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PREFACE
It is by no means easy for the applied mathematician to decide

how much importance he should attach to the more abstract and

aesthetic side of his work and how much to the detailed applica-

tions to physics, astronomy, engineering or the design of instru-

ments. Great mathematical ideas do not blossom in workshops,
as a rule, but on the other hand the theorist should not divorce

himself from a healthy and intimate connection with practical

questions.

Sir William Rowan Hamilton (1805-1865) created a method in

Geometrical Optics, which, after lying long in disuse, is at last

finding its proper place in the science. To all appearances,

Hamilton attached little importance to the practical applications

of his method, and it was only with the publication of his Mathe-

matical Papers, Vol. i (Cambridge, 1931), that it was possible to

form a more correct and balanced judgment of Hamilton as an

applied mathematician. Great indeed was the labour which he

employed with a view to applying his method to the design of

optical instruments, but for him the abstract and aesthetic side

of his work was of so much greater public importance than its

practical use that the details of application remained unpublished
till long after his death and long after other workers had dis-

covered equivalent processes.

Since it was left largely to those primarily interested in optical

design to develop the subject of Geometrical Optics, it is only

natural that the student of the subject soon finds himself im-

mersed in details which tend to cloud his understanding of the

underlying general principles. Now, just as it is widely recognized

that in the teaching of Mechanics a middle course must be steered

between a completely abstract presentation and a technical

approach, so it seems to me that the student of Geometrical

Optics is most likely to understand the principles of Hamilton's

method ifhe does not think too much at first of technical applica-
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tions. But, at the same time, he should not be kept entirely

remote from them.

Since editing, in collaboration with Professor A. W. Conway,

F.R.S., Hamilton's papers on Geometrical Optics, I have had the

opportunity of lecturing on the subject to graduate students and

undergraduates in the University of Toronto. This book repre-

sents a course of twenty-five lectures to the latter. Although the

reader may fail to find in it some things which he would naturally

expect in a book on Geometrical Optics, no apology is offered on

that account. If Hamilton's method is understood, the book

serves its purpose. For that reason it is not jiecessary to defend

the application of the method to problems which would admit

shorter special solutions.

Hamilton was a master of mathematical notation, and he

might in this respect be profitably studied by some modern writers

in our subject. I have employed his notation in the main, changing
the signs of the W and T functions to make their physical inter-

pretation more obvious, and making some changes in nomen-

clature. It does not seem necessary or desirable to use the word

"eikonal", which Bruns invented in 1895 in ignorance of

Hamilton's work. Since one letter is just about as good as

another, would it not be a harmless compliment to the genius

of Hamilton for writers on Geometrical Optics to employ
for the various characteristic functions the letters which he

employed ?

Although Hamilton himself started by considering the simpler

case of isotropic media, it was not long before he saw that his

method was also applicable to anisotropic media, and when he

came to give his theory final form in his Third Supplement, he

did so in all generality. This has done much to discourage those

interested in the more practical aspects of his method, because in

order to apply it they have been compelled to think in terms of

(to them) unnecessary generality. To avoid a repetition of this

error of policy, the theory of anisotropic media has been entirely

omitted from this book. To compensate for this omission and for

the fact that, although an attempt has been made to amplify
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Hamilton's work in the directions since found of most interest,

these amplifications have not been sufficient to create an adequate
text-book, a brief bibliography is given below. In some of these

works Hamilton's characteristic functions are referred to as

Brims' eikonals, but there is no significant difference.

I have to thank three of my students, Messrs H. R. Roberts,

P. R. Wallace and A. White, for assistance in the preparation of

the manuscript, and my colleagues, Professor A. P. Stevenson

and Dr B. A. Griffith, for reading the proofs and making valuable

suggestions. Tt is also a pleasure to pay tribute to the skill and

accuracy of the Cambridge University Press.

J.L. S.

TORONTO
October 1937
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CHAPTER I

THE PRINCIPLES OF GEOMETRICAL
OPTICS FOR ORDINARY MEDIA

1. The nature of geometrical optics.

A "perfect" scientific theory may be described as one which

proceeds logically from a few simple hypotheses to conclusions

which are in complete agreement with observation, to within the

limits ofaccuracy ofobservation. But the theory is "useful
"
only

in so far as it is possible to obtain conclusions from the hypotheses.
As accuracy of observation increases, a theory ceases to be

"perfect": modifications are introduced, making the theory
more complicated and less "useful". Since we do not willingly

surrender the wealth of approximate results furnished by the

earlier form of the theory, we find ourselves in the unsatisfactory

position of using one theory for one problem and another for

another, although the two problems really belong to the same

part of science. To rescue ourselves from intellectual confusion,

we may admit theories called "ideal ", in the sense that they deal

with an ideal universe, resembling the actual universe to a fair

degree of accuracy and usually corresponding to a limiting case

of physical reality.

A critical examination of the history of mathematical physics

shows that in truth man has always created "ideal" theories.

Nature is much too complicated to be considered otherwise than

in a simplified or idealized form, and it is inevitable that this

idealization should lead to discrepancies between theoretical

prediction and observation. As examples we may mention the

mechanical theories of rigid bodies arid perfect fluids; neither

rigid bodies nor perfect fluids exist in nature. Or we may think

of the Newtonian theory of gravitation, long regarded as "per-

fect", but now "ideal", physically replaced by the "perfect"

(but not so "useful") general theory of relativity.

Geometrical optics is an ideal theory and a useful one. The

discovery that the propagation of light is an electromagnetic
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phenomenon made the subject of optics coextensive with electro-

magnetism. We may, however, study certain parts of the subject

of optics without reference to electromagnetism, always under-

standing that there is a limit to the physical accuracy of the

results so obtained. It is customary to use the name "
physical

optics" for the more complex and physically accurate theory,

and "
geometrical optics" for the simpler ideal theory with

which we shall be concerned. It is possible to justify geometrical

optics as a limiting case of physical optics, the wave-length of the

light in question tending to zero; f but we shall be content with

the development of geometrical optics on the basis of its own

hypotheses, just as it is customary to develop the dynamics of

rigid bodies as a separate theory, and not as a limiting case of the

dynamics of elastic bodies whose elastic moduli tend to infinity.

2. Fermat's principle: laws of reflection and refraction.

We consider the propagation of light through transparent

media. We shall understand by an ordinary medium one which is

homogeneous (the same at all points) and isotropic (the same for

all directions) with respect to the propagation of light, deferring

to Chapter v the discussion of media which are heterogeneous

(like the atmosphere); anisotropic (crystalline) media will not be

discussed.

Although the wave-length or frequency or colour of the light

does not enter explicitly into the theory of geometrical optics,

we admit that light is of various sorts. We shall consider separ-

ately the propagation of lights of different colours, so that at any
one time we shall be dealing with monochromatic light.

In an ordinary medium light of a definite colour has a constant

velocity of propagation v, different for different colours. In a

vacuum, a particular case of an ordinary medium, the velocity of

propagation is the same for all colours : it will be denoted by c. The

index of refraction or refractive index of a medium is defined to be

(2-1) p =
clv,

so that
[JL
= 1 for a vacuum. For all media fi ^ 1. For most

t M. Born, Optik (Berlin, 1933), p. 45.
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practical purposes air may be treated as a vacuum, because its

index of refraction differs very little from unity: for air, the

index (for the sodium D-line) is 1-0003.

If C is a curve passing through transparent media, joining

points A' and A, the time which light would take to travel along
C with velocity v would be

(2
-

2)
..

where ds is an element of the curve. Since v is constant in each

of the media (supposed ordinary), this may also be written

(2-3) t-fv
= \i^

where there is one term of the summation for each medium

traversed, s being the length of C contained in it. We define the

optical length of C to be

JA
A

/ids = y/is.
A' A'

We shall use square brackets to indicate optical lengths.

We shall now state the basic hypothesis of geometrical optics:

Fermat's principle: When light travels from A' to A, it travels

along a path or ray for which the time taken (or equivalently the

optical length) has a stationary value with respect to infinitesimal

variations of the path.

Usually the time will be a maximum or minimum.

Let us consider a single medium. Let A' and A be two points

in it. Since the straight line joining A
1 and A has the shortest

length of all possible curves joining these points, the optical

length of this straight line (which only differs from the geometrical

length by the constant factor p) has a stationary value. Thus,

in a single ordinary medium light travels in straight lines.

It would however be wrong to suppose that light can travel

from A' to A only along the straight line A 'A. It may pass from

A' to the boundary of the medium and thence be reflected back

to A. We shall now deduce the law of reflection from Fermat's

principle.
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Let light travel from A' to a surface S (Fig. 1) which bounds

the medium in question, and hence back to A. 8 functions as a

mirror. Let B be any point on S, so that A'BA is in general an

unnatural path (not a ray) ;
its optical length is

(2-5) [A'BA] = pp'+w,
where p' = A'B, p = BA. Let us take any rectangular axes of

coordinates, and let the coordinates of the points be as follows:

(2-6) A':x',y',z', A:x,y,z 9
B:x"

9 y",z".

Fig. 1

Then

the meaning a sum obtained by changing x->y->z. Giving to

B an arbitrary infinitesimal displacement 8x", 8y" , Sz", we have

(2-8) p'8p' = -Z(x'-x")Sx", p8p = -Z(x-x")Sx",
or if a', /?', y' are the direction cosines of A'B and a, /?, y those

of BA, so that

(2-9)

we have

(2-10)

= z-z",

8p' = Za.' 8x"
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Thus for an arbitrary infinitesimal displacement of B on $, we
have for the variation of the optical length

(2-11)

In order that this may vanish, as demanded by Format's prin-

ciple, for all arbitrary infinitesimal displacements of B on S, the

vector whose components are

(2-12) *' - a
, /?'-/?, y'-y

must be parallel to the normal to S at B, or equivalently

(2-13)
a;-a = fcA == r_L-r

)

I m n

where I, m, n are the direction cosines of the normal to 8
at B: we shall take the normal drawn into the mirror as shown

in Fig. 1.

The angle of incidence (i
f

)
is the angle between the incident ray

produced and the normal to S, and the angle of reflection (i) is

the angle between the reflected ray reversed and the normal. If

we mark C' on the incident ray produced, and C on the reflected

ray, makingJ 6

then the coordinates of C' relative to B are (a',/?',y') and those

of C relative to B are (a,y?,y). Thus the vector (2-12) is the dis-

placement CC': this is parallel to the normal at B. Hence it

follows immediately that the law of reflection may be stated as

follows:

(i) the incident ray, the reflected ray and the normal to the

mirror at the point of reflection are coplanar;

(ii) the angle of incidence is equal to the angle of reflection

(i'
=

*)

It is easily seen that the common value of the fractions in (2*13)

is 2cosi.

The analytic expression (2-13) for the law of reflection enables

us to determine the reflected ray when the directions of the
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incident ray and the normal to the mirror at the point ofincidence

are known, for we have in (2'13) and the identity

(2-14) a2 + /?
2 + y2 =

1,

three equations for the three unknowns a, /?, y. Since a quadratic

equation occurs, there will be two solutions: the extraneous

solution (to be rejected) is

M'

Fig. 2

When a ray passes from a medium M '

of index [i
f

across a

surface of separation S into a medium M of index /, the ray in

general undergoes an abrupt change of direction on crossing S,

this phenomenon being known as refraction. Let us now in-

vestigate the law of refraction on the basis of Fermat's principle.

Let A' be a point inM ', A a point in M and B any point on S

(Fig. 2). Adopting the same notation as that used above for the

case of reflection, we have for the optical length of the unnatural

path A'BA

(2-15) p = BA.
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Then giving to B an arbitrary displacement 8x", 8y", dz" on $,

we have

(2-16) 8 [A'BA] =
[t'Sp'

*'a' -fia)Sx",

and, since this is to vanish for the natural ray by Permat's

principle, we have (as the analogue to (2-13))

(2-17)
X*'-/** = p'fl'-pfi = X/~/*y

I m n

If we lay off BC' =
ft' along the incident ray produced, and

EC =
fi along the refracted ray, the coordinates of C" 'relative

to B are (/i'a', /&'/?', Xy')> an<^ those of (7 relative to JB are

(/#,//?, /*y). Hence the numerators in (2-17) are the components
of the displacement CO', which is therefore parallel to the

normal to S at J5.

The angle of incidence (i') is the angle between the incident ray

produced and the normal to S (drawn from M '

into M ), and the

angle of refraction (i) is the angle between the refracted ray and

the normal to S. We may state the law of refraction as follows:

(i) the incident ray, the refracted ray and the normal to the

refracting surface at the point of incidence are coplanar;

(ii) the angle of incidence and the angle of refraction are con-

nected by the relation

(2' 18) /^'sini'
= /isini.

This last relation follows at once by equating the lengths of the

perpendiculars dropped from C' and C on the normal to S at B.

The common value of the fractions in (2-17) is

ft cos i.

As in the case of (2-13) for reflection, (2-17) (with (2-14)) give the

direction of the refracted ray when the directions of the incident

ray and the normal at the point of incidence are assigned. There

is an extraneous solution arising from the quadratic equation
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involved. To see what it is, we choose special axes, the z-axis

being normal to S at JB, so that

(2-19) Z = m = 0, n=l.

Then (2-17) reduce to

(2-20) /*a
= /a', pft

=
/A'ft'.

These determine a, /?; 7 is given by

(2-21) 7 = Vl-a2
-/?

2
.

Obviously we must have 7>0: the extraneous solution corre-

sponds to the negative radical in (2-21), and hence the direction

given by the extraneous solution is the geometrical reflection in

the tangent plane to S at B of the true refracted ray.

Under certain circumstances it is impossible for a ray from M'
to be refracted into M . Then reflection only, and not refraction,

can take place: this phenomenon is known as total reflection. It

occurs when i cannot be found to satisfy (2-18), that is, when

(2-22)

Obviously total reflection can take place only if // >{i.

3. Normal and skew congruences: theorem of Malus.

A system of curves filling a portion of space, and such that in

general a single curve passes through any assigned point, is called

a congruence. For example, the normals to a surface form a con-

gruence. Ifwe denote by a,/?, 7 the direction cosines of the tangent
to the curve of the congruence at a point x, y, z, the con-

gruence maybe defined by expressing a, /?, 7 as functions of x, y, z,

(3-1) a=/(#,y,z), ft
= g(x,y,z), y = h(x,y,z).

These three functions are not independent; they must satisfy

the identity

(3-2) /
2 + </

2 + />
2 = a2 + /?

2 + 72 - 1.

If the curves which form the congruence are straight lines, the

congruence is said to be a rectilinear congruence. The congruences
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with which we have to deal in the geometrical optics of homo-

geneous media are rectilinear.

If there exists a singly infinite family of surfaces cut ortho-

gonally by the curves of a congruence, the congruence is said to

be normal\ if such a family does not exist, the congruence is said

to be skew.

Suppose there is a normal congruence of curves, defined as in

(3-1). Let the equations of the normal surfaces be expressed in

the form

(3-3) F(x,y,z) = const.

The direction cosines of the normal to the surface of this family
at a point x, y, z have the ratios

dF dF dF

Therefore dx' dy' dz'

dF dF dF
(3-4) . 6a=

, , OP = ~. fly=~,dx '

dy
'

dz

where is a factor of proportionality. Differentiating, we have

//") \
\

(Oy) = -- -- - -

dy dydz dzdy Sz

and therefore

(M ) <&-f( +y-f-Af-
\dy dz/

'

dy
'

dz

Similarly, we obtain

W W(Jdoc 3y\U -/
\dz dx!

(3-6)
X '

^
^.

- 0,
dx

W W n-/}--a^ =0.
dy] dx dy

Multiplying these equations in order by a, /?, y, adding, and

dividing by 6, we obtain

This condition is necessarily satisfied if the congruence is normal.

Moreover it is known from the theory of total differential

equationsf that if (3-7) is satisfied, then functions and F of

t Cf. H. T. H. Piaggio, Differential Equations (London, 1933), p. 140.
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x, y, z exist such that (3-4) are true. In other words, the equation

adx + fidy+ ydz =

is integrable. Consequently (3-7), if true, implies the existence

of a family of surfaces (3-3) to which the curves ofthe congruence
are normal. Therefore (3-7) is a necessary and sufficient condition

that a congruence be normal.

As an example, it is easily verified that the congruence defined

by a =
*/r, jS

=
y/r, y = z/r, (r

2 = *2 + */
2 + z2 ),

is a normal congruence. On the other hand, it may be shown

that the congruence defined by
a = y/r, fi

= -x/r, y = z/r

is a skew congruence.
If we are given a family of surfaces

F(x,y,z) = const.,

there exists a normal congruence of which these surfaces are the

normal surfaces. The curves of this congruence are called the

orthogonal trajectories of the family of surfaces. The congruence

has the equations
^F A dF ,dF

(3-8) * = ^> /^a^. r = #-&,
where

(3-9)

We shall now show that the system of straight lines normal to

any assigned surface is a normal con-

gruence. Let SQ (Fig. 3) be the given
surface and let S be the surface formed

by cutting off the same length s from all

the normals to $ . This construction

puts the points of $ and S into one-

to-one correspondence. Let A, B be

the points of S corresponding to AQ ,

BQ on SQ, respectively, the distance B> A

A^BO being infinitesimal. Join AQ to Fig. 3

B. Since BB is normal to S at B
, the infinitesimal displace-
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ment BQA Q is perpendicular to BQ B. Hence

A B = BQB = s = A QA,

to the first order of infinitesimals. Thus the infinitesimal triangle

BA A is isosceles to the first order, and therefore the angle

BAA is a right angle : thusA A is normal to S at A . Thus all the

normals to $ are normals to S, and this is true for any value of s.

Hence the congruence of normals to S is a normal congruence. J"

It is obvious that the rays emanating from a point P in an

ordinary medium form a normal rectilinear congruence, having
for normal surfaces the family of spheres with centre P. The

theorem of Malus asserts that a normal rectilinear congruence

remains normal after reflection or refraction, and hence that the

congruence formed by any number of reflections or refractions

from the congruence of rays originally emanating from a point
is a normal congruence.

Fig. 4

To prove the theorem ofMalus, let A'P be a ray of the incident

congruence, incident on the reflecting or refracting surface at P,

and let PA be the reflected or refracted ray (Fig. 4). Let S' be the

normal surface to the incident congruence (normal by hypothesis)
atA'\ letB f

be an adjacent point on S' and B'QB the ray through
B f

,
incident at Q. The point B is taken so that

(3-10) [B'QB] = [A'PA].

Joining B'P, PB, we have to the first order, by Format's principle,

(3-11) [B'PB] = [B'QB].

f The result also follows immediately from the equation

Z (x
- x

) (8x
- 3x )

= 0,

where x 9 y, z are coordinates of A and a* , y0t z those of A Q .
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Hence

(3-12) [B'P] + [PB] = [A'P} + [PA\\

but since A'E' is perpendicular to A'P, we have [B'P] = [A'P],

to the first order, and hence [PB] = [PA]. Thus to the first

order, PB = PA, which shows that the infinitesimal displace-

ment AB is perpendicular to PA.
Now if a surface 8 is formed by taking points on the reflected

or refracted rays so that the optical length from each point on 8'

to its correspondent on S is [APA], it follows from the result

established above that PA is perpendicular to every infinitesimal

displacement at A on 8. Therefore PA is normal to 8 at A. Thus

all the reflected or refracted rays are normal to 8. By varying
the position of A on the reflected or refracted ray from A', we

get a single infinity of surfaces to which the final rays are normal .

Thus the theorem of Malus is established.

4. The construction of Huyghens.

Throughout the history of the science of optics, two rival

theories have developed side by side the corpuscular theory and

the wave theory. Tn the corpuscular theory the phenomenon of

light is regarded as due to the motion of corpuscles (or quanta in

modern language), which are individually localized in small regions
of space, so that ideally they may be regarded as points. The

tracks of these particles are the rays. Tn the wave theory, light is

regarded as due to the propagation of a system of waves. At the

present time it is impossible to be dogmatic concerning the cor-

rectness ofeither view. However, in geometrical optics it is possible

to regard the two theories as different aspects of a single theory.

To develop the wave theory of light in geometrical optics we
follow the construction of Huyghens. Let Z' be a surface which

represents a wave of disturbance in the medium at time t' . Let

each point A' of 27' be regarded as the centre of a secondary
disturbance which spreads out from A' in all directions. For an

anisotropic medium it is necessary to distinguish between the

ray-velocity and the wave-velocity, but we are here concerned only
with ordinary media, in which it is assumed that the velocity of
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propagation ofthe secondary waves is the same as the ray-velocity
v introduced in 2.

Let us now consider the disturbance at time t: we have then a

number of secondary waves, each of radius v(t t'), whose points

fill a layer of space including the surface Z". These spheres have

an envelope consisting of two sheets, one sheet on each side of 27.

We assume that the wave 27 has a sense ofpropagation to one side

or the other, and we assume that the wave at time t is that sheet 2
of the envelope of the secondary waves which is such that passage

from 2' to is in the assumed sense of propagation. In Pig. 5,

Fig. 5

A', B' are centres of secondary waves and A, B the points of

contact of these waves with the envelope 27.

In the above statement it is assumed that the secondary waves

do not cut the boundary of the medium. To deal with such cases,

in which reflection or refraction takes place, we have to proceed

by infinitesimal steps. When a point ofthe wave lies on a boundary
of the medium, it becomes the centre of a secondary wave which,

in the case of reflection, has a sense of propagation back into the
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medium, and, in the case of refraction, goes on into the second

medium, but with a different velocity. It is evident that the con-

struction of Huyghens leads to definite reflected and refracted

waves. These will be discussed below.

First, however, let us consider the propagation of a wave in a

single medium, without reflection. We shall establish the fol-

lowing facts concerning propagation according to the construc-

tion of Huyghens. Given a wave Z' at time t
1

',
the resultant waveZ at

time t is the same whether developed by the construction ofHuyghens
in one step or in several steps : also, the normals to Z' are normal to Z,

and i/A'A is one of these normals, withA on Z' and A on Z, then

A is the point of contact with Z of the secondary wave having its

centre at A f

.

Fig. 6 shows the waveZreached in four steps from Z' ;
Z

ly
272 ,

Z3

Fig. 6

are the intermediate waves. A' is the centre of a secondary wave
which touches Zl at A^. B' is adjacent to A' on 27' and its second-

ary wave touches Zl
at Bv It is implied in the construction that

(4-1) A'A, = B'BV

Since the spheres touch their envelope, we have, to the first order,

(4-2) B'Bi = B'Ai\

hence by (4-1)

(4-3) A'Ai = B'AV

which shows that A 'A^ is normal to Z 1

'. It is of course also normal

to Z*! since, as radius of the sphere with centre A', it is normal to

the tangent plane to that sphere at A
l9
and this plane is also the
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tangent plane of Sv Hence A fA l is normal to both the waves

which it connects, and its length is v(t t'), if ', t are the times

for Z", Z*! respectively. Continuing the construction, we see that

A^Afr being normal toZx ,
lies in the same straight line withA fA

l ;

it is of length v(t^ t^, where 2 is the time for Z2 . Hence we see

that, by the application of the four steps shown, the secondary
waves with centres A',

A
l9
A 2 ,

A 3 lead finally to a contact A with

the final surface Z such that A lies on the normal to Z' at A' at

a distance

(4-4) A'A = v^-O
where / is the time for Z. Since A 3A is normal to Z, so also is

A'A. But it is now evident that if only one step for the time

Fig. 7

interval t t' were employed, we would get a wave such that its

point of contact with the secondary wave with centre A' would

lie on the normal to Z' at A' at a distance v(t t'), i.e. precisely at

the point A. The result italicized above is therefore established.

Let us now consider reflection or refraction according to the

construction of Huyghens. Since the treatments for reflection

and refraction are almost identical, it will suffice to consider

refraction.

Light travels from a medium M' into a medium M across a

surface S (Fig. 7). Z' and Zrepresent positions of a wave at times

t' and t respectively; P and Q are any two adjacent points on
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S; A'P, B'Q are normals to the family of incident waves, and

PA, QB normals to the family of refracted waves, A', B' lying

on 2,
v and A, B on 27. Now we know from the construction of

Huyghens that the times taken to traverse B'QB and A'PA are

the same, or in terms of optical lengths

(4-5) [B'QB] = [A PA].

But from the normal property, we have to the first order

(4-6) [B'Q] = \A'Q\, [QB\ = [QA],

and hence

(4-7) [A'QA] = [A'PA]:

in fact the optical length measured along the normals to the

waves from A' to A has a stationary value. Hence (2-17) may be

established as the law ofrefraction for wave-normals by applying
the stationary condition as in 2.

Seeing that reflection may be treated in the same way, we may
state the following result, which reconciles the ray theory and

the wave theory in geometrical optics, as far as ordinary media

are concerned. Given a wave 2' in a medium M ', there is deter-

mined by the construction of Huyghens a system of waves 27 after

reflection or refraction. Given a system of rays normal to 27' in Al',

there is determined by Fermafs principle a system of rays after

reflection or refraction. This latter system of rays is normal to the

waves 27.

If light starts from a point source A' 9 the waves are spheres

having A' for centre; the rays are the radii, normal to the spheres.

By the result just established, the normality of rays and waves

is conserved over each reflection and refraction. Thus if we think

simultaneously of the ra}
7s and the surfaces to which they are

normal, we have in mind at the same time the two theories of

rays and waves.



CHAPTER II

THE CHARACTERISTIC FUNCTIONS FOR IN-

STRUMENTS FORMED OF ORDINARY MEDIA

5. The characteristic function V.

Let us consider an instrument formed of n + 1 media with

indices of refraction ,

separated by surfaces 8
l9 S2 ,

. . .
,
8n .

It is simplest to suppose that only refractions take place: if a

reflection takes place, the medium in which it occurs is counted

twice over, the same analysis applying.

Fig. 8

Let A rP
l
...PnA be a ray traversing the instrument, A lying

in the first medium and A in the last. By Fermat's principle we

know that this ray has a stationary optical length when com-

pared with adjacent unnatural paths joiningA to A.

Let Oxyz be rectangular axes of coordinates.! Let x', y', z' be

the coordinates of A' and x, y, z those of A. If these six numbers

are given, points A', A are determined; hence by Fermat's

principle a ray A'A and a corresponding optical length are also

determined. % The characteristic function V(x', y', z'\ x, y, z) of the

f We might employ different axes for the initial and final media, but since it is

at times necessary to use a single set of coordinates for both media, we shall, to

avoid confusion, use a single set throughout.

J It may happen that there is no ray joining A and A : then V is not defined

for that pair of points.

SGO 2
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instrument is defined to be the optical length of the ray from the

point A'(x', y'> z') to the point A(x, y, z) :

(5-1) V(x',y',z' 9
x9V9 z) = \A'Pi...PnA\.

To distinguish it from the other characteristic functions to

be defined later, V may be called the point-characteristic.

Passing from the ray A'A to an adjacent rayB
f

Ql . . . QnB, and

denoting the coordinates as follows:

B':

B:

we have, for the increment in V,

(5-2) 9V = V*

the subscripts denoting partial derivatives. But by Fermat's

principle we have

(5-3) [B'P1 ...PnB]^lB'Q1 ...QKB],

to the first order, and hence

(5-4) 8V=[B'Ql ...Qn B]-[A'Pi ...PnA}
= [B'P1 ...Pn B]-[A'P1

...PnA]

where

(5-5) p^A'Pv
Let

fa'. B'
', y' = direction cosines ofA'P*,

(5-6)
-

(a, ft, 7 = direction cosines ofPnA.

Then, as in 2, we see that

' = -
(a' Sx' +p

1

dy' +/ Sz')
= - Za' 8x',

= Zadx,

and hence, by (5-4),

(5-8) 8V = -/

Comparing (5-2) and (5-8), and noting that therefore

(5-9) ZVX, 8x' +ZVx 8x = -/*,' Zat! 8x
r

+/tEa Sx
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for arbitrary values of the infinitesimals,f we see that

It is convenient to introduce the components of the initial and
final rays, defined by

f<7'=/a', r' =//?', </=/*'/,
-

v =

In terms of them, (5- 10) may be written

,5-12)( '

=<r, V,=r, V.-v.
We note that between the components there exist the identical

relations

(5-13) (r'
2 + 7/2

-f t>'
2 =/ 2

,
<T

2 + T2 +i;2 =/J
2

.

Hence, by (5-10) or (5-12), it follows that the characteristic

function V satisfies the two partial differential equations J

(5- U) V$ + V%, + VI =
/*'

2
, F2 + F2 + F? = /*,*.

In dealing with the behaviour ofan optical instrument we have

under consideration primarily the following twelve quantities :

'#', y'', z', coordinates of a point on the initial ray,

<r', r', f', components of the initial ray,

x
9 y, z, coordinates of a point on the final ray,

,(r, r, u, components of the final ray.

These twelve quantities are not all independent on account of

the two identities (5-13).

The following questions may be asked:

(a) Given the coordinates of initial arid final points, what are

the components at them of the ray passing through these

points ?

f In certain special cases these six infinitesimals are not independent : this will

occur when the congruence of rays from a point B', chosen arbitrarily in the

neighbourhood of A', fails to pass through all points of a three-dimensional region

containing A. We shall, for simplicity, exclude such cases from consideration.

Hamilton's dynamical theory was very closely related to his optical theory.
Either of the equations (5*14) will be recognized as the Hamilton-Jacobi equation
for a particle moving under no forces.
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(b) Given an initial point and the components of an initial ray

through it, what are the components of the final ray and

the coordinates of a point on it ?

(c) The same as (6), with interchange of the words "
initial"

and "
final".

(d) Given an initial point and the components of a final ray,

what are the coordinates of a final point and the com-

ponents of the initial ray ?

(e) The same as (d), with interchange of the words "initial"

and "final".

(/) Given the components of initial and final rays, what are

the coordinates of points on them? Or, in other words,

where are the rays situated?

Later methods will show us how to answer (d), (e), (/). For the

present we remark that if the characteristic function V of an

instrument is known, the equations (5- 12) immediately supply
the answer to question (a). The difficulty in the useful application

of (5- 12) lies in the difficulty of calculating V for an actual

instrument.

The function V defined above is a function of six variables,

namely, the coordinates of initial and final points. It is defined

by the instrument. If we are merely interested in the final con-

gruence of rays due to a source at a fixed point x', y', z', it is no

longer necessary to emphasize the dependence of V on x', y', z',

and we may consider it as a function of x, y, z. We then think of

V(x, y, z) as the characteristic function of the final congruence of

rays, the components of these rays being, as in (5-12),

(5-16) cr=I, r = Vy , v=Vz .

The characteristic function for a normal congruence of rays in

a medium of index fi may also be defined in a slightly different,

but essentially equivalent, manner as follows. Let E (Fig. 9) be

any normal surface of the congruence and let P(x, y, z) be any
point. LetMP be the ray through P,M being on . Let us define

(5-17) F*
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is a function of x, y, z. If we displace P to

21

we have

(5-18)

8V* = ZV*8x = [NQ]-[MP] = fi(NQ-MP) =

Fig. 9

Since the projection of NQ on JfP is (to the first order) equal
to NQ and since MN is perpendicular to MP, SMP is equal to

the projection of PQ on MP
9
and so

(5-19) 8MP = a8x,

where a, /?, 7 are the direction cosines ofMP. Hence, the com-

ponents being defined as before by (5-11), we have

(5-20) 8V* = /tZa8x = ZcrSx,

which leads us at once to (5-16), with V replaced by V*. It is

easily seen that when the final congruence ofrays comes originally

from a point source, the V* as just defined differs only by a

constant from the V discussed earlier.

It is possible to design a mirror to reflect to an assigned point

A all rays of a normal congruence. Tor if 27 (Fig. 9) is a normal

surface to the congruence, such a mirror is given by the locus of a

point P such that MP+PA = const .

The proof follows at once from Fermat's principle. Similarly, we
can design a refracting surface of material of any assigned index

to bring a given normal congruence after refraction to an assigned

point A in the material. These mirrors and refracting surfaces

may be called focal reflectors and refractors.
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Similarly, a mirror or refracting surface may be found to turn

any normal congruence into a parallel congruence in an arbi-

trarily assigned direction.

Let us return to the general point of view, according to which

V is regarded as a function of six variables. According to the

definition it would appear that x', y
1

',
z' may be the coordinates of

any point in the initial medium and x, y, z the coordinates of any

point in the final medium. Actually, however, these points

cannot range right through their respective media, because it is

implied in the definition that it is possible for a ray to pass from

the one to the other, and this will not in general be the case for

all pairs of points. Thus in general the ranges of x', y
1

',
z' and of

x, y, z are only parts of the initial and final media respectively.

B

Fig. 10

It is, however, possible and convenient to "continue" the

function V for values of #', y', z', x, y, z corresponding to points

which do not lie in the initial or final media, but lie on initial or

final rays produced. Thus, in Fig. 10, A'(x',y',z') lies on the

initial ray produced and A(x,y, z) on the final ray produced
backwards. We may proceed from A' to A by first going along
A'B*

',
the production of the initial ray, then through the instru-

ment from B 1

to B, and then along BA, the production of the

final ray. We define the optical length of this route from A' to

A as

(5-21) [A'B'] + [B'B] + [BA],

where [A'B'} is an optical length, calculated as if the index were

fi
f

, that of the initial medium, and counted negative because



THE CHARACTERISTIC FUNCTION V 23

described in a negative sense, and [BA] similarly calculated as if

the index were /, that of the final medium, and also counted

negative. We then define V(x',y',z',x,y,z) as the optical length

(5-21) computed in this way. It is easily seen that Fermat's

principle holds for optical lengths interpreted as above, and

furthermore that the fundamental relations (5-12) also hold for

the function V continued in this way.
As remarked above, the utility of the function V is restricted,

owing to the difficulty of calculating it. For such a simple instru-

ment as a plane mirror, however, we can write it down from

elementary considerations. If the mirror is z 0, we have

(5-22) V = S(x'~=x)* + (y'
-

For a set ofthree mirrors at right angles to one another, coincident

with the planes x = 0, y = 0, z = 0, we have

(5-23) V = V(

These simple results may be deduced by the elementary
method of images. To calculate V for a general instrument, as in

Fig. 8, we proceed as follows. Let x
i9 yt ,

zi be the running co-

ordinates of a point on the surface S
i9
and let the equation of

this surface be

(5-24) /<(*<, y*s*) = 0.

Let us draw any path of straight segments from A'(x',y',z') to

A (x, y, z) : ifPv P^...,Pfl
are the points where this path meets the

surfaces, its optical length is

(5-25) L = p'A'Pt + ^ptPiP^+pPvA.
1=1

This can be expressed easily as a function of

(5-26) x', y', z', x, y, z, xi9 yi9
z

t (i= 1, 2, ..., n).

By Fermat's principle we know that L has a stationary value for

the natural ray for small variations ofP19
. . .

,
Pn on their respective

surfaces. Thus

(5-27)



THE CHARACTERISTIC FUNCTION V24

if

(5*28)
- ox ~\ oy ~\ o;

Consequently

(5-29)
~ = A

t.f |f-
= A,"'

the A's being undetermined multipliers. In (5*24) and (5'29) we
have 4r& equations for the 4n quantities xi9 y t ,

zi9 At
-

(i
= 1, 2, . . ., n),

and if these quantities are found, and the values of x
i9 yi9

zi
sub-

stituted in (5-25), we have the characteristic function

(5-30) V(x',y',z',x,y 9 z) = L.

Although theoretically simple, the solutions or eliminations

demanded by the method usually prove very difficult; the func-

tions W and T to be defined later are easier to calculate as a rule.

6. The characteristic function W .

Consider a ray passing through an instrument. Let A' be a

point on the initial ray and N the foot of the perpendicular

dropped from the origin on the final ray (Fig. ll)f. We define

Wby
(6-1) W = [A'N].

Fig. 11

If A' is assigned as a source of light, there will in general be final

| Different axes may be used for the initial and final media, but for simplicity

we shall employ a single set of axes for both media.
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rays with all directions in a certain range of directions, and at

most a finite number of final rays with an assigned direction.

Thus if z'
9 y', z' are the coordinates of A' and or, r, v the com-

ponents of the final ray (connected of course by the identity

(6-2) <T
2+ r2 + *;

2 =
/*

2
,

so that v is determined by or, r to within an ambiguous sign), we

may say that W is a function (possibly multiple-valued) of the

variables x'
', y', z', cr, r, or

(Cv3) W= W(x')y',z',<r,T).

W is to be regarded as a second characteristic function of the

instrument. It may be called the mixed characteristic.

It is evident that the continuation process described in 5

enables us to take initial points #', y', z
r which do not lie in the

initial medium, but on the initial rays produced, and to employ
the above definition for W even though the perpendicular ON
falls not on the final ray but on the final ray produced backwards.

We shall now show the connection between V and W. Let

A (x, y, z) be any point on the final ray. Then it is easily seen by

orthogonal projection of OA on the final ray that

(6-4) \NA\ = /iZotx
= Zero;.

Hence

(6-5) V(af, y', z', x, y, z)
= [A'A] = [A'N] + [NA]

Let us now give arbitrary variations to A' and A: this causes

variations in the components of the final ray. Differentiating

(6-5), we have

(6-6)

By (5-12) we have

(6-7) Vx.8x' = -Z<r'8x', ZVx 8x
and by (6-2)

(6-8) 8u =
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Thus (6-6) becomes

(6-9)
- 27cr' 8x' = EWX, 8x' + Wa So- + WT 8r

+ (x zcr/u) 8cr+(y zr/u) dr.

But Sx
1

', &/', &', &r, #r are arbitrary and independent.! Hence

(6-10) cr' = -Bk r
f = -W^ v' = -Wz,,

(6-11) s-ser/i; = - Wv , y-zr/v = - WT .

We are now in a position to answer question (d) raised in 5,

if we suppose the function W known. J For given an initial point

x 1

', y', 2' and the components of a final ray cr, r, i>, we know the

values of the partial derivatives of W; hence (6-10) give us the

components of the initial ray and (6-11) establish connections

between the coordinates of any point on the final ray. In fact,

(6-11) are the equations of thefinal rays. In particular, if there is a

source of light at x', y' , z', the congruence of final rays is given by

(6-11), tr, T, v taking arbitrary values subject to (6-2).

Let us now consider how W is to be calculated. We shall,

however, confine ourselves to the case of an instrument involving

only one reflection or refraction, because the extension of the

method to the case of a general instrument simply requires the

combination of the reasoning now to be given with that already

given for V in 5.

s

Fig. 12

In Pig. 12 A'(x', y', z') is a given point: QN is a directed line in

f In certain special cases these five infinitesimals are not independent: this will

occur when the congruence of rays from a point B'9 chosen arbitrarily in the

neighbourhood of A', fails to give final rays having all directions adjacent to the

direction a, T. We shall, for simplicity, exclude such cases from consideration.

J The answering of (e) merely involves the interchange of initial and final media.
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the final medium with assigned components or, r, i>, but A'QN is

not a natural ray in general, the law of refraction or reflection not

being satisfied at Q. We can, however, express as a function of

x', y', z', xl9 yv zl (the coordinates of Q) and <r, r, v the optical

length [A'QN], where N is the foot of the perpendicular from the

origin on QN. It is in fact

/fi.io\ T r ,4 '/i ATI i/'fytv' v ^2u y/T'y
\\J LA) J [yl ^1V J yM- ^^/ \X X^) )- ^UJU-^.

Now let A'PM be a natural ray, the components of PM being

tr, r, v and Jlf being the foot of the perpendicular from 0. The

plane OMN is perpendicular to the common direction ofPM and

QN, and hence if PQ is infinitesimal, MN is an infinitesimal

displacement on the normal surface through M to the final rays

of the congruence from a source at A'. Therefore to the first order

(6-13) [A'QN] = [A'QM] = [A'PM].

Thus, letting Q tend to coincidence with P, we see that the co-

ordinates xv yl7
z
l at P are such that for an arbitrary displace-

ment dx
l9 Syl9 dzl

on the surface S we have SL = 0. Therefore if

the equation of 8 is

(f\.lA.\ f(r *t y \ O
\ ) J V 1> ^f 1> I/ 9

we have for the natural ray

where A is undetermined. Explicitly we have

- O" = A 7T ,

p 8Xl

a/-

where

(6-17) /9
/a =

27(a?
/

-a?1 )

a
.

If we eliminate A, solve for
!, yx ,

zx from (6-14) and (6-16), and

substitute in (6-12), we have the function W,
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(6-18) fF(*',2/',z',<r,r)==,

(6-2) being used to express v in terms of <r, r.

The calculation of W is generally difficult, but not as difficult

as that of V. Let us calculate W for refraction through a plane.

Let the plane z = be the plane of refraction, separating the

initial medium z < of index fi' from the final medium z > of

index [i (Fig. 13).

Z

Fig. 13

Since z
x
= 0, the optical length L of (6-12) is

(6-19) L =
tJL'{(x'-xrf+(y'- yi )* + z'*}*- <r*i

and this is to be made stationary for arbitrary variations of

X
i9 y\> s that in consequence

(6-20)

Thus

(6-21)
p'z'

the negative sign being taken in the last expression because

p' >0,z'< 0.



THE CHABACTEEISTIC FUNCTION W 29

Then

(6-22) x{
=

and so

(6-23) W = L =
ii'p'

-
o-x^

-

XV .-(Tx-

= - ax' - ry'
-
z'(X

2- **~ T2
)
l
<

This is the characteristic function W for refraction across the plane
z = 0.

The equations (6-11) give as the equations for the final rays

(6-24)

(7
,

Z <T
x z -- = x

-,

T ,
Z'T

ni ___ *f . <j ___
U " U / /9 9

V (U 2
(T

2 -

since v2 = /i
2

cr
2 r2

,
these equations may be written

x x y y z z

(()'2o)
= - = - ~

r- ZTT T jz iV "oTi
a* r (fi* o'*' T*y (fi

*
or* T*)*

If A'(x',y',z') is a point source of light, we observe that a final

ray with components cr, r cuts the normal from A' to the re-

fracting plane at

/ft.Oft\ ^y. ,v.' ^/ fl/ /y V Ai L.
\\j A\jj ju *6, y y y

z ^/'2 "2 2\p

the value of z may also be written

a value easily checked by an elementary argument based on the

law of refraction (2-18).

7. The characteristic function T.

Let JV', Af be the feet of the perpendiculars dropped from the

origin O on the initial and final portions of a ray passing through
an instrument (Fig. 14).| We define T by

(7-1) T = [N'N].

t As for V and W, we might employ two systems of coordinates, but we shall not

do so.
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We shall confine our attention to those instruments for which the

directions of the initial and final portions of a ray define the ray

completely, or at most define a finite number of rays. This will

not be the case, for example, if the instrument is a cylindrical

mirror, because then a set of parallel rays incident along a

\

Fig. 14

generator give rise to a set of parallel final rays, and so the

initial and final directions do not define a complete ray. The same

applies to the case ofrefraction at a cylindrical surface, and, more

generally, to reflection or refraction at a developable surface.

Such instruments will not be considered.

Since by hypothesis the components <r', T', v', cr, r, v determine

a complete ray, it is evident that T is a function of &', T', cr, r,

since v'
9
v are given in terms of these four quantities by the

identities (5-13). Thus we may write

(7-2) T=T(er',T',cr,T).

T is to be regarded as a third characteristic function of the in-

strument; it may be called the angle-characteristic. The con-

tinuation process employed for V and W is available, and it is
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not necessary that N' and N should lie respectively on initial

and final rays : they may lie on these rays produced.

We shall now show the connections between T and V and W.

IfA '(#', y', z') and A (x, y, z) are any points on the initial and final

rays respectively, we have

(7-3) V = [A
9

A} = [A'N'] + [N'N] + [NA],

or

(7-4) V(* 9 y',z',x9 y,z)
=

T(<r', T', cr, r)
-

(a'x' + r'y' + v'z') + (crx + ry + vz),

or, by (6-5),

(7-5) W(x', y', z', cr, r)
=

5P(cr', T', <r, r)
-

(crV + r'y' + v'z').

Let us now give arbitrary variations to A' and A, with con-

sequent variations in the components of the initial and final

rays. Differentiation of (7-4) gives

(7-6) ZVjtx' + Vx dx = Ta,8<r' + TT.dT' +

-Her' dx'-x' da'

the subscripts as usual denoting partial differentiation; hence,

by (5-12) and (6-8),

(7-7) (TV - *' + z'o>') *<r' + (Tr >
-

y' + z'r'jv') 8r
f

But the four differentials occurring here may be regarded as

arbitrary and independent; therefore

(7
. 8

) s'-3V/i/ = 2V, y'-z'r'lv' = T,,,

(7-9) x-zcrlu = -T,, y-zr/v = -TT .

The function T being supposed known, (7-8) are the equations of

initial rays and (7-9) the equations offinal rays. Thus a knowledge
of T provides us with an answer to the question (/) raised in 5.

Let us now see how the function T is to be calculated for a

given instrument, starting with a simple instrument in which

only one reflection or refraction at a surface S is involved.

Let cr', T', or, r, the initial and final components, be assigned,

and let N'QN be a broken line, N'Q having components <r', r
1

and QN components cr, r and JV, N being the feet of perpen-
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diculars dropped from the origin (Fig. 15). If x, y, z are the

coordinates of Q, we have for the optical length

(7-10) [N'QN] = Zv'x-Zvx.

Now let M'PM be the natural ray with the assigned components,

-Jf'
,
Jf being the feet of perpendiculars from 0, and let Q be ad-

jacent to P. It is easily seen, as in 6, from Fermat's principle,

that to the first order

(7-11) [N'QN] = [M'PM].

In fact, for arbitrary variations of Q on the surface 8, [N'QN]
has a stationary value for the natural ray. Thus, by (7*10),

(7-12) 27(<r'-<r)<& =

for all variations 3x, dy, 8z on S. Consequently, the vector with

components

(7-13) <r-<r', r-r', v-v'

is normal to 8 at the point of incidence, as indeed we already

knew from (2-13) for reflection and from (2-17) for refraction.

The mode of evaluation of T depends on the analytical form
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in which it is convenient to represent the surface. We have,

by (7-10),

(7-14) T((r',T',<r,T) = (</
-

cr) x + (T'-T)y+ (i/-i;) z,

from which x, y, z are to be eliminated by the stationary property

(7-12).

If the surface S is given in the form

(7-15) F(x,y,z) = 0,

then (7- 12) tells us that

(7-16) or-or'^AI^, T-T' = \Fy , v-v' = \Fz ,

where A is undetermined, and the subscripts indicate partial

derivatives. Our procedure then is to eliminate A, x, y, z from the

five equations (7-14), (7-15), (7-16): we are also to use (5-13) to

eliminate v' and v.

If the equation of 8 is given in the form

(7-17) *=f(*,y),

we know that the direction cosines of the normal have the ratios

(7-18) /*:/:-!,

where fx9 fy are partial derivatives. Hence

If these two equations are solved for x, y, and z then found from

(7-17), we may substitute in (7-14), and so by means of (5-13)

obtain I7 as a function of the required arguments cr', T', cr, T.

There is yet a third method, dependent on a knowledge of the

tangential equation of the surface S. Let /, m, n be the direction

cosines of the normal to S at the point of incidence, and let p be

the perpendicular distance from the origin O to the tangent plane
to S at this point. The tangential equation of S is then of the

form

(7-20) p = 0(l,m,n)\

since Z
2 +m2+ n2 = 1 this may be written in the form

(7-21) *-v ' ^

SGO
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But

where A is undetermined. Then (7-14) gives

(7-23) T = -
X(lx +my+ nz) = -

Xp.

But from (7-21) and (7-22)

la a' T T'
I Tt = fh\

(7-24)

[

A2 = (a
-

o-')
2 + (r

-
r')

2 + (v
-

1/)
2

.

Therefore

(_.

_.f _ ,_/\
(T (T T T\

r> /)>_,' ' V-V )

from which i/, u are to be eliminated by (5-13). The explicit

ambiguity in sign and those implicit in v' and v are to be

removed by inspection in any particular case.

Let us now consider the calculation of T for a general instru-

ment formed of any number of media. We shall use the notation

of Fig. 8, 5, and put

cr' 9 T', v' = components of initial ray,

cr, T, v = components of final ray,

(r
iy
T

iy
vi
= components of ray in medium M

i
of index /^

(i=l,2, ...,n-l).

Any two consecutive media may be regarded as forming an

instrument. Let T^lti
be the characteristic function for the

instrument formed by the media Jf^j, Mit Now a ray traversing

M
i may be regarded either as a final ray for the combination

M^v Mi
or as an initial ray for the combination M

i9
Mi+l . If

x
i> Vi> zi are ^e coordinates of any point on a ray inMi9 we have

then, by (7-8), (7-9),

(7-26)
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Hence by subtraction

35

(7-27) = 0, = 0,^u

these equations holding for i = 1, 2, ..., w 1, the subscripts

and n being attached to the initial and final media respectively.

Consider now a ray traversing the complete instrument. Prom
its definition as an optical length, it follows that T for the whole

instrument is the sum of these functions for the simple instru-

ments formed from pairs of consecutive media, that is,

(7-28) T^TU+T^+.-.+T^.
Now in the functions on the right there are involved all the

components cr
iy
r
i for the rays in all the media. But any particular

/

Fig. 16

pair cri9 ri enter only into Ti_lti
and Titi+l . Hence it follows from

(7'27) that T as given by (7-28) has a stationary value with respect

to arbitrary variations of the intermediate components. Thus we

3-2
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have the following rule for the calculation of T: Find the cha-

racteristic function for each pair of adjacent media and add to-

gether the results. Eliminate the intermediate components by means

of the equations which express the fact that the sum so obtained has

a stationary value with respect to arbitrary variations of the inter-

mediate components.
The jP-function of a system will change when the axes of co-

ordinates are changed. Let Oxyz, Oxyz be two sets of parallel

axes, the point having coordinates a, 6, c relative to Oxyz.

Denoting by T, T the functions for these two systems of axes,

we have (Fig. 16)

(7-29) T = [N'N], T = [N'N],

and hence, since N'N', NN are the projections of 00 on the

initial and final rays,

(7-30) T

8. The T-function for reflection or refraction at a sphere
or a paraboloid of revolution.

The method of calculating T by means of the tangential

equation (7-21) is convenient when the reflecting or refracting
surface is spherical. Let us take the origin at the centre of the

sphere: then p = R, where R is the radius of the sphere, and
hence the function of (7-21) is simply a constant,

(8-1)

Hence by (7-25) the T-function for a sphere is

(8-2) JT =

from which the ambiguous sign is to be removed by special con-

siderations. Should we wish to remove the origin from the centre

of the sphere, we may use (7-30). The formula (8-2) applies both
to reflection and to refraction.

To show how all ambiguities of sign are to be removed, let us

consider internal reflection (Fig. 17 a) and external reflection
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(Fig. 176). By consideration of the optical path, it is clear that

T is positive in the former case and negative in the latter. This

determines the sign in (8-2). Moreover, the axes being as shown,

we have (the positive square root being indicated in each case)

Fig. 17o

(8-3) Fig. 17o:

0>t/ = _2_ (

(8-4) Fig. 176:

0<t/ =
(/M
'2_ .'2_ T'2)J =/(l_ a'2_

0>y - -(t2 -<r2-T2 i * -tl-a2 -

where, of course, /*'
=

/t, this being the refractive index for the

medium in which the rays lie. Thus, with all ambiguities removed,

we have

(8-5) Fig. 17o:

T =
R[2/j,*

-
2(0-0' + TT' + w')]*

= RV%2- o-o-' - TT' + (/<
2- o-

2 - r2)*
2- o-'

2- r'
2
)*]*

= pR V2[l
- aa' -^ + (

1 - a2 -
/ff

2
)* (

1 - a'2-
y?'

2
)]* ;
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(8-6) Fig. 176:

T = - R[2n
2 -

2(0-0-' + TT' + w')]*

= - E V2(>
2 ~ 0-0-' - 77' + (/*

2 - O-
2- T2

)* (/*
2- O-'

2- T' 2

As usual, a', /?' are direction cosines of the incident ray, and a, /?

direction cosines of the reflected ray.

Let us now consider the case where the reflecting or refracting

surface is a paraboloid of revolution. Let us take the origin at

the vertex and the z-axis along the axis of revolution. Then the

equation of the surface is

R being the radius of curvature at the vertex.

By (7-14) we have

(8-8) T = ((r'-(r)x + (T
f

-T)y + (u
/

-v)z,

where this is to have a stationary value with respect to variations

of #, y, z on the surface. Thus
\ N

(8-9) <r'-<r + (v'-v)~ = 0, T' -T + (V' -v)^- = 0.
ox oy

But by (8-7)

dz

hence
/ _ / _

x = R .
-

. y = R.-- ,

v'-v y v'-v

Substitution in (8-8) gives as the T-function for a paraboloid of

revolution

/0-'_/T\2 /T'_ T \2.

(8-12) T = -\R
{

"',
(

.
v ; 2 v'-v

For a mirror in the form of a paraboloid of revolution, we have

ft'
= /, and hence

(8.i3) r
'-'
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Ambiguities of sign are intrinsic here on account of the dual signs

in the expressions for y', y in terms of the other direction cosines.

If the incident rays travel in the negative sense of the z-axis, and

the reflected rays in the positive sense, we have

(8-14) y' = -(i- a
' 2
-/?'

2
)*, y^l-a2

-/?
2
)*,

and substitution in (8-13) gives T for a paraboloidal mirror free

from ambiguity as

*' -a

The ^-function is most useful for the discussion of final rays

when the incident rays are parallel to one another. The final rays

are, as in (7-9),

(8-16) *-z^-2V, y-z
T

v
= -Tr ,

and in the functions on the right <r'
,
r' are now to be considered

as constants.

We may easily verify from (8-12) the fact that when the in-

cident rays are all parallel to the axis of a paraboloidal mirror,

the reflected rays pass through the focus. We have cr' = T' = 0,

v' = /, and it is a matter of indifference whether we make these

substitutions before or after differentiating with respect to cr

and T. Thus we may put from (8-12)

and (8-16) read

(8-18) * = (*-iR), y =
J(*

which equations show that all the reflected rays pass accurately

through the point (0, 0, \R).

The above expressions for T are exact: we shall consider in

Chapter iv approximate forms of T, useful when we have to deal

with a small bundle of incident rays.



CHAPTER III

THIN BUNDLES OP RAYS

9. Foci and focal lines.

Let us consider the final congruence of rays formed by the

passage of light through an instrument from a source at a point
x'

9 y', z'. The equations of the final rays are, as in (6-11),

(9-1) x-zorjv = -W^, y-zr/v = -WT ;

x'', y', z' are involved in W, but they are to be treated as constants

in the present work. If the initial rays do not come from a point

source at finite distance, but are parallel, we use the ^-function

instead of W, its arguments <r', r' being constants. As a matter of

fact, we are really concerned at present only with the final con-

gruence of rays. We are indifferent as to its origin. We know that

any normal congruence can be produced by reflection at a suitable

mirror of light emanating from an assigned point source. Con-

sequently, as far as the study of the general properties ofa normal

congruence of rays is concerned, (9-1) are completely general, or,

indeed, similar equations with T instead of W.

If, on a given ray R, there is a point P such that some rays,

making infinitesimal angles with R, cut R at P to the first order,

then P is said to be a focus. Two lines are said to cut to the first

order when their distance apart is an infinitesimal of order higher

than the first.

Suppose now that a ray R and an adjacent ray cut to the first

order at x, y, z. We shall have equations of the form (9-1)

satisfied by each ray, x, y, z being (to the first order) the same

for both rays, but the components <r, r differing infinitesimally.

We may in fact differentiate (9-1), putting

(9-2) 8x = 8y = 8z = 0.

Hence

(9-3) -z(o = -8W^ -z8(T/u) = -
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Sv = -
(<r 8cr+ r Sr)jv,

+v^-W^fo+^l^-W^tr = 0,

{zcrT/v
3-W

ffT} da-+ {z(r
2+ ya

)/v
3-Wrr} 8r = 0.

Elimination of Scr, ST gives

(9-5) {z(<r* + v*)lv*
-}} (z(r

2 + v*)jv*
-WTT}

a quadratic equation for z. Since, as will be shown below, the

roots are real, this equation, with (9-1), determines two foci on the

given ray.

To show that the roots are necessarily real, we take special

axes, the z-axis being coincident with the ray R, for which then

we have

(9-6) or = T = 0, v = [i.

The partial derivatives ofW occurring above were to be evaluated

for the values of or, T belonging to the ray E: for our special choice

of axes, these are as in (9-6). Since (9-1) are to be satisfied by
x = y = (r = T = 0, we have

(9-7) W
ff
= WT

=

for or = r = 0.

We are still free to rotate the axes about the ray R. Rotating

through an angle 6 gives a transformation

(9-8) x = xcosQ + ysind, y = xsind + ycosd, z = z,

and hence, since (T, r, v differ from direction cosines only by a

constant factor,

(9-9)
s = 0" cos -f T sin #, T = or sin -f r cos #, v = v.

Now W, as an optical length, has a value independent of the

directions of the axes. Thus

,9-10, W.-W. +*. W, = W + W,*,

9r 9f

= (Wgs-Wn)
sin 6cosd+Wn (cos

2 - sin2 0).
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Thus, given the axes x, y arbitrarily in a plane perpendicular

to R, we have merely to choose the x, y axes so that

2W
(9-11) tan20--=-2L.

"09
~~

"ff
in order to make

(9-12) War
=

for the ray R.

With this special choice of axes, for which (9-7) and (9-12) are

satisfied, the equations (9-4) reduce to

(9-13) (zlp-WrJSr^O, (z/v-WTr)$T = 0,

and the quadratic (9-5) reduces to

(9-14) (zl/t-Wfff)(zlp-Wn )
= 0.

The roots are therefore real, namely,

(9-15) *i
= pWw ,

z2
= /iWrr .

Avoiding the particular case where W
ff<r
= WTT ,

we see that

(9-13) has the two solutions

(9-16) z = zv 8r = 0; z = z2 ,
dcr = 0.

Thus each ray of a normal congruence possesses two foci, whose

coordinates are given by (9-5) and (9-1) for general axes, and by

(9- 15) for the special axes.

By (9-1), (9-7) and (9-12), the equations of a general ray

adjacent to R, referred to the special axes, are to the first order

(9-17) x-zd(rlfi = -Wm fo, y-z8rlii = -Wrr 8T,

where Scr, 8r are the components of the ray and the partial

derivatives are evaluated for cr = r = 0. By (9-15) these may be

written

(9-18) x = (z-zjtcrl/i, y = (z-zj&rlp.

All these rays, for arbitrary Scr, 8r, cut the plane z = zl in the line

(9-19) # = 0, z = z
l5

and the plane z = z2 in the line

(9-20) y = 0, z = z2 .

These lines (9-19), (9-20) (see Fig. 18) are called the focal lines.

We have the following result: All rays adjacent to any ray R cut
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(to thefirst order) two focal lines, one through eachfocus of R, which

are perpendicular to one another and to R.

This gives a very simple way of constructing an approximate
model of a thin bundle of a nor- 2.

mal congruence when the focal

lines are known. We simply join

up all points ofthe two focal lines.

Let us now consider how the

focal lines are to be found for a

general system of axes of coor-

dinates. We are to use (9-4), z

satisfying (9-5). Let the roots of

this equation be z1? z2 ,
and let

the corresponding foci be Fv F2 .

Let c^or, SjT be solutions of (9-4)

corresponding to z zv and 52tr,

8
2r those corresponding to z = z2 .

Let Il9 ml9 n be the direction

w2 , n2

Fig. 18

those of the focalcosines of the focal line at Fl
and 12 ,

line at F2 . It is evident, from consideration of the arrangement
of the rays shown in Pig. 18 for special axes, that the focal

line at F is perpendicular to the directions with components

(<r,r, v) and (cr-f^er, r + S^r, v + S^). Hence

(9-21) J

and so

(9-22) ^

similarly

(9-23) 12

Equations (9-22) and (9-23) give the directions of the focal lines qf

a ray with components <r, r, v, the axes being general. The ratios

S^cr/8^ and S2cr/82r are to be found from (9-4), after inserting sue-

cessively the two values of z satisfying (9-5): 8v and 82v are to be

foundfrom the identical relation written just above (9-4). We could

of course obtain the two values of Sor/Sr by solving the quadratic

: (v8l(r-cr3lv) :

, : n9 =
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equation for this ratio obtained by eliminating z from (9-4); but

we would not then know which focal line corresponded to which

focus.

The focal properties of a normal congruence of rays may also

be discussed by considering the congruence as the normals to

a wave-surface. In general, two adjacent normals to a surface

do not intersect to the first order: but if they are drawn from

adjacent points on a line of curvature of the surface they do

intersect to the first order. The two foci on each ray arise from the

intersections of the ray with adjacent rays drawn from points
on the two lines of curvature on the wave-surface.

A pencil of rays consists of a single infinity of rays: a pencil

forms a ruled surface, which is developable if the adjacent rays on

it intersect to the first order. It is evident that we can construct

from a given normal congruence two singly-infinite sets of

developable pencils, each developable pencil consisting of the rays
which cut a wave-surface along a line of curvature. All the rays
in each developable pencil touch a curve, called a caustic curve,

which consists of the points ofintersection of adjacent rays in the

pencil; these points are centres of curvature of the wave-surface

and foci on the rays, in the sense defined above. The totality of

caustic curves form a caustic surface of two sheets, whose points

are the centres of curvature of the wave-surface, or foci on the

rays (two on each ray). All the rays touch the caustic surface,

and a focal line of a given ray is simply a line through a focus,

lying in the tangent plane to the caustic surface there and

perpendicular to the given ray.

Let us now discuss the variation in the cross-section of a thin

bundle of rays. Let us choose the z-axis along a ray of the

bundle, and use the special axes for which (9-12) holds. The

boundary of the bundle will be a pencil of rays, which may be

defined by equations

(9-24) <r =/(*), r = g(u),

where/, g are small functions of a parameter u. Now for any ray

adjacent to the z-axis we have approximately from (9-1)

(9-25) x ZGT//A
= o'W

(7(r) y ZT//i
= TWTT ,
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or, by (9-15),

(9-26) x = cr(z
-

z^jfi, y = r(z- z2 )//i,

where z
l9

z2 are the foci. The area of the section of the bundle by
z = const, is -4, where

(9-27) A = $[(xdy-ydx),

taken round the bounding curve of the section in the sense of u

increasing. By (9-26) this is

(9-28) A = (̂
Z
i+

Between the foci (zl z)(z z2 ) is positive, and its greatest value

is ifo za )

2
,
which occurs for z = i(z -i-z2 ). The corresponding

value ofA is

(9-29) J = _^pJ
Therefore the area of any section is given in terms of this

maximum area by

(9-30) A = 4A (^~^
Z

Z '/-
.

The area ofsection is thus proportional to the product of the distances

from the foci.

Since the arrangement ofrays in a thin bundle is determined to

the first order by one of its rays (called the central ray) and its

focal lines, it follows that given a ray, incident on a given re-

flecting or refracting surface, and the focal lines of that ray, we
should be able to find the focal lines of the reflected or refracted

ray. This question will now be investigated in a special case, as

an example of the use of the ^-function.

A thin bundle of rays is reflected or refracted at a surface, the

plane of incidence being aprincipal plane ofcurvature : thepositions

of the foci on the incident central ray are given, and one of its focal

lines is parallel to the direction ofa line of curvature on the reflecting

or refracting surface at the point of incidence. It is required to find

the focal lines of the reflected or refracted bundle.
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Let us treat the case of refraction as the more general. Let us

choose the origin at the point of incidence of the central ray, Oz

along the normal to the refracting surface and Oxy in principal

Fig. 19

directions of curvature. If the radii of curvature corresponding

to Ox, Oy are R
l9
R2 respectively, the equation of the surface near

the origin is approximately

<
9 '31

>
z =^w-

Let T be the characteristic function for the pair of media. Then,

as in (7- 14), (7-19),

(9-32) T = (</-<

x '

r y
v -v

and so

(9-33) T = --~r-
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This is of course only an approximate form, based on the approxi-
mate equation (9-31), and therefore valid only for rays incident

near the origin. We note from (9-32) that cr
f

cr, r' r are small:

we may therefore, to our degree of approximation, substitute an

approximate value for v' v in (9-33).

Let us suppose that the incident bundle has its central ray in

the plane Oxz: the refracted bundle then also has its central ray
in this plane, and we have, accurately for the central rays and

approximately through the bundles,

(9-34) v' =
IJL'

cos V', v = p cos i,

where /&', / are the indices of refraction and i'
',

i the angles of

incidence and refraction respectively (Fig. 19). Accordingly we

may write (9-33) in the form (accurate to the second order of

small quantities)

(9-35) T = p{^!(cr'-(r)
2

1
jfc = ,

ll' GOSl''

We note the following values for partial derivatives:

(9-36)

Now the equations of the incident and refracted rays are, as

in (7-8), (7-9),

i*-<o>V-T, t y'-*>r>lV
> = T,,

'

\x-zo-lv
= -T

ff , y-zr/u = -TT .

We may regard these as four equations connecting x, y, z, cr, r

when x'
9 y

1

, z', a'
,
r' are given. If we regard z as also given, they

determine x, y,<r,T\ in fact, they determine the final ray corre-

sponding to any assigned initial ray.

Let the foci JFJ, F'2 of the incident bundle be at z = z[, z = z%,

and let the focal line at F( be perpendicular to the plane of

incidence (F[ is then called a primary focus), the focal line at F'2

lying in the plane ofincidence
(F% is then called a secondaryfocus).
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Let us pass from the central ray to any adjacent ray. Differ-

entiation of (9-37) gives, in view of (9-36),

'8x'-8(z'<r'lv')
= kR^So-'-Sar),

Sy'
-

8(z'T'jv')
= kRz(8r'

-
8r),

Sx-8(z<r/v) = kR^Sa-'-Sa),

8y
-

8(zrjv)
= IcR^r'

-
ST).

.

After differentiation we may insert the approximate values

icr'

=
ii

1

sin i'
',

T' = 0, v' = ft' cos i'
,

or = [i sin i, T = 0, u = /i cos i,

so that, by (6-8) and the corresponding accented equation,

(9-39)

(9-40)

=~ sec3
'

x * da>
r' 8v = =

v

8(crjv)
= sec3 i.

Let the points (x',y',z'), (x' + 8x',y' + 8y',z' + Sz') coincide to

the first order at the primary focus F(, so that we have

(9-41) 8x' = 8y'
= 8z' = 0,

and consequently ST' = 0, since the incident ray must pass

through the focal line at F'2 . Then (9-38) give

)

\8x
- cr' ~ Scr), 8y

-
S(zr/v)

= -^2 ST.

Hence ST = 0, showing that the varied refracted ray lies in the

plane y = 0, as is indeed evident from symmetry. The refracted

rays, corresponding to arbitrary &/, will all pass through a point

(x,y, z) provided that the equations (9-42) can be satisfied with

8x = 8y = 8z = 0. Thus we have to satisfy

(9-43)

- - sec3 i 8<r =
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these give the focus z
l5 on elimination of So-', Scr, by the

formula

^ ^ ^

it is a primary focus (J^), since 8r = 0.

To get the other focus, let the points

(x
1

, y', z'), (x' + Sx', y' + 8y', z' + Sz')

coincide to the first order at the secondary focus F'2 ,
so that

(9-41) again hold. Since the ray must pass through the focal line

at F[, we have

(9-45) 8<r
r = 0, 8v' = 0.

Putting Sx = 8y = Sz = in (9-38) to get a focus, and re-

membering (9-39), (9-40), we have to satisfy

( - kBl (
-

Scr),
- ^ sec V 8r

f = kR^Sr' - ST),

(9-46)
^

- ~ sec3 i So- = kRi(
-

8cr),
- Z

sec i ST = kR2(8r'
-

ST):

these give the focus z2 , on elimination of ST', ST } by the

formula

ft COS i JI'COBJ' 1

( '
~~~z z'

""
kK *

^2 22 A//12

It is a secondary focus (F2 ).

If p'v p'2 denote the distances of the incident primary and

secondary foci from O, and ply p2 the distances of the refracted

primary and secondary foci from O, all counted positive when

measured in the sense of propagation, we have from (9-44),

(9-47)

[A cos
2
i //' cos

2
i'

IJL
cos i X cos i'

p *

, .,

/J,co&^ ft cosi

SCO
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10. Aberration at a focal line.

The theory of focal lines developed in 9 is an approximate

first order theory. Let us now investigate more accurately the

pattern formed by a bundle of rays on the plane passing through

the focal line on a central ray, and perpendicular to the ray. The

deviation of this pattern from the

focal line is known as aberration.

Let us choose our axes so that

the z-axis is the central ray, one .

focus being at the origin and the

#-axis being a focal line. Using
the flT-function to describe the a
system of rays (supposed to

emanate from a source x 1

', y
1

',
z'

in an initial medium), it follows

from (9-1) and (9-4) that we have Q
for the central ray (cr

= r = 0) Fig. 20

where (0 ,0, a) is the other focus. We shall examine the aberration

near the origin.

The exact equations of the rays are as in (9-1)

Expanding the right-hand sides in power series in cr, r and putting
z = 0, we see that a ray with direction cosines a, /?, 7 cuts the

plane z = at the point

(x = -aa + (Aa*+2Bap+Cp*) + ...,

\y
=

where

(10-3)

(1(M) \0*Wm D = -
t

the partial derivatives being evaluated for cr = r = 0. Intro-

ducing spherical polar angles 6, <f>
to specify the direction of the

ray, we have

(10-5) a = sin# cos<
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Including terms of the order of 2
, but of no higher order, (10-3)

give
X =

(10-6)
-

y = |0
2
(
JS cos2

<j>
+ 2(7 cos sin + Z) sin2 0).

To this order of approximation, it is sufficient to substitute in

the expression for y approximate values for cos
<j) y

sin ^ given by
the first equation, namely,

x
(10-7) (x

2
\*

i-afr)

'

Fig. 21 a

Hence

(10-8) 2a*y

// 6 is held fixed, this is the, equation of the locus of the points of

intersection with the plane z = of all rays making a small angle

with the central ray: by varying we get the whole pattern.

The curve (10-8) with 6 constant is obviously a flat curve near

the rr-axis. To make the radical real, we must take x so that

(10-9) -aO^x^aO,

assuming a positive for simplicity. Thus the curve is bounded by
the lines x = ad, which it touches. Since two values of y corre-

spond to each value of x except x = 0, ad, the curve is a figure

of eight. Two types are shown in Figs. 21 a, b. For x = ad, we

have y = \B6
Z

,
and for x = 0, y = \D6*: at the latter point the

slope is COla. The curve cuts the #-axis if, and only if,

4-2
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To find the illumination produced on z = by all rays adjacent
to the central ray, we are to superimpose the curves for all small

values of 0. Let us find the envelope of the curves. Differ-

entiating (10-8) with respect to 6, we get, on division by 2a2
6,

Cx

and hence

(10-11) (a?6*-x*)* = + Cx/D.

Substitution in (10-8) gives for the envelope the parabola
L> T\ _ /^2

A mere reversal of the y-axis changes the sign of D, so that we

may suppose D > without loss of generality. Then the figures of

eight cut the positive y-axis, as shown in Figs. 2 la, 6; Fig. 21 a

shows the case BD-C*>0 and Fig. 216 the case BD-C*<0.
In either case the figures of eight lie entirely on one side of the

parabolic envelope. No rays meet the plane z = on the opposite

side of the parabolic envelope, which therefore divides the plane
into two regions bright arid dark the light in the bright region

being concentrated near the parabolic envelope. Thus the theory.

of geometrical optics indicates a sharp separation between light

and darkness, but in reality the two regions will merge into one

another with bright and dark diffraction bands.

11. Principal foci: aberration at a principal focus.

A point P on a ray R is said to be a principal focus if all rays

which make with R an angle less than a small angle 6 pass through

P, distances of the order of 0* being neglected. A ray containing

a principal focus is called a principal ray.

Using the function W, as at the beginning of 9, to describe

the congruence of rays the T-function may of course be used

similarly the condition for a principal focus at x, y, z is obviously

that the conditions of intersection (9-4) should be satisfied for

arbitrary values of do", dr. Thus the equations

(11-1) z(<r* + *)l* = Wn9 zorrlv*
= W

ffT) z(r* + v*)/v*
= W

rrT



PRINCIPAL FOCI 53

are to be satisfied. These are three equations for z, cr, r, since v

is given by

(11-2) t>
2
=/^

2 -(72 -T2
.

When these quantities have been found, x and y are given by

(11-3) X-ZO-/V = -Wff , y-zrjv = - W7 .

Hence we can locate the principal foci (x, y, z) and the principal

rays (cr, r) through them when we know the function W. We note

that the components of the principal rays satisfy

W W W(TO TT
(TT "TT

(
11>4

) g 2//* T2 err /A cr

In general a given congruence of rays will possess a finite number

of principal foci and principal rays.

If we take a principal ray for 2-axis and the principal focus on

it for origin, (
1 1 1

)
and (11*3) must be satisfied with x = y z =

Hence we have

(11-5) Wf = Wr = Wff = Wfr = Wn = Q

for cr = T = 0.

Let us now investigate the pattern formed on the plane through
a principal focus perpendicular to the principal ray. This plane

is called a focal plane, and the deviation of the rays from the

principal focus is known as aberration.

The exact equations of the rays are (11-3). Let us take the

special axes of coordinates described above, so that the focal

plane ip z = 0. Developing the right-hand sides of (1 1-3) in power

series, we see that the intersection of the ray with direction

cosines a, /?, y with the focal plane is (on account of (11-5))

lx
( ->)

\y= l(

where A, B, C, D are constants as given in (10-4). Introducing

the angles 6, <j>
as in (10-5), we see that, to the order O2

inclusive,

we have

-
G) cos 20 + 5 sin

( '



54 PRINCIPAL FOCI

Elimination of from these equations gives an ellipse with centre

at the point

(11-8) x

this is the curve traced out in thefocalplane by those rays which make

with the principal ray a small angle 6.

If we change 6 to 6' in (11-7), but hold fixed, the corre-

sponding point #', y
f

is such that

T' 11' /?'2

)
~ = - =

7)2-' x y 0*

Hence, given one of the ellipses (11-7), all the others can be

obtained from it by magnification with respect to the origin: the

ratio of magnification is positive, and therefore all the points met

by rays are to be found on the lines obtained by joining the origin

to the points on the ellipse and producing these lines away from

the origin. If the origin lies outside the ellipse, these lines are not

to be produced through the origin, since this would correspond

to a negative ratio of magnification.

Let us investigate the envelope of the ellipses (11-7) for various

values of 6. The intersection of consecutive ellipses must satisfy

\2xd(6~*)
=

[
- (A - C) sin 20 + 2B cos 20] d0,

The envelope is therefore to be found by eliminating 6 and

from (11-7) and

x (A-C) sin 2<f>
- 2B cos 20

(11-11)
y (-/)) sin 20 -2C cos 20*

Comparing this expression with the value ofx/y given by (11-7),

we see that a real envelope exists if, and only if, can be found

to satisfy

(A - C) sin 20 - 2B cos 20
(

*

'
~

(B - D) sin20~-

_ A + C + (A -(7)00820 + 273 sin 20~



ABERRATION AT A PRINCIPAL FOCUS 55

This equation reduces to

(11-13) [C(A + C)-B(B + D)]coa2<f> + (AD-BC)sin2<f>
= B(B-D)-C(A-C),

or

(11-14)

where

(11-15)

B(B-D)-C(A-C)

tana
AD-BC

The condition, necessary and sufficient, for the existence of a real

envelope is that the right-hand side of (11-14) should not exceed

unity in absolute value: this is expressed analytically by

(11-16) E^O,
where

(11-17) E = (AD~BC)*-4:(B2 -AC)(C2 -BD).

Case I. E>0 (Coma).

Since the ellipses are obtained from one another by magnifica-
tion with respect to the origin (the principal focus), their envelope
consists ofa pair of lines passing through the focus. The equations

Fig. 22
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ofthe lines may be found by substituting in
(
1 1- 1 1) the two values

of
2<j> (in the range 0, 2n) given by (11-14). The ellipses lie only in

one of the regions encompassed by the lines, as shown in Fig. 22.

Thus the illumination on the focal plane is confined to a wedge-

shaped region, the bounding lines being especially bright. This

flare of illumination is known as coma, from its resemblance to

the tail of a comet.

Case II. E < (General illumination).

In this case (Fig. 23) the ellipses are contained inside one

another and the optical focus is inside them all
; the whole region

in the neighbourhood of the focus is illuminated.

Fig. 23



CHAPTER IV

THE INSTRUMENT OF REVOLUTION

12. Approximate form of T for any reflecting or re-

fracting surface of revolution.

Let us take the axis of symmetry of a reflecting or refracting

surface of revolution for 2-axis. We assume that the equation of

the surface may be expanded in the form

...,

where v, R and 8 are constants, R being the radius of curvature

at the vertex z = v. We shall confine our attention to rays which

are approximately parallel to the axis of symmetry and which

meet the surface near the vertex. To the order of approximation
which we shall employ it will be unnecessary to consider terms

in the expansion (121) beyond those shown.

To get a paraboloid of revolution we put

(12-2) l/S = 0.

If the surface is a sphere of radius R, we have accurately

(12-3) *a+ y
a + (->- *)* = jp,

or, to the above order of approximation,

,. ft , x
(12*4b) z - - - - -__ -

1 ' 2R 8.R3

Thus, if the surface is a sphere, we arc to put

(12-5) S = 2#3
.

Let us now calculate T7
as a function of the initial components

cr'
9
T' and the final components 0% T, retaining only terms up to

and including the fourth order in these components, which are

small since the rays are approximately parallel to the axis. By
(7-14) we have, accurately,

(12-6) T = (<r'-<r)x+(T'-r)y + (v'-v)z 9

where x, y, z is the point where the ray meets the surface. We are
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to eliminate x, y, z by the condition that T shall have a stationary

value with respect to variations of x, y, z on (12-1).

Let us write

(12-7) A(T <r a', AT = T T', Av = v v',

A indicating in general an increment occurring at the reflection

or refraction. Then

(12-8) T = -:

and as in (7-19)

(12-9)

Thus

(12-10)

dz

Av

AT

(r*
= xz

+y*).

Aa-fl

>A<r

S '

correct to the third order, and to a first approximation

(12-11) x = -.

(Av)*
'

Substituting in (12-10), and the similar equation for y, we get,

correct to the third order,

(12-12)

f P^/I ^
x = -R --. -II ~

Av \ S (Av)*

and hence, correct to the fourth order,

(12-13) rz =Rz

(Av)* S
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Then, by (12-1), we have, correct to the fourth order,

(12-14) + +

Substitution in (12-8) from (12-12) and (12-14) gives, correct to
the fourth order,

w is tfAe approximate form for Tfor any reflecting or refracting

surface of revolution.

Fig. 24

Let us now consider the case of a mirror of revolution with the

equation (12-1), the rays being incident from 2 = 4-00 as in

Fig. 24, so that the direction cosines of the rays satisfy

(12-16) 0>y' = -(l-a' 2
-/?'

2
)*, 0<y = (l- a2

-/?
2
)*.

We shall suppose fi
= 1. Then

(12-17)
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these expansions being sufficiently accurate for substitution in

(12-15). Thus we get, correct to the fourth order,

(12-18) T = ~

For a paraboloid this reduces to

(12-19) T = -

and for a sphere

(12-20) %
T = ~

i 723 n^

!(a'
2 + /?'

2
) + -}(a

2

Fi<r 2.
r
>

Let us now consider a refracting surface of revolution with the

equation (12-1), the rays being incident from z = oo as in Fig. 25,

so that
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r
O < V' = (/

2- <r'
2- T' 2)*, < V = (H*

- O-
2- T2

)*,

(12-21)

i _ j i j_~ + ~ ~~
1 1

wr
-2 . 2

then (12-15) gives

(12-22) !T = -

\* _ L /i "!
T
_X

L 2^ /t~

For a sphere this becomes

(12-23) 21 =

2\2

0-2
, T2

13. General form of T: method of calculation up to the

fourth order.

An instrument of revolution is an instrument with an axis of

symmetry, such that the instrument is unchanged (optically)

when rotated through any angle about that axis. The most im-

portant optical instruments are of this type.
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Let us take the axis ofsymmetry for e-axis: as usual we shall let

X, or', T', v', a', /?', /
refer to the initial medium, and

[i, cr, 7, v, a, /?, 7

to the final medium. The ^-function for the instrument is a

function of the four quantities cr', 7', cr, r: it may therefore be

expressed as a function of the four quantities

(13'1) cr'
2 -f7 /2

, cr'cr + 7'7, cr
2 + 72

, cr,

because these quantities determine cr'
, 7', er, 7. The quantities

(13'1) in fact determine a ray: if we fix the first three of them and

allow er to vary, we get a single infinity, or pencil, ofrays. We have

o-'
2 + 7' 2 = X 2

(<*
/2 +^/2

)
= X a

(
1 -/ 2

)>

(13-2) <(
cr'er+ 7'7 =

where # is the angle between the initial and final rays. Thus if the

first three quantities in (13-1) are given, 7', 7 and are deter-

mined, or, in other words, the inclinations of the initial and final

rays to the axis of the instrument and also the mutual inclination

of the rays are determined. Now if we take a natural ray passing

through the instrument and give it a rigid body rotation about

the axis of the instrument, it is clear from the symmetry of the

instrument that the ray so obtained will be a natural ray, satis-

fying the laws of reflection or refraction. But under this rotation

7', 7 and 6 remain constant: hence the first three quantities in

(13'1) remain constant: in fact, the pencil ofrays obtained by this

rigid body rotation is precisely the pencil obtained by holding

these quantities fixed and varying cr. But from its definition as

an optical length T is the same for all the rays of the pencil:

hence T is actually a function of the first three quantities only
in (13-1). Let us put

(13-3) e' = c/ 2 + 7/2
,

e
f
= crV + 7'7, e = c

then

(13-4) T=3V,e f ,e).
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The T-function is particularly useful in those cases where the

initial rays form a parallel system; when the initial rays diverge

from a point source x', y', z
f

at finite distance it may be more

convenient to use the JF-function. In general W is a function of

#', */', ', <r, T:

by an argument similar to that used above it is easily shown that

on account of the symmetry of the instrument W is expressible

as a function of the quantities

(13-5) z
r

,
x'* + y'\ x'v + y'r, V* + T*.

We shall use the T-function in what follows.

We shall assume that the rays lie close to the axis ofsymmetry
and are nearly parallel to it. Thus e', e,, e are small, of the second

order relative to the inclination of the ray to the axis. We shall

suppose that T may be expanded as a power series,

(13-6) T

where jP(0) is a constant and

QV 2 + Qtf + Qe* + Q',e'e t
+ Q'e'e+ Q,e,e,

where the P's and Q's are constants characteristic of the instru-

ment. They depend on the position of the origin on the axis.

The superscripts (0), (2), (4) indicate orders of magnitude, the

inclination of the ray to the axis of the instrument being the

fundamental infinitesimal. In what follows we shall not include

terms of order higher than the fourth in T.

As an illustration of the notation employed in (13-7), the

results given in (12-18), (12-19), (12-20), (12-22), (12-23) may be

exhibited as follows, the surface having the equation

ns-w z(138) Z

For simplicity, the origin is taken at the vertex in some of the

formulae given below. To change to a general origin on the axis

of the instrument, we may refer to 12, or use (7-30). The direc-
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tions of the rays are as in Figs. 24 and 25 for reflection and

refraction respectively. We note that

I
in vacua : (<da)

2+ (J/?)
2 = e' - 2e, + e,

|in general: (/J(r)
2+ (/JT)

2 == e'-2e,+e.

General mirror of revolution with vertex at the origin (v
=

0).

T = R(e'-2e,+e)[]

(13-10) IK*
'8 i8"'

Paraboloidal mirror of revolution with vertex at the origin (v
=

0).

T = R(e'
-

2e, +e) (1 + \e' + Je),

(13-11)

Spherical mirror with vertex at the origin (^ = 0).

(13-12)
" = Q = &R, Q, = Q: =

General refracting surface of revolution.

(13-13)
'

T = -vi -*' v/i
-3e2-

R
'2/t

^. P'=~
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Spherical refractor.

(13-U)

-X)-1
(t/^

1 ~ e'X-
1
)

'=_ v
4.

2 2-

__ J{(2ju,-/i') _ 1 7;~ ~
H/^^M -/t')

3
~

8 /'
'

* - '- 4 "

R
2(* -

n' r//'-i-4-f// ~ //\-*iv '
~"

577, _ ,,'\*W +W V ) J
-

o,//,/-//'^'

"
2(/6-/e')

a
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In 7 we had a general method for the calculation of the T-

function for any instrument. Two steps were involved: (i) the

determination ofthe jP-function for each pair ofsuccessive media,

(ii) the elimination of the intermediate components, so as to

leave T a function of the initial and final components. Now we
are only interested in the calculation of T up to the fourth order

for an instrument of revolution. The general process may be

simplified under these circumstances.

In the notation of (7-28) the ^-function for the complete in-

strument is

(13-15) T = rw+ru +...+r
ll_1 .n ;

the intermediate components are to be eliminated by means of

dT dT
(13-16) = 0, = 0, (t=l,2,...,n-l).

Now T as given in (13-15) may be expanded in the form

(13-17) T = TM+TW+TM+...,
the superscripts indicating orders of magnitude in the small

components. If we retain only terms up to the fourth order in T,

the equations (13- 16) are of the third degree: we shall see, how-

ever, that it is sufficient to eliminate the intermediate variables

by means of linear equations, in accordance with the following

theorem: // instead of using the exact equations (13-16) we

eliminate the intermediate components from (13-15) by means of

the linear equations

(13-18)
-
ao/;=0, a

-- = 0, (t= 1,2, ...,-!),

the error so introduced in T is of the sixth order, and is therefore

negligible when T is required only to the fourth order.

It is simplest to prove this theorem in a more general form.

Let x
l9
x2 , ..., xm be a set of small variables (corresponding to the

intermediate components) and yl9 y2 , ..., yn another set of small

variables (corresponding to the initial and final components).
Let / (corresponding to T) be a function of the x's and /'s, and

let it be represented by a series of the form

(13-19) f(x, y) = /<>+/<
2)
(*, y) +/<(*, y) + ...,
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/(0)
being a constant and /(2)

, /(4)
polynomials, homogeneous of

degrees 2 and 4 respectively. We are to eliminate the x's from/ by
two different processes. Let us in general write

(13-20) ^)
The first process of elimination is by means of

(13-21) f<V(x,y) = 0.

Let the solution of these equations be

(13-22) xr
=

.(/);

when these are substituted inf(x, y), we get

(13-23) ff(y)=f(,y).

We have of course

(13-24) f?\t,y) = V,

for arbitrary values of the y's.

On the other hand, let us eliminate the x's by means of

(13-25) fr(x,y) = 0.

Let the solution of these equations be

(13-26) Xr = tr(y)+*ir(y);

when these are substituted mf(x,y) we get

(13-27)

We have of course

(13-28)

for arbitrary values of the y's. We shall now prove that

G(y)-F(y)
is of the sixth order.

The equation (13-28) may be written

(13-29) f?\t + ri,y)+f?\ + ri>y) + ^=^
or, expanding the first term as a power series in the

9/'

(13-30) />( y) + I iJtotf, y) + ... +f?>(t + ri, y) + ... = 0,
S-l

where f$ is a partial derivative of the second order. The first

term vanishes, by (13-24):/^ are constants: the term/jE
4) is of the

5-2



68 FIRST ORDER THEORY: OBJECT AND

third order. Hence the 9/'s are of the third order. We have then,

writing 6 for terms of the sixth order,

(13-31) 0(y)-F(y) = /( + if, y) -/( y)

.y)-fw(,y)

this establishes the result, and hence proves the theorem asso-

ciated with* (13-18).

The simplification consequent on the use of linear equations

(13-18) instead of cubic equations is naturally very great.

14. First order theory: object and image points: cardinal

points.

We shall now develop the first order theory of a general instru-

ment of revolution, the rays being adjacent to the axis of the

instrument. In this approximation we shall neglect in the

equations of the rays the squares and higher powers of the

distances from the axis of the instrument and of the inclinations

of the rays to the axis. It is therefore only necessary to retain

terms of the second order in T.

Taking the z-axis along the axis of the instrument, we have to

the required order of approximation

(14-1) T = P'e'+P
te, + Pe + const.,

e' = cr'
2+ r'2

, e,
= cr'cr + r'r, e = cr

2 + r2
,

as in (13-7). To the order of approximation here considered, the

three constants P', P f ,
P and the initial and final refractive

indices determine the optical behaviour of the instrument. We
shall suppose these constants known, and develop the optical

properties in terms of them.

The equations of the initial and final rays are given by (7-8),

(7-9), in which x r

, y', x, y, <r', T', cr, r are small. Since

(14-2) y'2 = / 2 -cr/2 -T'2
,

v* = /*
2 -tr2 -T2

,



IMAGE POINTS: CARDINAL POINTS 69

we have to the first order

(14-3) </ = ?>', " = %*,

where
?/', i)

are 1, being + 1 if the ray in question is proceeding

in the positive sense of the z-axis and 1 if it is proceeding in the

negative sense. When only refractions occur, y' and
r/
have the

same sign, so that
T/'TJ

= 1. More generally, this condition holds

when the final rays have the same sense as the initial rays. We
may then say that the instrument is direct. When the instrument

is a single mirror, we have ?/'?/
= 1. More generally this con-

dition holds when the final rays have a sense opposite to that of

the initial rays. We may then say that the instrument is reversing.

By retaining the factors ?/',?/ we shall be able to discuss both types

of instrument at once.

By (7-8), then, the equations of the initial rays are approxi-

mately

(14-4)

dT
~,

and the equations of the final rays are, by (7-9), approximately

(14-5)

= = P,a' 2P(r,

Fig. 26
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Let us suppose that there is a point source of light at a point
/' near the axis of the instrument, the coordinates of /' being
#', y', z' (Fig. 26). In (14-4), (14-5) we have four equations:
elimination of cr', r' will give the equations ofthe final congruence
of rays due to the source /'. By (14-4) we have

x'-P.<r , y'-P,r
(14-6) a" = 7 ==

2P'

Substituting in (14-5) and rearranging, we have

Px'

Py''

(14-7)

No matter what values or and r may have, these equations are

satisfied by

(14-8)

P.x' P,y'

Thus, to the first order, all the rays emanating from an object point

I'(x ', y' i z') in the initial medium pass (after traversing the instru-

ment) through an image point I(x, y, z), with coordinates given by

(14-8).

The equations (14-8) may be written more symmetrically

(14-9)
*' y'

(14-10) (z- = 0.

Since x/y = x'/y'',
it follows that the object and image points lie

in a diametral plane, a diametral plane being a plane through the

axis of the instrument. This fact is of course obvious from the

symmetry ofthe system, since the instrument and the congruence
of initial rays have the diametral plane through the object point
for a plane of symmetry.

It is also clear from symmetry that ifthe object point lies on the
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axis of the instrument, so also does the image point: this also

follows from (14-8), since x' = y'
= imply x = y = 0. Points on

the axis such that one is the image ofthe other are called conjugate

points: the relation between the positions of conjugate points is

(14-10). The planes through conjugate points perpendicular to

the axis of the instrument are called conjugate planes. It is

evident that an object point and its image are situated in con-

jugate planes.

We shall now define three pairs of cardinal points on the axis

of the instrument. These are the focal points, the nodal points

and the principal points, the planes through them perpendicular

to the axis of the instrument being the focal, nodal and principal

planes.

The focal point F' is defined as the object point whose image

point is at an infinite distance on the axis of the instrument, and

the focal point F is defined as the image point whose object point

is at an infinite distance on the axis of the instrument. Thus the

z' ofF 1

is to be found by letting z -> oo in
(
14- 10) and the z ofF by

letting z' ->oo in the same equation. Hence we have for the focal

points

(14-11) z(F') = -2^'Py, z(F) = ZqPfi.

Since object and image points are principal foci in the sense of

11, and in particular so are focal points, we may say that

the focal point F' is the principal focus in the initial medium
for rays parallel to the axis in the final medium;

the focal point F is the principal focus in the final medium for

rays parallel to the axis in the initial medium.

The nodalpoints N',N are defined as conjugate points such that

the corresponding rays through them are parallel (in the same or

opposite senses). If the senses are the same, we are to have

a' = a, ff = ft, and if they are opposite, a' = a, /?'
=

ft.

Thus the conditions for the two cases are included in

(14-12) ?'a'
= ?a, y'fi'

= ?&

a', /?' and a, ft being direction cosines of corresponding rays
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through N' and N respectively. Substituting in (14-4), (14-5)

the following values,

\x'
= y

' = x = y = 0,

we have

(14-13)

(14-14)

with similar equations with /?', /? substituted for a', a. Hence by

(14-12) we obtain for the positions of the nodal points

(14-15)

Let us now take as object a short line A'B', perpendicular to

the axis, A' being on the axis. Let A be the image ofA' and B the

B'

I

B
Fig. 27 a Fig. 276

image of B'. We know by (14-8) that AB will be parallel to A' B':

all the points on A
'

B' will have images on AB, and we may speak

of the line AB as the image of the line A '

B'. The line AB may
have the same sense as AB' (Fig. 27 a) or the opposite sense

(Fig. 276). Tn the former cases we have an erect image, in the

latter an inverted image.

We define the magnification (m) to be AB/A'B
r

,
the + sign

being taken when the image is erect, the when inverted,f By
(14-9) the magnification is given by

y =
y' *'-

x
-

-,

x' fi

rjPffi

The principal points U', U are defined to be conjugate points

f Or we may say m = A BjA 'B', interpreted algebraically.
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for which the magnification is equal to unity. Hence, putting
m = 1 in (14-16), we have

(14-17)

By (14-5) we have, for any ray through U,

(14-18)'

[-r(2P+Pt )
= -P,T'-2Pr.

Hence for corresponding rays through the principal points the

relations cr' = cr, r' = r hold. These conditions might have been

used as a definition of principal points.

Let us put for brevity

I 2ij/iP a, ?lt*,Pf
= b.

Then by (14-11), (14-15), (14-17) the positions of the cardinal

points are as follows:

(z(F') = -a', z(F) =a,

(14-20) s(AT') = -a'-b, z(N) = a-

Hence

(14-19)

(14-21) lz(N')-z(F') = z(F) -;

\z(N) -z(F) =z(F')-z(U').

Using the ordinary notation for directed segments on a line, in

which a segment is counted positive or negative according as it

runs in the positive or negative sense, we have

(14-22) U'N1
== UN, F'N' = UF, FN = U'F'.

A possible arrangement of the cardinal points is shown in Fig. 28.

F' N'U' N U

Fig. 28
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The following relations are also easily proved:

(14-23) ypFN+y'/i'F'N' = 0, y/tF'U' + y'p'FU = 0.

Further, if G', C is any pair of conjugate points, it follows from

(14-10) that

(14-24) FC.F'C' = FN.F'N' = FU.F'U'.

The paurs of conjugate points form two homographic ranges on

the axis of the instrument,! the relation (14-10) being, in the

notation of (14-19),

(14-25) (z-a)(z' + a') + bb' = 0.

The double points, i.e. those points which are their own con-

jugates, are found by putting z' = z: thus

(14-26) z* + z(a'-a)-aa' + bb' = 0,

z = l{z(F') + z(F)} ViF>2 + ^'iV .FN.

Such points necessarily exist if bb' < 0, which is the case if
r)'', y

have opposite signs, i.e. if the instrument is of the reversing type.

The first and second/oca? lengths ofthe instrument are defined as

(14-27) f' = F'U', f = UF.

Thus, by (14-20),

(14-28) /' = -?>'P,, f=-wP,,
and so the focal lengths are connected by the equation

(14-29) V'/7X =
*///*

We observe that when the initial and final refractive indices are

the same ([i

f

=/) and the instrument is of the direct type (rf
=

?/),

we have/' =/. Further, in this case the nodal points coincide

with the principal points.

The image of a given object can be constructed very simply
when the focal and principal points are given. Let A'B' be the

object (Fig. 29). Through B
f draw a parallel to the axis of the

instrument, cutting the principal planes at F', V respectively.

The incident ray B'V emerges as VF. Through B' draw B'F',

cutting the principal plane through U' at W. Through W draw

a line parallel to the axis of the instrument, cutting the principal

t Cf. C. V. Durell, Plane Geometry, Part II (London, 1910), p. 206.
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plane through U at W. The incident ray B'F' emerges along the

line just drawn, and the image of B' is the intersection B of this

line and VF.

B'

B

Fig. 29

If the nodal points N' 9
N are given we may use a ray through

them instead of one of the two rays given above, remembering
that the final part of the ray through N is parallel to the initial

part through N'. Thus we may carry out our construction using

any one of the following sets of points: F'FU'U, F'U'N'N,
FUN'N.
As a simple illustration of some of the preceding formulae, we

may apply them to the case of a mirror of radius of curvature R
with approximate equation

We have by (13-12)

(14-31) P' = P =

and /A'
==

fi
=

1, y'
=

1, r/
= 1, the incident rays travelling in

the negative sense as in Fig. 24, in which now v = 0. We find

from formulae given above that the focal points coincide at

z = |jR, the nodal points coincide at z = R (the centre of

curvature), and the principal points coincide at z = (on the

mirror).

Taking (14-30) for the surface of separation of media of refrac-

tive indices p' for z < and fi for z > 0, as in Fig. 25 with v = 0,

we have as in (13-13) for v =

(14-32) P-.P.^, P.fjf.
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We are also to put if'
= y = 1. We find for the focal points

(14-33) z(F') = -- -*,' v '

The nodal points coincide at the centre of curvature z = R, and

the principal points coincide at 2 = 0.

15. Spherical aberration, astigmatism, coma, curvature

of the image, distortion.

We have seen that if, for rays adjacent to the axis of an in-

strument of revolution, we neglect in the equations of the rays

small quantities of order higher than the first, then to each object

point there corresponds an image point. In fact, if the incident

rays emanate from a point, the final rays pass (to the first order)

through a point.

One of the purposes of an optical instrument is to produce a

point image of a point object. To the first order any instrument of

revolution does this for monochromatic light. But when terms

of higher orders are taken into consideration this is no longer the

case. Furthermore, given a small object-pattern on a plane per-

pendicular to the axis, a perfect instrument should produce on

some plane an image-pattern, in which the dimensions of the

object-pattern are magnified or diminished uniformly. It is

evident from (14-9) that, to the first order, every instrument of

revolution is perfect in this respect. But, again, defects appear
when a more accurate discussion is given.

Confining our attention to monochromatic light or to an in-

strument involving reflections only, so that chromatic aberrations

( 19) do not occur, we have to considerate defects in an instru-

ment of revolution. The first three of these, spherical aberration,

astigmatism and coma, arise from failure to produce a point image.
The other two, curvature of the image and distortion, concern

the failure of the instrument to reproduce a plane pattern to

scale.

In the approximation now to be given we shall include terms

of the fourth order in T, but omit terms of the sixth order. Thus
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(15-1) T = P'

e' = or'* + r' 2
, e,

= orV + T'T, e = <r
2 + r2

.

We shall limit our attention to object points at an infinite distance,

so that the congruence of incident rays from an object point
consists of parallel rays; cr' and r' are then the same for all these

rays. To deal with objects at finite distance it is more convenient

to use the characteristic function W.

We shall assume that the final rays travel in the positive sense,

so that v > 0. We have then approximately

Since

(15-3)

de' de' ^ de, , de. de de
~ = -~- = > ^~ = *

> -o
= T

> v = 2(r
> v

do- 3r dor 3r Bcr 3r

the exact equations (7-D) of the final rays, namely,

r 9T
a^d.\' ^"^y ~

3<r
' ~*^% "

~ar
'

give, to the third order inclusive,

x + zo'/i~
l
(l + ie/r~

2
)
= P

f
cr

f + 2Pcr + 2Q f/
e

f
cr'

-1-4.

(15-5)
| _

+ 4#er + Q't e'r' + 2Q'e
f

T + Q,(r'e 4- 2ej).

The terms omitted are of the fifth order at least.

Spherical aberration.

Let there be an object point at an infinite distance on the axis

of the instrument. The incident rays are then parallel to the axis,

and we have

(15-6) cr' = r' = 0, e' = e
f
= 0.

Hence by (15-5) the final rays have the equations

(
'

\-y + zr/i-i( 1 + Je/*-
2
)
= 2Pr + 4Qer.
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The final ray with components cr, r cuts the plane z = const, in

the point

y = T/i-*(z
- 2P/0

In general this point has a first-order distance from the axis, but

if the plane z = const, is the focal plane z = 2P/i (14-11), this

distance is of the third order: we have then

(
'

'

the distance from the axis being

(15-10) r= |e^-
2
(

The rays (15-7) for arbitrary a*, r do not pass through a point.

There is a principal focus or first-order image at x = y = 0,

z = 2P/i, but final rays inclined to the axis of the instrument

pass by this point at a distance (15- 10) which is of the third order,

and so not negligible for the present approximation. This devia-

tion from the point image for incident rays parallel to the axis of

the instrument is called spherical aberration. It is obvious from

(15-9) that it is present unless the instrument is designed to

satisfy the condition

(15-11) P = 4Q/t
2

.

This is the condition for the absence of spherical aberration.

Let us consider a mirror of revolution, for which we have, as

in (13-10),

(15-12) /*=!,

Then

(15-13) p_ -.

The equation of the mirror is (13-8), with v = 0. The defect of

spherical aberration will therefore be present in a mirror unless

S = oo. This condition gives a paraboloidal mirror, for which

indeed we know from elementary geometrical considerations or

from (8-18) that rays parallel to the axis are reflected accurately

through the geometrical focus.
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In the case of a spherical mirror of radius 72, we have as in
(
12 5)

8 = 2R3
,
and hence

(15-14) P-4g/i=AJR.
It is evident from (15-9) that for any instrument of revolution

a final ray inclined to the axis of the instrument at an angle cuts

that axis at a distance

in front of the focal point, i.e. at

(15-15) z = 2P/*-/^
2
(P

this also follows from (15-8) on putting x = 0. For the case of a

spherical mirror this result is easily checked by trigonometry.

Conditions for the formation of a point image.

We have already seen that the condition (15-11) is necessary
and sufficient for the formation of a point image of an object

point at infinite distance on the axis, to the order ofapproximation
considered. We shall now show that if (

15- 1 1
)
is satisfied and also

(15-16) Q, = Qn
= 0,

then any congruence of parallel incident rays at small inclination

to the axis gives a point image. In this case the object point is at

infinity, but not on the axis.

Substituting from (15-16) in (15-5), we obtain

as the equations of the final rays. The first of these may be

written, by (15-11),

(15-18) x + P,<r' + Q',e'<r
f =

cr{(l + -le{i-*)(zfi-i-2P)-2Q'e'}.

We are justified, to the order of approximation employed, in

adding a term of the fifth order, since this is negligible: hence

(15-18) and its companion may be written
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To the order ofapproximation considered, all these final rays pass

through the point

(15-20)

This establishes the result stated.

By treating (15-5) as identities in cr, r, it is easily seen that the

conditions (15-11), (15-16) are necessary as well as sufficient for

the formation of a point image.

Astigmatism.

Let us now suppose that

(15-21) P = 4^2
, Q f

= 0, Q,,=0-

Employing the same device as before, namely, the addition of

terms of the fifth order, the equations (15-5) for the final rays

may be written

x +P
f
a f + Q',e'<?'

-
<r( 1 + '

e/*-
2
) (z/i~

l - 2P - 2Q'e')

(15-22)v

y + P,T' + Q',e'T'
-

r( 1 + i^~2
) (zp

- 1 - 2P - 2Q'e')

Let us choose the axes of a; and y so that the plane ofxz is parallel

to the incident rays: then

(15-23) T' = 0, e,
=

o-o-', e' = or'
2
,

and (15-22) become

(15-24) -2P- 2Q'o-'
z-

2Q,,<r'
z
),

y -

Consider the lines

(15-25)
,,O =

0,J

I '

z-2fi(P+Q'(r'
2
)
= 0,
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No matter what values or and r may have, we can find x, z to

satisfy the equations of L
19
and therefore the first of (15-24); we

can then choose y to satisfy the second of (15-24). Thus the ray

(15-24) cuts Lv Similarly, it cuts L2 . Thus all the final rays cut

the two lines L
l9
L

2 . These lines are the focal lines of the final

bundle, but the general theory of focal lines is somewhat com-

plicated by the approximations here employed. Fig. 30 shows

these focal lines and their positions relative to the focal plane
z = 2P/i for the case Q

f > 0, Q lf
> 0, Pf

< 0, a' > 0. The diagram is

not drawn to scale: actually the distance of L from the axis of

the instrument is of the order of cr', whereas the distances of L
and Z/2 from the focal plane and from one another are much smaller

,

namely, of the order of cr
/2

.

If Qn
= 0, the two focal lines cut, and we get a point image, as

indeed we know from earlier considerations.

A ray, as given by (15-24), cuts the focal plane z = 2P/i in the

point satisfying

(15-26)

Thus all final rays inclined at a small angle to the axis of the

instrument cut the focal plane in an ellipse,

SCO
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its centre is at the point

(15-28) a = -PX-0X 8
> y = 0,

and its area is

(15-29) n/iW*Q'(Q' + Q,f ).

The ellipse reduces to a straight line if

(15-30) Q' + Q. = or #' = 0,

in either of which cases one of the focal lines is in the focal plane.

The aberrational phenomenon present in the above system is

known as astigmatism. The literal meaning of astigmatism refers

to the failure of the instrument to form a point image.

Coma.

Let us now suppose that

(15-31) P = 4^2
, Q f *0, #,,

= 0.

The equations (15-5) for the final rays may be written

+ Q',e'<r'
-

cr( 1 + Je/r*) (z^ - 2P - 2Q'e')

Let us, as before, take the xz plane parallel to the incident

rays, so that (15-23) hold. Then (15-32) become

(x + P,<r' +0X8 -
<r( 1 + Je/*-

a
) (zfi-i-2P- 2#V2

)

(15-33)
]

=-QX(3(T2 4-r2 ),

[y-T(l + $ep-*)(zp-*-2P-2Q'(r
t

*)
= -2Q,(r'ar.

Let us examine the intersections of these rays with the plane

(15-34) 3 = 2/*(P+gVa
):

by (15-20) this is the plane on which a point image would be

formed if Q, 0. Shifting the origin to the point with co-

ordinates

(15-35) a^-PX-QX8
, 2/

= 0, z = 0,

and denoting the new x by x, we see that the ray with components

<r, r cuts the plane (15-34) at the point

(15-36) x = -Q
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Let us introduce polar angles 0, <f>,
so that

(15-37) <r = /isinO cos $5, r = /isinO sin^.

Then the intersection is, to the third order,

83

cos2 + sin2

Those rays for which # is constant cut the plane (15-34) in the

circle

(15-39) (x + 2Q,cr'fi*0*

The centre of this circle is at

and its radius is
| Q,<r'fi?0

2
\. Fig. 31 shows the projection of this

circle on the plane 2 = 0. It is evident that the tangents drawn

from the origin O make angles of 30 with the #-axis.

Fig. 31

(The figure is drawn for P
f
cr' <0, Q t

a f

<0.) Letting vary, we
see that the illuminated portion of the plane (15-34) is a wedge or

flare of angle 60, having its vertex at the point whose coordinates are

(15-40) x = -P
/Cr'-0X 3

' y = 0, z - 2/*(P + #V 2
).

This phenomenon is called circular coma. (Cf. 11 for general, or

elliptical, coma.) Since in (15-35) Pf
cr' is much greater than

Q',cr'*, we see that the vertex of the wedge points towards the

axis of the instrument (as in Pig. 31) or away from it, according
as P

rQ f
is positive or negative.

6-2
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We have seen that a mirror, to be free from spherical aberration,

must be paraboloidal, so that in (13-8) S = oo. We have then

from (13-11)

(16-41) P
t
= -fB, # =

(), Q, = -\R.
Thus the paraboloidal mirror suffers from coma, the vertex of the

wedge pointing towards the axis, as in Fig. 31. Putting a' = 6'

in (15-39), we see that if the incident rays are inclined at an angle

6' to the axis, the final rays inclined at an angle 6 to the axis cut

the plane in a circle of radius ^RO'O*, the centre of the circle

being at a distance \R,6'd* from the vertex of the wedge. The

vertex of the wedge is at a distance approximately \RQ' from the

axis of the instrument. (R is the radius of curvature of the

paraboloidal mirror at its vertex.)

Curvature of the image.

Let us suppose that an instrument is corrected for spherical

aberration, astigmatism and coma, so that a point image is

formed by any set of parallel incident rays. We have then

(15-42) P = *g/i, ,
=

<>, Q, = 0,

and by (15-20) the point image is formed at

(15-43)

Suppose now that there is an extended distant object, such as a

planet, which we regard as lying at infinity. From each point of

it there comes a family of parallel rays (cr' 9 r'), forming an image-

point as given by (15-43). Varying cr', r', we get an image-surface:

this surface will in general be curved, so that a curved photo-

graphic plate would be necessary to obtain a sharp representa-

tion of the whole object.

The equation of the image-surface is approximately

(15-44) z = 2/*P + 2/*#'(a;
2 + y

2
)/P

2
:

thus the radius of curvature p of the image-surface (counted positive

when that surface has its concavity on the side z = + oo) is

(15-45) p =
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The condition for aflat image (no curvature) is therefore

(15-46) Q' = 0.

In the case of an instrument with coma (conditions 15-31),

there is not a point image, but the coordinates (15-40) for the

vertex of the coma-flare are the same as (15-43) with r
1 = 0.

If we regard the vertex of the flare as an image, we may speak
of an image-surface and its curvature. For a paraboloidal

mirror, as in (13-11),

(15-47) P = t-B;

the radius of curvature of the image is half that of the mirror.

Distortion.

Let us now suppose that the instrument is corrected for

spherical aberration, astigmatism, coma and curvature, so that

(15-48) P = 4<^2
, g, = 0, =

<), <2'
= 0.

Then, by (15-43), the image point corresponding to <r', r' is at

(15-49)

= 2/iP.

Although a plane image of an extended object is formed, it may
not be perfect; distortion may be present.

Let us first suppose that the object is plane, the plane being

perpendicular to the axis of the instrument. Let the instrument

be removed, and replaced by a screen perpendicular to the z-axis,

the screen having an infinitesimal hole on the axis. This arrange-

ment constitutes a "
pin-hole camera", and an image of the

object plane will be formed on any plane perpendicular to the

axis behind the hole. Any pattern drawn on the object plane will

be reproduced to scale on the image plane, all lengths being

enlarged or reduced in the same ratio. This is an image without

distortion.

If the object is not plane, we shall define an image without

distortion as one formed in this way by projection through a

point on the axis. The image formed by an optical instrument

will be, by definition, free from distortion when it is a reproduction
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to scale of the image that would be formed by projection through

a point.

Suppose then that there is an object point at infinity, the

components of the rays from it being <r', T'. Taking projection

through the origin on to a plane z = 1, the ray <r', r
r

gives the

point

(15-50) x = o->', y = r'fv'.

Denoting these coordinates by x, y, and using

(15-51) cr'
a + r /2 + i/

a = / 2
,

we see that to the third order of small quantities

(15-52){ ]

where ij'
= 1 according as the incident rays are in the positive

or negative sense. By (15-49) and (15-52) the corresponding

image-point formed by the instrument is at

m> "3)

The condition for a reproduction to scale, i.e. the condition for no

distortion, is obviously

(15-54) 2(2X2 = Pr

If this condition is not satisfied, the straight line y = const, in

the image by projection does not correspond to a straight line

in the image formed by the instrument, but to a parabolic arc

which curves away from y = if

(15-55) 2#X 2/^,-l>>
and toward y = if

(15-56) 2#X2/^-l<-
Also the straight line x = const, corresponds to a parabolic arc,

curving away from or towards x = according as (15-55) or

(15- 56) holds.

The distortion corresponding to (15-55) is called cushion

distortion and that corresponding to (15-56) is called barrel
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distortion, the names being suggested by the patterns corre-

sponding to a rectangular grid of lines in the xy plane (Fig. 32).

Fig. 32 a. Cushion distortion Fig. 326. Barrel distortion

Collecting our results, we see that the conditions for the absence

of spherical aberration, astigmatism, coma, curvature and dis-

tortion are

(15-57) P =
4<2/^, g, = g, = 0' = o, P,

= 2g>' a
,

so that the ^-function for such an instrument, perfect (to the

order considered) for parallel incident rays, is

(15-58) T = P'e' + Q*e'*+Q',e,(2p'*+ e') + Qe(4fi,* + e) 9

the four remaining constants being arbitrary.

16. The sine condition of Abbe.

The preceding theory is approximate, dealing with rays ad-

jacent to the axis of the instrument. We proceed to establish a

condition which must be satisfied no matter what the inclination

of the rays to the axis may be, if the instrument fulfils certain

conditions of imagery.

Fig. 33
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Let S' be a plane object perpendicular to the axis of the in-

strument at A'. Let us suppose that all rays from each point
of S' pass accurately through a single point in the image-space,
so that an image-surface is formed, and that this image-surface
of S' is a plane S perpendicular to the axis at A.

Let W(x', y', z', cr, r) be the W-function of the instrument.

Then by (6-10), (6-11) we have

(16-1) 0-' = -^, T' = -H^
(16-2) x-zvfv = -W

ff , y-zr/v = -WT .

Given x', y', z', cr, r, the equations (16-1) determine <r', r': (16-2)

are the equations of the final ray with components or, T, v. Let
x*

', y'',
z' be any point on S' and x, y, z the corresponding image-

point on S. The origin is arbitrary: let us choose it at A, so that

z = Oand (16-2) read

Let us regard x'
9 y',<r,T as independent variables and x, y, <r'

',
r

f

as functions of them. Then by our assumption as to the nature of

the image, x, y are functions ofx', y' only, independent ofcr, r.

By partial differentiation of (16-1), (16-3) we have

(16-4)

W - - W - 9a"'

W - 9r/ - 8r
'

x'"
""

30-
'

~~
*'T

"
"97"

'

" ^ =
'do-

'

""
W/T
=

9r
'

PF --- PT ^ PT - ^ w ty' ""

a*'
' ra;

' ~
a^

7 ' ^ "
a/

'

""
T2//

=
ay

7 *

Hence

(16-5) -^' ==
3
-' = 9^ --* - 8

2/

3o- 3x" 3r ""9 /5
3cr

"
'9^' IJT

""

9^'
Let the subscript mean #' = /'

= 0. Then from the symmetry
of the instrument

m being the magnification. Hence

d<r
'

dr
'
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Therefore

(16-8) (<r')
= wcr+ a, (r')

= mr + &,

where a, 6 are constants. But (<r')
= if cr = and (r')

= if

7 = 0. Hence a = 6 = 0, and so for corresponding rays through

.4', 4 we have

(16-9) cr' = mcr, r' = mr.

Thus if an exact plane image S of the plane S' is formed, the in-

clinations 6', to the axis of the instrument of corresponding rays

through A' and A must satisfy

(16-10) /sin0' = m/*sin0,

X> fi being the refractive indices of the initial and final media. This

is known as the sine condition of Abbe.

This result may also be established by means of the point-

characteristic V, perhaps more directly. From the assumed

property of exact imagery and Permat's principle, all the rays

joining an assigned point on the plane through A' to its image
have the same optical length V, which is a function of #', y' only.

By symmetry V must be a maximum or minimum when

x' = y'
= 0, and hence 8V = for any infinitesimal displacement

off the axis at A'. Therefore, by (5-8),

(16-11) 8V = o-8x + T8y-o-'8x'-T'8y' = 0,

where cr', r' are the components of any ray through A' and cr, r

the components of the corresponding final ray through A; 8x'
,

8y' is an arbitrary displacement in the plane at A' and Sx
9 8y the

corresponding displacement at A. Combining (16-11) with (16-6),

we deduce (16-9), and hence the sine condition (16-10) follows.

This method is immediately applicable to the more general case

in which $', 8 are not planes, but surfaces of revolution about

the axis of the instrument: in that case also (16-10) holds.

17. Calculation of T for a thin system.

Consider an instrument of revolution (Fig. 34) in which surfaces

S
t (i

=
1, 2, . . ., n) separate media of refractive indices / , pl9

. . .
, fin .

Let the equation of S
t
be approximately

(17-1) z = vi + fa(
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where v
i9

r
i9

s
t
are constants, ri being the reciprocal of the radius

of curvature, counted positive when the surface is concave

towards z = +00. The notation has been slightly altered from that

of (
1 2- 1

) : we note that the condition for a spherical surface is now

(17-2) =
\r\.

S, \ 5
3

/ \\/ /* \ A \

\

>*

Fig. 34

A considerable mathematical simplification results from as-

suming v
t
=

(i
= 1, 2,...,n): although it is physically impossible

to bring the vertices of the surfaces into coincidence without

breaking the refracting material, we shall assume that this

condition is satisfied. The system so obtained is called a thin

system in a technical sense. The behaviour ofan actual instrument

will approach more and more closely to that of a thin system the

smaller the distances between the vertices.

We shall denote the components in the several media by

For any quantity i/r we shall write

Thus, for example, A
i^ is the increment in refractive index on

crossing the surface S^.

With the necessary changes in notation, (12-22) gives for the

T-function for the media separated by Si9
to the fourth order,

(17-4)
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This may be written

(17-5)

The ^-function for the complete instrument is

r T =

(17-6)

The intermediate components cr^ r
t (i= 1, 2, ...,^~ 1) are to be

eliminated, in accordance with the approximate method justified

in 13, by means of

37T(2)

(17-7)
s

= 0,
i

Now

(17-8)

(t=l,2,...,n-l).

.foi

Hence

(17-9)

= C,

T.= A
where 0, D are independent of i. These fractions are invariants.

Let us put

(17-10) F<i= JrjAjp, (i=l,2,...,n).
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Then by (17-9)

(17-11)

=

= Z>

(
= l,...,n),

and so

(17-12) c

where we define

(17-13) J-i =

By (17-11), (17-12) we have

I;:::: ::;:

These equations give the intermediate components in terms of the

initial and final components.

By (17-9), (17-12) we have

(17-15) (Zl,<r

Hence by (17-8), (17-13) we have for the T-functionfor the complete

instrument to the second order

(17-16)

By (17-5), (17-9), (17-12)

T

Now
(17-18)

n-l

i-1
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Hence

(17-19) T'V = I

^n-^i^o- I

in which the 0's are to be replaced by the following expressions,

obtained on substitution from (17-14) in the definitions (17-17):

(17-20)

Thus (17-19) expresses iP'(4) as a function of the initial and final

components.

Lastly, by (17-5), (17-9), (17-12),

(17-21)

Collecting our results and writing <r', r
f

for' the initial com-

ponents and or, T for the final components, we have in the notation

of (13-3) for the T-function of any thin system of revolution at the

origin, to the fourth order inclusive,

(17-22)

T =

x
(e'(l

- FFfi)
2 + 2e,FFi

1
(l

If we write as usual

(17-23) T = P'e' +P^
+ QVe, + Q'e'e + Q,e,e,
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we have, by comparison of coefficients,

(17-24)

Q =

Q, = -

If /*
=

/in = 1, we have by (14-11) for the focal points

(17-25) z' = -2P' = - J7

,
z = 2P = F,

while the nodal and principal points lie at z =
;
the focal length

of the instrument is by (14-28)

(17-26) ^(ivM)-1
-

i=l

F~l is called the power. If we define the power of the pair of

media separated by S
t
to be r^Ai/i, then the power of the whole

instrument is the sum of the powers of the consecutive pairs of

media.

We note that T contains the factor e' 2e
f
+ e: hence we may

write

(17-27) T<4) = (e'-2

and we shall have

(17.*)( '

\d'-B-2A, Q'-C+A,

Of the Q's nly three are independent: we have in fact

(17-29) g;=-R-2Q", Q' = Q + Q", Q, = -2Q-IQ..

We recall from (15-11), (15-16) that the conditions for the

formation of point images are

(17-30) P
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Since P = J-PV 0, if the focal length is not to vanish, the first of

(17-30) demands Q^Q, and hence (17-30) are incompatible with

the last of (17-29). Thus it is impossible to correct a thin instru-

ment simultaneously for spherical aberration, astigmatism and

coma.

18. Aberrations of a thin lens.

Let us now consider a thin lens in vacuo, bounded by the

spherical surfaces

r
l9 r% are the reciprocals of the radii. The figure shows the case of

A5

Fig. 35

a convex lens, r
l
> 0, r2 < 0, but the argument to be developed

applies to all signs.

We are to put in the results of 17

(18-2) /*
=

/4a =l, /*!=/*, /V = /*-l, J
2/^=l-/e,

/^ being the refractive index of the lens. For the focal length F we

have

(18-3) F~l = r1J 1 /6 + raJ a //
= (/^~ l)K~r2 ),

and so by (17-24) we have

(18-4) P' = P = -JP, = $F = i^-l)-1 ^!-^)-1
.

Also

(18-5) Jpr
i ==
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Application of (17-24) with n = 2 gives

(Q =

(18-6)

-
i(/i

-
l)-i (r + r

x r2 + r22 ) fa
-

Q, =

Hence

(18-7) 4Q-

Thus by (15-11)

tion is

(18-8)

-
(/*
-

I)"
1
(rf + rx r2 + rJ) fa

-

condition for the absence of spherical aberra-

. + ri)
= 0.

Given /, this is a quadratic equation for the ratio r^r^ However,

since [i > 1 necessarily, the roots prove to be imaginary, so that

it is impossible to avoid spherical aberration for a single thin lens.

We have also from (18-6) and (17-29)

(18-9)

so that Q f , Q /f
are easily calculated when Q has been found from

(18-6).

19. Chromatic aberrations.

In the preceding work we have treated the refractive index of

a medium as a constant. Actually it depends on the colour or

frequency of the light employed. Thus our investigations up to

this point must (except in the case of reflections) be regarded as

applying to light of a single colour (monochromatic light). The

phenomena arising from variation of refractive index with colour

are known as phenomena of dispersion.
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Since the T-function of an instrument depends on the refrac-

tive indices of the media involved, it will depend on the colour

of the light. Thus we should write

(19-1) T= T(cr' 9 T',<r,T,x)>

where % is some number which specifies the colour of the light.

We might take for x the wave-length of the light in vacuo, or its

frequency.
In an instrument involving reflections only, dispersion is

entirely absent. This is obvious from the fact that the law of

reflection does not depend on the refractive index, but it may also

be seen by consideration of the T-function. If the reflections take

place in vacuo, T will be independent of x< if they take place in

a medium of index /, T will be of the form /tT', where T' is a

function of direction cosines only, and the factor// will disappear
in the equations of the rays.

In the instrument of revolution, for which T has the approxi-
mate form (13-6), (13-7), the coefficients P f

,
P

t , P, Q", ... will

depend on X- Hence we are not to expect that the absence of

spherical aberration, for example, for one colour will imply its

absence for other colours. More serious than this, however, the

dependence of T on x makes itself felt even in the approximate

theory based on the second-order terms in T, and leads to

chromatic aberrations much more important than those arising

from the dependence of the Q's on x- The first-order imagery of

14 will in general be different for different colours, because the

quantities /p ,

(and hence the cardinal points) will be different. We shall confine

our attention to instruments in vacuo, so that /i'
=

fju
= 1

; the

quantities determining the cardinal points are then P', Pf ,
P.

We cannot design a refracting instrument to make P'
9
P

/9
P

independent of ^. But, with sufficient parameters (viz. refractive

indices, curvatures and positions of surfaces) at our disposal, we
can make these quantities take the same values for specified

values of x> i-e - we can eliminate chromatic aberration for

specified colours. Actually it is usual in practice to limit the

SGO 7
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correction to two values of #, say Xi> #2 (corresponding to the G
and F lines of the sodium spectrum). Using A

X
to indicate an

increment on passing from Xi to X& the conditions for achro-

matism for these two colours are

(19-2) A
X
P' = 0, A

x
P

f
= 0, A

X
P = 0.

For a thin combination in vacuo these reduce by (17-24) to

the single condition

(19-3)
*

J^-i = J
x(2r<d,/0

= 0,
i^=l

or

(19-4) J>^OV)
= 0.

For a single thin lens with refractive index /, this condition

reads

(19-5) (r1 -ra)/l^
= 0,

which cannot be satisfied except by the trivial solution i\
= r2 .

For a thin double lens with curvatures r
l9

r2 ,
r3 ,

r4 and refractive

indices fil9 fa, the condition for achromatism is

(19-6) fo-rj^ + fa-rj^a = 0.

The dispersive power of a medium is conventionally defined as

(19-7) D-Q.
where jl is the refractive index for some colour fixed conven-

tionally (the sodium D-line). Thus (19-6) reads

(19-8) D^-rJ^-^+Da^-rJt/ea-l) = 0,

or

(19-9) JD1/JP1 + Di/ 8̂
= 0,

where Z)
1?
D3 are the dispersive powers of the lenses and J^, F3

their focal lengths for the colour corresponding to the index /Z.

It is easily seen that for a general thin system of lenses, the

condition for achromatism is

(19-10) L\D/F) = 0,

where the summation extends over all the lenses, D and F being

respectively the dispersive power and the focal length of a lens.



CHAPTER V

HETEROGENEOUS ISOTROPIC MEDIA

20. Fermat's principle.

The media previously considered were homogeneous and iso-

tropic, in the sense that the optical properties were the same at

all points (homogeneity) and the same for all directions at each

point (isotropy). The most general medium is heterogeneous and

anisotropic, but we shall confine our attention to media which

are heterogeneous and isotropic.

It is assumed that in a heterogeneous isotropic medium there

is a velocity ofpropagation at each point, in general variable from

point to point: we may write it

(20-1) v = v(x,y,z),

x
y y, z being rectangular Cartesian coordinates. The function v

will also depend on the colour of the light, but it will be unneces-

sary to indicate this dependence. The refractive index is defined as

(20-2) /i
=

c/v,

c being the velocity of light in vacuo: p varies from point to point,

and so the heterogeneous isotropic medium may be called a

medium of variable refractive index. It is assumed that in each

medium fi is continuous and possesses continuous partial

derivatives.

If we draw any curve (7, joining points A' and A, a point

moving from A' to A along C and having in each position the

assigned velocity v, will pass from A' to A in time

{A ?A

(20-3) t = ds/v = c" 1
fids.

J A' J A'

A
We define the optical length of C to be fids, as in 2.

JA'

We shall accept as a basis for our theory Fermat's principle in

the following form : the actual ray along which light travels from
A f

to A has a stationary optical length when compared with adjacent

7-2
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curves joining A' and A. This is, of course, equivalent to saying

that the time taken by the light to travel from A' to A has a

stationary value.

We shall now find the differential equations of the rays in a

single medium. For any curve C joining A' and A with equations

(20-4) x = x(u), y = y(u), z = z(u),

u being any parameter, the optical length is

= r*/t(x,y,z)(x* + y* + z

Ju,
(20-5)

where u = % at A' and u = u2 at A and x = dx/du, y = dy/du,

z ==
dz/du. This may be written

ru*
= wdu,

(20-6) \ J Ul

w being a function of x, y, z, x, y, z. Let us take a set of adjacent

curves, each described by equations of the form (20-4), the para-

meter u running between the same terminal values on all the

curves. Then the variation of L on passing from one of these

curves to its neighbour is

(20-7) = (

Ua

J Ui

->Z indicating a sum of terms obtained by changing x -> y
and 8x, 8y, 8z, 8x, 8y, 8z being infinitesimal increments obtained

in passing from a point on one curve to the point on its neighbour
with the same value of u. Then

(20-8) Sx^^Sx; 8y = ^-8y; 8z = -f-8z,du du du

and hence integration by parts gives

/OAQ\ ^r
(20-9) ^
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The first part vanishes if the curves have common end-points,

for then dx == 8y = dz = at those points. If the curve C is the

natural ray from A' to A, the remaining integral must vanish for

values of Sx, 8y, 8z arbitrary along C save for the condition of

vanishing at A' andA . Hence it follows that, by virtue of Fermat's

principle, a ray satisfies the differential equations

(20-10)

d dw dw
__

du dx dx

d dw dw

du dy dy

d dw dw

du dz ~dz

these being in fact Euler's equations for the extremals of wdu.

Substituting for w from (20-6) we have

d dw dw d F fix "1 dfi -2 -2U~ Z
] '

and similar forms for the other two expressions in (20-10).

The parameter u along the ray C is still arbitrary. If we put

u = s, the arc length of (7, we have

(20-12) x* + y* + z*= 1

along Cf

. Hence, by (20-11), the equations (20-10) become

d I dx\ d/i __

d

d

ds

If we take for u a parameter defined by

(20-14) u =
dsjfji,

J A'
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we have du = ds//i, and so the equations of a ray may be written

(20-15)

Thus we have in (20-10), (20-13) and (20-15) three different forms

for the equations of the rays.

Denoting by i the unit tangent vector to the ray, so that, by
the first Frenet formula,

(20-16) di/ds
=

j/p,

where j is the unit principal normal, drawn to the concave side of

the projection of the ray on its osculating plane, and p is the

radius of curvature (always positive), the equations (20-13) read

in vector form

(20-17)
~

or

(20-18) ^
Thus the gradient of the refractive index lies in the osculating plane

of the ray. Also, operating on (20-18) with j., we get

(20-19) ii\p
= j.grad/^ = 3/^/9^, p~

l = 3(log/^)/3ft,

where d/dn indicates differentiation along the principal normal,

dn being an element of length of this

normal. Since p is positive by defini-

tion, dp/dn is positive. Thus the

refractive index increases as we go

along the principal normal, or, in

other words, the ray bends toward the

region of higher refractive index

(Fig. 36).

Let us consider the case where the medium consists of parallel

planes of equal refractive index. Taking the z-axis perpendicular
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to these planes, we have p,
=

fi(z). Then integration of the first

two of (20- 13) gives

(20-20)

where a and 6 are constants. Hence

(20-21) (dz/ds)*
- 1 - (dxjdsY

-
(dy/ds)*

= 1 - (a
2 -

We note that

(20-22) dy/dx = 6/a,

and hence the projection of each ray on z = const, is a straight line,

as indeed we might expect from symmetry.
From (20-20), (20-21) we have

(20-23) (dz/dx)* = (/**- a* -b*)/a*, (dz/dy)*
=

(/*
2 - a2 - 62)/6

2
,

which give # and y as functions of z by quadrature. Hence

we have for a ray in a stratified medium [JL
=

fi(z) the integrated

equations

(20-

the ambiguous signs corresponding to those occurring when the

roots of (20-23) are taken. To avoid confusion arising from these

ambiguities and to get a general idea ofthe behaviour ofthe rays,

we may proceed as follows. Since the left-hand sides in (20-23)

cannot be negative, the ray cannot leave the region for which

(20-25) /6>(a
a + 68

)*.

The constants a and b are determined by the initial point and

direction of the ray, and the right-hand side of (20-25) has a

simple meaning. If 6 denotes the inclination of the ray to the

2-axis, we have in general

(20-26) a2 + 62 =
/i

2
[(efo/<fo)

2 + (dy/ds)
2
]
= ^ sin2 0,

and so (20-25) may be written

(20-27) /*-/sin0'^0,

the accents denoting initial values. The medium may be divided

into layers in which the sign of the left-hand side of (20-27) is

alternately positive and negative. The initial point lies in a layer

for which this quantity is positive, and the ray cannot leave this
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layer, which is bounded by planes z = z
l9

z = z2 , satisfying the

equation

(20-28) 11
= Xsin0'.

The ray is a periodic plane curve oscillating between these planes

and touching them, the increments in x and y between successive

contacts being respectively

(20-29) a {**
--

,
b f

**

--

The layer containing the ray may, of course, extend to infinity

above or below, in which case the modifications in the argument
are obvious.

Let us now consider the case where the refractive index has

spherical symmetry with respect to a point 0. This corresponds

approximately to the case of refraction in the earth's atmosphere,
when the curvature of the earth is taken into account. Let r

denote the position vector of a point in the medium, relative to 0,

so that (i
=

ii(r). Then

(20-30) i = -, .v l
ds to f rdr

Now, by (20-17), we have along a ray

(20-31) rxi

= r xgrad/^

= 0.

Thus fir x i is a constant vector, which shows that the ray lies in

a plane through 0, and further /irsinfi const., where
<fi

is the

angle between the radius vector and the ray. The analogy to the

dynamical theory of orbits under central forces is obvious. This

relation may also be written ftp
= const., where p is the per-

pendicular dropped from on the tangent to the ray.

Returning to the general heterogeneous medium, let us denote

by a, f}, y the direction cosines of a ray, and let us define the

components cr, r, v of a ray by the equations

(20-32) or = fiat,, r = pfi, v = /ty.
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Then the equations (20-13) for a ray may be written

105

ds dz*

We may note that in the case where [i is a function of z only, the

result (20-20) may be written <r = const., r = const.

The law of refraction when a ray passes from one medium to

another across a surface of discontinuity of fi may be deduced

easily from (20-9). (We might also deduce it from (20-33), by

proceeding to a limit in which the gradient of the refractive index

Fig. 37

tends to infinity.) Let A'BA (Fig. 37) be a natural ray, crossing

a surface of discontinuity at B, and let A'CA be an adjacent

broken curve. In (20-9), which is a general formula for variation

of optical length in a single medium, the integral vanishes if the

curve from which the variation is made is a natural ray: the

formula then reads, if s be taken for parameter,

(20-34) SL =
I

EpadxT
'

= IzaSxT'.

Applying this formula first to the variation from A'B to A r

C,

and secondly to the variation from BA to CA, we have for

differences in optical lengths

(20-35) [A'C]
- [A'B\ = Zcr2 Sx,

where cr
l9

T
I?

v are the components of the ray just after refrac-
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tion, <r2 ,
r2 ,

v2 the components just before, and 8x, 8y, Sz the com-

ponents of the displacement BC. Consequently (20-34) gives

(20-36) \A'CA\-\A'BA\ = -ZA<r8x,

where A<r, AT, Av are the increments on crossing the surface.

Hence, by Fermat's principle,

(20-37) ZA<r8x = Q

for an arbitrary infinitesimal displacement on the surface, and so

(20-38) Acr/l
= Ar/m = Av/n,

where I, m, n are the direction cosines of the normal to the surface,

as in (2-17). The same formulae hold for reflection. Thus (20-38)

is the law of reflection or of refraction at a surface of discontinuity

of the refractive index between two heterogeneous isotropic media.

21. The characteristic function V.

Let us now introduce the characteristic function V for a hetero-,

geneous isotropic medium. Let A'(x',y',z') and A(x,y, z) be

two arbitrarily selected points in the medium: the characteristic

function

(21-1) V=V(x',y',z' 9
x

9 y,z)

is defined to be the optical length of the natural ray A'A. Let us

seek an expression for the infinitesimal change in V due to arbi-

trary infinitesimal displacements of A' and A to B' and B
respectively. If u is a parameter running between the same

terminal values on the varied and unvaried rays, the variation

in the optical length, that is, dV, is given by (20-9). Since the

unvaried curve is a natural ray, the integral vanishes, and if we

take u =
s, the arc-length of the ray, we have

/rt _ rtx dw dw n Sw
(21-2) M -/-*,

g0-/0-T, 3I--/TX-I;.

Hence, using accents to denote initial values, we have

(21-3) 8V = Zv8x- S<r' 8x',
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and sof

(2L4)'

97
,

97
,
W

87 97 37=
cr,

-- = T,
--- = t;.

dx dy dz

Hence on account of the identities

(21-5)

we have

(2W)
vy/9JA 2y

These two partial differential equations^ are satisfied by the

characteristic function 7.

If we have a system of media, we define the characteristic

function 7 for the system as the optical length of the natural ray

joining a point A'(x',y',z') in the initial medium to a point

A (x, y, z) in the final medium. Let us vary A', A to /?', B respec-

tively. By Fermat's principle, the optical length of the natural

ray B'B is equal (to the first order) to that of a curve C joining

B' and B and coinciding with the ray A'A except in the initial

and final media. Application of (20-9) to the terminal portions

leads us at once to the expression (21-3) for 8V, and hence to the

equations (21-4) and (21-6), which consequently are true not only
for a single medium, but also for a system of media separated by
surfaces across which the refractive index is discontinuous.

22. The construction of Huyghens.

Let us now consider the construction of Huyghens. We imagine
a wave-front 8 at time t (Fig. 38). To find the wave-front at time

t+ dt, we take elementary spheres having their centres on S with

t It is assumed here that arbitrary independent variations may be given to A '

and A : cf. the footnote in connection with (5-9).

\ Cf. (5-14). Either of the equations (21-6) may be regarded as the Hamilton-

J acobi equation for a particle moving in a conservative field of force.
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radii equal to the distance travelled by light in time dt, namely
vdt. The new wave-front is the envelope of these spheres.

Actually, the envelope consists of

two sheets, one in front and one

behind S, but we suppose the sense

of propagation assigned, so that one

of these sheets is ruled out.

The wave of which we are speak-

ing reaches a given point x, y, z at

some time t. This t is a function of

x, y, z, and so we can write the equa-
tion of the wave-front in the form

(22-1) ct=S(x,y,z).

This equation describes the whole

history of the wave-front. The in-

stantaneous position is given by

taking t constant.

It is evident that, given v(x, y, z), or equivalently fi(x, y, z), the

construction of Huyghens gives a definite development for the

wave. In this construction the rays are defined by the condition

that the ray through a point P of 8 passes through the point of

contact of the adjacent envelope with the elementary sphere

having its centre at P. It is obvious, then, that the ray is normal

to the wave. (This is not necessarily the case for anisotropic

media, the elementary waves not being spheres.) Accordingly
if a, /?, 7 are the direction cosines of a ray, we have

3 O 3 & O Of
(7o u to C/O

(22-2) da =
, #/?=, Oy = ----,

ux oy oz

where 6 is a factor of proportionality. By (22- 1
)
we have, moving

with the wave,
** '

dS\j n ja --lew = vds,

Fig. 38

(22-3) cdt = dS = Zdx
where ds is an element of the ray. But ds = vdt, [i

=
c/v, and so

fji
= 0. Thus by (22-2) we have for the components of the ray,

defined as in (20-32),'
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tA\ d8 dS dS
(22-4) <r=--, T = ^ , i;=~-.7 3# 3y 9z

Therefore $ satisfies the partial differential equation

We shall now show that the rays, defined as above in terms of

the construction of Huyghens, are in fact identical with the rays

given by the principle of Fermat, each being determined by an

initial point and direction. Along the ray as given by the con-

struction of Huyghens we have by (22-4)

_-- . -^~-
as as dx

-<r*' ~^-* ~ ~
ox* oxoy cxoz^S 3*8 dS d*8 d.

L3x
a
"

dx dy dx dy dz dx

But this is the first of the differential equations (20-33) satisfied

by the rays given by the principle of Fermat, and the other two

differential equations follow of course similarly. Thus we are able

to reconcile completely the principle of Fermat and the construction

of Huyghens in a heterogeneous isotropic medium.

When we have to deal with reflection or refraction, it is easy
to see that the construction of Huyghens gives the same law as

Fermat's principle, namely (20-38).

We saw in 3 that, in the case of homogeneous media, rays

emanating from a point source form a normal rectilinear con-

gruence after any number of reflections or refractions. In the
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case of heterogeneous media, it follows at once from the con-

struction of Huyghens that rays emanating from a point source

form a normal congruence of curves after any number of reflections

or refractions. This result also follows from the formula (21-3) for

the variation of the characteristic function, which, as we have

seen, holds not only for a single medium, but also for a system of

media. For ifA'(x', y', z') is a point source in the initial medium

and A (x, y, z), B(x+ 8x,y + Sy, z + Sz) adjacent points in the final

medium such that the optical lengths of the rays A'A.A'B have

a common value F, then, since

3x' = 8y' = Sz
1 = 0,

and 8V = 0, we have

(22-7) Zo-8x = Q,

which establishes the orthogonality of the ray A'A to the surface

V = const. It is evident that the surfaces V = const, are in fact the

successive positions of a wave.

The function 8 which occurs in the interpretation of the con-

struction of Huyghens is closely related to the characteristic

function V. As we pass along a ray we have by (22-4)

(22-8) dS = Z-dx = 2-ad8 = lids.
dx dx ^

Thus the increment in S on passing from one wave to another is

the optical length of a ray, measured from one wave to the other.

Let A% be any wave. Given any point x, y, z, let the ray through it

be drawn, cutting 8Q at x',y',z'. Then

(22-9) 8(x, y, z)
- 8(x', y', z')

= V(x', y', z', x, y, z).










