pupation, 172, 180 - Flight of the imago, 173, 181 Position of wings when the imago rests or walks, 173-Bibliographical notes, 173 - Detailed descriptions of the different states, 174, 175, 181 Structural characters illustrated, 175-Affinities of the species, 176 It is a true butterfly, belonging to the Hesperians, 178-Characters of the Castnians contrasted with those of Hesperians, 176, 177, 178-In classification it is better to widen than restrict in the higher groups, 179-Enemies of the Yucca Borer, 179-Concluding remarks, 179 Unsafe to describe species from mere drawings, 179.

NOXIOUS INSECTS-Continued.

Supplementary Notes on the Army Worm

Completion of its natural history, 182 - Oviposition of the Moth described, 183-Eggs described, 183-Conclusions previously arrived at verified, 184 - Description of the different larval stages, 184.
REPORT IX.
[Published March, 1877.]
Page
III
Preface V
NOXIOUS INSECTS.
Currant and Gooseberry Worms 1There are several species having different habits, 1 - Three which maybe destroyed by similar methods, 1 - Botanical details as to the Cur-rant and Gooseberry, 2.
The Gooseberry Span-worm 3
Its natural history, 3 - Most destructive gooseberry insect in Missouri, 3 -Generic nomenclature, 3-Characters of the moth, 4-Description of the egg, 4 - Where the eggs are laid, 4 - The insect single-brooded, 5 -How it spreads, 5-A native species, 5-Its past history, 5-It pre- fers the Gooseberry to the Currant, 6-The moth is closely imitated by one which greatly differs structurally, 6 -Parasites, 6 - Remedies, 7 - Other currant Span-worms, \%
The Imported Currant Worm7Belongs to the "False-caterpillars", 7 -The different specific uames it hasreceived, 7-An imported species, 8-Its introduction and spread, 8 -Independently imported at several eastern points, 9 - Its natural his-tory, 9 - How the eggs are laid, 10 - Nature and habits of the Worm,11 - Characters of the parent flies, 12 - Preventive measures, 13 -Rem-edies, 13 - White hellebore the best, 13 - How best used, 14, 15 - Theworm is not poisonous, 16 - Natural enemies, 17 - It furnishes a forcibleexample of Arrenotoky or the power of producing male offspring with-out impregnation, 18 - Results of Parthenogenesis in different insects, 18- It also furnishes an interesting instance of Defunctionation of specialparts, 19 -The saw of the female imperfect, compared with others,20 -Evolutionary bearings of this fact, 21 - Descriptive, 21 - Varia-tion in the antennæ and wing veins, 22.
The Native Currant Worm 23
Wherein it differs from the imported species, 23 - Its habits, 24 - Where the eggs are laid, 25 - How the winter is passed, 25 -Its occurrence in Missouri, 26-Remedies, 26-Descriptive, 26.
The Strawberry Worm 27
Also a False-caterpillar, 27 - It has a wide range, 27 - How the eggs are deposited, 28-Character and habits of the Worm, 28-Remedies, 28 - Descriptive, 28.
Abbot's White Pine Worm 29Destructive power of the insects of its genus in Germany, 29 - Evergreenswhich it prefers, 30 - Habits and characters of the Worm, 30 - Variationin the antennæ, $30-$ Characters of the perfect flies, $30,31-$ How theeggs ars laid, 31 - Natural enemies, 31 - Remedies, 32 - Descriptive, 32.
LeConte's Pine Worm32A more general feeder than Abbot's species, 32 - The close resemblance ofthe Worms, 33-How they differ, 33-Descriptive, 33 - Other speciesof the genus, 34 .
The Colorado Potato-beetle34Injury in the West in 1876, 34 -Spread of the insect during the year,34,35 - Its great abundance on the Atlantic coast, 35 - Rate at whichit traveled since 1859,37 - An average of 88 miles a jear, 37 - How it

The Colorado Potato-beetle-Continued.
traveled, 37 ; principally in the beetle state, and greatly assisted by man, 37 - Its migrating habit, 38 - Area invaded by it nearly $1,500,000$ square miles, 38 - Causes which limit its spread, 38 - Will it reach the Pacific slope?, 39 - How it affected the price of potatoes, 39 - The modification it has undergone, $40-\mathrm{A}$ mite parasite added to its natural enemies, 41 - Its introduction to Europe, 42-A living specimen found last summer in the Bremen dock yards, 42 - Could it live and multiply in Europe? 43 - Action taken by European governments to prevent its introduction, 44 - Consideration of the Kearney "Potato Pest Poison ", 45.
The Army Worm
Further notes and experiments thereon, 47 -Two generations produced annually at Saint Louis, and a probable third generation, exceptionally, 48 - Summary of its natural history, 49.

The Wheat-head Army-worm

A new enerny to wheat, 50 - First complaint of it in the East, 51 - First appearance in Kansas, 51-Habits and natural history, 52-The egg differs from that of the Army Worm, 53 - Wherein the worm is distinguished from its destructive congener, 54 - Two broods each year, 54 Natural enemies, 54 - Remedies, 55 - Descriptive, 55.
The Rocky Mountain Locust
It continues to interest the people of the West, 57 - Previous opinions justified, 57 - The invasion of 1876, 59-Few in British America, 59 Condition of things in Montana, 59 - In Wyoming, 59 - In Dakota, 59 - In Minnesota, 60 ; locusts and alkali soil, 61 ; good done by Governor Pillsbury, of Minnesota, 61 - In Colorado, 62-In Iowa, 63 -In Nebraska, 64 - In Kansas, 65 - In Missouri, 66 - Flights in opposite directions at the same time, 66 - Counties in Missouri that were overrun, 67 - Red-legged Locust troublesome in East Missouri, 68 - Detailed reports from counties in Missouri, 68 - Andrew County, 68-Atchison County, 68 -Barry County, 68 -Barton County, 69 - Bates County, 69 - Benton County, 69 - Buchanan County, 69 - Cass ${ }_{\text {® County, }} 69$ Cedar County, 70-Caldwell County, 70-Clay County, 70-Dade County, 70-DeKalb County, 70 - Gentry County, 70 - Greene County, 71 - Harrison County, 71 - Henry County, 71 - Hickory County, 71 Holt County, 71-Jasper County, 72 - Jackson County, 73 - Johnson County, 73 -Lafayette County, 73 -Lawrence County, 73-McDonald County, 74-Newton County, 74-Nodaway County, 74-Pettis County, 74-Platte County, 74-Polk County, 75 -Ray County, 75 -Saint Clair County, 75 - Vernon County, 75 - In Indian Territory, 76-In Texas, 76 - In Arkansas, 76-Destination of the departing swarms of 1875, 77 - They reached into British America, 78 - Source of the swarms of 1876, 79 - Eastern line reached, 80 - Rate at which the insects spread, 80 -Direction of flight, 81 -Influence of wind in determining the course of Locust swarms, 81 -Locust flights east of the Mississippi, 81 - Geographical range of species, 82 --Causes which limit the spread of the Rocky Mountain Locust, 83- Flights of Acridium Americanum, 84 - Does the female of the Rocky Mountain Locust lay more than one egg-mass, 85-How the eggs are laid, 86 - Philosophy of the egg-mass, 87 -How the young locust escapes from the egg, 88-How it escapes from the ground, 90 - Additional natural enemies, 91 - Animals which destroy the eggs, 91 - The Anthomyia Egg-parasite, 92 -The Common Flesh-fly, 95 - Other undetermined enemies of the eggs, 95 -Insects which destroy the active locusts, 98 - Experi-

Abstract

The Rocky Mountain Locust-Continued. ments with the eggs and conclusions therefrom, $99-$ Experiments to test the effects of alternately freezing and thawing, 99-Experiments to test the influence of moisture upon the eggs, 104 - Experiments to test the effects of burying at different depths and of pressing the soil, 104 - Experiments to test the effects of exposure to the free air, 104 The Omaha Conference, 106 - Remedies and suggestions, 108 - Destruction of the young or unfledged locusts, 108 - Protection of fruit trees, 110 - Legislation, 111 - Act passed by the Missouri legislature, 111 Acts passed by the Kansas legislature, 112-Act providing for the destruction of locusts in Minnesota, 114 - Area in which eggs were laid, 116 - Condition of eggs, 117 - Temperature of the winter of 1876-'77, 120 - Prospects for 1877, 121.

INYOXIOUS INSECTS.

The Hellgrammite
Its curious egg-mass described, 126 - Resembling bird-dung at a distance,125126 - Where laid, 127 - The Egg-burster, 127 - Characters and habitsof the newly hatched larva, 127 - Difficulty of rearing it in still water,128 - The eggs that have been hitherto mistaken for those of Corydalus,128- They are probably those of Belostoma grandis, 128.
The Yucca Borer 129
It is single-brooded, 129 - Will thrive in the latitude of Saint Louis, 129 - The larva molts quite often, 129.

CORRECTIONS.

A list of errata is given for each volume, and they are here reproduced with such additional ones as were previously omitted. Where foreign terms were not properly accentuated in the Reports, it was often due to the imperfect "plant" possessed by the State printer. In comoting lines the running page title is omitted.

REPORTI.

Page 8, line 21, for being read were.
Page 10, line 1, for Figure $3,{ }^{3}$ read Figure 3, ${ }^{2}$.
Page 12, line 20, for last read 1866.
Page 12, line 3 from bottom, after February add (1867).
Page 12, line 13 from bottom, for verter read venter.
Page 14, line 24, for hermaphrodite read agamic.
Page 14, line 32, for females read males.
Page 15, line 10 from bottom, for muscle-shaped read mussel-shaped.
Page 22, line 2 from bottom, for pupas read pupre.
Page 30, note, for F . read T .
Page 31, line 15, for 37° read 38°.
Page 32, line 4, for Kreitz read Kreutz.
Page 32, line 14 from bottom, for III read V.
Page 32, line 7 from bottom, for XIII read VIII.
Page 38, line 5, for Tredeim read Tredecim.
Page 47, line 16, for far read for.
Page 50, line 7, for none the less read no more.
Page 53, line 28, for laid read lain.
Page 54, line 4 from bottom, for hatch read are deposited.
Page 56, lines 5 and 12, for to read at.
Page 58, line 15 from bottom, for Aspidiglossa read Aspidoglossa.
Page 64, line 26, onit again.
Page 67, line 11 from bottom, for class read branch.
Page 76, line 48, for Climbing Rustic read Climbing Cut-morm Moth.
Page 78, line 46, for umipunctata read unipuncta.
Page 86, line 21, and wherever they occur, for Guénée read Guenée; and for Guén. read Guen.

Page 87, line 11 from bottom, for $\overline{\mathbf{F}}$. read T.
Page 96, note, line 4, for West. read Wesm.
Page 112, line 3, for abreviated read abbreviated.
Page 114, line 1, after "insect" read (Stivetrus fimbriatus, Say).
Page 120. line 30, after "Cottonwood" reald (Pemphigus vagabundus, Walsh).
Page 123, last line, for eviosoma read eriosomatis.
Page 132, line 16, for ampelopsis read ampelopsidis.
Page 133, in heading, for Codling read Berry Moth.
Page 133, line 24 from bottom, for preceding insect read Grape Curculio.
Page 134, line 3 from bottom, for Part V read Part VI.

Page 142, under the heading, add (Lepidoptera tortricid.e).
Page 150, line 26, for thyridopteryx read thyridopterigis.
Page 150, line 37, for ferruginuous read ferruginous.
Page 154, in the heading, for zeas read zect.
Page 155, line 13, for zeas read zee.
Page 161, line 38, for Trallien read Trallian.
Page 166, under heading, add (Lepidoptera, Pyralide).
Page 171, line 3 from bottom, for transformation read transformations.
Page 173, line 3 from bottom, for it read the more liquid parts.
Page 174, line 3 from bottom, for Solidaga read Solidago.
Page 175, line 32, and front before wing.
Page 176, line 21, for through read into.
Page 177, line 26, strike out in.
Page 177, line 13, after coxe read trochanters.
Page 178, lines 2 and 3, for gelechia read gelechie.
Page 179, line 32, for assimilating read assimulating.
Page 179, in heading and line 12, for chickweed read knotweed.
Page 179, lines 12, 13, for (Stellaria media) read (Polygonum aviculare.)
Page 180, line 7, for Cersium lanceolata read Cirsium Ianceolatum.

REPORTII.

Page 8, line 14 from bottom, for I have read has been.
Page 8, line 13, from bottom, before on read largely from Mr. Walsh's previous writings.
Page 13, line 25, for cupable read culpable.
Page 16, line 13, for lava read larva.
Page 23, line 6 from bottom, for hole read holes.
Page 32, line 17, for insect read insects.
Page 35, line 24, for Corimelcena read Corimelana.
Page 40, line 23, for Ophinsa read Ophiusa.
Page 41, line 25, for Laphrygma read Laphygma.
Page 50, line 5 from bottom, for leuca[i]ce read leucan[i]ce.
Page 53, line 1\%, for perpulcra read perpulchra.
Page 56, line 7 from bottom, for Salanum read Solanum.
Page 58, line 19, for copalina read copallina.
Page 59, line 9 from bottom, for varigated read variegated.
Page 76, line 4 from bottom, for I read V.
Page 76, line 5 from bottom, for Daphni read Daphne.
Page 82, line 25, for one read our.
Page 92, line 3, for 125-131 read 129-131.
Page 107, line 12, for Naturalista read Naturaliste.
Page 111, line 34, for crysalis read chrysatis.
Page 116, line 4 from bottom, for month read molt.
Page 118, line 2, for carved read curved.

REPORTIII.

Page 6, line 3 from bottom, for Rosa read Rose; and for rosa read roser.
Page 7, line 31, for Myleccetus read Mylecotus.
Page 25, line 8 from bottom, for finely read finally.
Page 28, line 3 from bottom, for Holmgreu's read Holmgren's.
Page 30, line 16, for the read the. *
Page 30, line 16, for characterize read distinguish.
Page 47, line 3, for Feunde read Feinde.
Page 55, line 50, for that read than.
Page 57 , line 18 from bottom, add c before the first h.
Page 58, line 3 from bottom, for formulolosus read formidolosus.

Page 64, line 19, for Bignonio read Bignonia.
Page 78, note, for I read II.
Page 95, line 26, for belongs read belonging.
Page 117, line 5 from bottom, for Harr, read Fabr.
Page 123, last line, for an read and.
Page 129, lines 12 and 17, for Colosoma and Calosoma.
Page 131, live 13 from loottom, for fauns read fauma.
Page 135, line 33, for dints read dents; aud line 21, for a read b.
Page 136, line 22, for Guenèe read Guenée.
Page 136, line 33, for Furtsenthum Walldeck read Fuirstenthum Waldeck.
Page 145, line 35, strikeout second the.
Page 146, line 24, add s to transformation.
Page 150, line 14, at end, add from an.
Page 151, line 12, for Cmythia read Cynthia.
Page 166, line 16 from bottom, strike out first comma.
Page 166, line 6 from bottom, for phalangea read phalanga.
Page 169, line 33, for first i read e.
Page 170, line 10, for Nnaural read natural.

REPORTIV.

Page 6, first verse, for grow read grows.
Page 19, line 8 , for 5 read 6.
Page 20, last line but one, for R read U .
Page 22, last line but one, for Aleochora read Aleochara.
Page 40, line 9 from bottom, for occular read ocular.
Page 41, line 59, for Vt. read Ct.
Page 41, line 15 from bottom, after "Larva" read Length 0.5 inch.
Page 42, line 5, add a comma after Lepidoptera.
Page 43, line 6 from bottom, for claud read cloud.
Page 46, line 29, for edgae read edge.
Page 46, line under heading, add a comma after Lepidoptera.
Page 47, line 30, for rhomboidally read trapezoidally.
Page 53, line 25, and page 54, line 27, for basillare read basilare.
Page 53, strike out all after for many in the note.
Page 59, line 10 from bottom, add winged before female.
Page 67, line 4 from bottom, for Cordifolia read Riparia.
Page 68, line 2 from bottom, for Oid read Oil.
Page 75, third line in heading, add a comma after Lepidoptera.
Page 103, third line of note, for insest read insert.
Page 105, line 8 from bottom, for chrysallis read chrysalis.
Page 110, line 3 , for chalsis read cealcis.
Page 110, line 29, for extramatis read extrematis.
Page 112, in the heading, for Hiubn read Drury.
Page 132, line 19, for Chesuut read Chestnut.
Page 137, line 1, for Pernyi Silkworm read Perny Silkworm.
Page 137, under fig. 60, for Pernyi read Perny.

REPORTV.

Page 7, line 22, for stage read state.
Page 7, second line from bottom, strike`out second the.
Page 8, explanation of Fig. 1, first line, for and read the.
Page 9, under Fig. 2, for Bembex fasciata read Vespa maculata.
Page 9, line 11, for last and read with the.
Page 11, line 9 from bottom, after worm add moth.
Page 11, line 3, from bottom, for four read eight.
Page 12, line 24, for ยтгроїs read étepos.

Page 12, Fig. 5, for Euschistes read Euschistus.
Page 13, line 3 from bottom, for larva are read larva is.
Page 14, under Fig. 8, for Edipoda difreilintlale read Caloptenus differentialis.

Page 18, line 10 from bottom, for pollenation read pollination.
Page 19, line 30, for Lymexilon read Lymexylon.
Page 21, line 8 from bottom, for Townsend read Townend.
Page 24, line 13, for crial read aërial.
Page 33, in Fig. 15, for cloroform read chloroform.
Page 43, line 6 from bottom, after or add in.
Page 51, line 17, for J. S read S. J.
Page 56, line 24, for how read that.
Page 52, line 21, for peteolaris read petiolaris.
Page 58, line 16 from bottom, for decrepid read decrepit.
Page 61, line 18, for hypertrophized read hypertrophied.
Page 66, line 13, for Cordifolio read Cordifolia.
Page 67, line 27, for with read to.
Page 67, line 28, after and add to offer.
Page 83, line 13 from bottom, for who read as.
Page 85, line 17 from bottom, after fecundation add either the.
Page 85, line 18 from bottom, strike out either and after female add would.
Page 86, line 2 from bottom, for and read und.
Page 90, line 17, for had read has.
Page 100, last line, add a comma before sas.
Page 101, line 10, for nole read noli.
Page 103, line 9, for Carye read caryce.
Page 113, line 40, for 19 read 41.
Page 115, for exerted read exserted.
Page 120, line 25 , for regulary read regularly.
Page 126, line 4 in note, for querciti read querceti.
Page 126 , line 5 in note, for pithicium read pithecium.
Page 129, line 14, omit color of the.
Page 139, for Papineau read Popenoe.
Pages 140 and 141, wherever Belvosia occurs read Belvoisia.
Page 156, line 6, for consumes read has consumed.

REPORTVI.

Page 8, last line, for 1874 read 1873.
Page 12, line 13, for Sisimbrium read Sisymbrium.
Page 12, line 25, for osciamus read oscyamus.
Page 12, lines 13, 14, for Poligonum read Polygonum.
Page 27, line 2 from bottom, for pecorus read pecoris.
Page 27, line 15 from bottom, for vireus read virens.
Page 28, last line, for XV read XVI.
Page 35, line 3, for three read four.
Page 37, line 16, for first by read be.
Page 42, line 11, for the read certain.
Page 43, line 26, strike out to be presently treated of.
Page 47, remove "Telegraph" from "Summer grape" \oint to that of "Northern Fux."
Page 51, line 7 from bottom, for insidious read insidiosus.
Page 53, line 18, for Maguin read Mégnin.
Page 82, line 5 from bottom, for New read West.
Page 87, line 3 from bottom, for Bignonio read Bignonia.
Page 92, line 6, for Callimorpa read Callimorpha.
Page 94, line 14 from bottom, for point read joint.
Page 100, line 31, omit comma after lardarius.

Page 108, line 28, for orage read orange.
Page 111, line 6, for perspicillata read tripunctata.
Page 118, last line, for Phytopoga read Phytophaga.
Page 136, line 15, for Rosel von Rösenhof read Rösel von Rosenhof.
Page 141, line 9, after found add that.
Page 150, line 9, for pictures of read imprints on.
Page 154, line 6, strike out \dagger.
Page 154, line 16, for it is read they are.
Page 156, line 8, after and add more.
Page 162, line 10, for elytram read elytrum.

REPORTVII.

Page IV, line 9, for coutemptibly read contemptuously.
Page 1, line 10, after and read invaded the.
Page 5, line 16, for State read state.
Page 7, line 7, for calubrine read colubrine.
Page 11, line 32, for stoma read stomata.
Page 11, line 33, for dilutent read diluent.
Page 11, line 37, for J read S.
Page 12, line 13, for W. K read R. C.
Page 17, last line, for Dep. de l'Herault read Dép. de l'Hérautt.
Page 21, line 14 from bottom, for Lexcoptercs read levcopterus.
Page 39, under Fig. 6, for Ttin read Trin.
Page 52, line 14, for McWallie read McNallie.
Page 52, line 46, for Princeton read Purinton.
Page 75, line 32, for breed read bred.
Page 80, line 7 from bottom, add a comma before and after pometaria.
Page 81, last line, for nidl read nidus.
Page 94, in the sulb-head, for Gall-nhabiting read root-inmabiting.
Page 99, line 7, in note, for nerves read traches.
Page 108, liue 17, for two read too.
Page 117, line 15, for V read IV.
Page 118, line 18 from bottom, for hight read height.
Page 147, line 20, for 1873 read 1866.
Page 162, line 20, for larva reud lava.

REPORT VIII.

Page III, line 13 from bottom, add 1 before the 3 .
Page 7, line 26, for copper read soda.
Page 22, in notes, transpose the * aud t.
Page 34, line 6, for tuliètes read tuelites.
Page 34, line 11, for three-hundredths read two-hundredths.
Page 37, under Fig. 23, for exerted read exserted.
Page 38, line 6, for glass read grass.
Page 52, line 1 iu note, for Doliconyx read Dolichonyx, and for orizitora read oryzivora.
Page 53, line 32, for veridascens read viridascens.
Page 98, second line, in explanation of Fig., for e read c and for c read e.
Page 100 , line 2, after they $a d d$ are still imperceptible; in the third stage (after second molt) they.
Page 100, line 4, for third read fourtl, and for second read third,
Page 100, line 7, for fourth read fifth, and for third read fourth.
Page 100, line 8, for fourth read tifth and for fifth read sixth.
Page 114, line 7 from bottom, for distingulsh read distinguish.

Page 115, line 5, after histories add a comma.
Page 115, line 5 from bottom, for Pesotettix read Pezotettix.
Page 121, line 18, after limbs ald and.
Page 149, under Fig. 46, for larva read pupa.
Page 150, line 10, for gran read gram.
Page 154, line 4 from bottom, for sheli read shell.

REPORTIX.

Page 6, line 26, insert after "moth" (Euphanessa meniica, Walk.).
Page 15, line 3, for entite read entire.
Page 29, in explanation of cut, for Abbott's rend tbbot's.
Page 50, explanation of cut, for e read c.
Page 50, line 3 from bottom, for Hubner read Hiibner.
Page 54, last line, in place of the comma, write is.
Page 55, line 1, for the other read the second.
Page 55, line 9 from bottom, for $\mathrm{m} . \mathrm{m}$ read mm.
Page 55, line 7 from bottom, strike out the on.
Page 56, line 1, for m. m read mm.
Page 56, line 2, for the last and read anal.
Page 56, line 32, commence a new of with "Chrysalis" and ita'icia it,
Page 57, in the heading for Spretus read spretus.
Page 58, line 14, strike out have.
Page 87, strike out the g in line 17 and also in fgure.
Page 89, line 13, strike out the i after embryon.
Page 90, last line, for ambion read amnion.
Page 98, line 11 from bottom, for Compoplex iexd Camp \boldsymbol{p}^{\prime} 'ex.
Page 98, line 6, add a comma before De Geer.
Page 98, note ${ }^{*}$, for Bastardii read Bastardi.
Page 98, under Fig. 23, for Bastardit read Bastardi.

NOTES AND ADDITIONS.

Under this head it is not my purpose to publish the many additional notes of observations which have been made by myself and others on the rarious insects treated of in the reports; but rather to indicate a few of the more important facts, especially such as are unpublished and bear on life-histories left incomplete. As, in preparing the reports, the older and better known generic nomenclature was almost uniformly employed, it is thought advisable to indicate in this bulletin the more recent nomenclature, and this is accordingly done either in these "Notes" or in connectiou with the reproduced "Descriptions of New Species" which follow :

HYMENOPTERA.

Stizus grandis Say (Rep. I, p. 27, Fig. 12) -This has beeu shown by Mr. W. H. Patton (Bull. U. S. Geol.-Geog. Survey, vol. V, p. 342) to be only a variety of speciosus Drury, which is the type of the genus Sphecius Dahlb.

Cryptus extrematis Cress. (Rep. IV, p. 111)-The questions in regard to the character of C. sumiae Pack. have been settled by Dr. Hagen from an examination or the types (Bull. Buff. Soc. Nat. Sci., II, 206 ; 1875) confirming the conclusion which I came to. In Bulletin No. 3 of the Commission (p. 47) I have suggested that extrematis should sink as a synonym of samice, because two species (one of which is nuncius) were combined under it in the original description.

Microgaster Militaris Walsh (Rep. I, p. 89 and subsequently)—This is an Apanteles ${ }^{*}$ (See my Notes on N. A. Microgasters, etc. (Extr. from Trans. St. Louis Ac. Sc. IV), p. 19.)

Antigaster mirabilis Walsh (Rep. VI, p. 162)-Mr. L. O. Howard has shown (Can. Ent. October, 1880. p. 209, and February, 1881, p. 31) that the habit of rolling back is not uncommon in the Eupelmides, and that Antigaster cannot well be separated from Eupelmus as at present understood.

COLEOPTERA.

Carabid larye (Rep. IX, p.97)-The second larva mentioned on this page was subsequently reared by me to the perfect state and proved to be Amara obesa Say. It will be found figured and described in the First Report of the Commission (p. 290).

Lebia grandis, Hentz (Rep. III, p. 100)-This belongs to Chaudoir's genus Loxopeza.
Lebla atriventris Say (Rep. VIII, p. 3)-Belongs to Chaudoir's genus Loxopeza.
Hippodamia maculata, DeGeer (Rep. I, p. 112 and subsequently)-Now referred to Mulsant's genus Megilla. It does not appear that this species occurs also in Europe as stated in the text.

Coccinella munda Say (Rep. II, p. 25)-This is now considered synonymous with Cycloneda sanguinea Linn.

Coccinella picta Randall (Rep. V, p. 101)-Now known as Harmonia picta.

Mysia 15 -puxctata, Oliv. (Rep. IV, p. 18)-This has been referred to the genus Anatis, Mulsant.

Lachnostera quercina, Knoch. (Rep. 1, p. 155)-This is synonymons with fusca Fröhlich, which has priority. The fungus affecting it (p. 158 and Rep. 6, p. 125) is Cordyceps ravenelii Berkeley. (See American Entomologist, III, p. 139.)

Chauliognathus pennsylvanicus, De Geer (Rep. I, p. 57 and subsequently)-This is now known as Ch. amoricumus Forst., the latter name having priority. For an account of the eggs and joung larvie, see Second Report of the Commission, p. 261.

Saperda bivittata Say (Rep. I, p. 42)-This is now almitted to be a synonym of candida Fabr. For a correct description of the eggs and mode of oriposition, see an article by me in New York Weekly Tribune, Feb. 20, 1878.

Bruchus pisi Limn. (Rep. III, p, 44)-This name of the 12th edition of Linnaeus's "Systema Naturie" gives way in modern catalogues to pisorum L. of the 10 th edition.

Fidia viticida Walsh (Rep. I, p. 32)-This species is not mentioned by Crotch in his "Materials for the Study of the Plytophaga of the U. S." (Proc. Ac. Nat. Sc. Phil., 1873), but his Fidia murina (1. c. p.33) is undoubtedly synonymous with Walsh's riticida, the latter name having priority by several years. In Crotrh's "Check list" this species is also omitted, but the Fidice vitios Walsh in the "Omissions" to that list (p. 1:27) is probably meant for viticida.

Haltica chalybea, Illiger (Rep. III, p. 79)-This belongs to the genus Graptodera Cherr.

Haltica cuccameris Harris (Rep. I, p. 101)-This is now referred to the genus Epitrix, Foudras.

Physonota quinquepexctata Walsh \& Riley (Rep. II, p. 59)-This is synonçmous with Ph, unipunctutu (Say), there being no cuestion as to the specifie identity of the two, both having been bred by Mr. F. H. Chittenden, of Ithaca, N. Y., from larvie on a wild sun-flower (Helianthus).

Cassida nigripes Oliv. (Rep. II, p. 63)-The eggs of this species are much like those lof aurichalcea (Rep. II, Fig. 31) in size, form aud color, though the spine-like appendages break off more easily. They may, however, be distinguished by being larger ($1.6^{\text {ma }}$ long without projections), having, in fact, nearls double the bulk, and by the flat posteriorly projecting piece which bears the spine-like appendages being generally greatly developed so as sometimes to extend beyoud the aper fully one-third the length of the whole egg. Sometimes this piece divides distinctly into three spines, but in other cases it is quite blunt.

Cassida bivittata Say (Rep. II, p. 61)-The eggs of this species are pale and ovoid, just 1^{mm} long, but invariably covered with a yellowish secretion which dries and spreads out each side, and this by a black excrementitious material which gives the egg from above the appearance of an ovoid bit of excrement flattened on the adhering side. The eggs are laid singly or in twos or threes.

Cassida aurichalcea Fabr. (Rep. II, p. 62)-This is now referred to the genus Coptocycla Chevr.

Cassida pallida Herbst (Rep. If p. 62)-This is now recognized as a synonym of Coptocycla aurichalcea (Fabr.).

Coptocycla guttata, Oliv. (Rep. II, p. 63)-The eggs of this species, which I have - often since observed, are deposited singly or in twos, threes or fours. They are rather more than 1^{mm} long, of the same general form and character as those of Cassida bivittata, but more narrow and elongate. The color is pale yellowish and translucent. The egg is always covered with a viscid dluid which dries to form a transparent covering verging to fulvous or gamboge in color. This covering almost always spreads out on each side of the egg in ray-like ridges, those on each side parallel and slightly oblique, and whenever the egg is single these ridges are remarkably regular and have a neat appearance. There is occasioually on the top of this a varying amonnt of ex-
crement. The structure of the covering is similar to that found in the egg of Cassida texana Cr. (which feeds on Solamum eleagnifolium), where, however, the ribs are finer and transterse, and there is no excrementitions covering. The newly hatched larra of guttata, like that of the other species is whitish, strougly recalling in general appearance an oxdinary mite, the head not being concealed as it subsequently is, the hairs at the tip of the legs being frequently clavate or knobbed, and resembling those on the soung of many Coccids. The marginal spines and the anal fork are quite well developed but simpler than in the subsequent larval stages. This newly hatched larva is ${ }_{4}$ quite nimble and crawls easily over glass.
Delorala clefyta, Oliv. (Rep. II, p. 56)-Now referred to the genus Coptocycla.
Beister-beetles (Rep. 1, p. 96 .ff.) -The larvie feel on locust eggs. For account of their larral economy see ms paper "On the larral Characters and Habits of the Blister-beetles," etc., Trans. Ac. Sc. St. Lonis III, p. $544 \mathrm{ff} .:$: also Reports of the Commission I, p. $292 \mathrm{fi} .:$ II, 262 ft. Remarks on synouymy are also there given, but the following may be repeated.

Lytta cinerea Fabr. (Rep. I, p. 97)-This is now known as Mfacrobasis unicolor (Kirlyy).
Lytta murifa Lec. (Rep. I, p. 98)-This is a color variety of Macrobasis unicolor.
Lytta madianata Fabr. (Rep. I, p. 93)-This is believed by Horn to be a color-variety of Epicauta cinerca (Forst.).

Lytra atrata Fabr. (Rep. I, p. 98)-This is the Eprectuta pemayleomica (De Geer) of Crotch's List.
Antmonomt's prexicida, Walsh. (Rep. III, p. 39) - Upon this species, which is a synonym of scutellaris Lec., Dr. Lecoute has since founded the gemus Coccotorus (Proc. Am. Philos. Soc. rol. XV, 1876, p. 193).
Conotrachelus nexupiar, Hbst. (Rep. III, p. 127, note) - The phytophagic variety of this species from Walnut and Butternut has since been characterized by Dr. Leconte as a distinct species, C. juglendis (Proc. Am. Philos. Soc. vol. XV, p. 226).
Callodes iniequalis, Say (Rep. I, p. 123) - Dr. Leconte has since founded upon this species the genus Craponius (Proc. Am. Philos. Soc. vol. XV, 1876, p. 268). The egg of this snout-heetle is quite large, bright yellow in color and deposited in a cavity half as large as the beetle, though the puncture leading to it is small. The lateral angularities or tubercles of the joints, as described by Walsh, are quite characteristic, and the dorsal riew in my figure, given to show them, convess a somewhat false impression of the larva, which is more or less curved, and has the general characteristics of Curculionid larrie. The figure is rather more attenuated than it should be. That the beetle hibernates I have since proved beyond question.

Baridius trinotatus Say (Rep. I, p. 93) - Dr. Leconte (Proc. Am. Philos. Soc. XV, 1876, p. 287) has since established for this and two allied species the genus Trichobaris.

Sphenophorus zee Walsh (Rep. III, p. 59) - This has been previously described by Mr. Uhler as S. sculptilis (Proc. Ac. Phil. VII, 1855, p. 416).

Sphenophorus pulchellus Schæuherr (Rep. III, p. 60) - As intimated in the footnote on the same page, this species is synonymons with Say's S. 13-punctatus, for which species and for Sphenophorus pustulosus Gfllh. Dr. Leconte has established the genus Rhodobomus (Proc. Am. Philos. Soc. vol. XV, 1876, p. 332). I have reared both, and alsol intermediate forms, from Helianthus in Texas, and Ambrosia in Missouri.

Scolytus carye Riley (Rep. V, p. 107) - Dr. Leconte (Proc. Am. Phil. Soc. XV, 1876, p. 371) has since decided that 4 -spinosus Say is the 子 of this species, and Say's name consequently obtains.

LEPIDOPTERA.

Papilio philenor Drury (Rep. II, p. 116) - Referred by Scudder to Hübner's genus Laërtias. For further notes and description of the egg and young larva, see Canadian Entomologist, January, 1331, p. 9, and American Aaturalist, April, 1831, p. 327.

Danais archippus, Fabr. (Rep. III, p. 143) - For further facts respecting the swarming and migrations of this butterfly, see the American Entomologist (III, p 101), and for a fuller aud more accurate acconnt of the mode of pupatiou, see my paper on the "Philosophy of the Papation of Butterflies and particularly of the Nymphalide"" (Proc. Am. Ass. Adv. Sc. vol. XXVIII, 1880).

Egeria acervi, Cipm. (Rep. VI, p. 110)-Mr. D. S. Kellicott has an interesting article in the Canulim Entomologist for January, 1881, on the Ngeriaus inhabiting the vicinity of Buffalo, N. Y., in which he states that the chrysalis of this species in his pocality does not agree with my description as "undrmed," if that description refers to the dorso-abdominal teeth. A reixamination of my specimens shows that my statement applies to the absence of these teeth. It in, however, possible that there is some variation in this regard aud that the eastern specimens from the Harl maple differ from the western ones from the soft maple in having the teeth as indicated by Mr. Kellicott.

Arctia isabella, Smith (Rep. IV, p. 143)-Referred to Pyrrharctia Packard. For further account of larval variation and parasites, see Americun Entomologist, III, p. 134 (June, 1880).

Hyphantha textor Harr. (Rep. III, 130)-There is no donlbt in my mind, from frequent breeding of specimens, that this is synonymous with cunen Dary and punctata Fitch, which are but varicties, Drury's name having priority.

Callimorpha fulvicosta, Clem. (Rep. III, 132)—Grote and Robinson give the synonymy of this sprecies in their "List of Lepidoptera of N. A.," etc., Iecontei Boisd. having priority. The late Jacob Boll bred all the forms from larvie feeding on the same species of plant.

Samia columbia Smith (Rep. IV, p. 107)-Mr. Herman Strecker has given a beautiful figure of the male of this species in his "Lepidoatera Rhopaloceres and Heteroceres, etc.," 1875 (Pl. XII, Fig. 3), and Mr. F. B. Caulfield has described and figured the larva (Canadian Entomologist, X, p. 41, 1878) showing that it is structurally identical with that of cecropia and differs only in the intenser greeu of the body, in the lateral tubercles and bases of the others being white instead of pale blue aud in the upper thoracic tubercles being of a deeper coral-red. It accords more with the cecropia larva in the fourth stage. It is placed as a good species in Grote's "List of N. A. Platypterices," etc. (Am. Phil. Soc., 1874), but I am still of opinion that it should not be considered a distinct species but simply a well-marked local color-variety worthy of name. There is great variation in color, whether of the larva, cocoon or imago, in cecropia.

Callosamia angulifera, Walker (Rep. IV, p. 122 , note)-This is still considered a good species by systematists. Mr. Jno. Akhurst, of Brooklyn, N. Y., informs me that he finds it rather constant from larve which seem to differ in no respect from those of promethea, but which feed on the Tulip tree (Liriodendron tulipifera), and make the cocoon near the ground without pedicel. I learn from Dr. Packard that Mr. Uhler has bred both it and promethia from the same lot of larvx.

Clisiocampa sylvatica Harr. (Rep. III, 121)—This isnow referred to dis8tria Hübn., which has priority.

Agrotis inermis Harr. (Rep. I, p. 72)-This is now recognized to be identical with the European A. saucia Treitschke.

Noctua clandestina Harr. (Rep. I, p 79)-An Agrotis.
Agrotis telifera Harr. (Rep. I, p. 80)-This is now recognized as the European A. ypsilon Hüfn. $=$ A. suffusa (S. V.) $=$ A. ortonii Pack.

Agrotis subgothica Harr. (Rep. I, p. 81)-The moth represented under this name at Fig. 29, a, has since been described by Grote as A. herilis, and that at Fig. 29, b, has since been described by Lintner as A. tricosa. (Notes on some N. Y. Noctuidx, Ent. Cont. III in Rep. N. Y. St. Mus. Nat. Hist., 1872, p. 159.)

Agrotis Jaculifera Guen. (Rep. I, p. 82)-This is the true subgothica of Haw. (See Grote, List of Noctuidæ of N. A., Bulletin Buffalo Soc. Nat. Sc. II, 1874, and Lintner l. c.)

Agrotis devastator, Brace (Rep. I, p. 83)—Grote refers it to Hadena.
Celena Renigera Stephens (Rep. I, p. 86)-Referred by Grote to Hadena. Specimens in the Fitch collection marked with names (evidently from Walker) infecta, egens, defectua, subcadens? and murcimaculata seem to be all synonyms and mere variations.

Prodenia autumnalis Riley (Rep. III, p. 116 and subsequently)-As stated in the 8th Report (p .48) this in the more typical form is recognized as Laphygma frugiperda, Sm. \& Abl. The variety obscura, as Prof. Zeller, who has seen it, informs me is so near the European exigua Huibn. that it is not easily distinguished.

Prodenia commelinfe, Sm. \& Abb. (Rep. I, p. 88, and III, p. 113)-Dr. Leon F. Harvey (Bull. Buff. Soc. Nat. Sci., vol. Il, pp. 274, 275; 1875) has since proposed specific names for two of the forms hitherto considered to be but varieties of commelince. The moth represented at Fig. 43, c, of the Third Report, is named by him flaximedia, that at Fig. 48, b, lincatella, the true commelince, being a larger species. From larve with the series of black triangles bordered exteriorly by a yellow line (such as are represented on Plate I, Fig. 12 of Rep. I, and at Fig. 48 a of Rep. III) I have bred the flurimedia. But larve found on cotton in the Southern States, and differing in having black triangles on the second joint ouly, and also varying greatly in coloratiou, have produced the same moth. Abbot's figure of the larva of commelince shorrs the full series of black triangles, but without any yellow exterior line.

Gortyna nitela Guen. (Rep. I, p. 92)-I have proved by breeding that G. nebris Gn. is but a large, southern form of this species. In the Southern States it is most common in stems of Ambrosia trifida, often producing a swelling or pseudo-gall. Both forms are indiscriminately bred with intermediate variations. See an article loy Miss E. A. Smith (7th Report on the insects of Illinois, Cyrus Thomas, pp. 112-114) for additional food-plants and the habit of the younger larve to infest wheat-stalks, corn, etc. See also Am. Ent. I, p. 252; my "Potato Pests" (Orange, Judd \& Co., 1877, p. 91) and Prairie Farmer, August 11, 187\%. The insect normally pupates in the stem and when infesting thin stalks like those of most cereals and blue-grass (in which it is also found) often of necessity leaves one stalk for another.

Avomis Xylina, Say (Rep. II, p. 37 ; VI, 17)-This has since been referred by Grote to Hübner's Aletia argillacea, which has been generally adopted. See Bulletin 3 of the Commission on the Cotton Worm. While it will doubtless be found convenient in future to separate it from the other species of the genus Anomis, and Hübner's generic name may therefore oldain, I must confess, after a careful examination of Hübner's figure of argillacea, to grave doubts as to the correctness of Grote's reference thereto of our Cotton-worm Moth (xylina, Say). Hübner's figure lacks several of the most constaut characteristics of xyline. It is fulvo-testaceous shaded with brown, with the under side bright yellow. It lacks the three white specks on primaries and has a dark (orbicular?) spot in place of the outer one. It has a large white circular spot with black annulus in place of the dusky elongate discal spot with its double pupil. The wary lines are almost black and differ in form ; the fringes are unicolorous, and the abdomen is narrower. The figure more nearly represents in fact a species which I have received from Bahia, Brazil, and which differs from xylina, though the larva (also quite different) feeds on cotton.
We are all inclined to follow determinations of those who make a specialty of any group, but after due allowance for faulty coloring in Hïbuer's figure, I am constrained to believe that in this instance Mr. Grote has been in fault.

Canker-worms (Rep. VIII, p. 12)-For additional remarks as to the generic characters of the two Canker-worms, see my paper "On the differences between Anisopteryx pometaria Harr. and Anisopteryx escularia W. V., with remarks on the genus Paleacrita. (Trans. Ac. Sc. St. Louis, Vol. III, p. 573 tr.)

Gallerea cereana, L. (Rep. I, p. 166)-This is the mellonella L. of the 10th edition Syst. Naturæ.

Pempelia grossularle Packard (Rep. I, p. 140)-The European Zophodia convolutella Hübn. (Phycis grossuiariella Treitschke), which has precisely similar habits, closely resembles this species. In 1871 I compared it with this last in Mr. Stainton's collection and with specimens received from Prof. Zeller and could detect no essential differences. The European specimens are slightly larger, with broader wings and usually clearer, paler gray coloring. Colorational markings are, however, very variable in specimens from both sides of the Atlantic.
P. grossularioe Packard was subsequently described by Grote as Dakruma turbatclla (Bull. U.S. Geol.-Geog. Survev, IV, No. 3, p. 702; 1878). Dakruma seems to differ from Zophodia in nothing but the absence of the basal portion of the subcostal vein and possibly, although this character is not mentioned by Grote, in the recurved palpi. According to the synoptical table given by Heinemann, grossulariee would fall in the genus Stenoptycha, distinguished from Zophodia by the recurved palpi. We may well question the generic value of this character, for different authors describe it quite differently: thus, Heinemann describes the palpi of Stenoptycha and Homeosoma as recurved, whereas Grote describes them as porrect in these two genera, if we accept his statement that Honora Grote is to be considered a section of Stenoptycha: there appears also to be a difference in position in specimens of the same species, according as the palpi are heavily scaled or have lost the scales. From the known individual variation in the renation of these and other moths, especially in the hind wings, we cannot attach any specific, much less any generic, value to the slight difference in the subcostal vein of Dakruma noted above. Moreover, authentic specimens of grossuTarice do not appear to possess this character of Dakuma. I am, therefore, of opinion that a study of sufficient material from both continents will prove the two specifically identical, or at the most that our American insect is a variety, and that Dakruma will not obtain. Packard is of this opinion, as in the later editions of his Guide the species is called Myelois comolutella.

Penthina vitivorana Packard (Rep. I, p. 133) - This is identical with a European insect having the same habits. It was first described over a century since by Schiffermiller \& Denis as Tortrix botrana, and has been referred to various genera since, and finally to Eudemis Hiibn., so that the insect should be known as Eudemis botrana (Schiff.). Conchylis ambiguella (Hiibn.) has very similar habits in Europe. See Nördlinger's "Die Kleinen Feinde der Land wirthschaft," p 424 ff . It is the Lobesia botrana of the later editions of Packard's Guide.

Euryptychia saligneana Clem. (Rep. II, 134). - This according to Prof. Fernald, who has seen the type, is the same as Clemens's Hedya scudderiana (Proc. Acad. Sci. Phila., 1860, p. 358), the description of which is very brief and presumably taken from a female. The genus Euryptychia (Proc. Eut. Soc. Phila. V, 140) is founded ou the male, which has a broad fold extending to the middle of costa on the primaries and covering up a pencil of yellowish hairs. Zeller subsequently redescribed it as Podisca affusana (Beiträge, etc., pt. III, p. 101 [307]). From a comparison of female specimens I am led to believe that this is the same species that is commonly known in Europe as Spilonota roborana Schiff., though in Staudiuger and Wocke's Catalogue cynosbana Fabr., described in 1875 , is given the priority and aquana Hiibn. is placed as a synonym. The obliquity of the edge of the basal dark patch and the details of the ocellated spot upon which species have been separated, I find to be variable.

The insect in Europe is known to feed on the leaf-buds of the rose. I have abundant proof that in this country it is not a gall-maker, but, as was inferred in the Report, an inquiline. I have found its larva feeding upon the flowers as well as amid the terminal leaves of the Golden-rod, and have also found it in other galls. When feeding in the more exposed positions it generally has a carneous or rosy tint.

Anchylopera fragarie W. \& R. (Rep. I, 142) - This has been referred to Phoxopteris comptana Fröhl., and while the two very closely resemble each other Prof. Fernald informs me that he yet believes fragarice to be distinct.

Eta Compta, Clem. (Rep. I, p. 151)-Notwithstanding Mr. Grote donbts the identits of this insect with Cramer's Phalena punctella, there is no question in my mind about it, and I entirels agree with Zeller, who makes also the Tinea pustulella Fabr. a synonym (Beitr. z. Kemutn. N. A. Nachfalter II, p. 23). It was first described in this country in 1856 by Fitch as Deiopeia aurea (3rd Rep. Ins. N. Y., p. 163.) See also "Zygrenidæ and " Bombycidr of N. A." by R. H. Stretch, 1872, pp. 159 and 241.
The egg of this insect is one of the most singular Lepidopterons eggs with which I am familiar. I have fonnd it numerously in the South in midsummer. It is 0.9^{mm} long, soft and plastic so as to be variable in form; but when laid (as it often is) on the web which the foung larrio make, where it takes on the more natural form, it is ovoid, somewhat compressed, with frequently a median ridge and one eud narrowed and produced into a short neck. The color is cream-yellow and the delicate shell is corrugulate. It is laid singly and generally slightly attached by the broad side to the side of the mid-rib of the tenderest leares, and its contact (by virtue, doubtless, of some poisonons liquid with which it is laid) causes a well defined swelling of the leaf-vein.

The species is placeal among the Zyganide in Grote aud Robinson's List, and has evidently more affinities therewith thau with the Teneida.
Pronuba yuccasella Riley (Rep. V, p. 150 and subsequently)-For further facts regarding this species, see my papers in Træus. St. Louis Ac. Sc. III, p. 568 ; American Entomologist III, pp. 141, 18:2, 293, and also a paper real before the American Association for the Advancement of Science at Boston, Aug., 1880, and to be published in the Proceedings of the Association for that year.

Pteropiorus periscelidactylus (Rep. III, p. 6in)-This belongs to the genus Oxyptilus, Zeller.

HETEROPTERA.

Arma spinosa Dallas (Rep. II, p. 113 and subsequently)-Now referred to Stål's genus Podisus.

Euschistus punctipes, Say (Rep. IV, p. 19 and subsequently)-This is now known as Euschistus variolarius Beauv., this last having priority over Say's name.

Coreus tristis, De Geer (Rep. I, p. 113 and subsequently)-Belongs to Amyot \& Serville's genus Anasa.
Microfus leucopterus, Say (Rep. II, p. 15 and subsequently)-Now referred to Burmeister's genus Blissus.
Anthocoris insidiosus, Say (Rep. II, p. 27 aud sulsequently)-Belongs to Fieber's genus Triphleps.

Reduvius raptatorius Say (Rep. I, p. 114)—Belongs to Sinea, Amyot \& Serv., and is synonymous with diadema Fabr.

Harpactor cinctus Fabr. (Rep. I, p. 114 and subsequently)-Belongs to Stål's genus Milyas.

HOMOPTERA.

Cicada septemdechim (Rep. I, p. 18)-This orthography, used in the Reports, is grammatically correct, but I find that Linnæus himself wrote septendecim (Systema Naturee, Tom I, Pars II, 12th Ed. Stockholm 1767). Fitch used both forms of spelling, but Westwood, Harris and most other authors follow Linnæus, and septendecim is, therefore, preferable. As to whether the 17 and 13 -year broods should be considered specifically distinct, I am still of the opinion expressed in the First Report that the insects should not be looked upon as distinct species, but that tredecim Riley should rather be considered a race, or as Walsh (in a letter to Charles Darwin, which has kindly been shown me by Mr. G. H. Darwin) puts it, an incipient species, to which, for convenience, it is desirable to give a distinctive name. That it may be looked upon as a good species by excellent authority, will be seen by Walsh's discussion of the subject (American Entomologist II, p. 335) which I here quote:
What candid entomologist, who has worked much upon any particular order, will not allow that there are certain genera where it is often or almost or quite impossible
to distinguish species by the mere comparison of cabinet specimens of the imago? Lew and Osten Sacken have said this of the genus Ceridomyia in Diptera; Osten Sacken of two other Dipterous genera, Sciara and Ceratopogon; Norton of the genus Nematus in Hymenoptera; and Dr. Le Conte lately assured me that, althongh when he was a young man he thonght himself able to discriminate, in the closet, between the different species of Brachimus in Coleoptera, he now considered it quite impracticable to do so with any degree of certainty. And yet who donbts the fact of the existence, in North America, of very numerous distiuct species of C'ecidomyin, of Sciura, of Ceratopogon, of Nematus, and of Brachinus.

Upon the same principle I strongly incline to lollieve that the 17 -year form of the Periodical Cucada (C. septemdecim, Limn.) is a distinct species from the 13-year form (C.tredecim, Riley) althongh it has heen impossible for me, on the closest examination of very numerous specimens, to detect any specific difference bet ween these two forms.* It is very true that the 13 -year form is confined to the more southerly regions of the Chitedstates, while the 17 -year form is generally, but not miversally, peculiar to the Northern states; whence i has been, with some show of plansibility, inferred that the 13 -year form is nothing but the 17 -year form accelerated in its metamorphosis by the influence of a hot southern climate. But as these two forms interlock and overlap each other in varions localities, and as it frequently happens that particular broods of the two forms come ont in the same year, we should certainly expect that, if the two forms belonged to the same species, they would occasionally intercross, whence would arise an intermediate variety having a periodic time of 14,15 or 16 years. As this does not appear to have taken place, but, on the contrary, there is a pretty sharp dividing line between the habits of the two forms, without any intermediate grades of any consequence, I infer that the internal organization of the two forms must be distuct, although oxternally, when placed side by side. they are exatly alike. Otherwise, what possible reason could there be for one and the same species to lie undergrom in the larva state for nearly 17 years in one county, and in the next adjoining county to lie maderground in the larva state for scarcely 13 years? I presume that even the most bigoted believer in the old theory of species irould allow that, if it can once be proved to his satisfaction that two apparently identical forms are always structurally distinct, whether in their external or in their internal organization, they must necessarily be distinet species.

On the other hand, I firmly believe that many perfectly distinct forms, which at one time passed current, or which even now pass current, as true species, are in reality mere dimorphous forms of one and the same species. We find a good example of this in the dimorphous q Cynips, q. aciculatu, O. S., which has already been treated of at great length. We tind another good example of the same thing in Cicullu Cassiniio of, Fisher, which is sufticiently distinct from the Periodical Cicada to have been classified as a distinct species, and yet never occurs except in the same year and in the same locality as this last, and what is more extraordinary still, is found not only along with the 17 -year form (C. septemdecim), but also along with the 13 -year form (\dot{C}. trelecim).

Now, if Cassinii were a distinct species, and uot, as I believe it to be, a mere dimorphous form of C. septemdecim and C. tredecim, the chances are more than a million millions to one against its always coinciding with the two other forms, not only as to the particular locality but as to the particular year of its appearance.

I do not know that any one has heretofore attempted to set at rest, by actual proof, the very general skepticism as to this insect remaining so long underground, on the part of those persons who have given little attention to the subject. I have been able to trace the development from year to year of my tredecim brood SVIII in the vicinity of Saint Louis by digging up the larvie each year from 1868 to 1876 , and noting the annual growth. They could always be found within from two to five feet of the surface upon the roots of trees, and had by the 8 th year attained the first pupa stage, and I have no doulbt but that, at this writing, the true pupe are nearing the surface of the ground to appear in myriads in the perfect state in May and June of this year.

The fungus affecting this Cicada has since been described by Mr. C. H. Peck as Massospora cicadina (31st Rep. N. Y. State Mus. Nat. Hist., pp. 44, 1879).

Eriosoma pyri, Fitch (Rep. I, p. 118) - After comparing specimens in Europe with our American insect, I have no doubt of the specific identity of the two, or of the root-inhaliting and twig-inhabiting forms. The insect should be known, therefore, as Schizoneura lanigera (Hausun.). See my remarks in American Entomologist, II, 359 ;

[^1]Rep. 3, p 95, and "Notes on Aphidide of the U. S. " Hayden's Bull. U. S. Geol. \& Geogr. Surv. of Terr., Vol. V, p. 3).
Aspidiotus Harrisir Walsh (Rep. I, p. 7) - This belongs to Costa's genus Diaspis, aud is apparently the species named ostreaformis by Curtis (Gardener's Chronicle, 1843, p. 805).

DIPTERA.

Trupanea apivora Fitch (Rep. I, p. 168; II, 122) - This has been renamed Promuchus Fitchii by Osten Sacken (Cat. of the described Diptera of N. A. 2nd Ed., 1878, p. 234), the species proving different from Bastardii Low, and Fitch's name being preoccupied.

Bee-fly Larva (Rep. IX, p. 96) - The undetermined larva here illustrated (Fig. 24) has since proved to be that of a Systochus, a genus of Bombylid flies. Forfurther details and determinations see the Second Report of the Commission (pp. 262-9).

Sircophaga carnaria, L. (Rep. IX, p. 95) - The variety sarracenie of this species there mentioned is now considered a good species, for reasons stated in Bulletin 3 of the Commission (pp, 39, 40, note).
Exorista leucane.e, Kirkpatrick (Rep. II, p. 50 and subsequently) - Referred to the geaus Nemorca Desv. by Osten Sacken (Catalogue, etc., 1878, p. 150). The variety cecropice of this (Rep. IV, p. 103) is quoted by him as a distinct species under Exorista, probably a mistake caused by my employing the wrong tigure in the American Entomologist, Vol. II, p. 101, where that of E. flavicauda is used for leucanice.

Lydella doryphore Riley (Rep. I, p. 111)-Now included in the genus Exorista.

ORTHOPTERA.

Ccantilus niveus, De Geer (Rep. I, p. 138, and V, p. 120)-This species is common in all parts of the country, and I have proved, by breeding, that its eggs are those described and figured as such in the 5th Report. I agree with Scudder in considering. fasciatus De Geer but a dark and rather well marked variety of it. Its chirp is intermittent, resembling a shrill te-reat te-reat te-reat with a slight pause between each. The eggs and punctures figured on page 119 of the 5th Report (Fig. 47) as probably those of Orocharis saltator are, as I have since proved by breeding and by watching the process. of oviposition, those of a large species of Ecanthus, hitherto, I believe, very generally confounded with niveus, and which is described below as \mathcal{E}. latipennis N. Sp. While niceus punctures all kinds of soft stems and pithy twigs, latipennis seems to prefer the more slender parts of the Grape-vine. The female, when she has sufficiently proceeded in the act of ovipositing, is so intent that she can very well be watched at night by the aid of a "bull's-eye."
The jaws are first used to slightly tear the outer bark. With the antenne stretched straight forward and the abdomen bent up so as to bring the oripositor at right angles. with the cane, she then commences drilling, working the abdomen convulsively up and down about twice each second. The eggs, as described in the Report, are laid lengthwise in the pith, but always in two sets, one each side of the hole. The number varies according to the size of the cane, and the distance between the holes is also variable but usually less than in my figure. The hole is usually filled up with a white mucous secretion, though there is very little of it about the eggs. This secretion also doubtless serves to facilitate the drilling. The same female will lay over 200 eggs, and will sometimes puncture the same cane at intervals of $\frac{1}{8}$ inch for $1 \frac{1}{2}$ feet or more.

The shrill of latipennis is continuous and recalls the trilling of a high-pitched dogwhistle in the distance. The key varies, however, and is sometimes much less high and more musical than at others. The commingled shrill of this species recalls also the distant croaking of frogs in spring. The broad wings are thoroughly elevated during the act or evea bent forward, and the vibration is so rapid that there appears
to be no motion. The species, in addition to these differences in stridulation and labits, may be distinguished from niveus by the following characters:

Ecanthes latipenvis N. Sp.-White, the elytra of the of sometimes grasish and the posterior femora in one specimen discolored. Antennæ immaculate, with the basal joints and the front of head ustally roseate. Tip of ovipositor black. Pronotum as in niveus. Hind wings i as long at the elytra or sometimes a tritle longer; of $\begin{gathered}\text { a some- }\end{gathered}$ what shorter than elytra. Elytra of $o f$ irregularly reticulate between the parallel oblique veins, especially toward the base. Elytra of के when unfolded 考 as wide as long, the dorsal surface 14^{mm} to 16.5^{mm} long by 7^{mm} to 8^{mm} wide; the rasp 1.5^{mm} long and the teeth distinctly seen with a lens of low power. Ovipositor $6^{m m}$ long; subgenital plate broadly excavated. Claspers of of with their tips broad, but slightly broader at base than at tip, not deeply separated.

Deseribed from 15 of of specimens from Missouri, 1 ô from Alabama, and 1 o from South Texas.

The form of the subgenital plate, the immaculate antenne with their roseate base, and the larger size serve to distinguish the spectes as well in the pupa as in the imago state.
E. latipennis is a larger insect than nivens usually is. The ovipositor measures $6^{1 \mathrm{~mm}}$ in length, whereas in nirens it rarely exceeds 5^{mm} and in ouly one specimen, a sanguineous variety captured July 10, 1874, does it ergual 6^{mm}. The male elytra of nicens in only one specimen, captured September 19,1877 , reach $13^{m m}$ in length by 6^{mmm} in width on the upper face, and the size is generally much less. In nireus the unfolded male elytra are less thau $\frac{3}{3}$, and usually ouly $\frac{1}{2}$, as wide as long, and the rasp is only $\mathbf{1}^{\mathrm{mm}}$ long, and the teeth are not so casily seen. The elytra of nireus female sometimes show an irregularity in the reticulation between the parallel oblique veins but never so great an irregularity as in latipennis, there being fewer cells. In only one specimen of latipenuis, a male taken on cotton at Columbus, Tex., are there any black marks on the lower surface of the basal joints of the antennæ, representing the lines or dots which are always present in nireus. But the two species are most sharply separated by the form of the subgenital plate of the female, which in niveus narrows rapidly towards the tip which has a minute angular notch, and by the form of the male claspers, which in niveus have their tips. very slender and parallel, being deeply parted, and then retreating rapidly from one another on each side.

Besides niveus there are recognized from North America three other species of OEcanthus, one of which, californica Sauss.,* recorded only from California, is described as having the posterior wings abortive. \dagger The other two species, nigricornis Walk. from Illinois (description quoted in the American Entomologist, Vol. II, p. 207; 1870) and varicornis Walk. from Mexico, both described only in the female sex and differing from niveus in nothing but the slightly longer hind wings and the slightly greater size of the insect, and in varicornis having a slightly longer prothorax, have been retained as distinct species by Saussure. But niveus, as may be seen in a series of specimens, varies in these characters indefinitely, just as other species of crickets are admitted to vary; so we may consider Walker's species to be but varieties of niveus. They cannot be referred to latipennis, for in this species the wings rarely, and then but slightly, exceed the elytra.

One other North American species, bipunctatus DeG., has been referred to Ecanthus. It belongs, however, to the genus Xabea and should be known as Xabea bipunctata (Defr.).

As the female of $X a b e a \ddagger$ has not hitherto been described and Saussure did not recognize the genus as distinct from Ecanthus, it may be well to give here the characters drawn from both sexes to show how very clearly the two genera differ. The type of the gemus is from Sumatra, and Walker, being unacquainted with our species, an Saussure,d having only imperfect specimeus, both failed to recognize the existence of the genus in North America.

[^2]Xabea Walk.-First joint of antenate armed with a stont, blunt tootb in front. Female elytra irregularly reticulaterl, the obligue longitudinal veins not being conspicnous; male elytra with the mediastinal vein strongly arcuated; no humeral angle. Wings twice as long as the elytra. Cerci only halt as long as the ablomen, sinuous. Outer valves of the ovipositor euding in a single outwardly directed tooth which is preceded on the outside hy a longitudinal series of three teeth; the inner valves compressed, ending in three teeth of which the middle one is much the longest. Posterior tibizo with neither spurs nor serratious and having only 4 apical spurs, 2 within and 2 without; the first joint of posterior tarsi unarmed, the tarsi clearly but 3 -jointed, the second joint short as in the other legs; tarsal claws with the inner tooth acute.

Orochiaris saltator Uhler (Rep. V, p. 119).-The eggs figured and described ou page 119 as probably those of this insect are, as above stated, those of Evanthus latipenis. I have, however, fresueatly obtained the eggs of the Orocharis since. In December, 1877, I watched a female ovipositing in the oud of a dead and rather soft twig of the Soft-maple at Kirkwood, Mo. The twig had beeu prunell and the bark was somerrhat gnawed by the cricket and the eggs thrust in irregularly from the end and from the sidps. Both wood and pith were erammed with eggs, but all longitudinally inserter. The favorite uilus of the species is, however, the soft and somewhat corky, rough bark of the trunk aud older branches of the American elm, the eggs being thrust in singly or in small batches, either longitudinally with, or very slightly obliquing from, the axis of trunk or branch. The female is very intent in the act, working her abtomen deliberately from side to side during the perforation. The ovipositor is held more obliquely than in Ecanthus.

The egg is amber-colored and very slender and elongate, the tip rather pointed and very faintly opaque with the surface but slightly granulate. It has searcely any curve and varies from 3.5^{mm} to 4^{mm} in length and from 0.4^{mm} to 0.5^{mm} in diameter at middle.

The stridulation of this cricket is a rather soft aud monsical piping of not quite half a second's duration, with from 4 to 6 trills, but so rapid that they are lost in the distance. The key is very high, but varies in different individuals and according to moisture aud temperature. It most resembles the vibrating touch of the finger on the rim of an ordinary tumbler when three-fonrths filled with water-repeated at intervals of from 2 to 4 per second, and it may be very well likened to the piping of a young chick and of some tree froys. As the species is very common in the Southwest its chirp is everywhere heard and is so distinctive that when once studied it is never lost amid the londer racket of the katydids and other night choristers. It is frequently heard during the day time in clondy or damp weather, and I have heard it at Saint Louis the first days of November after a slight frost. The elytra in stridulating are raised less than in EEcanthus and are depressed at intervals.

The courting of the sexes is amusing. They face each other and play with their antennæ for the best part of an hour or more than an hour. The female is, otherwise, pretty quiet, but the male continually mouths the twig or the bark upon which the courting is being done, and plays his palpi at a great rate, very stealthily approaching nearer to his mate meanwhile. At last the antemual fencing ceases and those of the female bead back and then the male approaches until their heads touch. He then deliberately turus round, elevates the elytra and slips his abdomen under the female, who virtually mounts and assists him, his elytra overshadowing her head.

The eggs of this iusect, as alsô those of Ecanthus latipennis, are devoured by a parasitic larva of similar form and size, and which I have not yet reared to the perfect state.
Orgmelimum glabermum, Burm. (Rep. V, p. 123)-The egg-punctures illustrated at Fig. 56 are, as there correctly supposed, those of this species, as I have since proved by watching the act of oviposition and by rearing from the eggs. The insect is very fond of using the tops of corn-stalks for the same purpose.

NEUROPTERA.

Corydalus Coryutus, L. (Rep. V, p. 141 ; IX, p. 125)-For additional facts relating to the early larval stages, see my notes on the "Larval Characteristics of Corydalus and Chauliodes and on the development of Corydalus cornutus (Proc. Am. Ass. Adr. Sc., 1878).

MITES.

Trombidium sericeum Say (Rep. VII, p. 175 and subsequently)-For the natural history of this species and the specific identity with it of the larval form known as Astoma gryllaria LeBaron, and for further facts respecting the other mites mentioned in the Report, see my remarks in the Transactions of the Academy of Science of Saint Louis, (Vol. III, p. cclxvii, October, 1877) in the American Naturalist for March, 1878, and in the First Report of the Commission (p. 306 ff .).

descriptions of new species and varieties.

Some sjstematists have questioned whether descriptions of species in Agricultural Reports should be recognized. While my own views on this subject are pretty freely expressed on page 56 of my Third Missouri Report and elsewhere, the publication of this Bulletin affords a good opportmity to bring the descriptions that are scattered through the nine rolumes together, with such notes on synonymy as present knowledge suggests, and such corrections as are given in the Errata. In the earlier reports the measurements were expressed in inches and hundredths of an inch, while in the later volumes the metric system was adopted as most convenient and accurate, and the measurements which follow have ali been reduced to this standard. All changes of this character or other changes from the original are included in brackets, while the additional notes are in Long Primer type.

HYMENOPTERA.

Porizon conotracheli, N. Sp.-Head pitchy-black, opaque, the ocelli triangularly placed and close together ; eyes oval, polished, and black; face covered with a sil-Tery-white pubescence ; labrum rufons, with yellowish hairs; mandibles and palpi, pale yellowish-brown; autenne iuserted in depressions between the eyes, reaching to metathorax when turued back, filiform, 24-jointed; black with basal joints 6 - $\mathbf{1}$ becoming more and more rufous, the bulbus always distinctly rufous; bulbus rather longer and twice as thick as joint 3 ; joint 2 about one-third as long. Thorax pitchyblack, opaque, the sides slightly pubescent with whitish hairs, the mesothorax rounded and bulging auteriorly, the scutellum slightly excavated and sharply defined by a carina each side; metathorax with the elevated fines well defined and running parallel and close together from scutellum to about one-fourth their length, then suddenly diverging and each forking about the middle. Abdomen glabrous, polished, very slender at base, gradually broader and much compressed from the sides at the apex which is truncated; peduncle uniform in diameter and as long as joints 2 and 3 together; joints 2-5 subequal in length; color rufous with the peduncle wholly, dorsum of joint 2, a lateral shade on joint 3 , and more or less of the two apical joints superiorly, especially at their anterior edges, black; venter more yellowish: ovipositor about as long as abdomen, porrect when in use, curved upwards when at rest, rufous, with the sheaths longer and black. Legs, including trochanters and coxæ uniformly pale yel-lowish-brown with the tips of tarsi dusky. Wings, sublyaline and iridescent, with veins and stigma dark brown, the stigma quite large, and the two discoidal cells subequal and, as usual in this genus, joining end to end, but with the upper veins which separate them from the radial cell, slightly elbowed instead of being straight, thus giving the radial cell a quadrangular rather than a triangular appearance. of differs from \circ only in his somewhat smaller size and unarmed abdomen. Expanse 90.32 inch $\left[=8^{\mathrm{mm}}\right]$, length of body, exclusive of ovipositor, $0.22\left[=5.5^{\mathrm{mm}}\right]$; expanse đ $0.28[=$ $\left.7^{\mathrm{mm}}\right]$, length $0.18\left[=4.5^{\mathrm{mmn}}\right]$.

Described from 3 영, 1 子 bred May 26th-28th, 1870, from cocoons received from Dr.
I. P. Trimble, of New Jersey, and 1% subsequently received from the same gentlemanall obtained from larve of Conotrachelus nenuphar.
As I am informed by Mr. E. T. Cresson, of Philadelphia, who pays especial attention to the classification of the Ichneumonides, it might more properly be referred to Holmgren's genus Thersilochus, which differs from Porizon in the greater distance between the antennz at base, and in the venation of the wing.-[Third Rept., p. 28, Fig. 9.

Limneria lophyri, N. Sp.- 9 , length $0.30-0.35$ inch [7.5-8.7mm]. Head and thorax black with silvery white pile. Antennæ piceous, more than half as long as body ; but slightly paler toward tip; bulbus either yellowish or rufous. Ocelli either rufous or black. Mandibles, palpi, front and middle coxe trochanters and tibie, pale yellow. Tegulie almost white. Abdomen, with faint pile, rufous, the petiole and sides of next joint usually blackish. Hind legs rufous, the base of tibiee and of tarsi paler.
d somewhat smaller, and with more black on the abdomen.
Four J's, 12 q's lored from larvie of Lophyrus Abbotii.-[Ninth Rept., p. 32.
Hemiteles (?) Cressonif, [N. Sp.]-3-Length $0.2 \boldsymbol{2}^{-}\left[6^{\text {rum }}\right]$. Black, opaque, head transversely-subsuadrate; face clother with pale glittering pubescence; spot on mandibles, palpi, scape of antenne in front and the tegulp, white; eyes large, ovate ; antenne longer than head and thorax, slender, black; thorax closely and minutely punctured; mesothorax with a deeply impressed line on each side anteriorly ; scutellum convex, closely pructured, deeply excavated at base; metathorax coarsely sculptured, truncate and excavated behind, the elevated lines sharply detined, forming an irregularly shaped central area, and a triangular one on each side of it, the outer posterior angle of which is prominent and subacute ; wings hyaline, iridescent, nervures blackish, stigma large, areolet incomplete, the outer nervure wanting; legs pale honeyyellow, coxie paler, tips of posterior femora, and their tibia aud tarsi entirely blackish; abdomen elongate ovate, flattened, petiolated, the first segment flat, gradually dilated posteriorly, somerrhat shining, and indistinctly longitudinally aciculate; the two following segments opaque, indistinctly sculptured ; remaining segments smooth and shining.-[First Rept., p. 177. Figured at Pl. II, Fig. 7.

Hemiteles (?) thyridopterigis, N. Sp. - q Length 0.36 [inch $=9 \mathrm{~mm}$]; expanse 0.50 [inch $=12.5^{\mathrm{mm}}$]. Ferrngiuons, opaque. Head transverse, rather broader than thorax, the front much depressed; face prominent centrally beneath antenne, closely punctured, thinly clothed with pale pubescence ; clypeus and cheeks shining; tips of mandibles black ; antenna, long, slender, filiform, ferruginous, blackish at tips; thorsw rugose; scutellum prominent, with sharp lateral margins; metathorax prominent, quadrate, abrupt laterally and posteriorly, finely reticulated and pubescent, the upper posterior angles produced on each side into a long, divergent, flattened, subacute spine; disk with two longitudinal carinæ, from which diverges a central transverse carina; tegulæ piceous; wings hyaline, subiridescent ; a narrow, dark fuliginous band crosses the anterior pair a little before the middle, and a broad band of same color between middle and apex, this band having a median transverse hyaline streak; areolet wanting, second recurrent nervure straight, slightly obliqne; apex of posterior wing fuscous; legs long and slender, ferruginous, more or less varied with fuscous; pos. terior coxæ, tips of their femora, and their tibia and tarsi, fuscous; base of four posterior tibise more or less whitish, forming a rather broad annulus on posterior pair ; abdomeu petiolated, subconvex, densely and finely sculptured, blackish, basal segment tinged with reddish, the second and third segments distinctly margined at tip with whitish; apical segments smooth and shining, thinly pubescent; ovipositor half as long as abdomen, sheaths blackish.
8.-Not at all like the 8 . Length 0.33 [inch $=8 \mathrm{~mm}$], expause 0.44 [inch $=11 \mathrm{~mm}]$. Long, sender, black, polished, without distinct punctures, thinly clothed with white pubescence; palpi white; antenue long, slender; scape reddish ; mesothorax gibbous, with two deeply impressed longitudinal lines: metathorax with well-defined elevated
lines, forming sereral irregular areas; sides rugulose, apex withont spines or tubercles; tegula white; wing.s whitish-hyaline, subiridescent, the nervures and stigma white, subhyaline, neuration as in 9 ; legs long, slender, pale honey-yellow; coxit, posterior trochanters, apex of their femora, and their tibie and tarsi, blackish; base of posterior tibiep with a white aunulus; abdomen long, sleuder, Hattened, petiolated, smooth and polished, the apical margin of second segment being narrowly whitish.
Described from four of and one $\begin{gathered} \\ \text { specimens } \\ \text { bred from the same [Thyridopterys] }\end{gathered}$ cocoon.-[First Rept.p. 150. Figured at Pl. II, Figs. 11, 12.
The species is quite common in Washington, D. C., and is often attacked by a secondary Chalcid parasite.

Microgaster limenitidis, N. Sp.- $\frac{1}{6}$ ㅇ. Length 0.09 inch [=21mm]. Color pitchyblack. Antennie black, alout as long as body; palpi whitish. Thorax minutely punctured. dbdomen with the two or three basal joints emarginate and rugose, the terminal joints smooth and polished. Legs dusky ; front and middle femora yellowish, hind femora black; front and middle tibiæ yellowish, hind tibiæ with terminal half dusky, but the spur pale; front aud middle tarsi yellowish tipped with dusky, hind tarsi clusky above, paler below. Wings hyaline, iridescent, the nervures and stigma black or dark-brown, the radial nervule, the cubital nervules and the exterior nervule of the discoidal cell, sul)-obsolete.

Described from 6 ㅇ, 1 fo , bred from larvar of Limenitis disippus.-[Third Rept., pp. 158, 159.

The specimens referred to in connection with this description as bred from Gelechia gallesolidaginis prove to belong to a distinct species. Both species belong to the genus Apanteles Först. as at present accepted. See my "Notes on N. A. Microgasters" (Trans. Ac. Sc. St. Louis, IV, Author's separata, p. 13.)

Microgaster gelechie.-Leugth $0.20\left[=5^{\prime \prime m}\right]$ d $9 .-$ Black, clothed with a short, thin, glittering, whitisl pulsescence, most dense on the face, which latter is closely punctured ; occiput and cheeks shining; mandibles rufopiceous; palpi.whitish; eyes pubescent ; antennas as long as the body in δ, shorter in 9,18 -jointed; thorax shining, feebly punctured, mesothorax closely aud more strongly punctured, with a deeply impressed longitmdinal line on each side over base of wings; scutellum smooth and polished, the lateral groove broad, deep, arched and crenulated; metathorax opaque, densely rugose, with a sharp, central, longitudinal carina, and a smooth, flat, transverse carina at base; tegule testaceous, wings hyaline, iridescent, apex smoky, nerrures blackish, areolet complete, subtriangular, radial nervure indistinct; legs pale honey-yellow, coxe blackish, pale at tips, middle pair in of concolorons with legs; abdomen with the two basal segmeuts densely rugose and opaque, the remainder smooth and shining; venter more or less varied with pale testaceous.-[[First Rept., p. 178.

This is a true Microgaster.
Perilitus indagator, N. Sp-Imago-o ${ }^{\text {a }}$, Head almost glabrous, transverse, deep honey-yellow, the trophi pale, except the tips of jats, which are dusky ; ocelli touching each other, black; eyes black, very large, occupying nearly the whole side of face, and with a few very short hairs; antenue with about 24 joints, pale fuscous ; reaching, wheu turned back, to about the middle of abdomen. Thorax honeyyellow beneath and vers slightly pubescent; very finely punctured and slightly pubescent above; prothorax honer-yellow and prominently convex; mesothorax with lateral and posterior sutures black; metathorax black. Abdomen with the pedicel black and slightly punctured; depressed, narrow at base, widening behind, slightly pubescent above; the other joints glabrous, polished, deep honey-yellow, the second joint largest and as loug as all the subsequent ones together; ovipositor extending about the length of the abdomen beyond its tip, rufous with the sheaths black. Legs
pale honey-yellow, the tarsi, especially at tips, slightly dusky, the hind femora and tibie a little dusky towards tips, and a narrow rufous ring at base of former. Wings hyaline, iridescent; veins brown; stigma honey-rellow, with an opaque lyown cloud; two cubital cells, the outer small, sub-quadrate; the radial large ; oue discoidal, long had narrow. Length, exclusive of ovipositor, 0.18 inch $[=4.5 \mathrm{~mm}]$.

Described from 1 of bred from Acrobasis juglandix, LeB.-[Fourth Rept., p. 43.
Spathius trifaschatys, N. Sp. - P. Average length, $0.1 \times$ inch $\left[=4.5^{\text {nim }}\right]$. Color, light-brown. Head pubescent, palpi long and pale: eyes black; ocelli black, contiguous; antennæ smooth, pale, and reaching to secoud abdominal joint. Thorax with sutures dark-brown; legs more or less dusky, the tarsi (except at tip) an aunulus at base of tibie, and the trochanters, pale; wings fuliginons, with a white fascia at base,造 tip and across outer middle of front wing, including the inner half of stigma, the outer half of which is dark-hrown; middle fascia most clearly defined. Abdomen slightly pubescent at sides and tip; first joint pale, petiolate, and with short and longitudinal aciculations above ; second joint pale above, the others more or less brown; ovipositor pale, dusky at tip, and long as abdomen.

One bred specimen.
o-Differs in being much darker colored, the hearl, thorax aud femora being brown, fad the metathorax and base of first abdominal joint black,

One bred specimen, -[Fifth Rept., p. 106.
Bracon chart's, N. sp. - 9 Length of hody 0.35 inch $[=5.7 \mathrm{~mm}$]: of ovipositor 0.40 inch $\left[=10^{\mathrm{mm}}\right]$; expause of wing $0.65 \mathrm{inch}\left[=10^{\mathrm{mmu}}\right]$. Colors black and deep rufous. Head, thorax, legs and antenne polished black, the legs and sides of head and thorax with a fine grayish pubescence; trophi also black. Ablomen uniformly reep rufous. Terebra of ovipositor pale yellow, the sheaths black and very faintly pubescent. Wings deep fuliginous with a faint zig-zag, clear line across the middle from the stigma.

Described from 7 o's, all bred from Chrysobothrix femoratu.-[herenth Rept., p. 75. Fig. 13.

Bracon scolythorts, Cress.- 9 - Black, shining, metathorax and lave of abdomen pubescent; face, anterior orbits, lown half of chesks, clypeus, mandibles, except tips, palpi, teguler, legs, includiug coxar, and abbmen, honey-yellow, the latter darker; posterior coxe sometimes dusky; antenut at hase beneath, dull testacmons; wings fuliginous, apical half paler, iridescent: ablomen shining, first segment whitish laterally, the base and dise sometimes dusky: hase of second segment with a large subtriqugular flattened space inclosed by a deep gronve, the posterior side of which is generally blackish; ovipositor longer than abbomen: wheaths black; length, 1. -1.17 inch $[=$ $\left.3{ }^{9}-4 \frac{1}{4}^{\text {nomin }}\right]$.

8-More pubescent; posterior coxit blackish, also the fomora abow, especially the posterior pair; posterior tibite dusky ; abdomen hlack, polished: apex of tirst, basal half of second, and sides of apical segments more or less honey-yellow : siles of basal segment whitish; wings paler; abdonen uarrower amb rather more convex: length, . 16 inch $\left[=4^{\mathrm{mm}}\right]$.
'Three ${ }^{\text {on }}$, three of specimens.-[Mr. E. T. Cresson, in Fifth Rept., p. 106.
Sigalphus curculionis, Fitch-Imago.-Head black, sulb-polished, ami sparsely covered on the face with short whitish hairs: ocelli tonching each other; labrum and jaws brown; palpi pale yellow; antennal (Fig. $\overline{7}, c$) $2 t$-jointed, filiform, reaching, when turned back, to middle joint of abdomen aud berond, the buibus and small second joint rufous and glabrous, the rest black or dark brown, thongh 3-10 in many specimens are nore or less tinged with rufous; 3-14 very gradually diminishing in size: 14-27 subsqual. Thorax black, polished, the metathorax distinctly and broadly punctate, and the rest more or less distinctly punctate or rugose, with the sides sparsely pubescent. Abdomen pitchy-black, flattened, the dorsum convex, the venter concave, aud the sides narrow-edged and slightly carinated; the three joints distinctly separated and of bout equal length; the first joint having two dorsal longitudinal carinse down the
middle : all deusely marked with very fine longitudinally impressed lines, and sparsely pubescent; (Dr. Fitch in his description published in the Country Gentleman, under date of September, $\mathbf{1 8 5 9}$, states that these lines leare "a smooth stripe along the middle of its second segment and a large smooth space on the base of the third;" which is true of a ferw specimens, but not of the majorits, in which the impressed lines generally cover the whole abdomen.) Ovipositor longer than abdomen, but when stretched in a line with it, projecting backwards about the same length beyond; rufous, with the sheaths black. Leys pale rufous, with the upper part of hind tibixe and tarsi, and sometimes the hind femora, dusky. Wings sublyaline and iridescent, the veins pale rufous, and the stigma black. Length $\circ, 0.15-0.16$ inch $\left[=3.7-4^{\mathrm{mm}}\right]$, expanse $0.30[=$ 7.5 mm]: 子 differs only in his somewhat smaller size and in lacking the ovipositor. In many specimens the mesothorax and the oyes are more or less distinctly rnfous.
 chelus nenuphar, and 2 of ㅇ obtained from Dr. Fitch.
Larva (Fig. 8, a)-White, with translucent yellowish mottlings.
Pupa (Fig. \&, c q) -0.17 inch $\left[=4 \frac{1}{4} \mathrm{~mm}\right]$ long ; whitish, the members all distiuct, the antennse touching hind tarsi, the oripositor curved round behind, reaching and touching with its tip the third abdominal joint, which afterwards forms the apical joint of imago: fire rentral joints, which in the imago become much absorbed and hidden, being strongly dereloped.

Cocoon (Fig. c, b)-Composed of one layer of closely woven yellowish silk.
Variety pufce-Head, thorax, and most of the first abdominal joint eutirely ufous, with the middle and hind tibite dusky, and the oripositor three times as long as abdomen aud projecting more than twice the length of the same beyond its tip.
Described from three ㅇㅇㅇ bred promiscnonsly with the others. This variety is slightly larger and differs so remarkably from the normal form that, were it not for the absolute correspondeuce in all the sculpturing of the thorax and body, and in the renation of the wings, it might be cousidered distinct. The greater length of the ovipositor is very characteristic, and accompanies the other variation in all three of the specimens. - [Third Rept., p. 27. Fig. 7.
Eurytoma Bolteri, N. Sp. - ㅇ Length 0.18 inch $\left[=4.5^{\mathrm{mm}}\right]$. Antemure black, not much longer than the face, perceptibly thicker towards the end, and apparently 10jointed, though the three terminal joints are almost always confluent. Dimensions and appearance of joints, represented in the annexed Figure 97, a. Head and thorax roughpunctured and finely bearded with short, stiff gray hairs. Abdomen about as long as thorax, searcely so broad, riewed from above, but wider viewed laterally; bighly polished, smooth and black, the three terminal segments with minute stiff gray hairs along the sutures; visibly divided into seven segments, the fonr anterior ones of about equal length, the two following shorter, and the terminal one produced into a point. Legs fulpous with the coxer, [trochanters], thighs and more or less of the shanks black-ish-brown. Wings perfectly transparent, glossy, colorless, and with the nerves very faint.
${ }^{*}$ Measures but 0.14 inch $\left[=3.5^{1 \mathrm{~mm}}\right]$, and differs in the antennex, being twice as long as the face, in their narrowing towards the tip and in being furnished with whorls of long hairs. The number of joints are not readily made out, and I have consequently presented at Figure $97, b$, a magnified figure. His body is but half as wide and half a_{S} long as the thorax riewed from abore, and not quite as broad as the thorax, riewed laterally : it it also lacks the produced point of the 우. His wings are also cut off more squarely and more distinctly nerved. - [First Rept., p. 187. Pl. II, Fig. 9.

For further descriptive details see Walsh's posthumous paper on thef Eurytomides (Am. Ent. II, p. 29S-9), where the insect is looked upon as a variets of Eurytoma diastrophi.
[Trichograma minuta, N. Sp.] * * * It comes nearest the genus Trichogramma, Westre., and may be provisionally called Trichogramma (?) minuta. It differs
from that genus and from all other Chalcididau genera with which I am acquainted, in the antenne being but 5 -jointed (scape, plus 4 joints), the scape stout and as long, or longer, than joints 2, 3, and 4 together; joints 3 and 4 small aud together as long as joint 2 ; 5 very stout, fusiform, and as long as 2,3 , and 4 together. The legs have the trochanters stout and long, the tibiip not quite so long nor so stout as the femora, and with a long tooth; the tarsi are 3 -jointed, with the joints of equal length and with the clatws and pulvilli sub-obsolete. The abdomen is apparently 6 -jointed, the basal joint wide, the 2nd narrower, $2-5$ increasing in width till 5 is as wide as 1 . The ovipositor of $\$$ extends a little beyond the apex, aud starts from the anterior edge of the 5th joint.-[Third Rept, p. 158. Fig. 72.

The species was provisionally referred to Trichogramma, aud I subse-- quently proposed for it the generic name Pentarthron (Record of Am. Ent. 1871, 1. 8). Pentharthrum has, however, been used by Wollaston in beetles, and until allied genera are better characterized than at present, the old generic name may be retained.

COLEOPTERA.

Bruciuld fabie N. Sp. (Fig. 19,)-General color tawny-gray with more or less dull yellowish. Body black tinged with brown and with dull yellowish pubescence, the pygidium and sides of abdomen almost alwars brownish. Head dull yellowish-gray with the jaws dark brown and palpi black; antennte not deeply serrate in f, more so in ${ }^{\text {a }}$; dark brown or black with usually 5 , sometimes only 4 , sometimes 4 and part of 5 basal joints, and with the terminal joint, more or less distinctly rufous, or testaceous, the color being so slight in some specimens as scarcely to contrast at all with the darker joints. Thorax narrowed before, immaculate, but with the pubescence almost always exhibiting a single pale medio-dorsal line, sometimes three dorsal lines, more rarely a transverse line in aldition, and still more rarely (two specimens) forming a large dark, almost black patcli each side, leaving a median stripe and the extreme borders pale and thus approaching closely to erythrocerus Dej. ; hase with the edges almost angulated ; central lohe alruost truncate and with a short lougitudinal deeply impressed median line; no lateral notch; sentel concolorous and quadrate with the hind legs more or lest notched. Elytra with the interstitial liues having a slight appearance of alternating transversely with dull vellowish and dusky; so slight how4ever that in most of the specimens it can hardly be traced: the dark shadings form a spot on each shoulder and three transverse bauls tolerably distinct in some, almost obsolete in others, the intermediate row being the most persistent and conspicuous: between these dark transverse rows the interstices are alternately more or less pale, especially on the middle of the 3rd interstitial lines. Legs covered with grayish pubescence, and with the tibiee and tarsi, especially of first and second pair, reddish-brown; the hind thighs usually somewhat darker, becoming black below and inside, and with a tolerably long black spine followed by two very minute ones. Length 0.09-0.14 inch $\left[=2\right.$ z $\left.-3.5^{\mathrm{mm}}\right]$. Described from 40 specimens all bred from different kinds of beans. Hundreds of others examined.

This insect has been for several years ticketed in some of the Eastern collections by the name of B. fabce, or else, what is worse, the corruption of it, fabi. The former name has been disseminated by my friend F. G. Sanborn of Boston, Massachusetts, who says that he received the weevil thus named, together with beans attacked by it, in the year 1802 from Rhode Island. The name was credited to Fabricius, but I can find no notice in any of the works I possess of any Europeau Bruchus fabor, and several of my Eastern correspondents who have access to large libraries have been unable to tind aily description or allusion to a species by that name. Dr. LeConte has given it the MS name of raricornis but as his description will not appear perhaps for years to come and as no compreheusive description has yet been published, I have deemed it advis.
able to dispel in a measure the confusion that surrounds the nomenclature of the species. There is need of a description of so injurious an insect, aud as faber is not preoccupied I adopt the name because it is entirely appropriate and because it is more easily rendered into terse popular lauguage than varicornis.
It resembles most closely of ant other species which I have seen, the B. erythrocerus, Dej., which, however, is smaller, and differs in haring a narrower thorax which has light sides and a dark, broad dorsal stripe divided down the middle by a pale narrow line: erythrocerus is further distingnished low the antenna being entirely testaceoust and the hind thighs more swollen.
From obsoletus Sar, fuboe differs materially: obsoletus is a smaller species, dark gray, with the antema all dark, the prgidimm not rufons, the thorax with a perceptibly darker dorsal shade so that the sides appear more cinereous, a white scutel, and eacy interstitial line of the elytra with a slight appearance of alternating whitish and dusky along its whole leugth : for thongh there is uothing in Say's language to indicate whether it is the interstitial lines that alternate transversely, whitish and dusky, or each line that so alteruates longitudinally, I find from an examination of a specimen in the Walsh collection, that the latter is the case, and so much so that the insect almost appears speckled. The two species differ both in size and color, though, af, Say's description is short and imperfect it is not surprising that fabce should hare been referred to it.
Fron the European bean-feeding Br. favimanus (which is apparently either a clerical error for, or a şnonym of Br. rufimanus, Schœenh.) as described by Curtis, it differs notably; as it does likewise from their Br. serratus, Ill., which also attacks beans.
Dr. LeConte, according to Mr. Rathron, was inclined to consider this insect the obsoletus of Say, from the fact that in specimens which the latter gentleman sent him, the antennar were not varied as in his MS. varicornis, but uniformly black. A few specimens which Mr. Rathron sent me nearly two years ago, taken from the same lot as were those which he forwarded to Dr. LeConte, were singularly enough, all decapitated but two; and these two showed the varied antenne. These specimens had all been kept in alcohol, and I am greatly incliued to believe that the uniformly darki appearance of the antenne that was noticed by LeConte was the effect of the alcohol on those which uaturally had the rufous joints but faintly indicated. At all events, though Mr. Rathron tells me that he found a small proportion of beetles with dark antennæ, after examining, at my suggestion, over two hundred specimens that had thus been kept in alcohol; yet from over one huadred specimens which he had the kindness to send me, I ouly find (after thoroughly drying them) three with the ter* minal joint really as dark as the subterminal, and not a single one in which the rufous basal joints cannot be more or less distinctly traced.—[Third Rept., p. 55-56. Fig. 19.

Since the above was written, Dr. Horn has given us a revision of the Bruchider of the United States (Trans. Am. Ent. Soc., Vol. IV, 1873), in which he makes faber a synonym of obsoletus Say, expresses regret that another synonym must be added and states that the obsoletus which I referred to is the transcersus Say (=hibisci Oliv.). This criticism is not deserved, and while the decision of one who has done such excellent work in Coleoptera as Dr. Horn has will be generally accepted as final, yet no one can compare his redescription of obsoletus with Say's description and not feel that the two apply to differentinsects. Fabce is usually one-third larger, tawny-gray abore with vari-colored antennæ, concolorous scutel emarginate behind, and rufous legs and abdomen; obsoletus, on the coul trary, according to Say, is blackish-cinereous, the thorax cinereous each side, with a whitish scutel and with the abdomen and legs not differing in color from the rest of the body. Fabubreeds in beans; obsoletus in the seeds
of A stragalus. Indeed one would be far more justified in considering B. alboscutellatus Horu a synonym of obsoletus Say than in considering fabre a synonym of it, and when the Bruchus from Astragalus in the Eastern States is bred, I fully expect.Dr. Horn to change his mind. Nor is the assumption justifiable that the obsoletus referred to by ine, and destroyed in the Walsh collection, is hibisci Oliv. It was far more like alboscutellatus as far as I remember, and there is not a character about this species which does not accord with Say's description of obsoletus except that the scutel is described as rounden, while that of obsoletus is described by Say as quadrate. I am of opinion that too much stress has been laid on this difference by Dr. Horn, as, when the pubescence is separated behiud, the scutel appears quadrate, whereas in fubce it appears bifid. The scutel of alboscutellutus when denuded is quadrate, but it is doubtless the clothed appearance which Say described. Say, as appears from his text, had abundant material, and it is assuming too much to suppose that he could overlook the striking differences in size and coloration of fabre, as above indicated.

The specific name fabre was used by Brulle for Bruchus pisorum Linn.
Madarus vitis, N. Sp.-Length, exclusive of rostrum 0.10 [inch $=2.5^{\text {man }}$]. Color uniformly rufous, without maculations, the eses alone being darker. Highly polished; rostrum arcuated, stout and about as long as thorax ; thorax and body with extremely minute and distant punctures, anterior margin of thorax abruptly narrowed, especially laterally, into a collar; elytra slightly undulate, with 4 distinct elevations, one on the extreme outer margin close to the thorax, and one on the middle of each, near the extremity.-[First Rept., p. 132. Fig. 74.

For further details as to the synonymy of this insect, see American Entomologist I, p. 105. Dr. LeConte's description of Baridius sesostris was published about three months earlier than my own and he subsequently (Proc. Amer. Phil. Soc., Vol. XV, 1876, p. 299) erected the genus Ampeloglypter for this and two other species, so that Mudarus vitis=Ampeloglypter sesostris Lec.

Analcis fractarie, N. Sp.-Imago, (Fig. 14, b, c)-Color deep chestnut-brown, subpolished, the elytra somewhat lighter. Head and rostrum dark, finely and densely punctate and with short fulvous hairs, longest at tip of rostrum; anteunce rather lighter towards base, 10 -jointed, the scape much thickenel at apex, join 2 longest and robust, 3 moderately long, $4-7$ short, $8-10$ connate and forming a stout club. Thorax dark, cylindrical, slightly swollen across the middle and miformly covered with large thimble-like punctures, and with a few short coarse fulvous hairs, unusually arranged in three more or less distinct longitudinal lines; pectoral groove ending between front legs. Abdomen with small remote punctures and hairs which are denser towards apex. Legs of equal stoutness, and with shallow dilated punctures and uniform very short hairs. Elytra more yellowish-brown, dilated at the lower sides anteriorly, and with about 9 deeply-punctured stri:e, the strie themselves sometimes obsolete; more or less covered with coarse and short pale yellow hairs which form by their greater density, three more or less couspicuous transverse bands, the first of which is at base ; between the second and third band, in the middle of the elytron, is a smooth dark-brown or black spot, with a less distinct spot of the same color below the third, and a still less distinct one above the second loand. Length 0.16 inch $\left[=4^{\mathrm{mm}}\right]$.

Described from four specimens lred from strawberry-boring larvie. The black spots
on the elytra are quite distinct and conspicuous on two specimens, less so on one, and entirely obsolete on the other.

Larra, (Fig. 14 a)-White with back arched Lamellicorn-fashion. Head gamboges yellow, glabrous, with some faint transerse striations above mouth ; mandibles nufontipped with black; labrum emargiuate, and with palpi, pale. A faint narrow dorsal vasculer line. Legs replaced ly tleshy tubereles. Length 0.20 inch $\left[=5^{\text {mum }}\right]$ when stretched out.-[Third Rept., p. 44. Fig. 14.

Say's generic name Tyloderma having priority over Schönherr's Analcis, the name of this inscet becomes Tyloderma fragarice.

LEPIDOPTERA.

 $\left[=31^{m m n}\right]$. Front wings transparent, with a broal costal border extending half the width of wing at base. a narrow discal spot, and more or less of the tip dull-ferruginons: the inner border, the inuer longitudiual vein, the intermediate space toward posterior angle, and sometimes its whole length, of the same color; veins brownish within and black without the discal spot. Hind wings perfectly transparent, or rarely with a fer sparse ferruginous scales; the transverse discal vein pale, the others pale at base, but black toward extremities: costa narrowly golden-yellow, becoming darker toward apex. Fringes dark-hmown, those of hind wings appearing darkest by virtue of a dark wing border. Uuder surface somewhat paler. Aldomen stout, with a very slight aual tuft in \circ; a stonter one in $\begin{gathered}\text { d. Antenuse blue-black, not enlarging toward }\end{gathered}$ tip, quite pectinate in \boldsymbol{z}. Palpi, a narrow ring around neck, the sides of the collar, a broad baud curving across tegule and around the base of wings, a faint line across middle of thorax, two faint longitudinal lines between it and collar, legs, except outer wase (sometimes whole length) of femora and tibie, hiud third of abdominal joints, aud a dorsal and lateral series of abdominal tufts or patches (the dorsal ones, especially on 3 land 7 th joints, most persistent and conspicuous)-all golden-yellow: the rest of body black. The orbits are of a some what paler-sellow, and the face either gray or bluish.
of differs from $o f$ in the dariver color of primaries, the narrower fringe of secondaries, the narrower ferruginous spot at aper of primaries, the more tufted abdomen, the broader and darker anal tuft, and the pectinate antenno.
Described from 6\%'s, 6 of's, bred from Rubus. Approaches nearest to Trochilium marginatun Harr., and T. tibiale Harr.," from which it difiers in the thoracic marks and the abdominal tufts.
Larra-Len. ${ }^{\text {th }} 0.90-1.10$ inch $[=22.5-27.5 \mathrm{man}]$; diameter $0.18\left[=4.5^{\mathrm{mm}}\right]$. Color pale-yellow. Head dark-brown, with a few whitish hairs; mandibles black, the other trophi paler. Cervical shield horny, pale-brown. Each joint with $\begin{gathered}\text { pale, shiny pilif- }\end{gathered}$ erous spots, transversely arranged on 2, 3 and 12 ; the dorsal 4 quadraugularly arranged and the lateral 2 interrupted by stigmata on all the others. Thoracic legs slightly tinged with brown ; prolegs, with the hooklets dark. Several specimens examined.[Sixth Rept., p. 113. Fig. 30.

Acronycta populi, N. Sp.-Larra-Leugth $1.50\left[i n c h,=37^{m m}\right]$. Color yellowishgreen, covered with long sott bright yellow hairs which spring immediately from the body, part on the back, and curl round on each side. On top of joints 4, 6, 7, 8 and 11, a long straight double tuft of black hairs, those on 7 and 8 the smallest. Head polished black with a few white bristles. Joint 1 with a black spot above, divided longitudiually by a pale sellow line, giving it the appearance of a pair of triangles. Joint 2 with two less distinct black spots. Thoracie legs black; prolegs black with brownish extremities. Venter greeuish-brown. Described from many specimens. When young of a much lighter color, or almost white, with the black tufts short but

[^3]more conspicuons, with a distinct hlack dorsal line, two lateral purplish-brown bands, and with hairs white, sparse and straight.
Individuals vary much: some have a black dorsal line. some have but three distinct black tufts; some hare a sixth tuft of black hains on joint 9, aut others have a few black hairs on all but the thoracic joints. Just before spinning up, many of the hairs are frequently lost, and the body acquires a dull livid hue.

Moth.- \circ, front wing", white, finely powidered with dark atome whirh give them at very pale gray appearance; marked with llack spots as follows: a complete series of small spots on posterior border extending on the fringes, one lietween each nerve; near the anal augle between nerves 1 anl \& a larg and conspicmous spot bearing a partial resemblance to a Greck p×i, placed mowisc, and from this spot a somewhat zigzag line ruming parallel with posterior borler, but somewhat more arcuated towards costa, least distinct betwren nerves 3 and 4, and forming a large distiuet dart-like spot between nerves 5 and 6 ; space between this line and posterior border, slightly darker than the rest of the wing-surface on account of the dark atoms being more thickly sprinkled over it; four costal marks, one suhobolete in a transverse line with the renifom spot, one conspicuons ahout the middle, and in a line with reniform spot and anal angle, one ahont the same size as the last and looking like a blurred \mathbb{X} about one-third the length of wing from hase, and one subolisolete, near the base; orbicular spot flattened and well defined by a black amulation: reniform spot indicated by a blurred black mark rmming on the cross-wein aud sometimes somewhat crescent-formed; a V-shaped spot pointing towards base half-way between costa and interior margin, in a transverse line with the large costal spot which looks like a blurred \mathcal{X}; a blured mark in middle at base, and lastly a narrow spot on the inferior margin, half-way between base and anal angle. Hint wings same color as front wings: somewhat more glossy, with the lumule, a band on prosterion border one-fourth the width of wing, and sometimes a narrow coincident inner line, somewhat darker than the rest; the posterior border also rith a series of spots one between each nerve. Under surface of front wings pearly-white with an archated hrown band, most distinct towards costa, across the posterior me-third, all inside of this band of a faint y yellowish-hrown: lunale aud fringe spots distiuct, and with a faint trace of the prispot; hind wings uniform pearly-white with a distinct and well defined dark wavy line running parallel with posterior margin across the posterior one-third of wing, and with the limule and fringe spots distinct. Anteuner simple and bristle-fomed, gray above. brown beneath. Head thorax and bods, both above and below, silvery-gray: Legs with the tarsi alternately dusky and gray. 3 diffiers from of by his somewhat stouter antenne: much narrower borly, and narrower wings and fringes, the front wings having the apex more acmminate, and the hime wings scarcely showing the darker hind border.

Described from 29,2 all bred. In the ornanentation of the front wings this species bears some rescmblance to the European species tridens and psi, lont otherwise differs remarkably, and especially in its larval characters. It bears a still closer re-- semblance both in the larva and imago state to the pale variety of a common species "known in England as the "Miller" (A. leporina), lut jurlging from the figures and descriptiou in "Newman's Natural History of British Moths," it may be easily distin: guished from leporina by the well defined orbicular spot, by the greater proximity of the two large costal spots, by lacking a round spot behind the disk, and by the more prolonged apex. It diffiers also in the larva state from leporina which foeds on the Birch. It likewise closely resembles interrupta, though the larrap are remarkably dif(ferent; and it also resembles lepusculina, the larva of which is unknown; but the specific difforences will be readily perceived upon comparing Guenée's descriptions. How near it approaches to Acronycta occidentalis, Grote, it is impossible to tell, as the author's description is exceedingly brief, considering the number of closely allied forms; but as that species has a bright testaceous tinge on the reniform spot, it evidently differs from mine. Harris's Apatela [deronycta] Americana, though very differ-
ont in the imago, ret closely resembles populi in the larra state. I have on two occasions found the larva of Americana feeding on the Soft Maple, and it may be distinguished from populi. by its greater size: by the paler color of the body; by the hairs being paler, more mmerons, shorter and pointing in all directions, especially anteriorly and posterionls of each sesment; by having on each of joints 4 and 6 two distinct long black peucils, one originating each side of dorsum. and on joints 11 one thicker one originating from the toll of dorsum ; by a substigmatal row of small black spots (three to each seriment. the midhle oue lower than the others) and by a trapezoidal velvety black patch staring from anterior porrion of joint 11 and widening to auns.-[Second Rept., pp. 120, 121. Figs. 87, 88.

Grote refers it, in his List, to lepusculina Gn.; having, I believe, seen the type. Guenée must have lad a uniformly colored and pale specimen as my typical specimens hare a distinct orbicular mark, deeper subterminal markings and the terminal space contrasting by its darker gray with the rest of primaries-all unmentioned in Guenée's description.
Xilina cinerea, N. Sp.-Larta-Length when full grown 1.20-1.30 inches $\left[=30-32^{m \mathrm{~m}}\right]$, color shiny silvery-green on the back, darker below. A medio-dorsal cream-colored stripe; a subdorsal one represented by 3 or 4 irregularly shaped spots on each joint. A broad deep cream-colored stigmatal line, with a few green dents in it, extending to anal prolegs. Fonr slightly elevated cream-colored spots, encircled by a ring of rather darker green than the body, in the dorsal space, and in the subdorsal space there are four or more similar but smailer spots. Venter glaucous-gray. Head as large as joint 1, free. glassr-green with white mottlings at sides and top, and pearly-white lips. Thoracic leys whitish. Prolegs concolorous with venter. When young the body is darker and the markings paler. Described from two living specimens.
Imago (Fig. 57, b)-Front wings, with the gronud-color pale cinereons shaded and marked either with light brown, haring a faint purplish tint, or with darker brown, having a similar reflection, or with a colder grarish-brown with the faintest mossgreen reflection: in the first two cases the dark color either blends and suffuses with the ground-color so as to give the wing a nearly uniform and smooth appearance, or else contrasts sufficiently to bring out all the marks distinct; in the latter case (two specimens) the markings are very distiuct and the ground color is whiter and more irrorate. In the rell-marked specimens the ustal lines are readily distinguished, the basal half line, transverse auterior and transverse posterior being quite wary, pale, and bordered each side with a dark shade, the median shade lark and well defined and the subterminal line, though sonetimes pale near costa, forming a series of dark angular spots: in the more uniform specimens these lines are barely distinguishable and perhaps the most constant is the sulu-terminal which most often takes the form of a series of dark angular spots: the ordinary spots have a pale inuer and a more or less distinct dark outer anmulation ; the orbicular is larger than the reniform and is suffi-s ciently double to take on the form of an 8 , the upuer part of which is always largest and with the interior space paler than the general surface, while that of the lower part is either concolorons or darker; the form is, howerer, quite irregular and differs sometimes in the two wings of the same species: the reniform spot is generally well defined, and is either darker, or has a tinge of reddish-brown, interiorly: at the base of the wing is a more or less distinct pale suace occupying the upper half, and bordered belor bry a brown line which is straight aloout half its length and then extends" upwards and outwards towards transverse antexior. A tolerably distinct termina line, with the fringes dark. In taking a general tien of the varying specimens this pale basal space, the pale upper part of the orbicular and the dark subterminal line, seem to be the most constant characters of the species. Hind wings gray-brown in- 1
clining to cinnamon-brown, with the posterior border but slightly darker and the fringe paler. Under surface quite uniform, that of frout wings being nacreous gray with a faint discal spot and with a narrow costal and broad terminal border of pale fulvous, dusted with purple-gray; the hind wings of this last color with the lunule and line distinct. Head nearly entire, though the quadrifid arrangement of the hairs is traceable; palpi hairy thronghout. Thorax cquite square, of same color as primaries and with the collar bordered behind with brown and sometimes the edges of the tegulæ similarly bordered. dblomen of same color as hind wings with lateral tufts, and cut off squarely at apex. Expanse 1.32-1.82 inches [$=34-45 \mathrm{~mm}$].

Described from 3 specimens ferl on grape-vine, 2 ou peaches and 1 on Cercis canadensis. Other captured specimeus examined.

This species is the analogue of, and very closely resembles the European Xylina conformis, which is known under various synonyms. A specimeu sent to Mr. P. C. Zeller of Stettin, Prussia, was, however,' pronounced distinct. The well-marked irrorate form still more closely resembles Guenée's cinerosa found in Switzerland, and which he himself thinks may prove to be a variety of conformis. The more I study the species of the Nocruide as they occur in nature, the more I am struck with their great variability, and there can be no doubt that many of the so-called species will turn out to be but varieties when we better understand them. In this large family none but the more strikingly marked species should ever be described without an accompanying description of their preparatory states and of their principal variations. I am unacquainted with any of Walker's species except subcostatis, which is very different, and if this should prove to be a synonym of any of them the fault must be laid to the difficulty under which the naturalist in the Western States labors for want of proper libraries to refer to. It differs essentially from Grote's Bethunei and capax as described and illustrated in Volume I of the Transactions of the American Entomological Society. I am informed by Mr. [J.] A. Lintner of Albany, N. Y., that Dr. A. Speyer of Rhoden, Fürstenthum Waldeck, Prussia, who gives much attention to the Noctuidæ, has it marked Celona oblonga in his MS., but the insect evidently does not belong to that genus, and as the German pronunciation of Xylina much resembles the English pronunciation of Celocna, the reference to the latter is doubtless due to a verbal mis-understanding.-[Third Rept., pp. 135, 136. Fig. 57.

Now referred, in Grote's List of Noctuidee of N. A., to Hiibner's genus Lithophane.

Amphipyra conspersa, N. Sp.-Larya.-Found full grown July 2, 1867, on Hazel. No pyramidal hump, and of a uniform emerald-green, the dorsal palpitations visible and the stigmata pale, with a black annulation, but with no other markings either on the head, body, or legs.

Imago-Like pyramidoides in every particular except that the brown of front wings is almost uniformly spattered over, more or less suffusely, with pale-grayish spots, so that no regular marks appear. The costal marks are, however, tolerably distinct as in pyramidoides, and by careful examination and comparisou traces of the more conspicuous marks of that species may be discerned.

Described from one of bred July 31.—[Third Rept., p. 75.
As remarked at the time, the specimen from which the description was made was a bred one and perfect. Grote, in his List of Noctuidce, considers it simply an aberration of pyramidoides, but this can hardly be the case, as the larva also shows differences.

Agrotis scandens, N. Sp.-Larva.-Average length when full grown 1.40 [inch, $=35^{\mathrm{mm}}$]. Ground-color very light yellowish gray, variegated with glaucous in the shape of different sized patches, which are distinctly see nunder the lens to be separated by fine lines of the light ground-color. A well-defined dorsal and less distinct
subdorsal and stigmatal line, cansed by these patches becoming larger and darker; another and still less distinct line of the same kind under stigmata. The dorsal line frequently with a very tine white line along its middle, especially at sutures of segments. Piliferous spots in the normal position; those above black, those at the sides lighter. Stigmata black. Head and cervical shield tawny, the latter with a small black spot each side, the former with two in front, and two eye-spots each side. Caudal plate tawny, speckled with black. Venter and legs glaucous. Bristles fine and small. Filled with food it wears a much greener appearance than otherwise, while when foung it is of a more miform dirts whitish-yellow, the lines less distinct but the piliferous spots proportionately larger. Head ruite variable in depth of shade.
Perfect Insect.-Average length 0.70 [inch, $\left.=17.5^{\mathrm{mm}}\right]$; alar expanse 1.50 [inch, $=$ $\left.37^{\mathrm{min}}\right]$. General color of fore wings very light pearly bluish-gray, with a perceptible deepening posteriorly. Quite rariable, sometimes of a more decided blue, at others inclining to buff as in Leucania unipencta, Haw. Markings, when distinct, as in Plate 1, Fignres 5 and 6. With the exception of the reuiform spot and subterminal line, however, they are usually distinct ouls on costa, being either indistinct or entirely obsolete on the rest of the wing. The subterminal line is light, with a more or less dark diffuse shade each side, which, in some instances, forms into sagittate spots. A black stain at the lorver part of reniform spot forms a most distinctive character. Hind wings very pale and lacking the bluish cast of fore wings; lunule distinct, and a dark shade, enclosing a lighter mark, as in Heliothis, along posterior margin. Eyes dark; head and thorax same as fore wings: abdomen same as hind trings. The whole muler surface the same as hind wings above, the lumnes and arcuated bands faintly traced, the fore wings having a darker shade in the middle.

Described from 30 bred specimens.-[First Rept., pp. 78-79. Pl. 1, Figs. 5, 6.
Agrotis Cochranir, Riles-Imago.-Fore mings of a light warm cinereous, shaded with vandyke brown and umber, the terminal space, except at apex, being darker and smoky. Basal, middle and limbal areas of almost equal width, the middle exceeding somewhat the others. A geminate dark basal half-line, usually quite distinct. Transverse anterior geminate, dark, somewhat irregularly umlulate, and slightly obliquing outwards from costa to interior margin. Transterse posterior geminate, the inner line being dark, distinct and regularly andulate between the nerves, while the outer line is plain and much paler; it is arcuated superiorly and inversely obliques for two-thirds its width. Orbicular and reniform spots of normal shape, having a fine, dark aunulation, which is homever obsolete in both, anteriorly; the orbicular is concolorous with the wing, whilst the reniform has a dark inner shade with a central light one, and forms with the trausrerse posterior a somewhat oval spot which is also dark. Median shade dark and distinct interiorly, shading ofir and becoming indistinct in center of wing, and quite dark between the two spots, giving them a fair relief. Subterminal line single, light, acutely and irregularly dentate, with an inner dark shade, but warmer than that of terminal space. Terminal line very fine, almost black, slightly undulate. Fringes of same color as wing, with a light central line, having an outer dark coincilent shade. A dark costal spot in basal area; at termini of the usual lines, and two light ones in subterminal space. In some specimens one or two fine dark sagittate marks are disceruable, and also a fine black claviform mark. Hind wings: whitish, with a darker shade along posterior margin. Under surface of fore wings somewhat lighter than the upper surface and pearlaceous interiorly, with a smoky arcuated band - more definite near the costa than elsewhere - and a tolerably distinct lunule. Under surface of hind wings concolorous; slightly irrorate with brown auteriorly and posteriorly, and with an indistinct lunule and band. Antennæ, prothorax, thorax, tegule and body of same color as primaries, the prothorax having a darker central line, and in common with the tegule a carneous margin. Under surface lighter; legs with the tarsi spotted.
This moth, in its general appearauce, bears a great resemblance to Hadena chenopodii, but the two are found to ditier essentially when compared. From specimens of H.
chenopodii, kindly furnished me by Mr. Walsh, and named by Grote, I am enabled to give the essential differences, which are: 1st. In A. Cochranii, as already stated, the middle area exceeds somewhat in width either of the other two, while in H. chenopodii it is but half as wide as either. 2d. In the Agrotis the space between the spots and between the reniform and transverse posterior is dark, relieving the spots and giving them a light appearance, whilst in the Hadena this space is of the same,color as the wing, and the reniform spot is dark. The claviform spot in the Hadena is also quite prominent, and one of its distinctive features, while in the Agrotis it is just about obsblete.

There are specimens that seem to be intermediate between these two, but all those bred by me, both male and female, were quite constant in their markings, and their intermediates will doubtless prove to be distinct species or mere varieties.
Larra-Length 1.07 inches $\left[=26 . \mathrm{emm}^{\mathrm{mm}}\right]$. Slightly shagreened. General color, dingy ash-gray, with lighter or darker shadings. Dorsum light, inclining to flesh color, with a darker dingy line along its middle. The sides, particularly along the sub-dorsal line are of a darker shade. On each segment there are eight small, black, shiny, slightly elevated points, having the appearance of black sealing-way, from each of which originates a small black bristle. The stigmata are of the same black color, and one of the black spots is placed quite close to them anteriorly. Head shiny and of the same dingy color as the body, with two darker marks, thick aud almost joining at the upper surface, becoming thinuer below and diverging toward the palpi. The upper surface of first segment is also shing like the head. Ventral region of the same dingy color, but lighter, having a greenish tinge anteriorly and inclining to yellow under the anal segment. Legs of same color. It has a few short bristles on the auterior and posterior
segments.

Chrysalis. - Length 0,70 of an inch $[=17.5 \mathrm{~mm}]$. Light jellowish brown with a dusky line along top of abdomen. Joints, especially of the three segments immediately behind the wing-sheaths, dark brown. The brown part of these three segments, minutely punctured on the back. Eyes dark brown, and just above them, a smallor brownish spot. Two quite minute bristles at extremity.
Described from numerous bred specimens, - [First Rept., pp. 75-76. Fig. 26.
There is little question
There is little question but that this is the moth briefly characterized by Harris (Ins. Inj. to Veg., p. 444) as Agrotis messoria, an examination of the types confirming this view. A. repentis G. \& R. and A. lycarum are also conceded by Grote to be synonyms.
Plusia brassice, N. Sp. - Larva - Pale yellowish translucent green, the dorsum made lighter and less transluceut by longitudinal opaque lines of a whitish-green; these consist each side, of a rather dark vesicular dorsal line, and of two very fine light lines, with an intermediate broad one. Tapers gradually from segments $1-10$, descending abruptly from 11 to extremity. Piliferous spots white, giving rise to hairs, sometimes black, sometimes light colored; and laterally a few scattering white specks in addition to these spots. A rather indistinct narrow, pale stigmatal line, with a - darker shade above it. Head and legs translucent yellowish-green, the head having five minute black eyelets each side, which are not readily noticed with the naked eye. Some specimens are of a beautiful emerald-green, and lack entirely the pale longitudinal lines. Described from numerous specimens.

Chrysalis - Of the normal Plusia-form, and varying from yellowish-green to brown. Moth - Front wings dark gray incliuing to brown, the basal half line, transverse anterior, transverse posterior, and subterminal lines pale yellow inclining to fulvous, irregularly undulate, and relieved more or less by deep brown margins: the undulations of the subterminal line more acuminate than in the others, and forming some dark sagittate points; the basal half-line, the transverse anterior near costa, and the transverse posterior its whole leugth, being sometimes obscurely donble: four distinct
equidistant costal spots on the termiul equidistant costal spots on the terminal half of wing, the thind from aper formed by
the termination of the transverse posterior; posterior border undulate with a dark brown line which is sometimes marked with pale crescents; a series of similar crescents (often mere dots) just inside the termiual space; the small sub-cellulary silver spot oral, sometimes aniformly silvery-white but more often with a fulvous centre, sometimes free from, but more often attached to the larger one which has the shape of a constricted U, very generally with a fulvons mark inside, which extends basally to the transverse anterior at costa. Fringes dentate, of the color of the wing, and with a single modulating line parallel to that on the terminal border. Hind wings fuliginous, inclining to yellowish towards base, and with but a slight pearly lustre; fringes very pale with a darker inner line. Uuder surfaces pale fuliginous with a pearly lustre, the front wings with a distinct fulvous mark under the sub-cellulary spots, speckled more or less with the same color around the borders of the wing, the fringes being dentate with light and dark; the hind wings speckled with fulvous on their basal half, and with the fringes as above. Thorax variegated with the same color as front wings, the tufts being fulvous inclining to pink. Abdomen o g gray, with a few pale hairs near the base, and scarcely extending beyond the margin of the hind wings; δ longer, coverod with pale silky hairs, a distinct dorsal brown tuft on each of the three basal segments, and two large lateral either fawn-colored or golden-yellow brnshes on the fifth segrueut, meeting on the back and partly covering two smaller brushes on the sixth, which are tipper with black; terminal segment Hattened and with two lateral more dusky and smaller tufts: underside of thorax and abdomen gray, mixed with flesh-color. Alar expanse 1.55 inches. Described from numerous bred specimens. In a suite of specimens bred from the same brood of larva a considerable difference in the general depth of color is found, some being fully as dark again as others.

Closely resembles Plusia ni, Engr., which occurs in Italy, Sicily, France, and the northern parts of America. Mr. P. Zeller of Stettin, Prussia, to whom I seut specimeus, considers it distinct however from the Europeau ni, and I have consequently given it a name in accordance with its labits. - [Second Rept., pp. 111-112. Fig. 81.

Notwithstanding its close resemblance to n, the best authorities agree with Zeller in considering it distinct, as it certainly is. Strangely enough this same brassicre, or what is extremely close to it, occurs also in South Europe and is figured in Stainton's Entomologist's Amnual for 1870 as P.ni, one specimen having been found on the south coast of England, which specimen Zeller, as he wrote me, belieres to have come from America. Staudinger would probably characterize brassicce as a "species Darwiniana," and there are doubtless individuals of both the species which approach each other so closely as to be undistinguishable. There is such variation in the silver spot in either that it cannot be depended on alone, but Speyer (Europaiisch-Americanische Verwandtschaften; Stettiner Ent. Zeit., June, 1875, p. 165) has presented other differences that are constant in detail, the most noticeable of which are the darker and more irrorate coloring and the interrupted and wavy terminal line of brassicce, against the paler, smoother, more metallic coloring and the perfectly straight and uubroken terminal line of $n i$.

The larva is the most common cabbage pest in the Southern States, and is infested with an undetermined parasite. Mr. E. A. Popenoe has found it feeding on the leaves of Crepis, and what appears to be the same has been found by my assistants on Clover, Dandelion, Senecio scandens, and Chenopodium.

Aplodes rubivora, N. Sp. - Lawa - Average length 0.90 inch [$=20 \mathrm{~mm}$]. Color light yellowish-gray, darker just behind each joint, and very minutely shagreened all over. On each segment a prominent pointed straight projection each side of dorsum, and sereral minor warts and prickles below. Two very slightly raisel, longitudinal lighter lines along dorsum, between the prominent prickles. Ten legs.

Perfect insect - Alar expause 0.50 inch $\left[=12.55^{\text {min }}\right]$: length of body 0.2% inch $\left[=6^{\text {man }}\right]$. Color verdigris-green, the scales being sparse so that the wings appear sub-hyaline. Fore-wings with two transverse lighter lines dividing the wing into three parts, proportionate in width as 3.4 .2 counting from base, and parallel with posterior margin ; also a faint line between these two, runuing to abont $\frac{f}{3}$ of wing from costa. Hind wings with two similar transverse lines, dividing the wing in like proportion, the outer line not parallel with margin, but wavy and proluced prosteriorly near its middle. Costa pale; fringes obsolete. Head, thorax and abolomen green above, but, together with antenne and palpi, white beneath.

Described from one \& specimen. - [First Rept., pp. 139-140. Pl. II. Fig. 25.
Dr. Packard, in his Monograph of the Geometred Moths, etc. (U. S. Geol. Surr. of Terr., Vol. X, 1876, p. 382), refers it to the genus synchlora Gor., and adds the conventional ending to the specific name, so that the species becomes synchlora rubivoruria. Synchlora albolineata Pack. and Eunemoria gracilaria Pack. are given as synonyms.

Phycita [Acrobasis] nebteno, Walsh-Imago.-I repronluce here the description of the moth in Mr. Walsh's original words: "Expansion of wing. 7-10. Length of body 3-10. General color light cinereons, varied with dusky. A row of alout seven subsemilunar or linear dark spots on outer margin of fore wine. Then one-fourth of the distance to the body a waving light cinereous band parallel to the exterior margin, marked on each side with dusky black. Nearly at the coutre a much abbreviated black band. Beyond the centre on the costal margin a subtriangular dusky black spot, the aper of which comects with the apex of a mach larger subobsolete triangular brickred spot which extembs to the interion margin, ant is momithon the out side by a wary lightcinereons band, which is again bounded bs a waw dusky black band proceeding from the apex of the costal triangle. Base of wing dusky black, inclosing a small round light cinerems spot. Hind wings and all benath light cincreous shaded with dusky, the fore wings darker. Tarsi dusky with a marrow light cinereons fascia at the apex of each joint. Hind tibia fasciate with dusky at the apex, sometimes obscurely bifasciate. Intemediate tilial fisciate with dusky at the contre the fascia generally extending to the base, but becoming lighter. Anterior tibia dusky, with a narrow apical light cinereous fascia. Palpi, both labial and maxillary, duskr."

When compared with other closely allied and resembling species, this little moth may be characterized in the following manner: The gromnd color of the front wing is decidelly bright and pale; the discal spots are almost always conthent, thus forming an abbreviated transverse lyar : the dark markings are well detined and the triangular dark costal spots starting from the inner third of the wing is distinctly relieved, while the "brick-red" (nearer a cinnamon-brown) triaugular spot which opposes it is large, so that the space it occupies on the imner margin is nearly as wide (generally withiu one-third) as that between it aud the transverse posterior line. The lower half of the basal space is often of a distinct cinnamon-brown, and an oblique dusky band, which Mr. Walsh has not mentioner, is often quite distinct, running from near the apex to the brown triangle, where it comects with the inner margin. The species recalls, in facies, the European Myelois suctella. Iu a suite of specimens lored from Apple, Quince, Plum and Cherry, there is sufticient variation to prevent a too rigidly drawn description, but the above characters ohtain in all of them, and such variation as occurs runs in the direction of the variety preseutly to be described.

Larva-[Length 0.5 iuch] Brown or greenish in color. Cylindrical. TTapering grad-

80

 INDEX TO MISSOURI ENTOMOLOGICAL REPORTS.ually from first to last joint. Head and cervical shield darker than the rest of body, slightly shagreened, sparsely covered with long hairs, the shield quite large, convex, aud occupying the whole surface between stigmata-there being in front of the latter a sub-cervical dark horny plate. Joints 2 and 3 wrinkled as at Fig. 18, c the former with two rather conspicnous dark dorsal piliferous spots. The other joints with a few fine hairs, the stigmata plainly visible, and the anal covering but slightly horny. Legs and prolegs of moderate size and of same color as body.

Described from numerous specimens.
Chrysalis-Mahogouy-brown, with no striking character. Abdomen, especially above, with very minute puuctures.

Variety nebliella (Fig. 20, e).-I have bred a single specimen from wild Crab (Cratagus) which differs in some essential features from the normal form, but which nerertheless can only be considered a variety of it, as I observed no larval differences. It differs in the more uniform and subdued tone of the front wings, the markings being more suftused and indistinct ; but principally in the relative narrowness of the space outside the trausverse posterior line the greater conseguent width of the middle area, and smalluess of the triangular brown spot-the space it occupies on the inner margin being scarcely one-half as wite as that between it and the transverse posterior line. The discal spots are also separated.

Described from one good specimen. An interesting fact connected with this variety is, that precisely the same form occurs in Europe, as I found a single specimen in the cabinet of M. J. Lichtenstein of Montpellier, France, which he had captured in that vicinity, and which he allowed me to bring home for comparison. It seems to be rare, even there, and whether indigenons or imported from this comutry, is a question yet to be solved.-[Fourth Rept.,]. 41-42, Figs. 18, 19, 20.

Acrobasis jughandis, LeBaron.-(Fig. 20, d)-I hate bred this species from Hickory, but as Dr. Leliaron has also bred it abuudantly from Waluut, and has signified his intention of deseribing it in his second anuual Report, I aulopt his proposed name, and shall content myself with pointing out the mamer in which it may generally be distinguished from nebulo. Firstly, by the paler basal area of the frout wings, which is sometimes almost white, especially near the costa, and by the head and shoulders and sometimes the of autenual horn partaking of this paler color. Secondly, by the darker median space, the dark triangular costal spot not being well relieved posteriorly, but extending so as sometimes to darken the whole space. Thirdly, by the discal spots always being well separated.

Such are its specific characters as taken from 3 hickory-bred and 6 walnut-bred specimens; lout of the former there is 1 which when placed alongside of some of the more abnormal specimens of nebulo, can scarcely be distinguished from them, and, if chosen without knowledge of its larva, would certainly be placed with them; while of the latter there are two which nearly as closely resemble the variety nebuletla. In general characters, in the size of the brown triangular spot, and the manner in which the inner margin is divided, juglandis is intermediate between nebulo and nebulella. In one of the hickory-bred specimens, the general color is duite warm, and the basal area carneous rather than white.- Fourth Rept., p. 43. Fig. 20, a, b, d.

Dr. LeBaron published his description of it about the same time, under the name Phycita juglandis, in his Second Report on the Insects of Illinois, p. 123.

Pempelia Hammondi, N. Sp. Imago (Fig. 21, d).-Average expanse 0.48 inch [$=12^{\mathrm{mm}}$]. Front wings glossy purplish-brown with two silvery gray trausverse bands dividing the wing on costa in about three equal parts, the basal band sharply defined outwardly and always extending to inner margin, the posterior band never extending more than half Tay across the wing, and generally not more than one-third, illy defined. In some specimens the basal transverse band is quite narrow, with the basal space a slade paler than the median: in others the band forms a double line. In some
specimens also, a narrow pale transverse line outside the second hand, and a pale terminal shade, are visible. Hind wings uniformly paler gray. Under surface glossy gray, with no marks, the front wings a shade darker than the hind. $\begin{gathered}\text { o differs from }\end{gathered}$ $\$$ in the basal portion of the antenur being curved, and the curre filled with a tuft of scales.
Described from numerons bred specimens. The species has the general facies of the European Cryptoblabes bistriga, which is a larger iusect.

Larva.-Length $0.45-0.50$ inch $\left[=11-12.5^{\mathrm{mm}}\right]$. General color olive, or pale green, or brown, with a broad dark stripe along each side of back. Tapers slightly both ways, joints $4-12$ inclusive, divided into two transverse folds. Freckled with numerous pale specks and with piliferons spots, the specks often taking the form of two pale broken lines along the upper edge of dark stripe. The piliferous spots are pale with a central black dot, and are best seen in the dark specimens. On joints 4-12 inclusive they are placed 4 in a square on the mildle of the back, and four more each side, the two upper lateral ones being on the anterior fold, the stigmata appearing as minute rufous specks between them. Both these spots are often double. The third lateral spot is on the posterior fold and the fourth is subventral and anterior. The hairs proceeding from these spots are long aud setaceous. Head horizontal, freckled, pale behind, tinged with green in front and with a few long hairs. Joint 1 also freckled and with a large black piliferous tuberele with a pale basal annulation and in range with middie of dark stripe. Joint 2 with similar black tubercles with a white centre and replacing the uppermost lateral pale spot. There are but two of the small pale dorsal piliferous spots on this joint (between the tubercles) as well as on joint 3. Beneath immaculate, except that the thoracic legs have sometimes a few dusky dots.

In the very dark specimens the head, cervical shield and anal plate remain pale. The cervical shield is then well defined with four small piliferous specks at anterior edge, and the large shiny tubercle forms the extreme anterior angle.

Described from numerous specimens.
Pupa.-0.24 inch $\left[=b^{m m}\right]$ long; rather stout and short, with two minute diverging spines and a few stiff bristles at tip.

In many specimens the subdorsal dark stripe is obsolete or sub-obsolete, but even then the four black tubercles on joints 1 and 2 characterize the larva sufficiently. [Fourth Rept., p. 46. Fig. 21.

Tortrix Rileyana, Grote-Laira-Length, Hickory feeding, 0.60-0.80 inch [$=$ 15-20 mm $]$; Snowberry feeding, $0.40-0.50$ inch $\left[=10-12.5^{\mathrm{mm}}\right]$. Largest on segment 2, tapering thence gradually to anus. Ground color dull yellow. Covered with large, distinct, black, sealing-wax-like, slightly elevated spots, each giving rise to several fine bristles. These spots are thus arranged on each segment: 2 each side of dorsum the posterior ones widest apart; 1 at sides in the middle of the segment, containing the stiginata in its lower hind margin; 1 smaller and narrower just below this, on a somewhat elevated lougitudinal ridge, and 1 round one below this ridge on the posterior part of the segment. Segments 2 and 3 have but one spot each side of dorsum. Two distinct wrinkles on all the segments, more on 2 and 3 . Head, cervical shield, and candal plate black. Venter dirty yellow with black marks; legs ditto.

Chrysalis-Honey-yellow, rolust in the middle, aud with two transverse rows of minute teeth across the back of each segment.

Perfect Insect-From Hickory-Average expanse 1 inch, length of body, $0.35\left[=8.8^{\mathrm{mm}}\right]$. Deep ochreous. Fore wings evenly washed with purplish, leaving the fringes and costal elge dark ochreous. The markings take the shape of dark velvety brown ronnded maculations, generally of small size and faintly shaded with ochreons on the edges. Three of these subterminally at the base of the wing, subequal, situated interspaceally between the nervures. At a little within the middle of the costa are two fused maculations, the most prominent. Before and beyond these, some faint costal marks. At the extremity of the discal cell, above median nervure, is the first of a 6 MO
sermes of maculations, normally four in mumber but uot constant, usually uneven msize. A sulterminal series of spots is inaugurated on costa by a large, compound shaded maculation. Below this, over the median nervules, sweeps au outwardly rounded series of small inproximate dots. Tro dots on costa, within and at the apex, and a faint terminal series of minnte streaks is shortly discontinued. Hind wings of a lustrons bright deep ochreous; pale aloug the costal margin and darker shaded along interual margin. Beneath, as are the hind wings above; both wings immaculate, fore wings the darker. Body aul appendages concolorons, bright deep ochreous. Antennæ simple. Numerons bred specimens.
From Snowbery-rur. symphoricurpi-Much paler, the fore wings not being as dark as the hind wings of the above. The upper surface of fore wings not washed with parplish but merely of a darker ochreons than the hind wing. The maculations entirely similar but ferruyiuons, paler aud the slighter costal marks obsolete. Legs at base and muder thoracic surface almost whitish. Average expanse, $0.62\left[=15.5^{\mathrm{mm}}\right]$; length of body, $0.30\left[=7.5^{m i n}\right]$. Described from numerous specimens. Under surfaces exactly alike in both varieties.-[First Rept., 1. 154. Fig. 85, and Pl. 2, Figs. 3, 4.

Tortrix Cinderflla. N. Sp.-Imago.-Alar expanse exactly $1-2$ inch [$\left.=12.5^{\mathrm{mm}}\right]$. Frout wings deep glossy ash-gray, immaculate. Under a lens they have an irrorate appearance, while in certain lights some of the scales appear to form a series of darker transverse simuous lines. Also seattered over the wing may be noticed a dozen or more reddish scales, which are not sufficient, horever, to destroy the uniform immaculate appearance. Head, mouth-parts, antennte, legs, and abdomen of same color. Hind wings paler aud semi-transparent. Fringes of all wings coucolorous. Under surface of wings pale nacreons, inclining to pale fulvous around the margins.

Described from two bred specimens.
Larva (Fig. 22, (1).-Lengtli 0.50 inch $[=12.5 \mathrm{~mm}]$. Form of that of Acrobasis nebulo, wrinkled very much in the same mauner. Color yellowish-green, the piliferons spots of the same color, but readily distinguished by their polish $\pm d$ surface; they are placed in a transverse row on thoracic joints, and on joints 4-12 there are four trapezoidally on dorsum, two laterally on the first fold and one subventral. Stigmata between the two lateral spots, aud yellowish. Head and cervical shield gamboge-yellow; only a shade darker than body; labrum and two basal joints of antenne paler or white, the terminal joint brown ; ocelli on a somerwat crescent-shaped black spot (the most conspicuous character) a second dusky spot at base of head laterally. Legs immaculate.

Described from many specimens.
Pupa (Fig. 22,0). -Length $0.25 \sim 0.30$ inch $\left[=5-7.5^{\mathrm{mm}}\right]$. Brown, characterized by a peculiar rounded projection from front of head; by a little pointed prominence at base of each antemur, and each side of penultimate abdominal joint; and by terminating in a broal suppressed piece which produces two decurved hooks. Posterior rim of abdominal joints rasped dorsally, and a slight rasped dorsal ridge near the anterior edge of larger joints. Legs reaching only to end of wing-sheaths. The head-prominence varies in size and slightly in form.-[Fourth $\mathrm{Re}_{\mathrm{p}} \mathrm{t}$., p. 47.

From specimens reared from cranberry-feeding larvæ received from Mr. Jno. H. Brakeley, of Bordentown, N. J., I am satistied that this is the same species briefly characterized by Packard in the 1st edition of his Guide (p.331) as Tortrix oxycocecna, and that T. malivorana LeBaron (my Rep. IV, p. 47) is but a dimorphic orange form, subsequently described by Packard as T. vacciniicorana (Haydeu's Report of the U. S. Geoh. and Geogr. Surrey of the Territories 1878, p. 522). The orange and ash-gray specimens are thus bred both from Apple and Cranberry. I bave reared both forms from Cranberry and from Apple, and they are undistinguishable in the larva and pupa states. The gray form is often
more or less suffused with orange scales and the orange form less frequently with gray scales. This is the most remarkable case of dimorphism with which I am familiar in the family, and points strongly to the important bearing of biological facts on a true classification. The dimorphic coloring is not sexual, but occurs in both sexes. The eggs of this species are very flat, circular and trauslucent, with a diameter of 0.7^{mm}, and are laid singly on the underside of the leaf near the mid rib. The species belongs to the geuns Teros, and as Packard's specific name oxycoccena has priorits, the insect should be known as Teras oxycoccana, Pack. The insect, according to Mr. Brakeles, who gives an account of it in the Report of the Seventh Annual Convention of the New Jersey Cranberry Association (1879, p. 7), commouly affects, also, the high-bush whortleberry. The gray form of the moth is most frequent in autumn.

Gelechia gallesolidaginis, N. Sp.-Lerva.-Length 0.60 [inch, $=15^{\mathrm{mm}}$]. Cylindrical. Color dark dull-brown, without shine. Largest on middle segments; tapering from 4th to head, and from 9th to extremity. Each segment impressed transversely in the middle, thus forming two folds, the thoracic segrment having other such folds. Six small piliferous spots, two each side of dorsim and oue above stigmata, which, together with the stigmata, are shiny and of a lighter brown than the boty. Head and cervical shield light shiny-brown.

Chrysalis.-Length $0.50\left[\right.$ inch,$\left.=12.5^{\mathrm{mmm}}\right]$. Mahogany-brown. Form normal. Blunt at extremity.
Perfect moth.-A verage length $0.38[=9.5 \mathrm{~mm}]$. Alar expanse $\circ 0.95[i n c h,=24 \mathrm{~mm}]$, of 0.75 [inch, $=18.8 \mathrm{~mm}$]. Fore wings deep purplish-brown, more or less sprinkled with carneous. A light carneous band starts from the costa near the base, and curves towards the middle of the inner margin, which it occupies to a little beyond the beginning of the cilia, where it curves upwards towards the tip, reaching only half way up the wing. Here it is approached from above by a somewhat diffinse spot of the same color, which starts from the costa just behind the apex, and runs down to the middle of the wing.

In the plainly marked individuals there is an extra line ranning from the middle of the inner margin, ontwardly obliguing to the middle of the wing, and then back to the inuer margin a little beyond where the cilia commences, but in the great majority of specimens this mark is imlistinct. Cilia light carueons. Hind wings slate-gray, with the cilia lighter. Antemir finely aumulated with the same two dark and light colors. Head, thorax and palpi light, with a sprinkling of the dark brown. Body dark, with light anoulations. The species varies in the distinctn sss of its markings, and the light parts of the front wing appear finely aprinkled with brown under the lens. Male generally smaller than female, with the antenut proportionately a little longer.

Described from numerous bred specimens.
It seems to resemble (ir. longifasciella of Clemens, in coloration and pattern; but unfortunately our late lamented microlepidopterist, failed almost always to give the measurement of the species he described, and it is impossible to tell how much mine resembles that species. Yet, as lonyifusciella was described from two mutilated specimens, received from A. S. Packard, jr., and as that gentleman has seen my insect aud declared it an undescribed species there can be little doulst of the fact.-[First Rept., p. 175. Pl. II, Figs. 1, 2, 5.

Pterophords cardut, N. Sp.-Lara.-Average length 0.60 . Largest in the middle of body, taperiug thence each way. Color light straw-jellow-greener when joung. Somewhat darker, partly translucent, dorsal, subdorsal and stigmatal lines. Two lateral rows of black spots, the lower spots rather smaller and placed behind the
upper ones. A third row above these, and others along the back, but so small that they are generally imperceptible with the naked eye, except on the thoracic segments, being especially distinct on segment $\%$. Head small, black, sometimes inclining to brown. Cervical shield black, divided longitudinally in the middle by a lighter line. Caudal plate also black. Segment 11, besides the spots above mentioned, has two transverse black marks, the posterior one the largest. Thoracic leys black, the others of the same color as the body.
Described from 12 specimens.
Pupa.-Average length 0.45. Of form of Plate 2, Fig. 14. Soft, dull yellow, with a lateral dusky line each side of dorsum, and another, less distinct, each side of venter. Also dusky about the head and wing-sheaths.

Perfect insect.-Leugth 0.45 ; alar expanse 0.80 . Front wings bifid, the cleft reaching not much more than $\frac{1}{1}$ of wing; tawny yellow, with a distinct dark brown triangular spot running from costa to the base of cleft-sometimes a little below it-its posterior margin with a slight coucave curve. Three dusky, diffuse longitudinal spots, one placed on the basal third of the wing at costa and frequently reaching along the costa to the triangular spot; one near the interior margin, a little nearer to the base of wing than the last, and one on the outer third of the interior margin. Two light-colored transverse lines across the end of wing, one very near and parallel with posterior marg1n, the other bordering the triangular spot behind, and curving across the lower lobe towards posterior angle. The space between these two light lines usually darker than the ground-color. Fringes dark with a light margin. Hind wings trifid, the upper cleft reaching a little beyoud the middle, the lower one to the base of wing. Color ashy-brown, the lower lobe produced into a dark angular spot about their middle posteriorly. Anteunæ, palpi, head, thorax, aud body, tawny yellow; legs of the samc color with the exception of the tarsi, which are almost white, with alternate dark brown spots, the spines being black, with dusky tips.-[First Rept., pp. 180-181. Fig. 98, and PI. II, Figs. $13,14$.

Zeller has since (1872) referred it to the genus Platyptilia (Beitr. zur Kenutu. N. A. Nachtfalter, 2nd part, p. 118), and indicates the difference between it and a very closely allied European species, P. Zetterstedtii. He very properly, because of the incongruous compound, drops the conventional ending dactylus which I used in the original description.

HETEROPTERA.

Nysius destructor, N. Sp.-General color grayish-brown; of shape of N. thymi Wolff. Head either minutely or more coarsely punctate, and more or less distinctly pubescent; the surface usually brown, with a distinct black, longitudinal line each side, broadening on the crown, but generally leaving the orbit of the eyes pale; these lines sometimes more diffuse and occupying the whole surface, except a median brown spot at base of crown, and a narrow, paler spot on the clypeus; ocelli piceons; eyes opaque, either black or slate-color; face sometimes uniformly pubescent and appearing dark grayish-brown; hut more generally black each side of rostrum, with a distinct yellowish-brown spot on the cheeks below the eyes; rostrum piceous, paler at base aud reaching to hind coxæ; antenme either pale yellowish-brown or darker brown, the torulus and first joint darkest. Thorax, pronotum narrowing anteriorly, the sides slightly sinuate, irregularly and more coarsely punctate than the bead, more or less pubescent, dingy jellow or brown, with a transverse black band near the anterior edge, obscuring the incision and learing the edge pale, especially in the middle, where there is often a conspicuous pale spot; also five more or less distinct longitudinal dark lines, the ceutral one most persistent and leading on the posterior nargin to a pale, shiny, impunctate spot; the callus at hind angles, and sometimes an intermediate rpot between it and the mediau one, and the entiro posterior margiu, also pale and impuuctate; scutellum dark, coarsely punctate, sometimes with a smooth median lon-
gitudinal ridge ending in a pale spot, and with the lateral margins pale; prosternum dark, more or less pubescent, the anterior and posterior margius, and a band outside of coxie, more or less broadly pale; mesosternum and, metasternum also dark, with the pale spots outside of coxie. Leys pale yellow, inclining more or less to brown; coxit dark at base, pale at tip; trochanters pale; front and middle femora spotted more or less confluently on the outside with brown; hind femora, f dark brown, except at tips and base; \& spotted only ; tilise ringed with hrown at base; tarsi marked more or less with brown, especially at tip. Hemelytra either colorless, transparent and prismatic, or distinctly tiuged with diugy yellow; shallowly punctate and very finely pulbescent, the veins of corium and clavis dingy gellow, with brown streaks, the more constant of these streaks being two on posterior margin of corium, and one at the tip of clavus. Ablomen, of tergum piceous, with the sutures and sides of some of the joints ravels paler; venter piceons, minntely and regularly covered with gray pubescence; ρ sutures and spots on tergum more ofteu pale; venter dingy yellow, excep: at base; of paler than δ, aud generally larger. Average leugth 0.13 inch $\left[=3 . \frac{1}{1 \mathrm{~mm}}\right]$.

Lara.-Dingy yellow, with more or less distinct longitudinal dark lines, especially on head.

Pupa.-Same color, with more distinct red and brown longitudinal lines, and two little tooth-like, pale yellow processes at iuner base of hemelytra pads, indicating the wings; the abdomen paler than the rest of the body.
Described from numerons specimens. I have some, especially males, in which the black so predominates that the paler parts of the head and thorax are scarcely traceable, while in others again the pale parts predominate almost to the exclusion of the black. Indeed, so variable is the speries that it is difficult to see wherein some of the specimens differ from the Europeau thymi, or from N. congustutux Uhler. and it is barely possible that future comparison will show specific ideutity betmeen some or all of the three. But as long as authors fail to give the variation aspecies is liable to, or the number of specimens a description is drawu nul from, it will remain impossible to decide such questions satistactorily, and I mame destructor at the suggestion of our Hemipterist, Mr. P. R. Uhler, of Baltimore, who has examined specimens which I sent him.-[Fifth Rept., p. 113. Fig. 41.

Mytilaspis pomicorticis, N. Sp.-Eggs-from 30 to 100 under each scale; length scarcely 0.01 inch, irregularly ovoid, nearly thrice as long as wide, snow-white, except just prior to hatching, when they hecome yellowish. Larra-Length of body 0.01 inch, ovoid, thrice as long as wide, pale yellow, with a darker yellow spot near each end; a few short hairs seen around border ; two fine anal setæ about half as long as body springing from two lobes between which two spinous hairs are always seen; antenns quite variable, the joints irregular and not easily resolved, sometimes appearing only 6 -jointed, but more geverally 7 -jointed, with a few hairs, two or three at tip the longest and most persistent; legs with a one-jointed tarsus, a feeble claw, and, among other hairs, four more or less distinctly knobbed ones near tip, the two uppermost longest.

उ-Length of body, 0.122 inch $\left[=.5 .5^{\mathrm{mm}}\right]$; color, trauslucent carneous-gray; a dorsal transverse band on each abdominal joint, and portions of the mesothorax and metathorax darker, or purple-gray ; the members somewhat lighter. Head, sub-triangular; rostrum rudimentary ; ocular tubercles, one each side of it, plainly visible, the eyes on the apper surface prominent, dark, and with few facets; antennar as long as body, 10 -jointed, joints 1 and 2 bulbous and sometimes indistinctly separated; 3-9 about four times as long as wide, slightly constricted: 10 half as long and fusiform; all but 'basal two with a whorl of about eight hairs, slightly clavate and as long as width of joint. Thorex vers large, oval; prothoracic portion narrowing in front, composed of two transverse folds, the anterior one having a transverse row of four dusky dots; the mesothoracic portion large and elevated. showing three lateral swellings: a well-defined medio-dorsal plate, rounded in front, shallowly-notched behind, with a medio-
longitudinal suture, and a transserse oue dividing it in two, the anterior half pale, the posterior darker; the metathoracic portion showing a sub-triangular scutel, and separated from mesothorax by the trausverse band (apodema of Targioni). Tings about as long as body, arising from base of mesothoras, spatulate, closing tlat on back in repose, and appearing whitish, finely aud uniformly covered with short, stiff hairs; supported by a bifurcate vein, the bifurcation arising from basal fourth, and each fork running near and almost parallel with the wing-margins: balancers dark, with the hook quite long. Legs with the middle pair longest, and-fron large size of coxie -further from front than from hind pair ; the cosid and femora large and swollen, the latter with a more or less distinct lobe near the base below; the tarsi one-jointed, with a constriction occasionalls indicated, and terminating in a single flexible claw, surrounded by four clubbed hars; the tibia and tarsi are quite bristly, but on the femora there are usually but tro bristles, one about the middle above, and one on the basal lobe below; the cose also have one ahove. Abdomen, seen from above, nearly as long as thorax; appearing shorter from below; 8 joints only discerned; the last joint abruptly narrowed into a large tubercle bearing four bristles on the under side, and sending forth the genital armor in the form of an awl-shaped strle as long as the abdomen.
of Scale-Larval part golden sellow; the anal shield yellowish-brown, sometimes quite pale, inclining to white, flattenel, straight, rather more than twice the length of larval scale, increasing in width from tip to end, where it is slightly truncate; attached by a white film; average length, 0.035 inch.

ㅇAverage leugth, 0.05 inch; color, pale yellow; jug-shaped and flattened when young, more globular when mature, and twice as long as wide; the cephalo-thoracic portion rounded and entire, but narrower than the abdominal, at the juncture with which it forms a more or less conspicuous lateral projection; on its inferior side is a tubercle, having two longitudinal ridges, and giving rise to a corneons, filiform proboscis, longer than the body, and composed of four separate parts; posterior abdominal joints deeply lobed laterally, with two or three blunt, fleshy hairs to each lobe; anal plate gamboge-yellow, corneous, with au irregular border, presenting two larger, slightly tri-lobed, median projections, and one or more smaller ones each side, furnished with spinous hairs, two especially bet ween the tri-lobed projectious aforenamed; five more or less complete sets of secretors visible from below, arranged around anus in form of an arc, the mediau set with normaily 10 , the upper laterals 20 , and the lower laterals 14 ; besides these, some six or more blunt tubes, and a series of shorter pointed ones, may be noticed along the border, and doubtless serve as secretors. (See Fig. 32 b.)
o Scale-Larval scale golden-yellow; median scate somewhat darker; anal shield varying from pale brown to deep purplish-gray, and generally of a color with the bark it is upon. The whole scale is often incanous, but the hoary film easily rubs off; it averages 0.12 inch in length, but is quite variable in form and size, being either straight or curved, narrow and strongly arched, or broad and flatter, but always rounded at the end; the white inferior lamine at sides sometimes show distinctly from above, and give the appearance of a pale border.
The lice, whether ${ }^{7}$ or q, vary in appearance according to position and state of maturity. In making the foregoing descriptions and fignres, I have taken what appeared the most natural positions, after examination of many specimens. The of abdomen shrinks very much in drying, and the more detailed q characters are variable. While the normal number of secretors in the middle set is never more than 10 , I have sometimes found but 8 or 9 ; that of the upper laterals never surpasses 20 , but may be as low as 15 ; while that of the lower laterals is more uniformly 14 , though I have sometimes found 16, and at others 1%. Opposite sets do not always contain the same num-ber.-[Fifth Rept., pp. 95-96. Figs. 31, 32.

This is the species previously known as Aspidiotus conchiformis, or popularly as the Oyster-shell Bark-louse, and the reasons for separating it are given in the report.

Eriosoma ulmi, N. Sp.-Color dark blue. Length to tip of closed wings, exclusive of antermæ, 0.12 [inch, $\left.=3^{\text {mun }}\right]$. Wings hyaline, three times as long as wide, and more pointerl at the ends than in E. pyri. Costal aud subonstal veins, aud that bounding the stigma behind, robust and black. Discoidal veins together with the 3d forked and stigmal veins, all slender and black, the forked vein being as distinct to its base as are the others, with the fork but $\frac{1}{3}$ as long as the vein itself and curved in an opposite direction to the stigmal vein. Antemar 6 -jointed and of the same color as the body; joints $1,2,4,5$ and 6 of about equal length, joint 3 thrice as long as pither. Legs of the same color as body.

The young lice are narrower and usually lighter colored than the mature individuals, varying from flesh or pink to varions shades of blue aud purple.- [First Rept., p. 124.

Professor Thomas (Trans. Ill. St. Hort. Soc., 1876, p. 191) has called it Erisoma Rileyi* because of ulmi being preoceupied by an European species. It belongs to Schizneura. For subsequent remarks see "Notes on the Aphididar of the Uniter States, etc., by C. V. Riley \& J. Monell," (Bull. Hayden's U. S. Geol. \& Ceogr. Surrey, Vol. V, No. 1, p. 3.)

DIPTERA.

Asilues Missocriensis N. Sp.-Alar expanse 1.85 [1uches, $=47 \mathrm{~mm}]$: length of body 1.30 inches [$=33^{\mathrm{mm}}$]. Wings transparent. with a smoky yellow tinge, more distinct around the veins, which are brown. Head pale yellow, sometimes brownish; moustache straw-yellow with a few stiff black hairs below; beard pale straw-yellow; crown very deeply excavated; base of the same pale yellow with short, stiff, yellowish hairs, and a crown of black ones near the border; eyes large, prominent, finely reticulated and almost black; antennar, first joint black tipped with brown, cylindrical and hairs; second joint black, short, thick and rounderl at tip, with a few stiff hairs; third joint as long as first, tapering each way, swooth, hlack and terminating in a long, browu bristle; proboscis black and nearly as long as face; neck with pale and black hairs. Thorax leaden-hlack, slightly opalescent with reddish brown at sides, more or less pubescent with pale rellow, especially laterally and posteriorly aud in three narrow longitudinal dorsal lines which gradually approach towards metathorax; bearded at sides and behind with a few decurved black bristles, those behind i_{n} terspersed with a few smaller pale hairs; scutel of the same color, with upwardcurving, black bristles; halteres hrown. Abdomen, δ, general color dull leaden-yellow, with darker transverse bands at insections; the light color produced by a yellowish pubescence and numerous short close-lying yellow hairs, the dark bands produced by the absence of this covering at the borders of each segment ; basal segment broad, bilobed, and with lateral black bristles; segments $6,7,8$ and anal valves with a decided pink tint, especially 7 ; \& but one-third as long as 7 above. \&, broader, flatter, more polished and brassy, with no transverse darker bands, segments 7 and 8 polished black, the latter narrow and longer than any of the others; auus with a few black bristles. Legs, dull purple-brown, with black bristles; thighs very stout, the hind pair rather darker than the others, the two front pair of trochanters with long, yellowish hairs ; pulvilli, generally fulvous.

Described from two $子^{3}$, and two 9 , all captured while sucking honey bees. I have not access to Loew's descriptions, and cannot therefore compare it with already described species; but specimens have been sent to Dr. Wm. LeBaron, of Geneva, Illinois, and to Baron Osten Sacken, of New York, and both these gentlemen are unacquainted with it, and believe it to be new. In the well marked of specimens, the body bears a general resemblance to that of Trupanea [Promachus] vertebrata, Say.[Second Rept., pp. 122-123. Fig. 89.

Baron Osten Sacken has since placed this as a synonym of Proctacanthus Milbertii Macq. in the second edition of his Catalogne of the described Diptera of North America (1878), p. 81.

Lydella doryphore, New Species. - Length 0.2 .5 [$\left.=6^{\mathrm{mm}}\right]$. Alar expense 0.48 [$=$ $\left.12^{\mathrm{mm}}\right]$. Autenuse black. Palyi fulrons. Face silvery white. Front silvery, tinted with pale golden-hown, with a broad middle stripe black. Thorax cinereous with imperfect black stripes. Abdomen black and silvery-ash, changing into each other when viewed from different angles. When viewed from above: first segment deep black with a posterior border of silver-ash very uarrow in the middle, much widened laterally, but abbreviated at the sides of the abdomen. The other segments with the basal half silvery ash, terminal half black. Legs black. Fourth longitudinal vein of the wings straight after the augle. Posterior transverse vein arcuate.

Described from numerous bred specimens.-[First Rept., pp. 111-112. Fig. 48.
This species is referred by Osten Sacken to the genus Exorista of Schiner, Lydella not being received as a distinct genus. The name Iydella is used also for a genus of Acarina.

Exorista flavicauda, N. Sp.-Leugth 0.35 to 0.50 inch $\left[=8.5-12.5^{\mathrm{mm}}\right]$. Head broader than thorax; face, silvery-white, the cheeks incliuing to yellow, with lateral black hairs extending to wear the base of autenne, and one stiffer and longer bristle at top of cheeks; front, dusky, ferrugi:ons, with two rows of black converging bristles; divided by a broad depressed stripe of a brighter ferrnginons color and without bristles; occipnt bright ferruginous; labium ferruginous with hairs of same color; maxipalps rufous; eyes dark mahogany-brown, aud perfectly smooth; antennie, two basal joints rufons, with black hairs, third joint thattened, dusky, and thrice as long as second; seta, black; entire hinder part of head covered with dense white hairs. Thorax, more decidedly blue than in leucaniw, broader (instead of narrower) in front than behind; the vittia less distiuct; seutel of same color as thorax. Abdonen, stout and more cylindrical than in levcaniar ; first joint dark bluish-gray; second, light blu-ish-gray, becoming darker along the middle, at sides and at lower border; third joint, like second above, but golden-gray at sides (no rufous); last joint entirely yellow or pale orange, with no other color and but few black bristles around anus. Wings more dusky than in leucanice; alulæ, opaque bluish-white. Legs, black; pulvilli pale yellow.

Described from one captured, 4 bred 9 . Space between eyes at occiput fully onethird the width of head.-[Second Rept., pp. 51-52. Fig. 18.

Tachina [Exorista] phycite, LeBaron-Imago.-Length, 0.20 ineh [$=5^{\mathrm{mmm}}$]. Antenne black, thirl joint twice as loug as the second; face silvery, without bristles at the sides; sides of the front silvery at the lower part, pale golden above; the middle black vitta occupying a little more than half of the width of the inter-ocular space ; frontal bristles continned down the face to opposite the end of the second joint of antenns; palpi blackish-brown; eyes hairy. Thorax black, with the ordinary cinereons stripes scarcely perceptible. Abdomen black, varied with cinereous at the base of the segments; a large fulvous spot on the side of the abdomen occupying nearly the whole of the side of the second segment, half or more of the third, and sometimes a small spot on the first ; bristles on the middle as well as at the hind-margin of the second and third segments. Venation of the wings of the usual type; first posterior cell almost closed, before the end of wing; fourth long vein slightly curved after the angle; fifth long vein prolonged to the margin ; hind cross vein moderately sinuous. Tarsal claws and pulvilli unusually long.

Female? A single specimen, a very little larger than the others, was obtained from the same lot of leat-crumplers, which possibly may be the \circ of the same species. It differs as follows: Front broader; antenne dark brown; the cinereous markings of the body more distinct; the tip of abdomen fulvons, but without the fulvous spot at the sides; and with the tarsal claws of ordinary length.

This species appears to belong to the subgenns E'corista of Meigen, closels allied to Tachina proper, and differing from it chietly in having the eyes hairy, and in the presence of bristles on the middle, as well as at the hind margin of the second and third abdominal segments, whereas Tuchina has only the latter.-[Fourth Rept., p. 40-41.

This species was simultaneously published by Dr. LeBaron in his ed Rept. Ins. Ill., p. 123. It is retained in Exorista by Osten Sacken. Anthomyia zeaf of, N. sp. (Pl. 2, Fig. 94). Length 0.20 [inch, $=5$ inm]; alar expanse 0.38 [inch, $\left.=9.5^{\text {mun }}\right]$. Autemut black; style raicroscopically pubescent; front, fulvous, with a distinct, rather narrow, brownish, cinereous margin; face and orbits brownish-white; palpi and proboscis black; ocellar area somewhat heart-shaped: thorax and abdomen pale cellow-brownish cinereous, with minute black points at the insertion of the bristles; thorax with au indistiuct middle stripe of brown; legs black, tinted with cinereous; poisers pale ochre-yellow ; scales small, the upper valve larger than the lower.-[First Rept., p. 155. Figs. 86, 87, and Pl. II, Fig. 24.
Anthomyia radictm (Linn.) var. Calopteni-Egg-Oral, smooth, white, 0.04 inch long.

Larva-Skin unarmed, 0.24 inch $\left[=6^{\mathrm{mm}}\right.$] long when extended, of the normal form, the mandibular hooks black, quite conspicuous, and diverging at base. Prothoracic spiracles elongate. Anal spiracles minute, yellowish-brown, with the 8 fleshy surrounding tubercles, small.
Pupa-Pale-brown, rounded at earh end, with the prothoracic spiracles and lips anteriorly, aud the anal spiracles and lower tubercles posteriorly, showing as minute points.

Imago- 9 . Average expanse $0.4 \cdots$ inch $\lfloor=12$ umin $]$. (inneral color ash-gras π ith a ferruginons hue, especially above, and a more or less inteuse metallic reflection. Face with white reflections below; eyes smooth, brown, encircled by the ground color, and this behind aud on foreliead bordered by a brown line ; 2 similar lines at back of head from upper corners of eyes and approaching to neck; forthead duskr-brown, becoming bright yellowish-red toward base of antemn:e, and the brown forking at right angles around occiput. Trophi and antems black, the style simple and somewhat longer than the whole auteunat. Thorax with three dusky longitudinal lines, obsolete behind; legs black, with cinereous lme beneath; wings faintly smoky. with brown-black veins, the discal cross-vein straight and transverse, the outer one bent "and more oblique; balancers crumpled, yellowish. Abdomen with faint dustr mediodorsal spots, broad at base, tapering and obsolescing toward end of each joint.
In the δ, aside from the larger efes, stronger bristles, and narrower, less tapering abdomen with its additional joint-all characteristic of the sex-the face is whiter, and the medio-dorsal dark mark of abdomen contimous.

Described from 25 specimens of both sexes, reared from locnst-egg-feeding larvit.
Specimens bred from cabbage and radish roots, and others in my cabinet taken Fom the burrows (made in Osage Orange in Missouri) of Crabro stippicola Pack.; do not differ specifically. - [Ninth Rept., p. 95.

For further details see First Rept, of the Commission (pp. 285-9), where the species is shown to be the Anthomyia angustifions of Meigen.

ORTHOPTERA.

Caloptencs atlanis N. sp.-Length to tip of abdomen $0.70-0.85$ iuch $[=1 \% .5-$娍mm ; to tip of closed wings $0.92-1.0$ inches $\left[=2: 3-266^{n m}\right]$. At once distinguished from femur-rubrum by the notched character of the anal abdominal joint in the male and by the shorter, less tapering cerci; also by the greater relative length of wings which extend, on an areage, uearly; one-third their leugth bevoud the tip of the abs domen in the dried specimens: also by the larger aurlmore distinct spot on the wingsin all which characters it much more closely resembles suretus than femur-rubrum.

From spretus, again, it is at once distinguished by the smaller size, the more distinct separation of the dark mark running from the eyes on the prothorax and of the pale line from base of wings to hind thigh; also by the anal joint in the δ, tapering more suddenly and by the two lobes forming the notch being less marked. From both species it is distinguished not only by its smaller size but by the deeper, more livid color of the dark parts, and the paler yellow of the light parts-the colore thus more strongly contrasting.
$6 \delta^{\prime} s$, of's from New Hampshirw. Just as the typical femur-whrum is at ouce distinguished from the typical spretne by the characters indicated; so Atlanis, though structuralls nearer to spretus, is distinguished from it at a glance by its much smaller size aul darker, more marbled coloring. The contrast is all the greater in the living specimens, aud I hare seen no specimens of spretus that at all approach it in these respects.

Whether this is the femur-rubrum as defined by DeGeer or by Harris, it is almost impossible to decide, though Harris's figure of femur-ribrum better represents it than the true femur-rubrum, as subsequeatly defined by Thomas, and as found in Illinois and Missouri.-[Seventh Rept., pp. 169-170.

For further details and structural differences between it and C.spretus see First Report of the Commission.

LIST OF DESCRIPTIONS OF ADOLESCENT STATES.

In making out the following list of descriptions of adolescent states, etc., that appeared in the Reports, the nomenclature there used is retained. Unless otherwise stated the insects, in the particular states indicated, were at the time unknown or undescribed, the descriptions first appearing in the Reports. Those published in connection with the preceding descriptions of new species are omitted here:

HYMENOPTERA.

Nematus ventricosus; larra: IX, 21. (Previously described by several writers.)
Pristiphora grossularis'; lurra: IX, 26. (Description quoted from Walsh.)
Emphytus macnlatus; larru and pupa: IX, 23-29. (Previously described by me in the Prairie Farmer, May 25, 1867.)
Lophyrus abbotii ; larva: IX, 32.
Lophyrus lecontei ; larra: IX, 33. (This and abbotiiboth partially described by me in the Prairie Farmer, November 10, 1866; May 25, 1867 ; May 2, 1 R63, and iu the Praivie Farmer Annual, 1869.)
Tiphia inornata; larva: VI, 126.

COLEOPTERA.

Harpalus (probably herbivagns Sar); larva: IX, 97.
Harpalid; larva: I, 59.
Mysia 15-punctata; larra: IV, 18.
Chilocorus biruluerus; larra and pupa: I, 16.
Hippodamia convergens; lara and pupa: I, 11』. (Previonsly mentioned in the Am.
Ent. I, 46, and elsewhere.)
Coccinella picta; larva: V, 101.
Passalus cornutus; larra and pupa: IV, 140-141. (Previonsly mentioned by Burmeister and by Walsh.) ; egg: V. 55.
Lachnosterna que rcina; egg: V, 55.
Pelidnota punctata; larva aud pupa: III, 78-79, (First described by me in Am. Ent. II, 295.)
Telephorus bilineatus; larva: IV, 30. (First described by Packard.)
Chauliognathus pensylvanicus: larra: I, 57. (Quoted from the Am. Eat. I, 35.)
Chrysobothris feworata; eggs: VII, 73: larva, I, 46. (Previously described by Fitch and others); eggs, larra, and pupa: VII, 73.
Sinoxylon basilare; larva aud pupa: IV, 54.
Corynetes rufipes; larva and pupa: VI, 101, 102.
Prionus laticollis; larva: I, 126; larva and pupa: II, 87 ; egg: V, 56.
laticollis.)
Saperda bivittata ; pupa: I, 43. (Previonsly described by Harris.)
Lema trilineata; larva and pupa: I, 99. (From the Prairie Farmer; aud the Am. Ent. I, 26. Previously described by Harris and others.)
Doryphora juncta; larra: I, 10b. (First described in the Am. Ent. I, 43.)
Doryphora 10-lineata ; eggs and larva: I, 105. (From the Am. Ent. I, 43. Previonsly described by me in Prairie Farmer Aug. 8, 1863.

Colaspis flavida; larra: III, 84, and IV, 34.
Coscinoptera dominicana; eggs and larva: VI, 123, 130.
Haltica chalybea; larra and pupa: III, 81. (Quoted from Am. Ent. II, 327. The larva first described by Packard, Guide, p. 507.)
Blephatilla rhois; egg, larra and pupa: VI, 121.
Cassida bivittata; larra and pupa: II, 61. (First desaribed by me in the Prairie Farmer Annual for 1868, p. 53.)
Cassida aurichalcea; egg: II, 60; larca and pupa: II, 62. (Previously described by Harris.)
Cassida pallida; larva: II, 62.
Cassida guttata; larva and pupa: II, 63.
Cassida nigripes; larva and pupa: II, 63, 64.
Bruchus pisi ; egg: III, 47.
Teuebriouid? ; lerca: VI, 113. (Previously described as the larva of Eupsalis by Harris.)
Eupsalis minuta; larra and pupa: VI, 115, 116. (The pupa first described by Harris.)
Conotrachelus crategi ; larva and pupa: III, 39.
Baridius trinotatus; larva and pupa: I, 95. (From the Am. Ent. I, 22.)
Anthonomus quadrigibbus; egg: III, 31 ; larva and pupa: III, 35.

LEPIDOPTERA.

Papilio philenor; larca and pupa: II, 117. (Previously described by Smith and Abbot, and by Boistuval aud Le Conte ; also by Harris in Ent. Corr.)
Pieris protodice; larva and pupa: II, 104. (Published simultaneously in the Am. Ent. II, 77.)
Pieris raper ; lercti ant pupa: II, 103. (Previously described by various authors.)
Danais archippus; egg: III, 144.
Limenitis disippus; tgy and larra: III, 154. (The mature larva previously described by various authors.)
Apatura lycaos; cgg, larra aud pupa: VI, 146, 147. (The larva and pupa badly described by Boisd. \& Lec.)
Apatura herse; tgy, larca and pupa: VI, 148. (The larva and pupa badly described by Boisd. \& Lec.)
Paphia glycerium; larva and pupa: II, 127. (First published by me in Am. Ent. II, 123); egg and larval changes: V, 146.

Megathymns yuccie; egg, larva and larval changes: VIII, 174, 181. (First published by me in Trans. St. Louis Ac.) ; IX, 129.
Chœrocampa pampinatrix; egg, Tarta and pupa: II, 71, 72. (Previously described, except egg, by various authors.)
Philampelus achemon; young and full grown larve and pupa: II, 74, 75. (Previously described by various authors.)
Philampelus satellitia; eggs, young and full grown larcce, and pupa: II, 76-78. (Previously described, except egg, by various authors.)
Sphinx 5-maculata; larra pupa: I, 95 . (From the An. Ent. I, 23 ; previously described by several authors.)
Thyreus Abbotii; larva and pupa: II, 78, 79. (Previously described by various authors.)
Deilephila lineata; two forms of larva: III, 141, 142. (Previously described, but not in connection. Quoted from the Am. Ent., II, 258.)
Жgeria acerni; larra and pupa: VI, 110.
Egeria rubi ; larva: VI, 113.
Psychomorpha epimenis; larru aud pupa: III, 64, 65; VI, 88. (First described as the possible larva and pupa of Eud. unio, Am. Ent. II, 152 and in 1st Rept., p. 84.)
Eudryas grata; eggs, Tarva and pupe: II, 83; VI, 89, 90. (The larva previously described by Harris aud others.)

Eudryas unio; larva and pupa: VI, 92. (First described by Lintner.)
Alypia octomaculata; larva: I, 136, (previously mentioned by Fitch); II, 80, pub-
lished simultaneously in the Am. Ent., II, 151, (previonsly described in Harris' Corr.); VI, 94.
Procris americana; larra and pmpa: II, 86. (First described by Harris.)
Callimorpha fulvicosta; larva: III, 134.
Spilosoma virginica: larra and pupe: III, 69. (Previously described by various anthors.)
Hyphantria textor; larra: III, 132. (First described by Harris.)
Ecpantheria scribonia; larra: IV, 143. (Previonsly described by other authors.)
Bombyx mori ; egg and larva: IV, 86. (Previously well known.)
Attacus cecropia; larral changen: IV, 106. (Quoted from the Am. Ent. II, 100.)
Attacus cynthia; larval changes: IV, 117. (Previously described by other authors.)
Attacus promethea; larval changes: IV, 121. (Partially given by other authors previously.)
Attacus luna; larval changes: IV, 124. (Previously given by Lintner.)
Attacus polyphemus; larval changes: IV, 126.
Attacus yama-maï; lerral chonges: IV, 13\%. (Previonsly described by other authors.)
Attacus pernyi; egy, larra, and cocoon: IV, 137. (Previously described by other anthors)
Hemilenca maia; egy and lerral changes: V, 128, 129. (Previonsly described by Lintner.)
Hyperchiria io ; larval changes: V, 135. (Previously given by Lintner.)
Anisota rubicunda ; eggs and larval changes: V, 138.
Acronyeta oblinita ; larva aud pmpa: III, 71. (The larva first figured by Smith \& Abb.) Acronycta xylinoides; larva: V, 126.
Amphipyra pyramidoides; larva and pupa: III, 73, 74.
Leucania unipuncta; lerca and pupa: SI, 49; VIII, 33, and lurea: II, 55 (previonsly described by various authors) ; rgg: VIII, 34; rig and larcal changrs: VIII, 184, 185.
Gortyna vitela; larva: I, 92. (From the Am. Ent., II, 20. Brietly described by Har ris, Treatise, p. 440 ; but first identified by me in the Prairie Farmer.)
Agrotis inermis; lerre and pupa: I, 74.
Agrotis cochranii; larva and pupa: I, 76. (First described by me in the Prairie
Furmer, June 22, 1867.)
Agrotis clandestina; larva and pmpa: I, 79. (Previously mentioned by Harris.)
Agrotis telifera; larva and pupa: I, 81. (Described by me in the Prairie Farmer, June
22, 1867 ; and previously described in Europe, where the species also occurs and is known as A. ypsilon.)
Agrotis subgothica ; larva: I, 82.
Agrotis jaculifera; larva and pupa: I, 83.
Agrotis devastator; larva and pupa: I, 84.
Hadena subjuncta ; larva and pupa: I, 85.
Celena renigera; larva and pupa: I, 86.
Prodenia commelinæ; larva: I, 83; III, 114 (from Am. Ent., II, 363). [See Notes.] Anisoptersx vernata; larea and pupa: II, 95-97 (previously described by other authors); eggs, lerra and pupa: VII, 82 (and 86-87, adapted from Mann); Paleacrita vernata, VIII, 13-17 (from the Trans. St. Louis Acad.)
Anisoptersx pometaria; eqgy: II, 94-95 (the two species confounded); eggs, larva and pupu: V [I, 84 (and 86-87, adapted from Mann); VIII, 13-17 (from the Trans. St.

* Louis. Acad.)

Eufitchia ribearia; cgg, larva and pmpa: IX, 3.4. (The larva first described by Fitch.) Phacellura nitidalis; larva: II, 6 \%.
Asopia costalis; larra and pupa: VI, 106. (The larva mentioned by Harris, but first described by Walnh in the Prac. Ent., and first bred and determined by me, Prairie Farmer, April 20, 181ĩ.)

94

 INDEX TO MISSOURI ENTOMOLOGICAL REPORTS.
Pempelia grossularise: laved aut pupa: I, I41. (Larva previously deseribed bs Fitch and by Packard.)
Tortrix rileraua; larva and pupa: I, 154.
Anchylopera fragarise ; larca: I, 143. (First described in the Am. Ent., I, 90.)
Penthina vitivorana: larra and pupa: I, 1:35. (The larva first described, but not identified, by Rathron.)
Carpocapsa promonella; lerca and pupt: I, 63. (Previously described by various authors.)
Walshia amorphella; larex and prepa: II, 133.
Bucculatris ponifoliella; lerra and puper: IV, 51. (Larva previously described by Clemens.)
Eta compta; larva and pupu: I, 15\%.
Pterophorns periscelidartylus; letcu and pupa: I, 1:3; III. 66. (Previonsly described by Fitch.)
Pterophorus carluidactslus; larva and pupa: I, 180.
Promba yuccasella; larra: V, 155 ; pupa, VI, 131 (from Traus. St. Louis Acad.); egg, VI, 133 (from Am. Nat.).
Orgyia lencostigma; agys, larra and pupa: I, 144-146. (Previously described by others.)
Thyridopteryx ephemeraformis: eyds, larva ami pupa: I. 148, 149. (Previonsly described by others.)
Hæmatopis grataria; egys, Terva and pupa: I, 179.
Galleria cereana; larca and pupa: I, 106. (Previonsly described by other authors.)

HEMIPTERA.

Strachia histrionica; eggs, larva and pupa: IV, 3\%.
Micropus leucopterus; egg, larval stages and pupa: VII, 21.
Cicada septemdecim; (gg and young larta: I, 嗎. (The eggs previously described by several writers.)
Pœciloptera ${ }^{\text {rruinosa ; eggs: V, } 122 .}$
Ceresa bubalus; egys: V, 121.
Mytilaspis pinifolite; eggs and larct: V, 98. (First mentioned by LeBaron.)
Phylloxera rileyi; 7arra and pupa: VI, 64, 86 ; VII, 120.
Phyllosera vastatrix: retrious forms: VI, 66 (previously described elsewhere and by others); impregnated egg: VIII, 159. (Previously described by me in the Trans. St. Lonis Acad. for Oct. $12,1 \times i 5$, and independentls by Balbiani in the Comptes rendus de l'Ac. d. Sc. Paris for Oct. 4, 1875.)
Eriosoma pyri; larva: I, 120. (From the Am. Ent., I, 82; previonsly described by several anthors.)

DIPTERA.
Tabanus atrat is: lume anl puga: IL, 139, 131. (Prerionsly described, but not spes cifically identiged, by Walsh.)
Erax bastaxdi; lerve and pupa: II, 124.
Bombyliid; lurva: IX, 96.
Pipiza radicum; larva and pupa: I, 122. (Quoted from the Am. Ent., I, 84.)
Anthomsia zese; larva and puparium: I, 155.
Meromyza americana; larva and pupa: I, 160.
©strus ovis; lerca and punarim: I, 162. (Previonsly described by other authors.) ORTHOPTERA.

Mantis carolina ; eyys and la'ca: I, 170-171. (Previously described by sereral authors.)
Eeanthus nivens; eggs: V, 120. (Previonsly described as eggs of Ceresa bubulus by Fitch.)

LIST OF DESCRIPTIONS OF ADOLESCENT STATES.

Orchelimum glaberimam ; eggs: V, 123.
Phaneroptera curvicauda; egys: V, 124, and VI, 165 ; larca and pupa: VI, 166.
Microcentrus retinervis; eggs: V, 123; VI, 155 (previously described as eggs of Platyphyllum by Harris); larva and pupa: VI, 161.
Phylloptera oblongifolia; tgys: V, 123. (See Microceutrus.)
Platyphyllum concavum; eggs: V, 124; VI, 167
Caloptenus spretins; eqys aud egg-mass: IX, 82,8

NEUROPTERA.

Corydalus cornutus; lurva and pupa: V, 143, 144 (Previously described by Haldeman); eggs and egg-mass, and young larva: IX, 127.

LIST OF DESCRIPTIONS, MOSTLY AMPLIFIED, OF SPECIES NOT NEW.

The following list includes the species, already known, of which a complete redescription of the aclult is given in the Reports, either because the original description was in a foreign language, or not easily accessible, or of one sex ouly, or for other reasons.

HYMENOPTERA.

Tiphia inornata Say: VI, 126.
Cryptus extrematis Cress.: IV, 111.
Pezomachus minimus Walsh: II, 52. (From Walsh.)
Ophion purgatus Say: II, 53.
Mesochorus vitreus Walsh: II, 52. (From Walsh.)
Pimpla annulipes Brullé: V, 49.
Macrocentrus delicatus Cress.: V, 50.
Microgaster militaris Walsh: II, 52. (From Walsh.)
Chalcis marire Riley: IV, 110. (From the Am. Ent., II, 101-102.)
Isosoma vitis Saunders: II, 93. (From Saunders.)
Antigaster mirabilis Walsh: VI, 163. (From the Am. Ent., II, 169-170.)
Pristiphora grossularie Walsh: [X, 26-97. (From the Prac. Ent., I, 123.)
Nematus ventricosus ($K(x)$): IX, 2.2. (From the Prac. Ent., I, 120-121, and the Am Ent., II, 16-17.)
Emphytus maculatus Nort.: IX, 28.
Lophyrus LeContei Fitch: IX, 33.

COLEOPTERA.

Doryphora 10-lineata Say, var. : IX, 40.
Sphenophorus zeæ Walsh: III, 59. (From Walsh.)
Scolytus caryie Riley: V, 107. (Female first described in Prairie Farmer Feb. 2, 1867.
[See Notes.]

LEPIDOPTERA.

Apatura lycaon (Fabr.): VI, 144.
Apatura herse (Fabr.): VI, 144.
Megathymus yuccæ (Walk.): VIII, 175-176.
※geria polistiformis Harr.: ILI, 76.
Ægeria acerni Clem.: VI, 110.
Prodenia autumnalis Riley: III, 116-117. (From Am. Ent., II, 365.) [See Notes.]
Lencania unipuncta Haw. : II, 56.
Leucania albilinea Guen.: IX, 56-57.
Acronycta oblinita $S m$. \& Abb.: III, \%1.
Amphipyra pyramidoides Guen.: III, 74.
Celzena renigera Steph.: I, 86.
Hadena subjuucta Gr. \& Rob. : I, 85.
Noctua clandestina Harr.: I, 79.

Agrotis inermis Harr.: I, 74.
Agrotis cochranii Riley: I, 75.
Agrotis telifera Harr. : I, 81.
Agrotis jaculifera Guen. : I, 83.
Anisopteryx pometaria Harr.: VIII, 15-17. (From the Trans. St. Louis Acad. Sc.)
Paleacrita vernata (Peck): VIII, 15-17. (From the Trans. St. Louis Acad. Sc.)
Asopia costalis (Fab.) : VI, 107.
Pempelia grossularice (Pack.) : I, 141.
Walshia amorphella Clem. : II, 133.
Penthina vitivorana Pack.: I, 135.
Euryptychia sa igneana Clem. : II, 134. (From Clemens.)
Tortrix rileyana Grote: I, 154.
Walshia amorphella Clem. : II, 133.
Holcocera glandulella Ritey: IV, 14. (From the Can. Ent., IV, 1ヶ-19.)
Pronuba yuccasella Riley: V, 150, 151, 155; VI, 131-132. (Both from the Trins. St. Louis Acad. Sc.)
EEta compta Clem. : I, 153.

HEMIPTERA.

Micropus leucopterus (Say): VII, 21, 22.
Mytilaspis pinifoliæ (Fitch) : V, 99.
Eriosoma pyri (Fitch): I, 120.
Phylloxera vastatrix Planchon: VIII, 159 (From Trans. St. Louis Acad. Sc.); VI, 66-67 ; VII, $93,99$.
Phylloxera Rileyi Licht.: IV, 66; VI, 64, 86 ; VII, 118-120.
Phylloxera caryæ-gummosa Riley: VII, 118. (From the Comptes liendus, Paris Acad. of Sci., Dec. 14, 1874.)
Phylloxera caryx-ren Riley: VII, 118. (From the Conyptes Remduy, Paris Acad. of Sci., Dec. 14, 1874.)
Phylloxera carye-fallax Rilpy: VII, 113. (From the Comptes Rendus, Paris Acad. of Sci., Dec. 14, 1874.)

DIITERA.

Erax bastardi Macq: II, 124.
Pipiza radicum Walsh \&f Riley: I, 121-122. (From the Am. Ent. I, 83-84.)
Exorista leucaniæ Walsh: II, 51. (From Walsh.)
Tachina bifasciata (Fabr.): V, 140.

ORTIOPTERA.

Caloptenus femur-rubrum (DeG.) : VII, 126-128.
Caloptenus atlanis Riley: VIII, 117.
Caloptenus spretus (Tho8.) : VII, 128-132; VIII, 117.

ACARINA.

Hoplophora arctata Riley: VI, 81. (From Traus. St. Lonis Acad., III, 216.) Tyroglyphus phylloxeræ Riley \& Planchon: VI, 81. (From Trans. St. Louis Acad., III, 215.)

LIST OF ILLUSTRATIONS.

The illustrations in the Reports were prepared at the author's expense, neither the State nor the Board of Agriculture making any provision therefor. The wood-engraving was done for the most part in St. Louis, by either Wm. Macwitz, Emile Lampe, or Wittemberg \& Sorber. Some of it was done by Van Iugen \& Snyder, of Philadelphia. A few of the later illustrations are by photo-engraring, and Figs. 50-52 of the 8th Report show the first attempt to combine this process with lithography. In the following list, all drawings were made from nature by the author unless otherwise stated, and when the figure is enlarged the natural size, unless otherwise apparent or stated in this list, will be found indicated in hair-line. The nomenclature of the Reports is retained.

REPORTI.

Plate I. (Drawn by D. Wiest and lithographed by Bowen of Co., Philadelphia.)
Fig. 1. Unarmed Rustic (Agrotis inermis Harr.), moth.
Fig. 2. Variegated Cut-worm (Agrotis inermis Harr.).
Frg. 3. Variegated Cut-worm (Agrotis inermis Harr.), head, enlarged.
Fig. 4. Variegated Cut-worm (Agrotis inermis Harr.), one joint, enlarged.
Fig. 5. Climbing Cut-worm Moth (Agrotis acandens Riley), wings spread.
Fig. 6. Climbing Cut-worm Moth (Igrotis sccudens Riley), wings closed.
Fig. 7. Climbing Cut-worm (Agrotis scandens Riley).
Fig. 8. Lance Rustic (Agrotis telifera Harr.), moth.
Fig. 9. Greasy Cut-worm (Agrotis telifera Harr.).
Fig. 10. Greasy Cut-worm (Agrotis telifera Harr.), head, enlarged.
Fig. 11. Dart-bearing Rustic (Agvotis jaculifera Guen.), moth.
Fig. 12. Prodenia commeline, Sin. \& Abb., one joint of larva enlarged.
Fig. 13. Clandestine Owlet Moth (Noctua clandestina Harr.).
Fig. 14. Subjoined Hadena (Hudena subjuncta Gr. \& Rob.), moth.
Fig. 15. Speckled Cut-worm (Hadena subjuncta Gr. \& Rob.), head, ealarged.
Frg. 16. Speckled Cut-worm (Hadena subjuncta Gr. \& Rob.), one joint, enlarged.
Fig. 17. Speckled Cut-worm (Hadena subjuncta Gr. \& Rob.), anal joint, enlarged.
Fig. 18. Eight-spotted Forester (Alypia octomaculata, Fabr.).
Fig. 19. Grape-viue Epimenis (Psychomorpha epimenis, Drury), larva. (Mentioned p. 136, but first named in the 30 Rept., p.63.)

Plate II. (Drawn by D. Wiest and lithographed by Bowen \& Co., Philadelphia.)
Fig. 1. Solidago Gall Moth (Geleckia gallessolidaginis Riley), wings expanded.
Fıg. 2. Solidago Gall Moth (Gelechia gallcesolidaginis Riley), wings closed.
Fig. 3. Walnut Tortrix (Tortrix rileyana Grote), wings expanded.
Fig. 4. Walnut Tortrix (Torbix rileyana Grote), wings closed.
Fig. 5. Solidago Gall Moth (Gelechia gallcesolidaginis Riley), larva swollen by th? cocoons of the Inflating Chalcis-fly within.
Fig. 6. Inflating Chalcis-fly, enlarged.
Frg. 7. Hemiteles (1) cressonii Riley, enlargert.
FiG. 8. Eurytoma bolteri Riley; male antenna, onlarged.

Fig. 9. Eurytoma bolteri Riley; female, enlarged.
Fig. 10. Bag of Bag-worm (Thyridopteryx ephemeraformis Steph.), cut to shor the cocoons of Hemiteles̄ (\%) thyridopterygis.
Fig. 11. Hemiteles (?) thyridopterygis Riley, female.
Fig. 12. Hemiteles (?) thyridopterygis Riley, male.
Fig. 13. Thistle Plume (Pterophorus carduidactylus Riley), moth.
Fig. 14. Thistle Plume (Pterophorus carduidactylus Riley), chrysalis.
Fig. 15. Grape-vine Plume (Pterophorus periscelidactylus Fitch), moth
Fig. 16. Grape-vine Plame (Pterophorus perisceliductylus Fitch), chrysalis.
Fig. 17. Gooseberry Fruit-worm Moth (Pempelia grossularie Pack.).
Fig. 18. Chickweed Geometer (Hematopis grataria, Fabr.), moth.
Fig. 19. Chickweed Geometer (Hematopis grataria, Fabr.), larva.
Fig. 20. Chickweed Geometer (Hematopis grataria, Fabr.), pupa.
Fig. 21. Chickweed Geometer (Hematopis grataria, Fabr.), eggs.
Fig. 22. Ailanthus worm (CEta compta, Clem.), moth, with spread wings.
Fig. 23. Ailanthus worm (CEta compta, Clem.), moth, with closed wings.
Fig. 24. Seed-corn Maggot (Anthomyia zec Riley), fly, enlarged.
Fig. 25. Raspberry Geometer (Aplodes rubivora Riley), moth.
Fig. 26. Strawberry Leaf-roller (Anchylopera fragarie Walsh \& Riley), moth, enlarged.
Fig. 27. Strawberry Leaf-roller (Anchylopera fragarine Walsh \& Riley), moth, natural size.
Fig. 28. American Meromyza (Meromyza americana Fitch), fly, enlarged.
Fig. 29. Grape-berry Moth (Penthina vitivorana Pack.), noth, enlarged.
Fig. 30. Grape-berry Moth (Penthina vitivorana Pack.), moth, natural size.

WOOD-CCTS.

Fig. 1. Harris's Bark-louse (Aspidiotus Harrisii Walkh).
Fig. 2. Oyster-shell Bark-louse (Aspidiotus conchiformis, Gmélin).
Fig. 3. Oyster-shell Bark-louse (Aspidiotus conchiformis, Gmélin). 1, egg (natural size scarcely.01.) 2, larva, as it appears when running over the twigs (natural size .01.) 3, its appearance after becoming fixed. 4, appearance of scale after the second plate is formed. 5, form of louse (ventral view) soon after losing its members. 6, form of louse (veutral view) when full grown and just about to deposit. 7, fully formed scale, containing louse, as it appears from the under side when raised. 8 , highly magnified antenna of larva, showing joints.
Fig. 4. Twice-stabbed Ladybird (Chilocorus biculnerus Muls.). [From the Practic a Entomologist.]
Fig. 5. Twice-stabbed Ladybird (Chilocorus bivulnerus Muls.), larva.
Fig. 6. Seventeen-year Cicada (Cicada septemdecim Linu.). A, do typical form; c, d, genital hooks; g, singing apparatus. B , of of the small form (cassinii); e, f, genital hooks.
Fig. 7. Seventeen-year Cicada (Cicada septemdecim, Linn.). a, pupa; b, cast pupa shell ; c, imago; d, punctured twig: e, two eggs.
Fig. 8. Seventeen-year Cicada (Cicada septemdecim Linn.), galleries made by pupa; a, front view, e, orifice; b, section, c, pupa awaiting time of change, d, pupa ready to transform.
Fig. 9. Twig punctured by the Seventeen-year Cicada (Cicada septemdecin Linn.).
Fig. 10. Twig healed after the puncture of the Seventeen-year Cicada (Cicada septemdecim Linn.).
Fig. 11. Thirteen-year Cicala (Cicada tredecim Linn.), newly hatched larva.
Fig. 12. Stizus grandis Say, 9.
Fra. 13. Seventeen-year Cicada (Cicada septemdecim Linn.), side view of ρ to show beak, a, and ovipositor, b.

Fig. 14. Round-headed Apple-tree Borer (Saperda bivittata Say). a, larva; b, pupa; c, imago.
Fig. 15. Flat-headed Apple-tree Borer (Chrysobothris femorata, Fabr.), larva.
Fig. 16. Flat-headed Apple-tree Borer (Chrysobothris femorata, Fabr.), imago.
Fig. 17. Peach-tree Borer (Ageria exitiosa Say) ; 1, 울, đ.
Fig. 18. Plum Curculio (Conotrachelus nenuphar, Herbst) ; a, larva; b, pupa; c, imago; d, plum and curculio, natural size, the plum bearing one of the punctures.
Fig. 19. Pennsyivania Soldier-beetle (Chaulingnathus pensylvanicus, DeGeer). a, larva, natural size ; b, head and first segment enlarged ; c, under lip (labium) ; d, upper lip (labrum) ; e, log; f, left lower jaw (maxilla) ; g, antenna; h, left upper jaw (mandible).
Fig. 20. Lacewing (Chysopa sp.) ; a, eggs ; b, larva; c, cocoon, the upper figure showing the lid; d, imago. [a, b, d after Westwood.]
Fici. 21. Subangular Ground-beetle (Aspidoglossa subangulata Chaud.).
Fig. :2.. Carabid larva. A, natural size; B, under side of head, enlarged ; c, mandible ; e, antenua; f, labium and labial palpi; g, maxilla and its palpi; h, joint 12 beneath; i, joint 11 beneath ; j, joints $4-10$ each beneath-enlarged.
Fig. 23. Pcunsylvania Ground-beetle (Harpalus pensylvanicus, DoGeer).
Fig. 24. Codling-moth (Carpocapsa pomonella, Linn.) a, apple showing the work of the larva; b, point of entrauce of the larva; d, pupa; e, larva; f, g, moth; h, head of larva; i, cocoon.
Fig. 25. Pupa of Cut-worm in earthen cell. [After Curtis.]
Fig. 26. Dark-sided Cat-worm (Agrotis Cochranii Riley). a, larva; b, moth.
Fig. 27. W-marked Cut-worm (Noctua clandestina Harr.).
Fig. 28. Lance Rustic (Lgrotis telifera Harr.), moth.
Fic. 29. Gothic Dart (Agrotis subgothica, Haw.), moth.
Fig. 30. Glassy Cut-worm (Agrotis devastator, Brace). Lower figure represents the side of one of the middle segments.
Fig. 31. Figure 8 Minor (Celana renigera Steph.). a, moth; b, larva.
Fig. 32. Mioroyaster militaris Walsh. [After Walsh.]
Fig. 33. Spined Soldier-lugg (Arma spinosa Dallas). a, beak magnified; b, bug with right wing spread.
Fig. 34. Fiery Ground-beetle (Calosoma calidum, Fabr.) ; a, larva; b, beetle.
Fig. 35. Potato-stalk Borer (Gortyna nitela Guen.) 1, moth; 2, larva.
Fig. 36. Potato-stalk Borer (Gortyna nitela Guen.) larva.
Fig. 37. Potato-stalk Weevil (Baridius trinotatus, Say); a, larva; b, pupa; c, beetle, (all enlarged).
Fig. 38. Potato- or Tomato-worm (Sphinx 5-maculata Haw.). A, larva; B, pupa; C, moth. [After Harris.]
Fig. 39. Striped Blister-beetle (Lytta vittata Fabr.). [From Practical Entomologist.]
Fig. 40. a, Ash-gray Blister-beetle (Lytta cinerea Fabr.), d, antennæ; b, Black-rat Blister-beetle (Lytta murina Lec.), c, antennæ.
Fig. 41. Margined Blistor-beetle (Lytta marginata Fabr.). [From Practical Entomologist.)
Fig. 42. Three-lined Potato-beetle (Lema trilineata, Oliv.) ; a, larva; b, tip of its body; c, pupa; d, eggs. [From Practical Entomologist.]
Fig. 43. Three-lined Potato-beetle (Lema trilineata, Oliv.). [From Practical Entomologist.]
Fig. 44. Striped Cucumber-beetie (Diabrolica vittata, Fabr.). [From Practical Eutomologist.]
Fig. 45. Cucumber Flea-beetle (Hallica cucumeris Harr.). [From Practical Entomologist.]
Fig. 46. Colorado Potato-beetle (Doryphora 10-lineata, Say); a, eggs; b, larva, in different stages ; c, pupa; d, imago or beetle; e, wing-cover, enlarged ; f, leg, enlarged.

Fia. 47. Bogus Colorado Potato-beetle (Doryphora juncta, Germar); a, eggs; b, larra ; c, beetle ; d, wing-cover, enlarged ; e, leg, enlarged.
Fig. 43. Colorado Potato-beetle Parasite (Lydella doryphoree Riley).
Fig. 49. Spotted Ladybird (Hippodamia maculata, DeGieer). [From Practical Entomologist.]
Fig. 50. Nine-spotted Ladyliri (Coccinella 9-notata Herbst). [From Practical Entomologist.]
Fig. 51. Thirteen-spotted Ladybird (Hippodamia 13-punctata, Livn.).
Fig. 52. Convergent Ladybird (Hippodamia convergens Guer.)
Fig. 53. Ladybird larva. [After Westwood.]
Fig. 54. Spined Soldier-bug (Arma spinosa Dallas); a, beak enlarged; b, hig; c, enlarged beak of an allied plant-feeder (Euschistus punctipes, Say).
Fig. 55. Common Squash-bng (Coreus tristis, DeGeer); b, enlarged beak.
Fig. 56. Bordered Soldier-bug (Stiretrus fimbriatus, Say).
Fig. 57. Many-banded Robber (Harpactor cinctus, Fabr.) ; b, enlarged beak.
Fig. 58. Rapacious Soldier-bug (Reducius raptatorius Say).
Fig. 59. Virginian Tiger-beetle (Tetracha virginica Hope).
Fig. 60. Fiery Ground-beetle (Calosoma calidum, Fabr.).
Fig. 61. Elongate Ground-beetle (Pasimachus elongatus Lec.).
Fig. 62. Murky Ground-beetle (Harpalus caliginosus Say).
Fig. 63. Pincers for crushing Potato-beetles.
Fif. 64. Apple-root Plant-louse (Eriosoma pyri, Fitch) ; a, affected root; b, larra; c, winged louse; d, leg ; e, proboscis ; f, anteuna of winged loase; g, antenna of larva (all greatly enlarged).
Fig. 65. Vagabond Plant-louse (Pemphigus vagabundus, Walsh).
Fig. 66. Root-louse Syrphus-fly (Pipiza radicum Riley) ; a, larva: b. puparium from which the fly has emerged ; c, fy.
Fig. 67. Gigantic Grape-root Borer (Prionus laticollis, Drury).
Fig. 68. Gigantic Grape-root Borer (Prionus laticollis, Drury) ; head and thoracic joints,
Fig. 69. Cylindrical Orthosoma (Orthosoma cylindricum, Fabr.).
Fig. 70. Grape Curculio (Coliodes inaqualis, Say); a, infested grape; b, larva.
Fig. 71. Grape Carculio (Coliodes incequalis, Say). [After Walsh.]
Fig. 72. Grape Curculio (Cxliodes incequalis, Say); front leg. [After Walsh.]
Fig. 73. Grape-seed Maggot (Isosoma vitis Saunders).
Fig. 74. Grape-cane Gall-curculio (Baridius Sesostris Lec.).
Fig. 75. Grape-vine Fidia (Fidia viticide Walsh). [From Preetical Entomologist.]
Fig. 76. Grape Fruit-worm (Penthina vitivorann Pack. $=$ Lobevin botrenna Schiff.) ; a pupa; b, cocoon.
Fig. 77. Snowy Tree-cricket (Ecanthus nirens Harr.), o - [From Practical Entomologist.]
Fig. 78. Snowy Tree-cricket (Cecanthus niveus Harr.), ㅇ. [F rom Prurtical Entomologist.] IG. 79. Gooseberry Fruit-worm (Pempelia frossularite Pack.) ; ", cocoon; b, moth. [After. Packard.]
Fig. 80. Strawberry Leaf-roller (. Inchylonera fragurite Walsh \& Riley; a. larma; b, anterior part enlarged; d, anal segment; c, moth.
Fig. 81. White-marked Tussock Moth (Orgyiu leucostigma, Sm. \& Als.) ; i. q on cocoon; b, larva ; c, female pupa; d, male pupa.
Fig. \{ White-market Tussock Moth (orgyiu leucostign a, Sm. \& Abb.) ; female caterpillar.
Fig. 83. White-marked Tussock Moth (Orgyia lencostigma, Sm. \& Abb.), male.
Fig. 84. Bag-worm (Thyridopteryx ephemerefformis Haw.) ; a, larva; b, male chrsssalis ; c, female moth; d, male moth; e, temale chrysalis in bag, sectional view; f, caterpillar and bag; g, very young caterpillars in their bags.
EIG. 85. Walnut Tortrix (Tortrix Rileyana Grote); a, larva; b, side view of one segment.

Fig. 86. Seed-corn Maggot (Anthomyia zex Riler); a, enlarged; b, puparium.
Fig. 37. Seed-corn Maggot (Anthomyid zece Riley); kernels of corn containing the maggot.
Fig. 88. White Grub or May-bectle (Lachosterna quercina, Knoch); 1, pupa; 2, the grul ; 3,4 , the beetle.
Fig. 89. White Grub attacked by fungus.
Fig. 90. American Meromyza (Meromyzu americana Fitch); a, infested stalk; b, maggot; c, pupa.
Fig. 91. Sheep Head Maggot (Extrus oris Linu.); 1 and 2, the Gad-fly; 3, the puparium; 4, larva, dorsal view; 5, larva, ventral view; 6 , younger larva; a, head; b, corneous appendages at anus; c, spiracles.
Fig. 92. Bee-moth (Galleria cereana Fabr.) ; a, larva; b, cocoon ; c, pupa; d, e, moth.
Fig. 93. Nebraska Bee-killer (Trupanea apivora Fitch = Promachus Fitchii O. S.).
Fig. 94. Camel-cricket (Mantis carolina, Linn.) ; a, female; b, male.
Fig. 95. Camel-cricket (Hantis carolina, Linn.), egg-masses.
Fig. 90. Solidago Giall of Celechia gallesolidaginis Riley; a, section of gall; b, whole gall; c, oritice through which the moth escapes; d, excrement of the larva; e, larva.
Fig. 97. Eurytoma Bolteri Riley; antenuæ of $\frac{\partial}{}$ and 9.
Fig. 98. Thistle Plume-moth (Pterophorus carduidactylus Riley $=P$ t. cardui Zell. emend), anterior and posterior joints of the larva.

REPORTII.

Fig. 1. Chinch-bug (Micropus Tencopterus, Say).
Fig. 2. Chinch-bug (Micropus leucopterus, Say), short-winged form.
Fig. 3. Spotted Ladsbird (Hippodamia maculata, DeGeer). [From Iractical Entomologist.]
Fig. 4. Trim Ladylird (Coccinella munda Say).
Fig. 5. Lacewing (Chrysopa sp.). [After Westwood.]
Fig. 6. Iusidious Flower-bug (Anthocoris insidiosus, Say).
Frg. 7. Spined Soldier-bug (drma spinosa Dallas).
Fig. 8. Ash-gray Leaf-bug (Piesma cinerea, Say).
Fig. 9. Flea-like Negro-bug (Corimelcena pulicaria, Germar).
Fig. 10. Bordered Soldier-bug (Stiretrus fimbriatus, Say).
Fig. 11. Tent-caterpillar of the Forest (Clisiocampa sylvatica Harr.).
Fig. 12. Cotton-worm (Anomis xylina, Say); a, egg ; b, worm, one-third grown ; d, top view; c, side view of full-grown worm ; e, cocoon ; f, chrysalis. [Adapted from Glover.]
Fig. 13. Cotton-worm Moth (Anomis xylina, Say) ; a, with wings expanded; b, wings closed.
Fig. 14. Army-worm (Lencania unipuncta Haw.).
Fig. 15. Army-worm (Leucania unipuncta Haw.), chrysalis.
Fig. 16. Army-worm Moth (Leucania unipuncta Haw.).
Fig. 17. Red-tailed Tachina-lly (Exorista leucanice Kirk.).
Fig. 18. Yellow-tailed Tachina-fly (Exorista flavicauda Riley).
Fig. 19. Glassy Mesochorus (Mesochorus vitreus Walsh). [After Walsh.]
Fig. 20. Pezomachus minimus Walsh. [After Walsh.]
Fig. 21. Pezomachus minimus Walsh; bunch of cocoons. [After Walsh.]
Fig. 22. Chatcis albifrons Walsh. [After Walsh.]
Fig. 23. Microgaster militaris Walsh. [After Walsh.]
Fig. 24. Glyphe vividascens Walsh. [After Walsh.]
Fig. 25. Ophion purgatus Say.
Fig. 20. Clubbed Tortoise-beetle (Deloyala clavata, Oliv.).
Fig. 27. Two-striped Sweet-potato Beetle (Cassida bivittata Say); 2, larva; 3, pupa; 4 , beetle.

Fig. 23. Chelymorpha cribraria, Fabr. ; pupa (eularged). [After Packard.]
Fig. 29. Chelynorpha cribraria, Fabr. (enlarged). [After Packard.]
Fig. 30. Physonota quinquepunctata Walsh \& Riley ; a, larva; b, beetle.
Fig. 31. Golden Tortoise-beetle (Cassida aurichalcea, Fabr.), egg.
Fig. 32. Two-striped Sweet-potato Beetle (Cassida bivittata Say), larvx.
Fig. 33. Golden Tortoise-beetle (Cassida aurichalcea, Fabr.), larva; a, uatural size; b, enlarged and with the dung taken from the fork.
Fig. 34. Golden Tortoise-beetle (Cassida aurichalcea, Fabr.); a, pnpa; b, beetle.
Fig. 35. Mottled Tortoise-beetle (Cassida guttata, Oliv.) ; a, larva; b, pupa.
Fig. 36. Mottled Tortoise-beetle (Cassida guttata, Oliv.).
Fig. 37. Black-legged Tortoise-beetle (Cassida nigripes Oliv.); a, larva; b, larva cleaned and enlarged ; c, pupa (enlarged).
Fig. 38. Black-legged Tortoise-beetle (Cassida nigripes Oliv.).
Fig. 32. Striped Cucumber-beetle (Diabrotica viltata, Fabr.). [From Practical Entomologist.]
Frg. 40. Striped Cucumber-beetle (Diabrolica vittata, Fabr.), larva; a, dorsal view; b, side view.
Fig. 41. Striped Cucumber-bcetle (Disbrotica vittata, Fabr.) pupa; 1, ventral ; 2, dorsal view.
Fig. 42. Twelve-spotted Diabrotica (Diabrotica 12-punctata, Oliv.). [From Practical Entomologist.]
Fig. 43. Pickle-worm (Phacellura nitidalis Cram.) ; a, natural size; b, head and first joints, eularged; c, side view of a joint, enlarged ; d, cervical shield, enlarged; e, side of first joint, enlarged ; $f, 2 \mathrm{~d}$ joint from above, enlarged ; g, anal joint, enlarged; h, cocoon ; i, moth, male.
Fig. 44. Hog-caterpillar of the Vine (Cherocampa pampinatrix, Sm. \& Alb.).
Fig. 45. Hog-caterpillar of the Vine (Cherocampa pampinatrix, Sm. \& Abb.), chrysalis.
Fig. 46. Hog-caterpillar of the Vine (Charocampa pampinatrix, Sm. \& Abb.), moth.
Fig. 47. Microgaster cocoons or Hog-caterpillar of the Vine (Cherr. pampinatrix, Sm. \& Albb.) [After Harris.]
Fig. 48. Microgaster $=$ Apanteles. [After Harris.]
Fig. 49. Achemon Sphinx (Philampelus achemon, Drury), caterpillar.
Fig. 50. Achemon Sphinx (Philampelus achemon, Drury), chrysalis.
Fig. 51. Achemon Sphinx (Philampelus achemon, Drury), moth.
Fig. 52. Satellite Sphinx (Philampelus satellitia, Linu.) ; a, full-grown larva; b, its position at rest; c, roung larva.
Fig. 53. Satellite Sphinx (Philampelus satellitia, Linn.), moth.
Fig. 54. Abbot Sphinx (Thyreus Abbotii Swainson); larva and moth.
Fig. 55. Eight-spotted Forrester (Alypia octomaculata, Fabr.); a, caterpillar; b, side view of one joint ; c, moth.
Fig. 56. Beautiful Wood-nymph (Eudryas grata, Fabr.).
Fig. 57. P Pearl Wood-nymph (Eulryas unio, Hiit.) ; a, larva; b, side viow of one segment enlarged; c, hump on 11th joint, enlarged. (See 3d Rep., Fig. 25.)
Fig. 58. American Procris (Procris americana Boisd.); a, Larva; b, chrysalis; c, cocoon; d, e, moth.
Fig. 59. American Procris (Procris americana Boisd.), larvæ.
Fig. 60. Gigantic Grape-root Borer (Prionus laticollis, Drury).
Fig. 61. Broad-necked Prionus (Prionus laticollis, Drury), female.
Fig. 62. Gigantic Grape-root Borer (Prionus laticollis, Drury), pupa.
Fig. 63. Tile-horned Prionus (Prionus imbricornis, Linn.), male.
Fig. 64. Grape-seed Maggot (Isosoma vitis Saunders).
Fig. 65. Joint-worm Fly (Isosoma hordei, Harr.) ; a, female; b, male; $c,: \circ$ antenua; d, o anteuna; e, ㅇ abdomen; f, o abdomen.

Fia. 66. Canker-worm; a, eggs of Fall Canker-worm (Anisopteryx pometaria Harr.) ; b, five eggs of same, enlarged; c, larva of Spring Canker-worm (Paleacrita vernata, Peck), d, cocoon, e, crysalis, f, male moth, g, female moth-all probably of vernata. (See 6th Rept., p.29). [a, b, c, d, e, after Harris; f, g, after Packard.]
Fig. 67. Spring Canker-worm (Paleacrita vernata, Peck), head enlarged.
Fig. 63. Mite (Nothrus ovivorus Pack.), enlarged. [After Packard.]
Fig. 69. Rummaging Ground-beetle (Calosoma scrutator, Fabr.).
Fig. 70. Fiery Ground-beetle (Calosoma calidum, Fabrb).
Fig. 71. Fraternal Potter-wasp (Eumenes fraterna Say); b, clay nest; c, same cut open.
Fig. 72. Southern Cabbage-butterfly (Pierisprotodice Boisd.); a, caterpillar; b, chrysalis.
Fig. 73. Southern Cabbage-butterfly (Pieris protodice Boisd.), female.
Fig. 74. Southern Cablage-butterfly (Pieris protodice Boisd.), male.
Fig. 75. Potherb Butterfly (Pieris oleracea Boisd.). [After Harris.]
Fig. 76. Potherb Butterlly (Pieris oleracen Boisd.), chrysalis. [After Harris.]
Fig. 77. Imported Cabbage-butterlly (Pieris raper Schrank.); a, larva; b, chrysalis. [After Curtis.]
Fig. 78. Imported Cabbage-butterfly (Picris rapa Schrank.), female.
Fig. 79. Imported Cabbage-butterfly (Pieris rapu Schrank.), male.
Fig. 80. Butterfly Net: 5, socket; 6, ring.
Fig. 81. Cabbage Plusia (Plusia brassice Riley̧) ; α, caterpillar; b, chrysalis in cocoon; c, moth, male.
Fig. 82. Zebra-caterpillar (Mamestra picta Harr.) ; a, caterpillar; b, moth.
Fig. 83. Tarnished Plant-bug (Capsus oblineatus Say).
Fig. 84. Philenor Swallow-tail (Papilio philenor Drury), caterpillar.
Fig. Philenor Swallow-tail (Papilio philenor Drury); a, chrysalis, back view; b, lateral outline.
Fig. 86. Philenor Swallow-tail (Papilio philenor Drury).
Fig. 87. Cottonwood Dagger (Acronycta populi Riley); caterpillar.
Fig. 88. Cottonwood Dagger (Acronycta populi Riley).
Fig. 89. Missouri Bee-killer (Asilus missouriensis Riley).
Fig. 90. Wing of Promachus (a), dsilus (b), Erax (c).
Fig. 91. Silky Asilus (Asilus sericeus Say). [After Harris.]
Fig. 92. Erax bastardi Macq., larva.
Fig. 93. Erax bastardi Macq. ; a, fly; b, pupa.
Fig. 94. Goat-weed Butterfly (Paphia glycerium Doubl.) ; a, caterpillar; b, chrysalis.
Fig. 95. Goat-weed Butterfly (Paphia glycerium Doubl.), male.
Fig. 96. Goat-weed Butterlly (Paphia glycerium Doubl.), female.
Fig. 97. Black Breeze-fly (Tabanus atratus Fabr.); a, larva; b, pupa shell; c, fly.
Fig. 98. False-indigo Gall-moth (TValshia amorphella Clem.) ; a, moth; b, caterpillar; c, gall; d, section of gall, showing larva in burrow.
Fig. 99. Misnamed Gall-moth (Euryptychia saligneanu Clem.) ; a, moth; b, gall with protruding pupa-shell.

REPORTIII.

Fig. 1. Plum Curculio (Conotrachehus nemuphar, Herbst) ; a, larva; b, pupa; c, curculio, enlarged ; a, punctured plum wi th curculio resting on it, natural size.
Fig. '2. The Hull Curculio- catcher.
Fig. 3. The Hull Curculio-catcher; viewed from beneath; a, slide for closing central hole, $a ; b b$, handles; $c c$, wheels ; e, f, position of bag.
Fig. 4. The Hull Curculio-catcher ; viewed from above.
Fig. 5. Strips of sheeting for closing up the tree-way in Hull's Curculio-catcher.
Fig. 6. The Hooten Curculio-catcher.

Fig. 7. Sigalphus Curculio-parasite (Sigalphus curculionis Fitch); a, male; b, female; c, antenna.
Fig. 8. Sigalphus Curculio-parasite (Sigalphus curculionis Fitch); a, larva; b, cocoon; c, pupa.
 tenna.
Fig. 10. Apple Curculio (Anthonomus quadrigibbus Say) ; a, natural size; b, side view ; c, back view.
Fig. 11. Apple Curculio (Anthonomus quadrigibbus Say) ; a, pupa; b, larva.
Fig. 12. Quince Curculio (Conotrachelus crategi Walsh.) ; a, side; b, back.
Fig. 13. Plum Gouger (Anthonomus prunicida Walsh.).
Fig. 14. Strawberry Crown-borer (Analcis fragarie Riley); a, larva; b, side view of beetle; c, dorsal view.
Fig. 15. Pea-weevil (Bruchus pisi Linn.) ; a, beetle; b, injured pea.
Fig. 16. Pea-weevil (Bruchus pisi Linn.), eggg enlarged.
Fig. 17. Pea-weevil (Bruchus pisi Linn.); b, beetle, side view ; c, larva; d, pupa, dorsal view ; g, pea, infested. [After Curtis.]
Fig. 18. Grain Bruchus (Bruchus granarius Linn.). [After Curtis.]
Fig. 19. American Bean-weevil (Bruchus fabce Riley); a, beetle; b, bean, infested.
Fig. 20. New York Weevil (Ithycerus noveboracensis, Forster); a, excavation made by female to deposit eggs; b, larva; c, beetle.
Fig. 21. Imbricated Snout-beetle (Epiccrus imbricatus, Say).
Fig. 22. Corn Sphenophorus (Sphenophorus zoce Walsh) ; a, back view: b, outline side view ; c, enlarged punctures of elytra.
Fra. 23. Cocklebur Sphenophorus (Sphenophorus pulchelhus Schrin.) ; a, back view ; b, outline side view.
Fig. 24. Grape Leaf-folder (Desmin maculntis Westw.) ; 1, caterpillar in folded leaf; 2, enlarged view of head and anterior joints; 3, chrysalis; 4, male moth ; 5 , female moth.
Fig. 25. Grape-vine Epimenis ($P_{\star y c h o m o r p h a t e p i m e n i s, ~ D r u r y) ~ ; ~ a, ~ l a r v a ; ~ b, ~ s i d e ~ v i e w ~}^{\text {en }}$ of one segment, enlarged; c, hump on 11th joint, enlarged.
Fig. 26. Grape-vine Epimenis (Psychomorpha epimenis, Drury), moth, male.
Fig. 27. Grape-vine Plume (Pterophorus periscelidactylus Fitch); a, caterpillars in their retreat; b, chrysalis ; c, one of the dorsal processes of chrysalis; d, moth; one joint of larva enlarged, side view.
Fig. 28. Yellow-bear Caterpillar (spilosome virginica, Fabr.) ; a, caterpillar; b, chysalis ; c, moth.
Fig. 29. Smeared Dagger (Acronycta oblinita, Sm. \& Abl.); a, caterpillar; b, cocoon ; c, moth.
Fig. 30. Aleiodes Rileyi Cress.; hardened skin of caterpillar of the Smeared Dagger (Acronycta oblinita, Sm. \& Abb.) from which the Aleiodes has emerged.
Fig. 31. Pyramidal Grape-vine Worm (Amphipyra pyramidoides Guen.), moth.
Fig. 32. Psramidal Grape-vine Worm (Amphipyra pyramidoides Guen.).
Fig. 33. Grape-root Borer (Egeria polistiformis Harr.) ; a, male ; b, female.
Fig. 34. Spotted Pelidnota (Pclidnota punctata, Linn.) ; a larva; b, pupa; c, beetle ; d, anal joint of larva; e, antenna of larva; f, leg of larva.
Fig. 35. Grape-vine Flea-beetle (Haltich chalybea Illiger); a, larvie on leaf; b, larva, enlarged; c, earthen cell containing pupa; d, beetle. [d after Harris.]
Fig. 36. Grape-vine Flea-beetle (Haltica chalybea Illiger). [From Practical Entomologist.]
Fig. 37. Grape-vine Colaspis (Colaspis flaritla Say); 1, enlarged; 2, natural size.
Fig. 38. Grape-vine Colaspis (Colaspis flavida Say) ; a, eularged side view of larva; b, terminal joints seen from beneath.
Fig. 39. Galls of the Grape Phylloxera (Phylloxera cilifolic, Fitch=rastatrix Pl.).

Fig. 40. Grape Phylloxera (Phylloxera rilifolire, Fitch = Ph. vastatrix Pl.) ; a, the winged female; b, her foot or tarsus-after Signoret ; c, egg ; d, newly-hatched gallinhabiting type; e, same, dorsal view ; f, section of gall; g, tubercled rootinhabiting form; h, mother gall-louse at height of ber fertility; i, same, dorsal view ; j, k, differently veined wings of the Oak Plyylloxera of Europe.
Fig. 41. Great Lebia (Lebia grandis Hentz.).
Fig. 42. Boll-worm (Heliothis armigera Hiubn.) on tomato.
Fig. 43. Boll-worm (Heliothis armigera Huibn.) ; a, egg, side view ; b, egg, top view ; c, caterpillar; d, chrysalis in carthen cocoou; e, moth, wings expanded; f, moth, wings closed. [a, b, c, d after Glover.]
Fig. 44. Army-worm (Leucania unipuncla Haw.).
Fig. 45. Fall Army-worm (Prodenia autumalis Riley=Laphygma frugiperda, Sm. \& Abb.) ; a, natural size: b, head maguifed; c, one segment enlarged, from above; d, same, from side.
Fig. 46. Fall Arms-worm (Prodenix antumnalis Riley=Laphygma frugiperda, Sm. \& Abl.); a, b, c, three varieties.
Fig. 47. Army-worm Moth (Leucania unipuncta Harr.).
Fig. 48. Spiderwort Owlet-moth (Prodenia commelince, Abb.) ; a, eaterpillar; b, c, dark and light varieties of the moth. [See Notes, etc., p. 56.]
Frg. 49. Unarmed Rustic (Lgrotis inermis Harr. =A. saucia LLibu.); a, egg, enlarged; b. batch of eggs, nataral size.
Fig. 50. Apple-tree Tent-caterpillar (Clisiocampa anericana Harr.) ; a,b, caterpillars; c, eggs; d, cocoon.
Fig. 51. Apple-tree Tent-caterpillar (Clisiocampa americana Harr.) moth.
Fig. 52. Tent-caterpillar of the Forest (Clisiocompa sylvatica Harr.) ; α, eggs; b, female moth ; c, egg enlarged, top view; d, enlarged eggs, side view.
Fig. 53. Tent-caterpillar of the Forest (Clisiocampa sylvatica Harr.).
Fig. 54. Rummaging Ground-beetle (Calosoma scrutator, Fabr.).
Fig. 55. Fall Web-worm (Hyphantria textor Harr.) ; a, caterpillar ; b, chrysalis; c, moth.
Fig. 56. Blue-spangled Peach-worm (Callimorpha fulvicosta Clem.) ; a, caterpillar; b, moth; c, one segment enlarged, side view ; d, same, top view.
Fig. 57. Ash-gray Pinion (Jylina cinerea Riley) ; a, worm in fruit; b, moth.
Fig. 58. Glassy-winged Soldier-bug (Campyloneura vitripennis, Say).
Fig. 59. Glassy-winged Soldier-bug (Campylonewra vitripennis, Say), pupa.
Frg. 60. White-lined Morning Sphinx (Deilephila lineata, Fabr.), moth.
Fig. 61. White-liued Moming Sphinx (Deilephila lineata, Fabr.), eaterpillar, light form.
Fig. 62. White-lined Morning Sphinx (Deilephila lincata, Fabr.) ; caterpillar, dark form. Fig. 63. Archippus Butterfly (Danais archippus, Fabr.).
Fig. 64. Archippus Butterfly (Danais archippus, Fabr.) ; a, egg, greatly enlarged; c, natural size ; e, f, lateral and dorsal views of a segment of the larva in its first stage, enlarged ; b, larva in act of casting its skin, to show how the flexible horns are folded (d).
Fig. 65. Archippus Butterlly (Danais arohippus, Fabr.), caterpillar.
Fig. 66. Archippus Buttorfly (Danais archippus, Fabr.); a, b, c, successive stages in changing from caterpillar to chrysalis.
Fig. 67. Archippns Butterfly (Danais archippus, Fabr.), chrysalis.
Fig. 68. Disippus Butterfly (Limenitis disippus, Godt.), showing upper surface of left wing, and under surface on the right. [After Harris.]
Fig. 69. Disippus Butterfly (Limenitis disippus, Fabr.); a, egg greatly enlarged ; c, natural size ; d, one cell of the egg-shell, greatly magnified ; b, oue segment of the larva, in its first stage.
Fig. 70. Disippus Buttertly (Limenitis disippus, Fabr.) ; a, caterpillar; b, chrysalis ; c, hibernaculum ; d, leaf cut for hibernaculum.

Fig. 71. Disippus Butterfly (Limenitis disippus, Fabr.); a leaf eaten by the caterpillar.
Fig. 72. Disippus Egg-parasite (Trichogramma? minuta Riley); a, fly with wings folded; b, front wing ; c, hind wing; $d . \operatorname{leg} ; e$, antenna-all enlarged.
Fig. 73. Microgaster militaris Walsh. [After Walsh.]

REPORTIV.

Fig. 1. Perforated tin box for sifting paris green.
Fig. 2. Creighton's "Improved Patent Insect Destroyer."
Fig. 3. Grand-Daddy-Long-Legs (Phalangium dorsatum Say).
Fig. 4. Fifteen-spotted Ladybird (Mysia 15-puncłata, Oliv.); a, larva; b, pupa; c, first joint of larva, enlarged ; d, e, f, g, different varieties of the beetle.
Fig. 5. Icy Ladybird (Hippodamia glacialis Fabr.).
Fig. 6. Ring-banded Soldier-bug (Perillus circumcinctus Stail); b, autenna; c, beak (enlarged).
Fig. 7. Dotted-legged Plant-bug (Euschistus punctipes, Say); c, beak (eularged).
Fig. 8. Spined Soldier bug (Arma spinosa Dallas); a, beak (enlarged).
Fig. 9. Spined Soldier-bug (Arma spinosa Dallas); a, pupa; b, larva; c, egg (all enlarged).
Fig. 10. Rove-beetle (Philonthus apicalis, Say).
Fig. 11. Rove-beetle larva (Goërius olens). [After Westwood.]
Fig. 12. Rove-beetle (Quedius molochinus, Grav.), pupa.
Fig. 13. Wier's Apple-worm Trap.
Fig. 14. Pennsylvania Soidier-beetle (Chauliognathus pensylranicus DeG.) ; a, larva; b, head and prothorax, enlarged; c, labium; d, labrum; e, leg; f, maxilla; g, antenna; h, mandible.
Fig. 15. Two-lined Soldier-bectlo (Telchhorus bilinettus, Say); a, larva; b, anterior joints enlarged ; c, bectle.
Fig. 16. Grape-vine Colaspis (Colaspis flavidu Say); one joint of larva, viewed from beneath and enlarged; b, head of larva, from beneath; c, same, from above, enlarged.
Fig. 17. Harlequin Cabbage-bug (Strachia histrionica Hahn); a, larva; b, pupa; c, eggs; d, eggs enlarged, side view; e, same, top view; g, bug; h, same, with wings expanded.
Fig. 18. Rascal Leaf-crumpler (1 hycita mebulo Walsh); a, case, coutaining caterpillar ; b, cases in winter; c, head and thoracic joints of larva, enlarged; d, moth.
Fig. 19. Larval cases of the Rascal Leaf-crumpler (Phycita nebulo Walsh) in winter.
Fig. 20. Walnut Case-bearer (Acrobasis juglandis LeBaron); a, case between two leaflets; b, case; c, wings of nebulo for comparison; d, wings of moth; e, wings of a variety of same from the crab-apple.
Fig. 21. Apple-leaf Skeletonizer (Pempelia Hammondi Riley); a, larva; b, middle joint, enlarged ; c, auterior joints, enlarged; a, moth.
Fig. 22. Green Apple-leaf-tyer (Tortrix cinderella Riley); a, caterpillar; b, chrysalis; c, moth ; d, pupal case.
Fig. 23. Apple-leaf Bucculatrix (Bucculatrix pomifoliella Clem.) ; a, cocoons on twig ; b, cocoon, enlarged; c, moth.
Fig. 24. Apple-twig Borer (Bostrichus bicaudatus, Say). [After Walsh.]
Fig. 2J. Apple-twig Borer (Bostrichus bicaudutus, Say); twigs bored by this insect.
Fig. 26. Red-shouldered Sinoxylon (Sinoxylon basilare, Say); a, larva; b, pupa; c, beetle.
Fig. 27. Red-shouldered Sinoxylon (Sinoxylon basilare, Say); a, head aud thoracic joints of larva greatly enlarged; b, labrum aud mandibles; c, anterior leg ; d, intermediate leg ; e, posterior leg.

Fig. 28. Grape Phylloxera (Phylloxera vitifolice, Fitch $=$ Ph. vastatrix Pl.); a, shows a healthy root; b, one on which the lice are working, represeuting the knots and swellings caused by their punctures; c, a root that has been deserted by them, and where the rootlets have commenced to decay; d, d, d, shows how the lice are found on the larger roots; e, female pupa, dorsal view; f, same, ventral view ; g, wingerl female, dorsal view ; h, same, ventral view; i, magnified antenna of winged insect ; j, side view of the wingless female, laying eggs on roots; k, shows how the punctures of the lice cause the larger roots to rot.
Fig. 29. Mulberry Silkworm (Bombyx mori Liun.), larva.
Fig. 30. Mulberry Silkworm (Bombyx mori Linn.), cocoon.
Fig. 31. Mulberry Silkworm (Bombyx mori Linn.), moth.
Fig. 32. Mulberry Silkworm (Bombyx mori Linu.), cocoons; a, White French Annual ; b, Yellow French Annual; c, Greeu Japanese Anuual ; d, White Japanese Annual; e, White Chinese Annual.
Ftg. 33. Cecropia Silkworm Moth (Attacus Cecropia Linn.).
Fig. 34. Cecropia Silkworm (Attacus Cecropia Linn.), cocoon.
Fig. 35. Cecropia Silkworm (Attacus Cecropia Linn.), chrysalis.
Fig. 36. Cecropia Silkworm (Attacus Cecropia Linn.).
Fig. 37. Ophion macrurum, Linn. [After Packard.]
Fig. 38. Ophion macrurum, Linn., larva.
Fig. 39. Mary Chalcis-fly (Chalcis marise Riley).
Fig. 40. Cecropia Cryptus (Cryptus samie Pack.), cocoons within the larger Cecropia cocoon.
Fig. 41. Cecropia Cryptus (Cryptus samice Pack.) ; a, female; b, female abdomen of C. muncius; c, male abdomen ; d, highly maguified piece of wing.

Frg. 42. Ailauthus Silkworm (Attacus cynthia, Hiibn.) ; 1, eaterpillar; 2, moth; 3, cocoon; 4, chrysalis; 5, eggs.
Fig. 43. Promethia Silkworm (Attacus promethea Drury); a, third stage; b, head in fourth stage, eularged ; c, lateral view of a joint in fourth stage, enlarged; d, full-grown caterpillar.
Fig. 44. Promethia Silkworm (Attacus promethea Drury), cocoon.
Fig. 45. Promethia Moth (Attacus promethea Drury), male. [After Harris.]
Fig. 46. Promethia Moth (Attacus promethea Drury), female. [After Harris.]
Fig. 47. Luna Moth (Attacus Luna Linn.). [After Harris.]
Fig. 48. Luna Silkworin (Attacus Luna Linn.).
Fig. 49. Luna Silkworm (Attacus Luna Linn.), cocoon. [After Harris.]
Fig. 50. Polyphemus Moth (Attacus Polyphemus Linn.), male.
Fig. 51. Polyphemus Moth (Attacus Polyphemus Linn.), female. [After Harris.]
Fig. 52. Polyphemns Silkworm (Attacus Polyphemus Linn.). [After Trouvelot.]
Fig. 53. Polyphemus Silkworm (Attacus Polyphemus Linu.), cocoon. [After Trouyelot.]
Fig. 54. Polyphemus Silkworm (Attacus Polyphenus Linu.), chrysalis. [After Trouvelot.]
Fig. 55. Yama-maï Moth (Attacus yama-maï, Guér.-Mén.), male.
Fig. 56. Yama-maï Silkworm (Attacus yama-mä̈, Guér.-Mén.); egg, natural size and enlarged ; young caterpillar ou leaf; full grown caterpillar at rest on twig.
Fig. 57. Yama-maï Silkworm (Attacus yama-maï, Guér.-Mén.), at rest on leafy twig, at a. [After Adams.]
Fig. 58. Yama-maï Silkworm (Attacus yama-maï, Guér.-Mén.), cocoon.
Fig. 59. Cage for receiving the deposition of the eggs of Yama-maï Moth. [After Adams.]
Fig. 60. Pernyi Moth (Attacus Pernyi, Guér.-Mén.).
Fig. 61. Pernyi Silkworm (Attacus Pernyi, Guér. - Mén.); egg, natural size and enlarged cocoon.

Fig. 62. Horned Passalus (Passalus cornutus Fabr.); a, larva; b, pupa; c, beetle; d, under side of three thoracic joints of larva, showing legs; e, metathoracic leg of larva.
Fig. 63. Great Leopard-moth (Ecpantheria scribonia, Stoll.), a, caterpillar; b, one hair, enlarged.
Fig. 64. Great Leopard-moth (Ecpantheria scribonia, Stoll.) ; a, female ; b, male.
Fig. 65. Isabelia Tiger-moth (Arctia isabellu, Smith); a, caterpillar; b, chrysalis; c, moth.
Fig. 66. Acorn-moth (Holcocera glentutella Riley) ; ", caterpillar in acorn; b, perforated acorn ; c, head and thoracic joints of caterpillar, enlarged ; d, e, lateral and dorsal views of one segment of larva; f, moth; g, lase of antenna of male.

REPORT V.

Fig. 1. Pyramid, showing the nature of the mouth, the relative rank of the Orders and the affinitives of the Sub-orders of Insects.
Fig. 2. Bald-faced Hornet (Vespa maculata Linn.). [After Sanborn.]
Fig. 3. Goldsmith-beetle (Cotalpa lanigera, Linn.).
Fig. 4. Deïopeïa bella, Drury.
Fig. 5. Dotted-legged Plant-bug (Euschistus punctipes, Say).
Fig. 6. Buffalo Tree-hopper (Ceresa bubalus, Fabr.) ; a, side view; b, view from above.
Fig. 7. Missouri Bee-killer (Asilus missouriensis Riloy).
Fig. 8. Differential Locust (Caloptemus differentialis Walk.).
Fig. 9. Dragon-fly (Libellula trimaculata, DeGeer.) [After Sauborn.]
Fig. 10. Hull's Curculio-catcher.
Fig. 11. Butterfly net; b, hinge in the ring ; c, ring folded; d, mit sunk and soldered into brass tube at end of handle; e, screw; f, tip of handle, showing attachment of the ring.
Fig. 12. Butterfly net; a, ring; b, socket ; c, cork plug.
Fig. 13. Butterfly net, head for attaching the ring to the rod.
Fig. 14. Poison-bottle for killing insects; a, walding to keep the cyanide grains in place.
Fig. 15. Chloroform in stoppered bottle with brush.
Fig. 16. Chloroform in bottle with tube passing through the cork.
Fig. 17, Method of pinning insects; a, beetle; b, bug.
Fig. 18. Method of carding small insects.
Fig. 19. Method of "setting" Lepidoptera on a spreading board.
Fig. 20. Setting-needle.
Fig. 21. Sections of framework of glass-covered volume to display showy insects ; a, ends; b, front; c, back.
Fig. 22. Forceps for pinning insects.
Fig. 23. Forceps for pinning insects.
Fig. 24. Forceps for pinning insects.
Fig. 25. Breeding-cage; a, bottom board; b, four-sided frame, with glass sides aud door, fitting over a zinc pan (ff) attached to the bottom board ; c, cover fitting to the frame and having a wire gauze top; d, zinc tube attached in centre of the pan, to contain a bottle for the reception of the food plant; e, sand in the pan; gg, cross pieces for supporting the cage and to prevent warping.
Fig. 20. Ring-legged Pimpla (Pimpla annulipes Br.), female; to the right a figure of the ovipositor to show the two imner rods; to the left the abdomen of the male.
Frg. 27. Delicate Longsting (Macrocentrus delicatus Cress.) ; to the right the abdomen of the male.
Fig. 28. Rust-red Social Wasp (Polistes rubiginosus St. Farg.) ; b, nest, the natural position being with the mouths of the cells down.

Fig. 29. Apple-tree Tent-caterpillar (Clisiocampa americana Harr.), eggs.
Fig. 30. Grape Phylloxera (Phylloxera vastatrix Plan.); a, b, peculiar pedunculated galls ; c, gall just forming; d, same from beneath.
Fig. 31. Oyster-shell Bark-louse (Mytilaspis pomicorticis Riley) ; a, male louse from be-neath; b, same from above aud with wings expanded ; c, male scale; d, leg of male; e, portion of wing very highly magnified; f, one joint of male antennæ (all highly magnified).
Fig. 32. Oyster-shell Bark-louse (Mytilaspis pomicorticis Riley); anal joint of louse, with a more highly magnified segment of edge at b, and of a single pore at c; d, female louse ; e, a section of its proboscis more highly maguified; $g h f$, female scale, h, first scale, g, second acale, f, third scale.
Fig. 33. Mite (Dermaleichus?).
Fig. 34. Aphelinus myfilaspidis LeBarou.
Fig. 35. Pine-leaf Scale-iusect (Mytilaspis pinifolic, Fitch.); at, scales on leaves of white pine; b, male scale ; c, female scale from white pine ; a, female scale from broader leaved pine (b, c and d, enlarged).
Fig. 36. Pine-leaf Scale-insect (Mytilaspis pimfolie, Fiteh); male, highly magnified.
Fig. 37. Painted Ladybird (Coccinella picta Randall) ; a, larva; b, beetle; c, beetle, enlargen.
Fig. 33. Hickory Bark-borer (Scolytus caryce Riley); 1, view of its galleries on the inside of the bark, showing the beetle in the central gallery and the larvm at the ends of the side galleries; 2, burrows made by larger larva; 3, beetle, magnified and natural size; 4, larva, magnified and natural size; 5, pupa, magnified; 6, sculptrure of elytra, maguified.
Fig. 39. Rose Chafer (Mucroluctylus subspinosus, Fabr.), with the enlarged anterior tibia at the left.
Fig. 40. Chinch-bug (Micropus Iencopterus, Say).
Fig. 41. False Chinch-bug (Nysius destruchor Riley); a, potato leaf showing some effects of its punctures; b, pupa; c, mature bug.
Fig. 42. Grape-viue Apple-gall (Fitis-pomum Walsh \& Riley); a, exterior; b, section.
Fig. 43. Gall-gnat (Cecilomyia salicis-strobiloides Walsh), 1 , female; b, male antenuæ.
Fig. 44. Grape-vine Filbert-gall (Vitis-coryloides TV. \& R.) ; a, anterior joints of larva, showing breast-bone; b, cluster of galls; c, section of single gall.
Fig. 45. Grape-vine Tomato-gall (Iitis-tomatos Riley=Lasioptera vitis O. S., gall); a, section of a single swelling.
Fig. 46. Grape-vine Trumpet-gall (Fitis-riticola Riley =Cecidomyia viticola O. S.)
Fig. 47. Jumping Tree-cricket (Orocharis saltator Uhler) eggs in grape twig; a, eggs; b, punctures; c, egg, enlarged.
Fig. 48. Jumping Tree-cricket (Orocharis saltator Uhler) ; a, female; b, male.
Fig. 49. Snowy Tree-cricket (Ecanthus niveus Harr.) eggs ; a, punctures in twig ; b, section of twig showing the eggs within ; c, egg, enlarged ; d, granulations at roundel end of egg, more highly magnified.
Fig. 50. Baffalo Tree-hopper (Ceresa bubalus Fabr.) eggs in slits in the bark of a tree, a, one slit enlarged ; b, natural size.
Fig. 51. Buffalo Tree-hopper (Ceresa bubalus, Fabr.); a, side; b, dorsal view.
Fig. 52. Buffalo Tree-hopper (Ceresa bubalus, Fabr.); a, larva; b, pupa; c, ovipositor of the female, all enlarged.
Fig. 53. Egg-punctures of Tree-hopper (?) on apple twigs; a, natural size; b, end larged.
Fig. 54. Frosted Lightning-hopper (Pociloptera pruinosa, Say) eggs; a, enlarged; il in position within twig, enlarged; c, natural size.
Fig. 55. Frosted Lightning-hopper (Pociloptera pruinosa, Say).
Fig. 56. Egg-punctures of (?) Orchetimum glaberimum (Burm.).
Fig. 57. Eggs of the Angular-winged Katydid (Microcentrus retinervis, Burm.); a, front b, side view, just before hatching.

Fig. 58. Eggs of the Angular-winged Katydid (Microcentrus vetinervis, Burm.) ; a, front; b, side view, soon after laid.
Fig. 59. Egge of the Broad-winged Katydid (Platyphyllum concavum Harr.) ; a, side ; b, fron't view, enlarged; c, d, natural size.
Fig. 60. Buck Moth (Hemileuca maia, Drury).
Fig. 61. Buck Moth (Hemileuca maia, Drury) eggs.
Fig. 62. Buck Moth (Hemileuca maia, Drury) ; a, full-grown larva; b, pupa; c, ordinary form of spine of larva in the first stage; d, branched spine on thoracic joints of same; e, form of spines in second stage of larva; f, g, spines of fuil-grown larva.
Fig. 63. Io Moth (Hyperchiria Io, Fabr.), male.
Fig. 64. Io Moth (Hyperchiria Io, Fabr.), female.
Fig. 65. Io Moth (Hyperchiria Io, Fabr.), caterpillar.
Fig. 66. Io Moth (Hyperchiria Io, Fabr.), spines in 1st (c), 2d (b), and 5th (a) stages of caterpillar.
Fig. 67. Green- striped Maple-worm (Dryocumpa rubicundu, Fabr.); a, caterpillar; b, chrysalis; c, female moth.
Fig. 68. Belvoisia bifasciata, Fabr.
Fig. 69. Hellgrammite Fly (Corydalus cornutus, Linn.) ; a, larva; b, pupa; c, male fy ; d, outline of head and prothorax of female.
Fig. 70. Hellgrammite Fly (Corydalus cornutus, Linn.); supposed eggs.
Fig. 71. Hellgrammite Fly (Corydalus cornutus, Linn.), pupa.
Fig. 72. Goat-weed Butterfly (Paphia glycerium Doubl.); a, leaf eaten by the larva (natural size) ; b, head of larva in the first stage ; c, larva in third stage; d, head in second stage; e, head in fourth stage - all enlarged.
Fig. 73. Painted-wing Digger-wasp (Ammophila pictipennis Walsh).
Fig. 74. Yucca-moth (Pronuba yuccasella Riley); a, head with pollen mass (1), (2) the maxillary tentacle, (3) the maxillae, (4) maxillary palpi, (5) antenna; b, maxillary palpi with tentacle ; c, single spine from maxillary tentacle; d, maxillary palpus of male ; e, wing scale ; f, anterior leg; g, labial palpus; h, venation of anterior wing ; i, venation of posterior wing, male; j, last joint of the abdomen of the female with the ovipositor exserted - all en. larged.
Fig. 75. Yucca-moth (Pronuba yuccasella Riley); a, larva; b, moth with wings folded; c, female moth with wings expanded, (all natural size) ; d, side view of one joint of larva ; e, head of larva from below ; f, same from above; g, leg of larva; h, maxilla; i, mandible ; j, labial palpi and spinneret ; k, antennaall enlarged.

REPORTVI.

Fig. 1. Potato-beetle Catcher. Made of five barrel hoops and four (BB, EE) barrel staves, covered with cotton cloth.
Fig. 2. Grape Phylloxera (Phylloxera rastatrix Planchon), galls on the leaf, seen from beneath.
Fig. 3. Grape Phylloxera (Plyylloxera vastatrix Plan.) ; a, b, pedunculated galls; c, gall just forming; d, same from beneath.
Fig. 4. Grape Phylloxera (Phylloxera vastatrix Plan.)-Type Gallicola; a, b, newlyhatched larva, ventral and dorsal view ; c, egg; d, section of gall ; \boldsymbol{e}, swelling of tendril ; f, g, h, mother gall-louse-lateral, dorsal and ventral views; i, her antenna; j, her two-jointed tarsus.
Fig. 5. Grape Phylloxera (Phylloxera rastatrix Plan.)-Type Radicicola; a, roots of Clinton vine, showing relation of swellings to leaf galls, and power of resisting decomposition; b, larva as it appears when hibernating; c, d, antenna and leg of same; θ, f, g, forms of more mature lice; h, granulations of skin ; i, tubercle ; j, transverse folds at border of joints; k, simple eyes.

Fig. 6. Grape Phylloxera (Phylloxera rastatrix Plan.)-Type Radicicola; a, shows a healthy root; b, one on which the lice are working, representing the knots and punctures caused by their punctures; c, a root that has been deserted by them, and where the rootlets have commenced to decay ; d, d, d, show how the lice are found on the larger roots; e, female pupa, dorsal view; h, same, ventral view; i, magnified antenna of winged insect ; j, side view of the wingless female, laying eggs on roots; k, shows how the punctures of the lice cause the larger roots to rot.
Fig. 7. Grape Pbylloxera (Phylloxera vastutrix Plan.). Pterogostic characters; a, b, different venation of front wing; c, hind wing; d, e, f, showing development of wiugs.
Fig. 8. Grape Phylloxera (Phylloxeravastatrix Plan.)-Type Radicicola; a, b, pupa aud imago of a problematical iudividual or supposed male ; c, d, its antenna aud leg; e, vesicles found in abdomen.
Fig. 9. Thrips, enlarged, wings at right more highly enlarged.
Fig. 10. Lace-wing lly (Chrysopa sp.); a, eggs; b, larva; c, cocoon, tho upper figure with the lid open after the fly has escaped; d, tly, the wings omitted on the left. [a, b, d, after Westwood.]
Fig. 11. Ladybird (Hippodamia convergens Gué.); larva, pupa and beetle.
Fig. 12. Syrphus larva; b, one joint enlarged.
Fig. 13. Syrphus-fly (Helophilus latifrons Loew).
Fig. 14. Insidious Flower-bug (Anthecoris insidiosus, Say).
Fig. 15. Root-louse Syrphns-tiy (Pipiza radicum W. \& R.) ; a, larva; b, pupa; c, fly.
Fig. 16. Phylloxera Mite (Tyroglyphus phylloxera Planchon \& Riley); a, dorsal ; b, ventral view of female ; c, mouth parts ; d, f, g, h, forms of tarsal appendages; e, ventral tubercles of male.
Pig. 17. Hoplophora arctata Riley ; a, b, c, d, e, different attitndes assumed by it; f, strongly magnified leg.
Fig. 18. American Oak Phylloxera (Phylloxera Rilesi Lichtn.); a, pupa; b, winged females; c, antenua greatly enlarged; d, portion of infested leaf, under side.
Fig. 19. Americau Oak Phylloxera (Phylloxera Rileyi Lichtn.); a, b, dorsal and ventral views of larva as seen hibernating ; c, d, highly magnified leg and antenna of same.
Fig. 20. Grape-vine Epimenis (Psychomorpha epemenis, Drury) ; a, larva; b, one joint, enlarged, side view; c, hump on joint 11.
Fig. 21. Grape-vine Epimenis (Psychomorpha epimenis, Drury), male moth.
Fig. 22. Beautiful Wood-nymph (Eudryas grata, Fabr.) ; a, full grown larva; b, one joint, enlarged, side view ; ce cervical shield from behind; d, anal hump from behind; e, f, top and side views of cgg.
Fig. 23. Beautiful Wood-nymph (Eudryas grata, Fabr.), female moth.
Fig. 24. Pearl Wood-nymph (Eudryas unio, Hiibn.), male moth.
Fig. 25. Eight-spotted Forester (Alypia octomaculata, Fabr.) ; a, larva; b, one joint, enlarged, side view; c, female moth.
Fig. 26. Red-legged Ham-beetle (Corynetes rufipes, Falır.); a, larva; b, pupa; c, cocoon; d, beetle, enlarged; e, same, natural size; f, leg of larva; g, mandible, h, labium, i, maxilla, j, antenna, of larva-all enlarged.
Fig. 27. Larder-beetle (Dermestes lardarius Lim.) ; a, larva; b, one of its barbed hairs; c, beetle.
Fig. 2ヶ. Clover-hay Worm (A8opia costalis, Fabr.) ; 1, 2, larva; 3, cocoon; 4, chrysalis; 5,6 , moth with wings expanded, and closed ; 7, worm covered with silken web.
Fig. 2). Legged Maple Borer (Ejeria acerni, Clem.) ; a, a, Larva, dorsal and lateral views ; b, b, b, cocoons exposed by detachment of bark; c, moth ; d, chrysalis skin as it is often left remaining in the hole of exit.

Fig. 30. Raspberry-root Borer (Ejeria rubi Riley) ; a, male moth; b, female moth.
Fig. 31. Northern Brenthian (Eupsalis minuta, Drury); a, larva; b, pupa; c, female beetle ; d, head of male do. $; f$, leg of larva ; g, head of larva, from in front; h, labium ; i, labrum ; j, mandible ; k, maxilla; l, head from beneath, all of larva and enlarged; m, end of body of pupa, dorsal view.
Fig. 32. Larva of Tenebrionid (?) ; b, front view of head ; c, mandible ; f, antenna; g, maxilla; h, labium ; d, e, concave end of the body, full and side views.
Fig. 33. Sumach Flea-beetle (Blepharida rhois, Forst.); a, egg; b, b, egg-masses, corered with excrement; c, c, c, c, larva; d, cocoon ; e, pupa; f, beetle; g, antenna of larva; h, maxilla do. ; i, mandible do. $; j$, labium do. ; k, lah)rum do. ; l, leg do.
Fig. 34. Tiphia inornata Say; a, perfect wasp; b, head of larva, enlarged ; c, larva, ventral riew; d, cocoon cut open.
Report VI, p. 122. Jiggers (Leptus ivitans Riley, to the right; L. cmerictmus Riles, to the left).
Fig. 35. White-grub Fungus (Torvubia ravenelii, Berk.).
Fig. 36. Dominican Case-bearer (Coscinoptera dominicana, Fal)r.) ; a, larva extracted from case ; b, do. with case; c, beetle, showing punctures; d, same, natural size; e, egg, enlarged ; i, eggs, natural size; g, head of male beetle, enlarged; h, mandible of same, more enlarged $; j$, leg of larva, with the claw joint more enlarged; f, under side of larva; k, its mandible ; l, maxilla, all enlarged.
Fig. 37. Chlamys plicata, Oliv.; a, larva extracted from case, the figure at the right showing the larva in the case. [After Packard.]
Fig. 38. Yucca-moth (Piomuba yucrasella Riley) ; m, female chrysalis; 7, male chrysalis, the apical joints more lighly eularged and viewed from the side in lower figure.
Fig. 39. Eyed Emperor (Apatura lycaon, Fabr.); a, eggs; b, larva; c, d, chrysalis, dorsal and lateral views; e, imago, male, the dotted line showing form of female - all natural size.
Fig. 40. Ejed Emperor (Apatura lycaon, Fabr.) ; f, egg, magnified ; g, larva, lateral view; h, imago, under side-natural size; i, j, k, l, m, the five different larval heads; n, o, dorsal and lateral views of one joint of larva - enlarged.
Fig. 41. Tawny Emperor (Apatura herse, Fabr.) ; a, eggs; b, larva; c, chrysalis; d, imago, male, the dotted line showing form of female - all natural size.
Fig. 42. Tawny Emperor (Apatura herse, Fabr.); g, larva, half grown, dorsal view; h, imago, male, under side-uatural size; i, j, k, l, m, the five different heads of larva; n, o, dorsal and lateral views of one joint of larva; p, egg - enlarged; g, larve as when hibernating - natural size.
Fig. 43. Eggs of the Angular-winged Katşlid (Microcentrus retinervis, Burm.) ; a, front; b, side view, just before hatching.
Fig. 44. Eggs of Angular-winged Katydid (Microcentrus retinercis, Burm.); a, front; b, side view, soon after laid.
Fig. 45. Angular-winged Katydid (Microcentrus retinerris, Burm.) ; male wings closed.
Fig. 46. Angular winged Katydid (Mierocentrus retinertis, Burm.); a, ovipositor of female, nat. size; b, tip of same, enlarged.
Fig. 47. Angnlar-winged Katydid (Microcentrus retinervis, Burm.) ; female ovipositing.
Fig. 48. Back-rolling Wonder (Antigaster mirabilis Walsh); a, female, wings expanded; b, same, side view, partly rolled up; c, same nearly rolled up; d, antenna of same.
Fig. 49. Back-rolling Wonder (Antigaster mirabilis Walsh) ; a, eggs of Microcentrus from which it has issued; b, female pupa, ventral view; c, male fly; d, his antenna.

rig. 50. Narrow-winged Katydid (Phaneroptera curticauda, DeGeer); female. [After Haris.]

114

 INDEX TO MISSOURI ENTOMOLOGICAL REPURTS.Fig. 51. Narrow-winged Katydid (Phaneroptera carricauda DeGeer); a, ovipositor of female, nat. size ; d, end of same, enlarged ; c, anal appendage of male, side view ; b, same, back view.
Fig. 52. Broad-winged Katydid (Platyphyllum concarum Harr.); male (after Harris). [Adapted from Harris.]
Fig. 53. Broad-winged Katydid (Platyphyllum concavum Harr.); a, ovipositor of female, nat. size ; b, end of same, enlarged.
Fig. 54. Eggs of Broad-winged Katydid (Platyphyllum concavum Harr.) ; a, side; b, front view-enlarged; c, d-natural size.
Fig. 55. Oblong-winged Katydid (Phylloptera oblongifolia, DeGeer), outline of female [adapted from Harris]; b, end of ovipositor, enlarged.

REPORT VII.

Fig. 1. Gray's Improved Sprinkler, for the use of Paris Green water. [From inventor.]
Fig. 2. Chinch-bug (Micropus lencopterus, Say).
Fig. 3. Chiuch-bug (Micropus leucopterus, Say) ; a, b, eggs; c, newly hatched larva; d, its tarsus; e, larva after first molt ; f, same after second molt; g, pupa, the natural sizes indicated at sides; h, enlarged leg of perfect bug ; j, tarsus of same still more enlarged ; i, proboscis or beak, enlarged.
Fig. 4. Chinch-bug (Micropus leucopterus, Say), short-winged form.
Fig. 5. Spotted Ladybird (Hippodamia maculata, DeGeer). [From Practical Entomologist.]
Fig. 6. Trim Ladybird (Coccinella munda Say).
Fig. 7. Insidious Flower-bug (Anthocoris insidiosus, Say).
Fig. 8. Many-banded Robber (Harpactor cinctus, Fabr.) ; a, bug; b, its beak, enlarged.
Fig. 9. False Chinch-bug (Nysius destructor Riley) ; b, pupa; c, mature bug.
Fig. 10. Ash-gray Leaf-bug (Piesma cinerea Say).
Fig. 11. Flea-like Negro-bug (Corimelena pulicaria, Germar); natural size and enlarged.
Fig. 12. Flat-headed Apple-tree Borer (Chrysobothris femorata, Fabr.); a, larva, dorsal vien ; b, pupa; c, swollen thoracic joints of larva from beneath; d, beetle.
Fig. 13. Cherished Bracon (Bracon charus Riley).
Fig. 14. Spring Canker-worm (Anisopteryx vernata, Peck); a, full grown larva; b, egg, enlarged, the natural size shown in the small mass at the side; c, d, one joint enlarged, side and dorsal views.
Fig. 15. Spring Canker-worm (Anisopteryx vernata, Peck); a, male moth; b, female do. - natural size ; c, joints of her antenne ; d, joint of her abdomen, showing spines; e, her ovipositor-enlarged.
Fig. 16. Spring Canker-worm (Anisopteryx vernata, Peck); frout view of head.
Eig. 17. Fall Canker-worm (Anisopteryx pometaria Harr.) ; a, b, egg, side and top views; c, d, side and top riews of one joint of larra,-enlarged ; e, batch of eggs; f, full grown larva; g, female chrysalis-natural size; h, top view of anal tubercle of chrysalis.
FIg. 18. Fall Canker-worm (Anisopteryx pometaria Harr); a, male moth; b, female do.natural size ; c, joints of her antennæ; d, joint of her abdomen-enlarged.
Fig. 19.' Phylloxera, Male (Phylloxera carycccaulis, Fitch?).
Fig. 20. Grafting ; a, b, incisions to receive the scion ; d, scion ; c, string to secure scion -to prevent phylloxera injury.
Fig. 21. Grafting-to prevent phylloxera injury.
Fig. 22. Anerican Oak Phyllozera (Phylloxera rileyi Licht.); a, male, ventral view; b, genital organ ; c, tarsus-all greatly enlarged.

Fig. 23. Rocky Mountain Locust (Caloptenus spretus Thomas) ; a, a, a, female in different positions, ovipositing; b, egg-pod extracted from ground, with the end broken open, showing how the eggs are arranged ; e, a few eggs lying loose on the ground; d, e, shows the earth partially removed, to illustrate an egg. mass already in place, aud one being placed; f, shows where such a mass has been covered up.
Fig. 24. Rocky Mountain Locust (Caloptemus spretus Thomas); anal characters of female, showing ihorny valves of ovipositor; b, an upper valve; c, a lower valve-all enlarged.
Fig. 25. Rocky Mountain Locust (Caloptenus spretus Thomas); a, a, newly hatched larva; b, full grown larva; c, pupa.
Fig. 26. Red-legged Locust (Caloptenus femur-rubrum, DeG.).
Fic. 27. Rocky Mountain Locust (Caloptenus spretus Thomas).
Fig. 28. Rocky Mountain Locust (Caloptenus spretus Thomas) ; a, tip of abdomen of male, side view ; b, c, hind and top views of tip-all enlarged.
Fig. 29. Red-legged locust (Caloptenus femur-rubrum DeGeer) ; a, tip of abdomen of male, side view; b, c, hind and top view-all enlarged.
Fig. 30. Migratory Locust of Europe (Edipoda migratoria Liun.).
Fig. 31 (p. 142). Map of North America, illustrating the country east of the Rocky Mountains subject to the Ravages of the Rocky Mountain Locust.
(Opposite p. 144.) Map of Missouri, illustrating the Locust Invasion of 1374.
Fig. 32. Swarm of Locusts falling upon and devouring a wheat-field.
Fig. 33. Differential Locust (Caloptenus differentialis, Walk.).
Fig. 34. Two-striped Locust (Caloptenus bivittatus, Say).
Fig. 35. Silky Mite (Trombidium sericeum Say); natural size shown at side.
Fig. 36. Locust Mite (Astoma gryllaria LeBaron); greatly enlarged.
Frg. 37. Mite parasitic on the House-fly (Trombidium muscarum Riley) ; enlarged.
Fig. 38. Red tailed Tachina-fly (Exorista militaris Kirkp.)
Fig. 39. Flesh-fly (Sarcophaga sarracenie Riley) ; a, larva; b, pupa; c, fly; d, head and prothoracic joints of larva, showing curved hooks, lower lip (more enlarged at g), and prothoracic spiracles; e, end of body of larva, showing stigmata (inore enlarged at f), prolegs and vent; h, tarsal claws of tly with protecting pads ; i, antenna of fly-all enlarged.
Fig. 40. Seventeen-year Locust (Cicada septemdecim Linn.) ; one wing removed so as to show oripositor, $b ; a$, beak.

REPORT VIII.

Fig. 1. Lebia grandis Hentz.
Fig. 2. Peck's Spray Machine in operation. [From inventor.]
Fig. 3. Spring Canker-worm (P'aleacrita rernata, Peck); a, catcrpillar; b, eggs, natural size, one eularged; c, one joint of larva, cularged, side view; d, same,
dorsal view.
IG. 4. Fall Canker-worm (Anisoplerys pometaria Harr.) ; a, b, egg enlarged, side and top views; c, d, joint of larva, eularged, side and dorsal views; c, eggs, natural size; f, caterpillar ; g, female;chrysalis; h, tip of chrysalis, enlarged. 'IG. 5. Spriug Canker-worm (Palcacrita vernata, Peek), female chrysalis, enlarged. IG. 6. Fall Canker-worm (.1nisopteryx pometaria Harr.) ; a, male, b, female chrysalis, enlarged; a dorsal view of the tip of each shown beneath.
IG. 7. Spring Canker-worm (Paleacrita vernata, Peck); a, b, venation of wings; c, one joint of male antenux, greatly enlarged.
rg. 8. Fall Canker-worm (Anisopteryx pometuria Harr.) ; a, b, venation of wings ; c, d, one joint of male antemmer, greatly enlarged, side and under views.
4G. 9. Spring Canker-worm (I'aleutrita vernata, Peck); a, male moth; b, female moth—nat. size; c, portion of antenna of female; d, one segment of female abdomen; e, ovipositor-eularged.

Fig. 10. Fall Canker-worm (Anisopteryx pometaria Harr.) ; a, male moth; b, female moth-nat. size ; c, joints of female antenna; d, one joint of female abdo-men-enlarged.
Fig. 11. Canker-worm Trap, consisting of a band of tin attached to a circle of muslin. Fig. 12. Cauker-worm Trap, of tin and muslin; section. [From Country Gentleman.]
Fig. 13. Canker-worm Trap, of tin and muslin; section to show the mode of union of the tin and muslin. [From Country Gentleman.]
Fig. 14. Canker-worm Trap, at base of tree-Section. [From Conntry Gentleman.]
Fig. 15. Canker-worm Trap, at base of tree. [From Country Gentleman.]
Fig. 16. Tent-caterpillar of the Forest (Clisiocampa sylvatica Harr.) ; a, eggs; b, female moth; c, egg, enlarged, top view: d, same, side view.
Fig. 17. Tent-caterpillar of the Forest (Clisiocampa sglvatica Harr.).
Fig. 18. Army-worm (Leucania unipuncta Haw.), male genitalia; A, end of body denuded of hairs, showing the upper clasps protruding, and the natural position of the hidden organs by dotted lines; B , the organs exteuded; c, upper valves; d, lower valves; e, upper intermediate organ ; f, penis; g, back view of upper intermediate organ; h, inner surface of upper valves-all enlarged.
Fig. 19. Army-worm (Leucania unipuncta Haw.) ; a, b, end of abdomen of female denuded of scales, showing the ovipositor withdrawn and exserted; c, terminal joint of ovipositor; d, striations representing folds of the membrane, to facilitate expansion ; e, f, retractile subjoints; h, eggs-all enlarged ; g, eggs, natural size.
Fig. 20. Army-worm (Leucania unipuncta Haw.), natural size when full grown.
Fig. 21. Army-worm (Leucania unipuncta Haw.), chrysalis.
Fig. 22. Army-worm (Leucania unipuncta Haw.) ; a, male moth; b, abdomen of femalenat. size ; c, eye, d, base of male antenna; e, base of female antenna-enlarged.
Fig. 23. Stalk-Borer (Gortyna nitela Guen.) ; a, terminal joints of female abdomen denuded to show the exserted ovipositor; b, view of the ovipositor from above.
Fig. 24. Unarmed Rustic (Agrotis saucia Treit.) ; a, top view of egg, enlarged ; b, batch of eggs enlarged. [See Notes, etc., p. 55.]
Fig. 25. Unarmed Rustic (Agrotis saucia Treit.); a, ovipositor as it appears at the end of the abdomen ; b, same when extended.
Fig. 26. Fall Army-worm (Laphygma frugiperda, Sm. \& Abb.) ; a, full grown worm, nat. size ; b, head, front view ; c, one joint of body, dorsal view ; d, do., side view-enlarged. [See Notes, etc., p. 56.]
Fig. 27. Fall Army-worm (Laphygma frugiperda, Sm. \& Abb.) ; a, the typical form ; b, c, variations of wings.
Fig. 28. Elongate Ground-beetle (Pasimachus elongatus Lec.).
Fig. 29. Murky Ground-beetle (Harpalus caliginosus, Fabr.).
Fig. 30. Fiery Ground-beetle (Calosoma calidum, Fabr.) ; a, larva; b, beetle.
Fig. 31. Rummaging Ground-beetle (Calosoma serutator, Fabr.). [After Harris.]
Fig. 32. Red-tailed Tachina-fly (Exorista leucanic Kirk.). [After Walsh.]
Fig. 33. Yellow-tailed Tachina-fly (Exorista flavicauda Riley).
Fig. 34. Microgaster nilitaris Walsh. [After Walsh.]
Fig. 35. Glassy Mesochorus (Mesochorus vitieus Walsh). [After Walsh.]
Fig. 36. Pezomachus minimus Walsh. [After Walsh.]
Fig. 37. Pezomachus minimus Walsh, bunch of cocoous. [After Walsh.]
Fig. 38. Ophion purgatus Say.
Fig. 39. Rocky Mountain Locust (Caloptenus spretus Thomas): process of acquiring wings; a, pupa with skin just split on the back; b, the imago extending ; c, do., nearly out ; d, do. with wings expanded ; e, do. with all parts perfec
Fig. 40. Acridium americanum, Drury.
Frg. 41. Coral-winged Locust (Edipoda phanicoptera Germ.).

Frg. 42. White-lined Morniug Sphinx (Drilephila lineata Fabr.), greeu larva.
Fig. 43. White-lined Morning Sphinx (Dëlephila lineata Fabr.), black larva.
Fig. 44. White-lined Morning Sphinx (Deïlephila lineata Fabr.).
Fig. 45. Lubber Locust (Brachypeplus magnus Gir.).
Fig. 46. Green-striped Locust (Tragocephala viridifasciata) ; a, pupa; b, perfect insect.
Fig. 47. Granulated Grouse-locust (Tettix gramulata Scudder).
Fig. 48. Grape Phylloxera (Phylloxera vastatrix Plan.) ; a, female, ventral view, showing egg throngh transparent skin; b, do. dorsal view; c, greatly enlarged tarsus; d, shranken anal joints as they appear after oviposition; e, male of P.h. carycecaulis, Fitch ?, dorsal view-the dots in circle indicating natural size.
Fig. 49. Yucea Borer (Megathymus yисса, Waik.) : a, a, funnels made bs the larva; b, under ground stem, showing tunnelings of larva.
Fig. 50. Yucca Borer (Megathymus yuccer, Waliz.), female moth.
Fig. 51. Yucea Borer (Megathymus yucro, Walk.) ; a, egg, side vietr, enlarged; b, egg from which the larva has hatched; $b b, b b b$, unhatehed eggs-natural size; c, newly-hatched larva, enlarged ; $c c$, full grown larva, natural size; d, underside of head of same, enlarged to show the trophi.
Fig. 52. Yucca Borer (Megathymus yueco, Walk.), pupa.
Fig. 53. Yucca Borer (Megathymus yuccor, Walk.), moth walking.
FIg. 54. Yucea Borer (Megathymus yucoce, Walk.) ; a, b, venation of front and hind wings; c, labial palpus denuded; d, club of autenna; e, f, g, front, middle and hind legs,-all but wings enlarged.
Fig. 55. Castria phalaris (Fabr.), venation.

REPORTIX.

Fig. 1. Gooseberry Span-worm (Eufitchia ribearia, Fitch.) ; a, b, larvæ; c, pupa.
Fig. 2. Gooseberry Span-worm (Eufithiu ribearia, Fitch), female moth.
Fig. 3. Gooseberry Span-worm (Enfitchia ribearia, Fitch); a, egg, eularged ; b, b, eggs, natural size.
Fig. 4. Imported Currant-worm (Nematus ventricosus Klug); currant leaf showing "ggs (1), and the holes which the young worms make (2, 3). [From Praotical Entomologist.]
Fig. 5. Imported Currant-worm (Nematus rentricosus Klug); a, a, a, larve; b, side view of one joint, enlarged, showing black tubercles.
Fig. 6. Imported Currant-worm (Nematus rentricosus Klug); a, wale fly; b, female $17 y$.
Fig. 7. Soldier-bug (Podisus placidus Uhler) ; a, enlarged; b, natural size.
Fig. 8. Ovipositors of Sawflies; a, Willow-apple Sawfly (Nematus salicis-pomum Walsh); b, Currant-worm Sawfly (Nematus rentricosus Klug.), enlarged.
Fig. 9. Native Currant-worm (Pristiphora grossularice Walsh); a, larva, nat. size; b, fly enlarged.
Fig. 10. Strawberry-worm (Emphytus maculatus Nort.) ; 1, 2, ventral and lateral views of pupa; 3, enlarged sketch of perfect fly, the wings on one side detached; 4, larva crawling, natural size; 5, perfect fly with wings folded, natural size ; 6, larva at rest; 7, cocoon; 8, antenna, enlarged; 9, egg, enlarged.
Fig. 11. Albot's Pine-worm (Lophyrus Abbotii Leach); 1, perfect fly, magnified; the left wings removed; 2, 3, ventral and lateral views of pupa, enlarged; 4, larvie in different positions, nat. size; 5, cocoon, nat. size; 6, antenna of male, enlarged; 7, antenua of female, eularged.
Fig. 12. Map showing the distribution of the Colorado Potato-beetle (Doryphora decemlineata, Say).

Fig. 13. Uropoda americana Riley; a, Colorado Potato-beetle attacked by it-nat. size; b, the mite, ventral view, showing the penetrating organ lying between the legs; c, the organs extended ; d, the claw ; e, the excrematitious. filament-all greatly enlarged.
Fig. 14. Wheat-head Army-worm (Leucania albilinea Guen.) ; a, a, larvae; b, eggs-nat. size; c, d, egg, top and side view-enlarged.
Fig. 15. Wheat-head Army-worm moth (Leucania albilinea Gren.).
Fig. 16. Map of North America, illustrating the country east of the Rocky Mountains overrun by the Rocky Mountain Locust in 1876.
Fig. 17. Acridium americanum, Drury.
Fig. 18. Rocky Mountain Locust (Caloptenus spretus Thomas); a, a, a, female in differeut positions, ovipositing; b, egg-pod extracted from ground, with the end; c, a few eggs lying loose on the ground; d, e, shows the earth partially removed, to illustrate an egg-mass already in place and one being placed; f, shows where such a mass has been covered up.
Fig. 19. Rocky Mountain Locust (Caloptemus spretus Thomas); Anal characters of female, showing horny valves of ovipositor; b, an upper valve; c, lower valve-all enlarged.
Fig. 20. Rocky Mountain Locust (Caloptenus spretus Thomas); ovipositiou-i, superaual plate; h, sponge-like exsertile organ-the egg passing through the horny valves of the ovipositor, g.
Fig. 21. Rocky Mountain Locust (Caloptenus spretus Thomas), egg-mass, enlarged; a, side view within burrow, the line of exit of the young locusts shown at d and e; \bar{b}, ego-mass from beneath ; c, same from above.
Fig. 22. Roeky Monntain Locust (Caloptenus spretus Thomas); a, egg, enlarged to show sculpture of outer shell; b, portion of same very highly magnified; c, the inner shell, just before hatching ; d, e, points where it ruptures.
Fig. 23. Anthomyia Egg-parasite (Anthomyia radicum, Linn., var. calopteni Riley); fly; b, puparium; c, larva, side view; d, head of same, from above-enlarged.
Fig. 24. Bombyliid larva (Systrechus sp.) ; a, enlarged; b, head, side view, more en-' larged ; c, do., front view ; d, posterior spiracle. [See Notes, etc., p. 60.]
Fig. 25. Harpalus? larva; a, from above; b, head, from beneath ; c, leg-enlarged; d, auteuna; e, maxilla; f, labium.
Fig. 26. Harpalns? larva ; A, natural size ; B, under side of head, enlarged ; c, mandible; e, antenna; f, labium and labial palpi; g, maxilla and maxillary palpi; h, joint 12 beneath; i, joint 11 beneath; j, joints $4-10$ each beneathenlarged.
Fig. 27. Pennsylvania Ground-beetle (Harpalus pensylvanicus, DeGeer).
Fig. 28. Erax bastardi Macq.; a, larva; b, pupa.
Fig. 29. Amblychila cylindriformis Say.
Fig. 30. Hellgrammite (Corydalus cornutus, Linn.) ; a, larva; b, pupa; c, fly, male; d, head of female fly.
Frg. 31. Hellgrammite (Corydalus cornutus, Linn.) ; a, a, eg ρ-masses attached; b, one detached, showing lower surface,-all rather below average size; c, a few eggs of the outer row ; d, the newly-hatched larva ; e, labium ; f, antenna; g, maxilla; h, mandible ; i, tarsal claw ; j, anal hooks-all enlarged.
Fig. 32. Eggs of Belostoma?
Fig. 33. Gigantic Water-bug (Belostoma grandis Linn.).

CLASSIFIED LIST OF ILLUSTRATIONS.

The following list of illustrations, brought together in classificatory order, will prove serviceable to entomologists, as it will enable such to readily ascertain whether or not any particular insect of a particular Order has been figured in the Reports. The explanations to the figures are omitted, since they are already given in the preceding list. The nomenclature of the Reports is here, also, retained, and references to figures other than those of insects or their products are omitted. The number of the Report is indicated in Roman and of the figure in Arabie numerals.

HYMENOPTERA.

Ovipositors of Sawflies: IX, 8 .
Pristiphora grossulariæ Walsk: IX, 9 .
Nematus ventricosus Klug: IX, 4, 5, 6.
Emphytus maculatus Nort.: IX, 10.
Lophyrus Abbotii Leach.: IX, 11.
Aphelinus mytilaspidis LeBaron: V, 34.
Trichogramma? minuta Riley: III, 72 .
Antigaster mirabilis $\Pi a l_{s} h: V I, 48,49$.
Chalcid sp.: I, pl. 2, Fig. 6.
Glyphe viridascens T!alsh: II, 24.
Isosoma vitis Saunders: I, 73; II, 64.
Isosoma hordei Harr. : II, 65.
Eurytoma bolteri Riley: I, pl. 2, Figs. 8, 9 ; I, 97,
Chalcis albifrons T'alsh: II, 22.
Chalcis marise Riley: IV, 39.
Microgaster (=Apanteles): II, 48.
Microgaster cocoons on Hog-caterpillar of the Vine (Cher. pampinatrix, Sm. \& Abb.): II, 47.
Microgaster militaris TValsh: I, 32; II, 23; III, 73; VIII, 34.
Aleiodes Rileyi Cress. : IIİ, 30.
Bracon charus Riley: VII, 13.
Macrocentrus delicatus Cress: V, 27.
Sigalphus curculionis Fitch: III, 7, 8.
Pimpla annulipes $B r$.: V, 26 .
Cryptus samix Pack.: IV, 40, 41.
stemiteles (?) cressonii Riley: I, pl. 2, Fig. 7.

Hemiteles (?) thyridopterygis Riley: I, pl. 2, Figs. 10, 11, 12.
Pezomachus minimus ITalsh: II, 20, 21; VIII, 36, 37 .
Porizon conotracheli Riley: III, 9.
Mesochorus vitreus Tralsh: II, 19; VIII, 35.

Ophion macrurum (Limn.): IV, 37, 38.
Ophion purgatus Say: II, 25 ; VIII, 38.
Tiphia inornata Say: VI, 34.
Ammophila pictipennis Walsh: V, 73.
Stizus grandis Say, ㅇ: I, 12.
Eumenes fraterna Stuy: II, 71.
Polistes rubiginosus St. Farg. : V, 28.
Vespa maculata Linn.: V, 2.

COLEOPTERA.

Amblychila cylindriformis Suy: IX, 29.
Tetracha rirginica Hope: I, 59.
Calosoma scrutator (Fubr.) : II, 69 ; III, 54 ; VIII, 31.
Calosoma calidum (Fabr.): I, 34, 60; II, 70 ; VIII, 30.
Pasimachus elongatus Lec.: X, 61 ; VIII, 23.

Aspidoglossa subangulata Chaud.: I, 21.
Lebia grandis Hentz: III, 41; VIII, 1.
Harpalus caliginosus Say: I, 62 ; V III, 29.
Harpalus pensylvanicus (De(ieer): I, 23; IX, 27.
Harpalus? larva: I, 22; IX, 25, 26.
Quedius molochinus (Grau.): 1V, 12.

Gœrius olens: IV, 11.
Philonthus apicalis (Say): IV, 10.
Dermestes lardarins Linn.: VI, 27.
Hippodamia maculata (Defeer) : I, 29; II, 3; VII, 5.
Hippodamia convergens Guer.: I, 52; VI, 11.

Hippodamia glacialis (Fabr.): IV, 5.
Hippodamia 13-punctata (Linn.): I, 51.
Coccinella 9-notata Herbst: I, 50.
Coccinella munda Say: II, 4; VII, 6.
Coccinella picta Randall: V, 37.
Mysia 15-punctata (Oliv.): IV, 4.
Chilocorus bivulnorus Muls.: I, 4, 5.
Ladybird larva: I, 53.
Passalus coruutus Fabr:: IV, 62.
Macrodactylus subspinosus (Fabr.): V, 39.
Lachnosterna quercina (Knoch): I, 88.
White Grub attacked by fungus: I, 89 .
Pelidnota punctata (Linn.): III, 34.
Cotalpa lanigera (Linn.): V, 3.
Chrysobothris femorata (Fabr.): I, 15, 16; VII, 12.
Chaulioguathus pensylvanicus (DeGeer): I, 19; IV, 14.
Telephorus bilineatus (Say): IV, $\mathbf{1 5}$.
Corynetes rufipes (Fabr.): VI, 26.
Sinoxylon basilare (Say): IV, 26, 27.
Bostrichus bicaudatus (Say): IV, 24.
Orthosoma cylindricum (Fabr.): I, 69.
Prionus laticollis (Drury) : I, 67 ; II, 60, 61, 62.

Prionus imbricornis (Linn.): II, 63.
Saperda bivittata Say: I, 14.
Bruchus pisi Linn.: III, 15, 16, 17.
Bruchus granarius Limn.: III, 18.
Bruchus fabæ Riley: III, 19.
Lema trilineata (Oliv.): I, 42, 43.
Coscinoptera dominicana (Fabr.): VI, 36.
Chlamys plicata (Oliv.): VI, 37.
Fidia viticida Walsh: I, 75.
Colaspis flavida Say: III, 37, 38; IV, 16.
Doryphora 10-lineata Say: I, 46.
Doryphora juncta (Germar): I, 47.
Diabrotica 12-punctata (Oliv.): II, 42.
Diabrotica vittata (Fabr.): I, 44; II, 39, 40, 41.
Haltica chalybea Illiger: III, 35, 36.
Haltica cucumeris Harr.: I, 45.
Blepharida rhois (Forst.): VI, 33.
Chelymorpha cribraria (Fabr.): II, 28, 29.
Physonota quinquepunctata Walsh \& Riley: II, 30.
Cassida nigripes 07ir.: II, 37, 38 .
Cassida bivittata Say: II, 27, 32.

Cassida aurichalcea (Fabr.) : II, 31, 33, 34.
Cassida guttata Olic. : II, 35, 36.
Deloyala clavata (Oliv.): II, 26.
Larva of Tenebrionid (?): VI, 32.
Lytta cinerea Fabr: : I, 40.
Lytta vittata Fabr.: I, 39.
Lytta marginata Fabr.: I, 41.
Epicærus imbricatus (Say): III, 21.
Ithycerus novæboracensis (Forster): III, 20.

Authonomus prunicida Talsh : III, 13.
Anthonomus quadrigibbus Say: III, 10, 11.
Conotrachelus nenuphar (Herbst): I, 18; III, 1.
Conotrachelus crategi Walsh: III, 12.
Analcis fragarix Riley: III, 14.
Cotiodes inequalis (Say): I, 70, 71, 72.
Baridius trinotatus Say: I, 37 .
Baridius sesostris Lec.: I, 74 .
Eupsalis minuta (Drury) : VI, 31.
Sphenophorus zeæ Walsh: III, 22.
Sphenophorus pulchellus Schocn.: III, 23.
Scolytus caryæ Riley: V, 38.

LEPIDOPTERA.

Papilio philenor Drury: II, 84, 85, 86 .
Pieris protodice Boisd.: II, 72, 73, 74.
Pieris oleracea Boisd.: II, 75, 76.
Pieris rape Schrank.: II, 77, 78,79.
Danais archippus (Fabr.) : III, 63, 64,65, 66, 67.
Limenitis disippus (Godt.): III, 68, 69, 70.
Apatura lyeaon (Fabr.): VI, 39,40.
Apatura herse (Fabr.): VI, 41, 42.
Paphia glycerium Doubl.: II, 94, 95, 96; V, 7.
Megathymus гucce Walk.: VIII, 51, 52, 53,54.
Castnia phalaris (Fabr.) venation: VIII, 35.

Thyreus abboti Svainson: II, 54.
Deilephila lineata (Fabr.): III, 60, 61, 62; VIII, 42, 43, 44.
Chærocampa pampinatrix ($S m . \&$ Abb.): II, 44, 45, 46.
Philampelus satellitia (Linn.): II, 52, 53.
Philampelus achemon (Drury): II, 49, 50, 51.

Sphinx 5-maculata Haw. : I, 33.
Egeria exitiosa Say: I, 17.
Egeria polistiformis Harr. : III, 33.
※geria rubi Riley: VI, 30.
Ægeria acerni (Clem.): VI, 29.
Alypia octomaculata (Fabr.) : I, pl. 1, Fig.
18; II, 55 ; VI, 25.

Psychomorpha epimenis (Drury): I, pl. 1, Fig. 19; III, 2i; VI, 20, 21.
Endryas uuio (Hïbn.) : II, 57; VI, 24.
Eudryas grata (Fabr.): II, 56; V I, 22, 23.
Procris americana Boisd: II, 58, 59.
Deïopeïa bella (Drury): V, 4.
Callimorpha fulvicosta Clem. : III, 56.
Arctia isabella (Smith) : IV, 65.
Spilosoma virginica (Fabr.): III, 28.
Hyphantria textor Hurr. : III, 55.
Ecpantheria scribonia (Stoll): IV , 63, 64.
Orgyia leucostigma (Sm. \& $4 b b$.) : I, 81,82 , 83.

Thyridopteryx ephemeraformis Huw.: I, 81.

Bombyx mori Linn. : IV, 29, 30, 31, 32.
Attacus polyphemus Limn.: IV, 50, 51, 52, 53, 54.
Attacus luna Linn.: IV, 47, 43, 49.
Attacus yama-maï (Guér-Mén.): IV, 55, 56, 57, 58.
Attacus Pernyi (Guér-Mén.): IV, 60, 61.
Attacus cynthia (Hiibn.): IV, 42.
Attacus promethea Drury: IV , 43, 44, 45, 46.

Attacus cecropia Linn. : IV, 33, 34, 35, 36. Hemileuca maia (Drury): V, 60, 61, 62.
Hyperchiria io (Fabr.) ; V, 63, 64, 65, 65.
Dryocampa rubicunda (Fubr.): V, 67.
Clisiocampa americana Harr.: III, 50, 51; V, 29.
Clisiocampa sylvatica Harr. : II, 11 ; III, 52, 53; VIII, 16, 17.
Acronycta populi Riley: II, 87, 83 ,
Acronycta oblinita ($S m . \mathcal{\&} \mathcal{A} b b_{.}$): III, 29.
Agrotis sulogothica (Haw.): I, 29 .
Agrotis jaculifera Guen.: I, pl. 1, Fig. 11.
Agrotis scaudens Riley: I, pl. 1, Figs, 5, 6, 7.
Agrotis cochranii Riley: I, 26.
Agrotis inermis Harr.: I, pl. 1, Figs. 1, 2, 3, 4.
Agrotis sancia Treit. : III, 49 ; VIII, 24, 25.
Agrotis telifera Harr. : I, pl. I, Figs. 8, 9, 10 ; I, 28.
Noctua clandestina Harr. : I, pl. I, Fig. 13 ; I, 27.
Hadena subjuncta Gr. \& Rob.: I, pl. I, Figs. 14, 15, 16, 17.
Agrotis devastator (Brace): I, 30 .
Pupa of Cut-worm in earthen cell: I, 25. Mamestra picta Harr: : II, 82.
Celæena reuigera Steph. : I, 83.
Prodenia conimelinæ ($S ; 2$. \& $A b b$) : I, pl.
I, Fig. 12; III, 48.
Gortyna nitela Guen.: I, 35, 35; VIII, 23.

Lencania albilinea Guen. : IX, 14, 15.
Lencania unipuncta Haw.: II, 14, 15, 16; III, 47 ; VIII, 18, 19, 20, 21, 22.
Prodenia autumualis Riley: III, 45, 46 ; VIII, 26, 27.
Amphipyra pyramidoides Guen. : īII, 31, 32.

Anomis xylina (Say): II, 12, 13.
Xylina cinerea Riley: III, 57.
Plusia brassica Riley: II, 81 .
Heliothis armigera Mübn.: III, 42, 43.
Anisopteryx pometaria Harr.: V II, 17, 18 ; VIII, 4, 6, 8, 10 .
Paleacrita vernata (Peck): VII, 14, 16; VIII, 3, 5, 7, 9.
Aplodes rubivora Riley: I, pl. 2, Fig. 25.
Hematopis grataria (Fabr.): I, pl. 2, Figs. $18,19,20,21$.
Eufitchia ribearia (Fitch): IX, 1, 2,3.
Asopia costalis (Falr.): VI, 28.
Pempelia Hammondi Riley: IV, 21.
Pempelia grossularice Pack.: I, pl. 2, Fig. 17; I, 79.
Phycita nebulo Walsh: IV, 18, 19.
Acrobasis juglandis LeBaron: IV, 20.
Galleria cereana Fabr.: I, 92.
Desmia maculalis Westu.: III, 24.
Phacellura nitidalis Cram.: II, 43.
Tortrix cinderella Riley: IV, 22.
Tortrix rileyana Grote: I, pl. 2, Figs. 3,4; I, 85.
Penthina vitivorana Pack.: I, pl. 2, Figs. 29, 30 ; I, 76.
Euryptychia saligneana Clem.: II, 99.
Carpocapsa pomonella (Linn.): I, 24.
Anchylopera fragarix Walsh of Riley: I, pl. 2, Figs. 26, 27; I, 80.
Promula succasella Riley: V, 74, 75; VI, 36.

Walshia amorphella CTem: II, 98.
Gelechia gallesolidaginis Riley: I, pl. 2, Figs. 1, 2; I, 96.
Holcocera glantulella Ritey: IV, 66.
Bucculatrix pomifoliella Clem.: IV, 23.
Pterophorus periscelidactylus Fitch: I, pI. 2, Figs. 15, 16; III, 27.
Pterophorus cardui Riley: I, pl. II, Figs. 13, 14 ; I, 98.

HETEROPTERA.

Corimelena pulicaria (Germar): II, 9; VII, 11.
Stiretrus fimbriatus (Say): I, 5, 6; II, 10.
Perillus circumeinctus Stal: IV, 6.

Arma spinosa Dallas: I, 33, 54; II, 7; IV, 8, 9.
Podisus placidus Uhler: IX,7.
Euschistus punctipes, Say: IV, 7; V, 5.
Strachia histrionica Hahn: IV, 17.
Coreus tristis (DeGeer): I, 55.
Nysius destructor Riley : V, 41; VII, 9.
Micropus leucopterus (Say): II, 1, 2; V, 40; VII, 2, 3, 4 .
Campyloneura vitripennis (Say): III, 58, 59.

Capsus oblineatus Say: II, 83 .
Anthocoris insidiosus (Say): II, 6; VI, 14; VII, 7.
Reduvius raptatorins Say: I, 58.
Harpactor cinctus (Falr.): I, 57; VII, 8.
Piesma cinerea (Say): II, ४; VII, 10.
Belostoma grandis Linn.: IX, 33.

HOMOPTERA.

Cicada septemdecim Linn.: I, 6, 7, 13; VII, 40.
Cicada tredecim Linn.: I, 11.
Ceresa bubalus (Fabr.): V, 6, 50, 51, 52.
Pœciloptera pruinosa (Say): V, 54,55.
Pemphigus vagabundus (Walsh): I, 65.
Eriosoma pyri Fitch: I, 64.
Phylloxera vastatrix Planchon: III, 39, 40; IV, 28 ; V, 30 ; VI, $2,3,4,5,6,7,8$; VIII, 48.

Phylloxera caryæcaulis (Fitch)?: VII, 19.
Phylloxera rileyi Lichn.: VI, 18, 19; VII, 22.

Aspidiotus conchiformis (Gmélin): I, 2,3; V, 31.
Mytilaspis pomicorticis Riley: I, 2,3; V, 31, 32.
Aspidiotus harrisii ($\left.\Pi_{(t / l l}\right)$: I, 1.
Mytilaspis pinifoliæ (Fitch): V, 35, 36.

DIPTERA.

Gall, Vitis-tomatos Riley=Lasioptera vitis O. S. : V, 45.

Gall, Vitis-viticola Riley=Cecidomyia viticola O. S.: V, 46.
Gall, Cecidomyia salicis-strobiloides Talsh: V, 43.
Gall, Vitis-coryloides W.\& R.: V, 44.
Gall, Vitus-pomum W. \&R.: V, 42.
Tabanus atratus Fabr. : II, 97.
Wing of Promachus (a), Asilus (b), Erax (c): II, 90.

Trupanea apivora Fitch: I, 93.
Erax bastardi Macq.: II, 92, 93; IX, 28.

Asilus missouriensis Riley: IL, 89 ; V, 7.
Asilus sericeus Say: II, 91.
Bombyliid larva (Systrechus sp.) : IX, 24.
Pipiza radicum W. \& R. : I, 66 ; VI, 15.
Syrphus larva: VI, 12.
Helophilus latifrons Loew: VI, 13.
Estrus ovis Linn.: I, 91.
Exorista leucaniæ Kirk.: II, 17: VII, 38 ;. VIII, 32.
Exorista flavicanda Riley: II, 18; VIII, 33.

Lydella doryphore Riley: I, 48.
Belvoisia bifasciata (Fabr.): V, 68.
Sarcophaga sarracenir Riley: VII, 39.
Anthomyia radicum (Linn.), var. calopteni Riley: IX, 23.
Anthomyia zea Riley: I, pl. II, Fig. 24; I, 86, 87 .
Meromyza americana Fitch: I, pl. II, Fig. $28 ;$ I, 90.

ORTHOPTERA.

Ecanthus niveus Harr: I, 77, 78; V, 49. Orocharis saltator Uhter: V, 47, 48.
Phaneroptera curvicauda (DeGeer): VI, 50, 51.
Phylloptera oblongifolia (DeGeer) : VI, 55.
Microcentrus retinervis (Burm.): V, 57, 58; VI, 43, 44, 45, 46, 47.
Platyphyllum concavam Harr: V, 59; VI, 52, 53, 54.
Orchelimum glaberrimum (Burm.): V, 56.
Acridium americanum (Drury): VIII, 40 ; IX, 17.
Caloptenus spretus Thomas: VII, 23, 24, 25,27, 28 ; VIII, 39 ; IX, 18, 19, 20, 21, 22.
Caloptenus femur-rubrum, DeG. : VII, 26, 29.

Caloptenus differeutialis Walk.: V, 8; VII, 33.
Caloptenus bivittatus (Say): VII, 34.
Brachypeplus magnus Gir.: VIII, 45.
Edipoda migratoria Linn: VII, 30.
Edipoda phenicoptera Germ. : VIII, 41.
Tragocephala viridifasciata Harr. : VIII, 46.

Tettix granulata Scudler: VIII, 47.
Mantis carolina (Linn.): I, 94, 95.

NEUROPTERA.

Libellula trimaculata (DeGeer): V, 9 .
Corydalus cornutus (Linn.): V, 69, 70, 71; IX, $30,31$.
Chrysopa sp. : I, 20; II, 5; VI, 10.
Thrips sp. : VI, 9 .

ARACHNIDA.
Phalangium dorsatum Say: IV, 3. ACARINA.
Trombidium muscarum Ritey: VII, 37. Trombidium sericeum Say: VII, 35. Tyroglyphus phylloxeræ Planchon \& Riley: VI, 16.

Nothrus ovivorus Pack. : II, 68.
Leptus irritans Riley and L. americauus Riley: VI, p. 122.
Uropoda americana Riley: IX, 13.
Dermaleichus?: V, 33.
Astoma gryllaria LeBaron: VII, 36.
Hoplophora arctata Riley: VI, 17.

GENERAL INDEX.

In this general index each report is referred to in Roman and the page in Arabic numerals. The index to the new matter of this Bulletin is also included and referred to by the abbreviation "Supp."

A.

Abbot Sphinx, II, 78
Abbotii, Lophyrus, IX, 32, Supp., 65
Thyreus, II, 78
Abbots" White Pine Worm, IX, 29
Descriptive, IX, 32.
Natural History, IX, 30
Natural Enemies, IX, 31
Remedies, IX, 32
Abraxas grossulariata, IX, 5
Acarus mali, II, 6
malus, $\mathrm{I}, 16, \mathrm{~V}, 87$
scabiei, VI, 61
Walshii, $\nabla, 87$
acericola, Acronycta, II, 121
acerni, Aegeria, $\nabla \mathrm{I}, 107,108$, Supp., 55
Trochilium, VI, 108
achemon, Philampelus, II, 74
Achemon Sphinx, II, 74,78
Achreioptera, a proposed order of insects, $\nabla, 16$
Acidalia persimilata, VI, 138
Acoloithus falsarius, II, 86
Acorn Moth, IV, 144
Acrididoe, Stridulation of, VI, 153
Acridii, VIII, 115, 128
Acridium americanum, VII, 173, 174, VIII, 103, 104, IX, 84
peregrinum, VII, 133, VIII, 144, 145
spretis, VII, 128
spretum, VIII, 128
Acridophagi, VIII, 144
Acrobasis, IV, 46
consociella, IV, 45
Hammondii, III, 7
juglandis, IV, 42, 43, V, 49, Supp., 67, 80
nebulo, IV, 38, 47, Supp., 79, 80
nebulella, IV, 42, Supp., 80
Acronycta, II, 119
americana, II, 121, Supp., 73, 74
interrupta, II, 121, Supp., 73
leporina, II, 121, Supp., 73
lepusculina, II, 121, Supp., 73, 74
leutiocoma, V, 126
oblinita, III, 70, 71, V, 126
occidentalis, II, 121, V, 126, Supp., 73
populi, II, 119, 120, Supp., 72, 74
psi, II, 121, Supp., 73
tridens, II, 121, Supp., 73
xylinoides, $\nabla, 126$
acronycta, Microgaster, II, 120
Act to provide for the destruction of Locusts in
Minnesota, IX, 114

Act to encourage the destruction of Locusts in Missouri, IX, 111
Acts to provide for the destruction of Locusts in Kansas, IX, 112, 113
Actias luna, IV, 123
Aculeata, a section of Hymenoptera, $V, 9$
Address before the Farmers of Cass County, Missouri, VIII, 66
Address before the National Agricultural Congress, VI, 17
Adephaga, a section of carnirorous beetles, $\nabla, 11$
Adkins, F. D., Experience of, with Rocky Mountain Locust, VIII, 126
Adkins, James, Report on Rocky Mountain Locust, IX, 74
Adoneta, VI, 140
spinuloides, $\nabla, 126$
adonidum, Coccuв, III, 96
Egeria, VI, 108
acerni, VI, 107, Supp., 55
cucurbitce, II, 64
exitiosa, I, 47
polistiformis, I, 127, III, 75, 76
rubi, VI, 111, 113, Supp., 72
tipuliformis, II, 10, VI, 108, IX, 2
Egeride, V,41
Egiale, VIII, 170
indecisa, VIII, 179
Kollari, VIII, 179
anea, Lytta, III, 6
aеqua, Agrotis, I, 74
Eschne, Oriposition of, VIII, 37
oscularia Anisopteryx, VIII, 17, Supp., 56
astiva, Dendroica, VI, 27
Affleck, Thos., on Cotton Worm, II, 38, 40, VI, 24 Rocky Mountain Locust, VII, 139, 191
affusana, Podisca, Supp., 57
A gassiz, Professor, on mimicry, III, 73
Agelaius phoniceus, VI, 27
Ageratum, VI, 138
Aglaope americana, II, 85
Agriculture, relation of insects to, $\mathrm{V}, 18$
Agrion, oviposition of, VIII, 36
Agrotis, I, 68, Supp., 55
aqua, I, 74
Cochrunii, I, 74, Supp., 76, 77
cursoria, I, 78
devastator, I, 83, Supp., 56
herilis, Supp., 55
inermis, I, 72, 74, II, 50, III, 15, 114, 129
VII, 37, Supp., 55

Agrotis jaculifera, I, 82, 83, Supp., 56. lycarum, Supp., 77 maizi, I, 81
messoria, Supp., 77 muєсеnula, I, 78 nigricans, $\mathbf{I}, 81,83,87$ ortoniǐ, Supp., 55 repentis, Supp., 77 saucia, I, 74, Supp., 55 scandens, I, 76, 78, III, 6, Supp., 75 subgothica, I, 81, 83, III, 151, Supp., 55, 56 suffusa, Supp., 55 telifera, I, 80, Supp., 55 tricosa, Supp., $5 \overline{5}$ ypsilon, Supp., 55
Ailanthus Silkworm, IV, 112
Best method of raising, IV, 119
Difference between Castor bean and Ailan-
thus Worms, IV, 112
Larval changes, IV, 117
Natural History of, IV, 117
Retrospective History of, IV, 113
Thoroughly acclimated in America, IV, 115
Value of the Cocoon, IV, 115
When introduced into America, IV, 114
Ailanthas Worm, I, 151
alabamce, Chrysobothris, VII, 71
Albany Argus, article from, on Army Worm, Ir,
43, VIII, 26
albifrons, Chalcis, II, 52, V III, 54
albilinea, Leucania, $\mathbf{I X}, 55$
albivenosus, Hicropus, VП, 22
albolineata, Synchlora, Supp., 79
alboscutellatus, Bruchus, Supp., 71
,alceae, Erynnis, VIII, 182
Aleochara anthomyice, IV, 22
Aleiodes Rileyi, III, 71
Aletia argillacea, VIII, 23, Supp., 56
alicia, Apatura, VI, 145, 150
Alkalies for Grape-vine Root-lice, IV, 69
Allen, T. R., Experience of, with Grass Cut-worm, I, 80
on Army Worm, II, 47, VIII, 52
Wheat Cut Worm, I, 87
Allen, G. W., on Rocky Mountain Locust, VIII, 102
Altica virginica, VI, 122
Alucitidse, III, 67
Alypia octomaculata, 1,136, II, 80,82, VI, $88,94,95$
Amara angustata, VIII, 52 obesa, Supp., 52
ambiguella, Conchylis, Supp., 57
A mblychila cylindriformis, IX, 98
A mbulatoria, a division of Orthopterous insects,
V, 14
americana, Acronycta, II, 121, Supp., 73, 74
Aglaope, II, 85
Apatela, II, 121, Supp., 73, 74
Clisiocampa, II, 7, III, 117
Clostera, II, 19, VII, 27
Ctenucha, LI, 85
Heromyza, I, 59
Parula. Y! I, 27
Procris, II, 85
Silpha, VI, 100
Uropoda, IX, 41

American Acridinm, VIII, 103, IX, 84
Agriculturist, article from, on grasshoppers, VII, 172
article from, on Remedy for Currant Worm, IX, 15
article from, on Yucca fertilization, $\mathbf{V}, 159$
Bacon-beetle, VI, 100
Bean-weevil, III, 52
Blight, III, 95, IX, 43
Carrion-beetle, VI, 100
Copper Underwing, ILI, 72
Cuckoos, ITI, 121
Entomologist, article from, on Bean weevil, III, 53
article from, on Colorado Potato-beetle, III, 97
article from, on Carculio extermination, III, 15
article from, on imported and native insects, Π, 8 article from, on Strawberry Leaf-roller, I, 142
Meat Worm, IX, 43
Meromyza, I, 159, II, 16
Naturalist, article from, on Birds destroying Canker Worm, VI, 27
article from, on injury caused by Alypia, II, 81
Oak Phylloxera, VI, 64, VII, 99, 118 VIII, 1.58
Plants and Insects acclimated in Ewrope, IX, 43
Procris, II, 85, 86, 87
Silk-worm, IV, 104
Tent-caterpillar, eggs of, $\mathrm{V}, 55$
Timber-beetle, ILI, 7
rines, first suggestion to use in France as a remedy for Phylloxera, IV, 62
vines in France, VI, 79
americanum, Acridium, VП, 173, 174, VIII, 103, $104, \mathrm{IX}, 84$
americanus, Ohauliognathus, Supp., 53
Coccyzus, III, 121, VIII, 124
Hylecoetus, III, 7
Ammophila pictipennis, $\mathbf{V}, 149$
amoenum, Callidium, IV, 54
amorphella, Walshia, II, 132, 133
Ampelis cedrorum, VI, 27
garrulus, VII, 90
Ampeloglypter sesostris, Sapp., 71
ampelopsis, Madarus, I, 132
Amphicerus bicaudatus, IV, 51, V, 51
A mphipyra conspersa, III, 75, Supp., 75
inornata, III, 75
pyramidea, III, 73, 74
pyramidoiảes, IL, 72, 74, Supp., 75
Amphydasis cognataria, IX, 7
Amputating Brocade-moth, I, 87
amputatrix, Hadena, I, 87
Amydria, $\mathrm{V}, 151$
Analcis, III, 44
fragarice, III, 42, 44, Supp., 71
Anaphora, $\bar{V}, 151$

Anasa, Supp., 58

Anatis, Supp., 53
Anchylopera comptana, I, 143
fragarise, I, 142, Supp., 57
Andrews, W. V., on Eight-spotted Forester, II, 81 Angerona crocataria, IX, 7
Angulan-winged Katydid, VI, 155
Description of immature Stages, VI, 161
Natural Enemies, VI, 162
angulifera, Oallosamia, IV, 122, 128, Supp., 55
Angus, Jas., on Bean weevil, III, 52
angustata, Amara, VIII, 52
angustatus, Nysius, Supp., 85
angustifrons, Anthomyia, Supp., 83
Animal Kingdom, Classificatiou of, V, 6
Anisonyx rufa, VI, 143
Anisopteryx cescularia, VIII, 17, Supp., 56 pometaria, II, 97, VI, 29, VII, 80, 83 , 86, VIII, 13, Supp., 56
vernata, I, 109, II, 94, VI, 28, VII, 80 , 86
Anisota rubicunda, $V, 137,140$
stigma, V, 126
Anobium, III, 7, VI, 101
Anomalon apicale, $\mathrm{IX}, 55$
flavicorne, III, 69
Anomis, VI, 24
xylina, II, 37, V, 19, VI, 17, V11I, 23 , Supp., 56
anonyma, Tachina, IF, 129, V, 133, VII, 178, VIII, 179
Anonymous Tachina-fly, V II, 178
Annelida, V, 6, 7.
annulata, Brochyinena, IV, 20
annulipes, Pimpla, IV, 43
Antherrea, IV, 114
Pernyi, IV, 137
Paphia, IV, 138
yama-mai, IV, 130
Anthocoris, VII, 47
insidiosus, II, 27, 32, VI, 51, VII, 41, Supp., 58
Anthomyia, III, 150
angustifrons, Supp., 89
brassicce, I, 156, IV, 22, 35, IX, 95
сераrum, I, 155, II, 9, IX, 95
radicum, IX, 92, Supp., 88
var. calopteni, IX, 92, Supp., 88
raphani, IX, 95
zес, I, 154, Supp., 89
Anthomyia Egg-parasite of Locust, IX 92
anthomyioe, Aleochara, IV, 22
Anthonomes pomorum, III, 11
prunicida, III, 39, Supp., 54
pyri, III, 11
quadrigibbus, III, 29, 35
scutellaris, Supp., 54
signatus, V, 154
suturalis, III, 60
Anthony, J. M., on Army Worm, VIII, 39
Anthribus varius, III, 10
Antidote for Paris green, IV, 13
Antigaster mirabilis, $\nabla \mathrm{X}, 162,163$, Supp., 52
Ants, V, 9
Apanteles, Supp., 52, 66

Apatela americana, II, 121, Sapp., 73, 74
dpatura alicia, VI, 145, 150
celtis, VI, 139, 142, 150
clyton, 142, 150
herse, VI, 136, 137, 140, 148, 150
idyja, VI, 145
iris, VI, 136
lyccon, VI, 136, 137, 146, 150
proserpina, VI, 145, 150
Aphaniptera, V, 15
Aphelinus mytilaspidis, V, 88, 100
Aphidoe, V, 68, 85, VII, 27
Aphidian Hickory galls, V, 154
Aphididoe, VI, 31, 33
Aphis, II, 19, III, 96, V, 149
аveno, II, 5, 6, 10
brassicar, II, 10, IV, 36
mali, II, 6, 10, III, 6
ribesii, VI, 46
ribis, II, 10, IX, 2
vitis, I, 13
Aphis, Currant, VI, 46
Wooly, IV, 100
Aphodius, VI, 124
apiarius, Clerus, VI, 101
apicale, Anomalon, IX, 55
apicalis, Philonthus, IV, 21
Apiomerus, IX, 98
Apion apricans, III, 11
Apis mellifica, V, 18
apivora, Trupanea, I, 168, II, 122, Supp., 60
Aplodontia leporina, VI, 144
Aplodes rubivora, 1, 139, Supp., 79
Apple Bud-moth, III, 6
Curenlio, III, 6, 29, 30, 32, 33, 39
Its natural history, III, 30
It transforms in the fruit, III, 31
Remedies, III, 34
Season during which it works, III, 34
The amount of damage it does, III, 33
gall, Grape-vine, V, 114
growing on Grape-vine, $V, 115$
insects, III, 6
leaf Bucculatrix, IV, 49
remedies for, IV, 50
Folder, The Lesser, IV, 47
Skeletonizer, IV, 44, 47
remedies for, IV, 45
Tyer, IV, 46
Maggot, III, 6, 9
Maggot Fly, I, 108
Micropteryx, IIL, 7
Midge, III, 6
Plant-louse, III, 6
Root-lice, III, 95, IV, 68, 69
Plant louse, I, 118
Artificial remedies for, $\mathbf{I}, 123$
Natural remedies for, I, 121
Syrphus fly, I, 121
tree Bark-louse, I, 7, III, 93
borer, Flat-headed, I, 46, VII, 71
Remedies for, $\mathrm{I}, 47$
Round-headed, I, 42, IV, 124
VII, 27
borer, Remedies for, I, 45
Borers, I, 42

Apple-tree Plant-louse, II, 6, 10
Root-louse, II, 15, VI, 52
Tent-caterpillar, II, 11, II, 117, 121
twig Borer, IV, 51, V, 54
Worm, I, 62, II, 6, 19, III, 6, 33, 90, 102, VII, 27
Again, IV, 22
Attacks peaches, V, 49
False doctrines about, V, 51
In California, V, 49
Natural Enemies, V, 49
Parasites, V, 49
Remedies, I, 65
Traps, V, 46
apricans, Apion, III. 11
apterus, Micropus, VII, 22
aquana (Spilonota), Supp, 57
Arachnida, V, 6,7
archippivora, Tachina, III, 116, 150
Archippus, ILI, 168, 169, V, 148
Buttertly, II, 125, III, 143
How the larva becomes a chrysalis, III, 146
It often congregates in immense swarms, III, 151.
Its natural history, III, 143
The larva enjoss immunity from the attack of predaceous animals, LII, 148.
Tachina-fly, III, 150
archippus, Danais, III, 143, 167, IV, 129, Supp., 55
arctata, Hoplophora, VI, 53, 81, VII, 106
Arctia Isabella, $\mathbf{I V}, 143$, Supp., 55
Arctomys rufa, VI, 143
arcuata, Ortalis, $\mathrm{U}, 9$
argillacea, Aletia, VIII, 23, Supp., 56
Argynnis, IIT, 103
diana, III, 169, 171
Arkansae, Locusts in, IX, 76
Arina modesta, V, 133
spinosa, I, 77, 80,113, II, $32, \mathrm{IV}, 19, \mathrm{~V}, 51$, Supp., 58
armigera, Heliothis, III, 45, 104, IV, 129
Arment, A. B., on Rocky Mountain Locust, IX, 119
Arnott, M. A., on Rocky Mountain Locust, IX, 117
Arrenotoky in the Imported Currant-worm, IX, 18
Arrhenodes septentrionis, VI, 116
Arsenious acid for Potato-bugs, IV, 14
arthemis, Limenitis, III, 171
Arthropoda, $\mathrm{V}, 6$
Articulata, $\mathrm{V}, 6$
Army Grasshopper, VII, 194
Worm, I, 89, 109, II, 5, 37, 70, 103, 110, III, $110,125,128, \nabla, 22,25,68, \nabla \amalg I I, 22,182$, IX, 49
Additional Notes on Mode, Place, and Time of Oviposition, VIII, 182.
Are there one or two Broods each jear?, VIII, 47
Completion of its Natural History, VIII, 182
Correspondents quoted, III, 109, VIII, 39
Description of the Egg, VIII, 34
Larval Stages, VIII, 184
Fall Arm5-worm, VI, 17, VIII, 23, 35, 49

Army Worm, Further Notes and Experiments on, IX, 47
Habits of the Worm, VIII, 45
Ichneumon Fly parasitic, on II, 53,54
Its History in 1875, VIII, 28
Missouri in 1875, VIII,
Its Sudden Appearance and Disappearance, II, 45, VIII, 50
Microgaster parasite of, III, 158
Natural Enemies, VIII, 52
History, II, 47, VIII, 32
Nomenclature, VIII, 22
Northern, VIII, 24
Parasites, II, 50
Parent Moth, II, 11, 48
Past History, II, 41, VIII, 24
Plants Preferred by the, V III, 49
Remeries, VIII, 54
Sexual Differences, VIII, 30
Summary of Natural History, VIII, 56, IX, 49
Tachina-Fly parasitic on, IV, 109, VIII, 53
the term "Arny Worm" applied to various Insects, V III, 23
time of Appearance, VIII, 46
Wheat-head Army-worm, IX, 50
When are the Eggs laid?, VIII, 40
Where are the Eggs laid?, VIII, 38
Army Worms, The three, II, 37
Ashes and air-slacked lime for potato-bugs, IV 14
Ash-gray Blister-beetle, I, 97, 115
Leaf-bug, II, 32, VII, 47
Pinion, III, 134
A silus-fly, M, 123, III, 161
Asilus missouriensis, II, 121, 122, IV, 21, V, 13, Supp., 87
sericeus, II, 123
Asopia costalis, VI, 102, 106
olinalis, VI, 103, 107
asparagi, Crioceris, II, 10, 13, 19, VII, 5
Asparagus Beetle, II, 10, 13; VII, ह
A spidoglossa subangulata, I, 58
Aspidiotus, I, 14
conchiformis, I, 7, II, 9, 10, $\mathrm{V}, 91,94$, Supp., 86
harrisii, I, 7, IL, 9, Supp., 60
pinifolice, III, 92
asterias, Papilio, III, 169
Astoma, VI, 52
gryllaria, VII, 175, Supp., 63
parasiticum, VII, 176
Astyci, VIII, 176
Atchison (Kans.) Champion, article from, on
Rocky Mountain Locust, VIII, 108
atalanta, Pyramers, III, 167
atlanis, Caloptenus, VII, 169, VIII, 113, 114, 115, 116, 117, 118, 153, Supp., 89
Atlantic Locust, VIII, 150
Atomizer for applying Paris green water, VI, 20 VIII, 5
atrata, Lytta, I, 98, Supp., 54
atratus, Tabanus, II, 128, 129, 130
atricapillus, Parus, IV, 107, VI, 27
atriventris, Lebia, VIII, 3, Supp., 52
atrox, Oedipoda, VII, 124

Attacus cecropia, III, 129, 170, IV, 103, 138
cynthia, III, 170, IV, 112, 121, 138
luna, IV, 123, 138
mylitta, IV, 138
pernyi, IV, 137, 138
polyphemus, II, 170, IV, 110, 125, 138
promethea, IV, 110, 121, 138
selene, IV, 125
yama-mai, IV, 130, 138
Aughey, Prof. Saml., on Rocky Mountain Locust, VIII, 114
aurichalcea, Cassida, II, 62, Supp., 53
Coptocycla, Supp., 53
auricincta, Tachina, V, 140
aurocapillus, Seiurus, VI, 27
Aurocorisa, a group of Heteroptera, $\nabla, 12$
autumnalis, Prodenia, III, 13, 109, 116, IV, 129,
VIII, 48
avence, Aphis, II, 5, 6, 10
Avery, Wm. H., on Army Worm, VII, 39
Chinch Bug, VII, 44
Rocky Mountain Locust, IX, 69
Ayres, E. J., on Tarnished Plant-bag, II, 114

B.

bacchus, Rhynchites, III, 11
Backbone animals, $\nabla, 6$
Bacon-beetle, VI, 100
Bag.worm, I, 147, III, 160, IX, 17 parasite, $I, 150$
Bailey, S. S., on Army Worm, VIII, 39
Balaninus, ПI, 10
cerasorum, III, 11
nucum, III, 11
rectus, IV, 144
Baltimore American, article from, on Wheat-head Arm,-worm, IX, 51
baltimore, Icterus, VI, 27
Baltimore Oriole destroying Canker Worm, VI, 27 Katydids, VI, 162
Pea-weeril, III, 50
Banchus fugitivus, IV, 41
Baudage for Apple Worm, IV, 23
Canker Wormu, VI, 26, 27
Banded Borer, III, 7
barbara. Colaspis, III, 82
Barber, A. W., on White Pine-worm, IX. 30
Barbicornis, VIII, 170
basalis, VIII, 170
Baridius sesostris, III, 60, Supp., 71
trinotatus, I, 93, III, 60, Sapp., 54
Baris chlorizans, XII, 11
Bark-beetles, III, 6
-borer of hickory, V, 103
-lice, II, 15, 25, III, $6,10, \nabla, 16$, VI, 33
classitication of, $V, 92$
of the Apple-tree, I, 7
-lo'se, III, 85, V, 18
on A pple, I, 7, V, 73
remedies for, I, 16
Currant, I, 15
Pear, 1, 15
Persian lilac, I, 15
Pine, V, 97
Plum, I, 15

Barker's Canker Worm trap, VIII, 21
Barnet, W. N., on Phylloxera, VI, 82
Barret, W. H., on Rocks Mountain Locust, VII, 65
Barton, W. H., on Rocky Mountain Locugt, IX, 70
Barter, A., on Grape-root Borer, I, 125
Bartlett, Dr. L., on Arms Worm, II, 49
basalis, Micropus, VII. 22
basillare, Sinoxylon, IV, 52, 53,54
Basket-worm, I, 147
Bassett, S. C., on Rockr Mountain Locust, IX, 117
bassiana, Botrytis, IV, 88
bastardi, Erax. II. 124
Promachu8, II, 122, IV, 21, Supp., 60
Bates, H. W., on Danais Butterflies, III, 161
Bat-ticks, V, 13
Baxter, C., on Phylloxera, VI, 83
Bazille, L., ou Phylloxera in France, VII, 104
Beach, H. P., on Locusts, VIII, I52
Beal, M., on Cbinch Bug, II, 17
Bean-weeril, III, 45, 52, 54, 55
Beantitul Wood Nymph, II, 83, 84, III, 64, VI, 88 , 91,95
Bed Bog. II, 15, 31, V, 12
Beech-twig Plant-louse, I, 121
Bee-fly larra, supp., 60
Bee, HoneT, IV, 84
Bet-killer, I, 168, II, 121, IV, 21
moth, I, 166, II, 10, III, 68
parasite, V, 15
Bees, V, 9
Beetles, preparing of, for cabinet, $V, 34$
Bell \& Gruelle on Rocky Mouritain Locust, IX, 92
Belostoma grandis, IX, 128
probable eggs of, IX, 128
Belt, J., on Rocky Mountain Locust, IX, 73
Belvoisia bicincta. V, 140
bifasciata, V, 140
Bembex fasciata, V, 9
Beneticial insects, I, 169, III, 137, IV, 72, VI, 123
Bennet, W. H., on Mimiery, LII, 172
Benson's macbine for catching Potato-beetle, I, 117
Berckmans, P. J., on Phylloxera, VII, 103, VIII, 164, 165
beremice, Danais, III, 143
Bessey, Profi. C. E., on Colorado Potato-beetle, V, 54
Common Flesh-fly, VII, 180
Locust Mite, VII, 175
Strawberry Worm, IX, 27
bethunei, Xylina. III, 136, Supp., 73
betuleti. Rhynchites, III, 11
bicarinata, Polyspkincta, III, 71
bicaudatus, Amphicerus, IV,51, V, 54
Bostrichus, III, 6, IV, 51, 53
Bichromate of potash for Potato bugs, IV, 14
bicincta, Beleoisia, V, 140
Senometopia, V, 140
bicolor, Botys, III, 61
bifasciata, Belvoisia, V, 140
II usea, V, 140
bilineatus, Opkion, III, 69
Telephorus, IV, 29, 30
bipunctata, Xabea, Supp., 61
bipunctatus, EEcanthus, Sujp., 61
Birds that destroy the Canker Worm, VI, 27, 28
Birds vs. insects, III, 169, VI. 29

Bismarck Tribune, article from, on Rocky Mountain Locust, IX, 59
bistriga, Oryptoblabes, IV, 46, Supp., 81
Bi-sulphide of carbon for Phyloxera, VI, 56
bivittata, Cassida, II, 61, Supp., 53
Saperda, I, 42, II, 19, III, 6, VII, 27, Supp., 53
bivittatus, Oaloptenus, VII, 124, 173
Bivoltin Silkworms, IV, 85
bivulnerus, Chilocomus, I, 16, V, 100
Black-bear caterpillar, The Large, IV, 141
-bellied Lebia, VLII, 3
Blackberry fruit-worm, I, 139
Blackbird destroying Katydids, VI, 162
, Red-winged, destroying Chinch Bug, VII, 41
Black Blister-beetle, I, 98
Breeze-fly, II, 128, 129, 132
larva of White-lined Morning Sphinx, II, 142, V III, 122
-legged Tortoise-beetle, II, 63
-rat Blister-beetle, I, 98
Stinger of the Oak, V, 126
Blanchard, Stephen, on Rocky Mountain Locust, VII. 139

Blatta orientalis, II, 10
Blepharida rhois, I, 100, II, 58, VI, 118, 121
Bliss, N. W., on Hickory Bark-borer, V. 103
Blissus, Supp., 58
Blister-beetle, The Ash-gray, I, 97, 115
Black, I, 98
Black-rat. I, 98
Brazen, III, 6
Margined, I, 98
Striped, I, 96, 115
-beetles, I, 115, Supp., 54
remedies for, I, 99
Blow-fly, II, 19, VII, 27
Blue-bird destroying Canker Worm, VI, 27, 28
Codling Moth, IV, 28
Blue Caterpillars of the Vine, I, 136, II, 79, III, 63, 65, VI, 87
Jay hiding corn in cocoons, IV, 107
-spangled Peach-worm, III, 132
Stone for Potato-beetles, IV, 14
-Boardman, S. P., on Sheep Bot-fly, I, 164
Bob-o-link destroying Canker Worm, VI, 27
Bogus Chinch Bug, II, 31, V, 112, VII, 45 Colorado Potato-beetle, I, 105
Boissière, E. V., on Silkworm raising, IV, 82
Boissière's silk establishment, IV, 82
Boll-worm, III, 45, 104, 105, VI, 20 remedies for, III, 108
.Bolteri, Eurytoma, I, 177, Supp., 68
Bombycidoe, IV, 85, V, 127
<Bombyx, IV, 114
graminis, II, 44
mori, IV, 75, 84, 183
Book-lice, $\mathrm{V}, 15$
Bordered Soldier-bug, I, 114, II, 34
boreatis, Epilachna, IV, 18
Borer, The Apple-twig, IV, 51, V, 54
Flat-headed Apple-tree, I, 46, VII, 71
Grape-root, III, 75
Hickory Bark, V, 103
Legged Maple, VI, 107

Borer, The New Grape-root, I, 124, II, 87
Peach, I, 47
Potate Stalk, I, 92
Raspberry Root, VI, 111
Round-headed Apple-tree, I, 42
Squash, II, 64
Strawberry Crown, III, 42
Fucca, VIII, 169, IX, 129
Boston Daily Advertiser, note from, on Army Worm, VIII, 29
Boston Journal, article from, on Canker Worm, пI, 96
Rocky Mountain
Locust, III, 15
Bostrichidoe, IV, 53
Bostrichus, IV, 53
bicaudatus, III, 6, IV, 51, 53
botrana, Eudemis, Supp., 57
Lobesia, Supp., 57
Tortrix, Supp., 57
Botrytis bassiana, IV, 88
viticola, VI, 36
Bottom, R., on Rocky Mountain Locust, VIII, 62
Botys bicolor, III, 61
bovinus, Tabanus, II, 129
Bowen, H., on destroying Potato-beetle, VI, 14
Bowles, G. J., on imported Cabbage Butterlly, II, 107
Box-turtle, IX, 98
Boxes for insects, V, 37
Brachinus, Supp. 59
kansanus, IV, 21
Brachista, VI, 142
Brachocera, a division of Diptera, $\mathrm{V}, 13$
Brachypeplus magnus, VIII, 148
Brachypterus micropterus, IX, 17
Brachyscelides, $\nabla, 92$
Bracket, G. C., on remedies for CankerWorm, II, 100 Strawberry Crown-borer, III, 42 Tent-caterpillar of the Forest, III, 127
Bracon charus, VIL, 75, Supp., 67
scolytivorus, V, 106, Supp., 67
Braconides, III, 27, V, 106
polymorphi, I, 96
brassicee, Anthomyia, I, 156, IV, 22, 35
Aphis, II, 10, IV, 36
Pieris, III, 167
Plusia, II, 110, 111
Braula coeca, V, 74
Brazen Blister-beetle, III, 6
Breast-bone in Cecidomyid larvæ, V, 114.
Breck, Joseph, on remedies for Canker Worm, II 100
bredowii, Limenitis, III, 171
Breeding Insects, V, 41
Breeze-fly, V, 13, VI, 123
Brenthian, Northern, VI, 113
Brenthus, III, 10
maxillosus, VI, 116
septentrionis, VI, 116
brevis, Phygadeuon, IV, 28
brevipennis, Eudryas, VI, 91
Brewer, F. A., on Phylloxera, V, 73
Brimstone for Bark-lice, $I_{1} 17$
Briggs, A. A., on Flat-headed Borer, VII, 79

Briakerhoff, M., on Locusts, VIII, 1.54
British America, Rockr Mountain Locust in, IX, 59 Broadhead, G. C., on Pickle Worm, II, 69 Rocky Mountain Locust, IX, 74
Broad-necked Prionus II, $9,87,88,89, ~ \nabla, 56$ -winged Katydid, V, 123, VI, 167
Brochymeno annulata, IV, 20
Brous, H. A., op Rocky Mountain Locust, IX, 66, 98, 99
Brown Colaspis, III, 82
Brown, A. M., on Apple Curculio, III, 34
Brown, E. R., on Arme Worm, VIII, 39
Brown, L. A., on Army Worm, VIII, 39
Brown, Major, on Colorado Potato-beetle, VII, 6
Bruchi, II, 51
Bruchides, LII, 45
Bruchus alboscutellatus, Supp., 71
discoideus, III. 45
erythrocerus, III, 55, 56, Supp., 70
fabce, III, 52, 55, Supp., 69, 70
flavimanue, III, 56, Supp., 70
granarius, II, 11, 14, III, 50, 51
hibisci, Supp., 70, 71
obsoletus, III, 54, 56, Supp., 70, 71
pisi, II, 11, III, 44, IX, 43, Supp., 53
pisorum, Supp., 53, 71
гиітатия, III, 56, Supp., 70
serratus, IM, 56, Supp., 70
transversus, Supp., 70
varicornis, III, 55, 56, Supp., 69, 70, 71
Bruihl, Henry, on Army Worm, VIII, 39
Bruner, Uriah, on Locusts, VII, 139
brunnea, Colaspis, III, 82
Bryant, Artbur, on Hickory Bark-borer, V, 104
Bryning, J. J., on Rocky Mountain Locust, IX, 69
bubalus, Ceresa, V, 12, 121
Bucculatrix pomifoliella, IV, 49,51
thuiella. IV, 51
Buck-bag, V, 145
Moth, $\bar{V}, 127$
Egg of, T, 128
Issuing of, V, 132
Larva of, $V, 129$
Natural enemies of, V, 132
Pupa of, V, 131
Sting of larva of, $\mathbf{V}, 131$
Buffalo-gnat, V, 13
Tree-hopper, V, 121
Bags, how to pin, $V, 34$
Buprestidce, VII, 72
Buprestis gigantea, IV, 141
Burns, A. M., on Locusts, VII 138
Burrows, J. H., on Rocky Mountain Locust, IX, 71
Burt, Huron, on Codling Moth, III, 103
Gooseberry Spanworm, IX, 5
Plum Gouger, III, 40
Tortoise-beetle, II, 57
Bush \& Son, list of grape-vine cuttings, slowing relative ease of propagating, IV, 65 Butcher-bird destroying Canker Worm, VI, 27 Butterties, classification of, $\nabla, 12$
preparing of, for cabinet, $\mathrm{V}, 35,36$
pupation of, III, 146, IV, 55, VI, 138,
VIII, 179, Supp., 55
Two of our common, LII, 142

Buttertlies, swarming of, III, 151
Byfield, Jno., on Rocky Mountain Locust, VII, 15?
c.

Cabbage-bug, the Harlequin, IV, 35
Cabbage Butterfies, II, 111, V, 26
Butterfly, the Potherb, II, 105
Rape, II, 107
Southern, II, 104
caterpillar, the Zebra, II, 112
-Aly, IV, 35
-maggot, V, 13
Plant-louse, II, 10
Phisia, IL, 110, 112
Tinea, II, 10, IV, 36
Worms, II, 104, 123
Remedies for, II, 109
Cabinet and boxes for insects, $\mathbf{V}, 37$
Cabinet of iusects prepared for Missouri State
University, VII (preface, p. 5).
Caddice-flies, V, 16
cagurus, Pollyxerus, VII, 106
calidum, Oalosoma, I, 89, 115, II, 103, VIII, 52
California, Phylloxera ravages in, VIII, 163
Silk-growing in, IV, 79
californica, Ecanthus, Supp., 61
caliginosus, Herpalus, I, 115, VIII, 52
Callidium ainoenum, IV, 54
Callimorpha clymene, III, 134
fulvicosta, III, 132, 134, VI, 92, Supp., 56
lecontei, III, 134, VI, 92, Supp., 55
vestalis, III, 133
Callidryas, III, 151
Callochlora viridis, III, 150
Callosamia angulifera, IV, 122, 128
promethea, IV, 121, Supp., 55
calmariensis, Galeruca, II, 10, 95, VII, 5, 86
Calocampa exoleta, VIII, 23
calopteni, Anthomyia, IX, 92, 95, Supp., 89
Oaloptenus atlanis, VII, 169, V III, 113, 114, 116, 117, 118, 153, IX, 86, Supp., 89
bivittatus, VII, 124, 173
differentialis, VII, 124, 171, 173, 180, VIII, 150, 153
femur-rubrum, VII, 126, 128. 170, VIII, $114,115,116,117,118,153,1 \mathrm{X}, 86$, Supp., 89, 90
italicus, VII, 133, VIII, 140
ocridentalis, VIII, 116
spretus, V II, 121, 128, 138, 170, 180, VIII, 57, 109, 114, 115, 116, 117, 118, IX, 57, Supp., 89, 90
viridis, VIII, 11 T
Calosomer, III, 129
calidum, I, 89, 115, II, 46, 103, VIII, 52
externum, VIII, 52
obsoletum, 15, 98
scrutator, II, 103, IHI, 129, VIII, 52
wilcoxi, VIII, 5 ?
Cambre, Eugene, ou preventing Phylloxera, VII, 113
Camel-cricket, I, 169, III, 68
Campiecll, G. W., on Grape Phylloxera, VII, 100
Campbell, W. A., on Rocky Mountain Locust, IX,

Campoplex fugitivus, I, 139
Campyloneura vitripennis, III, 137
Canada Warbler destroying Canker Worm, VI. 27
Canadian Entomologist, article from, on Hellebore for Currant Worm, IX, 14
Canaday, Elihu, on Army Worm, VIII, 40
canadensis, Myiodioctes, VI, 27
candida, Saperda, Supp., 53
Cane Carculio of the Grape, I, 131
caniculi, Cuterebra, I, 164
Canker worms, I, 9, 109, II, 11, 15, 54, 94, 95, 99, 101 103, III, 128, 160, IV, 23, 40, VI, 24, VII, 80, VIII, 12, Supp., 56
Bandages for, VI, 26,27
Birds that devour the worms, VI, 27, 28
Destroyed by plowing, II, 100
Distinction between two species of, VI, 27
Enemies of, II, 102
Extract from the original Essay on, by W. D. Peck, VII, 89
Fall canker-worm, VII, 83, VIII, 18
Oviposition of the two different species, VIII, 37
Origin of, II, 96
Paris green for, VI, 26
Practical considerations, VII, 85
Remedies against, II, 98, VI, 26, VIII. 17, 20
Spring canker-worm, VII, 80, VIII, 18
Traps, VI, 26, VIII, 20, 21
Trough remedy for, VI, 26
Two species defined, $V \amalg I, 13$
Cantharides, $\mathrm{V}, 18$
capax, Xylina, ILI, 136, Supp. 75
Capers, Dr., on Cotton Worm, II, 38
Capsue oblineatus, II, 113, VII, 27 vitripennis, ILI, 139
Oarabidee, VI, 123
Carabid larvæ, I, 59, IX, 97, Supp., 52
Carbolate of lime for Potato bugs, IV, 14
Carbolic acid for Grape-vine Root-lice, IV, 68
cardui, Oynthia, III, 151, IV, 129
Pterophorus, Supp., 83
carduidactylus, Pterophorus, I, 180, III, 67
Caris, VI, 52
carnaria, Sarcophaga, VII, 180, IX, 95., Supp., 60
Carolina Locust, VII, 179, IX, 92
carolina, Ifantis, I, 169, III, 68
Edipoảa, VII, 175, 179
Sphinx, I, 96. IV, 129
carolinensis, Mimus, VI, 27, VIII, 124
Carpenter, D., on Rocky Mountain Locust, VIII, 102, IX, 70
Carpet Moth, II, 10
Carpocapsa, V, 50
pomonella, I, 62, 108, II, 10, III, 6, 101, IV, 27, V, 154 vitisella, I, 133
Carr, Wm., on Army Worm, VIII, 39
Carrion-beetle, Americad, VI, 100 -feeders, V, 11
Carson, J., on Rocky Mountain Locust, IX, 75
caryoe, Scolytus, V, 103, 107, Supp., 54
caryoceaulis, Phylloxera, VI, 91, 97, 99, 117
caryo-fallax, Phylloxera, VII, 118
carycefolice, Phylloxera, IV, 66, VI, 45, VII, 117
carye-globuli, Phylloxera, VII, 117
caryo-gummosa, Phylloxera, VII, 118 -ren, Phylloxera, VII, 118
-semen, Phylloxera, VII, 117
-septa, Phylloxera, VII, 118
carycevence, Phylloxera, VII, 117
Case-bearer, Walmut, IV, 42 -bearing Coleoptera, VI, 127, 128
casei, Piophilo, II, 10
Caskie, Robt. E., on Army Worm, VIII, 39
Cass County (Mo.) Courier, article from, on Rocky
Mountain Locust, VIII, 65
Cassida, I, 100, 1I, 58, 59
aurichalcea, M, 62, Supp., 53
bivittata, II, 61, Supp., 53
cruciata, II, 63
guttata, II, 60, 63
nigripes, II, 63, Supp., 53
pallida, II, 62, Supp., 53
signifer, Π, 63
texana, Supp., 54
trabeata, II, 63
cassiniti, Cicada, I, 20, 21, IV, 33, Supp., 59
castaneee, Phylloxera, VII, 118
Castnia licus, VIII, 178
linus, VIII, 178
yиссее, VIII, 173
Castnioides, a proposed tribe of butterflies, VIII 179
Castor-bean Silkworm, IV, 112
Cat Bird destroying Rocky Mountain Locust VIII, 124
destroying Canker Worm, VI, 27
Caterpillars of the Vine-The blue, VI, 87
Catocala, VIII, 178
phalanga, III, 166
Cecidomyia, Supp., 59
destructor, II, 10, 19, V, 25, VII, 27
Cecidomyidoe, larval characters of, $\overline{\nabla, 114}$
cecropia, Attacus, III, 129, 170, ГV, 74, 103, 138
Hialophora, IV, 103
Platysamia, IV, 103
Samia, IV, 103, Supp., 55
Cecropia Cryptus, IV, 110
Silk worm, IV, 103
Food-plants, 104
Larval Changes, IV, 106
Parasites of, IV, 107
Tachina-fly, IV, 108
worm, III, 7
cecropice, Exorista, IV, 108, Supp., 60
Cedar-bird destroying Canker Worm, VI, 27
cedrorum, A mpelis, VI, 27
Celcena, I, 68
egens, Supp., 56
herbimacula, I, 86
infecta, Supp., 56
murcimaculata, Supp., 56
oblonga, III, 136, Supp., 75
renigera, I, 86, Supp., 56
subcadens, Supp., 56
celtis, Apatura, VI, 139, 142
Ceutorkynchus napi, III, 11
ceparum, Anthomyia, I, 155, II, 9 cerasi, Selandria, II, 19, VII, 27
Cerasphorus cinctus, III, 7, VII, 76
Ceratocampince, $\mathbf{V ,} 127$

Ceratopogon, Supp., 59
cereana, Galleria, I, 166, II, 10, Supp., 57
Ceresa bubalus, V, 12, 121
Ceretes, VIII, 178
Certhiadce, IV, 28
cervicalis, Scymnus, I, 122
Choerocampa, II, 71
pampinatrix, II, 71
Chalcididoe, $\mathbf{V}, 88$
Ohalci8, II, 92, III, 158
albifrons, II, 52, VIII, 54
marix, IV, 109, 110, 123
Chalcis-dy, II, 52, IV, 51, V, 89
The inflating, I, 176
chalybea, Haltica, I, 101, III, 79, 81, Supp., 53
Chambers, V. T. on Cicala, I, 20, 28
Change of habit, III, 91
Chapin, Oliver, on Codling Moth. IV, 26
charus, Bracon, VII. 75. Supp., 75
Chatterer of Carolina degtroying Canker Worm, VII, 90
Chauliognathus, IV, 30
americanus, Supp., 53
marginatus, V, 154
penisylvanicus, I, 57, IV, 28, V, 154, Supp., 53
Cheese Fly, II, 19, VII, 27
Maggot. II. 10
Chelymorpha, II, 58, 59
cribraria, II, 58
chenopodii, Hadena, Supp., 76, 77
Cherished Bracon, VII, 75
Ohermes pinicorticis, $\mathrm{V}, 100$
Cherry-bird destroying Canker Worm, VII, 90.
Chestnut-sided Warbler destroying Canker
Worm, VI, 27.
Chickadee storing corn in cocoons, IV, 107 destroying Canker Worm, VI, 27
Chickweed Geometer, I, 179. [See Knotweed]
Chicago Times, article from, ou Rocky Mountain Locust, VIII, 73
Ohicago Tribune, articles from, on Rocky Mountain Locust, VII, 1503, V III, 82, 107
Child, A.J., on Rocky Mountain Locust, VIII, 91 Ohilocorus bioulnerus, I, 16, V, 100
Chinch Bug, II, 2, 6, 11, 15, 16, 19, 20, 32, 35, 70, 114, $\mathrm{\nabla}$, 12, 19, 62, VII, 19, 190, VIII, 22, 120, 142. 143

Abstaining from the cultiration of the grains upon which the insect feeds, VII, 38
Amount of damage done by, II, 28
Appearance and transformations of, VII, 20
Appendix to the article on, VII, 51
Bogus Chinct Bug, II, 31, V, 112
Burning as remedy for, VII, 32
Cannibal foes of, II, 25
Destructive powers of, II, 22, VII, 24
Direct remedies against, VII, 31
False Chinch Bug, V, Ill
Flight of, VII, 29
Food plants, VII, 26
Heavy rains destructive to, II, 24, VII, 30
Importance of winter work and combined action, VII, 36
Injurious to stock, VII, 43
Lnjaries in Missouri in 1874, VII, 25

Chinch Bug-Continued.
1njuries in 1874, VII, 24
Invigorating the plant by manure, early sow. ing, etc., VII, 34
List of correspondents who made returns, VII, 51
Migration on foot, VII, 30
Mixing seed or protecting one plant by another, VII, 34
Mode of reproduction and hibernation, VII, 27
Natural enemies, VII, 38
Natural history, II, 18
Past history, II, 17, VII, 22
in Missouri, VII, 22
Possible remedial and preventive measures that need further and thorough trial, VII, 41
Preventing the migration of, from one field to another, VII, 35
Preventive measures, VII, 32
Prognosticating, VII, 24
Questions answered by correspoudents, VII, 52
Recapitulation of its natural history, $\Pi, 36$, VII, 49
Remedies against, II, 28
Rolling as preventive, VII, 33
Unnecessary fears, VII, 44
Where the eggs are laid, VII, 28
Chipping Sparrow destroying Canker Worm, VI 27
Chlamys, III, 159
plicata, VI. 128, 130
chlorizans, Baris, III, 11
Chlorops, I, 160
Chronological history of Periodical Cicada, I, 30
Chrysobothris femorata, I, 46, III, 6, VII, 71, Supp., 67
var. alabamae, VII, 71
fastidiosa, VII, 71
lesueuri, VII, 71
misella, VHI, 71
obscura, VII. 71
4-impressa, VII, 71
semisculpta, VII, 71
soror, VII, 71
Chrysomela, II, 57, 59. III, 45, V II, 18
decem-lineata, VII, 16, 18
meticulosa, VI, 122
rhois, VI, 122
stolida, VI, 122
Ohrysomelidee, HI, It
Ohrysopa, I, 57, III, 150, IV, 45
eriosomatis, I, 123
illinoiensis, II, 26, VII, 39, 40
plorabunda, II, 26, VI, 51, VII, 40
tabida, VII, 106
Chrysops vittatus, II, 129
Cicada, VI, 37, VIII, 38
cassinii, I. 20, 21, IV, 33, Supp., 59
pruinosa, I, 27
septemdecim, I, 18, 19, 20, II, 19, ILI, 6, IV, 31, VII, 27, Supp., 58, 59
tredecim, I, 19, II, 19, ПII, 6, VII, 27, Supp., 58, 59
Cicada, The Periodical, I, 18, IV, 30

INDEX TO MISSOURI ENTOMOLOGICAL REPORTS.

Oicader, II, 131
Cicindela circumpicta, IX, 98 formosa, IX, 98 fulgida, IX, 98 punctulata, IX, 98 pulchro, IX, 98 repanda, VIII, 52 scutellaris, IX, 98 sexguttata, IX, 98 vulgaris, IX, 98
Cincinnati Gazette, article from, on Rocky Mountain Locust, IX, 84
cinctus, Oerasphorus, III, 7, VII, 76
Harpactor. I, 114, VII, 41, Supp., 58
Tabanus, II, 129
cinderella, Tortrix, IV, 47, Supp., 82
cinerea, Epicautc, Supp., 54
Lytta, I, 97, Supp., 54
Piesma, II, 32, VII, 47
Xylina, III, 134, 135, Supp., 75
cinereopunctella, Elachista, VI, 138
cinerosa, Xylina, III, 136. Supp., 75
cingulatus, Oncideres, HI, 6
circumcinctus, Perillus, IV, 19
Citheronia regalis, III, 151, IV, 129, V, 141
clandestina, Noctua, $I, 79$, Supp., 55
Clandestine OW let-moth, I, 79
Clark, Rufus, Machine for destroying Locusts, VIIT, 129
Clark, Willian H. on Rocky Mountain Locust, IX, 74
Classification of insects, $\nabla, 8$
Classification, remarks on, I, $98,99, \mathrm{II}, 71, \mathrm{II}, 94$, $95,96,133,143, I \mathrm{~V}, 46, \mathrm{~V}, 9, \mathrm{VII}, 143,170, \mathrm{VII}$, $170,178,179$
clavata, Deloyala, II, 57, Supp., 54
Claxton \& Stevens, Curculio Catcher of, III, 22
Clelland, J. L., on Rocky Mountain Locust, IX, 73
Clemens, Dr. B., description by, of Callimorpha fulvicosta, III, 133
Oleonymus clisiocampoe, III, 120
Olerus apiarus, VI, 101
Cleveland Herald, article from, on Grape-vines, ∇, 59
Climbing eut-worms, I, 76
Clisiocampa americana, II, 7, III, 117, V, 56 disstria, Supp., 55
sylvatica, II, 7, 37, III, 121, IV, 41, Supp., 55
clisiocampoe, Oleonymus, II, 120 . Semiotellus, III, 120
Olostera americana, II, 19, VII, 27
Clothes Moth, II, 10
Clover-hay Worm, VI, 102
Natural Histors, VI, 105
Remedies, VI, 105
Clover Worms, VI, 103
in the State of New York, VI, 104
Clubbed Tortoise-beetle, II, 56, 57
Clumsy Locust, VIII, 148
clymene, Callimorpha, III, 134
Clythra, VI, 128, 130
clyton, Apatura. VI. 142, 145
Clytus pictus, III, 7, VI, 101
Cnethocampa processionea, $V, 126$
cnotus, Otus, II, 71

Oobalt, for Potato-beetle, IV, 14
Coccidce, II, 15, V, 16, 92, VI, 33
Coccinella, VI, 51
munda, II, 25, VII, 39, Supp., 52'
novern notata, I, 112
picta, $V, 101$, Supp., 52
Coccinellidlo, V, 11, 27
Ooccotorus, Supp., 54
Coccus adonidum, III, 96, V, 80
cacti, $\mathrm{V}, 18$
lacca, V, 18
Coccyzus americanus, III, 121
erythrophthalmus, III, 121, VI, 27
Cochineak, IV, 84, V, 18
Cochylis hilarana, I, 175, II, 135
cochranii, Agrotis, I, 74, Supp., 76, 77
Cochran, J. W., on Dark-sided Cut-worm, I, 75
on Climbing cut-worms, I, 69
Cochran Rustic, I, 74
Cocklebur Sphenophorus, III, 60
Cockroach, II, 10, V, 14
Cocoon, issuing of moth from, IV, 105, 127
Codling Moth, I, 62, II, 6,10, III, $32,101,118$, IV, $22_{\text {, }}$
$27,48, \mathrm{~V}, 26,47, \mathrm{VI}, 9$
A gain, IV, 22
Attacks peaches, $I \nabla, 22, \nabla, 49$
Best kind of bandage for, IV, 23
False doctrines abont, $V, 51$
Fires, lights, bottles of liguid as remedies IV, 27
Found in Califormia, V, 49
Jarring as remedy, IV, 25, V, 48
Natural enemies of, IV, 28, $\mathbf{V}, 49$
New methods of trapping, IV, 23
Remedies for, I, $65, I V, 25, V, 48$
Sweetened water as remedy for, IV, 138
Time of year that the first moths appear, IV, 22
Wier's Trap, IV, 23, V, 47, VI, 10
Coliodes incequalis, I, 128, III, 100, Supp., 54
Colaspis barbara, III, 82
brunnea, III, 82
flavida, 1II, 44, 63, 81, 84, IV, 34, V, 108
suilla, III, 82
Colby, Lewis, on Locust ravages, VII, 168
Cole, M., on Phylloxera, VILI, 166
Coleoptera, classification of, $\mathrm{V}, 10$
preparing of, for cabinet, $\nabla, 34$
Collecting insects, V, 29
Colman's Rural World, article from, on Phylloxera, VI, 83, 84
Colorado Farmer, article from, on Rocky Mountain Locust, VIII, 84, 156, IX, 62
Colorado Locust, VII, 188
Colorado Potato-beetle, I, 101, 102, II, 6, 19, 25, 32,
59 , III $, 80,98, \mathrm{IV}, 5, \mathrm{~V}, 26,52,62, \mathrm{VI}, 11,17,18$
VII, 1, 29, 39, VIII, 1, 137, IX, 17, 34
Alarm about it abroad, VII, 3
Amount of damage caused by it in Missouri
IV. 7

An addition to its natural enemies, IX, 40 .
Area invaded br, IX, 38
Arsenious acid as remedy, IV, 14
Artificial remedies for, $\mathbf{I}, 116$
Best means of fighting it, III, 97
Bichromate of potash as remedy, IV, 14

Colorado Potato-beetle-Continued.
Bogus experiments, III, 100
Carbolate of lime as remedy, IV, 14
Causes which limit the spread of, IX, 38
Dog.fennel as remedy, IV, 15
Damage during the jear 1875, VIII, 1
Enemies of, I, 111, 112, 113, 114, 115, IV, 16, V, 52, VIII, 3, IX, 40
Further experience with Paris green, VIII, 5
Gray's Improved Sprinkler, VII, 15
Hellebore as remeds, IV. 14
How it affected the price of potatues, IX, 39
How it traveled, IX, 37
Is it poisonous? VII, 6
It passes the winter in the beetle state, VII, 14
It reaches the Atlantic, VII, 1
It spreads, but does not travel in the sense of leaving one district for another, IV, 9
Its habits, I, 107
Its hibernation, IV, 11
Its injuries in 1871, IV, 5
Its introduction to Europe, IX, 43
Its past history and fature progress, I, 101
Its progress eastward, $\nabla, 52, \nabla \mathrm{~V}, 12$
Its scientific name, V III, 2
Machine for sweeping it off vines, VIII, 4
Mandrake or May-apple as remedr. IV, 15
Mechanical means of destroying, IV, 15, VI, 14
Modification it has undergone in habits, IX, 40
Native home of, VIII, 8
Natural checks increasing, III, 100
Natural remedies, I, 109
New food plants of, IV, 10, V, 52, VI, 11, VII, 14
New means of destruction, VII, 15
New territory incaded, IV, 8
Occurrence in the Atlantic States, VIII, 1
Parasite of, I, 111
Paris green as remedr, III, 99, IV, 11, V, 52, VI, 13, VII, 8, VIII, 3
Peck's Spray Machine, VIII, 4
Placard published by the German Government, IX, 44
Poisonous qualities of, VIII, 11
Potato Pest Poison as remedy, IX, 45
Powdered Hellebore as remedy, IV, 14
Preparing for it in Europe, VI, 15
Rate at which it traveled, IX, 37
Remedies for, I, 109, 116, III, 99, IV, 11, 13, 14, 15, V, 52, VI, 13, VII, 3, 7, 8, VIII, 3, IX, 45
Spread of the insect during the year 1876, IX,34
Sulphate of copper as remed y, IV, 14
The beetle eats as well as the larva, VII, 14
The Bogus Colorado potato-beetle, $\mathrm{I}, 105$
The proper scientific name of the beetle, VII, 16
The true remedy, III, 101
Use of straw as a preventive, VIII, 4
Colorado Potato Bug (see Colorado Potato-beetle). Colorado, Rocky Mountain Locust in, VIL, 84, IX, 62
columbia, Samia, IV, 107, 111, 128, Supp., 55 : comma, Leucania, VIII, 43
commelince, Prodenia, I, 88, III, 13, Supp.. 56
Commission, National Entomological VIII, 133
Common Currant Plant-louse. IX, 2
Flesh-Hy, VII, 180, IX, 95
May Beetle, III, 8

Common Prener, III, 6
Quail destroying Chinch Bug, II, 28
Yellow Bear, III, 67
communis, Melanotus, ШI, 6
compta, Oeta, I, 151, Supp., 58
Pociloptera, I, 152
comptana, A nchylopera, I, 143
Phoxopteris, Supp., 57
concacum, Platyphyllum, V, 124, VI, 167
conchiformis, Aspidiotus, I, 7, II, 9, 10, III, 93,
Supp., 86
Conchylis ambiguella, Supp., 57
Cone-like willow-gall, V I, 155
conformis, Xylina, III, 136, Supp., 75
conica, Phylloxera, VII, 118
conicus, Rhynchites, III, 11
Conocephalus, VI, 155
conotracheli, Porizon, III, 28, Supp., 64
Conotrackelus, V, 154
cratcegi, III, 35, 39
juglandis, Supp., 54
nenuphar, I, 50, III, 11, 28, 127, Supp., 54, 65, 68
conquisitor, Pimpla, IV, 43
consociella, Acrobasis, IV, 45
conspersa, Amphipyra. III, 75, Supp., 75
Consumptive Lace-wing, VII, 106
Contopus virens, VI, 27
contracta, Meracantha, VI, 118
contractilis, Hoplophora, VI, 54
convergens, Hippodamia, I, 112
Convergent Lady-bird, I, 112
convolutella, Myelois, Supp., 57
Zophodia, Supp., 57
Copper, sulphate of, for Potato-beetle, IV, 14
Coptocycla, II, 58, 59, 63, Supp., 53, 54
aurichalcea, Supp., 53
guttata, Supp., 53
Coral-winged Locust, VIII, 104
Coreus linearis, LI, 113
tristis, I, 113, II, 31, VII, 46, Supp., 58
Corimelcena lateralis, II, 35
pulicaria, II, 33, VII, 48
unicolor, II, 35
Cornaby, Samuel, on Silkworms, IV, 101
Corn Anthomyia, I, 155
Cut-worm, I, 87
Maggot, I, 154
Rustic, I, 81
Sphenophorus, III, 59
Worm, III, 45, 104, 105, 111
cornutus, Corydulus, V, 143, IX, 125, Supp., 63
Passalus, IV, 139, 140
Corpodacus purpureus, VI, 27
Corydalus cornutus, V, 143, IX, 125, Supp., 63
Corynetes rufipes, VI, 96, 101
violaceus, VI, 101
Coscinoptera dominicana, VI, 127
Cossus, VIII, 177
costalis, Asopia, VI, 102
Tabanus, II, 128
Cotalpa lanigera, V, 10
Cotton Army-worm, II, 4i, VIII, 23
Boll-worm, III, 111
moth, II, 40
Position of when alighting, VI, 24

Cotton Worm, II, 38, III, 105, T, 19, 68, TI, 17, VII. 9
Hibernation of, VI, 22
Natural enumies of, VI, 23
Paris green as remeds, VI, 20
Range of, VI, 23
worms, II, 37
Cottonwood Dagger, II, 119
Gall plant-louse, I, 120
Country Gentleman, article from. on Apple Worm remeds, $\bar{\sigma}, 48$
article from, on Clover Worm, TI, 104
article from, on Curcalio. IV, 26
article from, on Grape-rine Colaspis, III, 82
article from, on Locusts, VII, 172, VIII, 152
article from, on Phylloxera, V, 59, VI. 82
article from, on Potato-beetle, I. 111
article from, on Tent-caterpillar, ILI, 125
County reports (Mo.) on Rocky Mountain Locust, IX, 68
Crabro stirpicola, IX, 95, Supp., 89
crabro, Vespa, IV, 22
Cranberry-weeril, III, 60
Crandall, O. A., on Rocky Mountain Locust, IX, 74
Crane-flies, I, 180, II, 132
crantor, Pholus, II, 74
Sphinx, II, 74
Craponius, Supp., 34
cratagi, Conotrachelus, III, 35, 39
Cratoparis lunatus, III, 10
Cream Callimorpha, III, 133
Creepers destroying Codling Motb, IV, 28
Black and White, destroying Canker Worms, VI, 27
Creighton, Samuel, Insect-destroyer invented by, IV, 15
cressonii, Hemiteles, I, 177, Supp., 65
Craig, Wm. G. M., on Rocky Mountain Locust, IX, 73
cribraria, Chelymorpha, M, 58
Crickets (Gryllidee), V, 14, VI, 154
erinitus, Myiarchus, VIII, 124
Crioceris asparagi, II, 10, 13, 19, TII, 5
merdigera, II, 58
Croton Bag, II, 10
Crow destroying Katsdid, TI, 162
Potato-beetles, VIIL, 3
Crow, J. H., on Rocky Mountain Locust, IX, 72
Crow Blackbird destroying Canker Worms, VI, 27 Codling Moths, IV, 28 Locusts, VIII, 124 Pea-weerils, III, 50
Crown-borer of the Stramberry, III, 44, 83
cruciata, Cassida, $\Pi, 63$
cruciferarum, Plutella, $\Pi, 10$, IV, 36
Crustacea, a class of Segmented animals, $\nabla, 6,7$
Cryptoblabes bistriga, IV, 46, Supp., 87
Cryptocephalus, VI, 128, 130
Cryptus extrematis, IV, 110, 111, 123, Supp., 52
grallator, VII, 75
inquisitor, I, 150

Cryptus nuncius. IT, 110, 111, 123, Supp., 52
samire, IV, 110, 111, Supp., 52
smithii. IV, 111
Ctenucha americana, II, 85
Crekoo, Yellow-billed, destroying Canker Worm, VI. 27

Locists, VIII, 124
Cucumber-beetle. I, 100, II, 62, $6 \overline{5}$
glea-beetle, I, 101, II, 57, V, 112
cucumeris, Haltica, I, 101, $\Pi, 57$, Supp., 53
cunea, Hyphantria, Supp., 55
Curculio, IL, 11, 16, 92, III, 13, 16, 25, 29, V, 22
Apple, III, 29
Natural history of, III, 30
Remedies for, III, 34
Catcher. Hooten's, III, 23
Hull's, III, 19, V, 25
Ward's, III, 20
Grape, I, 128, III, 60
Grape-cane Gall, I, 131
Grape-seed, I, 129
Plum, I, 50, III, 11
Enemies of, I, 57
Parasites of, III, 24
Points in its natural history, I, 50, LU, 11
Remedies for, I, 60, III, 15
Qaince, III, 35
Curculionido, characteristics of LII, 9
creaking noise produced by, III, 14
curcutionis, Sigalphus, III, 25, 27, Supp., 67
cucurbitoe, Egeria, IL, 64
Currant Aphis, FI, 46
Fruit.worm, I, 140
Plant-louse, II, 10
-stem Borer, VI, 108
Currant Worm, II, $8,9,96$, IV, I4, IX, 1
the imported, IX, 7
the native, IX, 23
fly, IX, 19
Cursoria, a section of Orthoptera, V, 14
cursoria, \mathbf{A} grotis, I, 18
curvicauda, Phaneroptera, VI, 164
Curvirostra leucoptera, VI, 27
Cuterebra, MI, 150
caniculi, I, 164
Cut-worm lion, I, 90
The climbing, I, 69, 76
The Dark-sided, I, 74
The Dingy, $\mathbf{I}, 82$
The Glass5, I, 83
The Greasy, I, 80
The small White Bristly, I, 86
The Speckled, I, 84
The Variegated, I, 72
The Western Striped, I, 81
The Wheat, I, 87
The W-marked, I, 79
Cut-worms, I, 67, II, 16, 45, III, 6
Natural history of twelve distinct species, $\mathbf{I}, 6$,
Remedies against, I, 89, 90
cyanea, Cyanopiza, VI, 27
Cyanopiza cyanea, VI, 27
Cycloneda sanguinea, Sapp., 52
Cylindrical Orthosoma I, 126, II, 91
cylindricum, Orthosoma, I, 124, II, 87

Oyllene pictus, VI, 101
Oyllocoris scutellatus, V, 154
Cynipidre, VI, 70
Cynips, II, 135
gallo-tinctoria, $\mathbf{V}, 18$
quercus-aciculatn, Supp., 59
quercus-inanis, I, 14
quercus-spongifica. I, 14
cynosbana, (Spilonota), Supp., 57
cynthia, Attacus, III, 170, IV, 74. I12. 138
Samia, IV. 112
Cynthia cardui, III, 151, IV, 129
Cydtophyllue, V, 123

D.

Dactylopius longispinus, IV, 70, VI, 63
Dactylosphcera, III, 93, 94
caryoe-magnum. VII. 117
caryoe-semen, VII. 117
caryoe-sentum, VII, 117
conicum, VII, 118
coniferum, VII, 118
depressum, VII, 118
forcatum, VII, 118
globosum, VII, 117
hemisphericum, VII, 117
spinosum, VII, 118
subellipticum, VII, 117
vitifolise, $\mathrm{I}, 13$
Dactylosphaeridos, III, 85, VI, 31
Dade County Advocate, article from, on Rocky
Mountain Locust, V III, 68
Daggy, E., on False Army-Worm, III, 112
on Apple Cureulio, III, 33
Dakota, Rocky Mountain Locust in, VIII, 85. IX 59
Dakruma turbatella, Supp. 57
Da7ais, II, 125, III, 161, 168, 163, V. 146
archippus, III, 143, 167, IV, 129, V, 149 Supp. 55
berenice, III, 143
erippus, III, 143
Daphne pandorus, II, 76
Darapsa myron, II, 71
Dark-sided Cut-worm. I, 74
tipped Anomalon, IX. 53
Dart-bearing Rustic, I, 82
Darwin, Charles, on Evolution. III, 172, 173
Darwinism, argument in favor of, III, 173
Datana ministra, III, 124, 127, 129, IV, 129
Davis, C. K., on Rocks Mountain Locust, VII, 154
Dawson, G. M., on Rocky Mountain Locust, VII, 155, IX, 78
Dean, J. J.. on Colorado Potato-bertle, VIII, 2
iecemlineata, Chrysomela, VII, 18
Doryphora, I, 101, 103, IV, 8, VI, 12, 18, VII, 1, 16, 18
Deer Fly, V, 127
Defakaugh, David, report on Rocky Mountain Locust, IX, 70
Dofinition of Entomology, V. 5
Defunctionation of special party in the imported
Currant Worm, LX, 19
Deilephila lineata. III, 140
Deiopeia bella, V, 11
Jelicate Long•sting, V, 50

Deloyala, II, 59
clavata, II, 57, Supp., 54
Dendroica cestiva, VI, 27
disenlor, VI, 27
maculosa, VI, 27
pennsylvanica, VI, 27
striata. VI. 27
Department of Agriculture, inetriciency of, VII (preface, p. 5).
depressa. Phylnxera. VII, 118
Dermaleichus, V. 87
Dermestes, IV. $97,7,41$
lardarius, VI. 100
Desmix maculatis. III. 61
Descriptive entomology, comments on, III, 123
Destination of sleparting Locusts, VIII, 107
Destitution in Missouri from Locust injuries, V III, 91
Destructive powers of the Chinch Bug, II, 22
destructor, Cecidomyio. II, 10, 19, VII, 27
Nysius, VII, 190, Supp., 84, 85
Devastating Dart, I, 83
devastator, Agrotis, I, 83, Suipl., 56
Devil's Riding-horse, I, 169
Diabrotica vittata, I, 100, II, 62, 64, III, 6
12-punctata, II, 66
diademr, Sinea, Supp., 58
diana, Argynmis, III, 69, 171
Diaspides, a subfamily of Coccido, $\nabla, 92$
Diaspis, V, 91, Supp., 60 notreavfurmis, Supp. 60
diastrophi. Eurytoma, Supp.. 68
Dictyoptera, a division of Neuroptera, V, 14
Differential Lo:ust, VII, 124, 173, VIII, 150, 153
eggs of, VIII, I54
differentintis, Caloptenus, V II, 124, 173
Digger Wasp, II, 106, III, 8, VII, 174
dilatatus, Vell, ius, IV, 22
Dimera, a division of Homoptera, V, 13
dimidiatus, Micropus, VII, 22
Dininisher Pezomachus, II, 52, VIII, 54
Dimorphism in buttertlies, III, 165
lveusts, VIHI, 115
Prionus, II, 90
Dinarda, IV,2e
Dings Cut-worm, I, 8 ?
Diphsis tritici, II, IU
Diptera, classification of, V, 13
discoideus, Bruchus, III, 45
discolor, Dendroica, VI, 27
Diseases of Mulberry Silkworm, IV, 87
Disippus Buttertly, II, 125, III, 153, 168, 169
Description of mature larva, III, 154
Description of the egg, IMI, 154
Parasites of, III, 157
Winter quarters of, III, 155
Microgaster, III, 158
disippus, Limenitis, IIT, 153, 168, 169, 171, Supp., 66 Nymphatis. II, 125
dinpar, Hupogymna, II, 10
divstria, Olisiocampa, Supp., 55
distinctus, Passalus, IV, 141
Dixon, F. M., on Army Worm, VIII, 39
Doidge, C. R., on Rocky Mountain Locast, VII, 164, VIII, 173
Dolichonyx oryzivorus, VI, 27, VIII, 52
domestica, Musca, $\bar{\Pi}, 10$
Domestication of insects, IV, 85
dominicana, Coscinoptera, VI, 127
Dominican Case-bearer, VI, 127
Dopf, J. D., on Canker Worms, II, 98
on Rocky Mountain Locast, IX, 68
Dorr, R. L., on Grape-vine Tomato-gall, V, 118
dorsatum, Phalangium, IV, 17
Doryphora cancatenata, VIII, 2 10-lineata, I, 101, 103, IV, 8, VI, 12, 18,

VII, 1, 16, 18, VIII, 1, IX. 34,43
juncta, I, 103, 105, VII, 18. IX, 39, 43
melanothorax, VIII, 10
undecimlineate, VIII, 10
doryphora, Lydella, I, 111, IV, 6, Supp., 88
Dotted-legged Plant-bug, IV, 19
Douglass, J. B., on Army Worm, VIII, 39
Downy Woodpecker destrofing Canker Worms, IV, 28, VI, 28
Doxocopa, VI, 142
Dragon Flies as enemies of Cicada, I, 26
Drasteria, VIII, 178
Drop Worm, I, 147
Dryocampa rubicunda, III, 123, V, 137 Larval changes of, V, 138 Natoral enemies of, V, 139 Remedies for, $\mathrm{V}, 140$
senatoria, III, 123, IV, 41 stigma, III, 123, IV, 41, V, 141
Dujardinii, Hypopus, TI, 53
Dung-beetles, creaking noise made by, III, 14 -carriers, II, 58. VI, 128
Dunkley, B. F., on Rocky Mountain Locust, FIII, 149
Dunlap, M. L., on Recky Mountain Locust, VII, 155
Dunn, William, on Rocky Mountain Locust, VII, 152, IX, 118
duodecimpunctata, Diabrotica, II, 66
Durand, J. B., on Rocky Mountain Locust, VIII, 63
Duties of State Entomologist, V, 27
Dwarf Trogosita, III, 6
Dye, A. A., on Rocky Mountain Locust, IX, 69, 117
Dr. A. H., on Army Worm, VIII, 39
Dyer, D. P., on Army Worm, VIII, 39

E.

Ear-fly, II, 129
Early, Sam. H. Y., ou White Grub fungus, I, 158
Earwige, characteristics of, V, 16
East India ants, III, 8
echinopus, Tyroglyphus, VII, 106
Economic entomology, importance of, V, 18, V LI (preface, p. 4).
Ecpantheria scribonia, IV, 141, 143
Ectobia germanica, II, 10
Eddleston \& Williams. manufacturers of fine entomological pins, $\nabla, 35$
Edwards, C. R., on Broad-necked Priontus, II, 88 egens, Celcena, Supp., 50
Egg-burster of Corydalus, IX, 127
Egg-guide, IX, 87
Egg of Abbott's Pine Worm, IX, 31
Apple Curculio, III, 31
Archippus Butterfly, III, 144

Egg of Beautiful Wood Nymph, VI, 89
Broad-necked Prionus, V, 56
Broad-winged Katydid, V, 123
Chinch-Bug, II, 21, VII, 21
Common May Beetle, V, 50
Cotton Worm, II, 38
Disippus Butterfly, III, 153
Dominican Case-bearer, VI, 128
Flat-headed Apple-tree Borer, VII, 73
Gooseberry Span-worm, LX, 4
Horned Passalus, V, 55
Imported Currant-worm, IK, 10
Mulbery Silkworm, movements of, IV, 86
Native Currant Worm. IX, 25
Narrow-winged Katydid, $\mathbf{V}, 124$
Oblong-winged Katydid, V, 123
Oeta compta, Supp., 58
Pea-weevil, III, 47
Strawberry Worm, IX, 28
Yucca Borer, VIII, 174
Eggs in Canes and Twigs, V, 119
of the American'Tent-caterpiller, $\amalg \mathrm{IX}, 118, \mathrm{~V}$
56
Army Worm Moth, VIII, 34, 183, 184
When laid, VIII, 40, 182, 183
Where laid, II, 48, VIII, 34, 182
Belostoma grandis, IX, 128
Buffalo Tree-hopper, V, 121
Canker Worms, II, 94, VII, 82, 84, 86 . VIII, 13
Uhinch-Bug, VII 21
Differential Locust, VIII, 154
Frosted Lightuing-hopper, $\nabla, 122$
Grape Phylloxera, IV, 59, VI, 34, 38, 41 .
92, 98, VLIL, 158
Harlequin Cabbage Bug, IV, 37
Hackberry Butterflies, VI, 139, 141, 148.
Jumping Sumach Beetle, VI, 120, 121
Jumping Tree-hopper, V, 119
Mantis carolina, I, 170
Ecanthus latipennis, V, 119, Supp., 60
Orchelimum, V, 123
Orocharis saltator, Supp., 62
Periodical Cicada, I, 25
Rocky Mountain Locust, VII, 122
Effects of burying at different depths, IX, 104
Effects of exposure to air, IX, 104
Effects of freezing and thawing on, IX, 99
Effects of moistare on, IX, 101
Experiments with, IX, 99
How laid, IX, 86
Snowy Tree-cricket, V, 120
Tent-caterpillar of the Forest, II, 122 .
Tortoise Beetles, II, 60, Supp., 53
Unknown Tree-hopper, V, 122
Wheat-head Army Worm, IX, 55
Egg-Mass of Hellgrammite, IX, 120
Rocky Mountain Locust, Philosophy of. IX, 87
Egg-Parasite, the Anthomyia, IX, 92
egle, Euchcetes, I, 139, III, 133, IV, 41
Eight-spotted Forester, I, 136, II, 83, 86, VI, 94
Elachista cinereopunctella, VI, 138

Elaphidion paralleluen. III, 6, IV, 54 villosum, III, 6
Elaphrus ruscarius, VIII, 52
Elliott, F. R., on dying of Grape-vines, $\nabla, 59$
Elm Leaf beetle, II, 10, V II, 5
Scolytus, V, 107
Elm-tree Louse, I, 123
Elongate Ground-beetle, I, 115
elongatus, Pasimachus, I, 115., V III, 52
Elytra of Coleoptera, characteristics of, $V, 10$
Emery, H. D., on Climbing Cut-worm, I, 77
Rocky Mountain Locnst, VII, 138
Emmenadia pectinata. VI, 125
Emphytus maculatus, IX, 27
Empidonax minimus, VI, 27
Empretia stimulea, V, 126
Endropia armataria, IX, 7
Engelmana, Dr. G., on the Grape-vines of the U.

$$
\text { S., IV, 60, VI, } 70
$$

on Locusts, IX, 84
Engelmann, Theod., on Grape-vine grafting, VI, 80 on Raspberry Root-borer, VI, 112
Entomological collecting instruments, $\nabla, 29$
Commission, argament in favor of creating. VII (preface, p. 5), VIII, 134. 137
pins, $\mathrm{V}, 34$
Entomologist, duties of a State, $\mathrm{V}, 27$
Entomology, detinition of, V, 5
Economic importance of, V, 18
Importance of, as a study, V, 17
Its adrancement, $V, 5$
Its relations to agriculture, $\nabla, 5$
Progress of economic, V, 19
Entomophaga, a subsection of H_{5} menoptera, $\mathrm{V}, 10$
Entomophilous plants, V, 152
entomophagus, Tyroglyphus, VI, 52
Entomotaxy, V, 34
Epargyrius tityrus, VIII, 173
ephemeroformis, Thyridopteryx, I, 147
Ephestia zeæ, IX, 31
Ephialtes, I, 178
notanda, IX, 98
Epicarrus fallax, III, 58
formidolosus, III, 58
imbricatus, III, 58
vadosu8, III, 58
Epicauta cinerea, Sapp., 54 pensylvanica, Supp., 54
Epilachna borealis, IV, 18
Epimenis, the Grape-vine, VI, 87
epimenis, Psychomorpha, III, 63, 64, VI, 87, 88, 90, 95 Epitrix, Supp., 53
Eragrostis poceoides, VIII, 122
Erax, II, 122, 123
bastardii, II, 124, IX, 98
lictor, II, 124
tabescens, II, 124
Eriosoma, VII. 97
lanigera, I, 121, III, 95, I「, 69, VI, 63
pyri, I, 118, III, 5, 95, 96, VI, 37, IX, 43,
Suppo. 59, 87
rilcyi, Supp., 87
ulmi, I, 123, Supp., 87
eriosomatis, Chrysopa, I, 123
erippus, Danais, III, 143

Eromophila cornuta, IX, 91
Erwin, J. Ls, on Fall Army-worm, III, 110
Erycinidee, VI, 138
Erynnis alcoae, VIII, 182 malvarum, V LII, 182
Erysiphe, V, 70
erythrocephalus, Melanerpes, VIII, 124
erythrocerus, Bruchus, IIL, 55, 56, Sapp., 70
erythrophthalrnus, Coccyzus, III, 121, VI, 27
Euchetes egle, I, 139, III, 133, IV, 41
Euclea, VI, 140
prenulata, V, 126
querceti, V, 126
Eudeinis, Supp., 57 botrana، Supp., 57
Eudryas brevipennis, VI, 91 grata, I, 136, II, 83, VI, 88, 89, 95 unio, I, 136, II, 83, III, 63, VI, 90, 92, 95
Euftchia ribearia, IX, 3
Eulophus, IV, 51
Eumenes fraternx. II, 103
Eunemoria gracilaria, Supp., 79
Eupelmides, Supp., 52
Eupelmus, VI, 162, Supp., 52
Euphanessa mendica, IX, 6
Euplexoptera, V, 16
Eupsalis minuta, V I, 113, 117
Europe, American plants and insects acclimater? in, IX, 43
European Cattle Breeze-fly, II, 129
Cock chater, I, 157
Meal Worm, IX, 43
Oak Phylloxera, VI, 46, 64, VIII, 158
Euryomia inda. III, 6
melancholica, HI, 6, V, 154
Euryptychia, II, 134
saligneana, II, 134, Supp., 57
Eurytoma, I, 52
bolteri, I, 177, Supp., 68
diastrophi, Supp., 68
Eurytomider, Supp., 68
Euschemon Raflesioe, VIII, 170
Euschistus punctipes, I, 113, IV, 19, 20, V, 12, Supp. 58
variolarius, Supp., 58
Euиra, IX, 23
Evans, J. C., on Rocky Mountain Locust, IX, 70
Everett, H., on Chinch Bug remeds, II, 29, VII. 35
Evolution, III, 159, VIII, 170
exitiosa, E.Egeria, I, 47
Exodus of Locusts, V III, 104
exoleta, Calocanpa, VIII, 23
Exorista flavicauda, II, 51, VIII, 53, Supp, 60, 88
levcanio. II, 50, 51, III, 116, 129, IV, 108
VIII, 53, Supp., 60
var. cecropice, IV, 108, Supp., 60.
militaris, II, 50, III, 129, IV, 109
Osten-Sackenii, L, 51
phycitoe, IV, 40, Supp., 88
externum, Calosoma, YIII, 52
extranca. Leucania, II, 50
extrematis, Ciyptus, IV, 110, 111, 123, Supp., 52
Eyed Emperor, VI, 137

F.

faboe. Br'uchus, III, 52, 55, Supp., 69. 70, 71
fabricii, Lytta, I, 99

Fall Army-worm, III, 109, 150, YI, 17, VII, 23, 35, 37, 48
How it differs from the true Army Worm, IIT, 112, VIII, 48
Remedies for, III, 114
Fall Canker Worm, VII, 83, VIII, 18
Web Worm, II, 11, III, 130
Natural history of, III. 130
Remedies for, III, 132
Fairuhild, H. O., on Phylloxera, TI, 83
fallax, Epicaerus, IU, 38
falsarius, A coloithus, II, 86
False Chinch Bug, V, 111, VII, 46
Indigo Gall-moth, II, 132
Farris, M. W., on Rocky Mountain Locust, IX, 69
fasciatus, Ecanthus, Supp., 60
fascicularis, Hemirhipus, VI, 101
fastidiosa, Ohrysobothris, VII, 71
Fasting to avert locust injury, VIII, 96
Faucon, Louis, on irrigation as remedy for Phyl. loxera, $\mathrm{V}, 72$
Faulkner, Dr. S. K., on Rocky Mountain Locust, VII, 140
femorata, Chrysobothris, I, 46, III, 6, VII, 71, Supp., 67

Tiphia, VI, 124

femoratum, Spectrum, VI, 156
femoratus, Micropus, VII, 22
femur -rubrum, Caloptenus, VII, 126, VIII, 114, 115, $116,117,118,153$, Supp., 89, 90
Ferguson, J. T., on Rocky Mountain Locust, IX, 73
Ferris, Peter, on Tent Caterpillar, III, 125
Fever Worm, IV, 142, 144
Fidia murina, Supp., 53 viticida, I, 132, Supp., 53
vitis, Supp., 33
Fiery Ground-beetle, I, 89, 115, II, 46, 103
Fifteen-spotted Ladybird, IV, 17
Figure 8 minor, I, 86
Filbert-gall, the Grape-vine, V, 116
Fillery, Wm. H., on Rocky Mountain Locust, IX, 75
fimbriatus, Stiretrus, $\mathbf{I}, 114$, IV, 20
Fine. F. F., on Rocky Mountain Locust, IX, 71
Fires for Codling Moth, IV, 27
Fishburne, Dr. J. H., on poisoning by Colorado Potato-beetle, VII, 7
Fisher, H. I., on Rocky Mountain Locust, IX, 85
Fisher, J. C., on Periodical Cicada, I, 20
Fitch, Col. H., on Rocky Mountain Locust, IX, 71 Fitch, Dr. Asa, on Army Worm, II, 43, V III, 25,50
on Bee-killer, II, 122
on Cureulio parasite, III, 24
on Gooseberry Frait-worm, I, 140
on Pearl Wood Nymph, II, 84
on Tent Caterpillar, III, 123, 127
fitchii, Promachus, Supp., 60
Flat-headed Apple-tree Borer, I, 46, 47, VII, 71
Enemies of, VII, 73
Natural history of, VII, 72
Remedies for, I, 47, VII. 76
Flat-headed Borer, III, 6, VI, 107, 109
Flea-beetle, IV, 35
-like Negro-bug, II, 33, 34, VII, 48
Fleas, characteristics of $\mathrm{V}, 15$
favicauda, Exorista, II, 51, VIII, 53, Supp., 60, 88
flavicorne, Anomalon, III, 69
flavida, Oolaspis, III, 41,61, 82, IV, 34
flavifrons, Scolia, VI, 124
flavimanus, Bruchus, III, 56, Supp., 70
flavimedia, Prodenia, Supp., 56
Flesh-fy, the common, VII, 180
the Sarracenia, VII, 181
Flower-beetles, III, 6
-bug, the Insidious, VII, 41, 47
Fly-catcher, Great-crested, destroying Locusts, YIII, 124
-poison as remedy for Potato Bug, IV, 14
Ford, S. H., apparatus of, for destroying Potato
Bugs, I, 116
forcata, Phylloxera, VIL, 118
Forest Caterpillar, III, 129

$$
\text { -flies, } \mathbf{V}, 13
$$

Tent-caterpillar, III, 121, 124, 128
Forester, the Eight-spotted, VI, 94
Forficulidoe, Characteristics of, V, 16
formidulosus, Epiccerus, III, 58
formosa, Pepsis, II 106
Foster, E. S. on Broad-necked Prionas; IL, 88
Foster, Suel, on remedy for Couling Moth, I, 65
on Potato Beetle, I, 110
Fox-glove leaves as remedy for Gooseberry Span-
worm, IX, 7
fragarice, Analcis, III, 42, 44, Supp., 71
Anchylopera, I, 142, Supp., 57
Tyloderma, Supp., 72
fraterna, Eumenes, II, 103
Fraternal Potter-wasp, II, 103
Fringe-wing, VI, 50
frontalis, Termes, $\mathbf{I I}, 11$
Frosted Lightning-hopper, $\nabla, 122$
frugiperda, Laphygma, II, 41
Phaloena, VIII, 48
fugitiva, Linneria, $\mathrm{V}, 41,141$
fugitivus, Banchus, IV, 41
Campoplex, I, 139
Fulgoridce, V, 122
Fuller, A. S., on Grape-vine grafting, VIL, 109
on Le Conte's Pine Worm, IX, 33
on Seed-corn maggot, I, 154
fulvicosta, Oallimorpha, III, 132, 134, VI, 92, Supp., 55
fulvivenosus, Micropus, VII, 22
fulvosa, Laphygma. III, 117, VIII, 49
Fur-moth. II, 10
Furnas, R. W., on Locust injury in Nebraska, VII 151, 152
fusca, Lachnosterna, Supp., 53
fuscescens, Turdus, VI, 27
fuscipennis, Mesochorus, VII, 75

C.

Gad-fly, $\nabla, 13$
Galeruca calmariensis, II, 9, 10, 95, VII, 5, 86
Gallicola or gall-inbabiting type of Phylloxera, ∇, 63, VI, 34, 66
gallosolidaginis, Gelechia, I, 13, 173, II, 20, 132, 134, III, 158, Supp., 66, 83
Gall-curculio of the grape, I, 131
Gallerea cereana, I, 166, II, 10
Gall-gnat, $\mathbf{V}, 114$
gallicola, Phylloxera, VII, 93
Gall-louse, Grape-leaf, IV, $55,66,68, ~ \nabla, 63$

Gall-moth, False Indigo, II, 132
The Misnamed, II, 134
of the Golden-rod, I, 173
-moths known to occur in the United States, II, 135
-nut, V, 18
Gall, the Grape-vine Apple, V, 114
Filbert, V, 116
Tomato, V, 117
Trumpet, V, 118
Salicis-strobiloides, V I, 155
Vitis-coryloides, $\mathbf{\nabla}, 116$
ротит, $\mathbf{V}, 114$
tornatos, $\mathbf{V}, 117$
viticola, V, 118
Galle, Aphidian, on Hickors, V, 154
How produced, VI, 70
made by moths, II, 132
Garber, J. B, on irrigating Grape-vines, VI, 76
Gardeners Chronicle, article from, on Colorado Potato-beetle, VII, 5
article from, on Yucca fertilization, $\nabla, 159$
garrulus, A inpelis, VII, 90
Gattine, a disease of Silkworms, IV, 91
Gazera, VIII, 178
Gelechia galloesolidaginis, I, 13, 173, II, 20, 132, 134 ,
III, 158, Supp., 66, 83
longifasciella, Supp., 83
gelechie, Microgaster, I, 178, Supp., 66
geminatus, Paniscus, I, 89
Genitalia of male Army Worm, VIII, 30
Geographical range of species, VII, 171, IX, 82
Geometer of the Chick-weed, I, 179
Geopinus incrassatu», I, 77
Georgetown Miner, article from, on Rocky Mountain Locust, IX, 62
Geothlypis trichas, VI, 27
germanica, Ectobia, II, 10
gigantea, Buprestis, IV, 141
Gigantic Root-borers, III, 75
Gillman, Henry, on Colorado Potato-beetle, VI, 12
glaberrimum, Orchelimum, Supp., 62
Gladish, James E, on Rocky Mountain Locust, IX, 73
glandulella, Holcocera, IV, 144
Glassy Cut-worm, I, 83
Mesochorus, II, 52, VIII, 53
-winged Soìdier-bug, III, 137
glomeratus, Microgaster, III, 167
Glover, T., on Boll Worm, III, 106. 107, 108
on Paris green for Cotton Worm, III, 19
glycerium, Paphia, II. 125, 127
Glyphe viridascens, II, 53, VIII, 53
Goat-weed Butterfly, II, 125, V, 145
Additional facts in its history, $\mathbf{V}, 145$
Its winter quarters, $\nabla, 148$
Larval changes, V, 146
Natural enemies, $\mathrm{V}, 149$
New food-plant, V, 147
The egg, $\mathbf{V}, 146$
The larva, V, 146
Two broods each year, V, 148
Göerius olens, IV, 21
Gold-bauded Tachina-fly, V, 140

Gollen-crowned Thrush destroying CankerWorm, VI, 27
Robin destroying Canker Worm, VI, 28
-rod Gall-moth, I, 173, III, 158
Tortoise-beetle, II, 60, 62
-winged Woodpecker destroying Canker Worm, VI, 28
Goniloba. II, 125, V, 116
Goodman, W. S., ou Arms Worm, VIII, 39
on Rocky Mountain Locust, IX, 74, 119
Gooseberry Fruit-worm, I, 140, II, 9
Worms, IX, 1
Span Worm, IX, 3
A native species, IX, 5
How it spreade, IX, 5
It prefers the Gooseberry to the Currant, IX, 6
Its natural history, IX, 3
Its past history, IX, 5
Parasites, IX, 6
Remedies, IX, 6
The moth is closely imitated, IX, 6
Govdii, VIII, 124
Gordius aquaticus, IX, 98
Gortyna nebris, Supp., 56
nitela, I, 92, III, 105, VIII, 37, Supp., 56
Gothic Dart, I, 81
gracilaria, Eunemoria, Supp, ,79
Grafting, VI, 79
Grain Bruchus, ПI, 45, 50, 51, 54
Plant-louse, II, 5, 10, 16
Sylranus, III, 6
Weevil, II, 10, III, 60
grallator, Cryptus, V II, 75
Labena, VII, 75
graminis, Bombyx, II, 44
granarius, Bruchus, II, 11, 14, III, 50, 51
Sitophilus, II, 10, III, 60
Grand-daddy-long-legs, IV, 17
Grandfatber-Gray-Beards, IV, 17
grandis, Lebia, III, 100, Supp., 52
Stizus, I, 27, Supp., 52
granulata, Tettix, VIII, 150
Granulated Grouse-locust, VIII, 150
Grape-berry Moth. III, 90
-cane curculio, III, 60
Gall curcalio, I, 131
Remedy for, I, 132
Codling, I, 133
Remedy for, I, 135
Curculio, I, 128, III, 60
Fidia, V, 108
Gall curculio, I, 181
Gall-louse, III, 90, 92, 96, IV, 66
-grower, a new friend to the, III, 137
leaf-louse, III, 88, 94
Trumpet-gall, V, 118
Grape Phylloxera, III, 84, IV, 55, 67, V, 57, 63, VI, 30, VII, 41, 90, VIII, 157, IX, 43
Bibliographical, VI, 30
Biological, VI, 33
Completion of its natural history, VII, 90 , VIII, 157
Conclusions, IV, 70, VI, 65

Grape Phylloxera-Continued.
Different forms which the insect assumes, VI, 33, VII, 93
Direct remedies, VI, 55, VII, 105
Early existence in America, VI, 82, 83
First appearance in California, VI, 82
False theories, VI, 60
Gall-inhabiting type, VI, 34, 66, 67
Grafting as a means of counteracting the work of, IV, 65, VII, 108
Impregnated egg not necessariiy hibernal, VI, 86
Injury caused by it in America, VI, 58, VП, 99
France, VII, 103
Its spread in Europe, V, 63, VII, 104
Male louse, $\mathrm{V}, 71$
Means of contagion from one vine to another, IV, 64, V, 69
Mode of spreading, VI, 45
Mortality of vines caused by it, $\nabla, 57$
Natural enemies, VI, 50, VII, 106
New theories, $\nabla, 67$
Occurrence in Southern States, VIII, 164
Other preventive measures, VI, 50
Practical considerations, IV, 67, VI, 44, VIII, 163
Probable reasons why its injuries are greater in Europe than with us, IV, 66
Prophylactic means of coping with the disease, VI, 48
Range of the insect in America, $\mathrm{V}, 62, \mathrm{VI}, 57$, VII, 101
Ravages of, in California, VI, 82, VIII, 163
Real cause of disease, VI, 85
Remedies, IV, 68, V, 71, VI, 55, VII, 105
Resolutions concerning destruction of, VIII, 165
Résumé of its natural history, IV, 69
Root-inhabiting type, IV, 58, VI, 38, 66
Sexed individuals, VII, 86, 98, VIII, 158
Specific identity of the root-inhabiting and leaf-inhabiting types, IV, 57, VII, 94
Specific identity of the American and European insects, III, 86, IV, 57
Susceptibility of different vines to the disease, IV, 60, V, 64, VI, 46, VII, 106
The more manifest and external effects of the disease, VI, 44
Transient nature of the galls, $\nabla, 63$
Tspe gallicola or gall-inhabiting, VI, 34, 66, 67
Type radicicole or root-inhabiting, VL, 38, 66
Where do the winged females lay their eggs ? VII, 96
Why the insect is more injurious in Europe than here, VI, 59
skrape-root-borer, I, 124
Remedies for, I, 128
Grape-seed Curculio, I, 129
-seed Maggot, II, 92
Wrape-vine Apple Gall, V, 114, 115
, Blue Caterpillars of, I, 136, IL, 79
Colaspis, III, 44, 62, 81, IV, 34
Epimenis, III, 63, 65, VI, 87
Flea-beetle, III, 79
Fidia, I, 132, 133
Filbert Gall, V, 116
, Hog-caterpillar of, II, 71
., Insects injurious to, I, 124, II, 71

Grape-vine Gall-louse (see Grape Phylloxera)
Leaf-folder, III, 61
Leaf-gall-louse (see Grape Phylloxera)
Plume, I, 137, ПI, 65, 66, 67, 68, IV, 129
Procris, II, 85, V, 134
Root-borer, I, 124, III, 75
Tomato Gall, $\nabla, 117$
Trumpet Gall, V, 118
Gropholitha oculana, III, 6
Graphiphora, I, 79
Graptex, III, 103, V, 149
Graptodera, Supp., 53
Grasserie, a disease of Silkworms, IV, 91
Grasshol pers, a division of Orthoptera, $\mathbf{V ,} 14$
grata, Euar., as, I, 136, IL, 83, VI, 88, 89, 95
grataria, Heematopis, I, 119
Gray, Alfred, on Rocky Mountain Locust, VII, 148, 149
Gray's Improved Sprinkler, VII, 15
Greasy Cut-worm, I, 80
Great-crested Fly-catcher destroying Locusts, VIII, 124
Lebia, III, 100
Leopard moth, IV, 141
Green Apple-leaf Tyer, IV, 46
-head Fly, II, 128
larva of White-lined Morning-sphinx, VIII, 122
striped Locust, VIII, 149
Maple Worm, $\mathbf{V}, 137$
Larval changes, $\nabla, 138$
Natural enemies, V, 139
Remedies, $\bar{\nabla}, 141$
Gregg, Jacob, on Rocky Mountain Locust, IX, 73
grossularine, Pempelia, I, 140, II, 9, Supp., 57 grossulariata, Abraxas, IX, 5
grossulariella, Phycis, Supp., 57
Grote, A. R., on poisonous properties of Doryphora,
VIII, 10, 11
Ground•beetle larva preying on Curculio larvæ, I, 59
larvæ preying on locust eggs, IX, 97
The Elongate, I, 115
The Fiery, I, 89, 115
The Murky, I, 115
The Pennsylvania, I, 59
The subangular, I, 58
Grouni-beetles destroying Canker Worms, II 103
Locusts, IX, 98
gryllaria, Astoma, VII, 175, Supp., 63
Gryllidoe, stridulating apparatus of, VI, 154
Gryllus erythropus, VII, 126
niger, II, 150
Gubernacuhum ovi, IX, 87
Guerinii, Attacus, IV, 112, 113
Guiraca ludoviciana, $\mathrm{V}, 54$
guttata, Cassida, II, 60, 63
Coptocycla, Supp., 53

H.

Habit, change of, IП, 91
Hackberry Butterfies, VI, 136
Hadena, I, 68, Supp., 56
amputatrix, $I, 87$
chenopodii, Supp., 76, 77
subjuncta, I, 84

Haeckel, Prof. E., on the nnits of rature, III, 174
Hrematopis grataria, I, 179
Hair-worms, IK, 98
Halesidota Harrisii, III, 127
resselata, III, 127
Half-winged Bugs, characteristics of, $\mathrm{V}, 12$
Hall, William, on Chinch Bugrand Locust, VIII, 76
Haltica chalyber, I, 101, IIL, 79, 81, Supp... 53 cucumeris, I, 101, II, 57, V, 112, Supp., 53
nemorum, I, 101
pubescens, I, 101
rhois, VI, 122
stolida, VI, 122
striolata, III, 44
Ham-beetle, the Red-legged, VI, 96
Hammond, A. C., on Apple-leaf Skeletonizer, IV, 45
hammondi, Acrobasis, III, 7
Pempelia, IV, 44, 45, Supp., 80
Hammond's Knot-horn, IV, 45
Hanan, Br, on Oyster-shell Bark-louse, V, 74
Hand-maid Moth, III, 124
Hanway, James, on Rocky Mountain Locust, VIII, 102
Hardin, Gov. C. H., proclamation by, VIII, 95
Harlequin Cabbage-bug, IV, 35
Harman, M. B. W., on Rocky Mountain Locust, IX, 74
Harmonia picta. Supp., 52
Harpactor cinctus, I, 114, VII, 41, Supp., 58
Harpalus? Larva feeding on locust eggs, IX, 97
Harpalus caliginosus, I, 115, V III, 52
pennsylvanicus, I, 59, VIII, 52, IX, 98
Harris, Dr. T. W., on hibermation of Disippus Butterfly, III, 155
on Oyster-shell Bark-louse, V, 79
on Poplar Spinner, II, 19 on Tent-caterpillar, III, 121
.harrisii, Aspidiotus, I, 7, II, 9, Supp., 60
Halesidota, III, 127
Harris's Bark-louse, I, 7, II, 9
Harvest-flies, II, 131
-men, IV, 17
mites, VI, 122
Hateful Locust, VII, 188, 190
Hawk Moth, II, 76, IV, 86, V, 12
Hay-worm, the Clover, VI, 102
Hagen, Dr. H. A., on the distinction of Cicadre, I, 21 Head Maggot, I, 161
Heard, J. M., Boll-worm Moth Trap, III, 109
Heart-worm of cabbage, IL, 107
Heary rains destructive to the Chinch Bug, II, 24
Hecker, Fred., on remedy for Potato-beetle, VIII, 4
Hedge-hog Caterpillar, IV, 143, 144
Hedya scudderiana, Supp., 57
Helicmidar, III, 103
Heliconius melpomene, III, 173
thelxiope, III, 173
Heliophi'a, VIII, 22
Heliothis armigera, III, 45, 104, IV, 129
Hellebore for Currant worms. IX, 7, 13, 14, 15
Potato bugs, IF, 14
White Pine Worm, IX, 32
Hellgrammite, $\mathrm{V}, 142, \mathrm{IX}, 125$
Characters of the young larva, IX, 127

Hellgrammite-Continued.
Eggs hitherto supposed to belong to it, IX, 128 Its curious egg-mass, IX, 126
The larralives in rapidflowing streams, IX, 128 Where and how the eggs aro laid, IX, 127
Helminthrphaga muticapilla, V I, 27
Helius, Abraham, on Rocky Mountain Locust, VIII, 91
Hemilenca californica, $\mathrm{V}, 12 \mathrm{~s}$
maia, $\overline{\text { V }}, 127$
nevadensis, $\nabla, 128$
Hemiptera, classification of, $\nabla, 12$
Preparing of for cabinet, $V, 34$
Hemirhipus fascicularis, VI, 101
Hemiteles cressonii, I, 177, Supp., 65
nemationrus, IX, 17
(?) thyridopterigis, I, 150), Supp., 65
Hentzii, Mygale, II, 106
herbimacula, Celona, I, 86
herilis, Agrotis, Supp., 55
Herschell, C., on Locusts, VIII, 151
herse, Apatura, VI, 136, 140, 148
Herse Buttertly, VI, 148
Hesperia, VIII, 173
Hesperides. VIII, 176
Hessian Fly, II, 10, 16, 17, 19. III, 110, 111, IV, 67, ∇, $13,25, V$ II, $22,27,36$
parasite, III, 120
Heterocera, a section of Lepidoptera, $\mathrm{V}, 12$
Heteromera, a section of Coleoptera, $\mathbf{V}, 10$
Heteroptera, a section of Hemiptera, V, 12
Hewitt, H. L., on Rocky Mountain Locust, IX, 69 hibisci, Bruchus. Supp., 70, 71
Hicknan, G. B., on Rocks Mountain Locust, IX, 69
Hickors Lark-borer, V, 62, 103, 104
Natural enemies of, V, 106
Remerlies for, $\boldsymbol{\nabla}, 107$
Hickory Borer, V \& 101
hilarana, Cochylis, 1, 17.5, II, 135
Hill, John, on Rocky Mountain Locust, IX, 75
Hipparchia, VI, 143
Hippobosca, VII, 91
Hippobuscidce. V, 13
Hippodamia convergens. I. 112
glacialis, IV, 18
maculata, I, 112, II. 25, V, 149, VII, 39, Supp., 52
13-punctata, I, 112
histrionira. Mrrgentia, IV, 35
strachia, IV, 35
Hoag, C. H.. on Flat-headed Borer, VII, 74
Hoag, I. N., on silk culture, IV, 80
Huckeria perpuleva, II, 53
Hotfineister, A. W., on Colorado Potato-beetle, VII, 14
on Army Worm, VIII, 29
Hogan, Johu H., on Grape-root Borer, I, 125
Hog-caterpillar of the vine, II, 71, 75
Hogs as Apple-worm destroyers, I, 65
Curculio destrocers, I, 59
Holcocera glandulella, IV, 144, 145
Holmes, Wm. C., ou Tile-horned Prionus, II, 90
holosericeum, Trombidium. V II, 175
Holsinger, Frank, on destrosing Locusts, VIII, 127
Holt County Sentinel, article from, on Rocky Mountain Locust. VIII, 69

Homely Geopinus, I, 89
Homeosoma, Supp., 57
Homoptera, a section of Hemiptera, V, 12
Homopus, VII, 106
Honey-bee, insect enemies of, I, 166, VI, 101
Honey locust seed-weevil, III, 45
Honora, Supp., 57
Hooten's Curculio-catcher, III, 22, 23
Hopkins, B. F., on Rocky Mountain Locust, VII, 151
Hoplophora arctata, VI, 53, 81. VII, 106 contractilis, VI, $5 \pm$
Hopps, Michael, on remedy for Chinch Bug; II, 30 hordei, Isosoma, II, 92
Horned Lark destroying Locust eggs, IX, 91
Horned Passalus, IV, 139

$$
\text { eggs of, } V, 55
$$

Horner, C. C., on machine for destroying Locusts, VIII, 129
Hornet, sting of the, $I, 27$
Horn-tails, V, 10
Hostetter, C. J., on Rocky Mountain Locust IX, 71
House Pigeon destroying Ca
Howard, Sanford, on remedy for Canker Worm, II, 100
How to collect, preserve, and study insects, $\nabla, 29$ counterwork noxious insects, $\mathrm{V}, 23$ transmit insects, $\mathrm{V}, 44$
Huggins, J., on Canker Worm, II, 101
Hull, Dr. E. S. on Canker Worm, II, 101
on Grape-vine Flea-beetle, III, 81 on scab in Apples, II, 7
Hull's Curculio-catcher, III, 19
Modification of, $\bar{\nabla}, 25$
Hurlbart, J., on Colorado Potato-beetle, IV, 9
Huemann, Geo., on grape-vine grafting, VII, 109,
110, 111
pruning, VI, 84
on importance of Phyllozera discoveries, IV, 55
Huttoni, Bombyx, IV, 85
Hyalophora cecropia, IV, 103
Hybernia, VIII, 17
Hydrocorisa, a division of Heteroptera, $\nabla, 12$
Hyleccetus americanus, III, 7
Hymenoptera, characters and classification of, $\nabla, 9$
Hyperchiria io, $\mathrm{V}, 133$
varia, $\mathrm{V}, 133$
Hyperaspis normata, $\mathrm{V}, 100$
Hyphantria cunea, Supp., 55
punctata, Supp., 53
textor, III, 130, 132, Supp., 55
Hypogymna dispar, II, 10
Нурория, VI, 52, VII, 106
dujardinii, VI, 53
Hypsopigia, VI, 105

1.

Ichneumon brevipennis, IX, 55
leucanice, II, 53, V III, 54
obsoletus, IX, 55
pullatus, III, 69
signatipes, III, 69
subcyaneus, III, 69
unifasciatorius, III, 71

Ichneumonidoe, III, 27, 28, Supp., 65
Icterus Baltimore, V I, 27
Icy La dybird, IV, 18
Idol, J. K. P., on Rocky Mountain Locust, IX, 74
idyja, Apatura, VI, 145
ignota, Rhodites, I, 13
Illinois Lace-wing, II, 26, VII, 39
, Locust flights in, VIII, 151
illinoiensis, Ohrysopa, II, 26, VII, 39, 40
Imbricated snout-beetle, III, 58
imbricator, Pemphigus, I, 121
imbricatus, Epiccerus, III, 58
imbricornis, Prionus, II, 89, III, 6, $7 \overline{5}$
immarginatus, Micropus, VII, 22
Importance of Entomology as a study, V, 17
Imported A pple-worm, I, 108
Cabbage Worm, II, 107
Imported Currant Worm, II, 13, VI, 43, 149, IX, 7
Descriptive, IX, 21
It furnishes an interesting instance of defnactionation of special parts, IX, 19
It presents a forcible example of Arrenotoky IX. 18

Its introduction and spread, IX, 8
Its natural history, IX, 9
Natural enemies, IX, 17
Preventive measures, IX, 13
Remedies, IX, 13
Imported vs. Native American Insects, II, 8, 106, 107, VII, 5
Imported Onion-lly, II, 9
Oyster-shell Bark-louse, II, 9
Improved Patent Insect Destroyer, IV, 15
impura, Leucania, VLII, 38
incequalis, Coeloides, I, 128, Supp., 54
incertus, Melanotus, III, 6
Incrassated Geopinus, I, 77
incrassatus, Geopinus, I, 77
inda, Euryomia, III, 6
indagator, Perilitus, IV, 43, Supp., 66
indagatrix, Pimpla, IV, 43
indecisa, Egiale, VIII, 179
Indigo-bird destroying Canker Worm, VI, 27
Indian Territory, locusts in, VIII, 88, IX, 76, 78
indiginella, Myelois, IV, 38
inermis, Agrotis, I, 72, 74, II, 50, III, 15, 129, VIII, 37
Supp., 55
infecta, Celoena, Supp., 56
Inflating Chalcis fiy, I, 176
Influence of food in determining sex, VIII, 19
Influence of wind in datermining the course of
locust swarms, IX, 81
Ingalls, Senator, Introduction of bill in Congress
for destraction of injurious insects, $\nabla, 183$
Innoxious insects, I, 172, II, 125, III, 140, V, 142, VI,
127, VIII, 169, IX, 125
inornata, A mphipyra, III, 75
Tiphia, VI, 123
inquisitor, Cryptus, I, 150
Insecta, number of joints in, $\nabla, 7$
Insect enemies of the Honey-bee, I, 166
domestication, IV, 85.
, Whatis an? V, 5
Insects, Breeding, $\mathrm{V}, 41$
Cabinet and boxes for, $\nabla, 37$
How to counterwork noxious, $\nabla, 23$

Insects, How to collect, preserve, and stady, $V, 29$ transmit, $\nabla, 42,44$
Imported and Native American, II, 8 Infesting the Apple-tree, III, 5, 6

Grape-vine, I, 124, II, 71, III, 61, IV, 53, V, 114, VI, 30
Potato, I, 91
Sweet-potato, II, 56
Mounting. for cabinet, $V, 34$
Rearing, V, 41
Relation of to agriculture, $\nabla, 18$
Relaxing dry, V, 41
Text-books ou, $\mathbf{V}, 42$
Transmitting, $\nabla, 44$
insidiosus, Anthocoris, II, 27, 32, VI, 51, VII, 41, Supp., 58
Insidious Flower-bug, II, 27, 32, VI, 51, VII, 41 47
Instinct, Curious, III, 1506
Philosophy of, V, 83
vs. reason, V, 83, 157
interrupta, Acronycta, II, 121, Supp., 73
interruptus, Passalus, IV, 141
Io Moth, V, 133
Food plants, V, 136
Larval changes, $\mathbf{V}, 135$
Parasites, V, 136
Iowa, Rocky Mountain Locust in, VIII, 81, IX, 63 iris, Apatura, VI, 136
Irrigation as remedy for Chinch Bug, VII, 31
Phylloxera, IV. 69, VI, 55
Rocky Mountain Locust, VII, 182
irritans, Leptus, VII, 177
Irritating Harvest Mite, VII, 177
property of caterpillars, $\nabla, 131$
various insects, VI, 70
Irvine, Clarke, on Rocky Mountain Locust, V III, 105, IX, 72
isabella, Arctia, IV, 143, Supp., $5 \overline{5}$
Isabella Tiger Moth, IV, 143
Iske, Authony, Machine for destroying Potatobeetles, VIII, 4
isocrates, Thecla, VIII, 177
Isosome hordei, II, 92
vitis, II, 92, 93
italicus, Caloptenus, VII, 133, V III, 140
Ithomia, III, 161, 165
Ithycerus noveboracensis, LII, 6, 57
Ituna, III, 103
iaculifera, Agrotis, I, 82, 83, Supp., 56
Jarring as remedy for Apple-worm, IV, 25
Jefferson City Tribune, article from, on Army Worm, VIII, 50
article from.on Rocky Mountain Locust, VIII, 108
Jewett, D. T., on growing European grape-vines, VI, 77, 78
Johnson, B. F., on Locusts, V III, 152
Johnson, C. V., on Colorado Potato-beetle, VIII, 10
Johnson, Prof. J. W., on Paris Green, VII, 11
Tohnson, J. W., Sprinkling machine invented by,
$\nabla I, 20$
(Joint-worm Fly, II, 92
Jones, H. L., oo Rocky Mountain Locust, VII, 150
10 MO

Jordan, C. W., on Rocky Mountain Locast, IX, 70 Journal of Agriculture, article from, on Fall Army Worm, III, 109, 110
article from, on Pickle
Worm, II, 69
article from, on remedy for Peach Borer, I, 49
juglandis, Acrobasis, IV, 42, 43, Supp., 67, 80 Conotrachelus, Supp., 54 Phycita, Supp., 80
Jumping Sumach-beetle, VI, 118
Natural history of, VI, 120
Remedies for, VI, 121
Jumping Tree-cricket, I, 138, V, 119
juncta, Doryphora, I, 103, 105, VII, 18, IX, 39
iuvenalis, Nisoniades, III, 15 รั

K.

kansanus, Brachinus, IF, 21
Kansas acts to encourage the destruction of Locusts, IX, 112, 113
Bombardier-beetle. IV, 21
Kansas City Journal of Commerce, articles from, on Rocky Mountain Locust, VIII,
59,107 59, 107
Times, article from, on Rocky Mountain Locust ravages, VIII, 74
Kansas Farmer, article from, on Army Worm, HL, 110
article from, on remedy for Locusts, VII, 184
Kansas, legislation in, regarding Locusts, IX, 112, 113
Locusts in, VIII, 76, IX, $6 \overline{0}$
Silk culture in, IV, 82
State relief work, VIII, 78
Katydid, Angular-winged, VI, 155
Oviposition of, VI, 156
Eggs of, VI, 155, 158
Earlier stages of, VI, 158, 161
Song of, VI, 159
Natural enemies of, VI, 162
Katydid, Broad-winged, VI, 167
Oviposition of, $\overline{\text { I }}, 167$
Katydid, Narrow-winged, V, 124, VI, 164
Oblong-winged, V, 123, VI, 169
Katydids, VI, 150
Characteristics of, VI, 154
Oviposition of, VI, 155, VIII, 37
Stridulatiou of, VI, 154
Kaucher, Wm., on Rocky Mountain Locust, IX, 72 Kayser, A., on poisonous qualities of Doryphora, VIII, 11
Kedzie, Prof. W. K., on intluence of Paris Green on soil, VII, 12, VIII, 6
on the use of Paris Green, $\mathbf{\nabla}$, 53, VIII, 6
Kelsey, S. J., on remedy for Chinch Bug, VII, 42
on Rocky Mountain Locust, V II, 135, 164, 193
Kerosene as remedy for Canker Worm, VIII, 20
Flat-head Apple - tree Borer, VII, 78
Locusts, VIII, 130
Killiug inseers inteniled for cabinet, $\bar{\nabla}, 32$
Kimbertin, J., on Rocky Mountain Locust, IX, 68

King, Bennet, on Rockr Mountain Locnst, IX, 72
King Bird destroying Canker Worm, VI, 27
Kirkpatrick, J., on Army Worm, II, 43
Klæger, W., insect pias manufactured by, V, 34
Klippart, H. J., on Army Worm, II, 47
Knot-horn, Hammond's, IV, 45
Knotweed Geometer, I, 179
kollari, 正giate, VIII, 179
Krimminger, W. B., on Rocky Moantain Locust, VIII, 63
Kuwa jirami, IV, 100

1.

Labena grallator, VII, 75
Labium of Hsmenoptera, V, 9
Lace-wing Fly, IV, 45
The Illinois, II, 25
The Weeping, II, 26, VI, 51
Lacewing larva, I, 57, II, 27
Lachnosterna fusca, Supp., 53
quercina, I, 57, 67, II, $19, ~ \nabla, 55, ~ V I, ~$
123, VII, 27, Supp., 53
123, VII, 27, Supp., 53
Ladybird, II, 25, VI, 51
The Convergent, I, 112
The 15 -spotted, IV, 17
The 9 -spotted, I, 112
The Spotted, I, 112
The 13-spotted, I, 112
Ladybirds, I, 112, II, 27, V, 11, 27
Laërtias, Supp., 54
Lagoa crispata, $\mathrm{V}, 126$
opercularis, $\mathrm{V}, 126$
Lalage, $\mathrm{V}, 140$
Lancaster Farmer, article from, on Colorado Po-tato-beetle, IX, 35
Lance Rustic, I, 80
Land Bugs, a division of Heteroptera, $\mathbf{\nabla}, 12$
lanigera, Eriosoma, I, 121, III, 95, IV, 69, VI, 63 Schizoneura, Supp., 59
Langworthy, A. J., on Apple-leaf Bucculatrix, IV 50
on Army Worm, VIII, 42
Laphygma frugiperda, $\Pi, 41$
lardarius, Dermester, VI, 100
Larder-beetle, VI, 100
Large Black Bear, IV, 141
Larra, the second stage of insect development, V. 7

Larva, Stinging, V, 125
Lasioptera vitis, V, 117
lateralis, Corimelicena, II, 35
Ophion, II, 53
laticollis, Prionus, LI, 87, III, 6, 75
latipennis, Ecanthus, Supp., 60, 61
Latreille, life of, saved by an insect, VI, 101
Latreillia, V, 140
Law of priority, IV, 55, VII, 143, VIII, 179, IX, 7
Lay, J. H., on Rocky Mountain Locust, IX, 69
Leaf-beetle, the Elm, VII, 5
-bug, the Ash-gray, VII, 47
-crumpler, III, 7
the Rascal, IV, 38, VII, 81
folder, the Lesser, IV, 47
-hoppers, III, 6
mistaken for Locusts, VIII, 150
-roller of the Strawberry, I, 142

Leaf-rollers, III, 6
-tyer, the Green Apple, IV, 46
Least Perree destroying Canker Worm, VI, 27
Le Baron, Dr. Wm., description of Locast Mite by, VII, 176
on Aphetinus mytilaspidis,
$\mathrm{V}, 87$
on Apple Worm, VI, 10
on Pine-leaf Scale, V, 84 on remedies for Canker

Worm, VI, 24
Lebia atriventris, VIII, 3, Supp., 52
grandis, III, 100, VIII, 3, Supp., 52
Lecanides, V, 85, 92
Lecanium aceris, V, 92
LeConte, Dr. J. L., on the ase of mineral peisons as insecticides, VII, 8
lecontei, Callmorpha, III, 134, VI, 92, Supp., 55
LeConte's Pine Worm. IX, 32
Descriptive, IX, 33
Habits of, IX, 33
Legged Maple Borer, VI, 107
Legislation against injurious insects, VILI, 132
to avoid locust injary, IX, 111
to create national entomological commission, VIII, 133
Lema trilineata, I, 99, II, 58, III, 14
Leopard Moth: the Great, IV, 141
Lepidoptera, characteristics of, $\nabla, 11$
preparing of, for cabinet, $\boldsymbol{V}, 38$
Lepidosapher, I, 9, V, 91
leporina, Acronycta, II, 121. Supp., 73
Leptalis, LII, 161, 165
Leptinotarsa, VIII, 2
Leptus, VI, 52
americanus, VI, 122
irritans, VI, 122, VII, 177
lepusculina, Aeronycta, II, 121, Supp., 73
Lesser Apple Leaf-folder, IV, 47, 48
lesueuri, Chrysobothris, VII, 71
Letterman, G. W., on Colorado Potato-bee tle, IX, 35
Leucania albilinea, IX, 50, 55
comma, VПI, 43
extranea, II, 50, VIII, 34
harveyi, IX, 50
impura, VIII, 38
lithargyria, VII, 38, 43
phragmatidicola, IX, 57
turea, VIII, 43
unipuncta, I, 109, II, 5, 11, 37, 55, V, 25,
VIII, 22, 24, 29, 182, IX, 47, Supp., 76
Leucanize, II, 51, 52
leucanice, Ichneumon, II, 53, VЦI, 54

> Exorista, II, $50,51,52$, III, 116, 129, IV, 108, VIII, 53, Supp., 60

Leucopis, VI, 51
leucoptera, Ourvirostra, VI, 27
leucopterus, Micropus, II, 15, VII, 19, Supp., 58
beucostigma, Orgyia, I, 144
Lewelling, H., on Apple Carculio, III, 35
Libelluloe, II, 46
Libellula trimaculata, V, 14
lictor, Erax, II, 124
Lightning-hopper, Frosted, V, 122
luna, Attacus, IV, 123, 138
Limacodes, III, 150 ह

Lime, air-slacked, as remedy for Potato beetle, IV, 14
as remedy for Locusts, VIII, 130
Carbolate of, as remedy for Potato-beetle, IV, 14
Limenitis, III, 168, 169
arthemis, III, 171
bredowi, III, 171
disippus, III, 153, 171, V, 146, Supp., 66
lorquini, III, 171
misippus, III, 107, VI, 145
proserpina, III, 171
sibylla, III, 171
ursula, IП, 163, 167, 171
weidemeyerii, III, 171
limenitidis, Microgaster, III, 158, Supp., 66
Lisnneria fugitiva, IV, 41, V, 133, 141
lophyri, IX, 32, Supp., 65
Lincecum, Dr. Gideon, on Harlequin Cabbage-bug, IV, 36
Lincoln (Neb.) Journal, article from, on Rocky Mountain Locust, VIII, 108
linearis, Coreus, II, 113
Phytocoris, II, 113
lineata, Deilephila, III, 140
lineatella, Prodenia, Supp., 56
lineola, Tabanus, II, 128
Lintner, J. A., on cabinet boxes for Lepidoptera, V, 38
on larra of Eudryas unio, VI, 93
on Hog-caterpillar of the vine, $\Pi, 72$ on sexual characters in butterflies, III, 103
ou stiaging larva, $\mathbf{V}, 131$
Liparis aurifua, V, 126
List of birds which feed on Canker-worm, VI, 27
Lithacodes fasciola, V, 126
lithargyria, Leucania, VIII, 38, 43
Lithophane, Supp., 75
Little, Jos. T., on White Pine Worm, IX, 30
Little-lined Plant-bug, II, 113
Loaíman, Dr. J. M., on Rocky Mountain Locust, IX, 75
Lobesia botrana, Supp., 57
Lobophora, IV, 129
Locust Flights east of the Mississippi, [X, 81
Flights in Illinois, VIII, 151
Mite, VII, 175
The Atlantic Migratory, VII, 169
The Clumsy, V III, 148
The Colorado, VII, 188
The Differential, VII, 124, 173
The Green-striped, VIII, 149
The Hatefinl, VII, 188, 190
The Migratory, V II, 133
The Red-legged, V II, 125, 188
The Rocky Mountain, VII, 121, VIII, 57, IX, 57
The Seventeen-year, VII, 27
The Thirteen-year, VII, 27
The Two-striped, VLI, 173
Locusta erythropus, V II, 126
Locustidoe, VI, 124, 150
Locusts, V, 14, V I, 153
as food for man, VIII, 143

Locusts not a divine visitation, VIII, 97
v8. grasshoppere, VI, 150, 153
Lodi Putato Pest Poison, VIII, 7
Lomechusa, IV, 22
Long, Dr., on remedy for Canker Worm, II, 101
Long, Levi, on Rocky Mountain Locust, VIII, 69, 102, IX, 71
Long-horned Beetles, injurious to fruit trees, III, 6 stridulating noise produced by, III, 14
Boring Beetles, larval habits of, II, 91
longifasciella, Gelechia, Supp., 83
longispinus, Dactylopius, IV, 70, VI, 63
Long-tailed Ophion, IV, 107, 129, V, 136
lophyri, Limneria, IX, 32, Supp., 65
Lophyrus, IX, 12
abbotii, IX, 29, 32, Supp., 65
abietis, IX, 33
americanus, IX, 34
compar, IX, 34
fabricii, IX, 34
lecontei, IX, 31, 32
lorquini, Limenitis, III, 171
Lexopeza, Supp., 52
Loxotania rosaceana, III, 6
Lucanus elaphue, V, 145
Lukens, W. E., on Strawberry Leaf-roller, I, 143
luna, Actias, IV, 123
Attacus, IV, 74
Luna Silkworm, IV, 123
larval changes of, IV, 124
lunatus, Cratoparis, III, 10
Lyccenider, VI, 138
lycaon, A patura, VI, 136, 146, 148
Pholus, II, 76
sphinx, II, 76
lycarum, A grotis, Supp., 77
Lyeorea, III, 103
Lycosa, IX, 98
Lyctus opaculus, IV, 54
Lyda, IX, 10
Lydella doryphorce, I, 111, IV , 6, IX, 40, Supp., 88
Lygaus leucopterus, VII, 21
Lygues robinice, V, 154
Lyman, Jos. B., on Cotton Worm, II, 39,40,Supp., 88
Lymexylon narale, V, 19
Lyttce cenea, III, 6
atrata, I, 98, Supp., 54
cineres, I, 97, Supp., 54
fabricii, 1, 99
margincta, I, 98, Supp., 74
merina, I, 98, Supp., 54
vittata, I, 96

M.

Machines for catching Curculio, I, 60, III, 18, V, 25 Colorado Potato-beetle, I, 117, VI, 14, VIII, 4
Macrobasis unicolor, Supp., 54
Macrocentrus delicutus, $\mathrm{V}, 50$
Macrodactylus subspinosus, V, 108
macrurum, Ophion, IV, 107
maculatis, Desmia, III, 61
maculata, Hippodrmia, I, 112, II, 25, VII, 39, Supp., 22
Fespa, Supp., 48
maculosa, Dendroice, VI, 27

Madarus ampelopsidis, $\mathbf{I}, 132$
vitis, I, 131, Supp , 71
magnus, Brachypeplus, VIII, 148
Maia Moth, $\mathrm{V}, 127$
Its Eggs, V, 128
Issuing of the motb, $\bar{\nabla}, 132$
The larra, $\mathrm{V}, 129$
Larval changes, $\mathrm{F}, 129$
The pupa, V, 131
The sting of the larva, V, 131
Natural enemies, ∇, 132
maia, Saturnia, IV, 41
Maine Farmer, article from, on Canker Worm, II, 100
mali, Acarus, II, 6
mali, Aphis, II, 6, 10, III, 6
Molobrus, III, 6
malivorana, Tortrix, IV, 47, Supp., 82
malus, Acarus, I, 16
malvarum, Erynnis, VIIL, 182
Mamestra, I, 68, III, 123
picte, $\Pi, 112$
Mandibulz of Hymenoptera, V, 9
Mandrake as remedy for Potato Bugs, IV, 15
Manitoba, Rocky Mountain Locust in, VII, 155, VIII, 89
Mrankato Review, article from, on Rocky Mountain Locast, IX, 60
Mann, B. P., on Canker Worm, VL, 28
Mantis carolina, I, 169, III, 68, IX, 98
mantivora, Sarcophaga, VII, 180
Many-banded Robber, I, 114, VII, 41
Maple, J. W., on Rocky Mountain Locust, IX, 71
Maple Borer, the Legged, VI, 107
Maple Worm, the Green-striped, $\overline{\mathrm{V}, 137}$
Enemies of, $\overline{\mathrm{V}, 139}$
Larval changes of, $\mathrm{V}, 138$
Remedies for, $\nabla, 141$
marginata, Lytta, I, 98, Supp., 54
marginatum, Trochilium, Supp., 72
Margined Blister-beetle, I, 98
marice, Ohalcis, IV, 109, 110, 123
Mark, Calvin A., on Rocky Mountain Locust, VIII, 102
Marsupialea, II, 12
Mary Chalcis-fly, IV, 109, 129
Maryland Fellow-throat, destroying Canker
Worm, VI, 27
Mascicera, III, 150, IV, 129
maxillosus, Brenthus, VI, 116
Maxwell, J. H., on Rocky Mountain Locust, IX, 69
Maxwell, J. R., on the use of Paris green, VI, 19
May Apple for Potato Bugs, IV, 15
May Beetle, I, 156, II, 19, IV, 16, VII, 27
Eggs of, $\mathrm{V}, 55$
May-flies, III, 8, V, 143
Maynard, C. J., list of birds destroying Canker Worm, VI, 27
Medtfee, H. H., on hand-picking as remedy for Potato Bugs, IV, 11
Mc.Cartuey, Jno. P., on White Grub, I, 156

McNallie, Thomas, on Rocky Mountain Locust, LX, 72
Mratur, W. R., on Rocky Mountain Locust, IX, 75
Mentow Grasshopper, V, 123
Meal-worm, II, 10, 11, VI, 118

Mealy Bug, $\mathrm{V}, 80$
Meat-flies, LI, 19, VII, 27
Meeker, N. C., on Rocky Mountain Locust, VIIL, 84
Megarthrus, IV, 22
Megathymus yuceс, VIII, 169, 171, 179, IX, 129
Megilla, Supp., 52
melancholica, Euryomia, III, 6
Helanerpus erythrocephalus, VIII, 124
melanocephale, Pimpla, III, 129
Melanoplus, VL, 188
melanosus, Micropus, VII, 22
melanothorax, Doryphora, VIII, 10
Melanotus communis, III, 6
incertus, LI, 6
mellonella, Galleria, Supp., 57
melodia, Helospiza, VI, 27
Meloe, VI, 125
Melospiza melodia, VI, 27
melpomene, Heliconius, III, 173
melsheimerii, Perophora, V, 125
Membracididoe, a family of Homoptera, V, 122
Membrane-winged Flies, an Order of Insects, $\nabla, 9$
Meracantha contracta, VI, 118
Merchant, J. W., on Oyster-shell Bark-louse, V, 77
Merchants' Exchange, (St. Louis) relief committee
from, VIII, 93
merdigera, Crioceris, II, 58
Merdigerous habit in insects, II, 58, VI, 128
Mermis, $\mathrm{V}, 49$
Meromyza americana, I, 159
Merritt's Patent Tree-protector, II, 99
Meske, Otto, on Army Worm, VШI, 44
Hesochorus fuscipennis, VII, 75
vitreus, II, 52, VIII, 53
messoria, Agrotis, Supp., 77
Metagenetic Coccids, $\mathbf{V}, 84$
Metzler, T., ou grape culture, VI, 83
Micracentrus retinervis, VI, 155, 156
Microgaster, I, 89, II, 75, 102, III, 158, IV, 45, V, 133 VIII, 54, Supp., 66
acronyctse, [I, 120
gelechice, I, 178, Supp., 66
glomeratus, III, 167
liminitidos, III, 158, Supp., 66
militaris, I, 89, II, 52, VIII, 53, Supp., 52
Hicrepteryx, IlI, 7 pomivorella, III, 7
Micropus leucopterus, II, 15, VII, 19, Supp., 58
var. albivenosus, VII, 22
apterus, VII, 22
basalis, VII, 22
dimidiatus, VII, 22
femoratus, VII, 22
fulvivenosus, VII, 22
immarginatus, VII, 22
melanosus, VII, 22
nigricornis, V П, 22
rufipedis, VII, 22
Migration of butterflies, III, 152
locusts, conditions of, VIII, 112
migratoria, Edipoda, VП, 133, VIII, 145
migratorius, Turdus, VI, 27
Migratory Locust, V II, 133
milbertii, Proctacanthus, Supp., 88
militaris, Exorista, II, 50, ILI, 129, IV, 109
Mierogaster', I, 89, II, 52, VIII, 53, Supp., 52
militaris, Senometopia, II, 50
Military Microgaster, 1I, 52, 103, VIII. 53
Miller, J. B., on Strawberry Crown-borer, III, 42
Miller, Samuel. on grape culture, VI, 76, 84
on Locusts, V III, 154
Miller, Stephens, on Rocky Mountain Locust, IX, 92
Miller, W. H , on Rocky Mountain Locust, VIII, 112
Milliken, R. M., on Canker Worm Trap, VI, 25
Milliken, R., on Rocky Mountain Locust, VII, 150, IX, 65
Mimetic analogies, III, 163
resemblance, $\mathrm{V}, 147$
Mimicry in animals, III, 159
butterflies, IIL, 159
Mimus carolinensis, V I, 27, VIII, 124
minimus, Empidonax. VI, 27
Pezomachus, II, 52, VIII, 54
ministra, Datana, III, 124, 127, 129, IV, 129
minuta, Eupsalis, V I, 113, 117
Trichogramma. III, 158, Supp., 68
Minnesota, act for the destruction of Locusts, IX, 113
Legislation regarding Locusts, IX, 114
Locust Commission, VIII, 83
Locust history in, VIII. 81. IX. 60
Locust invasion of 1876 in, IX, 60
mirabilis, Antigaster, VI, 162, Supp., 52
Mirror and Farmer, article from, on Locusts, VII, 172
misella, Chrysobothris, VII, 71
misippus, Limenitis. III, 167, VI, 145
Misnamed Gall-moth, II, 134
Mississippi, Locust flights east of the, IX. 81
Missouri, act to encourage the destruction of Locusts, IX, 111
Democrat, article from, on Army Worm, VIII, 50
Legislation regarding Locnsts, IX, 112
Locasts in, VIII, 89, 90, IX, 66
Silk-growing in, IV, 83
Missouri Bee-killer, II, 121, 122, IV, 21
missouriensis, A silus, II, 121, 122, IV, 21, Supp., 87
Mitchell, Th., on Army Worm, VIII, 39
Mite, the Locust, VII, 175
The Mussel-shaped, VII, 106
The Phylloxera, V II, 106
The Silky, VII, 175
Mites, $\bar{\nabla}, 87$
transformation of, VI, 52, 53
modesta, Arma. V, 133
Modest Soldier-bug, V, 133
Modrel, M. L., on Rocky Mountain Locust. IX, 75, 76
molesta, Myrmica, II, 11, IX, 43
molitor, Tenebrio, II, 9, 10, VI, 118
Mollusca, a branch of the Animal Kingdom, $\nabla, 6$
Molobrus mali, III, 6 "
molochinus. Quedius. IV, 21
Molothrus pecoris, VI, 27
Molts, mode of enumprating larval, III, 145
Monoleuca semifascia. V, 126
Monomera, a division of Heteroptera, V, 13 Montana, Locust history in, VIII, 87, IX, 59

Montgomery, G. W., on Rocky Mountain Locust, IX, 70
mori, Bombyx, IV, 74, 75, 84, 138
Sericaria, IV, 75
Mormon Louse, II, 17
Morris, Rev. Dr. J. G., on Periodical Cicada, IV, 31
Mortality among Grapevines, $\mathrm{V}, 58$
Mosquito, $\nabla, 13$
Mosquito Hawks destroying Army Worm moths, II, 46
Moths, a section of Lepidoptera, $\nabla, 12$
Motsinger, J. L., on Rocky Mountain Locust, IX, 73
Mottled Tortoise-beetle, II, 60, 63
Moulton, J. T., jr., on Chinch Bug, VII, 33
Muench, Hon. F., on Grape mortality, V, 58
Muhleman, J. R., on Chinch Bug, VIL, 34
on Fall Web-worm, ILL, 131
on Mimicry in Insects, III, 160
on Raspberry Root-borer, VI, 11
Mulberry Silkworm, IV, 75, 114, 134, IX, 18
Best food for, IV, 100
Best varieties or races, IV, 91
Choking the chrysalis, IV, 96
Chrysalis of, IV, 87
Cocoon, IV, 87
Cocoonery, IV, 96
Culture in California, IV, 79
Kansas, IV, 82
Missouri, IV, 83
Egg. IV, 86
Egg-laying. IV, 97
Enemies and diseases, IV, 87
How best to rear, IV, 92
Its history in America, IV, 77
Its past history, IV, 75
Larva, IV, 86
Moth, IV, 87
Natural history, IV, 84
Osage orange as food for, IV, 100
Reeling, IV, 98
Mulsant, E., insect pins used by, $\mathbf{V , 3 5}$
munda, Cuccinella, I, 25, VII, 39, Supp., 52
Murgantia. IV, 35
Mungor. H. A., on Tile-homed Prionas, II, 90
murenula, Agrotis, I, 78
murcinaculeta, Celcena, Supp., 54
Murgantia histrionica, IV, 35
munda, IV, 35
Muriate of lime, Gould's, as a remedy for Canker
Worra, II, 100
murina, Fidia. Supp., 53
Lyita, I, 98, Supp., 54
Murky Ground-beetle, I, 98, 115
Murray, A.. on Protective mimicry, III, 170
Murtfeldt. Miss M. E., on Oriposition of Narrow.
winged Katydid. VI, 165
Musca bifasciata, V, 140
domestica, II. 10
Muscardine. a disease of SilkTrorms, IV, 88
Juscidep. III. 150. VII. 175
Mussel-slaped Bark-louse, I. 15
Mite. VII. 106
muticus, Scolytus, V, 105. 107
Myiarchus crinitus, VIII, 124

Myelois convolutella, Supp., 57
indiginella, IV, 38
suavella, Supp., 79
Mygale, IX, 98
Hentzii, $\Pi, 106$
Mygatt, E. G., on Remedies for Bark-lice, I, 18
Myiodioctes canadensis, VI, 27
mylitta, Attacus, IV, 138
Myobia, V1, 52
Myocoryna 10-lineata, VII, 16
Myriapoda, a class of Articulate animals, $\nabla, 6$
Myrmica molesta, II, 11, IX, 43
myron, Darapsa, II, 71
Otus, II, 71
Sphinx, II, 71
Mysia 15-punctata, IV, 18, Supp., 53
Mytilaspis conchiformis, $\nabla, 93$
linearis, $\nabla, 93$
pini, V, 98
pinifolioe, V, 97
pomicorticis, $\mathrm{V}, 73,95$, Supp., 85
pomorum, $\mathrm{V}, 93,94$

N.

nana, Trogosita, III, 6
napi, Ceutorhynchus, III, 11
Narrow-winged Katydid, V, 124, VI, 164
Descriptions of adolescent stages, VI, 166
Oviposition, VI, 165
Nashville Warbler destroying Canker Worm, VI, 27
nasicornis, Oryctes, VI, 124
National Agricultural Congress, Address before, VI, 17
National Acarlemy of Sciences, proposed Entomological Commission under, VLI, V
Native American Onion-fly, II, 9
Native Currant Worm, IX, 23
Descriptive, IX, 28
Its habits, IX, 24
Remedies, IX, 28
Wherein it differs from the imported species, IX, 23
Native home of the Colorado Potato-beetle, VIII, 8 Rocky Mountain Locust, VII, 109
Natural selection, remarks on, IIL, 159, IV, 84, V, 83
Naturaliste Oanadien, article from, on Polyphemus
Silkworm, IV, 128
Nazara, IV, 20
Neat Cucumber Moth, II, 68
Nebraska Bee-killer, I, 168, II, 122, IV, 2
, Locusts in, VIII, 79, IX, 64
nebris, Gortyna, Supp., 56
nebulella, Acrobasis, IV, 42, Supp., 80
nebulo, Acrobasis, IV, 38, 47, Supp., 79
Phycita, III, 7, IV, 38, 41, Supp., 79
Necrobia ruficollis, VI, 101
Necrophaga, a division of Coleoptera, $\nabla, 11$
Necrophoridoe, III, 14
Needham, H. V., on Chinch Bug ravages, VII, 37
Negro-bug, II, 35
Flea-like, VII, 48
Nematus, Supp., 59
affinis, IX, 7
grossularice, IX, 7
grossulariatus, IX, 7

Nematus, vibesii, IX, 7
salicis-pomum, IX, 20
trimaculatus, IX, 7
ventricosus, VI, 43, 149, LX , 7, 10, 21
Nemocera, a section of Diptera, V, 13
Nemorce, V, 140, Supp., 60
nemorum. Hattica, I, 101
Phyllotreta, III, 83
Nemotois scabrosellus, $\mathrm{V}, 160$
nenuphar, Conotrachelus, I, 50, III, 11, 28, 31, 127, Supp., 54, 65, 68
Nerve-winged insects, $\mathrm{V}, 14$
Neuroptera, characteristics and classification of, V, 14
neustria, Clisiocampa, III, 119
New England Furmer, article from, on Potato-bug in Massachusetts, IV, 8
Grape-root Borer, Π, 87
Fork Tribune, article from, on Clover Worm, VI, 104
article from, on Grape Phylloxera, VI, 85, VII, 94
article from, on grape-vine grafting, VII, 109
article from, on Potato-beetle, IX, 35
article from, on remedy for Canker Worm, II, 101
articlefrom, on Rocky Mountain Locust, VII, 189, VIU. 156, IX, 64
Fork Weevil, III, 6, 57
ni, Plusia, II, 112, Supp., 78
niger, Gryllus, VI, 152
nigricans, Agrotis, I, 81, 83, 87
nigricornis, Micropus, VII, 22
EEcanthus, Supp., 61
nigripes, Cassida, II, 63, Supp., 53
Nine-spotted Lady-bird, I, 112
Nisoniades juvenalis, III, 155, V III, 177
Nitely, F. A., on Fall Army-worm, III, 109
nitela, Gortyna, I, 92, III, 105, VIII, 37, Supp., 56
nitidalis, Phacellura, II, 7, 64, 68
niveus, Ecanthus, I, 138, V, 120, Supp., 60, 61
Noctua clandestina, I, 79, Supp., 55
unipuncta, II, 49, VIII, 34
Noctuide II, 45, III, 136
Nomenclature, II, 71, III, 94, 133, 143, IV, $55, \mathrm{VI}, 109$,
150,153, VII, 16, 89, 143. 187, VIII, 22, 179, IX, 50
Need of popular terms that will not confase,
VI, 153, VII, 187
Law of priority, IV, 55, VII, 143, VIII, 179, IX, 7
Popular $v s$. scientific names, VII, 187 ,
Nonagria, VIII, 38
Northern Army-worm, VIII, 24
Brenthian, $\mathrm{VI}, 113$
Northern Squash-beotle, IV, 18
Nothrus ovivorus, II, 102
novaeboracensis, Ithycerus, III, 6, 57
novem-notata, Coccinella, I, 112
Noxious Insects, I, 7, IV, 72, V, 46
How to counterwork, $\nabla, 23$
nucum, Balaninus, III, 11
nuncius, Cryptus, IV, 110, 111, 123, Sapp., 52
Nycteribidoe, $\mathrm{V}, 14$
Nymphalidoe, III, 167, VI, 138
Nymphalis disipputs, II, 125

Nysius angustatus, , , 113, Supp., 85
destructor, V, 111, 113, VII, 190, Supp., 84, 85 raphnnus, $\bar{T}, 111$
thymi, $\nabla, 113$, Supp., 85

©.

Oak-feeding Tortricid, VI, 103
Oak Phylloxera, the American, VI, 64, VII, 118
Oak-pruner, I, 25
Oarisma poweshiek, VIII, 178
Oberea ocellata, I, 178, 179 perspicillata, VI, 111
obesa, Amara, Supp., 52
oblinita, A cronycta, III, 70, 71
oblineatus, Capsus, II, 113, V II, 27
oblonga, Celoena, III, 136, Supp., 75
oblongifolia, Phylloptera, II, 57, VI, 169
Oblong-winged Katydid, II, 57, V, 123, VI, 169
obscura, Prodenia, III, 117
Ohrysobothris, VII, 71
Laphygma, VLII, 49
-0bscurus, Prionue, I, 127 Tenebrio, II, 9, 11
obsoletus, Bruchus, III, 54, 56, Supp., 70, 71
occidentalis, Acronycta, II, 121, Supp., 73
Caloptenus, VIII, 116
ocellata, Obereu, I, 178, 179
ectomaculata, Alypia, I, 136, II, 80, 82, VI, 88, 94, 95
oculana, Grapholitha, III, 6
OEcanthus bipunc.atus, Supp., 61
californica, Supp., 61
fasciatus, Supp., 60
latipennis, Supp., 60, 61, 62
nigricornis, Supp., 61
niveus, I, 138, V, 120, Supp., 60, 61 varicornis, Supp., 61
CEdipoda, VIII, 103, 128
atrox, VII, 124
carolina, VII, 175, 179
differentialis, V, 14
migratoria, VII, 133, VIII, 145
phenicoptera, VIII, 104

Estrus, III, 150

ovis, I, 161
Eta compta, I, 151, Supp., 58
Egge of, Supp., 58
Oil of cade as remedy for Grape Phylloxera, IV, 68 olens, Goerius, IV, 21

- oleracea, Pieris, II, $10 \overline{5}$
-olinalis, Asopia, V I, 103, 107
olivaceus, Vireo, VI, 27, VIII, 125
Omaha Bee, article from, on Rocky Mountain Lo. cust, VIII, 80
Omaha Conference on the Locust subject, IX, 106
Oncideres cingulatus, III, 6
Onion Fly, I, 155
-maggot, V, 13
opaculus, Lyctus, IV, 54
Ophion, II, 130, IV, 123
bilineatus, III, 69
lateralis, II, зз
macrurum, IV, 107
purgatus, II, 53, VILI, 54
Ophion, the Long-tailed, IV, 129
jphinesa xylina, I, 40
Drchard Tent-caterpillar, III, 129

Orchelimum, VI, 155
glaberrimum, V, 123, Supp., 62
Orgyia leucostigma, I, 144
Oribatidoe, VI, 54
orientalis, Blatta, II, 10
orizivora, Dolichonyx, VIII, 52
ornata, Strachia, IV, 38
Orocharis saltator, I, 138, V, 119. Supp., 60, 62
Eggs of, Supp., 62
Stridulation of, Supp., 62
Ortalis arcuata, II, 9
Oithia, VIII, 178
Orthoptera, characteristics and classification of, V, 14
Orthoroma cylindricum, I, 124, 127, II, 87
Orthotylus discoidalis, V, 154
Orton, Edward, on Legged Maple-borer, VI, 109 ortonii, Agrotis
Ortyx virginiana, II, 28, VII, 41
Oryctes nasicornis, VI, 124
oryzivorus, Dolichonyx, VI, 27, VIII, 52
Oscinis vastator, I, 161
Osborne, Gov., Proclamation of regarding Locust ravages, VII, 149
Osten-Sackeniz, Exorista, II, 51
ostreceformis, Diaspis, Supp., 60
Otiorhynchus sulcatus, III, 11
Otus cnotus, II, 71
myron, II, 71
Oripositor of Eschna, VIII, 36
Agrion, VIII, 36
Army Worm Moth, VIII, 32, 38, 39, 182
Canker-worm Moth, VIII, 37
Fall Aimy-worm, VIII, 37
Katydids, V, 154, VIII, 37
Pinm Curculio, VIII, 36
Cnarmed Rustic, VIII, 37
Fucea Moth, VIII, 37
ovis, Estrus, I, 161
ovivorus, Nothrus, II, 102
Owlet Moth, II, 10, 45, 119
Oyster-shell Bark-louse, I, 7, II, 6, 10, 14, 7, 26, 73, Supp., 86
Bibliographical and Descriptive, V, 91
Both single and doable brooded, V, 79
Enemies and parasites, I, 16, V, 87
Food Plants, I, 15, V, 86
Formation of the scale, I, 12, V, 80
Its occurrence in Missouri, $V, 74$
Its range south, $\nabla, 77$
Its spread westward, $\nabla, 79$
Male Louse, $\mathrm{V}, 83$
Mode of growth, I, 10
Mode of spreading, I, 15, V, 85
Remedies, I, 16, $\Gamma, 90$
Southern limits in Missouri, I, 8
True nature of the scale, $\mathbf{\nabla}, 80$
oxycoccana, Teras, Supp., 83
Tortrix, Supp., 83
Oxyptilus, Supp., 58

P.

Pachymervs vulnerator, IV, 28
Pachyrhynchus Schoenherri, III, 57
Parkard's "Guide to the Study of Insects," V, 44

Podizca affusana, Supp., 57
Painesville (Ohio) Telegraph, article from, on Po-tato-beetle, VI, 12, 13
Painted Borer, III, 7
Lady, III, 151
Lady-bird, V, 101
Mamestra, II, 113
-winged Digger-wasp, $\nabla, 149$
Paleacrita-A new genus for the Spring Cankerworm, VIII, 13, Supp., 58
Paleacrita vernata, VIII, 13
Pale-thighed Tortoise-beetle, II, 62
Palingenia, 1X, 128
pallida, Cassida, II, 62
Palmer, R. B., on Ofrster-shell Bark-louse, V, 77
Palson, W. D., on Chinch Bug, VII, 22
paludana, Tortrix, V I, 103
pandorus, Daphne, II, 76
Paniscus geminatus, I, 89
pampinatrix, Ohoerocampa, II, 71
paphia, Antheroea, IF, 138
Paphia, V, 149, VI, 138
glycerium, II, 125, 127, V, 145
Papilio, II, 117, V, 146
asterias, III, 169
philenor, П, 116, III, 169, Supp., 54
troilue, III. 169
turnus, VI, 145
Papilionider, VI, 138
paradoxus, Rhipiphorus, VI, 125
Parallel Pruner, III, 6
parallelum, Elaphidion, III, 6, IV, 54
Parasa chloris, $\bar{\nabla}, 126$
Parasites, artificial propagation of, III, 29, IV, 40, V, 90
artificial introduction of, VII (preface, p. 4)
of Abbot's White Pine Worm, IX, 31
Archippus Buttertly, III, 149
Armj Worm, I, 89, П, 50, VII, 53
Bag-worm, I, 150
Buck Moth, V, 133
Cabbage Worm, II, 109
Cecropia Worm, IV, 107
Codling Moth, IV, 28, V. 49
Colorado Potato-beetle, I, 111, IX, 40
Common Yellow Bear, III, 69
Cottonwood Dagger, II, 120
Cut-worms, I, 89
Disippus Butterfly, III, 157
Flat-headed Borer, VII, 74
Goatweed Butterfly, V, 149
Gooseberry Span-worm, IX, 6
Grape Curculio, I, 129
Green-striped Maple Worm, $\nabla, 139$
Hickory Bark-borer, V, 106
Hog-caterpillar of the Vine, II, 73
Imported Currant TVorm, IX, 17
Io Moth, V, 136
Katsdid. VI, 162
Lasioptera vitis, V, 118
Luna Silkworm, IV, 125
Oyster-shell Bark-louse, $\nabla, 87$
Pine-leaf Scale-insect, $\mathrm{V}, 100$
Plum Curculio, III, 24
Polyphemus Silkworm, IV, 129
Promethea Silkworm, IF, 123

Parasites of Rascal Leaf-crumpler, IV, 40
Rocky Mountain Locust, VII, 174, IX, 91
Smeared Dagger, III, 71
Solidago Gall Moth, I, 175
Tawny Emperor Butterfly, VI, 142
Walnut Case-bearer, IV, 43
Wheat-head Army Worm, IX, 55
White Grub, VI, 123
White-Iined Morning Sphinx, III, 142°
Yama-mai Silkworm, IV, 136
Yucca Borer, VIII, 179
Parasitism, VI, 123
Secondars, VI, 128
Paris Green, antidote for, IV, 13
Contrivance for dusting, IV, 2
Cost of application per acre, VLII, 3
Experiments with, VIII, 6, 7
for Canker Worm, VI, 26
Colorado Potato-beetle, IV, 11, $\nabla_{\text {, }}$ 53, VII, 8, VII, 3
Cotton Worm, VI, 17, VII, 9
Curculio, III, 18
Flat-headed Borer, VII, 78
Locusts, VII, 183
Influence of, on man through the soil or through the plant, VII, 13
Influence of, on the plant, VII, 11 the soil, VII, 11, VIII, 6
Machines for spraying, VI, 20, VII, 15, VIII, 4,5
Patents on, VI, 20
Parker, Dr. S. J., on mortality among grape-vines, V, 59
Parrish, W. S., on Rocky Mountain Locust, IX, 73
Parthenogenesis, IV, 86, V, 85, VL, 35, IX, 18
Parula americana, VI, 27
Parus atricapillus, IV, 107, VI, 27
Pasimachus elongatus, I, 115, VIII, 52, IX, 98
punctulatus, IX, 98
Passalus cornutus, IV, 139, 140, V, 7, 55
distinctus, IV, 141
interruptus, IV, 141
Passalus, the Horned, IV, 139
Patent remedies and nostrums, IV, 15
Patents on insecticides, VI, 21
Pauls, G., on Fall Army-worm, III, 111
on Rock 5 Mountain Locust, VII, 173
Payne, M. S., on Rocky Mountain Locust, VIII, 68
Payne S. D., on Rocky Mountain Locust, VIII, 126
on Enemies of Rocky Mountain Locust, IX, 96
Pea Bug, II, 11, III, 45
Pea-weevil, III, 44, 55, IX, 43.
The female deposits her eggs on the outside of the pod, III, 46
Remedies, III, 48
Peach Borer, I, 47, II, 11, IIT, 76, 77, VI, 108.
Remedies for, I, 48
Peach-worm, the Blue-spangled, III, 132
Pear Blight, III, 58
Pear-tree Flea-lonse, II, 10
Pearl Wood Nymph, II, 80, 83, 84, ILI, 63; VI, 90
Pébrine, a disease of Silkworms, IV, 88, 89, 90, 91
Peck, W. D., on Canker Worm, VII, 89 ,
Pecks' Spray Machine, VIII, 4
pecoris, Molothrus, VI, 27
pectinatus, Rhipiphorus, VI, 125
Pelidnota punctata. III, 77, 78
pellionella, Tinea, II, 10
Pelopøен, V, 157
Pempelia, IV, 46
grossularice, I, 140, 1I, 9, Supp., 57
hammondi, IV, 44, 46, Supp., 80
Pemphigus, III, 96
caryrecaulis, VII, 117
caryopence, VII, 117
imbricator, I, 121
vagabundus, I, 112, 120, VII, 97
vitifolioe, I, 13, III, 85, 93, VI, 31, VII, 94, 117
Pendleton, E. M., on Rocky Mountain Locust, IX, 85
Pennsylvania Ground-beetle, I, 59, LX, 98
Soldier-beetle, IV, 28 -bug, 1, 57
pennsylvanica, Dendroica, VI, 27
Epicauta, Supp., 54
pennsylvanicus, Chauliognathus, I, 57, IV, 28, Supp., 53
Harpalus, 1, 59, VIII, 52
Pentamera, a section of Coleoptera $, V, 10$
Pentarthron, Supp., 69
Pentarthrum, Supp., 69
Pentatoma rufipes, IV, 20
Penthinc vitivorana, I, 133, Supp., 57
Pepsis formosa. II, 106
peregrinum, Acridium, V II, 133, VIII, 144, 145
Perilampus platygaster, II, 87
Perilitus indagator, IV, 43, Supp., 66
Perillus circumcinctus, IV, 19
Periodical Cicada, I, 18, III, 6, IV, 30
Chronological history, with predictions of the future appearance of broods, I, 30
Enemies, I, 26
Injury, to fruit trees, I, 29
Natural history and transformation, I, 22
Season of appearance and disappearance, I, 22
17- and 13.year broods, I, 18
Sting of, I, 26
Two distinct forms, I, 20
periscelidactylus, Pterophorus, I, 137, III, 65, Supp., 58
Peritymbia vitisana, IV, 55, VI, 31, VII, 117
Perkins, Geo. H., on Colorado Potato-beetle, V III, 2
Perla, V, 143
pernyi, Antheroec, IV, 137
Attacus, IV, 74, 137, 138
Perny's Silkworm, IV, 137
Perophora Melsheinerii, $\Gamma, 125$
perpulchra, Hockeria, II, 53
persimilata, Acidelia, V I, 138
Perthostoma, IX, 129
Peterson, J. M., on Rocky Mountain Locust, IX, 73
Pezomachus ininimus, II, 52, V III, 54
Pezotettix, VIII, 115
Phacellura nititulis, II, 7, 04, 68
Phaloena frugiperda, V III, 48 penctelle, Supp., 58 veincta, VII, 80
Phalcenido, description of a new geaus of, V III, 12 phalanga, Catocala, IIL, 166
Thalangium dorsatuin, IV, 17

Phaneroptera curvicauda, V, 124, VI, 164
Phares, Dr. D. L., on Cotton Worm, II, 38, 40, VI, 24
Phelps, Wilson, on Remedy for Chinch Bug, II, 29
Philampelus achemon, II, 74 satellitia, II, 76
phitenor, Papilio, II, 116, III, 169, Supp., 54
Pbilenor Swallow-tail, II, 116, III, 169
Philonthus apicalis, IV, 21
Phobetron hyalinum, V, 126 puthicium, $\mathrm{V}, 126$
phoenicenes, Agelaius, VI, 27
phonicoptera, Edipoda, V III, 104
Photus crantor, II, 74
lycaon, II, 76
Phoxopteris comptana, Supp., 57
Phryganeidoe, V, 10
Phtheir, VI, 63
Phycis grossulariella, Supp., 57
Phycita juglandis, Supp., 80
nebulo, ILI, 7, IV, 38, 41, Supp., 79, 80
var. nebulella, IV, 42, Supp., 80
phycitce, Exorista, IV, 40, Supp., 88
Tachina, IV, 40, Supp., 88
Phygadeuon brevis, IV, 28
Phylloptera oblongifolia, II, 57, V, 123, VI, 169
Phyllotreta nemorum, III, 83
striolata, LI, 83
Phylloxesa acanthochermes, VII, 119
balbianii, Vम, 91, 97, 99, 119
chryovcaulis, V II, 97, 99, 117
caryofolice, IV, 66, V, 70, VI, 45, VII, 117
caryae-fallax, VII, 118
caryce-globuti, VII, 117
caryce-gummosa, VII, 118
caryaeren, VII, 118
caryoe-semen, V II, 117
caryce-septa, VII, 118
castanere, VII, 118
coccinea, VII, 119
conica, VII, 118
corticalis, VII, 119
depressa, VII, 118
forcata, VII, 118
gallicola, VI, 30, 33, VII, 93
lichtenstemii, VII, 119
quercus, IV, 66, VI, 30, 41, 43, 68, VII, 91, 119, V III, 158
radicicola, VI, 33, 36, 37, VII, 93
rileyi, IV, $66, \mathrm{VI}, 42,43,64,86, \mathrm{VII}, 91$, 117, 118, V1II, 158
scuitifera, VII, 119
spinosa, VII, 118
vastatrix, III, 85, IV, 55, V, 57, VI, 30. 63, 66, 86, 87, ViI, 91, 117, VIII, 157
vitifolioe, IT, 27, III, 84, IV, 55
Position of the genus in the system, III, 96
Synopsis of the American species of, VII, 117
Phylloxera, American Oak, VI, 64, VII, 99, 118
European Oak, VI, 46, 64
Grape, III, 84, IV, 55, 67, V, 57, 63, VI_{3}
41, 90, VIII, 157, IX, 43
Phylloxera, Mıte, VII, 106
phylloxerce, Thrips,, VI, 50
Tyroglyphus, VI, 52, 53, 81

Physonota quinquepunctata, II, 59, Supp., 53
unipunctata, Supp., 53
Phytocoris linearis, II, 113
Phytophaga, a division of Coleoptera, V, 11
Terebrantine Hsmenoptera, $\mathrm{V}, 10$
Phytophagic varieties and species, I, 154, III, 127
Pickle Worm, II, 7, 64, 67, 70
picta, Coccinella, V, 101, Supp., 52
Harmonia, Supp., 52
Mamestra, II, 112
pictus, Clytus, III, 7, VI, 101
Pieris, IIL, 161
brassica, III, 167
oleracea, II, 105
protodice, II, 104, IX, 57
гарж, II, 10, 107, III, 167, V, 24, 26, VII, 5
vernalis, IX, 57
Piesma cinerea, II, 32, VII, 47
Pimpla, I, 178, ILI, 129, IV, 44
annulipes, IV, 43, V, 49
conquisitor, IV, 43
indagatrix, IV, 43
melanocephala, III, 129
Pine leaf Scale, III, 92, V, 84, 97
Confined to Pines proper, V, 100
Its natural history, V, 98
Natural enemies, V, 100
Remedies, $\mathrm{V}, 101$
Two-brooded, V, 99
Pine Worm, Le Conte's, IX, 32
pinifolioe, Aspidiotus, III, 92
Mytilaspis, V, 97
pini, Mytilaspis, V, 98
Pioneer Press and Tribune, article from, on Rocky
Mountain Locust, IX, 61
Piophila casei, II, 10
Pipiza radicum, I, 121, V I, 52
Pirene, I, 176
pisi, Bruchus, II, 11, MI, 44, Supp., 53
pisorum, Bruchus, Supp., 53, 71
Pissodes strobi, III, 60
Placid Soldier-bug, IX, 17
Plant-lice, LII, 87, IV, 35, VI, 33
Number of annual broods of, II, 19, VII, 27
Plate City Landmark, article from, on Rocky Mountain Locust, VIIL, 74
Platygaster, II, 103
platygaster, Perilampus, II, 87
Platyphyllum concavum, $\bar{\nabla}, 123,124$, VI, 167
Platypsyllus castorinues, V, 16
Platyptilia, Supp., 84
zetterstedtii, Supp., 84
Platysamia cecroyia, IV, 103
Pleasant Hill Review, article from on Rocky Mountain Locust, VIII, 65
Plectrophanes lapponicus, IX, 91
plicata Chlamys, VI, 128
plorabunda, Ohrysopa, II, 26, VI, 51, VII, 40
Plam Curculio, I, 50, II, 6, 48, III, 5, 6, 11, 13, 26, 30, $37,38,57,58,127, \mathrm{~V}, 26,47,106,121, \mathrm{VI}, 9, \mathrm{VII}$, 29, VIII, 36
Artificial Remedies, I, 60
Hooten's Curculio-catcher, III, 23
Hull's Curculio-catcher, III, 19
Jarring by machinery, ILI, 18

Plum Curculio-Continued.
Keeping it in check by the offer of premiums, III, 17
Natural Remedies, I, 56
Nocturnal rather than diurnal, III, 14
Paris green as a remedy, III, 18
Porizon Curculio Parasite, III, 28
Remedies, I, 60, III, 41
Sigalphus Curculio Parasite, III, 24
Single-brooded and hibernates as a beetle, III, 11
The Ransom Chip-trap process, III, 15
Ward's Carculio-catcher, III, 20
Plum Gouger-Its character, distribution, II, 11, III, 39
Habits and natural history, III, 40
Its time of appearance, III, 40
Often mistaken for the Plum Curculio, III, 40
Remedies, III, 41
Plum Moth, III, 6, 25, 26, V, 51
Plum-weevil, III, 30, 31
Plame, Grape-vine, I, 137, IV, 129
Plusia brassica, II, 110, 111, Supp., 77, 78
ni, II, 112, Supp., 78
precationis, II, 112
Plutella cruciferarum, II, 10, IV, 36
Podisus, Supp., 58
placidus, IX, 17
Pociloptera compta, I, 152
pruinosa, $\nabla, 122$
Poisonous qualities of Colorado Potato-beetle,
VIII, 10
polistiformis, 㳀geria, I, 127
Polistes rubiginosus, $\mathrm{V}, 54$
Pollen carried in thunder-showers, $\mathrm{V}, 86$
Pollyxerus cagurus, VII, 106
Polson, W. D., on Rocky Mountain Locust, IX, 74
Polygramma, VII, 18
10-lineata, VII, 16
Polymorphism, VI, 43
polypheтия, dttacus, III, 170, IV, 13, 74, 85, 110, 121, 125, 138 Telea, IV. 125
Polyphemus Moth, II, 19, VII, 27
Issuing of, from cocoon IV, 127
Polyphemus Silkworm, IV, 125
Food-plants, IV, 126
Larval changes, IV, 126
Natural enemies, IV, 126
Natural history, IV, 125
Parasites, IV, 129
Value of silk, IV, 129
Polysphincta bicarinata, III, 71
pometaria, Anisopteryx, II, 97, VI, $29, \mathrm{VII}, 80,83,86$,
VIII, 13, Supp., 56
pomicorticis, Mytilaspis, V, 73, 95, Supp., 85
pomifoliella, Bucculatrix, IV, 49, 51
pomivorella, Micropteryx, III, 7
pomonella, Oarpocapsa, I, 62, 108, II, 10, III, 6, 101, IV, 27
Trypeta, I, 108, III, 6, 91
pomorum, Anthonomus, III, 11
Mytilaspis, V, 93, 94
Poplar Dagger, II, 119
Spinner, II, 19, VII, 27

Popular names, confusion from improyer use of, VII, 187
populi, Acronycta, II, 119, 120, Supp., 72, 74
populnea, Saperda, IV, 22
Porizon conotracheli, LII, 28, Supp., 64
Porizon Curculio Parasite, ILI. 28
Potash, Bichromate of, for Potato-bugs, IV, 14
Potato-beetle (see Colora lo Potato-beetle).
Potato Bug (see Colorado Potato-beetle).
Pest poison, VIII, 7, IX, 45
Stalk-borer, I, 92
Stalk-weevil, I, 93, III, 60
-worm, I, 95, $\nabla, 12.5$
Potherb Battertly, II, 105
Potts, R. B., on Rocky Monntain Locust, IX, 92
Powers, Rev. Grant, on Northern Army-worm, II, 42
Poweshiek, Oarisma, V IП, 178
Practical Entomologist, article from, on Climbing Cut-worms, I, 71 article from, on Harlequin Cabbage Bug. IV, 36
Prairie Farmer, article from, on Ailanthi-culture, IV, 114
article from, on Canker Worm trap, VI, 25
articles from, on Chinch Bug, II, 23, 30
article from, on Climbing Cutworms, I, 69
article from, on Colorado Potato. beetle, I, 110
article from, on Dark-sided Cutworm, I, 75
article from, on Food of Periodi. cal Cicada, I, 29
article from, on Hickory Bark. borer, V, 105
article from, on Katrdids, VI, 154
article from, on Lesser Leaf folder, IV, 48
article from, on Locust Mite, VII, 177
article from, on Remedy for Po. tato-beetle, IV, 15, VIII, 3
article from, on Rocky Mountain Locust, V II, 135, 138
Pvairie Warbler destroying Canker Worm, VI, 27 Pratt, S. M., on enemies of Rocky Mountain

Locast, IX, 93

Prayers to avert insect injur:r, V III, 96
precationis, Plusia, II, 112
Predictions verified, VII, 3, VIII, 58, 163, 184, IX, 57
Preying Mantis, IX, 98
Prionus imbricornis, II, 89, III, 6, 75
laticollis, II, 87, III, 6, 75., V, 56
obscurия, I, 127
Priority, law of, IV, 55, VII, 143, VIII, 179, IX. 7
Pristiphora, II, 8
grossularice, IX, 23, 26
Pritchett, H. Carr, on Rocky Mountain Locust, IX, 75
Processionary caterpillar, V, 126
Proclamation of Governor Hardin relating to Locuste, VIII, 95

Procris ainericana, II, 85
vitis, II, 86
Procris, the Grape vine, $\nabla, 134$
Proctacanthus millertii, Supp., 88
Proctotrupide, V, 118
${ }^{1}$ Prodeniat autumnalis, MI, 109, 116, 151, IV, 129, VIII, 48
var. futuose, VIII, 49
obscura, VIII, 49
commelinte, I, 88, III, 13, Supp., 56
farimedia, Supp., 56
lineatella. Supp., 56
Prozress of Ecouomic Entomoloys, V, 19
Promrchus, Supp., 87
apinora, IX, 98
bustardiz. II, 129, IV, 21, Supp., 60
fitchie, Supp., 60
vertebrata, II, 123
promethen, Attucus, IV, 74, 110, 121, 138
Callozamia, IV, 121, Supp, 55
Promethea Silkworm, IV, 121
Foodplants, IV. 123
Larral changes, IV, 121
Natural enemies, IV, 123
Value of the cocoon, IV, 121
Pronmba, V, 150
yuccasella, V, 151, 160, VI, 131, VIII, 171, Supp. I\%
Chrysalis of, VI, 131
Generic characters of, $\nabla, 150$
How the female fertilizes the plant, $\nabla, 154$
Larva of, V, 155
Range of, V, 159
proserpina, Apatura, VI, 145
Limenitis, III, 171
Protective imitation, III, 142
protodice, Pieris, II, 104
Provancher, Abbé, on parasite of Cabbage Worm, II, 110
on Polyphemus Silkworm, IV, 128
pruinosa, Cicala, I, 27
Pruber, III, 6
prinicida, Anthonomer, III, 39, Supp., 54
prumiona. Semasir, I, 6.5, III, 6, 25
Pseudohnzis eglanterina, V, 126
Pspuido-Neuroptera, a division of Neuroptera, $\mathbf{V , 1 4}$
Pseudo-Tetramera, a section of Coleoptera, $\nabla, 10$
Pseudo-Trimera, a section of Coleoptera, V, 10
Psendopontia, VIII, 170
psi, Acronycta, II, 121. Supp., 73
Psoci as museum pests, V, 41
Psyche, article from, on Rorky Mountain Locust, VIII, 109
Psychomorpha epimenis, III, 63, 64, VI, 87, 88, 90, 95
Psylla pyri, II, 10, 33
Pterognostic rariation, IX, 22
Pterophorus, II, 86

$$
\text { cardui, Supp., } 83
$$

carduidactylus, I, 180, III, 67
periscelidactylus, I, 137, III, 65, Supp., 58
Ptinida, I 5, 53
pubescens, Haltica, I, 101
pulchellus, Sphenophoru*, III, 60
pulicaria, Corimeloena, II, 33, VLI, 48

156

 INDEX TO MISSOURI ENTOMOLOGICAL REPORTS.Pulicidoe, $\mathrm{V}, 15$
pullatus. Ichneumon, III, 69
Pullen, B., on Flea-like Negro-bug, II, 34
on remedy for Peach Borer, I, 48, 34
punctata, Byphantria, Supp., 55
Pelidnota, III, 77, 78
punctella, Phatcena, Supp.. 58
punctipes, Euschistus, I, 113, IV, 19, 20, Supp., 58
Pupation of Butterfies, III, 146, IV, 55, VI, 138, VIII, 179, Supp., 55
purgatus, Ophion, II, 53, VIII, 5t
Purged Ophion, П, 53, V III, 54
Parinton, J. A., on Rocks Mountain Locust, IX, 75
Purple Emperor Butterfly, VI, 136
Purple-finch unjnstly accused of doing injury, I, 72 destroying Canker Worms, VI, 27
Purple Grakle destroying Canker Worm, VI, 28
purpureus, Carpodacus, VI, 27
pusilla, Rhizopertha, II, 14
pustulclla, Tinea, Supp., 58
pustulosus, Sphenophorus, Sapp., 54
Putnam, J. D., on Rocky Mountain Locust, VII, 141
Pyrameis atalanta. III, 167
Pyramidal Grape-vine Worm, III, 72
pyramidea, Amphipyra, III, 73, 74
pyramidoides, Amphipyra, III, 72, 74, Supp., 75
Pyranga rubra, VI, 27
pyri, Anthonomeus, III, 11
Eriosoma, I, 118, III, 5, 95, 96, VI, 37, Supp., 59, 87
Psylla, II, 10, 33
Pyrrharctia, Supp., 55

9.

quadrigibbus, Anthonomus. III, 29, 35
quadri-impressa, Chrysobothris, VII, 71
quadrispinosus, Scolytus, V, 105, 107, Supp., 54
Quail destroying Chinch Bugs, VU, 41 Locust eggs, IX, 91
unjustly accused of being injurious, I, 72
Quedius molochinus, IV, 21
quercina, Lachnosterna, I, 67, 157, II, 19, VI, 123, VII, 27, Supp., 53
quercus-aciculata, Oynips, Supp., 59
-frondosa (Gall), III, 25
-inanis, Cynips, I, 14
-spongifica, Cynips, I, 14
quercus, Phylloxera, IV. 66, VI, 30, 41, 43, 68, VII, 91, 119, VIII, 158
Quick, T. J., on Rocky Mountain Locust, IX, 71
Quince Curculio, III, 35
How it differs from the others, III, 35
Its transformations and habits, III, 37
Remedies, III, 38
quindecim-punctata, Mysia, IV, 18, Supp., 53
quinque-maculata, Sphinx, I, 95
quinquepunetreta. Physonota, II, 59, Supp., 53
Quiscalus versicolor, VIIT, 124

R.

Radiata, a brancil of the animal kingdom, $\nabla, 6$
Radicicola or Root-inbabiting type of Phylloxera,
VI, 36, 37, 38, 66, VII, 93
radicum, Anthomyia, IX, 92
Pipiza, I, 121, VI, 52
Rhodites, I, 13
raflesio, Euschemon, VIII, 170
Ragan, Z. F., on Rocky Mountain Locust, VIII, 70,105
Ralls, Wm. C., on Rocky Mountain Locust, IX, 117
Randolph, T. C., on Clover-hay Worm, VI, 103
Ransom's Chip-trap for Cucculio, III, 15
rаре, Pieris, II, 10, 107, ILI, 167, VII, 5
Rapacious Soldier-bug, I, 114
Rape Butterff, II, 10, 107, V, 24, VII, 5
Raphigaster, IV, 20
Raptatoria, a section of Orthoptera, $\mathrm{V}, 14$
raptatorius, Reduvius, I, 114, Supp., 58
Rascal Leaf-crumpler, IV, $38,42,44$, VII, 81
Natural enemies of, IV, 40
Remedies for, IV, 40
Raspberry Geometer, I, 139
Root-borer, VI, 111
Rathrou, S. S., on American Bean-weevil, III, 53 on Colorado Potato-beetle, IX, 35 on Periodical Cicada, I, 20, 22, IV, 31
Ravenel, H. W., on Grape Phyllosera, VI, 83, VII, 102, VIII, 164, 165
Raymoond, H. C., on Rocky Moantain Locust, IX, 118
Read, M. C., on Grape-vine Plume, III, 67
Rearhorse, I, 169
Reason vs. instinct, V, 83, 15.
Reavis, D. B., on Rocky Mountain Locust, IX, 73 rectus, Balaninus, IV, 144
Red Currant Borer, II, 10
Red-eyed Vireo destroying Canker Worm, VI, 27 Locusts, VIII, 124
Woodpecker destroying Locusts, VIII, 124
-legged Ham-beetle, VI, 96
Loenst, VII, 125, 188, VIII, 150
-shouldered Sinoxylon, II, 53, V, 54
-tailed Tachina-fly, II, 50, III, 129, VI, 96, VIIr 179, VIII, 53
-start destroying Canker Worm, VI, 27
Reduvius, $\mathbf{I I}, 32$
raptatorius, I, 114, Supp., 58
Red Weevil, II, 16, IX, 17
Red-winged Blackbird destroying Canker Worm, VI, 27
Chinch Bug,
VII, 41
Reed, E. B., experiments with various substances for Potato-bugs, IV, 14
regalis, Citheronit, III, 151, IV, 129, V, 141
Relation of Insects to Agriculture, $\bar{\nabla}, 5,18$
Relaxing Insects, $\nabla, 41$
Remedies, V, 25
for Abbot's White Pine Worm, IX, 32
Ailanthus Worm, I, 152
American Meromyza, I, 161
Apple Cureulio, III, 34
-leaf Bucculatrix, IV, 50
Skeletonizer, IV, 45
-root Plant-louse, I, 123
-tree Tent-caterpillar, III, 120
-twig Borer, IV, 53
Army Worm, II, 53, VIII, 54
Bag-worm, I, 151
Bee-killer, I, 168
Moth, I, 167

Remedies for Blister-beetles, I, 99
Blue Caterpillars of the Fine, II, 84
Boll Worm, III, 108
Cabbage Plusia, II, 111
Worms, II, 109
Canker Worms, II, 98, V I, 24. VII, 85, VIII, 19
Cbinch Bug, II, 28, FII, 31
Clover-hay Worm, VI, 105
Codling Moth, I, 65, IV, 23, $V, 46, V \mathrm{I}, 3$
Colorado Potato-beetle, I, 116, III, 99,
IV, 11, V, 53, VI, 13, VII, 8, VIII, 3, IX, 45
Corn Worm, III, 108
Cotton Worm, II, 41, FI, 17
Cut-worms, I, 90
Fall Army Worm, III, 114
Web-worm, III, 132
Flat-headed Borer, I, 47, VII, 76
Flea-like Negro-bug. II, 35
Gooseberry Fruit-worm, I, 141 Span-worm, IX, 6
Grain Bruchus, III, 51
Grape-cane Gall-curculio, I, 132 -leaf Folder, III, 62 Phylloxera, III, 89, IV, 68, V 71, VI, 55, VII, 105
-root Burer, III, 77
-vine Colaspis, III, 84
Fidia. I, 133
Flea-beetle, III, 80
Fruit-worm, I, 135
Plume, I, 138, III, 68
Green-striped Maple Worm, V', 141
Harlequin Cabbage-bug, IV, 38
Hickory Bark borer, V. 107
Imported Currant Worm, IX, 13
Jumping Sumach Beetle, V I, 121
Legged Maple Borer. VI, 109
Lesser Apple Leaf-folder, IV, 49
Native Currant Worm, IX, 26
New Grape-root Borer, I, 128, II, 88
Oyster-shell Bark-louse, I, 16, V, 90
Peach Borer, I, 48
Pea-weevil, III, 48
Periodical Cicada, I, 30
Pickle Worm, II, 70
Pine-leaf Scale-insect. V, 101
Plum Curculio, I, 60, III, 15, V, 25
Plum Gouger, III, 41
Potato Stalk-borer, I, 92
-weevil, I, 95
Worm, I, 96
Pyramidal Grape-vine Worm, III, 73
Quince Curculio, ILI, 38
Rascal Leaf-crumpler, IV, 40
Red-legged Ham-iseetle, VI, 100
shouldered Sinosylon, IV, 54
Rocky Mountain Locust, YII, 181,
VIII, 125, IX, 99, 108
Rose Chafer, V, 110
Round-headed Apple-tree Borer, I, 45
Seet-corn Maggot, I, 155
Sheep Bot-fly, I, 16.5
Smeared Dagger, III, 70
Strawberry Crown-borer, III, 43

Remedies for Strawberry Leaf-roller, I, 143 Worm, IX, 28
Striped Cucumber-beetle, II, 66 Tarnished Plant-bug, I, 115 Tent-caterpillar of the Forest, III 128
Tile-horned Prionus, II, 90
Tobacco Worm, V, 56
Tortoise-beetles, II, 60
Tree-cricket, I, 139
Wheat-head Army Worm, IX, 54
White Grub, I, 157
White-marked Tassock Moth, I, 147
Zebra Caterpillar, II, 113
Remington, M. C., on Clover Hay Worm, VI, 104
renigera, Celoena, I, 86, Supp., 56
repanda, Cicindela, TIII, 52
repentis, Agrotis, Supp., 77
Report of Committee on Entomology, read before
the Mo. State Horticultural Society, II, 5
Retarded development, $V, 130,132$
retinervis, Microcentrus, VI, 155
Rhipheus, VIII, 170
Rhipiphorus paradoxus, VI, 125
pectinatus var. ventralis, VI, 125
Rhizaphis vastatrix, V I, 31
Rhizopertha pusilla, II, 14
Rhodites ignota, I, 13

$$
\text { radicum, I, } 13
$$

Rhodobeenus, Supp., 54
rhois, Blepharida, I, 100, II, 58, VI, 118
Rhopalocera a section of Lepidoptera, V, 12
Rhynchites bacchus, III, 11
betuleti, III, 11
conicus, III, 11
Rhyparochromus decastator, VII, 22
Rhyssm, VIII, 38
ribesii, Aphis, VI, 46
ribis, Aphis. II, 10
Rice Bunting destroying Army Worm, VIII, 52
Richmond Conservator, article from, on Rocky
Mountain Locust, VIII, 75
Richmond Whig, article from, on Apple grape-vine gall, $V, 115$
ricini, Samia, IV, 112
Riehl, Wm., on Army Worm, VILI, 39
rileyana, Tortrix, I, 153, Supp., 81
rileyi. Aleiodes, III, 71
Eriosoma, Supp. 87
Phylloxera, IV, 66, VI, 42, 43, 64, 86, VII, 91, 117, 118, VIII, 158
Ring-banded Soldier-bug, IV, 18
Ring-legged Pimpla, V, 49
Roberts, A., on Rocky Mountain Locust, IX, 117
Robin destroying Canker Worm, VI, 27
robinice, Spermophagus, III, 45
roborena, spilonota, Supp., 57
Robords, Chas. J., on Rocky Mountain Locust, IX, 69
Robson, J.W., on birds destroying Canker Worms, VI. 27
on Rocky Mountain Locust, IX, 66, 91
on Wheat-head Army Worm, IX, 51
Rocky Mountain Locust, VII, 121, VIII, 22, 57, IX,

Rocky Mountain Locust-Continued.
Account of Damage done in Missouri, VIII, 89 Additional Natural Enemies, IX, 91
Animals which destroy the Egge, IX. 91
Area in which Eggs were laid in 1876, IX, 116
Artificial Means of Destroying the Eggs, VIII, 125
Bill to provide for investigation of, VIII, 133
Bounties for catching and destroying Locusts, VIII, 138
Changes that followed the Locusts, VIII, 121
Chronological history, VII, 132
Conditions of Migration, VII, 112 which prevent the permanent Settlement of the Species in Missouri, VIII, 113
Contrast between Spring and Fall, daring locust injury, VIII, 119
Definition of the Species, VIII, 114
Departing swarms do not return, VIII, 124
Descriptive, VII, 126
Destination of departing Swarms, VIII, 106, IX, 77
Destitution in Missouri in 1875, VIII, 91
Destruction of the unfiedged young, VIII, 126, IX, 108
Does the Female lay more than one egg-mass? IX, 85
Direction of fight, IX, 81
Direction in which young Locusts travel, VIII, 101
taken by winged Locusts, VIII, 105, IX, 81
Easily confounded with the Red-Legged Locnst, VII, 125
Eastern line reached in 1876, IX, 80
Egg-mass, philosophy of, IX, 87
Eggs, condition of, in winter, IX, 116
desicription of, IX, 87
how laid, IX, 86
where laid by preference, VII, 123
experiments with, IX, 99
Enemies and parasites, VII, 174, VIII, 124, IX, 91
Exodus of the swarms in 1875, VIII, 104
Experience in the Spring of 1875, VIII, 118
Experiments with the Eggs, and conclusions drawn therefrom, IX, 99, 106
Food-plents, VII, 158, VIIL, 121
General outlook in the Spring of 1875, VIII, 60
Governor's Proclamation, V III, 93̆
Green variety of, VIII, 117.
Habits of the unfledged Locusts, VIII, 100
Hatching of Locusts, IX, 89
How the young Locust escapes from the Egg, IX, 88
How to avert Locust Injuries, VIII, 131
Influence of bursing the eggs at different depths, IX, 104
exposure to air on the eggs. IX, 104
freezing and thawing on the eggs, IX, 99
moisture on the eggs, IX, 101
wind in determining the course of Locust swarms, IX, 81

Rocky Mountain Locust-Continued.
Lnjury from other, non-migratory Locusts, VII, 171
to fruit and fruit trees, VIII, 121
Invasion of 1873, VII, 141
1874, VII, 143
1876, IX, 59
Legislation, both national and local, VIII, 132
Lessons of the year 1875, VIII, 142
Locusts as food for Man, VIII, 143
Measurements of Caloptenus spretus, VII, 130
Migratory instinct and great destructive Power belong to but one species west of the Mississippi, VII, 124
Native home, VII, 161, VIII, 109
Natural enemies, VII, 174, VIII, 124, IX, 91
Natural history, VII, 121, VIII, 97
Not a divine Visitation, VIII, 97
Not led by "Kings" and "Queens," VIII, 103
Omaha Conference, IX. 106
Outlook in Missouri in 1875, VIII, 61
Predictions for 1875, VII, 166
Previous experience in the Spring of 1867
VIII, 57
Prospects in 1877, IX, 121
Rate at which the young travel, VIII, 102
Rate at which the insects spread, IX, 80
Ravages, VII, 156
of migratory Locusts in the Atlantic States, VII, 167
Reports of Correspondents, IX, 69, 117
Source of Locust swarms of 1876, IX, 79
Suggestions, VIII, 140
Time of appearance, VII, 160
Time of leaving of the winged insects, VIII 104, 125
Unnecessary alarm caused by native Locusts, VIII, 148
Wind, influence of, on flight, IX, 87
Roe, J. E., on Rocky Mountain Locust, IX, 119
Rogers, Dan F., on Chinch Bug, II, 23
Rogers, J. R., on Apple-tree Bark-louse, V, 78
Root-borer of the Grape-vine, I, 124, II, 87, III, 75
Raspberry, VI, 111
Squash, II, 64
Root-borers, III, 6
Root-louse of the Grape-vine. (See Grape Phyl loxera.)
Root Plant-louse of the apple tree, I, 118, IIX, 5 , IV, 68, 69
Syrphus fly, I, 121
Rope and tin baud for Canker Worm, VI, 26, 27
rosaceana, Loxotcenit, III, 6
rosce, Selundria, II, 19, VII, 27
rosea, Droplata, III, 6
Rose-breasted Grosbeck destroy ing Potato-beetle V, 54
Rose-bug, III, 6
Rose-bush Saw-fly, IX, 19
Rose Chafer, V, 108
Hispa, III, 6
Rose Leaf-roller, III, 6
Rosy Dryocampa, $\mathbf{\nabla}, 139$
Round-headed Apple-tree Borer, I, 45, II, 19, IV 124, VII, 27

Round-headed Apple-tree Borer-Continued.
Food plants, I, 43
Natural bistory, I, 43
Remedies, I, 45
Rove-beetle, larva of, I $\nabla, 21$
Rove-beetles, habits of some, VI, 162
Royall's Paris Grean mixture, VI, 21
rubi, Egeria, VI, 113, Supp., 72
Selendrixe, I, 52
rubicunda, Anisota, V, 140
Dryocampa, III, 123
mebivora, A plades, I, 139, Supp., 79
rubivoraria, Synchlora, Supp., 79
rubra, Pyranga, VI, 27
rufcapilla, Helminthophaga, VI, 27
meficollis, Necrobia, VI, 101
rufinanus, Bruchus, III, 56, Supp., 70
rufipedis, Micropus, VII, 22
rufipes, Corynetes, VI, 101
Pentatoma, IV, 20
rufus, Sigalphus, III, 27, Sapp., 68
Rummaging Ground-beetle, II, 103, III, 129
Ruptor ovi, structure in many insect embryos, for bursting the eqg-shell, IX, 127
Rural Carolinian, article from, on Locasts, VII, 173
Rural New Yonker, article from, on Apple-leaf Bucculatrix, IV, 50
article from, on trapping Cur. culio, III, 16
Rural World, Colman's, article from, on Apple-tree Bark-louse, $\nabla, 77$
Rural World, article from, on Fall Army Worm, III, 109
article from, on Grape Phylloxera, IV, 55, VI, 84
ruscarius, Elaphrus, VIII, 52
Rust-red Social Wasp, V, 54
Rutbottom, W. F., on Rocky Mountain Locust, IX, 117
ruticilla, Setمphaga, VI, 27
Sacramento Union, article from, on Silk Industry, IV, 80
salicis-strobiloides, Gall, VI, 155
saligneana, Euryptychia, 1I, 134, Supp., 57
saltator, Orocharis, I, 138, V, 119, Supp., 60, 62
Saltatoria, a section of Orthoptera, V, I4
Samia cecropia, IV, 103, Supp., 55
columbia, IV, 107, 111, 128, Supp., 55
cynthia, IV, 112
guerinii, IV, 112
ricini, IV, 112
amiox, Cryptus, IV, 110, 111. Supp., 52
Sanborn, F. G., on frame for insect net, V. 31
anguinea, Cycloneda, Supp., 52
Saperda bivittata, I, 42, II, 19, III, 6, VII, 27, Supp., 53
candida, Supp., 53
discoidea, V, 106
populnea, IV, 22
Sarcophaga, II, 110
cornaria, VII, 180, IX, 95, Supp., 60 var. mantivora, VII, 180
sarraceniœ, VII, 180, 181, IX, 95, Supp.,

Sarracenia Flesh-fly, VII, 181
sarracenioe, Sarcophaga, VII, 180, 181, IX, 95, Supp., 60
Satellite Sphinx, II, 76
sutellitia, Philampelus, II, 76
Saturnia maia, IV, 41, V, 127 io, V, 133
saucia, Agrotis, I, 74, Supp., 55
Sauders, Wm., Experiments with poisons for Po-tato-beetle, IV, 14
on Grape-seed Maggot, II, 93
on Imported Currant worm, $\mathbf{I X}$, 12, 14
on Pea-weevil, III, 49
Saunders, W., on Oidium Tuckeri in America, \mathbf{V},
69,70
Saw-flies, II, 8, V, 9, 10, VIII, 38
Sawyer's Canker Worm trap, VI, 26
scabiei, Acarus, VI. 61
scabrosellue, Nemotois, V, 160
scabrum, Trombidium, V II, 175
Scale of Bark-lousi. True Nature of, V, 80
scandens, Agrotis, I, 76, 78, III, 6, Supp., 55
Scarlet Mite, VII, 175
Tanager destroying Canker Worm, VI, 27
Scenopinus, V, 8
Schizoneura, Supp., 87
lanigera, Supp., 59
Sokoenherri, Pachyrhynchus, III, 57
Sciara, VIII, 23, 24, Supp., 59
Scientific American, article from, on Colorado Po-tato-beetle, IX, 35
Scolia, VII, 174
bicinta, VI, 124
flacifrons, VI, 124
Scolytida, III, 6
scolytivorus, Bracon, V, 106, Supp., 67
Scolytus, LII, 6, V, lu6
caryoc, V, 103, Supp., 54
destructor, V, 104
muticus, $\mathrm{V}, 105,10$ -
4-spinosus, V, 105, 107, Supp., 54
scribonia, Eepcentheria, IV, 141, 143
scrutator, Calosoma, II, 103, III, 129, VIII, 52
scudderiana, Hedya, Supp., 57
Scudder, S. H., on Protective resemblance in Butterflies, III, 166
on Rocky Mountain Locust, VIII, 109
on Southern Cabbage Butterfly, II,
104 104
sculptilis Sphenophorus, Supp., 54
scutellaris, \& n thonomus, Supp., 54
Scutellera, a family of Heteroptera, II, 32, 33, IV,
19, VII, 48
Scyminus, II, 25, 27, VI, 51, VII, 39
cervicalis, I, 122, $\mathbf{\nabla}, 100$
consobrinus, $\mathrm{V}, 100$
ferminatus, $\nabla, 100$
Seabrook, W. B., on Cotton Moth, II, 40
Sedalia Press, article from, on White Grab, I, 158.
Seed corn maggot, I, 154
Curculio of the Grape, I, 129
Seiurus aurocapillus, VI, 27
Selandria, V, 26
cerasi, II, 18, VII, 27

Selandria rosse, II, 19, V II, 27, IX, 19
rubi, I, 52
selene, Attacus, IV, 125
Semasia prunivora, I, 65, III, 6, 25, V, 51
Semiotellus clisiocampce, III, 120
.semisculpta, Chrysobothris, TIL, 71
.senatoria, Dryocampa, III, 123, IV, 41
Senomefopia bicincta, $V, 140$
militaris, II, 50
septemdecim, Cicada, I, 18, 19, 20, II, 19, III, 6, VII 27, Supp., 58, 59
septentrionis, Brenthus, VI, 116, 117
Sericaria mori, IV, 75
sericeum, Trombitium, VII, 175, Supp., 63
-sericeus, A.silus, II, 123
Spermophagus robinice, III, 45
serratus, Bruchus, DI, 56, Supp., 70
-sesostris, d mpeloglypter, Supp., 71
Baridius, III, 60, Supp., 71
Setophaga ruticilla, VI, 27
Seventeen-year Locust, II, 19, III, 6, VII, 27
Seventeen and thirteen year broods of the Periodical Cicada, I, 18
Sex, law of, $\bar{V}, 85$
Sex not affected by food, VILL, 19
Sexed Pbylloxera, VII, 158
Sharl-fy, V, 143
Shane, J. B., on Rocky Mountain Locust, IX, 118
Shattuck, J. C., on Rocky Mountain Locust, VII, 178
Shaw, G. W., on Soldier Bugs, V, 51
Sheep Bot-fly, I, 161
-ticks, $\mathrm{V}, 13$
Shepherd, S., on Hickory Bark-borer, $\nabla, 105$
Shimer, Dr. H., on Chinch Bug, II, 20, 24, 26, 30 , TII, 39, 40
Short-winged Ichneumon, IX, 55
Shulz, G. E., on Rocky Mountain Locust, IX, 70
sibylla, Limenitis, ILI, 171
Sigalphus Curculio Parasite, III, 25
Sigalphus curculionis, ILI, 25, 27, Supp., 67
var. rufus, III, 27, Supp., 63
signatipes, Ichneumon, IIL, 69
signifer, Cassida, II, 63
Silk-growing in California, TV, 79
Kansas, IV, 82
Missouri, IV. 83
Silkworm, The Ailanthus, IV, 112
American, IV, 104
Cecropia, IV, 103
Luma, IV, 123
Mulbercy, IV, 75
Perny, IV, 137
Polyphemus, IV, 125
Promethea, IV, 121
Tusseh, IV, 138
Yama-mai, IV, 130
Silkworms, IV, 72
Silky Asilus, II, 123
Silky Mite, VII, 175, IX, 91
, Silpha americana, VI, 100
Simmons \& Tillson, on Grape root Borer, I, 125
Simpson, T. W., on Rocky Mountain Cocust, IX, 75
Sinea diadema, Supp., 58
Sinoxylon basillare, IV,53,54, V,54
Sinox.ylon, the Real-shouldered, IV, 5ぇ, 53, 54, V, 54
siro, Tyroglypkus, VI, 52
Sitophilus gramarius, II, 10, III, 60
Skimmed Milk as remedy for Gooseberry Spanworm, IX, 6
Skunk destroying Locust eggs, IX, 91
Slug Wrorm of the Pear, II, 19
Rose, II, 19, VII, 27
Slug. Worms, V, 26
Small White Bristly Cut-worm, I, 86
Smeared Dagger, III, 70
Smiley, W., on Rocky Mountain Locust, IX, 70
Smith, H. J., on Green-striped Maple-worm, V, 137
Smith, Jos., on Snake Worm, VIII, 24
Smith, J. F., on Rocky Mountain Locust, IX, 68
Smith, J. H., on Rocky Mountain Locust, VII, 62
Smith, S. I., on oviposition of Conocephalus, VI, 155
Smith, S. S., on Army Worm, VIII, 39
Smith, 'T., on seeding of Yuccas, V, 159
Smith, W. A., on Rocky Mountain Locust, IX, 70
Smith, W. R., on Rocky Mountain Locast, VIII, 85
smithii, Cryptus, IV, 111
Snake-worms, VIII, 23, 24
Snapping-beetles, III, 6
Snidow, W. L., on Rocky Mountain Locust, IX, 71
Snout-beetle, II, 92, ILI, 5, 10, 37, VI, 116
The Imbricated, II, 57
Snow, F. H., on False Chinch Bug, $V, 111$
on Rocky Mountain Locust, VIII, 77, 114, IX, 93
Snowy Tree-cricket, V, 120
Snyder, C., on Rocky Mountain Locust, VII, 194]
socialis, Spizella, VI, 27
Soda as remedy for Apple-tree Bark-lice, I, 17
Soldier-bug, The Glassy-winged, III, 137
The Spined, I, 77, 89, 113, II, 32,34, IV, $19, \mathrm{~V}, 51,133, \mathrm{IX}, 17$
Soldier-bugs as enemies of Cicada, I, 26

$$
\text { Codling Moth, } \nabla, 51
$$

solidaginis, Trypeta, $\mathbf{I}, 13,173$
Solidago Gall-maker, II, 134
Gall-moth, I, 173, II, 20, 132
Song-sparrow destroying Canker Worm, VI, 27
soror, Chrysobothris, VIL, 71
Sorsby, B. A., on attracting Boll-worm Moth by sweets, III, 108
Sounds from insects sometimes inaudible, VI, 152
Southern Cabbage Butterfis, II, 104
Cotton Army-worm, II, 49, VIII, 34
Grass-worm, II, 41
Southern Farmer, article from, on Paris Green for Cotton Worm, VI, 19
Span-worms, II, I10
Spanish blister-beetle, V, 18
Spathine triffaciatus, V, 106, Supp., 67
Species, definition of, $V I, 143$, VII, 115, 179
geographical range of, IX, 82
speciosus, Stizus, I, 27, Supp., 52
Speckled cut-worm, I, 84
Spectrum femoratum, VI, 156, VII, 181
Spermophagus robiniae, IU, 45
Sphecius, Supp., 52
Sphenophorus pulchellus, JII, 60
pustulosus, Supp., 54
sculptilis, Supp., 54
13-punctatus, I[T, 60, Supp., 54

Sphenophorus truncatus. III, 59 zeoe, III, 59. Supp., 54
Sphinges, V, 12
Sphingidce, III, 123, IV, 86
Sphinx, II, 71, 74, 76
carolina, I, 96, IV, 129
crantor, II, 74
lycaon, II, 76
myron, II, 71
5-maculata, I, 95, V, 125
Sphinx moth, II, 78, V, 56, FI. 162
Spiderwort Owlet moth. III, 113
Spilonota roborana, Supp., 57
Spilosoma virginica, III, 68
Spined Soldier-bug, I, 77, 89, 113, II, 22,34 IV, 19 , V, 51, 133, LX, 17
spinosa, Arma, I, 77, 89, 113, II, 32, IV, 19, Snpp., 58 Phylloxera, VII, 118
spiralis, Trichina, IV, 70
Spizella socialis, VI, 27
Spotted Ladybird, I, 112, II, 25, 27, 36, V, 149, VII, 39
Pelidnota, III, 77
Spray Machine, Peck's, VIII, 4
spretis, Acridium, VII, 128
spretum, Acridium, VII, 128
spretus, Caloptenus, VII, 121, 128, VIII, 57, 109, 114. Supp., 89, 90
Spring in Earope and America, VI, 151
Spring Canker-worm, VII, 80, VII, 17, 18
Canker Worm Moth, VIII, 37
Sprinkler for the use of Paris Green Water, VI, 20, ГШ, 15, VII, 5
Squash bng, I, 113, II, 31, VII, 46
Borer, II, 64
St. Joseph Herald, article from, on Colorado Pota-to-beetle, III. 97
article from, on Rocky Mount ain Locust, VIII, 67, 69, 73, 75
St. Louis Globe-Democrat, articles from, on Rocky Mountain Locast, VIII, 63, 71, 92, 155
Republican, articles from, on Rocky Mountain Locust, VIII. 69, 73, 75, 148 , IX, 73
Stag-beetle, V, 145
Stainton, H. T., on Pronuba yaccasella, T, 160
Stalk-borer, III, 105, V III, 37 of the Potato, I, 92
weevil of the Potato, I, 93
Staphylinidae, VI, 162, VIII, 20, 24
State University, cabinet for, VII, (preface, p. 5)
Steel-blue Flea-beetle, I, 101, [II, 79
Stelle, J. P., on Periodical Cicada, IV, 32
Stenocorus villosu8, I, 25
Stenopogon consanguineus, IX, 98
Stenoptycha, Sapp., 57
Stevenson, Hagh, on Rocky Monntain Locast, IX, 70
stigma, Dryocampa, III, 123, IV, 41, V, 141
Sting of the Periodical Cicada, I, 26
Stinging larva, $\mathbf{V}, 125$
Stiretrus fimbriatus, I, 114, II, 34. IV, 20
stirpicola. Crabro, IX, 95, Supp., 89

- Stizus grandis, I, 27, Supp., 52 speciosus, ${ }^{\bullet}$ I, ${ }^{27}$, Supp., 52
Stomoxys, V, 13
'Stone, W. B., on False Chinch Bug, V, 111
11 мо

Strachia histrionica, IV. 35 ornata, IV, 38
Strawberry Crown-borer, III, 42
Leaf-roller, I, 142
Worm, IX, 27
Descriptive, IX. 28
Remedies, IX, 28
Strepsiptera. V, 15
striata, Dendroica, VI, 27
Stridulation of Acrididæ, VI, 153
Burying beetles, III, 14
Gryllidæ, VI, 154
Horned Passalus, IV, 139
Katydids, III,!154
Locusts, III, 153
Ecanthus latipennis, Supp., 60
Orocharis saltator, Supp., 62
Plum Curculio, IIL. 14
Three-lined Leaf-beetle, III, 14
Stringer. J. E., on Rocky Mountain Locust, IX, 71
striolata, Haltica, III. 44
Phyllotreta, III. 83
Striped Blister beetle, I. 96, 11 万ै
Bug, II, 64, 66
Striped Chrysops, II, 129
Cucumber-beetle, II, 64, 65, III, 6
Flea-beetle, III, 44
Squirrel destroying Locust eggs, IX, 91
strobi, Pissodes, III, 60
Strobiloides Gall on Willow, VI, 155
Strong. W. C., on grafting grape.vine, VII, 114
Strongylizm tenuicolle, VI, 118
Stroop, L. J., on Archippas Batterfly, III, 151
Structure, adaptation of, to habit, VI, 154
Struggle for existence, VIII, 122
Stylopidoe, V, 15
Stylops, V, 15, VI, 125
suavella, Myelois, IV. 41, Supp., 79
Subangular Ground-beetle, I, 58
subangulata, Aspidoglossa, I, 58
subcadens, Celcena, Supp., 56
subcostalis, Xylina, III, 136, Supp., 75
subcyaneus, Ichneumon, III, 69
subgothica, Agrotis, I, 81, 83, III, 151, Supp., 55, 56
Subimago, Chrysopa issues from cocoon as, I, 57.
II. 26

Sabjoined Hadena, I, 84
subjuncta. Hadena, I, 84
Submersion as remedy for Chinch Bug, VII, 31 Phylloxera, IV, 69, VI. 55 Rocky Mountain Locust, VII, 182
suffusa. Agrotis, Supp., 55
suilla, Colaspis, MII, 82
Suits due to insects, VI, 96
sulcatus, Otiorhynchus, III, 11
Sulphide of Potassium as remedy for Grooseberry Span-worm, IX, 7
Sulphur as remedy for Phylloxera, IV, 69
Sulphuretted hydrogen as remedy for Phylloxera, IV. 69

Sumach-beetle, The Jumping, VI, 118
Summer Fellow Bird destroying Canker Worm. VI, 28
surinamensis, Sylvanus, III, 6

suturalis, Anthonomus, III, 60

Swarming of battertlies, III, 151
Sweetened water for Codling Moth, IV, 27
Sylvanus surinamensis, III, 6
sylvatica, Clisiocampa, II, 7, 37, III, 121, IV, 41,
Supp., 55
symphoricarpi, Tortrix. I. 154, Supp., 82
Synchlora, Supp., 79
albolineata, Supp., 79
rubivorana, Supp., 79
Synemon theresa, YIII, 178
Synopsis of the American species of the genus
Pbylloxera, VII, 117
Sypphidee, $\mathbf{V}, 13$
Syrphus-1y, VI, 51
of Root-louse, I, 121
Larva, $\mathrm{\nabla}$, 149, $\mathrm{VI}, 51$
Systoechur, Supp., 60

T.

Tabanidce, VI, 123
Tabanus atratus, II, 128, 129, 130
bovinus, II, 129
cinctus, II, 128
costalis, II, 128
lineola, II, 128
tabescens, Erax, II, 124
tabida, Ohrysopa, VII, 106
Tachina, II, 103, VII, 107
anonyma, $I \nabla, 129, \nabla, 133,139, \nabla \amalg, 178$,
VIII, 179, IX, 54
archippivora, III, 116, 150, V, 149
auricincta, $\nabla, 140$
bicincta, $\mathrm{V}, 140$
bijusciata, $\overline{\text { V }}, 140$
phycitoe, IV, 40, Supp., 88
Tachina-fly, II, 109, 110, 120, IU, 62, 129, 142, 149, $157,161, I \nabla, 123, ~ \nabla, 133$
The Anonymous, VII, 178
of Army-worm, IV, 109, VIII, 50
of Cecropia Worm, IV, 108
The Red-tailed, VI, 96, VII, 179
Tachinidce, $\mathrm{V}, 13$
Talbot, R. H., on Rocky Mountain Locust, IX, 68
tapetzellcu Tinea, II, 10
Tarantula, II, 106
tarda, Tiphia, VI, 126
Tarnished Plant Bug, II, 113, 114, IV, 20
Tawny Emperor, VI, 140
Earlier states, VI, 141, 148
Food-plants, VI, 141
Parasite, VI, 142
"Taylor, A. S., Locust History in America, VII, 133
'Telea polyphemus, IV, 125
Telephorus bitineatus, IV, 29, 30
telifera, Agrotis, I, 80, Supp., 55
Ten-lined Spearman, I, 103
Tenebrio molitor, II, 9, 10, VI, 118, IX, 43 obscurus, II, 9,11, IX, 43
Tenebrionid Larva, VI, 118
Tent Caterpillar, II, 100, III, 130, 132
Tent Caterpillar of the Apple, II, 7, III, 117
Development, III, 119
Eggs, III, 118
Food-plants, III, 120
Remedies, III, 120

Tent Caterpillar of the Forest, 1I, 7, 37, III, 120, 121,134, V, 128, VIU, 23
Is it ever destructive? III, 127
Larval habits of, III, 124
Natural history of, III, 121
Remedies for, III, 128
Summary, III, 129
Tenthredinides, $\mathrm{V}, 10, \mathrm{VI}, 70$
tenuicolle, Strongylium, VI, 118
Teras oxycoccana, Supp., 83
Terebrantia, a section of Hymenoptera, V, 9
Termes flavipes, IX, 43
frontalis, II, 11
tesselata, Halesidota, III, 127
Tetracha virginica, I, 115
Tettigonia, I, 171, IL, 38
Tettix granulata, VIII, 150
texana, Oassida, Supp., 54
Texas, Locust History in, VIII, 88, IX, 76
Text Books on Entomology, V, 44
textor, Hyphantria, ILI, 130, 132, Supp., 55
Thecla, VI, 140, VLII, 177
thelxiope, Heliconius, III, 173
Theognis albicinctus, V, 154
phyllopus, V, 154
theresa, Synemon, VIII, 178
Thersitochus, III, 28, Supp., 65
Thick-legged Buprestian, VII, 72
thuiella, Bucculatrix, IV, 51
Thirteen spotted Lady-bird, I, 112
Thirteen-jear Locust, II, 19, VII, 27
Thistle Plume, I, 180, II, 112
Thomas, Prof. Cyrus, Controversy on habits of Army Worm, II, 47
Description of Red-legged
Locust, VLI, 126
on Army Worm, VIII, 43, 45
on Colorado Potato-beetle, VIII, 8 ,
on Rocky Mountain Locust, VII, 141, VIL, 115, 153
Thompson, E. A., on remedy for Peach Borer, I, 49
Thompson, Wm., on Rocky Mountain Locust, IX, 118
Thornburg, J. M., on Rocky Mountain Locust, IX, 72
Thornton, Dr. C. W., on Army Worm, III, 111
Tirasher, J., on Rocky Mountain Locust, IX, 74
Three-banded Spathius, $\bar{\nabla}, 106$
Three-Iined Leaf-beetle, I, 99, II, 58, III, 14
Threnodes, VIII, 170
Thripidee, $\mathrm{V}, 16$
Thrips, II, 6, III, 29, V, 16, 118, VI, 50
phylloxerce, VI, 50
Thymete, VIII, 175
thymi, Nysius,, , 113, Supp., 85
Thyreus abbotii, II, 78
thyridopterigis, Hemiteles, I, 150, Supp., 65
Thyridopteryx ephemerce formis, $\mathrm{I}, 147$
Thysanoptera, V, 16
tibiale, Trochitium, VI, 113, Supp., 72
Tiger-beetles preying on Locusts, IV, 98
Tiger-moth, IV, 88
The Isabella, IV, 143

Tilden, Josiah, on Rocky Mountain Locust, IX, 72
Tile-horned Prionus, II, 89, 90
Dimorphous male form, II, 90
Food-plants, II, 89, 90
Remedy, II, 91
Titts, R. H., on parasite of Flat-headed Borer, VII, 74
tinctorium, Trombidium, VII, 175
Tinea, the Cabbage, IV, 36
Tinea pellionella, II, 10
pustulella, Supp., 58
tapetzella, II, 10
vestianella, II, 10
Tineider, II, 133
On a new Genus in, V, 150
Tingis pyri, $\mathbf{I I}, 33$
Tiphia femorata, VI, 124
inornata, VI, 123, 126
tarda, VI, 126
transversa, VI, 126
Tipula, I, 180
Tiputidoe, II, 132
tipuliformis, Egeria, II, 10
Titmouse, Blackcapped, destroying Codling Moth, IV, 28
tityrus, Epargyrius, VIII, 173
Tityrus Skipper, II, 125
Tobacco Worm, counterworking the, $\nabla, 56$
Tolmerus, IX, 98
Tomato-gall, Grape-vine, V, 117
Tomato-worm, I, 95, IV, 17
Tortoise-beetle, the Black-legged, II, 63
Golden, II, 62
Mottled, II, 63
Pale-thighed, II, 62
Tortoise-beetles, I, 100, II, 56, 58, 59, 61
Invtrix botrana, Supp., 57
cinderella, IV, 47, Supp., 82
malivorana, IV, 47, Supp., 82
oxycoceana, Supp., 82
paludana, VI, 103
rileyana, I, 153, 154, Supp., 81
symphoricarpi, I, 154, Supp., 82
vaccinivorana, Supp., 82
Tuwnley, John, on Climbing Cut-worms, I, 71
trabeata, Cassida, II, 63
Trabue, A. E., on Army Worm, II, 44, VIII, 27
Tragocephala viridifasciata, VIII, 149
Transformation of insects, remarks on, III, 146
transversa, Tiphia, VI, 126
transversus, Bruchus, Supp., 70
Traps for Canker Worm, VI, 25, 26, VIII, 20, 21
Codling Moth, I, 66, IV, 23, V, 46
Plum Curculio, III, 15
Treadwell, C. C., on parasite of Rocky Mountain Locust, IX, 93
on Rocky Mountain Locust, IX, 68
tredecim, Cicada, I, 19, II, 19, III, 6, VII, 27, Supp., 58, 59
trodecimpunctata, Bippodamia, I, 112
tredecimpunctatus, Sphenophorus, III, 60, Supp., 54
Tree-cricket, I, 138
The Jumping, $\mathrm{V}, 119$
The Snowy, $\vee, 120$

Tree-hopper, the Butfalo, V, 121
Tree-hoppers, III, 6
Trivoltin Silk worms, IV, 85
trichas, Geothlypis, VI, 126
Trichina spiralis, IV, 70
Trichobaris, Supp., 54
Trichodactylus, VII, 106
Trichogramma (?) minuta, III, 158, Supp., 68
Trichogrammidoe, VI, 142
Trichoptera, V, 16
tricosa, Agrotis, Supp., 55
tridens, Aeronycta, II, 121, Supp., 73
trifasciatus, Spathius, V, 106, Supp., 67
trilineata, Lema, I, 99, II, 58, III, 14, IV, 8
Trim Ladybird, II, 25, 27, VLI, 39
Trimble, Dr., on Quince Curculio, DII, 36
Trimera, a division of Heteroptera, $\mathbf{V}, 13$
trinotatus, Baridius, I, 93, III, 60, Sapp., 54
Triphlebs, Supp., 58
tristis, Coreus, I, 113, II, 31, VII, 46, Supp., 58
tritici, Diplosis, II, 10
Trochilium, VI, 27
acerni, VI, 108
marginatum, VI, 113, Supp., 72
tibiale, VI, 113, Supp., 72
Trogosita nana, LII, 6, V, 51
troilus, Papilio, ILI, 169
Trombidium holosericeum, VII, 175

> scabrum, VII, 175
> sericeum, VII, 175, IX, 91 , Supp., 63
> tinctorium, VII, 175

True, Dr. U. T., on Locusts, VII, 168
Trough remedy for Canker Worm, VI, 26
Truland, N. B., on Rocky Mountain Locust, VH, 150
Trumpet-gall, Grape-leaf, V, 118
truncatus, Sphenophorus, ПI, 59
Truparea apivora, I, 168, II, 122, Supp., 60 vertebrata, II, 123, Supp., 87
Trypeta pomonella, I, 108, III, 6, 91 solidaginis, I, 13, 173
Trypoxylon, VI, 162
tuckeri, Oidium, VI, 30, 63, 79, 85
turbatella, Dakruma, Supp., 57
turca, Leucania, VHI, 43
Turdur fuscescens, VI, 27
migratorius, VI, 27
Turaip Flea-beetle, III, 83
turntes, Papilio, VI, 145
Tusseh Silk-worm, IV, 138
Tussock Moths, II, 15
Tuttle, W. F., on Rocks Mountain Locust, IX, 69
Twelve-spotted Diabrotica, II, 66
Twice-stabbed Lady-bird, I, 16, V, 100
Twig-borer, IIL, 6
Twig.girdler, IH, 6
Two-lined Soldier-beetle, IV, 29
Tro of our common Butterflies, III, 142
Two-striped Locust, VH, 124, 173, FIII, 150
Potato-beetle, II, 61
Saperda, I, 43, III, 6
Tyloderma fragarice, Supp., 72
Tyroglyphus echinopus, VII, 106
entomophagus, VI, 52
phylloxerce, VI, 52, 53, 81
siro, VI, 52

C.

ulmi, Eriosoma, I, 123, Supp., 87
Unadorned Tiphia, VI, 123
Unarmed Rustic, I, 72, ІІ, 114
undecimlineata, Doryphora, VIII, 10
Uni-banded Ichneamon-fly, II, 77
unicolor, Corirneloena, П, 35
Macrobasis, Supp., 54
unifasciatorius, Ichneumon, III, 71
«ınio, Eudryas, I, 136, II, 83, III, 63, VI, 90, 92, 95
unipuncta, Leucania, I, 109, II, 5, 11, 37, 55, VLII, 22, 24, 29, Supp., 76
Noctua, $\amalg, 41$
unipunctata, Physonota, Supp., 53
Urania, VIII, 170
Croceridas, $\mathbf{\nabla}, 10$
Croplata rosea, III, 6
Cropoda americana, IX, 41
vegetans, IX, 40
Ursala batterfly, III, 163
ursula, Limenitis, III, 163, 167, 168, 169. 171
urticce, Vanessa, III, 167
Urticating larvæ, $\mathrm{V}, 126$
Useful Labena, VП, 75
Utica (N. Y.) Herald, article from, on Paris Green, V■. 9

$$
\mathbf{v}
$$

vadosus, Epiccerus, III, 58
vagabundus, Pemphigus, I, 112, 120, VIU. 97
Talley Farmer, article from, on injury done by Cicadas, I, 29
Van Deman, H. E., on Rocky Mountain Locust, IX, 65
on Rose Chafer, V, 108
Fancssa antiopa, $\mathrm{V}, 148$ atalanta, $\mathrm{V}, 148$ urtica, III, 167
Vaporer Moths, II, 15
Variation in locusts, VIII, 155 namber of antennal joints, II, 89 wing-venation, $[\bar{X}, 22$
varius, Anthribus, III, 10
varicornis, Bruchus, III, 55, 56, Supp., 69, 70, 71
EEcanthus, Sapp., 61
Variegated Cut-worm, I, 72, II, 50
variolarius, Euschistus, Supp., 58
vastator, Oscinis, I, 161
vastatrix, Phylloxera, III, 85, IV, 55, VI, 30, 63, 66, 86, 87, VII, 91, 117, VIII, 157 Rhizaphis, VI, 31
Telleius dilatatus, IV, 22
ventricosus, Nematus, VL, 43, 149, IX, 10
Ver du Coeur, II, 107
Vermes, a section of Segmented Animals, $\nabla, 6$
vernata, Anisopteryx, I, 109, II, 94, VI, 28, VII, 80,86 Paleacrita, VIII, 13
Phaloena, VII, 80
versicolor, Quiscalus, VПI, 124
Vertebrata, a subkingdom of the © Animal" King. dom, $\mathrm{V}, 6$
vertebrata, Trupanex, II, 123, Sapp., 87
Tespa crabro, IV, 22
maculata, Supp., 48
vulgaris, VI, 125
vestalis, Callimorpha, III, 132
vestianella, Tinea, II, 10
villosum, Elaphidion, III, 6
Vinegar for Codling Moth, IV, 27
Vine Root-borer, I, 124
violaceus, Corynetes, VI, 101
Vireo olivaceus, VI, 27, VIII, 124
Vireo, Red-eyed, VIII, 120
virens, Contopus, VI, 27
virginiana, Ortyx, II, 28, VII, 41
Virginia Tiger-beetle, 1, 115
virginica, Spilosoma, III, 68
Tetracha, I, 115
viridascens, Glyphe, II, 53, VIII, 53
viridifasciata, Tragocephala, VIII, 149
viridis, Oallochlora, III, 150
Caloptenus, VIII, 117
viticida, Fidia, I, 132, Supp., 53
viticola, Botrytis, VI, 36
vitifolioe, Daktylospheera, I, 13
Pemphigu8, I, 13, III, 83, 93, VI, 31
Phylloxera, II, 27, III, 84, IV, 55
vitis, Aphis I, 13
Fidia, Supp., 53
Isosoma, II, 92, 93
Lasioptera, V, 117
Madarus, I, 131, Supp., 71
Procris, II, 86
vitis-coryloides (Gall), $\mathrm{V}, 116$
-pomum (Gall), V, 114
-tomatos (Gall), V, 117
viticola (Gall), V, 118
vitisana, Peritymbia, IT, 55, VI, 31
vitisella, Carpocapsa, I, 133
vitivorana, Penthina, I, 133, Supp., 57
vitreus, Mesochorus: II, 52, VIII, 53
vitripennis, Capsus. III, 139
Campyloneura, IU, 137
vittata, Diabrotica, I, 100, II, 62, 64, III, 6 Lytta, I, 96
vittatus, Chrysops, II, 129
Fiviparous nature of Estrus ovis, I, 164
Vorhees, H., on the use of Paris Green, VI, 14
vulgaris, Tespa, VI, 125
vulnerator, Pachymerus, IV, 28

W.

Walking-leaves, III, 159
Walking-stick, III, 159, V, 14, VI, 156, VII, 181
Wallace, A. R., on Evolution, III, 172
Wallace, T. D., on Rocky Mountain Locust, IX, 7\%
Walnot Case-bearer, IV, 42, $\nabla, 49$
Case of, IV, 42
Natural enemies of, IV, 43
Walnut Tortrix, I, 150
Walsh, P. D., controversy on habits of Arm:Worm, II, 47
description and habits of larva Black Breeze-fly, 1 130, 131
of Corn Sphenophora:
III, 59
of Native Carrain Worm, IX, 26
of Pickle Worm, II, fre $^{\text {P }}$ of Red-tailed Tachic fly, II, 51

Walsh, B. D., experiments with Curculio-larvæ, I, 55
on Colorado Potato-beetle, I, 102
on Hellgrammite larvæ, $\mathrm{V}, 144$
on Native Currant Worm, IX, 25
on Oviposition of Katydids, VI, 154
on Rocky Mountain Locust, VII, 162
on Thirteen-year Cicada, Supp., 58

Walshia amorphella, II, 132, 133

Ward's Curculio-catcher, III, 20
Warblers destroying Canker Worm, VI, 27
Warder, R. H., on moald infesting Cicadas, I, 26
Warreasburg (Mo.) News, article from, on Rocky
Monntain Locust, VIII, 108
Water Bugs, a division of Heteroptera, $\nabla, 12$
Water-moth, V, 16
Wax-worm, L, 166
Weeping Lacewing, II, 26, VI, 51, VIL, 40
weidemeyerii, Iimenitis, III, 171
Western Farmer, article from, on Birds destroying
Canker Worm, VI, 27
Western Rural, articles from, on Colorado Potatobeetle.IV, 6, VIII, 8
article from, on Peach Borer, I, 48 article from, on Rocky Mountain Locust, VII, 135
Western Striped Cut-worm, I, 81
Wetherell, W. H., on Rocky Mountain Locust, LX, 74
Wheat Cut-worm, I, 87, III, 112
Wheat-Head Army-worm, IX, 50
Descriptive, IX, 55
Habits and natural history, IX, 52
Natural enemies, IX, 54
Remedies, IX, 55
Wheat Midge, $I \mathbb{}, 10,13,16,70, \nabla, 13, I X, 17$
Wheeler, Wm., on Rocks Moantain Locust, VII, 151 White, E. M., on connterworking the Tobacco Worm, V, 56
White, J. D., on Rocky Mountain Locast, IX, 72. White, J. K., on Rocky Mountain Locast, VIII, 62, LX, 68
White, J. W. C., on Rocky Mountain Locust, VII, 152
White Ant, II, 11, V, 15, IX, 43
Bark-louse, V, 74
Grub, I, 88, 156, II, 16, 19, III, 31, 78, IV, 17, 35, VII, 27
fungus, I, 158, VI, 123, 125
parasite, VI, 123
Currant Worms, IX, 14
Hellebore as remedy for Carrant Worms, IX, 14
-lined Morning Sphinx, III, 140, 141, VIII, 123
Green Larva of, VIII, 122
Black Larva of, VIII, 122
-marked Tussock-moth, I, 144, VI, 29
-Pine weevil, III, 60
Worm, Abbot's, IX, 29
Le Conte's, IX, 32
-winged Crossbill destroying Canker W orm, VI, 27
Whitely, Jos., on Rocky Mountain Locust, IX, 71

Whitescarver, C. S., on Rocky Mountain Locust, IX, 70.
Whitman, A., on Enemies of Rocky Mountain Locust, IX, 96
Whittemore, O. A., on Rocky Mountain Locust, V II, 154
W-marked Cut-worm, I, 79
Wi elandy, J. F., non-publication of report, VII (preface, p. 5)
Wier, D. B., on remedy for Round-headed Appletree Borer, I, 46
Wier, Mrs. H., on trapping Curculio, III, 16
Wier's Apple-worm Trap, IV, 33, V, 46, VI, 10
wilcoxi, Calosoma, VIII, 52
Williams, Prof. A. D., on Rocky Mountain Locast, IX, 65
Willow-apple Saw-fy, IX, 20
Wilson, R. P. C., on Rocky Mountain Locust, IX, 75
Wilson, T. W., on Rocky Mountain Locust, IX, 75 Wilson's Thrush destroying Canker Worm, VI, 27 Wings, derelopment of, VI, 40
Winnipeg Standard, article from, on Rocky Mountain Locast, IX, 78
Winter-egg of Phylloxera, VI, 42
Wire Worm, II, 16
Wise, Jno. C., on Rocky Mountain Locust, VW, 82, IX, 93
Witherton, McNeil, on remedy for Canker Worm, II, 101
Wombat, II, 12
Wood Nymph, The Beautifol, II, 83, 84, III, 64, VI, 88, 91, 95
The Pearl, II, 80, 83, 84, [II, 63, VI, 90
Woodpecker, Red-headed, destroying locust, VIII, 124
Wood Pewee destroying Canker Worm, VI, 27
Wooly Aphis, III, 95, IV, 100, IX, 43
Apple-tree louse, I, 118
-bear, IV, 88
Elm-tree louse, I, 123
Plant-louse, I, 119
Workman, R. A., on Rocky Mountain Locust, VIII, 68, IX, 70
Wratten, G. L., on Grape Phylloxera in California, VI, 82
W yoming, Locust History in, VIII, 88, IX, 59
X.

Zabea bipunctata, Supp., 61
Xerophylla, III, 94
caryorsemen, VII, 117
Xiphidium, VI, 155
Xyela, IX, 20
Zyleutes, VIII, 175
Eylina, III, 135
bethunei, III, 136, Supp., 75
capax, III, 136, Supp., 75
cinerea, III, 134, V, 125, Supp., 74
cinerosa, III, 136, Supp., 75
conformis, ILI, 136, Supp., 75
subcostalis, III, 136, Supp., 75
xylina, Anomis, LI, 37, 40, VI, 17, VIII, 23, Supp., 56 Ophiusa, II, 40

I.

yama-maï, Anthercea, IT, 130
Attacue, IV , 74, 130, 138
Fama-maï Silkworm, IV, 130
Acclimatization in Enrope and America, IV, 130
Culture in Japan, IV, 134
Larval cbanges, IV, 132
Parasite, IV, 136
Value of the cocoon, IV, 133
Fellow Bear, III, 141
Fellow-billed Cockoo destroying Canker Worm. FI, 28
Locusts, VIII, 124
-headed Cntworm, I, 87
-jacket, VI, 125
-tail Moth, $\nabla, 126$
-tailed Tachina Fly, II, 51, VIII, 53
Warbler destroying Canker Worm, VI, 27
Yonmang, Prof. E. L., on Evolution, III, 174
Foang, Waller, on Rocky Mountain Locust, VIII, 64 ypsilon, Agrotis, Supp., 55
Yucca, insects affecting, $\nabla, 154$
Yucca Borer, VIII, 169, IX, 129
Affinities, VIII, 176

Yacca Borer-Continued.
Biological, VШI, 171
Bibliographical, VIII, 173
Descriptive, VIII, 174
Enemies, VIII, 179
It is single-brooded, IX, 129
It thrives in the latitude of St. Louis, IX, 129
Yucca Moth, V, 153, VI, 131, VIII, 37
Chrysalis, VI, 131
How the female fertilizes the plant, $\mathrm{V}, 154$
Larva, $\mathrm{\nabla}, 155$
Range, $\nabla, 159$
Oviposition, VIII, 37
yuccoe, Castnia, VIII, 173
Eudamus, VIII, 173
Megathymus, $\nabla, 129$, VIII, 169, 171, 179
yuccasella, Pronuba, V, 160, VI, 131, VII, 171,
Supp., 58

z.

zece, Anthomyia, I, 154, Supp., 89
Sphenophorus, III, 59, Supp., 54
Zebra Caterpillar, II, 112
zetterstedtii, Platyptilia, Supp., 84
Zimb, $\nabla, 13$
Zophodia convolutella, Supp., 57

INDEX TO PLANTS AND FOOD-PLANTS.

Abies canadensis, I, 24 Acer saccharinum, IV, 108 Adam's Needle, V, 158 ※stivalis Grape, V, 65, 66, VII, 103 castivalis, Vitis, III, 89, 90, IV, 60. 61. 63, VI. 36, 47, 48 72, 74, 75, 80, V II, 103 Agawam Grape, V. 65 Ailantbus, I, 149, 151, III. 130. IV , 75, 82, 112, 118, 120, VII, 160 Tree, A good word for the. IV, 120 A ilanthus glandulosa, IV, 113, 120 alba, Carya, V, 105, VII, 117, 118 Morus, IV, 100 album, Chenopodium, II, 113, VI, 12 Alder, II, 121, III, 80 Alnus servulata, III, 80 aloifolia, Fucca, V, 153, V III, 171, 181, IX, 129 Alton Large Nutmeg Melon. II, 69 Alvey Grape, IV, 63, V, 65, VI, 47, VII, 102 amara, Carya, V, 104, VII, 118 Amaranthus, VII, 159 blitum, VII. 61, 119, 121, 122, IX, 122 retrofexus, V, 52, VI, 12 Amber Grape, VI, 47, 48 Ambrosia, Supp., 54 trifida Sapp.. 56 americana, Prunus, I, 15 American Grape-vines in Earope. IV, 62, ∇, 65, VII, 116, VIII, 167 Grape-vines, classification of, IV, 60, VI, 70 Ivy, II, 74 americanus, Ceanothus, II, 35, VII, 48 Amorpha canescens, II, 90 fruticosa, II, 132, T, 136 Ampelopsis, II, 76, VI, 90 quinquefolia. I, 132, II, 74 Anacharis canadensis, II, 11, IX, 43 Andropogon, VI, 155 Angraecum sesquipedale, $\mathbf{V}, 153$ angustifolia, Fucca, $\nabla, 157,159$, VIII, 169 Aросуnum, III, 144, VIII, 119 Apple, I, 7, 29, 42, 46, 47, 53, 62, 63, 70, 71, 77, 78, 80, 89. $108,118,119,126,128.144,146,150$, II, 6,9 , $15,88,89,90,91,9 \overline{,}, 96,114$. III, $5,11,13,25$, $30,32,33,34,38,57,58.92,102,114,118,120$, $124,125,126,127,132,135,141$. IV , 22, 25, 29, $39,44,46,47,50,52,104.126 .132$, T, 51,74, $86,93,109,114,120,122,129$, VI. $9,127,158$, VII, 47, 72, 73, 146, 159, 169. VIII, 19, Supp.,	

aviculare, Polygonum, Supp., 47
Azalea, IV, 126

B.

Balm of Gilead, II, 89, V, 136. VII, 160.
Balsam, II, 114, V, 136
Fir, VU, 172, IX, 30
Banyan, III, 5
Baptisia, V, 136
Barberry, IV, 104, 123
Barley, I, 160, II, 23, III, 112, VII, 27, VIII, 143
Bass-wood, III, 126, IV, 126
batatus, Ipomea, II, 56
Bayberry, IV, 123
Bean, I, 79, II, 14, III, 51, 52, 68, 131, VII, 146, Supp., 69, 70
Early Snap, I, 98
English, I, 98
String, III, 105
Windsor, I, 98, MI, 51
Bear grass, $\mathrm{V}, 158$
Beech, I, 121, IV, 124, 132, VII, 72
Beet, II, 113, V, 111, 114, VII, 146, 159, VIII, 23, 143
Belladonna, IV, 10
belladonna, Atropa, IX, 4
Bellflower, IV, 45
Ben Davis Apple, IV, 45
Benoni Apple, IV, 52,,$~ 87$
Bermuda Sweet-potato, II, 61
Bhotan Pine, V, 100
Bignonia radicans, III, 64, VI, 87
Bind-weed, II, 10
Birch, II, 121, IV, 29, 123, 124, 126, Supp., 73
Bitternat Hickory, V, 104, 105, VII, 97
Bitter-sweet, II, 62
Black Ash, VH, 160
Blackberry, I, 70, 139, IV, 104, V, 108, 120, VI, 111, 127, VII, 159
Dorchester, VI, 113
Black Cherry, Wild, V, 132, 136
Currant, III, 105, IX, 2 "
July Grape, VII, 102
-gum Elm, V, 78
Hamburg Grape, VI, 76
Henbane, VI, 12
-knot, III, 25
Locust, IV, 82, 142, V, 136, VII, 160
Oak, I, 14, III, 127, V, 132, VI, 115
Prince Grape, VI, 77, 78
Spanish Alabama Grape VII, 107
Sweet Grape, VI, 79
Thorn, III, 36
Waldat, III, 125, 127, 131, IV, 82, VII, 160
blitum, Amaranthus, VIII, 61, 119, 121, 122, IX, 123
Blueberry, IV, 126
Blue Dyer Grape, VI, 68
Grass, II, 44, 54, 55, VIII. 27, 49, 122, 182, IX, 47, Supp., 56
Box Elder, VII, 72, 159
Brazilian Sweet-potato, II, 61
Broom-corn, V, 40, VII, 146, 159
Buckwheat, I, 79, III, 109, 141, VII, 43, 146, 159
Burdock, II, 10
Bush Grape, IV, 60, VI, 73
Batter-bean, VII, 146
-cap, II, 10
-nut, ILI, 68, 127, Sapp., 54

C.

Cabbage, I, 79, 83, 84, 156, II, 104, 106, 107, 110, 112, $113,114,115$, III, 11, IV, 10, 11, 35, 36, V, 111, VI, 158, VII, 47, 129, Supp., 78
californica, Titis, IV, 60. VI, 73
campestris, Artemisia, I, 175
Canada Thistle, II, 10
canadense, Erigeron, II, 11, VI, 63, IX, 43
canadensis, Abies, I, 24
Anacharis, II, 11, IX, 43
Cercis, I, 132, III, 72, 136, Supp., 75
candicans, Fitis, IV, 60, VI, 73, 76
canescens, Amorpha, $\Pi, 90$
capitatum, Croton, II, 125. V, 147
Carex, VI, 138
carolinense, Solanum, I, 103, 107, 108, II, 105, IV, 10, VIII, 122
Carrot, VII, 146, 159, VIII, 143
Carya alba, V, 105, VII, 117, 118
amara, V, 104, VII, 118
glabra, VII, 99, 117
olivoeformis, $\bar{\nabla}, 105$
porcina, $\mathbf{V}, 105$
Castor Bean, IV, 112, VII, 43, 146, 159
Catalpa, I, 71, 150
Catawba Grape, IV, $62,63, \nabla, 59,62,65,72,73, V I_{1}^{1}$
$47,75,79,80,81,83$, VII, 101, 102, 110, 116
Cayenne Pepper, IV, 10
Ceanothus americanus, II, 35, VII, 48
Cedar, I, 128, II, 91, IV, 51
Red, I, 150, IV, 51, VII, 159, VIII, 119, IX, 30

Celery, VII, 146

Celtis crassifolia, VI, 137
mississippiensis, VI, 137
occidentalis, VI, 137
Cembra Pine, V, 100
Cephalanthus, IV, 123
Cerasus serotina, III, 120
Oercis canadensis, I, 132, III, 72, 136, Supp., 75
Challenge Grape, IV, 63, VI, 47
Chasselas Grape, VII. 102
Cheat, II, 10, VIII, 40, 50
Chenopodium, Sapp., 78 album, II, 113, VI, 12 hybridum, VI, 12
Cherry, I, 53, 77, 150, I, 35, 96, 114, IUI, 11, 32, 57, $58,120,127,163, I \nabla, 39,41,104, \nabla, 86$, 108, 109, VI, 158, VII, 48, 72, 159, VIII, 19 Supp., 79
Black, V, 132. 136
Mahaleb, VI, 49
Mazzard. VI, 49
Morello, I, 53, VI, 49
Sour, VII, 159
Sweet, VII, 159
Wild, III, 120, IV, 123
Chess, II, 10, 55, VIII, 49
Chestmut, I, 24, II, 121, IV, 132
Horse, I, 146
Spanish, IV, 56
Chickasaw Plam, I, 53
Chickory, IV, 112
Chick-pea, III, 105
Chickweed, I, 179
Chinese Yam, VIII, 143
Choke Cherry, IV, 126, V, 136
Chufa, VIII, 143
cicadina, Massosporr. Supp., 59
fichorium sativa. I. 79
Cicer arietinum, III, 105
Cinquefoil, III, 82
Cirsium lanceolatum, I, 180, VI, 12
Clara Grape, VI, 79
Clinton Grape, I, 13, 14, 30, 130, 131, II. 86, 92, IIT, 87, 89, 91, 92, IV, 62, 63, 64, V. 63, 64, 65, 66, 109, VI. 36, 47, 48, 67, 68, 73, 78, 79, 80, 81, 83, 84, VII, 102, 110, 111, 117
Clover, II, 113, III, 11, 83, IV, 143, F, 136, FI, 103, VII, 146, 168, VHI, 49, Supp., 78
Cluster Tomato, V. 118
soccifera, Quercus, VII, 96
Cocklebur, I, 92, 1II, 60, 105
Coffee-pea, III, 105
coloratum, Epilobium, VI, 90
Columbia Plum, I, 53
communis, Ricinus, IV, 112
${ }^{\circ}$ Concord Grape, I, 125, 130, 131, 132, 133, II, 86, III, 72, 87, 92, IV, 62, 63, 65, V, $59,63,64,65$, VI, $47.48,75,79$,
$80,81,83,84,95$, VII, 102, 111, 115, 117
Convolvulus, II, 62, III, 68, IV, 136
copallina, Rhus, II, 58, VI, 119
corduta, Salix, IX, 20
cordifolia, Vitis, III, 87, 88, 89, 90, 91, IV, 60, V, 66,
118, VI, 36, 73, 74, 75, 76, VII, 96
Cordyceps ravenelii, Supp., 53
Careopsis, II, 35
Corn, I, 79, 80, 81, 87, 126, 154, 155, 157, 158, II, 16, 23 , $27,28,42,43,44,54,55,89$, III, 59, 68, 104, 107, 108, 109, 111, 112, VII, 31, 38, 146, 159, 172, V IU, 25, 27, 49, 123, 143, Supp., 56, 62
Indian, I, 92, III, 105, V, 40, 123, 136, VH, 169
Cornucopia Grape, IV, 63, VI, 47
cornuti, A sclepias, III, 144
cornutum, Solanum, IV, 10
Corsican Pine, V, 100
cotinus, Rhus, VL, 119
Cotton, I, 150, II, 38, 41, III, 68, 70, 104, V, 136, FI, 17, Supp., 56
Cottonwood, Y, 24, 178. II, 119, VII, 160, IX, 127
Cow-cockle, II, 10
Crab-apple, I, 43, 65, III, 25, 30, 31, 40, IV, 39, 42, 52, V, 86,87
Transcendent. I, 15
Crab-grass, III, 111
Cranberry, Supp., 82
crassifolia, Celtis, VI. 137
Cratæegus, IV, 42, Supp., 80
tomentosa, III, 36
Creeper, I, 132
Trumpet, III, 64, VI, 87 Virginia, II, 78, 86, III, 77, V I, 88
Crepis, Supp., 78
Creveling Grape, I, 72, IV, 63, V, 65, VL, 47, 80
Oroton capitatum, II, 125, V, 147
monanthogynum, V, 147
Croton Grape, V, 59
Cucamber, II, 64, 66, 67, 68, 69, 70, III, 111
Cucurbitaceous vines, II, 64, 66, VII, 159
Cunningham Grape, IV, 62, 63, V, 64, 65, VI, 47, 48, 78, 81, VII, 96, 111, 115, 117, VIII, 167

curassavica, Asclepias, III, 144

Currant, I, 15, 70, 79, 140, II, 9, 96, III, 68, IV, 104, V, $51,86,136$, VI, $12,46,111$, VLI, 121, IX, 1 , $2,3,5,7,25$

Currant, Black, III. 105, IX, 2
Fetid, IX, 2
Golden, IX, 2
Missouri, IX, 2
Red, II, 8, 9, VI, 12, IX, 2
-Howered, LX, 2
White, IX, 2
Cynoglossiom officinale, $\nabla, 101$
Cynthiana Grape, IV, 61, 63, 64, V, 64, 65, VI, 47, 74, VII, 111, 115
Cyperus esculentus, VIII, 143
Cypress vine, I, 80

D.

Dahlia, I, 92, II, 114, III, 10.
Damsion, V, 119
Dandelion, IV, 143, Supp., 78
Datura, I, 107, IV, 10
stramanium, V, 56
decandra, Phytolacca, VIII, 122
decapetalus, Helianthus, IV, 142
Delaware Grape, I, 130, II, 92, III, 87, IV, 63, $\nabla, 59$, $63,65,66,111$, VI, $47,73,80,81,83,84$, VIL, 106, 110, 116
Delphinium, VII, 185
Devereux Grape, V, 65
Diana Grape. IV, 63, V, 59, 65, VI, 47, VII, 96
Dipsacus, IV, 112
discolor, Solanum, IV, 10
Dogbane, III, 144, V III, 119
Dog-fennel, II, 10, IV, 15
Dogwood, $\mathrm{V}, 86,93,136$
Doolittle Raspberry, VI, 111
Dorchester Blackberry, VI, 113
Dracut Grape, IV, 63
Amber Grape, VI, 47, 48
Dryas octopetala, I, 143
Duane's Early Plum, IV, 142
Dac de Malacoff Grape, IV, 64
Duchesse Pear, III, 36
Dutchman's Pipe, $\mathrm{I}, 116$
Dwarf Apple, I, 69, 70
Pear, I, 128
Sumach, VI. 119

E.

Early Goodrich Potato, I, 110, III, 101, V, 51
Hirrvest Apple, V, 86
Rose Potato, IV, 11
Snap Bean, I, 98
Echinospermum strictum, $\nabla, 52$
Egg Plant, I, 103, 108, IV, 10
Elder, III, 100, 101, IV, 104, V, 40
Elderberry, IV, 104
eleagnifolium, Solanum, Supp., 54
ELm, I, 123, 146, II, 95, 96, 98, 121, III, 73, 127, IV, 104, 126, 129, V, 86, 93, 94, 104, 136, VI; 29, VII, 83, 85, 160, VIII, 19, IX, 127
White, I, 123
Elsimboro Grape, IV, 64
Empusa muscoe, IV, 88
Enäive, Wild, I, 79, 83
Engelmannia, $\overline{\text {, }} 147$
English Gooseberry, IV, 56, V, 70
Hawthorn, V, 70
Entomophiloe, $\nabla, 152$
Epilobium coloratum, VI, 90

Eragrostis poceoides, VIII, 122

Erigeron canadense, II, 11, VI, 63, IX, 43
Erysiphe, $\mathrm{V}_{\mathrm{t}} 70$
esculentus, Cyperus, VIII, 143
Eucalyptus globulus, VI, 55
Eumelan Grape, V, 65 , VII, 101
Eupatorium perfoliatum, VI, 12
serotinum, I, 152
European Grape, IV, 55, 63, VI, 47,77
Lareh, VII, 172
Rulander Grape, VI, 77, 78
excelsa, Pinus, V, 100

F.

falcata, Quercus, VIXI, 182
False Indigo, II, 132, V, 136
fasciculata, Ternonia, I, 153
Fetid Currant, IX, 2
Field Garlic, II, 10
Figwort family, VII, 14
filamentosa, Fueca, V, 158, 159, VII, 171
Fir, IX, 29
Balsam, VII, 172, IX, 30
faccida, Fucca, V, 159
Flax, II, 42, VII, 42, 159, VIII, 25
floridum, Ribes, IX, 2
Foment Grape, $\mathbf{V}, 66$
Fox Grape, VI, 75, 84
Fox-tail Grass, II, 10
Fragrant Sumach, VI, 121, IX, 6
French Hazel, VI, 121
Frost Grape, III, 87, 89, 90, IV, 60, VI, 73
fruticosa, Amorpha, II, 132, V, 136
Fungas infesting Cicada, I, 26
White Grab, I, 158, TI, 123, 125
Furze, III, 51

G.

Garden Gooseberry, IX, 2
Garlic, Field, II, 10
Garrigues Grape, VI, 84
Geranium, III, 68
glabra, Carya, VII, 99, 117 Photinia, IV, 132 Rhus, II, 58, VI, 119
Gladiolas, III, 105
glandulosa, Ailanthus, IV, 113, 120
glauca, Fucea, V, 153
globulus, Eucalyptus, VI, 55
gloriosa, Fucca, V, 159, VII, 171
Goat-weed, II, 125, V, 147
Gethe Grape, IV, 63, V, 62, 64, 65, 66, VI, 47, 80, 81, VII, 96, 111, 116
Golden Chasselas Grape, VI, 77
Clinton Grape, LII, 87, VI, 47, 48, 68, VII, 102 Currant, LX, 2
-rod, I, $98,152,173$, II, 134, IV, 28, Supp., 57 Willow, III, 168
Gooseberry, I, 140, II, 8, 9, III, 58, 68, VI, 46, VIII, 121, IX, 1, 2, 3, 5, 6, 8, 26
Gooseberry, English, IV, $26, ~$ V, 70
Garden, IX, 2
Houghton's Seedling. I, 140 Showr, IX, 2
Goosefoot, II, 113, VI, 12
Gourd, II, 66

Grape, Agawam, V, 65
Alvey, IV, 63, V, 65, VI, 47, VII, 102
Amber, VI, 47, 48
Aramon, VII, 111
Black Hamburg, IV, 56, VI, 76
July, VII, 102
Prince, VI, 77, 78
Spanish Alabama, VII, 107
Sweet, VI, 79
Blue Dyer, VI, 68
Ballet, IV, 62, VI, 75
Bush, IV, 60, VI, 73
Catawba, IV, 62, 63, $\nabla, 59,62,65,72,73, V I$, $47,75,79,80,81,83$, VII, 101, 102, 110, 116
Challenge, IV, 63, VI, 47
Chasselas, IV, 56, VII, 102
Clara, VI, 79
Clinton, I, 13, 14, 30, 130; 131, II, 86, 92, III, 87, 89, 91, 92, IV, 62, 63, 64, V, 63, 64, 65, 66, $109, \mathrm{VI}, 36,47,48,67,68,73,78,79,80,81,83$, 84, VII, 102, 110, 111, 117
Concord, I, 125, 130, 131, 132, 133, II, 86, IIT, $72,87,92, \mathrm{IV}, 62,63,65, \mathrm{~V}, 59,63,64,65, \mathrm{VI}$, $47,48,75,79,80,81,82,84,95$, VII, 102, 111, 115, 117
Cornucopia, IV, 63, FI, 47
Creveling, $\bar{I}, 72, \mathrm{IV}, 63, \mathrm{~V}, 65, \mathrm{VI}, 47,80$
Croton, V, 58
Cunningham, $\mathrm{I} \nabla, 62,63, \mathrm{~V}, 64,65, \mathrm{VI}, 47,48$, 78, 81, VII, 96, 111, 115, 117, VIII, 167
Cynthiana, IV, $61,6364, \nabla, 64,65, ~ V I, 47,74$, VII, 111, 115
Delaware, I, 130, II, 92, III, 83, 87, IV, 63, V, $59,63,65,66,111, \mathrm{VI}, 47,73,80,81,83,84$, VII, 106, 110, 116
Devereax, $\mathrm{V}, 65$
Diana, IV, 63. V, 59, 65, VI, 47, VII, 96
Dracut, VI, 47, 48
Amber, IV, 63
Duc de Malacoff, IV, 64
Elsinboro, IV, 64
Eumelan, V, 65, VII, 101
European, IV, 55, 63, VI, 47, 77
Rulander, VI, 77, 78
Foment, $\vee, 66$
Fox, VI, 75, 84
Frost, III, 87, 89, 90, IV, 60, VI, 73
Garrigues, VI, 84
Goethe, IV, 63, V, 62, 64, 65, 66, VI, 47, 80, 81 , VII, 96, 111, 116
Golden Chasselas, VI, 77
Clinton, III, 87, VI, 47, 48, 68, VII, 102
Hamburg. V, 59
Hartford, IML, 72, IV, 63, VI, 47
Prolific, I, 125, 130, 131, IV, 62, 64, 65, $\mathrm{V}, 65$, VI, 75, 81, V II, 116
Herbemont, $I V, 61,62,63,64, \nabla, 63,64,65, \mathrm{VI}$, $36,47,48,74,78,80,81, \nabla \amalg, 102,109,111$, 115, 117. V HI, 167
Hermann, V, 65, VII, 111
Huntington, III, 87
Iona, III, 72, V, 59, 62, 65, TI, 48, 79, 80, 81, 83 , VП, 96, 116
Isabella, $\mathrm{I}, 130, \mathrm{II}, 81, \mathrm{IF}, 62,63,64, \mathrm{~V}, 59 . \Gamma \mathrm{I}$, $48,75,81$. VU, 96, 101, 102

Grape, Israella, IL, 72

Ires, IV, 63, V, 65, TI, 48, 81, 84, VII, 96, 111, 116
Seedling, I, 133, V, 64, VI, 79, 80
Jacques, V, 66, VII, 107, 117, VHI, 167
Lenoir, IV, 64, F, 66, Ү HI, 108, 117
Lindley, V. 65
Long, $\mathrm{V}, 66$
Longworth's Ohio, VII, 107
Louisiana, IV, 63, V, 65, VI 47
Madam Pince, IV, 64
Madeira, $\mathrm{V}, 63$
Malaga, VI, 78
Malvasia, VI, 77
Marion, VI, 47, 48, 68
Martha, IV, 62, 63, VI, 48, VII, 96.111
Massasoit, V, 65
Maxatawney, IV, 63, 64, V, 65, VI, 48, 80, 81, VII, 96, 116
Merrimac, V, 65
Muscadine, IV, 60, 62, 63, VI, 72
Muscat, VII, 102
Hamburg, IV, 64
Mustang, IV, 60, 62, 64, VI, 73, 76, VIII, 167
North Carolina, III, 72, IV, 63, V, 64, VI, 48, VII, 96, 111
Northern Fox, III, 87, 90, IV , 60, 63, VI, 47 , 72, 75, VII, 106
Muscadine, VI. 48, VII, 102
Norton's, V, 65, VI, 78, 84
Catawba, VIII, 96
Virginia, I, 132, IV, 62, 63, 64, VI, 47, 80, 81, VП, 109, 111, 115
Ohio, VII, 107
Othello, IV, 63, VI, 47
Pauline, IV, 64, VII, 102
Post Oak, VI, 79
Rebecca, V, 59, VI, 48
Rent, V, 64, VI, 81, VII, 115
River Bank, IV, 60, 63, V, 116, 117, VI, 36, 47
Riverside, VI, 72
Rogers, I, 130, V, 66
Hybrid, I, 130, V, 117, VI, 80
No. 4, I, 130, II, 92
Rulander, V, 65, VI, 47, 80, VII, 111
Eqropean, VI, 77, 78
Salema, V, 65, 66, VI, 48, 79
Sand, IV, 60, VI, 73
Scegety, $\mathrm{V}, 66$
Scuppernong, III, 77, IV, 62, 64, VI, 50, 76, VII, 106
Segar Box, $\nabla \Pi_{1} 107$
Sonora, IV, 64
Southern Fox, III, 77, IV, $60,62,63, ~ V I, 48$, 72, 75
St. Augustine, V, 63
Sugar, IV, 61
Summer, III, 89, 90, IV, 60, 63, VI, 47, 72
Taylor, I, 30, II, 86, III, 87, IV, 63, 64, V, 63, 65,66, VI, $36,47,48,68,80,95$, VII 102, 115
Bullet, VI, 73
Telegraph, V, 65, VI, 47, VIII, 1 U6
Tinto, VI, 36
Tokay, V, 66
Venango, VI, 84

Grape, Virginia Seedling, VI, 61, 74
Walter, V, 乞9, $62, ~ \Gamma \mathrm{I}, 80$
Warren, VII, 102
Weehawken, $V, 59$
White Riesling, VII, 102
Scotch Cluster, VI, 77
Wilder, IV, 63, T, 62, 63, TI, 48, 81, VII, 101 102, 111, 116
Winter, IV, 60, VI, 73
York Madeira, IV, 64, V, 64
Grape Mildew, IX, 43
-vine, I, 30, 70, 72, 78, 80, 124, 128, 129, 131, 132, 133, 136, 137, 138, 180, II, 71, 74, 76, 78, $81,82,83,85,86,87,88,89,91,92$, III, $11,61,63,65,68,70,72,75,77,79,81$, $84,111,130,137,141$, IV , $52,54,55$, V, $54,57,108,112,114,116,117,118,120$. VI, $30,87,88,91,95,111$, VHI, 47, 91 , 146, 159, 172, VIII, 121, 123, 157 Supp., 75
disease, IV, 55, VI, 58, 65
-vines, American, Classification of, VI, 70
in Earope, IV, 62, V, 65. VII, 116, VIII, 167
of the United States, The true, IV, 60, VI, 70
rooting of, $V, 65$
Varieties to graft, VI, 81
use as stock in grafting, VII, 115
Green Citron Melon, II, 69
Greengage Plum, I, 140
grossularice, Ribes, IX, 2
Ground-cherry, I, 107, IV, 10
Gympson-weed, I, 107

H.

Hackberry, $\mathrm{V}, 119, \mathrm{VI}, 137$
Hackmatack, V H, 169
Halesia, IV, 123
Hamamelis, III, 120
Hamburg Grape, $V, 59$
Hard Maple, III, 126, Supp., 55
Harrison Potato, I, 110
Hartford Grape, III, 72, IV, 63, VI, 47
Prolific Grape, I, 125, 130, 131, IV, 62, 64 65, V, 65, VI, 75, 81, VII, 116
Haw, I, 108, III, 25, 32, 35, 38, 92, V, 51
Hawthorn, I, 43, III, 36
English, V, 70
Hazel, III, 11, 37, 75, IV, 104, 126, V, 132
French, VI, 121
Heart Cherry, VIII, 121
-shaped Willow, IX, 20
Hedge-mustard, VI, 12
Helianthus, VII, 159, Supp., 33
decapetalus, IV, 142
petiolaris, V, 52
tuberosus, VIII, 143
Hellebore, White, LX, 13
Hemp, III, 105, VII, 42, 146
Henbane, IV, 10
Herbemont Grape IV, 61, 62, 63, 64, $\overline{\text { G }}, 63,64,65$, TI $36,47,48,74,78,80,81$, VII, 102, 109, 111, 115, 117 VIII. 167

Herds-grass, VII, 168

Hermann Grape, V, 65, VII, 111
Hibiscus militaris, VI, 92
Bickory, I, 126, 153, 154, III, 37, 124, 126, 127, 131, 135, IV, 42, 43, 52, 54, 104, 124, 126, 140, V, 104, 119, VI, 64, 101, VII, 160, Supp., 81
Bitternat, V, 104, 105, VII. 97
Pecan, V, 105
Pignat, $\nabla, 105$
Shagbark, II, 33. IV, 54
Shellbark, IV, 66, V, 103, 105
\#oney-locust, I, 98, 150, III, 45, IV, 104, 126, VII, 159 -suckle, II, 113
Hop-plantain, III, 131
-vine, $\mathrm{V}, 136$
Horse Chestnut, I, 146
Gentian, III, 134
-nettle, I, 103, 104, 107, 108, IV, 10
Weed, II, 11, IX, 43
Houghton's Seedling Gooseberry, I, 140
Hound's-tongue, V, 101
humilis, Salix, V, 132
Hungarian Grass, VII, 27, 28, VIII, 29, 39
Hantington Grape, IUI, 87
hybridum, Chenopodium, VI, 12
hydropiper, Polygonum, III, 70, VI, 12
Hyøscyamus, IV, 10
niger, VI, 12
I.
incana, Quercus, IV, 114
Indian Corn. (See Corn.)
Indigo, V, 136
False, II, 132, V, 136
infectoria, Quercus, V, 18
Iona Grape, III, 72, V, 59, 62, 65, VI, 48, 79, 80, 81, 83, VII, 96, 116
Inomea, III, 45
batatus, II, 56
Irish Potato. (See Potato.)
Ironweed, $\mathrm{V}, 136$
Isabella Grape, I, 130, II, 81, III, 72, IV, 62, 63, 64, V, 59, VI, 48, 75, 81, VII, 96, 101, 102
Israella Grape, III, 72
Ives Grape, IV, 63, V, 65, VI, 48, 81, 84, VII, 96, 111, 116
Seedling Grape, I, 133, V, 64, VI, 79, 80
Iry, Poison, VI, 121

J.

Jamestown Weed, I, 107, II, 10, V, 56
Japan Varnish tree, IV, 120
Jaques Grape, V, 66, VII, 107, 117, VIII, 167
Jerasalem Artichoke, VIII, 143
jujuba, Rhamnus, IV, 138
Jujabe, $\nabla, 18$
June-berry, I, 43
Juniperus virginiana, I, 24

K.

King of the Earlies Potato, IV, 11
Knotweed, Sapp., 47
Kolrabi, VII, 159
Kunogi, IV, 130, 134, 136

L.

Babrusca, Vitis, ILI, 87, 89, 90, IV, 60, 63, V, 60, 65, 66, 118, VI, 36, 47, 48. 71, 72, 74, 75, 76, VII, 103

Laburnum, IV, 118
Lamb's quarter, II, 1Q, 113, VI, 12
lanceoLatum, Oirsium, I, 180, VI, 12
Larch, European, VII, 172
laricio, Pinus, V, 100
Lathyrus, III, 52
Laurel, $\mathrm{V}, 33$
-cherry, $V, 33$
-leaved oak, IV, 134
Lawrence Pear, III, 36
Lenoir Grape, IV, 64, V, 66, VII, 108, 117
Lettuce, IV, 100, 112, VI, 158
Lilac, III, 68, IV, 104, 123, VII, 159
Persian, I, 15, V, 70, 86, 127
Lima Bean, VII, 172
Limber Twig Apple, V, 87
lincecumir, Vitis, VI, 74
Linden, I, 150, V, 93, VII, 72
Lindera, II, 121, IV, 123
Lindley Grape, V, 65
Liquidambar, IV, 123
Liriodendron, IV, 123
tulipifera, Supp., 55
Live-oak, IV, 129
Locust, I, 24
Black, IV, 82, 142, V, 136, VII, 160
Honey, I, 98, 150, III, 45,IV, 104, 126, VII, 1.59
Lombardy Poplar, I, 150, 157, II, 89, VII, 160
Long Grape, $\nabla, 66$
Longworth's Ohio Grape, VII, 107
Lonisiana Grape, IV, 63, V, 65, VI, 47
Lowell Apple, ∇, 87
Lacern, IM, 83, 105
Lycopersicum, IV, 10

II.

Mactura aurantiaca, IV, 100
Madam Pince Grape, IV, 64
Madeira Grape, $\mathbf{\nabla}, 63$
Madia sativa, VI, 55
Mahaleb Cherry, VI, 49
Maiden's Blush Apple, V, 87
Malaga Grape, VI, 78
Mallow, VL, 89
Malva, VI, 89
sylvestris, VIII, 182
Malvasia Grape, VI, 77
Mandrake, IV, 15
Mangel wurzel, VIII, 143
Maple, I, 47, 146, 150, II, 121, IV, 104, 123, 126, VI, 107 111, VII, 160
Hard, III, 126, Supp., 55
Silver, I, 150, V, 137
Soft, I, 47, 150, IV, 42, V, 120, 137, VI, 108, Supp., 55, 62, 74
Mare's Tail, II, 11
Marigold, II, 114
Marion Grape, VI, 47, 48, 68
Martha Grape, IV, 62, 63, VI, 48, VII, 96, 111
Maruta, VIII, 100
Massospora cicadina, Supp., 59
Massasoit Grape, V, 65
Maxatawney Grape, IV, 63, 64, $\mathrm{V}_{1}, 65, \mathrm{VI}, 48,80,81$, VII, 96, 116
May Apple, IV, 15
-weed, II, 10

Mazzard Cherry, VI, 49
Meadow-sweet, III, 51
media, Stellaria, I, 179
Medlar, $\mathbf{Y}, 86$
Neapolitan, IV, 132
Melon, II, 64, 66, 69, 70
Alton Large Natmeg, II, 69
Green Citron, U, 69
Merrimac Grape, V, 65
Mignonette, II, 113
militaris, Hibiscus, VI, 92
Milkweed, I, 139, II, 58, III, 133, 144, 168, VIII, 61, 92, 119
Miner Plam, I, 53
mississippiensis, Celtis, VI, 137
Missouri Currant, IX, 2
missouriensis, Solidago, I, 174
mitis, Pinus, V, 100
monanthogynum, Croton, V, 147
monilifera, Populus, II, 119
monoica, Strombocarpa, I, 65
monticola, Vitis, VI, 57, 74
Morello Cherry, I, 53, VI, 49
moretti, Morus, IV, 100
Morning Glory, I, 100, II, 62
Morus alba, IV, 100
moretti, IV, 100
multicaulis, IV, 80, 100
rubra, IV, 100
Mountain Ash, I, 43, V, 86, VH, 72
Mulberry, IV, 74, 75, 76, 79, 82, 100
Red, IV, 100
White, I, 72, 73
Mullein, II, 10, V, 35, V II, 14
multicaulis, Morue, IV, 80, 100
Muscardine Grape, IV. 60, 62, 63, VL 72
тияссе, Empusa, IV, 88
Muscardine, IV, 88, 89, 91, 144
Muscat Grape, VU, 102
Hambarg Grape, IV, 64
Mastang Grape, IV, 60, 62, 64, VI, 73, 76. VIII. 167
mustangensis, Vitis, IV, 62, ГI. 76
Mustard, IV, 36, V, 112
Hedge, VI, 12
Myrica, IV, 123

N.

Nansemond Sweet-potato, II, 61
Neapolitan Medlar, IV, 132
Neck-weed, II, 35, VII, 48
Nectarine, III, 40
nemoralis, Solidago, I, 173
Nettle, IU, 105, IV, 10, VIII, 122
Horse, I, 103, 104, 107, 108, IV, 10
New Jersey Tea-plant, II, 35, VII, 48
Nicandra, IV, 10
Nicotiana, IV, 10
niger, Hyorcyamus, VI, 12
Nightshade, IV, 10, VI, 12
nigrum, Ribes, IX, 2
Solanum, VI, 12
North Carolina Grape, III, 72, IV, 63, V, 64, VI, 48. VII, 96, 111
Northern Fox Grape, III, 87, 90, IV, 60, 63, VI, 47 , $72,75, \nabla \amalg, 106$
Muscadine Grape, VI, 48, VII, 102
Spy Apple, $\mathrm{F}, 87$

Norton's Grape, F, 65, FI. 78, 84, VII, 96
Firginia Grape, I, 132, IV, 62, 63, 64, VI, 47, 80, 81, VII, 109, 111, 115
Norway Spruce, I, 150, VII, 172, VIII, 119, IX, 30
novaboracensis, Vernonia. VIII, 119

0.

Oak, I, 47, 126, 128, 139, 146, II, 91, III, 73, 94, 124, 125, $126,127,131,134,138$, IV, 45, 52, 114, 126, 137 $140, ~ V, 18,126,127,132,139$, VI, 103, 113, 127. 128, 158, 166, VII, 72, VIII, 23, IX, 52
Black, I, 14, V, 132, FI, 115
Chermes, VII, 96
Laurel-leaved, IV, 134
Live, IV, 129
Pin, I, 157
Post, I, 157, IV, 42, 66, 134, V, 132, VI, 64, 115 . VII, 97
Red, I, 14, V, 132, VI. 115
White, VI, 64, 115
Oat, I, 88, II, 16, 44, 54, III, 111, 112, 115, VI, 12. V II
38, 146, VIII, 27, 49, 119
occidentalis, Celtis, VI, 137
Thuja, I, 24
octopetala. Dryas, I, 143
offcinale, Sisyonbrium, VI, 12
Ohio Grape, VII, 107
Oidium tuckeri, V, 57, 70, VI, $30,63,79,8$, IX, 43
Proof of its occurrence in America, $\mathrm{V}, 70$
oligostachya, A ristida, VIII, 122
olivaformis, Carya, V, 105
Onion, II, 9, VII, 159, 169, V III, 49
Osage Orauge, I, 126, 150, II, 89, III, 131, IT, 75,79
100, VII, 159, IX, 95, Supp., 89
Othello Grape, IV, 63, VI. 67
Ox-eye Daisy, II, 10

P.

Panicum sanguinale, VIII, 122
Parsuip, VII, 146, VIII, 119, 143
Pauline Grape, IV, 64, VII, 102
Pea, II, 14, 42. III, 44, 50, 68, 105, 107, VIII, 25, 119
Chick, III, 105
Coffee, III, 105
Peach, I, 47, 50, 77, II, 15, III, 15, 27, 30, 34, 38, 40, 57,
1 1^3, 105, 114, 120, 127, 132, 134, IV, 22, 29, 40.
52. 82, V, 108, 120, 127, 129, VI, 112, V II, 72.

146, 159, VIII, 19, Supp., 75
-blow Potato, I, 79, 98, 99, III, 101
Rot, I, 52
Peannt, VII, 146
Pear, I, 15, 43, 64, 69, 70, 77, 128, 146, 150, II, 33, 38, 114 III, 11, $33,36,38,57,78,120,131$, IV, 40,52 , 104, V, 54, 86, 93, 122, VII, 72, 146, 159, FIII. 24
Wight, III, 58, TUI, 24
Duchess, III, 36
Dwarf, I, 128
Lawrence, III, 35
Seckel, III, 35
Standard, I, 128
White Doyenne, I, 15
Pecan, V, 105, VI, 101
peltatum, Podophyllum, IV, 15
peregrina, Veronica, II, 35, VII, 48
perfoliatum, Eupatorium, FI, 12
Triosteum, III, 134
Peronospora, $\mathrm{V}, 70$, TI, 85
Persian Cantelope: II, 69
Lilac, I, 15, T, 70, 86, 127
Persimmon, V, 69, 109
petiolaris, Helianthus, $\mathrm{V}, 52$
Petunia, IV, 10
Phaseolus, III, 52, 53
Photinia glabra, IV, 132
Physalis, I, 107, IV, 10
Phytolacca decandra, VIII, 122
phytolaccoides, Asclepias, LII, 144
Pig-nat Hickory, V, 105
-weed, V, 52, VI, 12
Pimpernel, TV, 118
Pine, I, 24, 127, II, 15, 91, V, 100, IX, 29,32
Austrian, $\overline{\text { D }}, 100$, IX, 30, 32, 33
Bhotan, V, 100
Cembra, $\mathrm{V}, 100$
Corsican, V, 100
Pitch, T, 100, IX, 32
Pyrenaian, $\Gamma, 100$
Scotch, III, 92, V, 100, IX, 30, 32, 33
White, III, 92, V, 97, 100, 102, IX, 13, 29, 30, 32
Xellow, V, 100
Pin Oak, I, 157
Pinus austriaca, I, 24, V, 100
cembra, $\bar{\Gamma}, 100$
excelsa, V, 100
laricio, V, 100
mitis, V, 100
pumilio, $\mathrm{V}, 100$
pyrenaica, $\mathrm{T}, 100$
resinosa, $V, 100$
strobus, I, 24
sylvestris, I, 24, V, 100
Pitch Pine, V, 100, IX, 32
Plantago, TV, 142
Plantain, II, 10, III, 68, IV, 142, 143
Plum, I, 15, 65, 140, 146, 150, П, 15, 96, III, 11, 25, 27, $32,34,40,41,57,103,120,127,153,163, \mathrm{IV}, 23 \mathrm{~J}$ $29,39,41,104,118,123,124,126, ~ \nabla, 86,93,109$ VI, 127, 141, VII, 72, 159, IX, 2
Chickasaw, I, 53
Columbia, I, 53
Duane's Early, IV, 142
Greengage, I, 140
Miner, I, 53
Wild, I, 15, 55
poceoides, Eragrostis, VII, 122
Podophyllum peltatum, IV, 15
Poison Ivy, VI, 121
Pokeweed, VLI, 122
Poke Milk-weed, III, 144
Polecat-weed, VI, 121
Polygonum aviculare, Supp., 47
hydropiper, III, 70, VI, 12
Poplar, II, 91, III, 72, 73, 120, 127, 135, 153, 168, IV, 123, 126, V, 136, VI, 105
Lombardy, I, 150, 157, II, 89, VII, 160
Silver, III, 156, 168
Silver-leaf, VII, 160
Populus monilifera, II, 119
creina, Oarya, V, 105

Post Oak, I, 157, IV, 42, 66, 134, V, 132, VI, 64, 115,「II, 97
Post Oak Grape, TI, 79.
Potato, I, 91, 93, 95, 96, 97, 98, 99, 100, 101, 158, חI, $42,56,57,70,114$, III, $98,105,111, I V, 5$, $10,11, ~ V, 18,111,112,114$, FI, 11, VII, 2, 47, $146,159,169,172$, VIII, $1,25,37,119$, IX, 39
Chili No. 2, III, 101
Early Goodrich, I, 100, III, 101, V, 51 Rose, III, 101, IV, 11
Harrison, I, 110
King of the Earlies, IV, 11
Mercer, III, 101
Peach-blow, I, 97, 98, 99, III, 101
Peerless, III, 101
Pink-eye, III, 101
Quaker Russet, I, 98
Russet, III, 101
Shaker, III, 101
Potentilla, III, 82
verna, I, 143
Poterium sanguisorba, I, 143
Prickly Mesquit Grass, VH, 192
Prostrate Currant, IX, 2
prostratum, Ribes, IX, 2
Prune, ILI, 40
Prunus, VI, 141
americana, I, 15
lauro-cerasus, $\overline{\text {, }} 33$
serotina, $\mathrm{V}, 136$
puberula, Yucca, V, 153
pumilio, Pinus, V, 100
Pumpkin, I, 79, II, 42, III, 105, VII, 25
Purple-fringe, VI, 119
purpurascens, Asclepias, III, 144
Purslane, II, 10, III, 112, 141, V, 69, VI, 158, VII, 46, 47, VIII, 122, 123
Speedwell, II, 35, VII, 48
Pyrenaian Pine $\nabla, 100$
pyrenaica, Pinus, $\bar{V}, 100$

©.

Quaker Russet Potato, I, 98
Quercus coccifera, VII, 96
falcata, VIII, 182
incana, IV, 114
infectoria, V, 18
serrata, IV, 130
Quince, I, 43, 65, 150, II, 35, 114, III, 30, 35, 36, 38, IV, 39, 41, 126, 132, VII, 48, Supp., 79
quinquefolia, Ampelopsis, I, 132, II, 74

R.

racemosus, Symphoricarpus, $\boldsymbol{\Pi}, 113$
radicans, Bignonia,•III, 64, VI, 87
Radish, I, 156, IV, 36, V, 111, VII, 159
Rambo Apple, V, 86
Raspberry, I, 70, 139, II, 34, III, 72, V, 120, 123, VI, 111, VII, 48
Doolittle, VI, 111
ravenelii, Cordyceps, Supp., 53
Rawles Janet Apple, III, 34
Rebecca Grape, V, 59, VI, 48

Red Astrachan Apple, V, 86
Bud, III, 72
Cedar, I, 150, IV, 51, VII, 159, VIII, 119, IX, 30
Currant, II, 8, 9, VI, 12, IX, 2
-flowered Currant. IX. 2
June Apple, IV. 52
Mulberry, IV, 100
Oak, I, 14, V, 132, VI, 115
Pine, V, 100
Romanite Apple, $\nabla, 86$
-root, II, 35, IV, 104, VII, 48
Rentz Grape, V, 64, VI, 81, VII, 115
resinosa, Pinus, V, 100
retroftexus, Amaranthus, VI, 12
Rhammus jujuba, IV, 138
Rhubarb, II, 123, III, 51
Rhus aromatica, II, 58, VI, 121, IX, 6
copallina, II, 58, VI, 119
coriaria, IV, 118
cotinus, VI, 119
glabra, II, 58, VI, 119
toxicodendron, V, 127, VI, 121
typhina, VI, 19
Ribes aureum, IX, 2
floridum, IX, 2
grossularia, IX, 2
nigrum, IX, 2
prostratum, IX, 2
rubrum, IX, 2
sanguineum, IX, 2
speciosum, IX, 2
Ricinus communis, IV, 112
riparia, Vitis, IV, 60, 61, 63, V, 62, 65, 116, 118, VI $36,47,48,58,72,73,74,75,95$, VII, 96
River Bank Grape, IV, 60, 63, V, 116,117 , VI, 36 , 47
Riverside Grape, VI, 72
robustum, Solanum, IV, 10
Rogers' Grape, I, 30, II, 92, V, 66
Hybrid Grape, I, 30, V, 117, VI, 80
Rome Beauty Apple, I, 71
Rosarere, V, 86
Rose, I, 70, 146, III, 120, 124, 127, IV, 126, V, 109, 123 , 127, VI, 127, VII, 159, Supp., 57
Wild, $\mathrm{V}, 126$
oostratum, Solanum, I, 102, 108, IV, 10, VII, 1
rubra, Morus, IV, 100
rubrum, Ribes, IX, 2
Rubus, V, 154, VI, 113, Supp., 72
Rulauder European Grape, VI, 77, 78
Grape, V, 65, VI, 47, 48, VII, 111
rupestris, Vitis, IV, 60, VI, 73, 74
rupicola, Yucca, V, 157
Russet Potato, III, 101
Rutabaga, II, 113, VII, 159, VIII, 143
Rye, I, 160, II, 29, 44, 54, III, 111, VII, 38, 146, 168 , VLII, 27, 49, IX, 51
saccharinum, Acer, IV, 108
Salem Grape, V, 65, 66, VI, 48, 79
Salix, VI, 136
cordata, IX, 20
humilis, V, 132
Salvia trichostemmoides, VIII, 119

Sand Bur, VIII, 9,122
Grape, IV, 60, VI, 73
sanguinale, Panicum, VIII, 122
sanguineum, Ribes, IX, 2
sanguisorba, Poterium, I, 143
Sarracenia, III, 15 5
Sassafras, IV, 123, V, 122, 134, 136, VI, 127
sativa, Cichorium, I, 79
Madia, VI, 55
scendens, Senecio, Supp., 78
Scegety Grape, V, 66
Scotch Pine, III, 92, V, 100, IX, 30, 32, 33
Screw-bean, I, 65
Scrub Oak, III, 163
Willow, II, 90, III, 168, V, 132
Scuppernong Grape, III, 77, IV, 62, 64, VI, 50, 76,
VII, 106
Seckel Pear, III, 36
Segar-box Grape, VII, 107
Senecio scandens, Supp., 78
serotina, Cerasus, III, 120
Prumus, V, 136
serotinum, Eupatorium, I, 152
serpentina, Aristolochia, $\amalg, 116$
serrata, Quercus, IV, 130
servulata, Alnus, III, 80
sesquipedate, Angroecum, V, 153
setigere, Stipa, VII, 192
Shag bark Hickory, II, 33, IV, 54, VII, 48
Shaker Potato, III, 101
Shell-bark Aickory, IV, 66, V, 103, 105
Shepherd's Purse, II, 10
Showy Gooseberry, IX, 2
sieglinge, Solanum, IV, 10
Silkweed, III, 144
Silver Maple, I, 150, V, 137
Poplar, III, 156, 168
-leaf Poplar, VII, 160
sipho, A ristolochia, II, 116
Sisymbrium officinale, VI, 12
Smartweed, II, 10, III, 68, 70, VI, 12
Smoke-tree, VI, 121
Smooth Sumach, VI, 119
Snowberry, I, 153, 154, II, 113, Supp., 81,82
snowdrop-tree, IV, 123
Soft Maple. I, 47, 150, IV, 42, V, 120, 137, VI, 108,
Supp., 55, 62, 74
Solenacere. IV, 10, V II, 146
Solumum carolinense, I, 103, 107, 108, II, 105, IV, 10, VIII, 122
cornutum, IV, 10
discolor, IV, 10
eleagnifolium, Supp., 54
nigrum, VI, 12
robustum, IV, 10
rostratum, I, 102, 108, IV, 10, VII, 1, VIU, $9,10,122$
sieglinge, IV, 10
tuberosum, II, 56, VIII, 9
warscewiczi, IV, 10
Solidago, V, 154
missouriensis, I, 174
nemoralis, I, 173
Sonora Grape, IV, 64
Sorghum, II, 23, 44, 54, VII, 146, 159, VUI, 27
Soulard Apple, V, 87

Soar Cherry, VII, 159
Soutbern Fox Grape, III, 77, IV, 60, 62, 63, VI, 48, 72, 75
Spanish Chestnat, IV, 56
speciosum, Ribes, IX, 2
Spice-bash, IV, 123
Spinach, IL, 113
Spircea, V, 154
ulmaria, III, 51
Spruce, III, 112
Norway, I, 150, VII, 172, VIII, 119, IX, 30
Squash, II, 64, 66, 70
Staghorn Sumach, VI, 119
Standard Pear, I, 128
St. Augustine Grape, V, 63
Stellaria media, I, 179
Stickseed, $\mathrm{V}, 52$
Stink-weed, V I, 121
Stipa setigera, VII, 192
St. John's Wort, II, 10
stramonium, Datura, V, 56
Strawberry, I, 142, 143, 157, II, 34, III, 11, 42, 43, 82, 83,105, IV, 34, V, 114, VII, 46, 47, 48, 159, IX, 27
strictum, Echinospermum, $\mathrm{\nabla}, 52$
String bean, III, 105
strobus, Pinus, 1, 24
Strombocarpa monoica, I, 65
strumarium, Xanthium, I, 92
Sugar Grape, IV, 61
Suraach, I, 100, II, 58, III, 130, VI. 118, 127, VII, 160 Dwarf, VI, 119
Fragrant, VI, 121, IX, 6
Smooth, VI, 119
Staghorn, VI, 119
Venetian, VI, 119
Summer Grape, III, 89, 90, IV, 60, 63, VI, 47, 72
Rose Apple, , V, 86
Sunflower, III, 68, 131, IV, 142, V, 52, Supp., 53
Swamp Rose-mallow, VI, 92
Sweet Cherry, VII, 159
Gnm, IV, 123, 124, 140
June Apple, V, 75
-potato, I, 100, II, 56, 57,58,60, 61, 62, 63, VM, 146
Bermuda, II, 61
Brazilian, II, 61
Nansemond, II, 61
Sycamore, I, 150, III, 114, 127, IV, 126, 129, VI, 128, IX, 127
sylvestris, Malva, VI, 89
Pinus, 1, 24, V, 100
Symphoricarpus racemosus, II, 113
vulgaris, I, 153
T.

Tallman's Sweet Apple, III, 35
Taylor Grape, I, 30, ILI, 87, IV, 63, 64, $\nabla, 63,65,66$, VI, $36,47,48,68,80,95$, VII, 102, 115 Bullet Grape, VI, 73
Teasel, IV, 112
Telegraph Grape, V, 65, VI, 47, VII, 106
Thistle, I, 180, II, 10, 112, III, 67
Canada, U, 10
Thorn, III, 120, IV, 126
-apple, IV, 10
Thoroughwort, VI, 12
Thuja occidentalis, I 24
thunbergii, Fitis, VI, 71
Tilia, IV, 126
Timothy, III, 111, VII, 38, 146, VLII, 39, 49, 50, 143, IX, 51
Tinto Grape, VI, 36
Toad-flax, II, 10
Tobacco, I , 80, 96, 105, IV, 10, VII, 146, 159
Tokay Grape, $\mathbf{\nabla}, 66$
Tomato, I, $80,92,95,107,108$, III, 105, IV, 10, VI, 12 , VII, 146
tomentosa, A ristolochia, II, 116
Cratcegus, III, 36
Tonzara, IV, 136
Torrubia cinerea, VI, 123 militaris, V1, 123
toxicodendron, Rhus, V, 127, VI, 121
Transcendent Crab, I, 15
Trees, growth of trank of, VI, 98
trichostemmoides, Salvia, VIII, 119
trifida, Ambrosia, Supp., 56
Triosteum perfoliatum, III, 134
Trumpet Creeper, III, 64, VI. 87
tuberosa, Asclepias, III, 144
tuberosum, Solanum, II, 56, VIII, 9
tuberosus, Helianthus, VIII, 143
tuckeri. Oidium, V, 57, 70, VI, 30, 63, 79, 85, IX, 43
tulipifera, Liriodendron, Supp., 55
Tulip tree, IV, 123, Supp., 55
Turnip, I, 101, II, 105, 114, III, 11, 109, 111, 141, IV
36, V, 69, 111, 114, VII, 159, VIII, 143
typhina, Rhus, VI, 119

U.

ulmaria, Spiraea, III, 51
Ulmus, VI, 137
Urticacese, IV, 100
V.
vaginnefors, Vilfa, VIII, 122
Venango Grape, VI, 84
Venetian Samach, VI, 119
Verbascum, V, 35, VII, 14
Verbena, III, 68
verna, Potentilla, I, 143
Vernonia, V, 136
fasciculata, I, 153
noveeboracensis, VIII, 119
Veronica peregrina, II, 35, VII, 48
Vilfa, VIIL, 123
Filfa vaginceftora, VIII, 122
vinifera, Vitis, IV, 55, 63, V, 65, VI, 32, 47, 48, 72, 74, 78, 80, 85
Virginia Creeper, II, 78, 86, III, 77, VI, 88
virginiana, Juniperus, I, 24
Virginia Seedling Grape, IV, 61, VI, 74
Vitis aestivalis, III, 89, 96, IV, 60, 61, 63, VI, 36, 47. $48,72,74,75,80$, VII, 103
arizor ${ }^{-} a, \mathrm{IV}, 60, \mathrm{VI}, 73,76$
cai fornica, IV, 60, VI, 73
candicans, IV, 60, VI, 73, 76
cordifolia, III, 87, 88, 89, 90, IV, 60, V, 66, 118,
VI, $36,73,74,75,76$, VII, 96
lab̈rusca, III, 87, 89, 90, IV, 60, 63, V, 60, 65, 66 , 118, VI, $36,47,48,71,72,74,75,76$, VII, 103
lincecumia, VI, 74
monticola, VI, 57, 74
mustangensis, IV, 62, VI, 76

Vitis riparia, $\mathrm{IV}, 60,61,63, \mathrm{~V}, 62,65,116,118, \mathrm{VI}, 36$, $47,48,58,72,73,74,75,95$, VII, 96
rupestris, IV, 60, VI, 73, 74
thunbergii, VI, 71
vinifera, IV, $55,63, \mathrm{~V}, 65, \mathrm{~V}$ I, 32, 47, 48, 72, 74, 78,80, 85
vulpina, III, 77, 90, IV, 60, 63, V, 66, 118, VI, 48, 49, 72, 75, VII, 106
vulgaris, Symphoricarpus, I, 153
vulpina, Vitis, III, 77, 90, IV, 60, 63, V, 66, 118, VI, $48,49,72,75$, V II, 106

$$
\mathbf{w}
$$

Walter Grape, V, 59, 62, VI, 80
Walnut, I, 153, III, 125, 126, 127, IV, 42, 124, 126
Black, I, 153, III, 131, IV, 82, VII, 160, Supp., 54
Warren Grape, VII, 102
warscewiczi, Solanum, IV, 10
Watermelon, III, 141
Water-weed, II, 11, IX, 43
Weehawken Grape, V, 59
Weeping Willow, II, 109
Wheat, I. 79, 87, $88,159,160$, II, $16,17,23,23,30,42$, $44,54,55$, ILI, 110, 111, 112, 115, 116, V II, 25, 27, 34,
$38,146,168,173$, VIII, $25,27,49,59,143$, IX $, 51,52$,
Supp., 56
whipplei, Yucca, V, 157
White-berry, II, 113
'Doyenne Pear, I, 15
Elm, I, 123
Grub fungus, $I, 158, V I, 123,125$
Hellebore, IX, 13
Mulberry, I, 72, 73
Oak, III, 120, 127, VI, 64, 115
Pine, III, 92, V, 97, 100, 102, IX, 13, 29, 30, 32
Riesling Grape, VII, 102
Scotch Cluster Grape, VI, 77
Thorn, IV, 132, V, 86
Willow, IV, 72, V, 120
-wood, II, 91
Whortleberry, III, 163, Supp., 83
12 mo

Wild Black Currant, IX, 2
Cherry, IV, 123
Crab, IV, 42, Supp., 80
Endive, I, 79, 83
Plum, I, 15, 55
Rose, V, 126
Wilder Grape, IV, 63, V, 62, 63, VI, 48, 81, VII, 101, 102, 111, 116
Windsor Bean, I, 98, III, 51
Winesap Apple, IV, 45
Winter Grape, IV, 60, VI, 73
Willow, I, 24, III, 120, 153, 155, 163, 168, IV, 104, 112, 124, 126, 142, V, 127, 136, VI, 162, VII, 160
Golden, III, 168
Heart-shaped, IX, 20
Scrub, II, 90, III, 168, V, 132
Twig Apple, V, 87
Weeping, II, 109
White, IV, 72, V, 120
Witch Hazel, III, 120
Wormwood, V, 35

K.

- Xanthium, VII, 159
strumarium, I, 92, III, 60

Y.

Yellow Bellflower Apple, IV, 45
Yellow Pine, V, 100
York Madeira Grape, IV, 64, V, 64
Yucca, V, 153, 159, 160, V1, 132, 133, 135, VIII, 169, IX, 129
Fueca aloifotia, V, 1.53, V III, 171, 178, IX, 129
engustifolia, V, 157, 159, VIII, 169
filamentosa, V, 158, 159, VIII, 171
faccida, V, 159
glauca, V, 153
gloriose, V, 159, 171
puberula, V, 153
rupicola, V, 157
whipplei, V, 157

ERRATA.
Page III, line 9, for Classifed read Classified.
Page 60, line 17 , for leucanee read leucanie.
Pages 93, 94. In making up these pages several of the names got misplaced. "Orgyia" and "Thyridopteryx," on 1. 94 should follow "Eepantheria" on p. 93. "Hematopis," on p. 94, shonld follow "Entitchia," on p. 93. "Promuba" and "Gálleria," p. 94, shonld follow "Carpocapsa," on the same page; "(Estrus" should follow "Pipiza" on the same page.
Page 94. After line 10 add "Gelechia grallesolidaginis, Tarva and pupa: I, 173-174."

[^0]: O. V. RILEY, Chict.
 A. S. PACEARD, Jr., Secretary.

 OYRUS THOMAS, Disbursing Agent.

[^1]: * For an excellent statement of the facts bearing upon this curions question, see a paper by Mr. Riley, the State Entomologist of Missouri, in No. 4 of the American Entomologist, and a still more complete one in his First Annual Report.

[^2]: * Etudes sur les Orthoptères, (in Mission Scientifique au Mexique, etc. Recherches Zoologiques $6^{\text {me }}$ partie.) $3^{\text {me }}$ livraison; p. $462 ; 1874$.
 \dagger By "abortive" is evidently meant, from the description following the diagnosis, simply shorter than abdomen. In this respect and in the male (which alone is described) being shorter than niveus, californicus, which I know only from the description, may most easily be distinguished.
 \ddagger Walker, Cat. Derm. Ealt. Brit. Mus., Pt. I, p. 109.

[^3]: *Silliman's Am. Journ. of Sc., XXXVI, p. 309 (1839).

