

> The LuEsther T Inetz Liorary
> The New Yok Botanical Garden
complumants of
J.B.Neems ona I. I. Pumov.

$$
\begin{aligned}
& \text { fore brunders } \\
& \text { arsin. Faves } \\
& \text { attany }
\end{aligned}
$$

ont

IOWA GEOLOGICAL SURVEY

Bulletin No. 1

THE

GRASSES OF IOWA

DES MOINES, IOWA

```
584,9
    F. R. CONAWAY
    BTATE PRINTER
```


THE GRASSES OF IOWA

BY

L. H. PAMMEL, Ph. D.,

Professor of Botany, Iowa State College of Agriculture and the Mechanic Arts,
J. B. WEEMS, Ph. D.,

Professor of Agricultural Chemistry, Iowa State College of Agriculture and the Mechanic Arts.

AND
F. LAMSON-SCRIBNER, Agrostologist,
U. S. Department of Agriculture, Washington, D. C.

GEOLOGICAL BOARD

His Excellency, L. M. ShawGovernor of Iowa Hon. F. F. Merriam... . . Auditor of State
Dr Geo. E. Maclean................. President State University of Iowa
Dr. Wm M. Bfardshear....................... President Iowa State College
Prof. A. A. Veblen.................. President Iowa Academy of Sciences

THE law creating the Iowa Geological Survey provides for the publication of Bulletins on subjects of economic interest relating to the Natural History of the State. It is with sincere pleasure that the Survey now presents to the people of Iowa, Bulletin Number 1. This volume treats of the Grasses of Iowa, a subject of p imary importance to the rapidly developing agricultural interests of the state. The preparation of the volume involved an immense amount of careful and conscientious work, but it was all done as a labor of love on the part of the authors. The work is submitted in the confident belief that it will be of the highest value to the great industry that so conspicuously transcends all other industries in our magnificent state.

Samuel Calvin,
State Geologist.

TABLE OF CONTENTS.

PAGE
Introduction 3
Grasses-Gramince 7
Purity and vitality of grass seed 96
Cereals 124
Fungus diseases of grasses 185
Bacterial diseases 281
Pastures and meadows of Iowa 293
Weeds of meadows and pastures 448
Chemistry of foods and feeding 464
Lawns and lawn making in Iowa 491

GRASSES OF IOWA.

PART 1.

INTRODUCTION.

No apology is needed for a work describing the grasses of Iowa. The importance of Iowa as an agricultural state depends largely on the value of products derived from members of the grass family, such as corn, oats, blue grass, wheat, etc. Iowa's wealth depends largely on the produce derived from the grasses and cereals.

The work on grasses may be divided into two parts: First, economic considerations on cereals and grasses, especially with reference to general structure, the seed and its germination and vitality, the cereal production of the state as compared with other parts of the world, climatology of some of our most important cereals, grasses in medicines, pastures and meadows of Iowa, their chemical composition, the fungus diseases of our cereals and grasses, and means of prevention. It is only in a few instances that we are provided with precise knowledge of the changes that occur in grasses during their development. This is an important subject and can only be solved through a series of continued investigations.

So far as possible the grasses have all been figured. Onethird have been drawn expressly for this work by Miss Charlotte M. King. Some have been photographed by Dr. S. W. Beyer. F. D. Coburn and Mr. Charles N. Page also supplied a few cuts, and we are especially indebted to the United States Department of Agriculture. The descriptive part is supplied mostly by F. Lamson-Scribner. He has also kindly examined all the grasses in the collection and those of the State University of Iowa. The economic, ecological notes and accounts of diseases, as well as the original chemical matter, should be attributed to the senior authors. Thanks are due to the following persons who have contributed specimens: Mr. E. W. D. Holway, Decorah, Iowa; Prof. P. H. Rolfs, Clemson College, S. C.; Prof. H. W. Norris, Grinnell, Iowa; Prof. B. Fink, Fayette; Prof. A. S. Hitchcock, Manhattan, Kan.; Dr. M. Reynolds, Minneapolis, Minn.; F. C. Stewart, Geneva, N. Y.; F.
A. Sirrine, Jamaica, N. Y.; Prof. E. E. Kaufman, Fargo, N. D.; Prof. G. W. Carver, Tuskeegee, Ala.; F. Reppert, Muscatine; Prof. C. E. Bessey, Lincoln, Neb.; Bandusia Wakefield, Sioux City; A. A. Miller, Davenport; W. D. Barnes, Blue Grass; C. A. Wilson, J. I. Schulte, C. R. Ball, W. E. Gossard, C. O. Pool, W. Newell, Charles Le Buhn, A. F. Sample, J. H. Rolfs, Emma Sirrine, C. B. Weaver, B. H. Hibbard, H. C. Taylor, A. P. Whitmore, W. H. Warden, C. E. Eckles, Miss A. Estella Paddock, H. H. Hume, C. A. Battles, H. A. Crawford, W. D. Fitzwater, H. O. Sampson, Geo. F. Sokol, E. R. Hodson, L. R. Walker and other students of the Agricultural College.

Specimens sent from F. Reppert of Muscatine, W. D. Barnes of Blue Grass, A. A. Miller of Davenport, J. H. Mills of Mount Pleasant, R. I. Cratty of Armstrong, and B. Fink of Fayette, are especially worthy of mention. Several local species are found in the vicinity of Muscatine and Davenport which do not occur elsewhere in the state. We wish also to express our special thanks to Prof. T. H. Macbride and B. Shimek of the State University of Iowa. The latter has not only favored us with specimens, but has gone through the entire collection of the State University and listed such as were determined by Professor Lamson-Scribner. We wish also to express thanks for uniform courtesy shown us by the Division of Agrostology of the United States Department of Agriculture. We are also indebted to Dr. William Trelease of the Missouri Botanical Garden for the use of books, to Dr. Robinson of Gray Herbarium of Harvard University for having kindly looked up the specimens referred to in Gray's Manual, sixth edition; to Dr. Harshberger of the University of Pennsylvania for the specimens of Zea canina and its hybrids with Euchlaena; Prof. G. W. Carver for help on fungus diseases of grasses, and Dr. H. Foster Bain and Dr. Calvin, who encouraged the work in every way. We wish also to express our thanks to the agricultural press of this state, which has kindly assisted us in every way possible in making a complete collection of our grasses. Special mention should be made of the volunteer observers of the Iowa State Weather Service, who have in every way assisted us. Their notes and specimens have been of much value to us. Special thanks are also due to Miss Emma Sirrine, Dr. H. Foster Bain, Dr. S. Calvin; to C. R. Ball, and R. Combs, who assisted in preparing the bibliography; to Dr. S. W. Beyer, who made most of the photographs; C. B. Weaver and several students,
who made some of the drawings representing anatomy of leaves, and Miss Charlotte M. King, for faithful drawings. Thanks are due also to Mrs. M. S. Schoonover, Miss Nellie Newman and Miss Loughran for clerical help.

The names of collectors and of localities will be found in their appropriate connection. We trust that this volume, a preliminary one of the botanical series, will meet with the approval of botanists as well as the people of the state.

The chemical analyses of the grasses, presented in this work, were made by the chemical section of the Experiment Station, and the faithful service of Messrs. Mead and Grettenburg have added largely to the completeness of the work.
L. H. Pammel, J. B. Weems.

Ames, Iowa, November 1, 1899.

GRASSES—GRAMINE压.

General Description.

Characters of the Order.-Fibrous-rooted, annual or perennial, herbaceous plants (among our species Arundinaria alone is woody), with usually hollow, cylindrical (rarely flattened) and jointed stems (culms) whose internodes for more or less of their length are completely enveloped by the sheath-like basal portion of the two-ranked and usually linear, parallel-veined leaves.

Flowers without any distinct perianth, hermaphrodite or rarely unisexual, solitary or several together, in spikelets, these disposed in panicles, racemes or spikes, and consisting of a shortened axis (the rachilla) and two or more chaff-like, distichous bracts (glumes), of which the first two, rarely one or none or more than two, are empty (empty glumes); in the axil of each of the succeeding bracts (except sometimes the uppermost) is borne a flower (hence these are named flowering glumes). Opposed to each flowering glume, with its back turned toward the rachilla, is (usually) a two-nerved, twokeeled bract or prophyllum (the palea), which frequently envelops the flower by its enfolded edges. This bract is the prophyllum of the extremely short axis or branch which supports the flower; its absence indicates that the flower is strictly sessile or inserted directly on the rachilla; the rachilla or axis of the spikelet may or may not be produced beyond the palea. At the base of the flower, between it and its glume, are usually two very small hyaline scales (lodicules); rarely there is a third lodicule between the flower and the palea. Stamens, usually three (rarely two or one, or more than three), with very slender filaments and two-celled, usually versatile anthers. Pistil with a one-celled, one-ovuled ovary, and one to three, usually two, styles, with variously-branched, most frequently plumose, stigmas. Fruit, a true caryopsis, rich in albumen. (In Sporobolus and Eleusine the fruit is a utricle, the seed being loose within the thin pericarp.) Embryo small, lying at the front and base of the seed, covered only by the thin pericarp.

The organs or parts of grasses, as in other plants, are those of vegetation and those of reproduction; to the first belong the root, stem or culm, and leaves; to the second the stamens and pistils.

Roots.

Gross characters. -Grass roots are always fibrous. The more or less strong underground rhizomes are often called roots; they are not true roots, but are specially modified stems.

Fig. 1. Brace roots of Mexican corn grown on college farm. (King.)

Minute anatomy.-The purpose or funcdion of the roots is to obtain nutrient materia from the soil and conduct these matters through certain channels. It is important, therefore, to consider the structure of the roots from an anatomical standpoint. One

Fig. 2. Blue grass and its system of roots. (Klong.)
illustration will serve to show the structare, and for that purpose the corn plant may be taken as a type.*

The first root is early formed by the plant; it exists in the seed. When appropriate material, moisture, warmth and oxygen is

[^0]furnished to the seed the root pushes through the covering of the seed and enters the soil. At this early stage it is easy to make out a conical tip known as the root-cap. This consists of loosely arranged parenchyma cells. These cells are not alike, but differ in size and shape. It is easy to observe that the cells at a point back of the tip converge; they are destined for a different purpose from the cells above and below.

Fig. 3. Roots of Foxtall (Setaria viridis) (King.)
 This point is known as the growing point or punctum vegetationis. All other cells are derived from the growing point. Below, the cells of the root-cap are formed. These are continually being removed as the roots push through the soil. The root-cap is purely protective in its function. In the center occurs what is known as the central cylinder (plerome). On either side occurs the cortex (periblem). The outer layer is the epidermis (dermatogen). These cell walls are more or less mucilaginous. All of these young cells contain an abundance of protoplasm and a distinct nucleus. At a little distance back of the tip, the epidermal cells form root hairs. These are at first straight and have delicate walls, but as they increase in length they become tortuous and insinuate themselves among soil particles, the grains of sand adhering owing to the mucilaginous character of the cell walls. Owing to their intimate contact with the same, it is difficult to remove the soil. The older root hairs are continually being replaced as the root increases in length. A cross section through an older root shows that it is made up of three parts: the outer epidermis; the central axis or cylinder, containing the fibro-vascular elements; and between the two, the parenchymatous tissue.

The central cylinder is bounded by the endodermis and a peripheral layer. The cells of the endodermis are without intercellular spaces, and are more or less plicate. In secondary roots the rear walls are thickened somowhat like a crescent. The bundles are arranged in a radial manner, the woody elements (xylem) occupy the center

Fig. 4. Section of Maize seed. ce, endosperm; pl, plumule; 8c, scutellum; c, caullcle; pr, primary root; $h ;$ hilum; rs, root sheath. (King.)
and alternate with the soft tissue (phlœm). The woody elements consist of scalariform ducts, spiral tracheids and an annular duct.

The primary or seminal root is of short duration, and is soon replaced by the secondary, or as they are commonly called, "brace roots." These roots show conspicuous large bundles

Fig. 5. Root of Maize. a, root-cap of loose cells; 8 , growing point; e, epldermis; v, thick walls; $\mathrm{m}, \mathrm{g}, \mathrm{f}$, plerome, central cylinder; g, a vessel; f, wood; m, pith; x, r, cortex (Sachs)
in which occur spiral tracheids, annular and scalariform ducts. The secondary roots arise from the nodes, and ordinarily are aerial, though some are formed soon after the seed germinates. These appear as swellings, the continued growth within causing the stem to become ruptured, and allowing the

Fig. 5a. Cross-section through tip of brace root, showing spidermal cells; to the left before the addition of water; to the right after the addition of water, the outer part having expanded.
tip to emerge. It points downward and hence is positively geotropic.

Harshberger* notes that before entering the soil, gum is formed on the tip. We have often noticed this, but botanical authors have not generally noted this interesting phenomena. This thick gum is brought about by the swelling and later breaking down of the epidermal cell walls. This substance in water takes the form of mucilage, undoubtedly for the purpose of assisting the root to hold itself to the soil. The method of formation of roots has been studied by Harshberger. The developing secondary root shows before the point breaks the epidermis and hypodermis. "Three superimposed hollow cones are found immediately beneath the two outer protective layers, the outer and middle cones being separated by a cushion of parenchyma. The outer cone is composed of actively growing cells with the nucleus and nucleolus plainly visible. It corresponds evidently to the calyptrogen layer of Janczewski. The inner cones correspond to the periblem and plerome cylinders with the outer layer of the periblem as the dermatogen or proto-epidermis. The cells of the plerome, destined to form the central vascular system, are much longer than broad, the long axis anticlinal." \dagger

Distribution of roots.-It is well known that roots have an important relation to the development of corn, especially in the manner of occurrence. The habit of the roots largely influences the amount of growth the plant can make provided other factors, sunshine and warmth are favorable.

The development of roots is largely governed by external factors, especially amount of rainfall and moisture in the soil.

In a paper read before the biological section of the American Association for the Advancement of Science, the following summary was made by the writer:
"It has been stated that not more than 10 per cent of the roots of corn enter the subsoil. Sturterant estimates as a

[^1]

Fig. 6. Cross-section of root of corn germinated in molst chamber, showing ro hairs.

Fig. 7. The distribution of maize roots in the soll. a, general distrioution; b, root magnified.
result of some work carried on with Gilbert that only one onethousandth of the roots of corn enter the subsoil. Armsby also observes that in a stiff clay soil few of the roots of corn enter the subsoil. Thiel also observes that in our cultivated plants most of the fine roots which supply the plant with mineral matter occur in the upper strata. Hunt,* in commenting on some experiments made in Illinois, says: 'Two-thirds of the roots would have been broken by root pruning four inches deep; more than two-fifths would have been broken at three inches deep; and one-seventh at two inches deep.' Newman \dagger observes that most of the roots are within four inches of the surface; these roots severed from the plant will deprive it of three-fourths of its nourishment."

Hays ${ }_{+}^{\dagger}$ says: "Returning to the direction or spread of the roots in the soil, those of the first whorls, say the five lower ones, start out nearly horizontally. This is in accordance with certain facts, viz: at this season of the year surface soil is warm, while the subsoil is yet cold; the upper soil is also richer in plant food and usually contains at this season an abundance of moisture. We see at 1, 2 and 3, plate I, that all the roots go nearly horizontally, and a cultivator running four to six inches deep, and the same distance from the hill, would sever most of these roots. After about the fourth week we find these primary roots changing their course, however, for having heretofore pushed outward they now grow downward, soon taking a nearly vertical direction. Not alone the roots which first grew outward, but all those now starting from the nodes above as well, take this downward course from the very beginning."

Armsby§ states as the result of some work carried on under his direction by Hickman: "Concerning the direction of the growth, a few words may be written, although the plan of the experiment did not include accurate observations and measurements upon this point. It was observed that the nodal roots, and especially those later formed, branched out horizontally from the stem for a considerable distance, and then turned downward quite rapidly. In the stiff soil in which the plants were grown, few of the roots appeared to enter far into the subsoil, which is a very stiff clay, so that in this situation

[^2]the corn seems to be a shallow-rooted plant, as much by reason of the obstacles which the roots encountered in growing downward, as by any habit characteristic of the plant. Other observations, to which attention will be called later, indicate that in looser soils corn roots grow to a much greater depth than was observed in this locality."

Since this above was written, King* has made a careful study of the root development of corn, from which it appears that forty-two days after planting the roots had penetrated a depth of eighteen inches. The surface roots sloped gently downward toward the center of the row, where those nearest the surface were some inches deep. When corn was three feet high the roots occupied the entire soil down to a depth of two feet.
"Here the roots are seen to occupy the entire soil down to a depth of two feet, which is the height of the cage. At this stage the surface leaders descend in a gentle curve toward the center of the row where they pass each other and lie only six inches deep.
"Just as the corn is coming into full tassel a third sample was taken which is represented in figure 10 , and here it will be seen the roots have fully occupied the upper three feet of soil in the entire field. In the center of the row, too, the surface leaders have risen still higher, and a few of them are now scarcely five inches deep, though the great bulk of them are still six inches or more below the surface at the center."

Concerning the distribution of the roots of our forage grasses very little definite is known, since few experiments have been made. The roots of blue grass during the spring and early summer are more or less horizontal and these spread obliquely downward in the soil. The grass makes little growth during dry weather for the reason that the majority of the roots occur in the surface soil. The well developed rhizomes maintain its vitality. The roots of annual grasses like Setaria, Panicum capillare, and P. sanguinale are developed in a manner similar to corn.

The Stem.

Gross character.-Grass stems are always branched at the base, and occasionally in their upper portions. If the branches are all apparently at the root, the culms are said to be simple,

[^3]the visible portion above ground being unbranched. Sometimes the stems or branches stand vertically upright, when they are termed erect; they may spread a little at first, and then assume an erect position, the lowermost joints being bent or kneed; such culms are said to be geniculate at the base. The

Fig. 8. Mexican corn. Showing method of growth on grounds Iowa Agricultural college.
basal branches may lie flat upon the ground and spread more or less extensively, taking root at the usually numerous joints, and at definite points sending up erect flowering.branches, or branches bearing leaves only; such grasses are said to have a creeping habit, or ara stoloniferous. Again one or more of the lowermost branches may not come to the surface at all, or
only after it has extended through the soil for a greater or less distance. These form the "creeping roots" (rhizomes) of grasses, but they are true stems or branches, for they are always distinctly jointed, and at the joints there are scale-like leavescharacters never found in true roots. The joints of these

Flg. 9. Japan millet (Panicum crus-gali), showing method of forming stools. underground stems may be very short, and from each node may spring a flowering branch. So condensed may this growth be that the rhizome is entirely concealed, but in perennial grasses it is always present, and in the best turf or swardforming grasses it is sufficiently manifest. In couch-grass, and especially in Johnson grass and cord grass, these rhizomes
are greatly developed, penetrating the soil in all directions, forming a sward that is exceedingly difficult to break.

Grass stems are usually round or cylindrical, rarely flattened, and generally hollow between the joints or nodes (solid or with pith in the Andropogons, Indian corn, sorghum and a few other grasses). The nodes, familiarly termed the joints, are the points on the culm or its branches from which the

Flg. 11. Rhizomes. 1. Rootstock of slough-grass (Spartina cynosuroide8). 2. Quackgrass (Agropyon repens). (Klng.)
leaves originate; they are usually somewhatswollen, the enlargement being either in the culm or, as is very often the case, in the basal part of the leaf-sheath. The space between two nodes is the interaode. All branches, excepting those of the general inflorescence, originate in the leaf-axils, that is, within and at the base of the leaf-sheaths, and between the branch and the main axis or stem there always is a longer or shorter two-keeled prophyllm with its back tnruned towards
the main axis. The presence of this prophyllum always indicates the presence of a branch, although the branch may be very much shortened, as in the case of the true floral axis where this prophyllum is the palea.

Minute anatomy of stem.-A cross section of

Fig 12. Section of culm of Wild Rice (Zizania aquatica L.) showing fibro-vascular bundles and chambered pith. (King.)
 a culm from which the leaf sheath has been removed will show first an epidermal layer composed of thick walled cells, isodiametric in Zizania aquatica, but longer than wide in Bromus mollis. Variations oscur in other genera. In a longitudinal section the epidermal cells are longer than broad. The epidermis is unbroken except for the stomata, which are not as frequent as in the leaf and sheath. The stomata connect with the loose spongy parenchyma. In Zizania and Bromus; Zea and other grasses the epidermis is followed by sclerenchyma sheath. This sheath varies in thickness in different grasses, being particularly well developed in Zizania and Zea. In some grasses like Zizania aquatica there are two sclerenchyma sheaths, one immediately under the epidermis, a second layer below the spongy parenchyma. Sclerenchyma is also found in connection with the bundles.

The fibro-vascular bundle is especially prominent. In pithless culms the fibro-vascular bundles are arranged, usually, in two circles; one occurs on the inside of the sclerenchyma ring, the other on the outside of it.

In species with pith, like Zizania, a first row of bundles occurs on the outer edge of the second sclerenchyma sheath. A second row of bundles occurs just underneath or a little below the sclerenchyma sheath. Tha remaining bundles are arra'ged in indistinct circles. Hackel says: "The fibro-vascular bundles run parallel in the internodes; the superficial ones join those of the lower internodes directly, the others take the form of a shallow arch bending towards the center (in culms with pith), where they pass through several internodes, and finally bend outwards to join the supericial ones. In the nodes the bundles cross and interlace and by means of small and short cross-bundles, which pass from the axillary shoots or buds towards the center. In this way arise the dia-
phragms or plates of tissue which separate the pith cavities (f the internodes."

The function of the sclerenchyma is to give the plant firmness and support. It is evident that strength is obtained best

Fig. 13. Oross-section bundle of maize stem. x, xylem or wood; $s, p, p r, p,{ }^{\text {p }}$ phloem or soft bast; $8, p$. sleve tubes; $p r, p$, companion celis; 88 , sclerids, the mechanical elements; a_{1} ringed vessels; d, duct; par, parenchyma; is, intercellularspace. (Oombs.)
by having the sclerenchyma in close proximity to the epidermis. The peripheral bundles, including the sheath, constitute a system of compound pillars indispensable to maintain a plant in an erect position.

The fibro-vascular bundles, in addition to the thickened lignified elements may be divided into two parts: the soft bast or

Fig. 13Λ Cross section of corn. To the right general arrangement of bundles. a, leaf sheath; 8 , where leaf originates. To the left bundles more magnified.
phloem which consists of the sieve tubes and the companion cells; second, the xylem which consists of several pitted vessels and a spiral duct towards the center and below an intercellular passage; this has resulted from the breaking down of an old ringed vessel.

Theodore Holm, in an interesting review of an extended paper on structure of rhizomes states that, "Although the function of the stolons in the Gramineæ is nearly the same, being at once reservoirs of nutritive matters and for the service of the vegetable propagation, some differences have also been observed in the interior structure."

It has been shown from the numerous intergradations between the underground stolons and the shoots above ground, that the organizations of the stolon depend upon a modification of the aboveground shoot. The structure of the shoot above ground is well marked by the position of the mechanical tissue, which is either truly sub-epidermal or more or less distinctly subcortical, the bark being as a rule not very strongly developed. But there is a large series of modifications between the form and those derived from such shoots as show a tendency to replace the stolons.

Flg. 14. Leaves of grasses. 1. Blue stem (Andropogon provincialia, Lam); ?, Puapratonaiz L.: ?

The Leaves.

Grosscharacter.-The leaves of grasse; have two distinct parts: the sheath and the blade. The sheath, or basal portion, usually closely surrounds the stem, and is split or open upon the side opposite the blade, or is entire, then forming a closed cylindrical sheath (vagina) about the stem. When split, the free edges usually overlap each other. At the top of the leafsheath, at the point where the blade originates, there is upon the inside usually a thin and delicate prolongation, often very short, called the ligule. Sometimes the ligule takes the form of a fringe of hairs. The leaf-blade is generally narrow, usually many times longer than broad, with nearly parallel edges. Such leaves are called linear. From this form the leaves may vary to lanceolate or ovate in outline. Sometimes the narrow leaves have their edges rolled inward, when they are said to be involute. Occasionally the leaf-blade is very short, and sometimes it is wanting altogether, the sheath alone remaining. As to the surfaces of the leaves and sheaths, they may be smooth or rough, or more or less hairy. The terms used here are those of general application.

The position of the leaves on the stem is to be noted as affording a ready character for distinguishing grasses from the nearly allied grass-like sedges. Starting with any leaf on the stem of a grass, the next leaf above will be exactly on the opposite side of the stem; while the next or second leaf above will stand directly over the starting point. Such an arrangement is called distichous or two-ranked; i. e., in counting two leaves from the first we pass completely around the stem. In sedges the leaf arrangement is three-ranked; it is the third leaf from the first which stands directly above the first.

The mature blades often show torsion, being either twisted to the left, right, or in both directions; being twisted in one direction above and the other below. Certain grasses are turned 180 degrees at the base so that the upper and lower sides are reversed. In this case the stomata occur on the original upper side. This is true of grasses growing in the woods and is brought about through the influence of light.

Minute anatomy.-The fibro-vascular bundles are separate or they unite to form a strong mid-rib as in corn. The fibro-vascular bundles of the leaf consist of the soft bast phlocm and woody elements, the xylem. The bundle is protected on each side by sclerenchyma, true at least of the primary veins; this
gives the leaf additional strength. The number and character of the bundles varies in different species of grasses. In $S_{p o-}$ robolus heterolepis, Miss Emma Sirrine and Mrs. Hansen found that the mid-rib consists of a single mestome bundle."

This bundle is surrounded on the upper side by chlorophyll bearing parencbyma, while the lower side contains stereome. The mestome bundles to the right and left of the mid-nerve are entirely closed, that is entirely surrounded by chlorophyll bearing parenchyma. There are three types of mestome bundles in this species as follows, the mid-nerve with stereome on the lower side which is in contact with leptome or the second with stereome on lower and upper sides in contact with leptome, and third, entirely closed. These alternate with those having stereome on upper and lower surfaces. The leaves terminate with one closed mestome bundle. The uncolored parenchyma of the leaf is in immediate contact with the stereome. This is most conspicuous near the mid-nerve. The chlorophyll parenchyma may be divided into two parts, first, large parenchyma cells, which surround the bundles, and, second, to the outside of these, elongated cells in one or more rows. This species represents a type intermediate between plants adapted to very dry climates and one adapted to somewhat moister conditions. Mrs. Hansea has described the structure of a typical xerophytic plant, Festucu tenella. \dagger In this species the mestome bundles number twelve and are of three types. First, primary, open both on inferior and superior surfaces of leaf, i. e., those which have hadrome and leptome respectively in contact with stereome, either in direct contact or are separated from it by several rows of thinwalled parenchyma cells. Second, the secondary type. These are entirely surrounded by chlorophyll-bearing parenchyma. Third, intermediate type. These open inferiorly. Only one bundle of primary type occurs and this is in the mid-nerve. The leptome and hadrome are in direct contact with each other. The leptome is separated from the stereome by thinwalled parenchyma cells. A considerable development of thin-walled parenchyma cells occurs above the mestome

[^4]

Flg. 15. Leaves of grasses. 1, Stink grass Eragrostis major Host; : , Setaria italica, Kunth: 3, Sporobolus vagincforus; 4, Muhlentiorgia Mexicana; 5, Andropogon nutans; 6, Phleum pratense, L.: , Spartina cymosuroides Willd; s. Panicum capillare, L.; 9, Aristida bnsiramea; 10, sporololus heterolepis,Gray; 11, Elymus virginicus;1:, Panicum scribnerianum Nash.; 14, Sporobolus, longifolius. (King.)

Fig. 16. Section of leaf of Festuca tenella Willd. Car, midnerve; $C B P$, chlorophyll bearing parenchyma; M, mestome bundle; EC, epldermal cells; Ste, stereome; Tri, trichome; L, leptome; H, hadrome. (Hansen and King.)

Fig. 17. Section of leaf of Eragrostis major Host. Sup, superior surface; Inf, inferor surface; B, bullform cells; $C B P$, chlorophyll bearing parenchyma (Ball.)

Fig. 18. Section of leaf of Bromus mollis. B, bulliform cells; $C B P$, chlorophyll bearing parenchyma; Car, mid-nerve; Tri, trichome; L, leptome; H, hadrome; EC, epidermal cells; M, mestome bundle; Ste, stereome. (Sirrine and King.)

Fig. 19. a Section of leaf of Festuca elatior var. pratensis Hackel Car, mid-nerve; $C B P$, chlorophyll-bearing parenchyma; \boldsymbol{B}, bullform cells; M, mestome bundle; L, leptome; H, hadrome; Ste, stereome; EC, epldermal cells. (Pammel and King.)
$S 广$

c. Cross section. From leaf of Pleuropogon californicum. MS, mestome sheath; CBP, chlorophyll bearing parenchyma. (From Holm.)

b. Section of leaf of Pleuropogon californicum Nees. St, stereome. (From Holm.)

Fig. 20. Section of leaf of Fextuca clatior var. pratensis Hackel. L, leptome; H, hadrome; Ste, stereome. (Pammel and King.)

bundles of the mid-nerve. Two bundles of the third type occur near the margin of the leaf. The cells separating the leptome from the stereome are in this case somewhat thickerwalled than those in the mid-nerve.

The mestome bundles of second type are of two sizes, the largest ones having leptome and hadrome poorly developed, and the smallest having no thick-walled cells.

Fig. 22. Section of leaf of Lecrsia oruzoides Schwartz. BC, bulliform cells; portion of mid-rib in section; MS, mestome sheath; P, parenchyma; S, sclerotic cells. (Holm.)

The thin-walled parenchyma, with its inner closed sheath does not differ from that of Festuca pratensis and Lolium perenne. Stereome seems to be more strongly developed in this species than in Festuca elatior, var. prutensis and Lolium perenne. It
occurs on the margin of the leaf, and also on inferior surfaces of all bundles of the first and third types, and on inferior surfaces of all large bundles of the secondary type. Mesophyll occupies a small area in this species since the mestome bundles are close together.

Mr. Theo. Holm has described the anatomical characters of Distichlis spicatat a grass adapted to halophytic conditions,

[^5]and in many respects similar to the species described above. The stereome of the superior face is widely separated from the mestome bundles by the parenchyma. In Pleuropogon californicum there is a distinct mestome sheath surrounding the bundles and the walls are thick. The leptome and hadrome are separated from each other by two layers of thick-walled

parenchyma cells. In the large bundles stereome occurs above and below. They are separated from the parenchyma sheath by a few colorless cells. It may be interesting to compare the leaf structure of xerophytic and mesophytic

Fig. 25. Section or leaf of Andropogon nutans. Car. mid-nerve; Unc. Par, uncolored parenchyma; B, bulliform cells; Ste, stereome; $E C$, epidermal cells; $C P$, conlcal point. (Weaver and King)
plants, belonging to the same genus. Miss Ogden + describes the anatomical character of the Eragrostis obtusiflora thus:

[^6]
"The secondary bundles differ in the marked line between xylem and phloem and also in the nature of the sheath. This consist of a single row of cells. Below and above the bundles these have relatively smaller cavities and thicker walls than the corresponding cells of Jouvea pilosa, but frequently on either side of the bundle there oscurs one cell much larger than the others, of more angular shape, and in almost any section taken at random a transverse pitted wall is conspicuous. The two uppermost cells of the inner chlorophyll-bearing ring are at least twice as large as the other cells of the ring, and are usually wedge-shaped with the narrow end turned towards the bundle."

Mr. C. R. Ball, || in an interesting study of the leaves of several species of Eragrostis, well describes the mestome bundles of Eragrostis purshii, which number twenty-one. Sixteen belong

[^7]to the secondary and five are intermediate. "In the secondary bundles (veins 3) the chlorophyll-bearing parenchyma sheath is nearly round in outline and composed of seven or eight subcircular cells. Hadrome, leptome and thick-walled parenchyma are not so well developed as in the preceding species. The intermediate bundles (mid-nerve and veins 2), five in number, are open below. Hadrome, leptome, and thick-walled parenchyma are well developed, the latter especially so. The chlorophyll-bearing parenchyma sheath is composed of from ten to fifteen cells. The mestome sheath is continuous above and sometimes below the secondary bundles, but is interrupted by sterome above the intermediate type. The mid-nerve is but little enlarged and not easily distinguished from vein 2 except by its position. Stereome is present in quantities both above and below the intermediate bundles and occurs in small groups of three or four cells in the secondary bundles. The mesophyll passes beneath some of the secondary bundles as a single layer of cells."

In Mr. Ball's study of Eragrostis pectinacea, which is xeroplytic in its nature, a very striking chlorophyll parenchyma sheath occurs near the secondary bundles. "It is distinctly triangular in outline, with the apex directed towards the superior surface. The lateral cells are elongated transversely to the section, and the inferior cr basal cells are small and nearly round. Hadrome and leptome and thick-walled parenchyma are well developed."

We find a well marked type of bundle structure of leaf in some of the mesophytic grasses represented by Festuca elatior which has been described by Mrs. Hansen." "The number of mestome bundles in a single cross-section in middle of leaf is twenty-four, and are not so close as in Lolium. There are three types: First, primary type, open on inferior and superior sides. Second, secondary type, those that are entirely closed, and these are most numerous. Third, the intermediate type, which are open only on superior side. The bundles of sec ondary type are most numerous. Three of the closed bundles occur near the margin of leaf. One bundle of the primary type is found next to the closed bundles. The third type is found to the left of mestome bundle of mid-nerve, and to the right of mid-nerve is found a mestome bundle of second type. One primary mestome bundle occurs in mid-nerve. In the

[^8]mid-nerve, leptome and hadrome are well developed. The pitted vessels are large. Stereome is well developed on inferior and superior surfaces of the bundles. In the mid-nerve, leptome and hadrome are separated from each other by thickwalled cells. The cells in leptome are somewhat more thickwalled than in hadrome."

Mr. C. B. Weaver's study* of Andropogon provincialis shows the presence of four types of bundles, viz.:first, mid-nerve; second, entirely closed; third, open, and fourth, larger secondary bundles with stereome both above and below.
"The mid-nerve consists of three large bundles open above and below. The central bundle is but little larger than the secondary bundles. In the hadrome occur the conspicuous pitted and spiral ducts. The chlorophyll-bearing parenchyma cells surrounding the larger bundles are not as conspicuous as those of the smaller mestome bundles. The stereome above the mid-nerve is well developed and is wider than the middle larger bundle; while opposite on the lower side of the leaf occur but few stereome cells, and these latter are in direct contact with the epidermal cells. The cells composing the leptome portion of the mid-nerve bundle are uniform in size. The uncolored parenchyma cells which occur below and to the side of the mid-nerve bundle, are large. These cells are in contact with the three large bundles of mid-nerve. The smaller mestome bundles on either side of the mid-nerve occur close together. The chlorophyll-bearing parenchyma cells surrounding these are conspicuous. These bundles are not uniform in number on both sides the mid-rib, which goes to show that the development of the leaf is unequal. On each side of the mid-nerve occur four of the larger secondary bundles. The edges of the leaf are provided with stereome. The stereome about the cells varies in the number of cells. The cells of the mesophyll occur as dense masses with numerous intercellular spaces. They vary in shape from elongated to spherical. An occasional small trichome may be seen."

It may be interesting to compare the above structure with that of a typical woodland grass, and for that purpose we may take Bromus breviaristatus. According to the researches of Miss Emma Sirrine, \uparrow the mesto ne bundles number forty-one.

[^9]

Fig. 28. Trichomes of grasses. 1, Leersia lenticularis, from palet: 2, 3, Andropogon scoparius, from under surface ofleaf; 4 , Eragrostis major, 1 cm ligule; , , Panicum capillare L, from sheath; Panicum sanguinale, from sheath; *, spartina cynosuroides, from edge of leaf; Poa prutensix, from it wer; Brir mus asper, from under surface "f leaf; $11, B r o m$, ciliatus. from shaith; $11, B$. mollis, from under surlace of leaf; $1^{2 \prime}$, Andropogon provincia? ${ }^{\prime}$, from rachis; 13 , Bouteloua racemosa Lag, from leaf-blade. , Kiag

The primary bundles open on both inferior and superior surfaces. Leptome is in direct contact with stereome. The hadrome is separated from it by corlorless parenchyma. Midnerve consists of only one bundle, and with the exception of size, the large amount of stereome and colorless parenchyma is the same as that of species adapted to open ground.

The colorless parenchyma occurs beneath all primary bundles, while a sheath encloses all the bundles. Stereome is abundant on both inferior and superior surfaces of the intermediate bandles. Mesophyll surrounds all the secondary bundles and occurs between the other two types, and on the inferior portion of the intermediate type.* In maize, according to Combs, t'ie sheath in cross section shows, beginning at the upper surface, the epidermis of large, thin-walled cells, immediately inside of which is stereome in patches, which are located opposite the large bundles on the outer side. Then comes the inner area of the sheath, made up of large, polygonal, colorless, thin-walled parenchyma cells.

The outer or lower surface of the sheath presents an entirly different aspect and varies greatly with the variety of corn. Generally speaking, it is more or less ribbed, caused by the Jarge fibro-vascular bundles. The creases have colorless unicellular hairs which are usually not developed on the epidermis over the bundles. The epidermal cells are small and thick-walled, and protect the p'ant against drouth and other injuries. Beneath the outer epidermis occur the bundles referred to above, usually with intervening smaller ones, but this varies with different corns. For example, a Mexican corn, number 1 , shows two sizes of bundles not connected with each other, forming no external ridges, and the epidermis shows only a few very short spur-like hairs, while a form from South America shows heavy ridges, many hairs, and only one kind of bundle.

In all cases there exists an area of stereome between the bundles and the outer epidermis.

The only chlorophyll in the sheath is located in the chlorophyll parenchyma sheath which surrounds the bundles, except a portion on the outer side which is occupied by stereome.

The anatomy of the spicies thus far considered here, are

[^10]such as belong to the types of plants kcown as halophytic, xerophytic, and mesophytic. Of the fourth type, hydrophytic, the genus Leersia is good representative, especially Leersia oryzoides which has been wall described by Mr. Holm.* In this species the mestome bundles are of three types. A thickwalled mestome sheath, in connection with a layer of thickwalled parenchyma, separate the leptome from the hadrome. Leptome and hadrome are well developed. The largest bundles are not so numerous as the smaller ones of the second degree; in the latter a distinct mestome sheath occurs inside of the colorless parenchyma. The thick-walled parenchyma between leptome and hadrome is absent. The smaller type of bundles contain only leptome with a distinct mestome sheath. Mr. Holm further remarks that in addition to these forms of bundles, which lie in the same plain, there are from one to three very small ones which belong to the upper face of the mid-nerve and this is peculiar to the genus Leersia.

Epidermis.-The epidermal cells are quite irregular, varying greatly in size. For the purpose of this description it will be convenient to take up the epidermal cells under two headings. First, the general character of cell. Secondly, the bulliform. We muy obtain an idea of the diversity of the structure by a coasideration of some of the different species. One type is very well represented in Bromus inermis. \dagger

Here the epidermal cells are large, regular and well-developed, with a thick cuticle. The cuticle is thicker below and above the mestone bundles than elsewhere. Trichomes are absent. Stomata occur on both surfaces of the leaf, but especially between the bulliform cells.

In Festuca tenella, according to Mrs. Hansen, ${ }_{+}$the epidermal cells covering the stereome are thick-walled and not as large as the other epidermal cells. In Andropogon mutans the epidermal cells are very large, and nearly equal in diameter. The cuticle is strongly developed with hair-like projections, more abundant on the lower than on the upper surface.

Mr. C. R. Ball has described the epidermal cells of Eragrostis pectinacea, as having thicker-walled cells than in Ercegrostis purshii\| the latter being a species adapted to a dry and

[^11]

Fig. 29. Cross-section leaf of maize. ep, outer \vdash pidermis, cross-section of stoma to the left; p, soft bast or phloem and companlon cells; cps, chlorophyll-bearing parenchyma; d, duct; a, ringed vessel; is, Intercellular space; ss, st, stereome; iep, Inner epidermis. (Combs.)
sandy soil. The cells of Eragrostis purshii vary considerably in size, being smaller above or below the bundles than those adjacent to the mesophyll.

In Sporobolus cryptandrus* the cells have a particularly well developed cuticle. Miss Ogden describes a most peculiar kind of epidermal cells in Eragrostis obtusiflora with curved, beak-like expansions that project from the stomata; the cells are very unevenly thickened.

Scent glands.-Another most in ${ }^{4}$ eresting feature to be added to the epidermal layer is the peculiar glands which grow on certain grasses. One of the best known illustrations of glandular trichomes in grasses occurs in the common stink grass (Eragrostis major). These glands were first studied by Professor Trelease. \dagger

The somewhat similar glands of Sporobolus heterolepeis had previously been studied by C. E. Bessey. \ddagger

Recently Mr. C. R. Ball has studied the glands of Eragrostis major. The following is condensed from papers by Mr. Ball and Professor Trelease. The small projections, or scent glands as they are known, are epidermal structures consisting of the single layer of cells. Those at the center are considerably elongated and the parenchyma cells are provided with thick-pitted walls. Those in the center are much thinnerwalled. As compared with the unmodified epidermal cells, these elongated glandular cells are also thin-walled at top, where, in common with the other elements of the epidermis, they are invested with a rather heavy cuticle. In some cases this membrane is seen to be free from the crater of the gland in the form of a blister, while in others it has been ruptured, so that only fragments are present. Miss Ogden describes glandular bodies as occurring in Eragrostis obtusiftora. In her description it is stated that these glands are provided with a narrow neck and a capitate exodermal portion.

[^12]Bulliform cells.-Between the nerves occur peculiar epidermal cells which are wedge-shaped; these are known as bulliform cells. Hackel* says these are arranged in the form of a fan whose growth and expansion causes the blades to open out; in those leaves which are rolled in the bud these cells are only found on each side of the midrib. Excellent bulliform cells occur in orchard grass, Spartina, etc. In some species of Sporobolus, the leaves are rolled up much of the time. Where the leaves open the bulliform cells are large and penetrate deeply. In Festuca tenelle and some other species of the genus the leaves do not open and Lence bulliform cells are absent, or, but slightly developed. This is also true of Stipa and Nardus. It is owing to this peculiar cell development that the leaves of Sporobolus roll up so easily when they become dry. It requires excessive moisture to open them. Excessive transpiration during dry weather causes the leaf blades to roll up because they have lost their turgescence, but when the atmosphere is moist they flatten out. The bulliform cells afford protection to our wild prairie grasses, and thus they pass the hot, dry winds unharmed while many cultivated grasses are injured. The lower side of the leaf is protected by the strongly developed caticle which prevents transpiration.

Professor Beal, who has madea study of the bulliform cells of many leaves, says as follows: "The leaves of Poa have two bands, one on each side of the middle. Andropogon squarrosus has one band on each. side of the middle and a small one at each edge. The leaf of the Phleum pratense has one band of several shallow cells on each side of the middle and others between the veins. The leaves of Zea mays have a band between each two primary bundles and above each third class bundle. The leaves of the Leersia oryzoides have numerous bands on the upper surface on each side of the middle, and on each side of the keel on the lower side. The leaf Amphicarpum purshii has opposite bands of bulliform cells on both surfaces. Those above are most prominent. In case of the leaves of Panicum plicatum the bands of bulliform cells are first on the upper side then on the lower, and are found in grooves. The leaves of Andropogon prinoides have large epidermal cells of nearly uniform size, distributed along the surface, excepting over the veins."

[^13]From studies made in the botanical laboratory of the Iowa Agricultural College, the bulliform calls of different species of grass are suffleiently diagnostic in grasses occurring under different climatic and soil conditions, to warrant a study of them. These differences may best be considered by taking some of the different species. Mr. Ball* found that the bulliform cells of Eragrostis are two or three in number, and in some cases not easily distinguishable from the epidermal cells.

Mr. Theo. Holm \dagger says of Leersia oryzoides: "The bulliform cells form grooves between all of the mestoms bundles and are of unequal lengths, the middle cells being the largest, with a narrowing towards the surface, thus being nearly triangular in cross sections, the cells on the sides gradually becoming smaller." Both of these species are adapted to hydrophytic conditions and hence the bulliform cells need not be nearly so well developed as in species adapted to dry weather conditions. This is also true to some extent of Panicum proliferum, in which the bulliform cells vary from two to five, usually consisting of one large or two large central cells. In Sporobolus cryptandins and S. heterolepis the bulliform cells are very nicely developed. According to Miss Emma Sirrine and Mrs. Hansen, \ddagger the bulliform cells of S. hetrolepis occur in four or five rows, a large central cell and three or four smaller cells on each side. In S. cryptandrus they are somewhat larger than those in S. heterolepis. In the latter there are usually two or three quite large cells and two smaller on each side. One or two groups of bulliform cells occur between a large mestome bundle, and, as in S. heterolepis, these do not occur between the last two bundles. In Andropogon scoparius the bulliform cells occur as a continuous row, excepting over the secondary bundles. In Johnson grass the bulliform cells gradually merge into the epidermal cells. The bulliform cells of sugar canes, which is adapted to the hydrophytic conditions, consist of three or sometimes more rows quite strongly marked. In fact these cells are very much larger than the remaining epidermal cells.

It may be interesting here to briefly give the structure of the bulliform cells of the various varieties of corn. These have been studied by Mr. Combs.

[^14]The bulliform areas are composed of from three to seven rows of polygonal cells with thin walls. They are arranged longitudinally with the leaf and are cccasionally interrupted by or grade ints the exserted cells about the base of the large hairs. These areas usually consist of about fourteen rows of epidermal cells. They are located alternately with the veins. The epidermis of the lower or outer face is much the same as above, except that the bulliform cells, hairs, and spur-like hairs or tubercles are wanting, and the walls are thicker.

Stomata.-The stomata occur in longitudinal rows; the two narrow guardian cells containing chlorophyll are surrounded by two large secondary cells. A thin cross-section of leaf of Sporobolus heterolepis shows a nearly continuous row of rectangular epidermal cells, troken only by the stomata.

The ecological parts of the grass leaf are rather instructive. The cuticle and cell walls are strongly developed in the corn. The same is true of many other dry climate grasses. In grasses like barnyard grass, the epidermal cells are larger and the cell walls and cuticle less developed, as they grow in places where moisture is obtained easier and transpiration is not so excessive. The chlorophyll-bearing parenchyma surrounds the bundles and differs somewhat in different genera. In Sporobolus heterolepis large parenchyma cells surround the bundles. These are joined by one or more rows of smaller cells to the outside. In this arrangement there is economy, since the plant can carry away the elaborated food materials. The blades as well as sheath are frequently provided with trichomes, abundantly produced in Bromus mollis, Leersia oryzoides, Zea (Mexican corn). Those interested in a further study of the anatomy of leaves should consult specially the works of Hackel, Holm, Miss Emma Sirrine, Miss Emma Pammel, Duval Jouve, Ball, Combs and others. These studies are of value from a systematic standpoint, as has been abundantly shown by Holm, Jouve, Ball and others. The character of bundles, sclerenchyma, bulliform cells vary in different genera and species, and often may be used to determine the species and help to separate them, but we should not lose sight of the fact that allied species present somewhat similar characters and usually have a similar structure.

Fig. 32. Stomata of grasses. a, wheat; b, Panicum crus-galli; c, Bromus inermis; d, Poa pratensis; chl, chlorophyll grains; g, guardian cells; l, leucoplastids; r, rift; n, nucleus; n ', nucleolus. (King.)

Fig. 33. Stomata of maize leaf. b, bulliform cells, upper surface; ep, epldermal cells with irregular walls; sto, stoma. (Combs.)

The Flower.

Parts of the flower. -The flowers of grasses possess only the essential organs-the stamens and pistils. The bracts enclosing these are modified leaves or leaf sheaths and prophylla. Sometimes the stamens and pistils are separated, when the flowers are either male or staminate (contzining stamens only), or female or pistillate (containing pistils only). These staminate and pistillate flowers may occupy different parts of the same plant or (more rarely) entirely distinct plants. Fiowers having both stamens and pistils are termed hermaphrodite.

In each flower there are usually three stamens. These have slender fi'aments, and usually versatile, sometimes basifixed, two-celled anthers, which are pale yellow, sometimes nearly white, or purple, or some shade of red. The pistil consists of the ovary and usually two feathery or plumose stigmas, which may be sessile or raised on short or long and more or less divided styles.

The fruit or ripened ovary constitutes the "grain." This is a true caryopis, i. e., a dry one-seeded fruit in which the outer covering or pericarp is closely adherent to the seed. The "grass seed" of commerce consists of the grain enveloped usually in more or less "chaff" (glumes and paleas).

Arrangement of the flowers.-The arrangement of the flowers in grasses is peculiar. They are situated in what are termed spikelets, either solitary (one flowered spikelets) or two or more together (two to several or many-flowered spikelets). Each flower is located in the axil of a chatf-like bract or glume called the flowering glume (really a leaf-sheath). At the base of the spikelet there are usually two bracts or glumes having no flowers in their axils; these are the outer or empty glumes.

Hackel, in his work on grasses, says: "The palea, which, with its enclosed flower, stands opposite the flowering glume, does not belong to the main axis of the spikelet, but to the branch which bears the flower. That this relation of parts may be gradually obliterated in the one-flowered grasses, and that the palea may be moved back upon the main axis, has been explained above. As long as an axis or a rudiment of one, at least in its earlier stage, is visible beyond the palea, this latter possesses (like the prophylla of the culm branches) two keels, or at least two lateral nerves, without a mid-rib;

Fig. 34. Spike of Setaria glauca. (King.)

Fig. 35. Inflorescence of Koleria cristata Pers. Eatonia obturata Gray. Eatonia pennsylvanica Gray.

Fig. 36. Spikelets of grasses. 1, Pua pratensis, spikelet fourflowered, the two lower scales the sterlle glumes; the flowering glume of others only show; 2, Setaria glauca; 3, Spikelet of Calamagrostis canadensis, the two sterile glumes, flowering glumes and palet; 4, Setaria verticillata.

Fig. 3i. Pollination of Maizł. - A, young ear with stigmas; 13 , to the right, plstillate tlower with scales and chaff; B, above staminate flower; J, pistil; $J, G, 0$, plistil-
(Detalls after Nees, Hackel.)
only when all trace of the axis is absent does the palea become from one to many nerved (with a mid-rib) or nerveless. It is almost always of a more delicate texture than the flowering glume, its edges are usually turned in, and it has a furrow instead of a mid-rib. The prophyllum of the culm branches
has no blade, and the palea resembles it in being almost always (excepting Amphipogon) awnless; and as the former is sometimes split in two parts (Cynodon), so the palea is often split at the time the fruit is mature (many Sporoboli and Triticum monococcum L.). This state has been understood by some authors as originally bifoliate, and false genera have been established upon it by some (Diachyrium Griseb, etc.). The palea is completely aborted in many Andropogoneæ and species of Agrostis."

The axis to which these glumes are attached is termed the rachilla, and between each flower and this rachilla there is usually a two-nerved bract, the palea. the prophyllum to the floral branch. In one-flowered spikelets where there is no extension or prolongation of the rachilla, this palea is apparently opposite the flowering glume. The lower pair of glumesthe empty ones-often differ from each other in size or length, and sometimes, though rarely, one or both are absent. In others they occur as rudiments, as in Leersia. In a few cases it consists of but a few scales,

Fig. 38. Eragrostis trichodes. Loose paniculate inflorescence.

generally two, rarely more than two. In this case they are generally described as sterile flowers as in such genera,

Fig. 39 B. Zea mays a single spikelet with staemens.
other variations it is necessary to refer the reader to the larger descriptive works on botany.

Opposite the palea and above the flowering glume occurs two small de'icate scales known as the lodicules. Sometimes there are more than two, sometimes they are want-
Fig. 39 A. Zea mays. To the left, pistil; g. ovary; s, stigma; to the right, f, flowers; s, staemens. ing. These lodicules stand close together. In the front they are

[^15]close together. Various views have been held in regard to these lodicules. The question has been discussed by Bentham, who states: "It might therefore be suggested that the palea and lodicules of Gramineæ represent perianth-segments of an outer and inner series, although I by no means pretend to assert it as a proved fact." Hackel* in an early paper discussed the original homology of these organs. In his own words in a later paper, "The author has endeavored to prove that the anterior scales represent the halves of a leaf which sometimes (Melica, Fig. 81, f.) remains undivided, and can be regarded as a second, and the posterior, scale as a third, palea. The anomalous condition of these paleas (in respect to the ordinary palea) is explained by their biological properties. The rapid swelling of the bases at least, causes the separation of the flowering glume and palea, and consequently the opening of the flower. In grasses where they swell only a little the spikelets open but slightly, and where the lodicules are membranous or entirely lacking, the spikelet remains entirely closed at the sides, ard the reproductive organ protrudes only at the apex (compare Anthoxanthum, Alopecurus, etc.). The absence of the lodicules is not necessarily a case of abortion; for if they are bractlets, a decrease in their number (as in the Juncaceæ) is not very remarkable. Their large number (eight or more) and apparent spiral arrangement is striking in Ochlandra; here their relations have, however, still to be studied in living material."

The subject of lodicules again finds discussion in a recent paper by W. W. Rowlee. \dagger

Arrangement of the flowers. -The arrangement of the spikelets upor the stem constitutes what is termed the inflorescence, or what we often hear erroneously called the "head." If that portion of the main axis $\sim r$ stem which bears the spikelets is unbranched so that these are sessile (i.e., without pedicels), the inflorescence is a spike, as in wheat or rye grass; when the main axis is branched, each branch forming a pedicel to a single spikelet, the inflorescence is a raceme. This form is not common. Usually the primary branches branch again and again, resulting in the formation of a panicle. The panicle may be open or widely spreading, as in oats or in Kentucky blue-grass; or, if the branches are very short, it may be narrow

[^16]and spike-like, as in timothy or in meadow foxtail. All gradations of form between these two extremes occur.

Pollination and fertilization.-Grasses are mostly anaemophilous, that is, pollinated by the wind. Fiowers, as stated above, are mostly hermaphrodite; some are mon ecious and a few dioecious. In monoecious grasses like Zea the staminate flowers form the so-called tassel. Each staminate flower contains three stamens; when mature they hang loosely from the Hower. The pollen consists of small round grains easily shaken out of he versatile anthers. The slightest breeze suffices to set the anthers in motion, causing them to shed 'loads of pol en." Since the pollen is light it may be easily carried by the wind. The pistillate flowers occur in the axils of the leaves and corstitute tre so-callt d cob. Each ovule has coming from it a long, slender filiform thread, the stigma, provided with plumose hairs. These p umose bairs are readily made out with the naked eye and are for the purpose of holding the pollen grains. The moist surface of the stigma causes the pollen grain to germinate. It sends a slend r tube down the s yle to the ovule where the genera ive nucleus unites with the egg cell of the ovule, and as a rt sult f f thisfertiization the kernel devel ps into a seed. Corn produces an erormous amount of pollen. Much of this is of course wasted. The staminate fluwers are visited by honey bees and other insects chiefly for the pollen. Corn, when in flower, has a decided odor.

Bulbilis dactyloides is said to be dioecious. Mr. Plank* made some observations which led him t, believe that the grass was not dioecious but monoecic us, and Professor Hitchcock, \dagger in order to verify this statement, conducted the following experiments. A few seeds of the spec es were germinated. A single stolon was transferred to an out-door plat. This produced numerous stolons gradually spreading over the ground. The second season witnessed no flowers, but the third season both staminate and pistillate fl wers were produced, the staminate preponderating. The flowers made their appearance mostly at the nodes, so that in reality they started as independent plants.

In Distichlis spicata and occasionally Poa arachnifera the plants are dioecious. In these cases the pollen must come from other plants.

[^17]

Fig. 42. Pistillate flower, ovules developing. $8 t$, styles. (King.)

Fig. 40. Plumose stigmas of maize. (Pammel and King.)

Fig. 41. Pollen grains of maize mounted in water. (Pammel and King.)

Arrhenatherum avenaceum has hermaphrodite flowers as well as staminate. The anthers are long and pendulous. The least jar or the slightest breeze will cause a shower of pollen to issue from the anthers; the very plumose stigmas are exposed and
readily receive the pollen. Self-pollination can occur in many grasses as stamens and pistils mature at the same time, but this is prevented in tall meadow oat 'grass and others by the difference in time in which stamens and pistils mature. In this grass the pistil matures first and is therefore proterogynous. When the pollen is mature and is shed, the stigmas have wilted and are no longer in a raceptive cnditi on. In most grasses stamens mature first and the flowers are proterandous.

The flowers of our Andropogon provincialis with digitate spikes are gently blown by the wind. When they come in contact with a neighboring plant they are sure to leave some of the pollen on the receptive stigma. The long, purple plumose stigma is proterogynous, and therefore not ready to receive the pollen when the stamens dehisce. The flowers open during the early morning ($5 \mathrm{~A} . \mathrm{m}^{2}$), when there is considerable dew on the ground.

Professor Hitchcock* has described quite interestingly the

Fig. 43. The opening of grass-flowers. Beginning to the left: Tall Meadow Oat grass, Arrhenathemim avenaceum; Meadow Fox-tall, Alopecurus pratensis; Hungarlan Brome, Bromus inermis; Rye, Sccale cercale; Meadow Fescue, Festuca pratensis.
*Report on a collection of plants made by C. H. Thompson in southwestern Kansas in 1893. Oontr. U. S. Nat. Herb., 3: 537.
manner in which grama grass, Bouteloua oligostachya is pollinated.

The plants grow closely intermingled, forming a dense, soft mat a few inches in height. The flowers are arranged in onesided spikes, of which there are usually two or three. The two stigmas protrude from the base of the partially opened glumes and recurve towards the main rachis. The anthers, as is usual in grasses, hang on slender filaments, easily shaken by the slightest breeze. The spikes are so arranged that when acted upon by the wind they turn like vanes. This brings all the spikes in a direction nearly parallel to the wind, the stigmas being to the windward and the anthers to the leeward; thus the stigmas necessarily receive pollen from a different plant. The same adaptation is seen in other species of Bouteloua and in some other grasses.

Many of the flowers of grasses have a pair of small scales, physiologically of great importance, as they assist in the pollination of grasses. The bases of these lodicules are grown together. The rapid swelling of the bases at least causes the separation of the flowering glume and palet, and hence the opening of the flower. These turgid scales may be seen at the time of flowering in many grasses. They are very evident in Poa arachnifera, Panicum miliaceum, Avena sativa, Bromus mollis and Festuca elatior. In grasses where these scales swell but little, the flowers do not open very far. Where they are absent the spikelets are closed at the sides and the stamens and pistil only protrude at the apex. The time of opening of grasses in different genera varies greatly. It is well known that temperature and moisture greatly influence the opening of flowers. Rain and low temperature may retard the opening, not only hours but days. Dry air and a high temperature also retard opening. The flowers of grasses open, as a rule, early in the morning, usually when there is some dew. Festuca pratensis opens before 7 A. m. Mr. F. A. Sirrine found that about Ames the flowers of grasses usually open between 5 and 9 A. m. Some, however, open between 5 and 7 P. M. Kerner von Marilaun* states 4 to 5 A. M. for Poa and Koeleria; 5 to 6 A. m. for Brazia media, Aira coespitosa, wheat and barley. Rye, 9 A. m. This is, however, not always the case in cereals, as they may open at any time of the day.

[^18]Hays and Boss* state that the flowers of wheat open at 40 minutes past 4 and closed at 18 minutes past 5 A. M., in Minnesota. Flowers of oats and timothy open between 7 an A. M.
 Stamens before pollen is discharged; 2, Pollen discharged from anther; 3, Pollen discharged; 4, Pollen in the act of discharging. (After Kerner von Marilaun.)

Fig. 44 B. Flower of wheat with stames and pistil. (After Sauders.)
\qquad Agrostis, 11 A. M.; Elymus, between 12 and 1 P. M. Agropyron at 4; Holcus opens its flowers twice during the day, at 8 A. M. and at 7 P. M., provided atmospheric conditions are favorable; when the temperature is not below 57° Fahrenheit.

Beal says, in regard to the length of time a grass remains in flower: "As a rule, a certain specified flower of a grass remains open only for a short time, but different flowers of a plant may appear at successive periods extending over eight days,

[^19]more or less, in Indian corn; seven days, more or less, in timothy, several days in oats and wheat, and for a much longer period in branching grasses like Eragostis and Muhlenbergia." Several grasses produce what are known as cleistog-

Fig. 44 A. Spikelet of wheat showing glumes, palet, stamens and pistil. (After Saunders.) amous flowers. Amphicarpum purshii, indigenous to New Jersey and southward, produces two kinds of flowers. Those with open flowers sterile, while those borne on the small runners at the base of the culms are abundantly fertile. Leersia oryzoides produces cleitsogamous flowers.

Cross-fertilization:Hackel has shown that cross-fertilization is much more rare and difficult in barley, and in certain races like the six-ranked, the short spiked tworanked and the peacock barley, the flower of the grasses, especially in some climates, never open and consequently cross-fertilization is impossible. Wheat is also pollinated in the budduring cloudy and rainy we $九$ ther. In ryf, on the other hand, the rule is to have the flowers cross-pol inated. They have in fact lost the power o! self pollination. Cross-fertilization takes plane readly in nature as shown in numerous forms of corn, such as sweet, pop, dent and flint. Corn is remarkable in showing the immediate effect of cross-fertilization or xenia the first season, though it is also evident* in succeeding generations.

[^20]In wheat, according to Hays and Boss,* unusual variation may occur. They state that the fife and blue stem pirents only had very short awns, while in the progeny there are several types with awns of various lengths. Several of the plants had dark-brown chaff, others chaff with a light metallic tinge. Some of these varieties may be due to previous crosses, and the tendency of the plants to vary. The two varieties crossed are not closely related, one parent having hairy chaff and the other smooth.

Hybrids.

Hybrids have been produced in grasses

Fig. 45. Flowers of Glyceria fuitans, stamens and pistils. (King.) but they are rather difficult to work with, owing to the delicacy of the flower. The remarkable wheat and rye hybrids of Bliss Carman in which fertile offspring took place in two distinct genera, Triticum and Secale, are worthy of notice.

Focket in his work on plant bybrids notes a number of hybrid grasses. Thus he records a hybrid between the Avena sativa and A. orientalis. There are also several hybrids between species of the genera Poa and Calamagrostis and Alopecurus and Bromus. He also records a hybrid between Aegilops and Triticum. According to this it is stated that after several years of culture a variety with constant characters is produced which was called Aegilops blé by Fabre. It seems extremely doubtful whether Fabre had a genuine hybrid in this instance.

Wilson \ddagger seems to have produced a fertile hybrid between Triticum and Secale, and they have even reported bigeneric bybrids between Agropyron and Elymus.

Immediate and secondary influence.-It is well known that in some cases pollen has an immediate influence on the fruit or seed. This has long been known to be the case in corn. As long ago as 1758 it was observed that when differently colored varieties grew near each other they affected each other's seed. Later experiments were made by Dr. Savi and Professor Hil-

[^21]

Fig. 45. A. No. 50, Pride of the North erossed with Champion White Pearl. No. 60 , Self-husking crossed with Early Hathaway. No. 61, Self-husking crossed with Woodworth's Yellow. No 66, King Philip crossed with Leaming. No. 151, Yellow Mammoth crossed with Maryland White Dent. No. 164, Mason's Flour curn crossed with Conscience. After Kelierman Swingle.

Fig. 45 . Ohanges in form and color of kernels of corn produced by xenia. 1. Leaming Yellow, anterior and posterior views of kernels. 2. Champion White Pearl; two views. 3 Stowell's Evergreen, two views. 4. Stowell's Everareen, showing xenia from crossing with pullen of Champion White pearl 5. Slowell, Evr Ereen, showing xenia from erossing with pollen of Leaming Yellow. 6. Gilmar, fiint, shuwing xenia from crossing with pollen of stwel!'s Everrreen. 8. Black Mexican. 9. Black Mexican, showing xeniafrom crossing with pollen of Gilman Flint, 10 Stowells Errareen, female, \times black Mextean male; kernels are white and transparent resembling the motor parent. $\mathbf{1 1}$. Stowell's Evergreen female, X Black Mextcan male, showing xenia in blue-black color imparted to the aleurone layer of the endosperm. $1:-13$ Kernels from an ar of a pure race of white sweet corn. some of which how xenia from crossing with pollen of a yellow dent race. fis show xenfa 12 are normal, evidently having been self-fertilized, while those shown in fing is show xenia. After Webber, U. S. Dept of Agr.

Fig. 45 B . 1-2. First generation Hybrids of Hickory King corn, female, x Cuzco corn, male, and types of parent stalks for comparison.

1. Hybrids of Hickory King female, x Cuzco 259 , male, (first generation hybrid) showing increased vigor. In order to show the size as compared with the parents, the attendant held a stalk of Hickory King in his left hand and one of (uzco in his right hand.
2. Central stalk a hybrid of Hickory King female X Cuzco 259 male; stalk on left. Hirkory King, the mother parent; stalk on right Cuzoo, the father parent. (Stalks in each case of maximum size). After Webber, U. S. Dept. of Agrl.

1

Fig 43 F , Method of selecting stock. Two types of plants. The plant at the right has culm., very uneven in length, therefore undesirable, while that at the left has no very tall culms, but many of nearly the same height (After Hays, Minn. Agrl. Exp. Sta.)

-
Fig. 45G. In the upper row the right hand spike is the Blue Stem parent, the left hand one the Fife parent, and the central spike is the average spike of the plant of the first qeneration The spikes in the middle and lower rows are forms whlch appear in the one hundred plants of the second generition, all of which came from seeds from the single plant of the prevlous year. (After Hays, Minn. Agr. Exp. Sta.)
debrand. Both have come to the same conclusion. P. Dudley* writes as follows: "Indian corn is of several colors, as blue, white, red and yellow. If these sorts are planted by themselves, so that no other be near them, they will produce their own color; but if you plant the blue corn in one row of hills, as we term them, and the white or yellow in the next row, they will mix and interchange color.'" Dr. Sturtevant \dagger says: "Corn, the maize plant, shows in its kernels the influence of cross-fertilization of the same year. Some varieties seem to possess the power of resisting either cross-fertilization or the changes induced thereby." Professor Crozier \ddagger writes (Cross between Stowell's Evergreen and Yellow Hathaway): "These observations show that foreign pollen affects the appearance of the crossed kernels the first season, but also that an unusual appearance may be due to a cross of the previous year." Professor Beal§ says: "During the past year I planted near each other three hills of the following kinds of corn, well mixed together, viz: Waukashum, White Flint, Black Pop Corn, Early Minnesota Sweet, King Philip and Black Sugar. Every ear showed a mixture produced by pollen from one or more of the varieties except those of the King Philip variety.' But Flint corn did not show the effect of pollen from Dent corn in the first year. Kellerman and Swingle, $\|$ who crossed a large number of varieties, have come to the same conclusions that other observers have, namely: that the so-called varieties of maize cross more or less freely, and the effects may or may not be visible the first year. As a result of some work done on the college grounds Professors Crozier and Rolfs write concerning the immediate influence of cross-fertilization upon the fruit: "In all cases some, and in some cases all of the ears changed in appearance in the direction of the variety furnishing the pollen." A practical gardener, Mr. F. S. White, ${ }^{1}$ writes as follows: "The past season I had sixteen varieties of white sweet corn and also a small lot of Black Mexican. When I came to save my seed corn I found grains of this black corn stuck in every variety."

[^22]Walter T. Swingle and Herbert J. Webber, in a paper on Hybrids and their utilization in Plant Breeding, say as follows*:

The most convincing series of experiments was carried out by the famous French plant breeder, Henry L. de Vilmorin, in 1866. In the spring of that year he planted a dozen varieties of maize from 1,000 to 1,300 feet apart, which distance was found sufficient to prevent spontaneous inter-crossing by windblown pollen. The ears to be crossed were enveloped in thin flannel, which excluded pollen perfectly, for such ears, if not artificially pollinated, never gave a single kernel. To have a standard for comparison, an inclosed ear of each sort was artificially pollinated from the same sort. The ears thus obtained were imperfectly filled, but the kernels reproduced all the characters of the seed planted. On the other hand, when inclosed ears were artificially crossed 'with pollen from another sort, * * * the ears often, but not always, contained kernels showing the characteristics of their male parest. The proportion of such grains, when they existed, was very inconstant, being liable to vary from 1 to 60 per cent.' The effect was limited to changes in the color of the kernels. In most cases the pollen of a black corn was used in crossing, and this color exists in the substance of the kernel No corclusions were drawn except from plats of maize, the ears of which, when left exposed or fertilized with their own pollen, reproduced without change the sort planted.
"In 1867 Hildebrand reported an experiment in crossing corn, using a yellow sort for the female and a dark brown sort for the male. Realizing that the older experiments had been faulty, since no proof was given that the sort used as the female parent was pure and might not be showing the effects of a previous cross, he pollinated some of the plants of the yellow sort with their own pollen and obtained ears, all the kernels of which were exactly like the mother grains. On the other hand, two ears obtained by fertilizing the yellow sort with pollen of the dark brown sort had about half of the kernels like those of the mother sort, or a little lighter, while the other half, scattered about among them, were a dirty violet col \lrcorner r. On these latter, therefore, the pollen of the brown-kerneled sort had exercised a direct transforming influence."

Numerous other experiments have been made in this country on the subject of the immediate influence of foreign pollen

[^23],

Fig. 45I. Composite cross, showlng samples of the last cross. (Redrawn from Trans. Highl. and Agric. Soc. of Scotland. Carlton, Div. Veg. Path. and Phys.)
on the kernels. The literature is given quite fully by Kellerman and Swingle.*

Webber \dagger says: "In the writer's experiments it was found that the plumbeous or blueish-black color of the aleurone layer of the endosperm in the cuzco and Black Mexican races was apparently shown in almost all cases as xenia when these races were used as the pollen parents in crossing with white or yellow races of Dent, Flint or sweet corn. In all of the cases observed by the writer no exception has been found to the rule first asserted by Koernicke, that xenia is shown only in the endosperm, the portions of the kernel outside of the endosperm remaining unaffected."

Fig. 46. Maize caryopsis; a, epidermal cell of caryopsis; c, caryopsis below testa; a, aleurone layer; s, starch layer. (Pammel and King.)

Fig. 47. Caryopsis of Mexican corn, popcorn type; a, epidermal cells of capsule; c, capsule; t, testa: d, aleurone cells; s, starch layer. (Pammel and King.)

[^24]Caryopsis or fruit.-The fruit in grasses is called a caryopsis. The thin pericarp or capsule is closely connected with the seed. Physiologically the pericarp takes the place of the testa, being well and strongly developed, while the testa is only feebly so. In general the structure is as follows: The epidermal layers, thinner walled parenchyma and a delicate fibro-vascular bundles. Bran consists of the testa and capsule with the adjacent layer, the nucellus when present and the endosperm. It should also be observed that the pericarp often unites with the bracts, especially palet, but seldom to the flowering glume as in barley.

Dr. Rodney True* summarizes his work on development of cereals as follows:
I. In corn, wheat and oats, at the time of fertilization the single ovule is furnished with two integuments which are more or less complete. As development proceeds (1) the outer integument soon disappears; (2) the inner cells of the wall of the ovary are absorbed, in varying proportions; (3) the tissue of the nucellus is absorbed, with local exceptions.
II. At maturity these remain as seed covering: (1) The external portion of the wall of the ovary in varying proportions, forming the pericarp; (2) the inner integument persisting in a state of compression. The epidermis of the nucellus also persists, though much compressed.
III. Late in the development of the fruit, the remaining (inner) integument becomes soldered to the adjacent inner cells of the pericarp, forming the fruit correctly described by Mirbel under the name of "cerium" and rechristened by Richard the "caryopsis."

Zea mays L. In another connection one of us has discussed the structure of Zea. \dagger The pericarp consists of thick-walled epidermal cells followed by a layer of variable thicknesses, the walls of which are greatly thickened, with radiating pore canals. The testa is insignificant, the walls are thinner than in pericarp. Remmants of the nucellus may be distinguished in some parts of the seed. This is followed by the endosperm. The aleurone cells are smaller, very different from those underlying it. The starch cells following the aleurone are closely packed and filled with angular starch grains.

Avena sativa L. In common oats the caryopsis is slightly

[^25]

Fig 48 I. Z a Kays: nucellus a single row of cells, pericarp much more developed than the testa. II. Hordum jubatum: thick-walled sclerotte cells of glume with short trichomas above the caryopsis; c remnant of nucellus III. Sorghum zulgare var. communix (Andropogon. Sorghum var.): small aleurone cells; siouple spherical or elliotical starch grains. IV. Secaleccreale: large suherical or somewhat elliptical starch. grains; nuctllus a sirgle row of cells; p porous thickened walls of pericarp. V. Euchlona mexicana: starch grains solidly packed together. VI. Acena satica: pericarp with irregular cells on surface; the minute "down" of seed; a single row of cells to aleuronelayer; in VII same, showing more than one row; starch grains compound. VIIL Arrhenatherum avenaceum: aleurone layer of two rows of cells: starch grains compound IX. Phleum pratense: lower figure, general view cross section of seed with embryo in position. X. Poa pratensis: large ecmpound starch grains in endosperm.
hairy. The large epidermal cells are thick-walled, slightly irregular on the surface, followed by several rows of thickwalled cells in a general way much like the epidermal cells. The testa consists of a much compressed layer mostly of two rows of thick-walled cells; remnants of the nucellus evident. The aleurone layer of the endosperm consists of one or two rows of cells; the outer portion of the starch cells contains less starch than the inner. The starch consists of large compound grains, the component parts five to six-sided.

Secale cereale L. An excellent account of the structure of this fruit will be found in the works of Harz, Tschirch \& Oesterle, Tietschert, Gregory and other writers on economic food products. Literature of the whole subject is given fully in a paper by Pammel.*

The pericarp consists of tangentially elongated epidermal cells with large cavities. The outer wall is thickened as well as the inner, the lateral walls thinner. Harz states that there is an important distinction between Secale and Triticum; a somewhat analogous structure, however, occurs in the spelts The epidermal layer is followed by smaller thin-walled parenchyma cells. The layer next to these parenchyma cells is frequently composed of thick-walled porous cells with pore canals. These cells not evident except in mature fruits. The testa is but slightly developed and consists cf comparatively small cells frequently colored brown. The nucellus occurs as a remnant especially in the groove, where the cells are thick-walled and somewhat gelatinous. The endosperm resembles that of wheat. The aleurone layer consists of a single layer of cells. The exterior walls are greatly thickened. The cells of the starch layer large, containing a large number of round or elliptical starch grains, extremely variable in size. The starch grains on the whole are larger than those of the genus Triticum.

The adhering palet cons'sts of several rows of thick-walled cells. The epidermal cells are longer and somewhat thickerwalled. The cells below are also thick-walled, provided with pore canals. In places the epidermal cells develop into a short trichome. Underneath the thick-walled cells occur several rows of thin-walled irregular parenchyma cells. The

[^26]pericarp follows. It consists of several rows of thick-walled translucent cells, the cavity being very much reduced. The testa is colored brown. The cells are tangentially elongated and the cell-walls are thinner. The nucellus is very much reduced excepting in the groove, where it occurs as thickwalled cells. The endosperm differs in a very marked degree from either that of Triticum or Secale, especially the aleurone, which consists of three to four or exceptionally more rows of cells. The starch cells are much larger and contain large spherical or elliptical starch grains, accompanied by numerous smaller ones. Small protein grains are abundant.

Structurally there are wide differences between the tribes of the order, very marked in some c'osely allied genera. The pericarp is well developed in such genera as Zea, Arundinaria, and fairly well in Triticum, Secale, Hordeum and Avena. The testa is but slightly developed in most cases, notably so in Festuca, Panicum glabrum, Aristida and Oryza sativa, the protective features being provided for by the glumes surrounding the fruit, or the wall of the ovary. The nucellus is never entirely absent, especially in the groove. It is usually much compressed. In the genera Festuca and Bromus, the cells are large, thick-walled and mucilaginous, and no doubt act as reserve food. The aleurone layer is variable. It is never absent. Of one row of cells in Triticum, Zea, Zizania. The cells are very small in Panicum crus-galli, Aristida, Setaria italica. Of more than one row of cells in Avena, Arrhenatherum, Festuca, and Horderm vulgare. The starch cells differ in size and contain small spherical or elliptical grains in Sorghum vulgare and Cenchrus tribuloides. Large spherical or somewhat elliptical grains occur in Triticum and Hordeum, accompanied by numerous smaller ones. Small five or six sided grains in Panicum crus-galli, Zea mays, Euchlaena mexicana. This applies in general to the tribe Maydeae and Paniceae. Cenchrus is, however, an exception to the rule. Compound starch grains occur in Zizania, Oryza, Avena, Arrhenatherum, Glyceria, Poa, Phalaris and Arundinaria; most grasses appear to have compound grains. The endosperm always contains protein, though much reduced in the starch cells, except in the aleurone layer, where no starch occurs. The starch cells next to the endosperm contain more protein than the interior of the endosperm. Fat is also present in small amounts. The com-
pound starch grains of Nardus in the tribe Hordeae are somewhat anomalous.

Specific gravity.-Little work has been done in this country on the specific weights of our seeds. Such studies have been made of European wheat by Harz, Nobbe, Koernicke and Werner and others. Several years ago Pammel and Stewart made some determinations indicating the difference in wheat in this respect and that a study of the specific gravity and number of seed per pound and bushel of considerable interest and commercial importance.

Wolfenstein gives the following figures with $r \in f e r e n c e ~ t o ~$ wheat:
Summer wheat, Halle, Germany 1.3884
English wheat, England.... 1.4134
Purple straw wheat, Australia............................. . . . 1.4011
Tuscan wheat, Australia...................................... 1.4156
Siberian wheat, Siberia. 1.4149
Michigan Amber, Michigan................................. 1.4292
Climate and soil both greatly modify the weight and character of the seed. This variation is also great in different varieties. To compare the results obtained from these studies a few figures are taken from Harz. One hundred seeds of the following varieties weighed as follows: Prince Albert, 5. 102 grams; Archer's Prolific, 4.298 grams; Hunters wheat, 3.714 grams; Mediterranean wheat, 4.532; White Genesee wheat, 4.403 grams.

Some tests made by Pammel and Stewart* with wheat from various localities in the United States gave the following results: World's Fair, Seneca Falls, N. Y., 1.146296; Winter Fife, La Crosse, Wis., 1.44578; Martin Amber, La Crosse, Wis., 1.35054; Golden Cross No. 2, 1.47524; Bissell, Manhattan, Kan., 1.4765; Turkey Red, Manhattan, Kan., 1.441; Missogen, Berkley, Cal., 1.480; Carter's Hundredfold, Berkley, Cal, 1.518; Fultz, Raleigh, N. C., 1.489; Red May, Raleigh, N. C., 1.454; Turkey Red, Iona, 1.43727. According to Wolfenstein, as quoted by Nobbe, the lowest specific gravity out of the thirty samples, occurs in white wheat (Saxony), 1.3766. An average sample of Bohemian wheat from the market, consisting of three varieties had a specific gravity of 1.4208. The highest specific gravity rec̣orded is 1.4396, Ohio Red.

[^27]It is interesting to compare the specific gravity of wheat with that of a few other seeds obtained in Europe. An average sample of corn has a specific gravity of 1.147; Castor Oil bean, .908; Buckwheat, 1.10t; Field pea, 1.355; White clover, 1.41; Kale, 1.35̃; Rutabaga, 1.38.

Schulte and Wright in the botanical laboratory, Iowa State Coll ge of Agriculture and Mechanic Arts, determined as fo'loas concerning the weights and specific gravity of several cereals. Corn: Giant White Dent, 1.2547: Hickory King, 1.2932; King of Earliest Dent, 1.3284; South Dakota Flint, 1.3367; Mastodon, 1.2712: Jumbo, 1.2352; Chester County Yellow, 1.2753 ; Common Yellow Fieỉd, Iowa grown. 1.28:6; Common White Field, Iowa grown, 1.3627; Golden Cable, Missouri, 1.2821; Pride of the North, 1.2766: Iowa Gold Mine, 1.2836; Longfellow Flint, 1.30t4: Iowa Beauty, 1.2816; White's Mammolh Red, 1.2511; Monarch Rice popcorn, Iowa, 1 35550; Red Beauty popezrn, 1.3738 ; Hickory King, Alabamà, 1.3088; Pride of the Farm, 1 3306: Alabama Yellow, 1.2022; Hickory King, Kansas, 1.2555 ; Improved Leaming, Kansas, 1.2945. Wheat: Turkey Red, Iowa, 1894, 1.3290; 1895, 1.3065: Fife, 1894, 1.4177; Red Clawson. Missouri, 1894, 1.3594; O'Kangan Valley Velvet Chaff, 1.5197; Wiscons'n Triumph, 1.4077; Turkey Red, Kansac, 1894, 1.3659; Turkey Red, Iowa, 1.4137. Oats: Nameless Beauty, Wisconsin, 1.3432; Giant Yellow, Wisconsin, 1.3178; White Bonanza, Wisconsin, 1.3290; Red Rust Proof, Kansas, 1.2550; Full Moon, Lowa, 1.2302; New Salt Lake, Iowa, 1. Clover: Iowa, 1.2121; White Superior Scotch, 1 2334; Black Mammo h Cluster, Wisconsin, 1.1257; Wide Awake, Wisconsin, 1.1892.

Mr. J. U. Loyd,* who has made an exhaustive study of the grain weight, records the following densitics: Duluth Hard Springs, 1.394; India, No. 1 Club Bombay, 1.385; Manitoba Spring Hard, 1.388; Ohio White Winter, 1.387; Black Sea, Azima, Russia, 1.383; Patagonia, South America, 1.380; Wisconsin Spring, 1.377; Australia, 1.377; Ghirka, Fine Russia, 1.364; California No. 1, 1.358; River Plat e, South America, 1.357; England White, 1 346; New Zealand White, 1 346; Odessa, Russia, 1.343; Chili, 1,332; England Red, 1,337: Washington State, 1.327.

According to the same investigator 100 grains of wheat of the following varieties weigh as follows: New Zealand White,

[^28]77.9; England Red, 77.4; No. 1 Club Bombay, 84.2; Baltic, Rus sia, 56.6; Ghirka, Fine Russia, 49.3; Chili, South America, 77.9; Ohio White Winter, 51.4; Wisconsin Spring, 47.4; Duluth Hard Spring, 46.7; River Platte, South America, 46.1; California Choice, 74.4; Manitoba Hard Spring, 43.9.

Messrs. Schulte and Wright determined as follows concerning the number of grains in a gramme: Corn: Giant White Dent, 3.4; Hickory King, Wisconsin, 2.0; Common White field, Iowa, 3.5; Eclipse, Wisconsin, 3.2; Iowa Gold Mine, 2.9; Hickory King, Iowa, 2.1; Improved Leaming, Iowa, 2.9; White's Mammoth Red, 2.9; Red Beauty popcorn, 8.3; Monarch Rice, 11.6; Hickory King, Alabama, 1.9; Alabama Yellow, 1.8; Stowell's Evergreen, Iowa, 4.1. Wheat: Turkey Red, Iowa, 40; Red Clawson, Missouri, 23; Fultz, Missouri, 29; Wisconsin Triumph, 39; Turkey Red, Kansas, 32; Currell, Kansas, 35. Oats: Giant Yellow, Wisconsin. 27; Red Rust Proof, Kansas, 35; New Salt Lake, Iowa, 45; Black Mammoth Cluster, Missouri, 39; White's Superior Scotch, Iowa, 33; Lincoln, Iowa, 40.

In 1893 wheat, obtained from various sources, gave the following results: New York, La Crosse, Wis., Jones' Winter Fife, 37.3; Wisconsin Triumph, 33.5; Iowa Turkey Red, 35.92; New York, Red Clawson, 22.77; World's Fair, 26.92; Golden Cross No. 2, 24.077; Bissell, Kansas, 28.77; McPherson, 33; Turkey Red, Kansas, 33.77; Missogen, California, 18; Carter's Hundredfold, 23.』33; Fultz, North Carolina, 34.933; Early Red Clawson, 31.28; Amber, 28.6.

One hundred seeds of Michigan Amber weighed 35134 grammes. Purple straw, 6.864; English wheat, 3.7798; Summer wheat, Halle, 2.8654.

Schertlen gives the following specific gravity of some grass seeds: Muhlenbergia mexicana, 1.100; Arrhenantherum elatius, with chaff; 0.600; Avena sativa, 1.345; A. orientalis, 1.021; Bromus inermis, 0.746; Holcus lanatus, with chaff removed, 0.301; Hordeum vulgare, with chaff, 1.351; Panicum miliaceum, 1.179; Zea mays, 1.147.

Dissemination.-An important step in the life of every plant is the dissemination of its seed, since without this the species has little chance to perpetuate itself.

Grasses are disseminated by wind, animals, hygroscopic movements, water and man.

Speaking of dissemination Hackel says: "In all wild grasses certain parts of the spikelet or of the entire inflor-
escence fall off with the fruit. If the spikelet is manyflowered and every flower ripens its fruit, then its axis breaks into as many pieces as there are fruits, and every piece carries a floral glume and palea. If the spikelet is one-flowered, the axis of the spikelet may separate above the empty glume, so that the floral glume and the palea fall off with the fruit (Agrosteæ); or it may divide below the empty glume, and the spikelet fall off as a whole (Paniceæ, Andropogoneæ, etc.). If the spikelets form a spike or a raceme, it frequently happens that the latter divides so that one spikelet falls off with each joint (many Andropogoneæ and Hordeæ); short spkes (Triticum ovatum Godr.) fall from the culm as a whole. All these arrangements are necessary for the distribution of the seed; they are lacking (with two exceptions) in all cultivated cereals, but are present, on the contrary, in all native races of the same species, so far as these are known. Since these arrangements are very disadvantageous for the complete gathering of the fruit, varieties whose axes are less or not at all articulated will be preferred in culture, and will be finally fixed by natural selection.'"

Seeds to be disseminated by the wind must be sufficiently light. Surrounding the fruit are bracts, which diminishes the specific gravity. Hordeum jubatum, and Agrostis are carried by wind because of their lightness. In many grasses copious hairs are developed either as parts of the sterile glume or parts of the axis. In Andropogon the rachis or both rachis and the sterile flowers are provided with long hairs. In Phragmites the base of the flowers are silky villous and with a conspicuous silky-bearded rachis.

In Calamagrostis the callus of the flowering glume is provided with short or long hairs. In Poa the principal veins of the flowering glume are cobwebby (figure 36). The seeds readily adhere to woolly objects, or they may be carritd by the wind.

The beautiful European Stipa pennata, and our variety, neomexicana, are well adapted for wind dissemination. Its long plume makes it easy for the wind to carry.

The wind, however, acts in other ways. The Australian Rolling Spinifex forms a large round head. This breaks away and rolls over the dry sands of Australia until it is carried to a dry place, when it expands and soon takes root. In tickle grass (Panicum capillare) the whole inflorescence breaks away

Fig. 49 Dissemination of grasses. 1, Stipa spartea, twisted awn and hairs, selfburying "seed;" 2, , s. comata; 3, s viridula; 1 , Zizania aquatica, a floating "seed;" Cenchrus tribuloides, with a bur for attaching itself; 6, S. pennata; $\%$, Hordeum jubatum, animal dissemination; $\&$, Avena fatua, a "seed" with hygroscopic characters. (King)
and is either bodily carried up in the air or rolls along the ground. Many of our native grasses like Eragrostis are carried in a similar way. To be sure, many of the seeds fall long before they separate from the plant. And yet dozens of fruits may be counted on a single panicle. The wind may also carry the seed over the snow during win'er.

Animals and hygroscopic movements.-Animals are most efficient in conveying the seed of many grasses. The stiff, sharp spines of the involucre in Sand Bur (Cenchrus tribuloides) are most efficient in piercing the skins of animals. Indeed it sometimes causes considerable annoyance to animals and man. In Streptochaeta, says Hackel, "The ripe fruit hangs from delicate spiral threads (the awns) which are fastened together at the end of the spike; they are free below, and their softpointed bracts, bent outward, act like fish-hooks by catching into the fur of any animal that touches them in passing."

Our common Squirrel-tail grass (Horderm jubatum) is most efficiently carried by animals. The.spikes, when mature, break up into joints, and although the joints are not sharp-pointed they readily cling to the fleeces of aniwals. So, too, do the broken points of Sitanion cling to animals.

Fig. 50. 1, Foxtall (Setaria viridix); 2, Setaria glauca; 3 , Setaria verticillata. The seeds of all three species carried by animals, especially sheep and cattle. 1, Panicum sanguinale; $5, P$. crus-galli. The seeds of these are carried by birds, used as food.

A most interesting case of animal dissemination is afforded by a native species of Stipa spartea. The cylindrical grain is provided with a sharp-pointed cullus which makes it easy to penetrate clothing, the skins of animals and soil. The grain is enclosed by the hard, persistent, flowering glume which surrounds the palet. The lower portion of the coriaceous flowering glums, as well as the pedicel, are covered with stiff hairs that point upwardly in an oblique direction. The flowering glume bears a strong awn twisted like a rope. This awn is very sensitive. The coils unroll or unwind when damp, and

Fig. 51. Dissemination of Aristida. Aristida tuberculosa, awned flower, lower detall; Aristida purpurea, awned flower, detail at the right; Aristida oligantha, awned flower, detail at top.
when dry they return to their former condition. Whenever this drying-out takes place the points of the flowering glume are rotated with lateral variations. The upper half of the awn remains straight and soon becomes bent at nearly a right angle to the twisted part. This portion of the awn is of very material assistance when it comes in contact with surrounding objects. The bristles at the lower end prevent the seed from being pulled out. "This rotation and nutation, together with the action of the bristles, soon causes the bract surrounding
the fruit to bore deeply into the ground." This boring into the soil takes place in a short time. Beal says, in speaking of the Feather grass (Stipa pennata): "Francis Darwin found that the rate increases up to the fifth revolution, and then diminished quickly. In three wettings and three dryings, a little over an inch was buried in dry sand. A rise of temperature affects the awns in the same way as increased moisture; a fall of temperature acts like dryness. Mr. Darwin found that minute strips of the awn, consisting even of two long cells, twisted just as well as the entire awn. He thinks that the torsion is produced by the striation or stratification of the cell walls. These are a series of parallel lines, alternately light and dark, traversing the surface of the cell. Very frequently the two systems wind spirally round the axis in opposite directions. When the tissue expands during the absorption of water, it is due mainly to the swelling of the less dense striæ. This is thought to be the cause of torsion in cotton wool. Soon after being buried, where the soil is moist, the awn breaks off at a joint from the apex of the grain."

Mr. R. M. Christy states that a large number of the seeds are often found beneath the skin of sheep, especially about the shoulders. Dr. M. Stalker states that in many of the northwestern counties of Iowa they occasion much annoyance to sheep, and, in some instances, cause the death of animals. They penetrate and bury themselves in the flesh. Dogs, and even persons, are also affected. F. H. King says that he was much annoyed by the fruit of this grass. Stipa capillata of southern Russia, Aristida hygrometrica of Queensland and Heteropogon contortus of New Caledonia inflict similar injuries.

The beautiful south European grass (Stipa pennata) also buries itself in the soil. The long, feathery awn enables the wind to carry it away. The "seed" is small, the flowering glume has a pointed callus and above it obliquely pointed stiff hairs. As in the other species it is provided with strong, twisted awns that end in a long, beautiful feather. As the seeds are carried by the wind they eventually fall, with the "seed" end to the ground, as it is heavier at the lower end. The "seeds" remain in this position as long as dry, but when moist the spirally twisted awn unwinds the plume and helps to hold it in the soil; thus, finally, the "seed" is buried in the ground.

Several species of Avena, A. barbatum and A. fatua, our wild oats, are similarly provided with twisted awns that help to bury the seed. Several species of Aristida also bury themselves, as do members of the genus Danthonia. In Iriticum ovatum the entire spike falls off. It possesses a very pointed base, and the numerous rough awns pointed outward, thereby movements of the wind exert a pressure upon the point which drives it into the ground.

The peculiar use of the awns of Arena sterilis are described by Hackel as follows: "Two strongly awned fruit-bracts fall off, fastened together; in moist surroundings the twisted awns begin to rotate their diverging upper halves, consequently they cross and press against each otber until the bracts are forcibly separated, thus giving the fruit an impetus which throws it off for some distance.

In many cases seeds of grasses are distributed by birds and animals which feed upon them but do not digest them. Birds of various kinds freely feed upon Setaria glauca, S. viridis, Panicum miliaceum, often carrying them great distances. Many herbivorous animals also help to carry seeds in this way, as is evidenced by seeds of many grasses that come up from excreta. This manner of distribution for most seeds is a most precarious one, as the "seeds" pass through the digestive canal, germination is hastened, and thus they may be destroyed. But the fleshy berries of many Bambuseæ are especially adapted to animals which do not destroy or digest the seeds. Many animals, especially wading birds and others, carry seed of grasses in the mud that clings to their feet.

The light specific gravity of many grass fruits make them especially susceptible to dissemination by water. The chaff, in many cases, remains persistent, and so constructed that the whole floats readily. Thus rice and wild rice will float for a time until they are soaked with water. Water, however, adds mostly in a mechanical way, currents of water carrying away large quantities of earth with which are mixed seeds of grasses. Neighboring farms have frequently been sown with seeds of wild oats in this way, as has been witnessed in many cases along the bluffs of the Mississippi in Wisconsin and Minnesota.

Certain fruits of grasses are thrown out by expulsion. Professor Beal says of Sporobolus: "The ovary of Sporobolus is very thin and tender. Free seeds may often be seen still adhering to various portions of the glumes and branches of the
panicle. One of my special students, at my suggestion, has made a few experiments to deternine the mode in which the seed escapes. Inside the ovary and about the seed there is a gummy secretion. When about ready to escape or at a certain stage of maturity, if water be applied to the panicle, in a short time the seeds come forth. A part of the panicle was wet and in thirty minutes twenty-seven seeds escaped. In another case the seed began to escape in ten minutes after the water was applied. After drying six days in a room seeds started out in twenty minutes after wetting. In other cases seeds have been seen to escape in six minutes and in one case in four and onehalf minutes. If the ovary is carefully removed from the floral glume and palea and water is applied, the seeds usually escape a little quicker than when left in the floret."
"On applying water the ovary may be seen to slowly enlarge, till it bursts and the seed pops out in a hurry. If a little water is applied, it moves more slowly, and if the glumes are still near the ovary the seed moves upward and usually adheres to some part of the panicle. A slight sprinkling or a heavy dew would bring the seeds out, but a heary rain would wash them down at a time when the condition would be favorable for germination. Several other species, as I judge from herbarium specimens, expel and hold their seed in a similar manner. The action of the water on the orary seems to be purely mechanical and is explained in well known works on physics. The water enters the ovary faster than the gum can esc ョpe. The ovary is flattened and splits on the sidə next the palea." The gum spoken of by Beal is a mucilage and resides in the outer walls of the cells of the capsules that swell on the addition of water.

Man, too, is an agent in the scattering of the seeds of grasses and the introduction of new seeds. Certain grasses most commonly follow the culture of certain grains, as chess and its occurrence in wheat fields.

It is a well known fact that chess is more abundant where wheat is extensively cultivated, and there is no question that this weed was introduced by the wheat seed brought from Europe Darlington* observes, "This foreigner is a well known pest among our fields of wheat and rye and occasionally appears in the same field for a year or two after the grain crop. Years ago it was observed that this weed was common

[^29]along the roadside, the seed of this weed having been scattered from the farmers' grain wagons." Lolium temulentum is another well known illustration where man has acted as a disseminator. This weed was well known to the ancients as a serious pest in grain fields. This weed seldom occurs in this state now. Formerly it was much more common, when Iowa was a wheat-growing state.

The sand-bur affords another excellent illustration of man as an agent in scattering seeds. During the early days, sandbur was common along the sandy embankments of streams; now it has become common throughout the state of Iowa, and largely because the sand used for building purposes is obtained from the river bottoms. Then, too, it has been scattered far and wide by the railroads who use the gravel as ballast. Setaria verticillate has fol owed and occupied the waste places in many parts of this state, especially in the southern tiers of couaties. It was largely introduced with foreign seed, or as a ballast weed in seaport towns. The common finger-grass (Panicum sanguinale) and pigeon-grass or fox-tail are largely disseminated through the use of clover and other agricultural seeds. Mr F. C. Stewart, some years ago, determined that it was the principal impurity in filteen samples of red clover grown in various parts of this country. He says of it as follows: "The weed seed most commonly found in clover seed is Setaria viridis. This species appeared in fifty samples, Setaria glauca appearing but thirty-one times, Panicum glabrum twenty-four, and Panicum sanguinale three times." O. Burchard* reports that orchard grass in North America contains Panicum capillare, Plleum pratense, Poa pratensis, Arrhenatherum elatius, Bromus erectus, Festuca pratensis, Holcus lanatus, Lolium perenne and Poa trivialis. Burchard \dagger further states that "almost every lot of red clover seed from the United States is found to contain, even when thoroughly purified, varying quantities of the following seeds: Panicum crus-galli, Panicum filiforme, P. sanguinale, Panicum capillare, Phleum pratense, Setaria glauca, and S viridis." We should observe, however, that some of the plants mentioned by this writer do not occur in clover seed, as, for instance, Panicum filiforme. Bromus mollis, a worthless forage plant, has been widely distributed as a weed, not only

[^30]because of its admixture in other more valuable forage plants, but its direct introduction as a forage plant. Johnson grass (Andropogon sorghum var. halapensis), has been widely distributed in the southern states since its introduction as a forage plant in South Carolina, about 1830, by Governor Means. Ten years later it was introduced into Alabama by Captain William Johnson. Since then it has been widely distributed throughout the south, where in some places it has become an execrable weed. It has advanced as far north as central Missouri, where it was introduced with seeds in part grown as a forage plant.

Another grass that has been distributed largely by human agencies is the Bermuda grass, introduced in this country first as ballast, from southern Europe. It has now spread over the entire southern states, and although a most valuable grass, is a dangerous weed when grown where not wanted. A few years ago we found, on the college grounds, the Bromus tectorum, the seed of which came with some packing material. Instances of this kind might be given much more extended notice in this connection. One other case is worthy of mention; Wild oats (Avena fatua), which has become widely distributed in Iowa, Wisconsin and Minnesota, occurring commonly as a weed in oat and wheat fields, but generally in oat fields. It is impossible to remove the seed of this species from oats. In the Rocky Mountain districts, wild oats is extremely common and this species was introduced in the same way. In California there are several pernicious species of Avena that were introduced with grain seed.

GERMINATION.

Structure of the embryo.-After the seed has been distributed, the next important step is germination. The small embryo is usually straight, rarely slightly bent with the radicle turned downwards. The following is taken from Hackel's excellent account: "Its most striking portion is the scutellum, which is regarded as the cotyledon. It is a flat but somewhat thick body, roundish to elongated oval in circumference, lying close on its inner side to the albumen, with the plumule and radicle surrounded by the coleorhiza situated in its somewhat shallow exterior. The plumule lies free upon the scutellum, but below the plumule the axis of the embryo is united with it. This is the point of insertion of the scutellum beyond which it projects downward and outward as far as the point of the coleo-
rhiza. This descending point of the scutellum is grown for a longer or shorter distance to the posterior part of the co eorhiza, so that they entirely unite in front or leave only a small cleft. If this is the case it is only in germination that the side portions are pushed back and the enire embryo becomes visible."

Fig. 51 A. Cross-section embryo of corn The cylinder epithelfum above and large parenchyma cells below. (Pammel.)

The scutellum has a most interesting epidermal layer, the so called cylinder epithelium. These palisadelike cylindrical cells are thin walled and physiologically of great importance to the germinating plant. It is the function of these cells to absorb the dissolved, starchy substance of the endosperm. This cylinder epithelium is nicely shown in the germinating wheat. During germination the scutellum remains within the pericarp.
"In many grasses there is in front of the embryo and opposite the scutellum a small, scale-like appendage, the epiblast. It is especially clear in Stipa, and yet better developed in Zizania (where it is as long as the plumule), but it is entirely lacking in many grasses (rye, maize and barley); generally it is

Fig. 52. Maize germinating. Scutellum in front; r, primary root. In lower left hand corner, the plumule showing also second seminal roots from first node. (King.)

Fig. 53. Squirrel-tail grass germinating, sterile spikelets, young plant and roots. (King.)
a delicate formation consisting of parenchyma withou ifibro-vascular bundles, and its morphological nature is still doubtful. Yet the view that it is the rudimentiry second cotyledon is the mostreason ${ }^{2}$ ble, for among o her things this makes comprehensible the surprising position of the first leaf of the plumule of the embryo, consisting of a very short, often indistinct internode of the axis (epicotyl), and of two to four leaves, and according to the development of the former the plumule is sessile or petioled. The first leaf, the germ-sheath, surrounds the others like a closed tube, which breaks through the ground with its hard point at the time of germination, and opens: at its apex after a time to allow the exit of the second leaf. It is colorless or pale green or frequently reddish. Many authors. consider it a part of the cotyledon, a view which is certainly incorrect, for in many grasses it is separated from the scutellum at the time of germination by a distinct internode, which is often much elongated. In others this epicotyl is very short or entirely lacking, so that the back of the sheath may even be grown to the scutellum.
"The majority of grasses have only one radicle, and grow therefore with a primary root; in addition to which, especially from the epicotyl, new roots soon arise which finally exceed the main root in growth. In several grasses, especially in the cereals, and also in Coix lachryma and others, the foundation of these secondary roots is already laid kefore germination, usually in the hypocotyl (the axis below the insertion of the scutellum); seldom and only to a rudimentary degree, in the epicotyl. The planes of these secondary roots are parallel to
that of the scutellum; they can therefore be seen only in tangential and not in radial section of the seed. In germination, each rootlet independently breaks through the coleorhiza, which surrounds each with a small sheath. Before the roots break through, the elongating coleorhiza ruptures the pericarp and sends numerous hairs from its epidermis, thus fastening the somewhat superficially placed seed to the ground.

Physiology of germination. - It may be interesting now to discuss the physiological process of the germination of grass seeds. The food material made by the leaves is deposited in the seeds in the form of reserve material, consisting of two classes of substances, the albuminoids and carbohydrates. The amounts of these vary in different species. The manner in which the albuminoids are deposited varies, but they occur largely in the form of proteids, deposited in the form of aleurone grains.

The carbohydrates occur largely in the form of starch, though in some few cases reserve cellulose occurs, as in the perisperm of the seed of Bromus and allied grasses. An examination of the endosperm of grass seeds indicate that the outer layer of the endosperm consists of cells that differ in a marked way from the remaining cells. The researches of Haberlandt and several other writers have shown beyond a doubt, that this layer is a secreting organ in which ferments are produced which are transferred to the remainder of the endosperm, where the starch is converted to a sugar where it is taken up by the cylinder absorption epithelium, the outer row of cells of the scutellum.

The wide and universal distribution of the aleurone layer would appear to indicate some physiological purpose. Its function has been nicely demonstrated by Haberlandt and other writers.

Brown and Morris,* who have studied the germination of barley and a few other grasses, differ in regard to the digestive action of the aleurone cells. Haberlandt's work was carried out with rye, and as stated above indicate that the aleurone layer is a diastatic secreting tissue and that the aleurone layer does not entirely belong to the reserve food system. Haberlandt found the corrosion of starch grains first took place between the scutellum and the aleurone layer on the ventral side and this corrosion rapidly extended to the starch grains

[^31]on the dorsal side of the scutellum. It was also found that this corrosion of starch took place last of all in the groove. Haberlandt therefore concludes that the scutellum as well as the aleurone layer are secreting organs. To test this work, Haberlandt removed portions of the testa, including the aleurone layer, which had germinated to a certain degree. The second was washed with a brush containing one to two per cent sugar solution, placed upon moist filter paper with the aleurone layer upward. Upon the aleurone layer was placed a small quantity of moistened rye meal. The whole was then kept moist at a temperature of 18 to 20 C . In a couple of hours a corrosion of the starch grains had taken place. These sections were compared with others not so treated. In order to demonstrate this, Haberlandt cut around the edge of the scutellum and found that notwithstanding the break in the continuity of the aleurone layer and its complete separation from the embryo, it did not prevent the spread o_{\perp}^{c} the diastatic action, when these were later germinated. The inactive aleurone cell, according to the same investigator, contains no appreciable amount of diastase.

Brown and Morris, who investigated this question, state that they were at first inclined to believe as Haberlandt does, that the progressive action of the corroded starch grains were due to the special action of the aleurone cells. They further stated that the true explanation is due to the solution of the cell walls of the starch containing endosperm, but that this is a necessary preliminary to the dissolving action of the starch.
J. Gruss, " from a series of experiments on corn and several other plants, concludes that there exists in the germinated seed a soluble diastase which is capable of diffusion through the cell wall in the same way that sugar does. The removal of the cotyledons diminishes the amount of diastase in the stem. Brown and Morris state they found that the mother substance of the diastase secretion is probably derived from the endosperm. The form in which reserve starch enters the growing embryo has been found to be mostly invert-sugar, but there is also a considerable amount of cane sugar, as Kuhnemann \dagger has shown. Later Kjeldahl \ddagger found that cane-sugar is

[^32]present in barley and malt. The amount of cane-sugar in barley is given by O'Sullivan as follows:

O'Sullivan concluded that the maltose was derived from the starch.

It may be interesting here to compare the percentage found by Brown and Morris.

	BARLEY AFTER STEEPING IN WATER FOR 48 HOURS.		BARLEY AFTER GERMINATION FOR 10 DAYS.	
Cane-sugar. Invert-8ugar Maltose...	$\begin{aligned} & 0.0204 \\ & 0.0070 \end{aligned}$	$\begin{aligned} & 0.0338 \\ & 0.0227 \end{aligned}$	$\begin{aligned} & 0.3430 \\ & 0.0174 \end{aligned}$	$\begin{aligned} & 0.1787 \\ & 0.1790 \\ & 0.3640 \end{aligned}$
Total...	0.0274	0.0565	0.3604	0.7217

	BARLEY AFTER STEEPING IN WATER FOR 48 HOURS		BARLEY AFTER GERMINATION FOR 10 DAYS.	
Cane-sugar .	5.4	0.3	24.2	2.2
Invert-sugar	1.8	0.2	1.2	2.2
Maltose......				4.5
Total...	7.2	0.5	25.4	8.9

These writers also conclude that the transformed starch is abs lved from the endosperm by the columnar epithelium of the embryo in the form of maltose, and then is rapidly converted into cane-sugar. The main point of difference between the conclusions arrived at by Haberlandt and Brown and Morris are that the former believes that aleurone layer is largely a secreting organ. Brown and Morris say that the absorptive
epithelium columnar cells is a secretory tissue, and that there is no doubt that one of the special functions of these cells is the secretion of enzymes.

It was Sachs who first stated that the columnar epithelium was an absorptive layer, and most writers agree that this is one of its many functions, but Brown and Morris say that the absorptive function is secondary in its importance. According to these writers, when they had removed the columnar epithelium, the embryo developed when it was placed upon a culture medium containing a readily assimilable carbohydrate, such as cane-sugar or dextrose, just as it would have done in its unmutilated state, and when such a mutilated embryo is placed upon a starch gelatin mixture it entirely lost its power of corroding and dissolving starch granules. The secretion of diastase appears to be increased by the presence of the small quantity of acid, and its secretion is stimulated by the presence of digestible matorial, " that the flow of amylohydrolytic enzyme from the glandular cells of the scutellar epithelium might be influenced by the presence of starch, either in the granular form cr as soluble starch." Starch does not stimulate the epithelium cells to increased secretion. It has been known for some time that the cell-walls of the endosperm end of a date seed become dissolved and is used for the nourishing of growing plantlets. This was shown very nicely by Sachs.*

This has also been abundantly proven for other seeds in which the reserve material is cellulose. Mr. J. R. Greene, who made a glycerine extract of the cotyledons of the date seed, concluded that the glycerine extract contained a trace of enzyme capable of converting cellulose into sugar. Brown and Morris have shown that during the early stages of germination the cell walls of the endosperm are disintegrated, and that the disappearance of the cell walls always precedes the attack upon the starch granules. That malt of barley contains an enzyme, to which they have given the name of cytohydrolytic as well as amylo-hydrolytic enzyme. The former when slightly assimilated and allowed to act upon wheat or barley, causes disintegratio 7. As no other malt extract was u=ed it is evident that this ferment has a decided soluble action upon the endosperm-cellulose of Eromus mollis, where the cell wells are considerably thickened, and also on the cell walls of other grass seeds. It is also interesting to note here that heating the

[^33]enzymes totally destroys the activity as a cellulose dissolving agent, and that it does not pre-exist in the resting seeds, but it is a product of germination.*

The reserve foods, as indicated, consist of two general classes, the carbo-hydrates occuring under three forms: sugar, starch and cellulose, and the albuminoids occurring in the form of albumoses and the vegetable globulins. Of course these are very concentrated. In the aleurone cells the albuminoids have received special names in different seeds.

The outer row of cells of the embryo make up what is known as the cylinder epithelium, or referred to as the epithelium. (Fig. 51 A .) The embryo contains very little starch or none. Now the dissolved material of endosperm is transferred through the absorptive epithelium by diffusion and transferred to the growing embryo within a few hours after the moistened corn is put under favorable conditions for germination. The protoplasm of the epithelial cells becomes coarser in structure, and the granules increase in size. The contents of the cells and nucleus are less distinct; they reach their maximum change in from 24 to 36 hours. At this stage the epithelium ceases to produce its secretory enzymes. The protoplasm loses its large granules and contains small refractive granules. The cell contents become hyaline. The contents of the endosperm become gradually absorbed, the cells having become greatly elongated. The first action of the endosperm is a dissolution of the cellulose and the appearance of transitory starch in the scutellum or cellulose, and therefore acts first in supplying the growing embryo with food. "In the first place the cellwall swells up slightly, and its stratification becomes much more apparent, owing to a partial separation of its constituent lamellae. These are gradually disintegrated, but the middle lamella appears to offer a somewhat greater amount of resistance than the other. Ultimately the whole of the cellwall is broken down into very minute spindle-shaped fragments, with their long dimensions arranged tangential to the original cell-wall. Owing to this arrangement, these minute fragments, when viewed with low powers, gives the appearance of ghost-like cellwalls for some time after the wall has really ceased to be continuous. Ultimately, as the action continues, the residual fragments also disappear, and there is no visible sign of sepa-

[^34]ration between the contents of contiguous cells. In the case of starch grains, minute pitted furrows occur. These increase in number until the grains become very irregular, showing large radial clefts. It may be stated in this connection that the embryo acts like a parasite. It is well known that the embryo can very readily be removed from the endosperm. Sachs* points out that the embryos of normal plants are of a parasitic nature, and it has been shown by several investigators that it is possible to excise the embryo of various seeds and germinate plaats. Thus Van Tieghem \dagger, who discussed the dependence of various parts of the embryo and the amount of dependence of the embryo upon its endosperm. In this work the writer experimented with both albuminous and ex-albuminous seeds. Among the former corn was used. Van Tieghem reached the important conclusion that the young plant can develop without the aid of endosperm, up to a certain stage. That the nutritive matter of the endosperm can be replaced, up to a certain point, by a paste formed of its own substance, or by the paste containing the predominating sub. stance of albumen. Fur her experiments were made by Blociszweski, \ddagger who demonstrated that the embryo seeds separated, wholly or in part, from their endosperm or cotyledons, could grow without the aid of the stored-up material of the endosperm or cotyledons, and that assimilation begins, providing that the plumule has the necessary amount of light.

Now, Brown and Morris succeeded in growing the embryo of barley seeds, when grafted upon the endosperm of other barley se:ds; that these embryos grew as well as others dependent on its own endosperm. The foreign endosperm underwent all the usual changes. They succeeded likewise in obtaining a growth of barley germs upon wheat. They concluded that the starch-containing portion of the endosperm is simply a storehouse of dead reserve material, and that it is not vital in any sense of the word.

Time required for germination.-We may next inquire what time is required for germination. Nobbe, \& in his admirable work on seeds, states that seeds of cereals and clovers in general require 10 days. Melilotus alba, Avena, beets, Cucurbitaceæ, grasses (excepting Phleum, which germinates in ten

[^35]days), need fourteen days, and Abietineæ, twenty one days. Gilbert H. Hicks* gives the germinative energy for cereals, clovers, peas, vetches, flat peas, flax, dodder, poppy, Brassica, Lepidium, radish, spurry and chicory at three days. For ordinary field conditions this is somewhat too short a period. In laboratory and greenhouse our tests show that corn requires five or six days as an average.

The time required for germination varies greatly. This depends largely upon external conditions. Sachs has given us the following temperature required for germination:

OPTIMUM. MAXIMUM. MINIMUM.

Zea mays (corn)...........	33 c	46 c	9.5
Triticum vulgare (wheat)...	29	42	5
Hordeum vulgare (barley)..	29	38	5

Haberlandt gives as the maximum temperature of germination of cereals the following: Wheat, $31-37 \mathrm{C}$; rye, $31-37 \mathrm{C}$; barley, 31-33 C; oats, 31-37 C; corn, $44-50 \mathrm{C}$; millet, $44-50 \mathrm{C}$.

He has determined the minimum temperature and rapidity of germination as follows: Time of counting when caulicle appeared:

	4.75 C.	10.5 C .	15.6 C	18.5 C
Winter wheat.	6	3	2	1.75
Winter rye....	4	2.5	1	1
Barley.	6	3	2	1.75
Corn.		11.25	3.25	3
English rye grass	10	5.5	3.75	3
Timothy..	.	6.5	3.25	3

O. Burchard has made the following determination of grass seed and temperature:

Germination after days....	CONSTANT TEMPERATURE,$68^{\circ} \mathrm{F}$.				CONSTANT TEMPERATURE,				
	5	7	14	28	5	7	14	21	28
Poa pratensis, per cent.	5.06	12.89	24.39	25.72	6.45	10.11	1228	12.61	12.61
Poa trivialis, per cent.	16.17	3967	69.33	71.33	19.83	31.83	33.25	39.1 \%	40.0
Poa nemoralis, per cent.			26.33	2712	7.0	13.5	17.42	17.59	17.59
Poa annua, perct..	549	\%6.33	71.83	75.17	56.83	88.0	72.83	73.67	73.67
Poa compressa, per cent	0.0	017	0.5	0.67	0.0	167	3.33	3.33	3.33
Agrostis stolonifera, per cent.	53.5	63.92	64.59	64.75	78.17	83.33	84.59	85.0	85.0
Alopecurus pratensis, per cent	9.75	30.67	64.5	71.92	8.08	30.84	59.75	64.34	65.15

*Year Book. U. S. Dept. of Agrl. 1894: 399.

	Changeable temperature.			
Poa trivialis, per cent	35.33	62.0	73.67	75.33
Poa nemoralis, per cent	18.0	43.5	56.17	57.67
Poa annua, per cent	7217	82.33	8467	84.67
Poa compressa, per cent.	0.0	18.17	52.17	54.5
Poa pratensis, per cent.	1172	21.11	45.28	4984
Agrostis stolonifera, per cent	90.34	96.0	9642	96.42
Alopecurus pratensis. per cent	14.5	4667	72.34	74.42

Vitality.-When the necessary conditions are present-a favorable tempera'ure and moisture-the process begins. The first step is absorption of moisture. When this has proceeded far enough, and with the required amount of heat, the radicle breaks through the coleorhiza or root sheath. The first leaf surrounds the other leaves in the form of a tube, and pushes through the ground; later it opens out. In some cases a single strong primary root appears, but in others a number may even break through the root sheath. The scutellum remains within the pericarp The young plant is nourished by the material stored away in the endosperm. It is transferred to the embryo by a row of palisade cells that occur on the outside of the scutellum. The walls are delicate, and du ing their activity are made up of granular cytoplasm. During the process of germination, the protoplasm does not only become active, but is changed in its structure, as will presently be shown. Now, as a further evidence of germination, it is well known that during the process, evolution of heat takes place. This is due to oxidation. This process has also been called respiration. The carbohydrates are consumed and CO_{2} is given off. This may easily be shown by germinating corn or rye or oats in a close atmosphere in a vessel which does not permit the pro-
duced gas to escape. This gas may afterwards be collected in the well known respiration apparatus of Sachs'. The activity of respiration, that is, the carbon dioxide, given off by a given plant, will vary according to the state of development of the seed. At first little will be given off, and as the process of germination increases, more will be given off; as the material is consumed more and more, the process diminishes and the activity of respiration ceases.

It has also been shown that plants, during
 germination, do not lose any nitrogenous Fig. 56 A. Germination
substances，nor do they form nitrogen gas．T．H．Schloesing， Jr，${ }^{*}$ who experimented with lupines，concludes that the seeds of plants do not lose any of their nitrogenous substance in the form of gas during germination．Soon after germination is under way the primary root produces lateral rootlets；these as well as the main root form root hairs that serve to bring nour－ ishing material from the soil as well as to anchor the plant． The following table by Nobbe is interesting as showing the germination of grasses compared with other plants．

	品 关 感	品	遃
Agrostis stolonifera．	55	1	28
Pinus strobus．	15	10	13
Allium cepa．．	93	47	63
Alopecurus pratensis	28	1	9
Arrhenatherum avena	84	26	55
Avena sativa．	98	97	98
Phleum pratense	99	62	86
Zea mays．．．．．．．	98	18	87
Brassica oleracea．	97	1	47
Daucus carota．	87	10	58
Linum usitatissimum	99	82	89
Medicago sativa．	95	42	86
Trifolium pratense．	98	39	87
Lactuca sativa．．	63	14	37
Meadow grasses	49.8	6.4	27.4
Cereals．．．．．．．．．	95	45	81.5
Crucifers．	48	52.5	87
Cucurbits．	91	39	74

Temperature and germination．－It is a well known fact that temperature is an important factor in the germination of seeds． Nobbe thas given us an instructive table，from which the fol－ lowing is taken：

8EED．	$\begin{array}{r} 16^{\circ} \mathbf{C} . \\ 605^{\circ} \\ \mathbf{F} \end{array}$		$\stackrel{25^{\circ}}{\stackrel{5}{4}} \stackrel{\mathbf{C}}{\mathbf{F}}$		$\begin{aligned} & 31^{\circ} \mathrm{C} \\ & 88^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} 37.5^{\circ} \mathrm{C} . \\ 100^{\circ} \mathrm{F} . \end{gathered}$		$\begin{aligned} & 44^{\circ} \mathrm{C} . \\ & 111^{\circ} \mathrm{F} . \end{aligned}$	
		$\begin{aligned} & \text { 总 } \\ & \text { 品 } \end{aligned}$		$\begin{aligned} & \text { m } \\ & \text { y } \\ & \text { 0.0 } \end{aligned}$			$\begin{aligned} & \hline \dot{0} \\ & \text { © } \\ & 0 \\ & \text { O} \\ & \Phi \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { ®. } \\ & \text { た } \\ & \text { 四 } \end{aligned}$		\％ S O 回
Barley．．	100	92	92	72	24	144				
Oabbage．early small	100	56	100	32	100	48				
Red clover．．．．．．．．．．．．．	100	32	100	24	100	24	100	24		
Oorn．．．	80	44	68	56	100	48	100	48	12	80
Flax．	100	32	100	23	100	47				
Oats．	100	80	100	48	100	80	100°	48	36	96
Timothy．	76	168	100	44	88	148				
Wheat ．．．．．．．．．．．．．．．．．．．．	100	56	100	32	100	48				．．．．．

[^36]The minimum degree of temperature for corn is 49.9 F ．， maximum 134.8 F ．，optimum 91.4 F ．To this table may be appended the results obtained for a few cereals in our labora－ tory，greenhouse（were germinated in sand）and field．The temperature of the laboratory was not kept．The seeds of the laboratory were germinated in porous clay trays．＊

Laboratory and greenhouse test．

VARIETY．	Greenhouse．						LABORATORY．
				豆晃		g్ల 0 0 B 0 0 0 0 0 0 0	gi 0 0 0 0 0 + 0 0 0 0
Yellow dent．	89.29	67.13	88.21	37.86	82.36		$331{ }_{3}$
Dent．．．．．．	88.89	60	8233	35	83.56	72	731／3
White dent	875	75.38	9028	38.88	80.25	100	85
Dent．．．．．．．	88.7		88.9	39.1	81.1	12	$659 / 3$
Dent．．．．．．．	85.77	62.92	77.15	42.77	86.92	76	80
Mills Co．white dent．．．	82	62.8	83	38.3	${ }^{81.1}$	100	100
Striped corn．．．．．．．	85.83	74.5	89.83			96	
Early Minnesota Sweet	82	62.8	83	38.3	81.1	96	76
Pop corn ．．．．．．．．．．．．．．．	82.59	62.29	81.86	38	82.29	100	100
Feeder＇s Favorite．．．．．．．	80.89	60	82.33	35	83.56	66	76
No．5．．．．．．．．．．．．．．．．．．．．	78	66\％	69.2	52.	92	100	90
No．6．．．．．．．．．．．．．．．	70.8	66\％／3，	69.2	52.2	92	100	100
University No．13．．．．．．	70.8	66%	69.2	52.2	92	100	100
Bloody Butcher．．．．．．．．．	70.8	6693	69.2	52.2	92	98	831／3
Iowa Silver Mine．．．．．．	70.8	662／3	692	522	92	100	100

According to Sempolowski，the percentage of germination in grasses is as follows：

		空	¢
Agrostis stolonifera．	59	8	28
Agrostis alba．．．．．．	21	18	19
Aira caespitosa	9	2	6
Aira flexuosa．．	50	19	5
Alopecurus pratensis	9	1	5
Anthoxanthum odoratum．	42	10	23
Arrhenatherum avenaceum．	55	25	44
Arrhenatherum flavescens．	28		14
Bromus mollis．	96	45	72
Cynosurus cristatus	55	4	23
Dactylus glomerata．	84	10	58
Festuca ovina．．．．．．	68	14	48
Festuca pratensis	75	35	54
Festuca rubra．．．	70	21	39
Holcus lanatus．	39	16	27
Lolium italicum．	87	25	62
Lolium perenne．	92	57	75
Phalaris arundinacea．	12	8	10
Phleum pratense ．．．．	96	82	90
Poa pratensis．．．．	25	1	9
Poa memoralis．	6	1	3
Poa trivialis．．．	7	2	7

[^37]On the general subject of climate and its influence on the germination of seeds, little that is positive can be said. In some of our own experiments the California seeds germinated better, and the plants were more vigorous than those of Iowa, but it should be taken into consideration that the California Wheats are soft and that it is not improbable that the reserve food substances were brought into a state of solution sooner than in the hard wheats. The very striking differences reported by Professor Bailey in corn do not occur in wheat. The cross-bred wheats and other varieties grown in the state of New York and the East, seems to have germinated slower than those from the Mississippi Valley states, especially so when compared with the wheats of Kansas, Iowa and Wisconsin. As stated in a previous paragraph, the California wheats were especially characterized by the high per cent of germination and the vigor of the young plants. It may be stated that the test made with these plants occurred several months la er than those made with the other wheats. Yet a second trial gave us nearly the same results.

In the second trial the plants were all grown at the same time. The Early May of Kansas was comparable with the Patati, only somewhat stouter. The Bissell and Andrews were smaller than the Early May. The Turkey Red, Kansas, was smaller than the Bissell. The cross-bred wheats lacked vigor, and were extremely slow in coming up. The Canada Hybrid, in this experiment, came up rather slowly, although finally it grew quite vigorously.

The following table shows the influence that latitude has on the germination of a single variety of wheat tested at Ames.

VARIETY AND SOURCES.	GERMINATION AFTER DAYS, Planted 1 inch deep.						
	4	5	6	7	8	9	10
Turkey Red, Atlantic, Iowa (Franklin).	13	38	42		43		44
Turkey Red, Manhattan, Kans	6	20	31	33	40	42	43
Turkey Red, Iowa Experiment Station.		2	4	12	15	22	36
Turkey Red, Des Moines, Ia. (Ia. Seed Co.)	5	21	31	36	44	43	44

It may be of interest to briefly compare the germination of the different varieties of wheat from different states grown under the same conditions. This work was carried out several years ago by Pammel and Stewart.

Early May, from Kansas, total percentage of germination, 88. All of the seed practically germinated in eight days; one-
half in four days. Martin Amber, La Crosse, Wis., only seven seeds germinated in four days; 78 per cent in thirty-nine days. Red Clawson, N. Y., two seeds germinated in six days; six seeds in eight days; after the twelve days seventeen had germ inated or 38 per cent. Missogen, Cal., none had germinated in the four days; on the fifth day forty-five seeds had germinated; on the sixth day seventy-seven seeds; on the seventh day ninetysix seeds.

The lowest temperature at which maize will germinate according to Sturtevant is 43.7 F ., for all the varieties. It is probable that further trial will place the lowest temperature at 42 or below, but the difficulty of keeping an unquestiuned record between close limits for a long period is very great. In Experiment 4, Sturtevant succeeded for twenty-nine and onehalf days, when repairs to the water service necessitated its conclusion.

An extended series of tests made at the college the past season from seed collected about Ames, and quite a number of seed sent from other sources, show the following instructive results.

GERMINATION OF CORN WHEN KEPT UNDER DIFFERENT CONDITIONS

VARIETY.	WHERE KEPT.	AGE.		
Yellow dent ...	Open crib college barn	2		33.
Calico dent	Seed of 1895, closed crib	2		93 롤
Legal tender.	Dry room...............	2		100
Yellow dent. .	Sbock		1	$66{ }^{\text {a }}$
Calico.....	Open crib..	2		60
Calico corn.	Loft above a chicken coop		1	100
Sweet corn...	Seed of 1896, shock.		1	100
White rice pop.	In paper packages.		1	100
Iowa silver mine	College seed room.		1	100
Stowell's evergre	College seed room		1	88

This table certainly shows that when the corn is kept properly there is little danger from deterioration. It is impossible to judge the quality of corn by germinating early in the season when the atmosphere is humid and cold. Seeds kept in damp places when brought into the laboratory frequently germinate well. On drying, however, these seeds soon lose their vital-
ity in a few months. In our experiments the seeds were kept in a dry room and kept under the same conditions.

A number of experiment stations have tested the vitality of corn seed and from the results the following is gleaned. Saunders* states that out of eleven tests the highest percentage was 100 , the average 76 down to 63. Corn tested, two varieties, maximum 77 , minimum 70, average vitality 73.5 . A. J. Pieters \dagger states that in Egyptian sweet corn the germination was 76 whereas it should have been 92.5 .
A. Burgerstein \ddagger who conducted some experiments testing the 10 years old seed of cereal arrives at the following conclusions. Barley retains its vitality better than other seeds. Seeds of this cereal 8 to 10 years old are not especially different than that of from 2 to 7 years old. Oats are nearly as good. In the case of wheat 90 to 100 per cent germinated in from 1 to 4 years; in 5 to 7 years, 85 to 87 per cent; 8 to 10 years, 70 to 80 per cent. The number of wheat seeds capable of germinating diminished 20 to 30 per cent in a single decade. In the case of rye the percentage of germination in 5 years dropped to 6 ã per cent; 7 years, 36 per cent; 9 years, 13 per cent; 10 years, 1 to 2 per cent. Rye had practically lost its germination in ten years.

The results of some experiments made with wheat at the Iowa experiment stations indicate that some of the cross-bred wheats s on lose their vitality.

Regermination.-It has been a common belief among many farmers, as well as others, that certain seeds were capable of germinating more than once. Mr. C. H. Andric \| states that he observed the regermination of wheat. This fact has been likewise observed for corn, oats and rye. The question is therefore of general interest; we have in this cunnection summarized the work of several experimenters as well as some original work done at this station several years ago. Professor Goff has done some rather interesting work in connection with corn. He sprouted the seeds in apparatus and then removed to a warm dry place where they were allowed to

[^38]remain seven days and then germinated. The following table shows the result of his work:

WAUSHAKUM FLINT CORN.

1st Test. 100.	2d Test.	3d Test.	4th Test.	5 th Test.	6 th Test.
97.	97.	65.	20.	0.	

Total number of days dried, 47.
WHITE RICE POPCORN

1st Germ.	2d Germ.	3d Germ.	4th Germ.
100.	96.	29.	44.

Total number of days drying, 28.
BLOUNT'S PROLIFIC DENT.

1st Germ.	2d Germ.	3d Germ.	4th Germ.	5th Germ.	6th Germ.
96.	83.	14.	0.	12.	0.

Total number of days dried, 28.
Beal, of the Michigan Agricultural college,* did some work along the same line with wheat. Later Ten Eyck, \uparrow made some experiments at Madison, Wis., from which it appears that corn, "Pride of the North," first germinated 100 per cent., 500 seeds being used in this test. Second, 285 seeds tested $97.5 \check{4}$ per cent. Third test 213,23 per cent. Fourth test 43 seeds used, 11.68 per cent. Fifth test, 5 seeds, no germination. Total number of days dried, 21. In the second trial the same variety of corn was used. First germination, $\check{0} 00$ seeds used, per cent of germination, 99.82; second germination, 276 seeds used, per cent of germination, 77.90 ; third te,t, 196 seeds used, per cent of germination, 6633 ; fourth germination, $7 \overline{7}$ seeds used, per cent of germination, 64.94 ; fifth test, 23 seeds used, per cent of germination, 52.17 ; sixth germination, 12 seeds used, per cent of germination, 16.67 ; seventh test, 2 seeds used, per cent of germination, 0 . To al number of days dried, 42.

One of us and Mr. F. C. Stewart, some years ago, made regermination tests, but the work was not entirely completed, owing

[^39]to an interruption in the plan of the experiments, but the results made were interesting and instructive. The results of the work ind cated that seeds which were soaked for a considerable period of time and then allowed to dry, failed to show as good germinating plants as those not soaked. The per cent of germination being in some cases lower and on the whole the germination proceeding more rapidly when the seeds had been moistened. The germinated plants from seeds moistened for a considerable period were easily subject to the attacks of saprophytic fungi, and hence made a very feeble growth.

Rambousek* states tl at experiments with rye, wheat and barley have sho wn that such seeds in which the radicle only is injured may continue to germinate, and that in this respect wheat and rye are much more resistant than barley.

THE PURITY AND VITALITY OF GRASS SEED.

CARLETON R. BALL.

In the following pages have been brought together most of the available facts pertaining to this subject which seem important in determining the status of our grass seeds with reference to their purity and vitality. Reference has been made to only such works as gave the results of a considerable number of tests and the subject is further confined to our own country. For four of our common species the results obtained from miscellaneous sources have been summarized by the author under the heading "various other tests," ard all the data are presented in tabular form for better comparison.

A study of the tables will show beyond doubt that the quality of commercial grass seed has improved considerably in the last fifteen years. It will also show as conclusively that further improvement is not only necessary in the interest of good pastures and clean farms, but is also easily possible. Tables Nos. V, VI and VII give both purity and vitality of a large number of species of grasses.

PURITY.

Since the ' 60 's, when Nobbe made his classic disclosures of the deplorable state of affairs which then existed in Europe,

[^40]the fact that the commercial seed of grasses and forage plants contain relatively large amounts of impurities has been quite generally appreciated. It is true that the quality has improved considerably since that time. This is due largely to the establishment and operation of numerous seed-control stations and the prosecution of similar work by many of our American experiment stations. Good descriptions and illustrations of grasses have become more available for popular use and thus a discriminative knowledge of them more widely diffused.

A discussion of the impurities of grass seeds may be taken up under two heads as follows:
a. Intentional adulteration.
b. Na ural or accidental impurities.

Intentional adulteration.-The substances principally used to adulterate the seeds of grasses are fine sand and the seeds of cheaper and often very inferior grasses. Neither of these can be detected except by a careful examination. In fact it is almost impossible for the average consumer to detect the presence of a foreign grass seed in his package because the seeds of some species resemble each other so closely as to render it difficult for the specialist to distinguish them. R Jlfs reports* finding sand in some quantity in the seeds of fiorin or bent grass (Agrostis alba) and sweet vernal grass (Antlioxanthum odoratum). McCarthy \dagger states that sand and crushed quartz rock have been detected in samples of timothy.

The seed of English or perennial rye or ray grass (Lolium perenne) is commonly used to adultarate the seeds of other grasses, partly because it is very cheap and partly because it resembles them closely. It is frequently found in the seeds of such grasses as tall fescue and meadow fescue (Festuca elatior and F. elatior pratensis), Italian ray grass (Lolium italicum) a dearer and better grass, and in orchard grass. Rolfs found 41 per cent of it in a pound of the Italian ray grass and 11 per cent in water fescue. The amount in orchard grass is discussed under that species. Sheep's fescue is sometimes used in seeds of crested dog's tail and is sometimes sold as red fescue. Seeds of several species of worthless Poas are used with the seeds of rough-stalked meadow grass (Poa trivialis) an imported grass. Several other grasses are less frequently used.

[^41]Natural or accidental impurities.-Under this head must be placed the varying amounts of dirt, sand, sticks, derd seed and chaff resulting from improper cleaning, and also the seeds of weeds and weedy grasses which grow naturally, or thr ugh introduction, with the valuable grasses. Of the first series there will always be a small amount in the best cleaned seed. The amount of weed se ds can, however, be easily reduced to practically nothing by pulling up the weeds before the grass seed is harvested. The desirability of any sample of seed is not always fairly indica ed by the percentage of weed seed it contains, for it is readily seen that a small per cent of a very bad weed would be more dangerous than a much larger per cent of a comparatively harmless weed.

One of the most common weeds whose seeds are found in grass seed is plantain (Plantago major). The lance-leaved plıntain or rib grass (P. lanceolata) is being rapidly scattered over this country by means of imported grass seed. Other common weeds are sheep sorrtl (Rumex acetosella), dock (Rumex crispus et al), shepherd's purse (Capsella bursa-pastoris), May weed (Anthemis cotula), pigweed (Amarantus sp.), lamb's quarter (Chenopodium album), mallow (Malva sylvestris), buttercup (Ranunculus sp.), and occasionally Canada thistle (Cnicus arvensis), and ox-eye daisy (Chrysanthemum leucanthemum).

Among the weedy grasses whove seeds are troublesome may be mentioned the pigeon grasses or foxtails (Chaetochloa viridis and C. glauca). These are especially common i clover seed, hence are apt to get into grass fie ds. Some European seeds contain the seeds of blue pearl gras. (Molinia caerulea) and darxel (Lolium temulentum), two dangerous grasses. Chess or cheat (Bromus secalinus), wild oats (Avena fatua), and sand bur (Cenchrus tribuloides) are also met with. Seeds of many other less harmful or of valuatle species are fou d mixed with what should be pure seed of one species. Gilbert H. Hicks* says: "Very few kinds of grass are raised for seed purp ses alone; hence most grass seed is obtained from meadows or places where different species are found growing together."

The following tables set forth some comparative facts concerning the purity of the seeds of four of our common grasses. The first column shows the number of samples of which tests $w \in r e$ made. The last three columns show the minimum, average and maximum percentages of pure sted in each series of

[^42]samples．I have quoted from a very good table of purities compıled by C．L．Parsons，＂and have also given the tabulated results of various tests collated by myself．The standards of purity established by the U．S．Department of Agriculture in 1896 and tho e of McCarthy \dagger in $109 \pm$ are al：o given．

Poa pratensis．Blue grass．－The seed of blue grass is not often purposely adult rated and is usually quite pure seed．It contains relatively little of weed seeds，and the impurities con－ sist of small amounts of sand，dirt and sticks，with often a large per cent of chaff．

TABLE NO．I．

PURITY OF BLUE GRASS SEED．	$\begin{aligned} & \text { 号 } \\ & \text { 品 } \\ & \text { z } \end{aligned}$	$\begin{aligned} & \text { 弟 } \\ & \text { 总 } \\ & \text { B } \end{aligned}$		
Various tests．	8	94.	97.7	100.
Parsons，summary of A merican tests	5	92.	96.7	89.
McCarthy，sta dard．．．．．．．．．．．．．．．．．．．．．			84.8	

Agrostis vulgaris．Red top．－There is little adulteration of red top seed．Rolfs reports one sample containing much quartz sand．When it is allowed to ripen until the seed shells out a large amount of empty chaff will be found in the packets．It usually contains dirt and the seeds of such low－ground plants as dock，plantain，buttercup，sedges and timothy．

TABLE NO．II．

PURITY OF RED TOP SEED．			¢ em ¢ d d	号
Parsons，summary of American tests	6		48.3	
Various tests	7	$16 .$	63.1	100.
Mc arthy，standard．			97.4	

Dactylis glomerata．Orchard grass．－The condition of orchard grass seed was thoroughly investigated at the Connecticut Experiment Station in $1892 . \ddagger$ Their results were summarized as follows：

[^43]＂First．－Of the seventeen samples of orchard grass pur－ chased in New York，Boston，and at various places in Connecti－ cut，one sample contained as much as 98.8 per cent of pure seed， the remainder being chaff．Another contained no orchard grass seed whatever，and consisted mainly of Lolium perenne， or perennial ryegrass．Excluding this sample the other six－ teen samples contained on the average 77.4 per cent of pure seed．
＂Second．－Seven out of sixteen samples contained notable quantities，from 8.3 to 35.5 per cent，of seed of perennitl rye－ grass，Lolium perenne，which is less valuable and sells at a lower price．＇Tested＇orchard grass seed is quoted at 11 cents per pound and＇tested＇perennial rye grass at 4.5 cents．A single sample contained 14.1 per cent of a species of Bromus， probably B ．secalinus，or chess．＂McCarthy says uncleaned seed often contains one－fifth of its weight in chaff，dirt，and various weed seeds．The most common weeds are dog fennel or May weed，ox－eye daisy，sheep sorrel，and species of knotweed or heartsease（Polygonum）．

TABLE NO．III．

PURITY OF ORCHARD GRASS SEED．	这	g 品 学		楽
Connecticut Experiment Station， 1892	17		72.85	98.8
Parsons，summary of American tests．	10	39.	87.2	100.
Various other tests．	7	84.75	95.25	100.
McCarthy，standard， $1894 . \ldots$. ．．．．			73.9	

Phleum pratense．Timothy．－Timothy seed is usually quite clean．It is sometimes adulterated with sand and quartz and generally contains small quantities of dirt，sticks，and chaff， and the seeds of various weeds，clover，and some grasses． Among the common weed seeds are those of plantain，dock， buttercup，May weed，shepherd＇s purse，pigweed，and mallow． Of the grass seeds，red top，fowl meadow（Poa serotina），and the pigeon grasses or foxtails，are most commonly found．Profes－ sor Chester＊found seed of Canada thistle in one sample．

[^44]TABLE NO. IV.

Cereals.-An article on this subject would hardly be complete without something in regard to the purity of the seed grain of this country. As a rule they have a very high standard of purity; 99 per cent pure is the government standard, and that established by McCarthy was over 97.5 per cent. The seeds of a few weeds are usually to be found in wheat seed and to a lesser extent in oats. The most frequent of these are chess or cheat (Bromus secalinus), corn cockle (Lychnis githago), sheep sorrel (Rumex acetosella), pigeon grass, foxtail (Chaetochloa), rib grass (Plantago lanceolata) and garlic (Allium vineale). W. S. Devol,* who examined several samples of wheat seed, states that the seed of chess may be present in wheat at the rate of 9,000 per bushel and still amount to only about one-tenth of 1 per cent, and that the seed of corn cockle at the rate of 1,888 seeds per bushel would make only six-hundredths of 1 per cent of the total. Let us have a pure seed league with the motto, "An ounce of prevention is worth a pound of cure."

VITALITY.

It is a well known fact that the seeds of grasses have a comparatively low vitality. It is also a fact, though perhaps not so generally known, that the vitality of the average sample of commercial grass seed, as determined in germination tests, is much below what may be taken as an average standard. In fact, the average vitality of commercial grass seed is considerably lower in proportion to this reasonable standard for grass seeds than are the average vitalities of most other commercial seeds in proportion to the reasonable standards determined for them.

There are several reasons which, taken together, will largely account for this state of affairs. In the first place, the seeds

[^45]of grasses have been a commercial article for a much shorter period of time than have the seeds of most of our field and garden crops. Grasses were long regarded as one of nature's gifts, like air and water, and as little effort was made to improve their quantity or quality; little attention was paid to their seeds until recent years when various causes have combined to place hay and pasturage among the most important of our farm products. At the present time only imperfect devices exist for gathering and cleaning the seed, and little is known as to the best methods for increasing and retaining the vitality. In order to secure the greatest quantity at the least expense the seeds of many species are gathered while still green, and in this way the vitality is doubtless impaired. The drying of such green seeds is often imperfectly done and many of the seeds become mouldy.

The demand for the se ds of any but the most common kinds is so very limited and irregular that they may be held over from year to year in the unsold stock of the seedsman until their vitality is almost or completely exhausted.

In many of the grasses, as the blue grasses (Poa species), fescues (Festuca species), ray grasses (Lolium species), orchard grass (Dactylis glomerata), and others, the seed as gathered consists of not only the grain or caryopsis itself but also of the flowering glume or chaff which surrounds the seed more or less closely. This fact often makes it very difficult to say whether what appears to be a seed actually contains a seed or whether it is only an empty chaff. This can be determined only by a careful examination. Where this emp'y chaff made up a large per cent of the total it is evident that the vitality of the supposed seed would be very low.

Table No. V gives the average percentages of purity and vitality possessed by choice grass seeds. The figures were obtained from an extensive series of microscopic examinations and germination tests and were compiled by Prof. Gerald McCarthy from his own work* at the North Carolina Experim+ntStation, from the reports of many other American stations and four of the leading European seed stations, and from data furnished by many American and foreign seedsmen. The last three columns give the maximum, minimum, and optimum temperatures for germinating these seeds.

[^46]
TABLE No. V SHOWING V[ABILITY AND PURITY OF GOOD COMMERCIAL SEEDS, AND TEMPERATURE AT WHÏCH THEY GERMINATE.

KIND OF SEED.			TEMPERATURE.		
					\mid
Grasses and Cerea					
Agrostis stolonifera (fiorin)	82.	71.1	95	60	75
Agrostis vulgaris (red top)	72.	97.4	95	60	75
Alopecurus pratensis (meadow foxtail)	42.	83.5	95	60	75
Anthoxanthum odoratum (sweet vernal).	30.	85.7	95	60	75
Anthoxanthum puelli (annual sweet vernal)	26.	83.7	95	60	75
Arrhenatherum avenaceum (tall oat grass)..	69.	68.1	95	60	75
Avena sativa (common oats)....	95.	97.5	90	55	70
Avena flavescens (yellow oat grass)	37.	42.5	95	60	75
Bromus mollis (soft chess)	46.	644	90	55	70
Bromus inermis (Hungarian brome)	81.	76.3	90	55	70
Bromus pratensis (meadow brome)	61.	77.4	90	55	70
Bromus schraderi (rescue grass)	70.	95.	90	55	70
Cynodon dactylon (Bermuda grass)	52.	98.5	95	65	80
Cynosurus cristatus (crested dog's t	62.	89.1	95	60	75
Dactylis glomerata (orchard grass)	81.	73.9	95	60	75
Festuca duriuscula (hard fescue)	67.	86.7	95	60	75
Festuca elatior (Randall grass).	83.	85.4	95	60	75
Festuca tenuifolia...	60.	71.4	95	60	75
Festuca ovina (sheep's fescue)	71.	80.3	95	60	75
Festuca pratense (meadow fescue)	81.	86.9	95	60	75
Festuca rubra (red fescue)	48.	73.1	95	60	75
Holcus lanatus (velvet grass)	39.	68.2	95	60	75
Hordeum vulgare (cultivated barley)	82.	97.9	95	50	65
Lolium italicum (Italian rye grass)	73.	93.	95	50	75
Lolium perenne (English rye g	76.	94.3	95	50	75
Oryza sativa (cultivated rice)..	85.	97.1	95	65	80
Panicum germanicum (golden millet)	88.	97.5	95	65	80
Panicum milaceum (millet)..	82.	98.	95	65	0
Panicum sanguinale (crab grass)	85.	97.5	95	65	80
Panicum spicata (pearl millet)	82.	98.	95	65	80
Phleum pratense (timothy)	89.	97.6	95	60	75
Poa arachnifera (Texas blue grass)	60.	88.5	95	60	75
Poa compressa (June grass)...	70.	80.8	95	60	75
Poa nemoralis (wood grass).	60.	78.9	95	60	75
Poa pratensis (Kentuck blue grass	60.	84.8	95	60	75
Poa serotina (fowl meadow grass)	75.	83.5	95	60	75
Poa trivialis (rough-stalked meadow grass)..	55.	85.	95	60	75
Secale cereale (cultivated rye)	91.	99.	90	55	75
Chaetochloa Italica (Italian millet)	87.	97.5	95	60	75
Sorghum halapense (Johnson grass)	75.	95.	99	65	80
Sorghum nigrum (sugar cane).	75.	975	99	65	0
Sorghum saccharatum (broom corn)	75.	97.5	95	60	15
Triticum vulgare (cultivated wheat)	95.	98.2	95	55	75
Zea mays (Indian corn)...........	95.	98.5	100	65	85

Table No. VI shows the minimum, average and maximum percentages of vitality and impurity for a large number of grasses. The column headed "Days required" shows the number of days required for all vital seed to germinate. "No." indicates the number of tests from which the figures given were obtained. These figures were compiled by Charles Lathrop Parsons* and include most of the tests made up to January, 1891. By comparing this table with table No. V, some interesting facts are brought out. It will be noted that the vitalities are much lower than the standard of table No. V. For example, timothy is about 9 per cent lower, orchard grass 21 per cent, red top 28 per cent, and Kentucky blue grass over 50 per cent lower. These results are based on a large number of tests in each case, as may be seen by referring to the first column.

Table No. VII was condensed from the results of tests published by Prof. F. L. Harvey. \dagger The seeds were germinated in cloth pockets in a galvanized tray containing water in the bottom. In noting these vitalities the reader must bear in mind that the tests were continued for only fourteen days, and that most grasses require a longer period for complete germination. This accounts for the large number of sound seeds remaining at the end of the test. Of course, not all of them would have germinated if the test had been continued, but it is probable that part of them would have done so.

[^47]TABLE NO. VI.

arasses.	vitality				impurities.				dayb requihed.			
	No.	Min.	Aver.	Max.	\%o.	Min.	Aver.	Max	No.	Min	$\Lambda \mathrm{ver}$.	Max.
Alra fil			1									
Agrostis canina (Rhode Mrand bent gra		${ }_{52}^{47}$	${ }_{59}^{60} 5$	${ }_{67}^{81}$	$\stackrel{2}{1}$	${ }_{17.7}$	$\begin{aligned} & 40 \\ & 17.7 \end{aligned}$	${ }_{17.7}^{7}$			$\begin{aligned} & 11 \\ & 12 \end{aligned}$	
	${ }_{1}^{30}$	${ }_{2}^{4}$	34.2	92						9 14		
Alopecurus agrostis (siender foxtail)		$5_{2}^{2 x}$	5	${ }_{53}^{53}$		${ }_{8}^{2}$	${ }_{2}^{2}$			9	$\begin{aligned} & 14 \\ & \hline 19 \\ & \hline 19 \end{aligned}$	
Alopecurus pratensis Ameadiow Athoxathum odoratum (swert vernal):		$\left.\begin{gathered} 2 \\ 5 \\ 0,0 \end{gathered} \right\rvert\,$	${ }_{23,9}$	${ }_{80}^{23}$	$\frac{1}{2}$		${ }_{1} 1.62$	2.7	3	11	12	
Anthoxanthum puelli (anuual sweet vernal) .iol		$\stackrel{26}{26}$	${ }_{42.7}^{28}$	${ }_{92}^{26}$	$\frac{1}{2}$	${ }_{3.65}^{6.7}$	${ }_{7}^{6} .38$	1.1.	4	8	14	23
Avera flavesens s (yellow oat grass)...................			${ }_{21}^{24}$	50 40	1		6.6	${ }^{6.6}$				
Bromus pratenis (meatow brome			0	0								
Bromus unioloides (brome grass)			9	18		4.77		${ }_{1}^{4.72}$				
Oynodon dactylon (Bermuda grass)		$\begin{gathered} 68 \\ 9 \\ \hline \end{gathered}$		${ }^{108}$								
Dact 111 s glomerata (orcharr grass)	-18	${ }_{8}^{10}$	${ }_{56}^{55}$		10	${ }^{0} 87$	12.87	${ }^{61}{ }^{97}$	${ }_{3}^{4}$			
Euchaena luxurians (ceor		28	${ }_{47.4}$								12.5	
Feestuca duriuscula (harrafesciou)				${ }^{48}$	2	1	10.2	19.4			${ }^{11}$	
Festuca heterophy 112, (various-lea			${ }_{20}{ }^{3} 7$	$5_{4}{ }^{3}$						${ }_{6}$	12	
Festuca pritensis (meadowow fescu $^{\text {a }}$	${ }^{11}$		66.3		$\stackrel{2}{2}$	${ }^{2} .4$	307			${ }_{10}^{10}$	14	
Festuca tenultolla (siender tescue)		$\begin{gathered} 8 \\ 3 \\ 3 \end{gathered}$	${ }_{13.3}^{48}$							14		
Glyceria arundinacea (tall meadow	4		${ }_{29}^{14}$	${ }_{60}^{14}$	${ }_{3}^{1}$	${ }_{5}^{63.7}$						
Lollum itallcum (Itallan rye rrass)	10	$\begin{gathered} 4 \\ 12 \\ { }_{2}^{4} \end{gathered}$		${ }^{96}$		0	${ }_{6.8}^{8.1}$	${ }_{19}^{16.7}$			12	
Panicum millaceum (mil	14	${ }_{64}^{124}$		92					4	3	4	
Phleum pratense (timothy or Herd's grass)	51	$\begin{gathered} 07 \\ 0 \\ 0 \end{gathered}$	${ }_{80}^{80.1}$	100	16	0	7.25	33	${ }^{23}$	1	?	
Phalaris arundinacea (reed canary grass)	$\stackrel{3}{3}$		${ }^{33} .68$	${ }_{9}^{60}$	2	. 38	592	11	1		${ }_{10}$	
Poa aquatica (water meadow rrass):		11							1	13	${ }^{13}$	
Poa nemuralis (wood meadowwrass),	${ }_{4}^{68}$	${ }_{6}^{6}$							$\begin{array}{r}3 \\ 5 \\ \hline\end{array}$			
Poa pratensis (Kontucky bue raras	4		20.3	${ }_{50}^{40}$	${ }_{5}^{5}$		${ }_{\text {cin }}^{\substack{3.5 \\ 1.5 \\ 1.5}}$	${ }^{30} 1$	${ }_{1}^{4}$	${ }^{9}$	遃	
			5.7 59.8	13 89	${ }_{3}^{2}$			${ }_{62}^{15.4}$	1	13	13	
Borghum halapense (Johnson g rass))	12		6.8	22		35	12.2	21			4	

TABLE No. VII.
TESTS OF FOURTEEN DAYS DURATION.

KIND OF SEED.			烒	
Agrostis vulgaris, (red top, fancy)		20	80	4
Agrostis vulgaris, (red top, fancy)		19	64	8
Agrostis vulgaris, (red top, fancy)	84	80	20	
Agrostis vulgaris, (red top, fancy)		75	25	
Aira flexuosa, (wood hair grass)...		99		
Alopecurus agrestis, (slender foxtail)	2	43	53	7
Ammophila arenaria, (beach grass).		2	97	3
Anthoxanthum odoratum, (sweet vernal).		80	14	
Anthoxanthum odoratum, (sweet vernal).		80	19	
Anthoxanthum odoratum, (sweet vernal).		85	15	
Arrhenatherum avenaceum, (tall meadow oat grass)		50	48	
Arrhenatherum avenaceum, (tall meadow oat grass)		98	2	
Arrhenatherum avenaceum, (tall meadow oat grass)		40	60	5
Agrostis canina, (Rhode Island bent)		19	81	4
A grostis canina, (Rhode Island bent)	77	48	52	9
Agrostis canina, (Rhode Island bent)	3	50	47	
Agrostis s olonifera, (creeping bent).		48	52	9
Br mus schraderi, (rescue grass)		100		
Bromus pratensis, (meadow brome).		100		
Bromus mollis, (soft chess).		57	2	
Cynosurus cristatus, (crested dog's tail)		89	11	
Dactylis glomerata, (orchard grass).		60	38	
Dactylis glomerata, (orchard grass).		40	57	9
Dactylis glomerata, (orchard grass)		50	50	14
Euchlaena Iuxurians, (Teosinte)		92	8	
Festuca pratensis, (meadow fescue)		87	13	
Festuca prate sis, (meadow fescue).		90	6	
Festuca pratensis, (meadow fescue).	1	20	73	5
Festuca elatior, (tall fescue).		75	25	
Festuca elatior, (tall fescue)...................		75	25	
Festuca heterophylla, (various-leaved fescue)		97	3	
Festuca ovina, (sheep's fescue).		97	3	
Festuca tenuifolia, (slender fescue).		70	30	
Festuca duriuscula, (hard fescue).		90	3	
Holcus lanatus, (meadow soft grass).	5	74	22	
Kaffir corn.....			98	2
Lolium italicum, (Italian rye).		2	96	3
Lolium italicum, (Italian rye)		65	35	
Lolium perenne, (perennial rye grass)		55	45	
Lolium perenne, (perennial rye g'ass).		57	36	
Lolium perenne, (perennial rye grass).		10	83	4
Panicum miliaceum, (golden millet).		2	87	
Panicum miliaceum, (golden millet).		8	91	3
Panicum (Setaria) Germanicum, (Hungarian millet).		5	82	2

TABLE No. VII.-Continued.

KIND OF SEED.			荡	
Panicum (Setaria) Germanicum, (Hungarian millet		50	27	3
Panicum (Setaria) Germanicum, (Hungarian millet)		22	68	
Panicum (Setaria) Germanicum, (Hungarian millet)		13	68	2
Phalaris arundinacea, (reed canary grass)...........		94	6	
Phleum pratense, (timothy)........		10	88	4
Phleum pratense, (timothy)		5	95	5
Phleum pratense, (timothy).		10	91	4
Phleum pratense, (timothy).		2	96	6
Poa serotina, (fowl meadow grass).	70	88	12	
Poa serotina, (fowl meadow grass)	50	97	,	
Poa serotina, (fowl meadow grass).	90	50	50	14
Pua serotina, (fowl meadow grass).	90	68	32	
Poa pratensis, (Kentucky blue grass).		95	5	
Poa pratensis, (Kentucky blue grass).		88	12	
Poa pratensis, (Kentucky blue grass)	1	83	17	
Poa n moralis, (wood meadow grass).		85	15	
Poa nemoralis, (wood meadow grass).		86	14	
Poa aquatica, (water meadow grass).		100		
Poa trivialis, (rough-stalked meadow)	10	87	13	
Poa compressa, (Uanada blue grass).		89	11	
Sorghun halapense, (Johnson grass)		98	2	
Sorghum halavense, (Johnson grass)................	100		

TABLE No. VIII

NAME OF SEED.		$\begin{array}{\|l\|l} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		
Red top	15	92	8	3
Kentucky blue grass.	18	11	89	3
Red fescue.	19	8	92	
Ita ian rye grass.	17	75	25	5
Meadow soft grass.	17	34	66	
Hard fescue..	17	46	54	
Crested dog's tail	17	9	91	
Hungarian grass.	16	89	6	6
Bermuda grass.	23	00	100	
Meadow fescue.	19	84	16	6
Meadow foxtail	19	19	81	
Water meadow grass	22	00	100	
English rye grass...	21	74	26	11
Sheep's fescue.	18	11	89	
Tall meadow oat grass.	23	36	6	
Wood meadow grass.......	18	11	89	

Table No．VIII was condensed from data tabulated by Prof． F．D．Chester．The figures given are the results of duplicate tests in each case．The vitalities average quite high．

In 1877 Professor Beal of Michigan tested the vitality of twenty－two species of forage grasses．These seeds were pur－ chased direct from a seedsman in New York．The seeds，or what appeared to be seeds，were counted out in lots of fifty seeds each，and two lots of each species were germinated between folds of bibulous paper in the greenhouse，at a temperature ranging from $56^{\circ}-70^{\circ} \mathrm{F}$ ．Two lots more of each species were tested again later and the results of the tests are given below in condensed form：

TABLE No．IX．

FIRST TEST．	$\begin{aligned} & \text { g } \\ & \text { 品 } \\ & \text { 品 } \\ & : \end{aligned}$		詈
Schrader＇s bromus．	56	62	68
Hungarian grass．	62	67	72
Timothy．．．．．．	94	96	98
Nineteen other species	0	8.4	39
SECOND TEST．			
Schroeder＇s bromus．．	56	59	62
Hungarian grass．	42	45	48.
Timothy．．	30	41	52
Nineteen other species．	0	8.1	23

Professor Beal then made tests of some grass seeds which he had gathered on the college farm two and three years before． Besides their age，part of them had been stored in a damp． basement．He did not consider them good seed．While test－ ing them he also tested some more from the same lot described above．Both lots were shelled out of the chaff by hand so that there were exactly fifty seeds of each species．The striking． results are given below：

[^48]TABLE No. X .

KIND OF SEED.		Old college seeds.
Schrader's bromus. ...	64	96
Sheep's fescue.	0	72
Kentucky blue grass	6	28
Rye grass...........	18	74
Meadow fescue...	6	92
Orchard grass......................	66	82

Blue grass. Poa pratensis.-For convenience of comparison some facts concerning the vitality of four of our common pasture and forage grasses have been set forth separately. The seeds of this very valuable lawn and forage grass possesses the lowest vitality of any of our commonly cultivated grasses. Just why this should be is not so evident. Some facts obtained by G. E. Morrow and T. F. Hunt* are of value in solving this problem. They made vitality tests of eighteen samples of blue grass seed from seventeen different prominent seedsmen and also of one sample of seed gathered on the station grounds. The seed were fi st tested in the Geneva apparatus for thirty-eight days, and later the tests were repeated in soil in the open air and in the green house, where they continued from March 14th to July 27th.

There is such a striking difference in the results obtained from the tests made in the Geneva apparatus and those made in soil that I have tabulated the figures to show this difference, and have added to the column headed "In Geneva apparatus" the results obtained by McCarthy as a standard, those gotten by Parsons, and also those given by fifteen other tests from different sources. The first and fifth columns give the number of samples on which the results are based.

[^49]TABLE NO．XI．

vitality of blue grassSEed．	IN GENEVA APPA－ Ratus．				IN SOİ．			
					¢ ¢ 号 亿	$\begin{aligned} & \text { g } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	E． E． ¢ ¢	
Seventeen different seeds－ men（Morrow \＆Eunt）．．．．．	18	0	2^{*}	7.	18	7. 2.5	21.95	
Seventeen differentseedsmen （in open air and shade）．．．．								35
Seventeen different seedsmen （in greenhouse）． \qquad			0				12.51	22.9
Experiment Station seed	1	0		0				
Experiment station seed（in open air）					1		48.3	
Experiment Station seed（in greenhouse）					1		57.2	
Parsons ．．．．．．．	42	0	6.3	40.				
Various other tests	15	0	7.23	19.				
McCarthy（standard）．．．．．．．．．			60.					
Morrow \＆Hunt（seed gath－ ered green）					3	71.6	72.5	72.8
Morrow \＆Hunt（seed gath－ ered ripe）．					1		80.1	
U．S．Department of Agri－ culture（standard）			45.50					

Some seedsmen having claimed that the low vitality of blue grass seed was due to the grass being cut too green and the consequent heating of the seed，tests were made to determine this fact．Three lots of grass were gathered green and dried in as many different ways：one in a cellar，one on the floor in a dry room，and one in a grain sack．After a germioating test lasting about sixty－eight days，they gave vitality percentages of $71.6,72.5$ and 72.8 respectively，while a sample gathered ripe and dried on the floor in a dry room gave 80.1 per cent of viable seed．These figures are given at the bottom of the pre－ ceding table．From such results it would seem apparent that for some reason the apparatus for testing seeds does not show the true vitality of blue grass seed as determined by soil tests， and also that careful harvesting and drying of the seed would greatly improve its quality．

Red top．Agrostis alba．－The following table will show the comp rrative vitality of red top seed in this country，based on a large number of tests．

TABLE NO．XII．

VItality of Red top seed．	$\begin{aligned} & \text { 苋 } \\ & \text { 眇 } \end{aligned}$	最	¢ en ¢ ¢ ¢	䬰
Morrow \＆Hunt，from seventeen different seedsmen．	19	4	25	63
Parsons，summary of American tests．	30	4	34.2	92
Various other tests．．．．．．．．．．．．	10	4	45	92
McCarthy，standard for choice seed．			72	

It is quite probable that the same conditions that affect blue grass seed affect the seed of red top also，and that if tests were made in soil the general average of vitality might be found to be considerably higher．Better methods of gathering and dry－ ing would doubtless work toward the same end．

Orchard grass．Dactylis glomerata．－The most extensive tests of this seed of which I have any knowledge were made at the Connecticut experiment station in 1892．Seventeen samples from different eastern markets were obtained and tested．One was found to contain no seed of orchard grass at all．The results from the remaining sixteen are given in the following table：

TABLE No．XIII．

VITALITY OF ORCHARD GRASS SEED．

	艺	艺	8	¢
Connecticut experiment station	16	4.5	50	88
Various tests of other stations．	16	12	53.3	82
Parsons，summary of American tests	18	10	55.9	96
Mcuarthy，standard for choice seed．．			81	

Timothy．Phleum pratense．－Timothy has been tested for vitality a great many times and approaches more closely to the standard than any other grass．The comparative results are given below：

[^50]TABLE No．XIV．

VITALITY OF TIMOTHY SEED．	$\begin{aligned} & \dot{0} \\ & \text { 足 } \\ & \text { g } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { g } \\ & \text { 品 } \end{aligned}$		号
Morrow and Hunt，from sixteen seedsmen．	16	42	76	96
Parsons，summary of American tests	51	0	80.1	100
Tests at various stations．	48	30	91.48	100
McCarthy，standard for choice seed．．	．			
U．S．Department of Agriculture，standard			85－90	

These figures show that the timothy seed is improving in vitality and that the average sample now exceeds the standard once set for choice seed．It is much to be hoped that the next ten years may bring about a similar improvement in the seeds of other species．

Diseases of Germinating Cereals．

Moulds．－The most serious difficulties which corn and other grasses have to contend against in germinating are moulds and bacteria．The following moulds are commonly found：The common blue mould（Penicillium glaucum），green mould（Euro－ tium（Aspergillus）glaucus）and black mould（Rhizopus nigricans）． Cladosporium，Macrosporium and Sterigmatocystis may occur occasionally，but they are not generally common．

Haberlandt，who made a study of the mouldy rye and its ger－ mination，found a gradual decline in its germination as the seed became older．

Logewall，who had observed that rye seed rapidly loses in its p swer of germination，especially in damp and warm weather， attributes this to micro－organisms．In the case of wheat，bow－ ever，this did not appear to make any difference．As a result of his rye experiments he determined as follows：

One hundred rye kernels without infecti n，germination 100 per cent； 100 rye kernels with infection，germination 98 per cent； 100 rye kernels injured without infection，germination 97 per cent； 100 rye keraels injured with infection，germination 91 per cent．

C．Rambousek，\dagger states that moulds of damp seeds destroy the germinative energy to a considerable degree and its distruc－ tive influence is most severe on barley．

[^51]

Fig. 61. Common blue mould (Penicillium glaucum). Spores at end of branches; spores borne in chains. (Pammel and King.)

Penicillium glaucum.-This is one of the most common of all our moulds and is easily recognized by the glaucus green color it produces on the surface. At first a white mycelium spreads over the surface of the seed. It starts usually in the hilar regions. The mycelium, through an enzyme action, undoubtedly, dissolves the starch. Raised masses are formed on the surface. These consist of masses of fungus thread strands. The strands send out lateral branches, from the end of which a whorl of short branches appears, as shown in figure 35. These give rise to one or more whorls. From the ultimate branches a chain of small spores is produced, the last one in the chain being the oldest.

The ascospores have not been found in corn, but occur in poorly lighted places and are produced in the absence of oxygen. The spores produced in chains germinate when the required amount of moisture and heat is present, so that

Fig. 62. The sclerotium or resting stage of Penicillium glaucum consisting of a hard compact mass. The asch and ascospores shown above. (Brefeld) unlimited numbers of generations may proceed from a single spore. These spores also preserve their vitality for a considerable length of time. Brefeld \dagger has shown that they will germinate though kept in a dry place for several years.

Eurotium (Aspergillus) glaucos DeBary.-This species is common in stored corn, and will be referred to in connedtion with a disease of cattle. The mycelium of this fungus spreads over the surface of the corn, in the hilar regions. The bracts surrounding the grain are the special points of attack. From this point the hilar region is attacked. The

[^52]

Fig. 63. Common Herbarium mould. (1) general appearance, showing long conidiophore and sterigmati on end; (2) perithecium with one of its asci and ascospores; (3) contents from an unripe peritheclum; (4) a small part of a mycelium with conidiophore c, and spore bearing sterigmata, young ascogonium a.s. (DeBary except 1.)
mycelium enters the kernel because of the dissolving action of an enzyme produced by the mycelium. From this mycelium erect threads (conidiophores) arise. These are enlarged at the end. From the enlarged portion of the conidiophores numerous small and radia ing stalks (sterigmata) are produced, each bearing a chain of spores, the end spore of the chain being the older. These spores germinate under favorable conditions of moisture and heat, and again give rise to the same stage. In addition to this, the condidial stage, a second kind of reproductive body occurs. This is produced by the coiling of a branch of the mycelium having several turns. Two or three slender branchlets grow from the base. One of these grows more rapidly and connects with the t c p of the spiral coil formed first. The contents of those last formed unite with the spiral known as the ascogonium. After fertilization a perithecium is produced.

This contains the asci. Each ascus is surrounded by a delicate wall and contains eight biconvex ascospores.

Rhizopus nigricans. Ehrh.-The third mould commonly found is the black mould. The mycelium spreads over the tissue, and on the surface small black bodies, the sporangia, are produced. The conidiophore arises from the felted mycelium. The conidiophore bears an enlarged spherical head, the sporangium, within which occur the spores. On adding water to the specimen, the wall of the sporangium collapses and the end of the stalk, known as the columella, turns back, giving it something

Fig. 64. (1) Common black mould (Rhizopus nigricans) showing sporangia and method of spreading by stolons. (2) R. nigricans showing rhizoids, conidiophore, columella, sporangium and spore. (3) Zygospores of one of the mucoraceae showing method of conjugation.
of the appearance of an umbrella. The columella before it collapses projects into the sporangium. The spores germinate readily when placed in a moist atmosphere. In addition to the production of a sporangium a stalk may bend over and cause the further extension of the fungus by producing what is
known as a stolon. The old name for the fungus, Mucor stolonifer, was given to it because of the production of these stolons. In addition to the formation of spores in the sporangium, zygospores are produced in certain races. Two threads of the mycelium lying in proximity and nearly parallel, each produces a tube. These meet, the walls are absorbed, and just back from the meeting point a cell is cut off. The contents from the old cells pass into the newly formed cell. We also observe that the cell of one arm is somewhat smaller than the other. This spore is a resting spore or zygospore. It lies dormant for a period, then germinates by forming directly a conidiophore with its sporangium containing the spores.

Bacteria. - In an examination of mouldy corn, bacteria have been found in large quantities, but none of these have been studied sufficiently to speak of the power they have in causing rot. Prillieux* states that wheat is often covered with a bacterial organism that produces a red coloration. Not enough, however, is known of this organism to say whether it is the cause of the disease mentioned by him or not.

The first step in the germination of corn, as said before, is the absorption of water. If the embryo is vigorous, and conditions are favorable, the young embryo will push through the testa and pericarp.

Fig. 65. Mouldy maize kernels. These falled to germinate. 1, Sterigmatocystis; 2, Apergillus; 3, Rbizopus; 4, Penicillium.

On the other hand, if it is weak it is unable to do so. A cold, damp soil and frequent rains are not favorable for the embryo to push through, and hence the invasion of saprophytic

[^53]fungi, for none of these organisms are truly parasitic. Much of the corn during the season of 1897 showed a fairly good percentage of germination, and yet the stand was very poor; the seed in fact rotted in the ground. This was due to the conditions above stated. Good germination requires warm weather, with sufficient rain so as not to dry out the seed.

CHEMICAL AND PHYSICAL INFLUENCES ON THE GERMINATION OF GRASS SEEDS.

Chemical.-It has been customary for a long time to treat wheat and other cereals with certain chemical substances for the purpose of preventing fungus diseases. They have also

[^54]been treated for other purposes. These purposes may be classitied as follows; First, to hasten germination; second, to protect the seed from insect and other animal pests; third, to prevent the attacks of fungi; fourth, to furnish the young plants nourishment. It is very doubtful indeed if any kind of treatment with chemicals actually hastens the germination of seeds. Formerly a large class of substances were given which would support and hasten germination. The literature on this subject as given by Nobbe* states that the seeds of certain crucifers when in contact with chlorine germinated in from six to seven hours, while seeds placed in water germinated in thirty-six to

Fig. 67. Copper compounds and the germination of malze. U. S. Dept. of Agrl. formula. 3, 4, treated with ammoniacal carbonate of copper normal; 1,2 , double normal.
*Samenkunde. 255.
thirty-eight hours,but Otto* makes the statement that with oxalic acid he succeeds in causiog se ${ }^{\circ}$ ds to germinate which were between 20 and 40 years old. Bailey, \dagger who treated a large number of chemicals with substances as permanganate of potash, chlorate of potash, etc., demonstrated that these retarded rather than hastened germination. In a paper by Pammel and Stewart \ddagger on the subject of corn and different fungicides it was shown quite conclusively that the treatment in every case was injurious.

Pammel§ had previously shown that corn roots, when treated with a mixture containing copper salt, were injuriously affected, the total amount of germination being retarded. These experi-

Fig. 68. Copper compounds and the germination of maize. Strong ammoniacal carbonate of copper.
ments were conducted in the greenhouse. Dr. Walter H. Evans, || in a compilation of the treatment of seeds with copper sulphate, to prevent the attack of fungi, comments on this experiment as well as others. Evans seems to question the

[^55]result of the experiment. In order to show that there is no question in regard to these results, the accompanying figures show a marked difference between treated and not treated plants, kept under the same conditions. Quite a large number of experiments have been made in testing the effects of chemical solutions on the germination of corn, and it has been shown that quite a large number of salts act injuriously, and even a weak solution sometimes checks the germination of corn. The conclusions reached by several investigators are here given. It was very evident in some work conducted by Pammel and Stewart* with the copper compounds that even the very weak solution retarded and in some cases prevented germination.

Thus, for instance, when corn was soaked for two hours in ordinary copper sulphate solution, more than three-fourths would not germinate. Ammoniacal carbonate of copper was also used. When the corn was soaked in it for two hours only twenty-seven kernels out of 100 grew, but when the treatment was continued for only one hour fifty-seven kernels grew.

In an exhaustive paper on the subject by Hitchcock \dagger and Carleton, \uparrow they state in regard to ferrous sulphate that corn soaked for twenty-four, forty-eight and seventy-two hours, respectively, gives the following percentages of germination:

$$
\begin{array}{llll}
\text { Time of immersion . } 24 & 48 & 48 \\
\text { Per cent. } & 20 & 17
\end{array}
$$

The germination was from 80 to 100 per cent of that obtained with water, but retarded. Prof. L. R. Jones \ddagger concluded that soaking corn in Bordeaux mixture for one hour and less, had no perceptible effect, and soaking six hours was slightly beneficial. Soaking in copper sulphate solutions, of either strength, for lengths of time up to fifteen minutes, did no apparent injury. Soaking one hour was slightly injurious. But, after all, the substances which have been experimented on, among them ferrous sulphate, have been widely used to better the soil. Mayers shows that 200 grams of iron sulphate acted injuriously on rye, barley and oats, and that 100 grams on wheat. This quantity of iron sulphate was added to sixteen kg . of soil.

[^56]In regard to several other grasses Mr ．Thompson＊states of oats，clover，ray grass，corn，Avena orientalis，Arrhenatherum， avenaceum and Medicago sativa that sulphate of iron acts injuri－ ously upon the development of the roots．Most of the earlier references are fully given in the review in the paper quoted by Pammel and Stewart as well as Evans．

Physical．－Maldiney and Thouvenin \dagger have made some experi－ ments to determine the influence of X－rays upon germination．

In the case of Panicum miliaceum the writers found that when under the influence of X－rays for two hours germination was hastened．The amount of moisture and physical condition of the soil are most important factors during the process of ger－ mination．

SEED SELECTION AND THE CROP PRODUCED．

There can be no question that the careful and intillegent selection of seed influences the crop．This has been amply demonstrated in a great many crops．It is a well－known fact that the European sugar beet growers carefully select＂the mother beet＂by making tests of the amount of sugar present． It has also been shown by Wiley \ddagger that by a careful selection of sorghum canes，with a high percentage of sugar，the standard has been raised．Mr．Oma Carrs shows that in certain varie－ ties the per cent of sugar content was increased as follows：

variety．	1888.		1889.		1890.		1891.		1892.		1893.	
		$\stackrel{N}{E}$		$\frac{\stackrel{y}{E}}{\underset{y y}{3}}$			$\begin{aligned} & \dot{0} \\ & \text { 0. } \\ & \text { O} \\ & \text { O } \\ & \text { क力 } \end{aligned}$	总	$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$	范	¢ O 0 0 Un in	忘
Amber	95	63	11.7	74	12.8	71	12.9	72	14.5	76	14.3	63.4
Colman．			14.6	76	14.9	76	15.6	76	172	75	15.5	75
Orange．	10.4	63	12.1	71	13.5	72	13.6	68	17.7	80	16.2	80

Wiley records several pedigrees of the improved canes and the amount of sugar they contain and gives a discussion of the results．Hicks and Dabney\｜have shown that there is a marked increase in the weight of seedlings of radish，early Amber cane， Kafir corn，winter vetch，sweet pea，rye，oats and barley from the heavier seed，that there is an increase in the root develop－ ment when seeds are planted．In case of heavier peas early flowering is noticed．Webber says：＂Mr．Henslow＂found

[^57]that seedlings of large seeds, owing to their greater vigor, crowd out the seedlings of small seed. A continual selection of the small seeds for several generations, he says, will cause the plants to die out altogether by failing to produce seed, or else a tiny race of beings will, for a time, be maintained. These vegetable runts, the result of insufficient nutrition and insufficient light, are of common occurrence in nature." B. T. Galloway, by growing selected lots of large and small radish seed, found that "the largest seeds germinated more quickly and with morecertainty, and produced marketable plants sooner and more uniformly than the small seeds." The latter, however, "gave porportionally larger plants." In this case, which at first thought seems confusing, we see, as Mr. Galloway suggests, the effect of long continued, natural methodical selection. The radish is cultivated for the root, and selection has been continually directed to increase the size of this part without attention to the seeds. If more nutrition is utilized in root development with plants of equal vigor, less would probably remain for seed development, resulting naturally in small seed. Thus, long continued selection, aiming only to increase the size of the root, which is done with some detriment to the seed, might be expected to ultimately lead to an inherited tendency of the small seeds to develop large plants, and vice versa." The subject of corn from this standpoint, has been quite fully treated by Arthur and Golden.*

Fig. 68. Product from large and small seeds. (Arthur and Golden.)

[^58]They have given numerous references to the work of European and American investigators. Among the latter we desire especially to mention the works of Goff* and Latta. \dagger

The work of Arthur and Golden is in the line of our own work. We quote from their results as follows: "Thirty kernels from a single ear of white dent corn were separately weighed, of which six grew that were over 400 milligrams each, and nine that were under 300 milligrams each. The product of these gave a greater average weight of ears for the large than for the small seed, which was also true of the cobs and kernels taken separately."

	\%	
Average weight of seed in milligrams Average weight of cobs in grams	512	${ }_{47}$

The accompanying graphic illustration of the results brings out the difference in the weight of the kernels even more strikingly. The solid line indicates the product from the large seed and the interrupted lines from the small seeds. The diagram as a whole shows the variation at different parts of the ear, the butt being to the left and the tip to the right.
"The kernels from each ear of the product were removed and weighed by fifties, beginning at the end of the ear and proceeding in order to the other. The average of all of the heaviest fifties, one from each ear, gave the maximum weight, marked M in the diagram. The average of the fifties ranging first, second, third, etc., right and left of the maximum was then found. Thus the diagram represents the difference of the weight of the kernels of the ear in the order they occupied on the cob, the butt of the ear lying to the left and the tip to the right of the diagram.

The figures below the diagram indicate the position of each fifty seeds on the ear; the figure at the left gives the average weight in grams of fifty seed. Webber \ddagger states that "Roujon,

[^59]by selecting and planting only the smallest seeds from the least developed specimens of sunflower, corn and other plants, obtained in two years very small plants. The corn was reduced in size to about eight inches high. As the height diminished the number of seed decreased, and the final result was absolute sterility."

In the case of corn, farmers have done a great deal towards selection by saving the best for seed. There has been much discussion as to whether the kernels found at the base are better than those at the tip. Tests made at the Kansas Agricultural Experiment Station* show: "Considering all the facts shown in this experiment and in the experiment with corn planted at different distances, the inference seems plain that we must plant corn with the sole object of raising grain, or with the sole object of raising feed." The average of three years' trials are slightly in favor of the butt kernels, according to Georgeson, Burtis and Otis. \dagger

Cereals.

The importance of cereals as a cropin Io wa merits a separate consideration. This is especially necessary in the case of the more important. The term cereal is applied to all members of the grass family in which the grains are used for food. Some of the more important works which consider cereals and cereal culture are as follows:

Koernicke \ddagger, Metzger§, Seringe\|, Hackel ${ }^{\boldsymbol{f}}$, Darwin**, DeCandolle $\dagger \dagger$, Beal $\ddagger \ddagger$, Wallace§§, Brewer $\|\|$, Emmons $\|$ बI, Klippart***,

[^60]Simmonds*, Harz \dagger, Tschirch and Oesterle \ddagger, Snyder and Voor. hees§, Nettel \|, Plumb- Hehn, **Williams $\dagger \dagger$, Lamson-Scribner $\ddagger \ddagger$, Buschan§§.
paper on maize, thinks, from evidence of archaeology, history,
Maize. (Zea Mays, L.)-Harshberger published an extended ethnology and philology that central and southern Mexico is the original home of maize. This is supported by the facts of botany and meteorology. Several closely related genera are of Mexican origin, as Euchlaena and Tripsacum. The latter genus occurs as far north as southern Iowa. Naturalists generally agree that closely related species and genera had their origin from some common progenitor.

The Indians probably first found the plant in the region above 4,500 feet altitude and south of 22° north latitude and north of the river Coatzacoalcos and the isthmus of Tehuantepec. It probably reached the Rio Grande about 700 A . D., and by the year 1000 had reached the coast of Maine. It was introduced into Europe soon after the discovery of America.

Rye (Secale cereale L.)-Rye has not been long in cultivation, according to DeCandolle $\|\|$, unless perhaps in Russia and Thrace. It has not been found in the Egyptian monuments and there is no name for it in the Semitic languages, nor Sanskrit, nor the languages derived from Sanskrit.

It appears to have originated in Europe, where it was anciently cultivated, and it is probable that it originated in the regions between the Austrian Alps and north of the Caspian sea. The other known species of the genus Secale inhabit western central Asia or the southeast of Europe. In central Asia rye is spontaneous and grows as thickly as though sown.

Barley. (Hordeum sativum, Jessen.)-This cereal is without doubt one of the most ancient of cultivated plants, and is supposed to have originated from H. spontaneum, Koch, which

[^61]

Fig. 68 A. Rye with detalls of flower and spike. (Nees from Hackel.)

Fig. 68 AA. Zea canina, Watson, grown at Knoxville, Tenn. Original of cultivated maize. (Photograh, F. Lamson-Scribner.)

Fig. 68 B. Zea canina grown at Knoxville, Tenn. showing cob and kernels. (Photograph, F. Lamson-Soribner.)

Fig. 68 BB . Different varieties of maize. Zea mays, (1) Mexican; (2) Mexican; (3) Deat legal tender; (4) Dent; (5) Sweet; (6) Pop; (7) Husk maize with bracis removed; (8) Dent, mortgage lifter; (9) White dent; (10) Dent; (11) Flint; (12) Black Mexican sweet. (King.)

Fig 69 AA. Polish wheat, Triticum Polonicum. 2. Bearded spelt. Triticum sativum spelta. (Hackel.)

Fig. 69. Wheat, Triticum sativum. Common bearded winter wheat, Triticum sativum valgare 2. Triticum sativum vulgare muticum. (Hackel.)

Flg. 69 A. "German wheat," Triticum sativum dicoccum. 2. One-grained wheat, Triticum monococcum, \mathbf{L}. (After Hackel.)

Fig. 69 B. Two-ranked barley, Hordeum sativum distichon. (After Hackel.)
1, Hordeum sativum hexastichon (B 3) group of three spikelets; (B) spikelet from behind; (B 1) from in front; (K 1) fruit from in front; (K 2) from bthind. (After Nees.)
2. Common four-rowed barley, Hordeum zativum vulgare. (After Hackel.)

-Fig. 68 BB. 1, English wheat, Triticum sativum turgidum. 2, Flint wheat, Triticum sativum durum. (After Hackel.)
grows wild in Asia Minor and Caucasian countries to Persia and Beloochistan as well as Syria and Palestine.

Wheat. Triticum sativum, Lam.-The only form known in a wild condition is the T. monococcum, L. Cultivated wheat is prehistoric. Several of the forms are of great antiquity. The ancient Egyptian monuments contain abundantspecimens of wheat. The Chinese grew wheat 2,760 years before Christ. The Hebrew scriptures contain records of prehistoric wheat. Wheat was frequently used by the Lake Dwellers of west Switzerland.*

The Polish wheat, Triticum polonicum, a form obtained by cultivation, probably originated in modern times. The Spelts, Triticum spelta, probably was cultivated to some extent by the ancient Romans and Greeks, but there is some question in regard to it. T. monococcum was probably anciently cultvated, siince it is mentioned by some of the ancient writers. The seeds were found among the Swiss Lake Dwellers. The Romans did not cultivate it. It is probable tha it was introduced from Asia Minor to Spain, and from there to France and Germany.

Oats. Avena sativa, L.-This is a comparatively modern plant. It certainly was not cultivated by the Egyptians or Hebrews, nor was it cultivated very anciently in India, as there is no Sanskrit name for the plant. Its cultivation in India is carried on chiefly by the English. The ancient Greeks knew it by the name of Bromus and the Romans, Avena. Pliny's remark that the Germans lived on oatmeal seems to show that its cultivation was carried on north of Italy and Greece. Apparently it later became diffused to the south in

[^62]the Roman empire. That its culture is very ancient with the Kelts is shown by the fact that the inhabitants of the Orkney and Shetland islands have long used it.

Fig. 69 O. Oats, (From Iowa Seed Co.)
Sorghum and Kafir corn. (Andropogon sorghum) Brot.-The original home of Andropogon sorghum is tropical Africa where durra is cultivated. It is frequently cultivated in Asia, but Linnaeus supposed it to be of Indian origin. It certainly was not cultivated anciently there, since there are no ancient names

Fig. 70. Andropogon sorghum and some of its varieties. 1, Kafir corn; 2, Jerusalem corn; 3, Amber sorghum. (Kansas State Board of Agrl.)
for it, nor could it have been anciently cultivated in Europe, since the Lake Dwell \lrcorner rs did n t use it, nor did the writers of ancient Greece or Italy sp ak of it. The durra in its allied forms is wild in trepical Africa, and there is every reason to believe that its cul ure spread from South Africa to Europe and Asia.

Foxtail millets.-These millets belong to the genus Setaria or Chaetochloz. S me writers c nsider the Hungarian millet (Setaria Germanica) distinc from the German millet, S. Italica. The mille's are of very ancient culture in temperate parts of the world and have been grown si ce prehistoric times. The grain seems to have existed in a wild form in China and Japan and in the Indian Archipelago, and early spread to India, where ancient Sanskrit names occur. In China this is one of five plants which the emperor* sows each year in a public ceremony, according to a c mm nd given by Chin-nong 2700 B . C.

De Candolle thinks hat the Lake Dwellers of the stone age seem to have known the Setarias. It was also anciently cultivated in China, and the S. germanica seems to have escaped fr mo cultivation in Japan. By some writers it is supposed to have originated from S. viridis, Beauv., our common foxtail or pigeon grass.

[^63]Common or broom corn millet. Panicum miliaceum, L.-This plant is likewise of prehistoric culture, especially in Europe, Egypt and Asia. The Greeks and Romans were familiar

Flg. 70 A. Corean Foxtail millet. (Div. of Agrostology U. S. Dept. of Agrl.)
with it. The Lake Dwellers during the stone age used this millet to a considerable extent. Its culture is thought to be very ancient in eastern Europe.

Fig. 71 B. Shama millet (Panicum colonum), a, b, c, d, different views of the spikelet and glumes; e, f, two views of the "seed." (Div. of Agrostology U. S Dept. of Agrl.)

Fig. 71 BB. Broom corn millet. (Div. of Agrostology U. S. Dept. of Agrl.)

Although there is some doubt in regard to its cultivation in China, some writers think it is one of the grains planted at the annual ceremonies,instituted by the emperor Chin-nong. It was early introduced into India and was at one time one of the most important cereals grown in France. It probably originated in the Egyp-to-Arabian countries.

Barnyard grass, Panicum crusgalli L.-This species is indigenous to Europe and extending to Asia, and now well-known as a cosmopoli\tan weed. It is extensively used as a forage plant in Japan. Of the other barnyard millets the Ankee is used quite extensively in the north and northwest. The Mohave Indians are said to use this seed very extensively for food. In warmer parts of Asia several other species of Panicum are used, especially Panicum indicum L. The Sanwa millet (P. frumentaceum Roxb.) and P. colonum, the Shama millet or Jungle rice, native to the tropics and sub-tropical countries of the old world. It has become naturalized in the warmer parts of the United States. It is a native to Asia and is extensively grown in India. Crab grass (Panicum sanguinale) was anciently cultivated as a cereal but its culture in modern times has almost entirely ceased. It was apparently never used very extensively. It is said to have been extensively cultivated in Bohemia and used for soups, and still finds use in that country.

The term Millets. This is applied to a number of grasses. The term barnyard millet was first applied by Brooks* and later adopted by Williams. \dagger Williams has extended the use to not only those millets which originated from common barnyard grass but to varieties and species closely allied to it.

[^64]Elsewhere the statement has been made that the millets are impor ant cereal crops. The more important of these are the Setaria italica and the S. germanica. The common foxtail millets grown in the United States are grouped under the following standard varieties:

Fig. 710 . German millet (Setaria italica), a and b two views of the spikelet with three bristles; c seed. (Div. of Agrostology U. S. Dept. of Agrl.)
(1) Common millet. (2) German millet. (3) Golden wonder millet. All helong to Setaria italica. (4) Hungarian millet belongs to Setaria Germanica.

Sorghum mill ts are extensively grown in south Africa, Kansas, and Asia. Broom corn millet, Panicum miliaceum, is grown quite extensively as a cereal plant in India and China. The other millets here mentioned are grown chiefly in older Asiatic countries.

Fig. 71D. Rice (From Hackel True Grasses

Fig. 71 E. Pearl Millet (From Hackel True Grasses.)
Rice (Oryza sativa, L.) -In China it was one of the cereals used by the emperor Chin-nong, 2800 B. C., in fact it was the principal cereal and by the Chinese it is supposed to be indigenous. Its cultivation in India was later, but DeCandolle is inclined to think that it may have been indigenous to that country as well as China.

Pearl millet. Pennicetum typhoideum, Rich.-This is an important agricultural grass in central Africa although its original home is not known. It is believed, however, that it originated in Africa and it is possible that the wild form can still be found there.

Coracana or ragi. Eleusine Coracana, Gaert.-The ragi of the inhabitants of Hindoostan is scarcely grown as a cereal outside of India, though in addition to its growth in India it is also found in Malay, Egypt and Abyssinia. The plant is of tropical origin and without doubt originated in India from the E. indica. A nearly allied species, if not identical, the E. tocussa, Fres., originated in Abyssinia. The ragi grows well under unfavorable conditions and therefore is used extensively in India.

Manna-grass. Glyceria fluitans, R. Br.-Manna-grass is a cosmopolitan aquatic grass and in parts of Europe, Prussia,

Fig. 71 F. Manna Grass (Division of Agrostology U. S. Dept. of Agrl.)

Silesia and Poland is cultivated. The fruit is used for the purpose of making mush.

Wild rice. Zizania aquatica, L.-This plant is indigenous to the Mississippi valley, extending as far south as Louisiana. It also occurs along the eastern coast of North America between

New York and Massachusetts. It is most common, however, in the northern Mississippi valley. It is also found in eastern

Asia. While the plant is not cultivated, it is carefully protected by the Indians, and is found much in favor by the Aborigines as a cereal product.

Canary-grass. Phalaris canariensis, L.-The home of this grass is usutlly attributed to the Canary islands but it is probable that this assump ion arises from the fact that the plant has received the common name of Canary-grass. It is more than probable that its culture originated in Spain. It grows wild in southern Europe, especially Sicily and Catalonia. It is used as a cereal only in some of the southern countries of Europe.

Upright sea lime grass. Elymus arenarius.-This large grass is common along the coast of northern Europe and the British islands and along our western coast as far south as Oregon.* Aside from its great value as a sand binder the seeds are used for food by the Digger Indians of the northwest. By the inhabitants it is called "Rancheria grass."'

Bamboos. Bambusa, Schreb -The seeds of several species of bamboos are used in East India like rice. It is said by

Fig. 72. Tef (Eragrostis abyssinica) grown on college grounds. I. S. C.

[^65]Hackel that in Brazil and India misfortune follows the sudden production of such vast quantities of mealy seeds．Mice and rats increase at an extraordinary rate and after having eaten the bamboo fruits turn to the neighboring fields and devour the cultivated crops．

Tef．（Eragrostis abyssinica，Link）．－Tef originated in Abyssinia．It is believed to have sprung from Eragrostis pilosa． It is now a cosmopolitan weed in temperate and tropical regions．It probably orivinated north of the equator in Africa． As a cultivated plant Tef is only used by the Abyssinians． The colored seeds have the appearance of grits，and the flour made from these is boiled into bread．

CEREAL PRODUCTION．
The chief cereal growing countries of the world is shown in the following table，taken from Broomhall，＊of the Liverpool Trade News．

1896．IN MILLIONS OF BUSHELS．

	苞	－	¢	官	要
France	340		80	48	301
Russia，proper	300	$\dagger 13$	$\ddagger 671$	162	640
Poland	20				
Caucasia	45				
Hungary	140	140	118		
Austria．	42			106	186
Croatia and Slavonia	6				
Herzegovina and Bosn	，				
Italy ．．．．．．．．．．．．．．．．	134	74	4	8	26
Germany	110		244	116	370
Spain．	70				
Portugal．	6				
Roumania	80	64	12	30	17
Bulgaria	40	6	5	20	7
East Roumelia	8				
Servia	14				
Turkey in Europe．	22				
Greece．	5				
United Kingdom．	59			77	194
Belgium．．．．．．．	19		29	3	27
Holland	6		11	5	19
Switzerland	4				
Sweden	5		23	14	65
Denmark	5		18	24	46
Norway．	1				
Cyprus，Malta，etc．	2				\cdots
Europe，total	1，119				

[^66]| | 䔍 | ¢ | 0 | 灾 | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| United States of America | 590 | 2，270 | 24 | 70 | 717 |
| Canada | 60 | 18 | | 16 | 114 |
| Mexico． | 15 | | | | |
| Argentina | 60 | 80 | | | |
| Chili ．． | 16 | | | | |
| Uruguay | 6 | 6 | | | |
| Total America． | 747 | | | | |
| India． | 205 | | | | |
| Turkey－in－Asia | 50 | | | | |
| Persia． | 20 | | | | |
| Japan． | 14 | | | | |
| Total Asia． | 289 | | | | |
| Algeria． | 18 | | | 30 | 8 |
| Tunis． | 6 | | | 4 | |
| Egypt | 7 | 34 | | | |
| The Cape | 2 | | | | |
| Total Africa． | 33 | | | | |
| Victoria． | 7 | | | | |
| South Australia | 3 | | | | |
| New Zealand． | 7 | | | | |
| New South Wales | 7 | | | | |
| Tasmania． | 1 | | | | |
| Other Australia | 1 | | | | |
| Total Australia． | 26 | | | | |
| World＇s total | 2.388 | 2，705 | 1，239 | | 737 |

Cereal production in the United States．－It may be interesting in this connection to compare the production of the cereals of the United States，and finally comparing that with the state of Iowa．In this way will be shown the relation of Iowa to its sister states in the matter of cereal production．It will be most conveaient to place these in the form of a table，and the table representing the crop production most easily accessible for 1897 is that prepared by Mr．Snow of the crop reporting bureau of the American Agriculturalist：

	IN THOUSANDS OF BUSHELS.												$\frac{\text { POUNDS. }}{\mathrm{RICE}_{1}}$
	Wheat.		CORN.		RYE.		BARLEY.		oats.		SORGHUM.		
	1897.	1889.	1897.	1889.	1887.	1889.	1897.	1889.	1897.	1889.	1897.	1889	1889.
New York Pennsylvania	-8,600	8,304 21,593	15,480 38,889	15,109 42,318		3,065 8,742	8,220	44,258	38,896			
Texas.	7,174	- 4,283	68,628	${ }_{69,112}$				493 48	37,169 24	36.197 12.581			
Arkansas.	2,363	955	38,437	33,982		15			7,608	12,180			
Tennessee	11,453	8,300	60,904	63,335		165			11.800	7,355			
West Virginia	5,815	3,634	14,343	592		117		5	3,204	2,946			
Kentucky...	14,449 38.280	10,707	62,660	78,434		423		165	12.57\%	8,775			
Michiga	$\left.\begin{array}{l} 38,280 \\ \mathbf{2 5}, 570 \end{array}\right\}$	35,509	104,160	113,892		1,007		1,059	29,079	40,136			
Indiana	S 441$\}$	24,771	36,300	28,785		2,101		2,522	27,564	36.961			
Illinols	33,356 9,968	37,318	114,750	18,843		877		250	33,6:2	13,491			
	8 9 936	37,389	234,800	289,697		2,628		1,197	109,041	137,8:4			
Wisconsin.	S 7,548$\}$	11,698	40,170	34,024		4,250		15,225	67.933	60,739			
Iowa	$\left.\begin{array}{r} 2,870 \\ \mathrm{~B} 14,7 \times 4 \end{array}\right\}$	8,249	31,665	313,130		1,445		13,406	13, 2,447	146,679			
Minnesota	$\left.\begin{array}{r} 1,115 \\ \hline 53,951 \end{array}\right\}$												
Kansas		30,399	160,010	259,574		2,917		165					
Nebrask	2498 ,								25,542	4x,620	\ldots	\ldots	
	-27,484 34	10,581	190,521	215,895		1,085		1,822	50,366	43,843			
	S 869	40,869	1,998	2,381		243		17,548	1,950	1,483			
Orego	$\text { S } 11,014\}$	9,298	495	238		63		874	8,029	5,948			
Washington	$\left.\begin{array}{r} 8,747 \\ \mathrm{~S} 11,752 \end{array}\right\}$								3,800	2,273			
Oklahoma.	S 17,415	6,315 30	276	156		19 1		1,268	3,800	2,273 76			
South Dakota	30,395	16,541	25,326	13,152		${ }_{65}^{12}$		1,502	16,553	, ,773			
New Jersey		1,823		-8,637		875		1	15,750	2,837			
Maine.		79,826		380		6			3,688			
New Hampshi		35,192		988		11				892			
Massachussetts		164,720		1.700		43				3,316			
Massachussetts Rhode Island..		1,813		1,830		117				388			
Connecticut.		r-482		1.471		214				100			

	in thoubands of bugilels												$\frac{\text { POUNDS. }}{\text { RICE. }}$
	wheat.		CORN,		nye.		barley.		oats.		sorghum.		
	1897.	1889.	1897.	1889.	1897.	1889.	1897.	1889.	1897.	1889.	1897.	1889.	1889.
		$\mathbf{1 , 5 0 1}$								382			
Maryland. ${ }^{\text {District of oumbia }}$		8,348		$\begin{aligned} & 14,928 \\ & 10 \end{aligned}$						2,019			
Virginia		\% 4,904		${ }_{2}^{27.172}$		${ }^{397}$			….	5.685			
South Carolina.		4,292		25,783 13.770	.					4.512			5,846.404
Georgla.		1,093		29261	…...	87				3019 4,767			$39,338,951$ $14,556,432$
Alabama				3,701 30,072	...	113	-			${ }^{491}$			1, 1, $1,011,805$
Mississippi		16		30.072 26.148	...	14	.			3,230 1,342			- 39.920
Moulstana				13,031					-297			- 3976,748
W yoming		74		${ }_{25}^{14}$						1,535	...		75,615,433
Colorado		2,845		1,511		54				2,514			
New Mexico		343		583									7,110
Arizona.		100		${ }_{84}^{82}$						33			
Nevada		${ }^{1,61}$		${ }_{8}^{8}$		3				${ }^{697}$			
Idaho.................	1,176	...	24		10				589			

	wheat.		Corn.		RYE.		barley.		oats.		sorghim.		rice.	
	1894.	1895.	1894.	1895.	1894.	1895.	1894.	1895.	1894.	1895.	1894.	1895.	1884.	1893.
Winter Spring...........	$\begin{aligned} & 2,672.601 \\ & 6.797,695 \end{aligned}$	$\begin{aligned} & 3,351,550 \\ & 7,047,235 \end{aligned}$	128,989,047 $\ldots \ldots .$.	313,692,210	$\overline{1,624,078}$	1,946,720	$\longdiv { 8 , 0 3 5 , 6 3 4 }$	$\overline{15,881,618}$	107,691,460 $\ldots \ldots \ldots \ldots$	$\overline{73,450,000}$	

*Monthly Review Iowa Weather and Orop Service. 5: N. 1894. Ann. Rep. 1895:

According to Mr．Hyde in the Year Book of the Department of Agriculture for 1899，the crop production for the principal cereals of the United States for 1899 was as follows：

	㥯感				官
Maine	427，428	43，942	4，956，665	347，652	14，745
New Hampshire	975.546	8，789	1，047．445	115，500	13,860
Vermont．．．．	1，710，936	78，320	3，959，333	538，904	53.941
Massachusetts	1，449，504		489.027	50，850	133，296
Rhode Island．	251，596		95.368	9，135	
Connecticut．	1，799，811	5，490	525，056		256．464
New York．	15，605，059	7.005 .765	45，401．608	4，052．472	3，633，600
New Jersey	9，937，824	1，788，865	2，284，6．12		1．000．785
Pennsylvania．	40，255，872	20，472，923	39，148，032	179，844	3，936，090
Delaware．	4，547，312	$932,557$	$320,080$		
Maryland．	$18,562,432$ $34,880,900$	$10,710,966$ $6,830,450$	$1,675,596$ $5,145,518$		353,276
Virginla．．．．．．．	$34,880,900$ $31,953,108$	$6,630,450$ $3,495,598$	5，145，518 $4,787,208$		330.471 320,278
South Oarolina	16，713，189	963.762	3 023，976		14，125
Georgia	32，494，790	2，021，225	4，291．857		94，830
Florida	5．093，370		320，454		
Alabama	33，015，120	431，186	3，012，070		14，576
Mississippi	39，043，712	25，010	1，365，740		
Loulsiana．	25，896，726		553，284		
Texas．．	81．151，398	9，044．635	17，067，975	35，460	37，060
Arkansas．	48，087，140	1，953，361	5，964，442		19，052
Tennessee	59．997，760	8，292，727	5，326，244	19，589	107，028
West Virginia	18．043，584	3，880，751	3，158，452		132，290
Kentucky．	55，392，687	8．201，575	8，194，806	25，001	244.430
Ohio．	99，047，816	39，998，006	32，945．976	603.400	625，920
Michigan	26，476．350	13，335，193	30．599，048	927.144	1，097，012
Indiana．	141，852，594	25．361，175	34，301，248	153，300	464，633
Illinois	247，150．332	12，665．410	127，278，948	395．502	1，154，325
Wisconsin	41，686．365	11，773，382	67，687，380	7，670，5．0	3，073，125
Minnesota	31，171．272	68，223，581	52，688．416	8，144，125	1，112，472
Iowa．	242．249．841	18，195，489	126．985．749	12，011，895	2，029，860
Missou	162．915，064	11，398 702	20，299，350	12，960	127，439
Kansas	237，612，2 22	36，468，044	39，129，410	3，183，165	1，545，85．
Nehraska	224，373，268	20，791，776	51．474，120	943，1：6	997，104
South Dakota	30，017，416	37， 288,339	15，332，278	2 410，354	36，765
North Dakota	553，445	51，758，630	17，987，670	5，909．352	244，725
Montana．	36.386	1，792，935	2，317，468	216，405	
Wyoming	53，944	395.345	442，290		
Nevada．		6×7.006			
Colorado	2，911，488	7，337，781	2，448．846	337.932	33，236
New Mexi Utah．	480,300 162.680	3，736，454	$\begin{aligned} & 178.113, \\ & 872,236 \end{aligned}$	35,488 194.865	58，68
Washingto	128，478	21，710．394	3，01965	1，410．360	35.936
Oregon	297．418	21，949，536	5，118，6r 0	797．916	61，776
Oalifornia	1，536 975	33，743，909	1，843，787	22，239，776	547，080
Oklahom Arizona．	10，133，365	$\begin{array}{r} 16,202,765 \\ 342,139 \end{array}$			
Idaho		3，440，103	4，099，968	405，510	
United States．	2，078，143．933	547，303，846	796，177．713	73．381，563	23．961．741

Climatology．

Climate has such an important bearing，not only on the pro－ duction of our cereals，but on the production of grasses，that a few tables should be introduced，showing the amount of precip－ itation for the growing months，as well as the annual rait fall． It is equally important to know the temperature for the same period．Dr．Geo．M．Chappel，of the U．S．Weather Bureau， and J．R．Sage，of the Iowa Weather and Crop Service，have kindly furnished me with the following data：

SIOUX CITY.

Precipitation-inches.

	年	¢	®	$\stackrel{3}{3}$			
1893	3.56	3.17	1.63	2.29	5.85	1.11	23.83
1894	2.79	1.91	2.74	1.81	1.68	0.73	18.79
1895	3.20	2.15	4.95	2.63	1.54	3.91	20.29
1896	6.16	6.39	2.94	5.54	0.86	2.09	30.77
1897	4.03	1.24	2.13	2.26	2.51	0.51	20.38
1898	1.37	4.69	6.61	2.78	3.10	0.95	22.91
Averages	3.52	3.26	3.50	2.88	2.59	1.55	22.83

Mean total for the six crop months- 17.30 .

Temperature-degrees.

Average for the six crop months-65.5.

CRESCO．
Precipitation－Inches．

	辰	劲	®	\％	$\stackrel{+0}{*}$	迺	盛
1893.	5.95	2.79	4.14	3.85	1.20	2.08	
1894	3.21	2.63	3.09	0.09	1.03	3.16	22.76
1895.	1.69	3.39	3.83	4.37	2.52	1.69	24.38
1896．．	5.09	6.74	4.27	3.26	2.62	4.83	24.07
1897.	2.23	0.69	6.95	2.12	4.36	3.26	25.04
1898.	2.80	2.84	2.53	2.91	1.35	1.03	23.91
Averages	3.50	3.18	4.12	2.77	2.18	2.68	24．03

Mean total for the six crop months－18．43．

Temperature－Degrees．

	筥	感	－	会	＋		会
1893．．	40.2	52.9	68.2	71.1	67.4	60.5	
1894．．	48.7	58.1	69.4	74.2	72.0	62.4	46.2
1895.	51.0	58.8	66.6	69.2	70.2	65.0	43.1
1896.	50.2	62.9	66.3	69.4	69.1	55.4	44.3
1897.	44.8	55.8	64.8	72.1	65.0	67.2	43.5
1898.	44.8	57.9	67.6	71.2	69.4	63.6	44.5
Averages	46.6	57.7	67.2	71.2	68.8	62.4	44.3

Average fo：the six crop months -62.3 ．

KEOKUK．
Precipitation．－Inches．

	官	－	®	3		$\begin{aligned} & \text { \& } \\ & \text { 00 } \\ & \text { O } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$	
1893	5.41	4.36	2.37	2.60	1.16	3.18	27.94
1894.	2.75	3.06	2.95	0.37	0.51	4.86	25.20
1895.	3.38	3.45	2.61	5.46	2.28	2.67	29.42
1896.	2.35	4.40	2.18	8.01	3.90	9.44	36.77
1897.	3.34	1.86	5.43	6.75	0.65	0.64	33.14
1898．．	4.80	6.70	4.77	3.06	6.92	8.07	52.48
Averages	3.67	3.97	3.38	4.38	2.57	4.81	34.16

Mean total for the six crop months－22．78．

Temperature－Degrees．

	家	icicicic	¢	$\frac{3}{3}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{3} \\ & \stackrel{0}{3} \\ & \underset{\sim}{3} \end{aligned}$		辰
1893.	49.9	59.8	73.0	78.0	72.0	69.0	49.9
1894.	54.0	630	76.0	78.0	77.0	68.0	53.7
1895.	55.1	6.6	73.0	73.8	76.7	70.7	50.8
1896.	60.0	70.0	71.8	76.0	74.9	62.5	53.0
1897	51.3	61.2	72.9	78.3	72.4	74.4	52.6
1898．．	51.8	64.0	756	77.1	75.7	70.8	52.9
Averages	54.4	63.6	73.7	76.9	74.8	69.2	52.2

Average for the six crop months－68．8．

SIBLEY．
Precipitation．－Inches．

	芭	¢	¢	3		$\begin{aligned} & \dot{8} \\ & 0 \\ & 0 \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	㳫
1893.		1.65	2.41	3.37	2.26	0.88	
1894.	4.13	3.59	3.34	1.01	0.97	2.57	22.47
1895.	2.81	5.20	4.85	1.13	0.67	\cdots	
1896.	5.33	5.42	3.92	3.67	4.38	6.67	38.65
1897.	2.48	0.73	4.20	4.32	0.95	1.15	24.98
1898．．	1.44	5.42	4.99	2.69	3.06	0.67	21.63
Averages	3.24	3.67	3.95	2.70	2.05	2.39	26.93

Mean total for the six crop months -18.00 ．

Temperature－Degrees．

	邑	¢	®	\％		部	盛
1893.		55.2	69.1	69.3	66.4	60.9	
1894.	48.1	58.6	69.8	72.6	71.4	62.6	45.8
1895.	54.0	58.2	65.0				
1896	48.8	61.8	66.6	69.2	68.6	56.0	
1897.	44.7	56.0	64.8	72.2	64.0	68.6	
1898.	46.0	56.5	68.1	70.5	67.6	62.9	44.6
	48.3	57.7	67.2	70.8	67.6	62.2	45.2

Average for the six crop months－62．3．

DES MOINES．
Precipitation－Inches．

	官宫	$\underset{\sim}{\underset{\sim}{e}}$	$\begin{gathered} \dot{\oplus} \\ \stackrel{\text { B/ }}{5} \\ \hline \end{gathered}$	\％			
1893	5.61	2.84	4.69	3.55	1.60	1.33	25.64
1894	1.70	1.41	1.67	0.29	1.89	4.46	20.06
1895.	3.41	2.86	5.26	3.10	3.57	3.20	26.80
1896	3.47	6.50	2.69	8.15	5.49	3.61	37.09
1897.	7.37	2.31	3.15	2.88	1.77	1.56	27.07
1898.	2.64	4.22	6.85	1.86	1.09	1.91	28.33
Averages．．．．	4.03	3.36	4.05	3.30	2.57	2.68	27.50

Mean total for the six crop months－19．99．

Temperature－Degrees．

	$\underset{\sim}{\dot{E}}$	\sum_{i}^{∞}	－	$\stackrel{3}{3}$		$\begin{aligned} & \text { \& } \\ & \text { © } \\ & \text { E } \\ & 0 \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \\ & 0 \end{aligned}$	号
1893.	46.0	56.9	71.4	75.5	70.0	66.2	46.7
1894.	53.0	62.0	74.4	77.7	76.0	66.7	51.2
1895.	55.4	62.7	70.5	72.7	73.8	69.4	49.0
1896.	56.0	66.5	70.1	73.2	72.7	59.6	50.1
1897.	49.4	59.7	70.0	76.4	70.4	73.7	496
1898.	50.0	60.7	72.2	74.2	73.8	87.4	49.5
Ave	51.6	61.4	71.4	75.0	72.8	67.2	49.4

A verage for the six crop months－66．6．

CEDAR RAPIDS．

Precipitation．－Inches．

	齊	－	$\xrightarrow{\text { ® }}$	$\stackrel{\square}{\square}$	＋	迺	家
1893.	3.89	2.79	4.89	1.98	2.47	2.85	30.67
1894	1.65	3.08	2.43	0.18	2.51	3.96	26.27
1895	2.30	2.84	2.23	3.22	1.50	3.64	23.39
1896	5.23	3.99	1.91	6.59	2.40	3.18	29.77
1897	5.97	2.10	3.96	4.35	2.62	3.78	29.34
1898.	2.47	3.41	3.60	1.90	4.38	3.11	29.58
Averages	3.58	3.04	3.17	3.04	2.65	3.60	28.17

Mean total for the six crop months -19.08 ．

Temperature－Degrees．

Average for the six crop months－66．6．

CLARINDA．

Precipitation．—Inches．

	答	完	ٌ	宮	苼		帬
1893.	3.11	3.17	4.12	8.84	6.22	2.38	33.27
1894.	2.06	1.37	4.02	0.41	0.23	2.53	17.96
1895.	2.82	2.99	8.33	6.44	4.64	0.95	30.79
1896	3.72	7.48	2.12	6.63	2.86	2.56	33.73
1897.	6.00	2.01	4.04	2.63	2.53	1.55	26.32
1898.	3.70	5.15	2.99	4.49	1.16	5.74	33.49
Averages．．．	3.57	3.70	4.27	4.91	2.94	2.62	29.26

Mean total for the six crop months－22．01．

Temperature－Degrees．

	号	言	岂	\％			䂞
1893.	47.4	57.9	70.5	753	69.6	65.9	47.1
1894.	53.3	62.1	73.5	76.3	77.6	66.4	51.0
1895.	53.9	62.2	68.6	70.2	73.2	68.4	47.8
1896.	543	638	68.4	73.7	73.8	61.5	49.8
1897.	508	616	72.9	78.8	71.6	73：2	51.3
1898.	51.8	622	75.0	80.2	80.6	72.6	52.4
Averages．．．．	519	61.6	71.5	75.8	74.4	68.0	49.9

Average for the six crop months－67．2．
How tombcralues chand ifer

Fig. 72 A. Mean Temperature 1898 (Dr. Ohappel.)

Dr. C. Hart Merriam, who has been considerably interested in the geographical distribution of animals and plants, has divided the United States with reference to cereal production and the geographical distribution of plants into boreal, trarsition, upper austral, lower austral, gulf strip of lower austral and tropical. The tropical, of course, is confined to the southern portion of Florida, reaching Texas on its southwestern boundary for only a short distance, on the western coast of America, up the gulf of lower California to Arizona. The boreal does not strike the state of Iowa but lies chiefly to the north of the United States and extends down through the mountain regions of the western coast and the Rocky mountains. It is of some extent also along the Atlantic coast. The transition zone occupies an area chiefly through northern Wisconsin, Minnesota, Michigan, New York, Massachusetts, Maine and scattered areas in the Rocky mountains and in the Pacific coast region. This zone extends into northern Iowa. The greater part of the state of Iowa lies in what is known as the upper austral. This includes most of the prairie states, including some area in the Rocky mountain states and some of the Pacific coast. It embraces a portion of Ohio, West Virginia and a small area from Virginia to Alabama, thence northwest through Tenness f e and Kentucky, northern Arkansas and a portion of Oklahoma. The lower austral occurs along the Atlantic coast from Virginia southwest to Mexico, extending as far north as southern Kansas, western Kentucky and Tennessee and only a very limited area in scuth \in rn Missouri. The gulf strip of the lower austral is chiefly confined to a small strip along the gulf coast including the greater part of Florida.

Prof. C. S. Plumb, under the direction of Dr. C. Hart Merriam, has gathered together some facts on the distribution of the cereals. It may be of interest to state what he has found with reference to some of our chief cereals. The flint corns, such as Longfellow and King Phillip occur in the transition and upper edge of the upper austral. The dent corns like Hickory king, Blooły butcher, St. Charles white, occur in the upper austral; Hickory king in the upper austral and upper part of lower austral; Musbey's prolific, lower austral; pride of the north, transition; Stowell's evergreen, upper austral; pop, all varieties, upper austral; winter wheat, Clawson, transition and upper austral; Fullcaster, Turkey red, upper austral; spring wheat, Ladoga, Saskatchewan, fife, transition;

Sonora, upper and lower austral; oats, of the open panicle type, American banner, transition; Welcome and Lincoln, transition and upper Austral; red rust proof, upper and lower Austral; oats with closed panicle, white Russian, transition zone; black Tartarian, transition.

Fig. 73. South American corn (Zea mays). Climate and the growth of maize. This failed to mature in Iowa. Had a large number of nodal roots.

Maize -Harshberger*, who has studied the various phases of maize, presents an interesting meteorological table of various points in Mexico for the months of April, May, June, July, August, September and October, 1889. He introduced evidence determining that it originated in Mexico, probable near Guadaljara, Leon and Pueblo. Leon is 5,400 feet above the level of

[^67]the sea, it is therefore a highland plant. Its original home was south of the 22° north latitude.

In regard to the climate Brewer* states: "That the bulk of corn is grown not as is generally supposed, in the warmer parts of the United States, but in the states Illinois, Iowa, Missouri and Indiana 40.8 per cent of the entire crop grows where the mean annual temperature is between 45° and $60^{\circ} \mathrm{F}$. Below an annual temperature of $45^{\circ} \mathrm{F}$. the product falls off very rapidly, while above $50^{\circ} \mathrm{F}$. it falls off very slowly. The distribution of the crop depends on certain climatic conditions. 'The mean annual temperature is of les ; importance, and it is very important that the rain fall should be evenly distributed. "The table of the distribution of the crop according to elevation shows that over 50 per cent is grown at an elevation of between 500 and 1.500 feet, only 4.4 per cent above that, and only about an eighth of the crop is grown nearer the sea level than 500 feet."

Corn needs hot weather, plenty of sunshine and a sufficient amount of rainfall. In 1894 the average gield for Iowa was twelve bushels per acre, a little over one-third of an average crop. Acreage planted $6,738,970$; total yield $80,867,640$ bushels. About 60 per cent was cutfor fodder. It is interesting to note the fluctuation in the crop reports for that year. The figures were in June, 101 per cent; July, 107 per cent; August, 40 per cent, and September, 36 per cent.

Mr. C. F. Spring, under the writer's direction, has made an estimate of the number of bushels per acre in the north half of the state, and the south half. The average for the north half of the state for the year was thirty-six bushels per acre; for the south half, thirty-eight.

Every portion of the state of Iowa is adapted to the growing of corn, and from a climatic standpoint corn is one of the most interesting of cultivated plants. It is wonderfully flexible in its nature, and this flexib lity makes it possible to cultivate it over a wide range of latitude. Simmondst says: "Its flexibility of organization makes it very easy of adaptation to climate and soil." It is now cultivated on the western continent from Patagonia to Canada, an extent of territory north and south of over 7,000 miles. The many varieties that have been produced un ter these very different conditions show great vari-

[^68]ations, not only in the texture of the grain but in the fruit, leaf, stalk and ear. All of the varieties are marked by certain peculiarities.

Wheat.-This important cereal assumes important changes under different climatic conditions, but less so than corn. Major Hallet* has shown that some varieties are quite constant. Metzg•r† states that a variety of wheat which was quite constant in Spain, assumed its proper characters only during hot summers. Another variety, when cultivated in Germany, became more constant only after twenty-five years of cultivation.

The most northern extension of wheat is obtained in Norway, according to Schueblert, at 64° north latitude. Schuebler further states that under favorable conditions summer wheat may ripen as far north as $68^{\circ} 28^{\prime}$. At Skibotten this cere $\quad \mathrm{l}$ was sown May 9, 1870, germinated on the 23d, and ripened on the 30th of August, therefore requiring 113 days. The mean temperature for May was $41.2^{\circ} \mathrm{F}$.; June, $55.6^{\circ} \mathrm{F}$.; July, $55.6^{\circ} \mathrm{F}$.; August, $55.1^{\circ} \mathrm{F}$.

Winter wheat does not mature because of the long period that the ground is covered with snow. The lowest southern latitude at which wheat is grown is at Chili in the Chilian colony, Punta Arenas Magellanes. The chief zone in which wheat occurs is in the north and south temperate zones. In tropical regions the temperature is too high to allow the proper development of wheat. This is shown very nicely in the tables presented on a preceding page. In regard to the Uuited States the success of the culture of wheat is very materially affected by the long warm and hot months. Thus the southern United States is not a whe t growing country because of the rankness and vigor of the vegetation. This causes an undue amount of rust. Where the culture of wheat is successful in the warm regions, especially the southern parts of the tropical regions, its culture must becarried on during the winter months. According to Royle§, it succeeds best from October to Murch, and in the sub-tropical zone from November to May. Wallace || in his work on India states that it flourishes best where the supply of sunlight is abundant, yet it is in regions of moderate

[^69]temperature and moderate rainfall, but we find it grown to the greatest advantage in that part of India where, at least during the winter months, the climatic conditions of the summer of Europe are most nearly approached. Definite limitation of area cannot be made since the region is not itself sharply defined.

A study of the tables prepared by Professor Brewer shows that the greatest production of wheat occurs where the mean annual temperature is 50° and $55^{\circ} \mathrm{F}$. The ideal climate for wheat is one of mild winters, ard some of the most not t d wheat regions of the world are where snow and frozen ground are unknown or very rare although most of the wheat of the world grows in regions of cold winters. Rainfall, also, has a marked influence on the amount of wheat production. Twenty-eight per cent of the crop of the United States grows with an annual rainfall of between 40 and 45 inches, 62.7 per cent where it is between 35 and 50 inches and 92.4 per cent where the annual rainfall is above 25 inches, although there are some exceptions, as in Califurnia where the mean annual rainfall is less than 25 inches.

Wheat ripens successfully at the following altitudes: Norway, 300 m ; on the southern exposure of the Alps, 1,264 m., and Thibet, 4,549 m.

The qual ty of the grain produced in any locality is dependent upon several c nditions; namely, climate, soil and cultivation. It is said by Frank T. Shutt that certain Russian wheats, like Ladoga. * cultivated in the northwest territory has been greatly improvet since its growth in the Canadian provinces. There is a well-marked increase in the amount of albuminoids. The main differ nce between the hard and soft wheat is that the hard wheats contain a greater amount of albuminoids while the soft wheats contain a greater amount of starch.

Koernicke and Werner \dagger state that the colder regions of the temperate zone are more favorable for the soft wheats. These are especially characterized by the low contents of albuminoids. These varieties where grown in dry and warmer countries are characterized by an increase in albuminoids. Only certain portions of Iowa are adapted to the growing of spring wheat. The average number of bushels per acre in northern Iowa is seventeen; in the south half of the state Mr. Spring estimates

[^70]the yield per acre at only fourteen bushels. Winter wheat shows just the opposite, the yield in the north half of the state was only seventeen bushels per acre, the south half, nineteen.

Rye.-Rye in a general way covers the same territory that wheat does. According to Koernicke and Werner* the southern extension is at Punta Arenas Magellanes, 50° south latitude. In Swi'zerland it matures between $1,700 \mathrm{~m}$. and $1,900 \mathrm{~m}$. In the United States the successful cultivation of rye extends further southward than that of wheat and oats. In regard to its culture in the United States it may be said that the chief region of its cultivation is north of the Ohio river and west to central Nebraska, although it is successful further south than wheat, especially in the states of Texas, Louisiana and Mississippi. Professor Brewer \dagger says concerning its culture; "During the whole colonial period, and, indeed, far into the present century, it was the common ingredient of bread for a great many families in this country. Wheat never flourished well in portions of New England, and the same may be said in a lesser degree of parts of the middle states and of a belt of land exten ing southward along the Appalachian mountains, while over the whole of this region rye flourished reasonably well." In this state the same conditions hold as to wheat, sixteen bushels per acre in the south half and nineteen for the north half.
"Before the days of railroad transportation, and especially before the opening of the Erie canal, rye bread was the common bread among a large portion of the population of the whole region indicated, in many places, particularly in New England, rye being usually mixed with corn for bread, and 'Rye and Indian' was a familiar term in most households east of the Catskills and north of the Delaware. A similar bread of maize and rye is still common bread of Portugal, the relative proportions of each varying with the year, a good year for rye being usually a poor one for corn, and the composition of the bread varying accordingly."

The distribution and importance of rye in Europe is much greater than in the United States, but in a very general way it covers the same area as wheat does. The vegetative period is about 125 days for summer rye, with a mean temperature of 54°.

[^71]Barley.-Of the cereals, with the exception of corn and sorghum, barley is of a wider distribution than any of the others. The white four-rowed barley (Hordeum tetrastichum pallidum) exterids further northward than any other form, 70°. Its period of vegetation has been much shortened and it is less sensitive to the unfavorable weather and night frosts in this high nor hern latitude. According to Dr. Unger this barley is sown in Umea on the 30th of May, and is harvested on the 25th of August, the vegetative period being eighty-five to ninety days. The average yield per acre in Iowa for the north half of the state is thirty-one; for the south half, twenty-eight.

Oats.-The distribution of oats is not so extensive as that of barley or rye In the humid temperate regions it does not succeed. Oat culture is not extensive in the warm, dry climates, especially with an intense beat. Its vegetative period is long and for that reason it is not grown so far north as barley. The vegetative period varies between eighty-eight and 150 days. The units of heat required to develop different varieties is between 1,404.37, for certain varieties in Germany and 2,060 for certain varieties in Paris. These figures are according to Dr. Wittmack.*

The place of the greatest production of oats is in the Mississippi valley, which grows 63.1 of the whole cr p . The reasons for this are not so much the climate as the peculiar topographic features. Ninety-one per cent of the crop is grown between an altitude of 100 and 105 feet. Mr. Spring's studies show that in Iowa the average yield per acre for the north half of the state was thirty-nine bushels; for the south half, thirty-one.

Sorglum.-This is the chief cereal crop in tropical and subtropical Africa, and has also spread over parts of Arabia, Asia Minor, India, China and Japan and is found also to some extent in southern Europe where it succeeds admirably. The dry climate of our own country, especially in Kansas and Nebraska, is admirably suited to sorghum cultivation. In Europe, on the steppes of Russia, it scarcely reaches beyond 48° north latitude, according to Koernicke. Prof. Thos. A. Williams says concerning irs growth in the United Statest: "The sweet sorghums are successfully grown in nearly every state and territory in the union, the only exception being some of the colder New E gland states and those in the northwest which include

[^72]the higher altitudes of the Rocky mountains and other ranges. In most localities south of Pennsylvania, Minnesota and Oregon, two or more crops may be harvested in a single season."

Rice.-The early varieties of rice mature in from 100 to 120 days the late varietes from 150 to 200 days. They require a mean temperature of $55^{\circ} \mathrm{F}$., summer varieties of 71° to $89^{\circ} \mathrm{F}$., being an average mean of $68^{\circ} \mathrm{F}$. Rice culture is most successful in tropical and sub-tropical regions, although it has succeeded as far north as 38° north latitude in Illinois, but its culture is nearly abandoned in that state. Its general successful commercial culture in the United States does not extend much beyond 34° along the Atlantic coast, and then again $\epsilon x t e n-$ sively along the Gulf coast. Koernicke states thatits latitude in Europe is 45°. Its general culture in Asia occurs in Corea, Japan and China. Simmonds says: "One of the most extensively diffused and useful of grain crops, and supporting the greatest number of the human race, is rice. It occupies, in fact, the same place in most tropical regions that wheat does in the warmer parts of Europe, and oats and rye in those more to the north. It is raised in immense quaritities in India, China, Java and most eastern countries, in parts of the West Indies, Central America and the United States, and in some of the southe'n countries of Europe. The chief food of perhaps one-third of the human race, it affords the advantages attending wheat, maize and other grains, while it is susceptible of cultivation on land too low and moist for the production of other useful plants."

Grasses in Medicine.

Quack grass.-But few of the grasses are used in medicine. One of the best known of the grasses used in medicine is quack grass (Agropyron repens). The root is taken in the form of a decaction and is a useful remedy in suppression of urine and vesical calculus. The drug is still much used in France, where it is used for the discharge of mucus from the bladder.

Lemon grass. -The lem n grass oil or citronella oil is derived from several species of the genus Andropogon. The A. Nardus is a native of Ceylon ard Hindoostan. The A. citratus or lemon grass oil of verbena is sikewise cultivated in Ceylon ard Singapore and is native to the same general region. Another species, A. schoenanthus, is native to northern and central

India, and by distillation yields the Rusa oil. These aromatic oils have been known since early in the eighteenth century, and have become commercial products since the early part of this century. It is used principally for rheumatism, and Rusa is said to stimulate the growth of hair. The lemon grass oils are used most extensively in America by soap makers and perfumers. In India cattle are said to be very fond of the fragrant Andropogon and the $\mathrm{flt}_{\mathrm{t}} \mathrm{sh}$ and milk become strongly flavored with its strong aroma.

Andropogon.-A related species of Andropogon, A. laniger, is used in India for cholera. The roots have a very strong odor analagous to myrrh. The roots of A. muricatus, native to southern India and Bengal, were anciently much used by the Brahmins, where it is known as cuscus grass. The roots are much used for making screens known as tatties, and when wetted give off an agreeable odor.

Cumarin.-Several of our grasses are known to give off an odorous product, e. g. cumarin, and this is identical with that found in the tonka bean (Dipterix odorata). Two grasses producing cumarin are found in this state, namely, sweet vernal grass (Anthoxanthum Puelli) and our northern vanilla grass (Hierochloe borealis).

Phragmites and Arundo-An infusion of the roots of Phragmites vulgaris is us $\not \mathrm{d}$ as a diuretic. The rhizomes of Arundo Donax are also used for the same purpose.

Paspalum and Coix.-The Paspalum notatum Flugge is used for gonorrhœa. The Coix lachryma is used as a diuretic and to combat inflammatory affections of the respiratory organ. In China it is extensively cultivated for a similar purpose. It is also used as a diuretic according to Gomez de la Maza.* The capsules are used by followers of the Roman Catholic faith for rosaries.

Hordeum. - Mention should ke made also of the use of barley (Hordeum sativum) in medicine. This anciently cultivated plant has been used in medicine for a long time. The so-called pot or hulled barley is only partially deprived of its husks. In pearl barley all the integuments are removed, and this is the barley that finds a place in the Pharmacopoeia. Barley is used especially for the making of drinks for sick in ft brile, in pulmonary and urinary disorders.

Sugar cane.-Saccharum officinarum also largely enters into medicines. It is known by the pharmaceutical name of Sac-

[^73]charum. Cane sugar has a chemical composition of $\mathrm{C}_{12} \mathrm{H}_{22}$ O_{11}. Its medical use when in solution is almost exclusively lenitive, but in powder it is a stimulant, and is employed to diminish dryness of the mouth and fauces, to stop irritation and mitigate cough. It is said also to have a diuretic effect. Used in a moderate quantity it promotes digestion and stops nervous excitment. It is said also to be a very efficient remedy for apathæ of the mouth, and in granular eyelids. It is also said

2

 7

Fig. 74. Amylum. Various forms of starches from grass endosperm: 1, sorghum; 2, rice; 3, wheat; 4 , maize; 5, Italian millet; 6 , Panicum miliaceum; 7, Eragrostis ahyszinita; 8 , wh at more magnified then 3; 9, barnyard grass; 10, Panicum sanguinale; 11, rye; 12, oats; 13, barley; 14, Jerusalem corn; 15, buckwheat; 16, manna grass; 17, Eleusine coracanna.
to be valuable in chronic laryngit's when inhaled by a sudden aspiration.

Refined sugar is extensively employed in making lectuaries and lozenges. Not only does it prevent the unpleasant taste but acts as a preservative.

Amylum.-Amylum or the starches are of universal distribution in the endosperm of grasses but the only starches used in a medicinal way are those of wheat, corn, rice, rye and oats. These starches differ in their structural peculiaritits, but all have the same chemical composition. The drug known as Catchu is frequently sold in India, and contains the flour of Rage (Eleusine coracana). In India it is made into tablets and lozenges. Its principal medicinal qualities do not reside in the starch of the grass s but is due to the stringent qualities of the cutch.

Most alcoholic stimulants are derived by a process of fermentation of the starches contained in rye, barley, wheat, corn, and rice. For ordinary malt liquors barley is largely used and also starches of corn and rice. The products of wheat, corn and rye are largely used for the various brands of whiskies.

Glucose.-Glucose, having the chemical composition of C_{6} $\mathrm{H}_{12} \mathrm{O}_{6}$ though existing naturally in grapes and a large number of fruits is usually prepared by the action of hydrochloric or sulphuric acid upon starch, the term glucose being applied to the syrupy product made by this process and the term grape sugar to the solid product from the same source.

Maize. -The stigmas of corn silk are used in medicine under the name of Mayd's stigmata. They are diuretic and lithontriptic. An infusion of corn leaves is sometimes used as an anti febrile, but its action is said to be unreliable.*

[^74]
Sugar Producing Grasses.

ROBERT COMBS.

The grasses containing sugar or sucrose ($\mathrm{C}, \mathrm{H}, \mathrm{O}_{11}$) are few, there being but three species that are known to contain it to any great extent. These species are corn or maize (Zea mays, L.), sorghum (Androrogon sorghum, Brot.) and sugar cane (Saccharum officinarum, L.). These plants all have stored up in the pith cells of the internodes of the culms a greater or less quan ity of sucrose, which quantily varies greatly according to the age of the culm and the part used.

Corn.-Experiments and analysis made by Prof. Peter Collier* and others show that, though at its maximum stage, about August 20th, corn contains a goodly per cent (about 12 to 14 per cent) of sucrose, its period is of such short duration (about ten days or less) and the quantity before and afier the maximum is so small that it cannot be economically used as a commercial source of sugar. The kernel, however, is used to a great extent as a source of glucose, the latter being obtained by the action of sulphuric acid on the starch.

Sorglum.-Certain varieties of this grass have been clearly shown to contain sucrose, varying from 13 to 18 per cent, and holding this content from four to six weeks, or even longer. The United States Department of Ag iculture \dagger has made almost continuous experiments and investigations along the line of selecting and improving varieties, and in the matter of processes of manufacturing sugar from sorghum from 1879 to 1893.

Experiment stations were established in various parts of the United States ${ }_{+}^{+}$, and espəcially in different parts of Kansas, where at one time (1889) there were nine.

The plant was much improved in sugar content and much improvement was made in the process of manufacture, but since the removal of the sugar bounty (1893) the industry has entirely collapsed.

[^75]Sorghum cane has been used for many years for the manufacture of a kind of syrup known in commerce as "sorghum molasses." It is made by exp essing the juice from the trimmed stalks by means of a mill or roller pressure, straining and clarifying, sometimes by the addition of a small quantity of freshly slacked quicklime, and heating to boiling, skimming and settling, but usually without the addition of lime, although in this way it produces an inferior product.

It would seem that the process of manufacture must be at fault at some point and that point is in the clarification of the juice. The gums or "solids not sugar," impurities of the juice are of such a character that they cannot be removed by any known process of clarification without sufficient facility and economy to enable the sucrosecontent to be easily crystallized; therefore the financial failure of the industry when put upon its own feet and unassisted by government bounties.

Sugar cane.-Commercial sugar was obtained only from sugar cane until the early part of the present century, when sugar beets were discovered to be an available source. The Chinese* claim to have manufactured sugar from cane for over 3,000 years. They most probably obtained it either in CochinChina or Bengal, where all evidence points to the plant having been native. Many Greek and Roman writers speak of either sugar or cane, or both.

The best of the more recent accounts on the production of sugar may be obtained from Stubbs \dagger. Simmonds \ddagger in his work on Tropical Agriculture treats the subject rery fully.

Other Uses of Grasses.

Grasses are wid jly used for other purposes. It is impossible for us in this connection to give all the different uses to which grasses are put. The Panicum junceum is used in Argentine Republic as a substitute for soap. Straw paper is made out of straw of sereral cereals. A great deal of other straw is also manufactured into paper of various kinds, and this is a subject of considerable commercial importance. Paper is made not only from rye and wheat but also from maize, and the time will come when the manufacture of paper from maize will assume much greater importance than it does at present. Dr. Harshberger says of the maize: "Maize seems to be the best adapted

[^76]to the purpose. In the last century two maize-straw paper manufactories were in existence in Italy. The paper produced was not of a satisfactory quality, the cost was too great, and the manufacture forthwith stopped. The chief expense was found in the transportation of the crude material to the seat of operations. All the fibre and gluten wastes can be used in the manufacture of paper. The catalogues of the Austrian exhibition at London in 1862 in German, French and English, consists of such paper." At the present time the manufacture of paper from maize in Vienna is an extensive operation. The paper has a yellowish tint and is, therefore, very restful to the eyes. Paper of Indian corn requires very little sizing; it bleaches well and is of greater strength than rag paper, and no machinery is necessary for tearing up the leaves.

Crookes and Fischer state that "among the straw species appears the maize (Indian corn) from the fibre of which a paper is made that for purity and whiteness cannot be equalled. The inner bark of the bamboo affords a very fine paper, yielding the most delicate impressions fiom copper-plate, and this paper was originaliy called India-proof. Paper is also made from Andropogon sorghum. A very fine fibre is also made from Esparto grass (Stipa tenacissima).*

Many other grasses are adapted for fibre paper purposes and several grasses produce fibre of fine quality.

In Labrador the Elymus arenarius is employed for the manufacture of table mats and baskets. Bamboo (Bambusa arundinacea) is used for the purpose of making paper sto sk and the canes are also sp'it and shredded and afterwards wrought into various forms. The Marram grass, Ammophilia arenaria, is used in northern England for the making of table mats and baskets and also for agricultural tie bands. For a valuable paper on the subject of fiore producing $\mathrm{pl} \mathrm{n}: \mathrm{s}$, the one prepared by Charles Richards Dodge, "A Descriptive Ca'alogue of Useful Fibre Pants of the World, " \dagger is recommended.

The Hopi Indians use Hilaria jamesii. They make from the stout fibre of this plant coiled trays. The strong fibre of Hierochloe borealis according to Dr. Havard \ddagger is used by the Penobscot Indians for the making of baskets and pretty fancy work. Its long radical leaves become strongly involute in

[^77]drying, forming flexible threads which are braided into fine strips and these are woven into baskets and other pretty fancy work. He has also found braids of this grass in the camp of the Crow Indians on the Yellowstone. The delicate and lasting fragrance of the dried leaves gives this grass additional value.

Maize husks are used ext?nsively in the United States for upho'stering purposes and for the manufacture of matresses and for similar uses. Horse collars are made of th husks or "shucks" in the south; door mats are also made in some of the northern states, these being very serviceable. Mr. Dodge says the husks are also employed in the manufacture of chip hats in Florida. These, when properly trimmed are both stylish and pretty.

The corn pith cellulose is employed as a packing material in the c fferdams in connection with the armour plating of United Sta es war vessels. The corn pith is suitably cleaned and pressed into blocks when it is ready for use.

An excellent account of the use of corn pith cellulose and other productions of corn may be found in a recent nnmber of the Orange Judd Farmer.* This journal summarizes the various uses to which the products made from corn stalks m by be put:
"1. Cellulose for packing cofferdams of battleships, this preventing them from sinking when pierced by balls or shells.
'"2. Pyroxylin varnish, a liquid form of cellulose, the uses of which are practicaly unlimited.
"'3. Cellulose used for nitrating purposes for making smokeless powder and other high explosives, for both small and great arms, as well as purposes for which dynamite or all other explosives are required in various forms and degrees of strength.
"4. Cellulose for packing, it being the most non-c nductor known against heat or electricity, jars or blows.
" 5 . Paper pulp and various forms of paper made therefrom, both alone and mixed with other grades of paper stock.
"6. Stock food made from fine ground outer shells or shives of corn salks, and also from the nodes or joints. The leaves and tassels also furuish a shredded or baled fodder.
" 7. Mixed feed for stock, containing fine ground shells of shives as a base, and in addition thereto various nitrogenous

[^78]meals and concentrated food substances, or b'ood, molasses, distillery and glucose refuse, sugar beet pulp, apple pomace and other by-produc's.
"8. Poultry foods of two types, namely-type 1, containing a dominant nitrogenous factor for laying hens, and No. 2, containing a dominant carbohydrate factor for fattening purposes."

This manufacture is carried on extensively by the Marsden Co., of Philadelphia, in Owensboro, Ky.

The straw of several varieties of wheat is used for the manufacture of braids or straw plait. The finest of these come from Italy, thus the celebrated Tuscan plait comes from Flurence and is produced from a variety of wheat cultivated especially for the straw and without regard to the grain. The industry is carried on extensively also in parts of China. The straw of rye (Secale cereale) is likewise used for the making of hats. An interesting account of its use in this connection will be found in Mr. Dodge's paper on "Ths Useful Fibre Plants of the World. "

Brooms.

Another important use of grasses is for the manufacture of brooms. The plant usually used for this purpose is broom corn, Andropogon sorghum. The cultivat on of broom corn for the manufacture of brooms is an extensive industry in Ohio, Indiana, Illinois, Iowa and Kansas. Good crops may be obtained with p:oper attention and care on any clean, fertile soil. The seed is planted about the same time that corn is. The soil should be well tilled and in exc $\lrcorner l$ ent condition; the weeds must bo kept down to get the most remunerative c.op. The brush must be cut before the seed is fully formed.

Soil Binders.

Grasies are extensively used as sand and soil binders. These grasses are especially important along the sea shores where the tides and waves are a cons'ant menace to the land and dwellings situated in proximity to the sea. "The digging out and undermining by swift currents, the beating of the waves on lake and ocean shores and the perpetual shifting about of loose sands by the waves and winds, cost our country many millions of dollars annually," says F. Lamson-Scribner in his paper on grasses as sand and soil binders.* The sand

[^79]or soil binding grasses have strong root stocks or rhizomes. There are two kinds of these soil binders. First.-The coarser kinds which are exposed to the most severe action of the winds and waves. These have their rhizomes deeply buried in the sand. Second -Grasses with prostrate stems that creep over the surface of the sand and produce at frequent intervals long fibrous roots. Some of the more important of the sand binders are Marram grass, Ammophia arenaria, the Elymus arenarius. Of the many other grasses which aid in holding the soil, mention may $\mathrm{b} \geqslant$ made of the rolling spinifex (Spinifex hirsutus), Louisiana grass (Paspalum compressum), and sand grass (Calamovilfa longifola). The latter species is especially valuable in many sections of this state where it retains the loose sandy soil along some our streams. The Spartina cynosuroides is a valuable grass in holding the alluvial soil of the Missouri river bottom in position.

Oil.

Maize oil is obtained from the embryos of corn. Dr. Harshberger* says: "The oil is not obtained by direct expression, but the grain is malted, and the germ is separated by ca eful crushing and winnowing. The germs are then submitted to hydraulic pressure, and yield 15 per cent oil, and a press cake rich in albumen, contai, ing 4 to 5 per cent oil. Maize oil is of a pale golden-yellow colo , and has a peculiarly agreeable taste and odor. It is a thick liquid, and has a specific gravity of .9215 at $59^{\circ} \mathrm{F}$. It consists of olein, stearin, palmitin, and contains some volatile o.l. It solicifies to quite a solid mass at 10° C. (14° F.)."

It is one of the common by-products in the manufacture of glucose from the embryo of corn. It is an excellent oil for salad purposes and is also a possible adulterant of olive oil and used in the manufacture of soap.

Fuel.

In many of the western states the cob; of corn are used for fuel purposes, and Dr. Harshberger states that three tons of corn cobs equal one ton of hard coal fur fuel purposes. It is hard to estima'e the value of corn cobs as a fuel. F..N. Fowler who has charge of the L ckwood elevator, one of the largest elevators along the C. \& N. W. railroad in central Iowa, states that it is impossible to make an estimate of the total value of

[^80]the corn cob for fuel purposes in thi; state. Mr. Fowler states that while corn cobs at 50 cents a load are good for combustible purposes, they are not so cheap as slack at $\$ 1.10$ a ton. Fifteen loads are equal to a ton of nard coal. Burning cobs are extremely hard on the fire brick. It should be stated that in addition to its value for fuel purposes, a fine quality of potash may be obtained from the ash of burnt cobs.

The Poisonous Effects of Grasses.

Darnel.-It is a wall knowa fact that a number of grasses are poisonous. It was well recognized by the ancients that darnel (Lolium temulentum) is poisonous, for it is written: "But while men slept, his enemies came and sowed tares among the wheat. "*

Darnel, when ground up with wheat and made into flour, is said to produce poisonous effects on the system, such as headache and drowsiness. This poisonous property is sa'd to reside in a narcotic principle, Loliim, and according to Hackel "causes eruptions, trembling and confusion of sight in man and flesh-eat ng animals, and very strongly in rabbits, but it does not effect swine, horned cattle or ducks.' Lindley \dagger states that the \mathbf{g} ain is of evil report for intoxication in man, beast, birds, and bringing on fatal convulsions. Haller speaks of them as communica ing these properties to beer. It acts as a narcotic acid poison. Darnel meal was formerly recom nended as a sedative poultice. In Taylor's ${ }_{+}^{\dagger}$ work on poisons, the statement is made that the seeds, whether taken in powder or in decoctions, have a local action on the alimentary canal and a remote action on the brain and nervous system. He states furthe that no instance is reported of its causing fatal injuries to man, and as much as three ounces of a paste of the seeds have been given to a dog without causing death. Then he goes on to cite the experience of Dr. Kingsley, in which severdl families, including about thirty persons, suffered severely from the effects of bread containing the flour of darnel seed. These persons had staggered about as though intoxicated. It is claimed by some investigators that this plant is not poisonous. One writer claims to have made bread with

[^81]flour said to coatain considerable quantity of the darnel, which was eaten without any injurious effects. There are other grasses which have a similar narcotic effict. Quite recently it has been claimed by several European investigators, notably Guerin* and Hanausek, \dagger that the fruit of Lolium temulentum contains a poisonous fungus. Guerin states that the hyphae of a fungus constantly occurs in the nucellus of the seed and the layer of the caryopsis lying between the aleurone layer and the hypha portion of the wall. He also thinks that the toxic ac ion of the Loliums is due to this particular fungus hypha. These fungus threads have not been found in L. italicum and but once in L. perenne. The fungus is allied to Endoconidium temulentum. The fungus lives symbiotically in the maturing grain and is therefore not a parasite. Nestler, \ddagger who made an examination of L.perenne, L.multiflorum, L. remotum and L. festucaceum, found nothing comparable to the fungus mycelium which occurred in L temulentum. He also succeeded in demonstrating the presence of the mycelium of the fungus as indicated by Guerin. According to Nestler the Fusarium roseum is identical with the fungus occarring in L. temulentum found by Guerin.

Sleepy grass.-In the west a species of grass has received the common appellation of sleepy grass. It has long been regarded by range people as poisonous. Dr. Palmer, who found this grass in Coahuila, New Mexico, observed that it was poisonous to cattle, horses and sheep, causing them temporary sleepiness. Later Dr. Havards states that in 1888 he received from Dr. M. E. Taylor, of Stanton, N. M., a grass with the following statement: Hereabouts grows a grass-the eating of which by horses will, within a few hours, produce pr,found sleepiness or stupor, lasting twenty-four or furty-eight hours, when the animals rally and give no evidence of bad effects. It is known among cowboys as "sleepy grass" ard dreaded by them on their "round ups" as their horses are liable to eat it and cannot then be kept up with the herds. The tradition is that horses that have once eaten of it will not touch it again. To quote from Dr. Havard, "From the same gentleman I received a letter in 1890, in which he says: 'Since I corresponded with Dr. Taylor it has been brought to my notice that

[^82]cattle are affected in a similar way to horses, and that the curious properties which so effect animals are contained in the blades. Quite a number of our horses have been ill this spring after having eaten it. It usually takes them about a week to recover, during which time they are unfit for work, and especsally so during the first three days.'

Fig. 74 A. One of the grasses referred to as sleepy grass Stipa viridula. (After F. Lamson-Scribner Div. of Agrost. U. S. Dept. of Agrl)
"Captain Kingsbury, of the Sixth United States cavalry, under date of March, 1890, wrote me from Fort Stanton that the sleepy grass affected nearly all his horses at two campiog places. It was hard work to make them walk.
"The similari y of symptoms, whether ob erved in Coahuila or in New Mexico, is certainly remarkable, and furnishes strong evidence of the substantial accuracy of the observations as
reported. It would seem, then, reasonably established that this plant possesses narcotic or sedative properties, affecting principally horses, but also cattle and probably other anımals; that animals are not fond of it, but eat of it inadverten ly or when under stress of hunger; that cases of poisoning occur especially in the spring, when the radicle and lower blades first come up, and that the active principle rasides in these blades, and perhaps only during that season."

The old world species Stipa inebrians is said to affect animals like S. robusta referred to by Dr. Havard.

Millets.-Several millets, and especially Kuda millet (Paspalum scrobiculatum), are known to be poisonous and injurious. According to Grant, several well-known cases of poisı ning resulted from the consumption of this grasslargely used because of the scarcity of food grains. He suggests that it is die to a poisonous volatile alkaloid. There have bern numerous complaints, from time to time, from the injurious effects of millet Setaria italica when fed to horses and cattle.

Dr. Hinebauch* states in regard to this trouble that in the winter of 1891 and 1892 a disease commonly called millet disease was prevalent to a considerable extent in North Dakota. That this disease was at ended by a death rate of 7 to 10 per cent. It received the name of millet disease from 'he fact that from 95 to $98 \mathrm{p}+\mathrm{r}$ cent of the animals that were affected had been fed on millet. He says: "When millet is fed in considerable quantities it stimulates the kidneys to incrtased action. The urine is light colored and the bladder evacuated every two or three hours, large quantities of water b ing passed at each time. At the time the first symptom \boldsymbol{o} of lameness were notict d, the kidneys had almost ceast d to act." Aıd then he g es on to say: "When the cause was kept up a sufficient leng h of time for the reac ion to set in, the mater al which wonld under normal conditions be secreted by the kidneys is allowed to remain in the system and produce de leterious effects." Apparently the conditi in of the millet had little to do with this action. In a later bulletint on th saues bject Dr. Hinebauch rep rts a more extendel investigation, giving considerable experimental data as $w 11$ as urinary analyses. The post mirtem examinations revealed s me i teres ing facts. The cartilages on the ends of the long bones show deep furrows run-

[^83]

Fig. 74 AA. Shama millet (Panicum colonum), $a . b, c, d$, different views of the spikelet and glumes; e, f, two views of the "seed" (Div. of Agrostology U. S. Dept. of Agrl.)
ning in a direction parallel with the motion during flexion and extension.
"Both grooves of the astragalus were partially denuded of cartilage, so thit the corresponding elevations of the tibia which articulate in the grooves did not have cartilage interposed between them. The whole general appearance, instead of being of a white, glistening color, was of a dark, dull color bordering on brown. The fluid which escaped from the joint when opened, inst ad of being a yellow, amber color, was brown and contained red blood corpuscles, indicating that inflammation was present. The joint fluid was brownish black in culor and contained red b ood corpuscles.
"In conclusion we would say that our experiments here have thoroughly demonstrated that millet, when used entirely as a coarse food, is injurious to horses. First. In producing an increased action of the kidneys. Second. In causing lameness and swelling of the joints. Third. In producing infusion of the blood into the joints. Fourth. In destroying the texture of the bore, rendering it softer and less tenacious, so that traction causes tre ligaments and muscles to be torn loose. The experience of many farmers with whom I have talked confirms the above conclusion, and we could multiply case after case showing that the atove conditions are the results of feeding millet."

Very recently the North Dakota Station has published the results of further experiments on the subject of feeding millet. Two tests were made. In the first trial two geldings in good health were fed hay and grain for about two weeks. Millet was then substituted f cr hay for about ten days.

Recently Ladd* has isolated a glucoside from the aqueous extract of millet hay, which, when fed in small quantities, gave the characteristic symptoms.

From the experiments made by Dr. Hinebauch and others, it would appear that feeding millets alone as coarse fodder is injurious to horses. It produces an increased action of the kidneys, and causes lameness and swelling of the joints. It causes an infusion of bl od into the joints, and destroys the texture of the bone, re dering it soft and less tenacious, so that the ligaments and muscles are easily torn loose.

In a paper on millet by A. A. Crozier, \dagger the experience of several farmers is given as to whether millet is injurious or not. The tfstimony given differs gratly. Some claim it is injurious while others claim it is not. The condition of maturity seems to make a difference as to its injurious qualities.

Mechanical Injuries and Obstructions.

Awned grasses. - Under the subject of dissemination, reference was made to the subject of the fruits of stipa burying themselves in the flesh of sheep a d other animals. It has long been known that the Stipa capillata, L., indigenous to Russia, and th \rightarrow Stipa spartec, native to North America, as well as Aristida hygrometrica Br., native of Queensland, and Heteropogon contortus, native of New

[^84]Caledonia frequently bore in to the skin and intestines where they cause fatal inflammation. The following very full account is from Dr. M. Stalker:* "You ask whether the fruits of the porcupine grass (Stipa spartea) are ever a source of inconvenience or injury to living animals? This may be very emphatically answered in the affirmative. In many of the northwestern

Fig. 74 B. Needle grass (Stipa comata) a, spikelet showing awned fruit; b, lower glumes removed. (After Lamson-Scribner. Div. of Agrost. U. S. Dept. of Agrl.)
counties of Iowa this grass grows in the greatest profusion, and during the latter part of June, the season for maturing and consequent falling of these spines, they are the-occasion of much annoyance and in some instances the death of domestic animals. Only such animals as are covered with wool or a thick growth of long hair are seriously inconvenienced. Sheep suffer most. The spines readily find a lodgment in the wool,

[^85]and after burrowing through it frequently penetrate the skin and bury themselves in the flesh. A large number of these barbs thus entering the tissues of the body produce an amount of irritation that is sometimes followed by death. I have seen large numbers of these imbedded in the skin and muscular tissues of shepherd dogs that were covered with a thick growth of soft hair. These sagacious animals frequently exihit the greatest dread at being sent into the grass during the season of danger."

Professor Bessey in his account of the structure of this plant received several responses, and one of these was from Professor King, now of the University of Wisconsin. "In connection with the two notes relating to the fruit of the porcupine grass, it may not be without interest to say that while engaged in geological work in Dakota, north of the Northern Pacific railroad, we were much annoyed by the fruit of this grass. Indeed, I found the only way to walk with comfort through this grass was to roll my pants above my knees and my socks down over my shoes. I also observed, on several occasions, these seeds planted two inches deep in the soil with the awns protruding from the ground. It is plain that with the point of one of these fruits once entered below the soil, the swelling and shrinking, due to varying amounts of moisture, would work the seeds directly into the ground."

The Stipa comata, or needle grass of the west, which is common throughout the Dakotas, and throughout west Dakota, Nebraska, Wyoming and Colorado, is common in prairie hay, and Prof. Thomas A. Williams* mentions that, though a forage plant, and not cut until the needles have fallen so that the stock may not be injured, the fruit of this plant often injures stock to a considerable extent.

Corn stalks.-For a long time farmers in the west and other parts of the United States have been troubled with the so-called corn stalk disease. This has been attributed to various causes, as impaction of the stomach and a bacterial disease. Dr. Mayo, of the Kansas Agricultural Experiment Station, attributed it to an excess of p tassium nitrate in the stalks.

Injuries from barley. - It has long been known that the barbed awns of barley, wild barley and other plants act injuriously in a mechanical way. In the west this is especially true of wild

[^86]

Fig. 75 A. Squirrel-tall or wild barley; b, spikelets; c, d, flower. (King.)
barley, Hordeum jubatum. Dr. S. H. Johnson,* of Carroll, states in the Carroll Herald, that this grass, when found in hay and allowed to ripen, if in any quantity, is very injurious to horses" mouths. He says: "The small awns seem to work in and cause deep ulcerating sores, which form under the tongue and lips. The writer has seen a large number affected and made a careful examination, and found them deep in the flesh, where they had remained for three months or more. I bave seen lips eaten completely through and tongues eaten almost off by the grass. As to cattle, I have seen some affected, but not to any extent, because the mucous membranes are much thicker. The sooner the grass is eradicated the better: "

Professor Nelson, \dagger who has carefully studied this question, says on the injury to stock: "The awned heads, when taken into the mouth, break up into numerous sections, scatter about within the mouth and everywhere adhere to the mucus membrane, which soon becomes pierced with the long, stiff awns. As the animal continues to feel more awns are added, and those already present are pushed deeper into the fiesh. Inflammation soon results and leaves the gums of the animal in a condition to be more easily penetrated. The awns are particularly liable to be pushed down and alongside and between the teetb. As the swelling and festering progresses the awns are packed in tighter and pushed deeper and cause suppuration of the gums as well as ulceration of the jaw bones and the teeth. Through the absorption of the ulcerated sockets and roots the teeth

[^87][^88]become loosened and even drop out, but the animal, impelled by hunger, still endeavors to eat such hay as may be offered."

There are also cases on record where these awns produce hair balls. An interesting account of hair-balls may be found in a paper by Dr. Trelease.* "Barbed trichomes and barbed

Fig. 75 . Little barley (Hordeum pusillum) probably also causes mechanical injaries. (F. Lamson-Scribner Div. of Agrost. U. S. Dept. of Agrl.)
stiff bristles have been known to cause serious injury to stock Professor Coville has recently called attention to some of these coming from a plant that has had considerable advertising as a forage plant, Crimson Clover (Trifolium incarnatum). Professor Coville \dagger says: "The crimson clover hair-balls, measur-

[^89]ing two or three inches in diameter, were taken from the stomach of horses, whose death they had caused. They were compact and much resembled the hair-balls often found in the stomachs of ruminants, but were entirely eomposed of the small barbed trichomes from the mature calyx of crimson clover." Millets are said also to produce "masses" probably hair-balls according to a writer* in the Amerioan Agriculturist.

Harz \dagger bas given an account of the injurious effects of oats bran. This feed favors the development of large bezoars. In the paper cited he has extensively discussed this question as well as giving references to literature.

Corn Moulds and Disease.

It is not uncommon some years to find that many ears of corn are affected with various moulds. These moulds frequently appear as the results of the attack of Heliothis armigera; however, this is not always the case. Sometimes only the top is affected, or only a part of the ear both at lower and upper end, or several rows may be attacked. These moulds are mostly saprophytes, and so far as known do not attack living tissues. One of the most frequent of the moulds is the green mould Eurotium (Aspergillus) glaucus which is described elsewhere in this paper.
N. S. Mayo, \ddagger as the result of some work done in Kansas, concludes that a disease known as "staggers," "mad staggers," or as he has termed it enzootic cerebritis is caused by feeding corn which is attacked by Aspergillus glaucus. Mayo states that the spores of the fungus gain entrance to the circulation, and find lodgment in the kidneys and liver. He supports his conclusions by experiments made by him on a guinea pig and a

Fig. 76. Mould from mouldy corn (Botrytes vulgaris), showlng conld1ophore and spores. (Pammel and King.) young colt. He also quotes Kaufmann, who was successful in producing a disease with Penicillum glaucum and Aspergillus glaucus.

[^90]There is considerable loss in many states from cerebro-spinal meningitis. In many parts of the country this is attributed, as I have said before, to mouldy corn. Dr. Bitting,* of the Indiana Agricultural Experiment Station, made an investigation of this question and concludes that mouldy corn is not responsible for this disease. Upon an examination of mouldy corn he found several moulds and a bacterium. To test the poisonous properties, two horses were injected under the skin with five cubic centimeters of the active growth in boullion of the bacterium found in mouldy corn, and later followed by an injection of ten centimeters. Later larger amounts were given, and each animal was induced to eat as much as five pounds of the infected meal per day. One of the moulds as well as the bacterium gave negative results; the Fusarium produced a redness of the gums and some salivation. In no case did cerebro-spinal meningitis result.

Fig. 77. Moulds and bacteria from mouldy corn. 1 and 3, Fusarium; 1, mycelium; 2 and 6, other moulds; 4 and 5, bacteria. (Pammel and King.)

The results of the experiment show that inoculations with culture of the bacteria and moulds were ineffective. Eating of the mushes containing pure culture showed that only in the case of a growth of a species of Fusarium did any intestinal disturbance follow, and that in one case the feeding of the rotted grain produced considerable intestinal disturbance and some nervous symptoms, but that the disturbance was light in the other.

Grawitz succeeded in producing infection by adapting the digestive tract of the animals to an alkaline medium. It is a

[^91]

Fig. 78. Oommon blue mould (Penicillium glaucum). Spores at end of branches; spores borne 1r chains. (Pammel and Klng.)
well-known fact that several of the moulds related to Asperillus are the cause of what is called mycosis in many of the lower animals. Aspergillus glaucus or, more properly speaking, the Eurotium (Aspergillus) glaucus is extremely common notonly in hay but in many other objects, and yet this disease is very rare. This question should be further investigated.

Fig. 79. Common Herbarlum mould. (1) general appearance, showing long conidiophore and sterigmats on end; (2) peritheclum with one of its asol and ascospores; (3) contents from an unripe peritheclum; (4) a small part of a mycellum with conidiophore c, and spore bearing sterigmata, young ascogonlum a.s. (DeBary except 1.)

Fungus Diseases of Grasses.

A large number of our forage plants are subject to serious fungus diseases, which materially lessen the crop. While these diseases are most severe to the cereals, where they annually entail a loss of millions of dollars, many of our best forage grasses are subject to most destructive rusts and smuts. One way to overcome these dangerous pests is in a study of their life history to see if methods of culture cannot improve the

Fig. 80. Downy mildew of millet (Sclerospora graminicola.) The leaves partially dislntegrated; a, leafimagnified; b, conidia; c, conidiophore bearing conidis (spores) (Pammel and King.)

Fig. 81. Sclerospora graminicola. Leaves torn up into shreds, flled with oospores. (King.)
quality of the product or render the plant less susceptible to the disease. Much in the following pages has been gleaned from various sources, as well as work of our own based on experiments extending over a period of years.

DOWNY MILDEW.

This disease is caused by Sclerospora graminicola (Sacc.) Schroet. Though a large number of plants belonging to many different

Fig. 82. To the left leaf of Setaria viridis contalning the oospores of Sclerospora graminicola, a single spore at (a). (After Trelease.) To the right spike affected by the same fungus; (b) single spikelet enlarged. (After Halsted.)
orders of flowering plants are affected by downy mildews, few of these pests are found on grasses. This fungus, though wellknown for some years in Germany and Italy, has not been long known in this country. It was first reported in Wisconsin, as occurring on Hungarian grass (Setaria italica) and foxtail and pigeon grass (Setaria viridis). Dr. Halsted* reported it from Iowa on the last named host in 1886, and the next year on Hungarian grass.

It is now common throughout the state of Iowa. The fungus has been found by the writer quite as common in Nebraska as in Iowa. Webber \dagger gives its distribution in that state, Ashland, Weeping Water (Williams), Lincoln (Bessey), where he found it on green and yellow foxtail (Setaria viridis, S. glauca). have also received it from North Dakota, where it was collected by Prof. Bolley. Like many other pests, it comes from Europe, and in all probability was brought to this country with the seed of either Hungarian or foxtail, as both grasses are native to that continent.

Little mention is made of this fungus by Tubeuf, \ddagger and it is not mentioned by Loverdo. § The account by Sorauer is short. A good account was given by Trelease; || it was also described by Farlow. 9

Halsted, ** who found it common here at Ames, reported on it in several publications.

The fungus produces a mycelium in the interior of the leaves and soon sends short branches conidiophores through the stomata. These bear the conidia, the summer reproductive bodies. Last spring I had an opportunity of observing an unusually large number of young diseased plants. A white frosty-like substance.(the conidia and conidiophores) appeared on the leaf in patches extending along the veins. The opposite side of the leaf was invariably of a yellowish color. In July and August the summer spores are not so commonly seen, especially in the older leaves. Last spring the weather was quite favorable for the deve'opment of this fungus. Young plants affected soon

[^92]succumbed to the disease, the leaves wilted and soon rotted. Later in the season the leaves of older plants being more rigid, did not show this rotting, but many of the leaves of the affected plants are brown and torn up into fine shreds. A little shaking will bring out a large number of small round bodies, the oospores; these are enclosed in a thick cell-wall. The spikes are also frequently attacked, producing large distortions. The pistil and stamens do not develop, while ${ }^{j}$ the bracts surrounding the essential organs are greatly lengthened. Thus in some affected spikes of Gol-

Fig. 83. Downy mildew of Hungarian grass Sclerospora araminicola; oog, ongonlum; oos, oosphere; an, antheridium; oo, oospore. (Pammel and King.) den Wonder millet and Hungarian grass the distortions were so large that they were not recognizable. The oospores are so numerous as to fill up the tissue between the epidermal cells. The oospores serve to carry the fungus over winter. It is not a difficult matter, if the seed is purchased from an infected district, to carry the disease to remote distances, as it is a comparatively easy matter for some of the bracts containing spores to get in with the seed, or for some of the spores to become attached to the seeds.

Mildew of Indian corn.-In a recent German scientific periodical, M. Raciborski describes a very destructive downy mildew of corn which he has named Peronosprra maydis. Many of the fungi of this group cause great loss, as for example the potato rot fungus, downy mildew of the grape, and others which might be mentioned. This fungus of the corn is no exception to the rule. It has been found but in one place in Java. No doubt, however, it will spread and may yet become a source of danger to us. The fact of its occurrence in Java is of interest, because corn is not native there. The author looked for it on native grasses, but failed to find any indications of its occurrence.

Where did the fungus originate? Most probably on some other grass and from that spread to the corn. The descriptions and figures suggest the similar European fungus on millet, Sclerospora graminicola described above. In Java the fungus is
known as "lijer" which means sleepy or tired. It makes its appearance on young plants. The second and third leaves are usually green. On the fourth and subsequent leaves the disease is easily recognized from a distance, as the plants are white or yellowish white. Either the entire leaves are affected or it forms bands. The young plants fall over. In the tissues of such plants an abundance of an undivided mycelium occurs. It has numerous haustoria or suckers which enable the mycelium to take up its nourishment. On the surface of the leaf may be seen a thick white mold, the fruiting threads of the fungus. These make their way through the stomata and bear summer reproductive bodies which germinate in a few hours. Young infected plants show these fruiting bodies in eight to twelve days.

In addition to these reproductive bodies resting spores known as oospores also occur abundantly, especially in the stems and leaf sheaths. Natural infection results by the wind which carries the spores, also from the oospores which may retain their vitality for some time. The writer suggests that the young diseased plants be pulled up with the root and burned. It is not likely that this fungus has been found on corn in this country. It may be expected, however, somewhere on this side of the Atlantic and may prove injurious.*

ERGOT (CLAVICEPS PURPUREA (FR.) TUL).
The subject of ergot is one of considerable importance to the Iowa stockman. Scarcely a year passes but complaints are received about the injurious effects to cattle from the use of fodder that contains ergot.

History. -It may not be out of place to briefly refer to the history of ergotism. Epidemics of ergotism have, without doubt, been correctly referred, even before the tenth century. Wood states that epidemics of ergotism or chronic ergotic poisoning have been recorded from time to time since the days of Galen (130-200 A. D.) and of Caesar (B. C. 190-44). From the ninth to the thirteenth century epidemics were frequent in France, and in the twelfth in Spain. They were first called plagues but later received special names. In 1596 Hesse and adjoiniug provinces were visited by this plague which was attributed to the presence of ergot in grain. In the epidemic in Silesia in 1722, the king of Prussia ordered an exchange of

[^93]

Fig. 84 Ergot on bluegrass; to the right leaf of bluegrass with uredo pustules of Puccinia poarum.

Fig. 85. Ergot (Claviceps purpurea) on Agropyron. (King.)
Fig. 86. Ergot on blue grass 1. Ergot on wlld rye 2. (After Salmon.)
sound rye for the affected grain. Freiburg was visited in 1702, Switzerland in 1715-16, Saxony in 1716, and other districts of Germany in 1717, 1736, 1741-42. France was visited in 1650, 1670 and 1674 . From 1765 to 1769 it was abundant in Sweden in rye and barley. Linnaeus attributed it to the grain of Raphanus raphanistrum, which was incorrect. The last great epidemic in Europe occurred in France in 1816, in Lorraine and Burgundy; it was especially fatal to the poorer inhabitants.

It has been observed that these epidemics follow a rainy season. Fleming states that in 1041, when the weather was so unpropitious, tempests, rains, and inundations occurring, many cattle perished from the disease. "In 1098, after inundations and heavy fogs, there was a general epizooty among cattle in Germany. In the same year ergotism appeared in the human species."

History in America.-Dr. Randall, in 1849, called attention to a disease in New York, in which the involved parts were finally invariably affected with dry gangrene. He states that in the severe climate of New York farmers allow their cattle to winter in the fields on blue grass (Poa pratensis) which is rich in ergot. A disease known as "hoof-ail" was correctly ascribed to ergot by James Mease, of Philadelphia, prior to 1838. The disease was quite severe in Orange county, New York, in 1820. It was minuiely described by Arnell. In 1857 the disease was quite severe in Portage county, 'Ohio. A committee appointed by the Farmers' Association of Edinburg reported that the disease was due to ergot in hay. In recent years* epizootics of ergotism have been reported by Law in New York, Stalker in Iowa, and Faville in Colorado. The most serious outbreak in recent years occurred in Kansas in 1884. This caused considerable excitement since at first it was diagnosed as "foot-and-mouth disease." Salmon, who examined some of the hay from several localities in Kansas, found a large proportion of wild rye (Elymus virginicus, var. submuticus) to contain a large quantity of ergot. In one case 12 per cent, and in another 10 per cent was found. From this he estimated that from 5 to 6 per cent of the entire weight of the plant must have been ergot and that a twenty-pound ration of hay would contain four ounces of ergot.

[^94]Nature of ergot.--Ergot is a stage of a minute parasitic fungus. Although its true nature was not known by early writers, it is mentioned by many of the earlier botanical writers. Lonicer*, about the middle of the sixteenth century, mentions

Fig 87. Ergot (Claviceps purpurea). I, normal ovary of rye; 2, young ovary of rye infested with ergot; 3, cross section of ovary showing mycelium and spores on surface, the sphacelial stage; 4 upper part of ergotized grain with spongy sphacelial mass; to the right of 4 mature ergot; $\%$, ergot germinating; 6 , section through club-shaped mass and flask-shaped perithecia; 9 , perithecia enlarged with asci; S, ascus with ascospores. (After Tulasne from Salmon.)

[^95]its specific use. Thalius* (1588) applied the name of "ad sistendum sanguineum."

Bauhin \dagger used the name of Secale luxurians. De Candolle \ddagger applied to it the name of Sclerotivm clavus. Although other names have been applied to it, the credit of working out the life history belongs to Tulasne, ore of the most eminent of French mycologists.

Characters of the fungus and development.-There are still many persons who believe that ergot is a degenerate kernel of rye or wheat, but the researches of Tulasne and other mycologists have laid at rest many of the vague theories concerning it. The black, purple, or dark gray spurs found in the flowers of rye, wheat, and other grasses are simply one stage of a parasitic fungus, known as Claviceps purpurea, Tul. These spurs consist of a compact mass of threads known as the sclerotium stage; it was formerly called Sclerotium clavus.

No changes occur in ergot while it remains in the head, but the following spring, when laid on damp earth, it produces at different points small, roundish patches which are somewhat elevated. Soon a small white head appears which elongates, becoming stalked, and bearing a globular head at the tip. These heads change from a grayish yellow to a pinkish colcr. A cross secticn shows that the central portion is made up of closely woven hyphae or fungus threads, while the edge contains a number of flask-shaped bodies, the perithecia, in which are found elongated bodies known as asci; each ascus contains eight filiform spores, the ascospores. The ascospores germinate and when coming in contact with a very young ovary the mycelium penetrates the delicate walls of the ovary and gradually displaces it. It is quite easy to trace out its life history by placing the ergot in damp sand and allowing it to remain over winter.

The first indication of ergot in the summer is the formation of the so-called honey-dew, a sweetish and rather disagreeable fluid, which is eagerly sought by flies and other insects which feed upon it. This fluid contains a large number of small spores, so that insects can readily carry the fungus from a diseased ovary to one not diseased. These spores germinate immediately. This stage is called the sphacelia, and formerly was held to be

[^96]a distinct fungus. In this stage the mass which has replaced the ovary is soft, but as it becomes older it hardens; ultimately a hard and compact mass, the ergot, is formed.

Chemical composition of ergot.-The grain contains about 30 per cent of a yellowish oil, consisting of fats, principally olein and palmitin. It contains, according to Wenzell, two alkaloids, ecboline and ergotice, which are said to be the active princ ples of the drug Another alkaloid, ergotinine, has also been isolated, but according to Kobert,* ergot contains three poisonous substances. These are cornutin, an alkaloid having a specific action on the uterus, causing it to contract; sphacelic acid, a non-crsstalizable and non-nitrogenous substance which causes the poisoning and gangrene; ergotinic acid, a nitrogenous glucoside without action on the uterus and narcotic in its effect. Besides these substances it contains others, prominent among them being a sugar called mycose, which is also present in other fungi.

Medical use.-Ergot has long been used in medicine on account of its specific action on the uterus. Its effects are (1) gastroenteritic, causing salivation, inflammation and diarrhoea; (2) a dry gangrene of the extremities, hoofs, ears, tail, etc.; (3) contraction of the uttrus and, as a consequence, abortion; (4) want of feeling, lameness.

Cereals a.ffected.-Rye is more subject to it than any of the other cultivated cereals. The largest specimens are usually produced on isolated specimens of rye coming up in fields. It seldom happens that all of the ovaries are affected. Wheat, especially winter wheat, is subject to the disease. The officinal ergot is usually obtained from rye.

Wild grasses.-Of our native grasses, wild ryes (Elymus robustus, E. virginicus, E. striatus, E. canadensis, Asprella hystrix) are most subject to the disease. Most cases of ergotism in this state undoubtedly result from the ergot of Elymus rolustus, which is a common everywhere. Agropryon spicatum, a grass not uncommon in northwestern Iowa, and Quack grass (Agropyron repens), are also much subject to its attacks. Scarc \in ly a head of the two species cultivated on the college farm could be found which did not have some ergot. This may be for the same reason that it occurs most abundantly on rye, namely, that the grasses occurred in isolated places. In some pastures, timothy (Phleum pratense), is much subject to the attack of Claviceps

[^97]purpurea. Thus in Wisconsin I observed a large percentage of timothy in an old pasture which contained many heads which were ergotized. Blue grass (Poa pratensis), Poa annua, Calamagrostis canadensis, Agrostis vulgaris, Glyceria fluitans, and many others, in some seasons and localities, are diseased.

Other forms of ergot.-It may be possible that some of the forms of ergot on grass may be referred to other species. Halsted states, however, that the ergot on Elymus robustus is Claviceps purpurea. The Hordeum jubatum contained apparently the same species, with some minor differences but these are due to the nature of the host.* The Claviceps microcephala (Wallr) Tul. occurs on Phragmites, C. setulosa (Quel) Succ with a yellow stroma on Poa, and C. pusilla Ces on Andropogon Ischaemum.

Preventative measures.-With modern methods of cleaning cereals there need be little fear of the presence of ergot in flour butit still continues to be a decided menace to cattle, especially where it develops in our grasses, as timothy, blue grass, red top, and wild rye. It is imperative to cut all of these grasses before the ergot is mature. The presence of ergot in these wild grasses no doubt causes its spread to wheat and rye fields. Von Thumen thinks that the Lolium perenne, so commonly cultivated in Europe, is largely responsible for its abundance in Austria. \dagger He emphasizes the importance of cutting the grass in waste places several times during the year to prevent the formation of ergot.

CAT-TAIL FUNGUS.

Cat-tail fungus, Epichloe typhina (Pers.) Tul. This fungus was described by Persoon \ddagger as Sphaeria typhina in 1801 and by him recognized as parasitic. Tulasne§ transferred it from the genus Sphaeria to that of Epichloe. It has been described from an economic standpoint by several mycologists-Sorauer \|, De Bary ${ }^{\boldsymbol{T}}$, Trelease**, Frank $\dagger \dagger$ and Tubeuf $\ddagger \ddagger$.

This fungus is occasionally very abundant and destructive to timothy, and ozcurs occasionally on other grasses, notably

[^98]

Fig. 87A. Cat-tail fungus (Epichloe tuphina) on timothy. (King)

Poa, Elymus and Dactylis. The fungus produces a whitish stroma, which surrounds the grass culm near the upper leaf sheaths This velvety ring consists of a loosely arranged mycelium which takes the nourishment from the grass plant, causing the parts above the ring to die, since it prevents the conductingof food to the leaves above. This stroma produces small, one-celled conidia borne on conidiophores. As the stroma becomes yellow, deep-seated perithecia occur. These contain the asci in which eight hyaline ascospores are found. The fungus spreads from a center of infection to neighboring stalks, especially by means of the conidia. To prevent the fungus from spreading it is advisable to cut the grass at the time the fungus appears on the young plants.

HYPOCRELLA (HYPOXYLON (PK. SACC.)
This fungus is closely related to the preceding. It produces a thin grayish stroma which usually becomes black and extends along the upper surface of the leaf or surrounds the culm. The perithecia are small and crowded; the asci narrow and linear; the ascospores linear, colorless, with numerous nuclei.*

The fungus attacks living grass, stems and leaves.

POWDERY MILDEW OF GRASSES.

The powdery mildew (Erysiphe graminis D. C.) is a serious fungus disease at times. It was described by DeCandolle \dagger and has been noted by several writers. \ddagger.

Every one who has had occasion to walk through a blue grass meadow after a rain, especially in damp and shaded places close to the ground, must have noticed a white mealy covering on the blades of many of the leaves. The Germans have called this mehlthau (literally translated meal dew) which

[^99]is certainly very expressive of its appearance. An examination with a microscope will show that this white substance is composed of spores and a mycelium. The mycelium is cobwebby and spreads over the surface, but does not penetrate the leaf. In numerous places erect branches are produced, these bear numerous spore: This stage was formerly called ()idium monilioides. Called Oidium because the spores resemble an egg. In all cases of Oidium this is not true; the species was called monilioides because necklace like, referring to the manner in which the spores are borne. Worthington G. Smith states the spores are so numerous that it would take about a million spores to cover a squara inch.

These conidia or summer spore; germinate, under favorable conditions, in from ten to sixteen hours. The temperature most farorable for germination is from $17-26 \mathrm{C}$. In a powdery mildew occurring on the squirrel-tail grass, and supposed to be the same fungus, these spores are also capable of immediate germination. On blue grass the fungus frequently does not produce perithecia but ends its existence with the formation of conidia.

Under favorable conditions, especially moisture and damp weather, the fungus spreads rapidly. The leaf of grass affected by this fungus soon dries up. When the leaves have become dry and the affested plants are disturbed a little, clouds of dust arise, especially in shady places. The perfect stage of the fungus is not of common occurrence, though if careful search is made in the fall, small black specks may be seen; these are the peri hecia and contain the asci and ascospores. It is the resting stage or winter condition of the fungus. The writer found the perfect fungus abundant on Poa wolfii in Colorddo, and Carver found it abundant on blue grass near Ames one season. The Oidium stage does not reta'n its power of germination very long, but the ascospores contained in th perithecium germinate the follo ving spring, and when the tube comes in contact with the proper host the mycelium spreads over the surface of the leaf and causes the mealy appearance.

Plants a!lecterl. - It affects especially blue grass with us and is much worse some seasons than others. English investigators report that this fungus is most abundant when slight frosts occur, also with heavy rains and wet soils. Texas blue grass (Poa arachnifera), fowl meadow grass (Poa serotina), Eutonia obtusate, and red top (Agrostis alba vulgaris) and many

Flg. 89. Powdery mildew of blue grass (Erysiphe graminis), leaf of blue grass curled; to the right the leaf more magnified, the black spots perithecia, to the right perithecia more magnflied. (King.)

Fig. 90. Powdery mildew of bluegrass, Erystphe graminis, Oidium stage. The leaf to the right hand magnified, the one to the loft more magnified, showing the powdery substance.

Fig. 80A-a, mycellum ind erect conidiophores; b, c, conidia.
of the grasses when grown in moist, shady places, and becoming rank, suffer from this disease From this it would seem that proper drainage would alleviate the trouble. In England wheat is commonly affected and greatly injured. In moist and shady places in this country it is affected. Eriksson reports the fungus severe on wheat at Stockholm, Sweden. Barley and oats are also affected. Von Thumen* states that the fungus is abundant on Lolium perenne and Dactylis glomerata. The writer has observed it abundantly on several species of Poa, especially Poa wolfii, near Golden, Colorado.

Fig. 91. Powdery mildew of grass (Erysiphe graminis). A, Oldiam stage and mycellum $m ; B$, perithecium with appendages and mycelium m; C, perithecium with ascl and ascospores. (Frank.)

[^100]GIbBELLINA CEREALIS, PASS.
Passorini,* who described this fungus in 1886, states that it was very destructive. Later Cavara \uparrow published an extended account of the fungus and has given us the details of its life history. Loverdod likew se describes it. The culm of affected plants is very weak and does not produce fruit. The culm above the first node above the ground shows a grayish-brown circular spot. Later these spots lengthen and become confluent. The spots are covered with a mouldy mycelium which

Fig. 92. Stem blight, Gibbellina cerealis; a, general appearance; b, ascl with ascopores and paraphyses; c, stroma, mycelium and perithecium. (Cavara.)
*Bol. de Comiz. Agr. Parm. 1886:
†Ueber einige parasitische Pilze. Zeit. f. Pflanzenk. 3. 10.
むLes Maladies. Orypt. 225.
sometimes nearly encircles the stem. The lower leaves are dead. The mycelium consists of thick, branched, hyaline septate threads, which spread over the surface of the host, sending haustoria into the cells. The erect threads bear oval or ellipsoidal spores after the fashion of an Oidium. These spores propagate the fungus during the summer. Later immersed perithecia are formed, arising from a deep, white stroma. The perithecia consists of somewhat flattened cells. In the interior occur numerous paraphyses and asci. The club-shaped asci contain eight two-celled yellowish-brown ascospores arranged in two rows. The fungus apparently enters the plant through the delicate tissues of the germinating seedling.

BLACK SPOT DISEASE OF GRASSES.

The Phyllachora graminis (Pers.) Fuckel occurs on many cultivated and wild grasses; other species occur on clover and other leguminous plants. This parasitic fungus disease cause blackish spots on the lower or both surfaces of the leaf. The fungus causing these black spots on grasses has been called the black spot disease of grass. This was first described by Persoon* as Sphaeria graminis. Fuckel \dagger made the correct combination. It is generally so called by mycologists.

During August, and especially later, the coal black spots along the veins are especially prominent; they are considerably

Fig. 93. Black spot disease of grass (Phyllachora graminis.) A, showing crosssection of leaf through a black mass; B, an ascus with spores enlarged. (A and B, Frank; a after Trelease.)

[^101]less than one-eighth of an inchinlength and width. They occur on both surfaces of the leaf, but are more abundant on the upper. These black spots are composed of a dense mycelium, which in the green leaves bears numerous small spores which serve to propagate the fungus in the summer. In dead leaves small perithecia are found, which contain numerous elongated bodies, the asci within which are found eight small, colorless spores, known as ascospores; these latter carry the fungus over the winter. In Iowa the grasses most commonly affected by this fungus are quack grass (Agropyron repens), wild rye (Elymus robustus), Asprella hystrix, and Panicum Scribnerianum. Occasionally this fungus is quite destructive. Frank,* Tubeuf, \dagger Trelease \ddagger and Pammel have given accounts of this fungus.

BROWN SPOT OF WHEAT HEADS.

The Phoma hennebrgii, Kuehn on wheat was first detected by Kuehn.§ Frank|| has noted it in Germany and Eriksson for Sweden. This fungus causes brown spots on the sterile and flowering glumes In thes spotismall perithecia occur. These contain small, one-celled conidia. The kernels become spotted and shriveled. Whole fields may be affected. Related to this is the Phoma lophistomoides, Sacc., which is a saprophyte, according to Cavara.."* The perithecia are small, $60-80^{\text {u }}$ in diameter, with an oblong ostiolum, and are immersed in the tissue. The spores are small and thread-like, rounded at the ends, $8-10^{u}$ long, $.5-.75^{u}$ wide.

BROWN SPOT DISEASE OF GRASSES.

The Septoria graminum, Desm has received the name of "Take-all" in Australia on account of the nature of its destructive work. N. A. Cobb says: "Taking the occurrence in spots, as a starting point, I determined to see whether some other characteristic symptom could not be made out, and in this I was partially rewarded, for I found in the great majority of cases that the plants dried up when young, mys'eriously as some farmers said, and left the ground bare or covered with weeds. This will seem old news to farmers and hardly worth as much

[^102]attention as I have given it, yet it is not without a reason that I have made so much of it, as will soon be seen. Moreover, I found the wheat in nearly all well attested cases of 'Take-all' to be infested with two fungi, namely, Cladosporium herbarum and Septoria graminum. Both these fungi have long been known

Fig. 94. (a) Septoria bromi on Bromus secalinus, small black spots on leaf the perlthecla.

Fig. 95. Spores of Septoria bromi.
to botanists, but it is only within recent years, when vegetable pathologists have begun to enquire carefully into the causes of the various diseases of useful plants, that both the Clados. porium and the Sepioria have been found to be serious pests in the grainfield."

This fungus disease is common to many grasses and is quite destructive at times. It was described by Desmasier*. It is common, not only in this country but in Europe as well. Eriksson \dagger reports it as common in Sweden and Cavara ${ }_{\ddagger}{ }^{\dagger}$ says it is on the increa:e in Italy. Cobbs remarks on its cymmon occurrence in Australia. Trelease $\|$ discussed it in his work on fungi injurious to grasses and clovers. It is most injurious to wheat and here it causes the young plant to turn a yellowishgreen, then becomes yellow. The leaf finally dries and withers. It appears on the sheaths and culms. The interior of the plant contains an abundance of the mycelium. In the dead spots of the leaf may be seen small black specks-the perithecia, which are either aggregated or scattered. These perithecia contain hundreds of small, several-celled spores, $40-50^{\mathrm{u}} \times 1$ 15^{u}. They are said by Cavara not to be divided. The spores are, however, occasionally two celled.

In a somewhat extended account of this disease Cobb states that the entire plant is not always involved. It is a variable fungus, its character depending upon the host which it attasks. On Poa unnuus the leaf is mainly involved and in many cases is totally destroyed. Cavara states that the spots on the leaves are small, elliptical, red or yellow, or the latter may be entirely absent. The injury it does to the young plant is very great; in some cases their total destruction has been observed.

Janczewski** who has studied the life history of Septoria graminum states that this represents the pycnidial stage of Leptosphaeria tritici and that the conidial form is the Cladosporium herbarum.

[^103]

The Septoria tritici Desm. is closely related to the above and should perhaps be regarded as nothing more than a variable form of S. graminum. The spots it produces are at first yellow, then reddish-brown, and finally whitish. The spores are $50-$ 60^{u} long by 1.5^{u} to 2^{u} wide and usually divided. A Septoria has been reported on the glumes of wheat in Ohio by Selby.*

Several other species of Septoria are allied to the above species, one, the Septoria bromi Sacc. is common in this state on Bromus secalinus.

CLADOSPORIUM HERBARUM (PERS.) LINK.

This fungus is destructive in parts of Australia, and has been reported on the increase in Europe by Frank \downarrow, it also occurs in this country as reported by Peck. The writer has likewise observed it on wheat aŋd oats in Iowa. Harvey reported it on oats in Maine. On wheat it is commonly referred to as blight. It attacks all parts of the plant but is especially common in the heads. The mycelium of the fungus grows not only on the surface of the plant but also in the interior. The conidiophores and spores are olive green. The conidiophores pass through the stomata or break through the epidermis. The spores are one to two-celled and are borne on the end or on short lateral branches. The spores are extremely variable in shape and size.

The general effect of the disease is to cause the kern ls to shrivel. The disease occurs rather destructively on oats as recorded by Cobb.§ Professor Peck\| records the occurrence of a Cladosporium on oats, which he describes as a new species, the Fusicladium destruens. He says in regard to oats. "The foliage of the plants presented a singular admixture of green, dead-brown and reddish hues, strongly suggestive of that of a 'rust-struck' field.' Peck thinks this fungus inhabits the leaves of some of our northern grasses and has escaped from them to oat fields. Mr. F. C. Stewart made a study of Cladosporium while at Ames, finding it on many wild grasses, especially blue grass. Giltay reports that plants are infected in the same way as in some of the grain smuts, the spores being carried

[^104]

Fig. 97. Oladosporium and other fungi on kernels of corn. Kernels of corn injured'on top.

Fig. 97 A. Cladosporium-like fungus. S, spores; c. conidiophores; 2, Macrosporium.

Fig. 97B. Oladosporium Zeae from corn kernels; a, conidlophores; b, c, spores.
Fig. 93. Spot Dlsease of Orchard Grass (Scolecotrichum graminum) Cross-section of leaf, general fruiting layer of fungus with conldiophores and conidia; \boldsymbol{A}, spores germinating (Trelease).
over by the fruits, and that the disease can be prevented by treatment with hot water. A species of Cladosporium commonly affects the kernels of maize, at times quite troublesome. According to Peck the C. Zece Pk. is parasitic and attacks the unripened grasses.

SPOT DISEASE OF ORCHARD GRASS.

Of the many imperfect fungi which attack grasses, one of the most serious is the spot disease (Scolecotrichum graminis),
described by Fuckel.* The only extended economic account was made by Trelease, \dagger in 1886 There are also shorter accounts by the writer. ${ }_{+}^{+}$This fungus is especially common on orchard grass. It is reported as destructive on timothy and oats by Eriksson. \& It also occurs on timothy and at times is quite destructive. It produces what is sometimes called rust. The writer has also found it on barley. Tubeuf\| reports it on oats It has, however, never been noticed on this host in Iowa. Trelease, \dagger describing the occurrence of the fungus about Madison, Wis., says: "When the basal leaves of orchard grass had reached their full length, my attention was attracted. by a very abundant discoloration of this species, sometimes confined to the extremity of the leaves, sometimes extending nearly to their base. So far as my observations went, nearly every stool of orchard grass was affected."

The first indication of the fungus is an elongated brown or purplish-brown spot. In older specimens the centers of these spots are gray or whitish and contain minute black dots. These small dark spots contain the tufts of brown fungus threads, which make their way out through the stomata. These fruiting hyphae bear small, smoky-brown, two-celled spores. The fungus causes the cells of the leaf to become much altered, because the colorless threads of the fungus permeate them. The hyphae are sometimes septate and the spores are usually borne at the end or occasioally in a lateral position. On barley the disease is marked by brown or purplish-brown spots which appear on the leaf transversely. Trelease notes that the season of 18×6 was a very dry one, very little rain having fallen for several months.

YELLOW LEAF DISEASE OF BARLEY.

The yellow leaf disease (Helminthosporimm graminum, Rabh) is one of the most destructive of the parasitic diseases affecting barley in Iowa. The fungus has been known for a considerable length of time in Europe, where it was first described by

[^105]Rabenhorst and found by Caspary.* The writer has published several notes on this fungus. \dagger It is closely allied to several species of Helminthosporium. Mr. Ellis, to whom specimens were submitted, writes that the fungus is, without doubt, Rabenhorst's Helminthosporium graminum and this is the same as H. inconspicuum, ${ }_{+}$C. \& E. and Passerini's H. turcicum. § The specimens in Ellis North American fungi were found on dead leaves of Zea mays. Passerini's specimens were also found on the species and he attributed it to the fungus he has described. Briosi and Cavara\| have described, figured, and distributed the same fungus in their collection of parasitic fungi. The spores of these species seem to agree well enough with Rabenhorst's H. graminum, which was found by Caspary on barley. Frank ${ }^{* *}$, in his earlier work on the parasitic diseases of plants, considered it to be only a well developed Cladosporium, but later refers it to Helminthosporium. In 1885, Eriksson $\dagger \dagger$ found a disease on barley, near Upsala and Stockholm, which he considered identical with that found by Caspary on barley in Germany. Kirchner $+\downarrow$ reports it as common in Germany and gives a good account. Later Aderholdss reported on its common and destructive occurrence in Silesia.

The Iowa barley disease agrees with Eriksson's, but differs from the corn disease found by Passerini. According to the latter observer the leaves of corn affected by the fungus are at first yellow, then become more or less discolored and finally wilt.

The spots in the specimens distributed by Briosi and Cavara on corn are sharply limited and extend across the veins. This disease manifests itself long before the barley has headed out. In the barley disease the spots extend from the base to the very tip of the leaf in parallel rows. The diseased leaves form quite a contrast to those of adjoining healthy plants, as they are variegated pale yellow and green. All the stalks of a stool

[^106]

Fig. 99. Yellow leaf diseae of barley (Belminthosporium graminum, Rabb.) a, hypha; b, hypha arising from short cells; c conidium, cluster of conidiophores to the left; d, mycelium. (Pammel and King.)

\therefore
$=$
$=$

Fig. 100. Helminthosporium graminum; a, spore germinating; a, conidiophore; b, conidiophore; e, conidium or spore.

Fig. 101. Leaf browning of corn (Helminthosporium turcicum) to the right. Mycelium below and a seven-celled spore above. Condiophore pushing through the stoma in right-hand figure. (Pammel and King.)
are affected. The plants die prematurely, and soon after death the leaves become torn into shreds. An examination of the affected parts when the variegated linear stripes appear shows a colorless mycelum permeating the tissues of the leaf. In older parts of the leaf blackish masses are clearly made out with the naked eye. These masses consist of the spores and fruiting fungus threads. The erect septate hyphae make their way through the opening of the stoma or break through the epidermis, bearing large three to six-celled spores at the end. Occasionlly one finds these hyphae branched. The mass of brown hyphae and spores along the veins can be seen easily with the naked eye. The spores germinate readily, often a number of germinating tubes coming from a single spore. The Helminthosporium teres, Sacc., on oats, described by Briosi and Cavara, is closely allied to the above species. The mycelium is intercellular and causes elongated dead spots, finally death of the leaf.

LEAF BROWNING OF CORN (HELMINTHOSPORIUM TURCICUM, PASS.)

Spot diseases are abundant and destructive on many of our cultivated plants. Corn, so far, has been unusually free from these troublesome diseases. In 1876, Passerini,* an Italian mycologist, described a fungus, Helminthosporium turcicum, as occurring on living leaves of corn. It was distributed by Rabenhorst. \dagger

Earlier, Cooke and Ellis described a somewhat similar Helminthosporium, the H. inconspicuum, on dead leaves of corn. The Cooke and Ellis species is sometimes parasitic. Comes holds that this fungus is distinct, although closely related to the European. Peck $\|$ states that it occurs on living or languishing leaves of Indian corn, and Harvey reports the var. uritanicum, Grove on oats. Professor Peck gives the following account of the disease: "If the lower leaves of corn stalks be examined toward the end of summer, some of them will be found to be dead and discolored at and near the pointed end. This discoloration is sometimes continuous, involving the whole

[^107]outer half of the leaf, and sometimes is interrupted and forms spots of various sizes and shapes. The spots, by increasing in size, become confluent, and thus a leaf, at first spotted, may soon become uniformly discolored. The discoloration results from the death of the leaf tissues and the destruction of the green coloring matter of the leaf cells, the affected parts appearing to the observer like so much dead leaf."

Stewart* states that the H. inconspicuum on Long Island must be regarded as an enemy of considerable importance. Both sweet and field corn suffered in some cases so severely as to materially lessen their value for fodder. The farmers attributed the cause of the disease to a period of unusually hot weather which prevailed during the month of August. Thaxter \dagger states that it is also injurious at times in Connecticut where it is known as "white blast of Indian corn." It is common at times in Iowa and does much injury.

Later Briosi and Cavara distributed a fungus on corn with a description of Passerini's H. turcicum. In 1891 one of us gave an account of Helminthosporium graminuin, Rabh., on barley in which reference was made to the fungus on corn. J. B. Ellis, to whom the fungus was submitted states that it is identical with the corn fungus. After a careful examination of the material at hand we are of the opinion that these fungi are different. The Italian fungus has not been observed here, but an account is given to complete the list of diseases occurring on corn. In the Italian disease the spots are sharply limited across the veins, one to three inches long, one-sixteenth to oneeighth of an inch wide. The dead tissues have the appearance of dead corn leaves when ripe or affected by frost and produce premature wilting. The surrounding green is in strong contrast. Over the dead areas may be seen small brown clusters, the hyphae and spores.

One or more of the fruiting hyphae make their way through the opening of the stoma. These come from a colorless mycelium. The conidiophores as well as the spores are brown. The latter are large, $8-100^{\text {a }}$ in length, $20-24^{n}$ in width. This fungus is often associated with Cladosporium fasciculatum Corda

[^108]and Alternaria tenuis Nees. The disease is not limited to corn but also occurs on sorghum (Andropogon sorghum).

GRAY SPOT DISEASE (PIRICULARIA GRISEA (COOKE) SACC.)
Crab grass (Panicum sanguinale) is seriously affected at times with the above fungus. It is sometimes difficult to find a healthy plant. The affected leaves at first are pale green in color, then become brown. The mycelium occurs in the interior of the leaf; the hyphae protrude through the openings of the stomata, bearing small pear-shaped spores slightly smoky in color. The spores measure 9×18^{u}. The affected parts have an ashy gray color.*

WHEAT SCAB (FUSARIUM ROSEUM, LINK).
This fungus as an enemy of wheat was first described by Worthington G. Smith \dagger as Fusarium culmorum. It is probably not common on the continent of Europe, as it is not reported by Loverdo, nor is much said of it by Sorauer. That it is a serious trouble here will be seen from the following estimate in Velvet chaff wheat: Out of a total of 125 heads, 73 were perfect, $2 t$ blighted one-third, 7 entirely blighted, and 24 blighted less than one-third. In the variety John, Mr. Stewart estimated the loss at about one-fifth. In hybrid Dattel, out of 120 heads counted, 57 were perfect, while 8 were entirely, 8 one-half, 15 one-third and 32 partially destroyed. Weed \ddagger has made this fungus the subject of several papers. He says: "In 1890 I saw a field of 100 acres in Madison county, Ohio, considered the finest wheat field in the county, and which was expected, shortly before harvest, to yield 35 to 40 bushels per acre, so severely attacked by the disease that the yield was reduced to 8 bushels per acre. Two other fields, one of 25 , the other of 50 acres, were shrunken in yield at least one-third from the same cause. The fungus apparently gains access to the tender, undeveloped kernel, sapping its life and sending down feeders into the main axis of the head on which the kernel and enclosed chaff are borne."

[^109]The disease appears about the time when the grain begins to turn. Either the entire head or sime part of it ripens suddenly and prematurely. If the head is partially destroyed the lower part will be green. Affected heads or parts of the same have a whitish appearance instead of a golden yellow. The

Fig. 102. Gray spot disease of crab grass (Piricularia grisea). (King.)
disease usually starts at the upper end, although it may begin at the lower end. The mycelium is whitish or varies from yellow to orange, divided, torulose. The spores are borne on erect threads arising from the mycelium, terminal or lateral, crescent-shaped, at first one-celled, finally divided into two or more cells. The color of the spores is whitish or, in masses, orange or pink. In germination each cell produces a germ tube. The several-celled spores may break up into conidia.

The Fusarium heterosporum Nees, is common in parts of Germany, and Tubeuf quotes Frank as stating that the destruc-
tion of rye is total in some places, the fungus investing the whole kernel. Rostrup* mentions it as destructive to germinating barley. It also occurs upon ergotized rye and is regarded by some mycologists as distinct from Fusarium culmorum. It is probable that the various species of Fusarium

l
Fig. 103. Wheat scab (Fusarium roseum or, Giblberella saubinettii (Mont.) Sacc.). 1, wheat head affected with wheat scab, upper portion destroyed; ?, spores of Fusarium; 3,glumes covered with perithecia; 4, perithecia; , ascl from perithecia, with ascospores, one of these enlarged at $6 ; 7$, conldophore and conidia grown in agar. (After Selby, Ohio Agrl. Exp. Sta.).
infesting cereals should be referred to F. roseum, Link, \dagger and according to Saccardoł, the ascigerous stage is Gibberella saubinettii (Mont.) Sacc. Selbys agrees with Saccardo in regard to its genetic connection with Gibberella.

[^110]
SMUTS—USTILAGINE.E.

The Ustilagineæ are popularly known as smuts and are well known to all farmers, at least those affecting our cereal grasses. Among the several hundred species those of cereals are most destructive, entailing a loss to the farmer every year of millions of dollars.

A large number of the economic grasses are likewisə affected, but these are not so often observed, though the loss in many cases is quite serious. I have not attempted to discuss all of the smuts of our economic grasses, though I have given short accounts of the more important, and especially the smuts of cereals. Many important studies have been made in this country especially of our єconomic species. Kellerman and Swingle, Arthur and other mycologists have made important contributions to our knowledge of Ustilagineæ. I have freely

Fig. 104. Maize smut, Ustilago maydis. Ear affected, e, smut boils: r, kernels; c, bracts.

Fig. 105, Smut boil making its appearance at the node. (King.)
used their material with such work as has been done from time to time during my connection with this experiment station.

CORN SMUT (USTILAGO MAYDIS). D C.
For more than a century this troublesome fungus disease has been known. The first reference to it was made by Aymen* in 1760, who records the disease on the tassel of corn. In 1806 it was described by De Candollet as Uiedo seffetum. Var. mayszeae. D. C. Burger, ${ }_{\ddagger}$ in his work on corn, gives a short account of the fungus. Bonafous, \S in his treatise on corn, gives the most complete of the early accounts of this disease. Kuehn, $\|$ Tulasne, ${ }^{*}$ Meyen, **Brefeld, $\dagger \dagger$ Fischer de Waldheim, $\downarrow \ddagger$ and a host of other writers have contributed to an account of corn. For a good bibliography as well as abstracts and conclusions of these writers we must refer to a paper by Hitchcock and Norton. 88 These writers have followed Magnus in adopting the name of Ustilago mays zeae (D. C.) Magnus, but the name in common use, that of Cstilago Maydis, seems preferable and is adopted in this paper.

General characters.-Corn smut makes its appearance when the plant is three or four feet high, a little before the time of flowering, although in some cases it is not observed till the ears form. Careful search will show that many leaves, as well as the nodes, are infested before the ear forms. In the leaf, small wrinkled patches appear. These are frequently reddish in color; later assume a glossy white color, and as it becomes older changes to a black sooty mass. The lower nodes are especially infested; also where the leaf joins the sheath. The

[^111]Plate I.

SMUTE OF MAIZE.

TALL MEADOW GRAES.

OATE.
sheaths, leaves and stems are more frequently attacked than the ears, as is shown elsewhere in this paper. The staminate flowers or tassels are especially affected, either a few of the spikelets or a large number, or a very distinct boil makes its appearance below the staminate flowers on the stem.

The most characteristic appearance of the smut occurs in the ear, forming the so called boils. This may include the whole ear or only a small part. The smaller ears further down are affected later, in part by auto-infection or from spores contained in the field.

Fig. 106. Maize smut on leaf. S-Smut boil, leaf very much wrinkled. The black smut boils contain the spores. (King.)

Eig. 107. Tassel showing corn smut boils and spores. (King.)
Microscopic characters.-The sooty mass consists of a large number of small bodies known as spores, that serve for the reproduction of the fungus. These spores are usually round, spherical, somewhat spiny and measure about $\frac{1}{3300}\left(8-13 \times 8-11^{\prime \prime}\right)$ inch in diameter. Hitchcock* has given the measurement of a large number of spores. Under proper conditions of moisture these spores germinate. This proceeds best in sterilized rainwater and if kept under proper conditions of warmth, a tube emerges through a pore. The spore consists of an outer wall, which is spiny, and an inner more delicate, the endospore. The tube or promycelium, as itis called, normally bearslateral

[^112]bodies, the conidia, but under more favorable conditions of food these may branch and bear secondary conidia. If the nutrient material is not exhausted this process of budding may be continued for a long time. These spores may propagate in a decoction of manure. It will then be seen that these budding conidia may be a center of infection.

The conidia as well as the secondary conidia are blown about by the wind and under proper conditions cause the infection of the corn plant. Several years ago Mr. F. C. Stewart* made some extended studies of the germination of cornsmut in which it was shown that the thermal death point of smut spores is 15 min ., $105^{\circ}-100^{\circ} \mathrm{C}$. in dry oven, and $52^{\circ} \mathrm{C}$. when immersed in water; and that corn is unable to come through an inch of soil after 15 minutes treatment with water at $70.5^{\circ} \mathrm{C}$., and in dry oven at $7 x^{\circ} \mathrm{C}$. Brefeld + found that smut spores produced an abundance of secondary conidia when they were germinated in sugar solution, but with us this has never been a very satisfactory method of propogating them as the cultures soon became infected with bacteria which materially checked the progress of the germination of spores. These bacteria came from the smut.

Age has something to do with the germination of the spores. In our own work fresh spores never germinated as well as those perfectly dry. Those of a previous season always germinated well. They may preserve their vitality for a considerable length of time. Brefeld has shown that spores 2 years old germinated readily, and that spores 7 years old germinated in nutrient solution in from five to eight days.

Norton and Hitchcock, however, found that the young spores just formed germinate best, and grow more vigorously after germination. Brefeld, however, found that old spores when germinated will grow as vigorously as the newer.

Manner of infection.--Until the exhaustive researches of Brefeld, the statement of Kuehn, \ddagger an excellent observer and investigator were accepted. Kuehn stated that the mycelium from the germinating spores enters at the root node, the most tender part of the corn plant, as in the case of wheat bunt. He supposed this to be true of other smuts as well. It has been

[^113]

Fig. 108. Malze smut spores germinating in sugar solution. (Brefeld U. S. Dept. Agr.)

Fig. 110. Naize smut germinating In water. (Brefeld U. S. Dept. Agr.)

Fig. 109. Maize smut (Ustilago maydis) ; a, mycelium of fungus and cells of the host. (U. S. Dept. of Agrl.)
shown that Kuehn was in error, at least for some of our smuts. Because, however, of Kuehn's work, it was recommended to treat seed corn as i.heat seed was treated for bunt. In 1892 experiments were made at the Iowa Agricultural College* with corn, in which seed was treated with hot water heated up to 53 $-55^{\circ} \mathrm{C} . ;$ also ammoniacal carbonate of copper, and copper sulphate. The hot water treatment, as the work of Stewart indicated, could not have been effectual, since the smut spores can be heated higher than corn. The other treatment should have been effectual, since the smut spores are sensitive to copper solutions. In all cases there was no appreciable difference between treated and check. Independently of this work, the botanists of the Kansas Experiment Station \dagger made some experiments from which the following conclusions were drawn:
"Further investigation is necessary in order to determine the mode of infection-a point that must be settled before we can hope to employ rational methods for the prevention of this annoying and destructive pest."

More complete experiments made by Hitchcock and Norton \ddagger indicate that:

1. "Infection may take place at any time of the season when the corn is growing, and does not depend so much on the time of the season as on the stage of developnent of the plant.
2. "Infection may take place in any part of the plant where growing tissue is present, and at any time in its life, but scarcely ever before the plant has attained the height of three feet.
3. "After the tissues are hardened, the smut cannot penetrate them, and consequently infection does not take place in older parts of the corn, but only in the growing tissues. This growing condition is found in the young leaves when the first smut appears in the field; later it occurs mostly at the junction of the leaf and sheath, where cells are present for a long time in a state of growth, and are consequently exposed longer to penetration by the germ tubes from the conidia; still later this is found in the flowers and young parts of the ear and tassel; while finally the only parts open to infection are the rudimentary ears, which dcvelop after the larger ears, at each joint on the lower part of the stalk.

[^114]

Fig. 109._Corn smut (Ustilago maydis) germination of spores in wator.
4. "The infection is probably through the conidia and not directly from the spores. Brefeld's investigations, mentioned elsewhere, seem to demonstrate this.
5. "The period of incubation, or time between infection and the appearing of smut boils, is about ten days.
6. "It is probable that the early infections come from the spores of last year, which germinate on the ground at the first favorable weather in the spring, while the later and more abundant infections are from the new spores developed early in the season."

Professor Morini* seems to have established the fact that the passage of spores through the intestinal tract favors the germination and penetration of the sporidia in it,s kost plant.

[^115]We add here also Brefeld's* conclusion. His experiments are divided into four series from which the following conclusions were drawn. First.-Very young seedlings could be infected to a slight extent; older ones not at all. Second.-Successful infection in rolled up young leaves, when plants were a foot high. Third.-Successful in young inflorescence. Fourth.-When brace roots were in right condition they took the disease.
"According to this, the final result of all the infections with corn smut on maize is entirely different from the previously described results with smut fungi living exclusively in the grains. The smut germs come to full development and produce smut pustules and spore beds on every spot of the still undeveloped parts of the plant into which they have penetrated. The action of the germ is narrowly localized-only those parts of the young plant become smutty which hare been attacked directly by the fungus germs; all the rest remain normal and sound. The formation of the smut pustules begins quickly, at longest three weeks after the infection."
"The complete result of all the here-cited infection experiments with dusty smut, millet, and corn smut affords, in the first place, indisputable proof that the germs of smut fungi which live saprophytically outside of the host plants can produce smut diseases."
"When the smut was nourished saprophytically longer than a year in continnal reproduction outside of the host plant, then only did the outgrowth of the conidia into germ tubes cease. Along with this the power of infection was extinguished, i. e., with the disappearance of a comprehensible morphological character, for the germs can only penetrate into the host plants by means of their germ tubes."
"The earlier view that only the young seedlings of the host plants are receptive to the fuggus germ has not been sustained. On the contrary, the fungous germs can penetrate into all sufficiently young parts of the host plant."

Mycelium.-The fungus vegetates in the interior of the plant by what is termed the mycelium; a single thread being known as a hypha. In its early stages these fine threads penetrate chiefly between the cells of its host, sending short branches into the cells; these are known as haustoria. These are frequently branched, and may extend as far as the nucleus and

[^116]beyond. Seymour* observes that the thicker the cell-walls which the mycelium penetrates, the more abundant are the haustoria. In later stages of the fungus the mycelium extends through and into the cells of its host, becoming densely packed, but not much beyond the point of infection. The mycelium has a peculiar glistening opalescent appearance. In course of time spores are formed from the branching mycelium by abstriction; in this way a chain of spores is formed. In appearance and color these parts do not differ essentially from the mycelium. The protoplasm is highly granular, the cell-walls become gelatinous; these walls later are absorbed, so that little else than a mass of black spores remain. As a result of the infection, the host develops an increasing number of thinwalled parenchyma cells. This is due to the action of the fungus.

Hosts. - Corn smut occurs on but two host plants so far as known. Corn is, of course, the common host plant, but Trelease has also collected the fungus on Teosinte (Euchlaena Mexicana), and it may be expected on related genera.

Distribution and damage.-The fungus is found wherever corn is grown. Botanical writers refer tsit in Iowa, Wisconsin, the Carolinas, New Jersey, Indiana, Kansas and Texas. \dagger I have examined specimens from Illinois, New York and Massachusetts. European mycologists report it from Italy, Ger-

[^117]many, France, England, Astria, Hungary, Belgium and Chili.*
Damage Done.-In warmer countries it is said to be much more severa than in colder countries. It appears that climate greatly influences the amount of smut present. I have \dagger reported on the abundance of this disease in Philippine island corn grown on the college grounds. It occurred on every plant, not only affecting ears, but a large number of nodes had smut boils. The same thing was again observed in 1897 on some corn from South America and Mexico, cultivated on the college grounds.

Henry states that in the vicinity of Madison, Wis., in 1881, there was a loss of 5 to 25 per cent. This could not have been general but was most probably an unusual condition, occurring only in some fields. In 1882 personal ouservations showed very little smut in many parts of Wisconsin. The loss is often 25 per cent in sweet corns grown in gardens, and in fields where rotation has not been practiced.

Halsted \downarrow states that in 1886, the college corn field had sixtytwo hundredths of 1 per cent. Bessey§ states that one year in one field 66 per cent of loss occurred. In this case the field had been in corn for several years. He further observes that 15 per cent is not uncommon. Brewer\| observes that in 1879 there were cases in which there was a loss of 16_{3}^{2} per cent, but in most cases there was less than 1 per cent.

Maise smut not injurious to cattle. -It has been held by many that corn smut is injurious to cattle. This has been a common belief in some quarters. In some kinds of smut a small amount of ergotine is found. Professor Power of the Welcome Research Lab ratory, England, found this true for the smut

[^118]on Setaria glauca, and there are many persons who think that this smut is injurious to cattle that feed in corn fields where there is a great deal of this fungus.

Kedsie reports the following composition: Moisture, 8.30 per cent; albuminoids, 1306 per cent; carbohydrates, 25.60 per cent; cellulose, 24.69 per cent; sugar, 4 per cent; fat, 1.35 per cent; ash, much sand, 25.5 per cent. Professor Kedsie was unable to find any poisonous alkalo:ds. In 1868, the United States department of agriculture employed Professor Gamgee* to ascertain the cause of the cornstalk disease.

Prof. W. A. Henry, \uparrow in a recent work says, speaking of work done by the Bureau of Animal Industry, Clinton D. Smith and Gamgee: "In experiments by the Bureau of Animal Industry, U. S. Department of Agriculture, Washington, corn smut was fed to heifers without ill effects. With all the trials but one ending without disaster, it seems reasonable to conclude that corn smut is at least not a virulent poison, if, indeed, it is one in any sense of the word. It is probable that in the Wisconsin cases, where one cow died and the other was indisposed, the animals suffered because of eating too much highly nitrogenous material rather than anything poisonous. Worse results might have followed the feeding of the same volume of corn meal or cotton seed meal. It would seem that there is little or no danger from corn smut unless cattle consume a large quantity. This is possible where they are allowed to roam through stock fields and gather what they will. There may be cases where animals seek out the smut and eat inordinately of it."

Recently Smıth \ddagger of the Michigan Agricultural College gave the results of some experiments with corn smut. Varying amounts of smut were fed to three grade Shorthorn cows and one grade Jersey. Two of the cows werd started with two ounces a day and increased to eleven pounds. Two others were started with two ounces and increased to a pound. The test lasted forty-nine days. They appeared to relish the smut. It produced no signs of abortion in pregnant c 3 ws , and the milk yield was normal. Smith concludes that the smut in corn fields is not likely to prove injurious.

[^119]Beal* states that under certain conditions smut is likely to be injurious to cattle. The experiments made by Moore \dagger also indicate, like those of Smith, that smut is not injurious.

Beginning on the morning of January 17, 1894, and continuing until noon of February 2 (sixteen and one-half days), the heifers were fed morning and evening with from two to three quarts of a mixture of equal parts by weight of cut hay and a mixture of corn meal, middlings and wheat bran, and sixteen quarts of smut. No injurious affects were observed by Moore.

It seems reasonable to conclude from these experiments that under proper conditions corn smut is not injurious. In our experience no cases have ever been reported to us where cattle were supposed to have died from eating corn smut.
Prevention.-In previous paragraphs it has been stated that smut does not necessarilly enter the corn plant when the latter germinates but at a later period. From this it fol ows that it will be useless to treat the seed. Experiments made at the Agricultural college ind cate, that no well-known fungicide or the hot water treatment isreffective. The treated kernels in some cases contained as much smutas those not treated. As indicated in a previous paragraph, Bessey found a considerable increase in smut where corn was planted in the same field several years in succession and one of us has also observed the same condition. It has also been shown that when a variety is not acclimated it is much more subject to smut. This fact has again been noticed in a striking manner, in some South American and Mexican corn grown on the college grounds, where there had been no corn for years and no corn fields near it this year, nor for some years. These particular varieties produce so much foliage and the vegetative organs are so vigorous that they are unable to properly resist the attacks of the fungus.

It has also been recommended that the smut boils should be carefully collected at husking time and burned. It would not be a troublesome operation to throw all smutted corn in a separate small box. This would remove the smut from the kernels, but it would be impossible to collect and destroy the smut boils on cornstalks where it is more abundant than in the ears and in smut occurring on leaves. Financially we believe that this operation would not pay. The best and most feasible

[^120]
Plate II.

BUNT OF TIMOTHY.

COVERED SMUT OF BARLEY
methods would be to plant corn which is thoroughly acclimated and such varieties as are least subject to smut. Crop rotation is to be strongly urged. Corn should never follow corn. A year rotation will destroy a large number of the smut spores.

HEAD SMUT OF SORGHUM (USTILAGO REILIAN゙A, KUEHN).
In 1875, Kuehn* described a fungus occurring upon sorghum, the Ustilago reiliana. Since then this fungus has been found widely distributed on sorghum in Africa, India, China, Egypt, Italy, Hungary, and Germany and in the United States it has been reported from New Jersey, Kansas, Nebraska, Iowa and Wisconsin. A re'ated smut, U. sorghi Link. has also been found widely scattered in this country, on sorghum.

Ustilago reiliana attacks the upper part of the plant, especially the ear and staminate flowers, almost destroying it. In but few cases does grain mature. Hitchcock and Norton \dagger state that "The smutted stalks are usually not over half as high as the unsmutted, and in weight are very deficient. Eleven stalks were weighed and averaged 539 grams each, while plants affected with Cstilago maydis from the same field averaged about 1,300 grams and healthy plants averaged 1,500 grams or more. So if this smut should ever become abundant in this country, it may seriously change the corn crop as it has the sorghum industry in other parts of the United States.

In 1876 an Italian botanist, Passerini, \downarrow found this fungus upon corn, but until 1895 it had never been reported on sorghum. Mr. J. B. S. Norton called attention to its occurrence in Kansas. This disease is not uncommon in Kansas and across the line near Superior, Neb. So far this fungus has not been

[^121]

Fig. 112. Head smut of sorghum (Cztilago Reiliana) on tassel of corn. (From Kansas Agrl. Exp. Sta)

Fig. 113. Head smut of sorghum (Ustilago Reiliana), 1, 2, 3, 4, germination in water after three days; 5 , after forty-eight hours in water. A. with detached contdium, showing point of attachment; O, conidia from another spore; 6,7 , spores germinating thirty-six hours after. (Norton. Kansas Agrl. Exp. Sta.)

Fig. 114. Smut diseases of grasses. 1, Lstilayo panici-miliacei on Panicum miliaceum; 2, U pustulata on Panicum protiferum; $3, E$ suntherisme on Panicum proliferum; t. U, bromivora, var. macrospora on Bromus breviaristatus; , C. syntherisma on Panicum capillare; 6. V. syntherisma on Cenchrus trithulnides; ; I. neglecta on Setaria ulauca; \&, \mathbb{C}. buchloes on Buchloe dactyloides; 9, U avence, var. levis on oats; 11 , germinating spores of corn smut; $11, V^{*}$ spermophorus on Eragrustis major; $12, \dot{U} . h u r d e i$ on barley ; 13, \boldsymbol{U}. avent on oats; $14, \dot{U}$ rabenhorstiana on Panicum sanguinale; $15, \boldsymbol{U}$. hypodytes on Stipa spartea: 16, V. montaniensis on Muhlenbergia glomerata; $1 ;, L$ longissima on Glyceria arundinacea; 18. L^{\prime}. nuda on barley; $13, \boldsymbol{C}$ aristidt on Aristida purpurea, $20, \boldsymbol{L}$. tritici on wheat; 21, \boldsymbol{E}. sorghi on sorghum; $V^{\text {. }}$. perennans on Arrhenatherum avenaceum; 22. \boldsymbol{E}. lorentziana on Hordeum jut, atum; $\because \boldsymbol{U}$ segetum. (Pammel and Ktng.)
reported in this state on corn, and the following account has been taken from Hitche:ck and Nor:on, who have especially studied the disease. "It appears in tassels and ears as a rather hard, compact mass of smut, of a rough granular appearance. It dces not have the large soft swellings that Ustilago maydis has bu at first the ovate fointed mass of smut is inclosed in a white membrane as is the case with Cstlago maydis, but this soon disappears. On older smutted places, the large fibro-vascular bundles of the corn gives the smut mass a coarse, stringy appearance. The smut is usually seen best in the tassel or upper part of the plant, the whole upper portion often being converted into a smutty mass just above the ear. When it attacks the ears, the husk usually conceals it until late in the season. The smu' usually attacks all the ears, rudimentary ears or shoots on the stalk, converting them into masses of smut but not enlarging them. Often the tassel may not be smutted but usually is. Sometimes when the smut is not very bad on the stalk the flowers are curiously deformed. The ears are almost always attacked and often a cluster of ears is borne where there is normally but one. Often instead of producing flowers, and not actually smutted, the floral organs grow into long projections."

Microscopic characters.-The characteristic spores are larger than corn smut, being from 7^{u} to 15^{u} in diameter and nearly smooth. The outer wall of the spores is provided with very fine spines. Spores germinate readily in water, by producing a rather long, divided and frequently branched promycelium. Secondary sporidia are also produced. Brefeld observed that these spores retained their vitality for eight years at least when placed in nutrient solution they germinated.

In addition to its occurrence on maize, sorghum is a frequent host. It was found on sorghum in Kansas in 1890 by Kellerman.* It has also been found in this state, in Jones county, by Mr. Reed. It presents the same general characters on sorghum as on maize.

KERNEL SMUT OF CORN.

This smut (Ustilago Fischeri, Pass.), was described by the same Italian botanist, Passerini. \dagger This affects the kernels,

[^122]although sometimes the adjacent brac's also. A large number of kernels may be affected. On breaking the kernels open, a powdery mass mixed $\begin{aligned} & \text { ith starch may be seen. The starch }\end{aligned}$ grains are corroded, showing that in the action of the fungus a ferment dissolves the starch. The spores are spiny and measure from 4 to 6^{u} in diameter. Very little is known of the fungus. It was distributed by Von Thumen* and Rabenhorst \dagger It is described by Lover lo, \ddagger Tubeufs and other mycologists.

Fig. 115. Kernal smut of malze (L'stilago Fischeri) on maize, spores to right, below, a sectional view of an affected kernel. (Pammel and King) It is not referred to by Farlow and Sey. mour in their valuable host index. So far as known it does not occur in this state, but the writer has rec ϵ ived it from Jamaica.

This fungus is probably a tropical or subtropical species, and may occur in southern United States. It certainly occurs in the West Indies. The writer some years ago found it among some ears of corn sent to him by Wm. Fawcett, the director of the botanical garden at Jamaica.

KERNEL EMUT OF SORGHUM.

This parasitic fungus (Ustilago Sorghi (Link) Winter), is quite widely distributed in the United States, though not as common as many other economic smuts. Link, $\|$ in 1825, described it under the name of Sporosporium sorghi. Tulanse named it Tilletia sorghi-vulgaris. Kuehn** gave it the name of Cstilugo tulasnei in 1874 . In 1897 Mr . G. P. Clinton $\dagger \dagger$ studied the fungus and applied the nams of Cintractia Sorghi-vulgaris (Tul.), Clinton. This was done in order to avoid confusion with the doubtful Cintractia (?) Sorghi (Sorok.) De Toni. $+\ddagger$ The first reference to the occurrence of this fungus in this country was by Trelease, $\downarrow \ddagger$ who found it on imported seed of sorghum grown in Wisc jnsin, further stating that Farlow had received it from the Depart-

[^123]ment of Agriculture, Washington. These specimens, it appears, came from New Jersey. It was also reported from New York to Trelease by Sturtevant. Webber* reported it on Millo maize in Nebraska in 1889. It was reported as common in Kansas by Kellerman. \dagger Hitchcock has kindly furnished me with specimens from Kansas, and in Clinton's paper on Broom Corn Smut the statement is made that it occurs on Early Amber, Rangoon, Red Liberian and many others; also on broom corn and Kafir corn. In 1899 it was found on Kafir corn at Ames by Mr. Evers In Illinois it was first collected by Waite \ddagger in 1887, at Urbana. Further localities are reported by Clinton.s

Characters of the fungus. -The diseased plants attain their normal height. The panicle is elongated and all of the seeds are destroyed. In the case of broom corn as described by Clinton it is as follows: "An examination $f f$ the brush of an infected plant, unfortunately, shows that it is of a very inferior grade, usually almost worthless. Here, then, is a much more important loss, for the brush is the part for which broom corn is raisel. Gzod broom corn has the rays of about uniform thickness and length, and all springing from a series of very contracted nodes so as to give them about the same point of origin. In the case of infected plants these internodes are usually elongated, and the rays are of unequal lengths, so that there are a series of irregular rays arranged on an elongated and thickened central axis-qualities very undesirable."

The covering of the grains is pale. At maturity the grains are grayish in color. Finally the membrane becomes broken, permitting the spores to escape. The whole interior of the ovary is converted into a mass Cf spores, the anthers being also affected. The spores are spherical, or somewhat angular, rarely elliptical, 5-9.5 $\times 4-5.5^{\text {u }}$. The spores g rminate readily when placed in water. Clinton states that spores 1 year old germinate. Some writers state that spores 6.5 years old germinate.

Infection takes place by the penetration of sporidia as well as the "infection threads." According to Clinton, entrance to the plant takes place at the growing point. "Thus the germinating seed in its early stages is the only place where the broom-corn is liable to become successfully infected. As a

[^124]

Fig. 115A. Kernel smut of sorghum (Ustilago sorghi). The affected inflorescence to the right and spores to the left.
germinating plant becomes older and its tissues barder of penetration by the threads, infection becomes less possible until, at the time when the plant breaks through the ground and its first leaves show, it is practically exempt from successful infection." Short treatment of the seed with warm water has no injurious effect. Experiments made for three years by Clinton showed favorable results by treating with hot water. The spores were killed at 135° F.

Ustilago cruenta. - Another smut affecting this host has been described by Kuhn*-the Usti. lago cruenta. This species produces brownish-red spherical or elongated enla`gements which contain the smut spores affecting any part of the panicle. The somewhat variable spores are $5-12^{u}$ long $\times 5-\xi^{u}$ wide, smooth yellowish or brownish, germinate readily in water, and in nutrient solutions produce abundant secondary conidia. Kuehn \dagger surmises that it is the cause of a destructive disease Durra of millet in Africa.

LOOSE SMUT OF WHEAT.

For a long time all of the loose smuts-oats, wheat and barley (l'stilago tritici (Persoon) Jensen)-were considered by botanists to be one species, to which the name l'stilago segetum (Bull) Dittm. + was applied. This smut was known to writers as early as 1552, when Traguss applied the name U'stilago An early writer, Bauhin, 1595, described it as L'stilago secalina. \| Nore of the early writers, however, recognized it as a fungus. Persoon, an early mycologist, gave it the name of l'redo tritici, considering it a variety of V'edo segetum. Other names were subsequently applied, and in 1888, Jensen** reported that wheat

[^125]smut would infect only wheat plants. Oat smut would not produce wheat smut, nor barley smut produce smut in wheat. Kellerman and Swingle* give a full bibliography. It is described under U. segetum in the works cited below:

Distribution and damage.-This disease occurs wherever wheat grows. We have observed it abundant in many poriions of Iowa where wheat is grown; also in Minnesota and Wisconsin. According to Dr. Erwin F. Smith, it is common in Michigan. Kellerman and Swingle also report it as common in Michigan. In a collection f smuts prepared for the World's Fair this was sent to me from many states. It is reported as common in Nebraska (Bessey), Indiana (Arthur), North Dakota (Bolley) and New York (Beach). It is also common in Germany (Sorauer, Frank, Tubeuf, etc), England (Plowright and Marshall Ward). These references suffice to show that this fungus is of wide distribution. The damage caused by this smut is often very considerable. It is the one most familiar to the Iowa farmer. Perhaps the loss to Iowa farmers is not far from . 5 per cent. Dr. Er win F. Smith reports that he observed in a patch of five acres in Michigan a loss of 50 per centin 1870. Much of this lcss can, no doubt, be prevented by judicious culture.

General characters.-The affected plants are lighter green in color. The smut converts the chaff, and frequently all adhering parts except the central stalk, to a powdery mass. The smut is not covered with a membrane. As Professors Kellerman and Swingle say, "The spores are completely free, and in this species is perhaps the dustiest of all lonse smuts." The wind removes nearly all of the smut excepting a small porticn adhering to the central stalk. Unlike bunt, not all the stalks of a stool are affected. Professor Bessey, some years ago, noted this fact of wheat grown at Ames.

In 1892 the writer made some observations on two varieties of wheat grown on the college farm in which the same results were ob'ained.

This fact clearly indicates that the manner of infection is very different than in bunt or loose smut of oats.

[^126]Microscopic characters.-The powdery mass is made up of a large number of very minute brown-colored spores with an olivaceous tinge, especially when in masses. The spores are somewhat variable in size, usually nearly round, or angular, or elliptical.

Germination of the spores - It is not difficult to obtain germinating spores in sterilized water, but the process is slower than in oats smut. In germination a tube (promycelium) is pushed through the light colored outer wall of the spore (epispore). Sporidia are not prcduced. In nutrient solution germination begins in fifteen hours, starting in the same way, but more vigorous. Sometimes these become very long. The segments frequently break up.

OATS SMUT.

Oat smut (lstilago arenae (Pers.) Jensen), has long been known to mycologists. Until the elaborate investigations of Jensen* it was regarded as identical with that occurring on wheat and known as l'stilago segetum. It was called Uredo avenae by Persoon. \dagger The literature is cited quite fully by Kellerman and Swingle. \ddagger

COMMON LOOSE SMUT OF OATS.

The oats (Ustilago avenae (Pers.) Jensen), is affected by two smuts; one is the common loose smut of oats (Trtilago avenae), a disease long and well known to agriculturists. This smut converts the flowers especially, the grain and adhering parts to a black, powdery substance. It may affect all of the flowers or only a part.

In most cases it completely destroys the tissues of the spikelets, leaving a black mass of spores with threads and tissues of the plant. The smut, during its early stages, is covered with a membrane. The spores are free and form a dusty mass of olive or dusky brown color; they are oval, sub-globose, elliptical or somewhat angular, irregular or deformed, and lightcr on one side; con'ents usually clear or slightly granular. The outer wall or exposure is minutely warty.

Germination.-The spores germinate readily in water; they are said to retain their vitality for a number of years. We have

[^127]Plate ill.

SMUT OF WILD RYE.

C. M. KINQ, Del.
had no difficulty in getting fresh spores to germinate abundantly in twenty-four hours. The promycelium is slender and bears nariow, elliptical bodies called sporidia, which later cause the infection of the plant. The spores also germinate readily in normal nutrient solution, frequently budding. Brefeld observed that the sporidia, when transferred to a nutrient solution, continued to form sporidia. He obtained these yeastlike spores for many generations.

Manner of infection.-Infection in this smut is probably by way of the seed. Wolff, in his classic experiments, found that smuts entered through the first formed leaves. Brefeld's classic experiments also indicate thatinfeetion takes place during the early stages of the germination of oats.

Jensen thinks that smut does not enter with barnyard manure, and he supports it by some evidence: 1885. 1886

Barnyard manure plot........ 42 smutted heads........ 1.2 per cent smut' ϵ d. Artificial manure plot.
.35 smutted heads. 1.0 per cent smutted

He furthermore suggests that infection is brought about by spores contained in the husks which lodged there while the oats were in flower, but this is contrary to the usual experience. Kellerman and Swingle state: "In an experiment of ours in June, 1888, a square rod of oats just in blossom were dusted with smut spores in considerable quan ifty on the 20th, 22d, 25 th and 27 th of the month. When ripe it was harvested and kept separate In the spring of 1889 it was planted, together with other plots, with seed from other parts of the same field. One of the artificially infected plots (23) was 6.8 per cent smutted, and the other was 5.36 per cent, while the untreated plot had 6.4 per cent of smut, midway between the two artificially smutted ones."

Damage and distribution.-The damage done by this smut is very large. Arthur gives the following percentages in differ ent varieties grown at Geneva, N. Y.: "J. C. Arthur, in 1884, gave the results of counts of oats grown on the farm of the New York Agricultural Experiment Station at Geneva, N. Y., and found American Triumph, of 1,237 heads counted, had 10 per cent smutted."

Arthur* estimates the loss for Indiana at 8797,526. Jones ${ }^{+}$ examined 35,177 heads for oats smut; the average smut in $189 \cdot$

[^128]was 1.6 per cent. On this basis Swingle* estimates the loss in that state to be $\$ 26,454$. From these figures Swingle \dagger thinks 8 per cent a low average. This would entail a loss of $\$ 18,000,000$ annually. Averaging 18,504,140 for the years 1890-1893.

On cur own grounds we have found oats smut less common than the figure given by Swingle. \ddagger Harwood and Holden \S estimated the loss in Michigan in 1892 at $\$ 1,000,000$.

Is it any wonder that smut should be so abundant since a single head may contain millions of spores?

Dr. Cobb says: "A single head of smutted oats may easily contain $500,000,000$ spores; that is to say, a number of spores so great that if they were distributed evenly over an acre of land there would be over 1,000 spores on every square foot. In as much as these spores are instrumental in spreading the smut disease, we shall no longer wonder at finding the disease so common."

KERNEL SMUT OF OATS.

In addition to the above smut (l'stilago avence (Pers.) var. levis, Kellerman and Swingle) another form has been observed by Kellerman and Swingle, $\|$ which destroys only the grain and does not affect the glumes. On cutting open such a diseased husk the who'e interior of the grain will be found converted into a powdery mass consisting of spores. This spezies was collected by Farlow and distributed by Ellis in his North American fungi. The spores of this smut are dark brownish, oval, elliptical or subglobular, $6-12 \times 55-8^{\text {n }}$, usually $6-9 \times 6-7^{\text {u }}$. The exospore is nearly smooth. The spores germinate readily in nutrient solutions, producing short promycelia and narrow germ tubes. The species is probably quite widely distributed though not nearly so common as Ustilago avence.

BARLEY SMUT.

Barley is affected by two well-known smuts in Iowa. The covered barley smut (('stilago hordei (Persoon) Kellerman and Swingle) and the naked barley smut (Ustilago nuda (Jensen) Kellerman and Swingle). Formerly both of these smuts were

[^129]supposed to be identical with the smut occurring on wheat and oats.

The covered barley smut is said to be less abundant in Denmark than the naked barley smut, but it is quite widely distributed in Europe. It is also widely distributed in the United States: New Hampshire (Farlow), Maine (Harvey), Kansas (Kellerman and Swingle), Michigan (Beal), Indiana (Bolley), New York (Peck), and Iowa (Pammel, Stewart and Weaver). It is more common in Iowa than naked smut. This smut was

Fig. 116. Covered Barley Smut (Ustilago hordei). (King.) first named by Persoon* and the correct combination was made by Kellerman and Swingle \dagger who cite the very full literature. This smut differs from all other loose smuts, in that the panicle is not converted into a loose powdery mass, but is more or less covered by a membrane, which breaks and allows the spores to be scattered through the broken membranes.

The spores of U. hordei are dark colored, spberical, slightly irregular, $5-8 \times 5-7^{u}$, usually $6-8 \times \bar{\gamma}^{\text {u }}$, somewhat larger than U. nuda. The exospore is smooth. Germina tion proceeds readily in water with abundant sporidia from which secondary sporidia occur.

In naked barley smut the parts of the flowering panicle attacked are converted into a loose powdery mass, thus allowing the spores to be blown away very readily. The membrane covering the smut is very thin, dark, dull gray in color and easily broken. It consists of the modified epidermal cells of its host; the whole of the inflorescence being converted into a blackish powder. Kellerman and Swingle say: "The reason, notwithstanding the presence of fibers and a thin enveloping membrane, this species spreads its spores very readily and seems wholly different from typical

[^130]Ustilago hordei, is found in the fact that the spores are free, and do not adhere to each other or to the shreds of the host tissue. The infecting threads, unlike those of the Ustilago hordei, grow to their normal height, and do not tend to remain enclosed by the uppermost sheath of the barley plant." In I'stilago hordei the thin membrane encloses the smutted kernel until harvest time. The spores are free, forming a dark mass of olive color, sometimes elliptical or sub-globose, usually the one side lighter than the rest, as in the other lcose smut. The spore wall consists of two parts, the exospore and endospore. The exospore of U. nuda is slightly roughened. The spores germinate in sterilized water and nutrient sugar solution under favorable conditions of temperature usually in twenty-four hours or less. The promycelium or germ tube comes out of a large germ pore. It is curved and slender. According to Kellerman and Swingle it attains its full length in thirty hours. Sporidia are not produced, according to Kellerman and Swingle. This smut occurs in Kansas, Iowa, Wisconsin, New York, Michigan, Minnesota and Europe.

Manner of infection.-Little is known of the mancer of infection; the seeds of the smut apparently propagate the smut so that infection is carried with seed barley.

WILD BARLEY SMUT.

This smut (Ustilago lorentziano), converts the ovary, palet and flowering glume of Hordeum jubatum into a black; powdery mass, as in I'stilago nuda. The spherical spores are minutely roughened. This species does good service in the northwest in destroying much of this detestable weed.

OTHER SMUTS OF THE GENUS USTILAGO.

Pigeon-grass smut (l'stilago neglecta, Niessl.) The most common of our smuts is that occurring on Setaria or pigeongrass (S. glauca.) I'stilago neglecta was first described by Niessl* and has been reported by numerous American and European \dagger mycologists. In Europe + cillata and S viridis. I find, however, no record of its occurrence on any other host but S. glauca in this country. \S On this host|| it is extremely common, not only in Iowa, but throughout

[^131]the neighboring states. This fungus converts the ovaries into a powdery mass, consisting of spherical to ovoid spiny spores, $9-16 \times 7-11^{u}$.

Covered smut of switch grass (Ustilago syntherisme. (Schw.) Ell. \& Ev.) This is widely distributed in the United States and is indeed common wherever Panicum capillare, P. proliferum Cenchrus tribuloides occur. Norton,* who has studied the germination of Kansas smuts, places under this species provisionally several of the smuts which are much alike. It certainly appears that the forms on the above weeds germinate in much the same way, but rather difficult in water. On Panicum proliferum and Cenchrus tribuloides the ovaries as well as the whole inflorescence become greatly enlarged, and for considerable time the spore mass is surrounded by a white membrane, which, on drying, breaks, allowing the spores to be liberated. The spiny spores are variable in size, $10-12^{u}$ in diameter, ovate or somewhat polyhedral. 12×14^{u}, to oblong polyhedral 12-14x $8-10^{u}$. This smut prevents the production of seed. The plants are much dwarfed. The allied l. rabenhorstiana, Kuehn \dagger, also c invers the whole in Horescence into a powdery mass. The affected plants are dwarfed and more branched; the minutely roughened spores are spherical to oblong elliptical 8-14x $7-11.5^{\mathrm{u}}$. The promycel um is branched; conidia are absent. Another form affects the individual flower, and not the inflorescense, as in the usual form. This smut is extremely common and destroys a large number of plants every year in this state.

Some of our cultivated grasses are affected with other members of the genus Ustilago. In some cases they affect very valuable grasses. One of these, t'stilago bromivora var. macrospora, was found on one of our native and valuable grasses, Bromus breviaristatus, by Mr. F. A. Sirrine on the college farm. This, as well as the smut on tall meadow oat grass, was described by the writer \ddagger some years ago.

Brome grass smut affects parts of the flowers causing them to develop into a powdery mass. In tall meadow oat grass I also observed that all the stalks of a stool are affected, clearly showing, that the fungus enters early in the development of the plant. The Cstilago bromivora, Fisch. de Wald. is apparently the variety macrospora of Farlow. It occurs abun-

[^132]

Fig. 117. Porcupine grass smut (Ustilago hupodytes) affectling parts of inflorescence and culm; a, spores. Kıng.

[^133] Pflanzenkrankheiten. 299.

Fig. 118 Sprouting grass smut (Ustilago panici-miliacei) showing large swelling in uppar part of plant. (King.)

Fig. 119. Tall meadow oat smat (Ustilago perennans). (King.)
Birnyard grass is affected with several smuts which, by some mycologists have been placed in the genus Ustilago. Burrili* described as Istilatgosphaerogena occurring in the ovaries of barnyard girass. The pustulate swellings of the spike'et vary greatly. The Burrill specimen is identical with Sorosporium bullatum Schr. \dagger or Tolyposporium bullatum Schr. The spore masses are spherical or elongated, consisting of many spores. The individual spores are somewhat polygonal, with a few warty projections. This is true of the specimen collected by Seymour in Osborns, Ill., and the Arthur specimen from Ames. The writer has collected a somewhat similar fungus with larger spores which are more minutely echinulate, in

[^134]Clinton,!Iowa. A second fungus has been described by Tracy and Earle on this grass, namely, l. crus-galli. This fungus affects the panicles and upper nodes. The mass of spores is covered by a more or less persistent membrane. The pustules in some cases are quite large, an inch or more long. The round spores are minutely roughened and measures $8-12^{4}$ in diameter. Magnus* described a smut on barnyard grass, the Cintractia seymouriana, and in a later number of the same journal changes the name of the fungus to C. crus-galli (Tracy and Earle) \dagger, Magnus. The spores and general character of the fungus makes it closely allied to the Burrill fungus, but the spores examined by the writer are globose or nearly so, and somewhat smaller. The U. bullata, Berk., produces pustulate swellings in the individual spikelets of a species of Triticum. These vary somewhat in size, but it is evidently closely allied to U° sphaegroena. The C'stilago bullata is allied to the U. pustulata, Tracy and Earle, \ddagger which occurs on Panicum proliferum. It infests the ovaries, forming rounded bullate swellings. Spores dark brown, oval to sub-globose, slightly echinulate, found at Ames. C. Panici miliacei (Pers.) Wint. is widely distributed in Europe on Panicum miliaceum and P. crus-galli. It produces large distorted swellings in the inflrescence very much like P. syntherisme. The fungus on Panicum capillare is sometimes referred to U. panici miliacei.

Manna grass smut (Cstilago longissima), Sow., Tul., sis common on species of Glyceria, producing elongated gray pustules in the leaves. These pustules contain the globular, smooth spores which measure $3-6 \times 3-4.5^{\prime \prime}$ in diameter. The latter germinate readily in a damp atmosphere or in water. The writer obtained abundant germination by keeping the spores in a vasculum or in a closed vessel for twenty-four hours. The short promycelium is narrow and straight. It produces from its end a ove-celled conidium. The writer has found this species on Gilyceria arundinacea.

[^135]The Ustilago sacchari, Rahb., is a destructive smut in Italy, Java and Africa, occurring on the stems of Erianthus and Saccharum.

Porcupine grass smut (Cstilago hypodytes), Schlecht. Fr. This smut is very common on porcupine grass (Stipa spartea). Arthur* records its occurrance on Elymus canadensis. The writer has never met with it on any member of the genus Elymus, although it is extremely common at times on the porcupine grass. It was described by Schlechtdendahlt as Caeoma hypodytis. Fries + transferred it to the genus Ustilago. This name is adopted by Saccardos and also by Plowright. \|

Thisfungus is characterized by its occurrence in the culms beneath the leaf sheath. It is most common during the latter part of May and early in June. It frequently destroys large patches of this grass. In addition to the host mentioned above, it occurs upon quack grass, Calamagrostis, Bromus and Phragmites. Its distribution is quite common throughout Europe and northern Africa, but as stated above, it usually occurs in this state upon the Stipa.

Wild timothy (Mulenbergia glomerata) is affected with Lstilago montaiensis, Ell. \& Holw. © This smut affects the ovaries, causing them to become greatly enlarged, very much like Ustilago bullata. The smutty mass is surrounded by a persistent membrane, which later cracks and breaks. The glumes and bracts are pale in color. The spores are brown and minutely roughened. This fungus appears to occur only in Montana, but ought to be looked for in this state.

The Ustilago buchloes, Ell. \& Tracy, affects the leaves of buffalo grass, causing enlargements. The smut is covered by a delicate membrane which soon becomes ruptured, and this distributes the spores. The spores are brown and smooth. It occurs in the southwest.

Ustilago andropogonis, Kellerman and Swingle,** occurs upon tall blue stem, Andropogon provincialis. This smut causes the host plant to flower several weeks earlier and dwarfs the

[^136]affected plants. It affects the ovaries. The spores are dark brown or black, sub-globose or slightly oval.* The fungus appears to be closely allied to if not identical with Sorosporium ellisii, Winter, \uparrow and this specific name should therefore be used. The Cerebella is allied to the Sorosporium; one species, the C. spartince, occurs and affects the spikelets of slough grass.

The Iistilago aristide, Pk., was described by Peck. +. It occurs upon Artistida purpurer. It is common in parts of Nebraska where the writer has found it covering wide areas. It has been reported by Norton from Kinsas. This smut fills the ovaries, and the awns are much shorter than usual. An Ustilago also occurs on Sporobolus, vagincejlorus, the I. vilfoe.§ The Listilago spermophora, B rkley and Curtiss \|is very common at times on Eragrostis major. Generally only a few of the ovaries are smutted, but in some cases entire sections of the panicle were affecied. The spores are sub-globose and minutely roughened. During the past season, 1899, it was extremely common here in this state.

BUNTS (TILLETIA).

Wheat is attacked by two species of bunt in this country, the Tilletic foctens (B. \& C.) Schroeter, and Tilletia tritici (Bjerk) Winter. Of these the former is far more common. Both are exceedingly destructive to wheat.

Tillitia foetens (B. \& C.) Schroeter. This fungus was first described by Berkeley and Curtiss; earlier than this it was recognized by Wallroth. ${ }^{*}$ Kuehn, iu 1874 , gave it the name of T. lueris. It usually passes under this name in European mycological works, so given by Sorauer, \dagger_{+}Frank++ and Tubeuf.s. This name is also used in Massee's $\|\|$ monograph on Tilletia. The present combination was made by Schroeter. ©

[^137]

Fig. 120. 1. Wheat Bunt (Tilletia tritici) ; \because, Timothy Smut (Talletia striaformis: : Tilletia rotundata; t, Tilletia controversa; ., Wheat Bunt Tilletia fuetens); \&; Barnyard Smut (l'stilago
 Cstiago; 11, Sornsporium ellisii var. orcidentalis: I? Sorosporium ellisi var. provincialis: $1 .$, Irocystis agropyri on Bromus ciliatus; 14, Cerebella spartinte on Spartint. (एammel itad King

This bunt is widely distributed in Europe and America. In the United States it is common in Wisconsin, where the writer found it in considerable quantity in the vicinity of La Crosse. It is reporied by Trelease.* It is common in Indiana, according to Arthur. \dagger It is likewise common in Ohio, according to Hickman, \ddagger and in Nebraska, according to Webber. § Halsted $\|$ reports it as injurious to wheat in New Jersey. Kellerman and Swingle have studied, more than other persons in this country, its nature and distribution in Kansas and the country at large. Swingle has also published several important papers on the subject.

It is not common in Iowa, though it has been found several times by the writer on the college grounds since 1891, and it has been found abundantly in the wheat screenings of some of our local mills.

General characters - It is not always an easy matter to tell the presence of this smut by the character of the plant, although the heads are darker green, appearing as though stimulated by an extra amount of fertilizer When the grain is ripening the diseased plants are recognized, the smutted heads having a pa!er color instead of the characteristic golden color of good wheat. The chaff is more spreading and the kernels are greatly swollen. One cannot be deceived by this disease when the kernels are crusbed, for a very disagreeable odor is given off. According to Swingle, a whole bin of wheat may be charget with it. It is said by people who have followed the threshing machine that this odor is very pronounced where the disease is serious. I have myself noticed the bad o lor in passing along the side of a field in western Wisconsin where the fungus was abundant.

Microscopic characters.-The spores of this fungus are nearly round or somewhat elliptical, smooth, $15-22 \times 15-20^{14}$ in diameter. Under favorable conditions of heat and moisture the spores germinate in the course of a few days, by producing a promycelium. This tube produces, in the presence of oxygen,

[^138]

Fig. 121. Bunt of wheat, Tilletia foetens, after Bessey.
a whorl of slender bodies-the primary sporidil. These sporidia produce short tubes which join them to each other. The infection may result from the slender threads produced by the primary sporidia, or from the secondary sporidia, which also produce slend:r threads. These germ tubes can enter the plant only by way of the delicate tissues of the seedling.

Damage.-It is difficult to estimate the amount of damage. The percentage in Iowa is usually very small, but in Wisconsin I have seen whole fields destroyed, and Arthur* likewise gives an illustration where one-half of the crop was lost.

[^139]S wingle says: "There are no accurate statistics as to the amount of damage caused by them. In many losalities, however, the losses are very great, and without doubt the losses in the en'ire United States amount to many millions of dollars annually. In some fields 50 and even as high as 75 per ceat of the he \pm ds are smu ted, and in addition the healthy grain is so contaminated with the fetid spore: as to be almost worthless for flour and worse than useless for seed. '"

Tilletiatiitici (Bjerk) Winter.-This species is more commonly referred to by European writers than the T. foetens. Thus Tubeuf,* Frank, + Loverdo, \ddagger Sorauer, $\stackrel{\leftrightarrows}{s}$ Plowright, $\|$ Wolf and Massee all meation its common occursence in Germany, France and England In the Mississippi valley it does not appear to be as common as the specimens above described. Bessey** reports this species as occurring in Iowa in 1884 and since. Harwood has reportedtt it as common in Michigan. Keller nan and Swingle $\ddagger+$ report it in Kansas. In a general way this fungus is much the same as the for ner species. Harwood notes that wheat attacked by this species has shorter stalks than the normal It affects the kernels and the chaff, spread ing as in the last species. The spores are smaller, globose, with net-like ridges, $16-20^{\circ}$ in diameter. This last character easily distinguishes this form from the other smut. Its life history is the same. All of the heads of a stool are affected.

In Europem mycological works it is usumally referred to as T. caries, by Sorauer, Frank and others. Tubeuf and Saccardo§ss refer to i^{i} as T. tritici, while Massze, in his revision, places it under the name of T. caries.

Tilletia secalis (Corda) Kuehn.-Bunt of rye was described by Kuehn||| in 1876. Though quite destructive in Europe, Germany and Bohemia, it has not b en found in this state. The kernels are fill:d with a brownish-black powder. Like the

[^140]other bunts, it produces a disagreeable odor. The spores are spherical or very rarely elliptical, usually 20^{10} in diameter.

Tilletia hordei (Koernicke).-Bunt of barley was described by Koernicke* in 1877 from specimens found in Persia on Horderm fragile as well as on H. murinum. This smut occurs in the ovaries a -d is covered by a blackish-brown membrane. The spores are smaller than those of T. secalis, measuring 19.5-20.54 in diameter. \dagger The epispore is but slightly thickened, and reticulated.

Tilletia Lolii, Auərsaw.-This bunt occurs in the fruit of Lolium temulentum \ddagger and other species. Spores are spherica! or irregularly spherical or rarely elliptical; pale yellow or yel-lowish-brown, $17.57-20$ by 24^{11} in length, usually 19 . Epispore with prominent projections which form a net work, the meshes of which, according to Winter are 3.5^{11} in width. The allied T. controversa, Kuehn, attacks the ovaries of Agropyron repens: the globose spores are pale brown. The mycelium is perennial in the rhizome of its host.

Tilletia rotundata (Arth) Ell. \& Ev.-In S suth Carolina a Tilletia has been found quite abundantly on rice It affects the ovaries, converting them into a black granular mass According to Andersons who has studied the disease, the ovari-s are seldom hypertrophied or atrophied, but retain to a great extent the form and size of the normal ovaries. The large, spherical, spiny spores are surrounded by a hyaline envelope. They are from $26-30^{u}$ in diameter. According to Tracy and Earle this fungus occurs on various wild grasses like Panicum virgutum ard Leersia. This is synonymous with T. corona, Scribner.\| Massee evidently overlooked the American studie; of the species. A stcond species, the 't'. oryzree, Pat., " occurs on rice in Japan. The globuse or ovoid spores are olive-b:own and warted; united into hard blackish-green mass. This belongs to Brefeld's Ustilaginoidæ.

Tilletia Molinice (Thum) Winter.-This species was first described by Von Thumen** as Vossia Holinice. Koernicket \dagger changed it to Neovosia Molinice (Von Thum) Kornicke, but Sac-

[^141]

Fig. 12: Tilletia moliniae on Phragmitis; a, spore; m, pedicel; o, oll budtes. (King)
cardo* and Winter place it under Tilletia Molinice (Von Thum) Winter. Dr. Farlow, who identified the fungus for me on Phragmitis, states that it soems to agree with that species. It was found by Mr. E. R. Hodson in considerable quantity on Phragmites communis in the vicinity of Colo. The ovaries are enlarged, much longer than broad. The interior is filled with a black powdery mass, the spores. The spores are round or elliptical, seldom spherical, dark brown in color, rough, and surrounded by a persistent thick-walled colorless exospore, with the permanently attached mycelium at one end, resembling a slightly twisted pedicel. Massee, \dagger in his recent monograph of Tilletia, excludes this species from the genus Tilletia The spores measure 16.6 to 20.8×24.9 to 29.1 . It may be a good species but cultural experiments will be necessary to determine this point. In Europe it occurs on Molinia cerrulea.

TIMOTHY SMUT.

This fungus (Tilletia striaeformis (Westd.) Magnus) has been known for a considerable length of time. It affects several different species of grasses. It was first described as Uredo striiformis, Westd. \ddagger The proper name for the fungus was given it by Magnus. This fungus has been quite abundant for a number of years in Wisconsin, Missouri and Iowa. The first economic account of it was given by Trelease in his paper on the smut of timothy. \| He reported it as common in Wisconsin on timothy and that it also occurred on Agropyron repens and wild rye (Elymus canadensis var. glaucifolious). The writer gave a short account of the fungus in a series of papers on Fungus Diseases of Iowa Forage Plants, referring to its common occurrence on timothy and Agropyron repens, both in this state and in Massachusetts. Since then the writer has frequently found it on blue grass and timothy in this state. In Europe the fungus is quite common on a number of different hosts, namely, perennial rye grass (Lolium perenne), tall meadow oat

[^142]

Fig. 122. Timothy smut (Tiretia striaeformis) affecting timothy. Leaves torn fup into shreds; a, spore germinating; l, promycelium with sporidia at the end. (King and Pammel.)
grass (Arrenatherum avenaceum), Bromus inermis, sheep's fescue (Festuca ovina), tall meadow fescue (Festuca elatior), etc

The fungus is closely related to stinking smut of wheat. The spores germinate in the same way and probably enter its host when the seed germinates. There is this important difference between the two species, this smut does not affect the "seed" in the same way. Its life-history is also somewhat different. 'The stinking smut is at most very short-lived, while this species is certainly a perennial. The destructive work of stinking smut comes on at a time when flowers and seed are forming. Tilletia striaeformis appears long before, perhaps soon after the first leaves come out early in spring. In Iowa I have coticed it about the middle of May; it continues, however, to develope on the younger lexves till the middle of June, when often the bracts of the flowers become affected. Last spring in one of the meadows on the college farm a large number of young plants were affected; the loss was very considerable. The plants were shorier and marked with longitudinal lead c)lored stripes, of en extending to the very tips of the leaf. When these lead culored patches are torn open a black powdery mass, the spores, are exposed.

As the plants become older the epidermis of these lead colored patches breaks and thus exposes the spores. The constant action of the wind soon causes the leaf to be torn up into shreds. The affected plasts never become so tall as the adjoining ones, seldom fruiting well. I think there can be very little doubt that the fungus is a $p=r e n n i a l$ as the following will illustrate. During the spring of 1×8 and $1 \times 8 \times$ I observed a small bunch of timothy in the Missouri Botanical GardenatSt. Louis, every leaf and stalk in the bunch was affected. Both seasons it was found on the same plants. Here at Ames, also, I have seen the smut on the same plants for two seasons.

THE GENUS UROCYSTIS.
This genus contains several parasites destructive to our cultivated plants. Our grasses are effected by two of these, the rye smut and the wild rye smut.

RYE SMUT.
This fungus (Ciorystic occulta, Wallr.), first described by Wallroth* in $1 \sim \uparrow 3$, has been repeatedly observed in various European

[^143]countries by Sorauer,* Frank \dagger and others. It also occurs in Australia where it is said to do much damage. It was first found in this country by Underwood \ddagger and Cook, who distributed the fungus, and later in Connecticut by Thaxter. \& It is not nearly so common in Europe as other cereal smuts and to my knowledge has never keen found in Iowa.

It is stated that between the years of 1850 and 1860 it was so destructive in parts of South Australia that in some localilities cultivated rye sustained a loss of 66 per cent. Like timothy smut it attacks the leaves, sheaths, stem, and inflorescence, but generally it is found on the leaves and sheaths. It makes its appearance about the middle of May and continues through June. It is characterized by lead colored patches which are arranged in parallel rows along the veins. The epidermis which covers the sori soon becomes ruptured and exposes the powdery spores, and like timothy smut, the leaf is soon torn up into brown shreds. The spores differ very materially from any we have thus far considered. They are arranged in clusters made up of two kinds of cells. The central ones are darker in color, and are capable of germination; the surrounding cells are lighter in color and do not germinate. The Urocystis spores do not germinate very readily. The promycelium bears the sporidia at the end. The fungus entersits host through the very young leaves close to the seed. Wolff states that the fungus cannot enter later. In eight or nine weeks rye, inoculated with sporidia, produced spores in the seventh or eighth leaf. When the sporidia come in contact with the leaf they attach themselves very closely, pen trate the cuticle of the epidermal cell, growing crosswise through the young seedling and then passes from the inner epidermal cell of one leaf to the outer of another. The mycelium when once in the interior of the plant grows in the intercellular spaces, sending haustoria into the cells.

WILD RYE SMUT.

This smut, Urocystis agropyri (Preuss), Schr., occurs on sev• eral grasses in Europe and the United States. $\|$

[^144]In Massachusetts the writ:r found it common on Agropyron repens, and it is reported on the same host in Europe by Tubeuf. It is also rep rted on ta'l meadow oat grass and Festuca rubra and Bromus inermis. Thus far it has only been observed by me on the wild rye, El?mus robustus. This species is very common about Ames. It makes its appearance early in June and continues through July. Hundreds of culms are affected. In many cases it is difficult to find a sound leaf in some plac s. The fungus is characterized by linear lead-colored patches, which occur along the veins of the 'eaves. On drying them the epidermis becomes suptured, exposing the black powdery spores, which have much the same character as the rye smut, measuring $1-3 \times 8-12^{4}$ in diameter. The spores do not germinate readily. It is certainly a perennial. The species was first described from European specimens.*

TREATMENT FOR SMUT.

All smuts are not amenable to the same treatment, since the manner of entering the host differs. In many diseases of plants hygienic methods are of much value, and to some extent these are of value also in smuts. Of course, in the case of corn smut, much can be dore by removing the smutted portions of the plant, and rotation of crops should always be practiced. Though this will destroy but a small portion of the smut, it is helpful. Use care in seed selfction-the seed should be free from smut. In the way of treating the seed, two methods have been in vogue-hot water and the chemical treatment. The latter has been in vogue for a long time, especially the method of treatment with blue stone. For full accounts Swingle's \dagger papers should be consulted.

Formalin.--During recent years much has been said about formalin as an antiseptic as well as a disinfectant. Experiments made by Close \ddagger and Bolley indicate that it is valuable to prevent stinking smuts, as well as loose smut of oats. It is used at the rate of one pound to fifty to sixty gallons of water, and the seed soaked two hours. The 40 per cent solution should be used. The strong solution is poisonous; the di ute solution is not dangerous. A one per cent solution gave good results.

[^145]Potassium sulphide.-Potassium sulphide has proved efficacious. The method given by Swingle is as follows: "Dissolve one and a half pounds of potassium sulphide in twenty-five gallons of water in a wooden vessel (a tight barrel serves very well for this purpose). The potassium sulphide should be of the fused form, known as liver sulphur. This can be obtained of any druggist for from 25 to 50 cents per pound, according to the quantity purchased. It should be kept protected from the air in a tight glass vessel until ready for use. The lumps of potassium sulphide dissolve in a few minutes, making the liquid a clear yellowish-brown color. After thoroughly stirring, put into the solution about three bushels of oats and agitate well to insure wetting every grain. The solution must not only cover the grain, but must rise several inches above it, as some of it is soaked up by the grain. Leave the oats in the solution for twenty-four hours, stirring several times during the day to make sure that every kernel is wett d, after which spread out to dry. A number of experimenters have found that soaking the sead two hours in a 2 per cent solution (eight pounds to fifty gallons) was nearly or quite as effective as the longer treament. The grain should be stirred repeatedly to insure thorough wetting. Seed thus treated is much easier to dry than that soaked twenty-four hours. Probably this form of treatment will prove the best.
"In treating large quantities of seed a hogshead or wooden tank might be used. The solution should be kept well covered to keep the air from it, and should not be used more than three times. In no case should metal be allowed to come in contact with it. This treatment is thoroughly effective for loose smut of oats, and is worthy of a trial for stinking smut of wheat."

Ceres powder. -This substance is advertised as a preventive of smuts, is, according to the analyses of Hollerung and other German investigators, only crude potassium suphide sold under another name and at a much higher price.

Sar solution.-This consists chiefly of sodium sulphide and as given by Swingle is prepared as follows: "Place fifteen pounds of flowers of sulphur in a barrel, mix thoroughly with one-half pound of finely-powdered resin, and stir well with three quarts of water, which should make a thick paste. The paste must not be thin and watery, nor so dry as to crumble to powder when stirred. Then add ten pounds of caustic soda
and stir well.* Aft?r from three to fifteen minutes the mass turns a redaish-brown and boils violently, and must be stirred well, preferably with a broad paddle, to prevent it from running over. After it has ceased boiling, add about two gallons of water (hot if possible, but cold will do) and then carefully pour off into another vessel marked to ho'd six gallons, and add hot wa'er till the six-gallon mark is reached. This gives a stock solution, which must be kept in tightly closed jugs or in closed barrels or kegs, since it boils if it comes in contact with the air. It is also decomposed if it touches metals. Of this stock solution use one and one-half pints to fifty gallons of water, soaking the ssed twenty-four hours, or one gallon to fifty, soaking two hours. In either case treat the seed according to the directions given for the potassium sulphide treatment."

Hot water.-Numerous experiments by Jensen, Arthur, Kellerman and Swingle, Jones, the writer and many others have shown that hot water is efficacious as a preventative for ozts smut and bunt.

Provide two large vessels holding at least twenty gallons each (two wash kett'es, soap kettles, wash boilers, tubs, or even barrels will do). One of these vessels should contain warm water at say 110° to $120^{\circ} \mathrm{F}$. and the other hot water at 132° to $133^{\circ} \mathrm{F}$. The first is for the purpose of warming the seed before dipping it into the second, un'ess this precaution is taken it is difficult to keep the water in the second vessel at the proper temperature. A pail of cold water and a kettle of boiling water should be kept at hand to draw from when necessary to raise or lower the temperature; or, better still, in case a kettle or boiler is used, the temperature of the water may be kept up by placing the vessel over a small fire. Where steam is available, it can be conducted into the second vessel containing the hot water by means of a pipe provided with a stopcock. This answers better than any other method for heating the water and for elevating the temperature from time to time.

Place the seed to be treated, at the rate of half a bushel or more at one time, in a closed vessel which will allow the free entrance of water on all sides. A bushel basket made of heavy wire, with wire netting, say twelve meshes to the inch, to spread inside, may be used for this purpose; or a frame can be

[^146]made at a trifling cost and the wire netting stretched over it. This will allow the free passage of the water and at the same time prevent the seed from passing out. A sack made of lozsely woven material-for instance a gunny sack-may be used instead of the wire basket. In some respects a perforated tin vessel is preferable to any of the above. It is important not to fill the baskets or sacks completely, as the grain is wetted more easily, drains better, and is more uniformly exposed to the hot water when it can mova about freely. It is also important to have a volume of hot water at least six to eight times as great as the capacity of the basket or sack; otherwise the temperature varies too much.

Copper sulphate.-This has long been used for the treatment of oats smutand bunts. It is used in the following proportions: Dissolve one pound of copper sulphate in twenty-four gallons of water; immerse for twelve hours. After this immersion Swingle recommends to place the seed for five minutes in lime water made by slacking one pound of good lime and then diluting to ten gallons with water.

Corrosive sublimate--This well known disinfectant has been recommened by Bolley* for bunt, in the proportion of one pound to fifty gallons of water. The following are the directions given for applying this treatment: "Pile the wheat upon the floor or upon a canvass and thoroughly sprinkle or spray on the solution, while the grain is being constantly shoveled over so that every grain becomes wet over its entire surface. Do not use any more of the solution than necessary to do this, as an excess is injurious to the seed." The writer has found it efficacious to prevent oats smut. It should be constantly stirred, and care used not to use too much of the liquid; too long contact greatly impairs germination. In this metbod great care should be used, as the solution is very poisonous.

The potassium sulphide treatment, as well as the hot water method, show that there is an increase in the yield. Arthur states that hindere 1 germination is due t) the liberation of large quanties of diastase by the action of heat.

RUSTS, OR UREDINEA.

The term rust as applied to cereals is usually pretty well understood by most people, though the term is often incorrectly applied to many other fungi. The term is limited to a class of

[^147]

Fig. 1\%4. Rusts of grasses. 1, Spartina rusts, lromyces acuminatus) on spartina cynosuroides; 2. teleuto spores of orchard grass rust (${ }^{\prime}$ romyces dactylidis) uredo spores at a; '3, telouto spores of Eromyes pou, uredo spores at a on Poa; $4, P$ uccinia coronata on Rhammus cathirtica; , aecidium of Puccinia graminis on barberry, a ind b, spores magnified: fi, $\bar{\prime}$, Puccinia graminis; 8, aecid fum of Puccinia graminis, the cup below spermogoala abovelspores, aperidial cell. (Pammel and King.)
fungi belonging to the Uredineæ as will be made clear in the following pages. The Uredineæ are among the most destructive of the parasite fungi of cultivated and wild plants. Wellknown illustrations are, cereal rusts, rust of apple, coffee leaf disease, hollyhock rust and carnation rust. The rusts are common on a large number of grasses. The most imporiant of those affecting Iowa forage plants will be taken up under the head of (1) rusts of cereals, (2) rusts of other grasses.

History - Rust was well known to the ancients. This affection is mentioned in connection with smut. It is referred to in several places in the Bible.* Aristotle mentions its occurrence and causes. Plinius, Columella, Ovidius and other writers mention the occurrence of rust. But little mention was made of it during the middleages, though beginning with the seventeenth century reference to it became frequent. Some of the laws looking toward the extermination of the barberry date from 1660 when an act having that object in view was passed in Rouen. In 175 ป Massachusetts passed a law lookicg towards the extermination of the barberry. A complete and full history will be found in the work of Erikssor and Henning.

RUSTS OF CEREALS.

The subject of rusts is one of special interest to us because large losses are usually entailed by our cireal crops. During the last decade several wheat crop failures in parts of our state have been caused by rust. It is, therefore, proper that this subject should receive consideration.

Eriksson and Henning, + in their recent monograph, find that our cereals have several specialized forms of rusts. Carleton, ${ }_{+}^{+}$ as the result of some careful studies, finds that our cereal rusts are specialized.

[^148]Eriksson and Henning use the name P. dispersa for the old rubigo-vera, which has been in use among mycologists for a long time. Carleton, after having made a careful morphological study of the rusts of northern Europe and the United States, concludes that the P. dispersa and P. rubigo-vera are identical, and that the name P. rubigo-vera should be used. He concludes that we have six cereal rusts and a possible seventh in the United States.

CORN RUST.

Corn rust (Puccinia sorghi, Schw.) Schweinitz,* an early American mycological writer, described this fungus as early as 1834 , but earlier than this Carradori \dagger an Italian writer, referred to this fungus. It is widely distributed, occurring where corn is cultivated, and at times is quite troublesome, especially in North America. According to Saccardo, \ddagger it occurs in Italy, France, Austria, Germany, Lusitania, North and South America. Peck and Seymour $\|$ have given us the only early economic accounts of the fungus. There is a!so a

[^149]short account by one of us,* and one by Weed + in his book, "Fungi and Fungicides."

Characters of the fungus. -The fungus produces two stages. The first or uredo stage is similar to the red rust stage of wheat. It occurs on the bracts covering the cob, leaves and sheath. Small, light-brown pustules or sori appear on both surfaces of the leaf. Close examination will show that these sori break through the epidermis where small white spots occur. The rupturing of the epidermis is caused by the continued growth of the spores underneath. The ruptured epidermis shows the small spores. The uredo spores are onecelled, round or more often elongated and spiny. The stalk is detached. The spores measure $23-38 \times 20-26^{u}$. The uredo sori are clustered or arranged in parallel rows, closely following the veins of the leaf. The uredo spores are capable of germinating immediately an distribute the fungus during the summer. They preserve their vitality for oaly a short time; at any rate they do not live through the winter. Carleton \ddagger states that the time of incubation for the uredo is shorter than any of our cereals, varying from five to eight days.

As the leaves become o'der the yellowish-brown uredo sori are replaced by black sori. These sori may also appear where uredo sori did not occur. The same mycelium which gave rise to the uredo spores later gives rise to the teleuto spores. The sori containing these spores are black. The spore is broadly elliptical and two-celled. It measures $30-52 \times 16-24^{4}$. The apex may be thickened and somewhat pointed. These spores preserve their vitality for some time; they are dormant through the winter. In the spring each cell may germinate by producing a tube, known as the promycelium, which bears laternal bodies known as sporidia. It is undoubtedly connected with some æcidium or cluster cup stage, but this stage is not known. Carleton report; the occurrence of this fungus on Teosinte (Euchlaena mexicana) which is closely related to maize.

The species is of considerable economic importancэ in our state, but it is seldom that reference is made to it. Duthie and Fuller§ state that corn is singularly free in India from fungus diseases. Agricultural writers in this country do not usually

[^150]

Fig. 125.

Fig. 127.

Fig. 128.

Fig. 125. Teleuto sorl of Puccinia graminis.
Flg. 126. Uredo sorl of Puccinia coronata leat of oats, sheath affected with Puccinia graminis.

Fig. 127. Maize rust (Puccinia sorghi). Teleuto sorus, magnified.
Fig. 128. Maiza rust (Puccinia sorghi) on Zea mays. s, sorus.
refer to this disease, but on some varieties of corn it is very severe

We have seen this fungus so abundantas to seriously destroy the leaves and sheaths of corn, in fact so abundant as to materially injure the crop. This was especially true of some varieties of corn grown on the college grounds, the seed of which came from the Philippine is'ands. In this case, no doubt, unfavorable climatic conditicns of that variety caused it to rust. It is more severe on sweets than on the dents. At times our field corn is very seriously affec'ed.

Professor Seymour says: "The fungus is always injurious to the corn on which it grows, but the extent of the injury depends largely upon the age and condition of the corn and c imatic conditions, and is often so slight as to be of no practical importance. Certain conditions of the weather may retard the growth of the cirn and favor that of the rust. Ordinarily the rust is not noticed till the latter part of the summer, when the corn is well grown and not easily injured; but in the first week of July, 1886, the writer observed it repeatedly on the lower leaves of partly-grown corn, whose vigor was plainly impaired by it. The injury consists in loss of food materials elaborated by the plant for its own growth which the mycelium of the fungus uses for its growth and in destroying the power of some of the tissues of the plant to do its work.

COMMON GRASS RUST.

This rust (Puccinia graminis, Pers.) in several of its forms is common on many grasses and especially destructive to oats and wheat. The commen rust produces three stgges. One stage occurs in the barberry and is known as the clust. r cup fungus. This stage makes its appearance in the northwest some time during the month of June. In the latitude of Ames, a little before the middle of the morth. An examination of an affected leaf will show small black specks on the upper surface, surrounded by a yellow spot; this is known as the spermagonial stage; the flask-shaped bodies are called spermagon'a and contain the spermatia. These do not germinate; their function is not known. A sweetish fluid, which attracts insects, is frequently found in connection with these. Directly opposite the flask-shaped bodies are small globular affairs, "cups," (Aecidia), slightly irregular on the margins. Owing to their upward growth they rupture the epidermal cells and finally the lining
layer of cells of the cups also break, thus exposing a large number of one celled spores borne in chains. These spores arise from short stalks contained at the base of these cups; the cluster cup spores are known as aecidiospores. They are transported by the wind and other agencies, and bave the power to germinate soon after maturity. When the proper host-a grass like bent grass, oats or wheat-occurs, the germ tube enters by way of the stomata, or the so-called breathing pores. The germ tubes produced by the spore of Aecidium berberidis are simple or branched, and in fourte $=\mathrm{n}$ days usually give rise to the uredo spores, which occur in definite spots called sori. These spots occur in great number along the veins of the leaves. Before breaking open, the tissues of the leaf are somewhat paler at those places. The nourishment afforded by the host causes a vigorous mycelium to form, which soon collects in places, pushes the epidermis out, and an orange-colored pustule is formed; this is known as the uredosorus.

A section through a diseased sorus shows that an abundance of the vegetative mycelium grows between the cells of the plant, and in some cases haustoria penetrates them. This pustule contains a large number of one celled, round or elliptical, spiny, orange-colored spores, the uredo spores. This spore has two membranes, the outer exospore being provided with wart-like projections. The inner endospore is provided with several pores through which the germ tube appears. These spores germinate in from three to four hours; they can thus start a generdl infection. These spores, carried by the wind, rain or insects to another part of the same or another plant, germinate. The germ tubes branch and spread over the surface, but the tube cannot enter the host, a grass of some kind, such as wheat, oats or barley, unless it reaches the opening of the stoma, since it cannot bore through the epidermal cells. A single sorus contains hundreds of spores, and as a single plant may contain hundreds of pustules, it can readily be seen that rust must become quite general.

The red rust stage is followed by the black rust stage, known as the teleuto stage. The sori are brownish-black in color, and frequently occupy the same place that the uredo stage did. The spores are dark brown in color, two-celled and smooth, having attached to them a persistent stalk known as the pedicel. The te'euto spores do not germinate till the following spring, when eash call proluces a germ tube, the promycelium
bearing lateral spores, sporidia. These sporidia, when in contact with the barberry leaf, enter by boring their way through the epidermal cells.

The barberry cluster cup fungus, and its connection with common grass rust.-It is not absolutely necessary for the common grass rust to have its first stage on the barberry, yet experiment has shown beyond doubt that it does occur on that plant. The theory has been advanced that appearing in one of its stages on the barberry gives the parasite new vigor. It is not improbable that in some places the mycelium or vegetative part of the fungus may be perennial in the tissues of grasses, as it is with ma y other fungi, and I am inclined to think this is true in southern localities. Beyond question this rust produces spores during the entire year in our southern states, and on the approach of early spring gradually moves northward. I may also mention the fact that this rust certainly does not in the west appear before the cluster cup fungus on the barberry appears. It is usually eight or ten days later, and then only to a limited extent. Rust often appears where barberry does not occur within hundreds of miles. This was especially noticeable during the early history of grain culture in the northwest. Rust fol ows a general infection.

Grasses affected.-In addition to the cereal plants enumerated in the table, this rust has been reported on the following grasses: Bent grass, Agrostis alba, A. capillaris, A. canina, Aira caespitosa, Alopecurus pratensis, Agropyron repens, A. spicatum, A. caninum, Avena fatua, Briza media, Bromus tectorum, Briza maxima, Bromus mollis, Calamagrostis, Dactylis glomerata, Distichilis maritima, and Eriksson and Henning report it also on Elymus canadensis and several other forms; it has, however, not been seen by me on this host. We have repeatedly seen it on Holcus lanatus and Hordeum jubatum.*

It should be borne in mind that in many cases these hosts have not been determined by inoculation experiments. The inoculation experiments of Carleton show that the P. graminis avence are not successful when applied to wheat, but successful when applied to Avena sativa, A. fatua, A. pratensis., Dactylis glomerata, Arrhenatherum avenaceum. The following are probable hosts: Koeleria cristata, Ammophila arenaria, Bromus ciliatus and Loliam perenne. The Hordeum jubatum, according to Carleton, supports two distinct forms of P. graminis. The same

[^151]author states that the Puccinia graminis tritici occurs on cultivated varieties of wheat, Hordeum jubatum, and H. vulgare. The following spices also act as hosts: Triticum spelta, T. dicoccum, Agropyron richardsoni, A. tenerum and Elymus canadensis.

Eriksson and Henning and other writers* report this rust on several o.her spicies of Hordeum, Koeleria cristata, Lolium perenne, L. temulentum, Agropyron tenerum.

The clus'er cup fungus occurs more commonly on the common barberry (Berberis vulgaris) because it is more commonly cultivated. I have also found it on B cerasisforme and B. canadensis here at Ames. One species of barberry, B. thunbergi, is exempt here.

There is n) evidence that the rust c an survive the winter in the northera states; i. e.: that the mycelium is perennial in the tissues of wheat or grass. At least this does not occur in Iowa, and Professors Hitchcock and Carleton failed to find that it is perennial in Kansas. They state that it seems probable that P. graminis does not pass the winter in this vicinity in the uredo stage, n in the mycelial condition. Whether or not it survives the winter further south is a question still to be answered. Eriksson and Henning state that in Stockholm and Sweden the uredo spores do not persist during the winter, and that infection does not result from these occurring in the fall. Cold weather is inimical to th iir development. The results of the Swedish writ:rs are entirely trustworthy. It is claimed by Von Thumen for Austria, Plowright for England and Kuehn for Germany that this species is perennial. In Austria accord-

[^152]ing to Cobb the species grows during the entire year. Some years ago a systema+ic investigation was made of the rust affecting cereals in the vicinity of Ames. While Puccinia graminis was commol in the fall, gradually disappearing on the app oach of cold weather, none of the sori were found during the winter or early spring. It was not till the cluster cup fungus appeared that this rust commenced to appear. Some of the infestsd plants were removed to the green-house and developed rust in abundance during the winter.

COVERED RUST OF WHEAT.
We may now discuss briefly two species of rusts, the Puccinia glumarum and P. rubigo-vera, which are more or less common on wheat and some other grasses, and have very appropriately received the name of covered rust.

Puccinia glumarum.-Æcidium unknown; the uelo sori occur along the veins. The diseased leaf is frequen'ly of irregular contour, color orange yellow, spores spherical, or short, elliptical, spiny. Teleuto sori, grayish, covered by the epidermis on the stalks and leaves, less frequently on the flowers. Sori divided into chambers, surrounded by paraphys's. Spares with short pedicels, mostly club-shaped, unsymmetrical; apex somewhat truncate, or with one or two projections. This rust does not seem to h ,ve been genera!ly recogn zed as belonging to the description given by Schmidt in 1819. It has been usually referred to as P. rubigo-vera. It seems quite certain that most European mycologists who have been. working with the economic side of this question have had the P. glumarum in mind. Eriksson and Henning say it is difticult to say from the diagnoses of many writers who have discussed this question whether they had P. glumarum or P. dis. persa. In European mycological works the æcidium of this fungus is said to be very common on common speedrell (Lithospernum arvense) Echium vulgare and Anchusa officinalis. Common speedwell is a very common weed in St. Louis and other parts of Miss Juri and southern Illinois, but I have never found the æcidium on these weeds.

It is very evident from the researches of Eriksson and Henning* that most wri'ers must have been working with a rust very different than P. rubigo vera. On the question of the relation of temperature and the appearance of this rust, Eriksson

[^153]and Henning state from their extended observations that there are marked differences in the disposition of the rust, depending upon temperature conditions. It appears further from their researches that the amount of precipitation was important in the product on of this rust. Concerning the ability of the uredo spores to pass the winter in a living state in northern climates, these writers foand no evidence of it in the least, or at any rate the conditions fo: this are extremely unfavorable. It appears that in some cases where the snow covers the ground during the spring, with a few slight frosts, the mycelium may be carried over, but its occurrence in this way is not very common. On the other hand a long continued snow is likewise detrimental.

Puccinia dispersa.-This species of rust is apparently very common in Europe. There are three different stages The æcidium stage produces circular or elongated, somewhat swollen, spots on the leaves, petioles and stem of several members of the borage family. The spores are between 20 to 30^{n} or 20 to 30×19 to $22^{\text {u }}$. The uredo spores ara spherical or short elliptical; pale yellow, 19 to $29^{\text {u }}$ in diameter. The tuleuto spores long ramain covered by the epidermis. The sori chambered, surrounded by numerous brown paraphyses; spores are mostly club-shaped, unsymmetrical. Spores 40 to $50^{\prime \prime}$ long. According to Eriksson and Henning the uredo spores can germinate in the fall. In addition to the above named hosts, this rust has been found on several species of Bromus, Trisetum and Triticum spelta. Its distribution cannot be given because in most cases the P. rubigo-vera included this as well as the P. glumarum. It has been intimated above that the uredo spores make their appearance on young germinating plants in the fall, but it appears that the uredo spores are not common the following spring. The inves igations of the authors quated here indicate that not in a single case was it possible to produce uredo spores in the spring from those of the autumn.
L. H. Bolley, of Fargo, N. D., well remarks in regard to several cluster cup fungi which occur on members of the Borage family: "Several æcidia of unknown life history have been studied with reference to their relations to the red rust of Puccinia rubigo-vera, many infectious $t \in s t s$ being made upon young wheat and oat plants, all with negative results."
"In this region Onosomodium carolinanum bears very profusely an æcidium, which, because of its date of appearance, was worthy of suspicion; but tests enough were made to remove this notion." P. rubigo-vera as well as the common grass rust, is very destructive in England and Australia; according to Wolf, not so common in Germany. A few years ago Professor Arthur investigated the subject of wheat rust in Indiana and found that this species was much more destructive to wheat in that state than common grass rust. The same year, 1889, I found that this rust was much more common on our wheat. Carleton* says he is confident that the orange-leaf rust (P.rubigovera) does very little if any damage to the grain in this country; that in all cases of serious damage to the grain by rust the black-stem rust (P. graminis) is the real cause.

In 1891 and 1892 the rust under consideration was hardly as destructive as common grass rust. In 1893 covered rust was more abundant than common rust. Atkinson states that uredo spores develop during any month of the year, during the winter and spring attacking the grains, and during the summer and autumn the grasses, so that we may probably have a perennial infection from uredo spores, Bolley states that there are isolated cases in which the mycelium of this species may live in the tissues of the wheat during the winters. This, however, can occur only during the mild winters. I have been unable to verify this for the state of Iowa, and Bolley has, likewise, failed in North Dakota. Hitchcock and Carleton find that in the vicinity of Maahattan, Kan., the Puccinia mbigo-vera passes the winters in the tissues of the wheat plant in the mycelial condition. During the warm weather of spring a crop of spores is produced which, under favorable conditions, may rapidly spread the disease. The infection of the winter wheat in the fall is materially aided by the volunteer wheat, which carries the rust through the few months following harvest, and these results have been reconfirmed by Carleton \dagger in Kansas and Maryland. According to Sorauer the mycelium is perennial in the parenchyma of the leaves of cereals. We are forced to the conclusion that infection is general and that our wheat suffers much from southern invasion of this parasite. No doubt the perennial character of the mycelium in warm climates plays an important part in spreading the disease. In northern states,

[^154]with severe winters, the mycelium, except under favorableconditions, is not perennial.

CROWNED RUST.

Puccinia coronata.-This is a well-known destructive rust of oats and several other grasses and has received considerable attention from early mycologists. Klebabn* has recently described this rust under several distinct forms. The P. coronata dactylidis in a narrow sence includes the rust upon Dactylis glomerata or orchard grass, Festuca sylvatica with æcidia on Rhamnus frangula and P. coionifera Ericksson and Henning distribute these forms into P. coronata I, and P. coronata II. Historically this rust is of considerable importance, since Gmelin \dagger was familiar with this disease in 179^{\prime}, and described it as Aecidium rhamni on Rhamus. Other early mycologists described the fungus, as Persoon, Schumacher, Lamarck and DeCandolle. The Aecidium rhamni Gmel. produces round or elongated spots with elongated, conspicuous æcidia. The spores from 18 to $25^{\text {u }}$ by 14 to $19^{\text {". The uredo sori are long, con- }}$ fluent, mostly on the upper surface of the leaves, seldc m on the under surface of the leaf. They are orange-colored, an d are soon exposed. Each pustule contains a large number of one celled, sub-glob-se, roughened spores. The sp res are spherical or sbort, elliptical. The plant is yellow, $\varepsilon 0$ to $3 \underline{Q}^{\prime \prime}$ in diameter by 28 to $32^{\prime \prime}$ by 20 to $24^{\prime \prime}$. The teleuto spores remain covered by the epidermis, and in this respect they resemble the covered rust of wheat (Puccinia glumarnm). They usually occur on both sides of the leaf. The spores are shert stalked, cuneate and more or less truncate above, crowned with several projecting horns. The acidium stage occurs on a species of buckthorn'(Rhamnus) especially (R. 'athertica and R. fiangula). In this state an æcidium is frequently found on a native buckthorn (R. lanceolata), but its comnection with this host has not been studied. The wcidium attacks not only the leaves, but occurs on mid-vein, petiole, pedicels and flowers. As a result of the attacks, distorted leaves and flowers are produced. A few year's ago Hon. C. V. Stout, of Parkersburg, in this state, reported to me some interesting facts with reference to the attack of rust and hedges of buckthorn.

[^155]Quite a number of farmers of Grundy county in the early days planted hedges of buckthorn around their farms. Mr. Stout had observed for a number of years that oats are very badly rusted in the vicinity of these hedges, so that he had learned not to plant any oats in the immediate neighborhood. Away from these hedges rust was not so severe. For the farmers of the vicinity the buckthorn hedge and rust was an instructive and valuable lesson.

SIMPLE BARLEY RUST.

Puccinia simplex.-In 1865 Koernicke described, under the name of Puccinia straminis var. simplex, the rust upon barley. This rust appears to be quite common in Scandinavia, Belgium, Hungary and Austria, Ecidium unknown. The uredo spores occur in small sori which are longer than wide. These occur scatteringly upon the upper surface of the leaf. The lemoncolored spores round or short elliptical, spiny, yellow, 19 to $2 \mathrm{C}^{\prime \prime}$ in diameter or $22-27^{\mathrm{u}} \times 15-19^{\mathrm{u}}$.

RUSTS OF OTHER GRASSES.

It will not be necessary to discuss at any length all of the rusts which are common on grasess and cereals, since they have in part been treated in a former discussion; suffice it to say that a so-called Puccinia graminis occurs on blue grass, but it is not common nor destructive in this state. The same species occurs on orchard grass. Puccinia graminis is, however, extremely common on bent grass (Agrostis alba) and several of the related species. Puccinia graminis, or a closely related species, the Puccinia agropyri, is very common on the following species of the genus: Agropyron repens, A. spicatum, A. caninum and A. tenerum. Until it has been determined whether this form is distinct in America it will be better to treat it with common grass rust, which it resembles in a great many respects, and Carleton has shown by inoculation experiments that P. graminis occurs on several species of Agropyron.

Pucinnia coronata.-So far as the writer knows, this species is common only upon the orchard grass in the state of Iowa, and this is the form which has been referred to P. coronata llactylidis. In Europe, however, this rust is common on other grasses.

Timothy rust (Puccinia phlei pratensis). -Timothy, so far as the writer knows, is not affected with any rust in the state of

Iowa. In Europe, Eriksson and Henning* have described the above species.

Puccinia graminis has also been reported on timothy in this country. It is possible, however, that the Puccinia graminis recorded may be the Puccinia phlei pratense. Ecidium unknown; uredo sori perennial occur on the leaves and sheaths; confluent, brownish yellow, 18-27 x15-19 ${ }^{\mathrm{u}}$. The elongated confluent, brownish-black or black sori are open or exposed, or with partially removed epidermis; contain the teleuto spores, which are spindle or club-shaped, somewhat constricted in the middle; chestnut brown, round or pointed; the apex strongly thickened, $38-52^{u} \times 14-16^{u}$. From experiments made by the Swedish workers it appears that this rust is in no way connected with the barberry cluster cupfungus.

Gama grass rust (Puccinia vexans, Farlow.)-This rust is extremely common on Boutcloua racemosa. First described by Professor Peck \dagger from specimens collected by Brandegee under the name of Uromyces brandegei (Peck). But the species was first correctly determined as a Puccinia by Farlow. \ddagger. He determined that there were two kinds of thick-walled spores with a permanent pedicel; the two-celled being far more common in the summer, while the one-celled produced during the fall. The æcidium stage of this fungus is unknown. Uredo sori are produced on the upper surface of the leaf and occur in'small yellow spots. Spores oblong or elliptical, minutely roughened, $15-25^{11}$ across sori, with numerous paraphyses. The one-celled mesospores are globose to oblong. The exospore covered with small papillæ; spores $25-30^{\text {u }}$ broad by $30-38^{\text {u }}$ long. Apex of the spores strongly thickened. Pedicels colorless, longer than the spores; two-celled spores smooth.

Blue stem rust.-Blue stem rust is rather common on tall blue stem (Andropogon provincialis) as well as the little blue stem (Andropogon scoparius); furthermore, it is common on other species of the genus in southern United States. This species was first described by Schwennitz.g Uredo sori brownish orange on the under surface of the leaf, sometimes confluent. Uredo spores sub-globose, $21-31^{u}$ in diameter, roughened.

[^156]

Fig. 129. Uredo Sori of Tickle Grass Rust (Puccinia emaculata).
Fig. 130. Teleuto sorl of Puccinia andropogonis on A. provincialis.

Teleuto sori usually on the under surface of the leaves; sometimes on both surfaces, singly or in groups, confluent, the edges of the epidermis of the edges of the sori straight. Teleuto spores two-celled, obovate to elliptical, constricted at the middle. Apex rounded and somewhat obtuse. Spores $30-45 \times 15-22^{4}$. Pedicels as long or longer than the spores. This species is most troublesome in this state on Andiopogon scoparius. In some cases over large areas a large number of leaves have been infested with the fungus. It is especially manifest during the month of September and October, uredo spores being most abundant during the month of August.

Switch grass rust (Puccinia eamulata Schweinitz).-This species was described by Schweinitz* and occurs upon several different genera, notably Tricuspis seslirioides, Panicum virgatum, P. capillare and Eragrostis pectinacea.

Sori numerous, usually on tae upper and lower surfaces of the leaf. They are most abundant on the lower. The uredo sori, brownish, elongated, frequently confluent, irregular. Spores sub-globose, $15-20^{\prime \prime}$ in diameter, echinulate. Teleuto sori irregular, elongated, frequently confluent, black. The epidermis broken, forming a rim around the edge, lacerated. Spores constricted in the middle. Apex obtuse or acute, 30$48^{\mathrm{u}}$ by $15-21^{\mathrm{n}}$. Pedicels long or longer than the spores.

Puccinia poarum, Nielsen, \dagger affects Poa annua. The pustules or sori of the uredo stage are orange-colored, round to elliptical, provided with sterile threads known as paraphyses. The uredo spores usually have six germ pores. The spores are round or somewhat elongated and spiny. The teleuto sori are black or dark brown, oblong to linear, without sterile threads, long remain covered by the epidermis, the spores are usually twocelled, brownish-yellow to dark brown, provided with short persistent pedicels.

Puccinia anthoxanthi occurs upon the Anthoxanthum odoratum. The spores of this species are extremely variable. Ordinarily they are much longer than broad, and with a rather stout, persistent pedicel. The uredo spores are minutely roughened. The Puccinia phragmitis is quite common on Phragmites communis. The æcidium of this fungus occurs upon a species of Rumex. A second Puccinia has been recognized upon Phragmitis, e. g., Puccinia magnusiana Koern. The æcidium of this occurs upon

[^157]

Fig. 131 Rusts of grasses. 1, Puccinia phragmitis on Phragmites communis; ?. P. anthoxanthi Fekl. $3, P$ coronata on Calamagrostls; $4, P$. tricuspis ; $;, P$. coronata on oat leaf; 6, uredo sporesof P. phleipratensis on Phleum, Ericksson and Kenning; \boldsymbol{r}, , uccinia graminis on oats; s, P arundinacea on Phragmites commumis; 9, on Spartina cunssuroides; 10 P, coronata on Cinna arumlinacea. Pammel and King.

Ranunculus. Dr. J. C. Arthur, of Lafayette, Ind., has recently determined that the Ecidium Fraxinii has its teuleto sporic stage upon Phragmites and that this rust is connected with Pucinia pheragmitio, and that Puccinia arundinacea occurs upon Phragmites communis also.

Tromyces dactylidis occurs upon Poa, Dactylis, Avena and Brachypodium. L'romyces graminicola occurs upon Panicum virgatum and several other grasses. Tromyces acuminatus, first described by Arthur, is very common at times on Sparitina cynosuroites. It received its specific name from the 'peculiar character of the apex of the spore.

The prevention of rust.-Various opinions have been expressed in regard to the causes of rust and its prevention. By many agriculturists, for instance, it is thought that rust is dependent upon the manner and method of sowing the grain. Some agricultural writers, especially in Germany, have conducted experiments to determine these facts and the statement has been made by some of these writers that where the grain was sown too thick, and soil fertilized, the culms were developed so abundantly that the cereals rust more severely. McAlpine* stated at a conference at Sidney in 1891, that most of the agriculturists of Victoria found that rusts were most severe where the grain had been thickly seeded. Eriksson and Henning \dagger in their treatment of this question states that it appears to have been but a small factor in the determination of rust. Another question discussed along this line by these writers is the question of shallow and deep planting. According to Rostrup wheat sown more than five inches deep is severely affected. The third question discussed is that of sowing by the hand as compared with sowing with a machine. From the results obtained it appears that grain sown by a machine produces a more uniform stand and it was less rusted than the hand sown. The fourth question is that of sowing a mixture of different cereals. This question was early discussed by Sinclair. As a matter of fact it makes very little difference if the cereals are sown separately or conjointly so far as rusts are concerned. The question of climatic influences is an important one as has been shown by numerous investigators. The question, both from an historical and from an experimental standpoint has been dis.

[^158]cussed at considerable length by Eriksson and Henning under the following heads: Heavy rains; sudden temperature changes; wind and dew.

The writers commenting on the subject concluded that the development of black rust is highly favored by the large amount of rain through July and early August. This favors a rapid germination of the uredo spores The most favorable conditions for the rapid development of yellow rust for winter wheat occurs in the month of April when there is a large precipitation.

Eriksson and Henning have also made some experiments on spraying to prevent rust. They tried such substances as sulphate copper, eauceleste, Bordeaux mixture, chlorids of iron and sulphate of iron. It appears from these experiments that spraying with Bordeaux mixture and eauceleste, somewhat lessens the attacks of rust.

Experiments made by Galloway* with fungicides, in which seed, soil and plants were treated, showed that certain fungicides, e. g., Bordeaux mixture, potassium bichromate and some others, were effective in checking rust to some degree, yet the expense and method of treatment render it quite impossible to spray the plants to prevent rust. The experiments by Kellerman, Swingle \dagger and the writer \ddagger also show that it is out of the question to treat rusts.

Eriksson and Henning, in the work quoted before, recommend only to grow such varieties as are most resistant to this disease. They state that this degree of resistance shows itself to best advantage in years when there is considerable rust. They recommend further that winter wheat be sown early in the fall. In regard to oats, they recommend that the soil should not be heavily fertilized; seed should be sown early in the spring, that all barberry bushes and mahonia be removed, and that weeds which harbor rust, like quack grass, should be removed.

Carletons states there is as yet no preventive for wheat rust, at least so far as combating it directly.

Bacterial Diseases.

The known diseases produced by bacteria are constantly increasing. Hartig \| in his well known work on plant diseases

[^159]

Fig. 132. Rusts of grasses. 1, a three-celled teleuto spore; ? several celled teleuto spore of Puccinia tomipara; 4, P. veraus, middle fgure a single paraphysis; 9, Pucciniagraminis, with mycellum: δ, P. rubigo-vera.
made the positive declaration that bacteria do not produce diseases of plants.

De Bary undoubtedly was one of the most critical and careful of the German botanists. He says:
"Parasitic bacteria do not often appear, according to our present experience, as the contagia of diseases in plants." When De Bary wrote, the following diseases of plants had been demonstrated as due to bacteria: Pear and apple blight,* yellow disease of hyacinth plants; \dagger a disease of wheat, destroying the grain, producing a rose-red color; was supposed, also, by Prillieux \ddagger to be due to a micro-organism, which destroys the starch grains. Reinke and Berthold\| also described a wetrot in potatoes. Later experiments of Van Tieghamss confirm the results of Reinke and Berthold, that Clostridium butyricum (Bacillus amylobacter), caused a wet-rot in potatoes.

More recently the list of diseases has been considerably extended. Black rot of cabbage and rutabaga, melon wilt, bacterial disease of rutabaga, tuberculosis of the olive, sorghum blight, bacterial disease of oats, corn wilt, bacteriosis of tomato, egg plant and Irish potatoes, cane disease, gumming of cane and others are caused by bacteria.

The literature of the whole subject has been critically reviewed by Dr. Erwin F. Smith.**

In regard to forage plants we are concerned with few of these diseases, namely, bacterial diseases of corn, corn wilt, sorghum blight and bacterial disease of oats.

BACTERIOSIS OF CORN.

In 1889 Burrill $\dagger \dagger$ described a new bacterial disease of corn known as "corn blight," and later published an account inone

[^160]

Fig. 133. Bacterial Disease of Corn (Baciltus cloace(r). Burrill.
of the bulletins of the Illinois Agricultural Experiment Station. Wide interest was attached to these investgations, since Billings,* of Nebraska, stated that bacteriosis of corn was identical with the corn stalk disease. His peculiar method of reasoning convinced him that the organism isolated by him was identical with the Burrill organism. This is well stated by Moore. \dagger
"The most interesting part of his investigations was the supposed discovery of the identity of the bacillus which he found in the animal tissues with the one described by Burrill as the cause of a disease in cornstalks. This hypothesis is supported by the fact that by feeding the diseased stalks to a rabbit he produced a fatal disease, and from organs of the dead rabbit he obtained pure cultures of the bacillus. He sent a culture of this bacillus to Burrill, who stated that the organism which he (Billings) had obtained from the organs of dead cattle appeared to be identical with the bacillus which produced the disease on the cornstalks. The correspondence between these two investigators, published by Billings, shows that Burrill was conservative on this question, pointing out obvious resemblances only. The responsibility of the statement that the two bacilli are identical rests with Billings."

Ludwig \ddagger in his general work on the cryptogams refers to the organism as Bacillus secalis, Burrill. Ludwig apparently first applied this name. Russell used the same name.

Moores and Smith, who did some very careful work, identified this organism as Bacillus cloacere, which Jordan $\|$ found in sewage, and is widely distributed in surface soil.

Characters of the disease. -The first indication of the disease is the dwarfed condition of the young plants occurring in spots of various sizes; soil upon which it occurs is variable, though it usually occurs in the richest soil. In many cases it occurs upon the lowest ground. In one field Professor Burrill observed the following conditions: "The season (of 1887)

[^161]was quite dry, and there was at no time subsequent to the planting any superfluous water in the area described. The seed germinated and the young corn grew satisfactorily until after the second plowing, when the plants were more than six inches high; then the newly-tilled spot showed, by the change in the appearance of the corn, in a very definite manner, to the very furrow on the margins, a distinct difference from the rest of the field. The corn ceased growing, became yellow and unusually slender, then for the most part died." After corn has tasseled the disease may be found widely scattered throughout the field, affecting a stalk here and there. The young plants usually show a yellowish cast; the roots are also affected; a stalk split lengthwise shows that the inner middle portion of the stem is of a dark color; on the surface of the leaf and stem brownish, corroded spots may be seen-in some cases these spots are covered with semi-transparent gelatinous material; the ears and husks are affected occasionally.

Moore states that he had no difficulty in obtaining nearly pure cultures of this organism from the first stage of the disease. The dwarfed corn resulting from the attacks of bacteria are quite rare. Moore confirms the results of Burrill that this organism occurs ia a large number of cornstalks and is abundant in the gelatinous flakes. Burrill's experiments in showing its pathogenic nature were not successful, but later an application of a pure culture applied to the inside of the leaf sheath, without puncture, gave positive results.

Moore says: "Whether these organisms are of themselves able to gain entrance into the parenchy-matous tissue of the leaf sheaths after being lodged by various agencies against the exterior of the plant, or whether they are inoculated into the tissues by means of insects or injuries to the epidermis otherwise inflicted is not determined."

This organism is therefore parasitic, and should be classed with the faculative parasites. It has been shown that in addition to Bacillus cloaceae other saprophytic organisms occur, and that these may produce lesions. This is not inconsistent with the work done by Russell,* who has shown that a large number of bacteria, mostly saprophytes, can live for a certain period and spread as parasites.

[^162]This organism is described by Moore* as follows:
Morphology. - A motile bacillus varying in length from 1.3 to 2^{4}, ends rounded. Appears in cultures singly or united in short chains or clumps. From five to fourteen flagella have been demonstrated. It stains readily with aniline dyes.

Cultural characters.-It develops a grayish, somewhat vigorous, glistening, non-viscid growth on the surface of agar. In the depth of agar it is more feeble. Gelatin is softened along the needle track and beneath the quite vigorous grayish growth which appears on the surface at the end of six days. It liquefies very slowly. The liquid gelatin is clear, with a viscid grayish sediment and strongly alkaline in reaction. On potato a dull grayish, non-viscid growth appears within twenty-four hours. In alkaline bouillon the multiplication is quite active, the liquid becoming heavily clouded in twenty-four hours. The casein of milk is coagulated in about eighteen days. It possesses active fermentative properties. . In the fermentation tube, when filled with bouillon containing 2 per cent dextrose, the closed bulb is filled with gas in forty eight hours. The liquid is very acid in reaction. The gas consists of 72 per cent CO_{2} and 28 per cent H . In a similar tube containing saccharose the fermentation is quite as active, but the proportion of the gas constituents is different, being 66 per cent CO_{2} and 34 per cent H . In bouillon containing lactose the closed bulb of the tube is not filled with gas until the fourth day. The gas is practically the same as that produced in the saccharine bouillon.

Burrill supposed the organism to be widely distributed. Moore also observed the disease in Maryland and Indiana, and some of the organism has be \in n isolated here at Ames. The general characters certainly correspond, and diseased material submitted to Burrill had bis verification. Cultures made by one of us and compared with his indicated its presence here. The dwarfed condition mentioned by Burrill was especially pronounced in one field of corn grown in bottom land. This field has since been planted with mangolds, turnips, alfalfa, and beans, besides receiving a heavy coating of various fertilizing material. In year 1897 it had an exceptionally fine crop of corn. It may be that this root trouble is due to an entirely different cause, as has been suggested by Moore.

[^163]

Fig. 134. Plant affected with corn wilt. (Stewart. Geneva, N. Y., Agrl. Exp. Sta.)

Fig. 135. Corn wilt. Cross-section stem of maize, the black areas, the vessels filled with bacteria. (Stewart, Geneva, N. Y., Agrl. Exp. Sta.)

CORN WILT.

Another bacterial disease of corn has recently been worked over quite carefully by F. C. Stewart* of the Geneva, New York Agricultural Experiment Station, and there is hardly any room to doubt that this disease is different from the Burrill disease and is due to a specific cause.

Stewart briefly called attention to a disease occurring on Long Island which had the following characters: The plants wilt and dry up, although the leaves do not roll as they do when they die from lack of moisture. In young plants death occurs in a few days. In older plants it requires a longer time for the disease to run its course. The disease may attack the

[^164]

Fig. 136. Corn wilt. Longitudinal section of maize stem showing a mass of bacteria in the large ducts. (Stewart, Geneva, N. Y., Agrl. Exp. Sta.)
plant at any stage of growth, but is most injurious when the ears are forming. The disease is scattered through the field, diseased plants freguently occurring in the same hill with healthy ones. It is also found on various kinds of soil, but it seems to prefer the early dwarf varieties of corn, like the Man. hattan. Stewart further states that certain varieties are more severely affected than others. It was first observed at Queens, N. Y., where it has been known for three years. Occasionally an entire crop has been ruined and a loss of from 20 to 40 per cent has been frequent. This disease seems to only affect the sweet corn. Field corn and pop corn are entirely exempt.

Stewart* thinks the organism is not only disseminated by the seed, but may also be spread by manure and implements. To prevent this disease use care in selecting the seed. Plant resistant varieties.

Quite recently Dr. Erwin F. Smith \dagger has investigated this disease and named the organism Pseudomonas Stewartii.

SORGHUM BLIGHT.

Related to the diseases above is what is known as sorghum blight (Bacillus sorghi Burrill.)

Burrill \ddagger first described sorghum blight, and the organism which causes the disease. Kellerman and Swinglet have

[^165]extended Burrill's work so that we are now pretty familiar with the nature of the disease.

The red blotches on the leaves and sheaths are familiar objects to almost every one who has observed sorghum. On the inside of the sheath the color is somewhat intensified, being of a brilliant carmine color. The red blotches are in the early stages somewhat circumscribed, but later they are large and irregular, often elongated. The roots are often affected, more especially in young plants. The disease makes its appearance quite early. On the college farm many young plants from four to six inches high showed yellow blotches extending across the leaf; sometixes three or four appeared on leaf; a little later a small purple blotch appeared in the center of the colorless portion. Burrill, in describing the disease, says: "Sometimes the appearance of injury is noticeable upon young plants. They grow very slowly, are slender and yellowish in color, and are easily pulled from the ground. The lower leaves die, having previously shown discolored (yellow or red, mostly the latter) patches on various parts of their surface. Not unfrequently these conditions prevail in special areas of the field; perhaps several acres, not apparently different in composition, condition of drainage, etc., will have, throughout their extent, this dwarfed and sickly crop, while the rest of the plantation is healthy and vigorous. More often the evidence of disease appears, to a greater or less extent, over the entire field, all or an exceedingly variable proportion of the plant suffering; not unfrequently stalks four or five feet high can be lifted with ease from the soil."

The Barillis sorghi when growing on potato is said to produce a pearly white growth, although there is sometimes a slight tinge of yellow or pink. In old cultures it is said to be of a dirty white and much wrinkled. On agar the growth is very much the same, the margin is usually crenate. In cultures obtained by the writer the growth was dirty yellow; this kind of growth was not only obtained once but several times. It seems therefore reasonably demonstrated that this organism is the cause of the disease, since a specific micro-organism is constantly associated with the disease and inoculation experiments made with pure cultures derived from the organism found in the discolored patches have shown, beyond a doubt, that the organism produces the disease.

[^166]

Flg. 137. Sorghum blight (Bacillus sorghi); a, leal and sheath affected; b, young affected plant; c, rod-shaped bacilli. (Kellerman and Swingle.)

Treatment.-Burrill and Kellerman have shown that soil upon which sorghum has been grown contains the organism and that they occur in old stubble. It has also been noted that since sorghum fields are not burned over, the disease is on the increase. It would certainly seem advisable to burn over old fields. But this will not prove sufficitnt, since the fungus occurs in the soil. Many fungus and insect enemies can be checked very materially by rotation of crops. In either case we cannct expect to remove the disease entirely, since it occurs where sorghum has never been grown. It is probable that the micro-organism is carried through the air and water, as well as the soil.

GUMMING OF SUGAR CANE.

In 1893 N. A. Cobb," New South Wales, gave a full account of the disease in sugar cane which caused a gumming; this he attributed to Bacillus rascularum. The disease seems to have been present in Australia for a considerable length of time, the cane planters having been familiar with a disease characterized

[^167]by the exudation of a yellow substance by the cane. It appears that this disease is quite destructive in pertions of the island and that it is not spread to any great extent through the air. The disease starts from the seed. The general characters are as follows: Here and there will be seen stools containing one or more stalks with dead tops; the base of the area in such cases will be found to be rotten, usually having cne or more cavities of considerable size occuring near the top of the stalk and filled, or partially filled, with offensive matter. A microscopical examination shows that this is not general, but local. This gum is confined to the vessels, which are plugged with it. The gummy substance contains a substance called vasculin. The yellow gummy matter never occurred without bacteria. The organism responsible for this disease is a rather short bacillus united in chains, the rod being surrounded by a gummy exudate. The evidence that this organism is the specific cause of this disease is not demonstrated, since the author did not cultivate this organism, but relied wholly on the general facts and his success in inoculating healthy cane from diseased plants by means of an infection needle.

Quite recently W. R. Dodson* has given an account of red cane, expressing the opinion that one or more bacterial forms accompany red cane, and that the disease in question is due to the breaking down of the protoplasm. No definite results were obtained by Dodson. The red coloration is of common occurrence on the cut ends of cane in the standing stalks, as well as those that are used for sugar purposes, and Dodson states it is very common where injury occurs. I have noted its common occurrence on sorghum in this state, and an examination of the cultures of sorghum cane showed that Saccharomyces glutinus was common, but not necessarily the whole cause. In some unexplainable way this red coloring matter is produced where caue is injured. We called attention to this under sorghum blight.

Mr. N. A. Cobbt describes the red rot of cane due to an imperfect fungus, so that it is evident that more than one organism must be considered in the reddening of cane.

[^168]
PASTURES AND MEADOWS OF IOWA.

Iowa as a grass state.-The importance cf Iowa as an agricultural state rests largely on the production of hay and grass. Sage* states that the hiy crop of Iowa for the year 1897 amourted to $5,301,404$ tons, valued at $\$ 22,305,023$. The pasture crop is probably equal 10 this, or greater. The hay industry, including the grass grown in our pastures, supports a large population.

In the census of lowa for 1895, t the following totals are given for the production of hay and grass for the state: Timothy, 2182,791 acres were cutfor hay, with a product of 1,726 ,$9 \because 0$ tons, valued at sil 741,929 ; Hungarian and millet, 91,167 acres were cut for hay, with a product of 95,095 tons, valued at S499,118; prairie grass, $1,760,159$ acres were cut, with a product of $1,266,688$ tons, valued at $55,4.59,449 ; \because, 689,699$ acres of corn were cut, valued at $89,262,584 ; 8,104,330$ acres are devoted to pasture, valued at $\$ 14,700,792$. This makes a total of 14,824 ,146 acres devoted to pasture and meadow purposes. The total product has a value of $\$+2,063,822$. The value of other grass products is given in another connec ion. Corn is the only product that exceeds in value that of grass.

The production of cultivated grasses has greatly increased during the last decade. Statistics given in the census report for 1880 , by Hon. J. A. T. Hull, \ddagger show that $3,613,941$ tons of hay were produced in the year $1 \sim 79$. At that time an enormous amount of wild hay was shipped to Chicago and other points from northwestern Iowa.

Grasses.-Iowa has long been noted for its excellent pastures and meadows. Before settlement began the greater portion of Iowa was a great meadow, in which most valuable native grasses flourished. The grasses were excellent. It was the ideal land for the herdsman. Hay was cut in abundance every-

[^169]where. As late as 1890 the making of wild hay formed an extensive and leading industry in northwestern Iowa. The chief centers of export hay trade were Bancroft, Algona, Rolfe and other poin's in northern and northwestern Iowa. Since $1-90$ many of the large tracts of northern Iowa have been brought under cultivation, and now small grains and corn are largely grown. At one time in northeastern Iowa much of the land was devoted to small grain culture, but the successive failures of this crop caused a radical change in me hods of agriculture. Wheat is now the exception. Larger areas are now devoted to the growing of bluegrass ard other meadow grasses.

In a paper on the forage conditions of central Iowa, the writer" has said, "West of Ames there are several important valleys-the Des Moines, Coon, and Boyer; northwest of Carroll there are the Little and Big Sioux, the Maple and the Floyd. Along the Coon and Des Moines rivers the country is rough, and but little hay is cut, though much of the timber land is used for pasture. Along the Maple, Boyer and Floyd rivers the immediate banks contain some timber, but the flood plains are open and covered with a luxuriant growth of grasses.

The foragequestion in central Iowa is very different now from what it was fifteen years ago. At that time considerable areas of unbroken sod still remained. Now the wild prairies have almost ceased to be a factor in the production of hay. The extensive prairies have given way to cultivated fields and pistures. Small unb:oken areas occur here and there, but these are confined to the small drainage basins between the hills, and exist largely because in times of considerable precipitation these depressions are too moist for proper cultivation. The Boyer and Maple valleys are noted for the large crops of wild hay annually prodıced. The same may be said of the rich aliuvial flood p'ain of the Missouri. This plain varies from a few to fifteen miles in width, the average being from eight to twelve. The hay crop constitutes one of the chief sources of revenue for the farmers of this region, and could be made much more important if they would follow a more rational system of cropping.

The chief hay plants cultivated in central Iowa are timothy, reatop, bluegrass and red clover. The principal plants used

[^170]
Fig. 138. Bluegrass pasture on College grounds, with College herd.
in pastures are bluegrass, white clover, redtop and timothy. In the Boyer and Maple valleys and on the Missouri bottoms the wild grasses predominate. To a limited extent alfalfa meadows have been started in Carroll, Ida and Woodbury countifs. The loess hills, skirting the Missouri bottoms, are mostly cultivated, though unbroken wild meadows and pastures still remain. In the eastern portion of this district considerable corn fodder is u sed as forage, the amount used depending largely on the condition of the pastures and meadows.

Fig. 139. Grass corered bills and forests along the Mississlppi. The open places on hills contain Andropogon and Bouteloria.

Many other grasses have been tried with rarying success. Orchard grass, naturalized in many places, is one of the most successful. Tall cat grass gives some promise. Italian rye grass is unable to resist the cold of our winters and is a complete failure. Meadow foxtail (Alopecurus pratensis) does fairly well as an early grass when sown the season $b \approx$ fore, but is hardly adapted to this section. The most promising of the recently introduced grasses is smooth or Hungarian brome. The short-awned brome has also been tried and is very promising. Rye and barley are often used as forage plants. German millet and Hungarian grass find extensive use in some saasons. Broomcorn millet is frequently sown in northern and northwestern Iowa."

Many native species of grasses occur, and they vary in quantity and quality in different sections of the state. The dominant grasses of central Iowa are big blue stem (Andropogon provincialis) and little blue stem (A. scoparius). Both of these species are frequently called blue joints. Several species of elymusare also abundant, as wild rye of the prairies and m -adows; wild rye (Elymus robustus) on the flood plains of streams, and dennet grass along the borders of woods. Other common grasses are: Indian beard grass, or bushy blue stem (Andropogon nutans) of prairies and open woods; tall grama grass (Bouteloua racemosa) of the dry praries and gravelly knolls; nodding fescue (Festuca nutans) in woods; slender fescue (F. tenella) in dry, sterile soils; Short's fescue (F. shortii) in low prairies, a most valuable species; switch grass (Panicum virgatum) in rather mo'st meadows; satin grasses (Mullenbergia racemosa, M. willdenovii and M. mexicana) in moist ssil of open woodlands and meadows; swamp chess (Bromus ciliatus) in open woodlands; fowl meadow grass (Poa serotina) in low grounds along streams; wire grass (P. compressa) and squirrel tail grass (Hordeum jubatum), an intrcduced species, in meadows and waste places; blue joint (Calamagrostis canadensis), reed canary grass (Phalaris arundinacea), common reed grass (Cinna arundinacea), andfl oating manna grass (Glyceria aquatica) in marshy places and shallow water; large rush grass and bunch grass in dry prairies. In northeastern and western Iowa the above as well as some additional species occur. Among the latter are western wheat grass (Agropyron spicatum), bearded wheat grass (A. richardsoni), blue grama (Bouteloua oligostachyga), slough grass (Spartina cynosuroides) and big sand grass (C'alamovilfa longifolia).

Leguminosce.-Members of the Pulse family constitute an important part of Iowa pastures and meadows. Every well regulated farm should have some leguminous forage plants. This large family contains some 7,000 species of plants. Few of these have deleterious propertifs and many of them are of economic importance to man. Our Iowa species vary from the diminutive clover to the large Kentucky coffee tree. Many hundred species are valuable for forage, but only a few of these are grown in Iowa. All of our leguminous forage plants belong to the sub-order Papilionacere.

Red Clover (Trifolium pratense) is the mostimportant of our forage plants. It is well adapted to every section of the state;
it stands drought well and is not easily winter killed. The winter of 1898 and 1899 was an exceptional year, as it was killed in many sections o the state. Medium clover (Trifolium medium) is also frequently cultivated. Clover is not only valuable as a fordge plant, but no other leguminous plant is so valuable for this state as a soil renovato:. White clover* (Trifolium repens) is spontaneous in all parts of the state. It is a native of Europe but has long been naturalized. White clover is abundant in pastures, meadows and along roadsides. It is only valuable as a mixture in blue grass meadows. White clover is richer in protein than sed clover and much more so than blue grass. The only objection made against this plant is that it causes profuss salivation when the seed is forming. Alsike clover (T. mybridum) is becoming much more common in this state, and has an excellent reputation as a pasture plant. For low meadows it is more valuable than red clover. Crimson clover (Trifolium incarnatum) has been tried repeatedly but is not adapt \equiv d to Iowa conditions. It suffers much from insects, fungus enemies and drought in late summer. Several annual leguminous forage plants are frequently cultivated in this state. The most valuable of these are Soy Bean (Glycine hispida) which is not only an excellent drouth resister but produces a large am unt of forage. The cow pea (Vigna catjang), though long and favorably known in the south as a forage plant, is coming into proxinence in this state. Not only does it resist drouth, but it is productive. Experiments made here at Ames indicate its great value for Iowa. The common field pea (Pisum arvense) is grown but little. A number of our native leguminous forage plants are valuable. Two naturalized species are common in all parts of the state-yellow sweet clover (Ifelilotus offlicinalis) and the white (Melilotus alba). Though held in esteem in some of the southern states we cannot so segard them in this state because of their weedy character. They are held in esteem in the south because they are excellent soil renovators and beemen consider them valuable because they are excellent honey plants.

The most widely distributed of all the native leguminous plants is Canadian rattle-weed (Astragaluscanadensis), a thrifty, hardy and vigorous species found in woods, low meadows, and prairies. It is eaten by stock but becomes rather woody when

[^171]

Fig. 140. Alluvial bottoms of the Missnuri, covered with coarse grasses. Spartina cynosuroides, Andropogon and Phalaris.
old. Buffalo pea, or ground plum, is common on dry sterile hills throughout the region and afforis valuable forage. American vetch is one of the most valuable of the native legumes. It grows in the moist soil of low prairies ard open woodlands. This vetch is well adapted to the conditions of $W \in$ stern and northwestern Iowa, and does well under cultivation. The prairie clorers (Petalostemon violaceus Michx., and P. candidus Michx.) are common on the prairie everywhere, as also on the loess soils of western Iowa. These plants are seldom eaten by stock unless forage is scant. Dalea alopecuroides Willd. is common throughout the loess region and has been introzuc d farther eastward. Wild vetch (Hosackia purshianu) well-known as a valuable forage plant (f the northwest, is indigenous to the loess, though not abundant except locally. It has been introduced into Boone county. Running buffalo clover (Trifolium stoloniferum Muhl.), a native, is worthy of a trial under cultivation. Mention sbould also be made of a loco plant (Oxytropis lambertil Pursh.), native to this region. Though often c.nsumed by st ck, no complaints have been made that
it produces loco poisoning. Rattlebox (Crotalaria sagittalis L.) occurs in the sandy bottoms of the Missouri river. Complaints have frequently been made of the trouble it causes when fed to horses. The disease it produces has been called "crotalism."

Present and future conditions of Iowa pastures.-As has been said before, the native prairie turf is rapidly diminishing in Iowa, and it is no longer a great factor in the production of beef. In a valuable paper on the subject of the forage conditions of the prairie region, Mr. Jared G. Smith* says: "The amount of raw prairie land suitable for farming is rapidly becoming less, and before we have converted all of it into plowed land let us consider whether such a course is most advisable. There is no longer any large tract of unbroken prairie east of the Mississippi river. The prairies are now confined to the Dakotas, southern Minnesota, Iowa, Nebraska, Kansas, Oklahoma, Indian Territory and Texas. In all these states the richest of the prairies have been converted into wheat, corn, or cotton fields, to add their pr.ducts to the congested condition of the world's markets."

The prairie lands remaining in Iowa make fine hay and afford good pasturage. Many of the species are highly nutritious and valuable in their places. This is especially true of blue joint grass (Andropogon provincialis), which covered millions of acres of our broad fields. For many years the practice of breaking up these wild meadows and planting with corn, oats ard wheat has been followed, with the result that our markets have frequently been overstocked with these cereals. The phenomenal shortage of the cereal crops in 1897 has stimulated farmers to put more fields into these crops, with the inevitable results.to follow-stagnation. The question has been well stated by Jared G. Smith: \dagger "It has been demonstrated, both by experiment and practice, that the farmer who sells beef, pork and mutton that he has produced from the corn and grass raised and fed on the farm, makes more money per acre of his land and per dollar of his capital than the one who grows only wheat or corn or cotton. It is not necessary to entirely discontinue raising these crops, but if we are to produce a surplus to be sold in foreign markets, it is best to export that surplus in the most condensed and marketable form, as meat and animal products, that the people want to

[^172]

Fig. 141. Woods with wood grasses, like Bromus. Blaegrass used for pasture in central Iowa.
buy, ra'her than in the original crude' and bulky state, that the people do not want to buy."

In the long run the farmer will make most money who devotes his fields to the growing of forage crops to feed to dairy cows, furnish beef, making use of all the raw products at home, thereby saving not only much of the cost of transportation, but maintaining the fertility of the soil. By doing so the farmers will maintain their pre-eminence in agricultural lines. The valuable farm lands of Iowa must be changed to something more productive than the growing of cereal crops for export sale. The Iowa farmer, whose land is worth $\$ 60$ per acre, cannot compete with the Dakota farmer, whose land is worth only 810 t , 815 , in the growing of wheat. The stock and dairy industries are the avenues which will enable the farmer to succeed. Anything that will enhance the productive capacity of our soils for the production of forage conditions will help the Iowa farmer.

We shall therefore briefly discuss some of the more prominent grasses and the maintenance of pastures. The chief glory of our pastures and meadows resides in the turf, which is constantly being formed. Professor Brewer" says: "It is believed that permanent pastures, if well handled, continue to grow better for fifty years or a hundred years; some say for much longer than that. It is nearly forty years since I was in England, but I well remember that English farmers told me that a pasture or meadow had to be at least twenty-five years old to be good, and was not really excellent until the third or fourth rental (forty-two or sixty-three years) at least. There was no other one feature in English scenery that so impressed me as the English turf, whether seen in either the pastures or the parks and lawns. Many of the parks are in fact pastures. One sees sheep everywhere. Even in the play grounds of the colleges and schools one sees flccks of sheep, kept there for the benefit of the turf. When Connecticut public opinion shall protect sheep on the Yale athletic fields from dogs, then all of Conrecticut will bs able to grow more of the mutton it consumes and the state will be richer by very many millions of dollars."
"Precisely so with the turf grasses. A sirg'e species may exist as numerous varieties, some more robust or aggressive, others less so, having different capacities to withstand too wet

[^173]

Fig. 142. Loess hllls of western Iowa where wheat grass and grama grasses grow.
or too dry periods, to stand drouths or other vicissitudes of climate, or to endure or flourish under the grazing of cattle. Let us keep in mind, also, that while the natural tendency of plants is to produce seeds and propagate in that way in crops of grass, either when cut for hay or grazed for pasture, it is foliage, not seed, that is the aim of the farmer."

Our own native sod of blue stem, untouched for ages, becomes more valuable as the years increase. Some of the bunches are several feet across and constantly increasing in size. When untouched by plow or mower these grasses form a lusty growth, frequently reaching a height of six or seven feet, yielding two tons of hay to the acre.

Such meadows could still be retained. The native prairie sod would afford equally valuable pastures but for the overstocking. This native sod at one time not only contained a large number of species of different grasses as rich in nutrient qualities and produced as bountiful crops as any pastures east of the Mississippi, affording a great source of revenue. Rut during the last decade this has changed. Jared G. Smith*

[^174]says: "It was a magnificent legacy to the rancher and the farmer. To the one it promised food for a million cattle; to the other it proved the golden possibilities of a soil that would bring fourth bountiful harvests."
H. L. Bently, * speaking of the conditions of speculation and overstocking in Texas when the large pastural belt of the central part of that state was opened by the Texas \& Pacific R. R., says: "Range rights, herds of cattle and flocks of sheep changed hands at fabulous prices. Men of every rank were eager to get into the 'cow business.' In a short time every acre of free grass was st-cked beyond its fullest capacity. Thousands of cattle or sheep were crowded on the ranges where half the number was too many. The grasses were entirely consumed; their very roots were trampled into the dust and destroyed. In their eagerness to get something for nothing, speculators did not hesitate at the permanent injury, if not total ruin, of the finest grazing country in America

From that day to the present little intelligent effort has been made to improve the pastures and again cover them with the rich vegetation which the soil is capable of supporting. It is not yet too late to remedy the evil, but no time is to be lost."

Happily, however, the state of Iowa is in a region with sufficient rainfall to insure permanent meadows and pastures of the more improved cultivated grasses. In western Wisconsin, bordering on the state of Iowa, I have known meadows and pastures of blue grass which have been in use more than a quarter of a century and to-day ara as productive as when started. These meadows and pastures consist of blue grass, timothy, orchard grass, red top, red and white clovers. One hundred and sixty acres of pastura on my father's farm will suppori 100 head of cattle during the season. The conditions are somewhat exceptional since it is partially under irrigation. The broken hillside meadows, while not so productive, still are most valuable fur pasture and hay purposes; they have not deteriorated. These same conditions prevail in Allamakee c Junty where the conditions are very similar. In central Iowa there are meadows which have been in continuous use fir a long period of time. The college campus, a considerable body of land, has been in sod for twenty-six years. This blue grass sod is as firm as any pasture in central Iowa. The conditions

[^175]

Fig. 143. Swamp grasses in western Iowa, along the Missourl. Plraquites and Phalaris.
prevailir g are somewhat different from those in a pas"ure as it is not cropped by live stock. It is, however, cut two and three times a year. There can be no question that a pasture treated carefully ard judiciously wiil show a continuous improvement from year to year. It is a mistaken policy to destroy a blue grass pasture when it is once well started. It should be retained. It may be maintained at a much less expense than when planted with corn. Though it may produce little most seasons during the months of July and August, yet taken year after year it is much more profitable than an acre of corn. Timothy, of course, is not adapted for pasture purposes, and may be turned under after the second season. Hungarian brome grass though not tried extensively as a pasture grass will, no doubt, prove much more valuable for the pasture than timotby.

Mr. MacKay* who has had some experience with this grass in the northwest territories says it is well adapted for grazing purposes.

[^176]Soucing of grass seed.-The saving of grass seed is one of the many important (questions connected with a meadow or a pasture. Storer" says: "Every farmer would like to know what kinds of grasses are best adapted to his own particular fields, and to know just what conditions the soil should be brought to in order to the utmost economy of production both as regards fertility, firmcess, and fineness of tilth and in respect to moisture, and the amount of sowing." It is important to know what soil is best adapted for certain grasses as well as the amount of seed to be sown per acre. The depth at which seeds should ke planted is an important proble m for the farmer to consider. For our agricultural grasses it is important to have the soil well drained. The drainage need not be as thorough as for the cultivated cereals. Blue grass, timothy, orchard grass and awnless brome grow successfully on any of our prairie soils. They are not nearly so successful on hard pan soil. In starting a meadow or pasture the soil should be well prepared. It is better to start the meadow or pasture on soil which has been cultivated with cereal crops for several years. A well cultivated corn crop followed by wheat or other cereal crop will put the field in excellent condition. The field should be in a good state of fertility. For Iowa conditions it is not usually necessary to apply manure. If the soil is in good condition, the next important step to consider is the time to sow. On this point opinions differ greatly. In New England as Storer \dagger tells us the practice of farmers has greatly changed in regard to the seeding of grass fields. Formerly spring was thought to be the best time of the year and this notion still persists in Maine. It is still the custom in many other parts of northern United States. Conditions in different sections must modify the practices of farmers in this regard. In northeastern Iowa along the Mississippi, western Wisconsin and southeastern Minnesota, the fall is certainly advisable.

Thomas A. Wiliiams \ddagger says: "In Nebraska and the Dakotss very fine stands of timothy are often obtained by sowing in the fall on millet stubble. In this case the lacd is given a thorough coating of well-rotted stable manure, and is plowed very deep and as late as possible, so as to kill all the weeds that may start. The millet is cut early and the timothy is sown

[^177]
Fig. 144. Olcott's turf garden, showing how grasses are selecterl.
directly on the stubble and covered by a thorough dragging with a heavy harrow. In this treatment the land should always be made very rich and the millet should be cut before the seed has developed. It is also a good plan to leave the stubble long, to serve as a snow-catch for the protection of the timothy. A more common practice is to manure the ground thoroughly, plow, and plant to corn or some other cultivated crop that does not draw heavily upon the soil; manure lightly with wellrotted stable manure the rext spring and sow to timothy, using wheat or some other small grain as a nurse plant. The wheat is usually sown uroadcast and covered with a cultivator, harrowed smooth, and the timothy sown later, and the ground rolled or gone over with a brush drag. This is one of the most successful methods. Another plan often followed is ts take a field that has raised a crop of small grain (say, oats), manure heavily and fall plow, sow in spring to wheat or barley, either with drill or broadcast, and seed to timothy, either with the nurse crop or later."

Professor Shelton* recommends sowing grass seed in early spring after the rains set in. In the northern states grass seed should be sown in the fall. Grass seed should not be covered deeply, as the seed usually has not sutficient nourishment to push through the soil when covered deeply.

Professors Wilson and Curtiss \dagger found that timothy raked in on April 9th made its appearance on April 27 th; that covered one inch deep was not all above the ground; the samecinditions prevailed. They state that seed covered two inches deep was deeper rooted and hence stood the drouth better.

In the south nearly all perennial grasses will do better when sown in August and September. This enables the roots to become well established before frost, and next season helps to keep the weeds down. The only uncertain factor in sowing grass seed in the fall is that many years the fall is so dry dur ing September that the soil cannot be properly prepared and the seed sown in time to give the plants a chance to grow before frost. When winter sets in, the young plants should be strong and vigorous and well rooted, as the frost during the winter will destroy many plants. If the plants are well started they will make a much better showing than spring sown, as the

[^178]drouth is apt to injure the young plants which are not well rooted, since the roots are very near the surface of the soil.

Professors Wilson, Curtiss and Kent* found in some experimests made at Ames with timothy, tall meadow oat grass, orchard grass and Hungarian brome that the earliest seeding did best, good results coming from it in every case. No variety failed when sown early. The late sowings of all the varieties were failures, or partial failures. The earliest grass was sown on March 23d, the latest on May 12th.

Opinions differ in regard to amount of seed to be sown por acre. The amount of timothy sown varies from five to seven quarts per acre. The following table shows how much is usually sown.

AMOUNT OF GRASS SEED TO SOW, AND NUMBER OF GRASSES IN ONE POUND OF SEED.

NAME.				
Timothy	1,170,500	16.	14.	48.
Hungarian brome grass	137,000	44.	35.60	14.
Bluegrass.	2,400,000	17.5	8.4	
Red top.	603,000	9.7	7.	8.32
Orchard grass.	579,500	35.		12.16
Meadow fescue.	318,200	52.		12.26
Tall meadow oat........	159,000	70.	34.3	
$\underline{\text { Rough-stalked meadow gr }}$	3,000,000	17.5	8.75	11.17

Maintaing a pasture or meadow.-Frequent complaints are made about pastures and meadows running out. There are many causes for this. Many insects are responsible for the destruction of the sod. The writer has seen acres of a firm knit sod destroyed by the May beetle (Lachnosterna fusca). Many other insects are active agents in the destruction of meadows and pastures but space will not permit us to describe the numerous insect enemies of grasses. Those who desire information along this line should consult the works of ento-

[^179]mologists like Osborn*, Cook \dagger, Howard and many others. Attention has been called to fungus enemies in another connection. Weeds are also important in destroying the sod, but these come in because of the injury to the sod and overstocking of the pasture. If the pasture is overstocked the better grasses cannot maintain themselves. This is particularly true of the native prairie pastures where some species stand grazing much better than others. Bushy blue stem of pastures does not stand grazing well, and consequently soon give way to weeds or more worthless annual grasses. Squirrel-tail grass is frequent in the best blue grass meadows in this state and farmers frequently complain that this grass is running this fine pasture grass out. Only one thing can be done for this and other annual weeds and that is to cut them off before they flower. Professor Williams \ddagger in a paper on this subject states that "An experiment made at the Kansas Station in 1892 shows what a thorough stirring up of the soil will do for an upland prairie pasture. The experiment was made on a pasture in which the grasses had been dying out for some time and the weeds were beginning to appear in abundance. It had been reduced to this condition by drouth and overpasturing. The surface was thoroughly lcosened up by driving a weighted disc harrow over the field in several directions. The pasture was sown to a mixture of orchard grass, meadow fescue, blue grass, timothy, red top, clover, and alfalfa, which was harrowed in and a roller was driven over the field to level the sirface and firm the ground. The seed germinated quick'y and the tame grasses made an excellent start, but by September the wild grasses had crowded them out and held complete pussession of the field. In this case the stirring of the soil and the season's rest not only enabled the prairie grasses to recover and to overcome the weeds, but to crowd out a good stand of tame grasses as well."

In this state the blue grass comes in naturally in wild meadows and pastures, especially in pastures. Many farmers have succeeded in starting cultivated grasses in native sod by sow ing blue grass, timothy and clover on the sod by thorougbly stirring the soil.

[^180]

Fig. 145. Different forms of timothy. From the best of these, the future tlmothy must come. (Hopkins West Virginia Exp. Sta. Proc. Soc. Prom. Agrl. Science

Little positive can be said of the early cultivation of grasses, as there is much uncertainty about the specific kinds used by the early agriculturists.

So long as pastoral conditions prevailed there was no need of cultivating grasses or giving much attention to the subject, but the strong competition and the improving of tilled land called for their cultivation. The ancients cultivated some legumes, but special attention was not given to grasses, except cereals. Sinclair* states that: "Distinguished agriculturists and farmers agree in the opinion that the knowledge of the comparative merits and value of all the different species and varieties of grasses, and, consequently of the best mode of cultivating them, is very much behind that of the other branches of practical culture."

Very little has been done in this country to select and breed grasses as we do cereals and other plants. Olcott \dagger of Connecticut has a turf-grass garden at South Manchester. His plan is to make of pure grass a commodity, capable of being transferred. In these sods, also, he has a valuable object lesson in turf-grass culture.

Professor Hopkins \ddagger of the West Virginia Agricultural Experiment Station, has made some interesting observations on the variability of timothy. Some mature early and some much later. There was also a difference in the amount of hay produced. The plants of Mr. Hopkins were propagated by seed. Professor Hays§ also shows that much may be done with some of our forage plants, notably timothy.

There are many forms of grasses, some no doubt much more valuable than others. As an illustration, bluegrass runs into many forms, but no effort is made to plant the best bluegrass. Any kind will do as long as it is bluegrass. So of timothy, which runs into many forms; the best is never planted. All kinds of timothy seed will do. There can be no question that our hay crops and pastures could be largely increased if intelligent selection were carried on. For years' experiments have been carried on with various grasses, and though it has

[^181]been repeatedly shown that many of these are worthless, the same experiments are repeated. Certain grasses are adapted to particular soils and climates. De Laune* names the following five coarse grasses as best suited for England: iactylis

Flg. 146. Blue grass, Poa pratensis. The best of all our pasture grasses. Two types. Blue grass offers an excellent chance for improvement, as the cut shows.
glonerata, Festuca pratensis, F. elatior, Phleum piatense, Alopecurus pratensis. The most valuable of the finer grasses are: Cynosurus cristatus, Festuca duriuscula, F. ovina, Poa trivialis, Agrostis stolonifera and Avena flavescens. Beal \dagger gives following

[^182]grasses for permanent pastures or meadows for the north: Dactylis glomerata, Arrhenatherum avenaceum, Festuca elatior, F. pratensis, Alopecurus pratensis, Phleum pratense, Poa pratensis, Agrostis alba. For marshes he gives: Agrostis alba, Festuca pratensis, F. elatior, Poa serotina, P. pratensis, Alopecurus pratensis, and Calamagrostis canadensis.

Lamson-Scribner* gives the following as the more important grasses for the south: Bermuda grass, fescue grass (Bromus uniolioides), Lolium italicum, Poa arachnifera, teosinte (Euchlaena), Panicum maximum, Agrostis alba, and Andropogon sorghum.

Hitchcock \dagger lists the following as the more important of the native grasses of Kansas: Tripsacum dactyloides, Spartinacynosuroides, Panicum virgatum, P. crus galli, Andropogon furcatus, A. scoparius, A. hallii, Andropogon nutaus, Phalaris arundinacea, Aristida purpurea, Muhlenbergia glomerata, Sporobolus cryptandrus, Sporobolus airoides, Cynodon dactylon, Bouteloua oligostachya, B. hirsuta, B. racemosa, Chloris verticillata, Iriodia cuprea, Poa pratensis, Koeleria cristata, Eatonia obtusata, Lniola latifolia, Distichlis maritima, Agropyron spicutum, E. canadensis, E. virginicus.

For the state of Iowa the following are the more important grasses: Poa pratensis, Phleum pratense, Bromus inermis, B. Ureviaristatus, Dactylis glomerata, Agropyron spicatum, Andropogon provincialis, A. nutans, Agrostis alba, Calamagrostis canadensis, Panicum virgatuon. For general cultivation Poa pratensis, Phleum pratense, and Bromus inermis are the most valuable. For shaded ground Dactylis glomerata and Agrostis alba. For low grounds, Agrostis alba, Poa serotina, P. pratensis, Calamagrostis canadensis. For dry hills, Bouteloua oligostachya, B. racemosa. For alluvial bottoms, Andropogon provincialis and Spartina cynosuioides: the former is also suited for upland prairies. For the loess of western Iowa, Agropyron spicatum, Andropogon scoparius. It will be seen from this list that it is difficult to recommend particular grasses unless the soil, drainage and other facts are taken into consideration.

In the adjoining state on the west, Nebraska, Professor Bessey ${ }_{+}^{+}$enumerates quite a number of wild species that are valuable. Of the Iowa species his list contains the following: Wild wheat grass, (Agropyron spicatum) Bromus breviaristatus,

[^183]

Fig. 147. Italian Rye Grass, Lolium Italicum. (Div. Agrost. U. S. Dept. Agric)
Poa serotina, Bouteloua oligostachya, B. racemosa, Andropogon provincialis, A. scoparius, Panicum virgatum; and of the cultivated species, orchard grass, timothy, Kentucky blue grass, wire grass, (Poa compressa.)

Professor Williams* states that the principal grasses of the stock raising regions of the Dakotas are the gramas, buffalo grass, the blue joints, the sand grasses, western wheat grass, western quack grass, needle grass and feather bunch grass. Western wheat grass and western quack grass furnish most of the hay except in the moister bottoms, where the blue joints, big sand grass and cord grass are more or less abundant.

Italian Rye Grass (Lolium italicum), A. Br.-TThe cultivation of Italian rye-grass (Lolium italicm,") first began in Lombardy, \uparrow where it has long been cultivated, espe-

[^184]

Fig. 148. Perennial Rye Grass, Lolium perenne. (Div. Agrostol. D. S. Dept. of Agrl.)
cially in irrigated districts. At the beginning of this century it was cultivated in France. Lawson introduced it into Scotland in 1840. In England Dickinson introduced it somewhat later, the moist climate of England being suitable to its growth. Although this grass is valuable in some sections of our country, it has never commended itself to Iowa farmers. It is not hardy, nor a drouth resister, and is at most a very short-lived grass.

In the eastern states it is highly recommended for calcareous soils or for moist, loamy sands. Even then the grass only lasts for two or three years.

Prof. F. Lamson-Scribner says: "Italian ray, or rye, grass is an excellent grass for rich and rather moist lands. It is a very rapid grower, forms a dense turf, and in Europe is regarded as one of the best grasses for hay."

The chemical alalyses made at several stations show:

		荌	¢		-	
Mississippi (1): Avg. of two samples.	80.72	4.04	18.30	27.17	11.43	39.06
Northern grown (1):						
Avg. of thirty-three samples.. Mississippi (2):	73.16	5.00	11.40	25.10	9.20	49.30
Young, cut in April.		3.34	19.12	28.32	12.02	37.20
Young, cut in July..		4.74	17.49	26.02	10.84	40.91

Orchard Grass (Dactylis glomerata), L.-The cultivation of orchard grass (Dactylis glomerata) began in Virginia a few year; previous to 1764. About this time it was introduced into Eng. land. At the beginning of this century it attracted considerable attention, especially because of the success attained with it by Mr. Coke, of Norfolk. The seed was first extensively collected by Rogers, Parker and Gibbs. It was introduced into Switzerland* in 1808, but not grown on an extensive scale until 1860. It has become one of the chief grasses of the British islands. Orchard grass is an introduced species in many parts of the state. On the College farm it occurs with other grasses in shady places. In the eastern states it has long been known as a valuable grass, and in England it has long been known as one of the best of the pasture grasses, especially in the regions best known for their fine stock, as in Devonshire and Lincolnshire. In this country it has had many admirers. Buel \dagger says of it: "The American cock's foot or orchard grass, is one of the most abiding grasses we have. It is probably better adapted than any other grass to sow with clover and other seeds for permanent pasture or for hay, as it is fit to cut with clover and grows remarkably thick when cropped by cattle. Five or six days' growth in summer suffices to give a good bite. Its good properties consist in its early

[^185]and rapid growth and its resistance to drouth, but all agree that it should be closely cropped. Sheep will pass over every other grass to feed upon it. If suffered to grow long without being cropped, it becomes coarse and hard."

Orchard grass, although widely distributed in this state, is grown very little for forage purposes. There are several reasons for this. One is that it forms little tussocks which make

Fig. 149. Orchard grass, Dactylis glomerata. A most excellent grass, well adapted Lowa conditions. (After F. Lamson-Scribner. Div. Agrost. U. S. Dept. of Agrl.)
it decidedly objectionable for some purposes. It is frequently very uneven. It is unequaled as a palatable grass, and those who have used it in this state speak of it in the highest terms, but the farmers have become so accustomed to growing timothy that this grass has scarcely been given a fair chance in this state.

Chemical composition:
The following analyses of orchard grass were made in the laboratory of this station:

Sample 1. April 24, 1896, 7 to 16 inches high.
Sample 2. May 4, 1896, 14 to 16 inches high.
Sample 3. May 18, 1896, sample very wet.
Sample 4. May 26, J896, 38 to 42 inches high
Sample 5. June 5, 1896, 28 to 30 inches high.
Sample 6. June 17, 1896, 40 to 45 inches high.
NATURAL CONDITION.

		+ +	$\begin{aligned} & \dot{\tilde{\pi}} 0 \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { B } \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	家	
Sample 1	85.52	77	4.38	(3.30)	3.33	2.23	3.77
Sample 2.	84.54	1.02	3.15	(2.14)	4.15	1.93	5.21
Sample 3.	83.25	. 86	2.51	(2.31)	5.80	1.77	5.81
Sample 4.	78.18	1.35	2.95	(2.42)	7.17	2.36	7.99
Sample 5.	78.74	1.00	3.38	(2.33)	8.63	2.68	5.57
Sample 6	69.78	1.22	2.75	(2.55)	11.71	2.58	11.96

WATER FREE SUBSTANCE.

Sample	5.36	30.25	(23.45)	23.01	15.38	26.00
Sample	6.62	20.37	(13.83)	26.88	12.48	33.67
Sample	5.09	15.01	(13.80)	34.59	10.59	34.72
Sample	6.20	13.50	(11.09)	32.85	10.84	36.61
Sample 5.	4.72	15.91	(10.98)	40.60	12.62	26.15
Sample 6.	4.04	9.11	(8.44)	38.76	8.54	39.55

From these results it is readily seen that there is a decrease in the amount of water present in the samples as growth increases. In the dry condition we find that the fat varies in the sample from 6.62 per cent to 4.04 per cent. There is not a regular decrease in this constituent, but it is somewhat irregular. Regarding the amount of protein we might say that there is a regular decrease with one exception from 30.25 per cent to 9.11 per cent. With the crude fiber there is a tendency for the amount to increase as the plant grows older as we have in the first sample 23.01 per cent and in samples 5 and $6 ; 40.60$ per cent and 38.76 per cent respectively and the same may be said regarding the amount of nitrogren free extract increasing from 26 per cent to 39.55 per cent with one exception.

The following analyses of other states are added for comparison:

SAMPLE FROM.	¢ E E	+	did ¢ O H		-	
Green fodder, in bloom (1).	73.00	. 90	2.60	8.20	2.00	13.30
Iowa (2):						
Cut June 9, just out of bloom	70.07	. 71	2.31	10.15	3.00	13.76
Cut April 29.	*78.14	6.27	21.46	1692	13.22	42.13
Cut May 10.	*75.58	6.36	18.50	19.76	12.27	43.11
Cut May 20	*72.43	4.62	12.34	21.75	10.23	51.06
Cut May 30.	* 71.90	2.65	9.19	29.48	10.00	48.68
Cut June 9	*70.07	2.36	7.71	33.90	10.02	46.01
Louisiana (3)	12.82	3.70	7.82	28.35	10.75	36.56
North Carolina (4)	5.25	2.60	6.69	38.43	5.90	41.43
North Dakota (5).	15.35	3.53	8.12	31.14	6.13	35.73
Oregon (6).....	11.80	2.26	8.17	38.33	5.90	33.54
Storrs, (Conn.) (7): Average 16 analy					2.80	
Utah (8):						
Average of 3 analyses ${ }^{\text {l }}$	14.82	2.62	3.52	30.01	7.93	50.66

Timothy (Phleum pratense), L.-The cultivation of timothy (Phleum pratense) first began in America. Sinclair, in his Hortus Gramineus Woburnensis says: "In the annual register for 1765 we find that it was much recommended about fifty years ago, under the name of timothy grass, and Mr. Wynch is said to have brought it from Virginia in 1763." It received this name from Mr. Timothy Hanson, who first brought its seed from New York to Carolina. In America, at this time, it was also known as Herd grass. In 1815 it was considered the best grass in the province of Canada. Jessen, \dagger in his work on the grasses of Germany, gives the date of general introduction into that country as 1815 , but Peter Wynch in 1760 , president of the Agricultural Society of England, obtained the seed of this grass and several others from North America. Its general cultivation began in England soon after 1765. On the conti-

[^186]nent of Europe it was cultivated a few years later. A further chapter of its history is given by Flint:* "It is frequently called Herd's grass in New England and New York, and this was the original name under which it was cultivated. The name was derived from a man of that name who, according to Jared Elliott, found it growing wild in a swamp in Piscataqua, N. H.,

Fig. 150. Timothy, Phleum pratense. The best meadow grass for Iowa, and a general favorite among farmers. (F. Lamson-Scribner. Div. Agrost. U. S. Dept. Agrl.)
more than a century and a half ago, and began to cultivate it. In Pennsylvania and states further south this name is applied to Agrostis vulgaris, or the red top of New England." Timothy is pre-eminently the grass grown in this state for meadow purposes. No other grass stands in such, high favor as does this. It is highly productive, stands drouth well, and is not subject

[^187]to winter-killing. There is a decreasing yield from year to year, and it is found advisable to turn old fields under. Unless it is mixed with other grasses it is usually not best to keep a timothy meadow longer than three years. Although Professor Williams* states that there are upland meadows in Nebraska which have been in constant use for fifteen years or more, and in that time have not failed to yield paying crops. In this state at least the timothy meadow "runs out" and is replaced by bluegrass. I have, however, seen pastures and meadows in Wisconsin that have been in constant use for fifteen years where considerable timothy could be found. With the timothy, however, there was much bluegrass and clover. Professor Williamst sxys: "Timothy is often used in reclaiming wornout native meadows and pastures, and with proper treatment very good results are obtained. It seldom yields well in pa.. tures, however, for more than two or three years in succession unless the land is very rich and moist. It is, therefore, the best plan to sow bluegrass with the timothy, and by the time the latter is pastured out the former will have occupied the land. Sowing on native turf is usually done in early spring. The seed is sown broadcast, and then the ground is gone over thoroughly with a heavy barrow. Native meadows on low, rich soil, that have become thin from continuous close cutting, may be very materially strengthened by the addition of a little timothy in this manner, as the writer knows from experience in both Nebraska and South Dakota."

In spite of the early failures, timothy is to-day one of the most valuable of all the meadow grasses grown in the northern Mississippi and Missouri valleys.

Opinions differ as to when timothy should be cut. Many farmers wait until the seeds are in the "dough" stage; some even wait longer. The farmer who waits until the seed is ripening lacks thrift. It is far better to cut just before the timothy is in bloom or during full bloom. If cut before it blooms it is much more difficult to cure. It cures better if cut just after the rlossoms fall. Professor Williams+. says: "The best hay is obtained by cutting during full bloom, or when the blossoms fall. The feeding qualities are best at full rloom, but most farmers prefer to cut a little later, as the pollen makes the hay

[^188]＇dusty，＇which is avoided by waiting．It sometimes happens that，on account of lack of moisture，the first growth is light， and abundant ra ns in June or July may cause a strong second growth to spring up，which will not be in its prime until the first has reached an advanced stage of development．In such cases it would be more profitable to cut late，provided the proper precautions are observed as to the condition in which the sod should be left．There is a growing sentiment in favor of cutting timothy with the self－binder for hay as well as for seed，and the practice has much to commend it．With right treatment the hay cures well，is much more easily handled and fed，and can be stored in a more limited space than when cut in the ordinary way．＂

Timothy hay may be decidedly improved by growing a small amount o^{\prime} clover along with it，nor is bluegrass mixture objec－ tionable，except where present the grass must be cut early． Timothy cannot be pastured when the soil is dry，as stock is very liable to injure the bulbs，but in low meadows it stands grazing fairly well in the spring，but cattle should not re allowed to graze on it in the fall．If timothy is to be used for grazing purposes it should be in a meadow containing blue－ grass，timotby and clover．The clover readily perpetuates itself and helps the timothy，in that the soil is less compact．

CHEMICAL COMPOSITION OF TIMOTHY．

Four samples of the grass were analyzed in the station laboratory with the following results：

$$
\begin{array}{cc}
\text { Sample 1. } & \text { May 16, 1896, 12-16 inches high. } \\
\text { Sample 2. } & \text { May } 26,1896,24-25 \text { inches high. } \\
\text { Sample 3. } & \text { June 8, 1896, 40-42 inches high. } \\
\text { Samp e 4. } & \text { June 18, 1896, } 39-10 \text { inches high. }
\end{array}
$$

NATURAL CONDITION．

	3	～゙	\％	$\begin{aligned} & \text { 完 } \\ & \text { 合 } \\ & \frac{0}{4} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\％	
Sample 1	81.09	1.12	3.49	（2．82）	5.06	2.24	7.00
Sample 2.	79.22	1.07	2.52	（2．34）	6.30	2.06	8.83
Sample 3	76.64	． 83	2.28	（2．01）	8.5	1.97	8.78
Sample 4.	69.87	1.41	2.63	（1．87）	1122	2.31	12.56

WATER FREE SUBSTANCE.

Sample	5.92	18.44	(14.93)	26.75	11.87	37.01
Sample 2	5.14	12.15	(11.28)	30.31	9.90	42.50
Sample 3	3.59	9.77	(8.60)	36.41	8.41	41.82
Sample 4	4.68	8.74	(6.21)	37.26	7.67	41.65

From these results we can draw the following conclusions: The water content of the sample as received in the laboratory decreased from 79.22 per cent to 69.89 per cent as the growth increased. For comparison of the other constituents the results based on the dry matter will give more satisfactory results and here we find that the fat is somewhat lower in the sample of June 8th than in the other three. The amount of protein present decreases as the plant grows older from 18.44 per cent to 8.74 per cent. The same condition is present in the case of the albuminoids. The crude fiber, however, increases from 26.75 per cent to 37.26 per cent while the nitrogen free extract increases from 37.01 per cent to 42.50 per cent.

As a matter of interest the following analysis of Phleum pratense are selected for comparison with the results obtained from the Iowa samples:

SAMPLE FROM.	\%				感	
All analyses 68-(1)	13.20	2.50	5.90	29.00	4.40	45.00
Cut in full bloom...	15.00	3.00	6.00	29.60	4.50	41.90
Cut soon after bloom.	14.20	3.00	5.70	28.10	4.40	44.60
Cut when nearly ripe	14.10	2.20	5.00	31.10	3.90	43.70
Iowa (2): July 12, after bloom.	53.25	1.31	3.38	14.45	3.36	24.25
Wild from Idaho, cut June 20 , just before blooming.	72.88	50	3.30	9.07	2.40	11.85

[^189]| SAMPLE FROM. | | 妙 | | | 要 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Northern grown (1) | *61. 58 | 3.10 | 8.00 | 30.70 | 5.40 | 52.80 |
| North Dakota (2), full bloom | 15.35 | 2.69 | 6.59 | 26.88 | 4.16 | 44.33 |
| After seeds mature | 15.35 | 2.36 | 5.34 | 29.65 | 3.65 | 43.65 |
| Louisiana (3) | 14.51 | 3.48 | 8.38 | 29.63 | 9.75 | 34.25 |
| Mississippi (4):
 Gathered in April (dry) | | $2 . \varepsilon 5$ | 6.51 | 34.17 | 7.63 | |
| New Mexico (5), green fodder. | 61.60 | 1.21 | 3.10 | 11.80 | 2.10 | 20.20 |
| Oregon (6): | | | | | | |
| Farly b.oom .. | 11.19 | 2.20 | 6.02 | 30.35 | 3.98 | 46.25 |
| Hay....... | 13.00 | 2.50 | 5.90 | 29.00 | 4.40 | 45.00 |
| Utah (7): | | | | | | |
| From barn.. | *5. 21 | 2.19 | 4.28 | 36.01 | 4.88 | 52.64 |
| Green (average of 5 analyses) | *64. 65 | 2.13 | 5.21 | 30.31 | 6.25 | 56.09 |
| Dry (average 5 analyses)..... | *13.80 | 1.79 | 14.90 | 31.45 | 6.68 | $5+.42$ |
| Cut July 2, in bloom | *36.46 | 3.14 | 8.55 | 49.94 | 7.86 | 3569 |
| South Dakota (8):
 Middle of July, 1892 | | 3.58 | 8.84 | 34.39 | 7.39 | 45.80 |
| Connecticut (9): | | | | | | |
| Average of 4 samples. | 67.66 | 1.02 | 3.70 | 11.57 | 1.87 | 14.18 |
| Hay. | | 3.16 | 11.42 | 35.81 | 5.76 | 43.83 |
| Hay, average of 4 early cut... | | 3.92 | 32.20 | 33.85 | 5.70 | 44.33 |
| Timothy ruwen | 63.28 | 2.06 | 5.57 | 8.99 | 2.95 | 17.15 |
| Timothy rowen............... | 71.07 62.78 | 1.77 1.30 | ${ }_{2}^{4.95}$ | 7.19 11.88 | $\stackrel{2}{2} .41$ | 12.61 |
| Green fodder (average of 4)... Tennessee (10): | 62.78 | 1.30 | 2.75 | 11.88 | 2.14 | 19.15 |

Meadow Fescue (Festuca elatior, L.)-The value of meadow fescue (Festuca elatior) as a forage plant has been known for a long time. It appears to have attracted attention as early as 1761, but it was not cultivated experimentally until 1820. Stebler and Schrötert state that Judtmann speaks of it as an excellent grass in 1790. Its cultivation on the continent began about 1850 It was early introduced into this country. Although

1. Exp. Sta. Record. U. S. Dept. Agr). 6: 1(1-103. 189.
2. Bull. N. D. Exp. Sta. 15:49. 1894.
3. Bull. La. Exp. Sta. II. 10:536-562. Abstract in U. S. Exp. Sta. Record 4:1893. 645.
4. Rept. Miss. Agrl. Exp. Sta. 1895:92.
5. Bull. N, Mex. Exp. Sta, 17:34. 1895.
6. Bull. Orezon Exp. Sta. 39:42.
7. Rept. Ưtah Exp. Sta. 1893: 254 -255.
8. Bull. S. D. Exp. Sta. 40:68. 1894.
J. Storrs Ann. Rept. 1894:21.

Storrs Ann. Rept. 1895:180.
Storrs Ann. Rept. 1896:280.
10. Bull. Tenn. Exp. Sta. 9:113.
*Shows amount of water in sample in natural condition when received, The other results are for water free substances.
\dagger The Best Forage Plants. Eng, translation. 35.
this grass bas become spontaneous at several points in this state, it is not cultivated to any extent as a meadow grass. Meadow fescue makes a fine turf, but in this state has a tendency to become thin. It is less able to resist drouth than timothy, bluegrass or orchard grass. Its cultivation in this country

Fig 151. Meadow Fescue. Festuca elatior var. pratensis. A good grass in some parts of the United States, but not in Iowa. (Div. of Agrost. U. S Dept. of Agrl.)
is confined chiefly to the east rn states, where it is held in high esteem. Several other species of Festuca occur in the state, but only one of these is valuable as a forage grass, the Festuca shortii, Kunth, which is common in native prairie meadows. The Festuca nutans, Willd, is an early maturing woodland species, and of very little value as a forage plant. Sheep's fescue (F. ovina, L.), is sometimes cultivated, and for dry, sterile soils, is a valuable grass. It is one of the common bunch grasses of the
west. The allied F. rubra, L , has been naturalized at several points in this state. It is superior to Sheep's fescue because of its creeping rootstocks. One of the most valuable of all the Festucas is the great bunch grass (F. scabrella, Torr.) wh:ch is a native of the Rocky mcuntain regions, where it occurs in large open parks. It is an ideal grass for winter forage, and should be cult vated in Iowa.

Fig. 152. Group of Festucas. All common in lowa. The \boldsymbol{F}. nutans occurs in woods; the F. shortii in wet meadows; the F. tenella in sandy soll.

Bluegrass (Poa pratensis, L.)-In Eurofe little has been done with the cultivation of bluegıass (Poa pratensis). Sinclair, writing on this grass in 1824, says: "There are many other grasses superior to this one. It comes early in the spring, but

Fıg 153. A group of meadow grasses Fowl meadow erass. (Poa serotina) to the right, a very productive grass, common in low grounds. P nemoralis a g od mountain grass, rarely occurring in this state P. annua, an introduced grass in lawns. P. Chapmanniana o-curs in southeastern Iowa.
its product is inconsiderable, compared to many ot $\}$ er grasses. Its strong creeping roots ϵ xhaust the soil very much; after mid-summer the herbage is slow in growth after being cropped. It is the property of all creeping roots to scourge the soil, and when plants with fibrous roots can be substituted in place of these, with an equal prospect of advantage, in regard to early growth, produce and nutritive qualities, it will be found to repay the labor with interest." It appears first to have keen cultivated about the middle of the last century under the name of Birdgrass. It has long been known as a valuable grass in

New England, where probably it was largely self-sown. In the west it was contemporaneous with the settlement of the country. Bluegrass is the pasture grass par excellence in Iowa. The excellence of Iowa stock is largely due to the fine bluegrass pastures. Bluegrass come; on early in the season and during the latter part of May and early in June is ready to bloom In order to get the full advantage of bluegrass as a pasture grass it should not be allowed to seed, as that takes away much of the valuable nutritious qualities contained in the grass. In this state bluegrass is seldom used for meadow purposes, but in parts of Wisconsin, especially the western part, it is frequently used for this purpose. When used for meadow purposes it should be cut early, and especially when the meadows are moist, this grass may then be cut a second time. On an irrigated field of my father's farm in western Wisconsin bluegrass has been cut three times. I know of no other grass which makes such valuable fodder as bluegrass, especially when mixed with a small amount of clover and cut early. Cattle are very fond of it, and it makes an excellent grass for dairy purposes. Although bluegrass may not be a good pasture grass during the latter part of July and August, yet it has many commendable features, even though the pastures may look dry and bare. The small leaves are highly nutritious and in many cases cattle apparently thrive and grow fat on pastures that seem to contain but little. This was especially noticeable in 1894, when the season was remarkably drouthy over a large section of the state. In many cases where pastures were not cropped too close, horses and cattle fattened.

After the fall rains, during the latter part of August and early September, bluegrass continues to grow rapidly. The brown pastures of August again take on a green look, sirce the cool nights and sufficient moisture are favorable for its rapid growth. Catt'e may therefore feed on it until cold sets in. Many Iowa farmers are familiar with the value of bluegrass as a winter pasture grass. Hundre]s of acres are utilized in this way. A considerable amount of forage is obtained for cat'le and horses during open winters. Chemical analyses show that the brown ard sere grass leaves are not without their nutrient value, and we cannot pass the subject of bluegrass without saying something of its uss in the central and southern part of the state as a winter forage plant. When speaking of winter pasturage in Iowa, the farmer refers to bluegrass. It is a well
known fact that cattle do remarkab＇y well on this grass in the winter．Though it has lost some of its nutritious qualities，it is highly relished and serves a most excellent purpose in keep－ ing the digestive organs of the animals in good condition． With a good winter pasture of bluegrass it will be unnecessary to use the＂stock foods＂to regulate the organs of secretion． Farmers should not lose sight of the fact that overstocking is injurious．To be in good condition for the winter it should not be overs＇ocked in September and October．Other grasses have been tried in this way．Texas bluegrass has received considerable notoriety in this respect，and while perfectly hardy at Ames，Iowa，nothing can be said about its use in cen－ tral Iowa for this purpose，since it has not been extensively tried．The great p int in favor of bluegrass as a pasture gras 3 is that it is very rarely injured by cold，is hard to kill during dry weather or by the hot sun，the tramping of hoofs or close mowing．The pasture is continually increasing in value as it becomes older．The writer is familiar with pastures which have been in bluegrass for a quarter of a century，and they yield as abundantly to－day as at any time in the history of the meadow．

CHEMICAL COMPOSITION．

The samples analyzed in this station are given in the follow－ ing tables：

> Sample No. 1. April 14, 1896, young, 1 to 4 inches high. Sample No. 2. April $29,1896,3$ to 10 inches high. Sample No. 3. May 6,1896 , beginning to head out, 14 to 18 inches high. Sample No. 4. May 18, 1896, very wet, headed, 14 to 15 inches high. Sample No. 5. June 1, 1896,3 to to 32 inches high.

NATURAL CONDITION．

		菏	$\begin{aligned} & \dot{む} \\ & \text { d. } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{n} \\ & \stackrel{n}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{\tilde{y}} \\ & \text { © } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	䫆	
Sample 1	76.78	1.36	8.66	（6．00）	3.61	2.91	5.68
Sample 2	78.96	1.03	4.42	（3．78）	5.22	3.06	7.31
Sample 3	76.18	1.04	4.79	（3．59）	5.49	2.65	9.85
Sample 4	78.50	． 97	3.26	（3．14）	6.66	2.54	8.07
Sample 5	73.46	2.10	3.84	（2．35）	8.74	3.05	8.81

WATER FREE SUBSTANCE.

Sample 1	6.13	38.98	(26.99)	16.23	13.10	25.56
Sample 2.	4.90	21.02	(17.95)	24.71	14.53	34.84
Sample 3	4.25	20.11	(15.07)	23.06	11.11	41.47
Sample	4.51	15.18	(14.58)	30.96	11.80	37.55
Sample 5.	7.91	14.46	8.83)	32.92	11.48	33.23

In the above results we find that the amount of water present in the grass as received in the laboratory is very constant indeed, the highest being 78.96 per cent and the lowest 73.46 per cent, a difference of only 5.5 per cent. In the comparison of the results of the analyses based on the dry matter, we find, in the fat content, that the amount decreases comparatively little as the grass matures. However, with the amount of protein present there is a marked decrease from 38.98 to 1446 per cent, and in the albuminoids from 26.99 per cent to 8.83 per cent. The crude fiber increases on the contrary from $16 \mathbf{2 3}$ per cent to 3292 per cent. The amount of nitrogen free extract present varies greatly. There is no constant increase but it varies from 25.56 to 41.47 per cent.

The following analyses have been selected for comparison with the work of this laboratory:

SAMPLE FROM.		菏			冎	
Northern grown (1)		3.60	10.50	26.10	7.90	51.90
Iowa (2):						
Cut Aoril 28, (3-6 in. high).		5.55	18.03	22.19	11.49	42.74
Cut May 8, (8 in. high)		4.14	13.58	22.74	10.67	48.87
Cut May 18, (Panicle spreading)		3.89	11.11	24.36	8.75	51.89
Cut May 28, (early bloom)..		2.25	9.67	29.11	8.47	50.50
Cut June 7, (after bloom)...		2.75	7.88	29.92	8.66	51.79
Cut July 5, in seed, brown.		3.05	7.89	30.55	9.98	48.53
Average of 3 analyses before blooming..		4.53	14.24	23.09	10.30	47.83
Louisiana (3)	*12.15	3.35	8.00	23.56	10.16	42.78
Mississippi (4): Gathered March		4.38	21.79	24.75	12.00	37.08
Gathered April.		4.13	9.04	34.64	5.34	46.85
Gathered May, just headed..		4.90	3.25	30.71	9.12	42.02
Gathered June, over ripe.		4.13	18.21	30.12	7.45	50.09
North Dakota (5)	*15.35	3.03	6.53	27.29	4.16	43.64
Oregon (6)........	*65. 10	1.30	4.10	9.10	2.80	17.60

1. U. S. Dept. Agrl. Exp. Sta. Rec. 6:102. 1894.
2. Bull. Iowa Exp Sta. 11:430, 434.
3. Bull. La. Agrl. Exp. Sta. II. 19:536, 562.
4. Aen. Rept. Miss. Agrl. Exp. Sta. 8:92. 1895.
5. Bull. N. D. Agri. Exp. Sta. 15:49. 1891.
6. Bull. Oregon Agrl. Exp. Sta. 39:49. 1895.
*Analyses are for natural or air dry condition; others are for water"preesubstances.

Wire Grass (Poa compressa).-This grass is indigenous to Europe and has long been naturalized in sections of this country. It occurs in rather thin, dry pastures. Although not generally used as a pasture or forage plant in this state, in portions of New England and Canada it is used, where it is known by the name of bluegrass, a very appropriate name, as the plant has a dark bluish glaucous green color. Several agricultural writers speak in highest terms of this grass. Gould* says: "It never vields a great bulk of hay, but this bulk weighs very heavily, frequently a ton and a ton and a half to the acre where one would not expect to get one-half a ton." He considered it one of the most valuable and nutritious of grasses.

Lamson Scribner \dagger states: "There is perhaps no better pasture grass for dry and poor soils, particularly in the eastern and middle states. It is especially valuable for dairy pastures; cows feeding on it yield the richest milk and finest butter." This is the bluegrass of New England and the middle states, and is easily distinguished from genuine bluegrass by its decidedly blue color and strongly flattened stems, lower habit of growth and smaller panicle."

CHEMICAL COMPOSITION.

There were five samples of Pua compressa analyzed in the station laboratory, as follows:

$$
\begin{array}{ll}
\text { Sample No. 1. } & \text { May 8, 1896, } 8 \text { to } 9 \text { inches high. } \\
\text { Sample No 2. } & \text { May 22, 1896, } 14 \text { to } 15 \text { inches high. } \\
\text { Sample No. 3. } & \text { June 3, 1896, } 24 \text { to } 26 \text { inches high. } \\
\text { Sample No. 4. June 11, 1896, } 24 \text { to } 26 \text { inches high. } \\
\text { Sample No. 5. } & \text { June 22, 1896, } 24 \text { to } 26 \text { inches high. }
\end{array}
$$

NATUR 1L CONDITION.

	¢	崴	.		䆝		
Sample 1.	74.05	2.22	4.02	7.09	2.98	(3.33)	9.64
Sample 2.	78.04	. 93	3.17	7.23	2.33	(2.31)	8.30
Sample 3.	73.31	. 85	3.35	8.15	3.12	(298)	11.22
Sample 4	71.76	1.22	2.70	10.09	2.99	(2 35)	11.24
Sample 5.	60.62	1.50	3.37	12.48	3.61	(2.93)	18.42

[^190]WATER FREE SUBSTANCE.

Sample	8.56	15.49	27.35	11.49	(1285)	37.11
Sample 2.	4.25	1444	32.90	10.61	(10.51)	37.80
sample 3.	3.18	1255	30.56	11.68	(11.16)	42.03
Sample 4.	4.30	9.54	35.75	10.58	- (832)	39.83
Sample 5.	3.82	856	31.69	9.18	(7.45)	46.75

The first four samples have an amount of water which varies from 71.76 to 78.04 per cent, while the fifth has only 60.62 per cent. The constituents of the grass based on the dry matter vary to a large extent. For example, the fat in the samples varies from 3.18 per cent to 8.56 per cent, while the protein gradually becomes less, from 15.49 in the sample collected May 8th, to 8.56 pır cent in the sample collected June 22d. The albuminoids vary in the same way, with one exception. The crude fiber varies from 27.35 per cent in sample 1 to 3575 per cent in sample 4. The ash constituents remain quite constant, while the amount of nitrogen free extract varies from 37.11 to 4675 per cent. Samples 3 and 4 would represent the grass in its most favorable condition from a chemical consideration as a food. The following results have been selected f.r comparison with the results of this investigation:

FRESH OR AIR-DRY MATERIAL.

		.	兌			-
Tennessee (1):						
Cut May 12, 8 in. higb........	76.57	3.63	1.29	10.94	4.88	2.69
Cut June 3, coming in flower, 9 in . high.	74.36	2.50	. 77	12.78	7.36	2.23
Cut June 13, seed in milky stage, 9 in. high.	69.62	2.55	. 72	16.04	8.78	2.29
Cut before heading.	9.00	30.33	5.83	28.01	16.50	10.33
Cut when heading.	10.78	7.50	1.87	47.33	25.53	6.99
Cut in bloom.	10.62	6.31	1.43	45.03	30.34	6.27
Seed fully forraed	7.97	7.62	1.81	46.49	26.07	10.04
Cut July 1, 1891.	6.27	11.65	3.32	44.27	21.98	12.51
Cut June 15, 1895	9.37	7.81	2.96	50.00	24.00	5.66

Of these the Pox trivialis, L., has been under cultivation longer than any other Poa. It has been tried in a limited way

[^191]in Iowa with not very great success. Sinclair* says: "The weight of hay produced from the grass of the flowering crop is much less than that which is produced from an equal weight of the seed crop. In Mr. Young's annals of agriculture we are informed, that so long ago as the year 1785, Mr. Boys, of Betshanger in Kent, a farmer of the highestreputation raised

F1g. 155. Rough stalked meadow grass (Poa trivialis). This is a good grass for woodland meadows. (Div. of Agrost U.S. Dept. Agrl)
at much expense, and several years' attention, from twenty to thirty bushels of the seed of this grass, which he then offered for sale at three shillings per pound. He says that it makes very fine, thick turf, and will produce a great quantity of very excellent grass from moist, rich soils. It yearly diminishes, and ultimately dies off, not infrequently in the space of four or

[^192]fiva years. Its produce is always much greater when combined with other grasses than when cultivated by itself. With a proper admixture it will nearly double its produce, so much it delights in shelter." Stebler and Schroter* give the early history as follows: "It was cultivated in England some centuries ago. In 1681 Worlidge recommended it. He called it 'Orchistongrass' because of its abundance in the celebrated grasslands of Orchiston, near Salisbury in Wiltshire. About the year 1785 Boys cultivated it in the county of Kent." At the present time it is in high esteem and in common cultivation, both in B:itain and on the continent; in mountainous districtsit always forms the staple of the natural grass.

This grass is perfeatly hardy in the southern part of this state. It produces a large amount of nutritious and va'uable forage. It has not, however, been tried sufficiently in central and northern Iowa to give it a general recommendation. Whereever this grass has been tried in the south. as in the Gulf states, it has been highly commended by Tracy and others. LamsonScribner says owing to the wooliness of the seeds they are difficult to sow, and as they are expensive this grass has not been propagated as extensively as it would have been.

Of the o:her American meadow grasses, more attention has been given to the Texas bluegrass (Poa arachnifera, Torr.) Its cultivation was first introduced by Geo. H. Hogan \ddagger of Texas, who recommended it very highly as a winter forage plant. Its cultivation at the Iowa experiment station began in 1888. It has also been cultivated at the Kansass, Tennessee $\|$, and Mississippi- agricultural experiment s'ations. According to Lamson-Scribner it remains green tbroughout the year, making its chief growth during the winter months.

Professor Shelton, formerly of Kansas, states that it is a much more useful grass than blue grass for Kansas "and not unlikely one of our best grasses." Tracy says its real value for cultivation is still problematic. It endures the longest drouth without injury. Professor Mell** says: "It is now well known in most sections of the south and is becoming more and

[^193]

Fig. 155. Texas Blue Grass, (Poa arachnifera). Native to Texas, and widely recommended as a good winter pasture grass. F. Lamson-Scribner. Div. Agrost. U. S. Dept. of Agri.)
more popular as rapidly as its fine properties are understood. The introducer of this grass, Mr. Hogan, says: "I have known it to grow ten inches in ten days during the winter." He thinks it preferable to wheat, rye or anything else grown in the winter. The writer had this grass under observation for four years here at Ames, from 1889 to 1893, and found it perfectly hardy. It is a large, vigorous, rapid growing grass and matures early in the season. It comes on again after the autumn rains and keeps green until frcst Unfortunately this grass has not been tried extensively in the s'ate, and those who desire to grow the grass should only do so in the southern half of the state, and there only in a limited way. It is best to propagate this grass by root cuttings.

Fowl meadow grass (Poa serotina, Ehrhart), has been tried in an experimental way at the Iowa station. It occurs as a natural grass in many sections of the state, but it is not cultivated. Flint,* in his work on grasses, makes the following

Fig. 157. Blue grass, Poa pratensis. The bett of all our pasture grasses. Two types. Blue grass offers an excellent chance for improvement, as the cut shows.
statement: "It early commended itself to the attention of farmers, for Jared Smith, writing in 1749 , says of it: 'There are two sorts of grass, which are native of the country, which I would recommend. These are Herd's grass (known in Pennsylvania by the name of Timothy grass); the other is fowl

[^194]meadow, sometimes called duck grass, and sometimes swamp wire grass.' "

This grass is seldom sown in this state, and it is only in the northern and northeastern sections of the state, where it is abundant, that it is used for forage purposes Lamson-Scribner* says it is found in nearly all parts of New England and often forms a very considerable and valued portion of the native hay of the low meadows. Professor Beal \dagger says the stems in damp weather branch at the lower joints, and thus it is inclined to spread. On account of the large top and the slender stem this grass is rather inclined to fall over or lodge. For this reason it is frequently grown with red top, and as a matter of fact this grass is not inferquen ly found in low meadows as a naturaliz d grass with red top.

Meadow Foxtail (Alopecurus pratensis, L.)-Though of little value in Iowa and scarcely cultivated, it has been tried in an experimental way on the College farm for twenty years. Stebler and Schröter \ddagger state: "Although long ago recommended by Linnæus, its cultivation has only recently commenced." Sinclair \&s in 1824, wrote: "The meadow foxtail constitutes part of the produce of all the richest pastures I have examined in Lincolnshire, Devonshire, and in the vale of Aylesbury. In Mr. Westcar's celebrated pastures at Creslew I found it more prevalent than in those of Devorshire and Lincolnshire." It does not, however, appear to have been cultiva!ed. It was early introduced into this country and has spread extensively in the eastern states. It is cultivated particularly in the middle and New England states because of its earlintss.

Meadow foxtail is of little value in this state. It comes on rapidly in the spring ard matures early. During the season of 1900 the culms measured two and a half feet, but they were rather sparingly produced. However, there were an abundance of leaves cloःe to the ground. During the season of 1899, which was much more favorable, the plant was a foot taller and the flowering culms were much more numerous. It may be said further in regard to this grass that it produces no aftermath. In the east, kowever, this grass is considered very val. uable, and in Europe one of the most valuable of the perennial grasses. Dr. Wm. J. Beal says in regard to it:

[^195]"It bears considerable resemblance to timothy, though the culm and leaves are shorter, the spikes shorter, broader and softer; the whole plant less firm and rough, and it starts much earlier in spring, flowering, three or four weeks before that well known grass.

Fig. 158. Meadow Foxtail, Alopecurus pratensis). A valuable grass in the east but nearly worthless in Iowa. (F. Lamson-Scribner. U. S. Dept. of Agrl.)
"Meadow foxtail is not well adapted for alternate husbandry, as it requires three or four years to become well established, but on deep, rich, moist or irrigated soils, in a ccol climate not subject to drouths or very hot weather, it is a fine grass and peculiarly well adapted for permanent pasture. It makes a quick growth in sp:ing or after feeding or mowing. It is fine, nutritious and palatable for all kinds of stock.
"Like timothy, it has no tendency to spread, as is the case with June , grass, quack grass ard white clover. Mr. Lawes'
experiments show that it thrives best with high manuring, supplying much nitrogen. In this respect it comes into ccmpeti tion with orchard grass."

Chemical Composition.
One sample of this grass was analyzed in the laboratory. The sample was collected on April 30, 1896, and was 6 to 16 inches high. The analysis gave the following results:

NATURAL CONDITION.

	-	+	.		\%	感	
Sample	80.16	. 90	336	(294)	5.38	2.35	7.35

WATER FREE SUBSTANCE
Sample..........................| $4.56|16.93|(14.81)|27.12| 11.86 \mid 39.53$

The following analyses are taken for comparison with the analysis made by this station:

NATURAL CONDITION.

		+	.		-	
Sample 1, cut April 19; head just appearing (1)..	7710	1.08	3.60	4.17	2.11	11.94
Sample 2, cut Λ pril 19; before bloom.	76.70	1.04	3.17	5.22	1.81	1203
Sample 3, cut May 1; in bloom.......	(0.00	134	4.32	9.51	3.10	21.78
Sample 4, cut May 12; after bloom...	66.60	1.17	288	847	2.73	18.15
Sample 5, time of cutting unknown..	72.63	1.16	3.12	8.66	1.71	12.72

WATER FREE SUBSTANCE.

	-	$\begin{aligned} & \text { Di } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { \& } \\ & \text { © } \\ & 0 \\ & 0 \\ & \text { 0ِ } \\ & \text { 己 } \end{aligned}$	-	
Sample 1.	470	15.70	18.20	9.20	52.20
Sample 2	4.50	13.60	22.40	7.90	51.60
Sample 4.	340	10.80	23.80	7.80	54.20
Sample 4	350	8.60	25.40	8.20	54.30
Sample 5.	420	1140	31.70	-6.20	46.50
South Dakota (2): Cut June 1, 1892.	3.31	9.91	34.56	10.54	41.69

[^196]
BROME GRASSES.

Among the brome grasses there are several important forage plants. Much attention has recently been given to Hungarian brome or awnless brome grass (Bromus inermis, Leyss). Stebler and Schröter*, writing in 1882, state: "This

Fig. 159. Hungarlan Brome Grass, (Bromus inermis). The best of all the recently introduced grasses. May be used in meadow and pasture. (Div. of Agrost. U. S. Dept. of Agrl.)
must be a good fodder grass, especially for sheep, because it grows in the cattle-rearing districts of Aschersleben, renowned for its exceedingly ter der mutton. Awnless brome grass has only quite recently come into cultivation, more particularly in Hungary." Its further history is given by Lamson-Scribner. \dagger

[^197]It was introduced by the California agricultural experiment station about 1880. Its cultivation on the college grounds began in 1888. It has been grown since 1890 at Dysart and Battle Creek. Since 1897 it has become more widely diffused in the state and elsewhere largely through the efforts of the Secretary of Agriculture, Hon. James Wilson, the agricultural press and F. Lamson-Scribner. Seedsmen also have done much to extend its cultivation.

Hungarian brome (Bromus inermis) is without doubt one of the most valuable of all the grasses which have been introduced in recent years. Not only is it an excellent drouth resister but it is a most productive grass. It starts early in sprirg and affords good picking nearly as early as blue grass. For pasture purposes it is certainly far better than timothy. It is only a question of time until this grass will become as common as timotby. There has never been a crop failure of this since its growth on the college farm, but there is considerable variation with reference to its productiveness. Newly sown meadows are much more productive than those that are two or three years old. During the season of 1900 this grass was quite vigorous, the culms measuring from two to three feet high. There was an even mat, but in meadows three years old it was somewhat dwarfed, and this seems to be the usual experience with this grass. During 1899 this grass did very much better. Prof. James Atkinson* says in regard to it:
"Owing to its extreme hardiness it is one of the first plants to begin to grow in the spring, when once established. In case of a one-year-old sod, it began to head out six weeks after growth began in the spring. The same crop was cut and gave a yield of twelve tons of green fodder June 10th, which cured into five tons of hay. It must be remembered that the soil upon which this was grown was very rich. A bare soil, treated in the same manner, produced less than one ton per acre. According to station analysis, it is quite similar to timothy in compisition. If seeded thickly and cut at the proper time, it is a little superior, owing to the leafy nature of its growth. At cutting time, the leaves were stripped off of a portion of the crop, and it was found that there was a greater percentage of leaves than of stem. It yields at the rate of two or three tons to the acre."

[^198]Shepard and Williams* state that it has endured drouth perFectly in South Dakota, and has never winter killed in the least. Lamson-Scribnert says: "The strong perennial character of this brome grass and its unusual drouth resisting powers are qualities which recommend it for general cultivation, particularly in the semi-arid regions of the west and northwest. Its nutritive value is comparatively low, and before undertaking its cultivation the fact should be remembered that it is somewhat difficult to eradicate when once established, although by no means so difficult as couch grass or Johnson grass." In Iowa there has been no difficulty of clearing a field. Mr. S. A. Bedford \ddagger states that as a pasture grass for Manitcoba it is perhaps unequaled. It comes on early and continues green until snow covers the ground.
P. Beveridge Kennedy says in regard to this grass: "In a few years it forms a very tough sod, soon crowding out other grasses, clovers, and weeds. Its remarkabledrought resisting qualities have proved it to be a most valuable grass for dry regions where other grasses could hardly exist. It is the most suitable grass yet introduced for the dry regions of the west and corthwest. As it is thoroughly permanent and grows with wonderful rapidity, producing heavy crops of hay and luxuriant pasturage, its value to the farmers of the semi-arid regions of this country cannot be overestimated. All kinds of stock eat it with relish, and the chemical analyses made show that it is rich in flesh-forming materials, much more so than timothy. It is very bardy, and not injured by severe spring and fall frosts when once establisned. As it starts to grow very early in the spring, before any of the grasses upon the native prairies show any signs of life, and remains green and succulent far into November, it will supply the long-felt want of early and late fall pastures."

CHEMICAL COMPOSITION.

Of this brome grass the following samples were analyzed
Sample 1. April 30, 1896, 6 to 12 inches high.
.Sample 2. June 3', 1896, 38 to 40 inches high.
Sample 3. June 15, 1896, 41 to 42 inches high.

[^199]NATURAL CONDITION.

	¢ \% 3 3	走				皿	
Sample 1	79.97	1.05	3.21	(3.04)	4.53	233	8.91
Sample 2	73.55	. 53	3.73	(3.15)	9.65	2.33	10.21
Sample 3	67.66	1.04	3.93	(2.48)	11.96	345	11.93

WATER FREE SUBSTANCE.

Sample 1.	5.26	1606	(15.19)	22.62	11.64	44.42
Sample 2	2.00	1410	(11.54)	3649	882	38.59
Sample 3	3.20	1226	(7.69)	3698	10.66	36.90

In the consideration of the above samples we find that the amount of water decreases from 79.97 fer cent to 67.66 per cent, and it is a regular decrease as the plant becomes older. In the water free substance we find, however, that the percentage of fat varies from 5.26 per cent to 2.00 per cent, and the change is an irregular one. The protein varies from 16.06 to 12.26 per cent, decreasing as the growth of the plant increases, but it will be noticed that the samp? 38 to 40 inches high has only 1.96 p?r cent less of protein than the sample 6 to 12 inches high. The difference between the albuminoids is greater than that of the protein, that is 15.19 to 7.69 per cent, and in the samples 2 and 3 , while there is only a difference in height of 2 or 3 inches, yet the difference in the amount of albuminoids present is 3.85 per cent in favor of the second sample. The crude fiber is naturally much less in the young sample, while the two latter samples have nearly the same amount present. The first sample of the grass has the largest amount of nitrogen free extract, and this decreases as the plant becomes older, while the amount of the ash varies without regard to the growth of the plant.

The following analyses have been selected for comparison with the ana'yses here:

WATER FREE SUBSTANCE.

	+	-		家	
U. S. Dept. Agrl. (1): Aver. of 2 sample3.	4.91	11.86	32.11	8.62	39.50
Iowa (2):					
Cut June 21, just past blcom, height 36 -42 in..	1.60	11.92	34.51	10.20	41.77
Cut May 8, height 16 in	5.66	26.27	21.65	11.02	3540
Cut May 18, height 20 in	371	21.12	2450	11.03	3964
Cut May 23.	261	1763	2911	10.08	40.57
Cut June 7, early bloom	2.43	1245	32.33	9.77	43.02
South Dakota (3): Cut July 7, 1892...... Mississippi (4):	2.06	1079	41.27	8.08	37.80
Cut June	379	8.18	33.79	666	47.58
Cut August...	604	21.53	3044	1057	31.42

Short Awned Brome Grass (Bromus marginatus, Nees).The calture of the short awned brome grass was introduced in Iowa by R. P. Speer* in 1889, who obtained the seed from Montana, collected by Prof. J. Craig, who was sent there to make a collection of the most worthy and valuable grasses growing in the west. It was cultivated on the college grounds for a few years and merits more extensive cultivation. It was distributed to a limited extent to Iowa farmers, but it has not been cultivated extensively in any part of the country. It gives promise of being as valuable as the Hungarian brome. It is perfectly hardy, resists drouth well and is capable of producing from two to three tons of hay to the acre in ordinary seasozs. The aftermath is also excellent. The grass has become partially established in this state, both at Dysart and the Iowa Agricultural College, and we commend it for trial in this state. It is equal to the Hungarian brome grass on the college grounds. In the season of 1900 it measured from three to four feet. This is what Dr. Kennedy \dagger says in regard to it:

[^200]

Flg. 159A. Short-awned Brome Grass (Bromus marginata8). A valuable western grass. a, empty glumes, with three florets. b, dorsal view of flowering glume. (Shear. Div. Agrost. U. S. Dept. of Agrl.)
"An erect, robus's na'ive grass, two to four feet high, with numerous large leaves and long, closely appressed branches to the panicle. In Wyoming and Montana it occurs in the opən woods among the mountains, where it sometimes forms meadowlike tracts of considerable extent at an altitude of from 5,000 to 8,000 feet. It has been introduced and grown for a number of years in central and western Iowa, where, under favorable conditions, two crops may be cut in a single season. In Colorado it is foun to be v sluable in the native meadows at an altitude of from 6,000 to 9,500 feet. Short awned brome grass produces an abundance of leaves, which are well liked by stock. Although not so valuable as the smooth brome grass, yet it is
worthy of being extensively tried, especially in meadows at high altitudes. Its cultivation has been carried on to some extent in the northwest, with very promising results."

The results of the analysis of the two samples of this grass are given below:

Sample No. 1. Gathered April 27, 1896, height 12 inches.
Sample No. 2. Gathered May 19, 1896, height 14 to 20 inches.
NATURAL CONDITION.

	¢	+	A		$\begin{aligned} & \text { \& } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	家	
Sample 1	82.30	1.56	471	(3 41)	4.80	2.59	404
Samp'e 2.	80.48	121	423	(3.28)	5.18	2.40	6.50

WATER FREE SUBSTANCE.

Sam	8.82	28.63	(19.28)	27.09	14.66	23.80
Sample 2	6.22	21.69	(16.84)	26.56	12.33	33.20

The water content of the two samples are very close, less than 2 per cent, and on making a comparison of the various constituents of the dry matter, it is found that as a result of the difference of twenty-two days sample 2 has 2.60 per cent less of fat and 4.97 per cent less of protein. The same condition is present in the amount of albuminoids, where there is a difference of 2.44 per cent of albuminoids in favor of sample 1. The amounts of crude fiber in both samples are very close, but the difference of nitrogen free extract is 9.40 per cent in favor of the sample which was collected last. The amount of ash is largest in sample 1.

For comparison the following analyses are added:

	¢	㵄	ád 0 0 0 0	$\begin{aligned} & \dot{ष} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	萝	
Iowá (1):						
Cut June 9 , beginning to bloom, height 30 in.	68.85	. 66	4.32	9.88	3.04	13.25
Cut April 29, height 12 inches.	* 77.24	6.26	26.64	20.31	13.50	3329
Cut May 10, height 15 inches..	*7500	5.32	22.53	23.84	1283	35.49
Cut May 20, height 20 inches	*76.78	3.58	18.83	21.58	12.18	43.83
Cut May 30, panicle spreading.	*72 17	2.12	16.00	32.26	1064	38.98
Cut June 9, early bloom......	*68.85	2.12	13.88	31.71	9.76	42.53
Cut June 20, seed forming.	*66.29	2.25	11.88	30.38	925	46.24

Other Brome Grasses.-Soft chess (Bromus hordeaceus, L.) has been introduced at various points in the statefor forage purposes. Some years ago R. P. Speer introduced it on the college farm, but soon found ${ }^{3}$ that it was an entirely worthless grass. Since then it has been common on the college farm. It comes on early and makes a good growth. Its wєedy character should prevent farmers from sowing any more of it.

In regard to Bromus hordeaceus Prof. F. Lamson-Scribner \dagger says:
"An erect annual, one to three feet high, having the sheaths, leaves and spikelets of the erectpanicle soft'y pubescent. It has a marked resemblance to cheat, from which it differs in its more erect panicle and hairiness. It is a native of Europe, but has become widely disseminated in this country, although less common than cheat and smooth brome grass, but like these can only be regarded as a weed. It has, however, been recommended for cultivation on thin, sandy land where better grasses will not succeed."

CHEMICAL COMPOSITION.

Five samples of Bromus hordeaceus were analyzed in the experiment station laboratory with the following results:

[^201]

Flg. 160. Soft chess, (Bromus hordeaceus). A grass extenglvely naturalized in portions of this state, but of little value as a forage plant. a, empty glumes; b, flowaring glume; c, palea. (Div. Agrost. U. S. Dept. Agrl.)

Fig. 161. Oommon chess, (Bromus secalinus). Widely distrlbuted annual, frequently occurring in wheat fields; but of little value as a forage plant in this state (Div. Agrost. U. S. Dept. Agrl.)

Sample 1. Collectsd A pril 24, 1896, 3 to 10 inches high.
Sample 2. Collected May 4, 1896, 12 to 18 inches high, no heads.
Sample 3. Collected May 11, 1896, 18 to 24 inches high, just beginning to head out.

Sample 4. Collected May 20, 1896.
Sample 5. Collected June 1, 1896, 30 to 32 inches high.
NATURAL CONDITION.

	-	8	$\begin{aligned} & \text { gi } \\ & \text { 荡 } \\ & 0 \end{aligned}$		$\begin{aligned} & \dot{0} \\ & 0 . \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$	-	
Sample 1.	8507	1.41	419	(323)	318	1.92	4.23
Sample 2.	8729	. 91	2.14	(1.88)	3.38	1.83	4.45
Sample 3.	7937	. 85	262	(2.50)	5.47	219	9.50
Sample 4.	80.63	. 78	2.96	(2.10)	6.42	2.05	7.16
Sample 5.	71.41	. 85	3.52	(3 08)	10.01	254	11.67

WATER FREE SUBSTANCE.

Sample	446	28.05	(21.61)	21.31	12.89	28.26
Sample	7.43	16.83	(14 80)	26.61	1438	3475
Sample	4.10	1271	(12.12)	26.54	10.64	46.01
Sample	4.08	15.30	(10.88)	33.18	10.61	3683
Sample	2.95	1230	(10.76)	35.01	891	40.83

Considering the fivョ analyses of Bromus hordeaceus we find that the water content in the samples in their natural condition vari s from 71.41 per cent to 87.29 per cent, and the amount of water varies irregularly in the samples In the dry matter or water free substance, we find that the fat varies from 946 per cent to 2.95 per cent, decreasing as the grass becomes older. The crude protein varies from 28.05 per cent to 12.30 per cent, and with one exception the amount decreases as the plant grows older. The amount of albuminoids, however, varies from 21.61 per cent to 10.76 per cent, and these decrease in amount regularly as the grasses increase in growth. The crude fiber varies from 26.54 per cent to 35.01 per cent, and is irregular in the amount present and tends to increase as the plant increases in age. The nitrogen free extract, howtver, is very irregular in the amount present. The ash, on the contrary, tends to decrease with the age of the grass.

One other sample is adled for ${ }^{\circ}$ comparison with the results of the laboratory:

WATER FREE EXTRACT.

-	号	\%	$\begin{aligned} & \dot{8} \\ & \text { é } \\ & \text { 0 } \\ & \text { E0 } \end{aligned}$	-	
Mississippi, collected June (${ }^{\text {(}) ~}$	408	10.05	34.02	6.72	45.13

Chess or cheat (Bromus secalinus, L) is also quite common in many parts of the state, and although more valuable than Bromius hordeaceus, must be regarded as a weed.

Chess or cheat is a well known weedy annual grass introduced in this country a number of years ago, and pretty generally occurring in the state where wheat is grown. It has a lozse, spreading panicle. The awns of the flowering glumes are quite variable. This plant is a weed, but not quite so injurious as Bromus hordeaceus, as it has some redeeming features as a forage plant. Professor Tracy speaks favorably of this grass for the soutbern states. Chess or cheat is believed by many people to be a degenerated wheat, but this is not true. Cheat can only produce cheat, and where these plants occur it is certain that they were from cheat sown with the wheat, or that the seeds were scattered by birds or animals. Prof. F. Lamson-Scribner" says: "Cheat and wheat are only remotely related; they belong to quite distinct tribes in the grass family, and wheat is less likely to change into cheat in a single generation than the more nearly allied oats, or than wheat is to change into barley, with which it is very closely related."

CHEMICAL COMPOSITION.

The following samples of Bromus secalinus were analyzed in the laboratory at this station:

Sample 1. May 20, 1896, height 25 to 30 inches.
Sample 2. June 15, 1896, height 28 to 29 inch ϵ.

[^202]*Bull. Div. Agros. U. S. Dept. Agrl. 3: 32.

NATURAL CONDITION.

WATER FREE SUBSTANCE.

Sample 1	9.59	13.17	(9.42)	44.04	10.63	22.57
Sample 2.	357	9.66	(744)	37.03	791	41.8

In considering the composition of Bromus secalinus we find that the sample collected in May has rearly 13 per cent more water than that of the June sample, both of the samples being practically the same size. In considering the constituents of the dry matter, the first sample has 6.02 per cent more fat than the second, and it has also 3.51 per cent more of protein and 1.98 per cent more of albuminoids. The crude fiber is present to the extent of 7.01 per cent over the amount in the second sample. As regards the amount of nitrogen free extract, there is 18.26 per cent less in the early than in the late sample. The ash constituents are 2.72 per cent less in the second than in the first.

For comparison with the work done here, we have selected the following analyses:

IN FRESH OR AIR-DRY MATERIAL.

	-	号	did		盛	
New York (1).	60.35	1.12	3.17	13.05	1.85	20.46
*Mississippi (2)	58.54 8.56	1.75	3.61	31.90	9.19	44.99

[^203]

Fig. 162. Bromus tectorum. A nearly worthless annual found here and there in the state. (F. Lamson-Scribner. Div. Agrest. U. S. Dept. of Agrl.)

WATER FREE SUBSTANCE.

				䁍	
New York (1)	2.80	800	32.90	4.70	51.60
Mississippi (2):					

1. U. S. Dept. Agrl. Exp. Sta. Bull. 11: 39.
2. Ann. Rept. Mississippi Agrl. Exp. Sta. 8: 90. 1895.
3. Bull. Oregon Agrl. Exp. Sta. 38: 44. 1895.

Fig. 163. Woodland Chess, (Bromus ciliatus). Quite widely distributed in timber, and of considerable value as a forage plant. (Charlotte M. King).

The Bromus racemosus, L., allied to B. secalinus, is sometimes cultivated in the south. This is an introduced annual, one to three feet high, with a more or less spreading panicle with smooth spikelets. A very common grass in cultivated fields and waste places. It has been recommended for some sections of our country, but like the other two species is of very little value.

Bromus tectorum, L, is another worthless immigrant which has made its appearance at several points in waste places about cities. This is a tufted annual, from one to two feet high, erect or somewhat geniculate at the base. This species is of little value for forage purposes. For forage purposes it is not as good as Bromus hordeaceus.

The woodland chess (Bromus ciliatus, L.) makes a vigorous growth early in the season. Though never abundant in one place, it is widely scattered in timber and affords excellent forage in the timber lot.

CHEMICAL COMPOSITION.

The South Dakota (1) station analyzed one sample of the grass, with the following results:

Bromus purgans, L.-This is taller and stouter than B. ciliatus, a perennial, from two to three and a half feet high. Culm is erect and smooth, with somewhat drooping panicles. This species is common in moist meadows, in some cases covering considerable area. The form most common in Iowa is the Bromus purgans latiglumis, which is indeed a most excellent grass in moist meadows in north central Iowa. In chemical composition this compares with Bromus ciliatus.

Schrader's Brome grass (B. unioloides, Willd.), a native of South America, has not been cultivated in Iowa, though no doubt would succeed, as it is hardy in northern Colorado. It is one of the valuable winter grasses of the south.

This species was described and figured by Willdenow in 1806 from specimens growing in the botanical garden at Berlin, the seed originally coming from South Carolina, but the grass is

[^204]

Fig. 164. Swamp Chess,
(Bromus purgans-latiglumis)
a A tall, fine grass for low meadows. Charlotte M.
King)
native to South America and was evidently early introduced into the Carolinas. Mr. Shear says it also appears to be native in Central America and Mexico, and possibly Texas. Its cultivation was first introduced by Iverson, of South Carolina, in 1853 or 1854 . This grass is not adapted to our conditions in this state, but for the southern states it is an admirable grass. Mr. C. L. Shear* says:
"The grass is naturally an annual, producing its seed and then dying, but if prevented from seeding by continuous cutting or pasturing, it will survive several years and produce well; but as the grass dries up during the summer, the use of the land during that period is practically lost. Results giving the most general satisfaction in growing this grass may be secured by pasturing it until spring and then letting it reseed itself. After it has maturedits seed, the land may be plowed and sown, preferably to cow peas or Japan clover, which should be harvested in time to allow the rescue grass to start again with the first autumnal rains. Excellent volunteer crops may be secured in this way for several years."

CHEMICAL COMPOSITION.
The analysis by the South Dakota Experiment Station (1) gave the following results:

Water	7.13	
Ash	9.03	972
Ether extract.	2.09	2.25
Crude fiber	32.39	34.88
Crude protein	997	10.74
Nitrogen free extract	39.39	42.41
Total.	100.00	100.00

The United States Department of Agriculture (2) analyzed a number of samples of this grass, with the following results:

$$
\begin{array}{ll}
\text { Sample No. 1. } & \text { Cut April 23d. } \\
\text { Sample No. 2. } & \text { Cut.May 4th. } \\
\text { Sample No. 3. } & \text { Cut May 13th. } \\
\text { Sample No. 4. } & \text { Cut June 1st. } \\
\text { Sample No. 5. } & \text { Cut June 1st, in seed. }
\end{array}
$$

[^205]NATURAL CONDITION.

	-	号	走			+
Sample No. 1.	80.60	2.07	3.31	3.60	9.45	. 97
Sample No. 2.	75.40	2.20	353	5.47	12.55	. 85
Sample No. 3.	79.40	1.91	2.60	467	10.60	. 82
Sample No. 4.	6750	2.17	3.52	823	17.81	.77
Sample No. 5.	64.70	3.02	3.45	7.01	21.08	. 74

WATER FREE SUBSTANCE.

Sample No.	10.70	17.10	18.60	4860	5.00
Sample No. 2	8.90	1430	22.20	51.10	3.50
Sample No. 3.	9.30	12.60	22.70	51.40	4.00
Sample No. 4.	6.70	10.80	25.30	54.80	2.40
Sample No. 5	8.60	9.80	19.90	59.60	2.10

REDTOP (Agrostis alba), L.-Many writers of the early part of this century do not speak favorably of Agrostis alba as a forage plant, although its cultivation begau in 1761. Stebler and Schröter* state that it was introduced into Ireland about the beginning of this century; Dr. Richardson pointed out its merit, and on his recommendation it came to be extensively cultivated in Great Britain. The cultivation of Fiorin commenced on the continent about 1840, where it was held in high esteem. Jessen \dagger, 1863, praises its qualities as a forage plant in Germany, but says it is difficult to harvest. In this country it has been cultivated for a long time. Flint+ says: "It was called simply English grass by Eliot, Dean and other early writers, and by the English, fine bent. Most of the grasses of this genus are known in England under the name of 'Bent Grass,' of which there are many species."

Redtop is a very variable species; there are included under it a number of well marked and distinct varieties, some of which have received distinct names.

Prof. F. Lamson-Scribner, in his "Grasses of Tennessee," makes the following statement with reference to the different forms:
"Agrostis vulgaris, With. Fine Bent, is now united with A. alba, L., not being regarded as botanically distinct. A. vulyaris,

[^206]

Fig. 163. Red Top, (Agrostis alba). A fine grass for low meadows. (F. LamsonScribner, Div. Agrost. U. S. Dept. Agrl.)
however, is a good agricultural form quite distinct from A. alba. Agrostis stolonifera is also classed as only a variety of A. alba. Trinius referred these, and also some others which have been classed as species, to Agjostis polymorpha, Huds."

The forms we have may be separated as follows:
Ligule, 1 to 4 lines long, usually ribbed toward the base. Panicle open, culms erect or geniculate at the lower joints.......................A. alba

Panicle contracted linear, culms extensively creeping or stoloniferous ...A. stolonifera
Ligule less than a line long, sometimes nearly obsolete; panicle branches spreading, smooth. A. vulgaris

This plant produces culms from one to two feet high, ascending smooth from a creeping rootstock. Leaves short and flat
with a contracted or oblong panicle and producing few or many small branches in a whorl. Grass starts rather late in the spring but affords very good pasture during the entire summer, especially in wet soils. It yields from one to two tons of hay to the acre which is of excellent quality.

Prof. F. Lamson-Scribner* says:
"Herd's grass or redtop has long been known to our farmers, and in its several forms is deemed valuable for permanent meadows and pastures, where the land is not too dry. On good soil it yields well and makes excellent hay. Some of the forms employed alone, make, under favorable circumstances, the softest and finest turfs for lawns."

CHEMICAL COMPOSITION.
One sample of this grass was analyzed by the South Dakota station (1).

Water	7.85	
Ash..	903	9.80
Ether extract	2.39	2.59
Crude fiber.	29.19	31.68
Crude protein	11.93	12.95
Nitrogen free extract	39.61	42.98
Total.....	100.00	100.00

Professor Beal \dagger says:
"Redtop in this country is often sown on marshes too wet for soms of the better grasses. It is not well adapted to alternate husbandry, as it takes several years to become well established."

Also, F. Lamson-Scribner \ddagger says:
"It makes a very resistant and leafy turf, which well withstands the tramping of stock. It grows well, also, as far south as Tennessee. Among the forms of low growth are two varieties which are unsurpassed, either in fineness or richness of color, for making lawns."

[^207]

Fig. 166. Thin-grass, (Agrostis perennans). Widely distributed in timber. Not espectally valuable for forage purposes. (F. Lamson-Scribner, U. S. Dept. Agrl.)

Redtop is a valuable grass, particularly in low meadows, where it is common. It makes a fine turf and may be pastured without injury. The hay is of the finest quality. Although this grass is naturalized in many parts of the state, it is seldom sown.

Other species.-Several other species of Agrostis are used for meadow and pasture purposes. The most valuable of these are Rhode Island Bent (A. canina, L.) and the rough-leaved Bent (A. asperifolia, Trin.), a native of the Rocky mountain regions. We also have several native species in Iowa, like the Agrostis perennans, which occurs in woodland, and is common in moist, shady places. Though widely distributed, this species
is of little value for forage purposes, as it produces so scantily. Another species, A. scabra, is a widely distributed grass, usually occurring in rather light soils. Aside from the fact that it may be used for ornamental purposes, it produces some little forage, though it cannot be considered of any value for this purpose.

The Tall Meadow Oat Grass (Arrhenatherum avenaceum, Beauv.), has been cultivated for a considerable length of time. Sinclair,* in 1894, does not seem to have been highly impressed

Fig. 167. Tall Meadow-oat grass, (Arrhenathum avenaceum). A valuable European grass. Although perfectly hardy, and adapted to Iowa conditions, it has not given general satisfaction. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)
with the grass. It does not, according to this writer, do well when sown by itself. He also made experiments, sowing it at different times, and concludes that May is the best month. Sowerby and Johnson \dagger seem not to have been favorably

[^208]impressed with it as a cultivated grass. Its further early history is given by Stebler and Schröter* as follows: "Towards the beginning of the lastcentury, false oat grass was cultivated in Dauphiny, in the neighborhood of Geneva, and here and there in Canton Berne. Stapfer, in a memoir presented to the Agricultural Society of Berne in 1762, strongly recommended its cultivation. In 1790, Judtmann advocated its use for mixing with red clover, sanfoin, and lucerne. Later it became .much over-estimated, e. g., by Mauke, Hansen and Hannemann. The French, as Schwerz says, 'elated it to the skies.' Soon, however, it became as much depreciated as it had formerly been over-estimated; Hector in his work on grasses does not even mention it."

European authorities differ in regard to its value. Sir J. B. Lawes states it is of questionable value in England. Mr. Gorrie states that ityields continuously from early spring until winter frosts. It has a very disagreeable, bitter taste, which causes it to be avoided by horses, cattle and sheep. It is much subject to rust and smut. Professor Buckman \dagger thinks it is not advisable to encourage its cultivation. The opinions in this country differ in regard \mathfrak{o} its usefulness. Beal \ddagger states that it is suited for alternate husbandry and for dry countries. It is common in California and greatly esteemed there. He says in regard to it: "The writer has raised this grass on rather light, sandy soil at Lansing, Mich., for twenty years or more, has seen it in some other localities in the state, and thinks he can tell why there are such conflicting opinions in relation to its value. In England the climate is moist, and the finer succulent grasses thrive well, while tall oat grass does better in a hotter, dryer climate. As it blossoms rather early, many let it go too long before cutting, when the stems become hard and of poor quality. Again, bad weather often interferes with the cutting at just the right time, and poor hay is the result. A man doesn't want a very large quantity of this grass to mow, unless he is prepared to cut it all in a day or two. It makes a fine growth the first season after sowing, and if sown alone will cut a good crop of hay."

Flints notes its eaily cultivation in New England, where at one time it was highly esteemed. It has been tried in Iowa

[^209]

Flg. 168. Hair grass, (Agrostis scalba). Common in light, sandy soils where it makes some forage. \quad, nodes; b, sheath and blade; c, sterile glumes; d, the stamens and pistils and palea. (Oharlotte M King.)
for a quarter of a century, but has not been diffused as a pasture or meadow grass. It matures early and two crops may be cut in a single season.

Grama Grasses - Three Grama grasses occur in Iowa. Bouteloua hirsuta, Lag., common in dry, sterile and sandy ground, scarcely worthy of attention, except on sandy, light soils as on Muscatine island.

Fig. 169. Black grama, (Bouteloua hirsuta.) Common on Muscatine Island and in gravelly drift solls. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)

The Black Grama or Tall Grama, is common only in sandy soil in the eastern portion of the state and gravelly drift soils in northern Iowa. In many respects it resembles the Blue Grama, growing in bunches; it is, however, less valuable.

The Side-oats or Tall Grama (B. racemosa, Lag.), is common throughout the state on dry, sterile hills, forming a large part of the natural herbage. Under cultivation it has succeeded admirably the first season, having made a growth of eighteen
inches. It is a valuable grass on the loess in western Iowa, occurring abundantly on rather dry soils. The hay made from it is of the very best quality. It cures readily, and even when cut late in the season the leaves retain their freshness longer than any other wild grasses. This is one of our best species in the state. It is found quite widely distributed on sterile hills, especially in the drift area. It is a rather stout, tufted grass, from one to three feet high, and grows in bunches. The leaves are flattened and long and the spikes are arranged along the upper portion of the stem in a one-sided fashion. This grass has been cultivated on the college grounds and has made an excellent stand in a single season, producing a fine, even turf from six inches to two feet high, and in the autumn it had developed sufficiently to produce from a ton to a ton and a half of hay to the acre. It is certainly worthy of cultivation in dry soils. Along the loess it affords considerable pasturage.

The Blue Grama (Bouteloua oligostachya, Torr.) is more valuable than the former. It grows from eight to eighteen inches high, varying somewhat with the seasons. It was much taller on the average in 1896 than in 1895. As a rule, this grass seldom exceeds a foot in height. It is endowed by nature with great drouth-resisting qualities. It has been cultivated on the college grounds, and when sown in early April or late March had attained a height of eighteen inches before September 1st. Its firm leaves are highly nutritious.

Prof. Lamson-Scribner says:
"This is one of the most abundant and most valued of the Grama grasses, and extends from Wisconsin westward to California, and southward into Texas and northern Mexico. It is a perennial, six to eighteen inches high, its strong rhizomes and numerous root leaves forming dense and more or less extensive patches of excellent turf. In Montana it is known as buffalo grass. It frequents the bench lands of that state, growing at elevations from 3,000 to 4,000 or 5,000 feet, and not infrequently covers wide areas. * No other grass better withstands the tramping of stock, and it is unsurpassed for grazing purposes. In the southwest it forms a large proportion of the hay delivered at the various military posts and stage stations, and is considered the best obtainable there. Like the true buffalo grass, it cures during the dry season in the turf into perfect hay, losing none of its nutritious properties."

[^210]

Fig. 170. Side oats, (Bouteloua racemosa.) A grass of drift solls and of the loess of western Iowa. Valuable. a, node; b, ligules; d, flower. (Charlotte M, King.)

It is only suited for high and dry soils, and where the conditions prevail it should be grown.

CHEMICAL COMPOSITION.

Of the Grama grasses two samples were analyzed, one each of Bouteloua oliogostachya. and Boutelour racemosa, with the following results:

NATURAL CONDITION 3.

	¢	\%	gin		$\frac{\pi}{4}$		
Bouteloua oligostachyaGathered Sept. 10, 1896.	5848	1.46	3.90	(3.20)	3.34	15.43	17.39
$\begin{aligned} & \text { Bouteloua racemosa- } \\ & \text { Gathered Sept. 10, } 1896 . . . \end{aligned}$	77.88	. 55	2.24	(1.79)	2.13	7.26	9.94

WATER FREE SUBSTANCE.

Bouteloua oligostachy	348	940	(7.33)	8.05	37.18	41.89
Bouteloua racemosa	248	10.12	(8.11)	9.60	32.84	44.96

The following analyses, which have been selected for comparison with the above, are given to show the general chemical composition of the two grasses:

IN FRESH OR AIR-DRY MATERIAL.

	-	+	$\begin{aligned} & \text { gin } \\ & \text { O. } \\ & 0 \end{aligned}$		荌	
(1) Bouteloua oligostachya, grown in Minnesota...........	14.30	2.67	7.35	19.41	6.69	49.58
(2) Bouteloua racemosa, grown in Colorado; cut when ripe... .	8.80	1.70	3.82	21.81	9.20	54.67
South Dakota (2). (3) Bouteloua oligostachya;	6.69	2.03	8.50	29.30	8.11	45.37
B. oligostachya (3).......	6.10	1.70	7.40	30.30	10.50	44.10

WATER FREE SUBSTANCE.

(1)	B. oligostach	3.10	8.60	22.70	7.80	57.80
(2)	B. racemosa.	1.90	4.20	23.90	10.10	59.90
(3)	B. oligosta	2.18	9.11	31.40	8.69	48.62

(1) U. S. Dept. Agrl. Exp. Sta. Bull. 11: 69.
(2) Bull. S. D. Agrl. Exp. Sta. 40: 98. 1894.
(3) Bull. New Mexico Exp. Sta. 17.

Samples were analyses of the grasses as hay, not green fodder.

Fig. 171. Blue Grama, (Bouteloua oligostachya). One of the most valuable of the western grasses. Occurs in northern Iowa from Lyon to Dickinson county. (F, Lamson-Scribner. U. S. Dept. Agrl.)

AGROPYRON OR WHEAT GRASSES.

This genus contains quite a number of valuable grasses as well as some members that are quite difficult to exterminate, as the common quack grass (Agropyron repens), and as the Agromyron occidentale has become in eastern Minnesota. Some of the members of this genus are certainly among the most valuable of the grasses of the plains and Rocky Mountain country. Thus the A. ocridentale is one of the most valuable grasses of the plains, while Agrop!ron tenerum and A. pseudo-repens and A. richardsoni and A. divergens are valuable in the foothills and mountains.

Western Wheat Grass (Agropyron occidentale).-During the summer one may see along our great trunk lines a con-
spicuous bluish patch of grass on the embankments. This is the introduced Colorado blue stem or western wheat grass. It is native from Texas to Kansas, Nebraska, Iowa, Dakota and Montana. It is one of the most valuable grasses of the plains and is one of the three valuable grasses of this genus that are native to Iowa. It is common on the loess in western Iowa,

Fig. 172. Western wheat grass, (Agropyron occidentale). One of the most valuable grasses of the plains. Common in the dry prairies. Introduced in many portions of this state. Also native to the loess of western Iowa.
where it is used for hay and pasturage. In the northwest it is much prized as a forage plant. The yield is not large, but the quality is said to be unsurpassed. Like quack grass, it produces a large number of underground rootstocks. LamsonScribner says: "After two or three cuttings the yield of hay diminishes so much that it is scarcely worth the harvesting

It is then customary to drag a short-toothed harrow over the sod, which breaks up the creeping roots or underground stems, and each fragment then makes a new plant."

At various times it has been cultivated on the college farm. When sown in March a cutting of a good quality of hay may be made the same season. Though not producing so large a bulk as timothy and some other grasses, its quality is unsurpassed. A pound of western wheat grass contains more nutrient material than either blue grass or timothy. It stands drouth in a remarkable manner; the leaves and stems are bright and green during the dryest weather. The plant is much subject to the attacks of ergot, but this is not a serious objection if the hay is cut early.

This grass is a rigid, upright perennial. On the college farm during the season of 1900 it measured 2 feet and 3 inches; usually, however, it is from $1 \frac{1}{2}$ to 2 feet high. It produces an abundance of leaves. The leaves have a bluish color, hence the common name, Colorado blue stem. It closely resembles the common quack grass, but is much more valuable for dry places. This grass has much more solid material than quack grass. Dr. Kennedy* speaking of this grass says:
"While it does not produce as much hay to the acre as some other species, stockmen value it highly for its nutritive qualities. In Montana and the neighboling states it furnishes a considerable amount of native hay and pasturage, and is there regarded as one of the most important forage plants. This grass would make excellent hay, and should be introduced into cultivation."
F. Lamson-Scribner \ddagger says:
"In Montana and the neigbboring states it furnishes a considerable amount of rative hay, and is there regarded as one of the most important of the native forage plants. After three or four successive annual cuttings, the yield diminishes very much, but the grass is 'brought up' by letting it stand a year or two, or by dragging over the sod a sharp-toothed harrow, thus breaking the roots into small pieces, every fragment of which makes a new plant."

At the Iowa Agricultural College Experiment Station it has done exceedingly well under cultivation.

[^211]
CHEMICAL COMPOSITION.

Two samples of Agropyron occidentale were analyzed by the section and gave the following results:

Sample 1. June 10, 1896, wild along railroad, 30 to 32 inches high.
Sample 2. June 20, 1896, 32 to 34 inches high.
NATURAL CONDITION.

		+	-			年	
Sample	62.64	1.76	4.56	(3.80)	1091	3.34	16.79
Sample 2	6463	83	3.52	(3.07)	1207	274	16.11

WATER FREE SUBSTANCE.

Sam	4.72	1220	(11.90)	29.21	8.93	44.94
Samp	234	995	(8.69)	3414	7.75	

Both samples have nearly the same amount of water present, 62.64 and 64.63 per cent, but when we compare the constituents in the dry condition we find that sample 1 has about twice the amount of fat that is present in sample 2.

Sample 1 has also more protein than No. 2, 12.20 per cent compared with 9.95 per cent; this is true with the albuminoids, 11.90 per cent for the young sample, while the older one has 8.69 per cent. There is also quite a difference in the amount of crude fiber present, 29.21 per cent for the early sample, wnile $34.1 t$ per cent is present for the late sample, while the amount of nitrogen free extract is nearly the same for both of the samples, that is 44.94 and 45.82 per cent respsctively. The ash, however, is somewhat larger for the younger sample.

QUACK GRASS.

In this connection a few words in regard to couch or quack grass (A. repens, Beauv.), which has been both condemned and praised by agricultural writers. The grass is extensively naturalized in many parts of the United States. It is frequent in many parts of this state. This species probably occurs in perhaps every county in the state, but only in small spots here and there, and it is not a factor in the production of hay in this state. Couch grass is a valuable hay grass, but, as LamsonScribner* says, "It binds itself out, and the sod requires

[^212]breaking in order to restore the yield." This species should not be generally cultivated in this state bacause of its weedy character. It is a good grass for embankments, where it may be used to advantage.

CHEMICAL COMPOSITION.

The chemical composition of Agropyron repens may be shown by the following analyses made in the laboratory:

Sample 1. Gathered April 18, 1896, height 4 to 8 inches.
Sample 2. Gathered May 6, 1896, height 16 to 24 inches.
Sample 3. Gathered May 20, 1896, height 20 to 30 inches.
Sample 4. Gathered June 1, 1896, height 26 to 28 inches.
Sample 5. Gathered June 15, 1896, height 26 to 28 inches.
NATURAL CONDITION.

		䓓			$\begin{aligned} & \text { ® } \\ & \text { oū } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	䫆	
Sample 1.	7396	1.15	5.13	(457)	6.13	3.14	1049
Sample 2.	79.06	. 81	441	(2.47)	5.66	311	6.95
Sample 3.	79.56	1.51	4.64	(2.11)	496	2.09	7.24
Sample 4.	75.84	1.47	4.23	(2.04)	6.68	266	9.12
Sample 5	8056	1.28	1.35	(1.32)	5.05	2.12	9.64

WATER FREE SUBSTANCE.

Sample 1	4.41	19.70	(1757)	23.55	12.08	40.26
Sample 2.	3.86	21.06	(11.80)	27.12	14.84	33.12
Sample 3.	737	2271	(10.34)	24.28	1024	35.40
Sample 4.	6.08	17.52	(8.44)	2756	11.00	37.84
Sample	6.59	696	(680)	25.97	10.93	49.55

It will be noticed that the amount of water present is very constant, ranging from 73.96 to 80.56 per cent, and with one exception the amount of water increases as the grass becomes older. The fat present in the water free substance varies from 3.86 to 7.37 and there is no regularity regarding the amount present in the samples. We find that the greatest amount of crude protein is present in the sample collected on May $\imath^{0} 0,1896$, having a height of 20 to 30 inches. The amount of albuminoids, however, is highest in the sample of April 18th, when 4 to 8 inches high, and the amount decreases regularly as the grass grows older until it is then only 6.96 per cent in the last sample. The crude fiber is quite constant and is not regular in its changes during the growth, as shown by the analyses. The nitrogen
free extract varies from 33.12 to 49.55 per cent and the results are irregular for the successive periods of growth. The ash varies from 10.24 to 14.84 per cent and is highest in the young samples.

The above results are supplemented by the selection of other analyses of this grass from other sources.

IN FRESH OR AIR-DRY MATERIAL.

	¢		\%		安	
Sample 1, cut June 23	58.30	1.40	3.67	8.22	3.65	24.76
Sample 2, time of cutting unknown. South Dakota (2):	5762	1.45	331	16.30	1.88	19.44
Sample 3, cut June 29, 1891; just coming in bloom	7.00	1.93	9.22	3302	6.93	41.90

WATER FREE SUBSTANCE.

Sample 1	3.40	8.80	19.70	8.80	59.30
Sample 2	3.40	7.80	38.50	4.50	45.90
Sample 3	2.07	4.91	35.51	7.45	45.05

FALSE COUCH GRASS.
The false couch grass (Agropyron prsudo-repens) is very closely allied to the common quack grass, as its name indicates. It produces tall and leafy stems, which are much softer than those of A. occidentale. It occurs in moist meadows in this state. It forms compact bunches, with stout stems grow. ing from about eighteen inches to two and a half feet tall. The spikes are from four to seven inches long and somewhat stouter than in quack grass, the awns being very short. This is an excellent forage plant. It is indigenous from central Iowa northward. Thus it occurs in the vicinity of Jewell Junction, and is reported also by Mr. R I. Cratty from the northern part of the state.

OTHER WHEAT GRASSES.

The Agropyron tenerm, Vasey, though not a native tormany parts of this state, has been naturalized in many places, as in eastern Iowa. It is native to northwestern Iowa. This perennial grass produces an abundance of sof l leares and stems,

[^213]

Fig. 173. False couch grass, (Agropyron pseudo-repens). Native to the lake regions of this state. A valuablegrass. (I. Lamson-Scribner, Div, Agrost. U. S. Dept. Agrl.)
greatly relished by stock. It has been under cultivation at Ames with remarkable success. It starts early in the spring, surpassing bluegrass, especially in its rapid growth and maturity. It is a deservedly popular grass in the Rocky Mountain region.

It is an erect perennial, grows from 3 to $4 \frac{1}{2}$ feet high, with numerous soft leaves and a long, slender spike. The latter height is attained especially when there is sufficient moisture and the conditions are favorable. During this season the grass only attained a height of $3 \frac{1}{2}$ feet, owing the dryness of the spring, but it produces a large number of leaves which are relished by stock of all kinds. It is an early and rapid grow-

Fig. 174. Slender wheat grass, (Agropyron tenerum). This is a valuable grass of the rocky mountain region, and has been established in numerous places in this state. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)
ing grass; thus this species would permit stock to pasture several weeks earlier than any other of our common grasses. This grass also responds readily to cultivation, and the fact that it yields as well as timothy should commend it to the favorable consideration of the farmers of Iowa. Some tests of seeds furnished by the U.S. Department of Agriculture, division of Agrostology, to this station have doneremarkably well, though it was also cultivated here with equal success in $1 \sim 59$ and 1×90.

The Agropyron caninum, or bearded wheat grass, is native to the northwest portion of this sțate, but is much more common in other sections of the country. This tibrous rooted somewhat slender upright perennial grass grows from 2 to 3 feet

Fig. 175. Richardson's wheat grass, (Agropyron Richardsoni). Common in northwostern lowa, and very common in the Rocky mountain region. is valuable grass. (E. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)
high. During the past season it was 3 feet high on the college grounds. It has bearded nodding heads and when grown under favorable conditions, produces a large amount of forage that is equal to some of the other species like A. tenerum.

Lamson-Scribner* says in regard to this plant:
"Bearded wheat grass is closely related to the more common and better known couch grass (A. repens), but differs markedly from that species in having no rootstocks, and in the longer beards or awns to the spikelets. No attempts have been made to introduce this grass into general cultivation, but its habit of

[^214]growth and general character indicate that it may possess considerable agricultural value. It is readily propagated by seeds, which may be easily gathered.'"

The Richardson's wheat grass (Agromyron richardsoni, Schrad.) in a general way resembles quack grass. This occurs in rather dry places and grows 1 rom 2 to 3 feet high. From the fact that it does not produce the creeping rhizomes it is not so tenacious as the other species. The glumes are rather long awned, which at once separates it from the closely allied species of this region. It enters into the native composition of wild hay as far east as Kossuth county and south as far as Hamilton county in the vicinity of Mud Lake. It is abundant in the Rocky Mountain region, where it occasionally forms a considerable portion of the herbage of the "mountain parks."

CHEMICAL COMPOSITION.
Two samples of Agropyron raninum were analyzed and the chemical composition of the grass is shown by the following results:

Sample 1. Collected June 3, 1896, 24 to 26 inches high.
Sample 2. Collected June 15, 1896, 30 to 32 inches high.
NATURAL CONDITION.

	¢ \# B	菜	.		家		
Sample 1	73.32	1.45		(3.83)	3.13	8.81	9.39
Sample 2	6857	1.56	3.7	(292)	359	1033	12.18

WATER FREE SUBSTANCE.

Sample 1.	544	14.60	(1435)	11.71	33.01	35.24
Sample 2.	498	11.98	(9.28)	11.43	32.87	38.74

The following constituents decrease as the grass matureswater, fat, protein, albuminoids, crude fiber and ash, while the nitrogen free extract appears to increase.

The following analysis has been taken for comparison:

NATURAL CONDITION.

		苋	通	$\begin{aligned} & \text { : } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$.	
Cut July 18, 1892 (1)................	6.09	800	1.80	4123	4.67	38.21

WATER FREE SUBSTANCE.
Same as above............................| $852|1.92| 43.90|4.97| 4069$

BLUE STEMS.
These grasses are among the most important of our nativa prairie grasses. In early days they constituted an important part of the forage. All of the species belong to Andropogon.

Fig. 176. Big blue stem, (Andropogon provincialis). At one time one of the most abundant of the grasses of the prairies. A good,grass. (F. Lamson Scribner, Div. Agrost. U. S. Dept. of Agrl.)

[^215]

Fig. 1r7. Johson grass, (Andropogon halepensis), Good productive grass, but very difficult to eradicate in the southern states. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. of Agrl.)

Big Blue Stem (Andropogon provincialis, Lam.,) is a tall growing perennial, frequently five feet high, usually four. It is a variable species, growing in bunches occasionally eight feet high and producing a large number of leaves. It is a common species throughout the state. Wherever a bit of prairie remains this grass grows in abundance. It occurs on the high, rolling prairie, rocky, open, wooded hillsides, and along alluvial creeks and river bottoms. Bluestem is an important factor in the wild hay made in the Missouri bottoms, especially in the northwes ern part of Iowa. It is liked by stock, both as green forage and as hay. For horses many farmers prefer it to timothy. Bluestem hay brings a higher price in the market than any other wild hay. It starts late in the spring, and
while probably not a valuable gress for early.pasturing, it is useful in late summer and autumn, provided grazing is not too close. It is an excellent grass for hay, thriving in poor, sandy, rocky soil, as well as on the richer prairie. It is less common than Andropogon scoparius. The allied turkey-foot grass (A halli hack) is not native to the state, but is reported as naturalized near Muscatine by Barnes and Miller. It grows from three to six feet high. In western Nebraska it is considered a valuable grass.

CHEMICAL COMPOSITION.

The following five samples of Andropogon provincialis were analyzed in the laboratory:

Sample 1. Collected May 26, 1896, 23 to 24 inches high.
Sample_2. Collected June 5, 1896, 27 to 28 inches high.
Sample 3. Collected June 17, 1896, 36 to 37 inches high.
Sample 4. Collected June 29, 1896, 39 to 40 inches high.
Sample 5. Collected July 13, 1896, 48 to 49 inches high.
NATURAL CONDITION.

	+	+			㘼	曲	
Sample 1	73.51	1.34	(1.11)	7.71	2.29	3.57	11.58
Sample 2	73.55	1.71	(2.29)	8.79	1.80	2.70	11.45
Sample 3	73.92	2.74	(167)	8.57	240	222	10.15
Sample 4	66.90	1.06	(1.89)	1036	1.83	2.29	17.56
Sample 5	6060	114	(4.45)	1443	2.19	5.34	16.30

WATER FREE SUBSTANCE.

Sample 1.	507	(4.20)	29.12	8.64	13.48	43.69
Sample 2	6.46	(8.64)	3325	641	10.22	43.66
Sample 3.	10.53	6.43)	3286	921	8.52	3888
Sample 4	3.22	(5.72$)$	31.31	5.54	692	53.01
Sample 5.	280	(11.28)	36.63	5.57	13.56	41.44

In the analyses of the samples of Andropogon provincialis it is readily seen that there is a tendency for the mount of water to decrease; this is not with a regular decrease in the amount, however.

In considering the constituents in the water free substance we find that the amount of fat varies between wide limits and there is no regularity in the change, sample No. 3 having the largest amount of the substance. The amount of protein and
albuminoids we find also vary, the largest amount of protein being in the last sample, cut in July, and is almost the same as the amount present in the first sample, taken in May, while the amount of albuminoids is largest in the last sample. The percentage of crude fiber increases as the plant matures, as we would expect. The amount of nitrogen free extract varies and does not change as the plant matures. The ash tends to decrease, however, as the plant matures.

Little Blue Stem (Andropogon scoparius, Michx.) is also common throughout the state. It grows in bunches and is a common grass on the prairies and rocky hillsides in the west, especially common in poorer soils. It is valuable for hay, yielding well, though less than big blue joint. It appears late and when not

Fig. 178. Little blue stem, (Andropogon scoparius) A good grass common on prairies everywhere in Iowa. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl,
cut or grazed too closely is useful as an autumn pasturage plant. It seeds more freely than big blue stem. Stock will eat the grass when it is young and fresh, but when old it becomes woody and somewhat unpalatable.

CHEMICAL COMPOSITION.
The five samples of Andropogon scoparius analyzed in the laboratory gave results as follows:

Sample 1. Collected May $27,1896,12$ to 14 inches high. Sample heavy with water from rain.

Sample 2. Collected June 8, 1896, 14 to 16 inches high.
Sample 3. Collected June 18, 1896, 16 to 18 inches high.
Sample 4. Collected July 2, 1896, 19 to 20 inches high.
Sample 5. Collected July 22, 1896, 24 to 26 inches high.
NATURAL CONDITION.

	+	-	$\begin{aligned} & \text { घं } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \dot{む} \\ & \text { O. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	盛	
Sample 1	71.84	. 82	3.34	(2.74)	8.53	254	12.93
Sample 2	66.12	2.05	2.60	(2.56)	10.94	3.16	15.13
Sample 3	66.98	1.23	2.65	(1.95)	11.13	2.44	15.57
Sample 4	60.76	1.39	2.94	(2.51)	12.89	2.51	19.51
Sample 5	67.26	. 88	2.89	(2.12)	1086	1.81	16.30

WATER FREE SUBSTANCE.

Sample 1	2.92	11.87	(4.75)	30.29	9.03	45.89
Sample 2	6.05	7.67	(7.57)	32.30	8.33	4465
Sample 3.	372	8.04	(5.93)	33.71	7.39	47.14
Sample 4	3.55	7.49	(6.40)	3285	6.39	49.71
Sample 5	2.69	8.73	(6.41)	32.86	5.46	50.26

In considering these results the following facts present themselves: The water content of the samples vary between 60.76 per cent and 71.84 per cent. These results are not regular. The irregularity is manifes'ed in the water free substance, as is shown in the fat present. The protein and albubuminoid percentages also are irregular, which may also be said of the crude fiber, nitrogen free extract and ash content.

The following analyses are added to the above for comparison:

NATURAL CONDITION．

	免	呙	范			\％	感
Iowa（1）：							
Cut Aug．19；height， 26 inches． South Dakota（2）：	5632	2.08	． 58	23.50	1497	255	2.04
As hay．．．．．．．．．．．．．．．．．．．．．．．	5.13	508	226	50.30	3263	455	443
Connecticut（3）： Cut Sept． 9 ．	， 708	172	61	22.64	1621		

WATER FREE SUBSTANCE．

Iowa（1）	4.77	1.32	53.81	3427	583	4.68
South Dakota（2）	5.35	2.38	53.06	34.39	481	469
Connecticut（3）．． Mississippí（4）：	4.00	1.40	52.70	37.80	410	
August 2 samples	4.60	． 93	48.67	41.99	3.81	

Bushy blue stem（Andropogon nutans，L ，）is a tall perennial， from four to six feet high，found in open woods and prairies in Iowa and eastern Nebraska，but is less common than the other members of the genus，and in this state frequently forms an important constitutent of the herbage of prairies， forming a considerable part of the prairie hay．It is cut late in the season，usually August or September，because then more easily made into hay．The hay is palatable and nutri－ tious and cures well．Though the quantity would be less if cut by the middle of August，the quality would be superior．

Prof．F．Lamson－Scribner＂says：＂It is held in little esteem in the eastern and southern states，but in the west it is said to make excellent hay，and is particularly valuable because of the relatively large amount of long root leaves which it produces． All stock eat it greedily．In South Dakota it is given the first place among the native gcasses as a hay－producing species， thriving best on the rich prairie bottoms．During the dry seasoz it produces but little seed，though it usually makes a good growth of root leaves．In the middle Atlantic states this grass seeds freely and the seeds are easily collected．＇

[^216]

Fig. 179. Bush blue stem, Andropugon mutans) One of the valuable native Iowa grasses common on the edges of woods, and on praties. (Charlotte M. King.)

CHEMICAL COMPOSITION.

The following analyses show the chemical composition of Andropogon nutans as analyzed in the laboratory of the experiment station:

Sample 1. Collected May 21, 1896, 23 to 24 inches high.
Sample 2. Collected June 5, 1896, 24 to 26 inches high.
Sample 3. Collected Fune 17, 1856, no description.
Sample 4. Collected June 29, 1896, 36 to 37 inches high.
Sample 5. Collected July 13, 1896, 40 to 42 inches high.
NATURAL CON IITION.

	¢		$\begin{aligned} & \dot{\Xi} \\ & \text { むg } \\ & 0 \\ & 0 \end{aligned}$			䨖	
Sample 1	77.59	. 85	3.47	(.82)	6.62	2.08	9.39
Sample 2	71.28	1.74	257	(1.83)	9.67	227	1247
Sample 3	75.77	. 75	2.06	(1.65)	7.69	2.09	11.64
Sample 4	63.41	3.12	3.28	(3.03)	11.90	2.18	16.11
Sample 5	64.75	2.05	1.98	(1.50)	14.61	284	1377

WATER FREE SUBSTANCE.

Sample 1.	38%	1547	(3.68)	29.08	929	41.74
Sample 2.	606	896	(638)	33.66	791	43.1
Sample 3.	3.07	8.50	(682)	31.74	8.63	48.06
Sample 4.	8.55	892	(8.28)	32.53	599	44.0
Sample 5	583	5.61	(4.25)	41.46	8.06	39.04

The water content of the samples analyzed shows that the amount of water decreases as the plant matures. There is, however, an exception to this in the third sample. In the dry matter the fat content is irregular and the same condition exists in the relation of the amount of protein and albuminoids. In the amount of crude fiber, there is, however, a contant increase. The nitrogen free extract and ash are also irregular in the amounts present in the grass.

The following analysis is given from the S. D. Agrl. Coll. Bull. No. 40, p. 30:

AIR DRY SUBSTANCE.

		$\underset{\sim}{\text { B }}$	$\begin{aligned} & \text { Ë } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\frac{\dot{n}}{\frac{n}{2}}$	
Sample.....................	775	1.57	385	362	3473	6.40	457

WATER FREE SUBSTANCE.

Sample.............................. 1.70 | 4.17 | $3.87|37.64| 6.94 \mid 49.54$

Switch grass (Panicum virgatum, L.) is common and productive every where in central and western Iowa. It grows abundantly is native prairie sod and along railroads. It is by no means confined to the bottom land or the richer prairie soil, being frequently found on sandy or gravely drift, but it affords more and better forage on the richer soil. It is used for both hay and pasturage, but it is of much less value as a pasture grass than for hay. It has been tried in a small way under cultivation in central Iowa, with promising results. The trials have not been extensive enough, however, to recommend it for general culture. Shepard and Williams" state that it is "One of the most valuable of our native grasses. It occurs throughout the state (South Dakota) on dry and sandy as well as on rich, moist soils, though it much prefers the latter sort."

CHEMICAL COMPOSITION.
The following results were obtained from the sample analyzed in the experiment station laboratory:

NATURAL CONDITION.

	-	淢	¢		Crude fiber.	家	
Collected September 11, '97	57.47	1.08	2.71			4.47	19.87

WATER FREE SUBSTANCE.
Collected September 11, 1897......| $2.52|635|(5.24)|33.88| 10.51 \mid 46.74$
The following analyses from other stations are given for comparison:

NATURAL CONDITION.

	-		$\begin{aligned} & \text { घं } \\ & 0 \\ & 2 \\ & 2 \end{aligned}$	® © 0 0 0	-	
(1) North Carolina.	8.02	1.48	744	33.45	5.66	43.95
(2) Tennessee, cut June 16, 1895...	1083	192	681	30.26	5.07	45.11
(3) South Dakota, July 15, 1891.....	$7.2 y$	209	624	3389	6.50	43.99
(4) Mississippi.	5556				

*Bull. South Dak. Agrl. Exp. Sta. 40:36.

WATER FREE SUBSTANCE.

Barnyard grass. The cultivation of Panicum crus-galli, L., has not been carried on extensively in this state. This grass, although usually regarded as a weed, is frequently used as a f, r age plant in western Iowa and along the Mississippi in eastern Iowa. It occurs abundantly as a roadside and garden weed throughout Iowa, and is a conspicuous grass in sloughs and in cornfields in the Missouri and Mississippi bottoms. Considerable success has been obtaincd with this grass in Massachusetts.*
F. Lamson-Scribner says: \dagger
"At the Hatch experiment station, in Massachusetts, the crop produced was very uniform, averaging seven feet in height. The yield was at the rate of 11,207 pounds of straw per acre and 66.7 bushels of seed. When sown for silage or for soiling at the rate of one peck of seed to the acre, the yield was at the rate of from fifteen to eighteen tons per acre. A field sown July 26 , after a crop of hay was removed, yielded twelve tons per acre. It is very much liked by stock, and is a valuable forage plant for feeding green or for the silo. It is not so well adapted for hay, as it is a course, succulent grass, and rather difficult to dry."

Dr. Kennedy states that from the results from seeds sent out by the division of agrostology, United States department of agriculture, \ddagger of the seventy-eight packages sent out for trial, most of the trials proved to be failures, owing to the lateness of planting and the severe drouth.

[^217]

Fig. 180. Barnyard grass, (Panicum crus-galli.) Common in low grounds throughout the state Especially abundant in low grounds. (Charlote M. King.)

CHEMICAL COMPOSITION.

The sample of this grass gave the following results on analysis:

NATURAL CONDITION.

		$\underset{\sim}{\text { H. }}$	$\begin{aligned} & \text { gu } \\ & \text { む̃ } \\ & \text { O } \end{aligned}$			$\frac{3}{\frac{2}{4}}$	
Sample.....................	76.34	. 73	1.43	(1.35)	9.44	2.47	9.59

WATER FREE SUBSTANCE.
Sample............................. | $3.09|607|(5.73)|39.90| 10.46 \mid 40.48$

The following analyses from other stations are given for comparison:

AIR-DRY CONDITION.

	¢	$\frac{\dot{\pi}}{\frac{1}{2}}$	$\begin{aligned} & \text { Ḣ } \\ & \text { H. } \\ & 0 \\ & 0 \end{aligned}$		+	
New Mexicu (1).	4.00	9.90	790	33.90	1.40	43.20
North Carolina (2)	774	804	4.50	33.32	1.06	46.34
South Dakota (3), Aug. 8, 1892.	8.01	9.30	9.40	32.72	2.67	37.90

WATER FREE SUBSTANCE.

North Carolina (2) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	8.71	4.88	36	12	1.15	49.13
South Dakota (3),$\ldots \ldots \ldots \ldots \ldots \ldots$	10.09	10.22	35	56	2.90	41.20

Tickle grass or old witch grass (Panicum capillare) is an annual with coarse, branching stems, from one to three feet high, with hairy sheaths and leaves. The panicles are widely spreading. This is extremely common throughout the state, especially in old cultivated fields, frequently becoming a weedy plant. It possesses very little value as \approx forage plant.

CHEMICAL COMPOSITION.

But one specimen was analyzed in the station laboratory:

[^218]NATURAL CONDITION.

			$\begin{aligned} & \text { む̈ } \\ & \text { む̈ } \\ & \text { O } \end{aligned}$		$\begin{aligned} & \text { © } \\ & \text { O } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
Collected September 10, ${ }^{\prime} 97$.	65.09	93	3.05	(2.26)	1982	310	17.01

WATER FREE SUBSTANCE.
Collected september 10, 1847.....| $2.65|875|(750)|31.00| 889 \mid 48.71$
The following analyses are given for comparison with the work done in our laboratory:

NATURAL CONDITION.

	-	+	.		¢ O O O O U	$\frac{8}{3}$	
(1) Mississippi*.							
(2) South Dakota:							
Collected August 12, '92.	7.36	2.32	1058	8.12	27.09	11.43	4122
(3) Tennessee..........	12.17	214	6.88	34.45	6.15	38.21

*No analysis given in natural condition.
WATER FREE SUBSTANCE.

	Mississippi	2.12	13.29		38.21	812	3826
	South Dakota	250	11.42	8.75	29.24	1234	44.50
(3)	Tennessee	244	7.83		39.22	7.00	43.51

CRAB GRASS.
(Panicum sanguinale) is quite widely distributed hroughout the state, occurs in culivated fields and along the roadsides. In this state it grows usually from two to three feet high but frequently attains the height of four feet, in good soil. This grass makes good hay when properly cured and usually there is no trouble in curing this hay.
F. Lamson•Scribner* says: "This spoataneous growth affords excellent pasturage, as well as hay of first quality if properly cured. The stems are much b anched, and in gcod

[^219]

Fig. 181. Crab grass, (Panicum sanguinale) to the left; common in cultivated fields. To the right, Panicum olabrum, common in flood plains of rivers, and becoming common in lawns (Charlotte M. King.)
soil attain a length of three to four feet．This grass contains little fiber，and dries quickly when cut，but if after cutting is wet by rains or heavy dews its value for hay is almost wholly destroyed．＂

CHEMICAL COMPOSITION．

One sample of this grass which was received，September 1C， 1897，gave the following results on analysis：

NATURAL CONDITION．

		－	$\begin{aligned} & \text { B. } \\ & \text { む } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		® 0 0 0 0 0 0 0	皿	
Sample．．．．	66.95	1.11	2.52		8.62	410	16.70

WATER FREE SUBSTANCE．
$\overline{\text { Sample．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．34｜7．61｜（5．98）｜} 26.11|12.41| 50.53}$
The following analyses are given for comparison with the sample analyzed in our laboratory：

NATURAL CONDITION．

	－	永	d		荌	
Cut June 23 （1）	7650	3.53	544	4.47	1.13	8.93
Mississippi（2）．						
Tennessee（3）．	7599	2.26	2.91	749	． 69	1066
No description．	10.65	931	8.32	27．62	2.25	41.89
Cut August or September， 1899	5.52	7.31	9.50	2640	216	4911
No description．．．．．．．．．．．．．．．．．	6.81	8.30	588	2820	2.23	48.58

WATER FREE SUBSTANCE．

Cut June 23 （1）	1500	23.10	1900	4.80	33.10
Mississippi（2）．	9.68	8.26	31.05	3.32	4769
＇Cennessee（3）．	9.43	12.12	31.21	289	4436
No description．	10.37	9.31	30.41	252	4689
Cut August or September， 1889	7.73	1005	27.95	2.29	51.98
No description	8.90	631	30.26	2.39	5214

[^220]Sprouting crab grass（Panicum proliferum）is an annual with coarse，spreading，ascending stem，two to six feet long，with flat leaves．

F．Lamson－Scribner says：＊
＂It grows naturally in moist，rich soil along the banks of streams and rivers，around the shores of ponds and lakes，and in the south is often abundant in rich，cultivated fields，grow－ ing with crab grass．The stout，succulent stems are sweetish and much relished by horses and cattle．Its range is from Maine to Nebraska，and southward to the gulf，blossoming in the latter part of summer or early autumn．The spontaneous growth of this grass in cultivated fields after the removal of crops is of some value for hay or pasturage，but its cultiva－ tion cannot be recommended in view of the fact that we have many annual grasses much superior to it．In the northern and middle states it is classed with the weeds．＂

CHEMICAL COMPOSITION．

One sample was analyzed in the station laboratory，with the following results：

NATURAL CONDITION．

	\％	药	$\begin{aligned} & \text { च̈ } \\ & \text { む } \\ & \text { O. } \end{aligned}$			盛	
Sample collected Sept．13， 1897.	62.49	． 95	2.36	（1．99）	． 11.79	8.57	13.84

WATER FREE SUBSTANCE．
Sample．．．．．．．．．．．．．．．．．．．．．．．．．． $2.57|630|(5.52) \mid 31.45$｜ $22.84 \mid 36.84$
The following analyses are given for comparison： NATURAL CONDITION．

							尔	
	North Carolina． Mississippi	$\begin{array}{r} 873 \\ 7686 \end{array}$	326	13.50	（2．16）	25.32	7.68	41.51

＊Bull．U．S．Dept．Agrl．Div．Agros．14：04．

Fig. 182. Sprouting crab grass, (Panicum proliferum). Common in fields, along roadsides and railroad embankments. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)

WATER FREE SUBSTANCE.

(1)		3.57	14.79	(2.36)	2774	841	45.49
(2)	Mississip	252	10.98		31.23	9.0	46.19

Scribner's pan'c grass (Panicum scribnerianum) is very common in prairie meadows and affords some forage for stock. It comes on early in the season, but produces little.

CHEMICAL COMPOSITION.
The chemical composition of Panicam scribnerianum may be shown in the following analyses:

[^221]Sample 1. Collected May 8, 1896, 5 to 9 inches high.
Sample 2. Collected May 26, 1896, 14 to 15 inches high.
Sample 3 Collected June 5, 1896, 14 to 15 inches high.
Sample 4. Collected June 17, 1896, 23 to 24 inches high.
NATURAL CONDITION.

		+			$\begin{aligned} & \text { \& } \\ & \text { d } \\ & \text { 0 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	
Sample 1.	81.20	. 54	217	(1.58)	5.16	2.13	880
Sample 2.	76.23	. 85	2.87	(2.45)	7.85	219	10.01
Sample 3.	71.42	. 84	233	(1.47)	9.51	3.32	1258
Sample 4.	66.57	1.23	305	(277)	10.88	387	1440

WATER FREE SUBSTANCE.

Sample 1.	2.87	11.51	(8.39)	2747	11.35	46.80
Sample 2	3.60	1209	(10 32)	33.02	9.21	42.08
Sample 3	2.96	8.16	(5.14)	33.28	1161	4399
Sample 4	367	9.14	(8.30)	3254	11.57	4308

The amount of water present decreases from 81.20 per cent to 66.57 per cent, and the fat present in the water free substance varies from 2.87 per cent to 3.76 per cent, the last sample having the largest percentage. The amount of protein present varies from 8.16 per cent to 12.09 per cent, the albuminoids from 5.14 per cent to 10.32 per cent, and both are irregular in the changes. The fiber changes from 27.47 per cent to 33.28 per cent, the ash from 9.21 per cent to 1161 per cent, and these are also irregular in their changes. The largest amount of nitrogen free extract is present in the first sample, having 46.80 por cent, and the smallest amount in the second sample of 42.08 per cent. It would appear from the chemical analyses that the time most suitable for harvesting was when the last sample was taken and the grass 23 to 24 inches high.

The following analyses from other sources are added for comparison:

AIR-DRY SUBSTANCE.

		$\frac{\underset{\sim}{3}}{4}$	+		$\begin{aligned} & \text { gi } \\ & \text { む } \\ & 0 \\ & 0 \end{aligned}$		
South Dakota (1): Collected June 20, 1891.	8.83	8.88	1.71	29.64	997	40.97	6.63

WATER FREE SUBSTANCE.

$\overline{\text { Sample............................ | } 9 \text { } 74 \text { | } 183 \text { | } 3251 \text { | } 10.94 \mid 4494 \text { | } 7.25}$

Smooth crab grass (Panicum glabrum) is abundant in our river bottoms and grows from one and a half to two feet high; the stems spread over the ground, and in this way it causes a great deal of annoyance where it has been introduced. The grass may be used for forage purposes, but owing to its hatit of becoming weedy in lawns, should not be used for this purpose.

CHEMICAL COMPOSITION.
One sample of this gass was a aalyzed and gave results as follows:

NATURAL CONDITION.

| | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

WATER FREE SUBST ANCE.
Sample............................. $3.73|696|(661)|3011| 12.07 \mid 4713$
Other Panic grasses.-The P. macrocarpon is a good woodland species, with larger leaves and stems than Scribner's panicum. The b:oom corn millet (P. miliaceum, L.) is cultivated occasionally in Iowa. It is an excellent soiling plant. Several other members of this genus are used for forage in other parts of the world. The Shama millet (Panicum colonum, L.) is a tropical and sub-trop:cal grass, and where it grows is considered one of the best forage plants. Guinea grass (Panicum maximum, Jacc(.), native to tropical Africa, has long been cultivated in tropical America, where it yields a large amount of valuable forage, growing to a height of twelve feet. Colorado grass (P. texanum, Buckl), is native to central Texas, and spoken of in the highest terms by those who have tested it.

OTHER PRAIRIE GRASSES.
Wild Rye (Elymus robustus, Scrib. and J. G. Sm.), is spontaneous in all parts of the s'ate, and often forms a considerable part of the upland wild prairie hay, as well as that obtained in

Fig. 183. Scribner's panic grass, (Panicum Scritnerianum). A commongrass in prairies, leafing out early. (F. Lamson-Scribner, Dir. Agrost. E. S. Dept. Agrl.,

Fig. 184. Panicum macrocarpon. Common at tlmes in woods. (F. LamsonScribner, Dlv. Agrost. U. S. Dept. Agrl.)

Fig. 185. Broom corn millet, (Panicum miliaceumi(. Cultivated, at times, in northwestern Iowa. Good fodder grass. (Div. Agrost. U. S. Dept. Agrl.)

Fig. 188. Kild ryegrass. (Elymus robustu8). Common throughout the state. Prairies. A rapld growing spec'es. (Charlotte M. King.)
bottoms along the Boyer and Maple rivers. It attains a height of three to five feet. The stem and leaves are harsh, and the fodder is of a very inferior quality. It is objectionable also because of the large amount of ergot found in the heads. This grass, when cut early in July, would make an admirable forage plant, but when cut, as is the usual custom in this state, in August or September, is of little value for forage purposes.

CHEMICAL COMPOSITION.

In the investigation six samples of Elymus robustus were analyzed, with the following results:

Sample 1. Collected April 22, 1896, height 10 to 12 inches.
Sample 2. Collected May 9, 1896, heigbt 12 to 16 inches.
Sample 3. Collected May 29, 1896, height 28 to 30 inches.
Sample 4. Collected June 8, 1896, height 28 to 30 inches.
Sample 5. Collected June 18, 1896, height 25 to 26 inches.
Sample 6. Collected July 13, 1896, height 54 to 56 inches.
NATURAL CONDITION.

	$\begin{aligned} & \dot{4} \\ & \stackrel{y}{0} \\ & \stackrel{y}{*} \\ & 3 \end{aligned}$	+	aj			-	
Sample 1.	79.32	1.40	604	(4 49)	409	243	6.72
Sample 2.	81.44	1.14	388	(3 68)	5.03	2.27	624
Sample 3.	7668	. 77	3.64	(256)	794	243	854
Sample 4.	72.05	1.14	2.67	(2.35)	10.63	2.22	11.29
Sample 5	74.08	. 82	2.32	(2.08)	954	1.76	11.48
Sample 6..	45.10	. 53	264	(2.23)	2179	2.51	27.43

WATER FREE SUBSTANCE.

Sample	6.80	29.20	(21.72)	1977	11.76	3247
Sample	6.16	2093	(19.82)	2712	12.24	33.55
Sample	3.29	1561	(1097)	3408	10.44	36.58
Sample 4	4.09	956	(8.42)	38.05	7.95	403
Sample 5	3.17	8.96	(8.6,2)	3680	6.79	4428
Sample 6	. 97	472	(417$)$	3970	4.58	50

In the study of the analyses made of Elymus robustus, the results show, as would be expected, a strong tendency for the decrease in the amount of water present in the grass in the natural condition as the grass matures. In considering the results of the water free substance it is found that the fat decreases in amount as the plant matures from 6.80 per cent to .97 per cent, with one exception. The percentage of protein decreases from 29.20 per cent to 4.72 per cent, while the albuminoids vary
from $\because 1.72$ per cent to 4.17 per cent. The percentage of crude fiber increases from 19.77 per cent to 39.70 per cent. The percentage of ash varies between 4.58 per cent and 11.76 per cent, while the nitrogen free extract increases from 32.47 per cont to 50.03 per cent. The grass represented by sample No. 3, taken on May $\because 9$, was in a very favorable condition for harvesting, when the height is a matter of consideration.

The following results have keen selected for comparison with the rasults of this investigation:

NATURAL CONDITION.

	$\begin{aligned} & \dot{I ̇} \\ & \text { B B B } \end{aligned}$	荘				.	砣
Iowa (1):							
Cut June 25. Not headed out;	6633	3.08	. 66	14.98	1218	2.77	2.31
	063		. 60				2.31
Cut Ju'y 2. Condition for hay. Tenness ?e (3):	754	8.61	1.64	42.76	34.16	5.28	3.68
Cut July 9. No dfescription...	10.82	347	. 86	48.23	32.68	394	

WATER FREE SUBSTANCE.

Iowa (1):						
Cut June 25..	916	1.97	4447	36.17	8.23	7.03
South Dakota (2): (ut July 2	9.31	1.77	46.26	3695	5.71	4.00
Tennersee (3): Cut July 9 .	389	. 96	54.09	36.64	4.42	

The Canadian lyme (E. canadensis) is indigenous only to the loess of western Iowa, and as a forage plant is no better than the preceding. It enters in very largely to the forage of this section of the state.

Terrel Grass (E. virginicus, L.) is common along streams and borders of woods. It is smooth and erect, from two to three feet high, and affords some pasturage when young. On June 15, 1900, it had grown one fort nine inches in the body of the plat, and two feet four inches on the edges. Whea cut in July this certainly makes a fair forage plant, but should never be cut later than July, owing to the fact that when it comes

[^222]

Fig 187. Terrel grass (Elymus virginicus). Oummon usually in alluvial flood plains. A rapldlyg owing grass. (Charlotte M. King)
26
into flower the leaves are usually dead on the stem and the plant is harsh.

Professor Lams 3 -Scribner* says:
' This grass has the appearance of possessing some agricultural value. It forms an inferior turf, and by the time it blooms all the lower leaves are usually dead. When young it doubtless possesses some value as a native pasture grass. In Kansas, South Dakota and Nebraska it is regarded a valuable grass for woodland pastures.' "

CHEMICAL COMPOSITION.

Two samples of Elymus virginicus were analyzed, ard the results are shown in the following:

Sample 1. Collected June 22, 37 to 33 inches high.
Sample 2. Collected June 29, 37 to 38 inches high.
NATURAL CONDITION.

-	\& $\substack{\text { a } \\ 3 \\ 3 \\ 3}$	+	』1			-	
Sample 1	6306	1.64	4.50	(3.76)	12.82	3.46	15.52
Sample ${ }^{\text {2 }}$	59.13 .5	1. 41	3.8.2	(2) 56)	1260	2.71	1981

WATER FREE SUBiTANCE.

The difference of one week in collecting the two samples shows that there is a decrease of 3.41 per cent in the water present, and in the water free substance we find that there is a change in fat from $4.4 t$ per cent to 3.50 per cent; in protein from 16.09 per cent to 9.47 cent, and in the albuminoids from 10.19 per cent to 6.35 per cent; in crude fiber from 31.24 per cent to 34.73 per cent, and nitrogen free ϵ xtract from 39.36 per cent to 49.07 per cent; in the ash from 9.38 per cent to 6.72 per cent. As a whole, both samples being of the same height, the first sample would show that it was most suitable for cutting.

The following samp'es were selfcted for comparison with the work done here:

[^223]

Fig. 188. Elymus striatus. Commnn in low ground. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)

NAIUR\L CONDITION.

,	280	$\stackrel{\sim}{2}$	-1			$\underset{\sim}{3}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
South Dakota (1):							
Collected Juiy 1, 1891	829	3.04	6.63	5.75	2720	7.60	4724
\square Tennessee (2):							
Cut June 8, 1891.	1076	5.36	8.75		21.77	371	49.65
Mississippi (3): August. 3 samples*..	5389	2.81	\% 89		29.96	706	52.29

1. Bull. South Dakota Agrl. Exp. Sta. $40: 157$.
2. Bull. Tennessee Agrl. Exp. Sta. Vol. 1X. No. 3111.
3. U. S. Dept. Agrl. Exp. St b. Rec. 6: 101.

* Amount of water is for natural condition, and other percentages are for water free substancee.

Fig. 189. Drop-seed Grass, (Muhlenbergia sylvitica.) Not uncommon in deep. rich woods. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. of Agriculture.)

WATER FREE ST'BSTANCE.

Other Rye Grasses. - There are many other spscies of rye grasses. Soms of these are quite valuable, especially in the western states. None of them have been tried in this sta'e. Macoun's rye grass (E. macounii, Vasey) only occurs in low, moi $\cdot \mathrm{t}$ meadows of northern Iowa. It produces a large number of leares; it is p ?rhaps the most valuable of any of our wi'd rye grasses. The E. condensata, the Giant rye grass of the Rocky mountain regions and Pacific slope, usually grows along rivers and streams; is useful for holding the sand on railway banks. When young it is especial y valuable for hay, and furnishes a

Fig. 188a. Wild Timothy, (Muhlenbergia glomerata.) Common in moist meadows of northern Iowa. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)
considerable amount of forage. The seeds are also used for food by the Indians. The E. triticoides, Nu!t., is also a western species and is closely allied to the Giant rye grass. It grows from a height of two to four feet. Native to the Rocky mcuntains, extending eastward to Minnesota, but as yet has not been found in Iowa. It is regarded as of some value for forags purposes in the Rocky mountain region.

MUHLENBERGIA.

Several species are common throughout the state, especially Knot-root grass (Muhlenbergia mexicana, Trin.). This is a leafy perennial, two to three fe t high, comes on early in the spring, and when used in this condition is a valuable pasture and hay
grass. When the plant comes into flower, the stem is woody and is wholly unfit for forage purposes. There are many other species of the genus, but none of them are of any value for forage purposes. All produce a vigorous growth which may be utilized when young, but when old the stems are very woody and hence is of little value for forage purposes. Wild timothy (Muhlenbergia glomerata, Trin.) grows in wet meadows and low grounds throughout the state, but is most common in northern Iowa. Although this grass is highly spoken of in the northwest, it is of but little value in this state.

CHEMICAL COMPOSITION.

Seven samples of Nuhlenbergia mexicana were analy zed in the laboratory, and the results are given below:

Sample 1. Collected April 29, 1896, height 4 to 12 incbes.
Sample 2. Collected May 14, 1896, height 20 to 23 inches.
Sample 3. Collected May 28, 1896, height 26 to 29 inches.
Sample 4. Collected June 8, 1896, height 36 to 38 inches.
Sample 5. Collected June 18, 1896, height 38 to $: 9$ inches.
Sample 6. Collected June 29, 1896, height 39 to 40 inchez.
Sample 7. Collected July 20, 18:6, height 43 to 49 inches.
NATURAL CONDITION.

	+		$\begin{aligned} & \text { घี } \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { نٌ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	号	
Sample 1.	8482	. 88	3.51	(2.73)	370	2.04	5.05
Samp'e 2.	73.28	1.21	5.12	(3 78)	7.72	277	9.90
Sample 3.	82.95	$\bigcirc 4$	2.86	(1.96)	6.43	1.95	527
Sample 4.	77.46	. 79	241	(2.14)	8.10	2.08	9.16
Sample 5.	7337	. 81	213	(2.10)	901	2.57	12.11
Sample 6.	58.77	1.49	322	(2.60)	13.32	2.64	20.56
Sample 7...	81.98	. 53	1.48	(1.09)	5×2	1.10	9.09

WATER FREE SUASTANCE.

Sample	5.81	23.16	(17.99)	24.36	13.41	3326
Sample 2	4.52	1917	(14.17)	28.90	10.38	37.03
Sample 3.	314	16.77	(11.46)	37.72	11.43	30.94
Sample	3.49	10.70	(9.52)	35.94	9.27	40.60
Sample 5	3.03	8.00	(7.88)	3383	9.67	4547
Sample 6.	3.62	7.81	(6 30)	32.31	640	49.r6
Sample 7	2.95	826	(6.11)	32.48	6.16	50.15

In the above results we find that the amount of water present varies from 84.82 per cent to 58.77 per cent, while it might be said that the amount tends to become less as the plant
mature; yet there are exceptions, as it will be seen that the first sample collected in April, having a height of 4 to 12 inche=, has only 2.84 per cent more of water than the sample taken on July 20th and having a height of 48 to 49 inches.

In cons:dering the water free substance we find that the fat present varies from 5.81 to 2.95 per cent and that the change is not a constant one. The change in the amount of protein is constant for the first six samples and changes from 23.16 per cent to 7.81 per cent and the seventh sample having this substance to the amcunt of 8.26 per cent, however in the results for albuminoids we find that the decrease of this substance is constant, changing from 17.99 per cent to 6.11 per cent. The amount of crude fiber varies irregularly from 24.36 per cent in the youngest sample to 37.72 in the third sample of May 28 th. The ash corstituent decreases with a regular chavge while the nitrogen free extract increases constantly, with ore exception, from 33.26 to 50.15 per cent, the exception being the third sample with $30.9 \pm$ per cent. The following analysєs are added for comparison:

AIR DRY SUBSTANCE.

		$\underset{4}{\text { B }}$			¢		
South Dakota (1): Cut Sept. 1, 1892.	7.31	9.67	2.49	27.96	13.05	39.52	8.44
Tennessee (2): Not yet in bloom*	10.65	7.04	232	2961	8.00		

WATER FREE SUBSTANCE.

Sample 1.	10.43	2.69	30.17	14.08	42.64	9.06
Sample 2.	7.87	259	33.14	8.66	47.44	

Nimble Will (M. diffusa, Schreb.) is common in woods and along roadsides in central and eastern Iowa. It affords some picking but in meadows is a nuisance as it is extremely hard to cut with a mower.

Slough Grass (Spartina cynosuroides, Willd.), coarse perennial, with erect simple stems from two to nine feet high, with long pointed leaves and numerous erect or spreading spikes,

[^224]

Fig. 190. Nimble Will, (Muhtenlergio diffusa.) A weedy lawn and woodland grass. Common in central Iowa. (Charlotte M. King.)

Fig. 191. Fresh Water Cord Grass, (Spartina cynosuroidcs) Common in the western part of the state, Missouri river bottom, and in low grounds elsewhere in thestate. (Charlotte M. King.)
from two to five inches long．This is common throughout the state， especially in low places along the borders of streams，and forms an important ingredient of the forage of the Missouri river valley，where it is held in high esteem．It can only be of value when cut early．This has been grown experimentally on the college grounds and succeeded admirably，but it does not commend itself to general cultivation，owing to the more or less weedy charac＇er of the culms It is an excellent soil binder，and for meadows where the soil is apt to be washed，it is an admirable grass．In this state it is generally known as slough grass because it occurs in low grounds．It is one of the chief grasses of the Missouri river bot＇oms，where it does much to keep the alluvial soil from b ing washed away．It is cut extensively for hay along the Missouri and Mississippi rivers，and though the fodder is course，is held in high esteem because it is productive．This hay brings less in the market than any of our other wild species．

CHENICAL COMPOSITION．

The chemical composition of fresh water cord grass（Spart－ ina cynosuroides）may te shown by the following analyses made in the laboratory：

[^225]NATURAL CONDITION．

	岂	㿾	$\begin{gathered} \text { 足 } \\ \text { む̀ } \\ \text { מ } \end{gathered}$			閏	
Sample 1．	71.81	1.49	433	（2．66）	9.19	1． 99	11.29
Sample 2.	6984	． 70	3.90	（307）	10.06	220	13.30
Sample 3.	67.84	70	3.74	（2．52）	11.66	206	14.00
Sample 4.	$63: 32$	． 54	413	（2．90）	1403	2.46	1552
Sample 5.	59.13	1.14	3.05	（210）	1602	2.00	18.66
Sample 6.	61.02	． 89	215	（1．8）	154	$\stackrel{2.07}{2.87}$	18.43
Sample 7.	5674	1.21	315	（2．35）	17.19	2.87	1884

WATER FREE SUBSTANCE.

Sample 1	530	15.34	(9.42)	32.61	6.71	40.02
Sample 2.	2.32	1292	(10.17)	33.38	7.29	44.09
Sample 3.	218	11.61	(7.84)	36.27	6.40	4354
Sample 4.	1.46	1127	(7.9\%)	38.24	6.70	42.33
Samp'e 5.	279	7.57	(4.24)	39.21	4.90	45.53
Sample 6.	2.27	552	(4.66)	3962	5.32	47.17
Sample 7.	2.79	7.29	(5.44)	39.73	662	43.57

It will be noticed that the above results show that the water content gradually decreases with one exception as the grass matures. The fat in the water free substance is largest in the youngest sample and varies in the oth rs. The percentage of protein gradually decreases from 15.34 to 5.52 per cent in the first six samples, and then we find 7.29 per cent in the last sample. In the albuwinoids we find that the amounts are not constant in their changes, the second sample baving 10.17 per cent and the fifth sample 4.24 per cent. In the fiber there is a constant increase as the plant becomes matured. The nitrogen free extract increases from 4002 per cent in the first sample, and increases to 47.17 per cent in the sixth sample. The amount of ash varies from 671 per cent to 4.90 , and the changes are very irregular. The following analyses are added for comparison:

NATURAL CONDITION.

			\%			年	
Iowa (1).							
Cut Aug. 27, in bloom, height, 60 inches.	5353	63	257	(2.27)	1639	2.17	24.71
Cut June 1, no heads, t0		163					
	*33 53	1.35	8.41	(4.89)	38.27	6.75 466	53.19
S. D., (2) July 10, 1891. ...	$\dagger 6.45$	1.21	5.29	(387)	38.51	4.07	50.91

Needle Grass, or porcup ne grass (Stipa spartea, Trin.) is widely distributed in this state occurring on dry gravelly knolls. The leaves are long and wiry. It grows in bunches

[^226]

Fig．192．Porcupine grass，or Needle grass，（stipa spartea）．Common prairje grass on gravelly solls．（F．Lamson－Sctibner，Div．Agrost．U．S．Dept．Agrl．）
and deve！ops very rapidly maturing it；fruit in June．When mature the fruit with its awned flowering glumes soon fall c f leaving the large pale straw colored empty glumes．The sharp pointed callus of the fruit in many cases does a positive injury to sheep．The fruit has awns which when dry are bent and much twisted．When moistened they straighten out and by the twisting and un＇wisting of the awn the fruit buries itself． But aside from the fact that this grass has the sharp poin ed callus it is a good forage p＇ant．

Prof．F．Lamson－Scribner＂says：＂It is particularly cem－ mon in the prairie regions of Iowa，Nebraska，South Dakota， and Minnesota，extending westward to the Rocky mountains， where it frequently occurs upon the dry foothills and bench

[^227]lands. This is t'e buffalo giass of the Saskatc'ewan region. In some localities it is known as needle grass or darning needle, but that name is reserved for Aristid fasciculata. It is also known as 'wild oats' in North Dakota."

CHEMICAL COMPOSITION.

Four analyses were made of Stipa spartea in the laboratory with the rasults as given below:

Sample 1. Collected May 7, 1896, 17 to 18 inches high.
Sample 2. Collected May 21, 1896, 24 to 30 inches high
Sample 3. Collec sed May 26, 1896, 30 to 33 inches high.
Samp'e 4. Collected June 8, 1896, 48 to 49 inches high.
NATURAL CONDITION.

	-	茫	$$			盛	
Sample 1	71.12	1.03	4.44	(2.86)	8.41	3.35	11.65
Sample 2	67.43	1.03	277	(1.74)	1235	301	13.41
Sample 3	6787	. 38	2.89	(2.72)	12.60	2.42	13.84
Sample 4.	8902	. 25	1.02	(.82)	3.40	. 91	5.40

WATER FREE SUBSTANCE.

Samp'e 1	3.57	15.42	(9.9)	24.12	11.61	4028
Sample 2	3.18	8.51	(5.34)	3792	9.24	41.15
Sample 3	119	900	(849)	39.22	752	430
Sample 4	226	9.33	(800)	30.96	821	4924

The water percentages are found to be irregular, and in the water free substances it will be noticed that the fat is not constant in the amount present in the grass. The protein varies from 15.43 per cent to 8.51 per cent and the changes are also irregular; the albuminoids are also found to change from 9.91 to 5.34 per cent. The crude fiber increuses in the first three samples from 29.12 to 3922 , and in the fourth sarple we find that it change; to 30.96 per cent, and the ash per centages also change in the same order. The nitrogel free extract increases regularly from 40.28 per cent to 49.24 per cent as the grass mafures. The following analysis is added for comparison:

		㭡		$\begin{aligned} & \dot{\oplus} \\ & \text { é } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
South Dakota. rut June 30, 1891.	993	543	2.34	31.92	7.57	4281

WATER FRE SUBSTANCE.
Same as above3| $2.60,35.44|8.40| 47.53$
Bull. S. D. Agri. Exp. Sta 40:60.
Feather Bunch Grass.-Allied to this grass is another bunch grass, Stipu viridula, Trin., or Feather Bunch Grass, which is a slender grass, from one to three feet high. It pre-

Fig. 193. Western Bunch Grass, (Stipa viridula). Common. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)

Fig. 190. Blue Joint, (Calamagrostis canadensis), Common in northern and central Iowa; not infrequent in southern part of the state. (Chariotte M. Klng.)
duces a large number of leaves and is a much more valuable foraze plant than the Ne dle grass. The fruiting glume is short and with a small point. This grass has been introduced along several of our railroads of the state and has also been tried under cultivation here at the Iowa Agricultural College Experiment Siation Under cultivation it succeeds admirably.

Blue.Joint (Calamagrostis canadensis, B:auv.) is common throughout central and northern Iowa and not infrequent in the southern part of the state. It is essentially a boreal species. In low marshes of northern Iowa it occupies considerable area to the exclusion of other grasses. It produces purplish panicles that resemble tho e of Red Top but it is easily recogaized from that grass by is hairy pedicel. It groxs from thres to five feet high and produces a large number of laaves. Unlike some grasses the stem does not become wo dy after flowering. The grass yields well and produces a large amount of valuable forage which is relished by stock. Farmers in northern Iowa prize the hay very highly because it has two essen ial requisites, good yield, and it cures readily.

Samples of this grass were analyzed as follows;
Sampl:1. Collected June 11, 1896, 25 to 26 inches high.
Sampls 2 Collected June 24, 1896, 28 to 29 inches high.
NATURAL CONDITION.

	L む B B	+	A	家		-	
Sample 1.	71.51	. 85	2.53	(1.51)	9.81	2.60	12.70
Samp e 2.	6215	1.40	293	(2.71)	1250	333	17.69

WATER FR sE SUBSTANCE.

Sample 1.	2.97	898	(5.30)	3443	9.03	45.59
Sample 2.	370	7.75	(7.17)	3305	8.79	46.7

The following are taken for comparison with the samples analyzed in the Station's laboratory:

NATURAL CONDITION．

	－	蕆	良			－	
Iowa（1）．Cut July joth＊．．．	5813	183	4.24	（3．75）	14.30	3.49	18.01
S．D．（2）．Cut June 20，＇91才．l	5.51	1.33	874	（7．13）	36.46	6.86	41.10

WATER FREF SUBSTANCE．

It has been tried in an experimentıl way here at Ames and did admirably on high ground．

Grasses of Low Meadows．Reed Canary grass（Phal－ aris arundinacea L．）is a tall，leafy perennial，produces a strong creeping root－stock and is native to low marshy ground throughout Iowa，but is most abundant in the glacial drift region of central and northern Iowa and in the low wet mead－ ows along the Missouri．It makes a fair coarse hay．It suc－ ceeds admirably under cultivation even in dry soils．This grass when grown on the College farm was as thrifty as that growing in low bottoms．It resisted drouth as well as any grass under cultivation．Several other grasses of low marshy meadows should be mentioned．Manna grass（Glyceria fluitans R．Br．）which is abundant in some sections of the state．It is an excellent grass．The leaves and stems are succulent and relished by all kinds of stock．Reed meadow grass（G．grandis Watson）grows in low marshy places and is most abundant in northern Iowa．It is an excellent grass and forms a good por－ tion of the grass of some meadows．It is relisbed by stock and makes fine hay．Wild Rice（Zizania aquatica L．）is abund－ ant along the Mississippi and is an important ingredient of the vegetation of our northern lakes．Here it often forms floating islands．In such places it is nearly inaccessible for stock but along the Mississippi it grows in drie：places and frequently is utilized by stock，and in drier years some is cut for hay．

[^228]

Fig. 195. Reed Meadow Grass, (Glyceria urandis). A good grass in low meadows, and liked by stock. (Div. Agrcst. U. S. Dept. Agrl.)

Fig. 195A. Manna Grass, (Gluceria fuitany). An excellent grass in very low meadows; of little use, however, because meadows are usually too wet. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)

Buffalo Grass (Buchloe dactyloides Engelm). The true Buffalo grass is only indigenous in Lyon county, this state, where it was found by Mr. Leiberg and Prof. Shimek. It is one of the most valuable grasses of the plains, greatly relished by stock of all kinds. It has a low spreading habit of growth, forming dense mats and rarely is more than five inches high. The fine

Fig. 196. Buffalo Grass. (Buchloe dactyloides). One of the best of the native grasses of the plains. Suited for dry hills. (Div. Agrost. U. S. Dept. Agrl.)
leaves and stems are highly nutritious. Stockmen of central and western Nebraska report it one of the best of the winter forage grasses. Like testimonials come from central and northern Texas. Lamson-Scribner* reports that it grows with great vigor in Washington, D. C, "and it may be possible to use this most palatable and nutritious grass in portions of the eastern and southern states."

Sporobulus -Several species of this genus are common throughour the state, and at one time were important forage plants.

[^229]Iowa Bunch Grass. (Sporobolus heterolepis, Gray).-This is the most widely distributed of the genus in wild meadows. This grass is from two to four feet high and produces a large number of slender leaves close to the ground. It is associated with Panicum virgatum. Although it has scent glands like Stink grass, this is apparently not objectionable as stock is fond of it. Mr. Cratty considers it one of the best of our native bunch grasses for forage purposes.

Chemical composition.
One sample of this grass was analyzed and the results are as follows:

NATURAL CONDITION.

	U $\substack{\text { ¢ } \\ 3 \\ 3}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \text { 号 } \\ & \text { O} \\ & 0 \\ & 0 \end{aligned}$			$\stackrel{\text { d }}{\text { d }}$	
Cut Sept. 13, 1897	42.06	. 95	3.06	(2 46)	21.75	4.46	27.72

WATER FREE SUBSTANCE.
$-\quad . \quad 1.64|5.29|(4.37)|37.55| 7.68 \mid 47.84$

The following analysis is added for comparison:
AIR-DRY SUBSTANCE.

	$\begin{aligned} & \tilde{0} \\ & \stackrel{0}{0} \\ & 3 \end{aligned}$	$\frac{, ~}{\infty}$	菏		$\begin{aligned} & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
S. D. (1). Cut Aug 17, '92..	7.90	4.82	1.65	35.11	5.65	44 87	4.93

WATER FREE SUBSTANCE.

5.23	1.79	3812	6.13	48.72	5.3

Drop Seed Grass (S. cryptandrus, Gray) is found throughout the state in gravelly or sandy soil and is abundant on the loess of western Iowa, where it forms a considerable part of the herbage. It is a strong rooted perennial but rather wiry. In some portions of the United States it is regarded as an important forage plant.

[^230]The Sporobolus longifolius is rather common in dry places and gravelly and ligh; soils. It affords some forage although the plant is somewhat wiry. Common in drift soils along railroads.

Fig. 197. Sporobolus longifolius. Common in dry grounds. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)

CHEMIICAL COMPOSITION.
The sample of this grass analyzed gave the following results: NATURAL CONDITION.

		尔	$\begin{aligned} & \text { In } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			号	
Sample.....	50.90		2.86	(190)	1802	4.49	23.01

WATER FREE SUBSTANCE.

Sporobolus cuspidatus, like other species of the genus, is much more valuable during the earlier stages of its growth than later. It is extremely common in the loess bluffs from Sioux City southward and equally as common above Sioux City on the west slope of the river, and presumably common also from

Fig. 197A. Drop Seed Grass. (Sporobolus cryptandmus). A good grass, although wiry. Common in western Iowa. (F. Lamson-Scribner, Div. Agrost. U. S. Dept. Agrl.)

Sioux City north to the Minnesota line. The grass may be found occasionally as far east as Ames, Des Moines, and more or less common in Kossuth and Palo Alto counties. This grass has a well developed root system and is valuable there-
fore for holding soil in place．It is，however，of some value as a forage plant，especially in its earlier stages．

Mexican Spear Grass（Eragrostis mexicana）is cultivated for ornamental purposes．It is a slender branching annual and grows from six inches to two feet high，with very large open panicles and small leaves．Nothing is known about its forage qualities though it seems to be well adapted to condi－ tions in Iowa．

CHEMICAL COMPOSITION．

One sample of this grass was analyzed in the Station labora－ tory：

WATER FREE SUBSTANCE．

	䓵	告			呙	
No description．	2.00	1044	（9）96）	31.58	9.90	4608

Teff（Eragrostis abyssinica，L．）Is a native to northeastern Africa and there is cultivated for its grain and forage．It is an annual，from two to four feet high，and produces a large amount of forage．Teff grown on the College farm grew vigorously and is apparently well adapted to the dry climate， prevailing during the month of August in this state It was as green on September first as during the month of June．

This is a branching，leafy annual，having large capillary panicles，with many spikelets．It grows rapidly from seed and produces a large amount of leaves．Seeds sown in April and grown on the Iowa Agricultural Experiment Station did not produce seed but a large amount of leafy herbage．

F．Lamson－Scribner＊says：＂Teff occurs in New Mexico， springing up after rains particularly in the region about Deming，where it is called＇Crabgrass．＇It is an annual， growing to the height of two to four feet，with widely spread－ ing，many－flowered panicles，and is largely cut for hay．＂

CHEMICAL COMPOSITION．
Only one analysis of Eragrostis aby／ssinica was made in the laboratory and the results are given below：

[^231]NATURAL CONDITION．

	\＃ ¢ B 3	$\begin{aligned} & \stackrel{\rightharpoonup}{⿷ 匚} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { EJ } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			范	
Cut in September．．．．．．．．．．	5893	1.16	3.98	（2．88）	14.13	449	17.31

WATER－FREE SUBSTANCE．

$$
2.82|9.69|(7.01)|34.43| 10.94 \mid 42.12
$$

The following analysis is given for comparison with the one from this station：

WATER－FREE SUBSTANCE．

			䓓		$\frac{\square}{8}$
Mississippi（1）．．．．．．．．．．．．．．．．．．．．．．．．．．．	35.33	989	2.03	46.49	6.26

The same sample contained 56.37 per cent of water in its natural condition．
Stink Grass（Eragrostis major，Host．）is naturalized from Europe and is widely distributed in Iowa．It emits a strong unpleasant odor and cannot be considered of any agricultural value．The E．Purshii，Schrad，is a native grass throughout the state，particularly in flood plains of streams，along road－ sides and in waste places．It is not regarded as having any value for forage purposes．

Green Fox－tall or Pigeon grass（Setaria viridis，Beaur．）is common throughout the state．It springs up in corn fields after the last cultivation，and affords a small amount of pick－ ing after the corn is removed．It is，however，of doubt！ul value as a forage plant under such conditions．It is also com－ mon in stubble fields and when cattle are turned into these it affords forage of much greater value．Pigeon grass is native to Europe．This annual grass is now extensively naturalized in all settled parts of the United States，as well as Australia． The spike is quite compact with numerous spikelets，with bristles longer than the spikelet．The bristles are green．

1．U．S．Dept．Agrl．，Exp．Sta．Rec． $6: 1 \mathrm{cl}$ ．

Fig. 197B. Sporobolus cuspidatus. Common in western Iowa. (Oharlotte M King.)

Fig. 198. Stink Grass, Eragrostis major. A common, weedy grass. (Oharlotte M. Fing.)

Flg. 199. Eragrostis purshit. A common, weedy grass. (Charlotte M. King.)

Fig. 200. Foxtall or Pigeon Grass, (Setaria viridis). Common in Iowa. (Charlotte M. King.)

The heads or spikes vary from one to three inches long，and in some specimens five and six inches long．The seeds are slightly pitted and very minutely cross－striated．A single head produces an enormous number of seeds．These seeds appear to have considerable vitality．Cultivated ground is thickly seeded，hence it is almost impossible to remove the weed．When fields are sown to oats this plant comes up in the fall and late summer，seeding the soil．

CHEMICAL COMPOSITION．

The results of the analysis for one sample of this grass are given below：

NATURAL CONDITION．

	¢	$\begin{aligned} & \text { 気 } \\ & \text { 至 } \end{aligned}$	$\begin{gathered} \text { E1 } \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			－	
Sept．11， 1897.	67.53	． 68	2.81	（2．47）	11.46	4.42	1310

WATER FRヶE SUBSTANCE．

The following aaalyses are added for comparison：
FRESH OR AIR－DRY SUBSTANCE．

	¢	$\frac{.8}{0}$	䓵	$\begin{aligned} & \text { a } \\ & \text { o } \\ & 0 \\ & 0 \\ & 0 \\ & 000 \end{aligned}$	\square 0 0		
S．D．（1．）＇Cut Sept．19，＇91， in fruit．	7.49	11.11	2.49	30.26	917	39.48	8.10
T＇enn．（2．）Cut July 1．．．	8.51	840	4.92	24.35	1212	41.70	

W －TER FREE SUBS PANCE．

Yellow Fox－tail（Setaria glauca．Beauv．）grows in similar situations．The leaves and stems are more succulent and have a nutty flavor．It is probably more valuable from an agricul－ tural standpoint than the preceding species．

[^232]

CHEMICAL COMPOSITION．

Only one sample of this grass was analyzed；the results are given below：

N ITURAL CONDITION．

		$\stackrel{\rightharpoonup}{\leftrightarrows}$	$\begin{aligned} & \text { Z } \\ & \text { \# } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 艺 } \\ & \text { 荮 } \\ & \text { 花 } \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { ® } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\text { n }}{\substack{~}}$	
Sept．11，1897．．．．．．．．．	80.53	． 50	2.05	（1．91）	6.86	2.92	7.14

WATER FREE SUBSTANCE．

The following analyses are added for comparison：
FRESH OR AIR－DRY SUBSTANCE．

	$\begin{aligned} & \text { § } \\ & \stackrel{y y y y y}{5} \end{aligned}$	$\frac{\text { ? }}{\frac{\text { n }}{4}}$	淢	$\begin{aligned} & \dot{む} \\ & \text { © } \\ & \text { む } \\ & \tilde{0} \\ & 0 \end{aligned}$	\％		
S．D．（1．）	817	13.40	1.88	31.25	10.53	3477	6.94
Tenn．（2）： Nearly ripe．	3.20	7.75	3.80	31.77	500	47.48	．．．．
Washington，D．C．（3）：							
Cut July 1，very y＇n＇g Cut July 24, e＇rlybl＇m	7420 6840	2.80 289	． 60	5.59 8.14	4.39 2.86	12.42 17.47	\ldots

WATER FREE SUBSTANCE．

S．D（1）：						
Aug．8， 1892	14.59	2.05	34.03	1147	3786	
Tenn（2．）	9.04	3.93	32.82	5.16	49.05	
Washington，D C．（3．）						
Cut July 1，very young．．．．．	1080	2.30	21.70	1700	48.10	
Cut July 24，early bloom	7.30	270	25.80	9.00	55.30	
Mississippi，（4．）．	16.74	2.71	35.04	920	36.31	．

The Giant millet（Setaria magna，Griseb．）is，according to Lamson－Scribner，＊a valuable grass for the reclamation of swampy lands along the coast．It has broad leaves and grows to the height of ten feet．

[^233]

Fig. 202. German Millet. (Setaria italica), a and b, two vlews of the spikelet with three bristles; c, seed. (Div. Agrost. U. S. Dept. Agrl.)

Millet, or Hungarian Grass (Setaria italica) is the most important of the species occurring in Iowa. It is cultivated as a forage crop in all parts of this state, but chiefly as a catch crop. If because of unfavorable weather corn has failed to germinate, the field is sown with millet. It is usually sown about the middle of June, and in sixty or sixty-five days produces a good crop of hay, yielding from two to three tons per acre. German millet (Setaria germanica) is grown as frequently as Hungarian millet, but is not superior to it.

Williams" says of Hungarian grass: "This millet first came into general cultivation in the middle west. In Iowa it won favor at once, and as early as 1856 was a most valuable forage

[^234]crop, particularly on recently broken land. Stems rather slender, clustered, branching, three to four feet high; leaves abundant, rather narrow, upright, typically bright green; heads erect or nodding slightly at maturity. Hungarian grass does not resist drouth as well as common millet, but with favorable conditions of soil and moisture it will usually give a

Fig. 203. Corean Foxtall Millet. (Div. Agrost. U. S. Dept. Agrl.)
somewhat heavier yield. One reason why Hungarian grass has not found more favor with farmers generally is that it shows a greater tendency than other common varieties to persist in the soil when allowed to mature before harvesting. In portions of the Missouri valley region, as in eastern Nebraska and Iowa, this millet received a great deal of attention from
farmers during the seventies and fine crops of hay and seed were obtained, but its tendency to 'volunteer' brought it into more or less disfavor, and it is now less commonly grown than common millet or German millet. It seldom becomes troublesome, however, except on light, sandy soils or land recently brought into cultivation. On moist, heavy soils, or in regions where there is a great deal of wet weather during the fall and winter months, it is not likely to make much volunteer growth."

Fig. 204. Two-ranked barley, Hordeum 8ativum distichon. (After Hackel.)
1, Hordeum sativum hexastichon. (B 3) group of three spikelets; (B) spikelet from behind; (B 1) from in front; (K1) fruit from in front; (K2) from behind. (After Nees.)

2, Common four-rowed barley, Hordeum sativum vulgare. (After Hackel.)
Barley.-Some of the cultivated forms cf barley (Hordeum sativum, Jessen) are frequently cultivated in this state for forage purposes. When used for this purpose it is cut before the seed is ripe. The best time to cut is when it is in the "dough" stage.

Fig. 205. Squir:el-tall or wild barley; b, spikelets; c. d. flower. (Charlotte M. King.)

Something should also be said about squirrel-tail grass (Hordeum jubatum, L.) as a forage plant, since it is so common in all of our pastures and meadows. The farmer no doubt would prefer not to have the grass in his meadows, but, as he cannot help himself, th \rightarrow best that can be done is to allow the cattle and horses to eat the young leaves and stems. It is only of use early in the season (May) and late in the fall. If abundant in the pasture it should be cut when the heads appear.

CHEMICAL COMPOSITION.

The chemical composition of Hordeum jubatum may be shown in the following analyses made in this laboratory:

$$
\begin{array}{ll}
\text { Sample 1. Collected May 20, 1896, height } 10 \text { to } 15 \text { inches. } \\
\text { Sample 2. } & \text { Collected May 26, 1896, height } 23 \text { to } 24 \text { inches. } \\
\text { Sample 3. Collected June 5, 1896, height } 23 \text { to } 24 \text { inches. } \\
\text { Sample 4. } & \text { Collected June 17, 1896, height } 24 \text { to } 25 \text { inches. }
\end{array}
$$

NATURAL CONDITION.

	\% 3 3 3	+	$\begin{aligned} & \dot{3} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	皿	
Sample 1	80.51	. 97	433	(3.00)	713	2.19	4.87
Sample 2	72.60	1.59	3.38	(2.36)	10.10	235	9.98
Sample 3.	67.97	. 44	3.74	(2.75)	12.47	270	12.18
Sample 4.	54.39	1.68	5.80	(3 76)	17.85	4.00	16.28

WATER FREE SUBSTANCE.

Sampl	4.97	22.21	(15 43)	36.59	11.24	24.95
Sample 2	5.82	12.36	(8.62)	36.911	8.46	36.46
Sample 3	294	11.78	(8.57)	38.92	8.43	3793
Sample 4.	3.69	12.71	(8.24)	39.14	8.78	35.68

In these analyses we notice the general tendency for the amount of water to decrease as the plant matures. In the water free substance there is found to be an irregularity in the amounts of fat present in the substance, the largest amount being in the sample taken May 26, 1896. The largest quantity of protein is found in the young sample, ard the same sample contains the largest amount of albuminoids, 15.43 per cent. The samples, with exception of the first, show almost the same quantities of protein and albuminoids. The quantity of fiber present increases slowly as the plant matures, and the nitrogen free extract varies and its regularity is not dependent on the maturity of the plant.

The following analyses are given for comparison:
NATURAL CONDITION.

	L d c E	+	\#゙1	む 0 0 0 0 0 0	$\frac{3}{m}$	
Iowa (1):						
(1) Young, 31 to 4 inches high..	* 62.29	2.06	9.39	8.70	4.94	12.62
(2) Somewhat older than No.1.	64.35	1.48	5.37	10.20	4.52	. 14.08
(3) Mature grass...	56.92	1.52	3.89	14.68	4.87	18.12
South Dakota (2):						
Collected July 1, 1891.	9.73	2.59	9.84	28.66	8.22	40.96

WATER FREE SUBSTANCE.

No. 1 Iowa	5.45	24.91	23.07	13.11	33.46
No. 2 Iowa	4.14	15.07	28.61	12.68	39.50
No. 3 Iowa.	3.52	9.04	34.08	11.30	42.06
South Dakota (2).	2.87	10.90	31.75	9.11	45.38

Rye (Secale cereale, L.) -Farmers do not fully appreciate the value of rye as a forage plant. It is an excellent grass and makes a good, firm hay, relished by stock of all kinds. It should be sown early in the fall, the first week in September, and in a month is ready for pasture purposes. It will stand a moderate amount of grazing when four or five inches high, and this can be kept up through the winter and early spring, and affurds some good picking in April, two or three weeks in advance of bluegrass. It should be pastured cautiously. Sheep will not injure the stand as much as cattle. It has been used more extensively in the south than in the north for forage purposes.

To illustrate the chemical composition of Secale cereale the following analyses were made:

Sample 1. Collected April 21, 1896, 12 to 13 inches high.
Sample 2. Collected April 29, 1896, 20 to 24 irches high.
Sample 3. Collected May 4, 1896, 30 to 32 inches high, just headed.
Sample 4. Collected May 11, 1896, 30 to 36 inches high, rusted somewhat in places, just headed

Sample 5. Collected May 21, 1896, 35 to 40 inches high.
Sample 6. Collected June 3, 1896, 47 to 48 inches high.

[^235]

Fig. 206. Rye, (8ecale cereale). (Hackel.)
NATURAL CONDITION.

	$\xrightarrow{\text { ® }}$	*	$\begin{aligned} & \dot{E} \\ & \text { すे } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			盛	
Sample 1.	86.02	. 84	3.94	(2. 2 2)	2.94	1.69	4.57
Sample 2.	85.42	. 80	3.11	(2.20)	352	1.84	5.31
Sample 3.	84.87	. 73	2.18	(1.52)	4.25	1.68	6.29
Sample 4.	76.81	. 91	2.50	(3.39)	7.85	1.91	10.02
Sample 5.	81.61	. 82	1.76	(1.58)	633	2.47	7.01
Sample 6.	76.91	. 69	2.79	(1.60)	8.57	1.69	9.35

WATER FREE SUBSTANCE.

Sample 1	6.03	28.17	(20.95)	21.03	12.11	32.66
Sample 2	5.48	21.36	(15.10)	24.16	12.65	36.35
Sample 3.	4.80	14.37	(10.13)	28.13	11.08	41.62
Sample 4.	394	10.65	(10.31)	33.87	8.22	43.32
Sample 5	445	9.54	(8.61)	34.49	13.43	38.09
Sample 6	3.00	12.08	(692$)$	37.10	7.31	40.51

It will be noticed that the amount of water varies from 76.91 to 86.02 per cent．This change in the amount of water is not a constant one and is rather irregular．In the water free sub－ stance there is a decrease in the amount of fat as the plant matures，with the exception of sample five，the decrease being from 6.03 to 3.00 per cent．In the percentages of protein we find that it varies from 28.17 to 9.54 per cent，and that the decrease is a constant one with the exception of the last sam－ ple；however，in the albuminoids we find that the change is from 20.95 to 6.92 per cent，which is a constant decrease as the plant matures．In the crude fiber we have a constant increase of the amount present in the grass as it matures from 21.03 to 37.10 per cent．The ash present in the grass varies from 7.31 to 13.43 per cent and is very irregular．The nitrogen free extract is also irregular in its changes and varies from 32.66 to 43.32 per cent．

The following analyses are added for comparison with the above：

NATURAL CONDITION．

	¢ ¢ ¢	㵄	$\begin{gathered} \text { Nitrogen free } \\ \text { extract. } \end{gathered}$		－	边
Green fodders，sown in Sept． used for soiling in winter．．．	7152	4.61	14.25	7.08	128	1.26
No description．．．．．．．．．．．．．．．．．	と0．26	4.38	8.79	3.48	2.20	89
No description．	82．25	3.52	7.26	4.38	1.97	． 62
No description．	7953	2.35	9.91	5.72	193	． 56
Average of four．．．	78.39	3.71	10.05	5.17	185	83

WATER FREE SUBSTANCE．

Samples in same order as those abuve．	1617	5003	24.87	4.52	441
	22.17	4451	17.67	11.15	450
	19.85	40.86	24.66	11.12	3.51
	1149	48.39	27.93	9.44	2.75
	17.42	45.95	23.78	9.06	3.79

Sorghex（Andropogon sorghum Brot．）is coming into more general use as a forage plant in this state．A great deal of it is now grown in Shelby and Jones counties for forage pur－ poses，but its cultivation for that purpose does not compare with the area devoted to it in Kansas，as shown by Coburn．＊

[^236]

Fig. 207. Teosinte, (Euchleana mexicana). a and b, ears enclosed by hask; c and d, views of grain. A valuable forage grass. (U. S. Dept. Agrl.

The amount of fodder produced is very large and it is of excellent quality. It is one of the best grasses for soiling purposes. A related grass, Andropogon sorghum var. halepensis, is the Johnson grass so well known to southern farmers. While Johnson grass is a valuable forage plant, it is decidedly objectionab.e where alternate husbandry is carried on, as it is almost impossible to remove it. It has been tried in this state, and on the Collegэ farm at least it does not persist. The cold wiaters kill it.

Teosint (Euchlena mericana, Schrad) is a native of Mexico and Central America and in recent years has been distributed by many seedsmen. Small fields of it may be seen here and there in the state. It is a stout leafy annual growing eight to twelve feet high and in the variety usually planted tillers, so that an enormous crop may be produced on an acre. It resembles corn in many respects. It produces a fine quality of forage and is an excellent plant for soiling purposes.

Maize. The value of Zea mays, L., (Maize or Corn) as a soilingcrop has long been recognized by agriculturists. Largeareas in Canada and in our northern states are cultivated solely for fodder purposes and the areas used for this purpose in Iowa are constantly increasing. A large amount of forage is annually being wasted in this state. In 1895 the acreage of corn in Iowa was $8,648,804$ acres.* Probably not one-tenth of the corn fodder was saved. The value placed on corn fodder is about three dollars an acre, so that the annual corn fodder product in Iowa is worth about $830,000,000$. Labor-saving machinery is revolutionizing the corn fodder question and the best farmers are now relying on corn fodder for coarse forage. It is poor economy to husk the corn and leave the stalks remain. Although cattle may obtain some forage for a few weeks, it is of poor quality, much of the digestiole nutrient substances being lost when corn remains standing in the field. The drouthy year of 1894 indicated to the Iowa farmer the great value of corn stover. Before many years the larger proportion of our corn stover will be saved and the farmers of Iowa will add many million dollars to the wealth of the state. During the year 1900 it was not an uncommon sight to see more than half of the corn fodder saved for forage in central Iowa.

In another connection I have called attention to the use of Cat-tail grass (Pennicetum typhoideum) which is a well known

[^237]

Flg. 203. Malze grown for solling purposes.
cereal plant of Spain and Africa, but it has also been highly recommended as a forage plant. It has not been grown in Ames, but in south central Iowa it has been tried with some success. Mr. Charles N. Page of the Iowa Seed company says:
"It is a wonderful fordge plant of great productiveness, unexcelled, if equalled, by any other plant for its quick growth, immense size and splendid quality, and it is thought that it will prove of much value to stock farmers. It has been im. proved and acclimated so that it not only produces an immense crop of fodder, but will produce a good seed crop as far north as central Iowa. It is usually planted as soon as the ground
becomes warm, about corn planting time, and it begins to tiller or stool out at once. It grows to a height of twelve or fourteen feet. As many as forty-three large leafy stalks have been produced from one seed. At a distance a field of Pencillaria looks like mammoth timothy. The heads are only about an inch in diameter, but range from ten to sixteen inches in length and are closely set with thousands of small seeds. If allowed to grow until the flower heads begin to develop, before cutting, it is claimed that it will yield the heaviest crop of any fodder plant in cultivation. The best way to handle the crop is to mow it when from thres to six feet in height. It will immediately start up again and can be cut several times duriog the season. One farmer who made a careful test says he sowed the seed on the fifteenth of May in drills eighteen inches apart. In twelve days he cultivated the crop once and it grew so rapidly after that time that it smothered out a'l the weeds. His first cut was made July first, forty-five days after sowing the field. The crop was about seven feet high and it weighed, green, thirty tons per acre, and when dry gave six and one half tons of hay per acre. The second growth was cut on August fourteenth, when the plants were nine feet high, and the crop weighed fifty-five tons per acre gre n , and eight tons dry. The third cutting was not made until October first. It weighed ten tons green, and one and one-half tons dry, thus making a total crop of ninety-five tons per acre of green fodder and when dried sixteen tons of hay."

I have not seen this grass under cultivation in this state, but it may be grown for the same purpose that teosint is and will prove valuable for soiling purposes. It has proven a valuable forage plant in other sections of the United States, especially in the south.

Pennicillarea. (Iowa Seed Co.)

Weeds of Pastures and Meadows.

In considering weeds of pastures and meadows one needs to have a clear understanding of what is meant by a weed. A weed has been defined as a plant out of place; this concise and short definition meets all the requirements.

We must first of all inquire what causes weeds to grow in pastures and meadows. In well-kept pastures and meadows weeds are seldom troublesome, but in thcse not well-kept the weeds are certain to appear. A pasture without a weed is not possible. It has been said that when land is well farmed weeds cannot survive. In alternate husbandry weeds ought to succumb rapidly, but in pastures and meadows it is more difficult to remove them. Weeds will only grow where there is room, where they can obtain plenty of sucshine and light. The more room, the more vigorous will the weed grow. Bailey says, "Ground may be covered with a given plant, and yet a species of wholly different character and habits may thrive along with it. If weeds, then, are to be kept out of grounds. the land must not only be occupied with some crop, but with a crop that will not allow the weed to grow with it." Now the first condition of weediness of meadow or pasture is the destruction of the turf. This is done by overstocking, or the effect of cold or drouth. The effect of overstocking is seen on the plains I have elsewhere alluded to, the conditions now prevailing in Texas. In western Nebraska, Colorado, South Dakota and Wyoming many valuable forage plants thrive, although under adverse climatic co ditions. In their prime, before the range industry took hold, they supported a large number of cattle, but too close grazing and tramping has materially changed the condition of our western ranges. The valuable grasses have been killed in many cases. Toumey says: "In the early days of our great west almost the only method of travel from the Mississippi valley to our western coast and intervening points was by caravan. Wagons drawn by horses and cattle were several months in making the jour. ney. During this time they subsisted almost entirely upon the
natural forage afforded by the country traversed. For the most part this consisted of perennial grasses which at that time were everywhere abundant. The whole of the west was then a great open pasture, unstocked save for the herds of buffalo, deer and antelope. Many regions which were then covered with a luxuriant growth of grasses are now entirely destitute of vegetation, if we exclude a few straggling, stunted bushes and the yearly crop of annuals which follow the summer rains. As a more specific case, the rancher who drove the first herd into Tonto basin, in central Arizona, found a well pastured valley, everywhere covered with grass reaching to his horse's flanks. In passing through this region a year ago scarcely a stalk of grass was to be seen from one end of the valley to the other. This transformation has taken place in a half score of years."

Many of our most important native forage plants are perennials which naturally grow and acquire their maturity slower than annuals. The grasses which formerly covered so great an area of the west were years in developing their root systems, and in not a few species the stems were of several years' growth. In this article the author goes on to say that it will not be many years before the natural range grasses are a thing of the past. "Last year, in passing over a large unwatered area north of Prescott, miles of country were fuund to be covered with grasi, while in much more favorable localities, in the vicinity of water, these species have entirely disappeared." The same facts are illustrated in the Mississippi valley. In many parts of Wisconsin sand prairies are common. My father often spoke of the abundance of wild fordge in the early days. When he came to La Crosse, in the early fifties, the lower places we e covered with a dense mass of nutritious grass. Now they yield almost nothing. The prairies of Iowa, before they were fenced and pastured, contained immense quantities of valuable nutritious grasses. Our pasturing has not only caused these grasses to diminish in quan ity, but they are gradually being replaced by weeds and, in some cases, inferior grasses. Buffalo grass (Buchloe dactyloides) and Gamma grass (Bouteloua), once abundant in the west, are rapidly disappearing as an element in native forage plants of Kansas and other western states.

As a result of the overstocking of pastures, weedy annuals, like Southern Poverty-grass, Foxtail and Squirrel-tail grass

Fig. 209. Golden rod, (Solidago canadensis). A common weed in prairle pastures.

Flg. 209a. Golden rod, (Solidago rigida.) A common species in upland prairies.
spring up and take the p'ace of the better perennial species, or the narive ragweeds and verbenas spread and occupy the soil. All of these have become so plentiful that farmers remark on their more frequent occurrence now than in former jears. Several rank-growing weeds are abundant in meadows and pastures of western Iowa. Sunflower and Marsh Elder find in the rich alluvial soll of the river bottoms a most conginial place for their development. They are especially troublesome on land that is often flooded during spring freshets. In addition to these the pastures throughout the state, especially in the fall or autumn, are troubled with weeds like Goldenrod. The large yellow flowered Goldenrod (Solidago rigida) is extremely common in native pastures after the cattle have been running all summer. Sometimes these pastures present a mass of yellow. Then again the S. canadensis is extremely common in similar situations Attention should be called to this goldenrod since a few years ago there was considerable discussion in veterinıry papers and Garden and Forest

Fig. 210. Wild sunflower, (Helianthus grokse-serratus). Common in low meadows.
in regard to the poisonous effects* of these plants. Chestnut \dagger has recently discuss:d the question and thinks that the poison resides in a fungus that grows upon the leaves of the goldenrod. In low Jying meadows, especially along streams,

Fig. 211. Muhlenberg's smart weed, (Polygonum muhtenbergii). A troublesome weed in low grounds.
a large sunflower, the Helianthus gross-seratus, is common, some times forming large yellow masses. Where this sunflower grows in large quantities, little forage is produced. In the low-lying districts, especially swampy ground, smart weed

[^238](Polygonum muhlenbergii) is common. This persistent perennial with scarlet flowers produces very long, thick, stout root stocks. It grows so thickly that grass is not produced. Another weed which occurs in our low wild meadows is the thistle (Cnicus iowensis). This biennial weed makes very little growth the first season, but the second season sends up a large, much branched stalk and produces numerous purple flowers. The allied bull thistle (Cnicus discolor) is especially troublesome in pastures in the timber lot. It frequently grows in such large masses as to become d tcidedly noxious. Stock

Fig. 212. Common wild thistle, (Cnicus discolor). Common in meadows and woods.
carefully weed around this plant, thus permitting its seed to be sown broadcast in the field. Occasionally this weed may be also found in meadows.

The eastern ox-eye daisy (Chrysanthemum leucanthemum) is as yet a rare plant in meadows or pastures of this state. This perennial flowers during the early summer months. The large white ray flowers are very conspicuous, and though a most beautiful plant it is a most pernicious weed in the meadow.

Another plant which has recently come into notice as a troublesome weed is the rib plantain (Plantago lanceolata).

[^239]

Fig. 214. Dock (Rumex crispus). A most pernicious weed in many meadows of the state. (Div. Bot. U. S. Dept. Agrl)

This has been brought into the state with clover seed. It is much more common in the east than in the west and is quite easily recognized by its perennial habit and its long leaves, which are close to the ground. The flower stalk is groovedangled from one to two feet long. It bears a cylindrical spike of flowers somewhat like the common dooryard plantain but much shorter. Like many of our other troublesome weeds, this is native to Europe.

Another European vagrant, the sheep sorrel, (Rumex acetosella) is widely distributed in this state. This weed spreads freely by its running root-stocks which accounts for its appearance in mats. There is a widely prevalent opinion that ground upon which it grows lacks lime. This is, however, far from correct as the weed is very common in soils which contain large quantities of calcareous matter.

An ally of the above is the curled dock (Rumex crispus). This pestiferous plant is widely distributed throughout the state and does much injury in meadows and pastures.*

The best method of destroying this weed is to pull it up by twisting the root and giving it a jerk. Several other species of dock are common in low meadows, especially the Rumex altissimus.

Sneeze weed (Helenium autumnale \dagger), is a nearly smooth perennial from two to six feet high, with yellow ray flowers. It is extremely common in low grounds in many portions of the state. This weed has sometimes czused much alarm among stock men, as it is said to be very poisonous.

Prickly lettuce is another weedy member of the same order. It has become very common in many parts of the state. Although reported more than a quarter of a century ago by Dr. Gray, naar Cambridge, Mass., it did not become general until 1885 to 1889 . Prickly lettuce (Lactuca scariola), is a close kin to the cultivated lettuce. It is easily recognized by its prickly or bristly stem, the prickly mid-rib of the leaf, the milky juice of the plant, and panicled inflorescence. The heads contain small, yellow flowers. This plant, when growing in open ground, is a compass plant, presenting two faces to the light. This is due to a twist in the leaf at the base where it is attached to the stem. Some years ago Dr. J. C. Arthur \ddagger gave a full account of this weed.

[^240]

Fig. 215. Milkweed, (Asclepiax cornuti). Oommon in meadows. Often troublesome. Div. Bot. U. S. Dept. Agrl.)

8 sepium). Commou in some meadows. (Div. Bot.
U. S Dept Agri.)

Two weeds of the morning glory family are common in this state. One, the common European bind-weed (Comolvulus arvensis), is common ia Missouri and Illinois, and is gradually making its way into Iowa. The writer has observed it for several years in a meadow near Ames. The common morning glory (Comolvulus sepium), is very closely allied to the European morning glory, and i; common in low meadows where it has long been known as a persistent, troublesome weed. It differs from the European bind-weed in its much larger flowers and its longer twining stem. Not only does it shut out the light from the grass around which it grows, but it readers the hay less valuable. There is no method of exterminating this weed except in cultivated fields and then it needs the most careful attention. It must be taken up root and all or it will not subside.

Another common weed of low meadows is milk-weed (Asclepias cornuti). This has a deep, perennial root, opposite, oblong leaves which are soft and velvety on the lower side. The flowers are borne in large unbels, having twenty or forty in each cluster. They are light purple in color. The fruit is what is known as a follicle and two or three of these occur in one cluster, each follicle having hundreds of seeds.

Another troublesume weed; in places, is the horse nettle (Solanum carolinense), which spreads not only by its roots but by seed as well. It is a deep rooting perennial which propagates freely by its u-derground root-stocks. These rot-stocks are oft n three feet long. The character of the plant is well shown in the accompanying cut. The corolla is light blue or white, and resembles that of the potato.*

A plant allied to the above is the buffalo burr (Solanum rostratum), which is an annual, growing from one to two feet high but very bushy in its habi!s. Buffalo burr is a prickly, hoary plant with greenish yellow somewhat divided leaves and bur-like berries. The flowers are yellow. This plant only grows in open places in the medow, and would not occur if the meadow wers kept in the right condition. \dagger

Cowbane (Cicuta maculata). This plant belongs to the same family as the carrot, parsnip and celery and is a frequent inhabitant of low meadows in this state. It is easily recognized by its white flowers borne in umbels. The roots of this

[^241]plant occur in bunches, e. g., fascicled. They taper at the lower end. On cutting the roots a sharp, pungent odor is given off, intensified by boiling. In addition to the frequent cases of poisoning of human beings, cattle are not infrequently killed by it. Such a case was investigated by the writer some years ago, where a number of cattle died from the effects of eating the roots of the plant that grew in a meadow near a hay stack.*

Fig. 217. Cowbane, (Cicuta maculata). Common in low meadows. Polsonous. (Div. Bot. U. S. Dept. Agrl.)

Squirrel-tail grass \dagger has long been a troublesome weed in many parts of Iowa, Wisconsin and Illinois, and is one of our worst meadow weeds. Though originally a native of the sandy seashores from Nova Scotia to Maryland, and the upper great lakes, it has spread from the great lakes to adjoining prairie country, and now may be said to be common from the great lakes to the Rocky mountans, although there are several allied species in the Rocky mountain country. This weed is

[^242]troublesome in both pastures and meadows. In the former it may be removed by cutting the plant before it is mature. It freqently causes injury to cattle, and even death.

Sweet clover (Nelilotus alba) is one of the most common weeds in some pastures of the state. It is a large, tall and much branched annual with small white flowers. During the time of flowering it is extremely fragrant. It is regarded by bee keepers as a valuable honey plant, but for the north is not

Fig. 218. Buffalo burr, (Solanum rostratum). Occurring in alluvial bottoms and in some meadows. (Dewey, Div. Bot. U. S. Dept. Agrl.)
considered a valuable plant for forage purposes. In the south, however, it is valuable for reclaiming waste land, as it grows not only on rich soil, but thrives on the poorest kind of land. Professor Tracy commends it as a soil renovator. Professor Goff also recommends it as a soil renovator. In this state we must regard it as a weed, in spite of the fact that the plant is useful as a soil renovator as well as a honey plant.

Fig. 219. Sweet clover, (Melolotus alba). Common weed in many sections of the state. (Div. Bot. U. S. Dept. Agrl.)

A few members of the mustard family are troublesome in meadows and pastures of this state. One of these, pepper grass (Lepidium apetalum), is abundant throughout the state, especially in timothy meadows. The flowers are small and greenish-white; the seeds are light brown, elongated, with a prominent ridge on one side. This weed is frequently found in timothy seed. The brown color of the seed attracts the

Fig. 220. Horse nettle, (Solanum carolinense). Troublesome weed. When once established, difficult to exterminate. (Dewey, Div. Bot. U. S. Dept. Agrl.)
attention of the seedsmen. Prof. P. H. Rolfs* identified this as one of the chief admixtures in timothy seed.

Canada thistle (Cnicus arvensis), though common in eastern meadows, is as yet not common in the state, although it sometimes occurs in meadows. It differs from other thistles in its small "flowers," leaves, and the perennial character of the plant.

[^243]
CHEMISTRY OF FOODS AND FEEDING.

The value of any substance for use as a food depends largely upon two important factors; first, that of chemical composition, and second, the digestibility of the constituents which form the substance.

In connection with the study, the idea of food implies the fact that the material has in it certain constituents which the animal can use and under certain conditions they will become available to supply the demands of the various parts of the body so that a condition favorable for existence and growth is maintained.

These demands, which nature makes upon an animal in order that it may live, are largely in the form of heat to keep the body at a certain temperature, material to supply the muscular force in order that they may exert themselves when necessary and for the growth of the body.

The constituents which are found in the various foods may be classed as follows:

	ter.
Inorgan	Salts, such as common salt, phosphate of lime, carbonate of potassium, and other salts.
Organic $\{$	Nitrogenous, such as curd in cheese, albumin in egg, etc. Non-nitrogenous, such as starch, sugar, fats, etc.

As an illustration, if we should make an analysis of a substance such as gluten meal, the results would be stated after the following outline:

The amount of water present in a substance varies largely according to the nature of the substance, whether green or dry. The term fat is that part of the substance which is extracted with ether. This extract is also known as crude fat from the fact that the ether extracts the waxes, coloring matters, besides the fat that is present in the food. The term
protein is used to designate that part of the substance which contains nitrogen and which may be called the nitrogenous part.

Albuminoids are those substances which form the most useful parts of the protein substances. The protein substances which are not albuminoids have the nature of substances which are called amides. These amides are of much less value for food purposes than the albuminoids.

Crude fiber is the more or less indiges inble or woody parts of the food.

Ash is that part of the food which remains after burning and consists of the salts found in the food substances

The action of the digestive system may be compared to a process which is a combina ion of grinding, crushing and extracting substances in order to obtain the useful parts.

The food is first taken into the mouth where the teeth grind and crush it, breaking it into small pieces and mixing the resulting mass with the saliva. The saliva is a substance which is largely water but there is a peculiar ferment called ptyalin. This ferment when it is mixed with any substance containing starch commences to turn it to sugar. As an illustration, in order to show its composition we may take the analysis of the saliva of various domestic animals; the results being stated in parts per 1000 (*).

HORSE.

In the mucus and albumin present there occurs the ferment called ptyalin. This ptyalin is always present in saliva, eren

[^244]occurring in the saliva of very young children, and also is generally present in the saliva of other animals, with the possible exception of the dog.

The time of action of the saliva on the food varies with the nature of the animal; in man it is quite short, but in other animals such as the cow, the food is parsed to the first compartment of the four-chambered stomach, and when a supply of food has been gathered it is returned to the mouth to be thoroughly ground and crushed by the teeth and well mixed with the saliva. It then passes to the other parts of the stomach for further digestion. In the horse the crushed and ground mass which has been thoroughly mixed with saliva passes to the stomach, where the ptyalin acts for a while and the juices of the stomach are apparently withheld in order that the change of the starch to sugar may continue for a time.

The ptyalin acts at a temperature slightly above $104^{\circ} \mathrm{F}$. Small quantities of free acids will prevent the ptyalin acting on starch. Some salts like magnesium sulphate in very small quantiiies accelerate, while larger quantities hinder, the action of the enzyme.

The glands in the mouth which secrete the saliva are the most active in the animal body, secreting as they do eight to fourteen times their entire mass in saliva. The food, after having been ground and mixed with the saliva, passes to the stomach*. Here it meets with a condition which is entirely different from that in the mouth. In the stomach we fiod a liquid called the gastric juice. It is similar to the saliva in containing a large quantity of water, as may be seen in the following analysist (parts per 1000):

	Human.	Dog.	Sheep.
Water	.994.404	973.062	986.143
Organic substance	3.195	17.127	1.234
Hydrochloric acid	. 200	3.050	1.234
Calcium chloride	. 661	. 62.4	. 114
Sodium chloride	1.465	2.507	4.369
Potassium chloride	. 550	1.125	1.518
Ammonium chloride.		. 486	. 473
Calcium phosphate....)			
Magnesium phosphate	. 125	. 226	. 577
Ferric phosphate...			

[^245]The gastric juice contains hydrochloric acid, as may be seen from the above analysis. This acid renders the ptyalin of the saliva inactive as soon as the food is acted upon by the gastric juice. In addition to the acid there is also present a ferment called pepsin. It has been seen that the ptyalin changes starch to sugar, but pepsin changes the albuminoids into a peculiar class of substances called peptones.

Albuminoids and peptones differ very little in their chemical composition, and the following analyses will give a fair representation of these bodies.

	PER CENT	
Carbon.	51.5	54.5
日ydrogen..	6.9	7.3
Oxygen.	20.9	23.5
Sulphur .	. 3	2.0
Nitrogen	152	17.0

The action of the gastric juice is largely that of changing the in oluble albuminoids to the soluble substances, or in other words, peptones, and from the analysis we find that there is little or no change in the chemical composition.

After the action of the gastric juice in the stomach, the food material passes to the intestines, here a secretion of the pancreas, called the pancreatic juice, acts upon it. The pancreatic juice is alkaline, and the action of the gastric juice ceases its action, as its action is only carried on in the presence of acids.

The pancreatic juice on analysis is found to be composed as follows:

	Dog.	Horse.
Water.	980.45	98250
Solids.	19.55	17.50
Organic solids.	12.71	8.88
Ash	6.84	8.62
Sodium.	3.31	$\ldots .$.
Chlorides..	3.43	
Phosphates..	. 09	
Magnesium.	. 01	

In the organic solids present in the pancreatic juice there are present three ferments, each of which take an active part in changing the food which has not been acted upon by the ptyalin and pepsin. These ferments are as follows:
I. Trypsin, changes proteids or albuminoids to peptones and amido acids.
II. Amylopsin changes starch to sugar.
III. Steapsin, a fat-decomposing ferment, changes fats into glycerin and fatty acids.

The bile also aids in the preparation of the fats fo: digestion.
The food, after being prepared by the action of ferments, is absorbed by certain vessels in the intestines, and ultimately becomes a part of the animal body.

In the process of digestion it has been seen that nature provides for the preparation of two classes of substances that are needed for repairing the waste of the animal body. These two classes are (1) those substances containing nitrogen, or fleshproducing substances, and (2) the carbohydrates, or heat producing substances. If nature, then, requires that the animal be furnished with these two classes of foods in order that the body may continue in health, it would be naturally expected that these substances should be furnished in an intelligent manner and meet the demands made by nature upon the animal. The feeding to an animal of a substance con aining an excessive amount of carbohydrates will probably lead to the injury of the organs by overwork, which nature has designed to govern and keep the animal machine in a healthy condition. The use of foods containing a much larger quantity of protein will probably result in the injury to the orgars that control other parts of the animal machine.

It may be of interest to note that the food material as it is absorbed by the vessels of the intestines passes into the b'ood and is carried to the liver. The liver is one of the most important organs that care for the healthy condition of the body. Should the blood containing the digested food material contain an excessive amount of carbohydrates, the liver stores up these substances for some future time when the body will need them, and then they are given up again to the blood, so that the body may continue to be nourished. In a second capacity the liver acts as the contrul organ in preventing any poisonous products, which may be formed during any fermentation process that may have taken place in the digestive tract, from entering the circulating blood system and thus causing abnormal conditions. If these poisonous substances should pass through the vessels of the intestines they are separated and returned again to the intestines to be thrown off from the body as other impurities. The kidneys are also of great value in the serse that they keep the blood in a pure condition in their action of separating the impure substances that have
become part of the blood as the result of the breaking down of the food materials and tissues in the body, or in other words, the residue or ashes of muscular action. A large or an excessive amount of protein in the food material has a tendency to require an extra effort on the part of the kidneys to throw off from the body the resulting residues.

The study of the food material naturally divides itself under two considerations:
I. The amount of protein and of carbohydrates necessary for the animal, and the correct proportion of these two classes which will result in keeping the animal in the most healthy condition.
II. The use of an excess of one class of food material over the correct amount necessary results not only in an injury to the animal, but is largely a loss to the person feeding under such conditions.

The inorganic part of the food material supplies certain demands made by the growth and maintenance of the animal; for example, calcium phosphate supplies the mater:al forming the bone substince. Salt furnishes the supply of hydrochloric acid in the gastric juice and aids in the digestion of food by the pepsin, and iron aids in blood formation.

The object of digestion is a process designed by nature to prepare the food material so that it can be readily absorbed by the animal. We may, as a means of illustration, compare the changes that take place during digestion t) the process of some manufacturing plant where the food is crushed and ground by the teeth, the starch changed to sugar, the albuminoids which are insoluble rendered to soluble, or in other words, changed to peptones, and then as a final process the material is subjected to the combined action of a number of agencies which prevent any waste in the material intended for nourishing the animal.

The amount of food necessary for certain animals and the relative proportions of protein and the carbohydrates and fats has been the subject of a great number of investigations, and is a valuable field for study. Dr. Emil Wolff originated a table of feeding standards which has been widely used. The table is as follows:

PER DAY AND PER 1,000 POUNDS, LIVE WEIGHT.

PER HEAD AND PER DAY.

	$\begin{aligned} & 0 . \\ & 80 \\ & 4 \end{aligned}$		DIGESTIBLE, NUTRITIVE SUBSTANCES.			
			Protein	Carbohydr't's	Fat.	
Growing cattle.....	Months.	Pounds.	Pounds.	Pounds.	Pourds.	Calories.
	2-3	150	0.6	2.1	0.30	6,288
	3-6	300	1.0	4.1	0.30	10,752
	6-12	500	1.3	6.8	0.30	16,332
Growing sheep.......	12-18	700	1.4	9.1	0.28	30,712
	18-24	850	1.4	10.3	0.26	22.859
	5-6	56	0.18	0.87	0.045	2,143
	6-8	67	0.17	085	0.040	2,066
	$\varepsilon-11$	75	0.16	0.85	0.037	2,035
	11-15	82	0.14	0.89	0.032	2,050
	15-20	85	0.12	0.88	0.025	1,956
Growing fat swine....	2-3	50	0.38		50	3,497
	3-5	100	0.50		50	5,580
	5-6	125	0.54		96	6,510
	6-8	170	0.58		47	7,533
	8-12	250	0.62	4.	05	8,686

The above tables have been modified as the result of experience in feeding animals. The changes which have been made may be seen in the following tables, which are the original Wolff tables modified by Dr. Lehmann.

TABLE I.-FEEDING STANDARDS FOR FARM ANIMALS.
(Per day per 1,000 pounds, live weight.)

		notritive (DigestIBLE) SUBSTANCES.				
		高	戠			
	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	
1. Oxen at rest in stall.	18	0.7	80	0.1	8.9	1:11.8
Oxen slightly worked	22	1.4	10.0	0.3	121	1:7.7
Oxen moderately worked	25	2.0	11.5	0.5	14.7	1: 6.5
2. Fattening steers, 1 st period	28 30	2.8	15.0	${ }_{0}^{0.8}$	18.7	1:5.5
2. Fattening steers, 2d period	30	3.0	14.5	0.7	192	1:5.4
Fattening steers, 3d period	26	2.7	15.0	0.7	194	1: 6.2
3. Milch cows, dally milk yield, 11 lbs....	25	1.6	100	0.3	123	
Mllch cows, daily milk yield, $165 \mathrm{lbs} .$.	$\stackrel{87}{27}$	2.0	11.0 13.0	0.4	14.0	1: $1: 5.0$
Milch cows, daily milk yield, 22 lbs....	29 32	2.5 3.3	13.0 13.0	0.5 0.8	16.7 18.2	1:5.7
4. Sheep, coarse wool.......	20	1.2	10.5	0.2	12.2	1:9.1
Sheep, fine wool.	23	1.5	12.0	0.3	14.2	1:8.5
5 Breeding ewes, with lambs.	25	2.9	15.0	0.5	19.1	1:5.6
6. Fattening sheep, 1st perlod.	30	3.0	15.0	0.5	192	1: 5.4
Fattening sheep, 2d period	28	3.5	14.5	0.6	194	1: 4.5
7. Horses, light work.........	20	1.5	9.5	0.4	120	1:7.0
Horses, medium work	24	2.0	11.0	0.6	14.5	1:6.2
Horses, heavy work	26	25	13.3	0.8	17.7	1: 6.0
8 Brood sows	22	2.5	15.5	0.4	19.0	1: 66
9. Fattening swine, ist period	36	4.5	250	07	31.2	1:5.9
Fattening swine, 2d period	32	4.0	24.0	0.5	29.2	1:63
Fattening swine. 3d period..	25	27	18.0	0.4	22.0	1: 7.0

TABLE I.-Continued.

				$\begin{aligned} & \frac{0}{5} \\ & \infty \\ & \text { i } \\ & 50 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	NUTRITIVE (DIGESTIBLE) SUBSTANCES.			$\begin{aligned} & \text { Total nutritive } \\ & \text { substance. } \end{aligned}$		
10.				Lbs.	Lbs.	Lbs.	L.bs.	Lbs.	Lbs.	
	Growing cattle.	2-3	150	23	4.0	13.0	2.0	218	1: 4.5	
	(Dairy breeds.)	3-6	300	24	3.0	128	1.0	18.2	1: 5.1	
		6-12	$5 C 0$	27	2.0	12.5	05	15.7	1: 0.8	
11.		12-18	700	26	1.8	12.5	0.4	153	1: 7.5	
		18-24	900	26	1.5	12.0	03	142	1: 9.5	
	Growing cattle......	2-3	160	23	4.2	13.0	2.0	20.0	1: 4.2	
	(Beef breeds.)	3-6	330	24	3.5	128	1.5	19.9	1:4.7	
		6-12	550	25	25	13.2	0.7	17.4	1: 6.0	
12.		12-18	\% 50	24	2.0	12.5	0.5	15.7	1: 8.8	
		18-24	950	24	1.8	120	0.4	14.8	1: 7.2	
	Growing sheep..............	4-6	60	25	3.4	154	0.7	20.5	1:5.0	
	(Wool breeds)	6-8	75	25	2.8	13.8	0.6	18.0	1: 5.4	
		8-11	80	23	2.1	11.5	0.5	14.8	1: 6.0	
13.		11-15	90	22	1.8	112	0.4	140	1: 7.0	
		15-20	100	22	1.5	10.8	0.3	13.0	1:7.7	
	Growing sheep	4-6	60	26	4.4	15.5	0.9	22.1	1: 4.0	
	(Mutton breeds.)	6-8	80	26	35	150	0.7	202	1: 4.8	
		8-11	100	24	3.0	14.3	0.5	18.5	1:5.2	
14.		11-15	120	23	22	126	0.5	16.0	1:63	
		15-20	150	22	20	12.0	0.4	150	1:65	
		2-3	50	44	${ }^{2} 6$	28.0	1.0	380	1: 4.0	
	(Breedlag stock.)	3-5	100	35	5.0	231	0.8	30.0	1:5.0	
		5-6	120	32	3.7	21.3	0.4	26.0	1:60	
15.		6-8	200	28	2.8	18.7	0.3	22.2	1: 7.0	
		8-12	250	25	2.1	15.3	0.8	17.9	1:7.5	
	Growing, fattening swlne.	-3	50	44	7.6	28.0	10	38.0	1: 4.0	
		3-5	100	35	5.0	23.1	0.8	30.0	1:5.0	
		5-6	150	33	43	22.3	0.6	28.0	1: 5.5	
		6-8	200	30	3.6	205	04	25.1	1: 6.0	
		9-12	300	26	3.0	18.3	0.3	22.0	1:6.4	

Naturally, in order to apply the standards as given in the above table, a thorough study of all the materials used for feeding purposes is necessary. Many of the stations have paid especial attention to this field of work, and the following tables are selected from Bil. 81 of Vermont experiment station.

TABLE II.-AVERAGE COMPOSITION OF FEEDING STUFES.

FODDERS.		FOOD CONSTITUMNTS.							FARTILIZING ingredients.		
		苞			$\begin{aligned} & \dot{\sim} \\ & 0 \\ & 0 \\ & 0 \\ & \text { D } \\ & 2 \\ & 0 \\ & 0 \end{aligned}$						
ROUGHAGES. Green fodders.											
Pasture grass.......	56	800	2.0	35	4.0	${ }^{9} 97$	0.8	2	0.56 0.50	0.23	0.75
Red Top		65.3	2.3	2.8	11.0	${ }_{17}{ }^{\text {9.7 }}$	0.9	4	0.50 0.45		
Kentucky bluegrass*	18	65.1	28	4.1	9.1	176	1.3	1	0.66	0.94	1.08
Rowen ..	4	70.1	2.4	4.5	7.6	13.7	1.7	5	072	0.15	0.55
Fodder corn	126	793	12	1.8	5.0	122	0.5	1	0.29	015	0.33
Sweet fodider co	21	791	1.3	1.9	44	12.8	0.5	1	0.83		
Barley fudder	6	75.2	2.0	3.4	65	12.0	0.9	5	054		
Oat fudder	5	892	2.5	34	11.2	19.3	14	1	054	0.13	0.38
Rye fodder	7	76.6	1.8	26	11.6	6.8	0.6	1	042	0.15	0.73
Huogarian	14	71.1	1.7	31	92	14.2	07	4	050	0.16	0.55
Oats and peas.	9	78.7	1.7	35	80	91	10	5	0.56	0.12	0.54
Barley and peas	9	784	1.8	3.7	5.2	91	0.8	5	0.59		
Red clover	43	70.8	2.1	4.4	8.1	13.5	1.1	1	0.70	013	0.46
Alsike ciover	4	748	2.0	39	74	11.0	0.9	1	062	0.11	0.20
Olover rowen	5	75.0	21	4.6	6.2	11.0	1.1	5	0.74		
Hays and dry fodders. Mixed hiy	126	15.3	5.5	7.4	27.2	42.1	25	4	1.18	0.27	1.55
Timotby.	68	$13:$	4.4	5.9	24.0	45.0	25	1	0.94	0.53	0.90
Red Cop .	9	8.9	5.2	79	23.6	475	1.9	1	1.26	036	1.02
Kentucky bluegrass*..	8	261	6.7	8.1	24.1	33.7	3.3	1	0.98	0.40	1.57
Rowen, mixed	23	16.6	6.8	11.6	22.5	39.4	3.1	1,3	186	0.43	1.49
Rowen, fine	15	13.1	65	14.0	24.4	383	3.7	5	224		
Corn fidder.	35	422	8.7	45	143	31.7	16	1	0.72	0.54	0.89
Corn stover	60	40.1	3.4	3.8	19.8	31.8	1.1	1	0.61	0.29	140
Oat hay	6	8.9	62	7.6	29.3	45.1	29	2	1.22	0.50	0.80
Uat and pea	8	11.5	6.6	14.8	219	33.9	3.3	5	2.37	051	2.25
Hungarian	33	165	5.6	8.2	22.6	43.9	3.2	5	1.31	0.35	1.30
Red clover hay.	38	15.3	6.2	12.3	24.8	38.1	3.3	1	1.97	0.38	2.20
Alsike clover hay	9	9.7	83	128	25.6	407	29	1	203	0.67	2.23
Olover rowen hay..	1	8.3	7.1	13.1	31.3	37.9	23	7 a	2.10		
Barley straw	97	142	5.7	35	36.0	39.0	1.5	6	0.56	0.30	2.09
Oat straw.	12	9.2	5.1	40	37.0	434	23	1	0.64	020	124
Wheat stra	7	9.6	4.2	3.4	381	43.4	1.3	1	0.54	0.12	0.51
Rye straw.	7	71	32	3.0	389	46.6	1.2	1	0.48	028	0.79
Silages and roots. Corn silage (mature corn)	49	73.7	1.6	22	6.5	15.1	09	8	0.35	0.10	
do (immature corn)	99	791	1.4	1.7	6.0	11.0	08	1	0.27	0.10	0.40
do (ears plucked off)		80.7	1.8	1.8	5.6	9.5	06	8	029	0.11	0.45
Oloversilage...............		720	2.9	4.2	8.4	11.6	1.2	1	067		
Potatoes.	12	78.9	10	2.1	0.6	17.3	0.1	1	034	0.18	0.46
Beets.		885	10	15	0.9	8.0	01	1	0.24	0.09	0.44
Sugar beets	19	88.5	0.9	1.8	0.9	9.8	0.1	1	0.29	0.10	0.48
Carrots.	8	88.6	10	11	1.3	76	0.4	1	0.18	0.09	0.51
Mangel-wur	9	90.9	1.1	1.4	09	5.5	0.2	1	0.22	0.09	0.38
Rutabagas	4	886	12	1.2	1.3	7.5	0.8	1	0.19	O 1	0.48
Turnips	3	905	0.8	11	1.2	6.2	0.2	1	018	0.10	0.39

[^246]TABLE II-CORTINORD.

FODDERS.		FOOD CONSTITUENTS.							FHRTILIZING INGREDIENTS.		
		$\begin{aligned} & \text { \& } \\ & \stackrel{\text { ® }}{4} \\ & \text { E } \end{aligned}$	$\begin{aligned} & \frac{1}{0} \\ & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$$	U 0 0 00 00 0 0 0	
Miscellancous. Apples	3	80.7	04	0.7	1.2	16.6	0.4		0.11	0.01	0.19
Apple pom	7	76.7	0.5	1.4	3.9	16.2	1.3	1	0.32	0.02	0.13
Pumpkin		90.9	0.5	1.3	1.7	5.2	0.4	2	0.21	0.16	0.09
Skimmilk	7	90.6	07	3.1		5.3	03	4	0.50	0.80	019
Buttermil	85	90.1	0.7	40		4.0	1.1	6	064	0.17	0.16
Whey.	46	938	0.4	06		5.1	0.1	6	0.10	0.14	0.18
OONCENTRATES. Grains and by-products.											
Corn meal.	7%	15.0	1.4	9.2	1.9	687	3.8	1	147	0.63	0.40
Corn and cobmea	7	15.1	15	85	6.6	64.8	3.5	1	1.36	0.57	0.47
Oats...	30	11.0	30	11.8	95	59.7	5.0	1	1.89	0.82	0.62
Provender ($1 / 2 \operatorname{corn} 1 / 2$ nats)		13.0	22	10.5	5.7	64.2	4.4		1.68	0.73	0.51
do (as sola in NewEng)	13-38	11.6	2.6	93	8.0	64.7	3.8	9,8	1.49		
Oat hulls...	1	7.3	6.7	3.3	29.7	521	10	2	0.53		
Quaker dairy fee	5-24	8.3	5.0	134	16.8	52.8	8.7	9,8	214	0.82	0.70
H. O, dairy feed..	6-20	8.8	3.8	18.9	133	512	4.0	9,8	3.02		
Victor corn and oat feed	4-64	9.9	4.0	8.9	12.8	606	38	9,8	1.42		
H. O. horse feed..	9-24	9.9	3.1	12.4	10.1	t0.4	4.1	9,8	1.98		
Barley...	10	10.9	24	12.4	27	69.8	1.8	1	1.98	0.79	0.48
Barley screening	2	12.2	3.6	12.3	7.3	51.8	2.8	1	1.97		
Wheat......	810	10.5	1.8	11.9	1.8	719	2.1	1	1.80	0.80	0.50
Wheat bran	88	11.9	5.8	15.4	9.0	538	40	1	2.46	2.89	1.61
Wheat middlings.	32	12.1	3.3	15.6	46	60.4	4.0	1	2.50	0.95	0.63
Wheat screenings	10	11.6	2.9	12.5	49	651	3.0	1	2 C 0		. . .
Mixed (wheat) fee	48	108	5.5	16.8	7.4	548	4.7	9	2.69		
Reddog flour.	1	9.0	3.8	222	19	57.4	5.7	8	3.55		
Rye.......	6	11.6	1.9	106	1.7	72.5	1.7	1	1.70	082	0.54
Ryebran	7	11.6	36	147	30.5	63.8	2.8	1	2.35	228	1.40
Buckwheat	8	12.6	2.0	100	87	645	22	1	1.10	0.44	0.21
Buckwheat hulls	2	11.6	2.8	5.6	35.0	43.4	1.6	1	090	007	0.62
Buckwheat bran	2	105	3.0	12.4	31.9	38.8	3.3	2	1.98	0.68	0.75
Buckwheat middli	6	11.5	4.5	27.5	4.2	45.3	70	1,8	4.40	195	0.99
Cottonseed meal.	10-249	8.3	6.9	454	5.5	22.7	11.2	9,8	726	2.88	1.87
Cottonseed feed.	8	11.7	3.1	12.0	310	39.1	3.1	7b	1.92	0.85	1.38
Cottonseed hulls	20	11.1	2.8	4.2	46.3	33.4	2.2	4	0.67	0.25	10%
Linseed meal (old proc's)	8-31	9.9	5.8	346	8.1	34.1	7.5	9,8	5.54	1.66	1.37
Linseed meal (new proc's)	4-43	10.7	5.6	38.1	8.2	34.8	2.6	9,8	6.10	183	1.39
Flax meal............	2	11.4	5.1	378	8.8	334	3.5	9,8	6.05	1.80	1.31
Gluten meal (Chtcago)..	5-88	12.3	1.3	365	1.4	45.8	2.7	6,8	5.84	0.39	0.06
Gluten meal (Oream)....	4-82	10.1	0.8	33.7	1.7	51.1	2.6	9.8	5.39	0.36	0.20
Gluten meal (King)..	1-17	74	0.5	33.7	1.2	52.6	4.6	9,8	539	036	0.07
Gluten feed (Buffalo).....	6-43	9.6	2.3	27.1	6.7	51.1	3.2	9,8	4.34	0.83	0.43
Gluten feed (Dlamond or Rockiord)	5-32	8.9	0.8	236	66	50.6	3.5	9,8	3.78	030	0.08
Hominy chop.	8-20	8.4	2.6	11.3	4.9	64.9	7.9	9.8	1.81	0.98	0.40
Starch feed, wet.	12	654	0.3	6.1	3.1	220	3.1	1	0.98		
Drled brewers' grains	3	8.2	8.6	19.9	11.0	51.7	56	1	3.18	103	0.09
Atlas gluten meal.	6	83	1.8	33.7	11.5	32.1	126	3.8	5.39	0.65	0.14
Malt sprouts.	4	10.2	5.7	23.2	10.7	48.5	1.7	1	371	143	163
Pea meal...............	2	105	2.6	20.2	144	511	12	1	323	0.82	0.99

TABLE III－AMERICAN DIGESTION OOFFFICIENTS；DIGESTIBLE INGREDI－ ENTS OF AMERICAN FEEDING STUFFS．

FODDERS．	品	DIGESTION Coefficients．						PERCENTAGE OF DIGEST－ BBLE INGREDIENTS．					
				豆 O L 0 0 0 0							$\begin{aligned} & \text { 荡 } \\ & \text {. } \\ & \text { O} \\ & 0 \\ & 0 \end{aligned}$		
ROUGHAGES． G een fodders．													
Pasture grass．．．．．．．．．．．．			70	${ }_{48} 6$	${ }^{74}$	73	55	138	12.6	2.3	30	7.1	04
Timothy		64	66	48	56	66	53	246	240	1.5	6.6	13.3	06
Kentucky blue grassi		1						223	21.4	1.3	6.2	11.7	0.5
Rowen	2	65	67	70	63	70	54	19.4	18.4	3.2	48	11.6	0.7 0.9
Fodder corn	14	68	70	60	60	74	74	141	13.7	1.1	30	90	0.4
Sweet fodder corn		71	72	64	63	77	76	148	141	1.2	28	9.9	0.4
Barley fodder．	2	66	68	72	61	71	60	164	155	24	4.0	85	05
Oat fodder．	3	60	61	72	53	63	69	297	215	24	58	12.0	10
Rye fodder	1	73	75	79	79	70	75	17.1	162	2.1	92	4.8	0.5
Hungarian．	3	67	68	64	71	68	66	194	189	20	6.5	9.7	0.5
Oats and peas．		63	67	76	80	68	68	138	131	2.7	36	62	07
Barley and peas	1	53	60	77	44	61	60	10.9	113	28	2.3	56	0.5
Red clover．	1	66	68	67	53	78	65	19.3	18.4	2.9	4.3	10.5	07
Alsike clover								16.6	158	26	39	86	0.6
Olover rowen．	1	59	61	62	53	65	61	14.8	140	29	33	72	0.7
Hays and dry fodders．													
Mixed hay	5	57	59	59	60	59	49	48.3	46.7	4.4	16.3	248	1.2
Timothy	17	57	59	47	53	62	52	495	486	28	15.4	27.8	1.3
Red top	2	¢0	61	61	61	62	51	547	5：4	4.8	17.4	29.5	1.0
Kentucky blue grassi								44.3	410	3.7	14.8	209	1.7
Rowen，mixed．	2	64	66	69	67	66	47	53.4	506	8.0	151	$2 \delta 0$	1.5
Rowen，fine								556	531	9.7	16.3	25.3	1.7
Corn fodder	10	68	${ }^{71}$	56	56	72	74	39.3	39.1	2.5	80	250	12
Corn stover	5	57	59	36	64	58	70	341	333	14	127	18.4	0.8
Oat hay	1	49	50	54	44	52	62	43.9	41.7	41	129	23.5	1.8
Oat and pea h								57.5	54.9	11.2	14.9	265	22
Hungarian		65	66	60	68	67	64	543	51.4	4.9	154	24.4	2.0
Red clover hay	8	57	¢0	58	54	64	55	48.3	47.1	7.1	13.4	244	1.8
Alsike clover hay	2	62	63	66	54	71	50	560	517	8.4	$1{ }_{10} 1.8$	28.9	1.5
Clover rowen hay	2	58	59	65	47	63	60	532	499	8.5	147	23.9	1.4
Barley straw＊．．	5	53		20	56	54	42	45.5	425	0.7	20.2	211	06
Oat straw．	1	50	52	＊30	58	53	38	45.4	44.6	1.2	21.5	225	0.
Wheat straw＊	7	43		11	52	38	31	389	37.1	0.4	19.8	165	0.4
Ryestraw＊．	9	46		21	60	37	32	42.7	40.4	0.6	23.3	17.2	0.4
Silages and roots．													
Corn silage（mature corn）	10	71	74	56	70	76	82	187	18.3	1.2	4.6	11.5	0.7
Corn slage（immature corn）	13	66	67	51	71	67	$\varepsilon 0$	13.8	131	09	43	74	0.6
Corn sllage（ears plucked off）．．		57	59	36	64	58	70	110	10.3	06	36	5.5	0.4
Olover sllage．								182	150	2.7	3.9	73	0.7
Potatoes．	1	76	77	45		90	13	160	15.5	09		156	
Beets．		7						10.9	104	1.4	0.9	80	0.1
Sugar beets	1	95	99	91	100	100	50	128	125	1.6	0.9	98	0.1
Carrots．．．		8						10.6	100	1.0	1.3	7.4	0.4
Mangel－wurtzel	1	79	85	75	43	71		72	68	1.1	04	50	
Kutabagas．		87	91	80	74	95	84	9.9	93	10	1.0	7.1	02
Turnips．．	1	93	96	90	100	97	88	8.8	8.4	1.0	1.2	6.0	0.2
Miscellaneous．													
Apples．．．													
Apple pomace．		9											
Pumpkins．．．．．．．．．．		－											
Skimmilk＊（separatos）．．．．．．）								92	8.5	29		5.2	0.3
Buttermilk＊+ ．		98	．．．	94		93	100	97	9.0	38		3.9	11
Whey＊\dagger								6.1	57	0.6		5.0	0.1

TABLE III-AMERIOAN DIGESTION COEFFICIENTS; DIGESTIBLE INGREDIENTS OF AMERIOAN FEEDING STUFES-Continued.

FODDERA.		diOESTION CoEmficients.						percentage of digest- IBLE INGREDIENTS.					
				Crude protein.	$\begin{aligned} & \text { L. } \\ & \text { D } \\ & \text { B } \\ & \text { D } \\ & \text { Di } \end{aligned}$			$\begin{aligned} & \text { L } \\ & \text { © } \\ & \text { E } \\ & \text { E } \\ & \text { D } \\ & \text { D } \end{aligned}$		号 品 0 0 0 0 0			
CONOENTRATES. Corn meal Grainz and byproducts.			90	68		95	92	757	752	63		65.3	3.5
Corn and cob me			80	56	48	83	84	67.1	687	48	30	570	2.9
Osts**		70		78	20	76	83	623	60 z	9.2	19	45.4	42
Provender ($1 / 2$ corn, $1 / 2$ oats)		80		73	10	86	88	696	67.8	7.7	0.6	55.2	39
Provender (as sold in New Eng)		10 11						70.7	${ }^{68.6}$	6.8	08	55.6	3.3
Oat hulls.		11						649	60.2	26	5.8	396	0.8
Quaker dalry fee		62	65	81	43	67	89	569	564	108	7.2	35.4	33
H O. dairy feed.		65	68	78	41	70	86	59.3	594	147	55	35.8	${ }^{3} 4$
Victor corn and oat feed		75	77	71	48	83	87	676	663	6.3	61	503	3.3
H. O. horse feed.		70	73	74	35	79	84	631	635	92	3.5	477	3.4
Barley*		86	...	70	50	42	89	76.6	746	8.7	1	64.2	1.8
Barley screenings								75.5	72.4	86	3.7	53.9	2.5
Wheat...		62											
Wheat bran.		${ }_{75}^{62}$	${ }_{79}^{68}$	${ }_{8}^{78}$	29	89		54.6	54.3		26	48.2	2.7
Wheat middlings.			79	80	33	81	80°	659 548	66.8	125	1.5	489 49	${ }_{2}^{3.4}$
Wheat screeniug Mixed (wheat) fot		14						615	611	133	$\stackrel{1}{2} 3$	411	36
Red dog flour..		15			.			68.3	689	178	06	48.5	49
Rye.....		187	89	84		82	64	769	770	89		68.7	1.1
Rye bran.								769	755	13.3		587	1.8
Buckwheat		9										\because	
Buckwheat hulls													
Buckwheat bran													
Buckwheat middlings					56	61				40.0	3.1	13.8	
Cotton seed meal Cotton seed ferd			76	88	50	61	93	583	671	7.9	161	21.8	. 8
Oottoa seed hulis.			41		40	41	86	356	353		185	137	1.9
Linseed meal (old process).	1	79	81	83	57	78	89	712	883	30.8	4.6	26.6	67
Linseed meal (new process)	2	79	82	85	80	88	97	705	686	334	66	299	25
Flax meal								700	c8.5	321	7.0	28.7	34
Gluten meal (Chicago)..)					\ldots			789	77.8	321	. .	41.2	25
G uten meal (Cream)		90	90	83		90	94	80.9 83	80. 8	29.7		48.0	2.4
Gluten meal (King) ${ }_{\text {Gluten meal (Buffalo) }}$								87.7	8.9 76.6	297 23 3	5.2	45	2.7
Gluten meal (Diamond or ${ }^{\text {Glut. }}$ (\because	86	87	86	78	89	84	78.3	78.6	20.3	5.1	50.4	2.
Hent Rockford)													
Hominy chop		90	93	77	82	95	81	824	838	87	4.0	617	8.4
Starch feed, wet								31.1 569	30.9 573	15.4		198	51
Dried brewers grains		80	$\begin{aligned} & 65 \\ & 83 \\ & 83 \end{aligned}$	$\begin{aligned} & 79 \\ & 73 \end{aligned}$	53	58 85	$\begin{aligned} & 91 \\ & 91 \end{aligned}$	569 78.4	57 74	$\begin{aligned} & 15.7 \\ & 26 \end{aligned}$	11.5	273	11.5
Atlasgluten meal. Malt sprouts		80	$\begin{aligned} & 83 \\ & 67 \end{aligned}$	$\begin{aligned} & 73 \\ & 80 \end{aligned}$	+	88	100	80.2	563	186	${ }_{3}$	330	1.7
Pea meal. .			83	83	26	91	5	779	765	168	37	480	0.7

${ }^{1}$ Assume timothy.
2 Assume red clover.
${ }^{3}$ Assume red top.
${ }^{4}$ Assume rowen mixed.
${ }^{5}$ Assume green otts and peas.

* European co sfficlents, no American experiments published
${ }^{6}$ Assume clover rowen has.
Assume sugar beets.
- Assume turnips.
${ }^{9}$ No basis for assumption.
${ }^{10}$ Assume provender.
${ }^{11}$ Assume oats.
${ }^{2}$ Assume barley.
\dagger Digestion coefficlents of whole milk.
${ }^{23}$ Assume bran.
${ }^{14}$ Assume moan of bran and middlings.
${ }^{25}$ Assume middlinge.
${ }^{16}$ Assume rye.
${ }^{17}$ A ssume $3 / 2$ meal, $1 / 4$ hulls.
${ }^{18}$ Assume new process linseed.
19 Assume gluten meal.

TABLE IV-POUNDS OF TOTAL DRY MATTER, TOTAL ORGANIC MATTER AND DIGESTIBLE INGREDIENTS (protein and carbohydrates [Including ether extract $\times 2.25]$) in varying weights of fodders and feeds, belng essentially a Convenience Table.

POUNDS OF FODDER.			号			Organic matter.	淢	Oarbohydrates, etc.			¢	$\begin{aligned} & \text { Uarbohydrates, } \\ & \text { etc. } \end{aligned}$
grasses.	PAStURE GRASS, 1:48.				TIMOTHY GRASS, 1:14.3.				RED TOP Grass, 1:14.6.			
$21 / 2$	05	05	006	0.3	10	0.8	0.04	0.5	0.9		0.03	05
5	10	0.9	0.12	0.6	1.9	18	0.08	1.1	1.7	1.6	0.07	1.0
10	2.0	1.8	0.23	1.1	3.8	3.6	0.15	2.1	3.5	32	0.13	1.9
15	30	2.7	0.35	1.7	5.3	54	0.23	32	5.2	4.9	0.20	29
20	4.0	3.6	0.46	2.2	7.7	7.3	0.30	4.3	6.9	6.5	0.26	3.8
25	5.0	4.5	0.58	2.8	9.6	91	0.38	5.4	8.7	8.1	033	4.8
30	6.0	5.4	0.69	3.3	115	10.9	045	6.4	104	9.7	0.39	57
35	70	6.3	0.81	39	13.4	127	0.53	75	121	11.3	0.46	6.7
40	80	7.2	0.82	44	15.4	145	0.60	8.6	13.9	130	0.52	7.6
GRASSES.	mentucey blue GRABE, 1:92.				GREEN ROWEN, 1:5 1				GREEN FODDBB COBN, 1:11 7.			
2	0.9	0.8	005	0.5	0 \%	0.7	0.08	0.4	0.5	0.5	0.03	. 3
	18	1.6	0.10	09	1.5	1.4	016	0.8	1.0	1.0	0.08	0.6
10	3.5	3.2	0.20	18	3.0	28	0.37	1.6	21	2.0	0.11	1.3
15	5.2	48	0.30	27	45	4.1	0.48	25	3.1	2.9	0.17	1.9
20	7.0	6.4	0.40	3.7	6.0	5.5	064	3.3	41	3.9	0.22	2.6
25	87	80	050	4.7	75	69	0.80	4.1	52	4.9	0.28	8.2
30	10.5	96	0.80	5.5	90	8.3	0.96	4.9	6.2	5.9	0.23	3.9
35	12.2	11.2	0.70	6.4	10.5	9.6	112	5.7	7.2	68	0.39	4.5
40	14.0	128	080	7.3	120	11.0	1.28	6.6	8.3	7.8	044	5.2
GREEN FODDERS.	SWEET FODDER CORN,				GREEN Barley fodDER, 1:5.7.				GREEN OAT FODDER,$1: 87$.			
21	05	0.5	003	03	$0{ }^{6}$	06	0.06	0.3	0.9	0.9	0.06	0.5
	1.0	1.0	006	0.7	1.2	1.1	0.12	0.7	1.9	18	012	1.0
10	21	2.0	0.12	1.4	2.5	2.3	0.24	14	3.8	3.5	0.24	2.1
15	3.1	2.9	0.18	2.1	37	3.4	036	21	57	5.3	036	3.1
20	42		0.24	27	5.0	4.6	0.48	2.7	7.6	7.1	0.48	43
25	52	49	0.30	3.4	6.2	5.7	080	34	95	89	$0 . f 0$	5.2
30	6.3	5.9	036	4.1	7.4	68	0.72	4.1	113	10.6	0.72	6.
35	7.3	6.8	0.43	48	8.7	8.0	0.84	48	13.2	12.3	0.81	7.3
40	84	7.8	0.48	5.4	9.9	91	096	5.4	15.1	14.1	096	83
GREEN FODDERS.	GREEN RYE FODDER, 1:\% 2.				GREEN HUNGARIAN,				OATS AND PEAS, 1:4.2.			
$21 / 2$	0.6	0.5	0.05	0.4	0.7	07	0.05	0.4	0.5	0.5	0.07	0.3
10	1.2	1.1	0.11	0.7	1.4	14	010	0.8	1.1	1.0	0.14	0.5
10	2.3	2.2	021	15	29	27	0.20	1.7	2.1	20	0.27	1.1
15	3.5	3.2	0.32	2.3	43	40	0.30	2.6	3.2	2.9	0.41	1.7
20	4.7	4.3	0.42	3.0	5.8	54	0.40	3.5	43	39	054	23
25	5.9	5.4	0.52	3.8	7.2	6.8	0.51	43	5.3	4.9	0.63	2.9
30 35	7.0	6.5	0.83	4.5	8.7	8.2	0.60	5.2	8.4	59	081	3.4
35	82	76	0.74	5.3	10.1	95	070	6.1	75	88	095	4.0
40	94	8.6	0.81	6.0	116	109	0.80	6.9	8.5	7.8	1.08	46
GREEN FODDERS	RARLEY ANO PEAS,$1: 3.2$.				RED CLOVER (green), 1:5.7				ALSIKE CLOVER (green) 1:5 3.			
2	05	0.5	0.07	0.2	0.7	0.7	0.07	0.4	06	0.6	0.07	0.3
10	1.0	09	0.14	0.4	1.5	14	015	08	1.3	12	0.13	0.7
10	2.1	19	0.28	0.9	29	27	0.29	1.6	2.5	23	$02{ }^{\circ}$	1.4
15	3.1	28	0.42	1.4	4.4	4.0	044	25	3.8	3.5	039	2.1
20	4.1	3.8	0.56	1.8	5.9	54	058	3.3	5.0	4	0.52	2.8
25	5.2	47	0.70	23	7.3	6 8	073	4.1	63	59	0.65	3.5
30	$6{ }^{6}$	5.6	0.84	2.7	8.8	82	087	4.9	7.6	7.0	0.78	4.2
35 40	7.2	${ }^{6} 6$	0.98	3.2	10.2	${ }^{9} 5$	102	5.7	8.8	8.1	0.91	4.9
40	8.2	75	112	3.6	11.7	109	118	66	10.1	83	1. 14	5.6

TABLE [V-POUNDS OF TOTAL DRY MATTER, TOTAL ORGANIC MATTER AND DIGESTIBLE INGREDIENTS-Continued.

POUNDS OF FODDER.	志		$\begin{aligned} & \frac{\square}{Q} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				g d O cis				范	Carbohydrates, etc.
GREEN FODDERS AND SILAGES.	GRIEN Cloter rotten. 1:4.2.				CORN SILAGE(mature),				CORN Bilage (immature), 1:14.6			
$21 / 2$	0.6	0.6	007	03	07	0.6	003	04	0.5	0.	0.0	3
5	13	12	014	0.6	1.3	12	006	08	1.0	1.0	0.05	0.6
10	25	23	0.29	1.2	26	2.5	. 0.12	1.8	21	2.0	0.09	1.3
15	3.8	35	0.44	1.6	39	3.6	0.18	2.7	3.1	2.9	0.14	1.9
20	50	4.6	0.58	2.4	53	4.9	0.24	3.6	4.2	3.9	0.18	2.6
25	6.3	5.8	073	3.0	6.6	6 2	0.30	45	5.2	4.9	0.23	3.2
30	7.5	69	0.87	36	7.9	74	0.38	5.3	63	5.9	027	39
35	8.8	8.1	1.02	4.2	92	8.7	0.42	6.2	7.3	6.8	0.32	4.5
40	10.0	9.2	116	4.8	105	99	0.48	7.1	8.4	78	036	52
SILAGES, ETC.	corn stoyer silage,				Clover Silage, $\mathbf{1}$:4.7.				POTATOES, 1:17.3.			
$21 / 2$	0.5	04	0.02	0.3	0.7	08	0.07	0.3	05	0.5	002	0.4
	10	09	0.03	05	1.4	13	0.14	0.6	1.1	1.0	005	0.8
10	19	18	0.06	1.0	28	25	027	13	2.1	2.0	009	1.6
15	2.9	26	0.09	15	4.2	38	0.41	1.9	3.2	30	0.14	2.3
	39	3.5	012	20	5.6	5.1	0.54	26	4.2	4.0	018	3.1
25	4.8	4.4	0.15	25	7.0	6.4	0.68	3.2	5.3	5.0	$0 \stackrel{2}{ }$	3.9
30	58	5.3	0.18	3.0	8.4	7.6	081	39	6.3	6.0	027	4.7
35	6.8	61	0.21	3.5	9.8	8.9	0.5	4.5	7.4	7.0	0.32	5.4
40	7.7	7.0	0.24	4.0	11.2	102	108	51	8.4	8.0	036	6.2
moors.	beets, 1:6.5.				SUgar beets, 1:68.				CARROTS, 1:9.6.			
$21 / 2$	03	03	004	02	0.3	0.3	0.04	0.3	0.3	0.3	0.03	0.2
5	0.6	0.5	0.07	05	07	06	008	0.5	0.5	0.5	0.05	05
10	1.2	1.1	014	0.9	1.4	1.3	0.16	1.1	1.1	1.0	0.10	1.0
15	1.7	1.6	0.21	14	2.0	1.9	0.24	1.8	${ }_{1}^{1.6}$	1.	015	1.4
20	23	21	028	1.8	27	2.5	032	2.2	23	21	0.20	1.9
25	2 9	26	0.35	23	34	3.1	0.40	2.7	2.9	2.6	0.25	2.4
30	3.5	31	042	2.7	4.1	3.8	0.48	33	3.4	3.1	030	2.9
35	4.0	3.7	049	3.2	4.7	4.4	0.56	3.8	40	36	0.35	3.4
40	46	4.2	0.56	3.6	5.4	50	0.64	4.4	46	42	040	3.8
ROOTS.	MANGEL WURTZELS, 1:4 9.				RLtabigas 1:8.6.				TURNIPS, 1:7.7.			
1/2	0.2	02	0.03	01	03	02	0.03	0.2	0.2	0.2	0.03	0.2
5	04	04	0.06	0.3	0.5	05	005	0.4	0.5	0.4	0.05	0.4
10	0.9	08	011	0.5	1.1	1.0	010	0.9	1.0	0.9	0.10	0.8
15	1.4	1.2	0.1 \%	0.8	1.6	15	(15	1.3	14	1.3	0.15	1.2
20	1.8	1.6	022	1.1	2.3	2.0	0.20	17	1.9	1.7	0.20	1.5
25	$\because 3$	20	0.28	1.4	2.9	2.6	0 95	22	24	2.2	0.25	1.9
30	2.7	$\stackrel{3}{2}$	033	1.6	3.4	3.1	0.30	2.6	2.9	2.6	0.30	2.3
35	3.2	28	039	19	4.0	3.6	035	3.0	3.3	30	0.35	2.7
40	3.6	32	0.44	2.2	4.6	4.1	0.40	34	3.8	3.5	040	3.1
milk.	SKIM MILK, 1:20.				buttermilk, 1:1.7.				WHEY, 1:87.			
$21 / 2$.	02	0.2	007	0.1	02	02	010	02	0.2	0.1	002	0.1
5	0.5	0.4	0.15	03	0.5	05	0.19	0.3	03	0.3	0.03	0.3
10	09	0.9	0.29	0.6	1.0	0.9	0.38	0.6	0.6	0.6	0.06	0.5
15	1.4	1.3	044	09	15	14	057	10	0.9	0.8	009	0.8
20	19	1.7	0.58	1.2	20	18	0.76	1.3	1.2	1.2	0.12	1.0
25	2.4	2.2	0.73	1.6	2.5	2.3	0.95	1.6	1.5	15	0.15	1.3
30	2.8	${ }_{2}^{2} 6$	0.87	1.8	3.0	2.8	1.14	1.9	1.9	1.8	0.18	1.6
5	3.2	3.0	1.02	${ }_{2} 1$	3.5	33	1.33	2.3	22	2.0	0.21	1.8
0 ...	3.7	3.5	1.16	2.4	4.0	37	152	2.6	2.5	2.3	0.24	2.1

TABLE IV-POUNDS OF TOTAL DRY MATTER, TOTAL ORGANIC MATTER AND DIGESTIBLE INGREDIENTS-CONTINUED.

TABLE IV.-POUNDS OE TOTAL DRY MATTER, TOTAL ORGANIO MATTER AND DIGESTIBLE INGREDIENTS.-CONTINCED.

$\begin{aligned} & \text { POUNDS OF } \\ & \text { FEED. } \end{aligned}$			B. ㅁ 0 0 0				\square 0 0 0 0 0				袁	
STRAWS.	OAT Straw, 1:38. 3.				WHEAT STRAW, 1:930.				RYE STRAW, 1:69.0.			
23/3	2.3	2.1	0.03	1.2	8.3	2.1	0.01	0.9	23	2.2	002	1.0
5	46	4.3	0.08	2.3	4.5	4.3	0.02	19	4.6	4.5	003	8.1
11/2	6.8	6.4	009	3.5	68	6.4	003	2.8	7.0	6.7	0.05	3.1
10	9.1	8.6	0.12	46	9.0	8.6	004	3.7	93	9.0	006	4.1
121/2	11.4	107	0.15	5.8	113	10.7	0.05	4.6	11.6	112	0.08	5
15	13.9	12.9	0.18	6.9	13.5	13.8	0.06	5.6	13.9	13.4	0.09	6.8
$17^{1 / 2}$	16.0	150	0.21	8.1	15.8	15.0	0.07	6.5	16.3	15.7	0.11	7.2
20	18.2	17.2	0.24	92	181	17.2	0.08	7.4	18.6	17.9	0.19	8.3
25	237	215	030	115	22.6	21.6	0.10	93	23.2	22.4	0.15	10.4
QRAINS.	CORN MEAL, 1:113.				CORN AND COB MEAL, 1:13 9.				OATS, 1:62.			
14	0.2	0.2	0.02	0.2	08	0.2	001	0.2	0.2	0.2	0.02	0.1
$1 / 2$	0.4	04	0.03	0.4	0.4	0.4	002	0.3	0.4	0.4	0.05	0
1	0.9	08	0.06	0.7	0.9	08	0.05	0.7	0.9	0.9	0.09	0.8
2	1.7	1.7	0.13	1.4	1.7	17	0.10	1.3	1.8	1.7	018	11
3	2.6	8.5	0.19	21	26	25	014	2.0	2%	2.6	028	1.7
4	3.4	3.3	0.25	2.9	3.4	3.3	0.10	27	3.6	3.4	037	2.3
5	4.3	4.2	082	3.6	4.3	4.3	0.24	3.4	4.5	43	046	2.8
$71 / 8$	6.4	63	0.48	5.4	6.4	63	036	5.1	6.7	65	0.69	43
10	85	84	0.63	7.1	8.5	8.4	0.48	6.7	8.9	8.6	082	5.7
GRAINS, ETC.	PROVENDER ($1 / 21 / 2) 1: 8.4$.				PROVENDER (us sold in New England) 1:9.4.				OAT HULLS, 1:18 2.			
1/4	03	0.2	0.02	0.2	02	0.2	002	0.2	0.2	0.2	0.0	01
1/2	0.4	0.4	0.04	0.3	04	0.4	0.03	0.3	0.5	0.4	0.02	0.3
1	09	09	008	0.6	0.9	0.9	0.07	06	0.9	0.9	0.03	0.5
2	17	1.7	0.15	1.3	1.8	1.7	014	1.3	19	1.7	0 C5	0.9
3	26	2.6	0.93	19	2.7	2.6	020	1.9	28	2.6	0.08	14
4	35	34	0.31	2.6	35	3.4	027	2.5	3.7	3.4	0.10	1.9
5	44	43	0.39	32	4.4	4.3	031	3.2	4.6	4.3	0.13	2.4
71%	65	6.4	058	49	6.6	6.5	051	4.8	7.0	6.5	020	35
10	87	8.5	0%	65	8.8	8.6	0.68	6.4	93	8.6	0.56	4.7
BYPRODUCTS.	QUAKER DAIRY FEED, 1:4.6.				H. O. DAIRY FLED, $1: 33$				victor corn and oat FEED, 1:10.1.			
14	0.2	02	0.03	01	02	$0 . \%$	0.04	0.1	0.2	0.2	0.02	0.2
1/2	05	0.4	005	0.3	0.5	04	007	02	0.5	04	0.03	0.3
1	0.9	0.9	011	0.5	09	0.9	015	0.5	0.9	09	006	0.6
2	1.8	1.7	022	10	18	1.7	029	1.0	1.8	17	013	1.3
3	2.8	2.6	033	1.5	2.7	26	0.44	1.5	2.7	2.6	0.18	18
4	37	3.5	044	2.0	36	3.5	0.59	2.0	36	3.4	025	2.5
5	4.6	4.4	055	25	4.6	4.4	074	2.5	4.5	43	032	3
$71 / 2$	6.9	65	082	3.8	6.8	6.5	110	3.7	6.8	6.5	047	4.8
10^{2}	9.2	87	109	50	9.1	87	147	4.9	9.0	8.6	063	6.4
BYPRODUCTS, ETC	H. O. HORSE HEED, 1:6 4				BARLEY, 1:8.0.				$\begin{aligned} & \text { BARLEY SCREH NIMGS, } \\ & 1: 7.7 . \end{aligned}$			
14	0.2		002	0.1	0.2 0.2 0.02 02				0.2 0.2 0.02 0.2			
1/2	0.5	04	0.05	0.3	04	0.4	0.04	0.8	04	0.4	004	0.3
1	0.9	0.9	004	0.6	09	09	009	0.7	09	0.8	0.08	0.7
2	18	17	0.18	1.2	1.8	1.7	0.17	1.4	1.8	1.7	0.17	13
3	2.7	2.6	0.28	1.8	37	8.6	0.26	2.1	2.6	2.5	0.26	20
,	36	35	087	24	36	3.5	035	2.8	35	3.4	0.34	2.7
5	4.5	44	0.46	2.9	4.5	44	0.44	3.5	4.4	4.2	0.43	3.3
$71 / 2$	68	6.5	0.69	4.4	67	8.5	0.65	5.2	66	6.8	0.65	50
10	9.0	8.7	0.82	59	8.8	8.7	087	69	8.8	8.4	0.86	6.6

TABLE IV.-POUNDS OE TOT\L DRY MATTER, TOTAL ORGANIO MATTER AND DIGESTIBLE INGREDIENTS-OONTINUED.

POUNDS OF FEED.			ジ				gi				$\begin{aligned} & \text { घi } \\ & \frac{0}{2} \\ & 2 \end{aligned}$	
BYPRODUCTS.	WHEAT BRAN, 1:38.				WHEAT MIDDLINGS 1:46				WHEAT SCREENINGS, 1:5 2.			
1	0.2	0.2 0.4	003 0	0.1 0.2	0.2 0.4	0.2 0.4	0.03 0.03	0.1 0.3	0.2 0.4	0.2 0.4	0.0 0.05	0.1 0.2
1	0.9	08	0.12	05	0.9	09	013	0.6	09	0.9	0.10	0.5
2	1.8	16	0.84	1.0	1.8	1.7	025	12	1.8	17	020	1.0
3	26	2.5	0.36	1.4	26	2.6	038	1.7	2.7	2.6	029	1.5
4	3.5	3.3	048	1.8	3.5	34	050	23	35	3.4	$0.3!$	2.0
5	4.4	4.1	060	23	4	4.3	063	8.9	44	4.3	0.49	2.5
$71 / 2$	6.6	6.2	0.93	3.4	66	64	0.94	44	66	6.5	() 74	3.8
$10^{1 / 2}$	88	82	120	4.6	8.8	8.5	125	5.8	8.8	86	098	5.1
BYPRODUCTS, ETC.	MIXED (wheat) FEED, 1:39.				RED-DOG ELOUR, 1:3.3.				RYE, 1:7.8.			
$1 / 4$	02	02	003	0.1	0 \%	02	0.04	0.1	02	U	002	0.2
	$0 \pm$	04	0 C	03	05	0.4	009	0.3	0.4	0.4	0.04	0.3
1	0.9	0.8	0.13	05	0.9	0.9	018	0.6	0.9	0.9	0.09	07
2	1.8	17	0 \% 7	10	1.8	1.7	036	1.2	18	1.	0.13	1.4
3	2.7	2.5	0.40	15	27	2.6	0.53	17	2.7	2.6	0.27	2.1
4	36	83	053	2.1	3.6	3.6	071	23	35	3.5	0.35	2.8
5	45	4.3	0.67	26	4.6	4.4	089	29	4.4	4.	046	3.5
$71 / 8$	67	6.3	1.00	3.8	68	6.5	1.34	4.4	66	6.5	1167	5.2
10	8.9	8.4	1.33	5.2	9.1	8.7	1.78	5.8	88	87	089	69
BYPRODUCT	RYE BRAN, 1:5.1.				COTTONSEED MEAL, $1: 1.0$				COTTONSEED FEED, 1:56			
	0.2	0.2	0.03	0.2	0.2	02	010	01	$0 . \because$	0.2	002	. 1
,	0.4	0.4	0.06	0.3	05	04	0.20	0.2	0.4	0.	0.04	0.2
1	09	0.9	013	06	0.9	09	0.40	0.4	09	09	008	0.4
2	1.8	1.7	025	13	1.8	1.7	0.80	0.8	18	11	6.16	0.9
3	27	26	0.37	1.9	3.8	26	120	12	2.1	2.6	021	1.3
4	3.5	3.4	049	25	3.7	3.4	1.60	1.6	35	3.4	0.32	1.8
5	4.4	43	062	3.1	4.6	4.3	2.00	20	44	4.3	0415	2.8
$71 / 2$	6.6	64	0.92	4.7	69	6.4	3 CO	30	66	64	0.59	3.3
10	88	8.5	1.23	63	9.2	85	400	40	88	8.5	0.79	44
BYPRODUCTS.	COITONSEED HULLS, --				$\begin{gathered} \text { LINSEED MEAL (O.P.) } \\ 1: 15 \end{gathered}$				LINSEED MEAL (N. P.),			
	0.2	02		0.1	0.2	0.2	008	0.1	0.2	02	003	01
.	04	0.4		02	05	04	0.15	0.2	04	0.4	016	02
1	09	0.9		0.4	0.9	08	0.31	0.5	0.9	08	032	0.
2	1.8	1.7		07	1.8	1.7	0.63	10	18	1.7	065	08
3	2.7	26		1.1	2. $\%$	25	092	1.4	2.7	2.5	0 0 17	1.3
4	3.6	3.4		1.5	8.6	34	1.2)	18	3.6	3.4	1.30	1.7
5	4.5	43		18	4.9	$4 \stackrel{3}{2}$	1.54	2.3	45	42	1.62	2
$71 / 2$	67	65		2.7	68	6.3	231	3.4	6.7	6.3	2.43	32
10	8.9	86		3.7	90	84	3.08	4.6	8.9	84	3.24	4.2
BYPRODUCTA.	FLAX MEAL, 1:1.4.				Gldten meal(Chicago) 1:15.				gluten meal (Cream) 1:17.			
1	02	0.2	0.05	0.1	0.2	0.2	0 08	01	0.2	0.2	0.07	0.1
1/2	0.4	0.4	0.6	0.2	0.4	0.4	016	0 \%	0.4	0.4	0.15	0.2
1	0.9	08	0.33	0.4	0.9	0.9	03%	0.5	0.9	0.9	030	0.5
2	1.8	17	0.64	09	18	1.7	0.64	09	18	1.8	059	10
3	2.7	25	096	1.3	26	2.6	0.96	1.4	2.7	2.7	0.89	1.5
4	36	34	1.98	1.7	35	34	1.28	1.0	36	3.6	1.19	$\because 1$
5	45	4.2	1.60	22	44	4.3	160	2.3	4.5	45	1.49	2.6
$71 / 2$	6.7	6.8	2.40	3.3	6.6	6.5	2.40	35	8. $\%$	6.7	2.23	39
10 ...	8.8	84	3.21	43	8.8	8.6	3.21	47	90	89	297	51

TABLE IV．－POUNDS OF TOTAL DBY MATTER，TOTAL ORGANIO MATTER AND DIGESTIBLE INGREDIENTS－Continued．

$\begin{aligned} & \text { POUNDS OF } \\ & \text { FEED. } \end{aligned}$			吕				号	$\begin{aligned} & \text { Carbohydrates, } \\ & \text { etc. } \end{aligned}$			发	
BYPRODUCTS．	$\text { GLUTEN } \underset{\substack{\text { MEAL. } \\ 1: 1.9 .}}{ }(\mathrm{King}),$				Gluten feed（Buffalo or Marshalltown）1：24				GLUTEN FEED（Diamond or Kockford）， $\mathbf{1 : 3 0} 0$			
4	0.2	$0 \stackrel{2}{2}$	0.07	0.1	0.2	0.2	0.06	0.1	0.2	0.2	005	0.2
	0.5	05	0.15	03	0.4	0.4	012	03	0.5	04	010	0.3
1	0.9	09	030	0.6	0.9	09	023	0.6	09	0.9	020	0.6
	1．8	17	0.59	11	1.8	1.8	047	11	1.8	1.8	0.41	12
3	28	1.8	0.89	1.7	27	2.6	0.70	1.7	2.7	27	0.61	1.9
4	3.7	37	119	23	36	3.5	0.93	2.3	3.6	3.6	0.81	2.5
5	4.6	4.6	1.49	28	45	44	117	2.8	4.6	4.5	112	3.1
7112	69	6.9	2．：3	4.3	6.8	66	1．75	4.3	68	68	152	4.7
10 ．．．	9.3	9.2	287	57	9.0	8.8	233	57	9.1	90	203	6.2
BYPRODUCTS．	HOMINY CHOP，1：9．2．				Starch feed，wet，1：49				DRIED BREWERS GRAINS，1：3．0．			
	0.2	02	0.02	$0{ }^{2}$	0.1	0.1	001	01	0.2	02	004	0.1
	0.5	0.4	0.04	0.4	02	0.2	0.03	0.2	05	04	0.08	0.3
1	0.9	0.9	0.19	0.8	03	0.3	0.05	0.3	09	0.9	016	05
	1.8	1.8	0.17	1.6	0.7	06	0.11	0.5	1.8	1.8	0.31	0.9
	28	2.7	026	2.4	1.0	1.0	0.16	0.8	2.8	2.6	0.47	1.4
4	3.7	3.6	0.35	3.2	1.4	1.4	0.82	1.1	3.7	3.5	063	1.9
	4.6	45	0.44	4.0	1.7	17	0.27	1.3	46	44	079	2.4
	6.9	67	0.65	6.0	26	26	0.41	${ }_{9}^{1.7}$	${ }_{6}^{6} 9$	6.6 8.8	1.18	3.5
	9.2	89	087	8.0	3.5	3.4	054	2.6	92	88	157	4.7
BYPRODUCTS	atlas gluten meal，				MALT SPROUTS，1：2．2．				PEA MEAL．1：32			
	02	0.2	0.06	0.2	0.2	0.2	0.05	0.1	0.2	0.2	C． 04	0.1
	0.5	04	012	03	0.4	0.4	0.09	0.2	04	04	003	0.3
1	0.9	09	0.25	0.6	09	0.8	019	0.4	09	0.9	017	0.5
2	1.8	1.8	049	1.3	1.8	1.7	0.37	08	18	17	0.33	1.1
3	2.8	$\because .7$	0.74	1.9	2.7	25	0.56	12	2.7	2.6	0.50	1.6
4	37	3.6	0.98	$2{ }_{2}$	3.6	3.3	074	1.6	36	35	0.67	2.1
r	4.6	45	1.83	3.2	4.5	4.2	0.93	20	45	44	0.84	2．7
74	6.9	6.7	185	49	6.7	68	1.40	3.0	6.7	6.5	1.26	4.0
10 ．．．．．．．．．．．．	9.2	90	246	65	90	8.4	1.86	4.0	90	8.7	1.68	5.3

After the table of feeding standards has been selected，and the table of chemical composition with those of the digestible substances present in the feeding materials，the problem remains for the farmer to apply and test them thoroughly in order that they may be useful．

Table IV，a convenience table，with Nos．II and III，have been taken from bulletin 81 of the Vermont experiment sta－ tion by Prof．J．L．Hills．The convenience table will save much of the tedious work connected with the calculation of a ration．In order to illustrate the use of the tables and the feeding standards，it would be well to let Professor Hills explain the use of the convenience table in his article on this subject．

CALCULATION OF A FEEDING RATION.

"Let it be assumed, for the illustration, that a farmer has a cow weighing about 900 pounds and giving about 30 pounds of milk a day, to which he wishes to feed a ration balanced according to the Wolff-Lehmann standard; that he has hay (timothy, Kentucky bluegrass, clover, etc., essentially 'mixed grasses'), fairly mature corn silage, bran and cob meal, and that he can buy cottonseed meal, Chicago gluten meal, Quaker dairy feed, mixed (wheat) feed, Buffalo gluten feed and hominy chops. How shall he proceed to figure out his ration? Rנference to the standard shows that the 1,000 pound cow should be fed 32 pounds of dry matter, 3.3 pounds protein, 13 pounds carbohydrates and 0.8 pounds ether extract, nutritive ratio, 1:4.5. The ether extract figures are multiplied by 2.25^{*} and added to those of the carbohydrates, and then all the figures are multiplied by nine-tenths. This latter is done because a 900 -pound cow weighs nine-tenths what a 1,000 -pound cow does, and is held, according to the standard, to need approximately but nine-tenths the nutrition. As a matter of fact, she probably needs a little more than this.
$" 0.8 \times 2.25=1.8 . \quad 13+1.8=14.8 . \quad 32.0 \times .9=28.8 . \quad 3.3$ $\times .9=2.97 . \quad 14.8 \times .9=133$.
"The Wolff-Lehmann standard for a 900 -pound cow giving 30 pounds milk, therefore, requires that the daily food shall contain 28.8 pounds total dry matter, 2.97 pounds digestible protein, 13.3 pounds digestible carbohydrates and ether extract; and, if this is fed, the nutritive ratio will be 1:4.5.
"The next step is to supply these nutrients. The convenience table (table IV) shows that of the feeds on hand bran alone has a nutritive ratio (1:3.8) narrower than the standard. The hay, silage and cob meal have 'wide' ratios ($1: 10.0,1: 14.8$, $1: 13.9$), all wider than the standard. Hence purchases must be made, and these must be of gojds with narrow ratios. The materials available are found to have ratios as follows from narrowest to widest: Cottonseed meal, 1:1.0; Chicago gluten meal, 1:1.5; Buffalo gluten feed, 1:2.4; mixed (wheat) feed, 1:3.9; Quaker dairy feed, $1: 4.6$, and hominy chop, $1: 9.2$. It is at once perfectly clear that the latter two feeds will not aid in balancing the ration, and that the mixed (wheat) feed will not be of much avail. Hence choice should be made of one or

[^247]more of the first three, accordiag to price and other considerations. Let us assume that the cottonseed and Buffalo goods be chosen and proceed to figure our ration.
"It is generally desirable to make as large use of roughages as possible because of their cheapness. The amounts which can be consumed vary with different animals. In dairy feeding, however, more than half, and often as much as two thirds, of the total dry matter should be gives in the form of roughage.
"Let us, as a preliminary trial, take 10 pounds hay, 25 pounds silage, 4 pounds bran and 1 pound each of cottonseed meal and Buffalo gluten feed. Turning to the 'convenience table, ' we find the total dry matter, digestible protein and carbohydrates, etc., calculated for these weights:

	Dry	Digestible	Digestible	Nutritive
	matter.	protein.	carbohydrates.	ratio.
Hay, 10 pounds.	8.5	0.44	4.4	
Silage, 25 pounds	6.6	0.30	4.5	
Bran, 4 pounds...	3.5	0.48	1.8	
Cottonseed meal, 1 pound	0.9	0.40	0.4	
Buffalo gluten feed, 1 pound.	0.9	0.23	0.6	
Total	20.4	1.85	11.7	1:6.3
Standard.	28.8	2.97	13.3	1:4.5

"How do they cmpare? Eight pounds short in total dry matter, one pound short in prstein, one and one-half pounds short in carbohydrates; 30 per cent lacking in dry matter, nearly 40 per cent in prote n, but only 12 per cent short in carbohydrates. What shall be used to bring the ration up? More roughage will increase carbohydrates faster than prorein; more bran will do the same, but not as rapidly; more cottonseed meal will not, and more gluten food will help more than it will hinder. Inasmuch as it is of doubtful wisdom to feed cottonseed meal very heavily, let us see what the addition of 2 pounds of cottonseed meal and 1 pound of gluten feed will do.

	Dry	Digestible	Digestible	Nutritive
	matter.	prot 10.	carbohydrates.	
Cottonseed meal, 2 pounds.	1.8	0.80	0.8	
Buffalo gluten feed, 1 pound.	0.9	0.23	0.6	
Total	2.7	1.03	1.4	
Former result	20.4	1.85	11.7	
New total	23.1	2.88	12.8	1:4.4
Standard..	28.8	2.97	13.3	1:4.5

"The ration now 'balances,' yet is still nearly 6 pounds short of total dry matter. Since the ration is a shade narrow
rather than wide, one will naturally add now the material with the widest ratio, i. e., silage. Bu; there is a limit to the bulk the animal can handle, so that hay may be preferable with some animals. Let us increase the hay $2 \frac{1}{2}$ pounds.

	Dry	Digestible	Digestible	Nutritive
Hay, $2^{\frac{1}{3}}$ pound	mater. 2.1	protein. 0.11	carbohydrates.	rat
Second total	23.1	2.88	12.8	
New total	25.2	2.99	13.9	1:46
Standard. .	28.8	2.97	13.3	1:4.5

"The result is still low in total dry matter, while giving plenty of nutrients. The ration lacks slightly in bulk but not in food. To try and obtzin bulk with fodders on hand would result in feeding more than the standard amounts of the nutrients. Bulk without much nutriment could be furnished by straw, but, as a matter of fact, this is not very important. A ration of 12.5 pounds hay, 25 pounds silage, \pm pounds bran, 3 pounds cottonseed meal and 2 pounds of Buffalo gluten meal would meet the Wolff-Lehmann standard requirements for a 900 pound cow with a sufficient approximation to accuracy.
"This is a very narrow ration, and, if ever adopted, should be used with cution particularly at the outset. Three pounds of cottonseed meal is heavy feeding, heavier than is often advisable. Were half this replaced with linseed the ration would be the safer but a trifle poorer in protein.
"The longer and complete figuring is carried out as follows: The average analysis of mixed hay, so far as it pertains to the ingredients called for in the determination of the standard, is as follows (Table II): Dry matter 84.7 per cent ($100-15.3$ per cent water), crude protein 7.4 per cent, crude fiber 27.2 per cent, nitrogen-free extract 42.1 per cent, ether extract 2.5 per cent The digestion coefficients for these ingredients are respectively (Table III), .59, .60, .59, and .49. Multiplying each percentage by its digestion coefficients gives the digestible ingredients in 100 pounds (Table III), protein, $4.4(\overline{7} .4 \times .59)$ crude fiber, 16.3 ($27.2 \times .60$), nitrogen free extract, -24.8 ($42.1 \times .59$) ether $\in x$ xtract, $1.2(2.5 \times .49)$. Adding the fiber and the nitrogen-free extract and 2.25 times the ether extract for "carbohydrates and ether extract," we get 43.9. Ten pounds of hay being fed, each fig. ure is multiplied by . 10 (10 being $1-10$ ot 100) with results as follows: In 10 pounds of mixed hay, total dry matter 8.5 pounds, protein 0.44 pounds, carbohydrates etc.. 4.4 pounds. These are the figures given on the top line of the table on page

484, which were read directly from the convenience table (Table IV), at the left hand side of page 479 . The use of this table obviates this tedious though simple calculation."

For a consideration of the subject in general, Professor Henry's work on "Feeds and Feeding" is recommend?d for those who may desire to study the subject more thoroughly than it is possible to present in this paper.

CONDIMENTAL FOODS.

At present in addition to the important question relating to feeds and feeding the farmer has his attention attracted to the various advertieements of the so-called "cattle-foods" and the extraordinary claims made for these substances often lead one to conclude that it would be wise to give them a trial The following extract is taken from Bulletin No. 166 of the New York Experiment Station and presents the results of an investigation which will be of value to those interested in this subject.
"There is found very prevalent in our markets a class of substances bearing the term "food" that are noted chiefly for being sold in small packages at remarkable prices, on the strength of claims which are sometimes startling even in this time of daily miracles as $s \in t$ forth in the advertising columns of our newspapers. These proprietary wonders are usually marvelous both in their nutritive and their healing effects, for if one may believe the statements concerning some of hem, they are remarkably loaded with nutritive energy and the diseases they will not cure would be highly interesting to the veterinarian as pathological novelties. It is most surprising to find after being toid that the effect of these "foods" is to enrich milk, produce bovine obesity with remarkable rapidity and banish disease, that so far no one of them has been exami ed that is not made up largely of some comm on grain product mixed with more or less of the commonest drugs and other substances having little curative value, nearly all of which of any merit whatever may be found on the pantry shelf or in the horse stable of many farms. It is strange,too, that farmers have not long ago discovered for thomselves, if it is true, that when bran or some other common feeding stuff is compounded with the equally common charcoal, sult, sulphur, saltpetre, fenugreek, etc., the nutritive power of the food is greatly enhanced and the drug takes on unheard of curative properties. Nevertheless we are assed to believe such is the case. No
evidence of the accuracy of these unusual properties is furnished, save the usual list of testimonials, the reliability of which may be judged in the light of the fact that some of the most absurd impositions ever perpetrated on the public have been abundantly approved by similar evidence. Years ago Lawes \& Gilbert condemned patent foods at the prices for which they are sold, and important experiments conducted in recent years have not furnished the least justification of their purchase by stockmen. Farmers may accept with perfect confidence this statement, viz.: That there are no nutritive properties, compounds or influences yet discovered which are not possessed by the common feeding stuffs, neither is it possible to increase for well animals the nutritive effects of protein and carbohydrates by associating with them any compounds or drugs whatever.

As to the medicinal value of condimental foods, it may be safely asserted that well animals, properly fed, need no medicine, and sick animals should receive treatment specifically adapted to their ailments. Universal preventatives and curealls of diseases are unknown and believed in only by those who are ignorantly credulous. More than this, many of the constituents of condimental foods have no recognized curative value.

But notwithstanding all that has been said again and again to the farming public concerning condimental foods, they still find a sale. Not less than fifteen brands have been examined at this station during the past two years, all of which were found in New York markets. Their analyses from a food standpoint follow:

Samples of patent foods Collected in new york DURING 1898 AND 1899.

Station Price perNo. Sample; where collectcd.pound.
445 Corning
\$. 20
446 Corning
05
448 Hornelsville
25
450 Hornelsville
$07 \frac{1}{2}$
451 Hornelsville
25
456 Canisteo
18
457 Dansville
$10 \frac{1}{2}$
458 Dansville
$13 \frac{1}{3}$
459 Dansville
$06 \frac{1}{3}$
460 Mt. Morris.
10
461 Mt. Morris
50
462 Buffalo15

ANALYSES OF SAMPLES OF PATENT FOOD.

	NAME.						
445	Flower City Horse and Cattle Food.	9.27	11.29	1437.	9.70	21.0	5.12
446	International Stock Food..	8.13	9.92	13.88	5.68	219	7.91
448	Blatchfurd's Calf Meal	7.12	5.74	2613	4.23	22.7	458
450	Nutritone	690	20.17	2219	4.94	23.5	¢. 13
451	Pratt's Cattle Food	7.25	6.36	1456	5.78	35.4	7.53
456	Rochester Horse and Cattle F'ood.	8.00	8.19	18.44	10.59	21.5	3.61
457	Anglo-American Food for Stock	7.20	13.28	15.50	7.86	258	4.85
458	Climax Food	7.24	2109	9.94	4.14	17.2	*2253
459	Colonial Stock Food	7.28	14.51	9.81	1199	288	2.54
460	Royal Stock Food.	5.56	44.07	11.25	973	137	3.52
461	Baums' Horse and Stock Food \qquad	8.05	1087	27.81	13.00	9.2	7.75
462	Chas Marvin Stock Food.	826	597	30.94	1063	18.2	428
485	Triplex stock Food.	7.10	12.05	15.31	631	28.8	5.66
502	Champion Horse and Catthe Food.	8.99	14.40	1069	4.74	41.2	4.68
539	Wilbur's Seed Meal.......	7.13	12.16	2000	8.18	20.9	5.63

"In these mixtures were found as the principal constituent some common feeding stuff like bran or other wheat cffals, corn offals, linseed meal and so on. The special ingredients, added ostensibly for medical effect, were found to include charcoal, fenugreek, gentian, sulphur, salt, saltpetre, sodium sulphate, iron compounds and pepper.
"Particular attention is called to the prices a" which these 'foods' are sold. The range is from $\$ 100$ to $\$ 500$ per ton, which is at least from 870 to 8470 per ton more than the materials are worth for food purposes. It may be claimed, as some of the manufacturers urge, that these mixtures should be regarded as medicines. Even if this is true, the farmer who wishes to administer any of these common sunstances to his animals can do so at a small fraction of their cost in condimental feed by purchasing them as drugs and then mixing them with the grain ration as he wishes. For the promoters of these mixtures to claim that they have any knowledge of compounds and compounding not common to veterinary medicine is charlatanism in its most offensive form.
"Blatchford's calf meal is advertised as a food of great. value. Director Woods, of the Maine station, has given this

[^248]product a careful examination, and his report concerning it includes the following statements:
"، These goods were sent to an expert on food mixtures and adulterations, at the Connecticut experiment station, who reports as follows: "I have examined Blatchfords calf meal under the microscope, and find it contains linseed meal, some product from the wheat kernel, some product from the bean kernel and a little fenugreek. The linseed meal appears to be the chief constituent. The wheat product is bran, middlings or some similar product consisting of starchy matter mixed with more or less of the seed coats. Bean bran was present in considerable amount and more or less of the starchy matter."
"' In a letter just at hand from Mr. J. Barwell, the proprietor of these goods, he says: "Regarding the ingredients, I cannot give you the exact constituents of it, but I may say that it is composed mostly of locust bean meal with leguminous seeds, such as lentils, etc., and oleaginous seeds, such as flax seed, fenugreek and anise seed, all cleaned, hulled and ground together and thoroughly well cooked. There is no cheap mill food and no low grade feed enters into its composition. I am prepared to go into any court in the United States and make an affidavit that there is no farmer in the United States that can compound Blatchford's calf meal for less than $\$ 3.50$ per hundred.'
"'Locust bean meal, which Mr. Barwell claims to be the chief constituent of Blatchford's calf meal, is practically not used in this country as a cattle feed. The average of ten English and German analyses show it to carry: Water, 14.96 per cent; ash, 253 per cent; protein, 5.86 per cent; crude fiber, 6.39 per cent; nitrogen free extract, 68.98 per cent; fat, 1.28 per cent.
"' It is evident, from the chemical analyses, that locust bean meal cannot be the chief constituent of Blatchford's calf meal, but that the microscopist is correct that linseed meal is the chief constituent. Locust bean meal has only 6 per cent of protein, and, in order to make a mixture carrying from 26 to 33 per cent of protein, it would be necessary to add large quantities of goods, like linseed meal, rich in protein. As seen from the analyses, Blatchford's calf meal has a feeding value somewhat inferior to old process linseed meal. Whatever it may cost to manufacture, no man who has sufficient intelli-
gence to mix feeds can afford to buy it at anything like the price asked.'
"In the light of this information the farmers of New York must decide whether they can afford to pay at the rate of $\$ 100$ per ton for materials no more valuable than the se which are generally offered in our markets at ordinary prices. Special mention is made of this feed because it is sold for distinctively food purposes, and because, prices considered, it perhaps does the farmer's pocketbook as little harm as any other food mentioned in the above list, and less than all excepting No. 462. At the same time it typifies all those efforts here discussed of mixing common materials and selling them under extraordinary names at extraordinary prices."

LAWNS AND LAWN MAKING IN IOWA.

A discussion of the subject of grasses would be incomplete without some reference to lawns. There are few subjects of more general interest to the business man and owner of a home than the preparing and maintaining of a lawn. Nothing adds so much to the beauty of a home as a well-kept lawn. The owner of a few feet of ground delights in the smooth even turf as much as the owner of acres of ground Nor does anything add so much to the beauty of the home as a green well-kept lawn, whether this consists of a few feet or a broad and large lawn with acres of ground, with its broad vistas and beautiful shrubbery here and there. A good, well-kept lawn should not only please the eye but be restful to those who make use of it.

How to obtain a good lawn is not understood by everyone. Lamson-Scribner says:" "Firmness and permanency may be secured, but they are results which cannot be obtained by hasty and unskilled preparation. A perfect lawn cannot be made in a season, and the highest excellence sought comes only through intelligent care for a period of years. A green surface may be secured within a few months under favorable conditions, but a soft, velvety turf, which is both a delight to view and to walk on, comes only with years of patient care."
"In regard to the preparation and general treatment the published paper of Lamson Scribner may be used in this connection.

Preparation of the Land.-"In what follows, proper grading and thorough drainage are presupposed. A well-drained soil is of the first importance and is absolutely necessary to success. Where the process of grading has involved much filling in; time should be allowed for the settling of the soil, and dur-. ing this period a hoed crop may be cultivated on the land to advantage. If the land is very weedy, the cultivation of corn or potatoes for a season will assist in reducing the stock of weeds. It must be remembered that the lawn when once

[^249]formed is to re nain undisturbed; the sward is to be permanent, and hence the impostance of most thorough preparation of the soil. In most ca:es, particularly in eastern and northern states, a liberal application of fertilizors is necessary. If the land is native sod, this should be top dressed in the fall with well-rotted stable or burnyard manure, and the sod then turned by plowing. The decomposition of this sod will add to the soil that most raluable of fertilizing elements, humus. In the following spring a top-dressing of old well-composted manure should be applied at the rate of 8 to 12 cords to the acre, according to the natural fertility of the soil, and the land cross plowed. The surface then should be made as tine as possible by repeated harrowing; and thorough rolling before the seed is sown. The deeper the soil is stirred in plowing the better the results and the less care will be required in keeping the soil in good condition.
"The nature of the subsoil has great influence upon the growth of the grass and the permanence and beauty of the lawn. Over a light and gravely subsoil the grass is not infrequently destroyed by summer drough $\%$. The best soil for the formation of the lawn is a fine, saady loam over clay subsoil. Where the effects of heat and dr sught ara most severely felt, the siil must be most deeply and thoroughly worked in its preparation. It not infrequently happens in the case of dooryards and plots surrounding city and suburban residences that the soil is largely composed of the earth excavated in making the foundations. This earth is entirely unsuited for the g owth of grass, and, where a lawn is desired, should be entirely removed or c svered to a sufficient depth with fine earth rich in humus, to insure the healthy and permanent growth of the grass. This added soil should be at least one foot in depth and a depth of two feet will repay the extra labor in the final results.
"In western states and in the south it is not customary to stir the soil so deeply as recommended above. The practice, however, can well be applied in most localities in the south, but in "the west, where the soil conditions are essentially different from those in the east, the method pursued must be governed by the local requirements. A coarse, uneven soil will only yield coarse grasses and finely worked surface will produce the finer sorts, which alone are desired.

Fortilizers.-_"Reference has already been made to the use of well-rotted barnyard or stable manure in the preparation of the land for lawns. This is the best fertilizer to apply when it is to be plowed under, but only old and well-composted manure should be used. Whel such cannot be obtained, commercial fertilizers may be substituted, and with these a liberal supply of lime and bone meal can be worked into the soil before seeding. Wherc it is necessary to apply fertilizecs after the grass has started in order to maintain fertility, land-plaster, bone meal, nitrate of soda and hard wood ashes are most commonly employed. A full dressing of cleur sheep manure, three to five tons per acre, followed by an early spring dressing of unbleached hard wood ashes (containing x per cent potash) at the rate of threa to five tons per acre, acco-ding to the fertility of the soil, is advised by one correspondent.
"A common practice is to top dress lawns in the fall or early winter with a compost, adding in the spring a dressing of bone meal and hard wood ashes; ia the place of the fall dressing of compost, hard wood ashes may be substituted A too frequent use of hard wood ashes, however, is to be avoided, as it will induce the growth of clover at the expense of the grasses. Bone meal, hard wood ashes and lime are the fertilizers most generally used to maintain the fertility of the lawn, whether shaded or exposed to the sun. When the soil has been properly prepared and enriched, th re is little difficulty in securing a good growth of grass under the trees if the branches are not too low.

Selection of Lawn Grasses.-"The value and beauty of a lawn depends upon the color, texture and turf-forming habit of the grass selected. A grass may be of good color but harsh in texture and incapable of producing a turf, or it may form a good sward and have a satisfactcry texture, but be deficient or even unsightly in color."

Kind of Lawn Grass for Iowa -The value and beauty of a lawn grass depends upon the toxture and color of the grass, one that forms a good turf. In Iowa we have but one species that is generally used, namely, blue grass. In the tropical countries turf-forming grasses are almost unknown, so in the warmer parts of our owa country the good turf-forming grasses are less common than in Iowa. The chief glory of our northern landscapes are the fine turf-forming grasses, and in the Mississippi valley blue gras; is preëminent. "Turf grasses
are the pasture grasses of New Eng'and and the middle states. Nowhere will we find a better turf or a finer or more even texture or more plea a at to walk on, than in some of the pastures near the New England coast, waich have be ?n grazed by sheep for the past hundred years or more. Where these pastures have been grazed the closest and trampled the most, there will bs the closest and most even turf, composed generally of a siggle variety of grass. Such turf as we are considering (turf suitable for lawns) is produced either by the grazing o^{*} stock, particularly sheep, or by the frequent and intelligent use of the lawn mower and roller. The value of sheep in turf formation is recognized by the managers of public parks, and has been taken advantage of by some This is notably the case in Ceatral Park, New York, and Druid Hill Park, Baltimore." In the semi-arid regions of the west the smooth, even turfs are wanting, the species frequently growing in bunches. Northwestern Iowa deparis somewhat from the conditions prevailing in other sections of the state, since the rainfall for a good turf is somewhat deficient.

In regard t the color and texture: "A deep, rich emerald green is the shade most desired in a lawn grass, as it is generally pleasing and certainly the most beautiful of all tints. No grass in the northern and middle states fills this requiremeat so well as Kentucky blue grass; the color of this grass, when grown under favorable conditions, may be ragarded as the standard upon which to base comparisons. Different varieties of Kentucky blue grass show slight variations in color, some being lighter than others, but upon the whole the deep, rich shade of green may be relied upon. Some of the fescues possess an equally deep shade of green, but the best turf-forming varieties of this grass usually have a grayish tint, which is more or less objectionable. Creeping bent and Rhode Island bent are very much alike in color, but they are considerably lighter than the Kentucky blue grass; and, should this be regarded as a fault, it is fully counterbalanced by their finer texture and superior turf-forming habit. Italian rye grass has a good color, and the fine-leafed variety of perennial rye grass is by no means an inferior lawn grass. The color of these rye grasses is not very different from Kentucky blue grass, but there is a marked difference in the appearance of the herbage; the surface of the leaves of perennial rye grass
has a shining or polished appearance not apparent in Kentucky blue grass."
"Reference has already been made to the degrea of fineness of several varieties of grasses, but the narromness of the leaf blade does not always determine the texture. Some of the varieties of fescuses have exceedingly nar row or thread-like leaves, but the turf formed by them may be harsh and unpleas. ant to the touch. Other grasses again may have comparatively broad leaves, which are soft and flexible, and the turt they produce may possess a desirable texture."

Varieties.-The Iowa lawn is generally represented by but a single species of grass, namely, blue grass (Poa pratensis). White or Dutch clover (Trifolium repens) is frequently sown and when not sown frequently comes into the lawns and is most desirable. The fescue grasses and timothy are sometimes sown, more frequently to obtain a quick growth of grass, but neither has an abiding place. The bent grasses (Agrostis alba) are sometimes found, but in old lawns it seldom finds a place; the blue grass crowds all but the c'over out. The best lawns are those that consist of but a single species

Selection of Seed.-"The greatest care should be taken to pro cure seeds of the very best quality of the variety desired. The highest priced seed is the cheapest in the end. A cheap grade may always be looked upon with suspicion, and is usually dear at any price, and the sowing of seed of any grade upon a poorly prepared seed bed is wasteful.
"It has long been a common practice to use a variety of seeds or socalled "lawn mixtures" in seeding down lawns. Those advocating these mixtures argue that there is no one grass that will suit the ordinary lawn maker, as he wants a lawn quickly, he wants a lawn fine, and he wants it to be permanen', results which it is claimed can only be obtained by mixtures. Further, it is asserted that the variety in the mixture best suited to the soil and climatic conditions will eventually run out the others, and the lawn will finally be composed of a single species. This course will manifestly cause a delay in s-curing a satisfactory turf, and when there are several varieties of grasses combined the liability of introducing weed seed is greatly increased.
"One of the chief features of beauty in a lawn, as already stated, is uniformity in color, and this cannot be obtained by a mixture of varieties of grasses; the color will always be mottled
and irregular. Under the most favorable conditions it is difficult to procure absolute uniformity in color, for there is likely to be a variation in the shade of tint between individuals of the same species.
"Uniformi'y of texture is impossible where two or more varieties of grasses are sown; no two species possess exactly the same degree of finness, and even individual plants or strains of the same species are apt to vary in this particular.
"The mixing of creeping bent with Kentucky ilue grass is like mixing the good with the bad, and such a combinati n has a real disadvantage, which is particularly manifest in the later autumn months when the distinctive coloring of the two grasses is especially pronounced. The lawn composed of these two species is then almost unsightly because of its decided mottled appearance; the dark green of the blue grass stands out in striking contrast with the paler color of the creeping bent. For the same reason white clover should never be sown with the bent grasses.

The Amount of Seed Csed per Acre.-"The amount of seed to be u :ed will d fpend somewhat on the character of the soil, but more particular y upon the quality and kind of seed used. The seed, of course, should be sown much more thickly than for hay production, and allowance has to be made for the thoroughness with which the seed has been cleaned from chaff. Rhode Island bent and creeping bent are both likely to contain a large amount of chaff and imperfect seeds, and the quality of seed sown should be sufficient to make allowance for this. Under the new methods of cleaning seeds of Kentucky blue grass, the chaff is almost entirely removed, but in the case of this grass there is often a lack of vitality, or germinaling power, and it is always best to use a liberal quantity in seeding down a lawn.
"Mr. William Doogue, superintendent of public grounds, Bosto ${ }^{-1}$, sows four bushels of Kentucky blue grass and red top, mixed in equal parts, to which about six pounds of white clover have been added, to the acre, or one peck to 300 square yards. Owing to the great variation in the weight per bushel of grass seeds of the same kind (due to the presence of more or less chaff), it is best to base the amount upon weight rather than measure, and from fifty to sixty pounds of seed of fine quality is not too much to use upon an acre of ground, or one and one-half pounds to 100 square yards. Poor land requires
more seeding than fertile land. Some advise as much as 100 pounds of seed to the acre."

Time of Seeding.-In this state it is advisable to sow as early as possible in the spring-middle of March to first of April. Fall is uncertain with dry weather. In September it is diffcult to get a stand, although, if the fall is a favorable one for rains, September is a good month to sow. This will enable the roots to get a good start to prevent winter killing, which takes place frequently when the young plants are thrown out of the ground and drying out. A better start with blue grass may be obtained by sowing a small amount of white clover. "The seed must be sown or scattered evenly over the surface if a patchy and unsightly growth is to be avoided. It is best to select a time when there is little or no wind ard, if possible, immediately previous to an expected rain. Care must be taken not to cover the seed too deeply. A very light raking or brushing may be allowed and is even advantageous, but generally rolling will be sufficifnt. The rolling is necessary to make the surface soil firm, to press the seeds into close contact with the earth and to render the surface smooth and even. The germination of the seed largely depends upon the depth to which it is covered. An eighth of an inch is ample covering for most grass seeds, while Kentucky blue grass is said 10 germinate best when exposed to the light and consequently not covered at all."

Transplanting Turf.-In the town lot or some public places the 1 ransplanting of turf is often resorted to. The first desideratum is a pure turf of one variety of grass, and this is not difficult to obtain anywhere in Iowa. The turf is cut to appropriate lengths. The ground which is to receive the turf should be well loosened; the turf is laid closely, rolled and watered. In this way a fine turf may be had the first season. "Where the supply of pure turf is limited, but still can be obtained, it may be cut into small pieces two or three inches square and these set out at intervals of six or eight inches, be ng pressed into the soil about one-half inch below the uncovered surface, which will eventually settle a little, and, if the soil has reen properly prepared, the growth of the grass will soon cover the ground and make a satisfactory sward much more quickly than can be obtained by seeding. This method has the advantage, too, of insuring the production of exactly the kind of turf desired, a result not always to be obtained by sowing the seed.

A lawn of limited extent planted in this way at Washington, D. C., early in September was fairly well covered with grass by December 1st." If the season is a favorable one, this turf will be an even one the second season. The dry midsummer weather will matərially check its development. The weeds should be kept down, preferably by mowing them.

INDEX.

PAGE.
Aderhold, Professor 210
Adulteration of seed 87
Agropyron 297, 370
Agropuron caninum 377
Chemical analysis of 379,380
Agropyron divergens. $3 \% 0$
Agropyron occidentale 370, 373
Chemical analysis of 373
Agropyron pseudo-repens 370, 375
repens 370
Chemical analysis of 374, 375
Agropyron richardsoni 370, 378
spicatum 314
tenerum 370, 375, 377
Agrostis alba $110,314,359,380$
Chemical analysis of 361
Vitality of 110
asperifolia 362
canina. 362
perennans. 362
polymorpha. 360
scabra. 365
8tolonifera 313,360
vulgaris 321, 359
Albumenoids. 465, 467
Composition of 467
Alfalfa 296
Allium vineale (garlic) 101
Alopecuris pratensis. 296, 314, 339
chemical analysis of. 341
American feeding stuffs 475, 476
Amides. 465
Amylopsin 467
Amylum used in medicine 164
Analysis of patent food 488
Anderson, Professor 253
Andric, C. H 94
Andropogon. 297, 380
in medicine 162
nutans. 314, 385
chemical analysis of. 387, 388
provincialis $34,52,300,314,330,381$
chemical analysis of 382
scoparius 41, 314, 383
chemical analysis of 384, 385
sorghum 131, 442
Animals and hygroscopic movements 73
Anthemis cotula (May weed) 98
Armsby, Prof. H. P. 13
Arnel, Professor. 192
Arrhenatherum avenaceum 51, 314, 363

Note-Pages 387 and 388 are duplicated in the paging of this volume, but follow each other.
PAGE
Arthar, Prof. J. C.
Arundo donax in medicine 162
Asclepias cornuti 457
Ash 465
Astragalus canadensis. 298
Atkinson, Professor, 27's, 343
Avena fatua 79
favescens. 313
sativa. 64, 130
sterilis 76
Average composition of feeding stuffs 473, 474
Awntd grasses, mechanical injuries and obstructions 176
Aun'css brome. 342
Aymen, Professor. 218
Bacillus cloaceae. 984
secalis 284
sorghi 289, 290
treatment of 291
rascularum 91
Bacteria 116
Bacterial diseases 281-292
Bacillus sorghi. 289
Bacteriosis of corn 283
Characters, cultural 286
of the disease 284
Morphology -8 8
Mould of corn. 116
Pseudomonas Stewartii 289
Bailey, Prof. L. H 92
Bain. Dr. H. Foster 4
Ball, C. R. $4,32,33,37,39,41,42, \quad 96$
Bamboo 140
Bambusa. 140
Bauhín, Professor 184, 236
Barberry cluster-cup fungus andits connection with common grass rust. 289
Barley $195,160,178,437$
Injuries from 178
Barnes, W. D 4, 382
Barnyard grass. 135, 387, 388
chemical analysis of 389, 330

- Battles, C. A. 4
Beach, S. A. 237
Beal, Prof. W. J $40,54,76,77,108,124,228,241,313,339,261,364$
Bedford, S. A 344
Bently, H. L. 304
Bentham, Mr. 49
Berkeley, Professor 248
Berthold, Professor 283
Bessey, Prof. O. E. $4,39,178,187,226,228,237,252,314$
Beyer, Prof S. W 3
Big blue stem 3E0, 381
Billings. Professor 284
Bltting, Dr 183
Black mould. 112, 115
Black spot disease of grasses. 202
Blociszweskl, Professor. 87
Blue grass. 109,327
purity of seed 99
vitality of seed 110
Blue grass pasture 295
Blue joint 417, 418
chemical analysis of. 418, 419

INDEX.

PAGE
Blue mould 112, 113
Blue stems 380
Bolley, Prof. H. L. 187, 237, 241, 258, 260, 270, 273
Bonafons, Prof 218
Boss, Mr 54, 56
Botrytes vulgaris 182
Bouteloua. 297
hirsuta. 366
oligostachya 314, 367
chemical analysis of 369
racemosa 314, 366, 368
chemical composition of 369, 370
Boys, Mr. 335, 336
Brefeld, Professor $113,218,220,293,224,233,239,253$
Brewer, Professor $124,156,158,159,226,302$
Briosi, Professor. 210, 212, 213
Brome grasses 342, 349
Brooks, Professor 135
Brooms 169
Broom corn millet 296, 399
Bromus 297
breviaristatus 34, 314
ciliatus 356
chemical analysis of 3506
hordeaceus 349
chemical analysis of 351, 359
inermis 37, 314, 342, 343
chemical composition of 344, 315, 346
marginatus 346
chemical analysis of 348, 349
purgans. 356
purgans latiglumis 356
racemosus. 335
secalinus 350, 35?
chemical analysis of 352, 353
tectorum \%9, 354, 336
unioloides. 356
chemical analysis of 358, 259
Brown, Professor $89,83, \varepsilon £, 85,87$
Buchl e dactyloides 442,449
Buckman, Professor 364
Buel, Professor 31%
Buffalo burr 459
Buffalo grass 422
Bultilis dactuloides. 50
Bulliard, Mr. 244
Bull thistle 454
Bulliform cells 40
Bunts Tilletia foetens 248,250, 251
hordei 253
lolii 253
moliniae 253
oryzae. 253
rotundata 253
secalis. 252
striaeformis. 254
tritici. 252
Burchard, O. 78, 88
Burgerstein, A 94
Burger, D. C. 218
Burrill, Prof. T. J. $245,270,233,284,285,286,289,290,291$
Burtis, Professor 124
PAGE
Buschan, Professor 125
Bushy blue stem 385
Calamagrostis. 297
canadensis. 314, 417
chemical analysis of 418, 419
Calamovilfa longifolia. 297
Calculation of a feeding ration 483
Oalvin, Prof. S 4
Canadian lyme 402
Canada thistle 463
Canary grass 140
Capsella bursa-pastoris. 98
Carbohydrates 468
Carleton, M. A. 281
Oarr, Oma 121
Carradori, Mr 264
Carver, Prof. G. W 4, 198
Oaryopsis of fruit 64
Oaspary, Professor 210
Cat-tall fungus (Epichloe typhina) 186
Oat-tail grass 444
Cavara. Professor 201, 203, 205, 210, 212, 213
Cenchus tribuloides. 73
Cereal grasses-
Andropogon sorghum 131, 442
Caracana or ragí 138
Corn 165,444
Eluesine coracana 138, 164
Euchlaena mexicana 443, 444
Kaffir corn 131
Majze $125,155,164,444$
Sugar cane 162,165
Teosinthe. 443,444
Zea mays $64,125,444$
Cereal production in the U. S. $141,142,143,144,145$
Cereals. 124
Cereals affected by ergot 195
Rust of 263
Ohappel, George M 145
Chemical analyses of grasses-
Agropyron caninum 379, 380
occidentale 373
repens 374, 375
Agrostis alla 361
Alopecurus pratensis 341
Andropogon mutans 387, 388
provincialis 382
scoparius 383
Barnyard grass 3§9, 390
Blue joint 418, 419
Bouteloua oligostachya 369
racemosa 369, 370
Bromus ciliatus. 356
hordcaceus. 351, 352
invermis $344,345,346$
marginatus 348,349
secalinus 352, 353
unioloides 358, 359
Calamagrostis canadensis 418, 419
Oommon chess 352, 353, 354
Orab grass 392

INDEX. 503page
Chemical analyses of grasses-Continued- Elymus robustus. 401, 402
virginicus. 404, 405, 406
Eragrostis abyssinica 427
mexicana 426
Hordeum jubatum 439, 440
Iowa bunch grass 423
Italian rye. 317
Muhlenbergia. 408, 409
Old Witch grass. 390
Orchard grass. 319, 3:0
Panicum capillare 390
crus-galli 389
glabrum 396
proliferum 393
sanguinale 392
scribnerianum 395, 396
virgatum 388, 399
Poa compressa. 333, 334
pratensis 330, 331
Rye. 440, 441, 442
Secale cereale. 440, 441, 442
Setaria glauca. 434
viridis. 432
Spartina cynosuroides 412
Sporobolus heterolepis. 423
longifolius. 424
Stipa spartea 415, 416
Timothy. $32 \%, 324,32 \overline{5}$
Wire or English blue grass 333, 334
Chemical Influences on germination of seeds 117
Chemistry of foods and feeding 464
Chenopodium a'bum. 98
Chester, Prof. F. D 101, 108
Christy, R. M 75
Chrysanthemum leucathemum 453
Cicuta maculata 459, 460
Cinna arundineacea 297
Cintractia seymouriana 246
Cladosporium fasciculatum 213
herbarum. 112, 204, 207
Claviceps purpurea 189, 196
Climatology 145
Clinton, G. P 234, 235, 236
Close, Professor 258
Cnicus arvensis 463
Cnicus discolor 453
iowensis 453
lanceolatus 45
Cobb, N. J 203, 205, 207, 240, 270, 271, 291, 292
Coburn. F. D 3
Coix lachryma in medicine 162
Coke, Mr 317
Collier, Peter 165
Combs, Robert $4,41,42,165$
Common chess 350, 3 2 Z 2
Chemical analysis 352, 353, 354
Common wild thistle 453
Composition of feeding stuffs 473, 474
Condimental foods 486
Convenience tables $477,478,479,480,481,452$
PAGE
Convolvuius arvensis 459
sepium. 458,459
Cook, Mr. 310
Cooke, Professor 212, 257
Coracana 138
Corean foxtall millet 436
Corn. 165,444
Bacterlusis of corn 283
Cob as fuel 170
Mildew of Indian corn 189
Moulds of 182
Rust of 284
Wilt of 288
Corn oil 170
Corn stalk-
cellulose. 168
disease 178
for packing 168
paper pulp 168
poultry food 168
products of 168
pyroxylin varnish 168
smokeless powder 168
stock food 168
Coville, F. V. 181
Oowbane 459
Orab grass 390, 391
chemical analysis of. 802
Oraig, Prof. J 346
Cratty, R. I $4,375,423$
Orawford, H. A 4
Crookes, Professor 167
Cross fertillzation 55
Crozler, Professor 61
Orozler, A. A 176
Crude lat. 464
Crude fiber 465
Crotalaria sagittalis 300
Cumarin in medicine 162
Curled dock 456
Curtiss, Prof. O. F. $248,308,309$
Cynosurus cristatus. 313
Dabney, J. C 121
Dactylis glomerata. $313,314,317$
Purity of seed 100
Vitality of seed 111
Dalea alopecuroides 289
Darlington, Professor 77
Darnel. polsonous effects of 171
Darwin, Charles 124
Darwin, Francis. 75
Dean, Mr 359
DeBary, Professor 196, 283
DeCandolle, A. $124,125,132,137,194,197,218,274$
D6Lawne, Professor 313
Desmasier, Professor 205
Digestion coefficients 475, 476
Digestible ingredients 475, 476
Diseases-
Bacterial díseases 281-292
Corn moulds and diseases 152-184
Fungus diseases of grasses 185-280

INDEX

PAGEDiseases-continued-
Germinating cereals 112
Moulds 112-115
Diseases of germinating cereals 112
Diseases, names of -
Bacillus cloaceae 284
secalis 284
sorghi 289
vascularum 291
Bacteriosis of corn 283
Botrytes culgaris 182
Cintractia seymouriana 246
Cladosporium herbarum 113, 204, 207
fasciculatum 213
Claviceps purpurea 189, 196
Epichloe typhina 186
Erusiphe graminis 197, 200
Ewrutium (Aspergillus) glaucus $112,114,182$
Fusarium culmorum 214
heterosporum 215
roseum 214
Gibbellina cerealis 201
Gibberella saubinettii 216
Helminthosporium graminum $2 C 9$
turcicum 212
Hypocrella 197
Macrocarpum 112
Penicillium glaucum $112,113,182$
Peronospora maydis. 188
Phoma hennebergii 203
Phyllachora graminis. 202
Piricularia grisea 214
Pseulomonas Stewartii 288, 289
Puccinia agropyri 275
anthoxanthi. 278
arundinaceas. 280
coronata (daetylidis) 274, 275
dispersa 272
eamulata 378
e marulata $2 \pi 7$
glumarum 271
graminis 267, 276
magnusiana 28
phtei-pratensis 275
phragmites 278
poarum. 378
ruhigo-vera. 271
simplex. 275
sorghi 264
vexans 276
Rhizopus nigricans 112, 115
Saccharomyces glutinus 292
Sclerospora gramnicola 185-186
Scolecotrichum graminis 208
Septoria graminum 203
tritici. 207
Sterigmotocysis 112
Tllletia foetens 248, 250, 251
hordei 35
lolii 253
moliniae 253
oryzae 253
page
Diseases, names of-continued-
rotundata 253
secalis 252
striaeformis 254
tritici. 252
Crocystis agropyri 257
occulta. 258
E'romyces acuminatus. 280
brandegei 270
dactylidis 280
gramnicola 280
racemosa 276
C'stilago andropogonis 247
aristidae 248
avenae 238
var. levis 240
bromivora, var. macrocarpa 243
buchloe 247
bulbata. 247
cruenta 236
crus-galli 246
fischerii 233
hordei. 240
hypodytes. 247
longissima 246
lorentziana 242
maydis. 218
mountaiensis. 247
neglecta 242
nuda 210
panici miliacei 246
perennana 244
pustulata 246
rabenhorstiana. 243
reiliana. 229
sacchari 247
sorghi 234
spermophora. 348
sphaerogena 245
syntherismae. 243
tritici. 236
Dissemination of seeds. 70
Distichlis spicata 29
Dock. 455, 456
Dodge, C. R 167, 168, 169
Dodson, W. R 292
Doogue, William 456
Drop seed grass. 423, 425
Dudley, P 61
Duthie, Professor 265
Earle, Mr. 216, 253
Eckles, O. H 4
Eleusine coracana 138
Eliot, Mr 350
Ellis, J. B 210, 212, 213, 240, 244
Elymus 297
arenius. 140
canadensis 402
condensata 406
macouni 406
robustus 396,400
chemical analysis of 401, 402
PAGE
Elymus-continued-
striatus. 405
triticoides 407
virginicu8. 402, 403
chemical analysis of. 404, 405, 406
Embryo, structure of 79
Emmons, Professor 124
Enzyme 466
Epichloe tuphina 186
Epidermis, of leaves 37
Eragrostis abyssinica 141, 426
chemical analysis of 427
major 39, 42ï
mexicana 426
chemical analysis of 426
obtusiffora 31, 39
pectinacea 33, 37
purshii 32, 37, 39, 427
Ergot-
injuries due to 189
history of 189
in America. 192
nature of 193
characters and development of 194
chemical analysis of 195
cereals affected by 195
medical use of 195
wild grasses affected by 195
Eriksson, Professor 203, 205, 210, 263, 264, 259, 270, 271, 272, 274, 276, 280, 281
Erysiphe graminis 197, 200
Euchlaena mexicana 443, 444
European bind weed 459
Eurotium glaucus $112,113,114,182$
(Aspergillus) glaucus 112, 113, 114
Evens, Walter H 119, 121
Evers, Otto 235
False couch grass 375
Farlow, W. G 234, 240, 241, 243, 254, 270, 276
Fat 64
Faville, Professor 192
Fawcett, Wm 234
Feather bunch grass 416
Feeding ration, calculation of 483
Feeding standards 470, 471, 472
Feeding standards for farm animals 471
Feeding stuffs 482
Ferment 465
Fertilizers 493
Festuca 297
duriuscula. 313
elatior. 313, 325
var. pratensis 97
nutans 326
ovina 313, 326
pratensis 313
rubra. 32
shortii 297, 326
tenella 37, 297
Fink, B 3, 4
Fischer, Professor 167
Fitzwater, W. D 4
Flint, Professor $3 ? 1,359$
PAGE
Flower, parts of 44
arrangement of 49
cross-fertllization of. 55
pollination and fertilization 50
Food constituents 464
Food per day for 1,000 pounds live weight 470
Food per head per day 470
Forage of central Iowa 294
Fowler, F. N 170, 171
Fowl meadow grass 338
Frank, Professor 257
Fresh water cord grass 411
Fries, Professor 24
Fuckel, Professor 202, 209
Fuller, Mr. 265
Fungus diseases of grasses 185, 280
Fusarium culmorum 214
heterosporum 215
roseum 214
Gama grasses 368, 369
Gamgee, Professor 227
Galloway, B. T. 122, 281
Gastric juice 467
German millet 296
Georgeson, Professor 124
Germination of seeds 79
Chemical influences on 117
Germination tables $90,91,92,93,95$
Physical influences on 121
Temperature of 88
Glant millet 434
Gibbellina cerealis 01
Giblerella saubinettii 216
Gibbs, Mr 317
Gllbert, Mr 13
Giltay, Professor 207
Glands, scent 39
Glucose 164
Gluceria fuitans. 138, 419, 421
grandis 419, 420
hispida. 298
Gmelln, Professor 274
Goff, Professor 123, 461
Golden, Professor 122, 123
Goldenrod 450, 451
Gorrle, Mr 364
Gossard, W. E 4
Gould, Professor 333
Grasses, names of-
297, 370
Agropyron
377
caninum
370
divergens
370, 373
occidentalis
370, 375
pseudo-repens
$3 \% 0$
repens 370, 378
spicatum. 314
tenerum 370, 375, 377
Agrostis alba. $110,314,359,360$
asperifolia 36
canina 362
Grasses, names of-continued-
PAGE
perennans. perennans. 362
polymorpha. 360
scabra 365
stolonifera 313, 360
vulgaris 321, 359
Alorecurus. 296, 314, 449
Andropogon. 297, 380
nutans 314, 385
provincialis 34, 52, 300, 314, 380-381
scoparius 41, 314, 383
Arrhenataerum avenaecum 51, 314, 363
Arundo donax 162
Avena fatua 79
flavescens. 313
sativa 64, 130
sterilis. 76
A wned grasses. 176
Awnless Brome 342
Barley 125, 160, 178, 437
Barnyard grass 135, 387, 388
Big blue stem 380, 381
Blue grass 109, 227
Blue joint 417, 418
Blue stem 380
Bouteloua 297
hirsuta 366
oligostachya. 314, 367
racemosa 314, 366, 368
Brome grasses 342, 349
Bromus 297
breviaristatus 34, 314
ciliatus. 356
hordeacus 349
inermis. 37, 314, 342, 343
marginatus 346
purgans. 356
latiglumis 356
racemosus 355
secalinus 350, 352
tectorum 79, 354, 356
unioloides 356
Broom corn millet. 296, 399
Buchloe dactyloides. 423, 449
Buffalo grass 422
Bulbilis dactyloides. 50
Bushy blue stem 385
Calamagrostis 297
canadensis 314, 417
Calmovilfa longifolla 29\%
Canadian lyme 402
Oanary grass 140
Cattail grass 444
Cenchrus tribuloides 73
Cinna arundinacea 297
Coix lachryma 162
Common chess 350, 352
Corean foxtail millet 436
Crabb Grass 390, 391
Cynosurus cristatus 313
Dactylis glomerata. 313, 314, 317
Dalea alopecuroides 299
Grasses, names of-continued- page
Orabb grass-continued-
Darnel 171
Disticilis spicata 26
Drop seed grass 423, 425
E'lymus. 297
arenius 140
canadensis 402
condensata 406
macouni. 406
robustus 396, 400
striatus. 405
triticoides 407
virginicus. 402, 403
Eraqrostis abyssinica. 141, 426
mexicana. 426
major. 39, 427
obturata 31, 39
pectinacea 33, 37
purshii 32, 37, 39, 427
False couch grass $3 \pi 5$
Feather bunch grass 416
Festuca. 297
durius 313
clatior. 313, 325
var. pratensis 97
nutans. 326
ovina 313, 326
pratensis 313
rubra. 327
shortii 297, 326
tenella 37, 297
Fowl meadow grass. 338
Fresh water cord grass 411
Gamma grasses 366, 369
German millet 296
Giant millet. 434
Glyceria nuitans. 138, 419, 421
grandis, 419, 420
hispida 298
Green foxtail or plgeon grass 427
Hair grass 365
Herd's grass 321
Hordeum 297
jubatum 439
sativum 125, 437
Hungarian brome 305, 342
grass 296
millet. 435
Iowa bunch grass 423
Italian rye 315
Leersia oryzoides 37, 41
Lemon grass. 161
Little blue stem 383
Lolium italicum 315
perenne. 316
Manna grass 138, 4:1
Meadow fescue 325
Meadow foxtall 338
Meadow grasses 334
Mexican spear grass 426
Millet 132, 154, 435
Molinia caemulea 98
Grasses, names of-continued- PAGE
Muhlenbergia 297, 407
diffusa 409, 410
mexicana 407, 408
racemosa 297
willdenovii 297
Needle grass. 414
Nimble-will 409, 410
Oats. 130, 160
Old witch grass 389
Orchard grass. 317
Oryza sativa 137
Panicum. 297
capillare 389
colonum 396
crus-galli 135, 387
glabrum 113, 396
macrocarpum 396, 398
maximum 396
miliaceum 133, 396
proliferum 41, 393
sanguinale 390, 391
scribnerianum 394
texanum 398
virgatum 314, 388
Paspalum notatum 162
Pepper grass 463
Perennial rye grass 316
Phalaris arundinaceae. 418
canariensis. 140, 297, 305
Phleum pratense 314, 320
Phragmites. 162, 305
Pigeon grass 427
Pisum arrense 298
Pleuropogon californicum 30
Poa. 29π
arachnifera. 336, 337
compressa 332, 333
pratensis 327
serotina 314, 338
trivialis $313,334,335$
Polygonum muhlenbergia 453
Porcupine grass 414
Quack grass. 161,370, 375
Red top 110, 359
Reed canary grass 419
Reed meadow grass 420 420
Rice. 13і̃, 161
Rice, wild 139
Richardson's wheat grass 379
Rough-stalked meadow grass. 335
Rye. 125., 1599, 440
Scribner's panic grass 397
Secale cereale 66, 125, 440
Setaria germania 435
glauca 432,433
italica 435
magna 434
vericicilata 427, 431
viridis 427, 431
Short awned brome grass. 346
Side oats. 368
Slender wheat grass 3π
Grasses, names of-continued- PAGE
Sleepy grass 172
Spartina 297
cynosuroides. 297, 314, 409, 411
Sporobolus 422
cruptandrue 39, 41, 423
cuspidatus 425
heterolepis 39, 41, 423
longifolius 424
Sprouting crab grass. 394
Squirrel tall grass. 460
Stink grass 427
Stipa capillata 75
comata 178
pennata 75
spartea. 413, 414
viridula 416
Streptochaeta 73
Switch grass 388
Tall gama 366
meadow oat grass 363
Terrel grass 402
Thin grass 362
Ticklegrass 38%
Timothy 320, 321
Triticum saticum. 130
Upright sea line grass 140
Western wheat grass. 370
Wheat 130, 157
Wheat grasses 370, 375
Wild rice 139
Wild rye 396
grasses 400
Wire or English blue grass. 332, 333
Yellow foxtail 432
Grass-covered hills of the Mississippl. 296
Grass product of Iowa 293
Grass seed in one pound 309
Grass seed, purity and vitality of 96
Grass seed to sow per acre. 309
Grasses. Gramine, general desoription 7
Beal's list for the North 314
Bessey's list for Nebraska 314
Characters of the order. r
Distribution of roots. 11
For England 313
Fungus diseases of 185
Gross characters of 8
Hitchcock's list for Kansas 314
In medicine 161, 162
Lamson-Scribner's list for the South 314
Leaves of 22
Grasses for low meadows 419
meadow and pasture 312
Grasses, mechanical injuries and obstructions 176
Other uses of 166
Pammel's list for Iowa. 314
Poisonous effects of 171
Roots of 8
The stem of 14
Williams' list for Dakota 315

INDEX.
513PAGE
Grasses in medicine-
Amylum 164
Andropogon 16?
Catchu 164
Cumarin. 162
Glucose 164
Hordeum. 162
Lemon grass 161
Maize 164
Quack grass 161
Sugar cane 162
Gravitz, Professor 183
Greene, J. R 85
Green foxtail and pigeon grass 42π
Green mould 112,114
Gregory, Professor 66
Grettenberg, H. N 5
Gruss: J 83
Guerin, Protessor 172
Gumming of sugar cane 291
Hackel, Professor $40,42,48,49,55,63,76,79,124$
Haberlandt, Professor $82,83,88,11$:
Hair grass. 365
Hallet, Major 152
Halsted, B. D 187, 224, 251
Hanausek, Professor. 1is
Hanneman, Mr 364
Hansen, Mrs. (Emma Pammel) $23,33,37,41,364$
Hanson, Timothy 320
Harshberger, Dr 4, 125, 155, 166
Farshberger, J. W 11, 170
Harvey, F. L 104, 212, 241
Harwood, Professor. 240, 35.
Hartig. Mr $\because 81$
Hartz, Professor $66,68,125,18$:
Harvard, Dr. 16\%, 172, 174
Hays. W. M $13,54,56$
Behn. Mr 125
Helenium autumnale 456
Helianthus gross seratus. 452
Heliminthosporium graminum 209
turcicum 212
Henning, Professor. 281
Henry, W. A. 207. 286
Heuslow, Mr. 121
Herd's grass. 221
Hibbard, B. H 4
Hicks, Gilbert H $88,98,121$
Hickman, Mr. 13. 250
Hildebrand, Professor 61. 62
Hills. J. D 482
Hinebauch, Dr 1 is
Hitchcock, A. S $3,50,52,120,218,219,220,222,229,233,235,270,273,314$
Hodson, E. R. 4. 254
Hogan, Geo. H 336, 337
Holden, Professor 240
Hollerung, Mr 259
Holway, E. W. D. 3
Holm, Theodore 20, 29, 37, 41, 42
Hopkins, Professor 31:
PAGE
Hordeum 297
jubatum 439
chemical analysis of 439, 440
saticum 125, 437
in medicine 162
Horse nettle 459, 463
Hosackia purshiana 299
Howard, L. R 310
Hull, Hon. J. A. T 293
Hume, Н. H 4
Hungarian grass 296
(brome) 305, 342
millet 435
Hunt, T. F 109
Hybrids, intermediate and secondary influences of 56
Hyde, Mr. 145
Hydrochloric acld 467
Hypocrella 197
Inorganic food constituents 464
Intentional adulteration 97
Iowa bunch grass. 423
Chemtcal analysis of 423
Italian rye 315
Chemical analysis of 317
Iverson. Mr 388
Janczewski, Professor 11. 205
Jensen, Professor 236, 239, 260
Jessen, Mr 3ミ0, 359
Johnson, S. H 180
Johnson, William 79
Jones, L. R. 120, 260
Jordan, E. O 284
Jouve, Duval 42
Judtmann, Professor. 3?5, 364
Kaffir corn 131
Kaufman, E. E 4
Kedzie, Professur. 227
Kellerman, Professor
.61, 63, 217, 233, 235, 23\%, 238, 239, 240, 241, 242, 247, 2ะ0, 252, 260, 281, 289, 291
Kennedy, P. Beveridge $344,346,372,387$
Kent, F. L 309
Kind of lawn grass for Iowa 493
King, Miss Charlotte M 3. 5
King, F. H $14,75,178$
Kirchner, Professor 210
Kingsbury, Captaln 173
Kingsley, Dr 171
Kjeldahl, Professor 83
Klebahn, Professor 274
Kllppart 124
Kobert, Professor 195
Kaernicke Professor. 275
Kuehn, Professor $203,218,220,222,229,234,248,252,270$
Kuhn, Professor 236
Lactuca scariola 456
Ladd, Professor 176
Lamson-Scribner, F $4,48,125,169,314,316,333,336,339$,
$342,343,314,340,352,359,361,367,3 \pi 1,372,373,378,385,387,3<0,393,404,414,422,426,434,491$
Lanark, l'rofessor. $2 \pi 4$
Lamb's quarter. 98
Lance-leaved thistle. 454
Latta, Professor. 123

1NDEX.

Law, Professor 192
Lawes, J. B. 341, 364
Lawn making in Iowa 491
Preparation of the land 491
Lawns. 491
Amount of seed per acre 496
Fertilizers 493
Kind of grasses for 493
Preparation of land 491
Selection of grasses for. 493
Selection of seed 495
Time of seeding 497
Transplanting turf. 497
Varieties of 495
Lawson, Professor 316
Leaves-
Epidermis of 37
Gross character of 22
Minute anatomy of 22
LeBuhn, Oharles. 4
Leguminoseae 297
alfalfa 296
Astragalus canadensis 298
Ilosakia purshiana. 299
Melilotus alba $298,461,462$
officinalis 298
Oxytropis lambertii 299
Pctalostemon candidus 299
riolaceus 299
Red clover 297
Sweet clover. 461, 462
Trifolium hybridum 298
incarnatum. 181
medium 298
pratense. 297
repens 298
stoloniferum. 299
Vigna catjang, (cow pear) 298
Leiberg, Mr 42%
Lebmann. Dr 471
Leersia oryzoides 34, 41
Lemon grass in medicine 161
Lepidium apetalum 463
Lindley, Professor 171
Link. Professor 234
Little blue stem 383
Loess hills 303
Logewall, Professor. 112
Lolium italicum 315
perenne, 316
Lonicer, Professor 193
Loverdo. Professor. 187, 201, 234. 252
Loughran, Miss 5
Loyd, J. W 69
Ludwig, Mr. 284
Lychnis githago (corn cockle) 101
MacB-ide. T H 4
MacKay, Prıfessor. 305
Macrocarpum 11~
Magnus. Professor 246,254
Maintaining a pasture or meadow 309
Maize $125,155,164,444$
PAGE
Maize oll. 170
Maldiney, Professor 121
Malua syluestris (mallow) 98
Mannagrass 138, 421
Marllaun, Kerner Von 53
Massee, Professor 248, 252, 253, 254
Manke, Mr 364
Mayer, Professor 120
Mayo, N. S 178, 182
Maza. Gomez de la 162
McAlpine, Professor 280
MeCarthy, Gerald $97,99,100,101,102,109$
Mead, :.J 5
Neadows 293
Meadow and pasture grasses. 312
Meadow fescue 325
Meadow foxtall 339
Meadow (other) grasses. 334
Means, Governor 79
Mease, James 192
Mechanical injuries and obstructions of grasses 136
Awned grasses 178
Corn stalks 78
Crimson clover 181
Injuries form barley 178
Stipa comata 188
spartea. 17π
Melliotus alba 298, 461, 462
officinalis. 298
Mell, Professor 336
Merriam, C. Hart 154
Metzger. Professor 124, 15 í
Meyen, Professor 218
Mexican spear grass 426
Mildew, downy 186
of Indian corn 188
powdery 197
Milkweed 457, 459
Miller, A. A 4, 382
Mills, J. H 4
Millet. 132, 174, 435
common or bronze. 133
foxtail 132
pearl. 138
polsonous effects of 174
Molinia caerulea 98
Morning glory 458, 459
Moore, Prof. A. 228, 284, 285, 286
Morini, Professor 223
Morris, Professor $82,83,84,85.87$
Morrow, G. E. 109
Moulds 112-115
Corn moulds 182-184
Black mould 112-115
Blue mould 112-113
Green mould 112-114
Muhlenbergia 297, 407
cbemical analysis of. 408, 409
diffusa. 409, 410
mexicana 407, 408
chemical analysis 408, 409
racemoza 297
willdenovii. 297

INDEX.
Mycelium 224
Natural or accidental impurities. 93
Needle grass. 414
Nelson, Professor 180
Netel, Professor 125
Newell, Wilmon 4
Newman, Mr. 13
Newman, Nellie 5
Niessl, Professor 24
Nimble-will 409, 410
Nitrogenous parts 464, 465
Nobbe, Professor $68,87,90,96,118$
Norris, H. W 3
Norton, Prof. J. B. S. 220, 222, 233, 243, 248
Oats 130, 160
Oesterle, Professor 66, 125
Ogden, Miss 39
Olcott. 312
Old witch grass 389
chemical analysis of 590
Orchard grass. 317
chemical analysis of. 319, 320
vitality of seed 111
Organic food constituents 464
Oryzasatica. 137
Osborn, Prof. H 310
Otis, Professor. 124
Otto, Professor 1
Ox-eye daisy 453
Oxytropis lambertii 299
Paddock, A. Estella 4
Page, Charles N 3, 445
Palmer, Dr 122
Pammel, Emma (Mirs. Hansen). 42
Pammel, Prof. L. H 5. 66, 68, 92, 119, 120, 121. 203, 241
Panicum. 297
capillare. 389
chemical composition 390
colonum. 396
crus-galli 135, 38%
chemical analysis of 389
Panicum glabrum. 113, 396
chemical analysis of 396
macrocarpun 396, 398
maximum 396
miliaceum 133, 396, 399
proliferum 41, 393
chemical analysis of 393
sanguinale 390, 391
chemical analysis of 392
scribnerianum 391, 395, 396
chemical analysis of 395, 396
texanum 396
virgatum. 314, 388
chemical analysis of 388, 399
Pancreatic juice. $46 i$
analysis of 467
Papilionaceae 297
Parker, Professor 317
Parsons, 0. L. s9, 104, 109
Paspalum notatum used in medicine. 162
Passerinl, Professor. 201, 210, 212, 229, 233
PAGE
Pastures. 293
insects 309, 310
maintainlog 309
present and future 300
Pastures and meadows of Iowa 293
Peck, Prof 207, 208, 212, 241, 248, 264, 276
Penicillium glaucum 112, 113
Pennicetum typhoideum 138, 444
Pepsin. 467
Peppergrass 463
Peptones 467
Perennial rye grass 316
Peronospora maydis 188
Persoon, Professor 196, 202, 238, 241
Petalostemon candidus 299
violaceus 299
Phalaris amundinacea 419
canariensis 297, 305
Phleum pratense 314, 320
purity of seed. 101, 100
vitality of seed 111
Phoma hennebergii 203
Phragmitcs in medicine 162, 305
Phyllachora graminis 202
Physical influer ces on germination of seed 121
Pigeon grass 427
Piricularia grisea. 214
Pisum arvense 298
Plantago lanceolata 98, 453
major 98
Plantology 145
Pleuropogon californicum 30
Plowright, Professor 237, 247, 252, 270
Plumb, Prof. C. S 125, 154
Poa 297
arachnifera 336, 337
compressa 332, 333
chemical analysis of 333, 334
pratensis 327
chemical analysis of 330, 331
purity of seed 99
vitalitv of seed 109
serotina 314, 338
triviais. 313, 334, 335
Poisonous effects of grasses 171
Pullination and fertilization. 50
Polygonum muhlenbergii 453
Pool, C. O 4
Porcupine grass 414
Pounds of digestible ingredients $4 \pi 2$
Pounds of total dry matter 479
Power, Prof 226
Powdery mildew of grasses 197
Precipitation 152
Prickly lettuce 456
Prillieux, Professor 116, 283
Protein 465
Ptyalin 465
Puccinia agropyri 275
anthoxanthi. 278
arundinaceae 280
coronata 274, 275
Puccinia-continued-
page
dispersa 272
camulata 278
emaculata 2π
graminis 267, 276
barberry cluster-cup fungus and its connection with common grass rust 269
grasses affected. 269
glumarim $2 \pi 1$
magnusiana 278
phlei-pratensis 275
paragmitis 278
poarum 278
rubigo-vera 271
simplex 2%
sorghi. 264
characters of 265
vexans 276
Quack grass 320, 373
chemical composition 374, 375
used in medicine 161
Rabenhorst, Professor 234
Raciborski, M. 188
Rambousek, Prof. C 96, 112
Randall, Dr 192
Red clover 297
Red top 110, 359
purity of seed 99
vitality of seed. 110
Reed, Mr 233
Reed canary grass 419
Reed meadow grass 420
Regermination of seeds 91
Reinke, Mr 283
Reppert, F. 4
Reynolds, M 3
Rhisopus nigricans. 112, 115
Rice. 137, 161
wild 139
Richardson, Dr 359
Richardson's wheat grass 379
Robinson, Dr 4
Rolfs, J. H. 4
Rolfs, P. H 3, 61, 97, 99, 463
Roots-
distribution of. 11
gross characters of 8
minute anatomy of 8
Rostrup. Professor 216, 280
Rough-stalked meadow grass 335
Roujon, Professor 123
Rowlee, W. W. 49
Royle, Professor 157, 317
Rumex acetosella. 98, 456
Rumex crispus 98, 455, 456
Russell, Professor 284, 285
Rusts or uredineae 261
blue stem rust 276
common grass 267
corn rust 284
covered rust of wheat $2 \pi 1$
crowned rust. $2 \pi 4$
PAGE
Rusts or uredineac-continued-
history of 263
of cereals 263
prevention of 280
rusts of other grasses 275
simple barley rust 275
Rye 125, 159, 440
chemical analysis 440, 441, 442
other rye grasses 400
Saccardo, Prof 216, 247, 252, 253, 264
Saccharomyces glutinus 292
Sachs, Prof 85, 88, 89
Sage, J. R. 145, 293
Saliva, composition of-
cow. 465
dog. 466
horse. 465
human 466
sheep 465, 466
Salmon. Dr 192
Sample, A. F 4
Sampson, H. O 4
Samples of patent food collected in New York during 1898 and 1899 487
analyses of. 488
Sand burr 73
Savi, Dr 56
Scent glands. 39
Schertlen, Professor 70
Echlectdendahl, Professor. 247
Schloesing, T. H., Jr 90
Schoonover, M. S 5
Schroeter, J 248, 270, 325, 336, 339, 342, 359, 384
Schuebler, Professor 157
Schulte. J. I 4, 69, 70
Schumacher, Mr 274
Schweinitz, Professor 264, 276, 278
Sclerospora gramnicola 185, 186
Scolecotrichum graminis 208
Scribner's panic grass 397
Secale cercale $66,125,440$
chemical analysis 440, 441, 442
Seed selection and the crop produced 121
Seeds-
adulteration of 97
animals and hygroscopic movements as related to seeds 73
chemical influences on germination 117
dissemination of 70
germination of 79
physical influences on germination of 121
purity and vitality of grass. 96
re-germination of. 94
temperature and germination 90
vitality of 101
Selby, Professor 07,216
Selection of grasses 307
work of Hopkins 311, 312
work of Olcott 307, 312
Selection of lawn grasses 493
Selection of seed. 495
Sempolowski, Professor 91
Septoria graminum. 203
trittci 207
page
Seringe, Professor 124
Setaria germanica 435
glauca 432, 433
chemical analysis. 434
Setaria italica 435
magna 434
verticillata 78
viridis 427, 431
chemical analysis of 432
Seymour, Prof. A. B 225, 234, 245, 264, 267, 270
Shear, C. L 456
Sheep sorrel 456
Shelton. Professor 308, 336
Shephard and Willtams 344, 388
Shepherd's purse 98
Shimek, B. 4, 422
Short awned brome grass 346
Side oats 368
Simmonds. P. L 124, 156, 161
Sinclair, Mr 280, 312, 327, 335, 339, 363
Sirrine, Emma $4,23,34,41,42$
Sirrine, F. A. $4,53,243$
Shutt, Frank T 158
Slender wheat grass 377
Sleepy grass, poisonous effects of 172
Smith, C. D 22\%, 228
Smith, Dr. Erwin F 283, 284, 289
Smith, Jared G 300, 303, 338
Smith, Worthington G 198, 214
Smuts (Ustilagincae) 217-248
barley smut 240
corn smut. 218
damage done 226
distribution and damage 235
head smut of sorghum 229
hosts of 225
kernel smut of corn 233
of oats 240
of sorghum 234
loose smut of wheat 236
maize smut not injurious to cattle 226
manner of infection 220
microscopic characters of 219
mycelium. 204
oat smut 238
other smuts of the genus ustilago 242
prevention of. 228
rye smut. 256
timothy smut 254
treatment of smut. 258, 261
Ustilago cruenta 236
wild barley smut 242
rye smut 257
Sneeze weed 456
Snow, Mr 142
Snyder, H 125
Soil binders 169
Sokol, George \mathbf{F} 4
Solanum caroliniense. 459, 463
rostratum 459, 461
Solidago canadensis 450
rigida 450
PAGE
Sorauer, Prof. P 187, 196, 214, 237, 248, 252, 257, 270
Sorghum 131, 160, 165, 442
blight 289
Sowerby and Johnson. 363
Sowing grass seed 306
Spartina 29 \%
cynosuroides 297, 314, 409, 411
chemical analysis of. 412
Speciffc gravity of seeds. 68
Speer, R. P 346, 349
Sporobolus 422
cruptandrus 39, 41, 423
cuspidatus. 425
heteropelis. 39, 41, 423
chemical composition of 423
longifolius. 424
chemical analysis of 424
Spot disease on orchard grass 208
Spring, O, F 156, 158
Spouting crab grass 394
Squirrel tall grass. 460
Stalker, Dr. M $75,177,192$
Stapfer, Professor. 364
Starch 465
Steapsin 468
Stebler, Professor 325, 336, 338, 342, 359, 364
Stem, gross character of. 14
minute anatomy of 18
Sterigmotocysis 112
Stewart. F. O 4, 68, 78, 92, 95, 120, 121, 207, 213, 214, 220, 222, 241, 288
Stink grass. 427
Stipa capillata 75
Stipa comata 178
pennata 75
spartea. 413, 414
chemical anslysis of 415, 416
viridula 416
Stomata 42
Storer, Professor 306
Stout, Hon. C. V. 274, 275
streptochaeta 73
Stubbs, W. C 166
Sturtevant, Dr 61, 98, 235
Sugar cane. 165
in medicine. 162
Sugar produclog grasses 165
corn 165
sorghum 165
sugar cane 166
Swamps 305
Sweet clover 461, 462
Switch grass 388
Swingle, Prof. Walter T
$61,63,217,237,238,239,240,241,242,247,250,252,258,259,260,261,281,289$Tall gama?86
Tall meadow oat grass 363
Taylor, Professor 171
Taylor, H. C 4
Tefi 141, 426
Temperature 146-152
mean temperature 153
Temperature and germination 90
PAGE
Ten Eyck, Professor 95
Teosinthe. 443, 444
Terrel grass $40:$
Thaxter 257
Thiel 13
Thin grass 362
Thompson, Professor 121
Thouvenin, Professor 121
Tickle grass 3×7
Tietschert, Prcfessor 66
Tilletia foetens 24
damage of 251
general cbaracters of 250
microscopic characters 250
hordei 253
lolii. 253
moliniae 253
oryzae 253
rotundata 253
secalis 252
striaeformis 254
tritici 252
Tlme required for germination 87
Time of seeding lawn grasses 497
Timothy 320, 321
chemical analysis of 323, 324, 325
vitality of seed 111
Timothy, different forms of 311
Tracy, Professor 461
Transplanting turf. 49 r
Trelease, Prof. Wm. 4, 39, 181, 187, 196, 203, 205, 209, 234, 235, 250, 254
Trifolium hybridum 298
incarnatum. 181
medium 298
pratense 297
repens. 298
Trifolium stoloniferum. 299
Triticum saticum. 130
True, Rodney 64
Tschirch, Professor 66,125
Tubeuf, Professor. 196, 203, 209, 234, 237, 248, 252, 258
Tulasne, Professor. 194, 218, 234
Ture 497
Trypsin 46π
Cnderwood, Mr 257
Unger, Dr 160
Upright sea line grass 140
Lrocystis agropyri. 257
occulta. 256
Uromyces acuminatus 250
brandegei 276
dactylddis 280
gramnicola 280
racemosa 276
Uses of grasses-
As soap 166
Baskets 16 1
Brooms. 169
Corn stalks, use of 168, 169
Fuel 1.0
Oil, corv 170
Other uses of grasses. 166
PAGE
Soll binders 169
Straw paper............... 166, 167
Trays... 167
Upholstering 168
Ustilago andropogonis.......................... 247 .

aгenaе. 238
damage and destruction........... .. 239
germination of.. 238
manner of infection.... 239
avenae var. levis 240

buchloe 247
bulbata 247
сrисnta 236
crus-galli............................... .. 246
fischeri 233
hordei..... 240
hиродуte8... ... 247
tongissima.. 246
lorentziana.. 242
maydis... 218
mountaiensis... 247
neglecta 242
nиdа 240
panici miliacei....... . .. 246
perennaи............................ 244
pustulata ... 216
rabenhorstiana 243
reiliana........................ 293
microscopic characters of.. 233
sacchari.... 247
sorghi 234
character of............ 235
spermophora...... 248
sphaerogena.......... 245
syntherismae 243
tritici 236
distribution and damage.......................... 237
general characters........................ 237
germination of spores... 238
microscopic characters............................ 238
Van Tleghem, Professor 8 i, 283
Varieties of seed .. 495
Viabllity and purity of good commercial seeds.. 103
Temperature at which they germinate.. . . 103
Vitality, impurities and days required.. 105
Vigna catjang.... 298
Vilmorin, Henry L... 62
Vitallty of seeds................................ 89,101
and impurities of 105
tests $106,107,108,109$
of blue grass.. . . 110
of orchard grass 111
of red top...... 111
of timothy 112
Von Thumen, Professor.............................. 196, 200, 234, 253, 270
Voorhees, Professor... 125
Wakefield, Bandusia... 4
Waldheim, Fisher de... 218
Walker, L. R 4
Wallace, Professor... 124, 157
PAGE
Walroth, Mr 248, 256
Ward, Prof. Marshal
Ward, Prof. Marshal 337 337
Warden, W. H. 4
Waxes 46
Weaver, C. B 4, 34, 241
Webber, Herbert J $62,63,121,123,187,235,250$
Werd, Professor 214, 265
Weeds of pastures and meadows 448
Weems, J. B 5
Werner, Professor $68,158,159$
Westcar, Mr 339
Western wheat grass 3.0
Wheat 130, 157
covered rust of 271
Wheat grasses 370, 375
White, F. S 61
Whitmore, A. P 4
Wiley, Prof. H. W 121
Wild grasses affected by ergot 195
Wild morning glory 458
Wild rice 139
Wild rye 396
Wild rye grass 400
Williams, Professor $125,135,187,310,315,3$ 29, 435
Williams, Thos. A. 160, 178. 306
Wilson, Mr 56
Wilson, C. A 4
Wilson, James 308, 309, 343
Wilt of corn 288
Winter pasture grass 329
Wire or English blue grass. 332, 333
chemical analysis of 333, 334
Wittmack. Dr 160
Wolf, Professor 252, 273
Wolfensteín, Professor 68
Wollf, Dr. Emil 239, 469
Woods, Director 488
Worlidge, Professor 836
Wright, S. I 69, 70
Wynch, Peter 390
Yellow leaf disease of barley 209
Yellow foxtail 432
Young, Mr. 335
Zea mays $64,125,444$
Zizania aquatica. 139,419

WITHDRAWN FROM HSNY LIBRARF

LIBRARY OF THE horticultural sogiety of N. Y.

598 MADISON AVENUE

 NEW YORK
[^0]: *For literature see: J. W. Harshberger. Maize; A Bntanital and Economic Study. Contr. Bot. Lab. Uni. Penn. 1: 75-202. 1893. Strasburger, Noil, Schenck and Schimper Lehrbuch der Botanik. 558, 1894. J. Sash's Lecture on the Physiology of Plants; English translation by H. Marshall Ward. A Text-book of Botany. 858: 461 f. G. Haberlandt. Physiologische Pflanzenanstomie. $550: 235^{\circ} f$, De Bars, Comparative Anatomy of the Vegetative Organs of the Shanerogams and Ferns; English translation by F. O. Bower and D. H. Scott. 659: $241 f$.

[^1]: * Maize, l. c. 81.
 +1. c. 81.
 \$ Conn. Board of Agriculture. 1882: 70.

[^2]: *Bull. University of Ill. Agrl. Exp. Station. 13: 427, 1891.
 †Bull. Alabama Agrl. Exp. Station. 4: 1887.
 \#Prairie Farmer 1887: 373. 631; Bull. Minn. Agrl. Exp. Sta., 5:
 §Ann. Rep. Penn. State Coll. 1886: 97.

[^3]: * Annual Rep. Wis. Agrl. Exp. Sta. 9: 113.

[^4]: *Some anatomical studies of leaves of Spornbolus and Panicum. Proc. Ia. Acad. Scl.. Des Moines. 3: 151. pl. 6. f. 1-3. 1836. Contr. Bot. Dapt. Ia. St. Coll. Agrl. Mechanic Arts. 1.

 + A comparative study of tha leaves of Lollum, Festuca. and Bromus. Proc. Ia. Acad. Sci., Des Moines. 4: 127. 1897. Contr. Bot. Dept. Ia. St. Ooll. Agrl. and Mechanic Arts. 4.

[^5]: +A study of some Anatomical Oharacters of North American Graminear III. Bot. Gazette. 16: 2 $\mathfrak{j} 5$, pl 23. f. 1-3. 1891. Miss E. L. Ogden has likewlse studied the leaf structure of Jouvea and of Eragrostis olbtaiflora. Bull Dir, Agros. U. S. Dept. Agrl. 8: 12-20. pl. 9.

[^6]: \% $1 . \mathrm{c} .17$.

[^7]: An anatomical study of the leaves of Eragrostis. Proc. [a. Acad. Sci., 4: 140-141, 189\%, pl. 7. f. 2, 3 and 1 ; pl.9. f. 12. Contr. Bot. Dept. Ia. St. Coll. Agrl. and Mechanic Arts, 4.

[^8]: *l, c. 128: pl. 9, f. 1. pl. 11, f. 9.

[^9]: *An anatomical study of the leaves of some specles of the genus Andropogon. Proc. Ia. Acad. Sci, Des Molnes. 4:132, 1897. Contr. Bot. Dept. Ia. St. Coll. Agrl. and Mechanic Arts. 4.
 +A study of the leaf anatomy of some species of the genus Bromus. Proc. Ia. Acad. Sci., Des Moines. 4: 125. pl. f, f. 1; pl. 7, f. 7, 1897. Contr. Bot. Dept., Ia. St. Coll. Agrl. and Mechanic Arts, 4.

[^10]: * Proc. Ia. Acad. Scl., 5: 204. Contr. Bot. Dept. Ia. Stat9 Oollege of Agr. and Mech. Arts. 10: 6 .

[^11]: *A study of some anatomical characters of North American Gramineæ. IV. Bot. Gazette. 17:358. pl. 21.

 + Emma Sirrine, 1. c. 122.
 \#Emma Pammel, l. c. 129. pl. 9. f.2. pl. 10, f. 5 and 6.
 ${ }_{8}$ O. B. Weaver, l. c. 133. pl. 12. f. 1 and 5. pl. 15 f. 14.

 116. c. 141. pl. 16. f. 2. pl. 18. f. 15-16.
[^12]: Fig. 30. Scent glands of stink grass (Eragrostis major). Figure to right, surface view; left view in section, (Ball.)
 *Emma Sirrine and Emma Pammel, l. c. 153.
 \dagger The glands of Eragrostis major Host. Proc. Soc. Proc. Agrl. Scl., 10: 70. 1889.
 キGlands on a grass. Am, Nat., 18: 420, f. 1. 1884.

[^13]: *True grasses, English translation, Lamson, Scribner, and Southworth. 9.

[^14]: * l. c.
 $\dagger I V$ Bot. Gazette, $17: 359$.
 *l. c. 151.
 sWm, C. Stubbs. Sugar Oane, 1. 20.f.6.8.

[^15]: *English translation True Grasses, from Die Natuerlichen Pflanzonfamillen. See also Bentham, Notes on Gramineae. Linnean Soc. Jour. Bot., 19: 22.

[^16]: *Engler's bot. Jahrbuecher. 1: 33.
 The morphological significance of grasses. Bot. Gaz 25: 199.

[^17]: *Buchloe dactyloides Englm, not a dioeclous grass. Bul. Torr. 19: 303. 1892.
 +Note on bulfalo grass. Bot. Gazette. 20: 464.

[^18]: *Pflanzenleben. 2: 139.

[^19]: *Wheat varieties, breeding, cultivation. Bull. Univ. of Minn. Agrl. Exp. Sta. 62: 415 .

[^20]: *Just as I am reading proof there has come to hand a valuable paper on Xenia, by Webber. Bull. U. S. Dept. of Agr. Div. of Veg. Path. and Veg. Phys. 22: 1900.

[^21]: * Wheat: varieties, breeding, cultivatlon. Bull. Mian. Agr. Exp. Sta. 62: 460. This valuable bulletingives a great deal of valuable information on the subject.
 +1 ple Pflanzen mischlinge ein Beitrag zur Biologie der Gewischse. 407.
 \ddagger Trans. Bot. Soc. Edinb. 12:286.
 SDarwin: Animals and plants under domestication, 1:430.

[^22]: *Philosophical Transactions Abridgment, vol. 62:204-205. Kellerman and Swingle. Annual Rep. Kansas Agrl. Exp. Sta. 2: 346, 1889.
 +Ann. Rep. New York Agrl. Exp. Sta. 2: 37-56.
 \ddagger Proc. Soc. Prom. Agrl. Sci. 1887: 1.
 §Rep. State Board of Agrl. Mich. 1878: 450.
 \|Ann. Rep. Kan. Agrl. Coll. Exp. Sta. 2: 288, 1889.
 -Agrl. Sci, 4: 23.
 ${ }^{1}$ Iowa State Register, Dec. 11. 1891.

[^23]: *Year book U. S. Dept. of Agr. 1897: 404-405.

[^24]: *Experiments in Orossing Varieties of Corn. :Bull. Kan. State Coll. Agr. Exp. Sta., 17: 151-174. pl. 3, and Ann. Rep. Kan. Agrl. Coll. Exp. Sta. 2:
 +For literature, see valuable paper by Webber. Bull. U. S. Dept. Agrl. Div. Veg Path. and Phys. 22: 1900.

[^25]: *Bot. Gazette, 18: 214 pl. 24-26.
 +Proc. Ia. Acad. of Scl. 5: 199.

[^26]: * Pammel. Histology of the Caryopsis and Endosperm of some grasses. Trans. Acad. Scl. of St. Louls. 8: 199. pl. 17-19. Proc. Ia. Acad Scl., 5: 199, 1897. Oontr. Bot. Dept. Ia. St. Coll. Agr. and Mech. Arts, 10. 1, 1898 . Hays and Boss, Minn. Agr. Exp. Sta. Bull. 62: 418. Bolley, Bull, N. D. Agr. Exp. Sta. 9: 1.

[^27]: * Bull. Ia. Agrl. Exp. Sta. 25: 28.

[^28]: *The Grain Weight: A study of wheat. Olncinnati. 16.

[^29]: *Amerlcan Weeds and Useful Plants. Revised by George Thurber. New York. 386.

[^30]: *Contributions from botanical laboratory and seed-control station of Hamburg. 3: 1893. Abst. Exp. Sta. Rec. U. S. Dept. of Agrl. 5: 333.

 + The objects and methods of seed investigation and the establishment of seed-control stations. Exp. Sta. Rec. U. S. Dept. Agrl. 4: 891.

[^31]: *Jour. Ohem, Boc. London, 57: 458.

[^32]: *Pringsheim Jahrb. 1. wiss. Bot. 26: 379-437. pl. 2. 1891; Ber. Deutsch. Bot. Gesell. 13: 2-13. pl. 1. 1890.
 †Ber. Ohem. Gesell. 8: 202-387.
 *Rèsumè du Compt rend des travaux du Laboratoire de Carlsberg. 1881: 189.

[^33]: *Bot. Zeit. 20: 242, 249. pl. 9. 1862.

[^34]: *These writers, Research of the germination, etc. Jour. Ohem. Soc. 57: 465., glve an account of obtaining these enzymes.

[^35]: *Physiology of Plants. 373.
 +Ann. des Scl. Nat. V. 17: 205.
 \$Landw. Jahrb. 5: 14. Abst. Jahr. d. Agr. Chem. 1875: 232.
 §Handbuch der Samenkunde. 511.

[^36]: ＊Comt．rend．120：1278．Abst．Cent．Agrikulturch．25：737．
 †Handbuch der Samenkunde．226．Landw．Versuchs．Stat．117：74． 1874.

[^37]: ＊A fuller account of these studies is given by Pammel．Proc．Soc．Prom．Agrl．
 Sc1．1898：194．Oontr．Bot．Dept．Iowa St．Coll．Agrl，and Mechanic Arts． 12.

[^38]: *Oanada Experimental Farms. Appendix to the Report of the Minister of Agrl. 1892: 40-42.
 \dagger Year Book U. S. Depart. Agrl. 1895: 176.
 \$Naturw. Rundschau. 1898: 23. Verhandl. geo. bot. Gesells. Wien. 45: 414. Abst. Bledermann's Cent. Bl. Agrikulturch. 25: 637.
 \&Pammel. Proc. Soc. Prom. Agri. Sci. 1898: 184.
 || Wallace's Farmer and Dairyman. 1897: 150.
 ©Ann. Rep. of the Board of Control, N. Y. Exp. Sta. 2: 65. 1883.

[^39]: *Rep. Mich. St. Board Agrl. 1881-1882: 123.
 †Agrl. Sci, 6: 454. 1892.

[^40]: *Prager. landw. Wochenblatt. 1895: 393. Centr. Agrikulturch. 24: 393.

[^41]: *Preliminary report on the examination of some seeds. Bull. Iowa Agr. Exp. Station 13: 75-86.
 +Seed testing: Its uses and methods. Bull. N. O. Agr. Exp. Station. 108: 349-415. 1894. See 383-391. (Also Bull. 73: 73-78: 1889).

[^42]: *Pure seed investigations. Yearb. U. S. Depart. Agril. 1894: 389-408.

[^43]: ＊A summary of American seed tests．Agri．Scl．7：541－545．
 †Yearb．U．S．Dept．Agrl．1896：623－624．
 Oonn．Agr．Exp．Station．Ann．Report 1892：152－154．

[^44]: ＊Ann．Rep．Delaware Exp．Station．1889：37－68．（Also Bull．5）．

[^45]: *Fourth Ann. Report Ohio Agri. Exp. Station. 1885: 185-186.

[^46]: *Bull. N. C. Agr. Exp. Station. 108: 383-384. 1894.

[^47]: *A Summary of American Seed Tests. Agrl. Sclence. 7: 541-545.
 tGermination Experiments. Maine Agri. Exp. Station, Ann. Report. 1888: 13613\%. (See pp. 143-147.)

[^48]: ＊Seed testing．Delaware Agrl．Exp．Station．Ann．Report．2：46－57．Also Bull． 5.
 ＋Michigan Board of Agriculture．Ann．Report．1877：377－392．See 387－389．Also Beal； Grasses of No．Am．1：209－210．（Ed．2．）

[^49]: *Ill. Agri. Exp. Station Bull. 15: pp. 478-482. 1891.

[^50]: ＊Conn．Agr．Exp．Station，Ann．Report．1892：152－154．

[^51]: ＊Wissenschaftlich praktische Unters auf dem Geblete des Pflanzenbaues．1：66－68， 1875．Harz．Landw．Samen Knude．1： 294.
 ＋Prager．Landw．Wochenblatt．1895：393．Bledermann＇s Oentr．Agrikulturch．24： 393.

[^52]: +Untersuchang. u. Schimmelpilze. II and IV.

[^53]: *Prillieux. Annal de Scl. Nat. Bot. VI. 7: 248.

[^54]: Fig. 66. Copper compounds and the germination maize. U. S. Dept. of Agrl. formula, 12,$13 ; 5$, Bordeaux mixture full strength : 6 , Bordeaux mixture one-half strength.

[^55]: *Balfour: Class book of botany. 3: 628.
 +Ann. Rep. Mlch. Agrl. Exp. Sta. 1: 110. 1888.
 ${ }^{\text {tThe }}$ influence of fungicides upon the germination of seeds. Agrl. Sci. 8: No. 5. 1894.
 \&Are copper salts injurious? Bull. Iowa Agrl. Exp. Sta. 16: 321.
 סCopper Sulphate and germination. Bull. Div. Veg. Phy. and Path. U. S. Dept. Agrl. 10: 14.

[^56]: *Agrl. Sci. 8: 215.
 †Bull. Kansas Λ grl. Exp. Sta. 41.
 \#Ann. Report Vermont Agrl. Exp. Sta. 1891: 139-141.
 \$Nederlandsch Landb. Weekblad. 31: 2. 1892. Biedermann's Centr. Agrikulturch. 22: 158.

[^57]: ＊Veber die Wirkung von Schwefelsaurem Eisenoxydul auf die Pflanze．Dorpater Naturforscher－Gesellschaft．18：96－101．
 \＄De l＇influence des rayons X sur la germination．Revue generale de bot．10：81．
 \＃Experiments with sorghum．Bull．U．S．Dept．Agrl．Div．Ohem．29：52．39：25．40： 27.
 8 Experiments with sorghum．Bull．U．S．Dept．Agrl．Div．Ohem，40： 28.
 IYear book．U．S．Dept of Agrl．1896： 305.
 TYear book．U．S．Dept．of Agrl．1896：：89．

[^58]: *Agrl. Sci. 5: 117.

[^59]: *Ann. Rep. N. Y. Agrl Exp. Sta. 3: 189. Ann. Rep. N. Y. Agrl. Exp. Sta. 4: 181. 128, 120.
 \$Bull. Indiana Agrl. Exp. Sta. 27: 32: 14.
 influence of environment in the origination of plant varieties. Year book U. S. Dept. Agrl. 1896: 92.

[^60]: *Bull. Kansas Agrl. Exp. Station. 30: 1891.
 +Bull. Kansas Agrl. Exp. Station. 45: 143. 1893.
 \ddagger Koernicke-Werner. Handbuch des Getreidebaues. Koernicke Die Arten u Varietaten d. Getreides 1: 470. pl.10. 1885. Werner, Die Sorten u. d. Anbau d. Getreides 2: 1010. 1885.
 \&Europaische Cerealien. In botanischer und landwirthschaftlicher Hinsicht bearbeitet 74. 20 pl . Mannheim. 18:4. Heidelberg.
 liSeringe. Cereales Europennes. 1841. Monographle des Cereales de la suisse. 1819. Berne and Leipzig.
 \& Hackel. True grasses. English Translation Lamson-Scribner and Southworth, 228. 110 1890. Hackel. Gramineae in Naturlichen Pflanzenfamilien II. Theil. 2 Abth.
 **Darwin. Oharles. Animals and Plants under domestication. 1: 329-341.
 \dagger DeCandolle, A. Origin of cultivated plants. Euglish translation 468. 1892.
 虷Beal, W.J. Grasses of North America. 1:457 f. 175. 1887. (Ed. 1.) 457. 175. 1896. (Ed. 2.)
 ssivallace. India in 188\%. 363. 71 pl. 5.f. 1 map. 1888.
 Hin Brewer. Report on the cereal production of the U. S. 10th Uensus of the U.S. 3: 173. 16 maps.

 - ${ }^{10}$ Emmons. Agriculture of New York iu Nat. Hist. N. Y. 2: 90-274. pl26-28.
 ***Klippart. Essay on the origin, growth, diseases, variety, etc., of the wheat plant. Ann. Rep. Ohio St. Board of Agrl. 12: 562-816. 11 pl .1857.

[^61]: *Simmonds, P. L. Tropical Agriculture. 515. 1877.
 †Harz. Landw. Samenkunde. 1:50̃ュ. 2: 5ธ๊̃-1362.
 *Tschirch \& Osterle Anatomischer Atlas der Pharmakognosie und Nahrungsmittelkunde. 41, 42, 43, 44, 45, 52, 53.

 SSnyder \& Voorhees. Studies on bread and bread-making. Bull. of U. S. Dept. of Agrl. 67: 56.
 $\|$ Neftel, Flour milling process. 10th Census Rep. 3: 22. 6 pl .
 TPlumb. The Geographic Distribution of Cereals in North America, Bull. Div. of Biological Surver. U. S. Dept. of Agrl. 11:24. pl. 1.
 **Gehn. Kulturpfianzen und Haustiere. in ihrem Uebergang aus Asien nach Griechenland und Italien sowie in das ubrige Europa. 53:. 1887.

 忛Willams. Millets. O. Exp. sta. Farmer's Bull. U. S. Dept. of Agr. 101: D. 6.
 $\ddagger \ddagger$ Lamson-Scribner. Grasses of Tennessee. Bull. Agr. Exp. Sta. Tenn. 5: 2.
 ssBuschan. Vorgeschichtliche Botanik d. Oultur. u. Nutzpflanzen d. alten Welt auf grund prahistorischer Funde. 268. 1895.
 $\|!$ DeOandolle Origin of Oult. Pl. 370.

[^62]: *De Candolle. Origin of Oult. Pl. 435.

[^63]: *De Oandolle. Origin of Oult. Pl. 380.

[^64]: *Ann. Rep. Mass. Hatch Agrl. Exp. Sta. 8: 31.
 +Year book of the U. S. Dept. of Agr. 1898: 276.

[^65]: *Lamson-Scribner. Year book. U. S. Dept. Agrl. 1894: 429.

[^66]: ＊Herbert Myrick．Am．Agrl．Year Book and Almanac． 557.
 \dagger Fifty governments according to agricultural ministry．
 \ddagger Sixty governments according to agricultural ministry．

[^67]: *Maize: 1. c. Contr. Bot. Lab. U. of Penn. 1: 75-202. pl. 14-17. 1893.

[^68]: *Cereal production. U. S. Tenth Census Rep 3:100.
 +Tropical Agrl. 295.

[^69]: *Gardners' Chronicle. Darwin. Animals and plants. 1:332.
 tGetreidearten 66. 91. 92. 116. 117.
 \ddagger Die Pflanzenwelt Norwegens. 75.
 sRoyle. Illustr. Bot. of the Himalaya. 418.
 IIndia in 188\%. 247.

[^70]: *Saunders Bull. Oanada Cent. Exp. Farm 18: 1893.
 4Handbuch 2: 483.

[^71]: *Handbuch 2: 579.
 TCereal Production. Tenth Oensus Rep. 3.

[^72]: *Koernícke-Werner.o Handbuch 2: 751.
 +Sorghum as a forage crop. Farmers Bull. Of. Exp. Stat. U. S. Dept. of Agrl. 50.

[^73]: *Essayo farmacofitologia Cubana 8.

[^74]: *Harshberger (Contr. Bot. Lab. Uni. Penn. 1: 185) quotes from an article in the Am. Jour. of Phar 5: 315.

[^75]: *Report U. S. Dept. of Agrl. 1881-82: 45\% pl. 14-16.
 中Reps. U. S. Dept. Agrl. 1880-87:
 \#Bull. U. S. Dept. Agrl. Div. Chem 2: 6: 8: 14: 17: 18: 20: 26: 29: 34: 37: 40 .

[^76]: *Wray. The practical sugar plants. 1848. Stubbs Sugar cane. 1. \dagger ¡tubbs Sugar cane. 1.
 \#Tropical Agriculture. 128.

[^77]: *For an account of the making of paper see Man. of Chem. Teoh. by Rudolph Von Wagner. English translation. Orookes and Fischer. 853: 1892.
 \dagger U. S. Dept. Agrl. Fiber Inves. 9.
 \#Garden and Forest. 3: 619.

[^78]: *27: 363.

[^79]: *Year book U. S. Dept. Agrl. 1894: 421,

[^80]: *lc. 187.

[^81]: *Matthew 13: 25-30. John Smith, Bible Plants, in commenting on the above passage, states that it is not the tares or a plant commonly called tares (Vicia sativa), but the above grass.
 +Flora Medica. London. 609.
 \#On poisons in relation to medical jurisprudence and medicine. 653. $f .65 .1875$. (3d 3) Philadelphia.

[^82]: *Jour. d. Bot. 12: 230. 5 f. 12: 380. 1893. Bot. Gazette 28: 136. 1899.
 +Ber. d. Deutsch. Bot. Gesell. 16: 203-2J7. 1893.
 \#Bor. d. Deutsch. Bot. Gesell. 16: 207-214. pl. 13. 1898.
 sThe sleepy grass. Garden and Forest. 4:111.

[^83]: *Rheumutism 1n horses. Bull. Gov. Agrl. Exp. Sta.. N. Dak. 7: 1892.
 +Feeding of millet to horses. Bull. Guv. Agrl. Exp. Sta. N. Dakota. 26: 1896.

[^84]: *Am Chem. Jour. 20: 862.
 +Millet, Bull. Mich. Agrl. Coll, Exp. Sta. 117: 14. 1894.

[^85]: *Bessey. Injuriousness of Porcupine grass. Am. Nat. 18: 929. 1884.

[^86]: *Grasses and forage plants of the Dakotas. Bull. U. S. Dept. Agrl. Div. Agrostology. 6: 20.

[^87]: Flg. 75 B. Oross section of normal jawbone; a, fang of tooth; b, marrow. B-Oross-section ulcerated and enlarged jawbone; c, decayed fang of loosened tooth; d, oavity in enlarged jaw, the embedded awns removed.

[^88]: *Oarroll Herald. 1895: 28 j.
 +Squirrel-tall Grass. Bull. Wyoming Agrl. Exp. Sta. 19.

[^89]: *An unusual Phyto-Bezoar. Trans. Acad. Scl. St. Louls. 7; 493. pl. 40.
 †Bot. Gazette. 20: 414.

[^90]: *1882: 127.
 †Harz. Land. Samenk. 2: 1315.
 〒Bull. Kansas Agrl. Exp. Station 24: 1891.

[^91]: *Farmers' Bulletin U. S. Dept. Agrl. Exp. Sta. Work. XVI, 122: 26.

[^92]: *Trelease. Parasitic fungl of Wis. 7.
 *Bot. Gaz. 11: 272.
 +App. to Oat. FI. Nebr. Contr. Shaw School Bot. 9: 11. Trans. Acad. Sci. St. Louls. 6.
 \#Pflanzenkrankheiten. 152.
 \&Les maladies des cereales.
 || In Beal. Grasses of No. Am. 1: 429.
 TBot. Gaz. 9: 39.
 **Bot. Gaz. 11: 272. 13: 56. Bull. Iowa Agrl. Ooll. Dept. Bot. 1886: 53. Bull. Dept. Bot. Iowa Agrl. Ooll. 1888: 99.

[^93]: *L. H. Pammel. Mildew of Indian Corn. American Agriculturist 61: 708.
 *Raciborski Lijer, eine gefahrliche Maiskrankheit. Ber. der Deutsh. Bot. Gesell. 15: 475-478. 1897.

[^94]: *See Salmon on Contaglous Diseases of Domestic Animals. 1883-1884: Where an extended history is given, and Fleming Anlmal Plagues, their history, nature and prevention. 1: 1871. 2: 1882.

[^95]: *Kreuterbuch. 285. 1532.

[^96]: *Silva Hercynia. 1588. 47. Francfourt.
 +Pinax. Theatri Botanica. 23. 1623.
 \#Mem. du Mus. 2: 401. pl. 14. f. S.

[^97]: *Froehner: Lehrb. d. Toxologie f. Thlerarzte. 1890.

[^98]: *Bull. Dept. of Bot. Iowa Agrl. Col. Ames. 1886: 19.
 *Bull. Dept. of Bot. Iowa Agrl. Col. Ames. 1888: 8 .
 †Die Bekampiung der Piakrankheiten unserer Culturgewaechse. 36.
 \#Syn. method. fungorum. 29.
 SSelecta fungorum. 3: 24.
 \|Pflanzenkrankheiten. 410.
 ©Flora 1863: 401 Bot. Zeit. 1865: 100. (According to Sorauer, 411).
 **In Beal. Grasses of No. Am. 1: 423 (Ed. 1.)
 中1Krankheiten d. Pflanzen 458. f. 81 (Ed. 2.)
 䖵Pflanzenkrankheiten. 207.

[^99]: *Saccardo Syll. Fung. 2: 581.
 Ellis and Everhart. N. Am. Pyrenenycetes. 91.
 Peck. Rep. Mus. State Nat. Hist. 27: 108.
 †Fl. Franc. 6: 106. For synonymy see Loverdo Les Maladles Crypt. 212.
 \#3orauer. Pflanzenkrankhelten. 331.
 Frank. Krankheiten d. Pflanzen. 554. (Ed. 1.) 264. f. 51. (Ed. 2.)
 Tubeuf. Pflanzenkrankheiten. 194.
 Trelease in. Beal. Grasses of N. Am. 1: 423.
 Pammel. Fungus diseases of Iowa Forage Plants. 14-15.

[^100]: *Bekampfung d. Pilzkrankhelten. 39.

[^101]: *Syn. 30. Dothidea graminls. (Pers.) Fr. Sys. V. 38\%.
 +Symb. Myc. 218. Saccardo Syll. Fung. 2: 602. Ellis ?and Everhart. N. Am. Pyreno. 599 pl. 40. f. 1-4.

[^102]: *Krankheiten der Pflanzen. 2: 455. f. 80. (Ed. 2.)
 *Pflanzenkrankheiten. 243,
 +In Beal. Grass of N. Am. 1: 424.
 \ddagger Fungus Diseases of Iowa Forage Plants. 24.
 §Rabenhorst Fung. Europ. 2261.
 $\|$ Zelt. f. Pflanzenk. 3: 28.
 TMitth, d. K. Akad. Stockholm. 1890.
 **Ueber eine parasitische Pilze. Z9it, f- Pflanzenk. 3: 23.

[^103]: *Ann. Scí. Nat. Bot. II. 19: 339. 1843.
 †Eriksson. On nagra sjukdom?r a odlof vaxter samt om atgarder till motarbetande af vaxtsjukdomar. 20.

 Tubeuf. Pflanzenkrankheiten. 491. Mangin also states that it is parasitic. See Jour. Roy. Mic. Soc. 1898: 568.

 Loverdo. Les maladies crypt. 283.
 ₹Zeit f. Pflanzenk. 3: 19. Also Briozi. Zeit. f. Pflanzenk. 3: 216.
 §Plant diseases and their treatment. Agrl. Gaz. New So. Wales. 3: 991.
 \|In Beal Grasses of No. Am. 1: 488.
 T1. C. Zeltsch. f. Pflanzenk. 3: 19.
 **Bull. Acad. d. Sc. Oracovie 1822: See Frank Krankheiten. d. Pflanzen. 302. 419. f. 63.

[^104]: *Bull. Ohio Agrl. Exp. Sta. 97: 42.
 tOobb. 3: 991.
 \#Ueber die Befallung durch Oladosporium und Phoma. Zeit. f. Pflanzenk. 3: 28. Rep. Maine State Coll. 1894; 96.f. 3 .

 8Oobb. 3:1000.
 \|Rep. N. Y. State Mus. of Nat. Hist. 43: 9 pl. 3. f. 19.22. 1890.

 - Ueber die Schwarze des Getreldes. Zeit. 1. Pflanzenk. 3: 200.

[^105]: *Symb. 107. Saccordの. Syll. Eung. 4: 348.
 †Beal. Grasses of North Am. 1:428.
 中U. S. Dept. Agrl. Rep. 1886: 129.
 \#Pammel: Eungus Diseases of Iowa Forage Plants.
 *Pammel: New Fungus Diseases in Lowa. Jour. Myc. 7: 96.
 şidrag till kannedomen om vara odlade vaxters sjukdomar. 185. pl. 9.
 §Sorauer. Just. Bot. Jahresb. 1885: 502.
 $\| I$. c. Pflanzenkrankheiten. 526.

[^106]: *Herbarium mycologicum. 33*.
 †Pammel. Fungus diseases of Iowa forage plants. Pammel. Jour. Myc. 7: 96. See also Sorauer. Pflanzenkrankhelten. 348. Tubeuf. Pflanzenkrankheiten. 531.
 *Ellis N. Am. fungi. No. 4. Grevillea. 6: 88.
 SLa nebbia del granturco. 3. Schroeter. Just Bot. Jahresb. 1878: 184, Comes. Orittogamia agraria. 1: 409.
 |l Fungi Parassiti delle plante cultivate od utili essicati deliniati e descritti. Fasc. III and IV, No. 81.

 - Herbarium mycologicum. 332.
 **Krankheiten der Pflanzen. 582. (Ed. 1.) 316. (Ed. 2.)
 $\not \uparrow$ Ueber eine Blattfleckenkrankheit der Gerste. Bot. Centralbl. 29: 89. Sorauer Just Bot. Jahresb. 1885 : 515. Distributed in Fungí Scand. 187.

 靺Braunfleckigkeit der Gerstenblatter. Zeltsch. fur. Pflanzenk. 1: 24.
 ssZeitsch. fur. Pflanzenk. 5: 10.

[^107]: *La Nebbla del gran turco. Parma. 1876. Abst. J. Schroeter. Just. Bot. Jahr. Just. 1876: 184.
 †Fung. Europ. 23.
 ¥aaccardo. Syll. Fung. 4: 411. Grevillea. 6. E8. Ellis. N. Am. Fung. No. 45. sCrittogamia Agraria. 409.
 Ann. Rep. State Mus. Nat. Hist N. Y. 34: 51. 456. pl. 3. b.
 llann. Rep. Maine State Coll. 1894: 21. 95.

[^108]: *Rep. Geneva N. Y. Agrl. Exp. Sta. 15: 452. pl. 32. f. 2. 1896.
 中Rep. Conn. Agrl. Exp. Sta. 1889: 171. 1890.

[^109]: *Saccardo. Syll. Fung. 4: 217. Trichothecium griseum Cooke Rav. Amer. Fung. 580.
 †Diseases of Ffeld and Garden Crops. 208. This fungus is placed with Endoconidium by Prillieux and Delacroix.
 \#Soc. Prom. Agrl. Science, 11: 47. f. 1, Fungi and fungicides. 199. See also Pammel. Jour. Mycology. 7: 97.

[^110]: *I. 538.
 †Frank. Krankheiten der Pflanzen 3ă8. (Ed. 2.) 1896.
 "Syll. Fung. 2: 554.
 §Bull. Ohio Agrl. Exp. Sta. 97: 40.

[^111]: *Rec. sur. les progres et les causes de la Nielle. 77.
 †Fl. Fr. 2: 596.
 *Abhandling uber Mais. 242-43. 1809.
 §Historie Naturelle. Agricole et economique du Mais. 94. 1836.
 1 Dle Krankheiten der Kulturgewachse. 70. 1859.

 - Memoire Surles Ustilaginees comparees aux Uredinees. Ann. Sci. Nat. LII. 7: 83. 1817.
 **Pflanzen Pathologie. 102. 1841.
 \dagger Untersuchungen aus dem Gesammtgeblete der Mykologle. Also Neue Untersuchungen uber die Brandpilze und Brandkrankheiten. II Nachrichten aus dem Klub der Landwirthe zu Berlin. 1888.

 䖵Coutr to the blology and history of the development of the Ustilagineae. Rep. N. Y. Agrl. Soc. 1870: 280. Translated from Pringsh. Jahrb. Wiss. Bot. 7:61.

 SSBull. Kans. Agrl. Exp. Sta. 62. 190-197. 1896. See, also, Corda. For contributlons to the knowledge of the different kinds of brands in the cereals and blight in grains, by Corda, translated by Smith, 19. pl. 3 f. 1-2. Emmons' Agrl. of N. Y. 2: 265.

[^112]: *Hitchcock. Variation in spores of corn smut. Science 22: 353.

[^113]: *Effects of heat on the germination of corn and smut. Iowa Acad. Scl 2: 74-78. 1894.
 +Untersuchungen aus dem Gesammtgebiete der Mykologle. Ueber Hefenpilze, V Heft. 6テ̈-76. 1883.
 ${ }^{4}$ Bot. Zelt. 33: 122.

[^114]: *Bull. Iowa Agrl. Exp. Sta. 2a. 315. See also Bull. 20. 721.
 +Bull. Kansas Agrl. Exp. Sta. 23: 315.
 \#Bull. Kansas Agrl. Exp. Sta. 62: 183-187.

[^115]: *Morini. Il. Oarbone delle piante Chimica Veterinaria 7: See Loverdo Les Maladies Crypt. 76.

[^116]: *Untersuchungen aus dem Gesammtgebiete der Mykologie. Heft XI. Smith. Jour. of Myc. No. 4. 6: 162. 1890.

[^117]: *Smut of Indian corn (Ustilago Zea Mays). Rept. U. S. Dept. of Agrl. 1887: 380-382.
 +Tuckerman and Frost. Cat. Pl. Amherst Coll. 83.
 Day. Cat. of Nat. and Native Plants of Buffalo. 143.
 Ellis in Briton. Pl. of New Jersey. 506.
 Trelease. Parasitic Fung of Wis. 34.
 Schwienitz. Syn. Fungi. Car. 71.
 Bessey. Bull. Bot. Dept. Iowa Agrl. College. 1884: 12\%.
 Ravenel. Fung. Car. Ex. [V. 100.
 Kellerman. Bull. Kan. Agrl. Coll. Exp. Sta. 23.
 Bull. Neb. Agrl. Coll. Exp. Sta. 11: 67.
 Norton. Trans. Acad. Sci. St. Louis. 7: 234.
 H. S. Jennings. Bull. Texas Agrl. Coll. Exp. Sta. 9: $\underset{\sim}{2}$.

 Hitcheock and Norton. Bull. Kan. Agrl. Exp. Sta. 62.
 Kellerman \& Werner. Oat. of Ohio Plants. 347.
 Seymour. Rep, U. S. Dept. of Agrl. 1887: 380.
 Peck. Rep. State Mus. Nat. Hist. 34: 26.
 Webber. Cat. of Flora of Neb. 73.
 Bessey. Bull. Neb. Exp. Sta. 11: 21.
 F. Lamson-Scribner. U. S. Dept. of Agrl. Rep. 1887: 385.

[^118]: *Chili. Saccardo. Syll. Fung. 7: 472.
 Fischer De Waldheim. Ustilaginea. 217.
 Germany. De Bary. Dle Brandpilze. 4.
 Sorauer. Planzonkrankheiten. 201.
 Frank. Die Krankhelten der Pllanzen. 110 (Ed. 2.)
 Winter. Die Pilza. 97.
 Tubeuf. Pllanzenkrankheiten. 291.
 Austric. Thumen. Bekampfung der Pllzkrankheiten. 29.
 Italy Comes, D O. Crittogamia agraris. 75.
 Penzig. Fungi Agrumicoli.
 France. Jean Loverdo. Les Maladiez cryptogamiques des cereales. 68.
 Tulasne. Mem Les Ustilagineac 84.
 England. Smith. Diseases of Field and Garden Orops. 254.
 \dagger Pammel. Fungus diseases of Iowa forage plants. 4
 \#Bull. Dept. of Botany Lowa Agrl. College. 1886: 16.
 \&Bull. Dept of Bot. Iowa Agrl. Coll. 1884; 12\%. Also Bull. Neb. Agrl. Exp. Sta. 11: 25.

 Hereal Production of the U. S. Tenth Census Rep. 3: 107.

[^119]: *Report U. S. Dept. Agr. 1869: 73.
 \dagger Feeds and Feeding. A hand book for student and stockman. 176. 1893. See also Rep. Board of Regents, University of Wis. 1881.
 \$Bull. Mich, Agrl. Exp. Sta. 137.

[^120]: *Rep. State Board of Agrl. Mich. 1880: 288.
 tOorn stalk disease. Bull. Bureau of Anlmal Industry. U. S. Dept. of Agrl. 10: 47. 1895.

[^121]: *Rabenhorst's Fungi Europ. 1993. Kuehn. Die Brandformen der Sorghum Arten. Mitth. d. Ver. f. Erdkunde zu Halle. 1877: 81, Saccardo. Syll. Fung. 7: 456.

 Kellerman and Swingle. Notes on sorghum smuts. Bull. Kansas Agrl. Exp. Sta. 23: Sorghum smuts, Proc. Kan. Academy Sclences. 1890: 158.

 Trelease. Preliminary List of Parasitic Fungi of Wis. 34.
 Webber, H. J. Rusts and Smuts of Nebraska. Bull. Nebr. Agrl. Exp. Sta. 11: 69. Oat. Fl. of Ntb. 74. Rep. Nebr. State Board of Argl. 1889:

 Saccardo. Syll, Fung, 7: 471.
 †Hitchcock and Norton. Bull. Kansas Agrl. Exp. Station. 62: 198.
 Norton, J. B. S. A study of the Karsas Ustilagineæ. Trans. Acad. of Sci. St. Louis 7: 23.

 Frank. Krankhaiten der Pflanzen. 111 (2 ed.)
 Tubeuf. Pflanzenkrankheiten. 303.
 Sorauer. Pflanzenkrankheiten. 209.
 Comes. Orittogamia Agraria. 75, 537.
 Saccardo. Sy11. Fung. 7: 471.
 \#Passerini. La Nebba deí cerealí, 1876.
 Bot. Gazette. 30: 163. 1895.

[^122]: *Proc. Kas. Acad. Sci. 1893: 153. Bull. Kas. Agrl. Exp. Sta. 23.
 †Di una nuova specie di carbone nel granturco. Estratto Boll. del comizio agra Parma. Novembre, 187\%. 4. Just. Bot. Jahresb. 1877: 123.

[^123]: *Mycotheca universalis. 1624.
 †Rabenhorst. Fungi Europ. 2500.
 \$Les maladies Orypt. 80
 § Eubeuf. Pflanzenkrankheiten. 296
 | Linn. Sp. PI. 62. 96. 1823. (Ed. Willd.)
 「Ann. d. Sc. Nat. III. 7: 116. pl. ј f 17-2?. 1817.
 **Sitzb. natur. Gesellsch. Halle, 1874: Bot. Zeit. 32: 122. 1874.
 The fungus has been distributed by Rabenhorst, Fung. Europ. No. 1997. Thumen, Herb. Myc. Oec. No. 63. Briozl and Cavara, Fuagl Parasit. No. 28. Ellis, North Am. Fung. No. 1H96. Roumeguere, Fung. Selectl Exiss. No, 5128.
 \dagger Broom corn smut. Bull. Univ. Ill. Agri. Exp. Sta. 47. This paper contains an excellent blbliography.

 Syll. Fung. 7; 481.
 牯Parasitic Fungi of Wis. 34. 1884.

[^124]: *Ann. Rep. Neb. State Board of Agrl. 1889. 214. 1890.
 +Bull. Kans. Agrl. Exp. Sta. 23.
 \#Bull. Univ. Ill. Agrl Exp. Sta. 47: 376.
 si. c.

[^125]: *Hamburger Garten u. Blumen Zeitlg. 28: 17%.
 +Tubeuf. Pflanzenkrankheiten. 305.
 *Sturm Deutsch. Fl. 3: 67. pl. 33.
 今Dle Stirpium Nomencl. Prop. Lib. 3: 666.
 |"Phytoplax. 52.
 ${ }^{4}$ Syn. Meth. Fung. 224.
 **The Prop. and Prev. of Smut in Oats and Barley. Jour. Roy. Agrl. Soc. 24: 9.

[^126]: *Rep. Kansas Agrl. Exp. Sta. 1889: 261.
 Tubeuf. Pflanzenkrankbeiten. 303; under \boldsymbol{U}. tritici.
 +Saccardo. Syll. Fung. 7: 461.
 Sorauer. Pflanzenkrankheiten. 198.
 Frank. Krankheiten. d. Pflanzen, 110. (Ed. 2.)
 Marshall Ward. Diseases of Pl. 86. Plowright. British Ured. and Ustilag. 273.

[^127]: *Le Charbon des Oereales. 4: 1889.
 +Syn. Meth. Fung. 224. 1801.
 †Rep. Kans. Agrl. Exp. Sta. 1889: 215. Bull. Kans. Exp. Sta. 8: 15.
 See also Bolley. Bull. North Dakota Agrl. Exp. Sta. 1: Arthur.
 Bull. Indlana Agrl. Exp. Sta. 35: Syll. Fung. 7: 461.

[^128]: *Loose Smut of Oats. Bull. Púrdue Unív. Agrl. Exp. Sta. 35: 83.
 tAnnual Report of Vermont Agrl. Exp. Sta. 6: 73-82.

[^129]: *The Grain Smuts. Their Causes and Prevention. Year book U. S. Dept. Agr. 1894: 413
 +I. c. 413.
 \#Bull. Mich. Agrl. Exp. Sta. 87: 189.
 §Red. Kansas Agrl. Exp. Sta. 6: 259. 1893.
 ${ }^{1}$ Ellis. North Am. Fung. 1091.
 'Swlngle. Year Book U. S. Dept. Agr. 1894: 412. Farmers' Bulletin U. S. Dept. Agr. 75.

[^130]: *Syn. Meth. Fung, 224.
 \dagger Rep. Kansas Agrl. Coll. 1889: 268.

[^131]: *Rabenhorst. Fung. Europ. 1200.
 +Winter die Pilze, 1:97 as U. Panicici-glanci.
 *Tubeuf. Pflanzenkrankheiten. 306.
 8Saccardo, Syll. Fung، 7: 472.
 $\|$ Earlow and Seymour. Host Index.

[^132]: *The Kansas Ustilaginleae. Trans. Acad. of Sci. St. Louis. 7: 235.
 +Hedwigia. 15: 4. 1876.
 Saccardo Syll. Fung. 7: 471.
 +Jour. Myc. 7: 98.

[^133]: *Bull. Iowa Agrl. Coll. 1886: 59. Saccardo. Syll. Fung 7:-461. Winter Die Pilze 1: 77 .
 +Jour. of Myc. 6: : 斤.
 \$His. Des Champ. Fr. 1:90 pl. 4%
 sDittm. In Sturm Deutsch Fl. 3: 67. pl. 33.
 \|Jour. Myc. 7:"98.

 - Rostrup Ustilaginex danlex 139 named the fungus $C_{\text {. }}$. perennane. See Tubeuf

[^134]: *Ellis and Everhart. N. Am. Fung. No. 189?.
 Saccardo Syll. Fung. 7: 468.
 Winter die Pilze. 1: 10t.
 +Krypt. Fl. Schles. 276. Saccardo Syll. Fung. 7: 50\%.
 Bull. Torr. Bot. Club. 22: 175.

[^135]: *Ber. d. deut. Bot. Gesellsch. 14: 216.
 +1. c. Heft. 9 .
 Syll. Fung. 7: 468. Berkley and Hooker. Antarct. Voy. 199. pl. 106. R. 12.
 \ddagger Bull. Torrey. Bot. Olub. 22: 175.
 Tubeuf. Pftanzenkrankheiten. 301. Winter Dle Pilze. 1: 89. Saccardo Syll. Fung. 7: 54.

 Uredo longissima. Sow. in Berk. Engl. Fl. 5: 375. t. 139.
 §Tulasne. Mem. Sur, les Ustil. Ann. d. Sci. Nat. Bot, 1II. 7: 76.
 Saccardo. Syll. Fung. 7: 451.
 Plowright. Mon. Brit. Ured. and Ust. 272.

[^136]: *Iowa Ustilagineae. Bull. Iowa Agrl. Col. Dept. of Bot. 1884: 1\%2.
 †Flora Berol. 2: 129.
 \#Syst. Myc. 3: 518.
 ssyll. Fung. 7: 453.
 $\|$ Mono. of the British Ured. and Ustilag. 273.
 ©Ellis and Everhart. N. Am. Fung. No. 2263.
 **Jour. Myc. 5: 12.

[^137]: *Norton. Trans. Acad. Sci. St. Louis. 7: 236.
 +Hedwigla. 22: 2. 1883. Saccardo syll. Fung. 7: 513.
 *Bull. Torr. Bot. Club. 12: 35. pl, 25, 19-23, See also Norton. Trans. Acad. Sci. St Louis. 7: 232.

 SWinter. Bull. Torr, Bot. Club. 10: \%.
 $\|_{\text {Curtlss. Cat. N. Oarolina. 123. Syll. Fung. 7; } 466 . ~}^{\text {St }}$
 -Rıvenel. Fungi. Car. 100. Berkeley. Notices of No. Am. Fungi. 5\%3. Grevillea. 3: 59.
 **Flora Crypt. Germ. 2: 213. 1661, 1833.
 Rabenhorst. Fungi Europ. 1697.
 Hedwigia 12: 152. Winterdie. Pilzo. 1: 107.

 榲Krankheiten der Yilanzen. 118, f. 20-21.
 sisflanzenkrankheiten. 325.
 $\|\|$ Bull. Miscel. Inf. Kew. 1899: 141.

 - *Bemerkungen und Beobachtungen ueber Ustllagineen. Cohn. Beltrage zur Bioogie d. Pflanzen. 2: 365, 1888.

[^138]: *Parasitic Fungi of Wisconsin. 35
 \dagger Bull. Ind. Agrl. Exp. Sta. :28.
 *Bull. Ohio Agrl. Exp. Sta II. 3: 205.
 KBull. Neb. Agrl. Exp. Sta. 11: 70.
 $\|$ Rusts, smuts, ergots and rots. Separate from Rep. New Jersey State Board of Agrl. 1889,
 © Bull. Kansas Agrl. Exp. Sta. 12: 1890.
 The graln smuts, their causes and prevention, Yearbook U. S. Dept. Agrl. 1894: 409.

 The grain smuts. U.S. Dept. Agrl. Farmers' Bulletin. 75: B.

[^139]: *Bull. Ind. Agrl. Exp. Sta. 28.

 1. c. Farmers' Bull. 75: 6.
[^140]: *Pflanzenkrankheiten 318.

 1. c. Krankheiten der Pflanzen. 117. (2 Ed.
 \dagger Les Malades. Crypt. 86.
 *Pflanzenkrankheiten. 185.
 SBritish Uredinere and Ustilaginea. 233.
 $\|$ Der Brand des Getreides selne Ursachen und selne Verhutung. 12. Halle.
 -Wolf and Massee. Kew. Bull. of Miscel. Inf. 1899: 14?.
 **Bull. Iowa Agrl. Coll. Dept. Bot. 1884: 119.
 +巾 Bull. Micbigan Agrl. Exp. Sta. 87: 5.
 Kans. Agrl. Exp. Sta. 12.
 sissyll. Fung. 7: 481
 |||Bot. Zeit. 1876: 470
[^141]: * Mycologische Beitrage. Hedwigia. 16: 30.
 +Saccardo. Syll. Fung. 7: 48t. Frank. Krinkheiten der Pflanaen. 4? ! Ed.
 \$Saceardo Syll. Fung. 7: 483. Winter. Die Pilz 1: 109.
 §Bot. Gazette. 27: 467. 1899.
 \|Bull. Torr. Bot. Club 23: 210.
 © Bull. Soc. Myc. 3: 124. 1887.
 Saccardo Syll. Fung, 9: 286
 **Oest. Bot. Zeitscher 29 : 18 .
 +1Syll Fung. 7

[^142]: *Winter die Pilze 1: $10 z$.
 +Bull. Miscl. Infor. Kew. 1899: 156.
 \#Westend. Bull. Acad. Brux. 1851: 406.
 SWinter Die Plize 1: 108. For other references see Saccardo. Syll. Fung 7: 484, and Plowright Mon. British Bred. and Ustil. 284.
 $\|$ Rep. U. S. Dept. Agr. 1885: 87.
 -9. See also Jour. Myc. 7:97.

[^143]: *Fl. Crypt. Germ. 2: 212. Erysibe occulta, Urocystic occulta (Wallr.) Rabenh. Klotzsch Herb. Myc. No. 393 . Fung. Eur. 1790.

[^144]: *Pflanzenkrankheiten. 190.
 †Krankheiten d. Pflanzen. 121 (Ed. 2).
 \$ \& Century of Illustrative Fung. No. 57.1889.
 §Rep. Conn. Agrl. Exp. Sta. 1899: 143. pl. 2. f. 9-10.
 ||Saccardo. Syll. Fung. 7: 516.
 Farlow and Seymour. Hort. Index. 150.
 Tubeuf. Pflanzenkrankheiten. 329.

[^145]: *Uredo Agropyri. Preuss in Klotzsch Kabh. Herb. Myc. 1696. Urocustis Agropyri (Preuss) Schr. Brandu. II. Restp. Schl. 7. †Yearbook U. S. Dept. Agrl. 1894: 415.
 Farmers' Bull. Offce of Exp. Station. U. S. Dept. Agrl. 75. \#Rep. N. Y. Agrl. Exp. Sta. 16. 294. 1897.
 §Bull. North. Dak. Agrl. Exp. Sta. 27.

[^146]: *• Finely-powdered concentrated lye sold in grocery stores in one-pound packages, such as Red Seal granulated lye, serves admirably. If considerable quantities of the solution are to be prepared, it will be cheaper to purchase powdered caustic soda, 98 per cent pure, in ten-pound tins, through'some'wholesale dealer in drugs or chem!cals."

[^147]: *Bull. North Dak. Agrl. Exp. Sta. 27.

[^148]: *5 Moses 28: 22. 1 King 8: 37, 2 Chro. 6: 28.
 †Die Getreideroste ihre geschichte und natur sowie Massregeln gegen dleselben. Stockholm. 464. pl. 13. map I. f. oे. 1896.
 \ddagger Cereal Rusts of the United States. Bull. Div. Vegetable Phys. and Path. U.S. Dept. Agrl. 16.

[^149]: *Synop. Fung. 293.
 +Giorn Fis. Pavia. 8. 1815.
 +Syll. Fung. 7: 659.
 sRep. St. Mus. of Nat. Hist. N. Y.. 34: 29.
 || U. S. Dept. Agrl. Report. 1887: 389.

[^150]: *Pammel. Monthly Review of the Iowa Weather and Orop Service. 7: 7. 1895.
 +Weed. Fungi and Fungicides. 207, 8, 86.
 \#Cereal Rusts of the United States. 66.
 8Field and Garden Crops of Northwestern Province. Ouah. etc. 1:21.

[^151]: *Bull. Iowa Agrl. Exp. Sta. 30: 302. 1895.

[^152]: *Arthur, J. O. Notes on Uredineæ. Bot. Gaz. 16: 225. 1891.
 Bolleg, H. L. Wheat Rust. Bull. Ird. Agrl. Exp. Sta. 26: Wheat rust is the Infecthon local or general. Agrl. Scl. 5: 259.

 Burrill, T. J. Parasitic fungl of lllinols. Bull. of the Ill., State Lab. of Nat. Hist. 2: 141. 1885.

 Cobb, N. J. Contributions to an economic knowledge of Australlan rusts. Agrl. Gaz. N. S. W., 1: 185. 3: 181.

 Carleton, M. A., \& Hitchcock, A. S. Preliminary report on rusts of grain. Bull. Exp. Sta. Kinsas Agrl. Coll. Manhattan. 38: 1893. Cereal rusts of the U.S. DIv. Veg. Phys. and Veg. Path. U. S. Dept. Agrl. 16.

 Dietel, P. Uredineen aus dem Himalaya. Hedwigla. 29: 259. 1890.
 Eriksson \& Henning. Die Getrelderoste.
 Farlow, W. G., \& Seymour, A. B. A provisional Hostindex of the fungi of the United States. 1888-1891. Cambridge.

 Lagerheim, G. Contr. a la Flore mycologique de Portugal, B slet. da Soc. Broteriana. 8: 1890.

 Lugger, O. The black rust or summer rust. Bull. Minn. Agrl. Exp. Sta. 64:
 Schroeter, J. Die Pilze in F. Cohn's Kryptogamenflora von Schlesien. Llef. 3, 1887-89.

 Sorauer, P. Eandbuch der Pflanzenkrankheiten. Berlin. (2 ed.) 1886.
 Webber, Herbert, J. Catalogue of the flora of Nebraska, Nebr. State Board of Agrl, Lincoln. 1889:

[^153]: *) c. 146.

[^154]: *Improvements in wheat culture. Year book U. S. Dept. of Agrl. 1896: 497. \dagger Oereal rusts. l. c. 21.

[^155]: *Zeltschraft f. Pilanzenk. 4: 120.
 \$Linn. Sept. Nat. 2: 1462.

[^156]: *Die getreideroste. 153.
 +Bot. Gaz. 4: 127.
 Saccardo. Syll. Fung. 7: 733.
 \#Ellis. North Am. Fungi. 1051.
 §North American Fungi. 295. 2911.

[^157]: *Saccardo. Syll. Fung. 7: 663. Burrill. Parasitic Fungi of Illinols. 201.
 †Saccardo Syll. Fung. 7: 625. Nielsen. Bot. Tids. III, 2: 26.

[^158]: *Rust in wheat. Rep. Proc. of the Conference. Sldney. June 4-8., 1891. Agrl. Gaz. New South Wales. 2: 7. 1891.

 中On the diseases of wheat. See Eriksson and Henning. Getredderoste 300.

[^159]: *Rep. U. S. Dept of Agrl. 1892: 216. Jour. Myc. 7: 95.
 +Bull. Kansas Agrl. Exp. Sta. 22.
 \$Bull. Iowa Agrl. Exp. Sta. 16: 24.
 SImprovements in Wheat Culture. Yearbook U. S. Dept. Agrl. 1896: 497.
 $\|$ Lerhbuch. d. Baumkrankheiten. 27. 1882.

[^160]: *Burrill. Anthrax of fruit trees or the so-called fire-blight of pear trees, and twigblight of apple trees. Proc. of Am. Ass., Adv. of Sci. 1880: Bacteria as a cause of disease in plants. American Naturalist, July, 1881.

 Arthur. Pear blight. Annual Report New York Agricultural Experiment Station 1884: 357. 1885: 241. 1887: 27כ-288. Bibllography. 300. Am, Nat. 1885: 1181,

 History and biology of pear blight. Proc. Phil. Acad. of Nat. Sci. 1886: 329-341. Separate.
 +Wakker, J. H. Onderzoek d. Zlekten van Hyacinthen, Harlem. Bot. Centralblatt. 14: 315.
 \$Corrosion de grains de ble. etc., par les Bacteriees. Bull. Soc. Bot. de France. 26: 31, 167. 18:0.
 §Die Zerzetzung d. Kartoffel durch Pilze. Berlin. 1879.
 \|| Developpement de l'Amylobacter dans les plantes al' Petat de vie normal. Bull. Soc. Bot. de France. 36. 283,
 © Erwin F. Smith. Bull. Div. of Vegetable Pathology. U. S, Dept. Agrl. 12.
 **American Naturalist. 1896: 626, 716, 796, 912. 1897: 34, 123.
 $\dagger \dagger$ A bacterial disease of Indian corn. Proc. Soc. Prom. Agrl. Sci. 10: 19. 1889.
 Bull. Ill. Agrl. Exp. Sta. Aug, 6: 1889.

[^161]: *Original Investigations of Cattle Diseases of Nebraska. 1886-1889.
 Article II. The corn stalk disease in cattle. 163.
 \dagger Corn stalk disease. Bull. U. S. Dept. of Agrl. Bureau of Animal Indistry. 13.
 \ddagger Die Neideren Kryptogamen. 95. Abst. Warlich Central Bakt. u Parasiten. 70.
 sMoore, A. An inquiry into the alleged relation existing between the Burrill disease of corn and the so-called cornstalk disease of cattle. Agrl. Scl. 7:368.
 \|Jordan, E. O. Experimental investigations by the State Board of Health of Mass. 1890: 2. 8. 36.

[^162]: *Bacteria in their relation to vegetable tissue. Rep. Johns Hopkins Univ. Hospital 3: 223. 1893.

[^163]: *1. c. p. 46.

[^164]: *Garden and Forest. 10: 3. 8.

[^165]: *Bull. N. Y. Agrl. Exp. Sta. Geneva. 130: 423.
 中Proc. Am. Ass. Adv. Sci. 47: 422. 1898.
 \#Barrill. A disease of broom-corn and sorghum. Proc. Soc. Promotion of Agrl. Sci. 8: 30. The Mifroscope, 7: No. 11. 1887.

[^166]: *Kellerman. Prellminary report on sorghum blight. Bull. Kansas Agrl. Exp. Sta. 5: 281. 1888.

[^167]: *Ag. Gazette. N. S. Wales. 4: \%\%\%.

[^168]: *Bactoriological Notes on Red Cane, in Wm. C. Stabbs' Sugar Cane. 1: 173.
 +Agrl. Gazette. N. S. Wales. 4. 806.

[^169]: *Report lowa State Agrl. Soc. 1897. 158.
 \#W. M. Mc Farland. Census of Iowa for 1895. 630. 1896. Des Moines.
 †Census of Iowa. 1880: 258. 261.

[^170]: *L. H. Pammel: Notes on the grasses and forage plants of Iowa, Nebraska and Colorado. Bull. U.S. Dept. ARrl. Dlv. of Agros. 9:7.

[^171]: *For good accounts of clover see Beal. Grasses of N. Am., 1:320(Ed 2) Wallace Olover Book.

[^172]: *Yearbook U. S. Dept. Agrl. 1895: 310.
 +1. c. 311 .

[^173]: *Rep. Conn. Board of Agrl. 1896: 35.

[^174]: *l. c. 311.

[^175]: *A Report apon the Grasses and Forage Plants of Oentral Texas. Bull. U. S. Dept. Agrl. Div. of Agros. 10:9.

[^176]: *Rep. Experimental Farms. 1896:396.

[^177]: *Agriculture in some of its relations with Chemistry. 3:482.
 +Agriculture in some of its relation to Chemistry. 3:460.
 sTimothy In the Prairie Region. Yearbook U. S. Dept. of Agr. 1896:148.

[^178]: *Beal. Grasses of N. Am 1:245. (Ed. 2)
 \$Bull. Iowa Agrl. Exp. Sta. 19: 610.
 \#Lamson-Scrlber. Southern Forage Plants. U. S. Dept. of Agrl. Farmers' Bull. 102: 6.

[^179]: *Bull. Iowa Agrl. Exp. Sta. 15: 284.

[^180]: *Bull. Iowa Agrl. Exp. Sta. 13:95. Osborn has published numerous papers on this subject.
 †The Enemies of Grasses and Clovers in Beal. Grasses of N. Am. $1: 369$ (Ed. 2).
 \ddagger The Renewlng of Worn out Native Prairle Pastures. Circ. U. S. Dept. Agrl. Div of Agrost, 4: See Georgeson, Burtls and Otis. Renovating a prafie pasture. Bull Kansas Agrl. Exp. Sta. 48:43.

[^181]: * Hortus Gramineus Woburnensis. 15. London Ed.

 中Rep. Oonn. Bd. of.Agrl. 1898: 136.
 Publication of Grasses. The Am. Enterprise, July 14, 1900. To Ship Grass Sods. The Hartford Courant, Dec. 9, 1898.
 \#Some Observations on Varieties of Timothy (Phleum pratense, L.) Proc. Soc. Prom. Agrl. Scl.. 1895: 29. Pl. 11.

 8Bull. Minn. Agrl. Exp. Sta. 20: 44.

[^182]: *Jour, Roy. Agrl. Soc. 1882: 229. Beal Grasses of N. Am. 1: 229. (Ed. 2)
 \$Grasses of N. Am. 1: 233. (Ed. 2.)

[^183]: *3o. Forage Pl. Farmers' Bull. U. S. Dept. of Agri. 102:9.
 +Native Agricultural grasses of Kansas. Bull. Kansas Agrl. Exp. Sta. 87:5.
 \ddagger The Grasses and Forage Plants of Nebraska. Neb. State Board of Agr. 1889:11.

[^184]: *Grasses and Forage Plants of the Dakotas. Rull. U. S. Dept. Agrl. Div. Agrost. $6: 6$. +Stebler, Schroter \& McAlpine. The Best Forage Plants. ©b.

[^185]: 1. Exp. Sta. Rec. 6:101.
 2. Ann. Rept. Miss. Exp. Sta. 8: 91. 1895.
 3. Where percentage of water is given. 1t is the per cent of water in the samples as collected, and other per cents are for dry materials.
 *Stebler, Schroter \& McAlpine. The Best Forage Plants. 31.
 \dagger Grasses and Forage. Pl. 68.
[^186]: 1. U. S. Dept. of Agrl., Handbook Exp. Sta. Work. 1893. 386.
 2. Bull. Lowa Agrl. Exp. Sta. 11:453, 476.
 3. Bull. La, Agrl. Exp. Sta. II. 19.
 4. Bull. N. O. Agrl. Exp. Sta. 90.
 5. Bull. N. D. Exp. Sta. 15.
 6. Bull. Oregon Agrl. Exp. Sta. 1895. 39.
 7. Ann. Rept. Storrs Agrl. Exp. Sta, Conn. 1896: 280.
 8. Rept. Exp. Sta. Utah, 1893: 254, 255.
 *Per cents given are all for water-free material except per cent of water.
 †Deutschland's Griiser und Getreidearten. Leipzig. 43. 1863.
[^187]: *Flint. Grasses and Forage Plants. 34. (Rev. Ed.)

[^188]: *Timothy io the Prairie Region. Year-book U. S. Dept. of Agrl. 1896: 147.
 +Year-bork U. S. Dept. Agrl. 1896: 149.
 *Year-book U. S. Dept. Agrl. 1896: 150.

[^189]: 1. U. S. Dept. of Agrl. Handbook of Exp. Sta. Work. Bull. 15:388. 1893.
 2. Bull. Iowa Agrl. Exp. Sta. 11:449. 455.
[^190]: *Beal. Grasses of N. A. 1: 139. Ed. 2.
 †Economic Grasses. Bull. Div. Agrost. U. S. Dept. Agrl. 14:63.

[^191]: 1 Bull. Tenn. Agrl. Exp. Sta. 9:101-114. 1893.

[^192]: *Hortus Gramineus Woburnensis. 148-149.

[^193]: *The Best Forage Pl. 79.
 +1. c. 61.
 *Vasey. The Agrl. Grasses and Forage Plants of the U.S. Spectal Bull. Dept. Agrl. 1889:64.

 Shelton. Bull. Kansas Agrl. Fxp Sta. 2:2\%.
 Lamson-Scribner. Grasses of Tennessee. Tenn. Agrl. Exp. Sta. 7: 110.
 © 3. M. Tracy. Forage Plants. Rep Mis6. Agrl. Exp. Sta. 1892:20.
 **Bull. Alabama Agrl. Exp. Sta. 100:ś19.

[^194]: *Grasses and Forage Plants. 83.

[^195]: *l. c. 63.
 +Grasses of N. A. 1: 140. Ed. 2. *The Best Forage Plants. 57.
 §1.c. 142.

[^196]: 1. U. S. Dept. Agrl. Office Exp. Sta. Bull. 11:31. 189?.
 2. Bull. S. D. Agrl. Exp. Sta. 40: \%0. 1894. 22
[^197]: *1. c. 115.
 +Economlc grasses. Bull. U. S. Dept. of Agr. DIv. of Agrost. 14:23.

[^198]: *Bull. Iowa Agr. Col. Exp. Sta. 45:225.

[^199]: *Bull. South Dak. Agrl. Erp. Sta. 4n:144.
 +Bull. U S. Dept. Agrl. 14: 23.
 キRep. Exp. Farms Oanada 1896:33\%.
 sBull. U. \& Dept. Agric. Div. Agrost. 22.

[^200]: 1. U. S. Dept. Agrl. Exp. Sta. Rec. 6:101. 1894.
 2. Bull Lowa Agrl. Exp. Sta. 11:466, 475. 1883.
 3. Bull. S. D. Agrl. Exp. Sta. 40:144. 1894.
 4. Ann. Rept. Miss. Agrl. Exp. Sta. 8:90. 189j.
 ${ }^{*}$ Bull. Iowa Agrl. Exp. Sta. 11: 1890. 446.
 +Bull. U. S Dept. Agrl. Dlv. Agros. 22:62.
[^201]: 1. Bull. Iowa Agrl. Exp. Sta. 11:465, 474.
 *Percentages of water are given for the original sample and all other percentages are for water free substance.
 †Bull. Div. Agrostology, U. S. Dapt. Agrl. 3:31.
[^202]: 1. U. S. Dept. Agrl. Exp. Sta. Rec. 6: 101. 1824.
[^203]: *Dry analysis of other materials given below under the same heading.

[^204]: 1 South Dak. Bull. 40. 143,

[^205]: *U. S. Dept. Agrl. Div. Agros. 23:51.
 1 Bull. South Dakota Agr. Exp. Sta. 40: 146.
 2 Bull. U. S. Nept. of Agrl. Off. Exp. Sta. 11: 3?.

[^206]: *l. c. 66.
 +Deutschland's Graser. 63.
 t1. c. 40-41.
 §Bull. Univ. Tennessee Agrl. Exp. Sta. 7: 1.78.

[^207]: *Bull. Univ. Tennessee Agrl. Exp. Sta. 7: 1: 79.
 (1) South Dakota Bull., No. 40: 82.
 tGrasses of North America. 1:145.
 \ddagger Bull. Div. Agros. U. S. Dept. Agrl. 3:13.

[^208]: *Hortus Gramineus Woburnensis. 181.
 +The Grasses of Great Britian. 55. London.

[^209]: *Best Grasses. 39.
 †Beal. Grasses of N. Am. 1: 12:2 Ed.
 *Beal. Grasses of N. America. 1: 125.
 SGrasses and Forage Plants. 129. 2 Ed.

[^210]: *Bull. Div. Agros. 3:29.

[^211]: *Bull. U. S. Dept. Agrl. Div. Agrost 62: 16.
 \dagger Bull. U. S. Dept. Agrl. Div. Agrost. 3.18.

[^212]: *Econonic Grasses. Bull U. S. Dept. Agrl. Div. Agrost. 14:7.

[^213]: 1. U, S. Dept. Agrl. Exp. Sta, Bull, 11:30.
 2. Bull. Agrl. Exp. Sta. S D. 40: 148
[^214]: *Bull. U. S. Dept. Agrl. Div. Agrost. Bull. 3:11.

[^215]: 1. Bull. S. D. Agrl. Exp. Sta. $40: 152$.
[^216]: 1．Bull．Iowa Agrl．Exp．Sta．11：460．
 2．Bull．S．Dak．Agrl．Exp．Sta．40：26．
 3．U．S．Dept．Agr．Off．Exp．Sta．Bull．11：39．
 4．U．S．Dept．Agrl．Exp．Sta．Rec．6：101． 1894.
 ＊Bull．U．S．Dept．Agrl．Div．Agrost．3：19．

[^217]: (1) N. C. Agrl. Exp.Sta, Bull. $20: 6.4$.
 (2) Tenn. Agrl. Exp. Sta. Bull. 9:112.
 (3) S. D. Agrl. Exp. Sta. Bull. 40:36.
 (4) U. S. Dept. Agrl. Exp. Sta. Record. 6:102.
 *Ann. Rept. Mass. Agrl. Exp. Sta. 10:31.
 +Bull U. S. Dept. Agrl. Div. Agros. 14:52.
 \%Bull. U. S. Dept. Agrl. Div. Asros. 22:47.

[^218]: 1. New Mexico Agri. Exp. Sta. Bull. 17. 1895.
 2. North Carolina Agrl. Exp. Sta. Bull. 90 b. 1893.
 3. South Dakota Agrl. Exp. Sta. Bull. 40:38.
[^219]: (1) U. S. Dept. Exp. Sta. Record 6:102.
 (2) S. D. Bull. 40:40.
 (3) Bull. Tenn. Exp Sta. 9:112.
 *Bull. U. S. Dept. Agrl. Div. Agros. 14:วั5.

[^220]: （1）U．S．Dept．of Agriculture，Off．Exp．Sta．Bull．11：35．
 （2）U．S Exp．Sta．Record 6：103
 （3）Bull．Agrl．Exp．Sta Tenn．9：101， 112.

[^221]: (1) North Carolina Exp. Sta. Bull. 90: 5:4.
 (2) U. S. Dept. Agrl. Exp. Sta. Rec 6: 102.

[^222]: (1) Bull. Iowa Agrl. Exp. Sta. 11 : 45%.
 (2) Bull. South Dakota Agrl. Exp. Sta. $40:$ 158,
 (3) Bull. Tennessae Agrl. Exp. Sta. 9: 90.

[^223]: *Bull. U. S. Dept. Agrl. Div. Agros. 14:33.

[^224]: 1. S. D. Bull. Agrl. Exp. Sta. 40: 6t.
 2. Bull. Tenn. Agrl. Exp. Sta. 9: 90.
 *Hay of grass.
[^225]: Sample 1．Collected April 23，1895， 6 inches to 1 foot high．
 Sample 2．Collected May 7，1896， 16 to 24 inches high．
 Sample 3．Collected May 20，1896， 36 to 38 inches high．
 sample 4．Collected June 1，1896， 46 to 48 inches high．
 Sample 5．Collected June 10，1896， 50 to 56 inches high．
 Sample 6．Collected June 20，1896， 53 to 55 inches high．
 Sample 7．Collected July $20,1896,62$ to 63 inches high．

[^226]: * These give the water which is found in the natural condition, while the other percentages of these analyses are for the water free substances.
 \downarrow The amount of water is for air dried material; the other results for the water free substance.

 1. Bull. Ia. Agrl. Exp. Sta. 11: 456, 478,
 2. Bull. S. D. Exp. Sta. 40: 94, 1894.
[^227]: ＊Bull．U．S．Dept．Agrl．Div．Agros 14： 11 ．

[^228]: 1．Bull．Ia．Agrl．Exp．Sta．11：46．
 2．Bull．S．D．Agrl．Exp．Sta．40：86．
 ＊Not in bloom．
 ＋In condition for hay or air－dry substance．

[^229]: *Economic Grasses. Bull. U. S. Dept. Agrl. Div. Agrost. 14:25.

[^230]: 1. Bull. S. D. Exp. Sta. 40 :7
[^231]: ＊Bull．U．S．Dept．Agri．Div．Agros．14：36．

[^232]: 1．Bull．S．D．Agrl．Exp．Sta．40：42．
 2．Bull．Tenn．Agrl．Exp．Sta．9：90．

[^233]: 1．Bull．S．D．Agrl．Exp．Sta．40：44．
 2．Bull．Tenn．Agrl．Exp．Sta．9：114．
 3．Bull．U S．Dept．Agrl．，Off．Exp．Sta．11：38．
 4．U．S．Dept．Agrl．，Exp．Sta．Rec．6：102．
 ＊Economic Grass，Bull．Dept．Agrl．Div．Agrost．14：28，pl． 2.

[^234]: *Yr. Bk. U. S. Dept. Agrl. 1898:274.

[^235]: *This sample was partly dry when received.

 1. Bull. Ia. Agrl. Exp. Sta. 30:320, 1895.
 2. Bull. S. D. Agrl. Exp. Sta. $40: 15$.
[^236]: 1．Bull．Tenn．Agrl．Exp．Sta．9：100．
 ＊Corn and Sorghum Rep．Kansas State Board of Agrl．1896：115：31．

[^237]: *Census of Iowa for the year 1895.

[^238]: *J L. Scott. Goldenrod Killing Horses. Garden and Forest. 8:47\%.
 +Preliminary Catalogue of Plants Polsonous to Stock. Rep. Bur. of Animal Industry. 15:393.

[^239]: Flg 213.-Lance leaved or bull thistle, (Cnicus lanceolatus). L Common in pastures and meadows.! Λ. troublesome weed.

[^240]: *Iowa Homestead, 1898: 1. J J.

 + Iowa Homestead. 1893: 13 Ja .
 \ddagger Bull. Indiana Agr. Exp. Sta. 52.

[^241]: * Pammel, Bull. Ia. Agr. Exp. Sta. 43:130
 +Pammel, Bull. Ia. Agr Exp Sta. 28.

[^242]: * Pammel, Bull. Ia. Agr. Exp. Sta. 2h.
 +Orange Judd Farmer. 1894:23 J. Bull. Ia. Agri. Exp. Sta. 31.

[^243]: *Bull. Ia. Agrl. Erp. Sta. 13.

[^244]: * Smith, Physiology of Domestic Animals. 271.

[^245]: * The saliva also acta in a mechanical manner, aiding the passage of the foud to the stomach, or in other words, as a lubrlcant.
 \dagger Halleburton, Chem., Phys. and Path. p. 638.

[^246]: * June grass.

[^247]: *To reduce the ether extract to the same food value and-assumedly-feeding \checkmark tlue as the carbohydrates.

[^248]: *Mostly Sulphur.

[^249]: *Yearbook U. S. Dept. Agrl. 1897: 355-372.

