## 1 <br> . <br> 1 <br> 11 <br> . <br> $\pi$.

$6$

1923 3



THE GROWIH OF CORN AND SUNFLONERS IN RELATION TO CLIMATIC CONDITIONS. BY W.F. HANNA.

A THESIS
SUBMITTEE TO THE UNIVERSITY OF ALBERTA IN PABTIAL FULFIILMENT OF THE REQUIREMENTS FOR THR DEGREE OF

MASTER OF SCIENCE IN AGRICULTURE

Digitized by the Internet Archive in 2017 with funding from University of Alberta Libraries
Page
Introduction ..... 1
Review ..... 3
Growth Measurements ..... 3
Internal Factors ..... 3
External Factors ..... 8
Problem ..... 14
Experimental ..... 15
Outline ..... 15
Sec ding ..... 15
Growth Measurements ..... 16
Eeletive Growth ..... 18
Harvesting and Yields ..... 19
Temperatures ..... 20
Temperatires Indices ..... 21
Relative Humidity ..... 24
Temperature $x$ Relative Humidity ..... 24
Precipitation ..... 25
Sunshine ..... 25
Maximum Solar Radiation ..... 26
Discussion ..... 27
Climate ..... 27
Growth ..... 30
Yields ..... 34
Dates of Seeding ..... 37
Growth and Climate ..... 37
Summary ..... 45
Literature Cited ..... 48

## by W.F. Hanna.

## INTRODUCTION

The importance of environmental conditions in determining the nature of plant growth has long been recognized. The process of natural selection which is continually going on is but an expression of the effectiveness of these conditions to react upon plant life. In many cases the distribution of various types of vegetation is clearly due to the different climatic factors which have been at work. For example, the distrivution of genera and species within that broad belt of coniferous forest which stretches across Canada, while in some cases influenced by competition, variations in soil type, and differences in altitude, is very often directly related to such climatic conditions as precipitation, wind velocity, temperature, atmospheric humidity and sunlight. But these results have been brought about by the constant application of such elements over long periods of time. Of the fluctuations which occur in the growth rate of an individual plant from day to day and from hour to hour, due to the accelerating or retarding influence of climatic changes, but little is known. The ordinary records of climate, useful though they may be in some respects, are of limited value in interpreting plent growth unless coupled with data for corresponding physiological activities in the form of growth measurements. A knowledge, therefore, of the manner in which the growth of economic plants is affected by fluctuations in climate should be of considerable practical value. The relation of corn and sunflower plants to the climatic environment of this particular district is of singular interest, especK Report of an investigation carried out in the Department of Fiela Husbandry, University of Alberta, under the direction of Professor R. Newton.

ielly in connection with the ortimum dates of seeding these crops. If seeded too early in the season the young corn plants are liable to be killed by frost when only a fev inches above the ground. This not only resulte in the extra cost of a second seeding, but in most years makes the resulting crop so lete that it is unable to attain that stage of maturity necessary for the production of the best quality silage. There is good reason to believe that cunflowers can withstand lower temperatures than corn without being killed, but the optimum date of seeding this crof has never been accurateIy $\dot{\alpha} \in t \in r_{m i n e d}$ for this district. While the sunflower plants may not actually befrozen by temperatures in the neighborhood of $0^{\circ} \mathrm{C}$, it does not necessarily follow that such low temperatures do not have a retaraing influence on their subsequent growth.

A study of the geographical distribution of any plant gives a roush indication of the relation which it bears to its environment. In this respect, the clearly marked distribution of corn, Zea mays, suggests at once that quite high temperatures during the growing season is one of the conditions necessary for its successful culture. The sunflover, Helianthus annus, has no such distinct zone of culture. Although considered by most authorities as being a native of the Great Plains Region from Nebraska to Mexico, it has now quite a scattered distribution $\varepsilon s$ an agricultural crop. In 1615 Champlain observed it being cultivated by the Hurons in Canada. About the midale of the sixteenth century the plant was introruced into spain from Americe. It is now grown extensively throughout riorth America, Eussia and Hungary, and to a limited extent in China, Avstralia, New Zealnnत, South Africa, Egypt anc India. While the location of its \# Gilmore. Uses of plants ry the Indians of the Missouri Biver Region, 1919.
orizinal hahitat susgeste that the xlant thrives best in regions of high temcerature, its resent distrihution shows that it can be grown successfully under a great variety of conditions.

## REV IEW

## Growth Measurements

The manner in which growth measurements are carried out is of considerable importence. If stem elongation over a relatively short perioc of time is taken as a measure of grovith, it will, in most cases, be found that the maximum mount of orowth takes place in the absence of light. In this case growth is but a measure of the rate at which materials already elaborated by the plant are translocated anc rearranged. Prescott (25), working on the growth of maize ir Egypt, found that the growth rate, measure ${ }^{\text {a }}$ by increase in height, exhikited two maxima during the twenty-four hours, one $\varepsilon$ short time after sunrise and the other in the late afternoon about sunset. The total growth however, during the twelve night hours from 8 p.m. to 8 a.m. was generally found to be greater than that during the remaining twelve hours of daytime. If, on the other hanc, increase in dry weight is taken as a measure of growth, or even stem•elongation over a period of several days, the former must give an accurate, anc the latter an approximate measure of the plants ability to produce new materials, from the compounds present in air and soil.

Internal Factors
Before considering the probable influence of external factors such as climate upon the rate of growth, a clear concextion is necessary regarding the part flayed by certain tendencies resident within the plant itself - the internal factors. Lying dormant
within the seed are certain genetic terdericies, which when eypressed later during the life of the groming plant, tend to produce uncer any siven set of external conditions, a certain definite form of growth. It is only reasonable to believe then, that the role of externel conditions is merely that of accelersting or retarding the manner in which the internal factors tend to express themselves. F.F.Blackman (2) in pointing out the nower which rrotorlasm possesses of renewing and increasing itself, has compared the growth of an organism to the process of autocatalysis. In the multiplication of bacteria, this author foints out, the increase in number, which is a fair measure of the increase in their total mass, essumes for a tjme the form of a strictly logarithmic curve. In the higher rlants, however, the extreme desree of differentiation and specialization in tissue prevents any such regular increase in mass. Reed an Holland. (26) however, found that the rate of stem elongation in Helianthus, as determined by weekly measurements, followed strictly the course of en autocatalytic reaction as expressed by the formula

$$
\log \frac{x}{1-x}=\mathcal{K}\left(t-t_{1}\right)
$$

where $A$ represents the final mass of the plant, $X$ the size of the plent at any tiret.t, the time at which the mass of the plant is half the final mass, snc̉ $\underset{-}{K}$ a constent. The close similarity between the obeerved and calculated values in thje wor is indeed strixing, and lea the authore to conclude that the growth rate is governe $\quad$ by constant internal factore ratner then by external factors. eead (27) has arrlied the same formula to the growth of pear shoots (Pyrus communis) and yourg walnut trees (Juslens nigra and Juglans regia) with gooc results. The formula vas also found
to be asflicable to data on maize collectec b- Kreusler, the celoulatec values kearing a similarity with those observed whether mean height, mean green height, or mean drJ weight was taken as a measure of growth. Finally, Reed (27) employed the formula successfully in connection with certain data published by Eckles and Swett (II) on the growth of heifers. But, as pointed out by West. Briggs and Kida (28) the above formula involves the assumxtion that the falling off in growth per unit of dry weight is due to the disamperance of a catalyst. In the absence of evidence to suport this view they contend that this decrease in the growth rate is possibly due to an increasing differenciation into productive and non-productive tissue. Working recently with Helianthus (I7), they have shown that the respiration index of the meristematic tissue as well as thot of the whole rlant fals off with ag'e. The curwe for respiration, moreover, follows closely the falling growth rate curve. This suggested that the decresse in growth tovards the end of the life cycle is not wholly due to an increase in water conducting and mechanical tissue.

The "compound interest law" of growth has heen put forward by V.H. Blackman $(3,4)$ as $\in x p r e s s \in d$ by the formula

$$
W_{1}=W_{0} e
$$

When $W_{\text {, }}$ is the dry weight of the plant at the end of time t, 0 the initial seedling or $\varepsilon \in \in \mathbb{d}$ wight, r, the rate of interest, End e, the base of the natural logerithms. The value of r has been termed by Placizman as the "efficiency index" of dry weight proruction, representing the efficiency of the rlant as a producer of new maturial. According to this formula the increase in dry weight taxes flace exponentiajly and all of the new material adáded the flent is equally eifective in rroducing nev grovth.

For the deta originalle €amined by Bladkman fairly constant values of $r$ were found iuring the active growing period of the plent. But Kidd, West and Briggs (16) have applied this formula in examining the growth rates of several plants, an finc that not only does the efficiency index fluctuate from week to week, but that it tends generally to deerease in value from a period auite early in the growing season. An examination of the data presented by Brenchley (6) for the growth of peas also shows that the value of $r$ undergoes quite violent fluctuations.

Briggs, Kidd and lwest (7,8) in carrying out an analysis of date collected by Kreusler on the growth of maize, calculated the growth rate by means of the following formula.

$$
\frac{R}{100}=\frac{W_{2}-W_{1}}{W_{1}}
$$

where $W_{1}$ and $W_{2}$ are the dry weights of the plants at beginning and enत of the week, respectively. This is essentially a simple interest method of calculating growth rate. It gives the rate of increase in dry weight for the period, as a percent of the dry weight at the beginning of the period. Fisher (12) has criticized the use of this formula $\sin$ pointed out that in some cases it introduced errors up to one hundred xercent. He maintained that slaciman's compound interest formula expresses correctly the growth rate of the plant. Should it be necessary to express grovith as taking place on the linear basis, he believed that the growth rate should be calculated as a fercent of the mean vel ve for the keriod according to the formula


Both the simple and the compound interest formulae are base $\bar{o}$ on the assumption tins t the neve material rodnced by the xlant is emyloyed as carital in e certain definite manner, in the former case at stated intervals, and in the latter continuorasly. In neither instance does the method of calculation give more than an arproximation.

The relative growth rate curve for maize presented by Briges, Kidd and west (7,8) from Kreusler's data, shows that for the two or three weeks following germination the growth rate is either vecy small or negative in quantity. Following this period there is a rapid increase in the growth rate until it reaches a maximum, when it falls again to a very low value at the end of the season. In the falling part of the curve, however, are two subsidiary maxima which are found, in general, to be coinciaent with the arpearance of male and female flowers, an event probably preceded by increased respiration which resulted in the minima immediately preceding the subsidiary maxima. When the curve for leaf area, ie., the ratio of leaf area to ary weight, is flotted for the same date it is found to follow closely the form of the growith rate curwe. This similarity in the form of the two curves suggested to the authors that the increase in ary weight per unit of leaf area was approzimately constant throughout the life cycle of the plent. In.order to test this supposition the "unit leaf rate", ie., the increase in dry weight per square centimeter of leaf surface, was calculated for the same period: On the assumption that leaf area is a meacure of the active growing tissue, the caritel, so to sleak, which the plant emrloys, the unit leaf rate curve should have been a straight line parallel to the tire axis. But the anthors point out that the assimilation
of jourg seedling leaves is relatively small per unit of surface; also the dry weight fer unit of leaf erea falls at first and then rises to a maximum at the end of the life cycle. These two tendencies coupled with the fect that resfiration per unit of dry weight decreases with age, would have the effect of making the unit leaf rate curve assume a concave form relative to the time axis. The curve obtained follows this general form in the early period of growth, but subsequently fluctuates violently and fails to show any particular tendency. This, the euthors have shown to be due in all probability to errors in sampling.

Wile this work leaves the problem of plant growth formulas still unsolved, it merixs a distinct advance by unraveling some of the many internal factors responsible for plant growth.

## External Factors

Of the climatic conditions influencing rowth precipitation, atmosereric humidity, temperature and light are probably the most important. In most of the investigations carried out on this subject, the conditions in regard to moisture have been kept in excess either by irrigation or by growing the plants in water the culture, so that little informstion is svaileble regardingneffect of precipitation at different ecriodsin the life cycle of the Ilant. An examination of the charts prepared by prescott (25) on the growth of maize in Egypt shows the immediate response Which the plant makes to irrigation during the period of rapid growth, when soil moisture has become a limiting factor. The Work of Briggs and Shantz (10) emphasized the great variations Which different groups of glants exhikit in respect to water reauirement. They have rerortec the results ortained by wolny at runich, who found the water reovirements of corn and eunflowers
to $\mathrm{b}-255$ and 490 resreatively.
Atmosy heric humiaity or more rroperly, the evarorating power of the air, is one of the factors chiefly resfonsible for water loss by the plant through transpiration. Eut, With a constant amount of water vapour in the air, the degree of saturation must vary inversely with temperature. The important thing to consider therefore, is the vapour tension deficit of the atmosphere for the particular temperature considered. Livingston and Shreve (19) give a thorough review of this topic and suggest certain methods of employing data on evaroration for the study of plant grovith and distrirution. INcLean (20) in studying the growth of soybean cultures as a measure of the growth producing power of the climate of laryland, found thet the ratio of evaporation to rainfall became quite often a limiting factor for growth. This was escecially noticeable towerds the enc of the grovith period, when high temperatures prevailed. The general methods emclojed by Mrelean have been adopted bJ Johnston (15) in a study of the growth of buckwheat, agocyrum esculentum, under greenhouse conditions. He foundithat the nigh eveporation rates of late summer occurring with high tempereture end transpiretion velues, were responsible for low rates of incresse in cry weight end in leaf area.

Besides fumishing energy for the photosmethetic activity of the rlant, light is unnovbterly one of the most important external factors influencing transpiration. 'hile only about 0.5 percent $\div$ of the radiant energy folling uron the leaf is utilized in the process of carbon assimilation, Pallacin (24) states that 27.5 percent is usea up in transpiration. A close corcelation between assimilation and light of high intensity is therefore scarcely to be expected. Brenchley (6)

16 er 18
exerirerting with the growth of res lente mader reenhouse conतitions, founc good correlation ketweer bright surbirie and the rate of increase in dry weight celculated ky Plackman's (3) compourd interest formula, provided the food saryly was adequate. Briggs, Kidत and West ( 8 ) found the closest correlation between unit leaf rate (increase in drJ weight xer unit of leaf area ker week) and light, when intensities up to one fifth full sunlight were consicered as limiting. The correlation with total hours of sun hine was insignificant. The velue for real assimilation was calculated from the unit leaf rate, after edding the lose due to reskiration, and deducting the gain due to salt urteke. When the value obtained was compered with lisht intensity, there sefmed to be little correlation, no matter now light was measuren. This ler the authors to suppose that under natural conditions, light limits the growth rate not $b$ : its direct action upon rhotosynthesis but indirectly throug its effect upon stometal orenings. Recent experiments ht Garner anc Allard (13) have shown that the relative length of night anc dat is of great importance in determining the amornt of vegetative growth and the time of rexroduction. This brings up the auestion of the dates of seering of different crozs in order to obtain maximum yields of fodतer or $s \in \in d$.

Tempersture hes the effect of accelerating most chemical reactions. The acceleration in reaction velocity, moreover, is logarithmic in neture. This phenomenon has been sumed ux in the rule known as the Van't Hoff rrincixle, which, in brief, states that for every rise of $10^{\circ} 0$ the reaction relocity is acproxirately doukled. This frincifle hes been found to hold trus in the case of many vital reactions. F.F. Flaciman (l) discusaes thic princifle in relation to assimilation and respiration, and foints out
the necessity of considering also the time factor. Esyecially is this true in the case of assimilstion, as the initisl rate falls off raridly at hish temperatures. It has generally been suppoeed that $\exists$ certain ortimum temperature exists for the process of growth in a given orgarism. But Blackman (I) shows the futility of coneidering a single limiting factor such as temperature unless in relation to other possirle limiting factors. Prokably the most cereful work on the problem of temeerature and growth has been carried out by Iehenbeuer (I8) in his study of the growth of maize seedings. In general, he found that the amount of growth increase per unit of time at a given temferature was influenced by the duretion of the exposure to thet temperstare. With an exposure yeriod of twelve hours the optimum temperatore was found to be $32^{\circ} \mathrm{C}$. One roticeable feature of these measurements is that for most of the temperatuxes up to and incluaing $31^{\circ} \mathrm{C}$. the growth rete per feriod of time increases quite regularly from hour to hour. This suggests that had the incresee for each period been exressed as relative growth rate, a more constent series of vslues woula have been obtsined. NicIean (20), Hildebrandt (I4), Prescott (25) and Briggs, Kiad and west (8), all found a high correletion existing between temerature and growth under fiela conditions. Brenchiey (.6) and Johnston (15) obtained similar results when investigating greenhouse conaitions. The failure of Efec and Hollena (26) to establish any intimate relation between temperature anc the rate of stem elongetion ir Heliarithus may heve been due to the fact that in Californis where temperatures would naturslly be uniformly high, other factors might heve been limiting rowth. The relation of temperature accumulations exrressed ae degree days, to time of blossoming in the artle and peach, hes been studied by Bradford (5). He found that the
arrement in temperture nccumuletions to blossomine from yer to $y \in a r$ at any ore flece, veries with the leneth of the time for which they are measured, indicatirg that ordjnary temreratures pre not always affective, or that temprature is not always a limiting fractor. liosier (2E), in his study of the climate of Illinvis, has used degree hours to express temperature accumulations for the frost free feriods, considering $49^{\circ} \mathrm{F}$. as the point of unit growth rate for corn. Although Iower yields occurred curing the jears of high temperature, he founc that high temreratures could be correlated with low rainfall. In a recent mori Livingston and Shreve (19) have mace use of various temperature indices in an attempt to correlate aifferent vegetational regions in the united States with entironmental conditions. Summetions of temperature for numerous stations, according to the different indices, were ortained, by emxlojing the informstion accumalated in meteorological literature. In some cases the temrerature indices were employed in conection with similar data on evaporation anc rrecipitation, thus riving a series of combined infices. The whole comtry was then dividec into zones accoraing to the magnitude of the verious summations obtained. While this work was essentially a study of plant distribution as relatec to climatic conditions, the methods employed fromise to be of considerable value in connection with any general study of climatic conditions and the rate of plant srowth.

In gerieral, while each indiviaual plant has its darticular
form of growth as influenced by varions grours of internal factors, it is orly reasonarle to expect distinct fluctuations in the growth rate curve from daj to day, brught about bj changes in climatic environment. loreover, the magnitude of the effect qroduced by climatic chanoes will $\dot{\alpha} \in r \in n$ to a considerable eztent won the stage of development reached ky the rlant. Thet is, the effect of
any single climatic factor such as temperature, is influenced in its aotion upon the $x$ lant by its relation to other climatic factors, and to the internal condition of the plant.

## 14

## PROBLEM

The primary purpose of this work is to ascertain if possible the optimum dates of seeding corn and sunflowers. In view of the intimate relation existing between climatic conditions and the growth of $\varepsilon$ plant at any particular stage of its development, it becomes of interest to measure, if possible, the effect of the climate in promoting plant growth. The final yield is in most cases the only matter considered in dates of seeding expeliments. But such data are of value only if collected for a considerable number of years. They are also of value only inthe particular district in which the work is carried out. In the present study, records for growth-rate, climatic conditions, and yielns have all been kept. It is hoped by careful mathematicel analysis of the data thus accumulated to derive fundemantal. information as to the growth adaptations of these crops, which may throw light on their suitability to various parts of the country.

## EXF EFII ENTAL

## Outline

The general method employed was that of seeding standari varieties of the sunflower Helianthus annures and corn Ies Mys, at a number of dates, beginning quite early in the spring and continuino votil about the first week in June. Growth measurement of a certain number of plants in each plot were taicn st regular intervals. At the same time accurate meteorological records were kept, and careful observations were made after all spring and fall frosts. The varieties employer in the experiment were Iammoth Russian sunflower and Morth Western Dent corn. Both of these varieties are regsried as standard and are employedextersively in the experimental work of this station. The woriz was carried out during two years, 1920 and l921. The land used for the 1920 experiments slope $\bar{\alpha}$ slightly to the south and west. In lolg this land was seeded to sering rye. In 1921 the experiment was carried out on land which produced a heavy cror of sunflowers in 1920. The slope of this land was from north to south.

## See ding

In 1920, five plots of corn and five of sunflowers were seєöd, the plots of corn and sunflowers alternating with each other. The numbers of the plots and dates of seeding are given in Table l. Plots $1,2,9$, and $10 w \in r e s \in e d \in d$ on the same date, May luth, so as to act as checie in calculating the tinal yielos. There $W \in r \in$, therefore, four dates of seeding, at intervsis of roughly ten days, from Iay l4th to June loth. Each plot consisted of fire rows, 50 liniss long and 3 feet apart. The rows were seered east and west. A small hand seeder was emplojed for drilling in the seed, it beingset so gs to droy one seec ghout evert
inch. Later, vren tre rlants were ahout 6 inches himb, they were thinried so as to lenve 8 inches between plants.

In lyil five lote of corn end six llots of sunflowers were seeded, one lot of surflowers being seeder on May 3, to try the effect o星 a veryearly seeding. The numbers of the glots and dates of seeding are given in table 2. In this year the rlote of corn and sunflower did not alternate with each other as in 1920, but were 1 lanted in adjacent strips of land. Mhis change in metroc of xlantin* was made to eliminate, if possible, the factor of meneal cometition between adjacent xlots of corr and sunflowers. Plots $1,5,6$ and 10 were $s \in \in d \in d$ on the same date, lify loth, and were used as checie. This geve four dates of corn and five of sunflowers, arranged at ten day intervals. Nach plot consisted of 4 rows, 130 links long, rows being 3 feet apart. Rows were sefied north and south. The methods of seering and thinning out were the same as those used in 1920. In the early morning of iay 28 th the temperature dropper to $24^{\circ} \mathrm{F}$. xilling the corn plants of plots 1 and 5. These lots were reseeded May 30th.

## Grovith Measurements.

Increase in dry eight is generally taizen as a measure of xlant growth. This method if a large number of plantsmare taken acedure which necessitates the seering of quite a lerge ares. since the labor involved is also consicerahle, it was not found rossible to follow such a methoc in this experiment. It was therefore decided to measure the rate of incresse in height of the plents. This method has been followed by numerovs investigators, including aed and Holland (26), working witn surflovers anc prescott (25) working with corn.

In 1920 ter normal flents were selected in each flot, the use of horder lents, or ery havin an acciácritel ac̈vantage in regard to
syacing', keing aroided. A small wonden stake about the size of a fencil "es driven into the zrourd akout siy inches from each rlant so es to have the top of the staif level with the surfece of the rrounc. The ten selectec rlants in each flot were then siven numbers from one to teri, anc records were kext throughout the season of their heights at different dates. Ihe sunflower plants were measure? from the top of the stake to the arex of the stem. In measuring the corn plants the height from the tor of the stake to the highest leaf tir was taken, the measurements thus refresenting a combinetion of intemode elongation of the plant itself, and of leat growth. Measurenents were taken for three day periods, and were carried out ac nearly as possible immediately gfter noon each day. Nessurements were begun June 5, but frost on the morning of Junf 13 badly injured the leaves of the corn plants, so measurements were discontinued until June 23. From thic date they were continued at three day intervals until Sect. 9, with the eycertion of one xerioc of siz daye, from Aug. 25 to 3lst. In plot 8 measurements were kert of only nine glents, as one rlant vas found to be a dwarf anc mas Biscerded. Table z gives the mean heghts (cmol of the selected flants in each plot at the तifferent dates. The mean ectral growth in height (cm.) of ticese hlants for the three day


In 1921 the general method outlined for l9z0 was followed, but two cinanges must be noted. First, measrrements were carrien out for two najs, insteac of for three cay teriode. seconc, the corn Flants were measured from the tor of the stake to the tix of the Iongest lesf, wher the lesves had been stretchec out to their full extent. In this way e more constant measmre of growth was obteined than Tas possirle in l920, wren the Ieaves tended to droor and arpesr shorter on vers hot days. dieasurements were begun june zoth
and were contirue a until sett. 9. In $\varepsilon$ few instr es measuremonte could be taken orly after form di periods. The mean heights (cm. of the selected plants in each plot at the ciflerert antes are resented on pakie 4. The mean actual growth in height of the plants (om.) for the different periods is given ir Table 6.

## Relative Growth

For the purpose of calculating the relative growth rates of corn and sunflowers in l9\&0, the heights of jlantis in plots $l$, 3, and 9 of corn, and plots 5, 4, and 10 of sunflowers have been averaged for the different dates. These three plots jun each grour were considered to be at about the same stage of $त \in v e l o p-$ mont. This gives two series of values, one rex resenting the mean height (cm.) of thirty corn plants at different dates, while the other gives the same information for thirty sunflower plants. These averages ere given in the last two columns of Table $\overline{3}$, while the corresponding growth increases are presented in the last two columns of Table 5. In 1921 plots 1 , 2 and 3 of corn end plots 6, 7 and 10 of sunflowers have keen treated in the same way. The mean height (cm.) of the two roux s of plants at different
dates are given in the last two columns of Table 4 , while the corresponding growth increases ere given in the last two columns of Table 6. Plot 5, although seeded on the same date as plot I, was considerably shaded by the adjoining plot of sunflowers, and vas therefore not used in making ur this average.

The relative growth rate for these averages has been calculate for the two years from-leckman's (3) formula

$$
H_{2}=H_{1} e^{i t}
$$

or employing the common system of logarithms, end expressing the result as a recent

$$
\frac{R}{100}=\frac{\log _{10} H_{2}-\log _{10} H_{1}}{t \times 0.4343}
$$

Where $\mathbb{E}^{\prime}$ is tre heigrt oi the ilent at the beginning of the period, $\mathrm{H}_{2}$ its heirht at the end of the period, an t, the length of the zrowth period - in ly20, 3 तaगs and in 1921, 2 dsys. Calculated in this way h. is the rercent increase in height rer day, per unit of heisht, for the whole weriod. The results for the two years are given in Table 7.

Harvestinc and Yields
In 1920 the corn Was injured to some extent by frost on Aug. 31, but as some growth was still taking ridee it was not aut until Set. 20, when corn anc sunflowers were hervestec, both having been damaged by the low temperature of $28^{\circ}$ F on wext. 19th. Ihe two outer rows of the plots wele discerded, the yield for each plot being taxen from the three central rows only. Thus, the xlots as harvested each consisted of three rovis, 50 linis long. The green weight of fodder was obteined be weighing the laits as soon as they were cut. At the same time a refresentetive sample vas taken from egoh plot and the percent dry matter determined. CorrEcted yieles per acre were calculated by the method ontlined by iTewton (23). The actual yields of the flots, together with the percert dr metter, sne corrected jields in dry matter are given in Table 1.

In 1921 the corn was frozen on SEpt.2, and was cut the following day. The sunflowers were not touched ry this frost, but were injured ky a frost on Sert. loth. They were ent or sept. l5th. In the case of plots 5, 6, 9 ane 10 yields were texen from two rows, 100 links long. This was necessary as there was a noticeable comretition between the four neighboring rows of corn and sunflowers in plots 5 and 6 , and between the early and late seedings of $\underset{\text { at゙n- }}{ }$ flowers in the case of plots 9 end lo. Whe actral jields of these
flotis giver in iable 2 have been multiplied by two, in order to meke them comrarahle with the jielos of the other lots which consisted of four rows, 100 linzs long -he yercent dry matter $a n=$ corrected Jielतs colonlated ac in 1920, are given in Teble 2.

## Temperatures

Temperature date for the two jears were obtained from a self recording atmosheric thermograph situated close to the plots. The thermograph recorcis were checied with dgily reaiings of maximum an $\begin{gathered}\text { minimum thermometers. Since the growth measurements were made }\end{gathered}$ from noon to noon for the different reriods, it becomes necessary to calculate the temperature values for similer periods. for this purpose the mean bi-hourly temperatures (Fshrenheit) from noon of one day until noon of the following dat have been taken from the thermograph records. Table 20 (Appendix) gives the mean bi-hourly temperatures from noon June 2 ra until noon wext. 9th, 1920. Table 21 xives the corresponding data for l92l from noon, June 20th until noon, Sept. 9th. From these values the mean temperatures (Fahrenheit) for the twenty-four hour ceriods from noon of one day until noon of the following day have reen caloulated. Whese temperatures have been translated to the corresyonding centigrade readings and are presented in Table 8 for the two years. In this way a aeries of values have been obtained which are based upon" not only the magnituad of the tempersture, but upon its duration as vell. In other words, they represent a series of weighted averages. These readings should be of infinitely greater use in interpreting plant growth than any average based upon maxima and minima readings for the day.


The mean temeratures (centiarade) for the trree and two-day Ieriocs of growth, curing ly\&o anc lyel respectivelj, heve been colculatec from the mean temyeratures for the twenty-four hour periods. The means for these periods of grovith in $19 \% 0$ are given in Trable l2, those for l92l in Table le.

## Temerature Indices

The problem of how best to express temperature in the interpretation of growth processes has been thororghly discussed by Livingston and Shreve (19). They have employed a number of temetrature indices in their zonation studies of the various trees of vegetation in the United states. It has been decided to exress the temperature data collected for this work in the form of some of the incices giver by these euthors. The five following temperatrre efficiency indices have therefore beer calculated as described, for each of the periods of growth in 1920 and 1921, and are presented in rables 10 and 11 respectively. The indicesemcloyed by Livingston and shreve (19) were in the Fahrenteit scale. In the xresent mork the centigrade kasis has kee used. Exponential indices have been oktained from rahrenheit readings, but as will be seen, the numerical value of these indices is independent of the scale used.
(1) Direct Temperature Efficiency Indices.

This method assumes that ahove $0^{\circ} \mathrm{C}$ the rate of plant growth is directly proportional to temerature. The indices for each growth perioc have beer obtained by summing the mean twenty-four hour temreratures (centigrade) for each two or three day period.
(2) Femainder Temperature Efficiency Indices. (Growth at 4.50 centigrade as unity).
These incices are reslly a modification of the direct
temperature irdices, the difference being that the zero point of growth is mover from $0^{\circ} \mathrm{C}$ to ma to $3.5^{\circ} \mathrm{C}$, while at $4.5^{\circ} \mathrm{u}$ the rate of growth is assumed to be eanal to unity. In calculating these indices, 3.50 has been subtracted from each mean twenty-four hour temperature (centigrade) and the remainders have beer sumed for the periods of growth.
(3) Remainder Temxerature Efficiency Indices: (Growth at $10^{\circ}$ centigrade as unity).

These indices are similar to those rrecediny except that $10^{\circ} \mathrm{u}$ has been choseri as the point at which unit growth takes place.
(4) Exponential Temperature Efficiency Indices:

The calculation of these indices is based on the assumption that at $40^{\circ}$ F plant growth taices xace at unit rate, and that for each increase of $18^{\circ} \mathrm{F}$ above this point, the rate of growth is doubled, according to the Van't Hoff-Arrhenius prindple. The relstion $b \in t w \in \in$ temperature anc the corrssponding index of temperature efficiency is expressed by the eauation

$$
I=2^{\frac{t-40}{18}}
$$

Where $t$ is the mean twenty-four hour temperature (Fahrenheit) and I the corresponding efficiency index for glant wowtr. These indices have been calculated by Jivingston and Livingston for all temperetures between $41^{\circ} \mathrm{F}$ and $100^{\circ} \mathrm{F}$ and are recrocuced by Livingston and Shreve (19). The efficiency indey for each mean twenty-four hour temecreture (Fahrenheit) has been reac from this takle enc the values obtained are $r$ resented in Table 8 for the two years. The incices for each period of growth were then summed.
(5) Physiologioal Temrerature Efficiency Indices:

Lehenbeuer's (18) data for the growth rates ofmaize seed-
lings at verions temferatures when exrosed for twelve hour periods,


## FIGURE A

Physiological Temperature Efficiency Indices based on Léhenbauer's twelve-hour exposures with Maize Seedings.
年
has been used hy witinston in preparing these indices. lotting growth rates as ordinates and temyeratures as abscissae, a curve was obteined giving indices ranging from zero at $2^{\circ} \mathrm{C}$ through a maximum of 122.3 at $32^{\circ} \mathrm{C}$ to zero gain at $48^{\circ} \mathrm{C}$. These indices have loeer reproduced by Livingston anc shreve (19) in their work, and from them the curve given in figure $A$ has been repered. In this Way it was possikle to read directly from the curve the index corres onding to each mean twenty-four hour temperature. These values are given in Table 8 for the two years. The indices for each Eeriod of growth vere then summed.

Degree Hours:
This method of expressing temperature acoumulatione has been employed by Mosier (22) in his study of the climate of Illinois. He considered that the zero point of growth for corn was $49^{\circ}$ (Fahrenheit), and calculated the degree homrs for different periods by multiplying the number of hours during which the teme rature is above $49^{\circ}$ fry the number of degrees the average temperature is above thet point. (Merriam (2I) chose $6^{\circ} \mathrm{C}$ (450 ${ }^{\circ}$ ), as the lower limit for physiological sctivity in clents and reproductive activity in animals. Iivingston and Whreve (I.9) heve made quite general use of $40^{\circ}$ ge the point of unit rste of growth in plents. Degree hours heve been calculated from $40^{\circ} \mathrm{F}$ in this study, alth ugh it is realized that the position of the point of unit growth rate may not be exactly the same for both of the plants under consideration. The bi-hourly temperatures given in Tables 20 and 21 (Appendix) have been used in calculating the degree hours for each twenty four hour ceriof for the two Jears, as rresenter in Tarle 8 . From these velues the degree hours for each reriod of growth have been obtained, as shown in Tables 10 and II for the years 1920 and 1921 rescectively.

Finally, the values for each of the six temperature inaices consiöered above have been summed from sune 25 in 1920 and June 20 in $19{ }^{\circ}$ I, to the end $0 \pm$ each period of growth. Tables 14 and 15, therefore, give the summation of each of these indices to different dates, for the two years.

Relative Humidity
Records for relative humidity were not. kept at the experimental plots but were obtsined from the Monthly Record of lieteorological Observations issued by the Meteorological service of Canada. The readings given for Edmonton were recordec about two miles from the experimental plots, and while probably not the same as those obtaining about the xlants, will serve as a messure of the flugtuetions from day to day. The hourly relative humidity for each day of July and August, 1920, and June, July, Avgust and September of 192l, are giver in these records. Relative humidity for June and september of lg20 were not given. The mean daily relative humiaitu, calculated from the hourly readings, enc siven in the records mentioned above, are reproduced in liable 9. Whe mean relative humidity for each reriod of growth was onteined by sveraging all of the hourly readings for the corresponding feriods. These means are given in table la for 1920 and in Table ly for 1921.

Temperature X Eelative Humidity
With low atmosheric relative humidity, the vater strain may become so great during the hotter part of the day thet plants are unable to make use of the high grow th possinilities of the evisting temperatures. Frowth under thesecouditions wecessaril tates clace at a slow rete, as the plont cells are unarle to maintain their turgidity. Prescott (251, moraing on the growth of maize in Egyt,



Hent
found that the gro th rate fell distinctly during the hours of great heat, due to the low atmospheric relative humidity. A high temperature combined with high relative humidity, should give conditions most farorable for rapid rowth. The value

$$
\frac{T R}{10}
$$

has been employed in this study in an attempt to erpress a combination of temperature and relative humidity favourable to plant growth. Here, $T$ is the mean temperature (centigrade) for the period of growth, and $R$ the mean relative humidity for the corresponding period.The large products which resulted have been reduced by dividing by 10 in each case. The resulting values have been presented for 1920 in Table 12; those fox 2921 are given in Table T3. Precinitation

In 1921 the rain gauge recording daily preciritation was situated close to the plots. In 1920 records were $\overline{\text { uept in another field }}$ about one quarter of a mile distant. The daily precipitation in inches from June $2 \overline{3}$ to September 9 in 1920, ana from June 20 to Sept. 9 in 1921, is given in Table 9.

Sunshine
The duration of sunshine for each hour of daylight from June 20 until September 9 of both years was obtained from the Dominion Governnent lieteorological station in Edmonton. The readings were taken by mesns of a Campbell stozes sunshire necorder. This informetion has been reproduced in Tables 22 and 23 (Appendix). The hours of sunfhine for each day of the two years from June 20 to September 9 are given in Table 9. The total hours of sunghine for each growth period, as given in Tables 12 and 18 for the years 1920 and 1921 resrectively, were obtainec from Tabler 22 anc 23 (Afpendix). The mean deily hours of sunshine for the growth periods for the two Jears are given in Tables 12 and 13 .

The maximum solar radiation (Fahrenheit) for each day, obtrined from a black bulk in vrauo, is given in Table 9, for the reriod from July 4 to wextember 8, l92l. These records were surplied bj the Dominion jovernment lieteorbogical station at Edmonton. Records for 1920 and for the remeinder of 1921 were not available. Since the readings for l92. are maximum readings for each day, they canot be accurately translated into corresionding means for the two day reriods of growth. But, since the maximum reading would probably occur for most asys about or shortly after noon, it has been decided to treat the maximum for each dad as being that for the twenty-four hour reriod which begins at noon of that day. For example, the mean हaily maximum solar radiation for the growth period noon July 4 to noon July 6 , has been found by averaging the rearings for July 4 anc July 5 . The means calculated in this way are given in Table 13.


FI GUPE 1
Mean Daily Temperatre (Fahrenheit), Mean Daily Relative Eumidity, and Daily H urs of Sunchine for 1920 and 1921.

## DISCUSSION

## Climate

In figure l, the daily temperature, daily relative humidity and daily hours of sunshine for the growing seasonsof 1920 and 1921 are shown for the purrose of comparing the climatic changes during the two years. the temperatures are those given in columns and 7 of Table 8. 'The mesn daily relative humidity, and total daily hours of sunshine are taken from Table 9. An examination of the data presented in this figure shows, first of all, that the three elements considered undergo quite violent fluctuations from day to day. The temperatures rise until the highest values are attained about the midde of July, then fall off gradually towards the end of the summer. whe temperatures for 1920 are generally higher than those for 1921 and seem to rise and fall less frequently. From June 25 to sept. 9 of 1920 there were 40,292 degree hours. From June 20 to sept. 9 of 1921, a slightly longer period, there were only 35,302 degree hours.

Unlike temperature, the relative humidity for the two jears rises graduelly as the season advences. The curve for 1920 is generally higher than that for 1921, and until the end of July is more uniform and contains fewer suden drops.

The curve for daily hours of sunshine follows fairly closely the temperature curve. The 1920 readings, moreover, are for a great part of the time considerably higher than those for 1921. Table. 16 gives the total hours of sunshine for the months of June, July end August of the two years brings out this differentee more clearly. Table 16 - Total hours of sunfihine for June, July and August of 1920 and 1921.

| Month | $\underline{1920}$ | $\underline{1921}$ |
| :--- | :--- | ---: |
| June | 257.7 | 301.0 |
| July | 376.5 | 311.1 |
| August | 276.6 | 252.9 |
| Total | 910.8 | 865.0 |

It will be readily seen that the djfferences in july and august are resronsibls for the higher total during 1920.

The precipitation for the two seasons has been rurp sely omitte from figure l, as the growing flants arew not only upon the rainfall which they receive during the summer months, but from the supply stored up in the soil as well. The total precipitation from the end of the growing season of the previous year shoulc $b \in$ a fair measure of the moisture which is available to the growing plant when it begins growth. This information is presented in Table l7, together with the rainfall for the months of July and fugust.

Year
1919
1919
1919
1919
1920
1920
1920
1920
1920
1920
1920
1920 $\square$

| 1920 | Sept． | 1.31 | $\cdots$ | 1.31 |
| :--- | :--- | :--- | :--- | :--- |
| 1920 | Det． | 0.62 | 1.6 | 0.78 |
| 1920 | Hov． | 0.01 | 1.7 | 0.18 |

1920 Dec
1921 Jan．

1921 Feb ．
1921
March
Ayr．
Mey
June
「プもの1
1921
1921
July
Aug．
Total
10.85
2.5
0.25
0.79

1921
0.08
2.5.
0.33

1921
1921
1.03
2.4

1． $2^{\text {r }}$
3.08
－－．－
？．08

|  | Total | 6.20 | 48.0 | 11.00 |
| :---: | :---: | :---: | :---: | :---: |
| 1921 | July | 3.13 | $\ldots-0$ | 3.13 |
| 1921 | Aug． | 1.52 | $\ldots-0$ | 1.52 |
|  | Total | 10.85 | 48.0 | 15.65 |

While the ureciritation for July and August of 19 cl was greater than for the same leriod of 1920, it will be readily seen that 1920 was characterised by a heavy precipitation in June, which brings the total for June, July and August slightly higher than for the same three months in 1921. In adaition to this the precifitation for Sept. I, 1919 to the end of May 1920 is considerably higher than that for the same period during l920 and 1921. This difference was largely due to the heavy fall of show in the winter of 1919-1920.

In brief, then, the summer of 1920 was marked by high temperatures during the three growing months, combined with favorable soil moistrre conतitions. In l92l temperatures were considerably lower, while the amount of moisture stored in the soil at the beginnirig of June must heve been much less than at the same time in 1920.

## Growth

An examination of tlables land a shows that the time from seeding to appearance of the plants above ground, decreases with each date of seeding. In 1920, in the case of the first seeding of corn, eighteen days elapsed between the time of seeding and the apperrance of the flents, while sunflowers seeded the same date require only eleven days. At the last seeding these times are reduced to eight days and seven days respectively. In lg21 the results are much the same. This shortening in the length of time for germination is probably due to the higher soil temperatures which ohtain as the season advances. No soil thermograph records were zept in the spring of l920, kut the reacings for 1921 show that the soil temerature increased from $55^{\circ} \mathrm{F}$. on liat IA to $65^{\circ}$ F on June 9. The soil temperatures at this time, therefore, feve

## PTERE I



Effect of frost injury on the growth of sunflowers. Left to right; two hranching plants. two plents with leaves curled, normel plant.

an important besring unon the dates of seeding these two crors. In l92l, corr ano suntlovers seede on insy 30 , twenty days after the first seeding on liaj lo, were only lourteen dazs later than the first seeding in afxearing above the ground. This is equivalent to a gain in time of inearly a week.

In 1920 the temperatere dropped to $29^{\circ} \mathrm{F}$. on the morning of June 15, doing considerable injury to the first and second seeaings of corn. These plants recovered, however, and a second seeding was not necessary. The sunflowers were not noticably injured by this irost. Corn seeded on liay 31 escaped this frost as it ajd not arpear above the ground until June 14.

In 1921 the first seeding of corn was killed by frost on lify 28, when the thermometer registered 240 F . It was necessary to reseed these plots. In this year, then, the earliest seeding of corn, which escaped frost injury, was that of lay 20. Whe sunflowers while not zilled by the frost seemed tc have guffered injury. The leaves of some were leter seen to curl slightly, and a number of the plants assumed a branching form, possibly due to injury of the growirg point. In Plate 1 four of these piants are shown beside one uninjured $x$ lant. It is well known that in most of the common varieties of sunflower, xlants can be found which show this kranching hakit. Strains have been selected which breed true for this factor. But of the many forms which appesred after this frost, probsbly only a few were cue to any hereditery iifferences in the rlents. Mhis is brount out by the following count of the acnormal flents in different flote tazen on June 23 ra , 19:1.

| Elot 6 | 76 |
| :--- | :--- |
| Plot 7 | 17 |
| Plot 10 | 79 |
| Plot 11 | 98 |



## FIGURE 2

Mean Height (cm.) of Corn and Sunflower Plants at Different Dates in 1920.

Since flants of lot 7 did not ancear above the round until June l, they coula not have been affected k. this frost. lot ll Which was seeced on liaj 3 , was injured most of all.

It therefore aprears that a temperatre of $29^{\circ}{ }^{\circ}$. in 1920 did considerable injury to the com, hut apparently hac no effect uron the sunflowers. In l92la temperature of 240 . completely xilled the corn plants anc slightly injured the sunflowers.

Thus far it has been shown that the earliest seeding of corn to escape frost injury in 1920, was that of way 5 , which appeared above the ground on June l4. In lg2l the seeding of Nay 20, which appeared June 4 , was the earliest safe date. Tut in sume jears it is possible that corn seeded at fither of these dates might be frozen. Data collected for a number of years mast be made use of in studying this part of the problem. Records of the late frosts at eamonton kept for the years 1894 to 1917 inm clusive, have been referred to in this connection. According to these records corn above the ground on June 4 would have been frozen in six years out of the twenty-four years consicered, while corn seeded so as to be akove the ground not before June $1 \leq$, would have beer frozen only in three jears out of twenty-four. In other words, the seeding of corn at the end of Nay would greatlj reduce the danger from late spring frosts.

Whe nean heights of the ten plents in each rlot at different dates in 1920, are shown in figure 2. The most noticearle thing in this figure is the mach greater height attainec by the sunflowers. This may have been/a slight extent due to the methor used in measuring the corn in 1920. In the case of the sunflowers the best growth as measured by height, was mace by plot lo, which was seeded on Prey 14. The otrer flot of sunflomers, seeded on this dste, did


## ProuTE 3

Mean Eeight (cm.) of Corn mmo funlowex Plentsel Diferent Iater in 1921.
not mare such goxi arowtr, frobehly becarnse it as situsted at the sorth end of the block, on lower ground. plot 8 , the last seeding, mane the roorest orowth of all. fone of the rlotis of sunflowers had reached maturitj at the end of the season, as s.ll were still growing rapialy when the last meashrement was taken. Of the riots of corn shown in figure 2 , the hest growth was mace by the seeding of lay Sl, while the poorest growh was made by plot 7, seєded orlj ten dats later. It therefore apreare that a differerce of ten days in the date of seeding at this time, has, in the case of both corn and sunflowers, an important influence upon the ultimate height which the clents attain. The most mature plots of corn as judge' by these growh curves, were those seeded liay 14 and liay 21. Plots 5 and 7 , seeded liay 31, and June lo respectively, were still growing when the last messurements were taken.

The same fluctuations in the growth rate from day to day can be noticed in all of the plots, showing that environmental conditions keve affected all of the $x$ lants of both corn and sunflowers in much the same way. Plot 10 which mace the most raxid growth has apparently been influencec by these chanzing conditions less than any other rlot. Host of the growth has keen made by all of the plots during the month of July and the first half of Avgust. Eetween August 15 and 18 the growth was sudeerily checred, anc from thet point onmards xroceeds at a much slower ratє.

The mean heights of the ten plents in egch plot, at different dates in lgal are shown in figure 3 . It will be rememberec that in this year a new method of measuring the corn plants was adopted. But the final heights recorced for the plants in laz were not greatly affected ky the method of measurement, as in koth Jears the Iast height measuremente were taren to the tix of the stam-
enate infloresce cs rrich remeined quite erect and generally exceeded the leaves in length.

An examination of the curves presented irn rigure ${ }^{3}$, shows that the zrowth made by the sunflowers in ly2l was much less than during the season of 1920. こorn on the other hand seen:s to have.made better growth. The early seedings of sunflowers have attainec the greatest height, while as ir: l920 the late seeding of June 9 has made a very poor showing. The corn of lot 2, seerec on May 20, has made very rapid growth. Hlot $B$, seeded on May 30, has also reachei a good height. Some of the clants of rlot $E$ were shaded by the adjoining plot of sunflowers, and for that reason the mean height of this klot has been reduced. Vihile the corn had nearly cfeased growth at the last measurements, the sunflowers, as in 1920, show no sign of any retardation in the growth rate.

A study of the growth curves rresented for the two years shows that the early seeding of sunflowers seeme to ke advisable, while corn seeded from lay 20 to liay gave the best results. Earlier maturing varieties of both corn and sunflowers are necessart if the plents are to comple te their life cycles during the growing season at their disposal, While the sunflovers made much better growth in 1920 than 1921, conditions for the growth of corn seem to have beer better in the latter jear.

## Yields

The corrected yields in tons of ary matter per acre are giverı in Tables 1 and 2, together with the per cent ary matter for each plot as 'determined by drying in an electric oven at $100^{\circ} \mathrm{C}$. Whe dry matter content of the corn remainedrourhiy the same for the two years, the highest value being 18. $4 \%$ for rlot 5 in 1920 and the lowest 13.9 \% for plot 4 in 1921. The very hish तrj matter content of plot 5 in l920 and lot 3 in l92l,
was very grobably oue to the fact that both of these rlots vere
growing vert ravidly when injured by tre fall frosts. Injury to the leaves in such a case would be very severe, with the result that they woulc quickly lose their moisture content. In 1920 it wes noticed that the frost of Aug. Sl caused more damege to flot 5 than to any other plot of corn. The high ary matter content of 17.9\% for plot 9 in 1920 is unquestionable, due to the favorable state of maturity of tris plot, which was situated on the warm ¿ry land at tree north end of the block.

The dry matter content of the sunflowers is appreciably lower than that of the corn in 1920, while in 1921 their relations in this respect are reversed. The favorable ory matter content of the sunflowers in lgal seems to have been associated with poor growth snd low yiela.

It has been already stated that the method outlined by Newton (23) was used ir calculating corrected yielas. In 1920 the block of ground used for the experiment sloped gently from plot lo to plot l. The slope, however, was uniform throughout, as will be setn from an eyrmination of the actual yields in green weight for that year. In the 1921 experiment, the only slope was north and south, the direction in which the klots were seeded. The use of this method of calculating corrected yields is therefore justifiable.

The yields of sunflovers in lg\&o, given in Table l, are about double those for corn during the sare year, notwithstanding the lower iry matter content of the sunflowers. The highest Jielc of sunflowers was given ky the early seedings, and the yields tend to fall as the dates of seeding become later. The best corn yiela was procuced by the liay zl seeding, although the seєcings of lay 14 also gave quite good yields. The poorest yield of corn was given ky the late seeding of June 10.

In 1921 the yields of sunflowers have feallen off oreatly, while the corn yields are consicerably higher than in ig20. Plot ll, the very early seeding of sunflowers, has given the higest yield of the block, kut with this exception, the sunflower yields are slightly below those of the corn. The highest yield of corn is again given by the plot seeतec at the end of lay, while the lowest yield is given by the late seeding of June 9. Plots 1 and 5 of corn which were reseeded on May 30, have given slightly lover yields than plot 5 , while theoretically, all should have the same percent ary matter and yield. This may be dre to the fact that a few plants in plots 1 and 5 which werefrozen off. came up again before the new plants mere thinned out. It is also possibly due to the experimental error of the work. In any case, the conelusions which may be drawn from this work are not. seriously affectec by this difference. Since the frost of May 28 , 1921 caused some injury to the sunflowers which were above the ground at that time, it is only reasonable to believe that the yield of these flots would be recuced accordingly. an examination of the yields Fiven in Takle 2 , however, shows that plots 7, 8 and 9, which were not subjected to this frost, have also given much lower yields then the corresponding detes of seeding in 1920. The low smaflower yields for 1921 must have been due to some other cause then frost injury. The probable aase for this reduction in yield will be consiōered later.

From the discussion of frost observations, growth measuremerts, and final yielas in the foregoing xages, some decision may now be arrivea at regaroing the optimum dates of seeding these crops.

## Dates of Seeding

Data collected for two years show that corn seeded about May 31 germinates and starts growth quickly, makes rapid growth, and attains a good height, as shown by the growth measurements, and at the same time has given the best jield of dry matter per acre. According to the records of late frosts kept at Edmonton, corn appearing above the ground June 14, might be expected to receive frost injury one year in every eight. Nothing would be gained by delaying the seeding of corn much beyond May 31 for two reasons. First, the yields from the June 9 and June 10 seedings have been low in both years. Second, of the three spring frosts which ocourred after June 14, two came on June 24. At this time, corn seedederen after June 10 would be subject to frost. Therefore, the danger from frost would be only very slightly reduced by seeding after May 31. It appars, then, that the optimum date of seeding corn for this district is about May 31.

In both years the early seedings of sunflowers have given the most rapid growth and the best yields. In 1921 the May 3 seeding gave the highest yield of the block, notwithstending the fact that some of the plants had been injured by frost. The data at hand. therefore, show that the seeding of sunflowers as early as May 3 is profitable.

The need for earlier maturing varieties of both corn and sunflowers is emphasized by this study. The ability of the suneflowers to withstand light spring and fall frosts gives them a slightly longer growing season than the corn, but wen with this advantage the variety of sunflower employed in this work fai led to reach that stage of maturity necessary for the production of good auality silage.



## BIGUEE 4

Actuel and Reletive Growth of Corn and sunflower plentefor three-dey periods in 1920, together with Mesn Temperatire (oenti-



## EIOJEE 5

Acturl and Reletste Growth of Corn and innilower alants for two-day rerioda in 192l, together with Mean pemperture (cent orade) Precipitation (inches). Bean velntive Fumidity; the arocuet $\frac{T \mathrm{~T}}{\mathrm{IO}}$, Lean Deily Hovrs of cunahine, and Mean Mavimum Loles (Fahrerhait).
taken from the last two columns of Tables 5 and 6 , for the jears 1920 and 192l, together with the corresponding climatic data, is presented in figures 4 and 5. It wlll be seen by referring to Tables 5 and 6 that once in 1920, and six tires in 1920, the growth measurements were taken after longer than the regular periods. For the purpose of avoiding any confusion in the presentation of the actual growth in these charts, the growth for these periods has been reduced to a mean for the two oll three day period. according as the year is 1921 or 1920. For example, the growith given in the tables for a sir day period in 1920 or a four day period in 1921, has been divided by two and the resulting values have been plotted in the two ifgures. The relative growth rate calculated by Blackman's (3) formula is independent of the length of the period of growth. Precipitation taken from Table 9 is presented in inches for the days on which it fell. All of the other climatic date have been presented as means for the periods of growth, 8 s taken from Tables 12 and 13.

In 1920 the relative growth rate is quite high at the beginining of the season, but falls considerably towards the latter part of July, while at the end of the season it takes the form of a straight line almost parallel to the time axis. In 1921 the curve has much the same form. The fluctuations from day to day in both years follow those of the actual growth rate curve, but from about the end of July the relative growth rate seems to be unaffected by environmentel factors. The growth in height, then, of corn and sunflowers, seems to ha ve no strict relationship to the height which the plents have already attained. but falls in an irregular manner from the beginning to the end of the season. The actual growth rate for the two years fluctuates from day to day with the environmental conditions. In 1920 the actual growth

$$
541
$$



#  




2 $\qquad$
$\qquad$


14


Hand


## TIOURE 6

 in beicht of Corn and smelowers in 1920 mad 1921.


## FI GURE 7

Eemainder Temperature Pfficiency Indices ( $4.5^{\circ} 0=1$ ) and the Growth in Height of Corn and Sunflowers in 1920 and 1921.



## FIGURE 8

Remainder Temperature Efficiency Indices ( $10^{\circ} \mathrm{C}=1$ ) and the Growth in Eeight of Corn and Sunflowers in 1920 and 1921.


## FIGURE 9

Exponential Temper ture Efficiency Indices and the Growth Height of Corn and Sunflowers in 1920 and 1921.


## FIGUPE 10

Physiolosical Temperature Efficiency Indices and the Growth in Height of Corn and Sunflowers in 1920 and 1921.


FIGURE 11
Degree Hours (Fahrenheit) above $40^{\circ} \mathrm{F}$. and the Growth in Height of Corn and Sunflowers in 1920 and 1921.
rate of corn is considerably lower than that of the sunflowers. This is probably due to the method used in measuring the corn, as towards the middle of August, when the tassel of the corn plant was being mfeasured, the growth of the corn is about equal to that of the sunflowers. In 1921 the actual growth rate of the corn is quite often higher than that of the sunflowers. This is especially noticeable at high temperatures, suggesting that at high temperatures the corn makes more favorable growth than the sunflowers. The time during which the most rapid growth was made extended from about July 11 to aug. 19 in both years. This period coincides with a time of quite high temperatures. The sudden drop in temperature about August 19 in both years is accompanied by a sudien drop in the growth rate after which neither of the plents make very rapid growth. The corn almost ceases growth at this point, while the sunflowers continue to make considerable growth, but at a much reduced rate.

In some cases precipitation has accelerated the growth rate even where the temperature remained the same or has fallen. The best growth has been made where precipitation was followed by increasing temperatures. There seems to be littile relstion betveen growth and relative humidity. The product $\frac{T R}{I O}$ does not seem to have as close a relation to growth as does the temperature curve. The hours of sunshine, and solar radiation naturally show quite a close correlation with each other, and with the temperature curve.

Since the relation between tempereture and growth seems to be so intimete, it is of interest to consicer the coefficientsof correlation for a few of these plots. The coefficients of of correlation with the direct indices of Tables 10 and 11 , have been calculated for each date of seeding of corn and sunflowers
for the two years．The method of Ayres has been used． TABLE 18
Correlation Coefficients for Direct Indices and Growth 1920

| Corn | $r$ |
| :---: | :---: |
| Plot 1 | .3613 士．1173 |
| Plot 3 | .3389 士．1194 |
| Plot 5 | .3479 士．1186 |
| Plot 7 | .4793 士．1108 |



| Corn |  | r |
| :---: | :---: | :---: |
| Plot | 2 | ． 4564 I |
| Plot | 3 | ． 4000 士 ${ }^{\text {t }} 1017$ |
| Plot | 4 | ． 4814 士 ． 0963 |
|  | －－ | － |
|  | －－ | －－ |


| Sunflowers | r |
| :---: | :---: |
| Plot 6 | ． 6496 ． 0689 |
| Plot 7 | .4854 妾．0911 |
| Plot 8 | ． 5427 書． 0869 |
| Plot 9 | ．4778－${ }^{\text {I }}$ ． 0951 |
| Plot 11 | ．6655 玉．0664 |

From the correlation coefficients given in Table 18，it will be seen that the relation between the rate of growth of corn in 1920，and changes in temperature as measured by direct indices， is very obscure．With the exception of the value for plot． these correlations laci any particular significance，especially when considered in relation to their probable errors．In 1921 the correlations for corn are slightly higher，but this may be due to the fact that a different method of measuring was used． The early seedings of sunflowers in both 1920 and 1921 show the existence of a relationship between growth and temperature as mfeasured by direct indices．This correlation becomes quite dism tinct in the cast of plot ll，seeded May 3．1921．It will also be noticed that in 1921 the values given for sunflowers are generally higher than those for 1920．This difference may to a
certain extent reflect the lower temperatures which prevailed in 1921, as expressed by degree hours. In other words, temperature in 1921, had slightly limited growth.

From the growth rate and temperature curves of figures 4 and 5, it is obvious that there exists quite a close relationship between fluctuations in the growth rate and changes in temperature The direct temperature indices seem to bring this out in the case of the sunflowers, especially for the early plots in 1921. The growth of corn, however, seems to bear a different relationship to temperature, as the correlation of its growth with direct temperature indices, is slight in both years.

In figures 6 to 11 the mean heights of the thirty plants Hiven in columns 11 and 12 of Table 3, for 1920, and columns 12 and 13 of Table 4 for 1921, have been plotted as ordinates. The various summations of temperature efficiency indices as given in Tables 14 and 15, are plotted as abscissae. If the heights reached by the plants on the various dates had been in any way proportional to the temperature accumulations for the corresponding periods of growth, a definite form of curve might have been expected, depending upon the nature of the relationship. The curves obtained from the various indices are all very similar in form, and suggest that the relationship between growth and temperature as measured by any of these methods, is a linear one. In all cases, the fall in the slope of the curve at the beginning and end of the season, shows that temperatures at those times have been less effective in promoting growth in height.

In order to mfeasure, if possible, the accuracy with which the various temperature indices express the reletionship between temperature and growth, a few correlation coefficients have been calculated. Plot 2 (1921) of corn and plot 11 (1921) of sun-
flowers，have been chosen，as they both showed some evidence of cow relation with the direct indices and were also the two earliest． seedings for the year．The coefficients given in Table 19 are those between the growth of the plants in these plots，and the five temperature indices，degree hours，total hours of sun－ shine，the p\＆roduct $\frac{T R}{10}$ and mean relative humidity．The tem－ perature indices and degree hours used are those given in Table 11．The total hours of sunshine．$\frac{T R}{10}$ and mean relative humidity， will be found in Table 12．

TABLE 19 －Correlation Coefficients for Plots 2 and 11 （1921） and Temperature Indices，Degree Hours，Total hours of Sunshine $\frac{\mathrm{TR}}{10}$ ，and mean Relative Humidity．

|  | $\begin{aligned} & \text { Plot } 2 \\ & \text { Corn } \\ & \hline \end{aligned}$ | $\underline{r}$ | $\begin{array}{r} \text { Plot } 1 \\ \text { Sunflower } \\ \hline \end{array}$ | $\underline{r}$ |
| :---: | :---: | :---: | :---: | :---: |
| Direct Indices | －4564 き | .0959 | ． 6655 咅 | ． 0664 |
| Remainder Indices（ $4.5{ }^{\circ} \mathrm{C}$ ） | ． 5292 士 | ． 0872 | ． 6469 志 | ． 0693 |
| Remainder $\quad$（ $10^{\circ} \mathrm{C}$ ） | ．6407 | .0714 | .2571 | .1113 |
| Exponential Indices | ． 4582 士 | .0957 | ．6387 | .0706 |
| Physiological Indices | ． 5798 き | ． 0804 | ． 0355 士 | ． 11.190 |
| Degree Hoars | ． 5380 士 | .0861 | ．6207 士 | ． 0733 |
| Hours Sunshine | ．4322 士 | .0985 | ． 4100 墨 | .0992 |
| $\frac{T R}{10}$ | .6606 士 | ． 0683 | .3991 I | .1002 |
| Relative Humidity | ．． 0910 \＃ | ． 1201 | －． 0600 \＃ | ． 1.188 |

The best eorreletion between the growth of sunflowers and temperature is obtained when direct temperature indices are emplojed．With the remainder indices above $10^{\circ} \mathrm{C}$ and also with the physiological indices，there is no correlation whatever． The relation with hours of sunshine and the product $\frac{T R}{I O}$ is very slight，while the value for relative humidity is a minus quantity．

The correlation between the growth of corn and temperature is considerably better with the remainder indices of 4.5 C, than with direct indices. It is still higher with remeinder indices of $10^{\circ} \mathrm{C}$, while the best correlation with the growth of corn has been obtained with the products $\frac{T R}{10}$. The correlation between the growth of corn and physiological indices is comparatively good when compared with the corresponding figure for sunflowers. Since the physiological indices were actually derived from Lehenbauer's (18) data on maize seedings, it is not surprising to find that the corn plants in their growth show a much closer relationship to these indices than do sunflowers. It, therefore, appears that physiological temperature efficiency indices for expressing plant growth can be of little value unless derived from observations on each particular plant under consideration.

Although too much reliance cannot be placed upon the correlations in the above table, there seems to be considerable evidence to support the view that while sunflowers make good growth at medium or quite low temperatures, corn responds most closely to high temperatures, and is particularly influenced by favorable conditions of temperature and relative humidity.

From a study of the climatic data growth measurements and yields for the two years, certain conclusions may be drawn regarding the climatic adaptations of these two crops. The outstanding difference in the climate for the two seasons, was the low precipitation from Septal, 1920 to the end of June 1921, as compared with the same period during the previous year. This difference in precipitation for the two years was associated with a reduction in the yield of sunflowers for 1921. The corn on the other hand suffered no such reduction in jield. Sunflowers
have germinated and started growth more rapidly than corn, when seeded at the early dates. They have not been seriously injured by late spring and early fall frosts, and for that reason have a considerably longer growing season. Corn has been very susceptible to frost injury and gives evidence of good growth at high temperatures. Sunflowers, therefore, should be well suited to those parts of the country where precipitation is ample, but where there is a short growing season with low temperatures in spring and fall, and danger of frost injury, Corn should give good results where the season is longer, temperatures higher, and where soil moisture is not sufficient for the successful culture of sunflowers.
(2)

## SUMMARY

1. During 1920 and 1921 a study has been made of the growth of corn, Zea Mays, and Sunflowers, Helienthus annuus, seeded at different dates, in relation to their climatic environment. The varieties used were Northwestern Dent corn and Mammoth Russian sunflowers.
2. Early seedings of sunflowers were found to germinate and appear above ground sooner than the early seedings of corn, while the late seedings of both plents required much the same time for this purpose. Both were retarded by the lower soil temperatures obtaining early in the season, but the corn to a greater degree than the sunflowers.
3. A temperature of $29^{\circ} \mathrm{F}$. in the spring of 1920 injured the corn but did not affect the sunflowers. In 1921 a temperature of $24^{\circ}$ F. killed the corn and slightly injured the sunflowers.
4. Because of resistance to late spring and early fall frosts, sunflowers have a longer growing season than corn.
5. Corn seeded at the end of May begins growth quickly, will in most years escape injury from late spring frosts, and gives a good yield of ary matter. Seeded at this date its time of active growth apacity synchronizes with that part of the season most favorable for vegetative growth.
6.The seeding of sunflowers early in May seems advisable if the best gields of ary matter are to be obtained.
6. In 1920 the corn had a higher ary matter content then the sunflowers. In 1921 this order was reversed but the high dry matter of the sunflowers was associated with slow growth and low yield.
7. The growth in height of corn and sunflowers fluctuates greatly
from day to day. The per cent relative growth is not constant but falls in an irregular manner from the beginning to the end of the season.
8. 

An effort has been made to correlate the growth of corn and sunflowers, with five temperature efficiency indices used by $L_{f}$ vingston and shreve, as well as with degree hours, total hours of sunshine, the product $\frac{T R}{10}$, and mean relative humidity.

10; The growth of both corn and sunflowers has shown closer correlation with temperature than with any other single climatic factor. Corn gave the best correlation with temperature when remainder indices derived from temperatures above $10^{\circ} \mathrm{C}$ were employed. Sunflowers gave the best correagtion with temperatures above $0^{\circ} \mathrm{g}$. This indicates a greater oapacity in sunflowers than corn for growth at low temperatures.
11. Physiological temperature indices derived from Lehenbauer"s observations on the growth of maize, have shown no relation to the growth of sunflowers, but have given a distinct correlation with the growth of corn.
12.

The suden drop in temperature about Aug. 19th in both a years was accompanied by, distinct check in the growth rate of corn and sunflowers. The sunflowers continued to grow steadily at the low temperatures which followed this date, but the growth made by the corn was very slight.
13. Lack of sufficient soil mosture in 1921 was undoubtedly responsible for the low yields of sunflowers in that year. Corn showed no reduction in yield due to this cause.
14. Compromises to give botter yields of foder than sunflowere in the gouthern areas of the provinoc where the growing geacon 18 comy arntirely long. temyerntures are high. and foil moisture ie limited. suntlomer ehonld
 more mhandant, tempratures at the beginntrag and end of the growinc cexoon tre low, and where them is anter $x$ from sprine ome fitll swosts.
15. The need for eprlict matuxing vexletias af both corn


## 48

## IIEERATURE CITED

(1) BLACKIAA, FF. Oxtima and Limitine iactors. Ann. Bot., Vol. 19, N . 281, 1905.
(2) BLACKIAN, FF. The Metabolism of the tlant considerer as a Catalytic Keaction. Science, vol. 28, 1. 628, 1908.
(3) BLAUKMAN, V.H. The Compound Interest Law and wiant urowth. Ann. of bot., Vol. 35, x. 353. 1919.
(4) BLACKMAT, V.H. The Significence of the Efficiency Ināez of Hant Growth. New Phyt., Vol. 19, no. 3 and 4, p. 97, 1920.
(5) BadFofle F.C. The Felation of Temperature to Blossoming in the Axple ancreach. University of Dissomri Agric. Exp. Sta., Research Bull. 53, 1922.
(6) BREICHLEY, W.E. On the Pelations between Growth and the Environmental Conditions of Temperature and Eright Sunshine. Ann. Arpi. Biol., vol. 6, no. 4, p. 2ll, 1920.
(7) BRIGGS, G.E., KIDD, F., and WEST, C. A Quantitative Analysis of Plant Growth. Part 1, Ann. Apri. Biol., vol. 7, n. 103, 1920.
(8) BRIGGS, G.E., KIDD, F., and WEST, C. A Quantitative Analysis of Plant Growth. Eart 2, Ann. Appl. Biol., vol. 7, no. 2and 3, D. 202, 1920.
(9) BPIGGS, G.E., KIDD, F., and WEST, C. IV thods in the quantitative analysis of Plant Growth - a Recly to Criticism. Ann. Appl. Biol., vol. 7, no. 4, I. 403, 1921.
(10) BPIGGS, I.J. and SHAMTZ, H.J. The water Fequirement of rlants. U.S. Dert. of Agric., Bureau of Plant Induetry, Bull. 284, and 285, 1918.
(11) ECKIES, C.H., and SWETT, W.W. Some Haotors Irmiuanciag the ruwth of Uairy Eeifers. University of Ifi申ssouri, Agric. Erp. Sta., Reaearch Eull. 31, 1918.
(12) FIunEP? R.A. Some Remarks on the methods Formulated in a Recent Article on "The Quantitative Analysis of vant Growth". Ann. Appl. Biol., vol. 7, no. 4, p. 367, 1921.
(13) GAENER, W.W. and ALIAPD, H.A. Effect of the Relative Lengeth of Day and light and Other ractors of Environment on arowth anô Eerroduction inklants. dovr. Agric. Ses. vol. l8, no. ll, 1920.
(14) HIIDEBPANDT, F.I., A Physiological study of the Climatic Conditions of Meryland as Neasured by rlant urowth. Physiol. hes., Vol. 2, no. 8, r. 341-105, 1921.

## 49

(15) JOHNSTON, E.S., The Seasonal March $0^{+}$the Climatic Conditions of a wreenhonse as ielatec to rlant drowth. University of Marylana, Agric. LxE. ita., Lull. ITo. 245, 19え1.
(16) KIDD, F., WES'I, C., and BEIGas, G.E. What is the significance of the Efficiency Index of Elant wrowth? Hew phyt., vol. 19, no. 5 and $4, \mathrm{p} .88,1920$.
(17) KIDD, F•, WEST, C., and BRIGGS, G.E. A quantitative AnalJsis of the irowth of lielianthus annuus. Part l, 1 roc. Royal iociety, vol. 92, p. 368, 192l.
(18) IWHENBAUES, P.A. The Growth of Maize seedings in felation to Temperature. Physiol. es., vol. l, no. 5, p. 247288, 1914.
(19) IIVIMGSTON, B.E., and SHPBVE, F. The Distribution of Vegetation in the United states as Related to Climatic Condjtions, 1921.
(20) McIEAT, F.T., A Preliminary Stuay of Climatic Gonditions in iaryland as Felated to plant rrovth. physiol. Res., vol. 2, no. 4, p. 129-208, 1917.
(21) MERPIAM, C.H. Life Zones and Crop Zones of the United States. U.S. Dept. Of Agric., Div. of Biological Survey, Bull. 10, 1898.
(22) MOSTER, J.G., Climate of Illinois, University of Illinois, Agric. Exp. Sta., Bull. 208, 1918.
(23) NEWMON, R. Note on Selative and Corrected Yields. Scientific Agriculture, vol. s, no. 3, p. 122, 1922.
 1917.
(25) PRESCOTT, J.A. Some Observations on the Growth of liaize in Egypt. Sultanic Agric. Soc., Bull. 7, 1921.
(26) REEL, H.S., and HOLLATID, F.H., The Growth Fiate of an Annual Plant Helianthus. Proc. Nat. Acad. Dc. U.S.A., Vol. 5, ․ 155, 1919.
(27) REED, H.S. The lature of the Growth wate. Jovrn. Gen. Physiol., wol. 2, no. b, 19£0.
(28) WEST, C., BRIGGS G.E., and KIDD, $F$. Methods anc Significsnt Relations in the Quantitative Analysis of Plant Growth. New Phyt., vol. 19, no. 7 and 8, 1.200, 1920.

| Date of Deeding | Elot | Crop | Date aryearance of rlants above pround | $\begin{aligned} & \text { Jats } \\ & \text { from } \\ & \text { seeding } \\ & \text { to arrear- } \\ & \text { ance of } \\ & \text { plants } \\ & \hline \end{aligned}$ | Date Her-vested. | $\begin{gathered} \text { Actual } \\ \text { yield } \\ \text { Yer plot } \\ \text { (zbs. } \\ \text { green } \\ \text { wt.) } \\ \hline \end{gathered}$ | $\begin{array}{r} \text { Per- } \\ \text { cent } \\ \text { dry } \\ \text { matter } \\ \text { d } \\ \text { dy } \end{array}$ | Corr- <br> ected <br> yield <br> per ac. rons of ry ras ter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nay 14 | 1 | Corn | June 1 | 18 | Lep. 20 | 134.6 | 15.8 | 1.95 |
| Na¢ 14 | 2 | Sunflower | Fay 25 | 11 | " " | 350.7 | 14.2 | 4.33 |
| May 21 | 3 | Corn | June 7 | 17 | " | 139.7 | 14.9 | 1.69 |
| May 21 | 4 | sunflover | June 4 | 14 | " " | 368.2 | 14.8 | 4.33 |
| Nay 31 | 5 | Corn | June 14 | 14 | " " | 154.6 | 18.4 | 2.08 |
| Nay 51 | 6 | Sunflower | June 10 | 10 | " " | 405.4 | 14.1 | 4.19 |
| June 10 | 7 | Corn | June 18 | 8 | " " | 144.8 | 15.8 | 1.53 |
| June 10 | 8 | Sunflower | June 17 | 7 | " " | 387.5 | 14.3 | \% 577 |
| Iiay 14 | 9 | Corn | June 1 | 18 | " " | 177.8 | 17.9 | 1.95 |
| İay 14 | 10 | Sunflower | May 25 | 11 | " | 451.5 | 15.1 | 4.33 |

TABIE 2 - PIAN OF SEEDING, OBSERVATIUNS AID YTELDS FOR 1921

( Corn of plots 1 and 5 killed by frost on morning of inay 28, and seeded again liay 30. Ilants of second seeding arpeared above ground June 8 .




TABLE 6 . NEAN ACTUAL GROWTH OF PLANT (cm.)FOR PERIODS 1921

$\begin{array}{cc}\text { Ave. of plots Ave. of plots } \\ 1-2-3 & 6-7-10\end{array}$ $\frac{1-2-3}{\text { corn }} \frac{6-7-10}{\text { sunfloners }}$

| 3.9 | 2.2 |
| :---: | :---: |
| 3.7 | 3.2 |
| 4.5 | 3.8 |
| 4.5 | 4.3 |
| 5.4 | 5.8 |
| 6.8 | 8.6 |
| 3.1 | 3.5 |
| 6.2 | 8.0 |
| 3.4 | 5.2 |
| 6.0 | 8.4 |
| 7.9 | 10.8 |
| 9.7 | 10.4 |
| 5.7 | 8.8 |
| 10.6 | 9.6 |
| 6.5 | 5.9 |
| 15.9 | 9.5 |
| 5.7 | 3.9 |
| 7.7 | 5.7 |
| 11.5 | 8.4 |
| 9.7 | 7.3 |
| 4.4 | 4.0 |
| 10.2 | 9.4 |
| 5.9 | 6.3 |
| 7.0 | 5.8 |
| 8.4 | 5.6 |
| 5.1 | 4.7 |
| 4.6 | 152 |
| 5.8 | 7.8 |
| 1.8 | 3.2 |
| 0.9 | 2.6 |
| 1.8 | 9.5 |
| --- | 10.5 |

Table 7 - $\mathbb{N A} A N$ RELATIVG GROWTH OF PLANTS(percent per day)
1920-1921


| June 23-26 | 5.2 | 5.6 | June 20-22 | 10.1 | 11.2 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $26-29$ | 3.4 | 12.8 | $2.2-24$ | 8.0 | 12.8 |
| June 29 | . |  | $24-25$ | 8.2 | 11.9 |
| July | 2 | 7.7 | 13.8 | $26-28$ | 7.1 |
| July 2-5 | 5.5 | 9.9 | $28-30$ | 7.3 | 11.6 |


| $5-8$ | 5.6 | 8.0 | June 30 |
| :--- | :--- | :--- | :--- |


| $8-11$ | 12.1 | 12.4 | July | 4 | 4.0 | 6.7 |
| ---: | ---: | ---: | :--- | ---: | :--- | :--- |
| $11-14$ | 5.5 | 5.4 | July $4-6$ | 3.2 | 4.5 |  |


| $14-17$ | 9.3 | 8.8 | $6-8$ | 5.9 | 9.1 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| $17-20$ | 7.2 | 6.6 | $8-10$ | 3.0 | 5.2 |
| :---: | :---: | :---: | :---: | :---: | :---: |

$20-23 \quad 7.6 \quad 7.0$
10-12 $4.8 \quad 7.3$

12-14 $5.7 \quad 8.0$
14-16 6.3 6.7
$\begin{array}{lll}16-18 & 3.3 & 5.0\end{array}$
July 29
Aug. 1
Aug; $1=4$
5.4
3.9
$18-20$
5.7
5.0

20-22 3.2
2.8

4-?
4.6
$7-10$
4.7

10-13 2.1
22-26
3.5
2.?

26-28 $\quad 2.3$
1.6
$13-16$
3.4
2.3
$28=30$
2.9
2.3

16-19
0.3
3.0. July 30
19.32 0.5

22-25 0.5
0.8 Aug. 1
4.1
3.2

Aug. 2-3
3.0
2.6
$3-5$
1.4
I. 4

25-31 0.3
1.0

Aug. 31
Sept. 3.21 .1
Sept. 3-6 0.1
6-9 $\quad 0.04$
0.9

5-9
1.6

9-11
2.0

11-13
1.8

13-15
1.6
15.17
1.3

| $17-19$ | 1.1 | 1.4 |
| :--- | :--- | :--- |
| $19-23$ | 0.7 | 1.0 |
| $23-25$ | 0.4 | 0.8 |
| $25-27$ | 0.2 | 0.7 |

Aug. 27

| Sept. 1 | 0.2 | 0.9 |
| :--- | :--- | :--- |
| Sept. 1.9 | $\Rightarrow$ | 0.6 |

 EFFICIENCY INDICES AND DEGREE HOUR'S HOR TWENTY-FOUR HOUR PERIODS. 1920-1921

Date

| Date | $\begin{gathered} \text { Degrees } \\ \mathrm{F} \\ \hline \end{gathered}$ | $\begin{array}{r} \text { Degrees } \\ C . \\ \hline \end{array}$ | $\begin{gathered} \text { Exponential } \\ \text { Indices } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Physiological } \\ \text { Indices } \end{gathered}$ | Degree Hours |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June 20-21 |  |  |  |  |  |
| 21-22 | --- | --- | --- | - | $\cdots-\infty$ |
| 22323 | -- | - | --- | --- |  |
| 23-24 | 53.5 | 11.9 | 1.7 | $\underline{9}$ | 324 |
| 24-25 | 52.9 | 11.6 | 1.6 | $\underline{0}$ | 310 |
| 25-26 | $54.0$ | 12.2 | 1.7 | 10 | 336 |
| 26-27 | $61.6$ | $16.4$ | 2.3 | 23 | 518 |
| 27-28 | 62.2 | 16.8 | 2.3 | 25 | 534 |
| 28-29 | 64.2 | 17.9 | 2.5 | 31 | 580 |
| $29-30$ June 30 | 69.1 | 20.6 | 3.1 | 51 | 698 |

June 30
July 1
July 1-2

| 1-2 | 67.2 | 19.6 |  | 43 | 652 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2.8 |  |  |
| 2-3 | 63.4 | 17.4 | 2.4 | 28 | 562 |
| 3-4 | 58.3 | 14.6 | 2.0 | 17 | 440 |
| 4-5 | 60.8 | 16.0 | 2.2 | 22 | 500 |
| 5-6 | 57.9 | 14.4 | 2.0 | 16 | 430 |
| 6-7 | 64.9 | 18.3 | 2.6 | 34 | 598 |
| 7-8 | 68.2 | 20.1 | 2.9 | 46 | 678 |
| 8-9 | 70.9 | 21.6 | 3.3 | 60 | 742 |
| 9-10 | 66.8 | 19.3 | 2.8 | 40 | 644 |
| 10-11 | 67.1 | 19.5 | 2.8 | 42 | 650 |
| 11-12 | 62.2 | 16.8 | 2.3 | 25 | 532 |
| 12-13 | 61.5 | 16.4 | 2.3 | 23 | 516 |
| 13-14 | 65.6 | 28.7 | 2.7 | 36 | 614 |
| 14-15 | 67.8 | 19.9 | 2.9 | 45 | 668 |
| 15-16 | 74.3 | 23.5 | 3.7 | 75 | 824 |
| 16-17 | 74.7 | 23.7 | 3.8 | 77 | 832 |
| 17-18 | 72.3 | 22.4 | 3.4 | 66 | 776 |
| 18-19 | 71.7 | 22.1 | 3.4 | 64 | 762 |
| 19-20 | 73.3 | 22.9 | 3.6 | 70 | 800 |
| 20-21 | 75.0 | 23.9 | 3.8 | 78 | 840 |


| $\begin{gathered} \text { Degrees } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Degrees } \\ C_{2} \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Exponential } \\ & \text { Indices } \end{aligned}$ | Physiological Indices | Degree Hours |
| :---: | :---: | :---: | :---: | :---: |
| 64.3 | 17.9 | 2.5 | 31 | 584 |
| 68.5 | 20/3 | 3.1 | 48 | 684 |
| 62.8 | 17.1 | 2.4 | 26 | 548 |
| 64.3 | 17.9 | 2.5 | 31 | 584 |
| 67.7 | 19.8 | 2.9 | 44 | 666 |
| 59.7 | 15.4 | 2.2 | 19 | 472 |
| 67.0 | 19.4 | 2.8 | 41 | 648 |
| 61.8 | 16.6 | 2.3 | 24 | 524 |
| 60.7 | 15.9 | 2.2 | 21 | 496 |
| 62.6 | 17.0 | 2.4 | 26 | 542 |
| 58.8 | 14.9 | 2.1 | 17 | 452 |
| 55.4 | 13.0 | 1.8 | 12 | 370 |
| 54.7 | 12.6 | 1.8 | 11 | 352 |
| 57.6 | 14.2 | 2.0 | 15 | 422 |
| 53.7 | 12.1 | 1.7 | 10 | 330 |
| 50.9 | 10.5 | 1.5 | 7 | 262 |
| 53.1 | 11.7 | 1.6 | 9 | 314 |
| 63.0 | 17.2 | 2.4 | 27 | 552 |
| 57.6 | 14.2 | 2.0 | 1.5 | 422 |
| 56.2 | 13.4 | 1.9 | 13 | 390 |
| 55.5 | 13.1 | 1.9 | 12 | 372 |
| 55.2 | 12.9 | 1.8 | 12 | 366 |
| 60.3 | 15.7 | 2.2 | 20 | 488 |
| 62.9 | 17.2 | 2.4 | 27 | 550 |
| 69.0 | 20.6 | 3.1 | 51 | 696 |
| 63.3 | 17.4 | 2.4 | 28 | 560 |
| 54.2 | 12.3 | 1.7 | 10 | 344 |
| 59.2 | 15.1 | 2.1 | 18 | 460 |
| 68.2 | 20.1 | 2.9 | 46 | 678 |
| 71.5 | 21.9 | 3.4 | 62 | 756 |
| 63.4 | 17.4 | 2.4 | 28 | 562 |



10

| 2ate | 1920 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Degrees } \\ \mathrm{F} . \\ \hline \end{gathered}$ | $\begin{gathered} \text { Degrees } \\ \mathrm{C} \\ \hline \end{gathered}$ | Exponential Indices | Physiological Indices | Degree Hours |
| Aug. 22-23 | 66.7 | 19.3 | 2.8 | 40 | 642 |
| 23-24 | 53.0 | 11.7 | 1.6 | 9 | 322 |
| 24-25 | 59.6 | 15.3 | 2.2 | 19 | 470 |
| 25-25 | 51.3 | 10.7 | 1.5 | 8 | 270 |
| 26-27 | 50.2 | 10.1 | 1.5 | 6 | 244 |
| 27-28 | 57.2 | 14.0 | 1. 9 | 15 | 412 |
| 28-29 | 52.2 | 11.2 | 1.6 | 8 | 294 |
| 29-30 | 51.2 | 10.7 | 1.5 | 8 | 278 |
| 30-31 | 51.5 | 10,8 | 1.6 | 18 | 304 |
| Aug. 31 | - |  |  |  |  |
| Sept. 1 | 54:8 | 12.7 | 1.8 | 11 | 358 |
| Sept. 1-2 | 57:0 | 13.9 | 1.9 | 15 | 408 |
| 2-3 | 59.1 | 15.1 | 2.1 | 18 | 458 |
| 3-4 | 56:2 | 13.4 | 1.9 | 1.3 | 388 |
| 4-5 | $59: 9$ | 15.5 | 2.2 | 20 | 478 |
| 5-6 | 53.2 | 11.8 | 1.6 | 9 | 318 |
| 6-7 | 49:2 | 9.6 | 1.4 | 6 | 252 |
| 7-8 | 53:2 | 11.8 | 1.6 | 9 | 336 |
| 8-9 | 56.4 | 13.6 | 1.9 | 14. | 408 |

TABLE 9. NGAN DAILY RELATIVE HURIDITY, TOTAL DAIIY HOURS OF SUNSHINE, MAXIMUM SOLAR RADIATION (F) FORI921.

19201921
Date
Relative Hours Precipi- Relative Hours Precipi- Solar
Hmadity Sunshine tation Humidity Sunshine tation Radiat.

| June | 20 | --- | 12.2 | --- | 58 | 15.4 | --- | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 21 | $\cdots$ | 14.4 | --- | 54 | 12.5 | - | --. |
|  | 22 | $\cdots \cdots$ | 7.9 |  | 61 | 11.6 | - 0. | --- |
|  | 23 | $\cdots \cdots$ | 11.3 | $\cdots$ | 70 | 7.6 | 0.13 | $\cdots$ |
|  | 24 | $\cdots$ | 4.9 | $\rightarrow 0$ | 51 | 13.7 | - - | $\cdots$ |
|  | 25 | $\cdots$ | 8.2 | 0.03 | 69 | 3.6 | 0.03 | $\rightarrow 0$ |
|  | 26 | $\cdots$ | 10.4 | --- | 51 | 13.2 | 0.02 | - |
|  | 27 | --. | 13.8 | $\cdots$ | 59 | 10.7 | --- | --- |
|  | 28 | $\cdots$ | 11.6 | $\cdots$ | 58 | 10.7 | 0.10 | $\cdots$ |
|  | 29 | $\cdots$ | 13.3 | $\cdots \cdots$ | 57 | 10.5 | -- | -0. |
|  | 30 | --. | 13.0 | $\cdots$ | 87 | 2.0 | 0.72 | --- |
| July | 1 | 55 | 15.4 | $\cdots$ | 68 | 5.4 | 0.38 | $\cdots$ |
|  | 2 | 62 | 10.8 | 0.30 | 83 | 0.0 | $\cdots$ | $\cdots$ |
|  | 3 | 63 | 15.2 | --s | 76 | 6.2 | 0.65 | $\cdots$ |
|  | 4 | 62 | 11.9 | $\cdots$ | 78 | 7.4 | $\cdots$ | 123 |
|  | 5 | 85 | 3.6 | 0.36 | 85 | 4.6 | 0.27 | 108 |
|  | 6 | 68 | 14.4 | 0.01 | 64 | 13.2 | 0.31 | 123 |
|  | 7 | 64 | 12.9 | --0 | 63 | 9.0 | 0.11 | 129 |
|  | 8 | 64 | 15.1 | $\cdots$ | 64 | 7.9 | --s | 125 |
|  | 9 | 66 | 11.9 | $\cdots$ | 55 | 12.4 | $\cdots$ | 124 |
|  | 10 | 67 | 14.9 | $\cdots$ | 69 | 10,6 | $\cdots$ | 129 |
|  | 11 | 81 | 5.3 | $\cdots$ | $3^{7}$ | 11.9 | $\cdots \cdots$ | 130 |
|  | 12 | 64 | 13.7 | $\cdots$ | 67 | 13.3 | $\cdots$ | 133 |
|  | 13 | 65 | 14.5 |  | 61 | 14.7 | $\cdots$ | 132 |
|  | 14 | 62 | 15.3 | $\cdots \rightarrow$ | 58 | 12,3 | $\cdots$ | 132 |
|  | 15 | 65 | 14.8 | 000 | 53 | 10.1 | $\cdots$ | 132 |
|  | 16 | 64 | 14.7 | $\rightarrow 0$ | 75 | 51 | -*. | 98 |
|  | 17 | 66 | 11.0 | $\rightarrow 30$ | 86 | 4.5 | $\cdots$ | 127 |
|  | 18 | 68 | 13.0 | $\cdots$ | 73 | 14.4 | 0.33 | 134 |
|  | 19 | 65 | 10.3 |  | 64 | 12.3 | --- | 136 |
|  | 20 | 68 | 12.8 | $\cdots$ | 34 | 13.4 | 0.03 | 137 |
|  | 21 | 72 | 7.7 | $\cdots$ | 57 | 15.3 | 0.06 | 128 |

## Dete

 July 22Relative Hours Precipi- Relative Hours Precipi- Solar Humidity Sunshine tation Humidity Sunshine tation Radiation

$4.8 \quad 0.31$
$67 \quad 13.3$
—— 139
27
70
15.1 --
$64 \quad 13.1$
… 134
July 23 24
$29 \quad 77$
$15.0 \quad \cdots$
803.2
$\cdots \quad 124$
6 6.
0.85125

30
31
Aug. 1
$2 \quad 75$
384
481
562
$6 \quad 63$
768

871
$9 \quad 81$
$10 \quad 80$
6.5
12.8
13.1 $-\infty$
$11.9 \cdots$
$65 \quad 13.7$
$70 \quad 13.9$
$\ldots 131$
1464
14.9
$89 \quad 8.6$

- $\quad 129$
$15 \quad 74$
7.7
12.2

66
12.9

- 128

| 16 | 75 | 12.2 | $\ldots$ |
| :---: | :---: | :---: | :---: |
| 19 | 89 | 0.5 | $\ldots$ |
| 18 | 94 | 0.0 | 0.29 |
| 19 | 71 | 7.5 | $\cdots$ |
| 20 | 72 | 10.4 | $\cdots$ |
| 21 | 63 | 12.8 | $\ldots$ |


| Date | 1920 |  |  |  | 1921 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Relative Humidity | Hours <br> Sunshine | Precipitation | Relative Humidity | Hours <br> Sunshine | Precipi- <br> tation | Solar <br> Radiat. |
| Aug. | 22 | 70 | 13.3 | -- | 66 | 23.0 | 0.02 | 120 |
|  | 23 | 78 | 4.7 | -- | 76 | 10.3 | 0.02 | 124 |
|  | 24 | 75 | 9.7 | - | 79 | 5.3 | -- | 119 |
|  | 25 | 88 | 0.1 | -- | 64 | 13.2 | $\cdots$ | 125 |
|  | 26 | 88 | 3.3 | $\cdots$ | 62 | 13.2 | $\cdots$ | 125 |
|  | 27 | 84 | 6.0 | $\cdots$ | 58 | 10.2 | $\cdots$ | 127 |
|  | 28 | 77 | 2.2 | $\cdots$ | 68 | 2.5 | -- | 98 |
|  | 29 | 68 | 11.5 | -- | 67 | 8.5 | $\cdots$ | 124 |
|  | 30 | 72 | 6,0 | -- | 74. | 6.1 | $\cdots$ | 126 |
|  | 31 | 72 | 12.5 | $\cdots$ | 84 | 4.8 | $\rightarrow$ | 119 |
| Sept. | 1 | --- | 11.7 | $\cdots$ | 84 | 4.7 | 0.04 | 102 |
|  | 2 | $\cdots$ | 7.2 | $\checkmark$ | 70 | 9.6 | 0.02 | 124 |
|  | 3 | -- | 8.8 | $\sim$ | 68 | 10.1 | -- | 122 |
|  | 4 | - | 11.0 | $\sim$ | 59 | 7.9 | $\cdots$ | 127 |
|  | 5 | $\cdots$ | 4.3 | $\cdots$ | 58 | 11.6 | $\cdots$ | 126 |
|  | 6 | $\cdots$ | 3.3 | 0.005 | 65 | 7.1 | 00 | 131 |
|  | 7 | $\cdots$ | 11.3 | - | 74. | 6.0 | $\cdots$ | 126 |
|  | 8 | $\cdots$ | 11.7 | = | 78 | 0.2 | 0.36 | 85 |
|  | 9 | $\cdots$ | 9.8 | - | 60 | 0.0 | -- | -- |



TABLIE11. SUMMATION OF TEMPERATURE EFFICIENCY INDICES AND DEGREE HOURS FOR PERIODS OF GROVTH. 1921.


June 30

| July | 4 | 54.7 | 40.7 | 18.7 | 7.7 | 55 | 1596 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | 4-6 | 22.6 | 15.6 | 4.6 | 3.2 | 17 | 592 |
|  | 6-8 | 28,9 | 21.9 | 10.9 | 4.0 | 36 | 866 |
|  | 8-10 | 27.6 | 20.6 | 9.6 | 3.9 | 28 | 812 |
|  | 10-12 | 26.0 | 19.0 | 8.0 | 3.7 | 24 | 738 |
|  | 12-14 | 32.9 | 25.9 | 14.9 | 4.6 | 47 | 1038 |
|  | 14-16 | 38.0 | 31.0 | 20.0 | 5.5 | 79 | 1256 |
|  | 16-18 | 27.4 | 20.4 | 9.4 | 3.8 | 28 | 804 |
|  | 18-20 | 42.0 | 35.0 | 24.0 | 6.3 | 108 | 2434 |
|  | 20-22 | 35.2 | 28.2 | 17.2 | 4.9 | 58 | 1146 |
|  | 22-25 | 66.1 | 52.1 | 30.1 | 9.3 | 96 | 2090 |
|  | 26-28 | 36.9 | 29.9 | 18.9 | 5.3 | 69 | 1212 |
|  | 28130 | 28.2 | 21.2 | 10.2 | 3.9 | 30 | 834 |

July 30

| Aug. | 1 | 31.9 | 24.9 | 13.9 | 4.4 | 43 | 992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | $1=3$ | 30.7 | 23.7 | 12.7 | 4.4 | 41 | 940 |
|  | 3-5 | 21.8 | 14.8 | 3.8 | 3.1 | 16 | 558 |
|  | 5-9 | 56, 1 | 42.1 | 18.1 | 7.9 | 65 | 1654 |
|  | 9-11 | 26.5 | 19.5 | 8,5 | 3.7 | 26 | 764 |
|  | $11=13$ | 30.2 | 23.2 | 12.2 | 4.1 | 38 | 922 |
|  | 13-15 | 37.8 | 30.8 | 19.8 | 5.4 | 76 | 2250 |
|  | 15-17 | 31.5 | 24.5 | 13.5 | 4.4 | 41 | 980 |
|  | 17-19 | 22.4 | 15.4 | 4.4 | 3.2 | 17 | 584 |
|  | 19-23 | 53.6 | 39.6 | 17.6 | 7.5 | 54 | 1548 |
|  | 23-25 | 24.8 | 17.8 | 6.8 | 3.5 | 22 | 692 |
|  | 25-27 | 23.9 | 16.9 | 5.9 | 3.3 | 19 | 668 |

Aug. 27

| Sept. 1 | 57.9 | 40.4 | 12.9 | 8.2 | 47 | 1586 |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- |
| Sept. 1-9 | 77.0 | 49.0 | 5.0 | 10.5 | 54.5 | 1998 |

TABIE 12. MEAN CEMPERATURE (Centigrade) MEAN RELATIVE HUMIDITY, TR, TOTAL HOURS OF SUNSHINE ,AND MEAN DAILY HOURS OF 10 SUNSHINE,FOR PERIODS OF GROWTH.1920.

| Date | Mean Temp. <br> (Centigrade) | Mean <br> Relative Humidity | $\frac{\mathrm{Ta}}{10}$ | Total <br> Hours <br> Sunshine | Mean Daily Hours Sunshine |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June 23-25 | 12 | -- | $\because$ | 25.3 | 8.4 |
| 26-29 | 17 | -- | -- | 36.8 | 12.3 |

June 29

| July 2 | 20 | -- | -- | 38.2 | 12.7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July 2-5 | 16 | 64 | 102 | 35.8 | 11.9 |
| 5-8 | 18 | 72 | 130 | 36.0 | 12.0 |
| 8-11 | 20 | 67 | 134 | 38.1 | 12.7 |
| 11-14 | 17 | 68 | 116 | 38.0 | 12,7 |
| 14-17 | 22 | 64 | 141 | 44.1 | 14.7 |
| 17-20 | 22 | 67 | 147 | 34.4 | 11.5 |
| 20-23 | 21 | 74 | 155 | 21.0 | 7.3 |
| 23-25 | 27 | 9 | 119 | 37.4 | 12.5 |
| 26-29 | 27 | 73 | 124 | 38.7 | 12.9 |

July 29

| Aug. | 1 | 20 | 72 | 244 | 38.4 | 12.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | 1-4 | 1 10 | 78 | 125 | 29.9 | 10.0 |
|  | 4-7 | 18 | 67 | 121 | 41.8 | 13.9 |
|  | 7-10 | 3.7 | 74 | 126 | 24.7 | 8.2 |
|  | 10-13 | 1.6 | 70 | 112 | 33.9 | 11.3 |
|  | 13-16 | 27 | 70 | 119 | 34.8 | 11.4 |
|  | 16-19 | - | 86 | 86 | 9.8 | 3.3 |
|  | 19-22 | 2.5 | 68 | 102 | 33.7 | 11.2 |
|  | 22-25 | 15 | 979 | 116 | 22.0 | 7.3 |
|  | 25-31 | 11 | 78 | 86 | 36.4 | 6.1 |
| Atg. 31 |  |  |  |  |  |  |
| Sept. | 3 | 14 | -- | -- | 29.3 | 9.8 |
| , | 3-6 | 14 | - | $\cdots$ | 21.0 | 7.0 |
|  | 6-9 | 12 | -- | $\cdots$ | 30.7 | 10.2 |

TABLE 13. NEAN TEMPERATURE (Centigrade), MEAN RELATIVE HUNIDITY, TR, SUNBHINE,AND MEAN MAXIMUM SOLAR RADIATION (Fahrenheit) FOR PERIODS OF GROWTH IN 1921.

| Date | Mean Temp. (Centigrade) | Mean Relat Humidity | $\frac{T R}{10}$ | Total <br> Hours <br> Sunshine | Mean Daily Howrs Sunshine | Mean Max. <br> Solar Rad. <br> (Fahrenheit) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 20-22 | 19 | 56 | 106 | 26.7 | 13.4 | -- |
| 22-24 | 18 | 67 | 121 | 19.0 | 9.5 | -- |
| 24-26 | 18 | 65 | 117 | 18.7 | 9.4 | -- |
| 26-28 | 18 | 55 | 99 | 22.6 | 11.3 | -- |
| 28-30 | 16 | 63 | 101 | 15.5 | 7.8 |  |

June 30

| July | 4 | 14 | 77 | 108 | 15.5 | 3.9 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| July | $4-6$ | 11 | 77 | 85 | 16.6 | 8.3 | 115 |
| $6-8$ | 14 | 64 | 90 | 21.1 | 10.6 | 125 |  |
| $8-10$ | 14 | 61 | 85 | 21.7 | 10.9 | 125 |  |
| $10-12$ | 13 | 71 | 92 | 22.4 | 11.2 | 130 |  |
| $12-14$ | 16 | 62 | 99 | 28.1 | 14.1 | 133 |  |
| $14-16$ | 19 | 58 | 110 | 20.8 | 10.4 | 132 |  |
| $16-18$ | 14 | 83 | 116 | 10.8 | 5.4 | 113 |  |
| $18-20$ | 21 | 64 | 134 | 27.2 | 13.6 | 133 |  |
| $20-22$ | 18 | 61 | 110 | 28.1 | 14.1 | 133 |  |
| $22-25$ | 17 | 64 | 109 | 50.3 | 12.6 | 129 |  |
| $26-28$ | 18 | 25 | 117 | 23.8 | 11.9 | 137 |  |
| $28-30$ | 14 | 78 | 119 | 12.8 | 6.4 | 125 |  |

July 30 -

| Aug. | 1 | 16 | 173 | 125 | 14.2 | 7.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aug. | $1-3$ | 15 | 174 | 111 | 18.9 | 9.5 |
| $3-5$ | 11. | $7 \%$ | 85 | 11.9 | 6.0 | 127 |
| $5-9$ | 14 | 70 | 109 | 33.0 | 8.3 | 116 |
| $9-11$ | 13 | 77 | 100 | 13.9 | 7.0 | 120 |
| $11-13$ | 15 | 74 | 111 | 21.9 | 11.0 | 132 |
| $13-15$ | 1.9 | 70 | 133 | 25.5 | 12.8 | 129 |
| $15-17$ | 1.6 | 74 | 118 | 18.1 | 9.1 | 129 |
| $17-19$ | 11 | 86 | 95 | 4.0 | 2.0 | 116 |
| $19-23$ | 13 | 75 | 98 | 35.6 | 8.9 | 116 |
| $23-25$ | 12 | 76 | 91 | 17.2 | 8.6 | 122 |
| $25-27$ | 12 | 31 | 73 | 25.5 | 12.8 | 125 |
|  |  |  |  |  |  |  |

Aug. 27

| Sept. 12 | 12 | 73 | 88 | 27.6 | 5.5 | 119 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sept. 1-9 | 10 | 68 | 68 | 56.9 | 7.1 | 118 |

TABIE 14. SUNMATIONS OF TEMPERATURE EFFICIENCY INDICES AND DEGREE HOURS FROM JUNE 23 TO THW END OF EACH Three-day period of grovth IN 1920.

| 'exiods nding - | Direct Indices | Remainder <br> Indices $\left(4.5^{\circ} \mathrm{C} .\right)$ | Remainder Indices $\left(10^{\circ} \mathrm{C}.\right)$ | Exponential Indices | Physiological Indices | Degree Howrs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 26 | 35.: 7 | 25.2 | 8.7 | 5.0 | 28 | 970 |
| 29 | 86.8 | 65.8 | 32.8 | 12.1 | 107 | 2602 |
| July 2 | 146.3 | 113.8 | 65.3 | 20.8 | 241 | 4594 |
| 5 | 194.3 | 152.3 | 86.3 | 27.4 | 308 | 6096 |
| 8 | 247.1 | 194.6 | 112.1 | 34.9 | 404 | 7802 |
| 11 | 307.5 | 244.5 | 145.5 | 43.8 | 546 | 9838 |
| 14 | 359.4 | 285.9 | 170.4 | 51.1 | 630 | 11500 |
| 17 | 426.5 | 342.5 | 210.5 | 61.5 | 827 | 13824 |
| 20 | 493.9 | 399.4 | 250.9 | 71.9 | 1027 | 16162 |
| 23 | 556.7 | 451.7 | 286.7 | 81.6 | 1195 | 18300 |
| 26 | 608.7 | 493.2 | 311.7 | 88.9 | 1283 | 19972 |
| 29 | 659.2 | 433.2 | 335.2 | 96.3 | 1366 | 21580 |
| Aug. 1 | 720,3 | 583.8 | 369.3 | 105.3 | 1514 | 23640 |
| 4 | 767.6 | 620.6 | 389.6 | 112.0 | 1586 | 25106 |
| 7 | 821.7 | 664.2 | 416.7 | 119.9 | 1694 | 26866 |
| 10 | 872.3 | 704.3 | 440.3 | 127.3 | 1781 | 28478 |
| 13 | 919.5 | 741.0 | 460.5 | 134.0 | 1859 | 29938 |
| 16 | 969.4 | 780.4 | 483.4 | 141.0 | 1939 | 31522 |
| 19 | 999.7 | 800.2 | 486.7 | 145.7 | 1968 | 32270 |
| 22 | 1044.9 | 834.9 | 504.9 | 152,0 | 2027 | 33652 |
| 25 | 1091.2 | 870.7 | 524.2 | 158.6 | 2095 | 35086 |
| 31 | 1158.7 | 917.2 | 537.7 | 168.2 | 2148 | $36888{ }^{\circ}$ |
| Sept. 3 | 200.4 | 948.4 | 552.4 | 174.0 | 2192 | 38112 |
| 6 | 1241.1 | 978.6 | 566.1 | 179.7 | 2234 | 39296 |
| 9 | 1276.1 | 1003.1 | 574.1 | 184.5 | 2263 | 40292 |


| Periods Ending- |  | 19 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SUNATATIONS OF TEMPERATURE EFFICIENCY INDICES AND DEGREE HOURS FROM JUNE 20 TO THE END OF EACH TWO-DAY PERIOD OF GROWTH UN 1921. |  |  |  |  |  |
|  |  | Direct Indices | Remainde <br> Indices $\left(4.5^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & \text { Remainder } \\ & \text { Indices } \\ & \left(10^{\circ} \mathrm{C} .\right) \end{aligned}$ | Exponential Indices $\qquad$ | Physiological <br> Indices | Degree <br> Hours |
| June | 22 | 38.2 | 31.2 | 20.2 | 5.6 | 79 | 1268 |
|  | 24 | 73.2 | 59.2 | 37.2 | 10.5 | 136 | 2400 |
|  | 26 | 108.4 | 87.4 | 54.4 | 15.6 | 199 | 3538 |
|  | - 8 | 144.4 | 116. | 72.4 | 20.7 | 264 | 4710 |
|  | 30 | 177.3 | 142.3 | 87.3 | 25.3 | 3.12 | 5748 |
| Jumy | 4 | 232.0 | 183.0 | 106.0 | 33.0 | 366 | 7344 |
|  | 6 | 254.6 | 198.6 | 110.6 | 36.2 | 383 | 7936 |
|  | 8 | 283.5 | 220,5 | 121.5 | 40.2 | 419 | 8802 |
|  | 10 | 311.1 | 241.1 | 131.1 | 44.3. | 447 | 9614 |
|  | 12 | 337.1 | 260.1. | 139.1. | 47.8 | 471 | 10352 |
|  | 14. | 370.0 | 286.0 | 154.0 | 52.4 | 518 | 11390 |
|  | 16 | 408.0 | 31\%.0 | 174.0 | 57.9 | 597 | 12646 |
|  | 18 | 435.4 | 337.4 | 183.4 | 61.7 | 625 | 13450 |
|  | 20 | 477.4 | 372.4 | 207.4 | 68.0 | 733 | 14884 |
|  | 22 | 512.6 | 400.6 | 224.6 | 72.9 | 791 | 16030 |
|  | 26 | 578.7 | 452.7 | 254.7 | 82.2 | 887 | 18120 |
|  | 28 | 61.5 .6 | 482.6 | 273.6 | 87.5 | 956 | 19332 |
|  | 30 | 643.8 | 503.8 | 283.8 | 91.4 | 986 | 20166 |
| Aug. | 1. | 675.7 | 528.7 | 297.7 | 95.8 | 1029 | 21158 |
|  | 3 | 706.4 | 552.4 | 310.4 | 100.2 | 1070 | 22098 |
|  | 5 | 728.2 | 567.2 | 314.2 | 103.3 | 1086 | 22656 |
|  | 9 | 784.3 | 609.3 | 332.3 | 111.2 | 1151 | 24310 |
|  | 11 | 810.8 | 628.8 | 340.8 | 114.9 | 1177 | 25074 |
|  | 13 | 841.0 | 652.0 | 353.0 | 119.0 | 1215 | 25996 |
|  | 15 | 878.8 | 682.8 | 372.8 | 124.4 | 1291 | 27246 |
|  | In | 910.3 | 707.3 | 386.3 | 128.8 | 1332 | 28226 |
|  | 19 | 932.7 | 722.7 | 390.7 | 132.0 | 1349 | 28810 |
|  | 23 | 986.3 | 762.3 | $\triangle 08.3$ | 139.5 | 1403 | 30358 |
|  | 25 | 1011.1 | 780.1 | 415.1. | $1 \leqslant 3.0$ | 1425 | 31050 |
|  | 27 | 1035.0 | 797.0 | 421.0 | 146.3 | 1444 | 31718 |
| Sept | . 1 | 1092.9 | 837.4 | 433.9 | 154.5 | 1491 | 33304 |
|  | 9 | 1169.9 | 886.4 | 438.9 | 165.3 | 1545.5 | 35302 |

TABLE 20 - Mean Bi-hourly Temperatures (OF) for 24 Hour Periods, from Noon June 23 until Noon Sept. 9, 1920.

Date


| June 23-24 | 59 | 62 | 64 | 65 | 54 | 46 | 44 | 47 | 47 | 50 | 50 | 54 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| June 24-25 | 58 | 62 | 63 | 62 | 54 | 48 | 48 | 45 | 42 | 47 | 52 | 54 |
| June 25-26 | 58 | 60 | 56 | 53 | 49 | 48 | 47 | 48 | 49 | 54 | 61 | 65 |


| June | $26-27$ | 70 | 71 | 72 | 69 | 63 | 58 | 62 | 49 | 47 | 56 | 64 | 68 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| June | $27-28$ | 73 | 75 | 72 | 73 | 66 | 56 | 48 | 45 | 45 | 56 | 66 | 72 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| June 28-29 | 74 | 76 | 74 | 71 | 65 | 57 | 52 | 49 | 46 | 56 | 72 | 78 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllllll}\text { June } & 29-30 & 80 & 80 & 80 & 79 & 73 & 65 & 60 & 58 & 56 & 58 & 68 & 72\end{array}$

| June 30-July 1 | 75 | 78 | 80 | 80 | 72 | 61 | 54 | 49 | 48 | 64 | 69 | 71 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July l-2 | 74 | 78 | 79 | 79 | 70 | 60 | 56 | 56 | 56 | 58 | 66 | 74 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| June | $2-3$ | 77 | 77 | 79 | 76 | 72 | 62 | 56 | 51 | 47 | 51 | 55 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 58 |  |  |  |  |  |  |  |  |  |  |  |  |


| JuIy | $3-4$ | 62 | 65 | 67 | 67 | 64 | 54 | 48 | 44 | 43 | 55 | 64 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |


| July | $4-5$ | 70 | 73 | 73 | 72 | 62 | 58 | 54 | 50 | 49 | 52 | 58 | 59 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July $5-6$ | 61 | 62 | 64 | 56 | 54 | 50 | 49 | 50 | 56 | 60 | 64 | 69 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July $6-7$ | 71 | 74 | 76 | 76 | 68 | 60 | 54 | 50 | 49 | 57 | 68 | 76 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July | $7-8$ | 80 | 82 | 81 | 74 | 71 | 64 | 58 | 54 | 50 | 58 | 70 | 77 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July | $8-9$ | 81 | 82 | 81 | 78 | 73 | 66 | 62 | 59 | 57 | 62 | 72 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 78 |  |  |  |  |  |  |  |  |  |  |  |  |


| July | $9-10$ | 82 | 83 | 82 | 74 | 64 | 59 | 56 | 54 | 50 | 58 | 67 | 73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July | $10-11$ | 78 | 81 | 82 | 78 | 72 | 63 | 58 | 55 | 55 | 58 | 61 | 64 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July 11-12 | 67 | 67 | 68 | 67 | 63 | 59 | 55 | 53 | 53 | 58 | 67 | 69 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July | $12-13$ | 72 | 73 | 72 | 70 | 64 | 55 | 50 | 46 | 44 | 54 | 65 | 73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| JサIy | $13-14$ | 77 | 79 | 79 | 78 | 71 | 58 | 53 | 50 | 48 | 54 | 66 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 74 |  |  |  |  |  |  |  |  |  |  |  |  |


| July | $14-15$ | 79 | 81 | 80 | 77 | 70 | 62 | 58 | 55 | 52 | 56 | 67 | 77 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July | $15-16$ | 84 | 88 | 89 | 85 | 75 | 67 | 66 | 62 | 57 | 64 | 73 | 82 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July | $16-17$ | 88 | 92 | 92 | 91 | 81 | 68 | 61 | 57 | 53 | 59 | 70 | 84 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July $17-18$ | 92 | 95 | 93 | 70 | 67 | 63 | 61 | 59 | 57 | 61 | 72 | 78 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July 18-19 | 83 | 83 | 80 | 82 | 74 | 66 | 61 | 56 | 54 | 63 | 77 | 82 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| July 19-20 | 87 | 90 | 89 | 83 | 74 | 67 | 64 | 57 | 53 | 63 | 73 | 80 |
| July 20-21 | 86 | 88 | 90 | 84 | 75 | 69 | 64 | 63 | 61 | 64 | 75 | 81 |
| July 21-22 | 88 | 89 | 84 | 80 | 76 | 72 | 65 | 64 | 63 | 63 | 61 | 65 |
| July 22-23 | 69 | 71 | 68 | 65 | 61 | 59 | 56 | 53 | 49 | 54 | 64 | 70 |
| July 23-24 | 74 | 79 | 82 | 77 | 70 | 61 | 58 | 57 | 56 | 61 | 68 | 74 |



July 24-25
July 25-26 July 26-27 July 27-28 July 28-29 July 29-30 July 30-31 July 31-Aug. 1 Aug. 1-2 Aug. 2-3 Aug. 3-4 Aug. 4-5 Aug. 5-6 Aug. 6-7 Aug. 7-8 Aug. 8-9 Aug. 9-10 Aug. 10-11 Aug. 11-12 Aug. 12-13 Aug. 13-14 Aug. 14-15 Aug. 15-16 Aug. 16-17 Aug. 17-18 Aug. 18-19 Aug. 19-20 Aug. 20-21
Aug. 21-22
Aug. 22-23
Aug. 23-24
Aug. 24-25
$\begin{array}{llllllllllll}78 & 80 & 76 & 66 & 54 & 54 & 52 & 49 & 48 & 50 & 56 & 61\end{array}$

| 67 | 71 | 73 | 68 | 60 | 55 | 55 | 54 | 54 | 55 | 58 | 65 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 73 | 74 | 68 | 58 | 52 | 50 | 48 | 47 | 46 | 48 | 56 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 67 | 70 | 72 | 72 | 66 | 57 | 52 | 50 | 49 | 58 | 66 | 75 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllll}79 & 81 & 80 & 80 & 70 & 58 & 54 & 51 & 49 & 57 & 68 & 80\end{array}$
$\begin{array}{llllllllllll}85 & 83 & 78 & 72 & 66 & 63 & 61 & 60 & 57 & 61 & 66 & 78\end{array}$

| 80 | 79 | 79 | 77 | 70 | 65 | 63 | 62 | 58 | 59 | 66 | 73 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 77 | 82 | 81 | 74 | 69 | 65 | 63 | 58 | 56 | 57 | 62 | 65 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllll}70 & 77 & 83 & 83 & 70 & 57 & 52 & 48 & 47 & 54 & 68 & 72\end{array}$
$\begin{array}{llllllllllll}80 & 85 & 84 & 74 & 63 & 56 & 53 & 50 & 49 & 50 & 58 & 66\end{array}$
$\begin{array}{llllllllllll}58 & 54 & 57 & 58 & 5 z & 50 & 50 & 49 & 47 & 50 & 49 & 49\end{array}$
$\begin{array}{llllllllllll}53 & 60 & 67 & 71 & 60 & 52 & 48 & 48 & 46 & 52 & 63 & 72\end{array}$
$\begin{array}{llllllllllll}75 & 79 & 82 & 81 & 66 & 56 & 52 & 49 & 48 & 57 & 70 & 78\end{array}$
$\begin{array}{llllllllllll}83 & 87 & 88 & 86 & 74 & 60 & 56 & 52 & 50 & 56 & 66 & 78\end{array}$
$\begin{array}{llllllllllll}85 & 85 & 82 & 80 & 68 & 62 & 56 & 53 & 51 & 56 & 70 & 75\end{array}$
$\begin{array}{llllllllllll}79 & 78 & 74 & 68 & 64 & 58 & 55 & 54 & 54 & 54 & 55 & 58\end{array}$
$\begin{array}{llllllllllll}61 & 64 & 64 & 62 & 55 & 51 & 51 & 51 & 48 & 48 & 56 & 61\end{array}$
$\begin{array}{llllllllllll}64 & 64 & 60 & 57 & 50 & 45 & 40 & 40 & 40 & 42 & 45 & 61\end{array}$
$\begin{array}{llllllllllll}68 & 73 & 76 & 72 & 60 & 54 & 51 & 49 & 49 & 54 & 65 & 75\end{array}$
$\begin{array}{llllllllllll}80 & 83 & 85 & 84 & 66 & 60 & 55 & 53 & 52 & 55 & 67 & 76\end{array}$
$\begin{array}{llllllllllll}83 & 86 & 84 & 79 & 68 & 62 & 56 & 52 & 52 & 56 & 62 & 68\end{array}$

| 75 | 78 | 77 | 68 | 56 | 52 | 49 | 49 | 50 | 52 | 58 | 65 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllll}67 & 70 & 69 & 64 & 56 & 53 & 50 & 49 & 47 & 49 & 58 & 63\end{array}$
$\begin{array}{llllllllllll}68 & 73 & 73 & 68 & 62 & 61 & 59 & 58 & 57 & 56 & 54 & 53\end{array}$
$\begin{array}{llllllllllll}51 & 52 & 50 & 46 & 42 & 41 & 40 & \Delta 0 & 42 & 43 & 45 & 45\end{array}$
$\begin{array}{llllllllllll}44 & 44 & 44 & 44 & 42 & 38 & 37 & 38 & 39 & 49 & 52 & 56\end{array}$
$\begin{array}{llllllllllll}60 & 64 & 67 & 62 & 51 & 47 & 43 & 39 & 37 & 46 & 56 & 62\end{array}$
$\begin{array}{llllllllllll}70 & 75 & 76 & 72 & 56 & 50 & 48 & 47 & 47 & 50 & 54 & 76\end{array}$
$\begin{array}{llllllllllll}80 & 82 & 81 & 80 & 60 & 54 & 51 & 48 & 46 & 47 & 60 & 73\end{array}$
$\begin{array}{llllllllllll}80 & 83 & 82 & 78 & 70 & 63 & 56 & 54 & 50 & 52 & 65 & 68\end{array}$
$\begin{array}{llllllllllll}67 & 62 & 59 & 69 & 54 & 48 & 42 & 38 & 37 & 41 & 57 & 62\end{array}$
$\begin{array}{llllllllllll}69 & 72 & 73 & 68 & 60 & 56 & 54 & 52 & 52 & 51 & 54 & 54\end{array}$

| Aug. 25-26 | 55 | 56 | 55 | 52 | 51 | 51 | 49 | 49 | 48 | 49 | 50 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Aug. 26-27 | 53 | 58 | 61 | 60 | 52 | 47 | 46 | 44 | 43 | 44 | 46 | 48 |
| Aug. 27-28 | 63 | 70 | 70 | 66 | 60 | 56 | 52 | 46 | 43 | 43 | 53 | 64 |
| Aug. 28-29 | 64 | 60 | 56 | 55 | 51 | 50 | 47 | 45 | 42 | 43 | 54 | 60 |
| Aug. 29-30 | 65 | 68 | 65 | 58 | 60 | 44 | 42 | 39 | 37 | 40 | 50 | 57 |
| Aug. 30-31 | 62 | 65 | 66 | 65 | 55 | 48 | 42 | 38 | 34 | 34 | 49 | 60 |
| Aug.31-Sept.1 | 68 | 71 | 71 | 69 | 56 | 46 | 43 | 41 | 40 | 39 | 53 | 61 |
| Sept. 1-2 | 64 | 66 | 64 | 58 | 54 | 54 | 54 | 49 | 52 | 53 | 54 | 62 |
| Sept. 2-3 | 68 | 74 | 74 | 68 | 58 | 54 | 52 | 51 | 46 | 47 | 56 | 61 |
| Sept. 3-4 | 62 | 68 | 72 | 68 | 55 | 50 | 44 | 43 | 41 | 45 | 58 | 68 |
| Sept. 4-5 | 75 | 77 | 78 | 70 | 58 | 52 | 52 | 52 | 42 | 49 | 56 | 58 |
| Sept. 5-6 | 61 | 62 | 64 | 57 | 52 | 51 | 49 | 47 | 46 | 46 | 50 | 54 |
| Sept. 6-7 | 60 | 62 | 65 | 61 | 47 | 41 | 38 | 36 | 34 | 37 | 48 | 62 |
| Sept. 7-8 | 68 | 70 | 72 | 65 | 48 | 44 | 41 | 39 | 36 | 36 | 54 | 66 |
| Sept. 8-9 | 73 | 77 | 77 | 69 | 53 | 48 | 48 | 42 | 36 | 37 | 53 | 64 |

TABLE 21 - Mean Bi-hourly Temperatures ( $\left.{ }^{\circ} \mathrm{F}.\right)$ for 24 hour Periods from Noon June 20 until Sept. 9, 1921.

Date
$12-22044-6$ 6-8 8 -10-10-12 $12-2 \quad 2-44-6 \quad 6-8$ 8-10 $10-12$
June 20-21
$\begin{array}{llllllllllll}73 & 77 & 79 & 77 & 70 & 53 & 51 & 50 & 50 & 54 & 63 & 75\end{array}$
$\begin{array}{lllllllllllll}\text { June } & 21-22 & 78 & 83 & 82 & 78 & 70 & 64 & 61 & 58 & 56 & 58 & 64 \\ 70\end{array}$
$\begin{array}{lllllllllllll}\text { June } 22-23 & 73 & 78 & 78 & 72 & 59 & 58 & 56 & 53 & 51 & 54 & 59 & 63\end{array}$
$\begin{array}{lllllllllllll}\text { June } & 23-24 & 70 & 74 & 74 & 72 & 66 & 61 & 60 & 55 & 54 & 55 & 63 \\ 68\end{array}$

| June | $24-25$ | 74 | 78 | 80 | 75 | 68 | 65 | 62 | 61 | 60 | 58 | 64 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllll}\text { June } & 25-26 & 72 & 75 & 64 & 65 & 60 & 52 & 6 & 44 & 43 & 57 & 66\end{array} \quad 72$
$\begin{array}{llllllllllllll}\text { June } & 26-27 & 76 & 80 & 80 & 74 & 70 & 64 & 60 & 54 & 49 & 57 & 68 & 72\end{array}$
$\begin{array}{lllllllllllll}\text { June } & 27-28 & 76 & 79 & 76 & 69 & 60 & 57 & 53 & 48 & 46 & 54 & 60 \\ 64\end{array}$
$\begin{array}{llllllllllllll}v \text { une } & 28-29 & 70 & 76 & 76 & 70 & 63 & 54 & 51 & 48 & 48 & 52 & 57 & 63\end{array}$
$\begin{array}{lllllllllllll}\text { June 29-30 } & 68 & 74 & 76 & 70 & 66 & 60 & 58 & 56 & 55 & 55 & 56 & 57\end{array}$
$\begin{array}{lllllllllllll}\text { June } 30-J u l y ~ & 1 & 62 & 68 & 70 & 67 & 62 & 57 & 55 & 54 & 53 & 52 & 53 \\ 53\end{array}$
$\begin{array}{lllllllllllll}\text { July l-2 } & 56 & 61 & 65 & 65 & 60 & 52 & 53 & 52 & 52 & 51 & 49 & 49\end{array}$
$\begin{array}{lllllllllllll}\text { July } 2-3 & 52 & 57 & 61 & 58 & 56 & 53 & 50 & 49 & 51 & 54 & 56 & 59\end{array}$
$\begin{array}{lllllllllllll}\text { July } & 3-4 & 62 & 64 & 66 & 64 & 60 & 54 & 52 & 50 & 46 & 49 & 60 \\ 64\end{array}$
$\begin{array}{lllllllllllll}\text { July } & 4-5 & 67 & 71 & 64 & 57 & 55 & 49 & 45 & 44 & 43 & 46 & 51 \\ 53\end{array}$
$\begin{array}{lllllllllllll}\text { July } & 5-6 & 57 & 59 & 57 & 55 & 53 & 48 & 43 & 44 & 44 & 45 & 50 \\ 56\end{array}$

| July | $6-7$ | 60 | 63 | 60 | 55 | 53 | 50 | 46 | 44 | 43 | 47 | 54 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| July | $7-8$ | 68 | 72 | 74 | 70 | 64 | 60 | 58 | 54 | 53 | 56 | 62 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllll}\text { July } & 8-9 & 68 & 70 & 71 & 66 & 56 & 50 & 48 & 47 & 49 & 52 & 56 \\ 58\end{array}$
$\begin{array}{lllllllllllll}\text { July } & 9-10 & 63 & 66 & 69 & 65 & 55 & 52 & 48 & 44 & 44 & 50 & 57 \\ 62\end{array}$
July 10-11
July 11-12
July 12-13
July 13-14
July 14-15
Ju1y 15-16
July 16-17
July 17-18
July 18-19
July 19-20
July 20-21
July 21-22
July 22-23
July 23-24
July 24-25

July 25-26 July 26-27 July 27-28 July 28-29 July 29-30 JuIy 30-31 July 31-Aug. 1 Ang. I-2

Aug. 2-3
Aug. 3-4
Aug. 4-5
Aug. 5-6
Aug. 6-7
Aug. 7-8
Aug. 8-9
Aug. 9-10
Aug. 10-11
Aug. 11-12
Aug. 12-13
Aug. 13-14
Aug. 14-15
Aug. 15-16
Aug. 16-17
Aug. 17-18
Aug. 18-19
Aug. 19-20
Aug. 20-21
AUg. 21-22
Aug. 22-23
Aug. 23-24
Aug. 24-25
Aug. 25-26
Aug. 26-27
Auэ. 27-28
Aug. 28-29
$\begin{array}{llllllllllll}72 & 71 & 77 & 74 & 65 & 59 & 53 & 50 & 46 & 50 & 63 & 71\end{array}$ $\begin{array}{llllllllllll}75 & 78 & 81 & 80 & 70 & 60 & 55 & 51 & 50 & 54 & 64 & 70\end{array}$

$\begin{array}{llllllllllll}75 & 8 & 80 & 78 & 69 & 58 & 53 & 51 & 54 & 56 & 58 & 65\end{array}$ $\begin{array}{llllllllllll}67 & 70 & 66 & 57 & 55 & 54 & 53 & 52 & 52 & 52 & 54 & 59\end{array}$ $\begin{array}{llllllllllll}62 & 65 & 68 & 69 & 65 & 65 & 50 & 46 & 44 & 46 & 54 & 62\end{array}$ $\begin{array}{llllllllllll}70 & 72 & 75 & 77 & 66 & 56 & 52 & 50 & 50 & 51 & 55 & 62\end{array}$ $\begin{array}{llllllllllll}69 & 73 & 70 & 67 & 62 & 57 & 53 & 51 & 50 & 51 & 50 & 61\end{array}$ $\begin{array}{llllllllllll}68 & 72 & 73 & 70 & 60 & 58 & 57 & 56 & 56 & 57 & 65 & 71\end{array}$ $\begin{array}{llllllllllll}73 & 77 & 70 & 52 & 51 & 49 & 48 & 47 & 48 & 49 & 50 & 53\end{array}$ $\begin{array}{llllllllllll}55 & 62 & 64 & 59 & 50 & 43 & 42 & 41 & 42 & 45 & 50 & 59\end{array}$ $\begin{array}{llllllllllll}64 & 61 & 60 & 54 & 50 & 49 & 48 & 48 & 46 & 48 & 49 & 50\end{array}$ $\begin{array}{llllllllllll}51 & 52 & 58 & 58 & 50 & 47 & 42 & 41 & 40 & 44 & 54 & 63\end{array}$ $\begin{array}{llllllllllll}68 & 72 & 76 & 74 & 60 & 52 & 49 & 49 & 48 & 51 & 61 & 68\end{array}$ $\begin{array}{llllllllllll}70 & 73 & 77 & 65 & 57 & 55 & 55 & 55 & 55 & 55 & 62 & 63\end{array}$ $\begin{array}{llllllllllll}62 & 51 & 59 & 59 & 57 & 54 & 55 & 52 & 49 & 54 & 59 & 66\end{array}$ $\begin{array}{llllllllllll}72 & 73 & 70 & 61 & 54 & 52 & 49 & 47 & 46 & 49 & 53 & 55\end{array}$ $\begin{array}{llllllllllll}58 & 61 & 62 & 62 & 52 & 46 & 47 & 49 & 49 & 53 & 58 & 64\end{array}$ $\begin{array}{llllllllllll}67 & 67 & 65 & 62 & 58 & 52 & 48 & 47 & 43 & 50 & 60 & 65\end{array}$ $\begin{array}{llllllllllll}68 & 71 & 73 & 70 & 58 & 51 & 50 & 48 & 44 & 58 & 70 & 75\end{array}$ $\begin{array}{llllllllllll}79 & 83 & 82 & 76 & 64 & 58 & 54 & 50 & 45 & 51 & 65 & 73\end{array}$ $\begin{array}{llllllllllll}79 & 82 & 82 & 78 & 68 & 62 & 57 & 52 & 48 & 57 & 68 & 72\end{array}$ $\begin{array}{llllllllllll}74 & 76 & 70 & 66 & 60 & 56 & 52 & 49 & 43 & 46 & 57 & 66\end{array}$ $\begin{array}{llllllllllll}70 & 73 & 73 & 70 & 62 & 59 & 57 & 55 & 54 & 54 & 52 & 56\end{array}$ $\begin{array}{llllllllllll}58 & 62 & 60 & 57 & 54 & 52 & 51 & 50 & 49 & 50 & 52 & 53\end{array}$ $\begin{array}{llllllllllll}57 & 59 & 58 & 55 & 49 & 48 & 47 & 45 & 42 & 41 & 49 & 54\end{array}$ $\begin{array}{llllllllllll}60 & 64 & 65 & 62 & 52 & 50 & 47 & 42 & 42 & 50 & 58 & 65\end{array}$ $\begin{array}{llllllllllll}70 & 76 & 78 & 70 & 60 & 55 & 56 & 53 & 51 & 50 & 51 & 56\end{array}$ $\begin{array}{llllllllllll}58 & 64 & 62 & 56 & 53 & 51 & 48 & 45 & 45 & 44 & 53 & 59\end{array}$ $\begin{array}{llllllllllll}64 & 68 & 69 & 68 & 56 & 48 & 47 & 48 & 47 & 47 & 52 & 59\end{array}$ $\begin{array}{llllllllllll}66 & 71 & 71 & 64 & 57 & 53 & 53 & 50 & 48 & 47 & 50 & 52\end{array}$ | 56 | 63 | 65 | 63 | 54 | 47 | 46 | 42 | 38 | 40 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 108 |  |  |  |  |  |  |  |  |  |  |

$\begin{array}{llllllllllll}64 & 69 & 70 & 66 & 53 & 43 & 38 & 38 & 38 & 39 & 56 & 64\end{array}$
$\begin{array}{llllllllllll}69 & 71 & 70 & 62 & 48 & 42 & 39 & 38 & 38 & 45 & 56 & 66\end{array}$
$\begin{array}{llllllllllll}71 & 74 & 70 & 64 & 51 & 48 & 46 & 45 & 45 & 46 & 52 & 59\end{array}$
$\begin{array}{llllllllllll}63 & 66 & 67 & 61 & 51 & 47 & 45 & 45 & 45 & 47 & 58 & 62\end{array}$

| Date | $12-2$ | $2-4$ | $4-6$ | $6-8$ | $8-10$ | $10-12$ | $12-2$ | $2-4$ | $4-6$ | $6-8$ | $8-10$ | $10-12$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Aug. 29-30 | 69 | 73 | 72 | 65 | 50 | 44 | 39 | 36 | 34 | 43 | 52 | 60 |
| Aug. 30-31 | 70 | 72 | 65 | 55 | 44 | 41 | 37 | 37 | 36 | 40 | 46 | 48 |
| Aug.31-Sept.1 | 53 | 60 | 67 | 60 | 52 | 47 | 45 | 44 | 45 | 45 | 49 | 49 |
| Sept.1-2 | 50 | 59 | 61 | 57 | 46 | 36 | 33 | 31 | 29 | 35 | 50 | 60 |
| Sept.2-3 | 65 | 70 | 64 | 53 | 49 | 44 | 41 | 40 | 39 | 39 | 37 | 56 |
| Sept.3-4 | 62 | 67 | 67 | 60 | 45 | 38 | 33 | 32 | 33 | 39 | 47 | 57 |
| Sept.4-5 | 61 | 68 | 68 | 56 | 50 | 46 | 44 | 43 | 41 | 42 | 56 | 60 |
| Sept.5-6 | 64 | 65 | 67 | 60 | 45 | 40 | 39 | 37 | 37 | 40 | 52 | 66 |
| Sept.6-7 | 71 | 71 | 67 | 62 | 54 | 55 | 53 | 47 | 44 | 47 | 53 | 61 |
| Sept.7-8 | 66 | 68 | 64 | 57 | 53 | 51 | 49 | 46 | 43 | 40 | 41 | 41 |
| Sept.8-9 | 43 | 44 | 43 | 41 | 40 | 39 | 37 | 35 | 33 | 31 | 34 | 40 |

## APPENDIX

TABIE 22 - Duration of Sunshine for Each Four of the Day from June 20 to Sept. 9, 1920

| Day of month 20 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\begin{aligned} & \text { Hours } \\ & \text { Noon } \end{aligned}$ | ${ }_{1} \text { Ending }$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.5 | 1.0 | 0.6 | 0.4 | 0.9 | 0.9 | 1.0 | 0.8 | 0.7 | 0.8 |
| 21 |  | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 22 |  | 0.1 | 0.0 | 0.3 | 0.6 | 1.0 | 0.9 | 0.6 | 0.1 | 0.0 | 0.0. |
| 23 |  | 0.6 | 0.0 | 0.8 | 0.8 | 1.0 | 0.9 | 0.8 | 0.5 | 0.3 | 0.8 |
| 24 |  |  |  |  |  |  |  |  |  |  | 0.4 |
| 25 |  | 0.5 | 1.0 | 1.0 | 1.0 | 0.9 | 0.9 | 0.3 | 0.5 | 0.8 | 0.5 |
| 26 |  |  | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7 | 0.7 | 0.8 |
| 27 |  | 1.0 | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 28 | 0.1 | 1.0 | 0.8 | 0.9 | 0+9 | 0.8 | 0.7 | 0.8 | 1.0 | 1.0 | 0.6 |
| 29 |  | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7 | 0.8 |
| 30 |  | 0.2 | 0.1 | 0.7 | 0.9 | 11.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |

3otal 0.1:

## JULY, 1920

$$
\begin{array}{lllllllllll}
0.1 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
& & & & 0.4 & 1.0 & 0.9 & 1.0 & 1.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.9 & 0.9 \\
& 0.9 & 1.0 & 0.7 & 0.7 & 0.8 & 0.9 & 0.9 & 1.0 & 1.0 \\
0.1 & 0.0 & 0.5 & 0.6 & 0.0 & & & 0.2 & 0.2 & 0.4 \\
0.6 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.6 & 1.0 \\
0.7 & 0.9 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.8 & 0.6 & 1.0 \\
0.3 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.7 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.4 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.6 & 1.0 & 0.8 & & & 0.1 & & 0.1 & 0.2 & \\
& 0.7 & 0.9 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.8 & 0.7 \\
6.7 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.7 & 0.9 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.5 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.5 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0
\end{array}
$$

17
$\left.\begin{array}{cccccccl}\hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & \begin{array}{c}\text { Total } \\ \text { Hours }\end{array} \\ \hline 0.9 & 0.8 & 0.5 & 0.6 & 0.9 & 0.7 & 0.2 & 12.2\end{array}\right] 16.9$
15.4 10.8 15.2 11.9

| Day of month | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Hours inding <br> 11 Noon 1 |  |  | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | . | 0.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 19 | . | 0.1 | 0.5 | 1.0 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 20 | . | 0.4 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 110 | 1.0 |
| 21 |  |  | 0.1 | 0.9 | 0.6 | 0.8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 22 |  |  |  |  |  |  |  | : 0.2 | 0.7 | 0.6 | 0.3 |
| 23 |  |  | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 24 |  | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.9 | 0.9 | 1.0 |
| 25 |  |  | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 26 |  |  |  | 0.1 | 0.4 | 0.7 | 1.0 | 0.6 | 0.2 | 0.7 | 0.3 |
| 27 |  | 0.5 | 1.0 | 1.0 | $1.0{ }^{\circ}$ | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 28 | . | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 29 | - | 0.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 30 |  | 0.3 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.3 | 1.0 |
| 31 |  | 0.1 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7 | 1.0 |







| 0.9 | 1.0 | 0.7 | 0.1 | 0.3 | 0.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.2 |
|  |  |  | 0.2 |  |  |
| 0.5 |  | 0.3 | 0.4 | 0.8 | 0.8 |
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 |
| 1.0 | 1.0 | 1.0 | 1.0 | 0.2 |  |
|  | 0.3 |  | 0.2 |  |  |
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 |
| 1.0 | 1.0 | 1.0 | 0.7 | 0.3 | 0.2 |
| 0.7 | 1.0 | 1.0 | 0.7 | 0.9 | 0.4 |
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 |
| 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 |
| 0.7 | 0.6 | 0.6 | 0.7 | 0.8 |  |
|  | 0.7 | 0.7 | 0.4 | 0.6 |  |
| 0.6 | 0.9 | 0.8 | 0.4 | 0.1 | 0.2 |
| 0.4 | 0.8 | 0.9 | 1.0 | 1.0 | 0.6 |
| 1.0 | 1.0 | 1.0 | 1.0 | 0.3 |  |
| 21.7 | 23.1 | 23.2 | 22.3 | 20.0 | 12.0 |

Total Hours
8.6
12.9
0.5
3.5
6.5
11.8
.5
13.0
10.3
5.3
13.2
13.2
10.2
2.5
8.5
6.1
4.8
252.9
4.7
9.6
$\begin{array}{llllll}0.2 & 1.0 & 1.0 & 0.8 & 0.9 & 0.5\end{array}$
$1.0 \quad 1.0 \quad 1.0 \quad 0.1$
$\begin{array}{lllll}1.0 & 1.0 & 1.0 & 1.0 & 0.6\end{array}$
$1.0 \cdot 1.0 \quad 1.0 \quad 0.6 \quad 0.5$
$\begin{array}{llllll}1.0 & 1.0 & 1.0 & 0.9 & 1.0 & 0.1\end{array}$
$0.7 \quad 0.1$
$\begin{array}{llll}1.0 & 1.0 & 1.0 & 0.2\end{array}$
10.1
7.9
11.6
7.1
6.0
0.2

$8$

