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PREFACE

THE present volume is essentially a second edition of one which was
published by the author in 1914 under the title: 4 Theory of T'ime and
Space. An alteration of the title has been made, since(it.v'vas considered
that the word geometry conveyed a somewhat btter idea of the
nature of the contents of the book than did the word theory. S

The first edition was going through the press at the time of the out-
break of the war, so that its publication took place under very un-
favourable circumstances. The present volume differs from its pre-
decessor in several respects. The Introduction has been re-written
and extended; while the proofs of a number of theorems, which were
rather lengthy, have been curtailed and simplified.

A considerable amount of new matter has also been introduced,
making the book more self-contained and complete.

The demonstrations have all been carried out as deductions from’
certain postulates expressed in terms of the relations of after and
before; so that the whole work may be regarded as a demonstration of
the fundamental character of these relations in Time-Space theory.

So far as [ am aware, the book, in its original form, was the first of
its kind to be written, and a brief account of its origin may be of
interest. At the meeting of the British Association held at Belfast in
1902, Lord Rayleigh gave a paper entitled: Does Motion through the
Ether cause double Refraction? in which he described certain experi-
ments which he had carried out with the object of testing this matter,
and which seemed to indicate that the answer was in the negative.

I remember that he inquired of Professor Larmor, who was present
on this occasion, whether, from his theory, he would expect double
refraction to be produced in this way. Professor Larmor replied that
he would not, and, in the discussion which followed considerable
surprise was expressed that, in any attempt to detect motion through
the aether, things seemed to conspire together so as to give null
results. The impression which this discussion made upon me was, that,
in order properly to understand the matter, it would be necessary to
make some sort of analysis of one’s idcas concerning cquality of



vi PREFACE

lengths, etc.,and I decided that, at some future time, I should attempt
to carry this out. I am not quite certain that I had not some idea of
the sort prior to this meeting, but, in any case, the inspiration came
from Professor Larmor, either then, or on some previous occasion
while attending his lectures.

Some years later I attempted to carry out this scheme, and, while
doing so, I heard for the first time of Einstein’s work.

I may say that, from the first, I felt dissatisfied with his approach
to the subject, and I decided to continue my own efforts to find a
suitable basis for a theory.

The first work which I published on the subject was a pamphlet
which appeared in 1911 entitled : Optical Geometry of Motion: A New
View of the Theory of Relativity.

This pamphlet was of an exploratory character and did not profess
to give a complete logical analysis of the subject; but nevertheless,
although bearing a very different aspect, it contained some of the
germs of my later work. It was, in fact, an attempt to describe Time-
Space relations without making any assumption as to the simul-
taneity of events at different places. Later on, the idea of Conical
Order occurred to me, in which instants at different places are re-
garded as definitely distinct; so that there is no such simultaneity.

As it was evident that a thorough working out of this idea would
entail a great deal of labour, I published, in 1913, a short preliminary
account of it under the title: A Theory of Time and Space.

In 1914, as above mentioned, I published a book bearing the same
title, of which the present volume is a second edition.

The working out of a scientific theory in the form of a sequence of
propositions, such as was done by Euclid, Newton and others, seems
largely to have gone out of vogue in these latter days and I consider
that this is rather regrettable.

No doubt, in doing exploratory work, other methods are permissible
and necessary, but I think that the incorporation of the more funda-
mental parts of a theory in a sequence of propositions should always
be kept in view, since, in this way, one is able to see much more
readily what are our primary assumptions, and one is able to fall
back upon these in cases of difficulty.

One can also test the effect on a theory of an alteration in one or
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more of these primary assumptions such, for instance, as that pro-
duced in ordinary geometry by the rejection of the Euclidean axiom
of parallels and the substitution for it of some other primary assump-
tion, such as that of Lobatschewski. It will be found that the theory
developed in this work is dependent upon the rejection of one generally
accepted postulate with regard to instants of time and the substitu-
tion of others.

In conclusion, I desire once more to express my indebtedness to
Sir Joseph Larmor, without whom this book would never have been
written; and to convey my best thanks to the officials and staff of the
Cambridge University Press for the care and skill with which they
have carried out the printing.

ALFRED A. ROBB

CAMBRIDGE
20 November 1935






INTRODUCTION

I~ beginning the study of Geometrical Science it is customary to start
with a course of pure geometry and, when a foundation of this has been
laid, to proceed to the introduction of coordinate methods.

Thus, before being introduced to Cartesian geometry, one is taught
certain propositions concerning the congruence of triangles, the pro-
perties of parallels, the theorem of Pythagoras, the theory of propor-
tion, etc. To a large extent the methods of pure and of coordinate
geometry are then carried on side by side, and it is customary, in
proving a proposition, to make use of whichever method appears to be
more convenient for the particular purpose in hand.

Speaking generally, no doubt, this is the course of procedure by
which progress is most rapidly made, but I do not think that anyone
would have the temerity to suggest that coordinate methods should be
taken up without some prior grounding in pure geometry.

When one goes on to the study of other types of geometry than the
Euclidean, the importance of logical sequence should become apparent,
but I am sorry to say that it does not always seem to do so.

In many discussions of Time-Space theory we find ideas of ordinary
Euclidean geometry carried forward into a domain in which they no
longer apply, with occasional disastrous results.

The extension of Cartesian coordinates from three to four or more
dimensions does not offer any very serious difficulties, since the formula
for the square of the distance between two points, which, in three
dimensions, has the form

8= (1 — %) + (Y1 — Yo)? + (2, — 29)%,
becomes simply
8% = () — %)%+ (Y1 — Ya)? + (2, — 2)% + (W — wy)?

in four dimensions; with a similar extension for any larger number.

It was found, however, by Minkowski that many of the facts con-
nected with Time-Space theory could conveniently be represented by
a four-dimensional coordinate geometry in which a formula

8% = (@1 — x3)% + (Y1 — Ya)? + (21— 25)2 — (b, — t)?

held ; that is to say, a formula in which one square is affected with the
negative sign.

R I
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This negative sign makes an enormous difference in the subject and
renders invalid a great part of what holds in ordinary Euclidean
geometry.

Some idea of the extent of the modifications required may perhaps
be obtained when I state that the construction of the very first pro-
position of Euclid becomes impossible except in a certain type of plane,
and that two other types of plane occur in which an equilateral triangle
cannot exist.

Numerous other features of this Time-Space geometry are so curious
as to seem at first quite paradoxical, and some consideration of a few
of these from the coordinate standpoint may perhaps emphasise the
importance of laying a proper foundation for the subject on the purely
geometrical side.

It is to be observed in the first place that whereas the expression

(@) = 2)* + (Y1 — Y2)* + (21— 22)°
(which may briefly be written in the form
82 + 5y? + 622)

is always positive for real values of dz, 8y, 8z which are not all zero;
the expression
(1 — %)%+ (Y1 — Y2)? + (21— 25)* — (8, — £)?

(or dx2 + 8y2 + 622 — 3t2)
may be either positive, zero or negative for real values of 3z, 8y, 8z,
8t differing from zero.

Three types of line joining the points (xy, ¥;, 21, ), (g, Ya, 23, t3)
exist corresponding to these three cases.

When the expression is positive the square of the distance between
the points is given by the formula

882 = d? + 8y? + 522 — 8t2.

When the expression is negative, then, analytically, 8s becomes a
pure imaginary ; but if we write

352 = —8s? -

and recollect that we are now dealing with a line of a different type,
we get the square of the distance in these new units given by

832 = 82 — 52 — Sy — B2,

When the expression is zero one is tempted to think that the distance
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between the points must be zero ; but thisis a misleading interpretation.
The real interpretation of the equation

(@) — )2+ (Y1 — Y2)? + (21— 23)2 — (¢, — £x)?=0
is that the points (z,, ¥,, 21, t;), (£3, ¥s, 24, £,) lie in a particular type of
line.
For this type of line the conception of length partially, but not
entirely, breaks down.

We may compare lengths along a given line of this kind, or along two
such parallel lines, but not along two which are not parallel.

Consider the case of lines for which the expression
dx2 + 8y? 4 822 — 812
is positive.
It is obvious that the axes of x, y and z (but not the axis of t), are lines
of this character.
Now let O be the origin of coordinates and let P be any point in the
positive axis of  and let OP = 2.

Let A,, 4, and A, be three points whose coordinates are given by
the following table:

Ay | A4y | A4 |
x | 1 ! o
Y b c 0
z 0 0 0
N t 0 7(‘ I{l (where K2<1).
Then OA2=1*+b? o 04>,
0A2=1? o 04,=1,
OA2=(1-K?) > . 0Od4;<l.
Similarly P4, >1,
PA,=1,
PA,<l.
Thus OA,+PA4,>0P,
0OA,+PA4,=0P,
OA;+ PA,<OP,

so that, in this geometry, we have two sides of a triangle together
greater than, equal to, or less than the third. But the side OP is common

I-2
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to all three triangles, so that its length is neither a minimum nor a
.maximum.

The question naturally arises: If such a line be neither a minimum
nor a maximum, what isit? Our ordinary idea of a straight line breaks
down.

The case is rather different if we take a triangle one of whose sides
is a part of the axis of ¢. Thus let @ be any point on the positive axis of
¢ such that OQ =2 and let 4 be a point whose coordinates are (a, b, c,d),
where A>d > 0.

In order that the three sides of our triangle may be all lines of the
same kind we shall suppose that a, b and ¢ are so small that

a2+ b2 +c? < d?,
and also a?+b2+ct<(A—d)%
Then OAd=Vd®—a?—b2—c?<d,
and AQ=V(A-d)®—a?—b2—ct<A—d.
Thus 04+A4Q<0Q

and we have two sides of the triangle together less than the third.

This will be the case for all values of @, b and ¢ provided that these
are sufficiently small, and it is obvious that a similar property will hold
for any part of the interval OQ: so that here O@Q is a line of maximum
length in the mathematical sense.

This again is something quite different from what we have in
Euclidean geometry and once more our ordinary idea of a straight line
breaks down.

The normality of lines, etc., exhibits some very curious features in
this geometry.
The equations of a line may be put in the form

T—% Y Y1_2—% _t-t
I m n p

If T—%y_Y—Ys_2—% t—tp
l, ml nl pl

be a second line, the analytic condition of normality is found to be
W+mm'+nn'—pp'=0.
If a line be such that
P+m?4+n2—p2=0,
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then analytically, it must be regarded as being normal to itself, and this
is the type of line for which, as we have already remarked, the con-
ception of length partially breaks down.

Proceeding from the purely analytical standpoint it is easily shown
that a line

will be normal to a threefold whose equation is
lz+my +mnz—pt=0.
Now any other line through the origin whose equations are
x_y z ¢

- ’

'"m' " n p
will lie in this threefold provided that
W +mm' +nn'—pp' =0.
If the line (I, m, n, p) be such that
B4+m?+n2—pi=0,
then it must itself lie in this threefold to which it is normal.

Thus all lines in such a threefold will be normal to this particular line
and, of course, to its parallels, and, if we take z =0, we get a plane such
that all its lines are normal to a particular set of parallel lines lying in
the plane.

Here again is something quite different from what we get in ordinary
Euclidean geometry.

It will be found that there are three types of plane and three types
of threefold, just as there are three types of line, and the geometrical
characters of these are quite distinct from one another.

From the analytical examples which we have given it is evident
that this geometry differs in some of the most fundamental respects
from that of Euclid and it is clear that, from the pure geometrical
standpoint, it must be built up in an entirely different way from that
which he employed.

It will be found however that it not only contains Euclidean geo-
metry as an essential part, but that it supplies also what is perhaps
the most satisfactory theoretical basis upon which to construct the
Euclidean system.

Now we have seen that in this geometry we cannot take a “ straight
line as being a shortest line and it will be necessary to define it in some
other way.
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Further, since the coordinate axes in Minkowski’s analytical work
are supposed to be “straight”, we are faced with a serious difficulty
even before we are in a position to set up a system of axes.

Moreover the Minkowski axes are supposed to be “normal” to one
another and we have seen that there are some rather curious features
connected with normality.

We must accordingly build up the subject from the very beginning
and must look about us for suitable postulates.

Now in the first place: what is geometry in the general abstract
sense ?

Geometry has been defined by Whitehead as the ‘““science of cross
classification”.

The fundamental elements classified are usually called ““ points” but
any entities which satisfy certain postulates may serve the purpose.

Using this definition we may have ‘‘geometries” with only a finite
number of fundamental elements; but, though interesting as logical
curiosities, such systems have no special application in the present
state of Science.

The types of geometry with which we are specially concerned when
we attempt to map out time and space involve an infinite set of elements
forming what is called a ‘“‘continuum .

The classes of these elements, such as lines, planes, etc., with which
we are concerned, are defined by means of certain relations among the
elements involved.

In order that the system should be of any use for mapping purposes
it is necessary that these relations should have their counterparts in
physical space or time.

Asto whether these physical counterparts exist or not, the geometry,
as a branch of pure mathematics, need not concern itself; but, since the
interest of the subject to many persons depends mainly upon the
application, we shall devote a little time to a consideration of these
matters.

Now in considering the subject of time as it presents itself to our
experience there is one very important respect in which it appears to
differ from our spacial experience.

Of any two instants which one experiences in one’s own mind one is
after the other.

This relation of after is what is called an asymmetrical relation ; by
which is meant a relation R such that if B bears the relation £ to 4 then
A does not bear the relation R to B.
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Thus, in the particular case considered, if B is after A, then 4 is not
after B.

There are however relations which are symmetrical; such, for ex-
ample, as the relation of equality, where if B is equal to A then A is
equal to B.

Now the relation of two points or two particles in space is a sym-
metrical relation and, if A and B be taken as two distinct points, there
is no reason why we should say that B is after A rather than that 4 is
after B.

If we consider points in a straight line it would, of course, be possible
to set up some convention according to which we might regard one
point as being after another; but such convention would be perfectly
arbitrary and would not correspond to any natural distinction, as in
the case of instants of time in our own consciousness.

Let us consider what actually does hold with regard to the
latter.

It is hardly possible to describe what we mean when we use the word
Now. Now singles itself out in the mind and is, as the Germans say,
‘““ausgezeichnet” in some way or other.

Though we speak of Now as an instant, yet there are innumerable
instants, each of which is in its turn a Now.

These instants which one experiences in one’s own mind have, as
already pointed out, an asymmetrical relation one to another; and our
very thoughts themselves have a time order, so that we recognize one
thought as following after another, even if we close our eyes and other
channels of sense as far as possible.

We shall not therefore attempt to make any unreal distinction
between what is physical and what is mental in respect of the percep-
tions of a single individual.

These perceptions form a complex picture which is continually
changing and, if one splits it up into component parts, one is able to say
(at least approximately) that certain events occur at the same instant,
while others occur at different instants.

This simultaneity, or lack of it, is an ultimate fact and must be
regarded as absolute; but we must carefully note what things we are
asserting to be simultaneous or otherwise. We are making the assertion
about certain perceptions of a single individual.

A normal individual who is not a solipsist (and a solipsist could
hardly be regarded as a normal individual) believes in the existence of
more than his own self and his own perceptions, and one is accustomed
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to regard these perceptions, under normal circumstances, as repre-
senting things as real as one’s self but in some sense external.

One naturally thinks of these assumed external events as having a
time order, and the first standpoint which one is accustomed to adopt,
and which, as a matter of fact, serves for most of the purposes of our
daily life, is that these external events occur at the instants at which
one perceives them.

More careful observation however convinces one that this cannot be
strictly correct, at any rate for all our perceptions, since the perception
of an event by one of our senses may be after the perception of the same
event by another sense.

Thus the visual and auditory perceptions of a blow being struck by
a hammer are practically simultaneous when the occurrence is close at
hand; but the auditory perception is appreciably after the visual
perception when the occurrence is at a distance from the ob-
server.

Thus the auditory perception, at any rate, cannot be simultaneous
with the distant event and the question naturally arises whether the
visual perception is so or not; and, once more, the answer is in the
negaitive.

The first indication that this is the case was obtained by Romer in
1675-6, through observations of the eclipses of Jupiter’s satellites ; and,
though there was a possibility of some other explanation of these
observations, such possibility practically vanished when Fizeau, in
1849, was able to test the matter by direct experiment.

Fizeau found that when a flash of light was sent out from the neigh-
bourhood of an observer to a distant mirror which reflected it back to
him, the return of the flash occurred at an instant appreciably after the
instant of its departure.

Thus the instant of one’s visual perception of a distant event cannot
be identical with the instant at which the event occurs, and we perceive
near and distant events simultaneously which certainly do not occur
simultaneously.

This fact cannot be ignored if we attempt to correlate astronomical
events with one another or with terrestrial ones; although in the
ordinary affairs of daily life we can and do ignore it with impunity.

If now we attempt to identify the instant at which a distant event
occurs with that of some event near at hand, we find ourselves con-
fronted with very serious difficulties, since this question is intimately
bound up with the question of the identification of one and the same
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point of space (or the aether of space, if there be such a thing) at different
instants of time.

If this latter were possible one would be able to tell when a particle
was at ““‘absolute rest”’ that is to say it would be possible to state that
it remained at the same point of space (or of the aether).

If we had an apparatus such as that which Fizeau employed and we
could be assured that it remained at ‘absolute rest’’ in this sense, and
if, for the moment, we neglect any difficulties which there may be in
connexion with measurement of space intervals, time intervals or
velocity, it would be reasonable to assume that light travels through
space (or the aether) with uniform velocity and would take equal
intervals of time on its outward and return journeys; so that the instant
at the observing station which was midway between the instants of
departure and return of the light flash would be identical with the
instant of its reflection at the distant mirror.

If, on the other hand, we suppose that observer and apparatus are
both in uniform motion, say in the direction of the outward going light,
then the mirror would retire in front of the outward going flash, while
the observer would advance to meet the returning one, so that the
light would have further to travel on its outward than on its return
journey, and the instant at the observing station midway between the
instants of departure and return would no longer be identical with the
instant of reflection.

Now according to the classical mechanics a system of bodies whose
centre of inertia is in uniform motion in a straight line is indistinguish-
able, so far as mechanical effects are concerned, from a similar system
whose centre of inertia is at rest.

It is conceivable that some difference might be detected by some
optical or electrical device, and many attempts have been made with
the object of detecting the motion of the earth through the aether;
but none of these attempts has been successful.

Of these attempts, the best known is the celebrated experiment of
Michelson and Morley, which consisted in dividing a beam of light
into two portions which travelled, the one in one direction and the
other in a transverse direction and were reflected back again by
mirrors.

If we adopt ordinary ideas for the moment and suppose the light to
be propagated with a velocity v through a medium and that the
apparatus moves through the medium with velocity w; then it is



10 GEOMETRY OF TIME AND SPACE

easy to calculate the time of the double journey for the two portions of
the beam.

For the case of a part of the beam which travels in the direction of
motion of the apparatus the time occupied by the double journey is

found to be

2va,
b=

where a, is the distance between the point of the apparatus where the
beam divides and the corresponding mirror.

If a, be the corresponding distance for the case of the transverse
portion of the beam, then we can easily show that the time of the
double journey should be
_ 2a,

Vot —ut’

Now if the distances @, and a, be adjusted so that the times occupied
by the two portions of the beam on their journeys are equal, we have

ty

2va;  2a,
2—ul P _ g2
From this it follows that:

w\2
Q) =0y A/1——(5) ;
so that a, should be somewhat less than a,.

Now the necessary adjustment can be made with extreme accuracy
by means of the optical interference bands which are produced and the
remarkable fact is observed that, when the whole apparatus is caused
to revolve at a uniform slow rate, the one adjustment holds for all
positions.

Thus the apparatus gives no evidence of the motion of the earth,
although it might be expected to do so.

In order to explain this result the hypothesis was put forward by

FitzGerald and Lorentz that the material of the apparatus contracts
along the direction of its motion through the aether in the ratio

2
1: A/ 1- (?—‘) :
v
If however this FitzGerald-Lorentz contraction occurs and bodies
change their dimensions in this manner when they move, and if we are

unable to detect this motion, what do we really mean by a body re-
maining of constant length, or of being equal in length to another body ?
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If such be the case, the distance between the graduations of the most
rigid measuring rod will change as the rod is turned in different direc-
tions with respect to the earth’s motion, and similarly, the shape of the
most rigid material triangle will change when we try to superpose it on
a material triangle of different orientation.

Admittedly such changes would be very minute under ordinary
circumstances, and could generally be neglected; but then, on the
other hand, if they are non-existent, how can one explain the null
result of the Michelson-Morley experiment, especially in view of the
results of some experiments by Lodge which seemed to show that the
aether was not carried along by matter moving in the neighbourhood?

Thus we appear to be confronted with formidable difficulties, since,
not only can we give no criterion by which to decide that a distant
event is simultaneous with one near at hand, but even those physical
properties of solid bodies of which use is made in the ordinary measure-
ments of length appear open to question.

The first great steps towards reducing this matter to order were
taken by Larmor and Lorentz. These writers showed that the electro-
magnetic equations could be reduced to the same form for a system
moving through an assumed aether as they had for a system ““at rest”;
and, on the question being raised by Lord Rayleigh in 1902, as to
whether rotatory polarisation would be influenced by the earth’s
motion, and whether such motion would cause double refraction,
Larmor was able, from his theory, to predict that no such effects would
occur; and this was confirmed by Lord Rayleigh’s experiments.

The transformation of the electromagnetic equations involved the
introduction of a so-called ““local time ™ and this raises the question as
to what is the philosophical significance of this conception.

The view which was put forward by Einstein was that events could
be simultaneous for one observer but not simultaneous for another
moving with respect to the first.

This view, in my opinion, gives an air of unreality to the external
world which cannot be justified ; since the events might be the impacts
of particles moving with respect to one another, and therefore associ-
ated with different ‘“local times”, although an impact necessarily
involves both particles which impinge and cannot be described without
mention of both.

We also think of a definite instant of impact which can be referred to
without any mention of ““local times” in this sense.

As has already been pointed out, the only simultaneity with which
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one is directly acquainted, namely, that of perceptions or ideas in one’s
own mind, is of an absolute character and my contention is that any
real simultaneity of external events is also absolute in a similar way.

Let us now examine Einstein’s standpoint in order to show in what
respect he departs from actually observed or observable facts.

If a flash of light goes out from the neighbourhood of an observer to
a distant mirror and is there reflected back to him, then, according to
Einstein, the reflection at the distant mirror is simultaneous with an
event at the observing station which takes place at the instant midway
between the instants of departure and return of the flash of light.

Einstein supposes the instant midway between the instants of
departure and return to be determined by means of a clock. Ignoring
for the moment the difficulty involved in obtaining an accurate clock;
let us consider what this implies.

Let us suppose that to-day I were to observe the outburst of a new
star which, in astronomical language, was at a distance of 100 light
years, then according to Einstein’s view this outburst was simul-
taneous with terrestrial events which occurred before I was born.

It is evident that this could not be a fact of observation, so far as I
am concerned : so that it would be incorrect to speak of such events as
stmultaneous for one observer.

It is frequently asserted that Einstein’s theory keeps strictly to
observed or observable facts; but here would be a palpable departure
from the facts of observation.

The actual observed fact in such a case would be that my perception
of the outburst would be simultaneous with other experiences of mine
occurring to-day.

These are the sort of events which are simultaneous to one observer,
and not the occurrence of a distant and a near event, and such simul-
taneity is absolute.

In case it be contended that the above is Einstein’s definition of the
simultaneity of distant and near events, then our reply is: that if this
be so the word simultaneity is being used in two utterly distinct
senses in a manner which may lead to great confusion of thought.

In the one case the word is employed correctly to describe something
absolute while in the other it would be used to describe a mere con-
vention which has not even the merit of being definite without the
limitation that the observing station is unaccelerated in the interval
between the departure and return of the flash of light (or else is acceler-

_ated in certain restricted ways).
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It is perhaps desirable to point out that it is Einstein’s philosophy
which I am here attacking and not his mathematics.

This is all the more justifiable, in that the conception of ‘“local time ”’
as a mathematical quantity was introduced, not by Einstein, but by
others who did not hold his views.

Even if it were the case that near and distant events were simul-
taneous, we have, as already pointed out, no means at our disposal of
testing this by observation.

A much more notable advance was that made by Minkowski, when
he developed a type of four-dimensional analytical geometry in which
the change from one set of Time-Space variables to another corre-
sponded to a change of coordinate axes.

The idea of time as a fourth dimension is however much older than
Minkowski and dates at least as far back as the time of Lagrange.

The work of Minkowski is purely analytical and does not touch on
the difficulties which lie in the application of measurement to time and
space intervals and the introduction of a coordinate system.

As regards such measurement; one cannot regard either clocks or
measuring rods as satisfactory bases on which to build up a theoretical
structure such as we require in this subject.

One knows only too well the difficulty there is in getting clocks to
agree with one another; while measuring rods expand or contract in a
greater or lesser degree as compared with others.

The existence of a substance such as india-rubber should be sufficient
to upset ones trust in measuring rods as ultimate standards; when one
considers that it only possesses in an exaggerated degree a property of
extensibility common to all solid bodies.

It is not sufficient to say that Einstein’s clocks and measuring rods
are ideal ones: for, before we are in a position to speak of them as being
ideal, it is necessary to have some clear conception as to how one could,
at least theoretically, recognise ideal clocks or measuring rods in case
one were ever sufficiently fortunate as to come across such things; and
in case we have this clear conception, it is quite unnecessary, in our
theoretical investigations, to introduce clocks or measuring rods at all.

We have in fact a problem to consider regarding the measurement of
time and space intervals which may be compared to that which Lord
Kelvin set himself in connexion with the measurement of temperature,
and which he solved by the invention of the thermodynamic scale.

Now we have seen that in Minkowski’s analytical geometry the
length of an interval of a line such as the axis of x, y or z is neither a
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minimum nor a maximum, while the length of an interval of a line such
as the axis of ¢ is actually a mathematical maximum.

Further there are certain lines (which I have called * optical lines )
for which the conception of length partially, but not entirely, breaks
down.

It thus appears that the conception of length is not at all so simple
as is generally supposed and, as a matter of fact, it is not a fundamental
concept at all in Tvme-Space theory.

If the measurement of time and space intervals is not fundamental,
it may be asked: what is to take its place?

I say that ideas of order must take the place of measurement as a
theoretical basis; and conceptions of measurement constructed from
them.

The process by which this is done is somewhat lengthy, but will be
found to shed an important light on the seeming paradoxes above
mentioned.

In constructing this system it is necessary to modify certain cur-
rently accepted notions, but the modifications required all appear to
be capable of justification and the structure when completed will be
found closely to resemble our ordinary conceptions.

We shall regard an instant as a fundamental concept which, for
present purposes, it is unnecessary further to analyse, and shall con-
sider the relations of order among the instants of which I am directly
conscious.

Thus for such instants we find the following properties:

(1) If an instant B be after an instant 4, then the instant 4 is not
after the instant B, and is said to be before it.

(2) If A be any instant, there is at least one instant which is after A
and also at least one instant which is before 4.

(3) If aninstant B be after an instant A, there is at least one instant
which is both after A and before B.

(4) If aninstant B be after an instant A and an instant C be after the
instant B, then the instant C is after the instant 4.

(5,) If aninstant 4 be neither before nor after an instant B, the instant
A is identical with the instant B.

Now it appears to have been too hastily assumed, because the set of
instants of which a single individual is directly conscious possess all
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these properties, that therefore they must hold in respect of all instants
throughout the universe.

It would appear that people in general have been making a somewhat
similar blunder to the one ascribed to Sir Boyle Roche; who is alleged
to have asserted in a speech, that he could not have been in two places
at once unless he were a bird.

They have assumed that an instant, like Sir Boyle Roche’s bird,
could be in two places at once, and, in consequence, they have found
extreme difficulty in identifying it as one and the same instant in the
two places.

Had Sir Boyle Roche pursued the subject further, he might perhaps
have arrived at a form of relativity theory whereby a bird might be
simultaneously in two places to one observer, but not to another.
However he got sufficiently far to achieve immortal fame.

I, however, venture to dissent from the generally accepted view that
an instant can be in two places at once and, while still regarding
postulate (5,) as holding for the set of instants of which any one in-
dividual is directly conscious, or which any single particle occupies,
I propose to reject it for the universe in general and to substitute for it
the following:

(5) If A be any instant, there is at least one instant distinct from 4
which is neither before nor after A.

If I am directly conscious of the instant A then any instant such as
that here postulated will be one of which I am not directly conscious,
but only indirectly apprehend, and which is, as I say, elsewhere.

The other four postulates are however to be regarded as holding
in general and not merely for a single individual or a single
particle.

Since we are able to distinguish an instant elsewhere in terms of
before and after relations, it is unnecessary to have any separate con-
cept of space ; since the geometrical properties of space can be expressed
in terms of these relations; although, of course, this involves an elab-
orate logical analysis.

While the set of instants of which any single individual is conscious
or which any single particle of matter occupies have a linear order, the
set of instants for the universe in general appear to have what I have
called a Conical Order.

I have given it this name because it may be illustrated by means of
ordinary geometric cones: while it contains within itself the possibility
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of defining particular sets of instants having a simple linear order
such as that with which each of us is familiar.

It is to be recollected that this illustration is given merely as a
mental aid to enable us to grasp a certain set of abstract relations, just
as figures are an aid in doing geometry ; but, as in the latter case, every-
thing which we may introduce incidentally and which cannot be
described in terms of the abstract relations is to be ignored.

Without some such picture it would be rather difficult for most
people to retain all the relations in mind in complicated cases, and
moreover, as in ordinary geometry, a diagram will often suggest
that certain theorems may hold and may also suggest methods of
proof.

Let us suppose that we have a system of right circular cones of equal
angle and with their axes all parallel (or identical). We shall suppose
each cone to terminate at the vertex,
which however is to be regarded as a
point of the cone.

We shall call such a cone having its
opening pointed in one direction (say
upwards) an « cone and one having
the opening pointed in the opposite

direction a B cone.
Corresponding toany point of space
we shall have an « cone and a S cone
A B

having the point asa common vertex.
Now it is possible by using such
cones and making a convention with
respect to the use of the words before
and after to set up a type of order of
the points of space.
For the purposesof this illustration
we shall make the convention that if
A be the common vertex of such a
pair of « and B cones, then any point
will be said to be after A provided
that it is distinct from 4 and lies Fig. 1.
either on or inside the « cone of 4 and will be said to be before A
provided that it is distinct from 4 and lies either on or inside the
B cone of A4, but not otherwise.
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Thus any point which is either identical with 4 or else lies outside
both the cones « and B will be neither before nor after 4.

It is easy to see that postulates (1), (2), (3), (4) and (5) hold generally
in this illustration substituting points for instants, but that (5,) only
holds for certain sets of points forming lines straight or curved.

We may, by a study of such models, ascertain various other before
and after relations which hold among the points and we can then reverse
the process by taking the before and after relations as starting point
instead of the cones, and propositions expressed in terms of these
relations as postulates, and can, in this way, build up a system of
geometrical relations very closely analogous to, but not quite identical
with, those from which we started out and which involve nothing except
what can be expressed in terms of the before and after relations.

In this way we are able to define what I call « and B sub-sets,
which have many, although not all the properties which we assigned
to the o« and B cones, and can gradually, step by step, build up a
system of geometry which is equivalent to the analytical system of
Minkowski.

Our model is only three-dimensional, while the geometry of Min-
kowski is four-dimensional; but, in spite of this, most of our postulates
may be represented in three dimensions, and, in fact, there are only
two which cannot. One of these introduces a fourth dimension, while
the other limits the number of dimensions to four.

We could extend the system to a larger number of dimensions if
required, but we do not propose to do so in this work.

If we consider straight lines in our model passing through the point
A, we observe that such a line may be of three distinct types. The first
type falls within the cones « and 8; the second type forms a generator
of these cones; while the third type falls outside the cones.

The first and second types have this in common, that, if we consider
two distinct points lying in either type of line, one is after the other;
while if we consider any two distinct points in the third type of line
the one is neither before nor after the other.

Again, if we consider planes through the point 4 we see that they
too may be of three distinct types. The first type intersects the cones
« and B in two generators; the second type touches the cones along
a generator; while the third type has no point in common with the
cones except the point A.

Similarly there are three types of threefold, but in order to represent
them we should require a four-dimensional model.

R 2
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These different types of line, plane and threefold may all be defined
in terms of before and after relations.

In one important respect however our model differs from our logical
constructions. Equal lengths in the model do not, in general, represent
equal lengths in our geometry: the latter being defined by a certain
analysable similarity of before and after relations.

The reason why there is this difference between the model and the
system of geometry which we build up, is that the model has already
got a system of measurement imposed upon it, owing to the fact that it
is constructed in ordinary three-dimensional space, and so involves
more than the mere before and after relations which it was designed to
illustrate.

Finally we are able to introduce coordinates and the system is then
seen to be equivalent to the analytical geometry of Minkowski.

In such a system as he employed, one coordinate is measured along
a line corresponding to one lying within the cones in the model (and
which we shall call an inertia line), and represents what clocks purport
to measure. The other three coordinates are measured along lines
corresponding to those lying outside the cones (or separation lines) and
these represent what we call spacial distances.

The four coordinate axes in this system are all normal to one another
(normality being also capable of definition in terms of before and after),
but, if we do not insist on normality, it is possible to introduce a
symmetrical system of coordinates in which all four arec measured along
lines of the same type.

Now, as the before and after relations from which our whole theory is
built up have a temporal significance, we appear to have absorbed the
theory of space in a theof'y of time, in which instants have a conical
order instead of the purely linear order which they are generally
regarded as having.

An instant for the universe in general is identified by four coordinates
in this theory instead of merely one coordinate as is generally assumed.

An instant is localised and does not range all over the universe like
Sir Boyle Roche’s bird: so that the present instant does not extend
beyond here, and the only really simultaneous events are events which occur
at the same place.

In Minkowski’s system of coordinates the so-called ““local time” is
merely the value of that particular coordinate which is measured along
an inertia line.

If we take a second normal coordinate system in which the inertia
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axis is not parallel to the former, we have one which is appropriate to
a material system which is moving uniformly with respect to the first,
and we have a different ‘“local time .

An inertia line is the time path of an unaccelerated particle, and,
since it is defined in terms of before and after relations, we are able to
say in terms of these relations what we mean by a particle being
unaccelerated.

We can however assign no meaning to a particle being at ““absolute
rest”’ since, in this geometry, any inertia line is exactly on a par with
any other one.

Thus instead of regarding ourselves as, so to speak, swimming along
in an ocean of space (as we usually do), we are to think of ourselves
rather as somehow pursuing a course in an ocean of time ; while spacial
relations are to be regarded as the manifestation of the fact that the elements
of time form a system in conical order : a conception which may be analysed
in terms of the relations of after and before.

It should be noted that the fundamental relation of after which serves
as a basis for Time-Space theory is simpler than the relation which
geometers are accustomed to make use of in building up ordinary
three-dimensional geometry.

The basic relation which they employ is generally the relation of
between : one point being linearly between two others. This is a relation
involving three terms, whereas the after relation is one involving only
two.

It will appear in the course of this work that a relation of linearly
between may be defined in terms of before and after relations for the case
of three elements in a separation line; although no one of these three
elements is either before or after either of the other two.

One could scarcely hope to do the converse of this, that is to say, to
define an asymmetrical relation of two elements in terms of one like
linearly between involving three.

Itis true that spacial models involving cones may be used to illustrate
graphically various postulates employed in our geometry, but this can
only be done by means of an arbitrary convention as to what should
represent after and what before.

This convention might have been reversed without affecting the
usefulness of the representation; but, by no stretch of the imagination
can one (so far as I can see) reverse the time relations of before and after
which one perceives directly in one’s own mind. T'ke thought process us
essentially an irreversible one.

2-2
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Another interesting point to note is that whereas, on the one hand, if
ordinary geometry is built up from the between relation, the theory of
congruence appears as something extraneous grafted on to an otherwise
complete scheme ; on the other hand, if the before and after relations are
used as a basis, congruence appears as an intrinsic part of the subject.

Let us now consider what is the physical peculiarity of the time
relations of before and after which gives them their asymmetrical
character.

One thing seems clear: If I at the instant 4 can produce any effect,
however slight, at a distinct instant B, then this is sufficient to imply
that B is after A.

A present action of mine may produce some effect to-morrow, but
nothing which I may do now can have any effect on what occurred
yesterday.

It appears to me that we have here the essential feature of what we
mean when we use the word after, and that the abstract power of a
person or living being at the instant 4 to produce an effect at a distinct
instant B is not merely a sufficient but also a necessary condition that
B is after A.

If however a person at the instant 4 cannot produce an effect at the
instant B, it does not follow that B is before A.

In order that this should be so it would be necessary that a person at
B should be able to produce an effect at 4 ; since before and after are
converse relations.

Thus the significance of an instant 4 being neither before nor after
a distinct instant B, is that a person at 4 should be unable to produce
any effect at B and a person at B should be unable to produce any
effect at 4.

We shall have to give some further consideration to this idea of
possibility of producing an effect; but, before doing so, we shall first
consider the physical circumstances under which one instant is neither
before nor after another.

In the first place it is to be observed that, regarded from the stand-
point of pure mathematics, the system of geometry which we are about
to develop only presupposes that there should be a set of elements
which are related in a certain way which can be analysed in terms
of a certain asymmetrical relation.

In our attempt to apply this, we identify an element with an instant,
and the asymmetrical relation with the physical relation of after.
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The suitability or otherwise of this abstract geometry for describing
actual time and space relations is dependent upon the degree of
accuracy with which the various postulates of the geometry correspond
with various physical facts.

Now it appears to be possible to establish a very close, although per-
haps not an exact, correspondence of this sort by means of the physical
properties of light.

Let P and @ be two separate and distinct particles and let a flash of
light be sent out from P at the instant A so as to arrive directly at
@ at the instant B, then, according to our interpretation of after, B is
after A.

Further, there are strong physical grounds for believing, at any rate
in the absence of appreciable quantities of matter, that light supplies
a criterion which, with the meaning we have above ascribed to after,
enables us to say that B is the first instant at @ which is after A and
that A is the last instant at P which is before B.

It will be observed that no mention of velocity is made in this state-
ment but merely the before and after relations.

The conception of velocity involves the conception of measurement
of space and time intervals and these are supposed to be not yet
defined.

Let us suppose next that the light flash is reflected directly back from
@ to P and that it arrives there at the instant C, then, if the view we
have mentioned be correct, any instant at P which is after 4 and before
C will be neither before nor after B.

Now Fizeau’s apparatusis an arrangement in which this is practically
carried out: so that we can say that any instant at the sending apparatus
which 1s after the instant of departure of a flash of light and before the
instant of its return is neither before nor after the instant of reflection at
the distant mirror.

It is possible that the analytical geometry of Minkowski, with these
optical interpretations of our postulates, gives only an approximate,
although under ordinary circumstances a very closely approximate
representation of time and space relations, and this is the view now
held by Einstein and others; but even so, it does not follow that with
some slightly different interpretation it may not be exact.

But, as we shall see, the before and after relations enable us to define
equality of intervals in Minkowski’s geometry, and, however the
Time-Space universe may be constituted, these relations certainly
have some physical significance ; so that there can be little doubt that
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they must play just as important a role in the foundations of any
generalised theory as they do in the simple one.

In fact the Minkowski theory might perhaps be regarded as giving
the constitution of Time-Space provided that we do not consider too
large a portion of it, while the so-called generalised theory would be
the sort of thing we should get provided, in our model, the cones,
instead of being all similar and similarly situated, varied from one
point to another.

I ought perhaps to remark that any proper quadric cone would serve
equally well to illustrate all our postulates and it is only for the sake of
simplicity that I supposed the cones to be right circular ones.

Before one is in & position to set up any type of coordinates it is fairly
evident that one must, either tacitly or explicitly, make use of con-
siderations of order, if these coordinates are to have any sort of system
about them, and the before and after relations appear to have the re-
quisite fundamental character to supply this.

The view that time relations are fundamental appears to have an
important bearing on what Professor William James called the theory
of a “block universe”’: by which name he referred to the theory that
the universe is something like a cinematograph film in which the
photographs have already been taken and which is merely in process
of being exhibited to us.

Most writers on this subject treat time as if it were merely a fourth
dimension of space: an attitude which encourages one to favour the
“block universe” idea.

When instead, we regard before and after relations as fundamental,
and analyse spacial relations up in terms of these, the whole subject
appears in a very different light and the ““block universe”’ theory does
not commend itself so strongly.

If the universe were in this way like a cinematograph film which is
merely being displayed before us, then its innumerable details must
have been fixed through all eternity and there would be complete
determinism as to the future.

But have we really any grounds for thinking that the universe is of
this nature: or, reverting to the cinematograph analogy, is it any
simpler to suppose that the film has already been taken than to suppose
that the play is in process of being acted?

If the after relation has the significance which I suggested and if
what we call time and space may be analysed in terms of before and
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after then it would seem that instead of having grounds for belief in a
“block universe” we have actually got grounds for an opposite view.

It seems therefore that the question turns on the significance of the
after relation and its asymmetric character.

It is interesting to note that recently, on quite different grounds,
some physicists are coming round to the view that the universe is not
strictly deterministic.

Scientific predictions as to future events are made on the assumption
that certain uniformities will continue.

If they do continue the prediction may be a logical consequence of
their doing so, but, if the uniformities do not continue, the conclusion
may be unwarranted.

The continuance of the uniformities is only an assumption for which
we have no absolute guarantee, and, should they cease, no promise is
broken, since none was ever made. A departure from uniformity
initiated at an instant 4 may extend to an instant B which is after 4;
and this would be an effect at B of the departure from uniformity
initiated at A4.

All applied mathematics becomes pure mathematics when we get
away from our fundamental assumptions and begin to draw logical
conclusions from them.

Now I have ascribed certain characteristics to instants and to before
and after relations which may or may not be strictly correct, but which
serve as the basis by means of which one may apply a certain type of
pure geometry to map out time and spacial relations.

The geometry, as I have already pointed out, is a logical structure
built up from certain postulates which I shall formulate.

As a logical structure a geometry may have more than one applica-
tion, as for instance, ordinary Euclidean plane geometry might be
taken primarily as applying to figures on what we call a plane and
again to geodesic lines drawn on a developable surface.

For the purposes of physical science, however, it is not sufficient
merely that we should say, for instance, that there are such things as
“straight lines” or that there are lengths which are equal, but it is
necessary to have criteria by which we can say (at least approximately)
‘“ here are points which lie in a straight line ”” and *“ kere ¢s a length which
is equal to yonder length ™.

In other words we must have more or less clear ideas of the physical
things to which we apply our abstract theory.

The abstract theory itself does not require this, but the physical
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application does; and for this reason, I have tried to make clear the
sort of physical meaning which I ascribe to the notions of an instant,
the before and after relations and the criteria given by light flashes.

If we should discover, for instance, that the formal properties which
we provisionally ascribe to light actually hold for some other influence ;
then the geometry which I propose to develop would apply with this
new interpretation of its postulates.

Now I have made use of ordinary geometric cones in order to enable
us to form a concrete picture of what I mean by ““conical order”, but
the idea of conical order is not at all dependent upon this graphic
representation, but is built up by a rather lengthy piece of reasoning
from the asymmetrical relations which I denote by the words before
and after.

The representation by means of cones may be compared to the rough
scaffolding used in the erection of a building which is removed when
the building is complete and its component parts in position.

We must, however, be certain that the building is not supported by
the scaffolding, or it will not be able to stand alone.

In order to make sure of this in our theory, great care must be taken
not to take things for granted because they hold in our models.

In the first place we are not at liberty to introduce coordinates except
for scaffolding purposes until we have defined them. Neither are we
at liberty to speak of ““velocity ”” except for scaffolding purposes till its
meaning is defined.

Moreover in the actual proof of theorems we must not employ the
ideas of equality of lengths or angles until these ideas are seen to be
definable in terms of before and after relations.

We may however, and actually do, make use of such non-permissible
ideas in our graphic representation.

Thus in the models we supposed the cones to have their axes parallel
(or identical) and to have equal vertical angles, and neither the idea of
cone, of parallel, of axis, of angle, nor of equal has been analysed in
terms of before and after and therefore must be excluded in defining
the « and f sub-sets, which are the names which I shall hereafter apply
to the entities corresponding to the « and 8 cones.

The before and after relations are converse asymmetrical relations
and either may be defined in terms of the other; so that it is a matter
of indifference which of them we take as fundamental.

I actually take the relation of after as fundamental and define before
in terms of it.
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As regards the postulates which are expressed in terms of these
relations, they generally consist of two parts (marked a and b) in which
the before and after relations are interchanged.

In some of the postulates, however, the one part follows from the
other on account of the mutual relations of after and before: while in
some others the before and after relations are involved symmetrically.

We shall now proceed with the formal development of the subject.






CONICAL ORDER

W E shall suppose that we have a set of elements and that certain of
these elements stand in a relation to certain other elements of the set
which we denote by saying that one element is after another.

We shall further assume the following conditions:

PosturaTe I. If an element B be after an element A, then the
element A is not after the element B.

This is merely the condition that after should be an asymmetrical
relation. If an element B be after an element A, it follows directly
from Post. I that 4 and B must be distinct elements, for, if we
substitute 4 for B in the postulate, it becomes self-contradictory.

Definition. If an element B be after an element 4, then the element
A will be said to be before the element B.

PosturaTE 1I. (@) If A be any element, there is at least one
element which is after A.

(b) If A be any element, there is at least one element which is
before A.

Posturate III. If an element B be after an element A, and if
an element C be after the element B, the element C is after the
element A.

PosturaTe 1IV. If an element B be after an element A, there is
at least one element which is both after A and before B.

PostuLaTE V. If A be any element, there is at least one other
element distinct from A, which is neither before nor after A.

PostuLaTE VI. (a) If A and B be two distinct elements, one of
which is neither before nor after the other, there is at least one
element which is after both A and B, but is not after any other
element which is after both A and B.

(b) If A and B be two distinct elements, one of which is neither
after nor before the other, there is at least one element which is
before both A and B, but is not before any other element which is
before both A and B.

Definition. (a) If A be any element of the set, then an element X
will be said to be a member of the « sub-set of A provided X is either
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identical with 4, or else provided there exists at least one element Y
distinct from A and neither before nor after A and such that X is after
both 4 and Y but is not after any other element which is after both
Aand Y.

(b) If A be any element of the set, then an element X will be said to
be a member of the B sub-set of A provided X is either identical with
4, or else provided there exists at least one element Y distinct from 4
and neither after nor before A and such that X is before both 4 and Y
but is not before any other element which is before both 4 and Y.

If 4 be any element then, by Post. V, there is at least one other
element distinct from A which is neither before nor after A and so it
follows directly by Post. VI (a) that there is at least one other element
besides 4 which is a member of the « sub-set of 4.

Similarly, by Post. VI (b), there is at least one other element besides
A which is a member of the 8 sub-set of 4.

Notation. We shall denote by «, and B, the sub-sets corresponding to
an element A4,, and by «, and B, those corresponding to an element
4,, ete.

PosturaTe VII. (a) If A, and A, be elements and if A, be a
member of a,, then A, is a member of B8,.

(b) If A, and A, be elements and if A, be a member of 8,, then
A, is a member of a,.

Posturate VIII. (a) If A, be any element and A, be any other
element in a,, there is at least one other element distinct from
A, which is a member both of «;, and of a,.

(b) If A; be any element and A, be any other element in §,,
there is at least one other element distinct from A, which is a
member both of g, and of B8,.

THEOREM 1

If 4, be any element and A, be any other element in o, , then any element
Ag which is both after A, and before A,, must be a member both of o,
and B,.

By the definition of a member of the sub-set o, there exists at least
one element, say 4,, distinct from A, and neither before nor after 4,
and such that A4, is after both 4, and A, but is not after any other
element which is after both 4, and 4,.

Then 4, cannot be after A4, for if it were then, by Post. I11, 4, would
be after A, contrary to hypothesis.
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Further 4, cannot be identical with 4,, for then again we should
have 4, after A, contrary to hypothesis.

Again A, cannot be before A, for then we should have A4, after the
element A; which would be after both 4, and A, contrary to the
hypothesis that A4, is after both 4, and A4, but not after any other
element which is after both 4, and 4,.

Thus A, is distinct from A4; and is neither before nor after 4,.

Fig. 2.

Now A, cannot be after any other element which is after both 4, and
A,, for if A5 were such an element it would follow by Post. III that
since A, is after A, we should have A; after A, .

Thus we should have A, after A5 which would be after both 4, and
A, contrary to hypothesis.

Thus no such element as A can exist and so 4, satisfies the definition
of being a member of «,.

Thus by Post. VII (a) it follows that A, is a member of 8,.

Again by Post. VII (a) since 4, is a member of «, it follows that 4,
is a member of 8,, and so by a similar method we may prove that 4,
is a member of ;. Thus the theorem is proved.

THEOREM 2

(@) If A, be any element and A, be any other element in o, there is at
least one other element tn «, distinct from Ay which is neither before nor
after 4,.

Since 4, is a member of «, it follows by Post. VII (a) that 4, is a
member of 3,.

Thus there exists at least one other element, say 4, distinct from
A, and neither before nor after A, and such that 4, is before 4, and 4,
but is not before any other element which is before both 4, and A4;.

Thus 4, satisfies the definition of being a member both of 8, and 8,
and so, by Post. VII (b), 4, is also a member of «,. Thus since 4; is
distinot from 4, and neither before nor after A4, the theorem is proved.
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(b) If 4, be any element and A, be any other element in B,, there is at
least one other element in B, distinct from A, which is neither after nor
before A4,.

Definition. If A, be any element and 4, be any other element in a,,
the optical line A, A, is defined as the aggregate of all elements which
lie either

(1) bothin «; and oy,

or (2) both in «,; and B,,
or (3) bothin 8, and B,.
THEOREM 3

(@) If a be any optical line, there exists at least one element which
18 not an element of the optical line, but is before some element of .

If 4, be any element and 4, be any other element in «, then, by
Post. VII (a), 4, is a member of B,.

Thus by Theorem 2 (b) there is at least one other element in 8, dis-
tinct from A4, which is neither after nor before A4, .

Call such an element A4,.

Then since 4, is in B, and distinct from 4, it is before A,.

But A4, cannot lie in the optical line 4, 4,, for by the definition of
the optical line 4,4,, in order to lie in it 4, would require to lie also
either in «, or B,.

But if 4;should lie in «, it would be either after A, or identical with
A,, while if it should lie in 8, it would be either before A, or identical
with 4, .

But A4, is distinet from 4, and is neither after nor before 4, and there-
fore does not lie in the optical line 4, 4,, although it is before 4, an
element of it.

(b) If a be any optical line, there exists at least one element which is not
an element of the optical line, but is after some element of it.

Posturate IX. (a) If a be an optical line and if A; be any
element which is not in the optical line but before some element
of it, there is one single element which is an element both of the
optical line a and the sub-set «a,.

(b) Ifa be an optical line and if A, be any element which is not
in the optical line but after some element of it, there is one single
element which is an element both of the optical line ¢ and the
sub-set §,.
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THEOREM 4

(a) If A, be any element there is at least one other element which is
after 4, but is not @ member of the sub-set o, .

Let A, be any other member of the sub-set «, distinet from 4,.

Then A, is after A, and so by Post. IV there is at least one element,
say A;, which is both after 4, and before A4,.

By Theorem 1 A4, is a member both of «, and of B, and is therefore
an element of the optical line 4,4,.

But since 4,is a member of B, it follows that 4,is a member of a; and
so by Theorem 2 there is at least one other element in o, distinct from
A, which is neither before nor after A, .

Let 4, be such an element.

Then since 4, is neither before
nor after A, it cannot be a A,
member either of B, or «, and
8o 4, is not an element of the
optical line 4, A4, although it is Ay
after A5 an element of it.

But since 4, is a member

of «, it follows by Post. VII Ay
(a) that A, is a member of the Fig. 3.
sub-set B,.

Thus 4, is the one single element which by Post. IX (b) is an element
both of the optical line and the sub-set B,.

But 4, cannot be a member of «,, for then 4, would be a member of
B, and so A, would be a second element common to the optical line
A, A4, and the sub-set §8,, which is impossible by Post. IX ().

Further, A, is after Ajand 4, is after A, and therefore 4, is after A, .

Thus A, is after A, but is not a member of the sub-set ;.

(b) If A, be any element there is at least one other_element which is
before A, but is not a member of the sub-set 8.

THEOREM 5

If A, be any element and A, be any other element which is after 4,,
there is at least one other distinct element which is a member of both o,
and B,.

Two cases arise: (1) 4, may be a member of «, or (2) 4, may not be
a member of «,.
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If A, is a member of «, then by Post. IV there is at least one element
which is both after A, and before 4,, and by Theorem 1 such an element
is a member both of «; and B,.

Thus case (1) is proved.

Suppose next that 4, is not a member of «, and let 4, be any element
of «, distinct from 4, .

Then the optical line 4,4, which for
brevity we may call a, consists of the
aggregate of all elements which lie A,
either

Ay /@

(1) both in a, and a4,

or (2) both in «, and S, A
or (3) bothin 8, and B;. X
Since A4, is not a member of «, it Fi'g‘ 1.

follows that A, is not a member of
B, and so, since A4, is before A4, it follows that A4, is not an element of
the optical line a.

Then by Post. IX (a) since 4, is not an element of the optical line a
but is before an element of it, it follows that there is one single element
which is an element both of the optical line a and the sub-set o, .

Let A, be this element.

Then since we have supposed that 4, is not a member of «, it follows
that 4, is not identical with 4,.

Further, 4, cannot be after A, for then we should have 4, after 4,
and before 4, and so by Theorem 1 we should have 4, a member of o,
contrary to hypothesis.

Thus 4, cannot be a member of o, and therefore since it is an element
of the optical line @ it must be a member of 8, and B;.

Thus the element 4, is a member of both «, and 8, and so the theorem
is proved.

THEOREM 6

(@) If A, be any element and A, be any other element in a,, while A4 s
an element distinct from A,, which is a member both of «, and of «,, then
there is at least one other element which is a member of «,, of «, and
of ag.

By Post. VIII (a) since A, is an element of «, distinet from A4, there
is at least one other element distinct from A5 which is a member both
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of «, and of 3. Call such an element 4,. Then since 4, is in «; and
distinet from A, it is after A,.

Thus A4, is after an element of the optical line 4, 4,.

But A4, is a member of «, and also of «; and so by Post. VII (a) 4,
and A, are each members of 8,.

Now if 4, were not in the optical line 4, 4, it would follow by Post.
IX (b) that there was one single element which was an element both of
the optical line and the sub-set B,.

There are however at least two elements A, and A, with this property
and so 4, must be in the optical line 4, 4,.

Also since 4, is in a4 it must also be in «, from the definition of the
optical line.

Thus 4, is a member of «,, of «, and of «;.

(b) If A, be any element and A, be any other element in By, while A,
18 an element distinct from Ay, which is @ member both of B, and of B,,
then there is at least one other element which is a member of By, of B, and

of Bs-

THEOREM 7

(@) If X be any element of an optical line there is at least one element of
the optical line which is after X.

Let the optical line be defined by any element 4, and another element

A,in «,. Then X may lie either

(1) both in «; and a,,
or (2) both in «; and 8,,
or (3) both in 8, and B,.

If X be not identical with 4,, then in cases (2) and (3) since X lies in
B,, the element A4, is after X.

If X be identical with A,, then by Post. VIII (a) there is at least one
other element distinct from 4, which is a member both of «; and of «,
and is therefore an element of the optical line.

Since such an element is not identical with A4, it must be after 4,;
that is to say it must be after X.

Next suppose X is in both «, and «, and is distinct from 4,.

It follows by Theorem 6 (a) that there is at least one other element
which is a member of «, and «, and of the « sub-set of X.

Since such an element is not identical with X and lies in the « sub-set
of X it must be after X.

Further since it is an element both of «, and of «, it lies in the optical

R 3
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line. Thus in all cases there is at least one element of the optical line
which is after X.

(b) If X be any element of an optical line there is at least one element of
the optical line which is before X.

THEOREM 8

(a) If A, be any element and A, be any other element in «,, and if Ay
and A 4 be other distinct elements which are members of both o, and «,, one
of the two elements Ay and Ay s in the a sub-set of the other.

Since 4, is in «, and distinct from 4, therefore 4, and A, define an
optical line. Further since 4, and 4, both lie in «, therefore 4, lies in
both 8, and B,.

Thus 4, is an element of the optical line 4,4,.

But A4,, since it is a member of «; and not identical with 4,, is
after 4,.

That is to say, it is after an element of the optical line 4,4,.

If then A, were not an element of the optical line 4,4, there would,
by Post. IX (b), be one single element which would be an element both
of the optical line 4,4, and the sub-set j,.

But 4, is a member both of «; and of «, and so both 4, and 4, are
members of f3,.

Thus since 4, and 4, are two distinct elements of the optical line
A, A, it follows that 4, must be an element of the same optical line.

But 4,is a member of «, and therefore by the definition of the optical
line 4, must be either a member of «, or of ;.

If 4, be a member of 8;, then we should have 4; a member of «,.

Thus one of the two elements 4, and A4, lies in the « sub-set of the
other.

It also follows since 4, and 4, are supposed to be distinct, that the
one is after the other.

(b) If A, be any element and A, be any other element in B, , and if A,
and A, be other distinct elements which are members of both B, and B,,
one of the two elements A; and A, is in the B sub-set of the other.

It also follows since 44 and A4, are supposed to be distinct that the
one is before the other.

THEOREM 9

If a pair of elements be in an optical line defined by another pair of
elements, then one of the first pair is in the « sub-set of the other.
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Consider the optical line defined by the element A; and another
element 4, in «,. Suppose now in the first place that we have an
element 4, distinct from 4, and 4, and lying in the optical line.

Then by the definition of an optical line 4, may be

(1) both in «; and «,,
or (2) both in «, and B8,,
or (3) both in B, and B,.

Thus if 4, and A4, be taken as a pair of elements in the optical line
defined by 4, and 4,, we have in the first and second cases 4;is in «,,
while in the third we have 4, in 8, and consequently 4, in a;. Thus one
of the pair 4,, A, is in the « sub-set of the other.

Again if 4, and 4, be taken as a pair of elements in the optical line
defined by 4, and 4,, we have in the first case 4; is in «,, while in the
second and third we have 44in B8, and consequently 4, in «;. Thus one
of the pair 4,, 4, is in the « sub-set of the other.

Next suppose that we have another element A4, lying in the optical
line and distinct from 4,, 4, and 4;.

Then there are the following possibilities:

4, both in o, and «,...... (1),
A4 both in a; and «, with {or A, bothin o, and B,...... (2),
or 4, both in B; and S,...... (3).

A, both in o; and «,...... (4),
¢ A4 both in «; and B, with {or 4, both in «, and B,...... (5),
lor A4 both in B, and B,...... (6).

A4 both in «, and a,...... (7),
A4 both in B8, and B, with {or Ay both in «; and B,...... (8),
or A, both in B, and B,...... (9).

In case (1) by Theorem 8 (@) one of the two elements 4, and 4, is in
the o sub-set of the other. Similarly in case (9) by Theorem 8 (b) one of
the two elements 4;and 4,isin the 8 sub-set of the other, and therefore
by Post. VII (b) one of them is in the a sub-set of the other.

Consider next case (2).

Since 4, is in a, and distinet from A4, it follows that A4, is after 4, .

Further, since 4, is in 8, and distinct from 4, we have 4, after A,,
and since 4, is in «, and distinet from A4, we have A4, after A,.

Thus by Post. IIT A4, is after 4,.

But, since 4, is in «,, it follows by Theorem 1 that 4, is in 8, and
consequently 44 lies in o,.

3-2
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Similarly in case (4) we may prove that 4, must lie in «;.

In an analogous manner in case (8) since 4, is in 8, and distinct from
Ay we have A, is before 4,.

Further, since 4, is in «, and distinct from 4, , we have 4,is after 4,,
and since 4, is in B, and distinct from A4, we have 4, is after A3 and so,
by Post. III, A4, is after A,.

But since 4, lies in B, therefore 4, lies in «, and so, by Theorem 1, 4,
must lie in ag.

Similarly in case (6) we may prove that 4; must lie in «,.

Consider next case (3).

We have 4, in B, and therefore 4, in «,.

Also we have 4, in «,, and so 4, in B,.

Further we have 4,in B,, and s0 4, in «,.

Thus 4, and 4, determine an optical line which contains 4, .

But A4; is in «,, and being distinct from A, it must be after 4, an
element of the optical line determined by A4, and 4,.

Also since 4, is in both «, and «, it follows that both 4, and 4, lie
in B,.

But by Post. IX (b) if 4, were not in the optical line determined by
A, and A, there would be one single element which would be an element
both of the optical line and the sub-set ;. .

Thus since there are at least two distinct elements 4, and 4, common
to the optical line and the sub-set B, it follows that 4, must be an
element of the optical line 4,4,. Further, since 4, lies in «, it must,
by the definition of the optical line, lie also in «,.

We may in a similar manner show in case (7) that 4, must lie in o;.

We are thus left with only case (5) to prove.

Now since 4,is an element distinct from 4, and lying in «, , therefore,
by Post. VIII (a), there is at least one other element distinct from 4,
which is a member both of «;, and of «,.

Call such an element A;. Then A, is before Ag.

But 4, is distinet from 4, and lies in B, and so 4, is before 4,. Thus
Ag is before Ay,

Also A4, is distinct from 4, and lies in «, and so A4, is after 4,.

Thus, by Theorem 1, 4; must be an element of the sub-set ;.

Similarly 4, must be an element of the sub-set S.

Also both A5 and 4, are elements of 8, and so by Theorem 8 (b) one
of the two elements 4, and A4, is in the B sub-set of the other, and
therefore by Post. VII (b) one is in the « sub-set of the other.

Thus the theorem is true in all cases.
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1t follows directly from this theorem that of any two distinct elements in
an optical line one i3 after the other,

THEOREM 10
Any two elements of an optical line determine that optical line.

Let A4, be any element and 4, any other element in «,, then the
optical line 4, 4, is defined as the aggregate of all elements which lie
either

(1) bothin «; and «,,
or (2) both in «; and B,,
or (3) bothin B, and B,.

Suppose 4, and 4, to be any pair of elements in the optical line
A4, 4,; then by Theorem 9 one of the pair 4,, 4, is in the « sub-set of
the other.

We may suppose without loss of generality that it is 4, which is in
the sub-set ;.

Consider now any element A, of the optical line 4, 4, such that 4; is
distinct from 4, and 4,.

Then by Theorem 9 there are the following possibilities:

A,in agand also 4ginag ...l (1),
A,in oz and also 4;ine; ... (2),
Agin oy and also Agineg, ... (3),
Agin o, and also 44 in oy TS (4).

Case (4) must however be excluded, for since 45, 4, and A4 are
supposed distinct we should have A, after A, and A; after Ay and
therefore, by Post. III, 4, after 4,.

We however supposed A4, to be after A3 and by Post. I we cannot
have also 44 after A,. Thus case (4) is impossible.

The three permissible cases may be expressed thus:

Agbothin Byand 8, ... (1),
Agbothinagand B, ... (2),
Agbothinagandea, ... (3).

Thus in all cases 4; lies in the optical line defined by 45 and 4,.
Similarly it may be shown that every element in the optical line

defined by 4, and 4, lies in the optical line defined by 4, and 4,.
Thus the optical lines 4, 4, and 434, are identical.
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THEOREM 11

If A3 and A be any two elements of an optical line A, A, there is at least
one element of the optical line which is after the one and before the other.

Since 45 and 4, are both elements of the same optical line the one
must be in the « sub-set of the other by Theorem 9.

We shall suppose that 4, lies in o;.

Then since 4; and A4, are distinet, 4, will be after A;, and so by
Theorem 5 there is at least one other distinct element which is a
member both of «; and of §,.

Call such an element A4;. .

Then 4; is in the optical line 4;4,, and therefore by Theorem 10 in
the optical line 4, 4,.

Further since 4; is distinct from 4, and 4, it must be after A, and
before 4,.

From the preceding results it follows that an optical line contains an
nfinite number of elements.

THEOREM 12

If an element A, be before an element of an optical line a, and be also
after an element of a, then A, must be itself an element of the optical line a.

Suppose that 4, is before the element 4, of ¢ and also after the
element 4, of a.

Then by Post. I 4, cannot be identical with 4,, and by Theorem 9
one of the elements 4, and 4; must be in the « sub-set of the other.

Since A4, is after A3 and A4, is after A, it follows that A, is after A,
and so it must be A, which is in the « sub-set of 4;.

But, by Theorem 1, it follows that 4, must lie in «; and also in 8,,and
accordingly 4, lies in the optical line 4;4,.

Thus since, by Theorem 10, any two elements of an optical line
determine that optical line, it follows that A4, lies in the optical line a.

THEOREM 13

(@) If A, be any element and A, be any other element in «, and if Ag
be any element in «, which is either before or after A,, then Ag lies in the
optical line A, A4,.

(1) Suppose Ay is before 4,.

Then since 4, lies in «, it must be either identical with 4,, in which
case it lies in the optical line 4, 4,; or else 4, is after A,, in which case
by Theorem 1 4, must lie both in «, and B, and therefore must lie in
the optical line 4,4,.
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(2) Suppose 4, is after 4,.

Then A, lies in «, and A4, is after A, and before A, and therefore, by
Theorem 1, 4, must lie both in «; and ;.

But if 4, lies in B, it follows by Post. VII (b) that A4, lies in «,.

Thus A4, lies both in «; and «, and therefore lies in the optical line
A A4,.

(b) If A, be any element and A, be any other element in B, and if A be

any element in B, which is either after or before A,, then A, lies in the
optical line A, 4,.

THEOREM 14

Three distinct elements cannot lie in pairs in three distinct optical
lines.

Let 4,, A, and A4, be three distinct elements and let 4, and 4, lie in
one optical line.

We may suppose that it is 4, which lies in «, .

If then 4, and A, lie in an optical line we may suppose either that
A, liesin o, or in B, .

First suppose A4, lies in «,.

Then if 4, and 4, lie in an optical line one of them must be after the
other and so by Theorem 13 (@) A; must lie in the optical line 4, 4,.

Next suppose that A4, lies in 8,.

Then if 4, and 4, lie in one optical line, 4, is before A, one element of
it and after A, another element of it and so by Theorem 12 4, must lie
in the optical line 4;4,. Thus the optical lines are not distinct and so
the theorem is proved.

REMARKS

Ifa and b be two distinct optical lines having an element £ in common
and if O be any element of @ which is before K while D and F are elements
of b which are respectively before and after E ; then, E being after O, we
must have F after O, but, by the last theorem, F and O cannot lic in an
optical line.

Further, D cannot be before O, for then we should have O after one
element of the optical line b and before another element of it and yet
not lie in the optical line which, by Theorem 12, is impossible.

Also D cannot be after O, for then we should have D after one element
of the optical line a and before another element of it and yet not lie in
the optical line, which again is impossible.

Thus D is neither before nor after O.
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Again, if b’ be an optical line distinct from a but having an element
E’ in common with a and such that the element O of a is after E’, while
D' and F’ are elements of b’ which are respectively after and before E’;
we may show in a similar way that F’ is before O, but is not in an optical
line with it; while D’ is neither after nor before O.

THEOREM 15

(a) If A, be any element and A, be any other element in o, and A, be
any element in o, distinct from A, which is neither before nor after 4,,
then A4 is neither before nor after any element of the optical line A, 4,
which is after 4,.

The element 44 cannot lie in the optical line 4, 4,, for then since it
is distinct from A, it would be either before or after it, contrary to
hypothesis.

Now any element of the optical line 4, 4, which is after 4, must lie
in'e.

Let A, be any such element.

Then if A, were either before or after A, it would by Theorem 13 lie
in the optical line 4,A4,, which by Theorem 10 is identical with the
optical line 4, 4,, and this we have shown to be impossible.

Thus A4, cannot be either before or after any element of the optical
line 4,4, which is after A,.

(b) If A, be any element and A, be any other element in B, and 4,4 be any
element in B, distinct from A, which is neither after nor before 4,, then
Aj is neither after nor before any element of the optical line Ay A, which
18 before 4, .

PosturaTE X. (@) If @ be an optical line and if A be any ele-
ment not in the optical line but before some element of it, there
isonesingle optical line containing A and such that each element
of it is before an element of a.

(b) If o be an optical line and if A be any element not in the
optical line but after some element of it, there is one single

optical line containing A and such that each element of it is after
an element of a.

THEOREM 16

(a) If each element of one optical line be before an element of another
optical line the two optical lines cannot have an element in common.

Let a and b be two distinct optical lines such that each element of b
is before an element of a.
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Suppose, if possible, that a and b have an element A4, in common.

Let A4, be any element of b which is after and therefore distinct from
A,.
Then, by hypothesis, 4, is before some element (say A;) of a.
Thus we should have A4, after one element A, and before another
element 4 of the optical line @ and therefore, by Theorem 12, it would
follow that 4, must be an element of the optical line a.

Thus a and b would have two elements in common and so could not
be distinct optical lines, contrary to hypothesis.

Thus the supposition that a and b have an element in common leads
to a contradiction and is therefore impossible.

(b) If each element of one optical line be after an element of another
optical line the two optical lines cannot have an element in common.

THEOREM 17

(@) If each element of an optical line a be before an element of another
optical line b, then through each element of a there is one single optical
line which contains also an element of b.

By Theorem 16 an element of @ cannot also be an element of b.

Suppose then that 4, be any element of a.

Then A4, is not an element of b, but is before an element of b and there-
fore by Post. 1X (a) there is one single element, say A,, which is an
element both of the optical line b and the sub-set «,. Since 4, cannot
be identical with 4, it follows that 4, and 4, determine an optical line
which contains an element of @ and also an element of b.

Further, there cannot be more than one optical line through 4,
which contains also an element of b; for such an element of b must, by
Theorem 9, lie either in «, or B,.

But by Post. IX (a) there is only one single element common to b and
the sub-set «,, and so if such an element of b existed it would have to
lie in B, .

Call such a hypothetical element A;.

Then since A4, is supposed to lie in 8,, we should have 4, in aj.

But 4, lies in «, and so 4, lies in B,, and thus if such an element as 4,
existed, 4, would lie in the optical line A3 4,: that is, in the optical line
b, which is impossible, and so there cannot be any such element as 4;.

Thus there is only one single optical line through 4, which contains
also an element of b.
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() If each element of an optical line a be after an element of another
optical line b, then through each element of a there is one single optical
line which contains also an element of b.

Definition. If two distinct optical lines have an element in common
they will be said to intersect one another in that element.

If 4, and 4, be two distinct elements one of which is neither before
nor after the other, then we know by Post. VI that there is at least one
element, say X, which is after both 4, and 4,, but is not affer any other
element which is after both 4, and 4,.

From the definition of « sub-sets it follows that X lies both in «; and
oy, 80 that there is at least one element which is a member both of «; and
oy. Similarly there is at least one element which is a member both of 8,
and B,.

These remarks prepare the way for Post. XI (a) and (b).

PosturaTte XI. (a) If A, and A, be two distinct elements one
of which is neither before nor after the other and X be an element
which is a member both of «, and «,, then there is at least one
other element distinct from X which is a member both of «,
and a,.

(b) If A, and A, be two distinct elements one of which is
neither after nor before the other and X be an element which is
a member both of g, and §,, then there is at least one other
element distinct from X which is a member both of 8, and 8,.

The above is the first of our postulates which requires more than two
dimensions for its representation.

It is to be noted that it may easily be combined with Post. VI as
follows:

(@) If A and B be two distinct elements one of which is neither before
nor after the other, there are at least two distinct elements either of which is
after both A and B but is not after any other element which is after both
A and B.

(b) If A and B be two distinct elements one of which is neither after nor
before the other, there are at least two distinct elements either of which is
before both A and B but is not before any other element which s before
both A and B.
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THEOREM 18

(@) If A, and A, be any two distinct elements one of which is neither
before nor after the other, and if A; and A, be distinct elements which lie
both in o, and oy, then one of these latter two elements is neither before
nor after the other.

By the definition of « sub-sets 4, is after both 4, and 4, but is not
after any other element which is after both A, and 4,.

Similarly 4,is after both 4, and 4, but is not after any other element
which is after both 4, and 4,.

Thus 43 is not after A, and 4, is not after 4.

Thus A4, is neither before nor after A,.

(b) If A, and A, be any two distinct elements, one of which is neither
after nor before the other, and if A, and A, be distinct elements which lie
both in B, and B, then one of these latter two elements is neither after nor
before the other.

THEOREM 19

(a) If A, be any element and A, and A, be two other distinct elements
of «y, one of which is neither before nor after the other, there s at least one
other distinct element in o, which is neither before nor after A, and
neither before nor after A,.

Since 4, is a member of «,, therefore 4, is a member of 8,.

Fig. 5.

Thus by Post. VIII (b) there is at least one other element distinct
from A, which is a member both of 8, and of 8, .

Call such an element 4;.

Then 4, and 4, are both members of ;.

Thus by Theorem 2 (a) there is at least one other element in o
distinct from A, which is neither before nor after 4, .

Call such an element 4.
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Now A, cannot lie in a5 for then, as it is an element of «,, it would
lie in the optical line 454, along with 4, and so 4, and 4, would
either be identical or else 4, would be either before or after A;, contrary
to hypothesis.

Now A is after A, and 4, is after 4;and so by Post. IIT 4, is after 4,
and since 4, is not an element of a it cannotlie in the optical line A; 4.

Thus by Post. IX (b) there is one single element (say A,) which is an
element both of the optical line 4,4, and the sub-set f3;.

Now A cannot be after A,, for 4, lies in «; and so, by Theorem 1,
A, would require to lie in B, which it cannot do since 4, is not an
element of o;.

Also A cannot coincide with 4, for then it would be in ;.

Thus A, must be after A5, and so by Theorem 15 A4, is neither before
nor after 4,.

Now 4, lies both in «, and in ,, and so by Post. XTI (a) there is at
least one other distinct element, say 4, which lies both in a; and in o;.

Then by Theorem 18 A, is neither before nor after As.

Further, 4, cannot be either before or after A,, for since 4, and A4,
are both members of «, it would follow by Theorem 13 that 4, must
lie in the optical line 4,4,.

This would also be the case if 4, coincided with 4,.

But then (since A4, is after A, and therefore after A;) we should have
A,in «gand 4, and 4, both in «; and ,, and thus 4, and 4, would lie
in one optical line.

Thus 4, and 4, would either coincide or else the one would be after
the other, which is impossible.

Thus A, is neither before nor after A, and is neither before nor after
A, and is distinet from either.

(b) If A, be any element and A, and Ay be two other distinct elements
of By, one of which is neither after nor before the other, there is at least
one other distinct element in B, which is neither after nor before 4, and
neither after nor before 4.

THEOREM 20

If A, be any element there are at least three distinct optical lines
containing 4, .

Let A, be any element in «, distinct from 4, .

Then by Theorem 2 (a) there is at least one other element in «,
distinct from 4, which is neither before nor after A,.

Call such an element 4.
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Further by Theorem 19 there is at least one other distinct element in
o, which is neither before nor after A, and neither before nor after 4,.
Call such an element 4,.

Then A4, and 4, determine one optical line; 4, and A4, determine a
second optical line; 4, and 4, determine a third optical line.

These are all distinct and all contain 4,.

If a beanopticalline and if 4 be any elementnotin the optical line but
before some element of it we have by Post. X (a) one single optical line
containing 4 and such that each element of it is before an element of 4.

Further, we have seen in Theorem 17 that there is one single optical
line containing 4 and also intersecting a.

Also by Theorem 20 there are at least three optical lines containing
4 and so there must be at least one optical line containing 4 in addition
to the two particular ones which we have already mentioned.

Similarly if @ be an optical line and if 4 be any element not in the
optical line but after some element of it, there is one single optical line
containing 4 and such that each element of it is after an element of a
and there is one single optical line containing 4 and intersecting a.

In addition to these two particular optical lines Theorem 20 shows
that there is at least one other optical line containing 4.

These considerations prepare the way for Post. XII (a) and (b).

Posturate XII. (a) If a be an optical line and if A be any
element not in the optical line but before some element of it,
then eachoptical line through A, except the one which intersects
a and the one of which each element is before an element of a,
has one single element which is neither before nor after any
element of a.

(b) If a be an optical line and if A be any element not in the
optical line but after some element of it, then each optical line
through A, except the one which intersects a and the one of
which each element is after an element of @, has one single
element which is neither after nor before any element of a.

THEOREM 21
(a) If each element of an optical line a be after an element of a distinct
optical line b, then each element of b is before an element of a.
Let A, be any element of a; then since 4, is not in b but after an

element of b, there is one single element (say 4,) common to the optical
line b and the sub-set B, (Post. IX (b)).



46 GEOMETRY OF TIME AND SPACE

Then 4, is not an element of a but is before the element 4, of @ and
8o by Post. X (a) there is one single optical line (say c) containing A4,
and such that each element of it is before an element of a.

Now b cannot be identical with the optical line 4,4, , for then @ and
b would have the element 4, in common, which is impossible by
Theorem 16 (b).

Suppose now, if possible, that b is not identical with c¢; then by
Post. XII (a) there will be one single element in b (say A3) which will be
neither before nor after any element of a.

Consider an element 4, in b and after 4.

Since there can only be one element in & which is neither before nor
after any element of a, it would follow that 4, must be either before or
after some element of a.

Since A4 4 is before A, it would follow, if A, were before an element of a,
that 4, was also before an element of a, contrary to hypothesis.

We should therefore require 4, to be after some element (say 4;) of a:
so that A, would be before 4,: an element of b.

But by hypothesis 4 is after some element of b and so, by Theorem
12, 4, would require to lie in b.

Thus a and b would have an element in common, which is impossible
by Theorem 16 (b).

Thus the supposition that b is distinct from c leads to a contradiction
and therefore is not true.

Thus b must be identical with ¢ and so each element of b is before an
element of a.

(b) If each element of an optical line a be before an element of a distinct
optical line b, then each element of b is after an element of a.

THEOREM 22

If a be an optical line and if A, be any element which is neither before
nor after any element of a, there is one single optical line containing 4,
and such that no element of it is either before or after any element of a.

Let 4, be any selected element of a; then A, is neither before nor
after Ay, and so by Post. VI (b) an element exists which is a member
both of B, and of B,.

Call such an element 4,.

Now A, is before A,, an element of @, and does not lie in a and there-
fore by Post. X (a) there is one single optical line (say c) containing A4,
and such that each element of ¢ is before an element of a.
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Further, 4, is after A, but is not before anyelement of a, and so does
not lie in c.

Thus by Post. X (b) there is one single optical line (say b) containing
A, and such that each element of b is after an element of c.

Consider now any element A, other than 4, in the optical line b ; then
A, cannot be an element of a since otherwise 4, would be either before
or after an element of a, contrary to hypothesis.

Suppose now if possible that A4, is after some element of a.

Then by Post. X (b) there is one single optical line (say d) containing
4, and such that each element of d is after an element of a.

But since each element of a is after an element of ¢ therefore by
Post. I1I each element of d is after an element of c.

But by Post. X (b) there is only one single optical line containing 4,
which has this property and the optical line b is such a one.

Thus the optical line d must be identical with the optical line b.

Thus each element of b would be after an element of a, contrary to
the hypothesis that 4, was neither before nor after any element of a.

Thus 4, is not after any element of a.

Next suppose if possible that 4, is before some element (say 4;)
of a.

Then A, is not an element of b, but is after an element of b, and so by
Post. X (b) there is one single optical line (say e) containing 4 and such
that cach element of e is after an element of b.

But cach element of b is after an element of ¢ and so by Post. III each
element of e is after an element of c.

There is however by Post. X (b) one one single optical line containing
Ay and having this property, and a is such an optical line.

Thus e must be identical with a, and so each element of @ must be
after an element of b.

But if this were so then by Theorem 21 (a) each element of b6 must be
before an element of a, contrary to the hypothesis that 4, is neither
before nor after any element of a.

Thus 4, is not before any element of a, and so no element of b is
either before or after any element of a.

We have thus shown that there is one optical line containing 4, and
having this property.

We have now to show that there is only one.

Consider any optical line containing A4, other than the optical lines
band 4;4,.

Call such an optical line f.
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Then by Post. XII (b) there is one single element in f (say 4g) such
that A4 is neither before nor after any element in c.

If then we take any element A, in f and before A4, such an element
cannot be after any element in c, for then A4 being after A, would be
after an element of ¢, contrary to hypothesis.

Also, since there is only one element having the property of 44 and
lying in f, therefore 4, must be before some element of c.

But this element is before some element of a, and so 4, is before some
element of a.

Thus there is only one optical line containing 4, and such that no
element of it is either before or after any element of a.

THEOREM 23

If a be an optical line and A, be any element which is neither before nor
after any element of a while b 1s the one single optical line containing A,
and such that no element of it is either before or after any element of a,
then every optical line through A,, with the exception of b, is divided by
A, into elements which are before an element of a and elements which are
after an element of a.

We proved in Theorem 22 that there is only one optical line through
A, having the property of b.

Thus if we take any other optical line d through 4, there must be
at least one element of d which is either before or after some element
of a.

Suppose first that there is an element A4, which is before some
element of a.

Then A, cannot be after 4,, for since there is an element of a after
A4, there would by Post. III be an element of a after 4,, contrary to
hypothesis.

Thus 4; must be before A4, .

Further, 4, cannot be an element of a, for then 4, would be after
an element of a, contrary to hypothesis.

Thus 4,4 is not an element of a but before an element of it, and so by
Post. IX (a) there is one single element (say 4,) which is an element both
of the optical line @ and the sub-set o.

Further by Post. X (a) there is one single optical line (say c) con-
taining 44 and such that each element of it is before an element of a.

Then by Post. XII (a) since the optical line d contains 4, and is not
identical with either of the optical lines 4,4, or ¢ it follows that there
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is one single element of d which is neither before nor after any element
of a.

But by hypothesis 4, has this property and so every other element
of d is either before or after an element of a.

However, as we have already seen, an element which is after 4,in d
cannot be before an element of @ and so it must be after an element of a.

Similarly an element which is before A, in d cannot be after an element
of a, for then 4, would be after an element of a contrary to hypothesis,
and so an element which is before 4, in d must be before an element of a.

We arrive at the same conclusion if we start off by supposing the
existence in d of an element A, which is after some element of a. Thus
the theorem is proved.

THEOREM 24

(a) If each element of each of two distinct optical lines a and b be after
elements of a third optical line c, and if one element A, of the optical line
b be after some element of the optical line a, then each element of b is after
an element of a.

Let b’ be the one single optical line containing 4, and such that each
element of b’ is after an element of a.

Then since each element of a is after an element of ¢ therefore by
Post. I1I each element of b’ is after an element of c.

But by hypothesis each element of b is after an element of ¢, and b
contains 4, an element not in the optical line ¢ but after some element
of it.

Thus by Post. X (b), since there is only one single optical line con-
taining 4, and having this property, it follows that 5’ must be identical
with b.

Thus each element of b is after an element of a.

(b) If each element of each of two distinct optical lines a and b be
before elements of a third optical line ¢, and if one element A of the optical
line b be before some element of the optical line a, then each element of b
18 before an element of a.

THEOREM 25
(@) If each element of each of two distinct optical lines a and b be after
elements of a third optical line ¢, and if one element A, of the optical line b
be neither before nor after any element of the optical line a, then no element

of the optical line b is either before or after any element of the optical
line a.

Since 4, is not an element of ¢ but is after some element of it, therefore
R 4
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by Post. IX (b), there is one single element (say 4,) which is common to
the optical line ¢ and the sub-set ;.

Then since 4; is not an element of a, but is before an element of a
(Theorem 21 (a)), therefore by Post. IX (a) there is one single element
(say A,) which is common to the optical line a and the sub-set «;.

The demonstration then follows as in Theorem 22.

(b) If each element of each of two distinct optical lines a and b be before
elements of a third optical line c, and if one element A, of the optical line
b be neither after nor before any element of the optical line a, then no

element of the optical line b is either after or before any element of the
optical line a.

This may be demonstrated in an analogous manner.

THEOREM 26

(@) If an optical line a be such that no element of it is either before or
after any element of the optical line c, and if another optical line b be such
that each element of it is before an element of c, then each element of b is
before an element of a.

Since each element of b is before an element of ¢, it follows by Theorem
21 (b) that each element of ¢ is after an element of b.

Let 4, be any element of c.

Then since 4, is not an element of b but is after an element of b, there
is one single element common to the optical line b and the sub-set 3,
(Post. IX (b)).

Let A, be this element.

Then A, and 4, determine an optical line.

But by Theorem 23 every optical line containing 4, except c is
divided by A, into elements which are before an element of a and
elements which are after an element of a, and since 4, is before 4, and
lies in the optical line 4, A,, it follows that 4, is also before an element
of a and is not an element of a.

Thus by Post. IX (a) there is one single element (say 4;) common to
the optical line a and the sub-set «,.

Now A, is neither before nor after any element of ¢ and therefore if an
optical line a’ be taken through A4, such that each element of it is after
an element of b, then by Theorem 25 (a) no element of a’ is either before
or after any element of c.

But by Theorem 22 there is only one optical line through 4, having
this property and a is such an optical line.
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Thus ' is identical with @ and so each element of a is after an element,
of b, and thus by Theorem 21 (a) each element of b is before an element
of a.

(b) If an optical line a be such that no element of it is either after or
before any element of the optical line ¢, and if another optical line b be
such that each element of it is after an element of ¢, then each element of b
18 after an element of a.

THEOREM 27

(@) If each element of an optical line a be after an element of a distinct
optical line c, and each element of another optical line b be before an
element of c, then each element of a is after an element of b.

By Theorem 21 (b) each element of ¢ is after an element of b, and since
each element of a is after an element of ¢, therefore by Post. III each
element of a is after an element of b.

(b) If each element of an optical line a be before an element of a distinct
optical line ¢, and each element of another optical line b be after an element
of ¢, then each element of a is before an element of b.

THEOREM 28

If two distinct optical lines a und b be such that no element of either of
them is either before or after any element of a third optical line c, then no
element of a is either before or after any element of b.

For suppose, if possible, that some element A, of a is after an element
of b; then A, cannot lie in b and by Post. 1X (b) there is one single
element (say 4,) common to the optical line b and the sub-set B;.

But by Theorem 23 every optical line through 4, except a is divided
by A4, into elements which are before an element of ¢ and elements
which are after an element of ¢.

Thus since 4, and A4, determine an optical line through 4,, and since
A, is before A, therefore A, must be before an element of ¢, contrary to
the hypothesis that no element of b is either before or after any element
of c.

Similarly if we suppose 4, to be before an element of b we are led to
a conclusion contrary to hypothesis.

Thus no element of a is either before or after any element of b.

Definitions. An optical line ¢ will be said to be parallel to a second
distinct optical line b when either:

42
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(1) each element of a is after an element of b,
or (2) each element of a is before an element of b,

or (3) no element of a is either before or after any element of b.

In case (1) @ will be said to be an after-parallel of b.
In case (2) a will be said to be a before-parallel of b.

In case (3) a will be said to be a neutral-parallel of b.

It follows from these definitions in conjunction with Theorem 21
that:

If an optical line a be parallel to an optical line b, then the optical line b
18 parallel to the optical line a.

Again, if a be any optical line and 4 be any element not in the optical
line, A may be before an element of @, or may be after an element of a,
but by Theorem 12 A4 cannot be before one element of a and after
another element of a.

By Post. X1II (a) and (b) it follows that 4 may be neither before nor
after any element of a.

If A be before an element of a, then by Post. X (a), there is one single
parallel to a containing 4.

If A be after an element of a, then by Post. X (b), there is one single
parallel to a containing 4.

If A be neither before nor after any element of @, then by Theorem 22
there is one single parallel to @ containing 4.

Thus we can say in general:

If a be any optical line and A be any element which is not in the optical
line, then there is one single optical line parallel to a and containing A.

Further, combining Theorems 24 (a), 24 (b), 25 (a), 25 (b), 26 (a),
26 (b), 27 (a), 27 (b), 28, we have the general result that:

If two distinct optical lines a and b are each parallel to a third optical
line c, then the optical lines a and b are parallel one to another.

Definition. If a and b be any pair of distinet optical lines one of
which is an after-parallel of the other, then the aggregate of all elements
of all optical lines which intersect both a and b will be called an inertia
plane.*

* In the first edition of this work the term acceleration plane was used instead of inertia
plane. The change was made in order that the nomenclature might be more systematic.
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THEOREM 29

If a be an optical line there are an infinite number of distinct inertia
planes which all contain a.

From Post. XII (a) and (b) it follows that there is at least one
element, say A4,, which is neither before nor after any element of a.

If b be the one optical line through 4, such that no element of it is
either before or after any element of a, then by Theorem 23 every optical
line through 4, except b is divided by A, into elements which are
before an element of @ and elements which are after an element of a.

Let f be one particular optical line containing 4, and distinct from b.

Let 4, be any element in f other than 4,; then 4, must be either
before or after some element of a but is not itself an element of a.

Thus if an optical line ¢ be taken through A4, parallel to a, then c is
either a before- or after-parallel of a and therefore along with a serves
to define an inertia plane.

Let A, be another element of f distinct from 4,.

Then in order that 4, should lie in the inertia plane defined by a
and c it would have to lie in an optical line intersecting both a and c.

But since 4, is distinct from 4, and lies in the optical line f which
also contains 4, it must be either before or after A,, and so by Post.
IX (@) or Post. IX (b) there must be one single element which is an ele-
ment both of the optical line ¢ and the sub-set «, or B; as the case may be.

But the element 4, is such an element and therefore the optical line
f containing 4, and 4, is the only optical line which intersects ¢ and
contains 4.

Thus in order that 4, should lie in the inertia plane defined by a and
¢ it would be necessary for f to intersect @ and this we know it does not
do since if it did 4, would be either before or after an element of a,
contrary to hypothesis.

If then A4, be distinct from A4, it is either before or after an element
of @ and so if we take the optical line through 4, parallel to a, it will be
either a before- or after-parallel of a.

Call such an optical line d.

Then d and a define another inertia plane which is distinct from that
defined by ¢ and a, since the latter does not contain 4,.

If any other element 4, in the optical line f be selected other than
4, or A, and an optical line be taken through it parallel to a, then,
provided 4, is distinet from 4,, the parallel to a through 4, will,
along with a, define an inertia plane distinct from the others.
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Thus each element of f except 4, corresponds to a distinct inertia
plane and the number of elements in f is infinite, while all the inertia
planes contain a.

Thus there are an infinite number of distinct inertia planes all con-
taining the optical line a.

From the last theorem it follows directly that it is permissible to
speak of three or more inertia planes which have two elements in
common.

This prepares the way for Post. XIII.

PosturaTte XIII. If two distinct inertia planes have two
elements in common, then any other inertia plane containing
these two elements contains all elements common to the two
first-mentioned inertia planes.

TaEOREM 30

If a and b be two distinct optical lines and if a be an after-parallel of b,
then if ¢ and d be two other distinct optical lines intersecting both a and b,
one of these latter two optical lines is an after-parallel of the other.

Let the optical line ¢ intersect b in 4, and @ in 4, and let the other
optical line d intersect b in A, and a in A4,.

e
\ /{f
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Then, by Theorem 17 (a), it is not possible for 4, and A4, to be coin-
cident while 4, and A4, are distinct; while, by Theorem 17 (b), it is not
possible for 4, and 4, to be coincident while 4, and 4, are distinct.

We may suppose without loss of generality that A4, is after 4,.

Then since a is an after-parallel of & we must have 4, after 4, and
therefore by Post. 111 A4, is after A,, or A, before 4,.

Further, since a is an after-parallel of b, and since 4, and A4, lie in
the optical line ¢, we must have A4, after A, and therefore 4, must
lie in .

But now 4, could not be before A,, for then, by Theorem 1, 4, would
lie in «, and, since it is distinct from 4,, we should have two elements
common to the optical line @ and the sub-set «,; which is impossible.

Thus since 4, and A4, both lie in the optical line @ we must have 4,
after A, and so 4, lies in «,.

Now let e be the optical line through 4, parallel to c; then e is an
after-parallel of ¢ since 4, is after 4.

Again there is one single optical line (say f) through 4, intersecting
e in some element, say 4, which lies in «,.

Now,since 4, and 4, are distinct elements both lying in «, , and since
4, does not lie in the optical line 4, 4,, it follows by Theorem 13 that
A, is neither before nor after A, and therefore A; lies in o,.

Suppose now, if possible, that 4 is distinct from A,; then by
Theorem 18 (@) since 4, and A4; lie both in «, and a5, the one is neither
before nor after the other.

Thus 4, could not lie either in a or d since then it would have to be
either before or after 4,.

Neither can A4 lie in b, for since 4, is after 4, and A, is after A, and
4, is an element of b it would then follow by Theorem 12 that 4, must
lie in b, which is impossible.

Thus e is the only optical line through A4 containing an element of b
and if e also intersected a it would have to coincide with d, since d is the
only optical line through A4, which intersects a.

Thus if 4 did not coincide with 4, then 4 could not lie in the inertia
plane defined by @ and b.

Thus the inertia plane defined by ¢ and e would be distinct from the
inertia plane defined by a and b.

Now let g be the optical line through A4, parallel to f; then g is a
before-parallel of f, since A4, is before A,.

Then g could not coincide with b for in that case we should have two
optical lines @ and f both through A4, and both parallel to b, which is

impossible. )9 02 6 /
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Now A, lies in the optical line b which intersects g in 4, and so if A
should lie in the inertia plane defined by f and g, then b would have to
intersect f.

But the only optical line through A4, intersecting f is ¢ and so if 4,4
should lie in the inertia plane defined by f and g, then b would have to
coincide with ¢, which is impossible.

Thus 4, would not lie in this inertia plane which therefore would be
distinct from the inertia planes defined by a and b and by ¢ and e, which
both contain 4,.

But the inertia planes defined by @ and b, by ¢ and ¢, and by fand ¢
all contain the two elements 4, and 4,, while the two first-mentioned
inertia planes also contain 4,, which would not be contained by the
inertia plane defined by f and g.

This is contrary to Post. XIII and so the assumption that 4; is
distinct from 4, must be abandoned.

Thus 4; coincides with A, and therefore the optical line d coincides
with the after-parallel of ¢ through 4,.

This proves the theorem.

THEOREM 31

If a, b, ¢, d, etc. be a set of parallel optical lines which all intersect one
optical line l in elements A, B, C, D, etc., then through any element of one
of the set of optical lines a,b,c,d, etc. other than the elements A, B,C, D, etc.
there s one optical line which intersects each one of the set a, b, ¢, d, etc.
and s parallel to .

Since the elements A4, B, C, D, etc. are elements of one optical line [,
therefore of any two of these elements one is after the other by
Theorem 9.

Thus of any two of the parallel optical lines a, b, ¢, d, etc. one is an
after-parallel of the other.

If then one of these optical lines be selected (say ) and any element
in it (say X) distinct from B there will be

one optical line through X intersecting a,
one optical line through X intersecting c,
one optical line through X intersecting d, etec.

But by Theorem 30 all these are parallel to ! and since they all go
through X they must all be identical.

Also for each element of b there is one such optical line and since any
pair of such optical lines are parallel to I they are also parallel to one
another.
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This theorem shows that an inertia plane contains two sets of
parallel optical lines which may be called the generators of the inertia
plane.

Any generator of one set intersects every generator of the other set
but does not intersect any one of its own set.

Also we see that through any element of an inertia plane there are

two optical lines lying in the inertia plane and of these two one belongs
to one set and the other to the other set.

THEOREM 32

Through any element of an inertia plane there are only two distinct
optical lines which lie in the inertia plane.

We have already seen that there are two optical lines which pass
through any element of an inertia plane and lie in the inertia plane.

We have now to prove that there cannot be more than two.

Let 4, be any particular element of an inertia plane and let a and b
be the two generators of the inertia plane passing through 4, .

Suppose, if possible, that a third optical line ¢ passes through 4, and
lies in the inertia plane.

Let A, be an element of ¢ after 4,, then 4, must lie in the inertia
plane and so there would be two generators of the inertia plane passing
through A4, and parallel respectively to @ and b.

The optical line parallel to a would meet b in some element, 4, say,
and the optical line parallel to b would meet a in 4, say.

Butif 4,, A, and 4, were all distinct we should have three elements
lying in pairs in three distinct optical lines, which is impossible by
Theorem 14.

Similarly if 4,, 4, and 4, were all distinct.

Thus any optical line through 4, and lying in the inertia plane must
coincide either with a or b.

THEOREM 33

If an inertia plane contain an optical line a and an element A, which
does not lie tn the optical line, then A, is either before or after an element
of a.

There are two optical lines in the inertia plane which pass through
4,.
Of these two, one which we shall call b intersects a, while the other
does not intersect it.
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If b intersects a in an element 4,, then 4, must be distinct from 4,
since 4, does not lie in a.

But both 4, and 4, lie in the optical line b and so the one is after
the other.

Thus A, is either before or after A,: an element of the optical line a.

THEOREM 34

If two elements be such that one is after the other, but does not lie in an
optical line with t, then there are an infinite number of inertia planes
containing the two elements.

Let 4, and 4, be the two elements and let 4, be after 4,.

A,

Fig, 7.

Then by Theorem 5 there is at least one other distinct element which
is a member both of «, and of 8,. Call such an element A4,.

Then 4, is in «y and so both 4, 4, and 4,4, are optical lines.

But 4, is not in the optical line 4,4, but is before A, an element of
it and so we may take a before-parallel to 4,4, through 4,.

Then through 4, there is one single optical line intersecting this
before-parallel in some element, say 4,.

Then 4,4, will be an after-parallel of 4, 4; by Theorem 30.

Now A4, A, and A, A, are two distinct optical lines through 4, and
by Theorem 20 there are at least three distinct optical lines containing
4, sothat there must be at least one other. Let ¢ be such an optical line.
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Then A, is not in ¢ but is after 4, an element of ¢ and so by Post.
IX (b) there is one single element (say A;) common to the optical line ¢
and the sub-set B,.

Then A, 4; and 4,4, are distinct optical lines and since 4, is after
A5 we may take an after-parallel to 4, 4, through A4,, which together
with 4,45 will determine an inertia plane containing the given
elements.

Let 4,, and 4, be any two distinct elements of the optical line 4, 4
which are after A, and before 4.

Then, 4,, and 4, being elements which are after A, and not in the
optical line 4, 4, we may take after-parallels to 4, 4, through 4,, and
4, . Call these f and g respectively.

Then 4, cannot be an element of f for then we should have the three
elements 4,,, A; and A4, lying in pairs in three distinct optical lines,
which is impossible by Theorem 14.

But A; is after A,, and A4, is after A5 and so by Post. III 4, is after
A,, an element of f.

Thus by Post. 1X (b) there is one single element (say A,) common to
the optical line f and the sub-set 8,.

Similarly 4, cannot be an element of ¢ but is after 4,, an element of
g and so there is one single element, say 4,, common to the optical line
g and the sub-set f8,.

Now 4,, and 4,, being both elements of the optical line 4,4, the
one must be after the other, and since f and g are both after-parallels
of A, 4, it follows by Theorem 24 that the one is an after-parallel of
the other.

Thus f and g can have no element in common and so 4,, and 4, must
be distinct.

Further, 4, and 4, cannot both lie in the same optical line through
A,, for since f and g are both after-parallels of 4,43 therefore by
Theorem 31 this hypothetical optical line would alsointersect 4, 4;and
would therefore have to be identical with 4;4,. Thus the optical line
A, Ag or ¢ would have to be parallel to 434, and so be identical with
A,4,, contrary to hypothesis.

Thus the optical lines 4, A, and 4,4, must be distinct.

Further, either of them, say 4, 4,, must be distinct from A3 4, for
then 434, would contain 4, an element of f, and since f is an after-
parallel of 4, 4, therefore again 4, 4; would have to be identical with
4,4,, contrary to hypothesis.

Again, either of the optical lines 4, A, or 4,4, must be distinct from



60 GEOMETRY OF TIME AND SPACE

A454,, for, if we take A,A4,, we should have the three elements 4,,,
4, and 4; lying in pairs in three distinct optical lines, which is im-
possible.

Similarly corresponding to each element of the optical line 4,4
which is after A, and before A; we may take an after-parallel to 4,4,
which will have one element in common with the sub-set 8, which
determines a distinct optical line through 4,.

Since there are an infinite number of elements in the optical line
A, A; which are after A, and before Ay, it follows that there are an
infinite number of optical lines through 4, which are all distinct.

Since 4, and 4, are not in one optical line therefore 4, cannot lie in
any of these optical lines through 4,.

But A, is before A, and so by Post. X (a) a before-parallel to each of
these optical lines may be taken through 4, and the pair of parallel
optical lines will determine an inertia plane containing 4, and 4,.

Also since the number of optical lines through 4, is infinite, and
since by Theorem 32 only two optical lines pass through any element
of an inertia plane and lie in the inertia plane, it follows that there are
an infinite number of inertia planes containing the two elements A4,
and 4,.

THEOREM 35

If two distinct elements be such that the one is neither before nor after
the other, then there are an infinite number of inertia planes containing
the two elements.

Let A4, and 4, be the two elements.

Then by Post. VI (a) and Post. XI (a) there are at least two other
distinct elements which are members both of «; and «,.

Let 4, and A4; be two such elements.

Then A,4,, A, A;, Ay A5, Ay Ay are distinet optical lines.

Let 4,, and 4, be any two distinct elements of the optical line 4,4
which are after 4, and before 4.

Then 4,, and 4,, being elements which are after 4, and not in the
optical line 4, 4, we may take after-parallels to 4, 4, through 4, and
A, . Call these f and g respectively.

Then A, cannot be an element of f, for then we should have the
three elements 4,,, A; and A4, lying in pairs in three distinct optical
lines, which is impossible by Theorem 14.

But since f is an after-parallel of 4, 4, it follows by Theorem 21 (a)
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that 4, A is a before-parallel of f and so 4, is before some element of f
or there is an element of f which is after 4;.

But 4;is after A, and so by Post. III there is an element of f which is
after A,, or A, is before an element of f.

Thus by Post. IX (a) there is one single element, say A,,, which is an
element both of the optical line f and the sub-set «,.

Similarly 4, cannot be an element of ¢ but is before an element of g
and so there is one single element, say A,, common to the optical line
g and the sub-set «,.

Now 4,, and 4,, being both elements of the optical line 4, 4;, the
one must be after the other, and since f and g are both after-parallels
of A, 4; it follows by Theorem 24 that the one is an after-parallel of
the other.

Thus f and g can have no element in common and so 4, and 4, must
be distinct.

Further, 4, and 4, cannot both lie in the same optical line through
4,, for since f and g are both after-parallels of 4,4, it follows by
Theorem 31 that this hypothetical optical line would also intersect
A, A, and would therefore have to be identical with A, 4,.

Thus 4,4, would by Theorem 30 require to be either a before- or
after-parallel of 4,4,

But A4, is after A, and 4, is before A and so one element of 4,4, is
after an element of A, 4; while another element of 4,4, is before an
element of 4, 4;.

Thus 4,4, cannot be either a before or after-parallel of 4,4, and
so A, and A, cannot both lie in the same optical line through 4,.

Thus the optical lines 4,4, and 4,4, must be distinct.

Further, either of them must be distinct from 4,4, for otherwise
A, A4, would, again, require to be an after-parallel of 4,4, which we
showed to be impossible.

Again, either of the optical lines 4,4, 4,4, must be distinct from
A, Ay, for if we take for instance the case of 4,4,,, we should then have
the three elements 4,,, 4,, and 4;lying in pairs in three distinct optical
lines, which is impossible.

Similarly corresponding to each element of the optical line 4,4;
which is after A, and before A; we may take an after-parallel to 4,4,
which will have one element in common with the sub-set «, which
determines a distinet optical line through 4,.

Since there are an infinite number of elements in the optical
line 4,4 which are after A, and before A;, it follows that there
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are an infinite number of optical lines through A, which are all
distinct.

Since A, is neither before nor after A, and is distinct from it, therefore
A, cannot lie in any of the optical lines through 4,.

Now there is only one element common to the optical line 4, 4; and
the sub-set «,, namely the element 4, and 4,, cannot be after 4, since
otherwise, by Theorem 1, 4,, would require to lie in «,. But 4, is
after A, and, since it lies in an optical line with 4,,, 4, must be after
4,,. But 4, is after A, and so 4, is after 4,. Similarly 4, is after 4,.

Thus A4, is not an element of any of the optical lines through 4, but
is before elements of those which we have obtained, and so by Post. X
(@) there is one single optical line containing 4, and such that each
element of it is before an element of any particular one of the optical
lines through 4, which we have obtained.

Each of these pairs of parallel optical lines determines an inertia
plane containing A4, and 4, and, since the number of optical lines
through A4, is infinite, and since by Theorem 32 there are only two
optical lines which pass through any element of an inertia plane and
lie in the inertia plane, it follows that there are an infinite number of
inertia planes containing the two elements 4, and A4,.

REMARKS

The last two theorems showed that an infinite number of inertia
planes contain any pair of elements which do not lie in an optical line.

Further, Theorem 29 showed that an infinite number of inertia
planes contain a given optical line and so contain any two elements
which do lie in an optical line.

It is easy to show that if two or more distinct inertia planes contain
an optical line there is no other element which they have in common
which does not lie in the optical line.

Thus if we consider two inertia planes P and @ which both contain
an optical line @, and suppose, if possible, that they have also an
element 4 in common which does not lie in the optical line, then another
optical line b through 4 must exist which is parallel to a.

The optical line b must lie in the inertia plane P and also in the
inertia plane @, and b must be either a before- or after-parallel of a,
since A4 is either before or after an element of a (Theorem 33).

Thus a and b determine an inertia plane which would be identical
both with P and @, which could therefore not be distinct, contrary to
hypothesis.
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Thus if two or more inertia planes have an optical line in common
they can have no other element outside the optical line in common.

We have also seen by Post. XI1I that any inertia plane which con-
tains two elements which are common to two distinct inertia planes,
contains all elements common to them.

These remarks prepare the way for the following definitions and for
Post. XIV.

Definitions. If two inertia planes contain two elements in common,
then the aggregate of all elements common to the two inertia planes
will be called a general line.

If two inertia planes contain two elements in common, of which one
is after the other, but does not lie in the same optical line with it, then
the aggregate of all elements common to the two inertia planes will be
called an inertia line.*

If two inertia planes contain two elements in common, of which one
is neither before nor after the other, then the aggregate of all elements
common to the two inertia planes will be called a separation line.}

PosturaTte XIV. (a) If a be any inertia line and A, be any
element of the set, then there is one single element common to
the inertia line a and the sub-set «,.

(b) If a be any inertia line and A; be any element of the set,
then there is one single element common to the inertia linea and
the sub-set B,.

THEOREM 36

An inertia line tn any inertia plane has one single element in common
with each optical line in the inertia plane.

Let a be the inertia line and let 4, be an element in any optical line
b in the inertia plane which we shall call P.

Then by Post. XIV (a) there is one single element, say A4,, common
to the inertia line a and the sub-set «; .

Also by Post. XIV (b) there is one single element, say A;, common to
the inertia line a and the sub-set 8,.

Now if 4, lay in a, both 4, and 4, must coincide with 4, since, if
A, were distinct from A4, we should have the two elements 4, and 4,

* The name “inertia line” has been adopted because an inertia line represents the time
path of an unaccelerated particle.

t The name “separation line” has been adopted because a single particle cannot occupy

more than one element of a separation line, so that if particles P and @ occupy distinct
elements of a separation line they must be separate particles.



64 GEOMETRY OF TIME AND SPACE

in @ which both lay in «,, contrary to Post. XIV (a) which asserts that
there is only one single element common to the inertia line a and the
sub-set «; .

Thus if 4, lie in @, then 4, must coincide with 4, .

Similarly if 4, lie in a, then 44 must coincide with 4,.

Suppose now that 4, does not lie in a, then both 4, and 4, must be
distinct from 4,.

Then we must have 4, after A; and 4, after A, and therefore A, after
Aj; so that A, and A, must be distinct.

Also 4, could not lie in a4, for then we should have the two distinct
elements 4, and 4, both common to the inertia line @ and the sub-set a3
contrary to Post. XIV (a). Thus 4, and A, cannot lie in the same
optical line.

But since 44 is in «; and 4, in B, it follows that 4, and 4, lie in an
optical line through 4,, and also 4; and 4, lie in an optical line
through 4,, and these optical lines are distinct and both lie in P.

Now by Theorem 32 there are only two distinct optical lines in the
inertia plane which pass through 4,, and so one of them must be 4, 4,
and the other 434,, and since b must be identical with one of these
optical lines, it follows that @ and b must have one single element in
common.

THEOREM 37

Of any two distinct elements of an inertia line one s after the other.

Let A, and A4, be any two distinct elements of the inertia line a, and
let b be one of the two optical lines in an inertia plane containing a
which pass through 4,.

Now of the two optical lines in this inertia plane which pass through
A,, the one is parallel to b and the other intersects it in some element,
say As.

Now 4, and 4, being distinct cannot both lie in 3 by Post. XIV (a)
and they cannot both lie in B; by Post. XIV (b).

Thus one of the two elements 4, and 4, must lie in «; and the other
in B,, and so one of them must be after 4, and the other before 4.

Thus by Post. III one of the two elements 4, and 4, must be after
the other.

From the definition of a separation line it contains a pair of elements
one of which is neither before nor after the other.

Thus it follows from the above theorem that no inertia line can be
a separation line and no separation line can be an inertia line.
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THEOREM 38

If A, be any element in an inertia line a, there ts at least one other
element in the tnertia line which 1s after A, and also at least one other
element in it which is before A4, .

Let b be one of the two optical lines through 4, in any inertia plane
which contains a and let 4, be any element in b which is after 4, .

Then by Post. XIV (a) there is one single element, say 4,, common
to the inertia line a and the sub-set «,.

Then A4, cannot be identical with 4, since then we should have two
elements common to the inertia line @ and the optical line b, contrary
to Theorem 36.

Thus A, is after 4, and A4, is after A, and therefore 4, is after 4, and
is an element of the inertia line a.

Similarly if we take any element 4, in the optical line b and before A4,
there will by Post. XIV (b) be one single element, say 4, common to
the inertia line a and the sub-set 8,.

Then A4, will be after A, and A4, after A and therefore 4, after A;.

Thus A, is before A, and is an element of the inertia line a.

TiHEOREM 39

If A, and A, be any two distinct elements of an inertia line a, there is at
least one other distinct element of a which is after one of the two elements
and before the other.

By Theorem 37 one of the two elements A, and A, is after the other.

We shall suppose that 4, is after 4,.

Let b and ¢ be the two optical lines through 4, in any inertia plane
containing a.

Then the optical line through A4, parallel to ¢ will be an after-
parallel and will intersect b in some element 4, which must be after A, .

Now let 4, be any element in b which is after 4, and before A, and
consider the optical line through 4, parallel to c.

This will be an after-parallel of ¢ but a before-parallel of 434, and
must intersect the inertia line a in some element, say 4.

Then A4 cannot be before any element of ¢ and therefore is not
before A, .

Also A4, cannot be after any element of 434, and therefore is not
after A,.

Thus by Theorem 37 A, must be after A, and before 4, and lies in
the inertia line a.

® 5
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It follows from the above results that there are an infinite number of
elements in any inertia line.

PosturaTe XV. If two general lines, one of which is a separa-
tion line and the other is not, lie in the same inertia plane, then
they have an element in common.

Since there are an infinite number of optical lines in an inertia plane,
and since only two of them pass through any given element, and since
by Post. X'V each of them has an element in common with any separa-
tion line lying in the inertia plane, it follows that there are an infinite
number of elements in any separation line.

Further, since as we have remarked in connexion with Theorem 37
no inertia line can be a separation line, it follows that no element of a
separation line 1s either before or after another element of .

THEOREM 40

If A, and A, be two distinct elements one of which is neither before nor
after the other, and if a and b be the two optical lines through A, in an
tnertia plane containing the two elements, then 4, is before an element
of one of these optical lines and after an element of the other.

By Theorem 33 4, must be either before or after an element of a and
also must be either before or after an element of b; but 4, cannot lie
either in a or b since it is distinct from A4, and is neither before nor
after it.

Suppose first that A, is before an element of a.

Then one of the two optical lines through A4, in the inertia plane will
intersect @ in some elemeunt, say 4,, while the other optical line
through 4, in the inertia plane will intersect b in some element, say 4,.

Then A, must be before 4, since 4, cannot either lie in a or be after
any element of it.

But 4, cannot either coincide with 4, or be before A,, for then we
should have 4, before A,, contrary to hypothesis.

Thus 4, must be after 4,.

But A4, is an element of b and so the optical line 4,4, (which since
it intersects @ must be parallel to ) must be an after-parallel of b.

Thus 4, must be after an element of b, and since 4, must be either
before or after A,, it follows that A, is after 4,.

In a similar manner we may prove that if 4, be before an element of
b it must be after an element of a.
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Also in an analogous manner we may show that if 4, be after an
element of b it must be before an element of @, and if 4, be after an
element of @ it must be before an element of b.

Thus 4, must be before an element of one of the optical lines a and b
and after an element of the other.

Definition. An element in an inertia plane will be said to be between
a pair of parallel optical lines in the inertia plane if it be after an element

of the one optical line and before an element of the other and does not
lie in either optical line.

THEOREM 41

If A, and A, be any two distinct elements of a separation line, there is at
least one other element of the separation line which lies between a pair of
parallel optical lines through A, and A, respectively in an inertia plane
containing the separation line.

Let a, and b, be the two optical lines passing through A4, in any
inertia plane containing the separation line.

Then, since A, is neither before nor after A, it follows that A4, is
before an element of one of the two optical lines a; and b, and is after
an element of the other. (Theorem 40.)

Suppose that A, is before an element of a,.

Then it is after an element of b, .

Let a, and b, be the two optical lines through A4, parallel respectively
to ay and b,.

Then a, and b, lie in the inertia plane and since 4, is before an element
of a, therefore a, is a before-parallel of a, .

Similarly since A4, is after an element of b, it follows that b, is an
after-parallel of b,.

Further, b, must intersect a, in some element, say 45, which must be
after A, since a, is an after-parallel of a,.

Let A, be any element of b, which is after A, and before A; and
consider the optical line through 4, parallel to a, .

We shall call this optical line a’.

Then since A4, is before A, it follows that a’ is a before-parallel of a,
and since 4, is after A, therefore a’ is an after-parallel of a,.

Also a' lies in the inertia plane.

Thus by Post. XV a’ must have an element in common with the
scparation line 4, 4,.

Call this element A;.

Then since a’ is a before-parallel of a, therefore A; is before an

5-2
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element of a, and since @’ is an after-parallel of a, therefore A4; is after
an element of a,.
Thus A4 is between the parallel optical lines a, and a,.

THEOREM 42

If A,, 4, and A, be three elements in a separation line and if A4 lies
between a pair of parallel optical lines through A, and A, in an inertia
plane containing the separation line, then A4 also lies between a second
pair of parallel optical lines through A, and A, in the inertia plane.

Let a, and a, be a pair of parallel optical lines through 4, and 4,
respectively in the inertia plane and suppose that 4, lies between them.

We may without loss of generality suppose that A4, is after an
element of a, and before an element of a, .

Let b, be the second optical line which passes through 4, in the
inertia plane and let b, be the second optical line which passes through
A, in the inertia plane.

Then, since a, and a, are parallel, b; and b, are also parallel.

But since 4, and 4, lie in a separation line, 4, is neither before nor
after A, , and since 4, is before an element of a, therefore by Theorem 40
Aj is after an element of b, .

Similarly A4, is neither before nor after A, and, since A4, is after an
element of a,, therefore, by Theorem 40, 4, is before an element of b,.

Thus A4, is between the parallel optical lines b, and b, passing through
A, and A, respectively in the inertia plane.

Since there are only two optical lines in an inertia plane which pass
through a given element of it, it follows directly from the above
theorem that if A,, A,and A, be three elements in a separation line and if
A, lies between a pair of parallel optical lines through A, and A, in an
inertia plane containing the separation line, then A, does not lie between
a pasr of parallel optical lines through A, and Ay in the inertia plane.

Similarly 4, does not lie between a pair of parallel optical lines
through 4, and 4, in the inertia plane.

THEOREM 43

If A and A,be anytwo elements of a separation line,there is at least one
other element of the separation line such that A, lies between a pair of
parallel optical lines through A, and that element in an inertia plane
containing the separation line.

Using the notation employed in Theorem 41 let us take any element,
say A, in the optical line b, and before A, and consider the optical line
through A4, parallel to a,.
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Call this optical line a”.

Then since A4, is before A, therefore a” is a before-parallel of a,, and
since a, is a before-parallel of a, therefore a” is also a before-parallel
of a,.

Further, a” lies in the inertia plane and so by Post. XV it has an
element in common with the separation line.

Call this element 4,.

Then A, is before 44 an element of a, and is after A, an element of a”.

Thus A, is between the parallel optical lines a, and a” passing
through 4, and the element A4, respectively and lying in the inertia
plane.

THEOREM 44

Of any three distinct elements of a separation line in a given inertia
plane there is one which lies between a par of parallel optical lines through
the other two and in the inertia plane.

Let 4,, A, and 4, be any three distinct elements in the separation
line.

Then, since there are two optical lines in an inertia plane passing
through any element of it, let us select one of those passing through one
of these elements, say 4,, and the parallel optical lines through A,
and A,.

(Call these optical lines a,, a, and a, respectively.

Then a,, a, and a, all intersect any generator of the inertia plane
belonging to the opposite set.

Let b be such a generator and suppose that a, a, and a; intersect b in
the elements 4,’, 4," and 4,’ respectively.

Then 4,’, 4," and 4, being all elements of the optical line b, and
being all distinct, it follows that of any two of them one must be after
the other.

Thus remembering that Post. III must be satisfied it follows that
either

A, is after A," and A, after A," (1),
or A, is after Ay and A, after 4," (2), i
or Ay is after A" and A, after A;' (3),
or Ay is after Ay and A, after 45" (4), »
or A, is after Ay’ and A4 after A," (5), |
or A, is after Ay’ and 4, after A," (6).

In case (1) a, is an after-parallel of @, and a before-parallel of a, and
so each element of a, is between the parallel optical lines a, and a.
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Thus 4, is between a pair of parallel optical lines through 4, and
A, in the inertia plane.

Similarly in case (2) a, is an after-parallel of a; and a before-parallel
of a, and therefore again A4, is between a pair of parallel optical lines
through 4, and 4, in the inertia plane.

In a similar manner in cases (3) and (4) 4, is between a pair of
parallel optical lines through 4, and 4, in the inertia plane; while in
cases (5) and (6) A, is between a pair of parallel optical lines through
A, and 4, in the inertia plane.

Thus in all cases one of the three elements is between a pair of
parallel optical lines through the other two and in the inertia plane.

THEOREM 45

If A be an element of an optical line a and if B be an element which is
neither before nor after any element of a, then no element of the separation
line AB, with the exception of A, is either before or after any element of a.

Let C be any element of the separation line A B other than 4, and let
¢ be an optical line through C parallel to a.

Suppose, if possible, that C is either before or after some clement of a.

Thencwould be either a before- or after-parallel of @ and accordingly
¢ and @ would be generators of an inertia plane which would contain
the two elements 4 and C of the separation line 4 B and would therefore
contain every element of 4B.

Thus the element B would lie in an inertia plane containing the
optical line a, and therefore, by Theorem 33, B would be either before
or after an element of a, contrary to hypothesis.

Thus the assumption that any element of the separation line 4B,
other than 4, is either before or after any element of a leads to a con-
tradiction and therefore is not true and so no element of 4B with the
exception of 4 is either before or after any element of a.

SETS OF THREE ELEMENTS WHICH DETERMINE INERTIA PLANES

Let 4,, A, and A, be three distinct elements which do not all lie in
one general line, then 4, and 4, must lie in one general line, 4, and 4,
in a second and 4, and 4, in a third.

These three general lines need not however lie in one inertia plane,
although they do in certain cases.

In these latter cases the three elements determine the inertia plane
containing them, since if they should lie in two distinct inertia planes
they would lie in one general line, contrary to hypothesis.
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It is important to have criteria by which we can say that a set of
three elements does lie in one inertia plane.

Casg I. Three elements A,, 4,, 4, lie in one inertia plane if 4, and
4, lie in an optical line while 4, is an element not in the optical line but
before some element of it, or after some element of it.

This is clearly true, since, if 4, and 4, lie in the optical line a, while
A does not lie in a but is before some element of it, then there is a before-
parallel optical line, say b containing 4,, and so @ and b are a pair of
parallel generators of an inertia plane, containing 4,, 4, and 4, and
which is determined by them.

Similarly if 43 be after some element of @ there is a definite after-
parallel optical line b containing 4,, and the two optical lines @ and b
are a pair of parallel generators of an inertia plane containing 4,, 4,
and 44 and which is determined by them.

Casg 1I. Three elements A,, 4,, A, lie in one inertia plane if 4,
and A4, lic in an inertia line and A, be any element outside the inertia
line.

This can also be readily seen to hold since if @ denote the inertia line

containing 4, and A4, then by Post. XIV (a) there is one single element,
say A,, common to the inertia line a and the sub-set «g, and by Post.
XIV (b) there is one single element, say 4, common to the inertia line
a and the sub-set ;.

Thus A4, and 4, lie in one optical line while 4, and A, lie in another
optical line.

These two optical lines may be taken as generators of opposite sets
of an inertia plane containing A,, A, and 4;.

But since this inertia plane contains the two elements 4, and 4, of
the inertia line a, it must contain every element of a and therefore
contains A, and A4,.

Thus the three clements 4., A, and A, lie in one inertia plane which
is determined by them.

Casg III. Three elements 4,, 4,, A, lie in one inertia plane if 4,
and A, lie in a separation line and if 4, be an element not in the
separation line but before at least two elements of it or after at least two
elements of it.

In order to show this let a be the separation line containing 4, and
4, and suppose A, is before the elements 4, and 4; of a which are
supposed distinct.

Then A, and A, must lie either in an optical line or an inertia line
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since 4,is after A5, and similarly 4, and 4, must lie either in an optical
line or an inertia line and the two general lines 4,4, and A;4; are
distinct.

If 4,4, and 4;A4; be both optical lines, then they may be taken as
generators of opposite sets of an inertia plane containing 45, 4,and 4;.

But this inertia plane, since it contains the two distinct elements
A, and A4 of the separation line @, must contain every element of it and
so must contain 4, and 4,.

Thus A4,, A, and A, lie in one inertia plane which is determined by
them.

We shall suppose next that at least one of the general lines 4,4,
and A3 A4;is an inertia line.

Let us say that 4,4, is an inertia line.

Then by Case II the three elements 4,, 4, and A; lie in one inertia
plane which is determined by them.

But since this inertia plane contains the two elements 4, and 4; of
the separation line a, therefore it contains every element of @ and so
must contain 4, and 4,.

Thus 4,, 4, and A, lie in one inertia plane which is determined by
them.,

The case when A4, is after two distinct elements of a is quite analogous.

If 4, and 4, lie in an optical line @ while 4, is an element which is
neither before nor after anyelement of a, then the three elements do not
lie in one inertia plane, for by Theorem 45 no element of the general
line 4, A, with the exception of 4, is either before or after any element
of a.

Butif 4,, 4, and 4, should liein an inertia plane there would be two
optical lines through 4, in the inertia plane and both of these would
have an element in common with the separation line 4,4,.

Thus there would be at least two elements of 4, 4; which would be
before or after A,, contrary to Theorem 45.

Thus 4,, 4, and A4, do not lie in one inertia plane.

If 4, and A, lie in a separation line a, while A4, is before one single
element of a or after one single element of a, then the three elements
4,, Ay, A4 cannot lie in one inertia plane.

This is easily seen, for if we suppose that they do all lie in one inertia
plane, there are two optical lines through 4, in the inertia plane which
have each an element in common with a.
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If these elements be called 4, and 4 then, since a is a separation line,
4, is neither before nor after A; and so A, and 4, must be either both
before or both after A,, contrary to the hypothesis that there is only
one single element of @ which 4, is after or before.

If 4, and 4, lie in a separation line a, while 4, does not lie in @ and
is neither before nor after any element of a, it is also evident from the
above considerations that the three elements 4,, 4,, 4, cannot lie in
one inertia plane.

We have not however as yet proved the possibility of this last case,
but shall do so hereafter (Theorem 99). Till then no use will be made of
it, and it is merely mentioned here for the sake of completeness.

Definition. If an inertia plane have its two sets of generators respec-
tively parallel to the two sets of generators of another distinct inertia

plane, then the two inertia planes will be said to be parallel to one
another.

1t is clear that if P be an inertia plane and 4 be any element outside
it, then there is one single inertia plane containing 4, and parallel to P;
for there is one single optical line through 4 parallel to the one set of
generators of P and one single optical line through A parallel to the
other set of generators of P.

These are generators of opposite sets of an inertia plane containing
A and determine that inertia plane, which is therefore unique.

It is further clear that two parallel inertia planes can have no
element in common, for if the element A lies outside the inertia plane
P and if a be an optical line passing through A and parallel to a
generator of P, then a can have no element in common with P since
otherwise it would require to lie entirely in P, contrary to the hypothesis
that 4 is outside P.

Similarly any optical line & which intersects a and is parallel to a
generator of P of the opposite set can have no element in common
with P.

But if @ be the inertia plane passing through 4 and parallel to P,
every element of ¢ must lie in an optical line such as b and so P and @
can have no element in common.

It is also clear from the definition that two distinct inertia planes
which are parallel to the same inertia plane are parallel to one another;
since distinct optical lines which are parallel to the same optical line
are parallel to one another.
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THEOREM 46

If an inertia plane P have one element in common with each of a pair of
parallel inertia planesQand R, then,if P have a second element in common
with Q, it has also a second element in common with R.

If P and @ have two elements in common they must have a general
line in common which we may call a.

Let B, be the element which by hypothesis P and R have in common.

Then if @ be an inertia or separation line it follows by Theorem 36 and
Post. XV that both the optical lines through B, in the inertia plane P
have an element in common with a, while if @ be an optical line one of
the optical lines through B, in P has an element in common with a.

Thus in all cases at least one of the optical lines through B, in the
inertia plane P has an element in common with a.

Let 4, be such an element.

Suppose first that a is an optical line.

Then a is one of the generators of @ and since the inertia plane B
is parallel to @ and since B, lies in R there will be one of the generators
of R passing through B, and parallel to a.

Since 4, and B, lie in an optical line and are distinct, the one must
be after the other and so this parallel to a through B, must be either
a before- or after-parallel of a.

Let us denote it by b.

Then a and b determine an inertia plane which contains three distinct
elements of P which are not all in one general line and so this inertia
plane must be identical with P.

Thus since it contains the optical line b it follows that P has a second
element in common with R.

Suppose next that a is an inertia or separation line and let ¢ be one
of the generators of @ which pass through 4,.

Then since R is parallel to @ and since B, lies in R there will be one
of the generators of R passing through B, and parallel to c.

Since 4, and B, lie in an optical line and are distinct, the one must
be after the other and so this parallel to ¢ through B; must be a before-
or after-parallel.

Let C be any element of ¢ distinct from 4, and let an optical line
through C intersect the optical line through B, parallel to ¢ in the
element D.

Then by Theorem 30 the optical line C'D must be a before- or after-
parallel of the optical line 4, B,.
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Let the second optical line through C in the inertia plane ¢ meet a
in the element 4,.

The element A4, must exist since a is an inertia or separation line.

Since the optical line C 4, must be a generator of @ of the opposite set
to ¢, there must be an optical line through D in the inertia plane R
which is parallel to CA4, and is a generator of R of the opposite set to
DB;.

Since € and D lie in an optical line and are distinct, the one must be
after the other and so this parallel to C'4, through D must be a before-
or after-parallel.

Let an optical line through A4, intersect the optical line through D
parallel to C4, in the element B,.

Then by Theorem 30 the optical line 4, B, must be a before- or after-
parallel of CD and CD is a before- or after-parallel of 4,B,, and so if
A, B, and A4, B, be distinct they must be parallel to one another.

Now the optical lines C4, and C4, are distinct from the inertia or
separation line @ and are also distinct from one another.

Also the element C' cannot lie in a since then C'4; would have to be
an inertia or separation line.

Thus the elements 4, and A4, are distinct and since they lie in an
inertia or separation line they cannot lie in one optical line.

Thus 4, B, is distinct from 4, B, and is therefore parallel to it.

Also since the general line @ and the optical line 4, B, lie in the inertia
plane P and since the element 4, does not lie in 4, B, it follows by
Theorem 33 that A, is either before or after some element of 4, B, .

Thus 4, B, must be either a before- or after-parallel of 4, B, and so
the optical lines A, B, and 4, B, lie in an inertia plane containing the
general line a and the element B, .

This inertia plane must therefore be identical with P and it contains
the element B, in common with R where B, is distinct from B, .

Thus the theorem holds in all cases.

REMARKS

It follows directly from this theorem that if two distinct inertia
planes P and @ have a general line in common and, if further, P has one
element in common with an inertia plane R which is parallel to , then
P and R have a general line in common.

Further, since Q and R can have no element in common, it follows
that these two general lines have no element in common.

Again if @ and R be two parallel inertia planes and if « be any general
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line in Q, then there is at least one inertia plane containing a and
another general line in R.

This may be shown in the following way:

Let A4, be any element of @ and let f be any inertia line in R.

Then by Post. XIV (a) there is one single element common to the
inertia line f and the sub-set «,. Let B be this element and let 4, be
any element of f which is after B.

Then 4, is after A, but does not lie in «, and so 4, and 4, lie in an
inertia line,

Thus 4, and a lie in an inertia plane, say P, which by Theorem 46
must contain a second element in common with B.

Thus P contains ¢ and another general line in R.

It is easy to see that there are really an infinite number of inertia
planes which have this property of P.

We have seen that if two distinct optical lines intersect a pair of
optical lines one of which is an after-parallel of the other, then of the
two first-mentioned optical lines one is an after-parallel of the other
(Theorem 30).

We have also seen that it is impossible for an optical line to intersect
a pair of neutral-parallel optical lines.

Thus we may state the following definition:

Definition. If two distinct optical lines intersect a pair of optical
lines one of which is an after-parallel of the other, then the four optical
lines will be said to form an optical parallelogram.

Tt is evident thatan optical parallelogram mustlie inaninertia plane.

The elements of intersection will be spoken of as the corners of the
optical parallelogram.

A pair of corners which lie in one optical line will be spoken of as
adjacent.

A pair of corners which do not lie in one optical line will be spoken of
as opposite.

A general line passing through a pair of opposite corners of an optical
parallelogram will be spoken of as a diagonal line of the optical
parallelogram.

We make a distinction between two optical parallelograms having a
diagonal line in common and having a diagonal in common.

When we speak of two optical parallelograms having a diagonal line
1 common we shall mean that a pair of opposite corners of each of the
optical parallelograms lie in the same general line.
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When, on the other hand, we speak of two optical parallelograms
having a diagonal in common, we mean that they have a pair of opposite
corners in common.

It is obvious that an optical parallelogram has two diagonal lines
and it is easy to see that one of these must be an inertia line, and the other
a separation line.

For if we call the four optical lines a, b, ¢ and d, and if a be an after-
parallel of b while ¢ is an after-parallel of d, then the intersection
element of a and ¢ must be after the intersection element of d and b so
that these two intersection elements lie in an inertia line.

Further, if we denote the intersection element of @ and ¢ by 4,, that
of a and d by 4,, that of c and b by 4; and that of d and b by 4, it
follows by Theorem 13 (b) that if A; were either before or after A, then
Ag would have to lie in the optical line 4,4,, or a contrary to hypo-
thesis.

Thus A4 is neither before nor after A, and so 4, and 4, lie in a
separation line.

Definition. If a general line a have one single element in common with
a general line b, then a will be said to intersect b.

Since a general line does not intersect itself and since we may have
two optical parallelograms in the same inertia plane having a diagonal
line in common, it is permissible to speak of two optical parallelograms
in the same inertia plane whose diagonal lines of one kind or the other
do not intersect.

This prepares the way for Post. XVI.

PosturaTe XVI. If two optical parallelograms lie in the
same inertia plane, then if their diagonal lines of one kind do
not intersect, their diagonal lines of the other kind do not
intersect.

THEOREM 47

If a be any general line in an inertia plane P and A be any element of
the inertia plane which is not in the general line, then there is one single
general line through A in the inertia plane which does not intersect a.

Let @ be any other inertia plane distinct from P and containing the
general line a, and let R be an inertia plane passing through 4 and
parallel to Q.

Then by Theorem 46 P and R will have a general line in common
which can have no element in common with a, and so there is at least
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one general line through 4 in the inertia plane P which does not
intersect a.

We must next show that there is only one such general line.

Consider first the case where a is an optical line.

Then of the two optical lines through 4 in the inertia plane P we
know that one is parallel to @ while the other intersects it.

Further by Theorem 36 any inertia line through A in the inertia
plane P must intersect a.

Also by Post. XV any separation line through 4 in the inertia plane
P must intersect a.

——
.
-

Fig. 8.

Thus if @ be an optical line there is one single general line through A
in the inertia plane P which does not intersect a.

Consider next the cases where a is an inertia or a separation line.

If a be an inertia line, then by Theorem 36 both the optical lines
through 4 in the inertia plane P intersect a, while by Post. XV every
separation line in P intersects a.

Thus when @ is an inertia line any general line through A in the
inertia plane P which does not intersect a can only be an inertia line,

Also from Post. XV it follows that when a is a separation line any
general line through A4 in the inertia plane P which does not intersect
a can only be a separation line.
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With these provisos the demonstration of the unique character of
the non-intersecting general line is similar in the two cases.

Suppose, if possible, that there are two general lines through 4 in
the inertia plane, say ¢ and j, which do not intersect a.

Then ¢ and j must intersect in 4.

Let b and ¢ be the two optical lines through 4 in the inertia plane and
let them intersect @ in B and C respectively.

Let d be the second optical line through B in the inertia plane and
let e be the second optical line through C in the inertia plane and let d
and e intersect in D.

Then the optical lines b, ¢, d and e form an optical parallelo-
gram.

Let m be the diagonal line through 4 and D.

Let the optical line d intersect ¢ in £ and let the optical line eintersect
tin F.

Let f be the second optical line through £ in the inertia plane and let
g be the second optical line through F in the inertia plane and let f and
g intersect in G.

Then the optical lines f, g, d and e form an optical parallelogram and
the diagonal line ¢ is of the same kind as the diagonal line a of the
optical parallelogram formed by b, ¢, d and e.

Thus since the diagonal lines @ and ¢ do not intersect it follows by
Post. XVI that the diagonal lines of the other kind to the two optical
parallelograms do not intersect.

But the two optical parallelograms have the corner D in common
and so they must have the diagonal line through D in common.

Thus G must lie in m.

Now suppose that the optical line d intersects j in K and that the
optical line e intersects j in L.

Let k be the second optical line through K in the inertia plane and
let ! be the second optical line through L in the inertia plane and let k
and [ intersect in M.

Then the optical lines k, I, d and e form an optical parallelogram and
since j is supposed not to intersect a it follows as before that M must
lie in m.

But now we have the optical parallelograms formed by f, g, d and e,
and by k, I, d and e having the diagonal line m in common, and so, by
Post. X VI, their other diagonal lines do not intersect, which is contrary
to the hypothesis that ¢ and j intersected in 4.

Thus the hypothesis that there are two general lines through 4 in



80 GEOMETRY OF TIME AND SPACE

the inertia plane which do not intersect a leads to a contradiction and
therefore is not true.

" Thus there is in all cases one single general line through 4 in the
inertia plane which does not intersect a.

THEOREM 48

If two inertia planes P and @ have a general line a in common, and if
A be any element which does not lie either in P or Q, then the inertia planes
through A parallel to P and @ respectively have a general line in common.

Let R and S be the inertia planes through A parallel to P and @
respectively.

Two possibilities are open: either

(1) @ has one element at least in common with R,
or (2) @ has no element in common with R.

Consider first the case where @ has one element at least in common
with R.

Here, since @ has two elements in common with P and since P and R
are parallel, it follows by Theorem 46 that Q has a second element in
common with R.

Further, since @ and S are parallel and R has two elements in com-
mon with @ and has the element 4 in common with S, it follows that
R has a second element in common with S and therefore R and S have
a general line, say ¢, in common.

Next consider the case where @ has no element in common with R.

This case has no analogue in ordinary three-dimensional geometry,
but must be considered in our system which is not confined to three
dimensions.

We have seen that there is at least one inertia plane containing @ and
another general line, say b, in R since P and R are parallel.

Let T be such an inertia plane, let B be any element in b and let U
be the inertia plane through B parallel to Q.

Then, since @ and U are parallel and since 7' contains the general
line @ and also the element B of U, it follows that 7' contains a general
line, say b’, in U.

But the general lines b and b’ both contain the element B and neither
of them can intersect a.

Thus, since b and b’ both lie in one inertia plane 7', it follows by
Theorem 47 that they must be identical, and so b must be common to
U and R.
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Now the inertia planes S and U are both parallel to ¢ and therefore
must be either parallel to one another or else identical.

If they are not identical, the inertia plane R has the general line b in
common with U and has the element 4 in common with S.

Thus in either case R and S have a general line in common.

If we consider case (2) of the last theorem it is clear that, if the general
line @ be an optical line, then since the general line b lies in the same
inertia plane 7' and has no element in common with a, it follows by
Theorem 47 that b must also be an optical line and be parallel to a.

If ¢ be the general line common to R and 8, then provided ¢ and b are
distinct, it follows in a similar manner that ¢ is an optical line parallel
to b and therefore also parallel to a.

A similar result follows in case (1) and so we always have ¢ parallel
to a provided a be an optical line.

Now we have as yet given no definition of the parallelism of any type
of general lines except optical lines, but are now in a position to do so.

Definition. If a be a general line and 4 be any element which does
not lie in it and if two inertia planes R and S through A are parallel
respectively to two others P and @ containing a, then the general line
which R and S have in common is said to be parallel to a.

THEOREM 49

If a be a general line and 4 be any element which does not lie in it, then
there is one single general line containing A and parallel to a.

Two cases have to be considered:

(1) The element A lies in an inertia plane containing a.
(2) The element 4 does not lie in an inertia plane containing a.

Consider first case (1) and let 7' be the inertia plane containing 4
and a.

Let P,, P,, P,;, P, be any other inertia planes containing a, and let
@, @z, Q3, @, be inertia planes through 4 parallel to Py, P,, P,, P,
respectively.

Then, since the inertia plane 7' has the general line @ in common
with P, and has the element 4 in common with @, , it follows that it has
a general line, say b, in common with @, and b does not intersect a.

But, by Theorem 47, there is only one general line through 4 in the
inertia plane 7' which does not intersect @ and so b must be this general
line. .
Similarly @,, @3, @, must all contain the general line b in common
R 6
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with T and so any pair of the inertia planes Q,, Q,, @5, @, have the
same gencral line b in common.

Thus b is independent of the particular pair of inertia planes Py,
P,, P;, P, which we may select and so there is only one general line
through A parallel to a.

Suppose next that 4 does not lie in an inertia plane containing a and
suppose that P, P,, P,, P, are any inertia planes which are distinct
from one another and all contain a.

Let @, @,, @3, @4 be inertia planes through 4 and parallel to P,
P,, P,, P, respectively.

Let P, be an inertia plane containing a and a general line b in @, .

Then b is parallel to a and lies in the same inertia plane P, with it.

If then we take inertia plancs Q,’, @5’, @,” through any element of b
and parallel to P,, P, P, respectively, these will all contain b and will
also be respectively parallel to @,, @5, @, which contain the element 4.

But the general line b and the element A lie in the inertia plane @,
and so, by case (1), @,, @, @, all have the same general line, say ¢, in
common with @,.

Thus any pair of the inertia planes @,, @, @5, @, have the same
general line ¢ in common.

It follows that ¢ is independent of the particular pair of the inertia
planes P;, P,, P;, P, which we may select and so there is only one
general line through 4 parallel to a.

Thus the theorem holds in general.

THEOREM 50

If two distinct general lines are each parallel to a third, then they are
parallel to one another.

Let a and b be two distinct general lines which are each parallel to
the general line c.

Let R, and R, be two inertia plancs each containing ¢ but not
containing a or b.

Let P, and P, be two inertia planes parallel respectively to 2, and
R, and through any element of a.

Then P, and P, each contain a.

Similarly let @, and ¢, be two inertia planes parallel respectively to
R, and R, and containing b.

Then @, is either parallel to P, or identical with it, while @), is either
parallel to P, or identical with it.

In either case we must have a parallel to b.



GEOMETRY OF TIME AND SPACE 83

REMARKS
If @ and b be any pair of parallel general lines, it is easy to see that
they must be general lines of the same kind, for we know already that
two parallel general lines in one inertia plane must be of the same kind,
and by two applications of this result it follows that if @ and b do not lie
in one inertia plane they must also be of the same kind.

THEOREM 51

If two parallel general lines a and b lie in one inertia plane R and if two
other distinct tnertia planes P and Q containing a and b respectively have
an element A wn common, then P and @ have a general line in common
which is parallel to a and b.

Let any clement in b be selected and let S be the inertia plane through
this element and parallel to P.

Thenthe generalline hmustliein S and so, since @ containsthe general
line b and the element A4, it follows that P and @ contain a general
line in common which is parallel to b and therefore also parallel to a.

THEOREM 52

If a pair of non-parallel general lines a and b lie tn one inertia plane P
and of through an element A not lying in the inertia plane there are two
other general lines ¢ and d respectively parallel to a and b, then ¢ and d
lie 7n an inertia plane parallel to P.

Let R be any inertia plane distinct from P which contains @ but not
A, and let S be any inertia plane distinet from P which contains b but
not 4.

Let P’ be the inertia plane through 4 parallel to P, while R’ and 8’
are the inertia planes through A parallel to R and S respectively.

Then P’ and R’ have a general line in common which is parallel to a
and since it passes through 4 must be identical with ¢; while P’ and
S’ have a general line in common which is parallel to b and since it
passes through 4 must be identical with d.

Thus ¢ and d lie in the inertia plane P’ which is parallel to P.

THEOREM 53
If three distinct inertia planes P, Q and R and three parallel general
lines a, b and ¢ be such that a lies in P and R, b in Q and P and c in R and
Q, then if Q' be an inertia plane parallel to Q through any element of P
which does not lie in b the inertia planes R and Q" have a general line in
common which is parallel to c.

Since the inertia plane P contains two elements in common with ¢
6-2
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and one element in common with the parallel inertia plane ', it follows
by Theorem 46 that P and Q' have two elements in common and there-
fore have a general line in common which is parallel to b. Call this
general line d.

If this general line should happen to coincide with @, the result
follows directly.

We shall therefore consider the case where it does not coincide with a.

Let A be any element in a.

Then, incasea be an optical line, the other optical line through A in the
inertia plane P will intersect b, while, if @ be an inertia or separation line,
both the optical lines through A in the inertia plane P will intersect b.

Thus in all cases there is at least one optical line through A in the
inertia plane P which intersects b.

Let such an optical line intersect b in B and let an optical line
through B in the inertia plane @ intersect ¢ in C.

Then B4 and BC may be taken as generators of opposite sets of an
inertia plane, say S, which contains A, B and C.

Now the general line a is parallel to b and therefore also parallel to d,
and, since BA passes through 4, is distinct from a, and lies in the
inertia plane P, it follows that BA intersects d in some element, say /),
which accordingly lies in the inertia plane ¢'.

But since D liesin B4 it lies in the inertia plane S and thus S contains
two elements (B and C) in common with @ and an element D in common
with the parallel inertia plane Q'.

It follows by Theorem 46 that S contains a second element in com-
mon with @’ and so § and @’ contain a general line in common which
must be parallel to CB.

If we denote this general line in § and @’ by g, then any general line
through C in the inertia plane S, with the exception of CB, must
intersect g.

But the element 4 does not lie in b and so does not lie in the inertia
plane @ and therefore does not lie in CB.

Thus since the generalline C A isdistinct from CB, and since C 4 must
lie in §, it follows that C'A must intersect g in some element, say F.

But C and 4 both lie in the inertia plane R which accordingly must
contain the general line C4 and therefore the element F.

Thus since the inertia plane R contains the general line ¢ in common
with ¢ and contains the element F in the parallel inertia plane @', it
follows that R must have a general line in common with @' and this
general line must be parallel to c.
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THEOREM 54

If P,and P,be a pair of parallel inertia planeswhile an inertia plane Q,
has parallel general lines a and b in common with P, and P, respectively
and if Q, be an inertia plane parallel to @, through some element (say C')
of P, which does not lie in b, then the inertia planes P, and Q, will have a
general line tn common which s parallel to a and b.

Since @, is parallel to @, and since P, has the general line bin common
with @, and has the element C' in common with Q,, it follows, by
Theorem 46, that P, and ¢, have a general line (say c¢) in common
which is parallel to b and therefore also to a.

Let 4 be any element of a and let ¢ be any inertia line in P, which
does not coincide with either b or ¢, while @@ is the one single element
common to g and the « sub-set of A. Then A is an optical line.

Let £ be any element of g which is after G but does not lie either in
bore.

Then AE will be an inertia line so that & and the general line a lie
in an inertia plane which we shall call B.

Then, by Theorem 51, P, and 2 have a general line (say e) in common
which is parallel to a, b and c.

But now, by Theorem 53, since the three distinct inertia planes
P,, @, and R and the three parallel general lines e, b and a are such that,
eliesin Pyand R, b in @, and P, and a in R and @,, and since further
@, is an inertia plane parallel to @, through the element C' of P, which
does not lie in b, it follows that R and @, have a general line (say f) in
common which is parallel to @ and therefore also to e and c.

Making use of the same theorem a sccond time, we have the three
distinct inertia planes R, P, and @, and the three parallel general lines
f, e and ¢ such that f lies in R and §,, e in P,and R and ¢ in @, and P,,
and so, since P, is an inertia plane parallel to P, through an element
of R which does not lie in e, it follows that the inertia planes @, and P,
have a general line (say d) in common which is parallel to ¢ and therefore
also parallel to a and b.

Thus the theorem is proved.

THEOREM 55
(@) If a and b be two parallel separation lines in the same inertia plane
and if one element of b be before an element of a, then each element of b is
before an element of a.

Let A be the element of b which by hypothesis is before an element
of a.
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Let the two optical lines through 4 in the inertia plane be called
c and d.

Let B be any other element of b.

Then by Theorem 40 B must be before an element of one of the optical
lines ¢ and d and after an element of the other.

It will be sufficient to consider the case when B is before an element of
c and after an element of d, since the proof in the other case is similar.

Let e and f be the two optical lines through B in the inertia plane and
let e be the one which is parallel to c. Then f intersects ¢ in some
element C.

Also ¢ intersects a in some element D (Post. XV) and D must be
after A ; for since A is before an element of @, we should otherwise have
one element of a after another, contrary to the hypothesis that a is a
separation line.

Now, since B is before an element of ¢ and cannot also be affer an
element of ¢, and since C lies in the optical line f through B, it follows
that C is after B.

Now C cannot be before A for then 4 would be after B, contrary to
the hypothesis that 4 and B lie in a separation line.

If C be either before D or coincident with D, then B is before D an
element of a.

Suppose next that C is after D and let £ be the element in which f
intersects a.

Let & be the second optical line through D in the inertia plane and
let g be the second optical line through £ in the inertia plane and let g
and 4 intersect in F.

Then the optical lines ¢, f, & and ¢ form an optical parallelogram
whose diagonal line through D and ¥ is a.

Let j be the other diagonal line through C and F, then j is an inertia
line.

Let the optical lines d and e intersect in G.

Then the optical lines ¢, f, d and e form an optical parallelogram
whose diagonal line through 4 and B is b.

Thus in the two optical parallclograms, since the diagonal lines a
and b do not intersect, it follows that the diagonal lines of the other kind
do not intersect (Post. XVI).

But the two optical parallelograms have the corner €' in common and
so they must have a diagonal line in common and so G must lie in j.

Also D is after A and so A must be an after-parallel of d.

But, since ' and @ are elements of j which is an inertia line, it follows
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that the one is after the other; and since no element of d can be after an
element of &, it follows that # must be after G.

Thus since F is an element of g and G'is an element of ¢, it follows that
g is an after-parallel of e.

But since £ and B lie in the optical line f, one of them must be after
the other, and since B lies in e it cannot be after £ which is an element
of g.

Thus X is after B and so B is before an element of a.

Thus in all cases B is before an element of a.

(b) If a and b be two parallel separation lines in the same inertia plane
and if one element of b be after an element of a, then each element of b is
after an element of a.

TueorEM 56

(a) If a and b be a pair of parallel separation lines in the same inertia
plane and if an optical line c intersects a in A, and b in B, while a parallel
optical line d intersects a in A, and b in B,, then if B, is before 4, we
have also By before 4,.

By Theorem 55, since B, is before A,, therefore B, is before an
element of a.

But since 4, and B, are distinct clements in the optical line d,
therefore one of them is after the other.

Further, B, could not be after A, for then since B, is before an element
of @ we should have A, before this element of a, contrary to the hypo-
thesis that a is a separation line.

Thus B, must be before 4,.

(b) If a and b be a pair of parallel separation lines in the same inertia
plane and if an optical line c intersects a in A, and b in B, while a parallel
optical line d tntersects a in Ay, and b in By, then if B, is after 4, we have
also B, after 4,.

THEOREM 57

(@) If a and b be a pair of parallel inertia lines in the same inertia
plane and if an optical line c intersect a in A, and b in By, while a parallel
optical line d intersects a in A, and b in B,; then if B, is before 4, we

have also B, before 4,.

Since B, and B, are elements of an inertia line b, one of them must be
after the other.
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We shall first consider the case when B, is after B;.

Let e be the second optical line through B, in the inertia plane and
let f be the second optical line through B, in the inertia plane.

Then since, by hypothesis, d is parallel to ¢ it follows that e must
intersect ¢ in some element C, while d must intersect f in some ele-
ment F.

But, since B, is after B, it follows that e must be an after-parallel
of f and d must be an after-parallel of c.

Thus, since B, and C lie in one optical line, it follows that C is after
B, and similarly, since B, and C lie in one optical line, it follows that
B, is after C.

Let the optical line e intersect a in D.

If then C is before A, we shall have 4, in the « sub-set of C and by
Post. XTIV (b) there is one single element common to the inertia line a
and the B sub-set of C', and since there are only two optical lines through
C in the inertia plane, it follows that this element must be identical
with D.

Thus D is before C' and C' is before B, and consequently D is before B,
and since D and B, lie in one optical line it follows that D lies in the
B sub-set of B,.

If C were identical with A4,, it would also be identical with /) and
again D would lie in the 8 sub-set of B,.

But by Post. XIV (a) there is one single element common to the
inertia line a and the « sub-set of B, and since there are only two
optical lines through B, in the inertia plane this element must lie in d
and must therefore be identical with 4,.

Thus since 4, lies in the o sub-set of B, and is not identical with B,,
therefore B, must be before A4,.

Thus in case C is either before A, or identical with 4, we have B,
before A,.

Next suppose C'is after A,.

Then the optical lines e, d, ¢ and f form an optical parallelogram
whose diagonal line through B, and B, is b.

Let j be the other diagonal line through C and F.

Then since b is an inertia line, j must be a separation line.

Again let ¢ be the second optical line through D in the inertia plane
and let 2 be the second optical line through 4, in the inertia plane and
let g and A intersect in E.

Then the optical lines e, g, ¢ and & form an optical parallelogram
whose diagonal line through 4, and D is a.
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Thus the two optical parallelograms formed by e, d, ¢ and f and by
e, ¢, ¢ and A have diagonal lines of one kind, & and @, which do not
intersect and so by Post. X VI their diagonal lines of the other kind do
not intersect.

But the two optical parallelograms have the corner C in common
and so they have the diagonal line through € in common.

Thus £ lies in j and since j is a separation line & is neither before nor
after F.

But since A, is after B, it follows that % is an after-parallel of f and
so K must be after an element of f.

But since ¥ is neither before nor after F, it follows by Theorem 40
that since ¥ is after an element of f it must be before an element of d.

Thus g is a hefore-parallel of d and since D and B, lie in the optical
line e which intersects ¢ in D and d in B,, it follows that D is before B,.

Thus D lics in the B8 sub-set of B, and in the optical line e.

But by Post. XIV (a) there is one single element common to the inertia
line @ and the « sub-set of B, and since there are only two optical lines
through B, in the inertia plane it follows that this element must lie in
d and is therefore identical with 4,.

Thus since 4, is in the « sub-set of B, and is not identical with B,,
thevefore B, is before A,.

This proves the theorem provided B, is after B, .

Suppose now that B, is after B,.

Then ¢ must be an after-parallel of d and, since 4, and 4, lie in ¢
and d respectively and, since they both lic in the inertia line a, it follows
that 4, must be after 4,.

Suppose now, if possible, that A4, is before B,, then reversing the
rdles of the inertia lines a and b it would follow from what we have
already proved that, ¢ and d being parallel, 4, would have to be before
B, contrary to hypothesis.

Thus, since B, must be either after or before A, and cannot be after,
it follows that B, is before 4,.

(b) If a and b be a pair of parallel inertia lines in the same inertia
plane and if an optical line ¢ intersect a in A, and b in B, while a parallel
optical line d intersects a in Ay and b in By; then of B, is after A, we have
also B, after 4,.

Since a pair of parallel inertia lines always lie in an inertia plane, the
words ““in the same inertia planc”’ may be omitted in the enunciation
of this theorem.
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THEOREM 58

If two elements A and B lie in one optical line and if two other elements
C and D lie in a parallel optical line in the same inertia plane, then if A
be after B and C after D the general lines AD and BC intersect.

Let a be the optical line containing 4 and B, and let b be the parallel
optical line containing C and D.

Then the general lines 4D and BC cannot be parallel optical lines,
for since B is before A an optical line through B which intersected b
would be a before-parallel of an optical line though 4 which intersected
b and so the element in which the former optical line intersected b would
be before the element in which the latter optical line intersected b.

Further, Theorems 56 and 57 show that AD and BC cannot be
either parallel separation lines or parallel inertia lines.

Again AD and BC cannot both be optical lines for we know that two
optical lines which intersect a pair of parallel optical lines are them-
selves parallel.

Thus we are left with the following possibilities as to the general lines
AD and BC':

(1) One is an optical line and the other an inertia line.

(2) One is an optical line and the other a separation line.
(3) One is a separation line and the other an inertia line.

(4) Both are inertia lines.

(5) Both are separation lines.

In case (1) Theorem 36 shows that the general lines intersect.

In cases (2) and (3) it follows from Post. XV that the general lines
intersect.

In cases (4) and (5), since we have shown that the two general lines
cannot be parallel, it follows by Theorem 47 that they must intersect.

Thus in all cases the general lines AD and BC intersect.

Definitions. 1If four optical lines form an optical parallelogram, they
will be spoken of as the side lines of the optical parallelogram.

A pair of side lines which do not intersect will be called opposite.

The element of intersection of the diagonal lines will be spoken of as
the centre of the optical parallelogram.

THEOREM 59
If any two distinct elements A and O be taken in an inertia or separation
line 1 in a given inertia plane, then there is one single optical parallelogram
in the inertia plane having O as the centre and A as one of its corners.
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Let @ and b be the two optical lines through 4 in the inertia plane
while ¢ and d are those through O; the optical line ¢ being parallel
to a and the optical line d parallel to b.

Let j be the second diagonal line of the optical parallelogram formed
by a, b, c and d.

Then by Theorem 47 there is one single general line through O and
parallel to j.

Call this general line £ and let @ intersect k& in D while b intersects
kin C.

The elements of intersection must exist since k, being parallel to 7,
must be an inertia or separation line according as 7 is a separation or
inertia line; while @ and b are both optical lines.

Let e be the second optical line through C in the inertia plane, while
f1s the second optical line through D in the inertia plane and let e and
f intersect in B.

Then a, b, e and f form an optical parallelogram in the same inertia
plane with that formed by a, b, ¢ and d and their diagonal lines of one
kind % and j do not intersect and so by Post. X VI their diagonal lines
of the other kind do not intersect.

But the corner 4 is common to both optical parallelograms and so
the diagonal line ¢ which passes through that corner must be a diagonal
line of both optical parallelograms.

Thus B must lic in ¢ and so O is the centre of the optical parallelogram
formed by a, b, e and f, while 4 is one of its corners.

Again, if there were a second optical parallelogram in the inertia
plane having O as centre and A one of its corners, then such an optical
parallelogram would have ¢ as one of its diagonal lines and so the other
diagonal lines of the two optical parallelograms would not intersect.

Further, since the two optical parallelograms have the element O
common to these other diagonal lines, the latter must be identical.

But there are only two optical lines, @ and b, through 4 in the inertia
plane and these intersect & in D and C respectively, which must
accordingly be a pair of opposite corners of the second optical paral-
lelogram.

But then the second optical parallelogram would have e and f as its
remaining side lines and so could not be distinct from the first optical
parallelogram.

Thus there is no second optical parallelogram in the inertia plane
having O as centre and 4 as one of its corners.
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THEOREM 60

If two cptical parallelograms have two opposite corners in common, then
they have a common cenire.

Two cases are possible:

(1) The common opposite corners may lie in an inertia line.
(2) The common opposite corners may lie in a separation line.
We shall consider first the case where they lie in an inertia line.
Let A and B be the two common opposite corners of the optical
parallelograms: B being after A.
Let C' and D be the other pair of opposite corners of the one optical
parallelogram which we shall suppose to lie in an inertia plane P, while
B

N

Fig. 9.

C’ and D’ arc the other pair of opposite corners of the other optical
parallelogram which we shall suppose to lie in an inertia plane P’.

Then P and P’ must be distinct if the optical parallelograms are
distinct.

Let O be the centre of the optical parallelogram whose corners are
A, B,C, D, and let, OF and OF be optical lines through O parallel to CB
and AC respectively and intersecting AC and CB in E and F re-
spectively.

Then £, O, F and O form the corners of an optical parallelogram in
the inertia plane P, and this optical parallelogram and the one whose
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corners are 4, C, B and D have the common diagonal line CD and so
their diagonal lines of the other kind do not intersect.

Thus AB and EF are parallel and EF is an inertia line.

Now let OE’ and OF’ be optical lines through O parallel to C'B
and AC’ respectively and intersecting AC’ and C'B in E’ and F’
respectively.

Then AC and AC" may be taken as generators of opposite sets of an
inertia plane @, , while OF and OF’ will be generators of opposite sets
of a parallel inertia plane @, .

Similarly BC and BC’ may be taken as generators of opposite sets of
an inertia plane R,, while OF and OE’ will be generators of opposite
sets of a parallel inertia plane R,.

But @, and R, have the general line CC” in common, while @, and R,
have the general line £ £’ in common and so since R, and R, are parallel
it follows that CC’ and EE’ are parallel.

Again since R; and @), have the general line F#’ in common and
since ¢, and @), are parallel, it follows that F'F’ and CC’ are parallel.

Thus FF’ is parallel to KE'.

But since EF is an inertia line there exists an inertia plane con-
taining B, F and F’. Let S be this inertia plane.

Then there exists in § a general line through £ which is parallel to
FF’ and, since there can be only one parallel to FF’ through K, this
must be identical with the general line KE’.

Thus E’ must lie in the inertia plane S.

But since 4B and EF are parallel and lie in P while P’ and S are two
other distinct inertia planes containing AB and EF respectively and
since P’ and S have an element #’ in common, it follows by Theorem 51
that the general line E’F’ which is common to P’ and § is parallel
to AB.

Butnow E’, C’, F' and O form the corners of an optical parallelogram
in the inertia plane P’, and this optical parallelogram and the one
whose cornersare 4, C’, Band D’ have one pair of diagonal lines, namely
E'F’ and A B, which do not intersect and so their diagonal lines of the
other kind do not intersect.

But these latter diagonal lines are C’O and C’D’ respectively and so
since they have the element C’ in common it follows that they are
identical.

Thus the element O must lie in C'D’ and since it also lies in AB it

follows that O is the centre of the optical parallelogram whose corners
are 4, C', B, D’.
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Thus the optical parallelograms having 4 and B as opposite corners
have a common centre O.

We have next to consider the case where the common opposite
corners lie in a separation line.

Let A and B be the two common opposite corners of the optical
parallelograms: B being neither before nor after A.

Let C and D be the other pair of opposite corners of the one optical
parallelogram, which we shall suppose to lie in an inertia plane P,
while " and D’ are the other pair of opposite corners of the other

»,

D

Fig. 10.

optical parallelogram, which we shall suppose to lie in an inertia
plane P’.

Then P and P’ must be distinct if the optical parallelograms are
distinct.

We shall further suppose D to be after C and D’ after C'.

Now the following pairs of intersecting optical lines may be taken as
generators of opposite sets of certain inertia planes which we shall
denote by the following symbols opposite each pair.
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Optical lines Inertia plane
04 andC'A . . . . @
BD and BD' . . . . Q,
CB and C'B . . . . R,
AD and AD’ . . . . R,
AC'and AD . . . . 8,
BD'and BC . . . . 8,
BC'andBD . . . . T,
AD'" and AC . . . . T,

Of these inertia planes we evidently have those pairs parallel which
are represented by the same letters.

Thus the general line €’ D, since it lies in S, and 7';, must be parallel
to the general line CD’, since the latter lies in S, and 77,.

Similarly the general line DD’, since it lies in @, and R,, must be
parallel to the general line C"C, since the latter lies in ¢, and R, .

But CD is an inertia line and so there is an inertia plane containing
C, D and D', and if we call this inertia plane U then U contains the
general lines CD’ and DD’ and so U must also contain the general lines
through D parallel to CD’ and through C parallel to DD’.

That is: the inertia plane U must contain C'D and C'C.

Thus U must contain C’ and therefore contains C'D’.

Thus the centres of the two optical parallelograms must lie in the
inertia plane U and in the separation line A B.

The inertia plane U cannot however have more than one clement in
common with 4B, for otherwise it would contain both 4 and B, and
since U contains D we should have U identical with P ; but U contains
D’ which does not lie in P and so this is impossible.

Thus the element in which CD intersects 4 B must be identical with
the element in which C’D’ intersects AB, or in other words the two
optical parallelograms have a common centre.

Thus the theorem is proved.

THEOREM 61

If two optical parallelograms have two adjacent corners in common, then
optical lines through the centres of the optical parallelograms and inter-
secting their common side line intersect it in the same element.

Let A and B be the two common adjacent corners of two optical

parallelograms which we shall suppose to lie in separate inertia planes
P and P'.
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We shall suppose C and D to be the other corners of the optical
parallelogram in P and shall suppose C' to be opposite to B and D
opposite to 4.

We may further, without limitation of generality, take the diagonal
line CB as the inertia diagonal line.

We shall suppose C” and D’ to be the remaining corners of the optical
parallelogram in P’ and we shall take C'’ opposite to B and D’ opposite
to 4.

Let O be the centre of the optical parallelogram in P and let the one
optical line through O in the inertia plane P intersect 4B in M, while
the other optical line in P through O intersects AC in K.

1

Fig. 11.

Then A4, E, O and M form the corners of an optical parallelogram also
in the inertia plane P.

The optical parallelograms whose corners are 4, K, O, M and 4, C,
D, B have the diagonal line 4D in common and so, by Post. X VI, their
diagonal lines of the other kind do not intersect.

Thus EM and CB are parallel.

Now let M N be the optical line through M parallel to AC" and let
MN intersect the diagonal line ¢'B in O'.

Let O'E’ be the optical line through O’ parallel to M A and inter-
secting AC' in E’.

Then O’E’ is parallel to OF and unless it be a neutral-parallel we
have O'E’ and OF in one inertia plane.
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Now, since M N is an optical line through M which neither intersects
OE nor is parallel to it, it follows by Post. XII that there is one single
element in M N which is neither before nor after any element of OE.

If O, be this element, we shall suppose first that O’ is distinct from
O, and thereby ensure that O’E’ and OF lie in one inertia plane.

Call this inertia plane @.

Now, since MO and MO’ are respectively parallel to AE and AE’
and all four are optical lines, it follows that M, O and O’ lie in one
inertia plane, say R,, while 4, E and E’ lie in a parallel inertia plane,
say R,.

But @ has the elements O and O’ in common with R, and has the
elements £ and £’ in common with R, and so the general lines 00’ and
EE’ are parallel.

We have howcver further seen that OB and EM are parallel and are
both inertia lines.

Thus O, O’ and B lie in one inertia plane, say 8,, while £, £’ and M
lie in a parallel inertia plane, say S,.

But the inertia plane P’ has the elements O’ and B in common with
8, and has the elements £’ and M in common with §,.

Thus BO' and ME' are parallel.

But BO’ is the same general line as BC’, which is a diagonal line of
the optical parallelogram whose corners are A, C', D', B, while ME’ is
a diagonal line of the optical parallelogram whose corners are 4, £’, 0’,
M and these diagonal lines do not intersect.

It follows by Post. X VI that their other diagonal lines 4D’ and A0’
do not intersect and so since they have the element A in common they
must be identical.

Thus O’ must lie in 4D’ and since it also lies in BC', it follows that
O’ is the centre of the optical parallelogram whose corners are 4, C’,
D', B.

Thus the optical lines through the centres O and O’ and intersecting
AB, intersect it in the same element M.

Now this same method of proof holds for the case of any optical
parallelogram in the inertia plane P’ which has 4 and B as adjacent
corners, provided that the diagonal line through B does not intersect
MN in O,, and so all such optical parallelograms have their centres in
the optical line M N.

Again, if we select a second optical parallelogram in the inertia plane
P having 4 and B as adjacent corners but not having O as centre, we
may use a similar method of proof and show that all optical parallelo-

R 7
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grams in the inertia plane P’ having A and B as adjacent corners have,
with one possible exception, got their centres in one optical line.

This one possible exception is, however, different from the one possible
exception which we found before and so it follows that no exception
exists.

Similar considerations show that all optical parallelograms in the
inertia plane P, having 4 and B as adjacent corners, have their centres
in one optical line MO.

Thus the theorem holds for optical parallelograms in the inertia
planes P and P’ and will therefore also hold for optical parallelograms
in any other inertia planes which contain 4 and B.

Definition. If A and B be two distinct elements lying in an inertia
line or in a separation line, then the centre of an optical parallelogram
of which 4 and B are a pair of opposite corners will be spoken of as the
mean of the elements 4 and B.

Theorem 60 shows that if two elements 4 and B lie in an inertia or
separation line their mean is independent of the particular optical
parallelogram used to define it.

Since a diagonal line of an optical parallelogram is either an inertia
or a separation line, the above definition fails for the case of two distinct
elements lying in an optical line.

In this case we adopt the following definition.

Definition. 1f A and B be two distinct elements lying in an optical
line, then an optical line through the centre of an optical parallelogram
of which 4 and B are a pair of adjacent corners and intersecting the
optical line 4B, intersects it in an element which will be spoken of as
the mean of the elements 4 and B.

Theorem 61 shows that if two elements 4 and B lie in an optical line,
their mean is independent of the particular optical parallelogram used
to define it.

REMARKS

If A, B, C and D be the corners of an optical parallelogram such that
Bis after A and C after B, then C will be after A and so AC will be the
inertia diagonal line and BD will be the separation diagonal line.

If AC and BD intersect in O, then O is neither before nor after B, since
O and B are elements of a separation line.

Now O cannot be after C, for this would entail O being after B, and
also O cannot be before A, for this would entail O being before B.
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Thus since 4, O and C are distinet elements of the one inertia line
we must have O after A and before C.

If now an optical line be taken through O parallel to AD and BC and
intersecting 4B in &, then OF must be an after-parallel of AD and a
before-parallel of BC.

Thus, since 4, £ and B are distinct elements of the optical line 4B,
it follows that Z is after A and before B.

We sec from these results that the mean of two elements lying either
in an inertia or optical line must be after the one and before the other.

THEOREM 62

If A, B and B’ be three distinct elements in a general line a, then the
mean of A and B’ must be distinct from the mean of A and B.

Let us first take the case where a is an optical line and let P be any
inertia plane containing a.

Let a, be any optical line lying in P and parallel to a, and let optical
lines through 4, B and B’ intersect a, in the elements 4,, B, and B’
respectively,

Then A, A, B,, B form the corners of an optical parallelogram,
while A, 4,, B,’, B’ form the corners of another optical parallelogram
having the two adjacent corners 4 and A, in common with the first.

Let C and C" be the centres of these two optical parallelograms re-
spectively.

Then, as we have seen, ¢ and ¢’ must lie in an optical line parallel
to a.

An optical line through C parallel to A4, 4 will intersect a in some
element M, which is the mean of 4 and B; while an optical line through
C’ parallel to 4, 4 will intersect @ in some element M’, which is the
mean of 4 and B'.

Now €’ cannot be identical with C, for then the general line 4,C
would be identical with the general line 4,C"’, and so B’ would have to
be identical with B: contrary to hypothesis.

Thus CM and C’' M’ must be distinct and parallel optical lines, and
therefore M’ must be distinct from M, as was to be proved.

Next let us consider the case where a is either an inertia line or a
separation line and let P be any inertia plane containing a.

Then there is one single optical parallelogram in P having 4 and B
as a pair of opposite corners and a centre, say C, whose position in a is
independent of P by Theorem 60,

7-2
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But there is also one single optical parallelogram in P having 4 and
B’ as a pair of opposite corners and a centre, say C’, whose position
in a is also independent of P.

-Then C' could not be identical with C for, were this the case, we
should have two distinct optical parallelograms in P having C as a
common centre and 4 as a common corner, which would be contrary
to what we proved in Theorem 59.

Thus, whatever type of general line @ may be, the mean of 4 and B
must be distinct from the mean of A and B’.

It follows at once from this theorem that if A and C be any two

elements in any type of general line, there is not more than one element
B such that C is the mean of 4 and B.

THEOREM 63

If two or more optical parallelograms have a pair of opposite side lines
in common, their centres lie in a parallel optical line in the same inertia
plane.

We have already seen in the course of proving Theorem 61 that this
result must hold if the two optical parallelograms have a third side in
common.

In case this is not so, let 4,, B,, C,, D, be four distinct elements in
an optical line a and let b be a parallel optical line in an inertia plane
containing a.

Let the second optical lines through 4,, B,, C,, D, respectively in
the inertia plane intersect b in 4,, B,, C,, D, respectively and let
A,, B,, A,, B, be the corners of one of the optical parallelograms under
consideration and C,, D,, C,, D, the corners of another.

Then 4,, D,, A,, D, is a third optical parallelogram.

Call these optical parallelograms (1), (2) and (3) and let their centres
be 0, O0’, O" respectively.

Then by the first case O and O” lie in an optical line parallel to @ and
b since (1) and (3) have the pair of adjacent corners 4, and 4, in
common.

Similarly O’ and O” lie in an optical line parallel to a and b since (2)
and (3) have the pair of adjacent corners D, and D, in common.

But there is only one optical line through O” parallel to a and b and
80 0, O’ and 0" lie in one optical line parallel to @ and b.

Thus all optical parallelograms having a and b as a pair of opposite
side lines must have their centres in the optical line 00’.
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THEOREM 64

If two optical parallelograms have a pair of opposite side lines in com-
mon and if one diagonal line of the one optical parallelogram passes
through the centre of the other, then the two optical parallelograms have a
common centre.

Since the centre of an optical parallelogram is the element of inter-
section of its diagonal lines, and since, by hypothesis, one diagonal line
of the one optical parallelogram passes through the centre of the other,
it follows that both centres must lie in that diagonal line.

Now we know that in any optical parallelogram the one diagonal line
is an inertia line, while the other is a separation line.

Thus the centres of the two optical parallelograms must lie in an
inertia line or a separation line.

But we have already seen by Theorem 63 that they lie in an optical
line, and since any two distinct elements determine a general line, it
follows that the centres cannot be distinet.

Thus the two optical parallelograms have a common centre.

THEOREM 65

If two optical parallelograms P and @ in the same inertia plane have a
common centre, then the elements in which a pair of opposite side lines of
P intersect the diagonal lines of @ form the corners of an optical parallelo-
gram with the same centre.

Let O be the common centre of the two optical parallelograms P and
@ and let 7 and j be the two diagonal lines of ) while @ and b are a pair
of opposite side lines of P.

Let a intersect 4 in £ and j in F, while b intersects ¢ in G and j in H.

Denote the second optical line through £ in the inertia plane by c,
and suppose it intersects b in H’.

Denote the second optical line through ¢ in the inertia plane by d,
and suppose it intersects a in F’.

Then the optical lines a, ¢, b and d form an optical parallelogram one
of whose diagonal lines, namely 3, passes through O the centre of the
optical parallelogram P of which a and b are opposite side lines, and so
by Theorem 64 these two optical parallelograms have a common
centre O.

Thus if j° be the second diagonal line of the optical parallelogram
formed by a, ¢, b and d, it has the element O in common with j.
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The two optical parallelograms ¢ and that formed by a, ¢, b and d
have however the diagonal line 7 in common and thus their diagonal
lines of one kind do not intersect, and so by Post. XVI their diagonal
lines of the other kind do not intersect.

Fig. 12.

But these diagonal lines are j and j* which as we have seen have the
element O in common and therefore must be identical.

Thus F’ must be identical with F and H’ must be identical with H
and so the elements £, F, G' and H must form the corners of an optical
parallelogram having the same centre as the two original optical
parallelograms, as was to be proved.

REMARKS AND DEFINITIONS

If a and b be any two distinct inertia lines and 4, be any element in
a which is not an element of intersection with b, then from Post. XIV (a)
it follows that there is one single element common to the inertia line b
and the « sub-set of 4,.

Call this element B,.

Then B, is distinct from 4, and cannot be an element of intersection
of the two inertia lines, for if it were 4, and B, would lie both in an
inertia line and an optical line, which is impossible.

Further, there cannot be an element of intersection of the two
inertia lines lying after A, and before B, for, by Theorem 12, any
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element which is after A, and before B, must lie in the optical line
A, B, and so, being distinct from 4, it could not also lie in the inertia
line a.

Thus any element of intersection of the two inertia lines, if such an
element exists, must lie either before 4, or after B,.

Again from Post. X1V (a) it follows that there is one single element,
say 4,, common to the inertia line @ and the « sub-set of By, and again
A4, cannot be an element of intersection of the inertia lines.

Further, any such element, if it exists, must lie either before A, or
after A, .

Proceeding again in the same way there is one single element, say
B, common to the inertia linc b and the o sub-set of 4, and one single
element 4, common to the inertia line @ and the « sub-set of B,, and
SO on.

Thus we get an infinite series of elements 4,, 4,, 4,, 44, ... in the
inertia line ¢ and another infinite series of elements B,
B,, B,, By, ... in the inertia line b. Ay ]

An element of intersection of the two inertia lines if As
such an element exists must lie either before 4, or after
A, , where n is any finite integer whatever.

This process will be spoken of as taking steps along the A,
inertia line a with respect to the inertia line b.

The passing from A, to A, is the first step, the passing
from A4, to A, the second, and so on.

If X be an element which is after A, in the inertia line
a and before A, but not before 4,_,, then the clement X
will be said to be surpassed from A, in n steps taken with
respect to b.

If C be an element of intersection of the two inertia Ao
lines and if C be after A, it is evident from what we have
said that C cannot be surpassed from A, wn any finite |a b
number of steps. Fig. 13.

These remarks and definitions prepare the way for Post. XVII.

B,

Ay

Bo

PosturaTe XVII. If A, and A, be two elements of an inertia
line a such that A_ is after A, and if / be a second inertia line
which does not intersect a either in A, A, or any element both
after A, and before A, , then A, may be surpassed in a finite
number of steps taken from A, along a with respect to b.

This postulate will be found to take the place of the well-known
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azxiom of Archimedes, to which it will be seen to bear a certain resem-
blance.

1t, however, unlike the axiom of Archimedes, contains no reference
to congruence.

It follows directly from Post. X VIIthat if the two inertia lines @ and
b do not intersect at all then 4, may always be surpassed in a finite
number of steps.

There is also what is equivalent to a (b) form of this postulate which,
however, is not independent.

1t may be stated and proved as follows:

If A, and A, be two elements of an inertia line a such that A, s before
A,, and of b be a second vnertia line which does not intersect a either in
A,, A, or any element both before A, and after A, then A, may be
reached in a finite number of steps taken along a from an element before
A, in a and with respect to b.

By Post. XVII since 4, is after 4, it follows that 4, may be sur-
passed in a finite number of steps, say n, taken from 4, along a with
respect to b.

Let the elements marking these steps in a be denoted by 4_,,,
Ay, Ay, ... Ay, and let the elements in b lying in the 8 sub-sets of
these be denoted respectively by B, B, ., B, o, ... By, ;.

Then A, may either coincide with 4, ,_, or be after it.

If A4, coincides with A, _,, then it is reached in » — 1 steps taken
along a from 4.

Now there is one single element, say B,_,, common to the inertia line
b and the B sub-set of A, and also one single element, say 4, _,, common
to the inertia line a and the 8 sub-set of B,_;.

Then A4, _, is before A, and A, is reached in » steps taken along a from
A,_; with respect to b.

This proves the result if 4, coincides with 4, _,.

Suppose next that 4, does not coincide with 4, _; .

Then A, is after A,,_, and before 4, .

Let B_, be the one single element common to the inertia line b and
the S8 sub-set of 4, and let A_; be the one single element common to
the inertia line @ and the B sub-set of B_,.

Let B_, be the one single element common to the inertia line b and
the 8 sub-set of A_, and let 4_, be the one single element common to
the inertia line a and the 8 sub-set of B_,, and so on, till we get to an
element A_,.
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Now B_, cannot coincide with B, ,,_, for then 4,and 4, , would be
two distinct elements of the inertia line @ both lying in the a sub-set of
B_,, contrary to Post. XIV (a).

Further, A, is before A, , and B_, is before A, and so B_, is before
x+n

It follows that B_, cannot be after B,,, ,, since otherwise, by
Theorem 12, B_, would require to lie in the optical line 4, ,B,,, ;.
But B_, is distinct from B, ,,_, and both lie in the inertia line b and
therefore cannot both lie in one optical line.

It follows that B_, must be before B,_,_,.

Similarly B, ,_, must be before B_;.

Reversing the roles of @ and b we get in an analogous way:

A_,is before A, _yand A, ,is before A_,.
Repeating this reasoning we get:
A_yis before A, ,and A, _5is before 4_,,

4

......................................................

......................................................

and so we see that 4_, is before A, and 4, is before A_, ;.

Thus A_, is an element in a which is before A, and 4, may be
reached in a finite number » of steps taken from A_,, with respect to b
along a.

Thus the result holds in general.

THEOREM 66

(a) If Ayand A, be two elements in an inertia line a which lies in the
same tnertia plane with another inertia line b which does not intersect a
in Ay, A,, or any element after the one and before the other, and if an
optical line through A, intersects b in B, so that By is after A, then a
parallel optical line through A, will intersect b in an element which s
after 4.

We shall first suppose that 4 is after 4.

Let the optical line through 4, parallel to 4, B, intersect b in B,.

Then by Post. XVII 4, may be surpassed in a finite number of steps
say n, taken from A4, along a with respect to b.

Let the elements (including 4,) marking these stepsin a be 4,, 4,,
A4,, ... 4, and let the elements in b lying in the « sub-sets of these be
By, B,, B,, ... B, respectively.

Then A, may either coincide with A4,_, or be after it.

Now the optical line By 4, intersects the two optical lines 4, B, and
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A, B, and so these latter two optical lines belong to one set and are
therefore parallel.

Similarly 4, B, intersects the two optical lines By4, and B, 4, and
8o these two are also parallel but belong to the other set.

Proceeding thus we see that the optical lines 4,B,, A, B;, A3 B,, ...
4, B, belong to one set and are all parallel, while By4,, B, 4,, By4,,
... B, 1A, belong to the other set and are all parallel.

But A lies in the o sub-set of B,
Bl ”» ”» Al:
A2 9 2 Bl,
Bn~1 ” ”» An—l ’
All ” ” Bn—l’
B A

n ”” »» n:*

Thus if 4, coincides with 4,,_,, then B, must coincide with B, _; and
therefore B, must lie in the « sub-set of 4, and since B, and 4, are
distinet it follows that B, is after A, and the optical lines 4,8, and
A, B, are parallel.

This proves the theorem in this case.

If 4, does not coincide with 4, _,, then it must be after A,_, and
before A,, .

Also since 4, B, is parallel to 4, B, it must be parallel to 4, ; B, ,
and to 4, B, .

But since A4, is after 4, _, and before 4, it follows that 4, B, is an
after-parallel of 4, _, B, _; and a before-parallel of 4, B,, .

Further, A, B, must intersect the optical line B, , 4, in some
element, say C, since B, _, A, is an optical line of the opposite set to
A, B, and so C must be after B, , and before A, .

Thus B, _, must lie in the B sub-set of €, while 4, lies in the & sub-set
of C.

But by Post. XIV (a) there is one single element common to the
inertia line b and the « sub-set of € and this must lie in the other optical
line through €' in the inertia plane; that is to say in the optical line
A, B, and must therefore be identical with B,.

Similarly by Post. X1V (b) there is one single element common to the
inertia line @ and the B sub-set of ' and this must be identical with 4 ,.

Thus C is after A, and before B, and therefore B, is after A .

Thus the theorem is proved for all cases in which A4 _ is after 4,,.

A similar method shows that the theorem is true when A4, is before
4, except that the corresponding (b) form takes the place of Post. X VII.

Thus the theorem holds in general.
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(b) If Ay and A, be two elements in an inertia line a which lies in the
same inertia plane with another inertia line b which does not intersect a
n Ay, A,, or any element before the one and after the other, and if an
optical line through A, intersects b in B, so that B, is before A, then a

parallel optical line through A, will intersect b in an element which is
before 4.

THEOREM 67
(a) If Agand A, be two elements in a separation line a which lies in the
same 1nertia plane with another separation line b which does not intersect
aim Ay, A, or any element lying between a pair of parallel optical lines
through Ay and A in the inertia plane, and if an optical line through A,
wntersects b in B, so that B, is after A, then a parallel optical line through
A, will intersect b in an element which is after A .

Fig. 14.

In case the separation lines @ and b do not intersect at all, then since
they lie in one inertia plane they are parallel and the result follows
directly from Theorem 56 (b).

We shall therefore consider the case in which an element of inter-
section of @ and b does exist and we shall denote this element by O.
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We shall suppose first that 4, is between a pair of parallel optical
lines through 4, and O in the inertia plane.

Now let I be the optical line through O parallel to 4,B,.

It will be sufficient to consider the case where [ is an after-parallel
of A, B,, since the case of a before-parallel is quite analogous.

If A, B, be the optical line through A, parallel to [ and meeting b in
the element B,, then 4, B, will be an after-parallel of 4,B, and a
before-parallel of I.

Now, by Theorem 59, there exists a definite optical parallelogram in
the inertia plane having O as centre and B, as one of its corners, so
that b is one of its diagonal lines.

Let D, be the corner opposite B, and let the optical line 4,B,
intersect the other diagonal line in F while the second optical line
through B in the inertia plane intersects the same diagonal line in H,,.

Then By, F,, D,and H, are the corners of the optical parallelogram.

Let the separation line a intersect the optical line DyH in €, and
let the optical line through O parallel to Dy F intersect Byl in K,
while the optical line through 4, parallel to D, F, intersects Dy H in
G.

Then 4,, E,, C, and G, are the corners of an optical parallelogram
having a pair of opposite side lines in common with the optical parallelo-
gram whose corners are By, F, D, and H, and having its diagonal line
a passing through O the centre of this optical parallelogram, and so, by
Theorem 64, the two optical parallelograms have a common centre O.

Denote the optical parallelogram whose corners are By, F, D, and
H,by P, and the one whose corners are 4,, K, C; and G by Q,.

Suppose now that the optical line 4,G, intersects the diagonal line
By Dy in B, and the diagonal line # H, in H, and that the optical line
E,C, intersects the diagonal line F,H, in F, and the diagonal line
ByDyin D;.

Then by Theorem 65, B, F;, D, and H, form the corners of an optical
parallelogram having also the centre 0. Callit P,.

Suppose now that the optical line B, F, intersects the diagonal line
A,Cyin A, and the diagonal line E,G in K, and that the optical line
D, H, intersects the diagonal line 4,C, in €, and the diagonal line
E,G,in G,.

Then, by Theorem 65, 4,, £, , C,, G, form the corners of an optical
parallelogram @, which bears the same relation to the optical parallelo-
gram P; whose corners are B, F;, D, and H, as the optical parallelo-
gram @, to the optical parallelogram P,.
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This construction may be repeated indefinitely, and we obtain a
series of parallel optical lines By ¥, B, F,, B,F,, By F,, etc., inter-
secting the separation line b in the elements B,, B;, B,, B;, etc., and
the other diagonal line of the optical parallelogram P, in the elements
F,, F,,F,, Fs, etc.

Further, these same optical lines intersect the separation line a in
the elements 4,, 4,, 4,, 44, etc., and the other diagonal line of the
optical parallelogram @), in the elements £, E,, F,, E;, etc.

Again we have another set of parallel optical lines Ay,B,, 4,B,,
AyBy, Ay B,, ete., and a further set B, F,, E,|F,, E,F,, E,F,, etc.

Now by hypothesis I is an after-parallel of 4,B, and, since OF is
an inertia line, it follows that F'| is before O.

Similarly %, is before O.

But since b is a separation line and By is after A, we must also have
B, after A,.

It follows that B, F, is an after-parallel of By F, and, since B F, is
an optical line, we must have F, after E, so that F', lies in the « sub-set
of B,.

Also since F F, is an inertia line we must have F, after F so that F,
is not an element of the optical line £ F'; but is before an element of it.

Thus, since FE is an optical line, we must have ¥ after ¥, and so
E, must lie in the « sub-set of F.

Also, from what weshowed on p. 103, the element O of intersection of
the two inertia lines ¥, H, and E,(, cannot lie before F'; and, since we
already know that F is before O, it follows that F, is also before O.

Thus the optical line ! must be an after-parallel of B, F,: that is to
say | is an after-parallel of 4, B, and so E, is also before 0.

But we saw that B; must be after 4, and so since a is a separation line
we must have B, after 4,.

By repetition of this reasoning we can show that:

B, F, is an after-parallel of B, F';
'B3F3 ”» ” B2F2

while the optical line [ is an after-parallel of all these.
Also we can show that

E, lies in the « sub-set of F'; while F, lies in the « sub-set of K,
E2 ’ EE) F2 12 Fa b2

..............................................................................

..............................................................................
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Thus F,, F,, F,, ... mark steps taken along the inertia line ¥,0
with respect to the inertia line £,0.
Now let the optical line 4, B, intersect F,0 in F, and E O in E,.
Then, by hypothesis, A, B_ is a before-parallel of I and it follows
that both F, and K, are before O.
Thus, by Post. XVII, F, may be surpassed in a finite number n of
steps taken from ¥ along F,0 with respect to E,0.
Now we have
B, after A,,
B, ,, A,,

If then F, should happen to coincide with ¥, ; we should have 4,
coinciding with 4,_; and B, coinciding with B, _; and accordingly we
should have B, after 4.

By

b Re B,
K
O
a Ay AZ Ap
Ep
E. Fn
En-l Fa;
Fn-1

Fig. 15.

Suppose next that F, does not coincide with F,_,, but is after F,_,

and before F,, .
Then B, ¥, will be an after-parallel of B, _, F, _, and a before-parallel
of B, F,.
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Let B, F, intersect 4,_, B, in the element K.

Then, since 4,_, K is an optical line, we must have K after A,_, and
also K before B, .

Since 4, _; and 4, lie in the separation line @, we must have K after
A, : while, since B, and B,_ lie in the separation line b, we must have B,
after K.

It follows by Post. III that B, must be after A, as was to be proved.

Now we started out by considering the case where 4, is between a
pair of parallel optical lines through 4, and O in the inertia plane; if
instead we had taken the case where A4 is between a pair of parallel
optical lines through A, and O in the inertia plane, then the supposition
that 4 . was after B, would, in a similar manner, lead to the conclusion
that 4, was after B,, contrary to the hypothesis that B, is after A,.

Also, since 4, and B, could not coincide without the separation lines
being identical, it follows that we must also in this case have B,
after A,

Thus the theorem holds in general.

(b) If Ayand A be two elements in a separation line a which lies tn the
same inertia plane with another separation line b which does not intersect
awm Ay, A, or any element lying between a pasr of parallel optical lines
through A, and A, in the tnertia plane, and of an optical line through A,
wntersects b in By so that B, is before A, then a parallel optical line
through A, will intersect b in an element which s before A .

THEOREM 68

Lf two elements A and B lie in one optical line and if two other elements
C and D lie vn a parallel optical line wn the same inertia plane, then if A
be after B and C after D the element of intersection of the general lines A.D
and BC (which was proved in Theorem 58 to exist) lies between the two
given optical lines.

Let a be the optical line containing 4 and B, and let b be the parallel
optical line containing C' and D.

Since one of the optical lines must be an after-parallel of the other and
since it is immaterial which of them, we shall suppose that a is an after-
parallel of b.

Now the general lines 4D and BC cannot both be optical lines since
two optical lines which intersect a pair of parallel optical lines are
themselves parallel and have no element of intersection.

One of them however may be an optical line.
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Suppose first that BC is an optical line and that & is the element of
intersection of AD and BC.

Then, since a is an after-parallel of b and C'B is an optical line, there-
fore B is after C.

But C is after D and therefore B is after D, and since A is after B it
follows that A is after D.

Thus, since AD cannot be an optical line and has one element which
is after another, it must be an inertia line.

Now, since ' is after D and lies in an optical line containing D, it
follows that D is in the 8 sub-set of C'; and since K lies in the second
optical line through C in the inertia plane, it follows by Post. XIV (a)
that £ must be in the « sub-set of (.

Thus, since & cannot be identical with C, it follows that £ is after C.

Similarly, since A is after B and A and B lie in an optical line, it
follows that A4 is in the a sub-set of B; and since K lies in the second
optical line through B in the inertia plane, it follows by Post. XIV (b)
that £ must be in the B sub-set of B.

Thus since £ cannot be identical with B, it follows that Eis before B.

This proves that E lies between a and b.

Suppose secondly that 4D is an optical line and again let £ be the
element of intersection of 4D and BC.

Let the optical line through C parallel to DA intersect a in ¥

Then C being after D it follows that F must be after 4 and since 4 is
after B therefore ¥ must be after B.

Now F must be after C and therefore C lies in the 8 sub-set of F, as
does also B.

But if C were either before or after B then, by Theorem 13 (b), C' would
have to lie in @ which is impossible.

Thus C is neither before nor after B, so that CB must be a separation
line.

Now D cannot be after E, for since C is after D we should then have C
after E which is impossible since C' and £ lie in a separation line.

But since D and E are distinct elements of an optical line, the one
must be after the other and thus E must be after D.

Again E cannot be after A, for since A is after B we should then have
E after B which is impossible since £ and B are elements of a separation
line.

But E must be either before or after A since £ and A are distinct
elements of an optical line, and since £ cannot be after, it must be

before A.
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Thus again in this case E lies between a and b.

Next take the case where one of the two general lines 4D and BC is
an inertia line and the other a separation line.

If BC be a separation line and ¥ be the element of intersection with
AD, then E is neither before nor after C' and also neither before nor
after B.

But £ cannot be before D, for since D is before C we should then have
C after E, which is impossible.

Thus since D and E are distinct elements of an inertia line, we must
have K after D.

Again K cannot be after A, for since A4 is after B we should then have
E after B, which is impossible.

Thus since 4 and E are distinct elements of an inertia line, we must
have & before A.

Thus again in this case E lies between a and b.

If BC is an inertia line we must have B after C, since a is an after-
parallel of b.

Since then C' is after D we must have B after D, and since A is after B
we must have A after D.

But A D could not be an optical line, for, since B is after D and before
A, it would then follow by Theorem 12 that B must itself be an element
of AD; which is impossible. Thus 4 D must be an inertia line.

Accordingly we shall next take the case where both the general lines
AD and BC are inertia lines and E is their element of intersection.

By Theorem 66, if A were before K then C being after ) would imply
that B was after A, contrary to hypothesis; while if 1) were after K
then A being after B would imply that D was after C, contrary again to
hypothesis.

Thus since £ cannot be identical with either 4 or D, it follows that £
must be after D and before A and so E lies between a and b.

Finally we have the case where 4D and BC are both separation lines
and K their element of intersection.

Let ¢ be an optical line through ¥ parallel to a and b.

First suppose, if possible, that c is an after-parallel of a ; then ¢ would
also be an after-parallel of b since « is an after-parallel of 5.

Thus AD and BC would intersect in an element which was not
between a and b and did not lie either in a or b, and so by Theorem 67,
A being after B would imply that D) was after C', contrary to hypothesis.

The same would hold if we supposed ¢ to be a before-parallel
of b.

R 8
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Thus ¢ cannot be an after-parallel of a and cannot be identical with
a and therefore must be a before-parallel of a.

Also ¢ cannot be a before-parallel of b and cannot be identical with b,
and thus ¢ must be an after-parallel of b.

Thus the element £ must be after an element of b and before an
element of a and so ¥ lies between a and b.

This exhausts all the possibilities and so we see that the theorem
holds in general.

THEOREM 69

If tiwo elements A and B lie'in one optical line and if two other elements
C and D lie in a parallel optical line in the same inertia plane, then if A
be after B and if the general lines AD and BC intersect in an element K
lying between the parallel optical lines, we must also have C' after D.

Let a be the optical line containing 4 and B, and let b be the parallel
optical line containing ! and D.

Then one of the optical lines @ and b is an after-parallel of the other,
but as the demonstration is quite analogous in the two cases we shall
only consider that in which « is an after-parallel of b.

We must therefore have £ after an element of b and before an element
of a.

Now 4D and BC cannot both be optical lines since two optical lines
which both intersect a pair of parallel optical lines are themselves
parallel and so the element £ could not exist.

We may however have one of them an optical line and shall first
consider the case in which 4D is such.

In this case E is before A and therefore K lies in the 8 sub-set of 4, as
does also B.

But £ cannot be either after or before B, for otherwise, by Theorem
13 (b), E would require to lie in the optical line a and so E could not lie
between a and b.

It follows that BE must be a separation line.

Thus C can be neither before nor after E.

But D is before E and so if (" were before 1) we should have C before E,
which is impossible.

Further. (" cannot coincide with 1) and therefore C must be after D.

We shall next consider the case where BC is an optical line.

Then we have Bafter E, and since A is after Bit follows that A is after
E and 20 AE is an inertia line.
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Again F is after C and so E lies in the « sub-set of C' and therefore by
Post. XIV (b) D must lie in the 8 sub-set of C.

Thus since C and D cannot be identical, we must have C after D.

We shall next consider the case where one of the general lines BC
and 4D is an inertia line and the other a separation line.

Now if BC were an inertia line we should have B after E and so, since
A is after B, we should have also A4 after K.

Thus in this case both general lines would be inertia lines and so we
must suppose instead that BC is a separation line and A D an inertia
line.

Then since E cannot be before any element of b, and since it must be
either before or after D it follows that £ must be after D.

But D cannot be after C, for then we should have ¥ after C', which is
impossible since C' and ¥ lie in a separation line.

Thus since € and D cannot be identical, we must have C' after D.

We have next to consider the cases where the general lines BC
and 40D are both separation lines and where they are both inertia
lines.

The constructions and demonstrations are analogous in both cases
up to a certain point.

By Theorem 59 there is an optical parallelogram in the inertia planc
having £ as centre and B as one of its corners.

Let C” be the corner opposite to B and let the optical line through ¢
in the inertia plane and of the opposite set to 4B intersect AB in the
element .

Then GE is the other diagonal line of the optical parallelogram.

Let the second optical line through B in the inertia plane intersect
GLE in F.

Then B, F, (" and ( are the corners of the optical parallelogram.

Let A K intersect the optical line #(*" in D’; let an optical line througt
A parallel to BF intersect FC"in H, and let an optical line through D
parallel to C'@ intersect BG in 1.

Then 4, H, D’ and I are the corners of an optical parallelogran
having a pair of opposite side lines in common with the optical paral
lelogram whose corners are B, F', (" and G and having one of its diagona
lines 4D’ passing through E the centre of this optical parallelogram.

It follows from Theorem 64 that these two optical parallelogram:
have a common centre.

Let AH intersect BC" in 4, and F¢ in F, and let 11)" intersect BC
in €, and FGin G,.

8.2
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Then by Theorem 65 the elements 4,, F,, C, and @, form the
corners of another optical parallelogram with the same centre.

Suppose now first that 4E and BE are both separation lines, then
EG and K1 are both inertia lines, and by hypothesis £ is before an
element of B(/ and so £ must be before G and also before I.

Also, since B and A4, lie in a separation line and since 4 is after B, it
follows that 4 must also be after 4,.

Thus A,(/; must be a before-parallel of BG and so ; must be
before (1.

Thus ¢, D' must be a before-parallel of GC”’, and since €’ and D’ lie in
an optical line we must have C’ after 1.

Fig. 16.

Now E being the centre of the optical parallelogram whose corners
are B, (7, C" and F and being before an element of B( must be after an
element of FC".

Thus E is between the parallel optical lines BG and F(".

Now the optical line b containing ¢' and D may either coincide with
F(',in which case C is after D, or else b may be a before-parallel of FC’
or an after-parallel of F(",

In any case, however, if e be an optical line through £ parallel to a
and b, then FC’ and b are each before-parallels of e, so that in no case
can £ lie between FC’ and b.

Thus by Theorem 67 since ( is after D’ we must have C after D.

Suppose next that A £ and BE are both inertia lines, then £G and
E1 are both separation lines, and by hypothesis E is before an element
of BG, so K is before A and also before B.

Also, since Band 4, lie in an inertia line and since B is in the 8 sub-set
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of A and distinct from it, therefore 4, must be in the « sub-set of 4,
and since B and A are distinct, A
and 4, must also be distinct and
therefore A, is after A.

Thus 4,G, must be an after-
parallel of 47, and since G and
I lie in an optical line we must
have G, after I.

But since G, and @ lie in a
separation line, the one is neither
before nor after the other and so @
must also be after I.

Thus ¢C’ must be an after-
parallel of ID’, and since €’ and
D’ lie in an optical line we must
have C’ after D'.

From this point the demon-
stration is similar to that of the
case where AE and BE are both
separation lines, except that the
reference is to Theorem 66 instead Fig. 17.
of Theorem 67.

This exhausts all the possibilities, and so the theorem holds in
general.

THEOREM 70

If A, B and C be three elements in a separation line and if B be between
a pair of parallel optical lines through A and C in an inertia plane con-
tasning the separation line, then B is also between a pair of parallel optical
lines through A and C in any other inertia plane containing the separation
line.

Letabean optical line through 4, and c a parallel optical line through
C; both lying in the given inertia plane, say P, and such that B lies
between a and c.

We may suppose that B is before an element of @ and after an element
of ¢ without any essential loss of generality.

Let an optical line through B in the inertia plane, and of the opposite
set to a and ¢, intersect @ in D and ¢ in E.

Then D must be after B, and E must be before B.
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Further, since 4, B and C lie in a separation line, we must have D
after A and E before C.

Now let @ be any other inertia plane containing the separation line,
and let a’, 4" and ¢’ be three parallel
optical lines through 4, B and C , a
respectively in the inertia plane .

Now the element D is after B, an
element of the optical line b’, while
the optical line a passes through D
but does not intersect b’, since then
it would have to be identical with
the optical line DB which belongs
to the opposite set.

Further, the optical line @ cannot
be parallel to ', for since a passes
through A it would in that case
have to be identical with a’ and the
inertia planes P and @ could not be
distinct.

Thus each element of « is not after an element of b’, and so by Post.
XTII (b) there is one single element of a, say £, which is neither after nor
before any element of ',

Thus by Theorem 22 there is one single optical line containing ¥
and such that no element of it is either before or after any element
of b'.

If f be this optical line, then f is a neutral-parallel of &'

But since a’ and b’ lie in the inertia plane ¢ and are parallel, the one
must be an after-parallel of the other and so a’ cannot be identical
with f.

Thus F must be either after or before A and cannot beidentical with it.

Now the general line FB lies in the inertia plane P and is clearly a
separation line since F is neither before nor after B.

Let F B intersect the optical line ¢ in .

Then, by Theorem 45, (7 is neither before nor after any element of o',
and so it an optical line g be taken through 7 parallel to 4" it will be a
neutral-parallel.

Now, by Theorem 69, since B lies between the parallel optical lines a
and ¢ passing through A and C respectively and lying in the inertia
plane P, it follows that if F be after 4 then C is after G'; while if A be
after F then G is after C.

Fig. 18.
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If however F be after A, then a’ must be a before-parallel of f, and
therefore, by Theorem 26 (@), @’ must be a before-parallel of 4.

Then we shall have also ¢’ an after-parallel of g, and therefore, by
Theorem 26 (b), ¢’ must be an after-parallel of b’

Thus B will be after an element of a’ and before an element of ¢’ : that
is, B will be between the parallel optical lines a” and ¢’ passing through
A and C respectively in the inertia plane @.

Similarly if F be hefore A, then a’ must be an after-parallel of f, and
therefore, by Theorem 26 (b), @’ must be an after-parallel of b’.

We shall in that case have also ¢’ a before-parallel of ¢, and therefore,
by Theorem 26 (a), ¢’ must be a before-parallel of b'.

Thus again we shall have B between the parallel optical lines a” and
¢’ passing through 4 and C respectively in the inertia plane Q.

Thus the theorem is proved.

REMARKS

If 4, B and C be three elements in an optical or inertia line [, and if
B be between ‘a pair of parallel optical lines through 4 and C in an
inertia plane containing [, then it is casy to see that B is also between
a pair of parallel optical lines through 4 and C in any other inertia
plane containing /.

This follows directly from the consideration that, in this case, of any
two of the three elements 4, B, C, one is after the other.

We accordingly introduce the following definition.

Definition. Tf three distinct elements lie in a general line and if one
of them lies between a pair of parallel optical lines through the other
two in an inertia plance containing the general line, then the element
which is between the parallel optical lines will be said to be linearly
between the other two elements.

The above definition is so framed as to apply to all three types of
general line and for this reason is more complicated than it need be if
we were dealing only with optical or inertia lines.

For the case of elements lying in either of these types of general line,
one element is linearly between two other elements if it be after the one
and before the other.

In the case of elements lying in a separation line, however, no one is
either before or after another and so we have to fall back on our definition
involving parallel optical lines.

The distinction between the three cases is interesting.

Thus if the three elements 4, B and C lie in a general line a, and if B
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be linearly between 4 and C, then, in case a be an inertia line, we must
have either B after A and C after B or else B after C' and A after B, and
similarly when a is an optical line.

If a be an inertia line and B be after A and C after B, then B will be
before elements of both optical lines through (' and after elements of
both optical lines through A in any inertia plane containing a.

If a be an optical line and B be after A and C after B, then, apart from
a itself, there is only one optical line through any element of a in any
inertia plane containing a, and so we should have B before an element
of the optical line through C and after an element of the parallel
optical line through 4.

If a be a separationline, however, we should have B hefore an element
of one of the optical lines through ' and after an element of the parallel
optical line through 4 and also after an element of the second optical
line through C and before an element of the parallel optical line
through 4.

The distinctions are perhaps exhibited more clearly by the following
figures:

A A B ©

Inertia Line Optical Line Separation Line
Fig. 19.

From Theorem 70 it follows that the property of one element being
linearly between two others is independent of the particular inertia
plane in which the elements are considered as lying and so may be
regarded as a relation of the one element to the other two.

This relation has been defined in terms of the relations hefore and
after, not only for the cases where the three elements considered are
such that of any two of them one is after the other; but also for the case
of elements in a separation line when this is no longer so.

It is thus possible to state certain general results which hold for all
three types of general line involving the conception linearly between.
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Peano has given some eleven axioms of the straight line which are
as follows:

(1) There is at least one point.

(2) If A is any point, there is a point distinct from A.

(3) If 4 is a point, there is no point lying between 4 and 4.

(4) If A and B are distinct points, there is at least one point lying
between 4 and B.

(5) If the point C lies between A and B, it also lies between B and A.

(6) The point A does not lie between the points 4 and B.

Definition. If A and B are points, the symbol « B represents the
class of points such as C with the property that (' lies between A and B.

Definition. If A and B are points, the symbol A’DB represents the
class of points suchas C with the property that B lies between 4 and C.
Thus 4’B is the prolongation of the line beyond B, and B’A its pro-
longation beyond 4.

(7) 1f 4 and B are distinct points, there exists at least one member
of A'B.

(8) If A and D are distinet points, and C is a member of AD and B
of AC, then B is a member of AD.

(9) If A and D are distinct points, and B and C' are members of 4D,
then either B is a member of AC, or B is identical with C, or B is a
member of CD.

(10) If 4 and B are distinet points, and C and D are members of
A’B, then either C is identical with D, or C'is a member of BD, or D is
a member of BC.

(11) If 4, B, C, D are points, and B is a member of 4C and C of BD,
then (' is a member of AD.

Definition. The straight line possessing 4 and B, symbolised by
str. (A, B), is composed of the three classes A'B, AB, B'A together
with the points 4 and B themselves.

Of these axioms the writer has succeeded in proving nos. 6 and 9
from the others, so that they are really redundant.*

It is easy to see, with our definition of linearly between, that corre-
sponding results hold for all three types of ““general line”.
As regards axioms (1) and (2) which we shall express thus:

(1) There is at least one element,
and (2) If A be any element there is an element distinct from A,

* Messenger of Mathemataics, vol. x111, pp. 121-123 and 134.
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the first follows from our preliminary statement on p. 27, while the
second follows directly from Posts. IT and I and also from Post. V.

As regards axiom (3) we shall put it in the form:

(3) If A s an element, there is no element lying linearly between A
and A.

This follows from the definition of linearly between.

(4) If A and B are distinct elements, there is at least one element
lying linearly between A and B.

From our remarks at the end of Theorem 35 it appears that there are
an infinite number of inertia planes containing any two distinct
elements and accordingly any two distinct elements lie in a general line.

If 4 and B lie in an optical line, then Theorem 11 shows that there is
at least one element which is after the one and before the other and is
therefore linearly between them.

If A and Bliein an inertia line, the same result follows from Theorem
39; while if they lie in a separation line, it follows from Theorem 41.

(5) Iftheelement C' lies linearly between A and B, it also lies linearly
between B and A.

This follows from the definition of linearly between.
(6) T'he element A does not lie linearly betueen the elements A and B.

This follows from the definition of what is meant by an element
lying between a pair of parallel optical lines in aninertia plane. Accord-
ing to this definition the element must not lie in either optical line.

(7) If A and B are distinct elements, there is at least one element such
that B lies linearly between it and 4.

If A and Blie in an optical line or an inertia line, one of them must be
after the other.

Ifit be the element A which is after B, then Theorems 7 and 38 show
that there is at least one element of the general line which is before B,
and so B lies linearly between it and A.

Nimilarly if A be before B there is an element of the general line which
is after B, and so B is linearly between it and 4.

1t 4 and Blie in a separation line, the result follows from Theorem 43.

(8) If A and D are distinct elements and C is linearly between A and
D, and B linearly between A and C, then B is linearly between A and D.

This is readily seen to be true if we take a set of parallel optical lines
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a, b, ¢ and d through 4, B, C and D respectively in any inertia plane
containing the four elements.

Let these optical lines intersect an optical line f of the opposite set in
A’, B’, C" and D' respectively.

Remembering that Post. III must be satisfied, it is clear that we
must have either:

(i) C" after D" and A’ after C" together with B’ after C' and A’
after B’';
or (ii) C' before D" and A’ before € together with B’ before C' and 4’
before B’.

In case (i) it follows by Post. L1I that B’ is after D’ and consequently
since B’ is before A’ we have B linearly between A and D.

Similarly in case (ii) we have B’ before D' and after A’, and therefore
again B linearly between 4 and D.

(9) If A and D are dustinct elements and B and C are each linearly
between A and D, then esther B islinearly between A and C or B is identical
with C or B is linearly between C and D.

This result may be deduced in a similar manner to the last.
We must have either

(i) B’ after D" and A’ after B’ together with C” after D" and A4’
after C';
or (ii) B’ before D" and 4’ before B’ together with € before 1)’ and 4’
before C".

Then the elements B’ and €’ must either be identical or else the one
is after the other.

In case (i) if B' be after C', since also B’ is before A’, we have Blinearly
between A and C.

If B’ is identical with C’, then B is identical with C.

If C" be after B’, then since also D’ is before B” we have B linearly
between C' and 1).

Similarly in case (ii) we must either have B linearly between 4 and
or Bidentical with C or B linearly between C' and D.

(10) If A and B are distinct elements and if B is linearly between A
and C and also linearly between A and D, then either C is identical with D,
or C is linearly between B and D, or D is linearly between B and (.

This result may also be deduced in a similar way. We must have
either:

(i) B’ after C' and A’ after B’ together with B’ after 1)';
or (ii) B’ before C’ and A’ before B' together with B’ before D',
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Then the elements C” and D’ must either be identical or else the one
is after the other.

In case (i) if (" is after D', then since (" is before B’ we have C linearly
between B and D).

If ¢’ is identical with D’, then C' is identical with D.

[f [)' is after (', then since D)’ is before B’ we have D linearly between
B and C.

Similarly in case (ii) we must either have C linearly between B and D
or (' identical with D, or D linearly between B and C.

(11) If A, B, €', D are elements and B is linearly between A and C,
and C s linearly between B and D, then C is linearly between A and D.

This result may also be deduced in a similar way. We must have
either:

(i) B’ after C' and A’ after B together with C’ after D';
or (ii) B’ before (" and A’ before B’ together with C* before ',

In case (i) since B’ is after (" and A’ after B, it follows by Post. I1I

that A’ is after €, and so C must be linearly between A and D.
Similarly in case (ii) we must also have C linearly between A and D.
Thus all these axioms of Peano hold for the general line.

THEOREM 71

(@) If Ay and A, be two elements in a general line a which lies in the
same inertia plane with another general line b which intersects a wn the
element C such that either A, is linearly between C and A, or A, s
linearly between C and A,, and if an optical line through A, intersects b
in B, so that B, is after A, then a parallel optical line through A, will
intersect b in an element which is after A, .

We have already proved special cases of this in Theorems 66 and 67,
and have now to prove the general theorem.

The optical line through A, parallel to 1, B, must intersect b since
b intersects A, B, in By.

Let the element of intersection of this optical line through 4, with
b be B,.

Then B, cannot be identical with 4 ., for then the general lines @ and
b would have two distinct elements C and A, in common and would
therefore be identical, which is impossible since a and b intersect by
hypothesis.
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Further, if 4 were after B, the general lines @ and b would intersect
in some element between the parallel optical lines (Theorem 68).

That is to say in some element linearly between 4,and 4.

But @ and b have only one element C in common, so that if 4, were
after B, we should require C' to be linearly between 4,and 4, contrary
to the hypothesis that either A, is linearly between C' and 4, or 4, is
linearly between C and 4,.

Thus B, must be after 4.

(b) If Ay and A, be two elements in a general line a which lies in the
same inertia plane with another general line b which intersects a in the
element C such that esther A, 1s linearly between C and A, or A is linearly
between C and A, and if an optical line through A, intersects b in B, so
that By, is before 4, then a parallel optical line through A, will intersect
b in an element which is before 4 .

Definition. We shall speak of a general line [ as being co-dsrectional
with a general line m when [ is either parallel to m or identical with it.

THEOREM 72

If three parallel general lines a, b and ¢ in one inertia plane P intersect
agenerallined; i A,, B, and C, respectively and vntersect a second general
linedyin Ay, By and Cy respectively, then iof By is linearly between A, and
C, we shall also have B, linearly between A, and C,.

If a, b and ¢ be optical lines, then we must either have / an after-
parallel of ¢ and a before-parallel of a, or else have b an after-parallel
of @ and a before-parallel of c.

In either case B, will be after an element of one of the pair of parallel
optical lines a and ¢ and before an element of the other.

Thus, as B, cannot lie in either a or ¢, and as these optical lines pass
through A, and C, respectively, it follows that B, is linearly between
A, and C,.

Next consider the cases where a, b and ¢ are separation or inertia
lines : the methods of proof being similar in the two cases.

Let parallel optical lines in P and passing through 4, and C, intersect
bin B’ and B," respectively.

Let optical lines co-directional with these and passing through 4,
and C, intersect b in B," and B," respectively.

Now as B, is supposed to be linearly between 4, and C, it must lie
between the parallel optical lines 4, B," and B,"C}.
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It follows therefore, from Theorem 69, that if 4, is after B,’ we shall
also have B,” after C,. a b ¢
If, on the other hand, B, is after A, we
shall also have C| after B,". BY
In the first of these cases, that is to say
when A, is after B," and B," after C,, by
Theorem 56 or Theorem 57 (according as A, B,
a, b and ¢ are separation or inertia lines), d G
it follows that A4, is after B, and B," is
after C,. B,
If A, By’ is distinct from B,"C, it follows,
by Theorem 68, that B, must lie between
the parallel optical lines 4,B," and B,"C,; B
so that B, is linearly between A, and (,.
If 4,B, and B,"(', are not distinct
optical lines, then B," and B,” will both
coincide with B, which will be after €', and C.
before A,; so that B, will still be linearly B, d,
between A, and C,. Ag,
The same result follows in a similar
way in the case where B," is after 4, and ,
O, after B,". B2
Thus the theorem holds in all cases. Fig. 20.

THEOREM 73

(@) If an element B be linearly betiween two elements A and C and if
another element 1) be before both A and C' but not in the general line AC,
then DB is an inertia line and B is after D.

Consider first the case where AC is a separation line.

Let a general line through B parallel to C'D intersect AD in £.

Then since B is linearly between 4 and ¢ we must have £ linearly
between D and A.

Thus since D is before A it follows that £ is after D and before A.

But £B must be an inertia line or an optical line, according as DC'
is an inertia line or an optical line, and so B must be either before or
after E.

But B cannot be before K for then, since F is before 4, we should have

B before A, contrary to the hypothesis that A and B lie in a separation
line.
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Thus B must be after K and, since F is after D, it follows that B is
after D.

Thus DB is either an optical or an inertia line.

But if DB were an optical line, then since £ is after D and before B it

would follow that E must lie in DB, which is impossible since BE is
parallel to CD.

Thus DB must be an inertia line.

Next consider the case where AC is an optical or inertia line,

We then must have either C after A or 4 after C and it is sufficient
to consider the case where C is after A.

Then B must be after A and before C.

But A4 is after D and so B must be after D.

Thus again DB must be either an optical line or an inertia line.

If DB were an optical line, then since A is after D and before B the
element 4 would have to lie in DB and so D, A and C would all lie in
one general line, contrary to hypothesis.

Thus again DB must be an inertia line, and so the theorem is
proved.

(b) If an element B be linearly betiween two elements A and C' and if
another element D be after both A and C but not in the general line AC, then
DB is an inertia line and B 4s before D.

REMARKS
A somewhat analogous result is the following:

If an element B be after an element A and before an element C, and if
D be another distinct element such that DA and DC are both separation
lines, then DB is also a separation line.

This may be proved as follows:

The element B cannot be before I); for, since 4 is before B, we should
have A4 before D, contrary to the hypothesis that DA is a separation
line.

Similarly B cannot be after D; for, since C is after B, we should have
C after D, contrary to the hypothesis that DC is a separation line.

Thus B is neither before nor after D, so that DB must be a separation
line, as was to be proved.

The following two theorems are special cases of Theorems 76 and 77,
but as the proofs of the general theorems are reduced to depend on these
special cases, the latter are treated separately.
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THEOREM 74

If A, B and C be three distinct elements in an inertia plane such that
AB and AC are distinct optical lines, and if D be an element linearly
between A and B while E 15 an element linearly between A and C, then
there exists an element which lses both linearly between C and D and also
linearly between B and B,

It will be sufficient to consider the case where A is after B, since the
case where A is before B may be treated in an analogous manner.

Since £ is linearly between A and C, therefore E is between the
optical line AB and a parallel optical line through C.

Thus, A being supposed after B, this optical line through ¢ will
intersect the general line BE in some element, say @, such that G is
after C (Theorem 69).

But since D is linearly between 4 and B we must, in these circum-
stances, have D after B.

Thus, since (¢ is after C, it follows by Theorem 68 that the general
lines BG' and DC intersect in some element, say F, which is between
the parallel optical lines DB and (/.

That is, F is linearly between €' and D, and is the element of inter-
section of CD and BE.

By taking an optical line through B parallel to AC we may prove in
an analogous manner that ¥ is linearly between B and E.

THEOREM 75

If A, B and C be three distinct elements in an inertia plane such that
AB and AC are distinct optical lines and of D be an element linearly be-
tween A and B while F is an element linearly between C and D, then there
exists an element, say K, which lies linearly between 4 and C and such
that F lies linearly between B and E.

As in the previous theorem, it will be sufficient to consider only the
case where 4 is after B.

Under these circumstances we should have D after B and so, since
F is linearly between C' and D, we should have F between the optical
line «1 B and a parallel optical line through C.

Thus, by Theorem 69, this optical line through C will intersect BF
in some element, say (7, such that @ is after C.

But, since 4 is after B and ( is after C, therefore, by Theorem 68, the
general lines A" and BG@ intersect in some element, say ¥, such that £
is between the parallel optical lines 4B and CG.



GEOMETRY OF TIME AND SPACE 129

Thus Z is linearly between 4 and C, where ¥ is the element of inter-
section of AC and BF.

It then follows, as in the last theorem, that F lies linearly between
Band K.

THEOREM 76

If A, B and C be three elements in an inertia plane which do not all lie
wn one general line and if D be an element linearly between A and B, while
E s an element linearly between A and C, there exists an element which
lies both linearly between B and E and linearly between C and D.

Let V be the inertia plane containing 4, B and C and let a be any
inertia line through 4 which does not lie in V.

Let b and ¢ be inertia lines parallel to @ and passing through B and C
respectively.

Then b and clie in one inertia plane, say
P,., cand a in a second inertia plane, say
P,,,and @ and b in a third inertia plane,
say P, .

Let one of the optical lines through B
in the inertia plane P, intersect a in A’
and let one of the optical lines through
A’ in the inertia plane P,, intersect ¢
in C".

Then 4’B and 4'C’ may be taken as
generators of opposite sets of an inertia
plane, say S, containing B, C' and 4.

Let d be the inertia line through D o
parallel to a and let e be the inertia line
through Z parallel to a.

Then d will lie in P, and, since D is
linearly between 4 and B, it follows by R
Theorem 72 that d must intersect A’B in

C

m

m&l\/o\

some element, say D’, such that D’ is d b ¢
linearly between 4’ and B. a f
Similarly e will lie in P,, and, since E Fig. 21.

is linearly between 4 and C, it follows
that e will intersect A’C’ in some element, say E’, such that E’is
linearly between A’ and C’.

But, since 4’B and A'C" are two distinct optical lines in the inertia
plane §, it follows by Theorem 74 that there exists an element, say

R 9
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F’, which lies both linearly between B and E’ and linearly between C*
and D'.

Now, since b and ¢ are parallel inertia lines lying in the inertia plane
P,., it follows that there is an inertia plane, say P, containing b and
the element #”, and an inertia plane, say P, containing ¢ and the
element £ and these inertia planes must, by Theorem 51, have a
general line, say f, in common.

Further, f must be parallel to b and ¢ and must therefore be an
inertia line.

But the inertia plane P,, contains the general line B¥’ and must
therefore contain £’ and the inertia line e which passes through E’ and
is parallel to b.

Thus P, contains the clement £ and therefore contains the general
line BY.

Similarly P, contains the general line C'D.

But, since F’ is linearly between B and £’, it follows by Theorem 72
that the inertia line f must intersect BE in some element, say F, such
that ¥ is linearly between B and K.

Nimilarly, since F’ is linearly between " and /1), it follows that f
must intersect (') in some element, say F, such that F is linearly
between (' and .

But both # and F must lie in }” and so, if they were distinct, the
inertia line f would require to lie in |,

But fis parallel to a, of which only one element liesin |” and therefore
f does not lie in 1" and accordingly ¥ must be identical with F.

Thus the element F' is both linearly between B and E and linearly
between (' and /).

It may happen in this and the next theorem that 4’ coincides with
A or ¢" with €', but this does not affect the validity.

THEOREM 77
If A, B and C be three elements in an inertia plane which do not all lie
wn one general line and if D be an element linearly between A and B while
F is an element linearly between C' and D, there exists an element, say E,

whach is linearly between A and C and such that F is linearly between B
and E.

Let 1" be the inertia plane containing 4, Band C and let a be any
inertia line through 1 which does not lie in V, while b and ¢ are inertia
lines parallel to a through B and C respectively.

Let P,,, P.,, Py. A', C', 8, d, D', have the same significance as in
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the last theorem, and let P,, be the inertia plane containing the parallel
inertia lines ¢ and d.

Let f be an inertia line through F parallel to ¢ and d and which will
also liein P,,.

Since F'is linearly between C and D it follows, by Theorem 72, that
f will intersect C"I)’ in some element, say F’, such that F’ is linearly
between C’ and 7).

But, as in the last theorem, /)’ is linearly between A’ and B and so,
since A’B and A'C" are two distinct optical lines in the inertia plane S,
it follows, by Theorem 75, that there exists an element, say £’, which
lies linearly between A’ and €’ and such that £” lies linearly between
B and £’

If now we denote the inertia plane containing b and f by P,,, then
P,, contains the element £’ in common with the inertia plane P,,.

But, since b lies in P, and P,, while the parallel inertia line ¢ lies in
P .and P, it follows, by Theorem 51, that P,, and P, have a general
line, say e, in common which passes through £’ and is parallel to b and
¢ and is therefore an inertia line.

Now since a is also parallel to e and lies in the same inertia plane
P, with it and, since ¥’ is linearly between A’ and (", it follows, by
Theorem 72, that e must intersect A in some element, say £, such that
I is linearly between 4 and C,

Again, since b, f and e all lie in the inertia plane P, and, since #” is
lincarly between B and £, it follows, by Theorem 72, that BF must
intersect e in some element £ such that # is lincarly between B and K.

But both £ and £ must lie in }" and so, if they were distinct, the
inertia line e would require to lie in 1.

But eis parallel to a, of which only one element liesin 1 and therefore
e does not lie in V and accordingly £ must be identical with K.

Thus the element ¥ is linearly between 4 and € and is such that F'is
linearly between B and K.

REMARKS

Peano has given the following three axioms of the plane:

(12) Ifrisastraight line, there exists a point which does not lie on 7.

(13) If A, B, C are three non-collinear points and D lies on the seg-
ment BC, and ¥ on the segment 4 D, there exists a point # on both the
segment AC and the prolongation B'E.

(14) If A, B, C are three non-collinear points and D lies on the

9-2
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segment BC and F on the segment AC, there exists a point £ lying on
both the segments 4D and BF.

Now since there is always an element outside any general line it
follows that the analogue of Peano’s axiom (12) holds for our geometry.

Further, provided the three elements 4, B, C lie in an inertia plane,
Theorem 76 corresponds to Peano’s axiom (14) while Theorem 77
corresponds to his axiom (13).

Also Theorem 47 corresponds to the axiom of parallels in Euclidean
geometry so far as an inertia plane is concerned.

An inertia plane however differs from a Euclidean plane, since there
are three types of general line in the former and only one type of
straight line in the latter.

Further, although closed figures exist in an inertia plane, there is no
closed figure which corresponds to a circle.

How this comes about will be seen hereafter.

THEOREM 78
If A, B and C be three elements in an inertia plane P which do not all
lie in one general line and if D be the mean of A and B, then a general line
through D parallel to BC intersects AC in an element which is the mean
of 4 and C.

The general line BC, which we shall denote by a, may be either:
(i) an optical line, (ii) a separation line, or (iii) an inertia line.

As regards case (i): let a’ be an optical line through A4 parallel to a,
and let 4K be the second optical line which passes through 4 and lies
in the inertia plane P, and let it intersect a in the element K.

al

<
Z
x

Fig. 22.
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Let X be any other element in a and let the optical line through X
parallel to KA intersect a’in Y. Then 4, K, X, Y are the corners of an
optical parallelogram whose diagonal lines 4X and YK intersect in
some element, say M, which is the mean both of 4 and X and of ¥
and K.

An optical line m through M parallel to a will intersect AK in an
element (say O) which is the mean of 4 and K.

The position of O is independent of the position of X in the optical
line a, so that if B and C be any two elements in a, and ) be the mean
of A and B the general line through D parallel to BC will be identical
with m and will intersect 4C in an element which is the meanof Aand C.

Case (ii) may be proved as follows: :
Let any inertia line in P which passes through A intersect a in some
element K, and let X be any other element in a.

A

Fig. 23.

The element A will be either before or after K, but the method of
proof is analogous in both cases and so we shall consider the one where
A is after K.

Now, since a is a separation line, K will be neither before nor after X.

If then Q be any inertia plane containing a but distinct from P, the
element K will be before an element of one of the optical lines in @
which pass through X and after an element of the other.

Let f be the optical line through X in the inertia plane @ such that
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K is after an element of it and let the optical line through K in @ of the
opposite set to f intersect fin H. Then K is after H.

But since 4 is supposed to be after K we shall have 4 after H and
AH will be an inertia line.

Thus 4, H and X will lie in an inertia plane and 4, H and K will lie
in another inertia plane.

Let O be the mean of 4 and K.

Then, by case (1), an optical line through O parallel to K H will inter-
sect AH in some element I such that [ is the mean of A and H.

Also, by case (i), an optical line through I parallel to X will inter-
sect AX in some element M which will be the mean of 4 and X.

But now 7 does not lie in Q and so O, I and M lie in an inertia plane,
say @', which will be parallel to ).

Thus, since P has the separation line a in common with @ and has
the general line OM (which we shall denote by m) in common with the
parallel inertia plane ', it follows that m is a separation line parallel
to a and intersecting AX in an element M which is the mean of A4
and X.

For all positions of X the mean of 4 and X lies on the separation line
m which passes through O which is the mean of 4 and K.

Thus if B and C be any two elements in the separation line a and D
be the mean of 4 and B, then D will lie in the separation line m, which
will also pass through the mean of 4 and C and is parallel to BC.

(‘ase (iii) may be proved as follows:
Let any inertia line in P which
passes through A4 and is not parallel l
to a intersect a in some element K
and let X be any other element in a.

Let Rbeanyinertia plane distinct
from P but containing the general A
line 4X.

Now there are two optical lines H
in R which pass through X and one o
at least of these optical lines must
be distinct from 4X. Let ! be such K
an optical line.

Now, since a is an inertia line, it
follows that a and [ lie in an inertia
plane which we shall denote by @.

Fig. 24.
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Let the optical line through K in the inertia plane @ of the opposite
set to [ intersect 1 in the element H.

Then, since AK is an inertia line, it follows that the three elements
H, A and K lie in an inertia plane.

Let O be the mean of 4 and K.

Then, by case (i), an optical line through O parallel to K H will inter-
sect AH in some element I such that 7 is the mean of 4 and H.

Also, by case (i), an optical line through I parallel to HX will inter-
sect 4.X in some element M which will be the mean of 4 and X.

But now I does not lie in @ and so O, I and M lie in an inertia plane,
say €', which will be parallel to Q.

Thus, since P has the inertia line @ in common with @ and has the
general line OM (which we shall denote by m) in common with the
parallel inertia plane Q’, it follows that m is an inertia line parallel to
a and intersecting 4 X in an element M which is the mean of 4 and X.

For all positions of X the mean of 4 and X lies on the inertia line m
which passes through O which is the mean of 4 and K.

If then B and C be any two elements in the inertia line a and D be
the mean of A and B, it will lie in the inertia line m, which will also pass
through the mean of 4 and C and is parallel to BC.

Thus in all cases the theorem holds.

Since there is only one general line through D parallel to BC and
this must pass through the mean of 4 and C, it follows directly that,
if K be the mean of A and C, then the general line DE is parallel to BC.

Definition. 1f two parallel general lines in an inertia plane be both
intersected by another pair of parallel general lines, then the four
general lines will be said to form a general parallelogram in the inertia
plane.

It will be seen hereafter that it is necessary to extend the meaning
of the phrase general parallelogram to the case of figures which do not
lie in an inertia plane and so the words “in an inertia plane’ are
important.

The general lines which form a general parallelogram in an inertia
plane will be called the side lines of the general parallelogram.

A pair of parallel side lines will be said to be opposite.

The elements of intersection of pairs of side lines which are not
parallel will be called the corners of the general parallelogram.

A pair of corners which do not lie in the same side line will be said to
be opposite.
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A general line passing through a pair of opposite corners will be
called a diagonal line of the general parallelogram.

It is clear that a general parallelogram in an inertia plane has two
diagonal lines.

Further, it is clear that an optical parallelogram is a particular case
of a general parallelogram in an inertia plane.

THEOREM 79

If we have a general parallelogram in an inertia plane, then :

(1) Thetwo diagonal lines intersect sn an element which is the mean of
either pair of opposite corners.

(2) A general line through the element of intersection of the diagonal
lines and parallel to esther pair of side lines, intersects either of the other
side lines in an element which is the mean of the pair of corners through
which that side line passes.

Let A, B, C, D be the corners of the general parallelogram :
A and C being one pair of opposite corners and B and D the other
pair.

D

Fig. 25.
Let E be the mean of 4 and B,

» F bl B bR C’

”» G ”» C LR D;
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If a general line be taken through £ parallel to BC and 4D, then by
Theorem 78 it will intersect AC in an element which is the mean of 4
and C and therefore will intersect C'D in an element which is the mean
of C'and D. That is in the element G.

Similarly the general line FH will pass through the mean of A and C.

Thus the element of intersection of EG and FH (which we shall call
0) is the mean of 4 and C. Similarly O is the mean of B and D. Thus
the mean of 4 and C is identical with the mean of B and D: or the
diagonal lines intersect in an element which is the mean of either pair
of opposite corners. The second part of the theorem also holds.

THEOREM 80

If A, B, C, D be the corners of a general parallelogram in an inertia
plane; AB and DC being one pair of parallel side lines and BC and AD
the other pair of parallel side lines, then if E be the mean of A and B while
F is the mean of D and C, the general lines AF and EC are parallel to one
another.

Since the general line 4 F' is not parallel to BC, it must intersect BC
in some element, say @.

Now by Theorem 79 a general line through the intersection of the
diagonal lines and parallel to BC will intersect AB in the mean of 4
and B, and will intersect DC in the mean of D and C.

Thus the general line EF is parallel to BC'.

But since 4, B and @ are three elements in an inertia plane which
do not all lie in one general line and since £ is the mean of 4 and B
while EF is parallel to BG, it follows by Theorem 78 that F is the mean
of 4 and G.

Similarly since FC is parallel to 4B it follows that C is the mean of
G and B.

But since ¥ is the mean of B and 4 while C is the mean of B and G,
it follows by Theorem 78 that EC is parallel to AG: that is, EC is
parallel to AF, as was to be proved.

THEOREM 81

If three parallel general lines a, b and ¢ in one inertia plane intersect
a general line d, in Ay, B, and C, respectively and intersect a second
general line dyin Ay, B, and Cy respectively, and if B, be the mean of A,
and C,, then By will be the mean of A, and C,.

If A, should happen to coincide with A4,, or if €, should happen to
coincide with C,, the result follows directly from Theorem 78.
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If d, should happen to be parallel to d,, then the result follows from
Theorem 79 (2).

In any other case let a general line through A4, parallel to d, intersect
bin Band cin C.

Then, by Theorem 78, B is the mean of 4; and C and so, by Theorem
79 (2), B, will be the mean of 4, and C,.

REMARKS

If Ay and 4, be two distinct elements in a general line a, we can
always find n—1 elements 4,, 4,, ... 4,_, in a (where n—1 is any
integer) such that:

A, is the mean of Ajand 4,,
A, is the mean of 4, and 43,

..........................................

A,_,isthemeanof A, ,and 4,,.

For let P be any inertia plane containing a and let b be any general
line in P which passes through 4, and is distinct from a.

Let 4," be any elementin b distinct from Ay andlet 4,', A, ... 4’
A,’ be other elements in b such that:

n—1»

A, is the mean of 4,and 4,’,
A, is the mean of 4," and 4,

’ 3 ’ ’
A’,,_,is the mean of 4’,_,and 4,".

Let general lines through 4,’, 4,', ... 4',_, parallel to 4,'4,, inter-
sect a in the elements 4,, 4,, ... 4,_,.
Then, by Theorem 81, it follows that:

A, is the mean of 4;and 4,,
A, is the mean of 4, and 4,,

A,_,is the mean of 4, ,and 4,,

and so the n—1 elements 4,, 4,, ... 4,_, can be fouhd as stated.
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THEOREM 82

(@) If A be any element in an optical line a and A’ be any element in
a neutral-parallel optical line a', then, if B be any element in a which s
after A, the general line through B parallel to AA’ intersects a’ in an
element which 1s after A’.

Since 4 and A’ lie in the neutral-parallel optical lines @ and o’
respectively, it follows that A4 is neither before nor after A' and so there
is at least one element which is common to the « sub-sets of 4 and 4°.

s

F

Fig. 26.

Let C be such an element and let b be the optical line through C
parallel toa ora’.

Then since C is after both A4 and A4’, it follows that b is an after-
parallel of both @ and o’ and accordingly b and a lie in one inertia plane
while b and «’ lie in another.

Let the optical line through B parallel to AC intersect b in the
element D and let the optical line through D parallel to CA’ intersect
a’' in the element B’.

Then 4, C, D, B form the corners of an optical parallelogram in an
inertia plane which we shall call P, while 4', C, D, B’ form the corners
of another optical parallelogram in another inertia plane which we
shall call P’.

Now, since B is after 4 and C is also after A, while AC and 4B are
both optical lines, it follows that the diagonal line CB is a separation
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line and accordingly the diagonal line AD is an inertia line having D
after A.

Further, D must be after C and, since C' is after A’, it follows that the
diagonal line A’D is an inertia line having D after A’, and accordingly
the diagonal line OB’ is a separation line.

Thus, since C'is after A’, we must also have B’ after 4°.

Let the general line through B parallel to 4D intersect b in £ and
CA in F, and let the optical lines through E and F respectively parallel
to CF and CE intersect one another in G.

Then F, C, E, ¢ are the corners of an optical parallelogram in the
same inertia plane as the optical parallelogram whose corners are 4, C,
D, B and the diagonal lines F'E and 4D do not intersect and so the
diagonal lines C¢ and CB do not intersect.

Thus B must lie in CG and since it also lies in F'E it follows that B is
the centre of the optical parallelogram whose corners are F, C, E, G.

Now let the general line through E parallel to DA’ intersect CA’ in
F" and let the optical lines through E and F’ respectively parallel to
CF’ and CE intersect one another in G”.

Then F', C, E, G' are the corners of an optical parallelogram in the
same inertia plane as the optical parallelogram whose corners are 4’,
C, D, B’ and the diagonal lines F'E and A’D do not intersect and so the
diagonal lines CQ’ and CB’ do not intersect.

Thus B’ lies in CG'.

But the optical parallelograms whose corners are ¥, C, K, G and F’,
C, E, G’ have the pair of adjacent corners € and E in common and the
optical line BD through the centre of the first of these intersects C'¥ in
D, and so it follows by Theorem 61 that the centre of the second optical
parallelogram lies in the optical line through D parallel to C#’ and EG".

Thus the centre of the optical parallelogram whose corners are F’,
C, E, @ liesin DB'.

But this centre also lies in G’ and therefore it must be the element
B,

Thus B’ must lie in F'E.

But we saw that AD and A’D were both inertia lines and so they lie
in an inertia plane, say Q,, while BE and B'E which are respectively
parallel to these must lie in a parallel inertia plane, say @,.

Further, AC and A’'C are both optical lines and so they lie in an
inertia plane, say R, , while BD and B’D which are respectively parallel
to these must lie in a parallel inertia plane, say R,.

But the general lines A4’ and BB’ lie in the parallel inertia planes
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@, and @, respectively and also in the parallel inertia planes R, and R,
respectively, and since these inertia planes are distinct it follows that
BB’ is parallel to AA4".

Thus the parallel to A4’ through B intersects a’ in the element B’
which is after 4.

(b) If A be any element tn an optical line a and A’ be any element in
a neutral-parallel optical line a’, then of B be any element in a which is
before A, the general line through B parallel to AA’ intersects a’ in an
element which 1s before 4°.

THEOREM 83

If A and B be two elements lying respectively in the two neutral-parallel
optical lines a and b, and if A’ be a second and distinct element in a, there
18 only one general line through A’ and intersecting b which does not
wntersect the general line AB.

We have seen by Theorem 82 (a and b) that the general line through
A’ parallel to AB must intersect b.

a/ o/

a1
C
A, B
a b
2
)
b7
a@
Fig. 27.

Let B’ be the element of intersection.

Then the general lines 4 B and 4’'B’, being parallel, cannot intersect.

Let any other general line through 4’ and intersecting b intersect it
in the element C.

Then if C' should coincide with B the general lines 4’C and 4B have
the element B in common and therefore intersect.

Suppose next that € does not coincide with B.
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Let P, be any inertia plane containing a and let P, be the parallel
inertia plane containing b.

Let a, be any inertia line through A in the inertia plane P, and let @
be the inertia plane containing a, and the element B.

Then @ must contain a general line, say b,, in common with P, and
the general lines ¢, and b; must be parallel.

Again let a,” be a general line through 4’ parallel to a, .

Then a," must lie in the inertia plane P; and must be an inertia
line.

Thus the general line a,” and the element B’ must lie in an inertia
plane, say @', and since a,’ is parallel to a, and 4’B’ is parallel to 4B,
it follows by Theorem 52 that @’ is parallel to Q.

But the inertia plane @’ contains the general line a,” in P, and the
element B’ in P, and therefore since P, and P, are parallel it follows
that @’ and P, contain a general line, say b,’, in common, which will be
parallel to a,’.

Again, since a,” is an inertia line, there is an inertia plane containing
a,’ and the element C'.

It we call this inertia plane R, then by Theorem 51 the inertia planes
P, and R have a general line, say ¢,, in common and ¢, is parallel to «,’
and b,

Thussince ¢, liesin P,and R, b,"in Q" and P,,and a,"in R and @', and
since ) is an inertia plane parallel to " through the element B of P,
which does not liein b,’, it follows by Theorem 53 that the inertia planes
R and @ have a general line in common, say f;, which is parallel to a,’.

Now since C' is neither before nor after 4’, it follows that 4'C is a
separation line and therefore must intersect the inertia line f; since both
lie in one inertia plane R.

Similarly 4 B is a separation line and must intersect the inertia line f;
since both lie in the inertia plane .

Let AB intersect f, in ¥ and let 4’C intersect f, in F".

We have to show that F’ is identical with F'.

Let f be the optical line through F parallel to a and let f’ be the
optical line through F’ parallel to a.

Then since B is neither before nor after any element of a, it follows by
Theorem 45 that no element of the general line A B with the exception
of A is either before or after any element of a; and similarly no element
of the general line 4’C with the exception of A’ is either before or after
any element of a.

But F cannot be identical with 4, for this would require C to lie in
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P, , which is impossible, and F* cannot be identical with A’ since F’ and
A’ lie in parallel inertia planes @ and Q'.

Thus F is neither before nor after any element of @ and F” is neither
before nor after any element of a.

It follows that f is a neutral-parallel of @ and also f' is a neutral-
parallel of a.

Suppose now, if possible, that }” is distinet from F'; then since F and
F’ lie in the inertia line f;, it would follow that the one was after the
other.

Also if they were distinct, since they both lie in the same inertia line
they could not also lie in one optical line and so the optical lines fand f’
would be distinct and the one would be an after-parallel of the other.

But we have seen that f and f” are each neutral-parallels of @ and so
it would follow by Theorem 28 that they were neutrally parallel to one
another.

But one optical line cannot be both a neutral-parallel and an after-
parallel of another optical line and so the supposition that F” is dis-
tinet from ¥ leads to a contradiction and therefore is not true.

Thus F' is identical with /" and therefore the general line A'C' inter-
sects the general line 4 B.

Thus there is no general line through A’ and intersecting b which
does not also intersect .4 B, except the parallel general line 4'B’.

THEOREM 34

If a and b be two neutral-parallel optical lines and if one general line
intersects a in A and b in B, while a second general line intersects a in 4’
and b in B’, then an optical line through any element of 4B and parallel
to a or b intersects A'B'.

Let D be any element of AB and let d be an optical line through D
parallel to a or b.

We have to show that d intersects 4'B’.

If D should coincide with either A or B, no proof is required.

If A’ B’ be parallel to A B, then the result follows directly by Theorem
82 (@ and b).

If A’B’ be not parallel to 4B, then by Theorem 83 the general lines
AB and A’B’ must intersect in some element, say C.

Now, the general lines A B and A’ B’ being supposed distinct, C must
be distinct from at least one of the elements 4 and B and without
limitation of generality we may suppose that C is distinet from B.
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Let @ be any inertia plane containing the optical line b and let b, be
any inertia line through B in @.

Let b," be the parallel inertia line through B’ which will also lie in @.

Let P be the inertia plane containing b, and C, while R is the inertia
plane containing ;" and C.

Then by Theorem 51 P and R have a general line,say ¢, ,in common,
which is parallel to b, and b,’.

Suppose that D is not identical with B and let @ be the inertia plane
through D and parallel to Q.

b

Fig. 28.

Then we have the three distinct inertia planes P, @ and R and the
three parallel general lines ¢, , b, and b,’, such that ¢, lies in P and R, b,
in @ and P, and b,’ in R and @, while @’ is an inertia plane parallel to
@ through an element of P which does not lie in b;, and so by Theorem

53 the inertia planes R and @’ have a general line in common which is
parallel to b,’.

Call this general line d,’.

Then d,’ is an inertia line.

Now the optical line d must lie in Q' and must therefore intersect d,’
in some element, say D'.

Also A'B’ being a separation line in the inertia plane R must inter-
sect the inertia line d,’ in some element, say D".

We have to show that D" is identical with D’.
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Suppose if possible that D" is distinct from D’ and let d” be the optical
line through D" parallel to b.

Then since by Theorem 45 D is neither before nor after any element
of b, it follows that d is a neutral-parallel of b.

Similarly d” is a nuetral-parallel of b and so if D’ and D" were distinct
and did not lie in the same optical line, it would follow by Theorem 28
that d” was a neutral-parallel of d.

But )" and D" lie in d,’, which is an inertia line, and so if D" and D"
were distinct one of them would have to be after the other and so d and
d” could not be neutral-parallels.

Thus the supposition that D” is distinct from 1) leads to a con-
tradiction and so D" must be identical with D’.

Thus the optical line d intersects 4’B’ in D', which proves the
theorem.

THrorEM 85

If a and b be two neutral-parallel optical lines and E be any element in
a separation line A B which intersects a in A and b in B, and if A'B’ be
any other separation line intersecting a in A" and b in B’ but not parallel
to AB, then E either lies in A’ B’ or in a separation line parallel to A'B’
which intersects both a and b.

If £ does not liein A’ B’, then by Theorem 84 an optical line through
E parallel to a or b intersects 4’8’ in some element, say £’, which is
either before or after K.

Thus by Theorem 82 the general line through E parallel to 4’'B’
intersects a and similarly it intersects b.

Thus £ must lie in a separation line parallel to 4’ B’ and intersecting
both @ and b when it does not lie in 4’B’ itself.

REMARKS

If @ and b be two neutral-parallel optical lines and if ¢ and d be any
two non-parallel separation lines intersecting both a and b, then it is
evident from Theorem 85 that: the aggregate consisting of all the
elements in ¢ and in all separation lines intersecting @ and b which are
parallel to ¢ must be identical with the aggregate consisting of all the
elements in d and in all separation lines intersecting @ and b which are
parallel to d.

This follows since each element in the one set of separation lines must
also lie in the other set.

Thus the aggregate which we obtain in this way is independent of

R I0
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the particular set of parallel separation lines intersecting a and b which
we may select and so we have the following definition.

Definition. The aggregate of all elements of all mutually parallel
separation lines which intersect two neutral-parallel optical lines will
be called an optical plane.*

It is evident that through any element of an optical plane there is
one single optical line lying in the optical plane.

For if a and b be two neutral-parallel optical lines which are inter-
sected by a separation line d in the elements 4 and B respectively, and
if C be any other element in d, then there is a neutral-parallel to @ and
b through C which we may call c.

But through each element of ¢ other than C there is a separation line
parallel to d which, by Theorem 82 (a and b), must intersect both @ and
b, and so every element of the optical line ¢ lies in the optical plane
defined by a and b.

An optical plane differs in this respect from an inertia plane, since
the latter contains two optical lines passing through any element of it.

Definition. In analogy with the case of an inertia plane, an optical
line which lies in any optical plane will be called a generator of the
optical plane.

THEOREM 86

If two distinct elements of a general line lie in an optical plane, then
every element of the general line lies in the optical plane.

Let the optical plane be determined by the two neutral-parallel
optical lines @ and b.

If the two elements lie in a general line which is known to intersect
both a and b, no proof is required.

Let C be any element in any separation line 4 B which intersects a
in 4 and b in B, and let D' be any element in any separation line A’B’
parallel to A B and intersecting a in 4’ and b in B'.

We have to show that every element of the general line CD’ lies in
the optical plane.

By Theorem 82 (a or b) an optical line through C parallel to a or b
will intersect 4’B’ in some element, say C’.

If €' should coincide with D’, then €D’ would be an optical line
which would be neutrally parallel to a or b and we already know that

* The name ‘“optical plane” has been adopted because of certain analogies with an
optical line.
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each element of it must lie either in a separation line parallel to AB and
intersecting both a and b, or in AB itself.

Thus if C” should coincide with D’, the general line CD’ is such that
every element of it lies in the optical plane.

If ¢’ does not coincide with D', then an optical line through D’
parallel to CC’ will intersect AB in some element, say D (Theorem 82
(@ or b)).

Now DD’ must be a neutral-parallel of CC" and either of the optical
lines a or b must be either parallel to CC’ and DD’ oridentical with one
of them.

If a is identical with CC’ or DD’, then a intersects C'D)’, while if b is
identical with CC’ or DI)’, then b intersects CD’.

If a is not identical with CC’ or DD, then, by Theorem 84, a must
intersect C'1)’, and similarly if b is not identical with CC’ or DD’, then
b must intersect CD’.

Thus in all these cases CD’ intersects both a and b and therefore
every element of CD’ lies in the optical plane determined by a and b.

THEOREM 87

If e be a general line in an optical plane and A be any element of the
optical plane which does not lie tn e, then there is one single general line
through A in the optical plane which does not intersect e.

We saw in the course of proving Theorem 86 that if an optical plane
be determined by two neutral-parallel optical lines @ and b, then any
general line containing two elements in the optical plane and therefore
any general line lying in the optical plane, must either be a neutral-
parallel of a or b, or else must intersect both a and b.

Suppose first that e is a separation line in the optical plane deter-
mined by a and b, then e must intersect both a and b.

Since 4 does not lie in e it must lie in a separation line f parallel to e
and intersecting both a and b.

Now through 4 there is an optical line, say ¢, which is a neutral-
parallel of @ or b and which by Theorem 82 (a and b) must intersect e
and must lie in the optical plane, while any other general line f’ through
A and lying in the optical plane must intersect both a and b.

But f’ is not parallel to e and therefore by Theorem 83 it must
intersect it.

Suppose next that e is an optical line.

Then e must either be parallel to @ and b or be identical with one of
them.

10-2
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Through A there is an optical line parallel to @ or b and therefore
parallel to e, and this optical line must lie in the optical plane.

Any other general line through 4 in the optical plane intersects both
a and b and so by Theorem 84 it must also intersect e.

Thus there is in all cases one single general line through 4 in the
optical plane which does not intersect e.

THEOREM 88

If A, B and C be three elements in an optical plane which do not all lie
in one general line and if D be an element linearly between A and B, while
E is an element linearly between A and C, there exists an element which
lses both linearly between B and E and linearly between C and D.

The proof of this theorem is quite analogous to that of Theorem 76,
the only difference being that }' is here an optical plane instead of an
inertia plane and, as such, it cannot contain any inertia line.

Thus the words “which does not lie in 7”’ may be omitted from the
first sentence of the proof.

THEOREM 89

If A, B and C be three elements in an optical plane which do not all lie
wn one general line and +f D be an element lsnearly between A and B while
F is an element linearly between C and D, there exists an element, say E,
which 1s linearly between A and C and such that F s linearly between
Band E.

The proof of this theorem is quite analogous to that of Theorem 77,
the only difference being that V is here an optical plane instead of an
inertia plane and, as such, it cannot contain any inertia line.

Thus the words ‘‘ which does not lie in V’’ may be omitted from the
first sentence of the proof.

REMARKS

It will be observed that Theorem 88 is the analogue of Peano’s
axiom (14) for the case of elements in an optical plane, while Theorem
89 is the corresponding analogue of his axiom (13).

Further, Theorem 87 corresponds to the Euclidean axiom of parallels
for the case of general lines in an optical plane.
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THEOREM 90

If A, B and C be three elements in an optical plane which do not all lie
in one general line and if D be an element linearly between A and B while
DE is a general line through D parallel to BC and intersecting AC in the
element B, then K is linearly between A and C.

In the first place E cannot be identical with A for then the general
line DE would be identical with the general line B4 and would there-
fore intersect BC.

Again E cannot be identical with € for once more BC' and DE would
intersect.

Thus we must either have C linearly between 4 and £, or 4 linearly
between C' and K, or £ linearly between 4 and C.

If C were linearly between 4 and £, then since D is linearly between
A and B it would follow by Theorem 88 that there existed an element
which was both linearly between B and C' and linearly between £
and D.

Thus in this case also BC and DE would intersect.

Next if A were linearly between C' and E, then since D is linearly
between 4 and B it would follow similarly by Theorem 89 that BC and
DE must intersect.

Thus the only possibility is that ¥ is linearly between 4 and C.

THEOREM 91

If three parallel general lines a, b and ¢ in one optical plane intersect a
general line dy in A, B, and C| respectively and intersect a second general
line dyin Ay, By and Cyrespectively, then if By is linearly between A, and
Oy we shall also have B, linearly between A, and Cy.

If 4, should be identical with A, the result follows directly from
Theorem 90.

Similarly it follows directly if C'; should be identical with C,.

If B, should be identical with B, the following method is still valid.

The general line C'; 4, cannot be identical with the general line ¢ and
therefore C) 4, must intersect the general line b (which is parallel to c¢)
in some element, say B’.

Then, since B, is linearly between 4, and C,, it follows by Theorem
90 that B’ is linearly between C; and 4,.

Similarly, since B’ is linearly between 4, and €}, it follows that B, is
linearly between 4, and C,.
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THEOREM 92

If two elements A and B lie in one optical line and if two other elements
C and D lie in a neutral-parallel optical line, and if A be after B, then:

(1) If C be after D the general lines AD and BC intersect in an
element which s both linearly between A and D and linearly between B
and C.

(2) If the general lines AD and BC intersect in an element E which
is esther linearly between A and D or linearly between B and C, we shall
also have C after D.

Let A and B lie in an optical line @ and let C and D lie in a neutral-
parallel optical line c.

Let a, be any inertia line through 4 and let b, be a parallel inertia
line through B.

Then a, and b, lie in an inertia plane, say P.

Let B’ be any element in b, which is after B and let a’ be an optical
line through B’ parallel to a.

Then a’ will intersect a, in some element, say A’, and, by Theorem 57,
since A is after B, we must have A’ after B’.

But, since B’ is not an element of @ but is after B, an element of a, it
follows that a’ is an after-parallel of a.

Since further a and ¢ are neutral-parallels, it follows by Theorem
26 (b) that a’ is an after-parallel of c.

Thus a’ and ¢ lie in an inertia plane, say Q.

Proceeding now to prove the first part of the theorem, we have A’
after B’ and C after D and so it follows by Theorem 68 and the definition
of “linearly between” that 4’D and B’C intersect in an element, say
E’, which is linearly between 4’ and D and also linearly between B’
and C.

But since a, is an inertia line there is an inertia plane containing a,
and the element K’ which we may call R, and similarly there is an
inertia plane containing b, and the element E’ which we may call S.

Now since a, and b, are parallel general lines in the inertia plane P
it follows, by Theorem 51, that the inertia planes R and S have a
general line, say e, , in common, which is parallel to @, and b, and must
therefore be an inertia line.

Since e, lies both in R and S it must intersect BC and 4D which lie
respectively in § and R and are separation lines.
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Suppose ¢, intersects BC in E and AD in E, then E and E lie in the
inertia line e; and so, if they were distinct, they could not lie in one
optical plane.

But £ and & each lie in the optical plane determined by the neutral-
parallel optical lines @ and ¢ and so E is identical with E.

But since D, A and 4’ are elements in the inertia plane R which do
not all lie in one general line, and since £’ is linearly between A’ and D

a « ¢

Fig. 29.

and E'E is parallel to A’ A, it follows, by Theorem 72, that F is linearly
between 4 and D.

Similarly since £’ is linearly between B’ and C, and C, B and B’ lie
in the inertia plane S and are not all in one general line and since E'E
is parallel to B’'B it follows that ¥ is linearly between B and C.

Thus the first part of the theorem is proved.

Proceeding now to prove the second part of the theorem; since 4D
and BC intersect in the element £ and since a, and b, are inertia lines
it follows that there is an inertia plane, say R, which contains a, and
the element E, and another inertia plane, say S, containing b, and the
element E.
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It follows, since a, and b, are parallel and lie in the inertia plane P,
that R and S have a general line, say ¢, in common, which is parallel
to a, and b, (Theorem 51) and must therefore be an inertia line.

Now the element £ could not lie in the optical line ¢, since then it
would have to coincide with both € and D and could not therefore be
linearly between A and D or linearly between B and C.

Thus, since £ and c lie in one optical plane and ¢ also lies in the
inertia plane @, it follows that £ does not lie in ¢ and so the inertia
line ¢, cannot have more than one element in common with @.

If now X be linearly between 4 and D, then since D, 4 and A’ lie in
the inertia plane R and are not all in one general line, it follows, since e,
is parallel to 44’, that e, must intersect 4’D in an element, say £’,
which is linearly between 4’ and D.

Also, since B’C is not parallel to e, and lies in the inertia plane S
with it, it follows that B’'C must intersect e, .

But B’C lies in @ and we have seen that ¢, and ¢ cannot have more
than one element in common and therefore A’D and B’C intersect ¢, in
the same element E’.

If we suppose instead that ¥ is linearly between B and C, we find in
a similar way that B’C and 4'D intersect e, in an element E’ which is
linearly between B’ and C.

But by the definition of ““linearly between’ the element £’ must in
either case be between the parallel optical lines @’ and ¢ in the inertia
plane Q.

Thus, since a’ and ¢ are parallel optical lines in the inertia plane @
and since A’ is after B’ and the element of intersection of 4’D and B'C
lies between a’ and ¢, it follows by Theorem 69 that C is after D, as was
to be proved.

THEOREM 93

(@) If Ay and A, be two elements in a general line a which lies in the
same optical plane with another general line b which intersects a in the
element C such that either A, is linearly between C' and A, or A, s
linearly between C and Ay and if an optical line through A, intersects b
wn B, so that B, 1s after A, then a parallel optical line through A, will
intersect b in an element which is after A .

The proof of this theorem is exactly analogous to that of Theorem 71,
using Theorem 92 (1) in place of Theorem 68.

There is also a (b) form of this theorem which may be proved in an
analogous manner.
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THEOREM 94

If A, B and C be three elements in an optical plane which do not all lie
1n one general line and if D be the mean of A and B, then a general line

through D parallel to BC intersects AC in an element which is the mean of
A and C.

Let a, be any inertia line through 4 while b, and ¢, are parallel
inertia lines through B and (' respectively.

Then b, and ¢, lie in one inertia plane, say P, ¢, and a, in a second
inertia plane, say ), and a, and b, in a third inertia plane, say R.

Let one of the optical lines through 4 in the inertia plane @) intersect
¢,in ¢ and let one of the optical lines through A in the inertia plane R
intersect b, in B’.

@,

by

)

Fig. 30.

Then AC” and 4B’ may be taken as generators of opposite sets of an
inertia plane, say S, containing 4, B and C".

Let d, be an inertia line through ) parallel to a,, b, and ¢, .

Then d, will lie in R and will intersect the optical line 4B’ in some
element, say D’.

If now a general line be taken through D parallel to BC, it will lie in
the optical plane, and since the general line AC is distinct from the
general line BC it follows from Theorem 87 that this general line
through D parallel to BC must intersect AC in some element, say &.

Let e, be an inertia line through E parallel to a,, b, ¢,, d,.

Then e, will lie in the inertia plane @ and will intersect the optical
line AC’ in some element, say E’.

Now d, and e, being parallel inertia lines will lie in an inertia plane,
say 7', which contains the two intersecting general lines DE and d,
which are respectively parallel to BC and b, in P.
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Thus by Theorem 52 the inertia planes 7' and P are parallel.

But the inertia plane S has the general line D'E’ in common with 7
and the general line B'C’ in common with P and so D'E’ is parallel to
B'C".

Now since 4, B and B’ lie in the inertia plane R and since D is the
mean of A and B and since DD’ is parallel to BB', it follows by Theorem
78 provided that A, B and B’ do not lie in one general line, that D’ is
the mean of 4 and B’.

The only case in which 4, B and B’ do lie in one general line is when
B’ coincides with B and then D’ is identical with D so that D)’ is still
the mean of 4 and B'.

Again, since 4, B’ and (' lie in one inertia plane S and do not all lie
in one general line and since D’ is the mean of 4 and B’, and D'E’ is
parallel to B’C”, it follows by Theorem 78 that £’ is the mean of 4
and C".

Further, since 4, C'and €’ lie in one inertia plane @, since £’ is the
mean of 4 and C” and since E’E is parallel to C'C, it follows, provided
that 4, C and " do not lie in one general line, that £ is the mean of 4
and C.

The only case in which 4, C and €’ do lie in one general line is when
C’ coincides with C and then E’ coincides with £ so that £ is still the
mean of 4 and C.

(Tt is to be noted that we cannot have both B’ coinciding with B and
¢’ with C, for then we should have two optical lines AB" and AC’
passing through the same element 4 and lying in an optical plane,
which is impossible.) Thus the theorem is proved.

Since there is only one general line through D parallel to BC and
this must pass through the mean of 4 and C, it follows directly that
if £ be the mean of 4 and C, then the general line DE is parallel
to BC.

Definition. If a pair of parallel general lines in an optical plane be
intersected by another pair of parallel general lines, then the four
general lines will be said to form a general parallelogram in the optical
plane.

The terms corner, side line. diagonal line, adjacent and opposite will
be used in a similar sense for the case of a general parallelogram in an
optical plane as for one in an inertia plane.
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THEOREM 95
If we have a general parallelogram in an optical plane, then :

(1) The two diagonal lines intersect in an element which s the mean
of either pair of opposite corners.

(2) A general line through the element of intersection of the diagonal
lines and parallel to esther pasr of opposite side lines intersects esther of the
other side lines in an element which is the mean of the pawr of corners
through which that side line passes.

The proof of this theorem isexactly analogous to that of Theorem 79,
using Theorem 94 in place of Theorem 78.

THEOREM 96

If A, B, C, D be the corners of a general parallelogram in an optical
plane, AB and DC being one pasr of parallel side lines and BC and AD
the other pair of parallel side lines, then if E be the mean of A and B while
F is the mean of D and C, the general lines AF and EC are parallel to one
another.

The proof of this theorem is exactly analogous to that of Theorem 80,
using Theorem 95 in place of Theorem 79 and Theorem 94 in place of
Theorem 78.

THEOREM 97

If three parallel general lines a, b and c in one optical plane intersect a
general lined, in A, , B; and C, respectively, and intersect a second general
line d, in 4,, By and Cy respectively, and if B, be the mean of A, and C,
then By will be the mean of A, and C.

The proof of this theorem is exactly analogous to that of Theorem 81,
using Theorem 94 in place of Theorem 78, and Theorem 95 in place of
Theorem 79.

REeMARKS

If P and P’ be parallel inertia planes and if @ be any generator of P,
there is one single generator of P’ which is a neutral-parallel of a.

This is easily seen, for if b; be any generator of P’ belonging to the
set not parallel to a and if B be any element in b,, then either:

(1) Bis before an element of a,

or (2) Bis after an element of a,
or (3) Bis neither before nor after any element of a.

In cases (1) and (2), since B does not lie in a and, since b, neither
intersects a nor is parallel to it, it follows by Post. XII (a and b) that
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there is one single element of b, which is neither before nor after any
element of a.

Thus there is always an element of b; which is neither before nor after
any element of a.

Let B, be such an element and let a’ be the generator of P’ parallel to
a and passing through B,.

Then a’ is a neutral-parallel of a.

Again, there can be no other generator of P’ besides a’ which is a
neutral-parallel of a, for any other generator of P’ parallel to &’ must
be either a before- or after-parallel of @’ and therefore by Theorem 26
(@ or b) such a generator must be a before- or after-parallel of a.

Again, if P and P’ be parallel inertia planes and if 4 be any element
of P, while a and b are the two generators of P which pass through 4,
then there is one single generator of P’, say a’, which is neutrally
parallel to a and there is one single generator of P’, say b’, which is
neutrally parallel to b.

The optical lines a’ and 6" being generators of opposite sets must
intersect in some element, say A’.

Then A4’ is neither before nor after any element of @ and also neither
before nor after any element of b.

Similarly A is neither before nor after any element of a’ and also
neither before nor after any element of b’.

The elements A and A" will be spoken of as representatives of one
another in the parallel inertia planes P and P’.

Thus we have the following definition.

Definition. If P and P’ be parallel inertia planes and if 4 and 4’ be
elements in P and P’ respectively such that the two generators of P’
passing through A’ are respectively neutral-parallels of the generators
of P which pass through 4, then the elements 4 and A’ will be called
representatives of one another in the parallel inertia planes P and P’.

Itis evident that the elements 4 and 4’ must lie in a separation line.

THEOREM 98

If P, and P, be two parallel inertia planes and if A, be any element in
P, while A, is its representative in Py, then if A," be any other element in
P, and Ay its representative in P, the separation lines A, A, and A,'A,’
are parallel to one another.

Let a, and b, be the generators of P; which pass through 4, and let a,
and b, be the generators of P, which pass through 4,, the optical lines
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a, and a, being neutrally parallel to one another and the optical lines
b, and b, being also neutrally parallel to one another.

Consider first the case where A, lies in one of the generators a, or
b, which pass through 4, .

It will be sufficient if we consider the case where A,’ lies in a, .

Then A4, will lie in a,,.

Let b," be the second generator of P, which passes through 4,” and
let b, be the second generator of P, which passes through 4,'.

Then b," will be parallel to b, while b,” will be parallel to b, and the
optical lines b,” and b," will be neutrally parallel to one another by the
definition of representative elements.

Now since a, and a, are neutral-parallel optical lines they determine
an optical plane which contains the separation lines 4, 4, and 4,4,
which must therefore either intersect or be parallel to one another.

Now, by Theorem 45, no element of the general line A, 4, with the
exception of 4, is either before or after any element of b, and similarly,
no element of the general line 4,’4," with the exception of 4, is either
before or after any element of b,’.

Now suppose, if possible, that 4, 4, and A,"4,’ intersect in some
element A4,.

Then A4, could not coincide with either 4, or 4," and so would
require to be neither before nor after any element of b, and also neither
before nor after any element of b,’.

1f then b, were an optical line through A4, parallel to b, and b,’, we
should have b, neutrally parallel to both b, and b,".

Thus by Theorem 28, b, would require to be neutrally parallel
to b,’.

But b, and b,’ are parallel generators of the inertia plane P; and so
one must be an after-parallel of the other. '

Thus the supposition that 4, 4, and 4,’4," intersect leads to a con-
tradiction and therefore is not true.

It follows that A4;4, and A4,"A," are parallel, which proves the
theorem in this special case.

Next consider the case where 4, does not lie either in a, or b,.

Let b," be the generator of P, through 4," parallel to b, and let b,’
be the generator of P, through 4,’ parallel to b,.

Let b," and @, intersect in B, and let b," and a, intersect in B,.

Then since @, and a, are neutrally parallel and also b," and b," are
neutrally parallel, it follows by the case already proved that 4, 4, and
B, B, are parallel to one another.
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Similarly 4,’4," and B, B, are parallel to one another.
Thus by Theorem 50 4,’A4," and A, A, are parallel to one another.

SETS OF THREE ELEMENTS WHICH DETERMINE OPTICAL PLANES

If A,, A, and 44 be three distinct elements which do not all lie in one
general line and do not all lie in one inertia plane, they either may or
may not all lie in one optical plane.

In those cases in which they do lie in an optical plane they determine
the optical plane containing them.

We have the following criteria by which we may say that the three
elements do lie in one optical plane.

Case I. Three elements 4,, 4,, A5lie in one optical plane if 4, and
A, lie in an optical line while 4, is an element which is neither before
nor after any element of the optical line.

This is clearly true since if a be the optical line containing 4, and 4,,
there is an optical line, say b, through 4, and neutrally parallel to a.

These two optical lines may be taken as generators of an optical
plane which will contain 4,, 4, and 4.

Now if P be this optical plane it is the only one which contains 4,
A, and A,, for suppose that 4,, 4, and 4, also lie in an optical plane
P’ determined by the two generators a’ and b’. '

Then, since P’ contains 4, and 4, it follows by Theorem 86 that P’
contains every element of the general line 4,4, and since 4,4, is a
separation line it cannot be parallel to either a’ or 6’ and must therefore
intersect both a’ and b’.

Again since P’ contains 4, and 4, it follows that P’ contains every
element of 4, 4,: that is, it contains the optical line a.

Also since P’ contains A4, it must contain the optical line through 4,
parallel to a: that is, it contains b.

Further a cannot intersect either a’ or b’ and so must be either parallel
to both or identical with one.

Similarly & cannot intersect either a’ or b’ and so must be either
parallel to both or identical with one.

Now every element in the optical plane P must either lie in the
separation line 4,4, or in a separation line parallel to 4, 4; and inter-
secting a and b.

But such a separation line must also intersect a’ and b’ and will
therefore lie in the optical plane P’.

Similarly every element in the optical plane P’ must either lie in the



GEOMETRY OF TIME AND SPACE 159

separation line 4,4, or in a separation line parallel to 4,4, and
intersecting a’ and b’.

But such a separation line must also intersect @ and b and will
therefore lie in the optical plane P.

Thus every element in P lies also in P’ and every element in P’ lies
also in P.

Thus the optical planes P and P’ are identical and so there is only
one optical plane containing the three elements 4,, 4,, 4,.

JAsk II. Three elements 4,, 4,, A, lie in one optical plane if 4,
and 4, lie in a separation line while 44 is an element which is before one
single element of A, 4,, or is after one single element of 4, 4,.

This may be shown as follows:

Let A, be before the one single element 4, of the separation line
A, 4, and let 4, 4, be denoted by a.

Then A, 4, cannot be an inertia line, for, if it were, we know that it
would lie in an inertia plane containing a.

Thus the three elements 4,, 4,, 4, would lie in one inertia plane,
contrary to what was proved on pp. 72-73.

Thus 4, 4, cannot be an inertia line and so, since A, is before A, it
must be an optical line.

Now 4, must be distinct from at least one of the two elements A4,
A,, and without loss of generality we may suppose A4, distinct from 4, .

Then A, is neither before nor after A, since they are both elements of
the separation line 4, 4,.

Further, 4, cannot be before any element of the optical line 454,
which is before A,, for then 4, would be before A,, which is im-
possible.

Similarly 4, cannot be after any element of the optical line 434,
which is after 4,.

Again 4, cannot be after any element of the optical line A3 4, which
is before 4 ,; for if A; were such an element of 454, we should have 4
before two distinct elements of @ and so 4, A, and 4, would lie in one
inertia plane which would also contain A4,, contrary to what has
already been shown.

Similarly 4, cannot be before any element of the optical line 4;4,
which is after 4,.

Thus 4, is neither before nor after any element of the optical line
A, 4,andso through A, thereis one single optical line which is neutrally
parallel to 4;4,.
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Thus these two optical lines may be taken as generators of an optical
plane and, since the separation line a intersects both these optical lines
and contains the elements 4, and 4,, it follows that the three elements
4,, A,, A, lie in an optical plane.

Further, there is only one optical plane containing 4,, 4, and 4,;
for any optical plane containing 4, and 4, must also contain 4,, and
since, by Case I, there is only one optical plane containing 4,, 4, and
4,, it follows that there is only one optical plane containing 4,, 4,
and A4,.

Similarly, if A, be after one single element of the separation line
A, 4,, there is one single optical plane containing the three elements

4y, A, and 4,.

THEOREM 99

If two optical parallelograms have a pair of opposite corners in common
lying in an inertia line, then their separation diagonal lines are such that
no element of the one is either before or after any element of the other.

Let 4 and B be the two common opposite corners lying in the
inertia line a, and let B be after 4.

Let C and D be the two remaining corners of the one optical parallelo-
gram which we shall suppose to lie in the inertia plane P, and let £ and
F be the two remaining corners of the other optical parallelogram
which we shall suppose to lie in the inertia plane Q.

Then by Theorem 60 the two optical parallelograms have a common
centre, say (), which is after A and before B.

Then the general lines C'D) and EF are separation lines and so their
common element is neither before nor after any element of either of
them.

Let CD be denoted by ¢ and EF by e.

Now, since C' and E are two distinct elements in the « sub-set of 4
which do not lie in one optical line, it follows by Theorem 13 that C is
neither before nor after E, and similarly C is neither before nor after F.

Let E, be any element in e such that £ is linearly between O and E,
and let the optical line through E, parallel to EA intersect a in 4,,
while the optical line through E, parallel to EB intersects a in B, .

Then by Theorem 72 A is linearly between A, and O, while B is
linearly between O and B, .

Thus A4, must be before A and B, must be after B.

Again, since 4, is before O, and O and E| lie in a separation line, we
must have A, before E, .
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Similarly, since B, is after O, and O and E, lie in a separation line,
we must have B, after E,.

But A is after A, and Cis after A and therefore C'is after A, ,and since
A is the only element common to a and the 8 sub-set of C, it follows
that 4,C is an inertia line.

If then C were before E, it would follow by Theorem 12 that C should

(47

Fig. 31.
lie in the optical line 4; K, which it clearly cannot do since 4,C is an
inertia line.
Thus C is not before E, .
Further, Bis after C'and B, after B and therefore B, is after C'and B, C
is an inertia line.
If then C were after £, it would follow by Theorem 12 that C should

lie in the optical line B, E, which it clearly cannot do since B,C is an
inertia line.

Thus C is not after E, .

R
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In a similar manner we may prove that C is neither before nor after
any element F, of the separation line e such that F is linearly between
O and F,.

Again let E, be any element of ¢ which is linearly between O and K
and let the optical line through £, parallel to £ 4 intersect a in A, while
the optical line through E, parallel to £B intersects a in B,.

Then we may prove in a similar manner that ¥, is neither before nor
after C and therefore C is neither before nor after E,.

Similarly we may prove that C is neither before nor after any element
F, of the separation line e such that F, is linearly between O and F.

Thus C is neither before nor after any element of the separation
line e.

Similarly .D is neither before nor after any element of e.

Again if (' be any other element in ¢ distinct from O, then by
Theorem 59 there is an optical parallelogram in the inertia plane P
having O as centre and C’ as one of its corners.

1f D’ be the corner opposite to C’, then D’ will also lie in ¢, and if 4
and B’ be the remaining two corners these must lie in a.

Then there is one single optical parallelogram in the inertia plane @
having A’ and B’ as opposite corners.

If E' and F’ be the remaining corners of this optical parallelogram,
then £’ and £’ must lie in e.

Thus we have got two new optical parallelograms having a pair of
opposite corners A’ and B’ in common, lying in the inertia line a, while
their separation diagonal lines are ¢ and e respectively.

Thus we may prove in a manner similar to that already employed
that C’ is neither before nor after any element of e.

Thus no element of ¢ is either hefore or after any element of e, as was
to be proved.

REMARKS

It is evident from the above that any general line which intersects
the separation lines ¢ and e in distinct elements must itself be a separa-
tion line.

It also appears from this theorem that it is possible to have an
element which does not lie in a separation line and which is neither
before nor after any elements of the separation line.

If two distinct elements A4, and A, lie in a separation line a, while 4,
is an element which does not lie in a and is neither before nor after any
element of a, then we have already seen (p. 73) that 4,, 4, and 4,
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cannot lie in an inertia plane and it is also evident that they cannot lie
in an optical plane.

For suppose, if possible, that 4, does lie in an optical plane con-
taining the separation line a; then there would be a generator of the
optical plane passing through 4, and intersecting a in some element,
say 4,.

Since A4, is supposed not to lie in @, the elements 4, and 4, would
require to be distinct and since they would then lie in an optical line
we should have A4, either before or after A,: an element of a, contrary
to hypothesis.

Thus 4,, 4, and 4, cannot lie in an optical plane.

Again if two distinct elements 4, and 4, lie in a separation line while
A, is an element which does not lie in 4, 4, and is neither before nor
after any element of 4, 4,, then the element A4, is neither before nor
after any element of 454, .

For if A, were either before or after any element of A;4,, then the
three elements 4, 4,, 4, would lie either in an inertia or optical plane
contrary to what we have just shown.

Similarly A4, is neither before nor after any element of 4,4,.

Again if @ be a separation line and 4 be an element which is not an
element of a and is neither before nor after any element of a, then if B
be any element of @, no element of the general line 4 B is either before
or after any element of a.

This is easily seen, for suppose, if possible, that (' is some element of
A B which is either before or after some element of a.

Then C could not liein @ and would lie either in an inertia or optical
plane containing a.

But such inertia or optical plane would contain the element 4 and
so the separation line a and the element 4 would lie in an inertia or
optical plane, contrary to what we have already proved.

Thus no element of 4B is either before or after any element of a.

Definition. An inertia line and a separation line which are diagonal
lines of the same optical parallelogram will be said to be conjugate to
one another.

It is evident that if an inertia line and a separation line are conjugate
they lie in one inertia plane and intersect one another.

It is also evident that if A be an element lying in an inertia or separa-
tion line a in an inertia plane P, then there is only one separation or
inertia line through 4 and lying in P which is conjugate to a; since, if

11-2
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two optical parallelograms lie in P and have a as a common diagonal
line, then their other diagonal lines do not intersect (Post. XVI).

From this it also follows that if two intersecting separation lines b
and ¢ be both conjugate to the same inertia line a, then a, b and ¢
cannot lie in the same inertia plane and we shall have ¢ and b in one
inertia plane, say P, while a and c lie in another, say @.

If O be the element of intersection of b and ¢, then O must lie both in
P and ¢ and therefore in the inertia line a.

If 4, be any element in a distinct from O, there is one optical paral-
lelogram in the inertia plane P having O as centre and 4, as one of its
corners.

If 4, be the corner opposite 4,, then there is an optical parallelo-
gramin @ also having A, and 4, as a pair of opposite corners and there-
fore having the same centre O.

The separation lines b and ¢ will be the separation diagonal lines of
the optical parallelograms in P and @ respectively, and so it follows by
Theorem 99 that no element of b is either before or after any element of c.

By considerations similar to the above, we can see that if two inter-
secting inertia lines b and ¢ be both conjugate to the same separation
line @, then a and b must lie in one inertia plane while a and ¢ lie in
another distinct inertia plane.

Further if O be the element of intersection of b and ¢, then O lies in a.

In this case however, since b and ¢ are two intersecting inertia lines,
they must lie in one inertia plane which must be distinct from both the
others.

Again it is clear that if @ be an inertia or separation line lying in an
inertia plane P with aseparation or inertialineb whichis conjugate toa,
then any general line ¢ lying in Pand parallel to b is also conjugate to a.

Also conversely it is clear that if @ be an inertia or separation line
lying in an inertia plane P with two distinct separation or inertia lines
b and ¢ which are each conjugate to a, then b and ¢ must be parallel to
one another.

THEOREM 100

If an inertia line a be conjugate to a separation line b, and if an inertia
line a’ be co-directional with a while a separation line b’ is co-directional
with b, and if a’ and b’ intersect one another, then a’ is conjugate to b’.

Let P be the inertia plane containing @ and b and let O be the element
of intersection of @ and b, while O’ is the element of intersection of a’
and b’
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Two cases have to be considered:

(1) O’ lies in the inertia plane P.
(2) O’ does not lie in the inertia plane P.

Consider first case (1).

Here both a’ and b’ must lie in P.

Then since a’ is co-directional with a and a is conjugate to b and since
a, b and a’ lie in one inertia plane, it follows that a’ is conjugate to b.

Also since b’ is co-directional with b and a’ is conjugate to b, and
since a’, b and b’ lie in one inertia plane, it follows that a’ is con-
jugate to b’.

Fig. 32.

Consider next case (2).

Here o’ and b’ lie in an inertia plane P’ which must be distinct from
P, since the element O’ does not lie in P and therefore, by Theorem 52,
P’ must be parallel to P.

Now let 4 be any element of @ which is before O.

Then we know that there is one single optical parallelogram lying
in P which has O as centre and A as one of its corners.

Let C be the corner opposite to 4 and let B and D be the remaining
pair of corners, which must both lie in b, since b is conjugate to a and
intersects it in O.

Now, since Pand P’ are parallel inertia planes and since b is a general
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line in P, then,as we showed on p. 76, there is at least one inertia plane,
say @, containing b and another general line, say b in P’.

Then h must be parallel to b and since b is a separation line, b must
also be a separation line.

Let b, and d, be parallel optical lines in ¢ which pass through B and
D respectively and let them intersect the separation line b in B, and D,
respectively.

Let an optical line be taken through B, parallel to BC and let an
optical line be taken through D, parallel to DC.

Then these two optical lines will be generators of opposite sets of the
inertia plane P’ and consequently will intersect in some element, say
q,.
Similarly if an optical line be taken through B, parallel to B4 and an
optical line be taken through D; parallel to DA these two optical lines
will also lie in P” and will intersect in some element, say 4, .

Now let optical lines ¢, and ¢, be taken through A and C respectively
and parallel to b, and d, .

Then C' is after O and therefore also after both B and D and conse-
quently ¢, is an after-parallel of b, and also an after-parallel of d; .

Thus B,C, and D,;C,; must both intersect ¢, and this latter optical
line cannot lie in P’ and so cannot have more than one element in
common with P’

But €| lies in P’ and is the one element common to B, C, and D, C,
and so the optical line ¢, must pass through C,.

In an analogous way we find that a, is a before-parallel of both b,
and d, and must pass through the element 4, .

Further, ¢; must be an after-parallel of a, .

But now, by hypothesis, a is an inertia line so that a and @, lie in an
inertia plane, which must also contain ¢, since ¢, is parallel to ¢, and
passes through the element C' of a.

Thus 4, C; must be an inertia line parallel to a and we may denote it
by d.

Then @ and b are diagonal lines of the optical parallelogram whose
corners are 4,,B,,C,and D, and so d@ is conjugate to b; which intersects
it in some element, say 0.

But a’ and @ are each parallel to @ and therefore a’ and @ are co-
directional while 5" and b are each parallel to b and so b’ and b are
co-directional.

Thus, by case (1), a’ is conjugate to b’, as was to be proved.

Thus the theorem holds in all cases.
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Definitions. If A be any element and @ be an inertia line not con-
taining A, while B is the element common to @ and the « sub-set of 4,
then we shall speak of B as the first element of a which us after A.

Similarly if C' be the element common to @ and the B sub-set of 4, we
shall speak of C' as the last element of a which is before A.

PosturaTe XVIII. If a, b and ¢ be three parallel inertia lines

which do not all lie in one inertia plane* and A, be any element
in @ and if

B, be the first element in » which is after A,,
C, be the first element in ¢ which is after A,
B, be the first element in b which is after C,,
C, be the first element in ¢ which is after B,

then the first element in ¢ which is after B, and the first element
in @ which is after C, are identical.

It is evident that there is a (b) form of this postulate in which the
word last is substituted for the word first and the word before for the
word after, but this is not independent, as may be readily seen.

Thus let 4, be any element in @ and let B, be the last element in b
which is before 4, and let C, be the last element in ¢ which is before B,
while A, is the last clement in @ which is before C,.

Then C, is the first element in ¢ which is after 4,,

B, is the first element in b which is after C,,

A, is the first element in a which is after B,.

Thus if B, be the first element in b which is after 4, and if C, be the
first element in ¢ which is after B,, it follows by Post. XVIII that the
first element in @ which is after ('} is identical with the first element in
a which is after B,: that is, with the clement 4.

But (] is the last element in ¢ which is before A, and B, is the last
element in b which is before Cy while 4, is the last element in @ which is
before B,.

Thus the last element in @ which is hefore B, and the last element in
a which is before C, are identical.

* If a, b and ¢ do all lie in one inertia plane, the same result may easily be deduced from
the other postulates.
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THEOREM 101
If an inertia line c be conjugate to two intersecting separation lines d and

e, then if A be any element of d and B be any distinct element of e, the
general line AB 13 conjugate to a set of inertia lines which are parallel to c.

Let C| be the element of intersection of the separation lines d and e.

/’
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Fig. 33.

Then we know that ¢ and d lie in one inertia plane, say P, while ¢
and e lie in another distinct inertia plane, say @, and the element C,
lies in c. :

If A or B should coincide with €'y, then the general line 4 B must
coincide with e or d and the result follows directly.

We shall suppose therefore that neither 4 nor B coincides with C .

Then since by Theorem 99 A is neither before nor after B and since 4
and B are distinct it follows that 4B is a separation line.



GEOMETRY OF TIME AND SPACE 169

Let a be an inertia line through A parallel to ¢ while b is an inertia
line through B parallel to c.

Then since 4 and B lie in a separation line it follows that a and b
must be distinct and therefore are parallel to one another.

Thus a and b must lie in an inertia plane which we shall call R.

Further, a must lie in the inertia plane P while b must lie in the
inertia plane .

Now let 4, be the first element in a which is after C,,

let B; be the first element in b which is after C,,
let A, be the first element in a which is after B,
let B, be the first element in b which is after 4, .

If now C, be the first element in ¢ which is after 4,, it follows by
Post. XVIII that C, is also the first element in ¢ which is after B,.

Now the optical lines (', 4, and Cy 4, cannot be parallel ; for since 4,
is after C; and ¢ and a are parallel inertia lines in the inertia plane P, it
would then follow by Theorem 57 (b) that 4, was after C,.

But we know that (,is after A, andso U A, and Cy A, are not parallel,
and, since they lie in one inertia plane, it follows that they must
intersect in some element, say D.

Similarly ¢ B; and (', B, must intersect in some element, say K.

Also since a and b are parallel inertia lines in the inertia plane R and
since B, is after 4, and 4, after B,, it follows in a similar manner that
the optical lines 4,B, and A,B; must intersect in some element,
say O.

Now A4, cannot be identical with 4, for then we should have the
three elements C;, B, and 4, lying in pairs in three distinct optical
lines, which is impossible by Theorem 14.

Further, since B, is after C; and 4, is after B,, it follows that 4, is
after C,.

But A4, cannot be before A, for then we should have A, after one
element of the optical line C, A, and hefore another element of it
which would entail that 4, should lie in the optical line €| 4,, by
Theorem 12.

We know however that 4, and 4, are distinct elements in the inertia
line ¢ and so A, cannot be before 4, .

Thus, since 4, and 4, are distinct elements in an inertia line and 4,
is not before 4,, it follows that A4, is after 4,.

Similarly B, is after B, .

Let an optical line through A4, parallel to DA, be taken and an optical
line through 4, parallel to D4, and let these intersect in H.
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Then 4,, D, A,, H form the corners of an optical parallelogram in
the inertia plane P, having its centre, say K, in the inertia line a.

Again let an optical line through B, parallel to EB, be taken and an
optical line through B, parallel to EB, and let these intersect in /.

Then B, . E, B,, I form the corners of an optical parallelogram in the
inertia plane @, having its centre, say L, in the inertia line b.

If now we take optical parallelograms having C, and C, as opposite
corners in each of the inertia planes P and @ then, by Theorem 60,
these have a common centre, say M, lying in the inertia line c.

Also D will be one of the remaining corners of the optical parallelo-
gram in P while £ will be one of the remaining corners of the optical
parallelogram in @.

Thus M D and M E will each be conjugate to c.

Further, since the general lines M D and d are both conjugate to c and
lie in the same inertia plane P, they must be parallel to one another.

Similarly the general lines M E and e must also be parallel to one
another.

But now the optical parallelogram in the inertia plane P having C';
and C, as a pair of opposite corners, and the optical parallelogram
whose corners are 4,, ), A,, H have diagonal lines ¢ and a respectively
which do not intersect, and so since they both lie in P their other
diagonal lines do not intersect.

But these other diagonal lines have the element D in common and
so must be identical.

Thus the general lines M D and KD are identical and so K liesin M D.

Similarly L lies in ME.

Now let an optical line through 4, parallel to OA, be taken and an
optical line through 4, parallel to 04, and let these intersect in F'.

Then d,, F, 4,, O form the corners of an optical parallelogram in
the inertia plane R, and by Theorem 60 this must have the same centre
K as the optical parallelogram whose corners are 4,, D, 4,, H.

Again let an optical line through B, parallel to OB, be taken and an
optical line through B, parallel to OB, and let these intersect in ¢.

Then B,, G, B,, O form the corners of an optical parallelogram in
the inertia plane R, and by Theorem 60 this must have the same centre
L as the optical parallelogram whose corners are B,, £, B,, I.

But now the optical parallelograms whose corners are 4,, F, 4,, O
and B,, G, B,, O have the diagonal lines a and b which do not intersect
and so, since both lie in the same inertia plane R, their other diagonal
lines do not intersect.
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That is, #O and GO do not intersect and so since they have the
element O in common they must be identical.

Thus O lies in the general line FG; that is, in the general line K L.

Thus KL is conjugate to both @ and b.

Now let a general line through C, parallel to C, 4 intersect @ in A4,
and let a general line through C, parallel to C, B intersect b in B'.

Then 4, 4", Cy, C, form the corners of a general parallelogram in the
inertia plane P, while B, B’, (,, O, form the corners of a general
parallelogram in the inertia plane .

Also,since M K and Cy A are both parallel to (' A,and since M is the
mean of U and C,, it follows by Theorem 81 that K must be the mean
of A and 4'.

Similarly L is the mean of B and B’.

Thus by Theorem 80 the general lines AM and KC, are parallel to
one another and similarly the general lines BM and LC, are parallel to
one another.

But now, since 4, is after 4; and since K is the centre of optical
parallelograms having 4, and A, as opposite corners, it follows that
K is after A, and before A,.

But, since 4, is before C,, it follows that K is before C,.

But A4, is the only element common to @ and the 8 sub-set of €, and
K is distinct from A4,.

Thus since K is before (', and does not lie in the B sub-set of C, it
follows that K, must be an inertia line.

Similarly LC, is an inertia line.

Thus KC, and LC, lie in an inertia plane, say S, while 44 and M B
being respectively parallel to these must, by Theorem 52, lie in an
inertia plane, say ', parallel to S.

But now the general lines KL and AB lie in § and 8’ respectively
and also both lie in the inertia plane E.

Thus A Bis parallel to K L and so,since K L is conjugate to @ and b, we
must also have 4B conjugate to a and b, and therefore also conjugate
to every inertia line in R parallel to @ and b.

But since @ and b are parallel to ¢, therefore all these inertia lines are
parallel to ¢ and so the theorem is proved.
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THEOREM 102

If P, and P, be parallel snertia planes and if A, be any element in P,
while A, 18 its representative in P,, then the separation line A,4, is
conjugate to everyinertia line in Py which passes through A, , and similarly
A, A, is conjugate to every inertia line in P, which passes through A, .

Let a, and b, be the two generators of the inertia plane P; which pass
through the element 4,, and let a, and b, be the two generators of the
inertia plane P, which pass through 4,, and let a, be neutrally parallel
to a, while b, is neutrally parallel to b,.
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Let ¢, be any arbitrary inertia line in P; which passes through A, .

Thenc, and theelement 4, liein aninertia plane, say @, which contains
the inertia line ¢, in common with P, and the element 4, in common
with P, and therefore, by Theorem 46, must have a general line in
common with P, which must be parallel to ¢, and pass through 4,.

Let this parallel to ¢, through 4, be denoted by c,.

Then ¢, must also be an inertia line.

Let A,’ be the one single element common to ¢, and the B sub-set of
A,, while 4, is the one single element common to ¢, and the B sub-set
of A,,sothat 4,4," and 4, 4, are optical lines.

Also 4,’ is before Ay while A, is before 4, .
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But, since 4, A,is a separation line while 4, 4," is an inertia line and
A, is before A,, it follows that 4,” must also be before A4, .

Similarly 4,’ must be before 4,.

Now A,’ cannot be after A,’, for then, since A,’ is before 4, , it would
require to lie in the optical line 4, 4,", which is impossible, since 4,4,
is an inertia line.

Similarly 4," cannot be after 4,’, and accordingly 4,"4," must be a
separation line.

Now let b," and b," be optical lines through 4," and A,’ respectively
parallel to b, and accordingly parallel to one another.

We shall presently show that 6, and b," must be neutral parallels,
but let us first consider any element D which lies in b," and before A,
and let ¢; be an inertia line through D parallel to ¢; and ¢,. Let ¢4
intersect a, in £ and b, in F'.

Then, since D is before A" and since b," and b, are parallel optical
lines, it follows that F is before A, so that I lies in the S sub-set of 4,.

Thus £ must lie in the o sub-set of 4, and, since D) is before 4,', it
follows that A," is in the « sub-set of D.

Suppose now, if possible, that b,’ is an after-parallel of b,".

Then 4," would be after some element of b,” and so there would be
one single element common to b,” and the S sub-set of 4,".

This hypothetical element would therefore be before A," and would
also have to be before 4,’, since 4,"4,’ is a separation line.

If now, we try to identify this hypothetical element with D, we
shall find it impossible, for, if we suppose D) to be in the 8 sub-set of
A, we should have A, in the « sub-set of D and accordingly we should
have:

A, the first element in ¢, which is after D;
A, the first element in ¢, which is after D;
A, the first element in ¢, which is after 4,’;
A, the first element in ¢, which is after 4’,;
E  the first element in ¢, which is after 4,;

and so, by Post. XVIII, ¥ should be the first element in c; which is
after 4,.

But A, is neither before nor after any element of a,, and so £ could
not be after 4,.

Thus the assumption of the existence of an element common to b,
and the B sub-set of 4, leads to a contradiction, and 8o b," cannot be
an after-parallel of b,".
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Similarly, if b,” were supposed to be a before-parallel of b, we should
require b,’ to be an after-parallel of b,’, and a similar method would
show this also to be impossible.

Thus, since b,’ is parallel to b,", and cannot be either an after- or
before-parallel of b,', it follows that b,’ is a neutral-parallel of b,".

But now the separation lines 4, 4, and 4,"4,’ cannot intersect, for,
since A4, is neither before nor after any element of b, , while 4, is neither
before nor after any element of b,’, it would follow, by Theorem 45, that
such an element of intersection, if it existed, would be neither before
nor after any element of either b, or b,’, and so there would be an optical
line through it which would be neutrally parallel to both b, and b,".

But, if this were so, it would follow, by Theorem 28, that b," was a
neutral-parallel of b, , contrary to what we have already seen, that the
element A,’ of b,’ is before the element 4, of b,.

Thus the separation lines 4, 4, and 4,"4," cannot intersect and so,
since they both lie in the inertia plane ¢ and are distinct, it follows that
they are parallel.

Thus 4,, 4,, A,’, A," form the corners of a parallelogram in the
inertia plane ¢ and its diagonal lines are 4,4,  and 4,4, which are
both optical lines which must intersect in some element, say M.

If then a general line be taken through M parallel to A, A, and meet-
ing 4,4, in an element O, it follows, by Theorem 79, that O is the
mean of 4; and 4,’.

Thus an optical parallelogram in the inertia plane ¢ having 4, and
A,’ as a pair of opposite corners will have OM asits separation diagonal
line.

Thus OM is conjugate to ¢, and, since A, 4, is parallel to OM and
in the same inertia plane ¢ as are OM and c,, it follows that 4,4, is
also conjugate to c,, and therefore conjugate to every inertia line in
P, which passes through 4,.

Similarly 4, 4, is conjugate to every inertia line in P, which passes
through 4, and so the theorem is proved.

THEOREM 103
If two inertia lines b and c intersect tn an element A, and are both con-
Jugate to a separation line a, then a is conjugate to every snertia line in the
wnertia plane containing b and ¢ which passes through the element A, .
We have already seen that a cannot lie in the inertia plane containing
b and ¢ and also that it passes through the element of intersection of
b and c.
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Let P, be the inertia plane containing b and c¢ and let 4, be any
element of a distinct from 4, .

Let P, be an inertia plane through 4, and parallel to P, .

Let A, be the representative of 4, in the inertia plane P,.

We shall show that A,” must be identical with A4,.

Since the inertia line b and the separation line @ intersect in the
element A, they must lie in one inertia plane which contains the
inertia line b in common with the inertia plane P, and the element 4,
in common with the parallel inertia plane P,.

Thus the inertia plane containing b and @ has a general line, say b’,
in common with P,, and b’ is parallel to b and is therefore also an inertia
line.

Similarly the inertia plane containing ¢ and a has an inertia line, say
¢’, in common with P,, and ¢’ is parallel to c.

Further 4" and ¢’ must both pass through 4, and must be distinct
since b and c are distinct.

Now since 4, and 4," are representatives of one another in the
parallel inertia planes P, and P,, it follows, by Theorem 102, that the
separation line 4, 4,’ is conjugate to any inertia line in P, which passes
through 4,.

Thus 4,4, must be conjugate to both 6 and c.

Suppose now, if possible, that A, is distinct from A4,.

Then b is conjugate to both 4, A,and 4, 4," and so, by Theorem 101,
b’ would be conjugate to 4,4,".

Similarly ¢ is conjugate to both 4,4, and 4, 4," and so ¢’ would be
conjugate to 4,4, .

But then we should have two distinct inertia lines 6" and ¢’ both
passing through 4, and conjugate to the same general line 4,4, in
the inertia plane P, which contains 6’ and ¢’, and this we know is
impossible.

Thus 4," cannot be distinct from A4, and so 4, must be the repre-
sentative of 4, in the inertia plane P,.

It follows accordingly that the separation line a is conjugate to every
inertia line in P, which passes through 4,, and so the theorem is
proved.

It is to be noted that in proving the above theorem we have also
incidentally proved the following important result:

If two inertia lines b and ¢ intersect in an element 4, and are both
conjugate to a separation line a, then a is such that no element of it,



176 GEOMETRY OF TIME AND SPACE

with the exception of A4, is either before or after any element of either
of the generators of the inertia plane containing b and ¢ which pass
through 4,.

THEOREM 104

If an optical line b and an inertia line ¢ intersect in an element A, and
if a separationline a passing through A, be such that no element of a except
A, 18 esther before or after any element of b and if further a be conjugate
to ¢, then a 18 conjugate to every inertia line which passes through A, and
lies n the inertia plane containing b and c.

Let A, be any element of a distinct from 4, and let 5" be an optical
line through A, parallel to b while ¢’ is an inertia line through 4,
parallel to c.

Then b’ must be a neutral-parallel of b.

Let P, be the inertia plane containing b and ¢ and let P, be the
inertia plane containing b” and ¢'.

Then, since 4, is neither before nor after any element of the optical
line b, it follows that 4, does not lie in P, and so the inertia planes P,
and P, are parallel to one another.

Let 4," be the representative of 4, in P,; then 4," must lie in b’ by
the definition of representative elements and by Theorem 102 4, 4,
is conjugate to c.

But A4, 4, is conjugate to ¢ and so if 4," were distinct from 4, we
should have ¢ conjugate to two intersecting separation lines and so
by Theorem 99 no clement of A, A, could be either before or after any
element of 4,4,

But if 4," were distinct from 4,, then, since they each lie in the
optical line b', it would follow that the one must be after the other.

Thus the supposition that 4, is distinct from A4, leads to a contra-
diction and so 4," must be identical with 4,.

Thus it follows by Theorem 102 that 4, 4, (that is a) is conjugate to
every inertia line which passes through 4, and lies in P, .

Thus the theorem is proved.

It follows directly from the above that no element of @ with the
exception of 4, is either before or after any element of the second gener-
ator of P which passes through 4,.
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THEOREM 105

If a separation line a be conjugate to two intersecting inertia lines b and
c, then any inertia line in the inertia plane containing b and c is con-
Jugate to a set of separation lines which are parallel to a.

Let the inertia lines b and ¢ intersect in the element 4,.

Then we know that a must also pass through 4,, but does not lie in
the inertia plane containing b and c.

Let P, be the inertia plane containing b and ¢; let 4, be any element
in a distinct from A, and let P, be an inertia plane through 4, parallel
to P,.

Then we have seen in the course of proving Theorem 103 that A4,
and 4, are representatives of one another in the parallel inertia plancs
P, and P, respectively, and further every inertia line in P; which passes
through 4, is conjugate to a.

Let d be any inertia line in the inertia plane P, and let 4," be any
element in 4 while 4, is the representative of 4,"in P,.

Then by Theorem 102 the separation line A4,'4,” is conjugate
to d.

But, provided 4, be distinct from A, it follows by Theorem 98 that
A’ A, is parallel to A, A,: that is to @, and, since there are an infinite
number of elements in d, it follows that d is conjugate to a set of
separation lines which are parallel to a.

Thus the theorem is proved.

THEOREM 106

If b and ¢ be any two intersecting inertia lines, there is at least one
separation line which s conjugate to both b and c.

Let the inertia lines b and ¢ intersect in the element 4, and let P,
be the inertia plane containing b and c.

Let any element be taken which does not lie in P, and through it let
an inertia plane P, be taken parallel to P,.

Let A4, be the element in P, which is the representative of 4,.

Then by Theorem 102 the separation line 4, 4, is conjugate to any
inertia line in P; which passes through A4, .

Thus the separation line 4,4, is conjugate to both b and ¢, and so
the theorem is proved.

R 12
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TueoreM 107

If b and c be any two intersecting separation lines such that no element
of the one is either before or after any element of the other, there is at least
one inertia line which is conjugate to both b and c.

Let the separation lines b and ¢ intersect in the element 4, and let Q
be any inertia plane containing b.

Now, since no element of ¢ is either before or after any element of b, it
follows that ¢ and b do not lie in one inertia plane and therefore ¢ does
not lie in Q.

Let d, be the inertia line through A4, in the inertia plane ¢ which is
conjugate to b.

Then d, being an inertia line which intersects ¢, it follows that d, and
¢ lie in an inertia plane, say R, which must be distinet from .

Let e be any other inertia line in R distinct from d; and passing
through the element 4,.

Then e being an inertia line which intersects b, it follows that
e and b lie in an inertia plane, say ', which must also be distinct
from R.

Let d,’ be the inertia line through A4, in the inertia plane @’ which is
conjugate to b.

Then d,’ may either coincide with e or be distinct from it.

Consider first the case where d,’ coincides with e.

Since then both d, and d,’ will lie in the inertia plane K and since the
separation line b is conjugate to both d, and d,’, it follows by Theorem
103 that b is conjugate to every inertia line in the inertia plane R which
passes through the element 4, .

Let a be the inertia line through 4, in the inertia plane R which is
conjugate to c.

Then a must also be conjugate to b and so the theorem will hold in
this case.

Consider next the case where d,’ is distinct from e.

Since d, and d,’ are intersecting inertia lines, they will lie in an
inertia plane, say P,, which will be distinct from both @ and @'.

Also, since d," does not lie in R in this case, it follows that P, is
distinct from R, which has the inertia line d, in common with P,.

Since 4, is the only element of ¢ which is also an element of d,, it
follows that 4, is the only element of ¢ which lies in P,.

Let 4, be any element of ¢ distinct from A4, and let d, and d," be
inertia lines through A, parallel to d, and d," respectively.
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Then, by Theorem 52, do and d,’ lie in an inertia plane, say P,,
which is parallel to P, .
Again, since 4, is an element of the inertia plane R and since d, is
parallel to d,, it follows that d, lies in R.
Further, since the inertia line e is distinet from d,, it cannot be
parallel to d, and must therefore intersect d, in some element, say B.

But the inertia line e also lies in @’ and so @’ contains the element
B in common with pP,.

a, a, B
d
/ / p
/ e

d2/d,

dy

A] AQ b

Ay ¢
Fig. 35.

Since however @' has the inertia line d,’ in common with P, it
follows by Theorem 46 that ¢’ and P, have a general line, say d,’, in
common which must be parallel to d," and is therefore an inertia line.

Now, since b is a separation line and d,’ an inertia line in the
inertia plane @', it follows that b and dy’ intersect in some element,
say 4,.

But A4, being an element of b is an element of the inertia plane @,
and accordingly ¢ has the element 4, in common with the inertia
plane P, .

Since however @ has the inertia line d,in common with P, , it follows
by Theorem 46 that @ and P, have a general line, say d,, in common
which must be parallel to d, and is therefore an inertia line.
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But now since d, and d, are parallel inertia lines in the inertia plane
@ and since d, is conjugate to b, it follows that d, is conjugate to b.

Also since d,’ and d,’ are parallel inertia lines in the inertia plane ¢’
and since d,’ is conjugate to b, it follows that d,’ is conjugate to b.

Thus the separation line b is conjugate to the two intersecting inertia
lines d, and d,’ in the inertia plane P, and so, by Theorem 103, b is con-
jugate to every inertia line in P, which passes through the element 4,.

Now since no element of ¢ is either before or after any element of b it
follows that the element A, is neither before nor after the element A4,
and therefore, since 4, and A, are distinct, 4, 4, is a separation line.

Now let a, be the inertia line in the inertia plane P, which passes
through 4, and is conjugate to 4,4,.

Then a, is also conjugate to b.

Thus if @, be an inertia line through 4, parallel to a, it follows by
Theorem 101 that a, is conjugate to 4, 4,: that is to c.

But @, and a, being parallel inertia lines through elements of the
separation line b and a, being conjugate to b, it follows that a, is also
conjugate to b.

Thus a, is conjugate to both b and ¢ and so the theorem is proved.

THEOREM 108

If a be a separation line and B be any element which is not an element
of a and is neither before nor after any element of a while c is a general
line passing through B and parallel to a, then if A be any element of a,
whale C 13 an element of ¢ distinct from B, a general line through C parallel
to BA will intersect a.

Let the general line BA be denoted by & and let the general line
through C parallel to b be denoted by d.

Then, as was pointed out in the remarks at the end of Theorem 99,
no element of b is either before or after any element of a and so, since a
and b intersect in A4, it follows by Theorem 107 that there is at least one
inertia line which is conjugate to both @ 4nd b, and must therefore pass
through 4.

Let a, be such an inertia line and let b, be an inertia line through B
parallel to a,, while ¢, is an inertia line through C parallel to a, and b, .

Then a and qa, lie in an inertia plane which we may call P,, while
a,, b and b, lie in an inertia plane which we may call P,, and b, , ¢ and
¢, lie in an inertia plane which we may call P,.

Then, since B and a do not lie in one inertia plane, it follows that B
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is not an element of P, and so, since b, and ¢ are respectively parallel to
a, and a, it follows that P, is parallel to P,,.

Now, sinceb, anda, both liein P, and are parallel to one another,and
since a, is conjugate to b, it follows that b, is also conjugate to b.

But since ¢ is parallel to a@ and b, is parallel to a,, while ¢ and b,
intersect in B, it follows, by Theorem 100, that since a, is conjugate to
a, therefore b, is conjugate to c.

Thus b, is conjugate to both b and ¢, which are two distinct and
intersecting separation lines and therefore cannot lie in one inertia
plane.

Thus C'is not an element of P, and so, if P; be an inertia plane con-
taining ¢, and d, then, since ¢, is parallel to b, while d is parallel to b, it
follows that the inertia plane P, is parallel to P,.

Then, by Theorem 54, P, and P, have a general line in common and,
if we call this general line d, , then, since P; and P, are parallel, d, must
be parallel to @, and must be an inertia line.

Now since ¢, is parallel to b, and d is parallel to b, and ¢, and d
intersect, it follows, by Theorem 100, that, since b, is conjugate to b,
therefore ¢, is conjugate to d.

Again since b, is conjugate to both b and ¢ and since 4 is an element
in b while C'is a distinct element in ¢, it follows, by Theorem 101, that
the general line ¢, is conjugate to C4.

Thus ¢, is conjugate to both d and CA.

Now since d is a separation line while d, is an inertia line and both lie
in the inertia plane P, it follows that d and d; must intersect in some
element, say D.

Thus, since 4 is an element in CA4 while D is a distinct elementind, it
follows, by Theorem 101, that a, is conjugate to DA.

But a, is conjugate to the separation line a which also passes through
A, and so, since both DA and a lie in the inertia plane P, which con-
tains a,, it follows that the general lines DA and a are identical.

Thus D lies in a and therefore the general line d intersects a.

Thus the theorem is proved.

REMARKS

If a be a separation line and B be any element which is not an
element of @ and is neither before nor after any element of a, then if b
be a separation line through B parallel to a, no element of b is either
before or after any element of a.

This is easily seen: for if C were an element of b which was either
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before or after an element of a, then the separation line @ and the
element C would lie either in one inertia plane, or in one optical plane.

Such inertia or optical plane would contain the general line through
C parallel to a: that is to say it would contain b.

Thus the separation line @ and the element B would lie in one inertia
or optical plane, which we already know is impossible.

Thus no element of b is either before or after any element of a and
therefore any general line which intersects both @ and b must be a
separation line.

Again, if AB and DC be two parallel separation lines such that no
element of the one is either before or after any element of the other and
if CB is parallel to DA, then no element of DA is either before or after
any element of CB.

This is easily seen: for we know that no element of CB is either before
or after any element of 4B and therefore the element 4 is neither after
nor before any element of CB.

Thus since DA is parallel to CB it follows that no element of DA is
either before or after any element of CB.

THEOREM 109

If A and B be two elements lying respectively 1n two parallel separation
lines a and b which are such that no element of the one is either before or
after any element of the other, and if A’ be a second and distinct element
n a, there is only one general line through A’ and intersecting b which does
not intersect the general line AB.

We have seen by Theorem 108 that the general line through A’
parallel to 4 B must intersect b.

Let B’ be the element of intersection. Then the general lines 4B and
A’B’, being parallel, cannot intersect.

Let any other general line through 4’ and intersecting b intersect it
in the element C.

Then if C should coincide with B the general lines A’C' and 4B have
the element B in common and therefore intersect.

Suppose next that C' does not coincide with B.

Since B is neither before nor after any element of @ and since therefore
no element of 4 B is either hefore or after any element of a, it follows, by
Theorem 107, that there is at least one inertia line, say a,, which is
conjugate to both AB and @ and therefore passes through A4.

Let b, be an inertia line through B parallel to a,, and let a,’ and b,
be inertia lines through 4" and B’ respectively and also parallel to a, .
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Then @, and a,’ lie in one inertia plane, say P,, which contains also
the separation line a; while b, and b, lie in an inertia plane, say P,,
containing b.

Since the elements B, 4 and A’ cannot lie in one inertia plane and
since b, and b are respectively parallel to a, and a, it follows that P, is
parallel to P, .

Again a, and b, lie in an inertia plane, say @, containing 4 B, while
a,’ and b," lie in an inertia plane, say @', containing A'B’.

Since the elements B, A and A’ cannot lie in one inertia plane and
since a,” and A’ B’ are respectively parallel to ¢, and A8, it follows that
@’ is parallel to ¢.

Now the inertia line @," and the element C lie in an inertia plane, say
R, and so R has the element C in common with P,.

Thus, by Theorem 51, R and P, have a general line in common, say
¢,, which is parallel to a,” and b,’.

But now @ is an inertia plane through B, which is an element of P,
not lying in 6,’, and @ is parallel to @' and therefore, by Theorem 53,
the inertia planes R and @ have a general line in common, say f;, which
is parallel to a,".

Now f; must be an inertia line and therefore will intersect the
separation line 4 Bin some element, say ¥, which must be distinct from
A, since otherwise R would coincide with P, and could therefore have
no element in common with P,, contrary to hypothesis.

Now, since a, is parallel to h," while a is parallel to b and, since a, is
conjugate to a while b," and b intersect, therefore b," is conjugate to b.

Similarly, since AB is parallel to 4’B" and, since a, is conjugate to
AB while b, and A’ B’ intersect, therefore b,’ is conjugate to 4'B’.

But now since a, is conjugate to the two intersecting separation lines
ABanda, and since F is an element in A B, while A’ is a distinct element
in a, it follows by Theorem 101 that a,’ must be conjugate to A'F.

Again since b,’ is conjugate to the two intersecting separation lines
A’B’ and b, and since A’ is an element in A’B’ while C is a distinct
element in b, it follows in a similar manner that a," must be conjugate
to A'C.

Thus a,’ is conjugate to 4'F and to A’C and since A'F and A’C each
lie in the inertia plane R and have an element in common, it follows
that they must be identical.

Thus F lies in 4’C and also in AB and so 4'C intersects 4 5.

Thus there is only one general line through 4’ and intersecting b
which does not intersect the general line 4 B.
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THEOREM 110

If a and b be two parallel separation lines such that no element of the one
18 either before or after any element of the other, and if one general line
intersects a in A and b in B, while a second general line intersects a in A’
and b in B', then a general line through any element of AB and parallel to
a or b intersects A'B’.

Let D be any element of AB and let d be a general line through D
parallel to a or b.

We have to show that d intersects 4'B’.

If D should coincide with 4 or B no proof is required and so we shall
suppose it distinct from both.

If A’B’ be parallel to AB, then no element of AB is either before
or after any element of A’B’ and the result follows directly by
Theorem 108.

If A’ B’ be not parallel to A B, then by Theorem 109 the general lines
AB and A'B’ must intersect in some element, say C.

Now the general lines A8 and A’ B’ being supposed distinct, ¢’ must
be distinct from at least one of the elements 4 and B and, without
limitation of generality, we may suppose that C is distinct from B.

We shall then have B’ distinet from B and so B’ will not be an
element of AB.

Thus through B’ there is a parallel to AB and by Theorem 108 this
parallel must intersect d in some element, say 1’.

But now D'B’ and DB are parallel separation lines such that no
element of the one is either before or after any element of the other and
both are intersected by the general lines D'D and B'C.

Further since we have supposed D to be distinet from B therefore
D' is distinet from B’ and so by Theorem 109 there is only one general
line through B’ and intersecting DB which does not intersect D'D.

But B'B being parallel to D’ D must be this one general line, and so,
since B'C (thatis A’B’) is distinct from B’B, it follows that 4’B’ inter-
sects D'D.

Thus in all cases a general line through any element of 4B and
parallel to a or b intersects A'B’.
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THEOREM 111

If a and b be two parallel separation lines such that no element of the one
is either before or after any element of the other, and if E be any element in
a separation line A B which intersects a in A and b in B, and if A’ B’ be any
other separation line intersecting a in A’ and b in B’ but not parailel to
AB, then E either lies in A'B’ or in a separation line parallel to A'B’
which intersects both a and b.

If & does not lie in A’B’, then by Theorem 110 a separation line
through E parallel to a or b intersects A’B’ in an element which is
neither before nor after any element of a or b and so, by Theorem 108, a
general line through £ parallel to A4’B’ intersects a and also b.

Thus E must lie in a separation line parallel to A’B’ and intersecting
both a and b when it does not lie in A’B’ itself.

REMARKS

If @ and b be two parallel separation lines such that no element of the
one is either before or after any element of the other and if ¢ and d be
any two non-parallel separation lines intersecting both a and b, then
it is evident from Theorem 111 that the aggregate consisting of all the
elements in ¢ and in all separation lines intersecting @ and b which are
parallel to ¢ must be identical with the aggregate consisting of all the
elements in d and in all separation lines intersecting @ and b which are
parallel to d.

This follows since each element in the one set of separation lines must
also lie in the other set.

Thus the aggregate which we obtain in this way is independent of
the particular set of separation lines intersecting @ and b which we may
select and so we have the following definition.

Definition. If a and b be two parallel separation lines such that no
element of the one is either before or after any element of the other, then
the aggregate of all elements of all mutually parallel separation lines
which intersect both a and b will be called a separation plane.*

If a separation plane P be determined by the two parallel separation
lines @ and b, then any element €' in P must lie in a separation line,
say ¢, which intersects both a and b.

Any other element D) in P must either lie in ¢ or in a separation line,
say d, parallel to ¢ and intersecting both a and b.

* The name “separation plane” has been adopted from its analogy to a separation line.
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If D lies in ¢, then D is neither before nor after C.

If D lies in a separation line d parallel to ¢, we know that no
element of d is either before or after any element of ¢ and so again D
is neither before nor after C.

Thus we have the general result that : no element of a separation plane
13 either before or after any other element of it.

THEOREM 112

If two distinct elements of a general line lie in a separation plane, then
every element of the general line lies in the separation plane.

Let the separation plane be determined by the two parallel separation
lines a and b which are such that no element of the one is either before
or after any element of the other.

If the two given elements lie in a separation line which is known to
intersect both @ and b no proof is required.

Otherwise let C' be any element in any separation line 4B which
intersects @ in A and b in B and let 1’ be any element in any
separation line A’'B’ parallel to 4B and intersecting @ in A’ and b
in B'.

We have to show that every element of the general line CD’ lies in
the separation plane.

Now no element of 4B is either before or after any element of A'B’
and so by Theorem 108 a general line through C parallel to a or b will
intersect A'B’ in some element, say C".

If D'should coincide with ¢, then C' D’ would be parallel to a or b and,
since C cannot be either before or after any element of a or b, it follows
that no element of CD’ could be either before or after any element of
aorb.

Thus in this case, by Theorem 108, a general line through any
element of CD’ distinct from C taken parallel to 4 B will intersect both
a and b.

Thus every element of CD’ will in this case lie in the separation
plane.

If D’ should not coincide with ", then since C'D)’ is distinct from C'C”
and intersects 4’B’ it follows by Theorem 109 that C'D’ must intersect
both a and b.

Thus again every element of C'D’ lies in the separation plane deter-
mined by a and b.
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TueEOREM 113

If e be a general line in a separation plane and if A be any element of the
separation plane which does not lie in e, then there is one single general
line through A in the separation plane which does not intersect e.

We saw in the course of proving Theorem 112 that if a separation
plane be determined by two parallel separation lines a and b such that
no element of the one is either before or after any element of the other,
then any general line containing two elements in the separation plane
and therefore any general line lying in the separation plane must either
be parallel to @ or b, or else must intersect both a and b.

Suppose first that e intersects both a and b.

Since 4 does not lie in e it must lie in a separation line d parallel to e
and intersecting both a and b.

Now through 4 there is a separation line, say ¢, parallel to a or b and
which, by Theorem 108, must intersect ¢ and must lie in the separation
plane, while any other general line f through 4 and lying in the
separation plane must intersect both a and b.

Thus, by Theorem 109, f being supposed distinct from d must
intersect e.

Suppose next that e is parallel to a or b.

Through A4 there is a separation line parallel to @ or b and therefore
parallel to e and which, as we know, lies in the separation plane.

Any other general line through A4 in the separation plane must
intersect both a and b and so, by Theorem 110, it must be intersected
by e.

Thus there is in all cases one single general line through 4 in the
separation plane which does not intersect e.

THEOREM 114

If A, B and C be three elements in a separation planewhich do not all lie
in one general line and if D be an element linearly between A and B, while
E is an element linearly between A and C, there exists an element which
lves both linearly between B and E and linearly between C and D.

The proof of this theorem is quite analogous to that of Theorem 76,
the only difference being that V is here a separation plane instead of an
inertia plane and, as such, it cannot contain any inertia line.

Thus the words “ which does not lie in ¥’ may be omitted from the
first sentence of the proof.
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THEOREM 115

If A, B and C be three elements in a separation plane which do not all
lie in one general line and if D be an element linearly between A and B
while F is an element linearly between C and D, there exists an element,
say E, which is linearly between A and C and such that F is linearly
between B and K.

The proof of this theorem is quite analogous to that of Theorem 77,
the only difference being that V is here a separation plane instead of an
inertia plane and, as such, it cannot contain any inertia line.

Thus the words ““ which does not lie in ¥’ may be omitted from the
first sentence of the proof.

REMARKS

It will be observed that Theorem 114 is the analogue of Peano’s
axiom (14) for the case of elementsin a separation plane, while Theorem
115 is the corresponding analogue of his axiom (13).

Further, Theorem 113 corresponds to the Euclidean axiom of
parallels for the case of general lines in a separation plane.

THEOREM 116

If A, B and C be three elements in a separation plane which do not all
lie in one general line and if D be an element linearly between A and B
while DE is a general line through D parallel to BC and intersecting AC
in the element K, then E is linearly between A and C.

The proof of this theorem is exactly analogous to that of Theorem 90,
using Theorem 114 in place of Theorem 88, and Theorem 115 in place
of Theorem 89.

THEOREM 117

If three parallel general lines a, b and ¢ in one separation plane intersect
a general line dy in A,, B, and C, respectively and intersect a second
general line d, in A4, B, and C, respectively, then if B, is linearly between
4, and C we shall also have B, linearly between A, and C,.

The proof of this theorem is exactly analogous to that of Theorem 91,
using Theorem 116 in place of Theorem 90.
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THEOREM 118
If A, B and C be three elements in a separation plane which do not all
lie in one general line and if D be the mean of A and B, then a general line

through D parallel to BC intersects AC in an element which is the mean
of 4 and C.

The proof of this theorem is exactly analogous to that of Theorem 94.

It is to be noted however that for the case of a separation plane we
can never have B’ coinciding with B or €’ coinciding with C, since a
separation plane cannot contain an optical line.

Since there is only one general line through D parallel to BC and this
must pass through the mean of 4 and C, it follows directly that if & be
the mean of 4 and C, then the general line DV is parallel to BC.

Definition. If a pair of parallel general lines in a separation plane
be intersected by another pair of parallel general lines, then the four
general lines will be said to form a general parallelogram tn the separation
plane.

The terms corner, side line, diagonal line, adjacent and opposite will
be used in a similar sense for the case of a general parallelogram in a
separation plane as for one in an inertia or optical plane.

THEOREM 119
If we have a general parallelogramn in a separation plane, then :

(1) The two diagonal lines vntersect in an element which is the mean
of either pair of opposite corners.

(2) A general line through the element of intersection of the diagonal
lines and parallel to either pair of opposite side lines intersects either of
the other side lines in an element which 1s the mean of the pair of corners
through which that side line passes.

The proof of this theorem is exactly analogous to that of Theorem 79,
using Theorem 118 in place of Theorem 78.

THEOREM 120

If A, B, C, D be the corners of a general parallelogram in a separation
plane; AB and DC being one pair of parallel side lines and BC and AD
the other pair of parallel side lines, then if E be the mean of A and B, while
F is the mean of D and C, the general lines AF and EC are parallel to one
another.

The proof of this theorem is exactly analogous to that of Theorem 80,
using Theorem 119 in place of Theorem 79, and Theorem 118 in place
of Theorem 78.
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THEOREM 121

If three parallel general lines a, b and c in one separation plane intersect
agenerallined, in A,, B, and C respectively and intersect a second general
line dy tn A4, B, and C,y respectively, and if B, be the mean of A, and C,
then By will be the mean of A, and C,.

The proof of this theorem is exactly analogous to that of Theorem 81,
using Theorem 118 in place of Theorem 78, and Theorem 119 in place
of Theorem 79.

SETS OF THREE ELEMENTS WHICH DETERMINE SEPARATION PLANES

If A,, A,and 4, be three distinct elements which do not all lie in one
general line and do not all lie in one inertia plane or in one optical plane,
then they must all lie in one separation plane, as we shall shortly show.

In those cases in which they do all lie in one separation plane they
determine the separation plane containing them.

We have the following criterion by which we may say that the three
elements do lie in one separation plane.

Three elements 4,, 4,, A, lie in one separation plane if 4, and 4,
lie in a separation line while 4, is an element which is not an element
of the separation line and is neither before nor after any element of the
separation line.

This is clearly true since if a be the separation line containing 4, and
A,, there is a separation line b through 4, and parallel to @ which is
such that no element of b is either before or after any element of a.

The separation lines a and b then determine a separation plane which
will contain 4,, 4, and 4,.

If P be this separation plane it is the only one which contains 4,,
A, and A,, for suppose 4,, A, and 4, also lie in a separation plane P’
determined by the two parallel separation lines a’ and &', which are
such that no element of b’ is either before or after any element of a’.

Now since P’ contains 4,, 4, and 4, it must contain the three
general lines 4,4,, A,4;and 4;4,, by Theorem 112.

At most only one of these general lines could be parallel to a’ or b’.

Suppose first that 4, 4, or a is not parallel to a’ or b’.

Then @ must intersect both a’ and b’, and since 4, is an element of P’
the separation line b through A4, parallel to @ must lie in P’ and must
intersect both a’ and &'.

Then every element in P must lie in a separation line intersecting
both @ and b and parallel to a’ or b'.
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But we know that every element of any such separation line ¢ must
lie in P’, for by Theorem 110 a general line through any element of ¢
parallel to a or b must intersect a’ and b’.

Similarly every element in P’ must lie in P and so P’ must be
identical with P.

Next suppose that a is parallel to a’ or b’.

Then 4, 44 cannot be parallel to a’ or b’ and so must intersect both
a’ and b’.

Then any element in P must lie either in 4,4, or in a general line
parallel to A, 4, and intersecting both a and b.

But any such general line must also intersect both a’ and b’, and so
every element in P must also lie in P’, and similarly every element in
P’ must also lie in P.

Thus again P’ must be identical with P.

Thus there is only one separation plane containing the three elements
Ay, Ayand A4,.

Any three distinct elements A;, 4, and 4; which do not all lie in
one general line must all lie either in an inertia plane, an optical plane,
or a separation plane.

This is easily seen ; for 4; and 4, must lie either in an optical line, an
inertia line, or a separation line.

If A, 4, be an optical line we must have either

(1) A, after an element of 4, 4,,
or (2) A, before an element of 4, 4,,
or (3) A, neither before nor after any element of 4,4,.

We cannot have A4, after one element of 4,4, and before another
element of it, since 4, is not an element of 4, 4, (Theorem 12).

In cases (1) and (2), as we have seen, 4,, 4, and 4, lie in an inertia
plane.

In case (3) we have seen that 4,, A, and A, lie in an optical plane.

If A, A, be an inertia line we know that the three elements must
always lie in an inertia plane.

If A4, 4, be a separation line we must have either

(1) Aj after at least two distinct elements of 4, 4,,
or (2) A, before at least two distinct elements of 4, 4,,
or (3) A, after one single element of 4, 4,,
or (4) A, before one single element of 4,4,,
or (5) A, neither before nor after any element of 4, 4,.

We cannot have A, after one element of A, 4, and before another
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element of it for then we should have one element of 4, A, after another
element of it, contrary to the hypothesis that 4, 4, is a separation line.

We have already seen that in cases (1) and (2) 4,, 4, and 44 lie in
an inertia plane.

Also in cases (3) and (4) we have seen that 4,, 4, and 4, lie in an
optical plane.

Finally in case (5) we have seen that 4,, A, and 4, lie in a separation
plane.

This exhausts all the possibilities which are logically open and so we
see that A, 4, and A, must always lie either in an inertia plane, an
optical plane, or a separation plane.

It follows directly that any two intersecting general lines ¢ and b
must lie either in an inertia plane, an optical plane, or a separation
plane, which we may call P.

Any element in P must lie either in b or in a general line parallel to
b and intersecting a.

Also, conversely, any element in b or in any general line which inter-
sects a and is parallel to b, must lie in P.

Thus we have the following definition:

Definition. If a and b be any two intersecting general lines, then the
aggregate of all elements of the general line b and of all general lines
parallel to b which intersect a will be called a general plane.

Thus a general plane is a common designation for an inertia plane,
an optical plane, or a separation plane.

By combining Theorems 76, 88 and 114 we now see that the analogue
of Peano’s axiom (14) holds in general for our geometry ; while by com-
bining Theorems 77, 89 and 115 we see that the analogue of his axiom
(13) also holds in general.

Again by combining Theorems 47, 87 and 113 we get what corre-
sponds to the Euclidean axiom of parallels for the case of general lines
in a general plane.

Peano’s fifteenth axiom is as follows:

A point can be found external to any plane.

It is evident in our geometry that, since there is more than one
general plane, there is an element external to any general plane, and so
the analogue of Peano’s axiom (15) also holds.

If @ and b be two intersecting general lines in a general plane P and
if through any element 4 not lying in P two general lines ¢’ and b’ be
taken respectively parallel to @ and b, then if P’ be the general plane
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determined by a’ and b’, the two general planes P and P’ can have no
element in common.

This is easily seen, for in the first place the general line a’ can have
no element in common with P, for then, since it is parallel to a, every
element of a’ would have to lie in P, contrary to the hypothesis that
the element A does not lie in P.

Similarly b’ can have no element in common with P.

If now B be any element in a’ distinct from A and if b” be a general
line through B parallel to b’, then b” must also be parallel to b and, since
B does not lie in P, it follows that b” can have no element in common
with P.

But any element in P’ must lie either in &’ or in a general line parallel
to b’ which intersects a’ and therefore the general plane P’ can have
no element in common with P.

THEOREM 122

If a and b be any two intersecting general lines in a general plane P and
of through any element O' not lying in P two general lines o' and b’
respectively parallel to a and b be taken determining a general plane P,
then there 1s a general line through O’ and lying in P’ which s parallel to
any general line in P.

Let the general lines a and b intersect in the element O and let 4 and
B be any two elements distinct from O and lying in @ and b respectively.

Then the general lines OO’ and a determine a general plane which
must contain a’, since a’ is parallel to ¢ and intersects OO’.

Thus a general line through A parallel to OO’ will intersect a’ in
some element, say A'.

Similarly a general line through B parallel to OO’ will intersect b’ in
some element, say B’.

Then BB’ will be parallel to AA4".

But AB and 4 A’ determine a general plane which must contain BB’
and so the general lines A B and A’B’ must lie in one general plane.

But AB lies in P while 4’'B’ lies in P’, and so A’B’ can have no
element in common with 4 B and must therefore be parallel to it.

Let the general line AB be denoted by ¢ and the general line A’B’
by ¢’

Let ¢, be a general line through O parallel to ¢ while ¢,’ is a general
line through O’ parallel to ¢'.

Then ¢, willliein P and ¢,” will lie in P’, and since ¢’ is parallel to ¢ we
must also have ¢,’ parallel to c,.

R 13
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Now any general line in P and passing through O, with the exception
of ¢,, must intersect ¢ in some element, say X.

If X should coincide with either 4 or B, we know that 0’4’ and O’B’
are respectively parallel to 04 and OB, so that we shall suppose X
distinct from 4 and B.

[fnow a general line be taken through X parallel to AA4’,such general
line will lie in the general plane determined by AB and 44’ and will
therefore intersect A’B’ in some element, say X'.

(2]

Fig. 36.

Now XX’ must be parallel to OO0’ and so X X’ must lie in the general
plane determined by OX and 00’.

Thus OX and O’X'’ lie in one general plane.

But OX lies in P while O’ X’ must lie in P’ and, since P and P’ have
no element in common, it follows that O’ X’ is parallel to OX.

Thus through O’ there is a general line in P’ which is parallel to any
general line in P which passes through O, and since any general line in
P which does not pass through O is parallel to one which does pass
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through O, it follows that there is a general line through O and lying in
P’ which is parallel to any general line in P.

It also follows directly from the above that through any element of
P’ there is a general line in P’ which is parallel to any general line in P.

REMARKS

We have already given adefinition of the parallelism of inertia planes
and are now in a position to give a definition of the parallelism of general
planes which will include that of inertia planes as a special case.

Definition. If P be a general plane and if through any element A4
outside P two general lines be taken respectively parallel to two inter-
secting general lines in P, then the two general lines through 4 deter-
mine a general plane which will be said to be parallel to P.

Theorem 52 shows that this definition agrees with that given for the
case of inertia planes.

If P be a general plane and 4 be any element outside it, while P’ is a
general plane through A parallel to P, then it is evident from Theorem
122 that, since P’ contains the general line through 4 parallel to any
general line in P, the general plane P’ must be uniquely determined
when we know P and 4.

Thus through any element outside a general plane P there is one single
general plane parallel to P.

Also it is clear that this general plane must be of the same kind as P.

Again, since two distinct general lines which are parallel to a third
general line are parallel to one another, it follows that: two distinct
general planes which are parallel to a third general plane are parallel to
one another.

Definition. If P be a general plane and if through any element A
outside P a general line a be taken parallel to any general linein P, then
the general line a will be said to be parallel to the general plane P.

THEOREM 123

If a general plane P have one element in common with each of a pair
of parallel general planes Q and R, then, if P have a second element in
common with Q it also has a second element in common with R.

Let the general plane P have the element 4 in common with @ and
the element A’ in common with R.

Further let P and @ have a second element B in common.

Then, as was observed at the end of Theorem 122, there is a general
line, say ¢, through A’ in the general plane R which is parallel to AB.

13-2
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But ¢ must also lie in P, and so any element of ¢ distinet from A4’ is a
second element common to P and R.
Thus the theorem is proved.

THEOREM 124

If two parallel general lines a and b lie in one general plane R and if two
other distinct general planes P and Q containing a and b respectively have
an element A, in common, then P and @ have a general line sn common
which 18 parallel to a and b.

The proof of this theorem is exactly analogous to that of Theorem 51,
using Theorem 123 in place of Theorem 46.

THEOREM 125

If three distinct general planes P, ) and R and three parallel general
lines a, b and c be such that a lies in P and R, b in Q and P and ¢ vn R and
Q, then if Q' be a general plane parallel to Q through some element of P
which does not lie in b the general planes R and Q' have a general line in
common which is parallel to c.

The proof of this theorem is analogous to that of Theorem 53, using
Theorem 123 in place of Theorem 46.

Since however a general plane does not always contain an optical
line, we take any general line through the element A4 distinct from a,
which lies in the general plane P, and such general line must intersect
b in an element which we shall call B.

We then take any general line through B distinct from b, which lies
in the general plane @ and this general line must intersect ¢ in some
element which we shall call C.

Then B4 and BC lie in a general plane which we shall call §.

The demonstration from this point on is similar to that of Theorem 53,
once more using Theorem 123 in place of Theorem 46.

If a pair of parallel general lines be both intersected by another pair
of parallel general lines then the four general lines will form a general
parallelogram either in an acceleration plane, an optical plane, or a
separation plane.

Thus a general parallelogram may now be defined in this way without
specifying which type of general plane it lies in.
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THEOREM 126

If two general parallelograms have a pasr of adjacent corners A and B
n common, their remaining corners either lie in one general line or else form
the corners of another general parallelogram.

Let A, B, C, D be the corners of the one general parallelogram and
A, B, C', D' the corners of the other, and let AC and BD be a pair of
opposite side lines of the first general parallelogram while 4C” and BD’
are a pair of opposite side lines of the second.

Then CD and C’D’ being each parallel to AB must either be parallel
to one another or else must be identical.

In the latter case the corners C, D, C', D' lie in one general line.

Suppose now that CD and C’"D’ are distinct and therefore parallel;
we have to prove that CC’ is parallel to DD)'.

Two cases have to be considered :

(1) The two general parallelograms lie in distinct general planes,
or (2) The two general parallelograms lie in the same general plane.

We shall first consider case (1).

Since CD and ¢’ D’ are parallel they must lie in a general plane, say P.

Again AC and AC’ must lie in a general plane, say ¢, distinct from
the general planes of either of the general parallelograms, since by
hypothesis C’ does not lie in the general plane containing 4, 8, C and D.

Similarly BD and B’ must lie in a general plane, say R, distinct
from the general planes of either of the general parallelograms.

Further, the element 4 cannot lie in R, since otherwise A, B, C, D,
¢’ and D’ would all lie in one general plane, contrary to hypothesis.

But AC is parallel to BD, while .4C" is parallel to BD' and therefore
@ is parallel to R.

Thus the general lines CC” and DD’ can have no element in common,
and since they both lie in P, it follows that they are parallel.

Thus C, €', D', D form the corners of another general parallelogram.

We have next to consider case (2).

Let P be the general plane containing the two given general paral-
lelograms, and let @ be any other general plane distinct from P and
containing the general line 4 B.

Let AC, be any general line distinct from 4 B which passes through
A4 and lies in Q.

Through any element C, of 4C, distinct from A let a general line be
taken parallel to A B and let it meet the general line through B parallel
to AC, in the element D;.
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Then by the case already proved the general lines CC; and DD, are
parallel.

Similarly ¢“C, and D’D, are parallel to one another.

But now the general parallelograms whose corners are ¢y, D, D, C
and C,, D, D’, C" cannot lie in one general plane; for the general lines
CD and C'D’ both lie in P, while C; D, does not lie in P.

Thus again by case (1) CC" is parallel to DD’ and so C, C’, D', D form
the corners of a general parallelogram.

Thus the theorem holds in all cases.

THEOREM 127

(1) If three distinct elements A, B and C in a general plane P do not all
lve in one general line and if D be any element linearly between B and C,
then any general line passing through D and lying in P and which s
distinct from BC and AD must either intersect AC in an element linearly

between A and C, or else intersect AB in an element linearly between A
and B.

(2) If further E be an element linearly between C and A and iof F be an
element linearly between A and B, then D, Il and F cannot lie in one
general line.

In order to prove the first part of the theorem let @ be any general
line passing through D and lying in P.

Then a must cither be parallel to AC or else intersect AC in some
element, say E.

If a be parallel to AC, then it follows by Theorems 72, 90 and 116
that @ must intersect 4B in an element which is linearly between 4
and B.

If a intersects AC in an element £, then provided a be distinct from
BC and 4D we must either have:

(i) £ linearly between 4 and C,
or (ii) C'linearly between 4 and E,
or (iii) A4 linearly between C and &.

In case (ii) it follows by the analogue of Peano’s axiom (13) that a
intersects .{ B in an element linearly between 4 and B, while in case
(iii) it follows by the analogue of Peano’s axiom (14) that a intersects
AB in an element linearly between 4 and B.

Thus the first part of the theorem is proved.

In order now to prove the second part of the theorem it is to be
observed in the first place that since the elements D, E and F lie in
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three distinct general lines BC, C4 and 4B and are distinct from the
elements of intersection of these, therefore the elements D, E and F are
all distinct.

If then D, E and F lay in one general line, we should require to have
either:

E linearly between D and F,
or I linearly between ¥ and D,
or D linearly between F and £.

Now the elements F', ' and B do not lie in one general line and we
have D linearly between B and C.

If then we had also £ linearly between D and F it would follow that
A must be linearly between B and F, contrary to the hypothesis that
F is linearly between 4 and B.

Thus £ cannot be linearly between D and F.

Similarly ¥ cannot be linearly between £ and D, and further D
cannot be linearly between F and E.

It follows therefore that D, £ and F cannot lie in one general line
and so the second part of the theorem is proved.

THEOREM 128

If an inertia line a be conjugate to two intersecting separation lines b
and c, then b and c lie in a separation plane such that any separation line
in ot 18 conjugate to a set of inertia lines which are parallel to a.

Let the separation lines b and ¢ intersect in the element 4.

Then we know that @ must also pass through 4 and that the separa-
tion lines 6 and ¢ must be such that no element of the one is either
before or after any element of the other, and so there must be a separa-
tion plane, say P, which contains them.

Let B and C be elements in b and ¢ respectively and let them both
be distinct from A.

Then BC is a separation line which we may call d and which lies in
the separation plane P.

Let e be an inertia line through B parallel to a.

Then e is conjugate to b and, by Theorem 101, it must also be con-
jugate to d.

Now we know that there is only one general line in P and passing
through 4 which does not intersect d.

Let AF be any general line passing through 4 and intersecting d
in F.
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Then, by Theorem 101, since e is conjugate to b and d, it follows that
a must be conjugate to AF.

Again, if d’ be the general line through A parallel to d, it must lie in
the separation plane P, and, since ¢ is conjugate to d, while a and d’ are
respectively parallel to e and d and, since a and d’ intersect one another,
it follows by Theorem 100 that ¢ must be conjugate to d’.

Thus every separation line passing through 4 in the separation
plane P is conjugate to a and therefore also conjugate to any inertia
line which intersects it and is parallel to a.

Consider now any separation line f in P which does not pass
through 4.

Then there is a separation line f’ passing through 4 and parallel to
f, and a must be conjugate to f’.

Thus by Theorem 100 any inertia line intersecting f and parallel to
a must be conjugate to f.

Thus any separation line in P, whether it pass through 4 or not,
must be conjugate to a set of inertia lines which are parallel to a, and
so the theorem is proved.

THEOREM 129

If O be any element in a separation line b lysng in a separation plane P
and if a be an inertia line through O which s conjugate to every separation
line in P which passes through O, then there is one and only one such
separation line which 18 conjugate to every inertia line passing through O
and lying +n the inertia plane contatning a and b.

Let @ be the inertia plane containing a and b and let @’ be an inertia
plane parallel to ¢ through any element of P which does not lie in &.

Then by Theorem 123 P and @’ will have a general line, say ', in
common which must be parallel to b and must be a separation line.

Let ¢ be one of the generators of ¢ which pass through O.

Then since @’ is parallel to ¢ there is one single generator of ¢’, say
¢’, which is neutrally parallel to c.

Let ¢’ intersect &' in O'.

Then O’ is neither before nor after any element of ¢ and so no element
of the general line 00’ with the exception of O is either before or after
any element of c.

But OO’ lies in P and therefore is conjugate to a, and so, by Theorem
104, 00’ is conjugate to every inertia line in @ which passes through O.

Thus, as in Theorem 104, O and O’ are representatives of one another
in the parallel inertia planes @ and @', and further, we may show as in
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Theorem 103 that if O” be any element of @' distinct from O’ the
general line 00" cannot be conjugate to two distinct inertia lines in @
which pass through O. )

But now any separation line in P which passes through O must
either be identical with b or else intersect b’ in some element.

If it should intersect b’ in any element other than O’ it cannot be
conjugate to more than one inertia line in @ which passes through O.

Also if it be identical with b it cannot be conjugate to more than one
inertia line in @ which passes through O.

Thus there is one and only one separation line in P which passes
through O and is conjugate to every inertia line passing through O and
lying in the inertia plane Q.

THEOREM 130

If a separation line a have an element O in common with an inertia
plane P and be conjugate to every inertia line in P which passes through O,
and if ¢ be any such inertia line and b be the separation line in P which
passes through O and is conjugate to ¢, then b is conjugate to every inertia
line in the inertia plane containing a and ¢ which passes through the
element O.

Let 4, be any element in a distinct from O, and let d be any inertia
line in P which passes through O and is distinet from c.

Let B, be the one single element common to 4 and the « sub-set
of 4,.

Then A, B, is an optical line and B, is after A, and so, since 4,0 is
a separation line while B, O is an inertia line, we must have B, after O.

Let D be the one single element common to ¢ and the « sub-set of
B, and let £ be the one single element common to ¢ and the B sub-set
of B;.

Then B; D and B, F are optical lines lying in P.

Also Dis after B, while B, is after both A, and O and so D is after both
A, and O.

Let the optical line through O parallel to B, D intersect the optical
line through D parallel to B, K in F and let the optical line through £
parallel to B, D intersect DF in B,.

Then B,, E, B,, D are the corners of an optical parallelogram lying
in P. Let C be its centre.

Then, since DF and OF are both optical lines and since D is after O
but is not in an optical line with it, it follows that F is after O.

But now since 4, is not an element of the optical line DF but is
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before an element of it, it follows that there is one single element com-
mon to the optical line DF and the « sub-set of 4.

Let B, be this element, which we shall prove must be identical with
B,.

Then,since D is after A, but is not in an optical line with it, it follows
that B, cannot be either identical with D or after D and therefore, since
By’ and D lie in an optical line, it follows that B, is before D.

Fig. 37.

But B, and D lie in another optical line and B, is also before 1) and
therefore B’ is neither before nor after B,, so that B, B,' is a separation
line.

Again, since OF is one of the generators of P which pass through O
and since by hypothesis 4,0 is conjugate to every inertia line in P
which passes through O and 4, is distinet from O, it follows that 4,
is neither before nor after any element of OF.

Thus A, isnot before F and so B,’ can neither be before F nor identical
with it and so, since By’ and F lie in an optical line, it follows that By’
is after F.
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But, since F is after O, it follows that B, is after O and, since B,’ and
O do not lie in one optical line, it follows that B,'0 must be an inertia
line.

Let the optical line through B,’ parallel to DB, intersect B, K in E’.
Then B,, E’, B,’, D form the corners of an optical parallelogram of
which B, B,’ is the separation diagonal line, and accordingly, B’ D is the
inertia diagonal line.

Let C” be the centre of this optical parallelogram.

Then (" is linearly between B, and B,’ and so, since 0 is before both
B, and B, and is not in the generalline B, B,’, it follows by Theorem 73
that "0 is an inertia line.

Now in the inertia plane containing a and d take the second optical
line which passes through B, and let it intersect a in the element 4,.

Then, since OB, is conjugate to a, it follows that 4,, B, and 4, are
three corners of an optical parallelogram having O as its centre.

But we showed that OB,’ must be an inertia line and, as it lies in P
and passes through O, it must also be conjugate to a.

But O is the mean of A, and A, while 4, B, is an optical line and so
A, B, must also be an optical line.

But now, since ¢ is the mean of B, and B,’, it follows that B, 4,
and B, are three corners of an optical parallelogram of which C’ is the
centre and so B, B,’ is conjugate to C"4,.

Similarly B, 4, and B," are three corners of an optical parallelo-
gram of which (' is the centre and so B, B, is conjugate to C"4,.
Further, since B; B, is a separation line, it follows that C'4, and
C’ 4, are both inertia lines.

Thus B, B, is conjugate to two inertia lines passing through the
element C’ and therefore it must be conjugate to every inertia line
passing through €’ and lying in the inertia plane containing C'4,
and C'4,.

But the element O lies in 4, 4, and ('O must therefore lie in this
inertia plane and, moreover, we showed that ("0 must be an inertia
line.

Thus B, B,’ must be conjugate to C'0O.

But B, B, is conjugate to C'D), which lies in P as does also C'O and
therefore the inertia lines C’'O and C’'D must be identical; so that C’
lies in OD.

It follows that E’ must be identical with £ and B," must be identical
with B,.

Further, ¢’ must be identical with C' and so B, B, is conjugate to
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both CA4, and C' A4, and therefore is also conjugate to every inertia line
in the inertia plane containing 04, and C 4, which passes through C.
But this is the inertia plane which contains a and ¢, while the separa-
tion line b which lies in P, passes through O and is conjugate to ¢, must
be parallel to B, B,, since B, B, also lies in P,
Thus, by Theorem 100, b is conjugate to every inertia line in the
inertia plane containing @ and ¢ which passes through the element O.
Thus the theorem is proved.

REMARKS

All the postulates which have hitherto been introduced may be
represented by ordinary geometric figures involving not more than
three dimensions.

This may be done in the manner described in the introduction: the
« and 8 sub-sets being represented by cones.

We have now however to introduce a new postulate which cannot be
represented along with the others in a three-dimensional figure and
which therefore gives our geometry asort of four-dimensional character.

The new postulate is as follows:

PosturaTE XIX. If P be any optical plane, there is at least one
element which is neither before nor after any element of P.

Since any element in an optical plane must lie in a generator, it will
be after certain elements and before certain other elements of that
optical plane.

It follows that any element such as is postulated in Post. XIX must
lie outside P.

Again if P be an optical plane and 4 be any element which is neither
before nor after any element of P, then an optical line through A parallel
to any generator of P will be a neutral-parallel and accordingly any
generator of an optical plane lies in at least one other distinct optical
plane.

Since we already know that any optical line lies in at least one optical
plane, it follows that there are at least two distinct optical planes contasning
any optical line.

This might be taken as an alternative form of the postulate.

If P and @ be two distinct optical planes having an optical line a in
common, then any element of @ which does not lie in @ must lie in a
generator of ¢, say b, which is a neutral-parallel of a.
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Since any generator of P which is distinct from a is also a neutral-
parallel of a, it follows by Theorem 28 that b is a neutral-parallel of
every generator of P.

Since every element of P lies in a generator it follows that no element
of @ lying outside a is either before or after any element of P.

Although Post. XIX is required in order to prove that there are at
least two distinct optical planes containing any optical line, it is pos-
sible, without using this postulate, to prove that there are at least two
distinct optical planes containing any separation line.

This may be done in the following manner:

Let b be the separation line and O be any element in it.

We already know that if we take any two inertia planes containing b,
then b is conjugate to one single inertia line in each of them which
passes through O.

If a, and a, be two such inertia lines, then, as was shown in Theorem
103, b is conjugate to every inertia line in the inertia plane containing
a, and a, which passes through O.

Further, if ¢, and ¢, be the two generators of this inertia plane which
pass through O it was also shown in the course of proving Theorem 103
that if we take any element O’ of b distinct from O such element is
neither before nor after any element of either ¢, or c,.

Thus if we take an optical line through O’ parallel to ¢, it will be a
neutral-parallel and so b and ¢, lie in an optical plane.

Similarly b and ¢, lie in an optical plane.

These optical planes must be distinct since ¢, and ¢, are distinct
optical lines which both pass through O.

THEOREM 131

If b be any separation line and O be any element in it, there are at least
two inertia planes containing O and such that b is conjugate to every inertia
line tn each of them which passes through O.

Let @ be an optical plane containing b and let ¢ be the generator of
@ which passes through O.

Then by Post. XIX it follows, as we have already shown, that there
is at least one other optical plane, say R, containing the optical line c.

Let d be any separation line in R and passing through O.

Then no element of d except O is either before or after any element of
@ and O itself is neither before nor after any element of @ which lies
outside c.
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Thus no element of d is either before or after any element of b and so,
by Theorem 107, there is at least one inertia line, say @, which is
conjugate to both b and d.

Thus, as was shown in Theorem 128, @ must be conjugate to every
separation line which lies in the separation plane containing b and d and
which passes through O.

Let S be the separation plane containing b and d, and let P be the
inertia plane containing @ and c.

Thensincebis conjugate to a and since no element of b with the excep-
tion of O is either before or after any element of ¢ it follows, by Theorem
104, that bis conjugate to every inertia line in P which passes through O.

Similarly, since d is conjugate to a and since no element of d with the
exception of O is either before or after any element of ¢, it follows that
d is conjugate to every inertia line in P which passes through O.

Thus any inertia line in P which passes through O is conjugate to
both b and d and therefore is conjugate to every separation line passing
through O and lying in the separation plane S.

It follows that P cannot have more than one element in common
with §, forif it had, it would have a separation line in common with §
and every inertia line in P which passed through O would require to
be conjugate to one separation line lying in P, which is impossible.

Now by Theorem 129 there is one and only one separation line, say e,
lying in § and passing through O which is conjugate to every inertia
line passing through O and lying in the inertia plane containing a
and b.

Let T be the inertia plane containing a and e.

Then, by Theorem 130, since b is conjugate to a, it follows that b is
conjugate to every inertia line in 7' which passes through O.

But now b is conjugate to every inertia line lying either in 7' or P
which passes through O and, since 7' contains the separation line e
which lies in S while P does not contain any separation line in §, it
follows that 7' and P are distinct inertia planes.

Thus the theorem is proved.

REMARKS

It follows from this that if a separation line b have an element O in
common with any inertia plane U and is conjugate to every inertia line
in U which passes through O, then b is also conjugate to certain other
inertia lines passing through O which do not lie in U.

It also follows directly that there are certain optical lines passing
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through O, but not lying in U, which are such that no element of b with
the exception of O is either before or after any element of them.
Another important point which arises in the last theorem is that we may
have an inertia plane and a separation plane having only one element in
common and such that each inertia line through the common element in
the former is conjugate to every separation line through it in the latter.

THEOREM 132

If two distinct inertia planes P and P’ have a separation line b in
common and if another separation line c intersecting b in the element O
be conjugate to every inertia line in P which passes through O, then if ¢ be
conjugate to one inertia line in P’ which passes through O 1t 1s conjugate
to every inertia line in P’ which passes through O.

Let f, and f, be the two generators of P which pass through O and
let D, be any element in f, which is after O.

Let the general line through D, parallel to b intersect f, in D,.

Then D, D, is a separation line and so, since O is before D, it must
also be before D,.

Let B, be any element linearly between D; and D, and let £, be any
element linearly between E, and D,, while C' is any element linearly
between £, and E,.

Then by Theorem 73 (a) O, is an inertia line and K, is after O.

Similarly, since O is before both E, and D,, it follows that OF, is an

a (4 /
F / G v

Fig. 38.
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inertia line and E, is after O, and further since O is before both E, and
E, it follows that OC must be an inertia line and C must be after O.

Thus OF,, OE, and OC are three distinct inertia lines in P all passing
through O and so the separation line ¢ is conjugate to each of them.

Now if @’ be an inertia line in P’ which passes through O and to
which c is conjugate, it follows by Theorem 103 that ¢ is conjugate to
every inertia line passing through O and lying in either of the three
inertia planes containing a’ and OK,, a’ and OE, or a’ and OC.

Let F be any element of a’ which is after O and let b’ be the general
line through F parallel to b.

Then b’ must lie in P’ and must be parallel to D, D,.

Let @ be the general plane containing &’ and FC.

Then @ contains D, D, and therefore also contains FE,, FE, and
FC.

Now any general linein P’ which passes through O with the exception
of b must intersect b’ in some element, say ¢.

If now we consider the general line C¢, we see that it must lie in
since C and @ are distinct elements in Q.

Further, CG must be distinct from £, £, since £, K, is parallel to b
while C@ intersects b’

Thus, since F, E, and E, do not lie in one general line while C is
linearly between £, and ¥,, it follows by Theorem 127 that, provided
G does not coincide with F, the general line C'G either intersects F'E, in
an element linearly between F and K, or else intersects FE, in an
element linearly between F and E, .

Consider the case where C(/ intersects 'K, in an element H, linearly
between F and H,.

Then, since O is before both F and E,, it follows by Theorem 73 that
OH, is an inertia line, and since it lies in the inertia plane containing
a’ and OE, and passes through O, it follows that ¢ is conjugate to it.

But ¢ is also conjugate to OC and so, by Theorem 103, ¢ is conjugate
to every inertia line in the inertia plane containing OC and OH, which
passes through O.

Similarly, if CG@ should intersect FE, in an element H, linearly
between F and E,, then c is conjugate to ever inertia line in the inertia
plane containing OC and OH, which passes through O.

Thus in either case if OG should happen to be an inertia line, ¢ must
be conjugate to it.

Thus ¢ must be conjugate to every inertia line in P’ which passes
through O and so the theorem is proved.
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REMARKS

Since, in the above theorem, there is one single inertia line through
O in the inertia plane P which is conjugate to b, such inertia line will be
conjugate to both b and ¢ and so it follows, by Theorem 99, that no
element of b is either before or after any element of ¢ and so b and ¢ must
lie in a separation plane.

Again if f," and f,’ be the two generators of P’ which pass through O,
then no element of ¢ with the exception of O will be either before or after
any element of either f," or f,’.

Now let a, be the one single inertia line through O and lying in P
which is conjugate to b, and let a,’ be the one single inertia line through
O and lying in P’ which is conjugate to b.

Then a, and a,’ lie in an inertia plane, say R, and both » and ¢ must
be conjugate to every inertia line passing through O and lying in R.

Thus if ¢, and g, be the two generators of B which pass through O, no
element of either b or ¢ with the exception of O is either before or after
any element of either g, or ¢,.

Thus the optical lines g, and ¢, are such that g, and b lie in an optical
plane and also ¢, and b lie in an optical plane.

The optical lines f," and f,” on the other hand are such that both of
them lie in an inertia plane containing b.

NORMALITY OF GENERAL LINES HAVING A COMMON ELEMENT

We are now in a position to define what we mean when we say that
a general line a is “normal” to a general line b, which has an element in
common with it.

Since a and b are not always general lines of the same kind, it is
difficult to give any simple definition which will include all cases; but
the introduction of the word ‘““normal’ is justified by the simplification
which is thereby brought about in the statement of many theorems.

Only one case will be found to be strictly analogous to the normality
of intersecting straight lines in ordinary geometry : namely the case of
two separation lines.

The other cases are so different from our ordinary ideas of lines ““at
right angles’’ that we do not propose to use this expression in connexion
with them.

Thus for instance any optical line is to be regarded as being ‘“normal
toitself”’, and the use of the words ““at right angles’” would, in this case,
clearly be an abuse of language.

The extension of the idea of normality from the cases of general lines

R 14
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having a common element to the cases of general lines which have not
a common element is however quite analogous to the corresponding
extension in ordinary geometry and will be made subsequently.

We are at present only concerned with the cases of general lines
having a common element and shall naturally include among these that
of an optical line being ‘‘normal to itself”.

Thus the complete definition of the normality of general lines having a
common element is to be taken as consisting of the following four particular
definitions A, B, C and D.

Definition A. Any optical line will be said to be normal to stself.

Definition B. If an optical line a and a separation line b have an
element O in common and if no element of b with the exception of O be

either before or after any element of a, then b will be said to be normal to
a, and a will be said to be normal to b.

Definition C. Ifaninertia line a and a separation line b be conjugate
one to the other, then a will be said to be normal to b and b will be said
to be normal to a.

Definition D. A separation line a having an element 0 in common
with a separation line b will be said to be normal to b provided an
inertia plane P exists containing b and such that every inertia line in P
which passes through O is conjugate to a.

In this last case, since there is one single inertia line in P which passes
through O and is conjugate to b, it is evident that @ and b must lie in a
separation plane.

If ¢ be this inertia line then, by Theorem 130, every inertia line which
passes through O and lies in the inertia plane containing ¢ and a is
conjugate to b and so b satisfies the definition of being normal to a.

Let the separation plane containing a and b be denoted by S.

Then ¢ is conjugate to both a and b and therefore is conjugate to
every separation line in § which passes through O.

It follows, by Theorem 129, that there is one and only one separation
line in § and passing through O which is conjugate to every inertia line
in P which passes through O and the separation line a has this property.

Now it is easy to see that a is the only separation line in S and passing
through O which is normal to b; for suppose, if possible, that a’ is
another such separation line.

Then, by the definition, there must exist an inertia plane, say P’,
containing b and such that every inertia line in P’ which passes through
O is conjugate to a’.
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Then there would exist one single inertia line, say ¢’, through O and
lying in P’ which would be conjugate to b.

Thus ¢’ would be conjugate to every separation line in S which
passed through O and therefore would be conjugate to a.

But now P’ could not be identical with P, for, as we have seen, a is
the only separation line in S and passing through O which is conjugate
to every inertia line in P which passes through O and a’ has been sup-
posed distinct from a.

But, by Theorem 132, it follows that a must be conjugate to every
inertia line in P’ which passes through O.

Thus we should have two distinct separation lines ¢ and a’ both
lying in S and passing through O and both conjugate to every inertia
line in P’ which passes through O.

But this is impossible by Theorem 129, and so the assumption of the
existence of two distinct separation lines in § which pass through O and
are normal to b leads to a contradiction and therefore is not true.

Thus there is one and only one separation line in § which passes
through O and is normal to b.

Again, since b lies in P while a cannot lie in P, it follows that if a
separation line a be normal to a separation line b having an element in
common with it, then ¢ and b must be distinct.

If b be any general line in an inertia plane P and O be any element of
b, then we know that if b be either an inertia or separation line there is
one and only one general line through O and lying in P which is con-
jugate and therefore normal to b.

Also, from our definitions, if b be an optical line there is still one and
only one general line through O and lying in P which is normal to b:
namely b itself.

Thus we have the following general result:

If P be either a separation plane or an inertia plane and if b be any
general line in P and O be any element in b, then there is one and only one
general line lying in P and passing through O which is normal to b.

Now we have seen that if a separation line @ be normal to a separation
line b having an element in common with it, then @ and b lie in a separa-
tion plane,

Thus two intersecting separation lines in an optical plane cannot be
normal one to another.

Any separation line, however, which lies in an optical plane is normal
to every optical line in the optical plane since no element of the separa-

14-2
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tion line except the element of intersection is either before or after any
element of any optical line in the optical plane.

Since there is one and only one optical line which passes through any
element of an optical plane and lies in the optical plane we have the
following result:

If P be an optical plane and if b be any separation line in P and O be
any element in b, then there is one and only one general line lying in P and
passing through O which s normal to b.

If on the other hand b be an optical line lying in P, then every general
line an P which passes through O (including b itself) is normal to b.

We have now to prove the general theorem that: if b and ¢ be two
dsstinct general lines having an element O in common and if a general line
a passing through O be normal to both b and c, then a is normal to every
general line which passes through O and lies in the general plane containing
b and c.

We have already proved a number of special cases of this general
theorem.

(1) If b and ¢ be both optical lines and a be a separation line, then b
and cliein an inertia plane, say P, and if O’ be any element of a distinct
from O there will be an inertia plane, say P’, passing through 0" and
parallel to P.

Then O and O’ will be representatives of one another in the parallel
inertia planes P and P’ and so, by Theorem 102, a is conjugate to every
inertia line in P which passes through O.

Thus a is normal to every separation line in P which passes through
O, to every inertia line in P which passes through O and to every
optical line in P which passes through O.

(2) Ifband cbe both inertia lines and a be a separation line, the same
result follows from Theorem 103.

(3) If b be an optical line and ¢ an inertia line while a is a separation
line, the same result follows from Theorem 104.

(4) Ifbbe aseparation line and c an inertia line while a is a separation
line, it follows by Theorem 132 that @ must be normal to every
inertia line which passes through O and lies in the inertia plane
containing b and c.

Thus as before, a must be normal to every general line which passes
through O and lies in the inertia plane.

(8) If b and c be both separation lines and @ an inertia line, then, as
we have seen, b and c must lie in a separation plane and, as was shownin
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Theorem 128, a is conjugate and therefore normal to every separation
line passing through O and lying in this separation plane.

(6) If b be an optical line and ¢ a separation line while a is identical
with b, then, as we have already seen, b and ¢ lie in an optical plane
while @ is normal to every general line which passes through O and lies
in this optical plane.

Several other cases remain to be considered and these form the sub-
ject of Theorems 133 to 135.

We shall postpone the enumeration of the various remaining cases
till we have proved these theorems.

THEOREM 133

If a separation line ¢ be normal to a separation line b which it intersects
in the element O and if further ¢ be normal to an optical line a’ which it also
wntersects in the element O, then c is normal to every general line passing
through O and lying in the general plane containing b and o'.

By the definition of normality there exists an inertia plane, say P,
containing b and such that every inertia line in £ which passes through
O is conjugate to c.

In case a’ should lie in this particular inertia plane the result follows
directly and so we shall suppose that a’ does not lie in P.

We shall therefore suppose that a’ and b lie in a general plane P’
distinct from P.

From the remarks at the end of Theorem 132 it is evident that P’
may be either an inertia plane or an optical plane.

The mode of proof is similar to that employed in Theorem 132
except that a’ is here an optical line instead of an inertia line.

Thus the proof that ¢ is conjugate to every inertia line passing
through O and lying in either of the three inertia planes containing o’
and OF,, o’ and OE,, or a’ and OC, follows in this case from Theorem
104 instead of Theorem 103.

Everything else follows exactly as in Theorem 132 and we find that,
if OG be any general line in P’ which passes through O and is distinct
from b, then OG lies in some inertia plane such that every inertia line
in the latter which passes through O is conjugate to c.

Thus if OG be a separation line it satisfies the condition that ¢ should
be normal to it.

Also if OG should be either an optical line or an inertia line ¢ must
also be normal to it, and so the theorem is proved.
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REMARKS

From the definition of the normality of intersecting separation lines
itis evident that we may have a separation line normal to two (or more)
separation lines in an inertia plane.

From the last theorem it is also evident that we may have a separa-
tion line normal to two (or more) separation lines in an optical plane.

We may also have a separation line normal to two (or more) separa-
tion lines in a separation plane, as may easily be seen from the following
considerations:

In the remarks at the end of Theorem 131 it was pointed out that we
may have an inertia plane and a separation plane having only one
element in common and such that each inertia line through the common
element in the former is conjugate to every separation line through it
in the latter.

Let P be the inertia plane, S the separation plane and O the common
element.

Let a and b be any two separation lines passing through O and lying
in §, and let ¢ be any separation line passing through O and lying in P.

Then a satisfies the definition of being normal to ¢ and therefore ¢ is
normal to a.

Similarly ¢ must be normal to b.
Thus ¢ is normal to the two separation lines @ and b which lie in the
separation plane S.

TrEOREM 134

If three distinct separation lines a, b and ¢ have an element O in common
and if ¢ be normal to both a and b, then c is normal to every general line
which passes through O and lies in the general plane containing a and b.

By the definition of the normality of intersecting separation lines
there must exist an inertia plane, say P, containing b and such that
every inertia line in P which passes through O is conjugate to c.

Let f, and f, be the two generators of P which pass through O and let
D, be any element in f; which is after O.

Let the separation line through D, parallel to b intersect f, in D,.

Then D, must also be after O.

Let C be any element linearly between D, and D,.

Then by Theorem 73 OC is an inertia line and C is after O.

But ¢ is normal to the inertia line OC and to the separation line a and
therefore by case (4) on p. 212 ¢ must be normal to every inertia line
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(and therefore also every general line) which passes through O and lies
in the inertia plane containing OC and a.

Let R be this inertia plane.

If R should coincide with P the result follows directly and so we
shall suppose that R is distinct from P.

Let S be the general plane containing a and b.

Then § will be distinct from both P and R, and, as was pointed out
in the remarks at the end of the last theorem, S may be an inertia plane,
an optical plane, or a separation planc.

Let one of the generators of R which pass through C intersect a in
G and let the generator of the opposite set passing through O intersect
CGyin F.

S S c 0,V

Vi

Fig. 39.

Then, since O does not lie in the optical line CG, but is before the
element C of it, it follows that F must lie in the « sub-set of O and
therefore I is after O.

Let b" be the general line through (7, parallel to b.

Then, since (/, lies in S, it follows that b’ lies in S.

Let @ be the general plane containing b’ and G,C.

Then, since D, D, is parallel tob and is distinct from &', it follows that
it is parallel to " and, since D, D, passes through C, it must lie in the
general plane Q.

Thus D,, D, and F are three distinct elements in @ which do not all
lie in one general line.

Now any general line in § which passes through O and is distinct
from b must intersect b’ in some element, say G.

Then the general line C@ lies in @ and is distinct from D, D,.

If then G does not coincide with @, it follows, by Theorem 127, that
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CG must either intersect D, F in an element H, linearly between D, and
F, or else must intersect D, F' in an element H, linearly between D,
and F.

But, since O is before both D, and F, it follows, by Theorem 73, that
OH, is an inertia line and similarly, since O is before both D, and F, it
follows that OH, is an inertia line.

Now c is normal to every general line in P which passes through O
and also to every general line in R which passes through O and there-
fore ¢ is normal to the three optical lines OD,, OD, and OF.

Thus ¢ must be conjugate to every inertia line which passes through
O and lies either in the inertia plane containing OD; and OF, or the
inertia plane containing OD, and OF.

Thus ¢ is conjugate to OH, and also to OH,.

But ¢ is conjugate to OC and therefore is conjugate to every inertia
line which passes through O and lies in the inertia plane containing OC
and OH, or the inertia plane containing OC and OH,.

Thus, since OG lies in the inertia plane containing OC and O, or in
the inertia plane containing OC and O11, as the case may be, it follows
that ¢ must be normal to OG.

Thus, including the separation lines a and b, the separation line ¢ is
normal to every general line which passes through O and lies in the
general plane S.

THEOREM 135

If two distinct separation lines a and b wntersect in an element O and
if an optical line ¢ passing through O be normal to both a and b, then ¢ 18
normal to every general linewhich passses through O and lies in the general
plane contarning a and b.

From the definition of the normality of an optical line to an inter-
secting separation line it follows that ¢ and a lie in an optical plane, say
P, while ¢ and b lie in an optical plane, say Q.

If P should be identical with @ we already know that ¢ is normal to
every general line in P which passes through O including the optical
line c itself.

Let us suppose next that P is distinct from .

We have already seen that in this case @ and b lie in a separation
plane, say S, and further we have seen that no element of b with the
exception of O is either before or after any element of P.

Let D be any element of b distinct from O and let £ be any element
of a distinet from O, while F is any element of a such that O is linearly
between E and F.
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Let e and f be optical lines through £ and F respectively and parallel
to c.

Then D is neither before nor after any element either of e or of f and
80, by Theorem 45, no element of DE with the exception of E is either
before or after any element of e, and no element of DF with the exception
of F'is either before or after any element of f.

But now by Theorem 127 any general line passing through O and
lying in § and which is distinct from both a and b must either intersect

Fig. 40.

DE in some element, say (7, linearly between D and E or else must
intersect DF in some element, say H, linearly between D and F.

Thus @ is neither before nor after any element of e while H is neither
before nor after any element of f.

If then ¢ be an optical line through G parallel to e it will be a neutral-
parallel and, since ¢ is a neutral-parallel of e and @ does not lie in ¢, it
follows by Theorem 28 that g is a neutral-parallel of c.

Thus @ is neither before nor after any element of ¢ and therefore, by
Theorem 45, no element of OG with the exception of O is either before
or after any element of c.

Thus ¢ is normal to OG and similarly it is normal to OH.
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It follows that ¢ is normal to every general line which passes through
O and lies in 8, and so the theorem is proved.

ENUMERATION OF CASES OF GENERAL THEOREM CONTINUED

We now resume the enumeration of the various cases of the general
theorem stated on p. 212 and which was interrupted in order to prove
Theorems 133 to 135.

Six cases have already been mentioned and we now proceed with
case (7).

(7) 1fbbe aseparation line and ¢ an opticalline while a is a separation
line and if b and ¢ lie in an inertia plane, the result follows from
Theorem 133.

(8) Ifb and c be both separation lines lying in an inertia plane and if
a be also a separation line, the result follows from Theorem 134.

(9) If b be a separation line and ¢ an optical line while a is a separa-
tion line and if b and ¢ lie in an optical plane, the result follows from
Theorem 133.

(10) If b and ¢ be both separation lines lying in an optical plane and
if a be also a separation line, the result follows from Theorem 134.

(11) If b and ¢ be both separation lines lying in an optical plane and
if @ be an optical line also in the optical plane, the result still holds as
was pointed out at the beginning of Theorem 135.

(12) If b and ¢ be both separation lines lying in a separation plane
and if @ be also a separation line, the result follows from Theorem 134.

(13) If b and ¢ be both separation lines lying in a separation plane
and if @ be an optical line, the result follows from Theorem 135.

If now we combine cases (1), (2), (3), (4), (7) and (8) we see that b and
¢ may be any two intersecting general lines in an inertia plane taking a
as a separation line.

If we combine cases (9) and (10) we see that b and ¢ may be any two
intersecting general lines in an optical plane taking a as a separation
line,

Further, combining cases (6) and (11) we also see that b and ¢ may
be any two intersecting general lines in an optical plane taking @ as an
optical line.

Finally from cases (12), (13) and (5) we see that b and ¢ may be any
two intersecting general lines in a separation plane taking a as a separa-
tion line, an optical line, or an inertia line.

Thus for all the different possible cases of the normality of general
lines having a common element this general result holds.
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THEOREM 136

If b and c be two separation lines intersecting in an element O and lying
in a separation plane 8 and such that ¢ is normal to b, then if O’ be any
other element of b, the normal to b through O’ in the separation plane S is
parallel to c.

From the definition of the normality of intersecting separation lines
it follows that there must exist an inertia plane P containing b and such
that every inertia line in P which passes through O is conjugate to c.

Let a, and a, be any two such inertia lines and let @,” and a,” be
inertia lines passing through O’ and parallel to a, and a, respectively.

Let ¢’ be a separation line passing through O and parallel to c.

Then ¢’ will lie in S.

But, by Theorem 100, both a,” and a,’ must be conjugate to ¢’ and so,
by Theorem 103, ¢’ is conjugate to every inertia line in the inertia plane
containing a,” and a,” which passes through the element O".

But this inertia plane is the inertia plane P which contains the
separation line b and so ¢’ satisfies the definition of being normal to b.

Further, ¢’ passes through O’ and lies in § and we have already seen
that there is only one normal to b which satisfies these conditions.

Thus the normal to b through O’ in the separation plane S is paralle]
to ¢ as was to be proved.

THEOREM 137

If b and c be two separation lines intersecting in an element O and such
that ¢ s normal to b and if b" and ¢’ be two other separation lines inter-
secting in an element O' and respectively parallel to b and c, then ¢’ s
normal to b’

Since ¢ is normal to b there must exist an inertia plane P containing
b and such that every inertia line in P which passes through O is con-
jugate to c.

Let a, be one such inertia line which we shall suppose does not also
pass through O’.

Then through O’ there is an inertia line, say a,’, which is parallel to a, .

Thus b’ and a,” determine an inertia plane P’ which will be either
identical with P or parallel to P according as O’ does or does not lie
in P.

Let a, be a second inertia line in P and passing through O but not
through O’.
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Then through O’ there is an inertia line say a,” parallel to a, and
lying in P’.

Then by Theorem 100 both a,” and a,’ are conjugate to ¢’ and so, by
Theorem 103, ¢’ is conjugate to every inertia line in P’ which passes
through 0",

But P’ contains b’ and so ¢’ satisfies the definition of being normal
to b’

THEOREM 138

If an optical line b intersects a separation line ¢ in an element O and
if c be normal to b and if further b” and ¢’ be an optical line and a separation
line respectively which intersect in an element O’ and are respectively
parallel to b and c, then ¢’ will be normal to b’.

From the definition of the normality of a separation line to an
optical line it follows that b and ¢ lie in an optical plane, say P.

Further, 6" and ¢’ lie in a general plane P’ which must be either
identical with P or parallel to P according as O’ does or does not liein P.

In either case P’ is an optical plane and accordingly, since 4 is an
optical line and ¢’ a separation line, it follows that ¢’ must be normal
to b'.

REMARKS

By combining Theorems 100, 137 and 138 we obtain the general
result that if b and ¢ be two general lines intersecting in an element O and
such that the one is normal to the other and if b" and ¢’ be two other general
lines intersecting in an element O" and respectively parallel to b and c, then
of these latter two general lines the one is normal to the other.

If now we remember that an optical line is to be regarded as normal
to itself, we are in a position to extend the definition of the normality
of general lines to the case of general lines which have no element in
common, as is done with straight lines in ordinary geometry.

Definition. A general line b will be said to be normal to a general line
¢’ which has no element in common with it, provided that a general line
b’ taken through any element of ¢’ parallel to b is normal to ¢’ in the
sense already defined.

It is evident from the above considerations that, in these circum-
stances, if a general line ¢ be taken through any element of b parallel to
¢’ then ¢ will be normal to b and so ¢’ will be normal to b.

Further, we have the result that any two parallel optical lines are to
be regarded as normal to one another.
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Again, if P be an inertia plane and if @ be any general line in P and 4
be any element in P, then there is one single general line in P and
passing through 4 which is normal to a.

If however a be an optical line, the normal to a through A4 is either
identical with @ or parallel to it according as A does or does not lie in a.

If, on the other hand, P be an optical plane, there is one single
general line in P and passing through A which is normal to a, except
when « is an optical line, in which case every general line in P which
passes through 4 is normal to a.

If P be a separation plane there is one single general line in P which
passes through A and is normal to @ and in this case the normal to a
always intersects a as in ordinary geometry.

Definition. A general line a will be said to be normal to a general
plane P provided a be normal to every general line in P.

It is evident that if a general line a be normal to two intersecting
general lines in a general plane P, then « will be normal to P.

In case P be an optical plane it is clear that, according to the above
definition, any generator of P is normal to P.

This is the only case in which a general line can be normal to a general
plane which contains it.

In no other case can a general line which is normal to a general plane
have more than one element in common with the latter.

As was pointed out in the remarks at the end of Theorem 131 we
may have an inertia plane and a separation plane having only one
element in common and such that each inertia line through the common
element in the former is conjugate to every separation line through it
in the latter.

It is evident now that we have here two general planes which are so
related that any general line in the one is normal to any general line in
the other.

In ordinary three-dimensional geometry two planes cannot be so
related, and when we speak of one plane being normal to another the
normality is not of this complete character.

We shall therefore introduce the following definition:

Definition. If two general planes be so related that every general
line in the one is normal to every general line in the other, the two
general planes will be said to be completely normal to one another.
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THEOREM 139

If P be an inertia plane and O be any element in 1t, there is at least one
separation plane passing through O and completely normal to P.

Let P, be any inertia plane which is parallel to P and let O, be the
representative of O in P,.

Then, by Theorem 102, the separation line 0O, is conjugate
to every inertia line in P which passes through O and so 00, is normal
to P.

Let a, be one of the two generators of P which pass through O, and
let 00, be denoted by b, .

Then a, and b, lie in an optical plane, say @, .

Now, by Post. XIX, there is at least one element, say 4, which is
neither before nor after any element of @, .

Thus through A there is an optical line, say a,’, which is neutrally
parallel to a, and so ¢, and a,’ lie in an optical plane, say R;, which is
distinct from @), .

Again if P, be an inertia plane through 4 parallel to P it will contain
a,.

Let O, be the representative of O in P,.

Then O, must lie in a," and so 0O, must lie in the optical
plane R,.

But 00, lies in @, while 00, lies in R,, and ¢, and B, have only the
optical line a, in common.

Thus since 00, and OO, are both separation lines they must be
distinct.

Now, by Theorem 102, 00, is conjugate to every inertia line in P
which passes through O, and so 00, is normal to P.

Let 00, be denoted by b,.

Then no element of b, is either before or after any element of b, and,
since b, and b, have the element O in common, they must lie in a
separation plane, say S.

Thus any inertia line in P which passes through O is conjugate to
both b, and b, and therefore also conjugate to every separation line in S
which passes through O.

Thus every general line in P is normal to every general line in S and
so the separation plane § is completely normal to P.

Thus, since § passes through O, the theorem is proved.
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THEOREM 140

If P be a separation plane and O be any element in it, there is at least
one inertia plane passing through O and completely normal to P.

If we take any two separation lines in P and passing through O then,
by Theorem 107, there is at least one inertia line, say a,, which is
conjugate to both of them and therefore is normal to P.

Let b, be any separation line in P which passes through O and let
be the inertia plane containing e, and b, .

Then, by Theorem 129, there is one and only one separation line in P
and passing through O which is conjugate to every inertia line in
which passes through O.

Let b, be this separation line.

Then, as was remarked at the end of Theorem 131, b, is conjugate to
certain other inertia lines passing through O which do not lie in Q.

Let a' be any such inertia line and let @ be the inertia plane con-
taining a’ and b, .

Then, by Theorem 132, b, is conjugate to every inertia line in @’
which passes through O.

Let a, be the one single inertia line in @’ and passing through O which
is conjugate to b, and let R be the inertia plane containing a, and a,.

Then a, and a, are each conjugate to both b, and b,.

Thus both a, and a, are conjugate to every separation line in P which
passes through O and so every separation line in P which passes through
O is conjugate to every inertia line in R which passes through O.

Thus every general line in P is normal to every general line in R and
so the inertia plane R is completely normal to P.

Thus, since R passes through O, the theorem is proved.

THEOREM 141

If P be an optical plane and O be any element in it, there is at least one
optical plane passing through O and completely normal to P.

Let a be the generator of P which passes through O and let b be any
separation line in P which passes through O.

Then, by Post. XIX, there is at least one element, say A, which is
neither before nor after any element of P.

The general line O4 is thus a separation line and, by Theorem 45, no
element of OA with the exception of O is either before or after any
element of a.

Thus a is normal to O4 and it is also normal to b and so, since 04 and
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b must lie in a separation plane, say S, it follows that the optical line
a is normal to S.

But now we know that there is one single separation line, say c,
which passes through O, lies in § and is normal to b.

Then ¢ is normal to both a and b and therefore is normal to P.

But ¢ and a lie in an optical plane which is distinct from P and which
we shall call R.

Further, a is an optical line in P and therefore is normal to P.

Thus any general line in P is normal to the two intersecting general
lines @ and ¢ which lie in R and so every general line in P is normal to
every general line in R.

It follows that R is completely normal to P and, since R passes
through O, the theorem is proved.

REMARKS

By combining Theorems 139, 140 and 141 we get the general result:

If P be any general plane and O be any element in t, there is at least
one general plane passing through O and completely normal to P.

It R be this general plane which is completely normal to P and if O’
be any element not lying in P, then O’ either may or may not lie in .

If O’ does not lie in R, then there is a general plane, say R’, passing
through O’ and parallel to E.

It is evident that since R is completely normal to P we must also
have R’ completely normal to P and so we may generalise the above
result and say:

If P be any general plane and O be any element whatever, there is at
least one general plane passing through O and completely normal to P.

Let O be any element and let § be any separation plane passing
through O, while P is an inertia plane also passing through O and
completely normal to S.

Let a be any separation line in § which passes through O and let b
be the one single separation line in 8 passing through O which is
normal to a.

Let ¢ be any separation line passing through O and lying in P and let
d be the one single inertia line in P and passing through O which is
normal to c.

Then both ¢ and d are normal to both a and b and so we have the three
separation lines a, b and c all passing through O and each of them normal
to the other two ; while in addition to these we have the inertia line d also
passing through O and normal to all three.
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This result marks an important stage in the development of our
theory, as it suggests the possibility of setting up a system of normal
coordinate axes one of which axes is of a different character from the
remaining three.

Another important result is the following:

If S be a separation plane and if P be an inertia plane passing through
any element O of § and completely normal to S, then there are two
generators of P which pass through O and each of them is normal to the
separation plane S.

Thus there are at least two optical lines which pass through any element
of a separation plane and are normal to it.

THEOREM 142
If P be an inertia or separation plane and O be any element which does
not lve in it, there is one single general line passing through O and normal
to P which has an element in common with P.

We already know that if @ be a separation line and if O be any element
which does not lie in it, then, in whatever type of general plane O and
a may lie, there is one single general line passing through O and lying
in this general plane which is normal to a.

Further, if d be this general line normal to a, then d must intersect a
in some clement, say A.

Now suppose that a lies in the inertia or separation plane P.

Then there is one single general line passing through 4 and lying in
P which is normal to a.

Let b be this general line.

Then, since P is an inertia or separation plane and a is a separation
line, b must be distincet from a and must be either an inertia or separa-
tion line and cannot be an optical line.

Now we know that in whatever type of general plane O and b may lie
there is one single general line passing through O and lying in this
general plane which is normal to b.

Let ¢ be this general line.

Then, since bis not an optical line, this normal to it through O cannot
be parallel to b and therefore must intersect b in some element, say B.

Now a is normal to the two general lines d and b which intersect in 4
and accordingly a is normal to every general line in the general plane
containing d and b and therefore is normal to c.

But cis normal to the two intersecting general lines a and b which lie
in P and therefore c is normal to P.

R 15
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Since ¢ has the element B in common with P, we have proved that
there is at least one general line through O and normal to P which has
an element in common with P.

It remains to show that there is only one general line having this
property.

Consider first the case where P is a separation plane and let B’ be any
element in P distinct from B.

Then BB'is a separation line and so in whatever type of general plane
O and BB' may lie there is one single general line passing through O,
lying in this general plane and normal to BB'.

But OB passes through O and is normal to BB’ and therefore OB’
cannot be normal to BB’ and so cannot be normal to P.

This proves that OB is the only general line through O and normal
to P which has an element in common with P provided P be a separation
plane.

This method does not serve if P be an inertia plane, since BB’ might,
in this case, be an optical line.

If P be an inertia plane, let P’ be an inertia plane passing through O
and parallel to P.

Then O and B must be representatives of one another in the parallel
inertia planes P’ and P.

If B’ be any other element in P distinct from B and we suppose that
OB' is normal to P, then B” would also be the representative of O in
P, which we know is impossible.

Thus again OB is the only general line through O and normal to P
which has an element in common with £.

The theorem thus holds for both separation and inertia planes.

THEOREM 143

If P be an optical plane and O be any element which does not lie in
i, then:

(1) If O be neither before nor after any element of P there is one single
generator of P such that every general line which passes through O and
sntersects this generator 1s normal to P.

(2) If O be either before or after any element of P there 1s no general
line passing through O a