


CO >

OU 164545







LIBRARY

cd on or before the date la marked below





GEOMETRY
OF

TIME AND SPACE



LONDON
Cambridge University Press

FETTER LANE

NEW YORK TORONTO
BOMBAY CALCUTTA MADRAS

Macmillan

TOKYO
Maruzen Company Ltd

All rights reserved



GEOMETRY
OF

TIME AND SPACE

by

ALFRED A. ROBB
Sc.D., D.Sc., PH.D., F.R.S.

CAMBRIDGE
AT THE UNIVERSITY PRESS

1936



"The Bird of Time has but a little way
To fly and Lo ! the Bird is on the Wing."

OMAR KHAYYAM

"I could not have been in two places at once

unless I were a bird." SIB BOYLE BOOHE

Contrary to the view so generally held; not

even "the Bird of Time" can be in two places

at once. AUTHOB

PBINTED IN GBEAT BBITAIN



PREFACE

THE present volume is essentially a second edition of one which was

published by the author in 1914 under the title : A Theory of Time and

Space. An alteration of the title has been made, since^t.was considered

that the word geometry conveyed a somewhat better idea of the

nature of the contents of the book than did the word theory.

The first edition was going through the press at the time of the out-

break of the war, so that its publication took place under very un-

favourable circumstances. The present volume differs from its pre-

decessor in several respects. The Introduction has been re-written

and extended; while the proofs of a number of theorems, which were

rather lengthy, have been curtailed and simplified.

A considerable amount of new matter has also been introduced,

making the book more self-contained and complete.

The demonstrations have all been carried out as deductions from'

certain postulates expressed in terms of the relations of after and

before ;
so that the whole work may be regarded as a demonstration of

the fundamental character of these relations in Time-Space theory.

So far as I am aware, the book, in its original form, was the first of

its kind to be written, and a brief account of its origin may be of

interest. At the meeting of the British Association held at Belfast in

1902, Lord Rayloigh gave a paper entitled: Does Motion through the

Ether cause double Refraction? in which he described certain experi-

ments which he had carried out with the object of testing this matter,

and which seemed to indicate that the answer was in the negative.

I remember that he inquired of Professor Larmor, who was present

on this occasion, whether, from his theory, he would expect double

refraction to be produced in this way. Professor Larmor replied that

he would not, and, in the discussion which followed considerable

surprise was expressed that, in any attempt to detect motion through

the aether, things seemed to conspire together so as to give null

results. The impression which this discussion made upon me was, that,

in order properly to understand the matter, it would be necessary to

make some sort of analysis of one's ideas concerning equality of
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lengths, etc., and I decided that, at some future time, I should attempt

to carry this out. I am not quite certain that I had not some idea of

the sort prior to this meeting, but, in any case, the inspiration came

from Professor Larmor, either then, or on some previous occasion

while attending his lectures.

Some years later I attempted to carry out this scheme, and, while

doing so, I heard for the first time of Einstein's work.

I may say that, from the first, I felt dissatisfied with his approach

to the subject, and I decided to continue my own efforts to find a

suitable basis for a theory.

The first work which I published on the subject was a pamphlet

which appeared in 1911 entitled: Optical Geometry of Motion: A New

View of the Theory of Relativity.

This pamphlet was of an exploratory character and did not profess

to give a complete logical analysis of the subject; but nevertheless,

although bearing a very different aspect, it contained some of the

germs ofmy later work. It was, in fact, an attempt to describe Time-

Space relations without making any assumption as to the simul-

taneity of events at different places. Later on, the idea of Conical

Order occurred to me, in which instants at different places are re-

garded as definitely distinct; so that there is no such simultaneity.

As it was evident that a thorough working out of this idea would

entail a great deal of labour, I published, in 1913, a short preliminary

account of it under the title : A Theory of Time and Space.

In 1914, as above mentioned, I published a book bearing the same

title, of which the present volume is a second edition.

The working out of a scientific theory in the form of a sequence of

propositions, such as was done by Euclid, Newton and others, seems

largely to have gone out of vogue in these latter days and I consider

that this is rather regrettable.

No doubt, in doing exploratory work, other methods are permissible

and necessary, but I think that the incorporation of the more funda-

mental parts of a theory in a sequence of propositions should always

be kept in view, since, in this way, one is able to see much more

readily what are our primary assumptions, and one is able to fall

back upon these in cases of difficulty.

One can also test the effect on a theory of an alteration in one or
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more of these primary assumptions such, for instance, as that pro-

duced in ordinary geometry by the rejection of the Euclidean axiom

of parallels and the substitution for it of some other primary assump-

tion, such as that of Lobatschewski. It will be found that the theory

developed in this work is dependent upon the rejection ofone generally

accepted postulate with regard to instants of time and the substitu-

tion of others.

In conclusion, I desire once more to express my indebtedness to

Sir Joseph Larmor, without whom this book would never have been

written
;
and to convey my best thanks to the officials and staff of the

Cambridge University Press for the care and skill with which they

have carried out the printing.

ALFRED A. ROBB

CAMBRIDGE
20 November 1935





INTRODUCTION
IN beginning the study of Geometrical Science it is customary to start

with a course of pure geometry and, when a foundation of this has been

laid, to proceed to the introduction of coordinate methods.

Thus, before being introduced to Cartesian geometry, one is taught
certain propositions concerning the congruence of triangles, the pro-

perties of parallels, the theorem of Pythagoras, the theory of propor-

tion, etc. To a large extent the methods of pure and of coordinate

geometry are then carried on side by side, and it is customary, in

proving a proposition, to make use of whichever method appears to be

more convenient for the particular purpose in hand.

Speaking generally, no doubt, this is the course of procedure by
which progress is most rapidly made, but I do not think that anyone
would have the temerity to suggest that coordinate methods should be

taken up without some prior grounding in pure geometry.
When one goes on to the study of other types of geometry than the

Euclidean, the importance of logical sequence should become apparent,
but I am sorry to say that it does not always seem to do so.

In many discussions of Time-Space theory we find ideas of ordinary
Euclidean geometry carried forward into a domain in which they no

longer apply, with occasional disastrous results.

The extension of Cartesian coordinates from three to four or more

dimensions does not offer any very serious difficulties, since the formula

for the square of the distance between two points, which, in three

dimensions, has the form

*2 = (*!
- X2 )

2 + (t/!
-

</2 )
2 + to - 22 )

2
,

becomes simply

s2 = to - *2 )
2 + (yi

-
1/2 )

2 + (zl
- z2 )

2 +K - u>2 )
2

in four dimensions ;
with a similar extension for any larger number.

It was found, however, by Minkowski that many of the facts con-

nected with Time-Space theory could conveniently be represented by
a four-dimensional coordinate geometry in which a formula

held; that is to say, a formula in which one square is affected with the

negative sign.
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This negative sign makes an enormous difference in the subject and

renders invalid a great part of what holds in ordinary Euclidean

geometry.
Some idea of the extent of the modifications required may perhaps

be obtained when I state that the construction of the very first pro-

position of Euclid becomes impossible except in a certain type of plane,

and that two other types of plane occur in which an equilateral triangle

cannot exist.

Numerous other features of this Time-Space geometry are so curious

as to seem at first quite paradoxical, and some consideration of a few

of these from the coordinate standpoint may perhaps emphasise the

importance of laying a proper foundation for the subject on the purely

geometrical side.

It is to be observed in the first place that whereas the expression

(which may briefly be written in the form

is always positive for real values of 8x, 8y, 8z which are not all zero
;

the expression

(or

may be either positive, zero or negative for real values of 8#, 8y, Sz,

St differing from zero.

Three types of line joining the points (xl9 yl} zlt ^), (#2 , 2/2 >
Z2> t2 )

exist corresponding to these three cases.

When the expression is positive the square of the distance between

the points is given by the formula

When the expression is negative, then, analytically, 8s becomes a

pure imaginary ;
but if we write

and recollect that we are now dealing with a line of a different type,

we get the square of the distance in these new units given by

When the expression is zero one is tempted to think that the distance
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between the points must be zero
;
but this is a misleading interpretation.

The real interpretation of the equation

is that the points (x^ , ^ , ^ , ^), (x2 > 2/2 >
2
2 > ^2) ^e in a particular type of

line.

For this type of line the conception of length partially, but not

entirely, breaks down.

We may compare lengths along a given line of this kind, or along two

such parallel lines, but not along two which are not parallel.

Consider the case of lines for which the expression

is positive.

It is obvious that the axes of x, y and z (but not the axis of t), are lines

of this character.

Now let O be the origin of coordinates and let P be any point in the

positive axis of x and let OP = 21.

Let A ly A 2 and A% be three points whose coordinates are given by
the following table :

(where #2
<1).

Then

Similarlv

2 = Z
2

t

= ^

O^ 3 <l.

PA3 <1.

It +PA^OP,Thus

OA 3 +PA 3 <OP,

so that, in this geometry, we have two sides of a triangle together

greater than, equal to, or less than the third. But the sideOP iscommon
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to all three triangles, so that its length is neither a minimum nor a

maximum.
The question naturally arises : If such a line be neither a minimum

nor a maximum, what is it ? Our ordinary idea of a straight line breaks

down.

The case is rather different if we take a triangle one of whose sides

is a part of the axis of t. Thus let Q be any point on the positive axis of

t such that OQ = A and let A be a point whose coordinates are (a, 6, c, d),

where A > d > 0.

In order that the three sides of our triangle may be all lines of the

same kind we shall suppose that a, 6 and c are so small that

and also a2 + 6 2 + c2 < (A
-

d)
2

.

Then

and

Thus OA+AQ<OQ
and we have two sides of the triangle together less than the third.

This will be the case for all values of a, b and c provided that these

are sufficiently small, and it is obvious that a similar property will hold

for any part of the interval OQ : so that here OQ is a line of maximum

length in the mathematical sense.

This again is something quite different from what we have in

Euclidean geometry and once more our ordinary idea of a straight line

breaks down.

The normality of lines, etc., exhibits some very curious features in

this geometry.
The equations of a line may be put in the form

I m n p

Tf
x-x2 __y-y2_z-z2 _t-tz

l
f m' ri

~
p

1

be a second line, the analytic condition of normality is found to be

IV -f mm' + nri pp' = 0.

If a line be such that
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then analytically, it must be regarded as being normal to itself, and this

is the type of line for which, as we have already remarked, the con-

ception of length partially breaks down.

Proceeding from the purely analytical standpoint it is easily shown

that a line

- = -^ = - = i
I m n p

will be normal to a threefold whose equation is

Ix + my+nzpt = Q.

Now any other line through the origin whose equations are

will lie in this threefold provided that

IV + mm' + nn f

pp' = 0.

If the line (Z, m, n, p) be such that

then it must itself lie in this threefold to which it is normal.

Thus all lines in such a threefold will be normal to this particular line

and, of course, to its parallels, and, ifwe take z = 0, we get a plane such

that all its lines are normal to a particular set of parallel lines lying in

the plane.

Here again is something quite different from what we get in ordinary

Euclidean geometry.
It will be found that there are three types of plane and three types

of threefold, just as there are three types of line, and the geometrical

characters of these are quite distinct from one another.

From the analytical examples which we have given it is evident

that this geometry differs in some of the most fundamental respects

from that of Euclid and it is clear that, from the pure geometrical

standpoint, it must be built up in an entirely different way from that

which he employed.
It will be found however that it not only contains Euclidean geo-

metry as an essential part, but that it supplies also what is perhaps

the most satisfactory theoretical basis upon which to construct the

Euclidean system.

Now we have seen that in this geometry we cannot take a "straight
"

line as being a shortest line and it will be necessary to define it in some

other way.
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Further, since the coordinate axes in Minkowski's analytical work

are supposed to be
"
straight", we are faced with a serious difficulty

even before we are in a position to set up a system of axes.

Moreover the Minkowski axes are supposed to be
" normal" to one

another and we have seen that there are some rather curious features

connected with normality.

We must accordingly build up the subject from the very beginning
and must look about us for suitable postulates.

Now in the first place: what is geometry in the general abstract

sense ?

Geometry has been defined by Whitehead as the
"
science of cross

classification".

The fundamental elements classified are usually called
"
points

" but

any entities which satisfy certain postulates may serve the purpose.

Using this definition we may have "geometries" with only a finite

number of fundamental elements ; but, though interesting as logical

curiosities, such systems have no special application in the present

state of Science.

The types of geometry with which we are specially concerned when

we attempt to map out time and space involve an infinite set ofelements

forming what is called a "continuum".

The classes of these elements, such as lines, planes, etc., with which

we are concerned, are defined by means of certain relations among the

elements involved.

In order that the system should be of any use for mapping purposes
it is necessary that these relations should have their counterparts in

physical space or time.

As to whether these physical counterparts exist or not, the geometry,
as a branch ofpure mathematics, need not concern itself; but, since the

interest of the subject to many persons depends mainly upon the

application, we shall devote a little time to a consideration of these

matters.

Now in considering the subject of time as it presents itself to our

experience there is one very important respect in which it appears to

differ from our spacial experience.

Of any two instants which one experiences in one's own mind one is

after the other.

This relation of after is what is called an asymmetrical relation
; by

which is meant a relation R such that ifB bears the relationR to A then

A does not bear the relation R to B.
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Thus, in the particular case considered, if B is after A, then A is not

after B.

There are however relations which are symmetrical', such, for ex-

ample, as the relation of equality, where if B is equal to A then A is

equal to B.

Now the relation of two points or two particles in space is a sym-
metrical relation and, ifA and B be taken as two distinct points, there

is no reason why we should say that B is after A rather than that A is

after B.

Ifwe consider points in a straight line it would, of course, be possible

to set up some convention according to which we might regard one

point as being after another
;
but such convention would be perfectly

arbitrary and would not correspond to any natural distinction, as in

the case of instants of time in our own consciousness.

Let us consider what actually does hold with regard to the

latter.

It is hardly possible to describe what we mean when we use the word

Now. Now singles itself out in the mind and is, as the Germans say,
"
ausgezeichnet

"
in some way or other.

Though we speak of Now as an instant, yet there are innumerable

instants, each of which is in its turn a Now.

These instants which one experiences in one's own mind have, as

already pointed out, an asymmetrical relation one to another; and our

very thoughts themselves have a time order, so that we recognize one

thought as following after another, even if we close our eyes and other

channels of sense as far as possible.

We shall not therefore attempt to make any unreal distinction

between what is physical and what is mental in respect of the percep-

tions of a single individual.

These perceptions form a complex picture which is continually

changing and, if one splits it up into component parts, one is able to say

(at least approximately) that certain events occur at the same instant,

while others occur at different instants.

This simultaneity, or lack of it, is an ultimate fact and must be

regarded as absolute] but we must carefully note what things we are

asserting to be simultaneous or otherwise. We are making the assertion

about certain perceptions of a single individual.

A normal individual who is not a solipsist (and a solipsist could

hardly be regarded as a normal individual) believes in the existence of

more than his own self and his own perceptions, and one is accustomed
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to regard these perceptions, under normal circumstances, as repre-

senting things as real as one's self but in some sense external.

One naturally thinks of these assumed external events as having a

time order, and the first standpoint which one is accustomed to adopt,
and which, as a matter of fact, serves for most of the purposes of our

daily life, is that these external events occur at the instants at which

one perceives them.

More careful observation however convinces one that this cannot be

strictly correct, at any rate for all our perceptions, since the perception
ofan event by one ofour senses may be after the perception ofthe same

event by another sense.

Thus the visual and auditory perceptions of a blow being struck by
a hammer are practically simultaneous when the occurrence is close at

hand; but the auditory perception is appreciably after the visual

perception when the occurrence is at a distance from the ob-

server.

Thus the auditory perception, at any rate, cannot be simultaneous

with the distant event and the question naturally arises whether the

visual perception is so or not; and, once more, the answer is in the

negative.

The first indication that this is the case was obtained by Romer in

1675-6, through observations of the eclipses of Jupiter's satellites
; and,

though there was a possibility of some other explanation of these

observations, such possibility practically vanished when Fizeau, in

1849, was able to test the matter by direct experiment.

Fizeau found that when a flash of light was sent out from the neigh-

bourhood of an observer to a distant mirror which reflected it back to

him, the return ofthe flash occurred at an instant appreciably after the

instant of its departure.

Thus the instant of one's visual perception of a distant event cannot

be identicalwith the instant atwhich the event occurs, and we perceive

near and distant events simultaneously which certainly do not occur

simultaneously.

This fact cannot be ignored if we attempt to correlate astronomical

events with one another or with terrestrial ones; although in the

ordinary affairs of daily life we can and do ignore it with impunity.

If now we attempt to identify the instant at which a distant event

occurs with that of some event near at hand, we find ourselves con-

fronted with very serious difficulties, since this question is intimately

bound up with the question of the identification of one and the same
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point ofspace (or the aether ofspace, ifthere be such a thing) at different

instants of time.

If this latter were possible one would be able to tell when a particle

was at
"
absolute rest

"
that is to say it would be possible to state that

it remained at the same point of space (or of the aether).

If we had an apparatus such as that which Fizeau employed and we
could be assured that it remained at "absolute rest

"
in this sense, and

if, for the moment, we neglect any difficulties which there may be in

connexion with measurement of space intervals, time intervals or

velocity, it would be reasonable to assume that light travels through

space (or the aether) with uniform velocity and would take equal
intervals oftime on its outward and return journeys ;

so that the instant

at the observing station which was midway between the instants of

departure and return of the light flash would be identical with the

instant of its reflection at the distant mirror.

If, on the other hand, we suppose that observer and apparatus are

both in uniform motion, say in the direction of the outward going light,

then the mirror would retire in front of the outward going flash, while

the observer would advance to meet the returning one, so that the

light would have further to travel on its outward than on its return

journey, and the instant at the observing station midway between the

instants of departure and return would no longer be identical with the

instant of reflection.

Now according to the classical mechanics a system of bodies whose

centre of inertia is in uniform motion in a straight line is indistinguish-

able, so far as mechanical effects are concerned, from a similar system
whose centre of inertia is at rest.

It is conceivable that some difference might be detected by some

optical or electrical device, and many attempts have been made with

the object of detecting the motion of the earth through the aether;

but none of these attempts has been successful.

Of these attempts, the best known is the celebrated experiment of

Michelson and Morley, which consisted in dividing a beam of light

into two portions which travelled, the one in one direction and the

other in a transverse direction and were reflected back again by
mirrors.

If we adopt ordinary ideas for the moment and suppose the light to

be propagated with a velocity v through a medium and that the

apparatus moves through the medium with velocity u\ then it is
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easy to calculate the time of the double journey for the two portions of

the beam.

For the case of a part of the beam which travels in the direction of

motion of the apparatus the time occupied by the double journey is

found to be

^i
=

;

where ax is the distance between the point of the apparatus where the

beam divides and the corresponding mirror.

If a2 be the corresponding distance for the case of the transverse

portion of the beam, then we can easily show that the time of the

double journey should be

Now if the distances av and a2 be adjusted so that the times occupied

by the two portions of the beam on their journeys are equal, we have

From this it follows that :

so that at should be somewhat less than a2 .

Now the necessary adjustment can be made with extreme accuracy

by means of the optical interference bands which are produced and the

remarkable fact is observed that, when the whole apparatus is caused

to revolve at a uniform slow rate, the one adjustment holds for all

positions.

Thus the apparatus gives no evidence of the motion of the earth,

although it might be expected to do so.

In order to explain this result the hypothesis was put forward by
FitzGerald and Lorentz that the material of the apparatus contracts

along the direction of its motion through the aether in the ratio

l:./l-f*

If however this FitzGerald-Lorentz contraction occurs and bodies

change their dimensions in this manner when they move, and if we are

unable to detect this motion, what do we really mean by a body re-

maining ofconstant length, or ofbeing equal in length to another body ?
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If such be the case, the distance between the graduations of the most

rigid measuring rod will change as the rod is turned in different direc-

tions with respect to the earth's motion, and similarly, the shape of the

most rigid material triangle will change when we try to superpose it on

a material triangle of different orientation.

Admittedly such changes would be very minute under ordinary

circumstances, and could generally be neglected; but then, on the

other hand, if they are non-existent, how can one explain the null

result of the Michelson-Morley experiment, especially in view of the

results of some experiments by Lodge which seemed to show that the

aether was not carried along by matter moving in the neighbourhood?
Thus we appear to be confronted with formidable difficulties, since,

not only can we give no criterion by which to decide that a distant

event is simultaneous with one near at hand, but even those physical

properties of solid bodies of which use is made in the ordinary measure-

ments of length appear open to question.

The first great steps towards reducing this matter to order were

taken by Larinor and Lorentz. These writers showed that the electro-

magnetic equations could be reduced to the same form for a system

moving through an assumed aether as they had for a system "at rest
"

;

and, on the question being raised by Lord Rayleigh in 1902, as to

whether rotatory polarisation would be influenced by the earth's

motion, and whether such motion would cause double refraction,

Larmor was able, from his theory, to predict that no such effects would

occur; and this was confirmed by Lord Rayleigh's experiments.

The transformation of the electromagnetic equations involved the

introduction of a so-called
"
local time

" and this raises the question as

to what is the philosophical significance of this conception.

The view which was put forward by Einstein was that events could

be simultaneous for one observer but not simultaneous for another

moving with respect to the first.

This view, in my opinion, gives an air of unreality to the external

world which cannot be justified; since the events might be the impacts

of particles moving with respect to one another, and therefore associ-

ated with different
"
local times", although an impact necessarily

involves both particles which impinge and cannot be described without

mention of both.

We also think of a definite instant ofimpact which can be referred to

without any mention of
"
local times

"
in this sense.

As has already been pointed out, the only simultaneity with which
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one is directly acquainted, namely, that of perceptions or ideas in one's

own mind, is of an absolute character and my contention is that any
real simultaneity of external events is also absolute in a similar way.

Let us now examine Einstein's standpoint in order to show in what

respect he departs from actually observed or observable facts.

If a flash of light goes out from the neighbourhood of an observer to

a distant mirror and is there reflected back to him, then, according to

Einstein, the reflection at the distant mirror is simultaneous with an

event at the observing station which takes place at the instant midway
between the instants of departure and return of the flash of light.

Einstein supposes the instant midway between the instants of

departure and return to be determined by means of a clock. Ignoring
for the moment the difficulty involved in obtaining an accurate clock ;

let us consider what this implies.

Let us suppose that to-day I were to observe the outburst of a new
star which, in astronomical language, was at a distance of 100 light

years, then according to Einstein's view this outburst was simul-

taneous with terrestrial events which occurred before I was bom.

It is evident that this could not be a fact of observation, so far as I

am concerned : so that it would be incorrect to speak of such events as

simultaneous far one observer.

It is frequently asserted that Einstein's theory keeps strictly to

observed or observable facts
;
but here would be a palpable departure

from the facts of observation.

The actual observed fact in such a case would be that my perception

of the outburst would be simultaneous with other experiences of mine

occurring to-day.

These are the sort of events which are simultaneous to one observer,

and not the occurrence of a distant and a near event, and such simul-

taneity is absolute.

In case it be contended that the above is Einstein's definition of the

simultaneity of distant and near events, then our reply is : that if this

be so the word simultaneity is being used in two utterly distinct

senses in a manner which may lead to great confusion of thought.

In the one case the word is employed correctly to describe something
absolute while in the other it would be used to describe a mere con-

vention which has not even the merit of being definite without the

limitation that the observing station is unaccelerated in the interval

between the departure and return ofthe flash of light (or else is acceler-

ated in certain restricted ways).
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It is perhaps desirable to point out that it is Einstein's philosophy
which I am here attacking and not his mathematics.

This is all the more justifiable, in that the conception of
"
local time

"

as a mathematical quantity was introduced, not by Einstein, but by
others who did not hold his views.

Even if it were the case that near and distant events were simul-

taneous, we have, as already pointed out, no means at our disposal of

testing this by observation.

A much more notable advance was that made by Minkowski, when
he developed a type of four-dimensional analytical geometry in which

the change from one set of Time-Space variables to another corre-

sponded to a change of coordinate axes.

The idea of time as a fourth dimension is however much older than

Minkowski and dates at least as far back as the time of Lagrange.
The work of Minkowski is purely analytical and does not touch on

the difficulties which lie in the application of measurement to time and

space intervals and the introduction of a coordinate system.
As regards such measurement

;
one cannot regard either clocks or

measuring rods as satisfactory bases on which to build up a theoretical

structure such as we require in this subject.

One knows only too well the difficulty there is in getting clocks to

agree with one another; while measuring rods expand or contract in a

greater or lesser degree as compared with others.

The existence ofa substance such as india-rubber should be sufficient

to upset ones trust in measuring rods as ultimate standards
;
when one

considers that it only possesses in an exaggerated degree a property of

extensibility common to all solid bodies.

It is not sufficient to say that Einstein's clocks and measuring rods

are ideal ones : for, before we are in a position to speak ofthem as being

ideal, it is necessary to have some clear conception as to how one could,

at least theoretically, recognise ideal clocks or measuring rods in case

one were ever sufficiently fortunate as to come across such things ; and

in case we have this clear conception, it is quite unnecessary, in our

theoretical investigations, to introduce clocks or measuring rods at all.

We have in fact a problem to consider regarding the measurement of

time and space intervals which may be compared to that which Lord

Kelvin set himself in connexion with the measurement of temperature,

and which he solved by the invention of the thermodynamic scale.

Now we have seen that in Minkowski's analytical geometry the

length of an interval of a line such as the axis of x, y or z is neither a
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minimum nor a maximum, while the length of an interval of a line such

as the axis of t is actually a mathematical maximum.
Further there are certain lines (which I have called "optical lines ")

for which the conception of length partially, but not entirely, breaks

down.

It thus appears that the conception of length is not at all so simple

as is generally supposed and, as a matter of fact, it is not afundamental

concept at all in Time-Space theory.

If the measurement of time and space intervals is not fundamental,

it may be asked : what is to take its place ?

I say that ideas of order must take the place of measurement as a

theoretical basis
;
and conceptions of measurement constructed from

them.

The process by which this is done is somewhat lengthy, but will be

found to shed an important light on the seeming paradoxes above

mentioned.

In constructing this system it is necessary to modify certain cur-

rently accepted notions, but the modifications required all appear to

be capable of justification and the structure when completed will be

found closely to resemble our ordinary conceptions.

We shall regard an instant as a fundamental concept which, for

present purposes, it is unnecessary further to analyse, and shall con-

sider the relations of order among the instants of which I am directly

conscious.

Thus for such instants we find the following properties :

(1) If an instant B be after an instant A, then the instant A is not

after the instant B, and is said to be before it.

(2) IfA be any instant, there is at least one instant which is after A
and also at least one instant which is before A.

(3) If an instant B be after an instant A
, there is at least one instant

which is both after A and before B.

(4) If an instant B be after an instant A and an instant C be after the

instant B, then the instant C is after the instant A.

(
5

)
Ifan instantA be neither before nor after an instantB, the instant

A is identical with the instant B.

Now it appears to have been too hastily assumed, because the set of

instants of which a single individual is directly conscious possess all
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these properties, that therefore they must hold in respect of all instants

throughout the universe.

It would appear that people in general have been making a somewhat
similar blunder to the one ascribed to Sir Boyle Roche

;
who is alleged

to have asserted in a speech, that he could not have been in two places

at once unless he were a bird.

They have assumed that an instant, like Sir Boyle Roche's bird,

could be in two places at once, and, in consequence, they have found

extreme difficulty in identifying it as one and the same instant in the

two places.

Had Sir Boyle Roche pursued the subject further, he might perhaps
have arrived at a form of relativity theory whereby a bird might be

simultaneously in two places to one observer, but not to another.

However he got sufficiently far to achieve immortal fame.

I, however, venture to dissent from the generally accepted view that

an instant can be in two places at once and, while still regarding

postulate (5 )
as holding for the set of instants of which any one in-

dividual is directly conscious, or which any single particle occupies,

I propose to reject it for the universe in general and to substitute for it

the following :

(5) IfA be any instant, there is at least one instant distinct from A
which is neither before nor after A .

If I am directly conscious of the instant A then any instant such as

that here postulated will be one of which I am not directly conscious,

but only indirectly apprehend, and which is, as I say, elseivhere.

The other four postulates are however to be regarded as holding
in general and not merely for a single individual or a single

particle.

Since we are able to distinguish an instant elsewhere in terms of

before and after relations, it is unnecessary to have any separate con-

cept ofspace ;
since the geometrical properties ofspace can be expressed

in terms of these relations; although, of course, this involves an elab-

orate logical analysis.

While the set of instants of which any single individual is conscious

or which any single particle of matter occupies have a linear order, the

set of instants for the universe in general appear to have what I have

called a Conical Order.

I have given it this name because it may be illustrated by means of

ordinary geometric cones : while it contains within itself the possibility
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of defining particular sets of instants having a simple linear order

such as that with which each of us is familiar.

It is to be recollected that this illustration is given merely as a

mental aid to enable us to grasp a certain set of abstract relations, just

as figures are an aid in doing geometry ; but, as in the latter case, every-

thing which we may introduce incidentally and which cannot be

described in terms of the abstract relations is to be ignored.

Without some such picture it would be rather difficult for most

people to retain all the relations in mind in complicated cases, and

moreover, as in ordinary geometry, a diagram will often suggest
that certain theorems may hold and may also suggest methods of

proof.

Let us suppose that we have a system of right circular cones of equal

angle and with their axes all parallel (or identical). We shall suppose
each cone to terminate at the vertex,

which however is to be regarded as a

point of the cone.

We shall call such a cone having its

opening pointed in one direction (say

upwards) an a cone and one having
the opening pointed in the opposite

direction a j8 cone.

Corresponding toany point of space
we shall have an a cone and a jS cone

having the point as a common vertex.

Now it is possible by using such

cones and making a convention with

respect to the use of the words before

and after to set up a type of order of

the points of space.

For the purposes of this illustration

we shall make the convention that if

A be the common vertex of such a

pair of a and /? cones, then any point

will be said to be after A provided

that it is distinct from A and lies

either on or inside the a cone of A and will be said to be before A
provided that it is distinct from A and lies either on or inside the

/3 cone of A, but not otherwise.
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Thus any point which is either identical with A or else lies outside

both the cones a and
)8

will be neither before nor after A.

It is easy to see that postulates (1), (2), (3), (4) and (5) hold generally
in this illustration substituting points for instants, but that (5 ) only
holds for certain sets of points forming lines straight or curved.

We may, by a study of such models, ascertain various other before

and after relations which hold among the points and we can then reverse

the process by taking the before and after relations as starting point
instead of the cones, and propositions expressed in terms of these

relations as postulates, and can, in this way, build up a system of

geometrical relations very closely analogous to, but not quite identical

with, those fromwhich we started out andwhich involve nothing except
what can be expressed in terms of the before and after relations.

In this way we are able to define what I call a and /3 sub-sets,

which have many, although not all the properties which we assigned

to the a and /? cones, and can gradually, step by step, build up a

system of geometry which is equivalent to the analytical system of

Minkowski.

Our model is only three-dimensional, while the geometry of Min-

kowski is four-dimensional
; but, in spite of this, most of our postulates

may be represented in three dimensions, and, in fact, there are only
two which cannot. One of these introduces a fourth dimension, while

the other limits the number of dimensions to four.

We could extend the system to a larger number of dimensions if

required, but we do not propose to do so in this work.

If we consider straight lines in our model passing through the point

A, we observe that such a line may be of three distinct types. The first

type falls within the cones <x and j3 ;
the second type forms a generator

of these cones
;
while the third type falls outside the cones.

The first and second types have this in common, that, if we consider

two distinct points lying in either type of line, one is after the other ;

while if we consider any two distinct points in the third type of line

the one is neither before nor after the other.

Again, if we consider planes through the point A we see that they
too may be of three distinct types. The first type intersects the cones

a and /? in two generators ; the second type touches the cones along
a generator; while the third type has no point in common with the

cones except the point A.

Similarly there are three types of threefold, but in order to represent

them we should require a four-dimensional model.
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These different types of line, plane and threefold may all be defined

in terms of before and after relations.

In one important respect however our model differs from our logical

constructions. Equal lengths in the model do not, in general, represent

equal lengths in our geometry: the latter being defined by a certain

analysable similarity of before and after relations.

The reason why there is this difference between the model and the

system of geometry which we build up, is that the model has already

got a system of measurement imposed upon it, owing to the fact that it

is constructed in ordinary three-dimensional space, and so involves

more than the mere before and after relations which it was designed to

illustrate.

Finally we are able to introduce coordinates and the system is then

seen to be equivalent to the analytical geometry of Minkowski.

In such a system as he employed, one coordinate is measured along

a line corresponding to one lying within the cones in the model (and

which we shall call an inertia line), and represents what clocks purport
to measure. The other three coordinates are measured along lines

corresponding to those lying outside the cones (or separation lines) and

these represent what we call spacial distances.

The four coordinate axes in this system are all normal to one another

(normality being also capable of definition in terms of before and after),

but, if we do not insist on normality, it is possible to introduce a

symmetrical system of coordinates in which all four are measured along

lines of the same type.

Now, as the before and after relations from which our whole theory is

built up have a temporal significance, we appear to have absorbed the

theory of space in a theory of time, in which instants have a conical

order instead of the purely linear order which they are generally

regarded as having.

An instant for the universe in general is identifiedby four coordinates

in this theory instead of merely one coordinate as is generally assumed.

An instant is localised and does not range all over the universe like

Sir Boyle Roche's bird: so that the present instant does not extend

beyond here, and the only really simultaneous events are events which occur

at the same place.

In Minkowski's system of coordinates the so-called "local time" is

merely the value ofthat particular coordinate which is measured along

an inertia line.

If we take a second normal coordinate system in which the inertia
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axis is not parallel to the former, we have one which is appropriate to

a material system which is moving uniformly with respect to the first,

and we have a different
"
local time".

An inertia line is the time path of an unaccelerated particle, and,

since it is defined in terms of before and after relations, we are able to

say in terms of these relations what we mean by a particle being

unaccelerated.

We can however assign no meaning to a particle being at
"
absolute

rest" since, in this geometry, any inertia line is exactly on a par with

any other one.

Thus instead of regarding ourselves as, so to speak, swimming along

in an ocean of space (as we usually do), we are to think of ourselves

rather as somehow pursuing a course in an ocean of time
;
while spatial

relations are to be regarded as the manifestation of thefact that the elements

of timeform a system in conical order : a conception which may be analysed

in terms of the relations of after and before.

It should be noted that the fundamental relation ofafter which serves

as a basis for Time-Space theory is simpler than the relation which

geometers are accustomed to make use of in building up ordinary

three-dimensional geometry.
The basic relation which they employ is generally the relation of

between: one point being linearly between two others. This is a relation

involving three terms, whereas the after relation is one involving only

two.

It will appear in the course of this work that a relation of linearly

between may be defined in terms of before and after relations for the case

of three elements in a separation line
; although no one of these three

elements is either before or after either of the other two.

One could scarcely hope to do the converse of this, that is to say, to

define an asymmetrical relation of two elements in terms of one like

linearly between involving three.

It is true that spacial models involving cones may be used to illustrate

graphically various postulates employed in our geometry, but this can

only be done by means of an arbitrary convention as to what should

represent after and what before.

This convention might have been reversed without affecting the

usefulness of the representation; but, by no stretch of the imagination

can one (so far as I can see) reverse the time relations of before and after

which one perceives directly in one's own mind. The thought process is

essentially an irreversible one.



20 GEOMETRY OF TIME AND SPACE

Another interesting point to note is that whereas, on the one hand, if

ordinary geometry is built up from the between relation, the theory of

congruence appears as something extraneous grafted on to an otherwise

complete scheme ;
on the other hand, ifthe before and after relations are

used as a basis, congruence appears as an intrinsic part of the subject.

Let us now consider what is the physical peculiarity of the time

relations of before and after which gives them their asymmetrical
character.

One thing seems clear: If I at the instant A can produce any effect,

however slight, at a distinct instant B, then this is sufficient to imply
that B is after A.

A present action of mine may produce some effect to-morrow, but

nothing which I may do now can have any effect on what occurred

yesterday.

It appears to me that we have here the essential feature of what we

mean when we use the word after, and that the abstract power of a

person or living being at the instant A to produce an effect at a distinct

instant B is not merely a sufficient but also a necessary condition that

JS is after A.

If however a person at the instant A cannot produce an effect at the

instant B, it does not follow that B is before A .

In order that this should be so it would be necessary that a person at

jB should be able to produce an effect at A
;
since before and after are

converse relations.

Thus the significance of an instant A being neither before nor after

a distinct instant B, is that a person at A should be unable to produce

any effect at B and a person at B should be unable to produce any
effect at A.

We shall have to give some further consideration to this idea of

possibility of producing an effect ; but, before doing so, we shall first

consider the physical circumstances under which one instant is neither

before nor after another.

In the first place it is to be observed that, regarded from the stand-

point of pure mathematics, the system ofgeometry which we are about

to develop only presupposes that there should be a set of elements

which are related in a certain way which can be analysed in terms

of a certain asymmetrical relation.

In our attempt to apply this, we identify an element with an instant,

and the asymmetrical relation with the physical relation of after.
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The suitability or otherwise of this abstract geometry for describing

actual time and space relations is dependent upon the degree of

accuracy with which the various postulates of the geometrycorrespond
with various physical facts.

Now it appears to be possible to establish a very close, although per-

haps not an exact, correspondence of this sort by means of the physical

properties of light.

Let P and Q be two separate and distinct particles and let a flash of

light be sent out from P at the instant A so as to arrive directly at

Q at the instant B, then, according to our interpretation of after, B is

after A.

Further, there are strong physical grounds for believing, at any rate

in the absence of appreciable quantities of matter, that light supplies

a criterion which, with the meaning we have above ascribed to after,

enables us to say that B is the first instant at Q which is after A and

that A is the last instant at P which is before B.

It will be observed that no mention of velocity is made in this state-

ment but merely the before and after relations.

The conception of velocity involves the conception of measurement

of space and time intervals and these are supposed to be not yet
defined.

Let us suppose nextthat the light flash is reflected directly back from

Q to P and that it arrives there at the instant (7, then, if the view we
have mentioned be correct, any instant at P which is after A and before

C will be neither before nor after B.

Now Fizeau's apparatus is an arrangement inwhich this is practically

carried out : so that we can say that any instant at the sending apparatus

which is after the instant of departure of a flash of light and before the

instant of its return is neither before nor after the instant of reflection at

the distant mirror.

It is possible that the analytical geometry of Minkowski, with these

optical interpretations of our postulates, gives only an approximate,

although under ordinary circumstances a very closely approximate

representation of time and space relations, and this is the view now
held by Einstein and others

; but even so, it does not follow that with

some slightly different interpretation it may not be exact.

But, as we shall see, the before and after relations enable us to define

equality of intervals in Minkowski's geometry, and, however the

Time-Space universe may be constituted, these relations certainly

have some physical significance ;
so that there can be little doubt that
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they must play just as important a role in the foundations of any

generalised theory as they do in the simple one.

In fact the Minkowski theory might perhaps be regarded as giving
the constitution of Time-Space provided that we do not consider too

large a portion of it, while the so-called generalised theory would be

the sort of thing we should get provided, in our model, the cones,

instead of being all similar and similarly situated, varied from one

point to another.

I ought perhaps to remark that any proper quadric cone would serve

equally well to illustrate all our postulates and it is only for the sake of

simplicity that I supposed the cones to be right circular ones.

Before one is in a position to set up any type of coordinates it is fairly

evident that one must, either tacitly or explicitly, make use of con-

siderations of order, if these coordinates are to have any sort of system
about them, and the before and after relations appear to have the re-

quisite fundamental character to supply this.

The view that time relations are fundamental appears to have an

important bearing on what Professor William James called the theory
of a

"
block universe" : by which name he referred to the theory that

the universe is something like a cinematograph film in which the

photographs have already been taken and which is merely in process

of being exhibited to us.

Most writers on this subject treat time as if it were merely a fourth

dimension of space : an attitude which encourages one to favour the
"
block universe" idea.

When instead, we regard before and after relations as fundamental,

and analyse spacial relations up in terms of these, the whole subject

appears in a very different light and the
"
block universe

"
theory does

not commend itself so strongly.

If the universe were in this way like a cinematograph film which is

merely being displayed before us, then its innumerable details must

have been fixed through all eternity and there would be complete
determinism as to the future.

But have we really any grounds for thinking that the universe is of

this nature: or, reverting to the cinematograph analogy, is it any

simpler to suppose that the film has already been taken than to suppose
that the play is in process of being acted?

If the after relation has the significance which I suggested and if

what we call time and space may be analysed in terms of before and
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after then it would seem that instead of having grounds for belief in a
"
block universe" we have actually got grounds for an opposite view.

It seems therefore that the question turns on the significance of the

after relation and its asymmetric character.

It is interesting to note that recently, on quite different grounds,
some physicists are coming round to the view that the universe is not

strictly deterministic.

Scientific predictions as to future events are made on the assumption
that certain uniformities will continue.

If they do continue the prediction may be a logical consequence of

their doing so, but, if the uniformities do not continue, the conclusion

may be unwarranted.

The continuance of the uniformities is only an assumption'for which

we have no absolute guarantee, and, should they cease, no promise is

broken, since none was ever made. A departure from uniformity
initiated at an instant A may extend to an instant B which is after A ;

and this would be an effect at B of the departure from uniformity
initiated at A.

All applied mathematics becomes pure mathematics when we get

away from our fundamental assumptions and begin to draw logical

conclusions from them.

Now I have ascribed certain characteristics to instants and to before

and after relations which may or may not be strictly correct, but which

serve as the basis by means of which one may apply a certain type of

pure geometry to map out time and spacial relations.

The geometry, as I have already pointed out, is a logical structure

built up from certain postulates which I shall formulate.

As a logical structure a geometry may have more than one applica-

tion, as for instance, ordinary Euclidean plane geometry might be

taken primarily as applying to figures on what we call a plane and

again to geodesic lines drawn on a developable surface.

For the purposes of physical science, however, it is not sufficient

merely that we should say, for instance, that there are such things as
"
straight lines" or that there are lengths which are equal, but it is

necessary to have criteria by which we can say (at least approximately)
"
here are points which lie in a straight line

" and "
here is a length which

is equal to yonder length ".

In other words we must have more or less clear ideas of the physical

things to which we apply our abstract theory.

The abstract theory itself does not require this, but the physical
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application does
;
and for this reason, I have tried to make clear the

sort of physical meaning which I ascribe to the notions of an instant,

the before and after relations and the criteria given by light flashes.

Ifwe should discover, for instance, that the formal properties which

we provisionally ascribe to light actually hold for some other influence ;

then the geometry which I propose to develop would apply with this

new interpretation of its postulates.

Now I have made use of ordinary geometric cones in order to enable

us to form a concrete picture of what I mean by "conical order", but

the idea of conical order is not at all dependent upon this graphic

representation, but is built up by a rather lengthy piece of reasoning

from the asymmetrical relations which I denote by the words before

and after.

The representation by means ofcones may be compared to the rough

scaffolding used in the erection of a building which is removed when
the building is complete and its component parts in position.

We must, however, be certain that the building is not supported by
the scaffolding, or it will not be able to stand alone.

In order to make sure of this in our theory, great care must be taken

not to take things for granted because they hold in our models.

In the first place we are not at liberty to introduce coordinates except

for scaffolding purposes until we have defined them. Neither are we

at liberty to speak of
"
velocity

"
except for scaffolding purposes till its

meaning is defined.

Moreover in the actual proof of theorems we must not employ the

ideas of equality of lengths or angles until these ideas are seen to be

definable in terms of before and after relations.

We may however, and actually do, make use of such non-permissible

ideas in our graphic representation.

Thus in the models we supposed the cones to have their axes parallel

(or identical) and to have equal vertical angles, and neither the idea of

cone, of parallel, of axis, of angle, nor of equal has been analysed in

terms of before and after and therefore must be excluded in defining

the a and /? sub-sets, which are the names which I shall hereafter apply
to the entities corresponding to the a and /? cones.

The before and after relations are converse asymmetrical relations

and either may be defined in terms of the other; so that it is a matter

of indifference which of them we take as fundamental.

I actually take the relation of after as fundamental and define before

in terms of it.
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As regards the postulates which are expressed in terms of these

relations, they generally consist oftwo parts (marked a and 6) in which

the before and after relations are interchanged.
In some of the postulates, however, the one part follows from the

other on account of the mutual relations of after and before : while in

some others the before and after relations are involved symmetrically.

We shall now proceed with the formal development of the subject.





CONICAL ORDER
WE shall suppose that we have a set of elements and that certain of

these elements stand in a relation to certain other elements of the set

which we denote by saying that one element is after another.

We shall further assume the following conditions :

POSTULATE I. If an element B be after an element A, then the

element A is not after the element B.

This is merely the condition that after should be an asymmetrical
relation. If an element B be after an element A, it follows directly

from Post. I that A and B must be distinct elements, for, if we
substitute A for B in the postulate, it becomes self-contradictory.

Definition. If an element B be after an element A, then the element

A will be said to be before the element B.

POSTULATE II. (a) If A be any element, there is at least one

element which is after A.

(6) If A be any element, there is at least one element which is

before A.

POSTULATE III. If an element B be after an element A, and if

an element C be after the element B, the element C is after the

element A.

POSTULATE IV. If an element B be after an element A, there is

at least one element which is both after A and before B.

POSTULATE V. If A be any element, there is at least one other

element distinct from A, which is neither before nor after A.

POSTULATE VI. (a) If A and B be two distinct elements, one of

which is neither before nor after the other, there is at least one

element which is after both A and B, but is not after any other

element which is after both A and B.

(6 )
IfA and B be two distinct elements , one of which is neither

after nor before the other, there is at least one element which is

before bothA and B , but is not before any other element which is

before both A and B.

Definition, (a) If A be any element of the set, then an element X
will be said to be a member of the a sub-set ofA provided X is either



28 GEOMETRY OF TIME AND SPACE

identical with A, or else provided there exists at least one element Y
distinct from A and neither before nor after A and such that X is after

both A and Y but is not after any other element which is after both

A and Y.

(b) IfA be any element of the set, then an elementX will be said to

be a member of the j8 sub-set of A provided X is either identical with

A, or else provided there exists at least one element Y distinct from A
and neither after nor before A and such that X is before both A and Y
but is not before any other element which is before both A and Y.

If ^4 be any element then, by Post. V, there is at least one other

element distinct from A which is neither before nor after A and so it

follows directly by Post. VI (a) that there is at least one other element

besides A which is a member of the a sub-set of A .

Similarly, by Post. VI (6), there is at least one other element besides

A which is a member of the /? sub-set of A.

Notation. We shall denote by ax and j8x the sub-sets corresponding to

an element A lt and by oc2 and /32 those corresponding to an element

A 2 , etc.

POSTULATE VII. (a) If Ax and A2 be elements and if A2 be a

member of 04 , then Ax is a member of p2 .

(b) If A! and A2 be elements and if A2 be a member of p x , then

A
x is a member of a2 .

POSTULATE VIII. (a) If Ax be any element and A2 be any other

element in ax , there is at least one other element distinct from
A2 which is a member both of 04 and of a2 .

(b) If Ax be any element and A2 be any other element in
(5lt

there is at least one other element distinct from A2 which is a

member both of (^ and of
(32

.

THEOREM 1

IfA! be any element and A%be any other element in 04 ,
then any element

A$ which is both after A l and before A%, must be a member both of at

and
j82 .

By the definition of a member of the sub-set ax there exists at least

one element, say A, distinct from A l and neither before nor after A l

and such that A 2 is after both A l and -4 4 but is not after any other

element which is after both A and A .

Then A cannot be afterA Q ,
for if it were then, by Post. Ill, A would

be after A l contrary to hypothesis.
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Further A cannot be identical with A 3 ,
for then again we should

have A after A l contrary to hypothesis.

Again A cannot be before A 3 for then we should have A 2 after the

element A 3 which would be after both A
l
and A contrary to the

hypothesis that A 2 is after both A l and A but not after any other

element which is after both A l and A.
Thus A is distinct from A 3 and is neither before nor after A 3 .

Fig. 2.

Now A
2 cannot be after any other element which is after both ^4 3 and

A 4 , for if ^4 5 were such an element it would follow by Post. Ill that

since A% is a/ter^ we should have A after A^ .

Thus we should have A 2 after A$ which would be after both A l and
A 4 contrary to hypothesis.

Thus no such element as A 5 can exist and so A 2 satisfies the definition

of being a member of oc3 .

Thus by Post. VII (a) it follows that A 3 is a member of /J2 .

Again by Post. VII (a) since A 2 is a member of o^ it follows that A
l

is a member of j82 ,
and so by a similar method we may prove that A 3

is a member of ax . Thus the theorem is proved.

THEOREM 2

(a) // A 1 be any element and A 2 be any other element in ax , there is at

least one other element in cnl distinct from A 2 which is neither before nor

after A 2 .

Since A 2 is a member of ocx it follows by Post. VII (a) that A l is a

member of /32

Thus there exists at least one other element, say -4 3 ,
distinct from

A 2 and neither before nor after A 2 and such that A l is before A 2 and A 3 ,

but is not before any other element which is before both A 2 and A 3 .

Thus A l satisfies the definition of being a member both of j82 and /?3

and so, by Post. VII (6), A 3 is also a member of ax
. Thus since A% is

distinct from A 2 and neither before nor after A 2 ,
the theorem is proved.
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(6) If A! be any element and A%be any other element in /319 there is at

least one other element in j8x distinct from A 2 which is neither after nor

before A 2 .

Definition. IfA x be any element and A 2 be any other element in ax ,

the optical line AA% is defined as the aggregate of all elements which

lie either

(1) both in ax and <x2 ,

or (2) both in ax and /92 ,

or (3) both in & and j82 .

THEOREM 3

(a) If a be any optical line, there exists at least one element which

is not an element of the optical line, but is before some element of it.

If A l be any element and A 2 be any other element in ax then, by
Post. VII (a), AI is a member of j8a .

Thus by Theorem 2 (b) there is at least one other element in $2 dis-

tinct from A! which is neither after nor before A l .

Call such an element A 3 .

Then since A 3 is in
jS2 and distinct from A 2 it is before A 2

.

But A 3 cannot lie in the optical line A 1
A 2 ,

for by the definition of

the optical line A 1A 2 ,
in order to lie in it A 3 would require to lie also

either in ax or /^ .

But ifA 3 should lie in ax it would be either after A l or identical with

A ly while if it should lie in /^ it would be either before A I OT identical

with A lf

But AS is distinct from A l and is neither after nor before A l
and there-

fore does not lie in the optical line A 1A 2 , although it is before A 2 an

element of it.

(6) If a be any optical line, there exists at least one element ivhich is not

an element of the optical line, but is after some element of it.

POSTULATE IX. (a) If a be an optical line and if Ax be any
element which is not in the optical line but before some element

of it, there is one single element which is an element both of the

optical line a and the sub -set 04.

(b )
If a be an optical line and ifAx be any element which is not

in the optical line but after some element of it, there is one single

element which is an element both of the optical line a and the

sub -set .
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THEOREM 4

(a) If A! be any element there is at least one other element which is

after A but is not a member of the sub-set 04 .

Let A 2 be any other member of the sub-set at distinct from A^.
Then A 2 is after A l and so by Post. IV there is at least one element,

say A 3 ,
which is both after A l and before A 2 .

By Theorem 1 A
3 is a member both of 04 and of

j82 and is therefore

an element of the optical line A 1A 2 .

But since A% is a member of /?2 it follows that A 2 is a member ofa3 and
so by Theorem 2 there is at least one other element in oc3 distinct from

A 2 which is neither before nor after A 2 .

Let A 4 be such an element.

Then since A is neither before

ruor after A
2 it cannot be a

member either of
j82 or a2 and

so A 4 is not an element of the

optical line A
1
A 2 although it is

after A% an element of it.

But since A is a member
of a3 it follows by Post. VII

(a) that A s is a member of the Fig. 3.

sub-set /34 .

Thus A 3 is the one single element which by Post. IX (b) is an element

both of the optical line and the sub-set j34 .

But J. 4 cannot be a member of o^ ,
for then A would be a member of

/?4 and so A l would be a second element common to the optical line

A^g, and the sub-set j84 ,
which is impossible by Post. IX (b).

Further, A^ is after A 3 and A% is after A l and therefore A^ is after A.
Thus AI is after A l but is not a member of the sub-set at .

(b) If A l
be any element there is at least one other^element which is

before A
l
but is not a member of tfie sub -set ^ .

THEOREM 5

If A l be any element and A 2 be any other element which is after A l9

there is at least one other distinct element which is a member of both 04

and
]82 .

Two cases arise : (1) A 2 may be a member of 04 or (2) A 2 may not be

a member of OCL
.
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IfA 2 is a member of ax then by Post. IV there is at least one element

which is both after A l and before A 2 ,
and by Theorem 1 such an element

is a member both of 04 and j82 .

Thus case (1) is proved.

Suppose next that A 2 is not a member of 04 and let A 3 be any element

of a2 distinct from A 2 .

Then the optical line A 2A% which for

brevity we may call a, consists of the

aggregate of all elements which lie

either

(1) both in a2 and oc3 ,

or (2) both in a2 and ]83 ,

or (3) both in 2 and j33 .

Since A
2 is not a member of a

x
it

follows that A i is not a member of

j82 and so, since A l is before A 2 it follows that A l
is not an element of

the optical line a.

Then by Post. IX (a) since A l is not an element of the optical line a

but is before an element of it, it follows that there is one single element

which is an element both of the optical line a and the sub-set ax .

Let A be this element.

Then since we have supposed that A 2 is not a member of 04 it follows

that A 4 is not identical with A 2 .

Further, A cannot be after A 2 for then we should have A 2 after A
and before A and so by Theorem 1 we should have A 2 a member of ax

contrary to hypothesis.

Thus A 4 cannot be a member of ot2 and therefore since it is an element

of the optical line a it must be a member of
]82 and j33 .

Thus the elementA 4 is a member ofboth at and /32 and so the theorem

is proved.

THEOREM 6

(a) If A! be any element and A 2 be any other element in 04 ,
while A$is

an element distinct from A 2 ,
which is a member both of ax and of a2 , then

there is at least one other element which is a member of 04 , of a2 and

o/a3 .

By Post. VIII (a) since A 3 is an element of oc2 distinct from A 2 there

is at least one other element distinct from A% which is a member both
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of oc2 and of a3 . Call such an element A. Then since A is in a3 and

distinct from A 3 it is after A 3 .

Thus AI is after an element of the optical line A^A^.
But A 4 is a member of oc2 and also of <x3 and so by Post. VII (a) A%

and A 3 are each members of j84 .

Now ifA were not in the optical line AA 2 it would follow by Post.

IX (b) that there was one single element which was an element both of

the optical line and the sub-set jS4 .

There are however at least two elements A 2 and A% with this property
and so A 4 must be in the optical line A^A 2 .

Also since A 4 is in a2 it must also be in ax from the definition of the

optical line.

Thus A 4 is a member of at ,
of a2 and of oc3 .

(6) // A i be any element and A 2 be any other element in /3ly while A z

is an element distinct from A 2 ,
which is a member both of j8t and of /J2 ,

then there is at least one other element which is a member of /?t , of /?2 and

THEOREM 7

(a) IfX be any element of an optical line there is at least one element of

the optical line which is after X .

Let the optical line be defined byanyelement .4
x
and another element

A 2 in <x.1 . Then X may lie either

(1) both in 04 and a2 ,

or (2) both in ax
and /?2 ,

or (3) both in /?L
and /82 .

IfX be not identical with A% ,
then in cases (2) and (3) since X lies in

/?2 ,
the element A 2 is after X.

IfX be identical with A 2 ,
then by Post. VIII (a) there is at least one

other element distinct from A 2 which is a member both of oct and of a2

and is therefore an element of the optical line.

Since such an element is not identical with A 2 it must be after A^\

that is to say it must be after X.

Next suppose X is in both 04 and oc2 and is distinct from A 2 .

It follows by Theorem 6 (a) that there is at least one other element

which is a member of ax and <x2 and of the a sub-set of X.

Since such an element is not identical with X and lies in the a sub -set

ofX it must be after X.

Further since it is an element both of ar and of oc2 it lies in the optical
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line. Thus in all cases there is at least one element of the optical line

which is after X.

(b) IfX be any element of an optical line there is at least one element of

the optical line which is before X.

THEOREM 8

(a) If A l be any element and A z be any other element in ax ,
and if A 3

andA 4 be other distinct elements which are members of both ax and a2 ,
one

of the two elements A 3 and A^ is in the a sub-set of the other.

Since A 3 is in a2 and distinct from A 2 therefore A 2 and A% define an

optical line. Further since A 2 and A% both lie in at therefore A l lies in

both /32 and /J3 .

Thus A x is an element of the optical line A 2A%.
But A 4 ,

since it is a member of at and not identical with A l ,
is

after A^.
That is to say, it is after an element of the optical line A 2A%.
If then AI were not an element of the optical line A 2A 3 there would,

by Post. IX (6), be one single element which would be an element both

of the optical line A
2A% and the sub-set

/34 .

But A 4 is a member both of ax and of a2 and so both A l and A 2 are

members of j84 .

Thus since A 1 and A 2 are two distinct elements of the optical line

A 2A 3 it follows that A must be an element of the same optical line.

But A i is a member ofa2 and therefore by the definition of the optical

line A 4 must be either a member of a3 or of /?3 .

If A 4 be a member of /?3 ,
then we should have A% a member of a4 .

Thus one of the two elements A 3 and A lies in the a sub-set of the

other.

It also follows since A z and A are supposed to be distinct, that the

one is after the other.

(6) IfA l be any element and A 2 be any other element in
j8x ,

and if A%
and A 4 be other distinct elements which are members of both j8x and /?2 ,

one of the two elements A% and A is in the /J sub-set of the other.

It also follows since A 3 and A are supposed to be distinct that the

one is before the other.

THEOREM 9

// a pair of elements be in an optical line defined by another pair of

elements, then <me of the first pair is in the a sub-set of the other.
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Consider the optical line defined by the element A l and another

element A 2 in 04. Suppose now in the first place that we have an

element A 3 distinct from A 1 and A 2 and lying in the optical line.

Then by the definition of an optical line A 3 may be

(1) both in 04 and a2 ,

or (2) both in 04 and /32 ,

or (3) both in & and /?2 .

Thus if A i and A 3 be taken as a pair of elements in the optical line

defined by A l and A 2 ,
we have in the first and second cases A 3 is in ax ,

while in the third we have A% in j8t and consequently A l in a3 . Thus one

of the pair A l9 A 3 is in the a sub-set of the other.

Again if A 2 and A 3 be taken as a pair of elements in the optical line

defined by A l and A% ,
we have in the first case A z is in a2 ,

while in the

second and third we have A% in /32 and consequently A 2 in a3 . Thus one

of the pair A 2 ,
A s is in the a sub-set of the other.

Next suppose that we have another element A lying in the optical

line and distinct from A, A% and A%.
Then there are the following possibilities :

)A
both in 04 and a2 (1),

or A 4 both in 04 and jS2 (2),

or A both in
j81 and j82 (3).

f ^4 4 both in OL^ and a2 (4),

* ^4 3 both in 04 and /82 with |
or A both in ax and ^92 (5),

(or A both in ^ and
/?2 (6).

1^4

4 both m ax and a2 (7),

or ^1 4 both in 04 and j82 (8),

or A both in ^ and /32 (9).

In case (1) by Theorem 8 (a) one of the two elements A% and A is in

the a sub-set of the other. Similarly in case (9) by Theorem 8 (6) one of

the two elements A 3 andA 4 is in the j8 sub-set ofthe other, and therefore

by Post. VII (6) one of them is in the a sub-set of the other.

Consider next case (2).

Since A 4 is in ax and distinct from A 1 it follows that A is after A l .

Further, since A 4 is in /32 and distinct from A 2 we have A 2 after A,
and since A B is in a2 and distinct from A% we have ^4 3 a/ter A 2 .

Thus by Post. Ill A 3 is a/ter ^4 4 .

But, since A3 is in 04 , it follows by Theorem 1 that A is in j83 and

consequently A 3 lies in a4 .

3-2
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Similarly in case (4) we may prove that A must lie in <x3 .

In an analogous manner in case (8) since A is in
j82 and distinct from

A 2 we have A is before A%.

Further, sinceA is in ax and distinct from^ ,
we have^4 4 is afterA ,

and since A 3 is in /?x and distinct from A l we have A l is after A 3 and so,

by Post. Ill, A is after A 3 .

But since A% lies in /?2 therefore A% lies in a3 and so, by Theorem 1,A
must lie in a3 .

Similarly in case (6) we may prove that A% must lie in <x4 .

Consider next case (3).

We have A in j82 and therefore A 2 in <x4 .

Also we have A 2 in ax , and so A in /J2 .

Further we have A in j8x ,
and so -4 X in a4 .

Thus -4 4 and ^ 2 determine an optical line which contains A l
.

But A 3 is in a2 , and being distinct from A 2 it must be after A 2 an

element of the optical line determined by A and A%.
Also since A 3 is in both ax and a2 it follows that both A l and A 2 lie

in&.
But by Post. IX (6) if A 3 were not in the optical line determined by

A 4 and A 2 there would be one single element which would be an element

both of the optical line and the sub-set j83 .

Thus since there are at least two distinct elementsA l andA 2 common
to the optical line and the sub-set /J3 it follows that A B must be an

element of the optical line A^A 2 . Further, since A 3 lies in oc2 it must,

by the definition of the optical line, lie also in a4 .

We may in a similar manner show in case (7) that A must lie in oc3 .

We are thus left with only case (5) to prove.

Now since A 2 is an element distinct fromA l and lying in o^ ,
therefore

,

by Post. VIII (a), there is at least one other element distinct from A z

which is a member both of ocx and of a2 .

Call such an element A$ . Then A 2 is before A 6 .

But A 3 is distinct from A 2 and lies in j82 and so A 3 is before A% . Thus

AS is before A$.
Also A% is distinct from A : and lies in ax and so A 3 is after A 1 .

Thus, by Theorem 1, A 3 must be an element of the sub-set /35 .

Similarly A must be an element of the sub-set j85 .

Also both A% and A are elements of )S2 and so by Theorem 8 (b) one

of the two elements A 3 and A 4 is in the ft sub-set of the other, and

therefore by Post. VII (6) one is in the a sub-set of the other.

Thus the theorem is true in all cases.
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Itfollows directlyfrom this theorem that of any two distinct elements in

an optical line one is after the other,

THEOREM 10

Any two elements of an optical line determine that optical line.

Let A l be any element and A 2 any other element in o^, then the

optical line A^A^ is defined as the aggregate of all elements which lie

either

(1) both in ax and <x2 ,

or (2) both in 04 and )32 ,

or (3) both in & and
|82 .

Suppose A 3 and A 4 to be any pair of elements in the optical line

A
1
A 2 ]

then by Theorem 9 one of the pair A 3 ,
A 4 is in the a sub-set oi

the other.

We may suppose without loss of generality that it is A 4 which is in

the sub-set a3 .

Consider now any element A^ of the optical line A^A^ such that A 5 is

distinct from A z and A.
Then by Theorem 9 there are the following possibilities :

A^in a5 and also A% in a5 (1),

A 4 in a5 and also A5 in a3 (2),

A5 in <x4 and also A$ in oc3 (3),

A5 in <x4 and also A 3 in a5 (4).

Case (4) must however be excluded, for since A 3 ,
A and A

5 are

supposed distinct we should have A5 after A and A 3 after A 5 and

therefore, by Post. Ill, A 3 after A^.
We however supposed A 4 to be after A 3 and by Post. I we cannot

have also A z after A. Thus case (4) is impossible.

The three permissible cases may be expressed thus :

AS both in j83 and j84 (1),

A5 both in oc3 and j84 (2) ;

A s both in <x3 and a4 (3).

Thus in all cases A5 lies in the optical line defined by A 3 and A^.

Similarly it may be shown that every element in the optical line

defined by A 3 and A lies in the optical line defined by A l and A 2 .

Thus the optical lines AA^ and A 3A^ are identical.
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THEOREM 11

IfAS and Abe any two elements ofan optical UneA lA 2 there is at least

one element of the optical line which is after the one and before the other.

Since A 3 and A^ are both elements of the same optical line the one

must be in the a sub-set of the other by Theorem 9.

We shall suppose that A^ lies in a3 .

Then since A 3 and A are distinct, A^ will be after A 3 ,
and so by

Theorem 5 there is at least one other distinct element which is a

member both of <x3 and of^ .

Call such an element A$ .

Then Ab is in the optical line A^A^ and therefore by Theorem 10 in

the optical line A^A^.
Further since AB is distinct from A 3 and A it must be after A 3 and

before A.
From the preceding results it follows that an optical line contains an

infinite number of elements.

THEOREM 12

If an element A l be before an element of an optical line a, and be also

after an element of a, then A l must be itselfan element of the optical line a.

Suppose that A l is before the element A 2 of a and also after the

element A 3 of a.

Then by Post. I A 3 cannot be identical with A 2 ,
and by Theorem 9

one of the elements A 2 and A 3 must be in the a sub-set of the other.

Since A l is after A z and A 2 is after A-^it follows that A% is after A%
and so it must be A 2 which is in the a sub-set ofA 3 .

But, byTheorem 1
,
it follows that A t must lie in a3 and also in j82 ,

and

accordingly A l lies in the optical line A 3A 2 .

Thus since, by Theorem 10, any two elements of an optical line

determine that optical line, it follows that A l lies in the optical line a.

THEOREM 13

(a) If A l be any element and A%be any other dement in ax and if A 3

be any element in ax which is either before or after A 2 ,
then A 3 lies in the

optical line A 1A 2 .

(1) Suppose A 3 is before A 2 .

Then since A^ lies in o^ it must be either identical with A l ,
in which

case it lies in the optical line A l
A 2 ',or else A 3 is after A l ,

in which case

by Theorem 1 A 3 must lie both in ax and j82 and therefore must lie in

the optical line AA 2 .
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(2) Suppose AS is after A 2 .

Then A 3 lies in 04 and A 2 is after A l and before A% and therefore, by
Theorem 1, A 2 must lie both in ax and j83 .

But ifA
2 lies in j83 ,

it follows by Post. VII (b) that A 3 lies in oc2 .

Thus A 3 lies both in at and a2 and therefore lies in the optical line

A 1A 2 .

(b) If A! be any element and A 2 be any other element in ^ and ifA 3 be

any element in /^ which is either after or before A 2 ,
then A 3 lies in the

optical line A 1A 2 .

THEOREM 14

Three distinct elements cannot lie in pairs in three distinct optical

lines.

Let A l ,
A 2 and A 3 be three distinct elements and let A l and A 2 lie in

one optical line.

We may suppose that it is A 2 which lies in 04 .

If then A v and A z lie in an optical line we may suppose either that

A.) lies in ax or in ^.
First suppose A 3 lies in al8

Then ifA 3 and A 2 lie in an optical line one of them must be after the

other and so by Theorem 13 (a) A% must lie in the optical line A 1A 2 .

Next suppose that A 3 lies in
j3x .

Then ifA 3 and A 2 lie in one optical line, A is before A 2 one element of

it and after A 3 another element of it and so by Theorem 12 A l must lie

in the optical line A 3A 2 . Thus the optical lines are not distinct and so

the theorem is proved.

REMARKS

Ifa and b be two distinct optical lines having an elementE in common
and if be any element ofa which is beforeE whileD andF are elements

of b which are respectively before and after E ; then, E being after 0, we

must have F after 0, but, by the last theorem, F and cannot lie in an

optical line.

Further, D cannot be before 0, for then we should have after one

element of the optical line b and before another element of it and yet
not lie in the optical line which, by Theorem 12, is impossible.

AlsoD cannot be after 0, for then we should have D after one element

of the optical line a and before another element of it and yet not lie in

the optical line, which again is impossible.

Thus D is neither before nor after 0.
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Again, if b
1

be an optical line distinct from a but having an element

E' in common with a and such that the element of a is after E
1

', while

D' and F' are elements of b
1

which are respectively after and before E' ;

we may show in a similar way that F f

is before 0, but is not in an optical

line with it; while D f

is neither after nor before 0.

THEOREM 15

(a) // A l be any element and A 2 be any other element in 04 and A 3 be

any element in ax distinct from A 2 which is neither before nor after A 2 ,

then A 3 is neither before nor after any element of the optical line AA 2

which is after A t .

The element A 3 cannot lie in the optical line A^A^ for then since it

is distinct from A 2 it would be either before or after it, contrary to

hypothesis.

Now any element of the optical line A tA 2 which is after A l must lie

in'otj.

Let A 4 be any such element.

Then if A% were either before or after A^it would by Theorem 13 lie

in the optical line ^4 1 ^4 4 ,
which by Theorem 10 is identical with the

optical line A 1
A 2 ,

and this we have shown to be impossible.

Thus A 3 cannot be either before or after any element of the optical

line A^AZ which is after A.

(b) IfA l be any element andA 2 be any other element in
j8x andA 3 be any

element in /?x distinct from A 2 which is neitJier after nor before A 2 ,
then

A z is neither after nor before any element of the optical line A 2
A

1 which

is before A^.

POSTULATE X. (a) If a be an optical line and if A be any ele-

ment not in the optical line but before some element of it, there

is one single optical line containingA and such that each element
of it is before an element of a.

(b) If a be an optical line and if A be any element not in the

optical line but after some element of it, there is one single

optical line containing A and such that each element of it is after

an element of a.

THEOREM 16

(a) // each element of one optical line be before an element of another

optical line the two optical lines cannot have an element in common.

Let a and b be two distinct optical lines such that each element of b

is before an element of a.
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Suppose, if possible, that a and 6 have an element A in common.
Let A 2 be any element of b which is after and therefore distinct from

A,.

Then, by hypothesis, A 2 is before some element (say A%) of a.

Thus we should have A z after one element A l and before another

element A z of the optical line a and therefore, by Theorem 12, it would

follow that A 2 must be an element of the optical line a.

Thus a and b would have two elements in common and so could not

be distinct optical lines, contrary to hypothesis.

Thus the supposition that a and b have an element in common leads

to a contradiction and is therefore impossible.

(b) If each element of one optical line be after an element of another

optical line the two optical lines cannot have an element in common.

THEOREM 17

(a) // each element of an optical line a be before an element of another

optical line 6, then through each element of a there is one single optical

line which contains also an element of 6.

By Theorem 16 an element of a cannot also be an element of 6.

Suppose then that A l be any element of a.

Then A l is not an element oft, but is before an element of 6 and there-

fore by Post. IX (a) there is one single element, say ^4 2 ,
which is an

element both of the optical line 6 and the sub-set ax . Since A 2 cannot

be identical with A l it follows that A l and A% determine an optical line

which contains an element of a and also an element of 6.

Further, there cannot be more than one optical line through A l

which contains also an element of b
;
for such an element of 6 must, by

Theorem 9, lie either in 04 or ^.
But by Post. IX (a) there is only one single element common to b and

the sub-set <xt ,
and so if such an element of 6 existed it would have to

lie in & .

Call such a hypothetical element A 3 .

Then since A 3 is supposed to lie in jSx ,
we should have A l in <x3 .

But^4 2 lies in at and so^4 1 lies in /?2 ,
and thus if such an element as A%

existed, A l would lie in the optical line A^A 2 : that is, in the optical line

6, which is impossible, and so there cannot be any such element as A 3 .

Thus there is only one single optical line through A l which contains

also an element of 6.
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(6) // each element of an optical line a be after an element of another

optical line b, then through each element of a there is one single optical

line which contains also an element of b.

Definition. If two distinct optical lines have an element in common

they will be said to intersect one another in that element.

If A
1 and A 2 be two distinct elements one of which is neither before

nor after the other, then we know by Post. VI that there is at least one

element, say X, which is after both A l and A z ,
but is not after any other

element which is after both A l and A 2 .

From the definition of a sub-sets it follows that X lies both in ax and

<x2 ,
so that there is at least one element which is a member both of aL and

a2 . Similarly there is at least one element which is a member both of j31

and j82 .

These remarks prepare the way for Post. XI (a) and (b).

POSTULATE XI. (a) If A
x
and A2 be two distinct elements one

ofwhich is neither before nor after the other and X be an element

which is a member both of 04 and a2 , then there is at least one

other element distinct from X which is a member both of a

and ot2 .

(b) If Ax and A2 be two distinct elements one of which is

neither after nor before the other and X be an element which is

a member both of p t and p2 , then there is at least one other

element distinct from X which is a member both of
(5t and p2 .

The above is the first of our postulates which requires more than two

dimensions for its representation.

It is to be noted that it may easily be combined with Post. VI as

follows :

(a) // A and B be two distinct elements one of which is neither before

nor after the other , there are at least two distinct elements either of which is

after both A and B but is not after any other element which is after both

A and B.

(b) IfA and B be two distinct elements one of which is neither after nor

before the other, there are at least two distinct elements either of which is

before both A and B but is not before any other element which is before

both A and B.
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THEOREM 18

(a) // A l and A 2 be any two distinct elements one of which is neither

before nor after the other, and if A$ and Abe distinct elements which lie

both in <xx and oc2 , then one of these latter two elements is neither before

nor after the other.

By the definition of a sub-sets A 3 is after both A l and A 2 but is not

after any other element which is after both A and A 2 .

Similarly A is after both A l and A 2 but is not after any other element

which is after both A
l and A z .

Thus AS is not after A^ ,
and A is not after A 3 .

Thus A 3 is neither before nor o/ter -4 4 .

(6) If A! and A z be any two distinct elements, one of which is neither

after nor before the other, and if A% and A^be distinct elements which lie

both in j8x and /?2 ,
then one of these latter two elements is neither after nor

before the other.

THEOREM 19

(a) // A l be any element and A 2 and A 3 be two other distinct elements

of otj ,
one of which is neither before nor after the other, there is at least one

other distinct element in a
r
which is neither before nor after A 2 and

neither before nor after A 3 .

Since A 2
is a member of a1? therefore A is a member of /32 .

&

Thus by Post. VIII (b) there is at least one other element distinct

from A! which is a member both of j82 and of /3X .

Call such an element A5 .

Then A l and A% are both members of oc5 .

Thus by Theorem 2 (a) there is at least one other element in oc6

distinct from A^ which is neither before nor after A .

Call such an element A .
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Now A 3 cannot lie in a5 for then, as it is an element of 04 ,
it would

lie in the optical line A 5A l along with A 2 and so A 2 and A 3 would

either be identical or else A 2 would be either before or afterA z , contrary

to hypothesis.

Now^ 3 is afterA l and^ is after A 5 and so by Post. IlIA^ is after A b ,

and sinceA 3 is notan element of a5
it cannot lie in the optical lineA 5

A 6 .

Thus by Post. IX (6) there is one single element (say A 7 )
which is an

element both of the optical line A 5A Q and the sub-set 3 .

Now A 5 cannot be after A 7 ,
for A^ lies in oc7

and so, by Theorem 1,

A b would require to lie in
j88 ,

which it cannot do since A 3 is not an

element of oc5 .

Also A 5 cannot coincide with A 7 for then it would be in /J3 .

Thus A 1 must be after A 5 ,
and so by Theorem 15 A l is neither before

nor after A 7 .

Now A 3 lies both in ax and in oc7 ,
and so by Post. XI (a) there is at

least one other distinct element, say A ,
which lies both in ax and in a? .

Then by Theorem 18 A 4 is neither before nor after A 3 .

Further, A cannot be either before or after A 2 ,
for since A 2 and A^

are both members of ocx it would follow by Theorem 13 that A must

lie in the optical line A^A^.
This would also be the case if A coincided with A 2 .

But then (since A 4 is after A l
and therefore after A 5 )

we should have

At in oc5 and A l and A? both in a6 and ]84 ,
and thus A l and A 7 would lie

in one optical line.

Thus A l
and A7 would either coincide or else the one would be after

the other, which is impossible.

Thus A 4 is neither before nor after A 2 and is neither before nor after

AS and is distinct from either.

(b) If A! be any element and A 2 and A^be two other distinct elements

of /?!, one of which is neither after nor before the other, there is at least

one other distinct element in & which is neither after nor before A 2 and

neither after nor before A% .

THEOBEM 20

// AI be any element there are at least three distinct optical lines

containing A.
Let A 2 be any element in ax distinct from A l9

Then by Theorem 2 (a) there is at least one other element in ax

distinct from A 2 which is neither before nor after A 2 .

Call such an element A.
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Further byTheorem 19 there is at least one other distinct element in

a
x which is neither before nor after A% and neither before nor after A 9 .

Call such an element A.
Then A l and A 2 determine one optical line; A l and A 3 determine a

second optical line
;
A

1
and A determine a third optical line.

These are all distinct and all contain ^4
X .

If a be an optical line and ifA be anyelement notin the optical line but

before some element of it we have by Post. X (a) one single optical line

containing A and such that each element of it is before an element ofA.

Further, we have seen in Theorem 17 that there is one single optical

line containing A and also intersecting a.

Also by Theorem 20 there are at least three optical lines containing
A and so there must be at least one optical line containing A in addition

to the two particular ones which we have already mentioned.

Similarly if a be an optical line and if A be any element not in the

optical line but after some element of it, there is one single optical line

containing A and such that each element of it is after an element of a

and there is one single optical line containing A and intersecting a.

In addition to these two particular optical lines Theorem 20 shows

that there is at least one other optical line containing A.

These considerations prepare the way for Post. XII (a) and (6).

POSTULATE XII. (a) If a be an optical line and if A be any
element not in the optical line but before some element of it,

then each optical line through A, except the one which intersects

a and the one of which each element is before an element of a,

has one single element which is neither before nor after any
element of a.

(b) If a be an optical line and if A be any element not in the

optical line but after some element of it, then each optical line

through A, except the one which intersects a and the one of

which each element is after an element of a, has one single

element which is neither after nor before any element of a.

THEOREM 21

(a) If each element of an optical line a be after an element of a distinct

optical line 6, then each element of b is before an element of a.

Let A l be any element of a; then since A l is not in b but after an

element of 6, there is one single element (say A 2 ) common to the optical

line b and the sub-set & (Post. IX (6)).
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Then A 2 is not an element of a but is before the element A l of a and

so by Post. X (a) there is one single optical line (say c) containing A 2

and such that each element of it is before an element of a.

Now b cannot be identical with the optical line A 2A l , for then a and

6 would have the element A l in common, which is impossible by
Theorem 16 (6).

Suppose now, if possible, that 6 is not identical with c; then by
Post. XII (a) there will be one single element in b (say A 3 )

which will be

neither before nor after any element of a.

Consider an element A in b and after A 3 .

Since there can only be one element in b which is neither before nor

after any element of a, it would follow that A must be either before or

after some element of a.

Since A% is beforeA 4 it would follow, if J. 4 were before an element of a,

that ^4 3 was also before an element of a, contrary to hypothesis.

We should therefore require A to be after some element (say ^4
5 )
ofa :

so that A 5 would be before A : an element of 6.

But by hypothesis ^4 5 is offer some element of b and so, by Theorem

12, ^4 5 would require to lie in 6.

Thus a and b would have an element in common, which is impossible

by Theorem 16 (b).

Thus the supposition that b is distinct from c leads to a contradiction

and therefore is not true.

Thus b must be identical with c and so each element of b is before an

element of a.

(6) // each element ofan optical line a be before an element ofa distinct

optical line 6, then each element of b is after an element of a.

THEOREM 22

// a be an optical line and if A l be any element which is neither before

nor after any element of a, there is one single optical line containing A l

and such that no element of it is either before or after any element of a.

Let A 2 be any selected element of a; then A l is neither before nor

after A 2 ,
and so by Post. VI (b) an element exists which is a member

both of& and of 2 .

Call such an element A 3 .

Now A 3 is before A z ,
an element of a, and does not lie in a and there-

fore by Post. X (a) there is one single optical line (say c) containing A 3

and such that each element of c is before an element of a.
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Further, A l is afterA z ,
but is not before anyelement of a, and so does

not lie in c.

Thus by Post. X (b) there is one single optical line (say b) containing

A l and such that each element of b is after an element of c.

Consider now any elementA other than A
l
in the optical line b

;
then

A 4 cannot be an element of a since otherwise A l would be either before

or after an element of a, contrary to hypothesis.

Suppose now if possible that A is after some element of a.

Then by Post. X (b) there is one single optical line (say d) containing

A and such that each element of d is after an element of a.

But since each element of a is after an element of c therefore by
Post. Ill each element of d is after an element of c.

But by Post. X (b) there is only one single optical line containing A^
which has this property and the optical line 6 is such a one.

Thus the optical line d must be identical with the optical line 6.

Thus each element of b would be after an element of a, contrary to

the hypothesis that A l was neither before nor after any element of a.

Thus A 4 is not after any element of a.

Next suppose if possible that A is before some element (say A 5 )

of a.

Then A b is not an element of 6, but is after an element of 6, and so by
Post. X (6) there is one single optical line (say e) containing A 5 and such

that each element of e is after an element of b.

But each element of b is after an element of c and so by Post. Ill each

element of e is after an element of c.

There is however by Post. X (6) one one single optical line containing

A 5 and having this property, and a is such an optical line.

Thus e must be identical with a, and so each element of a must be

after an element of b.

But if this were so then by Theorem 21 (a) each element of 6 must be

before an element of a, contrary to the hypothesis that A
l is neither

before nor after any element of a.

Thus A 4 is not before any element of a
}
and so no element of 6 is

either before or after any element of a.

We have thus shown that there is one optical line containing A l and

having this property.

We have now to show that there is only one.

Consider any optical line containing A l other than the optical lines

6 and A3A lt

Call such an optical line /.
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Then by Post. XII (6) there is one single element in / (say A %) such

that A B is neither before nor after any element in c.

If then we take any element A7 in/ and before A Q ,
such an element

cannot be after any element in c, for then A 6 being after A? would be

after an element of c, contrary to hypothesis.

Also, since there is only one element having the property of A 6 and

lying in/, therefore A7 must be before some element of c.

But this element is before some element of a, and so A 7 is before some

element of a.

Thus there is only one optical line containing A l and such that no

element of it is either before or after any element of a.

THEOREM 23

Ifa be an optical line and A l be any element which is neither before nor

after any element of a while b is the one single optical line containing A l

and such that no element of it is either before or after any element of a,

then every optical line through A 19 with the exception 0/6, is divided by
A l into elements which are before an element of a and elements which are

after an element of a.

We proved in Theorem 22 that there is only one optical line through
A

l having the property of 6.

Thus if we take any other optical line d through A l there must be

at least one element of d which is either before or after some element

of a.

Suppose first that there is an element A 3 which is before some

element of a.

Then A% cannot be after A ly for since there is an element of a after

AS there would by Post. Ill be an element of a after A l9 contrary to

hypothesis.

Thus AS must be before A l .

Further, A% cannot be an element of a, for then A l would be after

an element of a, contrary to hypothesis.

Thus A% is not an element of a but before an element of it, and so by
Post. IX (a) there is one single element (say A 2 ) which is an element both

of the optical line a and the sub-set oc3 .

Further by Post. X (a) there is one single optical line (say c) con-

taining A 3 and such that each element of it is before an element of a.

Then by Post. XII (a) since the optical line d contains A 3 and is not

identical with either of the optical lines A^A^ or c it follows that there
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is one single element of d which is neither before nor after any element

of a.

But by hypothesis A has this property and so every other element

of d is either before or after an element of a.

However, as we have already seen, an element which is after A l in d

cannot be before an element ofa and so it must be after an element of a.

Similarly an element which is before A l in d cannot be after an element

of a, for then A l would be after an element of a contrary to hypothesis,

and so an element which is before A l in d must be before an element of a.

We arrive at the same conclusion if we start off by supposing the

existence in d of an element A z

r

which is after some element of a. Thus

the theorem is proved.

THEOREM 24

(a) If each element of each of two distinct optical lines a and b be after

elements of a third optical line c, and if one element A l of the optical line

b be after some element of the optical line a, then each element of b is after

an element of a.

Let b' be the one single optical line containing A l and such that each

element of b' is after an element of a.

Then since each element of a is after an element of c therefore by
Post. Ill each element of b' is after an element of c.

But by hypothesis each element of b is after an element of c, and b

contains A an element not in the optical line c but after some element

of it.

Thus by Post. X (6), since there is only one single optical line con-

taining A i and having this property, it follows that b' must be identical

with b.

Thus each element of 6 is after an element of a.

(6) // each element of each of two distinct optical lines a and b be

before elements of a third optical line c, and if one element A^ofthe optical

line b be before some element of the optical line a, then each element of b

is before an element of a.

THEOREM 25

(a) // each element of each of two distinct optical lines a and b be after

elements of a third optical line c, and if one element A^of the optical line b

be neither before nor after any element of the optical line a, then no element

of the optical line b is either before or after any element of the optical

line a.

Since A l is not an element ofc but is after some element of it, therefore
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by Post. IX (6), there is one single element (say A^) which is common to

the optical line c and the sub-set ^ .

Then since A^ is not an element of a, but is before an element of a

(Theorem 21 (a)), therefore by Post. IX (a) there is one single element

(say A%) which is common to the optical line a and the sub-set <x3 .

The demonstration then follows as in Theorem 22.

(b) If each element of each of two distinct optical lines a and b be before

elements of a third optical line c, and if one element A^of the optical line

b be neither after nor before any element of the optical line a, then no

element of the optical line b is either after or before any element of the

optical line a.

This may be demonstrated in an analogous manner.

THEOREM 26

(a) // an optical line a be such that no element of it is either before or

after any element of the optical line c, and if another optical line b be such

that each element of it is before an element of c, then each element of b is

before an element of a.

Since each element of b is before an element of c, it follows by Theorem

21 (b) that each element of c is after an element of b.

Let A 1 be any element of c.

Then since A l
is not an element of b but is after an element of 6, there

is one single element common to the optical line b and the sub-set /3X

(Post. IX (6)).

Let A 2 be this element.

Then A 2 and A l determine an optical line.

But by Theorem 23 every optical line containing A
l except c is

divided by A^ into elements which are before an element of a and

elements which are after an element of a, and since A 2 is before A l
and

lies in the optical line A 1 A%, it follows that A 2 is also before an element

of a and is not an element of a.

Thus by Post. IX (a) there is one single element (say As )
common to

the optical line a and the sub-set a2 .

Now A 3 is neither before nor after any element of c and therefore if an

optical line a' be taken through A% such that each element of it is after

an element of 6, then by Theorem 25 (a) no element of a' is either before

or after any element of c.

But by Theorem 22 there is only one optical line through Az having

this property and a is such an optical line.
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Thus of is identical with a and so each element ofa is after an element

of 6, and thus by Theorem 21 (a) each element of b is before an element

of a.

(b) If an optical line a be such that no element of it is either after or

before any element of the optical line c, and if another optical line b be

such that each element of it is after an element of c, then each element of b

is after an element of a.

THEOREM 27

(a) If each element of an optical line a be after an element of a distinct

optical line c, and each element of another optical line b be before an

element of c, then each element of a is after an element of b.

ByTheorem 21 (b) each element of c is after an element of 6, and since

each element of a is after an element of c, therefore by Post. Ill each

element of a is after an element of b.

(b) If each element of an optical line a be before an element of a distinct

optical line c, and each element of another optical line b be after an element

of c, then each element of a is before an element of b.

THEOREM 28

// two distinct optical lines a and b be such t/iat no element of either of

them is either before or after any element of a third optical line c, then no

element of a is either before or after any element of b.

For suppose, if possible, that some element A l of a is after an element

of 6; then A^ cannot lie in b and by Post. IX (b) there is one single

element (say A 2 )
common to the optical line 6 and the sub-set

j3x .

But by Theorem 23 every optical line through A l except a is divided

by A! into elements which are before an element of c and elements

which are after an element of c.

Thus since A 2 and A l determine an optical line through A l ,
and since

A 2 is before A^ , therefore A 2 must be before an element of c, contrary to

the hypothesis that no element of 6 is either before or after any element

of c.

Similarly if we suppose A l to be before an element of 6 we are led to

a conclusion contrary to hypothesis.

Thus no element of a is either before or after any element of b.

Definitions. An optical line a will be said to be parallel to a second

distinct optical line b when either:

4-2
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(1) each element of a is after an element of 6,

or (2) each element of a is before an element of 6,

or (3) no element of a is either before or after any element of 6.

In case (I) a will be said to be an after-parallel of b.

In case (2) a will be said to be a before-parallel of b.

In case (3) a will be said to be a neutral-parallel of 6.

It follows from these definitions in conjunction with Theorem 21

that:

If an optical line a be parallel to an optical line 6, then the optical line b

is parallel to the optical line a.

Again, if a be any optical line and A be any element not in the optical

line, A may be before an element of a, or may be after an element of a,

but by Theorem 12 A cannot be before one element of a and after

another element of a.

By Post. XII (a) and (b) it follows that A may be neither before nor

after any element of a.

IfA be before an element of a, then by Post. X (a), there is one single

parallel to a containing A.

IfA be after an element of a, then by Post. X (6), there is one single

parallel to a containing A.

IfA be neither before nor after any element of a, then by Theorem 22

there is one single parallel to a containing A .

Thus we can say in general :

If a be any optical line and A be any element which is not in the optical

line, then there is one single optical line parallel to a and containing A.

Further, combining Theorems 24 (a), 24 (6), 25 (a), 25 (6), 26 (a),

26 (6), 27 (a), 27 (6), 28, we have the general result that:

// two distinct optical lines a and b are each parallel to a third optical

line c, then the optical lines a and b are parallel one to another.

Definition. If a and b be any pair of distinct optical lines one of

which is an after-parallel ofthe other, then the aggregate of all elements

of all optical lines which intersect both a and b will be called an inertia

plane.*

* In the first edition of this work the term acceleration plane was used instead of inertia

plane. The change was made in order that the nomenclature might be more systematic.
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THEOREM 29

// a be an optical line there are an infinite number of distinct inertia

planes which all contain a.

From Post. XII (a) and (6) it follows that there is at least one

element, say A 1 ,
which is neither before nor after any element of a.

If b be the one optical line through A l such that no element of it is

either before or after any element of a, then by Theorem 23 every optical

line through A l except b is divided by A l into elements which are

before an element of a and elements which are after an element of a.

Let/be one particular optical line containing A l and distinct from 6.

Let A 2 be any element in/ other than A\ then A 2 must be either

before or after some element of a but is not itself an element of a.

Thus if an optical line c be taken through A% parallel to a, then c is

either a before- or after-parallel of a and therefore along with a serves

to define an inertia plane.

Let A 3 be another element of/ distinct from A 2 .

Then in order that A 3 should lie in the inertia plane defined by a

and c it would have to lie in an optical line intersecting both a and c.

But since A% is distinct from A% and lies in the optical line / which

also contains A 2 it must be either before or after A 2 ,
and so by Post.

IX (a) or Post. IX (b) there must be one single element which is an ele-

ment both ofthe optical line c and the sub-set oc3 or /33 as the casemay be .

But the element A 2 is such an element and therefore the optical line

/ containing A 3 and A 2 is the only optical line which intersects c and

contains A%.
Thus in order that A 3 should lie in the inertia plane defined by a and

c it would be necessary for/ to intersect a and this we know it does not

do since if it did A l would be either before or after an element of a,

contrary to hypothesis.

If then AS be distinct from A l
it is either before or after an element

of a and so if we take the optical line through A^ parallel to a, it will be

either a before- or after-parallel of a.

Call such an optical line d.

Then d and a define another inertia plane which is distinct from that

defined by c and a, since the latter does not contain A 3 .

If any other element An in the optical line / be selected other than

A 2 or AS and an optical line be taken through it parallel to a, then,

provided An is distinct from A lt the parallel to a through An will,

along with a, define an inertia plane distinct from the others.
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Thus each element of/except A l corresponds to a distinct inertia

plane and the number of elements in /is infinite, while all the inertia

planes contain a.

Thus there are an infinite number of distinct inertia planes all con-

taining the optical line a.

From the last theorem it follows directly that it is permissible to

speak of three or more inertia planes which have two elements in

common.
This prepares the way for Post. XIII.

POSTULATE XIII. If two distinct inertia planes have two
elements in common, then any other inertia plane containing
these two elements contains all elements common to the two
first-mentioned inertia planes.

THEOREM 30

If a and b be two distinct optical lines and if a be an after-parallel of 6,

then if c and d be two other distinct optical lines intersecting both a and 6,

one of these latter two optical lines is an after-parallel of the other.

Let the optical line c intersect bin A l and a in A z and let the other

optical line d intersect b in A 3 and a in A .

Fig. 6.
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Then, by Theorem 17 (a), it is not possible for A l and A% to be coin-

cident while A 2 and A are distinct
; while, by Theorem 17 (6), it is nob

possible for A 2 and A to be coincident while A l and A 3 are distinct.

We may suppose without loss of generality that A^ is after A l .

Then since a is an after-parallel of b we must have A^ after A% and

therefore by Post. Ill A^ is after A l ,
or A^ before A^.

Further, since a is an after-parallel of 6, and since A^ and A 2 lie in

the optical line c, we must have A 2 after A l and therefore A must

lie in at .

But now A 4 could not be before A 2 ,
for then, by Theorem 1

, A^ would
lie in a t and, since it is distinct from A 2 ,

we should have two elements

common to the optical line a and the sub-set ax ;
which is impossible.

Thus since A and A z both lie in the optical line a we must have A^

after A z and so A lies in a2 .

Now let e be the optical line through A% parallel to c; then e is an

after-parallel of c since A 3 is after A l .

Again there is one single optical line (say/) through A 2 intersecting

e in some element, say A 5 which lies in a2 .

Now, sinceA 2 and^4 3 are distinct elements both lying in ax ,
and since

A 2 does not lie in the optical line A
1
A 3 ,

it follows by Theorem 13 that

A 2 is neither before nor after A% and therefore A B lies in <x3 .

Suppose now, if possible, that A^ is distinct from A\ then by
Theorem 18 (a) since A and A 5 lie both in a2 and oc3 ,

the one is neither

before nor after the other.

Thus A 5 could not lie either in a or d since then it would have to be

either before or after A.
Neither can A 5 lie in 6, for since A 2 is after A l and A 5 is after A 2 , and

A l is an element of b it would then follow by Theorem 12 that A 2 must
lie in 6, which is impossible.

Thus e is the only optical line through A b containing an element of b

and ife also intersected a it would have to coincide with d, since d is the

only optical line through A 3 which intersects a.

Thus ifA 6 did not coincide with A^ then A 5 could not lie in the inertia

plane defined by a and b.

Thus the inertia plane defined by c and e would be distinct from the

inertia plane defined by a and b.

Now let g be the optical line through A l parallel to /; then g is a

before-parallel of/, since A l is before A 2 .

Then g could not coincide with b for in that case we should have two

optical lines a and/ both through A 2
and both parallel to 6, which is

impossible. i ^ Q 2_ J
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Now AS lies in the optical line b which intersects g in A and so ifA 3

should lie in the inertia plane defined by/ and g, then b would have to

intersect /.

But the only optical line through A : intersecting / is c and so if A 3

should lie in the inertia plane defined by/ and g, then b would have to

coincide with c, which is impossible.

Thus A B would not lie in this inertia plane which therefore would be

distinct from the inertia planes defined by a and b and by c and e, which

both contain A 3 .

But the inertia planes defined by a and 6, by c and e, and by / and g

all contain the two elements A l and A 2 ,
while the two first-mentioned

inertia planes also contain ^4 3 ,
which would not be contained by the

inertia plane defined by / and g.

This is contrary to Post. XIII and so the assumption that A$ is

distinct from A must be abandoned.

Thus A 5 coincides with A and therefore the optical line d coincides

with the after-parallel of c through A 3 .

This proves the theorem.

THEOREM 31

//a, 6, c, d, etc. be a set of parallel optical lines which all intersect one

optical line I in elements A, B,C, D, etc., then through any dement of one

of the set of optical lines a, 6, c, d, etc. other than the elements A,B,C, D, etc.

there is one optical line which intersects each one of the set a, 6, c, d, etc.

and is parallel to I.

Since the elements A, B, C, D, etc. are elements of one optical line I,

therefore of any two of these elements one is after the other by
Theorem 9.

Thus of any two of the parallel optical lines a, 6, c, d, etc. one is an

after-parallel of the other.

If then one of these optical lines be selected (say 6) and any element

in it (say X) distinct from B there will be

one optical line through X intersecting a,

one optical line through X intersecting c,

one optical line through X intersecting d, etc.

But by Theorem 30 all these are parallel to I and since they all go

through X they must all be identical.

Also for each element of b there is one such optical line and since any
pair of such optical lines are parallel to I they are also parallel to one

another.
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This theorem shows that an inertia plane contains two sets of

parallel optical lines which may be called the generators of the inertia

plane.

Any generator of one set intersects every generator of the other set

but does not intersect any one of its own set.

Also we see that through any element of an inertia plane there are

two optical lines lying in the inertia plane and of these two one belongs
to one set and the other to the other set.

THEOREM 32

Through any element of an inertia plane there are only two distinct

optical lines which lie in the inertia plane.

We have already seen that there are two optical lines which pass

through any element of an inertia plane and lie in the inertia plane.

We have now to prove that there cannot be more than two.

Let A
l
be any particular element of an inertia plane and let a and 6

be the two generators of the inertia plane passing through A.
Suppose, if possible, that a third optical line c passes through A r

and

lies in the inertia plane.

Let A 2 be an element of c after A l9 then A 2 must lie in the inertia

plane and so there would be two generators of the inertia plane passing

through A 2 and parallel respectively to a and 6.

The optical line parallel to a would meet b in some element, A 3 say,

and the optical line parallel to b would meet a in A say.

But ifA 1 ,
A 2 and A 3 were all distinct we should have three elements

lying in pairs in three distinct optical lines, which is impossible by
Theorem 14.

Similarly if A l ,
A 2 and A^ were all distinct.

Thus any optical line through A l and lying in the inertia plane must

coincide either with a or 6.

THEOREM 33

// an inertia plane contain an optical line a and an element A t which

does not lie in the optical line, then A is either before or after an element

of a.

There are two optical lines in the inertia plane which pass through

A,.
Of these two, one which we shall call 6 intersects a, while the other

does not intersect it.
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If 6 intersects a in an element A%, then A 2 must be distinct from A l

since A l does not lie in a.

But both A! and A 2 lie in the optical line b and so the one is after

the other.

Thus A! is either before or after A 2 : an element of the optical line a.

THEOREM 34

// two elements be such that one is after the other, but does not lie in an

optical line with it, then there are an infinite number of inertia planes

containing the two elements.

Let A! and A% be the two elements and let A 2 be after A 1 .

A 7

Fig. 7.

Then by Theorem 5 there is at least one other distinct element which

is a member both of 04 and of /?a . Call such an element A% .

Then A 2 is in <x3 and so both A^A^ and A 3A 2 are optical lines.

But AI is not in the optical line A 3A 2 but is before A 3 an element of

it and so we may take a before-parallel to A^A 2 through A l
.

Then through A 2 there is one single optical line intersecting this

before-parallel in some element, say A.
Then AA 2 will be an after-parallel of A^A^ by Theorem 30.

Now A tA 3 and A A^ are two distinct optical lines through A 1 and

by Theorem 20 there are at least three distinct optical lines containing
A l so that there must be at least one other. Let c be such an optical line.
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Then A 2 is not in c but is after A an element of c and so by Post.

IX (6) there is one single element (say A 5 ) common to the optical line c

and the sub-set /?2 .

Then A 1A 5 and A 5A 2 are distinct optical lines and since A 2 is after

A 6 we may take an after-parallel to AA
b through A 2 ,

which together
with A 1A 5 will determine an inertia plane containing the given
elements.

Let A m and An be any two distinct elements of the optical line A^A 5

which are after A l and before A$ .

Then, Am and An being elements which are after A 1 and not in the

optical line A
1
A 3 ,

we may take after-parallels to A xA 3 through Am and

An . Call these / and g respectively.

Then A 2 cannot be an element of/for then we should have the three

elements Am ,
A 5 and A 2 lying in pairs in three distinct optical lines,

which is impossible by Theorem 14.

But A 5 is after Am and A 2 is after A b and so by Post. Ill A 2 is after

A m an element of/.

Thus by Post. IX (6) there is one single element (say Ap ) common to

the optical line /and the sub-set j82 .

Similarly A 2 cannot be an element of g but is after An an element of

g and so there is one single element, say Aq ,
common to the optical line

g and the sub-set ]82 .

Now Am and An being both elements of the optical line A 1
A

5 ,
the

one must be after the other, and since / and g are both after-parallels

of A
i
A 3 it follows by Theorem 24 that the one is an after-parallel of

the other.

Thus/and g can have no element in common and so Ap and Aq
must

be distinct.

Further, Ap and Aq
cannot both lie in the same optical line through

A 2 ,
for since / and g are both after-parallels of A VA% therefore by

Theorem 31 this hypothetical optical line would also intersectA 1A 3 and

would therefore have to be identical with A 3A 2 . Thus the optical line

A A 5 or c would have to be parallel to A$A 2 and so be identical with

^4
1 ^4 4 , contrary to hypothesis.

Thus the optical lines ApA 2 and Aq
A 2 must be distinct.

Further, either of them, say ApA 2 ,
must be distinct from A$A 2 for

then A 3A 2 would contain Ap an element of/, and since/ is an after-

parallel ofA lA 3 therefore again A^A^ would have to be identical with

-4 1 u4 4 , contrary to hypothesis.

Again, either of the optical lines ApA 2 or Aq
A 2 must be distinct from
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A^AZ, for, if we take ApA 2 , we should have the three elements Am ,

Ap and A 5 lying in pairs in three distinct optical lines, which is im-

possible.

Similarly corresponding to each element of the optical line A^A^
which is after A l and before A 5 we may take an after-parallel to AA Z

which will have one element in common with the sub-set )32 which

determines a distinct optical line through A 2 .

Since there are an infinite number of elements in the optical line

A^Ai which are after A l and before A 5y it follows that there are an

infinite number of optical lines through A 2 which are all distinct.

Since A and A 2 are not in one optical line therefore A l cannot lie in

any of these optical lines through A 2 .

But A l is before A 2 and so by Post. X (a) a before-parallel to each of

these optical lines may be taken through A l and the pair of parallel

optical lines will determine an inertia plane containing A and A 2 .

Also since the number of optical lines through A 2 is infinite, and

since by Theorem 32 only two optical lines pass through any element

of an inertia plane and lie in the inertia plane, it follows that there are

an infinite number of inertia planes containing the two elements A l

and A 2 .

THEOREM 35

// two distinct elements be such tJiat the one is neither before nor after

the other, then there are an infinite number of inertia planes containing

the two elements.

Let A l and A 2 be the two elements.

Then by Post. VI (a) and Post. XI (a) there are at least two other

distinct elements which are members both of ax and a2 .

Let A 3 and A 5 be two such elements.

Then A^^, A tA 59 A 2A 3 ,
A 2A 5 are distinct optical lines.

Let Am and An be any two distinct elements of the optical line A VA^
which are after A and before A 5 .

Then Am and An being elements which are after A and not in the

optical line A^A^ ,
we may take after-parallels to A 1A B through Am and

An . Call these / and g respectively.

Then A% cannot be an element of/, for then we should have the

three elements Am) A 5 and A 2 lying in pairs in three distinct optical

lines, which is impossible by Theorem 14.

But since/is an after-parallel ofA^A^ it follows by Theorem 21 (a)
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thatAA Z is a before-parallel off and so A 3 is before some element off
or there is an element off which is after A%.
But AS is after A 2 and so by Post. Ill there is an element off which is

after A 2 ,
or A 2 is before an element off.

Thus by Post. IX (a) there is one single element, say Ap ,
which is an

element both of the optical line /and the sub-set <x2 .

Similarly A 2 cannot be an element of g but is before an element of g

and so there is one single element, say Aq , common to the optical line

g and the sub-set <x2 .

Now Am and An being both elements of the optical line A^A^, the

one must be after the other, and since / and g are both after-parallels

of A t
A 3 it follows by Theorem 24 that the one is an after-parallel of

the other.

Thus/and g can have no element in common and so Ap and Aq
must

be distinct.

Further, Ap and Aq
cannot both lie in the same optical line through

A 2 , for since / and g are both after-parallels of A
1
A 3 it follows by

Theorem 31 that this hypothetical optical line would also intersect

A^Az and would therefore have to be identical with A 2A%.
Thus A 2AS would by Theorem 30 require to be either a before- or

after-parallel of A 1A 5 .

But AS is after A l
and A z is before A 5 and so one element of A 2A% is

after an element of A^A$ while another element of A%A 3 is before an

element of A 1A 5 .

Thus A 2A% cannot be either a before or after-parallel of A^A b and

so Ap and Aq
cannot both lie in the same optical line through A 2 .

Thus the optical lines A 2Ap and A%Aq
must be distinct.

Further, either of them must be distinct from A%A 3 ,
for otherwise

A
2A 3 would, again, require to be an after-parallel of A^A^, which we

showed to be impossible.

Again, either of the optical lines A 2Ap9 A 2Aq
must be distinct from

A 2A 5 ,
for ifwe take for instance the case ofA 2Ap ,

we should then have

the three elements Am ,
Ap and A 5 lying in pairs in three distinct optical

lines, which is impossible.

Similarly corresponding to each element of the optical line AA$
which is after A and before A 5 we may take an after-parallel to A^A$
which will have one element in common with the sub-set a2 which

determines a distinct optical line through A 2 .

Since there are an infinite number of elements in the optical

line AA$ which are after A l
and before A b ,

it follows that there
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are an infinite number of optical lines through A 2 which are all

distinct.

Since A l is neither before nor after A 2 and is distinct from it, therefore

A
l cannot lie in any of the optical lines through A 2 .

Now there is only one element common to the optical line A A 5 and

the sub-set <x2 , namely the element A 5 ,
and Am cannot be after A 2 since

otherwise, by Theorem 1, Am would require to lie in a2 . But Ap is

after A% and, since it lies in an optical line with Am ,
A

p must be after

Am . But Am is after A l and so Ap is after A l . Similarly Aq
is after A l

.

Thus A l is not an element of any of the optical lines through A z but

is before elements of those which we have obtained, and so by Post. X
(a) there is one single optical line containing A l and such that each

element of it is before an element of any particular one of the optical

lines through A 2 which we have obtained.

Each of these pairs of parallel optical lines determines an inertia

plane containing A and A 2 and, since the number of optical lines

through A 2 is infinite, and since by Theorem 32 there are only two

optical lines which pass through any element of an inertia plane and

lie in the inertia plane, it follows that there are an infinite number of

inertia planes containing the two elements A l and A 2 .

REMARKS

The last two theorems showed that an infinite number of inertia

planes contain any pair of elements which do not lie in an optical line.

Further, Theorem 29 showed that an infinite number of inertia

planes contain a given optical line and so contain any two elements

which do lie in an optical line.

It is easy to show that if two or more distinct inertia planes contain

an optical line there is no other element which they have in common
which does not lie in the optical line.

Thus if we consider two inertia planes P and Q which both contain

an optical line a, and suppose, if possible, that they have also an

elementA in common which does not lie in the optical line, then another

optical line 6 through A must exist which is parallel to a.

The optical line b must lie in the inertia plane P and also in the

inertia plane Q, and b must be either a before- or after-parallel of a,

since A is either before or after an element of a (Theorem 33).

Thus a and b determine an inertia plane which would be identical

both with P and Q, which could therefore not be distinct, contrary to

hypothesis.
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Thus if two or more inertia planes have an optical line in common

they can have no other element outside the optical line in common.

We have also seen by Post. XIII that any inertia plane which con-

tains two elements which are common to two distinct inertia planes,

contains all elements common to them.

These remarks prepare the way for the following definitions and for

Post. XIV.

Definitions. If two inertia planes contain two elements in common,
then the aggregate of all elements common to the two inertia planes

will be called a general line.

If two inertia planes contain two elements in common, of which one

is after the other, but does not lie in the same optical line with it, then

the aggregate of all elements common to the two inertia planes will be

called an inertia line.*

If two inertia planes contain two elements in common, of which one

is neither before nor after the other, then the aggregate of all elements

common to the two inertia planes will be called a separation line.~\

POSTULATE XIV. (a) If a be any inertia line and Ax be any
element of the set, then there is one single element common to

the inertia line a and the sub -set OLI
.

(b) It a be any inertia line and A x be any element of the set,

then there is one single element common to the inertia line a and
the sub -set p x .

THEOREM 36

An inertia line in any inertia plane lias one single element in common
with each optical line in the inertia plane.

Let a be the inertia line and let A l be an element in any optical line

b in the inertia plane which we shall call P.

Then by Post. XIV (a) there is one single element^ say A%, common
to the inertia line a and the sub-set ax .

Also by Post. XIV (b) there is one single element, say A 3 , common to

the inertia line a and the sub-set /^ .

Now if A l lay in a, both A 2 and A% must coincide with A l since, if

A 2 were distinct from A l we should have the two elements A and A 2

* The name "inertia line" has been adopted because an inertia line represents the time

path of an unaccelerated particle.

t The name "separation line" has been adopted because a single particle cannot occupy
more than one element of a separation line, so that if particles P and Q occupy distinct

elements of a separation line they must be separate particles.



64 GEOMETEY OF TIME AND SPACE

in a which both lay in o^ , contrary to Post. XIV (a) which asserts that

there is only one single element common to the inertia line a and the

sub-set 04 .

Thus ifA
]_
lie in a, then A% must coincide with A l .

Similarly ifA l lie in a, then A3 must coincide with A l .

Suppose now that A 1 does not lie in a, then both A% and A$ must be

distinct from A t .

Then we must have A l after A 3 and A 2 after A l and therefore A 2 after

-4 3 ; so that A 2 and A 3 must be distinct.

Also A 2 could not lie in a3 ,
for then we should have the two distinct

elements A% and A% both common to the inertia line a and the sub-set a3

contrary to Post. XIV (a). Thus A 2 and A z cannot lie in the same

optical line.

But since A% is in o^ and A% in ^ it follows that A
l and A 2 lie in an

optical line through A ly and also A$ and A l lie in an optical line

through AD and these optical lines are distinct and both lie in P.

Now by Theorem 32 there are only two distinct optical lines in the

inertia plane which pass through A ,
and so one ofthem must be A 1

A 2

and the other A 3A ly and since b must be identical with one of these

optical lines, it follows that a and b must have one single element in

common.

THEOREM 37

Of any two distinct elements of an inertia line one is after the other.

Let A l and A 2 be any two distinct elements of the inertia line a, and

let b be one of the two optical lines in an inertia plane containing a

which pass through A : .

Now of the two optical lines in this inertia plane which pass through
A 2 ,

the one is parallel to b and the other intersects it in some element,

say A 3 .

Now A l and A% being distinct cannot both lie in a3 by Post. XIV (a)

and they cannot both lie in /33 by Post. XIV (b).

Thus one of the two elements A l and A 2 must lie in oc3 and the other

in /?3 ,
and so one of them must be after A% and the other before A$ .

Thus by Post. Ill one of the two elements A l and A% must be after

the other.

From the definition of a separation line it contains a pair of elements

one of which is neither before nor after the other.

Thus it follows from the above theorem that no inertia line can be

a separation line and no separation line can be an inertia line.
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THEORE31 38

If A! be any element in an inertia line a, there is at least one other

element in the inertia line which is after A l and also at least one other

element in it which is before A
l .

Let b be one of the two optical lines through A l in any inertia plane

which contains a and let A z be any element in b which is after A l
.

Then by Post. XIV (a) there is one single element, say A 3 ,
common

to the inertia line a and the sub-set a2 .

Then A 3 cannot be identical with A 2 since then we should have two

elements common to the inertia line a and the optical line 6, contrary
to Theorem 36.

Thus A 3 is after A 2 and A 2 is after A l and therefore A 3 is after A l and

is an element of the inertia line a.

Similarly ifwe take any element A 4 in the optical line 6 and before A l

there will by Post. XIV (6) be one single element, say A 5 , common to

the inertia line a and the sub-set /?4 .

Then A l will be after A and A after A 3 and therefore A l after A 5 .

Thus A 5 is before A l and is an element of the inertia line .

THEOREM 39

// A l
and A 2 be any two distinct elements of an inertia line o, there is at

least one other distinct element of a which is after one of the two elements

and before the other.

By Theorem 37 one of the two elements A l and A% is after the other.

We shall suppose that A 2 is after A l
.

Let b and c be the two optical lines through A l in any inertia plane

containing a.

Then the optical line through A 2 parallel to c will be an after-

parallel and will intersect b in some element A 3 which must be after A l
.

Now let A be any element in 6 which is after A l and before A 3 and

consider the optical line through A parallel to c.

This will be an after-parallel of c but a before-parallel of A^A Z and

must intersect the inertia line a in some element, say A 5 .

Then A$ cannot be before any element of c and therefore is not

before A .

Also A 5 cannot be after any element of A ZA 2 and therefore is not

after A 2 .

Thus by Theorem 37 A 5 must be after A^ and before A% and lies in

the inertia line a.
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It follows from the above results that there are an infinite number of

elements in any inertia line.

POSTULATE XV. If two general lines , one of which is a separa -

tion line and the other is not, lie in the same inertia plane, then

they have an element in common.

Since there are an infinite number of optical lines in an inertia plane,

and since only two of them pass through any given element, and since

by Post. XV each of them has an element in common with any separa-

tion line lying in the inertia plane, it follows that there are an infinite

number of elements in any separation line.

Further, since as we have remarked in connexion with Theorem 37

no inertia line can be a separation line, it follows that no element of a

separation line is either before or after another element of it.

THEOREM 40

//A l and A 2 be two distinct elements one of which is neither before nor

after the other, and if a and b be the two optical lines through A l in an

inertia plane containing the two elements, then A 2 is before an element

of one of these optical lines and after an element of the other.

By Theorem 33 A 2 must be either before or after an element of a and

also must be either before or after an element of 6; but A 2 cannot lie

either in a or 6 since it is distinct from A l and is neither before nor

after it.

Suppose first that A 2 is before an element of a.

Then one of the two optical lines through A 2 in the inertia plane will

intersect a in some element, say A%, while the other optical line

through A 2 in the inertia plane will intersect b in some element, say A^ .

Then A 2 must be before A 3 since A 2 cannot either lie in a or be after

any element of it.

But AS cannot either coincide with A l or be before A l9 for then we

should have A 2 before A l9 contrary to hypothesis.

Thus A% must be after A lt

But A l is an element of b and so the optical line A 2A% (which since

it intersects a must be parallel to b) must be an after-parallel of 6.

Thus A 2 must be after an element of 6, and since A 2 must be either

before or after A^ ,
it follows that A 2 is after A .

In a similar manner we may prove that ifA 2 be before an element of

b it must be after an element of a.
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Also in an analogous manner we may show that if A 2 be after an

element of b it must be before an element of a, and if A% be after an

element of a it must be before an element of 6.

Thus A 2 must be before an element of one of the optical lines a and b

and after an element of the other.

Definition. An element in an inertia plane will be said to be between

a pair of parallel optical lines in the inertia plane if it be after an element

of the one optical line and before an element of the other and does not

lie in cither optical line.

THEOREM 41

IfA l
and A 2 be any two distinct elements of a separation line, there is at

least one other element of the separation line which lies between a pair of

parallel optical lines through A l
and A 2 respectively in an inertia plane

containing the separation line.

Let #! and b l be the two optical lines passing through A l
in any

inertia plane containing the separation line.

Then, since A 2 is neither before nor after A I} it follows that A 2 is

before an element of one of the two optical lines a
l
and bl and is after

an element of the other. (Theorem 40.)

Suppose that A 2 is before an element of a
l .

Then it is after an element of b .

Let # 2 and 6
2 be the two optical lines through A 2 parallel respectively

to a
l and b

l .

Then a 2 and 62 lie in the inertia plane and since A 2 is before an element

of
flj therefore a 2 is a before-parallel of a

t
.

Similarly since A 2 is after an element of 6 t it follows that 62 is an

after-parallel of ft A .

Further, />2 must intersect a l in some element, say A% ,
which must be

after A 2 since a
1
is an after-parallel of a2 .

Let A be any element of 62 which is after A 2 and before A% and

consider the optical line through A parallel to a^.

We shall call this optical line a'.

Then since A is before A% it follows that a' is a before-parallel of%
and since A^ is after A 2 therefore a' is an after-parallel of a2 .

Also a' lies in the inertia plane.

Thus by Post. XV a' must have an element in common with the

separation line A
1
A 2 .

Call this element A 5 .

Then since a' is a before-parallel of al therefore A$ is before an

5-2
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element of ax and since a' is an after-parallel of aa therefore A 5 is after

an element of a2 .

Thus A$ is between the parallel optical lines al and a2 .

THEOREM 42

// A!, A z
and A$be three elements in a separation line and if A 3 lies

between a pair of parallel optical lines through A l and A% in an inertia

plane containing the separation line, then A 3 also lies between a second

pair of parallel optical lines through A l and A 2
in the inertia plane.

Let al and a2 be a pair of parallel optical lines through A l and A 2

respectively in the inertia plane and suppose that A% lies between them.

We may without loss of generality suppose that A% is after an

element of a2 and before an element of a
l

.

Let fcx be the second optical line which passes through A
l
in the

inertia plane and let 6
2 be the second optical line which passes through

A 2 in the inertia plane.

Then, since al and a2 are parallel, b
l
and 62 are also parallel.

But since A 3 and A l lie in a separation line, A^ is neither before nor

after A l ,
and since A 3 is before an element of a

l therefore by Theorem 40

A 3 is after an element of b l .

Similarly A 3 is neither before nor after A 2 and, since A$ is after an

element of a2 , therefore, by Theorem 40, A% is before an element of 62 .

Thus A 3 is between the parallel optical lines bl
and 6

2 passing through

A l and A% respectively in the inertia plane.

Since there are only two optical lines in an inertia plane which pass

through a given element of it, it follows directly from the above

theorem that ifA ,A 2and A^be three elements in a separation line and if

A 3 lies between a pair of parallel optical lines through A l and A 2 in an

inertia plane containing the separation line, then A 2 does not lie between

a pair of parallel optical lines through A l
and A z in the inertia plane.

Similarly A 1 does not lie between a pair of parallel optical lines

through A 2 and A% in the inertia plane.

THEOREM 43

IfA^and A%be anytwo elements of a separation line, there is at least one

other element of the separation line such that A 2 lies between a pair of

parallel optical lines through A : and tfiat element in an inertia plane

containing the separation line.

Using the notation employed in Theorem 41 let us take any element,

say AQ ,
in the optical line 62 and before A 2 and consider the optical line

through A Q parallel to a2 .
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Call this optical line a".

Then since A 6 is before A z therefore a" is a before-parallel of a2 , and

since a2 is a before-parallel of a1 therefore a" is also a before-parallel

of ax .

Further, a" lies in the inertia plane and so by Post. XV it has an

element in common with the separation line.

Call this element A 7 .

Then A 2 is before A 3 an element of a
l
and is after A Q an element of a".

Thus A 2 is between the parallel optical lines a
l
and a" passing

through A and the element A 1 respectively and lying in the inertia

plane.

THEOREM 44

Of any three distinct elements of a separation line in a given inertia

plane there is one which lies between a pair ofparallel optical lines through

the other two and in the inertia plane.

Let A 19 A 2 and A% be any three distinct elements in the separation

line.

Then, since there are two optical lines in an inertia plane passing

through any element of it, let us select one of those passing through one

of these elements, say A ly and the parallel optical lines through A 2

and A 3 .

Call these optical lines av ,
a2 and #3 respectively.

Then al ,
a
2 ancl aa

a^ intersect any generator of the inertia plane

belonging to the opposite set.

Let b be such a generator and suppose that al ,
a 2 and a 3 intersect 6 in

the elements A^', A% and A 3

'

respectively.

Then A^, A 2

' and A% being all elements of the optical line 6, and

being all distinct, it follows that of any two of them one must be after

the other.

Thus remembering that Post. Ill must be satisfied it follows that

either

or

or

or

or

or

In case (1) a2 is an after-parallel of ax and a before-parallel of a3 and

so each element of a2 is between the parallel optical lines ax
and a3 .
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Thus A 2 is between a pair of parallel optical lines through A 1
and

A 3 in the inertia plane.

Similarly in case (2) a2 is an after-parallel of a3 and a before-parallel

of al and therefore again A 2 is between a pair of parallel optical lines

through A l and A% in the inertia plane.

In a similar manner in cases (3) and (4) A 3 is between a pair of

parallel optical lines through A : and A 2 in the inertia plane; while in

cases (5) and (6) A l is between a pair of parallel optical lines through
A

2 and A% in the inertia plane.

Thus in all cases one of the three elements is between a pair of

parallel optical lines through the other two and in the inertia plane.

THEOREM 45

//A be an element of an optical line a and if B be an element which is

neither before nor after any element of a, then no element of the separation

line AB, with the exception of A, is either before or after any element of a.

Let C be any element of the separation line AB other than A, and let

c be an optical line through C parallel to a.

Suppose, if possible, that C is either before or after some element of a.

Thenc would be either a before- or after-parallel ofa and accordingly

c and a would be generators of an inertia plane which would contain

the two elements A and C ofthe separation line AB and would therefore

contain every element of A B.

Thus the element B would lie in an inertia plane containing the

optical line a, and therefore, by Theorem 33, B would be either before

or after an element of a, contrary to hypothesis.

Thus the assumption that any element of the separation line AB,
other than A, is either before or after any element of a leads to a con-

tradiction and therefore is not true and so no element of AB with the

exception of A is either before or after any element of a.

SETS OF THREE ELEMENTS WHICH DETERMINE INERTIA PLANES

Let A!, A 2 and A% be three distinct elements which do not all lie in

one general line, then A l and A% must lie in one general line, A 2 and A 3

in a second and A% and A l in a third.

These three general lines need not however lie in one inertia plane,

although they do in certain cases.

In these latter cases the three elements determine the inertia plane

containing them, since if they should lie in two distinct inertia planes

they would lie in one general line, contrary to hypothesis.
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It is important to have criteria by which we can say that a set of

three elements does lie in one inertia plane.

CASE I . Three elements A l , A 2 ,
A 3 lie in one inertia plane ifA l and

A
g lie in an optical line while A 3 is an element not in the optical line but

before some element of it, or after some element of it.

This is clearly true, since, ifA
l and A 2 lie in the optical line a, while

A.j does not lie in a but is before some element of it, then there is a before-

parallel optical line, say b containing A 3 ,
and so a and b are a pair of

parallel generators of an inertia plane, containing A l9 A 2 and A 3 and

which is determined by them.

Similarly if A% be after some element of a there is a definite after-

parallel optical line b containing A%, and the two optical lines a and b

are a pair of parallel generators of an inertia plane containing A lf A 2

and AS and which is determined by them.

CASE 1J. Three elements A v ,
A

2 ,
A 3 lie in one inertia plane if A l

and A 2 lie in an inertia line and A% be any element outside the inertia

line.

This can also be readily seen to hold since if a denote the inertia line

containing A^ and A
2 then by Post. XIV (a) there is one single element,

say A 4 ,
common to the inertia line a and the sub-set oc3 ,

and by Post.

XIV (/;) there is one single element, say A, common to the inertia line

a and the sub-set /S3 .

Thus A 3 and A lie in one optical line while A% and A b lie in another

optical line.

These two optical lines may be taken as generators of opposite sets

of an inertia plane containing A 3 ,
A 4 and A 5 .

But since this inertia plane contains the two elements A^ and A^ of

the inertia line a, it must contain every element of a and therefore

contains A l and A%.
Thus the three elements A l ,

A 2 and A% lie in one inertia plane which

is determined by them.

CASE III. Three elements .4^ A 2 , A% lie in one inertia plane if A l

and A 2 lie in a separation line and if A% be an element not in the

separation line but before at least two elements of it or after at least two

elements of it.

In order to show this let a be the separation line containing A and

A 2 and suppose J 3 is before the elements A and A 5 of a which are

supposed distinct.

Then A^ and A must lie either in an optical line or an inertia line
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since A4 is afterA 3 , and similarlyA 3 andA 5 must lie either in an optical

line or an inertia line and the two general lines A^A^ and A ZA 6 are

distinct.

If A^AI and A 3A 5 be both optical lines, then they may be taken as

generators ofopposite sets ofan inertia plane containing A% ,
A andA 6 .

But this inertia plane, since it contains the two distinct elements

A and AS ofthe separation line a, must contain every element of it and

so must contain A l and A%.
Thus A l9 A 2 and A 3 lie in one inertia plane which is determined by

them.

We shall suppose next that at least one of the general lines A^A^
and A 3A 6 is an inertia line.

Let us say that A 3A is an inertia line.

Then by Case II the three elements ^4 3 ,
J.4 and A b lie in one inertia

plane which is determined by them.

But since this inertia plane contains the two elements A and A- of

the separation line a, therefore it contains every element of a and so

must contain A l and A 2 .

Thus A 19 A 2 and A% lie in one inertia plane which is determined by
them.

The case whenA 3 is after two distinct elements ofa is quite analogous.

IfA l and A% lie in an optical line a while A 3 is an element which is

neither before nor after anyelement of a, then the three elements do not

lie in one inertia plane, for by Theorem 45 no element of the general

line ^4x^3 with the exception of A l is either before or after any element

of a.

But ifA 1 ,
A 2 andA 3 should lie in an inertia plane there would be two

optical lines through A 2 in the inertia plane and both of these would

have an element in common with the separation line A^ 3 .

Thus there would be at least two elements ofAA Z which would be

before or after A 2 , contrary to Theorem 45.

Thus A l9 A 2 and A 3 do not lie in one inertia plane.

If A 1 and A 2 lie in a separation line a, while A% is before one single

element of a or after one single element of a, then the three elements

Al9 A 2 ,
A3 cannot lie in one inertia plane.

This is easily seen, for ifwe suppose that they do all lie in one inertia

plane, there are two optical lines through A 3 in the inertia plane which

have each an element in common with a.
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Ifthese elements be calledA andA 5 then, since a is a separation line,

A i is neither before nor after A 5 and so A and A 5 must be either both

before or both after A%, contrary to the hypothesis that there is only
one single element of a which A 3 is after or before.

If AI and A 2 lie in a separation line a, while A 3 does not lie in a and

is neither before nor after any element of a, it is also evident from the

above considerations that the three elements A ly A 2 , A% cannot lie in

one inertia plane.

We have not however as yet proved the possibility of this last case,

but shall do so hereafter (Theorem 99). Till then no use will be made of

it, and it is merely mentioned here for the sake of completeness.

Definition. If an inertia plane have its two sets of generators respec-

tively parallel to the two sets of generators of another distinct inertia

plane, then the two inertia planes will be said to be parallel to one

another.

It is clear that ifP be an inertia plane and A be any element outside

it, then there is one single inertia plane containing A, and parallel to P ;

for there is one single optical line through A parallel to the one set of

generators of P and one single optical line through A parallel to the

other set of generators of P.

These are generators of opposite sets of an inertia plane containing

A and determine that inertia plane, which is therefore unique.

It is further clear that two parallel inertia planes can have no

element in common, for if the element A lies outside the inertia plane

P and if a be an optical line passing through A and parallel to a

generator of P, then a can have no element in common with P since

otherwise it would require to lie entirely in P, contrary to the hypothesis
that A is outside P.

Similarly any optical line 6 which intersects a and is parallel to a

generator of P of the opposite set can have no element in common
with P.

But if Q be the inertia plane passing through A and parallel to P,

every element of Q must lie in an optical line such as b and so P and Q
can have no element in common.

It is also clear from the definition that tivo distinct inertia planes
which are parallel to the same inertia plane are parallel to one another ;

since distinct optical lines which are parallel to the same optical line

are parallel to one another.
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THEOREM 46

Ifan inertia plane P have one element in common with each of a pair of

parallel inertia planesQandR, then, ifP have a second element in common
with Q, it has also a second element in common with E.

IfP and Q have two elements in common they must have a general

line in common which we may call a.

LetBl be the element which by hypothesis P andR have in common.

Then ifa be an inertia or separation line it follows by Theorem 36 and

Post. XV that both the optical lines through B1 in the inertia plane P
have an element in common with a, while if a be an optical line one of

the optical lines through J5X in P has an element in common with a.

Thus in all cases at least one of the optical lines through Bl in the

inertia plane P has an element in common with a.

Let A l be such an element.

Suppose first that a is an optical line.

Then a is one of the generators of Q and since the inertia plane R
is parallel to Q and since B lies in R there will be one of the generators

of R passing through B and parallel to a.

Since A l and Bl
lie in an optical line and are distinct, the one must

be after the other and so this parallel to a through Bl must be either

a before- or after-parallel of a.

Let us denote it by b.

Then a and b determine an inertia plane which contains three distinct

elements of P which are not all in one general line and so this inertia

plane must be identical with P.

Thus since it contains the optical line b it follows that P has a second

element in common with R.

Suppose next that a is an inertia or separation line and let c be one

of the generators of Q which pass through A l .

Then since R is parallel to Q and since Bl lies in R there will be one

of the generators of R passing through Bl and parallel to c.

Since A l and Bl lie in an optical line and are distinct, the one must

be after the other and so this parallel to c through Bl must be a before-

or after-parallel.

,Let C be any element of c distinct from A l and let an optical line

through C intersect the optical line through B^ parallel to c in the

element D.

Then by Theorem 30 the optical line CD must be a before- or after-

parallel of the optical line A, JB, .
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Let the second optical line through C in the inertia plane Q meet a

in the element A 2 .

The element A 2 must exist since a is an inertia or separation line.

Since the optical line CA 2 must be a generator ofQ ofthe opposite set

to c, there must be an optical line through D in the inertia plane E
which is parallel to CA 2 and is a generator of R of the opposite set to

Since C and D lie in an optical line and are distinct, the one must be

after the other and so this parallel to CA 2 through D must be a before-

or after-parallel.

Let an optical line through A 2 intersect the optical line through D
parallel to OA 2 in the element B2 .

Then byTheorem 30 the optical line A 2B2 must be a before- or after-

parallel of CD and CD is a before- or after-parallel of A 1
B

1 ,
and so if

AB and A 2B2 be distinct they must be parallel to one another.

Now the optical lines CA l
and CA 2 are distinct from the inertia or

separation line a and are also distinct from one another.

Also the element C cannot lie in a since then CA l would have to be

an inertia or separation line.

Thus the elements A l and A 2 are distinct and since they lie in an

inertia or separation line they cannot lie in one optical line.

Thus A 2B2 is distinct from A lBl and is therefore parallel to it.

Also since the general line a and the optical line A lBl lie in the inertia

plane P and since the element A 2 does not lie in A lBl it follows by
Theorem 33 that A 2 is either before or after some element of A 1BL .

Thus A 2B2 must be either a before- or after-parallel of A lBl
and so

the optical lines A l
Bl and A 2B2 lie in an inertia plane containing the

general line a and the element Bl .

This inertia plane must therefore be identical with P and it contains

the element J82 in common with E where B2 is distinct from Bl .

Thus the theorem holds in all cases.

REMARKS

It follows directly from this theorem that if two distinct inertia

planes P and Q have a general line in common and, if further, P has one

element in common with an inertia plane E which is parallel to Q, then

P and E have a general line in common.

Further, since Q and E can have no element in common, it follows

that these two general lines have no element in common.

Again ifQ andE be two parallel inertia planes and ifa be any general
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line in Q, then there is at least one inertia plane containing a and

another general line in R.

This may be shown in the following way:
Let A

l
be any element of a and let / be any inertia line in E.

Then by Post. XIV (a) there is one single element common to the

inertia line / and the sub-set o^ . Let B be this element and let A 2 be

any element off which is after B.

Then A 2 is after A l but does not lie in ax and so A and A 2 lie in an

inertia line.

Thus A 2 and a lie in an inertia plane, say P, which by Theorem 46

must contain a second element in common with R.

Thus P contains a and another general line in R.

It is easy to see that there are really an infinite number of inertia

planes which have this property of P.

We have seen that if two distinct optical lines intersect a pair of

optical lines one of which is an after-parallel of the other, then of the

two first-mentioned optical lines one is an after-parallel of the other

(Theorem 30).

We have also seen that it is impossible for an optical line to intersect

a pair of neutral-parallel optical lines.

Thus we may state the following definition :

Definition. If two distinct optical lines intersect a pair of optical

lines one of which is an after-parallel ofthe other, then the four optical

lines will be said to form an optical parallelogram.

It is evident thatan opticalparallelogrammust lie inaninertia plane.

The elements of intersection will be spoken of as the corners of the

optical parallelogram.

A pair of corners which lie in one optical line will be spoken of as

adjacent.

A pair of corners which do not lie in one optical line will be spoken of

as opposite.

A general line passing through a pair ofopposite corners ofan optical

parallelogram will be spoken of as a diagonal line of the optical

parallelogram.

We make a distinction between two optical parallelograms having a

diagonal line in common and having a diagonal in common.

When we speak of two optical parallelograms having a diagonal line

in common we shall mean that a pair of opposite corners of each of the

optical parallelograms lie in the same general line.
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When, on the other hand, we speak of two optical parallelograms

having a diagonal in common, we mean that they have a pair ofopposite
corners in common.

It is obvious that an optical parallelogram has two diagonal lines

and it is easy to see that one of these must be an inertia line, and the other

a separation line.

For if we call the four optical lines a, 6, c and d, and if a be an after-

parallel of 6 while c is an after-parallel of d, then the intersection

element of a and c must be after the intersection element of d and b so

that these two intersection elements lie in an inertia line.

Further, if we denote the intersection element of a and c by A^ ,
that

of a and d by A%, that of c and b by A z and that of d and 6 by A it

follows by Theorem 13 (b) that if A% were either before or after A% then

A 3 would have to lie in the optical line A 2A t ,
or a contrary to hypo-

thesis.

Thus A 3 is neither before nor after A 2 and so A 2 and A 3 lie in a

separation line.

Definition. If a general line a have one single element in common with

a general line 6, then a will be said to intersect b.

Since a general line does not intersect itself and since we may have

two optical parallelograms in the same inertia plane having a diagonal

line in common, it is permissible to speak oftwo optical parallelograms

in the same inertia plane whose diagonal lines of one kind or the other

do not intersect.

This prepares the way for Post. XVI.

POSTULATE XVI. If two optical parallelograms lie in the

same inertia plane, then if their diagonal lines of one kind do

not intersect, their diagonal lines of the other kind do not

intersect.

THEOREM 47

// a be any general line in an inertia plane P and A be any element of

the inertia plane which is not in the general line, then there is one single

general line through A in the inertia plane which does not intersect a.

Let Q be any other inertia plane distinct from P and containing the

general line a, and let R be an inertia plane passing through A and

parallel to Q.

Then by Theorem 46 P and R will have a general line in common

which can have no element in common with a, and so there is at least
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one general line through A in the inertia plane P which does not

intersect a.

We must next show that there is only one such general line.

Consider first the case where a is an optical line.

Then of the two optical lines through A in the inertia plane P we
know that one is parallel to a while the other intersects it.

Further by Theorem 36 any inertia line through A in the inertia

plane P must intersect a.

Also by Post. XV any separation line through A in the inertia plane
P must intersect a.

Fig. 8.

Thus if a be an optical line there is one single general line through A
in the inertia plane P which does not intersect a.

Consider next the cases where a is an inertia or a separation line.

If a be an inertia line, then by Theorem 36 both the optical lines

through A in the inertia plane P intersect a, while by Post. XV every

separation line in P intersects a.

Thus when a is an inertia line any general line through A in the

inertia plane P which does not intersect a can only be an inertia line.

Also from Post. XV it follows that when a is a separation line any

general line through A in the inertia plane P which does not intersect

a can only be a separation line.
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With these provisos the demonstration of the unique character of

the non-intersecting general line is similar in the two cases.

Suppose, if possible, that there are two general lines through A in

the inertia plane, say i and j, which do not intersect a.

Then i andj must intersect in A.

Let b and c be the two optical lines through A in the inertia plane and

let them intersect a in B and C respectively.

Let d be the second optical line through B in the inertia plane and

let e be the second optical line through C in the inertia plane and let d

and e intersect in D.

Then the optical lines 6, c, d and e form an optical parallelo-

gram.
Let m be the diagonal line through A and Z).

Let the optical line d intersect i in E and let the optical line e intersect

i in F.

Let/ be the second optical line through E in the inertia plane and let

g be the second optical line through F in the inertia plane and let/and
g intersect in G.

Then the optical lines/, g, d and e form an optical parallelogram and

the diagonal line i is of the same kind as the diagonal line a of the

optical parallelogram formed by b, c, d and e.

Thus since the diagonal lines a and i do not intersect it follows by
Post. XVI that the diagonal lines of the other kind to the two optical

parallelograms do not intersect.

But the two optical parallelograms have the corner D in common
and so they must have the diagonal line through D in common.

Thus G must lie in m.

Now suppose that the optical line d intersects j in K and that the

optical line e intersectsj in L.

Let k be the second optical line through K in the inertia plane and

let / be the second optical line through L in the inertia plane and let k

and I intersect in M .

Then the optical lines k, I, d and e form an optical parallelogram and

since j is supposed not to intersect a it follows as before that M must

lie in m.

But now we have the optical parallelograms formed by/, g, d and e,

and by k, I, d and e having the diagonal line m in common, and so, by
Post. XVI, their other diagonal lines do not intersect, which is contrary

to the hypothesis that i andj intersected in A.

Thus the hypothesis that there are two general lines through A in
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the inertia plane which do not intersect a leads to a contradiction and

therefore is hot true.

Thus there is in all cases one single general line through A in the

inertia plane which does not intersect a.

THEOREM 48

// two inertia planes P and Q have a general line a in common, and if

A be any element which does not lie either in PorQ, then the inertia-planes

through A parallel to P and Q respectively have a general line in common.

Let R and 8 be the inertia planes through A parallel to P and Q
respectively.

Two possibilities are open : either

(1) Q has one element at least in common with R>

or (2) Q has no element in common with R.

Consider first the case where Q has one element at least in common
with R.

Here, since Q has two elements in common with P and since P and R
are parallel, it follows by Theorem 46 that Q has a second element in

common with R.

Further, since Q and S are parallel and R has two elements in com-

mon with Q and has the element A in common with S, it follows that

R has a second element in common with S and therefore R and 8 have

a general line, say c, in common.

Next consider the case where Q has no element in common with R.

This case has no analogue in ordinary three-dimensional geometry,
but must be considered in our system which is not confined to three

dimensions.

We have seen that there is at least one inertia plane containing a and

another general line, say 6, in R since P and R are parallel.

Let T be such an inertia plane, let B be any element in b and let U
be the inertia plane through B parallel to Q.

Then, since Q and U are parallel and since T contains the general

line a and also the element jB of 7, it follows that T contains a general

line, say &', in U.

But the general lines 6 and &' both contain the element B and neither

of them can intersect a.

Thus, since b and b' both lie in one inertia plane T, it follows by
Theorem 47 that they must be identical, and so 6 must be common to

U and R.
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Now the inertia planes 8 and U are both parallel to Q and therefore

must be either parallel to one another or else identical.

If they are not identical, the inertia plane R has the general line 6 in

common with U and has the element A in common with 8.

Thus in either case R and 8 have a general line in common.

Ifwe consider case (2) ofthe last theorem it is clear that, ifthe general
line a be an optical line, then since the general line 6 lies in the same

inertia plane T and has no element in common with a, it follows by
Theorem 47 that b must also be an optical line and be parallel to a.

If c be the general line common to R and 8, then provided c and 6 are

distinct, it follows in a similar manner that c is an optical line parallel

to b and therefore also parallel to a.

A similar result follows in case (1) and so we always have c parallel

to a provided a be an optical line.

Now we have as yet given no definition of the parallelism ofany type
of general lines except optical lines, but are now in a position to do so.

Definition. If a be a general line and A be any element which does

not lie in it and if two inertia planes R and 8 through A are parallel

respectively to two others P and Q containing a, then the general line

which R and 8 have in common is said to be parallel to a.

THEOREM 49

If a be a general line and A be any element which does not lie in it, then

there is one single general line containing A and parallel to a.

Two cases have to be considered :

(1) The element A lies in an inertia plane containing a.

(2) The element A does not lie in an inertia plane containing a.

Consider first case (1) and let T be the inertia plane containing A
and a.

Let Pl ,
P2 , P3 ,

P4 be any other inertia planes containing a, and let

Qi > #2 > $3 > $4 be inertia planes through A parallel to Px ,
P2 ,

P3 , P4

respectively.

Then, since the inertia plane T has the general line a in common
withPx and has the element A in common with Ql ,

it follows that it has

a general line, say 6, in common with Ql and b does not intersect a.

But, by Theorem 47, there is only one general line through A in the

inertia plane T which does not intersect a and so b must be this general
line.

Similarly Q2 , Q3) Q^ must all contain the general line 6 in common
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with T and so any pair of the inertia planes Q1} Q2 , Q3 , Q4 have the

same general line b in common.
Thus 6 is independent of the particular pair of inertia planes Px ,

P2 ,
P3 ,

P4 which we may select and so there is only one general line

through A parallel to a.

Suppose next that A does not lie in an inertia plane containing a and

suppose that Pl ,
P2 ,

P3 ,
P4 are any inertia planes which are distinct

from one another and all contain a.

Let Q1 , Q2 > Qa 5 $4 be inertia planes through A and parallel to P l ,

P2 ,
P3 ,

P4 respectively.

Let Pn be an inertia plane containing a and a general line b in Ql .

Then 6 is parallel to a and lies in the same inertia plane Pn with it.

If then we take inertia planes Q2 ', Q^', Q through any element of ft

and parallel to P2 , P3 ,
P4 respectively, these will all contain ft and will

also be respectively parallel to Q2 ,Q% , Q4 which contain the element ^4 .

But the general line ft and the element A lie in the inertia plane Ql

and so, by case (1), Q2 , Q3 , Q4 all have the same general line, s tay c, in

common with Ql .

Thus any pair of the inertia planes Q , Q2 , Q3 , Q4 have the same

general line c in common.

It follows that c is independent of the particular pair of the inertia

planes Pl9 P2 ,
P3 ,

P4 which we may select and so there is only one

general line through A parallel to a.

Thus the theorem holds in general.

THEOREM 50

// two distinct general lines are each parallel to a third, then they are

parallel to one another.

Let a and ft be two distinct general lines which are each parallel to

the general line c.

Let Rl and R% be two inertia planes each containing c but not

containing a or ft.

Let Pl
and P2

be two inertia planes parallel respectively to E
l and

jR2 and through any element of a.

Then Pl and P2 each contain a.

Similarly let Ql and Q2 be two inertia planes parallel respectively to

JfJj
and JR2 and containing ft.

Then Ql is either parallel to Pl
or identical with it, while Q2 is either

parallel to P2 or identical with it.

In either case we must have a parallel to ft.
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REMARKS

If a and b be any pair of parallel general lines, it is easy to see that

they must be general lines of the same kind, for we know already that

two parallel general lines in one inertia plane must be of the same kind,

and by two applications of this result it follows that ifa and b do not lie

in one inertia plane they must also be of the same kind.

THEOREM 51

// two parallel general lines a and b lie in one inertia plane R and if two

other distinct inertia planes P and Q containing a and b respectively have

an element A in common, then P and Q have a general line in common
which is parallel to a and b.

Let any element in 6 be selected and let 8 be the inertia plane through
this element and parallel to P.

Thenthe general line b must lie in S and so, since Q contains the general
line b and the element A, it follows that P and Q contain a general
line in common which is parallel to b and therefore also parallel to a.

THEOREM 52

If a pair of non-parallel general lines a and b lie in one inertia plane P
and if through an element A not lying in the inertia plane there are two

other general lines c and d respectively parallel to a and 6, then c and d

lie in an inertia plane parallel to P.

Let R be any inertia plane distinct from P which contains a but not

A, and let S be any inertia plane distinct from P which contains b but

not A.

Let P' be the inertia plane through A parallel to P, while R' and S'

are the inertia planes through A parallel to R and 8 respectively.

Then P' and R r

have a general line in common which is parallel to a

and since it passes through A must be identical with c
;
while P' and

S' have a general line in common which is parallel to b and since it

passes through A must be identical with d.

Thus c and d lie in the inertia plane P' which is parallel to P.

THEOREM 53

// three distinct inertia planes P, Q and R and three parallel general

lines a, b and c be such that a lies in P and R,binQ and P and c in R and

Q, then if Q' be an inertia plane parallel to Q through any element of P
which does not lie in b the inertia planes R and Q' have a general line in

common which is parallel to c.

Since the inertia plane P contains two elements in common with Q
6*2
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and one element in common with the parallel inertia plane Q', it follows

by Theorem 46 that P and Q' have two elements in common and there-

fore have a general line in common which is parallel to b. Call this

general line d.

If this general line should happen to coincide with a, the result

follows directly.

We shall therefore consider the case where it does not coincide with a.

Let A be any element in a.

Then, in case a be an optical line, the other optical line through A in the

inertia planeP will intersect 6, while, ifa be an inertia or separation line,

both the optical lines through A in the inertia plane P will intersect b.

Thus in all cases there is at least one optical line through A in the

inertia plane P which intersects b.

Let such an optical line intersect b in B and let an optical line

through B in the inertia plane Q intersect c in O.

Then BA and BC may be taken as generators of opposite sets of an

inertia plane, say S, which contains A, B and C.

Now the general line a is parallel to b and therefore also parallel to d,

and, since BA passes through A, is distinct from a, and lies in the

inertia plane P, it follows that BA intersects d in some element, say D,
which accordingly lies in the inertia plane Q'.

But since D lies inBA it lies in the inertia plane S and thus S contains

two elements (B and C) in common with Q and an elementD in common
with the parallel inertia plane Q' .

It follows by Theorem 46 that S contains a second element in com-

mon with Q' and so S and Q' contain a general line in common which

must be parallel to CB.

If we denote this general line in S and Q' by g, then any general line

through C in the inertia plane S, with the exception of CB, must

intersect g.

But the element A does not lie in b and so does not lie in the inertia

plane Q and therefore does not lie in CB.

Thus since the general lineCA is distinctfrom CB, and since CA must

lie in S, it follows that CA must intersect g in some element, say F.

But C and A both lie in the inertia plane E which accordingly must

contain the general line CA and therefore the element F.

Thus since the inertia plane E contains the general line c in common
with Q and contains the element F in the parallel inertia plane Q', it

follows that E must have a general line in common with Q' and this

general line must be parallel to c.



GEOMETRY OF TIME AND SPACE 85

THEOREM 54

//Pl
andP2 be a pair ofparallel inertia planes while an inertia plane Ql

fias parallel general lines a and b in common with Pl and P2 respectively

and if Q2
be an inertia plane parallel to Q^ through some element (say C)

ofP2 which does not lie in 6, then the inertia planes P: and Q2 will have a

general line in common ivhich is parallel to a and b.

Since Q2
is parallel to Ql and since P2 has the general line b in common

with Ql and has the element C in common with Q2 ,
it follows, by

Theorem 46, that P2 and Q2 have a general line (say e) in common
which is parallel to b and therefore also to a.

Let A be any element of a and let g be any inertia line in P2 which

does not coincide with either b or c, while G is the one single element

common to g and the a sub-set of A. Then AG is an optical line.

Let E be any element of g which is after G but does not lie either in

b or c.

Then AE will be an inertia line so that E and the general line a lie

in an inertia plane which we shall call R.

Then, by Theorem 5 1
,
P2 and R have a general line (say e) in common

which is parallel to a, b and c.

But now, by Theorem 53, since the three distinct inertia planes

P>2 j Qi and R and the three parallel general lines e, b and a are such that

e lies in P2 and R, b in Q l
and P2 and ain R and Q1 ,

and since further

Q2 is an inertia plane parallel to Q through the element C ofP2 which

does not lie in 6, it follows that R and Q2 have a general line (say/) in

common which is parallel to a and therefore also to e and c.

Making use of the same theorem a second time, we have the three

distinct inertia planes J?, P2 and Q2 and the three parallel general lines

/, e and c such that / lies in R and Q% ,
e in P2 and R and c in Q2 and P2 ,

and so, since P1 is an inertia plane parallel to P2 through an element

ofR which does not lie in e, it follows that the inertia planes Q2 and Pl

have a general line (say d) in common which is parallel to c and therefore

also parallel to a and b.

Thus the theorem is proved.

THEOREM 55

(a) // a and b be two parallel separation lines in the same inertia plane

and if one element of b be before an element of a, then each element of b is

before an element of a.

Let A be the element of b which by hypothesis is before an element

of a.
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Let the two optical lines through A in the inertia plane be called

c and d.

Let B be any other element of 6.

Then by Theorem 40B must be before an element ofone ofthe optical

lines c and d and after an element of the other.

It will be sufficient to consider the case when B is before an element of

c and after an element of d, since the proof in the other case is similar.

Let e and/ be the two optical lines through B in the inertia plane and

let e be the one which is parallel to c. Then / intersects c in some

element C.

Also c intersects a in some element D (Post. XV) and D must be

after A ;
for since A is before an element of a, we should otherwise have

one element of a after another, contrary to the hypothesis that a is a

separation line.

Now, since B is before an element of c and cannot also be after an

element of c, and since G lies in the optical line /through B, it follows

that C is after B.

Now C cannot be before A for then A would be after B, contrary to

the hypothesis that A and B lie in a separation line.

If C be either before D or coincident with Z>, then B is before D an

element of a.

Suppose next that C is after D and let E be the element in which /
intersects a.

Let h be the second optical line through D in the inertia plane and

let g be the second optical line through E in the inertia plane and let g

and h intersect in F.

Then the optical lines c, /, li and g form an optical parallelogram
whose diagonal line through D and E is a.

Letj be the other diagonal line through G and F, thenj is an inertia

line.

Let the optical lines d and e intersect in G.

Then the optical lines c, /, d and e form an optical parallelogram
whose diagonal line through A and B is 6.

Thus in the two optical parallelograms, since the diagonal lines a

and 6 do not intersect, it follows that the diagonal lines ofthe other kind

do not intersect (Post. XVI).
But the two optical parallelograms have the corner C in common and

so they must have a diagonal line in common and so G must lie inj.

Also D is after A and so h must be an after-parallel of d.

But, sinceF and G are elements ofj which is an inertia line, it follows
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that the one is after the other
;
and since no element of d can be after an

element of h, it follows that F must be after 0.

Thus since F is an element ofg and G is an element of e, it follows that

g is an after-parallel of e.

But since E and B lie in the optical line/, one of them must be after

the other, and since B lies in e it cannot be after E which is an element

of g.

Thus E is after B and so B is before an element of a.

Thus in all cases B is 6e/ore an element of a.

(b) // a emr/ 6 6e wo parallel separation lines in the same inertia plane
and if one element of b be after an element of a, then each element of b is

after an element of a.

THEOREM 56

(a) If a and b be a pair of parallel separation lines in the same inertia

plane and ifan optical line c intersects a in A : and b in B while a parallel

optical line d intersects a in A 2 and b in B2 ,
then if Bl

is before A l we

have also B2 before A 2 .

By Theorem 55, since B
1

is before A ly therefore B2 is before an

element of a.

But since A
2 and B

2 are distinct elements in the optical line d,

therefore one of them is after the other.

Further,B2 could not be afterA 2 for then since B2 is before an element

of a we should have A 2 before this element of a, contrary to the hypo-
thesis that a is a separation line.

Thus B2 must be before A 2 .

(b) If a and bbea pair of parallel separation lines in the same inertia

plane and ifan optical line c intersects a in A l and b in B
l while a parallel

optical line d intersects a in A
2
and b in B2 ,

then if B^ is after A l we have

also B2 after A 2 .

THEOREM 57

(a) // a and b be a pair of parallel inertia lines in the same inertia

plane and ifan optical line c intersect a in A l and b in B
,
ivhile a parallel

optical line d intersects a in A 2 and b in B2 ; then if Bl is before A v we

have also B2 before A 2 .

SinceB andB2 are elements of an inertia line 6, one of them must be

after the other.
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We shall first consider the case when J32 is after B .

Let e be the second optical line through B2 in the inertia plane and

let/ be the second optical line through Bl
in the inertia plane.

Then since, by hypothesis, d is parallel to c it follows that e must

intersect c in some element (7, while d must intersect / in some ele-

ment F.

But, since B2 is after Bl ,
it follows that e must be an after-parallel

of/ and d must be an after-parallel of c.

Thus, since Bl and C lie in one optical line, it follows that C is after

B
l
and similarly, since J32 and C lie in one optical line, it follows that

J52 is after C.

Let the optical line e intersect a in D.

If then C is before A l we shall have A l
in the a sub-set of C and by

Post. XIV (b) there is one single element common to the inertia line a

and the j3 sub-set of (7, and since there are only two optical lines through
C in the inertia plane, it follows that this element must be identical

with/).

Thus D is before C and C is before J32 and consequently D is before B2

and since D and J32 lie in one optical line it follows that D lies in the

/8 sub-set of J32 .

If (7 were identical with A
l ,

it would also be identical with 1) and

again D would lie in the /3 sub-set ofB2 .

But by Post. XIV (a) there is one single element common to the

inertia line a and the a sub-set of J52 and since there are only two

optical lines through B2 in the inertia plane this element must lie in d

and must therefore be identical with A z .

Thus since A 2 lies in the a sub-set of B% and is not identical with B% ,

therefore B2 must be before A 2 .

Thus in case C is either before A l or identical with A l we have #2

before A 2 .

Next suppose C is after A l
.

Then the optical lines e, rf, c and / form an optical parallelogram
whose diagonal line through B1 and B% is 6.

Letj be the other diagonal line through C and F.

Then since b is an inertia line, j must be a separation line.

Again let g be the second optical line through D in the inertia plane
and let h be the second optical line through A l

in the inertia plane and

let g and h intersect in E.

Then the optical lines e, g, c and h form an optical parallelogram
whose diagonal line through A 1 and D is a.
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Thus the two optical parallelograms formed by e, d, c and/ and by
e, g, c and h have diagonal lines of one kind, b and a, which do not

intersect and so by Post. XVI their diagonal lines of the other kind do

not intersect.

But the two optical parallelograms have the corner C in common
and so they have the diagonal line through C in common.
Thus E lies in j and sincej is a separation line E is neither before nor

after F.

But since A l is after Bl
it follows that h is an after-parallel of/ and

so E must be after an element of/.

But since E is neither before nor after F, it follows by Theorem 40

that since E is after an element of/ it must be before an element of d.

Thus g is a before-parallel of d and since D and B2 lie in the optical

line e which intersects g in D and d in B2 ,
it follows that D is before B2 -

Thus D lies in the fl sub-set of B2 and in the optical line e.

But by Post. XIV (a) there is one single element common to the inertia

line a and the a sub-set ofB2 and since there are only two optical lines

through B2 in the inertia plane it follows that this element must lie in

d and is therefore identical with A 2 .

Thus since A 2 is in the a sub-set of B2 and is not identical with JS2 ,

therefore B2 is before A 2 .

This proves the theorem provided B2 is after B .

Suppose now that B
l
is after B2 .

Then c must be an after-parallel of d and, since A
l
and A 2 lie in c

and d respectively and, since they both lie in the inertia line a, it follows

that A l must be after A 2 .

Suppose now, if possible, that A 2 is before 2 ,
then reversing the

roles of the inertia lines a and /; it would follow from what we have

already proved that, c and d being parallel, A l would have to be before

B19 contrary to hypothesis.

Thus, since B2 must be either after or before A 2 and cannot be after,

it follows that B2 is before A 2 .

(b) If a and b be a pair of parallel inertia lines in the same inertia

plane and ifan optical line c intersect a in A and b in B
l while a parallel

optical line d intersects a in A 2 and b in B2 ; then if B^ is after A : ive have

also B2 after A 2 .

Since a pair of parallel inertia lines always lie in an inertia plane, the

words "in the same inertia plane
"
may be omitted in the enunciation

of this theorem.
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THEOREM 58

// two elements A and B lie in one optical line and if two other elements

C and D lie in a parallel optical line in the same inertia plane, then if A
be after B and C after D the general lines AD and EC intersect.

Let a be the optical line containing A and J5, and let b be the parallel

optical line containing C and D.

Then the general lines AD and EC cannot be parallel optical lines,

for since E is before A an optical line through B which intersected b

would be a before-parallel of an optical line thoughA which intersected

b and so the element in which the former optical line intersected b would

be before the element in which the latter optical line intersected 6.

Further, Theorems 56 and 57 show that AD and EC cannot be

either parallel separation lines or parallel inertia lines.

Again AD and EC cannot both be optical lines for we know that two

optical lines which intersect a pair of parallel optical lines are them-

selves parallel.

Thus we are left with the following possibilities as to the general lines

AD and EC\

(1) One is an optical line and the other an inertia line.

(2) One is an optical line and the other a separation line.

(3) One is a separation line and the other an inertia line.

(4) Both are inertia lines.

(5) Both are separation lines.

In case (1) Theorem 36 shows that the general lines intersect.

In cases (2) and (3) it follows from Post. XV that the general lines

intersect.

In cases (4) and (5), since we have shown that the two general lines

cannot be parallel, it follows by Theorem 47 that they must intersect.

Thus in all cases the general lines AD and EG intersect.

Definitions. If four optical lines form an optical parallelogram, they

will be spoken of as the side lines of the optical parallelogram.

A pair of side lines which do not intersect will be called opposite.

The element of intersection of the diagonal lines will be spoken of as

the centre of the optical parallelogram.

THEOREM 59

Ifany two distinct elements A and be taken in an inertia or separation

line i in a given inertia plane, then there is one single opticalparallelogram

in the inertia plane having as the centre and A as one of its corners.
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Let a and 6 be the two optical lines through A in the inertia plane

while c and d are those through 0; the optical line c being parallel

to a and the optical line d parallel to b.

Letj be the second diagonal line of the optical parallelogram formed

by a, 6, c and d.

Then by Theorem 47 there is one single general line through and

parallel to j.

Call this general line Jc and let a intersect k in D while b intersects

k in C.

The elements of intersection must exist since k, being parallel to j,

must be an inertia or separation line according as i is a separation or

inertia line
;
while a and b are both optical lines.

Let e be the second optical line through C in the inertia plane, while

/is the second optical line through D in the inertia plane and let e and

/ intersect in B.

Then a, 6, e and/ form an optical parallelogram in the same inertia

plane with that formed by a, 6, c and d and their diagonal lines of one

kind k andj do not intersect and so by Post. XVI their diagonal lines

of the other kind do not intersect.

But the corner A is common to both optical parallelograms and so

the diagonal line i which passes through that corner must be a diagonal

line of both optical parallelograms.

Thus B must lie in i and so is the centre ofthe optical parallelogram

formed by a, b, e and/, while A is one of its corners.

Again, if there were a second optical parallelogram in the inertia

plane having as centre and A one of its corners, then such an optical

parallelogram would have i as one of its diagonal lines and so the other

diagonal lines of the two optical parallelograms would not intersect.

Further, since the two optical parallelograms have the element

common to these other diagonal lines, the latter must be identical.

But there are only two optical lines, a and 6, through A in the inertia

plane and these intersect k in D and C respectively, which must

accordingly be a pair of opposite corners of the second optical paral-

lelogram.

But then the second optical parallelogram would have e and/ as its

remaining side lines and so could not be distinct from the first optical

parallelogram.

Thus there is no second optical parallelogram in the inertia plane

having as centre and A as one of its corners.
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THEOREM 60

Iftwo optical parallelograms have two opposite corners in common, then

they have a common centre.

Two cases are possible :

(1) The common opposite corners may lie in an inertia line.

(2) The common opposite corners may lie in a separation line.

We shall consider first the case where they lie in an inertia line.

Let A and B be the two common opposite corners of the optical

parallelograms: B being after A.

Let C and D be the other pair of opposite corners of the one optical

parallelogram which we shall suppose to lie in an inertia plane P, while

C' and D' are the other pair of opposite corners of the other optical

parallelogram which we shall suppose to lie in an inertia plane P'.

Then P and P r must be distinct if the optical parallelograms are

distinct.

Let O be the centre of the optical parallelogram whose corners are

A,B y C, D, and let OE and OF be optical lines through parallel to GB
and AC respectively and intersecting AC and CB in E and F re-

spectively.

Then E, C, F and form the corners of an optical parallelogram in

the inertia plane P, and this optical parallelogram and the one whose
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corners are A, C, B and D have the common diagonal line CD and so

their diagonal lines of the other kind do not intersect.

Thus AB and EF are parallel and EF is an inertia line.

Now let OE f and OF' be optical lines through parallel to C'B

and AC' respectively and intersecting AC' and C'B in E' and F'

respectively.

Then AC and AC' may be taken as generators of opposite sets of an

inertia plane Ql ,
while OF and OF' will be generators of opposite sets

of a parallel inertia plane Q2 .

Similarly BC and BC' may be taken as generators of opposite sets of

an inertia plane Rl ,
while OE and OE 1

will be generators of opposite
sets of a parallel inertia plane R2 .

But Q l and Rl have the general line CC f

in common, while Q l and R2

have the general line EE' in common and so since Ml and R2 are parallel

it follows that CC' and EE' are parallel.

Again since R and Q2 have the general line FF' in common and

since Q{ and Q2 are parallel, it follows that FF' and CC' are parallel.

Thus FF' is parallel to ##'.

But since EF is an inertia line there exists an inertia plane con-

taining E 9
F and F'. Let 8 be this inertia plane.

Then there exists in 8 a general line through E which is parallel to

FF' and, since there can be only one parallel to FF' through E, this

must be identical with the general line EE'.

Thus E' must lie in the inertia plane S.

But since AB and EF are parallel and lie in P while P' and S are two

other distinct inertia planes containing AB and EF respectively and

since P' and S have an element F' in common, it follows by Theorem 51

that the general line E'F' which is common to P' and S is parallel

to AB.
But now E', C', F' and form the corners ofan optical parallelogram

in the inertia plane P', and this optical parallelogram and the one

whose corners are A
, C', B andD f have one pair ofdiagonal lines, namely

E'F' and AB, which do not intersect and so their diagonal lines of the

other kind do not intersect.

But these latter diagonal lines are C'O and C'D' respectively and so

since they have the element C' in common it follows that they are

identical.

Thus the element must lie in C'D' and since it also lies in AB it

follows that is the centre of the optical parallelogram whose corners

are A, C", B 9 D'.
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Thus the optical parallelograms having A and B as opposite corners

have a common centre 0.

We have next to consider the case where the common opposite

corners lie in a separation line.

Let A and B be the two common opposite corners of the optical

parallelograms : B being neither before nor after A .

Let C and D be the other pair of opposite corners of the one optical

parallelogram, which we shall suppose to lie in an inertia plane P,

while C' and D' are the other pair of opposite corners of the other

Fig. 10.

optical parallelogram, which we shall suppose to lie in an inertia

plane P'.

Then P and P r must be distinct if the optical parallelograms are

distinct.

We shall further suppose D to be after C and D' after C'.

Now the following pairs of intersecting optical lines may be taken as

generators of opposite sets of certain inertia planes which we shall

denote by the following symbols opposite each pair.
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Optical lines Inertia plane

CA zndC'A Ql

BD and#D' Q2

CB andC"J3 jRa

AD and AD' E2

AC'and AD . . . . Sl

BD'^dBC S2

BC' and BD 2\
AD' and AC T

2

Of these inertia planes we evidently have those pairs parallel which

are represented by the same letters.

Thus the general line C'D, since it lies in S and T: , must be parallel

to the general line CD', since the latter lies in S2 and T2 .

Similarly the general line DD f

',
since it lies in Q2 and R2 ,

must be

parallel to the general line C'C, since the latter lies in Ql and jRx .

But CD is an inertia line and so there is an inertia plane containing

C, D and D', and if we call this inertia plane U then U contains the

general lines CD' and DD' and so U must also contain the general lines

through D parallel to CD' and through C parallel to DD' .

That is : the inertia plane U must contain C'D and C'C.

Thus U must contain C' and therefore contains C'D' .

Thus the centres of the two optical parallelograms must lie in the

inertia plane U and in the separation line AB.
The inertia plane U cannot however have more than one element in

common with AB, for otherwise it would contain both A and B, and

since U contains D we should have U identical with P
;
but U contains

D' which does not lie in P and so this is impossible.

Thus the element in which CD intersects AB must be identical with

the element in which C'D' intersects AB, or in other words the two

optical parallelograms have a common centre.

Thus the theorem is proved.

THEOREM 61

Iftwo optical parallelograms have two adjacent corners in common, then

optical lines through the centres of the optical parallelograms and inter-

secting their common side line intersect it in the same element.

Let A and B be the two common adjacent corners of two optical

parallelograms which we shall suppose to lie in separate inertia planes

P and P'.
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We shall suppose C and D to be the other corners of the optical

parallelogram in P and shall suppose C to be opposite to B and D
opposite to A .

We may further, without limitation of generality, take the diagonal

line CB as the inertia diagonal line.

We shall suppose C' and D' to be the remaining corners of the optical

parallelogram in P' and we shall take C' opposite to B and D' opposite

to ,4.

Let be the centre of the optical parallelogram in P and let the one

optical line through O in the inertia plane P intersect AB in M, while

the other optical line in P through intersects AC in E.

Fig. 11.

ThenA,E,0 andM form the corners ofan optical parallelogram also

in the inertia plane P.

The optical parallelograms whose corners are A, E,0 9
M and A, C,

Z), B have the diagonal line AD in common and so, by Post. XVI, their

diagonal lines of the other kind do not intersect.

Thus EM and CB are parallel.

Now let MN be the optical line through M parallel to AC' and let

MN intersect the diagonal line C'B in O'.

Let O'E' be the optical line through 0' parallel to MA and inter-

secting AC' in E'.

Then O'E' is parallel to OE and unless it be a neutral-parallel we

have O'E' and OE in one inertia plane.
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Now, since MN is an optical line throughM which neither intersects

OE nor is parallel to it, it follows by Post. XII that there is one, single

element in MN which is neither before nor after any element of OE.

If O be this element, we shall suppose first that O f

is distinct from

O and thereby ensure that O'E' and OE lie in one inertia plane.

Call this inertia plane Q.

Now, since MO and MO' are respectively parallel to AE and AE'
and all four are optical lines, it follows that M, O and 0' lie in one

inertia plane, say J^, while A, E and E' lie in a parallel inertia plane,

say R2 .

But Q has the elements and O' in common with Rl and has the

elements E and E' in common with R2 and so the general lines 00' and

EE' are parallel.

We have however further seen that OB and EM are parallel and are

both inertia lines.

Thus 0, O' and B lie in one inertia plane, say Sl ,
while E, E' andM

lie in a parallel inertia plane, say $2 .

But the inertia plane P' has the elements 0' and B in common with

S
l and has the elements E' and M in common with $2 .

Thus BO' and ME' are parallel.

But BO' is the same general line as BG', which is a diagonal line of

the optical parallelogram whose corners are A, C', Z)', B, while ME' is

a diagonal line of the optical parallelogram whose corners are A, E', 0',

M and these diagonal lines do not intersect.

It follows by Post. XVI that their other diagonal lines AD' and AO'

do not intersect and so since they have the element A in common they
must be identical.

Thus O' must lie in AD' and since it also lies in J3C", it follows that

O' is the centre of the optical parallelogram whose corners are A, C",

D', B.

Thus the optical lines through the centres and 0' and intersecting

AB, intersect it in the same element M .

Now this same method of proof holds for the case of any optical

parallelogram in the inertia plane P
f which has A and B as adjacent

corners, provided that the diagonal line through B does not intersect

MN in O
, and so all such optical parallelograms have their centres in

the optical line MN.
Again, ifwe select a second optical parallelogram in the inertia plane

P having A and B as adjacent corners but not having O as centre, we

may use a similar method of proof and show that all optical parallelo-
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grams in the inertia plane P' having A and B as adjacent corners have,

with one possible exception, got their centres in one optical line.

This one possible exception is, however, different from the one possible

exception which we found before and so it follows that no exception

exists.

Similar considerations show that all optical parallelograms in the

inertia plane P, having A and B as adjacent corners, have their centres

in one optical line MO.

Thus the theorem holds for optical parallelograms in the inertia

planes P and P' and will therefore also hold for optical parallelograms
in any other inertia planes which contain A and B.

Definition. If A and B be two distinct elements lying in an inertia

line or in a separation line, then the centre of an optical parallelogram
of which A and B are a pair of opposite corners will be spoken of as the

mean of the elements A and B.

Theorem 60 shows that if two elements A and B lie in an inertia or

separation line their mean is independent of the particular optical

parallelogram used to define it.

Since a diagonal line of an optical parallelogram is either an inertia

or a separation line, the above definition fails for the case oftwo distinct

elements lying in an optical line.

In this case we adopt the following definition.

Definition. If A and B be two distinct elements lying in an optical

line, then an optical line through the centre of an optical parallelogram

of which A and B are a pair of adjacent corners and intersecting the

optical line AB, intersects it in an element which will be spoken of as

the mean of the elements A and B.

Theorem 61 shows that iftwo elements A and B lie in an optical line,

their mean is independent of the particular optical parallelogram used

to define it.

REMARKS

IfA
9 B, G andD be the corners of an optical parallelogram such that

B is after A and C after B, then G will be after A and so AG will be the

inertia diagonal line and BD will be the separation diagonal line.

IfAC and.RD intersect in 0, then is neither before nor after JB, since

O and B are elements of a separation line.

Now cannot be after (7, for this would entail being after B, and

also cannot be before A, for this would entail being before B.
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Thus since A, O and C are distinct elements of the one inertia line

we must have after A and before C.

Ifnow an optical line be taken through parallel to AD and BC and

intersecting AB in 13, then OE must be an after-parallel ofAD and a

before-parallel of BC.

Thus, since A, E and B are distinct elements of the optical line AB,
it follows that E is after A and before B.

We see from these results that the mean oftwo elements lying either

in an inertia or optical line must be after the one and before the other.

THEOREM 62

If A, B and B' be three distinct elements in a general line a, then the

mean of A and B' must be distinct from the mean of A and B.

Let us first take the case where a is an optical line and let P be any
inertia plane containing a.

Let a x be any optical line lying in P and parallel to a, and let optical

lines through A, B and B' intersect a l in the elements A^, B and B
respectively.

Then A, A 19 B l9 B form the corners of an optical parallelogram,

while ^4, A ly B ',
B' form the corners of another optical parallelogram

having the two adjacent corners A and A in common with the first.

Let C and C' be the centres of these two optical parallelograms re-

spectively.

Then, as we have seen, C and C' must lie in an optical line parallel

to a.

An optical line through C parallel to AA will intersect a in some

element M, which is the mean ofA and B ;
while an optical line through

C' parallel to A 1A will intersect a in some element M\ which is the

mean of A and B'.

Now C' cannot be identical with (7, for then the general line A C
would be identical with the general line AC'

,
and so B' would have to

be identical with B: contrary to hypothesis.

Thus CM and C'M' must be distinct and parallel optical lines, and

therefore M* must be distinct from M ,
as was to be proved.

Next let us consider the case where a is either an inertia line or a

separation line and let P be any inertia plane containing a.

Then there is one single optical parallelogram in P having A and B
as a pair of opposite corners and a centre, say C, whose position in a is

independent of P by Theorem 60,

7-2
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But there is also one single optical parallelogram in P havingA and

B' as a pair of opposite corners and a centre, say C", whose position

in a is also independent of P.

Then C" could not be identical with C for, were this the case, we

should have two distinct optical parallelograms in P having G as a

common centre and A as a common corner, which would be contrary
to what we proved in Theorem 59.

Thus, whatever type of general line a may be, the mean ofA and B
must be distinct from the mean of A and B f

.

It follows at once from this theorem that if A and C be any two

elements in any type ofgeneral line, there is not more than one element

B such that C is the mean of A and B.

THEOREM 63

// two or more optical parallelograms have a pair of opposite side lines

in common, their centres lie in a parallel optical line in the same inertia

plane.

We have already seen in the course of proving Theorem 61 that this

result must hold if the two optical parallelograms have a third side in

common.

In case this is not so, let A lJ Bly Cl9 Dl be four distinct elements in

an optical line a and let 6 be a parallel optical line in an inertia plane

containing a.

Let the second optical lines through A ly Bl9 Cly Dl respectively in

the inertia plane intersect b in A 2 , B%, C2 ,
D2 respectively and let

A l , BI ,
A 2 ,

B2 be the corners of one ofthe optical parallelograms under

consideration and Ct ,
D1? (72 ,

D2 the corners of another.

Then A ly Dly A 2 ,
D2 is a third optical parallelogram.

Call these optical parallelograms (1), (2) and (3) and let their centres

be 0, 0', 0" respectively.

Then by the first case and 0" lie in an optical line parallel to a and

6 since (1) and (3) have the pair of adjacent corners A 1 and A z in

common.

Similarly 0' and O" lie in an optical line parallel to a and b since (2)

and (3) have the pair of adjacent corners Z)
x
and Z>2 in common.

But there is only one optical line through 0" parallel to a and b and

so 0, 0' and 0" lie in one optical line parallel to a and 6.

Thus all optical parallelograms having a and b as a pair of opposite

side lines must have their centres in the optical line 00'.
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THEOREM 64

// two optical parallelograms have a pair of opposite side lines in com-

mon and if one diagonal line of the one optical parallelogram passes

through the centre of the other, then the two optical parallelograms have a

common centre.

Since the centre of an optical parallelogram is the element of inter-

section of its diagonal lines, and since, by hypothesis, one diagonal line

of the one optical parallelogram passes through the centre of the other,

it follows that both centres must lie in that diagonal line.

Now we know that in any optical parallelogram the one diagonal line

is an inertia line, while the other is a separation line.

Thus the centres of the two optical parallelograms must lie in an

inertia line or a separation line.

But we have already seen by Theorem 63 that they lie in an optical

line, and since any two distinct elements determine a general line, it

follows that the centres cannot be distinct.

Thus the two optical parallelograms have a common centre.

THEOREM 65

// two optical parallelograms P and Q in the same inertia plane liave a

common centre, then the elements in which a pair of opposite side lines of

P intersect the diagonal lines of Qform the corners ofan optical parallelo-

gram with the same centre.

Let be the common centre of the two optical parallelograms P and

Q and let i andj be the two diagonal lines of Q while a and 6 are a pair

of opposite side lines of P.

Let a intersect i in E andj in F, while 6 intersects i in andj in H.

Denote the second optical line through E in the inertia plane by c,

and suppose it intersects 6 in H' .

Denote the second optical line through G in the inertia plane by d,

and suppose it intersects a in F'.

Then the optical lines a, c, b and d form an optical parallelogram one

of whose diagonal lines, namely i, passes through O the centre of the

optical parallelogram P of which a and 6 are opposite side lines, and so

by Theorem 64 these two optical parallelograms have a common
centre 0,

Thus iff be the second diagonal line of the optical parallelogram
formed by a, c, 6 and d, it has the element in common wiihj.
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The two optical parallelograms Q and that formed by a, c, 6 and d

have however the diagonal line i in common and thus their diagonal

lines of one kind do not intersect, and so by Post. XVI their diagonal

lines of the other kind do not intersect.

Fig. 12.

But these diagonal lines arej andj' which as we have seen have the

element O in common and therefore must be identical.

Thus F' must be identical with F and H' must be identical with //

and so the elements E,F,G and H must form the corners of an optical

parallelogram having the same centre as the two original optical

parallelograms, as was to be proved.

REMARKS AND DEFINITIONS

If a and h be any two distinct inertia lines and A Q be any element in

a which is not an element ofintersection with 6, then from Post. XIV (a)

it follows that there is one single element common to the inertia line 6

and the a sub-set of A Q .

Call this element B .

Then jB is distinct from A Q and cannot be an element of intersection

of the two inertia lines, for if it were A Q and BQ would lie both in an

inertia line and an optical line, which is impossible.

Further, there cannot be an element of intersection of the two

inertia lines lying after A and before BQ for, by Theorem 12
? any
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element which is after A Q and before BQ must lie in the optical line

A Q J3 and so, being distinct from A Q ,
it could not also lie in the inertia

line a.

Thus any element of intersection of the two inertia lines, if such an

element exists, must lie either before A Q or after BQ .

Again from Post. XIV (a) it follows that there is one single element,

say A l ,
common to the inertia line a and the a sub -set ofBQ ,

and again
A

l
cannot be an element of intersection of the inertia lines.

Further, any such element, if it exists, must lie either before A or

after A l .

Proceeding again in the same way there is one single element, say

Bl , common to the inertia line b and the a sub-set ofA l and one single

element A z common to the inertia line a and the a sub-set of B l ,
and

so on.

Thus we get an infinite series of elements A
,
A l9 A z ,

A z ,
...m the

inertia line a and another infinite series of elements BQ ,

B
l ,

jB
2 , B% ,

... in the inertia line b.
t

An element of intersection of the two inertia lines if

such an element exists must lie either before A or after

A n ,
where n is any finite integer whatever.

This process will be spoken of as taking steps along the t

inertia line a with respect to the inertia line b.

The passing from A to A l is the first step, the passing

from A
l
to A 2 the second, and so on.

If X be an element which is after A in the inertia line

a and before A n but not before A n_l) then the element X
will be said to be surpassed from A in n steps taken with

respect to b.

if C be an element of intersection of the two inertia A,

lines and if C be after A Q ,
it is evident from what we have

said that C cannot be surpassed from A in any finite

number of steps.
Fig- 13.

These remarks and definitions prepare the way for Post. XVII.

POSTULATE XVII. If A and be two elements of an inertia

line a such that Ax is after A , and if 6 be a second inertia line

which does not intersect a either in A , Ax or any element both

after A and before Ax , then Ax may be surpassed in a finite

number of steps taken from A along a with respect to b.

This postulate will be found to take the place of the well-known
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axiom of Archimedes, to which it will be seen to bear a certain resem-

blance.

It, however, unlike the axiom of Archimedes, contains no reference

to congruence.
It follows directly from Post. XVII that ifthe two inertia lines a and

b do not intersect at all then Ax may always be surpassed in a finite

number of steps.

There is also what is equivalent to a (6) form of this postulate which,

however, is not independent.
It may be stated and proved as follows :

//A Q and A x be two elements of an inertia line a such tJiat Ax is before

AQ, and if b be a second inertia line which does not intersect a either in

AQ, A x ,
or any element both before A Q and after A x ,

then A may be

reached in a finite number of steps taken along a from an element before

A x ina and with respect to b.

By Post. XVII since A Q is after Ax it follows that A may be sur-

passed in a finite number of steps, say n, taken from A x along a with

respect to b.

Let the elements marking these steps in a be denoted by Ax+l ,

A x+2 ,
Ax+3 ,

... AXHl and let the elements in b lying in the
/3
sub-sets of

these be denoted respectively by Bx ,
Bx+l ,

Bx+2 ,
... Bx+n^.

Then A Q may either coincide with Ax+n_l or be after it.

If AQ coincides with Ax+n_l ,
then it is reached in n 1 steps taken

along a from A x .

Now there is one single element, say Bx_ ,
common to the inertia line

b and the
/?
sub-set ofA x and also one single element, say Ax_ ,

common
to the inertia line a and the j8 sub-set of Bx_ .

Then Ax_ l is before A x and A is reached in n steps taken along a from

A x^ with respect to b.

This proves the result if A Q coincides with Ax+n_l .

Suppose next that A Q does not coincide with Ax+n ^.l .

Then A Q is after Ax+n_ and before Ax+n .

Let B_i be the one single element common to the inertia line b and

the
/? sub-set of A Q and let A_^ be the one single element common to

the inertia line a and the /3 sub-set of B_.
Let B_2 be the one single element common to the inertia line 6 and

the j8 sub-set of ^4^ and let A_2 be the one single element common to

the inertia line a and the /? sub-set of B_2 ,
and so on, till we get to an

element A_n .
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Now #_! cannot coincide with Bx+n_l for then A Q and Ax+n would be

two distinct elements of the inertia line a both lying in the a sub-set of

-B_1? contrary to Post. XIV (a).

Further, A Q is before Ax+n and B_ is before A and so B_^ is before

A x+n

It follows that J3_! cannot be after Bx+n_l9 since otherwise, by
Theorem 12, B_ would require to lie in the optical line Ax+nBx+n_l

.

But B_i is distinct from Bx+n _ li
and both lie in the inertia line b and

therefore cannot both lie in one optical line.

It follows that J3_i must be before Bx+n_1 .

Similarly Bx+n_2 must be before B_ .

Reversing the roles of a and b we get in an analogous way :

A_i is before Ax+n^ and Ax+n_2 is before A_ .

Repeating this reasoning we get :

A_2 is before Ax+n_2 and Ax+n^ is before A_2 ,

and so we see that A_n is before Ax and A x is before A_n+l .

Thus A__n is an element in a which is before Ax ,
and A may be

reached in a finite number n of steps taken from A_n with respect to 6

along a.

Thus the result holds in general.

THEOREM 66

(a) If A Q and Ax be two elements in an inertia line a which lies in the

same inertia plane with another inertia line b which does not intersect a

in A 0) A x ,
or any element after the one and before the other, and if an

optical line through A Q intersects b in B$ so tliat B is after A Q ,
then a

parallel optical line through Ax will intersect b in an element which is

after A x .

We shall first suppose that Ax is after A .

Let the optical line through A x parallel to A B intersect b in Bx .

Then by Post. XVII Ax may be surpassed in a finite number of steps

say n, taken from A Q along a with respect to b.

Let the elements (including A Q ) marking these steps in a be ^4
,
A I}

A 2 ,
... An and let the elements in 6 lying in the a sub-sets of these be

jB
,
Bl9 Bz , ... Bn respectively.

Then Ax may either coincide with An_^ or be after it.

Now the optical line BQA intersects the two optical lines A QB and
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A
1B1

and so these latter two optical lines belong to one set and are

therefore parallel.

Similarly A lBl intersects the two optical lines B^A^ and B1A 2 and

so these two are also parallel but belong to the other set.

Proceeding thus we see that the optical lines A QB ,
A l
B

l , A^B^ ...

AHBn belong to one set and are all parallel, while B A
l ,
B

1
A 2 , B^A^,

... JBn_lA n belong to the other set and are all parallel.

But A ! lies in the a sub-set of
,

&\ "!>

^2 > **\ >

ft AJJ -^
>

Thus if ^4
-p
coincides with 4

r< ._! ,
then JSX must coincide with Bn _ l

and

therefore^ must lie in the a sub-set of A x ,
and since Bx and^ are

distinct it follows that Bx is after Ax and the optical lines A QBQ
and

^4^^ are parallel.

This proves the theorem in this case.

If A x does not coincide with An _ly then it must be after An_^ and

before An .

Also since A XBX is parallel to A QBQ it must be parallel to An_ l
B

n _1

and to AnBn .

But since A x is a/fer ^4_! and before A n it follows that AXBX is an

after-parallel of A n_^Bn_^ and a before-parallel of An B,n .

Further, AXBX must intersect the optical line Bn_^A n in some

element, say (7, since Bn _ lA n is an optical line of the opposite set to

A xBx and so C must be after Bll
_ l and before An .

Thus Bn_i must lie in the
j8
sub-set of (7, while^ lies in the a sub-set

of C.

But by Post. XIV (a) there is one single element common to the

inertia line b and the a sub-set ofC and this must lie in the other optical

line through C in the inertia plane ;
that is to say in the optical line

A XBX and must therefore be identical with Bx .

Similarly by Post. XIV (b) there is one single element common to the

inertia line a and the /? sub-set of C and this must be identical with A x .

Thus C is after A x and before Bx and therefore Bx is after Ax .

Thus the theorem is proved for all cases in which A x is after AQ .

A similar method shows that the theorem is true when Ax is before

^4 except that the corresponding (b) form takes the place of Post. XVII.

Thus the theorem holds in general.
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(6) If AQ and A x be two elements in an inertia line a which lies in the

same inertia plane with another inertia line b which does not intersect a

in A
,
A x ,

or any element before the one and after the other, and if an

optical line through A Q intersects b in B
Q so that BQ is before A Q ,

then a

parallel optical line through A x will intersect b in an element which is

before A x .

THEOREM 67

(a) If AQ and Ax be two elements in a separation line a which lies in the

same inertia plane with another separation line b which does not intersect

a in A Q ,
A x or any element lying between a pair of parallel optical lines

through A$ and Ax in the inertia plane, and if an optical line through A Q

intersects b in B so tJiat B is after A
,
then a parallel optical line through

A x will intersect b in an element which is after Ax .

Fig. 14.

Tn case the separation lines a and 6 do not intersect at all, then since

they lie in one inertia plane they are parallel and the result follows

directly from Theorem 56 (6).

We shall therefore consider the case in which an element of inter-

section of a and b does exist and we shall denote this element by 0.
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We shall suppose first that Ax is between a pair of parallel optical

lines through A and in the inertia plane.

Now let / be the optical line through parallel to A QB .

It will be sufficient to consider the case where I is an after-parallel

ofA B0t since the case of a before-parallel is quite analogous.

IfA xBx be the optical line through A x parallel to I and meeting b in

the element Bx ,
then A XBX will be an after-parallel of A QB and a

before-parallel of /.

Now, by Theorem 59, there exists a definite optical parallelogram in

the inertia plane having as centre and BQ as one of its corners, so

that b is one of its diagonal lines.

Let D be the corner opposite J3 and let the optical line A QBQ

intersect the other diagonal line in FQ while the second optical line

through jB in the inertia plane intersects the same diagonal line in H$ .

Then BQ ,FQ ,
D and // are the corners of the optical parallelogram.

Let the separation line a intersect the optical line D H in C and

let the optical line through C parallel to DQF intersect BQFQ
in jE

,

while the optical line through A parallel to DQFQ intersects DQHQ in

G .

Then A
,
E

,
C and G are the corners of an optical parallelogram

having a pair ofopposite side lines in common with the optical parallelo-

gram whose corners are BQ ,
F

,
D and HQ and having its diagonal line

a passing through the centre of this optical parallelogram, and so, by
Theorem 64, the two optical parallelograms have a common centre 0.

Denote the optical parallelogram whose corners are B
,
FQ ,

D and

H
Q by P and the one whose corners are A Q ,

J57
,
(7 and G by QQ .

Suppose now that the optical line A G intersects the diagonal line

BQDQ in fix and the diagonal line FQH^ in //x and that the optical line

E C intersects the diagonal line F HQ
in F

l and the diagonal line

B^inD^
Then by Theorem 65, B^ ,

F
l ,
D

l andH l
form the corners ofan optical

parallelogram having also the centre O. Call it P lt

Suppose now that the optical line B1F1 intersects the diagonal line

^o^o in A l and the diagonal line EQGQ in E l and that the optical line

>!//! intersects the diagonal line A QCQ in Cl and the diagonal line

EQG inGl .

Then, by Theorem 65, A l ,
Ely Cl7 Gl

form the corners of an optical

parallelogram Q l which bears the same relation to the optical parallelo-

gram Pl whose corners are B
l ,
F

l ,
D

1
and H

t as the optical parallelo-

gram QQ to the optical parallelogram P .
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This construction may be repeated indefinitely, and we obtain a

series of parallel optical lines BQFQ , B^F^ B2F2 , B^F^, etc., inter-

secting the separation line 6 in the elements J5
,
Bl9 B2 ,

J?
3 , etc., and

the other diagonal line of the optical parallelogram P in the elements

JFo,^, ^3,^3, etc.

Further, these same optical lines intersect the separation line a in

the elements A Q ,
A lt A 2 ,

A 3 , etc., and the other diagonal line of the

optical parallelogram QQ in the elements EQ ,
Ely E 2 ,

J33 ,
etc.

Again we have another set of parallel optical lines A QBl7 AB2 ,

A 2Bz, ^4
3
54 , etc., and a further set EQFl: E1

F2 ,
E2
FZ , E^F^, etc.

Now by hypothesis I is an after-parallel of ^4 J5 and, since OF is

an inertia line, it follows that F
Q
is before 0.

Similarly EQ is before 0.

But since b is a separation line and J5 is after A Q we must also have

Bl after A .

It follows that B^F! is an after-parallel of BQFQ and, since E F
l

is

an optical line, we must have Fl after E ,
so that Fl lies in the oc sub -set

of# .

Also since F^F^ is an inertia line we must have Fl after FQ so that FQ

is not an element of the optical line EQFl but is before an element of it.

Thus, since F E is an optical line, we must have EQ after FQ and so

E must lie in the oc sub -set of F .

Also, from what we showed on p. 103, the element of intersection of

the two inertia lines FQH and EQG$ cannot lie before Fl and, since we

already know that FQ
is before 0, it follows that Fl is also before O.

Thus the optical line I must be an after-parallel of Bl
F

l : that is to

say I is an after-parallel of A l
B

l
and so E^ is also before 0.

But we saw thatB must be after A Q and so since a is a separation line

we must have Bl after A.
By repetition of this reasoning we can show that :

B2F2 is an after-parallel ofBlFl

while the optical line I is an after-parallel of ail these.

Also we can show that

El lies in the a sub-set ofFl
while F2 lies in the a sub-set ofEl

E2 ,, ,, F2 j?3 ,, E2
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Thus Fl7 Fz ,
jP3 ,

... mark steps taken along the inertia line F O
with respect to the inertia line EQ O.

Now let the optical line A XBX intersect F O in Fx and E in Ex .

Then, by hypothesis, A XBX is a before-parallel of / and it follows

that both Fx and Ex are before 0.

Thus, by Post. XVII, Fx may be surpassed in a finite number n of

steps taken from J^ along FQO with respect to EQ 0.

Now we have

B
l
after A

l ,

^2 " -"-2

If then Fx should happen to coincide with Fn _ we should have A x

coinciding with A n _ l and Bx coinciding with 5
/,_ 1

and accordingly we
should have Bx after A x .

Fig. 15.

Suppose next that Fx does not coincide with Fn_l ,
but is after F^^^

and before Fn .

Then BXFX will be an after-parallel ofJSn_ lFn_l and a before-parallel

ofBnFn .
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Let BXFX intersect An_lBn in the element K.

Then, since An_lK is an optical line, we must have K after A n_^ and

also K before Bn .

Since A n_l and Ax lie in the separation line a, we must have K after

A x : while, since Bn and Bx lie in the separation line b, we must have Bx

after K.

It follows by Post. Ill that Bx must be after Ax as was to be proved.
Now we started out by considering the case where Ax is between a

pair of parallel optical lines through A Q and in the inertia plane; if

instead we had taken the case where A Q is between a pair of parallel

optical lines through A x and in the inertia plane, then the supposition

that A x was after Bx would, in a similar manner, lead to the conclusion

that A Q was after BQ , contrary to the hypothesis that B is after A$.

Also, sinceA x &ndBx could not coincide without the separation lines

being identical, it follows that we must also in this case have Bx

after A x .

Thus the theorem holds in general.

(b) If AQ and A x be two elements in a separation line a which lies in the

same inertia plane with another separation line b which does not intersect

a in A Q ,
Ax or any element lying between a pair of parallel optical lines

through A and Ax in the inertia plane, and if an optical line through A Q

intersects b in BQ so that J3 is before ^4
,
then a parallel optical line

through A x will intersect b in an element which is before Ax .

THEOREM 08

// two elements A and B lie in one optical line and if two other elements

G and D lie in a parallel optical line in the same inertia plane, then if A
be after B and C after D the element of intersection of the general lines AD
and BC (which was proved in Theorem 58 to exist) lies betiveen the two

given optical lines.

Let a be the optical line containing A and B, and let 6 be the parallel

optical line containing C and D.

Since one ofthe optical lines must be an after-parallel ofthe other and

since it is immaterial which of them, we shall suppose that a is an after-

parallel of 6.

Now the general lines AD and BC cannot both be optical lines since

two optical lines which intersect a pair of parallel optical lines are

themselves parallel and have no element of intersection.

One of them however may be an optical line.
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Suppose first that BC is an optical line and that E is the element of

intersection ofAD and BC.

Then, since a is an after-parallel of b andAB is an optical line, there-

fore B is after C.

But C is after D and therefore B is after /), and since A is after B it

follows that A is after D.

Thus, since AD cannot be an optical line and has one element which

is after another, it must be an inertia line.

Now, since C is after D and lies in an optical line containing D, it

follows that D is in the j3 sub-set of C
;
and since E lies in the second

optical line through C in the inertia plane, it follows by Post. XIV (a)

that E must be in the a sub-set of C.

Thus, since E cannot be identical with C, it follows that E is after C.

Similarly, since A is after B and A and B lie in an optical line, it

follows that A is in the a sub-set of B
;
and since E lies in the second

optical line through B in the inertia plane, it follows by Post. XIV (b)

that E must be in the /3 sub-set of B.

Thus since E cannot be identical with B, it follows that E is before B.

This proves that E lies between a and b.

Suppose secondly that A D is an optical line and again let E be the

element of intersection of AD and BC.

Let the optical line through C parallel to DA intersect a in F.

Then C being after D it follows that F must be after A and since A is

after B therefore F must be after B.

Now F must be after C and therefore C lies in the
/? sub-set of F, as

does also B.

But ifC were either before or after B then, by Theorem 13 (b), C would

have to lie in a which is impossible.

Thus C is neither before nor after B, so that CB must be a separation

line.

Now D cannot be after E, for since C is afterD we should then have C

after E which is impossible since C and E lie in a separation line.

But since D and E are distinct elements of an optical line, the one

must be after the other and thus E must be after D.

Again E cannot be after A , for since A is after B we should then have

E after B which is impossible since E and B are elements of a separation

line.

But E must be either before or after A since E and A are distinct

elements of an optical line, and since E cannot be after, it must be

before A.
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Thus again in this case E lies between a and 6.

Next take the case where one of the two general lines AD and BC is

an inertia line and the other a separation line.

IfBC be a separation line and E be the element of intersection with

AD, then E is neither before nor after C and also neither before nor

after B.

But E cannot be before D, for since D is before G we should then have
C after E, which is impossible.
Thus since D and E are distinct elements of an inertia line, we must

have E after D.

Again E cannot be after A ,
for since A is after B we should then have

E after B, which is impossible.
Thus since A and E are distinct elements of an inertia line, we must

have E before A.

Thus again in this case E lies between a and b.

If BC is an inertia line we must have B after C, since a is an after-

parallel of b.

Since then C is after D we must have B after D, and since A is after B
we must have A after D.

But AD could not be an optical line, for, since B is afterD and before
A

, it would then follow by Theorem 1 2 that B must itself be an element
of AD', which is impossible. Thus AD must be an inertia line.

Accordingly we shall next take the case where both the general lines

AD and BC are inertia lines and E is their element of intersection.

By Theorem 66, ifA were before E then C being after D would imply
that B was after A , contrary to hypothesis ;

while if D were after E
then^l being after B would imply that D was after C, contrary again to

hypothesis.

Thus since E cannot be identical with either A or D, it follows that E
must be after D and before A and so E lies between a and b.

Finally we have the case where AD and BC are both separation lines

and E their element of intersection.

Let c be an optical line through E parallel to a and b.

First suppose, if possible, that c is an after-parallel ofa ;
then c would

also be an after-parallel of b since a is an after-parallel of b.

Thus AD and BC would intersect in an element which was not

between a and b and did not lie either in a or b, arid so by Theorem 67,

A being after B would imply that D was after C, contrary to hypothesis.
The same would hold if we supposed c to be a before-parallel

of 6.
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Thus c cannot be an after-parallel of a and cannot be identical with

a and therefore must be a before-parallel of a.

Also c cannot be a before-parallel of/) and cannot be identical with 6,

and thus c must be an after-parallel of b.

Thus the element E must be after an element of h and before an

element of a and so E lies between a and 6.

This exhausts all the possibilities and so we see that the theorem
holds in general.

THEOREM 09

If two elements A and B lie in one optical line and if two other elements

C and I) lie in a parallel optical line in the same inertia plane, then if A
he after B and if the general lines A D and BC intersect in an element E
lying between the parallel optical lines, we must also have C after D.

Let a be the optical line containing A and B, and let b be the parallel

optical lino containing C and D.

Then one of the optical lines a and b is an after-parallel of the other,

but as the demonstration is quite analogous in the two cases we shall

only consider that in which a is an after-parallel of 6.

We must therefore have E after an element of b and before an element

of a.

Now AD and BC cannot both be optical lines since two optical lines

which both intersect a pair of parallel optical lines are themselves

parallel and so the element E could not exist.

We may however have one of them an optical line and shall first

consider the case in which AD is such.

I n this case E is before A and therefore E lies in the
j3 sub-set of A

,
as

does also B.

But E cannot be either after or before B, for otherwise, by Theorem
13 (b), E would require to lie in the optical line a and so E could not lie

between a and 6.

It follows that BE must be a separation line.

Thus C can be neither before nor after E.

But D is before E and so if C were before D we should have C before E,
which is impossible.

Further, C cannot coincide with D and therefore C must be after D.
We shall next consider the case where BC is an optical line.

Then we have B after E, and since .4 is afterB it follows that A is after

E and so AE is an inertia line.
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Again E is after C and so E lies in the a sub-set of C and therefore by
Post. XIV (6) D must lie in the

j8 sub-set of C.

Thus since C and D cannot be identical, we must have C after D.

We shall next consider the case where one of the general lines BC
and AD is an inertia line and the other a separation line.

Now ifBC were an inertia line we should have B after E and so, since

A is after J5, we should have also A after E.

Thus in this case both general lines would be inertia lines and so we

must suppose instead that BC is a separation line and AD an inertia

line.

Then since E cannot be before any element of 6, and since it must be

either before or after D it follows that E must be after D.

But D cannot be after C, for then we should have E after C, which in

impossible since C and E lie in a separation line.

Thus since C and D cannot be identical, we must have C after D.

We have next to consider the cases where the general lines BC
and AD are both separation lines and where they are both inertia

lines.

The constructions and demonstrations are analogous in both case*

up to a certain point.

By Theorem 59 there is an optical parallelogram in the inertia plane

having E as centre and B as one of its corners.

Let C' be the corner opposite to B arid let the optical line through C'

in the inertia plane and of the opposite set to AB intersect AB in the

element G.

Then GE is the other diagonal line of the optical parallelogram.

Let the second optical line through B in the inertia plane intersect

GE in F.

Then B, F, C' and G are the corners of the optical parallelogram.
LetAE intersect the optical line FC' in D'

;
let an optical line througl

A parallel to BF intersect FC' in H, and let an optical line through D
parallel to C'G intersect BG in /.

Then A, //, D' and / are the corners of an optical parallelograrr

having a pair of opposite side lines in common with the optical paral

lelogram whose corners are B, F, C' and G and having one ofits diagona
lines AD' passing through E the centre of this optical parallelogram.

It follows from Theorem 64 that these two optical parallelogram!
have a common centre.

Let AH intersect BC' in A l and FG in Fl
and let ID' intersect BC

inC1 and.FGinQ f

1 .

8-2
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Then by Theorem 65 the elements A^, Fl9 Cl and Gl
form the

corners of another optical parallelogram with the same centre.

Suppose now first that AE and BE are both separation lines, then

EG and El are both inertia lines, and by hypothesis E is before an

element of BO and so E must be before G and also before I.

Also, since B and A l
lie in a separation line and since A is after B, it

follows that A must also be after A l .

Thus A^GI must be a before-parallel of BG and so G l must be

before G.

Thus G
l
l)

f must be a before-parallel of GO', and since C" and D f

lie in

an optical line we must have C" after D' .

Fig. 1(5.

Now E being the centre of the optical parallelogram whose corners

are B, G, C
1 and F and being before an element ofBG must be after an

element of FC' .

Thus E is between the parallel optical lines BG and FC' .

Now the optical line b containing C and D may either coincide with

FC', in which case C is after D, or else b may be a before-parallel of FC'

or an after-parallel of FC' .

In any case, however, if e be an optical line through E parallel to a

and 6, then FC' and 6 are each before-parallels of e, so that in no case

can E lie between FC' and b.

Thus by Theorem 67 since (' is a/fer I)' we must have C after D.

Suppose next that AE and BE are both inertia lines, then EG and

El are both separation lines, and by hypothesis E is before an element

of J3O, so E is before A and also be/ore .

Also, since jB andJ x lie in an inertia line and sinceB is in the
j8
sub-set
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of A and distinct from it, therefore A l must be in the a sub-set of A,

and since B and A are distinct, A
and A l

must also be distinct and

therefore A l
is after A.

Thus A
1
G

1
must be an after-

parallel of Al, and since Gl
and

7 lie in an optical line we must

have 6rt after I.

But since Gl and G lie in a

separation line, the one is neither

before nor after the other and so G
must also be after 7.

Thus GO' must be an after-

parallel of ID'
,
and since 0' and

7)' lie in an optical line we must

have C' after D' .

From this point the demon-

stration is similar to that of the

case where AE and BE are both

separation lines, except that the

reference is to Theorem 66 instead -Fig- 17 -

of Theorem 67.

This exhausts all the possibilities, and so the theorem holds in

general.

THEOREM 70

If A, B and C be three elements in a separation line and ifB be between

a pair of parallel optical lines through A and C in an inertia plane con-

taining the separation line, then B is also between a pair ofparallel optical

lines through A arid C in any other inertia plane containing the separation

line.

Let a be an optical line through A ,
and c a parallel optical line through

C\ both lying in the given inertia plane, say P, and such that B lies

between a and c.

We may suppose that B is before an element ofa and after an element

of c without any essential loss of generality.

Let an optical line through B in the inertia plane, and of the opposite

set to a and c, intersect a in D and c in E.

Then D must be after B, and E must be before B.
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Fig. 18.

Further, since A, B and C lie in a separation line, we must have D
after A and E before C.

Now let Q be any other inertia plane containing the separation line,

and let a', h' and c' be three parallel

optical lines through A, B and C

respectively in the inertia plane Q.

Now the element D is after B, an

element of the optical line //, while

the optical line a passes through D
but does not intersect 6', since then

it would have to be identical with

the optical line DB which belongs

to the opposite set.

Further, the optical line a cannot

be parallel to b'
,
for since a passes

through A it would in that case

have to be identical with a' and the

inertia planes P arid Q could not be

distinct.

Thus each element of a is not after an element of b', and so by Post.

XII (6) there is one single element of a, say F, which is neither after nor

before any element of b'.

Thus by Theorem 22 there is one single optical line containing F
and such that no element of it is either before or after any element

of b'.

Iff be this optical line, then /is a neutral-parallel of b' .

But since a' and b' lie in the inertia plane Q and are parallel, the one

must be an after-parallel of the other and so a' cannot be identical

with /.

Thus F must be either after or before A and cannot be identical with it.

Now the general line FB lies in the inertia plane P and is clearly a

separation line since F is neither before nor after B.

Let FB intersect the optical line c in G.

Then, by Theorem 45, G is neither before nor after any element of b',

and so if an optical line g be taken through G parallel to b' it will be a

neutral-parallel.

Now, by Theorem 69, since B lies between the parallel optical lines a

and c passing through A and C respectively and lying in the inertia

plane P, it follows that if F be after A then C is after G ;
while if A be

after F then G is after C.
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If however F be after A, then a' must be a before-parallel of/, and

therefore, by Theorem 26 (a), a' must be a before-parallel of b'.

Then we shall have also c' an after-parallel of g, and therefore, by
Theorem 26 (6), c

r must be an after-parallel of b' .

Thus B will be a/ter an element of a' and before an element of c' : that

is, B will be between the parallel optical lines a' and c' passing through
^4 and G respectively in the inertia plane Q.

Similarly if F be before A, then a' must be an after-parallel of/, and

therefore, by Theorem 26 (6), a' must be an after-parallel of &'.

We shall in that case have also c' a before-parallel of g, and therefore,

by Theorem 26 (a), c' must be a before-parallel of b'.

Thus again we shall have B between the parallel optical lines a' and

c' passing through A and C respectively in the inertia plane Q.

Thus the theorem is proved.

REMARKS
If A

y
B and C be three elements in an optical or inertia line I, and if

B be between 'a pair of parallel optical lines through A and C in an

inertia plane containing I, then it is easy to see that B is also between

a pair of parallel optical lines through A and C in any other inertia

plane containing I.

This follows directly from the consideration that, in this case, ofany
two of the three elements A

, B, C\ one is after the other.

We accordingly introduce the following definition.

Definition . Tf three distinct elements lie in a general line arid if one

of them lies between a pair of parallel optical lines through the other

two in an inertia plane containing the general line, then the element

which is between the parallel optical lines will be said to be linearly

between the other two elements.

The above definition is so framed as to apply to all three types of

general line and for this reason is more complicated than it need be if

we were dealing only with optical or inertia lines.

For the case of elements lying in either of these types of general line,

one element is linearly between two other elements if it be after the one

and before the other.

In the case of elements lying in a separation line, however, no one is

either before or after another and so we have to fall back on our definition

involving parallel optical lines.

The distinction between the three cases is interesting.

Thus if the three elements A
,
B and C lie in a general line a, and ifB
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be linearly between A and C
, then, in case a be an inertia line, we must

have either B after A and C after B or else B after C and A after B, and

similarly when a is an optical line.

If a be an inertia line and B be after A and C after B, then B will be

before elements of both optical lines through C and after elements of

both optical lines through A in any inertia plane containing a.

Ifa be an optical line and B be after A and C after B, then, apartfrom
a itself,

there is only one optical line through any element of a in any
inertia plane containing a, and so we should have B before an element

of the optical line through C and after an element of the parallel

optical line through A .

Ifa be a separation line, however, we should have B before an element

of one of the optical lines through C and after an element of the parallel

optical line through A and also after an element of the second optical

line through C and before an element of the parallel optical line

through A.

The distinctions are perhaps exhibited more clearly by the following

figures :

Inertia Line Optical Line, Separation Line

Fig. 19.

From Theorem 70 it follows that the property of one element being

linearly between two others is independent of the particular inertia

plane in which the elements are considered as lying and so may be

regarded as a relation of the one element to the other two.

This relation has been defined in terms of the relations before and

after, not only for the cases where the three elements considered are

such that of any two ofthem one is after the other; but also for the case

of elements in a separation line when this is no longer so.

It is thus possible to state certain general results which hold for all

three types of general line involving the conception linearly between.



GEOMETRY OF TIME AND SPACE 121

Peano has given some eleven axioms of the straight line which are

as follows :

(1) There is at least one point.

(2) If A is any point, there is a point distinct from A.

(3) If A is a point, there is no point lying between A and A.

(4) If A and B are distinct points, there is at least one point lying

between A and B.

(5) If the point C lies between A and B, it also lies between B and A .

(6) The point A does not lie between the points A and B.

Definition. If A and B are points, the symbol AB represents the

class of points such as C with the property that C lies between A and B.

Definition. If A and B are points, the symbol A'B represents the

class of points such as C with the property that B lies between A and C.

Thus A'B is the prolongation of the line beyond B, and B'A its pro-

longation beyond A .

(7) If A and B are distinct points, there exists at least one member
of A'B.

(8) If A and D are distinct points, and C is a member ofAD and B
of AC, then B is a member of AD.

(9) IfA and D are distinct points, and B and C are members of AD,
then either B is a member of AC, or B is identical with C, or B is a

member of CD.

(10) If A and B are distinct points, and C and D are members of

^4
'

B, then either (7 is identical with D, or C is a member of BD, or D is

a member of BC.

(11) IfA
, ,

6Y

,
> are points, and B is a member ofAC and C of Z?7J,

then (7 is a member of AD.

Definition. The straight line possessing A and B, symbolised by
str. (A, B), is composed of the three classes A'B, AB, B'A together

with the points A and B themselves.

Of these axioms the writer has succeeded in proving nos. 6 and 9

from the others, so that they are really redundant.*

It is easy to see, with our definition of linearly between, that corre-

sponding results hold for all three types of "general line ".

As regards axioms (1) and (2) which we shall express thus:

(1) There is at least one element,

and (2) If A be any element there is an element distinct from A,

*
Messenger of Mathematics, vol. xnr, pp. 121-123 and 134.
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the first follows from our preliminary statement on p. 27, while the

second follows directly from Posts. II and I and also from Post. V.

As regards axiom (3) we shall put it in the form :

(3) If A is an element, there is no element lying linearly between A
and A.

This follows from the definition of linearly between.

(4) // A and B are distinct elements, there is at least one element

lying linearly between A and B.

From our remarks at the end ofTheorem 35 it appears that there are

an infinite number of inertia planes containing any two distinct

elements and accordingly any two distinct elements lie in a general line.

If A and B lie in an optical line, then Theorem 1 1 shows that there is

at least one element which is after the one and before the other and is

therefore linearly between them.

IfA and B lie in an inertia line, the same result follows from Theorem

39; while if they lie in a separation line, it follows from Theorem 41.

(5) If the element C lies linearly between A and B, it also lies linearly

between B and A.

This follows from the definition of linearly between.

(6) The element A does not lie linearly between the elements A and B.

This follows from the definition of what is meant by an element

lying between a pair of parallel optical lines in an inertia plane. Accord-

ing to this definition the element must not lie in either optical line.

(7) IfA and B are distinct elements, there is at least one element such

that B lies linearly betireen it and A .

\fA and B lie in an optical line or an inertia line, one ofthem must be

after the other.

If it be the element A which is after B, then Theorems 7 and 38 show

that there is at least one element of the general line which is before B,

and so B lies linearly between it and A .

Similarly ifA be before B there is an element of the general line which

is after B, and so B is linearly between it and A.

IfA and B lie in a separation line, the result follows from Theorem 43.

(8) If A and D are distinct demente and C is linearly between A and

D, and B linearly between A and C, then B is linearly between A and D.

This is readily seen to be true if we take a set of parallel optical lines
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a, 6, c and d through A, B, C and D respectively in any inertia plane

containing the four elements.

Let these optical lines intersect an optical line/ of the opposite set in

A', B', C' and D' respectively.

Remembering that Post. Ill must be satisfied, it is clear that we

must have either:

(i) C' after D' and A' after C' together with B' after C
f and A'

after B'
;

or (ii) C' before D' and A' before C' together with B f

before C
r and A'

before B' .

Tn case (i) it follows by Post. Ill that B' is after D' and consequently
since B' is before A

1 we have B linearly between A and D.

Similarly in case (ii) we have B' before D' and after A ', and therefore

again B linearly between A and D.

(9) If A and D are distinct elements and B and C are each linearly

between A and D, then either B is linearly between A and C or B is identical

with C or B is linearly between C and D.

This result may be deduced in a similar manner to the last.

We must have either

(i) B' after D 1 and A after B' together with C' after D' and A'

after C'
;

or (ii) B' before D' and A' before B' together with C' before D' and A'

before G
f

.

Then the elements B' and C' must either be identical or else the one

is after the other.

In case (i) if B' be after C
f

, since also B' is before A'',
we have B linearly

between A and C.

If B' is identical with C", then B is identical with (7.

If C' be after B', then since also D' is before B' we have B linearly

between C and I).

Similarly in case (ii) we must either have B linearly betweenA and C
or B identical with C or B linearly between C and D.

(10) //A and B are distinct elements and if B is linearly between A
and C and also linearly betiveen A and D, then either C is identical with D,

or C is linearly betiveen B and D, or D is linearly between B and C.

This result may also be deduced in a similar way. We must have

either :

(i) B 1

after G' and A' after B' together with B' after D
1

;

or (ii) B' before C' and A' before B' together with B' before D'.
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Then the elements C" and D' must either be identical or else the one

is after the other.

In case (i) if C' is after D', then since C" is before B
f we have C linearly

between B and D.

If C" is identical with /)', then C is identical with D.

If I)' is after 6", then since D' is before B' we have D linearly between

B and C.

Similarly in case (ii) we must either have C linearly between B andD
or C identical with />, or D linearly between B and C.

(11) If A, B, C, I) are elements and B is linearly between A and C,

and C is linearly between B and 7), then C is linearly between A and D.

This result may also be deduced in a similar way. We must have

either:

(i) B' after C' and A' after B
f

together with C' after D' ;

or (ii) B' before C' and A' before B' together with C' before D'.

In case (i) since B' is after C' and A' after B', it follows by Post. Ill

that A' is after C', and so C must be linearly between A and D.

Similarly in case (ii) we must also have C linearly between A and D.

Thus all these axioms of Peano hold for the general line.

THEOREM 71

(a) // A and A x be two elements in a general line a which lies in the

same inertia plane with another general line b which intersects a in the

dement C such that either A is linearly between C and Ax ,
or A x is

linearly between C and J
,
and if an optical line through A intersects b

in BQ so that B is after J ,
then a parallel optical line through A x will

intersect b in an element which is after A x .

We have already proved special cases of this in Theorems 66 and 67,

and have now to prove the general theorem.

The optical line through A^ parallel to A QBQ
must intersect b since

b intersects A QBQ in BQ .

Let the element of intersection of this optical line through A x with

b be Bx .

Then Bf cannot be identical with A x , for then the general lines a and

6 would have two distinct elements C and A x in common and would

therefore be identical, which is impossible since a and 6 intersect by

hypothesis.
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Further, ifAx were after Bx the general lines a and b would intersect

in some element between the parallel optical lines (Theorem 68).

That is to say in some element linearly between A and A x .

But a and b have only one element C in common, so that ifA x were

after Bx we should require C to be linearly between A Q and A x , contrary
to the hypothesis that either A is linearly between C and A x or A x is

linearly between C and A .

Thus Bx must be after A T .

(b) If A Q and Ax be two elements in a general line a which lies in the

same inertia plane with another general line b which intersects a in the

element C such that either A Q is linearly between C and A x or A x is linearly

between C and A
,
and if an optical line through A intersects b in B so

that BQ is before A Q ,
then a parallel optical line through A x will intersect

b in an element which is before Ax .

Definition. We shall speak of a general line I as being co-directional

with a general line m when I is either parallel to ra or identical with it.

THEOREM 72

// three parallel general lines a, b and c in one inertia plane P intersect

a general line dl inA l ,B1
and Cl respectively and intersect a second general

line d2 inA 2,B2 and C2 respectively, then if B^ is linearly between A l and

(?! we shall also have B2 linearly between A 2 and C2 .

If a, b and c be optical lines, then we must either have b an after-

parallel of c and a before-parallel of a, or else have b an after-parallel

of a and a before-parallel of c.

In either case B2 will be after an element of one of the pair of parallel

optical lines a and c and before an element of the other.

Thus, as B2 cannot lie in either a or c, and as these optical lines pass

through A 2 and C2 respectively, it follows that B2 is linearly between

A z and C2 .

Next consider the cases where a, b and c are separation or inertia

lines : the methods of proof being similar in the two cases.

Let parallel optical lines inPand passing through A l andC^ intersect

6 in BI and B respectively.

Let optical lines co-directional with these and passing through A 2

and C
2 intersect b in B2 and B2 respectively.

Now as B
l is supposed to be linearly between A and Cl it must lie

between the parallel optical lines A l
Bl

' and B
1̂ 'Cl

.
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It follows therefore, from Theorem 69, that ifA l
is after B we shall

also have B after C l
.

If, on the other hand, fi/ is after A l
we

shall also have C\ after B^.
In the first of these cases, that is to say

when A
l
is after J5/ and B after C l , by

Theorem 56 or Theorem 57 (according as A

a, b and c are separation or inertia lines),

it follows that A 2
is after B2

' and B
2

"
is

after C2 .

IfA 2
B2

'

is distinct from B2"C2 it follows,

by Theorem 68, that B
2 must lie between

the parallel optical lines A
2 B% and J?2"G

f

2 ;

so that B2
is linearly between A 2 and C'2 .

If A 2B% and B
2"C2 are not distinct

optical lines, then jS2
' and B2

"
will both

coincide with B, which will be after C2
and

before A 2 \ so that B2 will still be linearly

between /1 2 and 6^2 .

The same result folUnvs in a similar

way in the case where B
t

'

is //er ^4
t
and

G! a//er 7^".

Thus the theorem holds in all cases.

THEOREM 73

(a) If an element B he linearly between two elements A and C and if

another dement I) be before both A and C but not in the general line AC,
then DB is an inertia line and B is after I).

Consider first the case where AC is a separation line.

I>et a general line through B parallel to CD intersect AD in E.

Then since B is linearly between A and C we must have E linearly

between D and A .

Thus since D is before A it follows that E is after D and before A.

But EB must be an inertia line or an optical line, according as DC
is an inertia line or an optical line, and so B must be either before or

afterE.

But B cannot be before E for then, since E is before A , we should have

B before A, contrary to the hypothesis that A and B lie in a separation

line.
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Thus B must be after E and, since E is after D, it follows that B is

after D.

Thus DB is either an optical or an inertia line.

But ifDB were an optical line, then since E is after D and before B it

would follow that E must lie in DB, which is impossible since BE is

parallel to CD.

Thus DB must be an inertia line.

Next consider the case where AC is an optical or inertia line.

We then must have either C after A or A after C and it is sufficient

to consider the case where C is after A .

Then B must be after A and before C.

But A is after D and so B must be after D.

Thus again DB must be either an optical line or an inertia line.

If DB were an optical line, then since A is after D and before B the

element A would have to lie in DB and so D, A and C would all lie in

one general line, contrary to hypothesis.

Thus again DB must be an inertia line, and so the theorem is

proved.

(b) If an element B be linearly between two elements A and C and if

another elemen t D be after bothA and C but not in the general line A C, then

DB is an inertia line and B is before D.

REMARKS

A somewhat analogous result is the following:

If an element B be after an element A and before an dement C
',
and if

D be another distinct element such that DA and DC are both separation

lines, then DB is also a separation line.

This may be proved as follows :

The element B cannot be before D] for, since A is before J3, we should

have A before D, contrary to the hypothesis that DA is a separation

line.

Similarly B cannot be after D ; for, since C is after B, we should have

C after D, contrary to the hypothesis that DC is a separation line.

Thus B is neither before nor after D, so that DB must be a separation

line, as was to be proved.

The following two theorems are special cases ofTheorems 76 and 77,

but as the proofs ofthe general theorems are reduced to depend on these

special cases, the latter are treated separately.
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THEOREM 74

If A, B and C be three distinct elements in an inertia plane such that

AB and AC are distinct optical lines, and if D be an element linearly

between A and B while E is an element linearly between A and C
',
then

there exists an element which lies both linearly between C and D and also

linearly between B and E.

[t will be sufficient to consider the case where A is after B, since the

case where A is before B may be treated in an analogous manner.

Since E is linearly between A and (7, therefore E is between the

optical line AB and a parallel optical line through C.

Thus, A being supposed after B, this optical line through C will

intersect the general line BE in some element, say (7, such that G is

after C (Theorem 69).

But since D is linearly between A and B we must, in these circum-

stances, have D after B.

Thus, since G is after (7, it follows by Theorem 68 that the general

lines BG and DC intersect in some element, say F, which is between

the parallel optical lines DB and CG.

That is, F is linearly between C and D, and is the element of inter-

section of CD and BE.

By taking an optical line through B parallel to AC we may prove in

an analogous manner that F is linearly between B and E.

THEOREM 75

// A, B and C be three distinct elements in an inertia plane such that

AB and AC are distinct optical lines and if D be an element linearly be-

tween A and B while F is an element linearly between C and D
y
then there

exists an element, say E, which lies linearly between A and C and such

that F lies linearly between B and E.

As in the previous theorem, it will be sufficient to consider only the

case where A is after B.

Under these circumstances we should have D after B and so, since

F is linearly between C and Z), we should have F between the optical

line AB and a parallel optical line through C.

Thus, by Theorem 69, this optical line through C will intersect BF
in some element, say (7, such that (T is after C.

But, since A is after B and G is after (7, therefore, by Theorem 68, the

general lines AC and BG intersect in some element, say E, such that E
is between the parallel optical lines AB and CG.
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Thus E is linearly between A and (7, where E is the element of inter-

section ofAC and BF.

It then follows, as in the last theorem, that J^ lies linearly between

B and E.

THEOREM 76

If A, B and G be three elements in an inertia plane which do not all lie

in one general line and, ifD be an element linearly between A and B, while

E is an element linearly between A and (7, there exists an element which

lies both linearly between B and E and linearly between C and D.

Let F be the inertia plane containing A ,
B and G and let a be any

inertia line through A which does not lie in V.

Let b and c be inertia lines parallel to a and passing through B and G

respectively.

Then 6 and c lie in one inertia plane, say ^o
Pbc ,

c and a in a second inertia plane, say
Pca ,

and a and 6 in a third inertia plane,

Let one of the optical lines through B
in the inertia plane Pab intersect a in A'

and let one of the optical lines through
A' in the inertia plane Pca intersect c

inC".

Then A'B and A'C' may be taken as

generators of opposite sets of an inertia

plane, say S, containing B, G' and A 1
'

.

Let d be the inertia line through D
parallel to a and let e be the inertia line

through E parallel to a.

Then d will lie in Pab and, since D is

linearly between A and B, it follows by
Theorem 72 that d must intersect A'B in

some element, say D', such that D' is

linearly between A' and B.

Similarly e will lie in Pca and, since E
is linearly between A and (7, it follows

that e will intersect A'C' in some element, say E', such that E' is

linearly between A' and C' .

But, since A'B and A'C' are two distinct optical lines in the inertia

plane S, it follows by Theorem 74 that there exists an element, say

Fig. 21.
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JF', which lies both linearly between B and E' and linearly between C'

and /)'.

Now, since h and c are parallel inertia lines lying in the inertia plane

P^, it follows that there is an inertia plane, say P6/ , containing b and

the element F', and an inertia plane, say Pr/ , containing c and the

element F' and these inertia planes must, by Theorem 51, have a

general line, say/, in common.

Further, / must be parallel to b and c and must therefore be an

inertia line.

But the inertia plane Pbf
contains the general line BF' and must

therefore contain E' and the inertia line e which passes through E' and

is parallel to 6.

Thus Pbj
contains the clement E and therefore contains the general

line BE.

Similarly Pcf
contains the general line CD.

But, since F' is linearly between B arid ", it follows by Theorem 72

that the inertia line/ must intersect BE in some element, say F, such

that F is linearly between B and E.

Similarly, since F' is linearly between C 1 and 1Y, it follows that/
must intersect (

f

/> in some element, say F, such that F is linearly

between C' and /).

But both F and J1 must lie in V and so, if they were distinct, the

inertia line/ would require to lie in I .

But /is parallel to a, ofwhich only one element lies in V and therefore

/does not He in T and accordingly F must be identical with F.

Thus the element F is both linearly between B and E and linearly

between C and I).

It may happen in this and the next theorem that A' coincides with

A or C' with f, but this does not affect the validity.

THEOREM 77

If A, B and C be three elements in an inertia plane which do not all lie

in one general line and ifD be an element linearly between A and B while

F is an element linearly between C and D, there exists an element, say E,

which is linearly between A and C and such that F is linearly between B
and E.

Let I' be the inertia plane containing ^4, B and C and let a be any
inertia line through A which does not lie in V, while b and c are inertia

lines parallel to a through B and C respectively.

Let Pfc, Pca ,
Pab . A', C", S, d, D', have the same significance as in
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the last theorem, and let Pcd be the inertia plane containing the parallel

inertia lines c and d.

Let/ be an inertia line through F parallel to c and d and which will

also lie in Pcd .

Since F is linearly between C arid D it follows, by Theorem 72, that

/ will intersect C'D' in some element, say F'
9
such that F' is linearly

between C r and T)' .

But, as in the last theorem, D r

is linearly between A' and B and so,

since A'B and A'C' are two distinct optical lines in the inertia plane 8,

it follows, by Theorem 75, that there exists an element, say E
f

,
which

lies linearly between A' and C f and such that F' lies linearly between

B and E' .

Tf now we denote the inertia plane containing b and / by Pbf ,
then

P
bl

contains the element E' in common with the inertia plane Pca .

But, since b lies in Pbc and Pb/
while the parallel inertia line c lies in

P c and Pcn ,
it follows, by Theorem 51, that P

b/
and P

C(t
have a general

line, say e, in common which passes through E' and is parallel to b and

c and is therefore an inertia line.

Now since a is also parallel to e and lies in the same inertia plane
Pca with it and, since E' is linearly between A' and (V, it follows, by
Theorem 72, that e must intersect AC in some element, say E, such that

E is linearly between A and C.

Again, since fc, /and e all lie in the inertia plane Pbf and, since F' is

linearly between B and j", it follows, by Theorem 72, that BF must

intersect e in some element E such that F is linearly between 7? and E.

But both A7 and E must lie in V and so, if they were distinct, the

inertia line e, would require to lie in V .

But e is parallel to a, ofwhich only one element lies in V and therefore

e does not lie in V and accordingly E must be identical with E.

Thus the element A7

is linearly between A and C and is such that F is

linearly between and E.

REMARKS

Peano has given the following three axioms of the plane :

(12) If r is a straight line, there exists a point which does not lie on r.

(13) If A, B, C are three non-collinear points and D lies on the seg-

ment EC, and E on the segment AD, there exists a point F on both the

segment AC and the prolongation B'E.

(14) If A, B, C are three non-collinear points and D lies on the

9-2
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segment BC and F on the segment AC, there exists a point E lying on

both the segments AD and BF.
Now since there is always an element outside any general line it

follows that the analogue ofPeano's axiom (12) holds for our geometry.

Further, provided the three elements A, B, C lie in an inertia plane,

Theorem 76 corresponds to Peano's axiom (14) while Theorem 77

corresponds to his axiom (13).

Also Theorem 47 corresponds to the axiom of parallels in Euclidean

geometry so far as an inertia plane is concerned.

An inertia plane however differs from a Euclidean plane, since there

are three types of general line in the former and only one type of

straight line in the latter.

Further, although closed figures exist in an inertia plane, there is no

closed figure which corresponds to a circle.

How this comes about will be seen hereafter.

THEOREM 78

// A ,
B and C be three elements in an inertia plane P which do not all

lie in one general line and ifD be the mean ofA and B, then a general line

through D parallel to BC intersects AC in an element which is the mean

of A and C.

The general line BC, which we shall denote by a, may be either:

(i) an optical line, (ii) a separation line, or (iii) an inertia line.

As regards case (i) : let a' be an optical line through A parallel to a,

and let AK be the second optical line which passes through A and lies

in the inertia plane P, and let it intersect a in the element K.

Fig. 22.
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Let X be any other element in a and let the optical line through X
parallel to KA intersect a

7

in 7. Then A,K,X, Y are the corners of an

optical parallelogram whose diagonal lines AX and YK intersect in

some element, say M ,
which is the mean both of A and X and of Y

An optical line m through M parallel to a will intersect AK in an

element (say 0) which is the mean of A and K.

The position of is independent of the position of X in the optical

line a, so that ifB and C be any two elements in a, and D be the mean

of A and B the general line through D parallel to EG will be identical

withm and will intersect AC in an element which is the mean ofA and C.

Case (ii) may be proved as follows :

Let any inertia line in P which passes through A intersect a in some

element K, and let X be any other element in a.

Fig. 23.

The element A will be either before or after K, but the method of

proof is analogous in both cases and so we shall consider the one where

A is after K.

Now, since a is a separation line, K will be neither before nor after X.

If then Q be any inertia plane containing a but distinct from P, the

element K will be before an element of one of the optical lines in Q

which pass through X and after an element of the other.

Let/ be the optical line through X in the inertia plane Q such that
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K is after an element of it and let the optical line through K in Q ofthe

opposite set to /intersect /in H. Then K is after H.

But since A is supposed to be after K we shall have A after H and

AH will be an inertia line.

Thus A
,
// and X will lie in an inertia plane and A ,

H and K will lie

in another inertia plane.

Let O be the mean of A and K.

Then, by case (i), an optical line through parallel to KH will inter-

sect AH in some element / such that / is the mean of A and H .

Also, by case (i), an optical line through / parallel to HX will inter-

sect AX in some element M which will be the mean of A and X.

But now / does not lie in Q and so 0, / and M lie in an inertia plane,

say Q', which will be parallel to Q.

Thus, since P has the separation line a in common with Q and has

the general line OM (which we shall denote by ra) in common with the

parallel inertia plane Q', it follows that m is a separation line parallel

to a and intersecting AX in an element M which is the mean of A
and X.

For all positions ofX the mean ofA and X lies on the separation line

m which passes through which is the mean of A and K .

Thus ifB and C be any two elements in the separation line a and D
be the mean of A and B, then D will lie in the separation line m, which

will also pass through the mean of A and C and is parallel to BC.

Case (iii) may be proved as follows :

Let any inertia line in P which

passes through A and is not parallel

to a intersect a in some element K
and let X be any other element in a.

Let R beany inertia plane distinct

from P but containing the general
line AX.
Now there are two optical lines H

in It which pass through X and one

at least of these optical lines must

be distinct from AX. Let /be such

an optical line.

Now, since a is an inertia line, it

follows that a and I lie in an inertia

plane which we shall denote by Q.
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Let the optical line through K in the inertia plane Q of the opposite
set to / intersect I in the element H .

Then, since AK is an inertia line, it follows that the three elements

H, A and K lie in an inertia plane.

Let be the mean of A and K.

Then, by case (i), an optical line through parallel to KH will inter-

sect AH in some element / such that / is the mean ofA and H.

Also, by case (i), an optical line through / parallel to HX will inter-

sect AX in some element M which will be the mean of A and X.

But now / does not lie in Q and so O, I andM lie in an inertia plane,

say Q', which will be parallel to Q.

Thus, since P has the inertia line a in common with Q and has the

general line OM (which we shall denote by m) in common with the

parallel inertia plane Q', it follows that m is an inertia line parallel to

a and intersecting AX in an elementM which is the mean ofA and X.

For all positions ofX the mean of A and X lies on the inertia line m
which passes through O which is the mean ofA and K.

If then B and C be any two elements in the inertia line a and D be

the mean ofA and B, it will lie in the inertia line ra, which will also pass

through the mean of A and C and is parallel to BC.

Thus in all cases the theorem holds.

Since there is only one general line through D parallel to BC and

this must pass through the mean of A and (7, it follows directly that,

ifE be the mean ofA and (7, then the general line I)E is parallel to BC.

Definition. If two parallel general lines in an inertia plane be both

intersected by another pair of parallel general lines, then the four

general lines will be said to form a general parallelogram in the inertia

plane.

It will be seen hereafter that it is necessary to extend the meaning
of the phrase general parallelogram to the case of figures which do not

lie in an inertia plane and so the words "in an inertia plane'
9

are

important.
The general lines which form a general parallelogram in an inertia

plane will be called the side lines of the general parallelogram.

A pair of parallel side lines will be said to be opposite.

The elements of intersection of pairs of side lines which are not

parallel will be called the corners of the general parallelogram.

A pair of corners which do not lie in the same side line will be said to

be opposite.
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A general line passing through a pair of opposite corners will be

called a diagonal line of the general parallelogram.

It is clear that a general parallelogram in an inertia plane has two

diagonal lines.

Further, it is clear that an optical parallelogram is a particular case

of a general parallelogram in an inertia plane.

THEOREM 79

// we liave a general parallelogram in an inertia plane, then :

(1) The two diagonal lines intersect in an element which is the mean of

either pair of opposite corners.

(2) A general line through the element of intersection of the diagonal

lines and parallel to either pair of side lines, intersects either of the other

side lines in an element which is the mean of the pair of corners through

which that side line passes.

Let A, B, C, D be the corners of the general parallelogram :

A and C being one pair of opposite corners and B and D the other

pair.

D

H

Let E be the mean of A and J5,

151 D /~if ,, JD O,

H D A.



GEOMETRY OF TIME AND SPACE 137

If a general line be taken through E parallel to EG and AD, then by
Theorem 78 it will intersect AC in an element which is the mean of A
and C and therefore will intersect CD in an element which is the mean
of C and D. That is in the element G.

kSimilarly the general line FH will pass through the mean ofA and C.

Thus the element of intersection ofEG and FH (which we shall call

0) is the mean of A and C. Similarly is the mean of B and D. Thus

the mean of A and C is identical with the mean of B and D ; or the

diagonal lines intersect in an element which is the mean of either pair

of opposite corners. The second part of the theorem also holds.

THEOREM 80

If A, B, C, D be the corners of a general parallelogram in an inertia

plane; AB and DC being one pair of parallel side lines and BC and AD
the other pair of parallel side lines, then ifE be the mean ofA and B while

F is the mean ofD and C, the general lines AF and EC are parallel to one

another.

Since the general line AF is not parallel to BC, it must intersect BC
in some element, say G.

Now by Theorem 79 a general line through the intersection of the

diagonal lines and parallel to BC will intersect AB in the mean of A
and J3, and will intersect DC in the mean ofD and C.

Thus the general line EF is parallel to BC.

But since A, B and G are three elements in an inertia plane which

do not all lie in one general line and since E is the mean of A and B
while EF is parallel to BG, it follows by Theorem 78 that F is the mean

of A and G.

Similarly since FC is parallel to AB it follows that C is the mean of

G and B.

But since E is the mean ofB and A while C is the mean of B and G,

it follows by Theorem 78 that EC is parallel to AG: that is, EC is

parallel to AF, as was to be proved.

THEOREM 81

// three parallel general lines a, b and c in one inertia plane intersect

a general line d
l
in A, B

1
and Cl respectively and intersect a second

general line d2 in A 2 , B% and @z respectively, and ifB be the mean ofA t

and C1 ,
then J52 will be the mean of A 2 and C2 .

If A % should happen to coincide with A l ,
or if C2 should happen to

coincide with Cl9 the result follows directly from Theorem 78.
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If d2 should happen to be parallel to d^, then the result follows from

Theorem 79 (2).

In any other case let a general line through A l parallel to d2 intersect

b in B and c in C.

Then, by Theorem 78, B is the mean ofA l and C and so, by Theorem
79 (2), J82 will be the mean of A

2
and G2 .

REMARKS

If A and A n be two distinct elements in a general line a, we can

always find n 1 elements A I} A 2 ,
... A n _ l

in a (where n 1 is any

integer) such that :

A l is the mean ofA Q and A 2 ,

A%is the mean of A
l
and A 3 ,

A n _ l
is the mean of A n _ 2 and A n .

For let P be any inertia plane containing a and let h be any general

line in P which passes through A and is distinct from a.

Let A
i be any element in b distinct from A and let A 2',A 3 ', ...A'n_l9

An
'

be other elements in b such that :

AI is the mean of A Q and A 2)

A
2

'

is the mean of A^ and A^ ,

A'n _ is the mean of A'n_2 and A n
f

'.

Let general lines throiigh A^, A 2 ', ... A f

n-l parallel to An'An inter-

sect a in the elements A ly A 2 ,
... A n_l .

Then, by Theorem 81, it follows that:

A l is the mean of A Q and A 2 ,

A 2 is the mean of A and ^4 3 ,

^4W_1 is the mean ofAn_2 and An ,

and so the n- 1 elements^ ^4 2 ,
... Anmml can be fouhd as stated.
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THEOREM 82

(a) If A be any element in an optical line a and A' be any element in

a neutral-parallel optical line a
1

, then, if B be any dement in a which is

after A, the general line through B parallel to AA' intersects a' in an

element which is after A'.

Since A and A 1

lie in the neutral-parallel optical lines a and a'

respectively, it follows that A is neither before nor after A' and so there

is at least one element which is common to the a sub -sets ofA and A'.

Fig, 26.

Let C be such an element and let b be the optical line through O

parallel to a or a'.

Then since C is after both A and A', it follows that b is an after-

parallel of both a and a' and accordingly b and a lie in one inertia plane

while b and a' lie in another.

Let the optical line through B parallel to AC intersect b in the

element D and let the optical line through D parallel to CA' intersect

a 1

in the element Bf

.

Then A, C, D 7 B form the corners of an optical parallelogram in an

inertia plane which we shall call P, while A',C,D,B' form the corners

of another optical parallelogram in another inertia plane which we

shall call P'.

Now, since B is after A and C is also after A, while AG and AB are

both optical lines, it follows that the diagonal line CB is a separation
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line and accordingly the diagonal line AD is an inertia line having D
after A.

Further, D must be after C and, since C is after A', it follows that the

diagonal line A'D is an inertia line having D after A' ,
and accordingly

the diagonal line CB' is a separation line.

Thus, since C is after A' , we must also have E' after A' .

Let the general line through B parallel to AD intersect b in E and

CA in F, and let the optical lines through E and F respectively parallel

to CF and CE intersect one another in G.

Then F, C, E, G are the corners of an optical parallelogram in the

same inertia plane as the optical parallelogram whose corners are A, C,

D, B and the diagonal lines FE and AD do not intersect and so the

diagonal lines CG and CB do not intersect.

Thus B must lie in CG and since it also lies in FE it follows that B is

the centre of the optical parallelogram whose corners are F, C, E, G.

Now let the general line through E parallel to DA' intersect CA r

in

F' and let the optical lines through E and F' respectively parallel to

CF' and CE intersect one another in G' .

Then F', C, E, G' are the corners of an optical parallelogram in the

same inertia plane as the optical parallelogram whose corners are A'
',

C, D, B r and the diagonal lines F'E and A'D do not intersect and so the

diagonal lines CG' and CB' do not intersect.

Thus B' lies in CG' .

But the optical parallelograms whose corners are F, C, E, G and F',

(7, E, G' have the pair of adjacent corners C and E in common and the

optical line BD through the centre of the first of these intersects CE in

D, and so it follows byTheorem 61 that the centre of the second optical

parallelogram lies in the optical line throughD parallel to CF' and EG' .

Thus the centre of the optical parallelogram whose corners are F',

C, E, G' lies in DB'.

But this centre also lies in CG' and therefore it must be the element

B'.

Thus B' must lie in F'E.

But we saw that AD and A'D were both inertia lines and so they lie

in an inertia plane, say Ql ,
while BE and B fE which are respectively

parallel to these must lie in a parallel inertia plane, say Q2 .

Further, AC and A'C are both optical lines and so they lie in an

inertia plane, sayEl ,
while BD and B'D which are respectively parallel

to these must lie in a parallel inertia plane, say B2 .

But the general lines AA' and BB' lie in the parallel inertia planes
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Qi and Q2 respectively and also in the parallel inertia planes B l and R%

respectively, and since these inertia planes are distinct it follows that

BB' is parallel to AA '.

Thus the parallel to AA' through B intersects a' in the element B'

which is after A' .

(b) If A be any element in an optical line a and A' be any element in

a neutral-parallel optical line a', then if B be any element in a which is

before A, the general line through B parallel to AA' intersects a' in an

element which is before A'.

THEOREM 83

IfA and B be two elements lying respectively in the two neutral-parallel

optical lines a and 6, and if A' be a second and distinct element in a, there

is only one general line through A' and intersecting b which does not

intersect the general line AB.

We have seen by Theorem 82 (a and 6) that the general line through
A' parallel to AB must intersect b.

Let B 1 be the element of intersection.

Then the general lines AB and A'B 1

', being parallel, cannot intersect.

Let any other general line through A' and intersecting b intersect it

in the element C.

Then if C should coincide with B the general lines A'C and AB have

the element B in common and therefore intersect.

Suppose next that C does not coincide with B.
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Let P! be any inertia plane containing a and let P2 be the parallel

inertia plane containing b.

Let al be any inertia line through A in the inertia plane Pl and let Q
be the inertia plane containing ax and the element B.

Then Q must contain a general line, say b
l ,

in common with P2 and

the general lines al and fex must be parallel.

Again, let a/ be a general line through A' parallel to al .

Then a/ must lie in the inertia plane Pl and must be an inertia

line.

Thus the general line a/ and the element B' must lie in an inertia

plane, say Q', and since a/ is parallel to a
l
and A'B' is parallel to AB,

it follows by Theorem 52 that Q' is parallel to Q.

But the inertia plane Q' contains the general line a/ in Pl and the

element B r

in P2 and therefore since Pl and P2 are parallel it follows

that Q' and P2 contain a general line, say b
',
in common, which will be

parallel to a/.

Again, since
1

/

is an inertia line, there is an inertia plane containing

0*1 and the element (7.

If we call this inertia plane /?, then by Theorem 51 the inertia planes

P2 and R have a general line, say ra ,
in common and c

l is parallel to &/
and b .

Thus since c
1
lies in P

2
and R, /)/ in Q' and P2 ,

and a/ inR and Q' ,
and

since Q is an inertia plane parallel to Q' through the element B of P2

which does not lie in ft/, it follows by Theorem 53 that the inertia planes

R and Q have a general line in common, say /j ,
which is parallel to a/.

Now since C is neither before nor after A'
,
it follows that A'C is a

separation line and therefore must intersect the inertia line/! since both

lie in one inertia plane R.

Similarly AB is a separation line and must intersect the inertia line/!

since both lie in the inertia plane Q.

Let AB intersect/! in F and let A 'C intersect/! in F'.

We have to show that F' is identical with F.

Let / be the optical line through F parallel to a and let /' be the

optical line through F' parallel to a.

Then since B is neither before nor after any element of a, it follows by
Theorem 45 that no element of the general line AB with the exception
ofA is either before or after any element of a; and similarly no element

of the general line A'C with the exception of A' is either before or after

any element of a.

But F cannot be identical with A, for this would require C to lie in
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P
l ,
which is impossible, and F' cannot be identical with A' since F' and

A' lie in parallel inertia planes Q and Q
f

'.

Thus F is neither before nor after any element of a and F' is neither

before nor a/er any element of a.

It follows that / is a neutral-parallel of a and also /' is a neutral-

parallel of a.

Suppose now, if possible, that F' is distinct from F
;
then since F and

F' lie in the inertia line /x ,
it would follow that the one was after the

other.

Also if they were distinct, since they both lie in the same inertia line

they could not also lie in one optical line and so the optical lines/and/'
would be distinct and the one would be an after-parallel of the other.

But we have seen that/ and/' are each neutral-parallels of a and so

it would follow by Theorem 28 that they were neutrally parallel to one

another.

But one optical line cannot be both a neutral- parallel and an after-

parallel of another optical line and so the supposition that F' is dis-

tinct from F leads to a contradiction arid therefore is not true.

Thus F' is identical with F and therefore the general line A'C inter-

sects the general line AB.
Thus there is no general line through A' and intersecting 6 which

does not also intersect AB, except the parallel general line A'B'.

THEOREM 84

// a and b be two neutral-parallel optical lines and if one general line

intersects a in A and b in B, while a second general line intersects a in A'

and b in B'
',
then an optical line through any element of AB and parallel

to a or b intersects A'B' .

Let I) be any element of AB and let d be an optical line through D
parallel to a or b.

We have to show that d intersects A'B' .

IfD should coincide with either A or B, no proof is required.

IfA'B' be parallel to AB, then the result follows directly by Theorem

82 (a and 6).

If A'B' be not parallel to AB, then by Theorem 83 the general lines

AB and A'B' must intersect in some element, say C.

Now, the general lines AB and A'B' being supposed distinct, C must

be distinct from at least one of the elements A and B and without

limitation of generality we may suppose that C is distinct from J5.
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Let Q be any inertia plane containing the optical line b and let b l be

any inertia line through B in Q.

Let 6j' be the parallel inertia line through B' which will also lie in Q.

Let P be the inertia plane containing b
l
and (7, while R is the inertia

plane containing 6 t

' and C.

Then by Theorem 51 P and R have a general line, say c t ,in common,
which is parallel to b

l
and &/.

Suppose that I) is not identical with B and let Q' be the inertia plane

through D and parallel to Q.

Fig. 28.

Then we have the three distinct inertia planes P, Q and R and the

three parallel general lines cx ,
b and fe/, such that cx lies in P and R, b

l

in $ and P, and &/ in JK and Q, while Q' is an inertia plane parallel to

Q through an element ofP which does not lie in b
l ,
and so by Theorem

53 the inertia planes R and Q' have a general line in common which is

parallel to b .

Call this general line rf/.

Then rf/ is an inertia line.

Now the optical line d must lie in Q' and must therefore intersect d^
in some element, say Z>'.

Also A'B* being a separation line in the inertia plane R must inter-

sect the inertia line rf
x

'

in some element, say D" .

We have to show that D" is identical with D'.



GEOMETRY OF TIME AND SPACE 145

Suppose ifpossible that D" is distinct from D' and let d" be the optical

line through D" parallel to 6.

Then since by Theorem 45 D is neither before nor after any element

of 6, it follows that d is a neutral-parallel of b.

Similarly d" is a nuetral-parallel of 6 and so if D'arid D" were distinct

and did not lie in the same optical line, it would follow by Theorem 28

that d" was a neutral-parallel of d.

But D' and D" lie in rf/, which is an inertia line, and so if D' and D"
were distinct one of them would have to be after the other and so d and

d" could not be neutral-parallels.

Thus the supposition that D" is distinct from D' leads to a con-

tradiction and so D" must be identical with D''.

Thus the optical line d intersects A'B' in )', which proves the

theorem.

THEOREM 85

// a and b be two neutral-parallel optical lines and E be any element in

a separation line AB which intersects a in A and b in B, and if A'B' be

any other separation line intersecting a in A' and b in B r

but not parallel

to AB, then E either lies in A'B' or in a separation line parallel to A'B'

ivhich intersects both a and b.

IfE does not lie in A'B', then by Theorem 84 an optical line through
E parallel to a or b intersects A'B' in some element, say E', which is

either before or after E.

Thus by Theorem 82 the general line through E parallel to A'B'

intersects a and similarly it intersects b.

Thus E must lie in a separation line parallel to A'B' and intersecting

both a and 6 when it does not lie in A'B' itself.

REMARKS

If a and b be two neutral-parallel optical lines and if c and d be any
two non-parallel separation lines intersecting both a and 6, then it is

evident from Theorem 85 that: the aggregate consisting of all the

elements in c and in all separation lines intersecting a and b which are

parallel to c must be identical with the aggregate consisting of all the

elements in d and in all separation lines intersecting a and b which are

parallel to d.

This follows since each element in the one set ofseparation lines must

also lie in the other set.

Thus the aggregate which we obtain in this way is independent of
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the particular set of parallel separation lines intersecting a and b which

we may select and so we have the following definition.

Definition. The aggregate of all elements of all mutually parallel

separation lines which intersect two neutral-parallel optical lines will

be called an optical plane.*

It is evident that through any element of an optical plane there is

one single optical line lying in the optical plane.

For if a and b be two neutral-parallel optical lines which are inter-

sected by a separation line d in the elements A and B respectively, and

if C be any other element in d, then there is a neutral-parallel to a and

b through C which we may call c.

But through each element of c other than C there is a separation line

parallel to d which, by Theorem 82 (a and 6), must intersect both a and

fc, and so every element of the optical line c lies in the optical plane

defined by a and b.

An optical plane differs in this respect from an inertia plane, since

the latter contains two optical lines passing through any element of it.

Definition. In analogy with the case of an inertia plane, an optical

line which lies in any optical plane will be called a generator of the

optical plane.

THEOREM 86

// two distinct elements of a general line lie in an optical plane, then

every element of the general line lies in the optical plane.

Let the optical plane be determined by the two neutral-parallel

optical lines a and b.

If the two elements lie in a general line which is known to intersect

both a and 6, no proof is required.

Let C be any element in any separation line AB which intersects a

in A and 6 in B, and let D 1

be any element in any separation line A'B'

parallel to AB and intersecting a in A' and b in B'.

We have to show that every element of the general line CD' lies in

the optical plane.

By Theorem 82 (a or 6) an optical line through C parallel to a or b

will intersect A'B' in some element, say C'.

If C' should coincide with D', then CD' would be an optical line

which would be neutrally parallel to a or 6 and we already know that

* The name "optical plane" has been adopted because of certain analogies with an

optical line.
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each element of it must lie either in a separation line parallel to AB and

intersecting both a and b, or in AB itself.

Thus if G' should coincide with D 1

',
the general line CD' is such that

every element of it lies in the optical plane.

If C" does not coincide with D'
9
then an optical line through D'

parallel to CC f

will intersect AB in some element, say D (Theorem 82

(a or b)).

Now DD' must be a neutral-parallel of CC' and either of the optical

lines a or b must be either parallel to CC' and DD' or identical with one

of them.

If a is identical with CC' or DD', then a intersects CD', while if 6 is

identical with CC' or DD'
,
then b intersects CD'.

If a is not identical with CC' or DD'
, then, by Theorem 84, a must

intersect CD'
,
and similarly if b is riot identical with <7C" or JD/)', then

6 must intersect CD' .

Thus in all these cases CD' intersects both a and b and therefore

every element of CD' lies in the optical plane determined by a and b.

THEOREM 87

// e be a general line in an optical plane and A be any element of the

optical plane which does not lie in e, then there is one single general line

through A in the optical plane which does not intersect e.

We saw in the course of proving Theorem 86 that if an optical plane
be determined by two neutral-parallel optical lines a and 6, then any

general line containing two elements in the optical plane and therefore

any general line lying in the optical plane, must either be a neutral-

parallel of a or 6, or else must intersect both a and b.

Suppose first that e is a separation line in the optical plane deter-

mined by a and 6, then e must intersect both a and b.

Since A does not lie in e it must lie in a separation line/ parallel to e

and intersecting both a and b.

Now through A there is an optical line, say c, which is a neutral-

parallel of a or b and which by Theorem 82 (a and b) must intersect e

and must lie in the optical plane, while any other general line/' through
A and lying in the optical plane must intersect both a and b.

But /' is not parallel to e and therefore by Theorem 83 it must

intersect it.

Suppose next that e is an optical line.

Then e must either be parallel to a and b or be identical with one of

them.
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Through A there is an optical line parallel to a or 6 and therefore

parallel to e, and this optical line must lie in the optical plane.

Any other general line through A in the optical plane intersects both

a and b and so by Theorem 84 it must also intersect e.

Thus there is in all cases one single general line through A in the

optical plane which does not intersect e.

THEOREM 88

If A, B and C be three elements in an optical plane which do not all lie

in one general line and ifD be an element linearly between A and B, while

E is an element linearly between A and C, there exists an element which

lies both linearly between B and E and linearly between C and D.

The proof of this theorem is quite analogous to that of Theorem 76,

the only difference being that V is here an optical plane instead of an

inertia plane and, as such, it cannot contain any inertia line.

Thus the words
" wrhich does not lie in F" may be omitted from the

first sentence of the proof.

THEOREM 89

If A, B and C be three elements in an optical plane which do not all lie

in one general line and ifD be an element linearly between A and B while

F is an element linearly between C and D, there exists an element, say E,

which is linearly between A and C and such that F is linearly between

B and E.

The proof of this theorem is quite analogous to that of Theorem 77,

the only difference being that V is here an optical plane instead of an

inertia plane and, as such, it cannot contain any inertia line.

Thus the words "which does not lie in V "
may be omitted from the

first sentence of the proof.

REMARKS

It will be observed that Theorem 88 is the analogue of Peano's

axiom (14) for the case of elements in an optical plane, while Theorem

89 is the corresponding analogue of his axiom (13).

Further, Theorem 87 corresponds to the Euclidean axiom ofparallels

for the case of general lines in an optical plane.
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THEOREM 90

// A ,
B and C be three elements in an optical plane which do not all lie,

in one general line and ifD be an element linearly between A and B ivhile

DE is a general line through D parallel to BC and intersecting AC in the

element E, then E is linearly between A and C.

In the first place E cannot be identical with A for then the general
line DE would be identical with the general line BA and would there-

fore intersect BC.

Again E cannot be identical with C for once more BC and DE would

intersect.

Thus we must either have C linearly between A and E, or A linearly

between C and E, or E linearly between A and (7.

If C were linearly between A and E, then since D is linearly between

A and B it would follow by Theorem 88 that there existed an element

which was both linearly between B and C and linearly between E
andZ).

Thus in this case also BC and DE would intersect.

Next if A were linearly between C and E, then since D is linearly

between A and B it would follow similarly by Theorem 89 that BC and

DE must intersect.

Thus the only possibility is that E is linearly between A and C.

THEOREM 91

// three parallel general lines a, b and c in one optical plane intersect a

general line d^ in A
,
B

l and C\ respectively and intersect a second general

line d2
in A%, B2 and C% respectively, then ifBl

is linearly between A v and

C\ we shall also have B2 linearly between A 2 and C2 .

If A
1 should be identical with A% the result follows directly from

Theorem 90.

Similarly it follows directly if Cl should be identical with C2 .

If B
l should be identical with B2 the following method is still valid.

The general line C1A 2 cannot be identical with the general line c and

therefore C
1
A 2 must intersect the general line b (which is parallel to c)

in some element, say B''.

Then, since Bl is linearly between A l and G\, it follows by Theorem

90 that B' is linearly between Cl and A 2 .

Similarly, since B f

is linearly between A 2 and Cv ,
it follows that B2 is

linearly between A 2 and C2 .
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THEOREM 92

If two dements A and B lie in one optical line and if two other elements

C and D lie in a neutral-parallel optical line, and if A be after B, then :

(1) If C be after D the general lines AD and BC intersect in an

element which is both linearly between A and D and linearly between B
and C.

(2) // the general lines AD and BC intersect in an element E which

is either linearly between A and D or linearly between B and C, we shall

also have C after D.

Let A and B lie in an optical line a and let C and D lie in a neutral-

parallel optical line c.

Let a^ be any inertia line through A and let 6X be a parallel inertia

line through B.

Then a
l and bl lie in an inertia plane, say P.

Let B' be any element in b
l
which is after B and let a' be an optical

line through B' parallel to a.

Then a' will intersect a^ in some element, sayA' , and, by Theorem 57,

since A is after B, we must have A' after B' .

But, since B' is not an element of a but is after B, an element of a, it

follows that a' is an after-parallel of a.

Since further a and c are neutral-parallels, it follows by Theorem
26 (6) that a' is an after-parallel of c.

Thus a' and c lie in an inertia plane, say Q.

Proceeding now to prove the first part of the theorem, we have A'

after B' and C afterD and so it follows by Theorem 68 and the definition

of
"
linearly between" that A'D and B'C intersect in an element, say

E f

,
which is linearly between A' and D and also linearly between B'

and C.

But since a t is an inertia line there is an inertia plane containing a l

and the element E' which we may call It, and similarly there is an
inertia plane containing b

l and the element W which we may call S.

Now since a
l and b

l are parallel general lines in the inertia plane P
it follows, by Theorem 51, that the inertia planes R and 8 have a

general line, say e
l ,

in common, which is parallel to a x and 6X and must
therefore be an inertia line.

Since el lies both in R and S it must intersect BC and AD which lie

respectively in S and R and are separation lines.
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Suppose el intersects BC in E and AD in E, then E and E lie in the

inertia line el and so, if they were distinct, they could not lie in one

optical plane.

But E and E each lie in the optical plane determined by the neutral-

parallel optical lines a and c and so E is identical with E.

But since D, A and A' are elements in the inertia plane R which do

not all lie in one general line, and since E' is linearly between A' and D

Fig. 29.

and E'E is parallel to A'A, it follows, by Theorem 72, thatE is linearly

between A and Z>.

Similarly since E' is linearly between B' and C, and G
9
B and B' lie

in the inertia plane 8 and are not all in one general line and since E'E

is parallel to B'B it follows that E is linearly between B and C.

Thus the first part of the theorem is proved.

Proceeding now to prove the second part of the theorem
;
since AD

and BC intersect in the element E and since av
and b l are inertia lines

it follows that there is an inertia plane, say R, which contains ax and

the element E, and another inertia plane, say $, containing b and the

element E.
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It follows, since a
l
and b

l
are parallel and lie in the inertia plane P,

that R and 8 have a general line, say e
l ,

in common, which is parallel

to al and b
l (Theorem 51) and must therefore be an inertia line.

Now the element E could not lie in the optical line c, since then it

would have to coincide with both C and D and could not therefore be

linearly between A and 1) or linearly between B and C.

Thus, since E and c lie in one optical plane and c also lies in the

inertia plane Q, it follows that E does not lie in Q and so the inertia

line e
1
cannot have more than one element in common with Q.

If now E be linearly between A and D, then since Z>, A and A' lie in

the inertia plane R and are not all in one general line, it follows, since ex

is parallel to A A', that el must intersect A'D in an element, say E'
9

which is linearly between A' and I).

Also, since B'C is not parallel to e and lies in the inertia plane S
with it, it follows that B'C must intersect e

l
.

But B'C lies in Q and we have seen that e l and Q cannot have more

than one element in common and therefore A'D and B'C intersect el in

the same element E'.

If we suppose instead that E is linearly between B and C, we find in

a similar way that B'C and A'D intersect e^ in an element E' which is

linearly between B' and C.

But by the definition of
"
linearly between" the element E' must in

either case be between the parallel optical lines a! and c in the inertia

plane Q.

Thus, since a' and c are parallel optical lines in the inertia plane Q
and since A' is after B' and the element of intersection ofA'D and B'C

lies between a' and c, it follows by Theorem 69 that C is after D, as was

to be proved.

THEOREM 93

(a) If A Q and A x be two elements in a general line a which lies in the

same optical plane with another general line b which intersects a in the

element C such that either A Q is linearly between C and A x ,
or Ax is

linearly between C and A and if an optical line through A Q intersects b

in B so that BQ is after A Q ,
then a parallel optical line through A x will

intersect b in an element which is after A x .

The proofof this theorem is exactly analogous to that ofTheorem 7 1
,

using Theorem 92 (1) in place of Theorem 68.

There is also a (b) form of this theorem which may be proved in an

analogous manner.
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THEOREM 94

If A, B and C be three elements in an optical plane which do not all lie

in one general line and if D be the mean of A and B, then a general line

through D parallel to BC intersects AC in an element which is the mean of

A and C.

Let a l be any inertia line through A while b
l
and c

l
are parallel

inertia lines through B and C respectively.

Then b and c
l lie in one inertia plane, say P, cl and a

l
in a second

inertia plane, say Q, and a
l
and b

l
in a third inertia plane, say R.

Let one of the optical lines through A in the inertia plane Q intersect

cx in C' and let one of the optical lines through A in the inertia plane R
intersect b

l
in B'.

Fig. 30.

Then AC' and AB' may be taken as generators of opposite sets of an

inertia plane, say 8, containing A, B' and C''.

Let d be an inertia line through 1) parallel to al7 b
l
and c

l
.

Then d will lie in R and will intersect the optical line AB' in some

element, say D' .

If now a general line be taken through D parallel to BC, it will lie in

the optical plane, and since the general line AC is distinct from the

general line BC it follows from Theorem 87 that this general line

through D parallel to BC must intersect AC in some element, say E.

Let e
l
be an inertia line through E parallel to al9 b

l , c x , d^ .

Then el
will lie in the inertia plane Q and will intersect the optical

line AC' in some element, say E''.

Now d
l and ^ being parallel inertia lines will lie in an inertia plane,

say T, which contains the two intersecting general lines DE and d^

which are respectively parallel to BC and b
l
in P.
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Thus by Theorem 52 the inertia planes T and P are parallel.

But the inertia plane S has the general line D'E' in common with T

and the general line B'C' in common with P and so D'E' is parallel to

B'C'.

Now since A
,
B and B f

lie in the inertia plane J? and since D is the

mean ofA and B and since DD' is parallel to BB'
,
it follows by Theorem

78 provided that A, B and B' do not lie in one general line, that D' is

the mean of A and B' .

The only case in which A, B and B f

do lie in one general line is when

B' coincides with B and then D' is identical with D so that D' is still

the mean of A and B'.

Again, since A,B' and C" lie in one inertia plane 8 and do not all lie

in one general line and since D' is the mean of A and B'
,
and D'E' is

parallel to B'C'
,
it follows by Theorem 78 that E f

is the mean of A
and C'.

Further, since A, C and C" lie in one inertia plane Q, since E' is the

mean of A and C" and since E'E is parallel to C'C, it follows, provided

that A
,
(7 and C' do not lie in one general line, that 7 is the mean ofA

and C.

The only case in which A
,
(7 and C" do lie in one general line is when

C' coincides with C and then E' coincides with E so that E is still the

mean of A and (7.

(It is to be noted that we cannot have both B' coinciding with B and

C' with (7, for then we should have two optical lines AB' and AC'

passing through the same element A and lying in an optical plane,

which is impossible.) Thus the theorem is proved.

Since there is only one general line through D parallel to BC and

this must pass through the mean of A and (7, it follows directly that

if E be the mean of A and (7, then the general line DE is parallel

to BC.

Definition. If a pair of parallel general lines in an optical plane be

intersected by another pair of parallel general lines, then the four

general lines will be said to form a general parallelogram in the optical

plane.

The terms corner, side line, diagonal line, adjacent and opposite will

be used in a similar sense for the case of a general parallelogram in an

optical plane as for one in an inertia plane.
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THEOREM 95

// we fiave a general parallelogram in an optical plane, then :

(1) The two diagonal linens intersect in an element which is the mean

of either pair of opposite corners.

(2) A general line through the element of intersection of the diagonal

lines and parallel to either pair of opposite side lines intersects either of the

other side lines in an element which is the mean of the pair of corners

through which that side line passes.

The proof of this theorem is exactly analogous to that ofTheorem 79,

using Theorem 94 in place of Theorem 78.

THEOREM 96

// A , B, G, D be the corners of a general parallelogram in an optical

plane, AB and DC being one, pair of parallel side lines and BG and AD
the other pair of parallel side lines, then ifE be the mean ofA and B while

F is the mean ofD and C, the general lines AF and EG are parallel to one

another.

The proof of this theorem is exactly analogous to that ofTheorem 80,

using Theorem 95 in place of Theorem 79 and Theorem 94 in place of

Theorem 78.

THEOREM 97

// three parallel general lines a, b and c in one optical plane intersect a

general line d in A
l ,
B

l
and C1 respectively, and intersect a second general

line d2 in A 2 ,
B

2 and C2 respectively, and if Bl be the mean of A^ and Cl ,

then B2 will be the mean of A 2
and C2 .

The proof of this theorem is exactly analogous to that ofTheorem 81,

using Theorem 94 in place of Theorem 78, and Theorem 95 in place of

Theorem 79.

REMARKS

IfP and P' be parallel inertia planes and if a be any generator of P,

there is one single generator of P' which is a neutral-parallel of a.

This is easily seen, for if bl be any generator of P' belonging to the

set not parallel to a and if B be any element in 6 l3 then either:

(1) B is before an element of a,

or (2) B is after an element of a,

or (3) B is neither before nor after any element of a.

In cases (1) and (2), since B does not lie in a and, since b l neither

intersects a nor is parallel to it, it follows by Post. XII (a and 6) that
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there is one single element of b
l which is neither before nor after any

element of a.

Thus there is always an element of b
l
which is neither before nor after

any element of a.

Let B he such an element and let a' be the generator of P' parallel to

a and passing through J3 .

Then a! is a neutral-parallel of a.

Again, there can be no other generator of P' besides a' which is a

neutral-parallel of a, for any other generator of P' parallel to a' must

be either a before- or after-parallel of a' and therefore by Theorem 26

(a or h) such a generator must be a before- or after-parallel of a.

Again, ifP and P' be parallel inertia planes and ifA be any element

of P, while a and b are the two generators of P which pass through A,

then there is one single generator of P', say a', which is neutrally

parallel to a and there is one single generator of P', say b
f

',
which is

neutrally parallel to b.

The optical lines a
f and // being generators of opposite sets must

intersect in some element, say A'.

Then A' is neither before nor after any element of a and also neither

before nor after any element of b.

Similarly A is neither before nor after any element of a' and also

neither before nor after any element of ft'.

The elements A and A' will be spoken of as representatives of one

another in the parallel inertia planes P and P'.

Thus we have the following definition.

Definition. IfP and P' be parallel inertia planes and ifA and A' be

elements in P and P' respectively such that the two generators of P'

passing through A' are respectively neutral-parallels of the generators

of P which pass through A ,
then the elements A and A '

will be called

representatives of one another in the parallel inertia planes P and P'.

It is evident that the elements A and A' must lie in a separation line.

THEOREM 98

// P! and P2 be two parallel inertia planes and if A be any element in

P
T
while A 2 is its representative in P2 ,

then if A be any other dement in

Pj and A% its representative in P2 the separation lines A 1A 2 and A^A^
are parallel to one another.

Let a l
and

fcj
be the generators ofPl which pass through A l and let a2

and 62 be the generators ofP2 which pass through A 2 ,
the optical lines
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al and a2 being neutrally parallel to one another and the optical lines

b l and b 2 being also neutrally parallel to one another.

Consider first the case where A lies in one of the generators a
l or

bl which pass through A l .

It will be sufficient if we consider the case where A lies in a
l .

Then A 2

'

will lie in a2 .

Let ft/ be the second generator of P
l
which passes through A L

' and

let ft 2

' be the second generator ofP2 which passes through A 2

'

.

Then ft/ will be parallel to b
t while 6 2

'

will be parallel to b 2 and the

optical lines ft/ and ft
2

'

will be neutrally parallel to one another by the

definition of representative elements.

Now since ax and a 2 are neutral-parallel optical lines they determine

an optical plane which contains the separation lines A
1
A

2 and A^A^
which must therefore either intersect or be parallel to one another.

Now, by Theorem 45, no element of the general line A
1
A 2 with the

exception oiA l is either before or after any element of b
l , and similarly,

no element of the general line A^A% with the exception ofA is either

before or after any element of ft/

'

.

Now suppose, if possible, that A
1
A 2 and A^A 2 intersect in some

element A Q .

Then A Q could not coincide with either A l or A^ and so would

require to be neither before nor after any element of b
l
and also neither

before nor after any element of ft/.

If then ft were an optical line through A parallel to b l and ft/, we
should have ft neutrally parallel to both b

l and ft/ .

Thus by Theorem 28, b
l would require to be neutrally parallel

to ft/.

But b
: and ft/ are parallel generators of the inertia plane Pl

and so

one must be an after-parallel of the other.

Thus the supposition that A
1
A 2 and A^A 2 intersect leads to a con-

tradiction and therefore is not true.

It follows that A
1A 2 and A^A^ are parallel, which proves the

theorem in this special case.

Next consider the case where A does not lie either in al or ft x .

Let ft/ be the generator of Pl through A^ parallel to bl and let ft2
'

be the generator of P2 through A% parallel to ft
2

.

Let ft/ and al intersect in Bl and let ft 2

' and a2 intersect in B2 .

Then since % and a
2 are neutrally parallel and also ft/ and ft2

'

are

neutrally parallel, it follows by the case already proved that A 1
A 2

and

B
l
B2 are parallel to one another.
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Similarly A^A^ and B^B2 are parallel to one another.

Thus by Theorem 50 A^A^ and A 1A 2 are parallel to one another.

SETS OF THREE ELEMENTS WHICH DETERMINE OPTICAL PLANES

IfA
1 ,
A 2

and A 3 be three distinct elements which do not all lie in one

general line and do not all lie in one inertia plane, they either may or

may not all lie in one optical plane.

In those cases in which they do lie in an optical plane they determine

the optical plane containing them.

We have the following criteria by which we may say that the three

elements do lie in one optical plane.

CASE I. Three elements A l ,
A 2 , A% lie in one optical plane ifA l and

A 2 lie in an optical line while A 3 is an element which is neither before

nor after any element of the optical line.

This is clearly true since if a be the optical line containing A l
and A z ,

there is an optical line, say 6, through A 3 and neutrally parallel to a.

These two optical lines may be taken as generators of an optical

plane which will contain A
l , A 2 and A B .

Now if P be this optical plane it is the only one which contains A ,

A 2 and A 3 ,
for suppose that A l ,

A z and A$ also lie in an optical plane

P' determined by the two generators a' and 6'.

Then, since P' contains A% and A z ,
it follows by Theorem 86 that P'

contains every element of the general line A 2A 3 and since A 2A% is a

separation line it cannot be parallel to either a' or b' and must therefore

intersect both a' and 6'.

Again since P' contains A l
and A

2
it follows that P' contains every

element of A
1
A 2 : that is, it contains the optical line a.

Also since P' contains A% it must contain the optical line through A%

parallel to a : that is, it contains 6.

Further a cannot intersect either a' or b' and so must be either parallel

to both or identical with one.

Similarly b cannot intersect either a' or b' and so must be either

parallel to both or identical with one.

Nowr

every element in the optical plane P must either lie in the

separation line A 2A 3 or in a separation line parallel to A 2A 3 and inter-

secting a and 6.

But such a separation line must also intersect a' and &' and will

therefore lie in the optical plane P' .

Similarly every element in the optical plane P' must either lie in the
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separation line A 2A 3 or in a separation line parallel to A^A^ and

intersecting a' and b''.

But such a separation line must also intersect a and b and will

therefore lie in the optical plane P.

Thus every element in P lies also in P' and every element in P' lies

also in P.

Thus the optical planes P and P' are identical and so there is only
one optical plane containing the three elements A, A%, A%.

CASE II. Three elements A v , A%, A% lie in one optical plane if A
l

and A 2 lie in a separation line while A 3 is an element which is before one

single element ofAA 2 ,
or is after one single element of A

L
A 2 .

This may be shown as follows :

Let AS be before the one single element A of the separation line

A
1A 2 and let A

1
A 2 be denoted by a.

Then ^4
3 ^4 4 cannot be an inertia line, for, if it were, we know that it

would lie in an inertia plane containing a.

Thus the three elements A lf A 2 ,
A 3 would lie in one inertia plane,

contrary to what was proved on pp. 72-73.

Thus A^A cannot be an inertia line and so, since A% is before ^4 4 ,
it

must be an optical line.

Now A 4 must be distinct from at least one of the two elements A l ,

A 2 ,
and without loss of generality we may suppose A^ distinct from A

l
.

Then A
1
is neither before nor after A since they are both elements of

the separation line A
1
A

2 .

Further, A l
cannot be before any element of the optical line A 3A

which is before A, for then A would be before A, which is im-

possible.

Similarly A cannot be after any element of the optical line A 3A
which is after A 4 .

Again A l
cannot be after any element of the optical line A^A^ which

is before A ;
for if A$ were such an element of A 3A 4 we should have A$

before two distinct elements of a and so A
5 , A^ and A would lie in one

inertia plane which would also contain ^4 3 , contrary to what has

already been shown.

Similarly A l
cannot be before any element of the optical line A 3A

which is after A.
Thus A i is neither before nor after any element of the optical line

A 3A 4 and so through A l there is one single optical line which is neutrally

parallel to A 3A^.
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Thus these two optical lines may be taken as generators of an optical

plane and, since the separation line a intersects both these optical lines

and contains the elements A l and J 2 ,
it follows that the three elements

A
l ,
A

2 ,
A 3 lie in an optical plane.

Further, there is only one optical plane containing A, A% and A^\

for any optical plane containing A 1
and A 2 must also contain A, and

since, by Case I, there is only one optical plane containing A 3 ,
A 4 and

A lt it follows that there is only one optical plane containing A l9 A 2

and A%.

Similarly, if A% be after one single element of the separation line

A
1
A 2 ,

there is one single optical plane containing the three elements

A l9 A 2 and A%.

THEOREM 99

If two optical parallelograms have a pair of opposite corners in common

lying in an inertia line, then their separation diagonal lines are such that

no element of the one is either before or after any element of the other.

Let A and B be the two common opposite corners lying in the

inertia line a, and let B be after A .

Let G andD be the two remaining corners ofthe one optical parallelo-

gram which we shall suppose to lie in the inertia plane P, and let E and

F be the two remaining corners of the other optical parallelogram

which we shall suppose to lie in the inertia plane Q.

Then by Theorem 60 the two optical parallelograms have a common

centre, say O, which is after A and before B.

Then the general lines CD and EF are separation lines and so their

common element is neither before nor after any element of either of

them.

Let CD be denoted by c and EF by e.

Now, since C and E are two distinct elements in the a sub-set of A
which do not lie in one optical line, it follows by Theorem 13 that C is

neither before nor after E, and similarly C is neither before nor after F.

Let E
l
be any element in e such that E is linearly between and El

and let the optical line through El parallel to EA intersect a in A ly

while the optical line through El parallel to EB intersects a in Bl .

Then by Theorem 72 A is linearly between A L and 0, while B is

linearly between and Bl .

Thus A
l
must be before A and B

l must be after B.

Again, since A
l is before 0, and and E

l
lie in a separation line, we

must have A
l before E1

.
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Similarly, since Bl is after 0, and O and El lie in a separation line,

we must have Bl after El .

But A is after A l and C is after A and therefore C is afterA l ,
and since

A is the only element common to a and the j8 sub-set of O, it follows

that A ! (7 is an inertia line.

If then C* were before E it would follow by Theorem 12 that (7 should

Fig. 31.

lie in the optical line A lEl which it clearly cannot do since A^C is an

inertia line.

Thus C is not before El .

Further,B is after C and B
1 afterB and therefore B

l
is afterCand B^C

is an inertia line.

If then C were after El
it would follow by Theorem 12 that C should

lie in the optical line BlEl which it clearly cannot do since B^C is an

inertia line.
r

fhu&CisnotafterEl .
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In a similar manner we may prove that C is neither before nor after

any element F
l of the separation line e such that F is linearly between

0&,ndFl .

Again let E2
be any element of e which is linearly between O and E

and let the optical line through E2 parallel to EA intersect a in A 2 while

the optical line through E2 parallel to EB intersects a in B2 .

Then we may prove in a similar manner that E
2 is neither before nor

after C and therefore C is neither before nor after E2 .

Similarly we may prove that C is neither before nor after any element

F
2 of the separation line e such that F

2
is linearly between and F.

Thus C is neither before nor after any element of the separation

line e.

Similarly D is neither before nor after any element of e.

Again if C' be any other element in c distinct from 0, then by
Theorem 59 there is an optical parallelogram in the inertia plane P
having as centre and C" as one of its corners.

If I)' be the corner opposite to C", then D' will also lie in c, and if A 1

and B' be the remaining two corners these must lie in a.

Then there is one single optical parallelogram in the inertia plane Q

having A' and B' as opposite corners.

IfE 1 and F' be the remaining corners of this optical parallelogram,

then E' and F' must lie in e.

Thus we have got two new optical parallelograms having a pair of

opposite corners A' and B r

in common, lying in the inertia line a, while

their separation diagonal lines are c and e respectively.

Thus we may prove in a manner similar to that already employed
that C' is neither before nor after any element of e.

Thus no element of c is either before or after any element of e, as was

to be proved.

REMARKS

It is evident from the above that any general line which intersects

the separation lines c and e in distinct elements must itself be a separa-

tion line.

It also appears from this theorem that it is possible to have an

element wrhich does not lie in a separation line and which is neither

before nor after any elements of the separation line.

Iftwo distinct elements A
l
and A 2 lie in a separation line a, while A 3

is an element which does not lie in a and is neither before nor after any
element of a, then we have already seen (p. 73) that A l9 A 2

and A%
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cannot lie in an inertia plane and it is also evident that they cannot lie

in an optical plane.

For suppose, if possible, that A% does lie in an optical plane con-

taining the separation line a
;
then there would be a generator of the

optical plane passing through A 3 and intersecting a in some element,

say J 4 .

Since A 3 is supposed not to lie in a, the elements A% and A would

require to be distinct and since they would then lie in an optical line

we should have A<^ either before or after A\ an element of a, contrary

to hypothesis.

Thus A lt A 2 and A 3 cannot lie in an optical plane.

Again iftwo distinct elements A l and A 2 lie in a separation line while

A 3 is an element which does not lie in A 1 A 2 and is neither before nor

after any element of A V A%, then the element A 2 is neither before nor

after any element of A%A .

For if A 2 were either before or after any element of A 3A l , then the

three elements A
,
A 2 ,

A 3 would lie either in an inertia or optical plane

contrary to what we have just shown.

Similarly A T is neither before rior after any element of A ZA 9 .

Again if a be a separation line and A be an element which is not an

element of a and is neither before nor after any element of a, then if B
be any element of a, no element of the general line AB is either before

or after any element of a.

This is easily seen, for suppose, if possible, that C is some element of

AB which is either before or after some element of a.

Then C could not lie in a and would lie either in an inertia or optical

plane containing a.

But such inertia or optical plane would contain the element A and

so the separation line a and the element A would lie in an inertia or

optical plane, contrary to what we have already proved.
Thus no element of AB is either before or after any element of a.

Definition. An inertia line and a separation line which are diagonal
lines of the same optical parallelogram will be said to be conjugate to

one another.

It is evident that ifan inertia line and a separation line are conjugate

they lie in one inertia plane and intersect one another.

It is also evident that ifA be an element lying in an inertia or separa-
tion line a in an inertia plane P, then there is only one separation or

inertia line through A and lying in P which is conjugate to a; since, if
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two optical parallelograms lie in P and have a as a common diagonal

line, then their other diagonal lines do not intersect (Post. XVI).

From this it also follows that if two intersecting separation lines b

and c be both conjugate to the same inertia line a, then a, 6 and c

cannot he in the same inertia plane and we shall have a and 6 in one

inertia plane, say P, while a and c lie in another, say Q.

If be the element of intersection of b and c, then must lie both in

P and Q and therefore in the inertia line a.

IfA l be any element in a distinct from 0, there is one optical paral-

lelogram in the inertia plane P having as centre and A l as one of its

corners.

If A
2 be the corner opposite A l> then there is an optical parallelo-

gram in Q also having A l andA 2 as a pair of opposite corners and there-

fore having the same centre O.

The separation lines 6 and c will be the separation diagonal lines of

the optical parallelograms in P and Q respectively, and so it follows by
Theorem 99 that no element of b is either before or after any element of c.

By considerations similar to the above, we can see that if two inter-

secting inertia lines b and c be both conjugate to the same separation

line a, then a and b must lie in one inertia plane while a and c lie in

another distinct inertia plane.

Further if be the element of intersection of b and c, then lies in a.

In this case however, since b and c are two intersecting inertia lines,

they must lie in one inertia plane which must be distinct from both the

others.

Again it is clear that if a be an inertia or separation line lying in an

inertia planeP witha separation or inertia line b which is conjugate toa,

then any general line c lying in P and parallel to b is also conjugate to a.

Also conversely it is clear that if a be an inertia or separation line

lying in an inertia plane P with two distinct separation or inertia lines

b and c which are each conjugate to a, then b and c must be parallel to

one another.

THEOREM 100

If an inertia line a be conjugate to a separation line b, and if an inertia

line o! be co-directional with a while a separation line b' is co-directional

with 6, and if a' and b' intersect one another, then a' is conjugate to b' .

LetP be the inertia plane containing a and b and let be the element

of intersection of a and 6, while 0' is the element of intersection of a'

and &'.
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Two cases have to be considered :

(1) O' lies in the inertia plane P.

(2) 0' does not lie in the inertia plane P.

Consider first case (1).

Here both a' and b' must lie in P.

Then since a' is co-directional with a and a is conjugate to b and since

a, b and a' lie in one inertia plane, it follows that a' is conjugate to b.

Also since b' is co-directional with b and a' is conjugate to 6, and

since a', b and b' lie in one inertia plane, it follows that a' is con-

jugate to &'.

Fig. 32.

Consider next case (2).

Here a' and 6' lie in an inertia plane P' which must be distinct from

P, since the element O' does not lie in P and therefore, by Theorem 52,

P' must be parallel to P.

Now let A be any element of a which is before 0.

Then we know that there is one single optical parallelogram lying

in P which has as centre and A as one of its corners.

Let C be the corner opposite to A and let B and D be the remaining

pair of corners, which must both lie in 6, since b is conjugate to a and

intersects it in 0.

Now, sincePand P' are parallel inertia planes and since 6 is a general
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line in P, then
,
as we showed on p. 76, there is at least one inertia plane,

say Q, containing b and another general line, say 5 in P'.

Then h must be parallel to b and since 6 is a separation line, 5 must

also be a separation line.

Let b
l
and d be parallel optical lines in Q which pass through B and

D respectively and let them intersect the separation line f> in Bl andDl

respectively.

Let an optical line be taken through Bl parallel to BC and let an

optical line be taken through Dl parallel to DC.

Then these two optical lines will be generators of opposite sets of the

inertia plane P' and consequently will intersect in some element, say

<?!

Similarly if an optical line be taken through Bl parallel to BA and an

optical line be taken through Dl parallel to DA these two optical lines

will also lie in P' and will intersect in some element, say A^ .

Now let optical lines al
and Cj be taken through A and C respectively

and parallel to b
l
and c/

t .

Then C is after O and therefore also after both B and D and conse-

quently Cj is an after-parallel of b and also an after-parallel of d .

Thus B
l
C

l
and D^C^ must both intersect cl and this latter optical

line cannot lie in P' and so cannot have more than one element in

common with P'.

But C l
lies in P' and is the one element common to BlGli

and D
l
Cl

and so the optical line c
x
must pass through Cl .

In an analogous way we find that a is a before-parallel of both b

and
</!

and must pass through the element A l .

Further, c
l
must be an after-parallel of at .

But now, by hypothesis, a is an inertia line so that a and al lie in an

inertia plane, which must also contain cx since cx is parallel to a and

passes through the element C of a.

Thus A lCl
must be an inertia line parallel to a and we may denote it

by a.

Then a and are diagonal lines of the optical parallelogram whose

corners are A l ,B l ,C l
andD1 and so a is conjugate to B

;
which intersects

it in some element, say Ol .

But a' and a are each parallel to a and therefore a' and a are co-

directional while b' and 6 are each parallel to 6 and so b' and 6 are

co-directional.

Thus, by case (1), a' is conjugate to &', as was to be proved.
Thus the theorem holds in all cases.
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Definitions. If A be any element and a be an inertia line not con-

taining A, while B is the element common to a and the a sub-set of A,

then we shall speak ofB as the first element of a which is after A.

Similarly ifC be the element common to a and the
]8
sub-set of A, we

shall speak of C as the last element of a winch is before A .

POSTULATE XVIII. If a, b and c be three parallel inertia lines

which do not all lie in one inertia plane* and A
x
be any element

in a and if

B
x be the first element in b which is after At ,

Gj_ be the first element in c which is after A
t ,

B
2 be the first element in b which is after G 1?

C2 be the first element in c which is after B
x ,

then the first element in a which is after B2 and the first element

in a which is after C 2 are identical.

It is evident that there is a (6) form of this postulate in which the

word last is substituted for the word first and the word before for the

word after, but this is not independent, as may be readily seen.

Tlius let A
l be any element in a and let B

l
be the last element in b

which is before A l
and let (72 be the last element in c which is before Bl

while A
2
is the last clement in a which is before C2 .

Then C
2
is the first element in c which is after A 2 ,

B
l
is the first element in b which is after C2 ,

A l
is the first element in a which is after Bl .

Thus if B2 be the first element in b which is after A% and if Gl be the

first element in c which is after B2 ,
it follows by Post. XVIII that the

first element in a which is after Gl
is identical with the first element in

a which is after B l
: that is, with the element A l .

But C
l
is the last element in c which is before A l

and B2 is the last

element in b which is before Cl
while A

2
is the last element in a which is

before B2
.

Thus the last element in a which is before B2
and the last element in

a which is before (72 are identical.

* If a, b and c do all lie in one inertia plane, the same result may easily be deduced from

the other postulates.
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THEOREM 101

Ifan inertia line c be conjugate to two intersecting separation lines d and

e, then if A be any element of d and B be any distinct element of e, the

general line AB is conjugate to a set of inertia lines which are parallel to c.

Let Cl be the element of intersection of the separation lines d and e.

Fig. 33.

Then we know that c and d lie in one inertia plane, say P, while c

and e lie in another distinct inertia plane, say Q, and the element C
lies in c.

Hi A or B should coincide with Cl ,
then the general line AB must

coincide with e or d and the result follows directly.

We shall suppose therefore that neither A nor B coincides with Cl .

Then since by Theorem 99 A is neither before nor after B and since A
and B are distinct it follows that AB is a separation line.



GEOMETRY OF TIME AND SPACE 169

Let a be an inertia line through A parallel to c while b is an inertia

line through B parallel to c.

Then since A and B lie in a separation line it follows that a and b

must be distinct and therefore are parallel to one another.

Thus a and 6 must lie in an inertia plane which we shall call R.

Further, a must lie in the inertia plane P while b must lie in the

inertia plane Q.

Now let A
l be the first element in a which is after Cl ,

let J5X be the first element in b which is after C l ,

let A 2 be the first element in a which is after B l ,

let B2 be the first element in b which is after A l .

If now C
2 be the first element in c which is after A 2 ,

it follows by
Post. XVIII that C2 is also the first element in c which is after B2 .

Now the optical lines ClA l and C2A 2 cannot be parallel ;
for since A l

is after C and c and a are parallel inertia lines in the inertia plane P, it

would then follow by Theorem 57 (b) that A 2 was after C2 .

But we know that C
2
is after A 2 and so C

l A^ and C2A 2
are not parallel t

and, since they lie in one inertia plane, it follows that they must

intersect in some element, say D.

Similarly C\B 1
and C

2
B

2
must intersect in some element, say E.

Also since a and b are parallel inertia lines in the inertia plane R and

since B2 is after A l and A 2 after Bl ,
it follows in a similar manner that

the optical lines A 1B2 and A 2B l
must intersect in some element,

say O.

Now A 2 cannot be identical with A v for then we should have the

three elements C
,
Bl and A

l lying in pairs in three distinct optical

lines, which is impossible by Theorem 14.

Further, since B
l
is after C\ and A 2

is after J31? it follows that A 2 is

after C .

But A 2 cannot be before A^ for then we should have A 2 after one

element of the optical line C
1
A

1
and before another element of it

which would entail that A 2
should lie in the optical line C

l
A l , by

Theorem 12.

We know however that A
2
and A are distinct elements in the inertia

line a and so A 2
cannot be before A l .

Thus, since A l
and A 2 are distinct elements in an inertia line and A 2

is not before A ,
it follows that A 2 is after A .

Similarly B2 is after Bl .

Let an optical line throughA 1 parallel to DA 2 be taken and an optical

line through A 2 parallel to DA
l
and let these intersect in H.
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Then A l , D, A 2 ,
H form the corners of an optical parallelogram in

the inertia plane P, having its centre, say K ,
in the inertia line a.

Again let an optical line through Bl parallel to EB2 be taken and an

optical line through B2 parallel to EBl
and let these intersect in L

Then B
l ,E 9

B2 ,I form the corners of an optical parallelogram in the

inertia plane Q, having its centre, say L, in the inertia line b.

If now we take optical parallelograms having Cl and C2 as opposite

corners in each of the inertia planes P and Q then, by Theorem 60,

these have a common centre, say M, lying in the inertia line c.

Also D will be one of the remaining corners of the optical parallelo-

gram in P while E will be one of the remaining corners of the optical

parallelogram in Q.

Thus MD and ME will each be conjugate to c.

Further, since the general linesMD and d are both conjugate to c and

lie in the same inertia plane P, they must be parallel to one another.

Similarly the general lines ME and e must also be parallel to one

another.

But now the optical parallelogram in the inertia plane P having C\
and C2 as a pair of opposite corners, and the optical parallelogram

whose corners are A
l , D, A 2 ,

// have diagonal lines c and a respectively

which do not intersect, and so since they both lie in P their other

diagonal lines do not intersect.

But these other diagonal lines have the element D in common and

so must be identical.

Thus the general linesMD and KD are identical and soK lies in MD.

Similarly L lies in ME.
Now let an optical line through A l parallel to OA 2 be taken and an

optical line through A 2 parallel to OA
l
and let these intersect in F.

Then A l9 F ,
A 2 ,

form the corners of an optical parallelogram in

the inertia plane R, and by Theorem 60 this must have the same centre

K as the optical parallelogram whose corners are A
l , D, A 2 ,

PI.

Again let an optical line through B^ parallel to OB2 be taken and an

optical line through B2 parallel to OBl
and let these intersect in G.

Then B
l , G, B2 ,

form the corners of an optical parallelogram in

the inertia plane jR, and by Theorem 60 this must have the same centre

L as the optical parallelogram whose corners are Blt E, B2) I.

But now the optical parallelograms whose corners are A l9 F, A 2 ,

and Bl9 G,B2 ,0 have the diagonal lines a and b which do not intersect

and so, since both lie in the same inertia plane jR, their other diagonal
lines do not intersect.
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That is, FO and GO do not intersect and so since they have the

element in common they must be identical.

Thus lies in the general line FG\ that is, in the general line KL.

Thus KL is conjugate to both a and b.

Now let a general line through C2 parallel to C^A intersect a in A',

and let a general line through 2 parallel to C^B intersect b in B'.

Then A, A\C2 ,Cl form the corners of a general parallelogram in the

inertia plane P, while B, B', 6f

2 ,
C

l form the corners of a general

parallelogram in the inertia plane Q.

Also, since MK and C^A' are both parallel to C^A ,
and sinceM is the

mean of 6\ and (72 ,
it follows by Theorem 81 that K must be the mean

of A and^4
;

.

Similarly L is the mean of B and B f

.

Thus by Theorem 80 the general lines AM and KC2 are parallel to

one another and similarly the general lines BM and LC
2
are parallel to

one another.

But now, since A
2

is after A l
and since K is the centre of optical

parallelograms having A l
and A% as opposite corners, it follows that

K is after A l and before A 2
.

But, since A 2 is before C2 ,
it follows that K is before C2 .

But A 2 is the only element common to a and the
jS
sub-set of <72 and

K is distinct from A 2 .

Thus since K is before C2 and does not lie in the
]8
sub-set of <72 ,

it

follows that 7(72 must be an inertia line.

Similarly LC% is an inertia line.

Thus K(72 and LC
f

2 lie in an inertia plane, say $, while MA and JfJ?

being respectively parallel to these must, by Theorem 52, lie in an

inertia plane, say $', parallel to 8.

But now the general lines KL and AB lie in 8 and 8' respectively

and also both lie in the inertia plane R.

Thus^ljB is parallel to KL and so, sinceXL is conjugate to a and b, we

must also have AB conjugate to a and b, and therefore also conjugate

to every inertia line in R parallel to a and b.

But since a and b are parallel to c, therefore all these inertia lines are

parallel to c and so the theorem is proved.
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THEOREM 102

// Pl
and P2 be parallel inertia planes and if A l be any element in Pl

while A 2
is its representative in P2 ,

then the separation line A-^^A^ is

conjugate to every inertia line inPl which passes throughA l ,
and similarly

A 1
A 2 is conjugate to every inertia line in P2 which passes through A 2 .

Let a
l
and b

l
be the two generators of the inertia plane Pl which pass

through the element A l ,
and let a2 and 6 2 be the two generators of the

inertia plane P2
which pass through A 2 ,

and let a2
be neutrally parallel

to a
l
while 6 2 is neutrally parallel to b

l .

Fig. 34.

Let c
1 be any arbitrary inertia line in P

1
which passes through A l .

Then c
l and the elementA 2 lie in an inertiaplane , say Q, which contains

the inertia line c
l
in common with P

a
and the element A 2

in common
with P2 and therefore, by Theorem 46, must have a general line in

common with P2 which must be parallel to ca
and pass through A z .

Let this parallel to cl through A 2 be denoted by c2 .

Then c2 must also be an inertia line.

Let A be the one single element common to cl and the
jS
sub-set of

^4 2 ,
while A 2

'

is the one single element common to c
2 and the ]8 sub-set

ofA lt so that A 2Ai and A V A< are optical lines.

Also AI is before A% while A
2

'

is before A l
.
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But, sinceAA 2
is a separation line while A lA l

/

is an inertia line and

A i is before A 2 ,
it follows that A must also be before A l .

Similarly A 2 must be before A 2 .

Now AI cannot be after A 2 ,
for then, since A

v

'

is before A ,
it would

require to lie in the optical line A^A^, which is impossible, since A 1A l

'

is an inertia line.

Similarly A 2 cannot be after A^, and accordingly A^A 2 must be a

separation line.

Now let 6
1

' and 62
'

be optical lines through A and A 2 respectively

parallel to b
l and accordingly parallel to one another.

We shall presently show that &/ and b
2 must be neutral parallels,

but let us first consider any element D which lies in 6
t

' and before A^
and let c3 be an inertia line through D parallel to

c-j,
and c2 . Let c3

intersect a
l
in E and 6 X in F.

Then, since D is before A and since &/ and 6
X
are parallel optical

lines, it follows that F is before A l ,
so that F lies in the j8 sub-set of A l .

Thus E must lie in the oc sub-set of A
l and, since D is before A^',

it

follows that ^4/ is in the a sub-set of D.

Suppose now, if possible, that b 2 is an after-parallel of 6/.

Then J.
2

' would be after some element of ft/ and so there would be

one single element common to 6/ and the j3 sub-set of A 2 .

This hypothetical element would therefore be before A 2

f and would

also have to be before A^, since A-^A^ is a separation line.

If now, we try to identify this hypothetical element with D, we
shall find it impossible, for, if we suppose D to be in the

j3
sub -set of

A 2 we should have A 2 in the a sub-set ofD and accordingly we should

have :

A / the first element in c
x
which is after D ;

^4 2

X

the first element in c2 which is after I)
;

^l x the first element in cx which is after ^4 2
'

;

^4 2 the first element in c2 which is after A\ ;

E the first element in c3 which is after A l ;

and so, by Post. XVIII, E should be the first element in c3 which is

after A 2 .

But A 2 is neither before nor after any element of al ,
and so E could

not be after A 2 .

Thus the assumption of the existence of an element common to &/

and the ]8 sub-set of A 2 leads to a contradiction, and so b2 cannot be

an after-parallel of b '.
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Similarly, if 62

'

were supposed to be a before-parallel of 6/, we should

require b to be an after-parallel of 6
2',

and a similar method would

show this also to be impossible.

Thus, since 62
'

*8 parallel to 6
X ', and cannot be either an after- or

before-parallel of ft/, it follows that 62
'

is a neutral-parallel of &/.

But now the separation lines A 1A 2 and A^A^ cannot intersect, for,

since A 2 is neither before nor after any element of bl ,
while A 2 is neither

before nor after any element of &/, it would follow, by Theorem 45, that

such an element of intersection, if it existed, would be neither before

nor after any element of either bl or &/, and so there would be an optical

line through it which would be neutrally parallel to both bl and &/ .

But, if this were so, it would follow, by Theorem 28, that &/ was a

neutral-parallel of b
, contrary to what we have already seen, that the

element A^ of b is before the element A of b l .

Thus the separation lines A 1A 2 andAA cannot intersect and so,

since they both lie in the inertia plane Q and are distinct, it follows that

they are parallel.

Thus A i7 A 2 ,
A 2 ,

A t

r form the corners of a parallelogram in the

inertia plane Q and its diagonal lines are A
t
A 2 and A 2A l

f which are

both optical lines which must intersect in some element, say M .

If then a general line be taken throughM parallel to A 1
A 2 and meet-

ing A
1
A l

'

in an element 0, it follows, by Theorem 79, that is the

mean of A l and Ay*.

Thus an optical parallelogram in the inertia plane Q having A l
and

A i as a pair of opposite corners will have OM as its separation diagonal

line.

Thus OM is conjugate to c
l and, since A 1A 2 is parallel to OM and

in the same inertia plane Q as are OM and c
1 ,

it follows that A
1
A 2 is

also conjugate to cl9 and therefore conjugate to every inertia line in

P
1 which passes through A l

.

Similarly A 1A 2 is conjugate to every inertia line in P2
which passes

through A 2 and so the theorem is proved.

THEOREM 103

If two inertia lines b and c intersect in an element A and are both con-

jugate to a separation line a, then a is conjugate to every inertia line in the

inertia plane containing b and c which passes through the element A l .

We have already seen that a cannot lie in the inertia plane containing
b and c and also that it passes through the element of intersection of

b and c.
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Let Pl be the inertia plane containing b and c and let A 2 be any
element of a distinct from A^ .

Let P2 be an inertia plane through A 2 and parallel to Px .

Let A
2 be the representative ofA l in the inertia plane P2 .

We shall show that A 2 must be identical with A 2 .

Since the inertia line b and the separation line a intersect in the

element A l they must lie in one inertia plane which contains the

inertia line 6 in common with the inertia plane Px and the element A 2

in common with the parallel inertia plane P2 .

Thus the inertia plane containing b and a has a general line, say 6',

in common withP2 ,
and b' is parallel to b and is therefore also an inertia

line.

Similarly the inertia plane containing c and a has an inertia line, say

c', in common with P2 ,
and c! is parallel to c.

Further &' and c' must both pass through A 2 and must be distinct

since 6 and c are distinct.

Now since A and A 2 are representatives of one another in the

parallel inertia planes Pl
and P2 ,

it follows, by Theorem 102, that the

separation line A 1A 2

f

is conjugate to any inertia line in Pl which passes

through A.
Thus A 1A 2 must be conjugate to both b and c.

Suppose now, if possible, that A 2 is distinct from A 2 .

Then 6 is conjugate to both A lA 2 and A 1A 2 and so , by Theorem 101,

6' would be conjugate to ^4 2^ 2 '-

Similarly c is conjugate to both A A 2 and A l
A 2

f and so c' would be

conjugate to A 2A 2 .

But then we should have two distinct inertia lines 6' and c' both

passing through A 2 and conjugate to the same general line A 2A 2 in

the inertia plane P2
which contains 6' and c', and this we know is

impossible.

Thus A 2 cannot be distinct from A 2 and so A 2 must be the repre-

sentative of A l
in the inertia plane P2 .

It follows accordingly that the separation line a is conjugate to every

inertia line in Pl which passes through A I} and so the theorem is

proved.

It is to be noted that in proving the above theorem we have also

incidentally proved the following important result :

If two inertia lines 6 and c intersect in an element A l and are both

conjugate to a separation line a, then a is such that no element of it,



176 GEOMETRY OF TIME AND SPACE

with the exception of A
l ,

is either before or after any element of either

of the generators of the inertia plane containing b and c which pass

through A lt

THEOREM 104

If an optical line b and an inertia line c intersect in an element A l
and

ifa separationline a passing throughA l
be such that no element ofa except

A
l
is either before or after any element of b and iffurther a be conjugate

to c, then a is conjugate to every inertia line which passes through A l
and

lies in the inertia plane containing b and c.

Let A 2 be any element of a distinct from A
l
and let b' be an optical

line through A 2 parallel to 6 while c' is an inertia line through A
z

parallel to c.

Then b' must be a neutral-parallel of 6.

Let P
l
be the inertia plane containing b and c and let P

2
be the

inertia plane containing b' and c'.

Then, since A 2
is neither before nor after any element of the optical

line by it follows that A 2 does not lie in P
l and so the inertia planes Px

and P2
are parallel to one another.

Let A 2

'

be the representative of A
l
in P

2 ;
then A

2
must lie in b' by

the definition of representative elements and by Theorem 102 A
1
A

2

is conjugate to c.

But A 1A 2 is conjugate to c and so if A
2 were distinct from A

2 we

should have c conjugate to two intersecting separation lines and so

by Theorem 99 no clement of A
1
A

2
could be either before or after any

element of A
1
A 2 .

But if A 2 were distinct from A 2 , then, since they each lie in the

optical line 6', it would follow that the one must be after the other.

Thus the supposition that A
2

is distinct from A
2 leads to a contra-

diction and so A 2
must be identical with A

2 .

Thus it follows by Theorem 102 that A^A 2 (that is a) is conjugate to

every inertia line which passes through A l and lies in P
l

.

Thus the theorem is proved.

It follows directly from the above that no element of a with the

exception ofA
l
is either before or after any element ofthe second gener-

ator ofP which passes through A l
.
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THEOREM 105

Ifa separation line a be conjugate to two intersecting inertia lines b and

c, then any inertia line in the inertia plane containing b and c is con-

jugate to a set of separation lines which are parallel to a.

Let the inertia lines b and c intersect in the element A
v .

Then we know that a must also pass through A l ,
but does not lie in

the inertia plane containing b and c.

Let Pt be the inertia plane containing b and c
;
let A 2 be any element

in a distinct from A and let P2 be an inertia plane through A 2 parallel

to Pj.

Then we have seen in the course of proving Theorem 103 that A l

and A 2 are representatives of one another in the parallel inertia planes

P! andP2 respectively, and further every inertia line in P
l
which passes

through A l is conjugate to a.

Let d be any inertia line in the inertia plane Pl and let A be any
element in d while A 2 is the representative of A in P2 .

Then by Theorem 102 the separation line A^A^ is conjugate

to d.

But, provided A / be distinct from A^ it follows by Theorem 98 that

A^AZ is parallel to A
1
A 2 : that is to a, and, since there are an infinite

number of elements in d, it follows that d is conjugate to a set of

separation lines which are parallel to a.

Thus the theorem is proved.

THEOREM 106

// b and c be any two intersecting inertia lines, there is at least one

separation line which is conjugate to both b and c.

Let the inertia lines b and c intersect in the element A
l
and let Pl

be the inertia plane containing b and c.

Let any element be taken which does not lie in Pt and through it let

an inertia plane P2 be taken parallel to Pl
.

Let A 2 be the element in P2 which is the representative of A l .

Then by Theorem 102 the separation line AA 2 is conjugate to any
inertia line in Pj which passes through A r .

Thus the separation line A
1
A 2 is conjugate to both b and c, and so

the theorem is proved.
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THEOREM 107

// b and c be any two intersecting separation lines such that no element

of the one is either before or after any element of the other, there is at least

one inertia line which is conjugate to both b and c.

Let the separation lines 6 and c intersect in the element A and let Q
be any inertia plane containing 6.

Now, since no element of c is either before or after any element of 6, it

follows that c and b do not lie in one inertia plane and therefore c does

not lie in Q.

Let d^ be the inertia line through A^ in the inertia plane Q which is

conjugate to 6.

Then d
l being an inertia line which intersects c, it follows that dl

and

c lie in an inertia plane, say Jf?, which must be distinct from Q.

Let e be any other inertia line in R distinct from d^ and passing

through the element A.
Then e being an inertia line which intersects 6, it follows that

e and b lie in an inertia plane, say Q
f

,
which must also be distinct

from JR.

Let d^ be the inertia line through A l
in the inertia plane Q

f which is

conjugate to 6.

Then d^ may either coincide with e or be distinct from it.

Consider first the case where d^ coincides with e.

Since then both d
l
and d^ will lie in the inertia plane R and since the

separation line 6 is conjugate to both d
l and d^, it follows by Theorem

103 that 6 is conjugate to every inertia line in the inertia plane R which

passes through the element A .

Let a be the inertia line through A 1
in the inertia plane R which is

conjugate to c.

Then a must also be conjugate to b and so the theorem will hold in

this case.

Consider next the case where rf/ is distinct from e.

Since d
l
and d are intersecting inertia lines, they will lie in an

inertia plane, say Pl9 which will be distinct from both Q and Q'.

Also, since d/ does not lie in R in this case, it follows that P
l

is

distinct from R, which has the inertia line dl
in common with Pl .

Since A l
is the only element of c which is also an element of d ,

it

follows that A
l
is the only element of c which lies in P

x .

Let A be any element of c distinct from A l
and let d and d '

be

inertia lines through A Q parallel to dl
and d respectively.
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Then, by Theorem 52, d and d '

lie in an inertia plane, say P2 ,

which is parallel to P
l .

Again, since A is an element of the inertia plane R and since d is

parallel to dl9 it follows that dQ lies in E.

Further, since the inertia line e is distinct from d
1 ,

it cannot be
parallel to dQ and must therefore intersect dQ in some element, say B.
But the inertia line e also lies in Q' and so Q' contains the elementB in common with P9

B

Fig. 35.

Since however Q' has the inertia line rf/ in common with P
,
it

follows by Theorem 46 that Q' and P2 have a general line, say d]\ in
common which must be parallel to dj and is therefore an inertia liiie.

Now, since b is a separation line and d2 an inertia line in the
inertia plane Q' 9

it follows that b and d2

'

intersect in some element,
say A 2 .

But A 2 being an element of b is an element of the inertia plane Q,
and accordingly Q has the element A 2 in common with the inertia

plane P2 .

Since however Q has the inertia line d
l in common with P

l ,
it follows

by Theorem 46 that Q and P2 have a general line, say d2 ,
in common

which must be parallel to d
l and is therefore an inertia line.
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But now since dl and d2 are parallel inertia lines in the inertia plane

Q and since d
l
is conjugate to 6, it follows that d2 is conjugate to b.

Also since rf/ and d% are parallel inertia lines in the inertia plane Q
f

and since d^ is conjugate to 6, it follows that d2

'

is conjugate to 6.

Thus the separation line b is conjugate to the two intersecting inertia

lines d2 and d2 in the inertia plane P2 and so, by Theorem 103, b is con-

jugate to every inertia line in P2
which passes through the element A 2 .

Now since no element of c is either before or after any element of b it

follows that the element A is neither before nor after the element A 2

and therefore, since A 2 and A Q are distinct, A 2A Q is a separation line.

Now let a
2 be the inertia line in the inertia plane P2 which passes

through A 2 and is conjugate to A 2
A Q .

Then a2 is also conjugate to 6.

Thus if ax be an inertia line through A l parallel to a2 it follows by
Theorem 101 that a

l is conjugate to A^A^: that is to c.

But a
I and a

2 being parallel inertia lines through elements of the

separation line b and a2 being conjugate to b, it follows that ax is also

conjugate to b.

Thus al is conjugate to both b and c and so the theorem is proved.

THEOREM 108

If a be a separation line and B be any element which is not an element

of a and is neither before nor after any element of a while c is a general

line passing through B and parallel to a, then if A be any element of a,

while C is an element ofc distinctfrom B, a general line through G parallel

to BA will intersect a.

Let the general line BA be denoted by b and let the general line

through C parallel to 6 be denoted by d.

Then, as was pointed out in the remarks at the end of Theorem 99,

no element of b is either before or after any element of a and so, since a

and b intersect in A
,
it follows by Theorem 107 that there is at least one

inertia line which is conjugate to both a and 6, and must therefore pass

through A.

Let a be such an inertia line and let bl be an inertia line through B
parallel to a

x ,
while cl is an inertia line through C parallel to % and b l .

Then a and al lie in an inertia plane which we may call Pa) while

a
l ,

b and b
1 lie in an inertia plane which we may call Pb ,

and b
,
c and

c
l
lie in an inertia plane which we may call P

c
.

Then, since B and a do not lie in one inertia plane, it follows that B
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is not an element ofPa and so, since 6X and c are respectively parallel to

a: and a, it follows that Pc is parallel to Pa .

Now, since b
l
andal both lie in P and are parallel to one another, and

since a
l is conjugate to 6, it follows that b

l is also conjugate to 6.

But since c is parallel to a and b is parallel to a
,
while c and bl

intersect in J3, it follows, by Theorem 100, that since al is conjugate to

a, therefore bl is conjugate to c.

Thus 6t is conjugate to both b and c, which are two distinct and

intersecting separation lines and therefore cannot lie in one inertia

plane.

Thus G is not an element ofPb and so, ifPd be an inertia plane con-

taining Cj and d, then, since cx is parallel to b
l
while d is parallel to 6, it

follows that the inertia plane Pd is parallel to Pb .

Then, by Theorem 54, Pa and Pd have a general line in common and,

if we call this general line d
, then, since Pd and Pb are parallel, d must

be parallel to a
x
and must be an inertia line.

Now since c1
is parallel to b

l
and d is parallel to 6, and c

x
and d

intersect, it follows, by Theorem 100, that, since b
l
is conjugate to 6,

therefore ct is conjugate to d.

Again since b
l
is conjugate to both b and c and since A is an element

in b while C is a distinct element in c, it follows, by Theorem 101, that

the general line c
x
is conjugate to CA.

Thus c
x is conjugate to both d and CA.

Now since d is a separation line while d
l
is an inertia line and both he

in the inertia plane Pd ,
it follows that d and d

l
must intersect in some

element, say D.

Thus, since A is an element in CA while D is a distinct element in d, it

follows, by Theorem 101, that a l is conjugate to DA.
But a

l
is conjugate to the separation line a which also passes through

A, and so, since both DA and a lie in the inertia plane Pa which con-

tains a
v ,

it follows that the general lines DA and a are identical.

Thus D lies in a and therefore the general line d intersects a.

Thus the theorem is proved.

REMARKS

If a be a separation line and B be any element which is not an

element of a and is neither before nor after any element of a, then if b

be a separation line through B parallel to a, no element of 6 is either

before or after any element of a.

This is easily seen : for if C were an element of 6 which was either
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before or after an element of a, then the separation line a and the

element C would lie either in one inertia plane, or in one optical plane.

Such inertia or optical plane would contain the general line through

C parallel to a : that is to say it would contain 6.

Thus the separation line a and the element B would lie in one inertia

or optical plane, which we already know is impossible.

Thus no element of b is either before or after any element of a and

therefore any general line which intersects both a and b must be a

separation line.

Again, if AB and DC be two parallel separation lines such that no

element of the one is either before or after any element of the other and

if CB is parallel to DA, then no element ofDA is either before or after

any element of GB.

This is easily seen : for we know that no element ofCB is either before

or after any element ofAB and therefore the element A is neither after

nor before any element of CB.

Thus since DA is parallel to CB it follows that no element ofDA is

either before or after any element of CB.

THEOREM 109

IfA and B be two elements lying respectively in two parallel separation

lines a and b which are such that no element of the one is either before or

after any element of the other, and if A' be a second and distinct element

in a, there is only one general line through A' and intersecting b which does

not intersect the general line AB.

We have seen by Theorem 108 that the general line through A'

parallel to AB must intersect b.

Let B' be the element of intersection. Then the general lines AB and

A'B'
', being parallel, cannot intersect.

Let any other general line through A
1 and intersecting b intersect it

in the element (7.

Then if C should coincide with B the general lines A fC and AB have

the element B in common and therefore intersect.

Suppose next that C does not coincide with B.

Since B is neither before nor after any element ofa and since therefore

no element ofAB is either before or after any element of a, it follows, by
Theorem 107, that there is at least one inertia line, say a1? which is

conjugate to both AB and a and therefore passes through A.

Let 6j be an inertia line through B parallel to a1? and let a/ and &/
be inertia lines through A

1 and B1

respectively and also parallel to al .



GEOMETRY OF TIME AND SPACE 183

Then ax and a/ lie in one inertia plane, say PI} which contains also

the separation line a; while ftx and ft/ lie in an inertia plane, say P2 ,

containing 6.

Since the elements B, A and A' cannot lie in one inertia plane and

since b
l and b are respectively parallel to ax and a, it follows that P2

is

parallel to P1 .

Again a1 and ft
L lie in an inertia plane, say Q, containing AB, while

a/ and ft/ lie in an inertia plane, say Q' , containing A'B' .

Since the elements B, A and A' cannot lie in one inertia plane and

since a/ and A 'B' are respectively parallel to a l
arid AB, it follows that

Q
f

is parallel to Q.

Now the inertia line a/ and the element C lie in an inertia plane, say

R, and so R has the element C in common with P2 .

Thus, by Theorem 51, R and P2 have a general line in common, say
cl9 which is parallel to a/ and ft/.

But now Q is an inertia plane through B, which is an element of P2

not lying in ft/ ,
and Q is parallel to Q

1 and therefore, by Theorem 53,

the inertia planes R and Q have a general line in common, say/x ,
which

is parallel to a/.

Now /j must be an inertia line and therefore will intersect the

separation line AB in some element, say F 9
which must be distinct from

A, since otherwise R would coincide with Pl and could therefore have

no element in common with P2 , contrary to hypothesis.

Now, since a^ is parallel to ft/ while a is parallel to b and, since aL is

conjugate to a while ft/ and ft intersect, therefore ft/ is conjugate to ft.

Similarly, since AB is parallel to A'B' and, since a is conjugate to

AB while ft/ and A'B' intersect, therefore ft/ is conjugate to A'B' .

But now since a is conj ugate to the two intersecting separation lines

AB and a, and since F is an element in AB, while A' is a distinct element

in a, it follows by Theorem 101 that a/ must be conjugate to A'F.

Again since ft/ is conjugate to the two intersecting separation lines

A'B' and 6, and since A' is an element in A'B' while C is a distinct

element in ft, it follows in a similar manner that a/ must be conjugate

to A'C.

Thus a/ is conjugate to A'F and to A'C and since A'F and A'C each

lie in the inertia plane R and have an element in common, it follows

that they must be identical.

Thus F lies in A'C and also in AB and so A'C intersects AB.

Thus there is only one general line through A' and intersecting ft

which does not intersect the general line AB.
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THEOREM 110

If a and b be two parallel separation lines such that no element of the one

is either before or after any element of the other, and if one general line

intersects a in A and b in B, while a second general line intersects a in A'

and b in B', then a general line through any element ofAB and parallel to

a or b intersects A'B'.

Let D be any element of AB and let d be a general line through D
parallel to a or b.

We have to show that d intersects A'B' .

IfD should coincide with A or B no proof is required and so we shall

suppose it distinct from both.

If A'B' be parallel to AB, then no element of AB is either before

or after any element of A'B' and the result follows directly by
Theorem 108.

If A'B' be not parallel to AB, then by Theorem 109 the general lines

AB and A'B' must intersect in some element, say C.

Now the general lines AB and A'B' being supposed distinct, C must

be distinct from at least one of the elements A and B and, without

limitation of generality, we may suppose that C is distinct from B.

We shall then have B' distinct from B and so B' will not be an

element of AB.

Thus through B' there is a parallel to AB and by Theorem 108 this

parallel must intersect d in some element, say D''.

But now D'B' and 1)B are parallel separation lines such that no

element of the one is either before or after any element of the other and

both are intersected by the general lines D'D and B'C.

Further since we have supposed D to be distinct from B therefore

D' is distinct from B' and so by Theorem 109 there is only one general

line through B' and intersecting DB which does not intersect D'D.

But B'B being parallel to D'D must be this one general line, and so,

since B'C (that is A'B') is distinct from B'B, it follows that A'B' inter-

sects D'D.

Thus in all cases a general line through any element of AB and

parallel to a or b intersects A'B'.
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THEOREM 111

If a and b be two parallel separation lines such that no element of the one

is either before or after any element of the other, and ifE be any element in

a separation lineAB which intersects a inA and b inB, and if A'B' be any
other separation line intersecting a in A' and b in B' but not parallel to

AB, then E either lies in A'B' or in a separation line parallel to A'B'
which intersects both a and b.

If E does not lie in A'B', then by Theorem 110 a separation line

through E parallel to a or b intersects A'B' in an element which is

neither before nor after any element of a or b and so, by Theorem 108, a

general line through E parallel to A'B' intersects a and also b.

Thus E must lie in a separation line parallel to A'B' and intersecting
both a and b when it does not lie in A'B' itself.

REMARKS

If a and b be two parallel separation lines such that no element of the

one is either before or after any element of the other and if c and d be

any two non-parallel separation lines intersecting both a and b, then

it is evident from Theorem 1 1 1 that the aggregate consisting of all the

elements in c and in all separation lines intersecting a and b which are

parallel to c must be identical with the aggregate consisting of all the

elements in d and in ail separation lines intersecting a and b which are

parallel to d.

This follows since each element in the one set of separation lines must
also lie in the other set.

Thus the aggregate which we obtain in this way is independent of

the particular set of separation lines intersecting a and b which we may
select and so we have the following definition.

Definition. If a and b be two parallel separation lines such that no
element of the one is either before or after any element ofthe other, then

the aggregate of all elements of all mutually parallel separation lines

which intersect both a and b will be called a separation plane*
If a separation plane P be determined by the two parallel separation

lines a and 6, then any element C in P must lie in a separation line,

say c, which intersects both a and b.

Any other element jD in P must either lie in c or in a separation line,

say d, parallel to c and intersecting both a and 6.

* The name "separation plane" has been adopted from its analogy to a separation line.
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IfD lies in c, then D is neither before nor after G.

If D lies in a separation line d parallel to c, we know that no
element of d is either before or after any element of c and so again D
is neither before nor a/ter C.

Thuswe have the general result that : no element of a separation plane
is either before or after any other element of it.

THEOREM 112

// two distinct elements of a general line lie in a separation plane, then

every element of the general line lies in the separation plane.

Let the separation plane be determined by the two parallel separation
lines a and b which are such that no element of the one is either before
or after any element of the other.

If the two given elements lie in a separation line which is known to

intersect both a and b no proof is required.

Otherwise let C be any element in any separation line AB which
intersects a in A and ft in B and let D' be any element in any
separation line A'B' parallel to AB and intersecting a in A' and 6

in'.
We have to show that every element of the general line CD' lies in

the separation plane.

Now no element of AB is either before or after any element of A'B'
and so by Theorem 108 a general line through C parallel to a or b will

intersect A'B' in some element, say C".

IfD' should coincide with C'
,
then CD' would be parallel to a or b and

,

since C cannot be either before or after any element of a or ft, it follows

that no element of CD' could be either before or after any element of

a or ft.

Thus in this case, by Theorem 108, a general line through any
element of CD' distinct from C taken parallel to AB will intersect both
a and ft.

Thus every element of CD' will in this case lie in the separation

plane.

IfD f

should not coincide with C"
',
then since CD' is distinct from CC'

and intersects A'B' it follows by Theorem 109 that CD' must intersect

both a and ft.

Thus again every element of CD' lies in the separation plane deter-

mined by a and ft.
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THEOREM 113

If e be a general line in a separation plane and ifA be any element of the

separation plane which does not lie in e, then there is one single general

line through A in the separation plane which does not intersect e.

We saw in the course of proving Theorem 112 that if a separation

plane be determined by two parallel separation lines a and 6 such that

no element of the one is either before or after any element of the other,

then any general line containing two elements in the separation plane
and therefore any general line lying in the separation plane must either

be parallel to a or 6, or else must intersect both a and b.

Suppose first that e intersects both a and b.

Since A does not lie in e it must lie in a separation line d parallel to e

and intersecting both a and b.

Now through A there is a separation line, say c, parallel to a or b and

which, by Theorem 108, must intersect e and must lie in the separation

plane, while any other general line / through A and lying in the

separation plane must intersect both a and b.

Thus, by Theorem 109, / being supposed distinct from d must

intersect e.

Suppose next that e is parallel to a or b.

Through A there is a separation line parallel to a or b and therefore

parallel to e and which, as we know, lies in the separation plane.

Any other general line through A in the separation plane must

intersect both a and b and so, by Theorem 110, it must be intersected

by e.

Thus there is in all cases one single general line through A in the

separation plane which does not intersect e.

THEOREM 114

IfA ,
B and C be three elements in a separation planeivhich do not all lie

in one general line and ifD be an element linearly between A and B, while

E is an element linearly between A and C, there exists an element which

lies both linearly between B and E and linearly between C and D,

The proof of this theorem is quite analogous to that of Theorem 76,

the only difference being that V is here a separation plane instead of an

inertia plane and, as such, it cannot contain any inertia line.

Thus the words " which does not lie in V" may be omitted from the

first sentence of the proof.
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THEOREM 115

// A ,
B and G be three elements in a separation plane which do not all

lie in one general line and if D be an element linearhj between A and B
while F is an element linearly between G and D, there exists an element,

say E, which is linearly between A and C and such tJiat F is linearly

betiveen B and E.

The proof of this theorem is quite analogous to that of Theorem 77,

the only difference being that V is here a separation plane instead of an

inertia plane and, as such, it cannot contain any inertia line.

Thus the words "which does not lie in V" may be omitted from the

first sentence of the proof.

REMARKS

It will be observed that Theorem 114 is the analogue of Peano's

axiom
(
1 4) for the case ofelements in a separation plane, while Theorem

115 is the corresponding analogue of his axiom (13).

Further, Theorem 113 corresponds to the Euclidean axiom of

parallels for the case of general lines in a separation plane.

THEOREM 116

// A ,
B and C be three elements in a separation plane ivhich do not all

lie in one general line and if D be an element linearly between A and B
while DE is a general line through D parallel to BC and intersecting AC
in the element E, then E is linearly between A and C.

The proof of this theorem is exactly analogous to that ofTheorem 90,

using Theorem 114 in place of Theorem 88, and Theorem 115 in place

of Theorem 89.

THEOREM 117

If three parallel ge7ieral lines a, b and c in one separation plane intersect

a general line d
l in A l7 B^ and Cl respectively and intersect a second

general line rf
2
in A 2 ,

B2 and <72 respectively, then i/Bl is linearly between

A
v
and Cl we shall also have B2 linearly between A 2 and C2 .

The proof of this theorem is exactly analogous to that ofTheorem 91,

using Theorem 116 in place of Theorem 90.
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THEOREM 118

// A ,
B and C be three elements in a separation plane which do not all

lie in one general line and ifD be the mean ofA and B, then a general line

through D parallel to BC intersects AC in an element which is the mean

of A and C.

The proof of this theorem is exactly analogous to that ofTheorem 94.

It is to be noted however that for the case of a separation plane we

can never have B' coinciding with B or C' coinciding with C, since a

separation plane cannot contain an optical line.

Since there is only one general line through D parallel to BC and this

must pass through the mean ofA and C, it follows directly that ifE be

the mean of A and C, then the general line DE is parallel to BC.

Definition. If a pair of parallel general lines in a separation plane
be intersected by another pair of parallel general lines, then the four

general lines will be said to form a general parallelogram in the separation

plane.

The terms corner, side line, diagonal line, adjacent and opposite will

be used in a similar sense for the case of a general parallelogram in a

separation plane as for one in an inertia or optical plane.

THEOREM 119

// we have a general parallelogram in a separation plane, then :

(1) The two diagonal lines intersect in an element which is the mean

of either pair of opposite corners.

(2) A general line through the element of intersection of the diagonal

lines and parallel to either pair of opposite side lines intersects either of

the other side lines in an element which is the mean of the pair of corners

through which that side line passes.

The proof of this theorem is exactly analogous to that ofTheorem 79,

using Theorem 118 in place of Theorem 78.

THEOREM 120

If A, B, C, D be the corners of a general parallelogram in a separation

plane; AB and DC being one pair of parallel side lines and BC and AD
the other pair ofparallel side lines, then ifE be the mean ofA and B, while

F is the mean ofD and C, the general lines AF and EC are parallel to one

another.

The proof of this theorem is exactly analogous to that ofTheorem 80,

using Theorem 119 in place of Theorem 79, and Theorem 118 in place

of Theorem 78.
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THEOREM 121

If three parallel general lines a, b and c in one separation plane intersect

a general line dl inA ly B1 and C^ respectively and intersect a second general

line d2 in A 2 ,
B2 and C2 respectively, and ifB1 be the mean ofA l and C ,

then B2 will be the mean of A 2 and C2 .

The proof ofthis theorem is exactly analogous to that ofTheorem 81,

using Theorem 118 in place of Theorem 78, and Theorem 119 in place

of Theorem 79.

SETS OF THREE ELEMENTS WHICH DETERMINE SEPARATION PLANES

IfA l ,
A 2 and A 3 be three distinct elements which do not all lie in one

general line anddo not all lie in one inertia plane or in one optical plane,

then they must all lie in one separation plane, as we shall shortly show.

In those cases in which they do all lie in one separation plane they
determine the separation plane containing them.

We have the following criterion by which we may say that the three

elements do lie in one separation plane.

Three elements A ly A 2 ,
A 3 lie in one separation plane if A and A 2

lie in a separation line while A 3 is an element which is not an element

of the separation line and is neither before nor after any element of the

separation line.

This is clearly true since if a be the separation line containing A^ and

A 2 ,
there is a separation line b through A 3 and parallel to a which is

such that no element of b is either before or after any element of a.

The separation lines a and 6 then determine a separation plane which

will contain A^ ,
A 2 and A 3 .

If P be this separation plane it is the only one which contains A ly

A 2 and A^, for suppose A l9 A 2 and A 3 also lie in a separation plane P'

determined by the two parallel separation lines a' and 6', which are

such that no element of b' is either before or after any element of a' .

Now since P 1

contains A l9 A 2 and A 3 it must contain the three

general lines A 1A 2) A 2A 3 and A 3A l9 by Theorem 112.

At most only one of these general lines could be parallel to a' or b' .

Suppose first that A^A 2 or a is not parallel to a' or &'.

Then a must intersect both a' and &', and since A 3 is an element of P'

the separation line b through A% parallel to a must lie in P' and must

intersect both a' and 6'.

Then every element in P must lie in a separation line intersecting

both a and 6 and parallel to a' or b'.
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But we know that every element of any such separation line c must

lie in P', for by Theorem 110 a general line through any element of c

parallel to a or 6 must intersect a' and &'.

Similarly every element in P r must lie in P and so P r must be

identical with P.

Next suppose that a is parallel to a' or &'.

Then A^A^ cannot be parallel to a' or &' and so must intersect both

a' and &''.

Then any element in P must lie either in A 3A : or in a general line

parallel to A 3A : and intersecting both a and 6.

But any such general line must also intersect both a' and &', and so

every element in P must also lie in P', and similarly every element in

P f must also lie in P.

Thus again P' must be identical with P.

Thus there is only one separation plane containing the three elements

AI, A 2 and A 3 .

Any three distinct elements A l9 A 2 and A 3 which do not all lie in

one general line must all lie either in an inertia plane, an optical plane,

or a separation plane.

This is easily seen ;
for A and A 2 must lie either in an optical line, an

inertia line, or a separation line.

If A
t
A 2 be an optical line we must have either

(1) AS after an element of A 1A 2 ,

or
(
2

)
A 3 before an element of A lA 2 ,

or (3) AS neither before nor after any element oi A-^A^.

We cannot have A 3 after one element of AA 2 and before another

element of it, since A z is not an element of A :A Z (Theorem 12).

In cases (1) and (2), as we have seen, A ,
A 2 and A% lie in an inertia

plane.

In case (3) we have seen that A l ,
A 2 and A% lie in an optical plane.

If A 1A 2 be an inertia line we know that the three elements must

always lie in an inertia plane.

If A lA 2
be a separation line we must have either

(1) A 3 after at least two distinct elements of A 1A 2}

or (2) A 3 before at least two distinct elements of A^A 2 ,

or (3) A 3 after one single element ofA lA 2 ,

or (4) A 3 before one single element of A 1
A 2J

or (5) A 3 neither before nor after any element of A 1A 2 .

We cannot have A z after one element of A^A 2 and before another
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element of it for then we should have one element ofA l A<i after another

element of it, contrary to the hypothesis thatAA 2 is a separation line.

We have already seen that in cases (1) and (2) A l9 A 2 and A 3 lie in

an inertia plane.

Also in cases (3) and (4) we have seen that A ly A 2 and A 3 lie in an

optical plane.

Finally in case (5) we have seen that A
1 ,A 2 and A 3 lie in a separation

plane.

This exhausts all the possibilities which are logically open and so we
see that A 19 A z and A% must always lie either in an inertia plane, an

optical plane, or a separation plane.

It follows directly that any two intersecting general lines a and b

must lie either in an inertia plane, an optical plane, or a separation

plane, which we may call P.

Any element in P must lie either in b or in a general line parallel to

6 and intersecting a.

Also, conversely, any element in b or in any general line which inter-

sects a and is parallel to 6, must lie in P.

Thus we have the following definition :

Definition . If a and 6 be any two intersecting general lines, then the

aggregate of all elements of the general line b and of all general lines

parallel to b which intersect a will be called a general plane.

Thus a general plane is a common designation for an inertia plane,

an optical plane, or a separation plane.

By combining Theorems 76,88 and 1 14 we now see that the analogue
of Peano's axiom (14) holds in general for our geometry ;

while by com-

bining Theorems 77, 89 and 115 we see that the analogue of his axiom

(13) also holds in general.

Again by combining Theorems 47, 87 and 113 we get what corre-

sponds to the Euclidean axiom of parallels for the case of general lines

in a general plane.

Peano's fifteenth axiom is as follows :

A point can be found external to any plane.

It is evident in our geometry that, since there is more than one

general plane, there is an element external to any general plane, and so

the analogue of Peano's axiom (15) also holds.

If a and 6 be two intersecting general lines in a general plane P and

if through any element A not lying in P two general lines a' and 6' be

taken respectively parallel to a and 6, then if P' be the general plane
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determined by a 1 and &', the two general planes P and P' can have no

element in common.
This is easily seen, for in the first place the general line a! can have

no element in common with P, for then, since it is parallel to a, every

element of a' would have to lie in P, contrary to the hypothesis that

the element A does not lie in P.

Similarly b' can have no element in common with P.

If now B be any element in a' distinct from A and if b" be a general
line throughB parallel to b'

',
then b" must also be parallel to b and, since

B does not lie in P, it follows that b" can have no element in common
with P.

But any element in P' must lie either in b' or in a general line parallel

to b' which intersects a' and therefore the general plane P' can have

no element in common with P.

THEOREM 122

// a and b be any two intersecting general lines in a general plane P and

if through any element 0' not lying in P two general lines a' and b'

respectively parallel to a and b be taken determining a general plane P',

then there is a general line through 0' and lying in P' which is parallel to

any general line in P.

Let the general lines a and b intersect in the element and let A and

B be any two elements distinct from O and lying in a and b respectively.

Then the general lines OO' and a determine a general plane which

must contain a', since a' is parallel to a and intersects OO''.

Thus a general line through A parallel to OO' will intersect a' in

some element, say A'.

Similarly a general line through B parallel to OO' will intersect b' in

some element, say B' .

Then BE' will be parallel to AA' .

But AB and AA' determine a general plane which must contain BB'
and so the general lines AB and A'B' must lie in one general plane.

But AB lies in P while A'B' lies in P', and so A'B' can have no

element in common with AB and must therefore be parallel to it.

Let the general line AB be denoted by c and the general line A'B'

bye'.
Let cl be a general line through parallel to c while c/ is a general

line through 0' parallel to c'.

Then ct will lie in P and c/ will lie in P', and since c' is parallel to c we
must also have cx

'

parallel to cl .

R 13
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Now any general line in P and passing through 0, with the exception

of cl9 must intersect c in some element, say X.

IfX should coincide with either A or B, we know that O'A' and O'B'

are respectively parallel to OA and OB, so that we shall suppose X
distinct from A and B.

Ifnowa general line be taken through X parallel to AA', such general

line will lie in the general plane determined by AB and A A' and will

therefore intersect A'B' in some element, say X' .

Fig. 36.

Now XX' must be parallel to O0 f and so XX' must lie in the general

plane determined by OX and 00'.

Thus OX and O'X' lie in one general plane.

But OX lies in P while O'X' must lie in P' and, since P and P' have

no element in common, it follows that O'X' is parallel to OX.
Thus through O' there is a general line in P' which is parallel to any

general line in P which passes through 0, and since any general line in

P which does not pass through is parallel to one which does pass
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through 0, it follows that there is a general line through 0' and lying in

P' which is parallel to any general line in P.

It also follows directly from the above that through any element of

P' there is a general line in P' which is parallel to any general line in P.

REMARKS

We have alreadygiven a definition ofthe parallelism ofinertia planes

and are now in a position to give a definition ofthe parallelism ofgeneral

planes which will include that of inertia planes as a special case.

Definition. If P be a general plane and if through any element A
outside P two general lines be taken respectively parallel to two inter-

secting general lines in P, then the two general lines through A deter-

mine a general plane which will be said to be parallel to P.

Theorem 52 shows that this definition agrees with that given for the

case of inertia planes.

IfP be a general plane and A be any element outside it, while P f

is a

general plane through A parallel to P, then it is evident from Theorem

122 that, since P' contains the general line through A parallel to any

general line in P, the general plane P
r must be uniquely determined

w^hen we know P and A .

Thus through any element outside a general plane P there is one single

general plane parallel to P.

Also it is clear that this general plane must be of the same kind as P.

Again, since two distinct general lines which are parallel to a third

general line are parallel to one another, it follows that: two distinct

general planes which are parallel to a third general plane are parallel to

one another.

Definition. If P be a general plane and if through any element A
outside P a general line a be taken parallel to any general line in P, then

the general line a will be said to be parallel to the general plane P.

THEOREM 123

// a general plane P have one element in common with each of a pair

of parallel general planes Q and R, then, if P have a second element in

common with Q it also has a second element in common with R.

Let the general plane P have the element A in common with Q and

the element A' in common with R.

Further let P and Q have a second element B in common.

Then, as was observed at the end of Theorem 122, there is a general

line, say c, through A' in the general plane R which is parallel to AB.

13-2
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But c must also lie in P, and so any element of c distinct from A' is a

second element common to P and R.

Thus the theorem is proved.

THEOREM 124

//two parallel general lines a and b lie in one general plane R and if two

other distinct general planes P and Q containing a and b respectively have

an element A l
in common, then P and Q have a general line in common

which is parallel to a and b.

The proof of this theorem is exactly analogous to that ofTheorem 51
,

using Theorem 123 in place of Theorem 46.

THEOREM 125

// three distinct general planes P, Q and R and three parallel general

lines a, b and c be such that a lies in P and R.binQ and P and c in R and

Q, then if Q' be a general plane parallel to Q through some element of P
which does not lie in b the general planes R and Q' have a general line in

common which is parallel to c.

The proof of this theorem is analogous to that of Theorem 53, using

Theorem 123 in place of Theorem 46.

Since however a general plane does not always contain an optical

line, we take any general line through the element A distinct from a,

which lies in the general plane P, and such general line must intersect

6 in an element which we shall call B.

We then take any general line through B distinct from 6, which lies

in the general plane Q and this general line must intersect c in some

element which we shall call (7.

Then BA and BC lie in a general plane which we shall call S.

The demonstration from this point on is similar to that ofTheorem 53,

once more using Theorem 123 in place of Theorem 46.

If a pair of parallel general lines be both intersected by another pair

of parallel general lines then the four general lines will form a general

parallelogram either in an acceleration plane, an optical plane, or a

separation plane.

Thus a general parallelogram may now be defined in this way without

specifying which type of general plane it lies in.
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THEOREM 126

// two general parallelograms have a pair of adjacent corners A and B
in common, their remaining corners either lie in one general line or elseform
the corners of another general parallelogram.

Let A, B, C, D be the corners of the one general parallelogram and

A, B, C", D f

the corners of the other, and let AC and BD be a pair of

opposite side lines of the first general parallelogram while AC' and BD f

are a pair of opposite side lines of the second.

Then CD and C'D' being each parallel to AB must either be parallel

to one another or else must be identical.

In the latter case the corners (7, 7), C", D' lie in one general line.

Suppose now that CD and C'D' are distinct and therefore parallel ;

we have to prove that CC' is parallel to DD f

.

Two cases have to be considered :

(1) The two general parallelograms lie in distinct general planes,

or (2) The two general parallelograms lie in the same general plane.

We shall first consider case (1).

Since CD and C'D' are parallel they must lie in a general plane, say P.

Again AC and AC' must lie in a general plane, say Q, distinct from

the general planes of either of the general parallelograms, since by

hypothesis C
f

does not lie in the general plane containing A,B,C and D.

Similarly BD and BD' must lie in a general plane, say M, distinct

from the general planes of either of the general parallelograms.

Further, the element A cannot lie in R, since otherwise A, B, C, D,

C f and D' would all lie in one general plane, contrary to hypothesis.

But AC is parallel to BD, while AC' is parallel to BD f and therefore

Q is parallel to E.

Thus the general lines CC' and DD' can have no element in common,
and since they both lie in P, it follows that they are parallel.

Thus Cf

, C", D', D form the corners of another general parallelogram.

We have next to consider case (2).

Let P be the general plane containing the two given general paral-

lelograms, and let Q be any other general plane distinct from P and

containing the general line AB.
Let AC1 be any general line distinct from AB which passes through

A and lies in Q.

Through any element Cl ofACl distinct from A let a general line be

taken parallel to AB and let it meet the general line through B parallel

to ACl
in the element Dl .
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Then by the case already proved the general lines CC and DDl are

parallel.

Similarly C'Cl
and D /Dl are parallel to one another.

But now the general parallelograms whose corners are <71? D15 D, C
and C

l ,Dl ,
D'

,
C r

cannot lie in one general plane ;
for the general lines

CD and C'D' both lie in P, while C^D^ does not lie in P.

Thus again by case (l)CC' is parallel to DD' and so C,C',D',D form

the corners of a general parallelogram.

Thus the theorem holds in all cases.

THEOREM 127

(
1

) // three, distinct dements A
,
B and G in a general plane P do not all

lie in one general line and if D be any element linearly between B and G,

then any general line passing through D and lying in P and which is

distinctfrow, BC and AD must either intersect AC in an element linearly

between A and C, or else intersect AB in an element linearly between A
and B.

(2) Iffurther E be an element linearly between C and A and. ifF be an

element linearly between A and B, then D, E and F cannot lie in one

general line.

In order to prove the first part of the theorem let a be any general

line passing through D and lying in P.

Then a must either be parallel to AC or else intersect AC in some

element, say E.

Jf a be parallel to AC, then it follows by Theorems 72, 90 and 116

that a must intersect AB in an element which is linearly between A
and B.

If a intersects AC in an element E, then provided a be distinct from

BC and AD we must either have :

(i) E linearly between A and (7,

or (ii) C linearly between A and E,

or (iii) A linearly between C and E.

In case (ii) it follows by the analogue of Peano's axiom (13) that a

intersects AB in an element linearly between A and B, while in case

(iii) it follows by the analogue of Peano's axiom (14) that a intersects

AB in an element linearly between A and B.

Thus the first part of the theorem is proved.
In order now to prove the second part of the theorem it is to be

observed in the first place that since the elements D, E and F lie in
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three distinct general lines BC, CA and AB and are distinct from the

elements ofintersection ofthese, therefore the elements D, E and F are

all distinct.

If then D, E and F lay in one general line, we should require to have

either :

E linearly between D and F,

or F linearly between E and D,
or D linearly between F and E.

Now the elements F, C and B do not lie in one general line and we
have D linearly between B and C.

If then we had also E linearly between D and F it would follow that

A must be linearly between B and F, contrary to the hypothesis that

F is linearly between A and B.

Thus E cannot be linearly between D and F.

Similarly F cannot be linearly between E and D, and further D
cannot be linearly between F and E.

It follows therefore that D, E and F cannot lie in one general line

and so the second part of the theorem is proved.

THEOREM 128

// an inertia line a be conjugate to two intersecting separation lines b

and c, then b and c lie in a separation plane such that any separation line

in it is conjugate to a set of inertia lines which are parallel to a.

Let the separation lines b and c intersect in the element A .

Then we know that a must also pass through A and that the separa-

tion lines b and c must be such that no element of the one is either

before or after any element of the other, and so there must be a separa-

tion plane, say P, which contains them.

Let B and C be elements in b and c respectively and let them both

be distinct from A .

Then BC is a separation line which we may call d and which lies in

the separation plane P.

Let e be an inertia line through B parallel to a.

Then e is conjugate to b and, by Theorem 101, it must also be con-

jugate to d.

Now we know that there is only one general line in P and passing

through A which does not intersect d.

Let AF be any general line passing through A and intersecting d

wF.



200 GEOMETRY OF TIME AND SPACE

Then, by Theorem 101, since e is conjugate to 6 and d, it follows that

a must be conjugate to AF.

Again, if d* be the general line through A parallel to d, it must lie in

the separation plane P, and, since e is conjugate to d, while a and d' are

respectively parallel to e and d and, since a and d' intersect one another,

it follows by Theorem 100 that a must be conjugate to d'.

Thus every separation line passing through A in the separation

plane P is conjugate to a and therefore also conjugate to any inertia

line which intersects it and is parallel to a.

Consider now any separation line / in P which does not pass

through A .

Then there is a separation line/' passing through A and parallel to

/, and a must be conjugate to/'.

Thus by Theorem 100 any inertia line intersecting / and parallel to

a must be conjugate to /.

Thus any separation line in P, whether it pass through A or not,

must be conjugate to a set of inertia lines which are parallel to a, and

so the theorem is proved.

THEOREM 129

// O beany element in a separation line b lying in a separation plane, P
and if a be an inertia line through O which is conjugate to every separation

line in P which passes through 0, then there is one and only one such

separation line which is conjugate to every inertia line passing through

and lying in the inertia plane containing a and b.

Let Q be the inertia plane containing a and 6 and let Q' be an inertia

plane parallel to Q through any element of P which does not lie in 6.

Then by Theorem 123 P and Q' will have a general line, say &', in

common which must be parallel to b and must be a separation line.

Let c be one of the generators of Q which pass through O.

Then since Q' is parallel to Q there is one single generator of Q', say

c', which is neutrally parallel to c.

Let c' intersect b' in 0'.

Then 0' is neither before nor after any element of c and so no element

of the general line 00' with the exception of is either before or after

any element of c.

But 00' lies in P and therefore is conjugate to a, and so, by Theorem

104, 00' is conjugate to every inertia line in Q which passes through 0.

Thus, as in Theorem 104, and 0' are representatives of one another

in the parallel inertia planes Q and Q', and further, we may show as in
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Theorem 103 that if 0" be any element of Q' distinct from 0' the

general line 00" cannot be conjugate to two distinct inertia lines in Q
which pass through 0.

But now any separation line in P which passes through O must

either be identical with 6 or else intersect b' in some element.

If it should intersect b
f

in any element other than O r

it cannot be

conjugate to more than one inertia line in Q which passes through 0.

Also if it be identical with b it cannot be conjugate to more than one

inertia line in Q which passes through 0.

Thus there is one and only one separation line in P which passes

through and is conjugate to every inertia line passing through O and

lying in the inertia plane Q.

THEOREM 130

// a separation line a have an element in common with an inertia

plane P and be conjugate to every inertia line in P which passes through 0,

and if c be any such inertia line and h be the separation line in P which

passes through and is conjugate to c, then b is conjugate to every inertia

line in the inertia plane containing a and c which passes through the

element O.

Let A be any element in a distinct from 0, and let d be any inertia

line in P which passes through and is distinct from c.

Let Bl be the one single element common to d and the a sub-set

of A^.
Then A lBl is an optical line and B^ is after A v and so, since AO is

a separation line while B^O is an inertia line, we must have B after O.

Let D be the one single element common to c and the a sub-set of

jB and let E be the one single element common to c and the
j3
sub-set

of Sj.
Then B1D and BE are optical lines lying in P.

Also D is afterBl
while Bl is after both A x and O and so D is after both

A and 0.

Let the optical line through parallel to BD intersect the optical

line through D parallel to B^EinF and let the optical line through E
parallel to B1D intersect DF in J52 .

Then Bl9 E, jB
2 ,
D are the corners of an optical parallelogram lying

in P. Let C be its centre.

Then, since DF and OF are both optical lines and since D is after

but is not in an optical line with it, it follows that F is after 0.

But now since A
l

is not an element of the optical line DF but is
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before an element of it, it follows that there is one single element com-

mon to the optical line DF and the a sub-set of A
l

.

Let BZ be this element, which we shall prove must be identical with

Bt .

Then, since D is after A l but is not in an optical line with it, it follows

that B% cannot be either identical withD or afterD and therefore, since

J5
2

' and D lie in an optical line, it follows that B2

'

is before D.

Fig. 37.

But Bt and D lie in another optical line and J5X is also before D and

therefore B2
'

is neither before nor after B 1 ,
so that B1B2

'

is a separation

line.

Again, since OF is one of the generators of P which pass through
and since by hypothesis J4

1
O is conjugate to every inertia line in P

which passes through and A l is distinct from 0, it follows that A l

is neither before nor after any element of OF.

Thus A
l
is not before F and so B2

' can neither be before F nor identical

with it and so, since B% and F He in an optical line, it follows that B2
'

is after F.
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But, since F is after 0, it follows that B2

'

is after and, since B2 and

do not lie in one optical line, it follows that B2 must be an inertia

line.

Let the optical line through B2 parallel to DB
l intersect BV

E in E'.

Then Bl9 E
1

',
B2 ,

D form the corners of an optical parallelogram of

which B1B2 is the separation diagonal line, and accordingly, E'D is the

inertia diagonal line.

Let C' be the centre of this optical parallelogram.

Then C" is linearly between B^ and B2 and so, since O is before both

Bl andB2 and is not in the general line B
1
B

2 ,
it follows by Theorem 73

that C'O is an inertia line.

Now in the inertia plane containing a and d take the second optical

line which passes through B l and let it intersect a in the element A 2 .

Then, since OB is conjugate to a, it follows that A
l ,
B

l
and A 2 are

three corners of an optical parallelogram having as its centre.

But we showed that OB2 must be an inertia line and, as it lies in P
and passes through 0, it must also be conjugate to a.

But is the mean ofA l and A 2 while A 1
B2 is an optical line and so

A 2
B2 must also be an optical line.

But now, since C' is the mean of B
l
and B2 ,

it follows that B
l ,

/t x

and J3
2

'

are three corners of an optical parallelogram of which G' is the

centre and so B^B2 is conjugate to C'A.

Similarly B19 A z and J32
'

are three corners of an optical parallelo-

gram of which C' is the centre and so B1B2

'

is conjugate to C'A 2 .

Further, since B^B2 is a separation line, it follows that C'A l and

C'A 2 are both inertia lines.

Thus B
l
B2

f

is conjugate to two inertia lines passing through the

element C' and therefore it must be conjugate to every inertia line

passing through C' and lying in the inertia plane containing C'A l

and CM 2 .

But the element lies in A
1
A 2 and C'O must therefore lie in this

inertia plane and, moreover, we showed that C'O must be an inertia

line.

Thus B1
B2 must be conjugate to C'O.

But B1
B2 is conjugate to C'D, which lies in P as does also C'O and

therefore the inertia lines C'O and C'D must be identical; so that C'

lies in OD.

It follows that E f must be identical with E and B2 must be identical

2 .

Further, C" must be identical with C and so B1
B

2 is conjugate to
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both CA l and CA 2 and therefore is also conjugate to every inertia line

in the inertia plane containing CA l and CA 2 which passes through C.

But this is the inertia plane which contains a and c, while the separa-

tion line b which lies in P, passes through and is conjugate to c, must

be parallel to B1B2 ,
since B1B2 also lies in P.

Thus, by Theorem 100, b is conjugate to every inertia line in the

inertia plane containing a and c which passes through the element 0.

Thus the theorem is proved.

REMARKS

All the postulates which have hitherto been introduced may be

represented by ordinary geometric figures involving not more than

three dimensions.

This may be done in the manner described in the introduction: the

a and
/J sub-sets being represented by cones.

We have now however to introduce a new postulate which cannot be

represented along with the others in a three-dimensional figure and

which therefore gives our geometry a sort offour-dimensional character.

The new postulate is as follows :

POSTULATE XIX. If P be any optical plane, there is at least one

element which is neither before nor after any element of P.

Since any element in an optical plane must lie in a generator, it will

be after certain elements and before certain other elements of that

optical plane.

It follows that any element such as is postulated in Post. XIX must

lie outside P.

Again ifP be an optical plane and A be any element which is neither

before nor after any element of P, then an optical line through A parallel

to any generator of P will be a neutral-parallel and accordingly any

generator of an optical plane lies in at least one other distinct optical

plane.

Since we already know that any optical line lies in at least one optical

plane, it follows that there are at least two distinct opticalplanes containing

any optical line.

This might be taken as an alternative form of the postulate.

IfP and Q be two distinct optical planes having an optical line a in

common, then any element of Q which does not lie in a must lie in a

generator of Q, say 6, which is a neutral-parallel of a.
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Since any generator of P which is distinct from a is also a neutral-

parallel of a, it follows by Theorem 28 that b is a neutral-parallel of

every generator of P.

Since every element ofP lies in a generator it follows that no element

of Q lying outside a is either before or after any element of P.

Although Post. XIX is required in order to prove that there are at

least two distinct optical planes containing any optical line, it is pos-

sible, without using this postulate, to prove that there are at least two

distinct optical planes containing any separation line.

This may be done in the following manner :

Let b be the separation line and be any element in it.

We already know that ifwe take any two inertia planes containing 6,

then 6 is conjugate to one single inertia line in each of them which

passes through 0.

If a
x and a2 be two such inertia lines, then, as was shown in Theorem

103, b is conjugate to every inertia line in the inertia plane containing

a
l and a2 which passes through 0.

Further, if cl and c2 be the two generators of this inertia plane which

pass through it was also shown in the course of proving Theorem 103

that if we take any element 0' of b distinct from such element is

neither before nor after any element of either c
t
or c2 .

Thus if we take an optical line through 0' parallel to cl it will be a

neutral-parallel and so b and c lie in an optical plane.

Similarly b and c
2 lie in an optical plane.

These optical planes must be distinct since c
t
and c

2
are distinct

optical lines which both pass through 0.

THEOREM 131

// b be any separation line and be any element in it, there are at least

two inertia planes containing and such that b is conjugate to every inertia

line in each of them which passes through 0.

Let Q be an optical plane containing 6 and let c be the generator of

Q which passes through 0.

Then by Post. XIX it follows, as we have already shown, that there

is at least one other optical plane, say jR, containing the optical line c.

Let d be any separation line in B and passing through 0.

Then no element of d except is either before or after any element of

Q and itself is neither before nor after any element of Q which lies

outside c.
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Thus no element of d is either before or after any element of b and so,

by Theorem 107, there is at least one inertia line, say a, which is

conjugate to both b and d.

Thus, as was shown in Theorem 128, a must be conjugate to every

separation line which lies in the separation plane containing b and d and

which passes through 0.

Let S be the separation plane containing b and d, and let P be the

inertia plane containing a and c.

Then since b is conjugate to a and since 110 element of b with the excep-

tion of is either before or after any element of c it follows, by Theorem

104, that 6 is conjugate to every inertia line inP which passes through 0.

Similarly, since d is conjugate to a and since no element of d with the

exception of is either before or after any element of c, it follows that

d is conjugate to every inertia line in P which passes through 0.

Thus any inertia line in P which passes through O is conjugate to

both b and d and therefore is conj ugate to every separation line passing

through and lying in the separation plane S.

It follows that P cannot have more than one element in common
with 8, for if it had, it would have a separation line in common with S

and every inertia line in P which passed through would require to

be conjugate to one separation line lying in P, which is impossible.

Now by Theorem 129 there is one and only one separation line, say e,

lying in S and passing through which is conjugate to every inertia

line passing through and lying in the inertia plane containing a

and 6.

Let T be the inertia plane containing a and e.

Then, by Theorem 130, since 6 is conjugate to a, it follows that b is

conjugate to every inertia line in T which passes through 0.

But now 6 is conjugate to every inertia line lying either in T or P
which passes through and, since T contains the separation line e

which lies in S while P does not contain any separation line in S, it

follows that T and P are distinct inertia planes.

Thus the theorem is proved.

REMARKS

It follows from this that if a separation line b have an element in

common with any inertia plane U and is conjugate to every inertia line

in U which passes through 0, then 6 is also conjugate to certain other

inertia lines passing through which do not lie in U.

It also follows directly that there are certain optical lines passing
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through 0, but not lying in U
9
which are such that no element of b with

the exception of is either before or after any element of them.

Another important point which arises in the last theorem is that we may
have an inertia plane and a separation plane having only one element in

common and such that each inertia line through the common element in

the former is conjugate to every separation line through it in the latter.

THEOREM 132

// two distinct inertia planes P and P' have a separation line b in

common and if another separation line c intersecting b in the element

be conjugate to every inertia line in P which passes through O, then if c be

conjugate to one inertia line in P f

which passes through it is conjugate

to every inertia line in P' which passes through 0.

Let
/.,_

and /2 be the two generators of P which pass through O and

let D be any element in/x
which is after O.

Let the general line through Dl parallel to 6 intersect /2
in Z>2 .

Then JO^D2 is a separation line and so, since O is before D19 it must

also be before D2 .

Let El be any element linearly between D and D2 and let E2 be any
element linearly between El and Z>2 ,

while C is any element linearly

between El
and E2 .

Then by Theorem 73 (a) OE1 is an inertia line and El
is after 0.

Similarly, since is before both El and D2 ,
it follows that OE2 is an

Fig. 38.
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inertia line and E2 is after 0, and further since is before both El
and

E2 it follows that OC must be an inertia line and C must be after 0.

Thus OE
l ,
OE2 and OC are three distinct inertia lines in P all passing

through and so the separation line c is conjugate to each of them.

Now if a' be an inertia line in P' which passes through and to

which c is conjugate, it follows by Theorem 103 that c is conjugate to

every inertia line passing through and lying in either of the three

inertia planes containing a' and OE
l ,

a! and OE2 or a' and OC.

Let F be any element of a' which is after and let b' be the general
line through F parallel to b.

Then b' must lie in P' and must be parallel to D^D2 .

Let Q be the general plane containing b' and FC.

Then Q contains DD2 and therefore also contains FEl9 FE2 and

Now any general line in P' which passes through with the exception
of b must intersect b' in some element, say G.

If now we consider the general line CG, we see that it must lie in Q
since C and G are distinct elements in Q.

Further, CG must be distinct from E^E^ since EtE2 is parallel to 6'

while CG intersects b'.

Thus, since F, El
and E2 do not lie in one general line while C is

linearly between El and E2 ,
it follows by Theorem 127 that, provided

G does not coincide with F, the general line CG either intersects FE2 in

an element linearly between F and E2 or else intersects FE in an

element linearly between F and El .

Consider the case where CG intersects FE2 in an element H 2 linearly

between F and E2 .

Then, since is before both F and E2 ,
it follows by Theorem 73 that

OH2 is an inertia line, and since it lies in the inertia plane containing
' and OE2 and passes through 0, it follows that c is conjugate to it.

But c is also conjugate to OC and so, by Theorem 103, c is conjugate

to every inertia line in the inertia plane containing OC and OH2 which

passes through 0.

Similarly, if CO should intersect FE in an element H
l linearly

between F and E
l ,
then c is conjugate to ever inertia line in the inertia

plane containing OC and OHl which passes through 0.

Thus in either case ifOG should happen to be an inertia line, c must

be conjugate to it.

Thus c must be conjugate to every inertia line in P' which passes

through and so the theorem is proved.
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REMARKS

Since, in the above theorem, there is one single inertia line through
in the inertia plane P which is conjugate to 6, such inertia line will be

conjugate to both b and c and so it follows, by Theorem 99, that no

element of b is either before or after any element of c and so b and c must

lie in a separation plane.

Again if// and/2

' be the two generators of P' which pass through 0,

then no element of c with the exception of O will be either before or after

any element of either// or/2 '.

Now let a
l
be the one single inertia line through O and lying in P

which is conjugate to b, and let a/ be the one single inertia line through
O and lying in P' which is conjugate to b.

Then a l and a/ lie in an inertia plane, say R, and both b and c must

be conjugate to every inertia line passing through O and lying in R.

Thus if g l
and </2 be the two generators ofR which pass through O, no

element of either b or c with the exception of O is either before or after

any element of either gl or r/2 .

Thus the optical lines g and g2 are such that gl and b lie in an optical

plane and also g2 and b lie in an optical plane.

The optical lines// and/2

' on the other hand are such that both of

them lie in an inertia plane containing b.

NORMALITY OF GENERAL LINES HAVING A COMMON ELEMENT

We are now in a position to define what we mean when we say that

a general line a is "normal" to a general line 6, which has an element in

common with it.

Since a and b are not always general lines of the same kind, it is

difficult to give any simple definition which will include all cases
;
but

the introduction of the word "normal" is justified by the simplification

which is thereby brought about in the statement of many theorems.

Only one case will be found to be strictly analogous to the normality
of intersecting straight lines in ordinary geometry : namely the case of

two separation lines.

The other cases are so different from our ordinary ideas of lines "at

right angles" that we do not propose to use this expression in connexion

with them.

Thus for instance any optical line is to be regarded as being "normal

to itself", and the use ofthe words "
at right angles

"
would, in this case,

clearly be an abuse of language.
The extension of the idea ofnormality from the cases of general lines

R 14
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having a common element to the cases of general lines which have not

a common element is however quite analogous to the corresponding

extension in ordinary geometry and will be made subsequently.

We are at present only concerned with the cases of general lines

having a common element and shall naturally include among these that

of an optical line being "normal to itself".

Thus the complete definition of the normality of general lines having a

common element is to be taken as consisting of thefollowingfour particular

definitions A,B,C and D.

Definition A . Any optical line will be said to be normal to itself.

Definition B. If an optical line a and a separation line b have an

element in common and if no element of b with the exception of be

either before or after any element of a, then b will be said to be normal to

a, and a will be said to be normal to b.

Definition C. Ifan inertia line a and a separation line 6 be conjugate

one to the other, then a will be said to be normal to b and 6 will be said

to be normal to a.

Definition D. A separation line a having an element in common
with a separation line b will be said to be normal to b provided an

inertia plane P exists containing b and such that every inertia line in P
which passes through is conjugate to a.

In this last case, since there is one single inertia line in P which passes

through and is conjugate to 6, it is evident that a and 6 must lie in a

separation plane.

Ifc be this inertia line then, by Theorem 130, every inertia line which

passes through and lies in the inertia plane containing c and a is

conjugate to b and so 6 satisfies the definition of being normal to a.

Let the separation plane containing a and b be denoted by S.

Then c is conjugate to both a and b and therefore is conjugate to

every separation line in S which passes through 0.

It follows, by Theorem 129, that there is one and only one separation

line in S and passing through O which is conjugate to every inertia line

inP which passes through and the separation line a has this property.

Now it is easy to see that a is the only separation line in S and passing

through which is normal to 6; for suppose, if possible, that a' is

another such separation line.

Then, by the definition, there must exist an inertia plane, say P',

containing b and such that every inertia line in P' which passes through

is conjugate to a'.
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Then there would exist one single inertia line, say c', through O and

lying in P' which would be conjugate to b.

Thus c' would be conjugate to every separation line in 8 which

passed through and therefore would be conjugate to a.

But now P' could not be identical with P, for, as we have seen, a is

the only separation line in S and passing through O which is conjugate

to every inertia line in P which passes through O and a' has been sup-

posed distinct from a.

But, by Theorem 132, it follows that a must be conjugate to every
inertia line in P r which passes through 0.

Thus we should have two distinct separation lines a and a' both

lying in S and passing through and both conjugate to every inertia

line in P' which passes through 0.

But this is impossible by Theorem 129, and so the assumption of the

existence oftwo distinct separation lines in 8 which pass through and

are normal to 6 leads to a contradiction and therefore is not true.

Thus there is one and only one separation line in S which passes

through and is normal to 6.

Again, since ft lies in P while a cannot lie in P, it follows that if a

separation line a be normal to a separation line b having an element in

common with it, then a and b must be distinct.

If b be any general line in an inertia plane P and O be any element of

ft, then we know that if b be either an inertia or separation line there is

one and only one general line through O and lying in P which is con-

jugate and therefore normal to b.

Also, from our definitions, if ft be an optical line there is still one and

only one general line through O and lying in P which is normal to ft :

namely ft itself.

Thus we have the following general result :

// P be either a separation plane or an inertia plane and if ft be any

general line in P and be any element in ft, then there is one and only one

general line lying in P and passing through which is normal to ft.

Now we have seen that ifa separation line a be normal to a separation
line ft having an element in common with it, then a and ft lie in a separa-
tion plane.

Thus two intersecting separation lines in an optical plane cannot be

normal one to another.

Any separation line, however, which lies in an optical plane is normal

to every optical line in the optical plane since no element of the separa-

14-2
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tion line except the element of intersection is either before or after any
element of any optical line in the optical plane.

Since there is one and only one optical line which passes through any
element of an optical plane and lies in the optical plane we have the

following result :

//P be an optical plane and if b be any separation line in P and be

any element in 6, then there is one and only one general line lying in P and

passing through O which is normal to 6.

// on the other hand b be an optical line lying in P, then every general

line in P which passes through (including b itself) is normal to b.

We have now to prove the general theorem that : if b and c be two

distinct general lines having an element in common and if a general line

a passing through be normal to both b and c, then a is normal to every

general line whichpasses through and lies in the general plane containing

b and c,

We have already proved a number of special cases of this general

theorem.

(1) If ft and c be both optical lines and a be a separation line, then b

and c lie in an inertia plane, say P, and if 0' be any element ofa distinct

from there will be an inertia plane, say P', passing through 0' and

parallel to P.

Then and 0' will be representatives of one another in the parallel

inertia planes P and P' and so, by Theorem 102, a is conjugate to every
inertia line in P which passes through O.

Thus a is normal to every separation line in P which passes through

O, to every inertia line in P which passes through O arid to every

optical line in P wThich passes through 0.

(2) If b and c be both inertia lines and a be a separation line, the same

result follows from Theorem 103.

(3) If b be an optical line and c an inertia line while a is a separation

line, the same result follows from Theorem 104.

(
4

)
If 6 be a separation line and c an inertia line while a is a separation

line, it follows by Theorem 132 that a must be normal to every
inertia line which passes through and lies in the inertia plane

containing b and c.

Thus as before, a must be normal to every general line which passes

through and lies in the inertia plane.

(5) If b and c be both separation lines and a an inertia line, then, as

we have seen, b and c must lie in a separation plane and, as was shown in
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Theorem 128, a is conjugate and therefore normal to every separation
line passing through O and lying in this separation plane.

(6) If b be an optical line and c a separation line while a is identical

with b, then, as we have already seen, b and c lie in an optical plane
while a is normal to every general line which passes through and lies

in this optical plane.

Several other cases remain to be considered and these form the sub-

ject of Theorems 133 to 135.

We shall postpone the enumeration of the various remaining cases

till we have proved these theorems.

THEOREM 133

If a separation line c be normal to a separation line b which it intersects

in the element and iffurther c he normal to an optical line a' which it also

intersects in the element O, then c is normal to every general line passing

through and lying in the general plane containing b and a' .

By the definition of normality there exists an inertia plane, say P,

containing b and such that every inertia line in P which passes through
is conjugate to c.

In case a' should lie in this particular inertia plane the result follows

directly and so we shall suppose that a' does not lie in P.

We shall therefore suppose that a' and b lie in a general plane P'

distinct from P.

From the remarks at the end of Theorem 132 it is evident that P'

may be either an inertia plane or an optical plane.

The mode of proof is similar to that employed in Theorem 132

except that a' is here an optical line instead of an inertia line.

Thus the proof that c is conjugate to every inertia line passing

through and lying in either of the three inertia planes containing a'

and OE^ ,
a' and OE2 ,

or a' and 00, follows in this case from Theorem

104 instead of Theorem 103.

Everything else follows exactly as in Theorem 132 and we find that,

if OG be any general line in P' which passes through and is distinct

from 6, then OG lies in some inertia plane such that every inertia line

in the latter which passes through is conjugate to c.

Thus ifOG be a separation line it satisfies the condition that c should

be normal to it.

Also if OG should be either an optical line or an inertia line c must

also be normal to it, and so the theorem is proved.
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REMARKS

From the definition of the normality of intersecting separation lines

it is evident that we may have a separation line normal to two (or more)

separation lines in an inertia plane.

From the last theorem it is also evident that we may have a separa-

tion line normal to two (or more) separation lines in an optical plane.

We may also have a separation line normal to two (or more) separa-

tion lines in a separation plane, as may easily be seen from the following

considerations :

In the remarks at the end ofTheorem 131 it was pointed out that we

may have an inertia plane and a separation plane having only one

element in common and such that each inertia line through the common
element in the former is conjugate to every separation line through it

in the latter.

Let P be the inertia plane, S the separation plane and O the common
element.

Let a and b be any two separation lines passing through O and lying

in 8, and let c be any separation line passing through O and lying in P.

Then a satisfies the definition of being normal to c and therefore c is

normal to a.

Similarly c must be normal to b.

Thus c is normal to the two separation lines a and b which lie in the

separation plane S.

THEOREM 134

If three distinct separation lines a, b and c have an element O in common
and if c be normal to both a and b, then c is normal to every general line

'which passes through and lies in the general plane containing a and b.

By the definition of the normality of intersecting separation lines

there must exist an inertia plane, say P, containing b and such that

every inertia line in P which passes through is conjugate to c.

Let/t and/2 be the two generators ofP which pass through O and let

Dl be any element in/j which is after 0.

Let the separation line through D1 parallel to b intersect/2 in D2 .

Then D2 must also be after O.

Let C be any element linearly between D1 and D2 .

Then by Theorem 73 OC is an inertia line and C is after O.

But c is normal to the inertia line OC and to the separation line a and

therefore by case (4) on p. 212 c must be normal to every inertia line
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(and therefore also every general line) which passes through and lies

in the inertia plane containing OC and a.

Let R be this inertia plane.

If R should coincide with P the result follows directly and so we
shall suppose that R is distinct from P.

Let 8 be the general plane containing a and b.

Then 8 will be distinct from both P and R, and, as was pointed out

in the remarks at the end of the last theorem, 8 may be an inertia plane,

an optical plane, or a separation plane.

Let one of the generators of R which pass through C intersect a in

GQ and let the generator of the opposite set passing through intersect

CGQ in F.

Then, since does not he in the optical line CGQ but is before the

element C of it, it follows that F must lie in the a sub-set of and

therefore F is after 0.

Let 6' be the general line through (7 parallel to 6.

Then, since G lies in S, it follows that b' lies in 8.

Let Q be the general plane containing b' and GQ C.

Then, since/^I^ is parallel toft and is distinct from 6', it follows that

it is parallel to b' and, since D
l
D

2i passes through (7, it must lie in the

general plane Q.

Thus Dl ,
D2 and F are three distinct elements in Q which do not all

lie in one general line.

Now any general line in S which passes through and is distinct

from b must intersect ft' in some element, say G.

Then the general line CG lies in Q and is distinct from D1 Z)2 .

If then G does not coincide with 6? it follows, by Theorem 127, that
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CG must either intersectDlF in an elementH l linearly betweenDl and

F, or else must intersect D2
F in an element H2 linearly between D2

and F.

But, since is before both Dl
and F, it follows, by Theorem 73, that

O//! is an inertia line and similarly, since is before both Z>2 and F, it

follows that OH2 is an inertia line.

Now c is normal to every general line in P which passes through O
and also to every general line in R which passes through and there-

fore c is normal to the three optical lines ODl ,
OD2 and OF.

Thus c must be conjugate to every inertia line which passes through
and lies either in the inertia plane containing ODl

and OF, or the

inertia plane containing OD2 and OF.

Thus c is conjugate to OH and also to OH
2

.

But c is conjugate to OG and therefore is conjugate to every inertia

line which passes through and lies in the inertia plane containing OC
and OH

l
or the inertia plane containing OC and OH 2

Thus, since OG lies in the inertia plane containing OC and 011^ or in.

the inertia plane containing OC and 011 2 as the case may be, it follows

that c must be normal to OG.

Thus, including the separation lines a and 6, the separation line c is

normal to every general line which passes through O and lies in the

general plane S.
THEOREM 135

// two distinct separation lines a and b intersect in an element and

if an optical line c passing through be normal to both a and 6, then c is

normal to every general line which passses through and lies in the general

plane containing a and b.

From the definition of the normality of an optical line to an inter-

secting separation line it follows that c and a lie in an optical plane, say

P, while c and b lie in an optical plane, say Q.

IfP should be identical with Q we already know that c is normal to

every general line in P which passes through including the optical

line c itself.

Let us suppose next that P is distinct from Q.

We have already seen that in this case a and 6 lie in a separation

plane, say S, and further we have seen that no element of b with the

exception of O is either before or after any element of P.

Let D be any element of 6 distinct from and let E be any element

of a distinct from 0, while F is any element of a such that is linearly

between E and F.
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Let e and/ be optical lines through E andF respectively and parallel

to c.

Then D is neither before nor after any element either of e or of/ and

so, by Theorem 45, no element ofDE with the exception of E is either

before or after any element of e, and no element ofDF with the exception
of F is either before or after any element of/.

But now by Theorem 127 any general line passing through and

lying in S and which is distinct from both a and b must either intersect

<J

a

Fig. 40.

DE in some element, say G, linearly between D and E or else must

intersect DF in some element, say H, linearly between D and F.

Thus G is neither before nor 6//er any element of e while # is neither

before nor a/er any element of/.

If then
</
be an optical line through G parallel to e it will be a neutral-

parallel and, since c is a neutral-parallel of e and G does not lie in c, it

follows by Theorem 28 that g is a neutral-parallel of c.

Thus G is neither before nor after any element of c and therefore, by
Theorem 45, no element of OG with the exception of O is either before

or after any element of c.

Thus c is normal to OG and similarly it is normal to OH .
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It follows that c is normal to every general line which passes through
O and lies in 8, and so the theorem is proved.

ENUMERATION OF CASES OF GENERAL THEOREM CONTINUED

We now resume the enumeration of the various cases of the general

theorem stated on p. 212 and which was interrupted in order to prove

Theorems 133 to 135.

Six cases have already been mentioned and we now proceed with

case (7).

(7) Ifb be a separation line and c an optical line while a is a separation

line and if b and c lie in an inertia plane, the result follows from

Theorem 133.

(8) If 6 and c be both separation lines lying in an inertia plane and if

a be also a separation line, the result follows from Theorem 134.

(9) If b be a separation line and c an optical line while a is a separa-

tion line and if 6 and c lie in an optical plane, the result follows from

Theorem 133.

(10) If 6 and c be both separation lines lying in an optical plane and

if a be also a separation line, the result follows from Theorem 134.

(11) If b and c be both separation lines lying in an optical plane and

if a be an optical line also in the optical plane, the result still holds as

was pointed out at the beginning of Theorem 135.

(12) If 6 and c be both separation lines lying in a separation plane

and if a be also a separation line, the result follows from Theorem 134.

(13) If b and c be both separation lines lying in a separation plane
and if a be an optical line, the result follows from Theorem 135.

Ifnow we combine cases (1), (2), (3), (4), (7) and (8) we see that b and

c may be any two intersecting general lines in an inertia plane taking a

as a separation line.

If we combine cases (9) and (10) we see that b and c may be any two

intersecting general lines in an optical plane taking a as a separation

line.

Further, combining cases (6) and (11) we also see that b and c may
be any two intersecting general lines in an optical plane taking a as an

optical line.

Finally from cases (12), (13) and (5) we see that b and c may be any
two intersecting general lines in a separation plane taking a as a separa-
tion line, an optical line, or an inertia line.

Thus for all the different possible cases of the normality of general
lines having a common element this general result holds.
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THEOREM 136

// b and c be two separation lines intersecting in an element and lying

in a separation plane S and such that c is normal to 6, then if O' be any
other element of ft, the normal to b through 0' in the separation plane S is

parallel to c.

From the definition of the normality of intersecting separation lines

it follows that there must exist an inertia plane P containing b and such

that every inertia line in P which passes through is conjugate to c.

Let al and a2 be any two such inertia lines and let a and a2

f

be

inertia lines passing through 0' and parallel to a and a2 respectively.

Let c
f

be a separation line passing through O' and parallel to c.

Then c' will lie in S.

But, by Theorem 100, both at

' and a2

' must be conjugate to c
r and so,

by Theorem 103, c' is conjugate to every inertia line in the inertia plane

containing a/ and a2

' which passes through the element 0''.

But this inertia plane is the inertia plane P which contains the

separation line b and so c' satisfies the definition of being normal to 6.

Further, c' passes through ()' and lies in S and we have already seen

that there is only one normal to b which satisfies these conditions.

Thus the normal to b through 0' in the separation plane S is parallel

to c as was to be proved.

THEOREM 137

// b and c be two separation lines intersecting in an element and such

that c is normal to b and if b' and c' be two other separation lines inter-

secting in an element 0' and respectively parallel to b and c, then c
1

is

normal to b' .

Since c is normal to 6 there must exist an inertia plane P containing

6 and such that every inertia line in P which passes through is con-

jugate to c.

Let ax be one such inertia line which we shall suppose does not also

pass through 0' .

Then through 0' there is an inertia line, say a/, which is parallel to al .

Thus b' and a/ determine an inertia plane P' which will be either

identical with P or parallel to P according as 0' does or does not lie

in P.

Let a2 be a second inertia line in P and passing through but not

through 0' .
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Then through 0' there is an inertia line say a2

'

parallel to a2 and

lying in P'.

Then by Theorem 100 both a/ and a2

'

are conjugate to c' and so, by
Theorem 103, c' is conjugate to every inertia line in P' which passes

through 0'.

But P' contains b' and so c' satisfies the definition of being normal

to 6'.

THEOREM 138

// an optical line b intersects a separation line c in an element and

ifc be normal to b and iffurther b' and c' be an optical line and a separation

line respectively which intersect in an element 0' and are respectively

parallel to b and c, then c' will be normal to b'.

From the definition of the normality of a separation line to an

optical line it follows that ft and c lie in an optical plane, say P.

Further, ft' and c
f

lie in a general plane P' which must be either

identical with P or parallel to P according as O' does or does not lie in P.

In either case P' is an optical plane and accordingly, since ft' is an

optical line and c' a separation line, it follows that c' must be normal

to ft
7

.

REMARKS

By combining Theorems 100, 137 and 138 we obtain the general

result that ifb and c be two general lines intersecting in an element and

such that the one is normal to the other and if b' and c' be two other general

lines intersecting in an element O' and respectively parallel to ft and c, then

of these latter two general lines the one is normal to the other.

If now we remember that an optical line is to be regarded as normal

to itself, we are in a position to extend the definition of the normality
of general lines to the case of general lines which have no element in

common, as is done with straight lines in ordinary geometry.

Definition. A general line ft will be said to be normal to a general line

c' which has no element in common with it, provided that a general line

ft' taken through any element of c' parallel to ft is normal to c' in the

sense already defined.

It is evident from the above considerations that, in these circum-

stances, if a general line c be taken through any element of ft parallel to

c' then c will be normal to ft and so c' will be normal to ft.

Further, we have the result that any two parallel optical lines are to

be regarded as normal to one another.
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Again, ifP be an inertia plane and if a be any general line in P and A
be any element in P, then there is one single general line in P and

passing through A which is normal to a.

If however a be an optical line, the normal to a through A is either

identical with a or parallel to it according as A does or does not lie in a.

If, on the other hand, P be an optical plane, there is one single

general line in P and passing through A which is normal to a, except
when a is an optical line, in which case every general line in P which

passes through A is normal to a.

IfP be a separation plane there is one single general line in P which

passes through A and is normal to a and in this case the normal to a

always intersects a as in ordinary geometry.

Definition. A general line a will be said to be normal to a general

plane P provided a be normal to every general line in P.

It is evident that if a general line a be normal to two intersecting

general lines in a general plane P, then a will be normal to P.

In case P be an optical plane it is clear that, according to the above

definition, any generator of P is normal to P.

This is the only case in which a general line can be normal to a general

plane which contains it.

In no other case can a general line which is normal to a general plane

have more than one element in common with the latter.

As was pointed out in the remarks at the end of Theorem 131 we

may have an inertia plane and a separation plane having only one

element in common and such that each inertia line through the common
element in the former is conjugate to every separation line through it

in the latter.

It is evident now that we have here two general planes which are so

related that any general line in the one is normal to any general line in

the other.

In ordinary three-dimensional geometry two planes cannot be so

related, and when we speak of one plane being normal to another the

normality is not of this complete character.

We shall therefore introduce the following definition :

Definition. If two general planes be so related that every general

line in the one is normal to every general line in the other, the two

general planes will be said to be completely normal to one another.
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THEOREM 139

//P be an inertia plane and be any element in it, there is at least one

separation plane passing through and completely normal to P.

Let P
l be any inertia plane which is parallel to P and let X be the

representative of in P
l

.

Then, by Theorem 102, the separation line 00l
is conjugate

to every inertia line in P which passes through and so 001 is normal

to P.

Let a
l
be one of the two generators of P which pass through 0, and

let 00
l be denoted by b

l .

Then a
l
and bl lie in an optical plane, say Q.

Now, by Post. XIX, there is at least one element, say A, which is

neither before nor after any element of Q l .

Thus through A there is an optical line, say a/, which is neutrally

parallel to al and so a
l
and a/ lie in an optical plane, say R l ,

which is

distinct from Ql .

Again ifP2 be an inertia plane through A parallel to P it will contain

a/.

Let 2 be the representative of in P
2 .

Then 2 must lie in a/ and so 00 2
must lie in the optical

plane E v
.

But 00l
lies in Ql while 002 lies in B^ ,

and Q l
and jR t have only the

optical line al
in common.

Thus since 00l and 00% are both separation lines they must be

distinct.

Now, by Theorem 102, 002 is conjugate to every inertia line in P
which passes through 0, and so 00% is normal to P.

Let 00% be denoted by 62 .

Then no element of 6
a

ig either before or after any element of 6
3 and,

since 6
t
and b2 have the element in common, they must lie in a

separation plane, say S.

Thus any inertia line in P which passes through is conjugate to

both b
l and 62 and therefore also conjugate to every separation line in S

which passes through 0.

Thus every general line in P is normal to every general line in S and

so the separation plane S is completely normal to P.

Thus, since S passes through 0, the theorem is proved.
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THEOREM 140

If P be a separation plane and be any element in it, there is at least

one inertia plane passing through and completely normal to P.

If we take any two separation lines in P and passing through O then,

by Theorem 107, there is at least one inertia line, say al9 which is

conjugate to both of them and therefore is normal to P.

Let b
v
be any separation line in P which passes through and let Q

be the inertia plane containing a and b .

Then, by Theorem 129, there is one and only one separation line in P
and passing through which is conjugate to every inertia line in Q
which passes through 0.

Let 6
2 be this separation line.

Then, as was remarked at the end of Theorem 131, b2 is conjugate to

certain other inertia lines passing through which do not lie in Q.

Let a' be any such inertia line and let Q' be the inertia plane con-

taining a' and b l .

Then, by Theorem 132, 62 is conjugate to every inertia line in Q'

which passes through 0.

Let a
2 be the one single inertia line in Q' and passing through which

is conjugate to b l and let R be the inertia plane containing a and a 2 .

Then a
l
and &2 are each conjugate to both b

l
and 62 .

Thus both al and a2 are conjugate to every separation line in P which

passes through and so every separation line inP which passes through
O is conjugate to every inertia line in R which passes through 0.

Thus every general line in P is normal to every general line in R and

so the inertia plane R is completely normal to P.

Thus, since R passes through (9, the theorem is proved.

THEOREM 141

//P be an optical plane and be any element in it, there is at least one

optical plane passing through and completely normal to P.

Let a be the generator of P which passes through and let b be any

separation line in P which passes through O.

Then, by Post. XIX, there is at least one element, say A, which is

neither before nor after any element of P.

The general line OA is thus a separation line and, by Theorem 45, no

element of OA with the exception of O is either before or after any
element of a.

Thus a is normal to OA and it is also normal to b and so, since OA and
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b must lie in a separation plane, say /S, it follows that the optical line

a is normal to 8.

But now we know that there is one single separation line, say c,

which passes through 0, lies in S and is normal to b.

Then c is normal to both a and b and therefore is normal to P.

But c and a lie in an optical plane which is distinct from P and which

we shall call R.

Further, a is an optical line in P and therefore is normal to P.

Thus any general line in P is normal to the two intersecting general

lines a and c which lie in R and so every general line in P is normal to

every general line in R.

It follows that R is completely normal to P and, since R passes

through O, the theorem is proved.

REMARKS

By combining Theorems 139, 140 arid 141 we get the general result:

// P be any general plane and O be any element in it, there is at least

one general plane passing through and completely normal to P.

IfR be this general plane which is completely normal to P and if 0'

be any element not lying in P, then 0' either may or may not lie in R.

If 0' does not lie in R, then there is a general plane, say R'
', passing

through O' and parallel to R.

It is evident that since R is completely normal to P we must also

have R' completely normal to P and so we may generalise the above

result and say :

// P be any general plane and O be any element whatever, there is at

least one general plane passing through and completely normal to P.

Let be any element and let S be any separation plane passing

through O, while P is an inertia plane also passing through and

completely normal to S.

Let a be any separation line in S which passes through O and let b

be the one single separation line in S passing through which is

normal to a.

Let c be any separation line passing through and lying in P and let

d be the one single inertia line in P and passing through which is

normal to c.

Then both c and d are normal to both a and b and so we have the three

separation lines a, b and c all passing through and each of them normal

to the other two; while in addition to these we have the inertia line d also

passing through and normal to all three.
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This result marks an important stage in the development of our

theory, as it suggests the possibility of setting up a system of normal

coordinate axes one of which axes is of a different character from the

remaining three.

Another important result is the following :

IfS be a separation plane and ifP be an inertia plane passing through

any element O of S and completely normal to S, then there are two

generators ofP which pass through O and each ofthem is normal to the

separation plane S.

Thus there are at least two optical lines which pass through any element

of a separation plane and are normal to it.

THEOREM 142

IfP bean inertia or separation plane and O be any element which does

not lie in it, there is one single general line passing through and normal

to P which has an element in common with P.

We already know that ifa be a separation line and ifO be any element

which does not lie in it, then, in whatever type of general plane and

a may lie, there is one single general line passing through and lying
in this general plane which is normal to a.

Further, if d be this general line normal to a, then d must intersect a

in some element, say A.

Now suppose that a lies in the inertia or separation plane P.

Then there is one single general line passing through A and lying in

P which is normal to a.

Let b be this general line.

Then, since P is an inertia or separation plane and a is a separation

line, b must be distinct from a and must be either an inertia or separa-
tion line and cannot be an optical line.

Now we know that in whatever type of general plane and b may lie

there is one single general line passing through and lying in this

general plane which is normal to 6.

Let c be this general line.

Then, since 6 is not an optical line, this normal to it through cannot

be parallel to 6 and therefore must intersect b in some element, say B.

Now a is normal to the two general lines d and b which intersect in A
and accordingly a is normal to every general line in the general plane

containing d and b and therefore is normal to c.

But c is normal to the two intersecting general lines a and b which lie

in P and therefore c is normal to P.

R 15
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Since c has the element B in common with P, we have proved that

there is at least one general line through and normal to P which has

an element in common with P.

It remains to show that there is only one general line having this

property.

Consider first the case where P is a separation plane and let B' be any
element in P distinct from B.

ThenBB f

is a separation line and so in whatever type ofgeneral plane
O and BB 1

may lie there is one single general line passing through O,

lying in this general plane and normal to BB' .

But OB passes through and is normal to BB' and therefore OB'

cannot be normal to BB' and so cannot be normal to P.

This proves that OB is the only general line through and normal

toP which has an element in common with P providedP be a separation

plane.

This method does not serve ifP be an inertia plane, since BB' might,
in this case, be an optical line.

IfP be an inertia plane, let P' be an inertia plane passing through
and parallel to P.

Then O and B must be representatives of one another in the parallel

inertia planes P' and P.

IfB' be any other element in P distinct from B and we suppose that

OB' is normal to P, then B' would also be the representative of O in

P, which we know is impossible.

Thus again OB is the only general line through O and normal to P
which has an element in common with P.

The theorem thus holds for both separation and inertia planes.

THEOREM 143

If P be an optical plane and O be any element which does not lie in

it, then :

(1) If be neither before nor after any element ofP there is one single

generator of P such that every general line which passes through and

intersects this generator is normal to P.

(2) If be either before or after any element of P there is no general

line passing through O and having an element in common with P which

is normal to P.

As regards the first part of this theorem, if we carry out the con-

struction of Theorem 142 taking a as a separation line, then, since P is
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an optical plane, the general line 6 must be an optical line since it is

normal to a.

Since O is
1neither before nor after any element of P, it is neither before

nor after any element of 6.

If then OB be any general line passing through and intersecting

b in the element J9, it follows by Theorem 45 that no element of OB
with the exception of B is either before or after any element of 6.

It follows that OB is normal to 6.

But, as in Theorem 142, OB is normal to a and thus OB is normal

to the two intersecting general lines a and b which lie in P and therefore

it is normal to P.

Again if B' be any element in P which does not lie in 6, then BB' is

a separation line and so, as in Theorem 142, OB' cannot be normal

to P.

Thus all general lines through which have an element in common
with b are normal to P, and no other general line through which

intersects P can be normal to P.

Thus the first part of the theorem is proved.

Suppose next that O is before some element, say E, in P.

Then through E one single generator of P passes which we may
denote by/.

Since O does not lie in/ but is before an element of/, it follows that

through O there is an optical line which is a before-parallel of/ and

which we shall denote by c.

If/' be any other generator of P it will be a neutral-parallel of/ and

so by Theorem 26 (a) c will be a before-parallel of/'.

Thus O is before elements of every generator of P.

Similarly if O be after any element of P it is after elements of every

generator of P.

Thus in case be either before or after any element ofP it will lie in

an inertia plane along with any selected generator of P.

Let OB be any general line passing through and having the element

B incommon withP and let b be the generator ofP which passes through
B.

Then OB and b lie in an inertia plane and intersect in B and so, since

b is an optical line, OB cannot be normal to it.

Thus OB cannot be normal to P and therefore there is in this case

no general line passing through O and having an element in common
with P which is normal to P.

15-2
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THEOREM 144

Ifa general line d have an element A in common with a general plane P,

there is at least one general line passing through A and lying in P which

is normal to d.

If c? lies completely in P we already know that the theorem holds and

so we shall suppose that A is the only element common to d and P.

We shall first consider the case where P is an inertia or separation

plane.

In this case, if be any element of d distinct from A, there is, by
Theorem 142, one single general line passing through and normal to

P which has an element in common with P.

Let B be this element.

If B should coincide with A, then every general line passing through
A and lying in P would be normal to d.

If B does not coincide with A let a be the one single general line

passing through A and lying in P which is normal to AB.
Then since OB is normal to P it must be normal to a.

Thus a is normal to the two intersecting general lines AB and OB
and therefore is normal to the general plane containing them.

Thus the general line a must be normal to d and, since a passes

through A and lies in P, the theorem is proved for the case where P is

an inertia or separation plane.

Suppose next that P is an optical plane and let b be the generator
ofP which passes through A .

Now, since 6 is an optical line, it follows that the intersecting general

lines b and d must lie in a general plane, say Q, which must be either an

optical plane or an inertia plane.

Suppose first that Q is an optical plane.

Then, since b is an optical line in Q and d intersects 6, it follows that

d must be a separation line and b must be normal to d.

But 6 passes through A and lies in P and so the theorem is proved
for this case.

Next consider the case where Q is an inertia plane.

Let b
1

be any generator ofP distinct from b.

Then, since b' is a neutral-parallel of 6, it follows that an inertia

plane Q' through any element of 6' and parallel to Q will contain b'.

If then A' be the representative ofA in Q'> the general line AA' will

be normal to Q and therefore will be normal to d.
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But, since b
r

is neutrally parallel to b which contains the element A,
the element A' must lie in b' and therefore in the optical plane P.

Thus the general line AA' must lie in P and, since it passes through
A and is normal to d, the theorem holds also in this case.

Thus the theorem holds in general.

THEOREM 145

// three general lines a, b and c have an element in common, there

is at least one general line passing through which is normal to all three.

If we take any two of the three given general lines, say a and 6, it

follows, since they have the element in common, that they lie in a

general plane, say P.

Then by Theorems 139, 140 and 141 there is at least one general plane

passing through and completely normal to P.

Let Q be this general plane.

Then, since c has the element in common with Q, it follows, by
Theorem 144, that there is at least one general line, say d, passing

through and lying in Q which is normal to c.

But, since d lies in Q, it is normal to both a and b and thus is normal to

all three general lines.

Thus the theorem is proved.

Definition. If a general line and a general plane have one single

element in common, they will be said to intersect in that element.

Definition. If a general line a and a general plane P intersect, then

the aggregate of all elements of P and of all general planes parallel to

P which intersect a will be called a general threefold.

It will be found that, just as there are three types of general line

and three types of general plane, so there are three types of general

threefold.

In the case of general threefolds, however, unlike that of general

lines or of general planes, we are able to give a definition which applies

to all three types without first considering any of the special cases.

From the definition it is clear that if a general threefold W be

determined by a general line a intersecting a general plane P, then any
other general plane Px parallel to P and intersecting a may take the

place of P, so that a and Pl will also serve to determine W.

Again if a intersects P in the element and if a' be a general line

parallel to a and intersecting P in another element O 1

',
then a and a'

will lie in a general plane, say Q.
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If through any element Ol of a distinct from O the general plane Pl

passes parallel to P, then, by Theorem 123, the general plane Q must

have a second element in common with Pv
Thus P

l
and Q have a general line in common which must be parallel

to 00' and so the general line a' must intersect P l
in some element O/.

Thus a' intersects every general plane parallel to P which intersects

a, and similarly, a intersects every general plane parallel to P which

intersects a'.

It follows that every element of a' lies in the general threefold deter-

mined by a and P, and also : that a' and P determine the same general

threefold as a and P.

THEOREM 146

// two distinct elements of a general line lie in a general threefold, then

every element of the general line lies in the general threefold.

Let the general threefold W be determined by a general plane P and

a general line a which intersects it.

Let X and X 2 be two distinct elements of a general line b and let

them both lie in W.

IfX l and X 2 should both lie in P or in any one of the general planes

which intersect a and are parallel to P, then the general line b will lie

in that general plane and therefore every element of b must lie in W.

We shall next suppose thatX l lies in one of the set of parallel general

planes, say Pl9 while X2 lies in another, say P2 .

Then b either may or may not lie in a general plane containing a.

Suppose first that b lies in a general plane Q along with a.

Then we may have either :

(1) 6 identical with a,

or (2) 6 parallel to a,

or (3)6 intersecting a.

If b be identical with a the result is obvious.

If b be parallel to a then, as we have already shown, every element

of b lies in W .

If b intersects a, then at least one of the elements Xl ,
X2 must be

distinct from the element of intersection of 6 and a.

We may suppose thatX
l
is distinct from this element ofintersection.

Then the element in which a intersects Pl must be distinct from

X l
and so the general plane Q has two distinct elements in common

with P.
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Further, since the general line a intersects all the general planes

parallel to P
l whose elements along with the elements P l

make up W,
it follows, by Theorem 123, that Q has a general line in common with

each of these general planes and all these general lines are parallel to

one another.

Now since b does not lie in P
l

it follows that b must intersect all

these general planes, and similarly a general plane through anyelement

of b distinct from X
l
and taken parallel to Pl must intersect a.

Thus we see that in this case also every element of b lies in W and

further that b and P
l
determine the same general threefold as a and

P
x : namely W.

Thus the theorem holds provided b and a lie in one general plane.

Finally suppose as before that X l
lies in P

l
and X% in P2 and that b

and a do not lie in one general plane.

Let a intersectP
l
in the element Y

1
and let b' be a general line through

Y
l parallel to 6.

Then b and V lie in a general plane, say R, which has the two elements

X
1
and Y

l in common with P
l
and has the element X2 in common with

the parallel general plane P2 .

Thus R has a general line in common with P2 which is parallel to

X l
Y

l and so b' must intersect P2 in some element, say Y2 .

But now, from what we have already proved, every element of b
1

must lie in W and also b' and P2 determine the general threefold W
equally with a and P2 or a and P.

Again, since b is parallel to 6', it follows from what we have already

proved that every element of b lies in the general threefold determined

by b' and P2 : that is in W
;
and that b and P2 may also be taken as

determining the general threefold W.

Thus the theorem holds in general,

REMARKS

It is evident from the above that if a general threefold W be deter-

mined by a general plane P and a general line a which intersects P,

then a general line b which has two distinct elements in common with

W, which do not both lie in P or do not both lie in one of the general

planes parallel to P and intersecting a, will intersect all these general

planes including P.

Further, b and P, or b and any one of these general planes, will also

determine W.

Again if a general plane Q have two distinct elements X l and X2 in
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common with W, then Q will have at least one general line in common
with W: namely the general line X^2 since, by the above theorem,

every element ofX^2 must lie in If, and we already know that every
element of it must also lie in Q.

It is not however possible from this to prove that Q and W have more
than one general line in common.

THEOREM 147

// a general plane have three distinct elements in common with a

general threefold and if these three elements do not all lie in one general

line, then every element of the general plane lies in the general threefold.

Let the general threefold W be determined by a general plane P
and a general line a which intersects P.

Let X l9 X 2 and X3 be three distinct elements of a general plane Q
which do not all lie in one general line and suppose that X

l ,
X 2 and Z3

all lie in W.
If all these three elements should lie in P or if they should all lie in

one of the general planes parallel to P which intersect o, then Q would
be identical with the general plane in which they all lie and accordingly

every element of Q would lie in W .

If X ly X 2 and X% do not all lie in one of this set of general planes,

suppose that X
l
lies in the general plane Pl of the set while X2 lies in

another distinct general plane of the set, say P2 .

Then X3 will lie in some general plane P3 of the set which may be

either identical with P
1
or with P

2 ,
or may be distinct from both.

Now, since Z
x
and X2 lie in two distinct general planes of the set, it

follows that the general line X^X2 intersects every general plane of

the set and therefore must intersect P3 in some element, say O.

Further, since X l9 X 2 and X.3 do not all lie in one general line, it

follows that X3 and O must be distinct elements.

Thus the general planes P3 and Q have two distinct elements X3

and in common and therefore have the general line OX3 in common,
which accordingly lies in W.

Again the general threefold W, as we have seen, may be determined

by the general plane P3 and the general line X^X2 which intersects P3

inO.

But now every element of Q lies either in X^2
or in a general line

parallel to X^2 and intersecting OX%.
We have however seen that every element of any such general line

must lie in W.
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It follows that every element of Q must lie in W.

Thus the theorem holds in all cases.

THEOREM 148

(1) If a general line b lies in a general threefold W and if A be any
element lying in W but not in 6, then the general line through A parallel

to b also lies in W.

(2) // a general plane P lies in a general threefold W and if A be any
element lying in W but not in P, then the general plane through A parallel

to P also lies in W.

The first part of the theorem may be proved as follows :

The general line b and the element A determine a general plane,

say Q, having three elements in common with W which do not all lie

in one general line, and so, by Theorem 147, Q lies in W.

But the general line through A parallel to b must lie in Q and there-

fore must lie in W.

This proves the first part of the theorem.

In order to prove the second part let b and c be two intersecting

general lines which both lie in P and therefore in W.

The element A does not lie in P and therefore cannot lie either in

b or c.

If then b' and c' be general lines through A parallel to b and c

respectively, it follows from the first part of the theorem that ft' and c'

both lie in W.

If then P' be the general plane containing b' and c' it will contain

three distinct elements in common with W which do not all lie in one

general line and so, by Theorem 147, P' must lie in W.

But P' is parallel to P and passes through A and so the theorem is

proved.
THEOREM 149

// a general threefold W be determined by a general plane P and a

general line a which intersects P, then if Q be any general plane lying in

W, and if b be any general line lying in W and intersecting Q, the general

plane Q and the general line b also determine the same general threefold W.

It is evident from the remarks at the end of Theorem 146 that the

above holds in the special case where Q is one of the set of general

planes consisting of P and all general planes parallel to P which

intersect a.

We shall therefore consider the case where Q is distinct from any
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one of this set of general planes which we shall for convenience refer to

as the primary set.

Let Xl be any element in Q and take any two distinct general lines

lying in Q and passing through X l
.

Then these could not both lie in any general plane of the primary set,

for if so Q would require to be identical with that general plane,

contrary to hypothesis.

Thus at least one of the two general lines does not lie in any general

plane of the primary set.

Suppose c
l
be a general line of this character.

Then, since Q lies in W, each element of ct must lie in a distinct

general plane of the primary set, and c must intersect every general

plane of the primary set.

Thus W may be determined by any general plane of the primary set

and the general line Cj which intersects it, in place of the general line a.

Let X2 be any element of Q which does not lie in c
l
and let c2 be a

general line through X 2 parallel to c
t

.

Then c
2
must also lie in Q and must also intersect every general

plane of the primary set.

Further, since c
l
and c2 are parallel, they must intersect any general

plane of the primary set in distinct elements, and accordingly any

general plane of the primary set has a general line in common with Q.

Now let B be any element in b other than its element of intersection

with Q.

Then B must lie in some general plane of the primary set, say Pl ,

since b lies in W.

Now, as we have seen, Px has a general line in common with Q and,

since B does not lie in Q, it cannot lie in this general line.

If C and D be any two distinct elements in this general line, then

jB, C and D are three distinct elements in P
l
which do not all lie in one

general line.

But now, if W be the general threefold determined by Q and 6, it

is evident that B, C and D lie inW and so, by Theorem 147, the general

plane P l must lie in W.
Also since c lies in Q it must lie in W, and so, by Theorem 148,

every general plane which passes through an element of c and is

parallel to P
l must lie in W .

But the general threefold W is the aggregate of all elements of P
l

and of all general planes parallel to Pl which intersect ct , and so every
element of W must lie in W.
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But, since Q and b both lie in W, it follows by Theorem 148 that every

general plane which passes through an element of b and is parallel to Q
must lie in W.

Since, however, the general threefold W is the aggregate of all

elements of Q and of all general planes parallel to Q which intersect 6,

it follows that every element of W must lie in W .

Thus the general threefolds W and W consist of the same set of

elements and are therefore identical.

Thus Q and b determine W, as was to be proved.

REMARKS

It follows directly from the above theorem that any four distinct

elements which do not all lie in one general plane determine a general

threefold containing them.

For let A
, B, C, D be four distinct elements which do not all lie in

one general plane.

Then no three of them can lie in one general line.

Let Q be the general plane containing A, B and C and let 6 be the

general line DA .

Then b cannot have any other element than A in common with Q,

for then D would have to lie in Q along with A
,
B and C contrary to

hypothesis.

Thus b intersects Q.

Let W be the general threefold determined by Q and b and let W
be any general threefold containing A, B, C and D.

Then, since W contains A, B and 6Y

,
it follows by Theorem 147 that

W contains Q.

Also by Theorem 146 since W contains A and D it contains 6.

Thus by Theorem 149 the general threefold W is identical with W :

that is to say is identical with one definite general threefold.

Again it is clear that : any three distinct general lines having a common

element and not all lying in one general plane determine a general threefold

containing them.

THEOREM 150

// two distinct general planes P and Q lie in a general threefold W,
then if P and Q have one element in common they have a second element

in common.

Let A be any element in P and let B be any element which lies in

W but not in P.

Let the general line AB be denoted by a.
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Thena intersects Pand, since it has two distinct elements in common
with W, it follows that a lies in W.
Then by Theorem 149 P and a may be taken as determining W and

any element of W lies either in P or in a general plane parallel to P and

intersecting a.

If now we call this set of mutually parallel general planes the
"
primary set" we have already seen in proving Theorem 149 that Q

must either be identical with some general plane of the primary set or

else must have a general line in common with each general plane of the

primary set.

But now, since P and Q are supposed to be distinct, Q cannot be

identical with P, and since Q is supposed to have an element in common
with P, it follows that Q is not parallel to P.

Thus Q cannot be identical with any general plane of the primary
set and therefore must have a general line in commonwith each ofthem,
including P.

Thus P and Q must have a second element in common.

REMARKS

It is further evident from the above considerations that if two dis-

tinct general planes P and Q both lie in a general threefold W, then if P
and Q have no element in common they must be parallel to one another.

Now we have already seen that we can have a separation plane 8
and an inertia plane P having an element in common and which are

completely normal to one another.

We have seen that in this case P and 8 cannot have a second element

in common.
It follows that P and 8 cannot lie in one general threefold.

Now let a l and a2 be any two distinct general lines lying in P and

passing through 0.

Then 8 and a
l determine a general threefold, say W1? while 8 and a

2

determine a general threefold, say W7

2 -

Now W l and TF2 must be distinct, for if W2 were identical with WI9

then W
l
would contain both a^ and a2 and would therefore contain P.

But W
1 contains 8, and so this is impossible.

Thus W l and W2 are distinct general threefolds each of which con-

tains the separation plane 8.

Since there are an infinite number of general lines lying in P and

passing through 0, it follows that there are an infinite number of general

threefolds which all contain any separation plane 8.
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Similarly there are an infinite number of general three/olds which all

contain any inertia plane P.

Without Post. XIX or some equivalent we cannot from our re-

maining postulates show that there is more than one general threefold
;

for the proof of the existence of an inertia plane which is completely

normal to a separation plane depends upon Post. XIX.

THEOREM 151

// a general plane P and a general line a both lie in a general threefold

W and if a does not lie in P, then either a is parallel to a general line in P
or else has one single element in common with P.

Let B be any element lying in P but not in a.

Then a and B determine a general plane, say Q, which must lie in

W, since it contains three elements in common with W which do not all

lie in one general line.

But since P and Q have the element B in common and both lie in

W, therefore byTheorem 150 theyhave a general line in common which

we may denote by 6.

Since then b must pass through the element B which does not lie in

a, it follows that a and 6 are two distinct general lines lying in Q and

must therefore either be parallel to one another, or else have one element

in common, which is also an element of P.

Thus a is either parallel to a general line in P or has an element in

common with P.

Further, a cannot have more than one element in common with P,

since then it would require to lie in P.

THEOREM 152

// a, b and c be any three distinct general lines having an element

in common, but not all lying in one general plane, and if a general line d,

also passing through 0,be normal to a, b and c, then d is normal to every

general line in the general threefold containing a, b and c.

Let P be the general plane containing b and c.

Then a intersects P in and so P and a determine a general threefold,

say W, containing a, b and c.

Consider now any general line e in W which passes through but is

distinct from a, b and c.

Thena and e determine a general plane, say Q, which, byTheorem 147,

must lie in W .

Further, Q cannot be identical with P, since Q contains a but P does

not contain it.
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Again Q and P have the element in common and therefore, by
Theorem 150, they have a general line, say/, in common which passes

through 0.

Now, since d is normal to the two intersecting general lines b and c,

it follows that d is normal to every general line in P and therefore is

normal to/.

Again, since d is normal to the two intersecting general lines a and/,

it follows that d is normal to every general line in Q and therefore is

normal to e.

But e is any general line in W which passes through but is distinct

from a, b and c, and so d is normal to every general line in W which

passes through 0.

Next let e be any general line in W which does not pass through

and let e' be the general line through parallel to e.

Then, by Theorem 148, e' must also lie in W and so by the first case

d is normal to e' and therefore also normal to e.

Thus d is normal to every general line in W, as was to be proved.

Definition. A general line which is normal to every general line in

a general threefold will be said to be normal to the general threefold.

Since, by Theorem 145, if three distinct general lines not all lying

in one general plane have an element O in common there is at least one

general line passing through and normal to all three, it follows that

through any element of a general threefold there is always at least one

general line which is normal to the general threefold.

THE THREE TYPES OF GENERAL THREEFOLD

As in the case of general lines and general planes there are three

types of each, so too there are three types of general threefold.

This may be shown in the following way :

If 8 be any separation plane and O be any element in it, there is an

inertia plane, say P, which passes through and is completely normal

toS.

Now if a be any general line in P which passes through 0, then a

must be normal to S and must intersect it.

But a may be either:

(1) a separation line,

or (2) an optical line,

or (3) an inertia line,
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and if a general threefold be determined by S and a, then these three

cases give rise to the three different types.

Let W be the general threefold determined by a and S and consider

first the case where a is a separation line.

If now e be any general line in W which passes through and is

distinct from a, then a and e determine a general plane Q which lies in

W
, and, since Q has the element in common with S, it must have a

general line, say/, in common with S.

Now / must pass through and since it lies in 8 therefore a must

be normal to /.

But a and / are both separation lines and we already know that if

two intersecting separation lines are normal to one another they must

lie in a separation plane.

Thus Q must be a separation plane and therefore e must be a separa-

tion line.

Thus every general line in W which passes through must be a

separation line.

If e' be any other general line in W which does not pass through

0, then there is a general line through parallel to e' which, by
Theorem 148, must also lie in W and therefore must be a separation

line.

But a general line parallel to a separation line must itself be a

separation line and so e' is a separation line.

Thus every general line in W is a separation line and so no element

of W is either before or after any other element of it.

It also follows from this that every general plane in W must be a

separation plane.

Consider next the case where a is an optical line.

As before let e be any general line in W which passes through and

is distinct from a.

Then a and e determine a general plane Q which has a general line

/ in common with S.

As before a is normal to /, but in this case a is an optical line while

/is a separation line and we know that in these circumstances a and/
must lie in an optical plane.

Thus Q must be an optical plane and, since there is only one optical

line in an optical plane which passes through any element of it and all

other general lines in it which pass through that element are separation

lines, it follows that e must be a separation line.
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Again let e' be any other general line in W which does not pass

through 0.

Then there is a general line through parallel to e' and this general
line must either be the optical line a or a separation line.

Thus e' must be either an optical line or a separation line.

Again if 0' be any element of W distinct from 0, then 0' may or

may not lie in a.

If 0' does not lie in a, then 00' is a separation line and there is an

optical line through 0' parallel to a which, by Theorem 148, must lie

in W .

Thus there is at least one optical line passing through any element

of W and lying in W.

Let e' be any general line in W which passes through O f

but not

through 0, and which is not parallel to a.

Then the general line through O parallel to e' cannot be identical

with a and therefore must be a separation line.

Thus e! must be a separation line.

It follows that of all the general lines passing through any given

element of W and lying in W one and only one is an optical line and

all the others are separation lines.

Further, all the optical lines in W are parallel to one another.

Since there are two optical lines in any inertia plane which pass

through any element of it, it follows that no inertia plane can lie

in W.

Thus every general plane in W must be either a separation plane or

an optical plane.

It follows that all the optical lines in W being parallel to one another

must be neutral parallels.

Consider finally the case where a is an inertia line.

As before let e be any general line in W which passes through

and is distinct from a.

Then a and e determine a general plane Q, which lies in W and, since

a is an inertia line, Q must be an inertia plane.

Thus e may be either an inertia line, an optical line, or a separation

line.

If O' be any element in W which is distinct from O and if d be any

general line passing through O and lying in W but distinct from 00'
,

then through O' there is a general line parallel to d, which must lie in

W and must be of the same type as d.
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Thus through any element of W there are general lines of all three

types lying in W.

Again, if / be any general line lying in S and passing through 0,

then, since a is an inertia line, a and / must lie in an inertia plane,

say R.

Now, since there are an infinite number of general lines such as /
which lie in S and pass through 0, there must be an infinite number of

inertia planes such as R which are all distinct but have the inertia

line a in common.
In any one of these inertia planes such as R there are two and only

two optical lines which pass through O.

All these optical lines must be distinct since the inertia planes have

only an inertia line in common, and so there are an infinite number
of optical lines passing through O and lying in W .

Further, any optical line which passes through and lies in W must

clearly lie in one of this set of inertia planes.

Again, if O' be any element of W distinct from and if g be any

optical line passing through and lying in W but distinct from GO'
,

then there is an optical line through O' parallel to g and lying in W .

The general line OO f

either may or may not itself be an optical line.

Thus through any element of W there are an infinite number of

optical lines which lie in W.

Now we have already seen that W contains the separation plane S
and also contains inertia planes, and we can easily show that it also

contains optical planes.

Thus let P be any inertia plane in W and let A be any element

in W but not in P.

Then through A there is an inertia plane parallel to P which we may
call P'.

Let B be the representative of A in P and let c
l
and c2 be the two

generators ofP which pass through B.

Then A is neither before nor after any element of either c or c2 and

so A and c
l
lie in one optical plane, say

r

l\ ,
while A and c2 lie in another

optical plane, say T2 .

But T and T2 each contain three elements in common with W which

do not all lie in one general line and so, by Theorem 147, both T
l
and

T
2
lie in W.
Thus W contains all three types of general plane.

We thus see that there are at least three types of general threefold

and we have investigated a few of their characteristic properties.

R 16
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We have next to show that any general threefold must belong to

one of these three types.

Since any four distinct elements which do not all lie in one general

plane lie in one and only one general threefold, it will be sufficient if we
examine the nature of any such general threefold.

SETS OF FOUR ELEMENTS WHICH DETERMINE THE DIFFERENT TYPES

OF GENERAL THREEFOLD

Let A, B, C, D be any four distinct elements which do not all lie in

one general plane.

Then no three of them can lie in one general line and A
,
B and C

must determine a general plane which we shall call P.

Now P may be either :

(1) an inertia plane,

or (2) an optical plane,

or (3) a separation plane.

Suppose first that P is an inertia plane and that D is any element

outside it.

Let W be the general threefold containing A, B, C arid D and which

must evidently contain P.

Then
, byTheorem 142, there is one single general line passing through

D and normal to P which has an element in common with P.

Let this element be denoted by and let a be any inertia line in P
which passes through 0, while b is the separation line in P and passing

through which is normal to a.

Then, since a is an inertia line, the general line DO which is normal

to it must be a separation line.

But DO is also normal to b and, since we know that two intersecting

separation lines which are normal to one another must lie in a separation

plane, it follows that DO and b lie in a separation plane which we shall

call S.

Now S contains DO and b and therefore contains three elements in

common with W which do not all lie in one general line.

It follows, by Theorem 147, that S lies in W.

Thus, by Theorem 149, the general threefold determined by S and a

is identical with the general threefold determined by P and DO.

This latter is however identical with W and so S and a determine W.

But a is an inertia line which is normal to the two intersecting

separation lines DO and 6 which lie in S and therefore a is normal to S.

Thus the general threefold W is of the third type.
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Further, it is evident that if anygeneral threefold contains an inertia

plane it must belong to the third type.

Next consider the case where P is an optical plane and D an element
outside it.

Two sub-cases arise here : we may have

D before or after some element of P,
or D neither before nor after any element of P.

We shall suppose first that D is either before or after some element

ofP and we shall denote the generator ofP which passes through this

element by a.

If, as before, W denote the general threefold containing A, B, G and

D, then W will contain P and will therefore contain a.

But, since a is an optical line and D is an element which does not lie

in a but is either before or after some element of a, it follows that a and
D he in an inertia plane, say Q.

But Q contains three elements in common with W which do not all

lie in one general line and so Q must lie in W .

But Q is an inertia plane and so it follows that in this case also W is

a general threefold of the third type.

We shall next take the case where P is an optical plane and the

element D is neither before nor after any element of P.

Let b be any separation line in P and a be any optical line in P and

let b and a intersect in the element O.

If, as before, W denote the general threefold containing A , J5, G and

Z>, then W will contain P and therefore will contain a and 6.

Now, since D is neither before nor after any element of P, it is neither

before nor after any element of 6 and so D and 6 lie in a separation plane

which we may call S.

Further, since S has three elements in common with W which do not

all lie in one general line, it follows that 8 lies in W.

Again, D and a must lie in an optical plane and, since DO is a separa-

tion line while a is an optical line, it follows that a is normal to DO.

But a must also be normal to b for a similar reason and so, since

DO and b are intersecting separation lines in S, it follows that a is

normal to S

But, by Theorem 149, the general threefold determined by S and a

is identical with that determined by P and DO which again is identical

with W.
16-2
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Since however S is a separation plane while a is an optical line

normal to it, it follows that W is in this case a general threefold of the

second type.

Consider next the case where P is a separation plane and, as in the

previous cases, let W denote the general threefold containing A, J3, C
and D and therefore also containing P.

Three sub-cases occur here
;
thus we may have :

D neither before nor after any element of P,

or D either before or after one single element of P,

or D either before or after at least two elements of P.

Now, byTheorem 142, there is one single general line passing through
D and normal to P which has an element in common with P.

Let be this element.

Then DO may be either a separation line, an optical line, or an

inertia line.

Consider first the case where D is neither before nor after any element

of P.

Then D is neither before nor after and so DO is a separation line

and the general threefold W is of the first type.

Next consider the case where D is either before or after one single

element of P and denote this element by 0' .

Let b and c be two distinct separation lines in P and passing through
0'.

Then DO' and 6 lie in an optical plane and DO' and c lie in another

optical plane.

Since D is either before or after 0', it follows that DO' is an optical

line and therefore is normal to both b and c.

Since b and c intersect one another, it follows that DO' is normal to

P and therefore 0' must be identical with 0.

Thus in this case the general threefold W is of the second type.

Next let D be either before or after at least two distinct elements of

P, say E and F.

Then EF is a separation line and D does not lie in it, and so the three

elements D, E and F lie in an inertia plane, say Q.

But D, E and F are elements in W and therefore Q must lie in W .

Thus, since Q is an inertia plane, it follows that the general threefold

W belongs in this case to the third type.
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This exhausts all the possibilities which are open and so we see that

any general threefold whatever must be ofone ofthe three types which

we have considered.

We shall accordingly give special names to these three types.

Definition. If a separation line a intersects a separation plane 8
and is normal to it, then the aggregate of all elements of S and of all

separation planes parallel to S which intersect a will be called a separa-
tion threefold.

Definition. If an optical line a intersects a separation plane S and is

normal to it, then the aggregate of all elements ofS and of all separation

planes parallel to 8 which intersect a will be called an optical threefold.

Definition. If an inertia line a intersects a separation plane S and

is normal to it, then the aggregate of all elements of S and of all

separation planes parallel to S which intersect a will be called an inertia

threefold.*

We are now in a position to introduce a new postulate which limits

the number of dimensions of our set of elements.

POSTULATE XX. If W be any optical threefold, then any
element of the set must be either before or after some element

ofW.

If W be any optical threefold and A be any element of W, then

through A there is one single optical line which lies in W and A is

before certain elements of this optical line and is after certain others.

Thus in this case A is before certain elements of W and after certain

other elements of W.

If, on the other hand, A be any element outside W
', then, by Post. XX,

A must be either before some element of W or after some element of W.

If A be before the element B of W, then there is an optical line, say

6, passing through B and lying in W.

If 6' be the optical line through A parallel to fc, then b
1

will be a

before-parallel of 6.

But any element of W which does not lie in b must lie in an optical

line c neutrally parallel to b and lying in W and so, by Theorem 26, b'

must be a before-parallel of c.

Thus A must be before certain elements of c and, since A is not an

element of W and therefore not an element of c, it follows that A cannot

be after any element of c.

* In the first edition of this work the term rotation threefold was used instead of inertia

threefold. The change was made in order that the nomenclature might be more systematic.
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Thus A is before elements of every optical line in W and is not after

any element of W.

Similarly if A be any element outside W and after some element of

W, then A will be after elements of every optical line in W and will not

be before any element of W.

Definition. An optical line which lies in an optical or inertia threefold

will be spoken of as a generator of the optical threefold or inertia three-

fold, as the case may be.

THEOREM 153

// P be, an optical plane and be any element in it, there is only one

general plane passing through and completely normal to P.

Let a be the generator of P which passes through and let b be

any separation line in P and passing through 0.

Then we already know that there is at least one optical plane, say
Q, which passes through and is completely normal to P.

Further this optical plane Q contains a.

Now let c be any separation line passing through and lying in Q.

Then c is normal to both a and b.

Let d be any other general line which passes through and is normal
to P and let X be any element in d distinct from 0.

Now, P and c determine an optical threefold, since no element of c

with the exception of is either before or after any element of P.
Let this optical threefold be denoted by W.

Then, by Post. XX, the element X is either before or after some
element of W.

If X were outside W, then, as we have seen, X would be before or

after elements of every generator of W and therefore before or after

elements of a.

Since the general line d could not then be either identical with a or

be a separation line normal to a, it follows that d could not be normal
to P, contrary to hypothesis.
Thus X must lie in W and therefore d must lie in W.
But now c and d determine a general plane Q' which has three

elements in common with W which are not all in one general line and
therefore Q' must lie in W .

Further, since P and Q' have the element in common, therefore by
Theorem 150, they have a general line in common, which we may call a'.

But now 6 is normal to both c and d and, since these intersect in 0,
it follows that 6 is normal to Q' and therefore normal to a'.
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But 6 and a' lie in the optical planeP and, since b is a separation line,

a' must be an optical line.

Thus, since a' passes through O, it must be identical with a and so Q'
must be identical with Q.

It follows that d lies in Q and accordingly every general line which

passes through O and is normal to P must lie in Q.

Thus any general plane which passes through O and is completely
normal to P must be identical with Q, or there is only one general plane

passing through and completely normal to P.

THEOREM 154

IfP be a separation plane and O be any element in it, there is only one

general plane passing through O and completely normal to P.

We already know that there is at least one inertia plane, say Q,

passing through O and completely normal to P.

Suppose, if possible, that there is a general line, say a, passing

through O and normal to P but not lying in Q.

Then Q and a will determine an inertia threefold, say W.

If b and c be any two distinct general lines in P which both pass

through 0, then b and c will each be normal to three distinct general

lines passing through O and lying in W but not all lying in one general

plane.

Thus, by Theorem 152, b and c must each be normal to every general

line in W.

But now we have seen that any inertia threefold contains optical

planes and so there would always be at least one optical plane, say R,

passing through O and lying in W.

But then both b and c would be normal to every general line in R
and, since 6 and c are intersecting general lines in P, we should have

every general line in R normal to every general line in P.

Thus P would be completely normal to R and would pass through
the element O in it.

But P is a separation plane and we already know by Theorem 153

that there could be only one general plane passing through and

completely normal to R, and that one must itself be an optical plane

and could not be a separation plane.

Thus the assumption that there is a general line a passing through
and normal to P but not lying in Q, leads to a contradiction and

therefore is not true.



248 GEOMETRY OF TIME AND SPACE

It follows that every general line passing through O and normal to

P must lie in Q .

Thus Q is the only general plane which passes through O and is

completely normal to P.

Thus the theorem is proved.

THEOREM 155

// P be an inertia plane and be any element in it, there is only one

general plane passing through O and completely normal to P.

We already know that there is at least one separation plane, say Q,

passing through O and completely normal to P.

Let b be any separation line in Q which passes through and let c

be the one separation line lying in Q and passing through O which is

normal to b.

Suppose now, if possible, that there is a general line d passing

through O and normal to Pbut not lying in Q.

Then, since any inertia line inP would be normal to d, it would follow

that d must be a separation line and, since then any inertia line in P
which passed through O would be conjugate to the two intersecting

separation lines b and rf, it would follow, as a consequence ofTheorem 99,

that 6 and d must lie in a separation plane, say Q'.

Now Q' would require to be distinct from Q, since d is supposed not

to lie in Q.

Since however we should then have two intersecting separation

lines in Q', namely b and d, normal to P, it would follow that Q' was

completely normal to P.

Now suppose c' to be the one separation line in Q' and passing

through O which would be normal to b.

Then c and c' would be distinct separation lines, since b is the only

general line common to Q and Q'
'

.

Further, since any inertia line in P which passes through O would

be conjugate to both c and c', it follows that c and c' would lie in a

separation plane, say S.

But now P and 6 would determine an inertia threefold, say W, and

since both c and c' would be normal to P and to the separation line b

(which does not lie in P), it follows, by Theorem 152, that both c and c'

would be normal to every general line in W.

But, as we have seen, there is at least one optical plane passing

through and lying in W, and if T be such an optical plane we should

have both c and c' normal to T.

Thus the separation plane 8 would be completely normal to T and
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this we know by Theorem 153 is impossible, since only an optical plane
can have an element in common with an optical plane and be com-

pletely normal to it.

It follows that no such general line as d can exist and so every general
line which passes through and is normal to P must lie in Q.

Thus Q is the only general plane which passes through and is

completely normal to P and so the theorem is proved.

REMARKS

Combining these last three theorems we get the general result :

// P be any general plane and O be any element in it, there is one and

only one general plane Q passing through O and completely normal to P.

Further:

If P be an optical plane, Q is an optical plane.

If P be a separation plane, Q is an inertia plane.

If P be an inertia plane, Q is a separation plane.

Again we know that if O' be any element outside P there is at least

one general plane through 0' which is completely normal to P.

If we call this general plane Q
1

'

,
then Q' is either identical with Q or

parallel to Q according as 0' does or does not lie in Q.

Now there cannot be any other general plane than Q
r which passes

through O' and is completely normal to P.

For if Q" were such another general plane it would either pass

through O or else there would be a general plane parallel to Q" and

passing through O, which would also be completely normal to P.

Thus there would be two distinct general planes passing through O
and completely normal to P; which is impossible.

Thus we can say :

// P be any general plane and O be any element of the set, there is one

and only one general plane passing through O and completely normal to P.

THEOREM 156

(
1

) IfP bean inertia or separation plane and O be any element outside

it, then the general plane through O and completely normal to P has one

single element in common with P.

(2) // P be an optical plane and be any element outside it, then the

optical plane through O and completely normal to P has an optical line

in common with P if O be neither before nor after any element of P and

has no element in common with P if O be either before or after any

element of P.
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LetP be an inertia or separation plane and any element outside it.

Then, byTheorem 1 42, there is one single general line passing through
and normal to P which has an element in common with P.

Let 0' be this element.

Then, by Theorem 155 or 154, there is one single separation or inertia

plane, say Q, which passes through 0' and is completely normal to P ;

and Q has only one element in common with P.

Thus Q must contain the general line O'O and therefore it must be

identical with the one single general plane which passes through and

is completely normal to P.

Thus the general plane through and completely normal to P has

one single element in common with P, and so the first part of the

theorem is proved.
Next let P be an optical plane and any element outside it.

Then, by Theorem 143, if be neither before, nor after any element

of P there is one single generator of P such that every general line

which passes through O and intersects this generator is normal to P.

Thus if a be this generator and O' be any element in a, the general

lines a and 00' determine an optical plane, say Q, which passes through

O, is completely normal to P and has the optical line a in common
with P.

Since there is only one optical plane through and completely
normal to P, this must be identical with Q and it has the optical line a

in common with P if be neither before nor after any element of P.

Next consider the case where is either before or after some element

of P.

Here, by Theorem 143, there is no general line passing through O
and having an element in common with P which is normal to P.

Thus the optical plane through O and completely normal to P can,

in this case, have no element in common with P.

Thus all parts of the theorem are proved.

THEOREM 157

Ifa general line a have an element in common with a general threefold

W', then there is at least one general plane lying in W and passing through

to which a is normal.

Let Q be any general plane in W and passing through 0.

Then, by Theorem 144 there is at least one general line, say 6,

passing through and lying in Q which is normal to a.
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Let c be any other general line distinct from 6, lying in Q and passing

through 0, and let A be any element lying in W but not in Q.

Then c and A determine a general plane, say R, which must lie in W,
since it contains three elements in common with W which do not all

lie in one general line.

Further, R must be distinct from Q, since R contains the element A
which does not lie in Q, and moreover R does not contain b.

But again, by Theorem 144, there is at least one general line, say d,

passing through and lying in R which is normal to a.

Then d must be distinct from b which it intersects in the element

and so d and b determine a general plane, say P, which must lie in W,
since it contains three elements in common with W which do not all lie

in one general line.

But, since a is normal to the two intersecting general lines d and fc,

therefore a is normal to P, and thus there is at least one general plane
P lying in W and passing through to which a is normal.

It is to be observed in connexion with the above theorem that if

a were normal to any other general line passing through and lying in

W but not in P, then, by Theorem 152, a would be normal to every

general line in W.

It is also to be observed that the above theorem holds both when
the general line a lies in W and when it has only one element in common
with W.

THEOREM 158

(1) If W be a general threefold and P be a general plane lying in W,
while is any element in P, then there is at least one general line passing

through and lying in W which is normal to P.

(2) There is only one such general line except in the case where W is

an optical threefold and P an optical plane, in which case there are an

infinite number.

To prove the first part of the theorem consider first the case where

P is an optical plane.

In this case the generator of P which passes through is normal to

P and lies in W.

Next let P be an inertia or separation plane and let A be any element

lying in W but not in P.

Then by Theorem 142 there is one single general line passing through
A and normal to P which has an element in common with P.

Let B be this element.
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Then the general line AB has two distinct elements in common with

W and therefore lies in W, but does not lie in P.

If B should be identical with 0, then AB passes through 0, lies in

W and is normal to P.

If B be not identical with 0, then there is a general line passing

through and parallel to AB which must also be normal to P.

But, by Theorem 148, this general line must also lie in W.

Thus in all cases there is at least one general line passing through
and lying in W which is normal to P.

Proceeding now to the second part of the theorem, let us consider

first the case where P is either an inertia or separation plane.

Suppose, if possible, that a and b are two distinct general lines both

of which pass through O, lie in W and are normal to P.

Then a and b would determine a general plane, say Q, which would

have three elements in common with W not all lying in one general line,

and so Q would lie in W.

Thus, byTheorem 150, since Qand Phave the element in common,

they would have a general line in common.

But, since Q is supposed to contain the two intersecting general

lines a and 6 each of which is normal to P, it would follow that Q must

be completely normal to P, and since P is by hypothesis either an

inertia or separation plane, it would follow that Q must be either

a separation or inertia plane.

But we already know that if an inertia plane and a separation plane
be completely normal to one another, they cannot have more than one

element in common.

Thus P and Q could not have a general line in common, and so the

supposition that more than one general line can pass through O, lie in

W, and be normal to P leads in this case to a contradiction and there-

fore is not true.

Thus if P be an inertia or separation plane there cannot be more

than one such general line.

Suppose next that P is an optical plane and let a be the generator

of P which passes through O and let b be any other general line lying

in W but not in P and which passes through 0.

Let A be any element in 6 distinct from 0.

Then if A be either before or after any element of P the general

threefold W must be an inertia threefold and a and A must lie in an

inertia plane.

Thus, since a is an optical line and, since b intersects a and lies in an
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inertia plane with it, it follows that 6 cannot be normal to a and

therefore cannot be normal to P.

Further, since a is the only general line in P which passes through
and is normal to P, it follows that in this case there is only one

general line in W which passes through and is normal to P.

Consider now the case where the element A is neither before nor

after any element of P.

In this case the general threefold W must be an optical threefold

and the general line b must be a separation line.

Let c be any general line in P and passing through but distinct

from a.

Then c is a separation line and b and c determine a separation plane,

say S, which must lie in W.
Now a must, in this case, be normal to both 6 and c and therefore

normal to 8.

Let d be the one single separation line in S which passes through
and is normal to c.

Then d is normal to both a and c and therefore is normal to P.

If then Q be the general plane containing a and ^, it contains two

intersecting general lines each of which is normal to P and therefore it

follows that Q is completely normal to P.

Thus every general line which passes through and lies in Q must

be normal to P.

But, since a and d are two intersecting general lines which both lie

in W, it follows that Q contains three distinct elements in common
with W which do not all lie in one general line and therefore Q must

lie in W.

Thus in this case there are an infinite number of general lines which

pass through 0, lie in W, and are normal to P.

This exhausts all the different cases and so the second part of the

theorem is proved.

THEOREM 159

If W be a general threefold and be any element which does not lie

in it, then:

(1) If W bean inertia or separation threefold there is one single general

line passing through and normal to W which has an element in common

with W.

(2) IfW be an optical threefold there is no general line passing through

and normal to W which has an element in common with W.
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If W be an inertia threefold it contains inertia lines.

Let/ be any inertia line in W.

Then/ and lie in an inertia plane, say E y
and if a be any inertia

line in R and passing through O but not parallel to /, then a and / will

intersect in some element, say A, which is an element of W.

If on the other hand W be a separation threefold, let A be any
element in W and let a be the general line OA .

Now whether W be an inertia or separation threefold, it follows, by
Theorem 157, that there is at least one general plane, sayP, lying in W
and passing through A to which a is normal.

Now if W be an inertia threefold, a has been selected so as to be an

inertia line and, since only separation lines can be normal to an inertia

line, it follows that P is a separation plane.

If on the other hand W be a separation threefold it can contain no

other type of general plane, arid so in this case also P must be a

separation plane.

Now, by Theorem 158, whether W be an inertia or a separation

threefold, there is one general line, say 6, passing through A and lying

in W which is normal to P, and, since P is a separation plane, b must

intersect it.

Now a and b must be distinct, since b lies in W while a can only
have the one element A in common with W .

Thus a and b lie in a general plane, say Q, and, since Q contains two

intersecting general lines each of which is normal to P, it follows that

Q must be completely normal to P.

Further, since P is a separation plane, it follows that Q is an inertia

plane.

Now, since 6 is normal to P and lies in W, the general threefold W
might be determined by P and b and we know that if 6 be a separation

line, W must be a separation threefold, while if b be an optical line,

W must be an optical threefold, and if b be an inertia line, W must be

an inertia threefold.

It follows that if W be an inertia threefold then b must be an inertia

line, while if IF be a separation threefold, b must be a separation line.

But now in either of these cases there is a general line, say c, which

passes through 0, lies in Q and is normal to 6, and in both cases c

intersects 6 in some element, say 0', which is an element of W.

Further, c will be a separation line if b be an inertia line : that is, if

W be an inertia threefold; while c will be an inertia line if 6 be a

separation line : that is, if W be a separation threefold.
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Now, since c lies in Q, and since Q is completelynormal to P, it follows

that c is normal to P.

If then P' be a general plane passing through 0' and parallel to P
or identicalwith it, it follows, byTheorem 1 48, that P' must also lie in W.

Thus c will be normal to P' and to the general line b which intersects

P' in 0'.

It is thus evident that c is normal to three distinct general lines in

W which have the element 0' in common and which do not all lie in

one general plane and therefore, by Theorem 152, c is normal to W.
Also c passes through and has the element 0' in common

with W .

Now there can be no other general line passing through and

normal to W
;
for suppose, if possible, that c' is such another general

line.

Then c and c' would determine a general plane, say T, which would

contain two intersecting general lines each of which would be normal

to every general line in W and therefore normal to every general plane
in W.

Thus T would be completely normal to every general plane in W.

But through any element of W there passes more than one general

plane which lies in W and so we should have more than one general

plane passing through any element of W and completely normal to T,

which, as we have seen, is impossible.

Thus the supposition that more than one general line can pass

through O and be normal to W leads to a contradiction and therefore is

not true.

Thus there is one and only one general line which passes through
and is normal to W when W is an inertia or separation threefold, and

this general line has an element in common with W.

Suppose next that W is an optical threefold.

Then, by Post. XX, must be either before or after some element

of W and, as we have seen, if be before any element of W it must be

before elements of every generator of W, while if be after any element

of W it must be after elements of every generator of W.

If then a be any general line which passes through and has an

element A in common with W, then A must lie in some generator of W,

say/, and/ and a will lie in an inertia plane.

But, since /is an optical line and a is a general line intersecting/ and

lying in an inertia plane with it, it follows that a cannot be normal to/

and therefore cannot be normal to W.
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Thus in this case there is no general line passing through and normal

to W which has an element in common with W.

Thus both parts of the theorem are proved.

REMARKS

If W be an inertia or separation threefold and O be any element in

W, it is easy to see that there is one and only one general line passing

through and normal to W.

For if A be any element outside W and a be the one general line

passing through A and normal to W, then a will have an element B in

common with W.

IfB should coincide with 0, then a is a general line passing through
O and normal to W.

IfB does not coincide with O, then a general line a' passing through
O and parallel to a must be normal to every general line in W and must

therefore be normal to W.

Thus we have shown that there is at least one general line passing

through O and normal to W
,
and the same considerations employed in

the last theorem show that there is only one such general line.

Further, the general line through normal to W cannot have more

than the one element in common with W
;
for if it had a second

element in common with W it would lie entirely in W, and, byTheorem

148, it would follow that a must lie in W, contrary to the hypothesis
that the element A of a lies outside W.

In this respect an optical threefold is quite different.

Through any element in an optical threefold W there passes one

single generator of IF, say a.

Now a is normal to any separation line in W and is also normal to

itself.

Thus a is normal to W and passes through O, but lies entirely in W.
If O 1

be any element outside W and a! be an optical line parallel to a,

then a' is also normal to JTbut canhave no element in common with W.
We may also show, by similar considerations to those employed in

the case ofan inertia or separation threefold, that there cannot be more
than one general line passing through any element and normal to a

given optical threefold.

Thus for all three types of general threefold we have the result :

// W be any general threefold and be any element of the set, there

is one and only one general line passing through O and normal to W.
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THEOREM 160

If a be a general line and be any element in it, there is one and only

one general threefold passing through and normal to a.

Let P be any inertia plane containing a and let Q be the separation

plane passing through and completely normal to P.

Then P and Q have only the one element in common.
Now through O and lying in P there is one single general line, say 6,

which is normal to a.

But b and Q can have only one element in common and therefore

they determine a general threefold, say W .

Since, however, a is normal to every general line in Q and is also

normal to the general line b which passes through and does not lie

in Q, it follows, by Theorem 152, that a is normal to W.

Thus there is at least one general threefold passing through and

normal to a.

We shall next show that every general line which passes through
and is normal to a must lie in W.

Since every such general line which lies in Q must lie in W, it will be

sufficient to consider any general line c passing through O normal to a

and not lying in Q,

Then c and Q determine a general threefold, say W, and by Theorem

158 there is at least one general line, say d, passing through and

lying in W which is normal to Q.

Further, since Q is a separation plane, d must lie in the inertia plane

through which is completely normal to Q, and since there is only one

such inertia plane, it follows that d must lie in P.

But, since a is normal to c and Q, it follows that a is normal to W
and therefore is normal to d.

But there is only one general line passing through and lying in P
which is normal to a, and by hypothesis b is this general line.

It follows that d must be identical with b and so, by Theorem 149,

since d and Q must determine the same general threefold as do c and Q,

it follows that W must be identical with W.

Thus c must lie in W.
But if there were any other general threefold distinct from W which

passed through O and was normal to a, such general threefold would

require to contain a general line which passed through and was

normal to a but which did not lie in W, and this we have shown to be

impossible.

R 17
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Thus there is one and only one general threefold which passes

through and is normal to a.

REMARKS

In the above theorem it is to be observed that : if a be an inertia

line, 6 must be a separation line
; if a be a separation line, 6 must be an

inertia line ; while ifa be an optical line, b must be the same optical line.

Thus it follows that : if a be a general line and be any element in

it, while W is a general threefold passing through and normal to a,

then:

(1) If a be an inertia line, W is a separation threefold.

(2) If a be a separation line, W is an inertia threefold.

(3) If a be an optical line, W is an optical threefold containing a.

On the other hand we have already seen that if W be a general

threefold and O be any element in it, there is one and only one general

line a passing through and normal to W.

Thus it follows that :

(1) If W be a separation threefold, a is an inertia line.

(2) If W be an inertia threefold, a is a separation line.

(3) If W be an optical threefold, a is an optical line lying in W.

Again if a be a general line and be any element which does not lie

in a, then, through there is one single general line, say a', which

is parallel to a and is accordingly a general line of the same type.

Thus through there is a general threefold which is normal to a'

and therefore also normal to a.

Further, there cannot be a second general threefold passing through
and normal to a, for such general threefold would also ba normal to

a' and so we should have two general threefolds passing through and

normal to a' contrary to Theorem 160.

Thus we can extend Theorem 1 60 and say :

If a be a general line and be any element of the set, there is one and

wily one general threefold passing through and normal to a.

THEOREM 161

// W be an optical threefold and A be any element outside it, then

every optical line through A, except the one parallel to the generators of

W, has one single element in common with W.

Let a be the optical line through A parallel to the generators of W
and let b be any such generator.
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Then by Post. XX A must be either before or after some element

of W and we have already seen that if A be before an element of W it

must be before elements of every generator of W
;
while ifA be after an

element of W it must be after elements of every generator of W.
Thus a must be either a before- or after-parallel of 6.

It will be sufficient to consider the case where a is a before-parallel

of b since the proof in the other case is quite analogous.
Then a and b lie in an inertia plane and so there is one single optical

line passing through A and intersecting b in some element, say B.

If we call this optical line c, then c has the element B in common
with W .

If then d be any optical line passing through A but distinct from c

and a, it follows, by Post. XII, that there is one single element in rf,

say D, which is neither before nor after any element of b.

Now ifD were outside W it would be either before or after elements

of every generator of W
,
as we have already seen.

Thus, since D is neither before nor after any element of the generator

6, it follows that D must lie in W.
It follows that every optical line through A with the exception of a

has at least one element in common with W.

But if any optical line has more than one element in common with

W it must lie entirely in W, which is not possible for any optical line

which passes through the element A.

It follows that every optical line through A with the exception of a

has one single element in common with W, as was to be proved.

THEOREM 102
%

If W be a general threefold and A be any element outside it, then any

general line through A is either parallel to a general line in W or else has

one single element in common with W.

It will be observed that the last theorem is a special case of this one.

Let a be any general line which passes through A .

Now a cannot have more than one element in common with W, for

then it would require to lie entirely in W and therefore could not pass

through A.

Let B be a second element in a distinct from A .

In case W be an inertia or separation threefold, let the general line

through A normal to W meet W in the element A', as we have seen in

Theorem 159 that it must.

17-2
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Now in case the general line a should coincide with AA' it would

have an element in common with W t and so we shall suppose it is

distinct from it.

Again let the general line through B normal to W meet W in the

element B'.

Then since B does not lie in AA' we must have BB' parallel to AA'.

In case W be an optical threefold, then by Theorem 161 any optical

line through A except the one parallel to the generators of W must

have an element in common with W.
Let any optical line through A which is not parallel to the generators

of W meet W in the element A'.

In case the general line a should coincide with AA' it would have

an element in common with W, and so we shall suppose it is distinct

from it.

Let the optical line through B parallel to AA' meet W in the

element B'.

Now both in the cases where W is an inertia or separation threefold

and where W is an optical threefold, since BB' is parallel to AA'
',

it

follows that BB' and AA f

lie in a general plane which we may call Q.

But A'B' and a must also lie in Q, and therefore a is either parallel

to A'B' or intersects A'B1
in some element, say C.

But A'B' has two distinct elements A' and B' in common with W,
and therefore A'B' must lie in W, and if the element C exists it must

lie in W.

Thus the general line a is either parallel to a general line in W or

else a has one single element in common with W.

Definition. If a general line and a general threefold have one single

element in common, they will be said to intersect in that element .

REMARKS

Since a separation threefold contains neither an inertia nor an optical

line it is evident that it can contain no general line which is parallel to

either of these.

Thus it follows from the last theorem that : every inertia and every

optical line intersects every separation threefold.

Again, an optical threefold does not contain any inertia line, and all

the optical lines which it contains are parallel to one another.

Thus : every inertia line and every optical line which is not parallel

to a generator of an optical threefold intersects the optical threefold.

Analogous results to these may be deduced from Theorem 151, with
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regard to the intersection of certain types of general lines with certain

types of general planes.

Thus, since a separation plane contains neither an inertia nor an

optical line, it follows from Theorem 151 that : if W be an inertia three-

fold, every inertia and every optical line in W intersects every separation

plane in W.

Similarly : if W be an inertia threefold, every inertia line in W and

every optical line in W which is not parallel to a generator of an optical

plane in W intersects the optical plane.

Again : if W be an optical threefold, every optical line in W intersects

every separation plane in W.

THEOREM 163

If W be a general threefold and P be a general plane which does not

lie in W
,
then if P has one element in common with W, it has a general

line in common with W.

Let P and W have the element A in common and let B be any
element in P which does not lie in W.

Let b be any general line in P which passes through B but is distinct

from BA .

Then by Theorem 162 b must either intersect W in some element,

say C, or else b must be parallel to some general line, say 6', which lies

in W .

In the first case P and W have the two distinct elements A and C in

common and therefore have the general line AC in common.

In the second case a general line b" passing through A and parallel

to b
'

or identical with it must lie in W.

Bui b" must be parallel to b and since it passes through the element

A ofP it must lie in P.

Thus in this case P and W have the general line b" in common and

so the theorem holds in general.

THEOREM 164

// W-L and JF2 be two distinct general threefolds having an element A
in common, then they have a general plane in common.

Let B be any element which lies in Wl but not in W2 .

Then the general line AB lies in W
l

.

Let Q and R be any two distinct general planes which contain the

general line AB and which lie in W 1 .
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Then Q does not lie in W2 but has the element A in common with

W2 and therefore, by Theorem 163, Q has a general line, say a, in

common with W2 .

Similarly E has a general line, say 6, in common with W2 .

Now both a and 6 must be distinct from the general line AB since

the latter does not lie in W2 and, since Q and R have only the general

line AB in common, it follows that b is distinct from a.

Thus a and b are two general lines intersecting in A and each of

them lying both in W: and W2 and so they determine a general plane,

say P.

But P contains three elements in common both with W
1
and W 2

and which do not all lie in one general line and so P lies both in W l

and W2 .

Thus W
l
and W2 have a general plane in common.

THEOREM 165

// Pl
and P2 be two general planes having no element in common,

then through any element of either of them there is at least one general

line lying in that general plane which is parallel to a general line in

the other general plane.

Let O l be any element in Pl and let 2 be any element in P2 and let

the general line Oj02 be denoted by a.

Then Pl and a determine a general threefold, say Wl ,
while P2 and

a determine a general threefold, say W2 .

If W2 should be identical with Wl ,
then Pl

and P2 lie in one general

threefold and, since they have no element in common, it follows, by
Theorem 151, that any general line in P1 is parallel to a general line in

P2 ,
and so P x

and P2 are parallel to one another.

If W2 be not identical with Wt , then, since Wl and W2 have all the

elements of a in common, it follows, by Theorem 164, that they have a

general plane, say Q, in common which must contain a.

But now Q must be distinct from both Pl
and P2 ,

for otherwise Pj
or P2 would contain a and so P

l and P2 would have an element in

common, contrary to hypothesis.

But now PJ and Q both lie in W: and they have the element O
x
in

common, and therefore, by Theorem 150, they have a general line, say
61 ,

in common, which passes through Ol .

Similarly P2 and Q have a general line, say 62 ,
in common, which

passes through 2 ,
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But, since b
l
and 62 lie in P1

and P2 respectively, they can have no

element in common and, since they both lie in the general plane Q,

they must be parallel to one another.

Thus the theorem is proved.

REMARKS

It is easy to see that if two general planes Pl and P2 have one single

element in common, then no general line in Pl
can be parallel to any

general line in P2 .

For let a
l
and a 2 be two general lines in Pl

and P2 respectively, then

a x cannot be parallel to a2 if both pass through 0.

Further, they cannot be parallel if one passes through and the

other does not, for then they could not lie in one general plane.

Finally they cannot be parallel if neither of them passes through 0,

for then a general line a/ passing through and parallel to a l
would lie

in Pl and so could not be parallel to a2 as it would require to be if a2

were parallel to a l .

THEOREM 166

If W be a general threefold and be any element outside it, and, if

further, a and b be two distinct general lines intersecting in and each

of them parallel to a general line in W
',
then :

(1) The general plane containing a and b has no element in common

with W.

(2) The general plane containing a and b is parallel to a general plane

in W.

Neither a nor b can have any element in common with W, since, by

Theorem 148, if either of them had an element in common with W ,

it would require to lie entirely in W and so could not contain the

element 0.

But, if P be the general plane containing a and 6, any element in P

must lie either in a or in a general line parallel to a and intersecting 6.

But every general line of this character must be parallel to the

general line in W to which a is parallel, and therefore can have no

element in common with W.

Thus P can have no element in common with W.

In order to prove the second part of the theorem, let a' and b
1 be

general lines in W to which a and b are respectively parallel.

Then a' and b
1

either intersect, in which case they lie in a general
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plane which lies in W and is parallel to P, or else a general line, say 6",

parallel to &', may be taken through any element of a' and then 6" must

lie in W, by Theorem 148.

Thus in this case a' and b" will lie in a general plane which will lie

in W and be parallel to P.

Thus in all cases P will be parallel to a general plane in W.

Definition. If W be a general threefold and if through any element

A outside W a general line a be taken parallel to any general line in W,
then the general line a will be said to be parallel to the general three-

fold W.

Definition. If W be a general threefold and if through any element

A outside W a general plane P be taken parallel to any general plane
in W, then the general plane P will be said to be parallel to the general

threefold W .

THEOREM 167

If W be a general threefold and O be any element outside it, and if

through there pass three general lines a, b, and c, which do not all lie

in one general plane and which are respectively parallel to three general

lines in W, then a, b and c determine a general threefold W, such that

every general line in W is parallel to a general line in W.

Let P be the general plane containing b and c.

Then, since a, b and c do not lie in one general plane, it follows that

a can only have the one element in common with P.

Now the general line a can have no element in common with W, for

then, since it is parallel to a general line in W, it would, by Theorem 148,

require to lie in W and so could not contain the element 0.

Again, by Theorem 166, the general plane P can contain no element

in common with W, nor can any general plane which is parallel to P
and which intersects a.

But now any element in W' must either lie in P or in a general

plane parallel to P and intersecting a.

Thus no element in W can lie in TF, and so no general line in W
can have an element in common with W.

Thus, by Theorem 162, any such general line must be parallel to a

general line in W.

Similarly any general line in W must be parallel to a general line in W' .

Definition. If W be a general threefold and if through any element

A outside W three general lines be taken not all lying in one general
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plane but respectively parallel to three general lines in W, then the

three general lines through A determine a general threefold which will

be said to be parallel to W.

REMARKS

Since a general line can only be parallel to a general line of the same

kind, and since if one general threefold be parallel to another, any

general line in either of them is parallel to a general line in the other,

it follows that a general threefold can only be parallel to a general
threefold of the same kind.

Again, if W be a general threefold and A be any element outside it,

while W is a general threefold through A parallel to W, then since W
contains the general line through A parallel to any general line in W,
the general threefold W must be uniquely determined when we know

Also, since two distinct general lines which are parallel to a third

general line are parallel to one another, it follows that: two distinct

general three/olds which are parallel to a third general threefold are parallel

to one another.

Again, from Theorem 162, it is evident that: if W be a general

threefold and A be any element outside it, then any general line through

A must either lie in the general threefold passing through A and parallel

to W, or else must intersect W .

If W and W be two distinct general threefolds and if A be any
element in W but not in W, then, if W' be not parallel to W, there must

be at least one general line passing through A and lying in W which

is not parallel to any general line in W and which therefore, by
Theorem 162, must intersect W.

ThusW will have an element in common with W and so, by Theorem

164, W and W must have a general plane in common. Thus any two

distinct general threefolds must either be parallel or else must have a

general plane in common.

It is also to be noted that if a general threefold W be normal to a

general line a, then any general threefold W'parallel to W must also be

normal to a.

OTHER CASES OF NORMALITY

We have already considered the normality of a general line to a

general line, a general plane, or a general threefold.

We have also considered the complete normality of a general plane

to a general plane.
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These are the only cases in our geometry in which the normality of

n-folds is complete.

Thus it is not possible to have every general line in a general plane

P normal to every general line in a general threefold W, for then we

should have more than one general plane passing through any element

of W and completely normal to P, which, as we have seen, is impossible.

For a similar reason we cannot have every general line in a genera]

threefold W
l
normal to every general line in a general threefold W2 .

The most possible in these directions is to have a general plane

P through any element of which there is one single general line lying

in P which is normal to a general threefold W
;
or to have a general

threefold W
l through any element of which there is one single general

line lying in W\ which is normal to a general threefold W2 .

Again, we may have a general plane P 1 through any element of

which there is one single general line lying in P
l
which is normal to

a general plane P 2 .

In these cases we have what may be described as partial normality.

In ordinary three dimensional geometry the normality of two planes

is of this partial character.

Since it is desirable, so far as is possible, to have our nomenclature

in conformity with that employed in ordinary geometry, we shall find

it convenient to describe the general planes and general threefolds in

the above cases as normal to one another.

Thus we may have general planes normal to one another or com-

pletely normal to one another: the expression
(

normal' by itself being
taken to mean partially normal.

In the case of a general plane or a general threefold which is partially

normal to a general threefold the word normal may be used by itself

without any ambiguity.
Thus we have the following definitions :

Definition. A general plane P l
will be said to be normal to a general

plane P2 if through any element of P
l
there is one single general line

lying in P
t
which is normal to P2 .

Definition. A general plane P will be said to be normal to a general
threefold W if through any element of P there is one single general
line lying in P which is normal to W.

Definition. A general threefold W
l will be said to be normal to

a general threefold W2 if through any element of Wl there is one single

general line lying in W
l
which is normal to W2 .
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It is evident in the above three definitions we might substitute the

word every for the word any.

It is easy to see that if a general plane Px be normal to a general

plane P2 ,
then P2 will be normal to Pl .

It will be sufficient to consider the case where Pl
and P2

have an

element A in common.

Let a be the one single general line lying in P l and passing through
A which is normal to P2 and let 6 be any other general line in P l

which

passes through A.

Then by Theorem 144 there is at least one general line, say c, passing

through A and lying in P
2 which is normal to 6,

But c must also be normal to a and therefore c must be normal to P
l

.

Further, there cannot be more than one general line passing through
A and lying in P2 which is normal to 6, unless P1 be completely normal

and not merely normal to P2 .

Again, a separation line a may be normal to all three types of general

plane and also may lie in all three types of general plane.

If then a be normal to any general plane P x
and ifP2 be any general

plane containing a but not completely normal to P
l ,
then P2 will be

normal to Pj .

Thus any type of general plane may be normal to any type of general

plane.

In particular, since an optical plane contains a series of optical lines

which are normal to it, it follows that an optical plane is normal to

itself.

It is evident from the definitions that, if a general plane P be normal

to a general threefold W, then P will be either simply normal or

completely normal to any general plane in W.

THEOREM 168

// a general plane P be normal to a general threefold W, then through

any element of W there is one single general plane lying in W and com-

pletely normal to P.

By definition, since P is normal to TF, it follows that there is a general

line passing through any element of P and lying in P which is normal

to W.

Let O be any element of W and let a be the one single general line

passing through which is normal to W.

Now all general lines which are normal to W are co-directional, so

that a is co-directional with a set of general lines in P.
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Let b be any general line other than a which passes through and

is co-directional with some general line in P.

Then a and b lie in a general plane, say P', which is either parallel to

P or identical with it.

But now, by Theorem 157, there is a general plane, say Q, passing

through and lying in W to which b is normal.

Since, however, a is normal to W
,
it follows that a is also normal to Q.

Thus we have the two intersecting general lines a and 6 both lying

in P' and both normal to every general line in Q.

It follows that Q is completely normal to P' and, since P' is either

parallel to P or identical with it, it follows that Q is completely normal

to P.

Thus, since Q is taken through any arbitrary element of W and lies

in W, the theorem is proved.

THEOREM 169

If a general threefold Wl
contain a general line which is normal to a

general threefold W29 then W2 contains a general line which is normal

to Wlt

Let a be a general line lying in W
1
and which is normal to W2 .

Let Pj and P2 be any two distinct general planes both of which

contain a and lie in Wl .

Then Pl and P2 are both normal to W2 and accordingly, by Theorem

1 68, if be any element in W2 ,
there is a general plane, say Q l , passing

through and lying in W2 which is completely normal to P
l
and simi-

larly there is a general plane, say Q2 , passing through O and lying in

W2
which is completely normal to P2 .

Now Qi and Q2 cannot be identical, for then we should have the two

distinct general planes Pl and P2 both containing a and both com-

pletely normal to the same general plane, which we know to be im-

possible.

Thus, since Q l
and Q2 both lie in W2 and have the element in

common, it follows, by Theorem 150, that Q 1
and Q2 have a general line

in common which we shall call b.

Then 6 must be normal to both Pl and P2 and, since these are

distinct intersecting general planes in W
l ,

it follows that b is normal

to W
l
and lies in W2 .

The above theorem might also be stated in the form :

If a general threefold Wl be normal to a general threefold W21 then W2

is normal to W
l .



GEOMETRY OF TIME AND SPACE 269

SOME ANALOGIES

Before proceeding with the next part of our subject we shall point

out a few analogies which exist between an inertia plane, an inertia

threefold and the whole set of elements.

We have seen that : if P be an inertia plane and A be any element

in it there are two and only two optical lines passing through A and

lying in P .

We have an analogue to this in the case of an inertia threefold.

We shall show that if W be an inertia threefold and a be any separa-

tion line in it there are two and only two optical planes containing a

and lying in W.
In order to prove this : let O be any element in a.

Then, by Theorem 157, there is at least one general plane lying in

W and passing through to which a is normal.

Further, there cannot be more than one such general plane, for

otherwise a would require to be normal to the inertia threefold W
and would therefore intersect W contrary to the hypothesis that a lies

mW.
Let P be this one general plane.

Then P cannot be a separation plane, for, since a is a separation line,

this would require W to be a separation threefold, contrary to hypo-
thesis.

Again, P cannot be an optical plane for this would require W to be

an optical threefold, contrary to hypothesis.

Thus P must be an inertia plane and so there are two and only two

optical lines, say ct and c2 ,
which pass through and lie in P.

Thus a must be normal to both cl and c2 and it cannot be normal to

any other optical line passing through and lying in W
;
for such an

optical line could not lie in P, and if a were normal to such an optical

line in addition to cx and c2 ,
it would require to be normal to W, which

we know to be impossible.

But now c
l
and a lie in one optical plane, say Bl ,

while c
2
and a lie

in another optical plane, say R2 .

Now Bl and B2 are the only optical planes in W which contain a
;

for the existence of a third would require the existence of a third

optical line passing through 0, lying in W and normal to a, which, as

we have seen, is impossible.

This proves the required result.

Again we have a corresponding result for the whole set of elements.
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We shall show that if S be any separation plane there are two and

only two optical threefolds containing S.

For let O be any element in S and let P be the one single inertia

plane which passes through and is completely normal to S.

Further let c l and c
2 be the two generators ofP which pass through O.

Then c
l
and c2 are each normal to 8, and accordingly c

1
and S

determine one optical threefold, say Wl9 while c2 and S determine

another optical threefold, say W%.
Now W and W2 are the only optical threefolds which contain S, for

the existence of a third would require the existence of a third optical

line passing through O and normal to S.

But if there were three optical lines passing through and normal

to $, there would be more than one inertia plane passing through
O and completely normal to /S, which we have seen is impossible.

Thus there are two and only two optical threefolds containing S 9
and

so we see that we have here a certain analogy between an inertia plane,

an inertia threefold, and the whole set of elements.

It was pointed out in another part of this work, that if W be an

inertia threefold and A be any element in it, then there are an infinite

number of optical lines which pass through A and lie in W.

It is easy to show that if a be any separation line, there are an

infinite number of optical planes which contain a, although, as we have

seen, there are only two in any one inertia threefold containing a.

Thus let O be any element in a and let W be the one single inertia

threefold which passes through O and is normal to a.

Then there are an infinite number of optical lines passing through
and lying in W, and each of these must be normal to a.

Thus each of these optical lines along with a determines an optical

plane and all these latter must be distinct.

It follows that there are an infinite number of optical planes con-

taining any separation line.

It is easy to show that if W be an inertia threefold and a be any

optical line in it, then there is one and only one optical plane containing
a and lying in W.

For let be any element in a; then, since there are an infinite

number of optical lines passing through and lying in W, there are an

infinite number of inertia planes lying in W and containing a.

Let P be any such inertia plane.
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Then, by Theorem 158, there is one and only one general line, say 6,

passing through and lying in W which is normal to P.

Then b must be normal to a, and so a and b determine an optical

plane, say R, which lies in W.

Now R is the only optical plane which contains a and lies in W
;
for

let R r

be any other optical plane containing a.

Then any element X lying in R' but not in a would be neither before

nor after any element of jR, and so X and R would lie in an optical

threefold and could not lie in W.

This proves that R is the only optical plane containing a and lying

in W.

If now we consider the whole set of elements we can easily show

that if a be an optical line there is one and only one optical threefold

containing a.

In order to prove this we have only to remember that a is normal to

any optical threefold containing it and, by Theorem 160, if be any
element in a, there is one and only one optical threefold passing through
and normal to a.

Again, if P be an optical plane, there is one and only one optical

threefold containing P ;
for ifA be any element which is neither before

nor after any element ofP, thenP andA determine an optical threefold,

say W.

Also W is the only optical threefold containing P, for otherwise we
should have more than one optical threefold containing any optical

line in P.

THEOREM 170

If A, B, C, D be the corners of an optical parallelogram (AC being the

inertia diagonal line) and if A, B'
, C, D' be the corners of a second optical

parallelogram, while A', J3', C", D' are the corners of a third optical

parallelogram whose diagonal line A'C' is conjugate to BD, then A', B,

C", D will be the corners of a fourth optical parallelogram.

In order to prove this important theorem, we shall first prove the

following lemma.

If 0, C and C' be three distinct elements in an inertia plane P such

that OC and OC' are inertia lines while CC f

is a separation line, and if

further, CC" be another separation line intersecting OC' in C"', and if

M be the mean of C and C' while N is the mean of C and C"
',
then if

MO be conjugate to CC' we cannot have NO conjugate to CC" .
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It will be sufficient to consider the case where is before (7, since the

case where is after C is quite analogous.
Since CC' is a separation line, while

OC' is an inertia line, and since is

before C, it follows that must also be

before C' .

Let E, C, F, C' be the corners of an

optical parallelogram in the inertia Q,

plane P and let F be after E.

Then FE is conjugate to CC' and

intersects it in M and must therefore

by hypothesis be identical with MO.
NowE must be after 0, for in the first

placeE cannot be identical with since

EC 1

is an optical line while OG' is an

inertia line.

Again, cannot be after E, for then

we should have after one element of

the optical line EC' and before another

element of it without lying in the

optical line, contrary to Theorem 12.

Thus since OE is an inertia line we
must have E after O.

Now the element C" is distinct lg ' 41 '

from C", and since C" and C' lie in an inertia line we must have one

after the other.

Suppose first that C 1

is after C" .

Let the optical line through C" parallel to C'E intersect CE in E'

and let the optical line through C" parallel to E'C intersect CF in F'.

Then E', C, F',C" are the corners of an optical parallelogram, and,

since CC" is a separation line, E'F' must be an inertia line conjugate
to it and intersecting it in the element N.

But now C"E' is a before-parallel of C'E while C"F' is a before-

parallel of C'F.

Thus we must have E' before E and F' before F.

Now let the inertia line E'F' intersect the optical line EC' hi the

element (7.

Then '

is before E and is therefore in the j3 sub-set of E arid so G
must be in the a sub-set of E.

Thus must be after E.
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But, since we have also F after F', it follows that EF and OF'

intersect in an element, say H, which is between EC 1 and CF.

Thus // is linearly between E and F and is therefore after E.

But E is after O and therefore // is after 0.

Thus the conjugate to CC" throughN in the inertia planeP intersects

MO in an element which is afterO and soNO cannot be con
jugate toCC" .

This proves the lemma provided that C' is after C".

Next consider the case where C" is after C' .

Suppose, if possible, that NO is conjugate to CC".

Then, by the case already proved,MO could not be conjugate to CC',

contrary to hypothesis, and so the lemma is proved in general.

We shall now make use of this lemma in order to prove the theorem.

We shall suppose that C is after A and C' after A
'

.

Now, since the first and second optical parallelograms have the pair

of opposite corners A and C in common, it follows, by Theorem 60, that

they have a common centre, say O.

Further, since the second and third optical parallelograms have the

pair of opposite corners B' and D' in common, they have also the same

centre O.

ThusACandA fC r

intersect in the element O, and, since they are both

inertia lines, they must lie in one inertia plane, say P,

But C and C' are distinct elements lying in the a sub-nets of the dis-

tinct elements B' and 7)', of which the one is neither before nor after the

other, and therefore C' is neither before nor after C, and, in an analogous

way, A
'

is neither before nor after A .

Thus CC' and A A' are both separation lines.

Let M be the mean of C and C".

Then B', C and C' are three corners of an optical parallelogram

having M as centre, while D', C and C' are three corners of another

optical parallelogram of which M is the centre.

Further, MB' and MD' must both be inertia lines and are each con-

jugate to CC 1

'.

Thus, by Theorem 103, CC' is conjugate to every inertia line which

passes throughM and lies in the inertia plane containing MB' and MD' .

But O is linearly between B' and /)' while M is after both B' and D'

but is not in the general line B'D' and so, by Theorem 73(6), MO is

an inertia line.

Thus, since MO is in the inertia plane containing MB' and MD', it

follows that CC' is conjugate to MO.
R 18
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If now we consider the optical parallelogram having B and Z> as

opposite corners and lying in the inertia plane containing BD and

A'C', it follows, since O is the mean of B and D, that O must be the

centre of this optical parallelogram.

Further, since by hypothesis A'C' is conjugate to BD, it follows

that the remaining two corners of this optical parallelogram must lie

in A'C'.

Let A" and C" be these remaining corners and let C" be after A".
Then just as CC' was shown to be a separation line, we may show

that CC" is a separation line, and ifN be the mean ofC and C" we may
show that CC" is conjugate to NO, which may be proved to be an inertia

line as was M0.

But if CC" were distinct from CC', our lemma shows that this would
not be possible, and so CC" must be identical with CC'.

Thus, since C" lies in A'C', it follows that C" is identical with C'.
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Similarly A" is identical with A' and therefore A'
, B, C

f

,
D are the

corners of an optical parallelogram as was to be proved.

THEORY OF CONGRUENCE

We are now in a position to consider the problems of congruence and

measurement in our system of geometry.
The first point to be examined is the congruence of pairs of elements,

andwe shall find that there are several cases which have to be considered

separately.

Two distinct elements A and B will be spoken of briefly as a pair
and will be denoted by the symbols (A, B) or (B, A).

The order in which the letters are written will bo taken advantage
of in order to symbolize a certain correspondence between the elements

of pairs, as we shall shortly explain.

Since any two distinct elements determine a general line, there will

always be one general line associated with any given pair, but different

pairs will be associated with the same general line.

If we set up a correspondence between the elements of a pair (^4, B)
and a pair (<7, D) we might either take C to correspond to A and D to

B
9
or else take D to correspond to A and C to B.

The first of these might be symbolized briefly by :

(A, B) corresponds to (C, Z>),

or (B, A) corresponds to (D, C).

The second might be symbolized by :

(A, B) corresponds to (7), (7),

or (B, A) corresponds to (C, D}.

If we consider the case of pairs which have a common element, say

(A,B)&nd (^4, C), and if

(A, B) corresponds to (A, C),

then the element A corresponds to itself.

Now the congruence of pairs is a correspondence which can be set up
in a certain way between certain pairs lying in general lines of the

same type.

In dealing with this subject it will be found convenient to have a

systematic notation for optical parallelograms, so that we may be able

to distinguish how the different corners are related.

If A, B, (7, D be the corners of an optical parallelogram we shall use

the notation ABCD when we wish to signify that the corners A and D
lie in the inertia diagonal line and that A is before Z), while B and C

18-2



276 GEOMETRY OF TIME AND SPACE

lie in the separation diagonal line so that the one is neither before nor

after the other.

If O be the centre of the optical parallelogram ABCD, then it is

obvious that O will be after A and before D.

Definitiovi. A pair (^4, B) will be spoken of as an optical pair, an

inertia pair, or a separation pair according as AB is an optical, an

inertia or a separation line.

We shall first give a definition of the congruence of inertia pairs

having a self-corresponding element.

Dejin ition.HA 1BCJ) 1
and A 2BCD2 be optical parallelograms having

the common pair of opposite cornersB and C and the common centre 0,

then the inertia pair (O, D^} will be said to be congruent to the inertia

pair (O, D2 ).

This will be written :

Similarly the inertia pair (O, AJ will be said to be congruent to the

inertia pair (O, A*}.

If (O, />j) be any inertia pair and a be any inertia line intersecting

()J)
l
in O, then the above definition enables us to show that there is one

and only one element, say X, in a which is distinct from and such

that:

(O.DONMO,*).

For, by Theorem 106, there is at least one separation line, say c,

which passes through O and is conjugate to both ODl and a.

Thus 01)
l
and c determine an inertia plane, say P1} while a and c

determine an inertia plane, say P2 .

Now if D
l be after O there is one single optical parallelogram in P

having O as centre and Dl
as one of its corners.

If ^4
!
be the corner opposite Dl and if B and C be the remaining

corners, this optical parallelogram will be A lBCDl9 where B and C
will lie in c.

Again in the inertia plane P2 there will be one single optical parallelo-

gram having B and C as a pair of opposite corners and as centre.

IfA 2 and Z>2 be the remaining corners they will lie in a, and if Z>2 be

after A 2 , this optical parallelogram will be A 2BCD2 .

Thus we may identify D2 with X and can say that there is at least one

element X lying in a and distinct from and such that:
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We have now to show that the element X is unique in this respect in

the inertia line a.

Let c! be any other separation line distinct from c which passes

through and is conjugate to both ODt and a.

Then OD and c' determine an inertia plane, say P/, while a and c'

determine an inertia plane, say jP2 '.

There is one single optical parallelogram in P/, having A l and D as

a pair of opposite corners, and this optical parallelogram has also as

its centre.

If B r and C' be the remaining corners this optical parallelogram will

beAi'B'&Di. __
But now we have the optical parallelograms A l

B fC /D
l ,
A

l
BCDl9

A 2BCD2 and the diagonal line A 2
D2 of the last of these is conjugate to

B'C' and so it follows, by Theorem 170, that the elements A 2 , B f

,
D2 ,

C' form the corners of a fourth optical parallelogram A^B'C'D2 .

Now A 2 B'C'D2 will lie in the inertia plane P2

' and will have as its

centre, and further A 2 B'C'D2 is the only optical parallelogram which

lies in P2 and has B r and C" as a pair of opposite corners.

Thus the element D2 orX is independent of the particular separation

line passing through and conjugate to both ODl and a, which we may
select as the separation diagonal line of our optical parallelograms.

It follows that there is one and only one element X in a which is such

that:

(0 3
D

1)(^)(0,.Y).

The same result follows if D
l be before instead of after it.

Again, if (0, Dj), (0, D2 )
and (0, D3 ) be inertia pairs such that:

(0 )
D

l)(^)(0,D2 )

and (0,D2)(==)(0,Da ),

we may easily show that:

In order to see this we have only to remember that whether the

inertia lines OD
l ,
OD2 ,

0D3 all lie in one inertia plane or in one inertia

threefold, there must be at least one general line passing through and

normal to all three.

Since only a separation line can be normal to an inertia line, this

separation line will be conjugate to ODl ,
OD2 and 0D3 ,

and ifwe call it

c, then ODl and c will determine an inertia plane, say P1? 0D2 and c

will determine an inertia plane, say P2 ,
and 0Z>3 and c will determine

an inertia plane, say P3 .
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Now in P
x there will be one single optical parallelogram having as

centre and Dl as one of its corners, while in P2
there will be one single

optical parallelogram having O as centre and Z)2 as one of its corners,

and finally in P3 there will be one single optical parallelogram having
as centre and Z>3 as one of its corners.

Since (0, DJ (
s

) (0, Z)2 ) and (O, D2 ) (
==

) (0, D3 ) these three optical

parallelograms will have a common pair of opposite corners, and so it

follows from the definition that:

Thus for inertia pairs Having a self-corresponding element, the relation

of congruence is a transitive relation.

It is to be observed that if (0, DJ be an inertia pair we may write:

or an inertia pair is to be regarded as congruent to itself.

We shall next consider the congruence of separation pairs having a

self-corresponding element.

This case differs somewhat from the one we have considered.

While two intersecting inertia lines always lie in an inertia plane,

two intersecting separation lines may lie either in a separation plane,

an optical plane, or an inertia plane.

An inertia line can only be conjugate to two intersecting separation

lines if these lie in a separation plane, as follows from Theorem 99.

Thus if we were to give a definition of the congruence of separation

pairs having a self-corresponding element which was strictly analogous
to that given for inertia pairs, such a definition would be incomplete.

It is however possible, by a slight modification, to give a definition

which will hold for all cases.

In order to avoid complication we shall first explain what we mean

by an inertia pair being
"
conjugate

"
to a separation pair or a separa-

tion pair being "conjugate" to an inertia pair.

Definition. If ABCD be an optical parallelogram and be its

centre, then the inertia pairs (0, D) and (0, A) will be spoken of as

conjugates to the separation pairs (0, B) and (0, C) and also conversely.
The pair (O, D) will be called an after-conjugate to the pairs (0, B),

(0, C), while (0, A) will be called a before-conjugate to the pairs (0, B),

(O, C).

Further, either of the separation pairs (0, B), (0, C) will be called

an after-conjugate to (0, A) and a before-conjugate to (0, D).
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Now we know that there are an infinite number of inertia planes

which contain any given separation line, and so there are always

inertia pairs which are conjugate to any given separation pair.

Knowing this we can give the following definition of the
"
con-

gruence" of separation pairs having a self-corresponding element.

Definition. If (0, B^) and (0, J32 )
be separation pairs and if (0, DJ

and (0, D2 )
be inertia pairs which are after-conjugates to (0, B) and

(0, B2 ) respectively, then if (0,Dl )(
=

) (0, D2 ) we shall say that (0, BJ
is congruent to (0, J5

2 ) and shall write this:

If (0, DI) be any inertia pair which is an after-conjugate to (0, J^),

but is distinct from (0, D^ 9 then it is obvious by definition that:

(0,DJ( = )(0,DJ).

But since (0, Dl )( = ) (0, D2 ),

and, since these are inertia pairs, it follows that:

(0,0^(^(0,0,).
Thus the congruence of (0, B) to (0, J52 )

is independent of the

particular after-conjugate to (0, B^ which we may select, and similarly,

it is independent of the particular after-conjugate to (0, B2 )
which we

may select.

Again, if (0, B), (0, B2 )
and (0, B3 )

be separation pairs such that:

and (0,52){

we may easily show that:

(0, ,){ = } (0,5,).

In order to prove this, Jet (0, Dj), (0, Z>
2 )
and (0, Z>3 ) be inertia pairs

which are after-conjugates to (0, BJ, (0, U2 )
and (0, 3 ) respectively.

Then we must have:

and (0,D2)(s)(0,Z>a ),

and, since these are inertia pairs, it follows, as previously shown, that:

Thus, by the definition:

and so, for separation pairs having a self-corresponding element, the

relation of congruence is a transitive relation.
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Again, if (0, S) be any separation pair and a be any separation line

passing through 0, there are two and only two elements, say Xl
and

Yj, in a which are distinct from and such that:

and
(

This may be easily shown as follows.

Let (0, D) be any inertia pair which is an after-conjugate to (0, B)
and let b be any inertia line which passes through and is conjugate

to a.

Then, as we have already seen, there is one and only one element, say
Dl9 lying in h and distinct from and such that:

But now a and 6 determine an inertia plane and in this inertia plane

there is one and only one optical parallelogram having O as centre and

D
l
as one of its corners.

If this optical parallelogram be A
1
B

1 C\D1 ,
then the elements B

and C\ will lie in a and the inertia pair (0, D) will be an after-conjugate

to each of the separation pairs (0, B
L )
and (0, C{ ).

Thus since (0, />)(
=

) (O, DJ it follows that:

(0,5) {
= 1(0,^)

and (0,5)[EE}(0,G\).

Again, if there were any other element, sayB2 , lying in a and distinct

from both B^ and Cl and such that we had

(0,6){ = }(0,52 ),

then there would be an element, say D2 , lying in 6 and such that (0, D2 )

was an after-conjugate to (0, B 2 ).

Since B2 is supposed distinct from both B
l
and Cl9 therefore D2

would require to be distinct from D
l

.

But since we have supposed (0, B) {
==

} (0, J82 ), therefore we should

have (0, D) (
=

) (0, D2 ) and so we should have the two distinct elements

D
l
and Z)

a lying in the inertia line 6 and such that:

(0,D)( = )(0,Di) and (0,/>)(s)(O,D2 ),

which we have already shown to be impossible.

Thus we may identify B with X
l
and C

l
with Fx and say that there

are two and only two elements X
l
and Y

l lying in a and distinct from

O and such that:

l ) and (0,
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IfABCD be an optical parallelogram and O be its centre, we observe

that according to our definitions we have

but not
(

The reason why we make this distinction is that in the separation

pairs we have neither before nor after B and also neither before nor

after C, while in the inertia pairs we have O after A and before D.

Thus in the first case the relations are alike in respect of before and

after, while in the second case the relations are different.

The question now arises as to the
"
congruence" of optical pairs.

In this case constructions such as those by which we defined the con-

gruence of inertia and separation pairs having a self-corresponding

element, entirely fail and there is nothing at all analogous to them.

We are thus led to regard optical pairs as not determinatcly comparable
ivith one another in respect of congruence, except when they lie in the same,

or in parallel, optical lines.

As regards the '"congruence" of pairs lying in the same general line,

we have as yet given no definition, except for the very special case of

inertia or separation pairs having a self-corresponding element; while

no definition whatever has been given of the '"congruence" of pairs

lying in parallel general lines.

A definition covering all these omitted cases can be given, which

applies to all three types of pair.

We must first however define what we mean when we say that one

pair is opposite to another.

Definition. A pair (A, B) will be said to be opposite to a pair (C, D)
if and only if the elements A, B, C, D form the corners of a general

parallelogram in such a way that A B and CD are one pair of opposite

sides, while AC and BD are the other pair of opposite sides.

This will be denoted by the symbols

(A,B)n(C,D).

It will be observed that the use of the symbol D implies that the

pairs (A, B) and (C, D) lie in distinct general lines which are parallel to

one another.

If however we have

(A,B)0(C,D),
and (E,F)n(C,D),

then the pairs (A , B) and (E, F) may lie either in the same or in parallel

general lines.
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If (A, B) and (E, F) do not lie in the same general line, it follows from

Theorem 126 that we may write

(A,B)n(E,F).

We have now to prove the following theorem :

THEOREM 171

// (A, B), (A
f

, B') and (C, D) be pairs such that:

(A,B)n(C,D),

and (A',B')a(C,D) 9

and if (C' 9 D') be any other pair such that:

(A,B)n(C',D') 9

and which does not lie in the general line A'B'
,
then we shall also have

(A',B')n(C',D
f

).

We shall first consider the case where (^4, B) and (A
f

y B') do not lie in

one general line.

In this case since

(A,B)n(C,D),
and (A',B')O(C,D),

it follows, by Theorem 126, that:

(A',B')n(A,B).

But (C',D')n(A,B)

by hypothesis, and so, since (C", D') and (A', B') do not lie in one

general line, it follows that:

(A',B')n(C',D').

Next consider the case where (A, B) and (A'', B') lie in one general

line.

There are two sub-cases of this:

(1) (C, D) and (C", D') do not lie in one general line.

(2) (C, D) and (C", D') do lie in one general line.

Consider first sub-case (1).

Here since (C,D)t](A, B),

and (C',D')n(A,B),

and since (C, D) and (C', D 9

)
do not lie in one general line, it follows that :

(C',D')D ((?,/>).

But (A',B')n(C,D) 9
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and so, since (C", Z)') and (A', B') do not lie in one general line, it

follows that:

Next consider sub-case (2).

Let E be any element in the general line AC' distinct from both A
and C' and let a general line through E parallel to AB intersect D'B in

the element F.

Then we shall have

(E,F)n(A,B),
and also (E, F) D (C',D

f

).

But now, since E is distinct from A and also from C", it follows that

the general line EF must be distinct from the general line containing

(Ay B) and (A
f

, B') and must also be distinct from the general line

containing (<7, D') and (C, D).

Thus since (E,F)n(A,B),
and (C,D)n(A,B),

and, since (E, F) and ((7, D) do not lie in one general line, it follows that:

(E 9 F)n(C 9 D).

Also since (A' 9 B') D (C,D) 9

and, since (E } F) and (A', B') do not lie in one general line, it follows

that:

(A',B')n(E,F).

But (C' 9 D')n(E 9 F) 9

and since (A' 9 B') and (C", D') lie respectively in the distinct general

lines AB and CD, it follows that:

(A',B')n(C',D
f

).

Thus the theorem holds in all cases.

We are now in a position to introduce the following definition:

Definition. A pair (A, B) will be said to be co-directionally congruent

to a pair (A' 9 B') provided a pair (C, D) exists such that:

(A,B)n(C,D)>

and (A' 9 B')n(C 9 D).

The theorem just proved shows that we are at liberty to replace the

pair (<7, D) by any other pair (C", D') such that:

(A 9 B)U(C' 9 D') 9

provided (C", D') does not lie in the general line A'B'.
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It is evident that (A, B) D (C, D) implies that (A, B) is co-direction-

ally congruent to (<7, D), but (A, B) being co-directionally congruent

to (C, D) does not imply that (A, B) D (C, D), since (A, B) and (C, D)

might lie in the same general line.

It is also obvious that (A, B) is co-directionally congruent to (A, B).

We shall ultimately represent co-directional congruence by the same

symbol = as we shall use for the other cases ofcongruence, but when we

wish to make it clear that the congruence is co-directional we shall use

the symbol |

=
|.

Thus we see that: (A,B)n(C,D) implies (A,B)\ = \(C,D), but

(A,B)\ = \(C,D) does not imply (A,B)O(C ,Z>), except when AB and

CD are distinct general lines.

We have next to show that if

and
(

then must (A,B)\ = \(E,F).

This is easily proved; for if a be any general line parallel to A B but

distinct from CD and EF and therefore also parallel to them, we may
select any pair ((?, //) in a, such that:

(A,B)n(Q,H) ........................... (1).

Then, since (A,B)\ = \(C, D),

it follows, by Theorem 171, that:

(c,D)a(G,H).

Similarly since (C,D)\ = \(E,F),

it follows that: (E,F)n(G,H) ........................... (2).

Thus from (1) and (2) it follows that:

(A,B)\ = \(E,F),

and so we see that: the relation of co-directional congruence of pairs is a

transitive relation.

If (A, B) D (C, D) and if B be after A then it is easy to see that D
must be after C.

In the first place AB must be either an optical or inertia line and,

since CD is parallel to AB, it follows that CD must be the same type of

general line as A B.

Suppose first that AB is an optical line.

Then C could not be after D, for then, by Theorem 58 or Theorem 92,

AC and BD would intersect, contrary to the hypothesis that they are

parallel.
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Thus, since C and D are distinct, and since CD is an optical line, it

follows that D must be after C.

Next suppose that AB is an inertia line.

Then AB and CD must lie in an inertia plane, say P.

IfAC and BD should happen to be optical lines then, since B is after

A it follows that BD would be an after-parallel ofAC and so, since CD
is an inertia line, it would follow that D must be after C.

Next suppose that AC and BD are not optical lines.

Let AE and BE be generators of P of opposite sets passing through
A and B respectively and intersecting in E.

Let CF be an optical line through C parallel to AE and let it inter-

sect the general line through E parallel to AC in F.

Then EF must be parallel to BD and so, by Theorem 126, DF must

be parallel to BE and therefore must be an optical line.

But now, since B is after A, we must have E after A and B after E.

Thus, by the first case, we must have F after C and D after F and

therefore D after C as was to be proved.

Thus in all cases if B be after A we must have D after C and similarly

if B be before A we must have D before C.

It follows directly from this that if

(A,B)n(C,D) 9

and (A',B')n(C,D) 9

then if B be after A we must have D after C and therefore B' after A'.

Thus if(A 9 B)\ = \
(A

1

', B') and if B be after A we must have B' after

A'', while if B be before A we must have B' before A'.

Again if three corners of a general parallelogram A', C and D be

given and if we know that two of the side lines are A'C and CD, then

the general parallelogram is uniquely determined.

If then any pair (A' 9 X) be co-directionally congruent to a pair

(A, B), where A, B and A' are given, it is easy to see thatX is uniquely

determinate, provided we know that A' corresponds to A.

For let a be a general line parallel to AB, but which does not pass

through A
1

',
and let (C, D) be any pair in a such that:

Then there is one single general parallelogram having A', C and D
as three of its corners and A'C and CD as two of its side lines.

If E' be the remaining corner we shall have

(A',B')n(C,D),
and so (A',B')\ = \(A,B).
Thus X must be identified with B'

',
which is a definite element.
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THEOREM 172

// (O l , AJ and (02 ,
A 2 ) be inertia pairs such that:

and if(0 l , BJbeany separation pair which is conjugate to (01? ^4
1 ), then

there is a separation pair, say (02 ,B2 ), which is conjugate to(02 ,
A 2),and

such that:

It is evident that (01 , AJ and (Ol9 BJ must lie in an inertia plane,

say Px .

Since the inertia line 2A 2 must be either parallel to the inertia line

1
A

l ,
or else identical with it, -it follows that 2A 2 must either lie in Px

or in an inertia plane parallel to Pl .

We shall first consider the case where 2A 2 lies in an inertia plane

P2 parallel to Pl .

If now we take the one single optical parallelogram in Pl having O 1

as centre and A
l as one of its corners, then Bl

will be another corner.

If (O l , B^ be an after-conjugate to (O l , AJ we may take this optical

parallelogram tobe A 1
B

1 C1
D

1 ,
while if (01 , BJ be a before-conjugate

to (Ol , A}) we may take the optical parallelogram to be D1B1 C1A 1 .

Now the inertia plane P1 and the general line 1 2 determine a

general threefold containing P2 and so, as we have already seen, if

through any element of P
l
distinct from Ol a general line be taken

parallel to O l O2 ,
then this general line will intersect P2 .

Now through the elements ^4 1? Blt Gl and Dl let general lines be

taken parallel to 1 2 and let these intersect P2 in the elements A 2 ,

B
2 ,
G2 and D2 respectively.

Then any two of the general lines Ol 2f A^A 2 ,
BB2 ,

C1 C2 ,
DD2

are parallel to one another and therefore any two of them lie in a

general plane.

Since however the elements A
,
Ol and Dl lie in one general line, the

three general lines A^A^ 1 2 and D1
D2 lie in one general plane, and

since the elements B l ,
O

l
and C

v
lie in one general line, the three general

lines B
l
B

2 ,
O

l
O2 and Cl C2 lie in one general plane.

Thus the elements A 2 ,
O2 and D2 lie in one general line parallel to the

general line containing A lt Ol and Dt ,
while the elements JB2 , 2 and

C2 lie in another general line parallel to that containing Bl ,
Ot and Cl

.

Further the general lines A 2B2 ,
A 2 C2 ,

B
2
D2 ,

C2D2 must be re-

spectively parallel to A
l
B

l , A^ C l ,
B

l
D

l ,
ClDl and, since these latter
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are all optical lines, it follows that A 2B2 ,
A 2 C2 ,

B2
D2 ,

C2D2 are all

optical lines.

Thus A 2 ,
B2 ,

C2 ,
D2 form the corners of an optical parallelogram

having O2 as centre.

Further, the diagonal line A 2
D

2 is an inertia line, while the diagonal
line ,82^2 mus^ be a separation line.

Fig. 43.

Thus the separation pair (02 ,
B

2 )
is conjugate to the inertia pair

(02 ,
A 2 ), and, since 2 is after or before A 2 according as Ol is after or

before A, it follows that (02 ,
B2 ) is an after- or before-conjugate to

(0 2 ,
A 2 ) according as (Ol ,

B: )
is an after- or before-conjugate to (Ol , AJ.

Also we have ( : , BJ D ( 2 ,
B2 )

and so (O^BJl^ (02 ,B2 ).

This proves the theorem provided 2A 2 does not lie in Pt .

Consider next the case where 2A 2 docs lie in P
l .

Let P' be any inertia plane parallel to Pl and let (0', A') be any
inertia pair in P' such that:

(6^^)0(0',^').

Then, by Theorem 171, since (O^A^) \

==
| (O2 ,

A 2 ),
we must have

Thus, by the case already proved, it follows that there is an optical

parallelogram lying in P' which has 0' as centre and A' as one of its

corners and such that, if we denote it by A
'B'C'D' or D'B'C'A 1

(ac-

cording as the optical parallelogram in Pl is A l
B Cl

D
l orD Bl C1A l ),

then:

But in a similar mannerwe canshowthat there is an optical parallelo-

gram lying in Px which has 2 as centre and A 2 as one of its corners and
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such that ifwe denote it by A 2B2 C2D2 orD2
B2 C2

A 2 (according as the

optical parallelogram in P' is A'WC'D' or D'B'C'A'), then:

(Ot,B2)n(0',B').

Thus it follows from definition that:

Further, (02 ,
B2 )

is conjugate to (O2 ,
A 2 ) and will be an after- or

before-conjugate to (02 ,
A 2 ) according as (Ol ,

B
)
is an after- or before-

conjugate to (Ol9 AJ.
Thus the theorem holds in all cases.

THEOREM 173

// (Ol9 AJ and (029 A 2 )
be separation pairs such that:

and if (Ol9 BJ be any inertia pair which is conjugate to (O l9 A^ 9
then

there is an inertia pair, say (02 ,
B

2 ),
which is conjugate to (02 ,

A
2 )
and

such that:

(O^BJl-l^B,).
The proof of this theorem is quite analogous to that of Theorem 172.

Also it will be seen that (02 ,
B2 )

will be a before- or after-conjugate

to (02 ,
A 2 ) according as (Ol9 B) is a before- or after-conjugate to

We have now to prove certain theorems involving both the co-

directional congruence of pairs and the congruence of pairs having a

self-corresponding element.

We shall make use of the symbols (
=

), {
=

}
and

|

=
|

in the manner

already explained in order to show clearly the types of congruence to

which we refer.

THEOREM 174

If(0l9 A^, (019 BJ and (O2 ,
A 2 )

be inertia pairs such that:

and (^,401
then there is an inertia pair (02 ,

B2 )
such that:

and (O^B^l-l^.B^.
Let c be any separation line passing through Ol

and normal to both

the inertia lines OlA l and OlBl , and let Cl be an element in c such that

the separation pair (Ol , C
f

1 )
is conjugate to (019 AJ.
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Then, since (01 , A) (
= )(Ol9 J5X ), it follows that (Ol , C^) must also be

conjugate to (Ol9 BJ.

ButjSince^,^!) |

=
|
( 2 ,

A 2 ) ,it follows, byTheorem 172, that there

is a separation pair, say (02 ,
C2 ), which is conjugate to (02 ,

A 2 )
and

such that:

(O^cji-Ko^cj.
But now, by Theorem 173, since (Ols BJ is conjugate to (019 C^), it

follows that there is an inertia pair, say (02 ,
72

2 ), which is conjugate to

(O2 , C2 )
and such that:

(01 ,Bl)\^\(02 ,B2 ).

But now, since (01 , AJ (
= )(0l , J3J and these are inertia pairs, we

must have A : and B l either both after 1 or both before 1 .

Further,A 2 must be after or before 2 according as A^ is after or before

1? while B2 must be after or before 2 according as J5
X

is after or

before 0.
Thus ^4 2 and B2 are either both after O2 or both fee/ore 2 .

Since therefore (02 , Cg) is conjugate to both (O2 ,
A 2 ) and (02 , 7?2 ), it

follows that:

(02 ,A 2)( = )(02 ,B2 ).

Thus the theorem is proved.

THEOREM 175

//(015 AJ, (Olt BJ and (O2 ,
A 2 )

be separation pairs such that:

and (Oi,^i)| = |(02 ,^ 2 ),

then there is a separation pair (02 ,
B2 ) such that:

and (O^BJl-KO^BJ.
Let (Ol ,Dl )

and (01? E) be inertia pairs which are after-conjugates

to (01} AI) and (Ol9 B) respectively.

Then since (01 ,^1 1){

we must have (Ol9 Dl )( =

But now since (Ol ,A^) \

=
|
(O2 ,^4 2 ),

and since (O1? D )
is an inertia pair which is an after-conjugate to

(O1? AJ, it follows, by Theorem 173, that there is an inertia pair, say

(02 ,
D

2 ),
which is an after-conjugate to (02 ,

A 2 ) and such that:

19
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But now (015 DJ, (019 Et ) and (02 , ^2) are inertia pairs such that:

and (O^DJl^KO^Dj,
and so, by Theorem 174, there is an inertia pair (02 ,

E
2 )
such that:

(0a ,/>a)(

and (0i,^i)

Since however (01? JS
X )

is a separation pair which is a before-con-

jugate to the inertia pair (O19 EJ, it follows, by Theorem 172, that

there is a separation pair, say (02 ,
1?

2 ), which is a before-conjugate to

(02 ,
E

2 )
and such that:

(O^BJl^KO^Bj.
But since (O2 ,

Z>
2 )
and (O2 ,

A7

2 )
are after-conjugates to (02 ,

A 2 )
and

(O2 ,
/^2 ) respectively, and since

it follows by definition that:

(02J ^ 2){

Thus the theorem is proved.

THEOREM 176

// (A, B) and (A, C) be inertia pairs such that:

then there is an inertia pair (C, D) such that:

and (

Let a be any separation line which passes throughA and is normal to

both AB and AC.

Let A i
be an element in a such that the separation pair (^4, A) is

conjugate to the inertia pair (^4, C).

Then since (A, B)( = )(A,C),

it follows that (A, A^) is also conjugate to (A, B).

Let the general line through C parallel to AA l intersect the general

line through A l parallel to AC in the element Cl9 and let the general

line through B parallel to AA l intersect the general line through A
parallel to AB in the element B

1
.
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Thus (CtCjU^AJ
and (B,Bl)n(A 9

A
1 ) )

and therefore (B, BJ \

=
| (C, C^).

Now, since (A, A^) is conjugate to (A, C), it follows that AC is an

optical line and it is easy to show that ACl is also an optical line as

follows:

Since AC and AC
1 are diagonal lines of the general parallelogram

whose corners are A, A 19 Cl) C, it follows that they intersect in an

element, say E, which is the mean of A
l
and C.

If F be the mean of A and A, then EF is parallel to CA and there-

fore EF is conjugate to the separation line AA l .

Fig. 44.

Thus A, A! and E are three corners of an optical parallelogram

whose centre F lies in AA x and therefore AE (that is A C^ is an optical

line.

Similarly, since (A, A^) is conjugate to (A, B), it follows that AB is

an optical line.

But since CCl and BB are parallel to AA t we have OC1 conjugate

to CA, and BB conjugate to BA.
Thus the inertia pairs ((7, A) and (#, ^4) are conjugate to the separa-

tion pairs (C, CJ and (J5, B{ ) respectively.

But now, since (B, B)
\

=
| (C, G\),

and since (B, A) is an inertia pair which is conjugate to (B, B^, it

follows, by Theorem 173, that there is an inertia pair, say ((7, Z>), which

is conjugate to (C, C^) and such that:
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But from this it follows that D must be before or after C according as

A is before or after B.

Since however (A,B)( = )(A, C),

we have A before or after B according as A is before or after C.

Thus we must have D before or after C according as A is before or

after C.

Since therefore the inertia pairs ((7, A) and ((7, D) are both conjugate
to the separation pair (C, C^), it follows that:

(C,A)( = )(C,D).

Thus the theorem is proved.

THEOREM 177

// (A, B) and (A, C) be separation pairs such that:

then there is a separation pair (C, D) such tliat:

and (B,A)\ = \(C,D).

Let a be any inertia line which passes through A and is normal to

A B, and let a' be any inertia line which passes through A and is normal

to AC.
Let A l

be an element in a such that the inertia pair (A, A^) is an

after-conjugate to the separation pair (A, B) and let A' be an element

in a' such that the inertia pair (A, A) is an after-conjugate to the

separation pair (A, C).

Then since (A, B) {
=

} (A, C)

it follows that: (A 9
A

l)(^)(A 9
A t

).

Let the general line through C parallel to AA' intersect the general

line through A' parallel to AC in the element C' and let the general line

through B parallel to AA 1 intersect the general line through A l

parallel to AB in the element Bl .

Then (C,C')n(A,A')

and (B,B l)n(A 9
A l ),

and so we may write: (C, C') \

=
|
(A, A'),

and (5,^)1 = 104,^).

But, since (^4, A'), (A, AJ and (C, C') are inertia pairs such that

(A 9
A f

)(

and (A,A')
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therefore, by Theorem 174, there is an inertia pair (0, C*0 such that:

(C,0')( S )(C,00
and (4,401 = 1(0,00-
Thus since (B, J5

X )
|

=
| (4, 40,

it follows that: (J3, JBO |

=
|
(C, CJ.

But now we may show in the manner employed in the last theorem

that, since (A,40 is an after-conjugate to (A, B), therefore (JS, -BO is an

after-conjugate to (J3, A), and, since (4, A') is an after-conjugate to

(A, O), therefore (O, C") is an after-conjugate to (0, 4).

Since, however, we have the inertia pairs (B, B )
and (C, Ox )

such

that:

Fig. 45.

and, since (JS, A) is a separation pair which is conjugate to (B, BJ, it

follows, by Theorem 172, that there is a separation pair, say (O, D),

which is conjugate to (C, GJ and such that:

(JB, ^)| = |(0,D).

But now (A, AI) is an after-conjugate to (A, B) and so A l is after A .

Thus, since (A, -401 = 1
(0, 6\),

it follows that Ox is a/ter O, and so, since (O, OO is conjugate to (O, D), it

must be an after-conjugate.

But (O, C') is an after-conjugate to (C, A) and so since
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it follows from the definition that:

Thus the theorem is proved.

THEOREM 178

(1) If A, B and C be, three distinct elements and the pairs (A, B) and

(B, C) be such that:

(A,B)\ = \(B,C),

then B is the mean of A and C.

(2) If A, B and C be three distinct elements such that B is the mean of

A and C, then the pairs (A, B) and (B, C) are such that:

(A,B)\ = \(B,C).

First suppose that: (A, B)\==\ (B, C).

Then, by the definition of co-directional congruence, there must be a

pair, say (/), E), siich that:

and (B,C)U(D,E).

Now, since the pairs (A, B) and (B, C) have a common element B,

they cannot lie in parallel general lines and so must lie in the same

general line.

Then BE and CD must be the diagonal lines of the general parallelo-

gram whose corners are B, C, D and E and so BE and CD must inter-

sect in an element F which is the mean ofD and C.

But D does not lie in the general line A C, and so, since BF is parallel

to AD, it follows, by Theorem 78, 94, or 118, that B is the mean of A
and C.

Next, to prove the second part of the theorem, suppose that B is the

mean of A and C.

Let (D, E) be any pair such that:

(B,C)n(D,E).
Then the diagonal lines BE and CD of the general parallelogram,

whose corners are J5, C, D and E, must intersect in an element F which

is the mean of D and C.

But, sinceD does not lie in the general lineA (7, it follows, by corollary

to Theorem 78, 94 or 118, that BF (that is BE) is parallel to AD.

Thus, since also AB is parallel to DE, it follows that:

(A,B)Q(D,E).

Thus, by the definition of co-directional congruence, we have:
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Thus both parts of the theorem are proved.

We are now in a position to introduce general definitions of the

congruence of inertia and separation pairs.

This is done by combining co-directional congruence with con-

gruence in which an element is self-corresponding, in the following
manner.

Definition. An inertia pair (A l , BJ will be said to be congruent to an

inertia pair (A 2 ,
B

2 ) provided an inertia pair (A%, C2 )
exists such that:

(A^B l)\^\(A^C2 ]

and (A 2 ,B2)(^)(A 2 ,C2 ).

Definition. A separation pair (A t , B) will be said to be congruent to

a separation pair (A 2 ,
B

2 ) provided a separation pair (A 2 ,
G2 )

exists

such that:

and (A 2 ,BJ{
We shall denote the generalized congruence ofinertia or ofseparation

pairs by the symbol =
,
thus :

(A l ,B 1}^(A^B2 ).

We shall also use the same symbol to denote the congruence of

optical pairs, but, in the latter case, it is to be regarded as simply

equivalent to the symbol |

=
|

,
since the only congruence of optical pairs

is taken to be co-directional.

Let us consider now two inertia pairs (A l , B) and (A 2 ,
B

2 )
such that:

(A l ,B l)^(A z ,Bz ).

Then there exists an inertia pair (A 2 ,
C2 )

such that:

and (A 2 ,B2)(

But, by Theorem 174, there exists an inertia pair (A l , Cj) such that:

(A t ,BJ\ = \(Ai,Cj
and (A 1 ,B1)(^)(A 1 ,G1 ).

Thus we may write (
A 2 ,

B2 )
= (A^, BJ.

Again, by Theorem 176, there is an inertia pair (B2 , D2 ) such that:

(Btt A,)( = )(Bs ,Dt )

and (C2 ,A z )\
= \(Bz,Dz).

Since however (Cz , A%) \

=
|
(Bt ,Aj),

we have (B^A^
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which together with the relation

(*2 ,4 2)( S )(JB2 ,D8 )

gives us (Bl , AJ = (B2 ,
4 2 ).

If now we take instead two separation pairs (A l9 BJ and (A 2 ,
B2 )

such that:

(A 19 B1)^(A 2 ,B2 ) 9

then by using Theorem 175 in place of Theorem 174, we may prove
that:

(A^BJ^iA^BJ.
Also, by a similar method to that employed in the case of inertia

pairs, but using Theorem 177 in place of Theorem 176, we may prove
that:

(Bl ,A 1)^(B2J A 2).

Again, if (A, B) be an inertia pair, we have

and (A,B)( = )(A,B).

Thus we have (A,B) = (A,B).

A similar result obviously holds if (A, B) be a separation pair.

Again if (A, B) and (^4, C) be inertia pairs such that:

then since (A, C)
\

=
| (A, C),

we may write (A,B) = (A,C).

A similar result holds if (A, B) and (^4, C) be separation pairs such

that:

Further, it is also clear that:

(A^BJl^KA^BJ
implies (A l ,B l )

= (A 2J B2 ),

both when (A l9 BJ and (A%> B2 )
are inertia pairs and when they are

separation pairs.

Again if (A l9 BJ, (A 2 ,
B2 ) and (^4 3 ,

B3 ) be inertia pairs such that:

(A^B^A^Bt)
and (^ 2 ,jB2)^(^ 3 ,^3 ),

then, by the definition of congruence, there is an inertia pair (A 2 ,
C2 )

such that:

(A^BJ^KAt.Cj ...... (1)

and (A Z,B2)( = )(A Z,CZ ) ...... (2).
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Also there ia an inertia pair (A3 , C3)
such that:

(A t ,BJ\s\(A,,Ct )
...... (3)

and (A 9 ,B3)( = )(A 9 ,C9 )
...... (4).

Now from (2) and (3) it follows, by Theorem 174, that there is an
inertia pair (^L 3 ,Z>3 )

such that:

(AC3)( = )(A 3 ,D3 )
...... (5)

and (At,Ci)\ = \(A^DJ ...... (6).

But from (1) and (6) it follows that:

(A l ,Bl)\^\(A^D.A)
...... (7),

while from (4) and (5) it follows that:

(A 39 BB )( = )(A*,D3 )
...... (8).

Thus from (7) and (8) it follows that:

(A 19 BI)^(A 99 B3 ).

A similar result may be proved for the case of separation pairs;

using Theorem 175 in place of Theorem 174.

Thus for inertia or separation pairs the general relation of congruence

is a transitive relation,

Again, if (A, B) be any separation pair and P be any inertia plane

containing the separation line AB, there is one single optical parallelo-

gram in P having B as centre and A as one of its corners.

If C be the corner opposite to A then, by definition, B is the mean of

A and C.

Thus, by Theorem 178, we have:

(A,B) = \(B,C).

But also by definition we have:

And so: (A,B) = (B,A).

We have not however a corresponding result in the case either of

inertia or optical pairs since the elements in such pairs are asymmetri-

cally related.

THEOREM 179

// (Ol9 D]) and (02 ,
D2 ) be inertia pairs while (015 B^ and (02 ,

B
2 )

are separation pairs which are before-conjugates to (O19 D )
and (02 ,

D
2 )

respectively or else after-conjugates to (019 DJ and (02 ,
D2 ) respectively;

then:

(1) // (0i,A) = (0a ,Da )

we shall also have (Ol , B) = (02 ,
B2 ).
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(2) // (OLJ^afO,,*,)
we shall also have (Ol , DJ = (02 ,

D2 ).

Let us consider the first part of the theorem.

Since (Ol9 D^(O^D2 ) 9

it follows by definition that there is a pair (02 , -D') such that:

and (02 ,Z)2)(EE)(02 ,/)').

Then (02 , D') is an inertia pair and so, since (01? J3J is a separation

pair which is conjugate to (01? D x ), it follows, by Theorem 172, that

there is a separation pair, say (02 , B'}, which is conjugate to (02 , D')

and such that:

(0^^)1 = 1(0^8').

Now ifD2 be after 2 we shall also have D' after 2 and so ( 2 ,
D

2 )
and

(O 2 , D') will be after-conjugates to (O 2 ,
B

2 )
and (0 2 , J3') respectively.

Thus we shall have

(02 ,82){
= }(Oa ,B').

If, on the other hand, D2
be before O2 we shall also have /)' 6e/bre 2 ,

and so (O2 ,
Z>

2 ) and (O2 , /)') will be before-conjugates to (02 ,
B2 )

and

(O2 , B') respectively.

Now by completing the optical parallelograms implied in the

relation :

(02 ,D2)( = )(O a ,D'),

we see that in this case there will be inertia pairs, say (02 ,
A 2 )

and

(02 , A') which will be after-conjugates to (02 ,
B

2 )
and (O2 , B') respec-

tively, and such that:

Thus we have also in this case

(0,,B2){

Combining this with the relation:

(O^JlsE
it follows by definition that:

Thus the first part of the theorem is proved.

Consider now the second part of the theorem.

Since (0^ B1 )
= (02 ,

JS
2 ),

it follows by definition that there is a pair (02 , B') such that:

and
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Then (02 ,
B f

)
is a separation pair and so, since (Ol , DJ is an inertia

pair which is conjugate to (O19 J5
X ), it follows, by Theorem 173, that

there is an inertia pair, say (<92 ,
D r

), which is conjugate to (O2 , B') and

such that:

Now if (Ol9 B) and (02 ,
J5

2 )
be before-coiijugates to (Ol9 D^) and

(O2 ,
Z)

2 ) respectively we shall have 7^ after Ol
and therefore D' after O2 ,

and also we shall have D
2 after O2

.

Thus (02 ,
Z)2 ) and (02 , J9') will be after-conjugates to (02 ,

J32 )
and

(02) B
f

) respectively and so, since

it follows that: (02 ,D2 ) (
=

) (02 , D').

If, on the other hand, (Oly BJ and (0 2 ,
B2 )

be after-conjugates to

(Ox ,
D

: )
and (02 ,

7)2 ) respectively, we shall have Dl before Ol and there-

fore D' before 2 and also we shall have /)
2 before 2 .

Thus (02 ,
D2 )

and (02 , Z)') will be before-conjugates to (02 ,
J?2 )

and

(02 > -S') respectively.

Now by completing the optical parallelograms implied in these

relations we see that there are inertia pairs, say (02 ,
A 2 )

and (02 , -4'),

which are after-conjugates to (O2 ,
B2 ) and (O2 , B') respectively and

such that D2 , 2 and ^4
2
lie in one inertia line and also D', 2 and A' lie

in one inertia line.

Now, since (02 ,-#2 ){ = }(O2 , J3'),

we must have (02 ,^4 2)( = ) (02 ,A'),

and therefore also in this case

(02 ,/>2)(s)(02 ,Z>').

Combining this with the relation

(Ox, A) 1

=
1 (02,^')

it follows by definition that:

(O^JMOa,^).
Thus the second part of the theorem is proved.

Prom Theorems 178 and 179 it follows that: if (Ol9 DJ and (02 ,
Z)2 )

be inertia pairs while (01? j) and (02 , 52 )
are separation pairs such

that (Ox , JSj) is a before-conjugate to (Ol9 DJ and (02 ,
-B

2 )
is an after-

conjugate to (O2 ,
Z>

2 ), then:

(1) Tf (Oj.D^stDg.Oa),
we shall also have (01 ,B l )

= (02 ,B2 ).

(2) If (Oj.fiJsfO,,!?,),

we shall also have (Ox , Pj) s (Z>2 , 2 )-
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THEOREM 180

If(A l9 J8i), (A 2 ,
J32 ), (B19 C^), (B2 ,

C2 )
be pairs such that:

and (BitCJ |

and if Cl
be distinct from A ly then we shall also have

(A^CJ\ = \(A 2 ,C2 ).

The elements A l9 Bl
and C^ must lie in at least one general plane,

say P19 and since A 2B2 must either be parallel to A l Bl or identical

with it, while B2 C2 must either be parallel to B
l
Cf

1 or identical with it,

it follows that there is a general plane, say P2 ,
either parallel to Pl or

identical with it which contains the elements A 2 ,
B2 and C2 .

Let P' be a general plane parallel to P1 and P2 ,
and therefore distinct

from both, and let (A', B') and (JS', C") be pairs in P' such that:

(Ai,Bjn(A',B')
and (^i^^D^C").

Then, by Theorem 126, since A lA
f and Cl G' cannot lie in the same

general line (owing to Cl being distinct from A l and both ofthem lying

in Px ), it follows that:

Thus C' must be distinct from A'.

But now, since A 2 ,
J52 and C2 lie in P2 while A', B' and C' lie in the

parallel general plane P', it follows that A 2B2 cannot be identical with

A'B', and B2 C2 cannot be identical with B'C'.

Thus, since (A l , B^) \

=
|
(A 2 ,

J5
2 )

and (B^CJl^KB^CJ,
it follows that we must have

(A 2 ,Bja(A',B
f

)

and (B29 C2)n(B',C').

Thus, since C" is distinct from A', it follows that:

But we have seen that:

(Ai,

and so (A 19 C

Thus the theorem is proved.
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REMARKS

One special case of this theorem deserves attention.

If B
l be linearly between A l and (713 it follows, by Theorems 72, 91

and 117, that B' must be linearly between A 1 and C" and similarly B2

must be linearly between A 2 and C2 .

We shall require this result in proving the next theorem.

Again, since the only congruence of optical pairs is co-directional, we

may state the following result:

If (A 19 BJ, (A 2 ,
J3

2 ), (B19 6\), (B2 ,
C2 )

be optical pairs such that:

(A 1 ,B1)^(A 2 ,B2 )

and (B19 C1)^(B29 C2 ) 9

then if B
l
be linearly between A and Cl we shall have B2 linearly

have

l , 6\)
= (A 2 , (72 ).

between A 2 and C2 and also have

THEOREM 181

If (A^, B}), (A 2) B2 ), (Bl) (7X ), (J?2 , (72 )
be inertia pairs such that:

(A l ,B1)^(A 2 ,B2 )

and (B1 ,C\)^(B2 ,C2 ) )

then if jB
1
be linearly between A : and C1 , while B2 is linearly between A

2

and C2 ,
we shall also have

(A l ,C\)^(A 2J C2 ).

If a be an inertia line passing through A 2 and co-directional with

A
l
B

l we may take a separation line b which passes through A 2 and is

normal to both a and A 2B2 .

Let D2 be an element in b such that (A 2 ,
D

2 )
is conjugate to (A 2 ,

B2 )

and let (JL 15 D1 )
be a separation pair such that:

Now ^x-Di is co-directional with A 2D2 while ^i-i?! is co-directional

with a and so A l
D

l
must be normal to A B .

Since A 1Bl and JL 2 jB2 are inertia lines, it follows thatA lBl and A 1D1

lie in an inertia plane and also A 2
B2 and A 2D2

lie in an inertia plane.

Then, since (A 2 ,
D

2 )
is conjugate to (A 2) B2), it follows that D2B2 is

an optical line.

Let BI be an element in A 1
B

1 such that (A , B^) is an after- or

before-conjugate to (A ,
D

) according as (A 2 ,
B

2 )
is an after- or before-

conjugate to (A 2 ,
D2 ).
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Then, by Theorem 179, since

(A 2) D2 )
= (A 1) Dl ) 9

we must have (A 2 ,
B2 )

= (A l , ./?/).

But (A l9 Bl)s(A 29 B2 )

and so (A 19 B1)^(A 19 B1

9

).

Thus, since A lB l
is an inertia line we must have B^ identical with

R
l
and so, since (A l , BJ is conjugate to (A l , D^, it follows that Dl

B
is an optical line.

Now let the optical line through Gt parallel to B
l
Dl intersect AD

in F
l
and let the separation line through B parallel to A lFl intersect

C^in Elt

Then, since B
l
is linearly between A l

and Cl , it follows, by Theorem

72, that Dl is linearly between A l and JP
1 .

Let (D2 , ^2) be a Pair such that:

Then, by the remarks at the end of Theorem 180, D2 will be linearly

between A.
2
and F2 and we shall also have

Now let the optical line through F2 parallel to D2B2 intersect A 2B2

in C2) and let the separation line through B2 parallel to A 2 F2 intersect

Then we have (Bl ,
E

t )
\

= \(DI9 FJ
and (#1,^1) I

= |(^2 ^2),
and therefore (Bl9 El )\

= \(D29 F2 ).

But we have also (D2 ,F2 )
\

=
|
(B29 E2 ) 9

and so (/J1? EJ \ ~\ (B2 ,
E

2 ).

But now, since B
l
E is parallel to A 1

D19 it must be normal to Bl Cl ,

and since E
l C is an optical line, it follows that (B , EJ is conjugate

to (B19 C\).

Similarly, since B
2
E2 is parallel to A 2

D
2 ,

it must be normal to B2 C2

and, since E2 G2 is an optical line, it follows that (B2 ,
E2 )

is conjugate
to (B2 , C2').

But now, since D2
is linearly between A 2 and F2 , it follows that B2 is

linearly between A
2 and C2 .

If then J52 be after A 2 we must have G2 after B2 ,
while if B

2 be before

A 2 we must have C2 before B2 .

But, since B
2 is linearly between A 2 and C2 , it follows that if B2 be
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afterA 2 we must have C2 after B2 ,
while ifB2 be beforeA 2 we must have

C
2 before B2 .

Thus C2 is after or before B2 according as C2 is after or before B2 .

But, since (Bl9 C^) and
( 2 ,

C2 )
are inertia pairs such that:

(B^Cl)^(B^C^
it follows that C2

is a/er or fee/ore B2 according as C
l
is after or before

Bl and therefore C
2

'

is o/ter or before B2 according as (7X is after or

before .S^

Thus, since (B^EJ^B^EJ,
it follows, by Theorem 179, that:

(B19 C1)^(B. J C^
and since (Bl , C\) = (

B2 ,
(72 ),

it follows that: (J32 , O,)
= (B2 ,

C2 ).

Thus, since these pairs lie in the same inertia line, we must have C2

identical with C2 .

But now C2 will be after or before A 2 according as Gl is after or before

A and so (A 2 ,
C

2 )
will be an after- or before-conjugate to (A 2 ,

F
2 )

according as (A ly CJ is an after- or before-conjugate to (A l9 FJ.

Thus, since (A^t\)^(A^F^
it follows, by Theorem 179, that:

(A l ,C\)^(A 2 ,C2 ) >

and so the theorem is proved.

THEOREM 182

If(A l9 Bj), (A 2 ,
B2 ), (B1 , 6\), (B2 ,

C2 )
be separation pairs such that:

(A 19 B^(A 29 B2 )

and (BlJ Cl)~(B2y C2 ),

then if Bl
be linearly between A and C l ivhile B2 is linearly between A 2

and C2 we shall also have

(A l7 C\)^(A 2y C2 ).

Let (A l ,D1 )
and (A 2 ,

D2 )
be inertia pairs which are after-conjugates

to (A 19 B^ and (A 2 ,
B2 ) respectively.

Then, sinceA l
D

l
and ^ 2 jD2 are inertia lines, it follows that A

l
D

l and

A l Bl lie in an inertia plane and ^4 2D2 and A 2B2 lie in an inertia plane.

Since (A 19 D) is conjugate to (A 19 jB1 ), it follows that B1D1 is an

optical line, and similarly B2D2 is an optical line.

Now let the optical line through C
l parallel to Bl

D
l intersect A 1D1
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in F19 and let the optical line through C2 parallel to B2D2 intersect

A 2D2 inF2 .

Then, since B
l
is linearly between A l and Cl ,

it follows, by Theorem

72, that Dl is linearly between A
l
and F.

Similarly D2 is linearly between A 2 and F2 .

Let the inertia line through Bl parallel toA lFl intersect C F in E
l ,

and let the inertia line through B2 parallel to A 2F2 intersect C2F2

in E
2

.

Then, since (A l , D) is an after-conjugate to (A l , BJ, we must have
D

l after A l and, since D is linearly between A l and Fl ,
we must have

Fl afterDl
.

Thus we must have E
1 after Bl and in a similar manner we can show

that E2 must be after B2 .

But now, since (A l ,
D

)
is conjugate to (A l , B^), it follows that ^Z^

is normal to A lBl ,
and since B l E 1

is parallel to ^Z^ while ^4
X ,
Bl and

C\ lie in one general line, it follows that BlEl
is normal to B l Cl .

Thus, since C1
E

1 (that is C\ FJ is an optical line, it follows that

(JSly JS?
t )

is conjugate to (Bly CJ and (A l7 FJ is conjugate to (A l9 CJ.

Further, D is after A l
and Fl is a/^er 7J

X
and so JT

1
is a/^er ^JL .

Thus ( 19 E )
and (A 19 FJ are after-conjugates to (jB1? Cj) and

(J.!, ^J respectively.

Similarly (jB2 ,
jB2 )

and (A 2 ,
F2 ) are after-conjugates to (J52 ,

C2 )
and

(^4 2 ,
(72 ) respectively.

But now, since (A l9 B-L )
= (A 2 ,

B2 ),

while (A l , Di) and (A 2 ,
D

2 )
are after-conjugates to (A ,

J5
X )
and (A 2 ,

^
2 )

respectively, it follows, by Theorem 179, that:

(A 19 D 1 )
= (A 29 D2 ).

Similarly, since (Bl9 Cl)==(B29 C2 ) 9

while (B^ , E) and (52 ,
E2 )

are after-conjugates to^JSi , CJ and (jB2 , C2 )

respectively, it follows that:

(Bl1 El)^(B2i E2 ).

But we clearly have (Bl , A\) |

=
| (Dl , ^\)

and (Bt,EJ\ = \(D2 ,FJ.

Thus we have (^ , FJ = (Da ,
^2 ).

But, since D! is linearly between A^ and -P
1 ,

while D2 is linearly

between A 2 and J'j,, it follows, by Theorem 181, that:
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We have however seen that (A l , FJ and (A 2 ,F2 )
are after-conjugates

to (A l , CJ and (A 2 ,
C2 ) respectively, and so it follows, by Theorem 179,

that

(A 1 ,Gl)^(A 2 ,C2 ).

Thus the theorem is proved.

THEOREM 183

IfA and B be two distinct elements and E be any element in AB distinct

from A and B, while F is an element in AB such that:

(A,E)\
=
\(F 9 B),

then we shall have (A,F)\
=

(E, B).

Let a be a general line parallel to AB and let a general line through
A intersect a in A while parallel general lines through B and E inter-

sect a in B' and E' respectively.

Finally let a general line through F parallel to AA f

or BB' intersect

a in F'.

Now we clearly have

(E,E')n(B,B'),
and so (E,E')\ = \(B,B

f

).

But, sinceW and A lie in parallel general lines, they must be distinct,

and so, by Theorem 180,

(A,E
f

) =\(f,B').

Now F cannot coincide with A
,
for then E would require to coincide

with B, contrary to hypothesis, and so FB' must be parallel to AE'.

Thus we must have

(A,F)n(E',B
r

).

But we obviously have

(E,B)n(E',B
f

)

and so (A 9 F)\ = \(E,B).

Thus the theorem is proved.

THEOREM 184

// A ,
A 1 and C be three distinct elements such that A l is linearly

between A and C and ifA 2 , A%, A, ... be elements such that:

A l is linearly between A Q and A 2 ,

A 2 is linearly between A^ and A% 9

and such that: (AQ,A 1)~(A 1 ,A 2)~(A 2 ,A 3 ) ...,
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then there are not more than afinite number of the elements A 19 A 29 A 39 ...

linearly between AQ and C.

It is evident that all the series of elements A
l ,
A

2 ,
A 3 , . . , lie in the

general line A Q C which we shall call a.

We shall first prove the theorem for the case where a is an inertia line

and C is after A Q .

We shall suppose that a lies in an inertia plane P.

Now since A
l
is linearly between A Q and C we must have A 1 after A Q ,

and so if we take two generators of P of opposite sets passing through

AQ and A
1 respectively, they will intersect in some element, say BQ ,

which will be after A and before A l and must lie outside a.

Let b be an inertia line passing through B and parallel to a and let

optical lines parallel to A Q B$ and passing through A
l ,
A 2 , A% 9

...

intersect 6 in the elements B19 B2 ,
J53 ,

... respectively.

Now, since A
v
is after A Q and, since further:

A
i
is linearly between A Q and A 2 ,

A 2 is linearly between A Q and ^4 3 ,

it follows that:

A l
is after A$\ A 2

is after A^ A 3 is after A 2 ,

Thus, since (A Q ,
A

)
= (A l ,

A 2 )
= (A 2 ,

^4 3 )

it follows that: ^ is the mean of A Q and A 2 ,

^4
2 is the mean of^ and ^4

3 ,

But now, by construction, we have

(^ ,^ 2)D(# ,7?2 ),

and so, since A 1
is the mean ofA Q and A 2 ,

arid since A lBl is parallel to

A B and A 2 B2 , it follows that B
l
is the mean of BQ and B2 and so, by

Theorem 80, A 2
B

l
is parallel to ^4i^6 -

Similarly A 3 B2 is parallel to A 2Bl and so on.

Thus, since A^B^ is an optical line, it follows that A 2Bly A 3B 2 ,
...

are all optical lines and so^,^,^,... mark steps taken along a with

respect to b.

But, since a and b do not intersect, it follows, by Post. XVII, that C

may be surpassed in a finite number of steps taken from AQ.

Thus there cannot be more than a finite number of the elements

A l9 A 2 , AS, ... linearly between A Q and C.
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Similarly if C be before A the same result follows by using the (b)

form of Post. XVII, and so the theorem is proved for the case where a

is an inertia line.

Consider next the case where a is a separation line and let 6 be any
inertia line which passes through A .

Then a and b determine an inertia plane which we shall call P.

Now one of the generators of P which pass through A l intersects b

in an element which lies in the a sub-set ofA l ,
while the other generator

intersects b in an element which lies in the J3 sub-set of A
l

.

Let the former of these generators be called/! ,
and let it intersect b

in the element A .

Then, since A l does not lie in 6, it follows that A is after A l
and so,

since A^A^^ is a separation line, we must also have A after A Q .

^et/o > /2 5 /a >/4> and/c ^e generators of P parallel tof\ and passing

through A ,
A 2 ,

A 3 , A, ... and G respectively.

Further, let/2 ,/3 ,/4 ,
... and/c intersect b in A 2) A 3

f A, ... arid C r

respectively.

Then, since A^ is after A , it follows that/! is an after-parallel of/ ,

and since A is linearly between A and C, it follows that/c is an after-

parallel of/! and so C' is after A .

Further, A l is linearly between A and A 2 ,

A 2 is linearly between A Q and A.3 ,

Thus we have J\ is an after-parallel of/ ,

/2
is an after-parallel of/j,

/3 is an after-parallel of/2 ,

Thus we have

A
l is linearly between /1 and A 2 ,

A
2
is linearly between A v and ^4 3 ,

AS is linearly between A 2 and A 4 ,

But, since (AQ,A l)~(A l ,A 2 )
= (A 2 ,A^) ...

it follows that: A l is the mean of A and A 2 ,

A 2 is the mean of A l and A 3 ,
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Thus, by Theorem 81,

A i
is the mean of A Q and A 2 ,

A 2

f

is the mean of A^ and A B ',

and so (A^A l

f

)
= (A l

f

9
A 2')

= (A^A 9

f

)... .

Thus, by the first case of the theorem, there cannot be more than a

finite number of the elements A^ ,
A 2

'

,
A 3

f

linearly between A and C'
'

.

But each of these elements which is linearly between A and C"

corresponds to one of the series A 1 ,A 2) A 3) ... which is linearly between

A and C, while any one which is not linearly between A and C' corre-

sponds to one of the series A l} A 2 ,A 3 ,
... which is not linearly between

A and C.

Thus there are not more than a finite number of the elements A 19

A<L, ^4 3 , ... linearly between A Q and (7, and so the theorem holds when
a is a separation line.

As regards the case where a is an optical line and C is after A we may
proceed just as we have done for the case where a is a separation line.

In this case a is one of the generators of the inertia plane P, while

/o > /i > /a > fc W*M be generators of the opposite set.

The result then follows in a similar manner.

In the case where a is an optical line and C is before A Q we also make
use of a similar method except that the element C f

in the inertia line

6 will be before A instead of after it.

Thus the theorem holds in all cases.

REMARKS

It will be observed that the above theorem is equivalent to the Axiom

of Archimedes and has been deduced by the help of Post. XVII.

In our remarks on the introduction of this postulate, its analogy to

the Axiom of Archimedes was pointed out together with the fact that

the postulate contains no reference to congruence.

Having defined congruence of pairs we are able to deduce the Axiom
of Archimedes in the usual form as given above.

Definitions. If A and B be two distinct elements, then the set of all

elements lying linearly between A and B will be called the segment AB.
The elements A and B will be called the ends of the segment, but are

not included in it.

The set of elements obtained by including the ends will be called a

linear interval.
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Since an element which is linearly between two elements A and B is

linearly between B and A, it follows, from the definition, that the seg-

ment BA is the same as the segment AB, even in those cases where one

of the two elements: A, B is after the other.

The same remark applies to linear intervals.

IfA and B be two distinct elements, then the set of elements such as

X where B is linearly between A and X may be called the prolongation

of the segment AB beyond B.

Such a set of elements will also be spoken of as a general half-line.

The element B will be called the end of the general half-line.

We shall describe segments, linear intervals and general half-lines as

optical, inertia, or separation, according as they lie in optical, inertia,

or separation lines.

It is easy to see that any element B in a general line a divides the

remaining elements of the general line into two sets such that B is

linearly between any two elements of opposite sets, but is not linearly

between any two elements of the same set.

For let P be any inertia plane which contains a and let 6 be a gener-

ator ofP which passes through B, and which, in case a is an optical line,

we shall suppose to be distinct from a.

Then through every element of a which is distinct from B there will

pass an optical line which is parallel to b.

Those elements of a which lie in optical lines which are after-parallels

of b constitute the one set and those which lie in optical lines which are

before-parallels of b constitute the other set.

It is then obvious, from the definition of linearly between, that B is

linearly between any two elements of a belonging to opposite sets, but

is not linearly between any two elements ofa belonging to the same set.

It is clear that these sets are general half-lines.

If elements X and Y lie in the same general half-line whose end is JB,

they will be said to lie on the same side of B.

If, on the other hand, B be linearly between X and Y, then these

elements will be said to lie on opposite sides of B.

A general half-line whose end is B and which contains an element X
may be denoted by the general half-line BX.

It is also easy to see that any general line b in a general plane P
divides the remaining elements of P into two sets such that ifA and C
be any two elements of opposite sets then 6 will intersect A C in an

element linearly between A and (7; while if A and A' be two elements
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of the same set, then b will not intersect AA' in any element linearly

between A and A'.

For consider the elements of P exclusive of those lying in b and,

when dealing with them, let us use the expression: "A is opposite to

G" as an abbreviation for: "b intersects AC in an element linearly

between A and C".

Let B be such an element of intersection and let A' be a second

element which is opposite to C.

IfA' should happen to lie in AC then, from what we have just shown,

it follows that A' is not opposite to A.

If next we take the case where A' does not lie in A C then, since B is

linearly between A and C and, since neither A, C nor A' lie in fe, it

follows, by Theorem 127 (2), that A' is not opposite to A. Thus (i) in all

cases, if A and A' are both opposite to (7, then A' is not opposite to A.

Next suppose that A is opposite to C while A
1

is another element

of P which is not opposite to A and does not lie in 6.

If A
l should happen to lie in AC then, from the linear analogue

already considered it follows that A l
is opposite to G.

IfA! does not lie in AC then, since B is linearly between A and C and

since neither A, C nor A
l
lie in 6, it follows, by Theorem 127 (1), that

A
l
is opposite to C. Thus (ii) in all cases, ifA is opposite to C while A^

is not opposite to A, we must have A v opposite to C.

If A 2 be a second element which is not opposite to A, it follows by
(ii) that A 2 is opposite to C.

But, since both A l
and A 2 are opposite to (7, it follows by (i) that A 2

is not opposite to A
l

. Thus all the elements which are not opposite to

A are opposite to C and no one of them is opposite to any other of

them.

Similarly, all the elements which are not opposite to C are opposite

to A, A l ,
A 2 , etc. and no one of them is opposite to any other of them.

This shows that the general plane P is divided by the general line b

in the manner above stated.

If elements X and Y lie in the general plane P, but not in the general

line 6, they will be said to lie on the same side of b if they both lie in the

same set and will be said to lie on opposite sides ofbifX lies in one of

the sets and Y in the other set.

Definition. If a general line b lies in a general plane P, then either of

the sets of elements on one side of 6 will be called a general half-plane.

The general line 6 will be called the boundary of the general half-

plane.
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The following important result which may be conveniently expressed
in the nomenclature of general half-lines can be easily proved.

If (A 19 BJ, (A 2 ,
J52 ), (A 19 <7

X ), (A 29 G2 )
be inertia, optical or separa-

tion pairs such that:

(Ai,Bi) = (A 2 ,Bt),

and (Ai,Cj = (A^C&
then if B

l
be linearly between A l and Gl and if C2 lies in the general

half-line A
2
B

2 ,
we shall also have B

2 linearly between A 2 and C2 .

In the case of optical pairs the above congruences imply that A l
B

l

and A
2
B

2 are the same or parallel optical lines, but nothing of this sort

is implied in the case of inertia or separation pairs.

In all cases there is an element, say C2 9
in A 2

B2 and on the opposite

side of B2 to that on which A 2 lies and such that

(Bl9 Cl)^(B29 C2

f

).

Then in all cases it follows that:

(Ai,CJ = (A 2 ,C2'),

and so (A 29 C2 )
= (A 2 ,C2

f

).

But C2 and C2 both lie in A 2 B2 and on the same side ofA 2 , and must

therefore be identical.

Thus B2 is linearly between A 2 and C29 and

(Bl ,Cl)^(B2 .
j
C2 ).

Definitions. If (^4, B) and (C, D) be inertia or optical pairs in which

B is after A and D after C, or if (A, B) and (C, D) be separation pairs,

then, in respect of magnitude:

(
1

)
If (A , B) = ( C, D )

we shall say that the segment AB is equal to the

segment CD.

(2) If (^4 , B) = ( C, E) where E is any element linearly between G and

D, we shall say that the segment A B is less than the segment CD.

(3) If (A, B) = (C, F) where F is any element such that D is linearly

between C and F, we shall say that the segment AB is greater than the

segment CD.

In the case of separation or inertia segments we must always have

either:

AB is equal to CD,

or AB is less than CD,

or AB is greater than CD.

In the case of optical segments, however, this is only true provided

they lie in co-directional optical lines.
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Again, if (A, B) and (C, D) be inertia or optical pairs in which B is

after A and D after C, or if they be separation pairs, and if E, F, G be

elements such that F is linearly between E and G while

(A,B) = (E,F)

and (C,D)s(F,0),

we shall say that the segment EG is equal to the sum of the segments AB
and CD in respect of magnitude.

It is evident that two optical segments can only have a sum in this

sense provided they lie in co-directional optical lines, whereas two

inertia segments or two separation segments always have a sum.

In the above definitions the words linear interval may be substituted

for the word segment.

If A and B be any two distinct elements and if G be any element

such that B is linearly between A and C and if a and 6 be taken to

denote the segments A B and BC respectively, then we may express

the result of Theorem 183 in the form:

a-f b = b + a.

IfD be any other element such that C is linearly between B and D,

and ifwe denote the segment CD by c; then, by application ofTheorem

183 alternately to a pair of segments lying towards one end of the total

interval AD and then to a pair of segments lying towards the other

end, we obtain successively:

It thus appears that we may regard both the Commutative Law and

the Associative Law as holding for the addition of segments, or of

linear intervals.

Having thus introduced the idea of a segment (or linear interval)

being equal to the sum of two others we can obviously have any
multiple and also (as follows from the remarks at the end ofTheorem 81

)

any sub-multiple of a given segment (or linear interval): using the

terms "multiple" and " sub-multiple" in the ordinary sense.

We may also clearly have a segment (or linear interval) equal to any

proper or improper fractional part of a given one.
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The criterion of proportion given by Euclid, and which is probably
due to Eudoxos, is clearly applicable in our geometry.

This criterion is as follows:

If we have four magnitudes of which the first and second are of one

kind* and the third and fourth also of one kind and if, for all values of

m and n (where m and n are integers), we have m (first magnitude) is

greater than, equal to, or less than n (second magnitude) according as

m (third magnitude) is greater than, equal to, or less than n (fourth

magnitude), then the four magnitudes are in proportion in such a way
that the first magnitude is to the second as the third is to the fourth.

We shall also express the proportion of the four magnitudes by

saying that the ratio of the first to the second is equal to the ratio of the

third to the fourth.

This might be regarded merely as another form of words expressing
the same fact, without assigning any specific definition to the term

ratio taken by itself; since, in all cases where the term is used, it is

possible to get rid of it by means of a circumlocution. As, however, it is

desirable not to use a technical term without definition, we may define

ratio, when employed in the Euclidean sense, thus:

Definition. The ratio of two magnitudes of one kind is the mode
of distribution of the multiples m of the one magnitude among the

multiples n of the other in respect of the relations of greater than, equal

to, and less than for all integral values ofm and n.

Later on, for purposes of manipulation, we shall find it convenient

to represent ratios by what are called real numbers and to associate

positive and negative signs with them, but, in the mean time this is

unnecessary.

If, in a proportion, for some particular values ofm and n (say mt
and

n
x )
we should have m (first magnitude) is equal to nv (second magni-

tude) and, along with that, m l (third magnitude) is equal to n (fourth

magnitude), then the first and second magnitudes are commensurable

as are also the third and fourth, and their common ratio is that of %
to mx

: written nl :m1
.

This, however, is by no means always so and, when it is not the case,

* On this point see M. J. M. Hill's Theory of Proportion, Article 3.

It is very important to observe the sense in which the words
"
of one kind" are employed

in the above criterion.

Thus, segments of optical lines can only be deemed magnitudes of one kind provided that the

optical lines are co-directionaL
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the magnitudes are said to stand in an incommensurable ratio to one

another.

The criterion then reduces to the form that, for all integral values of

ra and n we have ra (first magnitude) is greater than or less than n

(second magnitude) according as ra (third magnitude) is greater than

or less than n (fourth magnitude).
It has been shown by Stolz that this is a sufficient criterion even when

the magnitudes stand in a commensurable ratio.

The abstract theory of proportion, as treated by Euclid in his fifth

book (or by the late Professor M. J. M. Hill in his work on the subject),

will be assumed in what follows and we shall concern ourselves only

with the application of it to our geometry.
Certain results regarding the proportion of segments may easily be

shown to hold for all types of general line, by using methods such as

are employed in the following theorem.

THEOREM 185

If 0, A l
and B

l
be three distinct elements not lying in one general line,

while (7j is any other element lying in the general half-line OA l9 and if a

general line through Cl parallel to A lBl intersects OB1 in an element Z>1?

then

(1) segment A
l

\ segment OC1
= segment OBl

: segment OD^\

(2) segment OA l
: segment OCl

= segment A lBl : segment Cl
D

l .

In the general half-line OA l let elements A 2 ,
A 3 ,

... Am be taken

such that:

J. x is the mean of and A 2 ,

A z is the mean of A l and A^,

Am_ v
is the mean of A m_2 and Am ,

and let general lines through A 2 , A<^ ... Am be taken parallel to A B
and meeting OBl in the elements B2 ,

B3 ,
. . . Bm respectively. Then we

know that :

Bl is the mean of O and B2 ,

B2 is the mean of Bl and B3 ,

Bm_l is the mean of Bm_2 and Bm .

Then segment OAm = ra (segment OA-^)

and segment OBm =m (segment OBJ.
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Similarly in the general half-line OC1 (i.e. OAJ let elements

. Cn be taken such that :

C is the mean of and <72 ,

C2 is the mean of C l and C3 ,

315

Cn_ l
is the mean of Cn __ 2 and Cn ,

and let general lines through <72 ,
(73 ,

... (7M be taken parallel to ClDl

O

Fig. 46.

and meeting OC^ in the elements D2 ,
D3 ,

... !> respectively. Then, as

before, we get
segment OCn

= n (segment

and segment ODn
= n (segment
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But now we shall have

(i) Cn linearly between and Am ,

or (ii) Cn identical with Am ,

or (iii) Am linearly between and Cn ,

according respectively as we have

(i) Dn linearly between O and Bm ,

or (ii) Dn identical with Bm ,

or (iii) Bm linearly between and D n .

Thus segment OA m is greater than, equal to, or less than segment 00n

according as segment OBm is greater than, equal to, or less than seg-

ment ODn \ which is the criterion that

segment OA l
: segment 00^ = segment OBl : segment ODl .

This proves the first part of the theorem.

In order to prove the second part of the theorem let the general line

through 1\ parallel to OA V intersect A l
B

l
in the p

element E and let the general line through E

parallel to OB1 intersect OA l
in the element F.

Then clearly wo have

and (Ol9 A l )
\

=
| (0, F).

Thus, by Theorem 183,

O

But, since EF is parallel to Bl 0, we have, by the

first part of the theorem,

segment A l
: segment A l

F =

segment A l
Bl : segment A : E.

Thus, since

segment A l F segment C
and segment A 1 E = segment Cl

D
l , Fig. 47.

we have

segment A 1 : segment C^O segment A l
Bl : segment C-LDl .

That is

segment OA l
: segment OC\ = segment A 1B1

: segment Cl
D

l ,

as was to be proved.

REMARKS

It should be noted that certain transformations of the above results

may be deduced by the abstract theory of proportion in all cases;

while certain other transformations are only permissible in those cases
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where the four terms of the proportion are all segments of the same
kind.

Thus if all four terms are either segments of separation lines, or else

all segments of inertia lines, part (1) may be transformed into:

segment OA l : segment OB = segment OC\ : segment

while part (2) may be transformed into:

segment A lBl
: segment OA x

= segment ClDl : segment

but these would not be permissible in other cases.

Another important point to be observed is that if OA l should be a

separation line and OBl
an inertia line normal to OA (or conversely),

while A lBl is an optical line, then Cf

1
Z)

1 will also be an optical line and

so it follows that: separation segments are proportional to their conjugate

inertia segments.

THEOREM 186

// B and C be two distinct elements in a separation line and be their

mean, and ifA be any element in a separation line a which passes through

O and is normal to BC, then:

(A,B) = (A,C).

Since a is normal to BC and since they are both separation lines, it

follows that a and BC lie in a separation plane, say 8.

If the element A should happen to coincide with 0, then, since BC is

a separation line, the theorem obviously holds.

Suppose next that A does not coincide with O and let d be an inertia

line passing through A and normal to S.

Let P be the inertia plane containing a and d.

Now, since' d is normal to S, it follows that BC is normal to d, and

since BC is also normal to a, and since a and d intersect and lie in P, it

follows that BC is normal to P.

Let D be the one single element common to d and the a sub-set of B.

Then BC and BD determine a general plane, say Q, which must be

either an optical plane or an inertia plane, since BD is an optical line.

But now P and Q have the general line OD in common, and since

BC is normal to P, it follows that BC is normal to OD.

If Q were an optical plane OD would require to be an optical line,

while if Q were an inertia plane OD would be an inertia line.

But, since BD is an optical line in Q and since BD and OD intersect,

it follows that Q cannot be an optical plane.
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Thus Q must be an inertia plane and OD must be an inertia line

normal to the separation line EC.

Thus, since is the mean of B and (7, it follows that B, C and D are

three corners of an optical parallelogram of which is the centre.

Thus CD is an optical line.

But, since AD is normal to S, it must be normal to both AB and A C.

Also, since D is in the a sub-set of B and is distinct from B, it follows

that D is after B.

Thus, since AB is a separation line while AD is an inertia line, it

follows that D is after A, and accordingly (A, D) is an after-conjugate

to both (A, B) and (A, C).

Thus we have (A,B) = (A, C),

and so the theorem is proved.

THEOREM 187

If A, B and C be three distinct elements which lie in a separation plane

S, but do not all lie in one general line, and if be the mean of B and C
while

(A,B) = (A,C),

then AO is normal to BC.

Let d be an inertia line passing through A and normal to S and let P
be the inertia plane containing d and AO.
Then d is normal to both AB and AC and, since

(A,B) = (A,C),

there is one definite element, say D, in d such that (A, D) is an after-

conjugate to both (A, B) and (^4, C).

Thus BD and CD are optical lines and, since they intersect, they
must lie in an inertia plane, say Q.

But now, since is the mean of B and C f

,
it follows that B, C and D

are three corners of an optical parallelogram whose centre is 0, and

therefore BC is normal to OD.

But OD is common to both Q and P, while BC (since it lies in S) is

normal to AD, which also lies in P.

Thus BC is normal to two intersecting general lines in P and there-

fore BC is normal to P.

But AO lies in P and therefore AO is normal to BC.

Thus the theorem is proved.
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THEOREM 188

IfA,B and C be three distinct elements which lie in a separation plane

S, but do not all lie in one general line, and if

(A,B)^(A,C),

and if be an element in BC such that AO is normal to EG, then is the

mean of B and C.

Let 0' be the mean of B and C.

Then, by Theorem 187, AO' is normal to BC, and, by hypothesis,
AO is normal to BC.

But both AO' and AO pass through the element A and lie in the

separation plane S and we have already seen that there is only one

general line in a given separation plane which passes through a given
element and is normal to another general line in the separation plane.

Thus AO must be identical with AO' and therefore must be

identical with 0'.

It follows that is the mean ofB and C and so the theorem is proved.

Definition. If A, B, C be three distinct elements which do not all lie

in one general line, then the three segments AB, BC, CA, together
with the three elements A, B, C, will be called a general triangle, or

briefly a triangle in an inertia optical, or separation plane, as the case

may be.

The elements A, B, C will be called the corners while the segments

AB, BC, CA will be called the sides of the general triangle.

THEOREM 189

IfA, BH C\ be the corners of a triangle in a separation plane Pl and

A 2 ,
B2 ,

C2
be the corners of a triangle in a separation plane, P2 and if

further

while jB1 Cl is normal toA l Cl ,
and B2 C2 is normal toA 2 C2 ,

then we shall

also have

(A^B^(A^B^
In order to prove this theorem we shall consider a number of special

cases on which the general proof is made to depend.

CASE I. B 2 identical with Bl and C2 identical with Cly while P2
is

identical with Pl .

In this case, since the separation linesA l Cl andA 2 Cl are both normal
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to B
l
C

l
and both lie in the separation plane Pl and pass through the

element Cl , they must be identical.

If further A 2 should coincide with A l the result is obvious, and so we
shall suppose that A 2 does not coincide with A.
Now, since (Cl , AJ, etc. lie in the separation plane Pl , they must all

be separation pairs and, since in this case

it follows that: (4 a , CJ = (C^ AJ.

Thus C
l must be the mean of A l and A 2 and therefore, by Theorem

18(5, we have

(B19A^(B19 A 2 ) 9

or (A l ,Bl)^(A 2i B2 ).

CASE II. B2 identical with B1 and C2 identical with Cl ,
while Pl and

JP2 lie in the same separation threefold W.

If P2 should be identical with Pl this case reduces to Case I, and so

we shall suppose them distinct.

Now, since A
l ,
B

l
and A

2
are three distinct elements in W which do

not lie in one general line, it follows thatA
l ,
B

1
andA

2
lie in a separation

plane, say R, which must be distinct from both1P
1
and P2 ,

since these

latter two separation planes are supposed distinct.

Similarly A l , Cl and A% lie in a separation plane, say 8, which is also

distinct from Pl
and P2 .

Now let be the mean of A l and A 2 .

Then, by Theorem 187, since

it follows that C1 is normal to A^A 2 .

But, since B
1 C1

is normal to A l Cl and to A 2 C1 which are distinct

intersecting separation lines, it follows that B1 Cl is normal to 8 and

therefore must be normal to A 1A 2 .

Thus A 1
A

2
is normal to the two intersecting separation lines B

l Cl

and (7X O and must therefore be normal to every general line in the

general plane containing them.

It follows that A 1A 2 is normal to B1 0.

But now, by Theorem 186, since is the mean of A and A 2 and,

since Bl ,
A 19 A% lie in a separation plane, it follows that:

or
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CASE III. C2 identical with C and P2 identical with Px .

Let 6 be a separation line passing through C and normal to Px and

let B' be an element in b such that:

(C^B')^(C^B^.
Then we shall also have

(CI9 B')
= (CL9 B2 ).

Now the separation plane P and the separation line b determine a

separation threefold, say W, which contains A 19 Bl , C l ,
A 2 ,

B2 ,
B'.

Again, since B'C
1
is normal to P, it must be normal to ClA l9 C1A 29

Then since (Cl9 B l )
=

(C\,B'),

it follows, by Case II, that:

(A^BJ^A^B') ...... (1).

Again since (C^A^^iC^A^,
it follows, by Case II, that:

(A 19 B') = (A 2 ,B') ...... (2).

Further, by Case IE, since

(C19 B') = (C19 B2 ) 9

it follows that: (A 2 ,B') = (A 29 B2 )
...... (3).

Thus, from (1), (2) and (3), it follows that:

(A 1J B1)^(A 2 ,B2 ).

CASE IV. P2 either identical with Pl
or parallel to P

l .

There is, as we have already seen, one single element, say A'
',
such

that:

Similarly there is one single element, say B', such that:

Now, since P2 is either identical with Pl or parallel to Pl , it follows

that P2 must contain C2A' and C2
B' .

Also, since C2A' must be either parallel to GlA l or identical with it,

and since C2 B' must be either parallel to C^B or identical with it, then

since B: Cl
is normal to A l C ,

it follows that B'O2 is normal to A'C2 .

But now, by Theorem 180, we must have

(^,^1 =
1 (A',R).

Also since (C1 ,A 1 )
= (C29 A 2 ) )

it follows that: (C2 , A 2 )
= (C2 9

A f

) 9
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and, since (Cl , BJ = (C2 ,
J32 ),

it follows that : (C2 , B2 )
~

(
C2 ,

B'
)

.

Thus, by Case III, it follows that:

(A',B') = (At,Bt).

Since however we have

it follows that: (A l , x )
= (A 2 ,

jB2 ).

CASE V. P
t
and P2 Zie in JAe same separation threefold W.

If P! and P2 have no element in common, then since they both lie in

W they must be parallel to one another and the result follows from

Case IV.

We shall therefore suppose that P
1
and P

2
have an element in

common, but are distinct

Then, by Theorem 150, they have a second element in common, and

therefore have a general line in common which we shall call b.

Let C be any element in b and let a
l
and a

2 be separation lines passing

through C and normal to b and lying in P
l and P2 respectively.

Let B be an element in 6 such that:

(C^BJ^tftB).
Then we shall also have

(C7a ,J38)EE(C7,J3).

Let A
i
and A% be elements in

L
and

2 respectively such that:

(C^A^CtA^)
and (Ci,A 2 )

= (C,A 2

r

).

Then since (C\,A L )
= (C29 A 2 ) 9

we have (G,A l

f

)
= (G 9

A 2

/

).

Thus, by Case II, it follows that:

(A,' 9 B)^(A 2

f

9 B) ...... (1).

But, by Case IV, it follows that:

(4 1 ,/? 1 )
= (4 1',fi) ...... (2),

and similarly it follows that:

(A 29 B^(A 2

'

9 B) ...... (3).

Thus from (1), (2) and (3) it follows that:

(A 1 ,Bl)^(A 2) B2 ).

Thus whether Pl and P2 are identical, or parallel, or whether they
have a general line in common, the theorem holds provided Pl and P%
lie in the same separation threefold W.
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CASE VI. P
l and P2 do not lie in one separation threefold.

In this case we may take one separation threefold, say Wly which

contains Pl and another separation threefold, say W2 ,
which contains

^2-
Now W2 may be either parallel to Wl , or else not parallel to it and,

if not parallel, we know that W1 and W2 must have a general plane in

common, which must obviously be a separation plane.

Suppose then first that W2 is parallel to Wl and let C be any element

in W2 .

Then there is a general line, say a, passing through C and lying in W2

which is parallel to GlA l .

Similarly there is a general line, say 6, passing through C and lying

in W
2
which is parallel to C B

l .

Thus, since B Cl is normal to A (7t ,
it follows that b is normal to a.

Now let A and B be elements in a and b respectively such that:

and (C^BJl
Then, by Theorem 180, we must have

(A^Bl)\^\(A,B}.
But now, since (Cl9 A 1)^(C2 ,A 2 ) 9

it follows that: (C29 A 2 )
= (C 9 A) 9

and since (C\ ,
B

: )
== (C2 ,

B2 ),

it follows that: (C2 ,
Bz )

=
(C, B).

Thus since A, B and C lie in W2 which also contains P2 ,
it follows by

Case V that :

(A,B) = (A 29 Bs).

Thus, since (A l , BJ = (A 9 B),

it follows that: (A 19 Bl )
= (A 2 ,B2 ).

Suppose next that W2 is not parallel to W and let S be the separation

plane which they have in common.

Let a be any separation line in S, and C be any element in it.

Let 6 be the separation line which passes through and lies in S and

which is normal to a.

Let A and B be elements in a and b respectively such that :

(C^AJ&^A)
and (C^) =;(<?,).

Then we shall also have

and



324 GEOMETRY OF TIME AND SPACE

But, since P
l
and S lie in Wly it follows by Case V that:

(A^B^i^B).
Also, since P2 and 8 lie in W2 , it follows by Case V that:

(At 9
B

2 )
= (A,B).

Thus we get finally: (A ly BJ = (A 2 ,
B2 ).

(Combining now Cases V and VI we see that whether Pl and P2
lie in

one separation threefold or not, the theorem still holds.

Thus the theorem holds in all cases.

THEOREM 190

// A l ,
B

l , C\ be the earners of a triangle in a separation plane Pl and

A
2 ,

J3
2 ,
C2 be the corners of a triangle in a separation plane P

2 ,
and if

further

while K
l C\ is normal toA 1

G
l , and B2 Ct

is normal to A.z Cz ,
then we shall

also have

(G
1

,, 5,^(0,,^).

Lot B2

'

be an element in Bz C.2 and on the same side of Cz as is B2 and

such that:

(C^BJ-^B, 1

).

Then by Theorem 189 we must have

(A l ,Bl)^(A z ,B^},

and so we must have (A 2 ,
B

2 )
= (A 2 ,

B2 }.

Suppose now, if possible, that B2
is distinct from B2

and let O be the

mean of B2 and B2 .

Then, by Theorem 187, A 2 O must be normal to B2 C2 .

But A 2 C2 is normal to B2 C2 and so, since P2 is a separation plane,

we should have A 2 identical with A 2 C2 and therefore would be

identical with C
2

.

Since, however, O is supposed to be the mean of B2 and B2 ,
it would

require to be linearly between them and so B2 and B2 would be on

opposite sides of C2 , contrary to hypothesis.

Thus the supposition that B2 and B2 are distinct leads to a contra-

diction and so B2 must be identical with B2 .

But (Ci,Bi) = (Ct,BJ) 9

and therefore (Cl ,
jBx )

== (C2 ,
B2 )

as was to be proved.
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THEOREM 191

IfA! ,
B

, C^beihe corners ofa triangle in a separationplane PlandA 2 ,

B2 ,
C2 be the corners of a triangle in a separation plane P2 ,

and iffurther

while A l Cl is normal to B1 C1 ,
then we shall also have A 2 C2 normal to

B2 C2 .

Let a be a separation line passing through C2 and lying in P2 and

which is normal to B2 C2 ,
and letA 2 be an element in a on the same side

of B2 C2 as is A 2 and such that:

(A^C2)^(A l ,Cl ).

Then, by Theorem 189, we shall have

(A 2

/

,B2)^(A l ,Bl ).

It follows that we must have

(Ai,B2 )
= (A 2',]i2 ) 9

and further (A 2 ,C2 )
= (A/, C2 ).

Now ifA
2

f

lies in A 2 B2 it must be identical with A 2 for there is only

one element, say A, distinct from A 2 and lying in A 2B2 and such that:

(A 2 ,BJ = (A,B2 ),

and this element A lies on the opposite side of B2 to that on which

A 2 lies.

Thus, since A 2 and A 2 lie on the same side of B2
C

2
and therefore on

the same side of B2 ,
it follows that A 2 must be identical with A 2 .

Similarly if A 2 lies in A 2 2 it must be identical with A 2 .

Suppose now, if possible, that A 2 is distinct from A 2 and lies neither

in A 2B2 nor in A 2 C2 , and let be the mean of A 2 and A 2 .

Then, by Theorem 187, B2 must be normal to A 2A 2
and similarly

C2 must be normal to A 2A 2 .

Thus, since B2 and C2 lie in the same separation plane as ^4 2^2',

it follows that B2 O and C2 would be the same general line which

accordingly would be identical with B2 C2 ,
and so would require to

lie in B2 C2 .

But, since is supposed to be the mean of A 2 and A 2 ,
it would have

to be linearly between them and so,A 2A 2 being distinct from B2
C2 ,

we

should have A 2 and A 2 on opposite sides of B2 C2 , contrary to hypo-

thesis.
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Thus the assumption that A 2 is distinct from A 2 leads to a contra-

diction and so A 2
is identical with A 2

.

But A 2 C2 is normal to B2 C2 by hypothesis and so A 2 C2 is normal to

B
2 C2 as was to be proved.

THEOREM 192

IfA j , BI , C1 be the corners ofa triangle in a separation planePl
andA 2 ,

B
2 ,
C2 be the corners of a triangle in a separation plane P2 ,

and iffurther

ivhile N
l
is an element in B

l C\ such that A
l
N

l
is normal to Bl Cl ,

andN2

is an dement in B2 C2 such that A 2N2 is normal to B2 C2 ; and ifNl be

distinctfrom both B and O
l ,

then N
2 will be distinctfrom both B2 and C2 ,

and we shall also have

If N! be linearly between Bl and Cl9 let N2

'

be an element in B2 C2

and on the same side of B2 as is G2 and such that:

(B^NJ^B^Nt').
Let C2 be an element in B2 G2 and on the opposite side ofN2 to that

on which B
2
lies and such that:

(N^CJ^W.Ct
1

).

Then, by Theorem 182, we shall have

(Blt C 1 )
= (Bt ,Ct') >

and so (B2 ,C2 )
= (B2 ,C2

r

).

But C
2
and 2 both lie on the same side of B2

and so they must be

identical.

Thus we must have

(C^NJsiCt.Nt
1

).

Again, if C
l
be linearly between B l and Nt let N2 be an element in

B2 C2 and on the opposite side of C2 to that on which B
2 lies and such

that:

(C^NJsWi.Nt').

Then, by Tlieorem 182, we shall have
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Similarly if B
l be linearly between Cl

and Nl ,
let N2 be an element

in C2B2 and on the opposite side ofB2 to that on which C2 lies and such

that:

(B^NJ^B^N,
1

).

Then, by Theorem 182, we shall have

Thus in all three cases N
2

'

has been taken in B
2
C

2
in such a manner

that:

(Bl9 N 1)^(B29 N2

f

)

and ((7^)^(0,, AY).

Now let a be a separation line lying in F2 and passing through N2

'

and normal to B2 C2 .

Let an element A 2 be selected in a and on the same side of B2
C2 as

A 2 lies and such that:

(N,,A l)^(N^A^
Then, by Theorem 189, it follows that:

(A^BJ = (At',BJ
and (A ly C{)~(A^C2 }.

Thus we must have

(4 2 ,#2 )
=

(,4 2M?2 )

and (A2 ,G'2)EE(A/,a2 ).

Then, as in the last theorem, we may prove that the elements A 2 and

A 2 must be identical and, since A 2
N

2 is normal to B2 C2 and intersects

it in the element N2 and, since P2
is a separation plane, it follows that

N2 is identical with N2 , and therefore N2
is distinct from both B2

and C2 .

Thus we must have

and so the theorem is proved.

It is also evident from the manner in which N2 was determined that

we must have
N

2 linearly between B2
and C2 ,

or C2 linearly between B
2 and N2 ,

or B2 linearly between C2 and N2 ,

according as N
t
is linearly between Bl and Cl ,

or Cl
is linearly between B and Nl ,

or B
l
is linearly between Cl and Nl

.
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REMARKS

If B, Cl and G2 be three distinct elements in a separation plane which

do not all lie in one separation line, and if

(B,C1)^(B,C,)

while Nl
and N2 are elements in BC

t
and BC2 respectively, such that

C2
N

l is normal to BC l
and C1

N
2 is normal to BC2 , then, if we make

the restriction that BC
l
is not normal to BC2 ,

we may take the triangle

whose corners are B, Gl and (72 and apply the results ofthe last theorem

to the one triangle taken in two aspects.

Since BC
l
is not normal to BC2 ,

it follows that neither JV^norN2 can

be identical with J5; so that we can speak of the pairs (B, N-J and

(5, N2 ).

Further, we could not have both N l identical with Cl andN2 identical

with CY

2 ; for then we should have two intersecting separation lines:

BCl and BC% both normal to one separation line C
1
C

2 lying in the

same separation plane with them and this, we know, is impossible.

Thus either N
l

is distinct from Cly or N2
is distinct from C2 and,

without essential loss of generality, we may suppose that Nl is distinct

from C
l .

If then, in the last theorem, we take

B
2 identical with Bl ,

A
l
identical with C2 ,

A 2 identical with Cl ,

and write B for B
l
or B2 ,

we get N2 distinct from C2 and

Also the linearly between relations of B, N2 and C2 will be similar to

those of B, Nl and C
v respectively.

Definitions, [f and XG be two distinct elementvS in a separation

plane 8, then the set of all elements in S such as X, where

(0,X) = (0,* ),

will be called a separation circle.

The element will be called the centre of the separation circle.

Any one of the linear intervals such as OX will be called a radius of

the separation circle.

If X! and X2 be two elements of the separation circle such that
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X
1
X

2 passes through 0, then the linear interval X^X^ will be called a

diameter of the separation circle.

Any element which lies in a radius but which is not an element of the

separation circle itself will be said to lie inside or in the interior of the

separation circle.

Any element which lies in 8 but not in a radius will be said to lie

outside or exterior to the separation circle.

THEOREM 193

(
1

) If a separation line a and a separation circle both lie in the same

separation plane 8, and if any element A of a lies within the separation

circle, then the latter has two elements in common with a and the element

A lies linearly between them.

(2) If a separation line a has two elements D and E in common with a

separation circle lying in a separation plane 8, and if an element A of a

lies linearly between D and E, then A lies within the separation circle.

Consider the first part of the theorem.

Let O be the centre of the separation circle and let a separation line

in 8 be taken through and A . Then there are two elements of this

separation line, say Xl and X2 ,
which lie on the circle and are therefore

such that :

(0,^)^(0,^),

and A must lie linearly between X and X2 .

Let c be an inertia line through normal to 8 and let G be the

element common to c and the a sub-set of X .

Then CXl is an optical line arid, since X2 is also an element of the

circle, we must also have CX2
an optical line.

Further, C is after X l
and since X1X2 is a separation line, we must

also have C after X2 .

Now, by Theorem 73, since A is linearly between Xl and X2 ,
it

follows that CA is an inertia line and A is before C.

But, since CA is an inertia line which intersects the separation line a,

it follows that CA and a lie in an inertia plane, say P.

Then there are two optical lines passing through C and lying in P
and these will intersect a in two distinct elements, say D and E.

Then, since c is normal to 8, it follows that:

(0,D)^(0,E)^(0,X l)^(0,X2 ),

and so D and E lie on the separation circle and accordingly, since they

also lie in a, the existence of the two elements is proved.
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It also follows that A must lie linearly betweenD and E. For, in the

first place, A could not coincide with either D or E, since CD and CE
are optical lines while GA is an inertia line. Again, D could not lie

linearly between A and E for, since C is after both A and E, it would

follow, by Theorem 73, that CD must be an inertia line; which is im-

possible. Similarly E could not lie linearly betweenA and D. It remains
that A must lie linearly between D and E\ which proves the first part
of the theorem.

Fig. 48.

Consider now the second part of the theorem.

As before, let be the centre of the separation circle and let c be an
inertia line through normal to 8.

Let C be the element common to c and the a sub-set of D. Then CD
is an optical line and C is after D.

Also, sinceDand E are both elements of the circle centre 0, it follows

that CE is also an optical line and, since DE is a separation line, we
must also have C after E.

But now, since by hypothesis A is linearly between D and E, it

follows, by Theorem 73, that CA is an inertia line and A is before C.

Now, in the very special case where A is identical with O, it is
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obvious that A lies within the separation circle; so we shall suppose
that A is not identical with 0.

Let F be the element common to c and the a sub-set of A. Then FA
is an optical line and F is after A.

But since OA is a separation line and FO is an inertia line we must

also have F after O.

Now F could not be identical with C since FA is an optical line

while CA is an inertia line.

Also F could not be after C for then we should have C after A and

before F: two distinct elements of the optical line AF in which C does

not lie, and we know that this is impossible.

It remains that C is after F so that F is linearly between and C.

Now, since c is an inertia line, therefore c and OA lie in an inertia

plane, and, if we take an optical line through C parallel to FA, it will

intersect the separation line OA in some element Xl .

Then X will be an element of the circle and, since F is linearly

between O and (7, it follows that A is linearly between O and Xl and

so A lies within the separation circle.

Thus the second part of the theorem is proved.

THEOREM 194

If A, B and C he the corners of a triangle in a separation plane, and if

BO be normal to AC, then the side A B is greater than either of the other

two sides of the triangle.

It will be sufficient to prove that AB is greater than AC.
Let D be an element in EG such that C is the mean of B and D.

Then, by Theorem 186, we must have

(A,D) = (A,B);

and so B and D are two elements of a separation circle of centre A ;

while the separation line BD has the two elements B and D in common
with it.

Further, the element C lies linearly between B and D and so, by
Theorem 193, C lies within the circle.

Thus AB is greater than AC\ and similarly we may prove that AB
is greater than BC.

REMARKS

If a separation line a and a separation circle both lie in a separation

plane 8, they can either have no element in common, or one element in

common, or two elements in common, but cannot have more than two.
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Taking as centre, let a separation line passing through 0, lying in

S and normal to a intersect a in an elementN and let B be any element

of a distinct from N.

Then, by Theorem 194, OB is greater than ON, so that if ON is

greater than a radius of the circle, then OB is always greater than a

radius and a can have no element in common with the circle.

If ON is equal to a radius, then the element N lies on the circle but

B cannot do so and, in this case, a has one element in common with the

circle.

If ON is less than a radius, then N must lie within the circle, so that,

by the first part of Theorem 193, a must have two elements in common
with it, say D and E.

If 0, D and E should happen to lie in one separation line, JV would

coincide with O and would therefore be the mean ofD and E\ while if

0, D and E do not lie in one separation line the same result follows by
Theorem 188.

Now suppose, if possible, that there is an element E' distinct from D
and E and common to the circle and the separation line a. Then N
would require to be the mean ofD and E' as well as ofD and E, which

is impossible by Theorem 62.

Thus no such element as E' can exist and so the separation circle

cannot have more than two elements in common with the separation
line a.

It follows very simply from Theorem 194 that: If a triangle lies in a

separative plane, then the sum of the lengths of any two sides is greater

than that of the third side.

This may be shown as follows:

Let A, /?, C be the corners of any triangle in a separation plane S
and let a separation line through A normal to EC intersect BC in an

element N .

Then
(
1

)
ifN is linearly between B and C we have BA is greater than

BN and AC is greater than NC so that

BA -{-AC is greater than BC.

(2) IfN coincides with C we have BA is greater than BC and so

BA +AC is greater than BC.

Similarly, if N coincides with B, we have AC greater than BC
and so

BA +AC is greater than BC.
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(3) If C is linearly between B and N we have BA is greater than BN
while BN is greater than BC and so BA is greater than BC ;

from which

it follows that :

BA +AO is greater than BC.

Similarly, if B is linearly between C and N, we may prove the same

result.

These cover all the possibilities which are open; so that in all cases

we have
BA + A C is greater than BC.

By a similar method we may prove that the sum of the lengths ofany
other two sides of the triangle is greater than that of the third side.

Another important result which can readily be obtained, using the

notation of Theorem 194, is as follows:

// the separation line through C normal to AB intersects AB in M ,

then M is linearly between A and B.

For we have AB is greater than BC and BC is greater than BM
,
so

that AB is greater than BM. Similarly AB is greater than AM . Thus,

since M lies in A B, it must be linearly between A and B.

Definition. IfA.B and C be the corners of a triangle in a separation

or inertia plane and if BC be normal to AC, then the side AB will be

called the hypotenuse of the triangle.

In case the triangle lies in an optical plane and BC be normal to A C,

then either BC or AC must be an optical line and, whichever it be,

that one must also be normal to AB.

Thus, when the triangle lies in an optical plane, two of its sides

would equally well be entitled to the name hypotenuse. This could

never be the case either in a separation or in an inertia plane.

ANGLE BOUNDARIES IN SEPARATION PLANES

We are now going to make three successive applications of the result

proved in the remarks at the end of Theorem 192 to the case of a con-

struction obtained from two intersecting separation lines lying in a

separation plane and which are not normal to one another.

Let the separation lines be called x and x
2
and let O be their element

of intersection.

Then O will divide the separation line x into two half-lines, which we

shall denote by xl and #/ ; while it will divide the separation line x2 into

two half-lines which we shall denote by x2 and xz'.
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Let Cl9 CY, C*2 , Cy De any elements in xl9 #/, x29 #2

'

respectively

such that

and let separation lines through C2 and C2 normal to the separation

line x
1
intersect it in N2l and JV' 21 respectively; while separation lines

through Cl and G\' normal to the separation line x2 intersect it in N12

and N' l2 respectively.

Then, since by hypothesis, x and !r2 are supposed not to be normal

to one another, it follows that none of the elements N2l ,
JV' 21 ,

N12 ,
N' l2

can coincide with 0.

Fig. 49.

If we consider first the element iV21 ,
then since, by Theorem 194,

the segment ON2l is less than the segment OC2 , it follows that N21

must either lie linearly between and C l ,
or else linearly between

and Cy.
Without any essential loss of generality we may suppose that N2l is

linearly between and C
l ,

so that N2l lies in x
l

.

Then it follows that jV12 must be linearly between and (72 , so that

jV lies in # an(i we must also have

and (0,N2l )
= (0,N12 ).

Now, since N12 lies in x2 while C2 lies in x29 it follows that is

linearly between C2
and N12 .
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Thus, by a second application of the theorem, it follows that is

linearly between Cl and N' 2l > so that N' 2l lies in #/, while

Now, since N' 2l lies in x-^ and since the segment ON' 2l must be less

than the segment OC2 ,
it follows that N'2l must be linearly between

and CV.

Thus, by a third application of the theorem, it follows that N' l2

must be linearly between and C2) so that N 1

12 must lie in #2', while

(<Y,tf'81)s(0i',tf')

and (0,N'Z1 )
= (0,N'12).

Thus we must have

(CttN^^N^W.N'^W^N^),
and (0, N2l )

^ (O, N12 )
= (0, N' 2l )

= (0, tf' la ) ;

while JVg! lies in xl ,

N12 lies in x2 ,

JV' 21 lies in x/,

JV' 12 lies in #2 '.

The congruences hold whether ^21 lies in x1 or x^, but, ifN21 Ues in

Xi, we shall have instead of the above

N2l lies in #/,

JV'12 lies in x2 ,

N' 2l lies in ^ ,

N12 lies in x2
'.

Now any two separation lines in the separation plane which are

normal to x
l must be parallel to one another, and similarly any two

which are normal to x2 must be parallel to one another.

Accordingly if we take different positions for Cl9 C2) C/, C2 in the

corresponding half-lines xl9 x29 #/, x2

' we may apply the results given

in the remarks at the end of Theorem 185 and show that the ratios of

the segments,
ON21 :OC2 ,

C2
N21 :OC2 ,

C2
N2l :ON2l ,

are independent of the position of C2 in the half-line x2 , and we get

corresponding constancy of ratios for all positions of C^ in xl , of C in

Xi and of C2 in x2 \ so that these ratios are definite for any definite

pair of such separation lines.
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Again let 0, C and N be the corners of a triangle lying in any separa-

tion plane and let CN be normal to ON.

(i) Suppose, in the first place that

OO = OC2

and that ON: 00 = ON2l : 002 .

Then ON : ON2l
= 00 : OC2 .

Thus, since OO=OO2 , it follows from the criterion of proportion

that ON = ON2l and, by Theorem 190, we must have

CN = C2N2l .

It follows that __
CN:OC=02N2l :OC2

and CN :ON=C2N2l : ON2l .

(ii) Next let us suppose that

OC=OC2

and that CN : OC = C2N2l : OC2 .

Then again, since OCOC29 it follows that CN = C2N2l and

accordingly, by Theorem 190, it follows that

Thus we see that

and ON : ON = C2N2l : ON2l .

(iii) Suppose finally that

= ON2l

and that CN :ON = C2
N2l : ON2l .

Then we shall have CN = C2N2l and since also ON = ON2l it follows,

by Theorem 189, that

Thus we see that

and CN : 00 = 2N2l : OC2 .

Thus we see that if any one of the three proportionalities :

ON:dC=ON2l :OC2 ,

CN:dC=C2N21 :OC2)

holds, then the remaining two will also hold, and the pair of separation

lines ON and OC will be characterised by the same triplet of ratios as

were the original pair of separation lines: x
x and x2 .
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We shall find it convenient to denote these ratios by special names as

follows:

The ratio ON2l : OC2

we shall call the c-ratio of the separation lines x and x2 ]
the ratio

C2N2l :OC2

we shall call the s-ratio; while the ratio

C2N2l :ON2l

we shall call the -ratio of the separation lines. The letters c, s and t are

the initial letters of the words cosine, sine and tangent respectively,

but, since they are ratios of absolute magnitudes, and the word "ratio
"

is used in the Euclidean sense, there is no question of sign involved.

Employing the above notation, but removing the restriction that

the separation lines xl and x2 are not normal and also any implied
restriction that they are necessarily distinct, we may introduce the

following definitions :

Definition. If x and x2 be separation half-lines lying in a separation

plane 8 and having a common end O, then, together with the element

0, they will be said to form an angle-boundary and the element will

be called its vertex while x^ and x2 will be called its sides.

For the sake of brevity we shall frequently speak of the sides as

forming the angle-boundary, without explicit mention of the vertex.

If a separation line in 8 taken through any element of x2 normal to

the separation line x intersects the latter in an element of xl , then the

angle-boundary which x
l and x2 form will be said to be acute.

Ifsuch a separation line intersects the separation line x
1
in an element

of x^, then the angle-boundary which xl and x2 form will be said to be

obtuse.

if such a separation line intersects the separation line x
l in the

element O, then the angle-boundary which xl and x2 form will be said

to be right.

This is equivalent to saying that x
l
and x

2 will form a right angle-

boundary provided that the separation lines x^ and x2 are normal to

one another.

If xl and x2 form two distinct portions of the same separation line

they will be said to form a straight or flat angle-boundary; while if x
l

and x2 are identical they will be said to form a null angle-boundary.

It will be observed from the results obtained above that if x
l
and x

2

form an acute angle-boundary, then x and x2 will also form an acute
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angle-boundary, while #/ and x2 will form an obtuse angle-boundary;
as will also xl and x2 .

ft will be observed that we may interchange the roles of o^ and x
2 in

our definitions without affecting the acute, right or obtuse character

of the angle-boundary formed by them.

In case x
l
and x2 form a right angle-boundary, then so also will x-^

and x2 ,
x and x2 ,

x2 and x .

Definition. The angle-boundary formed by x2 and x will be called

a supplement of the angle-boundary formed by x2 and xl and con-

versely.

We shall speak of the c-ratio, s-ratio or /-ratio of an angle-boundary

meaning thereby the c-ratio, s-ratio or /-ratio of the complete pair of

separation lines of which the sides of the angle-boundary are parts.

Definition. Angle-boundaries which are not right angle-boundaries

will be said to be congruent provided that their c-ratios are equal and

their acute or obtuse characters are the same.

Definition. Any right angle-boundary will be said to be congruent

to any right angle-boundary.

It is to be noted that the congruence/ of angle-boundaries, as here

defined, is a similarity in the relationships of the pairs of half-lines

which form the sides of the angle-boundaries which are said to be

congruent.

It does riot, in itself, imply more than this; and certain other things

have to be taken into consideration before one can adequately treat

such theorems as involve the "addition of angles
"
in separation planes.

The customary notation for an "angle", such as LABC, is only

properly applicable to the relationship which the pair of half-lines

BA and BC stand in to one another, and, although the notation is

continually employed in ordinary geometry to represent an angular

magnitude, it cannot, strictly speaking, do so without ambiguity.

We shall accordingly make use of the notation /LABC to denote

what we have called an "
angle-boundary

" whose sides are the half-

lines BA and BC, and shall denote the congruence of angle-boundaries

by the symbol = placed between the symbols for the latter.

According to the above definitions a null angle-boundary is to be

regarded as acute, while a flat angle-boundary is to be regarded as

obtuse.

We have employed the c-ratios in the definition of the congruence of

acute or obtuse angle-boundaries, but we might also have used either
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the s-ratios or the ^-ratios; were it not that we shall find the c-ratios

more convenient when we come to introduce numerical measurement
with -f and -

signs. It will then appear that the acute or obtuse

character of the angle-boundary may be expressed by the sign of the

cosine, but not by that of the sine or tangent.
It will be observed that, as a result of our definitions along with the

congruence relations already proved, it follows that the angle-boun-

dary made by x and x
2 is congruent to the angle-boundary made by

x and x2 ', while the angle-boundary made by xl and x
2 is congruent

to the angle-boundary made by x and x2 .

We are now in a position to prove various theorems involving angle-

boundaries in separation planes.

It will be observed that the results of Theorem 192 enable us at once

to write

B
l
N

l :BlA l
= B2N2 :B2A 2

and ClNl : G\A l=G2N2 : C2
A

2 ,

and the ordinal relations of B
,
N and Cl are in all cases similar to

those of B2 > ^2 aRd C2 respectively: so that if jV\ be distinct from both

Bl and Cl we have

and LA
1 C\ B 1

= LA 2 C2 B2 .

If N coincides with Bl then we know that N2 must coincide with

J52 ,
which merely means that .A 1

B1 C1 and LA% B2 C2 are both right

and therefore are congruent and we still have

so that LA^ C\Bl
- LA 2

C2B2 .

IfNl coincides with Gl we obtain analogous results.

Thus in all cases we have

and by a similar method we can show that

Thus we see that ifA^ ,Bl ,Cl be the corners ofa triangle in a separation

plane P and A 2 ,
B

2 ,
C2 be the corners of a triangle in a separation plane

P2 ,
and iffurther

A^jj^ ==
A.2 13

2 > i k i
=:: tj 2 G 2 5 G^A.^ = L/ 2A 2)

then corresponding angle-boundaries in the two triangles will be congruent.

Another very important result which follows very simply is this:
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// two parallel separation lines a and b lying in a separation plane be

intersected by another separation line c in the elements A and B respec-

tively, and iffurther F, be any element of c such that A is linearly between

B and F, and ifA l and B1 be any elements of a and b respectively which

both lie on the same side of c, we shall have

In the special case where c is normal to a, it is also normal to b and

the angle-boundaries are both right and therefore are congruent.
If c be not normal to a, let a separation line through F in the separa-

tion plane be taken normal to a and let it intersect a in A 1 and b in B' .

Then, as we saw in the remarks at the end of Theorem 185,

and so, since Z.'s A'AF and B'BF are both acute, we have

LA'AF^LB'BF.
Also, since A is linearly between B and F, we have A' linearly

between B' and F, so that A' and B' are both on the same side of c.

If this should happen to be the same side of c as A l and Bl lie on, then

LA^AF is identical with LA'AF while LB^BF is identical with

/.B'BF, so that

If, on the other hand, A' and B' should happen to be on the opposite

side of c to that on which A
1
and Bl lie, then we should have LA^AF

the supplement of LA'AF and LB^BF the supplement of LB'BF,
so that again we have

Thus the result holds in all cases.

Again, no matter whether LA^AF be right, acute or obtuse, let

be any element of a such that A is linearly between A and A 2 .

Then we already know that :

and so we have LB^BA = LBAA^\
another important result.

THEOREM 195

// AH Bly Cl be the corners of a triangle in a separation plane P19

while A 2 ,
J5

2 , C2 are the corners of a triangle in a separation plane P2 and

iffurther
-O jA ^

=== ^2^ 2 >

B1 Cl
= J52 C2 ,
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then we shall also have

In case ^.A
1
B

1 C1
and A

2
B

2 C2 should happen to be right we

have already, by Theorem 189, A
l
C

l
= A

2
C

2 , and, since the other

angle-boundaries are all acute, and since we have

JUL i JLJ -\ '. A. -t \j -i
== ^o. 2 -/5

2

*

<A 2 ^ 2 >

and Cl
B

1
:C1

A
l ^C2B2 :C2A 2 ,

it follows that: LE^G^~ LE^G^A^
and ^.C

1
A 1
B

1
~LC

2
A 2B2

.

Next take the cases where AA 1
B

1 C\ and LA 2
B2 C2

are both acute

or both obtuse and let a separation line through C
l , lying in P

l
and

normal to A
1
B

l intersect A 1
B

1
in JV\; while a separation line through

(72 , lying in P
2 and normal to A

2
B2 intersects A 2

B
2 in N2

.

Then, since Z.A 1B1
C1
= /-A 2B2 C2 ,

we have

1
JV

r

1 :
1
C'

1
=

2 ]V 2 :

2 C
f

2 ,

and ClNl \BiCi = C2N2
: B2 C2 .

Thus, since B
l Cl

= B
2 C2 ,

we have

B^N^B^N^
and Cl

N
l
= C2N2

.

If LA 1B1
Cl and LA 2

B
2 C2 are both acute A

l
and N

1
will lie on the

same side of Bl ,
while A

2
and N2 will lie on the same side of B2

.

If B
l
N

l
should happen to equal Bl

A
l
then Nl would coincide with

A 1 whileN2 would coincide with A 2 and so, in this case, we should have

A.C^A.C,.
If B

1
N

l
should happen to be less than B1A 1 we should have N

l

linearly between Bl and A l
and also N2 linearly between B2 and A 2

and we should also have

N^A^N^.
If B^N^ should happen to be greater than B

1
A

l
we should have A

1

linearly between B1
and N

l
and also A

2 linearly between B2 and ^2

and again we should have

NiAi = N*Ai.

Finally, if /-A 1B1 C1 and Z.A 2
B2 C2 are both obtuse we should have

B
l linearly between A l

and N^ and also B2 linearly between A 2
and ^2

and once more we should have
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Thus in all three cases, by Theorem 189, we have

A
1 C 1

= ^4 2 ^2'

It then follows by the result proved on p. 340 that :

and

and so the theorem is proved.

THEOREM 196

//A and B be the extremities of a diameter of a separation circle lying

in a separation plane and if G be any other element in the circumference

of the separation circle, then AC is normal to BG.

Let be the centre of the separation circle. Then is the mean of

B and A.

Let D be tho mean of B and C.

Then we have (0, B) = (0, C)

and so, by Theorem 187, OD is normal to CB.

But, since is the mean of B and A, while D is the mean ofB and C,

it follows that OD is parallel to AC.

Thus, since OD is normal to CB, we must also have AC normal

to CB, as was to be proved.

Definition. If and X be two distinct elements in a separation

threefold W, then the set of all elements in W such as X where

(0,X) = (0,X )

will be called a separation sphere.

The element will be called the centre of the separation sphere.

The terms radius, diameter, inside, outside, etc. may be defined in a

similar manner to the case of a separation circle.

REMARKS

As we have already pointed out, any element B in a general line a

divides the remaining elements of a into two sets.

In case a is an optical line or an inertia line the two sets consist of

those elements of a which are before B and those which are after B\ but,

in case a is a separation line, the sets are not capable of definition in

quite so simple a form.

Confining our attention in the meantime to the cases where a is an

optical line or an inertia line, we observe that we may group the

element B itself with either of these sets.
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Thus, if we divide all the elements of a into all those elements which

are before B and all those elements which are not before B\ then B
itselfis grouped with those which are not before B. If, on the other hand,
we divide all the elements of a into all those elements which are after

B and all those elements which are not after B\ then B itself is grouped
with those which are not after B.

In either case all the elements ofa are divided into two sets such that

every element of the one (which we may call the lower) set is before

every element of the other (which we may call the upper) set.

The division is made by means of an element B which is explicitly

mentioned.

The question arises as to whether it is possible to have a division of

all the elements of a into two sets such that every element of the one

set is before every element of the other set without the existence of an

element making the division in the manner that B does in the above.

Although it seems reasonable to suppose that there should always
be an element of this character; yet it appears that there is nothing in

the postulates hitherto given which ensures that this must be the case.

These postulates do imply the existence of segments which bear

certain incommensurable ratios to one another (as for example, the

side and diagonal of a square), but these are only a restricted class of

such ratios, and there are other incommensurable ratios conceivable

whose existence is not thus implied.

In order to admit of such possibilities, we shall now give the final

postulate of our system which is equivalent to the Axiom of Dedekind.

POSTULATE XXI. If all the elements of an optical line be

divided into two sets such that every element of the first set is

before every element of the second set, then there is one single

element of the optical line which is not before any element of

the first set and is not after any element of the second set.

Since an element is neither before nor after itself, it is evident that

this one single element may belong either to the first or second set.

Again, if a be an optical line in an inertia plane P, then through each

element of a there passes one single generator of P of the opposite

system to that to which a belongs.

Also every such generator intersects a.

Thus there is a one-to-one correspondence between the elements of

a and the generators of P of the other system and so it follows that: if

either system of generators of an inertia plane be divided into two sets such
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that every generator of the first set is a before-parallel of every generator of

the second set, then there is one single generator of the system which is not

a before-parallel of any generator of thefirst set and is not an after-parallel

of any generator of the second set.

Again ifb be any inertia or separation line and ifP be an inertia plane

containing it, then if we select either system of generators of P, there

is a one-to-one correspondence between the elements of 6 and the

generators of the selected system which pass through these elements.

If 6 be an inertia line and X and Y be any two elements of 6, then X
will be before or after Y according as the generator through X is a

before- or after-parallel of that through Y.

Thus the propertyformulated in Post. XXI holds for an inertia line as

well as for an optical line.

It is also clear that a corresponding result holds in the case of a

separation line, but since here no element is either before or after

another, the property must be formulated somewhat differently.

In order to state the result when b is a separation line we may make
a perfectly arbitrary convention with regard to the use of the words

right and left.

Thus ifX and Y be any two elements of fc, we may say that X is to

the left or right of Y according as the generator of the selected system
which passes through X is a before- or after-parallel of that through Y.

We may therefore state the property as follows :

If all the elements of a separation line be divided into two sets such that

every element of the first set is to the left of every element of the second set,

then there is one single dement of the separation line which is not to the left

of any element of the first set and is not to the right of any element of the

second set.

With the introduction of the equivalent of the Dedekind axiom we

have now reached the stage where we are in a position to set up a one-

to-one correspondence between the elements of a general line / and

the aggregate of real numbers.

Thus, ifA andA l be two distinct elements in /, it may be shown that

there are elements A 2 ,
A 3 ,

A
,

. . . A n . . . in I and on the same side ofA
as is A ! and such that the segment A A is equal to n times the segment

A^A l
.

Similarly there are elements J._1 , ^4_2 , ^4_3 , ... A n ... lying in I but

on the opposite side ofA Q and such that the segment A_nA Q is equal to

n times the segment A QA 19
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Again, it may easily be shown that corresponding to any positive
fry

rational number r = - there is an element A r in I and on the same side
9

of A Q as is A! and such that q times the segment A Ar is equal to p
times the segment A A lt

i)

Similarly, corresponding to any negative rational number r =
;

it may be shown that there is an element A_r in I, but on the opposite

side of AQ and such that q times the segment A_r
A Q is equal to p times

the segment AQA lf

By making use of our equivalents of the axioms of Archimedes and

Dedekind for the elements of I along with the corresponding properties

of real numbers, it is possible to set up the one-to-one correspondence
mentioned above.

The logical steps involved in setting up such a correspondence have

been carefully investigated by others and it is unnecessary to go into

further details here.

These ma;y be found, for instance, in Pierpont's Theory of Functions

of Real Variables, vol. I, chapters I and n, and in other works.

The absolute value of the difference of the real numbers correspond-

ing to the two ends of any segment of I gives us a real number which

may be called the numerical value of the length of the segment in terms

of the unit segment A QA l .

If I be an inertia or separation line, the length of any segment of a

general line of the same kind as / is always expressible in terms of our

selected segment; but if I be an optical line we must restrict the meaning
of the words "of the same kind" to co-directional optical lines.

THEOREM 197

If A, B, C be the corners of a triangle in a separation plane such that

CA is normal to BA, and if a separation line through A normal to BC
intersects BC in M, then

LBAM-LBCA,
and LCAM = LGBA.

Since CA is normal to BA, therefore, by Theorem 194, GB is greater

than CA and so if we take an element D in the half-line CA such that

(C,D) = (C, B) we shall have A linearly between C and D.

If through D we take a separation line parallel to AM and meeting

CB in N, then DN must also be normal to CB.

Then, as already seen, we shall have



346 GEOMETRY OF TIME AND SPACE

But, sinceDN is parallel toAM andD lies in the half-line CA , there-

fore, by Theorem 185,

or AM:AB = AC:BC.

Thus, since LBAM and LEGA are both acute, we have

Similarly LCAM == LCBA .

THEOREM 198

If A, B, C be the corners of a triangle in a separation plane and such

that CA is normal to BA, then the square of the length of the side CB is

equal to the sum of the squares of the lengths of the other two sides.

With C as centre and CB as radius take a circle in the separation

plane and let it intersect the separation line CA in D and E.

Now, by Theorem 194, CA must be less than the radius of the circle

and so A must be either linearly between C and E, or else linearly

between C and D.

Fig. 50.

Without essential loss of generality we may suppose that A is

linearly between C and E.

Now, from Theorem 196, we know that DB is normal to EB and

so, by Theorem 197,

Taking the ^-ratios of these, we have
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But AE = CB-CA
and DA = CB + CA
and therefore

(
CB - CA

)
: BA = BA :

(
CB + CA ) .

If then we take any unit of length of a separation line, and let BA,
CA and CB now represent the numerical values of these lengths in

terms of the selected unit we get

or

as was to be proved.
This result is the equivalent of the "Theorem of Pythagoras":

which accordingly holds in a separation plane.

Let us now, as we have previously done, denote the complete

separation line of which x
l
and x

2 are parts by the symbols x and x2

respectively, and let the element O be the common end of xl and x2 .

Let any convenient unit of length be selected and let the element

be associated with the real number and let elements ina^be associated

with the positive real numbers representing their distances from 0.

Let elements in #/ be also associated with real numbers representing
their distances from 0, but having negative signs. We shall suppose
the elements in the separation line x2 to be treated in an analogous
manner.

If P be the element in or2 which is at unit distance from O and if a

normal through P on the separation line x^ ,
intersects the latter in the

element N, then the real number associated with N in x is character-

istic of all angle-boundaries which are congruent to that made by xz

and xv .

Thus, when N is distinct from 0, the absolute value of this real

number represents the c-ratio ON : OP and its sign is positive for acute

angle-boundaries and negative for obtuse angle-boundaries; while, if

N coincides with 0, the real number associated with N is 0, which is

characteristic of the case where we are dealing with right angle-

boundaries.

It will be evident that the real number obtained in this way will be

the cosine ofan angle which x2
makes with xl , but, from the strict logical

standpoint, we are not quite in a position to make this identification;

since we have not as yet considered angles as distinguished from angle-

boundaries. As, however, we require a notation for this function, we

shall, inthe meantime, denote it by c (x2 , xj, which from results already

obtained is clearly equal to c (xl ,
x2 ).
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ANGULAR SEGMENTS AND INTERVALS

If an angle-boundary, which is not null, lies in a separation plane 8
and has an element as vertex, it divides all the rays in S having as

end, excluding the sides of the angle-boundary, into two distinct sets.

Ixt x
l
and x

2 be the sides of the angle-boundary (which we shall

first suppose is not flat) and let A be any element of xl and B be any
element of #2

Then any ray in 8 having as its end which intersects AB in an

element M linearly between A and B belongs to the one set; while any

ray in 8 having O as its end, other than x
l
and x

2 ,
which does not

intersect AB in an element linearly between A and B, belongs to the

other set.

It may easily be proved, by means of the analogues of Peano's

axioms 13 and 14, that the property of a ray such as OM is independent
of the positions of A and B in x

1
and x

2 respectively; so that the set of

rays of this type is independent of the positions ofA and B in the sides

of the angle-boundary, and accordingly, the other set of rays is also

independent of these positions.

Next, taking the case where x
v
and x

2
form a flat angle-boundary;

any ray in S having O as its end which lies on one side of the complete

separation line formed by x
l ,
x
2
and the element 0, belongs to the one

set; while any ray in S having as its end which lies on the other side

of this separation line belongs to the other set.

Thus in all these cases, the angle-boundary together with any one

ray of a set determines that set and distinguishes it from the other set

of rays having the same boundary.
In the case of a null angle-boundary, since x coincides with x2 ,

there

is no separation of the remaining rays into two sets; but, instead of this,

there is only one set comprising all such rays.

We may now introduce the following :

Definitions: If x
1 and #2 be the sides of an angle-boundary in a

separation plane S having an element as vertex, then either of the

sets of rays in S having O as end separated off in the above manner by
the angle-boundary (or, in the case of a null angle-boundary, the single

set) will be called an angular segment.

The rays x1 and x% will be called the sides ofthe angular segment, but

are not included in it.

An angle-boundary which is not a null one together with either of
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the angular segments which it separates will be called an angular
interval.

A null angle-boundary without any angular segment will be called

a null angular interval', while a null angle-boundary together with the

single angular segment associated with it will be called a circuit

angular interval: the segment itself being called a circuit angular

segment.

Reverting to the case of an angle-boundary which is neither null nor

flat: an angular segment or interval which contains a ray such as OM
will be said to be of the first type; while one which does not contain a

ray such as OM will be said to be of the second type.

An angular segment or interval of the first type will be said to be

acute, right or obtuse according as the angle-boundary is acute, right or

obtuse; but these terms do not apply to angular segments or intervals

of the second type.

The two angular segments or intervals associated with a flat angle-

boundary will be called flat angular segments or intervals and will also

be regarded as obtuse.

Again, if x and x
2
form an angle-boundary which is neither null nor

flat, the angular segment or interval of the first type formed by xl and

x
2

'

or by x2
and x

'

will be said to be a supplement ofthe angular segment
or interval of the first type formed by x

l
and ,t*

2 ;
but this term does not

apply to angular segments or intervals of the second type.

When an angle-boundary is not null the two angular segments or

intervals associated with it will be said to be conjugate to one another.

Also a null angular interval and a circuit angular interval will be

said to be conjugate to one another; but there is no angular segment

conjugate to a circuit angular segment.

Consider now the case of an angular segment which is not a complete

circuit one, but has xl and x2 as its sides and as its vertex. We have

to make a distinction between the two sides of the separation line x
l

with respect to the angular segment, and this is done as follows:

If (1) all the rays of the angular segment lie on one side of x,

or (2) all the rays in S having as end and lying on one side of xl are

rays of the angular segment;

then such side will be called the positive side of xl with respect to that

angular segment (or the corresponding angular interval), and the other

will be called the negative side.

This gives a unique determination of the positive side of x with
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respect to a given angular segment when this is not a circuit segment;
but fails to do this if it be such.

It will be found however that, for our present purpose, this does not

matter.

If we consider the case where the angle-boundary formed by x
l
and

x
2 is neither Hat nor null; then of the two conjugate angular segments

into which it divides the other rays of S which have as end, one will

be fjf what we have called the first type and the other will be of the

second type.

It is clear that the angular segment of the second type will contain

the two rays #/ and x2 ;
since a separation line such as AB which inter-

sects #! and x2 cannot intersect either x or x
2 .

Thus x
2 and all the rays belonging to the angular segment of the first

type lie on one side of x^ ,
and this is the positive side of x with respect

to the angular segment of the first typo.

On the other hand, all the rays in $ which have as end and which

lie on the opposite side of J\ belong to the angular segment of the

second type, and accordingly, this will be the positive side of I\ with

respect to the angular segment of the second type.

Thus x
2 lies on the negative side of x

l
with respect to the angular

segment of the second type; but it lies on the positive side of x
1 with

respect to the angular segment of the first type.

In the case of a fiat angular segment, all the rays belonging to it lie

on one side of 1^ and also all rays in S having O as end and lying on this

same side of J^ are rays of the angular segment; so that, for a double

reason in this case, this will be the positive side of x
1
with respect to

this Hat angular segment.
The ray x2 of course in this case actually lies in x

v
.

Now let y l
be the separation line passing through and lying in S

which is normal to
I*j

and let the half-lines into which y l
is divided by

O be denoted by y l
and ?// ; of which y^ is taken to be the one which is

on the positive side of I\ with respect to the particular angular segment
we are considering.

Then the angle-boundary which x
2
and yl

make is characterised by
the function c (x2 , i/j), which may be positive, zero or negative according

as the angle-boundary is acute, right or obtuse.

If the angular segment we are considering be of the first type, then,

as we have seen, x2 will be on the positive side of x
l ,

so that c (x2 , yj
will be positive.

If the angular segment be of the second type, then, as we have also
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seen, x
2 will be on the negative side of x

1
and so c (x2 > yj will be

negative.

If the angular segment be flat, then x2 will lie in x1 so that c (x2 , y^
will be zero.

If the angular segment be a circuit one, then x2 coincides with xl , so

that again we have c (#2 >2/i) zero, no matter which side of x be taken

as the positive one.

This case however differs from that of a flat angular segment in that

for the latter, c(xz ,x1 )= 1
;
while for a circuit segment, c(x2 ,xl )

= -f 1 .

In fact it follows directly from Theorem 198, that in all cases

The angular segment, as here defined, will be characterised by the

two functions c(x29 xl ) and c(x^ y y^ taken in conjunction: the one

being determinate from the other except as regards sign.

It will hereafter be found convenient to denote such a pair of

functions taken in conjunction by the symbol

c(x2l xl )^ric(x,z ,yl ),

and we shall call this the De Moivre function of the angular segment.

Any angular segment similar to this will have the same De Moivre

function.

Definition. Angular segments will be said to be congruent when
their De Moivre functions are equal.

Such complex functions are regarded as equal when the correspond-

ing component functions are separately equal each to each.

As regards angular intervals which are neither null nor circuit

intervals, these will also be said to be congruent when their De Moivre

functions are equal, but a null angular interval has the same De Moivre

function as a circuit one.

They are however distinguished from one another in that a null

interval has no corresponding angular segment, while a circuit interval

has.

ADDITION OF ANGLES

We have now to consider a series of half-lines, x^x^x^... all

having a common end O and lying in a separation plane /S, along with

a second series y , y1 , y2 , ... also having the common end and lying

in S and such that y , yl , y2 ,
... are respectively normal to XQ ,

xt , x2 ,

As regards y ,
it is perfectly arbitrary which of the component half

lines into which it is divided by we denote by yQ and which by y ',
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but, a selection being made in the case of y ,
we are able to assign a

definite systematic nomenclature in the case of y1? i/2 ,
....

If now we take x and yQ as standards we shall make the following

conventions:

If xv is either identical with # or else makes acute angle-boundaries

with both XQ and yQ ,
it will be said to lie in the first quadrant.

If x
l
is either identical with yQ or else makes acute angle-boundaries

with both 2/ and # ', it will be said to lie in the second quadrant.
If x

l
is either identical with # '

or else makes acute angle-boundaries

with both XQ and t/ ', it will be said to lie in the third quadrant.
If x

l
is either identical with y

'

or else makes acute angle-boundaries
with both yQ

' and XQ ,
it will be said to lie in the fourth quadrant.

These cover all the possibilities which are open with regard to x^\ as

is readily seen.

Omitting for the present the cases where x
l
is identical with one of

the half-linevS #
, t/ ,

# ', j/

'

?
we shall consider the other possibilities in

succession.

(1) Let us suppose that x makes acute angle-boundaries with both

xQ and yQ and let A be any element in XQ . Let the normal through A to

X
L
intersect it in M .

Then, since x
l
makes an acute angle-boundary with a:

,
it follows

that M must lie in x
v

,

Fig. 51.
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Also, since x1 does not coincide with XQ ,
it follows that AM cannot

be parallel to y$ and therefore must intersect y in some element B.

Further, since x makes an acute angle-boundary with y ,
it follows

that B must lie in y$ , and, by the remarks at the end of Theorem 194,

M must be linearly between A and B.

Now, since x is supposed to be distinct from xl9 a separation line

through B parallel to x1 must intersect x in some element C.

Further, sinceM is linearly between A and B we must have O linearly

between A and C, so that C must lie in x '

.

Now let the separation line yl , which passes through O and is normal

to I\, intersect BC in N.

Then, since /_ BOO is a right angle-boundary, it follows that N must
be linearly between B and C\ so that /.NOB and LNOC are both

acute.

We shall select the part of y which contains N as the one to be

called yv .

Thus, if x
l
makes acute angle-boundaries with XQ and ?/ , then our

notation is so chosen that y^ makes acute angle-boundaries with yQ

and x
f

.

Now, since ON is parallel to AB, it follows that:

ON:OC = AB:AC,

and, since both are acute angle-boundaries, it follows that:

But, since BO is normal to AO
7
and OM is normal to AB, it follows,

by Theorem 197, that:

LOAB=LB()M.
Thus LCON=LBOM.
Similarly we can show that:

These last two congruences may be expressed thus:

^(yiiV) 25 ^ fai^o) ...... ()
and L(y^y^)^ L(x^x^} ...... (6).

(2) If we carry out the above investigation making the substitution :

implying that
,

we get L (yl , y ')
= /_ (^ ,

XQ ') ...... (a)

and

23
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(3) If instead, we make the substitution:

implying that FO >

J *

we get /.(i/!,^)-/.^,^) ...... (a)

and

(4) Finally, if we carry out the original investigation making the

substitution:

</o > V, </o'\
impiying that P' ?\ ,

*o>VoiV/ Wo^o/

(b) supplements (x1 ,y )
= ^ (yl ,

XQ ),

(a) supplement ^(a?!, y )
= Z.(yl5 a: ),

we get /.(?/!, f/ )
=

2L(x1 ,xQ ) (a)

and Z.(yl9 xQ )=. ^.(x1 ,yQ

f

) (6).

The above results may be transformed thus:

( (a) supplement/. (xl , yQ )
=

,

\(b} L(x x }\\u ) *~\ u/
i > ^o/

( )

(6) supplementZ.^, ?/ )
=

Let us now complete the conventions of notation as regards the part

of yl
which we shall call yl

in the following manner :

If xl
coincides with xa , then yl

coincides with yQ .

If #! coincides with yQ ,
then y coincides with #(/ .

If x
l
coincides with .r ', then y1

coincides with y '.

If x coincides with yQ

'

',
then yl coincides with XQ .

Then, since the supplement of a right angle-boundary is a right

angle-boundary, while the supplement of a null angle-boundary is a

flat angle-boundary and vice versa, it follows at once that, with these

conventions, we still have the two congruences:

supplementL (xv , */ )
=

and L(xl ,xQ )

The conventions of notation may now be summed up as follows:

If x1 lies in the first quadrant y1
lies in the second quadrant.

If x
l
lies in the second quadrant yl

lies in the third quadrant.
If x

1
lies in the third quadrant yl lies in the fourth quadrant.

If x
1 lies in the fourth quadrant yl

lies in the first quadrant.
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With these conventions, whatever quadrant x lies in we have the

above two congruences; so that, if we employ the numerical form of

the c-ratios, we have in all cases:

-eK,2/oHc(2/i>#o)
and ^(a^tfoH 0(^,3/0).

It will be observed that these results have been obtained without

making use of the
"
addition of angles ".

If now we make the substitution I

' ' l
_ I

, we may carry out
V*i,2/i,*2 >2/2/

J

a similar argument fixing the part ofy2 to be called yl
arid proving that :

-c 0*2* Vi)
=

c(2/2 ,^)
and c(x2 ,Xi)

= c(y2 ,yj

and so on in succession any number of times.

Now let A be an element in the half-line x
2 and let the length OA be

denoted by r.

We may treat the pair of separation lines x
, yQ as a pair of Cartesian

coordinate axes having O as origin and the half-lines xQy yQ as the

positive parts of the axes.

Let , Tfo be the coordinates of the element A in this system.

Similarly we may treat x
, y^ as another pair of Cartesian coordinate

axes having the same origin and the half-lines x
l , yl as the positive

parts of the axes.

Let fx , vj l be the coordinates of the element A in this second system
and Jet the normal through A to xl intersect x

l
in the element M .

Now the principle that the algebraic sum of the projections of the

parts A^A l ,
A

1
A

2 ,
... A n_ l

A
tt
of a broken line upon a given line is

equal algebraically to the projection of the linear interval A QA tl

joining the extremities of the broken line upon the given line clearly

holds in our geometry just as it does in ordinary Euclidean geometry:
the proof being exactly analogous.

Accordingly the projection of OA upon XQ or y is equal to the

algebraic sum of the projections ofOM and MA upon the same separa-

tion lines.

Taking first the projections upon XQ ,
we have

OM = gl and MA^^
while MA is co-directional with yl .

Thus =
jc (^ ,

x ) + iiiC (yl ,
x ),

23-2
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Thus we get

l9 y )
...... (1).

Taking the projections upon jy
we get

while

Thus

r

Fhe formulae (1) and (2) maybe combined into a single one bymeans

of the symbol i V 1
;
thus :

y l)}{c(xl9 xQ ) + ic(xl9 yQ )} ...... (3).

It will be observed that formulae (1) and (2) are the equivalents of

the addition formulae for cosine and sine respectively; while (3) is

equivalent to the formula of l)e Moivre.

Now we have already seen that any angular segment is characterised

by one definite De Moivre function and any De Moivre function is

characteristic of all angular segments which are congruent to one

another.

The same is true with regard to angular intervals except that a null

interval and a circuit interval have the same De Moivre function.

We also remarked that it would be found convenient to denote a

De Moivre function in a certain manner involving a symbol i.

We now see that by taking i to stand for \/ 1 we have got an inter-

pretation for the product of the De Moivre functions of two angular

segments as the De Moivre function of an angular segment bearing a

simple relation to the first two taken in conjunction.

We have now to make a diversion on the exponential function.

The exponential function of an argument z or exp (z) is defined as

the limit of the infinite series

z z* z* z*
1 +

l!
+

2!
+

3!
+

4!
+ -"

and, as is well known, it has the property that

exp (u) . exp (v) exp (u -f v)

for all values of u and r, real and imaginary.

If we put z = i6 we get
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and it is well known that the real and imaginary parts of this, namely :

___I____ ___i

2! 4! 6
r
l

and

called cos 6 and sin 6 respectively, are such that the sum of their

squares is equal to unity.

Also it is known that corresponding to any value of exp (i9) there are

an infinite number of values of 9 of the general form + 2mr, where n

is any integer positive, zero or negative.

We can thus write

c (xl ,
XQ ) + ic (xl , y )

= exp (iO)

and c(x2 ,xL )

and then we have

c (x2 ,xQ ) + ic (#2 , ?/ )
= exp (i9

The quantities 9 and
<f>

so introduced may be either positive or

negative according to the signs of the n's.

The different positive values of #; that is to say 9 + 2mr, where n is

zero or positive and 9 is the smallest positive value of 9, will be called

the angles (in natural measure) corresponding congruently to an

angular interval whose De Moivre function is

c(xl ,xQ ) + ic(xlJ y ).

The different values of -f 2mr, where n has the negative values

1, 2, 3, ... with their signs reversed, will be the angles corre-

sponding congruently to the conjugate angular interval.

In the special case of a null interval we have the set of angles

0, 277, 477, 677, ...

corresponding congruently to it, and, giving negative values to n, and

reversing the signs, we have the set of angles

2?7, 4?r, 677, ...

corresponding congruently to the conjugate angular interval, which

is here a circuit interval.

Thus, for a null interval, # is taken as zero, while for a circuit

interval is taken as 2?!, though the De Moivre function is the same

for both.

The value # will then represent the magnitude of the angular

interval or segment (when such exists); while 9 + 2n7T for positive
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integral values of n will represent that magnitude + n times the

magnitude of a circuit interval or segment.

It is to be observed that in a separation plane there exists no entity

corresponding to an angular segment or interval greater than a circuit

one, any more than any linear segment or interval can exist inside a

circle which is greater than the diameter of the circle; although the

sum of the magnitudes of several such segments or intervals may be

as great as we please.

It is unnecessary to go into this subject in further detail, since it is

obvious that we should merely be covering ground which is already

familiar.

We have employed the above method in dealing with the measures

of angles in order to avoid making use of conceptions alien to our sub-

ject: such, for instance, as the "rotation of a half-line about its end
5

'.

This mode of speech, although familiar, is appropriate to Kine-

matics rather than to Pure Geometry, and would be quite out of place

in treating of a separation plane in which no element is either before or

after any other one and in which no motion can occur.

This is particularly important in a work like the present, where we

are concerned with showing how a system of geometry may be built

up from certain fundamental concepts, and not merely with seeing,

more or less intuitively that certain things are the case.

Once a firm basis is laid down one may proceed with the development
of a subject with less circumspection, and in the present case we have

reached a stage where we are safely entitled to say that the geometry
of a separation plane is formally identical with that of a Euclidean

plane, and, in consequence, the geometry of a separation threefold is

formally identical with the ordinary (Euclidean) geometry of three

dimensions.

We do not propose to consider the theory of areas, volumes, etc.

since these are formally identical with the corresponding theories in

ordinary geometry.

THEOREM 199

// B and C be two distinct elements in a separation line and be their

mean, and if A be any element in an optical line a which passes through

O and is normal to EC, then

(A,B) = (A,C).

Since a is an optical line which is normal to the separation line BC,
it follows that a and BC lie in an optical plane, say P.
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If the element A should happen to coincide with then, since BC is

a separation line, the theorem obviously holds.

Suppose next that A does not coincide with 0, and let d be a separa-

tion line passing through and normal to P.

Then a and d determine an optical plane, say Q, which is completely
normal to P; and, since BC and d are both separation lines and are

normal to one another, it follows that they lie in a separation plane,

say 8.

Let D be any element of d distinct from 0.

Then DO is normal to BC and so, by Theorem 186, we have

(D,B) = (D, C).

But, since Q is completely normal to P, it follows that DA is normal

to P and so DA is normal to both AB and AC.

Also, since D is not an element of a, and a is a generator of the

optical plane Q, it follows that DA must be a separation line.

Similarly, since B and C are not elements of a, and a is a generator

of the optical plane P, it follows that both BA and CA are separation

lines.

Thus DA and BA must lie in a separation plane, say Rl , and DA
and CA must lie in a separation plane, say J?

2
.

Thus, by Theorem 190, since

(A 9 D)z=(A,D)

and (D, B) ~ (D, C),

it follows that: (A,B) = (A 9 C)

as was to be proved.

THEOREM 200

// and XQ be two distinct elements in a separation line lying in an

optical plane P, then the set of all elements in P such as X where OX is a

separation line and

consists of a pair of parallel optical lines.

Let XQ be an element in OXQ and on the opposite side of to that

on which XQ lies, and such that:

Then XQ is an element of the set we are considering, and it is evident

that it is the only one besides X lying in the separation line X .

Further it is evident that is the mean of XQ and X '.
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Let a, h and c be three generators of the optical plane P passing

through X , XQ and O respectively.

Let Xl
be any element in a distinct from X , and let Xl intersect

6 in X/.

Further, let c intersect XQ'Xl in the element M .

Then OX
l
and X fX

l
are both separation lines, since they have each

got elements in two distinct generators of the optical plane.

Now, since c must be parallel to a, and since is the mean ofXQ and

Jf ', it follows, by Theorem 94, that M is the mean ofX
l and XQ'.

But, since OM is an optical line and XQ
fX

1
*s a separation line in the

same optical plane P with it, it follows that M is normal to X fX
1 .

Thus, by Theorem 199, we must have

(0,XJ = (0,XJ).

But, since (0,XQ') = (0,XQ ),

it follows that: (0, XJ = (O, X ).

Similarly (0,X^^(0 }
XQ

f

) y

and so (0,X 1

/

)
= (0,X ).

Thus J^ and XL

'

are evidently elements ofthe set we are considering,

and are clearly the only ones lying in the separation line OXl .

Similarly any other separation line passing through and lying in

P will intersect a and b in elements belonging to the set considered, and

these will be the only ones lying in that separation line.

Thus the parallel optical lines a and b together constitute the set of

elements in P, such as X
,
where OX is a separation line and

(0,X) = (0,XQ ),

and so the theorem is proved.

REMARKS

Certain interesting results follow directly from the last theorem.

Thus if we consider any triangle in an optical plane whose corners

are A, B and (7, then not more than one of the general lines AB, EG,
CA can be an optical line, since no two optical lines in an optical plane

can intersect.

Tf EG be an optical line, then AE and CA must be separation lines,

and from the last theorem it follows that:

(A,B) = (A,C).

If, on the other hand, neither AB, EG nor CA be an optical line,

they must all be separation lines.

In this case, let a, b and c be generators of the optical plane passing
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through A, B and C respectively, and intersecting BC, CA and AB in

A'
',
B' and C" respectively.

Then, since neither AB, BC nor CA are optical lines, it follows that

neither A'
',

J5' nor C" can coincide with a corner of the triangle.

Thus we must either have

(1) A' linearly between B and (7,

or (2) C linearly between A' and B,

or (3) B linearly between C and A'.

In the first case, we shall also have

A linearly between B' and C,

and A linearly between B and C".

In the second case, we shall also have

C linearly between A and B'
',

and C' linearly between A and 12.

In the third case, we shall also have

B linearly between C' and A,

and B' linearly between C and A.

Thus in all cases one of the three elements A', B', C", and only one,

lies linearly between a pair of the corners A, B, C.

Now let us consider the case, for instance, where A' is linearly

between B and C.

It follows directly from the last theorem that:

(B,A) = (B,A'),

and (C,A) = (C,A
r

).

This remarkable result may be expressed as follows:

If all three sides ofa triangle in an optical plane be separation segments,

then the sum of the lengths of a certain two of the sides is equal to that of the

third side.

Again, if a and b be a pair of neutral-parallel optical lines and if A l

and A
2
be any elements in a, while B l and B2 are any elements in 6, we

have
(A B ]==(A R }(A. 1 9 -L>i) v^i, -o

2 ;,

and (B29 A l )
= (B29 A 2 ).

Thus we see that we must have

(A l ,B1)^(A,,B2 ).

It will be observed that, in the case of an optical plane, a pair of

parallel optical lines is the analogue of a circle, in so far as any analogue

exists.
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Again, if W be an optical threefold and be any element in it, while

c is the generator of W which passes through 0, then any general plane

in W which contains c is an optical plane, while any one which passes

through 0, but does not contain c, is a separation plane.

If then S be any separation plane lying in W and passing through O
and Jf be any element in it distinct from 0, the set of elements in S,

such as X, where ir. v._ /r> v x

(U,JL) = (U,JLQ),

constitutes a separation circle.

If through each element of the separation circle a generator of W be

taken, then any element X on any such generator will also satisfy the

relation n Y m Y
(G), A)5=(GJ,A ).

Further, it is clear that no other element of W does satisfy it.

The set of elements thus obtained lie on a sort of cylinder which, in

the case of an optical threefold, takes the place of a sphere.

We shall call this an optical circular cylinder.

THEOREM 201

// A 19 Blt (?! be the corners of a triangle in an inertia plane Pl and

A 2 ,
B2 ,

C2 be the corners of a triangle in an inertia plane P2 >
an^ if

further B1
Cl

be a separation line which is normal to the inertia line A 1 C1[9

while B2 C2 is a separation line which is normal to the inertia line A 2 C2 ,

then:

(1) // (C^A^C^Aj

we shall either have (A 1 , BJ == (A 2 ,
B2 ),

or else both A
l
B

l
and A 2B2 will be optical lines.

(2) // (A^CJ^C^AJ
and (Cl ,B l )

= (C2 ,B2 ),

we shall either have (A l ,
B

t )
== (B2 ,A 2 ),

or else both A l Bl and B2A 2 will be optical lines.

Consider first part (1) of the theorem.

Since (Cl ,A l)==(C2 ,A 2 ), and since these are inertia pairs, we must

have either A
1 before Cl and A 2 before <7

2 ,
or else have A

l after Cl and

A 2 after C2 .

We shall only consider the case where A
l is before Cl and A 2 before

(72 ,
since the other case is quite analogous.

If A 1B1 were an optical line we should have (Cl , A) a before-

conjugate to (Cj, BJ and if A 2 were an element in C2A 2 ,
such that
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(02 , AS) were a before-conjugate to ((72 ,
B

2 ), then it would follow, by
Theorem 179, that we must have

and so we should have

(C8 ,4 2)EE(Ca ,4 a ').

Thus A 2 would be identical with ^4 2 , and so A 2B2 would also be an

optical line.

We are not, however, at liberty to assert in this case that:

(A^Bj^A^BJ,
but only that they are both optical pairs.

We shall suppose next that A
l
B

l
is not an optical line, and that

accordingly A 2
B2 is not an optical line.

Let Dl and D2 be elements in C
l
A

l and C2A 2 respectively, such that

((71? Z>
x )

is a before-conjugate to (Cl , l^), and (C2 ,
D2 )

is a before-

conjugate to (C29 B2 ).

Then, by Theorem 179, we must have

(C^DJ^C^DJ.
Now two cases occur; we may have

(1) A l linearly between Dl and Cl9

or (2) D1 linearly between A l and Cl .

In the first case, since we also have

(L/i 9
A-L )

= (C 29 A 2 ) 9

it follows that we must also have A 2 linearly between D2 and C29 as

was shown in the remarks at the end of Theorem 184.

Similarly, in the second case we must also have D2 linearly between

A 2 and C2 .

Again, in the first case we have Dl before C\ ,
and must therefore have

A
l after Dl and before Cl

.

But A l could not be before Bl ,
for then A l would require to lie in the

optical line Dl
B

l ,
which we know is not the case.

Further, A l
could not be after B l9 for then, since G is after A l9 we

should have C^ after Bl contrary to the hypothesis that B1 C1 is a

separation line.

It follows that in case (1) A l
B

l is a separation line, and similarly

A 2B2 is a separation line.

In case (2), on the other hand, we must have A before D1 and so,

since Dl is before Bl9 we must have A l before Bl .

Thus, since DlA l
is an inertia line, and since Dl is the only element



364 GEOMETRY OF TIME AND SPACE

common to it and the /? sub-set of Bl , it follows in this case that A lBl

is an inertia line, and similarly A 2B2
is an inertia line.

We shall consider cases (1) and (2) separately.

Case (1).

We have here got A l
B

l and A 2 J32 , both separation lines.

Now let W
l
and W2

be inertia threefolds containing Pl and P2

respectively, and let /Sx and S2 be the separation planes in Wl and W2

which pass through Cl arid C2 ,
and are normal to the inertia lines A l Cl

and A 2 C2 respectively.

Then, since B
l C\ is normal to A

1
C

1 ,
it follows that B1

C
l
must lie in

Sl and similarly B2 2 must lie in S2 .

Now, since A lB l
is a separation line, there is an inertia plane which

passes through A l ,
lies in Wl and is normal to A lB l

.

This inertia plane contains two optical lines which pass through A l

and must be normal to A l
Bl and which must intersect Sl} since Sl is

a separation plane in the same inertia threefold along with these optical

lines.

Let one of these optical lines intersect Sl
in the element E { .

Fig. 52.

Similarly we can show that there are two optical lines passing

through A 2 and lying in TF2 ,
and which are normal to ^4 2^2 .

These optical lines may be shown in a similar manner to intersect S2 ,

and we shall suppose that one of them intersects S2
in the element E2 .

Now, since the optical line A
l
El

is normal to the separation line

A
1
B11 it follows that A l

E
l and A l

B
l
lie in an optical plane.

Similarly A 2E2 and A 2B2 lie in an optical plane.

But, since an optical line in an optical plane is normal to every

general line in the optical plane, it follows that A lE v
is normal to El

B
l ,

and similarly A 2
E

2 is normal to E2
B

2 .
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Again, since E B
l lies in Sl and since Si is normal to ^4

X
C

l ,
it follows

that A j GI is normal to Ev
fi1 .

Thus E^Bi is normal to the two intersecting general lines A l j&\ and

A i G19 and is therefore normal to the general plane containing them.

It follows that E BI is normal to E C\ , and similarly E2B2
is normal

to E2 C2 .

Again, since 8
t
is normal to A 1

C
1 ,

it follows that El G is normal to

AI C l ,
and similarly it follows that E2

C
2
is normal to A 2 C2

.

Thus, since A 1 Cl and^4 2 C2 are inertia lines while A^Et and A 2
E

2 are

optical lines, it follows that (C19 E) and (G2 ,
E

2 )
are after-conjugates

to (Gl9 A : )
and (C2 ,

A
2 ) respectively.

But, since (Cl9 A l)==(C2 ,A 2 ),

it follows by Theorem 179 that:

(C^E^C^E*).
Thus Cl , J?! , .P! are the corners of a triangle in the separation plane

S
L
and G2 , 2 ^2 are ^^e corners of a triangle in the separation plane

No, while further

and also B
1
E

l
is normal to G\^x and B2

E2 is normal to C2E2 , and so,

by Theorem 190,

(E^B^E^BJ.
But since EB and ^i^i are separation lines lying in an optical

plane, of which A^E^ is a generator, it follows from the remarks at the

end of Theorem 200 that:

(E17 B1)^(A 11 B1 ).

Similarly (E2 ,B2 )
= (A 2 ,B2 ).

Thus we get finally (A l ,Bl)~(A 2l B2 ),

and so the theorem is proved in case (
1

)
.

Case (2).

We have here got A l
B

l and A 2B2 ,
both inertia lines.

As before, let W and W2 be inertia threefolds containing Pl and P2

respectively, and let Sl
and S2 be the separation planes in W^ and W2

which pass through Gt and C2 and are normal to the inertia lines A
v
Cl

and A 2 C2 respectively.

Then, as in the first case, Bl C lies in S^ and J52 (72 lies in ^2 .

Let 6X be the separation line in /Sj which passes through B and is

normal to B C , and similarly let b
2
be the separation line in 82

which

passes through B2 and is normal to B2 C2 .
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Then, since A l Bl is an inertia line, it follows that A lBl and 6t lie in

an inertia plane, say Q19 and similarly A 2
B

2 and 6
2 lie in an inertia

plane, say Q2 .

Let one of the generators of Q which pass through A l intersect 6X in

the element Fl ,
and let one of the generators of Q2 which pass through

A 2 intersect 62 in the element F2 .

Now, since A 1 C l is an inertia line, it follows that A 1 Cl and A 1
F

1

determine an inertia plane, and similarly A 2 C2
and A 2F2 determine

an inertia plane.

Since ClFl lies in S19 it must be normal to A 1 C19 and since C2F2

lies in S2 , it must be normal to A 2 G2 .

Thus, since A 1
F1 and A 2F2 are optical lines, it follows that (Cl9 FJ

(C2 ,
F2 ) are after-conjugates to (Ol ,A^) and ((72 ,

A 2 ) respectively, and

so, since

(Ci,A^(Ct,A^
it follows, by Theorem 179, that:

But now Cf

1 ,
Fl ,

B
1 are the corners of a triangle in the separation

B,* -^fCi

Fig. 53.

plane S and C2 ,
F

2 , B2
are the corners of a triangle in the separation

plane S2 ,
while further
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and also Fl
B

l is normal to Cl
B

l and F2B2 is normal to C2B2 and so
>

by Theorem 190,

(BI ,Fl)^(B2 ,F2 ).

Since J^ fij lies in S-^ ,
it is normal to ^4 X C^ ,

and by hypothesis it is

also normal to B
l Cl and so, since A 1 Cl and B

1 CI are intersecting

general lines in Pl ,
it follows that FlBl is normal to Pl

.

Thus F1
B

1
must be normal to A lBl and similarly F2B2 must be

normal to A 2B2 .

But^ F
1 and ^4

2
jF

2 are optical lines whileA
l
B

1
andA 2B2 are inertia

lines and so (B19 FJ and (J32 ,
.F2 )

are after-conjugates to (B19 A l )
and

( 2 ,
^4 2 ) respectively.

Thus since (B^ , FJ = (B2 , ^2 ),

it follows, by Theorem 179, that:

(B1 ,^ 1 )
= (JS2 ,^ 2 ),

that is (A l) B1)~(A 2 ,B2 ) )

as was to be proved.

Consider now part (2) of the theorem.

Since (A l9 6
t

1 )

= (C2 ,^4 2 )
and since these are inertia pairs we must

either have A l before Cl and A 2 after C2 or else have A after C\ and A 2

before C2 .

There is then no difficulty in showing that :

(A 1 ,S1 )
= (Bt ,A 2 ),

provided that -^i^i be not an optical line.

The proof is quite analogous to that of the first part of the theorem

except that we make use of the result given at the end of Theorem 179

in place of Theorem 179 itself.

It is also evident that ifA lB l be an optical line, then B2A 2 must also

be an optical line.

Thus both parts of the theorem hold.

It will be observed that the two parts of Theorem 201 are the

analogue for inertia planes of Theorem 189.

ANALOGUES OF THE THEOREM OF PYTHAGORAS

IN INERTIA AND OPTICAL PLANES

In Theorem 198 we proved that the equivalent of the theorem of

Pythagoras holds in a separation plane and we now propose to make

use of the constructions of the two cases of Theorem 201 in order to

obtain the analogue for the case of an inertia plane.
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It is only necessary to consider the construction in connexion with

one of the two triangles: say that whose corners are A^, Bl9 C .

In case (1) Cl is a separation line, A C1 is an inertia line normal

to Bl Cl , and A B{ is a separation line.

But now we obtained a triangle whose corners were Bl9 Cl and El

which lay in the separation plane S: and such that ElB1 was normal to

El C\ and in which accordingly we must have the segment relation:

(B1 1)^(E1B^ + (El
C1 )

t
.

This triangle was related to the one whose corners are A l ,
B

,
Cl in

such a way that

(E19 B1)^(B19 A 1 ) 9

while (Cl9 El )
was a before- or after-conjugate to (Cl9 A^.

Thus taking segments instead of pairs we get

(B CJ* = (BiAJ* + (conjugate C^) 2
.

Thus the analogue of the theorem of Pythagoras is in this case

(B^A^= (BtCj*- (conjugate C^A^ ...... (i).

Again if we consider case (2) we have B C is a separation line, A C
l

is an inertia line normal to Bl Cl9 and A l
B

l is also an inertia line.

In this case we obtained a triangle whose corners were C
,
Bl and Fl

which lay in the separation plane Sl and such that BlF was normal to

B1 C\.

Thus we must have the segment relation:

This triangle was related to the one whose corners are A : ,
jBx ,

Cf

1
in

such a way that (Cl9 FJ was a before- or after-conjugate to (Cl9 A )

while (B19 f\) was a before- or after-conjugate to (jBl5 A^), and so,

taking segments instead of pairs, we get

(conjugate C^) 2 = (Bl CJ* + (conjugate B^A^.
Thus the analogue of the theorem of Pythagoras is in this case

-
(conjugate J51 ^4 1 )

2 = (Bl CJ 2 -
(conjugate C^A^ ...(ii).

In the case where A lBl is an optical line we obviously have

= (B1 C1 )

2 -
(conjugate C^) 2

...... (iii).

Thus (i), (ii) and (iii) constitute the complete analogue of the

Pythagorean theorem in an inertia plane provided that A l , B and C 1

form the corners of a triangle.*

If we consider a triangle whose corners are A
l ,
Bl ,

Cl and which lies

in an optical plane, then ifB Cl be a separation line andA C be normal
* Cf. footnote, p. 3()9.
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to B
1 Cl we know that A l Cl must be an optical line, while A 1Bl must

be another separation line.

Now we have shown that :

(Bl) A 1)^(BlJ Cl ) f

and so taking segments instead of pairs we see that :

(BlA l)^(B1 Clf (iv).

This is the analogue of the Pythagorean theorem in an optical plane

provided that A lJ B^ and Cl form the corners of a triangle.*

Considering now equations (i), (ii), (iii) and (iv) we observe that the

modifications which take place in the theorem of Pythagoras are such that

when any side of the triangle becomes an inertia segment the corresponding

square is replaced by the negative square of the conjugate of this inertia

segment, while if any side becomes an optical segment, the corresponding

square is replaced by zero.

If we consider equation (i) we see that:

(BLA 1)^<(B1C^
and accordingly BlA l < Bi Cl .

Again, if we consider equation (ii) we see that:

(conjugate B^A^ < (conjugate ClA l )

2

and accordingly B1A 1 <C1A 1 .

Thus, provided that the hypotenuse is not an optical line, its length is

less than the length of that side which is of the same kind as itself.

We shall now make use of this result in order to prove another

important theorem concerning triangles in an inertia plane.

Let A, B, C be the corners of a triangle in an inertia plane P, and let

AB, BO and OA be all separation lines or all inertia lines.

It is easy to see that triangles of both these kinds exist, although, as

Theorem 14 shows, it is not possible for AB, BC and CA to be all

optical lines.

Let !,&!, cx be generators of P of one set, which pass through A , B,

C respectively and intersect BO, CA, AB in A l9 Blt Cl respectively.

* There is a limiting case of analogue to the theorem of Pythagoras in which the elements

A 19 B1 and Ct do not form the corners of a triangle but all lie in one optical line. It may be

stated in the following form :

If AI, Bl and C be three distinct elements and if B1C l and 6'j^i be segments of optical

lines which are normal to one another, then Bl
A

l
is also a segment of an optical line. This

follows directly since BlCl
and C^A^ being normal to one another, must be segments of the

same optical line, as must also BtA l .

R 24
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Then we may show by a method similar to that employed in the

remarks at the end of Theorem 200, that one and only one of the

elements A l9 Bl9 Cl is linearly between a pair of the corners A, B, C.

Similarly we may show that if a2 ,
62 ,

c2 be generators of P of the

opposite set passing through the elements A, B, G respectively and

intersecting EC, CA, AB in A 2 ,
B

2 ,
C2 respectively, then one and only

one of the elements A 2 ,
B2 , C2 is linearly between a pair of the corners

A, B, C.

Now consider the case, for instance, where A is linearly between B
and C, and suppose first that AB, BC, CA are all separation lines.

Then B cannot be linearly between A l and A 2 for then, by Theorem

73 (a) and (b), AB would require to be an inertia line, contrary to

hypothesis.

Similarly C cannot be linearly between A
l
and A 2 .

Thus, since obviously A 2 cannot be identical with either B or C, it

follows that A 2 must be also linearly between B and C.

Now let be the mean of A 1
and A 2 .

Then is linearly between A l
and A 2 ,

and therefore clearly it must

lie linearly between B and C.

But now A l9 A, A 2 are three corners of an optical parallelogram of

which is the centre, and so AO must be normal ioA-^A^i that is to BC.

Again, if instead of AB, BC, CA being all separation lines they are

all inertia lines, a similar result holds.

Let us take the case where A
l is linearly between B and C.

Then clearly B cannot be linearly between A l and A 2 ,
for then AB

would require to be a separation line, and, for a similar reason, C cannot

be linearly between A l and A 2
.

Thus, since A 2 cannot coincide with either B or C, it follows that A 2

must also be linearly between B and C.

As in the former case, if be the mean ofA and A 2 , then must be

linearly between B and C, and AO must be normal to BC.

Making use of the result proved above we see that, whether the sides

be all separation lines, or all inertia lines we have

segment BA is less than segment BO,

and segment AC is less than segment OC.

Thus it follows that the sum of the lengths of the segments BA and

AC is less than that of the segment BC.

Now we know that in a separation plane the sum of the lengths of

any two sides of a triangle is greater than that of the third, and thus,
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remembering what was proved at the end of Theorem 199, we have the

following interesting results:

If A, B, C be the corners of a general triangle all whose sides are

segments of one kind, then:

(1) // the triangle lies in a separation plane, the sum of the lengths

of any two sides is greater than that of the third side.

(2) // the triangle lies in an optical plane, the sum of the lengths of a

certain two sides is equal to that of the third side.

(3) // the triangle lies in an inertia plane, the sum of the lengths of a

certain two sides is less than that of the third side.

THEOREM 202

If A, B, C be three distinct elements in an inertia plane P which do not

all lie in one general line and if

(A,JB) = (A 9 C),

or if (B,A) = (A,C),

then BC cannot be an optical line.

Since the only congruence of optical pairs is co-directional, it is

evident that neitherAB nor A C can be optical lines and must therefore

be either inertia or separation lines.

Consider first the case where they are inertia lines and

(A,B) = (A,C).

It is evident that we must either have A before both B and G or after

both B arid C.

Suppose A is before both B and and let a be a separation line

passing through A and normal to the inertia plane containing AB
and AC.

Let D be an element in a such that (A, D) is a before-conjugate to

(A,B).
Then (A, D) will also be a before-conjugate to (A, C) since

(A,B) = (A,C).

Thus DB and DC will both be optical lines, and so BC cannot be an

optical line.*

If A be after both B and C the result follows in a similar manner.

Next consider the case where AB and AC are inertia lines but where

(B,A)s(A,C).

* It is also to be noted that B is neither before nor after C in this case.

24-2
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We must then either have A after B and after A or else A before B
and C before A .

In either case it is evident that BC could not be an optical line, for

otherwise A would be after one element of it and before another and yet

not lie in the optical line; which we know to be impossible.

Consider next the case where AB and AC are separation lines and

where accordingly

(A,B) = (A,C)

implies (B 9 A) = (A,C),

and conversely.

Now we know that there is one single optical parallelogram in P
having A as centre and B as one of its corners.

Suppose, if possible, that BC is an optical line which we shall denote

shortly by 6.

Then b would be one of the side lines of this optical parallelogram,

and we shall denote the opposite side line by b'
'

.

Let B' be the corner opposite to B and letD and D r

be the remaining
two corners: D lying in b and D' lying in &'.

Let CA intersect b' in the element C r and let optical lines passing

through C and C' respectively and parallel to ED' intersect b' and b in

E r

and E respectively.

Then E', C, E, C' would form the corners ofan optical parallelogram

having also b and 6' as a pair of opposite side lines.

Thus, since the diagonal line CC /

passes through A, it follows, by
Theorem 64, that these two optical parallelograms would have a

common centre A.

But now either (A 9 D) or (A, D') would be an after-conjugate to

(A, B) while (A, E)or(A, E') would be an after-conjugate to (A, C)and
DE and D'E' would both be optical lines.

Thus by the first case of the theorem it is impossible that we should

have

(A,D)E*(A,E),

or (A,D')*(A,E
f

).

If however we had (A, B) == (A, C),

these other congruences would require to hold and so it is impossible

to have BC an optical line if

Thus .the theorem holds in all cases,
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It is important to note that while this result holds for an inertia

plane, it does not, as we have already shown, hold for an optical plane.

Thus since an optical line can only lie in an inertia or optical plane,

it follows that:

// B and C be two distinct elements in an optical line while A is an

element which does not lie in EG, then if

(A,B) = (A,C)

the elements A, B, C must lie in an optical plane.

In the remaining theorems to be considered dealing with triangles in

inertia planes, we propose to treat of equality of segments rather than of

congruence ofpairs', as was done in connexion with triangles in separa-

tion planes.

In the latter case it is a matter of indifference whether we consider

the congruence of pairs or the equality of segments; since the two

subjects run parallel; but in inertia planes things are somewhat

different.

In order to deal with the congruence of pairs in inertia planes, it is

often necessary to make the enunciation of theorems very com-

plicated in order to cover the various possibilities which occur as

regards before and after relations of the pairs in inertia or optical lines.

If we deal with the equality of segments, on the other hand, it is

generally easy, in any particular case, to express the result in the

notation of pairs if so required.

THEOREM 203

IfA, B and C be three distinct elements which lie in an inertia plane P,

but do not all lie in one general line and if be the mean of B and C,

then if

or ifAB and AC be both optical lines, we must have AO normal to BC.

The conditions of this theorem could not be satisfied if BC were an

optical line for, in the first place, since A, B and C lie in an inertia

plane, it follows from the last theorem that we could not haveAB = AC.
In the second place, Theorem 14 shows that, if BC were an optical

line, we could not have AB and AC also optical lines.

It follows that BC must either be a separation line or an inertia line.

In either of these cases, ifAB and AC were both optical lines, then

A, B and C would be three corners of an optical parallelogram of
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which O would be the centre and so AO would be normal to BC by
definition.

Next suppose that BC is a separation or inertia line and let the

normal to BC through A intersect BC in 0'.

Then in all cases, considering the two triangles AO'B and AO'C,
we have

and AO' common, so that, applying the analogue of the theorem of

Pythagoras, we get either

or (conjugate B0')*= (conjugate CO')
2

.

Thus we have BO' - CO',

so that O 1 must be the mean ofB and C and therefore must be identical

with 0.

Thus since, by hypothesis AO
1

is normal to BC, we must have AO
normal to BC, as was to be proved.

We have incidentally proved that:

IfA, B and C be three distinct elements which lie in an inertia plane P,

but do not all lie in one general line and if be an element in BC such that

AO is normal to BC, then if

or ifAB and AC be both optical lines, the element must be the mean of

B and C.

THEOREM 204

// A l ,
Bl , C1 be the corners of a triangle in an inertia plane P ,

and

A 2 ,
B2 ,

C2 be the corners of a triangle in an inertia plane P2 ,
and if

further Bl Cl
is normal to A

l Cl and B2 C2
is normal to A 2 C2 ,

then if the

segments

GI^I C2A 2 ,

and A
1 B1

=A
2
B

2 ,

or, alternately to the latter equality, ifA lBl
andA 2B2 be both optical lines,

we shall also have

C JDj
= C2B2 .

It will be observed that, except that we have taken segments instead

of pairs, this is the analogue of Theorem 190 and may be proved in a

similar manner, using Theorem 201 in place of Theorem 189 and

Theorem 203 in place of Theorem 187.
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It should be noticed that neither C^A^ nor C B1 can be optical lines

for, since they are normal, they would then coincide and A l9 jB
1 ,
C l

could not be corners of a triangle. Similarly, neither C2A 2 nor C2B2

can be optical lines.

This point is required in applying Theorem 203 but otherwise the

proof is quite analogous.

THEOREM 205

If A l , B! , Cl be the corners of a triangle in an inertia plane Pl ,
and

A 2 ,
B2 ,

C2 be the corners of a triangle in an inertia plane P2 ,
and if

A
l
C

l be a separation line which is normal to the inertia line Bt Cl ,
then

if the segments
M.

i
O -I jri o O o 3

1 1
==

2 2 '

and if A
l
B

l
=A 2

B
2 ,

or, alternately to the last equality, ifA l
B

l
and A 2B2 be both optical lines,

we must also have A 2 C2 normal to B2 C2 .

From the equalities it follows that, since A L̂ Cl is a separation line,

A 2C2 must be a separation line, and, since B
1
C

1
is an inertia line,

B2 G2 must be an inertia line.

Thus any general line normal to B2 C2 must be a separation line.

Except that we have taken segments instead of pairs, this is the

analogue of Theorem 191 and may be proved in a similar manner with

some slight modifications.

Using the same notation employed in Theorem 191, the only point

to be noticed in the case where A
1
Bl and A 2B2 are not optical lines is

that, since
A C1 ~ A T*^2 ^2 ^2 ^2>

the hypothetical general line A 2A 2 could not be an optical line, by
Theorem 202, and so the normal to it through O could not coincide

with itself.

Apart from this the proof is similar to that of Theorem 191 using

Theorem 201 in place of Theorem 189 and Theorem 203 in place of

Theorem 187.

In the case where A lBl and A 2B2 are both optical lines the following

point is to be noted: If A 2 lies in A 2B2 it must coincide with A 2
: not

because we are entitled to assert the equality ofA
2
B

2 and A 2',B2 ,
but

because, if it did not do so, we should have

2 2
=~

2 2

and A 2
A 2 an optical line which we know is impossible.
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Apart from this the proof is similar to that in the case where A 1B1

and A 2B2 are no^ optical lines.

REMARKS

This theorem may be used to prove a converse to the analogue of the

theorem of Pythagoras in an inertia plane.

Let A l , Bl
and C

l
be the corners of a triangle in an inertia plane and

let B
i
C: be a segment of a separation line while Cl

A
l is a segment of

an inertia line and suppose that one of the three following conditions

holds:

(i) Bl
A

l is a segment of a separation line and

(BlA l)^^(Bl Cj)
2 -

(conjugate C^)2
;

(ii) BlA l is a segment of an inertia line and

-
(conjugate Bl

A
l )*
= (B l

Cl )

2 -
(conjugate C^) 2

;

(iii) B1
A

1 is a segment of an optical line and

O = (B1 C1 )

2 -
(conjugate C^) 2

;

we shall prove that A
1
C

l
is normal to Bl

C
l

.

Consider a second triangle in an inertia plane and let its corners be

A 2 *> 2 > ^ 2

Let B2 C2 be a separation line and let A 2 C2 be an inertia line which is

normal to B2 C2 and let the segments

B2 C2
= B

1
C1

and C2A 2=C1A 1 .

Then we shall have one of the three conditions:

(1) B2A 2 is a segment of a separation line and

(B2A 2 )*
= (B2 <7 2 )

2 -
(conjugate C2A 2 )*;

(2) B2A 2
is a segment of an inertia line and

(conjugate J52A 2 )

2 = (B2 C2 )

2
(conjugate C2A 2)

2
]

*

(3) B2A 2 is a segment of an optical line and

= (B2 C2 )

2 -
(conjugate C2^ 2 )

2
.

Thus we must either have

JLJ 2A 2
==;

l5\ " i >

or else both B2A 2 and Bl
A l must be segments of optical lines.

Thus the conditions of Theorem 205 hold between the two triangles

and so A l
C

l must be normal to Bl Cl .

It is obvious that the conditions (i), (ii) or (iii) could only hold in an

inertia plane since inertia segments are involved in each of them.
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Consider now a triangle whose corners are A l ,Bl
and Cl

and suppose
the condition holds :

(iv) A Cl
is a segment of an optical line and

(Bl
A

l)^(Bl
G

l)\

Then B^A^B^C^
and so, as was shown at the end of Theorem 202, the triangle must lie

in an optical plane and, since A l Cl is a segment of an optical line, we
must have A

l Cl normal to Bl <7j and also normal to B l
A l .

Consider now a triangle whose corners are A I} Bl and 6\ and in

which the segment relation holds:

(v) (B1A^= (B1 G1Y+(G1
A

1Y.

It is obvious that in this triangle the sides are all segments of one

kind and the sum of the lengths of any two sides is greater than that

of the third side, and accordingly it can only lie in a separation plane
and the sides must be segments of separation lines.

By a method similar to that which we employed in dealing with

conditions (i), (ii) and (iii), but using Theorem 191 in place of Theorem

205, we can prove that A
l
Cl

must be normal to Bl
Cv

There is a limiting case of analogue to the theorem of Pythagoras in

which the segments do not form a triangle and which was mentioned

in the footnote on p. 369.

The converse of this also holds and may be stated as follows:

(vi) If A l9 Bl
and C

l
be three distinct elements and if Bl Cl) Cl

A
l

and B1A l be all segments of optical lines, then A l Cl must be normal to

B&.
For, by Theorem 14, A l ,

B and Cl cannot lie in pairs in three distinct

optical lines and must therefore all lie in one optical line.

Thus A l Cl must be normal to Bl
C .

We have thus got the complete converse to the various forms of

analogue to the theorem of Pythagoras.

THEOREM 206

If A!, B19 C\ be the corners of a triangle in an inertia plane Pv and

A 2 ,
B

2 ,
C2 be the corners of a triangle in an inertia plane P2 : the triangles

being such that no side of either is an optical line; and if the segments

A^B^A^B^
-*--\

1 ==
-^2 2 >

B = B2 C2 ,

while Nl is an element in Bl C such that A l
N

l
is normal to Bl Cl , and
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N2 is an element in B2 C2 such that A 2N2 is normal to B2 C2 ; and ifNl is

distinctfrom both Bl and C1 ,
thenN2 will be distinctfrom both B2 and C2 ,

and we shall also have

**
l

*^
l
== ** 2 2 *

IST EXTENSION. The same results hold if, instead of the segments
A

1
B

l
and A 2 B2 being equal, the general lines A lBl and A 2B2 are both

optical lines.

2ND EXTENSION. The same results hold, if in addition to A 1
Bl and

A 2 B% being optical lines, A 1 C1 and A 2 C2 are optical lines instead of the

segments A 1
C

l
and A 2 C2 being equal.

It will be observed that, except that we have taken segments instead

of pairs, this is the analogue of Theorem 192 and, when none of the

sides of the triangles is an optical line, it may be proved in a similar

manner using Theorem 181 instead of Theorem 182 in those cases

where B1 Cl
is an inertia line and using Theorem 201 instead ofTheorem

189. We also must take note of the consequences of Theorem 202 as

was done in proving Theorem 205.

As regards the 1st extension it may be proved in a similar manner

again taking note of the consequences of Theorem 202 as was done in

proving Theorem 205 in the case where A lBl and A 2B2 are both

optical lines.

As regards the 2nd extension it is clear in this case that Bl ,
A

v and

C
l are the corners of an optical parallelogram of which Bl Cl is one

diagonal line and Nl is the centre. Similarly B2 ,
A 2 and G2 are the

corners of an optical parallelogram of which B2 C2
is a diagonal line

of the same kind as B1 C 1 ,
while N2 is the centre.

Thus B
l
N

l
= B

2
N

2
= C

l
N

l
= C2

N
2 ,

while A
1
Nl is a conjugate to Bl

Nl and A 2
N

2
is a conjugate to B2

N
2 ,

so that we must have
A

1
N

l
=A 2N2 .

It is also evident, as in Theorem 192, that we must have

N2 linearly between B2
and C

2 ,

or C2 linearly between B2 and N2 ,

or B
2 linearly between C2 and N2 ,

according as N
l
is linearly between Bl

and Cl ,

or Cl
is linearly between B1 and Nl ,

or B
1
is linearly between Cl

and N1
.
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REMARKS

If B, C1 and C2 be three distinct elements in an inertia plane which

do not all lie in one general line, but such that BCl and BC2 are both

inertia lines or both separation lines, and if the segments

while Nl and N2 are elements in the general lines BC
l
and BOZ respec-

tively, such that C2N1 is normal to BC and C1
N

2
is normal to BC2 ,

then we may take the triangle whose corners are B, Cl and C2 and

apply the results of the last theorem to the one triangle taken in two

aspects, as was done in the case of Theorem 192, and so prove that

C
1
N

1=C2
N

2
.

Also the linearly between relations of B, N2 and C2 will be similar to

those of J?, N and C
: respectively.

PROPER HYPERBOLIC ANGLES

While any optical line in a given inertia plane intersects every inertia

line and every separation line lying in the inertia plane, this is clearly

not the case for every inertia half-line or for every separation half-line

in it; since the half-line under consideration may be a part of the com-

plete inertia or separation line which does not contain the element of

intersection.

If we have two inertia or two separation half-lines with a common
end lying in an inertia plane, such half-lines may be such that they may
both be intersected by the same optical lines or such that cannot both

be intersected by any optical line.

It should be remembered that, by definition, the end of a half-line

is not included in it.

If we revert to the remarks at the end of Theorem 14, employing the

notation there used we see that the general half-line OF (where F is

any element of b which is after E) must be an inertia half-line having
F after the end element 0. Taking any number of positions for F, we

get any number of inertia half-lines having the common end and

which are all intersected by the optical line ft.

Similarly taking F' as any element of b' which is before E
r we get an

inertia half-line OF' having F' before the end element and, by taking

any number of positions for F' we get any number of inertia half-lines
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having the common end and which are all intersected by the optical

line 6'
;
which we shall here suppose to be in the same inertia plane

as b.

An inertia half-line such as OF and one such as OF' cannot be inter-

sected by the same optical line, for, if F
l
be any element of the half-line

OF and F
t

'

be any element of the half-line OF'
,
then we should have

O afterF and also O before Fl so that if O does not lie in Fl F^ we know
that F

l FI could not be an optical line, while if does lie in F1
F then

F
l FI must be an inertia line of which the half-lines OF and OF' are

parts.

Thus in all cases FlF must be an inertia line, since F must be

after F^.

Again, since every optical line in the inertia plane intersects every
inertia line in it, it follows that every optical line in the inertia plane
which intersects one such half-line as OF must intersect all such half-

lines; while every optical line in the inertia plane which intersects one

such half-line as OF' must intersect all such half-lines.

Again, with the same notation as in the remarks at the end of

Theorem 14 we see that any such half-line as OD (where D is any
element of b which is before E) must be a separation half-line and,

taking any number of positions for D we get any number of separation

half-lines having the common end and which are all intersected by
the optical line b.

Similarly, any such half-line as OD' (where D' is any element of b'

which is after E') must be a separation half-line and, taking any number

'
/b'

Fig. 54.

of positions for D' we get any number of separation half-lines having
the common end and which are all intersected by the optical line b'.

We shall now prove that ifDt be any element of the separation half-

line OD and D be any element of the separation half-line OD'
,
then
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/W is a separation line. This is obvious if OD and OD' form parts of

the same separation line, so we shall suppose that this is not the case.

Now the complete separation line of which OD' is a part must
intersect b in some element, say 0.

Also, since O is between the parallel optical lines 6 and 6' and, since

D' is after E'', it follows, by Theorem 69, that E is after G.

Since we have supposed that the half-lines OD and OD' are not parts
of the same separation line, it follows that must be distinct from D
and may be either before or after it. The method of proof is similar in

the two cases, so that we shall merely consider the case where is

after D.

Then, since D andD both lie in the half-line OD which has the same

end as the half-line OG, it follows, by Theorem 67, that, since G is

after Z>, an optical line through D co-directional with DG will intersect

the half-line Off in an element, say GI} such that G is after D1
.

Now Dl could not be after D^, for then we should have Gl after D/;
which is impossible, since GD is a separation line.

Again Dl could not be before D/, for, since is linearly between D
and Glt it would follow, by Theorem 73, that D1 must be an inertia

line, which it is not.

Thus D1
D

1

' must in all cases be a separation line, and no optical line

can intersect two such half-lines as OD and OD''.

It follows, as in the case of inertia half-lines, that any optical line in

the inertia plane which intersects one such separation half-line as OD
must intersect all such separation half-lines, while any optical line in

the inertia plane which intersects one such separation half-line as

OD' must intersect all such separation half-lines.

Suppose now that we have any two distinct separation half-lines

OA and OB having a common end O and lying in an inertia plane, and

suppose further that the pair of half-lines are such as may both be

intersected by the same optical lines.

Let A and B be any elements of the half-lines and let C be any
element which is linearly between A and B.

We shall show that CO must be a separation line.

Let a general line be taken through A parallel to CO. Then this

general line must intersect the separation line BO in some element, say

H, and since C is linearly between A and jB, the element must be

linearly between H and jB.

Then the separation half-lines A and OH having the common end

are such as cannot both be intersected by any optical line and
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accordingly AH must be a separation line. Thus, since CO is parallel

to AH, it follows that CO must also be a separation line.

Now any general line lying in the inertia plane and normal to CO
must be an inertia line. Thus in the particular case where the segment
OA = the segment OB and where C is taken to be the mean ofA and J5,

it follows, by Theorem 203, that AB must be normal to CO and there-

fore AB must be an inertia line.

Thus we get finally that: if OA and OB be two distinct separation

lines having a common end and lying in an inertia plane, and if they
are such as can both be intersected by the same optical lines, then if

segment OA = segment OB the general line AB must be an inertia line.

If instead of being separation half-lines OA and OB be inertia half-

lines such that both A and B are after or else both A and B are before

0, and if segment OA = segment OB, it follows from the footnote to

Theorem 202 that AB must be a separation line.

These are the cases in which the half-lines OA and OB may both be

intersected by the same optical lines.

Again, let OA and OA' be two inertia half-lines or two separation

half-lines lying in an inertia plane and having a common end 0, and

such that both half-lines may be intersected by the same optical lines.

Let the elements A and A '

be so selected that OA = OA '

.

Let the two optical lines which pass through A' and lie in the inertia

plane intersect the half-line OA in jPaiid G, and let the notation be such

that F is linearly between and G.

Similarly, let the two optical lines which pass through A and lie in

the inertia plane intersect the half-line OA' in F' and (?', and let the

notation be such that F' is linearly between and G' .

Let N be the mean of F and G while N' is the mean of F' and G' .

Then A'N is normal to AO and AN' is normal to A'O.

Also N must lie in the half-line OA y while N f must lie in the half-line

OA'.

Further, from the remarks at the end ofTheorem 106, it follows that

and A'N
But GN is a conjugate to A'N, while O'N' is a conjugate to AN'

and so

Thus, since N must be linearly between and (?, while N' is linearly

between and G', it follows that we must have
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Also, since OA = OA'

and since OA is the hypotenuse of the triangle whose corners are

O, N f

, A, while the side ON' is the same kind of general line as OA, it

follows that:

OA' <ON'.

But ON' < OG' and so A' is linearly between and G'.

G'

Fig. 55.

Similarly A is linearly between and G.

Thus, by Theorem 76, the optical lines AG' and A'G intersect and

therefore are generators of opposite sets of the inertia plane.

Also, since OG = OG' and OA = OA'
,
it follows that :

If now BH f

be any optical line parallel to AG' and intersecting the

half-line OA in B and the half-line OA' in H', while HB r

is any optical

line parallel to GA' and intersecting the half-line OA in H and the

half-line OA in B'\ it follows from the remarks at the end of Theorem
183 that:

OH':OB = OG':OA
and OH:OB' = OG:OA'.

It follows that if any generator intersects the pair of half-lines and

cuts off from them a pair of segments in a particular ratio, then any

generator of the same set which intersects the half-lines will cut off

segments in the same ratio, while any generator of the opposite set

which intersects the half-lines will cut off segments in the reciprocal

ratio.
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We see from Theorem 202 that these ratios can never be ratios of

equality so long as the half-lines OA and OA' are distinct and thus, if

expressed numerically, one ratio must be greater than unity, while the

other is less than unity.

Let the greater of these reciprocal ratios be z.

Then, since N' is the mean of F' and (?', we have

OG' + OF'
= _

9

, ,, 00' -OF'
and N G =

.

-

Suppose now that we have three inertia or three separation half-lines

having a common end and lying in an inertia plane, and such that

they may all be intersected by the same optical lines.

Let them be intersected by one such optical line in the elements

A
,
A

l and A 2 respectively and let A l be linearly between A and A 2 .

OA
Further suppose that this optical line be one for which -y-p is greater

than unity.

Let the second optical line passing through A Q and lying in the

inertia plane intersect OA l
in Bl and OA 2 in B2

.

Fig. 56.

Then OB < OA so that is linearly between and A .

But, since A l is linearly between A Q and J. 2 ,
it follows, from Theorem

77, that jB2 is linearly between O and A 2 and therefore OB% < OA%.
OA

It follows that ^r~ is greater than unity.
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Again let the optical line through A 1 parallel to A B2 intersect OA 2

in C2 .

Then, since A l is linearly between A$ and ^4 2 , it follows that C2 is

linearly between B2 and A 2 and therefore C2 is linearly between O and

A 2 ,
so that OC2 < OA 2 .

OA
Thus

^

2
is greater than unity.

'

OA
2 _OA l

so that taking the logarithms of these ratios we have

. OA 2 ,
OA

l

If, instead of three inertia half-lines or three separation half-lines

having the common end O and intersecting the optical line A QA 1 ,
we

have any further number intersecting it in the elements A% ,
^4 4 ,

... A n

and such that :

A 2 is linearly between A
1
and A 3 ,

A 3 is linearly between A 2 and A,

A n_i is linearly between A n _2 and A n \

OA OA OA OA
we have log-^ =

log -=
x + log -/ + . . . + log ^-- .

Reverting now to formulae (1) and (2) and putting u loge z we
have z eu so that these formulae become

ON'

N'G' (conjugate ^4^') eu -e
and ~ ---- ----- -

OA
.

i iwhere w = loge -^-
=

log,

If o; and xl be two inertia half-lines or two separation half-lines

having a common end and lying in an inertia plane and such that

they may both be intersected by the same optical lines, then, together
with the element O, they will be said to form a proper hyperbolic

angle-boundary and the element will be called its vertex while x and

xl will be called its sides.

If AQ be any element in XQ and an optical line through A intersects

x1 inA! ,
then anygeneral half-line having O as its end and intersecting

R 25
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A^A l in an element M linearly between A and A l must be the same

type of half-line as x and xl .

The set of all such inertia or separation half-lines as OM will be

called a proper hyperbolic angular segment.

A proper hyperbolic angular segment together with the angle-

boundary will be called a proper hyperbolic angular interval.

Taking the case of the optical line which makes OA> OA Q ,
then

OA
.

l
will be the magnitude of the angular interval in natural

measure and will be called a proper hyperbolic angle.

Unlike the case of angular intervals in a separation plane there exist

proper hyperbolic angular intervals of any magnitude however great.

Other types of angular intervals exist in an inertia plane besides

those which we have designated "proper". In these the rays are not

all of one kind and it will be found most convenient when we have to

deal with them to describe them in terms of proper hyperbolic angular
intervals to which they are related. Thus, for example, we may have

the supplement or the conjugate of a proper hyperbolic angular

interval; or, when one side is an inertia half-line and the other a

separation half-line we can construct an auxiliary proper hyperbolic

angular interval whose one side is normal to one side of the given one.

Various results may be deduced by means of formulae (3) and (4)

analogous to theorems in ordinary geometry. Thus if A, B arid C be

the corners of a triangle in an inertia plane and if we denote the sides

by a, b and c as in ordinary geometry; then if the sides b and c form a

proper hyperbolic angle-boundary with one another which we denote

by A, and we form the expression

62 + c2 -26ccosh,4,

then, if this expression be positive, the side a will be a separation seg-

ment if 6 and c are separation segments and will be an inertia segment
if b and c are inertia segments and in either case we shall have

62 -f c2 - 2bc cosh A = a2
.

If the expression be zero, then a will be a segment of an optical line.

If the expression be negative, then the side a will be an inertia seg-

ment if 6 and c are separation segments and will be a separation segment
if b and c are irjertia segments and in either case we shall have

2bc coshA b2 c 2 = (conjugate a)
2

.

These results may easily be deduced and we shall not trouble to

prove them.
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It should be noted however that when the side a is an optical segment,

nothing is said as to its length and we may even have two triangles

with two sides and the included proper hyperbolic angle of the one

respectively equal to the two sides and the included proper hyperbolic

angle of the other while the third side of the one forms a part of the

third side of the other; but this can only happen if these third sides are

optical segments.
On the other hand, no comparison whatever can be made in the

lengths of the third sides if they be optical segments but not co-

directional.

INTRODUCTION OF COORDINATES

If we take any element O of the set as origin, we have already seen

that we may obtain systems of four general lines through O, say OX,
OY, OZ, OT',

which are mutually normal to one another.

Three of these, say OX, OY, OZ, will be separation lines, while the

fourth, OT, will be an inertia line.

The three separation lines OX, OY, OZ will determine a separation

threefold, say W, and OT will be normal to it.

Ifwe select any arbitrary separation segment as a unit of length and

associate the number zero with the element O, we may associate every
other element of OX, Y, OZ with a real number, positive or negative,

corresponding to the length of the segment of which that element is one

end and the origin is the other.

In this way we set up a coordinate system in W which will be quite

similar to that with which we are familiar.

Since all the theorems of ordinary Euclidean geometry hold for a

separation threefold, the length of a segment in W will be given by the

ordinary Cartesian formula.

Again, nor confining our attention merely to the elements of W, let

A be any element of the whole set.

Then A must either lie in OT, or else there is an inertia line through
A parallel to OT, and, as has already been proved, this inertia line will

intersect W in some element, say N.

Further, AN must be normal to W.

Now ifA does not lie in W there will be a separation threefold, say

W, passing through A and parallel to W, and the inertia line OT must

intersect W in some element, say M .

Further, since W is parallel to W, both OT andAN must be normal

toW.
25-2
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Thus, ifOM and NA are distinct, MA and ON must both be separa-

tion lines normal to OM , and so, since OM and NA lie in an inertia

plane, we must have MA parallel to ON.
Now we may select a unit inertia segment, just as we selected a unit

separation segment, and with each element of OT distinct from O we

may associate a real number positive or negative corresponding to the

length of the segment of which that element is one end and the origin

is the other.

We shall suppose this correspondence to be set up in such a way that a

positive real number corresponds to any element which is after and a

negative real number to any element which is before 0.

As regards the relationship between the unit separation segment and

the unit inertia segment, the simplest convention to make is to take

the unit inertia segment such that its conjugate is equal to the unit

separation segment.
More generally, we may take the unit inertia segment such that:

(conjugate of unit inertia segment) = v (unit separation segment),

where v is a constant afterwards to be identified with what we call the
' '

velocity of light
"

.

Now the element JV lies in W and is determined by three coordinates,

say x
l , y l ,

z
1 , taken parallel to OX, OY, OZ respectively in the usual

manner.

Further segment NA = segment OM ,

and so if ^ be the length of OM in terms of the unit inertia segment,
then the element A will be determined by the four coordinates x

, yl ,

*1><1-

Let the length of the segment ON be denoted by w^.

Then as in ordinary coordinate geometry

Thus if OA should be an optical line, we must have

or x^ + y^ +z^-v^^O ...... (1).

Again, if OA should be a separation segment and if r be its length, it

follows from the analogue of the theorem of Pythagoras for this case

that:

or s^ + y^ +z^-A 2 ^!8
......

(
2

)-

Finally, if OA should be an inertia segment and fl its length, it
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follows from the corresponding analogue of the Pythagoras theorem

that:

or
a?!

2 + y^ + zf - v\2 = - v2
r^ ...... (3).

Thus from (1), (2) and (3) it follows that the expression

is positive, zero, or negative according as OA is a separation line, an

optical line, or an inertia line.

If A be after O, it is clear from the convention which we have made
that t must be positive, and so the conditions that A should be after

are:

(
1

) x^ + /!
2 + z^ v\2 is zero or negative)

(2) ^ is positive J

*

The conditions that A should be before are similarly:

(
1

)
x1

2 + y^ -f z^ v\2 is zero or negative j

(2) ^ is negative J

"

The conditions that A should be neither before nor after are either

that:

A is identical with 0,

in which case x
l yl

= z ^ = |

or else x^ -f y^ + z^ v\2 is positive j

'

More generally, it is clear that: if (XQ , yQ ,
ZQ , )

and (x^ ,y^,z^, t) l be

the coordinates of two elements which we call A and A l respectively,

then ifA Q and A l
lie in an optical line we must have

(Xl -xQ)^(yl -yQ )

2 + (zl -zQ )

2 -v 2
(tl --t^^O ...... (4).

If A A
x
be a separation segment and rx be its length we must have

(Xl-xQ)^(yl-y^ + (zl ~z )

2 -v2
(tl -t )

2 = r1
2

...... (5).

While if A QA 1
be an inertia segment and r

l be its length we must

have

Thus the expression

i9 positive, zero, or negative according as AA is a separation line, an

optical line, or an inertia line.

Accordingly if A and A 1 be any elements of the set, the conditions

that A 1
should be after A are:

(1) K-^o)2
+(2/i-2/o)

2 +(^-^o)
2-^i-g

}
is zero or negative

~
.

and (2) ^ - tQ is positive J
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The conditions that A l should be before A Q are:

(1) (^-^o)
2 + (2/i-2/o)

2 + (^-^o)
2 -^(^i"g2

]
is zero or negative

j-

.

and (2) ^ tQ is negative J

The conditions that A^ should be neither before nor afterA are (ifwe

include the case where A Q and A^ are identical):

*i- ^o
=

2/i
-
y* = *i -*o = *i- *o

=

or else

(^ - z
)

2 + (7/ t
-

*/ )

2
-f (2l

- z
)

2 - tf (^
-g 2 is positive]

Now the condition that two distinct elements lie in an optical line

gives us also the condition that the one should lie in the a sub-set of

the other.

Thus if (xQ , 2/ ,
zQ ,

tQ ) be the coordinates of an element A Q ,
the equa-

tion of the combined a and j8 sub -sets of A is

(x-xQ)* + (y-y )*+(z-z )*-v*(t-t )*
= ...... (7).

The a sub-set will then consist of all elements (x, y, z, t) for which this

equation is satisfied and for which t t is zero or positive; while the /3

sub -set of AQ will consist of all elements for which the equation is satisfied

and for which t tQ is zero or negative.

Definition. The set of all elements whose coordinates satisfy equa-

tion (7) will be called the standard cone with respect to the element

whose coordinates are (# , t/ ,
zQ ,tQ ).

Taking v equal to unity, for the sake of simplicity, it is evident that

the equation
o;
2
-f2/

2 + z2 - 2 =:C2

represents the set of elements such as A, where OA is a separation

segment whose length is c.

Similarly, the equation

represents the set ofelements such asA
,
where OA is an inertia segment

whose length is c.

If we put y and z = in the first of these we obtain

Z2 -*2 = C2
,

which gives us the relation between x and t for the portion of the corre-

sponding set which lies in the inertia plane containing the axes of x

and t.

This then represents the analogue of a circle in the inertia plane.



GEOMETRY OF TIME AND SPACE 391

Similarly for the case of inertia segments, putting t/
= and z =

we get
x*-t* = -c 2

.

The two equations:

are of the same forms as the equations of a hyperbola and its conjugate
in ordinary plane geometry.

The equation x2 -
1
2 =

along with y = and z = represents the two optical lines through the

origin in the same inertia plane, and these correspond to the common

asymptotes of the hyperbolas.

NORMALITY OF GENERAL LINES

Let A, B and G be three distinct elements whose coordinates are

(#o> 2/o >
zo> *o) (

xi> 2/i >
zi> *i) and (

xz> 2/2 > Z2> <2 ) respectively and such

that AB is normal to 4(7.

For the sake of simplicity we shall take v equal to unity.

For brevity let us write

(x2
- xj* + (y2

- ytf + (z2
-
ztf

-
(t2
-
tj* = #,

2 - 2 - ~ 2 =

Considering all the six cases ofanalogue to the theorem ofPythagoras

(including the limiting case mentioned in the footnote on p. 369), we
see that they are all included in the formula:

H^S^S^
or expanding, rearranging and omitting a factor 2, in the formula:

(x2
- XQ ) (xl

- XQ ) + (y2
- yQ ) (yl

- yQ )

+ (2a -2o)(i-2o)-(^-o)(i-U=s O- (1)

We have to show that this is not merely a necessary, but also a

sufficient condition of the normality ofAB to A C.

Now let us consider the various possibilities which are conceivable

with regard to the types ofgeneral line whichAB,AC and BC might be.

It is obvious that the two sides of the equation

fl^ + flfj

must either be both positive, both negative, or both zero.

For H positive, it is clear that we could only conceivably have 8l

and $2 either (1) both positive, or (2) one positive and other negative,

or (3) one positive and other zero.
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ForH negative, we could only conceivably have Sl and $2 either (4)

both negative, or (5) one negative and other positive, or (6) one

negative and other zero.

ForH zero, we could only conceivably have $x
and S2 either (7) both

zero, or (8) one positive and other negative.

However, cases (4) and (6) can be shown to be impossible from other

considerations.

We showed geometrically that this was so, but it is desirable to show

the reasons analytically.

In order to do so we shall first investigate a certain lemma.

Suppose that we have two series of four corresponding quantities,

say Q 19 Q2 , $3 , #4 ,

and RI ,
-R

2 > -^3 > ^4

Then the following identity may easily be verified:

a {Ga RI
- Ci fla (<22 ^4 - <24W + {% RI - Qi ^3 (Q* R* - Qt ^3 )}

2
;

where, in the ambiguities, either the positive sign is to be used through-

out, or else the negative sign throughout.

In this identity we may obviously interchange Rl with either R
2 or

jR3 ,
while at the same time we interchange Q l with Q2 or Q3 respectively.

We shall now prove that if

QiRi + QtRs + QtMs-QtR^o,
while Q^ 4- (?2

2 + Gs
2 Q^ is negative and equal to &2

,
then

R^+R^+R^-RI*
must be positive unless

R
l
= R

2
= R3

= R^ = Ol

when it is zero.

Let Ri* + R 4- RJ - jR4
2 =

fl,

and our identity gives us

(Q l Q,)
2^(Rl R^^ + {Q2 Rl -QlR2 (Q2R,-Q,R2)Y

4- ( 3 i
- Qi ^3 (Q8 4

- 64^3 )}
2

-

If J?x R be not zero, the right-hand side of this equation must be

positive and therefore neither (Ql Q^)
2 nor 6 can be zero, and, since

(Qi Qt)
2 must be positive, therefore must be positive.

Thus must be positive if R^ is not equal to JR4
2

.

By the use of similar identities we may prove that must be positive
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if jR2
2
is not equal to R^ and also if .R3

2 is not equal to E^. Thus 9 must

be positive unless

^1
2 = ^

2
2 =jR3

2
=jR4

2

But in this case we should have

= R^ + J?2
2 + 3

2 - R* = 2#4
2

,

which is positive unless K4
= 0; when it is zero.

Thus jRj
2
-f -R2

2 + ^s
2 ~~ ^4

2 must always be positive unless

RI = R2
==

-83 R 0-

If now we substitute

for (^ , Q2 , Q3 , Q4 respectively, and

(#2 #<))> (2/2
~~

2/0/' (
2'2~~^o)? (^2~~^o)

for J?1} ^?2 , JS3J jK4 respectively, and suppose that equation (1) (which
is equivalent to H = Sl -f $2 ) holds and that

(Xi
_

Xo )2 + (yi
__^2 + (Zi

_ 2
())

2 _
(^
_
^)2

is negative; then

(x,
- *

)

2 + (y2
-

?/0 )

2 + (za
- ^

)

2 -
( 2
- /

)

2

must be positive or zero and, in the latter case, we must have

(x2
- XQ )

=
(y2

-
j/ )

=
(22

- z
)
-

(L2
-

tQ )
- 0,

or C coincident with A, contrary to the hypothesis that C and A are

distinct.

Thus cases (4) and (6) are both excluded as possibilities, and we are

left only with cases (1), (2), (3), (5), (7), (8), which are precisely the six

cases considered in the remarks at the end of Theorem 205.

Thus, provided that equation (1) holds, the general line AB must

be normal to the general line AC.

We may also make use of our identity in order to obtain the equa-
tions of an optical line from the definition give on p. 30 and inci-

dentally to give an analytical demonstration that, in case (7) above,

the three elements, A, B and (7, lie in one optical line.

Thus putting

Q& + Q2R2 + Q3E, - Q^RI = 0,

Qi
2

,
+ Q2

2 + %2 -
4
2 =,

R* + #2
2

4- R - Rf =0,

in our identity, we get
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Since the right-hand side is a sum of two squares equated to zero,

they must be each separately zero, and so

and, since either the + or -
sign may be taken in the ambiguities, we

see that :

or gi :C2 :gs :e4
= lZ

1
:iZ8 :/Z8 : JR4 .

Now let A and B be two distinct elements such that the one lies in

the a sub-set of the other and let (XQ ,y ,z , t )
and (xl , j/i , 2^ , ^i) be the

coordinates of A and B respectively.

Then to - *
)

2 + (yl
-

</ )

2 + (i
-

*o)
2 -

(*i
-

*o)
2 = 0.

If (a;, y, z, t) be any element which lies in the standard cones with

respect to both A and B, we know from definition that such element

lies in the optical line containing A and B.

But in this case we must have

(x
- *

)

2 + (y
-

</ )

2 + (z
- z

)

2 -
(*
-g 2 = 0,

and (x
-.

Xi]*+ (y -yrf+(z-z l)*-(t-t^ = Q.

It follows that we must have

(x
- XQ ) to - a?

) + (y
-

2/ ) (?/!
- yQ ) + (z

- z
) to - z

)
-

(^
- <

) (^
-g - 0.

Thus substituting

to-*o)> (2/i-2/o)> (^i-^ (^-W
for Q l , Q2 , (>3 , Q4 respectively and

(-o)> (-yo) (z-Zo)> (^~<o)

for JF?! ,
J?2 ,

jR3 ,
J?4 respectively, the result above obtained enables us

to write

^1"" XQ y\~ 2/0 Zl~~ ZQ ^1~^0

which are the equations of the optical line containing ^L and B.

If (7 be any element distinct from both A and B and such that both

AC and BC are optical segments and if (x2 , y2 ,
z2 , 2 )

be the coordinates

of C, it is evident that (#2 , y2 ,
z2 ,

f2 )
satisfies the above conditions and

accordingly, C must lie in the optical line through A and B. This is

equivalent to case (7).

The above identity may be generalised to n dimensions and will be

found very useful in the further analytical development of this subject.

See paper by the author
<v On the Connexion of a Certain Identity with
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the Extension of Conical Order to n Dimensions", Camb. Phil. Soc.

vol. xxiv, pp. 357-74, 1928.

EQUATIONS OF GENERAL LINES, PLANES

AND THREEFOLDS

Making use of the notation employed in the preceding section let us

take the elements A and B as fixed while C is variable and substituting

the running coordinates (x y y, z, t) for (#2 , y2 ,
z2 ,

t2 )
in equation (1)

we get

(x
- x

) (xl
- x

) + (y- y ) (yx
- y ) + (z

- z
) (z l

- z
) -(t- t

) (^
- tQ )

= 0,

...... (2)

as the equation of the general threefold passing through A and normal

to AB.
This will be an inertia, an optical, or a separation threefold according

as AB is a separation, an optical or an inertia line. That is to say,

equation (2) will represent an inertia, an optical, or a separation three-

fold according as the expression

(! - * )
2 + (yt

-
2/ )

2 + (! - z
)
2 -

(<i
-

*o)
2

is positive, zero, or negative.

If Z, m, n, p be any four quantities such that :

^"I^ _ ^i ~y<) __ ?LZl?o _ ii
~

^o

Z m 7i p
'

then l(x-xQ ) + m(y-y<)) + n(z-z<))--p(t-tQ)==Q ...... (3)

will obviously represent the same set of elements as equation (2) and

is therefore the equation of a threefold passing through the element

whose coordinates are (XQ , yQ ,
z

, ), and its type will be, inertia, optical,

or separation, according as the expression

is positive, zero or negative.

If (#', y', z'
, t') be any element such that:

then we could substitute

(x'-xQ),(y'-t/o),(z'-Zv),(t'-ti)

for (xl
- XQ ), (yl

-
2/ ), (zl

- z ), (^
-
h)

respectively in equation (2) and the resultant equation would still

represent the same threefold while the general line through (# , yQ ,

zQ , ) and (#', y', z'
, t') would still be the normal to the threefold

through the element A which, as we know, is unique.
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Thus (#', y ', z
1

', ') would always lie in the general line AB.

Thus, removing the accents we get

X\~~~ XQ 2/i
~

2/o zi"~ zo ^i~~^o

as the equations of the general line passing through the two elements

(# , ?/ ,
z

, )
and (xl9 yly zlt < x ); and these will represent a separation,

an optical, or an inertia line according as the expression

to - x )* + (y,
-

2/ )2 + (z,
- z )*

-
(tt
- *)

is positive, zero, or negative.

As before, we may substitute /, m, n, p for

(*i
~

*o)> (2/i
-

2/o)^ (*i
-

ZD) (*i
~

*o)

respectively and the equations

*
_?o = 2/r^ = 2

r:
zo = ^rJo /

5)
/ m n 2>

will rej)resent the same general line, which will be separation, optical,

or inertia according as the expression

is positive, zero, or negative.

Again, if (x2 , /2 ,
z
2 ,

t2 )
be any element of the general threefold (2)

distinct from the element (# , y ,
z

,
tQ ), then the general line joining

these elements will be normal to the general line AB and

(x2
- x

) (Xl
- XQ ) + (2/2

-
2/ ) (y l

-
2/ ) + (

Z
2
~ zo) (

z
i
~ zo)

~~
(h
~

*o) (^i
~

^o)

= 0.

This will be the condition that the lines are normal to one another.

If the general lines be expressed in the forms :

x ~ xo = y~ 2/o = z ~ zo = t
~

(o

I m n p

__j x ~ xo _ y ~ 2/o _ z ~ zo _ ^ ~~
^o

tinu ,,
- -

~~t
~ - -

/ m n p
the condition of normality may be expressed in the form

U' + mm' +nri-pp' = Q ...... (6).

It can readily be seen that this is still the condition ofnormality if the

lines do not both pass through the same element.

Since any two general threefolds which are not parallel have a general

plane in common, it follows that any two equations of the forms:

llx+ m ly + n^z pl t = cl ...... (7)

and /
2 #-f w2 2/4-n2 z p2t~c2 ...... (8)
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where /t
:ml

: % : pl 4= /2 : m2 : n
z

: P2>

will represent some form of general plane P.

In order to determine to which type this belongs consider the two

general lines :

/
2

m
l n-L PI

*-_ Ur ...... (10).

These general lines both pass through the origin and therefore lie in

some general plane Q.

Further, since the general line (9) must be normal to the general

threefold (7), while (10) is normal to (8), it follows that (9) and (10) are

both normal to P and consequently Q must be completely normal to P.

We shall determine the type of Q and thence deduce the type of P.

Let (#1? t/1? zl3 ]_)
be any element in (9) distinct from the origin.

Then the equation of a standard cone having this element as vertex

will be

If this cone intersects the general line
( 10) in an element (x2 , y2 ,

z2 , 2 ) ,

we shall have

(/2 r2
-VJ2 + (m2

r2
- ra^)

2 + (n2 r2
- rc^)

2 -
(pzr2 -^rj 2 =

or

-
>!
2
) r^ = 0.

Let us first suppose that neither of the expressions :

is zero.

Regarded as an equation for r
2 in terms of rx and the direction ratios,

the condition that the roots should be real and distinct is that

-
(Z2

2 + m2
2 + na

2 -
Pz*) Vi

2 + MI* +V -Pi
2
)
> 0-

If this be the case the general plane Q will be such that it contains

two optical lines passing through an element of it.

It follows that Q will be an inertia plane.

If the above expression be zero there will be only one optical line in

Q which passes through the given element and accordingly, in this

case, Q will be an optical plane.
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If the above expression be negative there will be no optical line in Q
which passes through the given element and accordingly, in this case,

Q will be a separation plane.

Let us next consider the case where one of the general lines (9) and

(10) is an optical line. It will be sufficient to suppose that

while /!
2 + rax

2 + n^ -p^2
4= 0.

Then provided that the expression

I2 l
r 4-m2m i 4 n2nl p2pi

be not zero, r
2 may be determined and Q contains a second optical line

which intersects the optical line (/2 ,
ra2 ,

rt
2 , p2 )

and accordingly Q will

be an inertia plane.

It is obvious however that in this case also

(I2 l 4- m2m1 4 n2n^
-

z>2 Pi)
2

-
(/ 2

2 4 w 2
2 4V ~^2

2
) (*i

2 +V +V -Pi
8
) > -

In case I2 l l i-^fi2ml
jrn 2

n
l --p2p l be zero, the above expression is

zero and no value of r
2
can be determined. Thus in this case there is no

optical line in Q which will intersect the optical line (12 ,
w2 ,

n2 , p2 )i

so that Q must be an optical plane.

Finally if

and /!
2 4m^ 4V - pf = 0,

there are evidently two intersecting optical lines in $? which must

therefore be an inertia plane.

Since these optical lines intersect it is not possible to have

12
/
x 4 m2m l 4 n2 n^ p 2p^

zero: for this would be the condition of their normality which would

imply coincidence.

Thus in this case also we should have

(/a/! 4m2ml 4 n2n l -p2Pi)
2

Accordingly in all cases this expression will be positive, zero or

negative, according as Q is an inertia plane, an optical plane or a

separation plane.

But since P is completely normal to Q, it follows that when:

(i) Q is an inertia plane, P is a separation plane.

(ii) Q is an optical plane, P is an optical plane.

(iii) Q is a separation plane, P is an inertia plane.
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Thus P is a separation plane, an optical plane or an inertia plane

according as the expression

is positive, zero, or negative.

Having thus obtained the equations of general lines, planes and

threefolds and the conditions that they should be of any one of the

three different types and having also obtained the condition that

general lines should be normal to one another; the analytical develop-

ment of the subject may be carried forward in the usual manner.

SYMMETRICAL COORDINATES

The systems of coordinates which we have considered are those in

which we have four coordinate axes which are normal to one another,

and such systems are those which are most generally useful; but

they give an expression for the square of the distance between two

elements in the form of a sum of squares, in which one square is of

different sign from the remaining ones.

This want of symmetry takes away from the analytical attractive-

ness of the subject, although the fact that it can be built up entirely

from before and after relations gives it a special importance.

The writer has shown that it is possible to introduce symmetrical

systems of coordinates for Conical Order in four or any larger number

of dimensions; which, however, are not orthogonal.*

Thus if we put :

we can easily verify that:

p-xi-yt-zt^XiXi
which is symmetrical in the four coordinates : X

l ,
X

2 , X3 ,
X .

* In order to construct a conical order of five dimensions it is only necessary to omit

Post. XX, and substitute for it a postulate of the form :

// W be any optical threefold there is at least one element which is neither before nor after

any element of W.

The subject can then very easily be developed, since the main difficulties have already

been overcome in treating of four dimensions. We may limit the geometry to five dimen-

sions, if so desired, by means of a postulate analogous to Post. XX; or extend it to six

dimensions or any larger number in an analogous manner.

To go into any further details on this subject would be outside the scope of the present

work, which is concerned with the development in four dimensions.
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The transformation has been made of such a form as to introduce a

coefficient f for reasons connected with the interpretation of the

system.
We do not purpose going into this in the present work, but refer the

reader to a paper by the author: "On a Symmetrical Analysis of

Conical Order and its Relation to Time-Space Theory in the Proc.

Roy. Soc. A (1930), vol. cxxix, pp. 549-79.

INTERPRETATION OF RESULTS

It is evident that any element whose coordinates are (a, 6, c, 0) must

lie in the separation threefold W and accordingly the three equations

x = a, y b, z = c

must represent an inertia line normal to W and therefore co-directional

with the axis of t.

Again, any equation of the first degree in x, y, z, together with the

equation t = 0, will represent a separation plane in W, while any two

independent but consistent equations of the first degree in x, y, z,

together with the equation t = 0, will represent a separation line in W.

Thus any equation of the first degree in x, y, z (leaving out the equa-

tion = 0) will represent an inertia threefold containing inertia lines

parallel to the axis of
;
while any two independent but consistent

equations of the first degree in x, y, z will represent an inertia plane

containing inertia lines parallel to the axis of t.

Thus corresponding to any theorem concerning the elements of W
there will be a theorem concerning inertia lines normal to W and passing

through these elements.

Conversely, if we consider the system consisting of any selected

inertia line together with all others parallel to it, then any two such

inertia lines will determine an inertia plane, while any three which do

not lie in one inertia plane will determine an inertia threefold.

Since these inertia lines must all intersect any separation threefold

to which they are normal, it follows that they have a geometry similar

to that of the separation threefold and therefore of the ordinary
Euclidean type.

// then we call any element of the entire set an "instant" ; any inertia

line of the selected system a "point" ; any inertia plane of the selected

system a ''straight line
"

; and any inertia threefold of the selected system a

"plane "; we can speak ofsucceeding instants at any given point, and have

thus obtained a representation of the space and time of our experience in so

far as their geometrical relations are concerned.
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The distance between two parallel inertia lines of the system will

naturally be taken as the length of the segment intercepted by them in

a separation line which intersects them both normally.

This, then, will be the meaning to be attached to the distance between

two points.

Time intervals in the usual sense will be measured by the lengths of

segments ofthe corresponding inertia lines: that is to say, by differences

of the t coordinates.

Since we have defined the equality ofseparation and inertia segments
in terms of the relations of after and before and have assigned an inter-

pretation of these, it follows that the equality of length and time in-

tervals in the ordinary sense is rendered precise.

It is to be observed that the particular system of parallel inertia lines

which we may select is quite arbitrary although the set of elements or

instants contained in the entire system is in all cases identical.

The distinction between different systems is that while two parallel

inertia lines represent the time paths of unaccelerated particles which

are at rest relative to one another; two non-parallel inertia lines repre-

sent the time paths of unaccelerated particles which are in motion with

uniform velocity with respect to one another.

Thus we are able to give a definition of absence of acceleration, but,

since all inertia lines are on a par with one another, we can attach no

meaning to a particle or system being at "absolute rest".

The definition of absence of acceleration based upon the relations of

after and before and as regards a finite interval of time, may be thus

expressed:

Definition. If A and B be two distinct elements of any inertia line

(B being after A), then a particle will be said to be unaccelerated from
the instant A to the instant B provided it lies in the inertia line AB
throughout that interval.

The physical signification of an optical line is : that a flash of light

or other instantaneous electromagnetic disturbance in going directly

from one particle to another would follow this time path.

As regards a separation line; since no element of it is either before or

after another, then if our view be correct, no single particle could

occupy more than one element, and so particles which occupy distinct

elements of any separation line must be separate particles.

The above considerations indicate the reasons for adopting the

names we have assigned to the three types of general line.

R 26
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The names inertia, optical and separation, as applied to general

planes and general threefolds, have been given on account of certain

analogies with the corresponding types of general lines.

In the first edition of this work the names: "acceleration plane
" and

"rotation threefold" were used instead of inertia plane and inertia

threefold respectively; but the present nomenclature is more syste-

matic and permits of systematic extension to Conical Order in n

dimensions.

Results involving only three coordinates x
9 y and t may be visualised

by means ofthe three-dimensional conical order described in the intro-

duction, but a certain amount of distortion appears in a model of this

kind, since equal lengths in the model do not in general represent equal

lengths as we have defined them.

The optical significations of Posts. I to XVIII are howevermade clear

by such models, and it is easily seen that the assertions made in these

postulates, when interpreted in the manner described, are in accordance

with the ordinarily accepted ideas.

Post. XXI also finds an interpretation in such a model, but its signi-

ficance is concerned rather with the logic of continuity than with any
observable physical phenomenon.

Since it is possible to define equality of lengths in terms of after and

before it seems superfluous to introduce any other conception of length,

since the effect of this would merely be to destroy the symmetry which

otherwise exists.

It is again to be emphasised that the application of the theory
of conical order does not in itself require that the a and

j3
sub-sets

should be determined by optical phenomena, but merely that there

should exist some influence having the properties which we have

ascribed to light.

Accordingly if it should be found hereafter that some other influence

than light possessed these properties we should merely require to

substitute this influence for light and interpret our results in terms of it.

CONCLUSION

Our task now approaches completion.

We have shown how from some twenty-one postulates involving the

ideas of after and before it is possible to set up a system of geometry in

which any element may be represented by four coordinates x, y,z,t.

Three of these, x, y, z, correspond to what we ordinarily call space
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coordinates, while the fourth corresponds to time as generally under-

stood.

Since however an element in this geometry corresponds to an instant,

and bears the relations of after and before to certain other instants, it

appears that the theory of space is really a part of the theory of time.

Ofthe postulates used: nineteen, namely I to XVIII and Post. XXI,

may easily be seen to have an interpretation in three-dimensional

geometry by making use of cones as described in the introduction.

It follows that if ordinary geometry be consistent with itself, these

nineteen postulates must be consistent with one another.

Of the remaining two postulates, Post. XIX has the effect of intro-

ducing one more dimension, while Post. XX limits the number of

dimensions to four.

Since by means of these we have been enabled to set up a coordinate

system in the four variables x, y, z, t, the question of the consistency of

the whole twenty-one postulates is reduced to analysis.

It is not proposed to go further into this matter in the present

volume, having said sufficient to leave little doubt that they are all

consistent with one another.

The question as to whether the postulates are all independent is

mainly a matter of logical nicety and is of comparatively little import-

ance provided that the number of redundant postulates be not large.

In the course of development of the present work the writer suc-

ceeded in eliminating a considerable number of postulates which he had

provisionally laid down: the redundancies being generally indicated by
the possibility of proving some particular result from several sets of

postulates.

One known redundancy has been permitted to remain: namely
Post. II (a) and (6), which might have been deduced directly from

Post. V and Post. VI (a) and (6).

By retaining Post. II, however, our first four postulates will be seen

to hold for the set of instants of which any one individual is directly

conscious, and the subject is thus better exhibited as an extension of

the commonly accepted ideas of time.

A still further diminution of the number of postulates might have

been made by combining Posts. VI and XI in the way mentioned on

p. 42, but to have done so would have complicated still further the

initial part of the subject, since Post. VI implies merely a two-dimen-

sional conical order, while its combination with Post. XI makes the set

of elements at least three-dimensional from the very beginning.
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Apart from the above-mentioned, no further definite indications of

redundancy have been observed, and, although some redundant

postulates may still remain, it seems unlikely that there can be many.
This opinion is confirmed by a comparison with the number of

fundamental assumptions given by various writers on the foundations

of ordinary geometry.

We have now concluded the exposition ofthe argument by which we
have been led to the view expressed in the introduction: that spatial

relations are to be regarded as the manifestation of the fact that the elements

oftimeform a system in conical order: a conception which may be analysed

in terms of the relations of after and before.

This view would appear to have important bearings on general

philosophy, but into these we do not purpose here to enter.

One point may however be mentioned:

The fundamental properties oftime must, on any theory, be regarded
as possessing a character which is not transitory, but in some sense per-

sistent; since otherwise, statements about the past or future would be

meaningless.

We here touch on the difficult problem as to the nature of "univer-

sals": a problem which has been much discussed by philosophers, but

appears to be still far from a satisfactory solution.

Though space may be analysable in terms oftime relations, yet these

remain in their ultimate nature as mysterious as ever; and though
events occur in time, yet any logical theory of time itself must always

imply the Unchangeable.
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APPENDIX

It is worthy ofnote that, just as by treating a system ofco-directional

inertia lines as points, we may represent ordinary Euclidean geometry
in our time-space continuum: so by means of a system of inertia lines

having a common element, we may represent the geometry of Lobat-

schewski in a very analogous manner.

We shall first prove a certain theorem with regard to three such

inertia lines.

Let these be denoted by l
,
1
2
and 13 and let them have the common

element 0.

Let A be any element of ^ which is after and let a separation line

be taken through A normal to Zx and lying in the inertia plane con-

taining l: and 12 and let it intersect 1
2
in B''.

Similarly let a separation line be taken through A normal to l and

lying in the inertia plane containing ^ and Z3 and let it intersect j!3 in C'.

Then, since OA is normal to both AB'
and AC', it follows that AB' and AC' lie

in a separation plane, so that B'C' is a

separation line and the relations ofthe sides

and angles of the trianglewhose corners are

A
9 B', G' are the same as in ordinary

Euclidean geometry, and we shall denote

LB'AC'\sy A.

Also, since both B r and C' are neither

before nor after A, while A is after 0, it

follows that both B' and G' are also after 0,

and accordingly, the inertia half-lines OA
,

OB' and OG' having the common end

must make proper hyperbolic angle
-

boundaries with one another.

We shall denote the proper hyperbolic

angles /.C'OB', Z.AOC' and LB'OA by a, b and c respectively, and

shall use the abbreviation conj for the word conjugate.

Then, as we have seen

(conj B'C')* = 20B' . OG' cosha- OB'*-OC'*.

Also B'C' 2

so that

(conj B'C')
2 = (conj AB'}

Fig. 57.

-

(conj AC')
2 - 2 (conj AB') (conj A C') cos A.
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Thus

20B' . 0C"cosha = OJ3' 2 + (conj AB')*+ OC"2 + (conj AC')*
- 2 (conj AB') (conj AC') cos A,

or 205'. OC f

cosh a = 20^ 2 -2 (conj AB') (conj ^4 C") cos A.

This may be written in the form

cosha-^1 OA^con]AC') (conjAB*)
cosn a -

oc ,
.
-

Qg, figr
.

^-g,
cos^

,

or cosh a = cosh 6 cosh c sinh 6 sinh c cos ,4
(
1
) ;

where cos ^4 is equal to the cosine of the di-hedral angle which the

two inertia planes containing ^ make with one another.

By similar constructions taken with respect to 12 and 13 , denoting

the corresponding di-hedral angles by B and C respectively, we may
deduce the equations

cosh b = cosh c cosh a sinh c sinh a cos B (2),

and cosh c = cosh a cosh b sinh a sinh b cos (7 (3).

These equations (1), (2) and (3) are the relations connecting the sides

and angles of a triangle in the geometry of Lobatschewski.

Now let R be the set of elements which are after exclusive of those

which lie in the a sub-set of 0, and consider the portions lying in the

region E of all inertia lines, inertia planes and inertia threefolds which

pass through the element 0.

If then, for the purpose of this representation, we call such a portion

of an inertia line a point] such a portion of an inertia plane a line, and

such a portion of an inertia threefold a plane] we see that: any two

points determine a line; while any three points which do not lie in one

line determine a plane.

Also the sides and angles of any triangle satisfy the relations of the

geometry of Lobatschewski.

It is to be observed that, since optical and separation lines which

pass through do not lie in the region J?, two inertia planes passing

through O and intersecting in an optical or separation line through

correspond to lines in a plane which have no point in common. In the

case where the inertia planes intersect in an optical line theycorrespond
to Lobatschewski parallels; since an optical half-line does not make

a finite hyperbolic angle with any inertia half-line,

It is obvious that similar results hold if, instead of the region B, we
take a region R' consisting of all elements which are before exclusive

of those which lie in the j3 sub-set of O.
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References in dark type are to definition*

Addition of angles, 351 et seq.

After, 6 et seq.

a sub-set, 27

Angle-boundary in inertia plane, proper
hyperbolic, 385

vertex, sides, 385

Angle-boundary in separation plane, 337

vertex, sides, acute, obtuse, etc., 337

supplement of, congruence of, 338

Angle in inertia plane, natural measure of

proper hyperbolic, 386

Angle in separation plane, natural measure
of, 357

Angular interval in inertia plane, proper
hyperbolic, 386

Angular interval in separation plane, 348

null, circuit, etc., supplement of, con-

jugate, 349

Angular segment in inertia plane, proper
hyperbolic, 386

Angular segment in separation plane, 348

acute, obtuse, right, flat, etc., 349

congruence of, 351

Archimedes, 104, 308, 345

Before in terms of after, 27

/J sub-set, 28
Between a pair of optical lines in an inertia

plane, 67

Between, linearly, 119

Circle, separation, 328

centre, radius, diameter, 328

inside, outside, 329
Co-directional congruence of pairs, 283
Co-directional general lines, 125

Complete normality of general planes, 221

Cone, standard, 390

Congruence, co-directional of pairs, 283

general, of inertia pairs, 295

general, of separation pairs, 295
of inertia pairs having a self-correspond-

ing element, 276
of separation pairs having a self-corre-

sponding element, 279

Conjugate angular segments and intervals,
349

Conjugate inertia and separation lines, 163

Conjugate pairs, 278

Co-ordinates, introduction of, 387 et seq.

symmetrical, 399

Cylinder, optical circular, 362

Dedekind, 343, 344, 345
De Moivre, 351, 356, 357

Einstein, 11, 12, 13, 21

Equations of general lines, planes and three-

folds, 395 et seq.

Euchd, 2, 5, 313, 314, 358

Eudoxos, 313

First element of an inertia line which is

after an element, 167

FitzUerald, 10

Fizeau, 8, 9, 21

General line, 63
General plane, 192
General threefold, 229

sets of elements which determine different

types of, 242-245
Generator of inertia plane, 57

of optical plane, 146
of optical or inertia threefold, 246

Half-line, general, 309
end of, 309

Half-plane, general, 310

boundary of, 310

Hill, 313, 314

Hyperbolic angles, proper, 379 et seq.

Hypotenuse, 333

Inertia hue, 63
Inertia plane, 52

sets of elements which determine, 70-
72

Inertia threefold, 245

Interpretation of results, 400 et seq.

Intersection, of optical lines, 42
of general lines, 77
of general line and general plane, 229
of general line and general threefold,

260

Interval, linear, 308

James, 22

Kelvin, Lord, 13

Lagrange, 13

Larmor, Sir J., 11

Last element of an inertia line which is

before an element, 167

Length of segment, numerical value of in

terms of unit segment, 345

Line, general, 63

inertia, 63

optical, 30

separation, 63
Linear interval, 308

Linearly between, 119

Lobatschewski, 405, 406

Lodge, Sir O., 11

Lorentz, 10, 11

Mean, of two elements in an inertia or

separation line, 98
of two elements in an optical line, 98

Michelson, 9, 11

Mmkowski, 1, 6, 13, 17, 18, 21, 22

Morley, 9, 11
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Normality, of general planes complete,
221

ofgeneral lines having a common element,
210

of general lines having no common
element, 220

of general line and general plane, 221
of general line and general threefold,

238
of general plane and general plane, 266
of general plane and general threefold,

266
of genera] threefold and general three-

fold, 268

Optical line, 30

equations of, 394

Optical parallelogram, 76
corners, diagonal lines, etc., 76
side lines, 90

opposite side lines, 90
centre of, 90

Optical plane, 146
sets of elements which determine, 158-

159

Optical threefold, 245

Pairs, inertia, optical and separation, 276

conjugate, 278

opposite, 281

Parallelism, of inertia planes, 73
of general lines, 81
of general line and general plane, 195
of general planes, 195
of general line and general threefold,
264

of general plane and general threefold,
264

ofgeneral threefold and general threefold,
264

Parallelism of optical lines, 51-52

after-parallel, 52

before-parallel, 52

neutral-parallel, 52

Parallelogram, general, in an inertia plane,
135

side lines, diagonal lines, etc., 135136
Parallelogram, general, in an optical plane,

154
side lines, diagonal lines, etc., 154

Parallelogram, general in a separation
plane, 189

side lines, diagonal lines, etc., 189

Parallelogram, optical, 76
corners, diagonal lines, etc., 76
side lines, 90

opposite side lines, 90
centre of, 90

Parallels, axiom of, 132, 148, 188, 192

Peano, 121-124, 131-132, 148, 188, 192

Pierpont, 345
Plane, inertia, 52

general, 192

optical, 146

separation, 185

Postulate I, 27

II, 27

111,27
IV, 27
V, 27

VI, 27

VII, 28

VIII, 28

IX, 30
X, 40
XI, 42

XII, 45

XIII, 54

XIV, (53

XV, 60

XVI, 77

XVII, 103

XVIII, 167

XIX, 204
XX, 245

XXI, 343

Proportion, 313-314

Pythagoras, 1, 347, 367, 368, 369, 374, 376,
377, 388, 389, 391

Ratio, 313
Ratios, r, ft and t, 337

Rayleigh, Lord, 11

Relations, asymmetrical and symmetrical,
6-7

Representative elements in parallel inertia

planes, 156
Roche, Sir Boyle, 15, 18

Romer, 8

Segment of general line, 308
end of, 308

prolongation of, 309

Segments, equality of, 311

greater than, 311
less than, 311

Separation line, 63

Separation plane, 185
sets of elements which determine, 190-191

Separation threefold, 245

Simultaneity, 7 et seq.

Sphere, separation, 342
centre, radius, diameter, etc., 342

Standard cone, 390

Steps, taking, along an inertia line, 103

surpassing in a finite number of, 103
Stolz, 314
Sub-set a, 27

0, 28

Threefold, general, 229
inertia, 245

optical, 245

separation, 245

Triangle, general, 319
sides, corners, 319

Unaccelerated particle, 401

Whitehead, 6
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