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ABSTRACT 

This report presents refinements of a previous momentum- 

integral method for calculating three-dimensional turbulent 

boundary layers on ship hulls. In particular the following refine- 

ments are made: the small crossflow assumption is removed; 

numerical calculation of the double model potential flow replaces 

the slender body potential flow; a more general and versatile or- 

thogonal coordinate system is used in place of the streamline 

surface coordinate system; and finally, an improved numerical 

method is used for solving the momentum-integral boundary-layer 

equations. It is shown that the boundary layer calculation method, 

developed here, can be used to calculate certain boundary layer 

parameters, such as boundary layer thickness or skin friction, 

with fair accuracy over a large portion of hulls that maintain un- 

separated flow. The surface coordinate system can also be used in 

other methods for calculating the boundary layer. 

ADMINISTRATIVE INFORMATION 

The work reported herein was supported by the General Hydromechanics 

Research Program under Task Area SR 023-01-01 and Work Unit 1552-070. 

INTRODUCTION 

This report presents some refinements of the momentum-integral method 

for calculating three-dimensional turbulent boundary-layers as developed by 

von Kerczelans for ship hulls. These refinements include: (1) the removal 

of the boundary-layer small crossflow approximation; (2) the incorporation 

of an exact numerical calculation of the double model potential flow in- 

stead of using the slender-body theory potential flow; (3) the abandonment 

of the streamline surface coordinate system in favor of a more general and 

versatile orthogonal surface coordinate system; and (4) an improved 

numerical method for solving the momentum-integral boundary layer equations. 

The use of momentum-integral methods for calculating three-dimensional 

boundary layers has come under severe criticism recently by the advocates 

of the differential boundary layer equations (see, for example, Landweber 

and Dafeeils” Cebeci et aie” and Spaildlsiays)): The main objection to the inte- 

gral methods seems to center on the unavailability of a suitable crossflow 

velocity profile function that adaquately approximates a variety of 

*A complete listing of references is given on page 6/7. 



crossflow velocity profiles. It is most often claimed by these critics 

that an accurate representation of the boundary layer crossflow profile is 

required for the prediction of longitudinal bilge vortices. Large-scale 

longitudinal bilge vortices arise due to a complicated form of three- 

dimensional separation; the vortex flow itself being the separated flow. 

Thus, one cannot expect to be able to compute the bilge vortex flow, even 

by the most sophisticated boundary layer methods, whether integral or 

differential. Presently, boundary layer theory can be used only to calcu- 

late the flow up to separation. Recently developed momentum-integral 

methods for two-dimensional and axisymmetric boundary layers (see 

Green et us”) are as accurate as, yet considerably more economical than, 

differential methods. There seems to be no reason to believe that similar 

improvements in three-dimensional momentum-integral methods cannot be found. 

Present models of the boundary layer crossflow are primitive and 

further experimental data and research can be expected to uncover a simple 

crossflow velocity profile family that is adequate for calculation methods. 

For this reason it was thought desirable to make the technical improvements 

mentioned above in the von Kerczek method so as to accommodate easily 

detailed improvements in the crossflow model that may come about later. 

However, the modified surface coordinate system and the incorporation of 

the exact double model potential flow calculations (in lieu of the slender 

body theory potential flow calculation method) are of independent value and 

can be used with any other boundary layer calculation method. The surface 

coordinate system for the boundary layer calculations developed in this 

report has some advantages over the coordinate systems recommended by 

others (see, for example, Cebeci et ails” and Miloh and Paieeil), The surface 

coordinate system used in this report is very similar to the one used by 

Cebeci et An but it does not have the complication of being nonorthogonal. 

The present surface coordinate system is superior to the Miloh and Patel 

coordinate system because it provides a better coordinate net coverage of 

the hull surface for uniform spacing of the coordinate parameters. 

This report is divided into six sections including the introduction. 

The second section describes the formulation of the boundary layer 



calculation problem in terms of the momentum-integral entrainment method. 

The third section describes the surface coordinate system and the potential 

flow calculation method. The fourth section describes the numerical method 

for integrating the momentum-integral equations. The fifth section 

describes and discusses some sample computational results and the sixth 

section gives some concluding remarks on further developments of this 

three-dimensional ship boundary layer calculation method. An appendix at 

the end of the report gives some detailed formulas that are used in the 

computational algorithm. 

THE BOUNDARY LAYER MOMENTUM INTEGRAL EQUATIONS 

It is assumed that the ship surface is hydraulically smooth and has 

no abrupt changes in principal curvature anywhere on the hull. Also assumed 

is that the boundary layer thickness is small compared to the principal 

curvatures everywhere on the hull. Only the turbulent boundary layer 

development is considered. The length scale used is half the length, L, 

between the perpendiculars of the hull. The velocity scale is the steady 

ship speed U,. Henceforth, all physical quantities that are discussed will 

be dimensionless with respect to these scales. There is an orthogonal 

surface coordinate system on the hull, which has lines of constant @ running 

generally lengthwise along the ship and lines of constant $ running nearly 

parallel to the cross-sections of the ship. This system will be described 

in detail in Section 3. The coordinate perpendicular to the hull surface 

can be described in terms of its arc length parameter }. 

At an arbitrary point on the hull surface the potential flow velocity 

vector U is given by 

= + U US = Uy &5 (1) 

where ER and €y are unit tangent vectors in the direction of the ¢ and 0 

coordinates, respectively, and U = | |u| | is the magnitude of the velocity 

vector U. The angle that the velocity vector U makes with the $ coordinate 

line is denoted by 
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In terms of this coordinate system the momentum-integral boundary-layer 

equations are a special case of the equations given by Nereis! and repro- 

duced in the article by Reynolds and Caneeias These equations are the 

momentum integrals for the flow in the $-direction; 
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where me and Le are arclength parameters in the $ and 6 directions, 

respectively; K, and K, are the geodesic curvatures of the @ and Iv) 
¢ 9 



aGnat 5 r 
coordinates, respectively; Ou O54> O15» Oo9> A> and A, are momentum and 

displacement thicknesses defined, respectively, by Equations (4a,4f); and 

C and C 
=a fp 

directions, respectively. 

are wall skin friction coefficient components in the $ and 6 

The usual turbulent boundary layer assumptions 

of the neglect of turbulent normal stresses and the neglect of mean dif- 

fusion in directions parallel to the hull surface are incorporated in 

Equations (3a, 3b). 

The momentum and displacement thicknesses are defined by 

5 
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where Gi and % are the components of the 

g and @ directions, respectively. 

mean boundary layer velocity in the 



In the case of streamline coordinates, in which the coordinate curves 

g are parallel to the inviscid streamlines on the hull surface, U 

6 =U. For this case, the momentum and displacement thicknesses of 

= 0 and 

definitions (4a-4f) then will be denoted by corresponding lower case Greek 

letters and these definitions reduce to 
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The quantity 6 is some overall nominal boundary layer thickness. 
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The 

relationships between the boundary layer thicknesses defined by Equations 

(4a-4f£) and those defined by Equations (5a-5f) will be needed later and 

can readily be worked out. They are 
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O11 = O14 cos Q- (855+ 951) sin @ cos a + 955 sin a (6a) 

O.. = © ) +0, 2s On. ellie” (6b) 12 aL 9,5 sin Qa cos a cos Qa 21 sin a 

6, 2 @& ) + 05 A O.. BR” @ (Be) 21 Li O55 sin @ cos Qa cos Qa 12 sl 

6. = O., aa ae © ) of Hae Z (64) 22 LiL Ss Qa 12t O04 sin Q@ cos a 22 cos Qa 

Ay = rT cos a - 5, sin Q (6e) 

A, = oT sin a + 6, cos a (6£) 

The inverses of Equations (6a-6f) that relate the lower case Greek symbols 

8 and 6 to their upper case counterparts easily can be derived. 

The two momentum equations, Equations (3a,3b) are insufficient to 

determine the eight unknowns 0 O45 © e) [No (A) i? 912° 921° P09 Ay C and C hence, 
2 fo ay 

some other integral equations and empirical information are needed. The 

calculation method is based on the Cumpsty and tend” momentum-integral 

8 ‘ oe : . ; soley) 
method which utilizes the three-dimensional entrainment equation 

(U 6-UA,) 
6 —¢ 

il ;) 

U (gosta) = 
$ 

3 i + Wy (U,5-UA, ) = Ky (o,8-UA,)| =F (7) 

where F is the three-dimensional rate of entrainment function. It is 

assumed, in this three-dimensional boundary layer calculation method, that 



F is the same function evaluated with respect to the flow components in the 

streamline direction as the one used for two-dimensional flows. Thus, 

, 5 
according to Green, et al. 

EH) =n08 025) Hem 0n O22 (8) 

where 

6 

H = os (9) 
11 

Furthermore, it is assumed that 

6 = 0), (G+H) (10) 

where 

Pai aca ila 
G= G1) (11) 

Thus, the entrainment parameters, the length scale 6 and the entrainment 

function F, are completely specified in terms of integral thicknesses 

defined by Equations (5a-5f). A justification for the foregoing empirical 

expressions can be obtained from the paper of Cumpsty and Head? and its 

antecedents, 

The components Ce and Ce of the skin friction coefficient can be ob- 

(0) 6 

tained from the skin friction coefficient Cy in the local inviscid stream- 

line direction by the formulas 

C = C,(cos a - sin @ tan 8) (11a) 
fo £ 



C = C.(sin a + cos a@ tan 8) (11b) 
fy ify 

where 8 is the angle between the direction of the wall friction vector and 

the inviscid streamline. The angle 8 is precisely defined by 

Ov 

see LNT ee ReeOu 
tan 68 = limit — = limit —— (12) 

u du 
A>0 A>0 an 

where the boundary-layer velocity components u and v are in the direction 

of the inviscid streamline and its normal, respectively. By assuming that 

the component of the boundary layer flow in the inviscid streamline direc- 

tion satisfies the two-dimensional velocity similarity laws, the skin 

friction coefficient C, can be evaluated using a two-dimensional skin 
f 

friction formula. The following skin friction formula given by Head and 

Paton? is 

Ce = exp (aHtb) (13) 

where a = 0.019521 - 0.386768 c + 0.028345 ea - 0.000701 e 

b = 0.191511 - 0.83489 c + 0.062588 ee - 0.001953 ee 

ec =i1nR 

Pan 

and where 

UL 

Ry = oy vos, (14) 

is the local streamline momentum thickness Reynolds number. Recall that U 

is the dimensionless (scaled by U,,) magnitude of the local inviscid velocity 



at the edge of the boundary layer and 814 is the streamline component of 

the momentum thickness made dimensionless by the half length L of the 

ship. 

The final empirical formulas that are used to reduce the number of 

unknown quantities to three, in order to match the number of differential 

Equations (3a,3b) and (7), are the formulas that relate the crossflow 

momentum and displacement thicknesses 915° 854° 55> and oy) to the stream- 

line momentum and displacement thicknesses O14 and 61: These relationships 

constitute the critical approximations of three-dimensional boundary layer 

theory in the momentum-integral framework. It is easiest to simply make 

crossflow and streamline flow boundary-layer profile assumptions and derive 

the corresponding relationships that result from the definitions (5a-5f). 

However it is not really necessary to proceed in this way. Basically, 

definitions (5a-5f) simply say that if the streamwise velocity profile u is 

described parametrically by parameters la, ] and the crossflow pro- 

LA GS 6 omit 

file v is described parametrically by the parameters [B8. ] then the 

j=1l,...,m 

boundary layer thicknesses OF and Sos k and 2 = 1,2 are each functions of 
W 

the parameters [a], [6,5] such as O19 (a 9015 Byo+++s8)- One could 500 

determine these functions MO sre thereby completely bypass any 

velocity profile assumptions. 

In fact, such a scheme has already been used for the streamwise flow 

by using the Head entrainment method. From two-dimensional and axisymmetric 

flow theory, the entrainment method gives 

6, = 6, (H,9,,) (15a) 

Cane C,(H,6,,) (15b) 

directly without any profile assumptions. In the most highly developed 

entrainment method of Green et Allyn? a third independent parameter is added 

to O14 and H, namely the entrainment coefficient Che so that 

10 



oT = 6, (H, 8 (16) 
11°°p) 

replaces Equation (15a). If a velocity profile is needed, then the velocity 

profiles of Coilesam or Thompsonua may be used for specified values of the 

momentum thickness 944 and shape factor H. Sufficient experimental data 

for three-dimensional boundary layers are not yet available for a similar 

program to be conducted. It does, however, seem that the flow in the 

streamwise direction is sufficiently similar to two-dimensional flow that 

the two-dimensional data can be directly applied to this component of the 

boundary layer flow. However, insufficient data exist for the crossflow to 

make more than a crude estimate of profile shapes. There has not even been 

a sufficiently large collection and analysis of crossflow profiles to make 

a reasonable estimate of the proper parameters [B. ] that need to be 

GJSlbs ooo 

used to approximate the crossflow. Thus, as the simplest first approxi- 

mation of the crossflow profile shape, it is common practice to assume that 

(1) the crossflow profile scales on the same length scale 6 as the stream- 

wise profile and (2) the crossflow profile shape depends on only one or two 

independent parameters, one of which is the shear stress angle 8. The fact 

that condition (12) must be satisfied at the wall introduces the angle 8 

into the description of the crossflow profile and also dictates (as a matter 

of convenience) the shape assumption in the form 

Ws v ie f(A) tan 6 (17a) 

In order to satisfy condition (12) at the wall and the condition that 

v = 0 at X = 6 (in streamline coordinates), the function f must satisfy 

£(0) = 1 and £(6) = 0. The assumption by Macerue is a popular first ap- 

proximation that gives 

£(A) = (1- ay? (17b) 

IIL 



It should be emphasized that a profile assumption, such as Equation (17b), 

need not be employed at all but, at this time, lack of experimental data 

forces the use of such an approximation. More sophisticated profile 

assumptions than Equation (17b) have been made. For instance Clawnee 

assumed that 

f(A) = [+0(4)] (1- 2 (18) 

The parameter C in Equation (18) is governed by an additional crossflow 

integral equation. Clemo” chose the crossflow moment-of-momentum integral 

equation for calculating the development of the parameter C and obtained 

considerably better results for crossflow profile predictions than with the 

Mager model of Equation (17b). However, there still were certain areas on 

the ship hull at which the predicted crossflow velocity profiles were in 

serious disagreement with experiment. The areas of serious disagreement 

between the crossflow profiles given by Equation (18) and the experimental 

ones on the Okuno test model (a Series 60 block 0.70 double model) are very 

close to the stern on streamlines that turn upwards from the keel towards 

the load waterline. From Okuno's eranelenoe, it seems likely that 

further experiments and research will eventually lead to a fairly accurate 

crossflow velocity profile shape function f(A) that involves only one or at 

most two extra parameters. 

This report is mainly concerned with setting the proper framework for 

the three-dimensional momentum-integral boundary layer computational method, 

so it will presently be confined to the simplest of the crossflow models, 

namely that of Mager, Equation (17b). It is hoped that future developments 

and availability of sufficient experimental three-dimensional boundary layer 

data will warrant modifications of this method to include a more complete 

and accurate crossflow model along the lines of the Okuno model. 

By examining definitions, Equations (5b), (5c), and (5f), it is easy 

to see that 8155 ts) and 6, satisfy the relationship 
Dai 

eZ) 



al On ae) © (19) 

This equation can be used to eliminate one of the unknowns from the boundary 

layer momentum-integral equations. The Mager crossflow model, Equation (17), 

in conjunction with the approximation 

ca en 
and Equation (10) for the nominal thickness 6, can be used to express the 

cle 

crossflow boundary layer thicknesses in terms of the streamwise momentum 

thickness 814° the shape parameters G and H, and the crossflow angle 8 by 

the equations 

2 05, (Gt+H) tan 8 

Cy = TAGES) GE) Ca Gan BB G9 (Ze) 

i Sa ekectn eRe a eet Daher aaa He 7 
859 = > Spy (Ge) eae la fea ) PED Y eS | = 8), tan 8 £,(H) (21b) 

i 2 Oe sie aL Ar romney sect DF 
Sng F = By Cer) Gam 8| § = ST GE) ERS al = Sig Han © EE) (Ze) 

6. 2S 6. (em) ton 6) Seo A eB oe 8 EG (214) 2 11 on eS eee EEE a a 4 \ 

Thus Equations (8) through (11), (13), (17), (19), and (21), together with 

the transformation Equations (6a-6f), can be used to reduce the total 

number of unknown quantities to three. A convenient set of unknown 

quantities, that are integrated in the (¢,8) coordinate system by Equations 

(3) and (7) are the streamwise momentum thickness C1 the shape factor H, 

and the tangent of the wall crossflow angle t = tan 8. The details of the 

final forms of Equations (3) and (7) in terms of these variables are given 

in the appendix. 

13 



THE SHIP SURFACE COORDINATE SYSTEM 

The hull surface coordinate system that is used in the boundary layer 

calculation method described in the previous section stems directly from the 

hull surface representation of von Kerczek and Tuer ue This hull surface 

representation utilizes conformal mapping onto a unit circle of the cross 

sections of the hull and polynomial interpolation along the length of the 

hull of the individual mapping coefficients. Let s be the longitudinal 

coordinate, x the lateral coordinate, and y the vertical coordinate of the 

ship hull. These coordinates are made dimensionless by the half length L 

so that the bow and stern perpendiculars lie at s = + 1, respectively. The 

load water-line is located at y = 0 and the keel at midships is located at 

vy = SDs 

The hull surface representation of von Kerczek and Tele results in a 

parametric surface equation of the form 

N M 

z=xtiy = y » Aue a GHZa)o ee (22) 

n=l m=l 

where the matrix (A of coefficients specifies the hull form and is 

computed from a set of defining hull offsets by an algorithm given by 

von Kerezek and nels 

The surface coordinate system used in the boundary layer equations 

consists of the 6 = constant lines, obtained from Equation (22) and their 

orthogonal trajectories, here denoted by ¢ = constant lines. It is not 

necessary to specify the variable » since the arclength along the > = 

constant lines will be used directly. 

Equation (22) can be written in real form as 

N M 

m-1 
x = x(s,9) = y > A Ss cos (3-2n)6 (23a) 

n=l m=l1 

14 



N M 

y= y¥@oo) = > > A gn sin(3-2n)6@ (23b) 

n=l m=1 

and, in the vector form, 

2 = 26,0) = 20(S)10)) a te y(s,9)j + sk (24) 

where r is the vector from the origin of the (x,y,s) coordinate system to a 

point on the hull surface, and (i,j,k) are unit tangent vectors to the 

(x,y,Ss) coordinates, respectively. 

The surface coordinate lines 9 = constant, run along the length of the 

hull surface, and the coordinate lines » = constant, are nearly parallel to 

the hull cross-sections. The arclength increments along the @$ and 6 

coordinates are Or and dha, respectively, and are given by 

LID 

8=constant 
dk (dredr) 

|(2)* +(22)’ a | ds (252) 

and 

yf 

g=constant 

9 9 1/2 
ds Ox dx ds (3 | 
= ae E> Se ap || dé (25b) 
\(3 ds dé i , dé i 

where (ds/d8| ,) denotes the evaluation of the derivative ds/d68 along the 

Qu = iT (dredr) 

2 ay , dy ds 
(B® do 

@ = constant line. 

15) 



Let eae eg» and cx be unit tangent vectors to the $, 9, and the hull 

surface normal coordinates, respectively. Then e, and e, are easily 
S) 

computed using Equation (24) by 

OE 

oe 
Os 

— x — 

or or 
TS og 
ds cls) 

where || * || denotes the length of the vector. The requirement that the > 

and 8 coordinates be orthogonal imposes the condition that 

Sa Sa Sa (28) 

The increment of arc along the curve $ = constant, dr| > can be 

written as 

or or He ) 
ella] 4 = = |} ald telly Siam” Oe, al (29) 

and by virtue of orthogonality 

e, ° dr = 0 30 Sy) Els is 

The derivative (GSHCI) can be obtained from Equation (30) by 

( dx , dy ay) 
Gey 2 UN GO ss i ee Os (31) 
dé 
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The geodesic curvature terms K, and K, are defined, respectively, by 
v) 

(32a) 

ai itesa bog De (32b) 

The derivatives in Equations (32a,32b) can be evaluated by converting them 

to derivatives with respect to s and 0 using Equations (25a,25b), 

respectively. 

Miloh and Pareto recommended the use of the orthogonal surface 

coordinate system that consists of the cross-section curves and their 

orthogonal trajectories on the hull surface. in terms of the surface 

Equation (23) the cross-section curves are given by s = constant. Thus, 

if e, in this case, is the unit tangent vector to the cross-section profile, 

the orthogonal trajectories of the cross-sections can be computed by inte- 

grating the differential equation 

Q 0 Gk = ©) (33) 

which, in expanded form, and making use of Equation (29), reads 

or 
e e 

GOR Un ees (34) 
ds or 

+3) 

Examples of hull surface coordinate grids for the (d,0) system 

described earlier and the cross-section system of Equation (34) are given 

in the section on Computational Results and Discussion. 
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The potential flow velocity on the surface of the hull was obtained by 

using the computer program of Gia.” This program solves the double- 

model Neumann problem by distributing a layer of doublets on the hull sur- 

face and numerically solving the resulting integral equation by a panel 

method. The main advantage of using a doublet distribution, rather than a 

source distribution as in the Hess-Smith meeHodeat is that the surface 

potential is obtained directly as the solution of the integral equation. 

The hull surface representation, Equation (23), is used to generate 

the input for the potential flow program of Gheneo” A uniform rectangular 

distribution of points in the (¢,9) plane determines a set of curved quadri- 

lateral elements covering the hull surface. These curved quadrilateral 

elements are approximated by plane quadrilateral elements and then used as 

input into the Chang program. The results of the potential flow calcu- 

lation are values of the surface velocity potential at the geometric mid- 

points of the plane quadrilateral elements. These values of the surface 

velocity potential are then assumed to be accurate values of the exact 

surface velocity potential at the points of the hull surface that correspond 

to the geometric centers of the rectangular elements in the (@,9) plane. 

The value of the surface velocity at each point is obtained by numerical 

differentiation of the surface velocity potential. The values of the 

potential are first interpolated along > = constant curves by a periodic 

cubic gelllnes This interpolation yields accurate values of the surface 

velocity potential at arbitrary locations on the 9 = constant curves. Then 

the values of the surface velocity potential are interpolated along 

6 = constant curves by another cubic spline. The surface velocities and 

the derivatives of the surface velocities that are required in Equations 

(3) and (7) are obtained, respectively, by differentiating the cubic 

spline, evaluating the result, which gives the velocities, and then 

refitting the velocities with cubic splines and differentiating the second 

set of splines. This "spline-on-spline" mocademe seems to be one of the 

best ways of obtaining two derivatives of a numerically defined function. 

18 



NUMERICAL ANALYSIS 

The two momentum integral Equations (3a,3b), together with the entrain- 

ment Equation (7), can be written completely in the form 

OW D(w(p,0)) SH + Bcw(g,e)) Se = cow) (35) 
a) Iv) 

where the vector W is given by 

Wi Ona 

We W. = te (36) 

W, H 

From Equations (50) and (55) in the appendix, the coefficient matrices are 

defined as follows: 

; 0811 3 9814 
S11 ih Oe il Oe 

dg dg 
ie re 21 21 “ 

DED =) Dyed) | Bon) hia He ia Ge) 

, ; ahi : dh, 

iLL Tee Tt “On 

A 9819 5 9819 
812 il, ae iil Ai 

dg og a é 22 22 
BOW) = (Boa) | Bq Sig THE O51 0H (37b) 

f : dh» ‘ dhy 5 

22 TSMC TE nil SE 
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and 

C(W) = (C,) HG 
2 

os 

where 

sat et ET ns ol awl oa 
1 Die U OX U Oo’ 

) w) 6 

Dialers Givens Kae. ate ado. rls) C})) 
U obs U dk, Tay ME) ALD OBA al 

+ O41 Ky (84178997 hy sin a) 

1 2 3U 3U 
Oy ea Ty Neon A, Y Sar Be 

Q 0) ic] 

1 du, dU, 
ae A, m7 A, Oh, + O14 Ky (81 9781 *hy cos Q) 

+ 814 Ky (8597844 7h} cos Q) 

and 
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The variables in Equation (35) and auxiliary formulas of Equation (37) are 

defined in terms of the principal unknown momentum and displacement thick- 

lb? O15 O54 O59 A> and A, in the appendix. It is assumed that 

the values of W are known at a given station 9 = 9 for all values of 0 and 

nesses 0 

that the boundary layer is to be computed between 6 and a final station ¢ 

downstream of 9: Because of symmetry, it is only necessary to sclve 

Equation (35) between 6 = - 71/2 and 6 = 0. An (N+1) x (Mtl) grid with 

spacing Ad and A98, respectively, is superimposed on the region [(,8) |5< 

<,.-1/2<8<0]. For simplicity of notation, wt will denote W(o tiAd ys 

FaO)o Bor = O, dooodgil aincl 9 S OS tloocc slo MESO pi, Bt, and ci will 

denote the values of the matrices B, C, and D,: respectively, at the point 

(pp tidd, jAe). 

Equation (35) is hyperbolic if there is a nonzero crossflow. The 

three characteristics at a point (6,8) lie between the angles a and a + 6; 

the equation is parabolic at a point if 8 is zero, as the characteristics 

have the same tangent or, equivalently, the same direction. Along a line 

of flow symmetry, such as at the keel or at the waterline on a double 

model, the crossflow is zero and the governing Equation (35) is parabolic. 

Consequently, in the present case of the double hull models, Equation (35) 

is a mixed equation, that is hyperbolic and parabolic at different points 

of the region of integration unless the crossflow is everywhere zero. In 

this latter case, Equation (35) reduces to parabolic form. A solution 

method which is applicable to both parabolic and hyperbolic equations must, 

therefore, be used to solve Equation (35) for double hull models or hulls 

for which the crossflow is zero or very small everywhere. 

The O'Brien et Bike 5 implicit finite difference scheme is used to 

solve Equation (35). It is a stable scheme for any positive grid spacing 

ratio r = A@/Ad and is applicable to both hyperbolic and parabolic 

equations. It consists of a one-step forward difference in the $-direction 

and a central difference at the i+ 1 step in the @-direction. In this 

numerical integration scheme, Equation (35) is approximated by the equation 

= See pi (ae cael ee 

hy Ad 2A0 (38) 
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where the metrics Bs and hy (defined by nee and Lg=hp_d6) are evaluated 

at the point ($5 tidd, jA8). Rearranging the terms of Equation (38) 

yields the equation 

_ pid witt j-l 4 pid witli + pu wert are 

= C= Das Wels ns Ad cv (39a) 

where 

as h ia 
ed (— (39b) 

2rh 
8 

The values of W) for j = 0, 1,...,M are specified initial conditions; 

they may be obtained from experimental data. Along the symmetry lines 

j = 0 (6=0) and j = M (6 -- 5) , the crossflow angle B is zero, so that 

W, = t = 0, the equation Wo = 0 replaces the second momentum Equation (36) 

along the two lines of symmetry, the load waterline and the keel. Moreover, 
dh, 

a = 0 on these lines, so that B19° 891° 89° hs hoos S Ce ; Ay> and Ta 

s) 
are identically zero. Thus, along the symmetry lines, the momentum integral 

Equation (3a) reduces to the equation 

dg 1 WD ayes a x 
Ly ve Chse Tae an, 2 oe we Chg, @ UR (Go) 

els) oh 
G peelals +6 dG oH +6 22 Oe = F(H) - one G Ge -«,) (41) 

Ey) 11 dH 22 ib aoe Oe 
) ) ) 

22 



(See the appendix for details). The system of Equation (35) can be used 

also to represent Equations (40) and (41) together with t = 0, if the 

coefficient matrices B, C, and D are modified to the following: 

et Oe ao 

Dp ao i @ (42a) 

dc OL) 5 10) panics 

dg 12 
0 Meme v 

B(w) =| 0 0 0 (42b) 

en: deere ee 
ii, BE 

and 

C(W) = 0 (42c) 

The crossflow angle is asymmetric with respect to 9 = 0, so t is also 

asymmetric with respect to this line. Accordingly, the central difference 

approximation for dt/dk, on the 6 = O line is 

,il io Ge ,il 

(43) 
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The zero crossflow finite difference formula analogous to Equation (38) is 

m0 etl LO age LO 0) aeol 2 2 fo is 

hy Ao ma) 0 

After rearranging the terms of Equation (44), one obtains the equation 

pi? wir 0 a 710 witt 1 4 ci0 
(45a) 

where 

: h . 
Pe ey (45b) 

rh 
8 

A similar argument at the symmetry plane 6 =- 1/2 yields the finite 

difference equation 

il piM weet M-1 A pim witt Lie ciM (6a 

where 

h 
=i Mi iM a ase B (46b) 

The finite difference Equations (35), (45), and (46) form a linear 

system of algebraic equations for the unknowns Tiny J where i = Oolong oo il 

hal a} = Oswego a ciills 

Let matrix D be defined by 
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D B o 0 CO RSENS Ee mes 

Book Sapo GOEL AR OUMERO CURA StA aehaney A Rete tar 

0 Bact an aC ROMO a 

e - GDOUDODOOOOOUDOOODDOOODODUUOODUODOOOUDd ecoceceow ecco eee ee oe eee (47) 

0 0 pil pt Bal ciONnanaenas ee 

onght ee 0 Oe Ba Te Te ie a Our tn’ Oy 

eceecee eee eee eee eee oo ee ee ee oe oe eee Oe eo ee wow ee oe oe oo eB Oo 

DX aC (48a) 

where X = (x) and C = cc) for uw = 1,...,3(M+1l), where the components 

a of the vector X are defined by 

itl k 

Saye Mh (ED) 

where K = 1,2,3 and the components Ey of the vector C are defined by 

fei fit 
Seneine Fhe (se) 

Gaussian reduction is used to solve Equation (48). The 3 x 3 sub- 

matrices of D have been inverted explicitly so that the Gaussian reduction 

of Equation (48) is very fast on the computer. Back substitution is used 

to obtain the vector X. 

COMPUTATIONAL RESULTS AND DISCUSSION 

Some sample computational results of the boundary layer on two double 

ship models are presented in this section. The first sample. computational 
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result is the boundary layer on the Lucy Ashton model for which experi- 

mental boundary layer data are given by Joubert and Meee cone and which 

von Kerezeley computed using the small crossflow approximation. The second 

sample computational result described below is the boundary layer develop- 

ment on the Swedish SSPA Model 720 for which boundary layer experimental 

data and calculations are provided by Larsson. 

It is first necessary to describe some details of the calculation of 

the surface coordinate system before embarking on a description of the 

results of the boundary layer calculation. There are many different surface 

coordinate systems that one can use for three-dimensional boundary layer 

calculation methods. The most prevalent coordinate systems used for ship 

boundary layers are the streamline coordinate system and the coordinate 

system made up of the cross-sectional curves and their orthogonal tra- 

jectories on the hull ainetaees © henceforth referred to simply as the cross-— 

section system. The streamline coordinate syeten has the advantage of 

yielding the simplest form of the boundary layer equations, but it may be 

difficult and costly to generate this system when flows about a ship hull 

at nonzero Froude number are considered. Thus it is worthwhile to consider 

coordinate systems that only depend on the ship hull geometry and not on 

the inviscid flow. 

Figure 1 shows a sample of the cross-section coordinate system recom- 

mended by Miloh and Papen” on the Swedish SSPA Model 720. The calculation 

of the network of coordinate lines shown in Figure 1 is described in the 

previous section of this report, Calculation of the Surface Coordinate 

System and Potential Flow. The main feature of the cross-sectional co- 

ordinate system that has been found to be objectionable is that the length- 

wise running coordinate lines seem to diverge on certain portions of the 

hull (at keel near the bow and stern) where the opposite, i.e., convergence 

of these lines, is desirable. Another, minor, annoyance of this coordinate 

system is that it is difficult to find the set of starting values at any 

particular station for the coordinate lines along the length (the orthogonal 

trajectories of the cross-sections) that will result in a suitable surface 

coordinate grid. Such a grid should not have large grid intervals or 
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excessive grid crowding on some portion of the hull (for instance note the 

trajectories on the bilge and and those at the load waterline near the 

stern). For these reasons the coordinate system shown in Figure 2 for 

SSPA Model 720, which consists of the lines of constant 98 and their 

orthogonal trajectories of constant ~, was chosen in preference to the 

cross-section system. Recall from the section on Calculation of the 

Surface Coordinate System that the lines of constant 9 are defined by the 

surface representation Equations (23a,23b). Thus, it is necessary to 

always first represent the ship hull by a surface equation of the type of 

Equation (23) in order to use the coordinate system of Figure 2, whereas 

the cross-section coordinate system does not require a prior analytical 

representation of the ship nl However, the calculation of the ship 

surface Equation (23) for a typical ship hull such as the Swedish SSPA 

Model 720 requires only about one to one and a half minutes of CDC 6/700 

computer execution time. This calculation of the surface Equation (23) 

(i.e., the matrix (An need only be done once and then it is available for 

several other uses. Furthermore, the computer method used to calculate 

the matrix (An is an old one and several modifications of this method 

are presently under development that are expected to reduce the compu- 

tationai time by a factor of about 100. Thus, the need to calculate the 

surface representation of the Equation (23) type is not seen as a dis- 

advantage of the (9,)-coordinate system. 

The Lucy Ashton double model boundary layer was computed using the 

earlier slender body theory potential flow meenodn because the first test 

of the present calculation method was to check the complete crossflow 

formulation. It was shown previously by von Rerenek that the slender 

body theory gives fairly accurate values of the double-body pressure 

distribution on the Lucy Ashton. 

The boundary layer calculation method of this report is implemented 

in terms of the (6,¢)-coordinate system but the computed boundary layer 

results are given in terms of the streamline momentum thickness 81> dis- 

placement thickness O45 shape factor H, and the stream coefficient of skin 

friction Ce. This is done to facilitate the comparison of the present 
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Figure 2 - The Bottom and Side Views of the (¢,9) Coordinate Net on the SSPA-720 Model 



results with previous boundary layer calculation methods and experi- 

mentee Earlier calculations of the Lucy Ashton double body boundary 

layer by von Reena showed that crossflow is small almost everywhere on 

the hull. 

Figure 3 shows several streamlines computed by slender body potential 

flow theory. In bottom, elevation, front, and rear views on the Lucy 

Ashton double model. Computed boundary layer results will be shown along 

these streamlines. Figures 4a-4d show a comparison of the distribution of 

the streamline momentum thickness 0 along the streamlines 1, 6, 10, and 
ila. 

13 shown in Figure 3b, as computed by the present complete crossflow 

method and the small crossflow method of von Reoneles Figures 5a-5d show 

the distribution of streamline skin friction coefficient C, and Figures 6a- 

6c show the distribution of the crossflow angle in i ee these same 

streamlines. Note from Figures 3 through 6 that there is little difference 

in the boundary layer characteristics that are predicted by the present 

complete crossflow method and the small crossflow method. This is not an 

unexpected result because the Lucy Ashton is a fairly slender hull with 

very slowly changing cross-section shape along the length of the ship. 

Hence the values of the coefficient Ky are small everywhere along the hull 

and it is reasonable to expect fairly small boundary layer crossflow 

effects. The differences in the two sets of results shown in Figures 3 

through 6 are due mainly to the differences in the numerical integration 

method used by von Kerezeky and the present method. This is indicated by 

the differences in the results on the keel, shown in Figures 4d and 5d, 

where the two methods solve identical equations. 

The second test calculation is of the boundary layer on the Swedish 

SSPA Model 720 double body. Figure 7, taken from Larsson's ee~ORE, shows 

front and rear views of the streamlines along which measured and computed 

boundary layer properties were given. Larsson's calculation method starts 

from a momentum-integral-entrainment method closely related to the one 

described in this report. The main difference between these two boundary 

layer calculation methods is in the auxiliary data used for the crossflow 

velocity profiles and the numerical implementation of the methods. 

Dal 
Larsson's method computes the boundary layer in the streamline surface 
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Figure 4 - Streamline Momentum Thickness versus Axial Distance for Flow 

Along Streamlines of the Lucy Ashton 
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Figure 4 (Continued) 
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Figure 4 (Continued) 
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Figure 4c - Streamline 10 
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Figure 4 (Continued) 
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Figure 4d - Streamline 13 
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Figure 5 - Streamline Skin Friction Coefficient versus Axial 

Distance for Flow Along Streamlines of the Lucy Ashton 
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Figure 5 (Continued) 
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Figure 5b - Streamline 6 
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Figure 5 (Continued) 
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Figure 5c - Streamline 10 
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Figure 5 (Continued) 
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Figure 5d - Streamline 13 
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Figure 6 - Crossflow Angle versus Axial Distance for Flow Along 

Streamlines of the Lucy Ashton 
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coordinate system and uses a numerical integration method that includes 

the crossflow terms by an explicit method. The present calculation 

scheme may improve on Larsson's results only in detail but not in a funda- 

mental way. 

The surface coordinate grid on which the present calculations were 

made is similar to but slightly coarser than the one shown in Figure 2. 

The grid spacing is A® = 6 deg and As = 0.025 (As = Ao). The Cheae” 

potential flow method was used to compute the values of the potential at 

the center of rectangular elements in the (8,6) plane. These potential 

flow rectangular elements (A0=10 deg, Ad=0.045) were much larger than the 

grid elements of the boundary layer calculation so that the interpolation 

technique with the cubic spline-on-spline described in the section on The 

Ship Surface Coordinate System was used. 

Initial conditions for the quantities 6 H, and t = tan) 6 at sitatdon 

s = -0.5 (which very nearly coincides with Re of the 6-coordinate curves 

on the surface of the hull) were obtained from hereason e- experimental 

results. These initial data are shown in Figure 8. Intermediate values of 

the data shown in Figure 8 were obtained by linear interpolation because 

it was felt that the sparsity and quality of the experimental data did not 

justify a more accurate interpolation. Figures 9 through 13 show the 

distributions of the streamline momentum thickness C1 crossflow angle £, 

and skin friction coefficient C, along the streamlines 1 through 8 of 
f£ 

Figure 7. In each case, the results of the present calculation are 

compared to the corresponding results of ieirecomntg experiment and his 

calculation that includes the complete crossflow but not the modification 

of the hull offsets by the values of the local displacement thickness. It 

can be seen in Figures 9 through 13 that the present predictions seem to 

correlate with the experimental data, on the average, about as well, or 

possibly slightly better than, Larsson's computational results. In 

particular, the present boundary layer predictions on streamline 5 extend 

nearly to the stern of the model, in fairly good agreement with the experi- 

mental data, whereas Larsson's results on this streamline seem to terminate 

somewhat earlier, apparently because of some breakdown in his calculation 

method. 
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SSPA-720 Model 

44 



Figure 9 - Boundary Layer Characteristics versus Axial Distance 
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for Flow Along Streamline 1 on Model SSPA-720 
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Figure 9 (Continued) 
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Figure 9 (Continued) 
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Figure 9c - Streamline Skin Friction Coefficient 
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Figure 10 - Boundary Layer Characteristics versus Axial Distance for Flow 

Along Streamline 3 on Model SSPA-720 
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Figure 10a - Streamline Momentum Thickness 
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Figure 10 (Continued) 
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Figure 10 (Continued) 
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Figure 10c - Streamline Skin Friction Coefficient 
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Figure 1l - Boundary Layer Characteristics versus Axial Distance for Flow 

Along Streamline 5 on Model SSPA-720 
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Figure lla - Streamline Momentum Thickness 
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Figure 11 (Continued) 
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Figure 11 (Continued) 

x 10% 

LEGEND 

EXPERIMENT oO 

PRESENT THEORY -——Q—— 

LARSSON 

Figure lle - Streamline Skin Friction Coefficient 
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Figure 12 - Boundary Layer Characteristics versus Axial Distance for Flow 

Along Streamline 7 on Model SSPA-720 
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Figure 12a - Streamline Momentum Thickness 
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Figure 12 (Continued) 
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Figure 12b - Crossflow Angle 8 
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Figure 12 (Continued) 
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Figure 12c - Streamline Skin Friction Coefficient 
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Figure 13 - Boundary Layer Characteristics versus Axial Distance for Flow 

Along Streamline 8 on Model SSPA-720 
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Figure 13 (Continued) 
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Figure 13b - Crossflow Angle 8 
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Figure 13 (Continued) 
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Figure 13c - Streamline Skin Friction Coefficient 
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It is to be noted that the experimental values of the crossflow angle 

8 shown in Figures 9b, 10b, 11b, 12b, and 13b all exhibit a change in sign 

(hence crossflow reversal) between the stations s = 0.6 and s = 0.8. The 

results of the boundary layer calculations shown in these figures consist— 

ently miss this flow reversal. This indicates that the crossflow model may 

need considerable improvement in order to reliably predict crossflow 

reversal as the boundary layer approaches separation. However, the cross- 

flow discrepancy at the stern of the SSPM Model 720 may also be due, in 

large part, to the discrepancy between the potential flow pressure 

distribution and the actual pressure distribution at the stern. The 

experimental and computational results indicate that the boundary layer 

is very thick at the stern of the model; hence, the pressure distribution 

must be different from the potential flow values there. Note also that the 

degree of accuracy in predicting the primary quantities of interest, the 

boundary layer momentum thickness 814 and skin friction coefficient Ces is 

considerably better than the prediction of the relatively small values of 

the crossflow angle 8. 

On the basis of the comparisons with experimental boundary layer data 

shown in Figures 9 through 13, the overall assessment of the present 

boundary layer calculation method is that it can predict boundary layers on 

relatively fine double ship models with fair accuracy to within a distance 

of the stern of about 10 percent of the ship's length. In this area, the 

boundary layer thickens very rapidly and approaches separation. Calcu- 

lation of this near-separated boundary layer region must await further 

developments of boundary layer theory. 

CONCLUDING REMARKS 

This report presents a momentum integral method for computing three- 

dimensional boundary layers for ships. Most of the technical details for 

carrying out the computational problem of solving the momentum-integral 

boundary layer equations are worked out here and have been implemented in a 

set of computer programs. The basic method can be used to calculate 
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certain boundary layer parameters, such as boundary layer thickness or 

skin friction, with fair accuracy over a large portion of hulls where 

unseparated flow is maintained. The computer programs are now ready to be 

modified so as to improve the crossflow modeling, with whatever new 

experimental data becomes available. Alternatively, portions of the 

developments described in this report, such as the surface coordinate 

system and inviscid flow calculation, can be used in other methods for cal- 

culating the boundary layer. 
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APPENDIX 

MATHEMATICAL DETAILS 

Substituting directly from Equation (21) into Equation (6) yields 

2} 2S aw , 2= pay iss 
O14 = O14 [cos a - t(£,+£,) sina cosatt f. Sain O4)| = 0, 184, (tH) (49a) 

6) = 6 n@eae ) sin a cos at tf moe) = er sino] = 6. (ep is) (495) 
12 11 3} 2 Al fie el OTe es ee 

@,. € O.. (eee) ef ee 49 = CE, sim el] € OB (t,H) (49c) D1 Lit 3) Sin a cos a 1 CoS O y sina] = 6,,85,(ts Cc 

C) = 6 feinee + t(f,+f.) sin a cos a + oR ROSE = ¢ (e518) (49d) 22 ii be 2 3 = “sneD9 S=2 

A, = 814 (H cos a - tf) Sati ©) = 65, h, (t.H) (49e) 

A, = O14 (H sin’ @ + tf, COS ©) = 6, hp (t>H) (49£) 

The momentum integral Equations (3) can then be written 

p eerie ee 0811 93t pn 9811 9H fo Wa 5) 
iL aye ii 68e |} OM ii, Our SO WZ Os 

w) w) w) 9 

dg dg 12 at 1D BE 
On ae Bn 11 on ae G5 Cage) (si) 

and 

Senna Oe a 2m ey, eer 

S91 92 i Se. Bs il Fe Of, ° 222 0 
w) w) w) 9 

og og 22 dt D2 Ae 
Oi Be ly 7 in En Oe, Cann te (Sb) 

where 
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u u 

i Ee CLO a) 
Ci an oes On a 

Hence, 

20 du du 
aval 4 dk OU UM \ eal me) pL) Sy Wagotold) G. om (na BO” Sue 90 U (, wm, ° oD 

) ) v) w) 6 

+ oul (844 78997hy sin a) + Ko91 1 (81 9+851 thy sina) (5la) 

Similarly, 

20 du du a ee Moral au SU) a\p bl 0 0 
Co Wein Bok) oy G, v (s 32, 1 822 92 U (, ay, 7 OD BE 

) ) 0 0) 9 

+ Ky 944 (85578, 7hy cos Qa) + aia (854 +8, 9th, cos a) (51b) 

Let T and S be defined by 

6-UA, ) (52a) 
c|rR 

and 

Sa y (ugs-UA,) (52b) 
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The entrainment Equation (7) can then be written in the form: 

oT oS a ae ) oy Se ea RH) eh ee eK eS at,” Re U, ,  U; af, ‘ 

Moreover, using Equations (10), (49e), and (49f) 

T= 81,66 cos a+ tf, sin a) = 051) (to) 

S = 85,66 sin a - tf, Cosa) = 8 Boo (tS) 

The final form of the entrainment equation is 

Shin ’ ese. Vy. ‘ SSG AT lta 055, 
11 a2 iL. Oe ” Os I OH OL Ov 

$ p o ) 

oh dh 
DO, Oe 22 OH 

7 On Ge Oe ab a a Ceol) 

where 

dU dU 
Ls He do SNS a PSS) Cys F(H) U, av) U, apt TK, + SK 
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